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ABSTRACT

In chronic diseases, research often centers on discovering a latent trait trajectory that

manifests itself through multiple response variables on different measurement scales. In

longitudinal studies, it is common to collect multivariate response data consisting of

mixtures of continuous, survival, ordinal, count and multinomial variables. Development

of the methodology was motivated by situations when measuring and predicting the latent

trait can provide important insights for managing the observed phenotype.

In Chapter II, we study survival models of cancer where a latent trait is responsible for

the cure process. Traditional cure models assume that the cure status is determined at the

beginning of the follow up. However, patients often receive treatments during the follow

up time that may affect their chance of cure. We propose a dynamic joint cure model

where a cure process is affected by time-dependent covariates. Therapeutic interventions

and prognostic factors can follow two causal paths affecting survival directly or through

the latent cure process.

Chapter III addresses the challenge of latent trait measurement through multiple out-

comes of different scales, which are often collected when the construct of interest cannot be

measured directly. We proposed a shared latent variable model where a logistic link is used

to accommodate nonparametrically transformed continuous, ordinal, count, multinomial

and survival outcomes. The proposed model avoids restrictive normality assumptions and

allows for negative correlation among outcomes. The model provides a subject-specific

measure of the latent trait.

Chapter IV extends the method of Chapter III to allow for longitudinal responses of

mixed types. We proposed a joint modeling approach for nonparametrically transformed

xiv



multivariate longitudinal responses of mixed scales. Multivariate longitudinal responses of

mixed continuous, ordinal, count and multinomial outcomes and a time-to-event outcome

are linked through a shared latent trait trajectory measurement. The model is used to

provide a subject-specific measure of the latent trait trajectory through multiple correlated

responses observed repeatedly on the subject.
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CHAPTER I

Introduction

In chronic diseases, research often centers on discovering a latent trait trajectory that

manifests itself through multiple response variables on different measurement scales. In

longitudinal studies, it is common to collect multivariate response data consisting of

mixtures of continuous, survival, ordinal, count and multinomial variables. Development

of the methodology was motivated by situations when measuring and predicting the latent

trait can provide important insights for managing the observed phenotype. Joint models

are commonly used to provide an efficient and flexible framework to model correlated

longitudinal and survival data. A useful feature of a joint model is that it provides subject-

specific latent trait trajectories and enables survival risk predictions. Motivated by the

need to develop a general modeling framework for longitudinal responses of mixed types

and survival times, we proposed a semiparametric joint model for survival outcomes with

a latent dynamic cure process in Chapter II. In addition, we proposed a semiparametric

shared latent trait joint model for cross-sectional and longitudinal observed outcomes of

mixed types in Chapter III and Chapter IV, respectively.

In Chapter II, we study survival models of cancer where a latent trait is responsible for

the cure process. Cure with time-to-event data refers to an unobserved event when subject

is no longer at risk of death from the disease of interest. Two major classes of cure models

were developed to allow for a subgroup of non-susceptible subjects. One class is two-

1



component mixture cure models that explicitly model survival as a mixture of cured and

susceptible patients (Berkson and Gage (1952); Farewell (1982); Kuk and Chen (1992);

Peng and Dear (2000); Sy and Taylor (2000); Li and Taylor (2002); Othus et al. (2012);

Wang et al. (2012)). The other class of cure models is a Cox proportional hazards model

that allows for a cure fraction (Tsodikov (1998); Broet et al. (2001); Tsodikov (2002);

Tsodikov et al. (2003); Chen et al. (1999); Yin and Ibrahim (2005)). This class of model

is also referred to as non-mixture cure model or promotion time cure model. Current work

on cure models assume that, although unobserved, the cure status is determined at the

beginning of the follow up (t = 0). However, patients often receive treatments during the

follow up time that may affect their chance of cure. Also, the event of cure may not be an

immediate consequence of treatment and may include a period when the immune system

struggles to achieve it. In this chapter, we propose a dynamic joint cure model where a

cure process is affected by time-dependent covariates. The proposed model considers cure

as an outcome (a stopping point) of a latent stochastic process as it touches an absorbing

boundary at zero. Fundamental to the model is the mechanistic competing nature of cure

and failure, with time to cure representing a latent competing risk. As mentioned in Fine

and Gray (1999), time to cure is unobservable, so the estimation of overall survival is

tantamount to estimation of the subdistribution for failure. At the latent level the events

of cure and failure are competing. The latent cure event intercepts the failure process and

vice versa. We model the time to cure and time to failure with the proportional hazard

model. Two separate baseline hazards are estimated nonparametrically in the model to

allow different time scales for the time to cure and time to failure processes. The model

can easily be extended to other link functions, if needed. The proposed model is a new

class of cure models that allows the cure rate to change over time by introducing time-

dependent covariates into the cure process. Therapeutic interventions and prognostic

factors can follow two causal pathways affecting survival directly or through the latent

cure process. The proposed model is applied to study the effect of secondary cancer on
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primary prostate cancer-specific survival using data from the SEER program. The joint

modeling approach allows us to make subject-specific prediction of patient’s cure process

given the current follow-up time and the trajectory of patient’s characteristics.

There are previous works on promotion time cure model (2.1) that allow the cure

probability to change instantaneously at a pre-specified time point. For example, Tsodikov

(1998) used a promotion time cure model to study leukemia induced by the primary

and relapse treatments of Hodgkin’s disease (HD). The proposed model specifies a time-

dependent covariate θ(z(t)) = exp(β0−β1 1(t ≥ TR)), where TR is the time of HD relapse.

In this case, the probability of cure changes instantaneously at TR. The difference between

our dynamic cure model proposed in Chapter II and the model used in Tsodikov (1998)

is that our dynamic cure model models cure as a process. Cancer treatment initiates

a cure process that may or may not result in cure in the follow up. On the contrary,

the time-dependent promotion time cure model assumes cure happens immediately at the

time of the treatment. Considering the biological mechanism of how a medical treatment

functions on a human body, it is more reasonable to consider cure as a process instead of

an instantaneous event.

Chapter III addresses the challenge of latent trait measurement through multiple out-

comes of mixed categorical and continuous types. Multiple outcomes of different scales

are often collected when the construct of interest cannot be measured directly. A popular

approach to latent variable models maps observed continuous and ordinal outcomes to

underlying Gaussian continuous responses and is limited to mixed continuous and ordinal

outcomes (Muthén (1984); Shi and Lee (2000); Murray et al. (2013); Lin et al. (2014);

Snavely et al. (2014)). This approach does not accommodate nominal scale outcomes.

Another popular approach is the parametric generalized linear models (Sammel et al.

(1997); Moustaki and Knott (2000); Dunson and Herring (2005); Skrondal and Rabe-

Hesketh (2004)). This class of approach explicitly specifies transformation function for

the measurable outcomes of different scales and introduce dependence among mixed out-
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comes through shared latent variables. We propose a shared latent variable model where

a logistic link is used to accommodate nonparametrically transformed continuous, ordinal,

count, multinomial and survival outcomes. The model is used to provide a subject-specific

measure of the latent trait, given the information observed on the subject. The model-

ing framework is generic with respect to the parametric distribution assumed for the

trait. The proposed model avoids restrictive normality assumptions and allows for nega-

tive correlation among outcomes. We developed the model under the case of univariate

and multivariate measurable outcomes. An EM-DCA algorithm is developed to estimate

the nonparametric transformation functions for each observed outcome. Covariates are

modeled parametrically and their effects are estimated using the profile likelihood. In

the univariate model, the logistic link provides closed form conditional expectations that

yields computational efficient estimating procedure. The proposed method is applied to

measure the pain centrality trait of patients undergoing hysterectomy as a treatment for

pelvic pain and to explain the heterogeneity of patients reported outcomes. The method is

compared with the ad-hoc 2011 Fibromyalgia (FM) Survey Criteria instrument designed

to characterize a similar construct.

In Chapter IV, we extend the methods of Chapter III to allow for longitudinal re-

sponses of mixed types. Multidimensional longitudinal data of mixed types are collected

to fully explore the latent trait trajectory that is often of main interest but cannot be

measured directly. In addition, time-to-event data is often considered if the occurrence

of the terminal event is dependent on the latent trait of interest. Statistical approaches

were developed to jointly modeling longitudinal responses of mixed scales and the event

time data to improve inference for latent trait trajectory, and to account for the depen-

dency the two correlated processes. The previous work on the joint model of multivariate

longitudinal responses either maps the discrete outcomes to latent continuous variables

(Gueorguieva and Sanacora (2006)) or rely on explicitly specified link functions based on

exponential family (Dunson (2003); Jaffa et al. (2016)). Further, there is not a single
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longitudinal model that accommodates all continuous, ordinal, count and multinomial

outcome types. As for the joint model between longitudinal and survival outcomes, there

is no single joint model that allows for nonparametric transformation of the longitudinal

outcomes, and no single model accommodate all continuous, ordinal, count and multino-

mial outcome types. Motivated by the needs to develop a general statistical framework

for longitudinal responses of mixed types and survival times, we proposed a flexible joint

modeling approach for nonparametrically transformed multivariate longitudinal responses

of mixed scales. Multivariate longitudinal responses of mixed continuous, ordinal, count

and multinomial outcomes and a time-to-event outcome are linked through a shared latent

trait trajectory measurement. The model is used to provide a subject-specific measure of

the latent trait trajectory through multiple correlated responses observed repeatedly on

the subject. An EM-DCA algorithm is developed to estimate the nonparametric trans-

formation functions for each response and to estimate the population average latent trait

trajectory. The maximum likelihood estimators are consistent and asymptotically nor-

mal. The proposed method is applied to measure pain centrality trajectory of pelvic

pain patients undergoing hysterectomy. For each of the patient, multiple pain-related

responses of different scales were collected longitudinally. The model-based centrality

trajectory is more closely aligned to longitudinal pain-related outcomes compared with

the Fibromyalgia (FM) Survey Criteria trajectory across all the time points.

Overall, the dissertation provides a statistical framework for joint modeling multiple

outcomes of a variety of scales, to assess the effect of dynamic factor on the latent cure

process, and to provide prediction of subject-specific latent trait of interest, with the

scientific goal of understanding the heterogeneity among study population. These methods

can potentially be useful in areas of medical research, psychological research and social

research. We hope the application of our work can lead to a more effective subject-

specific latent trait construction and a better understanding in fundamental differences

among study subjects.
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CHAPTER II

A Semiparametric Joint Survival Model with A

Time-Dependent Cure Process

2.1 Introduction

Due to advances in modern medical practice and therapy, a substantial proportion of

patients may never experience the event of interest even after extended follow up. The

improvement in cause-specific survival may result in heavy censoring at the end of the

follow-up period. The need to account for long-term survivors has led to the development

of cure models. Cure models have the flexibility to estimate the cure rate and at the

same time incorporate non-proportional effects into the model through short-term and

long-term effects.

Two major classes of cure models were developed to allow for a subgroup of non-

susceptible subjects. One class is two-component mixture cure models that explicitly

model survival as a mixture of cured and susceptible patients

S(t|z, x) = p(x)S0(t|z) + ((1− p(x)).

Berkson and Gage (1952) first introduced the idea of two-component mixture cure model

in which the probability of cure p(x) was assumed an unknown constant and the survival

function for noncured patients, S0(t|z), was assumed to follow a parametric form. Farewell
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(1982) extended the model to allow covariate effects in the cure probability p(x) through

a logistic regression. Kuk and Chen (1992), Peng and Dear (2000), Sy and Taylor (2000),

Li and Taylor (2002), Peng (2003), Lu (2010), Zhang et al. (2013) further proposed

semiparametric models for the susceptible survival function S0(t|z). Othus et al. (2009)

allowed for dependent censoring. Most recently, Othus et al. (2012) proposed a change-

point mixture cure model that allows hazard rate and cure rate to jump at an unknown

covariate value. Wang et al. (2012) proposed a model with nonparametric forms for both

the cure probability and the hazard rate function.

The other class of cure models is a Cox proportional hazards model that allows for a

cure fraction Tsodikov (1998),

S(t|x) = exp[−θ(x)F (t)], (2.1)

where F (t) has the form of a cumulative distribution function and θ incorporates an inter-

cept term. The model was first proposed as a mechanistic promotion time model Yakovlev

and Tsodikov (1996), motivated by biological processes associated with development of

cancer. Therefore this model is also known as promotion time cure model. The model

was extended by Broet et al. (2001); Tsodikov (2002); Tsodikov et al. (2003) to allow the

latent distribution F (t) to be dependent on covariates. Bayesian formulations were also

considered Chen et al. (1999); Yin and Ibrahim (2005). Note that if θ(x) = exp(βx), then

β represents the log hazard ratio. The hazard function is λ(t|x) = exp(βx)f(t). There-

fore, the ratio of hazard for one unit increase in x is λ(t|x+1)
λ(t|x)

= exp(β(x+1))f(t)
exp(βx)f(t)

= exp(β).

Thus, promotion time cure model is a proportional hazard survival model.

Both classes of cure models can be interpreted as part of the univariate frailty model

family S(t|x) = E
[
e−V H(t)

]
, where H is a cumulative hazard, and V ∼ P (t|x) is a non-

negative frailty random variable whose distribution P has a mass at zero ( Tsodikov et al.

(2003)). There is an extensive literature on developing cure models exploiting different

7



frailty schemes (Cooner et al. (2007)). When V is a binary variable, S(t|x) recovers a

two-component mixture cure model. When V follows a Poisson distribution with mean

θ, S(t|x) recovers a promotion time cure model.

It should be noted that the standard Cox model just like most other semi-parametric

models naturally incorporates cure. Indeed, in semi-parametric models, the baseline sur-

vival function is arbitrary, and this includes functions that plateau with time. With

the exception of some rank-based methods that explicitly rely on the zero tail defect

assumption (Tsodikov (1998)), semiparametric MLE theory remains valid regardless of

cure. Exposing the cure rate as an explicit parameter in the model is a matter of repa-

rameterization that keeps the MLEs invariant. Semiparametric models in their non-cure

form provide as estimate of the probability of cure as the last value of the predicted

survival function. While initially specialized cure models may have been developed out

of underappreciation for the generality of semi-parametric survival models, they opened

the field to consideration of mechanistic models of heterogeneity and a more meaningful

interpretation of the data. In most of the previous work on cure models, including the

above formulations, it is assumed that the cure status is determined, if unknown, at the

beginning of the follow up (t = 0). In practice though, patients often receive treatments

or experience intermediate events during the follow up. In this case it is natural to expect

the chance of cure to change in response to dynamic factors. To account for this situa-

tion, one could consider models where survival times are based on stopping times for some

stochastic processes. A number of so-called first hit models (FHT) were proposed that

define the failure as a stochastic process reaching a boundary Lee and Whitmore (2006).

The event of cure appeared as an incidental finding when the process never reaches a

boundary with non-zero probability under certain conditions ensuring that the process

drifts away from boundary. The idea was operationalized by (Balka et al., 2009) using a

Wiener process. It it possible, within this framework, to have time-dependent covariates

affecting the process and the associated stopping time properties.
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In this paper, we propose a framework where cure is an outcome (a stopping point)

of a latent stochastic process as it touches an absorbing boundary at zero. Fundamental

to the model is the mechanistic competing nature of cure and failure, with time to cure

representing a latent competing risk. The latent cure event intercepts the failure process

and vice versa. We model the time to cure and time to failure with the proportional

hazard model. Two separate baseline hazards are estimated nonparametrically in the

model to allow different time scales for the time to cure and time to failure processes.

The model can easily be extended to other link functions, if needed. The proposed model

is a new class of cure models that allows the cure rate to change over time by introducing

time-dependent covariates into the cure process. Therapeutic interventions and prognostic

factors can follow two causal pathways affecting survival directly or through the latent

cure process.

Asymptotic properties are established using empirical process (Kosorok (2008)) and

martingale theory (Andersen et al. (1993)) with details in the Appendix A.6.

The paper is organized as follows. In section 2.2, we describe the framework of the

proposed cure model. Section 2.3 describes the likelihood and the corresponding martin-

gale properties, as well as the EM algorithm. Asymptotic theory is presented in Section

2.4. Section 2.5 provides simulation results. Section 2.6 gives an example of real data

analysis. In Section 2.7 we develop a prediction for the probability of cure over time,

given observed information. Section 2.9 provides conclusions and discussion.

2.2 Statistical Framework

Consider two time to event processes, time to failure and time to cure. We observe a

failure event if time to cure is longer than time to failure. However, time to cure is not

observed directly. If time to cure precedes the time to failure, we would eventually observe

a censored event. With this in mind, the observed failure time for a subject, denoted by
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T , can be defined as

T = 1(T ∗ < Tu)T
∗ + 1(T ∗ ≥ Tu)∞,

where T ∗ < ∞, denotes the potential time to failure in the absence of cure; T ∗ is only

observed if failure precedes cure; Tu is the potential time to cure; 1(·) is an indicator

function taking value of 1 if (·) is true, and 0 otherwise. P (T ∗ = Tu) = 0 for continuous

random variables. Let z(t) be a set of possibly time-dependent fully observed covariates

associated with T and Tu, and let z(t) = {z(s), s ≤ t} denote the covariate path associated

with z(·). Let C be the censoring time which is independent of (T ∗, Tu), given z(t).

Define X = min(T,C) and δ = 1(T ≤ C). Cure, once it happens, is irreversible. Cured

subjects are always censored but some censored subjects may experience failures beyond

their follow-up period. Because the cure event is unobserved, the survival function is a

conditional average over the cure process as explained in the next section.

2.2.1 Model Specification

Define a conditional hazard function for the failure event (given the cure process) as

a non-negative stochastic process dΛT = dU(t|z(t)) with an absorbing boundary of 0.

When cure event happens, the random process dU touches 0 and remains at 0 thereafter.

So cure is defined as a stopping point of the process dU .

The observed (marginal) survival function S(t) can be obtained by taking the expec-

tation over the trajectory U(t) of the stochastic process U from time 0 to t, that is,

S(t|z(t)) = E
[
e−

∫ t
0 dU(s)

]
. (2.2)

The marginal density function is then f(t) = E
[
dU(t)e−

∫ t
0 dU(s)

]
/dt, and the marginal

hazard function is a conditional expectation, given survival up to t, λ(t) = E [U(t)|T > t] =

f(t)/S(t), see Gjessing et al. (2003).
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Specifically, as an example of this paper, consider a change point conditional hazard

process dΛT (t|Tu, z) = dU(t|z) = 1(Tu > t)θ(t|z(t))dH1(t) that models the conditional

hazard function for the failure event (given time to cure Tu). The rationale behind 1(Tu >

t) is that a subject is at risk of failure only if cure event has not yet occurred. Conditional

on the cure event, we assume a time-dependent Cox model for the failure time. In addition,

we specify a marginal hazard function for the cure event dΛTu as another time-dependent

Cox model. Specifically,

dΛTu(t|z(t)) = lim
∆→0

P (Tu ∈ [t, t+ ∆)|Tu ≥ t, z(t))

∆
= η(t|z(t))dH2(t), (2.3)

dΛT (t|Tu, z(t)) = lim
∆→0

P (T ∈ [t, t+ ∆)|T ≥ t, Tu, z(t))

∆
= 1(Tu > t)θ(t|z(t))dH1(t),

(2.4)

where z(t) is a vector of possibly time-dependent covariates of dimension p, η(t|z(t)) =

eβηz(t), θ(t|z(t)) = eβθz(t) and β = (βη, βθ) is the combined vector of regression coefficients.

The predictor η models covariate effects on the time to cure Tu and the predictor θ

models covariate effects on the failure time T . For the rest of the paper, we omit z(t) as

an argument for brevity and denote θ(t|z(t)) by θ(t) and η(t|z(t)) by η(t).

To account for potentially different time scales for the time to cure and the time to

failure processes, separate nonparametrically specified cumulative baseline hazard func-

tions H1, H2 were used. The baseline cumulative hazard function H1(t) summarizes the

underlying disease progression time pattern leading to a failure event. Another unspeci-

fied cumulative baseline hazard function H2(t) summarizes the immune function process

leading to a cure event.

The conditional survival function of the time to event T given Tu is

S(t|Tu) = e−
∫ t
0 1(Tu>s)θ(s)dH1(s). (2.5)
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The conditional probability density function (pdf ) of time to event T given Tu is

f(t|Tu) = 1(Tu > t)θ(t)h1(t)e−
∫ t
0 θ(s)dH1(s). (2.6)

2.2.2 Marginal Distribution of Time to The Failure Event

According to (2.2), for our model, the marginal survival function of the time to failure

event T , can be obtained by taking expectation of (2.5) over latent time to cure Tu

S(t) = E[S(t|Tu)] =

e−
∫ t
0 θ(s)dH1(s)e−

∫ t
0 η(s)dH2(s) +

t∫
0

η(s)e−
∫ s
0 θ(y)dH1(y)e−

∫ s
0 η(y)dH2(y)dH2(s). (2.7)

The marginal probability density function of time to event T , can be obtained by

taking expectation of (2.6):

f(t) = θ(t)h1(t)e−
∫ t
0 θ(s)dH1(s)e−

∫ t
0 η(s)dH2(s). (2.8)

Details can be found in Appendix A.1.

The proposed model can be considered as a stochastic process frailty model with a

latent stochastic process V(t) = 1(t < Tu)θ(t|z(t)) acting multiplicatively on the baseline

hazard of failure.

2.2.3 A Special Case: Static Cure Model

Excluding time-dependent covariates z(t) from the cure part of the model, and making

the time to cure a degenerate improper distribution with a single mass at t = 0 makes it

a two-component mixture model. Another way to get a two-component mixture model

as a nested special case would be to impose a proportionality assumption as follows.
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If the cure process intensity is proportional to failure process, that is,

η(t|x, z(t))dH2(t)

θ(t|x, z(t))dH1(t)
= a(x)

uniformly over t in the observation period, where a(x) depends only on time-independent

covariate set x, then the model can be formally written as a static two-component mixture

cure model with the logistic probability of cure p(x) =
a(x)

1 + a(x)
. The corresponding

survival function is

S(t|x, z(t)) =
a(x)

1 + a(x)
+

1

1 + a(x)
e−(1+a(x))

∫ t
0 θ(s|x,z(s))dH1(s).

Any such model can also be represented as a promotion time cure model

S(t|x) = exp[−γ(x)F (t|x, z(t))], where γ = − log(a/(1 + a)), and F = −(logS)/γ.

In general, unlike the two-component mixture model, the promotion time cure model

does not loose its formal validity if all of its predictors contain time-dependent covariates,

S(t|z(t)) = exp[−γ(z(t))F (t|z(t))]. However, in this context exp(−γ) cannot be inter-

preted as the probability of cure. Also, to ensure a cure model, γ may be restricted to be

bounded resulting in a non-zero probability of cure regardless of the behavior of z(t).

2.3 Estimation

We assume each patient is subjected to random right censoring and the censoring

time C is independent of T , given z(t). The observed time is X = min(T,C), and let

δ = 1(T ≤ C) be the censoring indicator. The observed time-to-event data for subject

i = 1, · · · , n consist of i.i.d. {Xi, δi, zi(t) : 0 < t ≤ Xi}, i = 1, ..., n. For a subject with

observed data (X, δ, z(t)) and unobserved time to cure Tu, the contribution to complete
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data likelihood is

L0(β|X, δ, z(·), Tu) = [1(Tu > X)θ(X)dH1(X)]δe−
∫X
0 1(Tu>s)θ(s)dH1(s). (2.9)

The subject’s contribution to the marginal likelihood can be obtained by taking the ex-

pectation of complete data likelihood (2.9) over Tu

L(β|X, δ, z(·)) =
[
θ(X)dH1(X)e−

∫X
0 θ(s)dH1(s)e−

∫X
0 η(s)dH2(s)

]δ
e− ∫X

0 θ(s)dH1(s)e−
∫X
0 η(s)dH2(s) +

X∫
0

η(s)e−
∫ s
0 θ(y)dH1(y)e−

∫ s
0 η(y)dH2(y)dH2(s)

1−δ

. (2.10)

2.3.1 Martingale Theory

In counting process notation, let Yi(t) = 1(Xi ≥ t) be the observed at-risk process for

failure in subject i, and Ni(t) = δi 1(Xi ≤ t) be the counting process that records the

number of events that occurred by time t for subject i. Define the filtration as Ft− =

σ{Ni(x), Yi(x), zi(x) : x ∈ [0, t), i = 1, · · · , n}, and consider the continuous (orthogonal)

case where no two counting processes can jump simultaneously and the process zi(x) is

predictable.

Our model is semiparametric in the sense that the baseline cumulative hazard for fail-

ure and cure processes H1(·) and H2(·) are unspecified non-decreasing step functions with

jumps dH1 and dH2 at the times where failure events are observed. The full parameter

set is Ω = (β,H1(·), H2(·)), where β = (βθ, βη) is finite-dimensional parameter vector and

H1(·) and H2(·) are infinite-dimensional. We use the EM algorithm (Tsodikov (2003)) to

derive estimation procedures for our joint model. Following Taylor (1995) and Sy and

Taylor (2000), for our model to be identifiable, and to obtain stable MLEs, we impose

a zero-tail constraint on our joint model, namely, S(t(k)|Tu > t(k)) = 0, or equivalently,

dH1(t(k)) = ∞, where t(k) is the last event time. Consistency is established based on

empirical processes (Zeng and Lin (2007); Kosorok (2008)). Weak convergence is proved
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based on the martingale structure of the score equations elucidated by Chen (2009), and

used by Chen (2010), Chen (2012), Hu and Tsodikov (2014a) and Rice and Tsodikov

(2017).

We can write the marginal log-likelihood (2.10) in counting process form:

`(Ω) =
n∑
i=1

τ∫
0

{[
log γi

(
t; β,H1(t), H2(t)

)
+ log dH1(t)

]
dNi(t)

−Yi(t)γi
(
t; β,H1(t), H2(t)

)
dH1(t)

}
, (2.11)

where

γi =
θ(t)e−

∫ t
0 θ(s)dH1(s)e−

∫ t
0 η(s)dH2(s)

e−
∫ t
0 θ(s)dH1(s)e−

∫ t
0 η(s)dH2(s) +

∫ t
0
η(s)e−

∫ s
0 θ(y)dH1(y)e−

∫ s
0 η(y)dH2(y)dH2(s)

and τ is the maximum follow-up time in the study such that τ = inf{t : P (T > t) = 0}.

H1(t) and H2(t) represent the trajectory of the hazard functions H1 and H2 from time 0

to time t. Under independent censoring,

E[dNi(t)|Ft−] = Yi(t)P (dNi(t) = 1|Ft−) = Yi(t)γi
(
t; β,H1(t), H2(t)

)
dH1(t),

and the process dMi(t) = dNi(t)− Yi(t)γi
(
t; β,H1(t), H2(t)

)
dH1(t) where we assume

γ
(
t; β,H1(t), H2(t)

)
is predictable, is a martingale under the true model.

2.3.2 Functional Derivatives and Score Equations

As in Hu and Tsodikov (2014a), for a functional J(f), f = f(x), the local functional

derivative at s is defined as

∂J(f)

∂df(s)
=
∂J(f + εg)

∂ε

∣∣∣∣
ε=0,g=1(x>s)

.
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The above functional derivative corresponds to differentiating over the ”jumps” of f func-

tion in both discrete and continuous cases. Detailed definition of functional derivative is

described in Appendix A.3.

Denote the partial derivatives of γi with respect to its dH1(t), dH2(t) and β arguments

as

γ̇i,dH1(s)

(
t; β,H1(t), H2(t)

)
=
∂γi
(
t; β,H1(t), H2(t)

)
∂dH1(s)

γ̇i,dH2(s)

(
t; β,H1(t), H2(t)

)
=
∂γi
(
t; β,H1(t), H2(t)

)
∂dH2(s)

γ̇i,β
(
t; β,H1(t), H2(t)

)
=
∂γi
(
t; β,H1(t), H2(t)

)
∂β

Because
∂ log dH(t)

∂dH(s)
=

1

dH(t)

∂dH(t)

∂dH(s)
=

1

dH(t)
1(t < s), applying the functional deriva-

tive to the log-likelihood (2.11) gives the score equations for the infinite-dimensional pa-

rameters {dH1(s) : UdH1(s) = 0} and {dH2(s) : UdH2(s) = 0}, uniformly over t. We obtain

the score functions for dH1 and dH2

UdH1(s) =
n∑
i=1

τ∫
s

[
γ̇i,dH1(s)

(
t; β,H1(t), H2(t)

)
γi
(
t; β,H1(t), H2(t)

) dMi(t) +
dMi(s)

dH1(s)

]
, (2.12)

UdH2(s) =
n∑
i=1

τ∫
s

γ̇i,dH2(s)

(
t; β,H1(t), H2(t)

)
γi
(
t; β,H1(t), H2(t)

) dMi(t). (2.13)

The score function for the finite-dimensional parameter β is

Uβ =
n∑
i=1

τ∫
0

γ̇i,β
(
t; β,H1(t), H2(t)

)
γi
(
t; β,H1(t), H2(t)

) dMi(t). (2.14)

Given β, the iterative EM algorithm solves the estimating equations UdH1(s) = 0 and

UdH2(s) = 0 uniformly over s, giving the profile likelihood of β as discussed in the next

section.
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2.3.3 Nonparametric Maximum Likelihood Estimation

(NPMLE)

We estimate β and {dH1, dH2} jointly using the profile likelihood approach. This

is accomplished by applying an EM algorithm to obtain implicit estimators for haz-

ards {dĤ1(β), dĤ2(β)} that depend on β being held fixed. Replacing {dH1, dH2} in

the marginal log-likelihood `(β, dH1, dH2) with {dĤ1(β), dĤ2(β)} we obtain the profile

log-likelihood

`pr(β) = `
(
β, dĤ1(β), dĤ2(β)

)
.

The estimate of β̂ is obtained by maximizing the profile likelihood over a finite-dimensional

Euclidean space. The derivation of the EM algorithm for our model is shown in Appendix

A.4. For a single observation data (X, δ), it’s contribution to the joint complete-data

likelihood of time to failure and time to cure can be expressed as

L0 ({dH1}, {dH2} | X, δ, Tu) f(Tu) =

[1(Tu > X)θ(X)dH1(X)]δe−
∫X
0 1(Tu>s)θ(s)dH1(s)η(Tu)dH2(Tu)e

−
∫ Tu
0 η(x)dH2(x).

The joint likelihood is given by L0 marginalized over Tu. In the spirit of EM (Appendix

2.3), L0 is parameterized by the next iteration (k + 1) parameters, and the expectation

E [
∑

i logL0i |Observed data] is taken, where the expectation is parameterized by the

current iteration (k) parameters. On differentiation of the result, we obtain the score

functions for dH1 and dH2 (at iteration k+1):

U
dH

(k+1)
1 (s)

(
dH

(k)
1

)
=

n∑
i=1

{
dNi(s)

dH
(k+1)
1 (s)

− Yi(s)θi(s)p(k)
i (s)

}
, (2.15)

U
dH

(k+1)
2 (s)

(
dH

(k)
2

)
=

n∑
i=1

{
−ηi(s)Ψ(k)

i (s) +

[
dH

(k+1)
2 (s)

dH
(k)
2

− 1

]
ηi(s)µ

(k)
i (s)

}
, (2.16)
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where

p
(k)
i (s) =

[
G

(k)
1i (Xi, Xi) +G

(k)
2i (s+, Xi)

G
(k)
1i (Xi, Xi) +G

(k)
2i (0, Xi)

]1−δi

,

Ψ
(k)
i (s) = Yi(s)

[
G

(k)
1i (Xi, Xi)−G(k)

1i (s, s) +G
(k)
2i (s,Xi)

G
(k)
1i (Xi, Xi) +G

(k)
2i (0, Xi)

]1−δi

,

µ
(k)
i (s) =

[
Yi(s)G

(k)
1i (s, s) + (1− Yi(s))G(k)

1i (Xi, s)

G
(k)
1i (Xi, Xi) +G

(k)
2i (0, Xi)

]1−δi [
(1− Yi(s))

G
(k)
1i (Xi, s)

G
(k)
1i (Xi, Xi)

]δi
,

G
(k)
1i (u, v) = e−

∫ u
0 θi(y)dH

(k)
1 (y)e−

∫ v
0 ηi(y)dH

(k)
2 (y),

G
(k)
2i (u, v) =

v∫
u

ηi(x)e−
∫ x
0 θi(y)dH

(k)
1 (y)e−

∫ x
0 ηi(y)dH

(k)
2 (y)dH

(k)
2 (x).

Equations (2.15) and (2.16) constitute self-consistency equations that can be solved iter-

atively k = 0, 1, 2, . . . , given a suitable initial model at k = 0. Setting score equations

(2.15) and (2.16) to zero, we obtain the Breslow-type estimators

dH
(k+1)
1 (s) =

∑n
i=1 dNi(s)∑n

i=1 Yi(s)θi(s)p
(k)
i (s)

, (2.17)

dH
(k+1)
2 (s) =

[∑n
i=1 ηi(s)µ

(k)
i (s)

]
dH

(k)
2 (s)∑n

i=1 ηi(s)
[
µ

(k)
i (s) + Ψ

(k)
i (s)

] (2.18)

Note that p
(k)
i (s) may be thought of as the imputed subject-specific probability of staying

uncured for subjects in the risk set at time s. The numerator of equation (2.18) may be

thought of as the imputed subject-specific probability of cure happening exactly at time s

for subjects at risk. At the convergence when dH
(k+1)
2 (s) = dH

(k)
2 (s), the second term in

(2.16) disappears, and we have
∑n

i=1 ηi(s)Ψ
(k)
i (s) = 0. The term Ψ

(k)
i (s) can be interpreted

as the imputed probability of failing in the future [s,Xi] for censored subjects in the risk

set at time s, and this term is equal to 1 for failed subjects in the risk set. We can also
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observe the following self-consistency principle. The solution to
∑n

i=1 ηi(s)Ψ
(k)
i (s) = 0 is

achieved if for the risk set at time s, the sum of cure intensities ηi(s) for failed subjects

is equal to the sum of imputed cure intensities among censored subjects weighted by the

imputed probability of failing in the future [s,Xi].

By replacing dH1(s) and dH2(s) in the log-likelihood by the point of convergence

{dĤ1(β), dĤ2(β)} of the above EM algorithm, we obtain the profile log-likelihood `pr(β) =

`
(
β, dĤ1(β), dĤ2(β)

)
. Asymptotic properties of the NPMLE estimators are established

in Section 2.4 and in Appendix A.6.

2.3.4 Estimation Procedure

The estimation procedure consists of two nested parts, maximize the likelihood over

H(β), given β (inner loop), and maximize the profile log-likelihood over β (outer loop).

Specifically, we proceed with the following procedure for estimation.

Part 1. Maximize the likelihood over H(β), given β:

(1) Set k = 0. Initialize dĤ
(k)
1 (s) as Nelson-Aalen estimates. dĤ

(k)
2 (s) is initialized

as dĤ
(k)
1 (s)/1000.

(2) Given β fixed, calculate dĤ
(k+1)
1 (s) and dĤ

(k+1)
2 (s) using (2.15) and (2.16).

(3) Keep updating dĤ
(k+1)
1 (s) and dĤ

(k+1)
2 (s) as in previous step until convergence∥∥∥dĤ(k+1)

1 (s)− dĤ(k)
1 (s)

∥∥∥2

< ε and
∥∥∥dĤ(k+1)

2 (s)− dĤ(k)
2 (s)

∥∥∥2

< ε.

Part 2. Maximize the profile likelihood `pr(β) = `
(
β, dĤ1(β), dĤ2(β)

)
over β:

(1) Set j = 0. Set β̂(j) = 0 to start.

(2) Find β̂(j+1) by taking one step toward maximizing the profile likelihood with

respect to β using a general optimization routine.

(3) This step is nested within (2). Update dĤ
(j+1)
1 (t) = dĤ

(j+1)
1 (β(j+1))(t) and

dĤ
(j+1)
2 (t) = dĤ

(j+1)
2 (β(j+1))(t) using steps in Part 1.
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(4) Repeat steps (2) and (3) until convergence
∥∥∥β̂(j+1) − β̂(j)

∥∥∥2

< 10ε.

Note that Part 1 steps represent the inner loop nested within Part 2 step (2). The

convergence tolerance for inner loop (Part 1) has to be stricter than for the outer loop in

Part 2.

2.4 Asymptotic Properties

The proposed NPMLE is shown to be consistent and asymptotically normal by making

use of the empirical process (Kosorok (2008); Van Der Vaart and Wellner (1996)) and

martingale theory following a general line of Zeng and Lin (2007, 2010), Chen (2009,

2010), Hu and Tsodikov (2014b,a), Rice and Tsodikov (2017)). Regularity conditions are

listed in Appendix A.6.

By integrating the score functions (2.12) and (2.13) over time s, we obtain the alter-

native form of the score functions for cumulative baseline hazards H1(s) and H2(s) in

martingale form:

UH1(s) =
n∑
i=1

τ∫
0

[
γ̇i,dH1

(
t; β,H1(t), H2(t)

)
γi
(
t; β,H1(t), H2(t)

) H1(t ∧ s) + 1(t < s)

]
dMi(t), (2.19)

UH2(s) =
n∑
i=1

τ∫
0

γ̇i,dH2

(
t; β,H1(t), H2(t)

)
γi
(
t; β,H1(t), H2(t)

) H2(t ∧ s)dMi(t) (2.20)

Define ε1i(t, s;H1, H2, β) =
γ̇i,dH1

(
t; β,H1(t), H2(t)

)
γi
(
t; β,H1(t), H2(t)

) H1(t ∧ s) + 1(t < s) and

ε2i(t, s;H1, H2, β) =
γ̇i,dH2

(
t; β,H1(t), H2(t)

)
γi
(
t; β,H1(t), H2(t)

) H2(t ∧ s). As we show in Appendix A.5,

since εki(t, s;H1, H2, β), k = 1, 2, does not depend on s for t < s, the linear transform∫ τ
0
εki(t, s;H1, H2, β)dMi(t), k = 1, 2, is a martingale.

As for the score function for β (2.14), since
γ̇i,β

(
t; β,H1(t), H2(t)

)
γi
(
t; β,H1(t), H2(t)

) is a predictable

process, the linear transform
∫ τ

0

γ̇i,β
(
t; β,H1(t), H2(t)

)
γi
(
t; β,H1(t), H2(t)

) dMi(t) is also a martingale. There-
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fore, under the true model the score functions for H1(s), H2(s) and for β are martingales.

The following propositions present the consistency and weak convergence for the pro-

posed NPMLE Ω̂ =
(
β̂, {dĤ1}, {dĤ2}

)
with details given in Appendix A.6.

Proposition II.1. Let β0 and H0(t) = (H0
1 (t), H0

2 (t)) be the true values of β̂ and Ĥ(t) =(
Ĥ1(t), Ĥ2(t)

)
, respectively. Assuming regularity conditions hold, then with probability

one, β̂ converges to β0, Ĥ(t) converges to H0(t) uniformly in the interval [0, τ ].

Consider a linear functional of the NPMLE Ω̂

n1/2

aT (β̂ − β0) +

τ∫
0

b(t)Td
(
Ĥ(t)−H(t)0

) , (2.21)

where a is real vector, b(t) = {b1(t), b2(t)} is in BV [0, τ ] × BV [0, τ ], where BV [0, τ ] is

the space of functions with bounded total variation in [0, τ ]. Let BT = (BT
1 , B

T
2 ), and

ET = (aT , BT ), where Bk is the vector consisting of the values of bk(t) evaluated at the

observed failure times corresponding to the jumps of Ĥk, and {dĤk} is the vector of jump

sizes at the observed failure times, for k=1,2, respectively.

Proposition II.2. Assuming regularity conditions hold, n1/2{β̂ − β0, Ĥ(t)−H0(t)} con-

verges weakly to a zero-mean Gaussian process. In addition, the linear functional (2.21)

converges weakly to a zero-mean Gaussian process with variance-covariance matrix ET (I0)−1E

which can be consistently estimated by nET (In)−1E, where In is the negative Hessian ma-

trix of the observed log-likelihood function with respect to Ω̂ =
(
β̂, {dĤ1}, {dĤ2}

)
and

ET = (aT , BT ).

For a Hadamard differentiable functional F (Ω) of Ω, based on the functional delta

method (Andersen et al. (1993) Section II.8), n1/2{F (Ω̂)− F (Ω)} converges weakly to a

zero-mean Gaussian process with variance-covariance function Ḟ (Ω)T (I0)−1Ḟ (Ω), where

Ḟ (Ω) is the gradient of F (Ω) with respect to Ω. The information operator I0 can be

consistently estimated by n−1In. The observed information matrix In is obtained by
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evaluating the negative Hessian matrix I at Ω̂. The explicit expression of In is derived

in Appendix A.6.

Proposition II.3. Assuming regularity conditions hold, the variance-covariance matrix

of β from profile likelihood is a consistent estimator of true variance-covariance matrix of

β.

The variance-covariance matrix of β from profile likelihood can be obtained from

inverse profile information matrix. We proved Proposition II.3 in Appendix A.6.3.

2.5 Simulation Study

To examine the finite-sample performance of the parameter estimates obtained by

the proposed model, we conducted a Monte Carlo simulation study. We generated the

survival times T from the marginal survival function with settings as follows.

Table 2.1: Simulation results using the proposed method. β1 describes the effect of
time-dependent covariates z1(t) = 1(t > v1) on failure process. β3 describes the effect of
time-dependent covariates z2(t) = 1(t > v2) on cure process. β2 and β4 describe the effect
of time-independent covariate z3 ∼ B(0.5) on the failure and cure process, respectively.
v1 and v2 are simulated from exponential distribution for each subject. The results are
based on 500 simulated datasets with sample size of n = 300 and n = 500.

N Process β Truth Avg. est. ESD ASE 95% CP
300 failure β1 1 1.01 0.23 0.21 0.93

β2 -0.5 -0.45 0.23 0.22 0.91
cure β3 1 1.13 0.42 0.38 0.95

β4 0.5 0.62 0.33 0.30 0.91
500 failure β1 1 0.97 0.17 0.16 0.93

β2 -0.5 -0.48 0.18 0.18 0.94
cure β3 1 1.10 0.30 0.31 0.95

β4 0.5 0.55 0.25 0.24 0.94

Avg. est.: average of Monte Carlo estimates of the true parameter values over the 500 simulations
ESD: empirical standard deviation based on Monte Carlo estimates
ASE: average of numerically estimated standard errors
95% CP: 95% coverage probability

The true baseline cumulative hazard for failure process is specified as H1(t) = t2/2
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and the true baseline cumulative hazard for cure process is specified as H2(t) = t2/4. The

true failure intensity is θ(t|z(t)) = eβ1z1(t)+β2z3 and the true cure intensity is η(t|z(t)) =

eβ3z2(t)+β4z3 . For simplicity, we consider two change-point binary covariates, z1(t) = 1(t >

v1) that changes its value at time v1, and z2(t) = 1(t > v2) that changes its value at time

v2 as time-dependent covariates. The covariate times v1 and v2 are both generated from

an exponential distribution with rate 1. Additionally, we consider a time-independent

binary covariate z3 ∼ B(0.5). The true parameters were β1 = β3 = 1,β2 = −0.5, and

β4 = 0.5. Censoring is simulated from a uniform distribution U(0, 3), which yields 50% of

censoring. We examined the performance of estimation for the proposed model under the

sample size of n = 300 and n = 500; each was replicated 500 times. Initial values were

chosen to be Nelson-Aalen estimates for the two baseline hazards and set to be 0 for all

βs. Standard errors were obtained from the numerically evaluated Hessian matrix at the

solution.

The results of the simulation study are summarized in Table 2.1. The proposed estima-

tion and inference procedures perform well with diminishing bias as sample sizes increases,

and coverage probability approaching 95% nominal level. With the larger sample size,

we see better agreement between empirical standard deviations and asymptotic standard

errors. This suggests that the asymptotic approximation of the covariance matrix for the

profile likelihood is reasonable for the sample size of n ∼ 500 or larger. Note that the

standard errors for β associated with the cure process are substantially larger than for the

β associated with failure process. This phenomenon is typical of models incorporating a

latent component.

2.6 Real Data Analysis: The SEER Prostate Cancer Data

We applied the proposed time-dependent cure model to SEER registry data on prostate

cancer patients with the aim to study if diagnosis and treatment of a secondary cancer

affects the prostate cancer specific survival. Secondary cancer is a new cancer diagnosed
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in a prostate cancer patient, i.e. a subject who already is a (primary) prostate cancer

survivor. The primary cancer is a cancer that has been diagnosed in the subject for the

first time in a lifetime. Both primary and secondary cancers are classified based on disease

spread into three categories: localized (tumor confined to the organ), regional (regional

spread beyond the organ; merged with localized category in prostate cancer SEER data),

and distant (with distant metastases). In addition, the first primary cancer is coded based

on the tumor grade into two groups: 0=”Low grade” for well differentiated or moderately

differentiated cells; 1=”High grade” for poorly differentiated or undifferentiated anaplastic

cells.

Specifically, we looked at males diagnosed with prostate cancer between 2000 and 2011

in the United States. We restricted our sample to males whose prostate cancer was their

first cancer diagnosis and who survived for at least one month. If there was a secondary

cancer diagnosis, we restricted our sample to males with secondary cancer diagnosis that

is at least one month after the first primary cancer. To avoid potential biases associated

with the variable use of PSA screening, we only consider cases diagnosed in and after

year 2000. There are a total of 200,994 men in our sample; 8,516 of them died of prostate

cancer. Among the 11,730 men who developed secondary cancer during the follow up

period, 48% were diagnosed with localized, 23.7% with regional and 28.3% with distant

stage secondary cancers. 488 of the secondary cancer patients died of prostate cancer,

(180 localized, 113 regional, 113 distant stage secondary cancer patients). Characteristics

of the studied patients are presented in Appendix Table A.1, A.2 and A.3.

Our main interest lies is estimating the effects of secondary cancer occurrence and

treatment in patients who are primary cancer survivors. The survival time is defined to

be the time from diagnosis of prostate cancer to death due to prostate cancer. In our

models we include three time-dependent variables 1(t > localized C2), 1(t > regional C2)

and 1(t > distant C2), where “localized C2”, “regional C2”, and “distant C2” is the

time to the localized, regional and distant stage secondary cancer diagnosis, respectively.
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Additionally, we control for the stage and grade of the first primary (prostate) cancer by

including them as time-independent covariates. The hypothesis regarding the effect of the

time-dependent covariates is that of an incidental treatment effect on the primary cancer.

Namely, diagnosis of a secondary cancer and its treatment in a primary prostate cancer

survivor affects the time to death from prostate cancer. Also, it is interesting to study

whether the stage of secondary cancer matters, because treatment of the distant stage

disease is usually systemic and has a chance to affect latent primary cancer elsewhere.

We start by using a standard Cox model incorporating secondary cancer occurrence

and its stage as time-dependent covariates potentially affecting the time to death specific

to primary cancer (Table 2.2). We find that the risk of prostate cancer death increases with

the degree of cancer spread. The effect may have to do with compromised immune system

under a systemic treatment that is not prostate specific. And it affects growth of prostate

tumor cells that managed to survive the secondary cancer treatment. Also, prostate cancer

cells surviving additional treatment may become more aggressive on average as a survival

of the fittest selection effect. Alternatively, in a non-treatment related pathway, occurrence

of secondary cancer may identify the subject as having a compromised immune system

or adverse genetics. However, this analysis does not shed any light on the hypothesized

incidental therapeutic effect of secondary treatment on prostate cancer that is lost in the

combined effects reported by the Cox model.

The proposed cure model allows a richer interpretation as it incorporates a more

sophisticated mechanism of dynamic counteraction between failure and cure. In the cure

model a similar set of effects is incorporated in the failure process and cure components

(Table 2.3).

Regarding the failure process, the results are very similar to the Cox model presented

earlier. Prostate cancer patients who were diagnosed with secondary cancer have elevated

risk of death from prostate cancer compared to those who have one primary cancer only

(β = 0.22, 0.81, 1.70 for localized, regional and distant stage secondary cancer, respec-
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Table 2.2: Parameter estimates, standard error and p-values from analysis of SEER
data on prostate cancer in the United States, using a Cox model with time-dependent
secondary cancer effect. C2 denotes the time to the secondary cancer from the diagnosis of
the first primary cancer. Stage refers to the distant vs. localized/regional stage contrast of
patient’s first primary cancer. Grade refers to the high (poor or undifferentiated) vs. low
(well or moderately differentiated) contrast of patient’s first primary cancer. Localized,
regional and distant in the time-dependent covariates refer to the stage of secondary
cancer.

Parameter Group Estimate Standard Error p
1(t > localized C2) 0.23 0.08 0.003
1(t > regional C2) 0.69 0.10 < 0.0001
1(t > distant C2) 1.66 0.07 < 0.0001

Stage 1 3.22 0.02 < 0.0001
Grade 1 1.33 0.03 < 0.0001

Stage: 0=Local/Regional vs. 1=Distant
Grade: 0=Low Grade vs. 1=High Grade
1(t > localized C2): indicator of whether there exists localized stage secondary cancer at time t
1(t > regional C2): indicator of whether there exists regional stage secondary cancer at time t
1(t > distant C2): indicator of whether there exists distant stage secondary cancer at time t

tively, vs. no secondary cancer).

As hypothesized, the cure process component reveals a possible incidental therapeutic

effect of secondary cancer systemic treatment in its distant stage. Patients diagnosed with

and treated for distant stage secondary cancer have shorter times to cure from prostate

cancer (β = 0.53, p = 0.0004) compared to those without secondary cancer.

The primary prostate cancer stage and grade present no surprises and show higher

risk of prostate cancer death with more advanced stage and with higher grade, in both

failure and cure components, although the grade effect in the cure component does not

reach significance.

We treated death from other causes as random censoring. This implies that we assume

there is no relationship between death from prostate cancer and death from other causes.

And we assume the censoring mechanism is random censoring.
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Table 2.3: Parameter estimates, standard error and p-values from analysis of SEER data
on prostate cancer in the United States, using the proposed dynamic cure model. C2

denotes the time to the secondary cancer from the diagnosis of the first primary cancer.
Stage refers to the distant vs. localized/regional stage contrast of patient’s first primary
cancer. Grade refers to the high (poor or undifferentiated) vs. low (well or moderately
differentiated) contrast of patient’s first primary cancer. For all the patients, their first
primary cancer is prostate cancer. Localized, regional and distant in the time-dependent
covariates refer to the stage of secondary cancer.

Process Parameter Group Estimate Standard Error p
failure 1(t > localized C2) 0.22 0.08 0.009

1(t > regional C2) 0.81 0.11 < 0.0001
1(t > distant C2) 1.70 0.07 < 0.0001

Stage 1 3.48 0.03 < 0.0001
Grade 1 1.37 0.03 < 0.0001

cure 1(t > localized C2) −0.07 0.17 0.69
1(t > regional C2) 0.27 0.29 0.34
1(t > distant C2) 0.53 0.15 0.0004

Stage 1 0.59 0.08 < 0.0001
Grade 1 −0.06 0.05 0.22

Stage: 0=Local/Regional vs. 1=Distant
Grade: 0=Low Grade vs. 1=High Grade
1(t > localized C2): indicator of whether there exists localized stage secondary cancer at time t
1(t > regional C2): indicator of whether there exists regional stage secondary cancer at time t
1(t > distant C2): indicator of whether there exists distant stage secondary cancer at time t

2.7 Prediction

Although cure is an unobserved event, a benefit of our joint cure model is that it

provides a tool for making predictions of the distribution of the time to cure, given

current follow up time and secondary cancer information. The prediction is relevant for

those who do not experience the failure event (δ = 0). Derived in Appendix A.2 are the

predicted conditional survival functions for onset of cure given patient’s follow up time

X, and first primary cancer and secondary cancer information. Specifically, we have the

following conditional survival distribution for cure onset at time point tu, given a follow
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up of X:

S(tu | X, δ = 0) =

e−
∫X
0 θ(y)dH1(y)e−

∫X∨tu
0 η(y)dH2(y) +

∫ X∨tu
tu

η(s)e−
∫ s
0 θ(y)dH1(y)e−

∫ s
0 η(y)dH2(y)dH2(s)

e−
∫X
0 θ(y)dH1(y)e−

∫X
0 η(y)dH2(y) +

∫ X
0
η(s)e−

∫ s
0 θ(y)dH1(y)e−

∫ s
0 η(y)dH2(y)dH2(s)

.
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Figure 2.1: Conditional survival functions for onset of cure given 5 years of follow up
(X ≥ 60 months), localized/regional and low grade first primary cancer, and secondary
cancer diagnosed at 3rd year (C2 = 36 months, if exist) by secondary cancer stage

Shown in Figure 2.1 are the conditional survival functions for onset of cure for a

local/regional and low grade first primary cancer patient followed up for 5 years (X ≥ 60

months) with localized, regional or distant stage secondary cancer diagnosed at the 3rd
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year post the diagnosis of a prostate cancer (first primary), compared to a similar patient

without a secondary cancer diagnosis.

A feature to notice is that these four curves are identical until the 36th month when

the secondary cancer is diagnosed, indicating the cure rate changes in response to the

discovery and/or treatment of secondary cancer. The ordering of these curves gives us

an idea of how the cure rate changes as the stage of the secondary cancer increases.

Compared to those who are not diagnosed with secondary cancer, patients with distant

and regional stage secondary cancer have lower curves, indicating an earlier onset of cure.

While for a localized secondary cancer, a rather mild treatment effect is observed, and

we don’t see much of a difference in predicted cure rate between those who are diagnosed

with a localized secondary cancer and those who are not diagnosed with secondary cancer.

2.8 Practical Concept of Cure: Death from Other Causes

The prediction of the time to cure in Section 2.7 is based on the biological concept

of cure, that is, cure in absence of death from other causes. In practice, patients with

prostate cancer diagnosed at older age are more likely to die of other causes compared to

younger patients. Applying treatment to prostate cancer for older patients may not be

so relevant as for those who are younger because older patients are more likely to die of

other causes, not of prostate cancer itself. Therefore, practical concept of cure considers

death from other causes as another source of cure, on top of biological concept of cure.

Modeling practical concept of cure requires modeling residual survival for other causes

from the age of prostate cancer diagnosis. Denote Toc as the time to death from other

causes from birth and Soc(t|Z) as the survival function of Toc. Then the residual survival

for other causes is

P (Toc > t+ a|Toc > a,Z) =
P (Toc > t+ a|Z)

P (Toc > a|Z)
=
Soc(t+ a|Z)

Soc(a|Z)
= Soc(t|a, Z)

29



where a is the age at prostate cancer diagnosis. Assume age at prostate cancer diagnosis

is proportional hazard covariate for Soc(t|a, Z), then this survival function must follow the

form a Gompertz survival model. The derivation is based on differential equation. Details

can be found in Appendix A.8. This is called ”characterization of Gompertz distribution”.

Gompertz survival model is a popular survival model used in studies of longevity. Using

the SEER registry data as in Section 2.6, we fitted a Gompertz survival model to the time

to death from other causes, with age at prostate cancer diagnosis as a covariate, adjusting

for prostate cancer stage and grade. Death from prostate cancer is treated as censored.

Age was centered at 47 years old and scaled by 10 year. The Gompertz model survival

function is

Soc(t|a, Z) = e−
λ
r

(eγt−1),

and the hazard function is

hoc(t|a, Z) = λeγt

where λ = eβ0+β1age+β2stage+β3grade describes the covariate effects.

The parameter estimates of the fitted Gompertz survival model to death from other

causes are: γ̂ = 0.012, β̂0 = −7.28, β̂1 = 1.05, β̂2 = 0.68, β̂3 = 0.15. Figure 2.2 shows the

probability of death from other causes within the interval of last follow up (143 months),

as a function of age at diagnosis. Figure 2.2 shows the probability of death from other

causes within the interval of total follow up is 1 − Soc(t = 143|a, Z). The probability of

death from other causes increases rapidly after age of 60. Patients with distant, high grade

prostate cancer are more likely to die from other causes, compared to localized/regional,

low grade prostate cancer patients. This may be due to the side effects of the more

aggressive therapy applied to distant prostate cancer. According to the practical concept

of cure, patients with distant, high grade prostate cancer has a higher probability of
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Figure 2.2: Probability of death from other causes within the interval of last follow up
(143 months) for distant high grade prostate cancer (blue) and for localized/regional low
grade prostate cancer (red)

cure compare to localized/regional low grade prostate cancer patients due to a higher

probability of death from other causes for distant high grade prostate cancer patients.

The biological cure from prostate cancer is S(∞|Z), which can be obtained from

estimated survival function from Section 2.6. The probability of die from other causes at

age a given patient is at risk (have not died from prostate cancer) is

P (die from other causes|a, Z) =

∞∫
0

foc(t|a, Z)S(t|Z)dt

where foc(t|a, Z) = hoc(t|a, Z)Soc(t|a, Z) is the density function for time to death from
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other causes. Probability of practically cured is S(∞|Z) +
∫∞

0
foc(t|a, Z)S(t|Z)dt. Figure

2.3 and 2.4 shows the probability of being biologically cured (blue) versus the probability

of being practically cured (red), as a function of age at diagnosis. The biological cure is

basically the same as the practical cure before age of 40. After age of 60, there is a greater

chance of being practically cured by the source of death from other causes. Therefore,

treatment for a prostate cancer is not that relevant for people of older age. Caution should

be applied to the use of practical concept of cure when choosing the type of treatment

for prostate cancer. Choosing the treatment based on practical cure may favor a therapy

that has serious side effects leading to higher probability of dying from other causes. It

is not appropriate to use practical concept of cure that consider death from other causes

as a source of cure when making decision on the type of treatment.
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Figure 2.3: Probability of being biologically cured (blue) and probability of being practi-
cally cured (red) within interval of last follow up (141 months), for regional/localized low
grade prostate cancer patients.
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Figure 2.4: Probability of being biologically cured (blue) and probability of being prac-
tically cured (red) within interval of last follow up (141 months), for distant high grade
prostate cancer patients.

2.9 Discussion

Using a mechanistic competing nature of cure and failure within the subject, we con-

structed a new class of cure models driven by a latent stochastic cure process that allowed

us to incorporate time dependent covariates into the cure. Unlike other typical cure mod-

els, we do not assume that the cure status is predetermined at time zero. As an example,

we modeled the conditional hazard function for terminal event as a change-point function

driven by the latent event of cure. In general, any stochastic hazard process U(t) that

has an absorbing boundary of 0 leads to a cure model. The proposed model framework

has the flexibility to incorporate a wide variety of dynamic cure models. We model the

time to cure and time to failure with a proportional hazard model. Other link functions

can be naturally incorporated, for example, using artificial frailties (Tsodikov (2003)).

If the time to cure model is itself a cure model, the baseline hazard for cure H2 is
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bounded, and the cure event may not happen. The PH model just like most other semi-

parametric model families includes the corresponding family of cure models. Cure model

becomes a way to reparameterize the corresponding non-cure model to expose an explicit

parameter responsible for the cure rate, when this parameter is of main interest. However,

in our model, the cure rate for the time to cure distribution is a nuisance and does not

bear direct relevance to the probability of cure for the observed time to failure. The time

to cure is modeled by a PH model in its traditional non-cure parameterization accordingly.

If pc is the probability of cure in the time to cure model, then 1− pc represents the upper

boundary for the probability of cure in the population that would be achieved if all cures

in the 1− pc fraction happened at time 0. The predicted probability of cure based on the

data in the example is smaller than 1 − pc, because the time to cure distribution is not

degenerate and failure has a chance to happen before cure. Figure 2.1 shows predictions

of pc as the value of the time to cure survival functions at the right extreme of the data

at 141 months. They are quite small so time to cure is estimated as a virtually proper

distribution.

Predicting something that is fully unobserved, such as the time to cure, should be

treated with caution because the model typically has less power for parameters associated

with latent components. However, the model-based predictions represent a useful tool

to generate hypotheses on the latent effects and to guide further confirmatory studies

pursuing more explicit measurements.

A variety of stochastic processes U can be chosen to generate various rich classes of cure

models by imposing an absorbing boundary. These include squared Gaussian (Yashin and

Manton (1997)) and Lévy processes (Gjessing et al. (2003)) and their extensions (Putter

and van Houwelingen (2015)).

Many patients with prostate cancer who are detected by screening are not expected

to die from the disease in their lifespan. Screening leads to some cancer diagnoses that

would not occur during the subject’s lifespan in the absence of screening. Even though

34



such overdiagnosed patients have a latent disease, they present as cured for all practical

purposes. Separation of biological cure vs. overdiagnosis is a challenge that requires joint

modeling of diagnosis and survival. Because overdiagnosed patients are not expected to be

affected by secondary cancer as far as their prostate cancer survival goes, the interesting

effects found in this paper are conservative.

In the data analysis, the terminal event of interest is prostate cancer specific death.

In clinical practice, sometimes patients die with prostate cancer instead of die of prostate

cancer. The effects found in this paper depend on how the cause of death was assigned and

recorded in SEER registry. If misattributed causes of death is a concern, additional ad-

justment for misclassification error should be applied. Methods to adjust for misclassified

cause of failure was addressed by Ha and Tsodikov (2015).

Acknowledgment

This research is supported by the grant U01CA199338 (CISNET) and P50CA186786

(SPORE) from the National Cancer Institute. A manuscript of this paper won the 2017

John Van Ryzin award presented by the Eastern North American Region (ENAR) of the

International Biometric Society.

35



CHAPTER III

A Semiparametric Latent Trait Model for Multiple

Mixed Continuous, Categorical, and Time-to-event

Outcomes

3.1 Introduction

In chronic diseases, research often centers on discovering a latent trait that manifests

itself through a variety of observable responses and covariates. Multiple outcomes (phe-

notype) are often collected when the construct of interest cannot be measured directly.

Mixed continuous, binary, ordinal and survival outcomes are commonly collected in stud-

ies of complex health conditions in order to capture different aspects of patient specific

latent trait. Generalized latent variable models with mixed outcomes are developed to

accommodate outcomes of mixed measurement scales and estimate the latent trait of

interest.

Existing research on generalized latent variable models for mixed outcomes focuses

on two strategies. The first approach is parametric and utilizes joint Gaussian frame-

work by linking observed categorical outcomes to underlying continuous normally dis-

tributed latent responses (Muthén (1984); Shi and Lee (2000)). These models are related

to Gaussian copula model of dependence between the phenotypes. Hoff (2007) proposed

a semiparametric Gaussian copula model, leaving marginal distributions of mixed scale
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outcomes unspecified. Associations among mixed-scale outcomes are induced by correla-

tions among the latent Gaussian variables. Murray et al. (2013) and Gruhl et al. (2013)

extend this approach to incorporate a latent factor model with mixed continuous and

ordinal outcomes under Bayesian framework. Lin et al. (2014) proposed a semiparamet-

ric normal transformation latent variable model for continuous and ordinal outcomes.

Snavely et al. (2014) extended this model to further allow for censored outcomes. This

approach maps observable outcomes to underlying Gaussian continuous responses and is

limited to mixed continuous and ordinal outcomes. This type of models require estimat-

ing a set of unknown thresholds for ordinal outcomes. For the semiparametric models

proposed by Lin et al. (2014) and Snavely et al. (2014), the parameter estimates come

from maximizing a pseudo-likelihood through a set of estimating equations, an approach

potentially less efficient than the standard maximum likelihood. Standard errors of esti-

mates are estimated through nonparametric bootstrap. In addition, this approach does

not accommodate the multinomial scale outcomes.

The second approach is the shared latent variable models that induce dependence

among mixed outcomes through shared latent variables (Sammel et al. (1997); Moustaki

and Knott (2000); Dunson (2000); Dunson and Herring (2005)). This class of models are

mainly parametric generalized linear models. Skrondal and Rabe-Hesketh (2004) extended

generalized latent trait model to accommodate censored outcomes. This approach is more

flexible in modeling non-normal outcomes, however, existing work on these models requires

explicitly specified transformation function for the measurable outcomes of different scales.

In this paper, we propose a semiparametric shared latent variable model where a

logistic link is used to accommodate continuous, ordinal, count, multinomial and sur-

vival outcomes. The model is used to provide a subject-specific measure of the latent

trait, given the information observed on the subject. The proposed model avoids the

restrictive multivariate normal assumption of the underlying continuous latent responses.

Furthermore, the proposed model does not require implicitly or explicitly estimating a
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set of unknown thresholds inherent in latent normal models for categorical data. Our

model incorporates a nonparametric transformation of the outcomes of different scales.

Unlike current work on the shared latent variable models that rely on explicit specifi-

cation of the baseline distributions of the measureable outcomes on different scales, we

use non-parametric transformation functions that are completely data-driven. Since our

model is a joint model of outcomes of mixed types, we can estimate the subject-specific

shared latent trait even when some of the outcomes are missing. Unlike Lin et al. (2014)

and Snavely et al. (2014), our model parameters are estimated by maximizing the full-

likelihood so likelihood based standard errors can be used for inference and the estimates

are asymptotically efficient. Furthermore, our model accommodates measurable outcomes

of multinomial scale. The modeling framework is also generic with respect to the para-

metric distribution assumed for the latent trait, allowing a choice of the distribution of

the trait. Our model has the potential to avoid direct specification of the distribution for

shared latent variable as long as the marginal model is specified in terms of a Laplace

transform, as described in Section 3.2. Unlike the gamma frailty model that implicitly

assumes positive correlation between outcomes, our model allows for both positive and

negative correlation between outcomes through the sign of factor loadings. And the pro-

posed model needs not assume Gaussian distribution for the latent variable to allow for

negative correlation among outcomes.

The proposed method is applied to measure pain centrality trait of patients under-

going hysterectomy as a treatment for pelvic pain and to explain the heterogeneity of

patients’ reported outcomes. The method is compared with the ad-hoc 2011 Fibromyal-

gia (FM) Survey Criteria instrument designed to characterize a similar construct. Differ-

ence of convex functions algorithm (DCA) is used to estimate the nonparametric data-

driven link functions of the model. Covariate parameters and distributional parameter

for latent variable are estimated by maximizing the profile likelihood using the Broy-

den–Fletcher–Goldfarb–Shanno (BFGS) algorithm. The rest of the article is organized as
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follows. Section 3.2 introduces the logistic link function. In Section 3.3, we show how the

logistic link can accommodate measurements of a variety of scales. In addition, we show

how it enables a closed form conditional expectations in a typical EM algorithm under

univariate case. Section 3.4 extends the framework to the multivariate case. The proposed

multivariate model framework and the likelihood function are presented in Section 3.4.

The estimation procedures are described in Section 3.5. The asymptotic properties are

shown in Section 3.6. Section 3.7 shows the simulation study. In Section 3.8 we applied

the proposed model to construct latent pain centrality score from pelvic pain patients.

Section 3.9 concludes the proposed method and discussion.

3.2 Logistic Link Function

We propose using the logistic link function to accommodate outcomes of a variety of

scales. Consider a logistic link function L given a non-negative random variable U ,

G(s|U) =
Uα

1 + Uαs
,

and its expectation over U ,

G(s) = EU [G(s|U)] = EU
[

Uα

1 + Uαs

]

where U is a non-negative random variable that represents the latent trait of interest and

α is a fix constant that represents the association across outcomes, similar to the factor

loading in the factor analysis. We have the following general propositions:

Proposition 1. The function G is a special function such that the product of the

functions can be expressed as a first order difference/ratio. For a 6= b,

G(a|U)G(b|U) =
G(a|U)−G(b|U)

b− a
.
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By the linearity of the expectation operator, the expectation of the product over U can

be expressed as

EU [G(a|U)G(b|U)] =
G(a)− G(b)

b− a
.

Proposition 2. The squared function G2(s) can be expressed as the derivative of the

function:

G2(s|U) = −G′(s|U)

By the Leibniz’s rule for differentiation under the integral sign, the expectation of the

squared function G2(s) can be expressed as

EU
[
G2(s|U)

]
= −G ′(s).

In general, the power function Gn+1(s|U) can be expressed as the nth order derivative

of the function:

Gn+1(s|U) =
(−1)n

n!
G(n)(s|U)

And the expectation of the power function Gn+1(s|U) can be expressed as

E
[
Gn+1(s|U)

]
=

(−1)n

n!
G(n)(s).

Proposition 3. The function 1−sG(s|U) is a Laplace transform. Consider a random

variable W that has a unit exponential distribution and W ⊥⊥ U . Then 1− sG(s|U) is a

Laplace transform of the random variable W :

EW
(
e−WUαs | U

)
=

1

1 + Uαs
= 1− sG(s|U)
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And the expectation of 1− sG(s|U) is a Laplace transform of the random variable WUα.

EUEW
(
e−WUαs

)
= EU

(
1

1 + Uαs

)
= 1− sG(s).

The above propositions yield a convenient form of the likelihood amenable to the EM

algorithm applied to profile out the infinite dimensional parameters, similar to the role of

the Laplace transform in shared frailty Archimedian copula models. As a particular case

of the above framework, we propose unified treatment of univariate models for responses

of a variety of scales in the next section. The univariate model framework is generic

with respect to the distribution for the latent variable U . We do not need to specify the

distribution for U as long as we know the form of G(·).

3.3 The Univariate Model

3.3.1 Model Framework

Under the case of univariate outcome, α is not identifiable, so we set α = 1 throughout

this section. Consider an observed outcome Y which can be a continuous, ordinal, count,

or time-to-event outcome. Let U be a latent variable which represents the latent trait of

interest but cannot be measured directly. Let F̄ (y) = P (Y > y) denotes the tail/survival

distribution of the variable Y . We define the conditional tail/survival distribution function

for Y as

F̄ (Y | U) =
1

1 + UγH(y)
= 1− γH(y)G (γH(y)|U) ,

where H(y) is an unspecified non-decreasing function of y, and γ = exp(ZTβ) where Z

is the covariate matrix and β is the vector of regression coefficients. The conditional
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probability mass/density function for Y is

P (Y = y | U) = F̄ (y− | U)− F̄ (y | U) =
1

1 + UγH(y−)
− 1

1 + UγH(y)

= γH(y)G (γH(y)|U)− γH(y−)G
(
γH(y−)|U

)
,

where y− = lim
∆→0

(y −∆).

The marginal tail/survival distribution Y is the expectation of F̄ (y | U) over U and

by Proposition 3 is a Laplace transform. Specifically,

F̄ (y) = EU
(

1

1 + UγH(y)

)
= 1− γH(y)G (γH(y)) .

The marginal probability mass/density function for Y can be expressed as

E
[
F̄ (y− | U)

]
− E

[
F̄ (y | U)

]
= γH(y)G (γH(y))− γH(y−)G

(
γH(y−)

)
.

Suppose there are n independent subjects with observed outcome (y1, · · · , yn) and

covariate matrix (Z1, · · · ,Zn). For the time-to-event outcome, we assume for each subject

i, the censoring time C∗i is independent of true event time Ti, given covariate set Zi. The

observed event time is Yi = (Ti ∧ Ci) and Ci = (C∗i ∧ τ). Let δi = 1(Ti ≤ Ci) be the

censoring indicator. Here 1(·) is the indicator function, and τ denotes the time to the

end of the study. The latent variable Ui is the latent trait of interest for subject i. The

complete data likelihood for the ithe subject can be written using the properties of the

logistic link function as

L0i = [γiH(yi)G(γiH(yi)|Ui)− γiH(yi)G(γiH(y−i )|Ui)]δi [1− γiH(yi)G(γiH(yi)|Ui)]1−δi ,

and the complete data likelihood for all n subject is L0 =
∏n

i=1 L0i.

The observed data likelihood for the ith subject can be obtained by taking expectation
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of L0i,

Li = E[L0i] = [γiH(yi)G(γiH(yi))− γiH(yi)G(γiH(y−i ))]δi [1− γiH(yi)G(γiH(yi))]
1−δi

and the observed data likelihood for all n subject is L =
∏n

i=1 Li.

Notice L has a closed form representation given the form of L. The complete data

log-likelihood is

`0 =
n∑
i=1

{
δi log

(
UiγidH(yi)

[1 + UiγiH(y−i )][1 + UiγiH(yi)]

)
+ (1− δi) log

(
1

1 + UiγiH(yi)

)}
.

Here we assume H is an arbitrary step function that only jumps at the set of observed

values of yi and we denote the jump of H at s as dH(s). Notice H is similar to a cumu-

lative hazard function in a survival model, can be treated as an unknown outcome/time

transformation.

If the observed outcome is nominal, then the modeling framework is as follows. For

a K-category multinomial observable outcome with an observed response category c, we

define the conditional probability mass function as

p(Y = c | U) =


Uθc

1+U
∑K
k=2 θk

= θcG
(∑K

k=2 θk|U
)
, c ≥ 1,

1

1+U
∑K
k=2 θk

= 1−
∑K

k=2 θkG
(∑K

k=2 θk|U
)
, c = 1,

where θk is the covariate effect for category c versus the reference category 1.

The marginal probability mass function can be expressed as

p(Y = c) =


θcG

(∑K
k=2 θk

)
, c ≥ 1,

1−
∑K

k=2 θkG
(∑K

k=2 θk

)
, c = 1.

Estimation of multinomial outcomes follows the methods described in Tsodikov and

Chefo (2008).
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3.3.2 Estimation Procedure

Let Ω = {β, η} where η is the parameter characterizing the distribution of the latent

variable U . We estimate Ω and {dH} jointly using the profile likelihood approach. This

is accomplished by applying an EM algorithm (Tsodikov (2003)) to obtain implicit profile

likelihood estimators dH(·|Ω) for dH(·) that depends on Ω. To obtain stable MLEs,

we impose a zero-tail constraint on non-survival outcome, namely, F̄ (y(n)|U) = 0, or

equivalently, dH(y(n)) = ∞. Replacing dH(·|Ω) in the marginal log-likelihood we obtain

the profile log-likelihood `pr(Ω) = ` (Ω, {dH(·|Ω)}). On differentiation of the conditional

log-likelihood with respect to dH(s), we obtain the conditional score function for dH(s)

as

U0,dH(s) =
∂`0

∂dH(s)
=

∑n
i=1 1(yi = s)

dH(yi)
−

n∑
i=1

δi
1(y−i ≥ s)Uiγi
1 + UiγiH(y−i )

−
n∑
i=1

1(yi ≥ s)Uiγi
1 + UiγiH(yi)

=

∑n
i=1 1(yi = s)

dH(yi)
−

n∑
i=1

δi 1(y−i ≥ s)γiG(γiH(y−i )|Ui)−
n∑
i=1

1(yi ≥ s)γiG(γiH(yi)|Ui)

Define the conditional expectation operator E [f‖g] = E[f ·g]
E[g]

. We use the EM-DCA al-

gorithm to estimate the NPMLE. The derivation of the EM algorithm and the condi-

tional expectation operator E [·‖L0] that is used in the rest of the article are presented

in Appendix B.2. The EM algorithm involves iteratively update model parameters by

maximizing the conditional expectation of the complete data likelihood E [`0‖L0]. The

model parameters are updated by maximizing E [`0‖L0]. This can be achieved by setting

the derivative of E [`0‖L0] with respect to model parameters to 0. Specifically, we calcu-

late the conditional expectation of the conditional score function given the observed data,

latent variable U and the model parameters at the kth iteration. For the following deriva-

tion of the EM algorithm, we use the expression E
[
U0

∥∥∥L(k)
0

]
to represent the conditional

expectation of the conditional score function given the observed data, latent variable U

and the model parameters at the kth iteration. Note that E [U0‖L0] is the marginal score
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function as derived in Appendix B.2. Specifically, at the kth iteration, the conditional

expectation of the conditional score function for dH can be expressed as

E
[
U0,dH(s)

∥∥∥L(k)
0

]
=

E
[
U0,dH(s)L

(k)
0

]
E
[
L

(k)
0

] =

∑n
i=1 1(yi = s)

dH
(k+1)
j (s)

−
n∑
i=1

1(y−i ≥ s)γiE
[
G(γiH

(k+1)(y−i )|Ui)
∥∥∥L(k)

0

]
−

n∑
i=1

1(yi ≥ s)γiE
[
G(γiH

(k+1)(yi)|Ui)
∥∥∥L(k)

0

]
.

(3.1)

where L
(k)
0 notation is used to indicate that the complete data likelihood L0 is parame-

terized by the kth iteration copy of {dH}.

Notice the complete data log-likelihood `0 can be represented as a difference between

two concave functions. Consequently, the conditional score equation U0,dH(s) has a rep-

resentation of a difference between derivatives of two concave functions. Since the condi-

tional expectation operator E
[
·
∥∥∥L(k)

0

]
is a linear operator, it does not alter convexity

properties. Therefore, the unconditional score function E
[
U0,dH(s)

∥∥∥L(k)
0

]
is also a differ-

ence between derivatives of two concave functions.

For the M-step, we employ the difference of convex functions algorithm (DCA) to iter-

atively maximize log-likelihood with respect to dHj. DCA was first introduced by Pham

Dinh Tao in their preliminary form in 1985. DCA is a version of the MM-algorithm

(Lange et al. (2000)) that has been extensively developed since 1994 by Le Thi Hoai An

and Pham Dinh Tao for nonconvex optimization problems (Tao and An (1997, 1998);

An and Tao (2005)). DCA is particularly efficient when the target function to be min-

imized/maximized can be represented as a difference between two convex/concave func-

tions. Equation (3.1) equals to zero is a self-consistency equation that can be solved

iteratively. Solving the conditional expectation of the score equation (3.1) equals to zero
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using DCA, we obtain a Breslow-type estimator for dH(s) at the (k + 1)th iteration

dH(k+1)(s)

=

∑n
i=1 1(yi = s)∑n

i=1 δi 1(y−i ≥ s)γiE
[
G(γiH(k)(y−i )|Ui)

∥∥∥L(k)
0

]
+
∑n

i=1 1(yi ≥ s)γiE
[
G(γiH(k)(yi)|Ui)

∥∥∥L(k)
0

]
(3.2)

Iterations proceed until ‖dH(k+1)(s) − dH(k)(s)‖2 < ε. The derivation of EM-DCA al-

gorithm is presented in Appendix B.3 when J = 1 and αJ = 1, with the conditional

expectation terms calculated as follows.

Equation (3.2) is computationally efficient since the conditional expectations

E
[
G(γiH

(k)(y−i )|Ui)
∥∥∥L(k)

0

]
and E

[
G(γiH

(k)(yi)|Ui)
∥∥∥L(k)

0

]
have closed form solutions given

G. Specifically,

E
[
G(γiH

(k)(yi)|Ui)
∥∥∥L(k)

0

]
=

E
[
G(γiH

(k)(yi)|Ui)L(k)
0i

]
E[L

(k)
0i ]

The denominator is the observed data likelihood for the ith subject evaluated at the kth

iteration,

E[L
(k)
0i ] = [γiH

(k)(yi)G(γiH
(k)(yi))− γiH(k)(yi)G(γiH

(k)(y−i ))]δi [1− γiH(k)(yi)G(γiH
(k)(yi))]

1−δi

(3.3)
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For the numerator, the term inside the expectation is

G(γiH
(k)(yi)|Ui)L(k)

0i

={G(γiH
(k)(yi)|Ui)[γiH(yi)G(γiH

(k)(yi)|Ui)− γiH(k)(yi)G(γiH
(k)(y−i )|Ui)]}δi

{G(γiH
(k)(yi)|Ui)[1− γiH(k)(yi)G(γiH

(k)(yi)|Ui)]}1−δi

By proposition 1 and 2,

=

{
γiH

(k)(yi)

[
−G′(γiH(k)(yi)|Ui)−

G(γiH
(k)(yi)|Ui)−G(γiH

(k)(y−i )|Ui)
γiH(k)(y−i )− γiH(k)(yi)

]}δi
{
G(γiH

(k)(yi)|Ui) + γiH
(k)(yi)G

′(γiH
(k)(yi)|Ui)

}1−δi

Therefore, the numerator can be expressed as

E
[
G(γiH

(k)(yi)|Ui)L(k)
0i

]
=

{
γiH

(k)(yi)

[
−G ′(γiH(k)(yi))−

G(γiH
(k)(yi))− G(γiH

(k)(y−i ))

γiH(k)(y−i )− γiH(k)(yi)

]}δi
{
G(γiH

(k)(yi)) + γiH
(k)(yi)G ′(γiH(k)(yi))

}1−δi
(3.4)

Notice that (3.3) and (3.4) are closed form expressions given G. Therefore,

E
[
G(γiH

(k)(yi)|Ui)
∥∥∥L(k)

0

]
has a closed form expression. Similarly, applying the same

techniques, the other conditional expectation E
[
G(γiH

(k)(y−i )|Ui)
∥∥∥L(k)

0

]
has a closed form

expression. Therefore, the Breslow type estimator (3.2) for updating dH(s) in the EM-

DCA algorithm has a closed form expression, which results in a computationally efficient

estimating algorithm for the nonparametric transformation function H. In addition, the

modeling framework is generic with respect to the distribution for the latent variable U .

There is no need to specify the distribution for U as long as we know the form of G(·).

The estimation procedure consists of two nested loops, maximize {dH(·|Ω)}, given

Ω = (β, η), and then maximize the profile log-likelihood over Ω. The two nested loops are

described in Section 3.5.2 when J = 1 and αJ = 1.

The next section describes the statistical setting of the model specified using a logis-
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tic link and the corresponding likelihood under the case of multivariate outcomes with

multiple scales.

3.4 The Multivariate Model

Suppose there are m distinct continuous, ordinal, count or time-to-event outcomes

with observed responses Y = (Y1, . . . , Ym) with values in domain space D = (D1, · · · , Dm)

respectively. For any j, if the jth outcome Yj is a time-to-event outcome, we assume for

each subject, the censoring time C∗j is independent of true event time Tj, given covariate

set Zj. The observed event time is Yj = (Tj∧Cj) and Cj = (C∗j ∧τj). Let δj = 1(Tj ≤ Cj)

be the censoring indicator. Here 1(·) is the indicator function, and τj denotes the time

to the end of the study for the jth outcome. The domain space for Yj is Dj = [0, τj].

For any j, if the jth outcome Yj is non-censored continuous, ordinal, or count outcome,

then δj = 1 for every such observation. We develop the main framework for continuous,

ordinal, count and survival outcomes first. Such outcome distributions can be represented

by a tail/survival function. Later at the end of this section, we show how the approach is

extended to include multinomial responses.

Let U be the latent variable that is shared by all observable outcomes. The observed

outcomes are assumed to be conditionally independent given U . Let F̄ (x) = P (X > x) de-

note the tail/survival distribution of the variable x. We define the conditional tail/survival

distribution function for the jth outcome Yj as a semiparametric transformation model

through a logistic link

F̄j(y | U) =
1

1 + UαjγjHj(y)
, (3.5)

where Hj(y) is an unspecified non-negative and non-decreasing function of y that ranges

from 0 to ∞. The covariate effect is γj = exp(ZT
j βj), where Zj is the covariate vector

and βj is the vector of regression coefficients for the jth outcome. αj is the factor loading
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for the jth outcome. Notice that βj is the proportional odds ratio for one unit increase

in Zj on Yj, given U . See Appendix B.1 for derivation. The conditional probability

mass/density function for Yj is

P (Yj = y | U) = F̄j(y
− | U)− F̄j(y | U) =

1

1 + UαjγjHj(y−)
− 1

1 + UαjγjHj(y)
, (3.6)

where y− = lim
∆→0

(y −∆).

Consider a subject with observed outcomes y1, . . . , ym, then the conditional joint prob-

ability distributional function is

m∏
j=1

[
F̄j(y

−
j | U)− F̄j(yj | U)

]
=

m∏
j=1

[
1

1 + UαjγjHj(y
−
j )
− 1

1 + UαjγjHj(yj)

]δj [
1

1 + UαjγjHj(yj)

]1−δj
.

For identifiability, Zj do not contain constant terms, α1 = 1 and γ1 = 1. The factor

loading αj determines the dependence between Yj and Y1.

Suppose there are n subjects with m distinct observed outcomes. Let i = 1, . . . , n

denote the ith participant, and j = 1, . . . ,m denote the jth outcome. Let yij denote the

observed response of participant i on outcome j. The latent variable Ui is the latent trait

of interest for the ith participant. For participant i = 1, . . . , n, we observe the covariate

matrix Zi = (Zi1, . . . , Zim), each corresponding to a vector of outcomes Yi = (Yi1, . . . , Yim)

and censoring status δi = (δi1, · · · , δim). The observed data for subject i = 1, . . . , n consist

of i.i.d. {Yi, δi, Zi} observations. Note that for non-survival outcomes, δij is always 1.

Let H = (H1, . . . , Hm). The complete data likelihood for the observed data (Yi, Zi, Ui)

for i = 1, . . . , n is

L0(β, α,H|Y, Z, U) =
n∏
i=1

m∏
j=1

[
1

1 + U
αj
i γijHj(y

−
ij)
− 1

1 + U
αj
i γijHj(yij)

]δij [
1

1 + U
αj
i γijHj(yij)

]1−δij
,
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and the complete data log-likelihood can be written as

`0(β, α,H|Y, Z, U)

=
n∑
i=1

m∑
j=1

{
δij log

[
1

1 + U
αj
i γijHj(y

−
ij)
− 1

1 + U
αj
i γijHj(yij)

]
+ (1− δij) log

[
1

1 + U
αj
i γijHj(yij)

]}

=
n∑
i=1

m∑
j=1

δij log

(
U
αj
i γijdHj(yij)

[1 + U
αj
i γijHj(y

−
ij)][1 + U

αj
i γijHj(yij)]

)
+ (1− δij) log

(
1

1 + U
αj
i γijHj(yij)

)

=
n∑
i=1

m∑
j=1

δij logU
αj
i γijdHj(yij)−

n∑
i=1

m∑
j=1

δij log[1 + U
αj
i γijHj(y

−
ij)][1 + U

αj
i γijHj(yij)]

−
n∑
i=1

m∑
j=1

(1− δij) log[1 + U
αj
i γijHj(yij)].

Here we assume Hj is an outcome-specific arbitrary step function that only jumps at the

set of observed values of yij, i = 1, . . . , n. We denote the jump of Hj at value s as dHj(s).

Notice Hj is similar to a cumulative hazard function in a survival model, and can be

treated as an unknown outcome/time transformation.

Let Ω = (α, β, η), where η is the parameter characterizing the distribution of the latent

variable U . Denote fU(u; η) as the distribution of the shared latent variable U . Note

that each subject may have subject-specific distributional parameters θi that depend on

subject-specific covariates Zi. For example, in Appendix B.3 and the real data application

in Section 3.8, we consider θi(η) = (exp(η1Zi), exp(η2Zi)) and we estimate η = (η1, η2)

that characterizes the subject-specific distribution fU(u; θi(η)) of shared latent variable

Ui. The observed data likelihood is the expectation of the complete data likelihood over

U ,

L(Ω, H|Y, Z) =
n∏
i=1

Eη


m∏
j=1

[
1

1 + U
αj
i γijHj(y

−
ij)
− 1

1 + U
αj
i γijHj(yij)

]δij [
1

1 + U
αj
i γijHj(yij)

]1−δij
 .

Our model has the flexibility to accommodate multinomial outcomes. For a K-

category multinomial observable outcome Y with an observed response category c, we
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define the conditional probability mass function as

p(Y = c | U) =


Uαθc

1+Uα
∑K
k=2 θk

, c ≥ 1,

1

1+Uα
∑K
k=2 θk

, c = 1,

where θk is the covariate effect for category k versus the reference category 1.

Notice that since our model is a joint model of multiple outcomes, the model parameter

and subject-specific latent variable can be estimated even if some outcomes are missing.

3.5 Estimation

3.5.1 Nonparametric Maximum Likelihood Estimation

(NPMLE)

The full parameter sets include finite-dimensional parameter vectors Ω = (α, β, η) and

infinite-dimensional H = (H1(·), . . . , Hm(·)). We estimate Ω and {dHj}j=1,...,m jointly

using the profile likelihood approach. This is accomplished by applying an EM algorithm

(Tsodikov (2003)) to obtain implicit profile likelihood estimators dHj(·|Ω) for dHj(·) that

depend on Ω. To obtain stable MLEs and maintain proper density functions for each

outcome, we impose a zero-tail constraint on non-survival outcomes, namely, F̄j(y(n) |

U) = 0, or equivalently, dHj(y(n)) = ∞, where y(n) = max{y1j, . . . , ynj}, the maximum

observed value for the jth outcome.

Replacing dHj(·|Ω) in the marginal log-likelihood we obtain the profile log-likelihood

`pr(Ω) = ` (Ω, {dHj(·|Ω)}j=1,...,m). On differentiation of the log-likelihood with respect to
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dHj(s), we obtain the conditional score function for dHj(s) as

U0,dHj(s) =
∂`0

∂dHj(s)

=

∑n
i=1 δij 1(yij = s)

dHj(yij)
−

n∑
i=1

δij
1(y−ij ≥ s)U

αj
i γij

1 + U
αj
i γijHj(y

−
ij)
−

n∑
i=1

1(yij ≥ s)U
αj
i γij

1 + U
αj
i γijHj(yij)

=

∑n
i=1 dNij(s)

dHj(yij)
−

n∑
i=1

δij
1(y−ij ≥ s)U

αj
i γij

1 + U
αj
i γijHj(y

−
ij)
−

n∑
i=1

1(yij ≥ s)U
αj
i γij

1 + U
αj
i γijHj(yij)

.

where
∑n

i=1 dNij(s) =
∑n

i=1 δij 1(yij = s) records the number of observations in outcome

Yj are of value s.

Define the conditional expectation operator E [f‖g] = E[f ·g]
E[g]

. We use the EM-DCA

algorithm to estimate the NPMLE. The derivation of the EM algorithm and the condi-

tional expectation operator E [·‖L0] that is used in the rest of the article are presented

in Appendix B.2. The EM algorithm involves iteratively update model parameters by

maximizing the conditional expectation of the complete data likelihood E [`0‖L0]. The

model parameters are updated by maximizing E [`0‖L0]. This can be achieved by setting

the derivative of E [`0‖L0] with respect to model parameters to 0. Specifically, we calcu-

late the conditional expectation of the conditional score function given the observed data,

latent variable U and the model parameters at the kth iteration. For the following deriva-

tion of the EM algorithm, we use the expression E
[
U0

∥∥∥L(k)
0

]
to represent the conditional

expectation of the conditional score function given the observed data, latent variable U

and the model parameters at the kth iteration. Note that E [U0‖L0] is the marginal score

function as derived in Appendix B.2. Specifically, at the kth iteration, the conditional

expectation of the conditional score function for dHj can be expressed as
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E
[
U0,dHj(s)

∥∥∥L(k)
0

]
=

E
[
U0,dHj(s)L

(k)
0

]
E
[
L

(k)
0

]
=

∑n
i=1 dNij(s)

dH
(k+1)
j (s)

−
n∑
i=1

δij 1(y−ij ≥ s)γijE

[
U
αj
i

1 + U
αj
i γijH

(k+1)
j (y−ij)

∥∥∥∥∥L(k)
0

]

−
n∑
i=1

1(yij ≥ s)γijE

[
U
αj
i

1 + U
αj
i γijH

(k+1)
j (yij)

∥∥∥∥∥L(k)
0

]
, (3.7)

where L
(k)
0 notation is used to indicate that the complete data likelihood L0 is parame-

terized by the kth iteration version dH
(k)
j (·|Ω) of the function dHj(·|Ω).

Notice the complete data log-likelihood `0 can be represented as a difference between

two concave functions. Consequently, the conditional score equation U0,dHj(s) has a rep-

resentation of a difference between derivatives of two concave functions. Since the condi-

tional expectation operator E
[
·
∥∥∥L(k)

0

]
is a linear operator, it does not alter convexity

properties. Therefore, the unconditional score function E
[
U0,dHj(s)

∥∥∥L(k)
0

]
is also a differ-

ence between derivatives of two concave functions.

For the M-step, we employ the difference of convex functions algorithm (DCA) to iter-

atively maximize log-likelihood with respect to dHj. DCA was first introduced by Pham

Dinh Tao in their preliminary form in 1985. DCA is a version of the MM-algorithm

(Lange et al. (2000)) that has been extensively developed since 1994 by Le Thi Hoai An

and Pham Dinh Tao for nonconvex optimization problems (Tao and An (1997, 1998);

An and Tao (2005)). DCA is particularly efficient when the target function to be min-

imized/maximized can be represented as a difference between two convex/concave func-

tions. Equation (3.7) equals to zero is a self-consistency equation that can be solved

iteratively. Solving the conditional expectation of the score equation (3.7) equals to zero
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using DCA, we obtain a Breslow-type estimator for dHj(s) at the (k + 1)th iteration

dH
(k+1)
j (s)

=

∑n
i=1 dNij(s)∑n

i=1 δij 1(y−ij ≥ s)γijE
[

U
αj
i

1+U
αj
i γijH

(k)
j (y−ij)

∥∥∥∥L(k)
0

]
+
∑n

i=1 1(yij ≥ s)γijE
[

U
αj
i

1+U
αj
i γijH

(k)
j (yij)

∥∥∥∥L(k)
0

]
(3.8)

Iterations proceed until ‖dH(k+1)
j (s)− dH(k)

j (s)‖2 < ε.

The conditional expectations E
[

U
αj
i

1+U
αj
i γijH

(k)
j (y−ij)

∥∥∥∥L(k)
0

]
and E

[
U
αj
i

1+U
αj
i γijH

(k)
j (yij)

∥∥∥∥L(k)
0

]
are computed by Laplace approximation (Laplace (1986)). The derivation of the EM

algorithm along with DCA and Laplace approximation is shown in Appendix B.3. If a

subject has only one non-missing outcome, the conditional expectations have closed form

solution using the expression described in Section 3.3.

3.5.2 Estimation Procedure

The estimation procedure consists of two nested parts; maximize the full likelihood

over {dHj(·|Ω)}j=1,...,m, given Ω = {α, β, η}, and then maximize the profile log-likelihood

over Ω. Specifically, we proceed with the following procedure for estimation.

Part 1. Maximize the full likelihood over {dHj(·|Ω)}j=1,...,m, given Ω:

(1) Set k = 0. For each of the m outcomes, initialize dĤ
(0)
j (s) as Breslow estimates∑n

i=1 dNij(s)∑n
i=1 1(yij≥s)γij .

(2) Given Ω fixed, calculate dĤ
(k+1)
j (s) using the Breslow-type estimator (3.8).

(3) Keep updating dĤ
(k+1)
j (s) as in previous step until convergence∥∥∥dĤ(k+1)

j (s)− dĤ(k)
j (s)

∥∥∥
2
< ε for all j = 1, . . . ,m.

Part 2. Maximize the profile likelihood `pr(Ω) = `
(

Ω, {dĤj(·|Ω)}j=1,...,m)

)
over Ω = {α, β, η},

when dĤj(·|Ω) is obtained using Part 1.
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(1) Set r = 0. Set α̂(0) = 1, β̂(0) = 0 to start.

(2) Find α̂(r+1), β̂(r+1) and η̂(r+1) by taking one step towards maximizing the pro-

file likelihood with respect to α, β and η using an optimization routine (e.g.,

BFGS).

(3) Repeat step (2) until convergence
∥∥∥Ω̂(r+1) − Ω̂(r)

∥∥∥
2
< 10ε.

Note that Part 1 represents the inner loop nested within Part 2. The convergence tolerance

for inner loop in Part 1 has to be stricter than for the outer loop in Part 2.

3.6 Asymptotic Properties

The proposed NPMLE is shown to be consistent and asymptotically normal by making

use of the empirical process (Murphy (1995), Zeng et al. (2005), Zeng and Lin (2007), Zeng

and Lin (2010)). The following regularity conditions are required to establish asymptotic

properties of NPMLE.

1. If the kth outcome is continuous or time-to-event, the true function H0k(y) of Hk(y),

is strictly increasing and continuously differentiable. If the kth outcome is discrete,

the true function H0k(y) of Hk(y), is increasing. The true value of parameter set

Ω0 = (β0, α0, η0) and {H0} fall in the interior of a compact convex set H.

2. For survival outcome, there exists a positive constant ν0 such that P (C∗ ≥ τ |z(t)) ≥

ν0 almost surely.

3. The number of non-missing outcomes for subject i, denoted as mi, is bounded by

some positive integer m0 and P (mi ≥ 2) > 0 with probability 1.

4. All the covariate set Zij are bounded. Further, if there exist a constant vector c

such that [1,ZT
ij]c = 0 almost surely, then c = 0.
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5. If
∫ ∏

j u
αjf(u; η)du =

∫ ∏
j u

α0jf(u; η0)du for any subset of j = 1, · · · ,m, then

η = η0, αj = α0j for all j = 1, · · · ,m.

6. The score operator for (Ω, H) is Fréchet differentiable at (Ω0, H0) with a continuously

invertible derivative −I0. The hessian matrix In evaluated at the true values of

H and Ω is positive definite, and converges in probability to a deterministic and

invertible operator I0.

The following theorems present the consistency and weak convergence for the proposed

NPMLE Ω̂ =
(
β̂, α̂, η̂

)
and Ĥ = (Ĥ1(·), · · · , Ĥm(·)) with details given in the Appendix

Section B.4.

Theorem III.1. Let Ω0 = (β0, α0, η0) and H0(y) = (H01(y1), · · · , H0m(ym)) be the true

values of Ω̂ =
(
β̂, α̂, η̂

)
and Ĥ(y) = (Ĥ1(y1), · · · , Ĥm(ym)), respectively. Under regularity

conditions, ||Ω̂− Ω0|| → 0 and
∑m

k=1 supyk∈Dk |Ĥk(yk)−H0k(yk)| → 0 almost surely.

Theorem III.2. Assuming regularity conditions hold, n1/2{Ω̂− Ω0, Ĥ(y)−H0(y)} con-

verges weakly to a zero-mean Gaussian process in Rd × l∞(
∏m

k=1Qk), where Qk = {h(t) :

‖h‖BV [Dk] ≤ 1}. Furthermore, Ω̂ is asymptotically efficient.

Consider a linear functional of the NPMLE Ω̂ and Ĥ

n1/2

{
vT (Ω̂− Ω0) +

m∑
k=1

∫
wkd(Ĥk −H0k)

}
, (3.9)

where v is real vector, hk is the vector consisting of the values of wk(·) evaluated at the

observed outcome values corresponding to the jumps of for Ĥk, and {dĤk} is the vector

of jump sizes at the observed outcome values, for k = 1, · · · ,m respectively. wk(y) is in

BV [Dk], where BV [Dk] is the space of functions with bounded total variation in Dk.

Theorem III.3. Under regularity conditions, the linear function (3.9) converges weakly

to a zero-mean Gaussian process with variance-covariance matrix
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(vT ,wT
1 , · · · ,wT

m)I−1
0 (vT ,wT

1 , · · · ,wT
m)T which can be consistently estimated by

n(vT ,wT
1 , · · · ,wT

m)I−1
n (vT ,wT

1 , · · · ,wT
m)T , where In is the negative Hessian matrix of the

observed log-likelihood function with respect to Ω̂ and the jump sizes of (Ĥ1, · · · , Ĥm).

If we are primarily interested in Ω, the profile likelihood method (Murphy and Van der

Vaart (2000)) can be used. Let lpr(Ω) = `n(Ω, Ĥ(Ω)|Y, Z) be the profile log-likelihood

function for Ω.

Theorem III.4. Assuming the regularity conditions hold, for εn = Op(n
−1/2) and any

vector v, −{lpr(Ω̂ + εnv)−2lpr(Ω̂) + lpr(Ω̂− εnv)}/nε2
n converges in probability to vTΣ−1v,

where Σ is the asymptotic covariance matrix of
√
n(Ω̂− Ω0).

The profile likelihood lpr(Ω) can be calculated via the EM-DCA algorithm by holding Ω

fixed. The negative second-order numerical difference of the profile log-likelihood function

at Ω is used to estimate the inverse covariance matrix. Specifically, the (i, j)th element

of the inverse covariance matrix can be consistently estimated by

−{lpr(Ω̂ + εnei + εnej)− lpr(Ω̂ + εnei − εnej)− lpr(Ω̂− εnei + εnej) + lpr(Ω̂)}/ε2
n

where ei and ej are the ith and jth canonical basis vectors respectively. Theorem III.4

can be verified by closely following the lines of Zeng and Lin (2010) Section 9 and Murphy

and Van der Vaart (2000).

3.7 Simulation Study

To examine the finite-sample performance of the parameter estimates obtained by

the proposed model, we conducted a Monte Carlo simulation study. We generated two

continuous outcome Y2, Y6 and four ordinal outcomes Y1, Y3, Y4 and Y5, each with five

levels, from the conditional cumulative probability function. The continuous outcome was
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generated using inverse CDF transform sampling. The ordinal outcomes were generated

by random sampling with level-specific probability. To show the performance of the

proposed model under random missing outcomes, 10% of the subjects have part of their

outcome values missing. Specifically, 2% missing one outcome; 2% missing two outcomes;

2% missing three outcomes; 2% missing four outcomes and 2% missing five outcomes.

We consider three covariates Xi1 ∼ N(0, 1), Xi2 ∼ Binom(0.5) and Xi3 ∼ Binom(0.5).

The shared latent variable Ui was generated from a Gamma(ai = eη1Xi3 , bi = eη2Xi3)

distribution where the true parameter values are specified as η1 = 1 and η2 = 1.7. The

true Hj(y) =
1

2
y2 for j = 2, 6 and the true Hj(y) =

1

4
y2 for j = 1, 3, 4, 5. The covariate

effect for each outcome is of the following forms: γi1 = 1, γi2 = eβ2Xi2 , γi3 = eβ3Xi3 , γi4 =

eβ4Xi1 , γi5 = eβ5Xi2 , γi6 = eβ6Xi3 , where the true parameters are β2 = 2, β3 = β4 = 0.5, β5 =

1 and β6 = 1.5. The true factor loading parameters are α1 = 1, α2 = 0.8, α3 = 0.6, α4 =

0.3, α5 = 0.5 and α6 = 1.

We examined the performance of estimation for the proposed model under the sample

size of n = 200 and n = 500; each was replicated 500 times. Standard errors were obtained

from the numerically evaluated Hessian matrix at the solution.

The results of the simulation study are summarized in Table 3.1. The proposed es-

timation and inference procedures perform well with diminishing bias as sample sizes

increases, and coverage probability at 95% nominal level. With the larger sample size,

we see better agreement between empirical standard deviation and asymptotic standard

errors. This suggests that the asymptotic approximation of the covariance matrix for the

profile likelihood is reasonable for the sample size of n = 200 or larger.

Next, we examine the finite-sample performance of the parameter estimates obtained

by the proposed model under the situation when one of the outcome is time-to-event data.

We generated two continuous outcome Y2, Y6 and six ordinal outcomes Y1, Y3, Y4, Y5, Y7 and

Y8, each with five levels, from the conditional cumulative probability function. The con-

tinuous outcome was generated using inverse CDF transform sampling. We generate one
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Table 3.1: Simulation results using proposed model. β1 to β6 are regression coefficients
describe the covariate effects on the outcome Y1 to Y6, respectively. α1 to α6 are factor
loadings for the outcome Y1 to Y6, respectively; η1, η2 are coefficient effects on the Gamma
distribution scale and rate parameters for the shared latent variable U . The results are
based on 500 simulated datasets with sample size of n = 200 and n = 500.

n Outcome Type parameter Truth Avg. est. ESD ASE 95% CP
200 Y1 ordinal β1 0

Y2 continuous β2 2 2.06 0.33 0.32 0.93
Y3 ordinal β3 0.5 0.51 0.33 0.33 0.90
Y4 ordinal β4 1 1.02 0.16 0.16 0.95
Y5 ordinal β5 0.5 0.52 0.29 0.28 0.92
Y6 continuous β6 1.5 1.54 0.38 0.38 0.92
Y1 ordinal α1 1
Y2 continuous α2 0.8 0.88 0.22 0.23 0.90
Y3 ordinal α3 0.6 0.66 0.24 0.24 0.91
Y4 ordinal α4 0.3 0.35 0.20 0.19 0.88
Y5 ordinal α5 0.5 0.56 0.22 0.22 0.91
Y6 continuous α6 1 1.04 0.23 0.27 0.92
U shape η1 1 1.16 0.55 0.73 0.86
U rate η2 1.7 1.85 0.65 0.85 0.85

500 Y1 ordinal β1 0
Y2 continuous β2 2 2.03 0.19 0.19 0.95
Y3 ordinal β3 0.5 0.52 0.20 0.20 0.94
Y4 ordinal β4 1 1.02 0.10 0.10 0.95
Y5 ordinal β5 0.5 0.51 0.17 0.17 0.94
Y6 continuous β6 1.5 1.51 0.22 0.22 0.92
Y1 ordinal α1 1
Y2 continuous α2 0.8 0.85 0.13 0.14 0.92
Y3 ordinal α3 0.6 0.65 0.15 0.15 0.91
Y4 ordinal α4 0.3 0.34 0.12 0.12 0.93
Y5 ordinal α5 0.5 0.55 0.13 0.13 0.93
Y6 continuous α6 1 1.03 0.14 0.16 0.93
U shape η1 1 1.25 0.42 0.50 0.90
U rate η2 1.7 1.96 0.49 0.58 0.91

Avg. est.: average of Monte Carlo estimates of the true parameter values over the 500 simulations
ESD: empirical standard deviation based on Monte Carlo estimates
ASE: average of numerically estimated standard errors
95% CP: 95% coverage probability
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time-to-event outcome Y9 using inverse CDF transform sampling with random censoring

time following Uniform(5, 20) distribution. This leads to around 5% censoring for Y9. The

ordinal outcomes were generated by random sampling with level-specific probability.

We consider three covariates Xi1 ∼ N(0, 1), Xi2 ∼ Binom(0.5) and Xi3 ∼ Binom(0.5).

The shared latent variable Ui was generated from a Gamma(ai = eη1Xi3 , bi = eη2Xi3)

distribution where the true parameter values are specified as η1 = 1 and η2 = 1.7. The true

Hj(y) =
1

2
y2 for j = 2, 6, 9 and the true Hj(y) =

1

4
y2 for j = 1, 3, 4, 5, 7, 8. The covariate

effect for each outcome is of the following forms: γi1 = 1, and γik = eβkXik for k = 2, · · · , 9,

where the true parameters are β2 = β8 = 2, β3 = β5 = β7 = 0.5, β4 = 1, β6 = 1.5 and

β9 = 0.3. The true factor loading parameters are α1 = 1, α2 = α4 = α8 = 0.8, α3 = α9 =

0.6, α5 = 0.9 and α6 = α7 = 1.

The results of the simulation study based on 200 simulated datasets, each with n = 100

subjects, are summarized in Table 3.2. From our simulation experience, joint modeling

of multivariate outcomes including survival outcome requires either (1) more observed

outcomes per subjects (bigger m) or (2) larger sample size (bigger n), compared to joint

modeling non-censored observed outcomes. This is due to the fact that survival outcome

has random censoring, which in general contains less information available compared to a

regular non-censored continuous outcome. To achieve stable estimation, the contribution

of (1), increasing number of observed outcomes per subject, is more effective than (2),

increasing sample size n.

3.8 Real Data Analysis: Pain Centrality Measurement on Pelvic

Pain Patients

The proposed method was applied to measure pain centrality trait of patients un-

dergoing hysterectomy as a treatment for pelvic pain and explain the heterogeneity of

patients reported outcomes. The proposed joint shared variable model uses ad-hoc 2011
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Table 3.2: Simulation results using proposed model. β1 to β9 are regression coefficients
describe the covariate effects on the outcome Y1 to Y9, respectively. α1 to α9 are factor
loadings for the outcome Y1 to Y9, respectively; η1, η2 are coefficient effects on the Gamma
distribution scale and rate parameters for the shared latent variable U . The results are
based on 200 simulated datasets with sample size of n = 100.

n Outcome Type parameter Truth Avg. est. ESD ASE 95% CP
100 Y1 ordinal β1 0

Y2 continuous β2 2 2.01 0.43 0.43 0.94
Y3 ordinal β3 0.5 0.52 0.40 0.42 0.96
Y4 ordinal β4 1 1.07 0.26 0.25 0.94
Y5 ordinal β5 0.5 0.52 0.36 0.42 0.93
Y6 continuous β6 1.5 1.53 0.40 0.45 0.95
Y7 ordinal β7 0.5 0.51 0.24 0.21 0.92
Y8 ordinal β8 2 2.12 0.48 0.47 0.95
Y9 survival β9 0.3 0.25 0.42 0.36 0.89
Y1 ordinal α1 1
Y2 continuous α2 0.8 0.78 0.27 0.27 0.90
Y3 ordinal α3 0.6 0.61 0.32 0.28 0.88
Y4 ordinal α4 0.8 0.90 0.33 0.33 0.90
Y5 ordinal α5 0.9 0.90 0.34 0.33 0.89
Y6 continuous α6 1 0.95 0.28 0.29 0.90
Y7 ordinal α7 1 1.08 0.44 0.38 0.90
Y8 ordinal α8 0.8 0.87 0.35 0.33 0.89
Y9 survival α9 0.6 0.44 0.26 0.23 0.77
U shape η1 1 1.22 0.63 0.67 0.81
U rate η2 1.7 1.93 0.74 0.75 0.80

Avg. est.: average of Monte Carlo estimates of the true parameter values over the 200 simulations
ESD: empirical standard deviation based on Monte Carlo estimates
ASE: average of numerically estimated standard errors
95% CP: 95% coverage probability
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Fibromyalgia (FM) Survey Criteria (designed to characterize a similar latent construct)

as the baseline instrument (Y1) and extracts information from five other pain centrality

relevant outcomes. FM is an ad-hoc construct of pain centrality measure in the medical

field. FM is used for diagnosis of Fibromyalgia, a central pain disorder characterized by

widespread musculoskeletal pain accompanied by fatigue, sleep, memory and mood is-

sues. We intended to use our model to provide a model-based analogue to FM that would

measure a degree of pain centrality.

The study sample consists of 225 female pelvic pain patients. We consider six cross-

sectional responses of mixed scale collected prior to hysterectomy. Fibromyalgia (FM)

Survey Criteria score was included as the baseline instrument (Y1). Opioid use (OME),

BPI pain severity score, BPI surgical pain score, HADS depression score and HADS

anxiety score are the other five pain centrality relevant outcomes included in the model.

There are 9 missing values in the FM score, 2 missing values in OME, 6 missing values in

BPI pain severity score, 5 missing values in BPI surgical pain score, and 14 missing values

in HADS depression and anxiety scores. There are 5 patients with one missing outcome,

8 patients with two missing outcomes, 2 patients with three and four missing outcomes,

and 3 patients with 5 missing outcomes.

The distribution of each response is presented in Figure 3.1. All of them are right-

skewed. We can see the six pain responses are on very different scales. Notice that 80%

of the patients have 0 opioid use and one patient has extremely heavy opioid use of 120

(which is 80 higher than the second highest opioid use in the sample. Our model is robust

to outliers because of nonparametric transformation of the observable outcomes. While

analysis results from traditional latent variable models with pre-specified link may be

dominated by influential outliers.

We include age centered at 47 years old as a covariate in our model. The unit for age

is per 20 years. The subject specific latent trait, pain centrality Ui, is assumed to follow

a Gamma(ai, bi) distribution with ai = eη1Agei and bi = eη2Agei . The estimation results of
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Figure 3.1: Distribution of pain responses: Fibromyalgia (FM) Survey Criteria score,
Opioid use, BPI pain severity score, BPI surgical pain score, HADS depression score and
HADS anxiety score. All of them are right-skewed. Notice that 80% of the patients have
0 opioid use and one patient has extremely heavy opioid use of 120 (which is 80 higher
than the second highest opioid use in the sample.
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the proposed joint latent trait model are shown in Table 3.3.

Table 3.3: Parameter estimates, factor loadings, standard error and p-value from analysis
of n = 225 female pelvic pain patients. The unit for age is per 20 years. Age is centered
at 47 years old.

Response Covariate Param Est Standard Error p
Fibromyalgia survey criteria Age 0

Opioid use Age 0.037 0.431 0.932
BPI pain severity Age −1.311 0.151 < 0.0001
BPI surgical pain Age 0.086 0.110 0.434
HADS depression Age −0.148 0.183 0.419

HADS anxiety Age 0.261 0.219 0.233

Response Factor loading Standard Error p
Fibromyalgia survey criteria 1

Opioid use 0.871 0.009 < 0.0001
BPI pain severity 2.529 0.134 < 0.0001
BPI surgical pain 2.531 0.169 < 0.0001
HADS depression 0.754 0.037 < 0.0001

HADS anxiety 0.530 0.030 < 0.0001

Latent trait distribution parameter Covariate Param Est Standard Error p
η1 Age 0.130 0.013 < 0.0001
η2 Age −0.893 0.099 < 0.0001

From the estimation results, we found that age has a larger effect on pain severity

relative to FM survey score, and younger people feel more severe pain. The proportional

odds ratio for every 20 years increase in age on BPI pain severity level is 0.27 (e−1.311),

given the model-based centrality is held constant. Thus, for every 20 years increase in

age, the odds of having higher pain severity decreases by 73%, given the model-based

centrality is held constant. In addition, age has significant effects on both the shape and

rate parameters of latent trait distribution. Based on the factor loadings we can see that

BPI pain severity and BPI surgical pain contribute the most to the construct of latent

trait.

Figure 3.3 shows the relationship of estimated pain centrality with each of the six

pain responses. Since the model-predicted log(U) represents how pain-uncentralized a

person is, − log(U) represents pain centrality. From Figure 3.2 we can see the model-
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based pain centrality score − log(U) is positively correlated with all six pain responses.

The model-based pain centrality score is highly correlated with BPI pain severity, BPI

surgical pain and Fibromyalgia Survey Criteria score. Age is negatively correlated with

the model-based pain centrality score, as illustrated in Figure 3.4. This implies that

younger patients are more pain centralized. In fact, age is negatively correlated with all

six pain responses (see Appendix Table B.1 for Pearson correlations between age and all

six pain responses).

Figure 3.3 shows the relationship between Fibromyalgia survey criteria score with

each of the six pain responses, including our model-based pain centrality score. We can

see that Fibromyalgia survey criteria score is much less correlated with overall pain and

surgical pain compared to model-based pain centrality score by our model. Fibromyalgia

survey criteria score is also slightly less correlated with depression and anxiety compared

to model-based pain centrality score by our model. By examining the difference between

Figure 3.2 and Figure 3.3, we can see that the model-based pain centrality score by our

model picked up more information related to pain responses compared to the ad-hoc

Fibromyalgia survey criteria score.

3.9 Discussion

In this article, we proposed a new class of shared latent variable models where a

logistic link is used to accommodate nonparametrically transformed continuous, ordinal,

count, multinomial and survival outcomes. The resulting parametric and nonparametric

estimators are n−1/2 consistent and asymptotically normal. The proposed model has

independent nonparametrically specified transformations of different scales. Furthermore,

the proposed model does not require estimating unknown thresholds in latent normal

models for categorical data. Since our latent variable model is a joint model, we can

estimate subject-specific shared latent trait even when some of the outcomes are missing.

If a subject has only one non-missing outcome, the E-step integration for this subject can
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Figure 3.2: Model-based latent pain centrality score − log(U) versus each of six pain
responses
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Figure 3.3: Fibromyalgia survey criteria score − log(U) versus each of six pain responses
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be expressed in a closed form solution as described in Section 3.3.

Since our model assumes α1 = 1, in order for the latent variable U to be meaningful

and represent the latent trait of interest, Y1 has to be a latent trait relevant measurement

and other outcome measurements are correlated with Y1 through U .

Unlike gamma frailty models, the proposed model allows for both positive and negative

correlation between outcomes, and unlike Gaussian frailty models it does not have to make

Gaussian distributional assumption on the latent variable.

In the current framework, we consider only one latent factor in our model. However,

our model can be extended to allow for multiple factors. Extra care should be exercised

regarding model identifiability and factor selections.

Our method can also be extended to accommodate clustered data and longitudinal

data where additional correlation is introduce across time.

Application to hysterectomy patient data indicated that the proposed method can

offer an improved model-based measurement of the latent trait that better utilizes the

information encoded in the multivariate multi-scale observed phenotype.
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CHAPTER IV

A Semiparametric Joint Latent Trait Model for

Multiple Mixed Longitudinal Continuous,

Categorical Outcomes and Time-to-event Data

4.1 Introduction

In biomedical studies, multivariate response data consisting of mixtures of continuous

and discrete variables are often collected repeatedly over time. Multidimensional longitu-

dinal data of mixed types are collected to fully explore the latent trait trajectory that is

often of main interest but cannot be measured directly. In addition, time-to-event data is

often considered if the occurrence of the terminal event is dependent on the latent trait of

interest. Statistical approaches were developed to jointly modeling longitudinal responses

of mixed scales and the event time data to improve inference for latent trait trajectory, and

to account for the dependency the two correlated processes. Joint multivariate modeling

avoids the issue of multiple testing and substantially improves the efficiency of estimation

if the responses are correlated. Proper analysis of longitudinal responses of mixed scales

needs to account for dependency across responses and the dependency across time points.

A number of research articles addressed the analysis of multivariate longitudinal data

that incorporates the latent variable. Dunson (2003) proposed dynamic latent trait mod-

els to account for serial correlations using Gaussian latent variable. There are joint multi-
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variate models that incorporate random effects (Gueorguieva and Sanacora (2006), Jaffa

et al. (2016)). Ghosh and Hanson (2010)) proposed a semiparametric approach with a

mixture of Polya trees for random effect distributions. Proust-Lima et al. (2013) imple-

mented a latent process model for multivariate mixed longitudinal outcomes. Kunihama

et al. (2016) proposed a nonparametric Bayes models for mixed scale longitudinal sur-

veys which models the latent continuous variable through a Dirichlet process mixture of

Gaussian factor models and model the subject specific trajectory by time-varying latent

factors via Gaussian processes.

There are a couple of recent research on joint modeling longitudinal measurements and

survival data. Hickey et al. (2016) gave a comprehensive review of recent developments

and issues in joint modeling of time-to-event and multivariate longitudinal outcomes.

The majority of previous studies focus on longitudinal measurements of the same scale.

Regarding joint models incorporating multiple outcomes of mixed types with a time-

to-event data, Rizopoulos and Ghosh (2011) proposed a semiparametric joint model for

continuous and binary longitudinal outcomes and a time-to-event data, in which the latent

variable is modelled using a Dirichlet Process prior formulation. He and Luo (2016)

developed a joint model for continuous and ordinal longitudinal outcomes and a terminal

event time, linked through shared random effects. Proust-Lima et al. (2016) developed a

joint model for multiple longitudinal responses of different scales and competing risks, in

which a latent process model was used to describe the latent trait trajectory, and a latent

class structure links the longitudinal and cause-specific survival models.

The previous work on the joint model of multivariate longitudinal responses either

maps the discrete outcomes to latent continuous variables or rely on pre-specified link

functions based on exponential family. Further, there is not a single longitudinal model

that accommodates all continuous, ordinal, count and multinomial outcome types. As for

the joint model between longitudinal and survival outcomes, there is no single joint model

that allows for nonparametric transformation of the longitudinal outcomes, and no single
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model accommodate all continuous, ordinal, count and multinomial outcome types.

Motivated by the needs to develop a general statistical framework for longitudinal

responses of mixed types and survival times, we propose a semiparametric joint model

with shared latent trait trajectory for multiple longitudinal responses of mixed scales

and time-to-event data. A logistic link is used to accommodate continuous, ordinal,

count, and multinomial repeated measurements. A proportional odds survival model is

used to model the time-to-event data. The time-to-event data is linked with longitudinal

responses through subject-specific random effects. The model is used to provide a subject-

specific measure of the latent trait trajectory over time. The proposed model uses a

nonparametric transformation function on longitudinal responses of different scales. The

proposed model avoids the restrictive multivariate normal assumption of the underlying

continuous latent responses. In addition, the modeling framework is also generic with

respect to the parametric distribution assumed for the latent trait trajectory, allowing

a flexible choice of the process of the trait. Our model allows for negative correlation

between multivariate outcomes through factor loadings, therefore, we do not need to

assume Gaussian distribution/process for the latent trait trajectory to allow for negative

correlation among outcomes. Our model parameters are estimated by maximizing the full-

likelihood so likelihood based standard errors can be used for inference and the estimates

are asymptotically efficient.

The proposed method is applied to measure the pain centrality trajectory of patients

undergoing hysterectomy as a treatment for pelvic pain with longitudinal pain-related re-

sponses measured prior to the surgery, one month after the surgery and three months after

the surgery. The method is compared with the ad-hoc 2011 Fibromyalgia (FM) Survey

Criteria instrument designed to characterize a similar construct. Difference of convex func-

tions algorithm (DCA) is used to estimate the nonparametric transformation functions of

the model. Covariate parameters and distributional parameters for latent variable are esti-

mated by maximizing the profile likelihood using the Broyden–Fletcher–Goldfarb–Shanno
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(BFGS) algorithm. The rest of the article is organized as follows. The proposed joint

model framework and likelihood function are presented in Section 4.2. The estimation

procedures are described in Section 4.3. The asymptotic properties are discussed in Sec-

tion 4.4. Section 4.5 shows the simulation study. In Section 4.6 we applied the proposed

joint longitudinal model to characterize latent pain centrality trajectories for pelvic pain

patients over the three month period. Section 4.7 concludes the proposed method and

discussion.

4.2 Joint Model Framework

The proposed joint model consists of three linked submodels: (1) a proportional odds

model for the longitudinal continuous, ordinal, and count measurements; (2) a propor-

tional odds model for the time-to-event data; (3) a multinomial logistic model for nominal

responses.

4.2.1 Proportional Odds Model for Longitudinal Continuous, Ordinal and

Count Responses

Suppose there are J distinct continuous, ordinal, or count outcomes measured for n

participants at K follow up times. Let yijk be the jth observed outcome for participant i

at time tk, where i = 1, · · · , n, j = 1, · · · , J , and k = 1, · · · , K. Therefore, for participant

i at time tk, we observe outcome vector yik = (yi1k, . . . , yiJk)
T with values in domain

space D = (D1, · · · , DJ)T respectively. Let Ui(t) be the latent trait function that is

shared by all observable outcomes at time t. Ui(t) represents the underlying latent trait

score for participant i at time t. The observed outcomes are assumed to be conditionally

independent given Ui(t) for all times. Let F̄ (x) = P (X > x) denotes the tail/survival

distribution of the variable x. We define the conditional tail/survival distribution function
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for Yijk as a semiparametric transformation model through a logistic link

F̄j(yijk | Ui(tk)) =
1

1 + U
αj
i (tk)γijHj(yijk)

, (4.1)

whereHj(y) is an arbitrary (nonparametrically specified) non-negative and non-decreasing

function of y that ranges from 0 to ∞. The covariate effect is γij = exp(ZT
ijβj), where

Zij is the covariate vector for participant i for the jth outcome, and βj is the vector

of regression coefficients. αj is the factor loading for the jth outcome. The conditional

probability mass/density function for Yijk is

P (Yijk = yijk | Ui(tk)) =
1

1 + Ui(tk)αjγijHj(y
−
ijk)
− 1

1 + Ui(tk)αjγijHj(yijk)
,

where y− = lim
∆→0

(y −∆).

Let yi = (yi1, · · · ,yiK)T be the outcome vector across time for participant i. Let

Zi = (Zi1, · · · ,ZiJ)T . Let Ui(t) = (Ui(t1), · · · , Ui(tK))T be the trajectory of latent trait

over time for participant i. The conditional likelihood of the multiple mixed longitudinal

outcomes for participant i is

LY (yi|Ui(t)) =
J∏
j=1

K∏
k=1

[
1

1 + Ui(tk)αjγijHj(y
−
ijk)
− 1

1 + Ui(tk)αjγijHj(yijk)

]
(4.2)

The variable tk is the time of measurement with t1 = 0 as the baseline. For identifiability,

Zij do not contain constant terms, α1 = 1 and γi1 = 1 for all i. The factor loading

αj determines the dependence between Yj and Y1. The latent trait function Ui(t) can

take a flexible functional form of t or can be a process over time. As an example, we

assume the latent trait function takes the form Ui(t) = U(t)eai+bit. The function U(t)

represents population average disease trajectory over time. The random variable ai and

bi represent subject-specific disease severity at baseline and disease progression rate, re-

spectively, relative to the population average. The function U(t) satisfies the constraints
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that U(0) = 1 and U(t) > 0 for all t. The shared random variables (ai, bi) follow a joint

distribution f(a, b|θi). Note that each subject may have subject-specific distributional

predictors θi that depend on subject-specific covariates Zi. For example, in Appendix C.1

and the real data application in Section 4.6, we consider f(a, b|θi) = f(a|θ1i, θ2i)f(b|η3),

where f(a|θ1i, θ2i) is a log-Gamma density function with shape θ1i = exp(η1Zi), and rate

θ2i = exp(η2Zi). f(b|η3) is a log-Gamma density function with both shape and rate being

η3. For the rest of the article, we denote the distribution of (ai, bi) as fab(ai, bi|η) where

η = (η1, η2, η3)T .

4.2.2 Proportional Odds Model for Time-to-event Data

For the time-to-event data, we use a proportional odds survival model that shares

the subject-specific random variables (ai, bi) in (4.2). Assume for each participant i =

1, · · · , n, the censoring time C∗i is independent of true event time T ∗i , given covariate set

Zis. The observed event time is Ti = (T ∗i ∧Ci) and Ci = (C∗i ∧ τ). Let δi = 1(Ti ≤ Ci) be

the censoring indicator. Here 1(·) is the indicator function, and τ denotes the time to the

end of the study. The domain space for Ti is (0, τ ]. Under the proportional odds survival

model, the conditional survival function for Ti is

F̄s(Ti|ai, bi) =
1

1 + ev0ai+v1biγisHs(Ti)
,

where v0 and v1 measure the association between the longitudinal sub-model and the

survival sub-model. Hs(t) is an unspecified non-negative and non-decreasing function in

[0, τ ] with Hs(0) = 0 and Hs(∞) = ∞. The conditional density function of having a

terminal event at time Ti is

fs(Ti|ai, bi) =
ev0ai+v1biγishs(Ti)

[1 + ev0ai+v1biγisHs(Ti)]2
,

where hs(t) = dHs(t)/dt.
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Therefore, the conditional likelihood for a participant i with observed data (Ti, δi, Zis)

is

Ls(Ti, δi|ai, bi) =

(
ev0ai+v1biγisdHs(Ti)

1 + ev0ai+v1biγisHs(Ti)

)δi ( 1

1 + ev0ai+v1biγisHs(Ti)

)

Let β = (β1, · · · , βJ)T be the regression coefficient matrix. Let α = (α1, · · · , αJ)T

be the vector of factor loadings. Let the functional parameter H = (H1, · · · , HJ , Hs) be

the set of transformation functions for the 1st to the Jth outcome and the survival data,

respectively. The observed data for subject i = 1, . . . , n consist of i.i.d. {Yi, Ti, δi,Zi, Zis}

observations. The complete data likelihood for the observed data is

L0(β,α,H|Y,Z, U(t), ai, bi) =
n∏
i=1

LY (yi|Ui(t))Ls(Ti, δi|ai, bi)

=
n∏
i=1

{
J∏
j=1

K∏
k=1

[
1

1 + Ui(tk)αjγijHj(y
−
ijk)
− 1

1 + Ui(tk)αjγijHj(yijk)

]
(

ev0ai+v1biγisdHs(Ti)

1 + ev0ai+v1biγisHs(Ti)

)δi ( 1

1 + ev0ai+v1biγisHs(Ti)

)}
,

and the complete data log-likelihood is

`0(β,α,H|Y,Z, U(t), ai, bi)

=
n∑
i=1

{
J∑
j=1

K∑
k=1

log

(
Ui(tk)

αjγijdHj(yijk)

[1 + Ui(tk)αjγijHj(y
−
ijk)][1 + Ui(tk)αjγijHj(yijk)]

)

+δi log

(
ev0ai+v1biγisdHs(Ti)

1 + ev0ai+v1biγisHs(Ti)

)
− log[1 + ev0ai+v1biγisHs(Ti)]

}
=

n∑
i=1

J∑
j=1

K∑
k=1

{logUi(tk)
αjγijdHj(yijk)− log[1 + Ui(tk)

αjγijHj(y
−
ijk)][1 + Ui(tk)

αjγijHj(yijk)]}

+
n∑
i=1

{δi(v0ai + v1bi + log γisdHs(Ti))− (1 + δi) log[1 + ev0ai+v1biγisHs(Ti)]}.
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Here we assume Hj is an outcome-specific step function that only jumps at the set of

observed values of yijk, i = 1, . . . , n, k = 1, · · · , K. We denote the jump of Hj at value x

as dHj(x). Hs is assumed to be a step function that only jumps at the observed event

times.

Let Ω = (α,β, η,v) be the set of model parameters, where v = (v0, v1) and η is

the parameter characterizes the distribution of the latent variable Ui(t) and (ai, bi). The

marginal likelihood for the observed data is the expectation of the complete data likelihood

over (ai, bi),

L(Ω,H|Y,Z) =
n∏
i=1

Eη

{
J∏
j=1

K∏
k=1

[
1

1 + Ui(tk)αjγijHj(y
−
ijk)
− 1

1 + Ui(tk)αjγijHj(yijk)

]
(

ev0ai+v1biγisdHs(Ti)

1 + ev0ai+v1biγisHs(Ti)

)δi ( 1

1 + ev0ai+v1biγisHs(Ti)

)}
. (4.3)

4.2.3 Multinomial Logistic Model for Nominal Responses

Our model has the flexibility to accommodate multinomial outcomes. For a M -

category multinomial observable outcome Yijk with an observed response category c, we

define the conditional probability mass function as

p(Yijk = c | Ui(tk)) =


Ui(tk)αj θc

1+Ui(tk)αj
∑M
m=2 θm

, c ≥ 1,

1

1+Ui(tk)αj
∑M
m=2 θm

, c = 1,

where θm is the covariate effect for category m versus the reference category 1. Since the

multinomial part of the likelihood does not include infinite dimensional parameters, we

omit it for brevity in the following exposition.

Notice that since our model is a joint model of multiple outcomes, the model pa-

rameters and subject-specific latent variable can be estimated even if some outcomes are

missing.
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4.3 Estimation

4.3.1 Nonparametric Maximum Likelihood Estimation

(NPMLE)

The full parameter sets are finite-dimensional parameter vectors Ω = (α,β, η,v),

infinite-dimensional H = (H1(·), . . . , HJ(·), Hs(·)) and U(·). Denote {U} = (U(t1), · · · , U(tK))

and {dHj} as the vector of jumps for Hj at the observed values of the jth outcome. We

estimate Ω, {U} and {dHs}, {dHj}j=1,...,J jointly using the profile likelihood approach.

This is accomplished by applying an EM algorithm (Tsodikov (2003)) to obtain im-

plicit estimators {Û(Ω)}, {dĤs(Ω)} and {dĤj(Ω)} that depend on Ω being held fixed,

when {U}, {dHs} and {dHj} are profiled out. To obtain stable MLEs and maintain

proper density functions for each outcome, we impose a zero-tail constraint on longitu-

dinal outcomes, namely, F̄j(yj(n) | Ui(t)) = 0, or equivalently, dHj(yj(n)) = ∞, where

yj(n) = max{yijk, i = 1, · · · , n, k = 1, · · · , K}, the maximum observed value for the jth

outcome over all participants and across all times.

Replacing {U(Ω)}, {dHs(Ω)} and {dHj(Ω)}j=1,...,J in the marginal log-likelihood we

obtain the profile log-likelihood `pr(Ω) = ` (Ω, {U(Ω)}, {dHs(Ω)}, {dHj(Ω)}j=1,...,J). To

obtain the conditional score function for dHj, we differentiate the log-likelihood with

respect to dHj(x)

U0,dHj(x) =
∂`0

∂dHj(x)

=

∑n
i=1

∑K
k=1 1(yijk = x)

dHj(x)
−

n∑
i=1

K∑
k=1

1(y−ijk ≥ x)Ui(tk)
αjγij

1 + Ui(tk)αjγijHj(y
−
ijk)
−

n∑
i=1

K∑
k=1

1(yijk ≥ x)Ui(tk)
αjγij

1 + Ui(tk)αjγijHj(yijk)

=

∑n
i=1

∑K
k=1 dNijk(x)

dHj(x)
−

n∑
i=1

K∑
k=1

1(y−ijk ≥ x)Ui(tk)
αjγij

1 + Ui(tk)αjγijHj(y
−
ijk)
−

n∑
i=1

K∑
k=1

1(yijk ≥ x)Ui(tk)
αjγij

1 + Ui(tk)αjγijHj(yijk)
.

where
∑n

i=1

∑K
k=1 dNijk(x) =

∑n
i=1

∑K
k=1 1(yijk = x) records the multiplicity of observa-

tions in the jth outcome having value x.
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Let Yis(t) = 1(Ti ≥ t) be the at-risk process for time-to-event data for subject i, and

Nis(t) = δi 1(Ti ≤ t) be the counting process that records the number of events that have

occurred by time t for subject i. On functional differentiation of the log-likelihood with

respect to dHs(x), we obtain the conditional score function for dHs

U0,dHs(x) =
∂`0

∂dHs(x)
=

∑n
i=1 dNis(x)

dHs(x)
−

n∑
i=1

Yis(x)(1 + δi)e
v0ai+v1biγis

1 + ev0ai+v1biγisHs(Ti)

The conditional score function for {U} can be obtained by functionally differentiating the

log-likelihood with respect to U(x):

U0,U(x) =
∂`0

∂U(x)
=

∑n
i=1

∑J
j=1 αj 1(Hj(yijx) 6=∞)

U(x)
−

n∑
i=1

J∑
j=1

αjU(x)αj−1eαj(ai+bix)γijHj(y
−
ijx)

1 + U
αj
i (x)γijHj(y

−
ijx)

−
n∑
i=1

J∑
j=1

1(Hj(yijx) 6=∞)αjU(x)αj−1eαj(ai+bix)γijHj(yijx)

1 + U
αj
i (x)γijHj(yijx)

Define the conditional expectation operator E [f‖g] = E[f ·g]
E[g]

. We use the EM-DCA

algorithm to estimate the NPMLE. The derivation of the EM algorithm and the condi-

tional expectation operator E [·‖L0] that is used in the rest of the article are presented

in Appendix B.2. The EM algorithm involves iteratively update model parameters by

maximizing the conditional expectation of the complete data likelihood E [`0‖L0]. The

model parameters are updated by maximizing E [`0‖L0]. This can be achieved by set-

ting the derivative of E [`0‖L0] with respect to model parameters to 0. Specifically, we

calculate the conditional expectation of the conditional score function given the observed

data, latent variable ai, bi and the model parameters at the kth iteration. For the follow-

ing derivation of the EM algorithm, we use the expression E
[
U0

∥∥∥L(m)
0

]
to represent the

conditional expectation of the conditional score function given the observed data, latent

variable ai, bi and the model parameters at the mth iteration. Note that E [U0‖L0] is the

marginal score function as derived in Appendix B.2.

The E-step involves taking conditional expectation E [·‖L0] of the conditional score

79



functions over ai and bi. At the mth iteration,

E
[
U0,dHj(x)

∥∥∥L(m)
0

]
=

E
[
U0,dHj(x)L

(m)
0

]
E
[
L

(m)
0

]
=

∑n
i=1

∑K
k=1 dNijk(x)

dH
(m+1)
j (x)

−
n∑
i=1

E

[
K∑
k=1

1(y−ijk ≥ x)γijU
αj
i (tk)

1 + U
αj
i (tk)γijH

(m+1)
j (y−ijk)

∥∥∥∥∥L(m)
0

]

−
n∑
i=1

E

[
K∑
k=1

1(yijk ≥ x)γijU
αj
i (tk)

1 + U
αj
i (tk)γijH

(m+1)
j (yijk)

∥∥∥∥∥L(m)
0

]
, (4.4)

E
[
U0,dHs(x)

∥∥∥L(m)
0

]
=

∑n
i=1 dNis(x)

dH
(m+1)
s (x)

−
n∑
i=1

E

[
Yis(x)(1 + δi)γise

v0ai+v1bi

1 + ev0ai+v1biγisH
(m+1)
s (Ti)

∥∥∥∥∥L(m)
0

]
, (4.5)

E
[
U0,U(x)

∥∥∥L(m)
0

]
=

∑n
i=1

∑J
j=1 αj 1(Hj(yijx) 6=∞)

U (m+1)(x)
−

n∑
i=1

J∑
j=1

E

[
αjU

(m+1)(x)αj−1eαj(ai+bix)γijHj(y
−
ijx)

1 + U
(m+1)
i (x)αjγijHj(y

−
ijx)

∥∥∥∥∥L(m)
0

]

−
n∑
i=1

J∑
j=1

E

[
1(Hj(yijx) 6=∞)αjU

(m+1)(x)αj−1eαj(ai+bix)γijHj(yijx)

1 + U
(m+1)
i (x)αjγijHj(yijx)

∥∥∥∥∥L(m)
0

]
, (4.6)

where L
(m)
0 indicates that the complete data likelihood L0 is parameterized by the mth

iteration copy of the parameters {U}, {dHs}, {dHj}j=1,··· ,J .

The complete data log-likelihood `0 can be represented as a difference between two

concave functions of {dHj} for each j, holding all other variables fixed. Consequently, the

conditional score equation U0,dHj(x) has a representation of a difference between deriva-

tives of two concave functions. Since the imputation operator E [f‖g] is a linear opera-

tor, it does not alter convexity properties. Therefore, the unconditional score function

E
[
U0,dHj(x)

∥∥∥L(m)
0

]
is also a difference between derivatives of two concave functions. Sim-
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ilarly, `0 can be represented as a difference between two concave functions of {dHs},

holding all other variables fixed. And `0 can be represented as a difference between two

concave functions of {U}, holding all other variables fixed. Therefore, the unconditional

score functions E
[
U0,dHs(x)

∥∥∥L(m)
0

]
and E

[
U0,U(x)

∥∥∥L(m)
0

]
each is a difference between the

derivatives of two concave functions.

For the M-step, we employ the difference of convex functions algorithm (DCA) to

iteratively maximize log-likelihood with respect to {dHj}, {dHs}, and {U}. DCA was

first introduced by Pham Dinh Tao in its preliminary form in 1985. DCA is a version

of MM-algorithm (Lange et al. (2000)) that has been extensively developed since 1994

by Le Thi Hoai An and Pham Dinh Tao for nonconvex optimization problems (Tao and

An (1997, 1998); An and Tao (2005)). DCA is particularly efficient when the target

function to be minimized/maximized can be represented as a difference between two

convex/concave functions. Equations (4.4), (4.5) and (4.6) are a set of self-consistency

equations that can be solved iteratively. Solving the conditional expectation of the score

equations (4.4), (4.5) and (4.6) equal to zero, respectively, and employing DCA, we obtain

Breslow-type estimators for dHj(x), dHs(x), and an updating equation for U(x), at the

(m+ 1)th iteration

dH
(m+1)
j (x)

=

∑n
i=1

∑K
k=1 dNijk(x)∑n

i=1 E
[∑K

k=1

1(y−ijk≥x)γijU
(m)
i (tk)αj

1+U
(m)
i (tk)αj γijH

(m)
j (y−ij)

∥∥∥∥L(m)
0

]
+
∑n

i=1 E
[∑K

k=1
1(yijk≥x)γijU

(m)
i (tk)αj

1+U
(m)
i (tk)αj γijH

(m)
j (yijk)

∥∥∥∥L(m)
0

] ,
(4.7)

dH(m+1)
s (x) =

∑n
i=1 dNis(x)∑n

i=1 E
[
Yis(x)(1+δi)γisev0ai+v1bi

1+ev0ai+v1biγisH
(m)
s (Ti)

∥∥∥L(m)
0

] , (4.8)
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U (m+1)(x)

=

∑n
i=1

∑J
j=1 αj 1(Hj(yijx) 6=∞)∑n

i=1

∑J
j=1 E

[
αjU (m)(x)αj−1eαj(ai+bix)γijH

(m)
j (y−ijx)

1+U
(m)
i (x)αjγijH

(m)
j (y−ijx)

− 1(Hj(yijx)6=∞)αjU (m)(x)αj−1eαj(ai+bix)γijH
(m)
j (yijx)

1+U
(m)
i (x)αjγijH

(m)
j (yijx)

∥∥∥∥L(m)
0

]
(4.9)

Iterations proceed until the following convergence criteria are satisfied: ‖dH(m+1)
j (x)−

dH
(m)
j (x)‖2 < ε, ‖dH(m+1)

s (x)− dH(m)
s (x)‖2 < ε and ‖U (m+1)(x)−U (m)(x)‖2 < ε for some

small ε > 0.

The conditional expectations E
[
·
∥∥∥L(m)

0

]
in (4.7), (4.8) and (4.9) were computed

by Laplace approximation (Laplace (1986)). The derivation of the EM algorithm along

with DCA and Laplace approximation is shown in Appendix C.1.

4.3.2 Estimation Procedure

The estimation procedure consists of two nested loops. The inner loop maximizes

{dHj(Ω)}j=1,...,J , {dHs(Ω)} and {U}, given Ω. The outer loop then maximizes the profile

log-likelihood over Ω. Specifically, we proceed with the following procedure for estimation.

Inner loop. Maximize {dHj(Ω)}j=1,...,J , {dHs(Ω)} and {U}, given Ω:

(1) Set m = 0. For each of the J outcomes, initialize {dHj} as the Breslow

estimates dĤ
(0)
j (x) =

∑n
i=1

∑K
k=1 dNijk(x)∑n

i=1

∑K
k=1 1(yijk≥x)γij

. For the time-to-event outcome, ini-

tialize {dHs} as the Breslow estimates dĤ
(0)
s (x) =

∑n
i=1 dNis(x)∑n
i=1 Yis(x)γis

. In addition,

Û (0)(t) = 1 for all t = t1, · · · , tK .

(2) Given fixed Ω, calculate dĤ
(m+1)
j (x) using the Breslow-type estimator (4.7) for

all j = 1, · · · , J ; calculate dĤ
(m+1)
s (x) using the Breslow-type estimator (4.8);

and calculate U (m+1)(x) using the equation (4.8).
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(3) Keep updating dĤ
(m+1)
j (x), dĤ

(m+1)
s (x) and Û (m+1)(x) as in previous step until

all the convergence criteria are satisfied:∥∥∥dĤ(m+1)
j (·)− dĤ(m)

j (·)
∥∥∥

2
< ε for all j = 1, . . . , J ,∥∥∥dĤ(m+1)

s (·)− dĤ(m)
s (·)

∥∥∥
2
< ε, and

∥∥∥Û (m+1)(·)− Û (m)(·)
∥∥∥

2
< ε for some small

ε > 0.

Outer loop. Maximize the profile likelihood `pr(Ω) = `
(

Ω, {Û(Ω)}, {dĤs(Ω)}, {dĤj(Ω)}j=1,...,J

)
over Ω:

(1) Set r = 0. Set α̂(0) = 1, β̂(0) = 0, v̂(0) = 1, η̂(0) = (0, 0, 1)T to start.

(2) Find α̂(r+1), β̂(r+1), v̂(r+1) and η̂(r+1) by taking one step towards maximizing

the profile likelihood with respect to α,β,v and η using an optimization rou-

tine (e.g., BFGS). Note that when the parametric multinomial component is

present, it is added to the profile log-likelihood, and the vector of parameters

include the multinomial logistics parameter matrix.

(3) While executing (2), update dĤ
(r+1)
j = dĤj(Ω

(r+1)), for j = 1, · · · , J ,

dĤ
(r+1)
s = dĤs(Ω

(r+1)) and Û (r+1) = Û(Ω(r+1)) using steps in the inner loop.

(4) Repeat steps (2) and (3) until convergence
∥∥∥Ω̂(r+1) − Ω̂(r)

∥∥∥
2
< 10ε.

Note that the convergence tolerance for the inner loop has to be stricter than for the outer

loop.

4.4 Asymptotic Properties

The proposed NPMLE are shown to be consistent and asymptotically normal by mak-

ing use of the empirical process (Murphy (1995), Zeng et al. (2005), Zeng and Lin (2007),

Zeng and Lin (2010)). The following regularity conditions are required to establish asymp-

totic properties of NPMLE.
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1. Hs(·) is a strictly increasing and continuously differentiable function. If the jth

outcome is continuous, the true function H0j(·) of Hj(·), is strictly increasing and

continuously differentiable. The true value of parameter set Ω0 = (β0, α0, η0,v0) ,

H0 = (H01, · · · ,H0J ,H0s) and U0(t) fall in the interior of a compact convex set H.

2. For the time-to-event outcome, there exists a positive constant ν0 such that P (C∗i ≥

τ |z) ≥ ν0 almost surely.

3. The number of non-missing outcomes for subject i, denoted as mi, is bounded by

some positive integer m0 and P (mi ≥ 2) > 0 with probability 1.

4. All the covariate set Zij are bounded. Further, if there exist a constant vector c

such that [1, ZT
is,Z

T
ij]c = 0 almost surely, then c = 0.

5. If

U(tk)
αj = U0(tk)

α0j , j = 1, · · · , J, k = 1, · · · , K

and

∫ ∫
ev0a+v1b+

∑K
k=1 α1(a+btk)fab(a, b|η)dadb =

∫ ∫
ev

0
0ai+v

0
1bi+

∑K
k=1 α01(a+btk)fab(a, b|η0)dadb

then αj = α0j, v0 = v0
0, v1 = v0

1, η = η0 and U(tk) = U0(tk) for all j = 1, · · · , J, k =

1, · · · , K.

6. The score operator for (Ω, U,H) is Fréchet differentiable at (Ω0, U0,H0) with a

continuously invertible derivative −I0. The hessian matrix In evaluated at the

true values of Ω, U , and H is positive definite, and converges in probability to a

deterministic and invertible operator I0.

The following theorems present the consistency and weak convergence for the pro-

posed NPMLE Ω̂ =
(
β̂, α̂, η̂, v̂

)
, Ĥ = (Ĥ1, · · · , ĤJ , Ĥs) and U with details given in the
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Appendix Section C.2.

Theorem IV.1. Let Ω0 = (β0, α0, η0,v0), U0(t) and H0(y) = (H01(y1), · · · , H0J(yJ), H0s(t))

be the true values of Ω̂ =
(
β̂, α̂, η̂, v̂

)
, Û(t) and Ĥ(y) = (Ĥ1(y1), · · · , ĤJ(yJ), Ĥs(t)), re-

spectively. Under regularity conditions, ||Ω̂− Ω0|| → 0, ||Û − U0|| → 0, supt∈[0,τ ] |Ĥs(t)−

H0s(t)| → 0 and
∑J

j=1 supyj∈Dj |Ĥj(yj)−H0j(yj)| → 0 almost surely.

Theorem IV.2. Assuming regularity conditions hold, n1/2{Ω̂−Ω0, Û(t)−U0(t), Ĥ(y)−

H0(y)} converges weakly to a zero-mean Gaussian process in Rd × RK × l∞(
∏J+1

j=1 Qj),

where Qj = {h(y) : ‖h‖BV [Dj ] ≤ 1} for j = 1, · · · , J , QJ+1 = {h(t) : ‖h‖BV [0,τ ] ≤ 1}, d is

the dimension of Ω, and ‖h‖BV [Dj ] denotes the total variation of h(·) in Dj. Furthermore,

Ω̂ and Û are asymptotically efficient.

Consider a linear functional of the NPMLE Ω̂, Û and Ĥ

n1/2

{
vT (Ω̂− Ω0, Û − U0) +

J∑
j=1

∫
wjd(Ĥj −H0j) +

∫
wJ+1d(Ĥs −H0s)

}
, (4.10)

where v is real vector, wj is the vector consisting of the values of wj(·) evaluated at the

observed outcome values corresponding to the jumps of for Ĥj, and {dĤj} is the vector

of jump sizes at the observed outcome values, for j = 1, · · · , J respectively. For each of

the j outcomes, wj(y) is in BV [Dj]; wJ+1(t) is in BV [0, τ ].

Theorem IV.3. Under regularity conditions, the linear function (4.10) converges weakly

to a zero-mean Gaussian process with variance-covariance matrix

(vT ,wT
1 , · · · ,wT

J+1)I−1
0 (vT ,wT

1 , · · · ,wT
J+1)T which can be consistently estimated by

n(vT ,wT
1 , · · · ,wT

J+1)I−1
n (vT ,wT

1 , · · · ,wT
J+1)T , where In is the negative Hessian matrix of

the observed log-likelihood function with respect to Ω̂, Û and the jump sizes of (Ĥ1, · · · , ĤJ , Ĥs).

If we are primarily interested in Ω, the profile likelihood method (Murphy and Van der

Vaart (2000)) can be used. Let lpr(Ω) = `n(Ω, Û(Ω), Ĥ(Ω)|Y,Z) be the profile log-

likelihood function for Ω.
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Theorem IV.4. Assuming the regularity conditions hold, for εn = Op(n
−1/2) and any

vector v, −{lpr(Ω̂ + εnv)−2lpr(Ω̂) + lpr(Ω̂− εnv)}/nε2
n converges in probability to vTΣ−1v,

where Σ is the asymptotic covariance matrix of
√
n(Ω̂− Ω0).

The profile likelihood lpr(Ω) can be calculated via the EM-DCA algorithm by holding Ω

fixed. The negative second-order numerical difference of the profile log-likelihood function

at Ω is used to estimate the inverse covariance matrix. Specifically, the (i, j)th element

of the inverse covariance matrix can be consistently estimated by

−{lpr(Ω̂ + εnei + εnej)− lpr(Ω̂ + εnei − εnej)− lpr(Ω̂− εnei + εnej) + lpr(Ω̂)}/ε2
n

where ei and ej are the ith and jth canonical basis vectors respectively. Theorem IV.4

can be verified by closely following the lines of Zeng and Lin (2010) Section 9 and Murphy

and Van der Vaart (2000).

4.5 Simulation Study

A Monte Carlo simulation study was conducted to examine the finite-sample perfor-

mance of the parameter estimates obtained by the proposed model.

For each time point t = 0, 1, 2, 3, we generated two continuous outcome Y2, Y6, and four

ordinal outcomes Y1, Y3, Y4 and Y5, each with five levels, from the conditional cumulative

probability function. The continuous outcome was generated using inverse CDF transform

sampling. The ordinal outcomes were generated by random sampling with level-specific

probability.

The simulation settings are as follows. The true population average disease trajectory

is specified as U(t) = exp(0.5t). The shared latent variable ai was generated from a

log-Gamma distribution with subject-specific shape eη1Zi3 and rate eη2Zi3 where the true

parameter values are specified as η1 = 1 and η2 = 1.7. The shared latent variable bi was
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generated from a log-Gamma(η3, η3) distribution with the true η3 = 2. We consider three

covariates: Zi1 ∼ N(0, 1), Zi2 ∼ Binom(0.5) and Zi3 ∼ Binom(0.5). The true Hj(y) =
1

2
y2

for j = 2, 6 and the true Hj(y) =
1

4
y2 for j = 1, 3, 4, 5. The covariate effect for each

outcome is of the following forms: γi1 = 1, γi2 = eβ2Zi2 , γi3 = eβ3Zi3 , γi4 = eβ4Zi1 , γi5 =

eβ5Zi2 , γi6 = eβ6Zi3 , where the true parameters are β2 = 1, β3 = −0.5, β4 = −1, β5 = 1 and

β6 = 0.5. The true factor loading parameters are α1 = 1, α2 = 0.8, α3 = 0.6, α4 = 1, α5 =

1 and α6 = 1.

A single simulated dataset consists of longitudinal outcomes and corresponding co-

variates as {Yijk, Zij} for i = 1, · · · , n, j = 1, · · · , 6, k = 1, · · · , 4 with time points at

t1 = 0, t2 = 1, t3 = 2, t4 = 3. We examined the performance of estimation for the pro-

posed model under the sample size of n = 100 and n = 200; each was replicated 500

times. Standard errors were obtained from the numerically evaluated Hessian matrix at

the solution.

The results of the simulation study are summarized in Table 4.1. The proposed estima-

tion and inference procedures perform well with diminishing bias as sample sizes increases,

and coverage probability at 95% nominal level. With the larger sample size, we see better

agreement between empirical standard deviation (ESD) and asymptotic average standard

errors (ASE). This suggests that the asymptotic approximation of the covariance matrix

from the profile likelihood is reasonable for the sample size of n = 100 or larger.

4.6 Real Data Analysis: Pain Centrality Trajectories on Pelvic

Pain Patients

The proposed longitudinal joint modeling approach was applied to measure pain cen-

trality trait trajectory of patients undergoing hysterectomy as a treatment for pelvic

pain. The proposed model allows us to estimate the population pain centrality trajectory

over time for pelvic pain patients and further allows us to explain the heterogeneity of
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Table 4.1: Simulation results from the proposed longitudinal joint model. β1 to β6 are
regression coefficients representing the covariate effects on the outcomes Y1 to Y6, respec-
tively. α1 to α6 are factor loadings for the outcome Y1 to Y6, respectively; η1, η2 are
regression coefficient effects on the log-Gamma distribution shape and rate parameters
for the shared latent variable ai; η3 is the shape and rate parameter of the log-Gamma
distribution for the shared latent variable bi. All the outcomes Y1 to Y6 are generated at
time points t = 0, 1, 2, 3. The results are based on 500 simulated datasets with sample
size of n = 100 and n = 200.

n Outcome Type parameter Truth Avg. est. ESD ASE 95% CP
100 Y1 ordinal β1 0

Y2 continuous β2 1 1.01 0.20 0.20 0.94
Y3 ordinal β3 -0.5 -0.52 0.20 0.20 0.95
Y4 ordinal β4 -1 -1.01 0.13 0.13 0.95
Y5 ordinal β5 1 1.02 0.24 0.23 0.94
Y6 continuous β6 0.5 0.51 0.21 0.21 0.95
Y1 ordinal α1 1
Y2 continuous α2 0.8 0.80 0.09 0.09 0.94
Y3 ordinal α3 0.6 0.61 0.09 0.09 0.95
Y4 ordinal α4 1 1.00 0.12 0.12 0.95
Y5 ordinal α5 1 1.01 0.13 0.12 0.94
Y6 continuous α6 1 1.00 0.12 0.11 0.94

ai shape η1 1 1.14 0.50 0.46 0.97
latent variable rate η2 1.7 1.85 0.59 0.56 0.97

bi shape/rate η3 2 2.05 0.44 0.43 0.95
200 Y1 ordinal β1 0

Y2 continuous β2 1 1.01 0.14 0.14 0.96
Y3 ordinal β3 -0.5 -0.50 0.15 0.14 0.94
Y4 ordinal β4 -1 -1.01 0.09 0.09 0.96
Y5 ordinal β5 1 1.01 0.15 0.16 0.96
Y6 continuous β6 0.5 0.50 0.15 0.15 0.95
Y1 ordinal α1 1
Y2 continuous α2 0.8 0.80 0.07 0.07 0.95
Y3 ordinal α3 0.6 0.60 0.06 0.06 0.94
Y4 ordinal α4 1 1.00 0.09 0.09 0.95
Y5 ordinal α5 1 1.01 0.09 0.09 0.95
Y6 continuous α6 1 1.00 0.08 0.08 0.96

ai shape η1 1 1.06 0.30 0.29 0.97
latent variable rate η2 1.7 1.76 0.38 0.35 0.95

bi shape/rate η3 2 2.05 0.32 0.30 0.95

Avg. est.: average of Monte Carlo estimates of the true parameter values over the 500 simulations
ESD: empirical standard deviation based on Monte Carlo estimates
ASE: average of numerically estimated standard errors
95% CP: 95% coverage probability
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patients’ longitudinal outcomes by estimating patient-specific pain centrality disease pro-

gression measure over time. The proposed joint shared variable model uses ad-hoc 2011

Fibromyalgia (FM) Survey Criteria (designed to characterize a similar latent construct)

as the baseline instrument (Y1), and extracts information from three other pain centrality

relevant outcomes.

The study sample consists of n = 160 female pelvic pain patients. We consider four

longitudinal responses of mixed scales collected prior to hysterectomy, at one month after

hysterectomy, and at three months after hysterectomy. Fibromyalgia (FM) Survey Cri-

teria score was included as the baseline instrument (Y1). Opioid use (OME), BPI pain

severity score, and BPI surgical pain score are the other three pain centrality relevant

outcomes included in the model.

The distribution of each outcome is presented in Figure 4.1. All of them are right-

skewed, however, the degree of skewness is different among different outcomes. Notice

that 90% of the longitudinal opioid use measurements are 0. One patient had extremely

heavy opioid use of 120 at baseline and one month after hysterectomy, and the usage

increased to 135 three months after hysterectomy. Our model is robust to outliers across

all times because of nonparametric transformation of the observable outcomes. While

analysis results from traditional latent variable models with pre-specified link may be

dominated by influential outlier trajectories.

We include age centered at 47 years old as a covariate for all the responses in our

model. The unit for age is per 20 years. The subject-specific latent trait at baseline, ai, is

assumed to follow a log-Gamma
(
eη1Agei , eη2Agei

)
distribution. The subject-specific disease

progression rate bi is assumed to follow a log-Gamma(η3, η3) distribution. The estimation

results of the proposed longitudinal joint latent trait model are shown in Table 4.2.

From the estimation results, we see that younger people feel more overall pain in this

sample. In addition, age has significant effects on the rate parameters of the baseline

latent trait distribution. The factor loadings are all close to 1, implying the FM score,
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Figure 4.1: Distribution of longitudinal pain responses: Fibromyalgia (FM) Survey Cri-
teria score, Opioid use, BPI pain severity score, and BPI surgical pain score. All of them
are right-skewed but with different degrees of skewness. Notice that 90% of the opioid use
measurements are 0. One patient has extremely heavy opioid use over time: 120 prior to
and at one month after hysterectomy, and 135 at three month after hysterectomy

opioid usage, BPI pain severity and BPI surgical pain contribute approximately equally

to the construct of latent trait trajectory.

The model predicted subject-specific latent variable log(Ui(t)) represents how pain-

uncentralized a person is at time t, with − log(Ui(t)) representing pain centrality at time

t. To see the relationship between the model-based pain centrality score and pain re-

lated responses in the model, Figure 4.2 shows a set of scatter plots of model-based pain

centrality score predictions versus Fibromyalgia Survey Criteria (first row), opioid use

(second row), BPI overall pain severity (third row), and BPI surgical pain (fourth row)

at the baseline, at one month after hysterectomy, and at three months after hysterec-
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Table 4.2: Parameter estimates, factor loadings, standard error and p-value from analysis
of n = 160 female pelvic pain patients with responses measured prior to hysterectomy,
one month after hysterectomy, and three months after hysterectomy. The unit for age is
per 20 years. Age is centered at 47 years old.

Response Covariate Param Est Standard Error p
Fibromyalgia survey criteria Age 0

Opioid use Age −0.514 0.356 0.149
BPI pain severity Age −0.737 0.249 0.003
BPI surgical pain Age 0.054 0.291 0.853

Response Factor loading Standard Error p
Fibromyalgia survey criteria 1

Opioid use 0.897 0.153 < 0.0001
BPI pain severity 1.182 0.131 < 0.0001
BPI surgical pain 1.055 0.139 < 0.0001

Latent trait distribution parameter Covariate Param Est Standard Error p
η1 Age 0.020 0.299 0.947
η2 Age −0.828 0.401 0.039
η3 2.934 0.716

tomy. The model-based pain centrality score is positively correlated with Fibromyalgia

Survey Criteria, opioid use, BPI overall pain severity, and BPI surgical pain across all

time points. For people with low centrality and low pain, there is still a nice resolution to

the positive correlation between model-based centrality and all four pain responses across

all time points.

Figure 4.3 shows a set of scatter plots of Fibromyalgia Survey Criteria versus the

model-based pain centrality score (first row), opioid use (second row), BPI overall pain

severity (third row), and BPI surgical pain (fourth row) at the baseline, at one month

after hysterectomy, and at three months after hysterectomy. The Fibromyalgia Survey

Criteria is positively correlated with the model-based pain centrality score, opioid use,

BPI overall pain severity, and BPI surgical pain across all time points, but the correlation

with the observed phenotype outcomes is not as strong compared to the mode-based pain

centrality. Compared to the Fibromyalgia Survey Criteria, the model-based centrality

score in general is better aligned with BPI overall pain severity and BPI surgical pain.

91



−2 0 1 2 3 4 5

0
5

10
20

Baseline

 

F
ib

ro
m

ya
lg

ia
 S

ur
ve

y 
C

rit
er

ia

−2 0 2 4

0
5

10
15

One month after 
 hysterectomy

Pain centrality score

 

−4 −2 0 2 4

0
5

10
15

Three months after 
 hysterectomy

 

−2 0 1 2 3 4 5

0
40

80
12

0

 

O
pi

oi
d 

us
e

−2 0 2 4

0
40

80
12

0

Pain centrality score

 

−4 −2 0 2 4

0
40

80
12

0

 

−2 0 1 2 3 4 5

0
2

4
6

8
10

 

B
P

I o
ve

ra
ll 

pa
in

 s
ev

er
ity

−2 0 2 4

0
2

4
6

Pain centrality score

 

−4 −2 0 2 4

0
2

4
6

8

 

−2 0 1 2 3 4 5

0
2

4
6

8
10

 

B
P

I s
ur

gi
ca

l p
ai

n

−2 0 2 4

0
2

4
6

Pain centrality score

 

−4 −2 0 2 4

0
2

4
6

8

 

Figure 4.2: Scatterplots of the model-based pain centrality score − log(Ui(t)) vs. Fi-
bromyalgia Survey Criteria (first row), opioid use (second row), BPI overall pain severity
(third row), and BPI surgical pain (fourth row) at the baseline, one month after hysterec-
tomy, and three months after hysterectomy.

92



From both Figure 4.2 and Figure 4.3, we see that there is generally more variability

and less correlation at one month after hysterectomy between centrality and pain related

responses, as compared to other time points. This is probably because of the noise induced

by transient acute pain effects soon after the surgery.

Figure 4.4 shows the trajectory of the model-based pain centrality score − log(Ui(t))

over time grouped by quartiles of the predicted subject-specific baseline score −ai. Pa-

tients were grouped into four equal sized clusters based on the predicted 1st quartile (Q1),

the median (Q2) and the 3rd quartile (Q2) of baseline scores −ai. Groups are labeled

based on baseline score as follows. ”High”: −ai ≥ Q3; ”Medium High”: Q2 ≤ −ai < Q3;

”Medium Low”: Q1 ≤ −ai < Q2; ”Low”: −ai < Q1. The black triangle points represent

the sample mean of the predicted measure at each time point. From Figure 4.4 we can

see that on average pain centrality decreases over time. However, there is large variability

in the pain centrality trajectory for people who are more central at baseline.

Figure 4.5 shows the trajectory of the Fibromyalgia Survey Criteria (FM) over time

grouped by quartiles of the baseline FM. We can see that for baseline ”High”, ”Medium

High”, and ”Medium Low” groups, the FM decreases over time on average, which is

consistent with the model-based centrality score. However, for the ”Low” baseline group,

on average the FM goes up at one month and decreases at three month after hysterectomy,

while the mode-based centrality score decreases all the way for the ”Low” group. This may

imply that model-based centrality is more sensitive to sub-clinical centrality compared to

FM. This is expected because FM is designed for the diagnosis of fibromyalgia where

substantial widespread pain is a classic symptom. Similar to model-based centrality,

we also see greater variability in the FM trajectory for people who have high FM at

baseline. Even though Figure 4.4 and Figure 4.5 convey similar messages over time, the

FM trajectory in Figure 4.5 is a lot noisier than the model-based trajectory in Figure

4.2, implying the model-based centrality trajectory summarizes the longitudinal pain

information more precisely compared to the FM score.
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Figure 4.3: Scatterplots of Fibromyalgia Survey Criteria versus model-based pain central-
ity score (first row), opioid use (second row), BPI overall pain severity (third row), and
BPI surgical pain (fourth row) at the baseline, one month after hysterectomy, and three
months after hysterectomy.
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Figure 4.4: Model-based pain centrality trajectory − log(Ui(t)) by baseline score −ai.
Patients were grouped into four equal sized clusters based on the 1st quartile (Q1), median
(Q2) and the 3rd quartile (Q2) of baseline scores−ai. Groups are labeled based on baseline
score as follows: ”High”: −ai ≥ Q3; ”Medium High”: Q2 ≤ −ai < Q3; ”Medium Low”:
Q1 ≤ −ai < Q2; ”Low”: −ai < Q1. The black triangle points represent the sample mean
at each time point.

4.7 Discussion

In this article, we proposed a flexible joint model framework for multiple longitudinal

outcomes of mixed scales and time-to-event data, incorporating shared latent trait trajec-

tory. A logistic link is used to accommodate nonparametrically transformed continuous,

ordinal, count, multinomial outcomes. A proportional odds survival model is used to

model the survival data. We provided an example of using the random effects to link be-

tween the survival outcome and the longitudinal responses of mixed types. However, our

joint modeling framework is flexible in the association structure between longitudinal and
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Figure 4.5: Fibromyalgia Survey Criteria (FM) trajectory by baseline FM score. Patients
were grouped into four equal sized clusters based on the 1st quartile (Q1), median (Q2)
and the 3rd quartile (Q2) of baseline FM. Groups are labeled based on baseline FM score
(FM0) as follows: ”High”: FM0 ≥ Q3; ”Medium High”: Q2 ≤ FM0 < Q3; ”Medium
Low”: Q1 ≤ FM0 < Q2; ”Low”: FM0 < Q1. The black triangle points represent the
sample mean at each time point.

survival outcomes. Hickey et al. (2016) and Rizopoulos (2012) provided a comprehensive

discussion of different association structures that can be potentially incorporated into our

model. In addition, the proposed joint model has the flexibility to extend to multiple

correlated event times data or a competing risk data.

The resulting parametric and nonparametric estimators are n−1/2 consistent and asymp-

totically normal. The form of the subject-specific latent trait trajectory Ui(t) enjoys a

flexible nonparametric specification. We provided an example of using random effects

of time to describe the trajectory. However, the latent trait trajectory can be modeled

as a stochastic process. One advantage of a joint model is that our model is robust to
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unbalanced longitudinal data and we can estimate subject-specific latent trait trajectory

even when some of the outcomes are missing.

We have devised numerically efficient and stable estimation and inference procedures

based on the maximum likelihood, EM algorithm, DCA algorithm, and classical optimiza-

tion procedures applied to a finite dimensional profile likelihood. These methods allowed

us to conduct a simulation study and to study the dynamic latent trait of pain centrality

in patients undergoing hysterectomy. We developed a model-based measurement of the

latent trait as a subject-specific function predicted using the model, given the multivariate

longitudinal phenotype observed on the subject. Compared to the ad-hoc Fibromyalgia

score proposed earlier to characterize pain centrality, our model-based measure of the

latent trait is better correlated with pain responses, and is more sensitive in less central

patients who experience less pain.
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CHAPTER V

Conclusion

Latent variable models have been extensively employed to study the unobservable

subject-specific trait and to account for the unobserved heterogeneity between subjects.

Existing cure models are limited to modeling static cure status. Most of the latent trait

models that accommodate multivariate responses of different scales either were developed

under Gaussian framework or require explicitly specified link within exponential family.

In this dissertation, we constructed a dynamic cure model that allowed the cure status

to change over time. We also proposed a flexible shared latent variable model to ac-

commodate nonparametrically transformed continuous, ordinal, count, multinomial and

time-to-event outcomes, under cross-sectional and longitudinal settings. The proposed

share latent variable models do not rely on Gaussian assumption and is generic regard-

ing the distribution of the latent variable. The methods proposed in this dissertation

represents a contribution to statistical methodology useful for latent variable models,

specifically the relaxation of parametric assumptions in statistical models.

Regarding the dynamic cure modeling framework, we modeled the conditional hazard

function for terminal event as a change-point function driven by the latent event of cure

as an illustrative example. In general, any stochastic hazard process U(t) that has an

absorbing boundary of 0 leads to a cure model. The proposed model framework has the

flexibility to incorporate a wide variety of dynamic cure models. We model the time to
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cure and time to failure with a proportional hazard model. Other link functions can be

naturally incorporated. Notice that if the time to cure model is itself a cure model, the

baseline hazard for cure H2 is bounded, and the cure event may not happen. Predicting

something that is fully unobserved, such as the time to cure, should be treated with

caution because the model typically has less power for parameters associated with latent

components. However, the model-based predictions represent a useful tool to generate

hypotheses on the latent effects and to guide further confirmatory studies pursuing more

explicit measurements.

The shared latent variable models developed in this dissertation provide a flexible sta-

tistical framework to joint modeling nonparametrically transformed continuous, ordinal,

count, multinomial and time-to-event responses. As an example, we consider only one

latent factor in our model. However, our model can be extended to allow for multiple fac-

tors. Extra care should be exercised regarding model identifiability and factor selections.

Under the longitudinal setting, we provided an example of using the random effects to link

between the survival outcome and the longitudinal responses of mixed types. However,

our joint modeling framework is flexible in the association structure between longitudinal

and survival outcomes. In addition, the proposed joint model has the flexibility to extend

to multiple correlated event times data or a competing risk data. In addition, the form of

the subject-specific latent trait trajectory Ui(t) enjoys a flexible nonparametric specifica-

tion. We provided an example of using random effects of time to describe the trajectory.

However, the latent trait trajectory can be modeled as a stochastic process. One advan-

tage of a joint model is that our model is robust to unbalanced longitudinal data and we

can estimate subject-specific latent trait trajectory even when some of the outcomes are

missing. Application to hysterectomy patient data indicated that the proposed method

can offer an improved model-based measurement of the latent trait that better utilizes the

information encoded in the multivariate multi-scale observed phenotype. Compared to

the ad-hoc Fibromyalgia score proposed earlier to characterize pain centrality, our model-

99



based measure of the latent trait is better correlated with pain responses, and is more

sensitive in less central patients who experience less pain.

Although we illustrated the proposed models using examples in cancer and pain re-

searches, these models can potentially be adapted to a wide spectrum of problems. Pre-

cise measurement of subject-specific latent trait that account for population heterogeneity

certainly play an important role in precision medicine. The methods in this dissertation

enables us to characterize the effect of dynamic factor on latent cure process, to extract

useful information from a variety of observable responses, to explain the unobserved het-

erogeneity, to make prediction and react to potential future trait progression. We hope

that this dissertation contributes to statistical methods for cure models and has broader

relevance in the statistical literature on latent variable models.
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APPENDIX A

A Semiparametric Joint Survival Model with A

Time-Dependent Cure Process

A.1 Joint and Marginal Distributions of Proposed Model

Based on the proposed model hazard functions (2.3) and (2.4), we can show the

following model quantities:

1. The marginal density function and survival function of time to cure Tu:

fTu(tu) = η(tu)h2(tu)e
−

∫ tu
0 η(x)dH2(x)

STu(tu) = e−
∫ tu
0 η(x)dH2(x)

2. The conditional density function and conditional survival function of time to failure

T given Tu:

f(t | Tu) = 1(Tu > t)θ(t)h1(t)e−
∫ t
0 θ(x)dH1(x)

S(t | Tu) = e−
∫ t
0 1(Tu>x)θ(x)dH1(x)
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3. The joint density function of time to failure and time to cure (T, Tu):

fT,Tu(t, tu) = f(t | Tu)fTu(tu)

= 1(Tu > t)θ(t)η(tu)h1(t)h2(tu)e
−

∫ t
0 θ(x)dH1(x)e−

∫ tu
0 η(x)dH2(x)

4. The marginal density and survival function of time to failure T :

f(t) = E {f(t | Tu)}

=

∞∫
t

θ(t)h1(t)e−
∫ t
0 θ(x)dH1(x)η(tu)e

−
∫ tu
0 η(x)dH2(x)dH2(tu)

= θ(t)h1(t)e−
∫ t
0 θ(x)dH1(x)e−

∫ t
0 η(x)dH2(x)

S(t) = E {S(t | Tu)}

=

∞∫
t

η(tu)e
−

∫ t
0 θ(x)dH1(x)e−

∫ tu
0 η(x)dH2(x)dH2(tu)+

t∫
0

η(tu)e
−

∫ tu
0 θ(x)dH1(x)e−

∫ tu
0 η(x)dH2(x)dH2(tu)

= e−
∫ t
0 θ(x)dH1(x)e−

∫ t
0 η(x)dH2(x)+

t∫
0

η(tu)e
−

∫ tu
0 θ(x)dH1(x)e−

∫ tu
0 η(x)dH2(x)dH2(tu)

A.2 Prediction of Survival Function for The Onset of Cure

From prediction perspective, we are interested in the conditional survival function of

the onset of cure given observed information. The prediction is given to those who do

not experience the failure event (δ = 0). Given observed data (X, δ = 0) and estimates
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of η, θ, {dH1}, and {dH2}, the survival function of time to cure Tu can be derived as

STu(tu|X, δ = 0) =

∫∞
tu
L0(s)η(s)e−

∫ s
0 η(y)dH2(y)dH2(s)∫∞

0
L0(s)η(s)e−

∫ s
0 η(y)dH2(y)dH2(s)

, (S.1)

where L0 is the complete data likelihood (2.9) assuming Tu is known.

Consider a subject who is censored at time X. Note the denominator of (S.1) is the

expectation of the conditional survival function (2.5) with respect to Tu. Therefore, the

denominator of (S.1) is the marginal survival function (2.7). The numerator of (S.1) can

be derived under two conditions below:

1. As tu ≤ X,

∞∫
tu

L0(s)η(s)e−
∫ s
0 η(y)dH2(y)dH2(s)

=

∞∫
X

η(s)e−
∫X
0 θ(y)dH1(y)e−

∫ s
0 η(y)dH2(y)dH2(s) +

X∫
tu

η(s)e−
∫ s
0 θ(y)dH1(y)e−

∫ s
0 η(y)dH2(y)dH2(s)

=e−
∫X
0 θ(y)dH1(y)e−

∫X
0 η(y)dH2(y) +

X∫
tu

η(s)e−
∫ s
0 θ(y)dH1(y)e−

∫ s
0 η(y)dH2(y)dH2(s)

2. As tu > X,

∞∫
tu

L0(s)η(s)e−
∫ s
0 η(y)dH2(y)dH2(s) = e−

∫X
0 θ(y)dH1(y)e−

∫ tu
0 η(y)dH2(y)

Combing the results in (a) and (b), we obtain the survival function for the onset of cure

Tu given a censored observation at time X as

STu(tu|X, δ = 0) =
e−

∫X
0 θ(y)dH1(y)e−

∫X∨tu
0 η(y)dH2(y) +

∫ X∨tu
tu

η(s)e−
∫ s
0 θ(y)dH1(y)e−

∫ s
0 η(y)dH2(y)dH2(s)

e−
∫X
0 θ(y)dH1(y)e−

∫X
0 η(y)dH2(y) +

∫ X
0
η(s)e−

∫ s
0 θ(y)dH1(y)e−

∫ s
0 η(y)dH2(y)dH2(s)
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A.3 Functional Derivatives

Consider a functional J(f), where f = f(x) is a function from a certain class. Define

a Fréchet differential δs (variation of the functional) taken in the direction of a specific

function g(x | s) = 1(x > s), a unit-jump function at time x = s, where s is treated as a

parameter. Consider a one-dimensional εsubmodel f + εg that perturbs f in the direction

g by the amount of a real number ε. A necessary condition for J to be maximized at f is

that δsJ = 0 uniformly over s, where δs is defined as

δsJ(f, g) =
∂J(f + εg)

∂ε

∣∣∣∣
ε=0, g=1(·>s)

. (S.2)

Suppose now that J
(
f̄(t)

)
=
∫ t

0
ϕ (f(x)) df(x) is a functional that depends on the

past trajectory of the function f and ϕ(y) is a differentiable function. The operator δs

differentiates over the local behavior of f at the point s, and is zero if the perturbation of

f does not occur at this location. When differentiating over the vector Ω = (β,H1, H2)T

, we will use the differential operator ∆sJ(Ω) = (
∂J

∂β
, δsJ

(
H̄1

)
, δsJ

(
H̄2

)
), whose last

element is a function of s, and δs is with respect to H1 or H2. For the specific models

of this paper, differentiating functions and expectations of a linear functional of the form

J
(
f̄(t)

)
=
∫ t

0
ϕ (f(x)) df(x) is of interest. Applying (S.2), we have

δsJ
(
f̄(t)

)
=
∂J
(
f̄(t)

)
∂f(s)

=

t∫
0

ϕ′ (f(x)) df(x)
∂f + εg

∂ε

∣∣∣∣
ε=0,g=1(x>s)

+

t∫
0

ϕ (f(x)) d
∂f + εg

∂ε

∣∣∣∣
ε=0,g=1(x>s)

=

t∫
0

ϕ′ (f(x)) df(x)1(x > s) +

t∫
0

ϕ (f(x)) d1(x > s)

= 1(x > s)

 t∫
0

ϕ′ (f(x)) df(x) + ϕ (f(s))

 , s > 0
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This definition of the functional derivative corresponds to taking the derivative with

respect to a jump in H at timepoint t when H is a step function. Throughout the paper

we assume that integration and differentiation are exchangeable, and this can be verified

directly for all relevant functionals of the paper. Expression (S.2) is valid whether or not f

is a continuous or step function. In the case of step-function, s is restricted to jump points

of f to make g in the same class. Then the local functional derivative δsJ =
∂J

∂dH(s)
for

any point of jump s, which is the traditional differentiation over the jump sizes typically

used to derive Nonparametric Maximum Likelihood estimates from the log-likelihood.

This observation endows the differentiation with the meaning of δs =
∂

∂dH(s)
in the

continuous case as well.

A.4 EM Algorithm

We use the methods of EM algorithm in Tsodikov (2003) to estimate the infinite

dimensional baseline hazard function ({dH1(β)}, {dH2(β)}). Consider a single observation

data (X, δ), it’s contribution to the joint likelihood of time to failure and time to cure can

be expressed as

L0 ({dH1}, {dH2} | X, δ, Tu) f(Tu) =

[1(Tu > X)θ(X)dH1(X)]δe−
∫X
0 1(Tu>s)θ(s)dH1(s)η(Tu)dH2(Tu)e

−
∫ Tu
0 η(x)dH2(x) (S.3)

The rest of this section is organized as follows. For baseline hazard function of failure

{dH1}, we first drive the E step for the censored and failed cases respectively, then we

derive the M step to maximize the likelihood with respect to {dH1}, which results in a

closed-form expression similar to the weighted Breslow-type estimators (Chen (2009)).

The same steps were applied to the derivation of EM algorithm for baseline hazard func-
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tion of cure {dH2}. We introduce the following notations

G
(k)
1i (u, v) = e−

∫ u
0 θi(y)dH

(k)
1 (y)e−

∫ v
0 ηi(y)dH

(k)
2 (y)

G
(k)
2i (u, v) =

v∫
u

ηi(x)e−
∫ x
0 θi(y)dH

(k)
1 (y)e−

∫ x
0 ηi(y)dH

(k)
2 (y)dH

(k)
2 (x)

p
(k)
i (s) =

[
G

(k)
1i (Xi, Xi) +G

(k)
2i (s+, Xi)

G
(k)
1i (Xi, Xi) +G

(k)
2i (0, Xi)

]1−δi

,

Ψ
(k)
i (s) = Yi(s)

[
G

(k)
1i (Xi, Xi)−G(k)

1i (s, s) +G
(k)
2i (s,Xi)

G
(k)
1i (Xi, Xi) +G

(k)
2i (0, Xi)

]1−δi

,

µ
(k)
i (s) =

[
Yi(s)G

(k)
1i (s, s) + (1− Yi(s))G(k)

1i (Xi, s)

G
(k)
1i (Xi, Xi) +G

(k)
2i (0, Xi)

]1−δi [
(1− Yi(s))

G
(k)
1i (Xi, s)

G
(k)
1i (Xi, Xi)

]δi

A.4.1 EM algorithm for {dH1}

Applying the functional derivative definition (S.2) to the joint log likelihood (S.3) with

respect to dH1(s), we obtain the conditional score function for dH1(s) as

U0,dH1(s) = δs logL0({dH1}, {dH2} | Tu) + δs log f(Tu)

=
δ1(X = s)

dH1(s)
− θ(s)1(Tu > s)1(X ≥ s)

=
dN(s)

dH1(s)
− Y (s)θ(s)1(Tu > s)

1. E step

Consider an observation censored at time X and δ = 0. The likelihood contribution

conditional on Tu is L0 = e−
∫X
0 1(Tu>y)θ(y)dH1(y). The unconditional score is

UdH1(s) = E
[
U0,dH1(s)

∥∥∥L(k)
0

]
= −Y (s)θ(s)

E
[
1(Tu > s)L

(k)
0

]
E
[
L

(k)
0

]
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Since E operator only involve parameters from kth iteration but not from (k + 1)th

iteration, we keep the iteration index for (k + 1)th iteration as needed, and drop

iteration index (k) for brevity. Therefore, in the rest of EM algorithm section,

any dH1 and dH2 without an iteration index implies the kth iteration. Note the

denominator E
[
L

(k)
0

]
is the marginal survival function (2.7). The numerator of the

unconditional score is

E
[
1(Tu > s)L

(k)
0

]
= E

[
1(Tu > s)e−

∫X
0 1(Tu>y)θ(y)dH1(y)

]
=

∞∫
s+

e−1(X<tu)
∫X
0 θ(y)dH1(y)−1(X≥tu)

∫ tu
0 θ(y)dH1(y)η(tu)e

−
∫ tu
0 η(y)dH2(y)dH2(tu)

=

∞∫
X+

η(tu)e
−

∫X
0 θ(y)dH1(y)e−

∫ tu
0 η(y)dH2(y)dH2(tu)+

X∫
s+

η(tu)e
−

∫ tu
0 θ(y)dH1(y)e−

∫ tu
0 η(y)dH2(y)dH2(tu)

= e−
∫X
0 θ(y)dH1(y)e−

∫X
0 η(y)dH2(y)+

X∫
s+

η(tu)e
−

∫ tu
0 θ(y)dH1(y)e−

∫ tu
0 η(y)dH2(y)dH2(tu)

= G
(k)
1 (X,X) +G

(k)
2 (s+, X)

Therefore, the contribution of an observation censored at time X to the uncondi-

tional score is

UdH1(s) = −Y (s)θ(s)
G

(k)
1 (X,X) +G

(k)
2 (s+, X)

G
(k)
1 (X,X) +G

(k)
2 (0, X)

(S.4)

Now we consider an observation failed at time X and δ = 1. The likelihood con-

tribution conditional on Tu is L0 = 1(Tu > X)θ(X)dH1(X)e−
∫X
0 θ(y)dH1(y). The
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unconditional score is

UdH1(s) = E
[
U0,dH1(s)

∥∥∥L(k)
0

]
=

dN(s)

dH
(k+1)
1 (s)

− Y (s)θ(s)
E
[
1(Tu > s)L

(k)
0

]
E
[
L

(k)
0

]
Note the denominator E

[
L

(k)
0

]
is the marginal density function (2.8). The numer-

ator of the unconditional score is

Y (s)E
[
1(Tu > s)L

(k)
0

]
= Y (s)E

[
1(Tu > s)1(Tu > X)θ(X)dH1(X)e−

∫X
0 θ(y)dH1(y)

]
=

∞∫
s+

Y (s)1(tu > X)θ(X)dH1(X)e−
∫X
0 θ(y)dH1(y)η(tu)e

−
∫ tu
0 η(y)dH2(y)dH2(tu)

= Y (s)

∞∫
X+

θ(X)dH1(X)e−
∫X
0 θ(y)dH1(y)η(tu)e

−
∫ tu
0 η(y)dH2(y)dH2(tu)

= Y (s)θ(X)dH1(X)e−
∫X
0 θ(y)dH1(y)e−

∫X
0 η(y)dH2(y)

The contribution of an observation failed at time X to the unconditional score is

UdH1(s) =
dN(s)

dH
(k+1)
1 (s)

− Y (s)θ(s) (S.5)

Combing the above results (S.4) and (S.5), we obtain the marginal score function

for dH1(s) as

UdH1(s) =
dN(s)

dH
(k+1)
1 (s)

− Y (s)θ(s)

[
G

(k)
1 (X,X) +G

(k)
2 (s+, X)

G
(k)
1 (X,X) +G

(k)
2 (0, X)

]1−δ

=
dN(s)

dH
(k+1)
1 (s)

− Y (s)θ(s)p
(k)
i (s)

2. M step

Suppose there are n independent observations with data (Xi, δi) for i = 1 · · ·n. The

estimator for dH
(k+1)
1 (s) can be obtained by solving

∑n
i=1 UdH1(s) = 0. The solution
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results in a Breslow-type estimator

dH
(k+1)
1 (s) =

∑n
i=1 dNi(s)∑n

i=1 Yi(s)θi(s)p
(k)
i (s)

This constitutes a self-consistent equation that can be solved iteratively (Tsodikov

(2003)).

A.4.2 EM algorithm for {dH2}

Again, we consider a single observation with data (X, δ). To derive the EM algorithm

for dH2, we first apply the functional derivative definition (S.2) to the joint log likelihood

(S.3) with respect to dH2(s) to obtain the conditional score function for dH2(s) as

U0,dH2(s) = δs logL0({dH1}, {dH2} | Tu) + δs log f(Tu)

=
1(Tu = s)

dH2(s)
− η(s)1(Tu ≥ s)

1. E step

The unconditional score for dH2 is the expectation of the conditional score function

with respect to Tu:

UdH2(s) = E
[
U0,dH2(s)

∥∥∥L(k)
0

]
=

1

dH
(k+1)
2

E
[
1(Tu = s)L

(k)
0

]
E
[
L

(k)
0

] − η(s)
E
[
1(Tu ≥ s)L

(k)
0

]
E
[
L

(k)
0

]
(S.6)

Consider an observation censored at time X and δ = 0. The likelihood contribution

conditional on Tu is L0 = e−
∫X
0 1(Tu>y)θ(y)dH1(y). The denominator E

[
L

(k)
0

]
is the

marginal survival function (2.7). One of the numerator E
[
1(Tu = s)L

(k)
0

]
can be
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derived as

E
[
1(Tu = s)L

(k)
0

]
= E

[
1(Tu = s)e−

∫X
0 1(Tu>y)θ(y)dH1(y)

]
=

∞∫
0

1(tu = s)e−1(X<tu)
∫X
0 θ(y)dH1(y)−1(X≥tu)

∫ tu
0 θ(y)dH1(y)η(tu)e

−
∫ tu
0 η(y)dH2(y)dH2(tu)

=

X∫
0

1(tu = s)η(tu)e
−

∫ tu
0 θ(y)dH1(y)e−

∫ tu
0 η(y)dH2(y)dH2(tu)

+

∞∫
X

1(tu = s)η(tu)e
−

∫X
0 θ(y)dH1(y)e−

∫ tu
0 η(y)dH2(y)dH2(tu)

= 1(X ≥ s)η(s)e−
∫ s
0 θ(y)dH1(y)e−

∫ s
0 η(y)dH2(y)dH

(k)
2 (s)

+ 1(X < s)η(s)e−
∫X
0 θ(y)dH1(y)e−

∫ s
0 η(y)dH2(y)dH

(k)
2 (s)

= η(s)dH
(k)
2 (s)

[
Y (s)G

(k)
1 (s, s) + (1− Y (s))G

(k)
1 (X, s)

]

Therefore, the first term in (S.6) can be written as

1

dH
(k+1)
2

E
[
1(Tu = s)L

(k)
0

]
E
[
L

(k)
0

] =
dH

(k)
2 (s)

dH
(k+1)
2 (s)

η(s)
[
Y (s)G

(k)
1 (s, s) + (1− Y (s))G

(k)
1 (X, s)

]
G

(k)
1 (X,X) +G

(k)
2 (0, X)

Next, we calculate the numerator expression of the second term E
[
1(Tu ≥ s)L

(k)
0

]
under two cases, X ≥ s and X < s, respectively.
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(a) X ≥ s;Y (s) = 1

E
[
1(Tu ≥ s)L

(k)
0

]
=

∞∫
s

e−1(X<tu)
∫X
0 θ(y)dH1(y)−1(X≥tu)

∫ tu
0 θ(y)dH1(y)η(tu)e

−
∫ tu
0 η(y)dH2(y)dH2(tu)

=

∞∫
X+

e−
∫X
0 θ(y)dH1(y)η(tu)e

−
∫ tu
0 η(y)dH2(y)dH2(tu)

+

X∫
s

η(tu)e
−

∫ tu
0 θ(y)dH1(y)e−

∫ tu
0 η(y)dH2(y)dH2(tu)

= e−
∫X
0 θ(y)dH1(y)e−

∫X
0 η(y)dH2(y) +

X∫
s

η(tu)e
−

∫ tu
0 θ(y)dH1(y)e−

∫ tu
0 η(y)dH2(y)dH2(tu)

= G
(k)
1 (X,X) +G

(k)
2 (s,X)

(b) X < s;Y (s) = 0

E
[
1(Tu ≥ s)L

(k)
0

]
=

=

∞∫
s

e−1(X<tu)
∫X
0 θ(y)dH1(y)−1(X≥tu)

∫ tu
0 θ(y)dH1(y)η(tu)e

−
∫ tu
0 η(y)dH2(y)dH2(tu)

=

∞∫
s

e−
∫X
0 θ(y)dH1(y)η(tu)e

−
∫ tu
0 η(y)dH2(y)dH2(tu)

= e−
∫X
0 θ(y)dH1(y)e−

∫ s
0 η(y)dH2(y)

= G
(k)
1 (X, s)

Combine the results (i) and (ii), we obtain the expression for the second term in
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(S.6) as

E
[
1(Tu ≥ s)L

(k)
0

]
E
[
L

(k)
0

] =
Y (s)

[
G

(k)
1 (X,X) +G

(k)
2 (s,X)

]
+ (1− Y (s))G

(k)
1 (X, s)

G
(k)
1 (X,X) +G

(k)
2 (0, X)

Therefore, the contribution of a censored observation at time X to the unconditional

score for dH2 can be written as

UdH2(s) =
dH

(k)
2 (s)

dH
(k+1)
2 (s)

η(s)
[
Y (s)G

(k)
1 (s, s) + (1− Y (s))G

(k)
1 (X, s)

]
G

(k)
1 (X,X) +G

(k)
2 (0, X)

− η(s)
Y (s)

[
G

(k)
1 (X,X) +G

(k)
2 (s,X)

]
+ (1− Y (s))G

(k)
1 (X, s)

G
(k)
1 (X,X) +G

(k)
2 (0, X)

= −η(s)Y (s)
G

(k)
1 (X,X)−G(k)

1 (s, s) +G
(k)
2 (s,X)

G
(k)
1 (X,X) +G

(k)
2 (0, X)

+

(
dH

(k)
2 (s)

dH
(k+1)
2 (s)

− 1

)
η(s)

Y (s)G
(k)
1 (s, s) + (1− Y (s))G

(k)
1 (X, s)

G
(k)
1 (X,X) +G

(k)
2 (0, X)

(S.7)

Now we consider an observation failed at time X and δ = 1. The likelihood con-

tribution conditional on Tu is L0 = 1(Tu > X)θ(X)dH1(X)e−
∫X
0 θ(y)dH1(y), so the

denominator of (S.6), E
[
L

(k)
0

]
, is the marginal density function (2.8). The term

E
[
1(Tu = s)L

(k)
0

]
can be derived as

E
[
1(Tu = s)L

(k)
0

]
= E

[
1(Tu = s)1(Tu > X)θ(X)dH1(X)e−

∫X
0 θ(y)dH1(y)

]
=

∞∫
0

1(tu = s)1(tu > X)θ(X)dH1(X)e−
∫X
0 θ(y)dH1(y)η(tu)e

−
∫ tu
0 η(y)dH2(y)dH2(tu)

= 1(X < s)θ(X)dH1(X)e−
∫X
0 θ(y)dH1(y)η(s)e−

∫ s
0 η(y)dH2(y)dH2(s)

= (1− Y (s))θ(X)dH1(X)η(s)dH
(k)
2 (s)G

(k)
1 (X, s)
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The first term in (S.6) can be written as

1

dH
(k+1)
2

E
[
1(Tu = s)L

(k)
0

]
E
[
L

(k)
0

] = (1− Y (s))η(s)
dH

(k)
2 (s)

dH
(k+1)
2 (s)

G
(k)
1 (X, s)

G
(k)
1 (X,X)

Next, we calculate the expression of the term E
[
1(Tu ≥ s)L

(k)
0

]
under two cases,

X ≥ s and X < s, respectively.

(a) X ≥ s;Y (s) = 1

E
[
1(Tu ≥ s)L

(k)
0

]
=

=

∞∫
s

1(tu ≥ s)1(tu > X)θ(X)dH1(X)e−
∫X
0 θ(y)dH1(y)η(tu)e

−
∫ tu
0 η(y)dH2(y)dH2(tu)

=

∞∫
X+

θ(X)dH1(X)e−
∫X
0 θ(y)dH1(y)η(tu)e

−
∫ tu
0 η(y)dH2(y)dH2(tu)

= θ(X)dH1(X)e−
∫X
0 θ(y)dH1(y)e−

∫X
0 η(y)dH2(y)

= θ(X)dH1(X)G
(k)
1 (X,X)

(b) X < s;Y (s) = 0

E
[
1(Tu ≥ s)L

(k)
0

]
=

=

∞∫
s

1(tu ≥ s)1(tu > X)θ(X)dH1(X)e−
∫X
0 θ(y)dH1(y)η(tu)e

−
∫ tu
0 η(y)dH2(y)dH2(tu)

=

∞∫
s

θ(X)dH1(X)e−
∫X
0 θ(y)dH1(y)η(tu)e

−
∫ tu
0 η(y)dH2(y)dH2(tu)

= θ(X)dH1(X)e−
∫X
0 θ(y)dH1(y)e−

∫ s
0 η(y)dH2(y)

= θ(X)dH1(X)G
(k)
1 (X, s)

Combine the above results (i) and (ii), we obtain the expression for the second term
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in (S.6) as

E
[
1(Tu ≥ s)L

(k)
0

]
E
[
L

(k)
0

] = Y (s) + (1− Y (s))
G

(k)
1 (X, s)

G
(k)
1 (X,X)

Therefore, the contribution of an observation failed at time X to the unconditional

score for dH2 can be written as

UdH2(s) =
dH

(k)
2 (s)

dH
(k+1)
2 (s)

η(s)(1− Y (s))G
(k)
1 (X, s)

G
(k)
1 (X,X)

− η(s)Y (s)− η(s)
(1− Y (s))G

(k)
1 (X, s)

G
(k)
1 (X,X)

= −η(s)Y (s) +

(
dH

(k)
2 (s)

dH
(k+1)
2 (s)

− 1

)
η(s)

(1− Y (s))G
(k)
1 (X, s)

G
(k)
1 (X,X)

(S.8)

Combing expressions (S.7) and (S.8), we obtain the unconditional score function for

dH2(s) as

UdH2(s) = −Y (s)η(s)

[
G

(k)
1 (X,X)−G(k)

1 (s, s) +G
(k)
2 (s,X)

G
(k)
1 (X,X) +G

(k)
2 (0, X)

]1−δ

+(
dH

(k)
2 (s)

dH
(k+1)
2 (s)

− 1

)
η(s)

[
Y (s)G

(k)
1 (s, s) + (1− Y (s))G

(k)
1 (X, s)

G
(k)
1 (X,X) +G

(k)
2 (0, X)

]1−δ [
(1− Y (s))G

(k)
1 (X, s)

G
(k)
1 (X,X)

]δ

= −η(s)Ψ(k)(s) +

(
dH

(k)
2 (s)

dH
(k+1)
2 (s)

− 1

)
η(s)µ(k)(s)

2. M step

Suppose there are n independent observations with data (Xi, δi) for i = 1 · · ·n. The
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estimator for dH
(k+1)
2 (s) can be obtained by solving

∑n
i=1 UdH2(s) = 0. We have

dH
(k+1)
2 (s) =

[∑n
i=1 ηi(s)µ

(k)
i (s)

]
dH

(k)
2 (s)∑n

i=1 ηi(s)
[
µ

(k)
i (s) + Ψ

(k)
i (s)

]
The above equation solves for dH2(s) iteratively until convergence. We obtain a

consistent estimate of dH2 at convergence (Tsodikov (2003)).

A.5 Property of Martingale Transform

Let V (s) =
∫ τ

0
ε(t, s; β,H1, H2)dM(t), where ε is a predictable function such that it

does not depend on s when t < s. Consider the increment of V (s) over s

dV (t) =

τ∫
0

ε(t, s+ ds)dM(t)− ε(t, s)dM(t) =

τ∫
0

dsε(t, s)dM(t), (S.9)

where dsε(t, s) is the partial derivative of ε(t, s) with respect to s. Since M(s) is a

martingale process adapted to filtration Fs−, we know E{dM(t)|Fs−} = 1(t < s)dM(t).

Taking an expectation conditional of (S.9) on filtration,

E{dV (s)|Fs−} =

τ∫
0

E{dsε(t, s)dtdM(t)|Fs−}

=

τ∫
0

dsε(t, s)E{dM(t)|Fs−} =

s∫
0

dsε(t, s)dM(t)

Since ε(t, s) by definition is a predictable function such that it does not depend on s for

t < s, so dsε(t, s) = 0 when t < s. We have E{dV (t)|Fs−} = 0. Therefore, V (t) is a

martingale.
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A.6 Asymptotic Properties

In this section we provide the technical details to present the consistency and weak con-

vergence properties for the proposed NPMLE weak convergence for the proposed NPMLE

Ω̂ =
(
β̂, {dĤ1}, {dĤ2}

)
.

Let ‖ · ‖l∞[0,τ ] denote the supremum norm in [0, τ ], and ‖w‖BV [0,τ ] the total variation

of w(t) in [0, τ ]. Define Q = {w(t) : ‖w‖BV [0,τ ] ≤ 1}. Ĥ(t) =
(
Ĥ1(t), Ĥ2(t)

)
may be

regarded as bounded linear functional in l∞[Q] × l∞[Q], and
{
β̂ − β0, Ĥ(t)−H0(t)

}
a

random element in the metric space Rp × l∞(Q) × l∞(Q), where p is the dimension of

β0. We denote H as the compact convex set in the metric space Rp × l∞(Q) × l∞(Q)

where Ω0 ∈ H. By Fleming and Harrington (1991) (p289-p290), the following regularity

conditions are required to establish asymptotic properties of NPMLE.

(1) The true Hk, k = 1, 2, is strictly increasing and continuously differentiable. The true

value of parameter set Ω = (β,H1, H2) falls in the interior of the compact convex

set H.

(2) The covariate process zk(t), k = 1, 2, are left continuous with total bounded vari-

ation (BV) within [0, τ ], with probability one. Also, zk(t), k = 1, 2 are linearly

independent in the sense that, if there exist a(t) and c such that a(t) + cTz(t) = 0

with probability one, then a(t) = 0 and c = 0.

(3) With probability one, E(Y (τ)|z1(t), z2(t)) > 0, P (δ = 0, T = τ |z1(t), z2(t)) > 0.

The at risk set Y (t) will not shrink to empty.

(4) The score operator for Ω is Fréchet differentiable at Ω0 with a continuously invertible

derivative −I0. The hessian matrix In evaluated at the true values of H and β

is positive definite, and converges in probability to a deterministic and invertible

operator I0.
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A.6.1 Proof of Proposition II.1

To establish consistency of NPMLE of Ω, i.e., ‖Ĥ1(t) − H1(t)0‖l∞(Q)
p→ 0, ‖Ĥ2(t) −

H2(t)0‖l∞(Q)
p→ 0 and |β̂ − β0| p→ 0, we assume the above regularity conditions (1)-(4)

hold. In addition, we need to verify the following two conditions hold:

(a) identifiability condition:The model is identifiable in the sense that Λ = Λ0 uniformly

over Ω implies Ω = Ω0. Then for any sequence Ωn ∈ H, the compact convex set in the

metric space Rp × l∞(Q)× l∞(Q), lim infn→∞ `(Ωn) ≥ `(Ω0) implies ‖Ωn −Ω0‖ p→ 0.

(b) uniform convergence condition: for any Ω ∈ H we have uniform convergence, i.e.,

sup
Ω∈H
|`n(Ω)− `(Ω)| p→ 0.

Since `n(Ω̂) = supΩ∈H `n(Ω) + op(1), based on Theorem 2.12 in Kosorok (2008), given

that the regularity conditions (1)-(4), identifiability condition and uniform convergence

condition hold, we have the consistency of NPMLE: ‖Ω̂− Ω0‖ p→ 0.

We verify these conditions in the following steps:

To verify the identifiability condition, we need to make use of the large sample limit of

the likelihood. Let F (t) be the crude cumulative density function of failure in the presence

of censoring, and R(t) be the crude survival function in the presence of censoring. The true

function of F (t) and R(t) are denoted as F0(t) and R0(t). The model hazard function is a

function of Ω and can be denoted as dΛ(t) = γ
(
t; β,H1(t), H2(t)

)
dH1(t) = γ(t; Ω)dH1(t).

Notice the fact that dF (t) = R(t)dΛ(t). Denote the true value of Ω as Ω0. The true

likelihood as a function of Ω can be written as

`(Ω,Ω0) = E
τ∫

0

[
log dΛ(t)dF 0(t)−R0(t)dΛ(t)

]
,
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where the expectation is taken with respect to the covariate process z(t) = (z1(t), z2(t)).

Consider the negative ”true” Kullback-Leibler distance, i.e.,

D = `(Ω,Ω0)− `(Ω0,Ω0),

The distance can be written as

D = E
τ∫

0

(
log

dΛ(t)

dΛ0(t)
− dΛ(t)

dΛ0(t)
+ 1

)
dF 0(t)

Consider a non-positive convex function φ(x) = log x − x + 1. The function φ(x) has a

unique maximizer at x = 1, and max
x

φ(x) = φ(1) = 0. Notice D can be written as

D = E
τ∫

0

φ

(
dΛ(t)

dΛ0(t)

)
dF 0(t)

Therefore, D has a unique maximum when dΛ(t) = dΛ0(t) uniformly over Ω. Under an

identifiable model this means D has a unique maximum at Ω0.

Since maximizing D is equivalent to maximizing likelihood `(Ω,Ω0), and D has a

unique maximum, therefore, Ω0 = argmaxΩ∈H`(Ω) is unique. We assume the model

`(Ω,Ω0) is identifiable in the sense that Λ = Λ0 uniformly over Ω implies Ω = Ω0 uniformly.

Furthermore, since Λ is assumed to be a continuous and differentiable functional of H,

so is the likelihood function `(Ω). Based on Lemma 14.3 of Kosorok (2008), we have

lim infn→∞ `(Ωn) ≥ `(Ω0), i.e., the identifiability condition holds.

To verify the uniform convergence condition, we need to make use of the uniform law

of large numbers for the empirical process. If the regularity condition (1) holds, Ω is in

the class of functions of bounded variation with integrable envelope, and so the hazard

function H1(t) and H2(t) are bounded. Therefore, H is in a Glivenko-Cantelli class whose

ε-entropy with bracketing number is bounded by A/ε, where A is a constant. Since the
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functionals Λ and `(Ω) are assumed continuous and the envelope of Ω is integrable, the

integrand in `(Ω) is also Glivenko-Cantelli by the preservation theorems. Therefore, we

may apply the uniform law of large numbers for the empirical process to the sequence Dn,

the limited sample counterpart of D as

Dn = `n(Ω,Ω0)− `n(Ω0,Ω0),

where

`n(Ω,Ω0) = n−1

n∑
i=1

τ∫
0

{[log γi(t; Ω) + log dHt]dNi(t)− Yi(t)γi(t; Ω)dH1(t)}

such that

sup
Ω∈H
|Dn(Ω)−D(Ω)| p→ 0

sup
Ω∈H
|`n(Ω)− `(Ω)| p→ 0.

Therefore the uniform convergence condition holds.

A.6.2 Proof of Proposition II.2

Theorem II.2 can be proved by the martingale theory applied to the score functions

(2.12), (2.13) and (2.14). We know the proposed NPMLE Ω̂ solves the score equation

U(Ω) = 0 where U(Ω) = (Uβ, UH1(s), UH2(s))
T is the score functions for parameter set Ω.

Let Ω0 be the set of true parameters. Since U(Ω0) are martingales, by the martingale cen-

tral limit theory n−1/2U(Ω0) converges weakly to V (Ω) = (Vβ, VH1(s), VH2(s))
T , where Vβ is

a zero-mean normal random variable and VH1(s), VH2(s) are zero-mean Gaussian processes.

The variance-covariance function of (Vβ, VH1(s), VH2(s)) can be derived below.

The predictable variation process for the score process n−1/2UHk(s), k = 1, 2, (equations
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(2.12) and (2.13)) is

n−1

n∑
i=1

τ∫
0

ε2
ki(t, s; β,H1, H2)Yi(t)γi

(
t; β,H1(t), H2(t)

)
dH1(t),

for k = 1, 2, respectively.

An n → ∞, the martingale score process n−1/2UHk(s), k = 1, 2, converges weakly to a

zero-mean Gaussian process VHk(s), k = 1, 2 with covariance function

σ2
Hk

(s, u; β0, H0
1 , H

0
2 ) =

ξ∫
0

εk(t, s; β,H
0
1 , H

0
2 )εk(t, u; β,H0

1 , H
0
2 )P (T ≥ t)γi

(
t; β,H1(t), H2(t)

)
dH0

1 (t),

for s, u ∈ [0, τ ].

Similarly, as n → ∞, the martingale score process n−1/2Uβ converges weakly to a

zero-mean Gaussian process Vβ with covariance

σ2
β(β0) =

τ∫
0

γ̇2
i,β

(
t; β0, H1(t), H2(t)

)
γi
(
t; β0, H1(t), H2(t)

) P (T ≥ t)dH1(t)

As n→∞, n−1/2U(H0
k(t), β0), for some t and k = 1, 2, is a martingale and converges

to a zero-mean Gaussian process with deterministic covariance function

σ2
Hk,β

(s; β0, H
0
1 , H

0
2 ) =

τ∫
0

εk(t, s; β0, H
0
1 , H

0
2 )γ̇i

(
t; β,H1(t), H2(t)

)
P (T ≥ t)dH0

1 (t).

Let the normalized likelihood `/n converges in probability to `0 and U0 =
(
∂`0

∂β
, ∂`0

∂dH(t)

)T
,

dH(t) = (dH1(t), dH2(t)). Introduce an integral equation operator with respect to (Ω̂−Ω0)
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as follow

I0(t, s) =
∂U0

∂Ω
= −

 ∂2`0

∂β∂βT
∂2`0

∂β∂dH(s)

∂2`0

∂dH(t)∂βT
∂2`0

∂dH(t)∂dH(s)


Ω=Ω0

,

where Ω0 = (β0, H0
t ). The operator I0 acts on an arbitrary vector-function element

Ωs = (β, dH(s))T as follow

I0(t, s)Ωs = −

 ∂2`0

∂β∂βT
β + ∂2`0

∂β∂dH(s)
dH(s)

∂2`0

∂dH(t)∂βT
β + ∂2`0

∂dH(t)∂dH(s)
dH(s)


Ω=Ω0

Expand the score Ut(Ω̂) at the true value of parameter set Ω0, we have

n1/2Ut(Ω̂) = V (t)− n−1/2I0(t, s)(Ω̂− Ω) + op(1)

Since Ut(Ω̂) = 0, we have

n−1/2I0(t, s)(Ω̂− Ω) = V (t) + op(1) (S.10)

Assume that the Fredholm operator expressed by the kernel I0 of the Fredholm integral

equation (S.10) of the first kind is square integrable, and that the equation I0Ω = 0 has

only the trivial solution Ω = 0. By Theorem 3.3.1 of Van Der Vaart and Wellner (1996),

equation (S.10) has the unique solution, and there exists the inverse information operator

I−1
0 (t, s) such that

n1/2(Ω̂− Ω0) = n−1/2(I0)−1V (t) + op(1)

By differentiating the equation E[U(Ω0)] = 0 with respect to Ω at the true parameter
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value Ω0 we obtain the variance of the normalized score Gaussian process V (t)

I0(t, s) = −

 ∂`0

∂β
∂`0

∂βT
∂`0

∂β
∂`0

∂dH(s)

∂`0

∂dH(t)
∂`0

∂βT
∂`0

∂dH(t)
∂`0

∂dH(s)


Ω0

,

which is equivalent to the likelihood second derivatives I0. Andersen et al. (1993) showed

that for a differentiable functional F (Ω), by functional delta method, n1/2{F (Ω̂)−F (Ω)}

converges weakly to a zero-mean Gaussian process with variance-covariance function

Ḟ (Ω)T (I0)−1Ḟ (Ω), where Ḟ (Ω) = ∂F
∂Ω

. Apply the above functional delta method to (2.21),

and replacing I0 by its consistent estimate n−1In, we obtain the asymptotic properties

stated in Theorem II.2.

A.6.3 Proof of Proposition II.3

In this section, we show that the covariance matrix for β obtained from the profile

likelihood `pr(β) = `
(
β, dĤ(β) = (dĤ1(β), dĤ2(β))

)
converges to the β submatrix of the

covariance matrix obtained from the full likelihood at the true model.

Denote the elements of information matrix from the full likelihood at the true model

as

I0(t, s) =
∂U0

∂Ω
= −

 ∂2`0

∂β∂βT
∂2`0

∂β∂dH(s)

∂2`0

∂dH(t)∂βT
∂2`0

∂dH(t)∂dH(s)


Ω=Ω0

=

 Iββ IβH

IHβ IHH


Apply the general four blocks matrix inverse formula to the above information matrix, we

have the variance covariance matrix for Ω at the true model as

I−1
0 (t, s) =

 Q−1 −Q−1IβHI−1
HH

−I−1
HHIHβQ−1 I−1

HH + I−1
HHIHβQ−1IβHI−1

HH

 ,

where Q = Iββ − IβHI−1
HHIHβ.
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We first show that the second derivative of the likelihood with respect to dH is a

consistent estimator of the true information submatrix IHH .

Denote dΛ(t) = γ
(
t; β,H1(t), H2(t)

)
dH1(t), the second partial derivative of the like-

lihood with respect to dH can be written as

∂`2

∂dH(s)dH(y)
=

1

n

n∑
i=1

τ∫
s

{
∂2 log dΛi(x)

∂dH(s)dH(y)
dNi(x)− ∂2dΛi(x)

∂dH(s)dH(y)
Yi(x)

}

=
1

n

n∑
i=1

τ∫
s

{
∂2 log dΛi(x)

∂dH(s)dH(y)
dNi(x)− ∂2 log dΛi(x)

∂dH(s)dH(y)
dΛi(x)Yi(x)− 1

∂dΛi(x)

∂dΛi(x)

∂dH(s)

∂dΛi(x)

∂dH(y)
Yi(x)

}

=
1

n

n∑
i=1

τ∫
s

{
∂2 log dΛi(x)

∂dH(s)dH(y)
dMi(x)− ∂ log dΛi(x)

∂dH(s)

∂ log dΛi(x)

∂dH(y)
Yi(x)dΛi(x)

}

Note that by martingale central limit theory, the process 1
n

∑n
i=1

∫ τ
s

∂2 log dΛi(x)
∂dH(s)dH(y)

dMi(x)

converges to a zero-mean Gaussian process. Therefore,

− ∂`2

∂dH(s)dH(y)
=

1

n

n∑
i=1

τ∫
s

∂ log dΛi(x)

∂dH(s)

∂ log dΛi(x)

∂dH(y)
Yi(x)dΛi(x) + op(1)

Notice that by the weak law of large number, 1
n

∑n
i=1

∫ τ
s
∂ log dΛi(x)
∂dH(s)

∂ log dΛi(x)
∂dH(y)

Yi(x)dΛi(x)

is the consistent estimator of predictable variation process for the score function UH(s).

Therefore, − ∂`2

∂dH(s)dH(y)
is in fact a consistent estimator of the true information submatrix

IHH . From now on, we denote − ∂`2

∂dH(s)dH(y)
as ÎHH .

Next, we will show that the covariance matrix for β obtained from the profile likelihood

converges to Q−1, the true covariance matrix of β obtained from the full likelihood at

the true model. The first-order partial derivatives of the baseline hazard functions with

respect to β is a Jacobian matrix JHβ = ∂dĤ(β)
∂β

. The profile score function for β can be

derived as

Uprβ =
d`pr
dβ

=
∂`

∂dH(s)

∣∣∣∣
dĤ

∂dĤ(s)

∂β
+
∂`pr
∂β

=
∂`pr
∂β
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Since dĤ solves the profile score equation ∂`
∂dH(s)

= 0, so we have ∂`
∂dH(s)

∣∣∣
dĤ

= 0.

The profile Hessian matrix can be derived as

Iprββ =− d2`pr
dβdβT

=− ∂

∂dH(y)

(
∂`pr

∂dH(s)

∣∣∣∣
dĤ

∂dĤ(s)

∂β

)
∂dĤ(y)

∂βT
− ∂

∂βT

(
∂`

∂dH(s)

∣∣∣∣
dĤ

∂dĤ(s)

∂β

)

− ∂

∂dH(y)

(
∂`

∂β

)∣∣∣∣
dĤ

∂dĤ(y)

∂βT
− ∂2`

∂β∂βT

= − ∂2`

∂dH(s)∂dH(y)

∣∣∣∣
dĤ

∂dĤ(s)

∂β

∂dĤ(y)

∂βT
− ∂`

∂dH(s)

∣∣∣∣
dĤ

∂2dĤ(s)

∂β∂dH(y)

∂dĤ(y)

∂βT

− ∂2`

∂dH(s)∂βT

∣∣∣∣
dĤ

∂dĤ(s)

∂β
− ∂`

∂dH(s)

∣∣∣∣
dĤ

∂2dĤ(s)

∂β∂βT
− ∂2`

∂β∂dH(y)

∣∣∣∣
dĤ

∂dĤ(y)

∂βT
− ∂2`

∂β∂βT

=JβH ÎHHJHβ − 0 + JβH ÎHβ − 0 + ÎβHJHβ + Îββ

=JβH ÎHHJHβ + JβH ÎHβ + ÎβHJHβ + Îββ (S.11)

To express the Jacobian in terms of I, we make use of the fact that ∂`pr
∂dH(s)

= 0. We have

0 =
d

dβ

(
∂`pr

∂dH(s)

)
=

∂2`

∂dH(s)∂βT

∣∣∣∣
dĤ

+
∂2`

∂dH(s)∂dH(y)

∣∣∣∣
dĤ

∂dĤ(y)

∂β
= −ÎHβ − ÎHHJHβ

JHβ = −Î−1
HH ÎHβ (S.12)

Replace the Jacobian matrix in (S.11) with the expression (S.12), we obtain the profile

Hessian matrix for β as

Iprββ = Îββ − ÎβH Î−1
HH ÎHβ

Assuming the regularity conditions hold, by the weak law of large number,

Îββ − ÎβH Î−1
HH ÎHβ

p→ Iββ + IβHI−1
HHIHβ = Q

Ipr
−1

ββ

p→ Q−1
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The covariance matrix for β obtained from the full likelihood at true model, Q−1, can be

consistently estimated by the profile likelihood covariance operator Ipr
−1

ββ .

A.7 Observed Information Matrix

The observed information matrix In for the parameter set Ω̂ = (β̂, { ˆdH1}, { ˆdH2}) can

be obtained explicitly by taking derivative of the negative score functions. For brevity, we

denote dHk(tj) = dHkj for k = 1, 2 and γi
(
t; β,H1(t), H2(t)

)
= γi (t; Ωt). We introduce

the following notation for k = 1, 2, l = 1, 2 and for the failure time t∗ ∈ (t1, . . . , tJ):

γi,Hk,Hl(t; Ωt) = Yi(t∗)
∂γ̇i,Hk (t; Ωt)

∂dHl∗

γi,β,β(t; Ωt) =
∂γ̇i,β (t; Ωt)

∂β

γi,β,Hl(t; Ωt) = Yi(t∗)
∂γ̇i,β (t; Ωt)

∂dHl∗

The explicit form of observed information matrix can be expressed as follow, for j 6= l:

IdH1jdH1j
=

n∑
i=1


dNi(tj)

dH2
1j

+ Yi(tj)

γ̇i,H1 (tj; Ωtj) +

τ∫
t+j

γi,H1,H1 (t; Ωt) dH1(t)


−

n∑
i=1

Yi(tj)

τ∫
t+j

[
γi,H1,H1 (t; Ωt)

γi (t; Ωt)
−
γ⊗2
i,H1

(t; Ωt)

γ2
i (t; Ωt)

]
dNi(t)
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IdH1jdH1l
=

n∑
i=1

Yi(tj)

γ̇i,H1 (tj; Ωtj)1(tl < tj) +

τ∫
t+j ∨t

+
l

γi,H1,H1 (t; Ωt) dH1(t)

−
n∑
i=1

Yi(tj)

τ∫
t+j ∨t

+
l

[
γi,H1,H1 (t; Ωt)

γi (t; Ωt)
−
γ⊗2
i,H1

(t; Ωt)

γ2
i (t; Ωt)

]
dNi(t)

IdH2jdH2j
=

n∑
i=1

Yi(tj)

τ∫
t+j

γi,H2,H2 (t; Ωt) dH1(t)−

n∑
i=1

Yi(tj)

τ∫
t+j

[
γi,H2,H2 (t; Ωt)

γi (t; Ωt)
−
γ⊗2
i,H2

(t; Ωt)

γ2
i (t; Ωt)

]
dNi(t)

IdH2jdH2l
=

n∑
i=1

Yi(tj)

τ∫
t+j ∨t

+
l

γi,H2,H2 (t; Ωt) dH1(t)−

n∑
i=1

Yi(tj)

τ∫
t+j ∨t

+
l

[
γi,H2,H2 (t; Ωt)

γi (t; Ωt)
−
γ⊗2
i,H2

(t; Ωt)

γ2
i (t; Ωt)

]
dNi(t)
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IdH1jdH2l
=

n∑
i=1

Yi(tj)

γ̇i,H2 (tj; Ωtj)1(tl < tj) +

τ∫
t+j ∨t

+
l

γi,H1,H2 (t; Ωt) dH1(t)

−
n∑
i=1

Yi(tj)

τ∫
t+j ∨t

+
l

[
γi,H1,H2 (t; Ωt)

γi (t; Ωt)
− γi,H1 (t; Ωt) γi,H2 (t; Ωt)

γ2
i (t; Ωt)

]
dNi(t)

IβdH1j
=

n∑
i=1

Yi(tj)

γi,β(tj; Ωtj) +

τ∫
t+j

γi,β,H1 (t; Ωt) dH1(t)

−
n∑
i=1

Yi(tj)

τ∫
t+j

[
γi,β,H1 (t; Ωt)

γi (t; Ωt)
− γi,β (t; Ωt) γi,H1 (t; Ωt)

γ2
i (t; Ωt)

]
dNi(t)

IβdH2j
=

n∑
i=1

Yi(tj)

τ∫
t+j

γi,β,H2 (t; Ωt) dH1(t)−

n∑
i=1

Yi(tj)

τ∫
t+j

[
γi,β,H2 (t; Ωt)

γi (t; Ωt)
− γi,β (t; Ωt) γi,H2 (t; Ωt)

γ2
i (t; Ωt)

]
dNi(t)
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Iββ =
n∑
i=1

Yi(tj)

τ∫
t+j

γi,β,β (t; Ωt) dH1(t)−

n∑
i=1

Yi(tj)

τ∫
t+j

[
γi,β,β (t; Ωt)

γi (t; Ωt)
−
γ⊗2
i,β (t; Ωt)

γ2
i (t; Ωt)

]
dNi(t)

A.8 Gompertz Survival Model for Death from Other Causes

In Section 2.8, we consider the practical concept of cure. Modeling practical concept

of cure requires modeling residual survival for other causes from the age of prostate cancer

diagnosis. Denote Toc as the time to death from other causes from birth and Soc(t|Z) as

the survival function of Toc. Then the residual survival for other causes is

P (Toc > t+ a|Toc > a,Z) =
P (Toc > t+ a|Z)

P (Toc > a|Z)
=
Soc(t+ a|Z)

Soc(a|Z)
= Soc(t|a, Z)

where a is the age at prostate cancer diagnosis. Without loss of generality, assume Z is

a null set. Assume age at prostate cancer diagnosis is proportional hazard covariate for

Soc(t|a).

• Under cox model framework,

Soc(t+ a)

Soc(a)
= e−[H(t+a)−H(a)], and Soc(t|a) = e−H

∗(t)eβa

H(t+ a)−H(a) = H∗(t)eβa ∀a, t

• Take a = 0, the above implies H(t) = H∗(t) ∀t. Therefore we have

H(t+ a)−H(a) = H(t)eβa (A.1)
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• Solve equation (A.1) by differential equation:

H ′(a) = H ′(0)eβa

H(t) = C · (eβt − 1)

where C is a positive constant. Recognize that H(t) is a Gompertz cumulative

hazard function (characterization of Gompertz distribution).
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Table A.1: Characteristics of studied patients

One primary only Secondary cancer patients
(N=189,264) (N=11,730)

Characteristic mean (SD) or n (%)
First primary cancer
(prostate)
Age at diagnosis (yr) 66 (9.4) 69 (8.3)
Stage Localized/Regional 183,338 (96.9) 11,489 (97.9)

Distant 5,926 (3.1) 241 (2.1)
Grade* I/II 100,173 (52.9) 7,149 (60.9)

III/IV 89,091 (47.1) 4,581 (39.1)
Secondary cancer
Age at diagnosis (yr) 72 (8.3)
Stage Localized 5,626 (48.0)

Regional 2,783 (23.7)
Distant 3,321 (28.3)

Median follow-up time (months) 56 72
No. patients died of prostate cancer 8,028 (4.2) 488 (4.2)

Secondary cancer stage
Localized 180
Regional 113
Distant 195

Median follow-up time to secondary
cancer (months)

Secondary cancer stage
Localized 34
Regional 36
Distant 38

*Grade I: Well differentiated
Grade II: Moderately differentiated
Grade III: Poorly differentiated
Grade IV: Undifferentiated; anaplastic
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Table A.2: Characteristics of secondary cancer patients

Characteristic n (%)
Median follow-up time to secondary cancer (months)

Localized 34
Regional 36
Distant 38

Median follow-up time from
secondary cancer diagnosis to death (months)

Localized 33
Regional 19
Distant 8

No. patients died of prostate cancer
Localized 180
Regional 113
Distant 195

No. patients died of other causes
Localized 1,375 (24.4∗)
Regional 1,330 (48.8)
Distant 2,256 (67.9)

*Percentage denominator: total number of death among localized secondary cancer patients

Table A.3: Frequency table of causes of death for secondary cancer patients n (%∗)

Cause of death Alive Prostate cancer Other causes Total
Secondary cancer stage

Localized 4,071 (72.4) 180 (3.2) 1,375 (24.4) 5,626 (100)
Regional 1,340 (48.1) 113 (4.1) 1,330 (48.8) 2,783 (100)
Distant 870 (26.2) 195 (6.9) 2,256 (67.9) 3,321 (100)

*row percentage
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APPENDIX B

A Semiparametric Latent Trait Model for Multiple

Mixed Continuous, Categorical, and Time-to-event

Outcomes

B.1 Proportional Odds Ratio

From the survival function (3.5), we can see that βj is the proportional odds ratio for

one unit increase in Zj on Yj, given U .

P (Yj≤yj |U,Zj=zj+1)

P (Yj>yj |U,Zj=zj+1)

P (Yj≤yj |U,Zj=zj)
P (Yj>yj |U,Zj=zj)

=
Uαje(zj+1)βjHj(yj)

UαjezjβjHj(yj)
= eβj

B.2 EM Algorithm

The EM algorithm is an efficient iterative procedure to compute the maximum like-

lihood estimate in the presence of missing data. Each iteration of the EM algorithm

consists of the E-step and the M-step. In the E-step, the missing data are estimated by

the conditional expectation given the observed data and the model parameters at the

current iteration. In the M-step, the likelihood function is maximized by substituting the

missing data with conditional expectation obtained in the E-step. Convergence is assured

since the algorithm is guaranteed to increase the likelihood at each iteration.
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Let Y be the observed data and U be the missing data. The complete data likelihood

is L0(θ) = f(Y, U |θ) where θ is the model parameter. Denote the complete data log-

likelihood as `0(θ) = logL0(θ). The conditional score function can be obtained by taking

derivative of the complete data log-likelihood U0 = ∂`0(θ)
∂θ

. Introduce the conditional

expectation operator E [f‖g] = E[f ·g]
E[g]

. The E-M algorithm at the kth iteration consists of

the following E-step and M-step:

1. E-step:

Determine the conditional expectation given observed data Y ,

Q(θ|θ(k)) = EU |Y,θ(k) [`0(θ)] =

∫
`0(θ)f(u|Y, θ(k))du =

∫
`0(θ)

f(u, Y |θ(k))

f(Y |θ(k))
du

=

∫
`0(θ)f(Y, u|θ(k))du

f(Y |θ(k))
=

∫
`0(θ)f(Y, u|θ(k))du∫
f(Y, u|θ(k))du

=
E[`0(θ) · L0(θ(k))]

E[L0(θ(k))]
= E

[
`0(θ)

∥∥∥L(k)
0

]
(B.1)

where L
(k)
0 = L0(θ(k)).

2. M-step:

Update θ by the value that maximizes (B.1) with respect to θ.

θ(k+1) = arg max
θ

Q(θ|θ(k))

This can be achieved by taking derivative of (B.1) and setting the resulting equation

to zero,

∂Q(θ|θ(k))

∂θ
= E

[
∂`0(θ)

∂θ

∥∥∥∥L(k)
0

]
= E

[
U0(θ)

∥∥∥L(k)
0

]
= 0 (B.2)

And E
[
U0(θ(k+1))

∥∥∥L(k)
0

]
= 0.

Notice that E [U0(θ)‖L0] is the marginal score function for θ. We can see this by
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writing out the marginal score function,

U(θ) =
∂`(θ)

∂θ
=
∂ logE[L0(θ)]

∂θ
=

∂E[L0(θ)]
∂θ

E[L0(θ)]
=

E
[
∂L0(θ)
∂θ

]
E[L0(θ)]

=
E
[
∂`0(θ)
∂θ
· L0(θ)

]
E[L0(θ)]

= E [`0(θ)‖L0]

Therefore, the M-step maximizes the conditional expectation of the conditional score

function given the observed data and the model parameter at the current iteration.

For the following derivation of the EM-DCA algorithm, we adopt the expression

(B.2) to represent the E-step and M-step in the algorithm.

B.3 EM-DCA Algorithm

We use the methods of EM algorithm in Tsodikov (2003) and the difference of convex

functions algorithm (DCA) to iteratively estimate the infinite dimensional transforma-

tion functions (H1(Ω), . . . , Hm(Ω)). Consider n independent subjects with m distinct

outcomes. For subject i = 1, . . . , n, we observe the covariate vectors (Zi1, . . . , Zim) corre-

sponding to a vector of outcomes (Yi1, . . . , Yim) and censoring indicators (δi1, · · · , δim). As

an example, we assume the shared latent variable for the ith subject Ui ∼ Gamma(ai, bi),

where ai = exp(η1Zi) and bi = exp(η2Zi). The full parameter sets consist of parameter

vectors Ω = (α, β, η) and infinite-dimensional H = (H1(·), . . . , Hm(·)). The joint like-

lihood of the observed data (Y, Z) and the shared latent variable U can be expressed

as

L0(Ω, H|Y, Z, U)f(U ; η)

=
n∏
i=1

m∏
j=1

[
1

1 + U
αj
i γijHj(y

−
ij)
− 1

1 + U
αj
i γijHj(yij)

]δij [
1

1 + U
αj
i γijHj(yij)

]1−δij baii
Γ(ai)

Uai−1
i e−biUi

(B.3)
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Taking the log of (B.3),we obtain the joint log likelihood

`0(Ω, H|Y, Z, U) + log f(U ; η)

=
n∑
i=1

{
m∑
j=1

[
δij log

(
U
αj
i γijdHj(yij)

[1 + U
αj
i γijHj(y

−
ij)][1 + U

αj
i γijHj(yij)]

)
+ (1− δij) log

(
1

1 + U
αj
i γiHj(yij)

)]

+
baii

Γ(ai)
+ (ai − 1) log(Ui)− biUi

}
=

n∑
i=1

{
m∑
j=1

δij logU
αj
i γijdHj(yij)−

m∑
j=1

δij log[1 + U
αj
i γijHj(y

−
ij)]−

m∑
j=1

log[1 + U
αj
i γijHj(yij)]

+ log
baii

Γ(ai)
+ (ai − 1) log(Ui)− biUi

}
. (B.4)

1. Difference of convex algorithm (DCA)

DCA is a version of the Minorize-Maximization(MM) algorithm that iteratively

optimizes an objective function that can be expressed as the difference of concave

functions. Consider two concave functions f(x) and g(x). The objective function

to be maximized is f(x)− g(x). By the subgradient inequality of concave function,

g(x) ≤ g(x∗) +∇g(x∗)(x− x∗)

f(x)− g(x) ≥ f(x)− (g(x∗) +∇g(x∗)(x− x∗))

Notice that the objective function (B.4) is a difference between two concave functions
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of H. We construct the surrogate function as

S(dHj, dH
(k)
j )

=
n∑
i=1

{
m∑
j=1

δij logU
αj
i γijdHj(yij)−

m∑
j=1

δij log[1 + U
αj
i γijHj(y

−
ij)]−

m∑
j=1

log[1 + U
αj
i γijHj(yij)]

+ log
baii

Γ(ai)
+ (ai − 1) log(Ui)− biUi

}
(B.5)

− (dHj(yij)− dH(k)
j (yij))

[
n∑
i=1

δij 1(y−ij ≥ s)U
αj
i γij

1 + U
αj
i γijH

(k)
j (y−ij)

−
n∑
i=1

1(yij ≥ s)U
αj
i γij

1 + U
αj
i γijH

(k)
j (yij)

]
(B.6)

The surrogate function (B.5) satisfies S(dH(k), dH(k)) = `0(dH(k)) + log f(U) and

S(dH, dH(k)) ≤ `0(dH) + log f(U). By MM algorithm theory, the next iteration

dH(k+1) that maximizes S(dH, dH(k)) in M-step will improve the likelihood.

Instead of maximizing imputed joint log likelihood, we employ DCA and maximize

imputed surrogate function (B.5). Applying the functional derivative to the surro-

gate function (B.5) with respect to dHj(s), we obtain the conditional score function

for dHj(s) as

U0,dHj(s) = δsS(dH, dH(k))

=

∑n
i=1 δij 1(yij = s)

dHj(yij)
−

n∑
i=1

δij 1(y−ij ≥ s)U
αj
i γij

1 + U
αj
i γijH

(k)
j (y−ij)

−
n∑
i=1

1(yij ≥ s)U
αj
i γij

1 + U
αj
i γijH

(k)
j (yij)

=

∑n
i=1 dNij(s)

dHj(yij)
−

n∑
i=1

δij 1(y−ij ≥ s)U
αj
i γij

1 + U
αj
i γijH

(k)
j (y−ij)

−
n∑
i=1

1(yij ≥ s)U
αj
i γij

1 + U
αj
i γijH

(k)
j (yij)

(B.7)

where
∑n

i=1 dNij(s) =
∑n

i=1 δij 1(yij = s) records the number of observations in

outcome Yj are of value s.

2. E step

Based on Appendix B.2, the marginal score function can be represented by the

137



conditional expectation operator as below

UdHj(s) = E
[
U0,dHj(s)

∥∥∥L(k)
0

]
=

∑n
i=1 dNij(s)

dHj(s)
−

n∑
i=1

δij 1(y−ij ≥ s)γijE

[
U
αj
i

1 + U
αj
i γijH

(k)
j (y−ij)

∥∥∥∥∥L(k)
0

]

−
n∑
i=1

1(yij ≥ s)γijE

[
U
αj
i

1 + U
αj
i γijH

(k)
j (yij)

∥∥∥∥∥L(k)
0

]
.

The conditional expectation E
[

U
αj
i

1+U
αj
i γijH

(k)
j (y−ij)

∥∥∥∥L(k)
0

]
and E

[
U
αj
i

1+U
αj
i γijH

(k)
j (yij)

∥∥∥∥L(k)
0

]
are obtained by Laplace approximation (Laplace (1986)).

Let u = ev. The conditional expectation E
[

U
αj
i

1+U
αj
i γijH

(k)
j (yij)

∥∥∥∥L(k)
0

]
can be written as

E
[

U
αj
i

1 + U
αj
i γijHj(yij)

∥∥∥∥L0

]
= E

[
eviαj

1 + eviαjγijHj(yij)

∥∥∥∥L0

]

=

∫∞
−∞

evαj

1+evαj γijHj(yij)

∏m
j=1

(
1

1+evαj γijHj(y
−
ij)

− 1
1+evαj γijHj(yij)

)δij (
1

1+evαj γijHj(yij)

)1−δij b
ai
i

Γ(ai)
evai−bie

v

dv

∫∞
−∞

∏m
j=1

(
1

1+evαj γijHj(y
−
ij)

− 1
1+evαj γijHj(yij)

)δij (
1

1+evαj γijHj(yij)

)1−δij b
ai
i

Γ(ai)
evai−bievdv

(B.8)

The numerator and the denominator of (B.8) can be approximated by Laplace’s

method. We obtain

E
[

U
αj
i

1 + U
αj
i γijHj(yij)

∥∥∥∥L0

]
≈

ev̂iαj

1+ev̂iαj γijHj(yij)

b
ai
i

Γ(ai)
emf(v̂i)

√
2π

m|f ′′(v̂i)|

b
ai
i

Γ(ai)
emf(v̂i)

√
2π

m|f ′′(v̂i)|

=
ev̂iαj

1 + ev̂iαjγijHj(yij)
=

Ûi
αj

1 + Ûi
αj
γijHj(yij)

where

f(v) =
1

m

{
vai − biev

+

m∑
j=1

[
δij log

(
1

1 + evαjγijHj(y
−
ij)
− 1

1 + evαjγijHj(yij)

)
+ (1− δij)

(
1

1 + evαjγijHj(yij)

)]
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Here v̂i is assumed not an endpoint of the interval of integration and is the global

maximum of f(v) for the ith subject. That is, f ′(v̂i) = 0.

Similar approximation method is applied to the term E
[

U
αj
i

1+U
αj
i γijH

(k)
j (y−ij)

∥∥∥∥L(k)
0

]
≈

Ûi
αj

1+Ûi
αj γijHj(y

−
ij)

.

3. M step

The estimator for dH
(k+1)
j (s) that maximize E

(
S(dH, dH(k))

∥∥∥L(k)
0

)
can be obtained

by solving UdHj(s) = 0. The solution results in a Breslow-type estimator

dH
(k+1)
j (s)

=

∑n
i=1 dNij(s)∑n

i=1 δij 1(y−ij ≥ s)γijE
[

U
αj
i

1+U
αj
i γijH

(k)
j (y−ij)

∥∥∥∥L(k)
0

]
+
∑n

i=1 1(yij ≥ s)γijE
[

U
αj
i

1+U
αj
i γijH

(k)
k (yij)

∥∥∥L(k)
0

]
(B.9)

This constitutes a self-consistent equation that can be solved iteratively (Tsodikov

(2003)).

Note that the conditional expectation operator E
[
·
∥∥∥L(k)

0

]
is linear and does not

alter convexity properties. Hence, iterations based on (B.9) will also constitute an

MM algorithm monotonically improves the likelihood.

B.4 Asymptotic Properties

B.4.1 Proof of Theorem III.1

For each of i = 1, · · · , nth independent subject, we observed

{Yi1, . . . , Yim, δi1, . . . , δim, Zi1, . . . , Zim}. Note that for non-survival outcomes, all event

indicator δij are one. The contribution to the marginal likelihood can be obtained by

taking the expectation of complete data likelihood. We can write the observed data

likelihood function as:

Ln(Ω, H|Y,Z) =

m∏
i=1

E


m∏
j=1

(
1

1 + U
αj
i γijHj(yij)

)1−δij
(

U
αj
i γijdHj(yij)

[1 + U
αj
i γijHj(y

−
ij)][1 + U

αj
i γijHj(yij)]

)δij .
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And the observed data log-likelihood:

`n(Ω, H|Y, Z)

=
n∑
i=1

logE


m∏
j=1

(
1

1 + U
αj
i γijHj(yij)

)1−δij
(

U
αj
i γijdHj(yij)

[1 + U
αj
i γijHj(y

−
ij)][1 + U

αj
i γijHj(yij)]

)δij


(B.10)

To prove theorem 1, we show that any convergent sub-sequence of (Ω̂n, Ĥn) must

converge to (Ω0, H0). Since Ω̂n and Ĥn belong to a compact set, we can assume that

Ω̂n → Ω∗ and Ĥn(·) converges point-wise to a monotone function H∗(·) within its domain

D. We will show that Ω∗ = Ω0 and H∗(y) = H0(y) for all y within the domain.

The observed data log-likelihood (B.10) can be written as

`n(Ω, H|Y,Z)

=

n∑
i=1

logE


m∏
j=1

(
1

1 + U
αj
i γijHj(yij)

)1−δij
(

U
αj
i γij

[1 + U
αj
i γijHj(y

−
ij)][1 + U

αj
i γijHj(yij)]

)δij
m∏
j=1

dHj(yij)
δij

=

n∑
i=1

logE


m∏
j=1

(
1

1 + U
αj
i γijHj(yij)

)1−δij
(

U
αj
i γij

[1 + U
αj
i γijHj(y

−
ij)][1 + U

αj
i γijHj(yij)]

)δij
+

n∑
i=1

m∑
j=1

δij log(dHj(yij))

By differentiating `(Ω, H) with respect to dHk(s),

∂`n
∂dHk(s)

=

∑n
i=1 δik 1(yik = s)

dHk(s)
−

n∑
i=1

E[R1i(Ω, H)R2i(s,Ω, H)]

E[R1i(Ω, H)]

=

∑n
i=1 dNik(s)

dHk(s)
−

n∑
i=1

∫
R1i(Ω, H, u)R2i(s,Ω, H, u)f(u; η)du∫

R1i(Ω, H, u)f(u; η)du
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where

R1i(Ω, H, u) =
m∏
j=1

(
1

1 + U
αj
i γijHj(yij)

)1−δij
(

U
αj
i γij

[1 + U
αj
i γijHj(y

−
ij)][1 + U

αj
i γijHj(yij)]

)δij

R2i(s,Ω, H, u) =
(1 + δik)1(yik ≥ s)Uαk

i γik
1 + Uαk

i γikHk(yik)

Setting the derivative to zero, we obtain the equation

∑n
i=1 dNik(s)

dHk(s)
=

n∑
i=1

∫
R1i(Ω, H, u)R2i(s,Ω, H, u)f(u; η)du∫

R1i(Ω, H, u)f(u; η)du

Therefore, we see that dĤk satisfies the equation

∑n
i=1 dNik(s)

dĤk(s)
=

n∑
i=1

∫
R1i(Ω̂, Ĥ, u)R2i(s, Ω̂, Ĥ, u)f(u; η̂)du∫

R1i(Ω̂, Ĥ, u)f(u; η̂)du
(B.11)

Construct a function H̃ by imitating Ĥ and we will show H̃ uniformly converges to

H0. Define H̃ as a step function with jumps only at the yij for which δij = 1 and dH̃k

satisfies the equation

∑n
i=1 dNik(s)

dH̃k(s)
=

n∑
i=1

∫
R1i(Ω0, H0, u)R2i(s,Ω0, H0, u)f(u; η0)du∫

R1i(Ω0, H0, u)f(u; η0)du
(B.12)

By definition, H̃k(s) =
∑n

i=1 1(yik ≤ s)dH̃k(yik). By Glivenko-Cantelli theorem, H̃k(s)

converges almost surely to E{1(yik ≤ s)fYk(s)/µ(yik)}, where

µ(s) = E
{∫

R1i(Ω0, H0, u)R2i(s,Ω0, H0, u)f(u; η0)du∫
R1i(Ω0, H0, u)f(u; η0)du

}
= E

{
E
[

(1 + δik)1(yik ≥ s)Uα0k
i γ0

ik

1 + Uα0k
i γ0

ikH0k(yik)

∣∣∣∣R1i(Ω0, H0, u)

]}
,

fYk(s) = E[dNik(s)] = E[δik 1(yik = s)]
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Denote Sc(·|Z) the survival function of censoring time C given Z.

E
{

(1 + δik)1(yik ≥ s)Uα0k
i γ0

ik

1 + Uα0k
i γ0

ikH0k(yik)

∣∣∣∣R1i(Ω0, H0, u)

}

=E

2

∞∫
s

Uα0k
i γ0

ik

1 + Uα0k
i γ0

ikH0k(y)

Uα0k
i γ0

ikh0k(y)

[1 + Uα0k
i γ0

ikH0k(y)]2
Sc(y|Zik)dy

∣∣∣∣∣∣R1i(Ω0, H0, u)


−E


∞∫
s

Uα0k
i γ0

ik

1 + Uα0k
i γ0

ikH0k(y)

1

1 + Uα0k
i γ0

ikH0k(y)
dSc(y|Zik)

∣∣∣∣∣∣R1i(Ω0, H0, u)


=E

{
Sc(s|Zik)Uα0k

i γ0
ik

[1 + Uα0k
i γ0

ikH0k(s)]2

∣∣∣∣R1i(Ω0, H0, u)

}

where the second equality follows from integration by part. Therefore we have

E
{
1(yik ≤ s)fYik(s)

µ(yik)

}
= E

E

 s∫
0

Sc(y|Zik)Uα0k
i γ0

ikh0k(y)

µ(y)[1 + Uα0k
i γ0

ikH0k(y)]2
dy

∣∣∣∣∣∣R1i(Ω0, H0, u)


=

s∫
0

h0k(y)dy = H0k(s)

Therefore, H̃k(s) converges uniformly to H0k(s) in its specific domain Dk. By plugging in

(B.11) into `n(Ω̂, Ĥ), we obtain

`n(Ω̂, Ĥ)

=
n∑
i=1

logE


m∏
j=1

(
1

1 + U
α̂j
i γ̂ijĤj(yij)

)1−δij (
U
α̂j
i γ̂ij

[1 + U
α̂j
i γ̂ijĤj(y

−
ij)][1 + U

α̂j
i γ̂ijĤj(yij)]

)δij


+
n∑
i=1

m∑
j=1

δij log(dĤj(yij))

=
n∑
i=1

log

∫
R1i(Ω̂, Ĥ, u)f(u; η̂)du+

n∑
i=1

m∑
j=1

δij log

(
n∑
k=1

dNkj(yij)

)

−
n∑
i=1

m∑
j=1

δij log

(
n∑
k=1

∫
R1k(Ω̂, Ĥ, u)R2k(yij, Ω̂, Ĥ, u)f(u; η̂)du∫

R1k(Ω̂, Ĥ, u)f(u; η̂)du

)
.
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Likewise, plug in (B.12) into `n(Ω0, H̃), we obtain

`n(Ω0, H̃)) =
n∑
i=1

log

∫
R1i(Ω0, H̃, u)f(u; η0)du+

n∑
i=1

m∑
j=1

δij log

(
n∑
k=1

dNkj(yij)

)

−
n∑
i=1

m∑
j=1

δij log

(
n∑
k=1

∫
R1k(Ω0, H̃, u)R2k(yij,Ω0, H̃, u)f(u; η0)du∫

R1k(Ω0, H̃, u)f(u; η0)du

)
.

Define

R3i(s,Ω, H) =

∫
R1i(Ω, H, u)R2i(s,Ω, H, u)f(u; η)du∫

R1i(Ω, H, u)f(u; η)du
.

We see that Ĥk(y) is continuous with respect to H̃k(y) and

Ĥk(y) =

∫ ∑n
i=1R3i(s,Ω0, H0)∑n
i=1 R3i(s, Ω̂, Ĥ)

dH̃k(s)

for k = 1, · · · ,m.

If the kth outcome is continuous or time-to-event, by taking limits on both sides of the

above equation, we see that H∗k(y) is continuous with respect to H0k(y) so that H∗k(y) is

differentiable with respect to y. In addition, dĤ(y)/dH̃(y) converges to dH∗(y)/dH0(y)

uniformly in y.

Since (Ω̂, Ĥ) are NPMLEs for `n(Ω, H), we know `n(Ω̂, Ĥ) − `n(Ω, H) ≥ 0 for any

Ω, H. We have

0 ≤ n−1{`n(Ω̂, Ĥ)− `n(Ω0, H̃)}

=n−1

n∑
i=1

log

∫
R1i(Ω̂, Ĥ, u)f(u; η̂)du− n−1

n∑
i=1

log

∫
R1i(Ω0, H̃, u)f(u; η0)du

+ n−1

n∑
i=1

m∑
j=1

δij log
dĤj(yij)

dH̃j(yij)
(B.13)
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As n→∞ in (B.13), we have

0 ≤ `(Ω∗, H∗)− `(Ω0, H0) (B.14)

= E

[
log

∫
R1i(Ω

∗, H∗, u)f(u; η∗)du
∏m

j=1 dH
∗
j (yij)

δij∫
R1i(Ω0, H0, u)f(u; η0)du

∏m
j=1 dH0j(yij)δij

]

is the negative Kullback-Leibler information. By definition, (Ω0, H0) maximizes `(Ω, H),

therefore, (B.14) has a unique maximum when

m∏
j=1

dH∗j (yij)
δij

∫
R1i(Ω

∗, H∗, u)f(u; η∗)du =
m∏
j=1

dH0j(yij)
δij

∫
R1i(Ω0, H0, u)f(u; η0)du

(B.15)

uniformly over (Ω, H). Under an identifiable model this means (B.14) has a unique

maximum at (Ω0, H0). Since maximizing (B.14) is equivalent to maximizing likelihood

`(Ω∗, H∗), and (B.14) has a unique maximum, therefore, (Ω0, H0) = argmax(Ω,H)∈H`(Ω, H)

is unique. Write out (B.15)

∫ m∏
j=1

[U
α∗j
i γ∗ijdH

∗
j (yij)]

δij

[1 + U
α∗j
i γ∗ijH

∗
j (yij)]1+δij

f(u; η∗)du =

∫ m∏
j=1

[U
α0j

i γ0
ijdH0j(yij)]

δij

[1 + U
α0j

i γ0
ijH0j(yij)]1+δij

f(u; η0)du

(B.16)

We will show (B.16) implies that Ω∗ = Ω0 and H∗ = H0. For an integer q such that

1 ≤ q ≤ m. Let δij = 1, yij = 0 in (B.16) for j = 1, · · · , q. For j = q + 1, · · · ,m we

perform the following: if δij = 0, replace yij with τj (upper bound of Dj); if δij = 1, we
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integrate yij in its domain. Applying the above actions to (B.16), we obtain

∫ q∏
j=1

{
U
α∗j
i γ∗ijdH

∗
j (0)

} m∏
j=q+1

{
U
α∗j
i γ∗ijH

∗
j (τj)

1 + U
α∗j
i γ∗ijH

∗
j (τj)

}δij {
1

1 + U
α∗j
i γ∗ijH

∗
j (τj)

}1−δij

f(u; η∗)du

=

∫ q∏
j=1

{
U
α0j

i γ0
ijdH0j(0)

} m∏
j=q+1

{
U
α0j

i γ0
ijH0j(τj)

1 + U
α0j

i γ0
ijH0j(τj)

}δij {
1

1 + U
α0j

i γ0
ijH0j(τj)

}1−δij

f(u; η0)du

(B.17)

Since {δij : j = q + 1, · · · ,m} are arbitrary, we sum the two sides of (B.17) over all

possible combinations of {δij : j = q + 1, · · · ,m} and we get

∫ q∏
j=1

{
uα
∗
jγ∗ijdH

∗
j (0)

}
f(u; η∗)du =

∫ q∏
j=1

{
uα0jγ0

ijdH0j(0)
}
f(u; η0)du

Thus,

q∏
j=1

dH∗j (0)γ∗ij

∫ { q∏
j=1

uα
∗
j

}
f(u; η∗)du =

q∏
j=1

dH0j(0)γ0
ij

∫ { q∏
j=1

uα0j

}
f(u; η0)du

Regularity condition (1) implies that dH∗j (0) > 0 for any j. Take q = 1, we have

dH∗1 (0)γ∗i1

∫
uα
∗
1f(u; η∗)du = dH01(0)γ0

i1

∫
uα01f(u; η0)du

log dH∗1 (0) + ZT
i1β
∗ + log

∫
uα
∗
1f(u; η∗)du = log dH01(0) + ZT

i1β0 + log

∫
uα01f(u; η0)du

log
dH∗1 (0)

dH01(0)
+ ZT

i1(β∗ − β0) + log

∫
uα
∗
1f(u; η∗)du∫

uα01f(u; η0)du
= 0 (B.18)

Since outcome index q is interchangeable between outcomes, so equation (B.18) applies

to any q. According to condition (4) and (5), equation (B.18) implies α∗ = α0, β∗ = β0,

η∗ = η0 and dH∗(0) = dH0(0).

Next we show that H∗j = H0j for all = 1, · · · ,m. We let δi1 = 1 in (B.16) and integrate

yi1 from 0 to s. In addition, for j = 2, · · · ,m, if δij = 0, we replace Yij with τj; if δij = 1,
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we integrate yij from 0 to τj. Then we sum the resulting equations over all possible

{δij : j = 2, · · · ,m} to obtain

∫ {
uα
∗
1γ∗i1H

∗
1 (s)

1 + uα
∗
1γ∗i1H

∗
1 (s)

}
f(u; η∗)du =

∫ {
uα01γ0

i1H01(s)

1 + uα01γ0
i1H01(s)

}
f(u; η0)du

The two sides of the above equation are strictly monotone in H∗1 (s) and H01(s), respec-

tively. Therefore, we have H∗1 (s) = H01(s). Since the outcome index is arbitrary, the

above result also applies to j = 2, · · · ,m. We have H∗(s) = H0(s).

We conclude that ||Ω̂ − Ω0|| → 0, and ||Ĥ(s) −H0(s)|| → 0 for all s ∈ D. Thus, we

established uniform convergence
∑m

k=1 supyk∈Dk |Ĥk(yk)−H0k(yk)| → 0.

B.4.2 Proof of Theorem III.2

Consider the set

H = {(v, w1, · · · , wm) : v ∈ RdΩ , wk(·) is a function on Dk;

|v| ≤ 1, ||wk||BV [Dk] ≤ 1, k = 1, · · · ,m}

where ||wk||BV [Dk] denotes the total variation of wk(·) in Dk, and dΩ is the dimension of

Ω. Define a sequence Sn(Ω, H)[v, w1, · · · , wm] mapping a neighborhood of (Ω0, H0) into

l∞(H) as follows:

Sn(Ω, H)[v, w1, · · · , wm] =
d

dε
n−1`n

Ω + εv,Hk(y) + ε

y∫
−∞

wk(s)dHk(s), k = 1, · · · ,m

∣∣∣∣∣∣
ε=0

= An0[v] +
m∑
k=1

Ank[wk]

where Anp, p = 0, · · · ,m, are linear functionals on RdΩ and BV [Dk], respectively. Let ˙̀
Ω

and ˙̀
Hk(wk) be the score function for Ω and the score for Hk along the path Hk(y) +
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ε
∫
wk(s)dHk(s), then

An0[v] = Pn[vT ˙̀
Ω], Ank[wk] = Pn[ ˙̀

Hk(wk)], k = 1, · · · ,m

where Pn denotes the empirical measure based on n independent subjects.

Correspondingly we define the limit map S : (Ω, H)→ l∞(H) as

S(Ω, H)[v, w1, · · · , wm] = A0[v] +
m∑
k=1

Ak[wk],

where the linear functionals Ap, p = 0, · · · ,m, are the expectation of the empirical average

of Anp, p = 0, · · · ,m. By definition, Sn(Ω̂, Ĥ) = 0 and S(Ω0, H0) = 0.

Since H is a Donsker class and the functionals Anp, p = 0, · · · ,m, are bounded Lip-

schitz functionals with respect to H,
√
n(Sn(Ω0, H0) − S(Ω0, H0)) converges to a tight

Gaussian process on l∞(H). The first condition in Theorem 2 of Murphy (1995) holds.

By regularity condition (6), the score operator S(Ω, H) is Fréchet differentiable at Ω0

with a continuously invertible derivative −I0. The hessian matrix In evaluated at the

true values of H and Ω is positive definite, and converges in probability to a deterministic

and invertible operator I0. Thus the second condition in Theorem 2 of Murphy (1995)

holds. The derivative of S(Ω, H) at (Ω0, H0), denoted as −I0, is a map from the space

(Ω − Ω0, H − H0) to l∞(H). The fourth condition in Theorem 2 of Murphy (1995), the

approximation condition below can be verified along the lines of appendix in Murphy

(1995)

sup |(Sn − S)(Ω̂, Ĥ)− (Sn − S)(Ω0, H0)|

= op

(
n−1/2 ∨

{
||Ω̂− Ω0||+

m∑
k=1

sup |Ĥk(y)−H0k(y)|

})
.

In order to verify the third condition in Theorem 2 of Murphy (1995), we want to

show that −I0, denoted Ṡ0, is continuously invertible. Ṡ0 maps (Ω − Ω0, H − H0) to a
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bounded functional on H. By Zeng et al. (2005), we will prove the invertibility of Ṡ0

by verifying that Ṡ0(Ω − Ω0, H − H0)[v, w1, · · · , wm] = 0 implies v = 0 and wk(y) = 0

uniformly, k = 1, · · · ,m.

For a small constant ε, choose Ω = Ω0 + εv,Hk(y) = H0k(y) + ε
∫ y
∞wk(s)dH0k(s).

Then,

0 = Ṡ0(Ω− Ω0, H −H0)[v, wk, k = 1, · · · ,m] = εE

( ˙̀
Ω[v] +

m∑
k=1

˙`Hk [wk]

)2


This means

˙̀
Ω[v] +

m∑
k=1

˙`Hk [wk] = 0 (B.19)

Closely following the lines in Appendix of Zeng et al. (2005), we can see that the equation

(B.19) entails v = 0 and wk(·) = 0 uniformly. Therefore, the derivative of the score

operator at (Ω0, H0), denoted as −I0 is continuously invertible. By Theorem 2 of Murphy

(1995),
√
n
{

Ω̂− Ω, Ĥ(·)− Ĥ0(·)
}

converges weakly to a zero-mean Gaussian process.

Furthermore,

√
nṠ0(Ω− Ω0, H −H0)[v, wk, k = 1, · · · ,m] =

√
n(Pn − P)

[
vT ˙̀

Ω +
m∑
k=1

˙̀
Hk [wk]

]
+ op(1)

(B.20)

Thus, Ω̂ is semiparametrically efficient since Ω̂ is asymptotically linear estimator for Ω0,

and its influence function belong to the space spanned by the score function (Zeng et al.

(2005)).

B.4.3 Proof of Theorem III.3

Observe that
√
nṠ0(Ω − Ω0, H − H0)[v, wk, k = 1, · · · ,m] is the expectation of the

second derivative of the normalized log-likelihood along the direction (Ω̂ − Ω0, Ĥ − H0)
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and the direction
(
v,
∫
wdH0

)
. Therefore,

√
nṠ0(Ω−Ω0, H−H0)[v, wk, k = 1, · · · ,m] can

be approximated by

√
n(vT , w̄T )(In/n)

 Ω̂− Ω0

dĤ(s)− dH0(s)

 ,

where w̄ denotes the set of vectors {wk(s) : dNij(s) = 1}. On the other hand,

√
n(Pn − P)

[
vT ˙̀

Ω +
m∑
k=1

˙̀
Hk [wk]

]
→d (vT , w̄T )(In/n)1/2G

where G is standard multivariate Gaussian. Therefore, equation (B.20) implies that

√
n(vT , w̄T )(In/n)

 Ω̂− Ω0

dĤ(s)− dH0(s)

→d (vT , w̄T )(In/n)1/2G

√
n(vT , w̄T )

 Ω̂− Ω0

dĤ(s)− dH0(s)

→d (vT , w̄T )(In/n)−1/2G

Thus,
√
n
{
vT (Ω̂− Ω0) +

∑m
k=1

∫
wkd(Ĥk −H0k)

}
converges to a zero mean Gaussian

process with with variance-covariance matrix n(vT , w̄T )I−1
0 (vT , w̄T )T .
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Table B.1: Pearson correlation between age and the six pain responses

Age
Fibromyalgia survey criteria −0.22

Opioid use −0.05
BPI pain severity −0.21
BPI surgical pain −0.29
HADS depression −0.16

HADS anxiety −0.24
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APPENDIX C

A Semiparametric Joint Latent Trait Model for

Multiple Mixed Longitudinal Continuous,

Categorical Outcomes and Time-to-event Data

C.1 EM-DCA Algorithm

We use the methods of EM algorithm in Tsodikov (2003) and the difference of convex

functions algorithm (DCA) to iteratively estimate the infinite dimensional transformation

functions (H1(Ω), . . . , HJ(Ω), Hs(Ω)) and U(Ω). Consider n independent subjects with

J distinct longitudinal outcomes. As an example, we assume the latent trait function

takes the form Ui(t) = U(t)eai+bit. The shared random variables (ai, bi) follow a joint

distribution f(a, b|θi) = f(a|θ1i, θ2i)f(b|η3) where f(a|θ1i, θ2i) is a log-Gamma density

function with shape θ1i = exp(η1Zi), and rate θ2i = exp(η2Zi). f(b|η3) is a log-Gamma

density function with both shape and rate being η3. The full joint likelihood of the
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observed data (Y,X) and the shared latent variable Ui(t) can be expressed as

L0(Ω,H|Y,Z, U(t), ai, bi)
n∏
i=1

f(ai|θ1i, θ2i)f(bi|η3)

=
n∏
i=1

{
J∏
j=1

K∏
k=1

[
1

1 + Ui(tk)αjγijHj(y
−
ijk)
− 1

1 + Ui(tk)αjγijHj(yijk)

]
(

ev0ai+v1biγisdHs(Ti)

1 + ev0ai+v1biγisHs(Ti)

)δi ( 1

1 + ev0ai+v1biγisHs(Ti)

)
θθ1i2i

Γ(θ1i)
eaiθ1i−θ2ie

ai ηη3

3

Γ(η3)
ebiη3−η3ebi

}
(C.1)

Taking the log of (C.1),we obtain the full joint log-likelihood

`0(Ω,H|Y,Z, U(t), ai, bi) +

n∑
i=1

log f(ai|θ1i, θ2i)f(bi|η3)

=

n∑
i=1


J∑
j=1

K∑
k=1

log

(
Ui(tk)

αjγijdHj(yijk)

[1 + Ui(tk)αjγijHj(y
−
ijk)][1 + Ui(tk)αjγijHj(yijk)]

)
− log[1 + ev0ai+v1biγisHs(Ti)]

+δi log

(
ev0ai+v1biγisdHs(Ti)

1 + ev0ai+v1biγisHs(Ti)

)
+ log

(
θθ1i2i

Γ(θ1i)
eaiθ1i−θ2ie

ai ηη33

Γ(η3)
ebiη3−η3e

bi

)}

=

n∑
i=1


J∑
j=1

K∑
k=1

{logUi(tk)
αjγijdHj(yijk)− log[1 + Ui(tk)

αjγijHj(y
−
ijk)][1 + Ui(tk)

αjγijHj(yijk)]}

+ δi(v0ai + v1bi + log γisdHs(Ti))− (1 + δi) log[1 + ev0ai+v1biγisHs(Ti)] + θ1i log θ2i − log Γ(θ1i)

+ aiθ1i − θ2ie
ai + η3 log η3 − log Γ(η3) + biη3 − η3e

bi

}
. (C.2)

1. Difference of convex algorithm (DCA)

DCA is a version of the Minorize-Maximization(MM) algorithm that iteratively

optimizes an objective function that can be expressed as the difference of concave

functions. Consider two concave functions f(x) and g(x). The objective function
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to be maximized is f(x)− g(x). By the subgradient inequality of concave function,

g(x) ≤ g(x∗) +∇g(x∗)(x− x∗)

f(x)− g(x) ≥ f(x)− (g(x∗) +∇g(x∗)(x− x∗))

2. EM-DCA for {dHj}j=1,··· ,J

For each outcome j = 1, · · · , J , notice that the objective function (C.2) is a differ-

ence between two concave functions of dHj. We construct the surrogate function

as

S(dHj, dH
(m)
j )

=
n∑
i=1

{
J∑
j=1

K∑
k=1

{logUi(tk)
αjγijdHj(yijk)− log[1 + Ui(tk)

αjγijH
(m)
j (y−ijk)][1 + Ui(tk)

αjγijH
(m)
j (yijk)]}

+ δi(v0ai + v1bi + log γisdHs(Ti))− (1 + δi) log[1 + ev0ai+v1biγisHs(Ti)] + θ1i log θ2i − log Γ(θ1i)

+ aiθ1i − θ2ie
ai + η3 log η3 − log Γ(η3) + biη3 − η3e

bi

}
− (dHj(x)− dH(m)

j (x))

[
n∑
i=1

K∑
k=1

1(y−ijk ≥ x)Ui(tk)
αjγij

1 + Ui(tk)αjγijH
(m)
j (y−ijk)

+
n∑
i=1

K∑
k=1

1(yijk ≥ x)Ui(tk)
αjγij

1 + Ui(tk)αjγijH
(m)
j (yijk)

]
(C.3)

The surrogate function (C.3) satisfies S(dH
(m)
j , dH

(m)
j ) = `0(dH

(m)
j ) + log f(a, b)

and

S(dHj, dH
(m)
j ) ≤ `0(dHj) + log f(a, b). By MM algorithm theory, the next iteration

dH
(m+1)
j that maximizes S(dHj, dH

(m)
j ) in M-step will improve the likelihood.

Instead of maximizing imputed joint log-likelihood, we employ DCA and maximize

imputed surrogate function (C.3). Applying the functional derivative to the surro-

gate function (C.3) with respect to dHj(x), we obtain the conditional score function
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for dHj(x) as

U0,dHj(x) = δxS(dHj, dH
(m)
j )

=

∑n
i=1

∑K
k=1 dNijk(x)

dHj(x)
−

n∑
i=1

K∑
k=1

1(y−ijk ≥ x)Ui(tk)
αjγij

1 + Ui(tk)αjγijH
(m)
j (y−ijk)

−
n∑
i=1

K∑
k=1

1(yijk ≥ x)Ui(tk)
αjγij

1 + Ui(tk)αjγijH
(m)
j (yijk)

(C.4)

where
∑n

i=1

∑K
k=1 dNijk(x) =

∑n
i=1

∑K
k=1 1(yijk = x) records the number of obser-

vations in the jth outcome are of value x.

• E step

Taking expectation of (C.4), we obtain the marginal score function

UdHj(x) = E
[
U0,dHj(x)

∥∥∥L(k)
0

]
=

∑n
i=1

∑K
k=1 dNijk(x)

dHj(x)
−

n∑
i=1

E

[
K∑
k=1

1(y−ijk ≥ x)γijU(tk)e
αj(ai+bitk)

1 + Ui(tk)αjγijH
(m)
j (y−ijk)

∥∥∥∥∥L(m)
0

]

−
n∑
i=1

E

[
K∑
k=1

1(yijk ≥ x)γijU(tk)e
αj(ai+bitk)

1 + Ui(tk)αjγijH
(m)
j (yijk)

∥∥∥∥∥L(m)
0

]
.

The imputation terms E
[∑K

k=1

1(y−ijk≥x)γijU(tk)eαj(ai+bitk)

1+Ui(tk)αj γijH
(m)
j (y−ijk)

∥∥∥∥L(m)
0

]
and

E
[∑K

k=1
1(yijk≥x)γijU(tk)eαj(ai+bitk)

1+Ui(tk)αj γijH
(m)
j (yijk)

∥∥∥∥L(m)
0

]
are obtained by multivariate Laplace

approximation (Laplace (1986)).

Specifically,

E

[
K∑
k=1

1(yijk ≥ x)γijU(tk)e
αj(ai+bitk)

1 + Ui(tk)αjγijH
(m)
j (yijk)

∥∥∥∥∥L0

]

=

∫∞
−∞

∫∞
−∞

(∑K
k=1

1(yijk≥x)γijU(tk)eαj(a+btk)

1+U(tk)eαj(a+btk)γijH
(m)
j (yijk)

)
L0

θ
θ1i
2i

Γ(θ1i)
eaθ1i−θ2ie

a η
η3
3

Γ(η3)
ebη3−η3ebdadb∫∞

−∞

∫∞
−∞ L0

θ
θ1i
2i

Γ(θ1i)
eaθ1i−θ2iea

η
η3
3

Γ(η3)
ebη3−η3ebdadb

(C.5)
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where

L0 =
n∏
i=1

{
J∏
j=1

K∏
k=1

[
1

1 + Ui(tk)αjγijHj(y
−
ijk)
− 1

1 + Ui(tk)αjγijHj(yijk)

]
(

ev0ai+v1biγisdHs(Ti)

1 + ev0ai+v1biγisHs(Ti)

)δi ( 1

1 + ev0ai+v1biγisHs(Ti)

)}

The numerator and the denominator of (C.5) can be approximated by multi-

variate Laplace’s method. We obtain

E

[
K∑
k=1

1(yijk ≥ x)γijU(tk)e
αj(ai+bitk)

1 + Ui(tk)αjγijH
(m)
j (yijk)

∥∥∥∥∥L0

]

≈

(∑K
k=1

1(yijk≥x)γijU(tk)eαj(âi+b̂itk)

1+U(tk)eαj(âi+b̂itk)γijH
(m)
j (yijk)

)
θ
θ1i
2i

Γ(θ1i)

η
η3
3

Γ(η3)
ef(âi,b̂i)2π| −H(f)(âi, b̂i)|−1/2

θ
θ1i
2i

Γ(θ1i)

η
η3
3

Γ(η3)
ef(âi,b̂i)2π| −H(f)(âi, b̂i)|−1/2

=
K∑
k=1

1(yijk ≥ x)γijU(tk)e
αj(âi+b̂itk)

1 + U(tk)eαj(âi+b̂itk)γijH
(m)
j (yijk)

where

f(a, b) =

{
aθ1i − θ2ie

a + bη3 − η3e
b

+
J∑
j=1

K∑
k=1

log

[
1

1 + Ui(tk)αjγijHj(y
−
ijk)
− 1

1 + Ui(tk)αjγijHj(yijk)

]

+ log

(
ev0ai+v1biγisdHs(Ti)

1 + ev0ai+v1biγisHs(Ti)

)δi ( 1

1 + ev0ai+v1biγisHs(Ti)

)}
(C.6)

and H(f)(âi, b̂i) is the hessian matrix of f(a, b) evaluated at (âi, b̂i); | · | denotes

matrix determinant.

Here (âi, b̂i) are assumed not at the boundary of the interval of integration and

are the global maximum of f(a, b) for the ith subject. That is, ∇f(âi, b̂i) = 0.

Similar approximation method is applied to the term
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E
[∑K

k=1

1(y−ijk≥x)γijU(tk)eαj(ai+bitk)

1+Ui(tk)αj γijH
(m)
j (y−ijk)

∥∥∥∥L(m)
0

]
≈
∑K

k=1
1(yijk≥x)γijU(tk)eαj(âi+b̂itk)

1+U(tk)eαj(âi+b̂itk)γijH
(m)
j (y−ijk)

.

• M step

The estimator for dH
(m+1)
j (x) that maximizes E

(
S(dHj, dH

(m)
j )

∥∥∥L(m)
0

)
can

be obtained by solving UdHj(x) = 0. The solution results in a Breslow-type

estimator

dH
(m+1)
j (x)

=

∑n
i=1

∑K
k=1 dNijk(x)∑n

i=1 E
[∑K

k=1
1(y−ijk≥x)γijU

(m)
i (tk)αj

1+U
(m)
i (tk)αjγijH

(m)
j (y−ij)

∥∥∥∥L(m)
0

]
+
∑n

i=1 E
[∑K

k=1
1(yijk≥x)γijU

(m)
i (tk)αj

1+U
(m)
i (tk)αjγijH

(m)
j (yijk)

∥∥∥∥L(m)
0

]
(C.7)

This constitutes a self-consistent equation that can be solved iteratively (Tsodikov

(2003)). Note that the imputation operator E
[
·
∥∥∥L(m)

0

]
is linear and does

not alter convexity properties. Hence, iterations based on (C.7) will also con-

stitute an MM algorithm monotonically improves the likelihood.

3. EM-DCA for {dHs}
For the time-to-event outcome, the objective function (C.2) is a difference between

two concave functions of dHs. We construct the surrogate function as

S(dHs, dH
(m)
s )

=

n∑
i=1


J∑
j=1

K∑
k=1

{logUi(tk)
αjγijdHj(yijk)− log[1 + Ui(tk)

αjγijHj(y
−
ijk)][1 + Ui(tk)

αjγijHj(yijk)]}

+ δi(v0ai + v1bi + log γisdHs(Ti))− (1 + δi) log[1 + ev0ai+v1biγisH
(m)
s (Ti)] + θ1i log θ2i − log Γ(θ1i)

+ aiθ1i − θ2ie
ai + η3 log η3 − log Γ(η3) + biη3 − η3e

bi

}
−
(
dHs(x)− dH(m)

s (x)
) n∑
i=1

Yis(x)(1 + δi)e
v0ai+v1biγis

1 + ev0ai+v1biγisH
(m)
s (Ti)

(C.8)

The surrogate function (C.8) satisfies S(dH
(m)
s , dH

(m)
s ) = `0(dH

(m)
s ) + log f(a, b)

and

S(dHs, dH
(m)
s ) ≤ `0(dHs) + log f(a, b). By MM algorithm theory, the next iteration
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dH
(m+1)
s that maximizes S(dHs, dH

(m)
s ) in M-step will improve the likelihood.

We employ DCA and maximize imputed surrogate function (C.8). Applying the

functional derivative to the surrogate function (C.8) with respect to dHs(x), we

obtain the conditional score function for dHs(x) as

U0,dHs(x) = δxS(dHs, dH
(m)
s ) =

∑n
i=1 dNis(x)

dHs(x)
−

n∑
i=1

Yis(x)(1 + δi)e
v0ai+v1biγis

1 + ev0ai+v1biγisH
(m)
s (Ti)

(C.9)

• E step

Taking expectation of (C.9), we obtain the marginal score function for dHs(x)

UdHs(x) = E
[
U0,dHs(x)

∥∥∥L(m)
0

]
=

∑n
i=1 dNis(x)

dHs(x)
−

n∑
i=1

E

[
Yis(x)(1 + δi)γise

v0ai+v1bi

1 + ev0ai+v1biγisH
(m)
s (Ti)

∥∥∥∥∥L(m)
0

]
.

We use multivariate Laplace approximation for the conditional expectation

E
[
Yis(x)(1+δi)γise

v0ai+v1bi

1+ev0ai+v1biγisH
(m)
s (Ti)

∥∥∥L(m)
0

]
. Specifically,

E

[
Yis(x)(1 + δi)γise

v0ai+v1bi

1 + ev0ai+v1biγisH
(m)
s (Ti)

∥∥∥∥∥L0

]

=

∫∞
−∞

∫∞
−∞

Yis(x)(1+δi)γise
v0ai+v1bi

1+ev0ai+v1biγisH
(m)
s (Ti)

L0
θ
θ1i
2i

Γ(θ1i)
eaθ1i−θ2ie

a η
η3
3

Γ(η3)
ebη3−η3ebdadb∫∞

−∞

∫∞
−∞ L0

θ
θ1i
2i

Γ(θ1i)
eaθ1i−θ2iea

η
η3
3

Γ(η3)
ebη3−η3ebdadb

(C.10)

where L0 is shown as function (2).

Applying multivariate Laplace’s approximation to the numerator and the de-
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nominator of (C.10), we obtain

E

[
Yis(x)(1 + δi)γise

v0ai+v1bi

1 + ev0ai+v1biγisH
(m)
s (Ti)

∥∥∥∥∥L0

]

≈
Yis(x)(1+δi)γise

v0âi+v1 b̂i

1+ev0âi+v1 b̂iγisH
(m)
s (Ti)

θ
θ1i
2i

Γ(θ1i)

η
η3
3

Γ(η3)
ef(âi,b̂i)2π| −H(f)(âi, b̂i)|−1/2

θ
θ1i
2i

Γ(θ1i)

η
η3
3

Γ(η3)
ef(âi,b̂i)2π| −H(f)(âi, b̂i)|−1/2

=
Yis(x)(1 + δi)γise

v0âi+v1b̂i

1 + ev0âi+v1b̂iγisH
(m)
s (Ti)

where f(a, b) is the function (C.6) and ∇f(âi, b̂i) = 0.

• M step

The estimator for dH
(m+1)
s (x) that maximizes E

(
S(dHs, dH

(m)
s )

∥∥∥L(m)
0

)
can

be obtained by solving UdHs(x) = 0. The solution results in a Breslow-type

estimator

dH(m+1)
s (x) =

∑n
i=1 dNis(x)∑n

i=1 E
[
Yis(x)(1+δi)γisev0ai+v1bi

1+ev0ai+v1biγisH
(m)
s (Ti)

∥∥∥L(m)
0

]
which is a self-consistent equation that can be solved iteratively.

4. EM-DCA for {U}
Notice that the objective function (C.2) is a difference between two concave functions
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of U(t). Construct the surrogate function

S(U,U (m))

=

n∑
i=1


J∑
j=1

K∑
k=1

{logU(tk)e
αj(ai+bitk)γijdHj(yijk)

− log[1 + U (m)(tk)e
αj(ai+bitk)γijHj(y

−
ijk)][1 + U (m)(tk)e

αj(ai+bitk)γijHj(yijk)]}

+ δi(v0ai + v1bi + log γisdHs(Ti))− (1 + δi) log[1 + ev0ai+v1biγisHs(Ti)] + θ1i log θ2i − log Γ(θ1i)

+ aiθ1i − θ2ie
ai + η3 log η3 − log Γ(η3) + biη3 − η3e

bi

}

−
(
U(x)− U (m)(x)

) n∑
i=1

J∑
j=1

αjU
(m)(x)αj−1eαj(ai+bix)γijHj(y

−
ijx)

1 + U (m)(x)eαj(ai+bix)γijHj(y
−
ijx)

+

n∑
i=1

J∑
j=1

1(Hj(yijx) 6=∞)αjU
(m)(x)αj−1eαj(ai+bix)γijHj(yijx)

1 + U (m)(x)eαj(ai+bix)γijHj(yijx)

 (C.11)

The surrogate function (C.11) satisfies S(U (m), U (m)) = `0(U (m)) + log f(a, b) and

S(U,U (m)) ≤ `0(U)+log f(a, b). By MM algorithm theory, the next iteration U (m+1)

that maximizes S(U,U (m)) in M-step will improve the likelihood.

We employ DCA and maximize imputed surrogate function (C.11). Applying the

functional derivative to the surrogate function (C.11) with respect to U(x), we

obtain the conditional score function for U(x) as

U0,U(x) =
∂`0

∂U(x)
=

∑n
i=1

∑J
j=1 αj 1(Hj(yijx) 6=∞)

U(x)

−
n∑
i=1

J∑
j=1

αjU
(m)(x)αj−1eαj(ai+bix)γijHj(y

−
ijx)

1 + U (m)(x)eαj(ai+bix)γijHj(y
−
ijx)

−
n∑
i=1

J∑
j=1

1(Hj(yijx) 6=∞)αjU
(m)(x)αj−1eαj(ai+bix)γijHj(yijx)

1 + U (m)(x)eαj(ai+bix)γijHj(yijx)
(C.12)

• E step
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Taking expectation of (C.12), we obtain the marginal score function for U(x):

UU(x) =

∑n
i=1

∑J
j=1 αj 1(Hj(yijx) 6=∞)

U(x)

−
n∑
i=1

J∑
j=1

E

[
αjU

(m)(x)αj−1eαj(ai+bix)γijHj(y
−
ijx)

1 + U
(m)
i (x)αjγijHj(y

−
ijx)

∥∥∥∥∥L(m)
0

]

−
n∑
i=1

J∑
j=1

E

[
1(Hj(yijx) 6=∞)αjU

(m)(x)αj−1eαj(ai+bix)γijHj(yijx)

1 + U
(m)
i (x)αjγijHj(yijx)

∥∥∥∥∥L(m)
0

]
.

We use multivariate Laplace approximation for the imputed terms. Specifically,

E

[
αjU

(m)(x)αj−1eαj(ai+bix)γijHj(y
−
ijx)

1 + U
(m)
i (x)αjγijHj(y

−
ijx)

∥∥∥∥∥L0

]

=

∫∞
−∞

∫∞
−∞

αjU
(m)(x)αj−1eαj(ai+bix)γijHj(y

−
ijx)

1+U
(m)
i (x)αj γijHj(y

−
ijx)

L0
θ
θ1i
2i

Γ(θ1i)
eaθ1i−θ2ie

a η
η3
3

Γ(η3)
ebη3−η3ebdadb∫∞

−∞

∫∞
−∞ L0

θ
θ1i
2i

Γ(θ1i)
eaθ1i−θ2iea

η
η3
3

Γ(η3)
ebη3−η3ebdadb

(C.13)

where L0 is the function (2).

Applying multivariate Laplace’s approximation to the numerator and the de-

nominator of (C.13), we obtain

E

[
αjU

(m)(x)αj−1eαj(ai+bix)γijHj(y
−
ijx)

1 + U
(m)
i (x)αjγijHj(y

−
ijx)

∥∥∥∥∥L0

]

≈

αjU
(m)(x)αj−1eαj(âi+b̂ix)γijHj(y

−
ijx)

1+U(m)(x)αj eαj(âi+b̂ix)γijHj(y
−
ijx)

θ
θ1i
2i

Γ(θ1i)

η
η3
3

Γ(η3)
ef(âi,b̂i)2π| −H(f)(âi, b̂i)|−1/2

θ
θ1i
2i

Γ(θ1i)

η
η3
3

Γ(η3)
ef(âi,b̂i)2π| −H(f)(âi, b̂i)|−1/2

=
αjU

(m)(x)αj−1eαj(âi+b̂ix)γijHj(y
−
ijx)

1 + U (m)(x)αjeαj(âi+b̂ix)γijHj(y
−
ijx)

where f(a, b) is the function (C.6) and ∇f(âi, b̂i) = 0.

• M step

The estimator for U(x) that maximizes E
(
S(U,U (m))

∥∥∥L(m)
0

)
can be obtained
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by solving UU(x) = 0. The solution results in a Breslow-type estimator

U (m+1)(x) =

∑n
i=1

∑J
j=1 αj 1(Hj(yijx) 6=∞)∑n

i=1

∑J
j=1 E

[
Θ

(m)
1ij

∥∥∥L(m)
0

]
− E

[
Θ

(m)
2ij

∥∥∥L(m)
0

]
where

Θ
(m)
1ij =

αjU
(m)(x)αj−1eαj(ai+bix)γijH

(m)
j (y−ijx)

1 + U
(m)
i (x)αjγijH

(m)
j (y−ijx)

Θ
(m)
2ij =

1(Hj(yijx) 6=∞)αjU
(m)(x)αj−1eαj(ai+bix)γijH

(m)
j (yijx)

1 + U
(m)
i (x)αjγijH

(m)
j (yijx)

The above updating equation for U(x) is a self-consistent equation that can be

solved iteratively.

C.2 Asymptotic Properties

C.2.1 Proof of Theorem IV.1

To prove theorem IV.1, we show that any convergent sub-sequence of (Ω̂n, Ûn, Ĥn)

must converge to (Ω0, U0,H0). Since Ω̂n, Ûn and Ĥn belong to a compact set, we can

assume that Ω̂n → Ω∗, Ûn(t) → U∗(t) and Ĥn(·) converges point-wise to a monotone

function H∗(·) within its domain D. We will show that Ω∗ = Ω0, U
∗(t) = U0(t) and

H∗(y) = H0(y) for all y within the domain.

The marginal loglikelihood (4.3) can be written as
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`n(Ω,H|Y,Z)

=
n∑
i=1

logE

{
J∏
j=1

K∏
k=1

eαj(ai+bitk)γij
[1 + Ui(tk)αjγijHj(y

−
ijk)][1 + Ui(tk)αjγijHj(yijk)]

(ev0ai+v1biγis)
δi

[1 + ev0ai+v1biγisHs(Ti)]1+δi

}
·

J∏
j=1

K∏
k=1

U(tk)
αjdHj(yijk)dHs(Ti)

δi

=
n∑
i=1

logE

{
J∏
j=1

K∏
k=1

eαj(ai+bitk)γij
[1 + Ui(tk)αjγijHj(y

−
ijk)][1 + Ui(tk)αjγijHj(yijk)]

(ev0ai+v1biγis)
δi

[1 + ev0ai+v1biγisHs(Ti)]1+δi

}

+
n∑
i=1

J∑
j=1

K∑
k=1

αj logU(tk) +
n∑
i=1

J∑
j=1

K∑
k=1

log dHj(yijk) +
n∑
i=1

δi log dHs(Ti).

By differentiating `n with respect to dHs(x),

∂`n
∂dHs(x)

=

∑n
i=1 δi 1(Ti = x)

dHs(x)
−

n∑
i=1

E[R1i(Ω, U,H)Rsi(x,Ω, U,H)]

E[R1i(Ω, U,H)]

=

∑n
i=1 dNi(x)

dHs(x)
−

n∑
i=1

∫ ∫
R1i(Ω, U,H, a, b)Rsi(x,Ω, H, a, b)fab(a, b|η)dadb∫ ∫

R1i(Ω, H, U, a, b)fab(a, b|η)dadb

where

R1i(Ω, U,H, a, b)

=
J∏
j=1

K∏
k=1

eαj(ai+bitk)γij
[1 + Ui(tk)αjγijHj(y

−
ijk)][1 + Ui(tk)αjγijHj(yijk)]

(ev0ai+v1biγis)
δi

[1 + ev0ai+v1biγisHs(Ti)]1+δi

Rsi(x,Ω, U,H, a, b) =
(1 + δi)1(Ti ≥ x)ev0ai+v1biγis

1 + ev0ai+v1biγisHs(Ti)

Setting the derivative to zero, we obtain the equation

∑n
i=1 dNi(x)

dHs(x)
=

n∑
i=1

∫ ∫
R1i(Ω, U,H, a, b)Rsi(x,Ω, U,H, a, b)fab(a, b|η)dadb∫ ∫

R1i(Ω, U,H, a, b)fab(a, b|η)dadb
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Therefore, we see that dĤs satisfies the equation

∑n
i=1 dNi(x)

dĤs(x)
=

n∑
i=1

∫ ∫
R1i(Ω̂, Û , Ĥ, a, b)Rsi(x, Ω̂, Û , Ĥ, a, b)f(a, b|η̂)dadb∫ ∫

R1i(Ω̂, Û , Ĥ, a, b)fab(a, b|η̂)dadb
(C.14)

Construct a function H̃s by imitating Ĥs and we will show H̃s uniformly converges to

H0s. Define H̃0 as a step function with jumps only at the Ti for which δi = 1 and dH̃s

satisfies the equation

∑n
i=1 dNi(x)

dH̃s(x)
=

n∑
i=1

∫ ∫
R1i(Ω0, U0, H0, a, b)Rsi(x,Ω0, U0, H0, a, b)fab(a, b|η0)dadb∫ ∫

R1i(Ω0, U0, H0, a, b)f(a, b|η0)dadb
(C.15)

By definition, H̃s(x) =
∑n

i=1 1(Ti ≤ x)dH̃s(Ti). By Glivenko-Cantelli theorem, H̃s(x)

converges almost surely to E{1(Ti ≤ x)fT (x)/µ(Ti)}, where

µ(x) = E
{∫ ∫

R1i(Ω0, U0, H0, a, b)Rsi(s,Ω0, U0, H0, a, b)fab(a, b|η0)dadb∫ ∫
R1i(Ω0, U0, H0, a, b)fab(a, b|η0)dadb

}
= E

{
E
[

(1 + δi)1(Ti ≥ x)ev0ai+v1biγ0
is

1 + ev0ai+v1biγ0
isH0s(Ti)

∣∣∣∣R1i(Ω0, U0, H0, a, b)

]}
,

fT (x) = E[dNi(x)] = E[δi 1(Ti = x)]

Denote Sc(·|Z) the survival function of censoring time C given Z.

E
{

(1 + δi)1(Ti ≥ x)ev0ai+v1biγ0
is

1 + ev0ai+v1biγ0
isH0s(Ti)

∣∣∣∣R1i(Ω0, U0, H0, a, b)

}

=E

2

∞∫
x

ev0ai+v1biγ0
is

1 + ev0ai+v1biγ0
isHs(t)

ev0ai+v1biγ0
ish0s(t)

[1 + ev0ai+v1biγ0
isH0s(t)]2

Sc(t|Zis)dt

∣∣∣∣∣∣R1i(Ω0, U0, H0, a, b)


−E


∞∫
x

ev0ai+v1biγ0
is

1 + ev0ai+v1biγ0
isH0s(t)

1

1 + ev0ai+v1biγ0
isH0s(t)

dSc(t|Zis)

∣∣∣∣∣∣R1i(Ω0, U0, H0, a, b)


=E

{
Sc(x|Zis)ev0ai+v1biγ0

is

[1 + ev0ai+v1biγ0
isH0s(x)]2

∣∣∣∣R1i(Ω0, U0, H0, a, b)

}
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where the second equality follows from integration by part. Therefore we have

E
{
1(Ti ≤ x)fT (x)

µ(Ti)

}
= E

E

 x∫
0

Sc(t|Zik)ev0ai+v1biγ0
ish0k(t)

µ(t)[1 + ev0ai+v1biγ0
isH0k(t)]2

dt

∣∣∣∣∣∣R1i(Ω0, U0, H0, a, b)


=

x∫
0

h0s(t)dt = H0s(x)

Therefore, H̃s(x) converges uniformly to H0s(x) in [0, τ ].

Next, differentiating `n with respect to dHj(x),

∂`n
∂dHj(x)

=

∑n
i=1

∑K
k=1 1(yijk = x)

dHj(x)
−

n∑
i=1

E[R1i(Ω, U,H)R2i(x,Ω, U,H)]

E[R1i(Ω, U,H)]

=

∑n
i=1

∑K
k=1 1(yijk = x)

dHj(x)
−

n∑
i=1

∫ ∫
R1i(Ω, U,H, a, b)R2i(x,Ω, U,H, a, b)fab(a, b|η)dadb∫ ∫

R1i(Ω, U,H, a, b)fab(a, b|η)dadb

where

R2i(x,Ω, U,H, a, b) =
K∑
k=1

21(yijk ≥ x)U
αj
i (tk)γij

1 + U
αj
i (tk)γijHj(yijk)

Setting the derivative to zero, we obtain the equation

∑n
i=1

∑K
k=1 1(yijk = x)

dHj(x)
=

n∑
i=1

∫ ∫
R1i(Ω, U,H, a, b)R2i(x,Ω, U,H, a, b)fab(a, b|η)dadb∫ ∫

R1i(Ω, U,H, a, b)fab(a, b|η)dadb

Therefore, we see that dĤj satisfies the equation

∑n
i=1

∑K
k=1 1(yijk = x)

dĤj(x)
=

n∑
i=1

∫ ∫
R1i(Ω, U,H, a, b)R2i(x,Ω, U,H, a, b)fab(a, b|η)dadb∫ ∫

R1i(Ω, U,H, a, b)fab(a, b|η)dadb

(C.16)

Construct a function H̃j by imitating Ĥj and we will show H̃j uniformly converges to

H0j. Define H̃j as a step function with jumps at the yijk, i = 1, · · · , n, k = 1, · · · , K and
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dH̃j satisfies the equation

∑n
i=1

∑K
k=1 1(yijk = x)

dH̃j(x)
=

n∑
i=1

∫ ∫
R1i(Ω0, U0, H0, a, b)R2i(x,Ω0, U0, H0, a, b)fab(a, b|η0)dadb∫ ∫

R1i(Ω0, U0, H0, a, b)fab(a, b|η0)dadb

(C.17)

By definition, H̃j(x) =
∑n

i=1

∑K
k=1 1(yijk ≤ x)dH̃j(yijk). By Glivenko-Cantelli theo-

rem, H̃j(x) converges almost surely to E
{∑K

k=1 1(yijk ≤ x)fYj(x)/µ(yijk)
}

, where

µ(x) = E
{∫ ∫

R1i(Ω0, U0, H0, a, b)R2i(x,Ω0, U0, H0, a, b)fab(a, b|η0)dadb∫ ∫
R1i(Ω0, U0, H0, a, b)fab(a, b|η0)dadb

}
= E

{
K∑
k=1

E
[

21(yijk ≥ x)U
α0j

i (tk)γ
0
ik

1 + Uα0k
i (tk)γ0

ikH0k(yik)

∣∣∣∣R1i(Ω0, U0, H0, a, b)

]}
,

fYj(x) = E[1(yijk = x)]

Note that

E

{
21(yijk ≥ x)U

α0j

i (tk)γ
0
ij

1 + U
α0j

i (tk)γ0
ijH0j(yijk)

∣∣∣∣∣R1i(Ω0, U0, H0, a, b)

}

=E

2

∞∫
x

U
α0j

i (tk)γ
0
ij

1 + U
α0j

i (tk)γ0
ijH0j(y)

U
α0j

i (tk)γ
0
ijh0j(y)

[1 + U
α0j

i γ0
ijH0j(y)]2

dy

∣∣∣∣∣∣R1i(Ω0, U0, H0, a, b)


=E

{
U
α0j

i (tk)γ
0
ij

[1 + U
α0j

i (tk)γ0
ijH0j(x)]2

∣∣∣∣∣R1i(Ω0, U0, H0, a, b)

}

Therefore we have

E

{
K∑
k=1

1(yijk ≤ x)fYj(x)

µ(yijk)

}
= E


K∑
k=1

E

 x∫
0

U
α0j

i γ0
ijh0j(y)

µ(y)[1 + U
α0j

i γ0
ijH0j(y)]2

dy

∣∣∣∣∣∣R1i(Ω0, U0, H0, a, b)


=

x∫
0

h0j(y)dy = H0j(x)

Therefore, H̃j(x) converges uniformly to H0j(x) in its specific domain Dj.
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By plugging in (C.14) and (C.16) into `n(Ω̂, Û , Ĥ), we obtain

`n(Ω̂, Û , Ĥ)

=
n∑
i=1

logE

{
J∏
j=1

K∏
k=1

eαj(ai+bitk)γij
[1 + Ui(tk)αjγijHj(y

−
ijk)][1 + Ui(tk)αjγijHj(yijk)]

(ev0ai+v1biγis)
δi

[1 + ev0ai+v1biγisHs(Ti)]1+δi

}

+
n∑
i=1

J∑
j=1

K∑
k=1

αj log Û(tk) +
n∑
i=1

J∑
j=1

K∑
k=1

log dĤj(yijk) +
n∑
i=1

δi log dĤs(Ti)

=
n∑
i=1

log

∫ ∫
R1i(Ω̂, Û , Ĥ, a, b)fab(a, b|η̂)dadb+

n∑
i=1

J∑
j=1

K∑
k=1

log Û(tk)
α̂j

+
n∑
i=1

δi log

(
n∑
l=1

dNls(Ti)

)
+

n∑
i=1

J∑
j=1

K∑
k=1

log

(
n∑
l=1

K∑
k=1

1(yljk = yijk)

)

−
n∑
i=1

δi log

(
n∑
i=1

∫ ∫
R1i(Ω̂, Û , Ĥ, a, b)Rsi(x, Ω̂, Û , Ĥ, a, b)f(a, b|η̂)dadb∫ ∫

R1i(Ω̂, Û , Ĥ, a, b)fab(a, b|η̂)dadb

)

−
n∑
i=1

J∑
j=1

K∑
k=1

log

(
n∑
i=1

∫ ∫
R1i(Ω̂, Û , Ĥ, a, b)R2i(x, Ω̂, Û , Ĥ, a, b)fab(a, b|η̂)dadb∫ ∫

R1i(Ω̂, Û , Ĥ, a, b)fab(a, b|η̂)dadb

)
.

Likewise, plug in (C.15) and (C.17) into `n(Ω0, U0, H̃), we obtain

`n(Ω0, U0, H̃)

=
n∑
i=1

log

∫ ∫
R1i(Ω0, U0, H̃, a, b)fab(a, b|η0)dadb+

n∑
i=1

J∑
j=1

K∑
k=1

logU0(tk)
α0j

+
n∑
i=1

δi log

(
n∑
l=1

dNls(Ti)

)
+

n∑
i=1

J∑
j=1

log

(
n∑
l=1

K∑
k=1

1(yljk = yijk)

)

−
n∑
i=1

δi log

(
n∑
i=1

∫ ∫
R1i((Ω0, U0, H0, a, b)Rsi(x, (Ω0, U0, H0, a, b, a, b)f(a, b|η0)dadb∫ ∫

R1i((Ω0, U0, H̃, a, b)fab(a, b|η0)dadb

)

−
n∑
i=1

J∑
j=1

K∑
k=1

log

(
n∑
i=1

∫ ∫
R1i((Ω0, U0, H̃, a, b)R2i(x, (Ω0, U0, H0, a, b)fab(a, b|η0)dadb∫ ∫

R1i((Ω0, U0, H0, a, b)fab(a, b|η0)dadb

)
.
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Define

Rssi(s,Ω, U,H) =

∫ ∫
R1i(Ω, U,H, a, b)Rsi(s,Ω, U,H, a, b)fab(a, b|η)dadb∫ ∫

R1i(Ω, U,H, a, b)fab(a, b|η)dadb
,

R3i(s,Ω, U,H) =

∫ ∫
R1i(Ω, U,H, a, b)R2i(s,Ω, U,H, a, b)fab(a, b|η)dadb∫ ∫

R1i(Ω, U,H, a, b)fab(a, b|η)dadb
.

We see that Ĥj(y) is continuous with respect to H̃k(y) and Ĥs(t) is continuous with

respect to H̃s(t). In addition,

Ĥs(t) =

t∫
0

∑n
i=1Rssi(u,Ω0, U0, H0)∑n
i=1Rssi(u, Ω̂, Û , Ĥ)

dH̃s(u)

Ĥj(y) =

y∫ ∑n
i=1R3i(s,Ω0, U0, H0)∑n
i=1 R3i(s, Ω̂, Û , Ĥ)

dH̃j(s)

for j = 1, · · · , J .

If the jth outcome is continuous, by taking limits on both sides of the above equations,

we conclude that H∗j (y) is absolutely continuous with respect to H0j(y) so that H∗j (y) is

differentiable with respect to y. In addition, dĤj(y)/dH̃j(y) converges to dH∗j (y)/dH0j(y)

uniformly in y. Similarly, we conclude that H∗s (t) is absolutely continuous with respect

to H0s(t) so that H∗s (t) is differentiable with respect to t. In addition, dĤs(t)/dH̃s(t)

converges to dH∗s (t)/dH0s(t) uniformly in t.

Since (Ω̂, Û , Ĥ) are NPMLEs for `n(Ω, U,H), we know `n(Ω̂, Û , Ĥ)− `n(Ω, U,H) ≥ 0
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for any Ω, U,H. We have

0 ≤ n−1{`n(Ω̂, Û , Ĥ)− `n(Ω0, U0, H̃)}

=n−1

n∑
i=1

log

∫ ∫
R1i(Ω̂, Û , Ĥ, a, b)fab(a, b|η̂)dadb

− n−1

n∑
i=1

log

∫ ∫
R1i(Ω0, U0, H̃, a, b)f(a, b|η0)dadb

+
n∑
i=1

J∑
j=1

K∑
k=1

log
Û(tk)

α̂j

U0(tk)α0j
+

n∑
i=1

J∑
j=1

K∑
k=1

log
dĤj(yijk)

dH̃j(yijk)
+

n∑
i=1

δi log
dĤs(Ti)

dH̃s(Ti)
. (C.18)

As n→∞ in (C.18), we have

0 ≤ `(Ω∗, U∗, H∗)− `(Ω0, U0, H0) (C.19)

= E

[
log

∫ ∫
R1i(Ω

∗, U∗, H∗, a, b)fab(a, b|η∗)dadb
∏J
j=1

∏K
k=1 U

∗(tk)
α∗
j
∏J
j=1

∏K
k=1 dH

∗
j (yijk)dH

∗
s (Ti)

δi∫ ∫
R1i(Ω0, U0, H0, a, b)fab(a, b|η0)dadb

∏J
j=1

∏K
k=1 U0(tk)α0j

∏J
j=1

∏K
k=1 dH0j(yijk)dH0s(Ti)δi

]

is the negative Kullback-Leibler information. By definition, (Ω0, U0, H0) maximizes

`(Ω, U,H), therefore, (C.19) has a unique maximum when

∫ ∫
R1i(Ω

∗, U∗, H∗, a, b)fab(a, b|η∗)dadb
J∏
j=1

K∏
k=1

U∗(tk)
α∗j

J∏
j=1

K∏
k=1

dH∗j (yijk)dH
∗
s (Ti)

δi

=

∫ ∫
R1i(Ω0, U0, H0, a, b)fab(a, b|η0)dadb

J∏
j=1

K∏
k=1

U0(tk)
α0j

J∏
j=1

K∏
k=1

dH0j(yijk)dH0s(Ti)
δi

(C.20)

uniformly over (Ω, U,H). Under an identifiable model this means (C.19) has a unique

maximum at (Ω0, U0, H0). Since maximizing (C.19) is equivalent to maximizing likelihood

`(Ω∗, U∗, H∗), and (C.19) has a unique maximum, therefore, (Ω0, U0, H0) = argmax(Ω,U,H)∈H`(Ω, U,H)
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is unique. Write out (C.20)

∫ ∫ J∏
j=1

K∏
k=1

U∗(tk)
α∗j eα

∗
j (ai+bitk)γ∗ijdH

∗
j (yijk)

[1 + U∗(tk)
α∗j eα

∗
j (ai+bitk)γ∗ijH

∗
j (yijk)]2

(ev
∗
0ai+v

∗
1biγ∗isdH

∗
s (Ti))

δi

[1 + ev
∗
0ai+v

∗
1biγ∗isH

∗
s (Ti)]1+δi

fab(a, b|η∗)dadb

=

∫ ∫ J∏
j=1

K∏
k=1

U0(tk)
α0jeα0j(ai+bitk)γ0

ijdH0j(yijk)

[1 + U0(tk)α0jeα0j(ai+bitk)γ0
ijH0j(yijk)]2

(ev
0
0ai+v

0
1biγ0

isdH0s(Ti))
δi

[1 + ev
0
0ai+v

0
1biγ0

isH0s(Ti)]1+δi
fab(a, b|η0)dadb

(C.21)

We will show (C.21) implies that Ω∗ = Ω0, U
∗ = U0 and H∗ = H0. For an integer q such

that 1 ≤ q ≤ J , let yijk = 0 in (C.21) for j = 1, · · · , q. For j = q + 1, · · · , J , we integrate

yijk out in its domain. For the survival outcome, let δi = 1, Ti = 0. Applying the above

actions to (C.21), we obtain

∫ ∫
ev
∗
0ai+v

∗
1biγ∗isdH

∗
s (0)

q∏
j=1

K∏
k=1

{
U∗(tk)

α∗j eα
∗
j (ai+bitk)γ∗ijdH

∗
j (0)

}
q+1∏
j=1

K∏
k=1

∫
y∈Dj

U∗(tk)
α∗j eα

∗
j (ai+bitk)γ∗ijdH

∗
j (y)

[1 + U∗(tk)
α∗j eα

∗
j (ai+bitk)γ∗ijH

∗
j (y)]2

dyfab(a, b|η∗)dadb

=

∫ ∫
ev

0
0ai+v

0
1biγ0

isdH0s(0)

q∏
j=1

K∏
k=1

{
U0(tk)

α0jeα0j(ai+bitk)γ0
ijdH0j(0)

}
q+1∏
j=1

K∏
k=1

∫
y∈Dj

U0(tk)
α0jeα0j(ai+bitk)γ0

ijdH0j(y)

[1 + U0(tk)α0jeα0j(ai+bitk)γ0
ijH0j(y)]2

dyfab(a, b|η0)dadb

∫ ∫
ev
∗
0ai+v

∗
1biγ∗isdH

∗
s (0)

q∏
j=1

K∏
k=1

{
U∗(tk)

α∗j eα
∗
j (ai+bitk)γ∗ijdH

∗
j (0)

}
fab(a, b|η∗)dadb

=

∫ ∫
ev

0
0ai+v

0
1biγ0

isdH0s(0)

q∏
j=1

K∏
k=1

{
U0(tk)

α0jeα0j(ai+bitk)γ0
ijdH0j(0)

}
fab(a, b|η0)dadb

(C.22)

169



Thus,

γ∗isdH
∗
s (0)

q∏
j=1

K∏
k=1

{
U∗(tk)

α∗
j γ∗ijdH

∗
j (0)

}∫ ∫
ev

∗
0ai+v

∗
1bi+

∑q
j=1

∑K
k=1 α

∗
j (ai+bitk)fab(ai, bi|η∗)dadb

=γ0
isdH0s(0)

q∏
j=1

K∏
k=1

{
U0(tk)

α0jγ0
ijdH0j(0)

}∫ ∫
ev

0
0ai+v

0
1bi+

∑q
j=1

∑K
k=1 α0j(ai+bitk)fab(ai, bi|η0)dadb

Regularity condition (1) implies that dH∗(0) > 0. Take q = 1, we have

γ∗isdH
∗
s (0)

K∏
k=1

{
U∗(tk)

α∗1γ∗i1dH
∗
1 (0)

}∫ ∫
ev
∗
0ai+v

∗
1bi+

∑K
k=1 α

∗
1(ai+bitk)fab(ai, bi|η∗)dadb

=γ0
isdH0s(0)

K∏
k=1

{
U0(tk)

α01γ0
i1dH01(0)

}∫ ∫
ev

0
0ai+v

0
1bi+

∑K
k=1 α01(ai+bitk)fab(ai, bi|η0)dadb

Take log of both sides,

ZT
isβ
∗
s + log dH∗s (0) +

K∑
k=1

logU∗(tk)
α∗1 +KZT

i1β
∗
1 +K log dH∗1 (0)

+

∫ ∫
ev
∗
0ai+v

∗
1bi+

∑K
k=1 α

∗
1(ai+bitk)fab(ai, bi|η∗)dadb

=ZT
isβ0s + log dH0s(0) +

K∑
k=1

logU0(tk)
α01 +KZT

i1β01 +K log dH01(0)

+

∫ ∫
ev

0
0ai+v

0
1bi+

∑K
k=1 α01(ai+bitk)fab(ai, bi|η0)dadb

ZT
is(β

∗
s − β0s) + log

dH∗s (0)

dH0s(0)
+

K∑
k=1

log
U∗(tk)

α∗1

U0(tk)α01
+KZT

i1(β∗1 − β01)

+K log
dH∗1 (0)

dH01(0)
+ log

∫ ∫
ev
∗
0ai+v

∗
1bi+

∑K
k=1 α

∗
1(ai+bitk)fab(ai, bi|η∗)dadb∫ ∫

ev
0
0ai+v

0
1bi+

∑K
k=1 α01(ai+bitk)fab(ai, bi|η0)dadb

= 0 (C.23)

Since outcome index q is interchangeable between outcomes, so the equation (C.23)

applies to any outcome j. According to condition (4) and (5), equation (C.23) implies

α∗ = α0, β∗ = β0, η∗ = η0,v
∗ = v0, U

∗(t) = U0(t) and dH∗(0) = dH0(0).

Next we show that H∗j = H0j for all j = 1, · · · , J . For j = 1, we integrate yi1k from 0

to x in (C.21). In addition, for j = 2, · · · , J , we integrate yijk out in its domain. For the
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survival outcome, let δi = 1 and we integrate Ti in [0, τ ]. We obtain

∫ ∫
U∗i (tk)

α∗1γ∗i1H
∗
1 (x)

1 + U∗i (tk)α
∗
1γ∗i1H

∗
1 (x)

fab(a, b|η∗)dadb =

∫ ∫
U0i(tk)

α01γ0
i1H01(x)

1 + U0i(tk)α01γ0
i1H01(x)

fab(a, b|η0)dadb

The two sides of the above equation are strictly monotone in H∗1 (x) and H01(x), respec-

tively. Therefore, we have H∗1 (x) = H01(x). Since the outcome index is arbitrary, the

above result also applies to j = 2, · · · , J . Apply the similar actions to Hs by integrating

out all yi1k in its domain and let δi = 1 and we integrate Ti from 0 to t, we get

∫ ∫
ev
∗
0a+v∗1bγ∗isH

∗
s (t)

1 + ev
∗
0a+v∗1bγ∗isH

∗
s (t)

fab(a, b|η∗)dadb =

∫ ∫
ev

0
0a+v0

1bγ0
isH0s(t)

1 + ev
0
0a+v0

1bγ0
isH0s(t)

fab(a, b|η0)dadb

The two sides of the above equation are strictly monotone in H∗s (t) and H0s(t), respec-

tively. Therefore, we have H∗s (t) = H0s(t). Overall, we have H∗(x) = H0(x) for x ∈ D.

We conclude that ||Ω̂−Ω0|| → 0, ||Û(t)−U0(t)|| → 0, and ||Ĥ(x)−H0(x)|| → 0 for all

x ∈ D. Thus, we established uniform convergence
∑J

j=1 supyj∈Dj |Ĥj(yj) −H0j(yj)| → 0

and supt∈[0,τ ] |Ĥs(t)−H0s(t)| → 0.

C.2.2 Proof of Theorem IV.2

Consider the set

H = {(v, w1, · · · , wJ+1) : v ∈ Rd+K , wj(·) is a function on Dj, wJ+1(·) is a function on [0, τ ];

|v| ≤ 1, ||wj||BV [Dj ] ≤ 1, j = 1, · · · , J, ||wJ+1||BV [0,τ ] ≤ 1}

where ||wj||BV [Dj ] denotes the total variation of wj(·) in Dj, and d is the dimension of Ω.

Define a sequence Sn(Ω, U,H)[v, w1, · · · , wJ+1] mapping a neighborhood of (Ω0, U0, H0)
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into l∞(H) as follows:

Sn(Ω, U,H)[v, w1, · · · , wJ+1]

=
d

dε
n−1`n

(Ω, U)T + εv,Hj(y) + ε

y∫
−∞

wj(x)dHj(x), j = 1, · · · , J + 1

∣∣∣∣∣∣
ε=0

= An0[v] +
J+1∑
j=1

Anj[wj]

where Anp, p = 0, · · · , J + 1, are linear functionals on Rd+K and BV [D], respectively. Let

˙̀
Ω,U and ˙̀

Hj(wj) be the score function for (Ω, U) and the score for Hj along the path

Hj(y) + ε
∫
wj(s)dHj(s), then

An0[v] = Pn[vT ˙̀
Ω,U ], Anj[wj] = Pn[ ˙̀

Hj(wj)], j = 1, · · · , J + 1

where Pn denotes the empirical measure based on n independent subjects.

Correspondingly we define the limit map S : (Ω, U,H)→ l∞(H) as

S(Ω, U,H)[v, w1, · · · , wJ+1] = A0[v] +
J+1∑
j=1

Aj[wj],

where the linear functionals Ap, p = 0, · · · , J + 1, are the expectation of the empirical

average of Anp, p = 0, · · · , J + 1. By definition, Sn(Ω̂, Û , Ĥ) = 0 and S(Ω0, U0, H0) = 0.

Since H is a Donsker class and the functionals Anp, p = 0, · · · , J + 1, are bounded

Lipschitz functionals with respect to H,
√
n(Sn(Ω0, U0, H0)− S(Ω0, U0, H0)) converges to

a tight Gaussian process on l∞(H). The first condition in Theorem 2 of Murphy (1995)

holds.

By regularity condition (6), the score operator S(Ω, U,H) is Fréchet differentiable at

Ω0, U0, H0 with a continuously invertible derivative −I0. The hessian matrix In evaluated

at the true values of H and Ω, U is positive definite, and converges in probability to a
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deterministic and invertible operator I0. Thus the second condition in Theorem 2 of

Murphy (1995) holds. The derivative of S(Ω, U,H) at (Ω0, U0, H0), denoted as −I0, is a

map from the space (Ω−Ω0, U −U0, H−H0) to l∞(H). The fourth condition in Theorem

2 of Murphy (1995), the approximation condition below can be verified along the lines of

appendix in Murphy (1995)

sup |(Sn − S)(Ω̂, Û , Ĥ)− (Sn − S)(Ω0, U0, H0)|

=op

(
n−1/2 ∨

{
||Ω̂− Ω0||+ ||Û − U0||+

J+1∑
j=1

sup |Ĥj(y)−H0j(y)|

})
.

In order to verify the third condition in Theorem 2 of Murphy (1995), we want to

show that −I0, denoted Ṡ0, is continuously invertible. Ṡ0 maps (Ω−Ω0, U −U0, H −H0)

to a bounded functional on H. By Zeng et al. (2005), we will prove the invertibility of

Ṡ0 by verifying that Ṡ0(Ω − Ω0, U − U0, H −H0)[v, w1, · · · , wJ+1] = 0 implies v = 0 and

wj(y) = 0 uniformly, j = 1, · · · , J + 1.

For a small constant ε, choose (Ω, U)T = (Ω0, U0)T+εv,Hj(y) = H0j(y)+ε
∫ y
−∞wj(x)dH0j(x).

Then,

0 = Ṡ0(Ω− Ω0, U − U0, H −H0)[v, wj, j = 1, · · · , J + 1] = εE

( ˙̀
Ω,U [v] +

J+1∑
j=1

˙`Hj [wj]

)2


This means

˙̀
Ω,U [v] +

J+1∑
j=1

˙`Hj [wj] = 0 (C.24)

Closely following the lines in Appendix of Zeng et al. (2005), we can see that the equa-

tion (C.24) entails v = 0 and wj(·) = 0 uniformly. Therefore, the derivative of the score

operator at (Ω0, U0, H0), denoted as −I0 is continuously invertible. By Theorem 2 of Mur-

phy (1995),
√
n
{

Ω̂− Ω, Û − U, Ĥ(·)− Ĥ0(·)
}

converges weakly to a zero-mean Gaussian
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process. Furthermore,

√
nṠ0(Ω− Ω0, U − U0, H −H0)[v, wj, j = 1, · · · , J + 1]

=
√
n(Pn − P)

[
vT ˙̀

Ω,U +
J+1∑
j=1

˙̀
Hj [wj]

]
+ op(1) (C.25)

Thus, Ω̂, Û is semiparametrically efficient since Ω̂, Û is asymptotically linear estimator for

Ω0, U0, and its influence function belong to the space spanned by the score function (Zeng

et al. (2005)).

C.2.3 Proof of Theorem IV.3

Observe that
√
nṠ0(Ω − Ω0, U − U0, H − H0)[v, wj, j = 1, · · · , J + 1] is the expecta-

tion of the second derivative of the normalized log-likelihood along the direction (Ω̂ −

Ω0, Û −U0, Ĥ−H0) and the direction
(
v,
∫
wdH0

)
. Therefore,

√
nṠ0(Ω−Ω0, U −U0, H−

H0)[v, wj, j = 1, · · · , J + 1] can be approximated by

√
n(vT , w̄T )(In/n)

(Ω̂− Ω0, Û − U0)

dĤ(s)− dH0(s)

 ,

where w̄ denotes the set of vectors {wj(x) : dNijk(x) = 1}. On the other hand,

√
n(Pn − P)

[
vT ˙̀

Ω,U +
J+1∑
j=1

˙̀
Hj [wj]

]
→d (vT , w̄T )(In/n)1/2G
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where G is standard multivariate Gaussian. Therefore, equation (C.25) implies that

√
n(vT , w̄T )(In/n)

(Ω̂− Ω0, Û − U0)

dĤ(s)− dH0(s)

→d (vT , w̄T )(In/n)1/2G

√
n(vT , w̄T )

(Ω̂− Ω0, Û − U0)

dĤ(s)− dH0(s)

→d (vT , w̄T )(In/n)−1/2G

Thus,
√
n
{
vT (Ω̂− Ω0, Û − U0) +

∑J+1
j=1

∫
wjd(Ĥj −H0j)

}
converges to a zero mean Gaus-

sian process with with variance-covariance matrix n(vT , w̄T )I−1
0 (vT , w̄T )T .
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