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Abstract 

Chronic pain is a global public health challenge, affecting nearly one third of adults 

worldwide. Current treatments are inadequate, especially since some of the mainstay therapies 

(e.g. opioids, NSAIDs) are often ineffective and/or associated with significant toxicity. The 

solution to these problems requires an improved understanding of chronic pain pathology, 

particularly the role that the brain plays in causing or amplifying pain perception, and how 

analgesic intervention might target these brain-based mechanisms. This dissertation aims to 

identify brain network alterations in fibromyalgia (FM), a common and canonical chronic pain 

condition with presumed CNS pathology, and determine how non-invasive brain stimulation may 

target aberrant brain network connectivity to promote analgesia.  

Across a wide range of diverse neurological disorders, hubs (i.e. highly connected brain 

regions) appear to be disrupted and the character of this disruption can yield insights into the 

pathophysiology of these disorders.  In Chapter 2, we describe the application of a brain network 

based approach to examine hub topology in FM patients compared to healthy volunteers. We 

identified significant disruptions in hub rank order in FM patients. In FM, but not controls, the 

anterior insula was a hub with significantly higher inter-modular connectivity and membership in 

the rich club (a functional backbone of connectivity formed by highly interconnected hubs). 

Among FM patients, rich club membership varied with the intensity of clinical pain: the 

posterior insula, primary somatosensory and motor cortices belonged to the rich club only in FM 

patients with the highest pain.  Further, we found that the eigenvector centrality (a measure of 

how connected a brain region is to other highly connected regions) of the posterior insula 
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positively correlated with clinical pain, and mediated the relationship between levels of 

glutamate + glutamine within this structure and the patient’s subjective clinical pain report.  

Together, these findings demonstrate an altered hub topology in FM and are the first to suggest 

that disruptions in the excitatory tone within the insula could alter the strength of the insula as a 

hub and subsequently lead to increased clinical pain.  

Transcranial direct current stimulation (tDCS) has emerged as an attractive noninvasive 

treatment for pain, given its ability to target specific cortical regions with relatively few side 

effects.  Motor cortex (M1) tDCS relieves pain in FM, but the analgesic mechanism remains 

unknown. In Chapter 3, we measured changes in resting state functional connectivity after sham 

and real M1 tDCS in twelve FM patients and examined if these changes were related to 

subsequent analgesia.  M1 tDCS (compared to sham) reduced pro-nociceptive functional 

connectivity, specifically between the motor and sensory nuclei of the thalamus and multiple 

cortical regions, including primary motor and somatosensory areas. Interestingly, decreased 

connectivity between the thalamus and posterior insula, M1 and somatosensory cortices 

correlated with reductions in clinical pain after both sham and active treatment. These results 

suggest that while there may be a placebo response common to both sham and real tDCS, 

repetitive M1 tDCS causes distinct changes in functional connectivity that last beyond the 

stimulation period and may produce analgesia by inhibiting pro-nociceptive thalamic 

connectivity. 

This research offers new insight into the neurobiology of chronic centralized pain 

conditions and contributes to the understanding of how non-invasive brain stimulation causes 

analgesia. This knowledge could lead to more informed stimulation sites and personalized 

treatment based on network connectivity in each individual patient. 
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Chapter 1 : Introduction 

Chronic pain is a global public health challenge.  Nearly one third of adults worldwide 

suffer from a chronic pain condition (Elzahaf et al., 2012). In the United States, 116 million 

Americans suffer from chronic pain, which is more than heart disease, cancer and diabetes 

combined. At a cost of $560-635 billion annually, chronic pain is arguably the most prevalent 

and costly public health crisis in America today (Institute of Medicine (US) Committee on 

Advancing Pain Research, Care, and Education, 2011).  

Pain is a multidimensional, conscious experience that is shaped by environmental, 

psychological and biological factors unique to an individual.  Nociception is an unconscious 

physiological process reflecting the activity of specialized sensory receptors (nociceptors) in the 

periphery that respond to a noxious stimulus and transmit this information to the central nervous 

system (CNS). Nociception is neither a necessary, nor sufficient, cause of pain. Pain, on the other 

hand, is a complex emotional and cognitive experience primarily generated by the brain, and 

may or may not be correlated with actual tissue damage (Merskey H, 1994; Tracey, 2005).  

The transition from acute to chronic pain (defined as persistent symptoms for more than 

three months) is not well understood but functional, structural and neurochemical abnormalities 

observed in the CNS of chronic pain patients point to central mechanisms in some individuals.  

Centralized pain, in this context, refers to dysfunction in CNS processing that causes, amplifies 

or sustains the perception of pain (Sluka and Clauw, 2016) in a way that is distinct or even 

disconnected from peripheral nociceptive events.  Fibromyalgia (FM) is a common chronic 

centralized pain condition, affecting 2-8% of the population (Wolfe et al., 1995; McBeth and 
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Jones, 2007; Vincent et al., 2013). It is considered the canonical centralized pain disorder, 

although other chronic pain disorders (i.e. irritable bowel syndrome, temporomandibular joint 

syndrome, chronic lower back pain) may share underlying pathophysiology (Clauw, 2009; 

Maixner et al., 2016).  FM is characterized by widespread musculoskeletal pain without 

accompanying tissue inflammation or damage (Clauw, 2014). FM patients also have diffuse 

hyperalgesia (elevated pain responses to painful stimuli) and allodynia (perception of pain for 

normally non-painful stimuli). Additional markers of centralized pain are comorbid CNS-

mediated symptoms such as fatigue, insomnia, and mood disorders. Finally, FM patients are 

hypersensitive to a variety of non-noxious sensory stimuli (such as light, noise, and odors) 

(Petzke et al., 2003; Geisser et al., 2008; Wilbarger and Cook, 2011; López-Solà et al., 2014; 

Harte et al., 2016; Martenson et al., 2016), which suggests a more global dysfunction in sensory 

processing.  The widespread nature of the pain, lack of conclusive peripheral abnormalities, and 

accumulating neuroimaging evidence point to the CNS as the primary driver in the amplification 

and persistence of pain in FM. 

Central Nervous System Alterations in Fibromyalgia 

The CNS plays an active role in pain processing and can either enhance or diminish the 

perception of pain.  The perception of pain is a product of the activity in a diverse network of 

brain regions, including the somatosensory cortex (S1), insula, anterior cingulate cortex (ACC), 

prefrontal cortex, thalamus, hypothalamus, amygdala, hippocampus, cerebellum, periaqueductal 

gray (PAG) and other brainstem nuclei (Lee and Tracey, 2013). 

Studies of chronic pain patients using noninvasive techniques to study human brain 

function, such as functional magnetic resonance imaging (fMRI), proton magnetic resonance 

spectroscopy (1H-MRS), and positron emission tomography (PET), have confirmed alterations in 
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the functional, chemical and structural brain networks responsible for sensory processing.  These 

alterations fall into two broad categories: increased pro-nociceptive processing and/or decreased 

descending anti-nociceptive transmission, both of which may be driven by imbalances in 

excitatory and inhibitory neurotransmitters. 

In various chronic pain conditions, there is increased activity in “normal” pain processing 

regions, which may reflect the subjective magnitude or salience of the pain (Apkarian et al., 

2011).  Gracely and colleagues demonstrated that FM patients rated the intensity of an equal 

pressure stimulus as significantly more painful than controls.  Using fMRI, they also showed that 

FM patients had increased activation in a distributed network of pain processing regions, 

including S1, insula and ACC, during the application of this equal pressure stimulus compared to 

healthy controls (Gracely et al., 2002). Other studies have confirmed the leftward shift in the 

stimulus response function and increased activation in pro-nociceptive pain processing regions 

during painful stimuli in chronic pain patients relative to healthy volunteers (Cook et al., 2004; 

Giesecke et al., 2004; Gracely, 2004; Pujol et al., 2009; López-Solà et al., 2016).  

 One method of assessing the brain-based changes related to FM involves functional 

interactions between regions thought to be involved in pain.  Functional connectivity is defined 

as the statistical covariation between activities in different brain regions and has been used as a 

surrogate for network-based activity (for a review on functional connectivity methods and 

interpretations, see van den Heuvel and Pol, 2010).  The brain is organized into large-scale 

networks, wherein the neural activities of the component brain regions are highly correlated over 

time and spontaneously active even during the resting state. The most commonly reported 

networks include: sensorimotor network, visual network, salience network, fronto-parietal 

network, and the default mode network (DMN).  The DMN is thought to be involved in self-
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referential processing and includes the posterior cingulate, precuneus, lateral parietal lobes and 

the medial prefrontal cortex.	
  

FM patients, relative to healthy controls, also have increased functional connectivity 

between pro-nociceptive brain regions, specifically between the DMN and the insula (Napadow 

et al., 2010).  Further, the magnitude of this connectivity is positively correlated with clinical 

pain intensity (Napadow et al., 2010; Flodin et al., 2014).  Reductions in DMN – insula 

connectivity correlate with decreases in clinical pain intensity after a non-pharmacological 

treatment (Napadow et al., 2012).  FM patients also have increased functional connectivity 

between the DMN and secondary somatosensory cortex, ACC and insula, and M1 with 

supplementary motor areas (Cifre et al., 2012; Pujol et al., 2014).  More recently, our laboratory 

reported increases in resting state functional connectivity after an experimental pain task between 

the insula and ACC, and between the thalamus and precuneus/posterior cingulate cortex (key 

regions of the DMN).  These connectivity changes were positively correlated with increases in 

clinical pain intensity over the course of the scan (Ichesco et al., 2016). The functional and 

structural changes observed in FM may be common across other pain conditions.  In a large 

study, patients with chronic pelvic pain (a condition that shares the centralized pain phenotype) 

displayed increased gray matter volume in S1/M1 and increased functional connectivity between 

these regions and the insular cortex (Kutch et al., 2017).  These findings were confirmed in FM 

patients, but were absent in pain-free healthy controls.  

FM patients also have deficits in descending analgesia.  During a pressure pain paradigm, 

FM patients had decreased activation in anti-nociceptive brain regions, including the rostral ACC 

and brainstem (Jensen et al., 2009).  FM patients had decreased functional connectivity in 

descending pain inhibitory pathways during this pain task, specifically between the ACC, 
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amygdala, hippocampus and brainstem, and between the thalamus and orbitofrontal cortex 

(Jensen et al., 2012). The decreases in functional connectivity between anti-nociceptive 

structures (ACC, thalamus and insula to PAG) are also present during the resting state (Cifre et 

al., 2012; Pujol et al., 2014).  A recent meta-analysis found that FM patients have decreased gray 

matter volume in anti-nociceptive regions such as the ACC (Shi et al., 2016). In summary, FM 

patients have increases in activity, connectivity and gray matter volume in pro-nociceptive brain 

regions and decreases in activity, connectivity and gray matter volume in anti-nociceptive areas 

(summarized in Figure 1.1). 

 

Figure 1.1. Summary of Alterations in Pro- and Anti-Nociceptive Brain Activity.  FM patients have increased activation during 
experimental pain tasks in pro-nociceptive brain regions such as the insula, M1, S1, dorsal ACC and thalamus.  Patients also 
have increased functional connectivity at rest between pro-nociceptive brain regions and the DMN.  Moreover, FM patients have 
decreased descending analgesic activity in anti-nociceptive brain regions such as the rostral ACC and PAG.  Further there is 
evidence of decreased functional connectivity to these anti-nociceptive structures. FM, fibromyalgia; M1, primary Motor Cortex; 
S1, primary somatosensory cortex; ACC, anterior cingulate cortex; PFC, prefrontal cortex; DMN, default mode network; PAG, 
periaqueductal gray 
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The altered activation and connectivity patterns observed in FM may be due to 

imbalances in the excitatory and inhibitory neurotransmitters that play a role in pain perception.  

FM patients have increased cerebrospinal fluid levels of the pro-nociceptive neurotransmitters 

substance P, nerve growth factor and glutamate (Russell et al., 1994; Giovengo et al., 1999; 

Sarchielli et al., 2007), and decreased levels of the anti-nociceptive neurotransmitters serotonin, 

norepinephrine and dopamine (Russell et al., 1992).  1H-MRS is a non-invasive MRI technique 

that measures the relative concentration of brain metabolites in vivo.  Using this technique, our 

laboratory has shown that FM patients have decreased levels of γ-aminobutyric acid (GABA), 

the brain’s major inhibitory neurotransmitter, in the anterior insula and increased levels of 

glutamine + glutamate (Glx; the latter being the brain’s major excitatory neurotransmitter) in the 

posterior insula (Harris et al., 2009; Foerster et al., 2012).  These alterations in GABA and Glx 

were associated with increased experimental pain sensitivity. Other studies have found higher 

concentrations of Glx in the posterior cingulate, a key node of the DMN, of FM patients relative 

to healthy volunteers (Fayed et al., 2010).   

Numerous studies have found alterations in baseline opioidergic activity in FM (see 

Goldenberg et al., 2016 for a recent review).  Briefly, FM patients have reduced µ-opioid 

receptor availability (as measured with the PET radiotracer [11C]-carfentanil) in several pain 

processing regions, including the ACC, amygdala and nucleus accumbens, and this reduction 

was associated with clinical pain intensity (Harris et al., 2007).  These data can be interpreted in 

two ways that are not mutually exclusive: FM patients may have increased endogenous opioid 

levels or fewer opioid receptors.  Opioid analgesics do not effectively treat FM pain and low 

dose naltrexone, an opioid receptor antagonist, improves FM symptoms, which supports the 
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hypothesis that FM patients have excess endogenous opioid activity (Younger and Mackey, 

2009; Younger et al., 2013; Goldenberg et al., 2016).  

As briefly outlined, FM patients have alterations in the function, structure and 

neurochemistry of brain regions involved in pain processing.  Importantly, none of the brain 

regions or networks mentioned above is uniquely associated with the perception of pain.  They 

contribute to many other sensory, cognitive and emotional processes, which may explain the 

presence of a wide variety of symptoms in addition to the widespread pain seen in centralized 

pain states.  Since there is most likely not a ‘primary nociception cortex,’ it may be that 

coordinated activity within a network of regions modulates the perception of pain (Lee and 

Tracey, 2013).  As such, studying the brain as a complex network of interconnected regions 

might provide unique insights to the underlying pathophysiology of chronic centralized pain 

conditions. 

The Brain as a Complex Network: Introduction to Graph Theory 

Graph theory is a set of mathematical tools to examine the structure and function of 

networks. The organization, or topology, of a network is critical to its function because it 

influences the efficiency and content of information transfer (Bullmore and Sporns, 2012; Moon 

et al., 2015; 2017).  The brain is a network that shares an optimal pattern of organization with 

many other physical and biological systems (e.g., the Internet or social networks).  Many of these 

networks have a “small-world” organization, which strikes a balance between the need for 

segregated processing and rapid information integration (Sporns and Zwi, 2004).  

For an intuitive description of network concepts, consider an analogy: network structure 

and information flow can be thought of in terms of airport organization and travel.  The air 

transportation network is a collection of nodes (airports) and edges (flight routes between 
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airports).  Small regional airports, with few connections, represent peripheral nodes.  Large, 

highly trafficked airports are called hubs.  States could be considered modules, usually 

containing many regional airports and one large hub.  Hub nodes occupy a highly-connected and 

functionally-central role in the network.  They create short-cuts and long-distance connections, 

keeping the path length between airports in different modules short.  Hub airports are also highly 

interconnected to one another and this organizational structure, termed the “rich-club,” serves as 

a core backbone of the network and makes long-distance travel extremely efficient.   

In the case of the brain, nodes represent neurons and/or brain regions and edges are the 

structural or functional connections between nodes.  Hub brain regions, just like hub airports, 

facilitate communication and information integration across distinct modules (i.e. functional 

systems) of the brain.  A strong hub structure is an important characteristic of the small-world 

architecture of the brain, ensuring a short average path length and high global efficiency, while 

maintaining functional modularity (Sporns and Zwi, 2004).  Brain networks also have a rich-club 

organization, in which hubs are more likely to be connected to each other than to peripheral 

nodes (Colizza et al., 2006; Gorka Zamora-López, 2010; van den Heuvel and Sporns, 2011).  

The rich club forms a densely connected network core wherein hubs are thought to act in concert 

and link different functional systems in the brain (van den Heuvel and Sporns, 2011; van den 

Heuvel et al., 2012).   In the healthy human brain, the precuneus/posterior cingulate, ACC, and 

medial prefrontal cortex have been identified as multimodal functional hubs that participate in 

numerous functional networks (van den Heuvel and Sporns, 2013). Importantly, while hubs 

create efficiency, they also create network vulnerability wherein disruption of hub organization 

can have widespread consequences for information transfer.  
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Alterations in optimal network structure have been reported in chronic pain disorders 

(Balenzuela et al., 2010; Liu et al., 2012; Mansour et al., 2017).  Balenzuela and colleagues 

analyzed the community membership across the whole brain network and found that in healthy 

controls, the insula belonged to a community that included the sensorimotor cortices and 

cingulate gyrus.  However, in chronic pain patients, the insula was abnormally integrated into the 

auditory and visual networks (Balenzuela et al., 2010). A recent study including patients from 

three chronic pain conditions confirmed and extended these findings – in healthy controls, the 

insula was consistently a member of the sensorimotor community, while in patients the insula 

was more often a member of the DMN, subcortical, salience or attention networks (Mansour et 

al., 2017).   

Beyond pain conditions, work in other clinical populations has shown that hubs may be 

disproportionately affected in neurological disorders (Crossley et al., 2014; Stam, 2014). A 

recent meta-analysis of 26 diverse brain disorders found that gray matter alterations were more 

likely to be in hubs and rich club hubs in particular (Crossley et al., 2014).  These studies 

demonstrate that graph theory can be a useful tool to probe the underlying network architecture 

associated with chronic pain. However, how brain hub topology is altered in FM, and its 

relationship to underlying neurochemistry and patient self-reported clinical pain is largely 

unknown.  More broadly, it remains unknown how alterations in neurotransmitter levels (which 

are major factors influencing neural activity) in a clinical population may relate to changes in 

hub strength and rich club membership.  Characterizing hub topology in chronic pain could 

provide insight into the pathology of these disorders. 
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Treatments for Fibromyalgia 

Chronic pain conditions with a primarily nociceptive, inflammatory or neuropathic cause 

are generally well understood and effectively treated by health care providers (Arnold et al., 

2016).  However, conditions where the CNS is the primary driver in pain perception, such as 

FM, are often misunderstood and current treatments inadequate.  Centralized pain disorders are 

notoriously unresponsive to treatments that target the periphery and that work well for 

nociceptive pain (e.g. injections, surgery).  Moreover, oral analgesics that work well for 

peripherally driven pain, such as non-steroidal anti-inflammatory drugs and opioids, do not 

effectively treat FM pain and emerging evidence suggests that opioids may worsen hyperalgesia 

in these patients (Brummett et al., 2013; Clauw, 2014; Goldenberg et al., 2016).  Instead, most 

effective treatments target the neurotransmitter systems and brain networks involved in the 

perception of pain.   

Effective pharmacological therapies for FM include drugs that either raise levels of 

serotonin and norepinephrine (tricyclics such as amitriptyline, and serotonin norepinephrine 

reuptake inhibitors such as duloxetine and milnacipran), or those that decrease glutamate 

(gabapentinoids such as pregabalin; see Schmidt-Wilcke and Clauw, 2010; Clauw, 2014 for 

reviews on drug therapy and their neurobiological mechanisms in FM).  In a recent randomized, 

placebo-controlled trial of milnacipran in FM, our laboratory found that FM patients who had the 

greatest reduction in clinical pain after treatment had altered connectivity at baseline between 

pro- and anti-nociceptive regions (Schmidt-Wilcke et al., 2014).  This finding is supported by 

another trial in which milnacipran was found to increase activity in anti-nociceptive brain 

regions during an evoked pain task (Jensen et al., 2014).  In another placebo-controlled trial, 

pregabalin reduced Glx in the posterior insula and decreased experimental pressure pain 
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sensitivity in FM (Harris et al., 2013).  After treatment these patients also had decreased 

connectivity between the insula and DMN, and this change in connectivity was associated with a 

reduction in clinical pain.   

Only a subset of chronic pain patients respond to current pharmacological therapies 

(Häuser et al., 2014), hence there is a critical need for new treatments that target the CNS 

alterations seen in these individuals. Noninvasive brain stimulation has emerged as an attractive 

treatment, given its ability to target specific cortical regions with relatively few side effects.  

Transcranial direct current stimulation (tDCS) of M1 significantly increases experimental pain 

thresholds in healthy controls (Reidler et al., 2012) and causes lasting clinical pain reduction in 

FM (Fregni et al., 2006; Valle et al., 2009; Fagerlund et al., 2015).  M1 tDCS may also improve 

other symptoms in FM such as sleep disturbances and depression (Roizenblatt et al., 2007; Khedr 

et al., 2017).  Other stimulation sites, such as the dorsolateral prefrontal cortex, have been 

explored in FM, but in a comparison trial, M1 stimulation produced the most robust analgesic 

response (Valle et al., 2009).  Although these studies are encouraging, the effect sizes are small 

and a large review concluded that there is only low-quality evidence for M1 tDCS as an effective 

treatment for chronic pain (O'Connell et al., 2014).  The mixed results may be due in part to 

variation in stimulation parameters, the duration of treatment and inclusion of many chronic pain 

conditions.  A more recent review of high quality tDCS studies found probable efficacy for pain 

reduction in FM (Lefaucheur et al., 2017). Some of the variation in analgesic efficacy may also 

be explained by the underlying neurobiology augmenting the perception of pain in each 

condition and, indeed, each patient.  By combining an understanding of the CNS alteration 

driving pain perception with the knowledge of analgesic mechanisms of action of treatments, 

personalized treatment for chronic pain may become a reality. 
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Analgesic Mechanisms of Motor Cortex tDCS 

During a typical tDCS session, the stimulating electrode (anode) is placed over M1 and a 

reference electrode (cathode) is placed over the contralateral supraorbital area.  A weak electrical 

current (between 1 – 2 mA) is applied to the scalp and passed between the electrodes for 

durations of 5 to 30 minutes. tDCS effects are often examined in comparison to a sham (placebo) 

procedure.  During the sham condition, electrodes are applied and positioned exactly as in the 

active condition but the current is applied for only 30 seconds and then discontinued.  The 

sensations on the scalp during an active session can only be felt during the early phase of 

treatment, hence the sham condition is an effective placebo (DaSilva et al., 2011).  

The electrical current applied in tDCS modifies resting membrane potential, thereby 

modulating the excitability and firing rates of cortical neurons.  As a general rule, anodal 

stimulation increases cortical excitability by depolarizing neurons, an effect that persists after the 

stimulation period depending on the intensity and duration of stimulation (Stagg and Nitsche, 

2011).  Conversely, cathodal stimulation has an inhibitory effect by hyperpolarizing neurons 

(Rosen et al., 2009).  Unlike other invasive and non-invasive brain stimulation methods (e.g., 

invasive motor cortex stimulation and transcranial magnetic stimulation), tDCS does not 

generate action potentials (Zaghi et al., 2010).  Although this general observation provides some 

guidance, it is likely too simplistic.  tDCS may also reduce membrane resistance (or increase 

conductance), and the size of this effect depends on the baseline state of the neuron.  Moreover, 

tDCS effects depend on the relationship between the stimulated area and structurally connected 

regions, and any pathological alterations of neurotransmitter systems (Lefaucheur et al., 2017). 

Finally, stimulation intensity, duration, number of repetitions and electrode size, shape and 
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placement can also impact the strength, diffusion and excitability of the electrical current 

(Lefaucheur et al., 2017).  

Axons are more susceptible to the electrical current applied during brain stimulation 

compared to cell bodies, so mechanisms should be examined in terms of the impact on networks 

rather than on any individual brain region (Lefaucheur, 2016). Computational models of M1 

tDCS depict current flow reaching areas under the stimulating electrode in addition to more 

distal cortical and subcortical regions (DaSilva et al., 2012).  These models have been borne out 

by in vivo studies of tDCS effects; anodal M1 tDCS increases activity and connectivity in the 

underlying M1 cortex (Kwon et al., 2008; Polanía et al., 2012a; Sehm et al., 2013) and has a 

sustained impact on the neural activity of distant cortical and subcortical regions (Lang et al., 

2005). Using graph-theoretical techniques, Polania and colleagues examined network 

connectivity before and immediately after anodal M1 tDCS in healthy participants.  They found 

that M1 tDCS (compared to sham) increased the number of functional connections in the 

posterior cingulate and the dorsolateral prefrontal cortex (Polanía et al., 2011).  Specifically, 

there was increased connectivity between the posterior cingulate and other DMN regions and 

between the dorsolateral prefrontal cortex and the anterior insula.  They also found decreased 

long-distance connectivity in S1, and a concomitant increase in short-range connections between 

S1 and M1. Sehm and colleagues found that M1 tDCS altered connectivity in prefrontal, parietal 

and cerebellar regions during stimulation and the effects persisted for at least 15 minutes in 

healthy volunteers (Sehm et al., 2012).   

There has not been substantial research on the neurobiology of M1 tDCS analgesia. 

However, studies from invasive motor cortex stimulation, other types of non-invasive brain 

stimulation and animal models can provide insight into potential mechanisms of action. 
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Importantly, the hypotheses outlined below are not mutually exclusive and could occur 

synergistically to produce analgesia. 

Thalamocortical Hypothesis 

The ventral lateral and ventral posterior lateral thalamic nuclei have direct connections to 

the motor and somatosensory cortices, and are involved in motor functions and the sensory-

discriminative aspect of pain (Zhang et al., 2010).  One influential hypothesis states that M1 

stimulation causes analgesia by decreasing thalamic hyperactivity (Tsubokawa et al., 1991; 

1993; Nguyen et al., 2011). In studies of healthy rats and rats with neuropathic pain, researchers 

performed a paw pressure noxious stimulus test and found that following invasive M1 

stimulation, the withdrawal threshold was increased compared to sham (meaning that it takes 

more pressure to induce the withdrawal response, which is interpreted as anti-nociception).  

Furthermore, neuronal firing rates in the ventral posterior lateral thalamus decreased during M1 

stimulation, while the firing rate of neurons in the PAG increased (Pagano et al., 2011; 2012). 

Garcia-Larrea and colleagues demonstrated that invasive M1 stimulation in patients with 

neuropathic pain caused an increase in cerebral blood flow in the ventral lateral thalamus, ACC, 

anterior insula and upper brainstem (García-Larrea et al., 1999). Together, these data suggest that 

M1 stimulation may activate inhibitory corticothalamic fibers, which results in thalamic 

inhibition (Zaghi et al., 2009).   

tDCS also increases pain and sensory thresholds in healthy volunteers and causes lasting 

pain relief in chronic pain conditions (Vaseghi et al., 2014), perhaps due to the modulation of 

thalamic sensory pathways.  In a study of healthy volunteers measuring regional cerebral blood 

flow with PET, researchers found increased blood flow in M1, S1 and the ventral posterior 

lateral thalamus immediately after anodal M1 tDCS compared to sham, which is similar to the 
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findings using invasive M1 stimulation (Lang et al., 2005).  In another study using healthy 

controls, M1 tDCS increased functional connectivity between M1 and thalamus relative to the 

sham condition (Polanía et al., 2012b).  It is important to note that these studies were done during 

or immediately after tDCS and that thalamic activity may either increase or decrease depending 

on the timing of measurement (Peyron et al., 2007).  Our laboratory has shown that after five 

days of M1 tDCS in FM patients there was trend towards decreased Glx in the bilateral thalami 

compared to sham, although this did not meet statistical significance (Foerster et al., 2014). This 

was a small study that needs to be replicated, but it suggests that M1 tDCS may also act via 

corticothalamic pathways in chronic centralized pain. 

Endogenous Opioid Hypothesis 

Another hypothesis states that M1 stimulation may cause analgesia via activation of the 

endogenous opioid system, a major pain modulatory system. In a PET study of cerebral blood 

flow in neuropathic pain patients there was an increase in blood flow in the ACC, orbitofrontal 

cortex, putamen, and PAG that persisted 75 minutes after the cessation of invasive M1 

stimulation (Peyron et al., 2007).  Most of these changes in blood flow were associated with 

analgesia. Additionally, the authors found a significant increase in functional connectivity 

between the ACC and PAG, leading to the hypothesis that M1 stimulation activates descending 

anti-nociceptive systems.  The ACC and PAG contain a high density of opioid receptors, and are 

important players in opioid analgesia (Jones et al., 1991; Petrovic, 2002).  Relative to a 

preoperative PET scan, Maarrawi and colleagues found a reduction in binding potential with the 

non-selective opioid antagonist [11C]diprenorphine in the ACC and PAG after seven months of 

invasive M1 stimulation for the treatment of neuropathic pain (Maarrawi et al., 2007).  A later 
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study showed that the density of opioid receptors in these regions - in addition to the thalamus, 

insula and orbitofrontal cortex - predicted postoperative pain relief (Maarrawi et al., 2013).  

Naloxone, an opioid receptor antagonist, blocks the analgesic effects of M1 tDCS in 

healthy controls (de Andrade et al., 2011).  Research combining PET and tDCS confirms that 

tDCS may also act on the endogenous opioid system.  In a neuropathic pain patient, M1 tDCS 

(compared to sham) caused a release of endogenous opioids in the nucleus accumbens, ACC, 

insula and thalamus (DosSantos et al., 2012).  A later study confirmed these results, in addition 

to increased release in the PAG, in healthy controls during M1 tDCS (DosSantos et al., 2014).  

Since the sham tDCS condition also caused endogenous opioid release in many of the same 

regions, placebo effects cannot be ruled out. 

As stated above, chronic centralized pain patients have alterations in the endogenous 

opioid system (either increased levels of circulating endogenous opioids or fewer opioid 

receptors).  It is unclear if the findings from healthy volunteers and neuropathic pain patients 

would extend into chronic pain conditions.  It is also unknown how tDCS alters endogenous 

opioid tone or receptor density after repeated tDCS sessions, as an FM patient would be treated 

in a clinical setting.  This is beyond the scope of the current dissertation, but should be examined 

in future studies.   

Neuronal Plasticity Hypothesis 

The analgesic effects of tDCS can last well beyond the end of a treatment session and 

outcomes are generally improved with repeated sessions (Monte-Silva et al., 2013).  Antagonists 

at the glutamate N-methyl-D-aspartate (NMDA) receptor, a key regulator of synaptic plasticity, 

can abolish the analgesic effects of M1 stimulation (Liebetanz et al., 2002; Ciampi de Andrade et 

al., 2014).  Anodal tDCS to the parietal cortex increased Glx in the same region (Clark et al., 
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2011).  After repetitive S1 transcranial magnetic stimulation in chronic visceral pain patients, 

there was a significant increase in S1 Glx and this change was associated with a reduction in 

clinical pain (Fregni et al., 2011).  Anodal tDCS can also reduce GABA near the stimulating 

electrode, which may impact glutamatergic plasticity as well (Stagg et al., 2009; Lefaucheur et 

al., 2017).  tDCS also alters functional connectivity below the stimulating electrode as well as 

distant cortical regions (Polanía et al., 2011; Sehm et al., 2012; Polanía et al., 2012a; 2012b; 

Sehm et al., 2013).  The baseline activity of the neural network can determine the effect of tDCS 

and ‘priming’ the network by having participants perform a task during stimulation can 

potentiate behavioral effects (Lefaucheur et al., 2017).  For example, when M1 tDCS is applied 

during a motor learning task, performance is better and improvements are longer lasting 

compared to tDCS alone (Reis et al., 2009; Reis and Fritsch, 2011; Zimerman et al., 2013).  This 

principle also applies to other cognitive domains and stimulation sites (Cohen Kadosh et al., 

2010; Meinzer et al., 2014).  All together, these facts strongly suggest that the long term changes 

seen after noninvasive brain stimulation involve neural plasticity, possibly via long-term 

potentiation or long-term depression-like mechanisms (Monte-Silva et al., 2013; DosSantos et 

al., 2016). 

Placebo Hypothesis 

The placebo response is attributable to the psychobiological effects of the treatment 

process itself, rather than any active component of a drug or non-drug treatment (Wager and 

Fields, 2013).  Neuroimaging studies have revealed an overlap between brain networks involved 

in pain processing and those implicated in the placebo response (Tracey, 2010; Meissner et al., 

2011).  Placebo analgesia is associated with activity in descending anti-nociceptive systems, 

including the release of endogenous opioids, and the inhibition of ascending pro-nociceptive 
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activity (Zubieta and Stohler, 2009; Wager and Fields, 2013).  Placebo responses are clearly 

present in tDCS and may account for a portion of the analgesic effect.  One study found that 

sham tDCS causes the release of endogenous opioids in the PAG, precuneus and thalamus 

(DosSantos et al., 2014).  These findings led to the suggestion that the placebo response to tDCS 

could be leveraged to provide a larger analgesic response when real tDCS is subsequently 

applied.  Active tDCS may be reinforcing brain networks that are activated by the expectation of 

pain relief (similar to the enhanced effects when tDCS is combined with a motor or cognitive 

task outlined above).  This idea can be summarized as “functional targeting” and may shed light 

on how tDCS targets specific networks when the electrical current itself is rather widespread and 

diffuse (Schambra et al., 2014). 

To summarize, tDCS is an emerging technology that may hold promise for relieving pain 

symptoms through network-level changes.	
   It is clear that tDCS can alter functional connectivity 

and the neurochemistry of regions underneath and distant to the stimulating electrode.  

Importantly, most of the studies outlined above in healthy controls or neuropathic pain patients 

examined the neurobiological effects of M1 stimulation during or immediately after stimulation 

had ended. It is unclear if these results translate to chronic centralized pain conditions. There 

have not been any studies measuring changes in functional connectivity after repetitive 

treatments of tDCS in chronic pain patients, as they would be treated in clinical practice. 

Aims and Hypotheses of this Dissertation 

The goals of this dissertation are to (1) elucidate changes in brain network topology, 

specifically within regions fundamental to information flow and integration (i.e. hubs), in a 

common chronic centralized pain condition and (2) determine how a non-pharmacological 

treatment may alter network connectivity to cause analgesia.  The overarching hypothesis is that 
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there is a reorganization of hub regions in chronic pain, which may contribute to amplifying or 

sustaining the perception of pain independently of peripheral nociceptive input.   Further, we 

hypothesize that disordered hub regions are prospective targets for non-invasive brain 

stimulation therapy and that tDCS cause analgesia by disrupting functional connectivity between 

regions involved in pain perception.   

In Chapter 2, we apply a brain network based approach to examine hub topology in 40 

FM patients compared to 27 healthy volunteers using graph theoretical techniques.  Given the 

widespread nature of pain and hypersensitivity to other sensory modalities in FM, we 

hypothesize that the FM brain network will have altered hub organization and rich-club 

membership of pain and sensory processing regions (such as the insula and S1). We further 

hypothesize that these differences will be related to neurochemistry and clinical pain intensity. 

In Chapter 3, we examine resting state functional connectivity in 12 FM patients at 

baseline, after five days of sham tDCS, and after five days of anodal M1 tDCS treatment.  We 

sought to answer three questions: (1) Can functional connectivity at baseline predict subsequent 

analgesia after M1 tDCS? (2) How does M1 tDCS (compared to sham) alter functional 

connectivity? and (3) Do changes in connectivity relate to treatment response?  Previous studies 

have shown that structural connectivity between M1 and the thalamus may be important for 

analgesia after a similar noninvasive brain stimulation technique (Goto et al., 2008; Ohn et al., 

2012). Therefore, we hypothesize that FM patients with stronger M1-thalamus connectivity at 

baseline will predict a better clinical response.  Additionally, since we found a trend towards 

decreased Glx in the thalamus after M1 tDCS in the same patients studied here (Foerster et al., 

2014), we expect that M1 tDCS will decrease functional connectivity between the thalamus and 

brain regions involved in pain perception and that these changes will relate to analgesia. 
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In total, this research may offer new insight into the pathophysiology of chronic 

centralized pain conditions, may be a clinically useful diagnostic marker of chronic pain, and 

may contribute to the understanding of how noninvasive brain stimulation treatments cause 

analgesia. This knowledge could lead to more informed stimulation sites and personalized 

treatment based on the brain network connectivity in an individual patient.  Finally, an 

understanding of how alterations in the excitatory-inhibitory balance in one brain region might 

affect information transfer in the whole brain network would be of foundational neuroscientific 

importance.  
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Chapter 2 : Functional and Neurochemical Disruptions of Brain Hub 

Topology in Chronic Pain 

Introduction 

The perception of acute pain is a product of neural activity in a widely distributed brain 

network, typically following noxious insult.  In chronic pain conditions, however, altered 

processing within this network can create, amplify, or sustain the perception of pain independent 

of noxious stimulation (Sluka and Clauw, 2016). Therefore, a network approach may offer 

critical and unique insights into the pathogenesis of chronic pain conditions (Farmer et al., 2012; 

Kucyi and Davis, 2015).   

Brain networks can be modeled using graph theoretical tools as a set of functional 

interactions made up of nodes (neurons and/or brain regions) and edges (structural or functional 

connections between nodes). The organization, or topology, of a network is critical to its 

function because it influences the efficiency and content of information transfer among nodes 

(Moon et al., 2015; 2017). The human brain network has been described as “small-world,” a 

topology that strikes a balance between segregated processing and rapid information integration 

(Sporns and Zwi, 2004).   

A critical component of small-world architecture is a robust hub structure, wherein hub 

nodes facilitate efficient information integration across the brain by occupying a highly-

connected and functionally-central role in the network (van den Heuvel and Sporns, 2013).  

Brain networks also have a higher order level of organization called “rich-clubs,” in which hubs 

are more likely to be connected to each other than to nodes with fewer connections (Colizza et 
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al., 2006; Gorka Zamora-López, 2010; van den Heuvel and Sporns, 2011).  This rich club forms 

a densely connected network core wherein hubs are thought to act in concert and link different 

functional systems in the brain (van den Heuvel and Sporns, 2011; van den Heuvel et al., 2012).    

Importantly, while hubs create efficiency, they also create network vulnerability wherein 

disruption of hub organization can have widespread consequences for information transfer. Work 

in clinical populations has shown that hubs may be disproportionately affected in neurological 

disorders (Crossley et al., 2014; Stam, 2014). A recent meta-analysis of 26 diverse brain 

disorders found that gray matter alterations were more likely to be in hubs and rich club hubs in 

particular (Crossley et al., 2014).  Characterizing hub topology in clinical conditions may 

therefore provide insight into the pathology of these disorders. Alterations in optimal network 

structure have been reported in chronic pain disorders (Balenzuela et al., 2010; Liu et al., 2012; 

Mansour et al., 2017).  However, how brain hub topology is altered in chronic pain, and its 

relationship to underlying neurochemistry and patient self-reported clinical pain is largely 

unknown.  More broadly, it remains unknown how alterations in neurotransmitter levels in a 

clinical population may relate to changes in hub strength and rich club membership.   

Here we used a graph theoretical approach in conjunction with resting state functional 

MRI (fMRI) and proton magnetic resonance spectroscopy (1H-MRS) to examine hub topology 

and brain neurochemistry in fibromyalgia (FM), a common chronic pain condition with 

significant central nervous system contributions (Clauw, 2014).  In addition to widespread pain 

and hyperalgesia without clear evidence of ongoing peripheral inflammation or damage, FM 

patients display hyper-sensitivity to a variety of non-noxious sensory stimuli (Geisser et al., 

2008; Harte et al., 2016; López-Solà et al., 2014; Martenson et al., 2016; Petzke et al., 2003; 

Wilbarger and Cook, 2011), as well as other brain-related symptoms such as disturbances in 
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energy, sleep, memory and mood.   FM patients consistently display evidence of augmented pain 

and sensory processing on fMRI (Gracely et al., 2002; López-Solà et al., 2016), and altered 

functional connectivity in pro- and anti-nociceptive regions (Ichesco et al., 2014; 2016; Jensen et 

al., 2009; Napadow et al., 2010).  Moreover, FM patients have altered levels of excitatory and 

inhibitory neurotransmitters within the insula and other sensory processing regions (Foerster et 

al., 2012; Harris et al., 2009).   We hypothesized that the FM brain network would have altered 

hub organization and rich-club membership of pain-associated regions (such as the insula). We 

further hypothesized that these differences would be related to neurochemistry and clinical pain 

intensity. 

Materials and Methods 

Participants. Data from 40 female FM patients and 27 age- and sex-matched HCs were pooled 

from previous fMRI studies and analyzed retrospectively using a graph-theoretical approach. The 

data from 31 FM and 27 HCs were previously published in manuscripts focusing on functional 

connectivity, 1H-MRS, and treatment outcomes (Harris et al., 2009; 2013; Harte et al., 2016; 

Ichesco et al., 2014; Napadow et al., 2010; 2012; Puiu et al., 2016; Schmidt-Wilcke et al., 2014). 

Data from the remaining nine FM patients has not been published. The University of Michigan 

Institutional Review Board approved the studies and written informed consent was obtained from 

all participants in accordance with the Declaration of Helsinki. The major inclusion criteria for 

FM patients were: meeting the American College of Rheumatology (ACR) 1990 criteria for FM 

and at least 6 months of self-reported chronic widespread pain, a score of ≥ 40 mm on a 100 mm 

pain Visual Analog Scale (VAS) at the time of consenting. Both FM and HCs were 18-75 years 

of age, female, right-handed, and capable of giving written informed consent. Major exclusion 

criteria for both groups were: pregnant or nursing mothers, contraindications to fMRI, positive 
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urine drug screen or history of drug or alcohol abuse within the past two years, body mass index 

greater than 36, severe psychiatric illness, concurrent autoimmune or inflammatory disease that 

causes pain, or systemic malignancy or infection such as HIV or hepatitis. An additional 

exclusion criterion for HCs was meeting the ACR 1990 criteria for FM. 

Data Acquisition and Preprocessing. Self-reported clinical pain intensity in FM patients was 

assessed immediately before fMRI using a VAS, with 0 being “no pain” and 10 being the “worst 

pain imaginable”. Depression in FM patients was assessed on the day of the scan; 18 patients 

received the Hospital Anxiety and Depression scale (HADS) (Zigmond and Snaith, 1983), and 

12 patients received the Center for Epidemiological Studies-Depression Scale (CESD-D) 

(Radloff, 1977). Depression scores were converted to Z-scores in order to combine measures. 

Each participant completed a resting state fMRI scan and 1H-MRS sequence. Scanning was 

performed for all subjects on a 3.0 T General Electric (Milwaukee, WI) system with an eight-

channel head coil. The MRI scanner at the University of Michigan was upgraded to a new 3.0 T 

GE system with identical scanning parameters during one of the studies reported on here, so data 

from 3 FM participants was acquired on the new scanner. Group differences in graph theoretical 

measures did not change when excluding these participants (data not shown).  

Each participant completed a 6-minute resting state fMRI scan as described previously 

(Harris et al., 2013; Napadow et al., 2010; 2012). Data was collected using a spiral in-out 

gradient echo T2*-weighted blood oxygenation-level dependent pulse sequence with the 

following parameters: TR 2000ms/TE 30ms, 180 volumes, 43 AC-PC aligned slices, voxel size 

3.13 x 3.13 x 4.0 mm.  The first 6 volumes were discarded in order to avoid equilibration effects. 

A high-resolution structural image was collected for registration purposes (spoiled gradient echo 

pulse sequence: TR 14/TE 5.5/TI 300ms, 20° flip angle, 124 contiguous axial slices, voxel size 1 
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x 1 x 1.5mm). Cardiac and respiratory data were collected simultaneously using an infrared pulse 

oximeter (GE) attached to the right middle finger and a respiration belt placed around the 

participant’s ribcage. 

All data were checked for artifacts and motion greater than 2mm or 1° rotation in any 

direction. No participants were excluded for these reasons. Resting state data were preprocessed 

using FSL (http://www.fmrib.ox.ac.uk/fsl) and SPM8 

(http://www.fil.ion.ucl.ac.uk/spm/software) running on MATLAB R2014a 

(http://www.mathworks.co.uk/products/matlab/). Physiological correction was done using the 

RETROICOR (Glover et al., 2000) algorithm in FSL.  All other preprocessing steps were done 

in SPM8 and included slicetiming, motion correction, co-registration of the structural and 

functional images, normalization to Montreal Neurological Institute (MNI) space and smoothing 

with an 8mm FWHM Gaussian Kernel. Preprocessed data were entered into the Conn Toolbox 

(Whitfield-Gabrieli and Nieto-Castanon, 2012), and a nuisance regression using the CompCor 

method (Behzadi et al., 2007) was performed with six subject-specific realignment parameters, 

the signal from white matter and CSF, and their first order derivatives included as confounds. 

Finally, a temporal filter of 0.008 – 0.09 Hz was applied to focus on low-frequency fluctuations 

(Fox et al., 2005). 

During 1H-MRS, the spectroscopic voxel was placed in the right posterior insula as 

described previously (Figure A.1A; Harris et al., 2008; 2009). Single-voxel point resolved 

spectroscopy spectra were acquired while participants were at rest with the following parameters: 

TR 3000ms/TE 30ms, 90-degree flip angle, number of excitations 8, number of averages 128, 

with a voxel size of 2 x 2 x 3 cm.  Shimming was optimized using auto-prescan and the 

CHEmical Shift Selective (CHESS) water suppression routine was used.  Spectra were analyzed 
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offline with LCModel (Stephan Provencher, Oakville, Ontario, Canada) (Provencher, 1993). 

Raw spectra were fit with a linear combination of pure metabolite spectra using LCModel (the 

basis set, which was simulated by Stephan Provencher of LCModel, included the following 

metabolites: Ala, Asp, Cr, PCr, GABA, Glc, Gln, Glu, GPC, PCh, Ins, Lac, NAA, NAAG, 

Scyllo, Tau).  See Figure A.1B for a representative spectrum. Glutamate + glutamine (Glx) 

values were calculated as concentrations rescaled using the water peak. Concentrations were 

corrected for CSF in each participant using Voxel Based Morphometry (VBM) within SPM8 as 

previously described (Harris et al., 2009).  To rule out the possibility of tissue volume biases in 

the 1H-MRS results, we analyzed the segmented gray/white matter and CSF content of the 

spectroscopic voxel and found that it was not significantly different between groups (Tables A.1 

and A.2). Spectra were excluded if the Cramer-Rao bounds exceeded 20% or if the FWHM was 

greater than 0.12. One FM participant with poor quality spectra was excluded from analysis.  

Graph theoretical analyses. The analysis flow is depicted in Figure 2.1. We defined the brain 

network using a set of 264 non-overlapping nodes based on resting state and task functional 

connectivity meta-analyses (Cohen et al., 2008; Jonathan D Power, 2011). This set of nodes has 

been shown to produce reliable network topologies (Cole et al., 2013; Dosenbach et al., 2007; 

Jonathan D Power, 2011; Spreng et al., 2013; Vatansever et al., 2015). The 264 nodes were 

entered into the Conn Toolbox as 10 mm diameter spheres (Jonathan D Power, 2011). We 

created Fisher z-transformed bivariate correlation (Pearson’s r) matrices (264 x 264) for each 

participant. Matrices were thresholded, over a range of relative thresholds (5 - 40% density, in 

steps of 5%), to create binary undirected graphs.  We calculated the following graph theoretical 

measures to assess global network properties: global efficiency, Louvain modularity Q score, 

clustering coefficient, characteristic path length and the rich club coefficient.  We also calculated 
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the nodal measures of degree, betweenness centrality, participation coefficient and eigenvector 

centrality. See (Rubinov and Sporns, 2010) or (Fornito et al., 2016) for a detailed description and 

mathematical formulations of these measures. All graph theoretical measures were calculated 

using the Brain Connectivity Toolbox (Rubinov and Sporns, 2010). To reduce the number of 

comparisons, for each metric and each node, we averaged across thresholds as previously 

published (Achard et al., 2012; Lynall et al., 2010). 

 

	
  
Figure 2.1. Summary of Graph Theoretical Methods. Resting state fMRI data was collected for 40 FM patients and 27 HC.  264 
nodes were defined using the Power atlas (Jonathan D Power, 2011) which reliably segregate into large scale resting state 
networks. Pairwise (Fisher Z-transformed Pearson) correlation matrices were created for each participant, which were 
thresholded and binarized across a range of network densities. Graph theoretical measures were calculated and between-group 
differences were assessed using non-parametric permutation testing.  Post-hoc correlations between hub measures and clinical 
pain and glutamate were also performed.  

 

Hub Disruption Index.  The hub disruption index (κ) was calculated as previously described 

(Achard et al., 2012). Briefly, for each graph theory hub measure analyzed here (degree, 

betweenness, participation coefficient), we plotted the mean value of each node in the HC group 

versus the difference between an individual participant and the HC group for each corresponding 

node.  The κ is defined as the slope of a line fitted to these data. Between group differences in κ 

were examined using non-parametric permutation testing (Achard et al., 2012; Fornito et al., 

2016; Nichols and Holmes, 2002) under the null hypothesis that FM and HCs do not differ with 

respect to hub disruption. We randomly reassigned participants to one of two groups and 
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calculated a two-sample t-statistic. We repeated this procedure 10,000 times to form a 

randomized null distribution for each metric. We rejected the null hypothesis if the actual t-

statistic was greater than or equal to the 95th percentile of the null distribution. Significance was 

set at p < 0.05. 

Identification of Hubs. We assigned hub status to a node if the degree or betweenness centrality 

was greater than one standard deviation above the group mean (Sporns et al., 2007; van den 

Heuvel and Sporns, 2011). We further distinguished between provincial hubs (hubs that have 

connections mainly within one module) and connector hubs (hubs that have connections between 

many modules).  Hubs with a participation coefficient less than 0.5 were classified as provincial 

hubs, and hubs with a participation coefficient greater than 0.5 were defined as connector hubs 

(van den Heuvel and Sporns, 2011). Analyses of between group differences on nodal measures 

were restricted to hub regions. As outlined above, we performed non-parametric permutation 

testing on hub degree, betweenness centrality and participation coefficient to identify the specific 

hub differences between FM and HCs. Significance was set at p < 0.05.   

Rich Club Organization. We assessed rich-club organization in the average FM and HC brain 

networks by computing the rich-club coefficients ϕ (k) over a range of degree (k), as previously 

described (van den Heuvel and Sporns, 2011). Briefly, the degree of each node was calculated 

for the FM and HC networks and all nodes that had a degree ≤ k were ignored.  For the 

remaining nodes in the network, we calculated the rich-club coefficient ϕ (k) as the number of 

connections between the remaining nodes divided by the total number of possible connections.  

Random networks can also have an increasing function of ϕ (k) by chance alone; hence the ϕ (k) 

is typically normalized by a set of random networks.  We created 1000 random networks with 

similar degree distribution and density, and for each level of k, calculated the average rich-club 
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coefficient ϕ random.  We determined statistical significance of ϕ (k) at each level of k with 

permutation testing (Fornito et al., 2016; van den Heuvel and Sporns, 2011). Using the random 

networks created above, we obtained a null distribution of ϕ random (k) values. P-values were 

estimated as the proportion of ϕ random (k) that exceeded the observed ϕ (k) for FM and HC 

separately.  This was repeated over all levels of k and a Bonferroni correction (0.05/28) was 

applied so that p < 0.001 was deemed significant at 5% density.  The range of k in which ϕ (k) is 

significantly different from ϕ random (k), and where the ϕ norm (k) is greater than one, is the rich-

club regime. Differences between FM and HC in ϕ (k) at each level of k were tested in SPSS 24 

(Armonk, New York) using independent samples t-tests. To assess how rich club membership 

varied with clinical pain, we separated the FM group into age-matched tertiles (high n=12, 

medium n=16, low n=12) based on the VAS clinical pain rating. Differences in ϕ (k) between the 

tertiles were examined using a 1-way analysis of variance (ANOVA).  A Bonferroni correction 

was applied (0.05/28) and significance set at p < 0.001.  For visualization purposes, rich club 

nodes were displayed at k = 22, the highest level of k that was significantly different from 

random networks for the FM and HC groups, and also corresponded to nodes with a degree 

greater than one standard deviation above the group mean.   

Examining the relationship between hub status, clinical pain and Glx.  For correlations 

between hub measures and clinical pain and Glx, we performed Pearson correlations in SPSS. To 

test for differences in clinical variables and Glx between the FM tertiles, we performed 1-way 

ANOVAs in SPSS. All analyses controlled for age and significance was set at p < 0.05.  To test 

the hypothesis that higher levels of posterior insular Glx influence clinical pain indirectly 

through greater eigenvector centrality in the insula, we conducted mediation analyses using 

MPLUS v. 8.  Posterior insula Glx was used as the independent variable, and clinical pain on the 
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VAS was used as the dependent variable.  Eigenvector centrality values from two nodes 

overlapping the 1H-MRS voxel for the posterior insula (nodes 43 and 67) were standardized and 

averaged, and this value was used as the mediating variable.  Indirect effects were evaluated by 

constructing 95% bias-corrected bootstrapped confidence intervals using 20,000 resamples.  All 

models controlled for participant age.   

Visualization. The visualization of 264 nodes on a brain surface was created in Caret (Dickson 

et al., 2001; Van Essen et al., 2005).  All other brain surfaces were created using BrainNet 

viewer (Xia et al., 2013). 

Results 

Clinical Characteristics 

There was no significant difference in age between FM and HC participants (mean ± SD HC: 

36.2 ± 12.4, FM: 39.0 ± 11.0, t = 0.97, p = 0.34). Other patient characteristics and a list of 

current medications in the FM patients are listed in Tables A.3 and A.4, respectively. 

Fibromyalgia and Control Participants had Similar Global Network Properties 

Our initial aim was to characterize the global brain network properties of FM patients and 

controls. At every density of functional connections tested (5 - 40%), FM and HC networks had 

small-world organization, defined as high clustering (local connectivity) and a low average path 

length between nodes.  As these measures did not differ significantly between groups, we 

averaged all graph theory metrics across densities to reduce the number of comparisons when 

performing permutation testing to assess group differences (Achard et al., 2012; Lynall et al., 

2010).  There were no significant differences between groups in the clustering coefficient, 

average path length, modularity or global efficiency of the reconstructed brain network (all p > 

0.4, Table A.5).  
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Differences in Hub Status Between Fibromyalgia Patients and Controls  

The hub status of a node can be assessed by measuring the number of connections a node has 

(degree), the number of shortest paths in a network that pass through the given node 

(betweenness centrality), or the amount of connectivity to diverse functional systems 

(participation coefficient) (Sporns et al., 2007). For degree, betweenness centrality, and 

participation coefficient, we calculated the hub disruption index (κ) (Achard et al., 2012) to 

investigate brain regions with increased or decreased hub status in FM. A negative κ value 

indicates that hub nodes in HC are reduced in FM, and non-hubs in HC are classified as hubs in 

FM.  The κ was significantly more negative in the FM group for degree (κD mean ± SD, HC: 

0.00 ± 0.24, FM: -0.16 ± 0.28, t = 2.50, p = 0.015, Figure 2.2A), betweenness centrality (κBC 

mean ± SD, HC: 0.00 ± 0.27, FM: -0.16 ± 0.21, t = 2.58, p = 0.012, Figure 2.2B) and 

participation coefficient (κPC mean ± SD, HC: 0.00 ± 0.38, FM: -0.36 ± 0.47, t = 3.48, p = 

0.00008, Figure 2.2C).  

To determine exactly which hubs were altered, we assigned hub status to nodes whose 

degree or betweenness centrality was greater than one standard deviation above the mean, for 

each group separately (Figure 2.3A). See Tables A.6 and A.7 for a list of hub brain regions. FM 

patients had higher degree in the right mid insula, bilateral anterior insula, bilateral superior 

temporal gyrus (STG), left precuneus, right inferior temporal gyrus, and the right inferior parietal 

lobule.  HCs had higher degree in left primary somatosensory cortex (S1), left middle temporal 

gyrus and five nodes in the visual cortex (Figure 2.3B). Results for betweenness centrality were 

similar (Figure 2.3C) and all differences are listed in Table 2.1.  
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Figure 2.2. Large scale hub reorganization in FM. The hub disruption index (κ) measured by (A) degree (κD), (B) betweenness 
centrality (κBC) and (C) participation coefficient (κPC) is plotted as the mean value of each node in HC (x axis) versus the 
difference between FM and HC for each corresponding node (y axis). A negative slope (κ) indicates that hubs in HC are 
decreased in FM and non-hubs in HC have increased hubness in FM.  Boxplots showing each participants κ value are plotted for 
each measure. Across all measures, the anterior insula has shown an increase in hub strength in FM patients, while the visual 
cortex hub strength has decreased. FM, fibromyalgia; HC, healthy control; M1, primary motor cortex; S1, primary 
somatosensory cortex; STG, superior temporal gyrus, Ant Ins, anterior insula; Mid Ins, mid insula; Precun, precuneus; V1, 
primary visual cortex; V2, secondary visual cortex; V3, visual association cortex; SFG, superior frontal gyrus 
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Figure 2.3. Altered hub topology in FM. Hubs were defined for each group separately as greater than one standard deviation 
above the mean group degree or betweenness centrality. All FM and HC hubs, as defined by degree, are depicted in (A). Between 
group differences in hub regions were assessed using non-parametric permutation testing for (B) degree, (C) betweenness 
centrality, and (D) participation coefficient.  The anterior insula consistently had significantly stronger hub status in FM patients 
across all measures. Hubs can be further classified based on the level of inter- versus intra-modular connectivity. Connector 
hubs have connections to many different functional systems, while provincial hubs have connections mainly within the same 
system. Connector and provincial hubs and are depicted for FM and HC in (E). The anterior insula is also a connector hub in 
FM. FM, fibromyalgia; HC, healthy control; S1, primary somatosensory cortex; SMA, supplementary motor area; SMG, 
supramarginal gyrus; V1, primary visual cortex; V2, secondary visual cortex; V3, visual association cortex; PCC, posterior 
cingulate; Precun, precuneus; SPL, superior parietal lobule; IPL, inferior parietal lobule; STG, superior temporal gyrus; IFG, 
inferior frontal gyrus; MCC, mid cingulate cortex; SFG, superior frontal gyrus; ITG, inferior temporal gyrus; Ant Ins, anterior 
insula; Mid Ins, mid insula 

 

 

 



	
   43	
  

Table 2.1: Differences in hub strength between FM patients and HCs 
 

 Brain Region (Node #) HC 
(mean ± SD) 

FM 
(mean ± SD) 

t p-value 

Degree 
FM > HC R mid insula (56) 70.40 ± 14.02 77.22 ± 13.83 -1.96 0.05 
 L STG  (58) 69.44 ± 12.81 77.64 ± 14.69 -2.42 0.02 
 L precuneus (166) 61.27 ± 16.74 69.13 ± 14.89 -1.96 0.05 
 R ITG (179) 56.58 ± 10.10 68.48 ± 14.64 -3.94 0.001 
 L anterior insula (208) 62.58 ± 15.21 70.46 ± 15.52 -2.06 0.04 
 R anterior insula  (209) 62.73 ± 14.87 70.22 ± 12.30 -2.16 0.03 
 R anterior insula  (211) 55.90 ± 17.62 65.43 ± 14.80 -2.31 0.02 
 R IPL (235) 63.06 ± 13.59 72.48 ± 13.06 -2.83 0.006 
 R STG (240) 57.80 ± 14.08 68.51 ± 14.50 -3.02 0.004 
HC > FM L S1 (23) 67.16 ± 13.54 60.11 ± 14.53 2.03 0.04 
 L MTG (83) 69.42 ± 14.79 60.04 ± 12.99 2.67 0.009 
 R V1 (141) 71.56 ± 16.58 61.30 ± 13.52 2.67 0.009 
 R V3 (153) 72.71 ± 13.05 64.61 ± 12.85 2.51 0.01 
 R V2 (165) 72.64 ± 10.79 65.05 ± 11.82 2.72 0.008 
 R V3 (169) 67.50 ± 11.42 59.86 ± 15.82 2.29 0.02 
 L V2/V3 (172) 72.67 ± 15.71 62.69 ± 15.67 2.55 0.01 
Betweenness Centrality 
FM > HC R mid insula (56) 388.72 ± 161.53 477.85 ± 151.78 -2.27 0.03 
 L angular (87) 250.20 ± 85.32 351.37 ± 141.23 -3.65 0.001 
 R ITG (179) 284.10 ± 136.62 377.93 ± 182.49 -2.40 0.02 
 R anterior insula (209) 264.38 ± 106.18 327.81 ± 139.77 -2.11 0.04 
 R anterior insula (211) 229.85 ± 113.63 331.08 ± 161.44 -3.01 0.003 
 R IPL (235) 298.21 ± 140.01 382.18 ± 163.62 -2.25 0.03 
 R STG (240) 229.25 ± 97.51 356.00 ± 158.52 -4.05 0.001 
HC > FM R V1 (141) 328.67 ± 177.66 248.07 ± 127.56 2.03 0.04 
 R V3 (169) 316.24 ± 116.45 244.84 ± 98.52 2.62 0.01 
 L V2/V3 (172) 371.17 ± 177.75 261.35 ± 153.61 2.62 0.01 
 R SFG (219) 393.14 ± 171.72 281.26 ± 129.02 2.88 0.005 

 

Table 2.1. Differences in hub strength between FM patients and HCs. FM, fibromyalgia; HC, healthy control; SD, standard 
deviation; R, right; L, left; STG, superior temporal gyrus; ITG, inferior temporal gyrus; IPL, inferior parietal lobule; S1, 
primary somatosensory cortex; MTG, mid temporal gyrus; V1, primary visual cortex; V2, secondary visual cortex; V3, visual 
association cortex; SFG, superior frontal gyrus 

	
  
Fibromyalgia Participants Exhibit Altered Connector and Provincial Hubs 

Hubs can be further delineated into provincial or connector hubs based on whether the 

connections are mainly to nodes within the same system, or module, or between nodes in 

different modules (Sporns et al., 2007). In FM patients, the right anterior insula had a 

significantly higher participation coefficient relative to HC (t = -2.14, p = 0.035) and met criteria 

for a connector hub (Figure 2.3D-E).  The mid cingulate and primary motor cortex (M1) were 



	
   44	
  

also connector hubs in FM, while these regions were provincial hubs in HC.  In HC, nodes in V1, 

V3 and the SFG were classified as connector hubs. HCs had significantly higher participation 

coefficients in bilateral V2/V3 (right t = 2.83, p = 0.006, t = 2.766, p = 0.007, left t = 2.57, p = 

0.013). In both groups, the precuneus, inferior frontal gyrus and supramarginal gyrus were 

classified as connector hubs and the mid insula, supplementary motor area (SMA) and S1 were 

provincial hubs, although FM patients had significantly higher participation coefficients in left 

S1 (t = -2.20, p = 0.031).   

Altered Rich Club Membership in Fibromyalgia 

Next, we examined higher order rich club classification in patients and controls.  The rich club 

curves for the group averaged networks at 5% density are displayed in Figure 2.4A.  Both FM 

and HC brain networks had a rich club organization, which differed from random networks, but 

the rich club coefficients were not significantly different between groups. In FM, the rich-club 

regime (defined as ϕ (k) significantly different from ϕ random (k), and ϕ norm (k) > 1) was between k 

= 4 to k = 6 and k = 8 to k = 22.  In HC, the rich-club regime was over a range of k = 2 to k = 22.  

The illustrated rich club regions for FM and HC (k = 22; the highest level of k that was 

significantly different from random networks for both groups, which also corresponds to nodes 

with a degree greater than one standard deviation above the group mean) are depicted in Figure 

2.4B & C. While there was no significant difference in the level of rich club organization 

between FM and HCs, the hubs that constituted the rich club were different between groups.  

Most importantly, the bilateral anterior insulae were members of the rich club in FM patients but 

not controls.  Results were similar for most other network densities tested, and are illustrated in 

Figure A.2.  
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Figure 2.4. Rich Club Membership is altered in FM. (A) Both FM and HC have significant rich club organization compared to 
random networks. The rich club regime (compared to random networks) for FM was between k = 4 and k = 6 and k = 8 and k = 
22, and for HC was between k = 2 and k = 22.  There was no significant difference in the rich club coefficient (ϕ) between FM 
and HC at any k level.  Normalized rich club curves are also depicted which show an increasing ϕ norm over a range of k for both 
groups. However, rich club membership was different between groups. FM and HC rich club nodes are depicted in (B) and (C), 
respectively, for k = 22, the highest significant k level. The FM rich club includes the bilateral anterior insula, whereas the HC 
rich club contains more nodes in the visual cortex. The data depicted are from 5% network density; results are similar for other 
thresholds (See Supplementary Fig. 1). FM, fibromyalgia; HC, healthy control; Ant Ins, anterior insula 

	
  
Rich Club Membership is Associated with Clinical Pain 

To determine if rich club membership was related to clinical pain, we divided the FM group into 

age-matched tertiles based on the level of clinical pain on the day of the scan (Figure 2.5). As 

expected, the tertiles had significantly different pain ratings (VAS mean ± SD, high: 7.0 ± 1.2, 

medium: 5.1 ± 1.5, low: 2.5 ± 1.6, F(2,37) = 29.02, p < 10-8).  There were no significant 

differences between the tertiles in age (F(2,37) = 0.55, p = 0.58) or depression (F(2,37) = 1.07, p = 

0.35).  The rich club coefficient, ϕ (k), was not significantly different between the tertiles for any 

level of k; however, the hubs comprising the rich club in each tertile were markedly different.  

The rich club nodes in the high pain group were predominantly in S1/M1, STG, and the anterior 

and posterior insula.  The medium pain group rich club included fewer S1/M1 regions and the 

anterior insula, with a general shift towards more posterior and default mode network (DMN) 

regions.  Finally, the rich club in the low pain group appeared more similar to HC and primarily 
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contained nodes in the frontoparietal, DMN and visual networks.  Results were similar across all 

other thresholds tested and are illustrated in Figure A.3.   

	
  

Figure 2.5. Rich club membership varies with clinical pain. The high pain FM group (A) had rich club nodes primarily in 
bilateral S1, M1, SMA and the right posterior insula.  The rich club in the medium pain FM group (B) contained fewer S1/M1 
nodes and more nodes in the default mode network.  In the low pain group (C), there was a shift in rich club membership to 
posterior default mode and visual regions. The data depicted are from 5% network density; results are consistent across 
thresholds (See Supplementary Fig. 2). FM, fibromyalgia; M1, primary motor cortex; S1, primary somatosensory cortex; SMA, 
supplementary motor area 

	
  
Differences in eigenvector centrality between FM and HC, and the relationship to clinical pain 

and rich club membership 

To investigate the nature or quality of edges made in the reconstructed brain network, we 

calculated the eigenvector centrality of each node.  The eigenvector centrality accounts for the 

quantity and quality of connections by taking into account the degree of a node and the degree of 

that node’s neighbors.  FM patients, compared to HC, had higher eigenvector centrality in the 

left anterior insula (t = -2.38, p = 0.02), bilateral STG (right t = -1.99, p = 0.049, left t = -2.34, p 

= 0.022), right inferior parietal lobule (t = -2.22, p = 0.03), left precuneus (t = -2.29, p = 0.025), 

and right inferior temporal gyrus (t = -3.01, p = 0.003). HCs had higher eigenvector centrality in 

the left middle temporal gyrus (t = 2.39, p = 0.019), right V1 (t = 1.99, p = 0.049), and right V3 
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(t = 2.15, p = 0.035).  The left anterior insula and STG were members of the rich club in FM, 

while the right V1 and V3 belonged to the rich club in HC.   

 We then correlated the eigenvector centrality with the level of clinical pain in FM 

patients.  The eigenvector centrality of 14 nodes in bilateral S1/M1, three nodes in the bilateral 

STG, two nodes in the right posterior insula, and one node each in the right SMA and right 

supramarginal gyrus positively correlated with clinical pain (all r > 0.3, p < 0.05, Figure 2.6 and 

Table A.8).  Five of these nodes (three in bilateral M1, one in the supramarginal gyrus, and one 

in the right posterior insula) belonged to the rich club only in the high pain FM tertile. 

 

Figure 2.6. Correlations with clinical pain in FM. (A) Within FM patients, there were positive correlations between clinical pain 
and eigenvector centrality (a measure of how connected a brain region is to other highly connected regions) in 14 bilateral 
S1/M1 nodes, three nodes in right STG, two nodes in the right posterior insula, and one node each in the right SMA, and right 
SMG. Representative correlations are shown in (B) for left M1/operculum and right M1/S1 and regression lines for all 21 
correlations are depicted in (C). FM, fibromyalgia; M1, primary motor cortex; S1, primary somatosensory cortex; STG, superior 
temporal gyrus; SMA, supplementary motor area; SMG, supramarginal gyrus; VAS, visual analog scale. 
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Graph Theory Metrics Mediate the Relationship between Glutamate within the Posterior Insula 

and Clinical Pain Intensity. 

As the right posterior insula was a member of the rich club in FM patients with the highest levels 

of clinical pain, we sought to examine the relationship between hub strength, clinical pain and 

Glx.  Right posterior insula Glx (CSF corrected values) was significantly different between the 

FM pain tertiles and HC (F(3,62) = 4.37, p = 0.007). Specifically, the high pain group had 

significantly higher Glx in the right posterior insula compared to the low pain group (mean ± SD 

high: 12.76 ± 1.13, low: 11.20 ± 1.42, p = 0.013) and compared to HC (mean ± SD HC: 10.97, p 

= 0.001).  

Two nodes overlapped with the 1H-MRS voxel in the right posterior insula (Figure 2.7A).  

The standardized and averaged eigenvector centrality of these two posterior insula nodes 

positively correlated with clinical pain (r = 0.419, p = 0.008, Figure 2.7B) and Glx (r = 0.320, p 

= 0.05; Figure 2.7B).  In mediation analyses, higher posterior insula Glx was associated with 

greater clinical pain indirectly through increased averaged posterior insula eigenvector centrality 

(B = .132; 95% CI= .016, .399).  The direct effect of insula Glx on clinical pain was also 

significant (B= .387, p = .026).  The R2 value for clinical pain in this model was .422. See Figure 

2.7C for standardized estimates and confidence intervals of each path in the model.   



	
   49	
  

	
  

Figure 2.7. The relationship between clinical pain, eigenvector centrality and posterior insula Glx. (A) Glutamate + glutamine 
(Glx) was measured in the right posterior insula using 1H-MRS (voxel shown in dark gray).  The overlap between the 1H-MRS 
voxel and 2 nodes from the Power’s atlas is shown in the inset. (B) In FM, clinical pain and posterior insula Glx positively 
correlated with the averaged, standardized eigenvector centrality in these 2 posterior insula nodes. (C) In a mediation analysis, 
posterior insula eigenvector centrality significantly mediated the relationship between Glx in the posterior insula and clinical 
pain.  Standardized values are shown for ease of interpretation.   FM, fibromyalgia; Glx, glutamate + glutamine; SM, 
sensorimotor network; EC, eigenvector centrality; H-MRS, proton magnetic resonance spectroscopy; AIU, arbitrary institutional 
units 

	
  
Discussion 

In this study we have shown that hubs, the brain regions that create efficiency and route 

information across networks, are altered in FM patients.  Brain regions that were hubs in FM, 

such as the anterior insula and STG, were non-hubs with low degree or centrality in HCs. 

Conversely, hubs in HCs, such as the visual cortex and SFG, were non-hubs in FM patients. We 

also found a reorganization of nodes with high between-network connectivity.  In FM, nodes in 

the anterior insula, S1 and M1 had the greatest increase in participation coefficient relative to the 

HC group.  In HCs, the nodes with the highest participation coefficient were again in the visual 

cortex and cuneus. The anterior insulae were consistently ranked as hubs in the FM group and 

were significantly different from HCs on multiple measures, indicating that the anterior insulae 

had more connections, were more central to information flow, and were more connected to other 
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nodes with high degree and nodes outside its own module.  We also examined a higher-order hub 

structure (the rich club) and found that rich club membership was altered in FM and varied with 

the level of clinical pain.  Finally, this study demonstrates, for the first time to our knowledge, a 

neurochemical correlate of altered hub topology and its relationship to the perception of pain.  

Taken together, these data suggest that, within the chronic pain network, the brain regions most 

crucial for information processing and integration are located in regions such as the insulae that 

are known to be pro-nociceptive.   

Physical and biological systems share an optimal pattern of network organization that is 

characterized by high clustering, short average path length, hierarchical modularity, scale-free 

degree distribution and highly interconnected hub nodes, which together form a rich club. In the 

case of the brain, this optimal topology is consistently disrupted in disease states. However, there 

is little consensus within each disorder as to the specific nature of this network disruption (Stam, 

2014). From all the organizational principles listed above, one consistent finding has been 

abnormalities in hub topology, which have been reported for a range of neurological disorders, 

including schizophrenia (Crossley et al., 2016; Lynall et al., 2010; Rubinov and Bullmore, 2013; 

van den Heuvel et al., 2013), Huntington’s disease (Harrington et al., 2015), Alzheimer’s disease 

(Buckner et al., 2009; Dai et al., 2015) and depression (Wu et al., 2016) (see (Crossley et al., 

2014) for recent meta-analysis).  

Previous studies have examined network connectivity and topology in other chronic pain 

conditions. A study of chronic back pain patients found increased functional connectivity 

between hubs in the DMN and the insula relative to HCs (Tagliazucchi et al., 2010). Similarly, 

increased cross-network communication between the DMN and the salience network was found 

in patients with chronic pain due to ankylosing spondylitis, which also correlated with the level 
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of clinical pain (Hemington et al., 2015).  The most comprehensive analysis to date found altered 

whole-brain degree rank order in three different chronic pain populations relative to HCs 

(Mansour et al., 2017).  Additionally, the level of disruption correlated with the level of clinical 

pain. However, this study did not examine hubs specifically.  Instead, it assessed the modular 

structure of the network and the variability in community membership. The insula was a member 

of the sensorimotor network in the majority of HCs; however, allegiance in chronic pain 

conditions was split between the sensorimotor, default mode and subcortical networks. Our 

finding of increased hub strength and inter-network communication in the anterior insula in FM 

relative to HCs is consistent with these studies. 

A key attribute of brain networks is the existence of a rich club organization, in which 

high degree hubs form a densely interconnected core.  The rich club may also serve to integrate 

information from different modules in the brain since rich club hubs are often distributed across 

the brain and include many different resting state networks (van den Heuvel and Sporns, 2011). 

In the current study, we found both FM and HC networks possessed, by global assessment, a 

similar level of rich club organization.  However, the specific membership of the rich club varied 

between groups - the visual network was dominant in HCs, while a more distributed organization 

was present in FM that included the bilateral anterior insulae.  The rich club visual nodes in HCs 

formed a stand-alone network, which is consistent with previous studies showing a low level of 

integration in the functional rich club of healthy adults (Grayson et al., 2014).  It is interesting to 

note that in FM, the visual nodes were integrated into the rest of the rich club.  Balenzuela and 

colleagues reported a disruption in the community membership in chronic back pain patients 

such that the insula was abnormally integrated into the auditory system and dorsal visual stream 

(Balenzuela et al., 2010). Given our previous findings of visual hypersensitivity and increased 
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insular activation during an unpleasant visual stimulus in FM (Harte et al., 2016), it is possible 

that altered rich club membership and integration contributes to the phenomenon of multi-modal 

sensory sensitivity observed in many chronic pain patients.   

In an analysis of functional hubs in migraine, the insula, S1, M1 and the orbitofrontal 

cortex were the most strongly interconnected regions and members of the rich club in patients 

with the longest disease duration compared to HCs (Liu et al., 2015).  This is consistent with our 

findings but this previous study did not examine the relationship of rich club membership and 

clinical pain. Within our FM patients, rich club membership varied as a function of clinical pain.  

In general, the distribution of rich club nodes shifted from the default mode, frontoparietal and 

visual networks in the low pain FM group, to the sensorimotor, cingulo-opercular and salience 

networks in the high pain FM group.  Patients with the highest levels of clinical pain had rich 

club nodes mainly in S1, M1, SMA, STG, operculum, anterior and posterior insula.  The high 

pain rich club had just one DMN node and seven nodes in the visual network, while the low pain 

group had 13 DMN and 20 visual network regions. Overall, the low pain rich club resembled 

HCs more closely than the high pain rich club. This suggests that the intensity of chronic pain is 

related to, and perhaps determined by, rich club membership. 

Although the posterior insula did not meet hub criteria in the FM group, the connectivity 

of this structure with other highly connected nodes (as measured with eigenvector centrality) was 

positively correlated with the level of ongoing clinical pain. The right posterior insula was a 

member of the rich club only in the high pain FM tertile. We previously showed that posterior 

insula Glx is elevated in FM patients relative to HCs (Harris et al., 2009).  Here we found that 

posterior insula Glx was significantly higher in the high pain tertile compared to the low pain FM 

group.  Importantly, we demonstrated that eigenvector centrality of nodes, within the posterior 
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insula region showing elevated Glx, mediates the relationship between this neurotransmitter and 

clinical pain. Thus, altered neurochemistry in an individual hub could alter functional network 

properties that result in the experience of pain.  This is consistent with recent preclinical studies 

in rodents demonstrating a causal influence of excitatory-inhibitory balance in the insula on pain 

(Harte et al., 2017; Watson, 2016).  

Why might hubs be preferentially affected in chronic pain? Stam hypothesized that since 

hubs are damaged or reorganized in many different neurological disorders, there must be a 

general mechanism that makes hub brain regions more vulnerable (Stam, 2014). Briefly, he 

suggests that, in the acute phase, traffic to a failing node is rerouted to existing hub regions, 

which become overloaded.  This would be observed as an increase in the degree or centrality of 

hubs relative to healthy networks. In the chronic phase, new hubs appear to avoid or compensate 

for hub overload. This would be reflected as a decrease in the degree or centrality of “healthy” 

hubs and the appearance of new hubs.  

In the chronic pain patients studied here, we demonstrated an appearance of new hubs 

(anterior insula, STG) and a disappearance of “healthy” hubs (visual cortex, SFG).  This may be 

due to a barrage of nociceptive input, although this is unlikely given the lack of convincing 

evidence of peripheral pathology in FM (Clauw, 2014).  It is more likely that the reorganization 

of hubs stems from an underlying alteration in excitatory neurotransmission in pro-nociceptive 

brain regions (Watson, 2016). The mediation analyses described here were consistent with a 

model in which higher levels of Glx in the posterior insula increase the eigenvector centrality of 

posterior insular nodes and, consequently, clinical pain.  Longitudinal analyses will be required 

to determine if these effects are in fact causal in chronic pain patients. 
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Our study has limitations. First, a general methodological limitation of graph theoretical 

analyses is the arbitrary thresholding and binarization process, which leads to the loss of 

information, specifically, anticorrelations.  However, binary networks, such as those used here, 

retain the most significant correlations and may be less sensitive to noise and therefore easier to 

interpret (Rubinov and Sporns, 2010). We examined a relatively small number of female 

participants with FM, so it remains unknown if our findings are generalizable to males or other 

chronic pain conditions. Additionally, many of the FM patients studied here were taking 

medications to manage their symptoms and it is unclear how these treatments may be impacting 

our results.  Future studies are necessary to replicate our findings in larger sample sizes using 

fully weighted networks.  

 In conclusion, we demonstrated altered hub topology in FM patients, and showed that 

disruptions in the excitatory tone within the insula altered the strength of this region as a hub and 

was associated with the intensity of clinical pain.   Although cross-sectional in nature, these data 

suggest the possibility that disruption and reallocation of rich club hub membership plays a 

causal role in the symptomatology of a common chronic pain condition. 
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Chapter 3 : Changes in Resting State Functional Connectivity after Repetitive 

Transcranial Direct Current Stimulation Applied to Motor Cortex in 

Fibromyalgia Patients1 

Introduction 

Fibromyalgia (FM) is a chronic centralized pain condition characterized by widespread 

pain, fatigue, sleep problems, cognitive dysfunction, and mood disturbances (Wolfe et al., 1990). 

While the exact pathophysiology of FM remains unknown, a prevailing hypothesis states that a 

sensory processing dysfunction within the central nervous system creates, amplifies, or sustains 

the perception of chronic pain (Schmidt-Wilcke and Clauw, 2011). In support of this hypothesis, 

brain network alterations seen in these patients fall into two broad categories: decreased 

descending anti-nociceptive transmission, and/or enhanced pro-nociceptive processing (Jensen et 

al., 2009; Napadow et al., 2010; Jensen et al., 2012; Napadow et al., 2012). 

Motor cortical dysfunction has been suggested in a number of chronic pain conditions, 

including FM. In general, the primary motor cortex (M1) shows increased cortical excitability at 

baseline and heightened responses to sensory stimuli, which may be suggestive of a reduction in 

inhibitory activity (Saavedra et al., 2014). Noninvasive brain stimulation has emerged as an 

attractive therapeutic option for chronic pain conditions given its ability to target specific cortical 

regions. Some studies report that transcranial direct current stimulation (tDCS) over M1 relieves 
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  This chapter was previously published in the journal Arthritis Research & Therapy: Cummiford, C. M., 
Nascimento, T. D., Foerster, B. R., Clauw, D. J., Zubieta, J. K., Harris, R. E., & DaSilva, A. F. (2016). Changes in 
resting state functional connectivity after repetitive transcranial direct current stimulation applied to motor cortex in 
fibromyalgia patients. Arthritis Res Ther, 1–12. http://doi.org/10.1186/s13075-016-0934-0 
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pain in FM (Fregni et al., 2006; Valle et al., 2009; Fagerlund et al., 2015). However, a recent 

review did not find a significant difference between sham and real M1 tDCS on short-term pain 

relief (O'Connell et al., 2014).  The lack of effect may be due to significant heterogeneity 

between the studies (i.e., stimulation parameters, number of treatment sessions, type of chronic 

pain) included in the review. It is also possible that sham tDCS produces a significant placebo 

response. Consistent with previous work implicating the endogenous opioid system in placebo 

analgesia (Petrovic, 2002; Wager et al., 2007), we recently showed that sham tDCS caused the 

release of endogenous opioids in the PAG, precuneus and thalamus (DosSantos et al., 2014). 

While placebo responses are clearly present in tDCS, the specific neurobiology 

underlying the analgesic effects of real tDCS are less clear. During and immediately after 

stimulation, tDCS may alter excitability by modulating resting membrane potential.  Longer 

lasting effects may be due to changes in synaptic plasticity via mechanisms similar to long-term 

potentiation or depression (Dayan et al., 2013).  M1 tDCS can alter the functional connectivity 

(FC) of regions under the stimulating electrode (Polanía et al., 2012a), as well as spatially distant 

but structurally connected regions, such as the thalamus (Polanía et al., 2012b) and DLPFC 

(Sehm et al., 2012; Lindenberg et al., 2013). Real tDCS also acts on the endogenous opioid 

system (DosSantos et al., 2014), similar to invasive motor cortex stimulation (Maarrawi et al., 

2007; 2013). However, these studies were conducted in healthy participants and examined FC 

during or shortly after M1 tDCS. There have been no investigations of how M1 tDCS alters 

resting state FC in chronic pain patients treated repeatedly, as they might be in clinical practice.  

We measured clinical pain and resting state FC in twelve FM patients at baseline, after 

five days of sham and after five days of real tDCS.  We were interested in three questions: Does 

baseline connectivity predict clinical treatment response? Are there differences in FC after sham 
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and real tDCS? And do changes in FC relate to analgesia? We hypothesized that strong M1 – 

thalamus connectivity at baseline would predict a better clinical response, as shown in previous 

M1 stimulation studies (Goto et al., 2008; Ohn et al., 2012). In addition, since we found a trend 

towards decreased glutamate + glutamine (Glx) in the thalamus after real tDCS in these same 

patients (Foerster et al., 2014), and given the strong structural connectivity between M1 and the 

thalamus (Zhang et al., 2010), we hypothesized that real tDCS would decrease FC between the 

thalamus and brain regions involved in pain perception.  

Patients and Methods 

Patients. We recruited thirteen female patients with FM (age 27-64, mean ± SD: 47.6 ± 10.6 

years) for this study. One patient dropped out after the baseline visit, the remaining twelve 

patients completed the entire protocol.  All patients met the 1990 criteria of the American 

College of Rheumatology for FM (Wolfe et al., 1990), had symptoms for at least one year and 

reported pain on more than 50% of days.  Inclusion criteria were: right-handed, a BMI of 36 or 

less and agreement to delay taking new medications or treatments for FM during the study.  

Exclusion criteria were: pregnant or breastfeeding, participation in other clinical trials, currently 

taking opiates, history of autoimmune or chronic inflammatory disease that causes pain, 

substance abuse or severe psychiatric illness, and contraindications with magnetic resonance 

imaging procedures. The University of Michigan Institutional Review Board approved this study 

and all subjects gave written informed consent. The effect of tDCS on brain metabolites in these 

same subjects is described in a previous report (Foerster et al., 2014). 

Study Design. Our within-subjects crossover design had three phases: a baseline pain 

assessment and functional magnetic resonance imaging (fMRI) session #1, sham tDCS for five 

consecutive days followed by pain assessment and fMRI #2, and real tDCS for five consecutive 
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days followed by pain assessment and fMRI #3 (Figure B.1). Sham and real tDCS phases were 

separated by a 7-11 day washout period (mean = 9.9 days). We chose to perform real tDCS for 

five consecutive days because previous studies in FM patients have shown a meaningful 

reduction in clinical pain using this protocol (Fregni et al., 2006; Fagerlund et al., 2015). We did 

not use a randomized design in order to limit carry over from real to sham tDCS (Brunoni and 

Fregni, 2011). All participants were debriefed during a final follow-up visit. Patients were also 

offered a clinical referral for an outpatient clinic at our institution for continuation of care with 

regular therapy for their symptoms. 

Clinical Pain Outcomes. Clinical pain intensity was assessed as an “average” experience for the 

week before each assessment using a visual analog scale (VAS), with 0 being “no pain” and 10 

being the “worst possible pain”. Clinical pain was also assessed using the short-form McGill 

Pain Questionnaire (Melzack, 1987) and affective state was measured using the Positive and 

Negative Affect Schedule (PANAS) (Watson et al., 1988). We are missing McGill baseline pain 

data for one patient, PANAS scores across all conditions for one patient and PANAS baseline 

only scores for two patients.  Clinical results have been published previously (Foerster et al., 

2014) and are reproduced in Table B.1. Differences in clinical variables across conditions were 

assessed with repeated measures ANOVA in SPSS v22.  Significance was set at an alpha level of 

p < 0.05. The changes in clinical pain scores used in neuroimaging analyses were calculated by 

subtracting sham – baseline VAS and real – sham VAS. 

tDCS Protocol. The tDCS protocol was performed as described previously (DaSilva et al., 

2011).  Briefly, for both sham and real tDCS sessions, the anode electrode was placed on the 

scalp over the left motor cortex and the cathode over the right supraorbital cortex. Positions were 

determined individually using the EEG 10/20 system, respectively C3 and FP2. Electrodes were 
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placed by the same operators (AFD and TDN) for all patients. Active stimulation consisted of 2 

mA of current applied continuously for 20 minutes. During sham tDCS, the current was applied 

for 30 seconds at the beginning and end of the session.  Patients were blinded to type (i.e. real vs. 

sham) of treatment they were receiving. This protocol is identical to that used in previous studies 

of M1 tDCS in FM patients (Fregni et al., 2006; Fagerlund et al., 2015).  

Neuroimaging Methods. Resting state fMRI sessions were performed on a Philips Ingenia 3T 

system (Best, Netherlands) with a 15 channel receive head coil.  Each scan lasted 10 minutes and 

parameters include: a T2*-weighted BOLD echo-planar imaging (EPI) sequence (TR=2000ms, 

TE=30ms, flip angle 77 degrees, 30 slices, voxel size = 3.44 x 3.33 x 4.00mm). Physiological 

data (cardiac and respiratory volume) were collected simultaneously. A high-resolution structural 

image was acquired for normalization purposes (TR/TE = 9.8/4.6 ms, flip angle 8 degrees, 151 

slices, voxel size = 1 x 1 x 1 mm). fMRI data were checked for quality and head motion greater 

than 3 mm; no data were excluded. Resting state fMRI data was preprocessed using SPM8 

(http://www.fil.ion.ucl.ac.uk/spm/software/spm8/) running on Matlab R2010a (Mathworks, 

Sherborn, MA, USA) and included physiological artifact correction, slice timing correction, 

realignment, coregistration, normalization to MNI space and smoothing (FWHM=8mm).   

Seed-to-whole brain FC analyses were performed using the Conn Toolbox (Whitfield-

Gabrieli and Nieto-Castanon, 2012). Seeds were chosen based on the following criteria: 1) 

location under stimulating anode (left precentral gyrus and left postcentral gyrus (M1/S1), WFU 

PickAtlas, http://www.nitrc.org/projects/wfu_pickatlas), 2) structural connectivity to left M1 and 

S1 (right pre and postcentral gyri, bilateral ventral lateral (VL) and ventral posterior lateral 

(VPL) thalamus, WFU PickAtlas), and 3) our previous tDCS studies (PAG (DosSantos et al., 

2014)).  The time-series for each seed region was extracted and white matter, cerebrospinal fluid 



	
   65	
  

signal and realignment parameters were entered into the analysis as regressors of no interest. A 

band-pass filter (.008-.09 Hz) was applied to remove linear drift artifacts and high-frequency 

noise. First level analyses were performed by correlating the time series from each seed region 

with the rest of the voxels in the brain, creating seed-to-whole-brain Fisher-transformed 

correlation maps.  These maps were imported into SPM8 for group level analyses.   

For prediction analyses, we performed seed-to-whole brain regression analyses with 

baseline FC maps and change in clinical pain (real – baseline) as a regressor of interest.  Main 

effects were calculated using repeated measures ANOVA design with baseline, sham and real 

tDCS FC maps.  The contrasts of interest were baseline versus sham, and sham versus real tDCS. 

We also examined the change in FC across the entire study using the contrast baseline versus real 

tDCS. To examine correlations between changes in connectivity and changes in clinical pain, we 

first created difference images by subtracting first level connectivity maps for each subject (sham 

– baseline, real – sham, real – baseline). We then preformed a regression analysis with VAS 

change scores as a regressor of interest. All analyses controlled for differences in age. Results 

were thresholded at uncorrected p<0.001 on the voxel level and p<0.05 FWE correction for 

multiple comparisons at the cluster level with a cluster size of > 5 voxels.  For a-priori regions 

that did not meet this stringent threshold, we performed small volume corrections (SVC) using 

the anatomically (WFU PickAtlas) defined ROIs used as seed regions or functionally defined 

ROIs from our previous findings in FM (Napadow et al., 2010). Significance for SVC was set at 

p<0.05 FWE at the cluster level with a cluster size of > 5 voxels. The Fisher-transformed 

correlation values were extracted using MarsBaR software (http://marsbar.sourceforge.net) and 

post-hoc analyses performed in SPSS v22.   
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Results 

Clinical Pain Reduction with Sham and Real tDCS 

As reported previously (Foerster et al., 2014), there was a trend towards improvement in 

VAS clinical pain during the sham period (mean difference ± SE, sham minus baseline: -1.042 ± 

0.572; 95% CI: -0.218 to 2.301; p = 0.096), and there was no significant difference in pain relief 

between sham and real tDCS (mean difference ± SE, real minus sham: -0.750 ± 0.494; 95% CI: -

1.838 to 0.338; p = 0.157). However, clinical pain significantly decreased across the entire study 

from baseline to after real tDCS (mean difference ± SE real minus baseline: -1.792 ± 0.762; 95% 

CI: -3.470 to -0.114; p = 0.038). There were no significant differences in clinical pain as 

measured by the McGill Pain questionnaire or PANAS positive affect.  There was a significant 

difference between baseline and real tDCS in PANAS negative affect (mean difference ± SE real 

minus baseline: -3.0 ± 1.067; 95% CI: -5.461 to -0.539; p = 0.023). Clinical results for each 

patient individually across the study are presented in Table B.2. 

Stronger Baseline FC is Associated with Subsequent Analgesia 

 To examine common predictive ability of baseline FC for reductions in pain across sham 

and real tDCS (as this was where the significant clinical effect on pain was found), we used pre-

defined ROIs and correlated baseline FC with improvements in clinical pain across the entire 

study period (real – baseline).  Patients who had stronger connectivity at baseline between the 

left M1 seed and left VL thalamus (p = 0.011 FWE, SVC), between the left S1 seed and left 

anterior insula (p = 0.001 FWE), and between the left VL thalamus seed and PAG (p = 0.007 

FWE, SVC) had greater improvement in clinical pain scores across sham and real tDCS periods 

(Figure 3.1 and Table 3.1).  Importantly, these correlations were also significant when looking at 

change in clinical pain from baseline to sham or from sham to real tDCS alone (with one 
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exception: left VL – PAG baseline FC and real – sham clinical pain, p = 0.057; Table B.3). There 

were no regions that showed significant correlations between less connectivity at baseline and 

better treatment response (Figure B.2). In post-hoc analyses, there were no significant 

correlations between baseline connectivity of these regions and the change McGill clinical pain 

or the change in positive and negative affect.  

	
  
Figure 3.1. Stronger FC at baseline predicts analgesia. A, Patients with higher L M1 (seed in white) – L VL (anatomical region 
outlined in black) connectivity at baseline had a greater reduction in clinical pain across sham and real tDCS periods (displayed 
at p = 0.005). B, Stronger L S1 (seed in white) – L anterior insula FC at baseline predicted a better clinical response. C, 
Connectivity between the L VL thalamus (seed in white) and the PAG at baseline also predicted patients that would respond to 
sham and real tDCS treatment. M1, primary motor cortex; VL, ventral lateral; S1, primary somatosensory cortex; PAG, 
periaqueductal gray; VAS, visual analog scale; L, left; R, right; FC, functional connectivity (fisher-transformed r-values). 
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Table 3.1. Predicting changes in clinical pain from baseline FC 

Seed 
FC Region 

MNI coordinates 
(x y z) 

r value T Cluster 
size 

Cluster p-value 

        
L M1        

L VL thalamus -18 -14 12 -0.938 5.41 7 0.011 FWE* 
L S1        

L anterior insula -42 14 2 -0.961 9.38 396 0.001 FWE 
L VL thalamus        

PAG -6 -26 -8 -0.929 5.25  8 0.007 FWE*  
 
Table 3.1. Predicting changes in clinical pain from baseline FC. FC, functional connectivity; L, left; M1, primary motor cortex; 
VL, ventral lateral; S1, primary somatosensory cortex; PAG, periaqueductal gray; MNI, Montreal Neurological Institute 
* = Significant at p < 0.05 with small volume correction 
	
  
Sham tDCS is Associated with Decreases in FC 

Since previous studies have shown a placebo analgesic response on experimental and 

clinical pain during sham tDCS (Vaseghi et al., 2014), we examined whether sham tDCS 

changed resting state FC (sham – baseline, Table 3.2). After five sessions of sham tDCS, FM 

patients had reduced FC between the left VPL thalamus seed and left S1 (p = 0.016 FWE), left 

amygdala/parahippocampal gyrus (p = 0.004 FWE) and right inferior parietal lobule (IPL, p = 

0.013 FWE; Figure 3.2A). FC also decreased between the right VPL thalamus seed and left IPL 

(p = 0.049 FWE; Figure 3.2B), between the PAG seed and precuneus (p = 0.001 FWE; Figure 

3.2C), and between the right M1 seed and right cerebellum (p = 0.002 FWE).  There were no 

significant increases in FC after sham compared to baseline (Figure B.3).  

 
 
 
 
 
 
 
 
 
 
 
 
 



	
   69	
  

Table 3.2. Main effect of sham tDCS on FC 
 

Seed 
FC Region 

MNI coordinates 
(x y z) 

T Cluster size Cluster p-value 

Baseline > Sham       
L VPL       

L S1 -62 -16 42 6.80 304 0.016 FWE 
L parahipp/amyg -32 -14 -26 6.70 408 0.004 FWE 
R IPL  44 -36 32 5.69 320 0.013 FWE 

R VPL       
L IPL -34 -36 34 5.28 230 0.049 FWE 

R M1 (precentral gyrus)       
R cerebellum 16 -74 -36 5.91 485 0.002 FWE 

PAG       
precuneus -20 -84 24 4.88 618 0.000 FWE 

Baseline < Sham       
N.S.       

 
Table 3.2. Main effect of sham tDCS on FC. tDCS, transcranial direct current stimulation; FC, functional connectivity; L, left; R, 
right; VPL, ventral posterior lateral; S1, primary somatosensory cortex; parahipp/amyg, parrahippocampal gyrus & amygdala; 
IPL, inferior parietal lobule; M1, primary motor cortex; PAG, periaqueductal gray; N.S., not significant; MNI, Montreal 
Neurological Institute 
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Figure 3.2. Sham tDCS decreases FC compared to baseline. A, Decreased connectivity between the left VPL (seed in white) and 
left S1, left parahippocampal gryus and amygdala after sham tDCS compared to baseline. Plots show changes in FC from 
baseline to after the sham treatment period for each FM patient. B, Decreased connectivity between the right VPL (seed in white) 
and left IPL. C, Decreased connectivity between the PAG (seed in white) and precuneus. VPL, ventral posterior lateral; S1, 
primary somatosensory cortex; parahipp, parahippocampal gyrus; amyg, amygdala; IPL, inferior parietal lobule; PAG, 
periaqueductal gray; L, left; R, right; FC, functional connectivity (fisher transformed r-values). 

	
  
 To determine if changes in FC related to changes in clinical pain during the sham period, 

we ran a regression analysis with each participants connectivity difference map (sham – 

baseline) with change in VAS (sham – baseline) as a regressor of interest (Table 3.3).  The 

change in connectivity between the left VL thalamus seed and the left posterior insula was 

positively correlated with change in clinical pain (p = 0.001 FWE); patients with reduced 

connectivity between the left VL thalamus and posterior insula had a greater reduction in pain 

intensity after sham tDCS (Figure 3.3A). Reduced connectivity between the right VPL thalamus 
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seed and right M1 (p = 0.001 FWE), right S1 (p = 0.008 FWE) and left M1 (p = 0.046 FWE) also 

correlated with reduced pain after sham tDCS (Figure 3.3B).  Decreased FC between the right S1 

seed and the cerebellum (p = 0.001 FWE) was also positively correlated with change in pain.  

These changes in connectivity were not significantly correlated with changes in positive and 

negative affect or McGill clinical pain. There were no significant relationships between increases 

in connectivity and decreases in clinical pain (Figure B.4).  

 

Table 3.3. Correlations between change in FC and change in clinical pain (VAS) for sham 
vs baseline 

Seed 
FC Region 

MNI coordinates 
(x y z) 

r value T Cluster 
size 

Cluster p-value 

        
L VL thalamus        

L posterior insula -48 -12 0 0.979 12.33 313 0.001 FWE 
R VPL thalamus        

R M1 56 -12 42 0.969 9.85 603 0.000 FWE 
R S1 44 -34 54 0.917 7.46 235 0.008 FWE 
L M1 -46 -6 26 0.936 9.41 158 0.046 FWE 

R S1 (postcentral gyrus)        
cerebellum 36 -52 -20 0.937 7.63 355 0.001 FWE 

 
Table 3.3. Correlations between change in FC and change in clinical pain (VAS) for sham vs baseline. FC, functional 
connectivity; VAS, visual analog scale; L, left; R, right; VL, ventral lateral; VPL, ventral posterior lateral; M1, primary motor 
cortex; S1, primary somatosensory cortex; MNI, Montreal Neurological Institute 
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Figure 3.3. Correlations between changes in FC and changes in clinical pain after sham tDCS. A, Decreased FC between the left 
VL thalamus (seed in white) and left posterior insula was correlated with a reduction in clinical pain after sham tDCS. B, 
Decreased FC between the right VPL thalamus (seed in white) and left M1, right M1, and right S1 correlated with reduced 
clinical pain after sham tDCS.  VL, ventral lateral; VPL, ventral posterior lateral; M1, primary motor cortex; S1, primary 
somatosensory cortex; VAS, visual analog scale; L, left; R, right; FC, functional connectivity (fisher transformed r-values). 

	
  
Real tDCS is Also Associated with Decreases in FC 

Next, we measured changes in FC between sham and real tDCS (Table 3.4).  After real 

tDCS, FC decreased between the left VL thalamus seed and the medial prefrontal cortex (mPFC, 

p = 0.006 FWE) and left supplementary motor area (SMA, p = 0.043 FWE; Figure 3.4A). FC 

also decreased between the right VL thalamus seed and the cerebellum (p = 0.001 FWE) and left 

SMA (p = 0.016 FWE; Figure 3.4B).  There were no significant increases in FC (Figure B.3). 
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Table 3.4. Main effect of real tDCS on FC 

Seed 
FC Region 

MNI coordinates 
(x y z) 

T Cluster size Cluster p-value 

Sham > Real       
L VL thalamus       

mPFC 4 56 8 5.66 362 0.006 FWE 
L SMA -2 24 56 5.49 228 0.043 FWE 
L OFG -10 40 -22 5.91 185 0.08 FWE** 

R VL thalamus       
cerebellum 16 -46 -22 6.88 1122 0.000 FWE 
L SMA -6 22 58 6.16 313 0.016 FWE 

Sham < Real       
N.S.       

 
Table 3.4. Main effect of real tDCS on FC. tDCS, transcranial direct current stimulation; FC, functional connectivity; L, left; R, 
right; VL, ventral lateral; mPFC, medial prefrontal cortex; SMA, supplementary motor area; OFG, orbitofrontal gyrus; N.S., not 
significant; MNI, Montreal Neurological Institute; ** = Trend at p < 0.05 FWE correction for multiple comparisons 
	
  
	
  

	
  
Figure 3.4. Real tDCS decreases FC compared to sham. A, Decreased connectivity between the left VL (seed in white) and SMA 
and mPFC after real tDCS. Plots show changes in FC between sham and real tDCS for each FM patient. B, Decreased 
connectivity between the right VL (seed in white) and SMA and cerebellum after real tDCS. VL, ventral lateral; SMA, 
supplementary motor area; mPFC, medial prefrontal cortex; L, left; R, right; FC, functional connectivity (fisher transformed r-
values). 

	
  
When comparing baseline to real tDCS, we found significant decreases in connectivity 

between the left VPL thalamus seed and the left IPL (p = 0.041 FWE) and between the PAG 

seed and the posterior cingulate (p = 0.007 FWE; Figure B.4 and Table B.4).  There were no 

significant increases in FC. 
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 We did not find any regions that met whole brain correction in a regression analysis 

measuring changes in connectivity in relation to changes in pain after real tDCS compared to 

sham, however there were regions that met significance using SVC with a-priori ROIs (Table 

3.5).  The change in connectivity between the left VPL thalamus and left M1/S1 (p = 0.007 

FWE, SVC) and right posterior insula (p = 0.007 FWE, SVC) was positively correlated with the 

change in clinical pain (Figure 3.5). The change in left VL thalamus to right posterior insula 

connectivity was also positively correlated with change in pain (p = 0.022 FWE, SVC). Patients 

with reduced connectivity between the VL/VPL thalamus and M1/S1 and posterior insula had a 

greater reduction in pain intensity after real tDCS.  In post-hoc analyses, these changes in 

connectivity were also correlated with the change in McGill clinical pain (Table B.6). However, 

there were no significant relationships between FC and changes in positive or negative affect. In 

an analysis examining changes in connectivity and changes in clinical pain from baseline to real 

tDCS, we found that patients with reduced connectivity between left S1 and left SMA had a 

greater reduction in clinical pain (p = 0.013 FWE, Figure B.5 and Table B.5). Again, there were 

no significant relationships between increases in connectivity and decreases in clinical pain 

either between sham and real tDCS or between baseline and real tDCS (Figure B.6). 

Table 3.5. Correlations between change in FC and change in clinical pain (VAS) for real vs 
sham 

Seed 
FC Region 

MNI coordinates 
(x y z) 

r value T Cluster 
size 

Cluster p-value 

        
L VL thalamus        

R posterior insula 42 -24 20 0.887 5.08 5 0.022 FWE* 
L VPL thalamus        

L M1/S1 -48 -18 50 0.923 6.45 89 0.007 FWE* 
R posterior insula 46 -30 24 0.927 7.64 23 0.007 FWE* 

        
 
Table 3.5. Correlations between change in FC and change in clinical pain (VAS) for real vs sham. FC, functional connectivity; 
VAS, visual analog scale; L, left; R, right; VL, ventral lateral; VPL, ventral posterior lateral; M1, primary motor cortex; S1, 
primary somatosensory cortex; MNI, Montreal Neurological Institute; * = Significant at p < 0.05 with small volume correction 
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Figure 3.5. Correlation between change in FC and change in clinical pain after real tDCS. Patients with reduced FC between 
the L VPL thalamus (seed in white) and left S1/M1 and right posterior insula had greater reductions in clinical pain after real 
tDCS compared to sham (displayed at p = 0.005). VPL, ventral posterior lateral; S1, primary somatosensory cortex; M1, 
primary motor cortex; VAS, visual analog scale; L, left; R, right; FC, functional connectivity (fisher transformed r-values). 

  

Discussion 

 This study shows for the first time that a clinically relevant schedule of repetitive M1 

tDCS sessions alters FC in FM patients. Real tDCS (versus sham) reduced FC between the VL 

thalamus and SMA, mPFC, and the cerebellum. These changes in FC were distinct from those 

observed after sham tDCS.  Sham tDCS (compared to baseline) decreased connectivity between 

the VPL thalamus and S1, IPL, and the parahippocampal gyrus/amygdala and between the PAG 

and precuneus. However, after both sham and active tDCS, we found a relationship between 

decreases in FC among pro-nociceptive brain regions and reductions in clinical pain.  Patients 

with decreased connectivity between the VL thalamus and posterior insula and between the VPL 

thalamus and M1/S1 had greater reductions in clinical pain after sham and real tDCS.  In 

addition, our data indicate that FM patients with stronger baseline connectivity between left M1 

and left VL thalamus, between left S1 and left anterior insula, and between left VL thalamus and 

the PAG have a better analgesic response across the entire study. Although we see distinct main 

effects for sham and active tDCS, the overlapping results that relate to clinical changes in pain 
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may point to a shared placebo response in both sham and active conditions.  A summary of the 

results is depicted in Figure 3.6.   

	
  
Figure 3.6. Summary of results. Stronger corticothalamic FC and FC between regions with high densities of opioid receptors at 
baseline predicted a better clinical response across the entire study.  Changes in FC were observed after sham tDCS, which 
could be attributed to placebo analgesia or regression to the mean. Real tDCS caused some distinct long-lasting changes in FC 
(compared to sham) and may relieve pain via the inhibition of thalamic activity and subsequent decreases in FC, both of which 
could be caused by the release of endogenous opioids. M1, primary motor cortex; S1, primary somatosensory cortex; VL, ventral 
lateral; VPL, ventral posterior lateral; Ant Ins, anterior insula; PAG, periaqueductal gray; Post Ins, posterior insula; Amyg, 
amygdala; Precun, precuneus; SMA, supplemental motor area; mPFC, medial prefrontal cortex; Cer, cerebellum; FC, 
functional connectivity. 
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Our findings are somewhat at odds with the existing literature. For example, some studies 

have reported increases in thalamic blood flow (García-Larrea et al., 1999) or increased M1 – 

thalamus connectivity after M1 stimulation (Polanía et al., 2012b; Sours et al., 2014). We 

suggest that these conflicting results can be explained by the timing of stimulation and 

measurement.  In the other studies, neural activity was measured during or immediately after M1 

stimulation, which likely has a different neural signature than after one week of repetitive 

stimulation.  In support of this notion, Garcia-Larrea and colleagues noted that 30 minutes after 

M1 stimulation stopped, thalamic blood flow reverted to baseline levels (García-Larrea et al., 

1999).  Therefore, the initial or acute changes in thalamic activity may cause a cascade of other 

events that are important for analgesia (Garcia-Larrea and Peyron, 2007), leading to the distinct 

long-term changes that we observe. 

How might M1 stimulation promote analgesia in chronic pain patients?  One hypothesis 

states that M1 stimulation suppresses pain perception directly by inhibiting activity in the lateral 

thalamus (Plow et al., 2012; Kuo et al., 2014). Compared to healthy controls, FM patients have 

increased activity in pain processing structures during experimental pain and increased 

connectivity in ascending pro-nociceptive pathways at rest (see Cagnie et al., 2014 for a recent 

review on neuroimaging findings in FM), although the specific role of the thalamus in FM 

remains unclear. Both increases and decreases in thalamic activity or connectivity during 

experimental pain or at rest have been reported (Burgmer et al., 2009; Jensen et al., 2009; Cifre 

et al., 2012; Jensen et al., 2012). In the current study, we found that strong M1 – VL thalamus 

connectivity at baseline predicted a greater reduction in pain across sham and real tDCS periods. 

This is consistent with work in central post-stroke pain where analgesic response to repetitive 

transcranial magnetic stimulation over M1 was found to be best in patients with intact 
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thalamocortical tracts (as measured by diffusion tensor imaging) (Goto et al., 2008; Ohn et al., 

2012). Invasive motor cortex stimulation (MCS) decreases thalamic hyperactivity (Tsubokawa et 

al., 1993), likely by activating GABAergic divisions of the thalamus and increasing inhibition 

(Lucas et al., 2011).  In healthy rodents and in a rodent model of neuropathic pain, MCS 

decreases the firing rate of VPL thalamic neurons specifically (Pagano et al., 2011; 2012). In a 

previous study using the same patients reported here, we found a trend towards decreased 

glutamate + glutamine (Glx) in the bilateral thalamus after real tDCS compared to sham 

(Foerster et al., 2014). The decreases in FC between the thalamus and SMA, mPFC and 

cerebellum after real tDCS in this study lends support to the hypothesis that M1 stimulation 

disrupts thalamic activity. 

Another hypothesis is that M1 stimulation causes analgesia indirectly via the facilitation 

of descending anti-nociceptive pathways and release of endogenous opioids (Garcia-Larrea and 

Peyron, 2007).  Maarrawi and colleagues hypothesized that neuropathic pain patients with higher 

levels of endogenous opioids at baseline would be least likely to benefit from any additional 

opioid release caused by MCS, and indeed, patients with lower baseline binding potential for an 

opioid agonist (reflecting either fewer opioid receptors or higher levels of endogenous opioids) 

in the thalamus, insula and PAG were the least likely to benefit from MCS (Maarrawi et al., 

2013). The relationship between opioids and BOLD fMRI signal deserves further study, but in 

healthy controls morphine administration decreases activity in S1, thalamus and PAG (Becerra et 

al., 2006) while naloxone (an opioid antagonist) increases activity in S1, thalamus, insula and 

PAG (Borras, 2004).  In our study, stronger M1- thalamus, S1 – insula, and thalamus – PAG 

connectivity at baseline predicted a better treatment response. Since both sham and real tDCS 

also cause endogenous opioid release (DosSantos et al., 2014), this finding may suggest that 
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patients with connectivity between regions under the stimulating anode (M1/S1) and regions 

with a high density of opioid receptors are the most likely to benefit from tDCS. We also found 

decreases in FC in many of these regions after sham and real tDCS, which could also reflect 

opioid release.  

Placebo analgesia is a well-documented psychobiological event, and imaging studies 

have found overlap between brain networks involved in pain processing and those implicated in 

the placebo response (Tracey, 2010; Meissner et al., 2011). The decreases in FC found after 

sham (compared to baseline) are consistent with previous studies of placebo analgesia showing 

decreased activity in the thalamus, S1, amygdala and insula (Wager, 2004; Price et al., 2007; 

Wager et al., 2011). Importantly, the similarity of FC results related to changes in clinical pain 

between baseline and sham and between sham and real sessions may suggest a shared placebo 

component across conditions. However, the changes in FC after the sham period in this study 

cannot be interpreted solely as a placebo effect since we lacked a control group that received no 

treatment for comparison.  Therefore, any changes from baseline to sham could also reflect 

regression to the mean or the natural course of the disease (Wager and Fields, 2013). Regression 

to the mean also may account for a portion of the change in clinical pain after both the sham and 

real tDCS periods.  

Our study was limited by the small sample size, which may have contributed to the lack 

of a significant clinical effect between sham and active conditions and reduced statistical power.  

This pilot study did not aim to validate the efficacy of M1 tDCS as a treatment for FM; rather 

our goal was to determine if a clinically relevant schedule of tDCS sessions altered resting state 

FC in FM patients. However, as with most pain treatments wherein only a portion have a 

clinically meaningful response, half of the patients in this study did report a drop in pain on the 
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VAS (active – sham), and this change was correlated with reductions in thalamo-cortical 

connectivity.  This study is significantly limited by the lack of counterbalancing between sham 

and active conditions. Therefore, we cannot rule out carry-over effects from the sham period.  

However, sham and active phases were separated by a wash out period of at least one week, so 

we find this unlikely. Another limitation is that the stimulation sessions were single blinded. 

Finally, research has shown that stimulating for 30 seconds at the beginning and end of the sham 

condition can mimic the sensation during active treatment and that patients can not differentiate 

between sham and real at 1 mA (Gandiga et al., 2006). However, the credibility of sham tDCS 

and the effectiveness of patient blinding at 2 mA has recently been questioned (O'Connell et al., 

2014). Given our repeated measures design, it is likely that the patients became aware of the 

condition differences. Our results should be interpreted with caution and additional studies will 

be needed to replicate our findings.  

Conclusion 

Our results support the hypothesis that repetitive M1 tDCS causes lasting changes in FC and may 

relieve pain by altering thalamic activity. Analgesia may result from the inhibition of thalamic 

activity and subsequent decreases in FC, both of which could be caused by the release of 

endogenous opioids. Future studies that combine fMRI and PET within the same patients after 

repetitive M1 tDCS are needed to test this hypothesis. It is possible that there is a significant 

placebo component common to both sham and real tDCS. Future studies should include a no-

treatment control group to test this hypothesis. It remains to be seen if similar changes in FC are 

observed for tDCS in other chronic pain conditions.   

 

 



	
   81	
  

Acknowledgments  

This study was funded by a MICHR Clinical Trial Planning Program and CTSA high-tech 

funding grant, University of Michigan (Principal Investigators: A.F.D. and R.E.H.). C.C. was 

supported by T32 NS076401.  R.E.H was funded by NIH/NCCAM: R01 AT007550.  A.F.D. was 

supported by NIH/NIDCR R56 DE022637-01. The authors would like to thank Suzan Lowe, 

B.A., R.T., for expert technical assistance with fMRI data collection.  

References 

Becerra L, Harter K, Gonzalez RG, Borsook D (2006) Functional Magnetic Resonance Imaging 
Measures of the Effects of Morphine on Central Nervous System Circuitry in Opioid-Naive 
Healthy Volunteers. Anesth Analg 103:208–216. 

Borras MC (2004) FMRI Measurement of CNS Responses to Naloxone Infusion and Subsequent 
Mild Noxious Thermal Stimuli in Healthy Volunteers. Journal of Neurophysiology 91:2723–
2733. 

Brunoni AR, Fregni F (2011) Clinical trial design in non-invasive brain stimulation psychiatric 
research. Int J Methods Psychiatr Res 20:e19–e30. 

Burgmer M, POGATZKIZAHN E, Gaubitz M, WESSOLECK E, Heuft G, Pfleiderer B (2009) 
Altered brain activity during pain processing in fibromyalgia. NeuroImage 44:502–508. 

Cagnie B, Coppieters I, Denecker S, Six J, Danneels L, Meeus M (2014) Central sensitization in 
fibromyalgia? A systematic review on structural and functional brain MRI. Seminars in 
Arthritis and Rheumatism. 

Cifre I, Sitges C, Fraiman D, Muñoz MÁ, Balenzuela P, González-Roldán A, Martínez-Jauand 
M, Birbaumer N, Chialvo DR, Montoya P (2012) Disrupted functional connectivity of the 
pain network in fibromyalgia. Psychosom Med 74:55–62. 

DaSilva AF, Volz MS, Bikson M, Fregni F (2011) Electrode positioning and montage in 
transcranial direct current stimulation. J Vis Exp. 

Dayan E, Censor N, Buch ER, Sandrini M, Cohen LG (2013) Noninvasive brain stimulation: 
from physiology to network dynamics and back. Nature Neuroscience 16:838–844. 

DosSantos MF, Martikainen IK, Nascimento TD, Love TM, DeBoer MD, Schambra HM, Bikson 
M, Zubieta J-K, DaSilva AF (2014) Building up analgesia in humans via the endogenous µ-
opioid system by combining placebo and active tDCS: a preliminary report. PLoS ONE 
9:e102350. 

Fagerlund AJ, Hansen OA, Aslaksen PM (2015) Transcranial direct current stimulation as a 



	
   82	
  

treatment for patients with fibromyalgia. PAIN 156:62–71. 

Foerster BR, Nascimento TD, DeBoer M, Bender MA, Rice IC, Truong DQ, Bikson M, Clauw 
DJ, Zubieta J-K, Harris RE, DaSilva AF (2014) Excitatory and Inhibitory Brain Metabolites 
as Targets and Predictors of Effective Motor Cortex tDCS Therapy in Fibromyalgia. 
Arthritis Rheumatol. 

Fregni F, Gimenes R, Valle AC, Ferreira MJL, Rocha RR, Natalle L, Bravo R, Rigonatti SP, 
Freedman SD, Nitsche MA, Pascual-Leone A, Boggio PS (2006) A randomized, sham-
controlled, proof of principle study of transcranial direct current stimulation for the treatment 
of pain in fibromyalgia. Arthritis Rheum 54:3988–3998. 

Gandiga PC, Hummel FC, Cohen LG (2006) Transcranial DC stimulation (tDCS): a tool for 
double-blind sham-controlled clinical studies in brain stimulation. Clinical Neurophysiology 
117:845–850 Available at: 
http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=16427357&retmo
de=ref&cmd=prlinks. 

Garcia-Larrea L, Peyron R (2007) Motor cortex stimulation for neuropathic pain: From 
phenomenology to mechanisms. NeuroImage 37 Suppl 1:S71–S79. 

García-Larrea L, Peyron R, Mertens P, Gregoire MC, Lavenne F, Le Bars D, Convers P, 
Mauguière F, Sindou M, Laurent B (1999) Electrical stimulation of motor cortex for pain 
control: a combined PET-scan and electrophysiological study. PAIN 83:259–273. 

Goto T, Saitoh Y, Hashimoto N, Hirata M, Kishima H, Oshino S, Tani N, Hosomi K, Kakigi R, 
Yoshimine T (2008) Diffusion tensor fiber tracking in patients with central post-stroke pain; 
correlation with efficacy of repetitive transcranial magnetic stimulation. PAIN 140:509–518. 

Jensen KB, Kosek E, Petzke F, Carville S, Fransson P, Marcus H, Williams SCR, Choy E, 
Giesecke T, Mainguy Y, Gracely R, Ingvar M (2009) Evidence of dysfunctional pain 
inhibition in Fibromyalgia reflected in rACC during provoked pain. PAIN 144:95–100. 

Jensen KB, Loitoile R, Kosek E, Petzke F, Carville S, Fransson P, Marcus H, Williams SCR, 
Choy E, Mainguy Y, Vitton O, Gracely RH, Gollub R, Ingvar M, Kong J (2012) Patients 
with fibromyalgia display less functional connectivity in the brain's pain inhibitory network. 
Mol Pain 8:32. 

Kuo M-F, Paulus W, Nitsche MA (2014) Therapeutic effects of non-invasive brain stimulation 
with direct currents (tDCS) in neuropsychiatric diseases. NeuroImage 85 Pt 3:948–960. 

Lindenberg R, Nachtigall L, Meinzer M, Sieg MM, Flöel A (2013) Differential effects of dual 
and unihemispheric motor cortex stimulation in older adults. Journal of Neuroscience 
33:9176–9183. 

Lucas JM, Ji Y, Masri R (2011) Motor cortex stimulation reduces hyperalgesia in an animal 
model of central pain. PAIN 152:1398–1407. 



	
   83	
  

Maarrawi J, Peyron R, Mertens P, Costes N, Magnin M, Sindou M, Laurent B, Garcia-Larrea L 
(2013) Brain opioid receptor density predicts motor cortex stimulation efficacy for chronic 
pain. PAIN 154:2563–2568. 

Maarrawi J, Peyron R, Mertens P, Costes N, Magnin M, Sindou M, Laurent B, García-Larrea L 
(2007) Motor cortex stimulation for pain control induces changes in the endogenous opioid 
system. Neurology 69:827–834. 

Meissner K, Bingel U, Colloca L, Wager TD, Watson A, Flaten MA (2011) The placebo effect: 
advances from different methodological approaches. Journal of Neuroscience 31:16117–
16124. 

Melzack R (1987) The short-form McGill pain questionnaire. PAIN. 

Napadow V, Kim J, Clauw DJ, Harris RE (2012) Brief Report: Decreased intrinsic brain 
connectivity is associated with reduced clinical pain in fibromyalgia. Arthritis Rheum 
64:2398–2403. 

Napadow V, LaCount L, Park K, As-Sanie S, Clauw DJ, Harris RE (2010) Intrinsic brain 
connectivity in fibromyalgia is associated with chronic pain intensity. Arthritis Rheum 
62:2545–2555. 

O'Connell NE, Wand BM, Marston L, Spencer S, Desouza LH (2014) Non-invasive brain 
stimulation techniques for chronic pain. Cochrane Database Syst Rev 4:CD008208. 

Ohn SH, Chang WH, Park C-H, Kim ST, Lee JI, Pascual-Leone A, Kim Y-H (2012) Neural 
correlates of the antinociceptive effects of repetitive transcranial magnetic stimulation on 
central pain after stroke. Neurorehabil Neural Repair 26:344–352. 

Pagano RL, Assis DV, Clara JA, Alves AS, Dale CS, Teixeira MJ, Fonoff ET, Britto LR (2011) 
Transdural motor cortex stimulation reverses neuropathic pain in rats: a profile of neuronal 
activation. Eur J Pain 15:268.e1–.e14. 

Pagano RL, Fonoff ET, Dale CS, Ballester G, Teixeira MJ, Britto LRG (2012) Motor cortex 
stimulation inhibits thalamic sensory neurons and enhances activity of PAG neurons: 
possible pathways for antinociception. PAIN 153:2359–2369. 

Petrovic P (2002) Placebo and Opioid Analgesia-- Imaging a Shared Neuronal Network. Science 
295:1737–1740. 

Plow EB, Pascual-Leone A, Machado A (2012) Brain stimulation in the treatment of chronic 
neuropathic and non-cancerous pain. J Pain 13:411–424. 

Polanía R, Paulus W, Nitsche MA (2012a) Reorganizing the intrinsic functional architecture of 
the human primary motor cortex during rest with non-invasive cortical stimulation. PLoS 
ONE 7:e30971. 

Polanía R, Paulus W, Nitsche MA (2012b) Modulating cortico-striatal and thalamo-cortical 



	
   84	
  

functional connectivity with transcranial direct current stimulation. Hum Brain Mapp 
33:2499–2508. 

Price DD, Craggs J, Nicholas Verne G, Perlstein WM, Robinson ME (2007) Placebo analgesia is 
accompanied by large reductions in pain-related brain activity in irritable bowel syndrome 
patients. PAIN 127:63–72. 

Saavedra LC, Mendonca M, Fregni F (2014) Medical Hypotheses. Medical Hypotheses 83:332–
336. 

Schmidt-Wilcke T, Clauw DJ (2011) Fibromyalgia: from pathophysiology to therapy. Nat Rev 
Rheumatol 7:518–527. 

Sehm B, Schafer A, Kipping J, Margulies D, Conde V, Taubert M, Villringer A, Ragert P (2012) 
Dynamic modulation of intrinsic functional connectivity by transcranial direct current 
stimulation. Journal of Neurophysiology 108:3253–3263. 

Sours C, Alon G, Roys S, Gullapalli RP (2014) Modulation of resting state functional 
connectivity of the motor network by transcranial pulsed current stimulation. Brain 
Connectivity 4:157–165. 

Tracey I (2010) Getting the pain you expect: mechanisms of placebo, nocebo and reappraisal 
effects in humans. Nat Med 16:1277–1283. 

Tsubokawa T, Katayama Y, Yamamoto T, Hirayama T, Koyama S (1993) Chronic motor cortex 
stimulation in patients with thalamic pain. J Neurosurg 78:393–401. 

Valle A, Roizenblatt S, Botte S, Zaghi S, Riberto M, Tufik S, Boggio PS, Fregni F (2009) 
Efficacy of anodal transcranial direct current stimulation (tDCS) for the treatment of 
fibromyalgia: results of a randomized, sham-controlled longitudinal clinical trial. J Pain 
Manag 2:353–361. 

Vaseghi B, Zoghi M, Jaberzadeh S (2014) Does anodal transcranial direct current stimulation 
modulate sensory perception and pain? A meta-analysis study. Clin Neurophysiol. 

Wager TD (2004) Placebo-Induced Changes in fMRI in the Anticipation and Experience of Pain. 
Science 303:1162–1167. 

Wager TD, Atlas LY, Leotti LA, Rilling JK (2011) Predicting individual differences in placebo 
analgesia: contributions of brain activity during anticipation and pain experience. Journal of 
Neuroscience 31:439–452. 

Wager TD, Fields H (2013) Placebo analgesia. Textbook of Pain. 

Wager TD, Scott DJ, Zubieta J-K (2007) Placebo effects on human mu-opioid activity during 
pain. Proc Natl Acad Sci USA 104:11056–11061. 

Watson D, Clark LA, Tellegen A (1988) Development and validation of brief measures of 



	
   85	
  

positive and negative affect: the PANAS scales. J Pers Soc Psychol 54:1063–1070. 

Whitfield-Gabrieli S, Nieto-Castanon A (2012) Conn: A Functional Connectivity Toolbox for 
Correlated and Anticorrelated Brain Networks. Brain Connectivity 2:125–141. 

Wolfe F et al. (1990) The american college of rheumatology 1990 criteria for the classification of 
fibromyalgia. Arthritis Rheum 33:160–172. 

Zhang D, Snyder AZ, Shimony JS, Fox MD, Raichle ME (2010) Noninvasive Functional and 
Structural Connectivity Mapping of the Human Thalamocortical System. Cerebral Cortex 
20:1187–1194. 

 

 

 

 

 

 

 

 



	
   86	
  

Chapter 4 : Conclusions and Future Directions 

This dissertation investigated alterations in functional brain network hubs in FM and how 

non-invasive brain stimulation can alter brain network connectivity to produce analgesia in these 

patients.  The main contributions of this research are a better understanding of how functional 

hubs, the regions most fundamental to efficiency and information transfer in the brain, are 

reorganized in FM and how increases in an excitatory neurotransmitter may influence hub status 

and lead to increases in clinical pain.  Further, this dissertation adds to the knowledge of how a 

clinically relevant schedule of M1 tDCS treatment alters brain connectivity to cause analgesia.  

By identifying brain network alterations present in an individual patient, combined with the 

analgesic mechanism of action of noninvasive brain stimulation at a particular site, treatment 

may be personalized to the type of central alteration present in each patient. 

Summary of Findings 

In Chapter 2, we applied a brain network based approach to examine hub topology in 

FM. Resting state functional MRI data from 40 FM patients and 27 healthy volunteers were 

analyzed using graph theoretical techniques. We also measured the concentration of Glx in the 

right posterior insula using 1H-MRS in each participant. We identified significant disruptions in 

hub rank order in FM patients as compared to healthy volunteers. In general, brain regions that 

were hubs in FM patients, such as the superior temporal gyrus, mid and anterior insula, were 

non-hubs with low degree or centrality in healthy controls.  Conversely, hubs in healthy controls, 

such as primary and secondary visual cortices and superior frontal gyrus, were non-hubs in FM.  

In FM, but not controls, the anterior insula was a connector hub with significantly higher inter-
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modular connectivity.  Both FM and healthy control networks had a rich club organization, 

however the membership of hubs within the rich club was different between groups.  In FM, the 

bilateral anterior insulae was a member of the rich club and the visual network was integrated 

with the rest of the rich club.  In healthy volunteers, the visual network was segregated into its 

own module distinct from other rich club nodes.  

Among FM patients, rich club membership varied with the intensity of clinical pain: the 

posterior insula as well as M1 and S1 belonged to the rich club only in FM patients with the 

highest pain levels.  The rich club in the low pain FM group more closely resembled that of 

healthy controls.  Further, we found that the eigenvector centrality (a measure of how connected 

a brain region is to other highly connected regions) of two nodes in the posterior insula and 14 

bilateral M1 and S1 nodes positively correlated with clinical pain.  The two posterior insula 

nodes overlapped with the spectroscopic voxel where we measured each participant’s level of 

Glx. We demonstrated that eigenvector centrality in the posterior insula mediated the 

relationship between levels of Glx within this structure and the patient’s clinical pain report.  

These data are consistent with preclinical findings in rodents wherein increasing endogenous 

levels of glutamate in the insula led to increases in hyperalgesia and allodynia (Watson, 2016).  

Taken together, these findings demonstrate an altered hub topology in the chronic pain 

state of FM and suggest that, within the chronic pain network, pro-nociceptive regions (such as 

the insulae) appear to have acquired hub status that would redefine information processing and 

integration for the network.  Moreover, the intensity of chronic pain may be related to the 

composition of hubs in the rich club.  Finally, these data are the first to suggest that disruptions 

in the excitatory tone within the insula could alter the strength of the insula as a hub and 

subsequently lead to increased clinical pain.  
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In Chapter 3, we had three goals: first, determine if functional connectivity at baseline 

can predict treatment response to M1 tDCS in FM patients.  Second, examine if and how 

functional connectivity changes after the treatment, and third, assess if these changes relate to 

analgesia.  Twelve FM patients underwent a resting state functional connectivity fMRI scan at 

baseline, after five days of sham tDCS and after 5 days of real M1 tDCS.  Clinical pain intensity 

was measured at all three time points.  Stronger baseline functional connectivity between M1 

(under the stimulating anode) and the ventral lateral thalamus, S1 to the anterior insula, and 

ventral lateral thalamus to the PAG predicted greater analgesia after sham and real tDCS.  These 

findings are consistent with data from invasive motor cortex stimulation wherein patients with 

intact thalamocortical tracts have the best analgesic response (Goto et al., 2008; Ohn et al., 

2012).  Additionally, since M1 tDCS may act via the endogenous opioid system (DosSantos et 

al., 2012), our findings also suggest that patients who have strong connectivity between regions 

under the stimulating anode and regions with a high density of opioid receptors may be most 

likely to benefit from this treatment.   

Both sham and real tDCS caused reductions in functional connectivity.  Sham tDCS 

(compared to baseline) reduced functional connectivity between the ventral posterior lateral 

thalamus, S1 and the amygdala, findings which are consistent with neural responses during 

placebo analgesia (Wager, 2004; Price et al., 2007; Wager et al., 2011).  Real tDCS (compared to 

sham) reduced functional connectivity between the ventral lateral thalamus, medial prefrontal 

and supplementary motor cortices. Interestingly, decreased functional connectivity between the 

ventral lateral/ventral posterior lateral thalamus and posterior insula, M1 and S1 correlated with 

reductions in clinical pain after both sham and active treatment. In total, these results suggest that 

while there may be a placebo response common to both sham and real tDCS, repetitive M1 tDCS 
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causes distinct changes in functional connectivity that last beyond the stimulation period. The 

majority of the findings we report in Chapter 3 center on reductions in connectivity between the 

thalamus and other cortical regions.  This lends support to the hypothesis that the analgesic 

actions M1 tDCS may stem from reductions in pro-nociceptive thalamic hyperactivity (Kuo et 

al., 2014).   

Implications and Conclusions   

The Motor Cortex Plays a Role in Pain Perception 

The primary motor cortex (M1) is not classically defined as a member of the ‘pain 

matrix’, although its role in chronic pain is beginning to be examined. M1 shares many 

connections with the sensory nuclei of the thalamus and other pain processing regions and may 

therefore be an important modulator of pain perception by virtue of its connectivity patterns 

(Saavedra et al., 2014). M1 stimulation with tDCS increases pain and sensory thresholds in 

healthy volunteers (Reidler et al., 2012; Vaseghi et al., 2014) and causes lasting clinical pain 

reduction in FM (Fregni et al., 2006; Valle et al., 2009; Fagerlund et al., 2015).   

However, in FM patients, motor cortex excitability at baseline and in response to sensory 

stimuli is abnormally increased (Mhalla:2010iy; Cook et al., 2004). We found that the bilateral 

M1 were hubs and members of the rich club in the FM patients with the highest intensity of 

clinical pain.  Additionally, as measured with eigenvector centrality, the more connected M1 was 

to other high degree nodes, then the greater the clinical pain rating.  If we conclude from these 

data that M1 is a hyperactive hub in FM, then why would anodal stimulation of M1, presumably 

an excitatory intervention, lead to reductions in functional connectivity and analgesia?  

The most common way to measure the effect of M1 tDCS on cortical excitability is to 

measure motor evoked potentials. Anodal stimulation increases the amplitude of motor evoked 
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potentials, while cathodal stimulation decreases it (Nitsche and Paulus, 2000).  These results 

have led to the convenient interpretation that anodal tDCS is excitatory and cathodal tDCS is 

inhibitory, although this may not be true in all circumstances.  Antal and colleagues found that 

when healthy subjects are simultaneously given anodal M1 tDCS and performing a motor task 

that presumably activates M1, the motor evoked potential amplitude is lower compared to anodal 

M1 stimulation given while participants were at rest (Antal et al., 2007).  These results suggest 

that tDCS-induced plasticity may be dependent on the baseline state of the targeted brain region.  

According to the Bienenstock-Cooper-Munro (BCM) model of plasticity, synaptic potentiation is 

more likely to occur if postsynaptic activity is low.  Synaptic depression, on the other hand, is 

more likely to occur if postsynaptic activity is high (Bienenstock et al., 1982) (see (Lefaucheur et 

al., 2017) for a discussion of this model in the context of noninvasive brain stimulation).  This 

model may explain why changes in cortical excitability after tDCS depend on whether the 

participant is at rest or performing a task that engages the area being targeted.  In the case of our 

findings, if M1 is active at rest (as one might conclude from our results that show M1 has many 

more connections at rest in a patient with high pain compared to low pain), then anodal M1 tDCS 

might act in an inhibitory manner.  Therefore, M1 tDCS might be causing analgesia in some 

patients by decreasing the hub status of M1 regions – a hypothesis that is supported by our 

findings in Chapter 3 where anodal M1 tDCS caused reductions in functional connectivity 

between M1, S1 and other cortical regions.     

The Insular Cortex may be a “Pain Hub” and a Target of M1 tDCS 

The insula is highly connected to the rest of the brain, which may explain why it is 

implicated is so many functions, including somatosensory, autonomic, interoception, salience 

detection and cognitive processes (Borsook et al., 2016). One general hypothesis is that the 
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insula performs a role in converting salient physiological inputs into higher level cognitive states 

or emotions (Borsook et al., 2016). There is evidence that the anterior insula acts as in a causal 

manner to coordinate and change brain dynamics in many large scale networks (Uddin, 2015).  

The insula’s role as a sensory integration region that is critical for pain perception is supported 

by studies in which direct electrical stimulation of the posterior insula elicited painful sensations 

(Ostrowsky et al., 2002; Mazzola et al., 2009) and insular lesions alter pain perception (Garcia-

Larrea and Peyron, 2013).  Activity in the posterior insula also tracked over time with 

experimental heat pain intensity ratings (Segerdahl et al., 2015).  

In the first study of this dissertation, we found that the anterior insula was a hub, and had 

many connections to brain regions outside its own functional system in FM patients but not 

healthy controls.  This region was also a member of the rich club – the functional backbone of 

connectivity that influences information integration across the whole brain network.  In FM 

patients with the highest pain, this was also true for the posterior insula.  In the second study of 

this dissertation, we showed that FM patients who experienced the greatest analgesic effect after 

M1 tDCS also had reductions in functional connectivity between the ventral lateral/ventral 

posterior lateral thalamus and the posterior insula.  This finding met our criteria for statistical 

significance, however, we did observe other reductions in functional connectivity after M1 tDCS 

between the anterior and posterior insula and other cortical regions, some of which also 

correlated with analgesia.  These observations were not reported in Chapter 3 because they were 

not significant after correcting for multiple comparisons.  It is possible that the sample size 

(n=12) was too small to detect significant decreases in connectivity in the insula.  Another 

possibility is that the graph theoretical measures used in Chapter 2 would have detected a change 
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in insular hub status after tDCS.  This should be investigated in future studies with a larger 

number of patients.    

Glutamate and GABA Influence Pain Perception and are Altered by M1 tDCS 

Patients with FM have elevated levels of Glx in the posterior insula compared to healthy 

volunteers (Harris et al., 2009).  Moreover, higher Glx is associated with lower experimental 

pain thresholds in these patients.  After a non-pharmacological treatment, the FM patients with 

reductions in Glx within the posterior insula also experience decreases in clinical pain and 

sensitivity to experimental pain stimuli (Harris et al., 2008).  Similarly, an effective 

pharmacological analgesic treatment reduced insular Glx in FM (Harris et al., 2013).  FM 

patients also have lower GABA concentrations in the anterior insula relative to healthy controls, 

and patients with lower GABA levels in the posterior insula were more sensitive to experimental 

pressure pain (Foerster et al., 2012).  Alterations in the excitatory-inhibitory balance in the insula 

have also been found in other chronic pain conditions (Petrou et al., 2012; As-Sanie et al., 2016).  

In Chapter 2 we found that the high pain FM group had significantly higher 

concentrations of Glx in the posterior insula compared to the low pain FM group.  There were 

two nodes in the posterior insula that overlapped with the spectroscopic voxel; hence, we sought 

to examine the relationship between graph theoretical measures, Glx and clinical pain in FM 

patients.  We demonstrated that the eigenvector centrality of posterior insula nodes mediated the 

relationship between Glx and clinical pain.  These data are consistent with a recent preclinical 

study wherein either increasing glutamate or decreasing GABA led to increased hyperalgesia and 

allodynia in naïve rats (Watson, 2016).  Further, rats with a chronic constriction injury to the 

sciatic nerve, a rodent model for chronic neuropathic pain, had higher glutamate levels in the 

insula compared to controls.  Following a microinjection of a glutamate receptor antagonist or 
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GABA into the insular region, the nociceptive behaviors in the injured rats decreased.  Together, 

these data indicate that the excitatory-inhibitory balance in the insula exerts a causal influence on 

pain perception. 

In addition to the functional connectivity changes after M1 tDCS that we report in 

Chapter 3, our laboratory previously examined changes in excitatory and inhibitory 

neurotransmitters after treatment in the same FM patients studied here (Foerster et al., 2014).  

We found that five days of M1 tDCS treatment significantly decreased Glx in the ACC 

compared to sham.  There was a trend towards decreased Glx in the bilateral thalami after M1 

tDCS compared to sham, although this did not meet statistical significance.  Finally, M1 tDCS 

increased GABA in the anterior insula relative to the baseline scan (Foerster et al., 2014).  The 

authors did not find any significant changes in anterior insula Glx, or posterior insula Glx or 

GABA. It is possible that the study was underpowered (n=12) to detect changes in posterior 

insula neurochemistry.  

Taken together, it is clear that glutamate and GABA in the insula impact pain perception 

and are altered in chronic pain.  Therefore, treatments that decrease glutamate and/or increase 

GABA in the insula may be effective analgesics in some patients.  Our conclusion from these 

data is that molecular alterations of the excitatory tone of the insula can impact the functionally 

derived hub status of this region and lead to subsequent changes in the clinical pain percept.  

Future tDCS studies with a larger number of participants should confirm the impact of M1 

stimulation on insular Glx and GABA.  If the null results are confirmed, other tDCS targets that 

may change the excitatory-inhibitory tone in the insula should be explored.  
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Future Directions  

Biomarkers for Chronic Pain 

A biomarker is broadly defined as a biochemical, physiological or anatomical trait that 

reliably predicts a biological state (Fidalgo et al., 2014).  Ideally, biomarkers should identify or 

predict individuals with a disease and they should change with successful treatment.  In chronic 

pain, biomarkers would be helpful to patients who desire validation of an oftentimes invisible 

condition, and useful for researchers and clinicians to obtain additional information about the 

status or trajectory of a disease beyond the patient self-report (Davis et al., 2017).  Neuroimaging 

has the potential to generate biomarkers based on brain activity related to pain perception, 

although this goal should be pursued with care (see Davis et al., 2017 for an extensive discussion 

of the ethics and challenges of developing biomarkers for chronic pain). Multivariate pattern 

analysis and machine learning have been used to identify patterns in neuroimaging data that are 

predictive of pain or disease status (Wager et al., 2013; Ung et al., 2014; López-Solà et al., 

2016).  Network topology and functional connectivity (as examined in this dissertation) also 

have the potential to serve as biomarkers for chronic pain.  Future studies should replicate our 

findings in Chapter 2 and determine if the hub status of insular, M1 and S1 regions track with 

changes in clinical pain over time or decrease with successful treatment.  It also remains unclear 

if our findings translate into other chronic centralized pain conditions.  Larger studies with 

diverse individuals (age, sex, race, ethnicity) and different chronic pain conditions are warranted.  

Personalized Treatment  

Given the many legal and ethical challenges of chronic pain biomarkers (Davis et al., 

2017), it is our conclusion that the best use of a brain biomarker would be to optimize treatment 

by tailoring interventions based on an individual patient’s neurobiology.  Despite its clinical 
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promise, tDCS still faces many engineering and research challenges, such as the fine-tuning of 

stimulation parameters (intensity, duration of stimulation, number of treatments required, etc.) 

and the delineation of which brain regions should be targeted to produce the maximum treatment 

benefit.  Biomarkers may serve as a guidepost for new targets in noninvasive brain stimulation 

research and clinical trials (Fidalgo et al., 2014). 

There are many ways in which tDCS could be personalized to an individual patient.  The 

histology of brain regions varies between individuals and, therefore, applying stimulation based 

on group-average coordinates is not the best approach.  Structural MRI data can be used to 

determine the shape and position of the stimulating electrode with more precision than a group 

average placement. Computational modeling has shown that this approach can lead to stronger 

current in the targeted brain regions (Cancelli et al., 2015b).  M1 cortical excitability (measured 

using hand motor evoked potentials) was higher using a personalized electrode compared to non-

personalized fit based on the standard electroencephalography 10-20 International system as 

typically done (Cancelli et al., 2015a). This approach was recently used clinically to reduce 

fatigue in multiple sclerosis (Cancelli et al., 2017).   

Structural and functional connectivity could also be used to determine the best 

stimulation target. For example, participants with stronger dorsolateral prefrontal cortex 

(DLPFC) – thalamus structural connectivity experienced more pain relief during anodal DLPFC 

stimulation (presumably via a top-down activation of descending analgesic pathways from the 

DLPFC to the PAG that pass through the thalamus) (Lin et al., 2017).  The structural 

connectivity also related to the functional connectivity between these two regions.  The 

functional connectivity profile of the DLPFC is more similar within an individual subject on 

different days than to an average population map (Fox et al., 2013). Fox et al. identified regions 
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of the DLPFC that produced a more effective antidepressant response when stimulated compared 

to other DLPFC sites and that this difference related to functional connectivity (Fox et al., 2012).  

Effective sites had strong anti-correlated connectivity between that region and the subgenual 

ACC.  The specific region of the DLPFC with the strongest anti-correlation to the ACC varied 

between patients.  In another example, corticostriatal connectivity predicted treatment response 

to dorsomedial prefrontal cortex transcranial magnetic stimulation (Dunlop et al., 2016). In this 

case, the non-responders (50%) had less corticostriatal connectivity at baseline compared to 

responders.  Treatment responses may depend on structural and functional brain circuitry and 

may help explain the wide variances of clinical outcomes after tDCS treatment. By using 

connectivity at baseline to guide treatment, some of this variance may be reduced.  

The findings of this dissertation suggest that anodal M1 tDCS may be most effective in 

alleviating pain in those FM patients where the insula, M1 and S1 are acting as highly connected 

hub regions in the brain network.  More specifically, patients with high M1-thalamus-PAG 

connectivity at baseline might respond best to M1 tDCS.  For patients with a different hub 

topology or connectivity pattern, an alternative stimulation site may produce better results. We 

would predict that patients with stronger DLPFC – thalamus – PAG connectivity would be better 

candidates for tDCS targeted to the DLPFC.  These possibilities should be examined in future 

studies.   

Developing New Targets for tDCS Treatment of Chronic Pain 

As we have outlined above, M1 stimulation may not be the best treatment approach in all 

chronic pain patients.  New targets for brain stimulation should be explored and the research 

presented in this dissertation suggests that targeting hub brain regions for a tDCS “attack” (i.e. 

decreasing or reorganizing the hub structure in chronic pain patients) could be a successful 
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treatment approach.  Graph theoretical analyses applied to computer simulations of human brain 

networks have the potential to model the consequences of targeting a novel region without the 

expense or risk of human trials (Medaglia, 2017).   

A recent study used network control theory to predict the effects of stimulating different 

brain regions using a computational model of a structural brain network (Muldoon et al., 2016).  

In this context, ‘control’ refers to the ability to manipulate local activity in order to drive the 

global network towards a desired state.  Regions with high degree (strongly connected hubs) had 

the highest average controllability, while brain regions with few connections had low 

controllability. Stimulating brain regions with high controllability resulted in the large changes to 

the functional state of the brain network (measured as the change in functional connectivity in 

the computational model after stimulation), and the amount of this global activation was 

unconstrained by the underlying structural connectivity.  On the other hand, stimulating regions 

with low controllability led to focal activation only, and this activation was constrained and 

predicted by structural connectivity.  In general, based on a model using structural brain data 

from healthy volunteers, regions of the medial DMN had high controllability and produced large 

functional effects on the rest of the brain network when stimulated. The postcentral gyrus (S1) 

had medium controllability and stimulating this region led to moderate changes in functional 

connectivity across the whole brain network. The results of this study suggest two classes of 

therapeutic interventions: a ‘broad reset’ where stimulating a highly connected hub leads to 

widespread activation and alteration of global brain dynamics, and ‘focal’ targeting wherein 

stimulating sparsely connected regions alters the functional dynamics of relatively few areas.  

The controllability measure could be used to predict network-wide effects of stimulation on a 

specific brain region.  Applying these principles to our data, we would predict that hubs in FM 
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(anterior insula in all patients; S1, M1 and posterior insula in high pain patients) would have high 

controllability and stimulation would lead to large effects on global network dynamics.  

Conversely, stimulating non-hubs (visual cortex) would produce focal changes in connectivity.  

As we discuss in Chapter 1, the CNS alterations observed in FM are not limited to any one brain 

region or pathway.  Therefore, future tDCS studies should examine the analgesic effects of 

targeting hub brain regions.    

Concluding Remarks 

Chronic pain is an enormous personal, societal and economic burden.  Individuals who 

suffer from a chronic widespread pain have a reduced quality of life and excess mortality rates 

(Clauw, 2014; Macfarlane et al., 2017). Chronic pain is a leading cause of disability and costs for 

medical treatment and lost productivity exceed $550 billion annually in the United States 

(Institute of Medicine (US) Committee on Advancing Pain Research, Care, and Education, 

2011).  

Simultaneously, the United States is in the midst of an opioid epidemic.  In 2015, there 

were 33,091 deaths due to an opioid overdose (Rudd et al., 2016), and most of these individuals 

first encountered an opioid for the management of acute or chronic pain (Schneiderhan et al., 

2017).  Paradoxically, there is no evidence that opioids effectively treat chronic pain and may 

instead lead to poorer long-term outcomes (Brummett et al., 2015; Goldenberg et al., 2016).  In 

the United States, there are three drugs currently approved by the US Food and Drug 

Administration (FDA) for the treatment of FM. However, only 30-40% of patients experience a 

meaningful reduction in pain while taking these drugs and there are substantial side effects (see 

(Häuser et al., 2014)for a review on the efficacy of pharmacological therapies). Noninvasive 
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brain stimulation has emerged as a potential treatment for chronic centralized pain conditions, 

although the outcomes of clinical trials have been mixed (O'Connell et al., 2014).   

This research offers new insight into the neurobiology of chronic centralized pain 

conditions, identifies a candidate diagnostic marker of chronic pain, and may contribute to the 

understanding of how non-invasive brain stimulation treatments cause analgesia. This knowledge 

could lead to more informed stimulation sites and personalized treatment based on brain network 

organization and connectivity in an individual patient.  Longitudinal studies are needed to 

determine causality and to measure if network organization changes with successful treatment. 

Future studies should also examine the effect on brain network connectivity at other stimulation 

sites.  
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Appendix A : Supplementary Figures and Tables 

	
  
Figure A.1. Right Posterior Insula 1H-MRS Voxel Placement and Resulting Spectrum. The placement of the spectroscopic voxel 
in the right posterior insula is shown in (A) in axial, coronal and sagittal images.  A representative spectrum fit with LCModel 
(red trace) is depicted in panel (B). The peak resonance for glutamate + glutamine (Glx) is marked with * at 2.35 parts per 
million. Glx concentrations were rescaled using the water peak and corrected for CSF. 

Table A.1: No Significant Differences in Grey/White Matter or CSF Volume in the 1H-
MRS Voxel between FM and HC 

 
 
 
 
 
 
 
 

Right Posterior 
Insula 1H-MRS 
Voxel 

FM(mean ± SD) HC (mean ± SD) Statistics 

Grey Matter 0.3390 ± 0.08 0.3259 ± 0.08 t=-0.641, p=0.524 
White Matter 0.6196 ± 0.09 0.6334 ± 0.08 t=0.591, p=0.557 
CSF 0.0394 ± 0.02 0.0391 ± 0.01 t=-0.065,p=0.948 

Table A.1. No Significant Differences in Grey/White Matter or CSF Volume in the 1H-MRS Voxel between FM and HC. FM, 
fibromyalgia; HC, healthy control; SD, standard deviation; 1H-MRS, proton magnetic resonance spectroscopy 
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Table A.2: No Significant Differences in Grey/White Matter or CSF Volume of the 1H-
MRS Voxel between FM Pain Tertiles 

 

 
 

Table A.3: Participant Demographics 
 

 FM (n=40, unless 
otherwise noted) 

HC (n=27, unless 
otherwise noted) 

Statistics 

Age (mean ± SD) 39.03 ± 11.04 36.22 ± 12.43 t = 0.969, p = 0.336 
Race 92.5% Caucasian, 5% 

African American, 2.5% 
Other  

N = 15; 80% Caucasian, 
7% Indian, 13% Asian 

 

Ethnicity N = 30; 97% Non-
Hispanic White, 3% 
Hispanic 

N = 15; 93% Non-
Hispanic 7% Hispanic 

 

Posterior insula Glx 
CSF corrected (mean ± 
SD AIU) 

N = 39; 11.92 ± 1.57 10.97 ± 1.48 t = 2.45, p = 0.017 

Posterior insula Glx 
ratio to total creatine 
(mean ± SD AIU) 

N = 37; 1.62 ± 0.17 N = 25; 1.63 ± 0.21 t = 0.269, p = 0.789 

Clinical Pain (VAS: 
mean ± SD) 

4.88 ± 2.24   

Depression (HADS: 
mean ± SD)  

N = 18; 5.11 ± 3.54   

Depression (CES-D: 
mean ± SD) 

N = 12; 14.75 ± 7.55   

 
Table A.3. Participant Demographics. FM, fibromyalgia; HC, healthy control; SD, standard deviation; Glx, glutamate + 
glutamine; AIU, arbitrary institutional units; VAS, visual analog scale; HADS, Hospital Anxiety and Depression scale; CES-D, 
Center for Epidemiological Studies-Depression Scale  
 

 
 
 
 
 
 
 
 
 
 

 
Table A.2. No Significant Differences in Grey/White Matter or CSF Volume of the 1H-MRS Voxel between FM Pain Tertiles. FM, 
fibromyalgia; SD, standard deviation; 1H-MRS, proton magnetic resonance spectroscopy  

Right Posterior 
Insula 1H-MRS 
Voxel 

High Pain FM (mean ± 
SD) 

Medium Pain FM 
(mean ± SD) 

Low Pain FM 
(mean ± SD) 

Statistics 

Grey Matter 0.3259 ± 0.08 0.3605 ± 0.09 0.3441 ± 0.08 F=1.208, p=0.314 
White Matter 0.6333 ± 0.10 0.5968 ± 0.10 0.6112 ± 0.08 F=1.188, p=0.321 
CSF 0.0391 ± 0.02 0.0401 ± 0.02 0.0429 ± 0.01 F=0.454,p=0.715 
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Table A.4: Current Medications in Fibromyalgia Patients 
 

Medication # Fibromyalgia Patients  
Antidepressants (SSNRI, SSRI, NDRI, TCA) 9 
Benzodiazepines  3 
Pregabalin 2 
Opioids/Narcotic Analgesics 5 
Muscle Relaxants 8 
NSAIDs 20 
Marijuana 1 

 
Table A.4. Current Medications in Fibromyalgia Patients. Data not collected in 9 FM participants, table above contains 
medication usage for remaining n=31 FM patients 
	
  
 

Table A.5: Global Network Measures 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
  

Measure FM(mean ± SD) HC (mean ± SD) Statistics 
Global 
Efficiency 

0.5740 ± 0.005 0.5733 ± 0.007 t=0.419, p=0.657 

Clustering 
Coefficient 

0.4730 ± 0.025 0.4739 ± 0.033 t=0.109, p=0.899 

Average Path 
Length 

2.01 ± 0.03 2.02 ± 0.05 t=0.694,p=0.490 

Modularity 0.3349 ± 0.027 0.3406 ± 0.033 t=0.750, p=0.439 

 
Table A.5. Global Network Measures. FM, fibromyalgia; HC, healthy control; SD, standard deviation 
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Table A.6: Hubs (Degree) in Fibromyalgia Patients and Healthy Controls 

 
Hubs in Fibromyalgia Patients 

Brain Region (Node #) Degree 
Hubs in Healthy Controls 

Brain Region (Node #) Degree 
L Inferior Frontal Gyrus (242) 66.8 R Inferior Parietal Lobule (192) 66.5 
Dorsal Anterior Cingulate (215) 67.2 L Superior Frontal Gyrus (218) 66.5 
R Precuneus (156) 67.6 R Supplementary Motor Area (16) 66.5 
L Mid Insula/Operculum (55) 67.8 R Precuneus (136) 66.6 
R Superior Parietal (258) 68.1 R Primary/Secondary Visual Cortex (140) 66.8 
L Primary Somatosensory Cortex (69) 68.2 L Superior Frontal Gyrus (50) 66.8 
R Inferior Temporal Gyrus (179) 68.5 L Primary Somatosensory Cortex (23) 67.2 
R Superior Temporal Gyrus (240) 68.5 L Primary Somatosensory Cortex (69) 67.2 
R Mid Frontal Gyrus (189) 68.7 L Primary/Secondary Visual Cortex (154) 67.3 
R Mid Cingulate (216) 68.8 R Visual Association Cortex (169) 67.5 
L Mid Cingulate (94) 68.9 R Supplementary Motor Area (53) 67.5 
L Precuneus (166) 69.1 L Inferior Frontal Gyrus (242) 67.7 
R Mid Insula (60) 69.5 L Inferior Parietal Lobule (177) 67.7 
R Inferior Frontal Gyrus (186) 69.5 R Angular Gyrus (96) 68.6 
R Superior Temporal Gyrus (63) 69.7 R Supplementary Motor Area (54) 68.7 
R Precuneus (136) 69.7 R Primary Motor Cortex (29) 68.8 
L Primary Motor Cortex/Operculum (70) 69.8 R Superior Frontal Gyrus (219) 69.1 
R Anterior Insula (209) 70.2 R Posterior Cingulate (203) 69.1 
L Anterior Insula (208) 70.5 R Superior Temporal Gyrus (62) 69.3 
R Primary Motor Cortex (29) 70.5 L Mid Temporal Gyrus (83) 69.4 
R Supramarginal Gyrus (204) 70.7 L Superior Temporal Gyrus (58) 69.4 
R Supplementary Motor Area (54) 70.8 R Mid Cingulate (216) 69.7 
L Primary Somatosensory Cortex (65) 70.9 R Mid Insula (56) 70.4 
R Posterior Cingulate (203) 71.4 L Mid Cingulate (59) 70.4 
L Mid Cingulate (59) 71.9 R supramarginal gyrus (204) 70.9 
L Inferior Parietal Lobule (235) 72.5 L Primary Somatosensory Cortex (65) 71.0 
L Mid Cingulate (213) 72.8 R Primary Visual Cortex (141) 71.6 
L Supplementary Motor Area (47) 74.1 R Secondary Visual Cortex (165) 72.6 
R Superior Temporal Gyrus (62) 75.5 L Primary/Secondary Visual Cortex (172) 72.7 
L Supplementary Motor Area (15) 76.4 R Visual Association Cortex (153) 72.7 
R Mid Insula (56) 77.2 L Mid Cingulate (213) 72.8 
L Superior Temporal Gyrus (58) 77.6 L Supplementary Motor Area (47) 73.3 
  L Supplementary Motor Area (15) 74.3 

 
Table A.6. Hubs (Degree) in Fibromyalgia Patients and Healthy Controls. L, left; R, right. 
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Table A.7: Hubs (Betweenness Centrality) in Fibromyalgia Patients and Healthy Controls 
 

Hubs in Fibromyalgia Patients 
Brain Region (Node #) 

Betweenness 
Centrality 

Hubs in Healthy Controls 
Brain Region (Node #) 

Betweenness 
Centrality 

R Mid Insula (60) 328.8 R Primary Visual Cortex (141) 328.7 
L Primary Motor/Operculum (70) 329.3 R Superior Temporal Gyrus (62) 329.1 
R Superior Parietal (258) 330.3 R Superior Temporal Gyrus (63) 329.6 
R Anterior Insula (211) 331.1 L Superior Frontal Gyrus (178) 335.1 
R Inferior Frontal Gyrus (139) 332.6 L Superior Frontal Gyrus (220) 335.4 
L Superior Temporal Gyrus (236) 333.2 R Precuneus (156) 337.8 
L Inferior Frontal Gyrus (137) 333.6 R Inferior Frontal Gyrus (139) 339.1 
R Mid Temporal Gyrus (119) 333.7 R Inferior Parietal Lobule (190) 339.3 
R Precuneus (156) 338.8 R Mid Frontal Gyrus (189) 341.9 
R Superior Temporal Gyrus (63) 341.1 L Superior Frontal Gyrus (103) 342.9 
R Precuneus (251) 344.1 R Angular (96) 345.7 
R Mid Frontal Gyrus (189) 345.4 L Inferior Parietal Lobule (177) 346.0 
R Cuneus (159) 346.1 L Inferior Frontal Gyrus (176) 351.0 
L Anterior Insula (208) 347.5 R Visual Association Cortex (153) 351.4 
R Mid Cingulate (216) 347.8 R Inferior Parietal Lobule (192) 354.2 
L Superior Frontal Gyrus (112) 349.8 L Mid Temporal Gyrus (120) 356.4 
L Angular Gyrus (87) 351.4 R Primary Motor Cortex (29) 359.7 
R Inferior Frontal Gyrus (186) 352.7 R Precuneus (163) 362.7 
L Primary Somatosensory Cortex (65) 354.5 R Cuneus (159) 365.5 
R Superior Temporal Gyrus (240) 355.9 L Precuneus (13) 367.3 
L Inferior Frontal Gyrus (176) 356.6 L Mid Cingulate (59) 368.2 
Dorsal Anterior Cingulate (215) 357.2 R Secondary Visual Cortex (165) 370.2 
R Precuneus (136) 358.8 Dorsal Anterior Cingulate (215) 370.8 
L Superior Frontal Gyrus (202) 372.2 L Secondary/Association Visual Cortex (172) 371.2 
L Mid Cingulate (59) 377.6 L Mid Cingulate (94) 372.4 
R Posterior Cingulate (203) 377.8 R Mid Cingulate (216) 372.9 
R Inferior Temporal Gyrus (179) 377.9 L Supplementary Motor Area (47) 375.4 
R Precuneus (163) 381.7 L Supplementary Motor Area (138) 376.3 
R Inferior Parietal Lobule (235) 382.2 L Inferior Frontal Gyrus (242) 382.8 
R Supramarginal Gyrus (204) 383.6 R Mid Insula (56) 388.7 
L Supplementary Motor Area (47) 386.4 L Superior Temporal Gyrus (58) 390.7 
L Mid Cingulate (213) 387.7 R Superior Frontal Gyrus (219) 393.1 
R Primary Motor Cortex (29) 392.4 R Posterior Cingulate (203) 394.5 
L Mid Cingulate (94) 399.5 L Medial Superior Frontal Gyrus (202) 397.6 
R Superior Temporal Gyrus (62) 401.3 R Precuneus (136) 412.9 
L Inferior Frontal Gyrus (242) 408.1 L Mid Cingulate (213) 419.2 
L Superior Temporal Gyrus (58) 458.6 R Supramarginal (204) 424.6 
L Supplementary Motor Area (15) 473.4 L Supplementary Motor Area (15) 438.0 
R Mid Insula (56) 477.9   

Table A.7. Hubs (Betweenness Centrality) in Fibromyalgia Patients and Healthy Controls. L, left; R, right. 
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Figure A.2. Rich Club Membership across thresholds in FM and HC.  Rich club membership is depicted for FM and HC at each 
of the thresholds examined, 10-40% (A-G). As described in the main text, we determined statistical significance of the rich club 
coefficient, ϕ (k), at each level of k with permutation testing using 1000 random networks with similar degree distribution and 
density. The range of k in which ϕ (k) is significantly different from ϕ random (k), and where the ϕ norm (k) is greater than one, is the 
rich-club regime. Differences between FM and HC in ϕ (k) at each level of k in the rich-club regime were tested in SPSS using 
independent samples t-tests. This was repeated for each threshold and a Bonferroni correction was applied. There were no 
significant differences in the rich club coefficient between FM and HC, however rich club membership was different between 
groups.  The anterior insulae was a member of the rich club in FM patients for network densities between 20 and 40%. For 
visualization, the rich clubs are displayed at the highest level of k that was significantly different from random networks for each 
threshold and each group independently (10%: FM k= 47, HC k = 45; 15%: FM k = 64, HC k = 62; 20%: FM k = 78, HC k = 
82; 25%: FM k = 92, HC k = 95; 30%: FM k = 106, HC k = 111; 35%: FM k = 121, HC k = 126; 40%: FM k = 133, HC k = 
142). 
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Figure A.3. Rich Club Hubs in FM Tertiles across thresholds.   For high, medium and low pain FM tertiles, the rich club 
membership is depicted for all other network densities examined (10-40%, A-G). Differences in the rich club coefficient, ϕ (k), for 
each threshold were tested as described in the main text using one-way ANOVAs and Bonferroni corrections were applied.  
There were no significant differences between the tertiles in the rich club coefficient, however rich club membership varied 
across the tertiles and was consistent with results at 5% density described in the main text.  For visualization, the rich clubs are 
displayed at the same level of k detailed for the FM group in Supplementary Fig 1.  
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Table A.8: Correlations Between Eigenvector Centrality and Clinical Pain in Fibromyalgia 
Patients 

 
 Brain Region (Node #) r-value p-value 

Positive Correlations L Primary Somatosensory Cortex (20) 0.409 0.010 
 R Primary Motor Cortex (21) 0.361 0.024 
 L Primary Somatosensory Cortex (23) 0.323 0.045 
 L Primary Motor Cortex (24) 0.358 0.025 
 L Primary Motor Cortex (27) 0.363 0.023 
 L Primary Somatosensory Cortex (30) 0.389 0.014 
 R Supplementary Motor Area (31) 0.369 0.021 
 R Primary Motor/Somatosensory Cortex (36) 0.468 0.003 
 L Primary Motor Cortex (37) 0.383 0.016 
 R Posterior Insula (43) 0.429 0.006 
 L Primary Motor/Somatosensory Cortex (45) 0.366 0.022 
 R Primary Motor/Somatosensory Cortex (46) 0.416 0.008 
 R Supramarginal Gyrus (48) 0.398 0.012 
 L Primary Motor Cortex/Operculum (55) 0.389 0.014 
 R Superior Temporal Gyrus  (62) 0.396 0.013 
 R Superior Temporal Gyrus    (63) 0.455 0.004 
 R Posterior Insula (67) 0.344 0.032 
 L Primary Motor Cortex/Operculum (70) 0.566 0.000 
 R Primary Motor Cortex/Operculum (71) 0.368 0.021 
 R Primary Motor/Somatosensory Cortex (72) 0.416 0.008 
 R Superior Temporal Gyrus  (238) 0.488 0.002 
Negative Correlations L Orbitofrontal Gyrus (78) -0.347 0.031 
 R Angular Gyrus (130) -0.366 0.022 
 L Superior Frontal Gyrus (138) -0.355 0.027 
 L Supplementary Motor Area (174) -0.327 0.042 
 R Mid Frontal Gyrus (196) -0.387 0.015 
 R Supramarginal Gyrus (204) -0.332 0.039 
 R Posterior Cingulate (221) -0.331 0.039 
 R Inferior Frontal Gyrus (241) -0.387 0.015 
 L Inferior Temporal Gyrus (262) -0.435 0.006 

 
Table A.8. Correlations Between Eigenvector Centrality and Clinical Pain in Fibromyalgia Patients. L, left; R, right. 
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Appendix B : Supplementary Figures and Tables 

 

	
  
Figure B.1. Study Design. Our within-subjects crossover design had three phases: a baseline pain assessment and functional 
magnetic resonance imaging (fMRI) session #1, sham tDCS for five consecutive days followed by pain assessment and fMRI #2, 
and real tDCS for five consecutive days followed by pain assessment and fMRI #3. Sham and real tDCS phases were separated 
by a 7-11 day washout period (mean = 9.9 days).  

 
Table B.1: Clinical Results 

 
 Baseline (mean ± 

SD) 
Sham (mean ± SD) Real tDCS (mean ± 

SD) 
Clinical Pain 
Intensity (VAS) 

5.12 ± 2.30 4.08 ± 2.11 3.33 ± 2.84* 

McGill Total Pain 24.09 ± 15.08 18.67 ± 12.47 19.33 ± 15.30 
PANAS (Positive 
Affect) 

19.78 ± 5.99 17.82 ± 5.47 16.09 ± 6.41 

PANAS (Negative 
Affect) 

14.33 ± 3.39 15.36 ± 5.46 12.73 ± 3.58* 

 
Table B.1. Clinical Results. * Significantly different from baseline at p < 0.05 
	
  
 

 
 
 
 
 
 
 
 
 

tDCS Study Design

Baseline Sham tDCS Real M1 tDCS

fcMRI #1 & fcMRI #2 & fcMRI #3 &

5x, once daily 5x, once daily

Clinical Pain Clinical Pain Clinical Pain

 Wash-Out

(mean= 9.9 days)
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Table B.2: Patient Characteristics 
 

ID Age VAS McGill PANAS 
 Positive Negative 

 B S R B S R B S R B S R 
1 34 3 5 2 11 18 14 NA NA NA NA NA NA 
2 46 5 6 8 37 33 55 30 19 14 16 20 14 
3 54 8 6 5 27 13 23 14 10 10 21 27 10 
4 37 4 4 3 36 16 27 20 20 30 15 16 11 
5 64 0 0 0 0 0 0 16 20 22 13 10 10 
6 56 4 3 0 37 42 22 13 13 14 11 10 10 
7 58 6.5 2 0 8 4 0 19 26 14 14 13 12 
8 52 6 2 3 31 27 24 29 24 23 10 10 10 
9 54 4 3 3 10 11 10 NA 10 10 NA 16 20 
10 40 6 7 7 NA 12 27 NA 15 10 NA 18 18 
11 45 7 5 2 21 16 4 19 16 13 12 10 10 
12 52 8 6 7 47 32 26 18 23 17 17 19 15 

 
Table B.2. Patient Characteristics. VAS, visual analog scale; PANAS, positive and negative affect scale; B, baseline; S, sham; R, 
real tDCS; NA, not available 
 
 

Table B.3: Baseline FC Predicts Subsequent Analgesia 
  
 Δ Clinical Pain (VAS) 

Sham - Baseline 
Δ Clinical Pain (VAS) 
Real tDCS - Sham 

Δ Clinical Pain (VAS) 
Real tDCS - Baseline 

L M1 – L VL 
Baseline FC 

r = -0.619 
p = 0.042 

r = -0.791 
p = 0.004 

r = -0.938 
p = 0.001 

L S1 – L anterior 
insula Baseline FC 

r = -0.671 
p = 0.024 

r = -0.774 
p = 0.005 

r = -0.961 
p = 0.001 

L VL – PAG 
Baseline FC 

r = -0.815 
p = 0.002 

r = -0.587 
p = 0.057 

r = -0.929 
p = 0.001 

 
Table B.3. Baseline FC Predicts Subsequent Analgesia. FC, functional connectivity; L, left; M1, primary motor cortex; VL, 
ventral lateral; S1, primary somatosensory cortex; PAG, periaqueductal gray 
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Figure B.2. Baseline FC Predicts Subsequent Analgesia. FM patients who had stronger FC at baseline between the left M1 seed 
and left VL thalamus, between left S1 and left anterior insula and between left VL thalamus and the PAG had greater 
improvement in clinical pain across sham and real tDCS. There were no regions that showed significant correlations between 
less FC at baseline and greater improvement in clinical pain.  The glass brain results for the left M1 seed are depicted at a voxel 
threshold of p<0.001.  

 

	
  
Figure B.3. Main Effects of Sham and Real tDCS. A, The glass brain results for the left VPL thalamus seed are depicted at a 
voxel threshold of p<0.001 for the baseline > sham and sham > baseline contrasts. Significant results were only found for 
baseline > sham (see Table 3.2 main text). B, The glass brain results for the left VLL thalamus seed are depicted at a voxel 
threshold of p<0.001 for the sham > real tDCS and real tDCS > sham contrasts. Significant results were only found for sham > 
real tDCS (see Table 3.4 main text). 

Baseline FC Predicting Subsequent Analgesia

Left M1 seed
Positive Correlation Negative Correlation

Main Effect of Sham tDCS

A. Left VPL thalamus seed
Baseline > Sham Sham > Baseline

Main Effect of Real tDCS

A. Left VL thalamus seed
Sham > Real Real > Sham
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Table B.4: Main effect of Real tDCS compared to Baseline 

 
Seed 

FC Region 
MNI coordinates 

(x y z) 
T Cluster size Cluster p-value 

Baseline > Real       
L VPL thalamus       

L IPL -46 -50 34 5.40 239 0.041 FWE 
PAG       

PCC -12 -36 38 5.98 354 0.007 FWE 
Baseline < Real       
N.S.       

 
Table B.4. Main effect of Real tDCS compared to Baseline. FC, functional connectivity; VAS, visual analog scale; L, left; R, 
right; VPL, ventral posterior lateral; IPL, inferior parietal lobule; PAG, periaqueductal gray; PCC, posterior cingulate; MNI, 
Montreal Neurological Institute 
	
  
	
  

Figure B.4. Real tDCS decreases FC compared to baseline. A, Decreased connectivity between the left VPL (seed in white) and 
IPL after real tDCS. Plots show changes in FC between baseline and real tDCS for each FM patient. B, Decreased connectivity 
between the PAG (seed in white) and PCC after real tDCS. VPL, ventral posterior lateral; IPL, inferior parietal lobule; PAG, 
periaqueductal gray; PCC, posterior cingulate; L, left; R, right; FC, functional connectivity (fisher transformed r-values). 

 
Table B.5: Correlations between change in FC and change in clinical pain (VAS) for baseline vs 

real 
 
Seed 

FC Region 
MNI coordinates 

(x y z) 
T Cluster size Cluster p-value 

L S1        
L SMA -2 4 52 6.98 200 0.013 FWE 

 
Table B.5. Correlations between change in FC and change in clinical pain (VAS) for baseline vs real. FC, functional 
connectivity; VAS, visual analog scale; L, left; R, right; S1, primary somatosensory cortex; SMA, supplementary motor area; 
MNI, Montreal Neurological Institute 
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Figure B.5. Correlation between change in FC and change in clinical pain after real tDCS. Patients with reduced FC between 
the left S1 (seed in white) and left SMA had greater reductions in clinical pain after real tDCS compared to baseline. S1, primary 
somatosensory cortex; SMA, supplementary motor area; VAS, visual analog scale; L, left; R, right; FC, functional connectivity 
(fisher transformed r-values). 

 
 

Table B.6: Correlations between change in FC and change in clinical pain (McGill) for real vs 
sham tDCS 

 
 Δ McGill Clinical Pain  

Real tDCS - Sham 
L VPL – R posterior insula  
Real - Sham FC 

r = 0.752 
p = 0.008 

L VPL – M1/S1 
Real - Sham FC 

r = 0.602 
p = 0.05 

L VL – R posterior insula 
Real - Sham FC 

r = 0.648 
p = 0.031 

 
Table B.6. Correlations between change in FC and change in clinical pain (McGill) for real vs sham tDCS. FC, functional 
connectivity; L, left; VPL, ventral posterior lateral; M1, primary motor cortex; S1, primary somatosensory cortex; VL, ventral 
lateral 
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Figure B.6. Correlations between changes in functional connectivity and changes in pain. A, The glass brain results for the right 
VPL thalamus seed are depicted at a voxel threshold of p<0.001. Significant results were only found for correlations between 
reductions in connectivity and reductions in clinical pain after sham tDCS (see Table 3.3). There were no significant correlations 
between increases in connectivity and reductions in clinical pain. B, The glass brain results for the left VPL thalamus seed are 
depicted at a voxel threshold of p<0.001. Significant results were only found for correlations between reductions in connectivity 
and reductions in clinical pain after real tDCS (see Table 3.5). There were no significant correlations between increases in 
connectivity and reductions in clinical pain. 

 

 
 
	
  

Correlations between change in FC and change in pain (Sham - Baseline)

A. Right VPL thalamus seed
Positive Correlation Negative Correlation

Correlations between change in FC and change in pain (Real - Sham)

A. Left VPL thalamus seed
Positive Correlation Negative Correlation


