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Abstract

This dissertation covers applications of effective field theory (EFT) ideas and techniques to

the study of particle physics beyond the Standard Model (SM). The recent discovery of the

Higgs boson without other new physics discoveries hints at the possibility that additional

exotic states that couple to SM particles, if they exist, are not in the neighborhood of the

electroweak scale. In this case, precision measurements of SM processes offer an important

indirect probe of heavy new physics that is complementary to direct searches for new particles

at high energy colliders, and EFT becomes the tool of choice to bridge a vast range of new

physics ideas and experimental observation.

We start with a discussion of the precision analyses program, reviewing the analysis

framework and the status of electroweak precision tests. The Higgs boson discovery has

added a new module to this program, and we point out new issues related to heavy quark

masses that must be taken into account in future precision studies of the Higgs boson.

Various approaches exist in the literature to extract information about new physics from

precision analyses. Two examples are oblique parameters and triple gauge couplings (TGCs).

We critically examine these conventional approaches in the EFT framework. In particular,

we clarify that the applicability of oblique parameters is restricted to universal theories

at leading order, and we find that TGCs no longer serve as a general parameterization

of new physics effects in W boson pair production with recent LHC data. In both cases,

EFT provides a consistent framework to rectify and extend the oversimplified conventional

approaches, in order to take full advantage of high energy data to learn about new physics.

We next turn to the subject of EFT matching, i.e. deriving a low energy EFT by inte-

grating out heavy degrees of freedom from an ultraviolet theory. We develop a diagrammatic

framework to carry out covariant functional matching calculations in a systematic manner.

In contrast to conventional Feynman diagram methods, our approach avoids the detour of

computing correlation functions, and meanwhile preserves gauge covariance and simplifies

calculations. Finally, we apply this new technique to trans-TeV supersymmetry, and show

that future precision Higgs measurements can probe scenarios of Yukawa unification featur-

ing heavy superpartners beyond direct LHC reach.

xiii



Chapter 1

Introduction

1.1 The Standard Model from an EFT perspective

Our current understanding of elementary particles and their interactions is encoded in what

is known as the Standard Model (SM) of particle physics. It is a quantum field theory (QFT)

based on SU(3)c×SU(2)L×U(1)Y gauge invariance, that describes strong and electroweak

interactions among a set of matter fields, including quarks, leptons, and the Higgs.

The Lagrangian of the SM can be written as

LSM = −1

4
GA
µνG

Aµν − 1

4
W a
µνW

aµν − 1

4
BµνB

µν + |DµH|2 −m2
H |H|2 − λ|H|4

+
∑

f∈{q,l,u,d,e}

if̄γµDµf −
[
(ūy†uqβε

βα + q̄αVCKMydd+ l̄αyee)Hα + h.c.
]
. (1.1)

The field content of the SM is as follows.

• G, W , B are the spin-1 gauge bosons of SU(3)c, SU(2)L, U(1)Y , respectively, with

field strengths defined by GA
µν = ∂[µ,G

A
ν] + gsf

ABCGB
µG

C
ν , W a

µν = ∂[µ,W
a
ν] + gεabcW b

µW
c
ν ,

Bµν = ∂[µ,Bν], where (. . . )[µ,ν] ≡ (. . . )µν − (. . . )νµ.

• H is the spin-0 Higgs field. It is an SU(3)c singlet, SU(2)L doublet, and has U(1)Y

hypercharge YH = 1
2
.

• There are three generations of spin-1
2

fermion fields; each of q, l, u, d, e carries a gen-

eration index that we have suppressed in Eq. (1.1) for simplicity. Among them, q,

u, d are quarks in the fundamental representation of SU(3)c, while l, e are SU(3)c

singlet leptons. The left-handed fields q = (uL, dL), l = (ν, eL) are SU(2)L doublets,

while the right-handed fields u = uR, d = dR, e = eR are SU(2)L singlets. The U(1)Y

hypercharge assignments are {Yq, Yl, Yu, Yd, Ye} = {1
6
, −1

2
, 2

3
, −1

3
, −1}.

1



There are three types of interactions among these fields:

• Gauge interactions, dictated by minimal coupling. For example, for f = q, Dµ =

∂µ − igsT
AGA

µ − ig taW a
µ − ig′YfBµ, with [TA, TB] = [λ

A

2
, λ

B

2
] = ifABC λ

C

2
, [ta, tb] =

[σ
a

2
, σ

b

2
] = iεabc σ

c

2
(λ and σ are the Gell-Mann and Pauli matrices, respectively); the

SU(3)c and/or SU(2)L pieces are absent for other fermion fields neutral under these

gauge groups.

• Yukawa interactions, which couple the fermions to the Higgs. The flavor structure of

SM Yukawa interactions is such that all the gauge-eigenstate fermion fields are also

mass eigenstates except dL = VCKMd
′
L where d′L is a mass eigenstate. In Eq. (1.1), α

and β are SU(2)L indices of the doublet fields, while generation indices are implicitly

summed over; the 3 × 3 Yukawa matrices in generation space yu, yd, ye are diagonal

and real.

• Higgs self interaction, with a Mexican hat-shaped potential that spontaneously breaks

the electroweak symmetry SU(2)L×U(1)Y down to U(1)Q, with Q = t3 +Y being the

unbroken generator identified with electric charge. In unitary gauge, H = 1√
2
(0, v+ h)

where v =
√
−m2

H/λ ' 246 GeV at tree level, and h is the physical Higgs boson.

Electroweak symmetry breaking mixes W 3 and B to form mass eigenstates, the Z boson and

the photon, and generates masses for the W±, Z bosons as well as fermions. Explicitly, we

have

W±
µ =

1√
2

(W 1
µ ∓ iW 2

µ), Zµ = cθW
3
µ − sθBµ, Aµ = sθW

3
µ + cθBµ, (1.2)

where

cθ =
g√

g2 + g′2
=

e

g′
, sθ =

g′√
g2 + g′2

=
e

g
. (1.3)

At tree level, the masses are given by

mW = mZcθ =
1

2
gv , mf =

1√
2
yfv (f = u, d, e) , (1.4)

with fermion masses mf understood as 3× 3 diagonal matrices in generation space.

The SM, in the form of Eq. (1.1), has been established over the past several decades via

the observation of all the particles – most recently a 125 GeV Higgs boson h in 2012 [1, 2] –

and extensive tests of most of their interactions. However, from the modern effective field

theory (EFT) point of view, Eq. (1.1) is really just a leading order approximation to an EFT

that is valid at the energy scales that have been probed so far.
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This can be seen as follows. When constructing a QFT, we are supposed to write down

all terms consistent with postulated symmetries, e.g. Lorentz and gauge invariance, in a

local Lagrangian. Eq. (1.1) indeed contains almost all operators consistent with Lorentz

symmetry and SU(3)c × SU(2)L × U(1)Y gauge invariance up to dimension four (with the

exceptions of a cosmological constant and a QCD θ term, which will not be discussed here).

However, there is no reason to stop at dimension four. There is one legitimate operator

(LH)2 at dimension five, and many more at dimension six, seven, etc. [3,4]. All of them are

in principle present in our effective Lagrangian, commonly known as the SMEFT:

LSMEFT = LSM +

[
1

Λ(5)
(LH)2 + h.c.

]
+
∑
i

1(
Λ

(6)
i

)2O
(d=6)
i +

∑
i

1(
Λ

(7)
i

)3O
(d=7)
i + . . . (1.5)

For recent reviews on the SMEFT, see [5–7]. Note that a Lagrangian has dimension four, so

an operator of dimension d has a coefficient with mass dimension 4− d, which we write as a

scale (of dimension one) Λ raised to the appropriate power. If all these Λ’s are much higher

than the energy scales probed experimentally, we would expect our theory prediction for any

observable to be unaffected by the higher dimensional operators. In this case, it would be a

good approximation to just write LSMEFT ' LSM, with LSM given in Eq. (1.1).

There is one exception, though, namely the observation of neutrino oscillations (see e.g. [8]

for a review), which Eq. (1.1) is not able to explain. Up to dimension four level, neutrinos

are massless, and no oscillations can occur. Nonzero neutrino masses are however generated

in the presence of the dimension-five operator (LH)2, and they scale as mν ∼ v2/Λ(5). To

get a neutrino mass of order 0.1 eV from this operator, we need Λ(5) ∼ 1014-15 GeV.

If all higher dimensional operators are suppressed by the same scale Λ, we see that the

observation of neutrino oscillations, which point to such high Λ’s as 1014-15 GeV, actually

explains the tremendous success of Eq. (1.1) in all other experimental tests. Another well-

known hint that LSMEFT may be well approximated by LSM is the nonobservation of proton

decay, which constrains some dimension-six operators to be suppressed by a similar scale [9].

At present, it is indeed a viable possibility that the Λ’s in Eq. (1.5) are all much higher

than the weak scale. If this were true, the search for new physics would be hopeless. Techni-

cally, this is because Eq. (1.5) makes predictions for observables as series expansions in E/Λ.

Thus, it would be impossible to distinguish LSMEFT from LSM at energies too much lower

than Λ, e.g. O(TeV) or less. Also, non-SM exotic states are not required to exist within

experimentally probed energies, as such series expansions lead to well-defined and physical

predictions as long as E � Λ. This latter aspect should be contrasted with the situation

before the Higgs boson discovery — it was known from perturbative unitarity considerations

that the then-established EFT cannot have an arbitrarily high cutoff, and then-unknown
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degrees of freedom must be present below a few hundred GeV [10] (and indeed we found the

125 GeV Higgs boson).

Nevertheless, there is a major flaw of this possibility, namely

|m2
H |≪ Λ2 . (1.6)

We know that the SMEFT has to be ultraviolet (UV) completed around some cutoff scale Λ,

by a new theory valid above that scale which involves new degrees of freedom inactive at low

energy1. When the UV theory, whatever it is, is matched onto the SMEFT, the coefficient

of the |H|2 operator, with mass dimension two, generically receives a threshold correction

of order Λ2 (possibly slightly suppressed by loop factors and/or small couplings), as we can

see simply by dimensional analysis. To arrive at Eq. (1.6), significant fine-tuning would be

needed so that various O(Λ2) contributions cancel to precisely produce a much lower m2
H .2

This is the well-known naturalness or hierarchy problem, cast in the EFT language. To

alleviate this fine tuning, we therefore prefer Λ (and hence new physics) to be not too far

above the weak scale, e.g. (a few) TeV.

Now we seem to have a conundrum: neutrino oscillations and proton stability apparently

suggest a very high cutoff Λ for our SMEFT, while naturalness concerns motivate a cutoff

close to the weak scale. However, both neutrino oscillations and proton decay are special

phenomena because they violate accidental global symmetries of LSM, lepton number (L)

and baryon number (B) in particular. Thus, it is reasonable to expect that new physics

that cures the hierarchy problem may lie at a scale Λ ∼ O(TeV) and preserves B and L,

and allows for a consistent EFT description up to a much higher, new cutoff scale, where

B and L are violated by the next layer of UV completion. An example of this possibility is

supersymmetry (SUSY) with R parity, which screens quantum corrections to the Higgs mass

above the SUSY breaking scale, while preserving B and L to avoid proton decay. Similar

considerations apply when reconciling Λ ∼ O(TeV) with flavor physics constraints, which

requires a nontrivial flavor structure of new physics [12], such as minimal flavor violation [13].

The upshot is that there are good reasons to believe that Nature is described by the

SMEFT of Eq. (1.5) (rather than Eq. (1.1)) at the weak scale, with some of the higher-

dimensional operators suppressed by a scale Λ that is not too far above, where new physics

1One may argue that Λ(5) ∼ 1014 GeV is not really necessary if neutrino masses are purely Dirac. However,
there is a fundamental limit on how high Λ can be, as we know a quantum gravity UV completion is needed at
the Planck scale Mpl ∼ 1019 GeV. Thus, one cannot deny the hierarchy problem of Eq. (1.6) unless our basic
EFT concepts, well-established up to the weak scale, were to be radically compromised in the (unknown)
theory of quantum gravity. See [11] for further discussion.

2Note that m2
H is renormalized multiplicatively in the SMEFT in a mass-independent scheme such as the

commonly used MS. Thus it has to be small not only at the weak scale, but also at Λ.
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would appear that alleviates fine-tuning. An important task of current particle physics

research is to search for such new physics in all possible ways.

To close this section, we remark that there are several additional hints of new physics

beyond the SM, including dark matter, the baryon asymmetry of the universe, cosmic infla-

tion, the strong CP problem, etc. (see e.g. [14,15]). However, we would like to emphasize the

unique role of the hierarchy problem, in that while all the other problems can in principle

be solved with new physics at much higher energies, the fine-tuning of Eq. (1.6) cries out for

a solution in the vicinity of the weak scale. In this respect, the naturalness belief (despite

having been slightly relaxed quantitatively by recent LHC results) is perhaps the best reason

to be optimistic about new discoveries in the foreseeable future.

1.2 Precision analyses as indirect probes of new physics

The search for new physics beyond the SM is an extensive program, and efforts must be made

at all frontiers. As far as TeV-scale new physics relevant for naturalness is concerned, the

best case scenario would be to observe their direct production at high energy colliders, such

as the LHC. As a typical example, the scalar top partner (stop), in SUSY can be searched

for via pair production at the LHC in various decay channels of the stops, e.g. jets + missing

transverse energy when both stops decay hadronically. Recent LHC data have excluded stop

masses up to as high as ∼850 GeV, depending on the lightest neutralino mass [16–21].

A limitation of direct searches, however, is that they have to be carried out on a case-

by-case basis, by looking for signatures that would be produced by each well-motivated new

physics scenario. For example, if the new states responsible for solving the hierarchy problem

are vectorlike top partners, which generically appear in composite Higgs models, rather than

stops in SUSY, they would decay into e.g. Zt, ht or Wb, and thus have to be searched for

in these channels [22,23].

Moreover, in many scenarios, the existence of new particles can be hidden from direct

searches, if it decays into final states that have large backgrounds. One extreme example is a

new particle with a large exotic decay branching ratio into several jets within the acceptance

of the detector, which would be buried under huge QCD background at the LHC. Thus, one

cannot always fully rely on direct production to look for new physics.

On the other hand, it has been realized for quite some time now that precision measure-

ments of SM processes can provide indirect probes of new physics, complementary to direct

searches. The idea is that even if new particles evade direct searches – either because they

are too heavy to be produced with the available collider energy, or because their signatures

cannot be discerned from SM backgrounds – they can contribute to SM processes as inter-
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mediate states, and so can be searched for via deviations of measured observables from SM

predictions.

Over the past few decades, high-precision measurements of electroweak and flavor ob-

servables have found remarkable agreement with the SM, leading to stringent constraints on

BSM effects in these sectors; see e.g. [24–28]. The Higgs sector of the SM will be put under

similar scrutiny once more data are collected, and even global analyses combining data from

all sectors may become possible [29,30].

As in direct searches, one can of course examine each new physics model individually

against precision data and see what regions of parameter space are allowed (see e.g. [31–36]).

However, for precision analyses, it is possible, and often desirable to perform more general

analyses whose results can be translated into broad classes of BSM scenarios. As we will

discuss in more detail below, EFT provides a consistent and useful framework to do so,

provided experimental measurements are made at energies below new particle thresholds.

To gain some intuition on the power of precision measurements, let us make some simple

estimates. Suppose the observable new physics effect is encoded in some dimension-six oper-

ator (which is the most common case). This would generically result in fractional deviations

from SM predictions of O(v2/Λ2) for some observables, and O(E2/Λ2) for others. Thus, if

our experiment is sensitive to these deviations at the 10% (1%, 0.1%) level, we would be

able to probe

Λ ∼ 0.8 (2.5, 8) TeV for O(v2/Λ2) deviation, (1.7a)

Λ ∼ 3 (10, 30) TeV for O(E2/Λ2) deviation at E = 1 TeV. (1.7b)

Of course, one should keep in mind that Λ is not to be directly identified with masses of

new particles — it is generally a ratio of mass and powers of couplings, possibly multiplied

by powers of 16π2 if the operator is loop generated. Nevertheless, the numbers in Eq. (1.7)

are encouraging, and suggest at least in some scenarios, precision measurements can offer a

powerful indirect probe of TeV-scale new physics.

1.3 Bottom-up and top-down EFT approaches

EFT offers a bridge between heavy new physics models and lower energy experimental ob-

servations, which can be crossed in both ways.

From the bottom-up point of view, the idea is to use power counting arguments to

keep only the terms in LSMEFT that are expected to give the dominant deviations from

the SM, while remaining agnostic about concrete UV models giving rise to these operators.
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Experimental data are translated into constraints on the parameter space spanned by a finite

set of operator coefficients, without reference to any UV theory.

For such a bottom-up EFT approach to be useful, we need a well-motivated power count-

ing scheme, so that our truncated EFT accommodates low energy limits of interesting UV

theories, and thus, knowledge we gain from experimental data on the EFT parameter space

can be meaningfully interpreted in these UV theories when needed.

One motivation is generality — we want our EFT to accommodate as many interesting

UV scenarios as possible. In this regard, a scheme that is perhaps the most often used is Λ

power counting. With the general expectation that observable effects of higher dimensional

operators are suppressed by higher powers of Λ, it is common practice to truncate the SMEFT

Lagrangian at dimension six level,

LSMEFT ' LSM +
∑
i

1(
Λ

(6)
i

)2O
(d=6)
i ≡ LSM +

∑
i

ciO(d=6)
i . (1.8)

Here we have dropped the single dimension-five operator, which is presumably suppressed

by a much higher scale Λ(5) ≫ Λ
(6)
i . In this case, our SMEFT parameter space is spanned

by {ci} (in addition to SM parameters).

There are different bases in which {ci} can be defined, and it must be clearly stated which

basis is used when quoting bounds on a specific operator coefficient. More precisely, a com-

plete, nonredundant basis is needed to make {ci} unambiguous. In particular, redundancies

can arise because different operators can be transformed into each other by integration by

parts, group theoretic identities, or field redefinitions, and all of them should not be kept in

a valid, nonredundant basis. The freedom of choosing different operators to be kept results

in the multitude of operator bases commonly used in the literature, including the Warsaw

basis [3], the EGGM basis [37], the SILH basis [38], and the Higgs basis [7]. All of them

are equivalent parameterizations of the SMEFT truncated at dimension six level, and are

convenient for different phenomenological and theoretical applications.

There exist other power counting schemes, motivated by broad features of UV theories.

The finite set of operators kept in the EFT Lagrangian would differ from Eq. (1.8), but the

EFT parameter space is similarly spanned by a finite set of operator coefficients like {ci}. For

example, chiral power counting [39–44] is suitable for strongly-coupled new physics scenarios

where electroweak symmetry breaking is nonlinearly realized. Such alternative schemes will

not be discussed further in this dissertation.

The central question in bottom-up EFT studies is: what can we learn about the SMEFT,

i.e. values of {ci} in Eq. (1.8), from experimental data, and what does that imply for new

physics? Up to now, a first-order answer to this question is, unfortunately, that all ci’s are
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consistent with zero, and we have no clue what new physics UV-completes the SMEFT.

There is, however, more detailed information we have learned. Some directions in the

{ci} space are more constrained than others, most importantly due to better experimental

precisions achieved for some observables than others. Thus, when building a new physics

model, we should better make sure that the well-constrained (combinations of) ci’s are not

generated with unacceptable sizes.

In fact, many of the SMEFT studies in recent years take advantage of this precision

hierarchy to organize the otherwise complicated and unilluminating analyses. As far as

electroweak and Higgs physics are concerned, this has resulted in the following standard

picture [29,38,45,46].

• Pole observables, such as the W boson mass, the Z boson width, etc., have been

measured at electron-positron colliders, LEP and SLC in particular, some of which

reaching the per-mil level.

• Diboson production processes, such as e+e− → W+W− and pp→ W+W−, have been

measured to the 1-10% level.

• Higgs observables, such as Higgs boson production cross sections and decay branching

fractions, have only been measured recently, with even worse precision.

With this information, we can classify dimension-six operators according to which set of

observables they affect. Then it becomes clear which operator is constrained at what level.

It is worth emphasizing that a key advantage of the bottom-up EFT approach is that

information about the SMEFT can be learned in a UV model-independent way. The focus

is usually a broad-brush picture of new physics that is sufficient to capture generic features.

It is a separate step to make the UV-EFT connection concrete, if one wishes to learn about

precision constraints on a specific UV theory.

The top-down EFT approach has a different starting point. Here we would like to study

some specified UV theory for new physics, say some realization of SUSY. Because states

much heavier than experimental energies decouple from observation, the appropriate way to

do calculations is to first match the full theory onto an EFT by integrating out the heavy

states, then renormalization group (RG) evolve the EFT from the heavy particle thresholds

down to lower energies where experiments are performed, and finally use the EFT at these

lower energies to calculate observables. If multiple heavy particles are present at disparate

scales, they should be integrated out in sequence, with several layers of EFTs RG evolved in

the respective energy regimes. In this way, large logarithms of mass ratios can be resummed,

so that our theory predictions for observables become more accurate and reliable.
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The central question in top-down EFT studies is: given a UV theory, what is the low-

energy EFT, and what are its observable consequences? The answer to this question is of

course UV theory specific.

As new particles are excluded up to higher masses by LHC data, this top-down EFT

approach becomes more useful in the study of beyond SM physics. As an example, as

weak-scale SUSY has become less favored, there has been growing interest recently in EFT

calculations of SUSY corrections to the Higgs potential, greatly improving upon previous

full theory calculations [47–53].

A key ingredient of top-down EFT studies is matching a given UV theory onto its low-

energy EFT. EFT matching calculations are typically performed using Feynman diagram

methods. This involves calculating correlation functions among the light fields in the UV

theory, expanding them in inverse powers of a heavy mass scale, then extracting the relevant

parts for the operator coefficients by comparing with the same correlation functions computed

in the EFT (see e.g. [54]). This traditional Feynman diagram approach, albeit familiar and

well-developed, is a rather roundabout route from the UV theory to the EFT. In contrast,

there are more elegant alternative methods for obtaining operator coefficients, which avoid

the need for computing correlation functions. They are based on direct evaluation of the

functional path integral, and have gone through significant development recently [55–61].

The key technique involved is developed in Chapter 6 of this dissertation, which is based

on [60].

Both bottom-up and top-down EFT approaches reviewed above are complementary, as

we continue to dig for hints of new physics from precision data. Top-down studies tell us

which effective operators may be more interesting to search for, and guide our choice of power

counting schemes to make bottom-up studies more useful. Meanwhile, bottom-up studies tell

us what kinds of SM deformations are still allowed by data (in terms of model-independent

constraints on the EFT parameter space), and guide our model building to make top-down

studies better oriented. It is by combining both approaches that the EFT framework offers

a valuable tool in our quest for new physics.

1.4 What’s new?

While the basic concepts of EFT have been standard knowledge for decades, there have been

new developments on the subject in recent years. We would like to highlight a few in the

following.

• The LHC has discovered the Higgs boson and begun to measure its properties, making

9



it possible for the first time to perform global precision analyses incorporating Higgs

data. (Bottom-up) EFT provides the natural framework to do so, and has thus received

renewed interest [29,37–46,62–120].

• The importance of a better understanding and treatment of theory uncertainties in

precision analyses has attracted more attention. For example, new issues have been

pointed out regarding SM parametric uncertainties in precision Higgs calculations [30,

121], and regarding EFT calculation uncertainties in precision electroweak fits [91,104,

114].

• The high energy data acquired at the LHC are challenging the precision hierarchy

paradigm reviewed in the previous section. This is because in the presence of operators

causing O(E2/Λ2) deviations from the SM, the name of the game is no longer precision

alone, as going to higher energy is sometimes easier than achieving better experimental

precision. Ideas have been explored on how to take advantage of high energy data to

better constrain the SMEFT parameter space, and to possibly reorganize bottom-up

EFT analyses [116,117,119].

• The LHC high energy data have also brought up the issue of EFT validity in some

cases, where the Λ scales probed may not be much higher than experimental energies.

Care is needed to derive and interpret results of bottom-up EFT studies [113,115].

• New knowledge about QFT has been learned from EFT-motivated studies. In addition

to functional matching techniques mentioned in the previous section, we have learned,

for example, an intriguing holomorphic structure of the dimension-six operator anoma-

lous dimensions [122–124], an algorithm to count the number of independent operators

at a certain dimensionality based on Hilbert series [4,125–127], helicity selection rules

for SMEFT amplitudes at high energy [128–130], to name just a few.

Our hope is that, as new data keep coming, new ideas will develop, and EFT will continue

to be a fertile ground for making progress in our understanding of fundamental physics.

1.5 Outline of this dissertation

The body of this dissertation consists of three parts. We first discuss aspects of precision

analyses, with Chapters 2 and 3 devoted to electroweak and Higgs physics, respectively.

Next, Chapters 4 and 5 cover bottom-up EFT applications, in describing universal theories

and interpreting W pair production, respectively. Finally, in Chapters 6 and 7 we take a
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top-down EFT approach, developing the covariant diagrams technique for one-loop matching

and then applying it to trans-TeV supersymmetry. An outline of each chapter is given in

the following.

Chapter 2: Precision Electroweak Analyses after the Higgs Boson Discovery

The discovery of the Higgs boson and measurement of its mass allow, for the first time,

precision electroweak analysis to be formulated in an expansion formalism. In this chapter,

which is based on [131], written in collaboration with James D. Wells, we present expan-

sion formulas for many electroweak observables, which consistently incorporate parametric

dependence, and facilitate calculations within and beyond the SM.

Chapter 3: Resolving Charm and Bottom Quark Masses in Precision Higgs

Analyses

Higgs observables, e.g. partial widths and branching ratios, are conventionally calculated

with charm and bottom quark masses treated as input parameters. In this chapter, which

is based on [30], written in collaboration with Alexey A. Petrov, Stefan Pokorski and James

D. Wells, we point out that this procedure hides important uncertainties and correlations in

quark mass extractions from low-energy observables, which must be taken into account in

future precision studies.

Chapter 4: EFT of Universal Theories and its RG Evolution

Constraints on oblique parameters, e.g. S, T parameters, from precision electroweak data

are, generally speaking, only applicable to universal theories at leading order. In this chapter,

which is based on [109, 111], written in collaboration with James D. Wells, we present an

EFT description of universal theories, clarifying restrictions on the EFT parameter space

necessary for the use of oblique parameters. Moreover, theories that are universal at high

scales can flow to EFTs at the electroweak scale that are non-universal. With a detailed

renormalization group analysis, we point out, in particular, that a consistent fit to precision

electroweak data should go beyond the oblique parameters framework even for universal UV

theories.

Chapter 5: Time to Go Beyond TGC Interpretation of W Pair Production

The conventional interpretation of W boson pair production at lepton and hadron colliders as

triple gauge coupling (TGC) measurements is based on the “TGC dominance assumption.”

In this chapter, which is based on [117], we find that, contrary to conventional knowledge, this

11



assumption is challenged by high-energy data, calling for re-organization of EFT analyses to

better search for new physics effects.

Chapter 6: Covariant Diagrams for One-Loop Matching

Matching a UV theory onto a low-energy EFT by integrating out heavy states can be accom-

plished with more elegant and simpler methods than Feynman diagrams. In this chapter,

which is based on [60], we introduce a diagrammatic framework that preserves gauge covari-

ance, dubbed “covariant diagrams,” which is based on functional matching ideas and greatly

facilitates one-loop matching calculations.

Chapter 7: EFT Approach to Trans-TeV Supersymmetry

Lack of superpartner discoveries, together with Higgs boson mass measurements, points

to SUSY scales somewhat decoupled from the weak scale. In this chapter, which is based

on [132], written in collaboration with James D. Wells, we present a detailed EFT analysis of

this scenario, taking advantage of the covariant diagrams technique. We explore implications

of bottom-tau Yukawa unification on SUSY spectra and Higgs coupling modifications.
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Chapter 2

Precision Electroweak Analyses After

the Higgs Boson Discovery

Until recently precision electroweak computations were fundamentally uncertain due to lack

of knowledge about the existence of the Standard Model Higgs boson and its mass. For

this reason substantial calculational machinery had to be carried along for each calculation

that changed the Higgs boson mass and other parameters of the Standard Model. Now that

the Higgs boson is discovered and its mass is known to within a percent, we are able to

compute reliable semi-analytic expansions of electroweak observables. In this section, we

present results of those computations in the form of expansion formulae. In addition to the

convenience of having these expressions, we show how the approach makes investigating new

physics contributions to precision electroweak observables much easier.

2.1 Introduction

Precision electroweak analyses have played an important role in testing the Standard Model

(SM) and constraining new physics. Now this program has entered a new era with the

discovery of the Higgs boson [1,2]. The sub-percentage-level determination of the Higgs boson

mass [1,2,133] constitutes the last piece of a complete set of input observables. Electroweak

observables can now be calculated to unprecedented accuracy, leading to unprecedented

sensitivity to new physics beyond the SM.

The standard approach of precision electroweak analysis is to perform a χ2 analysis,

which involves varying the model parameters, or equivalently, a set of input observables to

minimize the χ2 function. In practice, this can be facilitated by an expansion about some

reference values of the input, since we have a set of well-measured input observables that

allows little variation. We present such an expansion formalism, and apply it to deriving
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constraints on new physics models. Most of the numerical results in what follows reflect

state-of-the-art calculations of the electroweak observables, as implemented in the ZFITTER

package [134,135].

This chapter is organized as follows. We first review the definition of the electroweak

observables under consideration in Section 2.2. Then in Section 2.3 we present the expansion

formalism for calculating the SM and new physics contributions to the observables. The

result will be that given the values of 6 input observables, and the new physics model, all

observables can be easily calculated. The tools needed in this calculation, including the

reference values of all observables, and the expansion coefficients, are presented. Next, we

illustrate how to use the formalism by working out some new physics examples in Section 2.4.

Finally, in Section 2.5 we summarize.

2.2 Standard Model parameters and observables

The parameters of the SM include the gauge couplings g3, g2, g1, the Yukawa couplings yf ,

flavor angles, the Higgs vacuum expectation value v and self-coupling λ. For the purpose of

precision electroweak analysis, with inconsequential errors we can treat all Yukawa couplings

except that for the top quark as constants, and correspondingly set the lepton and light quark

masses to their default values in ZFITTER (see [134]). Then there are six parameters1 in

the theory:

{g3, g2, g1, yt, v, λ}. (2.1)

There are an infinite number of SM observables that can be defined. They correspond to

well-defined quantities that are measured in experiments. The SM predicts each observable

as a function of the parameters in Eq. (2.1). The success of the SM relies on the fact that

the prediction for all observables agree with precision measurements, with suitable choices

of the parameters. If some new physics beyond the SM were to exist, it could potentially

destroy the agreement. Thus, precision analysis enables us to put stringent constraints on

new physics models. In this study we focus on the following list of observables, mostly

relevant to precision tests of the electroweak theory.

• Pole mass of the particles: mZ , mW , mt, mH .

• Observables associated with the strengths of the strong, weak, and electromagnetic

interactions: αs(mZ), GF , and α(mZ). The Fermi constant GF is defined via the

1We do not include flavor CKM angles in our calculations since all standard precision electroweak ob-
servables do not substantively depend on these angles.
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muon lifetime [136]. α(mZ) is related to the fine structure constant α0 defined in the

Thomson limit via

α(mZ) =
α0

1−∆α` −∆αt −∆α
(5)
had

. (2.2)

We treat α0 = 1/137.035999074(44) [136,137] as a constant, since it is extraordinarily

well measured. The contribution from leptons ∆α` and the top quark ∆αt are pertur-

batively calculable and known very accurately, so the uncertainty in α(mZ) essentially

comes from the incalculable light hadron contribution ∆α
(5)
had, which is extracted from

low energy e+e− → hadrons data via dispersion relations [136]. For simplicity, we will

occasionally (especially in subscripts) drop the scale “(mZ)” in αs(mZ) and α(mZ),

and write ∆α
(5)
had as ∆α in the following.

• Z boson decay observables: total width ΓZ , and partial widths into fermions Γf ≡
Γ(Z → ff̄). Also we define and use the invisible and hadronic partial widths2:

Γinv ≡ 3Γν , Γhad ≡ Γ(Z → hadrons) ' Γu + Γd + Γc + Γs + Γb. (2.3)

The ratios of partial widths are defined and also included in our observables list:

R` ≡
Γhad

Γ`
, Rq ≡

Γq
Γhad

, (2.4)

where ` and q denote any one of the lepton and quark species, respectively.

• e+e− → hadrons cross section at the Z pole:

σhad = 12π
ΓeΓhad

m2
ZΓ2

Z

. (2.5)

• Forward-backward asymmetries for e+e− → ff̄ at the Z pole:

A0,b
FBf =

σF − σB

σF + σB

=
3

4
AeAf . (2.6)

The asymmetry parameters Af are related to the definition of the effective electroweak

mixing angle sin2 θfeff by

Af =
2(1− 4|Qf | sin2 θfeff)

1 + (1− 4|Qf | sin2 θfeff)2
, (2.7)

2Γhad is not quite the sum of all Γq, as there are O
(
α3
s

)
corrections that cannot be attributed to any

Γq [138]. However, these corrections are small, and are neglected in ZFITTER.
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where Qf is the electric charge of fermion f .

The experimental results for these observables are listed in Table 2.1. For all the Z pole

observables, we use the numbers presented in [139], which are combinations of various exper-

imental results at LEP and SLC. Among these observables, lepton universality is assumed

only for sin2 θeeff. For sin2 θeeff, we also list the PDG combination [136] of D0 [140] and

CDF [141] results (the second number). mW from [142] is the average of LEP2 [143] and

Tevatron [142] results. mH is the PDG average [136] of ATLAS [1] and CMS [133] results.

Table 2.1 also contains the reference theory values around which we expand, and their

percent relative uncertainties. These theory quantities will be introduced and discussed in

detail in Section 2.3.2.

2.3 The formalism

2.3.1 Expansion about reference point

Let us denote the set of SM parameters in Eq. (2.1) by {pk′}, and the set of SM observables

by {Ôi}. The theoretical prediction for each observable can be calculated in the SM as a

function of all parameters:

Ôth
i = ÔSM

i ({pk′}). (2.8)

The notation here is that primed roman indices run from 1 to Np, the number of SM parame-

ters, while unprimed ones run from 1 to NO, the number of observables under consideration.

Note that Np is finite, while NO can presumably be infinite (we must at least have NO > Np

in order to test any theory). The analysis in this section is done with Np = 6 and NO = 31,

with {pk′} given in Eq. (2.1) and {Ôi} listed in Table 2.1.

Next, suppose we want to study some new physics model beyond the SM, which contains

a set of new parameters collectively denoted as pNP (“NP” for “new physics”). Then at least

some Ôth
i will receive new contribution. We expect such new contribution to be small, in the

light of apparently good agreement between SM predictions and precision electroweak data.

We can thus write

Ôth
i = ÔSM

i ({pk′}) + δNPÔi({pk′}, pNP). (2.9)

We wish to decide whether the new physics model is compatible with precision electroweak

data, i.e. whether the Ôth
i predicted by Eq. (2.9) are compatible with the experimentally

measured values Ôexpt
i .

One common misconception in such analysis is that a new physics model would be ruled

out if, for some very precisely measured observables, e.g. Gexpt
F = 1.1663787(6)×10−5 GeV−2,
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Ôi Ôexpt
i Ôref

i P [Ôref
i ]

mZ [GeV] 91.1876(21) [139] 91.1876

GF [GeV−2] 1.1663787(6)e-5 [136] 1.1663787e-5

∆α
(5)
had 0.02772(10) [136] 0.02772

mt [GeV] 173.20(87) [144] 173.20

αs(mZ) 0.1185(6) [136] 0.1185

mH [GeV] 125.9(4) [136] 125.9

α(mZ) 7.81592(86)e-3 [136] 7.75611e-3 0.01

mW [GeV] 80.385(15) [142] 80.3614 0.01

Γe [MeV] 83.92(12) [139] 83.9818 0.02

Γµ [MeV] 83.99(18) [139] 83.9812 0.02

Γτ [MeV] 84.08(22) [139] 83.7916 0.02

Γb [MeV] 377.6(1.3) [139] 375.918 0.04

Γc [MeV] 300.5(5.3) [139] 299.969 0.06

Γinv [GeV] 0.4974(25) [139] 0.501627 0.02

Γhad [GeV] 1.7458(27) [139] 1.74169 0.04

ΓZ [GeV] 2.4952(23) [139] 2.49507 0.03

σhad [nb] 41.541(37) [139] 41.4784 0.01

Re 20.804(50) [139] 20.7389 0.03

Rµ 20.785(33) [139] 20.7391 0.03

Rτ 20.764(45) [139] 20.7860 0.03

Rb 0.21629(66) [139] 0.215835 0.02

Rc 0.1721(30) [139] 0.172229 0.01

sin2 θeeff 0.23153(16) [139] 0.231620 0.04

0.23200(76) [136]

sin2 θbeff 0.281(16) [139] 0.232958 0.03

sin2 θceff 0.2355(59) [139] 0.231514 0.04

Ae 0.1514(19) [139] 0.146249 0.44

Ab 0.923(20) [139] 0.934602 0.00

Ac 0.670(27) [139] 0.667530 0.04

A0,b
FBe 0.0145(25) [139] 0.0160415 0.88

A0,b
FBb 0.0992(16) [139] 0.102513 0.44

A0,b
FBc 0.0707(35) [139] 0.0732191 0.48

Table 2.1: (From [131]) The list of observables, their experimental and reference values, and
percent relative uncertainties.
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the new physics contribution δNPÔi exceeds the experimental error. The point is that the

SM parameters {pk′} are not directly measured experimentally. Rather, in testing the SM,

we adjust {pk′} and see that for some choice of all parameters {pref
k′ }, all ÔSM

i agree well with

Ôexpt
i . In the presence of new physics, we should do the same thing, and will typically arrive

at a different choice of {pref
k′ }, and hence different ÔSM

i , which may allow the new physics

model to survive (in some regions of parameter space spanned by pNP) despite a large δNPÔi.

The statements above are made more precise by the χ2 analysis, which is the standard way

of doing precision electroweak analysis. With correlations among the observables ignored,

and experimental errors assumed larger than theoretical errors, the χ2 function is defined by

χ2({pk′}, pNP) =
∑
i

[
Ôth
i ({pk′}, pNP)− Ôexpt

i

∆Ôexpt
i

]2

, (2.10)

where ∆Ôexpt
i are the experimental uncertainties of the observables. To decide whether some

pNP in the new physics model parameter space survives precision tests, we vary {pk′} to

minimize the χ2 function to find the best fit to experimental data, and see if this minimum

χ2 is small enough. A good discussion of how to interpret the statistics of the χ2 distribution

can be found in [136].

In principle, one can calculate Ôth
i each time a different {pk′} is chosen in this minimiza-

tion procedure. But in practice, we can do it once and for all by carrying out an expansion

about some reference point in the SM parameter space {pref
k′ }. Such an expansion is useful

because precision data does not allow much variation in each parameter. Thus, let’s choose

some {pref
k′ } that lead to good agreement between ÔSM

i and Ôexpt
i , and write

ÔSM
i ({pk′}) = Ôref

i +
∑
k′

∂ÔSM
i

∂pk′
(pk′ − pref

k′ ) + . . . (2.11)

where Ôref
i ≡ ÔSM

i ({pref
k′ }), and the partial derivatives are taken at pk′ = pref

k′ (this will be

implicitly assumed in the following). Alternatively, define

δ̄SMÔi({pk′}) ≡
ÔSM
i ({pk′})− Ôref

i

Ôref
i

, δ̄pk′ ≡
pk′ − pref

k′

pref
k′

, Gik′ ≡
pref
k′

Ôref
i

∂ÔSM
i

∂pk′
. (2.12)

Then we have a more concise expression for Eq. (2.11):

δ̄SMÔi =
∑
k′

Gik′ δ̄pk′ + . . . (2.13)
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Here δ̄ means “fractional shift from the reference value”, and the superscript on δ̄SMÔi

indicates the shift comes from shifts in SM parameters. Ignoring higher order terms in the

expansion, the constant Gik′ is the fractional change in ÔSM
i caused by the fractional change

in pk′ , and hence characterizes the sensitivity of the ith SM observable (as calculated in the

SM) to the k′th SM parameter.

In the presence of perturbative new physics contributions, let’s define

δ̄Ôth
i ({pk′}, pNP) ≡ Ôth

i ({pk′}, pNP)− Ôref
i

Ôref
i

, ξi({pk′}, pNP) ≡ δNPÔi({pk′}, pNP)

Ôref
i

. (2.14)

Then Eq. (2.9) can be expanded as, to first order,

δ̄Ôth
i = δ̄SMÔi + ξi =

∑
k′

Gik′ δ̄pk′ + ξi. (2.15)

The calculation of Ôth
i and hence χ2 is then facilitated if we have at hand the constants pref

k′ ,

Ôref
i and Gik′ .

2.3.2 Recasting observables in terms of observables

The approach above is indirect, in the sense that the input of the analysis, the parameters

{pk′}, are not directly measurable – only {Ôi} are well-defined observables. We can do better

if we use Np very well measured observables {Ôi′} as input. Note that primed indices, which

run from 1 to Np, are used for input observables. Inverting the functions ÔSM
i′ ({pk′}), we can

express other observables as functions of these input observables. Then it is immediately

clear from Ôexpt
i′ and ∆Ôexpt

i′ what reference values for the input we should use, and by how

much they are allowed to vary. In our analysis, Np = 6, and a convenient choice for the 6

input observables is

{Ôi′} = {mZ , GF , ∆α
(5)
had, mt, αs(mZ), mH}. (2.16)

The reference values for these input observables are taken to be the central values experi-

mentally measured; see Table 2.1. All other observables are output observables, and their

reference values Ôref
i are evaluated at Ôi′ = Ôref

i′ with the help of ZFITTER. See [131] for

technical details.

We also show in Table 2.1 the “percent relative uncertainties” P [Ôref
i ], defined as the

maximum value of

100

∣∣∣∣∣ÔSM
i ({Ôi′})− Ôref

i

Ôref
i

∣∣∣∣∣ (2.17)
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when all {Ôi′} are varied in their 1σ range around {Ôexpt
i′ }. We do not distinguish between

positive and negative relative uncertainties because, as we have checked, the asymmetry in

the uncertainties for all observables considered here are very small.

To work out the expansion about the reference point, we assume the input observables

{Ôi′} are the first Np observables in the list {Ôi}. Then we can simply invert the first Np

equations in Eq. (2.13). To first order,

δ̄SMÔi′ =
∑
k′

Gi′k′ δ̄pk′ =
∑
k′

G̃i′k′ δ̄pk′ ⇒ δ̄pk′ =
∑
i′

(G̃−1)k′i′ δ̄
SMÔi′ . (2.18)

Note that G is a NO×Np matrix, while G̃ is the upper Np×Np block of G. Then Eq. (2.13)

suggests

δ̄SMÔi =
∑
k′,i′

Gik′(G̃
−1)k′i′ δ̄

SMÔi′ ≡
∑
i′

cii′ δ̄
SMÔi′ , (2.19)

where we have defined

cii′ ≡
∑
k′

Gik′(G̃
−1)k′i′ =

Ôref
i′

Ôref
i

∂ÔSM
i

∂ÔSM
i′

. (2.20)

Eq. (2.19) expresses the shift in any observable in terms of shifts in the input observables,

as calculated in the SM. Notably, the upper Np ×Np block of the NO ×Np matrix c is the

identity matrix, i.e. cj′i′ = δj′i′ . For i > Np, i.e. the output observables, the calculation of

cii′ is nontrivial. We present in Table 2.2 the results for these expansion coefficients for the

observables discussed in Section 2.2, which we calculate using ZFITTER. These coefficients

are useful not only because they facilitate the calculation of SM observables. They also give

us information on the sensitivity of the calculated observables to each input observable.

In the presence of new physics, Eq. (2.15) becomes

δ̄Ôth
i =

∑
i′

cii′ δ̄
SMÔi′ + ξi =

∑
i′

cii′(δ̄Ô
th
i′ − ξi′) + ξi =

∑
i′

cii′ δ̄Ô
th
i′ + δ̄NPÔi, (2.21)

where

δ̄NPÔi ≡ ξi −
∑
i′

cii′ξi′

= ξi − ci,mZξmZ − ci,GF ξGF − ci,∆αξ∆α − ci,mtξmt − ci,αsξαs − ci,mHξmH . (2.22)

Eq. (2.21) expresses the shift in any observable in terms of shifts in the input observables

and new physics effects. Note that for the input observables, since cj′i′ = δj′i′ , Eq. (2.22)

indicates δ̄NPÔi′ = 0, and Eq. (2.21) trivially becomes δ̄Ôth
i′ = δ̄Ôth

i′ . This is forced to be

true in our formalism, where Ôth
i′ are inputs of the analysis, independent of new physics. Of
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Ôi ci,mZ ci,GF ci,∆α ci,mt ci,αs ci,mH

mZ 1 0 0 0 0 0

GF 0 1 0 0 0 0

∆α
(5)
had 0 0 1 0 0 0

mt 0 0 0 1 0 0

αs(mZ) 0 0 0 0 1 0

mH 0 0 0 0 0 1

α(mZ) 4.796e-3 0 0.02946 1.541e-4 -1.007e-5 0

mW 1.427 0.2201 -6.345e-3 0.01322 -9.599e-4 -7.704e-4

Γe 3.377 1.198 -5.655e-3 0.01883 -1.253e-3 -7.924e-4

Γµ 3.377 1.198 -5.655e-3 0.01883 -1.253e-3 -7.924e-4

Γτ 3.383 1.198 -5.668e-3 0.01884 -1.254e-3 -7.931e-4

Γb 3.844 1.411 -0.01227 -0.01267 0.03672 -1.057e-3

Γc 4.151 1.590 -0.01721 0.02751 0.05046 -1.394e-3

Γinv 2.996 1.006 5.635e-5 0.01567 -9.967e-4 -4.873e-4

Γhad 3.938 1.476 -0.01393 0.01578 0.03690 -1.204e-3

ΓZ 3.692 1.353 -0.01028 0.01607 0.02543 -1.019e-3

σhad -2.069 -0.03281 9.806e-4 2.476e-3 -0.01522 4.057e-5

Re 0.5608 0.2780 -8.272e-3 -3.045e-3 0.03815 -4.120e-4

Rµ 0.5608 0.2780 -8.272e-3 -3.045e-3 0.03815 -4.120e-4

Rτ 0.5554 0.2776 -8.259e-3 -3.053e-3 0.03816 -4.113e-4

Rb -0.09434 -0.06530 1.652e-3 -0.02845 -1.782e-4 1.477e-4

Rc 0.2133 0.1135 -3.284e-3 0.01173 0.01356 -1.898e-4

sin2 θeeff -2.818 -1.423 0.04203 -0.02330 1.796e-3 2.195e-3

sin2 θbeff -2.823 -1.417 0.04204 -6.914e-3 1.201e-3 2.116e-3

sin2 θceff -2.819 -1.423 0.04202 -0.02331 1.795e-3 2.194e-3

Ae 35.13 17.74 -0.5239 0.2905 -0.02239 -0.02737

Ab 0.4525 0.2271 -6.737e-3 1.108e-3 -1.924e-4 -3.390e-4

Ac 3.386 1.710 -0.05048 0.02800 -2.156e-3 -2.636e-3

A0,b
FBe 70.27 35.48 -1.048 0.5810 -0.04479 -0.05473

A0,b
FBb 35.59 17.97 -0.5306 0.2916 -0.02259 -0.02771

A0,b
FBc 38.52 19.45 -0.5744 0.3185 -0.02455 -0.03000

Table 2.2: (From [131]) Expansion coefficients, as defined in Eq. (2.20), calculated in the

basis of input observables containing ∆α
(5)
had. These encode the dependence of the output

observables on each input observable.
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course, new physics does contribute ξi′ to the calculation of Ôth
i′ , but as we decide to use

some particular values for the input Ôth
i′ to be consistent with Ôexpt

i′ (which are extraordinarily

well measured), we find ourselves adjusting the SM parameters to compensate for ξi′ . This

adjustment gets propagated into the shift in Ôth
i due to new physics for i > Np. As a result,

Eq. (2.22) shows that for the output observables, δ̄NPÔi is not simply ξi, but is related to ξi′

for all input observables.

To close this subsection we remark on the calculation of ξi. In practice this is done at

tree-level or one-loop-level, if we are only interested in constraining a new physics model

at percentage level accuracy. Also, the definition of ξi, Eq. (2.14), instructs us to calculate

them in terms of Lagrangian parameters, which can then be eliminated in favor of input

observables using the tree-level relations between the two. This does not conflict with the

“precision” part of the analysis, since we are doing two different perturbative expansions in

the calculation: the expansion in SM couplings, and the expansion in new physics effects.

Since new physics makes tiny contributions to Ôth
i , to discern them we have to calculate the

SM part as precisely as possible, carrying out the expansion in SM couplings to as high order

as possible. On the other hand, in most cases the new physics contributions ξi need not be

calculated beyond leading order, since they are already very small.

2.3.3 Beyond first order

The above perturbative expansion carried out to first order is expected to be sufficient for

the purpose of precision electroweak analysis, since we have chosen a very well-measured set

of input observables, so that the expansion parameters δ̄Ôth
i′ are tiny. The impact of higher

order terms in the expansion can be seen from the sensitivity of the expansion coefficients

cii′ to the choice of reference values for the input observables Ôref
i′ . In Table 2.3 we show the

percent relative uncertainties for cii′ , defined similarly to Eq. (2.17).

Alternatively, without varying Ôref
i′ , we can explicitly write down the next order terms in

the expansion:

δ̄SMÔi =
∑
i′

cii′ δ̄
SMÔi′ +

1

2!

∑
i′j′

cii′j′ δ̄
SMÔi′ δ̄

SMÔj′ + · · · ≡
∑
i′

(cii′ + ∆cii′)δ̄
SMÔi′ + . . . (2.23)

where

cii′j′ ≡
Ôref
i′ Ô

ref
j′

Ôref
i

∂2ÔSM
i

∂ÔSM
i′ ∂Ô

SM
j′

. (2.24)

Then the size of second order terms in Eq. (2.23) compared with the first order term is
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characterized by the ratio∣∣∣∣∆cii′cii′

∣∣∣∣ =

∣∣∣∣∣
∑

j′ cii′j′ δ̄
SMÔj′

2cii′

∣∣∣∣∣ ≤
∑

j′ |cii′j′ ||δ̄SMÔj′|
2|cii′|

≡ 0.01rii′ . (2.25)

We show in Table 2.4 the rii′ calculated with δ̄SMÔj′ = ∆Ôexpt
j′ /Ôref

j′ . The results follow a

similar pattern as in Table 2.3.

Tables 2.3 and 2.4 both show that the uncertainties on the observables calculations are

negligible due to uncertainty in the first-order expansion coefficient cii′ ’s. Most entries man-

ifestly demonstrate this with values of less than 1% corrections to the first-order coefficients

that are already governing less than 1% shifts in the observables due to the small uncertain-

ties of the input observables to the calculation (see Table 2.1). Only in a couple of places does

the uncertainty reach more than 1%, but the final uncertainty on the observables themselves

is of course significantly lower than that. To illustrate this, let us consider the largest P [cii′ ]

in Table 2.3, P [cRb,αs ], which is the uncertainty in the expansion coefficient of αs − αref
s in

the computation for Rb. It yields an uncertainty on Rb of

∆Rb ' Rref
b

∣∣22%× cRb,αs × δ̄αs
∣∣

' 0.216 (0.22× 0.0002× 0.005) ' 5× 10−8, (2.26)

which is much smaller than the experimental uncertainty of 7× 10−4. Therefore, in practice

this 22% uncertainty does not concern us, and we can be confident that the first-order

expansion expressions are sufficient for any precision electroweak analysis given the current

uncertainties in observables.

2.3.4 Change of basis

Our choice of input observables as in Eq. (2.16) is convenient for the calculation of expansion

coefficients in ZFITTER. In principle, any set of Np = 6 independent observables can serve

as input, though we should better choose those most precisely measured observables to

minimize the uncertainty due to higher order terms in the expansion. In this respect, an

equally good choice as Eq. (2.16) could be

{Ôi′} = {mZ , GF , α(mZ), mt, αs(mZ), mH}, (2.27)

since essentially all the uncertainty in α(mZ) comes from ∆α
(5)
had. This basis may be prefer-

able in practice, since it is often more convenient to do calculations with α(mZ), rather than
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Ôi P [ci,mZ ] P [ci,GF ] P [ci,∆α] P [ci,mt ] P [ci,αs ] P [ci,mH ]

α(mZ) 0.05 - 0.37 1.19 1.64 -

mW 0.02 0.05 0.44 0.87 1.20 0.23

Γe 0.04 0.07 0.42 1.09 1.53 0.60

Γµ 0.04 0.07 0.42 1.09 1.53 0.60

Γτ 0.04 0.07 0.42 1.09 1.53 0.60

Γb 0.01 0.02 0.43 0.96 0.41 0.27

Γc 0.01 0.01 0.39 0.88 0.64 0.33

Γinv 0.00 0.01 0.63 1.04 1.51 0.74

Γhad 0.01 0.01 0.41 1.10 0.50 0.35

ΓZ 0.00 0.01 0.39 1.07 0.52 0.39

σhad 0.06 2.08 2.41 1.31 0.50 2.81

Re 0.31 0.32 0.69 1.40 0.47 0.36

Rµ 0.31 0.32 0.69 1.40 0.47 0.36

Rτ 0.32 0.33 0.69 1.40 0.47 0.36

Rb 0.13 0.28 0.41 0.92 22.06 0.88

Rc 0.12 0.14 0.41 0.87 1.26 0.35

sin2 θeeff 0.02 0.01 0.39 0.97 1.26 0.12

sin2 θbeff 0.02 0.02 0.39 0.75 1.16 0.05

sin2 θceff 0.02 0.01 0.39 0.97 1.26 0.12

Ae 0.51 0.50 0.88 1.10 1.42 0.46

Ab 0.09 0.09 0.46 0.80 1.21 0.11

Ac 0.14 0.14 0.52 1.00 1.30 0.16

A0,b
FBe 0.51 0.50 0.88 1.10 1.42 0.46

A0,b
FBb 0.50 0.49 0.88 1.10 1.42 0.46

A0,b
FBc 0.48 0.47 0.85 1.09 1.41 0.43

Table 2.3: (From [131]) Percent relative uncertainties for the expansion coefficients cii′ , with
all input observables varied in their 1σ range.
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Ôi ri,mZ ri,GF ri,∆α ri,mt ri,αs ri,mH

α(mZ) 0.03 - 0.01 0.85 0.66 -

mW 0.01 0.03 0.03 0.18 0.35 0.18

Γe 0.03 0.04 0.20 0.30 0.52 0.18

Γµ 0.03 0.04 0.20 0.30 0.52 0.18

Γτ 0.03 0.04 0.20 0.30 0.52 0.18

Γb 0.02 0.02 0.04 0.24 0.10 0.07

Γc 0.02 0.03 0.02 0.21 0.09 0.16

Γinv 0.01 0.01 0.12 0.27 0.51 0.21

Γhad 0.02 0.02 0.02 0.29 0.04 0.14

ΓZ 0.02 0.02 0.02 0.29 0.05 0.13

σhad 0.03 1.04 1.02 0.39 0.02 1.49

Re 0.17 0.17 0.17 0.46 0.02 0.31

Rµ 0.17 0.17 0.17 0.46 0.02 0.31

Rτ 0.17 0.17 0.17 0.46 0.02 0.31

Rb 0.05 0.13 0.05 0.20 10.69 0.59

Rc 0.06 0.07 0.05 0.19 0.38 0.31

sin2 θeeff 0.03 0.02 0.03 0.24 0.38 0.19

sin2 θbeff 0.03 0.02 0.03 0.13 0.34 0.17

sin2 θceff 0.03 0.02 0.03 0.24 0.38 0.19

Ae 0.04 0.03 0.04 0.24 0.38 0.20

Ab 0.04 0.04 0.05 0.14 0.35 0.18

Ac 0.05 0.05 0.06 0.24 0.39 0.20

A0,b
FBe 0.18 0.19 0.18 0.42 0.55 0.37

A0,b
FBb 0.03 0.03 0.04 0.24 0.38 0.19

A0,b
FBc 0.00 0.01 0.01 0.23 0.37 0.19

Table 2.4: (From [131]) The rii′ ’s defined in Eq. (2.25), characterizing the ratios of second-
order vs. first-order terms in the expansion (in units of percentage).
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∆α
(5)
had, as input. In this subsection we derive the rules for translating the expansion coeffi-

cients cii′ , which are calculated in the basis Eq. (2.16), into those for the basis Eq. (2.27).

To avoid confusion, denote the latter by dii′ . Also, superscripts “SM” will be dropped for

simplicity in this subsection.

First, consider di,α. We need to determine the shift in Ôi caused by δ̄α(mZ), with the

other 5 input observables held fixed. If we work in the basis Eq. (2.16), this shift in α(mZ)

is an outcome of the following shift in ∆α
(5)
had (with other input observables fixed):

δ̄∆α
(5)
had = [cα,∆α]−1 δ̄α(mZ). (2.28)

And the shift in Ôi is

δ̄Ôi = ci,∆αδ̄∆α
(5)
had = ci,∆α [cα,∆α]−1 δ̄α(mZ). (2.29)

Thus,

di,α =
δ̄Ôi

δ̄α(mZ)
= ci,∆α [cα,∆α]−1 . (2.30)

Next, consider dii′ for i′ 6= α(mZ). Take di,mZ as an example. We need to shift mZ while

keeping other observables in Eq. (2.27), including α(mZ), fixed, and find the resulting shift

in Ôi. Working in the basis Eq. (2.16), we can do this in two steps. First, shift mZ by δ̄mZ .

As a result,

δ̄Ôi = ci,mZ δ̄mZ , δ̄α(mZ) = cα,mZ δ̄mZ . (2.31)

Second, shift ∆α
(5)
had by

δ̄∆α
(5)
had = − [cα,∆α]−1 cα,mZ δ̄mZ . (2.32)

As a result,

δ̄Ôi = ci,∆αδ̄∆α
(5)
had = −ci,∆α [cα,∆α]−1 cα,mZ δ̄mZ , (2.33)

δ̄α(mZ) = cα,∆αδ̄∆α
(5)
had = −cα,mZ δ̄mZ . (2.34)

The effect of both steps is to hold all observables in Eq. (2.27) other than mZ , in particular

α(mZ), fixed. And we get the desired result

di,mZ =
δ̄Ôi

δ̄mZ

= ci,mZ − ci,∆α [cα,∆α]−1 cα,mZ . (2.35)
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As a special case, Eqs. (2.30) and (2.35) also hold for i = ∆α
(5)
had:

d∆α,α = [cα,∆α]−1 , (2.36)

d∆α,mZ = − [cα,∆α]−1 cα,mZ , (2.37)

where we have used c∆α,∆α = 1, c∆α,mZ = 0.

In the basis Eq. (2.27), the theory predictions for the observables (with respect to the

reference values) are calculated from

δ̄Ôth
i =

∑
i′

dii′ δ̄Ô
th
i′ + δ̄NPÔi, (2.38)

where

δ̄NPÔi ≡ ξi −
∑
i′

dii′ξi′

= ξi − di,mZξmZ − di,GF ξGF − di,αξα − di,mtξmt − di,αsξαs − di,mHξmH . (2.39)

We list the expansion coefficients dii′ , as calculated from Eqs. (2.30) and (2.35), in Table 2.5.

2.4 New physics examples

In this section we present some examples of calculating new physics contributions to elec-

troweak observables, using the formalism developed in Section 2.3. We work in the basis

Eq. (2.27), with α(mZ) as an input observable.

2.4.1 Shifts in Zbb̄ couplings

Suppose some new physics model shifts the Z boson couplings to left- and right-handed b

quarks [145]

cbL → cbL(1 + εL), cbR → cbR(1 + εR). (2.40)

None of the input observables is affected at tree level. Thus, the impact of the shifts of these

couplings can be calculated straightforwardly from observables that directly depend on cbL
and cbR. The set of observables directly affected include Γb, Γhad, Re,µ,τ , Rc,b, ΓZ , σhad, Ab,
A0,b

FBb, and sin2 θbeff. Their shifts from this new physics contribution can be expressed as

δ̄NPÔi = ξi. (2.41)
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Ôi di,mZ di,GF di,α di,mt di,αs di,mH

mZ 1 0 0 0 0 0

GF 0 1 0 0 0 0

α(mZ) 0 0 1 0 0 0

mt 0 0 0 1 0 0

αs(mZ) 0 0 0 0 1 0

mH 0 0 0 0 0 1

∆α
(5)
had -0.1628 0 33.94 -5.232e-3 3.417e-4 0

mW 1.428 0.2201 -0.2154 0.01325 -9.621e-4 -7.704e-4

Γe 3.378 1.198 -0.1920 0.01886 -1.255e-3 -7.924e-4

Γµ 3.378 1.198 -0.1920 0.01886 -1.255e-3 -7.924e-4

Γτ 3.384 1.198 -0.1924 0.01887 -1.256e-3 -7.931e-4

Γb 3.846 1.411 -0.4166 -0.01260 0.03672 -1.057e-3

Γc 4.154 1.590 -0.5842 0.02760 0.05045 -1.394e-3

Γinv 2.996 1.006 1.913e-3 0.01567 -9.967e-4 -4.873e-4

Γhad 3.940 1.476 -0.4727 0.01586 0.03690 -1.204e-3

ΓZ 3.694 1.353 -0.3490 0.01612 0.02543 -1.019e-3

σhad -2.070 -0.03281 0.03328 2.471e-3 -0.01522 4.057e-5

Re 0.5622 0.2780 -0.2807 -3.002e-3 0.03815 -4.120e-4

Rµ 0.5622 0.2780 -0.2807 -3.002e-3 0.03815 -4.120e-4

Rτ 0.5568 0.2776 -0.2803 -3.009e-3 0.03815 -4.113e-4

Rb -0.09461 -0.06530 0.05608 -0.02846 -1.777e-4 1.477e-4

Rc 0.2138 0.1135 -0.1115 0.01174 0.01356 -1.898e-4

sin2 θeeff -2.825 -1.423 1.426 -0.02352 1.811e-3 2.195e-3

sin2 θbeff -2.830 -1.417 1.427 -7.134e-3 1.215e-3 2.116e-3

sin2 θceff -2.826 -1.423 1.426 -0.02353 1.809e-3 2.194e-3

Ae 35.22 17.74 -17.78 0.2932 -0.02257 -0.02737

Ab 0.4536 0.2271 -0.2287 1.143e-3 -1.947e-4 -3.390e-4

Ac 3.395 1.710 -1.713 0.02827 -2.174e-3 -2.636e-3

A0,b
FBe 70.44 35.48 -35.56 0.5865 -0.04515 -0.05473

A0,b
FBb 35.67 17.97 -18.01 0.2944 -0.02277 -0.02771

A0,b
FBc 38.61 19.45 -19.50 0.3215 -0.02475 -0.03000

Table 2.5: (From [131]) Expansion coefficients calculated in the basis of input observables
containing α(mZ), which are derived from the numbers in Table 2.2 by a change of basis
described in Section 2.3.4.
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Let’s begin by computing the shift in Γb. At tree level, Γb ∝ [(cbL)2 + (cbR)2], which when

expanded leads to the shift δ̄NPΓb = ξΓb , where

ξΓb =
2(cbL)2

(cbL)2 + (cbR)2
εL +

2(cbR)2

(cbL)2 + (cbR)2
εR ' 1.94 εL + 0.0645 εR. (2.42)

Knowing this shift in Γb enables us to simply compute the shift of other observables that

depend on Γb in terms of ξΓb :

δ̄NPΓhad = δ̄NPRe = δ̄NPRµ = δ̄NPRτ = −δ̄NPRc = RbξΓb ' 0.216 ξΓb , (2.43)

δ̄NPRb = δ̄NPΓb − δ̄NPΓhad = (1−Rb)ξΓb ' 0.784 ξΓb , (2.44)

δ̄NPΓZ = BbξΓb ' 0.151 ξΓb , (2.45)

δ̄NPσhad = δ̄NPΓhad − 2δ̄NPΓZ = (Rb − 2Bb)ξΓb ' −0.0855 ξΓb , (2.46)

where Bb = Γb/ΓZ is the branching ratio of Z → bb̄.

The asymmetry observables are also affected due to the shift in Ab. At tree level,

Ab =
(cbL)2 − (cbR)2

(cbL)2 + (cbR)2
, (2.47)

which leads to a shift δ̄NPAb = ξAb , where

ξAb =
4(cbL)2(cbR)2

(cbL)4 − (cbR)4
(εL − εR) ' 0.134 (εL − εR). (2.48)

We can then straightforwardly compute δ̄NPA0,b
FBb and δ̄NP sin2 θbeff in terms of ξAb :

δ̄NPA0,b
FBb = ξAb , (2.49)

and

δ̄NP sin2 θbeff =

[
sin2 θbeff

Ab
∂Ab

∂ sin2 θbeff

]−1

ξAb =
(1− 4

3
sin2 θbeff)[1 + (1− 4

3
sin2 θbeff)2]

−4
3

sin2 θbeff[1− (1− 4
3

sin2 θbeff)2]
ξAb ' −6.24 ξAb .

(2.50)

Thus, δ̄NPÔi for all observables are expressed in terms of ξΓb or ξAb , which are simply

related to εL, εR via Eqs. (2.42) and (2.48).
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2.4.2 Shifts in vector boson self-energies

In many new physics scenarios, there exist exotic states that do not couple directly to SM

fermions but have charges under the SM gauge groups. These states affect electroweak

observables via shifts in vector boson self-energies [146]. At one-loop level, the dependence

of various observables on vector boson self-energies is as follows [147]:

m2
Z =

[
m2
Z

](0)
(1 + πzz), (2.51)

m2
W =

[
m2
W

](0)
(1 + πww), (2.52)

GF = [GF ](0)(1− π0
ww), (2.53)

α(mZ) = [α(mZ)](0)(1 + π′γγ), (2.54)

sin2 θfeff = s2
(

1− c

s
πγz

)
, (2.55)

Γf = [Γf ]
(0)(1 + π′zz +

1

2
πzz + afπγz), (2.56)

where superscripts “(0)” denote tree-level values, and s = g1√
g2
1+g2

2

, c = g2√
g2
1+g2

2

. We have also

defined

πzz ≡
ΠZZ(m2

Z)

m2
Z

, (2.57)

π′zz ≡ lim
q2→m2

Z

ΠZZ(q2)− ΠZZ(m2
Z)

q2 −m2
Z

, (2.58)

πγz ≡
ΠγZ(m2

Z)

m2
Z

, (2.59)

π′γγ ≡ lim
q2→0

Πγγ(q
2)− Πγγ(0)

q2
, (2.60)

πww ≡ ΠWW (m2
W )

m2
W

, (2.61)

π0
ww ≡ ΠWW (0)

m2
W

. (2.62)

The af in Eq. (2.56) can be derived from

Γf = [Γf ]
(0)(1 + π′zz + πzz)

1 + (1− 4|Qf | sin2 θfeff)2

1 + (1− 4|Qf |s2)2
(2.63)

and Eq. (2.55). The result is

af =
8sc|Qf |(1− 4|Qf |s2)

1 + (1− 4|Qf |s2)2
= 4sc|Qf |[Af ](0). (2.64)
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With s2 ' sin2 θeeff = 0.231620, which is good at tree level, we have

aν = 0, a` = 0.2468, au = 0.7505, ad = 0.5262. (2.65)

With Eqs. (2.51-2.56), it is straightforward to calculate contributions from new physics.

Denote the shifts in vector boson self-energies by δNPπzz, etc.; i.e.

πzz → πzz + δNPπzz, etc. (2.66)

Note the absence of “bar” on δ, since this is the absolute shift, not the fractional shift. Then

for the input observables,

ξmZ =
1

2
δNPπzz, ξGF = −δNPπ0

ww, ξα = δNPπ′γγ, ξmt = ξαs = ξmH = 0. (2.67)

These shifts propagate into shifts in the output observables, while leaving the input observ-

ables unchanged due to new physics (i.e. δ̄NPÔi′ = 0). The new physics contribution to the

output observables can be conveniently expressed as:

δ̄NPÔi = ξi −
∑
i′

dii′ξi′

≡ bi,zzδ
NPπzz + b′i,zzδ

NPπ′zz + bi,γzδ
NPπγz + b′i,γγδ

NPπ′γγ + bi,wwδ
NPπww + b0

i,wwδ
NPπ0

ww.(2.68)

In the following we discuss the calculation of these b coefficients.

• b′i,zz, bi,ww are the simplest, since they vanish for most of the observables. In particular,

b′i,zz, which comes from wavefunction renormalization, is nonzero only for Z boson decay

widths:

b′Γf ,zz = b′Γinv,zz
= b′Γhad,zz

= b′ΓZ ,zz = 1. (2.69)

Note that wavefunction renormalization cancels out in σhad, and ratios of decay widths.

bi,ww is related to the shift in the W boson mass, so is nonzero only for:

bmW ,ww =
1

2
. (2.70)

• bi,zz, b′i,γγ, b0
i,ww are simply related to di,mZ , di,α, di,GF , respectively. Since π′γγ, π

0
ww only

enter α(mZ), GF , respectively, we have

b′i,γγ = −di,α, b0
i,ww = di,GF (2.71)
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Ôi bi,zz b′i,zz bi,γz b′i,γγ bi,ww b0
i,ww

mW -0.7140 0 0 0.2154 0.5 0.2201

Γe -1.189 1 0.2468 0.1920 0 1.198

Γµ -1.189 1 0.2468 0.1920 0 1.198

Γτ -1.192 1 0.2468 0.1924 0 1.198

Γb -1.423 1 0.5262 0.4166 0 1.411

Γc -1.577 1 0.7505 0.5842 0 1.590

Γinv -0.9982 1 0 -1.913e-3 0 1.006

Γhad -1.470 1 0.6027 0.4727 0 1.476

ΓZ -1.347 1 0.4420 0.3490 0 1.353

σhad 0.03475 0 -0.03460 -0.03328 0 -0.03281

Re -0.2811 0 0.3559 0.2807 0 0.2780

Rµ -0.2811 0 0.3559 0.2807 0 0.2780

Rτ -0.2784 0 0.3559 0.2803 0 0.2776

Rb 0.04731 0 -0.07647 -0.05608 0 -0.06530

Rc -0.1069 0 0.1479 0.1115 0 0.1135

sin2 θeeff 1.413 0 -1.821 -1.426 0 -1.423

sin2 θbeff 1.415 0 -1.821 -1.427 0 -1.417

sin2 θceff 1.413 0 -1.821 -1.426 0 -1.423

Ae -17.61 0 22.71 17.78 0 17.74

Ab -0.2268 0 0.2876 0.2287 0 0.2271

Ac -1.697 0 2.192 1.713 0 1.710

A0,b
FBe -35.22 0 45.41 35.56 0 35.48

A0,b
FBb -17.84 0 22.99 18.01 0 17.97

A0,b
FBc -19.31 0 24.90 19.50 0 19.45

Table 2.6: (From [131]) The b coefficients defined in Eq. (2.68), characterizing the shift in
the output observables due to new physics that shifts vector boson self-energies.
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for all Ôi. Similarly,

bi,zz = −1

2
di,mZ (2.72)

except for those observables having direct dependence on the Z boson mass:

bi,zz =
1

2
(1− di,mZ ) for i = Γf ,Γinv,Γhad,ΓZ , (2.73)

bσhad,zz = −1

2
(2 + di,mZ ). (2.74)

• Finally, bi,γz should be derived from the dependence on sin2 θfeff. For the Z partial

widths, it can be read off from Eq. (2.56):

bΓf ,γz = af , bΓinv,γz = 3aν = 0, (2.75)

with af given in Eqs. (2.64) and (2.65). For i = Γhad,ΓZ , bi,γz is a weighted sum. At

leading order:

bΓhad,γz =
∑
f∈had

Γf
Γhad

bΓf ,γz =

∑
f∈had

[
1 + (1− 4|Qf |s2)2

]
bΓf ,γz∑

f∈had

[
1 + (1− 4|Qf |s2)2

] , (2.76)

bΓZ ,γz =
∑
f

Γf
ΓZ

bΓf ,γz =

∑
f

[
1 + (1− 4|Qf |s2)2

]
bΓf ,γz∑

f

[
1 + (1− 4|Qf |s2)2

] . (2.77)

For the ratios of partial widths, and the Z-pole cross section:

bR`,γz = bΓhad,γz − bΓ`,γz, bRq ,γz = bΓq ,γz − bΓhad,γz, bσhad,γz = bΓe,γz + bΓhad,γz − 2bΓZ ,γz.(2.78)

For the asymmetry observables, we can read off from Eq. (2.55):

bsin2 θfeff,γz
= −c

s
. (2.79)

And hence, at leading order,

bAf ,γz =
s2

[Af ](0)

∂[Af ](0)

∂(s2)
bsin2 θfeff,γz

=
4|Qf |sc[1− (1− 4|Qf |s2)2]

(1− 4|Qf |s2)[1− (1 + 4|Qf |s2)2]
, (2.80)

bA0,b
FBf,γz

= bAe,γz + bAf ,γz. (2.81)

The numerical values for these b coefficients are listed in Table 2.6. The calculation is done

with s2 = 0.231620, and the sign conventions for the gauge couplings are g1 > 0, g2 > 0

(hence s > 0).
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2.5 Conclusions

In this section we presented an expansion formalism that facilitates precision electroweak

analyses. By recasting all observables in terms of six very well measured input observables,

we can calculate each of them easily by expanding about the reference values of the input ob-

servables, chosen in accord with experimental measurements. Also, the formalism developed

here can be applied in a simple manner to calculate new physics corrections to electroweak

observables and derive constraints on new physics models. Some examples were worked out

for illustration.

For numerical results we calculated the reference values and expansion coefficients us-

ing the ZFITTER package. Most, though not all, of these results reflect state-of-the-art

calculations in the literature. Various higher order calculations of electroweak observables

have been done since the release of ZFITTER 6.42 in 2005, but their impact on precision

analysis is not significant at present because the power of the precision program is limited

by experimental errors. However, improvements of our results to better accuracy with the

inclusion of these and future calculations may be necessary in the future, if experimental

priorities of next-generation facilities involve Giga-Z or Tera-Z options [148, 149]. With 109

or 1012 Z bosons produced at a future collider, unprecedented levels of reliable theoretical

calculations will be needed to meet the unprecedented levels of experimental accuracy. We

hope that the formalism presented here, with improving numerical results, will continue to

be helpful for efficient and reliable calculations of SM results and beyond the SM corrections

in the precision electroweak program.
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Chapter 3

Resolving Charm and Bottom Quark

Masses in Precision Higgs Analyses

A conventional approach to precision calculations of Higgs boson observables uses quark

masses mc and mb as inputs. However, quark masses are single numbers that hide a va-

riety of low-energy data from which they are extracted, and also hide the various sources

of theoretical uncertainties and correlations with additional input parameters such as αs.

Higher-precision calculations, which are needed to give meaning to future measurements,

require more direct engagement with the low-energy data in a global analysis. We present

an initial calculation in this direction, which illustrates the procedure and reveals some of the

theory uncertainties that challenge subpercent determinations of Higgs boson partial widths.

3.1 Introduction

The discovery of the Higgs boson [1,2] marks the beginning of a new era for precision studies.

Not only is unprecedented precision achieved in Standard Model (SM) calculations [24–26,

131] with the knowledge of the Higgs boson mass [133,150], but experimental data on a large

number of Higgs observables [151] allows us for the first time to scrutinize the Higgs sector

of the SM [121] and beyond [70, 152, 153]. Any discrepancy between precision data and SM

predictions would be an indication of new physics.

Though not explicitly stated in the context of precision Higgs analysis, an important role

in this program is played by low-energy observables, such as moments of e+e− annihilation

cross section and moments of semileptonic B decay distributions. In fact, our knowledge of

the charm and bottom quark masses mQ (Q = c, b), which are important inputs of precision

Higgs calculations, largely comes from analyzing these low-energy data. This can be seen

from the fact that the Particle Data Group (PDG) [154] average of the scale-invariant masses
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in the MS scheme [i.e. solutions to mQ(µ) = µ],

mc(mc) = 1.275(25) GeV, (3.1)

mb(mb) = 4.18(3) GeV, (3.2)

is dominated by mQ extractions from low-energy data. These MS masses, as well as pole

masses, have been used in the literature to estimate the theoretical precision achievable in

precision Higgs calculations [121,155].

However, looking into the future, such indirect engagement of low-energy observables in

precision Higgs analysis might be ultimately unsatisfactory. A large amount of low-energy

data has been highly processed to yield just two numbers, as in Eqs. (3.1) and (3.2). It is

not even clear whether these numbers accurately reflect our knowledge of mQ, because the

averaging involvesmQ extractions some of which are apparently correlated due to similar data

and/or methods used. The error bars assigned to them contain experimental uncertainties

from many different measurements, as well as theoretical uncertainties from calculating many

different quantities. In addition, a self-described inflation of uncertainties by the PDG [156]

is introduced to account for underestimated systematic errors in some mQ extractions [157].

Finally, Eqs. (3.1) and (3.2) do not retain possible correlations between αs(mZ) and the

extracted mQ. They are thus treated as independent inputs in precision Higgs analysis,

which is strictly speaking not correct.

As we strive for the highest-precision calculation possible in order to match percent

(or even perhaps parts-per-mil) level of experimental precision achievable in the foreseeable

future1, the rich information hidden in Eqs. (3.1) and (3.2) should be revealed, and the role

of individual low-energy observables emphasized. Conceivably, a global χ2 fit would become

more powerful in testing the SM when low-energy observables sensitive to mQ as well as

Higgs observables are incorporated. The scale-invariant masses mQ(mQ) would be then only

inputs of the calculation. They are not considered as observables with experimental values

and uncertainties, but are parameters to be tuned to minimize the χ2 function, where only

true observables are included.

In this section we propose the idea of directly working with low-energy observables in pre-

cision Higgs analysis. In addition to the global fit perspective mentioned above, low-energy

observables can also play a role in identifying individual sources of theoretical uncertainties

1Though precision measurements of Higgs observables, especially the partial widths into cc̄ and bb̄ dis-
cussed in this section, are difficult at the LHC, such high precision is generally believed to be achievable at
the International Linear Collider, the Future Circular Collider, and the Circular Electron Positron Collider.
For recent analyses, see e.g. [158–161]. We also note that for the bb̄ channel, the importance of a higher
theory precision is further emphasized by its relevance to the calculation of the total widths and all branching
ratios of the Higgs boson.
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in precision Higgs calculations. This is conveniently done by eliminating mQ(mQ) from our

input in favor of two low-energy observables, and recasting Higgs observables in terms of

these and other input observables. For this procedure to be meaningful, the two observ-

ables chosen should be representative of the large amount of low-energy data contributing

to Eqs. (3.1) and (3.2), in the sense that mQ extracted from them alone should be precise

enough. In the language of a global χ2 fit, the ideal choices would be two observables that

dominate the low-energy observables contribution to χ2. In this regard, a reasonable, though

by no means exclusive, option would be to use the moments Mc
1 and Mb

2 of e+e− → QQ̄

inclusive cross section, defined by

MQ
n ≡

∫
ds

sn+1
RQ(s), where RQ ≡

σ(e+e− → QQ̄X)

σ(e+e− → µ+µ−)
, (3.3)

with the precise definition of RQ from experimental data discussed in [162]. mc(mc) and

mb(mb) reported in the literature from analyzing these moments typically have O (10 MeV)

uncertainties quoted [157, 162–164]. For the Higgs observables we will focus on the partial

widths ΓH→cc̄ and ΓH→bb̄, and assess the level of precision we can achieve in SM predictions

for them. We will see that with direct contact made between these partial widths and the low-

energy moments, the vague notion of “uncertainties from mQ” is decomposed into concrete

sources of uncertainties. In particular, parametric uncertainties from input observablesMc
1,

Mb
2 and αs(mZ) 2, and perturbative uncertainties due to missing higher-order corrections to

the moments can be exposed separately. We note that while the parametric uncertainties

are currently expected to be at the percent level, and are in principle reducible with future

data and more careful experimental extraction of the moments, the perturbative uncertainties

may represent a bigger challenge due to lack of knowledge of the appropriate renormalization

scales in the low-energy regime. It is therefore worthwhile to further investigate theoretical

as well as experimental aspects of the low-energy observables for the precision Higgs program

to succeed.

2It should be noted that we will treat αs(mZ) as both a calculational input and an observable with a
central value and uncertainty. In principle one could treat αs(mZ) as merely a calculational parameter and
let the observables that are highly sensitive to the αs(mZ) value be part of the global fit, analogous to what
we have done with mQ(mQ). However, αs(mZ) is one step further removed from direct determination of
H → bb̄, cc̄ partial widths compared to mQ(mQ), and so treating αs(mZ) as both an input parameter and
(highly processed) observable is numerically justified.
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3.2 Incorporating low-energy observables into a global

precision analysis

The strongest tests of the SM rely on comparing its predictions across all accessible energy

scales. By disentangling the information contained in the charm and bottom quark masses

in the context of precision Higgs analysis, we expose an interesting interplay between Higgs

observables and low-energy observables. The sensitivity to mQ that they share in common

suggests the inclusion of both in the precision program.

An incomplete list of candidates for low-energy observables can be inferred from the mQ

extraction literature, and includes low [157, 162–164] and high [165–168] moments of RQ

mentioned above, and their variants [169, 170], moments of lepton energy and hadron mass

distributions of semileptonic B decay [171–173], etc. We denote them collectively as {Ôlow
i },

with i running from 1 to the number of low-energy observables we wish to incorporate into

the analysis. All these candidates should be carefully examined, and correlations among

them should be understood, so that the best choices can be made for {Ôlow
i }.

In the high-energy regime, the observables include, for example, various partial widths,

branching ratios, and production cross sections of the Higgs boson. Let us call them {Ôhigh
i }.

If not restricted to precision Higgs analysis, one may even include in {Ôhigh
i } the electroweak

observables, such as the effective weak mixing angle, Z boson partial widths, and forward-

backward asymmetries in e+e− annihilation at the Z pole. This will make the global analysis

even more powerful, because the Higgs observables are sensitive to the same set of input

observables as the electroweak observables:

{Ôin
k } ≡ {mZ , GF , α(mZ), mt, αs(mZ), mH}. (3.4)

Parenthetically we remark that the common practice of treating the top quark mass mt as

an input observable is justified for present purposes. A more careful treatment of mt, like

what we do here with mc and mb, may be needed in the future when precision measurements

on the tt̄ threshold are carried out at an e+e− collider.

Additional calculational inputs, which are not necessarily of the observable type, include

the charm and bottom quark masses {mQ(mQ)} ≡ {mc(mc),mb(mb)}. There may be other

input parameters, which we denote collectively by {pother
k }. Examples are the τ lepton mass,

flavor angles, and nonperturbative parameters (e.g. gluon condensate) involved in some low-

energy observables.

Assuming the potentially complicated correlations among all the high- and low-energy

observables will be understood in time, we may ultimately subject all the observables to a
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global fit, by minimizing the χ2 function with respect to the inputs:

Calculation inputs: {Ik} ≡ {Ôin
k } ∪ {mQ(mQ)} ∪ {pother

k }, (3.5)

Fit observables: {Ôi} ≡ {Ôin
i } ∪ {Ô

high
i } ∪ {Ôlow

i }, (3.6)

To minimize: χ2 =
∑
ij

[
Ôth
i ({Ik})− Ôexpt

i

]
V −1
ij

[
Ôth
j ({Ik})− Ôexpt

j

]
. (3.7)

Here “th” and “expt” denote theoretical and experimental values, respectively, and V is the

covariance matrix containing uncertainties and correlations among observables. The calcu-

lational inputs could just as well be chosen to be a minimal set of Lagrangian parameters;

however, it is most convenient for our purposes to choose a combination of observables and

Lagrangian parameters as the minimal set of calculational inputs.

Compared with the conventional approach where low-energy data contribute indirectly

via the averaged {mQ(mQ)}, our proposal of directly working with low-energy observables

allows appropriate treatment of all the correlations and uncertainties. In particular, there

is no averaging over correlated mQ extractions, and the calculational inputs {mQ(mQ)} and

αs(mZ) are no longer correlated. Challenging as it is, such a global analysis is worth further

investigation. As a long-term goal for the precision program, it will test our understanding

of elementary particle physics at an unprecedented level.

As a final remark in this section, the techniques described above are to be employed in a

rigorous test of the SM. The resulting statistical test from the χ2 analysis is for determining

the likelihood of the compatibility of the data with the SM hypothesis. It is straightforward

to apply these techniques to a slightly different model, which we call the κSM, defined to

be exactly the SM theory except that each coupling of the Higgs boson to SM states has a

free parameter κi in front that is varied to fit the data (see e.g. [69, 152,174]). In that case,

the χ2 analysis must include these κi as extra input variables and the resulting fit tests the

compatibility of the κSM theory with the data and, if compatible, gives confidence intervals

for the κi values. Just as with the SM, at the next level of precision analysis of the κSM it

is important to address the role of low-energy observables that we study here.

3.3 Recasting Higgs observables in terms of low-energy

observables

In order to investigate sources of theoretical uncertainties in calculating the Higgs observ-

ables, it is helpful to recast them in terms of a set of input observables without invoking

a global fit. In the simplest case, suppose all the observables under consideration are in-
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sensitive to {pother
k }. We choose two low-energy observables Ôlow

1 , Ôlow
2 . By inverting the

functions

Ôlow
1 = Ôlow

1

[
{Ôin

k }, {mQ(mQ)}
]
, Ôlow

2 = Ôlow
2

[
{Ôin

k }, {mQ(mQ)}
]
, (3.8)

we express the quark masses in terms of Ôlow
1 , Ôlow

2 :

mc(mc) = mc(mc)
[
{Ôin

k }, Ôlow
1 , Ôlow

2

]
, mb(mb) = mb(mb)

[
{Ôin

k }, Ôlow
1 , Ôlow

2

]
. (3.9)

{mQ(mQ)} can then be eliminated from the calculation of the Higgs observables:

Ôhigh
i = Ôhigh

i

[
{Ôin

k }, {mQ(mQ)}
]

= Ôhigh
i

[
{Ôin

k }, Ôlow
1 , Ôlow

2

]
, (3.10)

and we have achieved the goal of recasting Higgs observables in terms of low-energy input

observables Ôlow
1 , Ôlow

2 . From Eq. (3.10) it is clear that the precision in the SM prediction for

the Higgs observables will benefit from improved knowledge of mQ, which ultimately comes

from better measurements of the low-energy observables.

Our choices for the low-energy input observables,

Ôlow
1 , Ôlow

2 =Mc
1,Mb

2, (3.11)

require only a slight generalization of the simple formalism above. We will take into account

an additional input, the gluon condensate, as {pother
k } in the case ofMc

1, but its contribution

allows for a simplified treatment. In fact, the simplicity of the analysis is our main motivation

for choosing these moments as inputs rather than other low-energy observables which lead to

similar level of precision in the extracted mQ. For example, if we were to use semileptonic B

meson decay observables (see e.g. [171–173]), more input parameters in {pother
k } will show up,

including flavor angles and four nonperturbative parameters. Also, the low moments (MQ
n

with n ≤ 4) chosen here are computationally more straightforward than the high moments

(n ≥ 10; see e.g. [165–168]). The former can be calculated conveniently in the relativistic

theory, while a nonrelativistic effective theory treatment is needed for the latter. In addition,

since the calculation involves MS quark masses, there is no need for introducing other mass

schemes. Potentially large uncertainties associated with mass scheme conversion (e.g. from

pole or kinetic masses to MS masses), which is needed for some other methods, can thus

be avoided. We also note that the approach of extracting mQ from the low moments was

recently recast by the lattice QCD community [175–177], and future development in this

direction may shed light on the precision Higgs program [178].
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To calculate MQ
n , one applies quark-hadron duality [179] to relate the moments MQ

n to

vector current correlators,

MQ
n =

12π2

n!

(
d

dq2

)n
ΠQ(q2)

∣∣∣∣
q2=0

, where (3.12)

(q2gµν − qµqν)ΠQ(q2) = −i
∫

d4x eiq·x〈0|Tjµ(x)j†ν(0)|0〉, (3.13)

with jµ being the electromagnetic current of Q. ΠQ can be calculated as an operator product

expansion:

MQ
n =

(
QQ/(2/3)

)2(
2mQ(µ)

)2n

∑
i,j

C̄
(j)
n,i (nf )

(
αs(µ)

π

)i
lnj

mQ(µ)2

µ2
+MQ,np

n , (3.14)

where QQ is the electric charge of quark Q. As one can see, the values of these moments

depend on the quark masses, a fact that QCD sum rules practitioners use to extract quark

masses (for reviews see [180, 181]). The two terms in Eq. (3.14) come from perturbation

theory and nonperturbative condensates, respectively. The perturbative part is known up

to O (α3
s) [182], while the gluon condensate contribution, which dominatesMQ,np

n , has been

calculated to next-to-leading order [183]. Note that the coefficients C̄
(j)
n,i are functions of

nf , the number of active quark flavors. The common choices are nf = 4 for Q = c and

nf = 5 for Q = b. These are also the numbers of active quark flavors assumed for αs(µ) and

mQ(µ) in Eq. (3.14). αs(mZ) is defined for nf = 5, and should be matched to the 4-flavor

effective coupling at the bottom quark threshold before being used in Eq. (3.14) forMc
n. In

our calculations the matching is done assuming 4.2 GeV for both the threshold scale and

mb(mb), but all the results are found to be insensitive to the details of threshold matching.

mQ(µ) are usually extracted by comparing the theoretical calculation with experimental

data forMQ
n (see [157,162] for technical details). Normally the lowest momentMc

1 is taken

for the charm quark so as to suppress the nonperturbative contribution to the subpercent

level [157, 162, 184]. For the bottom quark the gluon condensate can be safely neglected at

the present level of precision [162], and the second moment Mb
2 is preferred due to large

experimental uncertainty in Mb
1. We also neglect O (m2

c/m
2
b) terms in Mb

2, not explicitly

written out in Eq. (3.14), which constitute a tiny contribution [162].

It is pointed out in [157] that the scales at which mQ and αs are renormalized should be

considered independently to avoid bias in the uncertainty estimate. Eq. (3.14) then should
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be generalized to

MQ
n =

(
QQ/(2/3)

)2(
2mQ(µm)

)2n

∑
i,a,b

C
(a,b)
n,i (nf )

(
αs(µα)

π

)i
lna

mQ(µm)2

µ2
m

lnb
mQ(µm)2

µ2
α

+MQ,np
n . (3.15)

The coefficients in this equation C
(a,b)
n,i can be readily derived from C̄

(j)
n,i via renormalization

group (RG) equations, and numerical results for nf = 4 can be found in [157]. Due to

unknown O (α4
s) terms, the calculated MQ

n exhibit dependence on both µm and µα. Scale

dependence is a general feature of finite-order perturbative calculations, and should be con-

sidered with care in estimating theoretical uncertainties. We have more to say on this below.

With mQ(µm), αs(µα) related to mQ(mQ), αs(mZ) via RG equations, Eq. (3.15) matches

the general form of Eq. (3.8), with αs(mZ) being the only relevant element in {Ôin
k }. There

are additional inputs µm, µα and MQ,np
n . So in our case, Eq. (3.8) is modified as:

Mc
1 = Mc

1

[
αs(mZ),mc(mc), µ

c
m, µ

c
α,M

c,np
1

]
, (3.16)

Mb
2 = Mb

2

[
αs(mZ),mb(mb), µ

b
m, µ

b
α

]
, (3.17)

where we have neglected Mb,np
2 . As mentioned above, the nonperturbative contribution has

been claimed to be negligible for the bottom quark. We have checked this in the case of

Mb
2, where the contribution from Mb,np

2 is below 0.1%, which should be compared to the

experimental uncertainty of Mb
2 of about 1%. Treating Mc,np

1 and mc(mc) as independent

inputs, which we will justify later, and focusing on the Higgs boson partial widths to cc̄ and

bb̄ as examples of {Ôhigh
i }, we have, in place of Eqs. (3.9) and (3.10),

mc(mc) = mc(mc)
[
αs(mZ),Mc

1, µ
c
m, µ

c
α,M

c,np
1

]
, (3.18)

mb(mb) = mb(mb)
[
αs(mZ),Mb

2, µ
b
m, µ

b
α

]
, (3.19)

ΓH→cc̄ = ΓH→cc̄

[
{Ôin

k },mc(mc), µ
c
H

]
= ΓH→cc̄

[
{Ôin

k },Mc
1, µ

c
m, µ

c
α, µ

c
H ,M

c,np
1

]
, (3.20)

ΓH→bb̄ = ΓH→bb̄

[
{Ôin

k },mb(mb), µ
b
H

]
= ΓH→bb̄

[
{Ôin

k },Mb
2, µ

b
m, µ

b
α, µ

b
H

]
, (3.21)

where µcH , µbH collectively denote other renormalization scales involved in the calculation of

the partial widths. These are nevertheless not the only scale dependences for the partial

widths in such an analysis. The residual scale dependences of the low-energy observables
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are seen to propagate into the extracted quark masses, and constitute part of the uncer-

tainties in mQ(mQ). These uncertainties eventually propagate into the calculations of Higgs

observables, and are reflected in the µm, µα dependences in Eqs. (3.20) and (3.21). Note also

that in the second equalities in Eqs. (3.20) and (3.21), the αs(mZ) dependence in the partial

widths has been changed to account for the correlation with mQ(mQ) reflected in Eqs. (3.18)

and (3.19).

Eqs. (3.20) and (3.21) represent the final results of the exercise of recasting Higgs observ-

ables in terms of low-energy observables, with the information contained in mQ(mQ) fully

resolved. They will be used in the next section to investigate the theoretical uncertainties

in these partial widths.

To close this section we remark on the treatment of Mc,np
1 . The known terms read [183]

Mc,np
1 =

〈
αs
π
G2
〉

(2mpole
c )6

[
−16.042− 168.07

αs(µ)

π
+O

(
α2
s

)]
, (3.22)

where
〈
αs
π
G2
〉

is the gluon condensate. The commonly used value in the context of charm

quark mass extraction is derived from τ decay data [185]:〈αs
π
G2
〉

= 0.006± 0.012 GeV4. (3.23)

In addition to the imprecise knowledge of
〈
αs
π
G2
〉
, we note two other sources of uncertainties

inMc,np
1 . First, it is argued in [157,184] thatMc,np

1 should be expressed in terms of the pole

mass rather than the MS mass in order to have a stable αs expansion. We agree with this

argument, but note that the use of the pole mass may introduce further ambiguities. For

example, if one tries to calculate the pole mass from the MS mass, the result will be very sen-

sitive to the loop order. Second, considerable uncertainty is introduced by the µ dependence

of the bracket in Eq. (3.22), since the O (α2
s) terms are not known. This renormalization

scale is not necessarily related to µα or µm in the perturbation theory contributions [the

first term in Eq. (3.15)]. All these uncertainties and ambiguities will dilute any conceivable

correlation between Mc,np
1 and mc(mc), justifying our treatment of them as independent

inputs. In our analysis the following value for Mc,np
1 will be assumed:

Mc,np
1 = −0.0001+0.0006

−0.0014 GeV−2. (3.24)

The central value corresponds to
〈
αs
π
G2
〉

= 0.006 GeV4, mpole
c = 1.7 GeV and µ = 3 GeV

in Eq. (3.22). The errors are very conservatively estimated by taking the extreme values

mpole
c = 1.4 GeV, µ = 1 GeV, and varying

〈
αs
π
G2
〉

in the range in Eq. (3.23). Even with the
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extreme values considered,Mc,np
1 is still a subpercent-level contribution toMc

1 ∼ 0.2 GeV−2.

3.4 Theoretical uncertainties of Higgs partial widths

It is clear from Eqs. (3.20) and (3.21) that there are two types of uncertainties in the calcu-

lation of the Higgs partial widths. Parametric uncertainty results from imprecise knowledge

of the input parameters, including the input observables (Mc
1, Mb

2 and those in {Ôin
k })

and the nonperturbative parameterMc,np
1 . The experimental values and errors of the input

observables are:

Mc
1 = 0.2121(20)(30) GeV−2 [157], (3.25)

Mb
2 = 2.819(27)× 10−5 GeV−4 [184], (3.26)

αs(mZ) = 0.1185(6) [154], (3.27)

mH = 125.7(4) GeV [154], (3.28)

mt = 173.21(51)(71) GeV [154], (3.29)

mZ = 91.1876(21) GeV [154], (3.30)

α(mZ) = 1/127.940(14) [154], (3.31)

GF = 1.1663787(6)× 10−5 GeV−2 [154]. (3.32)

For Mc
1 and mt the two experimental uncertainties are statistical and systematic, respec-

tively. There is an additional systematic uncertainty inMb
2 associated with the prescriptions

used in extracting moments from data. This is discussed in [184], and we adopt “Option A”

in that paper because among the three options considered there it appears to yield the most

consistent results for mQ(mQ) across different moments.

Perturbative uncertainty, on the other hand, is associated with unknown higher-order

terms in perturbation theory calculations, and leads to residual dependence of calculated

observables on the renormalization scales. When the partial widths are recast in terms of

Mc
1 andMb

2 as in Eqs. (3.20) and (3.21), multiple scales enter. µH comes from the calculation

of the Higgs boson decay. The associated perturbative uncertainty has been studied in the

literature; see e.g. [121] where it is found to be small compared with parametric uncertainty.

Here we focus on µm, µα, which originate from the calculation of the low-energy observables

Mc
1,Mb

2 [see Eqs. (3.15-3.17)]. Their contribution to the total theoretical uncertainty will be

singled out below by setting all input parameters to their central values in Eqs. (3.24-3.32),

and setting µH = mH .

We study the perturbative uncertainty from µm, µα in two steps. First, mQ(µm) are
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Figure 3.1: (From [30]) Contours of mc(mc) (top-left), ΓH→cc̄ (top-right), mb(mb) (bottom-
left), ΓH→bb̄ (bottom-right) in the µm-µα plane. These plots demonstrate Eqs. (3.18-3.21)
with all other inputs fixed. The unlabeled contours represent decreasing values toward the
top-left corner in steps of 0.01 GeV, 0.005 GeV, 0.002 MeV, 0.005 MeV, respectively.

calculated by iteratively solving Eq. (3.15) following the procedure explained in [157], from

which mQ(mQ) are derived. We use the RunDec package [186] for RG running and threshold

matching to the highest loop order implemented in the package. Second, the partial widths

ΓH→cc̄, ΓH→bb̄ are calculated using the expansion formulas in [121]. The results of both steps

are shown in Fig. 3.1 as contour plots in the µm-µα plane3. They correspond to Eqs. (3.18-

3.21) with other inputs fixed. These plots illustrate the propagation of µm, µα dependence

from low-energy moments calculations to Higgs partial widths.

To estimate the perturbative uncertainty, a common practice is to identify a characteristic

3The numerical difference between our mc(mc) contour plot and Fig. 6(c) in [157] is due to the inputMc
1

and αs(mZ) used, and to a lesser extent the treatment of Mc,np
1 .
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scale of the process of interest, and vary the renormalization scale within a factor of two

around that scale. For example, µH has been varied from mH/2 to 2mH in [121]. However,

this method is not directly applicable to µm and µα, since MQ
n receive contributions from

all energy scales as evident in Eq. (3.3). One might guess from qualitative features of RQ(s)

that the characteristic scale should be O (2mQ), the masses of quarkonium resonances. But

due to the relatively large value of αs in the low-energy regime, the exact number, and hence

the range in which we choose to vary µm, µα can greatly affect the result of our uncertainty

estimates. This is already clear from Fig. 3.1, where ΓH→cc̄ and ΓH→bb̄ are seen to exhibit

rapid variation in the low-µm regime.

Lacking an optimal method to estimate the perturbative uncertainty, we refrain from giv-

ing exact numbers, but instead aim to illustrate the ambiguity in the estimate of perturbative

uncertainty by varying µm and µα independently within an adjustable range [µmin, µmax]. We

will focus on the uncertainties in the partial widths, and remark that they are related to the

uncertainties in mQ(mQ) by [121]

∆ΓH→cc̄
ΓH→cc̄

' ∆mc(mc)

10 MeV
× 2.1%,

∆ΓH→bb̄
ΓH→bb̄

' ∆mb(mb)

10 MeV
× 0.56%. (3.33)

The perturbative uncertainty, defined as half the difference between the maximum and min-

imum values of ΓH→cc̄, ΓH→bb̄, depends on µmin and µmax. We present the results in Fig. 3.2

in terms of “percent relative uncertainties,” defined to be 100∆Γ/Γ. The red solid curves

show the estimated perturbative uncertainties as functions of µmin, with µcmax (µbmax) fixed

at 4 (15) GeV. Alternative choices for µcmax (µbmax), 3 and 5 (13 and 17) GeV, give rise to

the red dashed curves. These can be compared with the dominant parametric uncertainties

shown by the other curves in Fig. 3.2 (see figure caption for details). The popular choices

in the literature (µcmin, µ
c
max) = (2, 4) GeV and (µbmin, µ

b
max) = (5, 15) GeV yield perturbative

uncertainties of 1.2% and 0.33% for ΓH→cc̄ and ΓH→bb̄, respectively, comparable with para-

metric uncertainties. However, the perturbative uncertainties increase rapidly and dominate

the total theoretical uncertainties if lower renormalization scales are considered. The result

of the theoretical uncertainty estimate is then strongly dependent on the artificial choice of

µmin. This poses a serious ambiguity in precision analysis, and calls for more enlightened

prescriptions for the uncertainty estimate. We note two possible directions in this regard.

The first direction was suggested very recently in [187] in the context of mQ extraction.

There it is argued that the large perturbative uncertainty from completely uncorrelated

variation of µm and µα is probably an overestimate. To get the perturbative uncertainty

under control, a “convergence test” is performed to identify regions in the µm-µα plane

where the perturbative series converges too slowly (characterized by a large convergence
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Figure 3.2: (From [30]) Percent relative uncertainties in ΓH→cc̄ (left) and ΓH→bb̄ (right) as
functions of µmin from: perturbative uncertainty with µcmax = 4 GeV, µbmax = 15 GeV (red
solid) or alternatively µcmax = 3, 5 GeV, µbmax = 13, 17 GeV (red dashed), parametric uncer-
tainties from Mc

1 or Mb
2 (orange), αs(mZ) (cyan solid), Mc,np

1 (blue, for ΓH→cc̄ only) and
mH (purple). The parametric uncertainty from αs(mZ) incorrectly calculated assuming no
correlation with mQ (cyan dotted) is also shown for comparison. The parametric uncertain-
ties are defined as shifts of the central values of ΓH→cc̄ and ΓH→bb̄ for µmin ≤ µm, µα ≤ µmax

caused by varying the input parameters within the errors quoted in Eqs. (3.24-3.32), with
µcmax = 4 GeV, µbmax = 15 GeV (the kinks are due to the maximum or minimum shifting to
a different region in the µm-µα plane), and are found to be insensitive to µmax.

parameter). These regions are then discarded in the uncertainty estimate. Following the

approach outlined in [187], we find that the discarded regions correspond to the upper-left

and bottom-right corners in each plot in Fig. 3.1, where mQ(mQ) and the partial widths

exhibit rapid variation. The final result in [187] is a reduced perturbative uncertainty: 14

MeV and 10 MeV for mc(mc) and mb(mb), respectively, corresponding to 2.9% and 0.56%

relative uncertainties in ΓH→cc̄ and ΓH→bb̄, respectively.

The convergence test is a well-motivated idea, reflecting the intuition that a proper scale

choice should not lead to very slow convergence. However, further study is necessary to

examine various details of the approach. For instance, one may consider loosening the con-

straints mc(mc) ≤ µcm, µ
c
α ≤ 4 GeV, mb(mb) ≤ µbm, µ

b
α ≤ 15 GeV imposed in [187]. In

particular, µm, µα slightly lower than mQ(mQ) should be allowed as long as one retains

4-flavor (5-flavor) effective strong coupling for the charm (bottom) quark. Also, the conver-

gence criterion may be refined. The definition of the convergence parameter in [187] assumes

an approximate geometric series behavior of the αs series, but we find the latter falls off

more slowly than a geometric series in most cases. Furthermore, it remains to seek a less

arbitrary prescription for the fraction of (µm, µα) to be discarded, and to investigate whether

the convergence parameter is a good indicator of the size of higher-order corrections. In any

case, to be conservative the reduced perturbative uncertainties mentioned above should be
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interpreted with caution before the approach is developed further.

As an alternative direction, one may consider the possibility of finding an optimal scale

via a defensible scale-setting procedure, such as the one advocated by Brodsky-Lepage-

Mackenzie (BLM) [188]. The BLM scale for an observable is obtained by absorbing the

nf terms in the perturbation series, which come from the QCD beta function, into the

running coupling αs. This is arguably the physical scale of the process, with higher-order

corrections associated with RG running appropriately resummed. We also note that the BLM

procedure extended to all orders based on the principle of maximum conformality [189] has

been demonstrated to be self-consistent [190]. In the case of MQ
n , however, there are two

renormalized parameters αs and mQ, and naive application of the BLM procedure might be

problematic. This is because even when the nf terms are absorbed into running αs and/or

mQ, the leading-order mass renormalization, which is independent of nf , may lead to large

loop corrections which are difficult to identify. Indeed, we find that naive application of BLM,

namely absorbing the nfα
2
s terms, sets scales for µm and µα which are strongly disfavored

by the convergence test. In light of the importance of a more precise mQ determination, it

might be worthwhile to investigate the nontrivial possibility of generalizing the BLM method

and its extensions [189,191] to include running quark masses.

The parametric uncertainties, on the other hand, are seen from Fig. 3.2 to be dominated

by experimental measurement uncertainties of Mc
1 and Mb

2 (orange). Reduction of these

will rely on more precise measurements of RQ(s) and more careful treatment of experimental

data. At present the major problem is the lack of data above
√
s = 11.2 GeV, resulting in

large uncertainties in the bottom quark moments [184]. Also, the quarkonium resonances are

currently treated in the narrow width approximation, the quality of which should be exam-

ined in light of higher precision requirements in the future. αs(mZ) (cyan solid) constitutes a

subdominant source of parametric uncertainties. Its contribution is seen to be smaller than

the incorrect estimate assuming no correlation between αs(mZ) and mQ (cyan dashed), due

to partial cancelation between direct αs(mZ) dependence and indirect dependence through

mQ. With our conservative estimate (i.e. erring on the large side) in Eq. (3.24),Mc,np
1 leads

to an uncertainty in ΓH→cc̄ (blue) at a similar level as αs(mZ). This may represent a chal-

lenge in the future, and calls for further investigation of the gluon condensate contribution.

The uncertainty due to mH (purple) is less important, while other input observables listed

at the beginning of this section have a negligible effect on the parametric uncertainty.
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3.5 Conclusions

For the precision Higgs program to succeed in the future, additional effort is required to im-

prove the precision of SM calculations in order to match the proposed experimental accuracy.

A better understanding of theoretical uncertainties is critical. Toward this aim, we empha-

size the role of low-energy observables, and further propose the idea of a global analysis

incorporating relevant observables across all energy regimes. Rather than contributing indi-

rectly via the charm and bottom quark masses, low-energy observables explicitly participate

in such a precision analysis. Future studies in this direction should examine all candidates

of low-energy observables, and determine an efficient set of observables for the global fit.

In the context of precision Higgs calculations, we focused on the Higgs boson partial

widths to charm and bottom quarks, and investigated the theoretical uncertainties in these

observables. By eliminating charm and bottom quark masses in favor of low-energy observ-

ablesMc
1 andMb

2, we recast the partial widths in terms of these and other input observables.

Much information originally hidden in uncertainties in the highly processed quark masses

becomes transparent. Experimental uncertainties in the low-energy observables are directly

propagated into the Higgs partial widths, and the uncertainty due to αs(mZ) is treated

properly. Perturbative uncertainties are difficult to assess due to the ambiguity in the choice

of renormalization scales in the low-energy regime, and can dominate the total theoreti-

cal uncertainty of the Higgs partial widths if lower values of the renormalization scales are

considered than is usually the case in the literature.

Such analysis points to future directions in the precision program. For the partial widths

considered here, we note that while future experimental progress could potentially reduce

parametric uncertainties significantly, our ability to make precise predictions on the Higgs

partial widths will not improve unless better understanding of the perturbative uncertainty

is achieved. As for Mc
1 and Mb

2 studied here, this might require the calculation of O (α4
s)

corrections to ΠQ(q2) (in the low-q2 limit) and/or more enlightened scale setting. Though the

actual situation may be better in a global fit whereMc
1 andMb

2 are not the only low-energy

observables involved, it remains crucial to carefully investigate whether the scale-setting

problem is also present for other low-energy observables sensitive to mQ. If the perturbative

uncertainty gets under control, the precision program, where both low-energy observables

and Higgs observables play an important role, will be promising in studying properties of the

Higgs boson, and even more generally testing the SM across a wide range of energy scales

and probing new physics ideas.
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Chapter 4

EFT of Universal Theories and Its

RG Evolution

The conventional oblique parameters analyses of precision electroweak data can be consis-

tently cast in the modern framework of the Standard Model effective field theory (SMEFT)

when restrictions are imposed on the SMEFT parameter space so that it describes universal

theories. However, the usefulness of such analyses is challenged by the fact that universal

theories at the scale of new physics, where they are matched onto the SMEFT, can flow to

nonuniversal theories with renormalization group (RG) evolution down to the electroweak

scale, where precision observables are measured. The departure from universal theories

at the electroweak scale is not arbitrary, but dictated by the universal parameters at the

matching scale. But to define oblique parameters, and more generally universal parame-

ters at the electroweak scale that directly map onto observables, additional prescriptions are

needed for the treatment of RG-induced nonuniversal effects. We perform a RG analysis of

the SMEFT description of universal theories, and discuss the impact of RG on simplified,

universal-theories-motivated approaches to fitting precision electroweak and Higgs data.

4.1 Introduction

The quest for new physics beyond the Standard Model (BSM) has been, and will continue

to be proceeding through both direct and indirect searches for their effects. While direct

searches for BSM signatures have to be carried out with particular models (often simplified

ones) in mind, indirect searches through precision measurements of Standard Model (SM)

processes often admit more general approaches that are model-independent to some extent.

A classic example is the oblique parameters formalism [192], the widely-adopted version of

which was proposed by Peskin and Takeuchi [146], and further developed by others [193,194].
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Here, just a few parameters, most notably S and T (or their rescaled versions Ŝ and T̂ ),

capture the new physics modifications of the vector boson self-energies, which are assumed to

be the dominant BSM effects (hence the name “oblique”). Modern studies in this direction

are migrating to the Standard Model effective field theory (SMEFT) approach; see e.g. [5,6,

62] for recent reviews. In this case, the SM Lagrangian, supplemented by the complete set of

dimension-6 operators built from the SM field content, provides a most general and consistent

framework for calculating the leading BSM effects on precision observables, assuming there

are no new light states and the new physics scale Λ is much higher than the electroweak

scale µEW.

Reconciliation of the oblique parameters formalism and the more general SMEFT is

based on the realization that the former is generally speaking only applicable to universal

theories, a restricted class of BSM theories whose SMEFT representation can be cast in

a form that involves bosonic operators only [109] (see also [87] for an earlier study with

similar motivations). By bosonic operators, we mean dimension-6 operators built from the

SM bosons. There are 16 of them one can possibly write down that are independent and

CP-even, as we have shown in [109], so the effective theory of universal theories has a 16-

dimensional parameter space, independent of the SMEFT basis choice. In turn, they can be

mapped onto 16 independent phenomenological parameters, called “universal parameters”

in [109], 5 of which coincide with the familiar oblique parameters. At leading order (LO)

in v2

Λ2 , they lead to a universal pattern of deviations from the SM. In the recently-proposed

Higgs basis framework [7], this pattern is encoded in a set of relations among the otherwise

independent effective couplings.

Beyond LO, however, complications can arise. In particular, the 16-dimensional param-

eter space of universal theories, being a subspace of the full SMEFT parameter space, is not

guaranteed to be closed under renormalization group (RG) evolution. In fact, it is intuitively

clear that nonuniversal effects can indeed be generated by RG, because even if one starts

with a bosonic basis (consisting of 16 independent bosonic operators) [109], fermionic oper-

ators, i.e. operators containing SM fermions, can be generated that are not organized into

the SM currents and hence cannot be eliminated in favor of bosonic operators. Three ex-

amples involving oblique corrections are illustrated in figure 4.1. This qualitative argument

can be made concrete by a detailed RG analysis of universal theories, which we perform

in this chapter,1 aided by the recently-calculated full anomalous dimension matrix for the

1It should be noted that in the SMEFT framework, observables at the electroweak scale are calculated as

a double series expansion, in powers of both E2

Λ2 ∼ v2

Λ2 and the loop factor 1
16π2 . Terms of order ( v

2

Λ2 )0( 1
16π2 )n

can be taken into account by incorporating higher-order SM calculations independently of new physics

contributions [131]. The LO new physics effects, like those discussed in [109], are of order ( v
2

Λ2 )1( 1
16π2 )0. The

RG effects analyzed in the present chapter correspond to order ( v
2

Λ2 )1( 1
16π2 )1 terms in the double expansion
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W±
Z/γ

Z

bL

tL

tL

φ±

bL

h

Figure 4.1: (From [111]) Examples showing how nonuniversal effects can be generated by
universal oblique corrections. Left: effective Wqq′ and W`ν couplings are renormalized
differently, due to the different couplings of quarks and leptons to neutral gauge bosons.
Middle: the ZbLb̄L coupling is singled out among all the Zff̄ couplings probed by Z-pole
measurements for relatively large running effects proportional to y2

t , via loop corrections
involving the charged Goldstone boson (or the longitudinal W± if one uses the unitary
gauge). Right: the Higgs boson couplings to the up- and down-type quarks and leptons
are renormalized differently, due to different gauge interactions of the fermions. In each
example, the interactions generated for the SM fermions are not in the form of the SM
currents, and thus the corresponding operators cannot be eliminated in favor of bosonic
operators. These examples, as well as many others, can be more rigorously formulated
in terms of SU(2)L × U(1)Y invariant operators, but we prefer to give a more intuitive
illustration at this stage. The arguments here will be made concrete in sections 4.3 and 4.4.

dimension-6 operators [76,77,80] (see also [83]).

As a consequence of the RG-induced nonuniversal effects, an effective theory that is

universal at the new physics scale Λ can become nonuniversal at the electroweak scale µEW.

This means that, without introducing further prescriptions, the universal parameters Ŝ,

T̂ , etc. are not unambiguously defined beyond LO at the electroweak scale. However, the

usefulness of these parameters is not plagued, since after all, their values at the high scale

Λ are what we really need to know to infer the shape of BSM physics. The latter are well-

defined in universal theories, and the 16 of them are sufficient to describe phenomenology

also at µEW, despite the theory becoming nonuniversal after RG evolution. Departures

from universal BSM effects are not arbitrary as in generic nonuniversal theories, but can be

calculabled in terms of these parameters.

An important motivation for the recent trend to push the SMEFT analyses beyond

LO [29,37,38,55,56,64–67,69,70,72,73,76,77,79,80,82,83,86,91,95,96,99,102,104,106,195–

200] (see also [39–44,78,89,90,101,201]) is the observation that for some very well-measured

observables, it is possible to derive additional constraints on the effective operators contribut-

that are enhanced by ln Λ
µEW

. Terms of order ( v
2

Λ2 )2( 1
16π2 )0 may also have an impact, but the effective

Lagrangian has to be extended beyond the dimension-6 level to account for them. The latter [125, 126] is
beyond the scope of the present work. See also [90,91,104] for related discussions.
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ing at higher loop order, which are otherwise less constrained.2 In the full SMEFT, this can

be done at the leading logarithmic (LL) level by first constraining the Wilson coefficients at

µEW via LO expressions of the observables at the electroweak scale, and then RG-evolving

these constraints to Λ. The same is not true for the universal parameters Ŝ, T̂ , etc. As we

will see, with additional prescriptions, it is possible to define these parameters at µEW, but

they do not capture all the LL corrections to all observables no matter what prescriptions

are adopted. This implies, in particular, that the conventional oblique parameters analysis

incorporating only LO effects of the oblique parameters is not a priori justified at the LL

level, where additional parameters that should have been included in the fit may have a nu-

merical impact. Also, a simplified global fit to Higgs data where a single rescaling parameter

∆κ̄F is assumed for all the hff̄ couplings may not be appropriate, since it may not even

accurately capture the phenomenology of universal theories.

4.2 Universal theories at LO and beyond

4.2.1 The universal theories EFT at LO

In this subsection, we briefly review the results in [109]. The SMEFT description of universal

theories at LO can be formulated in three equivalent ways, in terms of effective operators,

universal parameters, or Higgs basis couplings.

As mentioned in the introduction, the effective Lagrangian of universal theories consists

of LSM plus 16 independent CP-even bosonic operators. In the Warsaw basis [3], only 9 of

them are kept, while the remaining bosonic operators are eliminated by field redefinitions, or

equivalently, by applying the SM equations of motion, in favor of combinations of fermionic

operators. Despite the appearance of a proliferation of fermionic operators, the number of

independent parameters (Wilson coefficients) is still 16. To be specific, using the notation

of [3] for the Warsaw basis operators Qi, we have

Luniversal = LSM +
1

v2
(CHWQHW + CHBQHB + CHGQHG + CHWBQHWB + CWQW

+CGQG + CHDQHD + CH�QH� + CHQH + CHJWQHJW + CHJBQHJB

+C2JWQ2JW + C2JBQ2JB + C2JGQ2JG + CyQy + C2yQ2y), (4.1)

where Ci are O( v
2

Λ2 ) Wilson coefficients, and QHJW , QHJB, Q2JW , Q2JB, Q2JG, Qy, Q2y are

combinations of fermionic operators listed in table 4.1. Note that the SM fermion fields

2Note, however, that in some of these references, bounds on the oblique parameters are used to constrain
the SMEFT parameter space possibly beyond the universal theories subspace, which can lead to inconsis-
tencies as argued in [109] (see also [87]). The results should therefore be interpreted with caution.
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Definition Warsaw basis operator combination

QHJW ≡ ig
2

(H†σa
←→
D µH)JaµW

1
4
g2
(
[Q

(3)
Hq]ii + [Q

(3)
Hl ]ii

)
QHJB ≡ ig′

2
(H†
←→
D µH)JµB

1
2
g′2
(
Yq[Q

(1)
Hq]ii + Yl[Q

(1)
Hl ]ii

+Yu[QHu]ii + Yd[QHd]ii + Ye[QHe]ii
)

Q2JW ≡ JaWµJ
aµ
W g2

(
1
4
[Q

(3)
qq ]iijj − 1

4
[Qll]iijj + 1

2
[Qll]ijji + 1

2
[Q

(3)
lq ]iijj

)
Q2JB ≡ JBµJµB g′2

(
Y 2
q [Q

(1)
qq ]iijj + Y 2

l [Qll]iijj + 2YqYl[Q
(1)
lq ]iijj

+Y 2
u [Quu]iijj + Y 2

d [Qdd]iijj + Y 2
e [Qee]iijj

+2YqYu[Q
(1)
qu ]iijj + 2YqYd[Q

(1)
qd ]iijj + 2YqYe[Qqe]iijj

+2YlYu[Qlu]iijj + 2YlYd[Qld]iijj + 2YlYe[Qle]iijj

+2YuYd[Q
(1)
ud ]iijj + 2YuYe[Qeu]iijj + 2YdYe[Qed]iijj

)
Q2JG ≡ JAGµJ

Aµ
G g2

s

(
−1

6
[Q

(1)
qq ]iijj + 1

4
[Q

(1)
qq ]ijji + 1

4
[Q

(3)
qq ]ijji

−1
6
[Quu]iijj + 1

2
[Quu]ijji − 1

6
[Qdd]iijj + 1

2
[Qdd]ijji

+2[Q
(8)
qu ]iijj + 2[Q

(8)
qd ]iijj + 2[Q

(8)
ud ]iijj

)
Qy ≡ |H|2(HαJ

α
y + h.c.) [yu]ij[QuH ]ij + [VCKMyd]ij[QdH ]ij + [ye]ij[QeH ]ij + h.c.

Q2y ≡ J†yαJαy −[yu]il[y
†
u]kj
(

1
6
[Q

(1)
qu ]ijkl + [Q

(8)
qu ]ijkl

)
− 1

2
[ye]il[y

†
e]kj[Qle]ijkl

−[VCKMyd]il[y
†
dV
†

CKM]kj
(

1
6
[Q

(1)
qd ]ijkl + [Q

(8)
qd ]ijkl

)
+
(
[yu]ij[VCKMyd]kl[Q

(1)
quqd]ijkl − [ye]ij[yu]kl[Q

(1)
lequ]ijkl

+[ye]ij[y
†
dV
†

CKM]kl[Qledq]ijkl + h.c.
)

Table 4.1: (From [111]) Warsaw basis operator combinations that appear in Luniversal in
(4.1), in the notation of [3]. In these expressions, repeated generation indices i, j, k, l are

summed over, H†σa
←→
D µH = H†σa(DµH)− (DµH)†σaH, H†

←→
D µH = H†(DµH)− (DµH)†H.

The Yukawa matrices yu, yd, ye should not be confused with the hypercharges Yf . The SM
vector and scalar currents JAGµ, JaWµ, JBµ, Jαy are defined in (4.2).

54



appear in these combinations via the vector and scalar currents in the SM,

JAGµ ≡ gs
∑

f∈{q,u,d}

f̄γµT
Af, (4.2a)

JaWµ ≡ g
∑
f∈{q,l}

f̄γµ
σa

2
f, (4.2b)

JBµ ≡ g′
∑

f∈{q,l,u,d,e}

Yf f̄γµf, (4.2c)

Jαy ≡ ūy†uqβε
βα + q̄αVCKMydd+ l̄αyee. (4.2d)

Our notation is such that

LSM ⊃ GAµJAGµ +W aµJaWµ +BµJBµ − (HαJ
α
y + h.c.). (4.3)

We will stick to the Warsaw basis for the calculations in this chapter, in order to conveniently

use the results in [76, 77, 80]. The forms of Luniversal in other SMEFT bases, as well as the

dictionaries for translating between the bases for universal theories, can be found in [109].

If we restrict ourselves to the 16-dimensional parameter space of universal theories, a

subspace of the full SMEFT parameter space, there is a unique well-motivated procedure

to define the oblique parameters at LO. The field-redefinition ambiguity associated with

the vector boson self-energies is eliminated by ensuring the oblique parameters defining

conditions are satisfied [109,194]. At the dimension-6 level, there are 5 nonvanishing oblique

parameters Ŝ, T̂ , W , Y , Z, which constitute a subset of the 16 independent universal

parameters. By our choice in [109], the latter also include: 4 anomalous triple-gauge couplings

(TGCs) ∆ḡZ1 , ∆κ̄γ, λ̄γ, λ̄g; 3 rescaling factors for the h3, hff , hV V vertices ∆κ3, ∆κ̄F , ∆κ̄V ;

3 parameters for hVµνV
′µν-type interactions absent in the SM fgg, fzγ, fγγ; 1 four-fermion

coupling c2y ∼ O(y2
f ). Each of these universal parameters can be identified as the coefficient

of a term in Luniversal in the electroweak symmetry broken phase in the unitary gauge, after

the field and parameter redefinitions detailed in [109]. The 16 universal parameters are just a

phenomenologically convenient linear mapping from the 16 independent Wilson coefficients

in (4.1); see table 4.2. As such, they constitute a complete characterization of universal

theories in the SMEFT framework at the dimension-6 level.

As yet another equivalent description of the universal theories EFT, the Higgs basis

couplings, defined in [7] at LO in v2

Λ2 , make the leading BSM effects on precision observables

manifest. As ensured by the Higgs basis defining conditions [7, 109], they capture vertex

corrections involving the physical particles. Furthermore, since the input observables are

not shifted at tree level, simple LO relations can be written down between some precision
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Universal
Warsaw basis expression

parameter

Ŝ g2
(

1
gg′
CHWB + 1

4
CHJW + 1

4
CHJB − 1

2
C2JW − 1

2
C2JB

)
T̂ −1

2
CHD + g′2

2
(CHJB − C2JB)

W −g2

2
C2JW

Y −g2

2
C2JB

Z −g2

2
C2JG

∆ḡZ1 − g2

4c2θ
(CHJW − 2C2JW )

∆κ̄γ
cθ
sθ
CHWB

λ̄γ −3g
2
CW

λ̄g −3g2

2gs
CG

∆κ3 − 1
λ
CH + 3CH� − 3

4
CHD − g2

4
(CHJW − C2JW )

∆κ̄F −Cy + CH� − 1
4
CHD − g2

4
(CHJW − C2JW )

∆κ̄V CH� − 1
4
CHD − 3g2

4
(CHJW − C2JW )

fgg
4
g2
s
CHG

fzγ
2
gg′

[
2cθsθ(CHW − CHB)− (c2

θ − s2
θ)CHWB

]
fγγ 4

(
1
g2CHW + 1

g′2
CHB − 1

gg′
CHWB

)
c2y C2y

Table 4.2: (From [111]) Expressions of the 16 universal parameters in terms of the Warsaw
basis Wilson coefficients in (4.1). These parameters completely characterize the indirect
BSM effects in universal theories at the dimension-6 level. More details of the universal
parameters, including their definition from the effective Lagrangian and their expressions in
other bases, can be found in [109].
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Higgs basis coupling Universal parameters expression

δm
c2θ

c2θ−s
2
θ

∆ε1
2
− ∆ε2

2
− s2θ

c2θ−s
2
θ
∆ε3

[δgWf
L ]ij (f = q, l) δij

( c2θ
c2θ−s

2
θ

∆ε1
2
− s2θ

c2θ−s
2
θ
∆ε3

)
[δgZfL ]ij (f = uL, dL, eL, ν) δij

[
T 3
f

∆ε1
2

+Qf
s2θ

c2θ−s
2
θ

(
∆ε1

2
−∆ε3

)]
[δgZfR ]ij (f = uR, dR, eR) δijQf

s2θ
c2θ−s

2
θ

(
∆ε1

2
−∆ε3

)
δg1z ∆ḡZ1 − ∆ε2

c2θ
+

s2θ
c2θ−s

2
θ

(
∆ε1
2s2θ
− ∆ε3

c2θ

)
δκγ ∆κ̄γ

λγ λ̄γ

c3G − 2
3g2
sg

2 λ̄g

δλ3 λ∆κ3

[δyf ′ ]ij (f ′ = u, d, e) δij∆κ̄F

δcz ∆κ̄V

cgg, czγ, cγγ fgg, fzγ, fγγ, respectively

c4f combinations of W,Y, Z, c2y

[δgWq
R ]ij, [dV f ]ij 0

Table 4.3: (From [109, 111]) Higgs basis couplings in terms of the universal parameters.
∆ε1,2,3 are independent linear combinations of Ŝ, T̂ ,W, Y defined in (4.4). c4f collectively
denotes four-fermion effective couplings, and dV f stands for the dipole-type V ff couplings.
Compared with [7], we have written the fractional W mass shift as δm instead of δm, and
defined [δgWq

L ]ij in the gauge-eigenstate rather than mass-eigenstate basis.
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observables and the Higgs basis couplings. For example, the fractional shifts in Γ(Z → bLb̄L)

and Γ(Z → bRb̄R) are proportional to [δgZdL ]33 and [δgZdR ]33, respectively. In general, the

Higgs basis couplings are linear combinations of Wilson coefficients in the Warsaw basis (or

any other complete nonredundant basis). In the special case of universal theories, we have

worked out in [109] the Higgs basis couplings in terms of the universal parameters. They

are reproduced here in table 4.3, where the ∆ε parameters [194,202,203] are 3 independent

linear combinations of Ŝ, T̂ , W , Y ,

∆ε1 ≡ T̂ −W − s2
θ

c2
θ

Y, ∆ε2 ≡ −W, ∆ε3 ≡ Ŝ −W − Y. (4.4)

A universal pattern of fermion couplings can be seen from table 4.3. In particular, all the

V ff vertex corrections depend on just 2 parameters ∆ε1, ∆ε3, and all the hff vertices

are rescaled by a common factor (1 + ∆κ̄F ). This is not the case for generic nonuniversal

theories, where the number of independent couplings is equal to the number of independent

dimension-6 operators in the full SMEFT. For universal theories, on the other hand, the

generically independent couplings are related as follows,

δgWq
L = δgWl

L ,
δgZuR
Yu

=
δgZdR
Yd

=
δgZeR
Ye

,

δgZeL + δgZνL = δgZeR , δgZuL + δgZdL = δgZuR + δgZdR , (4.5a)

δyu = δyd = δye = ∆κ̄F . (4.5b)

We will call (4.5) “universal relations” from here on. Compared with [109], we have replaced

Qu, Qd, Qe by the equivalent Yu, Yd, Ye for later convenience. Each Higgs basis coupling

appearing in (4.5) represents the diagonal elements of a 3 × 3 matrix in generation space

that is proportional to δij for universal theories. Additional universal relations among 4-

fermion couplings can be written down, which do not concern us here. Essentially, the

universal relations among the generically independent Higgs basis couplings are in exact

correspondence with the correlations among the otherwise independent fermionic operator

Wilson coefficients shown in table 4.1, e.g.

δgWq
L = δgWl

L ⇔ [C
(3)
Hq]ij = [C

(3)
Hl ]ij

(
= δij

g2

4
CHJW

)
. (4.6)

4.2.2 Overview of RG-induced nonuniversal effects

Beyond LO, renormalization is needed, and the Wilson coefficients as renormalized La-

grangian parameters should have renormalization scales µ associated with them. The scale
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dependence of the Wilson coefficients is captured by the RG equations, which at leading

order are governed by the anomalous dimensions γij,

Ċi ≡ 16π2 d

d lnµ
Ci(µ) =

∑
j

γijCj(µ). (4.7)

It should be emphasized that γij are unambiguous only when a complete nonredendant basis

of effective operators is specified. The Warsaw basis adopted here is the same basis used

in [76,77,80] to calculate the full γij matrix for the dimension-6 operators.

The renormalization scale µ should be properly chosen to avoid large radiative corrections

beyond a fixed-order calculation. If we are interested in the deviations of precision observ-

ables at the electroweak scale, µ ∼ µEW is desired, because large logarithms in the perturba-

tive expansion can be avoided when the observables are expressed in terms of Ci(µEW). But

on the other hand, to infer the shape of the UV theory at a higher scale Λ� µEW, which is

the ultimate goal of SMEFT analyses, Ci(Λ) are needed, because we should better set µ ∼ Λ

when the SMEFT is matched onto a specific new physics model in the UV. Solving (4.7) to

leading order, which is sufficient for most practical purposes, we obtain

Ci(µEW) = Ci(Λ)− 1

16π2
ln

Λ

µEW

∑
j

γijCj(Λ). (4.8)

The second term in this equation contributes to the LL corrections of the observables which

are affected by CiQi at LO, when they are calculated in terms of the Wilson coefficients at

µ = Λ. To be specific, up to higher-order terms, the fractional shift of an observable Ô is

δ̄NPÔ ≡ Ô − Ô
SM

ÔSM
=
∑
i

aiCi(µEW) =
∑
i

aiCi(Λ)− 1

16π2
ln

Λ

µEW

∑
i,j

aiγijCj(Λ), (4.9)

where ai are functions of properly-renormalized SM parameters, which can be recast in terms

of the input observables [131]. It is based on (4.9) that constraints on Ci(µEW) derived from

precision data can be translated into constraints on (combinations of) Cj(Λ)’s, some of which

are less accessible otherwise; see e.g. [37,38,73,99].

For universal theories, a key observation is that the correlations among the fermionic

operator Wilson coefficients at the matching scale Λ, represented by a set of linear equations∑
i

biCi(Λ) = 0, (4.10)
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are not necessarily preserved by RG evolution, because it is possible that∑
i,j

biγijCj(Λ) 6= 0. (4.11)

As a consequence, at the electroweak scale µEW where precision observables are measured,

we may have ∑
i

biCi(µEW) 6= 0. (4.12)

For example, while [C
(3)
Hq]ij−[C

(3)
Hl ]ij = 0 at µ = Λ for universal theories, the same is in general

not true at µ = µEW, as we will show in section 4.3. When (4.12) happens, the universal

theory at Λ flows to a nonuniversal theory at µEW. We say that nonuniversal effects are

induced by RG evolution.

The observation above poses a challenge for defining oblique parameters, and more gen-

erally universal parameters, at the electroweak scale. In general, the oblique parameters

defining conditions, which require the absence of fermionic operators, cannot be satisfied no

matter how the fields and parameters are redefined due to the theory being nonuniversal.

Additional prescriptions are needed if one wishes to define and use these parameters, which

can be somewhat arbitrary. This also means that without additional prescriptions, it is in

general not meaningful to talk about RG evolution of the universal parameters.

Nevertheless, as far as observables are concerned, there are no ambiguities, since (4.9),

which relates δ̄NPÔ to Ci(Λ) at LL accuracy, always holds. With the linear mapping in ta-

ble 4.2, we can recast δ̄NPÔ in terms of the 16 universal parameters defined at the matching

scale, Ŝ(Λ), T̂ (Λ), etc., as long as the theory is universal at Λ. The RG-induced nonuniversal

effects then manifest themselves in the fact that all the LL corrections in (4.9) cannot be ab-

sorbed into the running of the parameters appearing in the LO expression for δ̄NPÔ, namely

the 16 universal parameters. In the following sections, we will define Ŝ(µEW), T̂ (µEW), etc.

to absorb part of the LL corrections, following some well-motivated additional prescriptions.

The prediction for δ̄NPÔ then involves the LO expression in terms of these universal param-

eters at µEW, plus additional LL terms. The presence of the latter may potentially affect

the interpretation and usefulness of global fits to observables at µEW assuming the theory

is universal at this scale, including the conventional oblique parameters fits. But when they

are taken into account, consistent constraints on Ŝ(Λ), T̂ (Λ), etc. at the LL level can in

principle be derived from precision data, which can be used to infer the BSM new physics

at Λ if it is universal.3

3The accuracy of the LL-level constraints on the universal parameters is a separate issue that deserves
further investigation. If the LL corrections are important for some observables, the NLO finite terms not
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The close connection between the Higgs basis couplings and precision observables at LO

offers an equivalent and convenient way to formulate the analysis. While it is still a matter

of debate how to extend the Higgs basis framework beyond LO, at least at the LL level there

is a straightforward procedure. In the full SMEFT at the dimension-6 level, we can think

of the Higgs basis couplings as defined by the linear combinations of Wilson coefficients in

the Warsaw basis (or any other complete nonredundant basis) worked out in [7], with the

renormalization scale dependence included. For example, in our notation,

[δgWl
L (µ)]ij ≡ [C

(3)
Hl (µ)]ij −

cθsθ
c2
θ − s2

θ

CHWB(µ)− c2
θ

c2
θ − s2

θ

C0(µ), (4.13a)

[δgWq
L (µ)]ij ≡ [C

(3)
Hq(µ)]ij −

cθsθ
c2
θ − s2

θ

CHWB(µ)− c2
θ

c2
θ − s2

θ

C0(µ), (4.13b)

where

C0(µ) ≡ 1

4

{
CHD(µ) + 2

(
[C

(3)
Hl (µ)]11 + [C

(3)
Hl (µ)]22

)
−
(
[Cll(µ)]1221 + [Cll(µ)]2112

)}
(4.14)

is a combination of Wilson coefficients coming from undoing the shifts in the input observ-

ables mZ and GF , as required by the Higgs basis defining conditions. Note that cθ = g√
g2+g′2

,

sθ = g′√
g2+g′2

are also µ-dependent. The running of the Higgs basis couplings with µ follows

from the RG equations for the Warsaw basis Wilson coefficients and the SM parameters.

For universal theories at Λ, the universal relations in (4.5) should actually read δgWq
L (Λ) =

δgWl
L (Λ), etc. After RG evolution down to the electroweak scale, these relations are vio-

lated in the sense that δgWq
L (µEW) 6= δgWl

L (µEW), etc., due to [C
(3)
Hq(µEW)]ij 6= [C

(3)
Hl (µEW)]ij,

etc., as mentioned below (4.12). This was already alluded to in figure 4.1, and will be

demonstrated in detail in the next section. Defined in this way, the Higgs basis couplings

renormalized at µEW directly map onto δ̄NPÔ. Two example observables we will discuss later

are R` ≡ Γhad/Γ(Z → `+`−) (assuming lepton flavor universality) and Rb ≡ Γ(Z → bb̄)/Γhad,

where Γhad is the hadronic Z decay partial width. From their LO expressions,

R` =

3
{ 2∑
i=1

[(
[gZuL ]ii

)2
+
(
[gZuR ]ii

)2
]

+
3∑
i=1

[(
[gZdL ]ii

)2
+
(
[gZdR ]ii

)2
]}

(
[gZeL ]jj

)2
+
(
[gZeR ]jj

)2 (j = 1, 2, or 3),

(4.15a)

enhanced by ln Λ
µEW

may also be [95, 102]. In any case, the effect of the neglected terms in a finite-order
perturbative calculation may be accounted for by introducing SMEFT theory uncertainties, as advocated
recently in [91,104] in the more general context of fitting the full SMEFT.
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Rb =

(
[gZdL ]33

)2
+
(
[gZdR ]33

)2

2∑
i=1

[(
[gZuL ]ii

)2
+
(
[gZuR ]ii

)2
]

+
3∑
i=1

[(
[gZdL ]ii

)2
+
(
[gZdR ]ii

)2
] , (4.15b)

where [gZfL,R]ij = δijg
Zf
L,R + [δgZfL,R(µEW)]ij with gZfL ≡ T 3

f −Qfs
2
θ(µEW), gZfR ≡ −Qfs

2
θ(µEW), it

follows that the fractional corrections with respect to the SM are given by

δ̄NPR` = δ̄NPΓhad −
2

(gZeL )2 + (gZeR )2

(
gZeL [δgZeL (µEW)]jj + gZeR [δgZeR (µEW)]jj

)
, (4.16a)

δ̄NPRb =
2

(gZdL )2 + (gZdR )2

(
gZdL [δgZdL (µEW)]33 + gZdR [δgZdR (µEW)]33

)
− δ̄NPΓhad, (4.16b)

where

δ̄NPΓhad =
2

2
[
(gZuL )2 + (gZuR )2

]
+ 3
[
(gZdL )2 + (gZdR )2

] ×
{ 2∑
i=1

(
gZuL [δgZuL (µEW)]ii + gZuR [δgZuR (µEW)]ii

)
+

3∑
i=1

(
gZdL [δgZdL (µEW)]ii + gZdR [δgZdR (µEW)]ii

)}
. (4.17)

To end this subsection, we comment on a subtlety associated with defining phenomeno-

logical parameters in the electroweak symmetry broken phase. The renormalized vacuum

expectation value of the Higgs field is a scheme-dependent quantity. To avoid introducing

unnecessary scheme dependence into the running of the Wilson coefficients, we take the v

appearing in (4.1) to be simply a constant, say 246.2 GeV. As a consequence, when the

universal parameters and Higgs basis couplings, defined from the effective Lagrangian in the

broken phase, are calculated in terms of the Wilson coefficients, factors of 2|〈H〉|2
v2 = 1 + . . .

appear. We treat the . . . pieces as part of the one-loop counterterms, not to be included in

the renormalized Higgs basis couplings, or renormalized universal parameters when they are

properly defined. These terms are relevant for a full NLO calculation, but do not affect the

LL corrections proportional to ln Λ
µEW

that are the focus of the present chapter.
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4.3 RG effects in the electroweak sector

4.3.1 The universal limit

We first look at the electroweak sector, and begin with the limit yf → 0. The Lagrangian

at the new physics scale Λ is (4.1) with Cy = C2y = 0. We see from table 4.1 that the

ψ2H2D-class operators, which affect the V ff effective couplings, are related in universal

theories at LO as follows,

[C
(3)
Hq]ij = [C

(3)
Hl ]ij = δij

g2

4
CHJW , (4.18a)[

{C(1)
Hq, C

(1)
Hl , CHu, CHd, CHe}

]
ij

= {Yq, Yl, Yu, Yd, Ye}δij
g′2

2
CHJB. (4.18b)

These relations are equivalent to the universal relations in (4.5a). Using the formulas in [80],

we find the one-loop running of these Wilson coefficients,

[Ċ
(3)
Hq]ij = δijg

2
(1

6
CH� +

7

12
g2CHJW +

23

6
g2C2JW +

1

54
g′2C2JB +

8

9
g2
sC2JG

)
, (4.19a)

[Ċ
(3)
Hl ]ij = δijg

2
(1

6
CH� +

7

12
g2CHJW +

23

6
g2C2JW +

1

6
g′2C2JB

)
, (4.19b)

[Ċ
(1)
Hq]ij = Yqδijg

′2
[1

3
(CH� + CHD) +

41

6
g′2CHJB

+g2C2JW +
361

27
g′2C2JB +

16

9
g2
sC2JG

]
, (4.19c)

[Ċ
(1)
Hl ]ij = Ylδijg

′2
[1

3
(CH� + CHD) +

41

6
g′2CHJB + g2C2JW +

41

3
g′2C2JB

]
, (4.19d)

[ĊHu]ij = Yuδijg
′2
[1

3
(CH� + CHD) +

41

6
g′2CHJB +

376

27
g′2C2JB +

16

9
g2
sC2JG

]
,(4.19e)

[ĊHd]ij = Ydδijg
′2
[1

3
(CH� + CHD) +

41

6
g′2CHJB +

364

27
g′2C2JB +

16

9
g2
sC2JG

]
,(4.19f)

[ĊHe]ij = Yeδijg
′2
[1

3
(CH� + CHD) +

41

6
g′2CHJB +

44

3
g′2C2JB

]
. (4.19g)

Note that only the Wilson coefficients that are nonzero at LO (i.e. at µ = Λ) need to be kept

on the RHS of these equations. We have used table 4.1, or equivalently (4.18) and (4.23)

below, to rewrite them in terms of the coefficients of the operator combinations in (4.1) for

universal theories.

From the discussion in section 4.2.2, it is clear that the relations in (4.18) are preserved

by RG evolution only in the limit C2JW = C2JB = C2JG = 0, namely W = Y = Z = 0 at

LO (i.e. at µ = Λ). We call this limit, together with yf → 0, the “universal limit.”

In the universal limit, fermionic operators in the electroweak sector are generated by RG

evolution, but they are organized into the combinations QHJW , QHJB that appear in the LO
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Lagrangian for universal theories. Thus, without any further prescriptions, it is unambiguous

to define CHJW , CHJB at the electroweak scale, and write down their RG equations,

ĊHJW =
2

3
CH� +

26

3
g2CHJW , (4.20a)

ĊHJB =
2

3
(CH� + CHD). (4.20b)

These are derived from

16π2 d

d lnµ
(g2CHJW ) = g2

(2

3
CH� +

7

3
g2CHJW

)
, (4.21a)

16π2 d

d lnµ
(g′2CHJB) = g′2

[2

3
(CH� + CHD) +

41

3
g′2CHJB

]
, (4.21b)

which follow from (4.18), (4.19), and the well-known one-loop running of the SM gauge

couplings

ġ = −19

6
g3, ġ′ =

41

6
g′3. (4.22)

We can extend this analysis to the 4-fermion interactions. The correlations among

the Wilson coefficients, i.e. the counterparts of (4.18), can be read off from table 4.1 (see

also [110]), with contributions from Q2y neglected for the moment,

[Cll]ijkl =
(1

2
δilδjk −

1

4
δijδkl

)
g2C2JW + Y 2

l δijδklg
′2C2JB, (4.23a)

[C(3)
qq ]ijkl =

1

4
δijδklg

2C2JW +
1

4
δilδjkg

2
sC2JG, (4.23b)

[C
(3)
lq ]ijkl =

1

2
δijδklg

2C2JW , (4.23c)[
{C(1)

lq , Cee, C
(1)
ud , Ceu, Ced, C

(1)
qu , C

(1)
qd , Cqe, Clu, Cld, Cle}

]
ijkl

=

{2YlYq, Y 2
e , 2YuYd, 2YuYe, 2YdYe, 2YqYu, 2YqYd, 2YqYe, 2YlYu, 2YlYd, 2YlYe}

δijδklg
′2C2JB, (4.23d)

[C(1)
qq ]ijkl = Y 2

q δijδklg
′2C2JB +

(1

4
δilδjk −

1

6
δijδkl

)
g2
sC2JG, (4.23e)[

{Cuu, Cdd}
]
ijkl

= {Y 2
u , Y

2
d }δijδklg′2C2JB +

(1

2
δilδjk −

1

6
δijδkl

)
g2
sC2JG, (4.23f)

[C
(8)
ud ]ijkl = [C(8)

qu ]ijkl = [C
(8)
qd ]ijkl = 2δijδklg

2
sC2JG. (4.23g)

For C2JW = C2JB = C2JG = 0 at LO, we find, from [80],

[Ċll]ijkl =
(1

2
δilδjk −

1

4
δijδkl

)
g2
(g2

3
CHJW

)
+ Y 2

l δijδklg
′2
(g′2

3
CHJB

)
, (4.24a)
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[
{Ċ(3)

qq , Ċ
(3)
lq }
]
ijkl

=
{1

4
,
1

2

}
δijδklg

2
(g2

3
CHJW

)
, (4.24b)[

{Ċ(1)
qq , Ċ

(1)
lq , Ċuu, Ċdd, Ċee, Ċ

(1)
ud , Ċeu, Ċed, Ċ

(1)
qu , Ċ

(1)
qd , Ċqe, Ċlu, Ċld, Ċle}

]
ijkl

=

{Y 2
q , 2YlYq, Y

2
u , Y

2
d , Y

2
e , 2YuYd, 2YuYe, 2YdYe, 2YqYu, 2YqYd, 2YqYe, 2YlYu, 2YlYd, 2YlYe}

δijδklg
′2
(g′2

3
CHJB

)
, (4.24c)

[Ċ
(8)
ud ]ijkl = [Ċ(8)

qu ]ijkl = [Ċ
(8)
qd ]ijkl = 0. (4.24d)

The pattern in these equations, when compared with (4.23), indicates that in the universal

limit defined above, the 4-fermion interactions are also universal after RG evolution. Thus,

as in (4.20), we can unambiguously define

C2JW (µEW) = − 1

16π2
ln

Λ

µEW

Ċ2JW , (4.25a)

C2JB(µEW) = − 1

16π2
ln

Λ

µEW

Ċ2JB, (4.25b)

where

Ċ2JW =
g2

3
CHJW , (4.26a)

Ċ2JB =
g′2

3
CHJB. (4.26b)

Here the running of g and g′ is not relevant, since ġ, ġ′ are multiplied by the values of

C2JW , C2JB at LO which vanish. We see that, if the operators Q2JW , Q2JB are not generated

by the universal new physics at µ = Λ, they will be generated at one-loop level by RG

evolution down to µ = µEW, and result in a universal pattern in the 4-fermion interactions

at the electroweak scale. The operator Q2JG, on the other hand, is not generated by RG

evolution at this order if it is absent at the new physics scale.

Eqs. (4.20) and (4.26) allow us to write down meaningful RG equations for the oblique

parameters in the universal limit, namely yf = 0, and C2JW = C2JB = C2JG = 0, or

equivalently W = Y = Z = 0, at µ = Λ. To do so, we further need table 4.2, the RG

equations for the bosonic Wilson coefficients from [76,80],

ĊHWB =
(4

3
g2 +

19

3
g′2 + 4λ

)
CHWB − 3g2g′CW + 2gg′(CHW + CHB), (4.27a)

ĊHD =
(9

2
g2 − 5

6
g′2 + 12λ

)
CHD +

20

3
g′2CH� +

40

3
g′4CHJB, (4.27b)
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and the running of the SM gauge couplings (4.22). The results are

˙̂
S = −1

3
(19g2 − g′2)Ŝ − 1

2
g2T̂ − 1

3
(27g2 − g′2)c2

θ∆ḡ
Z
1 +

1

6
(33g2 + g′2 + 24λ)∆κ̄γ + 2g2λ̄γ

+
1

3
g2∆κ̄V +

1

2
g2(g2 − g′2)fzγ + e2g2fγγ (4.28a)

˙̂
T =

3

2
(3g2 + 8λ)

[
T̂ − 2

s2
θ

c2
θ

(Ŝ −∆κ̄γ)
]
− 24λs2

θ∆ḡ
Z
1 − 3g′2∆κ̄V , (4.28b)

Ẇ =
2

3
g2c2

θ∆ḡ
Z
1 , (4.28c)

Ẏ = −2

3
g′2(Ŝ + c2

θ∆ḡ
Z
1 −∆κ̄γ). (4.28d)

Similarly, Ż = 0. In (4.28) we have recast the Wilson coefficients on the RHS in terms of

universal parameters. Following these evolution equations from Λ to µEW, we obtain the

oblique parameters at the electroweak scale,

Ŝ(µEW) = Ŝ(Λ)− 1

16π2
ln

Λ

µEW

˙̂
S, (4.29a)

T̂ (µEW) = T̂ (Λ)− 1

16π2
ln

Λ

µEW

˙̂
T, (4.29b)

W (µEW) = W (Λ)− 1

16π2
ln

Λ

µEW

Ẇ , (4.29c)

Y (µEW) = Y (Λ)− 1

16π2
ln

Λ

µEW

Ẏ , (4.29d)

which are to be used to calculate the observables, or alternatively, the Higgs basis couplings

at µ = µEW, in the electroweak sector. For example,

[δgWl
L (µEW)]ij = [δgWq

L (µEW)]ij = δij

[ c2
θ

c2
θ − s2

θ

∆ε1(µEW)

2
− s2

θ

c2
θ − s2

θ

∆ε3(µEW)
]

=
δij

2(c2
θ − s2

θ)

[
−2s2

θŜ(µEW) + c2
θT̂ (µEW)− (c2

θ − 2s2
θ)W (µEW) + s2

θY (µEW)
]
, (4.30)

where the SM parameters cθ, sθ are also renormalized at µ = µEW. We stress again that

(4.28), (4.29), (4.30) are unambiguous only in the universal limit W (Λ) = Y (Λ) = Z(Λ) = 0,

yf = 0 [we have kept W (Λ), Y (Λ) in (4.29) for later convenience]; otherwise the theory

becomes nonuniversal after RG evolution and it is not even clear how to define the oblique

parameters at µEW. We will go beyond this limit in the next subsection.

One interesting observation from (4.28) is that, with our definition of universal parame-

ters, and in the special universal limit discussed above where these equations are meaningful,

the Ŝ and T̂ parameters mix under RG evolution. This is true despite the fact that CHWB
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and CHD, which contribute to Ŝ and T̂ , respectively, do not mix in the Warsaw basis, even

when the full SMEFT is considered [80]. The reason is that, as is clear from table 4.2, Ŝ

and T̂ should not be identified with CHWB and CHD. The additional contributions to these

oblique parameters lead to the mixing observed here.

4.3.2 Nonuniversal effects beyond the universal limit

Now we are ready to turn back on the LO C2JW , C2JB, C2JG (while still assuming yf → 0),

and study the nonuniversal effects due to their contributions to the RG evolution. These

effects are conveniently represented by violations of the universal relations (4.5a). Using

(4.19), together with the relations between the Higgs basis couplings and the Warsaw basis

Wilson coefficients [7], we find

δġWq
L − δġWl

L = Ċ
(3)
Hq − Ċ

(3)
Hl = g2

(
− 4

27
g′2C2JB +

8

9
g2
sC2JG

)
=

8

27
(g′2Y − 6g2

sZ),

(4.31a)

δġZuR
Yu
− δġZdR

Yd
= −1

2

(ĊHu
Yu
− ĊHd

Yd

)
= −g

′2

2

4

9
g′2C2JB =

4

9

s2
θ

c2
θ

g′2Y, (4.31b)

δġZdR
Yd
− δġZeR

Ye
= −1

2

(ĊHd
Yd
− ĊHe

Ye

)
= −g

′2

2

(
−32

27
g′2C2JB +

16

9
g2
sC2JG

)
=

16

27

s2
θ

c2
θ

(−2g′2Y + 3g2
sZ), (4.31c)

δġZeL + δġZνL − δġZeR = −1

2
(2Ċ

(1)
Hl − ĊHe)

= −g
′2

2
(−g2C2JW + g′2C2JB) =

s2
θ

c2
θ

(−g2W + g′2Y ), (4.31d)

δġZuL + δġZdL − δġZuR − δġZdR = −1

2
(2Ċ

(1)
Hq − ĊHu − ĊHd)

= −g
′2

2

(1

3
g2C2JW −

1

3
g′2C2JB

)
=

1

3

s2
θ

c2
θ

(g2W − g′2Y ), (4.31e)

where diagonal elements have been assumed for the matrices in generation space. It follows

that at the electroweak scale,

δgWq
L (µEW)− δgWl

L (µEW) = − 1

16π2
ln

Λ

µEW

· 8

27
(g′2Y − 6g2

sZ), (4.32a)

δgZuR (µEW)

Yu
− δgZdR (µEW)

Yd
= − 1

16π2
ln

Λ

µEW

· 4

9

s2
θ

c2
θ

g′2Y, (4.32b)

δgZdR (µEW)

Yd
− δgZeR (µEW)

Ye
= − 1

16π2
ln

Λ

µEW

· 16

27

s2
θ

c2
θ

(−2g′2Y + 3g2
sZ), (4.32c)

67



δgZeL (µEW) + δgZνL (µEW)− δgZeR (µEW) = − 1

16π2
ln

Λ

µEW

· s
2
θ

c2
θ

(−g2W + g′2Y ), (4.32d)

δgZuL (µEW) + δgZdL (µEW)− δgZuR (µEW)− δgZdR (µEW)

= − 1

16π2
ln

Λ

µEW

· 1

3

s2
θ

c2
θ

(g2W − g′2Y ), (4.32e)

where W,Y, Z are the well-defined oblique parameters at the new physics scale (where the

theory is universal). Eq. (4.32) shows that the universal relations (4.5a) that hold at LO in

universal theories are violated. But unlike generic nonuniversal theories, they are violated

in a universal (rather than arbitrary) way. Despite the RG-induced nonuniversal effects,

the theory and its phenomenology is still completely characterized by the 16 independent

universal parameters at µ = Λ (14 in the limit yf → 0), and no further parameters are

needed unlike in generic nonuniversal theories.

As far as observables, or Higgs basis couplings at µ = µEW, are concerned, our discussion

in section 4.2.2 indicates that it is not possible to absorb all the LL terms into the running of

the oblique parameters that contribute at LO, if W,Y, Z are nonzero at the new physics scale.

However, from this perspective, it is convenient to still define Ŝ(µEW), T̂ (µEW), W (µEW),

Y (µEW) to be their values in the universal limit as in (4.29), with
˙̂
S,

˙̂
T, Ẇ , Ẏ given by (4.28),

even beyond this limit when W (Λ), Y (Λ), Z(Λ) are nonzero, so that they can at least absorb

a significant part of the LL corrections. The remaining LL corrections are proportional to

W,Y, Z, and can be taken into account as additional contributions. Following this strategy,

we find, for example,

[δgWl
L (µEW)]ij =

δij
2(c2

θ − s2
θ)

{
−2s2

θŜ(µEW) + c2
θT̂ (µEW)− (c2

θ − 2s2
θ)W (µEW) + s2

θY (µEW)

+
1

16π2
ln

Λ

µEW

[(
10g2 − 45

2
g′2
)
c2
θW +

(11

2
g2 − 44

3
g′2 − 12λ

)
s2
θY
]}
, (4.33a)

[δgWq
L (µEW)]ij =

δij
2(c2

θ − s2
θ)

{
−2s2

θŜ(µEW) + c2
θT̂ (µEW)− (c2

θ − 2s2
θ)W (µEW) + s2

θY (µEW)

+
1

16π2
ln

Λ

µEW[(
10g2 − 45

2
g′2
)
c2
θW +

(265

54
g2 − 380

27
g′2 − 12λ

)
s2
θY +

32

9
(c2
θ − s2

θ)g
2
sZ
]}
, (4.33b)

as a generalization of (4.30), with the SM parameters still renormalized at µEW. These equa-

tions quantitatively explain the first example in figure 4.1. They are obtained by applying

the RG equations presented in [76, 80] to the full expressions (4.13), and later identifying
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the various Wilson coefficients involved as combinations of universal parameters, and ab-

sorbing part of the LL terms into the running of the oblique parameters according to (4.28),

(4.29). Alternatively, (4.33) can be more easily derived by realizing that the additional terms

compared to (4.30) can be obtained by turning on W , Y , Z only (i.e. adjusting the Wilson

coefficients according to table 4.2 to make sure they are the only nonzero universal param-

eters) when following the steps explained above, and keeping the LL terms. We emphasize

that Ŝ(µEW), T̂ (µEW), W (µEW), Y (µEW) in (4.33) do not have an obvious and unambiguous

interpretation in terms of vector boson self-energy corrections, but are simply defined for

convenience to absorb part of the LL corrections. Our prescriptions are by no means the

only choice for defining them, but are well-motivated since they leads to relatively simple

expressions for the observables and Higgs basis couplings at µ = µEW, such as (4.33).

Finally, we lift the restriction yf → 0 (and meanwhile allowing for nonzero C2JW , C2JB,

C2JG). The additional effects come from either the 2 additional operators Qy, Q2y, or the

yf -dependent contributions to the anomalous dimensions calculated in [77], or both. Keeping

only the leading terms in yt, we find,

[Ċ
(3)
Hq]ij = δij

3

2
y2
t g

2(CHJW − 2C2JW ) + δi3δj3y
2
t

(
−1

2
CH� +

1

2
g2CHJW −

1

4
g′2CHJB

+
1

2
g2C2JW −

1

18
g′2C2JB −

8

3
g2
sC2JG

)
, (4.34a)

[Ċ
(3)
Hl ]ij = δij

3

2
y2
t g

2(CHJW − 2C2JW ), (4.34b)

[Ċ
(1)
Hq]ij = Yqδij3y

2
t g
′2(CHJB − 2C2JB) + δi3δj3y

2
t

[1

2
(CH� + CHD)− 9

4
g2CHJW

+
3

2
g2C2JW +

1

18
g′2C2JB +

8

3
g2
sC2JG +

(
y2
t −

2

9
g′2
)
C2y

]
, (4.34c)

[Ċ
(1)
Hl ]ij = Ylδij3y

2
t g
′2(CHJB − 2C2JB), (4.34d)

[ĊHu]ij = Yuδij3y
2
t g
′2(CHJB − 2C2JB) + δi3δj3y

2
t

[
−(CH� + CHD) +

5

2
g′2CHJB

−16

9
g′2C2JB −

16

3
g2
sC2JG −

(
y2
t +

1

9
g′2
)
C2y

]
, (4.34e)

[ĊHd]ij = Ydδij3y
2
t g
′2(CHJB − 2C2JB), (4.34f)

[ĊHe]ij = Yeδij3y
2
t g
′2(CHJB − 2C2JB). (4.34g)

These should be added to (4.19). Comparing with (4.18), we see that the additional nonuni-

versal effects are significant only for the third-generation q and u, i.e. tL, bL and tR. They can

be represented by the following additional breaking of the universal relations, supplementing
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(4.32),

[δgWq
L ]33 − δgWl

L = − y2
t

16π2
ln

Λ

µEW

[
−3

2

s2
θ

c2
θ

Ŝ +
1

4
T̂ − 9

4
W +

49

36

s2
θ

c2
θ

Y +
16

3

g2
s

g2
Z

−1

2
(c2
θ + 3s2

θ)∆ḡ
Z
1 +

3

2

s2
θ

c2
θ

∆κ̄γ −
1

2
∆κ̄V

]
(4.35a)

[δgZuR ]33

Yu
− δgZdR

Yd
= − y2

t

16π2
ln

Λ

µEW

[
−15

4

s2
θ

c2
θ

Ŝ − 15

8
T̂ − 9

8
W +

71

24

s2
θ

c2
θ

Y − 8
g2
s

g2
Z

−3

4
(3c2

θ + 5s2
θ)∆ḡ

Z
1 +

15

4

s2
θ

c2
θ

∆κ̄γ +
3

4
∆κ̄V +

1

12
(9y2

t + g′2)c2y

]
, (4.35b)

[δgZuL ]33 + [δgZdL ]33 − [δgZuR ]33 − δgZdR = − y2
t

16π2
ln

Λ

µEW

[
5

2
T̂ − 9

2
W − 11

18

s2
θ

c2
θ

Y +
32

3

g2
s

g2
Z

−6c2
θ∆ḡ

Z
1 −∆κ̄V −

1

6
(9y2

t − g′2)c2y

]
. (4.35c)

The other universal relations are not violated up to y2
f/y

2
t (f 6= t) suppressed terms. Note also

that, as indicated above, [δgZdR ]33 is not modified by terms proportional to y2
t , so [δgZdR ]ij ∝ δij

still holds approximately.

The universal pieces in (4.34), on the other hand, can be conveniently attributed to the

running of CHJW , CHJB in addition to (4.20),

ĊHJW = 6y2
t (CHJW − 2C2JW ), (4.36a)

ĊHJB = 6y2
t (CHJB − 2C2JB). (4.36b)

Note that the one-loop beta functions of g, g′ do not depend on yt. Regarding the 4-fermion

interactions related to the W,Y, Z parameters, the additional contributions to the anomalous

dimensions are significant only for the third-generation quarks tL, bL, tR, and there is no

universal part to be added to Ċ2JW , Ċ2JB, Ċ2JG. Further, the running of CHWB, CHD in

(4.27) should be supplemented by the following additional terms, taken from [77],

ĊHWB = 6y2
tCHWB, (4.37a)

ĊHD = 6y2
t (2CHD − g′2CHJB), (4.37b)

The discussion above implies that up to nonuniversal effects that are important for the

third-generation quarks tL, bL, tR only, the yf -dependent RG effects in the electroweak sector

are universal and can be conveniently attributed to the running of the oblique parameters.

Referring to table 4.2 for the translation between the universal parameters and the Warsaw
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basis Wilson coefficients, we find

˙̂
S = 6y2

t Ŝ,
˙̂
T = 12y2

t T̂ , Ẇ = Ẏ = 0. (4.38)

These equations are to be added to (4.28). Similarly, we still have Ż = 0. We remark

in passing that (4.28) and (4.38) can also be derived from the results in [37], where the

submatrix of γij involving the bosonic operators in the EGGM basis is calculated. Referring

to [109] for the expressions of the universal parameters in this basis, we have explicitly

checked that the results are the same as we presented above.

Defined in this way, the oblique parameters that appear in the LO expressions of elec-

troweak observables, when renormalized at µ = µEW, absorb all the O(
y2
t

16π2 ln Λ
µEW

) correc-

tions, except for observables involving the Z boson couplings to tL, bL and tR. Among

them, only the ZbLb̄L coupling is directly probed by precision Z-pole data, for which we

obtain (suppressing the gauge-coupling-dependent LL corrections proportional to W , Y , Z

discussed in the previous subsection),

[δgZdL (µEW)]33

=
1

12(c2
θ − s2

θ)

[
4s2

θŜ(µEW)− (3− 4s2
θ)T̂ (µEW) + (3− 8s2

θ)W (µEW)− s2
θ

c2
θ

Y (µEW)
]

+
y2
t

32π2
ln

Λ

µEW

[s2
θ

c2
θ

(Ŝ −∆κ̄γ)− T̂ + 3W + (7− 6s2
θ)∆ḡ

Z
1 +

(
y2
t −

2

9
g′2
)
c2y

]
. (4.39)

The physical picture of this effect was already discussed in the second example in figure 4.1.

4.3.3 Implications for the oblique parameters fit

So far, we have found that while universal theories at the new physics scale do not in general

remain universal after RG evolution down to the electroweak scale, precision observables in

the electroweak sector allow for a separation of universal and nonuniversal effects induced

by RG evolution. With our prescriptions for the separation, the universal effects are con-

veniently attributed to the running of the oblique parameters, given by the sum of (4.28)

and (4.38). This serves as a definition of the oblique parameters at the electroweak scale;

see (4.29). Corrections to the electroweak observables not involving the third-generation

quarks tL, bL, tR can be represented, to LL and leading yt accuracy, by the LO expressions

with Ŝ, T̂ , W , Y renormalized at µEW, plus additional (nonuniversal) terms proportional

to 1
16π2 ln Λ

µEW
· {W, Y, Z}; see e.g. (4.33). For the electroweak observables involving tL, bL,

or tR, on the other hand, additional terms of order
y2
t

16π2 ln Λ
µEW

should be added, which also

involve some less-constrained nonoblique universal parameters; see e.g. (4.39).
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If these additional LL terms were absent (or negligible), the conventional oblique param-

eters fit, where theory predictions of observables incorporating LO contributions from the

oblique parameters are confronted with precision electroweak data, would be a consistent

procedure to derive constraints on universal theories. Bounds on the oblique parameters

obtained in this way could be interpreted as bounds on Ŝ(µEW), T̂ (µEW), W (µEW), Y (µEW)

defined in (4.29). The latter could then be mapped onto constraints on the universal param-

eters at the new physics scale Λ, following the sum of (4.28) and (4.38).

In reality, however, the additional LL terms due to RG-induced nonuniversal effects,

which involve some less-constrained universal parameters, may not be negligible compared

with LO contributions from Ŝ, T̂ , W , Y , as well as experimental and SM theoretical uncer-

tainties. If this is the case, one should go beyond LO for a consistent fit of universal theories

to precision electroweak data. But as far as universal theories are concerned, the underly-

ing number of free parameters is still much smaller than that in the full SMEFT. At the

LL order, only a few additional parameters, defined by linear combinations of the universal

parameters at Λ, are sufficient. While a full-fledged global analysis is beyond the scope of

the present chapter, we will illustrate this point with an example in the next subsection.

4.3.4 Example: R` and Rb in universal theories

We consider the two observables R` and Rb introduced at the end of section 4.2.2, and see

how their SMEFT predictions are affected by the additional nonuniversal LL terms. Similar

to the examples shown in the previous subsections, namely (4.33) and (4.39), the Higgs basis

couplings renormalized at µEW that appear in (4.16) can be worked out. Eq. (4.16) then

becomes, numerically,

δ̄NPR` = −0.36
[
∆ε3(µEW)− c2

θ∆ε1(µEW)
]

+
ln(Λ/µEW)

3
(0.13Z − 0.053∆ḡZ1 + 0.0028∆κ̄γ − 0.0091c2y), (4.40a)

δ̄NPRb = 0.079
[
∆ε3(µEW)− c2

θ∆ε1(µEW)
]

+
ln(Λ/µEW)

3
(−0.19∆ḡZ1 + 0.010∆κ̄γ − 0.032c2y), (4.40b)

where

∆ε3(µEW)− c2
θ∆ε1(µEW) = Ŝ(µEW)− 0.77T̂ (µEW)− 0.23W (µEW)− 0.77Y (µEW) (4.41)
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is a common oblique parameters combination entering the two observables at LO, expressed

in terms of the ∆ε parameters defined in (4.4).4 We have neglected the additional LL terms

proportional to Ŝ, T̂ , W , Y , since these parameters already appear in the LO expressions.

The numerical impact of these neglected terms is to correct the coefficients of ∆ε3(µEW) −
c2
θ∆ε1(µEW) by order 1

16π2 ln Λ
µEW

numbers, and is expected to be less important than the

invasion of additional, possibly less-constrained parameters Z, ∆ḡZ1 , ∆κ̄γ, c2y through RG

evolution from Λ to µEW.

The various terms in (4.40) shift the theory predictions for R` and Rb in different direc-

tions in the R`-Rb plane. This is shown by the dashed lines in figure 4.2, assuming ln Λ
µEW

= 3

as expected from Λ ∼ O(TeV). The new physics corrections can be compared with the SM

predictions from the Gfitter fit [26],

R` = 20.743± 0.017, Rb = 0.21578± 0.00011, (SM) (4.42)

which is based on the Z-pole measurements from the LEP and SLD collaborations [139],

R` = 20.767± 0.025, Rb = 0.21629± 0.00066. (LEP+SLD) (4.43)

As we can see from figure 4.2, a LO oblique parameters fit would naively constrain the lin-

ear combination ∆ε3−c2
θ∆ε1 (blue), properly renormalized at µEW, to be O(10−3). However,

reasonable values of other universal parameters, namely O( v
2

Λ2 ), which enter the LL correc-

tions, can significantly change the picture. In particular, values of O(10−2) and O(10−1)

for the Z (red) and c2y (green) parameters, respectively, which may be generated by heavy

QCD-charged states and scalar states, lead to corrections larger than the experimental and

SM theoretical uncertainties. It would be interesting to compare these numbers with direct

constraints on the parameters Z (see e.g. [204]) and c2y, and obtain a fuller understanding of

allowed parameter ranges through a global SMEFT analysis. The anomalous TGC parame-

ters ∆ḡZ1 and ∆κ̄γ shift the theory predictions along the same direction as c2y, since all three

parameters contribute via [δgZdL ]33 only. They are directly constrained by measurements at

LEP2, and more recently also at the LHC.5 The green line segment between the orange stars

(triangles) represents the 95% C.L. interval allowed by the combined LEP2 constraint on

4With only observables involving ratios of Zff̄ couplings such as R` and Rb, one cannot break this

degeneracy, because gZfi + δgZfi = (1 + ∆ε1
2 )gZfi − Qf

s2θ
c2θ−s

2
θ
(∆ε3 − c2θ∆ε1), for both i = L,R. When

∆ε3− c2θ∆ε1 = 0, all Zff̄ couplings are rescaled by a common factor, and ratios of couplings are unchanged.
This flat direction can be lifted by considering other observables such as the Z boson total width.

5Though experimental constraints are on δg1z, δκγ defined with respect to the physical particles, the
difference between δg1z and ∆ḡZ1 , which involve ∆ε1,2,3 (see table 4.3), is not relevant, since when inter-
preted in universal theories, oblique corrections are always assumed to vanish in experimental TGC analyses.
See [109] for more discussion.
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Figure 4.2: (From [111]) Theory predictions for R` = Γhad/Γ(Z → `+`−) and Rb = Γ(Z →
bb̄)/Γhad are shifted away from the SM point along the dashed lines, when the universal
parameters appearing in (4.40) take the values labeled beside the dots. The anomalous TGC
parameters ∆ḡZ1 , ∆κ̄γ lead to shifts along the same direction as c2y (green dashed line), with
the orange stars and triangles indicating the maximum shifts allowed by the LEP2 TGC
constraints (95% C.L.) from single-parameter fits (shown in the bottom-right corner) [205].
ln Λ

µEW
= 3 is assumed, as motivated by TeV-scale new physics. Agreement between the

SM predictions as fitted by the Gfitter group [26] and the combined measurements by the
LEP and SLD collaborations [139] naively constrains the oblique parameters combination
∆ε3−c2

θ∆ε1 (blue) defined in (4.41) at the 10−3 level. But even when the oblique parameters
are interpreted as renormalized at µEW following our prescriptions, the neglected LL terms in
such a LO oblique parameters analysis can actually be significant. The challenge illustrated
by this example requires extending the (Ŝ, T̂ ,W, Y ) parametrization to include additional
parameters in a consistent global fit of universal theories beyond LO.
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∆ḡZ1 (∆κ̄γ) taken from the LEP electroweak working group final report [205]. These con-

straints are derived allowing one anomalous TGC parameter to be nonzero at a time, and

are shown here for illustration purpose only. We see that values of ∆ḡZ1 as allowed by the

above constraint can contribute significant corrections to R` and Rb.

Our example shows that the RG-induced nonuniversal effects that are usually neglected

can indeed challenge the interpretation and usefulness of the LO oblique parameters analysis.

In practice, this means that for a consistent global fit of universal theories to precision

electroweak data, one should go beyond the conventional approach with the (Ŝ, T̂ ,W, Y )

parametrization. An extension to LL order should at least involve two additional parameters,

Z̃ ≡ Z ln
Λ

µEW

, δg̃ZbL ≡
[
(7− 6s2

θ)∆ḡ
Z
1 −

s2
θ

c2
θ

∆κ̄γ +
(
y2
t −

2

9
g′2
)
c2y

]
ln

Λ

µEW

, (4.44)

where δg̃ZbL is proportional to the linear combination of the less-constrained universal param-

eters appearing in the LL term in (4.39). For the two observables R` and Rb discussed in

this subsection, Z̃ and δg̃ZbL capture shifts in the directions of the red and green dashed lines

in figure 4.2, respectively. Further extending the analysis to include NLO finite corrections

may introduce more parameters, but the total number of free parameters is no more than

16, the number of universal parameters defined at Λ.6 Extended in this way, the oblique

parameters analysis can be consistent and useful, and yet simpler than the full SMEFT if

one is interested only in universal theories (see [91,104] for discussions on consistent analyses

of the full SMEFT).

4.4 RG effects in the Yukawa sector

We next turn to the Yukawa sector, and show how the universal relation (4.5b) can be

violated by RG evolution. The observation that RG evolution in universal theories can induce

nonuniversal rescaling of all SM fermion Yukawa couplings was previously made in [38], based

on partial results on the anomalous dimensions γij for one fermion generation, and assuming

a limited set of nonzero Wilson coefficients. Our analysis in this section takes into account

the full γij that became available after [38], and all the parameters characterizing universal

theories classified in [109].

6A further challenge can potentially arise at this order, if constraints on the universal parameters are to
be interpreted in specific UV models. Since a NLO calculation of observables requires one-loop matching [55,
56, 195–198] of the Wilson coefficients contributing at LO, we need to assume that the UV model does not
generate operators beyond those in (4.1) even at one-loop matching. This assumption is implicit in our EFT
definition of universal theories, but may not be satisfied by all UV theories that would otherwise be regarded
as universal.
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The dimension-6 operators relevant for Yukawa coupling corrections are those in the

ψ2H3 class. At LO, their Wilson coefficients are related in universal theories as follows,

[
{CuH , CdH , CeH}

]
ij

=
[
{yu, VCKMyd, ye}

]
ij
Cy. (4.45)

The running of these Wilson coefficients is in general complicated by the nontrivial fla-

vor structure in the quark sector. For example, [ĊdH ]ij contains terms proportional to

[yuy
†
uVCKMyd]ij, which, unlike [VCKMyd]ij that [CdH ]ij is proportional to at LO, cannot be

diagonalized by applying V †CKM on the left. Thus, a redefinition of the CKM matrix is

needed after RG evolution. However, the third-generation quarks are hardly affected by this

complication, since we can approximate VCKM by a block-diagonal matrix,

VCKM '


1 λW 0

−λW 1 0

0 0 1

 , (4.46)

where a subscript “W” has been added to the Wolfenstein parameter λW ' 0.23 to avoid

confusion with the Higgs self-coupling λ. With O(λ2
W ) terms neglected, RG evolution in uni-

versal theories does not mix the third-generation quarks with the first- and second-generation

ones. We will focus on the experimentally most accessible third-generation Yukawa coupling

corrections in the following, adopting the approximation (4.46) and neglecting terms sup-

pressed by y2
f/y

2
t (f 6= t). Using the results in [76,77,80] and table 4.1, we find

[ĊuH ]33 = yt

[(51

2
y2
t + 24λ− 8g2

s −
27

4
g2 − 35

12
g′2
)
Cy − 12y2

t (y
2
t − λ)C2y

−(3y2
t − 3λ− 4g2 + g′2)g2CHJW +

(1

2
y2
t + λ− g2 +

2

3
g′2
)
g′2CHJB

+
16

9
(y2
t − λ)g′2C2JB +

64

3
(y2
t − λ)g2

sC2JG

−
(

6y2
t + 4λ− 10

3
g2
)
CH� +

(
y2
t + 2λ− 3

2
g2 +

3

2
g′2
)
CHD

−gg′CHWB + 32g2
sCHG + 9g2CHW +

17

3
g′2CHB

]
, (4.47a)

[ĊdH ]33 = yb

[(21

2
y2
t + 24λ− 8g2

s −
27

4
g2 − 23

12
g′2
)
Cy − 14y2

t (y
2
t − λ)C2y

−
(3

2
y2
t − 3λ− 4g2 +

1

2
g′2
)
g2CHJW +

(
λ− 1

2
g2 − 1

3
g′2
)
g′2CHJB

+
8

9
λg′2C2JB −

64

3
λg2

sC2JG −
(

4λ− 10

3
g2
)
CH� +

(
2λ− 3

2
g2 +

3

2
g′2
)
CHD
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+gg′CHWB + 32g2
sCHG + 9g2CHW +

5

3
g′2CHB

]
, (4.47b)

[ĊeH ]33 = yτ

[(
15y2

t + 24λ− 27

4
g2 − 21

4
g′2
)
Cy − 12y2

t (y
2
t − λ)C2y

−
(

3y2
t − 3λ− 4g2 +

3

2
g′2
)
g2CHJW +

(
λ− 3

2
g2 + 3g′2

)
g′2CHJB

−8λg′2C2JB −
(

4λ− 10

3
g2
)
CH� +

(
2λ− 3

2
g2 +

3

2
g′2
)
CHD

−3gg′CHWB + 9g2CHW + 15g′2CHB

]
. (4.47c)

While there are overlapping terms in these equations, there is no obvious well-motivated

way to make the separation between universal vs. nonuniversal effects. We thus refrain from

defining the running of ∆κ̄F as we did for the oblique parameters in the previous section,

but simply present the violation of the universal relation (4.5b) at the electroweak scale. To

do so, we note that, in our notation,

δyt − δyb = −
(

[CuH ]33

yt
− [CdH ]33

yb

)
, δyb − δyτ = −

(
[CdH ]33

yb
− [CeH ]33

yτ

)
, (4.48)

where δyt, δyb, δyτ represent [δyu]33, [δyd]33, [δye]33, respectively. Combining (4.19) and the

one-loop running of the SM Yukawa couplings,

ẏt = yt

(9

2
y2
t − 8g2

s −
9

4
g2 − 17

12
g′2
)
, (4.49a)

ẏb = yb

(3

2
y2
t − 8g2

s −
9

4
g2 − 5

12
g′2
)
, (4.49b)

ẏτ = yτ

(
3y2

t −
9

4
g2 − 15

4
g′2
)
, (4.49c)

we obtain

δyt(µEW)− δyb(µEW) = − 1

16π2
ln

Λ

µEW

( ˙δyt − ˙δyb)

=
1

16π2
ln

Λ

µEW

[
−6y2

t (2∆κ̄F −∆κ̄V ) + 4g′2s2
θ∆ḡ

Z
1 − 2g′2

s2
θ

c2
θ

∆κ̄γ

−2(g2 − 2g′2)
s2
θ

c2
θ

Ŝ + y2
t T̂ + (3y2

t + 2g′2)W −
(41

9
y2
t −

16

3
λ− 2g2 + 4g′2

)s2
θ

c2
θ

Y

−128

3
y2
t

g2
s

g2
Z + 2(y2

t − λ)y2
t c2y + g′2(e2fγγ − g′2fzγ)

]
' ln(Λ/µEW)

3
(−0.23∆κ̄F + 0.11∆κ̄V + 0.0022∆ḡZ1 − 0.0014∆κ̄γ − 0.0019Ŝ + 0.019T̂

+0.061W − 0.020Y − 2.8Z + 0.032c2y + 0.00023fγγ − 0.00031fzγ), (4.50a)
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δyb(µEW)− δyτ (µEW) = − 1

16π2
ln

Λ

µEW

( ˙δyb − ˙δyτ )

=
1

16π2
ln

Λ

µEW

[
3y2

t (∆κ̄F −∆κ̄V )− 40

3
g′2s2

θ∆ḡ
Z
1 +

20

3
g′2
s2
θ

c2
θ

∆κ̄γ

+4
(
g2 − 10

3
g′2
)s2

θ

c2
θ

Ŝ −
(

3y2
t + 4g′2

)
W − 4

(40

9
λ+ g2 − 10

3
g′2
)s2

θ

c2
θ

Y

+
128

3
λ
g2
s

g2
Z − 2(y2

t − λ)y2
t c2y + 8g4

sfgg −
10

3
g′2(e2fγγ − g′2fzγ)

]
' ln(Λ/µEW)

3
(0.056∆κ̄F − 0.056∆κ̄V − 0.0074∆ḡZ1 + 0.0048∆κ̄γ − 0.000014Ŝ

−0.066W − 0.013Y + 0.37Z − 0.032c2y + 0.34fgg − 0.00078fγγ + 0.0010fzγ).(4.50b)

The terms in these equations involving the oblique parameters correspond to the effect

illustrated by the third example in figure 4.1.

The numerical results in (4.50) show that significant deviations from the universal relation

(4.5b) are possible. For example, in the simplest scenario where ∆κ̄F is the only nonnegligible

universal parameter at the new physics scale Λ, we have δyt(Λ) = δyb(Λ) = δyτ (Λ) = ∆κ̄F ,

but δyt(µEW) ' 0.77δyb(µEW), δyb(µEW) ' 1.056δyτ (µEW) after RG evolution, if ln Λ
µEW
' 3.

Further deviations can be induced by other universal parameters, such as ∆κ̄V , Z, c2y,

fgg, if they are generated at Λ. Therefore, the sometimes adopted simplified approach to

precision Higgs fit where a common rescaling factor is assumed for all the SM fermion Yukawa

couplings does not find its justification in universal theories. This assumption applies to

the the effective hff couplings at µ ∼ mh ∼ µEW, and appears fine-tuned in light of the

RG-induced nonuniversal effects illustrated above. Thus, even for universal theories, it is

desirable to keep these parameters separate when fitting them to data.

4.5 Conclusions

The usefulness of simplified frameworks for precision analyses lies in the fact that they are

much more tractable than the full SMEFT with a vast parameter space, and yet capture

broad classes of BSM scenarios. The oblique parameters framework, which characterizes

effects of universal theories on precision electroweak observables, has been widely-used for

more than two decades now, and finds its justification at LO in the modern SMEFT approach

with a consistent description of universal theories in the SMEFT [109]. In many cases,

however, it is desirable to go beyond LO in the new physics effects, and simplified frameworks

should be properly extended to incorporate RG evolution.

In this chapter, we have performed a RG analysis of universal theories in the SMEFT
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framework. The key observation is that under RG evolution, universal theories at the new

physics scale Λ, which reside in a 16-dimensional subspace of the full SMEFT parameter

space, can flow out of this subspace, and become nonuniversal at the electroweak scale µEW

where their effects on precision observables are measured. But the departure from universal

theories at µEW is not arbitrary, as the theory is still usefully described by the 16 universal

parameters defined at Λ. The main consequences of this observation are the following.

• The universal pattern of deviations from SM predictions seen at LO in the universal

theories EFT is distorted after RG evolution from Λ to µEW. The RG-induced nonuni-

versal effects lead to well-defined departures (dictated by the 16 universal parameters

at Λ) from the LO universal relations (4.5) among some generically independent Higgs

basis couplings (in the sense explained at the end of section 4.2.2); see (4.32), (4.35),

(4.50).

• Since there is in general no unique procedure to define the oblique parameters (and

more generally universal parameters) for nonuniversal theories, additional prescriptions

are needed for Ŝ(µEW), T̂ (µEW), etc. to be meaningful. Our prescriptions are shown in

(4.29), where the running of the oblique parameters is given by the sum of (4.28) and

(4.38).

• With our prescriptions, LO expressions for the new physics corrections to electroweak

observables δ̄NPÔ can be used with Ŝ, T̂ , W , Y renormalized at µEW, supplemented

by additional LL terms that cannot be absorbed into the running of the oblique pa-

rameters. An example calculation of two well-measured observables R` and Rb shows

that the additional LL terms can be numerically important; see (4.40) and figure 4.2.

This implies that, even for universal theories, a consistent precision electroweak fit

should go beyond the {Ŝ, T̂ ,W, Y } parametrization. But unlike generic nonuniversal

theories, the additional parameters to be incorporated are a small number of linear

combinations of other universal parameters invading through RG evolution from Λ to

µEW; see (4.44).

• The Yukawa couplings of all SM fermions are in general not modified in the same

way even in universal theories. In particular, (4.50) shows the potentially sizable RG-

induced deviations from a universal rescaling for the top, bottom and tau Yukawa

couplings (as parameters in the Higgs basis framework). Thus, fitting a common

Yukawa coupling rescaling factor to Higgs data as based on LO intuitions from universal

theories is of limited use.
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Two additional aspects of RG-induced nonuniversal effects not discussed in this chapter

are the generation of the dipole-type couplings dV f (which vanish at LO in universal theories;

see table 4.3), and a nonuniversal pattern of 4-fermion interactions. They correspond to

violations of the two other features of universal theories at LO listed in section 4.2 of [109]

that are not captured by the universal relations (4.5).7 Following the discussion in [80], we see

the former affects the muon anomalous magnetic moment, but not µ→ eγ or electric dipole

moments, if the theory is universal (and CP-conserving) at Λ. The latter aspect may have an

impact on precision analyses of LEP2 data in the oblique parameters framework, and can also

be relevant for future precision measurements on a higher-energy e+e− collider where also the

top quark can be pair-produced. In any case, to make maximal use of existing and upcoming

precision data for indirect searches of physics beyond the SM, simplified parameterizations of

new physics effects, as motivated by specific classes of BSM scenarios like universal theories,

should be consistently cast in the SMEFT framework (if the absence of new light states is

assumed), and checked for robustness against RG evolution.

7There it is also mentioned that δgWq
R = 0 at LO in universal theories; see table 4.3 of this chapter. A

nonzero δgWq
R is generated by RG evolution at O(yuyd).
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Chapter 5

Time to Go Beyond TGC

Interpretation of W Pair Production

W boson pair production processes at e+e− and pp colliders have been conventionally inter-

preted as measurements of WWZ and WWγ triple gauge couplings (TGCs). Such interpre-

tation is based on the assumption that new physics effects other than anomalous TGCs are

negligible. While this “TGC dominance assumption” was well-motivated and useful at LEP2

thanks to precision electroweak constraints, it is already challenged by recent LHC data. In

fact, contributions from anomalous Z boson couplings that are allowed by electroweak preci-

sion data but neglected in LHC analyses, being enhanced at high energy, can even dominate

over those from the anomalous TGCs considered. This limits the generality of the anoma-

lous TGC constraints derived in current analyses, and necessitates extension of the analysis

framework and change of physics interpretation. The issue will persist as we continue to

explore the high energy frontier. We clarify and analyze the situation in the effective field

theory framework, which provides a useful organizing principle for understanding Standard

Model deviations in the high energy regime.

5.1 Introduction

The nonabelian nature of the Standard Model (SM) gauge groups has the crucial consequence

of gauge boson self-interactions. In the electroweak sector, the structure of WWZ and WWγ

triple gauge couplings (TGCs) follows from SU(2)L×U(1)Y gauge invariance and the pattern

of its spontaneous breaking. Heavy new physics beyond the SM may leave footprints on the

low-energy effective theory in the form of anomalous TGCs. Conventionally, these effects
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are parameterized by the following Lagrangian [206],

LTGC = ig
{

(W+
µνW

−µ −W−
µνW

+µ)
[
(1 + δg1z) cθZ

ν + sθA
ν
]

+
1

2
W+

[µ,W
−
ν]

[
(1 + δκz) cθZ

µν + (1 + δκγ) sθA
µν
]

+
1

m2
W

W+ν
µ W−ρ

ν (λzcθZ
µ
ρ + λγsθA

µ
ρ )
}
, (5.1)

assuming CP conservation. Here W±
µν = ∂µW

±
ν − ∂νW±

µ , W+
[µ,W

−
ν] = W+

µ W
−
ν −W+

ν W
−
µ , g is

the SU(2)L gauge coupling, and sθ (cθ) denotes the sine (cosine) of the weak mixing angle.

The anomalous TGC parameters δg1z, δκz, δκγ, λz, λγ, which vanish in the SM, have been

intensively studied in search of evidence for new physics. LEP2 measurements of W pair

(and to a lesser extent also single W ) production were able to confirm SM predictions and

constrain the anomalous TGCs at the . 10% level [45,205]. Recent years have seen renewed

interest in TGC studies, motivated by progress on LHC electroweak measurements as well as

connection with Higgs physics [6, 71, 103]. Impressively, with several diboson measurements

at 7 and 8 TeV combined, LHC has already exceeded LEP2 in setting limits on anomalous

TGCs [112]. The WW [207,208] and WZ [209,210] channels played a dominant role in this

achievement. Prospects of future facilities have also been discussed, with numbers as small

as 10−4–10−3 quoted for anomalous TGC sensitivities [211, 212], showing great potential of

uncovering new physics beyond the SM in electroweak interactions.

In previous TGC analyses, it is often assumed that Eq. (5.1) encodes all the relevant

beyond-SM effects on the observables under study. This assumption, which we shall call the

“TGC dominance assumption,” is obviously not satisfied for arbitrary new physics scenarios.

Nevertheless, it is well-motivated and useful if other possible deformations of the SM are

experimentally constrained to be small. Whether the latter is the case should be carefully

assessed to give meaning to TGC studies.

To do so, we consider the most general SM deformations due to decoupled new physics at a

high scale Λ, which can be captured by the SM effective field theory (EFT) at experimentally

accessible energies, assumed to be much below Λ. Generically, assuming lepton number

conservation up to Λ, leading corrections to the SM Lagrangian arise from dimension-six

effective operators,

LSMEFT = LSM +
∑
i

Ci
v2
Oi + . . . , (5.2)

with Ci ∼ O( v
2

Λ2 ) up to model-dependent coupling or loop factors. In this framework, search

of SM deviations becomes a global analysis program, with experimental input on different

processes probing various directions of the {Ci} parameter space [29,46,114]. Conventional
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TGC analyses via e.g. W pair production are usually interpreted as constraining the linear

combinations of Ci giving rise to anomalous TGCs. This is based on the TGC dominance

assumption, which asserts that other combinations of Ci affecting the observables under

study can be effectively set to zero. It is commonly believed that the latter combinations are

well constrained by electroweak precision data (EWPD) and can hardly have any impact.

It is the purpose of this study to revisit the TGC dominance assumption and assess

its validity in light of recent improvements on TGC constraints from LHC data. We focus

on the WW channel given its relevance at both e+e− and pp colliders. There have been

claims in the previous literature that the TGC dominance assumption is valid in the case of

e+e− → W+W− at LEP2 [29,45], and we will verify them explicitly. On the other hand, as

we will see, this assumption is no longer supported by EWPD when analyzing recent LHC

results. A key observation is that some of the neglected effects, even though constrained by

Z pole data, are enhanced at higher energies and become nonnegligible compared with the

anomalous TGC effects under study. The situation calls for extension of the TGC analysis

framework to allow for more general interpretations of experimental results. Further, from

the SMEFT point of view, as we continue to explore the high energy frontier, it will be

perhaps more useful to organize our knowledge of effective operators in terms of their high

energy behaviors, rather than the anomalous couplings they induce as is conventionally done.

5.2 Effective operators and anomalous couplings

We start by reviewing the theoretical framework in order to precisely formulate the TGC

dominance assumption. We shall be guided by the SMEFT at dimension-six level to identify

potentially important beyond-SM effects in addition to anomalous TGCs. In the Warsaw

basis [3], which we adopt here for concreteness, the following operators contribute to ff̄ →
W+W− at tree level:

OHWB = H†σaHW a
µνB

µν , OHD = |H†(DµH)|2,

O3W = εabcW aν
µ W bρ

ν W
cµ
ρ ,

[
Oll
]
ijkn

= (l̄iγµlj)(l̄kγ
µln),[

O(3)
HF

]
ij

= i
(
H†σa(DµH)− (DµH

†)σaH
)
(F̄iγ

µσaFj),[
O(1)
HF

]
ij

= i
(
H†(DµH)− (DµH

†)H
)
(F̄iγ

µFj),[
OHf

]
ij

= i
(
H†(DµH)− (DµH

†)H
)
(f̄iγ

µfj), (5.3)

where F , f denote SU(2)L doublet and singlet fields, respectively, and i, j are generation

indices. We assume minimal flavor violation [13] for simplicity, and neglect operators whose
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coefficients are suppressed by SM Yukawa couplings.

One can work out the anomalous couplings induced by the dimension-six operators in

Eq. (5.3). To avoid ambiguities associated with field and parameter redefinitions, we follow

[7, 213] and define anomalous couplings with respect to mass eigenstate fields in unitary

gauge with canonically normalized kinetic terms, after SM parameters have been properly

redefined such that the conventional input observables mZ , GF , α, etc. are not shifted

(see [109] for connection with the oblique parameters formalism [146, 193, 194]). In this

framework, ff̄ → W+W− can receive new physics contributions from: i) anomalous TGCs

defined in Eq. (5.1); ii) W boson mass shift

LmW = (1 + δm)2 g
2v2

4
W+
µ W

−µ; (5.4)

and iii) Zff and Wff ′ vertex corrections (with f ′ being the SU(2)L partner of f)

Lvertex =
∑
f

g

cθ

(
(T 3

f −Qfs
2
θ)δij +

[
δgZfL/R

]
ij

)
Zµf̄iγ

µfj

+
g√
2

[(
δij +

[
δgWq

L

]
ij

)
W+
µ ūLiγ

µ(VCKMdL)j

+
(
δij +

[
δgWl

L

]
ij

)
W+
µ ν̄iγ

µeLj + h.c.
]
, (5.5)

where f now runs over mass eigenstates νL, eL,R, uL,R, dL,R, and generation indices i, j are

summed over. These anomalous couplings are not all independent. In particular, anomalous

TGCs satisfy the well-known relations,

δκz = δg1z −
s2
θ

c2
θ

δκγ, λz = λγ, (5.6)

while Zff and Wff ′ vertex corrections are also related,

δgWq
L = δgZuL − δgZdL , δgWl

L = δgZνL − δgZeL . (5.7)

Therefore, there are 5(6) independent anomalous couplings contributing to ff̄ → W+W−

with right-handed (left-handed) incoming fermion: δg1z, δκγ, λγ, δm, plus δgZfR (δgZfL and

δgZf
′

L ). In particular, e+e− → W+W− at LEP2 involves 7 independent anomalous couplings

{
δg1z, δκγ, λγ, δg

Ze
L , δgZνL , δgZeR , δm

}
, (5.8)

while pp→ W+W− at the LHC involves 8 when only first-generation quarks are considered
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in the initial state {
δg1z, δκγ, λγ, δg

Zu
L , δgZuR , δgZdL , δgZdR , δm

}
, (5.9)

with generation indices i, j = 1 implicit.

The dictionary between effective operator coefficients and the anomalous couplings listed

above reads

δg1z =
1

c2
θ − s2

θ

(
−sθ
cθ
CHWB −

1

4
CHD − δv

)
,

δκγ =
cθ
sθ
CHWB, λγ = −3

2
g C3W ,[

δgZfL
]
ij

= T 3
f

[
C

(3)
HF

]
ij
− 1

2

[
C

(1)
HF

]
ij

−
[
Qf

cθsθ
c2
θ − s2

θ

CHWB +
(
T 3
f +Qf

s2
θ

c2
θ − s2

θ

)(1

4
CHD + δv

)]
δij,[

δgZfR
]
ij

= −1

2

[
CHf

]
ij
−Qf

[
cθsθ
c2
θ − s2

θ

CHWB +
s2
θ

c2
θ − s2

θ

(1

4
CHD + δv

)]
δij,

δm = − 1

c2
θ − s2

θ

(
cθsθCHWB +

1

4
c2
θCHD + s2

θδv
)
, (5.10)

where F denotes the SU(2)L doublet containing fL, and δv ≡ 1
2

(
[C

(3)
Hl ]11 + [C

(3)
Hl ]22

)
−

1
4

(
[Cll]1221 + [Cll]2112

)
.

With the discussion above, it should be clear that, as far as the dimension-six SMEFT is

concerned, the TGC dominance assumption corresponds to keeping only the subset {δg1z, δκγ, λγ}
of anomalous couplings in Eqs. (5.8) and (5.9). We see from Eq. (5.10) that, once the op-

erators inducing δg1z, δκγ are turned on, one then has to adjust C
(3,1)
HF , CHf to ensure that

vertex corrections vanish.

5.3 Triple gauge coupling measurements: from LEP2

to LHC

Now we make a first attempt to assess the validity of the TGC dominance assumption in W

pair production processes. For illustration, we will allow each of the additional anomalous

couplings, {
δgZeL , δgZνL , δgZeR , δgZuL , δgZuR , δgZdL , δgZdR , δm

}
(5.11)

to be maximal within the 2σ intervals in Eq. (40) of [45] and Eq. (4.4) of [92], which are

derived from EWPD assuming flavor universality, and see how much correction they can

induce on some representative observables. This is to be compared with contributions from
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anomalous TGCs being considered in conventional TGC analyses, as well as experimental

uncertainties.

TGC analyses at LEP2 made use of e+e− → W+W− measurements with unpolarized

e+e− beams at center-of-mass energies up to 209 GeV. We consider as an example observ-

able dσ
d cos θ

(e+e− → W+W− → qq`ν) with θ being the angle between W− and e− momenta

and ` = e, µ (either sign), at
√
s = 198.38 GeV. This is reported for 10 bins of cos θ in

Table 5.6 of [205] based on data from 194 to 204 GeV, with a luminosity-weighted average

of 198.38 GeV. Fig. 5.1 shows the fractional shift in dσ
d cos θ

with respect to the SM, calculated

at tree level, when each of the anomalous couplings in Eq. (5.8) is turned on individually,

along with experimental uncertainties (gray dotted). Contributions from δgZuL , δgZdL via W

branching ratio modifications are within ±0.005 and not shown. Numerical values chosen

for the anomalous TGCs reflect the level of LEP2 constraints — they correspond to max-

imal deviations from zero allowed by the LEP2 three-parameter fit (95% C.L. intervals in

Table 11.7 of [214]). It is seen that possible contributions from vertex and W mass correc-

tions as allowed by EWPD are indeed well beyond experimental sensitivity, thus providing

justification for the conventional TGC analysis procedure (though the situation may be more

subtle when theoretical errors from EFT calculations are considered [114]).

At the LHC, anomalous TGC constraints greatly benefit from the W+W− → e±µ∓νν

channel. For illustration, we follow the ATLAS 8 TeV analysis [207], and numerically cal-

culate the leading lepton pT distribution. Our results are shown in Fig. 5.2, with values

of anomalous TGCs chosen at the 95% C.L. upper limits from the recent TGC fit [112],

which are comparable to those reported by the experimental collaborations. We see that,

unlike the situation at LEP2, contributions from δgZuR , δgZdR as allowed by EWPD can be

at a similar level as, and even dominant over those from anomalous TGCs being considered

(effects of other anomalous couplings are very small and not shown). The issue becomes

more severe if the flavor universality assumption is relaxed, as vertex corrections are even

less constrained in that case [92]. Therefore, interpreting LHC WW data as a measurement

of TGCs while neglecting these additional, potentially more important effects limits the gen-

erality of the results. A consistent global fit should include effects of δgZuR , δgZdR along with

those of δg1z, δκγ, λγ when considering such data, and interpret the latter as constraining

this extended parameter space.

As a side remark, we note that large contributions from δgZuR , δgZdR are dominated by

new physics amplitude squared terms rather than interference with the SM. The same is

true for anomalous TGCs [115]. Generically, it is difficult for LHC data to be sensitive to

interference terms due to limited precision. Yet, consistent interpretation of dimension-six

SMEFT constraints can be made in some restricted contexts, in particular strongly-coupled
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Figure 5.1: (From [117]) Fractional shift in LEP2 e+e− → W+W− → qq`ν differential cross
section induced by each of the anomalous couplings in Eq. (5.8), compared with experimental
uncertainties (gray dotted) reported in [205]. Assuming lepton flavor universality, effects of
the anomalous TGCs being constrained (solid) [214] are seen to dominate over those of
Zff vertex and W mass corrections (dashed), even when the latter are set to maximum
values allowed by EWPD [45,92], providing justification for the conventional TGC analysis
procedure.
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Figure 5.2: (From [117]) Leading lepton pT distribution of 8 TeV LHC W+W− events in the
eµ channel when each anomalous coupling is turned on individually, compared with exper-
imental data (dots with error bars) and SM predictions (gray dotted). The latter, together
with non-WW backgrounds (gray shaded), are taken from [207]. Effects of anomalous TGCs
being considered in recent TGC fits (solid) are clearly not dominant over those of δgZuR , δgZdR
(dashed) consistent with EWPD, calling for extension of the conventional TGC analysis
procedure.
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scenarios, where dimension-eight operators’ contributions are expected to be subdominant

by power counting [113].

5.4 Toward a high energy picture of Standard Model

deviations

The reason for the different conclusions regarding LEP2 and LHC is twofold. First, Z

couplings to quarks are less constrained than those to leptons; even a nonzero δgZdR is favored

due to the Z → bb̄ forward-backward asymmetry anomaly [139]. Second, as we will discuss

below, some vertex corrections, even though constrained by Z-pole data, lead to cross section

corrections relative to the SM that grow with ŝ. Their effects are thus amplified at higher

energies. This latter aspect will persist in the future. In particular, it has been proposed to

measure e+e− → W+W− at much higher energies and precisions than LEP2 to search for

deviations from the SM. But whether such deviations, if established, should be interpreted

as indicating anomalous TGCs will crucially depend on our knowledge of the additional

effects, which in turn depends on availability of precision data of other observables. We

leave a detailed study to future work, but simply comment here that in the scenario where

improved Z-pole measurements will not occur before the next e+e− → W+W− measurements

(as envisioned for the ILC [215]), TGC interpretations will indeed be challenged by possibly

large effects of δgZνL , δgZeR .

In fact, searches of SM deviations at the LHC and future colliders share a common theme

of going to higher energy and taking advantage of the anomalous growth of cross sections.

In the case of ff̄ → W+W−, consider the high energy limit v �
√
ŝ� Λ, where

dσfLf̄R
d cos θ

=
πα2(1− cos2 θ)

4Ncm2
Zc

4
θs

4
θ

[
T 3
f (c2

θ − s2
θ) +Qfs

2
θ

]
·[

−δgZf
′

L − (T 3
f −Qfs

2
θ) δg1z + (T 3

f −Qf )
s2
θ

c2
θ

δκγ

]
+O

(
ŝ−1
)

=
πα2(1− cos2 θ)

8Ncm2
Zc

4
θs

4
θ

[
T 3
f (c2

θ − s2
θ) +Qfs

2
θ

][
C

(1)
HF + 2T 3

fC
(3)
HF

]
+O

(
ŝ−1
)
, (5.12)

dσfRf̄L
d cos θ

=
πα2(1− cos2 θ)

4Ncm2
Zc

4
θs

2
θ

Qf

(
−δgZfR +Qfs

2
θ δg1z −Qf

s2
θ

c2
θ

δκγ

)
+O

(
ŝ−1
)

=
πα2(1− cos2 θ)

8Ncm2
Zc

4
θs

2
θ

QfCHf +O
(
ŝ−1
)
. (5.13)

Here θ is the angle between the W− and f momenta. Only terms linear in anomalous

couplings or operator coefficients have been shown, which are sufficient for making our point
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in the following discussion. We comment in passing that unlike the case of LHC, quadratic

terms are subdominant for e+e− → W+W− up to
√
s ∼ 1 TeV, when values of vertex

corrections consistent with EWPD and per-mil-level δg1z, δκγ are considered (contributions

from λγ do not grow with energy at linear level [115,128], and can be dominated by quadratic

terms).

The high energy behavior shown in Eqs. (5.12) and (5.13) can be easily understood and

reproduced using the Goldstone boson equivalence theorem [68], which states that scatter-

ing amplitudes involving longitudinal gauge bosons coincide with those involving the cor-

responding Goldstone bosons in the high energy limit. For example, OHf ⊃ i(φ−∂µφ
+ −

φ+∂µφ
−)(f̄γµf), with φ± being the Goldstone bosons eaten by W±, mediates fRf̄L → φ+φ−

via a contact interaction vertex, with an amplitude proportional to ŝ
Λ2 by dimensional analy-

sis. The corresponding amplitude fRf̄L → W+
LW

−
L (“L” in W±

L for “longitudinal”) thus also

grows with ŝ, in contrast to the SM amplitude which ∼ ŝ0. On the other hand, OHWB, OHD
and Oll do not mediate ff̄ → φ+φ− at tree level, while their contributions to ff̄ → W+

T W
−
T ,

either direct or via shifting input observables, necessarily involve factors of the Higgs vev

and hence ∼ v2

Λ2 . Another interesting feature of Eq. (5.12) is that δgWF
L and δgZfL contribute

via the combination 2T 3
f δg

WF
L − δgZfL = −δgZf

′

L in the high energy limit. This can be seen

from SU(2)L-conjugating, schematically, v2

Λ2 (gZµ)(f̄ ′Lγ
µf ′L)→ φ+φ−

Λ2 (i∂µ)(f̄Lγ
µfL).

The discussion above suggests that as precision studies are pushed to higher energies, it

is useful to reorganize our thinking about SM deviations. Conventionally, the experimental

precision hierarchy between pole observables and ff̄ → W+W− has motivated the use of

anomalous couplings and the procedure of constraining first the parameters in Eq. (5.11), and

then anomalous TGCs with the former set to zero. As higher energies
√
ŝ & v are reached, we

are probing the electroweak symmetric phase where fully SU(2) × U(1)-invariant effective

operators are more useful to guide our thinking than anomalous couplings defined in the

broken phase. In this regard, a better-motivated separation is between operators that lead

to anomalous growth with energy for the cross sections under consideration vs. those that

do not. This separation can be made also when quadratic terms, not shown in Eqs. (5.12)

and (5.13), are included. For ff̄ → W+W−, the first set consists of O(1,3)
HF , OHf , and also

O3W when quadratic terms are considered. Interestingly, O(1,3)
HF , OHf do not by themselves

induce anomalous TGCs, but are turned on only to adjust δgZfL,R to zero in conventional TGC

analyses; see Eq. (5.10). Within the range of validity of the SMEFT (
√
ŝ � Λ), this set

of operators is likely to be more accessible experimentally, leading to a different precision

hierarchy than before.
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5.5 Conclusions

As precision measurements continue to explore higher energies in order to resolve SM devi-

ations enhanced in this regime, our understanding of existing constraints also evolves; and

so does the overall picture of the SMEFT parameter space. In particular, it should be kept

in mind that EWPD will not always render Zff vertex corrections completely irrelevant

for other observables. Meanwhile, accessibility to various directions of the SMEFT param-

eter space will rely more heavily on high energy behaviors of effective operators, rather

than the anomalous couplings they induce. We have illustrated this point in the case of W

pair production. The TGC three-parameter fit framework has been useful and convenient

in past studies of SM deviations in such processes. But now it is time to go beyond this

simplified parameterization, as the key assumption that additional new physics effects are

well-constrained and negligible is already – and will continue to be – challenged by exper-

imental progress at the high energy frontier. A consistent global SMEFT analysis should

include not only anomalous TGCs, but all parameters whose effects are enhanced at high

energy when fitting W pair data, so that the results can be interpreted more generally.
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Chapter 6

Covariant Diagrams for One-Loop

Matching

In this chapter, we present a diagrammatic formulation of recently-revived covariant func-

tional approaches to one-loop matching from an ultraviolet (UV) theory to a low-energy

effective field theory. Various terms following from a covariant derivative expansion (CDE)

are represented by diagrams which, unlike conventional Feynman diagrams, involve gauge-

covariant quantities and are thus dubbed “covariant diagrams.” The use of covariant dia-

grams helps organize and simplify one-loop matching calculations, which we illustrate with

examples. Of particular interest is the derivation of UV model-independent universal results,

which reduce matching calculations of specific UV models to applications of master formu-

las. We show how such derivation can be done in a more concise manner than the previous

literature, and discuss how additional structures that are not directly captured by existing

universal results, including mixed heavy-light loops, open covariant derivatives, and mixed

statistics, can be easily accounted for.

6.1 Introduction

Matching from an ultraviolet (UV) theory to a low-energy effective field theory (EFT) be-

yond tree level has gained renewed interest in recent years. On the phenomenological side,

one-loop matching is in many cases necessary for accurate translation of experimental con-

straints on the Standard Model (SM) EFT parameter space into those on specific new physics

models. On the theoretical side, it is interesting to realize that matching calculations can be

accomplished in more elegant and oftentimes simpler ways than using Feynman diagrams.

For the latter aspect, the idea is to directly tackle the path integral, and identify and expand

heavy fields’ contributions to the functional determinant arising at one-loop level to obtain
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effective operators involving the light fields. Such functional approaches to matching have

at least two important virtues:

• By performing a covariant derivative expansion (CDE), one can work with gauge-

covariant quantities in all steps of the calculation, and thus automatically arrive at

gauge-invariant effective operators in the end. This is unlike conventional Feynman

diagram methods, where gauge-invariant final results are obtained only after putting

together individual pieces which may not be separately gauge-invariant.

• The generality of such approaches has brought up the possibility of obtaining universal

results. With general assumptions on the form of the UV theory, evaluation of the

functional determinants involved proceeds in a model-independent way, which can thus

be done once and for all. The result will be widely-applicable master formulas, from

which matching calculations for specific models are reduced to matrix algebra.

The development and use of covariant functional approaches to matching dates back to

the 1980s; see e.g. [216–218]. The subject was revived recently, thanks to the work [55]

by Henning, Lu and Murayama (HLM). Following the CDE approach of Gaillard [216] and

Cheyette [218], HLM presented in [55] a universal master formula for one-loop matching,

assuming degenerate mass spectrum for the heavy particles. Applications of this master

formula to various examples have been illustrated by HLM in [55], and also by others in [196–

198]. The HLM master formula was generalized by Drozd, Ellis, Quevillon and You [56] to the

case of nondegenerate heavy particle masses. The same Gaillard-Cheyette CDE approach

is followed in [56], and the resulting master formula is dubbed the “Universal One-Loop

Effective Action” (UOLEA), to emphasize the universality of the approach, as discussed in

the second bullet point above. The UOLEA was applied to the example of integrating out

nondegenerate stops in [56].

It was later pointed out, however, that the HLM/UOLEA master formulas, in their orig-

inal forms at least, do not capture possible contributions from mixed heavy-light loops [219]

(see also [220]). The reason can be most easily understood by noting that light fields are

treated as background fields in [55, 56] and are thus not allowed to run in loops. Fixes to

this problem were soon proposed, following different CDEs [57], or alternatively still within

the UOLEA framework [58]. Although technically quite different, both approaches in [57]

and [58] share a similar spirit, namely to include quantum fluctuations of light fields also,

and then identify and subtract off nonlocal pieces from the functional determinant to obtain

local effective operators. These studies provide, at the very least, a proof of principle that

mixed heavy-light loops can be accounted for in covariant functional approaches to match-

ing. This latter point was further corroborated recently in [59], following an alternative
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CDE approach that builds upon [221, 222]. Compared with [57, 58], matching calculations

are simplified in [59] partly due to the use of expansion by regions techniques [223–225],

which allow local pieces of the functional determinant to be directly identified, so that no

subtraction procedure is needed.

These recent developments of functional matching techniques are, unfortunately, also

accompanied by different levels of technical complication compared with [55,56]. It should be

emphasized that the motivation for studying functional matching lies not only in theoretical

curiosity, but also, at least equally importantly, in practical usefulness. In this latter respect,

the goal is to develop a set of tools for matching that is easy to use even for those not

necessarily familiar with all the technical subtleties of functional methods. There are at

least two possibilities for achieving this goal:

• Ideally we wish to obtain a truly universal master formula, as an extension of the

results presented in [55, 56]. Such an extension requires incorporation of not only

mixed heavy-light contributions mentioned above [61], but also e.g. open covariant

derivatives (covariant derivatives acting openly to the right as opposed to appearing

in commutators) and mixed statistics (both bosonic and fermionic fields in the loop).

• Even if deriving such extended universal results turns out to be too involved to be

completed very soon, we may still take advantage of the covariant feature of functional

approaches, and consider alternatives to Feynman diagram methods that simplify cal-

culations and offer useful intuition, even though on a case-by-case basis. This will also

bring new options for more efficient automation of matching calculations1.

It is the purpose of this chapter to present a tool that will be useful for making progress

along both these lines. The idea is to have a diagrammatic formulation of one-loop functional

matching which is as systematic as the conventional Feynman diagram approach, but differs

crucially from the latter by preserving gauge covariance in intermediate steps. It is perhaps

not surprising that this is possible, since recent studies of functional matching [57–59] all

follow diagrammatic intuitions to some extent. We will show explicitly how to establish such

a gauge-covariant diagrammatic formulation, building upon the approach of [59] (which we

provide a more rigorous derivation of)2, and how to use it in one-loop matching calculations.

The diagrams introduced are dubbed “covariant diagrams” — they are in a sense gauge-

covariant versions of Feynman diagrams. Just like Feynman diagrams, which keep track of

terms in an expansion of correlation functions, covariant diagrams keep track of terms in

1See e.g. [226] for recent progress on automation of Feynman diagrammatic matching.
2The approach of [55,56] also allows for a diagrammatic formulation, which is however more complicated

technically and will not be discussed further.
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a CDE in functional matching. Let us clarify that enumerating and computing covariant

diagrams is equivalent to selecting and evaluating various terms of interest that result from

a CDE. But as we will see, it is both technically simpler and conceptually more intuitive

than the latter, and meanwhile preserves the universality feature of functional matching

procedures.

6.2 Gauge-covariant functional matching

The problem of matching can be formulated as follows: given an UV Lagrangian LUV[Φ, φ]

for a set of heavy fields Φ of masses {Mi} and a set of light fields φ of masses {mi′} � {Mi},

LEFT[φ] = ? s.t. ΓL,UV[φb] = ΓEFT[φb] . (6.1)

Here ΓL,UV is the one-light-particle-irreducible (1LPI) effective action calculated in the UV

theory, while ΓEFT is the one-particle-irreducible (1PI) effective action (a.k.a. quantum ac-

tion) calculated in the low-energy EFT. They will be computed as functionals of background

fields φb by the standard procedures of the background field method (see e.g. [227, 228]).

Eq. (6.1) ensures that the UV theory and the EFT give identical physical predictions re-

garding the light fields.

In this section, we shall focus on the simplest case of real scalar fields for illustration.

The results derived below can be easily generalized to other types of fields.

6.2.1 Calculating ΓL,UV[φb]

To compute ΓL,UV[φb], we start from the path integral,

ZUV[JΦ, Jφ] =

∫
[DΦ][Dφ] e i

∫
ddx(LUV[Φ,φ]+JΦΦ+Jφφ) , (6.2)

and separate all fields contained in the heavy and light field multiplets into classical back-

grounds (labeled by subscripts “b”) and quantum fluctuations (labeled by primes),

Φ = Φb + Φ′ , φ = φb + φ′ . (6.3)

The background fields and sources are related by

0 =
δLUV

δΦ
[Φb, φb] + JΦ =

δLUV

δφ
[Φb, φb] + Jφ . (6.4)
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The 1LPI effective action ΓL,UV[φb] is obtained as the Legendre transform of the path integral

with respect to the light fields,

ΓL,UV[φb] = −i logZUV[JΦ = 0, Jφ]−
∫
ddx Jφφb . (6.5)

Note that JΦ is set to zero because we are interested in correlation functions with no external

sources of the heavy fields.

With the separation in Eq. (6.3), the UV theory Lagrangian plus source terms can be

written as

LUV[Φ, φ] + JΦΦ + Jφφ = LUV[Φb, φb] + JΦΦb + Jφφb −
1

2

(
Φ′T φ′T

)
QUV[Φb, φb]

Φ′

φ′

+ . . .

(6.6)

where the quadratic operator

QUV[Φb, φb] ≡

− δ2LUV

δΦ2 [Φb, φb] − δ2LUV

δΦδφ
[Φb, φb]

− δ2LUV

δφδΦ
[Φb, φb] − δ2LUV

δφ2 [Φb, φb]

 . (6.7)

Note that in Eq. (6.6), terms linear in φ′ or Φ′ vanish due to Eq. (6.4). We therefore obtain

the tree-level result as the stationary point approximation,

Ztree
UV [JΦ, Jφ] =

∫
[DΦ][Dφ]e i

∫
ddx(LUV[Φb,φb]+JΦΦb+Jφφb) ∝ e i

∫
ddx(LUV[Φb,φb]+JΦΦb+Jφφb)

⇒ Γtree
L,UV[φb] =

∫
ddxLUV

[
Φc[φb], φb

]
, (6.8)

up to an irrelevant constant term, where Φc[φb] (subscript “c” for “classical”) is defined by

Φc[φb] ≡ Φb[JΦ = 0] i.e.
δLUV

δΦ

[
Φc[φb], φb

]
≡ δLUV[Φ, φ]

δΦ

∣∣∣∣
Φ=Φc[φb], φ=φb

= 0. (6.9)

In other words, Φc[φb] solves the classical equations of motion for the heavy fields when the

light fields are treated as backgrounds.

Up to one-loop level, we have

ZUV[JΦ, Jφ] ' Ztree
UV

∫
[DΦ′][Dφ′] exp

− i2
∫
ddx

(
Φ′T φ′T

)
QUV[Φb, φb]

Φ′

φ′


∝ Ztree

UV

(
detQUV[Φb, φb]

)− 1
2
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⇒ Γ1-loop
L,UV [φb] =

i

2
log detQUV

[
Φc[φb], φb

]
, (6.10)

which is familiar from standard calculations of 1PI effective actions.

6.2.2 Calculating ΓEFT[φb]

On the EFT side, suppose

LEFT[φ] = Ltree
EFT[φ] + L1-loop

EFT [φ] + . . . (6.11)

where Ltree
EFT and L1-loop

EFT contain effective operators generated at tree and one-loop level,

respectively. The path integral can be evaluated up to one-loop level,

ZEFT[Jφ] =

∫
[Dφ] e i

∫
ddx(LEFT[φ]+Jφφ)

' e i
∫
ddx(LEFT[φb]+Jφφb)

∫
[Dφ′] e−

i
2

∫
ddxφ′TQtree

EFT[φb]φ′

∝ e i
∫
ddx(Ltree

EFT[φb]+L1-loop
EFT [φb]+Jφφb)

(
detQtree

EFT[φb]
)− 1

2 , (6.12)

where the quadratic operator

QEFT[φb] ≡ −δ
2LEFT

δφ2
[φb] . (6.13)

Again, in the exponent, terms linear in φ′ vanish due to the relation

δLEFT

δφ
[φb] + Jφ = 0 . (6.14)

We therefore obtain the 1PI effective action in the EFT up to one-loop level,

ΓEFT[φb] = −i logZEFT[Jφ]−
∫
ddx Jφφb

'
∫
ddx

(
Ltree

EFT[φb] + L1-loop
EFT [φb]

)
+
i

2
log detQtree

EFT[φb] , (6.15)

⇒ Γtree
EFT[φb] =

∫
ddxLtree

EFT[φb] , (6.16)

Γ1-loop
EFT [φb] =

∫
ddxL1-loop

EFT [φb] +
i

2
log detQtree

EFT[φb] . (6.17)

The meaning of the above equations is clear. The tree-level quantum action is given by the

tree-level terms in the classical action, while at one-loop level, the quantum action contains
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two pieces — one-loop-size effective operators used at tree level, and tree-level-size effective

operators used at one-loop level.

6.2.3 Matching ΓL,UV[φb] and ΓEFT[φb]

Equating Eqs. (6.8), (6.10) and Eqs. (6.16), (6.17), we obtain the EFT Lagrangian that

satisfies the matching condition (6.1). At tree level,

Ltree
EFT[φ] = LUV

[
Φc[φ], φ

]
→ LUV

[
Φ̂c[φ], φ

]
, (6.18)

where Φ̂c[φ] is the local operator expansion of the nonlocal object Φc[φ]. The extra step from

Φc[φ] to Φ̂c[φ] is necessary so that LEFT[φ] consists of local operators. As a trivial example,

suppose

LUV[Φ, φ] = L0[φ] + ΦTF [φ]− 1

2
ΦT
(
−P 2 +M2

)
Φ , (6.19)

where Pµ ≡ iDµ. The advantage of introducing this notation is that Pµ is a hermitian

operator. Φc[φ] is obtained by solving the classical equation of motion [see Eq. (6.9)],

δLUV

δΦ
= F [φ]−

(
−P 2 +M2

)
Φ = 0 ⇒ Φc[φ] =

1

−P 2 +M2
F [φ] . (6.20)

This is a nonlocal quantity due to the appearance of P 2 in the denominator. The corre-

sponding local operator expansion, which should appear in the EFT, reads

Φ̂c[φ] =
1

M2
F [φ] +

1

M2
P 2 1

M2
F [φ] + . . . (6.21)

Moving on to one-loop level, we have∫
ddxL1-loop

EFT [φ] =
i

2
log detQUV

[
Φc[φ], φ

]
− i

2
log detQtree

EFT[φ] . (6.22)

To proceed, we follow [59] and block-diagonalize QUV. With the following short-hand nota-

tion for the elements of QUV,

QUV[Φ, φ] =

− δ2LUV

δΦ2 [Φ, φ] − δ2LUV

δΦδφ
[Φ, φ]

− δ2LUV

δφδΦ
[Φ, φ] − δ2LUV

δφ2 [Φ, φ]

 ≡
∆H [Φ, φ] XHL[Φ, φ]

XLH [Φ, φ] ∆L[Φ, φ]

 , (6.23)
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it is easy to show that

V †QUVV =

∆H −XHL∆−1
L XLH 0

0 ∆L

 with V =

 1 0

−∆−1
L XLH 1

 . (6.24)

Note that for real scalar fields, XHL = XLH and both are hermitian. When generalized

to complex fields, XHL = X†LH . With Eq. (6.24), the first term on the RHS of Eq. (6.22)

becomes

i

2
log detQUV

[
Φc[φ], φ

]
=
i

2
log det

(
∆H −XHL∆−1

L XLH

)
+
i

2
log det ∆L , (6.25)

where the arguments
[
Φc[φ], φ

]
→
[
Φ̂c[φ], φ

]
have been dropped on the RHS for simplicity.

Note that Φc[φ] should be replaced by Φ̂c[φ] to form local operators of the EFT.

Let us now look at the second term on the RHS of Eq. (6.22). With Eqs. (6.13) and (6.18),

we have

Qtree
EFT[φ] = −

δ2LUV

[
Φ̂c[φ], φ

]
δφ2

= − δ

δφ

(
δLUV

δφ

[
Φ̂c[φ], φ

]
+
δΦ̂c[φ]

δφ

δLUV

δΦ

[
Φ̂c[φ], φ

])

= − δ

δφ

(
δLUV

δφ

[
Φ̂c[φ], φ

])
= −δ

2LUV

δφ2

[
Φ̂c[φ], φ

]
− δΦ̂c[φ]

δφ

δ2LUV

δΦδφ

[
Φ̂c[φ], φ

]
= ∆L

[
Φ̂c[φ], φ

]
−XLH∆̂−1

H XHL

[
Φ̂c[φ], φ

]
. (6.26)

When going from the first line to the second, we have used δLUV

δΦ

[
Φ̂c[φ], φ

]
= δLUV

δΦ

[
Φc[φ], φ

]
=

0 — this is true because the EoM can be solved order by order in 1
M

to obtain a local operator

expansion Φ̂c[φ]. To arrive at the last line of Eq. (6.26), note that

0 =
δ

δφ

(
δLUV

δΦ

[
Φ̂c[φ], φ

])
=
δ2LUV

δφδΦ

[
Φ̂c[φ], φ

]
+
δΦ̂c[φ]

δφ

δ2LUV

δΦ2

[
Φ̂c[φ], φ

]
= −XLH

[
Φ̂c[φ], φ

]
− δΦ̂c[φ]

δφ
∆H

[
Φ̂c[φ], φ

]
⇒ δΦ̂c[φ]

δφ
= −XLH∆−1

H

[
Φ̂c[φ], φ

]
→ −XLH∆̂−1

H

[
Φ̂c[φ], φ

]
, (6.27)

where ∆̂−1
H is the local operator expansion of ∆−1

H . We therefore obtain

− i
2

log detQtree
EFT[φ] = − i

2
log det

(
∆L −XLH∆̂−1

H XHL

)
= − i

2
log det ∆L −

i

2
log det

(
1−∆−1

L XLH∆̂−1
H XHL

)
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= − i
2

log det ∆L −
i

2
log det

(
1− ∆̂−1

H XHL∆−1
L XLH

)
= − i

2
log det ∆L +

i

2
log det ∆̂H −

i

2
log det

(
∆̂H −XHL∆−1

L XLH

)
,

(6.28)

with the arguments
[
Φ̂c[φ], φ

]
implicit. Adding this equation to Eq. (6.25), we finally obtain,

according to Eq. (6.22),∫
ddxL1-loop

EFT [φ] =
i

2

(
log det

(
∆H −XHL∆−1

L XLH

)
− log det

(
∆̂H −XHL∆−1

L XLH

))
+
i

2
log det ∆̂H , (6.29)

where again, the arguments
[
Φ̂c[φ], φ

]
are implicit. As expected, log det ∆L which comes

from pure light loops cancels between the two terms.

6.2.4 Hard vs. soft

The formula obtained above for one-loop matching using functional methods, Eq. (6.29), is

quite abstract. To make use of it, a key observation, as emphasized in [59], is that with

dimensional regularization (which we adopt, together with the MS scheme, throughout this

chapter), each “log det” can be separated into “hard” and “soft” region contributions, namely

log detX = log detX|hard + log detX|soft . (6.30)

What “hard” and “soft” mean is the following: for the “loop integrals” that appear in the

computation of log detX, which involve heavy and light particle masses {Mi}, {mi′}, and a

“loop momentum” (i.e. integration variable) q,

• the hard region contribution is obtained by first expanding the integrand for |q2| ∼
M2

i � |m2
i′ |, and then performing the integration over the full momentum space;

• the soft region contribution is obtained by first expanding the integrand for |q2| ∼
|m2

i′ | �M2
i , and then performing the integration over the full momentum space.

The nontrivial identity (6.30) is known as the method of expansion by regions, which has

been well-known in Feynman diagrammatic multi-loop calculations; see e.g. [223–225]. As

a simple one-loop example, consider the following IR- and UV-finite integral (in d = 4 − ε
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dimensions):∫
ddq

(2π)d
1

(q2 −M2)(q2 −m2)2
=

i

16π2

[
1

M2 −m2

(
1− log

M2

m2

)
− m2

(M2 −m2)2
log

M2

m2

]
=

i

16π2

1

M2

(
1− log

M2

m2

)
+O(M−4) . (6.31)

The hard and soft regions yield IR- and UV-divergent integrals, respectively:∫
ddq

(2π)d
1

(q2 −M2)(q2 −m2)2

∣∣∣∣
hard

=

∫
ddq

(2π)d
1

(q2 −M2)q4
(1 + . . . )

=
i

16π2

1

M2

(
2

ε̄
+ 1− log

M2

µ2

)
+O(M−4),

(6.32a)∫
ddq

(2π)d
1

(q2 −M2)(q2 −m2)2

∣∣∣∣
soft

=

∫
ddq

(2π)d

[
− 1

M2

1

(q2 −m2)2
+ . . .

]
=

i

16π2

1

M2

(
−2

ε̄
+ log

m2

µ2

)
+O(M−4), (6.32b)

where 2
ε̄
≡ 2

ε
− γ + log 4π with ε = 4− d. However, the 1

ε
singularities cancel when the two

equations are added, and the finite result of the original integral is reproduced.

Now we can simplify Eq. (6.29). The crucial statements are

log det
(
∆̂H −XHL∆−1

L XLH

)
= log det

(
∆H −XHL∆−1

L XLH

)∣∣
soft

, (6.33a)

log det ∆̂H = log det ∆H |soft = 0 . (6.33b)

It is not hard to understand that replacing ∆H by ∆̂H singles out the soft part, because

Mi dependence comes only from ∆H , and a local operator expansion corresponds to the

limit Mi → ∞. On the other hand, log det ∆H |soft vanishes because for pure heavy loops,

expanding in the soft region gives rise to scaleless integrals. Combining Eqs. (6.29), (6.30)

and (6.33), we finally arrive at the following formula,∫
ddxL1-loop

EFT [φ] =
i

2
log det

(
∆H −XHL∆−1

L XLH

)∣∣
hard

=
i

2
Tr log

(
∆H −XHL∆−1

L XLH

)∣∣
hard

. (6.34)

6.2.5 Evaluating the functional trace

The initial steps of evaluating the functional trace (6.34) are standard, which we reproduce

here for the sake of completeness. Recall that entries of the infinite-dimensional matrix
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∆H − XHL∆−1
L XLH , which we shall call ∆ to simplify notation, are labeled by spacetime

indices x (momentum indices q) when the UV theory Lagrangian is written in position

(momentum) space, i.e. in terms of Φ(x), φ(x) (Φ̃(q), φ̃(q)), plus possible internal indices.

∆ contains x and i∂x in position space, which become operators x̂ and p̂ in general. We

evaluate its trace using the momentum eigenstate basis, and follow standard manipulations

familiar from quantum mechanics,

Tr ∆(x̂, p̂) =

∫
ddq

(2π)d
〈q| tr ∆(x̂, p̂) |q〉 =

∫
ddx

∫
ddq

(2π)d
〈q|x〉〈x| tr ∆(x̂, p̂) |q〉

=

∫
ddx

∫
ddq

(2π)d
eiq·x tr ∆(x, i∂x) e

−iq·x =

∫
ddx

∫
ddq

(2π)d
tr ∆(x, i∂x + q)

=

∫
ddx

∫
ddq

(2π)d
tr ∆(x, i∂x − q) , (6.35)

where “tr” is over internal indices only, and we have used 〈x|q〉 = e−iq·x. The last equality

follows from a conventional change of integration variable q → −q. As a result,

L1-loop
EFT [φ] =

i

2

∫
ddq

(2π)d
tr log

(
∆H −XHL∆−1

L XLH

)
P→P−q

∣∣∣∣
hard

. (6.36)

At this point, there is one additional transformation that can be made [55, 56, 216, 218],

but is optional. The idea is to put all covariant derivatives Pµ into commutators, e.g. [Pµ, Pν ],

[Pµ, X(x)], by sandwiching the tr log between eP ·∂q and e−P ·∂q (which trivially become 1’s

when acting on identities on both sides) and using the Baker-Campbell-Hausdorff (BCH)

formula. This transformation is convenient in the sense that all intermediate steps from here

on will involve Pµ’s only through commutators, as does the final result3. But meanwhile, it

makes the computation more tedious because of a plethora of terms resulting from applying

the BCH formula. This is especially true when the quadratic operator QUV contains open

covariant derivatives, namely Pµ’s acting openly to the right as opposed to appearing in

commutators, in addition to those from kinetic terms. Another disadvantage is that with

the introduction of ∂q which does not commute with q, the logarithm cannot be expanded

in a simple way due to the fact that log(AB) 6= logA + logB when [A,B] 6= 0 4. As a

way out, an auxiliary integral is introduced in [55, 56], which nevertheless complicates the

integrations to be done. Therefore, we choose to follow [57,59] and proceed without making

this additional transformation.

3Recall that Pµ as a operator acts on everything to its right, so e.g. iDµφ ’s in the final result for LEFT

really mean [Pµ, φ]. On the other hand, gauge field strengths can be written as [Pµ, Pν ] up to normalization.
4Recall that “tr” is over internal indices only, so tr [∂q, f(q)] 6= 0. Also,

∫
ddq

(2π)d
[∂q, f(q)] =

∫
ddq

(2π)d
f ′(q)

may not vanish due to UV divergences.
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6.2.6 Covariant derivative expansion (CDE)

The next step is to perform a CDE, i.e. to make an expansion in power series of Pµ while

keeping Pµ intact (as opposed to separating it into i∂µ and gAµ). Suppose, quite generally,

∆H = −P 2 +M2 +XH , (6.37)

where

M = diag (M1,M2, . . . ) (6.38)

is the mass matrix of the heavy field multiplet Φ 5. In general, XH may take the form

XH [Φ, φ, Pµ] = UH [Φ, φ] +PµZ
µ
H [Φ, φ] +Z†µH [Φ, φ]Pµ +PµPνZ

µν
H [Φ, φ] +Z†µνH [Φ, φ]PνP

µ + . . .

(6.39)

In the hard region, the logarithm in Eq. (6.36) can be expanded as follows:

log
(
∆H −XHL∆−1

L XLH

)
P→P−q = log

(
−q2 +M2 + 2q · P − P 2 +XH −XHL∆−1

L XLH

)
= log(−q2 +M2) + log

[
1−

(
q2 −M2

)−1(
2q · P − P 2 +XH −XHL∆−1

L XLH

)]
= log(−q2 +M2)−

∞∑
n=1

1

n

[(
q2 −M2

)−1(
2q · P − P 2 +XH −XHL∆−1

L XLH

)]n
, (6.40)

where the substitution P → P − q is assumed in XH and XHL∆−1
L XLH . Therefore, up to an

additive constant,

L1-loop
EFT [φ] = − i

2
tr
∞∑
n=1

1

n

∫
ddq

(2π)d

[(
q2 −M2

)−1

(
2q · P − P 2 + XH |P→P−q − XHL∆−1

L XLH

∣∣
P→P−q

)]n∣∣∣
hard

. (6.41)

As before, XH,HL,LH and ∆L have arguments
[
Φ̂c[φ], φ

]
. Eq. (6.41) holds for the special case

of real scalars but can be straightforwardly generalized. It will be our starting point for

deriving a covariant diagrammatic formulation of one-loop matching in the next section.

5It is always possible to simultaneously diagonalize the Pµ and M matrices, since mass mixing can
only happen among fields with identical gauge quantum numbers, as far as unbroken gauge symmetries are
concerned. On the other hand, if the UV theory is written in the broken phase of a spontaneously broken
gauge symmetry, there could also be mass mixing induced by spontaneous symmetry breaking. In that
case, gauge fields associated with the broken symmetries would not appear in Pµ in the first place, so the
diagonalization is still possible.
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6.3 Covariant diagrams

6.3.1 Pure heavy loops

We first look at the simplest case, where the following three restrictions are satisfied:

• XHL = XLH = 0, i.e. no mixed heavy-light contributions to one-loop matching. This

already covers a broad class of UV models where heavy fields do not couple linearly to

light degrees of freedom and Φc = 0.

• XH does not contain open covariant derivatives, i.e. XH = UH ; see Eq. (6.39).

• The field multiplet Φ contains only bosonic fields.

After developing the basics of covariant diagrams for this simplest case, we will lift the above

restrictions one by one in the next three subsections.

For real scalars, we can directly use Eq. (6.41), which becomes, under the above restric-

tions,

L1-loop
EFT [φ] = − i

2
tr
∞∑
n=1

1

n

∫
ddq

(2π)d

[(
q2 −M2

)−1(
2q · P − P 2 + UH

)]n
. (6.42)

Note that, with no light masses involved, the hard part of the integral is trivially equal to the

original integral. A key observation is that each term in the sum in Eq. (6.42) factorizes into

a loop integral over q and a trace involving Pµ and UH that gives rise to effective operators.

The nonvanishing loop integrals involved have the generic form∫
ddq

(2π)d
qµ1 · · · qµ2nc

(q2 −M2
i )ni(q2 −M2

j )nj · · ·
≡ gµ1...µ2nc I[q2nc ]

ninj ...
ij... , (6.43)

where gµ1...µ2nc is the completely symmetric tensor, e.g. gµνρσ = gµνgρσ + gµρgνσ + gµσgνρ.

Eq. (6.43) defines the master integrals I[q2nc ]
ninj ...
ij... . We use the symbol “ I ” to distinguish

from the master integrals in [56] which are denoted by “ I ” and involve an extra auxiliary

integral. Some useful master integrals are summarized in Appendix A.

Eq. (6.42) has a straightforward diagrammatic representation as a sum of one-loop dia-

grams with propagators 1
q2−M2 and vertex insertions 2q · P , −P 2 and UH . The loop integral

can be read off from a diagram simply by counting the numbers of propagators (for each

species) and 2q · P vertices. As a result of evaluating the loop integral as in Eq. (6.43),

various terms in gµ1...µ2nc Lorentz-contract the Pµ’s from 2q · P insertions in different ways,

and all possibilities are summed over. We can keep track of such contractions by connecting
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two 2q · P vertices by a dotted line. The above procedure can be easily understood with an

example,

j

ji

i

= − i
2

1

2
I[q2]22

ij tr
(
(2P µ)UH ij (2Pµ)UH ji

)
, (6.44)

where the diagram is read clockwise, and filled and empty circles represent 2q · P and

UH insertions, respectively (recall that Pµ is diagonal in the field multiplet space and

hence does not change the propagator label). Eq. (6.44) represents a term in the expan-

sion (6.42). The only element in Eq. (6.44) which we have not discussed is the symmetry

factor 1
2
, coming from 1

n
= 1

4
(four propagators) multiplied by 2 (two identical contributions

tr((2P µ)UH ij (2Pµ)UH ji) and tr(UH ij (2Pµ)UH ji (2P
µ))). An easy way to find this sym-

metry factor is to note the Z2 symmetry of the diagram under rotation. It is not hard to

show that in general, the presence of a ZS symmetry of a diagram under rotation indicates a

symmetry factor 1
S

. We see that our diagrammatic formulation automatically collects terms

from the CDE containing equivalent operator traces, and thus makes finding such factors a

trivial task.

One can draw all possible diagrams like the one in Eq. (6.44) to keep track of all terms in

the expansion (6.42) up to a certain order. These terms, which contain operator structures

with open covariant derivatives, would eventually organize into independent operators with

covariant derivatives appearing only in commutators (recall that the final result can always be

written in a form that involves Pµ’s only via commutators). For example, we could enumerate

all diagrams containing two Pµ’s and two UH ’s, which include the one in Eq. (6.44), a second

diagram with adjacent Pµ contractions, and a third diagram with a −P 2 insertion. The

latter two diagrams represent

− i

2
I[q2]31

ij tr
(
(2P µ) (2Pµ)UH ij UH ji

)
− i

2
I21
ij tr

(
(−P 2)UH ij UH ji

)
, (6.45)

with no symmetry factors. Here and in the following, we abbreviate I[q0]
ninj ...
ij... as Ininj ...ij... .

Adding up the three terms in Eqs. (6.44) and (6.45), and making use of the identity I21
ij =

2 I[q2]22
ij + 4 I[q2]31

ij ,6 we arrive at one single operator of the desired form (without open

covariant derivatives),

−i
{
I[q2]22

ij tr
(
P µ UH ij Pµ UH ji

)
+
(

2 I[q2]31
ij −

1

2
I21
ij

)
tr
(
P 2 UH ij UH ji

)}
= −i I[q2]22

ij tr
(
P µ UH ij Pµ UH ji − P 2 UH ij UH ji

)
6This identity can be easily proved by writing I[q2]22

ij = 1
4 (I21

ij +M2
j I22

ij ), I[q2]31
ij = 1

4 (I21
ij +M2

i I31
ij ) and

using the formulas in Appendix A.
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= − i
2
I[q2]22

ij tr
(
2P µ UH ij Pµ UH ji − P 2 UH ij UH ji − P 2 UH ji UH ij

)
= − i

2
I[q2]22

ij tr
(
[P µ, UH ij][Pµ, UH ji]

)
. (6.46)

Alternatively, we could have anticipated the form of the final result before enumerating

the diagrams — there is only one independent operator involving two Pµ’s and two UH ’s,

namely tr([P µ, UH ][Pµ, UH ]), so we know all relevant terms in the CDE must add up to

cij tr
(
[P µ, UH ij][Pµ, UH ji]

)
= 2cij tr

(
P µ UH ij Pµ UH ji

)
− (cij + cji) tr

(
P 2 UH ij UH ji

)
. (6.47)

To determine the coefficient cij, it is actually not necessary to compute all three diagrams as

we did above. Since the last two diagrams only contribute to the second term of Eq. (6.47),

we could have obtained cij without computing them, simply by comparing Eq. (6.44) to the

first term of Eq. (6.47). The result would be cij = − i
2
I[q2]22

ij , in agreement with Eq. (6.46).

In fact, it is generally true that to determine the coefficients of all independent effective

operators in the final result, it is sufficient to compute just a subset of all possible diagrams.

This is simply because when Pµ’s are involved, the number of independent structures one can

write down with open covariant derivatives (two for the example above, tr(P µ UH ij Pµ UH ji)

and tr(P 2 UH ij UH ji)) is greater than the number of independent operators with Pµ’s ap-

pearing only in commutators (only one, tr([P µ, UH ij][Pµ, UH ji])). While we do not have an

algorithm to determine, in full generality, the minimal set of diagrams to be computed, we

have discovered a useful prescription that greatly reduces the workload: all diagrams with

either −P 2 insertions or adjacent Pµ contractions, namely those that yield tr(. . . P 2 . . . ), can

be dropped. In the example above, this prescription corresponds to not explicitly writing

down and computing Eq. (6.45) which, as we have seen, only provides redundant informa-

tion on cij. In fact, in many of the examples in Section 6.4, this prescription will reduce

the diagrams to be computed to a minimal set, in the sense that we will have just enough

information to determine all the operator coefficients in the final results.

The above discussion can also be applied to other types of bosonic fields. A complex

scalar is equivalent to a multiplet of two real scalars, e.g. its real and imaginary parts. In

practice it is often more convenient to use a multiplet consisting of the complex scalar itself

and an appropriately-defined complex conjugate field. We will see explicitly how this is done

in the next section. For vector bosons, with the addition of the Rξ gauge fixing term, the
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UV Lagrangian contains the following terms quadratic in the quantum fluctuations,

− 1

2
V ′aα

{(
−gαβ

)(
−(P 2)ab +M2

V δab
)
−
(

1− 1

ξ

)(
PαP β

)
ab

+ Uαβ
H ab

}
V ′bβ (6.48)

It is convenient to use the Feynman gauge ξ = 1, where ∆H takes the form of Eq. (6.37) as

in the scalar case, so that the same procedure of using covariant diagrams can be followed 7.

The only nontrivial extension is that vector boson fields carry Lorentz indices, which are

regarded as additional internal indices and should be contracted with −gαβ (note minus

sign!) when computing traces. This can be seen as follows,

log
{

(−gαβ)(−P 2 +M2
V ) + Uαβ

H

}
P→P−q = log

{
(−gαβ)(−q2 +M2

V + 2q · P − P 2) + Uαβ
H

}
= log

{
(−gαγ)(−q2 +M2

V )
}

+ log
{
δ β
γ − (−gγδ)(q2 −M2

V )−1
(
(−gδβ)(2q · P − P 2) + U δβ

H

)}
, (6.49)

with internal indices a, b dropped for simplicity. As an example, when only vector fields are

considered, the trace in Eq. (6.44) should be understood as

tr (P µ UH ij Pµ UH ji) =

(−gα1β1)(−gα2β2)(−gα3β3)(−gα4β4) tr
(
(−gβ4α1P µ)(Uβ1α2

H ij )(−gβ2α3Pµ)(Uβ3α4

H ji )
)
,(6.50)

with all Lorentz indices written out explicitly. The “tr” in the second line of Eq. (6.50) then

indicates a trace over the remaining internal indices.

A summary of the building blocks of covariant diagrams and the operator structures

they represent in the restricted case discussed in this subsection can be found in Table 6.1

of Section 6.3.5.

6.3.2 Mixed heavy-light loops

Next, we allow XHL,LH to be nonzero, while still assuming the absence of open covariant

derivatives. Specifically, we consider

XHL = UHL , XLH = ULH , (6.51a)

∆L = −P 2 +m2 +XL = −P 2 +m2 + UL . (6.51b)

7The associated Goldstone boson and ghost fields can also be treated in the same way as scalars, except
that ghost loops come with a factor of (−1) due to the Grassmannian Gaussian integral.
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where

m = diag (m1,m2, . . . ) (6.52)

is the mass matrix of the light field multiplet φ. The additional piece in Eq. (6.41) becomes

− XHL∆−1
L XLH

∣∣
P→P−q = UHL(q2 −m2 − 2q · P + P 2 − UL)−1ULH

→ UHL

∞∑
n=0

[ 1

q2
(m2 + 2q · P − P 2 + UL)

]n 1

q2
ULH . (6.53)

The expansion above is suitable in the hard region where |q2| � |m2|. Eq. (6.53) as a whole

can be thought of as a new type of insertion in the heavy loop, in addition to 2q · P , −P 2,

UH considered in the previous subsection. Equivalently, the expansion of Eq. (6.53) instructs

us to draw one-loop diagrams involving both heavy and light propagators which represent
1

q2−M2 and 1
q2 , respectively. 2q · P , −P 2 and UH can be inserted in heavy propagators as

before, while 2q · P , −P 2, UL and m2 can be inserted in light propagators. UHL (ULH)

connects an incoming heavy (light) propagator and an outgoing light (heavy) propagator,

when the diagrams are read clockwise. Loop integrals now have the form∫
ddq

(2π)d
qµ1 · · · qµ2nc

(q2 −M2
i )ni(q2 −M2

j )nj · · · (q2)nL
≡ gµ1...µ2nc I[q2nc ]

ninj ...nL
ij...0 . (6.54)

Eq. (6.54) defines an extended set of master integrals I[q2nc ]
ninj ...nL
ij...0 , some of which are

summarized in Appendix A. Note that these loop integrals do not depend on light particle

masses because the latter are treated as vertex insertions. This implies, in particular, that

in the case of massless particles, there is no need to keep m2 nonzero as an IR regulator.

As a simple example, we show a mixed heavy-light version of Eq. (6.44),

i′

i′i

i

= − i
2
I[q2]22

i0 tr
(
(2P µ)UHL ii′ (2Pµ)ULH i′i

)
, (6.55)

where light propagators are represented by dashed lines, and labeled by primed indices. Note

the absence of a nontrivial symmetry factor in this case. The additional building blocks of

covariant diagrams discussed in this subsection are summarized in Table 6.2 of Section 6.3.5.

6.3.3 Open covariant derivatives

In addition to UH,HL,LH,L considered above, the XH,HL,LH,L matrices may also contain terms

involving open covariant derivatives; see Eq. (6.39). These terms are slightly different from
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the U terms because they are modified by the substitution P → P − q. For example, terms

in Eq. (6.39) with one open covariant derivative become

PµZ
µ
H + Z†µH Pµ → PµZ

µ
H + Z†µH Pµ − qµZ

µ
H − Z

†µ
H qµ , (6.56)

resulting in two types of vertex insertions: PµZ
µ
H and Z†µH Pµ are just like U insertions, while

−qµZµ
H and −Z†µH qµ are similar to 2q · P insertions. In the latter case, the qµ’s involved are

part of the loop integral, which gives rise to gµ1...µ2nc . Lorentz contractions are thus possible

not only between Pµ’s from 2q ·P insertions, but also Z
(†)µ
H ’s from −qµZµ

H , −Z†µH qµ insertions.

We shall use the same symbol for the two types of Z(†) insertions — they are distinguished by

whether or not a contraction is indicated (by a dotted line as before). As a simple example,

i

j

= − i
2
I11
ij tr(Pµ Z

µ
H ij Z

†ν
H ji Pν) , (6.57a)

i

j

= − i
2
I[q2]11

ij tr(Zµ
H ij Z

†
H µji) , (6.57b)

where light and dark gray squares represent (Pµ)Zµ
H and Z†µH (Pµ) insertions, respectively.

Here and in the following, “[q2nc ]” is dropped when writing master integrals with nc = 0.

We have focused on pure heavy loops in the discussion above for concreteness, but there

is no essential difference for mixed heavy-light loops, which may involve Z
(†)
HL,LH,L. A sum-

mary of possible Z(†) insertions (up to one-open-covariant-derivative terms) can be found in

Table 6.3 of Section 6.3.5. Also, it is straightforward to extend the procedure to terms in the

X matrices with more than one open covariant derivatives, though more complex notation

may be needed to keep track of Lorentz contractions.

6.3.4 Loops with fermions

Up to now we have considered loops with bosonic fields only. Fermionic fields have a different

form of quadratic operator QUV, with e.g. −/P +M in the case of Dirac fermions in place of

−P 2 +M2. There are at least two approaches one can follow. One is to square the quadratic

operator to match the general form in the bosonic case. To give an example for illustration,

suppose

LUV[Ψ, φ] = L0[φ] + Ψ̄(/P −M −XH [φ])Ψ , (6.58)
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where φ denotes collectively light fields, and Ψ is a heavy Dirac fermion. We assume XH =

XH,e+XH,o with XH,e (XH,o) containing terms with even (odd) numbers of gamma matrices.

There is no mixed heavy-light contribution to matching in this case, so

S1-loop
EFT = −iTr log(/P −M −XH). (6.59)

Note the different overall sign compared with bosonic case, due to the Grassmannian nature

of the Ψ field. Using the fact that traces of gamma matrices are invariant under changing

signs of all gamma matrices, we have

S1-loop
EFT = − i

2

[
Tr log(/P −M −XH,e −XH,o) + Tr log(−/P −M −XH,e +XH,o)

]
= − i

2
Tr log

(
−/P 2

+M2 + 2MXH,e +XH(XH,e −XH,o)− [/P ,XH,e] + {/P ,XH,o}
)

= − i
2

Tr log
(
−P 2 +M2 − i

2
σµνG′µν + 2MXH,e

+XH(XH,e −XH,o)− [/P ,XH,e] + {/P ,XH,o}
)
, (6.60)

where G′µν = [Dµ, Dν ] = −igGµν and σµν = i
2
[γµ, γν ]. The calculation then proceeds as

in the bosonic case, with − i
2
σµνG′µν + 2MXH,e + XH(XH,e −XH,o)− [/P ,XH,e] + {/P ,XH,o}

playing the role of XH .

In this study, however, we follow an alternative strategy so as to derive a more straight-

forward diagrammatic formulation of one-loop functional matching. Still using the example

above and, for the moment, further assuming XH = UH does not contain open covariant

derivatives for simplicity, we repeat the steps in Sections 6.2.5 and 6.2.6 without squaring

the quadratic operator,

L1-loop
EFT = −i

∫
ddq

(2π)d
tr log(/P − /q −M − UH)

= −i
∫

ddq

(2π)d
tr log(−/q −M)− i

∫
ddq

(2π)d
tr log

[
1− (−/q −M)−1(−/P + UH)

]
= const. + i tr

∞∑
n=1

1

n

∫
ddq

(2π)d
[
(−/q −M)−1(−/P + UH)

]n
. (6.61)

This is a fermionic version of Eq. (6.42), after the irrelevant constant term is dropped. The

diagrammatic representation in this case involves fermionic propagators (−/q −M)−1 and

vertex insertions −/P and UH . The rules of drawing covariant diagrams and reading off their

expressions are similar to the bosonic case, but we note the following three major differences:

• The prefactor has a different sign due to the fermionic Gaussian integral. It is conve-
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nient to denote the prefactor by −ics, as is common in the literature. We have seen

that for real bosonic degrees of freedom, cs = 1
2
, while for Dirac fermions, cs = −1.

In any case, cs can be easily seen from the Gaussian integral involved. For example,

cs = −1 for ghost fields, and cs = −1
2

for Weyl fermions.

• Each fermionic propagator contains two terms,

(−/q −M)−1 =
−/q +M

q2 −M2
=

M

q2 −M2
+
−qµγµ

q2 −M2
. (6.62)

The first term is just the bosonic propagator multiplied by M , while the second term

involves qµ in the numerator which modifies the loop integral compared with the bosonic

case. The situation is the same as that of Eq. (6.56) in the previous subsection. We shall

continue to use dotted lines to indicate contractions among Lorentz vectors associated

with qµ (in this case γµ). Our rule is to take the first or second term in Eq. (6.62)

depending on whether the fermionic propagator is connected to a dotted line. To give

an example,

= i
1

2
I2
i M

2 trU2
H , (6.63a)

= i
1

2
I[q2]2i tr

(
(−γµ)UH(−γµ)UH

)
, (6.63b)

where 1
2

is a symmetry factor, and it is understood that Mi = M in the master integrals.

As before, we have used empty circles for UH insertions.

• Covariant derivative insertions are in the form of −/P which, unlike 2q · P , is q-

independent and thus decouples from the loop integral. We shall continue to use

filled circles to denote covariant derivative insertions in fermion propagators, but they

should not be contracted (i.e. connected by dotted lines) with each other in this case.

With the new features discussed above taken into account, it is straightforward to generalize

the procedures of the previous two subsections to incorporate mixed heavy-light loops and

additional structures in the X matrices in the fermionic case. Mixed bosonic-fermionic loops

can also be handled — the derivation in this case is actually very similar to that of mixed

heavy-light loops. The sign of cs is determined by the propagator from which one starts

reading a diagram, with no ambiguity. For example, one may have tr(. . . UBF . . . UFB . . . ) or

tr(. . . UFB . . . UBF . . . ), depending on whether one starts reading the diagram from a bosonic
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Element of diagram Symbol Expression

heavy propagator (bosonic) i 1

P insertion (bosonic, heavy)
i j

2Pµδij

U insertion (heavy-heavy) i j UH ij

Table 6.1: (From [60]) Building blocks of covariant diagrams for integrating out heavy bosonic
fields (and fermionic fields as well if one follows the approach of Eq. (6.60) to square their
quadratic operator), in the absence of mixed heavy-light contributions and open covariant
derivatives in the X matrix, as derived in Section 6.3.1. All previous universal results in the
literature [55, 56] can be easily reproduced by computing one-loop covariant diagrams built
from these elements; see Section 6.4.1.

Element of diagram Symbol Expression

light propagator (bosonic) i′ 1

light mass insertion (bosonic) i′ j′ m2
i′ δi′j′

P insertion (bosonic, light)
i′ j′

2Pµ δi′j′

U insertion (heavy-light) i j′ UHL ij′

U insertion (light-heavy) i′ j ULH i′j

U insertion (light-light) i′ j′ UL i′j′

Table 6.2: (From [60]) Additional building blocks of covariant diagrams in the presence of
mixed heavy-light contributions to matching, as derived in Section 6.3.2. Example applica-
tions can be found in Sections 6.4.2, 6.4.3 and 6.4.5.

(B) or fermionic (F) propagator. The values of the two traces are opposite to each other,

since UBF and UFB are fermionic and anticommuting (while all . . . ’s are bosonic), so they

give the same result when multiplied by opposite spin factors.

The new ingredients for building covariant diagrams involving Dirac fermions are summa-

rized in Table 6.4 of Section 6.3.5. We further note that, as in the bosonic case discussed in

Section 6.3.1, the prescription of dropping terms involving tr(. . . P µPµ . . . ) can be adopted.

These terms can arise, for example, when two fermionic propagators are contracted which

are separated by two /P insertions and one uncontracted fermionic propagator, provided that

the loop integral is convergent — this is because γµ /P /Pγµ = 4P 2 +O(ε) where ε = 4− d.

6.3.5 Summary: recipe for one-loop matching

All derivations from Section 6.2 to Section 6.3.4 are done once and for all. Now we sum-

marize the results obtained into a recipe that can be easily followed without repeating the

derivations.
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Element of diagram Symbol Expression

Z insertion (uncontracted, heavy-heavy) i j PµZ
µ
H ij

Z insertion (uncontracted, heavy-light) i j′ PµZ
µ
HL ij′

Z insertion (uncontracted, light-heavy) i′ j PµZ
µ
LH i′j

Z insertion (uncontracted, light-light) i′ j′ PµZ
µ
L i′j′

Z insertion (contracted, heavy-heavy)
i j

−Zµ
H ij

Z insertion (contracted, heavy-light)
i j′

−Zµ
HL ij′

Z insertion (contracted, light-heavy)
i′ j

−Zµ
LH i′j

Z insertion (contracted, light-light)
i′ j′

−Zµ
L i′j′

Z† insertion (uncontracted, heavy-heavy) i j Z†µH ijPµ

Z† insertion (uncontracted, heavy-light) i j′ Z†µLH ij′Pµ

Z† insertion (uncontracted, light-heavy) i′ j Z†µHL i′jPµ

Z† insertion (uncontracted, light-light) i′ j′ Z†µL i′j′Pµ

Z† insertion (contracted, heavy-heavy)
i j

−Z†µH ij

Z† insertion (contracted, heavy-light)
i j′

−Z†µLH ij′

Z† insertion (contracted, light-heavy)
i′ j

−Z†µHL i′j

Z† insertion (contracted, light-light)
i′ j′

−Z†µL i′j′

Table 6.3: (From [60]) Additional building blocks of covariant diagrams in the presence
of open covariant derivatives in the X matrix, as derived in Section 6.3.3, up to one-open-
covariant-derivative terms PµZ

µ+Z†µPµ. Example applications can be found in Section 6.4.3.

Element of diagram Symbol Expression

heavy propagator (fermionic, uncontracted) i Mi

heavy propagator (fermionic, contracted)
i

−γµ

light propagator (fermionic)
i′

−γµ

light mass insertion (fermionic) i′ j′ mi′δi′j′

P insertion (fermionic, heavy) i j −/Pδij
P insertion (fermionic, light) i′ j′ −/Pδi′j′

Table 6.4: (From [60]) Additional building blocks of covariant diagrams when Dirac fermions
are involved in matching, as derived in Section 6.3.4. These are used when the quadratic
operator for fermionic fields is not squared like in Eq. (6.60). Example applications can be
found in Sections 6.4.4 and 6.4.5.
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Starting from an UV Lagrangian LUV[Φ, φ] involving heavy fields Φ of masses {Mi} and

light fields φ of masses {mi′} � {Mi}, the low-energy EFT can be obtained up to one loop

level with the following procedure:

1. Solve the classical equation of motion δLUV

δΦ

[
Φc[φ], φ

]
= 0 for Φc[φ] as an expansion of lo-

cal operators 8. The tree-level effective Lagrangian is given by Ltree
EFT[φ] = LUV

[
Φc[φ], φ

]
.

2. Expand all fields about classical backgrounds, Φ = Φb + Φ′, φ = φb + φ′, and extract

the X matrix from terms in LUV that are quadratic in the quantum fluctuations,

LUV, quad. = −1

2

(
Φ′† , φ′†

) (
K + X[Φb, φb]

)Φ′

φ′

 with X =

XH XHL

XLH XL

 ,

(6.64)

where K is the diagonal kinetic operator with elements −P 2 + M2
i (−P 2 + m2

i′) for

heavy (light) bosons and −/P + Mi (−/P + mi′) for heavy (light) fermions. Note that

the notation Pµ ≡ iDµ is introduced, which is a hermitian operator. A field whose

kinetic term has prefactor −1 rather than −1
2
, such as a complex scalar or a Dirac

fermion, is usually represented by two fields in the field multiplet (e.g. itself and its

appropriately-defined conjugate), so that Eq. (6.64) still holds. For gauge boson fields,

add gauge-fixing terms and use the Feynman gauge (ξ = 1). If the (hermitian) X

matrix contains open covariant derivatives (Pµ’s acting openly to the right instead of

appearing in commutators), cast it in the following form,

X = U + PµZ
µ + Z†µPµ + . . . (6.65)

with U and Z matrices containing no open covariant derivatives.

3. Draw one-loop diagrams consisting of propagators and vertex insertions. In the simplest

case of pure heavy bosonic loops with no open covariant derivatives in X (Section 6.3.1),

only those listed in Table 6.1 are needed. Additional elements needed for mixed heavy-

light loops (Section 6.3.2), open covariant derivatives (up to PµZ
µ + Z†µPµ terms,

Section 6.3.3), and loops with Dirac fermions (Section 6.3.4) are listed in Tables 6.2,

6.3 and 6.4, respectively. These will be sufficient for the example calculations that

we show in the next section. In each diagram, at least one heavy propagator must

be present, and dotted lines emanating from all “contracted” propagators and vertex

insertions must be connected in pairs.

8From here on we omit the hat in Φ̂c[φ] and simply write Φc[φ]. The distinction between the two was
important in our derivation in Section 6.2, but will not be relevant in the rest of this chapter.
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4. The value of a diagram is given by

− ics
1

S
I[q2nc ]

ninj ...nL
ij...0 trO . (6.66)

• 1
S

is a symmetry factor that is present if the diagram has a ZS symmetry under

rotation.

• ni, nj, etc., nL and nc are the numbers of heavy propagators of type i, j, etc., light

propagators and (dotted) contraction lines, respectively. The master integrals are

defined by∫
ddq

(2π)d
qµ1 · · · qµ2nc

(q2 −M2
i )ni(q2 −M2

j )nj · · · (q2)nL
≡ gµ1...µ2nc I[q2nc ]

ninj ...nL
ij...0 . (6.67)

where gµ1...µ2nc is the completely symmetric tensor, e.g. gµνρσ = gµνgρσ + gµρgνσ +

gµσgνρ. These master integrals can be worked out and tabulated as in Appendix A.

For simplicity, we will omit the argument “[q2nc ]” when nc = 0.

• The operator structure O is obtained by starting from any propagator on the loop

and reading off expressions of propagators and vertex insertions (see Tables 6.1-

6.4) clockwise, with Lorentz indices contracted between elements connected by a

dotted line.

• The spin factor cs, discussed in the first bullet point below Eq. (6.61), is deter-

mined by the propagator one starts from when reading the diagram. There are

no extra tricky minus signs as in conventional Feynman diagrams.

Note that in our formalism, no functional manipulations nor loop integrations are

needed — one simply reads off the elements of a diagram and look up the tabulated

master integrals.

5. Add up all diagrams with operator structures up to desired dimensionality (e.g. up to

dimension six). For specific applications one may wish to study just a few effective oper-

ators rather than the entire effective Lagrangian. To determine which diagrams should

be computed, write out the field content of various vertex insertions, and enumerate

combinations of them that may give rise to the effective operators of interest (we will

illustrate this procedure below, in Eqs. (6.94), (6.95), and Eqs. (6.102), (6.103)). Also,

as discussed in Sections 6.3.1 and 6.3.4, diagrams giving rise to trO = tr(. . . P 2 . . . )

can be omitted. These include, e.g. those with contractions between adjacent bosonic

P insertions, or (when the loop integral is convergent) between fermionic propagators

115



separated by two fermionic P insertions and one uncontracted fermionic heavy propa-

gator. Also note that diagrams which are mirror images of each other are related by

hermitian conjugation, so only one in such a pair needs to be explicitly computed.

6. The tr(. . . P 2 . . . ) terms omitted in the previous step can be recovered by requiring

the operator structures obtained organize into gauge-invariant operator traces where

Pµ’s only appear in commutators. However, instead of working out these extra terms

explicitly, it is often easier in practice to first write down all independent operator

traces expected in the final result, and then expand the commutators and match the

result of the previous step to solve for their coefficients.

7. Finally, to obtain L1-loop
EFT [φ] for a specific LUV[Φ, φ], evaluate the operator traces by

plugging in specific forms of the U and Z matrices, with Φ set to Φc[φ]. The traces are

over internal indices of the fields, including Lorentz indices carried by vector bosons

which should be contracted using −gαβ as discussed in Section 6.3.1.

It should be emphasized that while the procedure above has been stated in the context of

matching a specific UV theory to an EFT, Steps 3-6 are actually universal and independent

of UV model details. The only assumption made about the UV Lagrangian is the (quite

general) form of its quadratic terms (see Step 2). Therefore, Steps 3-6 above also constitute

a recipe for deriving universal results of one-loop matching.

6.4 Examples

6.4.1 Universal One-Loop Effective Action (UOLEA) simplified

As a first application of the covariant diagrams techniques introduced in the previous section,

we reproduce the Universal One-Loop Effective Action (UOLEA) reported in [56] (and [55]

for the degenerate limit) with a simpler derivation. Recall that the UOLEA is a universal

master formula for one-loop matching up to dimension six level in the absence of mixed

heavy-light contributions and open covariant derivatives in the X matrix. We will show that

this master formula can be obtained as a sum of covariant diagrams easily built from the

ingredients in Table 6.1.

We begin by writing down all independent operator traces involving Pµ and UH which

may contain terms with operator dimensions up to six,

LUOLEA = −ics tr
{
f i2 Uii + f i3G

′µν
i G′µν,i + f ij4 UijUji

+f i5 [P µ, G′µν,i][Pρ, G
′ρν
i ] + f i6G

′µ
ν,iG

′ν
ρ,iG

′ρ
µ,i
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+f ij7 [P µ, Uij][Pµ, Uji] + f ijk8 UijUjkUki + f i9 UiiG
′µν
i G′µν,i

+f ijkl10 UijUjkUklUli + f ijk11 Uij[P
µ, Ujk][Pµ, Uki]

+f ij12

[
P µ, [Pµ, Uij]

][
P ν , [Pν , Uji]

]
+ f ij13 UijUjiG

′µν
i G′µν,i

+f ij14 [P µ, Uij][P
ν , Uji]G

′
νµ,i + f ij15

(
Uij[P

µ, Uji]− [P µ, Uij]Uji
)
[P ν , G′νµ,i]

+f ijklm16 UijUjkUklUlmUmi

+f ijkl17 UijUjk[P
µ, Ukl][Pµ, Uli] + f ijkl18 Uij[P

µ, Ujk]Ukl[Pµ, Uli]

+f ijklmn19 UijUjkUklUlmUmnUni

}
, (6.68)

where U ≡ UH has operator dimension ≥ 1, and G′µν ≡ −[Pµ, Pν ] = −igGµν . Note that

G′µν , like Pµ, is a diagonal matrix in the field multiplet space, and we use G′µν,i to denote

its diagonal elements. We have adopted the notation in [56] for the universal coefficients

fN (N = 2, . . . , 19) 9. In the following, we compute in turn terms in Eq. (6.68) with 0, 2, 4,

6 covariant derivatives, from which the universal coefficients can be extracted.

O(P 0) terms (f2,4,8,10,16,19). Diagrams with no P insertions all share a similar structure,

from which six universal coefficients can be derived, each in terms of a single master integral:

= −ics I1
i trUii ⇒ f i2 = I1

i , (6.69a)

= −ics
1

2
I11
ij tr(UijUji) ⇒ f ij4 =

1

2
I11
ij , (6.69b)

= −ics
1

3
I111
ijk tr(UijUjkUki) ⇒ f ijk8 =

1

3
I111
ijk , (6.69c)

= −ics
1

4
I1111
ijkl tr(UijUjkUklUli) ⇒ f ijkl10 =

1

4
I1111
ijkl , (6.69d)

9Some redundancies in the parameterization in [56] have been removed here. In particular, the terms
f ij12,a

[
Pµ, [P ν , Uij ]

][
Pµ, [Pν , Uji]

]
+ f ij12,b

[
Pµ, [P ν , Uij ]

][
Pν , [Pµ, Uji]

]
written out in [56] can be set to zero

because f ij12,a/b = −f ji12,a/b while the operator traces are symmetric in i, j. Also, f ijk15,a and f ijk15,b introduced

in [56], which are associated with Uij [P
µ, Ujk][P ν , G′νµ,ki] and −[Pµ, Uij ]Ujk[P ν , G′νµ,ki], respectively, are

equal when k = i (as dictated by G′µν being diagonal).
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= −ics
1

5
I11111
ijklm tr(UijUjkUklUlmUmi) ⇒ f ijklm16 =

1

5
I11111
ijklm , (6.69e)

= −ics
1

6
I111111
ijklmn tr(UijUjkUklUlmUmnUni) ⇒ f ijklmn19 =

1

6
I111111
ijklmn .(6.69f)

We have omitted propagator labels i, j, . . . in the diagrams above for simplicity, which can

be trivially restored. Note the symmetry factor 1
S

with S being the number of U insertions.

O(P 2) terms (f7,11,17,18). The two P insertions must be contracted with each other. To

avoid adjacent contraction, at least two U insertions are needed:

j

ji

i

= −ics
22

2
I[q2]22

ij tr(P µUijPµUji) ⊂ −ics I[q2]22
ij tr

(
[P µ, Uij][Pµ, Uji]

)
⇒ f ij7 = I[q2]22

ij . (6.70)

This diagram was in fact already worked out in Eq. (6.44). The meaning of “⊂” is that with

the addition of terms involving tr(. . . P 2 . . . ), the RHS can be obtained from the LHS; in other

words, the RHS is the only independent gauge-invariant operator (or operator combination)

with all Pµ’s appearing in commutators which can contain the structure on the LHS.

With three U insertions, still only a single diagram contributes:

k

j
j

i

k

= −ics22 I[q2]122
ijk tr(UijP

µUjkPµUki) . (6.71)

To derive the corresponding universal coefficient f11 in the UOLEA, note that

f ijk11 tr
(
Uij[P

µ, Ujk][Pµ, Uki]
)
⊃ f ijk11 tr(UijP

µUjkPµUki + UjkP
µUkiPµUij − UkiP µUijPµUjk)

=
(
f ijk11 + fkij11 − f

jki
11

)
tr(UijP

µUjkPµUki)

⇒ f ijk11 + fkij11 − f
jki
11 = 4 I[q2]122

ijk , (6.72)

which can be solved simply by permuting the indices i→ j → k and adding to the original

equation. We thus obtain f11 in terms of two master integrals,

f ijk11 = 2
(
I[q2]122

ijk + I[q2]212
ijk

)
. (6.73)
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Finally, with four U insertions, there are two possible diagrams:

k

k
j

i

i
l

= −ics
22

2
I[q2]2121

ijkl tr(P µUijUjkPµUklUli) , (6.74a)

j

i
i

l

k
j

= −ics22 I[q2]2211
ijkl tr(P µUijPµUjkUklUli) . (6.74b)

They organize into two independent operator traces, which we have chosen to be

f ijkl17 tr
(
UijUjk[P

µ, Ukl][Pµ, Uli]
)

+ f ijkl18 tr
(
Uij[P

µ, Ujk]Ukl[Pµ, Uli]
)

⊃
(
−f ijkl17 + f ijkl18 + f jkli18

)
tr(P µUijUjkPµUklUli)

+
(
fklij17 + f jkli17 − f

ijkl
18 − f

klij
18

)
tr(P µUijPµUjkUklUli) . (6.75)

We therefore obtain the following two equations,

− f ijkl17 + f ijkl18 + f jkli18 = 2 I[q2]2121
ijkl , fklij17 + f jkli17 − f

ijkl
18 − f

klij
18 = 4 I[q2]2211

ijkl . (6.76)

which are solved by

f ijkl17 = 2
(
I[q2]2112

ijkl + I[q2]1212
ijkl + I[q2]1122

ijkl

)
, (6.77a)

f ijkl18 = I[q2]2121
ijkl + I[q2]2112

ijkl + I[q2]1221
ijkl + I[q2]1212

ijkl + I[q2]1122
ijkl − I[q2]2211

ijkl

→ I[q2]2121
ijkl + I[q2]2112

ijkl + I[q2]1221
ijkl + I[q2]1212

ijkl . (6.77b)

We have dropped terms in f ijkl18 that are antisymmetric under ij ↔ kl, since the associated

operator trace is symmetric. We see that f17 and f18 together depend on only five master

integrals.

O(P 4) terms (f3,9,12,13,14,15). The four P insertions can be contracted among themselves

without U insertions:

= −ics
24

4
I[q4]4i tr(P µP νPµPν) ⊂ −ics2 I[q4]4i tr

(
[P µ, P ν ][Pµ, Pν ]

)
⇒ f i3 = 2 I[q4]4i . (6.78)
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Similarly, with one U insertion,

= −ics24 I[q4]5i tr(UiiP
µP νPµPν) ⊂ −ics8 I[q4]5i tr

(
Uii[P

µ, P ν ][Pµ, Pν ]
)

⇒ f i9 = 8 I[q4]5i . (6.79)

With two U insertions, four diagrams can be drawn:

i

i
j

i

i
i

= −ics24 I[q4]51
ij tr(P µP νPµPνUijUji) , (6.80a)

i

i
i

j

j
i

= −ics24 I[q4]42
ij tr(P µP νPµUijPνUji) , (6.80b)

j

i
i

i

j
j

= −ics
24

2
I[q4]33

ij tr(P µP νUijPµPνUji) , (6.80c)

j

i
i

i

j
j

= −ics
24

2
I[q4]33

ij tr(P µP νUijPνPµUji) . (6.80d)

These terms are contained in four independent operator traces, which we have chosen to be

f ij12 tr
([
P µ, [Pµ, Uij]

][
P ν , [Pν , Uji]

])
+ f ij13 tr

(
UijUji[P

µ, P ν ][Pµ, Pν ]
)

+f ij14 tr
(
[P µ, Uij][P

ν , Uji][Pµ, Pν ]
)

+ f ij15 tr
(
(Uij[P

µ, Uji]− [P µ, Uij]Uji)
[
P ν , [Pµ, Pν ]

])
⊃

(
2f ij13 − f

ij
14 − 4f ij15

)
tr(P µP νPµPνUijUji) +

(
2f ij14 + 4f ij15

)
tr(P µP νPµUijPνUji)

−f ij14 tr(P µP νUijPµPνUji) +
(
4f ij12 + f ij14

)
tr(P µP νUijPνPµUji) . (6.81)

Solving the set of four equations,

2f ij13 − f
ij
14 − 4f ij15 = 16 I[q4]51

ij , 2f ij14 + 4f ij15 = 16 I[q4]42
ij ,

−f ij14 = 8 I[q4]33
ij , 4f ij12 + f ij14 = 8 I[q4]33

ij , (6.82)
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we obtain the four universal coefficients f12,13,14,15 in terms of just three master integrals:

f ij12 = 4 I[q4]33
ij , (6.83a)

f ij13 = 4
(
I[q4]33

ij + 2 I[q4]42
ij + 2 I[q4]51

ij

)
, (6.83b)

f ij14 = −8 I[q4]33
ij , (6.83c)

f ij15 = 4
(
I[q4]33

ij + I[q4]42
ij

)
. (6.83d)

O(P 6) terms (f5,6). Only pure gauge pieces are of interest here, since P 6 already has

operator dimension six. There are two diagrams contributing, which differ by Lorentz con-

traction:

= −ics
26

6
I[q6]6i tr(P µP νP ρPµPνPρ) , (6.84a)

= −ics
26

2
I[q6]6i tr(P µP νP ρPνPµPρ) . (6.84b)

They follow from two independent operators, which are chosen as

f i5 tr
([
P µ, [Pµ, Pν ]

][
Pρ, [P

ρ, P ν ]
])
− f i6 tr

(
[Pµ, P

ν ][Pν , P
ρ][Pρ, P

µ]
)

⊃ f i6 tr(P µP νP ρPµPνPρ) +
(
4f i5 − 3f i6

)
tr(P µP νP ρPνPµPρ) . (6.85)

As a result, we have

f i6 =
32

3
I[q6]6i , 4f i5 − 3f i6 = 32 I[q6]6i , (6.86)

which yield

f i5 = 16 I[q6]6i , f i6 =
32

3
I[q6]6i . (6.87)

We summarize the results of the four paragraphs above in Table 6.5. Complete agreement

is found between our explicit expressions of the universal coefficients in terms of heavy par-

ticle masses (listed in Appendix B) and those reported in [56], upon proper symmetrizations

allowed by symmetries of operator traces under exchanging particle labels (e.g. our f ijk8 is

equal to 1
3
(f ijk8 + f jki8 + fkij8 ) in [56]). Note, however, that we have obtained the universal

coefficients in terms of much fewer master integrals, and many of their explicit expressions

are also simpler than those in [56].
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Universal coefficient Operator Diagram(s)

f i2 = I1
i Uii Eq. (6.69a)

f i3 = 2 I[q4]4i G′µνi G′µν,i Eq. (6.78)

f ij4 = 1
2
I11
ij UijUji Eq. (6.69b)

f i5 = 16 I[q6]6i [P µ, G′µν,i][Pρ, G
′ρν
i ]

Eq. (6.84)
f i6 = 32

3
I[q6]6i G′µν,iG

′ν
ρ,iG

′ρ
µ,i

f ij7 = I[q2]22
ij [P µ, Uij][Pµ, Uji] Eq. (6.70)

f ijk8 = 1
3
I111
ijk UijUjkUki Eq. (6.69c)

f i9 = 8 I[q4]5i UiiG
′µν
i G′µν,i Eq. (6.79)

f ijkl10 = 1
4
I1111
ijkl UijUjkUklUli Eq. (6.69d)

f ijk11 = 2
(
I[q2]122

ijk + I[q2]212
ijk

)
Uij[P

µ, Ujk][Pµ, Uki] Eq. (6.71)

f ij12 = 4 I[q4]33
ij

[
P µ, [Pµ, Uij]

][
P ν , [Pν , Uji]

]
Eq. (6.80)

f ij13 = 4
(
I[q4]33

ij UijUjiG
′µν
i G′µν,i

+2 I[q4]42
ij + 2 I[q4]51

ij

)
f ij14 = −8 I[q4]33

ij [P µ, Uij][P
ν , Uji]G

′
νµ,i

f ij15 = 4
(
I[q4]33

ij + I[q4]42
ij

) (
Uij[P

µ, Uji]− [P µ, Uij]Uji
)
[P ν , G′νµ,i]

f ijklm16 = 1
5
I11111
ijklm UijUjkUklUlmUmi Eq. (6.69e)

f ijkl17 = 2
(
I[q2]2112

ijkl UijUjk[P
µ, Ukl][Pµ, Uli]

Eq. (6.74)
+ I[q2]1212

ijkl + I[q2]1122
ijkl

)
f ijkl18 = I[q2]2121

ijkl + I[q2]2112
ijkl Uij[P

µ, Ujk]Ukl[Pµ, Uli]
+ I[q2]1221

ijkl + I[q2]1212
ijkl

f ijklmn19 = 1
6
I111111
ijklmn UijUjkUklUlmUmnUni Eq. (6.69f)

Table 6.5: (From [60]) List of universal coefficients in terms of the master integrals defined in
Eq. (6.67) (Column 1). The UOLEA master formula for one-loop matching reported in [56]
is reproduced by adding up traces of the operators in Column 2 with the corresponding
universal coefficients, and multiplying the overall factor −ics; see Eq. (6.68). The covariant
diagrams used to compute each universal coefficient are listed in Column 3. See Appendix B
for expressions of the universal coefficients in terms of heavy particle masses.
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6.4.2 Integrating out a scalar triplet: the scalar sector

We next consider more specific examples where additional ingredients in Tables 6.2, 6.3

and 6.4 are involved in covariant diagrams. Our goal is to demonstrate the techniques,

instead of deriving complete universal master formulas. The latter task has been initiated

in [61], and will be completed in future publications.

As a standard test case, a simple extension of the SM by a heavy electroweak scalar

triplet was used in several recent papers [57–59] to illustrate various functional approaches

to mixed heavy-light matching at work. The scalar sector of the model is given by

LUV ⊃ |Dµφ|2 −m2|φ|2 − λ|φ|4 +
1

2
(DµΦa)2 − 1

2
M2ΦaΦa − 1

4
λΦ(ΦaΦa)2

+κφ†σaφΦa − η|φ|2ΦaΦa , (6.88)

where Φ is a heavy SU(2)L triplet with zero hypercharge, and φ is the light SM Higgs doublet

with mass squared m2 < 0. We shall focus on the following subset of dimension-six effective

operators 10 generated by integrating out Φ,

OT =
1

2

(
φ†
←→
D µφ

)2
, OH =

1

2

(
∂µ|φ|2

)2
, OR = |φ|2|Dµφ|2 , (6.89)

where φ†
←→
D µφ = φ†(Dµφ)− (Dµφ

†)φ. Pure heavy contributions to the operator coefficients

can be easily obtained by applying the degenerate limit of the UOLEA, which is illustrated

in [55]. We will thus be interested in computing mixed heavy-light contributions. We first

reproduce, in the present subsection, the results in [57,58] for terms independent of the SM

gauge couplings. Terms that depend on the SM gauge couplings, which involve treatment

of open covariant derivatives and were not obtained in [57,58], will be computed in the next

subsection.

To begin with, we solve for Φc[φ] up to the order needed [counting κ as O(M)],

Φa
c [φ] =

κ

M2
φ†σaφ− κ

M4

[
2η|φ|2

(
φ†σaφ

)
+D2

(
φ†σaφ

)]
+O(M−5) , (6.90)

and extract the U matrix from the quadratic terms of Eq. (6.88),

LUV, quad. ⊃ −
1

2

(
Φ′a φ′† φ̃′†

)(
−P 2 + M2 + U[Φb, φb, φ̃b]

)


Φ′b

φ′

φ̃′

 , (6.91)

10We will not make any field or parameter redefinitions unless otherwise specified, so that the operator
coefficients are unambiguous.
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where

M2 = diag(M2δab,m2,m2) , (6.92)

U =

 UH (UHL)1×2

(ULH)2×1 (UL)2×2

 =

 Uab
Φ (U †aφΦ)1×2

(U b
φΦ)2×1 (Uφ)2×2

 . (6.93)

The internal index “b” (italicized) should not be confused with the subscript label “b” (for

background). The components of the U matrix, with Φ set to Φc[φ], read

Uab
Φ = 2η |φ|2δab + λΦ

(
Φd

cΦd
c δ

ab + 2 Φa
cΦb

c

)
∼ O(φ2, φ4, P 2φ4, . . . ), (6.94a)

U b
φΦ =

−κσbφ+ 2η φΦb
c

κσbφ̃+ 2η φ̃Φb
c

 ∼ O(φ, φ3, P 2φ3, . . . ), (6.94b)

Uφ =

2λ (|φ|2 12 + φφ†)− κΦd
cσ

d + ηΦd
cΦd

c 12 2λφ φ̃†

2λ φ̃ φ† 2λ (|φ|2 12 + φ̃ φ̃†) + κΦd
cσ

d + ηΦd
cΦd

c 12


∼ O(φ2, φ4, P 2φ2, P 2φ4, . . . ). (6.94c)

Note that the two real components of the complex scalar φ should be written out separately

in the field multiplet. In practice, it is convenient to use φ and φ̃ ≡ iσ2φ∗, since φ̃ transforms

in the same way as φ under SU(2)L.

From Eq. (6.94) it is clear that to obtain mixed heavy-light contributions to the operators

OT ,OH ,OR in Eq. (6.89), all of which contain four φ’s and two covariant derivatives, we

need to compute one-loop covariant diagrams that are proportional to

UHLULH , UHLULULH , P
2UHLULH , P

2UHLULHUH , P
2UHLULULH , P

2(UHLULH)2. (6.95)

Using the rules in Tables 6.1 and 6.2, we have (with Mi = M in the master integrals from

here on)

= −ics I11
i0 tr(UHLULH), (6.96a)

= −ics I12
i0 tr(UHLULULH), (6.96b)
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= −ics 22 I[q2]22
i0 tr(P µUHLPµULH) ⊂ −ics 2 I[q2]22

i0 tr
(
[P µ, UHL][Pµ, ULH ]

)
,

(6.96c)

+ +

= −ics22
{
I[q2]41

i0 tr(PµUHLULHP
µUH)

+I[q2]32
i0 tr(P µUHUHLPµULH + P µUHLPµULHUH)

}
⊂ −ics

{
4 I[q2]32

i0 tr
(
[P µ, UHL][Pµ, ULH ]UH

)
+2 ( I[q2]41

i0 + I[q2]32
i0 ) tr

(
[P µ, UHLULH ][Pµ, UH ]

)}
, (6.96d)

+ +

= −ics 22
{
I[q2]14

i0 tr(PµULHUHLP
µUL)

+I[q2]23
i0 tr(P µULULHPµUHL + P µULHPµUHLUL)

}
⊂ −ics

{
4 I[q2]23

i0 tr
(
[P µ, ULH ][Pµ, UHL]UL

)
+2 (I[q2]14

i0 + I[q2]23
i0 ) tr

(
[P µ, ULHUHL][Pµ, UL]

)}
,

(6.96e)

+ + +

= −ics 22
{1

2
I[q2]42

i0 tr(P µUHLULHPµUHLULH) +
1

2
I[q2]24

i0 tr(P µULHUHLPµULHUHL)

+ I[q2]33
i0 tr(P µUHLPµULHUHLULH + P µULHPµUHLULHUHL)

}
⊂ −ics

{
(2 I[q2]24

i0 + 4 I[q2]33
i0 ) tr

(
[P µ, UHL][Pµ, ULH ]UHLULH

)
+(2 I[q2]42

i0 + 4 I[q2]33
i0 ) tr

(
[P µ, ULH ][Pµ, UHL]ULHUHL

)
+(I[q2]42

i0 + I[q2]24
i0 + 2 I[q2]33

i0 )

tr
(
[P µ, UHL]ULH [Pµ, UHL]ULH + UHL[P µ, ULH ]UHL[Pµ, ULH ]

)}
. (6.96f)

Note that diagrams with m2 insertions are of higher order and therefore not considered. The

results in the equations above are summarized in Table 6.6, where explicit expressions for

the coefficients and operators are also worked out. Summing up all terms in the table, we
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obtain (with cs = 1
2

and µ set to M)

L1-loop
EFT [φ] ⊃ 1

16π2

3κ2

2M2
|Dµφ|2 +

1

16π2

κ2

M4

[( κ2

2M2
− 8η + 3λ

)
OT

+
(
− 9κ2

2M2
− 6η + 10λ

)
OH +

(
−21κ2

2M2
− 21η + 25λ

)
OR
]
, (6.97)

in agreement with [57,58,219] 11.

Two comments are in order:

• The calculation above parallels that in [58]. In particular, it is the same calculation in

the “Operator” column of Table 6.6 that is done in [58]; the coefficients part, however,

follows from a more straightforward computation here than in [58].

• While the calculation in this subsection was done in the context of the scalar triplet

model, most of the results obtained are universal. In fact, the only model-dependent

part is the expression after each “→” in the “Operator” column of Table 6.6. In this

respect, Eq. (6.96) constitutes part of the derivation of a master formula for mixed

heavy-light matching (with degenerate heavy particle masses), which we plan to com-

plete in future work.

6.4.3 Integrating out a scalar triplet: the gauge sector

Now we move on to the gauge sector of the scalar triplet model. To account for mixed

heavy-light contributions to one-loop matching that involve SM gauge interactions, we need

to extend the field multiplet to include the electroweak gauge bosons. The relevant quadratic

pieces of the UV theory Lagrangian then read

LUV, quad. ⊃ −
1

2

(
Φ′a φ′† φ̃′† W ′a

α B′α
)(
−P 2 + M2 + U + PµZ

µ + Z†µPµ
)


Φ′b

φ′

φ̃′

W ′b
β

B′β


, (6.98)

11There is an additional contribution to L1-loop
EFT [φ] from Ltree

EFT[φ] ⊃ κ2

M4 (OT+2OR)→ (1− 1
16π2

3κ2

M2 ) κ
2

M4 (OT+

2OR) if one rescales the SM Higgs field φ→ (1− 1
16π2

3κ2

4M2 )φ to render its kinetic term canonically normalized.
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Coefficient Operator

−ics I11
i0 = cs

16π2

(
1− log M2

µ2

) tr(UHLULH)

→ U †aφΦU
a
φΦ ⊃ −

16κ2η
M4 (OT + 2OR)

−ics I12
i0 = cs

16π2
1
M2

(
1− log M2

µ2

) tr(UHLULULH)

→ U †aφΦUφU
a
φΦ ⊃

4κ4

M4 (OT + 2OR)

−ics 2 I[q2]22
i0 = cs

16π2

(
− 1

2M2

) tr
(
[Pµ, UHL][Pµ, ULH ]

)
→ [Pµ, U †aφΦ][Pµ, U

a
φΦ]

⊃ −6κ2|Dµφ|2 + 8κ2η
M2 (OH +OR)

−ics 4 I[q2]32
i0 = cs

16π2
1

2M4

tr
(
[Pµ, UHL][Pµ, ULH ]UH

)
→ [Pµ, U †aφΦ][Pµ, U

b
φΦ]U baΦ ⊃ −12κ2ηOR

−ics 2 (I[q2]41
i0 + I[q2]32

i0 ) = cs
16π2

1
3M4

tr
(
[Pµ, UHLULH ][Pµ, UH ]

)
→ [Pµ, U †aφΦU

b
φΦ][Pµ, U

ba
Φ ] ⊃ −24κ2ηOH

−ics 4 I[q2]23
i0 = cs

16π2
1
M4

(
−5

2 + log M2

µ2

) tr
(
[Pµ, ULH ][Pµ, UHL]UL

)
→ [Pµ, UaφΦ][Pµ, U

†a
φΦ]Uφ

⊃ 2κ2
[(

κ2

M2 − 2λ
)
OT − κ2

M2OH
+
(
κ2

M2 − 10λ
)
OR
]

−ics 2 (I[q2]14
i0 + I[q2]23

i0 ) = cs
16π2

(
− 1

2M4

) tr
(
[Pµ, ULHUHL][Pµ, UL]

)
→ [Pµ, UaφΦU

†a
φΦ][Pµ, Uφ]

⊃ 4κ2
[(
− κ2

M2 + 2λ
)
OT

−10λOH − 2κ2

M2OR
]

−ics(2 I[q2]24
i0 + 4 I[q2]33

i0 ) = cs
16π2

1
M6

tr
(
[Pµ, UHL][Pµ, ULH ]UHLULH

)
→ [Pµ, U †aφΦ][Pµ, U

b
φΦ]U †bφΦU

a
φΦ ⊃ −12κ4OR

−ics(2 I[q2]42
i0 + 4 I[q2]33

i0 ) = cs
16π2

1
M6

(
17
6 − log M2

µ2

) tr
(
[Pµ, ULH ][Pµ, UHL]ULHUHL

)
→ [Pµ, UaφΦ][Pµ, U

†a
φΦ]U bφΦU

†b
φΦ

⊃ −2κ4(OH + 4OR)

−ics(I[q2]42
i0 + I[q2]24

i0 + 2 I[q2]33
i0 ) = cs

16π2
5

12M6

tr
(
[Pµ, UHL]ULH [Pµ, UHL]ULH

+UHL[Pµ, ULH ]UHL[Pµ, ULH ]
)

→ [Pµ, U †aφΦ]U bφΦ[Pµ, U
†b
φΦ]UaφΦ

+U †aφΦ[Pµ, U bφΦ]U †bφΦ[Pµ, U
a
φΦ]

⊃ 4κ4(−5OH + 4OR)

Table 6.6: (From [60]) Summary of the results in Eq. (6.96) for mixed heavy-light contribu-
tions to one-loop matching for the scalar triplet model. The SM gauge coupling-independent
terms for the three operators OT ,OH ,OR in Eq. (6.89) are computed (in the MS scheme).
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where the arguments [Φb, φb, φ̃b,Wb, Bb] of the U and Z matrices have been dropped for

simplicity, and

M2 = diag(M2,m2,m2, 0, 0) , (6.99)

U =

 UH (UHL)1×4

(ULH)4×1 (UL)4×4

 =


Uab

Φ (U †aφΦ)1×2 Uabβ
ΦW 0

(U b
φΦ)2×1 (Uφ)2×2 (U bβ

φW )2×1 (Uβ
φB)2×1

U †abαΦW (U †aαφW )1×2 Uabαβ
W Uaαβ

BW

0 (U †αφB)1×2 U bαβ
BW Uαβ

B

 ,(6.100)

Zµ =

 Zµ
H (Zµ

HL)1×4

(Zµ
LH)4×1 (Zµ

L)4×4

 =


0 01×2 Zµabβ

ΦW 0

02×1 02×2 (Zµ bβ
φW )2×1 (Zµβ

φB )2×1

0 01×2 0 0

0 01×2 0 0

 . (6.101)

Note that W and B vector bosons are massless in the SU(2)L×U(1)Y symmetric phase and,

as discussed in Section 6.3.2, there is no need to retain their masses in the calculation as IR

regulators. Also, Lorentz indices α, β of the vector bosons are treated on the same footing

as internal indices. With Φ set to Φc[φ], the relevant components of the U and Z matrices

are, in addition to those in Eq. (6.94),

Zµabβ
ΦW = gµβigεadbΦd

c ∼ O(gφ2, gP 2φ2, gφ4, . . . ) , UΦW = [Pµ, Z
µ
ΦW ] , (6.102a)

Zµ bβ
φW = −gµβ g

2

σbφ
σbφ̃

 ∼ O(gφ) , UφW = [Pµ, Z
µ
φW ] , (6.102b)

Zµβ
φB = −gµβ g

′

2

 φ

−φ̃

 ∼ O(g′φ) , UφB = [Pµ, Z
µ
φB] . (6.102c)

We are interested in terms in L1-loop
EFT from mixed heavy-light matching that are O(g2P 2φ4)

or O(g′2P 2φ4) 12, which can come from, schematically,

ZΦWZ
†
ΦW ⊂ ZHLZ

†
HL, P 2ZΦWZ

†
ΦW ⊂ P 2ZHLZ

†
HL,

P ZΦWU
†
ΦW + h.c. ⊂ P ZHLULH + h.c., UΦWU

†
ΦW ⊂ UHLULH ; (6.103a)

ZΦWZ
†
φWUφΦ + h.c. ⊂ ZHLZ

†
LULH + h.c.,

P 2U †φΦZφWZ
†
ΦW + h.c. ⊂ P 2UHLZLZ

†
HL + h.c.,

12Higher powers of g or g′ are not possible at one loop, which can be easily seen by ~ dimension counting.
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P ZΦWU
†
φWUφΦ + h.c. ⊂ P ZHLULULH + h.c.,

P U †φΦZφWU
†
ΦW + h.c. ⊂ P UHLZLULH + h.c.,

UΦWU
†
φWUφΦ + h.c. ⊂ UHLULULH ; (6.103b)

P 2U †φΦZφVZ
†
φVUφΦ ⊂ P 2UHLZLZ

†
LULH ,

P U †φΦZφVU
†
φVUφΦ + h.c. ⊂ P UHLZLULULH + h.c.,

U †φΦUφVU
†
φVUφΦ ⊂ UHLU

2
LULH , (6.103c)

where V = W,B. Note that the vector boson block of the U matrix (not explicitly written

out above) does not contribute, since each of UW,WB,BW,B already contains two powers of SM

gauge couplings, and additional insertions of U or Z, which are necessary in order to have

at least one heavy propagator in the loop, will bring in more powers of g or g′.

In Eq. (6.103), we have organized the operator structures by the total number of Z and

U insertions, which makes the enumeration straightforward. To proceed, however, it is more

convenient to group the terms in Eq. (6.103) by the powers of P and Z(†). We will do so

in the following paragraphs, and compute each group in turn using the rules in Tables 6.1,

6.2, and 6.3. We will derive universal results before working out explicit forms of effective

operators for the scalar triplet model.

O(P 0Z0) terms. Two of the three terms are readily available from the first two rows of

Table 6.6,

L1-loop
EFT ⊃

cs
16π2

(
1− log

M2

µ2

){
tr(UHLULH) +

1

M2
tr(UHLULULH)

}
. (6.104)

The remaining term in this group easily follows from a single diagram,

= −ics I13
i0 tr(UHLU

2
LULH) =

cs
16π2

(
1− log

M2

µ2

) 1

M4
tr(UHLU

2
LULH). (6.105)

O(P 0Z2) terms. Both terms in this group are also straightforward to compute, with the

Zµ and Z†µ contracted so that no Pµ’s are picked up from vertex insertions:

= −ics I[q2]11
i0 tr(Zµ

HLZ
†
HLµ) =

cs
16π2

(3

8
− 1

4
log

M2

µ2

)
M2 tr(Zµ

HLZ
†
HLµ) ,

(6.106a)
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+ h.c. = −ics I[q2]12
i0 tr(Zµ

HLZ
†
LµULH) + h.c.

=
cs

16π2

(3

8
− 1

4
log

M2

µ2

)
tr(Zµ

HLZ
†
LµULH + h.c.) . (6.106b)

O(P 1Z1) terms. More diagrams contribute in this case, since the covariant derivative can

either come from an uncontracted Z(†) insertion, or be directly inserted. In the latter case,

the P and Z(†) insertions should be contracted. The four terms in this group are calculated

as follows:

+ + + h.c.

= −ics
{

( I11
i0 − 2 I[q2]21

i0 ) tr(PµZ
µ
HLULH)− 2 I[q2]12

i0 tr(Zµ
HLPµULH)

}
+ h.c.

=
cs

16π2

(3

4
− 1

2
log

M2

µ2

)
tr(PµZ

µ
HLULH − Z

µ
HLPµULH) + h.c.

=
cs

16π2

(3

4
− 1

2
log

M2

µ2

)
tr
(

[Pµ, Z
µ
HL]ULH + h.c.

)
, (6.107a)

+ + + + h.c.

= −ics
{

( I12
i0 − 2 I[q2]22

i0 ) tr(PµZ
µ
HLULULH)

−2 I[q2]13
i0 tr(Zµ

HLPµULULH + Zµ
HLULPµULH)

}
+ h.c.

=
cs

16π2

1

M2

(3

4
− 1

2
log

M2

µ2

)
tr(2PµZ

µ
HLULULH − Z

µ
HLPµULULH − Z

µ
HLULPµULH) + h.c.

=
cs

16π2

1

M2

(3

4
− 1

2
log

M2

µ2

)
tr
(
[Pµ, Z

µ
HL]ULULH − Zµ

HLUL[Pµ, ULH ] + h.c.
)
, (6.107b)

+ + + + h.c.

= −ics
{

( I12
i0 − 2 I[q2]13

i0 ) tr(UHLPµZ
µ
LULH)− 2 I[q2]13

i0 tr(UHLZ
µ
LPµULH)

−2 I[q2]22
i0 tr(UHLZ

µ
LULHPµ)

}
+ h.c.

=
cs

16π2

1

M2

{(1

4
− 1

2
log

M2

µ2

)
tr(UHLPµZ

µ
LULH) +

(
−3

4
+

1

2
log

M2

µ2

)
tr(UHLZ

µ
LPµULH)
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+
1

2
tr(UHLZ

µ
LULHPµ) + h.c.

}
=

cs
16π2

1

M2

{(3

4
− 1

2
log

M2

µ2

)
tr
(
UHL[Pµ, Z

µ
L]ULH

)
+

1

2
tr
(
[Pµ, UHL]Zµ

LULH
)

+ h.c.
}
,

(6.107c)

+ + + + + h.c.

= −ics
{

( I13
i0 − 2 I[q2]14

i0 ) tr(UHLPµZ
µ
LULULH)

−2 I[q2]14
i0 tr(UHLZ

µ
LPµULULH + UHLZ

µ
LULPµULH)

−2 I[q2]23
i0 tr(UHLZ

µ
LULULHPµ)

}
+ h.c.

=
cs

16π2

1

M4

{(1

4
− 1

2
log

M2

µ2

)
tr(UHLPµZ

µ
LULULH)

+
(
−3

4
+

1

2
log

M2

µ2

)
tr(UHLZ

µ
LPµULULH + UHLZ

µ
LULPµULH)

+
(5

4
− 1

2
log

M2

µ2

)
tr(UHLZ

µ
LULULHPµ) + h.c.

}
=

cs
16π2

1

M4

{(3

4
− 1

2
log

M2

µ2

)
tr
(
UHL[Pµ, Z

µ
L]ULULH − UHLZµ

LUL[Pµ, ULH ]
)

+
1

2
tr
(
[Pµ, UHL]Zµ

LULULH
)

+ h.c.
}
. (6.107d)

O(P 2Z2) terms. The number of diagrams increases further, but the calculation is still

quite manageable even if done by hand. Since the procedure should be clear by now, we

refrain from enumerating all the diagrams for the three terms in this group, but simply

report the final results:

+ (2 + 6) more

⊂ cs
16π2

{( 5

72
− 1

12
log

M2

µ2

)
tr
(
[P µ, Zν

HL][Pµ, Z
†
HLν ]

)
+
(
−11

18
+

1

3
log

M2

µ2

)
tr
(
[Pµ, Z

µ
HL][Pν , Z

†ν
HL]
)

+
( 1

18
− 1

6
log

M2

µ2

)
tr
(
Zµ
HLZ

†ν
HL[Pµ, Pν ]

)
+
(
−11

36
+

1

6
log

M2

µ2

)
tr
(
Zµ
HL[Pµ, Pν ]Z

†ν
HL

)}
,

(6.108a)
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+ h.c. + (6 + 15) more

⊂ cs
16π2

1

M2{(
− 5

72
+

1

12
log

M2

µ2

)
tr
(
UHL

[
P µ, [Pµ, Z

ν
L]
]
Z†HLν

)
− 1

6
tr
(
[P µ, UHL]Zν

L[Pµ, Z
†
HLν ]

)
+
(
−7

9
+

1

3
log

M2

µ2

)
tr
(
UHL[Pµ, Z

µ
L][Pν , Z

†ν
HL]
)

+
1

6
tr
(
UHL[Pν , Z

µ
L][Pµ, Z

†ν
HL]
)

+
( 5

36
− 1

6
log

M2

µ2

)
tr
(
[Pν , UHL][Pµ, Z

µ
L]Z†νHL

)
− 1

3
tr
(
[Pµ, UHL]Zµ

L[Pν , Z
†ν
HL]
)

− 1

12
tr
(
UHLZ

µ
LZ
†ν
HL[Pµ, Pν ]

)
+
(
−17

36
+

1

6
log

M2

µ2

)
tr
(
UHLZ

µ
L[Pµ, Pν ]Z

†ν
HL

)
+
(11

36
− 1

6
log

M2

µ2

)
tr
(
UHL[Pµ, Pν ]Z

µ
LZ
†ν
HL

)
+ h.c.

}
, (6.108b)

+ (4 + 17) more

⊂ cs
16π2

1

M4

{( 5

72
− 1

12
log

M2

µ2

)
·

tr
(
UHL[P µ, Zν

L][Pµ, Z
†
Lν ]ULH +

(
[P µ, UHL][Pµ, Z

ν
L]Z†LνULH + h.c.

))
−1

6
tr
(
UHL[P µ, Zν

L]Z†Lν [Pµ, ULH ] + h.c.
)

+
(
−17

24
+

1

4
log

M2

µ2

)
tr
(
[P µ, UHL]Zν

LZ
†
Lν [Pµ, ULH ]

)
+
(
−11

36
+

1

6
log

M2

µ2

)
tr
(
UHL[Pµ, Z

µ
L][Pν , Z

†ν
L ]ULH + UHL[Pν , Z

µ
L][Pµ, Z

†ν
L ]ULH

)
+
(11

18
− 1

3
log

M2

µ2

)
tr
(
[Pν , UHL][Pµ, Z

µ
L]Z†νL ULH + h.c.

)
+
(
−17

36
+

1

6
log

M2

µ2

)
tr
(
[Pµ, UHL][Pν , Z

µ
L]Z†νL ULH + h.c.

)
−1

3
tr
(
UHL[Pµ, Z

µ
L]Z†νL [Pν , ULH ] + h.c.

)
− 1

6
tr
(
[Pµ, UHL]Zµ

LZ
†ν
L [Pν , ULH ]

)
+

1

12
tr
(
UHLZ

µ
LZ
†ν
L ULH [Pµ, Pν ]

)
− 1

6
tr
(
UHLZ

µ
LZ
†ν
L [Pµ, Pν ]ULH + h.c.

)}
. (6.108c)

In the equations above, we have shown, for each term, the one diagram with zero P insertions,

and the number of diagrams with one and two P insertions (e.g. 2 and 6, respectively,

for the P 2ZHLZ
†
HL term). The counting excludes hermitian conjugation and adjacent Pµ

contractions. Following the rules in Section 6.3.5, the reader should be able to easily draw
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all the diagrams, and fill in the intermediate steps (which are straightforward though perhaps

a bit lengthy) that lead to the final results in Eq. (6.108).

All results presented in the four paragraphs above, namely Eqs. (6.104), (6.105), (6.106),

(6.107) and (6.108), are universal and model-independent. Now we focus on the scalar triplet

model, and work out the traces involved in these equations that yield the three effective

operators in Eq. (6.89):

tr(UHLULH), tr
(
[Pµ, Z

µ
HL]ULH

)
and h.c., −tr

(
[Pµ, Z

µ
HL][Pν , Z

†ν
HL]
)

→ −gαβUabα
ΦWU

†baβ
ΦW ⊃ −

4κ2

M4
g2(OT + 2OR) ; (6.109a)

tr(UHLULULH), tr
(
[Pµ, Z

µ
HL]ULULH + h.c.

)
,

tr
(
UHL[Pµ, Z

µ
L]ULH + h.c.

)
, −tr

(
UHL[Pµ, Z

µ
L][Pν , Z

†ν
HL] + h.c.

)
→ −gαβUabα

ΦWU
†bβ
φWU

a
φΦ + h.c. ⊃ 4κ2

M2
g2(OT + 2OR) ; (6.109b)

tr(UHLU
2
LULH), tr

(
UHL[Pµ, Z

µ
L]ULULH

)
and h.c., −tr

(
UHL[Pµ, Z

µ
L][Pν , Z

†ν
L ]ULH

)
→ −gαβ

(
U †aφΦU

bα
φWU

†bβ
φWU

a
φΦ + U †aφΦU

α
φBU

†β
φBU

a
φΦ

)
⊃ κ2

2

[
g2(OT − 4OR) + g′2(OH − 2OR)

]
; (6.109c)

tr(Zµ
HLZ

†
HLµ)

→ −gαβZµabα
ΦW Z†baβΦW µ ⊃ −

(
1− ε

4

)32κ2

M6
g2(OT + 2OR) ; (6.109d)

tr(Zµ
HLZ

†
LµULH + h.c.)

→ −gαβZµabα
ΦW Z†bβφW µU

a
φΦ + h.c. ⊃

(
1− ε

4

)32κ2

M4
g2(OT + 2OR) ; (6.109e)

tr
(
Zµ
HLUL[Pµ, ULH ] + h.c.

)
, −tr

(
[Pν , UHL][Pµ, Z

µ
L]Z†νHL + h.c.

)
→ −gαβZµabα

ΦW U †bβφW [Pµ, U
a
φΦ] + h.c. ⊃ −4κ2

M2
g2(OT −OH +OR) ; (6.109f)

tr
(
[Pµ, UHL]Zµ

LULH + h.c.
)
, −tr

(
[Pµ, UHL]Zµ

L[Pν , Z
†ν
HL] + h.c.

)
→ −gαβ[Pµ, U

†a
φΦ]Zµ bα

φW U †baβΦW + h.c. ⊃ 4κ2

M2
g2(OT + 2OR) ; (6.109g)

tr
(
UHLZ

µ
LUL[Pµ, ULH ] + h.c.

)
, −tr

(
[Pν , UHL][Pµ, Z

µ
L]Z†νL ULH + h.c.

)
→ −gαβ

(
U †aφΦZ

µ bα
φW U †bβφW [Pµ, U

a
φΦ] + U †aφΦZ

µα
φBU

†β
φB[Pµ, U

a
φΦ]
)

+ h.c.

⊃ 4κ2g2(OT −OH +OR) ; (6.109h)

tr
(
[Pµ, UHL]Zµ

LULULH + h.c.
)
, −tr

(
UHL[Pµ, Z

µ
L]Z†νL [Pν , ULH ] + h.c.

)
→ −gαβ

(
[Pµ, U

†a
φΦ]Zµ bα

φW U †bβφWU
a
φΦ + [Pµ, U

†a
φΦ]Zµα

φBU
†β
φBU

a
φΦ

)
+ h.c.
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⊃ −κ2
[
g2(5OT + 4OR) + g′2(OH − 2OR)

]
; (6.109i)

tr
(
[P µ, Zν

HL][Pµ, Z
†
HLν ]

)
→ −gαβ[P µ, Zν abα

ΦW ][Pµ, Z
†baβ
ΦW ν ] ⊃

(
1− ε

4

)16κ2

M4
g2(OT + 2OR) ; (6.109j)

tr
(
UHL

[
P µ, [Pµ, Z

ν
L]
]
Z†HLν + h.c.

)
→ −gαβU †aφΦ

[
P µ, [Pµ, Z

ν bα
φW ]

]
Z†baβΦW ν + h.c. ⊃

(
1− ε

4

)16κ2

M2
g2(OH +OR) ; (6.109k)

tr
(
[P µ, UHL]Zν

L[Pµ, Z
†
HLν ] + h.c.

)
→ −gαβ[P µ, U †aφΦ]Zν bα

φW [Pµ, Z
†baβ
ΦW ν ] + h.c. ⊃ −

(
1− ε

4

)16κ2

M2
g2(OT + 2OR) ; (6.109l)

tr
(
UHL[Pν , Z

µ
L][Pµ, Z

†ν
HL] + h.c.

)
→ −gαβU †aφΦ[P µ, Zν bα

φW ][Pµ, Z
†baβ
ΦW ν ] + h.c. ⊃ −4κ2

M2
g2(OT + 2OR) ; (6.109m)

tr
(
UHL[P µ, Zν

L][Pµ, Z
†
Lν ]ULH

)
→ −gαβ

(
U †aφΦ[P µ, Zν bα

φW ][Pµ, Z
†bβ
φW ν ]U

a
φΦ + U †aφΦ[P µ, Zν α

φB ][Pµ, Z
†β
φB ν ]U

a
φΦ

)
⊃ −

(
1− ε

4

)
2κ2
[
g2(OT − 4OR) + g′2(OH − 2OR)

]
; (6.109n)

tr
(
[P µ, UHL][Pµ, Z

ν
L]Z†LνULH + h.c.

)
→ −gαβ

(
[P µ, U †aφΦ][Pµ, Z

ν bα
φW ]Z†bβφW νU

a
φΦ + [P µ, U †aφΦ][Pµ, Z

ν α
φB ]Z†βφB νU

a
φΦ

)
+ h.c.

⊃ −
(

1− ε

4

)
16κ2g2(OT −OH +OR) ; (6.109o)

tr
(
UHL[P µ, Zν

L]Z†Lν [Pµ, ULH ] + h.c.
)

→ −gαβ
(
U †aφΦ[P µ, Zν bα

φW ]Z†bβφW ν [Pµ, U
a
φΦ] + U †aφΦ[P µ, Zν α

φB ]Z†βφB ν [Pµ, U
a
φΦ]
)

+ h.c.

⊃
(

1− ε

4

)
4κ2
[
g2(5OT + 4OR) + g′2(OH − 2OR)

]
; (6.109p)

tr
(
[P µ, UHL]Zν

LZ
†
Lν [Pµ, ULH ]

)
→ −gαβ

(
[P µ, U †aφΦ]Zν bα

φW Z†bβφW ν [Pµ, U
a
φΦ] + [P µ, U †aφΦ]Zν α

φBZ
†β
φB ν [Pµ, U

a
φΦ]
)

⊃ −
(

1− ε

4

)
2κ2
[
g2(OT − 4OR) + g′2(OH − 2OR)

]
; (6.109q)

tr
(
UHL[Pν , Z

µ
L][Pµ, Z

†ν
L ]ULH

)
→ −gαβ

(
U †aφΦ[Pν , Z

µ bα
φW ][Pµ, Z

†ν bβ
φW ]Ua

φΦ + U †aφΦ[Pν , Z
µα
φB ][Pµ, Z

†ν β
φB ]Ua

φΦ

)
⊃ −κ

2

2

[
g2(OT − 4OR) + g′2(OH − 2OR)

]
; (6.109r)

tr
(
[Pµ, UHL][Pν , Z

µ
L]Z†νL ULH + h.c.

)
→ −gαβ

(
[Pµ, U

†a
φΦ][Pν , Z

µ bα
φW ]Z†ν bβφW Ua

φΦ + [Pµ, U
†a
φΦ][Pν , Z

µα
φB ]Z†ν βφB Ua

φΦ

)
+ h.c.
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⊃ −4κ2g2(OT −OH +OR) ; (6.109s)

tr
(
[Pµ, UHL]Zµ

LZ
†ν
L [Pν , ULH ]

)
→ −gαβ

(
[Pµ, U

†a
φΦ]Zµ bα

φW Z†ν bβφW [Pν , U
a
φΦ] + [Pµ, U

†a
φΦ]Zµα

φBZ
†ν β
φB [Pν , U

a
φΦ]
)

⊃ −κ
2

2

[
g2(OT − 4OR) + g′2(OH − 2OR)

]
. (6.109t)

Note that Lorentz indices of the gauge boson fields α, β should be contracted with −gαβ, as

discussed in Section 6.3.1. Also, O(ε) terms from gαβg
αβ = d = 4− ε must be kept in cases

where the master integrals have 1
ε

poles. The latter were not written out explicitly above,

but can be easily recovered by

− log
M2

µ2
→ 2

ε
− log

M2

µ2
. (6.110)

Adding up all terms in Eqs. (6.104), (6.105), (6.106), (6.107) and (6.108) with the replace-

ment Eq. (6.110), plugging in Eq. (6.109), and finally dropping 1
ε

poles, we obtain the final

result (with cs = 1
2

and µ set to M in the MS scheme),

L1-loop
EFT [φ] ⊃ 1

16π2

5κ2

8M4

[
g2OT + g′2OH − (4g2 + 2g′2)OR

]
. (6.111)

This agrees with the result in [219] obtained by Feynman diagram calculations.

6.4.4 Integrating out a vectorlike fermion: pure gauge operators

Our final two examples demonstrate treatment of fermions in our covariant diagram ap-

proach. In the present subsection, we consider a simple but quite general setup of a vector-

like fermion of mass M charged under some gauge symmetry. We will compute pure gauge

effective operators up to dimension six which are generated by integrating out the heavy

vectorlike fermion, independent of possible presence of light matter fields. The results are

familiar in various contexts, including integrating out a heavy quark flavor in QCD, and

integrating out a heavy vectorlike fermion that may arise in many beyond-SM scenarios. We

also note that the same results are obtained in [55] following the alternative approach to

integrating out heavy fermions discussed at the beginning of Section 6.3.4.

O(P 4) terms. We first consider diagrams with four (fermionic) P insertions. Five dia-

grams can be drawn which differ by whether and how the heavy fermionic propagators are

contracted with each other. One of them can be dropped where fermionic propagators sepa-

rated by two P insertions are contracted (while the loop integral I[q2]4i is finite), because it
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only gives rise to tr(. . . P 2 . . . ). The remaining four diagrams are, by the rules in Table 6.4,

+ + +

= −ics
{ 1

4
M4 I4

i tr(/P
4
) +M2 I[q2]4i tr(γα /Pγα /P

3
)

+ I[q4]4i

(1

2
tr(γα /Pγα /Pγ

β /Pγβ /P ) +
1

4
tr(γα /Pγβ /Pγα /Pγβ /P )

)}
. (6.112)

Evaluation of the gamma matrix traces is standard and straightforward,

tr(/P
4
) = tr(γµγνγργσ)tr(PµPνPρPσ) ⊃ −4 tr(P µP νPµPν) , (6.113a)

tr(γα /Pγα /P
3
) = −2 tr(/P

4
) +O(ε) ⊃ 8 tr(P µP νPµPν) +O(ε) , (6.113b)

tr(γα /Pγα /Pγ
β /Pγβ /P ) = 4(1− ε) tr(/P

4
) ⊃ −16(1− ε) tr(P µP νPµPν) , (6.113c)

tr(γα /Pγβ /Pγα /Pγβ /P ) = tr(γαγµγβγνγαγ
ργβγ

σ)tr(PµPνPρPσ)

=
{
−2 tr(γνγβγµγργβγ

σ) + ε tr(γµγβγνγργβγ
σ)
}

tr(PµPνPρPσ)

=
{
−8gµρ tr(γνγσ) + 2ε tr(γνγµγργσ) + 4ε gνρ tr(γµγσ)

}
tr(PµPνPρPσ)

=
{

8ε gµνgρσ − (32− 8ε)gµρgνσ + 8ε gµσgνρ
}

tr(PµPνPρPσ)

⊃ −32
(

1− ε

4

)
tr(P µP νPµPν) , (6.113d)

where terms involving tr(. . . P 2 . . . ) have been dropped. Note that O(ε) terms must be kept

for the last two traces, since they are multiplied by I[q4]4i which contains a 1
ε

pole. Plugging

Eq. (6.113) into (6.112), we have

L1-loop
EFT ⊃ −ics

{
−M4 I4

i + 8M2 I[q2]4i + (−16 + 10ε) I[q4]4i
}

tr(P µP νPµPν)

=
cs

16π2

2

3
log

M2

µ2
tr(P µP νPµPν) ⊂ −

1

16π2

1

3
log

M2

µ2
tr
(
[P µ, P ν ][Pµ, Pν ]

)
= − 1

16π2

1

3
log

M2

µ2
tr(G′µνG′µν) =

g2

16π2
T (R)

(
−4

3
log

M2

µ2

)(
−1

4
GaµνGa

µν

)
,(6.114)

where T (R) is the Dynkin index for the representation R of the heavy vectorlike fermion,

defined by tr(taRt
b
R) = T (R)δab with taR being the generators in representation R; for example,

T (R) = 1
2

and N for the fundamental and adjoint representations of SU(N), respectively.

Also, recall cs = −1 for Dirac fermions 13, and G′µν = −[Pµ, Pν ] = −igGµν = −igGa
µνt

a
R. One

13Unlike in Eq. (6.64), here LUV, quad. can be written with prefactor −1, with only the vectorlike fermion
field in the field multiplet of interest, and it is not necessary to represent this single Dirac fermion field by
two fields as mentioned below Eq. (6.64). Of course the latter is OK to do, in which case the two fields
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can rescale the gauge fields to canonically normalize the kinetic terms while keeping gGµν

unchanged. The result is the familiar one-loop matching formula for the gauge coupling

across a heavy vectorlike fermion mass threshold (see e.g. [229]),

g2
eff(µ)

g2(µ)
= 1 +

g2

16π2
T (R)

(4

3
log

M2

µ2

)
. (6.115)

O(P 6) terms. Diagrams with six P insertions can be computed similarly. We enumerate

them in the following, using γαγµγα = −2γµ to simplify the operator trace. Again, diagrams

only giving rise to tr(. . . P 2 . . . ) are dropped.

+ + + +

= −ics
{1

6
M6 I6

i + (−2)M4 I[q2]6i + (−2)2
(

1 +
1

2

)
M2 I[q4]6i + (−2)3 1

3
I[q6]6i

}
tr(/P

6
) ,

(6.116a)

+ +

= −ics
{1

2
M4 I[q2]6i + (−2)M2 I[q4]6i + (−2)2 1

2
I[q6]6i

}
tr(γα /P

3
γα /P

3
) , (6.116b)

+ = −ics
{
M2 I[q4]6i + (−2) I[q6]6i

}
tr(γα /Pγβ /Pγα /Pγβ /P

3
) ,(6.116c)

= −icsM2 I[q4]6i tr(γα /Pγβ /Pγα /P
2
γβ /P

2
) , (6.116d)

= −ics
1

2
M2 I[q4]6i tr(γα /Pγβ /P

2
γα /Pγβ /P

2
) , (6.116e)

= −ics
1

2
I[q6]6i tr(γα /Pγβ /Pγδ /Pγα /Pγδ /Pγβ /P ) , (6.116f)

would effectively have cs = − 1
2 each and contribute equally to L1-loop

EFT , leading to the same final result as
Eq. (6.114).
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= −ics
1

6
I[q6]6i tr(γα /Pγβ /Pγδ /Pγα /Pγβ /Pγδ /P ) . (6.116g)

All loop integrals appearing in the equations above are finite, so O(ε) terms can always be

dropped when evaluating the traces:

tr(/P
6
) ⊃ −4 tr(P µP νP ρPµPνPρ) + 12 tr(P µP νP ρPµPρPν) , (6.117a)

tr(γα /P
3
γα /P

3
) ⊃ −8 tr(P µP νP ρPµPνPρ) + 8 tr(P µP νP ρPµPρPν) , (6.117b)

tr(γα /Pγβ /Pγα /Pγβ /P
3
) ⊃ 32 tr(P µP νP ρPµPρPν) , (6.117c)

tr(γα /Pγβ /Pγα /P
2
γβ /P

2
) ⊃ 16 tr(P µP νP ρPµPνPρ)− 16 tr(P µP νP ρPµPρPν) , (6.117d)

tr(γα /Pγβ /P
2
γα /Pγβ /P

2
) ⊃ −16 tr(P µP νP ρPµPνPρ) + 48 tr(P µP νP ρPµPρPν) , (6.117e)

tr(γα /Pγβ /Pγδ /Pγα /Pγδ /Pγβ /P ) ⊃ −32 tr(P µP νP ρPµPνPρ)− 96 tr(P µP νP ρPµPρPν) ,

(6.117f)

tr(γα /Pγβ /Pγδ /Pγα /Pγβ /Pγδ /P ) ⊃ −128 tr(P µP νP ρPµPνPρ) , (6.117g)

where terms involving tr(. . . P 2 . . . ) have been dropped as before. Plugging Eq. (6.117) into

(6.116), we can organize the two operator traces into two independent dimension-six pure

gauge operators,

L1-loop
EFT ⊃ −ics

{
−2

3
M6 I6

i + 4M4 I[q2]6i −
128

3
I[q6]6i

}
tr(P µP νP ρPµPνPρ)

−ics
{

2M6 I6
i − 20M4 I[q2]6i + 96M2 I[q4]6i − 128 I[q6]6i

}
tr(P µP νP ρPµPρPν)

=
cs

16π2

1

M2

{
− 1

45
tr(P µP νP ρPµPνPρ) +

3

5
tr(P µP νP ρPµPρPν)

}
⊂ cs

16π2

1

M2

{ 2

15
tr
(
[P µ, G′µν ][Pρ, G

′ρν ]
)
− 1

45
tr(G′µνG

′ν
ρG
′ρ
µ)
}

=
1

16π2

1

M2

g2

60
T (R)

(
16O2G − 4O3G

)
, (6.118)

where

O2G = −1

2
(DµGa

µν)
2 , O3G =

g

6
fabcGaµ

νG
bν
ρG

cρ
µ . (6.119)

6.4.5 Integrating out a charged scalar singlet: penguin operators

We finally consider an example for one-loop matching involving mixed statistics. The UV

theory is the SM extended by a heavy SU(2)L singlet scalar h with hypercharge −1, which
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couples to the SM Higgs and lepton doublets φ and l. The Lagrangian reads

LUV = LSM + |Dµh|2 −M2|h|2 − α|h|4 − β|φ|2|h|2 + l̄f †l̃h+ h†¯̃lf l , (6.120)

where l̃ ≡ iσ2lc, with charge conjugation defined as lc ≡ −iγ2l∗. f is a 3× 3 antisymmetric

matrix in generation space; e.g. ¯̃lf l is short for ¯̃lafablb with generation indices a, b summed

over. One-loop matching of this model onto the SMEFT is discussed in [219, 230], with

mixed heavy-light contributions obtained by computing Feynman diagrams. Here, we focus

on a subset of dimension-6 operators generated in this model – the penguin operators – as

an example to demonstrate the use of covariant diagrams involving heavy bosonic and light

fermionic loop propagators.

We shall continue to use the four-component notation, treating l as a Dirac fermion field

whose right-handed component should be set to zero in the end — this is legitimate since

the unphysical component lR cannot appear only in the loop. The quadratic terms in LUV

needed for our calculation read

LUV, quad ⊃ −
1

2

(
h′† h′T l̄′ ¯̃l′

)(−P 2 +M2 + Uh)2×2 (Uhl)2×2

(Ulh)2×2 (−/P + Ul)2×2



h′

h′∗

l′

l̃′

 ,

(6.121)

where

Uh =

2α
(
|hc|2 + hch

†
c

)
+ β|φ|2 2αhch

T
c

2αh∗ch
†
c 2α

(
|hc|2 + h∗ch

T
c

)
+ β|φ|2

 ,

Ul =

 0 −2f †hc

−2h†cf 0

 , Ulh =

−2f †l̃ 0

0 −2fl

 , Uhl =

−2¯̃lf 0

0 −2l̄f †

 .(6.122)

The light fields φ, l, l̃ are understood as background fields φb, lb, l̃b. Parametrically, hc[φ, l] ∼
O(f l2) at leading order, whose explicit form will not be relevant for our calculation. The

separations of the complex scalar h into (h, h∗) (with h∗ = h† for a scalar singlet) and the

Dirac fermion l into (l, l̃) are necessary due to the presence of off-diagonal terms in Uh and

Ul. As a result, each bosonic (fermionic) field in the field multiplet of Eq. (6.121) effectively

has cs = 1
2

(cs = −1
2
). This is similar to the separation of the SM Higgs field φ into (φ, φ̃) in

the scalar triplet example in Sections 6.4.2 and 6.4.3.
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The penguin operators we wish to compute are ∼ O(P 3l2). At one-loop level, they can

only arise from covariant diagrams with one Uhl, one Ulh and three P insertions. There are

nine such diagrams, two of which are hermitian conjugates of each other. They can be easily

enumerated by distributing three P insertions on the h and l propagators and contracting

the bosonic P insertions and fermionic light propagators (which, unlike the fermionic heavy

propagators, cannot be left uncontracted). We will always start reading a covariant diagram

from a bosonic propagator, and thus cs = 1
2
. Dropping tr(. . . P 2 . . . ) terms as before, we

have

= −ics(−23) I[q4]41
i0 tr(Uhlγ

µUlhP
νPµPν) =

cs
16π2

1

M2

1

9
tr(Uhlγ

µUlhP
νPµPν),

(6.123a)

= −ics(−22) I[q4]32
i0 tr(Uhlγ

µγργνPρUlhPµPν)

=
cs

16π2

1

M2

1

12
tr(Uhlγ

µγργνPρUlhPµPν)

⊃ cs
16π2

1

M2

{ 1

12
tr
(
Uhlγ

µP νUlh(PµPν + PνPµ)
)

+
1

48
tr
(
i Uhl(σ

µνγρ + γρσµν)PρUlh[Pµ, Pν ]
)}
, (6.123b)

= −ics(−22) I[q4]32
i0 tr(Uhlγ

µγργνPρUlhPνPµ)

=
cs

16π2

1

M2

1

12
tr(Uhlγ

µγργνPρUlhPνPµ)

⊃ cs
16π2

1

M2

{ 1

12
tr
(
Uhlγ

µP νUlh(PµPν + PνPµ)
)

− 1

48
tr
(
i Uhl(σ

µνγρ + γρσµν)PρUlh[Pµ, Pν ]
)}
, (6.123c)

= −ics(−2) I[q4]23
i0 tr(Uhlγ

αγµγργνγαPµPνUlhPρ)

=
cs

16π2

1

M2

(
−1

6

)
tr(Uhlγ

νγργµPµPνUlhPρ)

⊃ cs
16π2

1

M2

{
−1

6
tr
(
Uhlγ

µ(PµPν + PνPµ)UlhP
ν
)

+
1

24
tr
(
i Uhl(σ

µνγρ + γρσµν)[Pµ, Pν ]UlhPρ
)}
, (6.123d)

+
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= −ics(−2) I[q4]23
i0 tr(Uhlγ

αγµγαγ
νγρPµPνUlhPρ + Uhlγ

ργµγαγνγαPµPνUlhPρ)

=
cs

16π2

1

M2

(
−1

6

)
tr(Uhlγ

µγνγρPµPνUlhPρ + Uhlγ
ργµγνPµPνUlhPρ)

⊃ cs
16π2

1

M2

1

12
tr
(
i Uhl(σ

µνγρ + γρσµν)[Pµ, Pν ]UlhPρ
)
, (6.123e)

= −ics(−1) I[q4]14
i0 tr(Uhlγ

αγµγαγ
νγβγργβPµPνPρUlh)

= −ics(−4 + 4ε) I[q4]14
i0 tr(Uhlγ

µγνγρPµPνPρUlh)

=
cs

16π2

( 1

36
+

1

6
log

M2

µ2

)
tr(Uhlγ

µγνγρPµPνPρUlh)

⊃ cs
16π2

(
− 1

144
− 1

24
log

M2

µ2

)
tr
(
i Uhl(σ

µνγρ[Pµ, Pν ]Pρ + γρσµνPρ[Pµ, Pν ])Ulh
)
,

(6.123f)

= −ics(−1) I[q4]14
i0 tr(Uhlγ

αγµγβγνγβγ
ργαPµPνPρUlh)

= −ics I[q4]14
i0

{
(−4 + 2ε) tr(Uhlγ

ργνγµPµPνPρUlh)

+2ε tr(Uhlγ
µγνγρPµPνPρUlh)

}
=

cs
16π2

1

M2

{(
− 5

36
+

1

6
log

M2

µ2

)
tr(Uhlγ

ργνγµPµPνPρUlh)

+
1

6
tr(Uhlγ

µγνγρPµPνPρUlh)
}

⊃ cs
16π2

1

M2

{( 5

18
− 1

3
log

M2

µ2

)
tr(Uhlγ

µP νPµPνUlh)

+
(
− 11

144
+

1

24
log

M2

µ2

)
tr
(
i Uhl(σ

µνγρ[Pµ, Pν ]Pρ + γρσµνPρ[Pµ, Pν ])Ulh
)}
,

(6.123g)

= −ics(−1) I[q4]14
i0 tr(Uhlγ

αγµγβγνγαγ
ργβPµPνPρUlh)

⊃ −ics I[q4]14
i0

{
8 tr(Uhlγ

µP νPµPνUlh)

− ε
2

tr
(
iUhl(σ

µνγρ[Pµ, Pν ]Pρ + γρσµνPρ[Pµ, Pν ])Ulh
)}

=
cs

16π2

1

M2

{(11

18
− 1

3
log

M2

µ2

)
tr(Uhlγ

µP νPµPνUlh)

− 1

24
tr
(
i Uhl(σ

µνγρ[Pµ, Pν ]Pρ + γρσµνPρ[Pµ, Pν ])Ulh
)}
, (6.123h)

where σµν = 1
2
[γµ, γν ]. The O(ε) terms coming from gamma matrix algebra must be
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kept when computing the last three diagrams, which involve the divergent master integral

I[q4]14
i0 = 1

24M2
i
(11

6
− log

M2
i

µ2 ), understood as 1
24M2

i
(2
ε̄

+ 11
6
− log

M2
i

µ2 ). The following identities,

together with the standard gamma matrix formulas, are useful in deriving Eq. (6.123),

γµγν = gµν − iσµν , (6.124a)

γµγργν =
1

2

(
{γµ, γρ}γν + γµ{γρ, γν} − γργµγν − γµγνγρ

)
= gµργν + gνργµ − gµνγρ +

i

2
(σµνγρ + γρσµν) (6.124b)

= gµργν + gνργµ − 1

2

(
γρ{γµ, γν}+ {γµ, γν}γρ − γργνγµ − γνγµγρ

)
=

3

2
(gµργν + gνργµ)− 2gµνγρ − i

2
(σρνγµ + γνσµρ), (6.124c)

γαγµγβγνγαγ
ργβ =

1

2

{
−2(γνγβγµγργβ + γαγµγργαγ

ν) + ε(γµγβγνγργβ + γαγµγνγαγ
ρ)
}

= −8gµργν + 2ε(gνργµ + gµνγρ) + ε(γνγµγρ + γµγργν)

= −8gµργν + 3ε(gνργµ + gµνγρ) + iε(σµνγρ + γµσνρ). (6.124d)

Note that we have been careful to keep all expressions in the intermediate steps of the

calculation manifestly hermitian, in order to easily obtain manifestly hermitian final results.

This is why we have applied gamma matrix formulas in a symmetric manner in Eq. (6.124).

Adding up all diagrams computed in Eq. (6.123), we have

L1-loop
EFT ⊃ cs

16π2

1

M2
tr
{ 1

9
Uhl γ

µUlhP
νPµPν +

1

6
Uhlγ

µP νUlh(PµPν + PνPµ)

−1

6
Uhlγ

µ(PµPν + PνPµ)UlhP
ν +

(8

9
− 2

3
log

M2

µ2

)
Uhlγ

µP νPµPνUlh

+
1

8
i Uhl(σ

µνγρ + γρσµν)[Pµ, Pν ]UlhPρ

−1

8
i Uhl(σ

µνγρ[Pµ, Pν ]Pρ + γρσµνPρ[Pµ, Pν ])Ulh

}
⊂ cs

16π2

1

M2
tr
{ 1

12

(
Uhlγ

µ[Pν , [P
ν , [Pµ, Ulh]]] + Uhlγ

µ[Pµ, [P
ν , [Pν , Ulh]]]

)
− 1

18
Uhlγ

νUlh[P
µ, [Pµ, Pν ]] +

(
−4

9
+

1

3
log

M2

µ2

)
Uhlγ

ν [P µ, [Pµ, Pν ]]Ulh

−1

8

(
i Uhlσ

µνγρ[Pµ, Pν ][Pρ, Ulh]− i[Pρ, Uhl]σµνγρ[Pµ, Pν ]Ulh
)}

=
cs

16π2

1

M2

{
−1

3

[
i l̄f †f(D2 /D + /DD2)l + i ¯̃lff †(D2 /D + /DD2)l̃

]
+

2

9

[
(l̄f †fγνl)Dµ(g′BµνYh∗) + (¯̃lff †γν l̃)Dµ(g′BµνYh)

]
+
(16

9
− 4

3
log

M2

µ2

)
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[
l̄f †fγνDµ

(
gW a

µν

τa

2
+ g′BµνYl̃

)
l + ¯̃lff †γνDµ

(
gW a

µν

τa

2
+ g′BµνYl

)
l̃
]

+
1

2

[
i l̄f †fσµν

(
gW a

µν

τa

2
+ g′BµνYl̃

)
/Dl

+i ¯̃lff †σµν
(
gW a

µν

τa

2
+ g′BµνYl

)
/Dl̃ + h.c.

]}
=

1

16π2

1

M2

{
−1

3
i l̄f †f(D2 /D + /DD2)l

+
2

3

(5

3
− log

M2

µ2

)
g′(l̄f †fγνl)(DµBµν) +

2

3

(4

3
− log

M2

µ2

)
g(l̄f †fγντal)(DµW a

µν)

+
1

4

[
ig′(l̄f †fσµν /Dl)Bµν + h.c.

]
+

1

4

[
ig′(l̄f †fσµντa /Dl)W a

µν + h.c.
]}
, (6.125)

where we have denoted the sigma matrices by τa to avoid clash of notation. Note that the

form of [Pµ, Pν ] = igGµν depends on the propagator on which it is inserted, e.g. [Pµ, Pν ] =

igW a
µν

τa

2
+ ig′BµνY and ig′BµνY for SU(2)L doublets and singlets, respectively. Also, we see

that terms involving l and l̃ contribute equally, yielding a factor of 2 which cancels against

cs = 1
2

in the last line of Eq. (6.125). Our results agree with those obtained in [230] by

Feynman diagram calculations.

6.5 Conclusions

Matching from an UV theory to a low-energy EFT via gauge-covariant functional methods,

as an alternative to Feynman diagrams, will continue to be both theoretically interesting

and practically useful. We are now at a stage where one-loop universal master formulas

are available [55, 56] and have proven useful in the simplest cases (namely in the absence

of mixed heavy-light contributions, open covariant derivatives, etc.), while various proposals

exist [57–59] to deal with such additional structures that arise in practical applications. An

interesting question to explore at this point is whether ideas from these (or other similar)

proposals can be implemented as easily as existing universal master formulas, without the

need for additional functional manipulations which might make functional matching methods

less accessible.

To this end, we have introduced covariant diagrams as a tool to keep track of functional

matching calculations. They are easy to use, and provide physical intuition. Specifically,

we carried out a functional matching procedure that builds upon and extends the approach

of [59], from which a set of rules for associating terms in a CDE with one-loop diagrams was

derived — this was done, once and for all, in Sections 6.2 through 6.3.4. The rules are remi-

niscent of conventional Feynman rules, but with a crucial difference that only gauge-covariant

quantities are involved. The recipe summarized in Section 6.3.5 can be easily followed in
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one-loop matching calculations, including those involving mixed heavy-light contributions,

open covariant derivatives and mixed statistics, which are not directly captured by existing

universal results. We presented many example calculations in Section 6.4, showing technical

details for the sake of pedagogy. They provide nontrivial tests of our covariant diagrams

formalism. As a byproduct, some universal results incorporating the additional structures

were obtained in the intermediate steps, which are also useful beyond the specific UV models

considered in this chapter.

Compared with Feynman diagrammatic matching, our formalism inherits some key ad-

vantages of functional matching, namely gauge covariance in intermediate steps and the

possibility of obtaining universal results as discussed in the Introduction. In addition, com-

pared with recently-proposed functional matching approaches, our covariant diagrammatic

formulation has the following highlights:

• No additional functional manipulations (nor subtraction procedures) are needed. One

simply draws diagrams and reads off associated master integrals and operator struc-

tures, which is more intuitive conceptually.

• The step of collecting identical terms in a CDE is automatically achieved by associating

a symmetry factor to each covariant diagram, which trivially follows from rotation

symmetry of the diagram.

• Loops with fermions are easily handled. As in the pure bosonic case, vertex insertion

rules are directly obtained from the quadratic pieces of the UV Lagrangian without

explicitly block-diagonalizing the quadratic operator.

An attractive direction to move forward in, as far as functional matching methods are

concerned, is trying to fully exploit their universality feature and derive more general uni-

versal master formulas for one-loop matching. It is an intriguing possibility that as many

interesting UV theories as possible can be matched onto low-energy EFTs simply by applying

a few master formulas. In this regard, covariant diagrams provide a useful tool to organize

and simplify the calculations involved — we already saw in Section 6.4.1 that they allow for

a simpler derivation of existing universal results. Meanwhile, even in the absence of complete

universal results, one can already take advantage of covariant diagram techniques to facili-

tate one-loop matching calculations for specific UV models of phenomenological interest, as

we did in Sections 6.4.2 through 6.4.5. We also comment that the algorithm of enumerating

and computing covariant diagrams can in principle be automated, providing a useful and

efficient alternative to automated Feynman diagrammatic matching calculations. Besides, it

is interesting to consider the possibility of extending covariant diagram techniques beyond

144



one loop for EFT matching, and more generally for extracting UV information of a quantum

field theory (including e.g. renormalization group evolution [57]).
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Chapter 7

EFT Approach to Trans-TeV

Supersymmetry

Dismissing traditional naturalness concerns while embracing the Higgs boson mass mea-

surement and unification motivates careful analysis of trans-TeV supersymmetric theories.

We take an effective field theory (EFT) approach, matching the Minimal Supersymmetric

Standard Model (MSSM) onto the Standard Model (SM) EFT by integrating out heavy

superpartners, and evolving MSSM and SMEFT parameters according to renormalization

group equations in each regime. Our matching calculation is facilitated by the covariant dia-

grams formulation of functional matching techniques, with the full one-loop SUSY threshold

corrections encoded in just 30 diagrams. Requiring consistent matching onto the SMEFT

with its parameters (those in the Higgs potential in particular) measured at low energies,

and in addition requiring unification of bottom and tau Yukawa couplings at the scale of

gauge coupling unification, we detail the solution space of superpartner masses from the

TeV scale to well above. We also provide detailed views of parameter space where Higgs

coupling measurements have probing capability at future colliders beyond the reach of direct

superpartner searches at the LHC.

7.1 Introduction

The lack of new physics discoveries at the LHC has led us to consider the possibility that

beyond Standard Model (BSM) states responsible for solving the outstanding problems in

particle physics, e.g. unification and dark matter, are much heavier than the weak scale. In

this scenario, weak-scale phenomenology can be conveniently described by an effective field

theory (EFT). With heavy new particles integrated out, their virtual effects are encoded

in higher-dimensional effective operators involving the light Standard Model (SM) fields.
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Recent years have seen a growing EFT literature, many of which aim to carefully examine

phenomenological impact of higher-dimensional operators; see e.g. [5–7] for reviews. Exper-

imental data have put constraints on many of these operators, which can be translated into

constraints on, e.g. masses and couplings of heavy new particles, once the BSM theory is

specified.

On the other hand, the usefulness of EFT approaches to BSM physics extends beyond

bottom-up studies. From a top-down perspective, we may be interested to ask whether some

attractive speculative ideas – supersymmetry (SUSY), unification, etc. – can be realized in

specific BSM setups, while being consistent with the SMEFT we have established at low

energy. To address such questions requires careful matching between the full theory and EFT

parameters across heavy particle thresholds. In particular, in addition to higher-dimensional

operators being generated, changes in renormalizable operator coefficients across thresholds

are often important to account for. These “threshold corrections” are invisible to low-energy

experiment, but may be crucial for answering questions regarding high-scale physics, like the

one on SUSY and unification posed above.

For example, in the context of the Minimal Supersymmetric Standard Model (MSSM),

we would like to know what regions of parameter space can realize unification of not only the

three gauge couplings, but also the bottom and tau Yukawa couplings, and meanwhile allow

consistent matching onto the SMEFT with its parameters (those in the Higgs potential in

particular) measured at low energy. Further, we would like to know what phenomenological

implications, if any, such parameter choices may have.

These are questions we would like to investigate in this chapter, taking a top-down EFT

approach. We will compute the full one-loop contributions to the SM renormalizable opera-

tors when heavy BSM states in the MSSM are integrated out, from which SUSY threshold

corrections to all SM parameters can be easily obtained. As we will see, threshold correc-

tions to the bottom Yukawa and Higgs quartic couplings are of particular importance for

achieving both b-τ Yukawa unification and consistent matching onto the SMEFT.

In this calculation, we find solutions for SUSY scales from TeV up to 1010 GeV. However,

only the lower edge of this broad trans-TeV window can be within experimental reach. Given

the further motivation of a dark matter candidate, we will take a closer look at the 1-10 TeV

regime. In particular, we will extend our one-loop matching calculation to the dimension-six

level, and obtain parametrically enhanced contributions to the operators affecting hbb̄ and

hτ+τ− couplings, which can dominate over tree-level effects. We will show how precision

Higgs measurements constitute a powerful indirect probe of TeV-scale SUSY with b-τ Yukawa

unification that is complementary to direct superpartner searches.

We note that while the full one-loop SUSY threshold corrections (as well as sparticle
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mass corrections) in the MSSM have been known for some time [231], growing interest in

EFT formulations of the calculation is quite recent (see e.g. [47–53]). This is of course

largely due to higher-scale SUSY having been less attractive from the fine-tuning point of

view. Here we shall adopt the perspective that the weak scale may indeed be fine-tuned to

some degree, with new particles in the trans-TeV regime, justifying an EFT treatment. In

this case, the MSSM still exhibits several attractive features, including gauge and Yukawa

coupling unification as mentioned above, and may also provide a dark matter candidate. Our

philosophy here is in line with earlier studies in [232,233] on Yukawa unification with heavy

superpartners. In particular, the capability of unification and dark matter requirements to

severely constrain the SUSY parameter space has been recently emphasized in [233].

A new ingredient of our work is that, instead of computing low-energy observables such as

SM particle masses and the Fermi constant, we obtain SUSY threshold corrections directly

from the path integral by taking advantage of functional matching techniques, which have at-

tracted much attention and undergone interesting developments recently [55–61,216–218] (see

also [196–198, 219, 220]). Such techniques can greatly simplify EFT matching calculations,

thanks to preservation of gauge covariance and exhibition of a universal structure [56,58,61].

In [60], a concise diagrammatic formulation of functional matching at one-loop level was

obtained: the low-energy effective Lagrangian directly derives from a sum of “covariant dia-

grams,” following a set of simple rules. This approach is general enough to overcome several

limitations of previous formulations, and so will be used here.

From the technical point of view, our calculation also serves as a nontrivial test case

for the covariant diagrams technique. It also further demonstrates the simplicity of the

approach. In particular, with just 30 covariant diagrams, we are able to obtain full one-loop

SUSY threshold corrections in agreement with existing results in the literature.

7.1.1 EFT matching, threshold corrections and observables

Consider a general BSM theory whose Lagrangian has the following form,

L [ϕBSM, ϕSM] = LSM[ϕSM] + LBSM[ϕBSM, ϕSM] . (7.1)

Here ϕSM, ϕBSM collectively denote fields within and beyond the SM, respectively. The SM

part of the Lagrangian reads

LSM = |Dµφ|2 +
∑

f=q,u,d,l,e

f̄ i /Df − 1

4
GA
µνG

Aµν − 1

4
W I
µνW

Iµν − 1

4
BµνB

µν

−m2|φ|2 − λ|φ|4 −
(
ψ̄u yu ψq · ε · φ+ ψ̄d yd ψq · φ∗ + ψ̄e ye ψl · φ∗ + h.c.

)
, (7.2)
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where ε = iσ2, and dots denote SU(2)L index contractions. ψf are four-component spinors

containing the SM chiral fermions f , e.g. ψq = (qa, 0), ψu = (0, u†ȧ), etc. Here and in the

following, we use boldface, e.g. yu, yd, ye, for 3× 3 matrices in generation space.

The EFT approach applies when the BSM fields ϕBSM are much heavier than the SM

weak scale. In this case, integrating out ϕBSM from the path integral results in a local

effective Lagrangian for ϕSM,∫
[DϕBSM][DϕSM] e i

∫
ddx (LSM+LBSM) =

∫
[DϕSM] e i

∫
ddx
(
LSM+L(d≤4)+L(d=5)+L(d=6)+...

)
≡

∫
[DϕSM] e i

∫
ddxLSMEFT . (7.3)

As implied in the equation above, this procedure of matching L onto LSMEFT generally

produces extra renormalizable (d ≤ 4) pieces in the EFT Lagrangian, in addition to LSM

that already exists in the full theory. However, they can be absorbed into LSM via proper

redefinitions of fields and couplings and thus do not have observable consequences at low

energy. To be explicit, let us write

L(d≤4) = δZφ|Dµφ|2 +
∑

f=q,u,d,l,e

ψ̄f δZf i /Dψf

−1

4
δZGG

A
µνG

Aµν − 1

4
δZWW

I
µνW

Iµν − 1

4
δZBBµνB

µν

+δm2|φ|2 + δλ|φ|4

+
(
ψ̄u δyu ψq · ε · φ+ ψ̄d δyd ψq · φ∗ + ψ̄e δye ψl · φ∗ + h.c.

)
. (7.4)

Rescaling the SM fields to retain canonical normalization of their kinetic terms (up to terms

of second order or higher in the δZ’s1),

ϕ̂SM =
(

1 +
1

2
δZϕSM

)
ϕSM , (7.5)

and defining effective parameters as follows,

geff
3 = g3

(
1− 1

2
δZG

)
, geff = g

(
1− 1

2
δZW

)
, g′

eff
= g′

(
1− 1

2
δZB

)
,

m2
eff = m2 (1− δZφ)− δm2 , λeff = λ (1− 2 δZφ)− δλ ,

yeff
u = yu − δyu −

1

2
(yu δZq + δZu yu + yu δZφ) ,

yeff
d = yd − δyd −

1

2
(yd δZq + δZd yd + yd δZφ) ,

1Here δZϕSM is understood as the matrix δZf for ϕSM = f , which is symmetric in generation space as
required by hermiticity of the Lagrangian.
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yeff
e = ye − δye −

1

2
(ye δZl + δZe ye + ye δZφ) , (7.6)

we obtain

LSMEFT = |Dµφ̂|2 +
∑

f=q,u,d,l,e

¯̂
f i /Df̂ − 1

4
ĜA
µνĜ

Aµν − 1

4
Ŵ I
µνŴ

Iµν − 1

4
B̂µνB̂

µν

−m2
eff|φ̂|2 − λeff|φ̂|4 −

( ¯̂
ψu y

eff
u ψ̂q · ε · φ̂+

¯̂
ψd y

eff
d ψ̂q · φ̂∗ +

¯̂
ψe y

eff
e ψ̂l · φ̂∗ + h.c.

)
+L(d=5) + L(d=6) + . . . , (7.7)

where

Dµ = ∂µ − i geff
3 tAĜA

µ − i geff tIŴ I
µ − i g′

eff
Y B̂µ , (7.8)

with tA, tI being the SU(3)c and SU(2)L generators in the corresponding representation.

We see that while the renormalizable part of LSMEFT contains the same operators as the

LSM part of the full theory Lagrangian, their coefficients, i.e. the parameters labeled by “eff”

whose values we can extract from experiment, are generally different from their counterparts

in the full theory. These differences are usually referred to as “threshold corrections,” and are

important to take into account when studying higher-energy phenomena of the full theory,

such as unification in the MSSM. It is clear from Eq. (7.6) that threshold corrections are

directly related to operator coefficients in the L(d≤4) piece generated from the matching

procedure of Eq. (7.3).

On the other hand, the non-renormalizable part of LSMEFT, i.e. L(d=5) + L(d=6) + . . . ,

can cause low-energy observations to deviate from expectations of the renormalizable SM:

L(d=5) contains just one operator which is responsible for non-zero neutrino masses, while

L(d=6) contains a large number of operators which contribute to e.g. electroweak, Higgs, and

flavor observables. For example, consider the following dimension-six operators (neglecting

differences between ϕSM and ϕ̂SM),

L(d=6) ⊃ |φ|2 (ψ̄qCdφ ψd) · φ+ |φ|2 (ψ̄lCeφ ψe) · φ + h.c. (7.9)

After RG evolved down to the weak scale, they affect couplings of the SM Higgs boson to

down-type quarks and leptons, and hence observables like the Higgs boson partial widths.

When fermion masses are used as inputs of the calculation, we have

Γ(h→ ff̄) = (1 + δκf )
2 Γ(h→ ff̄)SM , (7.10)
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with

δκb = −Cbφv
2

yeff
b

, δκτ = −Cτφv
2

yeff
τ

, (7.11)

etc. at tree level, where yeff
b,τ , Cbφ,τφ are 33 elements of yeff

d,e, Cdφ,eφ, respectively.

Note that Cbφ,τφ ∼ Λ−2 with Λ being the scale of new physics being integrated out, and

therefore, the observable BSM effects δκb,τ decouple as v2

Λ2 as Λ increases. This is in contrast

to the (unobservable) threshold corrections discussed above, which originate from d ≤ 4

operators and thus do not decouple. We will see in Section 7.3 that in the specific case of

the MSSM with b-τ Yukawa unification, threshold corrections to λ and yb are actually larger

for higher SUSY scales.

Meanwhile, in addition to the Λ power counting, the low-energy EFT is also organized

by a loop counting. Take the calculation of Γ(h→ bb̄) for example. Higher order corrections

come from both EFT matching for d > 4 operators (Cbφ = Ctree
bφ + C1-loop

bφ + . . . in the

present case) and loop level Feynman diagrams in the EFT. Generally speaking, when Λ is

much higher than the weak scale, the only such corrections that are essential to take into

account are the non-decoupling ones from the renormalizable SM loops, namely corrections

to Γ(h → bb̄)SM (see [234–236] for state-of-the-art calculations). An exception is when

O( 1
16π2Λ2 ) corrections are parametrically enhanced, e.g. by tan β � 1 in the case of the

MSSM. We will see in Section 7.4 that such enhanced contributions to C1-loop
bφ can dominate

over Ctree
bφ in some regions of the MSSM parameter space, and are therefore also essential to

take into account when making predictions for Γ(h → bb̄) in the EFT. The results can of

course be further refined by computing non-enhanced contributions, and even higher order

terms in both the Λ−1 and loop expansions (see e.g. [200,237–239]). See also [41,90,240,241]

for related discussions on EFT power counting.

7.2 Matching the MSSM onto the SMEFT

7.2.1 MSSM fields and interactions

We now use the covariant diagrams technique to match the MSSM onto the SMEFT. To

begin with, we need to extract the field content (including gauge quantum numbers of each

field which determine the form of Pµ) and the interaction matrix U[ϕ] of the MSSM.

The complete MSSM field multiplet (ϕH , ϕL)T is given in Tables 7.1 and 7.2. We have

explicitly written out the internal indices carried by each field for clarity. In particular, we

use i, A, α, I, a and ȧ for SU(3)c fundamental and adjoint, SU(2)L fundamental and adjoint,

and spinor indices on the conjugate fields on the left side of the quadratic operator QUV,
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and j, B, β, J , b and ḃ for those on the fields on the right side.

The scalar sector of the MSSM consists of sfermions and two Higgs doublets. For the

latter, we choose a basis (Φ, φ) where the mass matrix in the electroweak-symmetric phase

is diagonal,

LMSSM ⊃ −(µ2 +m2
Hu)|Hu|2 − (µ2 +m2

Hd
)|Hd|2 − b (Hu · ε ·Hd + h.c.)

= −m2|φ|2 −M2
Φ|Φ|2 . (7.12)

The (Φ, φ) and (Hu, Hd) bases are related by

Φ = cβ′ Hu + sβ′ ε ·H∗d , φ = sβ′ Hu − cβ′ ε ·H∗d . (7.13)

where we have abbreviated sin β′ ≡ sβ′ , cos β′ ≡ cβ′ , with β′ defined by

tan 2β′ =
2b

m2
Hu
−m2

Hd

. (7.14)

Note that β′ is different from what is usually referred to as β as in tan β = vu
vd

, the ratio of

vacuum expectation values (vevs) of Hu and Hd. In fact, at one-loop level, minimizing the

effective potential, we can see that the two are related by2

β = β′ +
1

M2
Φ

sβcβ

( tu
vu
− td
vd

)
O
(

Λ2

16π2

) +O(Λ−2) , (7.15)

in the decoupling limit |m2| � M2
Φ,f̃ ,χ̃,Ṽ

∼ O(Λ2) that we are interested in. Here tu, td are

one-loop tadpoles, whose analytical expressions can be found in e.g. [231].

As for fermions, we choose to work with four-component spinor fields. In particular,

we write the Higgsinos as a Dirac spinor, and the gauginos as Majorana spinors. The SM

chiral fermions f are embedded into Dirac spinors ψf , in which we also retain unphysical

wrong-chirality Weyl fermions f ′, and set them to zero only at the end of the calculation3.

Interactions among the MSSM fields in Tables 7.1 and 7.2 are encoded in the covariant

derivative Pµ and interaction matrices U[ϕ], Z[ϕ] in our functional matching formalism.

They are extracted from the terms in the MSSM Lagrangian that are quadratic in quantum

2Here we are defining β in a tadpole-free scheme, where vu, vd denote the location of the minimum of the
loop-corrected effective potential (and are gauge dependent). An alternative scheme that is also commonly
used defines vu, vd by the location of the minimum of the tree-level Higgs potential, independent of gauge
choice; in that scheme, tanβ differs from tanβ′ only by O(Λ−2) terms.

3Generally, such embedding would require additionally writing projection operators in interaction terms
to pick up the physical fermion fields. However, this is not necessary in the special case of R-parity-conserving
MSSM considered here.
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MSSM field SU(3)c × SU(2)L × U(1)Y Conjugate field

Heavy spin-0 ( cs = 1
2

)

Φβ

(
1 , 2 , 1

2

)
Φ∗α

Φ∗β
(

1 , 2̄ , −1
2

)
Φα

q̃jβ =
(
uLj , dLj

) (
3 , 2 , 1

6

)
q̃∗iα

q̃∗jβ =
(
u∗jL , d

∗j
L

) (
3̄ , 2̄ , −1

6

)
q̃iα

ũj = ũRj
(

3 , 1 , 2
3

)
ũ∗i

ũ∗j = ũ∗jR
(

3̄ , 1 , −2
3

)
ũi

d̃j = d̃Rj
(

3 , 1 , −1
3

)
d̃∗i

d̃∗j = d̃∗jR
(

3̄ , 1 , 1
3

)
d̃i

l̃β =
(
νL , eL

) (
1 , 2 , −1

2

)
l̃∗α

l̃∗β =
(
ν∗L , e

∗
L

) (
1 , 2̄ , 1

2

)
l̃α

ẽ = ẽR ( 1 , 1 , −1 ) ẽ∗

ẽ∗ = ẽ∗R ( 1 , 1 , 1 ) ẽ

Heavy spin-1/2 ( cs = −1
2

)

χ̃β =

(
χ̃ubβ

εβδχ̃
†ḃδ
d

) (
1 , 2 , 1

2

)
χ̃
α

=
(
εαγχ̃adγ , χ

†α
uȧ

)
χ̃cβ =

(
εβδχ̃dbδ

χ̃†ḃβu

) (
1 , 2̄ , −1

2

)
χ̃

c

α =
(
χ̃auα , εαγχ

†γ
dȧ

)
g̃B =

(
λBgb

λ†ḃBg

)
( 8 , 1 , 0 ) g̃

A
=
(
λaAg , λ†Agȧ

)
W̃ J =

(
λJWb

λ†ḃJW

)
( 1 , 3 , 0 ) W̃

I

=
(
λaIW , λ†IWȧ

)
B̃ =

(
λBb

λ†ḃB

)
( 1 , 1 , 0 ) B̃ =

(
λaB , λ

†
Bȧ

)
Table 7.1: (From [132]) Heavy fields ϕH in the MSSM, their gauge quantum numbers, and
conjugate fields (which appear on the left side of QUV).
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MSSM field SU(3)c × SU(2)L × U(1)Y Conjugate field

Light spin-0 ( cs = 1
2

)

φβ
(

1 , 2 , 1
2

)
φ∗α

φ∗β
(

1 , 2̄ , −1
2

)
φα

Light spin-1/2 ( cs = −1
2

)

ψqjβ =

(
qbjβ

q′†ḃjβ

) (
3 , 2 , 1

6

)
ψ
iα

q =
(
q′aiα , q†iαȧ

)
ψcjβ
q =

(
q′jβb
q†ḃjβ

) (
3̄ , 2̄ , −1

6

)
ψ

c

qiα =
(
qaiα , q

′†
ȧiα

)
ψuj =

(
u′bj

u†ḃj

) (
3 , 1 , 2

3

)
ψ
i

u =
(
uai , u′†iȧ

)
ψcj
u =

(
ujb
u′†ḃj

) (
3̄ , 1 , −2

3

)
ψ

c

ui =
(
u′ai , u

†
ȧi

)
ψdj =

(
d′bj

d†ḃj

) (
3 , 1 , −1

3

)
ψ
i

d =
(
dai , d′†iȧ

)
ψcj
d =

(
djb
d′†ḃj

) (
3̄ , 1 , 1

3

)
ψ

c

di =
(
d′ai , d

†
ȧi

)
ψlβ =

(
lbβ

l′†ḃβ

) (
1 , 2 , −1

2

)
ψ
α

l =
(
l′aα , l†αȧ

)
ψcβ
l =

(
l′βb
l†ḃβ

) (
1 , 2̄ , 1

2

)
ψ

c

lα =
(
laα , l

′†
ȧα

)
ψe =

(
e′b

e†ḃ

)
( 1 , 1 , −1 ) ψe =

(
ea , e′†ȧ

)
ψc
e =

(
eb

e′†ḃ

)
( 1 , 1 , 1 ) ψ

c

e =
(
e′a , e†ȧ

)
Light spin-1 ( cs = 1

2
)

GB
ν ( 8 , 1 , 0 ) GA

µ

W J
ν ( 1 , 3 , 0 ) W I

µ

Bν ( 1 , 1 , 0 ) Bµ

Table 7.2: (From [132]) Light fields ϕL in the MSSM, their gauge quantum numbers, and
conjugate fields (which appear on the left side of QUV). Primed Weyl fermion fields are
unphysical auxiliary fields, to be set to zero at the end of the calculation.
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Φ
q̃

ũ
d̃

l̃
ẽ

χ̃
g̃

W̃
B̃

φ
q

u
d

l
e

G
W

B

Φ
ϕ

2
ϕ

2
u
,d

q
q

e
l

D
Φ

D
Φ

q̃
ϕ

2
ϕ

ϕ
u
,d

q
q

q

ũ
ϕ

ϕ
2

Φ
φ

q
u

u

d̃
ϕ

Φ
φ

ϕ
2

q
d

d

l̃
ϕ

2
ϕ

e
l

l

ẽ
ϕ

ϕ
2

l
e

χ̃
u
,d

q
q

e
l

ϕ
ϕ

g̃
q

u
d

W̃
q

l
ϕ

B̃
q

u
d

l
e

ϕ

φ
ϕ

2
ϕ

2
u
,d

q
q

e
l

D
φ

D
φ

q
u
,d

u
,d

ϕ
ϕ

q
q

q

u
q

q
ϕ

u
u

d
q

q
ϕ

d
d

l
e

e
ϕ

l
l

e
l

l
ϕ

e

G
q

u
d

G
µ
ν

W
D

Φ
D
φ

q
l

W
µ
ν
,φ

2
,Φ

2

B
D

Φ
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φ
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u
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l

e
φ

2
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2
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fluctuation fields. It turns out that the Z matrix does not contribute to the operators

computed in this chapter (up to Λ−1 suppressed corrections), and so will not be considered

further.

To write down the U matrix, we follow the conventions in [242] (Ref. [231] uses an

opposite sign for the tree-level Higgsino mass parameter µ), assuming R-parity is conserved.

We assume a trivial flavor structure for the soft SUSY breaking parameters for simplicity,

LMSSM ⊃ −M2
q̃ q̃
∗ 1 q̃ −M2

ũ ũ
∗ 1 ũ−M2

d̃
d̃∗ 1 d̃−M2

l̃
l̃∗ 1 l̃ −M2

ẽ ẽ
∗ 1 ẽ

−Au ũ∗ λu q̃ · ε ·Hu + Ad d̃
∗ λd q̃ · ε ·Hd + Ae ẽ

∗ λe l̃ · ε ·Hd , (7.16)

where λu,λd,λe are Yukawa matrices in the MSSM. Our results can be easily extended to

include flavor mixing, at the cost of making the analytical expressions more complicated.

Furthermore, we assume µv,Afv � M2
f̃
, so that matching in the electroweak-symmetric

phase without sfermion mass mixing is justified.

We summarize the fields contained in each nonzero entry of the MSSM U matrix in

Table 7.3, relegating detailed expressions to Appendix C. This U matrix exhibits a block-

diagonal structure because of the assumed R-parity: if i and j have opposite R-parity, Uij

would be proportional to a heavy R-parity-odd field, which should be set to ϕH,c = 0 (so

that δLMSSM

δϕH

∣∣
ϕH=ϕH,c

∝ ϕH,c = 0). We will demonstrate in Sections 7.2.3 and 7.2.4 how to

use Table 7.3 to quickly pick out the U insertions containing the right fields to make up a

desired operator in our one-loop matching calculation.

7.2.2 Tree-level matching

The tree-level effective Lagrangian is obtained by solving the equations of motion of the

heavy fields. As mentioned in the previous subsection, in the absence of R-parity violation,
δLMSSM

δϕH
= 0 is trivially solved by ϕH,c = 0 for all the heavy fields in the MSSM except the

R-parity-even heavy Higgs doublet Φ, for which

δLMSSM

δΦ∗α
=

[
(P 2)βα −M2

Φ δ
β
α

]
Φα

+
1

8
(g2 + g′2)s4β′ |φ|2φβ + cβ′ εαβψ̄

β
q λ
†
u ψu + sβ′ ψ̄d λd ψqα + sβ′ ψ̄e λe ψlα

+
[1

4
(g2 + g′2)c2

2β′ −
1

2
g2
]
|φ|2Φα −

[1

4
(g2 + g′2)s2

2β′ −
1

2
g2
]
(φ∗Φ)φα

−1

4
(g2 + g′2)s2

2β′(Φ
∗φ)φα +O(Φ2φ,Φ3) . (7.17)
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in the DR scheme. In the MS scheme, on the other hand, the scalar quartic couplings (and

hence the scalar cubic terms in Eq. (7.17)) receive O( g4

16π2 ,
g2g′2

16π2 ,
g′4

16π2 ) corrections [243].

We can solve the equation of motion δLMSSM

δΦ∗
= 0 for Φc perturbatively, as a power series

in M−1
Φ ,

Φc = Φ(1)
c + Φ(2)

c + . . . where Φ(n)
c ∼ O(M−2n

Φ ) . (7.18)

The first and second order solutions read

Φ(1)
cα =

1

M2
Φ

[
1

8
(g2 + g′2)s4β′|φ|2φα + cβ′ εαβψ̄

β
q λ
†
u ψu + sβ′ ψ̄d λd ψqα + sβ′ ψ̄e λe ψlα

]
,

(7.19)

Φ(2)
cα =

1

M2
Φ

{
−
(
D2Φ(1)

c

)
α

+
[1

4
(g2 + g′2)c2

2β′ −
1

2
g2
]
|φ|2Φ(1)

cα

−
[1

4
(g2 + g′2)s2

2β′ −
1

2
g2
]
(φ∗Φ(1)

c )φα −
1

4
(g2 + g′2)s2

2β′(Φ
(1)∗
c φ)φα

}
. (7.20)

Only Φ
(1)
c is needed in tree-level matching up to dimension six. We have

Ltree
SMEFT = LMSSM|ϕH→ϕH,c = LSM +M2

Φ

∣∣Φ(1)
c

∣∣2 +O(Λ−4)

= LSM +
∑
i

Ctree
i O

(d=6)
i +O(Λ−4) , (7.21)

where the dimension-six operators O(d=6)
i generated and their coefficients Ctree

i are listed in

Table 7.4. We have used the basis of [3], known as the Warsaw basis, for dimension-six

operators. Fierz identities have been used to transform some of the four-fermion operators

into this basis. Note that with the tree-level matching of Eq. (7.21) alone, each appearance

of β in Table 7.4 should really read β′. However, as we will see shortly, part of one-loop

matching result can be absorbed into a redefinition of β′ → β in the tree-level operator

coefficients.

β redefinition

An interesting observation can be made on the tree-level effective Lagrangian computed

above. Differentiating Ltree
SMEFT with respect to β′, we find

∂

∂β′
Ltree (d=4)

SMEFT =
∂

∂β′

[
−1

8

(
g2 + g′2

)
c2

2β′|φ|4

−
(
sβ′ψ̄u λu ψq · ε · φ+ cβ′ψ̄d λd ψq · φ∗ + cβ′ψ̄e λe ψl · φ∗ + h.c.

)]
=

1

4

(
g2 + g′2

)
s4β′ |φ|4
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Coefficient Operator

Ctree
φ = 1

64M2
Φ
s2

4β (g2 + g′2)2 Oφ = |φ|6[
Ctree
uφ

]
pr

= − 1
8M2

Φ
s4βcβ (g2 + g′2)

[
λ†u
]
pr

[
Ouφ

]pr
= |φ|2 (ψ̄ p

q ψ
r
u ) · εφ∗[

Ctree
dφ

]
pr

= 1
8M2

Φ
s4βsβ (g2 + g′2)

[
λ†d
]
pr

[
Odφ

]pr
= |φ|2 (ψ̄ p

q ψ
r
d ) · φ[

Ctree
eφ

]
pr

= 1
8M2

Φ
s4βsβ (g2 + g′2)

[
λ†e
]
pr

[
Oeφ

]pr
= |φ|2 (ψ̄ p

l ψ
r
e ) · φ[

C(1)tree
qu

]
prst

= − 1
6M2

Φ
c2
β

[
λ†u
]
pt

[
λu
]
sr

[
O(1)
qu

]prst
= (ψ̄ p

q γµψ
r
q )(ψ̄ s

u γ
µψ t

u )[
C(8)tree
qu

]
prst

= − 1
M2

Φ
c2
β

[
λ†u
]
pt

[
λu
]
sr

[
O(8)
qu

]prst
= (ψ̄ p

q γµT
Aψ r

q )(ψ̄ s
u γ

µTAψ t
u )[

C
(1)tree
qd

]
prst

= − 1
6M2

Φ
s2
β

[
λ†d
]
pt

[
λd
]
sr

[
O(1)
qd

]prst
= (ψ̄ p

q γµψ
r
q )(ψ̄ s

d γ
µψ t

d )[
C

(8)tree
qd

]
prst

= − 1
M2

Φ
s2
β

[
λ†d
]
pt

[
λd
]
sr

[
O(8)
qd

]prst
= (ψ̄ p

q γµT
Aψ r

q )(ψ̄ s
d γ

µTAψ t
d )[

Ctree
le

]
prst

= − 1
2M2

Φ
s2
β

[
λ†e
]
pt

[
λe
]
sr

[
Ole
]prst

= (ψ̄ p
l γµψ

r
l )(ψ̄ s

e γ
µψ t

e )[
C

(1)tree
quqd

]
prst

= − 1
M2

Φ
sβcβ

[
λ†u
]
pr

[
λ†d
]
st

[
O(1)
quqd

]prst
= (ψ̄ p

q ψ
r
u ) · ε · (ψ̄ s

q ψ
t
d )[

C
(1)tree
lequ

]
prst

= 1
M2

Φ
sβcβ

[
λ†e
]
pr

[
λ†u
]
st

[
O(1)
lequ

]prst
= (ψ̄ p

l ψ
r
e ) · ε · (ψ̄ s

q ψ
t
u )[

Ctree
ledq

]
prst

= 1
M2

Φ
s2
β

[
λ†e
]
pr

[
λd
]
st

[
Oledq

]prst
= (ψ̄ p

l ψ
r
e )(ψ̄ s

d ψ
t
q )

Table 7.4: (From [132]) Dimension-six operators generated at tree level when matching the
MSSM onto the SMEFT. p, r, s, t are generation indices. Tree-level matching alone produces
the operator coefficients listed here, but with β′ in place of β. As explained in Section 7.2.2,
adding the one-loop-generated piece cΦφ(Φ∗cφ+ φ∗Φc) to Ltree

SMEFT amounts to replacing β′ by
β in all Ctree

i .

+
[
φ∗
(
cβ′ε · ψ̄q λ†u ψu + sβ′ψ̄d λd ψq + sβ′ψ̄e λe ψl

)
+ h.c.

]
= M2

Φ

(
Φ(1)∗

c φ+ φ∗Φ(1)
c

)
, (7.22)

∂

∂β′
Ltree (d=6)

SMEFT = M2
Φ

(
Φ(1)∗

c · ∂Φ
(1)
c

∂β′
+ h.c.

)
= Φ(1)∗

c ·
[

1

2

(
g2 + g′2

)
c4β′ |φ|2φ

−sβ′ ε · ψ̄q λ†u ψu + cβ′ ψ̄d λd ψq + cβ′ ψ̄e λe ψl

]
+ h.c.

EoM
= Φ(1)∗

c ·
[
−(D2φ) +

1

4

(
g2 + g′2

)(
c2

2β′ − 2s2
2β′

)
|φ|2φ

]
+ h.c.

IBP
= M2

Φ

(
Φ(2)∗

c φ+ φ∗Φ(2)
c

)
. (7.23)

In the equations above, we have used the fact that both m2 = µ2 +m2
Hu
s2
β′ +m2

Hd
c2
β′ − bs2β′

and M2
Φ = µ2+m2

Hu
c2
β′+m

2
Hd
s2
β′+bs2β′ have vanishing first derivative with respect to β′, when

Eq. (7.14) is satisfied. “
EoM
= ” and “

IBP
= ” mean equivalence with the use of the renormalizable
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SM equations of motion and integration by parts, respectively — operations that are allowed

when we are dealing with dimension-six operators in the SMEFT Lagrangian. We have

neglected the m2 piece and one-loop threshold corrections to the relation λ = 1
8
(g2 + g′2)c2

2β′

when applying the equation of motion for φ, because they lead to m2

Λ2 suppressed and loop-

suppressed terms compared to those retained in our results.

Meanwhile, as we will see explicitly in the next subsection, matching the MSSM onto the

SMEFT at one-loop level generates

L1-loop
SMEFT ⊃ cΦφ(Φ∗cφ+ φ∗Φc) , (7.24)

with cΦφ ∼ O( Λ2

16π2 ) given in Eq. (7.47). The observation we made above, namely

∂

∂β′
Ltree

SMEFT = M2
Φ

(
Φ∗cφ+ φ∗Φc

)
(7.25)

suggests that we can absorb the part of L1-loop
SMEFT shown in Eq. (7.24) into Ltree

SMEFT via a

redefinition of β′,

Ltree
SMEFT(β′) + cΦφ(Φ∗cφ+ φ∗Φc) = Ltree

SMEFT

(
β′ +

cΦφ

M2
Φ

)
, (7.26)

up to two-loop corrections. Comparing cΦφ presented below in Eq. (7.47) and analytical

expressions of one-loop tadpoles in [231], we can actually show that

cΦφ = sβcβ

( tu
vu
− td
vd

)
O
(

Λ2

16π2

) . (7.27)

Therefore,

Ltree
SMEFT(β′) + cΦφ(Φ∗cφ+ φ∗Φc) = Ltree

SMEFT(β) , (7.28)

with β defined by the minimum of the (loop-corrected) 1PI effective potential, i.e. tan β = vu
vd

in the tadpole-free scheme; see Eq. (7.15). We see that adding the one-loop-generated piece

cΦφ(Φ∗cφ + φ∗Φc) to Ltree
SMEFT amounts to simply replacing β′ by β in all tree-level operator

coefficients.

There is a simple power-counting argument for the relation Eq. (7.28). If instead of

Eq. (7.13), we define Φ, φ to be related to Hu, Hd by an angle β (as opposed to β′) rotation,

we would have 〈φ〉 = v√
2
' 174 GeV, while 〈Φ〉 = 0. In this basis (usually referred to as

the Higgs basis), integrating out heavy superpartners must not produce (Φ∗cφ + φ∗Φc) with

O( Λ2

16π2 ) coefficient, because otherwise, the same contribution would be present if we compute

the 1PI effective potential of the MSSM — this would lead to an O( v
16π2 ) contribution to 〈Φ〉
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which, in fact, is the only possible contribution at this order, thus contradicting 〈Φ〉 = 0.

Technically, what happens is a cancellation of O( Λ2

16π2 ) · (Φ∗cφ+φ∗Φc) pieces between Ltree
SMEFT

and L1-loop
SMEFT: the same L1-loop

SMEFT ⊃ cΦφ(Φ∗cφ+φ∗Φc) is generated by one-loop matching, while

Ltree
SMEFT ⊃ −cΦφ(Φ∗cφ+φ∗Φc) because the UV theory Lagrangian now contains a mass mixing

term,

LMSSM ⊃
[
b c2β −

1

2
(m2

Hu −m
2
Hd

)s2β

]
(Φ∗φ+ φ∗Φ) = −sβcβ

( tu
vu
− td
vd

)
O
(

Λ2

16π2

)(Φ∗φ+ φ∗Φ) ,

(7.29)

up to m2

Λ2 suppressed and higher-loop corrections. Note that the presence of mass mixing in

this basis does not invalidate our functional matching formalism (which assumes a diagonal

mass matrix), if we treat it as a small constant term in the U matrix. However, the Higgs

basis is not a convenient choice for tree-level matching, because Φc has to be solved as a

double series in Λ−1 and 1
16π2 .

7.2.3 One-loop matching: d ≤ 4 operators and SUSY threshold

corrections

Enumerating covariant diagrams

To match the MSSM onto the SMEFT at one-loop level, we draw covariant diagrams con-

tributing to each SMEFT operator of interest, starting from the d ≤ 4 ones which encode

SUSY threshold corrections. Enumerating covariant diagrams is straightforward by looking

for desired fields from the MSSM U matrix. In what follows, we will use a slightly different

notation than the previous chapter. Here we prefer to make the distinction between bosonic

and fermionic propagators more transparent by using different types of lines (dashed vs.

solid). In the previous chapter, on the other hand, more emphasis is put on the treatment of

heavy vs. light fields, and solid (dashed) propagators are used for heavy (light) propagators

regardless of spin.

Let us demonstrate the procedure with an example operator ψ̄d δyd ψq ·φ∗+h.c. Obviously

we should look for a d, a q and a φ in Table 7.3. To begin with, there are several options

to get a d, such as from Uq̃χ̃, or from Ud̃g̃. Let us pick Uq̃χ̃ first. This Uq̃χ̃ insertion should

be followed by a χ̃ propagator, and then another U insertion containing either q or φ. For

this second U insertion, we need to enumerate all viable choices, one of them being Uχ̃ũ ∼ q.

With this particular choice, we can then close the loop with a ũ propagator, followed by a

Uũq̃ ∼ φ insertion, and then a q̃ propagator connecting back to our starting point Uq̃χ̃. We
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thus end up with the following covariant diagram,

q̃

ũ

χ̃ = − i
2
µ I111

q̃ũχ̃ tr
(
Uq̃χ̃Uχ̃ũUũq̃

)
(7.30)

Plugging in explicit expressions of Uq̃χ̃, Uχ̃ũ, Uũq̃ from Eqs. (C.15), (C.16), (C.8b), we obtain

tr
(
Uq̃χ̃Uχ̃ũUũq̃

)
⊃ sβ (Au − µ cot β)

(
ψ̄d λdλ

†
uλu ψq · φ

∗ + ψ̄cd λ
∗
dλ

T
uλ
∗
u ψ

c
q · φ

)
= (Au tan β − µ)

(
ψ̄d ydλ

†
uλu ψq · φ

∗ + h.c.
)
, (7.31)

where we have dropped similar terms involving Φ which, after setting Φ to Φc, contribute to

ψ̄d δyd ψq ·φ∗+ h.c. only at higher order in 1
Λ2 . Noting that there is an identical contribution

from the mirror reflection of the diagram of Eq. (7.30), we can write the squark-Higgsino

loop contribution to δyd as

δyd ⊃ yd δ̄y(q̃ũχ̃)
d , (7.32)

where

16π2 δ̄y
(q̃ũχ̃)
d = λ†uλu µ(Au tan β − µ) Ĩ111

q̃ũχ̃ . (7.33)

The master integral involved here has the following explicit expression,

Ĩ111
ijk ≡ I111

ijk /
i

16π2
=

M2
j

(M2
i −M2

j )(M2
j −M2

k )
log

M2
j

M2
i

+
M2

k

(M2
j −M2

k )(M2
k −M2

i )
log

M2
k

M2
i

,

(7.34)

see Appendix A.

An alternative route we can take to obtain ψ̄d δyd ψq · φ∗ + h.c. is to start from Ud̃g̃, and

form a d̃-g̃-q̃ loop,

d̃

q̃

g̃ = − i
2
M3 I111

q̃d̃g̃
tr
(
Ud̃g̃Ug̃q̃Uq̃d̃

)
. (7.35)

Evaluating the trace and adding the mirror diagram, we obtain the squark-gluino loop con-

tribution to δyd,

δyd ⊃ yd δ̄y(q̃d̃g̃)
d , (7.36)

where

16π2 δ̄y
(q̃d̃g̃)
d = −2 (Ad − µ tan β) g2

3 C
SU(3)
2 M3 Ĩ111

q̃d̃g̃
, (7.37)

with C
SU(3)
2 = 4

3
being the quadratic Casimir of the fundamental representation of SU(3)c.

It is worth noting that both the squark-Higgsino loop and the squark-gluino loop computed
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above can be viewed as part of a single covariant diagram,

j

i

k = − i
2
Mk I111

ijk tr
(
UijUjkUki

)
, (7.38)

with summation over i, j, k understood.

There are several other routes that can take us to the operator ψ̄d δyd ψq · φ∗ + h.c.,

and many others that can take us to other SMEFT operators. Following the procedure

demonstrated with the examples above, we enumerate covariant diagrams contributing to

each d ≤ 4 operator in Tables 7.5 and 7.6. In particular, Table 7.5 contains covariant

diagrams contributing to the Higgs potential and Yukawa interactions, which involve U

insertions only and no P insertions. The kinetic terms (wavefunction renormalization factors

δZ), on the other hand, come from covariant diagrams that involve P insertions, as shown

in Table 7.6. The cΦφ(Φ∗cφ + φ∗Φc) piece, which we choose to absorb into Ltree
SMEFT via a

redefinition of β as explained in Section 7.2.2, is computed from the same covariant diagrams

contributing to δm2|φ|2. In diagrams where permutations of propagator labels produce

inequivalent diagrams, such permutations are implicitly assumed to be included. We refrain

from elaborating on how to compute each of the tabulated covariant diagrams, as the general

procedure should already be clear from the examples given above.

From Tables 7.5 and 7.6, we can see an advantage of our approach is that despite the

large number of terms in the final results of one-loop SUSY threshold corrections (which we

will present below), they all derive from just 30 covariant diagrams. The small number of

covariant diagrams can be understood on dimensional grounds. Generally, we have

dim(Pµ) = 1 , dim(Uij[ϕ]) ≥ 1 , (7.39)

where “dim” means operator dimension. d ≤ 4 operators can therefore only come from

covariant diagrams with at most 4 vertex insertions, as enumerated in the tables for the case

of the MSSM4.

Results

Now we present the results of one-loop-level coefficients of all d ≤ 4 SMEFT operators,

i.e. δZφ,f,V , δm2, δλ, δyf defined in Eq. (7.4), which are calculated from the 30 covariant

4Similarly, dimension-six operators can be obtained from covariant diagrams with at most 6 vertex in-
sertions. This is true regardless of the UV theory, as long as it is Lorentz-invariant and satisfies the general
form of Eq. (6.64). This simple observation of finite combinatorics underlies the idea of deriving universal
formulas for one-loop effective Lagrangians [56,58,61].
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14 U -only covariant diagrams contributing to δm2, δλ, δyf

i i = Φ; f̃

δm2

j

i

ij = χ̃W̃ , χ̃B̃

j

i
ij = q̃ũ, q̃d̃, l̃ẽ

ij = ΦΦ, Φφ; f̃ f̃

k

j

i ijk = q̃q̃ũ, ũũq̃, q̃q̃d̃, d̃d̃q̃, l̃l̃ẽ, ẽẽl̃

δλ

l

kj

i

ijkl = q̃ũq̃ũ, q̃d̃q̃d̃, l̃ẽl̃ẽ

l

kj

i
ijkl =

χ̃W̃ χ̃W̃ , χ̃W̃ χ̃B̃, χ̃B̃χ̃B̃

δyf
k

j

i ijk = Φqu, Φqd; f̃ χ̃Ṽ

j

i

k ijk = q̃ũχ̃, q̃d̃χ̃; q̃ũṼ , q̃d̃Ṽ , l̃ẽṼ

Table 7.5: (From [132]) Covariant diagrams contributing to Higgs potential and Yukawa
interactions.
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16 P -dependent covariant diagrams contributing to δZ

j

ji

i

ij = q̃ũ, q̃d̃, l̃ẽ

δZφ

j

ji

i
ij = χ̃W̃ , χ̃B̃

δZf

j

j

i j

i

i

ij = Φf ; f̃ χ̃, f̃ Ṽ

δZG,W,B
i

ii

i

i = Φ, f̃

i

ii

i

i = χ̃, g̃, W̃

Table 7.6: (From [132]) Covariant diagrams contributing to kinetic terms.
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diagrams in Tables 7.5 and 7.6. These coefficients, together with the tree-level relations,

m2 ≡ µ2 +m2
Hus

2
β +m2

Hd
c2
β − bs2β , λ ≡ 1

8
(g2 + g′2) c2

2β ,

yu = λu sβ , yd = λd cβ , ye = λe cβ , (7.40)

can be readily plugged into Eq. (7.6) to obtain one-loop SUSY threshold corrections (there

is a one-loop correction to the equation for λ if we work with the MS scheme [243]). We

will use parenthesized subscripts or superscripts to indicate the covariant diagram each term

comes from, and mention the reduction formulas used on the master integrals so that all

results can be easily reproduced.

We have cross-checked our results against conventional Feynman diagram calculations

reported in [231] and found complete agreement; see Appendix D. Note in particular that at

one-loop level, MSSM threshold corrections are the same in both MS and DR schemes, as is

clear from the absence of ε-scalar loops in our matching calculation.

Our notation is the following. Nc = 3 is the number of colors. C
SU(3)
2 = 4

3
and C

SU(2)
2 = 3

4

are quadratic Casimirs of fundamental representations of SU(3)c and SU(2)L, respectively.

The U(1)Y hypercharges are

{
Yφ , Yq , Yu , Yd , Yl , Ye

}
=
{ 1

2
,

1

6
,

2

3
, −1

3
, −1

2
, −1

}
. (7.41)

The master integrals Ĩ ≡ I/ i
16π2 are functions of tree-level masses of the heavy particles.

Their analytical expressions in terms of tree-level heavy particle masses can be found in

Appendix A.

Higgs potential. The one-loop coefficient of the d = 2 operator |φ|2 reads

δm2 = δm2
(Φ) + δm2

(f̃)
+ δm2

(f̃ f̃)
+ δm2

(χ̃Ṽ )
, (7.42)

where

16π2 δm2
(Φ) =

[3

4
g2s2

2β + g′2 Y 2
φ (s2

2β − 2c2
2β)
]
Ĩ1

Φ , (7.43)

16π2 δm2
(f̃)

= Nc tr(λ†uλu) s2
β

(
Ĩ1
q̃ + Ĩ1

ũ

)
+Nc tr(λ†dλd) c

2
β

(
Ĩ1
q̃ + Ĩ1

d̃

)
+ tr(λ†eλe) c

2
β

(
Ĩ1
l̃

+ Ĩ1
ẽ

)
−g′2 Yφc2β

(
2NcYq Ĩ1

q̃ −NcYu Ĩ1
ũ −NcYd Ĩ1

d̃
+ 2Yl Ĩ1

l̃
− Ye Ĩ1

ẽ

)
, (7.44)

16π2 δm2
(f̃ f̃)

= Nc tr(λ†uλu) s2
β (Au − µ cot β)2 Ĩ11

q̃ũ
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+Nc tr(λ†dλd) s
2
β (Ad cot β − µ)2 Ĩ11

q̃d̃

+ tr(λ†eλe) s
2
β(Ae cot β − µ)2 Ĩ11

l̃ẽ
, (7.45)

16π2 δm2
(χ̃Ṽ )

= −4 g2C
SU(2)
2

[M2(M2 + s2βµ)

M2
2 − µ2

Ĩ1
W̃
− µ(s2βM2 + µ)

M2
2 − µ2

Ĩ1
χ̃

]
−4 g′2 Y 2

φ

[M1(M1 + s2βµ)

M2
1 − µ2

Ĩ1
B̃
− µ(s2βM1 + µ)

M2
1 − µ2

Ĩ1
χ̃

]
. (7.46)

Note that terms proportional to γµγµ = 4 − ε are generally encountered when computing

loops involving two fermionic fields. To arrive at Eq. (7.46), we have used Eq. (A.30) to

reduce (4− ε) Ĩ[q2]11
χ̃Ṽ

to Ĩ1
χ̃, Ĩ1

Ṽ
and Ĩ11

χ̃Ṽ
, and further used Eq. (A.5) to reduce Ĩ11

χ̃Ṽ
to Ĩ1

χ̃

and Ĩ1
Ṽ

.

From the expressions of master integrals in Eqs. (A.17) and (A.20), it is clear that each

term in the equations above is O( Λ2

16π2 ). Quite generally, the |φ|2 operator receives threshold

corrections that are quadratically sensitive to the EFT cutoff scale Λ when a high-energy

BSM theory is matched onto the SMEFT, as a manifestation of a potential hierarchy problem.

As noted before, the same covariant diagrams contributing to δm2|φ|2 can also be used

to compute the cΦφ(Φ∗cφ+ φ∗Φc) piece, for which we obtain

cΦφ = c
(Φ)
Φφ + c

(f̃)
Φφ + c

(f̃ f̃)
Φφ + c

(χ̃Ṽ )
Φφ , (7.47)

where

16π2 c
(Φ)
Φφ =

3

8
(g2 + g′2) s4β Ĩ1

Φ , (7.48)

16π2 c
(f̃)
Φφ = Nc tr(λ†uλu) sβcβ

(
Ĩ1
q̃ + Ĩ1

ũ

)
−Nc tr(λ†dλd) sβcβ

(
Ĩ1
q̃ + Ĩ1

d̃

)
− tr(λ†eλe) sβcβ

(
Ĩ1
l̃

+ Ĩ1
ẽ

)
+2g′2 Yφsβcβ

(
2NcYq Ĩ1

q̃ −NcYu Ĩ1
ũ −NcYd Ĩ1

d̃
+ 2Yl Ĩ1

l̃
− Ye Ĩ1

ẽ

)
, (7.49)

16π2 c
(f̃ f̃)
Φφ = Nc tr(λ†uλu) s2

β (Au − µ cot β)(Au cot β + µ) Ĩ11
q̃ũ

−Nc tr(λ†dλd) s
2
β (Ad cot β − µ)(Ad + µ cot β) Ĩ11

q̃d̃

− tr(λ†eλe) s
2
β (Ae cot β − µ)(Ae + µ cot β) Ĩ11

l̃ẽ
, (7.50)

16π2 c
(χ̃Ṽ )
Φφ = −4 g2C

SU(2)
2 c2βM2µ Ĩ11

χ̃W̃
− 4 g′2 Y 2

φ c2βM1µ Ĩ11
χ̃B̃
. (7.51)

As discussed in Section 7.2.2, we absorb this piece into the tree-level effective Lagrangian

via a redefinition of β, and thus do not consider it as contributing to threshold corrections.
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The d = 4 operator |φ|4 has the following one-loop coefficient,

δλ = δλ(Φϕ) + δλ(f̃ f̃) + δλ(f̃ f̃ f̃) + δλ(f̃ f̃ f̃ f̃) + δλ(χ̃Ṽ χ̃Ṽ ) , (7.52)

where

16π2 δλ(Φϕ) =
1

16

[
(g2 + g′2)2

(
s4

2β − s2
2βc

2
2β + c4

2β

)
− 2 g2(g2 + g′2)c2

2β + 2 g4
]
Ĩ2

Φ

+
3

8
(g2 + g′2)2s2

2βc
2
2β Ĩ11

Φ0 , (7.53)

16π2 δλ(f̃ f̃) =
1

2
tr

{
Nc

[(
λ†uλus

2
β +

1

4
g2c2β − g′2 YφYqc2β

)2

+
(
λ†dλdc

2
β −

1

4
g2c2β − g′2 YφYqc2β

)2
]
Ĩ2
q̃

+Nc

(
λuλ

†
us

2
β + g′2 YφYuc2β

)2 Ĩ2
ũ +Nc

(
λdλ

†
dc

2
β + g′2 YφYdc2β

)2 Ĩ2
d̃

+

[(
λ†eλec

2
β −

1

4
g2c2β − g′2 YφYlc2β

)2

+
(1

4
g2c2β − g′2 YφYlc2β

)2
]
Ĩ2
l̃

+
(
λeλ

†
ec

2
β + g′2 YφYec2β

)2 Ĩ2
ẽ

}
, (7.54)

16π2 δλ(f̃ f̃ f̃) = tr

{
Nc (Au − µ cot β)2 λ†uλus

2
β

[(
λ†uλus

2
β +

1

4
g2c2β − g′2 YφYqc2β

)
Ĩ21
q̃ũ

+
(
λ†uλus

2
β + g′2 YφYuc2β

)
Ĩ12
q̃ũ

]
+Nc (Ad cot β − µ)2 λ†dλds

2
β

[(
λ†dλdc

2
β −

1

4
g2c2β − g′2 YφYqc2β

)
Ĩ21
q̃d̃

+
(
λ†dλdc

2
β + g′2 YφYdc2β

)
Ĩ12
q̃d̃

]
+(Ae cot β − µ)2 λ†eλes

2
β

[(
λ†eλec

2
β −

1

4
g2c2β − g′2 YφYlc2β

)
Ĩ21
l̃ẽ

+
(
λ†eλec

2
β + g′2 YφYec2β

)
Ĩ12
l̃ẽ

]}
, (7.55)

16π2 δλ(f̃ f̃ f̃ f̃) =
1

2
Nc tr

(
λ†uλuλ

†
uλu

)
s4
β (Au − µ cot β)4 Ĩ22

q̃ũ

+
1

2
Nc tr

(
λ†dλdλ

†
dλd

)
s4
β (Ad cot β − µ)4 Ĩ22

q̃d̃

+
1

2
tr
(
λ†eλeλ

†
eλe
)
s4
β (Ae cot β − µ)4 Ĩ22

l̃ẽ
, (7.56)

16π2 δλ(χ̃Ṽ χ̃Ṽ ) = −3

4
g4
{
Ĩ11
χ̃W̃
− c2

2βM
2
2µ

2 Ĩ22
χ̃W̃

+4
[
2M2

2 + 4s2βM2µ+ (1 + s2
2β)µ2

]
Ĩ[q2]22

χ̃W̃

}
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−1

2
g4c2

2β

(
Ĩ11
χ̃W̃
−M2

2µ
2 Ĩ22

χ̃W̃
+ 4µ2 Ĩ[q2]22

χ̃W̃

)
(7.57)

−g2g′2 Y 2
φ

{
Ĩ11
χ̃W̃

+ Ĩ11
χ̃B̃
−
(
M2

2 +M2
1 − 2s2

2βM2M1

)
µ2 Ĩ211

χ̃W̃ B̃

+4
[
(M2 +M1)2 + 4s2β(M2 +M1)µ+ 2(1 + s2

2β)µ2
]
Ĩ[q2]211

χ̃W̃ B̃

}
−4 g′4 Y 4

φ

{
Ĩ11
χ̃B̃
− c2

2βM
2
1µ

2 Ĩ22
χ̃B̃

+4
[
2M2

1 + 4s2βM1µ+ (1 + s2
2β)µ2

]
Ĩ[q2]22

χ̃B̃

}
. (7.58)

For the χ̃Ṽ χ̃Ṽ loops, we have used Eq. (A.33) to eliminate the Ĩ[q4] master integrals (coming

from covariant diagrams with two Lorentz contractions) from Eq. (7.58).

Yukawa interactions. The d = 4 Yukawa interaction operators ψ̄u δyu ψq ·ε·φ+ψ̄d δyd ψq ·
φ∗ + ψ̄e δye ψl · φ∗ + h.c. are obtained with the following one-loop coefficients,

δyu = yu δ̄yu = yu
(
δ̄y(Φqd)

u + δ̄y(q̃d̃χ̃)
u + δ̄y(q̃ũṼ )

u + δ̄y(f̃ χ̃Ṽ )
u

)
, (7.59a)

δyd = yd δ̄yd = yd
(
δ̄y

(Φqu)
d + δ̄y

(q̃ũχ̃)
d + δ̄y

(q̃d̃Ṽ )
d + δ̄y

(f̃ χ̃Ṽ )
d

)
, (7.59b)

δye = ye δ̄ye = ye
(
δ̄y(l̃ẽṼ )

e + δ̄y(f̃ χ̃Ṽ )
e

)
, (7.59c)

where

16π2 δ̄y(Φqd)
u = λ†dλd c

2
β Ĩ11

Φ0 , (7.60a)

16π2 δ̄y
(Φqu)
d = λ†uλu s

2
β Ĩ11

Φ0 , (7.60b)

16π2 δ̄y(q̃d̃χ̃)
u = λ†dλd µ (Ad cot β − µ) Ĩ111

q̃d̃χ̃
, (7.61a)

16π2 δ̄y
(q̃ũχ̃)
d = λ†uλu µ (Au tan β − µ) Ĩ111

q̃ũχ̃ , (7.61b)

16π2 δ̄y(q̃ũṼ )
u = −2 (Au − µ cot β)

(
g2

3 C
SU(3)
2 M3 I111

q̃ũg̃ + g′2 YqYuM1 I111
q̃ũB̃

)
, (7.62a)

16π2 δ̄y
(q̃d̃Ṽ )
d = −2 (Ad − µ tan β)

(
g2

3 C
SU(3)
2 M3 I111

q̃d̃g̃
+ g′2 YqYdM1 I111

q̃d̃B̃

)
, (7.62b)

16π2 δ̄y(l̃ẽṼ )
e = −2 (Ae − µ tan β) g′2 YlYeM1 I111

l̃ẽB̃
, (7.62c)

16π2 δ̄y(f̃ χ̃Ṽ )
u = −2 g2C

SU(2)
2

[M2(M2 + µ cot β)

M2
2 − µ2

Ĩ11
q̃W̃
− µ(µ+M2 cot β)

M2
2 − µ2

Ĩ11
q̃χ̃

]
+2 g′2 Yφ

[M1(M1 + µ cot β)

M2
1 − µ2

(
Yq Ĩ11

q̃B̃
− Yu Ĩ11

ũB̃

)
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−µ(µ+M1 cot β)

M2
1 − µ2

(
Yq Ĩ11

q̃χ̃ − Yu Ĩ11
ũχ̃

)]
, (7.63a)

16π2 δ̄y
(f̃ χ̃Ṽ )
d = −2 g2C

SU(2)
2

[M2(M2 + µ tan β)

M2
2 − µ2

Ĩ11
q̃W̃
− µ(µ+M2 tan β)

M2
2 − µ2

Ĩ11
q̃χ̃

]
−2 g′2 Yφ

[M1(M1 + µ tan β)

M2
1 − µ2

(
Yq Ĩ11

q̃B̃
− Yd Ĩ11

d̃B̃

)
−µ(µ+M1 tan β)

M2
1 − µ2

(
Yq Ĩ11

q̃χ̃ − Yd Ĩ11
d̃χ̃

)]
, (7.63b)

16π2 δ̄y(f̃ χ̃Ṽ )
e = −2 g2C

SU(2)
2

[M2(M2 + µ tan β)

M2
2 − µ2

Ĩ11
l̃W̃
− µ(µ+M2 tan β)

M2
2 − µ2

Ĩ11
l̃χ̃

]
−2 g′2 Yφ

[M1(M1 + µ tan β)

M2
1 − µ2

(
Yl Ĩ11

l̃B̃
− Ye Ĩ11

ẽB̃

)
−µ(µ+M1 tan β)

M2
1 − µ2

(
Yl Ĩ11

l̃χ̃
− Ye Ĩ11

ẽχ̃

)]
. (7.63c)

We have used Eq. (A.31) to reduce (4 − ε) Ĩ[q2]12
Φ0 to Ĩ11

Φ0 in Eq. (7.60), and Eqs. (A.5)

and (A.30) to reduce Ĩ111
f̃ Ṽ χ̃

and (4− ε) Ĩ[q2]111
f̃ χ̃Ṽ

to Ĩ11
f̃ χ̃

and Ĩ11
f̃ Ṽ

in Eq. (7.63).

In these results, of particular interest is the appearance of terms proportional to tan β,

originating from λd,e = yd,ec
−1
β = yd,es

−1
β tan β. Since matching calculations are done with

UV theory parameters, it is expected here that δyd,e contain terms of order 1
16π2 λd,e ∝

tanβ
16π2 yd,e. A large tan β can partially overcome the loop suppression, giving rise to sizable

SUSY threshold corrections, which in turn is important for achieving b-τ Yukawa unification.

More on this in Section 7.3.

Higgs kinetic term. The one-loop coefficient of the d = 4 Higgs kinetic term |Dµφ|2 is

δZφ = δZ
(f̃ f̃)
φ + δZ

(χ̃Ṽ )
φ , (7.64)

where

16π2 δZ
(f̃ f̃)
φ = −2Nc tr(λ†uλu) s2

β (Au − µ cot β)2 Ĩ[q2]22
q̃ũ

−2Nc tr(λ†dλd) s
2
β (Ad cot β − µ)2 Ĩ[q2]22

q̃d̃

−2 tr(λ†eλe) s
2
β (Ae cot β − µ)2 Ĩ[q2]22

l̃ẽ
, (7.65)

16π2 δZ
(χ̃Ṽ )
φ = 2 g2C

SU(2)
2

[
Ĩ11
χ̃W̃

+ 2(M2
2 + µ2 + 2M2µs2β) Ĩ[q2]22

χ̃W̃

]
+2 g′2 Y 2

φ

[
Ĩ11
χ̃B̃

+ 2(M2
1 + µ2 + 2M1µs2β) Ĩ[q2]22

χ̃B̃

]
. (7.66)
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Again, we have used Eq. (A.33) to eliminate Ĩ[q4] in order to arrive at Eq. (7.66). Note

that Dµφα is written as −i [Pµ, φα] in our approach (recall Pµ acts on everything to its

right). The covariant diagrams listed in Table 7.6 give us the tr(P µφ∗Pµφ) piece of |Dµφ|2 =

−tr([P µ, φ∗][Pµ, φ]) = tr(P 2φ∗φ) + tr(P 2φφ∗) − 2 tr(P µφ∗Pµφ), which is sufficient to fix the

coefficient of |Dµφ|2.

Note that unlike δyd,e ∼ 1
16π2λd,e ∼ tanβ

16π2 yd,e, contributions to the threshold corrections

yd,e − yeff
d,e from δZφ (and also δZf below) are only ∼ 1

16π2yd,e (see Eq. (7.6)), and are thus

subleading in the large tan β limit.

Fermion kinetic terms. The d = 4 fermion kinetic terms
∑

f ψ̄f δZf i /Dψf are obtained

with the following one-loop coefficients,

δZq = δZ(Φf)
q + δZ(f̃ χ̃)

q + δZ(q̃Ṽ )
q 1 , (7.67a)

δZu = δZ(Φq)
u + δZ(q̃χ̃)

u + δZ(ũṼ )
u 1 , (7.67b)

δZd = δZ
(Φq)
d + δZ

(q̃χ̃)
d + δZ

(d̃Ṽ )
d 1 , (7.67c)

δZl = δZ
(Φe)
l + δZ

(ẽχ̃)
l + δZ

(l̃Ṽ )
l 1 , (7.67d)

δZe = δZ(Φl)
e + δZ(l̃χ̃)

e + δZ(ẽṼ )
e 1 , (7.67e)

where

16π2 δZ(Φf)
q = 2

(
λ†uλuc

2
β + λ†dλds

2
β

)
Ĩ[q2]21

Φ0 , (7.68a)

16π2 δZ(Φq)
u = 4λuλ

†
uc

2
β Ĩ[q2]21

Φ0 , (7.68b)

16π2 δZ
(Φq)
d = 4λdλ

†
ds

2
β Ĩ[q2]21

Φ0 , (7.68c)

16π2 δZ
(Φe)
l = 2λ†eλes

2
β Ĩ[q2]21

Φ0 , (7.68d)

16π2 δZ(Φl)
e = 4λeλ

†
es

2
β Ĩ[q2]21

Φ0 , (7.68e)

16π2 δZ(f̃ χ̃)
q = 2

(
λ†uλu Ĩ[q2]21

ũχ̃ + λ†dλd Ĩ[q2]21
d̃χ̃

)
, (7.69a)

16π2 δZ(q̃χ̃)
u = 4λuλ

†
u Ĩ[q2]21

q̃χ̃ , (7.69b)

16π2 δZ
(q̃χ̃)
d = 4λdλ

†
d Ĩ[q2]21

q̃χ̃ , (7.69c)

16π2 δZ
(ẽχ̃)
l = 2λ†eλe Ĩ[q2]21

ẽχ̃ , (7.69d)

16π2 δZ(l̃χ̃)
e = 4λeλ

†
e Ĩ[q2]21

l̃χ̃
, (7.69e)

16π2 δZ(q̃Ṽ )
q = 4

(
g2

3 C
SU(3)
2 Ĩ[q2]21

q̃g̃ + g2C
SU(2)
2 Ĩ[q2]21

q̃W̃
+ g′2 Y 2

q Ĩ[q2]21
q̃B̃

)
, (7.70a)
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16π2 δZ(ũṼ )
u = 4

(
g2

3 C
SU(3)
2 Ĩ[q2]21

ũg̃ + g′2 Y 2
u Ĩ[q2]21

ũB̃

)
, (7.70b)

16π2 δZ
(d̃Ṽ )
d = 4

(
g2

3 C
SU(3)
2 Ĩ[q2]21

d̃g̃
+ g′2 Y 2

d Ĩ[q2]21
d̃B̃

)
, (7.70c)

16π2 δZ
(l̃Ṽ )
l = 4

(
g2

2 C
SU(2)
2 Ĩ[q2]21

l̃W̃
+ g′2 Y 2

l Ĩ[q2]21
l̃B̃

)
, (7.70d)

16π2 δZ(ẽṼ )
e = 4 g′2 Y 2

e Ĩ[q2]21
ẽB̃
. (7.70e)

To arrive at Eqs. (7.69) and (7.70), we have used Eqs. (A.5), (A.12) and (A.30) to simplify

(2− ε) I[q2]12
ij −M2

j I12
ij = (4− ε) I[q2]12

ij −M2
j I12

ij − 2 I[q2]12
ij = I11

ij − 2 I[q2]12
ij

=
1

M2
i −M2

j

(
I1
i − I1

j

)
− 2 I[q2]12

ij =
2

M2
i −M2

j

(
I[q2]2i − I[q2]2j

)
− 2 I[q2]12

ij

= 2
(
I[q2]21

ij + I[q2]12
ij

)
− 2 I[q2]12

ij = 2 I[q2]21
ij . (7.71)

This relation is also valid in the limit Mj → 0,

(2− ε) I[q2]12
i0 = 2 I[q2]21

i0 , (7.72)

which we have used to obtain Eq. (7.68).

Gauge boson kinetic terms. General results of wavefunction renormalization of gauge

fields from integrating out heavy matter fields are well-known, see e.g. [55]. The covariant

diagrams version of the calculation can be found in [60]. Specializing to the case of integrating

out the MSSM heavy fields, we find

δZG = g2
3

(
δ̄Z

(f̃)
G + δ̄Z

(g̃)
G

)
, (7.73a)

δZW = g2
(
δ̄Z

(Φ)
W + δ̄Z

(f̃)
W + δ̄Z

(χ̃)
W + δ̄Z

(W̃ )
W

)
, (7.73b)

δZB = g′2
(
δ̄Z

(Φ)
B + δ̄Z

(f̃)
B + δ̄Z

(χ̃)
B

)
, (7.73c)

where

16π2 δ̄Z
(Φ)
W =

1

6
Ĩ2

Φ , 16π2 δ̄Z
(Φ)
B =

2

3
Y 2
φ Ĩ2

Φ , (7.74)

16π2 δ̄Z
(f̃)
G =

1

6

(
2 Ĩ2

q̃ + Ĩ2
ũ + Ĩ2

d̃

)
, 16π2 δ̄Z

(f̃)
W =

1

6

(
Nc Ĩ2

q̃ + Ĩ2
l̃

)
,

16π2 δZ
(f̃)
B =

1

3

(
2Nc Y

2
q Ĩ2

q̃ +Nc Y
2
u Ĩ2

ũ +Nc Y
2
d Ĩ2

d̃
+ 2Y 2

l Ĩ2
l̃

+ Y 2
e Ĩ2

ẽ

)
, (7.75)

16π2 δ̄Z
(χ̃)
W =

2

3
Ĩ2
χ̃ , 16π2 δ̄Z

(χ̃)
B =

8

3
Y 2
φ Ĩ2

χ̃ , (7.76)

16π2 δ̄Z
(g̃)
G = 2 Ĩ2

g̃ , 16π2 δ̄Z
(W̃ )
W =

4

3
Ĩ2
W̃
. (7.77)
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We have used Eq. (A.12) to reduce the bosonic loop integral I[q4]4i to 1
24
I2
i . The fermionic

loops, on the other hand, are proportional to −M4
i I4

i +8M2
i I[q2]4i +(−16+10ε) I[q4]4i which,

by Eq. (A.32), is equal to 8 I[q4]4i − I2
i = −2

3
I2
i .

7.2.4 One-loop matching: d = 6 operators Odφ,eφ in the large tan β,

low MΦ limit

We can use the same techniques to obtain one-loop-generated d = 6 operators. There is a

large number of them, but not all are equally interesting phenomenologically. In fact, given

the loop suppression, together with a possibly high superpartner mass scale Λ due to lack of

new particle discoveries as well as a SM-like Higgs boson mass of mh ' 125 GeV, a generic

d = 6 operator with O( 1
16π2

1
Λ2 ) coefficient is likely to have a negligible effect on observables.

In this regard, we would like to identify a region of MSSM parameter space where some d = 6

operators have parametrically enhanced observable effects, and can thus point to realistic

experimental targets to be pursued.

To do so, we first note that, as in the case of δ̄yd,e discussed in the previous subsection,

factors of tan β can appear when operator coefficients are written in terms of yd,e rather

than λd,e, which can partially overcome the loop suppression if tan β � 1. We are thus

led to consider the large tan β limit. At dimension-six level, tan β enhancement occurs for

several operators, among which we focus on Odφ and Oeφ, motivated by their relevance to

precision Higgs physics as they modify hbb̄ and hτ+τ− couplings; see Eq. (7.11). Note that

in contrast, Ouφ, which modifies htt̄ coupling, does not have a tan β enhanced effect.

To further boost observable effects of the operators Odφ and Oeφ, we would like to focus

on the scenario where MΦ, the mass of the heavier Higgs doublet, is somewhat lower than Λ.

In this case, there are contributions to Cdφ,eφ that are proportional to 1
M2

Φ
, which is paramet-

rically larger compared to 1
Λ2 . There are in principle two sources of such contributions —

loops involving Φ propagators, and operators proportional to Φc. By carefully enumerating

covariant diagrams following the procedure of the previous subsection, we are able to show

that loops involving Φ propagators are all free from tan β enhancement, and so will not

consider them further.

As for the second option, there are only a few possibilities for writing down d = 6

operators that are proportional to Φc, since Φ
(1)
c (Φ

(2)
c ) is already dimension three (five).

They are, schematically,

(Φ(1)
c )2 , Φ(1)

c ψ2 , Φ(1)
c φ3 , Φ(1)

c φP 2 , Φ(2)
c φ . (7.78)

Among them, (Φ
(1)
c )2 and Φ

(1)
c ψ2 do not contain Odφ,eφ with tan β enhanced coefficients, while
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Φ
(2)
c φ has already been absorbed into Ltree

SMEFT via the redefinition of β discussed before. So

we are left with Φ
(1)
c φ3 and Φ

(1)
c φP 2. To be explicit, we have

L1-loop
SMEFT ⊃ cΦφ3|φ|2

(
Φ(1)∗

c φ+ φ∗Φ(1)
c

)
+ cΦφP 2

[
(DµΦ(1)

c )∗(Dµφ) + (Dµφ)∗(DµΦ(1)
c )
]

IBP
= cΦφ3|φ|2

(
Φ(1)∗

c φ+ φ∗Φ(1)
c

)
− cΦφP 2

[
Φ(1)∗

c (D2φ) + (D2φ)∗Φ(1)
c

]
EoM
=

(
cΦφ3 + 2λ cΦφP 2

)
|φ|2
(
Φ(1)∗

c φ+ φ∗Φ(1)
c

)
+ . . .

⊃ tan β

M2
Φ

(
cΦφ3 + 2λ cΦφP 2

)([
y†d
]
pr

[
Odφ

]pr
+
[
y†e
]
pr

[
Oeφ

]pr)
. (7.79)

Note that there is also a tree-level matching contribution to Φ
(1)
c φ3, which we already com-

puted in Section 7.2.2. Though DR scheme was assumed there, the one-loop difference

between MS and DR is not tan β enhanced and negligible.

The operator coefficients cΦφ3 and cΦφP 2 can be computed from the same covariant dia-

grams that give rise to δλ and δZφ, respectively. In fact, we just need to retrieve O(Φφ3)

and O(Φφ) pieces from products of U matrix elements, instead of O(φ4) and O(φ2) pieces.

From Appendix C we see that, with the exception of diagrams involving Uϕϕ, this amounts

to starting from the latter, and replacing sβφ → cβΦ, cβφ → −sβΦ in all possible ways. In

other words, from the form of the U matrix we can infer that

LSMEFT ⊃ δλ |φ|4 +
1

2

( ∂

∂β
δλ
)
|φ|2
(
Φ∗cφ+ φ∗Φc

)
+δZφ |Dµφ|2 +

1

2

( ∂

∂β
δZφ

)(
DµΦ∗cDµφ+Dµφ∗DµΦc

)
, (7.80)

up to loops involving Φ propagators. We have verified Eq. (7.80) by explicit calculation.

The simple replacement rule observed above, which connects different operators involving

φ and Φc, can be understood by considering a variation of the EFT matching problem we are

dealing with now. Suppose, instead of integrating out all BSM fields of the MSSM, we inte-

grate out only the R-parity-odd fields, while keeping both Higgs doublets in the low-energy

EFT. The calculation in this case would be more conveniently done in the (Hu, Hd) basis,

and the angle β does not appear in the effective Lagrangian in the electroweak symmetric

phase. Afterward, we can substitute

Hu → sβφ+ cβΦ , Hd → ε · (cβφ− sβΦ)∗ , (7.81)

so as to write the effective Lagrangian in terms of φ and Φ. From Eq. (7.81) it is clear that

for each term involving sβφ (cβφ), if we replace sβφ→ cβΦ (cβφ→ −sβΦ), the result would

also be a term in the effective Lagrangian. Further integrating out Φ to arrive at the SMEFT
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does not change the conclusion for the terms that already existed, namely those generated

by integrating out R-parity-odd fields. Meanwhile, additional terms, such as δλ(Φϕ)|φ|4 (see

Eq. (7.53)), are generated by loops involving Φ, for which the simple replacement rule above

does not apply. However, none of these terms is tan β enhanced, and we will thus neglect

them in the d = 6 part of the EFT Lagrangian.

To sum up, in the limit tan β � 1, MΦ . Λ, we have

C1-loop
dφ ' tan β

M2
Φ

(
cΦφ3 + 2λ cΦφP 2

)
y†d , C1-loop

eφ ' tan β

M2
Φ

(
cΦφ3 + 2λ cΦφP 2

)
y†e , (7.82)

where

cΦφ3 ' c
(f̃ f̃)

Φφ3 + c
(f̃ f̃ f̃)

Φφ3 + c
(f̃ f̃ f̃ f̃)

Φφ3 + c
(χ̃Ṽ χ̃Ṽ )

Φφ3

=
1

2

∂

∂β

(
δλ(f̃ f̃) + δλ(f̃ f̃ f̃) + δλ(f̃ f̃ f̃ f̃) + δλ(χ̃Ṽ χ̃Ṽ )

)
, (7.83)

cΦφP 2 ' c
(f̃ f̃)

ΦφP 2 + c
(χ̃Ṽ )

ΦφP 2 =
1

2

∂

∂β
δZφ , (7.84)

with various contributions to δλ and δZφ computed in the previous subsection.

7.3 Bottom-tau Yukawa unification

In this section, we study implications of b-τ Yukawa unification on the SUSY spectrum in

the EFT framework. To simplify the analyses, we neglect Yukawa couplings of the first two

generation fermions, and impose the following relations among MSSM parameters,

Mq̃ = Mũ = Md̃ = Ml̃ = Mẽ ≡Ms , (7.85)

Au = Ad = Ae ≡ At , (7.86)

Mg̃ = 3MW̃ = 6MB̃ ≡M3 . (7.87)

As a result, above the SUSY threshold Λ, we have a theory of 13 parameters:

g′ , g , g3 , λt , λb , λτ , m
2 , At , (7.88a)

MΦ , Ms , µ , M3 , tan β . (7.88b)

Below the SUSY threshold Λ, they are mapped onto parameters in the SMEFT, as we

have worked out in detail in Section 7.2. We shall keep only the renormalizable operators

and dimension-six ones that are generated at tree level. The EFT is therefore a theory
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characterized by 20 parameters:

g′
eff
, geff , geff

3 , yeff
t , yeff

b , yeff
τ , λeff , m

2
eff , (7.89a)

Cφ , Ctφ , Cbφ , Cτφ , C
(1)
qu , C

(8)
qu , C

(1)
qd , C

(8)
qu , Cle , C

(1)
quqd , C

(1)
lequ , Cledq . (7.89b)

It is implicit here that all generation indices are set to 3 in the four-fermion operator coeffi-

cients.

We numerically evolve the 13 parameters in Eq. (7.88) in the regime Q > Λ according to

two-loop RG equations of the MSSM [244], and the 20 parameters in Eq. (7.89) in the regime

Q < Λ according to two-loop RG equations of the renormalizable SM [245] and one-loop RG

equations of the dimension-six SMEFT [76, 77, 80]. At Q = Λ, the two sets of parameters

are connected by the matching calculation presented in Section 7.2, together with one-loop

scheme conversion between MS (used for RG evolution in the SMEFT) and DR (used for

RG evolution in the MSSM) [243].

As boundary conditions for the entire set of RG equations, we set

g′
eff

= 0.35827 , geff = 0.64779 , geff
3 = 1.1671 ,

yeff
t −

v2

2
Ctφ = 0.93612 , yeff

b −
v2

2
Cbφ = 0.01539 , yeff

τ −
v2

2
Cτφ = 0.00988 ,

λeff −
3v2

2
Cφ = 0.12592 , m2

eff +
3v4

4
Cφ = −(92.964 GeV)2 , (7.90)

at Q = mt = 173.21 GeV, where v2 = −m2
eff/λeff. These linear combinations of SMEFT

parameters are what would be actually extracted when mapping the SM Lagrangian to low-

energy observables, including mW = 80.385 GeV, mh = 125.09 GeV, αs(mZ) = 0.1185, etc.

The numbers in Eq. (7.90) are taken from [245], except for yeff
b − v2

2
Cbφ, which is taken

from [246], and yeff
τ − v2

2
Cτφ, which is fixed by requiring mpole

τ = 1.77686 GeV is reproduced

when the SM is matched onto five-flavor QCD×QED and RG evolved down to the low scale

according to [247].

The 8 boundary conditions in Eq. (7.90) reduce the number of free parameters from 13

to 5. We choose them to be those in Eq. (7.88b). Thus, for any specific values of MΦ, Ms, µ,

M3, tan β, we can ask whether the entire set of equations admits a solution with all couplings

in the perturbative regime, and if it does, whether λb and λτ unify at the grand unification

scale QGUT.

To be precise, we shall set the matching scale Λ = Ms, and determine QGUT by

(5/3)1/2g′(QGUT) = g(QGUT) . (7.91)
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We define “b-τ Yukawa unification” by |λb(QGUT)/λτ (QGUT)−1| < 0.02 here, as it is generally

difficult to have a larger GUT threshold correction [233].

We further set MΦ = Ms in this section for simplicity, since MΦ does not play a significant

role in b-τ Yukawa unification. For several choices of tan β = 50, 10, 4, 2, we scanMs between

103 GeV and 1010 GeV, and scan µ and |M3| = −M3 within a factor of 50 from Ms, to search

for solutions with b-τ Yukawa unification (no solution exists when µM3 > 0, see below)5.

We refrain from going beyond Ms = 1010 GeV for the present analysis, because additional

GUT-scale input, namely gauge coupling threshold corrections, would be needed to precisely

define QGUT. Also, larger mass ratios are disallowed so as not to compromise the validity of

our matching calculation, where all BSM fields are assumed to have similar masses and thus

integrated out together.

Figures 7.1 and 7.2 show points in the MSSM parameter space that allow consistent

matching of the MSSM onto the SMEFT and meanwhile realize b-τ Yukawa unification,

projected onto (logMs, µ/Ms) and (logMs, |M3|/Ms) planes, respectively. Different colors

(blue, yellow, green, red) are used for solutions with xt ≡ (At − µ cot β)/Ms in different

ranges (−4 < xt < −
√

6, −
√

6 < xt < 0, 0 < xt <
√

6,
√

6 < xt < 4, respectively). We have

quite conservatively considered a large interval (−4, 4) for xt, keeping in mind the caveat that

xt values past maximal mixing ±
√

6 (blue and red dots) may run afoul of charge and color

breaking vacuum constraints [248, 249]. In addition, points with |M3| < 2 TeV, potentially

already in tension with gluino searches at the LHC (depending on decay kinematics, see

e.g. [250]), are represented by empty circles in all plots.

An immediate observation from these figures is that b-τ Yukawa unification is achievable

for SUSY scales from TeV all the way up to (at least) 1010 GeV, with suitable choices of mass

ratios and tan β. It is worth noting, though, that a large Higgsino mass µ > Ms is always

required for tan β . 10, which may be less preferable from the point of view of fine-tuned

electroweak symmetry breaking.

There are two issues that are key to understanding these results in more detail, which

we now discuss in turn.

7.3.1 Matching of the Higgs quartic

First of all, it should noted that it is not always possible to match the MSSM onto the

SMEFT while satisfying the boundary conditions of Eq. (7.90), for arbitrary choices of SUSY

parameters. This is largely due to the fact that the Higgs quartic coupling λ is a derived

quantity in the MSSM, given by 1
8
(g2 + g′2) c2

2β at tree level. A threshold correction of just

5We can fix the signs of µ and M3, keeping their relative sign, without loss of generality here, because
the MSSM Lagrangian is invariant under simultaneous sign change of µ, M3,2,1 and Au,d,e.
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Figure 7.1: (From [132]) Points in the MSSM parameter space that allow consistent
matching onto the SMEFT and meanwhile realize b-τ Yukawa unification, projected onto
(logMs, µ/Ms) plane, for several choices of tan β. Blue, yellow, green, red points have
xt ≡ (At − µ cot β)/Ms ∈ (−4, −

√
6) , (−

√
6, 0) , (0,

√
6) , (

√
6, 4), respectively. Empty

circles represent solutions with a gluino lighter than 2 TeV, potentially already in tension
with direct LHC searches, depending on decay kinematics.
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Figure 7.2: (From [132]) Same as Figure 7.1, now projected onto (logMs, |M3|/Ms) plane.
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Figure 7.3: (From [132]) Same as Figure 7.1, now showing SUSY threshold correction for
the Higgs quartic coupling, defined as ∆λ ≡ λ− λeff at the matching scale Λ = Ms.
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Figure 7.4: (From [132]) Same as Figure 7.1, now showing SUSY threshold correction for
the bottom Yukawa coupling, defined as δb ≡ (yb − yeff

b )/yeff
b at the matching scale Λ = Ms.
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the right size is needed for λeff to match the low-energy determination, most importantly

from mh = 125 GeV.

To see this explicitly, we plot in Figure 7.3 the value of

∆λ ≡ λ− λeff , (7.92)

for each point in our sample of b-τ Yukawa unification solutions, evaluated at the matching

scale Λ = Ms. For the most part of parameter space, this threshold correction can be

approximated by

∆λ ' δλ(f̃ f̃ f̃) + δλ(f̃ f̃ f̃ f̃)

' Nc

16π2

{
2 y4

t (At − µ cot β)2 Ĩ3
f̃

+
1

2

[
y4
t (At − µ cot β)4 + (yb tan β)4(µ− At cot β)4

]
I4
f̃

}
' Nc

16π2

1

12

[(
yb tan β

µ

Ms

)4

+ y4
t

(
(x2

t − 6)2 − 36
)]
, (7.93)

see Eqs. (7.55) and (7.56). The dependence on xt in Eq. (7.93) explains the existence of up

to four branches of solutions, separated by xt = −
√

6, 0 and
√

6.

Matching of the Higgs quartic essentially selects a range of µ/Ms for any given Ms,

for which Eq. (7.93) can possibly be of the right size with suitable choice of xt. Since the

required threshold correction increases logarithmically with the SUSY threshold scale, and is

meanwhile insensitive to tan β when c2
2β ' 1, the range of µ/Ms being selected roughly scales

as cot β (logMs)
1/4 for tan β � 1. Of course, on each branch of xt, part of this range can be

excluded by either lack of b-τ Yukawa unification, or a mass ratio µ/Ms or |M3|/Ms outside

of the interval (1/50, 50). Nevertheless, the general trend of µ/Ms ∼ cot β (logMs)
1/4 is still

visible in Figure 7.1.

Another feature of the figures is that the available parameter space is cut off at low Ms.

Here the ∆λ needed becomes too small to be achievable by Eq. (7.93), which is bounded from

below, while maintaining a large enough threshold correction for the bottom Yukawa (which

is roughly proportional to (µ/Ms) tan β, see below). The issue is more severe at smaller

tan β because of a smaller λ ' 1
8
(g2 + g′2) c2

2β at any given Λ = Ms. These conclusions are

perhaps more familiar when phrased as “raising the SM Higgs mass to 125 GeV requires

large one-loop corrections from heavy stops.” Here, instead of computing mh from the full

theory (the MSSM), we have taken an EFT approach, where mh is computed from the SM

to fix λeff, and the problem becomes matching λeff with λ with the right amount of threshold

correction. See also [251] for related discussion.
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7.3.2 Bottom Yukawa threshold correction

Next, let us take a closer look at the SUSY threshold correction for the bottom Yukawa

coupling, which is a key ingredient for b-τ Yukawa unification. Our discussion in what

follows in this subsection is consistent with previous studies [252–255].

In Figure 7.4 we plot

δb ≡
yb − yeff

b

yeff
b

, (7.94)

evaluated at the matching scale Λ = Ms, for our sample of b-τ Yukawa unification solutions.

We see that they correspond to a specific range of δb for any given Ms, with numbers ranging

from 10% to 60%.

At this point, it is worth emphasizing again that threshold corrections, which originate

from renormalizable operators generated in EFT matching, do not decouple as the EFT

cutoff is raised. In fact, as we see from Figures 7.3 and 7.4, for both the Higgs quartic and

the bottom Yukawa, a higher Ms calls for a larger SUSY threshold correction, in order to

compensate for a longer period of running in the SMEFT.

Returning to the issue of bottom Yukawa threshold correction, we note that for the most

part of parameter space, δb is dominated by contribution from the squark-gluino loop,

δb ' δ
(q̃d̃g̃)
b ' g2

3

16π2

yb
yeff
b

· 2CSU(3)
2

( µ

Ms

tan β
)(
M3Ms Ĩ21

f̃ g̃

)
, (7.95)

see Eq. (7.62b). Since Ĩ21
f̃ g̃

is negative-definite, a positive δb is only possible when µM3 < 0,

which explains our sign choice. We have checked explicitly that no solutions can be found

when the sign of either µ or M3 is reversed.

The factor (M3Ms Ĩ21
f̃ g̃

) in Eq. (7.95) only depends on the mass ratio. It is approximately

−M3

Ms
when |M3|/Ms � 1, and −Ms

M3
(log

M2
3

M2
s
− 1) when |M3|/Ms � 1, with a maximum ab-

solute value of about 0.566 at |M3|/Ms ' 2.12. Thus, for any given value of (µ/Ms) tan β

that is sufficiently large, we expect to have two solutions for |M3|/Ms – one on each side

of 2.12 – which lead to the same desired δb (up to higher-order corrections from e.g. gluino

loop contribution to g3 threshold correction). This degeneracy is clearly visible in Figure 7.2,

especially in the high Ms regime of the first three plots, where the range of µ/Ms, as deter-

mined by the Higgs quartic matching condition, is narrow due to the xt-dependent terms in

Eq. (7.93) becoming subdominant. For the tan β = 2 plot, on the other hand, only a region

near |M3|/Ms ' 2.12 survives because of a much smaller (µ/Ms) tan β (∼ 100 as opposed to

∼ 200 for the first three plots, as can be inferred from Figure 7.1).

In addition to Eq. (7.95), there is a subdominant contribution to δb from squark-Higgsino
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loop, which is responsible for some finer details of the plots. From Eq. (7.61b) we have

δ
(q̃ũχ̃)
b =

λ2
t

16π2

yb
yeff
b

· xt
( µ

Ms

tan β
)(
M2

s Ĩ21
f̃ χ̃

)
. (7.96)

Comparing Eqs. (7.95) and (7.96), we see that δ
(q̃d̃g̃)
b and δ

(q̃ũχ̃)
b have opposite (same) signs

when xt > 0 (xt < 0). Thus, higher values of µ/Ms are required for the xt > 0 branches

(green and red) to compensate for the cancellation between δ
(q̃d̃g̃)
b and δ

(q̃ũχ̃)
b , as we can see

from Figure 7.1.

7.4 Higgs couplings in TeV-scale SUSY

In the previous section, we have seen that b-τ Yukawa unification alone does not point to a

unique scale for the masses of superpartners in the MSSM. However, if in addition, we would

like the MSSM to provide a dark matter candidate in the form of the lightest neutralino,

that would be further motivation for TeV-scale SUSY. For example, two classic thermal

dark matter benchmarks are a ∼1 TeV Higgsino LSP and a ∼2.7 TeV wino LSP [256]. A

wider range of masses is allowed if the LSP is a mixture of bino, wino and Higgsino states

or if the sfermions do not decouple [257, 258], or if non-thermal production mechanisms are

at work. Therefore, we will broadly consider the 1-10 TeV regime for superpartner masses,

while remaining agnostic about the detailed cosmology of dark matter. We will focus on

precision Higgs coupling measurements as an indirect probe of TeV-scale SUSY, and discuss

how they can be complementary to direct superpartner searches at the LHC.

To compute Higgs coupling modifications, we follow the same numerical procedure as

outlined at the beginning of Section 7.3. Now the 20 SMEFT parameters in Eq. (7.89) should

be evolved down to Q = mh = 125.09 GeV, in order to compute δκb and δκτ according to

Eq. (7.11). As discussed in Section 7.2.4, we shall focus on the scenario where MΦ, the mass

of the second Higgs doublet, is relatively low. To be precise, let us first fix MΦ = 1 TeV, and

allow Ms and |M3| to vary between 1 TeV and 10 TeV. The Higgsino mass µ is determined

by requiring exact b-τ Yukawa unification, i.e. λb(QGUT) = λτ (QGUT). Solutions may exist

on multiple branches of xt, in which case we find all of them.

Our results are displayed in Figures 7.5, 7.6 and 7.7, for tan β = 50, 20, 8, respectively.

For each of the four xt branches, we show variation of δκb in the region of the |M3|-Ms plane

where a solution exists. Also shown in the plots are contours of µ/Ms (black) and xt (red

dashed) which, as we will see shortly, are the key quantities that determine the value of

δκb. In addition, light green contours represent µ = 1 TeV, corresponding to the Higgsino

thermal dark matter benchmark. Plots of δκτ (not shown here) exhibit the same patterns
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of variation in the |M3|-Ms plane, but with smaller overall sizes than δκb as a consequence

of Cτφ ∝ yτ/y
eff
τ < yb/y

eff
b .

From these plots, it is first of all interesting to see how large one-loop effects can be.

Indeed, as we have fixed MΦ = 1 TeV, a tree-level calculation would yield constant Cbφ (and

hence δκb) for given tan β; see Table 7.4. The pattern of δκb observed in the figures is a result

of interplay between tree- and one-loop-level contributions. For the most part of parameter

space (with large tan β and low MΦ), we can approximate

Cbφ ' Ctree
bφ +

yb
M2

Φ

tan β
(
c

(f̃ f̃ f̃)

Φφ3 + c
(f̃ f̃ f̃ f̃)

Φφ3

)
' − yb

2M2
Φ

[
(g2 + g′2)− tan β

16π2
y4
t

( µ

Ms

)
xt(x

2
t − 6)

]
. (7.97)

at the matching scale Λ = Ms. We see that tree-level matching always gives a negative

contribution to Cbφ, and thus a positive contribution to δκb. On the other hand, the one-

loop piece can have either sign, depending on the value of xt. On two of the four branches,

xt < −
√

6 and 0 < xt <
√

6, its contribution to Cbφ is negative, resulting in an enhanced

(positive) δκb. More specifically, for xt < −
√

6 (upper-left plot in each figure), δκb is seen

to increase monotonically with both µ/Ms and |xt|, while for 0 < xt <
√

6 (lower-left plot

in each figure), δκb also increases with µ/Ms, but now exhibits a plateau around xt =
√

2

where −xt(x2
t − 6) is maximized, in agreement with Eq. (7.97). In contrast, the other two

branches feature a negative one-loop contribution to δκb: for −
√

6 < xt < 0 (upper-right

plot in each figure), we have a suppressed but still positive δκb, with the suppression being

more severe in regions with large µ/Ms and xt close to −
√

2; for xt >
√

6 (lower-right plot in

each figure), one-loop correction becomes large enough in part of the parameter space so as

to make δκb negative, and, as expected, δκb tends to be smaller (more negative) in regions

with larger µ/Ms and xt.

Precision Higgs measurements – h → bb̄ in particular – are most sensitive to regions of

parameter space with the largest |δκb|, which in most cases (all xt < −
√

6 and 0 < xt <
√

6

plots, and xt >
√

6 plots for tan β = 50, 20 as well) are those with heavy sfermions and light

to intermediate-mass gluino, once b-τ Yukawa unification is stipulated. In these regions,

as we have discussed in Section 7.3, b-τ Yukawa unification calls for relatively large µ/Ms

to boost SUSY threshold correction for yb (recall δb ∝ |M3|/Ms for |M3|/Ms . 2.12, and

larger δb is needed for heavier sfermions), which in turn enhances one-loop contributions to

δκb according to Eq. (7.97); meanwhile, there is a visible suppression of |δκb| for the largest

µ/Ms (hence smallest |M3|/Ms) due to |xt| approaching
√

6 in order to match the Higgs

quartic (see Eq. (7.93)).
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Figure 7.5: (From [132]) Variation of δκb in the region of the |M3|-Ms plane where a
solution exists for exact b-τ Yukawa unification, on each xt branch, with MΦ = 1 TeV and
tan β = 50. Superimposed are contours of µ/Ms (black) and xt (red dashed). Light green
curves in the xt < 0 plots correspond to the 1 TeV Higgsino dark matter benchmark. Direct
superpartner searches probe lower mass regions of the parameter space (with |M3| . 2 TeV
potentially already excluded at the LHC depending on decay kinematics), while precision
Higgs measurements can be more sensitive to higher mass regions where δκb is enhanced by
one-loop corrections.
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Figure 7.6: (From [132]) Same as Figure 7.5, now with tan β = 20.
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Figure 7.7: (From [132]) Same as Figure 7.5, now with tan β = 8.
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Figure 7.8: (From [132]) Contours of |δκb| in the MΦ-tan β plane, for our benchmark
scenario |M3| = 5 TeV, Ms = 10 TeV, which will evade gluino and stop searches at the LHC.
The Higgsino mass is determined by exact b-τ Yukawa unification, for which solutions exist
for tan β & 5. Dark solid and dashed curves represent current exclusion limit (95% CL) and
projected high-luminosity reach (95% CL with 3 ab−1 at 14 TeV) from heavy Higgs searches
in the di-tau channel at the LHC, reported assuming the mmod+

h benchmark scenario. Future
Higgs factories, with 0.5-1% projected precision for the hbb̄ coupling, will be able to probe
much of the parameter space displayed.
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In comparison, direct searches can most easily access the region of parameter space

with light squarks and gluino. Our results show a nice complementarity between direct

superpartner searches and precision Higgs measurements, as they probe the SUSY parameter

space from different directions.

To further demonstrate this complementarity, let us consider a scenario where the gluino

and sfermions are beyond direct LHC reach, even after the high luminosity phase [259,260].

We choose |M3| = 5 TeV, Ms = 10 TeV as a benchmark, and allow MΦ and tan β to vary.

The Higgsino mass µ is still determined by exact b-τ Yukawa unification, and is not a free

parameter in this analysis.

Figure 7.8 shows plots of |δκb| in the MΦ-tan β plane for this benchmark scenario, on

all four xt branches. The LHC will be able to probe |δκb| ∼ 10% [261, 262], corresponding

to part of the sub-TeV regime for MΦ (red and orange regions). Meanwhile, direct heavy

Higgs searches can put stronger constraints in the high tan β regime. For illustration, we

show in Figure 7.8 current exclusion limit from the ATLAS search in the di-tau channel [263]

(the CMS limit [264] is slightly weaker) and projected high luminosity LHC reach (up to

MΦ = 2 TeV) in the same channel from the CMS analysis [265] (dark solid and dashed

curves, respectively), both of which are reported assuming the “mmod+
h benchmark scenario”

(see [266]).

On the other hand, a 0.5-1% level determination of the hbb̄ coupling, as envisioned at

possible future Higgs factories (ILC, CLIC, CEPC and FCC-ee — see e.g. [267–269] for

recent studies), would extend the sensitivity to MΦ potentially up to ∼(2-4) TeV, even for

lower tan β, and beyond direct and indirect LHC reach. The existence of well-motivated

scenarios, like trans-TeV SUSY with b-τ Yukawa unification studied here, which escape LHC

search but nevertheless can manifest themselves as modified Higgs couplings, highlights the

opportunity of BSM discoveries through precision Higgs measurements.

To close this section, we finally comment on the availability of a 1 TeV Higgsino thermal

dark matter candidate. From the figures we see that µ = 1 TeV (light green curves) can

only be achieved on the xt < 0 branches for tan β & 20.6 The xt > 0 branches cannot

support such a small Higgsino mass because of cancellation between the squark-gluino and

squark-Higgsino loops contributing to δb, as discussed below Eq. (7.96). Meanwhile, when

tan β is reduced, a larger µ/Ms is generally needed to obtain sufficient threshold corrections

for both λ and yb. The disappearance of the µ = 1 TeV curve is further accelerated by a

shrinking parameter space where matching of the Higgs quartic is simultaneously possible.

6The quantitative discrepancy between our conclusion and that of [233] is due to differences in the match-
ing calculation for the Higgs quartic. Our results are in good agreement with the more recent calculation
in [49].
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7.5 Conclusions

As traditional naturalness and weak-scale new physics are under siege, it is worth considering

more attentively trans-TeV regimes. Here, effective field theory becomes the tool of choice

to accurately connect a vast range of BSM ideas to low-energy observation. In this chapter,

we have focused on the specific case of the MSSM, and performed a matching calculation

onto the SMEFT. In particular, we computed the full set of renormalizable operators of the

SMEFT by integrating out heavy superpartners from the path integral up to one-loop level,

which allowed us to extract SUSY threshold corrections with ease.

Our calculation highlights the simplicity of recently-developed functional matching and

covariant diagrams techniques. In fact, we were able to reproduce one-loop SUSY threshold

corrections for all SM parameters from just 30 covariant diagrams (shown in Tables 7.5

and 7.6), each of which is straightforward to compute. Essentially, we have taken a more

economic route than traditional Feynman diagram calculations, where just the information

needed for deriving the low-energy limit of the theory has been extracted from the path

integral. In the long run, it is hoped that these novel EFT techniques will aid the program

of (automated) precision calculation in trans-TeV supersymmetry, and other BSM scenarios

as well.

Taking unification as a key motivation for SUSY, we investigated implications of b-τ

Yukawa unification on the MSSM parameter space, while remaining agnostic about further

details of the grand unified theory. The EFT approach we have taken allowed us to take

advantage of existing precision calculations within the SM, to ensure consistency with low-

energy observations, in particular mh = 125 GeV. We found solutions that realize b-τ Yukawa

unification for SUSY scales from TeV up to 1010 GeV, with suitable choices of superpartner

mass ratios and tan β (see Figures 7.1 and 7.2). In this analysis, a key role is played by

SUSY threshold corrections to the Higgs quartic and bottom Yukawa couplings, which, when

forced to have the correct (finite) sizes (see Figures 7.3 and 7.4), dramatically constrain the

predicted SUSY parameter space.

The lower edge of this broad trans-TeV window is further motivated by the possibility of

having a dark matter candidate. For superpartners in the (1-10) TeV regime, we showed that

one-loop matching contributions can drastically modify tree-level predictions for the hbb̄ (and

also hτ+τ−) coupling, rendering some regions of the MSSM parameter space with heavier

squarks more accessible to precision Higgs measurements (see Figures 7.5, 7.6 and 7.7).

It is interesting to see that, even for superpartner masses out of LHC reach, precision

Higgs measurements can offer a powerful indirect probe of TeV-scale SUSY. For example,

in a benchmark scenario with a 5 TeV gluino and 10 TeV degenerate sfermions that realizes
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b-τ Yukawa unification, we showed that a 0.5-1% level determination of the hbb̄ coupling

will be able to probe the heavy Higgs mass up to ∼(2-4) TeV for a wide range of tan β (see

Figure 7.8). This constitutes an unambiguous example of a motivated BSM scenario that

may only reveal itself through precision Higgs measurements of the future.
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Chapter 8

Summary and Outlook

We are living in an exciting time for particle physics research. Steady experimental progress,

at the LHC in particular, is met with continual theoretical developments. The full estab-

lishment of the Standard Model (SM), including the Higgs boson as the last building block,

together with lack of new physics discoveries so far, has consolidated our view of elementary

particle interactions as described by layers of effective field theories (EFTs). Precision tests

of the SM in all sectors and critical examination of the EFT framework have become more

important than ever.

In this context, we have studied in this dissertation various aspects of precision analyses

and EFT. In particular, we have covered topics in precision tests of the electroweak and Higgs

sectors of the SM, and discussed how EFT techniques can shed light on both bottom-up and

top-down studies of new physics.

Continued exploration of the high energy frontier – the LHC at present, and possibly

next-generation colliders in the future – will put the SM to more stringent tests. The

tremendous experimental effort needed must be supported by improved understanding on

the theory side to give meaning to our data. We have reassessed the current status of state-

of-the-art precision electroweak calculations in Chapter 2, and pointed out new challenges in

precision Higgs calculations in Chapter 3. Especially, given the plethora of well-motivated

new physics scenarios that may show up in future precision Higgs measurements only at the

percent level, it is an urgent issue to understand and reduce theory uncertainties, especially

from our inadequate knowledge of the bottom and charm quark masses, so that they do not

become a limiting factor in our hunt for new physics.

Bottom-up EFT approaches have been widely used recently, in an effort to interpret

experimental measurements of SM processes, and extract broad features of new physics

consistent with data. In this process, various consistency issues arise, especially when one

attempts to embed historically influential simplified parameterizations of new physics effects
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into a more general EFT framework. We have critically examined the issues associated with

oblique parameters and triple gauge couplings in Chapters 4 and 5, respectively, and argued

for the necessity to go beyond these historical parameterizations to learn more general lessons

about new physics within the bottom-up EFT approach. Ongoing and future experimental

programs promise to deliver more and more data, which will likely reshape our conventional

view of the SMEFT parameter space. Our analysis frameworks should be updated in time

to serve the need of extracting most useful information from future data.

Meanwhile, top-down EFT approaches are also receiving more interest, as hypothesized

new particles are excluded up to higher masses. In this case, EFT provides the appropriate

framework to perform precision calculations of lower energy observables from a higher en-

ergy theory of new physics. We have developed a diagrammatic framework for systematic

functional matching calculations in Chapter 6, and applied it in a top-down EFT study of

trans-TeV supersymmetry in Chapter 7. As new model-building ideas continue to emerge,

it will be a fruitful exercise to study them in such top-down EFT approaches, in order to

form more accurate pictures of their low energy behaviors to guide experimental searches.

At the same time, we hope progress will continue to be made on functional matching and

related ideas, which will further expand our theoretical toolbox beyond conventional Feyn-

man diagram-based techniques, and perhaps also teach us new knowledge about quantum

field theory.

It is not an exaggeration to say that the EFT mindset has played a major role in shaping

our modern view of fundamental physics. It has guided us all the way through the establish-

ment of the Standard Model, and we are now hoping it will help us reach the next deeper

level of particle interactions. It is not certain how much further the EFT paradigm can take

us in our quest of Nature, or whether and when a paradigm change would be needed to move

forward. We should always keep our mind open to new ideas. However, there is no denying

that EFT research will continue to be fruitful in teaching us about the SM and new physics,

and quantum field theory as well. We should try our best to understand the subtleties and

limitations of EFT approaches, while making progress in both theory and experiment toward

uncovering a deeper structure of Nature.
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Appendix A

Master Integrals in One-Loop

Matching

In this appendix, we discuss calculations of the master integrals encountered in one-loop

matching calculations of Chapters 6 and 7. Recall from Eq. (6.67) that the master integrals

I[q2nc ]
ninj ...nL
ij...0 are defined by∫

ddq

(2π)d
qµ1 · · · qµ2nc

(q2 −M2
i )ni(q2 −M2

j )nj · · · (q2)nL
≡ gµ1...µ2nc I[q2nc ]

ninj ...nL
ij...0 , (A.1)

where gµ1...µ2nc is the completely symmetric tensor, e.g. gµνρσ = gµνgρσ + gµρgνσ + gµσgνρ.

We have also defined the rescaled version,

Ĩ[q2nc ]
ninj ...nL
ij...0 ≡ I[q2nc ]

ninj ...nL
ij...0 /

i

16π2
. (A.2)

These master integrals can in general be evaluated via the following decomposition for-

mula,

Ĩ[q2nc ]
ninj ...nL
ij...0 =

ni−1∑
pi=0

[
1

pi!

(
∂

∂M2
i

)pi 1(
M2

i

)nL∏
a6=i
(
∆2
ia

)na ] I[q2nc ]ni−pii

+

nj−1∑
pj=0

[
1

pj!

(
∂

∂M2
j

)pj 1(
M2

j

)nL∏
a6=j
(
∆2
ja

)na ] I[q2nc ]
nj−pj
j + . . . (A.3)

where ∆2
ij ≡M2

i −M2
j . To derive Eq. (A.3), we first recall the definition,∫

ddq

(2π)d
qµ1 · · · qµ2nc

(q2 −M2
i )ni(q2 −M2

j )nj · · · (q2)nL
≡ gµ1...µ2nc I[q2nc ]

ninj ...nL
ij...0 , (A.4)
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where gµ1...µ2nc is the completely symmetric tensor, e.g. gµνρσ = gµνgρσ + gµρgνσ + gµσgνρ. It

is easy to see that

I[q2nc ]
ninj ...nL
ij...0 =

1

∆2
ij

(
I[q2nc ]

ni,nj−1,...nL
ij...0 − I[q2nc ]

ni−1,nj ...nL
ij...0

)
, (A.5)

I[q2nc ]
ninj ...nL
ij...0 =

1

M2
i

(
I[q2nc ]

ninj ...,nL−1
ij...0 − I[q2nc ]

ni−1,nj ...nL
ij...0

)
, (A.6)

∂

∂M2
i

I[q2nc ]
ninj ...nL
ij...0 = ni I[q2nc ]

ni+1,nj ...nL
ij...0 , (A.7)

Note that in principle, we can just start from I[q2nc ]
ninj ...nL
ij...0 and use Eqs. (A.5) and (A.6)

repeatedly to reduce the number of propagators, until arriving at a sum of heavy-only de-

generate master integrals of the form I[q2nc ]nii (recall I[q2nc ]nL0 = 0), which cannot be further

reduced. However, the same result can be obtained via a more systematic and often easier

path, starting from applying Eq. (A.7),

I[q2nc ]
ninj ...nL
ij...0 =

1

(ni − 1)!

(
∂

∂M2
i

)ni−1
1

(nj − 1)!

(
∂

∂M2
j

)nj−1

. . . I[q2nc ]11...nL
ij...0 . (A.8)

The master integrals I[q2nc ]11...nL
ij...0 , where each heavy propagator appears only once, are much

easier to reduce via Eqs. (A.5) and (A.6) compared to the original master integral. In fact,

we can show that

I[q2nc ]11...nL
ij...0 =

1

∆2
ij∆

2
ik∆

2
il . . .

I[q2nc ]1nLi0 +
1

∆2
ji∆

2
jk∆

2
jl . . .

I[q2nc ]1nLj0 + . . .

=
1(

M2
i

)nL∆2
ij∆

2
ik∆

2
il . . .

I[q2nc ]1i +
1(

M2
j

)nL∆2
ji∆

2
jk∆

2
jl . . .

I[q2nc ]1j + . . .

=
1(

M2
i

)nL∏
a6=i ∆

2
ia

I[q2nc ]1i +
1(

M2
j

)nL∏
a6=j ∆2

ja

I[q2nc ]1j + . . . (A.9)

Plugging Eq. (A.9) into Eq. (A.8) and taking derivatives according to Eq. (A.7), we obtain

I[q2nc ]
ninj ...nL
ij...0 =

1

(ni − 1)!

(
∂

∂M2
i

)ni−1
1(

M2
i

)nL(∆2
ij

)nj(∆2
ik

)nk(∆2
il

)nl · · · I[q2nc ]1i

+
1

(nj − 1)!

(
∂

∂M2
j

)nj−1
1(

M2
j

)nL(∆2
ji

)ni(∆2
jk

)nk(∆2
jl

)nl · · · I[q2nc ]1j

+ . . . , (A.10)

which can be easily seen to lead to Eq. (A.3).

Eq. (A.3) allows us to decompose an arbitrary master integral I[q2nc ]
ninj ...nL
ij...0 into a sum
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of degenerate master integrals of the form I[q2nc ]nii . For example,

I[q2]211
ij0 =

1

M2
i ∆2

ij

I[q2]2i +
∂

∂M2
i

(
1

M2
i ∆2

ij

)
I[q2]1i +

1

M2
j

(
∆2
ji

)2 I[q2]1j . (A.11)

The degenerate master integrals I[q2nc ]nii cannot be decomposed further in this way, but can

be worked out explicitly and tabulated; see Table 7 of [60]. Here, we note that if ni ≥ 2 and

nc ≥ 1, I[q2nc ]nii can in fact be further reduced using

I[q2nc ]nii =
1

2(ni − 1)
I[q2(nc−1)]ni−1

i , (A.12)

which follows from the explicit expression

I[q2nc ]nii =
i

16π2

(
−M2

i

)2+nc−ni 1

2nc(ni − 1)!

Γ( ε
2
− 2− nc + ni)

Γ( ε
2
)

(2

ε̄
− log

M2
i

µ2

)
, (A.13)

where 2
ε̄
≡ 2

ε
− γ + log 4π with ε = 4− d, and Q is the renormalization scale. For example,

Eq. (A.11) can be further reduced to

I[q2]211
ij0 =

1

2M2
i ∆2

ij

I1
i +

∂

∂M2
i

(
1

M2
i ∆2

ij

)
I[q2]1i +

1

M2
j

(
∆2
ji

)2 I[q2]1j . (A.14)

We therefore only list irreducible master integrals here. For ni = {1, 2, 3, 4, 5, 6},

Ĩnii =
{
M2

i

(
1− logM2

i

)
,− logM2

i , −
1

2M2
i

,
1

6M4
i

, − 1

12M6
i

,
1

20M8
i

}
, (A.15)

while for nc = {1, 2, 3},

Ĩ[q2nc ]1i =
{M4

i

4

(3

2
− logM2

i

)
,
M6

i

24

(11

6
− logM2

i

)
,
M8

i
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(25

12
− logM2

i

)}
, (A.16)

where we have dropped the 1
ε̄

poles (as in MS and DR schemes), and abbreviated log
M2
i

Q2

to logM2
i . In cases where O(ε) terms are produced from e.g. gamma matrix algebra, the

1
ε̄

pieces in the master integrals that have been subtracted off can be recovered by simply

replacing − logM2
i → 2

ε̄
− logM2

i .

Using the formulas above, we can compute explicit expressions for the master integrals

appearing in our one-loop matching results in Chapters 6 and 7. As a convenient reference,

we list some frequently used master integrals in the following,

Ĩ1
i = M2

i

(
1− logM2

i

)
, Ĩ2

i = − logM2
i , (A.17)
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Ĩ3
i = − 1

2M2
i

, Ĩ4
i =

1

6M4
i

, Ĩ11
i0 = 1− logM2

i , (A.18)

Ĩ[q2]3i = −1

4
logM2

i , Ĩ[q2]4i = − 1

12M2
i

, Ĩ[q2]21
i0 =

1

8
− 1

4
logM2

i , (A.19)

Ĩ11
ij = 1− 1

∆2
ij

(
M2

i logM2
i −M2

j logM2
j

)
, (A.20)

Ĩ21
ij = − 1

∆2
ij

−
M2

j(
∆2
ij

)2 log
M2

j

M2
i

, (A.21)

Ĩ22
ij = − 2(

∆2
ij

)2 −
M2

i +M2
j(

∆2
ij

)3 log
M2

j

M2
i

, (A.22)

Ĩ31
ij =

M2
i +M2

j

2M2
i

(
∆2
ij

)2 +
M2

j(
∆2
ij

)3 log
M2

j

M2
i

, (A.23)

Ĩ[q2]21
ij =

M2
i − 3M2

j

8∆2
ij

− 1

4
(
∆2
ij

)2

[
M2

i (M2
i − 2M2

j ) logM2
i +M4

j logM2
j

]
, (A.24)

Ĩ[q2]22
ij = −

M2
i +M2

j

4
(
∆2
ij

)2 −
M2

iM
2
j

2
(
∆2
ij

)3 log
M2

j

M2
i

, (A.25)

Ĩ[q2]31
ij = −

M2
i − 3M2

j

8
(
∆2
ij

)2 +
M4

j

4
(
∆2
ij

)3 log
M2

j

M2
i

, (A.26)

Ĩ111
ijk =

M2
j

∆2
ij∆

2
jk

log
M2

j

M2
i

+
M2

k

∆2
jk∆

2
ki

log
M2

k

M2
i

, (A.27)

Ĩ211
ijk = − 1

∆2
ij∆

2
ik

− 1

∆2
jk

[
M2

j(
∆2
ij

)2 log
M2

j

M2
i

− M2
k(

∆2
ik

)2 log
M2

k

M2
i

]
, (A.28)

Ĩ[q2]211
ijk = − M2

i

4∆2
ij∆

2
ik

− 1

4∆2
jk

[
M4

j(
∆2
ij

)2 log
M2

j

M2
i

− M4
k(

∆2
ik

)2 log
M2

k

M2
i

]
. (A.29)

In the equations above, we have used the notation ∆2
ij ≡M2

i −M2
j .

Finally, let us also present some formulas that can be used to decrease nc, because they

are often useful for simplifying loops involving fermions. When nc = 1, we can contract both

sides of Eq. (A.4) with gµ1µ2 to obtain

(4− ε) I[q2]
ninj ...nL
ij...0 = Ini−1,nj ...nL

ij...0 +M2
i I

ninj ...nL
ij...0 (A.30)

(4− ε) I[q2]
ninj ...nL
ij...0 = Ininj ...,nL−1

ij...0 (nL ≥ 1) (A.31)

Similarly, when nc = 2, we can contract both sides of Eq. (A.4) with gµ1µ2gµ3µ4 to obtain

(24− 10ε) I[q4]
ninj ...nL
ij...0 =

∫
ddq

(2π)d
(q2 −M2

i )2 + 2M2
i q

2 −M4
i

(q2 −M2
i )ni(q2 −M2

j )nj · · · (q2)nL
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= Ini−2,nj ...nL
ij...0 + 2(4− ε)M2

i I[q2]
ninj ...nL
ij...0 −M4

i I
ninj ...nL
ij...0 (ni ≥ 2) .

(A.32)

Alternatively,

(24− 10ε) I[q4]
ninj ...nL
ij...0 =

∫
ddq

(2π)d
(q2 −M2

i )(q2 −M2
j ) + (M2

i +M2
j )q2 −M2

iM
2
j

(q2 −M2
i )ni(q2 −M2

j )nj · · · (q2)nL

= Ini−1,nj−1,...nL
ij...0 + (4− ε)(M2

i +M2
j ) I[q2]

ninj ...nL
ij...0 −M2

iM
2
j I

ninj ...nL
ij...0 (ni, nj ≥ 1) .

(A.33)

These formulas have been used in our calculation in Chapter 7.
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Appendix B

Explicit Expressions of Universal

Coefficients

Here we give explicit expressions of the universal coefficients, namely coefficients of operator

traces in the UOLEA master formula Eq. (6.68) rederived in Section 6.4.1 (see Table 6.5),

in terms of heavy particle masses Mi, Mj, etc. In many cases, our expressions simplify those

originally derived in [56]. We define fN = i
16π2 f̃N as in [56], and list f̃N in the following:

f̃ i2 = M2
i

(
1− log

M2
i

µ2

)
, (B.1)

f̃ i3 = − 1

12
log

M2
i

µ2
, (B.2)

f̃ ij4 =
1

2

(
1−

M2
i log

M2
i

µ2

∆2
ij

−
M2

j log
M2
j

µ2

∆2
ji

)
, (B.3)

f̃ i5 = − 1

60M2
i

, (B.4)

f̃ i6 = − 1

90M2
i

, (B.5)

f̃ ij7 = −
M2

i +M2
j

4(∆2
ij)

2
+
M2

iM
2
j log

M2
i

M2
j

2(∆2
ij)

3
, (B.6)

f̃ ijk8 = −1

3

(
M2

i logM2
i

∆2
ij∆

2
ik

+
M2

j logM2
j

∆2
ji∆

2
jk

+
M2

k logM2
k

∆2
ki∆

2
kj

)
, (B.7)

f̃ i9 = − 1

12M2
i

, (B.8)

f̃ ijkl10 = −1

4

(
M2

i logM2
i

∆2
ij∆

2
ik∆

2
il

+
M2

j logM2
j

∆2
ji∆

2
jk∆

2
jl

+
M2

k logM2
k

∆2
ki∆

2
kj∆

2
kl

+
M2

l logM2
l

∆2
li∆

2
lj∆

2
lk

)
, (B.9)
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f̃ ijk11 =
M2

iM
2
j +M2

iM
2
k +M2

jM
2
k − 3M4

k

2(∆2
ik)

2(∆2
jk)

2
+
M2

iM
2
k logM2

i

∆2
ij(∆

2
ik)

3
+
M2

jM
2
k logM2

j

∆2
ji(∆

2
jk)

3

+

[
M2

iM
2
j (M2

i +M2
j − 3M2

k ) +M6
k

]
M2

k logM2
k

(∆2
ki)

3(∆2
kj)

3
, (B.10)

f̃ ij12 =
M4

i + 10M2
iM

2
j +M4

j

12(∆2
ij)

4
−
M2

iM
2
j (M2

i +M2
j ) log

M2
i

M2
j

2(∆2
ij)

5
, (B.11)

f̃ ij13 =
2M4

i + 5M2
iM

2
j −M4

j

12M2
i (∆2

ij)
3

−
M2

iM
2
j log

M2
i

M2
j

2(∆2
ij)

4
(B.12)

f̃ ij14 = −
M4

i + 10M2
iM

2
j +M4

j

6(∆2
ij)

4
+
M2

iM
2
j (M2

i +M2
j ) log

M2
i

M2
j

(∆2
ij)

5
, (B.13)

f̃ ij15 =
2M4

i + 11M2
iM

2
j − 7M4

j

18(∆2
ij)

4
−
M2

j (3M4
i −M4

j ) log
M2
i

M2
j

6(∆2
ij)

5
(B.14)

f̃ ijklm16 = −1

5

(
M2

i logM2
i

∆2
ij∆

2
ik∆

2
il∆

2
im

+
M2

j logM2
j

∆2
ji∆

2
jk∆

2
jl∆

2
jm

+
M2

k logM2
k

∆2
ki∆

2
kj∆

2
kl∆

2
km

+
M2

l logM2
l

∆2
li∆

2
lj∆

2
lk∆

2
lm

+
M2

m logM2
m

∆2
mi∆

2
mj∆

2
mk∆

2
ml

)
, (B.15)

f̃ ijkl17 = −
M2

iM
2
jM

2
k + (M2

iM
2
j +M2

iM
2
k +M2

jM
2
k )M2

l − 3(M2
i +M2

j +M2
k )M4

l + 5M6
l

2(∆2
il)

2(∆2
jl)

2(∆2
kl)

2

+
M2

iM
2
l logM2

i

∆2
ij∆

2
ik(∆

2
il)

3
+
M2

jM
2
l logM2

j

∆2
ji∆

2
jk(∆

2
jl)

3
+
M2

kM
2
l logM2

k

∆2
ki∆

2
kj(∆

2
kl)

3
+

M2
l logM2

l

(∆2
li)

3(∆2
lj)

3(∆2
lk)

3
·[

(M2
iM

2
jM

2
k +M6

l )
(
M2

iM
2
j +M2

iM
2
k +M2

jM
2
k − 3(M2

i +M2
j +M2

k )M2
l + 6M4

l

)
+M6

l (M4
i +M4

j +M4
k − 3M4

l )
]
,

(B.16)

f̃ ijkl18 =
1

4(∆2
ik)

2(∆2
jk)

2(∆2
il)

2(∆2
jl)

2[
−M2

iM
2
jM

2
k (M4

i +M4
j +M4

k )−M2
iM

2
jM

2
l (M4

i +M4
j +M4

l )

−M2
iM

2
kM

2
l (M4

i +M4
k +M4

l )−M2
jM

2
kM

2
l (M4

j +M4
k +M4

l )

+2M2
iM

2
j (M2

i +M2
j )(M4

k +M4
l ) + 2M2

kM
2
l (M4

i +M4
j )(M2

k +M2
l )

+3M4
iM

4
j (M2

i +M2
j ) + 3M4

kM
4
l (M2

k +M2
l )

+3M2
iM

2
jM

2
kM

2
l (M2

i +M2
j +M2

k +M2
l )

−7M4
iM

4
j (M2

k +M2
l )− 7M4

kM
4
l (M2

i +M2
j )
]

+

[
M6

i +M2
kM

2
l (M2

k +M2
l − 3M2

i )
]
M2

i logM2
i

2∆2
ij(∆

2
ik)

3(∆2
il)

3
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+

[
M6

j +M2
kM

2
l (M2

k +M2
l − 3M2

j )
]
M2

j logM2
j

2∆2
ji(∆

2
jk)

3(∆2
jl)

3

+

[
M6

k +M2
iM

2
j (M2

i +M2
j − 3M2

k )
]
M2

k logM2
k

2∆2
kl(∆

2
ki)

3(∆2
kj)

3

+

[
M6

l +M2
iM

2
j (M2

i +M2
j − 3M2

l )
]
M2

l logM2
l

2∆2
lk(∆

2
li)

3(∆2
lj)

3
,

(B.17)

f̃ ijklmn19 = −1

6

(
M2

i logM2
i

∆2
ij∆

2
ik∆

2
il∆

2
im∆2

in

+
M2

j logM2
j

∆2
ji∆

2
jk∆

2
jl∆

2
jm∆2

jn

+
M2

k logM2
k

∆2
ki∆

2
kj∆

2
kl∆

2
km∆2

kn

+
M2

l logM2
l

∆2
li∆

2
lj∆

2
lk∆

2
lm∆2

ln

+
M2

m logM2
m

∆2
mi∆

2
mj∆

2
mk∆

2
ml∆

2
mn

+
M2

n logM2
n

∆2
ni∆

2
nj∆

2
nk∆

2
nl∆

2
nm

)
.

(B.18)

As in the previous appendix, we have used the shorthand notation ∆2
ij ≡M2

i −M2
j , etc.
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Appendix C

The MSSM U Matrix

In this appendix, we present detailed expressions for the entries of the MSSM U matrix

needed in our one-loop matching calculation in Chapter 7. They are obtained from the

MSSM Lagrangian by the background field method explained in Chapter 6. Keeping in

mind that the U matrix is to be used at one-loop level, we do not distinguish between β

and β′, and write β throughout. Also, tree-level SUSY relations between couplings can be

used regardless of scheme choice, e.g. gaugino-sfermion-fermion couplings are identified with

gauge couplings (which is true beyond tree level in DR but not MS scheme).

In what follows, the heavy Higgs field Φ is understood as Φc obtained in Section 7.2.2.

The other heavy fields do not appear because they are set to zero by the classical equations

of motion. We carefully keep all color and weak indices explicit for clarity, using i (A) and α

(I) for SU(3)c and SU(2)L fundamental (adjoint) indices on the conjugate fields to appear

on the left side of the U matrix, and j, B, β, J for those on the fields on the right side. We

will not explicitly show the entries involving leptons, because they can always be obtained

from those involving quarks by the obvious substitutions q → l, d → e, λu → 0, λd → λe,

g3 → 0.

C.1 R-parity-even block

Higgs-Higgs entries. From the MSSM Higgs potential, we obtain

UΦΦ =
1

4
(g2 + g′2)

−δβαc2
2β|φ|2 + s2

2βφαφ
∗β s2

2β φαφβ

s2
2β φ

∗αφ∗β −δαβ c2
2β|φ|2 + s2

2βφ
∗αφβ


+

1

2
g2

δβα|φ|2 − φαφ∗β 0

0 δαβ |φ|2 − φ∗αφβ


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+
1

8
(g2 + g′2) s4β

δβα 0

0 δαβ

(φ∗Φ + Φ∗φ
)

+
1

8
(g2 + g′2) s4β

 φαΦ∗β + Φαφ
∗β φαΦβ + Φαφβ

φ∗αΦ∗β + Φ∗αφ∗β φ∗αΦβ + Φ∗αφβ


+

1

4
(g2 + g′2)c2

2β

δβα|Φ|2 + ΦαΦ∗β ΦαΦβ

Φ∗αΦ∗β δαβ |Φ|2 + Φ∗αΦβ

 , (C.1)

UΦφ = −1

8
(g2 + g′2) s4β

δβα|φ|2 + φαφ
∗β φαφβ

φ∗αφ∗β δαβ |φ|2 + φ∗αφβ


+

1

4
(g2 + g′2) s2

2β

δβα(φ∗Φ + Φ∗φ) + φαΦ∗β φαΦβ

φ∗αΦ∗β δαβ (φ∗Φ + Φ∗φ) + φ∗αΦβ


−1

4
(g2 + g′2) c2

2β

Φαφ
∗β Φαφβ

Φ∗αφ∗β Φ∗αφβ


+

1

2
g2

−δβα(φ∗Φ) + Φαφ
∗β −φαΦβ + Φαφβ

−φ∗αΦ∗β + Φ∗αφ∗β −δαβ (Φ∗φ) + Φ∗αφβ


+

1

8
(g2 + g′2) s4β

δβα|Φ|2 + ΦαΦ∗β ΦαΦβ

Φ∗αΦ∗β δαβ |Φ|2 + Φ∗αΦβ

 . (C.2)

The other two entries Uφφ and UφΦ can be obtained from UΦΦ and UΦφ by simply exchanging

Φ↔ φ, sβ ↔ cβ.

Higgs-fermion entries. From the MSSM Yukawa interactions, we obtain

UΦq =

−sβ δβα ψ̄jd λd −cβ εαβ ψ̄cuj λ∗u
−cβ εαβ ψ̄ju λu −sβ δαβ ψ̄cdj λ∗d

 , (C.3a)

UqΦ =

−sβ δβα λ†d ψdi −cβ εβα λ†u ψui

−cβ εβα λTu ψciu −sβ δαβ λTd ψcid

 , (C.3b)
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UΦu = cβ

(ψ̄qε)jα λ†u 0

0
(
ψ̄cqε
)α
j
λTu

 , UuΦ = cβ

λu(ψqε)βi 0

0 λ∗u
(
ψcqε
)i
β

 , (C.4)

UΦd = −sβ

 0 ψ̄cqjα λ
T
d

ψ̄jαq λ
†
d 0

 , UdΦ = −sβ

 0 λd ψqiβ

λ∗d ψ
ciβ
q 0

 . (C.5)

The φf , fφ entries (not needed in our calculation) can be obtained from the equations above

by simple substitutions λucβ → λusβ, λdsβ → −λdcβ.

Fermion-fermion entries. The Yukawa interactions also give rise to

Uqu = sβ

δji λ†u(εφ∗)α 0

0 δij λ
T
u

(
εφ
)α
+ cβ

δji λ†u(εΦ∗)α 0

0 δij λ
T
u

(
εΦ
)α
 , (C.6a)

Uuq = sβ

δji λu(εφ)β 0

0 δij λ
∗
u

(
εφ∗
)
β

+ cβ

δji λu(εΦ)β 0

0 δij λ
∗
u

(
εΦ∗
)
β

 , (C.6b)

Uqd = cβ

δji λ†d φα 0

0 δij λ
T
d φ
∗α

− sβ
δji λ†d Φα 0

0 δij λ
T
d Φ∗α

 , (C.7a)

Udq = cβ

δji λd φ∗β 0

0 δij λ
∗
d φβ

− sβ
δji λd Φ∗β 0

0 δij λ
∗
d Φβ

 . (C.7b)

In addition, there are nonzero entries involving the SM gauge bosons, which are however

not needed in our calculation.

C.2 R-parity-odd block

Sfermion-sfermion entries. From the sfermion-sfermion-Higgs interactions, we obtain

Uq̃ũ = (Ausβ − µcβ)

δji λ†u(εφ∗)α 0

0 δij λ
T
u

(
εφ
)α


+(Aucβ + µsβ)

δji λ†u(εΦ∗)α 0

0 δij λ
T
u

(
εΦ
)α
 , (C.8a)
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Uũq̃ = (Ausβ − µcβ)

δji λu(εφ)β 0

0 δij λ
∗
u

(
εφ∗
)
β


+(Aucβ + µsβ)

δji λu(εΦ)β 0

0 δij λ
∗
u

(
εΦ∗
)
β

 , (C.8b)

Uq̃d̃ = (Adcβ − µsβ)

δji λ†d φα 0

0 δij λ
T
d φ
∗α

− (Adsβ + µcβ)

δji λ†d Φα 0

0 δij λ
T
d Φ∗α

 ,

(C.9a)

Ud̃q̃ = (Adcβ − µsβ)

δji λd φ∗β 0

0 δij λ
∗
d φβ

− (Adsβ + µcβ)

δji λd Φ∗β 0

0 δij λ
∗
d Φβ

 .

(C.9b)

Meanwhile, the scalar quartic interactions give rise to

Uq̃q̃ =

δji Uq̃βα 0

0 δij U
T
q̃

α

β

 , Uũũ =

δji Uũ 0

0 δij U
T
ũ

 , Ud̃d̃ =

δji Ud̃ 0

0 δij U
T
d̃

 , (C.10)

where

Uq̃
β
α = λ†uλu

[
s2
β

(
δβα|φ|2 − φαφ∗β

)
+sβcβ

(
δβα(φ∗Φ + Φ∗φ)− φαΦ∗β − Φαφ

∗β)+ c2
β

(
δβα|Φ|2 − ΦαΦ∗β

)]
+λ†dλd

[
c2
β φαφ

∗β − sβcβ
(
φαΦ∗β + Φαφ

∗β)+ s2
β ΦαΦ∗β

]
+g2 1

4
σIβα

[
(s2
β − c2

β)
(
φ∗σIφ− Φ∗σIΦ

)
+ 2sβcβ

(
φ∗σIΦ + Φ∗σIφ

)]
+g′2 YφYq δ

β
α

[
(s2
β − c2

β)
(
|φ|2 − |Φ|2

)
+ 2sβcβ

(
φ∗Φ + Φ∗φ

)]
(C.11)

Uũ = λuλ
†
u

[
s2
β |φ|2 + sβcβ

(
φ∗Φ + Φ∗φ

)
+ c2

β |Φ|2
]

−g′2 YφYu
[
(s2
β − c2

β)
(
|φ|2 − |Φ|2

)
+ 2sβcβ

(
φ∗Φ + Φ∗φ

)]
, (C.12)

Ud̃ = λdλ
†
d

[
c2
β |φ|2 − sβcβ

(
φ∗Φ + Φ∗φ

)
+ s2

β |Φ|2
]

−g′2 YφYd
[
(s2
β − c2

β)
(
|φ|2 − |Φ|2

)
+ 2sβcβ

(
φ∗Φ + Φ∗φ

)]
. (C.13)
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There are also off-diagonal entries between ũ and d̃,

Uũd̃ =

δji λuλ†d(φεΦ) 0

0 δij
(
λdλ

†
u

)T (
φ∗εΦ∗

)
 , (C.14a)

Ud̃ũ =

δji λdλ†u(φ∗εΦ∗) 0

0 δij
(
λuλ

†
d

)T (
φεΦ

)
 . (C.14b)

Sfermion-Higgsino entries. From the sfermion-fermion-Higgsino interactions, we obtain

Uq̃χ̃ =

−δβα ψ̄cdi λ∗d εαβ ψ̄
c
ui λ
∗
u

εαβ ψ̄iu λu −δαβ ψ̄id λd

 , Uχ̃q̃ =

−δβα λTd ψcjd −εαβ λ†u ψuj

−εαβ λTu ψcju −δαβ λ
†
d ψdj

 ,(C.15)

Uũχ̃ =

(ψ̄cqε)βi λTu 0

0
(
ψ̄qε
)i
β
λ†u

 , Uχ̃ũ =

λ∗u(ψcqε)jα 0

0 λu
(
ψqε
)α
j

 , (C.16)

Ud̃χ̃ =

 0 −ψ̄cqiβ λTd
−ψ̄iβq λ

†
d 0

 , Uχ̃d̃ =

 0 −λd ψqjα

−λ∗d ψcjαq 0

 . (C.17)

Sfermion-gaugino entries. From the sfermion-fermion-gaugino interactions, we obtain

Uq̃g̃ =
√

2 g3

(TBψ̄cq)iα(
ψ̄qT

B
)iα
 , Ug̃q̃ =

√
2 g3

((
ψcqT

A
)jβ (

TAψq
)
jβ

)
, (C.18)

Uq̃W̃ =
√

2 g
1

2

(σJ ψ̄cq)iα(
ψ̄qσ

J
)iα
 , UW̃ q̃ =

√
2 g

1

2

((
ψcqσ

I
)jβ (

σIψq
)
jβ

)
, (C.19)

Uq̃B̃ =
√

2 g′ Yq

ψ̄cqiα
ψ̄iαq

 , UB̃q̃ =
√

2 g′ Yq

(
ψcjβq ψqjβ

)
, (C.20)

Uũg̃ = −
√

2 g3

(TBψ̄cu)i(
ψ̄uT

B
)i
 , Ug̃ũ = −

√
2 g3

((
ψcuT

A
)j (

TAψu
)
j

)
, (C.21)

UũB̃ = −
√

2 g′ Yu

ψ̄cui
ψ̄iu

 , UB̃ũ = −
√

2 g′ Yu

(
ψcju ψuj

)
, (C.22)
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Ud̃Ṽ ,Ṽ d̃ = UũṼ ,Ṽ ũ

∣∣∣
u→d

. (C.23)

Higgsino-gaugino entries. Finally, from the Higgs-Higgsino-gaugino interactions, we ob-

tain

Uχ̃Ṽ = U
(S)

χ̃Ṽ
+ U

(P )

χ̃Ṽ
γ5 , UṼ χ̃ = U

(S)

Ṽ χ̃
+ U

(P )

Ṽ χ̃
γ5 , (C.24)

with

U
(S)

χ̃W̃
=

g√
2

1

2
(sβ + cβ)

(σJφ)α(
φ∗σJ

)α
− g√

2

1

2
(sβ − cβ)

(σJΦ
)
α(

Φ∗σJ
)α
 , (C.25a)

U
(S)

W̃ χ̃
=

g√
2

1

2
(sβ + cβ)

((
φ∗σI

)β (
σIφ
)
β

)
− g√

2

1

2
(sβ − cβ)

((
Φ∗σI

)β (
σIΦ

)
β

)
,

(C.25b)

U
(P )

χ̃W̃
=

g√
2

1

2
(sβ − cβ)

 (
σJφ

)
α

−
(
φ∗σJ

)α
+

g√
2

1

2
(sβ + cβ)

 (
σJΦ

)
α

−
(
Φ∗σJ

)α
 , (C.25c)

U
(P )

W̃ χ̃
= − g√

2

1

2
(sβ − cβ)

((
φ∗σI

)β −
(
σIφ
)
β

)
− g√

2

1

2
(sβ + cβ)

((
Φ∗σI

)β −
(
σIΦ

)
β

)
,

(C.25d)

U
(S)

χ̃B̃
=

g′√
2
Yφ (sβ + cβ)

 φα

φ∗α

− g′√
2
Yφ (sβ − cβ)

Φα

Φ∗α

 , (C.26a)

U
(S)

B̃χ̃
=

g′√
2
Yφ (sβ + cβ)

(
φ∗β φβ

)
− g′√

2
Yφ (sβ − cβ)

(
Φ∗β Φβ

)
, (C.26b)

U
(P )

χ̃B̃
=

g′√
2
Yφ (sβ − cβ)

 φα

−φ∗α

+
g′√
2
Yφ (sβ + cβ)

 Φα

−Φ∗α

 , (C.26c)

U
(P )

B̃χ̃
= − g′√

2
Yφ (sβ − cβ)

(
φ∗β −φβ

)
− g′√

2
Yφ (sβ + cβ)

(
Φ∗β −Φβ

)
.(C.26d)
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Appendix D

Cross-Check of SUSY Threshold

Corrections Against Feynman

Diagram Calculation

Our results for one-loop SUSY threshold corrections presented in Section 7.2.3, which are

obtained from computing just 30 covariant diagrams, have been cross-checked against con-

ventional Feynman diagram calculations reported in [231], with full agreement found. In

this final appendix, we explain how this comparison is made.

The general procedure is as follows. From [231], we obtain analytical relations between

the full theory parameters g3, g, g′, yf , m
2 and λ (related to MSSM Lagrangian parameters

via Eq. (7.40)) and the standard set of SM input observables (denoted with hats) α̂s(mZ),

m̂Z , ĜF , α̂em, m̂f and m̂h, computed via Feynman diagrams up to one-loop accuracy (we

consistently drop higher loop order corrections, some of which are also reported in [231]).

The same relations, with BSM contributions removed, define the corresponding effective

parameters geff
3 , geff, g′eff, yeff

f , m2
eff and λeff in the SMEFT, up to power-suppressed corrections

from d ≥ 4 operators. One-loop threshold corrections are then obtained by comparing the

two, which should agree with what we have found via the more elegant covariant diagrams

approach. Note that the tadpole-free scheme for Higgs vevs is adopted in [231], so their

results should be compared to ours when LSMEFT is written in terms of β (as opposed to β′),

i.e. when the one-loop-generated piece cΦφ(Φ∗cφ+ φ∗Φc) has been absorbed into Ltree
SMEFT.

Let us start with the strong coupling g3, which is simply extracted from α̂s(mZ) via

g2
3 =

4π α̂s(mZ)

1−∆αs
. (D.1)
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Therefore,

geff
3 = g3

[
1− 1

2

(
∆αs

)SUSY

O(1)

]
, (D.2)

where, according to [231],

(
∆αs

)SUSY
= − g2

3

16π2

( 1

6

∑
f=u,d

2∑
i=1

logm2
f̃i

+ 2 logM2
3

)
=

g2
3

16π2

[ 1

6

(
2 Ĩ2

q̃ + I1
ũ + I2

d̃

)
+ 2 I2

g̃ +O
( v2

Λ2

)]
, (D.3)

with summation over three generations implicit. The v2

Λ2 power-suppressed terms come from

electroweak symmetry breaking contributions to squark masses, and are not relevant here.

For simplicity, throughout this appendix, we denote non-power-suppressed terms as O(1)

(as in Eq. (D.2)) although they are formally O( 1
16π2 ) when loop counting is also taken into

account. It is readily seen that Eq. (D.3) is in agreement with our δZG in Eq. (7.73a).

Next, to extract electroweak gauge couplings g and g′, we recall the relations

α =
α̂em

1−∆α
, c2

θs
2
θ =

π α
√

2 m̂2
Z ĜF (1−∆r)

, (D.4)

where

∆r =
ΠT
WW (0)

m2
W

− Re
ΠT
ZZ(m2

Z)

m2
Z

+ δVB . (D.5)

Here, ΠT
WW (p2) and ΠT

ZZ(p2) are transverse parts of the W and Z self-energies, which rep-

resent “universal” contributions to µ− → e−ν̄eνµ which determines ĜF . On the other hand,

δVB contains non-universal contributions from vertex corrections, box diagrams, and wave-

function renormalizations. Only the universal part of ∆r, i.e.

∆ru ≡
ΠT
WW (0)

m2
W

− Re
ΠT
ZZ(m2

Z)

m2
Z

(D.6)

is relevant for g, g′ threshold corrections, because δVB has an EFT counterpart in terms of

local effective operator contributions to muon decay. Thus, from Eq. (D.4),

αeff = α
[

1− (∆α)SUSY
O(1)

]
,

(
c2
θs

2
θ

)eff
= c2

θs
2
θ

[
1− (∆α)SUSY

O(1) − (∆ru)
SUSY
O(1)

]
. (D.7)

The QED coupling and weak mixing angle can be directly translated into SU(2)L × U(1)Y

gauge couplings via 4πα = gsθ = g′cθ. We therefore obtain

geff = g
{

1 +
1

2

1

c2
θ − s2

θ

[
s2
θ (∆α)SUSY

O(1) + c2
θ (∆ru)

SUSY
O(1)

]}
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= g
{

1 +
1

2

1

c2
θ − s2

θ

[
s2
θ (∆α)SUSY

O(1) + c2
θ

4

v2

( 1

g2
ΠT
WW (0)− c2

θ

g2
ΠT
ZZ(m2

Z)
)SUSY

O(v2)

]}
, (D.8)

g′
eff

= g′
{

1− 1

2

1

c2
θ − s2

θ

[
c2
θ (∆α)SUSY

O(1) + s2
θ (∆ru)

SUSY
O(1)

]}
= g′

{
1− 1

2

1

c2
θ − s2

θ

[
c2
θ (∆α)SUSY

O(1) + s2
θ

4

v2

( 1

g2
ΠT
WW (0)− c2

θ

g2
ΠT
ZZ(m2

Z)
)SUSY

O(v2)

]}
. (D.9)

The SUSY part of the self-energies ΠT
WW and ΠT

ZZ are to be expanded in powers of v2

Λ2 .

Analytical expressions of these and other self-energies to appear below can be found in [231].

They are rather tedious and will not be displayed here.

Then, moving on to Yukawa couplings yf , we note that

m̂f =
1√
2
yfv
(

1− Re
Σf (mf )

mf

)
, (D.10)

where Σf (/p) is the fermion self-energy, and the light Higgs vev v is extracted via

v2 = 4
m̂2
Z + Re ΠT

ZZ(m2
Z)

g2 + g′2
. (D.11)

In the SMEFT, it is v̂, the vev of the canonically normalized light Higgs field φ̂, that is

extracted via this procedure,

v̂2 = 4
m̂2
Z + Re

(
ΠT
ZZ(m2

Z)
)SM(

geff
)2

+
(
g′eff
)2 . (D.12)

With Eqs. (D.8) and (D.9), it is easily seen that

v̂2 = v2

[
1−

(ΠT
WW (0)

m2
W

)SUSY
]
. (D.13)

Therefore,

yeff
f = yf

v

v̂

[
1−

(Σf (mf )

mf

)SUSY

O(1)

]
= yf

[
1−

(Σf (mf )

mf

)SUSY

O(1)
+

1

2

(ΠT
WW (0)

m2
W

)SUSY

O(1)

]
. (D.14)

When cross-checking with our results, it is worth noting the following correspondence be-

tween the terms in Eq. (D.14) and those in Eq. (7.6) (using f = t as an example),

(Σt(mt)

mt

)SUSY

O(1), B0 part
=
δyt
yt

,
(Σt(mt)

mt

)SUSY

O(1), B1 part
=

1

2

(
δZq + δZu

)
,
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(ΠT
WW (0)

m2
W

)SUSY

O(1)
= −δZφ , (D.15)

where B0 and B1 are different loop integrals that appear in Σf .

Finally, we discuss the Higgs potential parameters m2 and λ. The minimization condition

of the 1PI effective potential,

0 = µ2 +m2
Hu − b cot β − 1

8
(g2 + g′2)c2β v

2 − tu
vu

= µ2 +m2
Hd
− b tan β +

1

8
(g2 + g′2)c2β v

2 − td
vd

(D.16)

allows us to eliminate µ2 + m2
Hu

and µ2 + m2
Hd

in favor of v and β. From Eq. (7.40) we see

that m2 and λ are related by

m2 = µ2 +m2
Hus

2
β +m2

Hd
c2
β − bs2β = −1

8
(g2 + g′2)c2

2βv
2 +

th
v

= −λv2 +
th
v
, (D.17)

where
th
v
≡ sβ tu + cβ td

v
= s2

β

tu
vu

+ c2
β

td
vd
. (D.18)

To extract them from m̂h, we write the tree-level mass matrix squared in the (Hu, Hd) basis,

M2
H =

b cot β + 2λv2c−2
2β s

2
β + tu

vu
−b− 2λv2c−2

2β sβcβ

−b− 2λv2c−2
2β sβcβ b tan β + 2λv2c−2

2β c
2
β + td

vd

 . (D.19)

Therefore,

m̂2
h = smaller eigenvalue of M2

H −

Πuu Πud

Πud Πdd

 = 2λv2 +
th
v
− Πhh , (D.20)

where Πuu,ud,dd are one-loop self-energies of the Higgs doublets Hu, Hd, and

Πhh ≡ s2
β Πuu + c2

β Πdd + 2sβcβ Πud . (D.21)

From Eq. (D.20) we obtain

λeff = λ
v2

v̂2
+

1

2v2

(th
v
−Πhh

)SUSY

O(v2)
= λ

[
1 +
(ΠT

WW (0)

m2
W

)SUSY

O(1)

]
+

1

2v2

(th
v
−Πhh

)SUSY

O(v2)
, (D.22)
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and then from Eq. (D.17),

m2
eff = −λeff v̂

2 +
(th
v
− Πhh

)SM

= m2 − 1

2

(
3
th
v
− Πhh

)SUSY

O(Λ2)
. (D.23)

Note that while both th
v

and Πhh containO(Λ2) terms, they cancel in the combination th
v
−Πhh

appearing in Eq. (D.22). The subleadingO(v2) terms needed here come from both expanding

the loop integrals involved up to next-to-leading order, and electroweak symmetry breaking

contributions to superpartner masses. Also, note the different notation adopted in [231]:

t1,2 = td,u, Πs1s1,s1s2,s2s2 = Πdd,ud,uu.
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