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Abstract

This dissertation covers applications of effective field theory (EFT) ideas and techniques to
the study of particle physics beyond the Standard Model (SM). The recent discovery of the
Higgs boson without other new physics discoveries hints at the possibility that additional
exotic states that couple to SM particles, if they exist, are not in the neighborhood of the
electroweak scale. In this case, precision measurements of SM processes offer an important
indirect probe of heavy new physics that is complementary to direct searches for new particles
at high energy colliders, and EFT becomes the tool of choice to bridge a vast range of new
physics ideas and experimental observation.

We start with a discussion of the precision analyses program, reviewing the analysis
framework and the status of electroweak precision tests. The Higgs boson discovery has
added a new module to this program, and we point out new issues related to heavy quark
masses that must be taken into account in future precision studies of the Higgs boson.

Various approaches exist in the literature to extract information about new physics from
precision analyses. Two examples are oblique parameters and triple gauge couplings (TGCs).
We critically examine these conventional approaches in the EFT framework. In particular,
we clarify that the applicability of oblique parameters is restricted to universal theories
at leading order, and we find that TGCs no longer serve as a general parameterization
of new physics effects in W boson pair production with recent LHC data. In both cases,
EFT provides a consistent framework to rectify and extend the oversimplified conventional
approaches, in order to take full advantage of high energy data to learn about new physics.

We next turn to the subject of EFT matching, i.e. deriving a low energy EFT by inte-
grating out heavy degrees of freedom from an ultraviolet theory. We develop a diagrammatic
framework to carry out covariant functional matching calculations in a systematic manner.
In contrast to conventional Feynman diagram methods, our approach avoids the detour of
computing correlation functions, and meanwhile preserves gauge covariance and simplifies
calculations. Finally, we apply this new technique to trans-TeV supersymmetry, and show
that future precision Higgs measurements can probe scenarios of Yukawa unification featur-

ing heavy superpartners beyond direct LHC reach.

xiil



Chapter 1

Introduction

1.1 The Standard Model from an EFT perspective

Our current understanding of elementary particles and their interactions is encoded in what
is known as the Standard Model (SM) of particle physics. It is a quantum field theory (QFT)
based on SU(3). x SU(2);, x U(1)y gauge invariance, that describes strong and electroweak
interactions among a set of matter fields, including quarks, leptons, and the Higgs.

The Lagrangian of the SM can be written as

1 v 1 a auv 1 v
Lsy = _ZG:?VGAM N Z_LWMVW Y- ZBMVB# + D HI? = miy [ H|* — N H|*
- Z ify*Duf — [(ayl%ﬁﬁa + ¢*Voxmyad + 1*yee) Hy +hec.]. (1.1)
fe{q,lu,d,e}

The field content of the SM is as follows.

e G, W, B are the spin-1 gauge bosons of SU(3)., SU(2)., U(1)y, respectively, with
field strengths defined by Gﬁy = 8[M7Gf] + gszBCGfo, W, = 0y, W + ge“bCijWf,
By, = 0y, By, where (. ) = (- ) — (- )op

e H is the spin-0 Higgs field. It is an SU(3). singlet, SU(2) doublet, and has U(1)y
hypercharge Yy = %

e There are three generations of spin—% fermion fields; each of ¢,[,u,d, e carries a gen-
eration index that we have suppressed in Eq. (1.1) for simplicity. Among them, g,
u, d are quarks in the fundamental representation of SU(3)., while [, e are SU(3).
singlet leptons. The left-handed fields ¢ = (ug,dr), | = (v,er) are SU(2), doublets,
while the right-handed fields u = ug, d = dg, e = eg are SU(2), singlets. The U(1)y
hypercharge assignments are {Y;, Y}, Y,, Yy, Y.} = {%, —%, %, —%, —1}.

1



There are three types of interactions among these fields:

e Gauge interactions, dictated by minimal coupling. For example, for f = ¢, D, =
) atira ) . A \B . c @

0, — TG — ig Wy — gy By, with [T47%) = [, ] = if 90, . )] -

(%, %] = ie”™ % (X and o are the Gell-Mann and Pauli matrices, respectively); the

SU(3). and/or SU(2), pieces are absent for other fermion fields neutral under these

gauge groups.

e Yukawa interactions, which couple the fermions to the Higgs. The flavor structure of
SM Yukawa interactions is such that all the gauge-eigenstate fermion fields are also
mass eigenstates except d;, = Voxud; where d; is a mass eigenstate. In Eq. (1.1), «
and (3 are SU(2), indices of the doublet fields, while generation indices are implicitly
summed over; the 3 x 3 Yukawa matrices in generation space v, yq4, ye are diagonal

and real.

e Higgs self interaction, with a Mexican hat-shaped potential that spontaneously breaks
the electroweak symmetry SU(2)r, x U(1)y down to U(1)g, with @ = 3+ Y being the
unbroken generator identified with electric charge. In unitary gauge, H = \%(O, v+h)
where v = \/T%{//\ ~ 246 GeV at tree level, and h is the physical Higgs boson.

Electroweak symmetry breaking mixes W? and B to form mass eigenstates, the Z boson and

the photon, and generates masses for the W*, Z bosons as well as fermions. Explicitly, we

have
+ 1 1 12 3 3
Wy = \/§<Wu +iW,), Z, = cgW,, — s¢B,,, Ay = sgW, + coBy, (1.2)
where )
g € g €
= —F——=—, S=—F—=—. (1.3)
/92 + gl2 g’ /92 + 9/2 g
At tree level, the masses are given by
1 Sy (F=wd) (1.4
my = Mgy = =qgu, msg = —=ysv =u,d,e), .
W 7¢ = 59 f ﬁyf

with fermion masses m; understood as 3 x 3 diagonal matrices in generation space.

The SM, in the form of Eq. (1.1), has been established over the past several decades via
the observation of all the particles — most recently a 125 GeV Higgs boson h in 2012 [1,2] —
and extensive tests of most of their interactions. However, from the modern effective field
theory (EFT) point of view, Eq. (1.1) is really just a leading order approximation to an EFT

that is valid at the energy scales that have been probed so far.



This can be seen as follows. When constructing a QFT, we are supposed to write down
all terms consistent with postulated symmetries, e.g. Lorentz and gauge invariance, in a
local Lagrangian. Eq. (1.1) indeed contains almost all operators consistent with Lorentz
symmetry and SU(3). x SU(2), x U(1)y gauge invariance up to dimension four (with the
exceptions of a cosmological constant and a QCD 6 term, which will not be discussed here).
However, there is no reason to stop at dimension four. There is one legitimate operator
(LH)? at dimension five, and many more at dimension six, seven, etc. [3,4]. All of them are
in principle present in our effective Lagrangian, commonly known as the SMEFT:

Lsnerr = Lsm + A(5)(LH) —i—hc}%—z +Z (7) =04 (1B

(A )
For recent reviews on the SMEFT, see [5-7]. Note that a Lagrangian has dimension four, so
an operator of dimension d has a coefficient with mass dimension 4 — d, which we write as a
scale (of dimension one) A raised to the appropriate power. If all these A’s are much higher
than the energy scales probed experimentally, we would expect our theory prediction for any
observable to be unaffected by the higher dimensional operators. In this case, it would be a
good approximation to just write Lsverr =~ Lsm, with Loy given in Eq. (1.1).

There is one exception, though, namely the observation of neutrino oscillations (see e.g. [8]
for a review), which Eq. (1.1) is not able to explain. Up to dimension four level, neutrinos
are massless, and no oscillations can occur. Nonzero neutrino masses are however generated
in the presence of the dimension-five operator (LH)?, and they scale as m, ~ v?/A®). To
get a neutrino mass of order 0.1 eV from this operator, we need A®) ~ 10415 GeV.

If all higher dimensional operators are suppressed by the same scale A, we see that the
observation of neutrino oscillations, which point to such high A’s as 104 GeV, actually
explains the tremendous success of Eq. (1.1) in all other experimental tests. Another well-
known hint that Lsyerr may be well approximated by Lgyr is the nonobservation of proton
decay, which constrains some dimension-six operators to be suppressed by a similar scale [9].

At present, it is indeed a viable possibility that the A’s in Eq. (1.5) are all much higher
than the weak scale. If this were true, the search for new physics would be hopeless. Techni-
cally, this is because Eq. (1.5) makes predictions for observables as series expansions in £/A.
Thus, it would be impossible to distinguish Lgygpr from Lgy at energies too much lower
than A, e.g. O(TeV) or less. Also, non-SM exotic states are not required to exist within
experimentally probed energies, as such series expansions lead to well-defined and physical
predictions as long as F < A. This latter aspect should be contrasted with the situation
before the Higgs boson discovery — it was known from perturbative unitarity considerations

that the then-established EFT cannot have an arbitrarily high cutoff, and then-unknown



degrees of freedom must be present below a few hundred GeV [10] (and indeed we found the
125 GeV Higgs boson).

Nevertheless, there is a major flaw of this possibility, namely
Im3;| << A?. (1.6)

We know that the SMEFT has to be ultraviolet (UV) completed around some cutoff scale A,
by a new theory valid above that scale which involves new degrees of freedom inactive at low
energy'. When the UV theory, whatever it is, is matched onto the SMEFT, the coefficient
of the |H|* operator, with mass dimension two, generically receives a threshold correction
of order A? (possibly slightly suppressed by loop factors and/or small couplings), as we can
see simply by dimensional analysis. To arrive at Eq. (1.6), significant fine-tuning would be
needed so that various O(A?) contributions cancel to precisely produce a much lower m?.2
This is the well-known naturalness or hierarchy problem, cast in the EFT language. To
alleviate this fine tuning, we therefore prefer A (and hence new physics) to be not too far
above the weak scale, e.g. (a few) TeV.

Now we seem to have a conundrum: neutrino oscillations and proton stability apparently
suggest a very high cutoff A for our SMEFT, while naturalness concerns motivate a cutoff
close to the weak scale. However, both neutrino oscillations and proton decay are special
phenomena because they violate accidental global symmetries of Lgy, lepton number (L)
and baryon number (B) in particular. Thus, it is reasonable to expect that new physics
that cures the hierarchy problem may lie at a scale A ~ O(TeV) and preserves B and L,
and allows for a consistent EFT description up to a much higher, new cutoff scale, where
B and L are violated by the next layer of UV completion. An example of this possibility is
supersymmetry (SUSY) with R parity, which screens quantum corrections to the Higgs mass
above the SUSY breaking scale, while preserving B and L to avoid proton decay. Similar
considerations apply when reconciling A ~ O(TeV) with flavor physics constraints, which
requires a nontrivial flavor structure of new physics [12], such as minimal flavor violation [13].

The upshot is that there are good reasons to believe that Nature is described by the
SMEFT of Eq. (1.5) (rather than Eq. (1.1)) at the weak scale, with some of the higher-

dimensional operators suppressed by a scale A that is not too far above, where new physics

10One may argue that A® ~ 10 GeV is not really necessary if neutrino masses are purely Dirac. However,
there is a fundamental limit on how high A can be, as we know a quantum gravity UV completion is needed at
the Planck scale My ~ 10! GeV. Thus, one cannot deny the hierarchy problem of Eq. (1.6) unless our basic
EFT concepts, well-established up to the weak scale, were to be radically compromised in the (unknown)
theory of quantum gravity. See [11] for further discussion.

ZNote that m? is renormalized multiplicatively in the SMEFT in a mass-independent scheme such as the
commonly used MS. Thus it has to be small not only at the weak scale, but also at A.



would appear that alleviates fine-tuning. An important task of current particle physics
research is to search for such new physics in all possible ways.

To close this section, we remark that there are several additional hints of new physics
beyond the SM, including dark matter, the baryon asymmetry of the universe, cosmic infla-
tion, the strong CP problem, etc. (see e.g. [14,15]). However, we would like to emphasize the
unique role of the hierarchy problem, in that while all the other problems can in principle
be solved with new physics at much higher energies, the fine-tuning of Eq. (1.6) cries out for
a solution in the vicinity of the weak scale. In this respect, the naturalness belief (despite
having been slightly relaxed quantitatively by recent LHC results) is perhaps the best reason

to be optimistic about new discoveries in the foreseeable future.

1.2 Precision analyses as indirect probes of new physics

The search for new physics beyond the SM is an extensive program, and efforts must be made
at all frontiers. As far as TeV-scale new physics relevant for naturalness is concerned, the
best case scenario would be to observe their direct production at high energy colliders, such
as the LHC. As a typical example, the scalar top partner (stop), in SUSY can be searched
for via pair production at the LHC in various decay channels of the stops, e.g. jets 4+ missing
transverse energy when both stops decay hadronically. Recent LHC data have excluded stop
masses up to as high as ~850 GeV, depending on the lightest neutralino mass [16-21].

A limitation of direct searches, however, is that they have to be carried out on a case-
by-case basis, by looking for signatures that would be produced by each well-motivated new
physics scenario. For example, if the new states responsible for solving the hierarchy problem
are vectorlike top partners, which generically appear in composite Higgs models, rather than
stops in SUSY, they would decay into e.g. Zt, ht or Wb, and thus have to be searched for
in these channels [22,23].

Moreover, in many scenarios, the existence of new particles can be hidden from direct
searches, if it decays into final states that have large backgrounds. One extreme example is a
new particle with a large exotic decay branching ratio into several jets within the acceptance
of the detector, which would be buried under huge QCD background at the LHC. Thus, one
cannot always fully rely on direct production to look for new physics.

On the other hand, it has been realized for quite some time now that precision measure-
ments of SM processes can provide indirect probes of new physics, complementary to direct
searches. The idea is that even if new particles evade direct searches — either because they
are too heavy to be produced with the available collider energy, or because their signatures

cannot be discerned from SM backgrounds — they can contribute to SM processes as inter-



mediate states, and so can be searched for via deviations of measured observables from SM
predictions.

Over the past few decades, high-precision measurements of electroweak and flavor ob-
servables have found remarkable agreement with the SM, leading to stringent constraints on
BSM effects in these sectors; see e.g. [24-28]. The Higgs sector of the SM will be put under
similar scrutiny once more data are collected, and even global analyses combining data from
all sectors may become possible [29,30].

As in direct searches, one can of course examine each new physics model individually
against precision data and see what regions of parameter space are allowed (see e.g. [31-36]).
However, for precision analyses, it is possible, and often desirable to perform more general
analyses whose results can be translated into broad classes of BSM scenarios. As we will
discuss in more detail below, EFT provides a consistent and useful framework to do so,
provided experimental measurements are made at energies below new particle thresholds.

To gain some intuition on the power of precision measurements, let us make some simple
estimates. Suppose the observable new physics effect is encoded in some dimension-six oper-
ator (which is the most common case). This would generically result in fractional deviations
from SM predictions of O(v?/A?) for some observables, and O(E?/A?) for others. Thus, if
our experiment is sensitive to these deviations at the 10% (1%, 0.1%) level, we would be

able to probe

A ~ 08(2.5,8) TeV for O(v?/A?) deviation, (1.7a)
A ~ 3(10, 30) TeV for O(E?/A?) deviation at £ = 1TeV. (1.7b)

Of course, one should keep in mind that A is not to be directly identified with masses of
new particles — it is generally a ratio of mass and powers of couplings, possibly multiplied
by powers of 167 if the operator is loop generated. Nevertheless, the numbers in Eq. (1.7)
are encouraging, and suggest at least in some scenarios, precision measurements can offer a

powerful indirect probe of TeV-scale new physics.

1.3 Bottom-up and top-down EFT approaches

EFT offers a bridge between heavy new physics models and lower energy experimental ob-
servations, which can be crossed in both ways.

From the bottom-up point of view, the idea is to use power counting arguments to
keep only the terms in Lgygpr that are expected to give the dominant deviations from

the SM, while remaining agnostic about concrete UV models giving rise to these operators.



Experimental data are translated into constraints on the parameter space spanned by a finite
set of operator coefficients, without reference to any UV theory.

For such a bottom-up EFT approach to be useful, we need a well-motivated power count-
ing scheme, so that our truncated EFT accommodates low energy limits of interesting UV
theories, and thus, knowledge we gain from experimental data on the EF'T parameter space
can be meaningfully interpreted in these UV theories when needed.

One motivation is generality — we want our EFT to accommodate as many interesting
UV scenarios as possible. In this regard, a scheme that is perhaps the most often used is A
power counting. With the general expectation that observable effects of higher dimensional
operators are suppressed by higher powers of A, it is common practice to truncate the SMEFT

Lagrangian at dimension six level,
1 - -
Loverr = L+ WQ@ V= Lou+ Y O (1.8)

Here we have dropped the single dimension-five operator, which is presumably suppressed
by a much higher scale A®) >> AZ(-G). In this case, our SMEFT parameter space is spanned
by {¢;} (in addition to SM parameters).

There are different bases in which {¢;} can be defined, and it must be clearly stated which
basis is used when quoting bounds on a specific operator coefficient. More precisely, a com-
plete, nonredundant basis is needed to make {¢;} unambiguous. In particular, redundancies
can arise because different operators can be transformed into each other by integration by
parts, group theoretic identities, or field redefinitions, and all of them should not be kept in
a valid, nonredundant basis. The freedom of choosing different operators to be kept results
in the multitude of operator bases commonly used in the literature, including the Warsaw
basis [3], the EGGM basis [37], the SILH basis [38], and the Higgs basis [7]. All of them
are equivalent parameterizations of the SMEFT truncated at dimension six level, and are
convenient for different phenomenological and theoretical applications.

There exist other power counting schemes, motivated by broad features of UV theories.
The finite set of operators kept in the EFT Lagrangian would differ from Eq. (1.8), but the
EFT parameter space is similarly spanned by a finite set of operator coefficients like {¢;}. For
example, chiral power counting [39-44] is suitable for strongly-coupled new physics scenarios
where electroweak symmetry breaking is nonlinearly realized. Such alternative schemes will
not be discussed further in this dissertation.

The central question in bottom-up EFT studies is: what can we learn about the SMEFT,
i.e. values of {¢;} in Eq. (1.8), from experimental data, and what does that imply for new

physics? Up to now, a first-order answer to this question is, unfortunately, that all ¢;’s are



consistent with zero, and we have no clue what new physics UV-completes the SMEFT.

There is, however, more detailed information we have learned. Some directions in the
{¢;} space are more constrained than others, most importantly due to better experimental
precisions achieved for some observables than others. Thus, when building a new physics
model, we should better make sure that the well-constrained (combinations of) ¢;’s are not
generated with unacceptable sizes.

In fact, many of the SMEFT studies in recent years take advantage of this precision
hierarchy to organize the otherwise complicated and unilluminating analyses. As far as
electroweak and Higgs physics are concerned, this has resulted in the following standard
picture [29,38,45,46].

e Pole observables, such as the W boson mass, the Z boson width, etc., have been
measured at electron-positron colliders, LEP and SLC in particular, some of which

reaching the per-mil level.

e Diboson production processes, such as ete”™ — WHTW ™ and pp — WTW~, have been
measured to the 1-10% level.

e Higgs observables, such as Higgs boson production cross sections and decay branching

fractions, have only been measured recently, with even worse precision.

With this information, we can classify dimension-six operators according to which set of
observables they affect. Then it becomes clear which operator is constrained at what level.

It is worth emphasizing that a key advantage of the bottom-up EFT approach is that
information about the SMEFT can be learned in a UV model-independent way. The focus
is usually a broad-brush picture of new physics that is sufficient to capture generic features.
It is a separate step to make the UV-EFT connection concrete, if one wishes to learn about

precision constraints on a specific UV theory.

The top-down EFT approach has a different starting point. Here we would like to study
some specified UV theory for new physics, say some realization of SUSY. Because states
much heavier than experimental energies decouple from observation, the appropriate way to
do calculations is to first match the full theory onto an EFT by integrating out the heavy
states, then renormalization group (RG) evolve the EFT from the heavy particle thresholds
down to lower energies where experiments are performed, and finally use the EFT at these
lower energies to calculate observables. If multiple heavy particles are present at disparate
scales, they should be integrated out in sequence, with several layers of EFTs RG evolved in
the respective energy regimes. In this way, large logarithms of mass ratios can be resummed,

so that our theory predictions for observables become more accurate and reliable.



The central question in top-down EFT studies is: given a UV theory, what is the low-
energy EFT, and what are its observable consequences? The answer to this question is of
course UV theory specific.

As new particles are excluded up to higher masses by LHC data, this top-down EFT
approach becomes more useful in the study of beyond SM physics. As an example, as
weak-scale SUSY has become less favored, there has been growing interest recently in EFT
calculations of SUSY corrections to the Higgs potential, greatly improving upon previous
full theory calculations [47-53].

A key ingredient of top-down EFT studies is matching a given UV theory onto its low-
energy EFT. EFT matching calculations are typically performed using Feynman diagram
methods. This involves calculating correlation functions among the light fields in the UV
theory, expanding them in inverse powers of a heavy mass scale, then extracting the relevant
parts for the operator coefficients by comparing with the same correlation functions computed
in the EFT (see e.g. [54]). This traditional Feynman diagram approach, albeit familiar and
well-developed, is a rather roundabout route from the UV theory to the EFT. In contrast,
there are more elegant alternative methods for obtaining operator coefficients, which avoid
the need for computing correlation functions. They are based on direct evaluation of the
functional path integral, and have gone through significant development recently [55—61].
The key technique involved is developed in Chapter 6 of this dissertation, which is based
on [60].

Both bottom-up and top-down EFT approaches reviewed above are complementary, as
we continue to dig for hints of new physics from precision data. Top-down studies tell us
which effective operators may be more interesting to search for, and guide our choice of power
counting schemes to make bottom-up studies more useful. Meanwhile, bottom-up studies tell
us what kinds of SM deformations are still allowed by data (in terms of model-independent
constraints on the EFT parameter space), and guide our model building to make top-down
studies better oriented. It is by combining both approaches that the EFT framework offers

a valuable tool in our quest for new physics.

1.4 What’s new?

While the basic concepts of EFT have been standard knowledge for decades, there have been
new developments on the subject in recent years. We would like to highlight a few in the

following.

e The LHC has discovered the Higgs boson and begun to measure its properties, making



it possible for the first time to perform global precision analyses incorporating Higgs
data. (Bottom-up) EFT provides the natural framework to do so, and has thus received
renewed interest [29,37-46,62-120].

The importance of a better understanding and treatment of theory uncertainties in
precision analyses has attracted more attention. For example, new issues have been
pointed out regarding SM parametric uncertainties in precision Higgs calculations [30,
121], and regarding EFT calculation uncertainties in precision electroweak fits [91,104,
114].

The high energy data acquired at the LHC are challenging the precision hierarchy
paradigm reviewed in the previous section. This is because in the presence of operators
causing O(E?/A?) deviations from the SM, the name of the game is no longer precision
alone, as going to higher energy is sometimes easier than achieving better experimental
precision. Ideas have been explored on how to take advantage of high energy data to
better constrain the SMEFT parameter space, and to possibly reorganize bottom-up
EFT analyses [116,117,119].

The LHC high energy data have also brought up the issue of EFT validity in some
cases, where the A scales probed may not be much higher than experimental energies.

Care is needed to derive and interpret results of bottom-up EFT studies [113,115].

New knowledge about QFT has been learned from EFT-motivated studies. In addition
to functional matching techniques mentioned in the previous section, we have learned,
for example, an intriguing holomorphic structure of the dimension-six operator anoma-
lous dimensions [122-124], an algorithm to count the number of independent operators
at a certain dimensionality based on Hilbert series [4,125-127], helicity selection rules
for SMEFT amplitudes at high energy [128-130], to name just a few.

Our hope is that, as new data keep coming, new ideas will develop, and EFT will continue

to be a fertile ground for making progress in our understanding of fundamental physics.

1.5 Outline of this dissertation

The body of this dissertation consists of three parts. We first discuss aspects of precision

analyses, with Chapters 2 and 3 devoted to electroweak and Higgs physics, respectively.

Next, Chapters 4 and 5 cover bottom-up EFT applications, in describing universal theories

and interpreting W pair production, respectively. Finally, in Chapters 6 and 7 we take a
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top-down EFT approach, developing the covariant diagrams technique for one-loop matching
and then applying it to trans-TeV supersymmetry. An outline of each chapter is given in

the following.

Chapter 2: Precision Electroweak Analyses after the Higgs Boson Discovery

The discovery of the Higgs boson and measurement of its mass allow, for the first time,
precision electroweak analysis to be formulated in an expansion formalism. In this chapter,
which is based on [131], written in collaboration with James D. Wells, we present expan-
sion formulas for many electroweak observables, which consistently incorporate parametric

dependence, and facilitate calculations within and beyond the SM.

Chapter 3: Resolving Charm and Bottom Quark Masses in Precision Higgs
Analyses

Higgs observables, e.g. partial widths and branching ratios, are conventionally calculated
with charm and bottom quark masses treated as input parameters. In this chapter, which
is based on [30], written in collaboration with Alexey A. Petrov, Stefan Pokorski and James
D. Wells, we point out that this procedure hides important uncertainties and correlations in
quark mass extractions from low-energy observables, which must be taken into account in

future precision studies.

Chapter 4: EFT of Universal Theories and its RG Evolution

Constraints on oblique parameters, e.g. S, T" parameters, from precision electroweak data
are, generally speaking, only applicable to universal theories at leading order. In this chapter,
which is based on [109,111], written in collaboration with James D. Wells, we present an
EFT description of universal theories, clarifying restrictions on the EFT parameter space
necessary for the use of oblique parameters. Moreover, theories that are universal at high
scales can flow to EFTs at the electroweak scale that are non-universal. With a detailed
renormalization group analysis, we point out, in particular, that a consistent fit to precision
electroweak data should go beyond the oblique parameters framework even for universal UV

theories.

Chapter 5: Time to Go Beyond TGC Interpretation of W Pair Production

The conventional interpretation of W boson pair production at lepton and hadron colliders as
triple gauge coupling (TGC) measurements is based on the “TGC dominance assumption.”

In this chapter, which is based on [117], we find that, contrary to conventional knowledge, this
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assumption is challenged by high-energy data, calling for re-organization of EFT analyses to

better search for new physics effects.

Chapter 6: Covariant Diagrams for One-Loop Matching

Matching a UV theory onto a low-energy EFT by integrating out heavy states can be accom-
plished with more elegant and simpler methods than Feynman diagrams. In this chapter,
which is based on [60], we introduce a diagrammatic framework that preserves gauge covari-

Y

ance, dubbed “covariant diagrams,” which is based on functional matching ideas and greatly

facilitates one-loop matching calculations.

Chapter 7: EFT Approach to Trans-TeV Supersymmetry

Lack of superpartner discoveries, together with Higgs boson mass measurements, points
to SUSY scales somewhat decoupled from the weak scale. In this chapter, which is based
on [132], written in collaboration with James D. Wells, we present a detailed EFT analysis of
this scenario, taking advantage of the covariant diagrams technique. We explore implications

of bottom-tau Yukawa unification on SUSY spectra and Higgs coupling modifications.
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Chapter 2

Precision Electroweak Analyses After

the Higgs Boson Discovery

Until recently precision electroweak computations were fundamentally uncertain due to lack
of knowledge about the existence of the Standard Model Higgs boson and its mass. For
this reason substantial calculational machinery had to be carried along for each calculation
that changed the Higgs boson mass and other parameters of the Standard Model. Now that
the Higgs boson is discovered and its mass is known to within a percent, we are able to
compute reliable semi-analytic expansions of electroweak observables. In this section, we
present results of those computations in the form of expansion formulae. In addition to the
convenience of having these expressions, we show how the approach makes investigating new

physics contributions to precision electroweak observables much easier.

2.1 Introduction

Precision electroweak analyses have played an important role in testing the Standard Model
(SM) and constraining new physics. Now this program has entered a new era with the
discovery of the Higgs boson [1,2]. The sub-percentage-level determination of the Higgs boson
mass [1,2,133] constitutes the last piece of a complete set of input observables. Electroweak
observables can now be calculated to unprecedented accuracy, leading to unprecedented
sensitivity to new physics beyond the SM.

The standard approach of precision electroweak analysis is to perform a y? analysis,
which involves varying the model parameters, or equivalently, a set of input observables to
minimize the x? function. In practice, this can be facilitated by an expansion about some
reference values of the input, since we have a set of well-measured input observables that

allows little variation. We present such an expansion formalism, and apply it to deriving
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constraints on new physics models. Most of the numerical results in what follows reflect
state-of-the-art calculations of the electroweak observables, as implemented in the ZFITTER
package [134,135].

This chapter is organized as follows. We first review the definition of the electroweak
observables under consideration in Section 2.2. Then in Section 2.3 we present the expansion
formalism for calculating the SM and new physics contributions to the observables. The
result will be that given the values of 6 input observables, and the new physics model, all
observables can be easily calculated. The tools needed in this calculation, including the
reference values of all observables, and the expansion coefficients, are presented. Next, we
illustrate how to use the formalism by working out some new physics examples in Section 2.4.

Finally, in Section 2.5 we summarize.

2.2 Standard Model parameters and observables

The parameters of the SM include the gauge couplings g3, g2, g1, the Yukawa couplings yy,
flavor angles, the Higgs vacuum expectation value v and self-coupling A. For the purpose of
precision electroweak analysis, with inconsequential errors we can treat all Yukawa couplings
except that for the top quark as constants, and correspondingly set the lepton and light quark
masses to their default values in ZFITTER (see [134]). Then there are six parameters' in
the theory:

{93, g2, g1, Y, U, >\} (21)

There are an infinite number of SM observables that can be defined. They correspond to
well-defined quantities that are measured in experiments. The SM predicts each observable
as a function of the parameters in Eq. (2.1). The success of the SM relies on the fact that
the prediction for all observables agree with precision measurements, with suitable choices
of the parameters. If some new physics beyond the SM were to exist, it could potentially
destroy the agreement. Thus, precision analysis enables us to put stringent constraints on
new physics models. In this study we focus on the following list of observables, mostly

relevant to precision tests of the electroweak theory.
e Pole mass of the particles: mz, my, ms, my.

e Observables associated with the strengths of the strong, weak, and electromagnetic

interactions: as(my), Gr, and a(my). The Fermi constant G is defined via the

'We do not include flavor CKM angles in our calculations since all standard precision electroweak ob-
servables do not substantively depend on these angles.
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muon lifetime [136]. a(my) is related to the fine structure constant ag defined in the

Thomson limit via
&%)

1— Aoy — Aoy — Aal®,
We treat ap = 1/137.035999074(44) [136,137] as a constant, since it is extraordinarily

well measured. The contribution from leptons Ay, and the top quark A«y are pertur-

(2.2)

a(mz) =

batively calculable and known very accurately, so the uncertainty in a(m) essentially
comes from the incalculable light hadron contribution Aaflz)d, which is extracted from
low energy ete™ — hadrons data via dispersion relations [136]. For simplicity, we will

b

occasionally (especially in subscripts) drop the scale “(myz)” in as(myz) and a(mz),

and write Aafi)d as Aa in the following.

e 7 boson decay observables: total width I';, and partial widths into fermions I'y =

['(Z — ff). Also we define and use the invisible and hadronic partial widths?:
Ciw =300, Thaa =T(Z — hadrons) ~ Ty + Ty + T+ Ts + . (2.3)

The ratios of partial widths are defined and also included in our observables list:

. Fhaud Fq

TT 7 Thad’ (24)
where ¢ and ¢ denote any one of the lepton and quark species, respectively.
e ¢"e” — hadrons cross section at the Z pole:
Fthad
ad = 12 ) 2.5
Ohad n mQZ FQZ ( )
e Forward-backward asymmetries for ete™ — ff at the Z pole:
OF — OB 3
AW f=——" = "AA;. (2.6)

O'F+0'B_4_l

The asymmetry parameters A are related to the definition of the effective electroweak

mixing angle sin? Hgﬁ by

2(1 — 4|Qy| sin? 6/)

— : 2.7
! 1+(1—4|Qf|sin29;}f)2 (2.7)

’I'haq is not quite the sum of all I'y, as there are O (ag’) corrections that cannot be attributed to any

I, [138]. However, these corrections are small, and are neglected in ZFITTER.
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where ()¢ is the electric charge of fermion f.

The experimental results for these observables are listed in Table 2.1. For all the Z pole
observables, we use the numbers presented in [139], which are combinations of various exper-
imental results at LEP and SLC. Among these observables, lepton universality is assumed
only for sin?6#%. For sin®6%, we also list the PDG combination [136] of D0 [140] and
CDF [141] results (the second number). my, from [142] is the average of LEP2 [143] and
Tevatron [142] results. my is the PDG average [136] of ATLAS [1] and CMS [133] results.

Table 2.1 also contains the reference theory values around which we expand, and their
percent relative uncertainties. These theory quantities will be introduced and discussed in
detail in Section 2.3.2.

2.3 The formalism

2.3.1 Expansion about reference point

Let us denote the set of SM parameters in Eq. (2.1) by {p, }, and the set of SM observables
by {@} The theoretical prediction for each observable can be calculated in the SM as a

function of all parameters:
Of" = 0 ({pw}). (28)

The notation here is that primed roman indices run from 1 to N,, the number of SM parame-
ters, while unprimed ones run from 1 to Ny, the number of observables under consideration.
Note that N, is finite, while No can presumably be infinite (we must at least have No > N,
in order to test any theory). The analysis in this section is done with N, = 6 and No = 31,
with {p,,} given in Eq. (2.1) and {O\Z} listed in Table 2.1.

Next, suppose we want to study some new physics model beyond the SM, which contains
a set of new parameters collectively denoted as p™' (“NP” for “new physics”). Then at least
some @th will receive new contribution. We expect such new contribution to be small, in the
light of apparently good agreement between SM predictions and precision electroweak data.

We can thus write
0" = OM({pp}) + O, ({p 3, ™). (2.9)

We wish to decide whether the new physics model is compatible with precision electroweak
data, i.e. whether the 6fh predicted by Eq. (2.9) are compatible with the experimentally

Aexpt
measured values O,
One common misconception in such analysis is that a new physics model would be ruled

out if, for some very precisely measured observables; e.g. Gif(pt = 1.1663787(6) x 10~° GeV 2,
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0, op™ Ot | POF]
my [GeV] 91.1876(21) [139] 91.1876

Gr [GeV2] | 1.1663787(6)e-5 [136] | 1.1663787¢-5

Ao 0.02772(10) [136] 0.02772

my [GeV] 173.20(87) [144] 173.20
as(my) 0.1185(6) [136] 0.1185

my [GeV] 125.9(4) [136] 125.9

a(my) 7.81592(86)e-3 [136] |  7.75611e-3 | 0.01
my [GeV] 80.385(15) [142] 80.3614 | 0.01
I. [MeV] 83.92(12) [139] 83.9818 | 0.02
T, [MeV] 83.99(18) [139] 83.9812 | 0.02
T, [MeV] 84.08(22) [139] 83.7916 | 0.02
T, [MeV] 377.6(1.3) [139] 375.918 | 0.04
I. [MeV] 300.5(5.3) [139] 299.969 | 0.06
Ty [GeV] 0.4974(25) [139] 0.501627 | 0.02
Thaq [GeV] 1.7458(27) [139] 1.74169 | 0.04
', [GeV] 2.4952(23) [139] 2.49507 | 0.03
Ohad (1] 41.541(37) [139] 41.4784 | 0.01
R. 20.804(50) [139] 20.7389 | 0.03
R, 20.785(33) [139] 20.7391 | 0.03
R, 20.764(45) [139] 20.7860 | 0.03
Ry 0.21629(66) [139] 0.215835 | 0.02
R. 0.1721(30) [139] 0.172229 | 0.01
sin? 0% 0.23153(16) [139] 0.231620 | 0.04

0.23200(76) [136]

sin? 0% 0.281(16) [139] 0.232958 | 0.03
sin® 6% 0.2355(59) [139] 0.231514 | 0.04
A, 0.1514(19) [139] 0.146249 | 0.44
Ay 0.923(20) [139] 0.934602 | 0.00
A, 0.670(27) [139] 0.667530 | 0.04
Adbe 0.0145(25) [139] 0.0160415 | 0.88
A% 0.0992(16) [139] 0.102513 | 0.44
A% 0.0707(35) [139] 0.0732191 | 0.48

Table 2.1: (From [131]) The list of observables, their experimental and reference values, and
percent relative uncertainties.
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the new physics contribution 5NP61» exceeds the experimental error. The point is that the
SM parameters {p, } are not directly measured experimentally. Rather, in testing the SM,
we adjust {p,,} and see that for some choice of all parameters {pi5'}, all @SM agree well with
65’(”. In the presence of new physics, we should do the same thing, and will typically arrive
at a different choice of {pi5'}, and hence different @SM, which may allow the new physics
model to survive (in some regions of parameter space spanned by p™t') despite a large 5NP@.

The statements above are made more precise by the x? analysis, which is the standard way
of doing precision electroweak analysis. With correlations among the observables ignored,

and experimental errors assumed larger than theoretical errors, the x? function is defined by

~ ~ 2
O ({py }, ") — O™
AOP™

NN ASEDY : (2.10)

%

where Aanpt are the experimental uncertainties of the observables. To decide whether some
P~ in the new physics model parameter space survives precision tests, we vary {p,} to
minimize the x? function to find the best fit to experimental data, and see if this minimum
x? is small enough. A good discussion of how to interpret the statistics of the x? distribution
can be found in [136].

In principle, one can calculate 6§h each time a different {p,,} is chosen in this minimiza-
tion procedure. But in practice, we can do it once and for all by carrying out an expansion
about some reference point in the SM parameter space {pi$'}. Such an expansion is useful
because precision data does not allow much variation in each parameter. Thus, let’s choose

some {p''} that lead to good agreement between OSM and O, and write

ASM Ayref oo™ f

O; " ({pw}) = O + Z (9pz (P — i) + -+ (2.11)
k' k'

where O = OSM({p:}), and the partial derivatives are taken at p,, = pi<' (this will be

implicitly assumed in the following). Alternatively, define

B R 6§M Dy o 6Zyef B Dy — prelf prc?f aé\ZSM
5SMOZ({pk/}) = <{ E}lc) 5 5pk:’ = % s Gik’ = ALf . (212)
ore Py Oret Ipy,
Then we have a more concise expression for Eq. (2.11):
MO, =Y Gawdpy + . .. (2.13)

k/
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Here 6 means “fractional shift from the reference value”, and the superscript on 5SM52»
indicates the shift comes from shifts in SM parameters. Ignoring higher order terms in the
expansion, the constant G, is the fractional change in QSM caused by the fractional change
in p,,, and hence characterizes the sensitivity of the ith SM observable (as calculated in the
SM) to the k'th SM parameter.

In the presence of perturbative new physics contributions, let’s define

(P}, P"°) — Ot NPO,({pw}, 1)

” ol
5O§h<{pk’}apNP) = /O\lfef ) fi({pk’}>pNP> = O}ef (2.14)
Then Eq. (2.9) can be expanded as, to first order,
ga;nh = SSMO\Z + 52 = Z Gz‘k’gpk/ + fz (2.15)
k/

The calculation of 6fh and hence x? is then facilitated if we have at hand the constants piS,

ref
O;e and Gik"

2.3.2 Recasting observables in terms of observables

The approach above is indirect, in the sense that the input of the analysis, the parameters
{p, }, are not directly measurable — only {O,} are well-defined observables. We can do better
if we use N, very well measured observables {61,} as input. Note that primed indices, which
run from 1 to N, are used for input observables. Inverting the functions 5§M({pk/}), we can
express other observables as functions of these input observables. Then it is immediately
clear from 6?,Xpt and A@f,"pt what reference values for the input we should use, and by how
much they are allowed to vary. In our analysis, N, = 6, and a convenient choice for the 6

input observables is
{62’} = {mZ7 GFa Aa}(i)da my, as<mZ)7 mH} (216)

The reference values for these input observables are taken to be the central values experi-
mentally measured; see Table 2.1. All other observables are output observables, and their
reference values O™ are evaluated at @, = 6§Ff with the help of ZFITTER. See [131] for
technical details.

We also show in Table 2.1 the “percent relative uncertainties” P[@{ef], defined as the
maximum value of

i

100

(2.17)




when all {61,} are varied in their 1o range around {6?“}. We do not distinguish between
positive and negative relative uncertainties because, as we have checked, the asymmetry in
the uncertainties for all observables considered here are very small.

To work out the expansion about the reference point, we assume the input observables
{61/} are the first N, observables in the list {O.}. Then we can simply invert the first N,
equations in Eq. (2.13). To first order,

5SM5Z»/ = Z Gi’k’gpk/ = Z éi’k’gpk/ = Spk’ = Z(é_l)k/i/SSMé\i/. (2.18)

k' k! 4

Note that G is a No x N, matrix, while G is the upper N, x N, block of G. Then Eq. (2.13)

suggests

MO, = ZGW Derd™MO, = cwd™O,, (2.19)
where we have defined P
~_ O 00;
Ciit = ZGW(G l)k'z" = GrefW' (2-20)

Eq. (2.19) expresses the shift in any observable in terms of shifts in the input observables,
as calculated in the SM. Notably, the upper N, x N, block of the Ny x N, matrix c is the
identity matrix, i.e. ¢j;7 = 0j. For i > N, i.e. the output observables, the calculation of
cii» is nontrivial. We present in Table 2.2 the results for these expansion coefficients for the
observables discussed in Section 2.2, which we calculate using ZFTTTER. These coefficients
are useful not only because they facilitate the calculation of SM observables. They also give
us information on the sensitivity of the calculated observables to each input observable.

In the presence of new physics, Eq. (2.15) becomes

0O =" cd™MO, + & = Zcu (0O — &) + & = ch/aotuaNpo (2.21)

where

5NP6¢ = & — Z Cizr&ir
,[:/
= 51 - ci,ngmz - Ci,GFSGF - Ci,AagAa - Ci,mtgmt - Ci,asgas - Ci,mHgmH- (222)

Eq. (2.21) expresses the shift in any observable in terms of shifts in the input observables
and new physics effects. Note that for the input observables, since ¢ = d;7, Eq. (2.22)
indicates 6N @, = 0, and Eq. (2.21) trivially becomes 56},}1 = 56}}1. This is forced to be

true in our formalism, where 52}1 are inputs of the analysis, independent of new physics. Of
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61- Cimy CiGp Ci, A Ci my Cia, Ci,mpy
my 1 0 0 0 0 0
Gr 0 1 0 0 0 0
Aal?), 0 0 1 0 0 0
my 0 0 0 1 0 0
as(my) 0 0 0 0 1 0
my 0 0 0 0 0 1
almyz) | 4.796e-3 0 0.02946 1.541e-4 -1.007e-5 0
mw 1.427 0.2201 -6.345e-3  0.01322 -9.599e-4 -7.704e-4
I, 3.377 1.198 -5.655e-3  0.01883 -1.253e-3 -7.924e-4
L'y 3.377 1.198 -5.655e-3  0.01883 -1.253e-3 -7.924e-4
r, 3.383 1.198 -5.668e-3  0.01884 -1.254e-3 -7.931e-4
I 3.844 1.411  -0.01227 -0.01267  0.03672 -1.057e-3
I, 4.151 1.590 -0.01721 0.02751 0.05046 -1.394e-3
| R 2.996 1.006  5.635e-5  0.01567 -9.967e-4 -4.873e-4
Mhaq 3.938 1.476 -0.01393  0.01578  0.03690 -1.204e-3
'y 3.692 1.353 -0.01028  0.01607  0.02543 -1.019e-3
Ohad -2.069 -0.03281 9.806e-4  2.476e-3 -0.01522  4.057e-5
R, 0.5608 0.2780 -8.272e-3 -3.045e-3  0.03815 -4.120e-4
R, 0.5608 0.2780 -8.272e-3 -3.045e-3  0.03815 -4.120e-4
R, 0.5554 0.2776 -8.259%-3 -3.053e-3  0.03816 -4.113e-4
Ry -0.09434 -0.06530 1.652e-3 -0.02845 -1.782e-4 1.477e-4
R, 0.2133 0.1135 -3.284e-3  0.01173  0.01356 -1.898e-4
sin? 0% -2.818 -1.423  0.04203 -0.02330 1.796e-3  2.195e-3
sin? ngﬂ -2.823 -1.417  0.04204 -6.914e-3  1.201e-3  2.116e-3
sin? 0% -2.819 -1.423  0.04202 -0.02331 1.795e-3  2.194e-3
A 35.13 17.74 -0.5239 0.2905 -0.02239 -0.02737
Ay 0.4525 0.2271 -6.737e-3  1.108e-3 -1.924e-4 -3.390e-4
A, 3.386 1.710  -0.05048  0.02800 -2.156e-3 -2.636e-3
A(F)’ge 70.27 35.48 -1.048 0.5810 -0.04479 -0.05473
AOF’]Z_;)b 35.59 17.97 -0.5306 0.2916  -0.02259 -0.02771
AOF’gc 38.52 19.45 -0.5744 0.3185 -0.02455 -0.03000

Table 2.2: (From [131]) Expansion coefficients, as defined in Eq. (2.20), calculated in the

basis of input observables containing A&ﬁz)d. These encode the dependence of the output
observables on each input observable.
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course, new physics does contribute &, to the calculation of 65}“, but as we decide to use
some particular values for the input 6:}1 to be consistent with 6?‘“ (which are extraordinarily
well measured), we find ourselves adjusting the SM parameters to compensate for ;. This
adjustment gets propagated into the shift in 51“1 due to new physics for ¢ > N,. As a result,
Eq. (2.22) shows that for the output observables, 8NP0, is not simply &, but is related to &
for all input observables.

To close this subsection we remark on the calculation of &. In practice this is done at
tree-level or one-loop-level, if we are only interested in constraining a new physics model
at percentage level accuracy. Also, the definition of &;, Eq. (2.14), instructs us to calculate
them in terms of Lagrangian parameters, which can then be eliminated in favor of input
observables using the tree-level relations between the two. This does not conflict with the
“precision” part of the analysis, since we are doing two different perturbative expansions in
the calculation: the expansion in SM couplings, and the expansion in new physics effects.
Since new physics makes tiny contributions to 6fh, to discern them we have to calculate the
SM part as precisely as possible, carrying out the expansion in SM couplings to as high order
as possible. On the other hand, in most cases the new physics contributions &; need not be

calculated beyond leading order, since they are already very small.

2.3.3 Beyond first order

The above perturbative expansion carried out to first order is expected to be sufficient for
the purpose of precision electroweak analysis, since we have chosen a very well-measured set
of input observables, so that the expansion parameters 55}}1 are tiny. The impact of higher
order terms in the expansion can be seen from the sensitivity of the expansion coefficients
¢;i» to the choice of reference values for the input observables Qﬁef. In Table 2.3 we show the
percent relative uncertainties for ¢;;, defined similarly to Eq. (2.17).

Alternatively, without varying 6§Ff, we can explicitly write down the next order terms in

the expansion:

— ~ — ~ 1 — ~ - ~ _ ~
5SMOi = Z CiilésMOi/ + 5 Z Cii’j’éSMOilésMOj/ S Z(CW + AC,;,;/)(;SMOZ-/ +... (223)

i i’ i

where

OFfO%"  920%M
Ot g0SMHOM

(2.24)

C,L',L'/j/ =

Then the size of second order terms in Eq. (2.23) compared with the first order term is
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characterized by the ratio

> leinyr|[03MO,|
- 2|Cii’|

Ac’ii’
Cii/

‘ Z]/ CZZ/]/(SSMOJI

20“'/

We show in Table 2.4 the 7; calculated with 5SM5J., = A@\?f{pt / /O\;-?f. The results follow a
similar pattern as in Table 2.3.

Tables 2.3 and 2.4 both show that the uncertainties on the observables calculations are
negligible due to uncertainty in the first-order expansion coefficient c;;’s. Most entries man-
ifestly demonstrate this with values of less than 1% corrections to the first-order coefficients
that are already governing less than 1% shifts in the observables due to the small uncertain-
ties of the input observables to the calculation (see Table 2.1). Only in a couple of places does
the uncertainty reach more than 1%, but the final uncertainty on the observables themselves
is of course significantly lower than that. To illustrate this, let us consider the largest Plc;y]

ref :

in Table 2.3, Plcg,.a,], which is the uncertainty in the expansion coefficient of oy — o in

the computation for Ry. It yields an uncertainty on R, of

AR, ~ R ‘22% X CRy.a X 5%‘
~ 0.216(0.22 x 0.0002 x 0.005) ~ 5 x 10%, (2.26)

which is much smaller than the experimental uncertainty of 7 x 10~4. Therefore, in practice
this 22% uncertainty does not concern us, and we can be confident that the first-order
expansion expressions are sufficient for any precision electroweak analysis given the current

uncertainties in observables.

2.3.4 Change of basis

Our choice of input observables as in Eq. (2.16) is convenient for the calculation of expansion
coefficients in ZFITTER. In principle, any set of N, = 6 independent observables can serve
as input, though we should better choose those most precisely measured observables to
minimize the uncertainty due to higher order terms in the expansion. In this respect, an

equally good choice as Eq. (2.16) could be

{61'} ={mz, Gp, a(mz), mi, as;(mz), mu}, (2.27)

since essentially all the uncertainty in a(my) comes from Aal(]z)d. This basis may be prefer-

able in practice, since it is often more convenient to do calculations with a(my), rather than
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0, Pltim,] Pleice]l Pleiaal  Pleim] Pleia  Pleim]
a(my) 0.05 - 0.37 119 1.64 -
myw 0.02 0.05 0.44 0.87  1.20 0.23
I, 0.04 0.07 0.42 1.09  1.53 0.60
T, 0.04 0.07 0.42 1.09  1.53 0.60
T, 0.04 0.07 0.42 1.09  1.53 0.60
T, 0.01 0.02 0.43 0.96  0.41 0.27
I, 0.01 0.01 0.39 0.88  0.64 0.33
iy 0.00 0.01 0.63 1.04 151 0.74
Thad 0.01 0.01 0.41 110 0.50 0.35
Ty, 0.00 0.01 0.39 1.07  0.52 0.39
Ohad 0.06 2.08 2.41 131 0.50 2.81
R. 0.31 0.32 0.69 140 047 0.36
R, 0.31 0.32 0.69 140 0.47 0.36
R, 0.32 0.33 0.69 1.40 047 0.36
R, 0.13 0.28 0.41 0.92  22.06 0.88
R. 0.12 0.14 0.41 087  1.26 0.35
sin? 0% 0.02 0.01 0.39 0.97 1.26 0.12
sin? 00 0.02 0.02 0.39 075  1.16 0.05
sin ¢ 0.02 0.01 0.39 097 126 0.12
A, 0.51 0.50 0.88 110 1.42 0.46
A, 0.09 0.09 0.46 0.80 121 0.11
A, 0.14 0.14 0.52 1.00  1.30 0.16
Adbe 0.51 0.50 0.88 110 1.42 0.46
A%D 0.50 0.49 0.88 110 1.42 0.46
A% 0.48 0.47 0.85 1.09  1.41 0.43

Table 2.3: (From [131]) Percent relative uncertainties for the expansion coefficients ¢;;7, with
all input observables varied in their 1o range.
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O,- Timz Ti,Gr TiAa Tim Tias Timpg

a(myz) | 0.03 - 001 085 0.66 -
my 001 0.03 003 018 035 0.18
T, 003 004 020 030 052 0.18
r, 003 0.04 020 030 052 0.18
T, 003 0.04 020 030 052 0.18
T 0.02 002 004 024 010 007
T, 002 0.03 002 021 0.09 0.16

[iny 0.01 0.01 0.12 027 051 0.21
IMhad 0.02 0.02 0.02 029 0.04 0.14

I'y 0.02 0.02 0.02 0.29 0.05 0.13
Ohad 0.03 1.04 1.02 039 0.02 149
R, 0.17 0.17 0.17 046 0.02 0.31
R, 0.17 0.17 0.17 046 0.02 0.31
R, 0.17 0.17 0.17 046 0.02 0.31
Ry, 0.05 0.13 0.05 0.20 10.69 0.59
R, 0.06 0.07 0.05 0.19 038 0.31

sin?0% | 0.03 0.02 003 024 0.38 0.19
sin?@% | 0.03 0.02 0.03 0.13 034 0.17
sin®6% | 0.03 0.02 0.03 0.24 0.38 0.19

A, 0.04 0.03 0.04 024 038 0.20
Ay 0.04 0.04 005 014 035 0.18
A, 0.05 0.05 0.06 024 039 0.20

A%e | 018 019 0.18 042 055 0.37
A%b | 003 003 004 024 038 0.19
A% e | 000 001 001 023 037 0.19

Table 2.4: (From [131]) The r;;’s defined in Eq. (2.25), characterizing the ratios of second-
order vs. first-order terms in the expansion (in units of percentage).
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Aal(lz)d, as input. In this subsection we derive the rules for translating the expansion coeffi-
cients ¢;7, which are calculated in the basis Eq. (2.16), into those for the basis Eq. (2.27).
To avoid confusion, denote the latter by d;. Also, superscripts “SM” will be dropped for
simplicity in this subsection.

First, consider d; ,. We need to determine the shift in 51 caused by ga(mz), with the
other 5 input observables held fixed. If we work in the basis Eq. (2.16), this shift in a(my)

is an outcome of the following shift in Aoz}(i)d (with other input observables fixed):

SAafl‘?d = [Cana) " da(myz). (2.28)
And the shift in 51 is
5@ = ci,AagAagd = Ci Aa [ca,Aa]fl da(my). (2.29)
Thus, o
dio = Saé(?niz) = Cina [Canal - (2.30)

Next, consider d;; for i’ # a(my). Take d;,,, as an example. We need to shift my, while
keeping other observables in Eq. (2.27), including a(my), fixed, and find the resulting shift
in 51 Working in the basis Eq. (2.16), we can do this in two steps. First, shift my by dmy.

As a result,
562» = ciyngmz , Sa(mz) = Cam,0my. (2.31)
Second, shift Aag)d by
5Aoz$)d = — [cmAa]_l Cam,OM7. (2.32)
As a result,
Sé\i = c@AagAal(lz)d = —CiAa [ca7Aa]_1 Cam,OM 7, (2.33)
Sa(my) = Ca,AagAOé}(lz)d = —Cam,OMyz. (2.34)

The effect of both steps is to hold all observables in Eq. (2.27) other than my, in particular
a(my), fixed. And we get the desired result

—~

00,

(]

dz’,mz - = Cimy — Ci,Aa [Ca,Aa]_l Camy- (235)

- sz
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As a special case, Eqs. (2.30) and (2.35) also hold for i = Aa}(li)d:

dAoz,oe - [Ca,Aa]ily (236)

dAOl,mz = _[Ca,Aa]ilcoa,mZa (237)

where we have used capna = 1, CAam, = 0.
In the basis Eq. (2.27), the theory predictions for the observables (with respect to the

reference values) are calculated from

50" =3 " diydOlF + 5N°0,, (2.38)

7

where

SNPO\i = &i— Z iz &
= & - di,mzfmz - di,prGp - di,afa - di,mtfrm - di,asgas - di,mHgmH' (239>

We list the expansion coefficients d;;, as calculated from Egs. (2.30) and (2.35), in Table 2.5.

2.4 New physics examples

In this section we present some examples of calculating new physics contributions to elec-
troweak observables, using the formalism developed in Section 2.3. We work in the basis

Eq. (2.27), with a(my) as an input observable.

2.4.1 Shifts in Zbb couplings

Suppose some new physics model shifts the Z boson couplings to left- and right-handed b
quarks [145]

b (1+ep), & —ch(l+er). (2.40)
None of the input observables is affected at tree level. Thus, the impact of the shifts of these
couplings can be calculated straightforwardly from observables that directly depend on ¢
and czj%. The set of observables directly affected include I'y, I'haa, Repry Reps 'z, Ohad, Ab,

A%b, and sin? 6%. Their shifts from this new physics contribution can be expressed as

SNPO, =¢;. (2.41)
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0, i, dicp di o i, di o, iy
my 1 0 0 0 0 0
Gr 0 1 0 0 0 0
a(my) 0 0 1 0 0 0
my 0 0 0 1 0 0
as(my) 0 0 0 0 1 0
M 0 0 0 0 0 1
Aol -0.1628 0 33.94 -5.232-3 3.417e-4 0
my 1428  0.2201  -0.2154  0.01325 -9.62le-4 -7.704c-4
T, 3.378 1198 -0.1920  0.01886 -1.255¢-3 -7.924e-4
T, 3.378 1198 -0.1920  0.01886 -1.255¢-3 -7.924e-4
T, 3.384 1198  -0.1924  0.01887 -1.256e¢-3 -7.931e-4
I, 3.846 1411 -0.4166 -0.01260  0.03672 -1.057e-3
I, 4154 1590 -0.5842  0.02760  0.05045 -1.394e-3
Ciny 2.996  1.006 1.913e¢-3  0.01567 -9.967c-4 -4.873¢-4
Thad 3.940 1476  -0.4727  0.01586  0.03690 -1.204e-3
Iy 3.604  1.353  -0.3490  0.01612  0.02543 -1.019¢-3
Thad -2.070 -0.03281 0.03328 247le-3 -0.01522  4.057e-5
R, 05622  0.2780 -0.2807 -3.002¢-3  0.03815 -4.120e-4
R, 0.5622  0.2780 -0.2807 -3.002¢-3  0.03815 -4.120e-4
R, 0.5568  0.2776  -0.2803 -3.009¢-3  0.03815 -4.113e-4
R, -0.09461 -0.06530  0.05608 -0.02846 -1.777e-4  1.477c-4
R, 02138  0.1135 -0.1115  0.01174  0.01356 -1.898¢-4
sin?0% | -2.825  -1.423 1426 -0.02352 1.811e-3  2.195e-3
sin?f% | -2.830  -1.417 1427 -7.134e-3 1.215¢-3  2.116e-3
sin?0% | -2.826 -1.423 1426 -0.02353 1.809¢-3  2.194e-3
A 35.22  17.74  -17.78  0.2932  -0.02257 -0.02737
Ay 04536 0.2271 -0.2287 1.143e-3 -1.947e-4 -3.390e-4
A, 3395  1.710  -1.713  0.02827 -2.174e-3 -2.636e-3
AYbe 7044 3548  -35.56  0.5865 -0.04515 -0.05473
A%D 35.67  17.97  -18.01  0.2944 -0.02277 -0.02771
AYbe 38.61 19.45  -19.50  0.3215 -0.02475 -0.03000

Table 2.5: (From [131]) Expansion coefficients calculated in the basis of input observables
containing «(my), which are derived from the numbers in Table 2.2 by a change of basis
described in Section 2.3.4.
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Let’s begin by computing the shift in T',. At tree level, Ty o< [(c})? + (c%)?], which when
expanded leads to the shift 0N'T, = &r,, where

9 b\2 ) b \2
(ch) %gfi ~ 1.942; +0.0645 £, (2.42)
L R

Knowing this shift in I', enables us to simply compute the shift of other observables that

depend on I', in terms of &p,:

Mg = MR =R, =0""R, = "R, = Ryér, ~ 0.216&,,  (2.43)
SNPRy, = NIy — 0N Thaa = (1 — Ry)ér, ~ 0.784&r,, (2.44)
SNT, = Byér, ~ 01516, (2.45)
MNPopag = 0N Thag — 208 Ty = (Ry — 2By)ép, ~ —0.0855&r, (2.46)
where By = I',/T'; is the branching ratio of Z — bb.
The asymmetry observables are also affected due to the shift in A,. At tree level,
b2 _ (b2
A, =12 =) (2.47)
(c)? + (cg)
which leads to a shift 6N A, = £4,, where
A(cp)*(ck)’
éAb:w(éfL—éfR)ﬁo.lBZL(EL—éR). (248)
We can then straightforwardly compute 6N° A%%b and NP sin? 8% in terms of &4, :
NP AWD = 4, (2.49)

and

€4, = —6.24 &,
(2.50)

Thus, SNP@ for all observables are expressed in terms of &p, or £4,, which are simply
related to e, eg via Egs. (2.42) and (2.48).

sin? 0% 0A, }1 E4 = (1 — §sin® gg)[1 + (1 — §sin® 6g)°]

Ay, 9sin® 0% —3sin® §%[1 — (1 — 3 sin® 0%,)?]

SNP . 29b
0" sin Geﬁ—[
3
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2.4.2 Shifts in vector boson self-energies

In many new physics scenarios, there exist exotic states that do not couple directly to SM
fermions but have charges under the SM gauge groups. These states affect electroweak
observables via shifts in vector boson self-energies [146]. At one-loop level, the dependence

of various observables on vector boson self-energies is as follows [147]:

m%z = [m3]" (1 +7..), (2.51)
m%/[/ = [mIZ/V} (O)(l + Tww), (2.52)
Gr = [Gr]”(1—mp,), (2.53)
a(mz) = la(mz)]”1 +7T,/W), (2.54)
sin?0ly = 5*(1-50)), (2.55)
s
1
Ly = PP+ 7l + 5 + agmss), (2.56)
where superscripts “(0)” denote tree-level values, and s = \/921+ =, = \/922+ —. We have also
g1 T9g 9119
defined 12 12
II 2
Tz = M’ (257)
myz
2y _ 2
2 = fim 122U 3 H§Z(m2), (2.58)
q2—>mQZ qc—my
II 2
Tye = —”frg;nZ), (2.59)
z
11, (¢%) — 11, (0)
/ — Y Y
T, = qlgino Z , (2.60)
II 2
Tww = M (2.61)
myy,
11 0
o = WVZV( ) (2.62)
myy
The ay in Eq. (2.56) can be derived from
1+ (1 —4|Qy| sin? 67;)?
Ly =[%0+7, + 7., off 2.63
f [ f] ( Tz T ) 1+(1_4|Qf|52)2 ( )
and Eq. (2.55). The result is
8sc|Q¢|(1 — 4|Q¢|s?
_ ‘ f‘( | f| ) :4SC|Qf|[.Af](O)- (2.64)

1+ (1 - 4|Qy]s*)?
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With s? ~ sin® 0% = 0.231620, which is good at tree level, we have
a, =0, a; = 0.2468, a, = 0.7505, aq = 0.5262. (2.65)

With Egs. (2.51-2.56), it is straightforward to calculate contributions from new physics.

Denote the shifts in vector boson self-energies by é"F'r.., etc.; i.e.
Tuw — Tay + 00T, ete. (2.66)

Note the absence of “bar” on 9, since this is the absolute shift, not the fractional shift. Then

for the input observables,

1
gmz - §5Np7rzza gGF = _5NP7T2;w7 504 = 5NP7T’/Y’Y’ €mt - fas = gmH =0. (2‘67)

These shifts propagate into shifts in the output observables, while leaving the input observ-
ables unchanged due to new physics (i.e. SNPO\i, = 0). The new physics contribution to the

output observables can be conveniently expressed as:

NO, = & — Z dii&ir

= 000w, + 0, 0N T b0 T, + b

1,22 1,77y

5NP7T/7’Y + bivww(SNPﬂ-ww + b?,wwéNFzrﬁgj)
In the following we discuss the calculation of these b coefficients.
o bl .., b are the simplest, since they vanish for most of the observables. In particular,

1,229

b .., which comes from wavefunction renormalization, is nonzero only for Z boson decay

1,229

widths:
! =0 =0 = =1. (2.69)

Tp,2z Tinv,22 Thad,zz Ty,zz

Note that wavefunction renormalization cancels out in oy,,q, and ratios of decay widths.

bi ww 1s related to the shift in the W boson mass, so is nonzero only for:

1
by o = - (2.70)

® by, Uy, Y, are simply related to dipm,, dia, diq,, respectively. Since 7/, 7}, only

enter a(myz), G, respectively, we have

v di.crs bg{ww =d;c, (2.71)

T T
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O\i bi722 b;,zz bi,'yz bg,wv bi,ww sz,ww
mw -0.7140 0 0 02154 0.5  0.2201
T, 1189 1 0.2468  0.1920 0 1.198
T, 1189 1 0.2468  0.1920 0 1.198
I, 1192 1 0.2468  0.1924 0 1.198
Ty 1423 1 05262 0.4166 0 1.411
T, 1577 1 07505 0.5842 0 1.590
iy 0.9982 1 0 -1.913¢-3 0 1.006
Thad -1.470 1 0.6027  0.4727 0 1.476
Ty 1,347 1 04420 0.3490 0 1.353
Ohaa | 0.03475 0 -0.03460 -0.03328 0 -0.03281
R. 0.2811 0 0.3559  0.2807 0  0.2780
R, 0.2811 0 0.3559  0.2807 0  0.2780
R, 0.2784 0 0.3559  0.2803 0 0.2776
Ry 0.04731 0 -0.07647 -0.05608 0 -0.06530
R. 0.1069 0 0.1479  0.1115 0 0.1135
sin6% | 1413 0 -1.821  -1.426 0 -1.423
sin?@% | 1415 0 -1.821 -1.427 0  -1.417
sin6% | 1413 0 -1.821  -1.426 0 -1.423
A, 1761 0 2271 17.78 0 17.74
A, 02268 0 0.2876  0.2287 0 0.2271
A, -1.697 0 2192 1.713 0 1.710
A% e 3522 0 4541 35.56 0 3548
A%D 1784 0 22.99 18.01 0 1797
AYhe 1931 0 24.90 19.50 0 19.45

Table 2.6: (From [131]) The b coefficients defined in Eq. (2.68), characterizing the shift in
the output observables due to new physics that shifts vector boson self-energies.
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for all 62 Similarly,
1
bi,zz = _§di,mz (272)

except for those observables having direct dependence on the Z boson mass:

1
bi,zz = 5(1 — di,mz) for ¢ = Ff, Finva Phad, Fz, (273)
1
bo'hadvzz = _5( +di,mz)' (274)

e Finally, b;.. should be derived from the dependence on sin® Hgﬁ. For the Z partial
widths, it can be read off from Eq. (2.56):

bFf(YZ = arg, bFinv,’yz = 3(11/ = 07 (275)

with as given in Egs. (2.64) and (2.65). For i@ = I'aq, 'z, ;. is a weighted sum. At

leading order:

r a1+ (1 —4 s2)?|br, ..
br,re = Z F_fbffmz _ 2 penad |1+ ( |Qyls°) 1 2Ff»'Y 7 (2.76)
fehad ~ Pad Zfehad [1 + (1 - 4|Qf|5 ) }
I 1+(1—-4 s2)?|br, ~»
bFz vz Z_fbf‘f vz — Zf[ ( |Qf| ) } kil (277)
| 7tz >+ (1 —4]Qf]s?)?]

For the ratios of partial widths, and the Z-pole cross section:

bRZ’AYZ = thad/YZ - bFZ7’YZ7 bR(I7’YZ = qu,"YZ - blﬂhad:’yz7 bghad77Z = bFeK}“’«' + thad:’YZ - 2bFZ,‘(52'78>

For the asymmetry observables, we can read off from Eq. (2.55):

C

Doin? gl e = — 3 (2.79)
And hence, at leading order,
s? O[A4]Y 41Qy|sc[l — (1 — 4|Qy]s*)]
b.Af,'yz = (0) 2 sin2 07 vz - D) IR (280)
(A" 0(s?) off” (1 —4|Qf|s?)[1 — (1 +4|Q|s?)?]
bA%gfy’YZ - bAe77Z + b.Af,’YZ (281)

The numerical values for these b coefficients are listed in Table 2.6. The calculation is done
with s? = 0.231620, and the sign conventions for the gauge couplings are g; > 0, go > 0
(hence s > 0).
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2.5 Conclusions

In this section we presented an expansion formalism that facilitates precision electroweak
analyses. By recasting all observables in terms of six very well measured input observables,
we can calculate each of them easily by expanding about the reference values of the input ob-
servables, chosen in accord with experimental measurements. Also, the formalism developed
here can be applied in a simple manner to calculate new physics corrections to electroweak
observables and derive constraints on new physics models. Some examples were worked out
for illustration.

For numerical results we calculated the reference values and expansion coefficients us-
ing the ZFITTER package. Most, though not all, of these results reflect state-of-the-art
calculations in the literature. Various higher order calculations of electroweak observables
have been done since the release of ZFITTER 6.42 in 2005, but their impact on precision
analysis is not significant at present because the power of the precision program is limited
by experimental errors. However, improvements of our results to better accuracy with the
inclusion of these and future calculations may be necessary in the future, if experimental
priorities of next-generation facilities involve Giga-Z or Tera-Z options [148,149]. With 10°
or 10*2 Z bosons produced at a future collider, unprecedented levels of reliable theoretical
calculations will be needed to meet the unprecedented levels of experimental accuracy. We
hope that the formalism presented here, with improving numerical results, will continue to
be helpful for efficient and reliable calculations of SM results and beyond the SM corrections

in the precision electroweak program.
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Chapter 3

Resolving Charm and Bottom Quark

Masses in Precision Higgs Analyses

A conventional approach to precision calculations of Higgs boson observables uses quark
masses m,. and m; as inputs. However, quark masses are single numbers that hide a va-
riety of low-energy data from which they are extracted, and also hide the various sources
of theoretical uncertainties and correlations with additional input parameters such as as.
Higher-precision calculations, which are needed to give meaning to future measurements,
require more direct engagement with the low-energy data in a global analysis. We present
an initial calculation in this direction, which illustrates the procedure and reveals some of the

theory uncertainties that challenge subpercent determinations of Higgs boson partial widths.

3.1 Introduction

The discovery of the Higgs boson [1,2] marks the beginning of a new era for precision studies.
Not only is unprecedented precision achieved in Standard Model (SM) calculations [24-26,
131] with the knowledge of the Higgs boson mass [133,150], but experimental data on a large
number of Higgs observables [151] allows us for the first time to scrutinize the Higgs sector
of the SM [121] and beyond [70,152,153]. Any discrepancy between precision data and SM
predictions would be an indication of new physics.

Though not explicitly stated in the context of precision Higgs analysis, an important role
in this program is played by low-energy observables, such as moments of eTe~ annihilation
cross section and moments of semileptonic B decay distributions. In fact, our knowledge of
the charm and bottom quark masses mg (@ = ¢, b), which are important inputs of precision
Higgs calculations, largely comes from analyzing these low-energy data. This can be seen

from the fact that the Particle Data Group (PDG) [154] average of the scale-invariant masses
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in the MS scheme [i.e. solutions to mg(u) = p,

me(m.) = 1.275(25) GeV, (3.1)

is dominated by mg extractions from low-energy data. These MS masses, as well as pole
masses, have been used in the literature to estimate the theoretical precision achievable in
precision Higgs calculations [121,155].

However, looking into the future, such indirect engagement of low-energy observables in
precision Higgs analysis might be ultimately unsatisfactory. A large amount of low-energy
data has been highly processed to yield just two numbers, as in Egs. (3.1) and (3.2). It is
not even clear whether these numbers accurately reflect our knowledge of mg, because the
averaging involves mg extractions some of which are apparently correlated due to similar data
and/or methods used. The error bars assigned to them contain experimental uncertainties
from many different measurements, as well as theoretical uncertainties from calculating many
different quantities. In addition, a self-described inflation of uncertainties by the PDG [156]
is introduced to account for underestimated systematic errors in some mg extractions [157].
Finally, Egs. (3.1) and (3.2) do not retain possible correlations between as(myz) and the
extracted mg. They are thus treated as independent inputs in precision Higgs analysis,
which is strictly speaking not correct.

As we strive for the highest-precision calculation possible in order to match percent
(or even perhaps parts-per-mil) level of experimental precision achievable in the foreseeable
future!, the rich information hidden in Egs. (3.1) and (3.2) should be revealed, and the role
of individual low-energy observables emphasized. Conceivably, a global y? fit would become
more powerful in testing the SM when low-energy observables sensitive to mg as well as
Higgs observables are incorporated. The scale-invariant masses mg(mg) would be then only
inputs of the calculation. They are not considered as observables with experimental values
and uncertainties, but are parameters to be tuned to minimize the y? function, where only
true observables are included.

In this section we propose the idea of directly working with low-energy observables in pre-
cision Higgs analysis. In addition to the global fit perspective mentioned above, low-energy

observables can also play a role in identifying individual sources of theoretical uncertainties

IThough precision measurements of Higgs observables, especially the partial widths into c¢é and bb dis-
cussed in this section, are difficult at the LHC, such high precision is generally believed to be achievable at
the International Linear Collider, the Future Circular Collider, and the Circular Electron Positron Collider.
For recent analyses, see e.g. [158-161]. We also note that for the bb channel, the importance of a higher
theory precision is further emphasized by its relevance to the calculation of the total widths and all branching
ratios of the Higgs boson.
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in precision Higgs calculations. This is conveniently done by eliminating mg(mq) from our
input in favor of two low-energy observables, and recasting Higgs observables in terms of
these and other input observables. For this procedure to be meaningful, the two observ-
ables chosen should be representative of the large amount of low-energy data contributing
to Egs. (3.1) and (3.2), in the sense that mg extracted from them alone should be precise
enough. In the language of a global x? fit, the ideal choices would be two observables that
dominate the low-energy observables contribution to 2. In this regard, a reasonable, though
by no means exclusive, option would be to use the moments M$ and M} of ete™ — QQ

inclusive cross section, defined by

ds olete” = QOX)
Q = pumy
M = / 8n+1RQ(S)’ where Rg = T (3.3)

with the precise definition of Ry from experimental data discussed in [162]. m.(m.) and
myp(my) reported in the literature from analyzing these moments typically have O (10 MeV)
uncertainties quoted [157,162-164]. For the Higgs observables we will focus on the partial
widths I'y .z and '3, and assess the level of precision we can achieve in SM predictions
for them. We will see that with direct contact made between these partial widths and the low-
energy moments, the vague notion of “uncertainties from mg” is decomposed into concrete
sources of uncertainties. In particular, parametric uncertainties from input observables MY,
M} and a,(mz) 2, and perturbative uncertainties due to missing higher-order corrections to
the moments can be exposed separately. We note that while the parametric uncertainties
are currently expected to be at the percent level, and are in principle reducible with future
data and more careful experimental extraction of the moments, the perturbative uncertainties
may represent a bigger challenge due to lack of knowledge of the appropriate renormalization
scales in the low-energy regime. It is therefore worthwhile to further investigate theoretical
as well as experimental aspects of the low-energy observables for the precision Higgs program

to succeed.

2It should be noted that we will treat as(mz) as both a calculational input and an observable with a
central value and uncertainty. In principle one could treat a,(myz) as merely a calculational parameter and
let the observables that are highly sensitive to the a(mz) value be part of the global fit, analogous to what
we have done with mg(mg). However, as(mz) is one step further removed from direct determination of
H — bb, c¢ partial widths compared to mg(mg), and so treating as(mz) as both an input parameter and
(highly processed) observable is numerically justified.
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3.2 Incorporating low-energy observables into a global

precision analysis

The strongest tests of the SM rely on comparing its predictions across all accessible energy
scales. By disentangling the information contained in the charm and bottom quark masses
in the context of precision Higgs analysis, we expose an interesting interplay between Higgs
observables and low-energy observables. The sensitivity to m¢ that they share in common
suggests the inclusion of both in the precision program.

An incomplete list of candidates for low-energy observables can be inferred from the mg
extraction literature, and includes low [157,162-164] and high [165-168] moments of R
mentioned above, and their variants [169,170], moments of lepton energy and hadron mass
distributions of semileptonic B decay [171-173], etc. We denote them collectively as {O¥},
with ¢ running from 1 to the number of low-energy observables we wish to incorporate into
the analysis. All these candidates should be carefully examined, and correlations among
them should be understood, so that the best choices can be made for {6%‘”}

In the high-energy regime, the observables include, for example, various partial widths,
branching ratios, and production cross sections of the Higgs boson. Let us call them {@mgh}.

high

87} the electroweak

If not restricted to precision Higgs analysis, one may even include in {5
observables, such as the effective weak mixing angle, Z boson partial widths, and forward-
backward asymmetries in ete™ annihilation at the Z pole. This will make the global analysis
even more powerful, because the Higgs observables are sensitive to the same set of input

observables as the electroweak observables:
{08} = {mz, Gr, almz), mi, ag(mz), my}. (3.4)

Parenthetically we remark that the common practice of treating the top quark mass m; as
an input observable is justified for present purposes. A more careful treatment of m,, like
what we do here with m, and m;, may be needed in the future when precision measurements
on the ¢t threshold are carried out at an e™e™ collider.

Additional calculational inputs, which are not necessarily of the observable type, include
the charm and bottom quark masses {mq(mg)} = {m.(m.), my(ms)}. There may be other
input parameters, which we denote collectively by {p¢™'}. Examples are the 7 lepton mass,
flavor angles, and nonperturbative parameters (e.g. gluon condensate) involved in some low-
energy observables.

Assuming the potentially complicated correlations among all the high- and low-energy

observables will be understood in time, we may ultimately subject all the observables to a
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global fit, by minimizing the x? function with respect to the inputs:

Calculation inputs: {T,} = {0} U {mg(mg)} U {pptery, (3.5)
Fit observables: {0} = {O"} U {OM"} U {0}, (3.6)
To minimize: =Y [@h({zk}) - 65’@} V! [6;h({zk}) — O™, (3.7)

]
Here “th” and “expt” denote theoretical and experimental values, respectively, and V' is the
covariance matrix containing uncertainties and correlations among observables. The calcu-
lational inputs could just as well be chosen to be a minimal set of Lagrangian parameters;
however, it is most convenient for our purposes to choose a combination of observables and
Lagrangian parameters as the minimal set of calculational inputs.

Compared with the conventional approach where low-energy data contribute indirectly
via the averaged {mg(mq)}, our proposal of directly working with low-energy observables
allows appropriate treatment of all the correlations and uncertainties. In particular, there
is no averaging over correlated mg extractions, and the calculational inputs {mg(mg)} and
as(myz) are no longer correlated. Challenging as it is, such a global analysis is worth further
investigation. As a long-term goal for the precision program, it will test our understanding
of elementary particle physics at an unprecedented level.

As a final remark in this section, the techniques described above are to be employed in a
rigorous test of the SM. The resulting statistical test from the y? analysis is for determining
the likelihood of the compatibility of the data with the SM hypothesis. It is straightforward
to apply these techniques to a slightly different model, which we call the kKSM, defined to
be exactly the SM theory except that each coupling of the Higgs boson to SM states has a
free parameter r; in front that is varied to fit the data (see e.g. [69,152,174]). In that case,
the x? analysis must include these x; as extra input variables and the resulting fit tests the
compatibility of the kSM theory with the data and, if compatible, gives confidence intervals
for the k; values. Just as with the SM, at the next level of precision analysis of the kSM it

is important to address the role of low-energy observables that we study here.

3.3 Recasting Higgs observables in terms of low-energy

observables

In order to investigate sources of theoretical uncertainties in calculating the Higgs observ-
ables, it is helpful to recast them in terms of a set of input observables without invoking

a global fit. In the simplest case, suppose all the observables under consideration are in-
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sensitive to {p™}. We choose two low-energy observables 5110“’, 5120“’. By inverting the

functions
Or = 09 [{Or) Ama(ma)}|,  OF» = 08" [{OF} {ma(ma)}|,  (38)
we express the quark masses in terms of 611°W, 650‘”:
me(me) = me(me) {OF}, OF, 05|, my(my) = ma(my) | {0}, OF, 05| (39)
{mg(mg)} can then be eliminated from the calculation of the Higgs observables:
0" = O} {0} {mq(mq)}| = O {0}, O™, O~ |. (3.10)

and we have achieved the goal of recasting Higgs observables in terms of low-energy input
observables 0" O From Eq. (3.10) it is clear that the precision in the SM prediction for
the Higgs observables will benefit from improved knowledge of mg, which ultimately comes
from better measurements of the low-energy observables.

Our choices for the low-energy input observables,
/O\llowaé\lzow = iaMga (3'11)

require only a slight generalization of the simple formalism above. We will take into account
an additional input, the gluon condensate, as {ph°} in the case of M, but its contribution
allows for a simplified treatment. In fact, the simplicity of the analysis is our main motivation
for choosing these moments as inputs rather than other low-energy observables which lead to
similar level of precision in the extracted mg. For example, if we were to use semileptonic B
meson decay observables (see e.g. [171-173]), more input parameters in {p¢™'} will show up,
including flavor angles and four nonperturbative parameters. Also, the low moments (M9
with n < 4) chosen here are computationally more straightforward than the high moments
(n > 10; see e.g. [165-168]). The former can be calculated conveniently in the relativistic
theory, while a nonrelativistic effective theory treatment is needed for the latter. In addition,
since the calculation involves MS quark masses, there is no need for introducing other mass
schemes. Potentially large uncertainties associated with mass scheme conversion (e.g. from
pole or kinetic masses to MS masses), which is needed for some other methods, can thus
be avoided. We also note that the approach of extracting m¢ from the low moments was
recently recast by the lattice QCD community [175-177], and future development in this
direction may shed light on the precision Higgs program [178].
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To calculate M@, one applies quark-hadron duality [179] to relate the moments M to

vector current correlators,

1272 /d \"
MO = <—) o (¢ , where 3.12
o (ag) mel)] (3.12)
(@G — 4u0,) g (¢?) = —i / d'a (0| T, (2)75(0)]0), (3.13)
with j, being the electromagnetic current of Q). Il can be calculated as an operator product
expansion:
9 .
2/3 (i Lo 2
2 )T ™ T
(2me(n)™ %

where ()¢ is the electric charge of quark (). As one can see, the values of these moments
depend on the quark masses, a fact that QCD sum rules practitioners use to extract quark
masses (for reviews see [180,181]). The two terms in Eq. (3.14) come from perturbation
theory and nonperturbative condensates, respectively. The perturbative part is known up
to O (a?) [182], while the gluon condensate contribution, which dominates M%" has been
calculated to next-to-leading order [183]. Note that the coefficients C’,(L]Z) are functions of
ny, the number of active quark flavors. The common choices are ny = 4 for ) = ¢ and
ny =5 for Q = b. These are also the numbers of active quark flavors assumed for a,(p) and
mq(p) in Eq. (3.14). as(myz) is defined for ny = 5, and should be matched to the 4-flavor
effective coupling at the bottom quark threshold before being used in Eq. (3.14) for M¢. In
our calculations the matching is done assuming 4.2 GeV for both the threshold scale and
my(my), but all the results are found to be insensitive to the details of threshold matching.

mq(p) are usually extracted by comparing the theoretical calculation with experimental
data for M@ (see [157,162] for technical details). Normally the lowest moment M¢ is taken
for the charm quark so as to suppress the nonperturbative contribution to the subpercent
level [157,162,184]. For the bottom quark the gluon condensate can be safely neglected at
the present level of precision [162], and the second moment M} is preferred due to large
experimental uncertainty in M$4. We also neglect O (m?/m?) terms in M}, not explicitly
written out in Eq. (3.14), which constitute a tiny contribution [162].

It is pointed out in [157] that the scales at which m¢ and «; are renormalized should be

considered independently to avoid bias in the uncertainty estimate. Eq. (3.14) then should
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be generalized to

M2 — % ZC(a b) ( (Ma))ilna le(L/;m) I mQLMm) + MO, (3.15)
molp ia,b T m o

The coefficients in this equation C'si’b) can be readily derived from C’m- via renormalization
group (RG) equations, and numerical results for ny = 4 can be found in [157]. Due to
unknown O (a?) terms, the calculated M9 exhibit dependence on both f,, and p,. Scale
dependence is a general feature of finite-order perturbative calculations, and should be con-
sidered with care in estimating theoretical uncertainties. We have more to say on this below.

With mq(pm), os(pta) related to mg(me), as(myz) via RG equations, Eq. (3.15) matches
the general form of Eq. (3.8), with as(mz) being the only relevant element in {5};‘} There
are additional inputs fi,, pe and M. So in our case, Eq. (3.8) is modified as:

M5 = M |a(mz) melme). g, 16, M5, (3.16)

My = MG ay(mz), ma(my), i 1] (3.17)

where we have neglected Mgnp. As mentioned above, the nonperturbative contribution has
been claimed to be negligible for the bottom quark. We have checked this in the case of
M3, where the contribution from M3™ is below 0.1%, which should be compared to the
experimental uncertainty of M} of about 1%. Treating M{™ and m.(m,) as independent
inputs, which we will justify later, and focusing on the Higgs boson partial widths to c¢ and
bb as examples of {0} we have, in place of Egs. (3.9) and (3.10),

mome) = me(me) e (mz), M5, i, i MG (3.18)
ma(ms) = ) [ mz), M3 s (3.19)
Insee = Thoe {5}3}7 me(me), MH_

= Tarmsee {00} M, i i g, ME™). (3.20)
Puw = Tuow {621}7 my(my), :UII)LI_

T [ {00 Mb. s ] (3:21)

where 15, ub; collectively denote other renormalization scales involved in the calculation of
the partial widths. These are nevertheless not the only scale dependences for the partial

widths in such an analysis. The residual scale dependences of the low-energy observables
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are seen to propagate into the extracted quark masses, and constitute part of the uncer-
tainties in mg(mg). These uncertainties eventually propagate into the calculations of Higgs
observables, and are reflected in the p,,, 1, dependences in Egs. (3.20) and (3.21). Note also
that in the second equalities in Eqgs. (3.20) and (3.21), the as(mz) dependence in the partial
widths has been changed to account for the correlation with mg(mg) reflected in Egs. (3.18)
and (3.19).

Egs. (3.20) and (3.21) represent the final results of the exercise of recasting Higgs observ-
ables in terms of low-energy observables, with the information contained in mg(mg) fully
resolved. They will be used in the next section to investigate the theoretical uncertainties
in these partial widths.

To close this section we remark on the treatment of M{™. The known terms read [183]

Qs (Y2
ME™P = —(; ”pole; [—16.042 - 168.07@ +0(a?) ], (3.22)
Mme

where <%G2> is the gluon condensate. The commonly used value in the context of charm

quark mass extraction is derived from 7 decay data [185]:
<%G2> — 0.006 = 0.012 GeV*, (3.23)

In addition to the imprecise knowledge of <%G2>, we note two other sources of uncertainties
in M7". First, it is argued in [157,184] that M{™ should be expressed in terms of the pole
mass rather than the MS mass in order to have a stable a, expansion. We agree with this
argument, but note that the use of the pole mass may introduce further ambiguities. For
example, if one tries to calculate the pole mass from the MS mass, the result will be very sen-
sitive to the loop order. Second, considerable uncertainty is introduced by the p dependence
of the bracket in Eq. (3.22), since the O (a?) terms are not known. This renormalization
scale is not necessarily related to p, or p, in the perturbation theory contributions [the
first term in Eq. (3.15)]. All these uncertainties and ambiguities will dilute any conceivable
correlation between M{™ and m.(m.), justifying our treatment of them as independent

inputs. In our analysis the following value for M7 will be assumed:
MG = —0.00017595% GeV 2. (3.24)

The central value corresponds to <%G2 = 0.006 GeV*, mp° = 1.7 GeV and u = 3 GeV
in Eq. (3.22). The errors are very conservatively estimated by taking the extreme values
mPo® = 1.4 GeV, u =1 GeV, and varying (2:G?) in the range in Eq. (3.23). Even with the
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extreme values considered, M{™ is still a subpercent-level contribution to M$ ~ 0.2 GeV 2.

3.4 Theoretical uncertainties of Higgs partial widths

It is clear from Egs. (3.20) and (3.21) that there are two types of uncertainties in the calcu-
lation of the Higgs partial widths. Parametric uncertainty results from imprecise knowledge
of the input parameters, including the input observables (M¢$, M} and those in {5}{‘1})
and the nonperturbative parameter M{"". The experimental values and errors of the input

observables are:

¢ = 0.2121(20)(30) GeV* [157], (3.25)

M5 = 2.819(27) x 107° GeV ™ [184], (3.26)
as(mz) = 0.1185(6) [154], (3.27)
mpg = 125.7(4) GeV [154], (3.28)
m; = 173.21(51)(71) GeV [154], (3.29)
my = 91.1876(21) GeV [154], (3.30)
almyz) = 1/127.940(14) [154], (3.31)
Grp = 1.1663787(6) x 107> GeV ™2 [154]. (3.32)

For M¢{ and m; the two experimental uncertainties are statistical and systematic, respec-
tively. There is an additional systematic uncertainty in M} associated with the prescriptions
used in extracting moments from data. This is discussed in [184], and we adopt “Option A”
in that paper because among the three options considered there it appears to yield the most
consistent results for mg(mg) across different moments.

Perturbative uncertainty, on the other hand, is associated with unknown higher-order
terms in perturbation theory calculations, and leads to residual dependence of calculated
observables on the renormalization scales. When the partial widths are recast in terms of
MS and M} as in Eqgs. (3.20) and (3.21), multiple scales enter. py comes from the calculation
of the Higgs boson decay. The associated perturbative uncertainty has been studied in the
literature; see e.g. [121] where it is found to be small compared with parametric uncertainty.
Here we focus on p,,, fto, which originate from the calculation of the low-energy observables

¢, M} [see Egs. (3.15-3.17)]. Their contribution to the total theoretical uncertainty will be
singled out below by setting all input parameters to their central values in Eqs. (3.24-3.32),
and setting puy = my.

We study the perturbative uncertainty from pi,, i, in two steps. First, mg(um) are
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Figure 3.1: (From [30]) Contours of m.(m.) (top-left), I'y_.z (top-right), my(m;) (bottom-
left), I'y_45 (bottom-right) in the fi,,,-1, plane. These plots demonstrate Eqs. (3.18-3.21)
with all other inputs fixed. The unlabeled contours represent decreasing values toward the
top-left corner in steps of 0.01 GeV, 0.005 GeV, 0.002 MeV, 0.005 MeV, respectively.

calculated by iteratively solving Eq. (3.15) following the procedure explained in [157], from
which mg(mg) are derived. We use the RunDec package [186] for RG running and threshold
matching to the highest loop order implemented in the package. Second, the partial widths
Ches, U opp are calculated using the expansion formulas in [121]. The results of both steps
are shown in Fig. 3.1 as contour plots in the p,-t, plane®. They correspond to Eqgs. (3.18-
3.21) with other inputs fixed. These plots illustrate the propagation of pi,,, p, dependence
from low-energy moments calculations to Higgs partial widths.

To estimate the perturbative uncertainty, a common practice is to identify a characteristic

3The numerical difference between our m.(m.) contour plot and Fig. 6(c) in [157] is due to the input M
and as(mz) used, and to a lesser extent the treatment of M{"P.
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scale of the process of interest, and vary the renormalization scale within a factor of two
around that scale. For example, puy has been varied from my /2 to 2my in [121]. However,
this method is not directly applicable to g, and ji, since M% receive contributions from
all energy scales as evident in Eq. (3.3). One might guess from qualitative features of Rg(s)
that the characteristic scale should be O (2mg), the masses of quarkonium resonances. But
due to the relatively large value of oy in the low-energy regime, the exact number, and hence
the range in which we choose to vary i, i, can greatly affect the result of our uncertainty
estimates. This is already clear from Fig. 3.1, where I'y_,.z and I'y_,;; are seen to exhibit
rapid variation in the low-y,, regime.

Lacking an optimal method to estimate the perturbative uncertainty, we refrain from giv-
ing exact numbers, but instead aim to illustrate the ambiguity in the estimate of perturbative
uncertainty by varying p,, and p, independently within an adjustable range [fmin, fimax]- We
will focus on the uncertainties in the partial widths, and remark that they are related to the

uncertainties in mg(mg) by [121]

AFH%CE -~ Amc<mc) 5 21%7 A]‘—‘Hﬁbg -~ Amb(mb)

~ ~ 0.56%. 3.33
Thoee 10 MeV P T B VAR (3:33)

The perturbative uncertainty, defined as half the difference between the maximum and min-
imum values of I'y_,cz, I'r_p5, depends on i, and pimax. We present the results in Fig. 3.2
in terms of “percent relative uncertainties,” defined to be 100AT'/T". The red solid curves
show the estimated perturbative uncertainties as functions of i, with ¢, (ub..) fixed
at 4 (15) GeV. Alternative choices for pS,.  (pl..), 3 and 5 (13 and 17) GeV, give rise to
the red dashed curves. These can be compared with the dominant parametric uncertainties
shown by the other curves in Fig. 3.2 (see figure caption for details). The popular choices
in the literature (uS,;, u¢..) = (2,4) GeV and (p’,., 18...) = (5,15) GeV yield perturbative
uncertainties of 1.2% and 0.33% for 'y, and 'y _,,;, respectively, comparable with para-
metric uncertainties. However, the perturbative uncertainties increase rapidly and dominate
the total theoretical uncertainties if lower renormalization scales are considered. The result
of the theoretical uncertainty estimate is then strongly dependent on the artificial choice of
Umin- This poses a serious ambiguity in precision analysis, and calls for more enlightened
prescriptions for the uncertainty estimate. We note two possible directions in this regard.
The first direction was suggested very recently in [187] in the context of m¢ extraction.
There it is argued that the large perturbative uncertainty from completely uncorrelated
variation of u,, and u, is probably an overestimate. To get the perturbative uncertainty
under control, a “convergence test” is performed to identify regions in the p,,-p, plane

where the perturbative series converges too slowly (characterized by a large convergence
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Figure 3.2: (From [30]) Percent relative uncertainties in I'y_,.z (left) and I'y_,;; (right) as
functions of pip, from: perturbative uncertainty with ué,. = 4 GeV, pb . = 15 GeV (red
solid) or alternatively u¢, = 3,5 GeV, ub, = 13,17 GeV (red dashed), parametric uncer-

C7np

tainties from M¢ or MY (orange), a,(mz) (cyan solid), M (blue, for I's_;. only) and
my (purple). The parametric uncertainty from as(myz) incorrectly calculated assuming no
correlation with m¢ (cyan dotted) is also shown for comparison. The parametric uncertain-
ties are defined as shifts of the central values of I'y_,.z and T3 for pimin < fhm, fla < fhmax
caused by varying the input parameters within the errors quoted in Eqgs. (3.24-3.32), with
Ul = 4 GeV, ub =15 GeV (the kinks are due to the maximum or minimum shifting to
a different region in the -y, plane), and are found to be insensitive to fimax-

parameter). These regions are then discarded in the uncertainty estimate. Following the
approach outlined in [187], we find that the discarded regions correspond to the upper-left
and bottom-right corners in each plot in Fig. 3.1, where mg(mg) and the partial widths
exhibit rapid variation. The final result in [187] is a reduced perturbative uncertainty: 14
MeV and 10 MeV for m.(m.) and ms(my), respectively, corresponding to 2.9% and 0.56%
relative uncertainties in 'y, and ['y_,;z, respectively.

The convergence test is a well-motivated idea, reflecting the intuition that a proper scale
choice should not lead to very slow convergence. However, further study is necessary to
examine various details of the approach. For instance, one may consider loosening the con-
straints me(me.) < pl,, p < 4 GeV, my(my) < pb, pud < 15 GeV imposed in [187]. In
particular, pi,, o slightly lower than mg(mg) should be allowed as long as one retains
4-flavor (5-flavor) effective strong coupling for the charm (bottom) quark. Also, the conver-
gence criterion may be refined. The definition of the convergence parameter in [187] assumes
an approximate geometric series behavior of the ay series, but we find the latter falls off
more slowly than a geometric series in most cases. Furthermore, it remains to seek a less
arbitrary prescription for the fraction of (f,, tta) to be discarded, and to investigate whether
the convergence parameter is a good indicator of the size of higher-order corrections. In any

case, to be conservative the reduced perturbative uncertainties mentioned above should be

47



interpreted with caution before the approach is developed further.

As an alternative direction, one may consider the possibility of finding an optimal scale
via a defensible scale-setting procedure, such as the one advocated by Brodsky-Lepage-
Mackenzie (BLM) [188]. The BLM scale for an observable is obtained by absorbing the
ny terms in the perturbation series, which come from the QCD beta function, into the
running coupling «. This is arguably the physical scale of the process, with higher-order
corrections associated with RG running appropriately resummed. We also note that the BLM
procedure extended to all orders based on the principle of maximum conformality [189] has
been demonstrated to be self-consistent [190]. In the case of M@, however, there are two
renormalized parameters a; and mg, and naive application of the BLM procedure might be
problematic. This is because even when the ny terms are absorbed into running o, and/or
mg, the leading-order mass renormalization, which is independent of ny, may lead to large
loop corrections which are difficult to identify. Indeed, we find that naive application of BLM,
namely absorbing the nya? terms, sets scales for p,, and p, which are strongly disfavored
by the convergence test. In light of the importance of a more precise m¢ determination, it
might be worthwhile to investigate the nontrivial possibility of generalizing the BLM method
and its extensions [189,191] to include running quark masses.

The parametric uncertainties, on the other hand, are seen from Fig. 3.2 to be dominated
by experimental measurement uncertainties of M¢$ and M} (orange). Reduction of these
will rely on more precise measurements of Rg(s) and more careful treatment of experimental
data. At present the major problem is the lack of data above /s = 11.2 GeV, resulting in
large uncertainties in the bottom quark moments [184]. Also, the quarkonium resonances are
currently treated in the narrow width approximation, the quality of which should be exam-
ined in light of higher precision requirements in the future. as(mz) (cyan solid) constitutes a
subdominant source of parametric uncertainties. Its contribution is seen to be smaller than
the incorrect estimate assuming no correlation between ag(mz) and mq (cyan dashed), due
to partial cancelation between direct as(myz) dependence and indirect dependence through
mg. With our conservative estimate (i.e. erring on the large side) in Eq. (3.24), M7"™ leads
to an uncertainty in I'yy_,.z (blue) at a similar level as ag(myz). This may represent a chal-
lenge in the future, and calls for further investigation of the gluon condensate contribution.
The uncertainty due to my (purple) is less important, while other input observables listed

at the beginning of this section have a negligible effect on the parametric uncertainty.
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3.5 Conclusions

For the precision Higgs program to succeed in the future, additional effort is required to im-
prove the precision of SM calculations in order to match the proposed experimental accuracy.
A better understanding of theoretical uncertainties is critical. Toward this aim, we empha-
size the role of low-energy observables, and further propose the idea of a global analysis
incorporating relevant observables across all energy regimes. Rather than contributing indi-
rectly via the charm and bottom quark masses, low-energy observables explicitly participate
in such a precision analysis. Future studies in this direction should examine all candidates
of low-energy observables, and determine an efficient set of observables for the global fit.

In the context of precision Higgs calculations, we focused on the Higgs boson partial
widths to charm and bottom quarks, and investigated the theoretical uncertainties in these
observables. By eliminating charm and bottom quark masses in favor of low-energy observ-
ables M$ and M}, we recast the partial widths in terms of these and other input observables.
Much information originally hidden in uncertainties in the highly processed quark masses
becomes transparent. Experimental uncertainties in the low-energy observables are directly
propagated into the Higgs partial widths, and the uncertainty due to as(my) is treated
properly. Perturbative uncertainties are difficult to assess due to the ambiguity in the choice
of renormalization scales in the low-energy regime, and can dominate the total theoreti-
cal uncertainty of the Higgs partial widths if lower values of the renormalization scales are
considered than is usually the case in the literature.

Such analysis points to future directions in the precision program. For the partial widths
considered here, we note that while future experimental progress could potentially reduce
parametric uncertainties significantly, our ability to make precise predictions on the Higgs
partial widths will not improve unless better understanding of the perturbative uncertainty
is achieved. As for M¢$ and M} studied here, this might require the calculation of O (a?)
corrections to IIg(q?) (in the low-¢? limit) and/or more enlightened scale setting. Though the
actual situation may be better in a global fit where M¢ and M} are not the only low-energy
observables involved, it remains crucial to carefully investigate whether the scale-setting
problem is also present for other low-energy observables sensitive to mg. If the perturbative
uncertainty gets under control, the precision program, where both low-energy observables
and Higgs observables play an important role, will be promising in studying properties of the
Higgs boson, and even more generally testing the SM across a wide range of energy scales

and probing new physics ideas.
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Chapter 4

EFT of Universal Theories and Its
RG Evolution

The conventional oblique parameters analyses of precision electroweak data can be consis-
tently cast in the modern framework of the Standard Model effective field theory (SMEFT)
when restrictions are imposed on the SMEFT parameter space so that it describes universal
theories. However, the usefulness of such analyses is challenged by the fact that universal
theories at the scale of new physics, where they are matched onto the SMEFT, can flow to
nonuniversal theories with renormalization group (RG) evolution down to the electroweak
scale, where precision observables are measured. The departure from universal theories
at the electroweak scale is not arbitrary, but dictated by the universal parameters at the
matching scale. But to define oblique parameters, and more generally universal parame-
ters at the electroweak scale that directly map onto observables, additional prescriptions are
needed for the treatment of RG-induced nonuniversal effects. We perform a RG analysis of
the SMEFT description of universal theories, and discuss the impact of RG on simplified,

universal-theories-motivated approaches to fitting precision electroweak and Higgs data.

4.1 Introduction

The quest for new physics beyond the Standard Model (BSM) has been, and will continue
to be proceeding through both direct and indirect searches for their effects. While direct
searches for BSM signatures have to be carried out with particular models (often simplified
ones) in mind, indirect searches through precision measurements of Standard Model (SM)
processes often admit more general approaches that are model-independent to some extent.
A classic example is the oblique parameters formalism [192], the widely-adopted version of
which was proposed by Peskin and Takeuchi [146], and further developed by others [193,194].
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Here, just a few parameters, most notably S and T (or their rescaled versions Sand T ),
capture the new physics modifications of the vector boson self-energies, which are assumed to
be the dominant BSM effects (hence the name “oblique”). Modern studies in this direction
are migrating to the Standard Model effective field theory (SMEFT) approach; see e.g. [5,6,
62] for recent reviews. In this case, the SM Lagrangian, supplemented by the complete set of
dimension-6 operators built from the SM field content, provides a most general and consistent
framework for calculating the leading BSM effects on precision observables, assuming there
are no new light states and the new physics scale A is much higher than the electroweak
scale pgw.

Reconciliation of the oblique parameters formalism and the more general SMEFT is
based on the realization that the former is generally speaking only applicable to universal
theories, a restricted class of BSM theories whose SMEFT representation can be cast in
a form that involves bosonic operators only [109] (see also [87] for an earlier study with
similar motivations). By bosonic operators, we mean dimension-6 operators built from the
SM bosons. There are 16 of them one can possibly write down that are independent and
CP-even, as we have shown in [109], so the effective theory of universal theories has a 16-
dimensional parameter space, independent of the SMEFT basis choice. In turn, they can be
mapped onto 16 independent phenomenological parameters, called “universal parameters”
in [109], 5 of which coincide with the familiar oblique parameters. At leading order (LO)
in X—Qg, they lead to a universal pattern of deviations from the SM. In the recently-proposed
Higgs basis framework [7], this pattern is encoded in a set of relations among the otherwise
independent effective couplings.

Beyond LO, however, complications can arise. In particular, the 16-dimensional param-
eter space of universal theories, being a subspace of the full SMEFT parameter space, is not
guaranteed to be closed under renormalization group (RG) evolution. In fact, it is intuitively
clear that nonuniversal effects can indeed be generated by RG, because even if one starts
with a bosonic basis (consisting of 16 independent bosonic operators) [109], fermionic oper-
ators, i.e. operators containing SM fermions, can be generated that are not organized into
the SM currents and hence cannot be eliminated in favor of bosonic operators. Three ex-
amples involving oblique corrections are illustrated in figure 4.1. This qualitative argument
can be made concrete by a detailed RG analysis of universal theories, which we perform

1

in this chapter,” aided by the recently-calculated full anomalous dimension matrix for the

Tt should be noted that in the SMEFT framework, observables at the electroweak scale are calculated as

a double series expansion, in powers of both ]f;—z ~ X—Z and the loop factor ﬁ. Terms of order (X—i)o(ﬁ)”

can be taken into account by incorporating higher-order SM calculations independently of new physics

contributions [131]. The LO new physics effects, like those discussed in [109], are of order (X—z)l (7=2)°. The
v

RG effects analyzed in the present chapter correspond to order (A—Z)l(ﬁ)1 terms in the double expansion
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Wi

Figure 4.1: (From [111]) Examples showing how nonuniversal effects can be generated by
universal oblique corrections. Left: effective Wqq and W/l couplings are renormalized
differently, due to the different couplings of quarks and leptons to neutral gauge bosons.
Middle: the Zb.b;, coupling is singled out among all the Z f f couplings probed by Z-pole
measurements for relatively large running effects proportional to y?, via loop corrections
involving the charged Goldstone boson (or the longitudinal W= if one uses the unitary
gauge). Right: the Higgs boson couplings to the up- and down-type quarks and leptons
are renormalized differently, due to different gauge interactions of the fermions. In each
example, the interactions generated for the SM fermions are not in the form of the SM
currents, and thus the corresponding operators cannot be eliminated in favor of bosonic
operators. These examples, as well as many others, can be more rigorously formulated
in terms of SU(2), x U(1l)y invariant operators, but we prefer to give a more intuitive
illustration at this stage. The arguments here will be made concrete in sections 4.3 and 4.4.

dimension-6 operators [76,77,80] (see also [83]).
As a consequence of the RG-induced nonuniversal effects, an effective theory that is
universal at the new physics scale A can become nonuniversal at the electroweak scale pgw.

~

This means that, without introducing further prescriptions, the universal parameters S,
T, etc. are not unambiguously defined beyond LO at the electroweak scale. However, the
usefulness of these parameters is not plagued, since after all, their values at the high scale
A are what we really need to know to infer the shape of BSM physics. The latter are well-
defined in universal theories, and the 16 of them are sufficient to describe phenomenology
also at pugw, despite the theory becoming nonuniversal after RG evolution. Departures
from universal BSM effects are not arbitrary as in generic nonuniversal theories, but can be
calculabled in terms of these parameters.

An important motivation for the recent trend to push the SMEFT analyses beyond
LO [29,37,38,55,56,64-67,69,70,72,73,76,77,79,80,82,83,86,91,95,96,99, 102,104, 106, 195~
200] (see also [39-44,78,89,90,101,201]) is the observation that for some very well-measured

observables, it is possible to derive additional constraints on the effective operators contribut-

that are enhanced by In HELW Terms of order (X—E)Q(ﬁ)o may also have an impact, but the effective

Lagrangian has to be extended beyond the dimension-6 level to account for them. The latter [125,126] is
beyond the scope of the present work. See also [90,91,104] for related discussions.

52



ing at higher loop order, which are otherwise less constrained.? In the full SMEFT, this can
be done at the leading logarithmic (LL) level by first constraining the Wilson coefficients at
pew via LO expressions of the observables at the electroweak scale, and then RG-evolving
these constraints to A. The same is not true for the universal parameters S , T, etc. As we
will see, with additional prescriptions, it is possible to define these parameters at pgw, but
they do not capture all the LL corrections to all observables no matter what prescriptions
are adopted. This implies, in particular, that the conventional oblique parameters analysis
incorporating only LO effects of the oblique parameters is not a priori justified at the LL
level, where additional parameters that should have been included in the fit may have a nu-
merical impact. Also, a simplified global fit to Higgs data where a single rescaling parameter
ARp is assumed for all the hff couplings may not be appropriate, since it may not even

accurately capture the phenomenology of universal theories.

4.2 Universal theories at LO and beyond

4.2.1 The universal theories EFT at LO

In this subsection, we briefly review the results in [109]. The SMEFT description of universal
theories at LO can be formulated in three equivalent ways, in terms of effective operators,
universal parameters, or Higgs basis couplings.

As mentioned in the introduction, the effective Lagrangian of universal theories consists
of Lgy plus 16 independent CP-even bosonic operators. In the Warsaw basis [3], only 9 of
them are kept, while the remaining bosonic operators are eliminated by field redefinitions, or
equivalently, by applying the SM equations of motion, in favor of combinations of fermionic
operators. Despite the appearance of a proliferation of fermionic operators, the number of
independent parameters (Wilson coefficients) is still 16. To be specific, using the notation

of [3] for the Warsaw basis operators @);, we have

1

Liniversal = Lsm + E(CHWQHW + CupQus + CucQuc + CawsQuws + CwQw
+CcQc + CupQup + CuoQuo + CuQu + CuywQusw + CuisQuis
+Cogw Qosw + CoypQayp + CoycQ2ic + CyQy + CoyQay), (4.1)

2 . .
where C; are O(§3) Wilson coefficients, and Qg yw, Quis, Qw, Q218, Q2ia, Qy, Q2 are

combinations of fermionic operators listed in table 4.1. Note that the SM fermion fields

2Note, however, that in some of these references, bounds on the oblique parameters are used to constrain
the SMEFT parameter space possibly beyond the universal theories subspace, which can lead to inconsis-
tencies as argued in [109] (see also [87]). The results should therefore be interpreted with caution.
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Definition

Warsaw basis operator combination

B ﬁ a
Quiw = %(HTUQ D, H)Jy"

19 ([Q(Hgl)ﬁu + [Qﬁ??]u)

=7 <=
QHJB E%(HTDHH)JE

39" (}/‘I[Q(hlh)]]u + Y] S?]u
+Y.u[Qualii + YalQualii + Ye Quelii)
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3 3
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1 1 3
92 (— 2[Q5 Niwss + Q8 i + Q8 s
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8 8 8
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Q, =|H|*(H,J* +hc.)

Walij[Qurlij + [Voxmyalij[Qarlij + [Ye)ij[Qerli; + huc.
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+[Yelij [yflVéKM]kz [Qredqliji + h.c.)

Table 4.1:  (From [111]) Warsaw basis operator combinations that appear in Lypiversal il

(4.1), in the notation of [3]. In these expressions, repeate(i;%eneration indices 1, j, k, [ are

=
summed over, H'o* D ,H = H'o*(D,H)— (D, H)'0"H, H' D ,H = H'(D,H) — (D, H)'H.

The Yukawa matrices y,, ¥4, ye should not be confused with the hypercharges Y;. The SM

vector and scalar currents J&,, Jiy,, Jy, Jg are defined in (4.2).
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appear in these combinations via the vector and scalar currents in the SM,

Jh, = 9. Y [uTf (4.22)
fe{qu,d}
a — 3 Ua
fe{aly
Joe = 9 Y. Yifylf (4.2¢)
fe{qlu,d,e}
Jy = aquBeBa + *Vermyad + [“y.e. (4.2d)
Our notation is such that
Lsy D GMIG, + W™ Ty, + B Jp, — (HoJJ + h.c.). (4.3)

We will stick to the Warsaw basis for the calculations in this chapter, in order to conveniently
use the results in [76,77,80]. The forms of Lypiversal in other SMEFT bases, as well as the
dictionaries for translating between the bases for universal theories, can be found in [109].

If we restrict ourselves to the 16-dimensional parameter space of universal theories, a
subspace of the full SMEFT parameter space, there is a unique well-motivated procedure
to define the oblique parameters at LO. The field-redefinition ambiguity associated with
the vector boson self-energies is eliminated by ensuring the oblique parameters defining
conditions are satisfied [109,194]. At the dimension-6 level, there are 5 nonvanishing oblique
parameters 5*7 T, W, Y, Z, which constitute a subset of the 16 independent universal
parameters. By our choice in [109], the latter also include: 4 anomalous triple-gauge couplings
(TGCs) AgZ, AR, Ay, Ag; 3 rescaling factors for the h3, hf f, RV V vertices Aks, Ak, ARy;
3 parameters for hV,, V'*-type interactions absent in the SM fy,, f.,, fy4; 1 four-fermion
coupling ¢y, ~ (’)(y]%). Each of these universal parameters can be identified as the coefficient
of a term in L ,jversar in the electroweak symmetry broken phase in the unitary gauge, after
the field and parameter redefinitions detailed in [109]. The 16 universal parameters are just a
phenomenologically convenient linear mapping from the 16 independent Wilson coefficients
in (4.1); see table 4.2. As such, they constitute a complete characterization of universal
theories in the SMEFT framework at the dimension-6 level.

As yet another equivalent description of the universal theories EFT, the Higgs basis
couplings, defined in [7] at LO in X—z, make the leading BSM effects on precision observables
manifest. As ensured by the Higgs basis defining conditions [7,109], they capture vertex
corrections involving the physical particles. Furthermore, since the input observables are

not shifted at tree level, simple LO relations can be written down between some precision
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Universal Warsaw basis expression
parameter
S 92($CHWB + 1Cuyw + 1Cusp — 3Couw — 3Cayp)
T —3Cup + %(CHJB — CayB)
W —%wa
Y —%OwB
zZ —%CQJG
Ag? —%(C’HJW - 2C w)
AR, wCrwn
5‘7 _S?QCW
5‘9 _%CG
Aks | —1Cy +3Cun — 2Cup — (Crow — Cosw)
ARp —Cy+ Cuo — 1Chp — %(CHJW — Coyw)
ARy Cro — 1Crp — %(OHJW — Coyw)
Jag %CHG
for 7 [2¢050(Crw — Crp) — (¢ — 53)Crw ]
fry 4(5%01{14/ + Q%CHB - ﬁCHWB)
Coy Cyy

Table 4.2:  (From [111]) Expressions of the 16 universal parameters in terms of the Warsaw
basis Wilson coefficients in (4.1). These parameters completely characterize the indirect
BSM effects in universal theories at the dimension-6 level.
parameters, including their definition from the effective Lagrangian and their expressions in

other bases, can be found in [109].
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Higgs basis coupling

Universal parameters expression

[59?]1‘]‘ (f = UR,dR,GR)

I € [3 s2
Om Zla = 5 — 2la A
c2 €
691 15 (f = a,1) 0ij (ﬁ% 2 5 Aes)
(6977 )ij (f = ur,drer,v) | & [Tf% + Qg (5 - Aﬁs)]

2
0912 Agl — 22 + 225 (53 — %)
Ok~ AR,
M A
€36 T
O3 PYAVA
[53/]”]1']‘ (f'=u,d,e) 0ij AR
(SCZ Af_ﬂlv
Cgg» Carys Coyry fags foys fov, TESPeECtively
Caf combinations of W,Y, Z, ¢y,

69y ij. [dvylis

0

Table 4.3:  (From [109,111]) Higgs basis couplings in terms of the universal parameters.
A¢€ 23 are independent linear combinations of S, T,W,Y defined in (4.4). ¢4y collectively
denotes four-fermion effective couplings, and dy s stands for the dipole-type V f f couplings.
Compared with [7], we have written the fractional W mass shift as d,, instead of dm, and

defined [0 gzvq]ij in the gauge-eigenstate rather than mass-eigenstate basis.
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observables and the Higgs basis couplings. For example, the fractional shifts in I'(Z — b.b;)
and T'(Z — bgbr) are proportional to [§g7%s3 and [6g%%)s3, respectively. In general, the
Higgs basis couplings are linear combinations of Wilson coefficients in the Warsaw basis (or
any other complete nonredundant basis). In the special case of universal theories, we have
worked out in [109] the Higgs basis couplings in terms of the universal parameters. They
are reproduced here in table 4.3, where the Ae parameters [194,202,203] are 3 independent

linear combinations of S , T, W.,Y,
A 32 A
Ay =T -W-22Y, Ao =-W, Ag=S-W-Y. (4.4)
Cy

A universal pattern of fermion couplings can be seen from table 4.3. In particular, all the
V ff vertex corrections depend on just 2 parameters Ae;, Aez, and all the hff vertices
are rescaled by a common factor (1 + ARg). This is not the case for generic nonuniversal
theories, where the number of independent couplings is equal to the number of independent
dimension-6 operators in the full SMEFT. For universal theories, on the other hand, the

generically independent couplings are related as follows,

5qu _ 5ng 5912%1‘ _ 591?[ _ 591%6

L Loy, Yy Y, ’
Sg7° + 697" = 097, 097"+ 097" = 095" + dgi?, (4.5a)
OYu = 0Yg = 0y = ARp. (4.5b)

We will call (4.5) “universal relations” from here on. Compared with [109], we have replaced
Qu, Q4, Q. by the equivalent Y, Y, Y. for later convenience. Each Higgs basis coupling
appearing in (4.5) represents the diagonal elements of a 3 X 3 matrix in generation space
that is proportional to d;; for universal theories. Additional universal relations among 4-
fermion couplings can be written down, which do not concern us here. Essentially, the
universal relations among the generically independent Higgs basis couplings are in exact
correspondence with the correlations among the otherwise independent fermionic operator

Wilson coefficients shown in table 4.1, e.g.

2
dgrt =g & [Cili = O3y (Z 5ingCHJW>‘ (4.6)

4.2.2 Overview of RG-induced nonuniversal effects

Beyond LO, renormalization is needed, and the Wilson coefficients as renormalized La-

grangian parameters should have renormalization scales p associated with them. The scale
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dependence of the Wilson coefficients is captured by the RG equations, which at leading

order are governed by the anomalous dimensions 7;;,

C; = 1672 dlnu Z%] (4.7)

It should be emphasized that 7;; are unambiguous only when a complete nonredendant basis
of effective operators is specified. The Warsaw basis adopted here is the same basis used
in [76,77,80] to calculate the full ;; matrix for the dimension-6 operators.

The renormalization scale u should be properly chosen to avoid large radiative corrections
beyond a fixed-order calculation. If we are interested in the deviations of precision observ-
ables at the electroweak scale, ;1 ~ pgw is desired, because large logarithms in the perturba-
tive expansion can be avoided when the observables are expressed in terms of C;(ugw). But
on the other hand, to infer the shape of the UV theory at a higher scale A > pgw, which is
the ultimate goal of SMEFT analyses, C;(A) are needed, because we should better set p ~ A
when the SMEFT is matched onto a specific new physics model in the UV. Solving (4.7) to

leading order, which is sufficient for most practical purposes, we obtain

Ci(pew) = Ci(A) —

167’(’2 ,UEW Z ’%J (48)

The second term in this equation contributes to the LL corrections of the observables which
are affected by C;Q; at LO, when they are calculated in terms of the Wilson coefficients at
1= A. To be specific, up to higher-order terms, the fractional shift of an observable O is

SNP@—O OSM— Ci(A Lo A Ci(A 4.9
= AN Zaz MEW Zai z( )— n—- s ;g j( )7 ()

where a; are functions of properly-renormalized SM parameters, which can be recast in terms
of the input observables [131]. It is based on (4.9) that constraints on C;(ugw) derived from
precision data can be translated into constraints on (combinations of) C;(A)’s, some of which
are less accessible otherwise; see e.g. [37,38,73,99].

For universal theories, a key observation is that the correlations among the fermionic

operator Wilson coefficients at the matching scale A, represented by a set of linear equations

> " biCi(A) =0, (4.10)
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are not necessarily preserved by RG evolution, because it is possible that
i,J

As a consequence, at the electroweak scale pgw where precision observables are measured,

we may have
> biCilpew) # 0. (4.12)
i
For example, while [C’Sg]ij — [OS’} Ji; = 0 at p = A for universal theories, the same is in general
not true at u = pgw, as we will show in section 4.3. When (4.12) happens, the universal
theory at A flows to a nonuniversal theory at ugw. We say that nonuniversal effects are
induced by RG evolution.

The observation above poses a challenge for defining oblique parameters, and more gen-
erally universal parameters, at the electroweak scale. In general, the oblique parameters
defining conditions, which require the absence of fermionic operators, cannot be satisfied no
matter how the fields and parameters are redefined due to the theory being nonuniversal.
Additional prescriptions are needed if one wishes to define and use these parameters, which
can be somewhat arbitrary. This also means that without additional prescriptions, it is in
general not meaningful to talk about RG evolution of the universal parameters.

Nevertheless, as far as observables are concerned, there are no ambiguities, since (4.9),
which relates 6N O to C;(A) at LL accuracy, always holds. With the linear mapping in ta-
ble 4.2, we can recast 68O in terms of the 16 universal parameters defined at the matching
scale, S (A), T(A), etc., as long as the theory is universal at A. The RG-induced nonuniversal
effects then manifest themselves in the fact that all the LL corrections in (4.9) cannot be ab-
sorbed into the running of the parameters appearing in the LO expression for SNP@, namely
the 16 universal parameters. In the following sections, we will define S(ugw), (1w ), etc.
to absorb part of the LL corrections, following some well-motivated additional prescriptions.
The prediction for SNPO then involves the LO expression in terms of these universal param-
eters at pugw, plus additional LL terms. The presence of the latter may potentially affect
the interpretation and usefulness of global fits to observables at pgw assuming the theory
is universal at this scale, including the conventional oblique parameters fits. But when they
are taken into account, consistent constraints on S (A), T(A), etc. at the LL level can in
principle be derived from precision data, which can be used to infer the BSM new physics

at A if it is universal.?

3The accuracy of the LL-level constraints on the universal parameters is a separate issue that deserves
further investigation. If the LL corrections are important for some observables, the NLO finite terms not
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The close connection between the Higgs basis couplings and precision observables at LO
offers an equivalent and convenient way to formulate the analysis. While it is still a matter
of debate how to extend the Higgs basis framework beyond LO, at least at the LL level there
is a straightforward procedure. In the full SMEFT at the dimension-6 level, we can think
of the Higgs basis couplings as defined by the linear combinations of Wilson coefficients in
the Warsaw basis (or any other complete nonredundant basis) worked out in [7], with the

renormalization scale dependence included. For example, in our notation,

2

CpS C
B9 (W) = [Cil ()i — 55— Crws(p) = 52— Colp), (4.13a)
Cop — Sp Cy — Sp
Wq 3) CoSo c
09, ()]s = [Crg))ij — 5—5Crwa() — 5——=Co(p), (4.13b)
Cop — Sp Cy — Sp

where

Co(p) = E{CHD(M) +2([C5 (i + [C4 (1)]22) — ([Cu()]r221 + [Clz(ﬂ)]mlz)} (4.14)

is a combination of Wilson coefficients coming from undoing the shifts in the input observ-

ables mz and G, as required by the Higgs basis defining conditions. Note that ¢y = \/%,
9%+g

Sg = \/gg+7 are also pu-dependent. The running of the Higgs basis couplings with u follows

from the RG equations for the Warsaw basis Wilson coefficients and the SM parameters.
For universal theories at A, the universal relations in (4.5) should actually read dg; ?(A) =
S9! (A), etc. After RG evolution down to the electroweak scale, these relations are vio-
lated in the sense that 5gzvq(MEW) # 59V (ugw), ete., due to [Cﬁ;(uEw)]M =+ [C’S’I) (uEw)]is)
etc., as mentioned below (4.12). This was already alluded to in figure 4.1, and will be
demonstrated in detail in the next section. Defined in this way, the Higgs basis couplings
renormalized at pgw directly map onto NPO. Two example observables we will discuss later
are Ry = Dyaa/T(Z — £+(7) (assuming lepton flavor universality) and Ry = I'(Z — bb) /T'paq,

where I',,q is the hadronic Z decay partial width. From their LO expressions,

3 [(1070)" + (o)"] +
R _ =1
f (1971,5)" +

2

2 [([gfd]u’)z + ([ggd]“’)Q] }

(J =12 or3),

(4.15a)

enhanced by In ﬁ may also be [95,102]. In any case, the effect of the neglected terms in a finite-order
perturbative calculation may be accounted for by introducing SMEFT theory uncertainties, as advocated
recently in [91,104] in the more general context of fitting the full SMEFT.
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R, — (l97"33)" + ([97"]33) | (4.15D)

3 [(19749)" + (179)] + 33 (o790 + (lo7)’]

i=1

where [g77. i = 6,97 % + 097 % (new)]i; with g7/ = TF — Q53 (upw), 97’ = —Qs3(pw), it

follows that the fractlonal corrections with respect to the SM are given by

2

NPR, = NPTy — CREICOE (97°[097¢ (rw));; + 925002 (uew)];;),  (4.16a)
MR, = (477 i (077 (971097 (pew))ss + 92 097" (tw)]as) — 6™ Chaa, (4.16b)
where
NP d = 2 X

2[ (9712 + (972] + 3| (972 + (9]

{i( MEW)]M +9R [59 (MEW)]u)

(2

i( 7 (pew)lii + 97 [(Sg}Z%d<NEW>]ii> } (4.17)

To end this subsection, we comment on a subtlety associated with defining phenomeno-
logical parameters in the electroweak symmetry broken phase. The renormalized vacuum
expectation value of the Higgs field is a scheme-dependent quantity. To avoid introducing
unnecessary scheme dependence into the running of the Wilson coefficients, we take the v
appearing in (4.1) to be simply a constant, say 246.2 GeV. As a consequence, when the
universal parameters and Higgs basis couplings, defined from the effective Lagrangian in the
broken phase, are calculated in terms of the Wilson coefficients, factors of 2|<UL2>|2 =14...
appear. We treat the ... pieces as part of the one-loop counterterms, not to be included in
the renormalized Higgs basis couplings, or renormalized universal parameters when they are
properly defined. These terms are relevant for a full NLO calculation, but do not affect the

LL corrections proportional to In ;ﬁ that are the focus of the present chapter.
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4.3 RG effects in the electroweak sector

4.3.1 The universal limit

We first look at the electroweak sector, and begin with the limit y; — 0. The Lagrangian
at the new physics scale A is (4.1) with C, = Cy, = 0. We see from table 4.1 that the
2 H?D-class operators, which affect the V ff effective couplings, are related in universal

theories at LO as follows,
2
g
[OJ(L?;]U = [Cgl)]zy = 5z'jZCHJW, (4.18a)
/2

[{0237 qull), Chu, CHa, CHe}]ij = {Y,. V1,Y,, Yy, Yo} 635 %OHJB- (4.18Db)

These relations are equivalent to the universal relations in (4.5a). Using the formulas in [80],

we find the one-loop running of these Wilson coefficients,

N3 2(1 7, 23 , L ) 8 ,
i = %97\ = = — = 095 , (4.
[Crali 0ijg ( Croo+ =9 Cusw + —9°Coyw + —9°Coyp + —g OQJG) (4.19a)

6 12 6 54 9
. 1 7 23 1
[Cl(fjl)]zy - 5z‘j92 <ECHD + EQQCHJW + EQQCQJW + 69,202J3>, (4.19b)
. 1 41
[CI(;;]Z']' = Yqéijgl2 [g(CHD + Cup) + EQQCHJB
361 16
+9202JW + 2_79/202JB + 39302]0] , (4.190)
WL = Yisug?| 2 (Cun + C Hone 2C 4 e 4.19d
[Chili; = Yidijg 3( Ho + HD)+69 HiB T4 2Jw+3g 2|, (4.19d)
. rl 41 376 16
[Criij = Yudiyg”® g(CHEI + Crp) + EQIQCHJB + 2_79/202JB + 39302JG] (4.19e)
. rl 41 364 16
[Cralij = Yadijg” g(CHD + Cxp) + ggﬂoHJB + 2_79,202JB + ggic‘m] ,(4.19f)
. rl 41 44
[CH@]@']’ = Y;(Sijga §<CH|:| + CHD) + EQIQCHJB + §QI2CQJB:| . (4.19g)

Note that only the Wilson coefficients that are nonzero at LO (i.e. at u = A) need to be kept
on the RHS of these equations. We have used table 4.1, or equivalently (4.18) and (4.23)
below, to rewrite them in terms of the coefficients of the operator combinations in (4.1) for
universal theories.

From the discussion in section 4.2.2, it is clear that the relations in (4.18) are preserved
by RG evolution only in the limit Cyy = Coyp = Coyg = 0, namely W =Y = 7 =0 at
LO (i.e. at p = A). We call this limit, together with yy — 0, the “universal limit.”

In the universal limit, fermionic operators in the electroweak sector are generated by RG

evolution, but they are organized into the combinations Q g, Qg that appear in the LO
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Lagrangian for universal theories. Thus, without any further prescriptions, it is unambiguous

to define Cy w, Cyyp at the electroweak scale, and write down their RG equations,

. 2 26
Cuw = gCHD + §QQC’HJW7 (4.20a)
. 2
Cuip = g(CHD + Chup). (4.20b)
These are derived from
167> (*Cryw) = ¢ <EC + Zng' ) (4.21a)
I 1 HIW sCHn + 39" Craw ), :
16722 (9°Crip) = g* [E(CHD ) + B grey, JB} (4.21D)
din i 3 3 ’

which follow from (4.18), (4.19), and the well-known one-loop running of the SM gauge

couplings
) 19 . 41
g = __6 gga 9' = _6 9,3-

We can extend this analysis to the 4-fermion interactions. The correlations among

(4.22)

the Wilson coefficients, i.e. the counterparts of (4.18), can be read off from table 4.1 (see

also [110]), with contributions from ()3, neglected for the moment,

[Culijm = <%5il(5jk — %@ﬁkl)g?CyW + Y?0;;009* Casp, (4.23a)
[COijm = iézjékngCgJW + ;léiléjkgg@m, (4.23D)
[Cl(s)]ijkl = %5ij5k19202JW7 (4.23¢)
{Cly), Cee, Ol Cens Cea, €, €4}, Coe, Cra, Cua, Cie} ]y =
(2VY,, Y2, 2Y,Y;, 2Y,Y,, 2YaY,, 2Y,Y,, 2Y,Ya, 2, Y., 2Y}Y,, 2Y,Yy, 217V, )
0ij0ug” Cayp, (4.23d)
(CiNiiwt = Y0309 Cosis + (}151'15% - é5ij5kz>g§02m, (4.23e)
[{Cuu; Odd}ijl ={Y2, Y7 }6:;0ug”Cosp + (%51'15]'1@ — é&;j%l)ngyg, (4.23f)
[Cqsfl)]ijkl = [C(gi)]ijkl - [Céz)]z‘jkz = 20,;01192CaJc- (4.23g)

For Coyw = Coyp = Coyc = 0 at LO, we find, from [80],

12

. 1 1 2 ,
[Culij = <§5il5jk — Z5ij5kl)92<g§CHJW> + Y?01;6119" <%OHJB>7 (4.24a)

64



2

11
[{ qq Gl }] ijkl { }%%9 (g CHJW), (4.24b)
[{ qq ) lq 9 Cuua Cdda Ceea Cud 3 Ceu; Ced7 C(l Cé(li)a Oq& C.'lua C.’lda C.’le}:|

qu ijkl -

(Y22, Y2, Y7, Y2, 2Y, Y3, 2V, Y., 2Y,Y,, 2Y,Y,,, 2Y, Yy, 2Y, Y., 2Y}Y,, 2Y,Y, 2YY. )

q u )

12
8i;0r9" <%OHJB>7 (4.24c)
[C’q(il]wkl [C( )]Ukl = [Oéz)]ijkl =0. (4.24d)

The pattern in these equations, when compared with (4.23), indicates that in the universal
limit defined above, the 4-fermion interactions are also universal after RG evolution. Thus,

as in (4.20), we can unambiguously define

1 A
C = — 1 C: 4.25
2w (HEW) 1672 n,UEW 2JW ( a)
Cosplpew) = — Lo, Ao (4.25b)
2JB\HEW) = 1672l 2JB; :
where

Cow = ECHJW7 (4.26a)

. g/2

CQJB - ?CHJB- (426b)

Here the running of g and ¢’ is not relevant, since ¢, ¢ are multiplied by the values of
Coyw, Coyp at LO which vanish. We see that, if the operators Qs w, Q275 are not generated
by the universal new physics at © = A, they will be generated at one-loop level by RG
evolution down to p = pgw, and result in a universal pattern in the 4-fermion interactions
at the electroweak scale. The operator (0255, on the other hand, is not generated by RG
evolution at this order if it is absent at the new physics scale.

Egs. (4.20) and (4.26) allow us to write down meaningful RG equations for the oblique
parameters in the universal limit, namely y; = 0, and Coyw = Coyp = Coyg = 0, or
equivalently W =Y = Z = 0, at u = A. To do so, we further need table 4.2, the RG

equations for the bosonic Wilson coefficients from [76,80],

. 4 19
Cawp = (—92 + g%+ 4>\> Cuws — 39°¢' Cw + 299/ (Cpyw + Crp), (4.27a)

3 3
. 9 5 20 40
CHD = (592 6gl2+12)\>C’HD+?g QCHD"'EQ CHJB, (427b)
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and the running of the SM gauge couplings (4.22). The results are

S — —%(1992 — ¢S — %ng - %(27g2 — ¢ NG + é(33g2 + g% + 24\ AR, + 267N,

+%92ARV + 392(92 — %) fr + €97 f1y (4.28a)

T o= 2(392 + 8\ (T — 2%@ — AR,)| — 24Xs2A57 — 3¢% ARy, (4.28b)

W o= §g2c§Agf , (4.28¢)
v - —gg@(é + 2AGE — AR,). (4.284)

Similarly, Z = 0. In (4.28) we have recast the Wilson coefficients on the RHS in terms of
universal parameters. Following these evolution equations from A to pgw, we obtain the

oblique parameters at the electroweak scale,

S(uew) = S(A) — ——In 8, (4.292)

. . 1 A

7 — P(A) = ——In T 4.29b

(kEw) (A) = 16 - (4.29b)
1 A

W(uew) = W(A)—167T2 lnMEWW, (4.29¢)
1 A

B 167'('2 HEW

which are to be used to calculate the observables, or alternatively, the Higgs basis couplings

at ;= pgw, in the electroweak sector. For example,

2

2 Ae s
691" (new)li; = 09, (new)]i; = i s 1imw) _ T 2A€3(NEW>}
Cp — Sp 2 Cy — Sp
0; A .
— 5D i 2) [—2835(MEW) + T (pmw) — (5 — 255)W (pew) + Sgy(MEW)}, (4.30)
9~ So

where the SM parameters ¢y, sy are also renormalized at u = pgw. We stress again that
(4.28), (4.29), (4.30) are unambiguous only in the universal limit W (A) =Y (A) = Z(A) =0,
ys = 0 [we have kept W(A), Y(A) in (4.29) for later convenience|; otherwise the theory
becomes nonuniversal after RG evolution and it is not even clear how to define the oblique
parameters at pugw. We will go beyond this limit in the next subsection.

One interesting observation from (4.28) is that, with our definition of universal parame-
ters, and in the special universal limit discussed above where these equations are meaningful,

the S and T parameters mix under RG evolution. This is true despite the fact that Cywp
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and Cyp, which contribute to S and T, respectively, do not mix in the Warsaw basis, even

A

when the full SMEFT is considered [80]. The reason is that, as is clear from table 4.2, S
and T' should not be identified with Crywp and Cygp. The additional contributions to these

oblique parameters lead to the mixing observed here.

4.3.2 Nonuniversal effects beyond the universal limit

Now we are ready to turn back on the LO Cyoyw, Cayp, Coye (while still assuming y — 0),
and study the nonuniversal effects due to their contributions to the RG evolution. These
effects are conveniently represented by violations of the universal relations (4.5a). Using
(4.19), together with the relations between the Higgs basis couplings and the Warsaw basis
Wilson coefficients [7], we find

. . : . 4 8 8
592/(1 - 59?” = Cg); - C}fl) = 92 (——9/20113 + §g§C2JG) = —(QIQY - 6922),

27 27
(4.31a)
ogR" 097 1 (OH CHd) J*4 , 4 s2
Y. Y, 2\Y, v, 2 97 BT g2l b (4.31b)
ogR’ _ ogRt _ 1 (O'Hd - CH6>
Ya Y. 2\Yy Ye
232 16 16 s2
= —% <_2_79,202JB + ggfczm) = 2—70—2(—29'23/ +3¢27), (4.31c)
0
- Ze - Zv - Ze 1 s :
047 + 647" — 0" = —5(20}) — Cie)
g/2 55
= —7(—9202”/ + ¢”?Cyyp) = g(—QQW + ¢%Y), (4.31d)
0
047" + 847" — 64" — 347" = —5(2C3, — Crru — Cna)
9’2<1 2 L lsg o 2
= -5 (59 Couw — 39 CQJB> == W —-47Y), (4.31e)
2 \3 3 3¢k

where diagonal elements have been assumed for the matrices in generation space. It follows

that at the electroweak scale,

1 A 8
sgie — sgt =——1 - —(q%Y — 6427 4.32
g *(pew) =91 (pew) = — e In . 5-(9 952), (4.32a)
5 Zu 5 Zd 1 A 4 2
Ir }(//LEW) __99R }(/,UEW) _ — In ) _S_gg/QY’ (4.32Db)
u f ™  purw  9¢;
591%d(/~LEW) 59£6(HEW) 1 A 16 33 2 2
_ — — —2(=20"Y +3 4.32
}/d }/;3 ].67T2 n ,LLEW 27 Cg ( g + gs )7 ( C)
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1 A s?
697 (uew) + 697" (W) — 697" (LEW) = — = In—— 2(—¢®W + ¢?Y), (4.32d)
™ HEW Cy
597" (uew) + 697 (Lew) — 697" (tew) — 097" (1EW)
1 A 152
= 1 2B (PW - gY), (4.32¢)

1672 . UEw 3 Cj

where W,Y, Z are the well-defined oblique parameters at the new physics scale (where the
theory is universal). Eq. (4.32) shows that the universal relations (4.5a) that hold at LO in
universal theories are violated. But unlike generic nonuniversal theories, they are violated
in a universal (rather than arbitrary) way. Despite the RG-induced nonuniversal effects,
the theory and its phenomenology is still completely characterized by the 16 independent
universal parameters at x4 = A (14 in the limit y; — 0), and no further parameters are
needed unlike in generic nonuniversal theories.

As far as observables, or Higgs basis couplings at ;1 = ugw, are concerned, our discussion
in section 4.2.2 indicates that it is not possible to absorb all the LL terms into the running of
the oblique parameters that contribute at LO, if WY, Z are nonzero at the new physics scale.
However, from this perspective, it is convenient to still define S (1EW), T(pew), W (usw),
Y (pew) to be their values in the universal limit as in (4.29), with S, T, W, Y given by (4.28),
even beyond this limit when W (A), Y (A), Z(A) are nonzero, so that they can at least absorb
a significant part of the LL corrections. The remaining LL corrections are proportional to
WY, Z, and can be taken into account as additional contributions. Following this strategy,

we find, for example,

g1 (pew)]i; =

5 . )
s 2688w+ AT uewe) = (= 2550 (pew) + 53 ()
0 0
1 A 45 11 44
1 —[(10 2 ’2> 2y (- 22 ’2—12)\) QY]}, 4.33
_'_167'['2 n ILLEW g 2 g Ce + 2 g 3 g 59 ( a)

697 (pmw))ij =
0i N .
ﬁ{—%ﬁs(um) + T (pew) — (5 — 2s5)W (pew) + s5Y (1iEW)
2(cz — s3)
1 A

n
1672 ppw
45
[(10g2 — 7g’2>c§W + <

_|_

265 380 32

5—492 — Wga — 12)\> sgY + 3(03 — sg)ggZ] }, (4.33b)
as a generalization of (4.30), with the SM parameters still renormalized at pgw. These equa-
tions quantitatively explain the first example in figure 4.1. They are obtained by applying

the RG equations presented in [76,80] to the full expressions (4.13), and later identifying
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the various Wilson coefficients involved as combinations of universal parameters, and ab-
sorbing part of the LL terms into the running of the oblique parameters according to (4.28),
(4.29). Alternatively, (4.33) can be more easily derived by realizing that the additional terms
compared to (4.30) can be obtained by turning on W, Y, Z only (i.e. adjusting the Wilson
coefficients according to table 4.2 to make sure they are the only nonzero universal param-
eters) when following the steps explained above, and keeping the LL terms. We emphasize
that S(uew), T(uew), W(pew), Y (uew) in (4.33) do not have an obvious and unambiguous
interpretation in terms of vector boson self-energy corrections, but are simply defined for
convenience to absorb part of the LL corrections. Our prescriptions are by no means the
only choice for defining them, but are well-motivated since they leads to relatively simple
expressions for the observables and Higgs basis couplings at p = pugw, such as (4.33).
Finally, we lift the restriction y; — 0 (and meanwhile allowing for nonzero Cayw, Cayg,
Csy¢). The additional effects come from either the 2 additional operators @), (Ja,, or the
ys-dependent contributions to the anomalous dimensions calculated in [77], or both. Keeping

only the leading terms in y;, we find,

[Cg’;]w = 5ij;yt292(CHJW —2Cow) + 52'35]'3%2 <_%CHD + %QQCHJW - %gaC’HJB
+%Q2CQJW - %Q/QCZJB - §Q§C2JG>7 (4.34a)
iy = 5ij;yt292(CHJW —2Cw), (4.34D)
[Cﬁg]w = Y03y 9" (Crsp — 2C2yB) + 6i30j3y; [%(CHD + Cup) — ZQ2CHJW
+gg2C2JW + %glzch + ggiCm + (yf - gg’2> ng], (4.34c)
(Clli; = Yi6y3y29%(Crys — 2Cass), (4.34d)
[CHu]zy = Yu5ij39t29/2(CHJB - 202JB) + 51‘353'3,%2 [—(CHD + C’HD) + gg'ZCHJB
_§9/202JB - 1_369§CZJG - (yf + %gl2>C’2y}, (4.34e)
[Cudlii = Yabi;3y;9*(Crip — 2Ca5), (4.34f)
(Creliy = Ye0i3y;9” (Crsp — 2C2sm). (4.34g)

These should be added to (4.19). Comparing with (4.18), we see that the additional nonuni-
versal effects are significant only for the third-generation ¢ and u, i.e. t;, by and tg. They can

be represented by the following additional breaking of the universal relations, supplementing
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(4.32),

09} 933 — g = — 1?;2 In ,UELW {—gz—gg + if — ZW %%Y + 136 g Z
_%(cg +352)Ag7 + ;’SEMV %A/‘gv} (4.352)
[5911%”]33 _ 5%1/? _ 1?6Jt I A {_%ﬁg s 9y 71 Sey 895 7
u d ™ HEW Ce 8 8 24 c‘9
i(?)c@ + 552)AgZ + 145 SGAF;«, + AIiV + 35 (9yt +d )czy] : (4.35Db)
39700+ 1007} — 870 — 0 =~ Miw EE
—6c2AGE — ARy — é(9yf — 9,2)C2y:| : (4.35¢)

The other universal relations are not violated up to y]% Jy2(f # t) suppressed terms. Note also
that, as indicated above, [0gZ%)33 is not modified by terms proportional to yZ, so [6g%%;; o< d;;
still holds approximately.

The universal pieces in (4.34), on the other hand, can be conveniently attributed to the

running of Cy w, Cyyp in addition to (4.20),

CHJW = 6yt2<CHJW — Qngw), (436&)
OHJB = 6y152<CHJB — 202]3). (436b)

Note that the one-loop beta functions of g, ¢’ do not depend on y;. Regarding the 4-fermion
interactions related to the W)Y, Z parameters, the additional contributions to the anomalous
dimensions are significant only for the third-generation quarks t;, by, tg, and there is no
universal part to be added to C’g JWs Cg JB, C’z Jjg. Further, the running of C'ywpg, Cyp in

(4.27) should be supplemented by the following additional terms, taken from [77],

OHWB = 6thCHWBa (437&)
Cup = 6y;(2Cup — ¢"Cus), (4.37b)

The discussion above implies that up to nonuniversal effects that are important for the
third-generation quarks tr, by, tg only, the y-dependent RG effects in the electroweak sector
are universal and can be conveniently attributed to the running of the oblique parameters.

Referring to table 4.2 for the translation between the universal parameters and the Warsaw
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basis Wilson coefficients, we find
S =625, T=122T, W=Y =0. (4.38)

These equations are to be added to (4.28). Similarly, we still have Z = 0. We remark
in passing that (4.28) and (4.38) can also be derived from the results in [37], where the
submatrix of v;; involving the bosonic operators in the EGGM basis is calculated. Referring
to [109] for the expressions of the universal parameters in this basis, we have explicitly
checked that the results are the same as we presented above.

Defined in this way, the oblique parameters that appear in the LO expressions of elec-

y?
1672

tions, except for observables involving the Z boson couplings to t;, b, and tg. Among

troweak observables, when renormalized at p = pgw, absorb all the O( In HELW) correc-

them, only the Zbpby coupling is directly probed by precision Z-pole data, for which we

obtain (suppressing the gauge-coupling-dependent LL corrections proportional to W, Y, Z

discussed in the previous subsection),

[5ggd(MEW)]33

1 A . Sg
- sa—n [4538 () = (3 = 453)T (uswe) + (3 — 85)W () — c_gy(’“‘EW)}
2 A 2 ) 9
s |20(S = AR,) = T+ 3W + (7 = 653) A9 + (4 = 5% ) ea |- (4:39)
0

+
3212 umw

The physical picture of this effect was already discussed in the second example in figure 4.1.

4.3.3 Implications for the oblique parameters fit

So far, we have found that while universal theories at the new physics scale do not in general
remain universal after RG evolution down to the electroweak scale, precision observables in
the electroweak sector allow for a separation of universal and nonuniversal effects induced
by RG evolution. With our prescriptions for the separation, the universal effects are con-
veniently attributed to the running of the oblique parameters, given by the sum of (4.28)
and (4.38). This serves as a definition of the oblique parameters at the electroweak scale;
see (4.29). Corrections to the electroweak observables not involving the third-generation
quarks tr, by, tg can be represented, to LL and leading y; accuracy, by the LO expressions

with S , T, W, Y renormalized at pgw, plus additional (nonuniversal) terms proportional
1

to 5= In MELW AW, Y, Z}; see e.g. (4.33). For the electroweak observables involving ¢, by,
or tg, on the other hand, additional terms of order lé’j; In ;ﬁ should be added, which also

involve some less-constrained nonoblique universal parameters; see e.g. (4.39).
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If these additional LL terms were absent (or negligible), the conventional oblique param-
eters fit, where theory predictions of observables incorporating LO contributions from the
oblique parameters are confronted with precision electroweak data, would be a consistent
procedure to derive constraints on universal theories. Bounds on the oblique parameters
obtained in this way could be interpreted as bounds on S(uew), T(tew), W (uew), Y (tew)
defined in (4.29). The latter could then be mapped onto constraints on the universal param-
eters at the new physics scale A, following the sum of (4.28) and (4.38).

In reality, however, the additional LL terms due to RG-induced nonuniversal effects,
which involve some less-constrained universal parameters, may not be negligible compared
with LO contributions from S, T W, Y, as well as experimental and SM theoretical uncer-
tainties. If this is the case, one should go beyond LO for a consistent fit of universal theories
to precision electroweak data. But as far as universal theories are concerned, the underly-
ing number of free parameters is still much smaller than that in the full SMEFT. At the
LL order, only a few additional parameters, defined by linear combinations of the universal
parameters at A, are sufficient. While a full-fledged global analysis is beyond the scope of

the present chapter, we will illustrate this point with an example in the next subsection.

4.3.4 Example: R, and R, in universal theories

We consider the two observables R, and R, introduced at the end of section 4.2.2, and see
how their SMEFT predictions are affected by the additional nonuniversal LL terms. Similar
to the examples shown in the previous subsections, namely (4.33) and (4.39), the Higgs basis
couplings renormalized at pugpw that appear in (4.16) can be worked out. Eq. (4.16) then

becomes, numerically,

"Ry = —0.36[Aes(urw) — cgAer (Lpw)]

+1H(A/3MEW) (0.13Z — 0.053A57 + 0.0028AR., — 0.0091¢y,), (4.40a)
SNPR, = 0.079[Aes(urw) — cgAer (tEw)]

+—1H<A/3 tew) (—0.19Ag7 + 0.010AR,, — 0.032c5,), (4.40b)

where
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is a common oblique parameters combination entering the two observables at LO, expressed
in terms of the Ae parameters defined in (4.4).* We have neglected the additional LL terms
proportional to S , T, W, Y, since these parameters already appear in the LO expressions.

The numerical impact of these neglected terms is to correct the coefficients of Aes(upw) —

1
1672

invasion of additional, possibly less-constrained parameters Z, Ag?, AR., ¢z, through RG

c2Ae; (ugw) by order lnMELW numbers, and is expected to be less important than the
evolution from A to pgw.

The various terms in (4.40) shift the theory predictions for R, and R, in different direc-
tions in the Ry- R, plane. This is shown by the dashed lines in figure 4.2, assuming In MELW =3
as expected from A ~ O(TeV). The new physics corrections can be compared with the SM
predictions from the Gfitter fit [26],

R, =20.743 £0.017, R, = 0.21578 £0.00011, (SM) (4.42)
which is based on the Z-pole measurements from the LEP and SLD collaborations [139],
R, =20.767 £0.025, R, = 0.21629 £+ 0.00066. (LEP+SLD) (4.43)

As we can see from figure 4.2, a LO oblique parameters fit would naively constrain the lin-
ear combination Aez —c2Ae; (blue), properly renormalized at pgw, to be O(107%). However,
reasonable values of other universal parameters, namely (9(}(—22), which enter the LL correc-
tions, can significantly change the picture. In particular, values of O(1072) and O(1071)
for the Z (red) and ¢y, (green) parameters, respectively, which may be generated by heavy
QCD-charged states and scalar states, lead to corrections larger than the experimental and
SM theoretical uncertainties. It would be interesting to compare these numbers with direct
constraints on the parameters Z (see e.g. [204]) and ¢y, and obtain a fuller understanding of
allowed parameter ranges through a global SMEFT analysis. The anomalous TGC parame-
ters Ag? and AR, shift the theory predictions along the same direction as ¢y, since all three
parameters contribute via [§g#9|33 only. They are directly constrained by measurements at
LEP2, and more recently also at the LHC.? The green line segment between the orange stars

(triangles) represents the 95% C.L. interval allowed by the combined LEP2 constraint on

4With only observables involving ratios of Zff couplings such as R, and R, one cannot break this
2
degeneracy, because giZf + 5giZf = (1+ A; )giZf — Qi =25 (Aez — c3Aey), for both i = L,R. When
o

2 _
cp—s

Aes —c3Ae; =0, all Zf f couplings are rescaled by a common factor, and ratios of couplings are unchanged.
This flat direction can be lifted by considering other observables such as the Z boson total width.

5Though experimental constraints are on 6gi., 0k~ defined with respect to the physical particles, the
difference between dg1, and Aglz , which involve Ae; 23 (see table 4.3), is not relevant, since when inter-
preted in universal theories, oblique corrections are always assumed to vanish in experimental TGC analyses.
See [109] for more discussion.
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Figure 4.2: (From [111]) Theory predictions for Ry = ['yaq/T(Z — £147) and R, =T'(Z —
bb) /Thaq are shifted away from the SM point along the dashed lines, when the universal
parameters appearing in (4.40) take the values labeled beside the dots. The anomalous TGC
parameters Ag?, Ak, lead to shifts along the same direction as ¢y, (green dashed line), with
the orange stars and triangles indicating the maximum shifts allowed by the LEP2 TGC
constraints (95% C.L.) from single-parameter fits (shown in the bottom-right corner) [205].
mf:\w = 3 is assumed, as motivated by TeV-scale new physics. Agreement between the
SM predictions as fitted by the Gfitter group [26] and the combined measurements by the
LEP and SLD collaborations [139] naively constrains the oblique parameters combination
Aes — czAe; (blue) defined in (4.41) at the 1072 level. But even when the oblique parameters
are interpreted as renormalized at pugw following our prescriptions, the neglected LL terms in
such a LO oblique parameters analysis can actually be significant. The challenge illustrated
by this example requires extending the (5’ T, W, Y') parametrization to include additional
parameters in a consistent global fit of universal theories beyond LO.

In
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Ag? (Ak.) taken from the LEP electroweak working group final report [205]. These con-
straints are derived allowing one anomalous TGC parameter to be nonzero at a time, and
are shown here for illustration purpose only. We see that values of AgZ as allowed by the
above constraint can contribute significant corrections to R, and Ry.

Our example shows that the RG-induced nonuniversal effects that are usually neglected
can indeed challenge the interpretation and usefulness of the LO oblique parameters analysis.
In practice, this means that for a consistent global fit of universal theories to precision
electroweak data, one should go beyond the conventional approach with the (S’ ,T WY

parametrization. An extension to LL order should at least involve two additional parameters,

Z=zm- 557 = [(7— 6s2)agh — S—EAPW T (yf - 29/2)023/} (a4

HEW ot 9 HEW
where §gZ° is proportional to the linear combination of the less-constrained universal param-
eters appearing in the LL term in (4.39). For the two observables R, and R discussed in
this subsection, Z and 8 GZ® capture shifts in the directions of the red and green dashed lines
in figure 4.2, respectively. Further extending the analysis to include NLO finite corrections
may introduce more parameters, but the total number of free parameters is no more than
16, the number of universal parameters defined at A.° Extended in this way, the oblique
parameters analysis can be consistent and useful, and yet simpler than the full SMEFT if
one is interested only in universal theories (see [91,104] for discussions on consistent analyses
of the full SMEFT).

4.4 RG effects in the Yukawa sector

We next turn to the Yukawa sector, and show how the universal relation (4.5b) can be
violated by RG evolution. The observation that RG evolution in universal theories can induce
nonuniversal rescaling of all SM fermion Yukawa couplings was previously made in [38], based
on partial results on the anomalous dimensions «;; for one fermion generation, and assuming
a limited set of nonzero Wilson coefficients. Our analysis in this section takes into account
the full 7;; that became available after [38], and all the parameters characterizing universal
theories classified in [109].

6A further challenge can potentially arise at this order, if constraints on the universal parameters are to
be interpreted in specific UV models. Since a NLO calculation of observables requires one-loop matching [55,
56,195-198] of the Wilson coefficients contributing at LO, we need to assume that the UV model does not
generate operators beyond those in (4.1) even at one-loop matching. This assumption is implicit in our EFT
definition of universal theories, but may not be satisfied by all UV theories that would otherwise be regarded
as universal.
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The dimension-6 operators relevant for Yukawa coupling corrections are those in the

2 H? class. At LO, their Wilson coefficients are related in universal theories as follows,

{Cutt, Canr, Cen }] . [{Yu, Vexmya, ve }] e (4.45)

The running of these Wilson coefficients is in general complicated by the nontrivial fla-
vor structure in the quark sector. For example, [C’dH]ij contains terms proportional to
[yuyl Vernyalij, which, unlike [Vogamyali; that [Cagli; is proportional to at LO, cannot be
diagonalized by applying V(JJ[KM on the left. Thus, a redefinition of the CKM matrix is
needed after RG evolution. However, the third-generation quarks are hardly affected by this

complication, since we can approximate Ve by a block-diagonal matrix,

1 Aw O
Vekm > | =\ 1 01, (4.46)
0 0 1

where a subscript “W” has been added to the Wolfenstein parameter Ay ~ 0.23 to avoid
confusion with the Higgs self-coupling \. With O()\%,) terms neglected, RG evolution in uni-
versal theories does not mix the third-generation quarks with the first- and second-generation
ones. We will focus on the experimentally most accessible third-generation Yukawa coupling
corrections in the following, adopting the approximation (4.46) and neglecting terms sup-
pressed by y7/y7 (f # t). Using the results in [76,77,80] and table 4.1, we find

2,3,

: _ ol 5 2
(Cumlss = yt{( 5 Vi + 24\ — 8y 19 1Y )C 1297 (y7 — X)Coy

1 2
—(3yt2 — 3\ = 4g2 + 9/2) 2CHJW + (53/752 D 92 —+ 59/2)9/20}[]3
16 64
+§(yt Ng?Coyp + — 3 (yi — N)g2Chc
10 3 3
—(Gyf + 4\ — §92>C’HD + (yf +2)\ — §g2 + Eg@) Cup
17
_gg/CHWB =+ 32g§CHG + QQQCHW + EQIQCHB:| s (447&)
. 21 27 5, 23
[Carlss = we [( S Y+ 24A =8¢, — —¢" — g ’2)% — 1497 (y; — X)Coy
3 2 2 1 12 2 1 2 1 12 12
—(5% —3A—4dg” + 59 )g Craw + (A 59 — 39 )g CHJB
8 64 10 3 5
"‘9/\9,202JB — 3/\QSC2JG — (4)\ — 392> Cho + (2/\ — 59 + 9 >CHD
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5
+99'Cawp + 329§CHG +9¢°Crw + §QI2CHB] ) (4.47b)

27 21

[Cenlss = us {(153/ + 24\ — —¢* — 9/2)0 — 1247 (y7 — N)Cyy

4 4
2 2 3 12 2 3 2 12 12
_<3yt — 3\ —4yg +§9 )9 CHJW+()\_§Q + 39 )9 Cuip

10 3,,3
—8\g*Cayp — <4/\ - ?92)(]1{5 + <2)\ - 592 + Eg’2> Cup

—399'Cuwp + 99°Crw + 159'201{3} : (4.47¢)

While there are overlapping terms in these equations, there is no obvious well-motivated
way to make the separation between universal vs. nonuniversal effects. We thus refrain from
defining the running of ARr as we did for the oblique parameters in the previous section,
but simply present the violation of the universal relation (4.5b) at the electroweak scale. To

do so, we note that, in our notation,

Cy C C Ce
5yt_5yb:__<[ Hbg__[dgb3>’ 5yb_5yT:__([de3__[ Hbg)’ s
Y Yo Yo Yr

where Oyy, Oy, 0y, represent [0yylss, [0yalss, [0ve]ss, respectively. Combining (4.19) and the

one-loop running of the SM Yukawa couplings,

. 9 4 s 9, 17 /2>

N S ST 1| 4.4
Uy yt(Qyt 89, 19 1Y) (4.49a)
. 3 s 9,5 O /2)

— (32 g2 22 2 4.49h
Ub yb<2yt 895 9 10 ) (4.49b)
. 9 15
Yr = Yr (3yt2 - 192 - A 9/2)7 (4490)

we obtain

A )
5yt(MEw) - 5yb(uEw) = - In —(5% - 5%)
HEW

1672
1 A 2 _ _ 12 27 2 35 _
= 162 In #E—W —6y; (2ARr — ARy) + 497 s;Ag7 — 29 —2A/i7
2 N T 2 2 4l 5 16 2\ 59
=20g" = 207) 5 + T+ (3 + 207 - ( TV — A — 20"+ g ) Sy
9
128,47
L7 4 2007~ N + 9y — o)
In(A . .
A 1EW) o3 ng L 4 011ARy + 0.0022A5% — 0.0014A%., — 0.00198 + 0.0197
3 1 Y
+0.0611 — 0.020Y — 2.8Z + 0.032¢3, + 0.00023f,, — 0.00031f.,), (4.50a)
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1 A

B — by, = ———In—(by, — Oy,
Uslhew) = 0y (tew) = — 16— nuEw( Ys — 0Yr)
1 A 2/ A = _ 40 oy 7, 20 psj
Tl 3y (ARr — ARy - ST + T2 0%,
10 )\ 82 » 40 10 )\ s2
4<2__/2>_95_<32 4’2)W—4<—)\ 2__/2)_6Y

128 g2 10
+?)\?Z — 2(@/,52 — )\)yECQy + 8g§‘fgg - —9,2(€2f'y'y - gl2fz*y>}

3
In(A .
~ W(O.O%ARF — 0.056 ARy — 0.0074Ag7 + 0.0048A%, — 0.0000145

—0.066W — 0.013Y 4 0.37Z — 0.032ca, + 0.34f,5 — 0.00078f.,, 4+ 0.0010.-)(4.50b)

The terms in these equations involving the oblique parameters correspond to the effect
illustrated by the third example in figure 4.1.

The numerical results in (4.50) show that significant deviations from the universal relation
(4.5b) are possible. For example, in the simplest scenario where Ak is the only nonnegligible
universal parameter at the new physics scale A, we have 0y (A) = dyp(A) = 0y, (A) = ARp,
but 0y (prw) ~ 0.770y,(uEw ), 0ys(tew) =~ 1.0560y, (urw) after RG evolution, if In NELW ~ 3.
Further deviations can be induced by other universal parameters, such as ARy, Z, cyy,
fqg, if they are generated at A. Therefore, the sometimes adopted simplified approach to
precision Higgs fit where a common rescaling factor is assumed for all the SM fermion Yukawa
couplings does not find its justification in universal theories. This assumption applies to
the the effective hff couplings at u ~ my, ~ pugw, and appears fine-tuned in light of the
RG-induced nonuniversal effects illustrated above. Thus, even for universal theories, it is

desirable to keep these parameters separate when fitting them to data.

4.5 Conclusions

The usefulness of simplified frameworks for precision analyses lies in the fact that they are
much more tractable than the full SMEFT with a vast parameter space, and yet capture
broad classes of BSM scenarios. The oblique parameters framework, which characterizes
effects of universal theories on precision electroweak observables, has been widely-used for
more than two decades now, and finds its justification at LO in the modern SMEFT approach
with a consistent description of universal theories in the SMEFT [109]. In many cases,
however, it is desirable to go beyond LO in the new physics effects, and simplified frameworks
should be properly extended to incorporate RG evolution.

In this chapter, we have performed a RG analysis of universal theories in the SMEFT
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framework. The key observation is that under RG evolution, universal theories at the new
physics scale A, which reside in a 16-dimensional subspace of the full SMEFT parameter
space, can flow out of this subspace, and become nonuniversal at the electroweak scale ugw
where their effects on precision observables are measured. But the departure from universal
theories at ugw is not arbitrary, as the theory is still usefully described by the 16 universal

parameters defined at A. The main consequences of this observation are the following.

e The universal pattern of deviations from SM predictions seen at LO in the universal
theories EFT is distorted after RG evolution from A to ugw. The RG-induced nonuni-
versal effects lead to well-defined departures (dictated by the 16 universal parameters
at A) from the LO universal relations (4.5) among some generically independent Higgs
basis couplings (in the sense explained at the end of section 4.2.2); see (4.32), (4.35),
(4.50).

e Since there is in general no unique procedure to define the oblique parameters (and
more generally universal parameters) for nonuniversal theories, additional prescriptions
are needed for S(ppw), T(pew), etc. to be meaningful. Our prescriptions are shown in
(4.29), where the running of the oblique parameters is given by the sum of (4.28) and
(4.38).

e With our prescriptions, LO expressions for the new physics corrections to electroweak
observables NP0 can be used with S , T , W, Y renormalized at pgw, supplemented
by additional LL terms that cannot be absorbed into the running of the oblique pa-
rameters. An example calculation of two well-measured observables R, and R; shows
that the additional LL terms can be numerically important; see (4.40) and figure 4.2.
This implies that, even for universal theories, a consistent precision electroweak fit
should go beyond the {S T, W, Y} parametrization. But unlike generic nonuniversal
theories, the additional parameters to be incorporated are a small number of linear
combinations of other universal parameters invading through RG evolution from A to

pew; see (4.44).

e The Yukawa couplings of all SM fermions are in general not modified in the same
way even in universal theories. In particular, (4.50) shows the potentially sizable RG-
induced deviations from a universal rescaling for the top, bottom and tau Yukawa
couplings (as parameters in the Higgs basis framework). Thus, fitting a common
Yukawa coupling rescaling factor to Higgs data as based on LO intuitions from universal

theories is of limited use.
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Two additional aspects of RG-induced nonuniversal effects not discussed in this chapter
are the generation of the dipole-type couplings dy ¢ (which vanish at LO in universal theories;
see table 4.3), and a nonuniversal pattern of 4-fermion interactions. They correspond to
violations of the two other features of universal theories at LO listed in section 4.2 of [109]
that are not captured by the universal relations (4.5).” Following the discussion in [80], we see
the former affects the muon anomalous magnetic moment, but not u — ey or electric dipole
moments, if the theory is universal (and CP-conserving) at A. The latter aspect may have an
impact on precision analyses of LEP2 data in the oblique parameters framework, and can also
be relevant for future precision measurements on a higher-energy ete™ collider where also the
top quark can be pair-produced. In any case, to make maximal use of existing and upcoming
precision data for indirect searches of physics beyond the SM, simplified parameterizations of
new physics effects, as motivated by specific classes of BSM scenarios like universal theories,
should be consistently cast in the SMEFT framework (if the absence of new light states is

assumed), and checked for robustness against RG evolution.

"There it is also mentioned that (5912” = 0 at LO in universal theories; see table 4.3 of this chapter. A
nonzero 59}I;Vq is generated by RG evolution at O(y,yq)-

80



Chapter 5

Time to Go Beyond TGC

Interpretation of 1V Pair Production

W boson pair production processes at ete™ and pp colliders have been conventionally inter-
preted as measurements of WW Z and W W+ triple gauge couplings (TGCs). Such interpre-
tation is based on the assumption that new physics effects other than anomalous TGCs are
negligible. While this “T'GC dominance assumption” was well-motivated and useful at LEP2
thanks to precision electroweak constraints, it is already challenged by recent LHC data. In
fact, contributions from anomalous Z boson couplings that are allowed by electroweak preci-
sion data but neglected in LHC analyses, being enhanced at high energy, can even dominate
over those from the anomalous TGCs considered. This limits the generality of the anoma-
lous TGC constraints derived in current analyses, and necessitates extension of the analysis
framework and change of physics interpretation. The issue will persist as we continue to
explore the high energy frontier. We clarify and analyze the situation in the effective field
theory framework, which provides a useful organizing principle for understanding Standard

Model deviations in the high energy regime.

5.1 Introduction

The nonabelian nature of the Standard Model (SM) gauge groups has the crucial consequence
of gauge boson self-interactions. In the electroweak sector, the structure of WW 2 and WWr~
triple gauge couplings (TGCs) follows from SU(2), x U(1)y gauge invariance and the pattern
of its spontaneous breaking. Heavy new physics beyond the SM may leave footprints on the

low-energy effective theory in the form of anomalous TGCs. Conventionally, these effects
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are parameterized by the following Lagrangian [206],
Lrcc = 1ig {(W;;W’“ — WL, WHY (14 0g12) coZ" + s5pA]

1
+§W[:7WV_} (14 0k.) cgZM + (1 + 0ky) 59 A ]

1
+ryr—
o WEW 2, + AVSQAPH)}, (5.1)
assuming C'P conservation. Here W2 = 9,W;F — 0,W7, W[:WV_] =WiW, —WFW;, gis
the SU(2), gauge coupling, and sy (¢y) denotes the sine (cosine) of the weak mixing angle.

The anomalous TGC parameters ¢, 0Kz, 0k, A., Ay, which vanish in the SM, have been

s
intensively studied in search of evidence for new physics. LEP2 measurements of W pair
(and to a lesser extent also single W) production were able to confirm SM predictions and
constrain the anomalous TGCs at the < 10% level [45,205]. Recent years have seen renewed
interest in TGC studies, motivated by progress on LHC electroweak measurements as well as
connection with Higgs physics [6,71,103]. Impressively, with several diboson measurements
at 7 and 8 TeV combined, LHC has already exceeded LEP2 in setting limits on anomalous
TGCs [112]. The WW [207,208] and W Z [209,210] channels played a dominant role in this
achievement. Prospects of future facilities have also been discussed, with numbers as small
as 1071072 quoted for anomalous TGC sensitivities [211,212], showing great potential of
uncovering new physics beyond the SM in electroweak interactions.

In previous TGC analyses, it is often assumed that Eq. (5.1) encodes all the relevant
beyond-SM effects on the observables under study. This assumption, which we shall call the
“TGC dominance assumption,” is obviously not satisfied for arbitrary new physics scenarios.
Nevertheless, it is well-motivated and useful if other possible deformations of the SM are
experimentally constrained to be small. Whether the latter is the case should be carefully
assessed to give meaning to TGC studies.

To do so, we consider the most general SM deformations due to decoupled new physics at a
high scale A, which can be captured by the SM effective field theory (EFT) at experimentally
accessible energies, assumed to be much below A. Generically, assuming lepton number
conservation up to A, leading corrections to the SM Lagrangian arise from dimension-six

effective operators,

C;
Lsverr = Lav + Z ﬁ(’)z +..., (5.2)

with C; ~ (9(}(—22) up to model-dependent coupling or loop factors. In this framework, search
of SM deviations becomes a global analysis program, with experimental input on different

processes probing various directions of the {C;} parameter space [29,46,114]. Conventional
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TGC analyses via e.g. W pair production are usually interpreted as constraining the linear
combinations of C; giving rise to anomalous TGCs. This is based on the TGC dominance
assumption, which asserts that other combinations of C; affecting the observables under
study can be effectively set to zero. It is commonly believed that the latter combinations are
well constrained by electroweak precision data (EWPD) and can hardly have any impact.
It is the purpose of this study to revisit the TGC dominance assumption and assess
its validity in light of recent improvements on TGC constraints from LHC data. We focus
on the WW channel given its relevance at both ete™ and pp colliders. There have been
claims in the previous literature that the TGC dominance assumption is valid in the case of
ete”™ — WHW~ at LEP2 [29,45], and we will verify them explicitly. On the other hand, as
we will see, this assumption is no longer supported by EWPD when analyzing recent LHC
results. A key observation is that some of the neglected effects, even though constrained by
Z pole data, are enhanced at higher energies and become nonnegligible compared with the
anomalous TGC effects under study. The situation calls for extension of the TGC analysis
framework to allow for more general interpretations of experimental results. Further, from
the SMEFT point of view, as we continue to explore the high energy frontier, it will be
perhaps more useful to organize our knowledge of effective operators in terms of their high

energy behaviors, rather than the anomalous couplings they induce as is conventionally done.

5.2 Effective operators and anomalous couplings

We start by reviewing the theoretical framework in order to precisely formulate the TGC
dominance assumption. We shall be guided by the SMEFT at dimension-six level to identify
potentially important beyond-SM effects in addition to anomalous TGCs. In the Warsaw
basis [3], which we adopt here for concreteness, the following operators contribute to ff —
WHW ™ at tree level:

Onwp = H'o"HW,B",  Oyp = |H'(D,H)J,

Osw = "W Wrwir, [On] . = Gyl 1),

[0k],, = i(H'o*(D,H) — (D, H"o" H) (Fr"o" F),

(O], = i(H'(D,H) — (D, H"H) (FA* Fy),

[Ony],, = i(H(DuH) — (D H)H) (Fr 1), (5.3)

where F', f denote SU(2), doublet and singlet fields, respectively, and i,; are generation

indices. We assume minimal flavor violation [13] for simplicity, and neglect operators whose
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coefficients are suppressed by SM Yukawa couplings.

One can work out the anomalous couplings induced by the dimension-six operators in
Eq. (5.3). To avoid ambiguities associated with field and parameter redefinitions, we follow
[7,213] and define anomalous couplings with respect to mass eigenstate fields in unitary
gauge with canonically normalized kinetic terms, after SM parameters have been properly
redefined such that the conventional input observables myz, Gr, «, etc. are not shifted
(see [109] for connection with the oblique parameters formalism [146, 193, 194]). In this
framework, ff — W¥TW™ can receive new physics contributions from: 7) anomalous TGCs
defined in Eq. (5.1); i7) W boson mass shift

2

2
Loy =(1+0 ) W+W s (5.4)
and ii1) Z ff and W f f’ vertex corrections (with f’ being the SU(2), partner of f)

Cotex = 3 (T3 = Qps)diy + [097 5] ) ZuFir" £

C
¥ 0

+% [(5’7 T [592/{1} ij)W:ﬂLi’Y“(VcKMdL)j

+(6i; + [59{"1]”)“/:172-7“6” + h.c.} : (5.5)

where f now runs over mass eigenstates vy, er g, Ur r, dr r, and generation indices 1, j are
summed over. These anomalous couplings are not all independent. In particular, anomalous

TGCs satisfy the well-known relations,

2
Sk, = g1, — i_gd“”’ A=A\ (5.6)
(7]

while Zf f and W f f’ vertex corrections are also related,
3y ' = 697" —6g7t, Sgr" = dg7" —dgi”. (5.7)

Therefore, there are 5(6) independent anomalous couplings contributing to ff — W+~
with right-handed (left-handed) incoming fermion: 0¢1,, 0Ky, Ay, Oy, plus 59? (§gff and

) gff /). In particular, efe™ — WTIW ™ at LEP2 involves 7 independent anomalous couplings
{812, 0K, Ny, 697¢, 697", 0g7¢, Om }, (5.8)

while pp — WTW ™ at the LHC involves 8 when only first-generation quarks are considered

84



in the initial state
{612, 0k, Ay, 6974, 097", 6977, 697, 6m }, (5.9)

with generation indices i, j = 1 implicit.
The dictionary between effective operator coefficients and the anomalous couplings listed

above reads

1 S 1
0912 = SO <——HCHWB - ZCHD - 51})7

C 3
51{’\/ = S_ZCHWB’ )\'y = _59 CgW,
1
Zf1  _ p3[(3) (1)
[59L ]Z] =Ty [CHF} i~ 9 [OHFL]-
coS 52 1
- Qf 20 OQCHWB‘I’(TJC ‘I‘Qf 5 0 2><—CHD+5U> 6@']’,
Zf 1 CoSg Sg 1
0977, = =51Cusl,, = Q|5 s Crnwn + 50— (5 Crap + 00) | 3
! 2 ! ] 0 Cop s\
1 1
O = ——5 3 (CGSQCHWB + —C?CHD + 83(5’0), (5.10)

where F denotes the SU(2); doublet containing f7, and dv = %([C’SZ)]H + [C’SZ)]QQ) —
%([011]1221 + [Cll]znz)-

With the discussion above, it should be clear that, as far as the dimension-six SMEFT is
concerned, the TGC dominance assumption corresponds to keeping only the subset {0g1, 0k, Ay}
of anomalous couplings in Egs. (5.8) and (5.9). We see from Eq. (5.10) that, once the op-
erators inducing 0g;., 0. are turned on, one then has to adjust CS;), Cry to ensure that

vertex corrections vanish.

5.3 Triple gauge coupling measurements: from LEP2
to LHC

Now we make a first attempt to assess the validity of the TGC dominance assumption in W
pair production processes. For illustration, we will allow each of the additional anomalous
couplings,

{0g7°, 697", 097, 097", 095", 697%, 697", 6m } (5.11)

to be maximal within the 20 intervals in Eq. (40) of [45] and Eq. (4.4) of [92], which are
derived from EWPD assuming flavor universality, and see how much correction they can

induce on some representative observables. This is to be compared with contributions from
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anomalous TGCs being considered in conventional TGC analyses, as well as experimental
uncertainties.
TGC analyses at LEP2 made use of ete™ — WTW ™ measurements with unpolarized

ete” beams at center-of-mass energies up to 209 GeV. We consider as an example observ-

able —22_(e*e™ — WTW ™~ — gqlv) with § being the angle between W~ and e~ momenta

and ¢ = e, (either sign), at /s = 198.38 GeV. This is reported for 10 bins of cosf in
Table 5.6 of [205] based on data from 194 to 204 GeV, with a luminosity-weighted average
of 198.38 GeV. Fig. 5.1 shows the fractional shift in délgse with respect to the SM, calculated
at tree level, when each of the anomalous couplings in Eq. (5.8) is turned on individually,

along with experimental uncertainties (gray dotted). Contributions from dg#%, §gZ? via W
branching ratio modifications are within +0.005 and not shown. Numerical values chosen
for the anomalous TGCs reflect the level of LEP2 constraints — they correspond to max-
imal deviations from zero allowed by the LEP2 three-parameter fit (95% C.L. intervals in
Table 11.7 of [214]). It is seen that possible contributions from vertex and W mass correc-
tions as allowed by EWPD are indeed well beyond experimental sensitivity, thus providing
justification for the conventional TGC analysis procedure (though the situation may be more
subtle when theoretical errors from EFT calculations are considered [114]).

At the LHC, anomalous TGC constraints greatly benefit from the WTW~ — e*pfoy
channel. For illustration, we follow the ATLAS 8 TeV analysis [207], and numerically cal-
culate the leading lepton pr distribution. Our results are shown in Fig. 5.2, with values
of anomalous TGCs chosen at the 95% C.L. upper limits from the recent TGC fit [112],
which are comparable to those reported by the experimental collaborations. We see that,
unlike the situation at LEP2, contributions from dg4*, dg4? as allowed by EWPD can be
at a similar level as, and even dominant over those from anomalous TGCs being considered
(effects of other anomalous couplings are very small and not shown). The issue becomes
more severe if the flavor universality assumption is relaxed, as vertex corrections are even
less constrained in that case [92]. Therefore, interpreting LHC WW data as a measurement
of TGCs while neglecting these additional, potentially more important effects limits the gen-
erality of the results. A consistent global fit should include effects of §g4¥, dg4¢ along with
those of 0¢g1,,dk, A, when considering such data, and interpret the latter as constraining
this extended parameter space.

As a side remark, we note that large contributions from dg2*, 6g4¢ are dominated by
new physics amplitude squared terms rather than interference with the SM. The same is
true for anomalous TGCs [115]. Generically, it is difficult for LHC data to be sensitive to
interference terms due to limited precision. Yet, consistent interpretation of dimension-six

SMEFT constraints can be made in some restricted contexts, in particular strongly-coupled
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Figure 5.1: (From [117]) Fractional shift in LEP2 ete™ — WTW ™~ — gqlv differential cross
section induced by each of the anomalous couplings in Eq. (5.8), compared with experimental
uncertainties (gray dotted) reported in [205]. Assuming lepton flavor universality, effects of
the anomalous TGCs being constrained (solid) [214] are seen to dominate over those of
Zff vertex and W mass corrections (dashed), even when the latter are set to maximum
values allowed by EWPD [45,92], providing justification for the conventional TGC analysis
procedure.
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Figure 5.2: (From [117]) Leading lepton pr distribution of 8 TeV LHC W*WW ™ events in the
e channel when each anomalous coupling is turned on individually, compared with exper-
imental data (dots with error bars) and SM predictions (gray dotted). The latter, together
with non-WW backgrounds (gray shaded), are taken from [207]. Effects of anomalous TGCs
being considered in recent TGC fits (solid) are clearly not dominant over those of §g4%, §g4%
(dashed) consistent with EWPD, calling for extension of the conventional TGC analysis
procedure.
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scenarios, where dimension-eight operators’ contributions are expected to be subdominant

by power counting [113].

5.4 Toward a high energy picture of Standard Model

deviations

The reason for the different conclusions regarding LEP2 and LHC is twofold. First, Z
couplings to quarks are less constrained than those to leptons; even a nonzero dg4¢ is favored
due to the Z — bb forward-backward asymmetry anomaly [139]. Second, as we will discuss
below, some vertex corrections, even though constrained by Z-pole data, lead to cross section
corrections relative to the SM that grow with s. Their effects are thus amplified at higher
energies. This latter aspect will persist in the future. In particular, it has been proposed to
measure e"e” — WTIW ™ at much higher energies and precisions than LEP2 to search for
deviations from the SM. But whether such deviations, if established, should be interpreted
as indicating anomalous TGCs will crucially depend on our knowledge of the additional
effects, which in turn depends on availability of precision data of other observables. We
leave a detailed study to future work, but simply comment here that in the scenario where
improved Z-pole measurements will not occur before the next ete™ — WTW ™ measurements
(as envisioned for the ILC [215]), TGC interpretations will indeed be challenged by possibly
large effects of dg7", dg&°

In fact, searches of SM deviations at the LHC and future colliders share a common theme
of going to higher energy and taking advantage of the anomalous growth of cross sections.
In the case of ff — WHW~, consider the high energy limit v < v/§ < A, where

Ty = g G- ]
|[~0g7" = (T} = Qss}) dgu. + (T} Qﬁé o6
= 8}1;;;299) [77(c5 = 58) + Q5] [Cirre + 2 T;’CE?H +0(7), (5.12)

Here 6 is the angle between the W~ and f momenta. Only terms linear in anomalous

couplings or operator coefficients have been shown, which are sufficient for making our point
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in the following discussion. We comment in passing that unlike the case of LHC, quadratic
terms are subdominant for ete™ — WHTW ™ up to /s ~ 1TeV, when values of vertex
corrections consistent with EWPD and per-mil-level 6g,, 0k, are considered (contributions
from A, do not grow with energy at linear level [115,128], and can be dominated by quadratic
terms).

The high energy behavior shown in Egs. (5.12) and (5.13) can be easily understood and
reproduced using the Goldstone boson equivalence theorem [68], which states that scatter-
ing amplitudes involving longitudinal gauge bosons coincide with those involving the cor-
responding Goldstone bosons in the high energy limit. For example, Ops D i(¢~ 00" —
¢+0,07)(fy*f), with ¢* being the Goldstone bosons eaten by W=, mediates frfr, — ¢t ¢~
via a contact interaction vertex, with an amplitude proportional to % by dimensional analy-
sis. The corresponding amplitude frf;, — W, W, (“L” in Wi for “longitudinal”) thus also
grows with 3, in contrast to the SM amplitude which ~ 8°. On the other hand, Onwg, Onp
and Oy do not mediate ff — ¢*¢~ at tree level, while their contributions to ff — WiW,,
either direct or via shifting input observables, necessarily involve factors of the Higgs vev
and hence ~ X—QQ Another interesting feature of Eq. (5.12) is that 6¢}"* and 5gff contribute
via the combination 2TJ;°’5gZVF — 5gff = —5gff "in the high energy limit. This can be seen
from SU(2).-conjugating, schematically, X—i(gZu)(ﬂyufi) — %(i@@(ﬁv“ﬁ).

The discussion above suggests that as precision studies are pushed to higher energies, it
is useful to reorganize our thinking about SM deviations. Conventionally, the experimental
precision hierarchy between pole observables and ff — W*+IWW~ has motivated the use of
anomalous couplings and the procedure of constraining first the parameters in Eq. (5.11), and
then anomalous TGCs with the former set to zero. As higher energies v/§ > v are reached, we
are probing the electroweak symmetric phase where fully SU(2) x U(1)-invariant effective
operators are more useful to guide our thinking than anomalous couplings defined in the
broken phase. In this regard, a better-motivated separation is between operators that lead
to anomalous growth with energy for the cross sections under consideration vs. those that
do not. This separation can be made also when quadratic terms, not shown in Egs. (5.12)
and (5.13), are included. For ff — W¥W~ the first set consists of Og’;’), Ony, and also
Osw when quadratic terms are considered. Interestingly, Ogﬁ), Onys do not by themselves
induce anomalous TGCs, but are turned on only to adjust § gff; to zero in conventional TGC
analyses; see Eq. (5.10). Within the range of validity of the SMEFT (v < A), this set
of operators is likely to be more accessible experimentally, leading to a different precision

hierarchy than before.
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5.5 Conclusions

As precision measurements continue to explore higher energies in order to resolve SM devi-
ations enhanced in this regime, our understanding of existing constraints also evolves; and
so does the overall picture of the SMEFT parameter space. In particular, it should be kept
in mind that EWPD will not always render Zff vertex corrections completely irrelevant
for other observables. Meanwhile, accessibility to various directions of the SMEFT param-
eter space will rely more heavily on high energy behaviors of effective operators, rather
than the anomalous couplings they induce. We have illustrated this point in the case of W
pair production. The TGC three-parameter fit framework has been useful and convenient
in past studies of SM deviations in such processes. But now it is time to go beyond this
simplified parameterization, as the key assumption that additional new physics effects are
well-constrained and negligible is already — and will continue to be — challenged by exper-
imental progress at the high energy frontier. A consistent global SMEFT analysis should
include not only anomalous TGCs, but all parameters whose effects are enhanced at high

energy when fitting W pair data, so that the results can be interpreted more generally.
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Chapter 6

Covariant Diagrams for One-Loop
Matching

In this chapter, we present a diagrammatic formulation of recently-revived covariant func-
tional approaches to one-loop matching from an ultraviolet (UV) theory to a low-energy
effective field theory. Various terms following from a covariant derivative expansion (CDE)
are represented by diagrams which, unlike conventional Feynman diagrams, involve gauge-

7

covariant quantities and are thus dubbed “covariant diagrams.” The use of covariant dia-
grams helps organize and simplify one-loop matching calculations, which we illustrate with
examples. Of particular interest is the derivation of UV model-independent universal results,
which reduce matching calculations of specific UV models to applications of master formu-
las. We show how such derivation can be done in a more concise manner than the previous
literature, and discuss how additional structures that are not directly captured by existing
universal results, including mixed heavy-light loops, open covariant derivatives, and mixed

statistics, can be easily accounted for.

6.1 Introduction

Matching from an ultraviolet (UV) theory to a low-energy effective field theory (EFT) be-
yond tree level has gained renewed interest in recent years. On the phenomenological side,
one-loop matching is in many cases necessary for accurate translation of experimental con-
straints on the Standard Model (SM) EFT parameter space into those on specific new physics
models. On the theoretical side, it is interesting to realize that matching calculations can be
accomplished in more elegant and oftentimes simpler ways than using Feynman diagrams.
For the latter aspect, the idea is to directly tackle the path integral, and identify and expand

heavy fields’ contributions to the functional determinant arising at one-loop level to obtain
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effective operators involving the light fields. Such functional approaches to matching have

at least two important virtues:

e By performing a covariant derivative expansion (CDE), one can work with gauge-
covariant quantities in all steps of the calculation, and thus automatically arrive at
gauge-invariant effective operators in the end. This is unlike conventional Feynman
diagram methods, where gauge-invariant final results are obtained only after putting

together individual pieces which may not be separately gauge-invariant.

e The generality of such approaches has brought up the possibility of obtaining universal
results. With general assumptions on the form of the UV theory, evaluation of the
functional determinants involved proceeds in a model-independent way, which can thus
be done once and for all. The result will be widely-applicable master formulas, from

which matching calculations for specific models are reduced to matrix algebra.

The development and use of covariant functional approaches to matching dates back to
the 1980s; see e.g. [216-218]. The subject was revived recently, thanks to the work [55]
by Henning, Lu and Murayama (HLM). Following the CDE approach of Gaillard [216] and
Cheyette [218], HLM presented in [55] a universal master formula for one-loop matching,
assuming degenerate mass spectrum for the heavy particles. Applications of this master
formula to various examples have been illustrated by HLM in [55], and also by others in [196—
198]. The HLM master formula was generalized by Drozd, Ellis, Quevillon and You [56] to the
case of nondegenerate heavy particle masses. The same Gaillard-Cheyette CDE approach
is followed in [56], and the resulting master formula is dubbed the “Universal One-Loop
Effective Action” (UOLEA), to emphasize the universality of the approach, as discussed in
the second bullet point above. The UOLEA was applied to the example of integrating out
nondegenerate stops in [56].

It was later pointed out, however, that the HLM/UOLEA master formulas, in their orig-
inal forms at least, do not capture possible contributions from mixed heavy-light loops [219]
(see also [220]). The reason can be most easily understood by noting that light fields are
treated as background fields in [55,56] and are thus not allowed to run in loops. Fixes to
this problem were soon proposed, following different CDEs [57], or alternatively still within
the UOLEA framework [58]. Although technically quite different, both approaches in [57]
and [58] share a similar spirit, namely to include quantum fluctuations of light fields also,
and then identify and subtract off nonlocal pieces from the functional determinant to obtain
local effective operators. These studies provide, at the very least, a proof of principle that
mixed heavy-light loops can be accounted for in covariant functional approaches to match-

ing. This latter point was further corroborated recently in [59], following an alternative
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CDE approach that builds upon [221,222]. Compared with [57,58], matching calculations
are simplified in [59] partly due to the use of expansion by regions techniques [223-225],
which allow local pieces of the functional determinant to be directly identified, so that no
subtraction procedure is needed.

These recent developments of functional matching techniques are, unfortunately, also
accompanied by different levels of technical complication compared with [55,56]. It should be
emphasized that the motivation for studying functional matching lies not only in theoretical
curiosity, but also, at least equally importantly, in practical usefulness. In this latter respect,
the goal is to develop a set of tools for matching that is easy to use even for those not
necessarily familiar with all the technical subtleties of functional methods. There are at

least two possibilities for achieving this goal:

e Ideally we wish to obtain a truly wniversal master formula, as an extension of the
results presented in [55,56]. Such an extension requires incorporation of not only
mixed heavy-light contributions mentioned above [61], but also e.g. open covariant
derivatives (covariant derivatives acting openly to the right as opposed to appearing

in commutators) and mixed statistics (both bosonic and fermionic fields in the loop).

e Even if deriving such extended universal results turns out to be too involved to be
completed very soon, we may still take advantage of the covariant feature of functional
approaches, and consider alternatives to Feynman diagram methods that simplify cal-
culations and offer useful intuition, even though on a case-by-case basis. This will also

bring new options for more efficient automation of matching calculations!.

It is the purpose of this chapter to present a tool that will be useful for making progress
along both these lines. The idea is to have a diagrammatic formulation of one-loop functional
matching which is as systematic as the conventional Feynman diagram approach, but differs
crucially from the latter by preserving gauge covariance in intermediate steps. It is perhaps
not surprising that this is possible, since recent studies of functional matching [57-59] all
follow diagrammatic intuitions to some extent. We will show explicitly how to establish such
a gauge-covariant diagrammatic formulation, building upon the approach of [59] (which we
provide a more rigorous derivation of)?, and how to use it in one-loop matching calculations.
The diagrams introduced are dubbed “covariant diagrams” — they are in a sense gauge-
covariant versions of Feynman diagrams. Just like Feynman diagrams, which keep track of

terms in an expansion of correlation functions, covariant diagrams keep track of terms in

1See e.g. [226] for recent progress on automation of Feynman diagrammatic matching.
2The approach of [55,56] also allows for a diagrammatic formulation, which is however more complicated
technically and will not be discussed further.
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a CDE in functional matching. Let us clarify that enumerating and computing covariant
diagrams is equivalent to selecting and evaluating various terms of interest that result from
a CDE. But as we will see, it is both technically simpler and conceptually more intuitive
than the latter, and meanwhile preserves the universality feature of functional matching

procedures.

6.2 (Gauge-covariant functional matching

The problem of matching can be formulated as follows: given an UV Lagrangian Lyy[®, ¢
for a set of heavy fields ® of masses {M;} and a set of light fields ¢ of masses {m;} < {M;},

Lepr[gl =7 st. Tpuvigs] = Terrlos)] . (6.1)

Here I', yv is the one-light-particle-irreducible (1LPI) effective action calculated in the UV
theory, while I'gpr is the one-particle-irreducible (1PI) effective action (a.k.a. quantum ac-
tion) calculated in the low-energy EFT. They will be computed as functionals of background
fields ¢y, by the standard procedures of the background field method (see e.g. [227,228]).
Eq. (6.1) ensures that the UV theory and the EFT give identical physical predictions re-
garding the light fields.

In this section, we shall focus on the simplest case of real scalar fields for illustration.

The results derived below can be easily generalized to other types of fields.

6.2.1 Calculating I'r, uyv|¢b)

To compute I't, yv ||, we start from the path integral,
ZUV[Jq); J¢] — /[Dq)] [ng] eifddx(ﬁUV[‘I),¢]+J<I>‘1>+J¢¢) , (62)

and separate all fields contained in the heavy and light field multiplets into classical back-

grounds (labeled by subscripts “b”) and quantum fluctuations (labeled by primes),
O =, + P, b=, +¢. (6.3)

The background fields and sources are related by

_ SLuy

SLuv
0= 5P

09

[y, dp] + Jo =

[P, db] + S - (6.4)
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The 1LPI effective action I'y, yv|[¢p] is obtained as the Legendre transform of the path integral
with respect to the light fields,

['Luvoy] = —ilog Zyv[Je = 0, Jy| — /ddf JoPn - (6.5)

Note that Jg is set to zero because we are interested in correlation functions with no external
sources of the heavy fields.

With the separation in Eq. (6.3), the UV theory Lagrangian plus source terms can be

written as
1 o’
ﬁUV[@? ¢] + J(I)(I) + Jd)(b = £UV[®b7 (bb] + Jcp@b -+ J¢¢b — 5 (q)/T (bIT) QUV[(I)b, ¢b] / + ..
¢
(6.6)
where the quadratic operator
[ —TER D) S (D, )
Quv[®p, ] = |, . (6.7)
—%5n [Po, db] =555 [P, O]

Note that in Eq. (6.6), terms linear in ¢’ or ®' vanish due to Eq. (6.4). We therefore obtain

the tree-level result as the stationary point approximation,

Zg\e/e[Jq,, J¢] — /[D(I)] [D(b]eifddx(LUV[¢by¢b]+J¢¢b+J¢¢b) x eifddm(ﬁuv[q’b@bHJ@@bJrJo;d)b)
= Tivin) = [ doLovfedal. o) (6.8)

up to an irrelevant constant term, where ®.[¢},] (subscript “c” for “classical”) is defined by

0Luv
0P

ILuv [P, @]
0P

Deldp] = Pp[Je = 0] e

[®e[dn], P =0. (6.9)

D=0 [dp], =01

In other words, ®.[¢y,] solves the classical equations of motion for the heavy fields when the
light fields are treated as backgrounds.

Up to one-loop level, we have

!/

ZUV[J<I>7J¢] ~ Zg%e/[D(I)’][D(é’] exp {%/ddx ((I)/T ¢/T) QUV[(Db7¢b] (b,

N

o« Z5y (det Quv [Py, b))
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-loo i
= T 0Vlen] = 5 logdet Quv[®c[on], &), (6.10)
which is familiar from standard calculations of 1PI effective actions.

6.2.2 Calculating I'grr[ép)]

On the EFT side, suppose

Leer[d] = Li3 (0] + Lpr 0] + - . (6.11)

1-1 : .
where L85, and Lgpy’ contain effective operators generated at tree and one-loop level,

respectively. The path integral can be evaluated up to one-loop level,

ZgrrlJy] = /[D¢]eifddx(LEFT[¢]+J¢¢)

~ i d%(Lerr(én]+sdn) /[qu)/] o5 [ d%x ¢'T QRS [on] ¢f

N

o et Ao (LEE[Pu]+Lppr” 9]+ o) (det QU5 o)) 2, (6.12)
where the quadratic operator
0° Ly
Qrrr(dn] = —5—2[%] : (6.13)
¢
Again, in the exponent, terms linear in ¢’ vanish due to the relation
0LEPT
Jsy = 0. 6.14
L]+ J (614
We therefore obtain the 1PI effective action in the EFT up to one-loop level,
FEFT[(bb] = — 10g ZEFT[J¢] — /dd$ J¢¢b
ree -loo Z ree
= [ s (Cimlon + LEEPI) + 5 losdet Ol (615)
= Tl = [ desimiol, (6.16)
Fl-loop . d 1-loop i tree
BFT [ @b] = /d rLypr [Pb] + 2 log det Qppr[¢] - (6.17)

The meaning of the above equations is clear. The tree-level quantum action is given by the

tree-level terms in the classical action, while at one-loop level, the quantum action contains
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two pieces — one-loop-size effective operators used at tree level, and tree-level-size effective

operators used at one-loop level.

6.2.3 Matching 't uv[¢p] and I'gpr[¢b)]

Equating Egs. (6.8), (6.10) and Egs. (6.16), (6.17), we obtain the EFT Lagrangian that
satisfies the matching condition (6.1). At tree level,

Egﬁ%[gb] = Lyv [‘I)c[ﬁb]a Clﬂ — Lyv [(i)c[ﬁb], Qﬂ ) (6.18)

where ®.[¢] is the local operator expansion of the nonlocal object ®.[¢]. The extra step from
D [@] to D[] is necessary so that Lepr[¢] consists of local operators. As a trivial example,
suppose

Luv[®, d] = Lo[p] + DT F[¢] — %@T(—PQ + M%), (6.19)

where P, = i¢D,. The advantage of introducing this notation is that P, is a hermitian

operator. ®.[¢] is obtained by solving the classical equation of motion [see Eq. (6.9)],

=Flg] = (PP + M*) 2 =0 = &g = _P%WFM : (6.20)

0Ly
0d

This is a nonlocal quantity due to the appearance of P? in the denominator. The corre-

sponding local operator expansion, which should appear in the EFT, reads

. 1 1 1
d.[¢] = WF[QS] + WPQWFM ... (6.21)

Moving on to one-loop level, we have

[t i) = Slosdet Quy [@dddl o] - Jloger Ol (622

To proceed, we follow [59] and block-diagonalize Quy. With the following short-hand nota-

tion for the elements of Quyv,

82 Luv
Quia gl = |27 O Taagle o) _ [ Aal®el Xl o) )
—dafa%v@w] _%@’(ﬂ Xen[®, 9] AL[®, )

) Qb] 0D [
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it is easy to show that

Ay — X ATEX 0 1 0
viguv =1 TR with V= . (6.24)
0 AL —AZlXLH 1

Note that for real scalar fields, Xy, = Xy and both are hermitian. When generalized
to complex fields, Xy = X;H. With Eq. (6.24), the first term on the RHS of Eq. (6.22)

becomes
% IOg det QUV [q)c[¢]7 gb] = % 10g det (AH — XHLAZIXLH) + % log det AL s (625)

where the arguments [@C[qb], gb] — [(i)c[gb], gb} have been dropped on the RHS for simplicity.
Note that ®.[¢] should be replaced by ®.[¢] to form local operators of the EFT.
Let us now look at the second term on the RHS of Eq. (6.22). With Egs. (6.13) and (6.18),

we have

2 Luv [®.[4)], § (6Luv 2 8D (] 6Ly ¢
rle) = Crw kel ¢< S g, o] + AN [cbc[d)],cﬁ])
3 [Luv s _ Lyv s 5B[¢] 2Ly ¢
= i (Gt [budolo] ) = - el o] - AT e o)
= AL[®[g],¢] — XenAy' Xur[Pc[¢], ¢] . (6.26)

When going from the first line to the second, we have used MUV [CDC[QS], 9] = 5‘5:}1{" [@c[0], 0] =

0 — this is true because the EoM can be solved order by order in % to obtain a local operator
expansion ®.[¢]. To arrive at the last line of Eq. (6.26), note that

0 - i(MUV[@M)=“ﬂ[é>c[¢],¢}+5@ OOl Loy 5 11 4]

0p \ 0% 56 56 002
- b, A
- _XLH [(I)C[Qs]a ¢} - (I;(b[(ﬁ] AH [(I)C[¢], QS:|

where A7! is the local operator expansion of AL, We therefore obtain

? 7 «
—5 lOg det Qgﬁ%[¢] = —5 lOg det (AL — XLHA;IlXHL)

= —% logdet Ay, — %log det <]l — AleLHA]{lXHL)
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= —% logdet Ay — %log det (]l — Al}lXHLﬁleLH>
— —% logdet Ap + %log det Ay — %log det <AH — XHLAleLH> ;
(6.28)

with the arguments [@C[qﬁ], ¢] implicit. Adding this equation to Eq. (6.25), we finally obtain,
according to Eq. (6.22),

l

/ddl‘ EE%OTOP[qﬁ] = 5 <log det (AH — XHLAleLH) — log det(AH — XHLAleLH)>
+%log det Ay, (6.29)

where again, the arguments [Cﬁc[¢],¢] are implicit. As expected, logdet Ap which comes

from pure light loops cancels between the two terms.

6.2.4 Hard vs. soft

The formula obtained above for one-loop matching using functional methods, Eq. (6.29), is
quite abstract. To make use of it, a key observation, as emphasized in [59], is that with
dimensional regularization (which we adopt, together with the MS scheme, throughout this

chapter), each “log det” can be separated into “hard” and “soft” region contributions, namely
logdet X = logdet X|,, 4+ logdet X|_, . (6.30)

What “hard” and “soft” mean is the following: for the “loop integrals” that appear in the
computation of logdet X, which involve heavy and light particle masses {M;}, {my}, and a

“loop momentum” (i.e. integration variable) g,

e the hard region contribution is obtained by first expanding the integrand for |¢?| ~

M? > |m?2|, and then performing the integration over the full momentum space;

e the soft region contribution is obtained by first expanding the integrand for |¢?| ~

|m?%| < M?, and then performing the integration over the full momentum space.

The nontrivial identity (6.30) is known as the method of expansion by regions, which has
been well-known in Feynman diagrammatic multi-loop calculations; see e.g. [223-225]. As

a simple one-loop example, consider the following IR- and UV-finite integral (in d = 4 — ¢
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dimensions):

diq 1 i 1 | 2 m? M?
[ G i = 1 e (9 0m) ~ G %
1 1 M? _4

The hard and soft regions yield IR- and UV-divergent integrals, respectively:

ddq 1 B ddq 1
/ @2m)? (¢* = M2)(@* = m®)? |y / (2m) (g% — M2)q4(1 +)

i1 (2 M?
— 167T2W <g+1—10g?) +O(M_4),
(6.32a)
d’q 1 B d’q 1 1
/ @2m)d (¢ = M2)(¢> — m)2 |y / (2m) {’W«ﬁ — }
. 2
_ 16;2% (—% +log %) +OM™), (6.32b)

2
€

equations are added, and the finite result of the original integral is reproduced.

where 2 =

% — v+ log4n with e = 4 — d. However, the % singularities cancel when the two

Now we can simplify Eq. (6.29). The crucial statements are

lOg det(AH — XHLAleLH) = 10g det(AH — XHLAleLH) |soft y (633&)
log det Ay = logdet Ay| , = 0. (6.33b)

It is not hard to understand that replacing Ay by Ay singles out the soft part, because
M; dependence comes only from Apg, and a local operator expansion corresponds to the
limit M; — oo. On the other hand, logdet Ayl vanishes because for pure heavy loops,
expanding in the soft region gives rise to scaleless integrals. Combining Egs. (6.29), (6.30)

and (6.33), we finally arrive at the following formula,

/ ddl’ ‘C]la—lliglc‘)p [¢] = lOg det (AH — XHLAleLH)

‘ hard

(6.34)

N = DN =

Tr log(Am — Xur AL Xew) |0

6.2.5 Evaluating the functional trace

The initial steps of evaluating the functional trace (6.34) are standard, which we reproduce

here for the sake of completeness. Recall that entries of the infinite-dimensional matrix
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Ay — X HLAZIX H, which we shall call A to simplify notation, are labeled by spacetime
indices  (momentum indices ¢) when the UV theory Lagrangian is written in position
(momentum) space, i.e. in terms of ®(z), ¢(x) (®(q), é(q)), plus possible internal indices.
A contains x and 0, in position space, which become operators & and p in general. We
evaluate its trace using the momentum eigenstate basis, and follow standard manipulations

familiar from quantum mechanics,

. d’q .
WA = [ G ldwAGalg - [ )t A2, ) o)
= /ddx/ ’”trA(x i0y) /dd / - tr A(z,4i0; + q)
= /dd / S trA(z,i0, — q), (6.35)

where “tr” is over internal indices only, and we have used (z|q) = e~*. The last equality

follows from a conventional change of integration variable ¢ — —¢q. As a result,

: d
Liele] = 5 / (sﬁé’d trlog(Aur = Xue AL Xun)p | (6.36)

At this point, there is one additional transformation that can be made [55,56,216,218],
but is optional. The idea is to put all covariant derivatives P, into commutators, e.g. [P,, P,],
[P, X(z)], by sandwiching the trlog between e”% and e~F*% (which trivially become 1’s
when acting on identities on both sides) and using the Baker-Campbell-Hausdorff (BCH)
formula. This transformation is convenient in the sense that all intermediate steps from here
on will involve P,’s only through commutators, as does the final result®. But meanwhile, it
makes the computation more tedious because of a plethora of terms resulting from applying
the BCH formula. This is especially true when the quadratic operator Quy contains open
covariant derivatives, namely P,’s acting openly to the right as opposed to appearing in
commutators, in addition to those from kinetic terms. Another disadvantage is that with
the introduction of 0, which does not commute with ¢, the logarithm cannot be expanded
in a simple way due to the fact that log(AB) # log A + log B when [A,B] # 0% As a
way out, an auxiliary integral is introduced in [55, 56], which nevertheless complicates the
integrations to be done. Therefore, we choose to follow [57,59] and proceed without making

this additional transformation.

3Recall that P, as a operator acts on everything to its right, so e.g. iD,,¢’s in the final result for LgpT
really mean [P,, ¢]. On the other hand, gauge field strengths can be written as [P P,] up to normalization

4Recall that “tr” is over internal indices only, so tr [3,, f(q)] # 0. Also, f 9 [0y, F(Q)] = [ 2 (27r)d
may not vanish due to UV divergences.
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6.2.6 Covariant derivative expansion (CDE)

The next step is to perform a CDE; i.e. to make an expansion in power series of P, while

keeping P, intact (as opposed to separating it into id, and gA,). Suppose, quite generally,
Ay =—P*+ M?* + Xy, (6.37)

where
M = diag (M, My, .. .) (6.38)

is the mass matrix of the heavy field multiplet ®°. In general, Xy may take the form

Xul®, ¢, P, = Unl®, ¢] + P Z5 (9, 6] + Z}f'[@, 6P+ PuP, 2 [0, 6] + Zjf" [8, 4] PP + ..
(6.39)
In the hard region, the logarithm in Eq. (6.36) can be expanded as follows:

IOg(AH — XHLAZIXLH) = log(—q2 + M2 + 2(] -P— P2 + XH — XHLAleLH)

P—P—q
= log(—¢* + M?) +log 1 — (¢ = M?) "' (2q P — P* + Xy — Xup A7 Xpy) |

(= M?) 7" (2 P = P*+ Xy = Xy AL X | (6.40)

SRS

=log(—¢* + M*) = >
n=1

where the substitution P — P — q is assumed in Xy and X HLAle rr- Therefore, up to an

additive constant,

L[] = —%UZ;/@—:)C[[(QQ—MQ) 1
n=1

(2¢- P—P*+ Xulpp_g— XHLAilXLH‘P%P—q)]n

. (6.41)

hard

As before, Xy g g and Af have arguments [Ci)c[qﬁ], ¢}. Eq. (6.41) holds for the special case
of real scalars but can be straightforwardly generalized. It will be our starting point for

deriving a covariant diagrammatic formulation of one-loop matching in the next section.

°It is always possible to simultaneously diagonalize the P, and M matrices, since mass mixing can
only happen among fields with identical gauge quantum numbers, as far as unbroken gauge symmetries are
concerned. On the other hand, if the UV theory is written in the broken phase of a spontaneously broken
gauge symmetry, there could also be mass mixing induced by spontaneous symmetry breaking. In that
case, gauge fields associated with the broken symmetries would not appear in P, in the first place, so the
diagonalization is still possible.
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6.3 Covariant diagrams

6.3.1 Pure heavy loops

We first look at the simplest case, where the following three restrictions are satisfied:

o Xy = Xpg =0, i.e. no mixed heavy-light contributions to one-loop matching. This
already covers a broad class of UV models where heavy fields do not couple linearly to

light degrees of freedom and ®. = 0.
e Xy does not contain open covariant derivatives, i.e. Xy = Ug; see Eq. (6.39).
e The field multiplet ® contains only bosonic fields.

After developing the basics of covariant diagrams for this simplest case, we will lift the above
restrictions one by one in the next three subsections.
For real scalars, we can directly use Eq. (6.41), which becomes, under the above restric-

tions,

L’lloop ]__Ztril d’q [( 2—MQ)_I(Q P—P*4+U )]n (6.42)
EFT |P] = 75 —~n ) (@2n) q q ] '

Note that, with no light masses involved, the hard part of the integral is trivially equal to the
original integral. A key observation is that each term in the sum in Eq. (6.42) factorizes into
a loop integral over ¢ and a trace involving P, and Uy that gives rise to effective operators.

The nonvanishing loop integrals involved have the generic form

d B gH2nc

/ (;lyr(‘;d (¢ —Mié)”i(q;]_ ayp . = 9 (6.43)

where gH1-F2ne is the completely symmetric tensor, e.g. g"*? = g"gP? + g'Pg"? + g g"P.

Eq. (6.43) defines the master integrals Z|q Q”C]nm] We use the symbol “Z” to distinguish

from the master integrals in [56] which are denoted by “I” and involve an extra auxiliary
integral. Some useful master integrals are summarized in Appendix A.

Eq. (6.42) has a straightforward diagrammatic representation as a sum of one-loop dia-

grams with propagators and vertex insertions 2¢ - P, —P? and Uy. The loop integral

2 M2
can be read off from a dlagram simply by counting the numbers of propagators (for each
species) and 2q - P vertices. As a result of evaluating the loop integral as in Eq. (6.43),
various terms in gt -#2rc Lorentz-contract the P,’s from 2¢ - P insertions in different ways,

and all possibilities are summed over. We can keep track of such contractions by connecting
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two 2q - P vertices by a dotted line. The above procedure can be easily understood with an

example,

v 1
= =5 3 @I 6 ((2P") Uiy (2P) U 1), (6.44)

where the diagram is read clockwise, and filled and empty circles represent 2¢ - P and
Uy insertions, respectively (recall that P, is diagonal in the field multiplet space and
hence does not change the propagator label). Eq. (6.44) represents a term in the expan-
sion (6.42). The only element in Eq. (6.44) which we have not discussed is the symmetry
factor %, coming from % = i (four propagators) multiplied by 2 (two identical contributions
tr((2P") Un 5 (2P,) Un j;) and tr(Ugqj (2P,) Ug ;; (2P*))). An easy way to find this sym-
metry factor is to note the Zy symmetry of the diagram under rotation. It is not hard to
show that in general, the presence of a Zg symmetry of a diagram under rotation indicates a
symmetry factor % We see that our diagrammatic formulation automatically collects terms
from the CDE containing equivalent operator traces, and thus makes finding such factors a
trivial task.

One can draw all possible diagrams like the one in Eq. (6.44) to keep track of all terms in
the expansion (6.42) up to a certain order. These terms, which contain operator structures
with open covariant derivatives, would eventually organize into independent operators with
covariant derivatives appearing only in commutators (recall that the final result can always be
written in a form that involves P,’s only via commutators). For example, we could enumerate
all diagrams containing two P,’s and two Uy’s, which include the one in Eq. (6.44), a second
diagram with adjacent P, contractions, and a third diagram with a —P? insertion. The
latter two diagrams represent

;

7
- 51[612]?} tr((2P") (2P,) Un i Un ji) 5

2 e (=P U i; Un i) (6.45)

with no symmetry factors. Here and in the following, we abbreviate Z[¢°];/" as Z;7".

Adding up the three terms in Egs. (6.44) and (6.45), and making use of the identity 73} =

27’177 + 4Z[q%];},° we arrive at one single operator of the desired form (without open

covariant derivatives),

. 1
—1 {I[qz]ZQJQtI"(PM UHij PM UH]Z) —l— <21[q2]?]1 — 5 Z-2j1>tr(P2 UHij UHji)}

= —i Z[¢*)7 tr(P" Un i P Ut ji — P* Un i3 Un i)

6This identity can be easily proved by writing Z [qz]fj2 =

using the formulas in Appendix A.

(T2 + M2 T22), T(?)8) = L(22) + M2 T3) and

1
1

105



1
= —§I[q2]?]-2tr(2p‘uUHijPMUHjZ' —PzUHij UHji —P2 Usz' UH”)

= 2 TP ([P, Ui [Py U] (646)

Alternatively, we could have anticipated the form of the final result before enumerating
the diagrams — there is only one independent operator involving two P,’s and two Ug’s,

namely tr([P*, Uy][P,, Un]), so we know all relevant terms in the CDE must add up to

ciy tr([P*, U i5][Pu, Un ji))
= QCU tr(P“ UHij PM UHji) - (Cij + Cji) tl"(P2 UHij UH]Z) . (647)

To determine the coefficient ¢;;, it is actually not necessary to compute all three diagrams as
we did above. Since the last two diagrams only contribute to the second term of Eq. (6.47),
we could have obtained ¢;; without computing them, simply by comparing Eq. (6.44) to the
first term of Eq. (6.47). The result would be ¢;; = —% Z[¢?]7?, in agreement with Eq. (6.46).

In fact, it is generally true that to determine the coefficients of all independent effective
operators in the final result, it is sufficient to compute just a subset of all possible diagrams.
This is simply because when P,’s are involved, the number of independent structures one can
write down with open covariant derivatives (two for the example above, tr(P* Ugi; P, Up ji)
and tr(P? Uy, U j;)) is greater than the number of independent operators with P,’s ap-
pearing only in commutators (only one, tr([P*, Uy ;|[P., Un ji])). While we do not have an
algorithm to determine, in full generality, the minimal set of diagrams to be computed, we
have discovered a useful prescription that greatly reduces the workload: all diagrams with
either —P? insertions or adjacent P, contractions, namely those that yield tr(... P%...), can
be dropped. In the example above, this prescription corresponds to not explicitly writing
down and computing Eq. (6.45) which, as we have seen, only provides redundant informa-
tion on ¢;;. In fact, in many of the examples in Section 6.4, this prescription will reduce
the diagrams to be computed to a minimal set, in the sense that we will have just enough
information to determine all the operator coefficients in the final results.

The above discussion can also be applied to other types of bosonic fields. A complex
scalar is equivalent to a multiplet of two real scalars, e.g. its real and imaginary parts. In
practice it is often more convenient to use a multiplet consisting of the complex scalar itself
and an appropriately-defined complex conjugate field. We will see explicitly how this is done

in the next section. For vector bosons, with the addition of the R¢ gauge fixing term, the
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UV Lagrangian contains the following terms quadratic in the quantum fluctuations,
1 a (0% 1 (e} «
) Vi {(—9 6) (_(PQ)ab + M\2/5ab) - (1 - E) (P Pﬁ)ab + UHib} Vﬁ/b (6.48)

It is convenient to use the Feynman gauge £ = 1, where Ay takes the form of Eq. (6.37) as
in the scalar case, so that the same procedure of using covariant diagrams can be followed 7.
The only nontrivial extension is that vector boson fields carry Lorentz indices, which are
regarded as additional internal indices and should be contracted with —g.s (note minus

sign!) when computing traces. This can be seen as follows,

log{(=g°")(=P* + M) + Ui’} p_, = log{(=¢")(—=¢* + M7 +2¢- P — P*) + U’}
1og{ —¢* 4+ Mp)}
+ log{af - —gm(q = MP) M ((=g")(2q- P~ P*) + UY)}. (6.49)

with internal indices a, b dropped for simplicity. As an example, when only vector fields are

considered, the trace in Eq. (6.44) should be understood as

tI‘(PM UHij PH UH]z) ==
(_galﬁl)(_gazﬁz)(_ga3ﬁa)<_ga4ﬁ4) tl"(( 64@1PM)(Ufllgz)(_962a3pu)(Uflgjof)) ’(650)

with all Lorentz indices written out explicitly. The “tr” in the second line of Eq. (6.50) then
indicates a trace over the remaining internal indices.

A summary of the building blocks of covariant diagrams and the operator structures
they represent in the restricted case discussed in this subsection can be found in Table 6.1
of Section 6.3.5.

6.3.2 Mixed heavy-light loops

Next, we allow Xpy ry to be nonzero, while still assuming the absence of open covariant

derivatives. Specifically, we consider

Xor=Unr, Xew=Urn, (6.51a)
Ap=-P+m*+ X, =P +m*+U;. (6.51Db)

"The associated Goldstone boson and ghost fields can also be treated in the same way as scalars, except
that ghost loops come with a factor of (—1) due to the Grassmannian Gaussian integral.
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where
m = diag (mq, ma, ... ) (6.52)

is the mass matrix of the light field multiplet ¢. The additional piece in Eq. (6.41) becomes

_XHLAZIXLH P—P—q = UHL(q2—m2—2q-P+P2—UL)*1ULH

S Uy [?(mQ +2¢- P - P+ 1) Vs (653)
n=0

The expansion above is suitable in the hard region where |¢%| > |m?|. Eq. (6.53) as a whole
can be thought of as a new type of insertion in the heavy loop, in addition to 2¢ - P, —P?,
Uy considered in the previous subsection. Equivalently, the expansion of Eq. (6.53) instructs
us to draw one-loop diagrams involving both heavy and light propagators which represent
ﬁ and q%, respectively. 2¢ - P, —P? and Uy can be inserted in heavy propagators as
before, while 2q - P, —P?% Uy and m? can be inserted in light propagators. Ugr (Urpy)
connects an incoming heavy (light) propagator and an outgoing light (heavy) propagator,

when the diagrams are read clockwise. Loop integrals now have the form

ddq qu . qﬂ2nc e fi2m, I 2NN NL 6 54
e T V) R v A I

Eq. (6.54) defines an extended set of master integrals Z[¢*"];”";™"", some of which are
summarized in Appendix A. Note that these loop integrals do not depend on light particle
masses because the latter are treated as vertex insertions. This implies, in particular, that
in the case of massless particles, there is no need to keep m? nonzero as an IR regulator.

As a simple example, we show a mixed heavy-light version of Eq. (6.44),

i
= -3 Tl e ((2P") Uyraw (2P,) Upm i) (6.55)

where light propagators are represented by dashed lines, and labeled by primed indices. Note
the absence of a nontrivial symmetry factor in this case. The additional building blocks of

covariant diagrams discussed in this subsection are summarized in Table 6.2 of Section 6.3.5.

6.3.3 Open covariant derivatives

In addition to Uy g1, rm 1 considered above, the Xy g1, g matrices may also contain terms

involving open covariant derivatives; see Eq. (6.39). These terms are slightly different from
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the U terms because they are modified by the substitution P — P — q. For example, terms

in Eq. (6.39) with one open covariant derivative become
P,Zjy + ZI'Py — P2t + ZY Py — q, 28 — Zif'q,, (6.56)

resulting in two types of vertex insertions: P,Z% and Z}{”PH are just like U insertions, while
—qu 2y and —Z;rq“qu are similar to 2¢ - P insertions. In the latter case, the ¢,’s involved are
part of the loop integral, which gives rise to g#'-#2nc. Lorentz contractions are thus possible
not only between P,’s from 2¢- P insertions, but also Zg)“ s from —q, 2%, —Z}j‘qﬂ insertions.
We shall use the same symbol for the two types of Z(!) insertions — they are distinguished by

whether or not a contraction is indicated (by a dotted line as before). As a simple example,
J

= _% T (P, 24, 28 P, (6.57a)

ij

1
‘ = g TN (2 2 (6:57)

1
where light and dark gray squares represent (P,)Z}; and ZE‘(PN) insertions, respectively.

Here and in the following, “[¢*"]”

is dropped when writing master integrals with n, = 0.
We have focused on pure heavy loops in the discussion above for concreteness, but there
is no essential difference for mixed heavy-light loops, which may involve ZS)L pr- A sum-
mary of possible Z(") insertions (up to one-open-covariant-derivative terms) can be found in
Table 6.3 of Section 6.3.5. Also, it is straightforward to extend the procedure to terms in the
X matrices with more than one open covariant derivatives, though more complex notation

may be needed to keep track of Lorentz contractions.

6.3.4 Loops with fermions

Up to now we have considered loops with bosonic fields only. Fermionic fields have a different
form of quadratic operator Quy, with e.g. —P + M in the case of Dirac fermions in place of
—P? + M?. There are at least two approaches one can follow. One is to square the quadratic
operator to match the general form in the bosonic case. To give an example for illustration,
suppose

Lov[W, 6] = Lofo] + U(P — M — Xp[6)¥, (6.58)
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where ¢ denotes collectively light fields, and WU is a heavy Dirac fermion. We assume Xy =
Xue+Xuo with Xy (Xp,) containing terms with even (odd) numbers of gamma matrices.

There is no mixed heavy-light contribution to matching in this case, so
Sgrr? = —iTrlog(P — M — Xp). (6.59)

Note the different overall sign compared with bosonic case, due to the Grassmannian nature
of the W field. Using the fact that traces of gamma matrices are invariant under changing

signs of all gamma matrices, we have

Shloor —% [Trlog(P — M — Xyo — Xpo) + Trlog(—P — M — Xpo + Xu,)]

[
= —5 Trlog(—P" + M* + 2M Xy + X (Xwe = Xiro) = [P, Xerel + {P. Xuro})

= —5 Trlog(—P* + M? = 20" G, +2M Xy,
+XH(XH,6 - XH,O) - [Pa XH,@] + {Pa XI’LO}) ) (660)

where G/, = [D,,D,] = —igG,, and 0" = f[y*,7"]. The calculation then proceeds as
in the bosonic case, with —%U“VG;W +2M X + Xug(Xpe — Xuo) — [P, Xue] + {P, Xuo}
playing the role of Xp.

In this study, however, we follow an alternative strategy so as to derive a more straight-
forward diagrammatic formulation of one-loop functional matching. Still using the example
above and, for the moment, further assuming Xy = Uy does not contain open covariant
derivatives for simplicity, we repeat the steps in Sections 6.2.5 and 6.2.6 without squaring

the quadratic operator,

oo [ dY
'CIIEII:‘TP = —z/Wtrlog(}b—q—M—UH)

d d
= —z'/(g—sdtrlog(—g—M)—z'/(;i%;dtrlog[l—(—g—M)_l(—P%—UH)}

=1 d’q 1 n
= const. + ztlr;::1 - / 2n) (=g — M) (=P +Un)|". (6.61)
This is a fermionic version of Eq. (6.42), after the irrelevant constant term is dropped. The
diagrammatic representation in this case involves fermionic propagators (—g — M)~! and

vertex insertions —? and Uy. The rules of drawing covariant diagrams and reading off their

expressions are similar to the bosonic case, but we note the following three major differences:

e The prefactor has a different sign due to the fermionic Gaussian integral. It is conve-
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nient to denote the prefactor by —ics, as is common in the literature. We have seen

that for real bosonic degrees of freedom, ¢, = %, while for Dirac fermions, ¢, = —1.

In any case, ¢, can be easily seen from the Gaussian integral involved. For example,

cs = —1 for ghost fields, and ¢, = —% for Weyl fermions.
Each fermionic propagator contains two terms,

-1 _ _¢+M_ M _Q;/Ylu
(_ﬁ_M) _q2—M2_q2—M2+q2—M2. (6'62)

The first term is just the bosonic propagator multiplied by M, while the second term
involves ¢, in the numerator which modifies the loop integral compared with the bosonic
case. The situation is the same as that of Eq. (6.56) in the previous subsection. We shall
continue to use dotted lines to indicate contractions among Lorentz vectors associated
with ¢, (in this case 4*). Our rule is to take the first or second term in Eq. (6.62)
depending on whether the fermionic propagator is connected to a dotted line. To give

an example,

1
= i3 2M*tr U, (6.63a)

a = i %I[(f]? tr((—=")Us(=7,)Un), (6.63b)

where % is a symmetry factor, and it is understood that M; = M in the master integrals.

As before, we have used empty circles for Uy insertions.

Covariant derivative insertions are in the form of —/ which, unlike 2¢ - P, is ¢-
independent and thus decouples from the loop integral. We shall continue to use
filled circles to denote covariant derivative insertions in fermion propagators, but they

should not be contracted (i.e. connected by dotted lines) with each other in this case.

With the new features discussed above taken into account, it is straightforward to generalize

the procedures of the previous two subsections to incorporate mixed heavy-light loops and

additional structures in the X matrices in the fermionic case. Mixed bosonic-fermionic loops

can also be handled — the derivation in this case is actually very similar to that of mixed

heavy-light loops. The sign of ¢, is determined by the propagator from which one starts

reading a diagram, with no ambiguity. For example, one may have tr(...Ugp...Upp...) or

tr(...Upp...Upp...), depending on whether one starts reading the diagram from a bosonic
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Element of diagram Symbol | Expression
heavy propagator (bosonic) i 1

i gl
P insertion (bosonic, heavy) : 2P,0;;
U insertion (heavy-heavy) Lo]_ Un ij

Table 6.1: (From [60]) Building blocks of covariant diagrams for integrating out heavy bosonic
fields (and fermionic fields as well if one follows the approach of Eq. (6.60) to square their
quadratic operator), in the absence of mixed heavy-light contributions and open covariant
derivatives in the X matrix, as derived in Section 6.3.1. All previous universal results in the
literature [55,56] can be easily reproduced by computing one-loop covariant diagrams built
from these elements; see Section 6.4.1.

Element of diagram Symbol | Expression
light propagator (bosonic) _il 1
light mass insertion (bosonic) _'Z‘,ixl'.//_ m2 6y
P insertion (bosonic, light) -Z-?l- 2P, 6y
U insertion (heavy-light) ol Uty iy
U insertion (light-heavy) s ULwij
U insertion (light-light) _iioii Urij

Table 6.2: (From [60]) Additional building blocks of covariant diagrams in the presence of
mixed heavy-light contributions to matching, as derived in Section 6.3.2. Example applica-
tions can be found in Sections 6.4.2, 6.4.3 and 6.4.5.

(B) or fermionic (F) propagator. The values of the two traces are opposite to each other,
since Ugp and Upp are fermionic and anticommuting (while all ...’s are bosonic), so they
give the same result when multiplied by opposite spin factors.

The new ingredients for building covariant diagrams involving Dirac fermions are summa-
rized in Table 6.4 of Section 6.3.5. We further note that, as in the bosonic case discussed in
Section 6.3.1, the prescription of dropping terms involving tr(... P*P,...) can be adopted.
These terms can arise, for example, when two fermionic propagators are contracted which
are separated by two J insertions and one uncontracted fermionic propagator, provided that

the loop integral is convergent — this is because Y*P Py, = 4P% + O(e) where € = 4 — d.

6.3.5 Summary: recipe for one-loop matching

All derivations from Section 6.2 to Section 6.3.4 are done once and for all. Now we sum-
marize the results obtained into a recipe that can be easily followed without repeating the

derivations.
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Table 6.3:

Element of diagram Symbol | Expression
Z insertion (uncontracted, heavy-heavy) Agd P.Z
Z insertion (uncontracted, heavy-light) LDll_ PuZir i
Z insertion (uncontracted, light-heavy) Al PuZy i
Z insertion (uncontracted, light-light) _Z;Dl./_ P25 s
' o J
Z insertion (contracted, heavy-heavy) : ~Ztrij
il
Z insertion (contracted, heavy-light) : ~ZLij
igd
Z insertion (contracted, light-heavy) : ~
gl
Z insertion (contracted, light-light) . 25
ZT insertion (uncontracted, heavy-heavy) L.J_ Z;fbiqu
Z1 insertion (uncontracted, heavy-light) L.ll_ zZin it
ZT insertion (uncontracted, light-heavy) gt ZE‘Li/jPM
ZT insertion (uncontracted, light-light) _Z'i.l./_ Z}fﬁ-,j/PM
! m J
Z1 insertion (contracted, heavy-heavy) : —Z}fij
gl
ZT insertion (contracted, heavy-light) : —Zr i
i gd
ZT insertion (contracted, light-heavy) : —ZE‘LM
-
ZT insertion (contracted, light-light) . —Zz“i,j,

(From [60]) Additional building blocks of covariant diagrams in the presence

of open covariant derivatives in the X matrix, as derived in Section 6.3.3, up to one-open-
covariant-derivative terms P,Z*+Z" P,. Example applications can be found in Section 6.4.3.

Element of diagram Symbol | Expression
heavy propagator (fermionic, uncontracted) i M;

1
heavy propagator (fermionic, contracted) : —y

-/

0
light propagator (fermionic) : —yH
light mass insertion (fermionic) _iixil_ My Oyt jr
P insertion (fermionic, heavy) PV —Péi;
P insertion (fermionic, light) _Zl.l’_ — Py

Table 6.4:

(From [60]) Additional building blocks of covariant diagrams when Dirac fermions

are involved in matching, as derived in Section 6.3.4. These are used when the quadratic
operator for fermionic fields is not squared like in Eq. (6.60). Example applications can be
found in Sections 6.4.4 and 6.4.5.
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Starting from an UV Lagrangian Lyv[®, ¢] involving heavy fields ® of masses {M;} and
light fields ¢ of masses {my} < {M,}, the low-energy EFT can be obtained up to one loop

level with the following procedure:

1. Solve the classical equation of motion ‘Sg% [@c[¢], ¢] = 0 for ®.[¢] as an expansion of lo-
tree

cal operators®. The tree-level effective Lagrangian is given by L%.[¢] = Luv [<I>C (4], qb] )

2. Expand all fields about classical backgrounds, ® = &, + &', ¢ = ¢, + ¢, and extract

the X matriz from terms in Lyy that are quadratic in the quantum fluctuations,

1 o’ X X
LUV quad. = T 5 ((I)/T ) (b/T) (K + X[(I)ba ¢b]) with X = " e )
| : ¢’ Xin X

(6.64)
where K is the diagonal kinetic operator with elements —P? + M? (—P? + m2) for
heavy (light) bosons and —P + M; (=P + my) for heavy (light) fermions. Note that

the notation P, = iD, is introduced, which is a hermitian operator. A field whose
1
29
fermion, is usually represented by two fields in the field multiplet (e.g. itself and its

kinetic term has prefactor —1 rather than —=, such as a complex scalar or a Dirac
appropriately-defined conjugate), so that Eq. (6.64) still holds. For gauge boson fields,
add gauge-fixing terms and use the Feynman gauge (£ = 1). If the (hermitian) X
matrix contains open covariant derivatives (P,’s acting openly to the right instead of

appearing in commutators), cast it in the following form,
X=U+PZ"+Z"P, +... (6.65)

with U and Z matrices containing no open covariant derivatives.

3. Draw one-loop diagrams consisting of propagators and vertex insertions. In the simplest
case of pure heavy bosonic loops with no open covariant derivatives in X (Section 6.3.1),
only those listed in Table 6.1 are needed. Additional elements needed for mixed heavy-
light loops (Section 6.3.2), open covariant derivatives (up to P,Z* + Z™P, terms,
Section 6.3.3), and loops with Dirac fermions (Section 6.3.4) are listed in Tables 6.2,
6.3 and 6.4, respectively. These will be sufficient for the example calculations that
we show in the next section. In each diagram, at least one heavy propagator must
be present, and dotted lines emanating from all “contracted” propagators and vertex

insertions must be connected in pairs.

8From here on we omit the hat in ®.[¢] and simply write ®.[¢]. The distinction between the two was
important in our derivation in Section 6.2, but will not be relevant in the rest of this chapter.
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4. The value of a diagram is given by

—icy gz[q%]ijﬁg "trO. (6.66)

° % is a symmetry factor that is present if the diagram has a Zg symmetry under

rotation.

e n;,n;, etc., ny, and n, are the numbers of heavy propagators of type 1, j, etc., light

propagators and (dotted) contraction lines, respectively. The master integrals are

defined by
ddq qu c. q;U«an — Hezne T 2n1NiNj---NL 6.67
e T U T e v A S

where gHt#2nc is the completely symmetric tensor, e.g. g"*7 = g gf? + g"’g"? +
g"?g"?. These master integrals can be worked out and tabulated as in Appendix A.

2nc]77

For simplicity, we will omit the argument “[q when n. = 0.

e The operator structure O is obtained by starting from any propagator on the loop
and reading off expressions of propagators and vertex insertions (see Tables 6.1-
6.4) clockwise, with Lorentz indices contracted between elements connected by a
dotted line.

e The spin factor cg, discussed in the first bullet point below Eq. (6.61), is deter-
mined by the propagator one starts from when reading the diagram. There are

no extra tricky minus signs as in conventional Feynman diagrams.

Note that in our formalism, no functional manipulations nor loop integrations are
needed — one simply reads off the elements of a diagram and look up the tabulated

master integrals.

5. Add up all diagrams with operator structures up to desired dimensionality (e.g. up to
dimension six). For specific applications one may wish to study just a few effective oper-
ators rather than the entire effective Lagrangian. To determine which diagrams should
be computed, write out the field content of various vertex insertions, and enumerate
combinations of them that may give rise to the effective operators of interest (we will
illustrate this procedure below, in Eqgs. (6.94), (6.95), and Egs. (6.102), (6.103)). Also,
as discussed in Sections 6.3.1 and 6.3.4, diagrams giving rise to tr O = tr(... P%...)
can be omitted. These include, e.g. those with contractions between adjacent bosonic

P insertions, or (when the loop integral is convergent) between fermionic propagators
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separated by two fermionic P insertions and one uncontracted fermionic heavy propa-
gator. Also note that diagrams which are mirror images of each other are related by

hermitian conjugation, so only one in such a pair needs to be explicitly computed.

6. The tr(...P?...) terms omitted in the previous step can be recovered by requiring
the operator structures obtained organize into gauge-invariant operator traces where
P,’s only appear in commutators. However, instead of working out these extra terms
explicitly, it is often easier in practice to first write down all independent operator
traces expected in the final result, and then expand the commutators and match the

result of the previous step to solve for their coefficients.

7. Finally, to obtain L5 o?[@] for a specific Lyy[®, @], evaluate the operator traces by
plugging in specific forms of the U and Z matrices, with ® set to ®.[¢]. The traces are
over internal indices of the fields, including Lorentz indices carried by vector bosons

which should be contracted using —g,s as discussed in Section 6.3.1.

It should be emphasized that while the procedure above has been stated in the context of
matching a specific UV theory to an EFT, Steps 3-6 are actually universal and independent
of UV model details. The only assumption made about the UV Lagrangian is the (quite
general) form of its quadratic terms (see Step 2). Therefore, Steps 3-6 above also constitute

a recipe for deriving universal results of one-loop matching.

6.4 Examples

6.4.1 Universal One-Loop Effective Action (UOLEA) simplified

As a first application of the covariant diagrams techniques introduced in the previous section,
we reproduce the Universal One-Loop Effective Action (UOLEA) reported in [56] (and [55]
for the degenerate limit) with a simpler derivation. Recall that the UOLEA is a universal
master formula for one-loop matching up to dimension six level in the absence of mixed
heavy-light contributions and open covariant derivatives in the X matrix. We will show that
this master formula can be obtained as a sum of covariant diagrams easily built from the
ingredients in Table 6.1.

We begin by writing down all independent operator traces involving P, and Uy which

may contain terms with operator dimensions up to six,

;)

+f [P G, G+ f5 GGG

Hvyi T

Luyorga = —icstr {le Ui+ [iGIG, + [ UyUji
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[P UG Py, Upi] + f7F UUpUsi + fa UG Gl
+ P U UnUg Uy 4 £ U [P*, U] [P, Uil
—|—f12 [ " Py, Uin [PV [P, Uji]] + f U U G,WG/

Qv
+fij [PM U’UHPV?U ] VL, + f ( ZJ[P Uﬂ] [P 7Uij]U )[PV G:/uz]
+ 16" UUsUaUpnUni
+ M Uy U [P, U [P, U] + i3 Uy [P*, Ui Usa[ Py, U
‘i‘fwklmn kUklUlmUanni}7 (6.68)
where U = Uy has operator dimension > 1, and G, = —[P,, P,| = —igG,,. Note that
G, like P,, is a diagonal matrix in the field multiplet space, and we use G/, ; to denote

its diagonal elements. We have adopted the notation in [56] for the universal coefficients
v (N =2,...,19)%. In the following, we compute in turn terms in Eq. (6.68) with 0, 2, 4,

6 covariant derivatives, from which the universal coefficients can be extracted.

O(P°) terms (f248101619)- Diagrams with no P insertions all share a similar structure,

from which six universal coefficients can be derived, each in terms of a single master integral:

G = —ic, L' trUy; = fi=1T', (6.69a)
. 1 11
= —ZCS§IZ-]- tI‘(UZjU]Z) = f z]7 (66913)
1
@ — SIlljlkltr(UijUijki) = f”’“_—I};,j, (6.69¢)
1
Q = —icay Ty 00Uy UpUnlUy) - = f”“_ " (6.69d)

9Some redundancies in the parameterlzation in [56] have been removed here. In particular, the terms

2 a[P“ [PV, U] [Pu, [P0, Ujil] + f15 b[ ,[PY,Uij1] [P, [Pu, Uji]] written out in [56] can be set to zero

because fl;,a b= f{;a /b while the operator traces are symmetric in ,j. Also, f{%ka and f{%kb introduced

n [56], which are associated with Uy;[P*, Us][PY, G, ;] and —[P*, Uy|U;[PY, G, 1], respectively, are
equal when k =i (as dictated by G}, being diagonal).
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1 1
= —itoz T /(U UpUnUimUni) = i = = Tjim . (6.69)

1 1
= g Com TH tr (U Ui UnlUin U Uni) - = f157™" = 5 — T - (6.69f)
We have omitted propagator labels 7, 7,... in the diagrams above for simplicity, which can

be trivially restored. Note the symmetry factor % with S being the number of U insertions.

O(P?) terms (fr111718)- The two P insertions must be contracted with each other. To

avoid adjacent contraction, at least two U insertions are needed:

.22 :
= —ZCSE I[qQ]?JQ tI‘(PuUZ'jPMUji) C —1c, I[QZ]ZQ tr([P“, UinPM, U]z])
= 7 =TI (6.70)

This diagram was in fact already worked out in Eq. (6.44). The meaning of “C” is that with
the addition of terms involving tr(... P?...), the RHS can be obtained from the LHS; in other
words, the RHS is the only independent gauge-invariant operator (or operator combination)
with all P,’s appearing in commutators which can contain the structure on the LHS.

With three U insertions, still only a single diagram contributes:

= —ic,2’ Z[¢*) ;22 tr (U P*Ujr PuUss) - (6.71)

ijk

To derive the corresponding universal coefficient f1; in the UOLEA, note that

Wt (U [P, Ui [Py Uil) D £t (Ui PPU PuUy; + U PPU PUy — Ui PPUG PU )
( ij + szg ]k’L) (UUP'MU kP Ukz)
= T AY - Y = ATIPNR, (6.72)

which can be solved simply by permuting the indices ¢ — 7 — k£ and adding to the original

equation. We thus obtain fi; in terms of two master integrals,
0= 2(ZP + Tl ) (6.73)
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Finally, with four U insertions, there are two possible diagrams:

.22
= it @) tr (P U U PuURUs) (6.74a)
= —ic.2? Il tr(PU; PuUk Ui Usy) - (6.74b)

They organize into two independent operator traces, which we have chosen to be

S 1 (U Uik [P, U] [P, Un]) + fi3 o (U5 [P, Uis) Ui [P, Usd])
5 ( z]kl fwkl fﬂk‘“) r(P*U;;Us PUrUs)
( klw + f]k” — ”kl klw) (P“UUP UiUnUs;) - (6.75)

We therefore obtain the following two equations,
ijkl ijkl jkli klz jkli ijkl klij
T A+ s =2 T - R - A = AT (6.76)

which are solved by

7= 2ZWE + TR+ TN ) (6.772)
W= IR TR+ I+ TICNGE + TlE — T
= Il + Tl e’ + Zle'le + Tl e (6.77D)

ijkl

We have dropped terms in fi§~ that are antisymmetric under ij <+ kl, since the associated

operator trace is symmetric. We see that fi7 and fi5 together depend on only five master

integrals.

O(P*) terms (f3912.131415). The four P insertions can be contracted among themselves

without U insertions:

24
a = —z‘cszz[q‘*];*tr(P“P”PMPV)c—z‘csﬂ[q‘*];‘tr([w,PV][P,“Py})

=  fi=2T¢"Y}. (6.78)
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Similarly, with one U insertion,

= f3=8Il¢";. (6.79)

= —ic,2' I|¢");} tx(P* PP, P,UyUy) | (6.80a)

= —ic,2' I|¢")37 tr(P*PY P, U P, Uy) (6.80b)
24 ,

= —Z‘CSE I[qﬂ?j tf(PuPVUijpuPVUji), (680C)
24

= —icsEI[q‘l]?f tr(P*P"Uy P, P,U;) . (6.80d)

These terms are contained in four independent operator traces, which we have chosen to be

fJQ tr([P”, [P;n Ui]” [PV’ [Pl,, Uji”) + f{% tr(UijUji[Puv PV] [P;u PV])
+ iyt ([P, Uyl [PY, Ul [Py, P)) + figtr((Uy[P*, Uss] — [P*, U)Uji) [PY, [Py, P )
D (215 — fih — Af1) w(P*P PP, ULUy) + (2115 + Af) tx(P* P PU;; P,Uy;)
— [ tr(P*PYU, PP, Uy) + (4113 + 1) tr(P*P Uy P, P,U;) - (6.81)

Solving the set of four equations,

2fih — Ml — 4S5 =16Z[¢"l}j, 2ffi + 41 = 16Z[¢"];]

i ij

— [ =8TZ(¢1¥,  AfL+ i =8T¢")F (6.82)

ij ij
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we obtain the four universal coefficients fi21314,15 in terms of just three master integrals:

o= 4T, (6.83a)
5= ATl +2Z0a") +2Z(0") (6.83b)
o= —8I(¢"Y, (6.83¢)
o= AT + T, (6.83d)

O(P%) terms (fss). Only pure gauge pieces are of interest here, since P® already has

operator dimension six. There are two diagrams contributing, which differ by Lorentz con-

26
@ = —ic. g Zlg"P (P PYP'P,P, ). (6.84a)
. 26 616 0w DV Dp
= —ie.o Z[¢") e(P"P'PP PP, P,). (6.84b)

They follow from two independent operators, which are chosen as

traction:

fitr([P*, [Py PA] [Py, [P?, P]]) = fite([Py, PY)[Py, PP, PV)
> fete(P*PYPPP,P,P,) + (4f: — 3f¢) tr(P*P"PP,P,P,). (6.85)

As a result, we have

- 32 . .
fi= TTW. Afi- 3= 32Tl (6.56)

which yield
B=16TI, fi= 2Tl (6.87)
We summarize the results of the four paragraphs above in Table 6.5. Complete agreement
is found between our explicit expressions of the universal coefficients in terms of heavy par-
ticle masses (listed in Appendix B) and those reported in [56], upon proper symmetrizations
allowed by symmetries of operator traces under exchanging particle labels (e.g. our fgj s
equal to 3 ( IF 4 fIF 4 f¥9) in [56]). Note, however, that we have obtained the universal
coefficients in terms of much fewer master integrals, and many of their explicit expressions

are also simpler than those in [56].
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Universal coefficient Operator Diagram(s)
fo=1} Usi Eq. (6.69a)
fs=2Tlq"]; ara,, Eq. (6.78)
i 171 Uy U Eq. (6.69b)
fi = 16Tig [P, G 1P, G
o IR Eq. (6.84)
fo= ?I[q ]1 G I/,iG p,iG Wi
7 = Tl [P, Uyj)[Py, Uji] Eq. (6.70)
gjk - %Illjlkl UZ]U]]CU]W Eq (669C)
fo=8I[¢"]? UGG, Eq. (6.79)
= iIiljlklll UijUijk:Uli Eq. (6.69d)
fﬂk = 2(Z[¢*)i% + ZIP12R ) | UilP™, Upt] [Py, Uil Eq. (6.71)
f12j2 — 41—[(]4]?]3 [Pua [P;u U’Lj]] [PV7 [Plfa U]zH
= 4(Z[q"1¥ ,
v ( 4j42 4151 Uij UJ”'GT G:um‘
+27Tlq ]ij +27[q ]U) Eq. (6.80)
1Z£L = —81[q4]%3 [PM7 UinPV’ Uj’i]G;/,u,i
ff% = 4(Z[¢"]% + T1¢")2) (U [P*, Uyi] — [P, Uy)U3) [P, Gl
kT _ £ Tl Uij Ui Ui Ui Ui Eq. (6.69¢)
igkl _ 2(1[ 2]2112
17 4" lijki
+I[q2]1]-2,,}l2 + Tl UsjUjk[P*, Up] [Py, Us]
T TP 4 T Fa- (674
i wzkllzm Z]2kl1212 Ui [P*, Uik)Usa [Py, Uts]
_ +Z|g ]z’jkl + Zlq ]z‘jkl

Table 6.5:  (From [60]) List of universal coefficients in terms of the master integrals defined in
Eq. (6.67) (Column 1). The UOLEA master formula for one-loop matching reported in [56]
is reproduced by adding up traces of the operators in Column 2 with the corresponding
universal coefficients, and multiplying the overall factor —icy; see Eq. (6.68). The covariant
diagrams used to compute each universal coefficient are listed in Column 3. See Appendix B

for expressions of the universal coefficients in terms of heavy particle masses.
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6.4.2 Integrating out a scalar triplet: the scalar sector

We next consider more specific examples where additional ingredients in Tables 6.2, 6.3
and 6.4 are involved in covariant diagrams. Our goal is to demonstrate the techniques,
instead of deriving complete universal master formulas. The latter task has been initiated
in [61], and will be completed in future publications.

As a standard test case, a simple extension of the SM by a heavy electroweak scalar
triplet was used in several recent papers [57-59] to illustrate various functional approaches

to mixed heavy-light matching at work. The scalar sector of the model is given by

1 1 1
Lov D 1D = mPlof = No|' + S(D,@%)? — JMPB0" — A (8°0°)?
+rl 0GP — |g| DD, (6.88)
where @ is a heavy SU(2), triplet with zero hypercharge, and ¢ is the light SM Higgs doublet

with mass squared m? < 0. We shall focus on the following subset of dimension-six effective

operators ' generated by integrating out ®,

Or = (0,61)*, Or = |¢]2IDuol?, (6.89)

DN | —

(6D w0)’, Oy =

DN | —

where ¢T<ﬁuqﬁ = ¢'(D,p) — (D,¢")¢. Pure heavy contributions to the operator coefficients
can be easily obtained by applying the degenerate limit of the UOLEA, which is illustrated
in [55]. We will thus be interested in computing mixed heavy-light contributions. We first
reproduce, in the present subsection, the results in [57,58] for terms independent of the SM
gauge couplings. Terms that depend on the SM gauge couplings, which involve treatment
of open covariant derivatives and were not obtained in [57,58], will be computed in the next
subsection.

To begin with, we solve for ®.[¢] up to the order needed [counting x as O(M)],

K

@Lfg] = T50l0%0 — 26 (¢10"6) + D(sl0"9) | + O(MT),  (6.90)

and extract the U matrix from the quadratic terms of Eq. (6.88),

(I)/b
£UV, quad. D) _% ((I)/a (b/T (%IT) (_P2 + M2 + U[(I)ba ¢b7 (;b]) ¢/ ) (691>
le

10We will not make any field or parameter redefinitions unless otherwise specified, so that the operator
coefficients are unambiguous.
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where

M? = diag(M?5", m? m?), (6.92)
_ Ur  WUmse| _ [ U Ui | (6.9
(ULH)2><1 (UL)2><2 (U(g@)Qxl (U¢)2><2

The internal index “b” (italicized) should not be confused with the subscript label “b” (for
background). The components of the U matrix, with ® set to ®.[¢], read

Ug” = 20[0[0" + Xo (DLOLI™ +20007) ~ O(¢%, ¢, PP¢',..), (6.94a)
—k %P + 21 BE

Upe = ST ~ 000, 67, PR, (6.94b)
ko) + 21 ¢ B

- 2) (|¢]* 1o + ¢ 67) — w @0 + 9 DIDL 1, 2X ¢ 1
¢ = ~ -~
2X g ¢ 2X (|92 12 + ¢ ¢1) + 1 @l + DL 1
~ O(¢*, ¢, P2¢?, P2¢",...). (6.94¢)

Note that the two real components of the complex scalar ¢ should be written out separately
in the field multiplet. In practice, it is convenient to use ¢ and ¢ = io2¢*, since ¢ transforms
in the same way as ¢ under SU(2).

From Eq. (6.94) it is clear that to obtain mixed heavy-light contributions to the operators
Or,Og,Og in Eq. (6.89), all of which contain four ¢’s and two covariant derivatives, we

need to compute one-loop covariant diagrams that are proportional to
UntUrw, UntUrUrh, PUntUrh, P*UntUruUn, PUnUlUry, P*(UpUrk)®. (6.95)

Using the rules in Tables 6.1 and 6.2, we have (with M; = M in the master integrals from

here on)

Q/_\O = —ics Zg tr(UyUrp), (6.96a)

\\
/Q = —ic I tr(UgULUph), (6.96D)
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= —iCS 221[q2]22g tI'(P’uUHLPMULH) C —iCSQI[QQ]?()Q tr([P“, UHL][P;,HULH]) s

LD

—ics2*{Z[¢*)i tr(P.Up U P*Upr)
+Z[¢°1% te(P*UnUnp PuUpn + P*Unp PlUsaUn) }
C —ic, {4 T3 tr ([P*, U L) [Py, Uru)Un)
+2(Z[¢*io + Za*)is) tr ([P*, U Uvu) [Py, Unl) }, (6.96d)

,—..\\ . O’,—..\\
. / . / .
DOt L 94 ‘b\j
. b . .

- ~~-0

\\

(6.96¢)

= —ics 22{I[¢*)}y tr(P, UL U P UL)

+Z[q ]33 tr(PPULULa P,Unr + P“ULHP”UHLUL)}
C —ic {4 Z[¢°)5 tr([P", Urnl[Pu Unr)UL)

+2(Z[¢*)io + Z1g*)%) tr([P*, UruUni)[P, UL)) },

(6.96¢)

/ 7/ \

- 00 -8

, 1 1
= —1Cg 22{§I[q2];13 tr(P“UHLULHPHUHLULH) + 5:[[(]2]%1 tl"(P”ULHUHLPuULHUHL)

+ I[P tr(P* U, PLUruUn Uy + PuULHP,uUHLULHUHL)}
C —Z'Cs{(QI[qz]%l +4Z¢°l%) tr([P“, Unr)[Py, ULH]UHLULH)
+2Z¢*id + 4Z(g*%) tr ([P, Uri) [P, Un)UpuUn)
Il + Zla®lio + 2Z1a*i0)
tr ([P*, Unr)Uru[Pu, Un Uk + Unt[P*, ULu)Un[Py, Urnl) }- (6.96f)

Note that diagrams with m? insertions are of higher order and therefore not considered. The
results in the equations above are summarized in Table 6.6, where explicit expressions for

the coefficients and operators are also worked out. Summing up all terms in the table, we
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obtain (with ¢, = § and p set to M)

1 3x2 1 kK2 K2
1-loop D 2 |:< _ )
Leer 101 2 e aopp Pedl” + gy [(ga — 81 +34)0r
9k 21k2
(5773 — 67+ 100) On + (=535 = 2151+ 253) O], (6.97)

in agreement with [57,58,219] 1.

Two comments are in order:

e The calculation above parallels that in [58]. In particular, it is the same calculation in
the “Operator” column of Table 6.6 that is done in [58]; the coefficients part, however,

follows from a more straightforward computation here than in [58].

e While the calculation in this subsection was done in the context of the scalar triplet
model, most of the results obtained are universal. In fact, the only model-dependent
part is the expression after each “—” in the “Operator” column of Table 6.6. In this
respect, Eq. (6.96) constitutes part of the derivation of a master formula for mixed
heavy-light matching (with degenerate heavy particle masses), which we plan to com-

plete in future work.

6.4.3 Integrating out a scalar triplet: the gauge sector

Now we move on to the gauge sector of the scalar triplet model. To account for mixed
heavy-light contributions to one-loop matching that involve SM gauge interactions, we need
to extend the field multiplet to include the electroweak gauge bosons. The relevant quadratic

pieces of the UV theory Lagrangian then read

q)/b
Qy
1 ~ -
Lov, qua. O —5 (¥ T T W B) (PP + M2+ U+ P2+ Z7P,) | ¢ |, (6.98)
W
Bj

U There is an additional contribution to £i19eP (4] from Li2e5.[6] D 1\'3724 (Or+20g) = (1— 1= %) %((’)T—l—

20p) if one rescales the SM Higgs field ¢ — (1— 153 f]\'j; )& to render its kinetic term canonically normalized.
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Coefficient Operator

. tr(Ug U
—1Cs Iil[)l = 15;-2 (1 o 10g %22) ( I]{cf/ aLH) 16x%n
— U¢‘1>U¢q> D — e (OT + QOR)
tl“(UHLULULH)

. 12 _ cs 1 M?
—ics Ly = 16;2W(1 — log 7)

— Ul UyUly O 45(Or +205)
tr([P*, UnL][Pu, ULal)
e - U8, U
D —6k%D,o* + 8]\”722’7 (Ou + Og)
tr([P*, U] [Py, Ur)Unr)
= [P, Us)[P, Upg U > ~126%10p
—ics 2 (Z[¢°l3 + T1*)H) = 1= mam =, UfrIaLUbL il UbH]) 2
. [PuvU¢q>U¢>q>HPuvU<I>a] D —24k*nOy
tr([P*, Ury) [Py, Un)UL)
= [P, Uy [P Ul 1Us
5 262 [(£5 — 20)Or — £50y
+( 45 — 10A) OR]
tr([P“, UraUnL][Py, UL])
= [PH, Uga U] [Py, Uy
) 4/42[(—1\”2—22 +2X)Or
~10AOy — 250p]
—icsQZ[¢°13 + 4T1°)%) = 16 e i U?aLHPM o H]UtvaULH) 1
N [P“,U&HP,L,UM)]U(@U(;@ D —12k*Opr
[
[

: 2132 _ ¢ 1
—ics41[q ]iO = 1672 2007

. 2
—ies 4TI = g5y (=5 + log ir)

—ics 2 (ZIP)i + Z162)2) = 185 (— i)

tr( PH, ULHHP,ua UHL]ULHUHL)
—ies 2 TI¢"1§ + 471¢°18) = i 31w (§ —log §ir) | — [P Ugl P ULLIUSULG
D) —2/434((9]{ + 403)
tr([P*, Un)ULu[Pu, UnL)ULu
+Uni[P*, Ura)UkL[Py, ULn))
—ics(ZP)F + TP + 2Z(0%%) = tém e | = [P USGIUS [P UL UG,
+U G [PH, Uy UL [Py Ugs)
D 4k (=50g + 40R)

Table 6.6: (From [60]) Summary of the results in Eq. (6.96) for mixed heavy-light contribu-
tions to one-loop matching for the scalar triplet model. The SM gauge coupling-independent
terms for the three operators Or, Oy, Og in Eq. (6.89) are computed (in the MS scheme).
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where the arguments [®y, b, Db, Wh, By] of the U and Z matrices have been dropped for

simplicity, and

M? = diag(M? m? m?0,0), (6.99)
Ug Uli)ixe  Ugiw 0
U . UH (UHL>1><4 . (U(?)@)Qxl (U¢)2><2 (Uza/)%d (UfB)2><1 (6 100)
(Uim)axi  (Up)axa Uy (Ulie U U
0 Uls)ixz  Upy Uy’
g Z]’ir (Z[lf[L)1><4 . 02><1 02><2 (Zglg}g)Qxl (ZgBﬁ)bd (6 101)
(ZZH)4><1 (Zg>4><4 0 01><2 0 0
0 Oqxo 0 0

Note that W and B vector bosons are massless in the SU(2), x U(1)y symmetric phase and,
as discussed in Section 6.3.2, there is no need to retain their masses in the calculation as IR
regulators. Also, Lorentz indices «, 8 of the vector bosons are treated on the same footing
as internal indices. With ® set to ®.[¢], the relevant components of the U and Z matrices
are, in addition to those in Eq. (6.94),

ZEaP = gBiger®dd ~ O(gd?, gP2 0%, 9ot ...), Usw = [Pu, 28], (6.102a)

0b¢
Zly = =9 g | ~O0(99), Usw = [P, Ziw], (6.102b)
Oqu
o
Zhy = —g"* 3 ; ~O0(g'¢), Usp =[Py Zip]. (6.102¢)

We are interested in terms in £ from mixed heavy-light matching that are O(g2P2¢%)

or O(g”?P?¢*) 12, which can come from, schematically,

Zow Zhy C ZurZy,, P ZewZy, C P*ZyL 2L,

P ZaowUlbyy +he. C PZyUpy +hee., UswUlby CUnrUpm;  (6.103a)
Zow Z3wUss + h.c. C ZgrZi Uy + h.c.,

P2Ul o Zow Zhy, +hec. € PPUyrZ1 2} +hec,,

12Higher powers of g or ¢’ are not possible at one loop, which can be easily seen by % dimension counting.
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P ZowUlyUse +hc. C P ZypUUpy + hec.,

PUl4ZswUly +hec. C PUppZUpy + hec.,

Usw Uy Use + hoc. C UprUrUsp; (6.103b)
PUly Zov 25, Use € P2UnrZZ UL,

P U}y Zsy Ul Use +hec. € PUpp ZLU Uy + hec,

UleUsv Ul Use C UnrURULH, (6.103c)

where V' = W, B. Note that the vector boson block of the U matrix (not explicitly written
out above) does not contribute, since each of Uy w g pw,p already contains two powers of SM
gauge couplings, and additional insertions of U or Z, which are necessary in order to have
at least one heavy propagator in the loop, will bring in more powers of g or ¢'.

In Eq. (6.103), we have organized the operator structures by the total number of Z and
U insertions, which makes the enumeration straightforward. To proceed, however, it is more
convenient to group the terms in Eq. (6.103) by the powers of P and Z(. We will do so
in the following paragraphs, and compute each group in turn using the rules in Tables 6.1,
6.2, and 6.3. We will derive universal results before working out explicit forms of effective

operators for the scalar triplet model.

O(P°Z%) terms. Two of the three terms are readily available from the first two rows of
Table 6.6,

oo Co M? 1
Ellﬂlbl‘Tp D) 167‘(‘2 <1 — lOg F) {tr(UHLULH) + Wtr(UHLULULH)}. (6104)

The remaining term in this group easily follows from a single diagram,

f\\ , Cs M3\ 1
\\ /9 = —1Cq4 1-2.103 tI'(UHLUzULH) = 1671'2 (1 — log ?> W tr(UHLUzULH). (6105)
0/

O(P'Z?) terms. Both terms in this group are also straightforward to compute, with the

Z* and Z* contracted so that no P,’s are picked up from vertex insertions:

..... - 2111 nooot ¢ (3 1 M? 2 tooot
U = —ic 2[5 (21 Zhn,) = 1o <§ — log F)M (22, 2l )
(6.106a)
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'—\\

/.
I \ .
X nj +he = —ie, Z[¢*)ig tr(Z;, 2} \Urn) + hc.
cs /3 1 M? ;
= 1622 (g — 1 log F) tr(Z5 21, Ure +hec.) . (6.106b)

O(P'Z') terms. More diagrams contribute in this case, since the covariant derivative can
either come from an uncontracted Z) insertion, or be directly inserted. In the latter case,

the P and Z() insertions should be contracted. The four terms in this group are calculated

as follows:
- —zcs{(Ifol 27[¢%2) tr(P, Z;;LULH) — 2 T(q?)2 ta( 2%, i)} + hc.
3 1 M?
167r2 (z_L 2 log HJ_> tr(PuZy UL — Zy, PuUry) +hec.
3 1 M2
(Z &2 > v([Pu, Zf) ULn + hc), (6.107a)
/ // .. /, ,
l/\ O’_m + l\ : E]/ —+ l‘ + ‘ ..... + h.c
\O_,// \O\_// \‘O_,/ b\—,/

= —ics{(Z;g — 2Z[¢°)75) tr (P25 UrUrr)

—21-[ ] (Z}_LILP ULULH+ZHLULP ULH }+hC
e 1 (3_110 M2>
T 16mr a2 \g 2 B2
tr(2F, ZﬁrLULULH — 24 PULULy — Z3, UL P,ULy) + hec.
cs 1 /3 M?
= =5 MQ( log ) V([P 25 UL ULy — 28, UL [P Upy] +hec),  (6.107b)

ecieReY

= —ic.{(Ziy — 2Z[¢°)i) tr(Up L P 2t Upy) — 2 Z[¢°);5 tr(Un ZE P Upy)

—2Z[¢°5 (UHLZ ULuP,)} + h.c.
Cs 1 1 M2 3 1 M2
~ 1672 W{ <Z “log 7) tr(Un PuZyUi) + <_4_1 +5log ?) tr(Unr 21 PuULn)
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1
+§ tI‘(UHLZHULHP ) + hC}

cs 1 3 M? 1
= 2 W{ (1 gyl ) tr(Unc Py ZE)Un) + 5 tx((Pr Uns) Z5Usn) + h.c.},
(6.107¢)
(Q '?' + (O é D + é {O 0 +he.
\_O,
= —ics{(I}g — 21-[(]2} )tl"(UHLP Z#ULULH)
QI[ ] tI‘(UHLZ P ULULH -+ UHLZ ULP ULH)
—2I[ ] tl“(UHLZ ULULHP }+hC
cs 1 1 M?
~ 1672 W{ (Z Tl F) (Unt B ZLUiULn)
3 1, M . .
+(_Z +ylos = ) t0(Unr 28 PuUL Ut + U Z8UL PuUry)
5 1 M?
+<Z — 5 IOg F) tr(UHLZgULULHPM) + hC}
c, 1 3 M?
= 167‘(2 W{ (Z — 5 10g ?> tI‘(UHL[P“, Z/Z]ULULH — UHLZZLUL[PH, ULH])
1
+5 ([P Un) ZEULUnnr) + h.c.}. (6.107d)

O(P%Z?*) terms. The number of diagrams increases further, but the calculation is still
quite manageable even if done by hand. Since the procedure should be clear by now, we
refrain from enumerating all the diagrams for the three terms in this group, but simply

report the final results:

P
N
/ \

U + (2 + 6) more

s 5 1 M? ,
. 1(057r2{<ﬁ B El &5 > r([PH’ZHL][P ZHLV])

11 1 M?
(g5 + gl ,T) tr([Pys Zfr.)[Pos Z}71))
1 M? v 1 M* /
+(55 o8 ) izl P R) + (5 + glos ) w(ZhlB PIZE)

(6.108a)
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/
l/\ é) + h.c. + (64 15) more

a__-
cs 1
1672 M2
5 1 M2 " v T 1 w v T
{(—5 + D log —2> t1"(UHL [P [P ZLHZHLV) - étr([P yUni]Z1 [Py, ZHLV])
W
7 ]_ M2 m TV 1 1 '}'V
—|—<_§ + 3 log F> tr(Unp [P, ZE)[Pos Zify)) + 6 (Ul Z1][Fy: Zis))
5 1 M2 v 1 v
—I—<% ~ 3 log ?> tr([Py, Uni] [Py, ZZ]Z}{J -3 tr ([P, Un) ZE [P, Z;ILD
1 , 17 1. M? v
13 WU ZEZR P P) + (=g + g los ) o (Unn 24 P PIZ))
11 1, M
+(% — 6 log F) tl”(UHL[PH, PV}ZEZEJL) + h.C.}, (6108b)
(O\\
) /l,_J + (4 4+ 17) more
\i/

c G L{(i_ib %)
16m2 Mi\\72 ~ 12°9% 2
tf<UHL[P“a 2Py Z1, ) Ui + ([P, Uni][Pu, Z) 2} Urs + h-C-)>
1
-5 tr(Ug [P, Z¥) 2L [Py, Urer] + h.c.)
2

17 1 M
+<_ﬂ + 1 log 7> tr([PMa UHL]ZZZEV[PW ULH])

11 1. M ” v
4_(_% + 8 log ?) tr(UHL[P/“ ZM[P,, Zz WUrw + Un[P,, Z}] I Zz ]ULH)
11 1 M?
+(1_ ~ o ?) tr([Py, Unt][Pu, Z£1 21 Uy + huc.)
17 1. M? v
(g5 + 5 log 7) ([P, Unrs [Py, Z1)Z} Upir + hoc.)

v 1 14
tr(Ug [Py, Z8) 21 [P, Up] +hic.) — G tr ([P, Unr) 24 21 [P, Upi))

—_ =

1
=5t (Unn 22} UpnlPy P))) = < tr(Unn ZE 2} [Py, P)Upi + hic) } (6.108¢)

In the equations above, we have shown, for each term, the one diagram with zero P insertions,
and the number of diagrams with one and two P insertions (e.g. 2 and 6, respectively,
for the P?Z HLZ}L{L term). The counting excludes hermitian conjugation and adjacent P,

contractions. Following the rules in Section 6.3.5, the reader should be able to easily draw
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all the diagrams, and fill in the intermediate steps (which are straightforward though perhaps
a bit lengthy) that lead to the final results in Eq. (6.108).

All results presented in the four paragraphs above, namely Eqs. (6.104), (6.105), (6.106),
(6.107) and (6.108), are universal and model-independent. Now we focus on the scalar triplet
model, and work out the traces involved in these equations that yield the three effective

operators in Eq. (6.89):

tr(UnrUsn), tv([Py, Z;,)ULe) and h.c., —tr ([P, Z5, ][ Py, Z}{VL])

— —gapUsip UL D —%92(@ +20k); (6.109a)
tr(UpULUpn), tr([Py, 24, )ULULy + h.c.),
tr(Ug [Py, Z8 U + hec.), —tv(Unp| Py, Z8][P,, Z,:] + h.c.)

— —GasUs USiUS, +hoc. D %gz(OT +20R); (6.109Db)
tr(UnUpUrn), tr(Unp[Py, Z8ULUry) and hec., —tr(Ugr[P,, Z¥][Py, Z)\Urk)

= —~9as (USe Ui Ul Use + Uls U Ul 3Usa)

2
K
> 5 [9°(Or —40R) + 9*(On — 205)]; (6.109¢)
tr(Z?ILZ;ILM>
i gt (1 EYIE i ooy, 109d
= ~YapLow Lowy 2 1 M6g( 7+ 20R); (6.109d)
tr(Z4, 2} U +h.c.)
a2l g0 a4y 1= V32 0, 4200 6.109
Japlow Zew uVee T h.C. O 1 M49( 7 +20R); (6.109e)
tr (24, UL[P, Urn] + hoc.), —te([P, Unt) [Py, 24121, + h.c.)
aba a 4&2
— —Gas Zan US P, Usy] + hoc. D —WgQ((’)T — Oy + OR); (6.109f)

tr([Py, Unr) 24U + hec.), —tr([Py, Unr)Z4 (P, Z1,] + hec.)
2

a [e}% a, 4"{‘
— —Gap| P, Ula) 20 USs? + hoc. O 2(Or +205R); (6.109g)

Wg
tr(Upr, Z8UL [Py, Urn) + hoc.), —tv([Py, Unr) [Py, Z¥] 23 Upy + hoc.)

— —9as (Ul ZL Ul [P Uge) + UL ZLg UL P, Ugg]) + hic.

D 4k%¢*(Or — Oy + OR) ; (6.109h)
tr ([P, Unr) Z¢UrUps + hoc.), —tv(Usp|Py, Z¥]1ZY [P, Ury) + h.c.)

=~ ([P U Z5w Ul Usa + [P, Ulg) 255 UL US) + hic.
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> —r*[g*(50r + 40g) + ¢*(On — 20r)] ; (6.109i)

trﬂfw,ZﬁLHfhaszuD
16K2
FVE

vV aox Qa, €
= —0us P! 25N PL 20500 2 (1= )

(Or +205R); (6.109j)

tr(Upr, [P*, [Py, Z¥)) 2}y, + hoc))

16k2

Ve

a v ba a €
= —gasUfs [P, [Py Z)) 200, +he. > (1= 5)

(0O + Og);  (6.109Kk)

tr([Pu7 UHL]Z[V/[P;“ Z}L;ILV] + hC)
1652
M2

— —gaal P, UL 250 [Py 20 )+ he. > — (1= i)

g*(Or +20r); (6.1091)

tr(Unr[Py, Z4) [P, Zif;) + hoc.)
2

4k
a v ba ba
= —0asUa [P, 250\ [P ZE,) + b D =150

2(Or +20p); (6.109m)
tr(Unr[P", Z{) [Py, 2}, ULh)

— —9as (UL [P*, Z5001 [P 253 JUs + UL [P*, ZE81 Py 205, )Us)

5 (1 - i) 262 [g2(Or — 40R) + ¢*(On — 208)] ; (6.109n)
tr([P*, Un ) [Py, Z4) 2} Uy +h.c.)

— —gas ([P, Ul [P, Z5i1 2850 Use + [P UL [P, Z55) 205, Uss) + hic.

S5 - (1 . i) 1652¢%(Or — Oy + Op) ; (6.1090)
tr(Uy [P, Z¥)Z} [Py, Ure) + h.c.)

= —0ap (USo[P", Z5i 1200 [Py Uss] + Ul [P, Z551 285 [P, Uga)) + hc.

> (1 - E)M [9°(507 + 405) + ¢*(On — 205)] ; (6.109p)
tr([P*, Unr) 24 2L [Py, Uri))

= —gas ([P, U1 Z58 2l [P U] + [P U3 255 21 [P Uga))

S5 — (1 . i) 262 [g2(Or — 40x) + g%(On — 208)] ; (6.109q)
tr(Unr[Py, Z8) [Py Z ULk

— —9as(Ula [P, 51 [Puy 250 U + Ule [P, ZUg1 [Py Z13 U

2
> _% [9°(Or — 40g) + ¢*(On — 20R)] ; (6.109r)

tr([Py, Unr][Py, Z8) 2 Ui + hc.)
— —9as([Bu US| [P, ZhyV 250 Ul + [Py USG I[P, 2551203 Uy ) + hc.
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D —4k*g*(Or — Oy + OR); (6.109s)
tr ([P, Unr) 24 2 [P, Urw))
— —9as ([P USa) 20w Z5w 1P Ugs) + [P, UG 255 2150 1P, Ugs))

2
= —% [9(Or — 40R) + ¢*(On — 208)] . (6.109t)

Note that Lorentz indices of the gauge boson fields «, 5 should be contracted with —g,g3, as
discussed in Section 6.3.1. Also, O(¢) terms from g,39*° = d = 4 — ¢ must be kept in cases
where the master integrals have % poles. The latter were not written out explicitly above,
but can be easily recovered by

M? 2 M?

—log— — — —log —-. (6.110)

H € H
Adding up all terms in Eqs. (6.104), (6.105), (6.106), (6.107) and (6.108) with the replace-
ment Eq. (6.110), plugging in Eq. (6.109), and finally dropping % poles, we obtain the final
result (with ¢, = 3 and g set to M in the MS scheme),

1 5k?
1672 SM4

Ly’ [0] D [ Or + ¢ O — (4g° +2¢”) Og ] . (6.111)

This agrees with the result in [219] obtained by Feynman diagram calculations.

6.4.4 Integrating out a vectorlike fermion: pure gauge operators

Our final two examples demonstrate treatment of fermions in our covariant diagram ap-
proach. In the present subsection, we consider a simple but quite general setup of a vector-
like fermion of mass M charged under some gauge symmetry. We will compute pure gauge
effective operators up to dimension six which are generated by integrating out the heavy
vectorlike fermion, independent of possible presence of light matter fields. The results are
familiar in various contexts, including integrating out a heavy quark flavor in QCD, and
integrating out a heavy vectorlike fermion that may arise in many beyond-SM scenarios. We
also note that the same results are obtained in [55] following the alternative approach to

integrating out heavy fermions discussed at the beginning of Section 6.3.4.

O(P*) terms. We first consider diagrams with four (fermionic) P insertions. Five dia-
grams can be drawn which differ by whether and how the heavy fermionic propagators are
contracted with each other. One of them can be dropped where fermionic propagators sepa-

rated by two P insertions are contracted (while the loop integral Z[¢?]} is finite), because it
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only gives rise to tr(... P?...). The remaining four diagrams are, by the rules in Table 6.4,

QQQQ

= —icg 4M4I4 +M2 tr O‘Pva

+Z0q"]; (?ﬂv“?wlb’vﬂf’wiﬁ) + Z—ltr(vo‘PvﬁP%P%P)) } (6.112)

Evaluation of the gamma matrix traces is standard and straightforward,

tr(P") = tr(y""7*y7)tr(P, B, B,P,) D —4te(PPYF,P,), (6.113a)
tr(y* PyaP’) = —2tr(P") + O(e) D 8tx(P*P'P,P,) + Ole) , (6.113b)
tr(Y* Pra PV Prysl) = 4(1 — ) te(P") D —16(1 — €) te(P*P*P,P,),  (6.113c)
tr(Y* Py PraPrsP) = tr(v* "y v vav 1877 )t (B P, P, Py )

= {=2tr(7"/"7"9"977) + etr(y"977 1 9577) ftr (PP, Py Fy)

= {=8g"tr(7y"7%) + 2e tr(y"1#4P77) + de g tr(y#7) }tr (P, P, P, P,)

= {8eg"g” — (32 — 8¢)g"’ g + 8¢ g ¢"" }tx(P,P,P,P,)

> -32(1- i)tr(P“P”PuPy) , (6.113d)

where terms involving tr(... P?...) have been dropped. Note that O(€) terms must be kept

for the last two traces, since they are multiplied by Z[¢*]} which contains a % pole. Plugging
Eq. (6.113) into (6.112), we have

LHor 5 e {—M* T+ 8M> T[q*)! + (—16 + 10€) Z[¢"]*} tr(P* P'P,P,)

s 2 M 1
= = Jlog— 5 u(PYP' P

llothr([P‘” PY|[P,, P,])

1672 3 16723 2
11 M2 , g* 4 M?
— el _ apv a
1623 —log " tr(G"G,,) = 167r2T(R)< 3 log " ) ( -G le) (6.114)

where T'(R) is the Dynkin index for the representation R of the heavy vectorlike fermion,
defined by tr(t%t4) = T(R)§* with t% being the generators in representation R; for example,
T(R) = 5 and N for the fundamental and adjoint representations of SU(N), respectively.

Also, recall ¢, = —1 for Dirac fermions '*, and G, = —[P,, P,] = —igG,, = —igG¥,t%. One

13Unlike in Eq. (6.64), here Lyy, quad. can be written with prefactor —1, with only the vectorlike fermion
field in the field multiplet of interest, and it is not necessary to represent this single Dirac fermion field by
two fields as mentioned below Eq. (6.64). Of course the latter is OK to do, in which case the two fields
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can rescale the gauge fields to canonically normalize the kinetic terms while keeping ¢G .
unchanged. The result is the familiar one-loop matching formula for the gauge coupling

across a heavy vectorlike fermion mass threshold (see e.g. [229]),

2 2 2
Jerr (1) g 4. M
=1 T(R 1 6.115
(1) i 1672 ( )(3 °8 2 ) ( )

O(P®) terms. Diagrams with six P insertions can be computed similarly. We enumerate
them in the following, using v*v*v, = —27* to simplify the operator trace. Again, diagrams
only giving rise to tr(...P?...) are dropped.

A

= e { SMOT + (-2 + (-2 (14 5 )M + (-2 TR (),
(6.116a)

1
= —ic.{ - 6 4 —2)2§I[q6]?}tr(7°‘lb3%ib3), (6.116b)

* = —ic, M*Z[¢")} tr(y" Py Pra s ) (6.116d)

B _iCS;MQ (12 (v P PPy Prs P (6.116¢)

= —ic, g Tl Rty Py P ProPusPrsP), (6.1160)

would effectively have ¢, = —1 each and contribute equally to EE&?R leading to the same final result as

2
Eq. (6.114).
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& = —ic, éI [°)¢ tx(Y* P P PraPraPs ) - (6.116g)

All loop integrals appearing in the equations above are finite, so O(¢) terms can always be

dropped when evaluating the traces:

tr(P°) > —4tr(P*P"P’P,P,P,) + 12 tr(P*P"P’P,P,P,), (6.117a)
tr(v* P o P’) D —8tr(P*P"P’P,P,P,) + 8 tr(P*P"P°P,P,P,), (6.117D)
tr(y* Py° PraPysP’) D 32 tr(P*PY PPP,P,P,), (6.117c)
tr(y* P’ Pya P’ P°) D 16 tr(P*PY PP P,F,P,) — 16 tr(P*P"P’P,P,P,),  (6.117d)
tr(Y* PP P*yaPys ) D —16te(P*PYPPP,P,P,) + 48 tr(P*P"P’P,P,P,),  (6.117¢)
tr(y* PP Py’ PraPrs PysP) D —32te(P*PYPPP,P,P,) — 96 tr(P*P'P?P,P,P,)
(6.117f)
tr(y* PP Py PraPysPysP) DO —128te(P*PPPP,P,P,), (6.117g)

where terms involving tr(... P?...) have been dropped as before. Plugging Eq. (6.117) into
(6.116), we can organize the two operator traces into two independent dimension-six pure

gauge operators,

2 128
L’E%OTOP ») —ics{—gMﬁ I + AM* T[S — == Z[qe‘]?} tx(P"P* PP, P, P,)
—ie {200 T8 — 20M T + 96M> T} — 128 Z(") | (PP PR, E,R)
c, 1 1 . 3 ,
- 1672 W{_E tr(PrP PpPuPpr) + 5 tr(P*P PpPuPpPu)}
c, 1 2 . 1 3
S fomap s PR GLIR.G™) - - (G,G1,0,) )
= L Ry (1600 — 4040) (6.118)
- 1672 M260 2 3¢/ :
where
@) — _l(DMGa )2 O _ gfachau Gby Ger (6 119)
26 — 2 uv/) 3G — 6 v o E .

6.4.5 Integrating out a charged scalar singlet: penguin operators

We finally consider an example for one-loop matching involving mixed statistics. The UV

theory is the SM extended by a heavy SU(2), singlet scalar h with hypercharge —1, which
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couples to the SM Higgs and lepton doublets ¢ and [. The Lagrangian reads
Loy = Loy + | Duh|2 — M2|R[2 — alh|* — Blo|?|h|2 + Lf1Th + KTifl (6.120)

where | = i02l¢, with charge conjugation defined as ¢ = —in2[*. f is a 3 X 3 antisymmetric
matrix in generation space; e.g. [ fl is short for l:a faplp with generation indices a,b summed
over. One-loop matching of this model onto the SMEFT is discussed in [219, 230], with
mixed heavy-light contributions obtained by computing Feynman diagrams. Here, we focus
on a subset of dimension-6 operators generated in this model — the penguin operators — as
an example to demonstrate the use of covariant diagrams involving heavy bosonic and light
fermionic loop propagators.

We shall continue to use the four-component notation, treating [ as a Dirac fermion field
whose right-handed component should be set to zero in the end — this is legitimate since
the unphysical component [ cannot appear only in the loop. The quadratic terms in Lyy

needed for our calculation read

h/
1 - —P24+ M?+ U U B
»CUV, quad O —§<h/T BT 77 ) ( h>2><2 ( hl>2><2 ’
(Uin)ax2 (=P + U))axo I
Z/
(6.121)
where
o (2P + heht) + lof 2ahch?
h p—
2ah:h} 200(|he|? + hiRT) + Bl)?
0 —2fh, —oftl 0 —2lf 0
Ul = f s Ulh = f s Uhl = f _ 6122)
—2hif 0 0 —2fl 0 —2ift

The light fields ¢, I, [ are understood as background fields ¢y, L, ly. Parametrically, e[, [] ~
O(f1?) at leading order, whose explicit form will not be relevant for our calculation. The
separations of the complex scalar h into (h, h*) (with h* = h' for a scalar singlet) and the
Dirac fermion [ into (I,1) are necessary due to the presence of off-diagonal terms in U, and
U;. As a result, each bosonic (fermionic) field in the field multiplet of Eq. (6.121) effectively
has ¢, = 1 (¢, = —1). This is similar to the separation of the SM Higgs field ¢ into (¢, ) in
the scalar triplet example in Sections 6.4.2 and 6.4.3.
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The penguin operators we wish to compute are ~ O(P31?). At one-loop level, they can
only arise from covariant diagrams with one Uy, one Uy, and three P insertions. There are
nine such diagrams, two of which are hermitian conjugates of each other. They can be easily
enumerated by distributing three P insertions on the h and [ propagators and contracting
the bosonic P insertions and fermionic light propagators (which, unlike the fermionic heavy

propagators, cannot be left uncontracted). We will always start reading a covariant diagram

1

from a bosonic propagator, and thus ¢, = 5. Dropping tr(... P?...) terms as before, we

have

.o , y cs 11 y
U = —icy(=2%) T tr (U Ui PY P, P,) = tr(Upy"Up PP P, P,),

1672 M2 9
(6.123a)
,"."\.\
U = —ics(=2) Z[¢"1% tr(Uniy""y" PUin B Py)
ce 1 1 y
= el tr(Uny" " PUin P, P,)
cs 1 (1 .
> - 6W2W{Etr(Uhm P"Un(P,P, + P,P,))
1
+ 45 (i Un(0™" +70") F,Un [P, P]) } (6.123b)
,’.'.'T\
U = —ics(=2%) Z[q"155 tr(Uniy"~*~" P,Uin Py Py)
ce 1 1 pp
= 167T2WEU"(UM’Y v P,Uw P, P,)
cs 1 (1 .
5 16W2W{Etr(th P"Up(P,P, + P,P,))
1
18 tr (z Un(a"y? + ~Pot) P, Ui [P, Py]) }, (6.123c)
o e

w = —ics(—2) Z[¢")% tr(Uny Vv Y Yo Pu P, Uin Py)

ce 1 1 y
= (——) tr(Uny"v"y* Bu P Ui Pp)

1672 M2\ 6
c, 1 1 ,
=) 1672 W{_g tr(Uhl'Yu(PuPV + P,,PH)Uth )
1
+og tr (i Un ("4 + 7°0")[P,, PJUi P,) } (6.123d)
e o
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e

where

v

—ics(—2) Z[gY1E tr(Uny* vy Y PP, Uik Py + Ui y* YY" Yo Pu P, Ui P,)

c, 1 1 5 ,
1672 M2 <_6> tr(Uh17M7 ”YpPuPyUthp + UpyP My PNP,,Uthp)
c, 1 1 ) 5 .
o1 1o M Un(@y +970") [Py PJUnE,), (6.123¢)

—ics(—1) Z[q"jo tr(Uny“ v vay V"5 PPy PoUi)

—ics(—4 + 4€) Z[q")}y tr(Un"y"+* PP, P,Up,)
c 1 1 M?
s (2421 —>t Uy ~"~ P, P, P,U
1672 <36 + 6 0g 12 F( YV ) lh)
Cs 1 1 M2 . v v
622 (—m ~ o log 7) tr(z Un(c" 4Py, P,|P, + ~F " P, P,, Py])Ulh),

(6.123f)
—ics(—1) Z[q"i tr (U v*v° v 157" Yo PP PoUnn)

—ics Z[q"jo { (=4 + 2€) tr(Uny*y" " B P, PpUsn)
+2¢ tr(Uny"y"~* PP, P,Uin) }

1672 M2 36 6

1
+6 tr(Uhl’yu’}/V’prMP,,PpUlh)}

cs 1 5 1 M?
o] (% = S log =3 ) tr(Uny " PYBuPU
1672 M2{<18 3108~z ) w(Un " PEEUn)

oo, M -
+<——+—log—2> t0(i Up (0"17 [Py, PP, + 70 P,,[PWPV])UM)},

144 " 24% 7,
(6.123g)

Cs 1 5 1 M2 v
{(—— + = log ?> tr(Uny* 7" BuPy PyUnn)

—ics(—1) Z[g"Nis (U7 Yoy PPy P Uss)

ic, Z[q‘*]}{f{S tr(Un" P PP, Un,)

€ . v v
5t (iUn(0" [Py, PPy + 70" PP[PN,PZ,})UM)}

. 1 (/11 1. M2
IR | —)t U, " P*P,P,U
167r2M2{<18 31087 ) WUy P BB Un)

1, , ,
57 t2(i Un(0""y" [P P)P, + 70" Pp[PM,PV])UZh)}, (6.123h)

1[*.~4*]. The O(e) terms coming from gamma matrix algebra must be
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kept when computing the last three diagrams, which involve the divergent master integral

M? M? . . L.
I[¢") = 24]1\43 (4 —log —+), understood as ﬁ(% + & —log &) The following identities,

together with the standard gamma matrix formulas, are useful in deriving Eq. (6.123),

V= ¢ —io", (6.124a)

v 1 v v v v
PAaPy¥ = 5({7“,7”}7 + Y, 7} = ¥ — Ay AP)

= gy + g — "+ %(0‘”7" +7Pat) (6.124b)
4 14 1 4 14 v v
= 9"+ g = S (0 I = =)
; .
= (g +9"7") = 29" — %(Up”v“ + 9" at), (6.124c)

v 1 v (0% v v (0% v
VPV W18 = G207 98 + MY ) + €Y s + 1YY ) }
= —8¢"" +2e(g"" + g""") + e( VY + )
= —8¢"" +3e(g"" + g""y") +ie(0"y” + o). (6.124d)

Note that we have been careful to keep all expressions in the intermediate steps of the
calculation manifestly hermitian, in order to easily obtain manifestly hermitian final results.
This is why we have applied gamma matrix formulas in a symmetric manner in Eq. (6.124).

Adding up all diagrams computed in Eq. (6.123), we have

oo cs 1 1 Y 1 v
Lhloor o = tr{ 5Un " UnP"PyP, + < Uny" P"Un(PuP, + B, P,)
8 2 M2

1
= Uny* (BuPy + PP UnP” + (5 ~ S log ?) U P* P, B, Uy,

I v v
+§2Uhl(0"u ")/p—i-’)/pO'M )[Pu,Py]Uthp

1, y y
i Un(0"y/ [Py PP, + /0" B[P, PV])Ulh}

- e 1 tl"{ i(Uhl/'}/M[Pw [Pyv [Pﬁw Ulhm + UhlVM[PW [Pyv [Pl” Ulhm)

1672 M2 L 12
—%Uhm”Ulh[P”, P, P]] + (—g T %log Aj—j)Uhm”[P”, (P, ]| Ui
—é (i Un0"+? [Py, P,) [Py, U] — i[Py, Unlo** [Py, PuJUns) }

= 1;;2 %{—% [iTfT (D’ + DD*)+ilf f{(D*p + PD?)i ]

P[P DDA (g Bu¥ie) + (179D D (o B
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[Z 1 v Dr <gW“ L Vv)z N <gwa LA BWY)[ ]

1
+5 [z [ft forv (gVV;fV— +g B,WY) )
+z’l:ffTaW<gW“ —+gBWY>lDl+hC”
1 1 1
— — 3 ——ilfTf(D? D?)I
G g O+ PO
2/5 M2 17t v " 204 M2 7rT v, .a KA/ a

+i lig(If1 fo" 1) B,,, + h.c.] + i [ig/(IfT for 7 YW, + h.c.] } (6.125)

where we have denoted the sigma matrices by 7¢ to avoid clash of notation. Note that the
form of [P,, P,| = igG,, depends on the propagator on which it is inserted, e.g. [P,, P,| =

W;}V% +i¢'B,,Y and ig'B,,Y for SU(2). doublets and singlets, respectively. Also, we see
that terms involving [ and [ contribute equally, yielding a factor of 2 which cancels against
Cs = % in the last line of Eq. (6.125). Our results agree with those obtained in [230] by

Feynman diagram calculations.

6.5 Conclusions

Matching from an UV theory to a low-energy EFT via gauge-covariant functional methods,
as an alternative to Feynman diagrams, will continue to be both theoretically interesting
and practically useful. We are now at a stage where one-loop universal master formulas
are available [55,56] and have proven useful in the simplest cases (namely in the absence
of mixed heavy-light contributions, open covariant derivatives, etc.), while various proposals
exist [57-59] to deal with such additional structures that arise in practical applications. An
interesting question to explore at this point is whether ideas from these (or other similar)
proposals can be implemented as easily as existing universal master formulas, without the
need for additional functional manipulations which might make functional matching methods
less accessible.

To this end, we have introduced covariant diagrams as a tool to keep track of functional
matching calculations. They are easy to use, and provide physical intuition. Specifically,
we carried out a functional matching procedure that builds upon and extends the approach
of [59], from which a set of rules for associating terms in a CDE with one-loop diagrams was
derived — this was done, once and for all, in Sections 6.2 through 6.3.4. The rules are remi-
niscent of conventional Feynman rules, but with a crucial difference that only gauge-covariant

quantities are involved. The recipe summarized in Section 6.3.5 can be easily followed in
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one-loop matching calculations, including those involving mixed heavy-light contributions,
open covariant derivatives and mixed statistics, which are not directly captured by existing
universal results. We presented many example calculations in Section 6.4, showing technical
details for the sake of pedagogy. They provide nontrivial tests of our covariant diagrams
formalism. As a byproduct, some universal results incorporating the additional structures
were obtained in the intermediate steps, which are also useful beyond the specific UV models
considered in this chapter.

Compared with Feynman diagrammatic matching, our formalism inherits some key ad-
vantages of functional matching, namely gauge covariance in intermediate steps and the
possibility of obtaining universal results as discussed in the Introduction. In addition, com-
pared with recently-proposed functional matching approaches, our covariant diagrammatic

formulation has the following highlights:

e No additional functional manipulations (nor subtraction procedures) are needed. One
simply draws diagrams and reads off associated master integrals and operator struc-

tures, which is more intuitive conceptually.

e The step of collecting identical terms in a CDE is automatically achieved by associating
a symmetry factor to each covariant diagram, which trivially follows from rotation

symmetry of the diagram.

e Loops with fermions are easily handled. As in the pure bosonic case, vertex insertion
rules are directly obtained from the quadratic pieces of the UV Lagrangian without

explicitly block-diagonalizing the quadratic operator.

An attractive direction to move forward in, as far as functional matching methods are
concerned, is trying to fully exploit their universality feature and derive more general uni-
versal master formulas for one-loop matching. It is an intriguing possibility that as many
interesting UV theories as possible can be matched onto low-energy EFT's simply by applying
a few master formulas. In this regard, covariant diagrams provide a useful tool to organize
and simplify the calculations involved — we already saw in Section 6.4.1 that they allow for
a simpler derivation of existing universal results. Meanwhile, even in the absence of complete
universal results, one can already take advantage of covariant diagram techniques to facili-
tate one-loop matching calculations for specific UV models of phenomenological interest, as
we did in Sections 6.4.2 through 6.4.5. We also comment that the algorithm of enumerating
and computing covariant diagrams can in principle be automated, providing a useful and
efficient alternative to automated Feynman diagrammatic matching calculations. Besides, it

is interesting to consider the possibility of extending covariant diagram techniques beyond
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one loop for EFT matching, and more generally for extracting UV information of a quantum

field theory (including e.g. renormalization group evolution [57]).
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Chapter 7

EFT Approach to Trans-TeV

Supersymmetry

Dismissing traditional naturalness concerns while embracing the Higgs boson mass mea-
surement and unification motivates careful analysis of trans-TeV supersymmetric theories.
We take an effective field theory (EFT) approach, matching the Minimal Supersymmetric
Standard Model (MSSM) onto the Standard Model (SM) EFT by integrating out heavy
superpartners, and evolving MSSM and SMEFT parameters according to renormalization
group equations in each regime. Our matching calculation is facilitated by the covariant dia-
grams formulation of functional matching techniques, with the full one-loop SUSY threshold
corrections encoded in just 30 diagrams. Requiring consistent matching onto the SMEFT
with its parameters (those in the Higgs potential in particular) measured at low energies,
and in addition requiring unification of bottom and tau Yukawa couplings at the scale of
gauge coupling unification, we detail the solution space of superpartner masses from the
TeV scale to well above. We also provide detailed views of parameter space where Higgs
coupling measurements have probing capability at future colliders beyond the reach of direct

superpartner searches at the LHC.

7.1 Introduction

The lack of new physics discoveries at the LHC has led us to consider the possibility that
beyond Standard Model (BSM) states responsible for solving the outstanding problems in
particle physics, e.g. unification and dark matter, are much heavier than the weak scale. In
this scenario, weak-scale phenomenology can be conveniently described by an effective field
theory (EFT). With heavy new particles integrated out, their virtual effects are encoded
in higher-dimensional effective operators involving the light Standard Model (SM) fields.
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Recent years have seen a growing EFT literature, many of which aim to carefully examine
phenomenological impact of higher-dimensional operators; see e.g. [5-7] for reviews. Exper-
imental data have put constraints on many of these operators, which can be translated into
constraints on, e.g. masses and couplings of heavy new particles, once the BSM theory is
specified.

On the other hand, the usefulness of EFT approaches to BSM physics extends beyond
bottom-up studies. From a top-down perspective, we may be interested to ask whether some
attractive speculative ideas — supersymmetry (SUSY), unification, etc. — can be realized in
specific BSM setups, while being consistent with the SMEFT we have established at low
energy. To address such questions requires careful matching between the full theory and EFT
parameters across heavy particle thresholds. In particular, in addition to higher-dimensional
operators being generated, changes in renormalizable operator coefficients across thresholds
are often important to account for. These “threshold corrections” are invisible to low-energy
experiment, but may be crucial for answering questions regarding high-scale physics, like the
one on SUSY and unification posed above.

For example, in the context of the Minimal Supersymmetric Standard Model (MSSM),
we would like to know what regions of parameter space can realize unification of not only the
three gauge couplings, but also the bottom and tau Yukawa couplings, and meanwhile allow
consistent matching onto the SMEFT with its parameters (those in the Higgs potential in
particular) measured at low energy. Further, we would like to know what phenomenological
implications, if any, such parameter choices may have.

These are questions we would like to investigate in this chapter, taking a top-down EFT
approach. We will compute the full one-loop contributions to the SM renormalizable opera-
tors when heavy BSM states in the MSSM are integrated out, from which SUSY threshold
corrections to all SM parameters can be easily obtained. As we will see, threshold correc-
tions to the bottom Yukawa and Higgs quartic couplings are of particular importance for
achieving both b-7 Yukawa unification and consistent matching onto the SMEFT.

In this calculation, we find solutions for SUSY scales from TeV up to 10'° GeV. However,
only the lower edge of this broad trans-TeV window can be within experimental reach. Given
the further motivation of a dark matter candidate, we will take a closer look at the 1-10 TeV
regime. In particular, we will extend our one-loop matching calculation to the dimension-six
level, and obtain parametrically enhanced contributions to the operators affecting hbb and
hTt7~ couplings, which can dominate over tree-level effects. We will show how precision
Higgs measurements constitute a powerful indirect probe of TeV-scale SUSY with b-7 Yukawa
unification that is complementary to direct superpartner searches.

We note that while the full one-loop SUSY threshold corrections (as well as sparticle
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mass corrections) in the MSSM have been known for some time [231], growing interest in
EFT formulations of the calculation is quite recent (see e.g. [47-53]). This is of course
largely due to higher-scale SUSY having been less attractive from the fine-tuning point of
view. Here we shall adopt the perspective that the weak scale may indeed be fine-tuned to
some degree, with new particles in the trans-TeV regime, justifying an EFT treatment. In
this case, the MSSM still exhibits several attractive features, including gauge and Yukawa
coupling unification as mentioned above, and may also provide a dark matter candidate. Our
philosophy here is in line with earlier studies in [232,233] on Yukawa unification with heavy
superpartners. In particular, the capability of unification and dark matter requirements to
severely constrain the SUSY parameter space has been recently emphasized in [233].

A new ingredient of our work is that, instead of computing low-energy observables such as
SM particle masses and the Fermi constant, we obtain SUSY threshold corrections directly
from the path integral by taking advantage of functional matching techniques, which have at-
tracted much attention and undergone interesting developments recently [55-61,216-218] (see
also [196-198,219,220]). Such techniques can greatly simplify EFT matching calculations,
thanks to preservation of gauge covariance and exhibition of a universal structure [56,58,61].
In [60], a concise diagrammatic formulation of functional matching at one-loop level was
obtained: the low-energy effective Lagrangian directly derives from a sum of “covariant dia-
grams,” following a set of simple rules. This approach is general enough to overcome several
limitations of previous formulations, and so will be used here.

From the technical point of view, our calculation also serves as a nontrivial test case
for the covariant diagrams technique. It also further demonstrates the simplicity of the
approach. In particular, with just 30 covariant diagrams, we are able to obtain full one-loop

SUSY threshold corrections in agreement with existing results in the literature.

7.1.1 EFT matching, threshold corrections and observables

Consider a general BSM theory whose Lagrangian has the following form,

L [ppsm, psm] = Lsm[psm] + Lsm|pnsm, ©sm] - (7.1)

Here @gn, ¢Bsm collectively denote fields within and beyond the SM, respectively. The SM

part of the Lagrangian reads

- 1 L1 1 )
Loy = [Dul*+ ). Filf = JGAGY = ZW/L W — ~B,,B"
f=q,u,d,l,e

_m2|¢|2 - )“(b|4 - (@u Yu wq t€- ¢ + @dydwq ’ ¢* + 1;6 Ye 1/11 : ¢* + hC) X (72)
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where € = i0?, and dots denote SU(2), index contractions. 1, are four-component spinors
containing the SM chiral fermions f, e.g. ¥, = (qa,0), ¥, = (0,u!?), etc. Here and in the
following, we use boldface, e.g. Yu, Ya, Ye, for 3 X 3 matrices in generation space.

The EFT approach applies when the BSM fields ¢pgy are much heavier than the SM
weak scale. In this case, integrating out ppgy from the path integral results in a local

effective Lagrangian for gy,

/[DQOBSM] [DQOSM] eifddz (Lsm+Lssm) — /[DQOSM] eifddz (LSM+£({1S4)+£((i:5)+‘c(d=6)Jr'“)

/[DSOSM] ¢! d% Lsvmrr (7.3)

As implied in the equation above, this procedure of matching £ onto Lsygrr generally
produces extra renormalizable (d < 4) pieces in the EFT Lagrangian, in addition to Lgu
that already exists in the full theory. However, they can be absorbed into Lgy via proper
redefinitions of fields and couplings and thus do not have observable consequences at low

energy. To be explicit, let us write

‘C(d§4) = 5Z¢|D;4¢|2 + Z &f 5Zf le¢f

f=qu,dl,e
1 A ~Aupv 1 I Tuv 1 v
— 026G, G — 26 Zy W, W — 262, B,, B"
+m?|¢|* + o[B!
+(1Eu 5yu % c€- (b + r@zd 5yd wq : ¢* + zZe 6ye wl : ¢* + hC) . (74)

Rescaling the SM fields to retain canonical normalization of their kinetic terms (up to terms

of second order or higher in the §7’s'),

) 1
Psm = (1 + §5Zsos,M>SOSM , (7.5)
and defining effective parameters as follows,
1 1 e 1
953293(1—55%), geﬁ:g(l—§5Zw>7 g'ﬁzg'<1—§5ZB>a
m2g =m?(1—06Zs) —om®,  dep=A(1—20Zy) — 6\,
1

Yo = Yu— 0Yu — 5 (Y002 + 020 Yu + yud7y),

1
Y5 = ya — 6ya — §(yd 024 +0Zaya +YadZs),

'Here §Z,.,, is understood as the matrix 6 Zy for psy = f, which is symmetric in generation space as
required by hermiticity of the Lagrangian.
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1
ysz = Ye — 6ye - §(ye 5Zl + 5Ze Ye + Ye 5Z¢) 3 (76)

we obtain
712 7 ¢ 1AA NApv 1AI Trlpy 1~ Y
Lsvprr = |Duol” + Z fipf — ZLG‘“’G — ZW‘“’W - ZB‘“’B
f=q,u,d,l,e

—m§ﬂ|¢3!2 - >\eff|¢§’4 - (%Eu yzﬂ @Z}q - P+ 1y yfflﬁ@@q O+ 1, yzﬁrl;g L+ h.c.)

+ Lg=5) + Lig=6) + -, (7.7)
where

D, =0, —igi"tAGL —ig"t'W! —ig"YB,, (7.8)

with ¢4, t! being the SU(3). and SU(2),, generators in the corresponding representation.

We see that while the renormalizable part of Lqyrrpr contains the same operators as the
Lg\ part of the full theory Lagrangian, their coefficients, i.e. the parameters labeled by “eft”
whose values we can extract from experiment, are generally different from their counterparts
in the full theory. These differences are usually referred to as “threshold corrections,” and are
important to take into account when studying higher-energy phenomena of the full theory,
such as unification in the MSSM. It is clear from Eq. (7.6) that threshold corrections are
directly related to operator coefficients in the L<4) piece generated from the matching
procedure of Eq. (7.3).

On the other hand, the non-renormalizable part of Lsmerr, i-e. Lg=s) + Lg=e) + - -,
can cause low-energy observations to deviate from expectations of the renormalizable SM:
L(4—5) contains just one operator which is responsible for non-zero neutrino masses, while
L 4—¢) contains a large number of operators which contribute to e.g. electroweak, Higgs, and
flavor observables. For example, consider the following dimension-six operators (neglecting

differences between @gy and Psy),

La=6) D |¢|” (Vg Caga) - ¢ + |0> (Y1 Ceg ) - ¢ + h.c. (7.9)

After RG evolved down to the weak scale, they affect couplings of the SM Higgs boson to
down-type quarks and leptons, and hence observables like the Higgs boson partial widths.

When fermion masses are used as inputs of the calculation, we have

D(h— ff) =1 +0kp)°T(h — ffsu, (7.10)
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with
2

Crov” (7.11)

2
oKy = — , 0k, = —
vs yelt

etc. at tree level, where yl‘jﬁ, Chrp,r¢ are 33 elements of yffe, Clg,eq, TESpectively.

Note that Chy,4 ~ A™? with A being the scale of new physics being integrated out, and
therefore, the observable BSM effects dx; » decouple as X—QQ as A increases. This is in contrast
to the (unobservable) threshold corrections discussed above, which originate from d < 4
operators and thus do not decouple. We will see in Section 7.3 that in the specific case of
the MSSM with b-7 Yukawa unification, threshold corrections to A and v, are actually larger
for higher SUSY scales.

Meanwhile, in addition to the A power counting, the low-energy EFT is also organized
by a loop counting. Take the calculation of I'(h — bb) for example. Higher order corrections
come from both EFT matching for d > 4 operators (Cpy = Cpi + C’;(;OOP + ... in the
present case) and loop level Feynman diagrams in the EFT. Generally speaking, when A is
much higher than the weak scale, the only such corrections that are essential to take into
account are the non-decoupling ones from the renormalizable SM loops, namely corrections
to T'(h — bb)sm (see [234-236] for state-of-the-art calculations). An exception is when
O(W;QAQ) corrections are parametrically enhanced, e.g. by tan/ > 1 in the case of the
MSSM. We will see in Section 7.4 that such enhanced contributions to C;;OOP can dominate
over lfj;)ee in some regions of the MSSM parameter space, and are therefore also essential to
take into account when making predictions for I'(h — bb) in the EFT. The results can of
course be further refined by computing non-enhanced contributions, and even higher order
terms in both the A™! and loop expansions (see e.g. [200,237-239]). See also [41,90,240,241]

for related discussions on EFT power counting.

7.2 Matching the MSSM onto the SMEFT

7.2.1 MSSM fields and interactions

We now use the covariant diagrams technique to match the MSSM onto the SMEFT. To
begin with, we need to extract the field content (including gauge quantum numbers of each
field which determine the form of P,) and the interaction matrix U] of the MSSM.

The complete MSSM field multiplet (g, ¢r)T is given in Tables 7.1 and 7.2. We have
explicitly written out the internal indices carried by each field for clarity. In particular, we
use i, A, o, I, a and a for SU(3). fundamental and adjoint, SU(2), fundamental and adjoint,

and spinor indices on the conjugate fields on the left side of the quadratic operator Quy,
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and j, B, 8, J, b and b for those on the fields on the right side.
The scalar sector of the MSSM consists of sfermions and two Higgs doublets. For the
latter, we choose a basis (P, ¢) where the mass matrix in the electroweak-symmetric phase

is diagonal,

Lussv D —(p? +mip ) Hu* = (0 +miy, )| Hal* = b (H, - e Hy +hec.)
= —m’|g]* — Mg|D|*. (7.12)

The (@, ¢) and (H,, Hy) bases are related by
q):Cngu—FSB/E'H;, ¢:SB/HU—C5/€'H2. (713)

where we have abbreviated sin 8 = sg/, cos f' = ¢g, with 3’ defined by

2
tan28 = ————

(7.14)
H, — m%,d

Note that 4’ is different from what is usually referred to as  as in tan 8 = Z—Z, the ratio of
vacuum expectation values (vevs) of H, and H,. In fact, at one-loop level, minimizing the

effective potential, we can see that the two are related by?

B=5+ Miésﬁcﬁ(i—z - Z_Do(lg;) oM, (7.15)
in the decoupling limit |m?| < Mi, Fei ™ O(A?) that we are interested in. Here t,,tq are
one-loop tadpoles, whose analytical expressions can be found in e.g. [231].

As for fermions, we choose to work with four-component spinor fields. In particular,
we write the Higgsinos as a Dirac spinor, and the gauginos as Majorana spinors. The SM
chiral fermions f are embedded into Dirac spinors v¢f, in which we also retain unphysical
wrong-chirality Weyl fermions f’, and set them to zero only at the end of the calculation?.

Interactions among the MSSM fields in Tables 7.1 and 7.2 are encoded in the covariant
derivative P, and interaction matrices Ulp]|, Z[y] in our functional matching formalism.

They are extracted from the terms in the MSSM Lagrangian that are quadratic in quantum

2Here we are defining 8 in a tadpole-free scheme, where v,, v4 denote the location of the minimum of the
loop-corrected effective potential (and are gauge dependent). An alternative scheme that is also commonly
used defines v,, vy by the location of the minimum of the tree-level Higgs potential, independent of gauge
choice; in that scheme, tan 8 differs from tan 3’ only by O(A~2) terms.

3Generally, such embedding would require additionally writing projection operators in interaction terms
to pick up the physical fermion fields. However, this is not necessary in the special case of R-parity-conserving
MSSM considered here.
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MSSM field SU(3). x SU(2), x U(1)y Conjugate field
Heavy spin-0 (¢s = %)

q)ﬁ (1,2,%) Pro
(I)*/B <1’?’_%) (I)a
qjﬁ:(uLj7dLj) (3,2,%) q~*ioc
¢ = (uy , dy) (3,2, -1) i
Uj = Up; (3,1,2) i
a*j:ﬂzj (3’1a_§) Uu;
Jj:de (3717_%) d*z
'“*j:Ng (_,1,%) d;
o= (v ex) (1.2.-1) e
Z*ﬂ:(VZ»e”i) (LZ%) I
é:éR (17]—7_1) é*
¢ =¢Ck (1,1,1) :

Heavy spin-1/2 (¢, = —%)

~ >~<u = avy.ca (e
X5:< ffz;é) (1,2,3) X = (%, xia)
€86Xa
Py - =c -
7B = (;égfﬁ) (1,2, -3) Xa = (Xta» €arXip)
~ /\Bb =A a TA
gBZ(MZB) (8.1,0) 7= (et )
g
- pY/n el al il
W= (1,3,0) W= (X M)
w
- A =
B:()\f:) (171a0) B:()\%v)\TBa)
B

Table 7.1:

(From [132]) Heavy fields ¢p in the MSSM, their gauge quantum numbers, and

conjugate fields (which appear on the left side of Quy).
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Table 7.2:

MSSM field | SU(3). x SU(2), x U(1)y | Conjugate field
Light spin-0 ( s:%)
b5 (1,2,3) o
¢*ﬁ (1, Q, —%) o
Light spin-1/2 ( —%)
Qvi o ato e
@Z,W:(ﬁ;f) (3,2, 1) by = (a" ™)
Ujp
i ql/)]'B s A 1 ¢ a il
%]ﬁ — qTi?jB (3, 2, —g) Vgia = (qia7 qdia)
u'. —1 ; %
ww-:(u?% (3.1.2) = ()
j
. w = —c
(i) | e el
d;)j 1 i ai Iti
Yoy = it (3,1,-3) by = (d, dy")
J.
ci d 5 - ¢ a
w=(4) ] ean | e
l —o a
o= (1) (L2-y) | T (ed)
B
oo _ (b (1.2,1) Tio = (12, 1)
! s P42 o Ve e
. 6;) - a al
¢6_<6Tb> (1717 1) we_(eaed)
. €y A a
we:<€,ﬂ) (17171) we:(el’e:[l)
Light spin-1 (¢s = %)
o (8,1,0) G,
W (1,3,0) W
B, (1,1,0) B,

(From [132]) Light fields ¢, in the MSSM, their gauge quantum numbers, and

conjugate fields (which appear on the left side of Quv).
unphysical auxiliary fields, to be set to zero at the end of the calculation.
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fluctuation fields. It turns out that the Z matrix does not contribute to the operators
computed in this chapter (up to A~! suppressed corrections), and so will not be considered
further.

To write down the U matrix, we follow the conventions in [242] (Ref. [231] uses an
opposite sign for the tree-level Higgsino mass parameter p), assuming R-parity is conserved.

We assume a trivial flavor structure for the soft SUSY breaking parameters for simplicity,

Lyssu D —MZG1G—Miala—Mid 1d—M?I"11— M;é*1é
—A U A G- Hy+Agd* AgG-e-Hi+ A Al -€- Hy,  (7.16)

where Ay, Ag, Ae are Yukawa matrices in the MSSM. Our results can be easily extended to
include flavor mixing, at the cost of making the analytical expressions more complicated.
Furthermore, we assume pv, Ajv < M?%, so that matching in the electroweak-symmetric
phase without sfermion mass mixing is justified.

We summarize the fields contained in each nonzero entry of the MSSM U matrix in
Table 7.3, relegating detailed expressions to Appendix C. This U matrix exhibits a block-
diagonal structure because of the assumed R-parity: if ¢ and j have opposite R-parity, U;;
would be proportional to a heavy R-parity-odd field, which should be set to . = 0 (so
that ouss|

use Table 7.3 to quickly pick out the U insertions containing the right fields to make up a

X ¢ = 0). We will demonstrate in Sections 7.2.3 and 7.2.4 how to

desired operator in our one-loop matching calculation.

7.2.2 'Tree-level matching

The tree-level effective Lagrangian is obtained by solving the equations of motion of the
heavy fields. As mentioned in the previous subsection, in the absence of R-parity violation,
M&“f’% = 0 is trivially solved by ¢g. = 0 for all the heavy fields in the MSSM except the

R-parity-even heavy Higgs doublet ®, for which

dLyissm
Cusst (P - 32 63]0
1 , _ B B
+§(92 + 9%)sap |87 05 + o €apl AL by + 85 Pa Ad Vga + S5 Ve Xe Via
1 1 1, .,
+[4<g + 4 )cw——g}lcbl D, [4( +4 )Sw—ig](cb D) ¢q
1 , .
—= (" + 9%)535 (D" 0) o + O(P?9, %) . (7.17)

4
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in the DR scheme. In the MS scheme, on the other hand, the scalar quartic couplings (and

g4 929l2 g/4
16727 16727 1672

We can solve the equation of motion 2£MSSM — () for @, perturbatively, as a power series

50
: -1
in Mg,

hence the scalar cubic terms in Eq. (7.17)) receive O( ) corrections [243].

P, =0 + 0@ ¢ . where  ®™ ~ O(M;"). (7.18)

The first and second order solutions read

el = M%% E(g? +9%)54 101" Ga + car €0ty Al Yu+ 59 Y Xatlga + 550 e Ae wla} :
(7.19)
o) = ML%{—(DQQ’?))Q - E(g2 +9%) ey — %92] |6 LY
36 + 9753 — 507 (6°00) 6 — 167 + 9)53 (@70 60} - (720

Only ®Y is needed in tree-level matching up to dimension six. We have

LS\err = Lvssml gy oy, = Lou + Mq%|<1>§1> |2 +O(A™)
= Lou+y Creo" + oM™, (7.21)

where the dimension-six operators Ogdzﬁ) generated and their coefficients Cf**¢ are listed in
Table 7.4. We have used the basis of [3], known as the Warsaw basis, for dimension-six
operators. Fierz identities have been used to transform some of the four-fermion operators
into this basis. Note that with the tree-level matching of Eq. (7.21) alone, each appearance
of § in Table 7.4 should really read 5’. However, as we will see shortly, part of one-loop
matching result can be absorbed into a redefinition of 3’ — [ in the tree-level operator

coeflicients.

[ redefinition

An interesting observation can be made on the tree-level effective Lagrangian computed

above. Differentiating L5zt with respect to 8/, we find

a ree = a ]- /
a_ﬁlctSME(gT4) = o5 _§(92 +g 2)cgﬁ,|¢|4
—(Spthu Authg - €+ O+ cola Ag g - " + cpthe Ae ¥y - ¢ + hoc.)

(9% + 97) sam|0l*

] =
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Coefficient Operator
Clree — msiﬁ (g% + g)? Oy = |¢|°
[Cui ], = —mmsascs (97 + ) [AL],, [Ous]™ = 10 (b Fo)) - €¢”
[Cﬁe}pr: 8#346% 2+ 97) P‘L]m [Oas)™ = 10 () - &
(Ces') = sagsasss (° + ") M), (0cs]” = 01 (B0) -
([CE™ = —mged MLl | [OW]™ = @) (0r0)
[Cé’lsi)tree}p’r‘st - _ML(%CQB P‘Upt [)‘u} s [Oéi)}pmt (¥ p7uTA¢ )( VMTA¢t)
Ca ™Yo = —5ish il Pl | O] = gt i)
(€™ = 35 UL, | (O™ = BT e 6T )
O = st LN, | [0 = G
[Clani e = —5sacs ML IAL], | [O0]™™ = @2e0) - e (B70d)
[Cz(jgffee] prst = M%%swﬁ (AL AL [Ol(elqu}pmt (S0 e (V)
[C;;fz]}prst - J\/}i S% [)‘Z]pr P‘d} st [OledQ}th - (wlpwe ) 7d8wqt)

Table 7.4:  (From [132]) Dimension-six operators generated at tree level when matching the
MSSM onto the SMEFT. p,r, s,t are generation indices. Tree-level matching alone produces
the operator coefficients listed here, but with 5’ in place of 3. As explained in Section 7.2.2,
adding the one-loop-generated piece cay(Pip + ¢*P.) to LEmpr amounts to replacing 5" by
£ in all Cfree.

07 (core - Dy ALt + s5a Aa g + 53 Ac ) + b
= M3(@*¢+ ¢ 0l), (7.22)

O treo (de . ool
a_ﬁ,ﬁtSME(gT& = @(q) 2B +he )

~ o[}

0 . 1
= el -[—<D2¢>+1(92+g'2) (czﬁl—zsémwcﬁ} +he,

(9% + 9%)capr |00

N |

—Spr € 77Z_)q AL ¢u + Cpr '(Zd )‘d @Z)q + Cp @Z_)e }\e Qﬁl} + h.c.

M (P g+ ¢l (7.23)

In the equations above, we have used the fact that both m? = p* +m#, s3 +m 3 — bsap
and Mg = pi*+mj; 3 +my; 55 +bsyp have vanishing first derivative with respect to ', when

Eq. (7.14) is satisfied. “ P2 and “Z” mean equivalence with the use of the renormalizable
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SM equations of motion and integration by parts, respectively — operations that are allowed
when we are dealing with dimension-six operators in the SMEFT Lagrangian. We have
neglected the m? piece and one-loop threshold corrections to the relation A = %(92 +4 2)055,
when applying the equation of motion for ¢, because they lead to %2 suppressed and loop-
suppressed terms compared to those retained in our results.

Meanwhile, as we will see explicitly in the next subsection, matching the MSSM onto the

SMEFT at one-loop level generates

Liionr D Cag(Prp + ¢°De), (7.24)
with cgg ~ O(%) given in Eq. (7.47). The observation we made above, namely
a ree * *
B e = Mg (D¢ + 6" D) (7.25)

suggests that we can absorb the part of Lioob, shown in Eq. (7.24) into L8ep via a
redefinition of ',

/ E3 * ree C
Livigrr (8') + cog(Pid + " Do) = LNzpr <ﬁ + Ajﬁ) (7.26)

up to two-loop corrections. Comparing ces presented below in Eq. (7.47) and analytical

expressions of one-loop tadpoles in [231], we can actually show that

t,  t4
Cop = SﬂCﬁ(U— — ’U_d>(’)( A22) . (727)
u 167
Therefore,
Livierr(8') + cos(Pid + 0" Pc) = Livirrr(6) (7.28)

with 3 defined by the minimum of the (loop-corrected) 1PI effective potential, i.e. tan 5 =

in the tadpole-free scheme; see Eq. (7.15). We see that adding the one-loop-generated piece
Cop(PED + ¢*P.) to L& zpr amounts to simply replacing 5 by S in all tree-level operator
coefficients.

There is a simple power-counting argument for the relation Eq. (7.28). If instead of
Eq. (7.13), we define ®, ¢ to be related to H,, Hy by an angle § (as opposed to /') rotation,
we would have (¢) = 75 ~ 174GeV, while (®) = 0. In this basis (usually referred to as
the Higgs basis), integrating out heavy superpartners must not produce (®:¢ + ¢*®.) with

O( A2 ) coefficient, because otherwise, the same contribution would be present if we compute

1672
the 1PI effective potential of the MSSM — this would lead to an O(+=) contribution to (®)

1672
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which, in fact, is the only possible contribution at this order, thus contradicting (®) = 0.
Technically, what happens is a cancellation of O(-25) - (®*¢ 4 ¢*®.) pieces between LI

1672
and Lo - the same L& obr D cog(PXd 4+ ¢*®,) is generated by one-loop matching, while
Setarr O —Cop(Plp+¢*®D.) because the UV theory Lagrangian now contains a mass mixing

term,

Lyssm D |beag — §(m§{u — m%{d>525 ("¢ + ") = —8565(0— — 0—‘2)0( 2 )(<I> O+ 9" D),
u 1672
' (7.29)

up to TX—; suppressed and higher-loop corrections. Note that the presence of mass mixing in

this basis does not invalidate our functional matching formalism (which assumes a diagonal
mass matrix), if we treat it as a small constant term in the U matrix. However, the Higgs

basis is not a convenient choice for tree-level matching, because ®. has to be solved as a

double series in A~ and .

7.2.3 One-loop matching: d < 4 operators and SUSY threshold

corrections
Enumerating covariant diagrams

To match the MSSM onto the SMEFT at one-loop level, we draw covariant diagrams con-
tributing to each SMEFT operator of interest, starting from the d < 4 ones which encode
SUSY threshold corrections. Enumerating covariant diagrams is straightforward by looking
for desired fields from the MSSM U matrix. In what follows, we will use a slightly different
notation than the previous chapter. Here we prefer to make the distinction between bosonic
and fermionic propagators more transparent by using different types of lines (dashed vs.
solid). In the previous chapter, on the other hand, more emphasis is put on the treatment of
heavy vs. light fields, and solid (dashed) propagators are used for heavy (light) propagators
regardless of spin.

Let us demonstrate the procedure with an example operator 1)y §yg 1,-¢*+h.c. Obviously
we should look for a d, a ¢ and a ¢ in Table 7.3. To begin with, there are several options
to get a d, such as from Ug, or from Uj;. Let us pick Uz first. This Ug; insertion should
be followed by a x propagator, and then another U insertion containing either g or ¢. For
this second U insertion, we need to enumerate all viable choices, one of them being Uz ~ ¢.
With this particular choice, we can then close the loop with a u propagator, followed by a

Uag ~ ¢ insertion, and then a ¢ propagator connecting back to our starting point Uz;. We

160



thus end up with the following covariant diagram,

-

- \ 1

X /Q = —§MI(%)1~< tr(quUxbegq) (730)
g

Plugging in explicit expressions of Uzg, Uga, Usg from Egs. (C.15), (C.16), (C.8b), we obtain

tr(UpcUgalsg) D sp (A — prcot B) (Ya AaAi Ay vy - 67 + 05 AATAL 0¢ - ¢)
= (Au tanﬁ - fjl) (@Ed ydALAu wq ’ gb* + hC) ) (731)

where we have dropped similar terms involving ® which, after setting ® to ®., contribute to
g 0Yq g+ ¢* +h.c. only at higher order in % Noting that there is an identical contribution
from the mirror reflection of the diagram of Eq. (7.30), we can write the squark-Higgsino

loop contribution to dyg4 as

0Yd O Ya gyc(iqﬁi) ; (7.32)
where
1672 5yl(fﬂ>2) = Al Ay (A, tan B — p) f;;i : (7.33)

The master integral involved here has the following explicit expression,

= 7! Lo M7 log M + My log My
o T e = 3 R

see Appendix A.

An alternative route we can take to obtain 1y §yq 1, - ¢* + h.c. is to start from U ;> and

form a cZ—@—Q“ loop, _q
i " i
g @ =5 MI tr(UzUsaUs) - (7.35)
T d

Evaluating the trace and adding the mirror diagram, we obtain the squark-gluino loop con-
tribution to dygq,
8ya O ya oyl (7.36)

where ~
167 6y 19 = —2 (A — ptan B) g2 CSV O My T (7.37)

Gdg ’

with Cf ve) = 3 being the quadratic Casimir of the fundamental representation of SU(3)..

It is worth noting that both the squark-Higgsino loop and the squark-gluino loop computed
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above can be viewed as part of a single covariant diagram,

-

\\ Z

-

J

with summation over ¢, 7, £ understood.

There are several other routes that can take us to the operator 1y dyq1, - ¢* + h.c.,
and many others that can take us to other SMEFT operators. Following the procedure
demonstrated with the examples above, we enumerate covariant diagrams contributing to
each d < 4 operator in Tables 7.5 and 7.6. In particular, Table 7.5 contains covariant
diagrams contributing to the Higgs potential and Yukawa interactions, which involve U
insertions only and no P insertions. The kinetic terms (wavefunction renormalization factors
07), on the other hand, come from covariant diagrams that involve P insertions, as shown
in Table 7.6. The cgy(Pip + ¢*P.) piece, which we choose to absorb into L{fmpr via a
redefinition of § as explained in Section 7.2.2, is computed from the same covariant diagrams
contributing to dm?|¢|?. In diagrams where permutations of propagator labels produce
inequivalent diagrams, such permutations are implicitly assumed to be included. We refrain
from elaborating on how to compute each of the tabulated covariant diagrams, as the general
procedure should already be clear from the examples given above.

From Tables 7.5 and 7.6, we can see an advantage of our approach is that despite the
large number of terms in the final results of one-loop SUSY threshold corrections (which we
will present below), they all derive from just 30 covariant diagrams. The small number of

covariant diagrams can be understood on dimensional grounds. Generally, we have
dim(P,) =1, dim(Uje]) > 1, (7.39)

where “dim” means operator dimension. d < 4 operators can therefore only come from
covariant diagrams with at most 4 vertex insertions, as enumerated in the tables for the case
of the MSSM*.

Results

Now we present the results of one-loop-level coefficients of all d < 4 SMEFT operators,
i.e. 0Z4 v, 0m?, ), dyy defined in Eq. (7.4), which are calculated from the 30 covariant

4Similarly, dimension-six operators can be obtained from covariant diagrams with at most 6 vertex in-
sertions. This is true regardless of the UV theory, as long as it is Lorentz-invariant and satisfies the general
form of Eq. (6.64). This simple observation of finite combinatorics underlies the idea of deriving universal
formulas for one-loop effective Lagrangians [56,58,61].
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14 U-only covariant diagrams contributing to dm?, 6\, dy;

/ ~
$ /\12 i=®; f
1
om? @ .’. ij = xXW, xB
J
1 ~~ ~TF T~
//—\\\ 1] = qu, qd, lé
2 -
\j—’ ij=o0, ®¢; ff

iik = Gga, uuqg, Gqd, ddq, e, éel

ijkl = Guga, Gdqd, lélé

o\
o ijkl=_
XWXW, xXWxB, xBXB
ijk = ®qu, ®qd; fXV
oYy

ijk = gux, 4dx; qaV, gV, lev

Table 7.5:  (From [132]) Covariant diagrams contributing to Higgs potential and Yukawa

interactions.
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16 P-dependent covariant diagrams contributing to 67

ij = qu, qd, lé
57,
ij =xXW, xB
8Z; ij =of; fx, fV
i=o, f
0Zcwn
i=X a9 W

Table 7.6: (From [132]) Covariant diagrams contributing to kinetic terms.
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diagrams in Tables 7.5 and 7.6. These coefficients, together with the tree-level relations,

(9" +9%) 35,
Yu = Ay Sg, Yd = Ad Cgs  Ye = Ae Cg (74())

0| —

m? = p? 4+ miy, s5+mi ch —bsyg, A=

can be readily plugged into Eq. (7.6) to obtain one-loop SUSY threshold corrections (there
is a one-loop correction to the equation for A if we work with the MS scheme [243]). We
will use parenthesized subscripts or superscripts to indicate the covariant diagram each term
comes from, and mention the reduction formulas used on the master integrals so that all
results can be easily reproduced.

We have cross-checked our results against conventional Feynman diagram calculations
reported in [231] and found complete agreement; see Appendix D. Note in particular that at
one-loop level, MSSM threshold corrections are the same in both MS and DR schemes, as is
clear from the absence of e-scalar loops in our matching calculation.

Our notation is the following. N, = 3 is the number of colors. C’fU(S) = % and C’QSU(Q) = %
are quadratic Casimirs of fundamental representations of SU(3). and SU(2), respectively.

The U(1)y hypercharges are

1 1 2 1 1
YayaYu7Y7Y7}/e :{_a_7_7__7__a_1}' 7.41
{ ¢ q d l } 2 6 3 3 2 ( )
The master integrals Z = T / #WQ are functions of tree-level masses of the heavy particles.
Their analytical expressions in terms of tree-level heavy particle masses can be found in

Appendix A.

Higgs potential. The one-loop coefficient of the d = 2 operator |¢|? reads

2 _ s 2 2 2 2
om” = d0mig) + 5m(];) + 5m(ff) + 5m(>~d~/) : (7.42)
where
3 .
167> 5m%¢) = [Z 9’s55+ 97V} (s34 — 2035)} T, (7.43)
1672 5m?f~) = N.tr(ATA,) s% (i(% + i%)

+ N tr(AfAg) 4 (f; + i;) +tr(ATAe) (fll + 72)
— g7 Yyeas(2NY, I} — N.Y, I — N.Y, I3 + 2V, I} — Y. 1), (7.44)
167> 5m?ff~) = N.tr(AT,) s% (A, — pcot 6)22{1
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+ N tr(AfAg) 3% (Agcot B — p)? f{;}
+tr(AT ) S%(Ae cot § — p)? I (7.45)

e’

My(My + sappt) 71 p(s2p Mo + 1) il}

W g B
My(My + spppt) 7 p(s2sMy + ) 5
TR R 7). (7.46)

SU(2
1672 dm? = —4 92 (0 @ [

~4g°vZ|

Note that terms proportional to 4#v, = 4 — € are generally encountered when computing

loops involving two fermionic fields. To arrive at Eq. (7.46), we have used Eq. (A.30) to

712711 71 71 11 711 71

reduc~e (4—¢€)Z[q ]XV to Iy, Zy, and Iy, and further used Eq. (A.5) to reduce Ioy to Iy
and Z1.

From the expressions of master integrals in Eqgs. (A.17) and (A.20), it is clear that each

A2
1672

corrections that are quadratically sensitive to the EFT cutoff scale A when a high-energy

term in the equations above is O(75—). Quite generally, the |¢|? operator receives threshold

BSM theory is matched onto the SMEF T, as a manifestation of a potential hierarchy problem.
As noted before, the same covariant diagrams contributing to dm?|¢|? can also be used

to compute the coy(Pid + ¢*P.) piece, for which we obtain

up = ) 4 D) D 4 o) (.47)

where
3 .
167 Cgl:; = g(QQ + ) S4p Ty, (7.48)
167> cg(g = N.tr(ATA,) 8565(:2; + f%)
— N, tr(AfAq) sﬁcg(f; + fé) —tr(ATXe) 8505(1'[1 + jg)
+2¢% Yyspes(2N.Y, I} — N.Y, Ib — N.Y, I} + 2V, I} — Y, I}), (7.49)
167> cgg) = Netr(ATAy) s3 (A — pcot 8)(Ay cot B+ ) f;;
— N, tr(AfAq) s5 (Agcot B — p)(Aq + pcot 3) f;é-
—tr(ATAe) 87 (Ae cot B — p)(Ae + pcot B) ! (7.50)

le

1672 cgf) = —4¢? C2SU(2)025M2;L j;(%, — 447 ch%Mluf;(g . (7.51)

As discussed in Section 7.2.2, we absorb this piece into the tree-level effective Lagrangian

via a redefinition of 3, and thus do not consider it as contributing to threshold corrections.
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The d = 4 operator |¢|* has the following one-loop coefficient,

0N = 0A@p) T A + A7) + 0Ny T Oy (7.52)
where
1 ~
1672 6oy = T [(g +9%)* (525 — 53535 + Co5) — 26°(9” + ¢”°) 35 + 294] I3
3
+§(9 +97) 85555 Tso, (7.53)

1 1 2
167T2 6)\(ff) = 5 tr { Nc |:<ALAUS% + 192626 - 9/2 Y(z)}/;]CQB)
iy 2 Lo 2 ?| 72
—i—()\d)\dcﬁ — 98— Y¢Yq@5> 7

N (LSS + g2 YyYaeas) T2 + N, (AaXic + g YyYacos) 12

+ [(ALAE% - 292025 —g” Y¢Y1025>2 + (ig%ze —g” Y¢YZCQ/3> 2} I;
+ (XAl 5+ 2Y,Y.cop) ff} : (7.54)
167> 5)\(fff~) = tr {Nc (A, — pcot 3)? ALAUS% {(Al)\usé + 392023 — " Y¢chw> I%
+ (/\L)\us% + ¢ Y¢Yu025) j’%g}
+N, (Ageot B — p1)* AfAas? [(ALAdc% - %gzcw — 2V, Yyeas) T2
+(AIXack + g7 YyYaeos) iq}g}
+(A, cot B — p)? )\2)\652 {(Al)\ec% — %ngng —g” Yd)}/}cw) fl?él
+(AIXecE + g7 YyYecap) i;;} } , (7.55)
1672 5/\(ff~f) = % N, tr(ALAuAL)\u) s% (A, — pcot B)4f§§

1 .
+5 Netr(AgAaAiAa) s (Agcot § — ) 127

1
+§ tr(}\l)\e)\l)\e) s% (Agcot B — p)? Il2~2 , (7.56)
3 . s
2 _ 4 11 2 2, 2722
167 O\ erery = —1 9" Th — M 12,

FA[2M + dsgsMapi+ (1 + 83)07) Tla*) 2%, |
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1
—59 cm(zﬂ Mg;ﬂI” + 44> Z[q*H? (7.57)

o)

99*Y; {ZH + iﬁa — (M3 + M} — 285, My My ) i I%%/II/B
FA[(Ma + M) + dsa5(Ma + M) + 201 + s3)1i%] Za* 2 5 }

~4g" VP T - M1,

+A[2M2 + dsysMyp + (1 + s25)1] Zlg ]XB} (7.58)

For the YV XV loops, we have used Eq. (A.33) to eliminate the Z[¢*] master integrals (coming

from covariant diagrams with two Lorentz contractions) from Eq. (7.58).

Yukawa interactions. The d = 4 Yukawa interaction operators 1, §Yy, g€+ 6Ya V-
" + 1. 8Ye 1y - ¢* + h.c. are obtained with the following one-loop coefficients,

8Yu = Yu Y = yu (Fy(P9D + §yad0 4 5@V 4 5y (7)), (7.59a)
0Ya = YadYa= yd(éy(q’q”) + 5y @0 4 5yl 4 5y V)Y (7.59b)
8Ye = Yo Yo = Yo Oy + 5y, (7.59¢)
where
1672 5y @9 = ATA A Th, (7.60a)
1672 8y57 ™ = ALX, 2L, (7.60D)
1672 qu(jirii) = }\E)\d p(Agcot 5 — ) I;;;( (7.61a)
167> Sy((iqﬂ@ = A X, p (A, tan B — p) I;ii , (7.61b)
167> qu(fjﬂf/) = —2(A, — pcot B8)(g3 C; Ve )Mg I;% +¢"” Y, Y, M, I}}}B) (7.62a)
16m2 5y = —2(Ag— ptan ) (g2 OV O M T 4 g2 VY, My THL) ,(7.62D)
16725yl = —2(A, — ptan B) ¢ VY. M, T (7.62¢)
25 (V) _ 2 ~SU(2) M2(M2+M00t5) N(#+M2C0tﬁ) Z11
16725y ) = 24250 T s v u
Ml(Ml—F[LCOtﬁ) ~ ~
+24"? Y¢[ M2 — 2 (Y, Iq}}é — Y, I;}é)
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p(p + M; cot B) 711 211
N M2 — 12 (Yq Iz —Yu qu)} ) (7.63a)
25 (FxV) _ o ~su@) [Ma(My + ptan 8) ~,  p(p+ Mytan 3) =,
My(My + ptanp) ,, -~ .
2 1\ 11 11
p(p + Mytan B) o~ -
T MI— 2 (Yo Zgz — Ya Iczg)} , (7.63b)
25 (fxV) _ o ~sU@) [Ma(My + ptan ) ~y  p(p + Maytan B) 4
My(My + ptan ), -~ .
2 1\ 11 11
22V, [y (M - YT
M(M+M1tan6) =11 =11
e T - v.71)]. (7.63¢)

We have used Eq. (A.31) to reduce (4 — €)Z[¢%]%3 to ZiL in Eq. (7.60), and Eqs. (A.5)

F111 ) T2 11 1
and (A.30) to reduce Ly and (4—¢€)Z[q ]fi(V to Z;- and Zzp in Eq. (7.63).

In these results, of particular interest is the appearance of terms proportional to tan 3,
originating from Age = yd,ec/g1 = yd,esgl tan 8. Since matching calculations are done with
UV theory parameters, it is expected here that dyg. contain terms of order

1672
% Ya,e- A large tan 8 can partially overcome the loop suppression, giving rise to sizable

)\d,e X

SUSY threshold corrections, which in turn is important for achieving b-7 Yukawa unification.

More on this in Section 7.3.

Higgs kinetic term. The one-loop coefficient of the d = 4 Higgs kinetic term |D,,¢|* is

675 =820 + 5207, (7.64)
where
167> 5Z(§)f~f) = —2N.tr(AlA,) s5 (A, — pcot ﬁ)Qf[q2]2~§
—2 N, tr(AfAa) 57 (A cot 8 — p)* Z[g*)2
—2tr(AfXe) 53 (A, cot B — M)Qf[q2]lgé2 : (7.65)

1672 5Z(§32‘7) = 24 CgUQ) [f}%%;v + 2(M3 + pi® + 2Mapis95) j’[qQ]?} ]

+247 Y2 [i}%{g +2(ME + 422+ 2Mapusag) T2 | (7.66)
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Again, we have used Eq. (A.33) to eliminate Z[¢*] in order to arrive at Eq. (7.66). Note
that D,¢, is written as —i[P,, ¢,] in our approach (recall P, acts on everything to its
right). The covariant diagrams listed in Table 7.6 give us the tr(P*¢*P,¢) piece of |D,¢|* =
—tr([P*, ¢*][ Py, ¢]) = tr(P?¢*¢) + tr(P?¢pp*) — 2 tr(P*¢*P,¢), which is sufficient to fix the
coefficient of | D, ¢|?.

Note that unlike dygq,. ~ 16 —
Yd,e — ygffe from §Z4 (and also 6 Z¢ below) are only ~ wisya.e (see Eq. (7.6)), and are thus

=5 Ad,e ~ %yd,e, contributions to the threshold corrections

subleading in the large tan § limit.

Fermion kinetic terms. The d = 4 fermion kinetic terms ) f W 10Z; PPy ¢ are obtained

with the following one-loop coefficients,

82, = az(g‘l’f>+5z(§f>2>+5zgm (7.672)
62, = 62D 46290 45701 (7.67D)
824 = 623 +62{0 15701 (7.67¢)
87, = 52}“"”+5Z§6X’+5Z§W>]1, (7.674)
§Z, = 62 46200 671, (7.67¢)
where
167625 = 2 (AL huck + AfiXas?) Z[¢7]30 (7.684)
167% 62D = AXN TIP3, (7.68b)
1672620 = 4>\d>\dsﬁ T1¢%2, (7.68¢)
1672862 % = 2AIAS2 T2, (7.68d)
1672 8Z% = 43 Z[¢]3,, (7.68¢)
16720200 = 2 (AL AL T2 + AT Aa Z[g%1%) | (7.69a)
1672627 = 4X AT Tg°]2 (7.69b)
16726 Z7% = 4XAL I[P, (7.69¢)
1672862 = 2N Z[H2, (7.69d)
16720200 = AAX T2 (7.69€)

167262 = 4(g3 G570 TIqA)% + ¢* € "D T2y + 9 V2 TIg?)

g

°5),  (7.70a)
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1672027 = 4 (g2 3V (72 + ¢ V2 T[¢*2L) (7.70D)
1672627 = 4 (g2 sV [q2]§;+g’2yd2i[ 22L) (7.70¢)
1672620 = 4 (2 CS"D TP + ¢? V2 IR, (7.70d)
167262 = 44° Y2 T2 . (7.70e)

To arrive at Egs. (7.69) and (7.70), we have used Egs. (A.5), (A.12) and (A.30) to simplify

2-e I’ —ML7? = (4—e)I[¢*];; — ML —21)¢%);7 =1} — 2Z[¢°);;
1 2
= m(zl Z;) - 2Ilg’);; = m(ﬂf]? - II¢");) — 2Zlq");;
=2(Z1¢*;) + Z(¢®);7) — 2Z1q%) = 2Z(¢°);) - (7.71)
This relation is also valid in the limit M; — 0,
(2 - Il = 2Z[¢°)% (7.72)

which we have used to obtain Eq. (7.68).

Gauge boson kinetic terms. General results of wavefunction renormalization of gauge
fields from integrating out heavy matter fields are well-known, see e.g. [55]. The covariant
diagrams version of the calculation can be found in [60]. Specializing to the case of integrating
out the MSSM heavy fields, we find

iZq = g2(629) +529), (7.73a)
0Zw = g (02 +oz) +ozyY +625") . (7.73b)
§Zy = §*(625) +62Y +525), (7.73¢)
where
167252 = L 72 167252 = 2y2 72 7.74)
@ w 6 (i3] m B — g ¢ =P ( :
a1 . . P | . .
167202 = 2 (225 + Ti+ I3) . 167°02y) = S(N.ZF + IF)
no1 . . . N ~
167262 = SN TR+ NYPIE+ NYF I+ 2V T+ Y2 TE), (175)
16 252(2) 24 16 252(2) _ 8 Y272 776
04w = 3 A% mospt =g ¥y Ly, (7.76)
1672629 = 272 16725200 = 2 72 (7.77)
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We have used Eq. (A.12) to reduce the bosonic loop integral Z[¢*]} to 2—1411-2. The fermionic
loops, on the other hand, are proportional to —M; Z +8M? Z[¢*]} + (—16+10¢) Z[¢*]} which,
by Eq. (A.32), is equal to 8 Z[¢"]} — I? = -2 T7.

7.2.4 One-loop matching: d = 6 operators Oy, s in the large tan g,

low Mg limit

We can use the same techniques to obtain one-loop-generated d = 6 operators. There is a
large number of them, but not all are equally interesting phenomenologically. In fact, given
the loop suppression, together with a possibly high superpartner mass scale A due to lack of
new particle discoveries as well as a SM-like Higgs boson mass of m; ~ 125 GeV, a generic
d = 6 operator with O(5=15) coefficient is likely to have a negligible effect on observables.
In this regard, we would like to identify a region of MSSM parameter space where some d = 6
operators have parametrically enhanced observable effects, and can thus point to realistic
experimental targets to be pursued.

To do so, we first note that, as in the case of gyd,e discussed in the previous subsection,
factors of tan 8 can appear when operator coefficients are written in terms of yq4, rather
than Age, which can partially overcome the loop suppression if tan g > 1. We are thus
led to consider the large tan 8 limit. At dimension-six level, tan 8 enhancement occurs for
several operators, among which we focus on Oy and O.4, motivated by their relevance to
precision Higgs physics as they modify hbb and h7+7~ couplings; see Eq. (7.11). Note that
in contrast, O,4, which modifies htt coupling, does not have a tan § enhanced effect.

To further boost observable effects of the operators Qg and O,y, we would like to focus

on the scenario where Mg, the mass of the heavier Higgs doublet, is somewhat lower than A.
1
M_é’

rically larger compared to % There are in principle two sources of such contributions —

In this case, there are contributions to Cgyy . that are proportional to which is paramet-
loops involving ¢ propagators, and operators proportional to ®.. By carefully enumerating
covariant diagrams following the procedure of the previous subsection, we are able to show
that loops involving ® propagators are all free from tan S enhancement, and so will not
consider them further.

As for the second option, there are only a few possibilities for writing down d = 6
operators that are proportional to ®., since @E” (<I)((:2)) is already dimension three (five).
They are, schematically,

(@), @ly?, el NP, 2. (7.78)

Among them, (<1>£”)2 and ®{Y1? do not contain Ougpe¢ With tan 3 enhanced coefficients, while
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P ¢ has already been absorbed into L& zpr via the redefinition of 5 discussed before. So

we are left with ®{”¢3 and ®V¢P2. To be explicit, we have

IBP * * *
= cpp|oP (@0 + ¢* B — copppz [PV (D?¢) + (D) 0]
EoM

= (Cq>¢3 + 2 C<I>¢P2) |¢’2((I)£1 (b + (b*(I) 1))
i,

+
th (coor + 2X Copp2) ( [wi] (0] + [ul], [Oe¢]p”) . (7.79)

Lavierr 2 Cas|oP (@70 + 6" @) + coppe [(DFON)" (Do) + (D¢)" (D, 2]

Note that there is also a tree-level matching contribution to @gl)qb?’, which we already com-
puted in Section 7.2.2. Though DR scheme was assumed there, the one-loop difference
between MS and DR is not tan 3 enhanced and negligible.

The operator coefficients cggs and cpyp2 can be computed from the same covariant dia-
grams that give rise to d\ and 07y, respectively. In fact, we just need to retrieve O(®¢?)
and O(®¢) pieces from products of U matrix elements, instead of O(¢*) and O(¢?) pieces.
From Appendix C we see that, with the exception of diagrams involving U, this amounts
to starting from the latter, and replacing sgg — cz®, cgp — —s3P in all possible ways. In

other words, from the form of the U matrix we can infer that

Lsverr D 6 |o|* + 1(_5)\>|¢| (D¢ + 0" @)

57, | Db + = ( 886 6Z¢,) (D"®:D,¢ + D"¢"D,d.) | (7.80)

up to loops involving ® propagators. We have verified Eq. (7.80) by explicit calculation.
The simple replacement rule observed above, which connects different operators involving
¢ and @, can be understood by considering a variation of the EF'T matching problem we are
dealing with now. Suppose, instead of integrating out all BSM fields of the MSSM, we inte-
grate out only the R-parity-odd fields, while keeping both Higgs doublets in the low-energy
EFT. The calculation in this case would be more conveniently done in the (H,, H;) basis,
and the angle S does not appear in the effective Lagrangian in the electroweak symmetric

phase. Afterward, we can substitute
H, — smb + ng), H;—e€- (C/@Qﬁ — 55(1))* R (781)

so as to write the effective Lagrangian in terms of ¢ and ®. From Eq. (7.81) it is clear that
for each term involving sg¢ (cg), if we replace spdp — cg® (cgp — —spP), the result would
also be a term in the effective Lagrangian. Further integrating out ® to arrive at the SMEFT
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does not change the conclusion for the terms that already existed, namely those generated
by integrating out R-parity-odd fields. Meanwhile, additional terms, such as dA(e,)|¢|* (see
Eq. (7.53)), are generated by loops involving @, for which the simple replacement rule above
does not apply. However, none of these terms is tan § enhanced, and we will thus neglect
them in the d = 6 part of the EFT Lagrangian.

To sum up, in the limit tan 5 > 1, Mg < A, we have

tan 3 tan 3

Cag™ = o (oo + 20 cagr) wl, G = — o (cag + 20 capr) yl . (7.82)

¢ )

where

copp = D) 1+ D 4 D 4 T

_ 1O AN L 5ATTD L sAUTID 4 gAW0) (7.83)
208
% o 10

Copp2 ~ ng])ﬂ + C((I)X(;QQ = 5% 5Z¢7 (784)

with various contributions to A and 07, computed in the previous subsection.

7.3 Bottom-tau Yukawa unification

In this section, we study implications of b-7 Yukawa unification on the SUSY spectrum in
the EFT framework. To simplify the analyses, we neglect Yukawa couplings of the first two

generation fermions, and impose the following relations among MSSM parameters,

M; = My = M; = M; = M; = M, (7.85)
Ay =Ag=A, = Ay, (7.86)

As a result, above the SUSY threshold A, we have a theory of 13 parameters:

g,ag7g37)‘t7/\b7)\77m2714t, (788&)
Mg, My, p, Mz, tanf3. (7.88Db)

Below the SUSY threshold A, they are mapped onto parameters in the SMEFT, as we
have worked out in detail in Section 7.2. We shall keep only the renormalizable operators

and dimension-six ones that are generated at tree level. The EFT is therefore a theory
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characterized by 20 parameters:

/€

ff e e e e e
g ? g H? g3ff7 ytﬂa ybﬁa ZJTH, )\effa msz7 (789&)

Cy, Ci, Coy, Crg, CV 0O ) C® 0, 8y O Cleag . (7.89b)

qu quqd "’ lequ ?

It is implicit here that all generation indices are set to 3 in the four-fermion operator coeffi-
clents.

We numerically evolve the 13 parameters in Eq. (7.88) in the regime @) > A according to
two-loop RG equations of the MSSM [244], and the 20 parameters in Eq. (7.89) in the regime
@ < A according to two-loop RG equations of the renormalizable SM [245] and one-loop RG
equations of the dimension-six SMEFT [76,77,80]. At @ = A, the two sets of parameters
are connected by the matching calculation presented in Section 7.2, together with one-loop
scheme conversion between MS (used for RG evolution in the SMEFT) and DR (used for
RG evolution in the MSSM) [243].

As boundary conditions for the entire set of RG equations, we set

g T =035827, ¢ =064779, ¢ =1.1671,

iy v? iy v? iy v?
vy — ECW’ =0.93612, vy, — Equg =0.01539, vy — 307(1, = 0.00988,

3v? , 3t )
At = Z5-C = 012592, i+ Z-Cy = —(92.964 GeV)?, (7.90)

at @ = my = 173.21 GeV, where v* = —m?%;/Aeg. These linear combinations of SMEFT
parameters are what would be actually extracted when mapping the SM Lagrangian to low-
energy observables, including my, = 80.385 GeV, my, = 125.09 GeV, ag(mz) = 0.1185, etc.
The numbers in Eq. (7.90) are taken from [245], except for ysT — %de,, which is taken
from [246], and y° — % ¢, which is fixed by requiring mP°® = 1.77686 GeV is reproduced
when the SM is matched onto five-flavor QCD xQED and RG evolved down to the low scale
according to [247].

The 8 boundary conditions in Eq. (7.90) reduce the number of free parameters from 13
to 5. We choose them to be those in Eq. (7.88b). Thus, for any specific values of Mg, M, u,
M3, tan 5, we can ask whether the entire set of equations admits a solution with all couplings
in the perturbative regime, and if it does, whether A\, and A, unify at the grand unification
scale Qgur.

To be precise, we shall set the matching scale A = M, and determine Qgyr by

(5/3)"?¢'(Qaur) = 9(Qaur) - (7.91)
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We define “b-7 Yukawa unification” by | A\y(Qcut)/Ar(Qcur)—1] < 0.02 here, as it is generally
difficult to have a larger GUT threshold correction [233].

We further set Mg = M; in this section for simplicity, since Mg does not play a significant
role in b-7 Yukawa unification. For several choices of tan 8 = 50, 10, 4, 2, we scan M, between
10® GeV and 10" GeV, and scan p and |Ms| = — M3 within a factor of 50 from Mj, to search
for solutions with b-7 Yukawa unification (no solution exists when pMs > 0, see below)®.
We refrain from going beyond M, = 10'° GeV for the present analysis, because additional
GUT-scale input, namely gauge coupling threshold corrections, would be needed to precisely
define Qgur. Also, larger mass ratios are disallowed so as not to compromise the validity of
our matching calculation, where all BSM fields are assumed to have similar masses and thus
integrated out together.

Figures 7.1 and 7.2 show points in the MSSM parameter space that allow consistent
matching of the MSSM onto the SMEFT and meanwhile realize b-7 Yukawa unification,
projected onto (log My, /M) and (log My, | Ms|/M) planes, respectively. Different colors
(blue, yellow, green, red) are used for solutions with z; = (A; — pcot 8)/M; in different
ranges (—4 <z, < —6, —v6 < 1, <0, 0 < 7, < /6, V6 < 2, < 4, respectively). We have
quite conservatively considered a large interval (—4, 4) for z;, keeping in mind the caveat that
z; values past maximal mixing ++/6 (blue and red dots) may run afoul of charge and color
breaking vacuum constraints [248,249]. In addition, points with |M3| < 2TeV, potentially
already in tension with gluino searches at the LHC (depending on decay kinematics, see
e.g. [250]), are represented by empty circles in all plots.

An immediate observation from these figures is that b-7 Yukawa unification is achievable
for SUSY scales from TeV all the way up to (at least) 10'° GeV, with suitable choices of mass
ratios and tan 8. It is worth noting, though, that a large Higgsino mass u > M, is always
required for tan 8 < 10, which may be less preferable from the point of view of fine-tuned
electroweak symmetry breaking.

There are two issues that are key to understanding these results in more detail, which

we now discuss in turn.

7.3.1 Matching of the Higgs quartic

First of all, it should noted that it is not always possible to match the MSSM onto the
SMEFT while satisfying the boundary conditions of Eq. (7.90), for arbitrary choices of SUSY
parameters. This is largely due to the fact that the Higgs quartic coupling A is a derived
quantity in the MSSM, given by %(g2 + ¢ cgﬂ at tree level. A threshold correction of just

5We can fix the signs of 1 and M3, keeping their relative sign, without loss of generality here, because
the MSSM Lagrangian is invariant under simultaneous sign change of u, M3 21 and Ay g,e-

176



tanB = 50 tanB =10

50 ‘ ‘ ‘ ‘ ‘ ‘ 50
o ° %e® Ll
ﬂ-;{ =, eq%n,% 8
10 10 o® oo :"o eeg®
. 5 A
' L) » o ® }
s .
=8
1
0.5F
: 0.1 ‘ ‘ ‘ \ \ ‘
9 10 3 4 5 6 7 8 9 10
log1o(Ms/GeV) log1o(Ms/GeV)
tanB=4 tanf =2
%0 e R Rk 50 w
v“'.‘o\ os o°
# %9 . ..
" ﬁ;’ SRS f 10,
5+ ] 50
s ~
= 3
1L
0.5 0.5
0.1 ‘ : ‘ : : ‘ 0.1 ‘ : : ‘ : ‘
3 4 5 6 7 8 9 10 3 4 5 6 7 8 9 10
logo(Ms/GeV) log1o(Ms/GeV)

Figure 7.1:  (From [132]) Points in the MSSM parameter space that allow consistent
matching onto the SMEFT and meanwhile realize b-7 Yukawa unification, projected onto
(log My, p/Ms) plane, for several choices of tan . Blue, yellow, green, red points have
xy = (A; — peot B) /M, € (=4, —/6), (—v6,0), (0,6), (v/6, 4), respectively. Empty
circles represent solutions with a gluino lighter than 2TeV, potentially already in tension
with direct LHC searches, depending on decay kinematics.
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(From [132]) Same as Figure 7.1, now showing SUSY threshold correction for

the Higgs quartic coupling, defined as AX = XA — A at the matching scale A = M.
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the right size is needed for A.g to match the low-energy determination, most importantly
from my, = 125 GeV.
To see this explicitly, we plot in Figure 7.3 the value of

AN =\ — Aot (7.92)

for each point in our sample of b-7 Yukawa unification solutions, evaluated at the matching
scale A = M,. For the most part of parameter space, this threshold correction can be

approximated by

AN

12

ONGFif) + ONGif)

N, 5
~ 602 {2 yH(Ay — pcot 5)21}5
1
+35 [y; (A; — pecot B)* + (yp tan B)* (1 — Ay cot 8)*] I}%}
-~ Nc 1 o] 4 4 9 )
ESTT2AT) [(ybtanﬁﬁ) + i (a2 - 6)2 = 36) |, (7.93)

see Eqgs. (7.55) and (7.56). The dependence on z; in Eq. (7.93) explains the existence of up
to four branches of solutions, separated by x; = —\/6, 0 and /6.

Matching of the Higgs quartic essentially selects a range of u/M; for any given Mj,
for which Eq. (7.93) can possibly be of the right size with suitable choice of x;. Since the
required threshold correction increases logarithmically with the SUSY threshold scale, and is
meanwhile insensitive to tan 5 when cgﬁ ~ 1, the range of u/M; being selected roughly scales
as cot 3 (log M)'/* for tan 5 > 1. Of course, on each branch of z;, part of this range can be
excluded by either lack of b-7 Yukawa unification, or a mass ratio u/M or |Ms| /M, outside
of the interval (1/50, 50). Nevertheless, the general trend of u/M, ~ cot 3 (log M,)'/* is still
visible in Figure 7.1.

Another feature of the figures is that the available parameter space is cut off at low M.
Here the AX needed becomes too small to be achievable by Eq. (7.93), which is bounded from
below, while maintaining a large enough threshold correction for the bottom Yukawa (which
is roughly proportional to (u/Mj)tan 3, see below). The issue is more severe at smaller
tan § because of a smaller \ ~ %(g2 +4 2) cgﬁ at any given A = M,. These conclusions are
perhaps more familiar when phrased as “raising the SM Higgs mass to 125 GeV requires
large one-loop corrections from heavy stops.” Here, instead of computing m; from the full
theory (the MSSM), we have taken an EFT approach, where my, is computed from the SM
to fix Aeg, and the problem becomes matching Aog with A with the right amount of threshold

correction. See also [251] for related discussion.
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7.3.2 Bottom Yukawa threshold correction

Next, let us take a closer look at the SUSY threshold correction for the bottom Yukawa
coupling, which is a key ingredient for b-7 Yukawa unification. Our discussion in what
follows in this subsection is consistent with previous studies [252-255].

In Figure 7.4 we plot

=2 (7.94)
Y

evaluated at the matching scale A = M, for our sample of b-7 Yukawa unification solutions.
We see that they correspond to a specific range of d, for any given M, with numbers ranging
from 10% to 60%.

At this point, it is worth emphasizing again that threshold corrections, which originate
from renormalizable operators generated in EFT matching, do not decouple as the EFT
cutoff is raised. In fact, as we see from Figures 7.3 and 7.4, for both the Higgs quartic and
the bottom Yukawa, a higher M calls for a larger SUSY threshold correction, in order to
compensate for a longer period of running in the SMEFT.

Returning to the issue of bottom Yukawa threshold correction, we note that for the most

part of parameter space, 9, is dominated by contribution from the squark-gluino loop,

. 2
~ s@dg) 93 Yo o5 ~SUE) (H 721
= 0 = g 2, ( i tan 5) (Mng Ifg> , (7.95)
see Eq. (7.62b). Since fj%; is negative-definite, a positive ¢, is only possible when puMs; < 0,
which explains our sign choice. We have checked explicitly that no solutions can be found
when the sign of either u or Mj is reversed.

The factor (MsM, sz,;) in Eq. (7.95) only depends on the mass ratio. It is approximately

—%‘:’ when |M;|/M; < 1, and —%; (log% — 1) when |Mj|/M > 1, with a maximum ab-

solute value of about 0.566 at |Mj|/Mg ~ 2.12. Thus, for any given value of (u/M;)tan 3

that is sufficiently large, we expect to have two solutions for |M;|/Ms — one on each side

of 2.12 — which lead to the same desired §, (up to higher-order corrections from e.g. gluino
loop contribution to g3 threshold correction). This degeneracy is clearly visible in Figure 7.2,
especially in the high M regime of the first three plots, where the range of /M, as deter-
mined by the Higgs quartic matching condition, is narrow due to the x;-dependent terms in
Eq. (7.93) becoming subdominant. For the tan 5 = 2 plot, on the other hand, only a region
near |Ms| /M ~ 2.12 survives because of a much smaller (u/Mj) tan 5 (~ 100 as opposed to
~ 200 for the first three plots, as can be inferred from Figure 7.1).

In addition to Eq. (7.95), there is a subdominant contribution to ¢, from squark-Higgsino
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loop, which is responsible for some finer details of the plots. From Eq. (7.61b) we have

u )\2 -
) _ At W -xt( o tanﬁ) (szj%;(). (7.96)

T =
b 1672 yott M

Comparing Egs. (7.95) and (7.96), we see that 6,56@) and 615@@ have opposite (same) signs
when x; > 0 (z; < 0). Thus, higher values of u/M; are required for the x; > 0 branches
5(§d~§) and 5(@5()
b b

(green and red) to compensate for the cancellation between , &S we can see

from Figure 7.1.

7.4 Higgs couplings in TeV-scale SUSY

In the previous section, we have seen that b-7 Yukawa unification alone does not point to a
unique scale for the masses of superpartners in the MSSM. However, if in addition, we would
like the MSSM to provide a dark matter candidate in the form of the lightest neutralino,
that would be further motivation for TeV-scale SUSY. For example, two classic thermal
dark matter benchmarks are a ~1TeV Higgsino LSP and a ~2.7TeV wino LSP [256]. A
wider range of masses is allowed if the LSP is a mixture of bino, wino and Higgsino states
or if the sfermions do not decouple [257,258], or if non-thermal production mechanisms are
at work. Therefore, we will broadly consider the 1-10 TeV regime for superpartner masses,
while remaining agnostic about the detailed cosmology of dark matter. We will focus on
precision Higgs coupling measurements as an indirect probe of TeV-scale SUSY, and discuss
how they can be complementary to direct superpartner searches at the LHC.

To compute Higgs coupling modifications, we follow the same numerical procedure as
outlined at the beginning of Section 7.3. Now the 20 SMEFT parameters in Eq. (7.89) should
be evolved down to Q = m;, = 125.09 GeV, in order to compute dx;, and dx, according to
Eq. (7.11). As discussed in Section 7.2.4, we shall focus on the scenario where Mg, the mass
of the second Higgs doublet, is relatively low. To be precise, let us first fix Mg = 1TeV, and
allow M, and |Ms]| to vary between 1 TeV and 10 TeV. The Higgsino mass p is determined
by requiring exact b-7 Yukawa unification, i.e. \y(Qcur) = A-(Qcur). Solutions may exist
on multiple branches of x;, in which case we find all of them.

Our results are displayed in Figures 7.5, 7.6 and 7.7, for tan 8 = 50, 20, 8, respectively.
For each of the four z; branches, we show variation of dx; in the region of the |M;|-M plane
where a solution exists. Also shown in the plots are contours of u/M, (black) and z; (red
dashed) which, as we will see shortly, are the key quantities that determine the value of
0rp. In addition, light green contours represent p = 17TeV, corresponding to the Higgsino

thermal dark matter benchmark. Plots of 0k, (not shown here) exhibit the same patterns
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of variation in the |Ms|-M, plane, but with smaller overall sizes than dx; as a consequence
of Cry o< yr [y <y /st

From these plots, it is first of all interesting to see how large one-loop effects can be.
Indeed, as we have fixed Mg = 1TeV, a tree-level calculation would yield constant Cj (and
hence dk;) for given tan §; see Table 7.4. The pattern of dx;, observed in the figures is a result
of interplay between tree- and one-loop-level contributions. For the most part of parameter
space (with large tan 5 and low Mg), we can approximate

Chg ~ Clee M2 tan 5(0 gggf) I c%ff))

Y 2 ,Q_tanﬁ4 s 2 _
oz |6+ 9%~ Ja vt (3 ) et = 0)] (7.97)

at the matching scale A = M,. We see that tree-level matching always gives a negative
contribution to Chy4, and thus a positive contribution to dxp. On the other hand, the one-
loop piece can have either sign, depending on the value of ;. On two of the four branches,
< —vb6and 0 < x; < \/6, its contribution to Cyg is negative, resulting in an enhanced
(positive) §rp. More specifically, for 2, < —+/6 (upper-left plot in each figure), dr, is seen
to increase monotonically with both /M, and |x,|, while for 0 < 2, < v/6 (lower-left plot
in each figure), dx; also increases with p/Ms, but now exhibits a plateau around z; = V2
where —xz,(z? — 6) is maximized, in agreement with Eq. (7.97). In contrast, the other two
branches feature a negative one-loop contribution to dsp: for —v/6 < x, < 0 (upper-right
plot in each figure), we have a suppressed but still positive dxy, with the suppression being
more severe in regions with large p/M; and z; close to —v/2; for z, > /6 (lower-right plot in
each figure), one-loop correction becomes large enough in part of the parameter space so as
to make 0k, negative, and, as expected, dx; tends to be smaller (more negative) in regions
with larger p/M and ;.

Precision Higgs measurements — h — bb in particular — are most sensitive to regions of
parameter space with the largest |0;|, which in most cases (all 2, < —v/6 and 0 < 2, < V6
plots, and z; > /6 plots for tan 3 = 50, 20 as well) are those with heavy sfermions and light
to intermediate-mass gluino, once b-7 Yukawa unification is stipulated. In these regions,
as we have discussed in Section 7.3, b-7 Yukawa unification calls for relatively large p/M;
to boost SUSY threshold correction for y, (recall &, oc |Ms|/Ms for |Ms|/Ms < 2.12, and
larger ¢, is needed for heavier sfermions), which in turn enhances one-loop contributions to
dkyp according to Eq. (7.97); meanwhile, there is a visible suppression of |dx;| for the largest
/M, (hence smallest |Ms|/M,) due to |z,| approaching v/6 in order to match the Higgs
quartic (see Eq. (7.93)).
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Figure 7.5:  (From [132]) Variation of 0k, in the region of the |Mj|-M; plane where a
solution exists for exact b-7 Yukawa unification, on each z; branch, with Me = 1TeV and
tan § = 50. Superimposed are contours of u/M; (black) and z; (red dashed). Light green
curves in the x; < 0 plots correspond to the 1TeV Higgsino dark matter benchmark. Direct
superpartner searches probe lower mass regions of the parameter space (with |M;| < 2TeV
potentially already excluded at the LHC depending on decay kinematics), while precision
Higgs measurements can be more sensitive to higher mass regions where dx; is enhanced by
one-loop corrections.
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Figure 7.6: (From [132]) Same as Figure 7.5, now with tan 5 = 20.
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Figure 7.7: (From [132]) Same as Figure 7.5, now with tan 5 = 8.
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Figure 7.8:  (From [132]) Contours of |0k,| in the Mg-tan § plane, for our benchmark
scenario |M3| = 5TeV, My = 10 TeV, which will evade gluino and stop searches at the LHC.
The Higgsino mass is determined by exact b-7 Yukawa unification, for which solutions exist
for tan 5 2 5. Dark solid and dashed curves represent current exclusion limit (95% CL) and
projected high-luminosity reach (95% CL with 3ab™! at 14 TeV) from heavy Higgs searches
in the di-tau channel at the LHC, reported assuming the mf"‘” benchmark scenario. Future
Higgs factories, with 0.5-1% projected precision for the hbb coupling, will be able to probe
much of the parameter space displayed.
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In comparison, direct searches can most easily access the region of parameter space
with light squarks and gluino. Our results show a nice complementarity between direct
superpartner searches and precision Higgs measurements, as they probe the SUSY parameter
space from different directions.

To further demonstrate this complementarity, let us consider a scenario where the gluino
and sfermions are beyond direct LHC reach, even after the high luminosity phase [259,260].
We choose |M3| = 5TeV, My = 10 TeV as a benchmark, and allow Mg and tan 3 to vary.
The Higgsino mass p is still determined by exact b-7 Yukawa unification, and is not a free
parameter in this analysis.

Figure 7.8 shows plots of |[0k,| in the Mg-tan 8 plane for this benchmark scenario, on
all four x; branches. The LHC will be able to probe |drp| ~ 10% [261,262], corresponding
to part of the sub-TeV regime for Mg (red and orange regions). Meanwhile, direct heavy
Higgs searches can put stronger constraints in the high tan g regime. For illustration, we
show in Figure 7.8 current exclusion limit from the ATLAS search in the di-tau channel [263]
(the CMS limit [264] is slightly weaker) and projected high luminosity LHC reach (up to
Mg = 2TeV) in the same channel from the CMS analysis [265] (dark solid and dashed
curves, respectively), both of which are reported assuming the “mﬁlo‘” benchmark scenario”
(see [266]).

On the other hand, a 0.5-1% level determination of the hbb coupling, as envisioned at
possible future Higgs factories (ILC, CLIC, CEPC and FCC-ee — see e.g. [267-269] for
recent studies), would extend the sensitivity to Mg potentially up to ~(2-4) TeV, even for
lower tan 3, and beyond direct and indirect LHC reach. The existence of well-motivated
scenarios, like trans-TeV SUSY with b-7 Yukawa unification studied here, which escape LHC
search but nevertheless can manifest themselves as modified Higgs couplings, highlights the
opportunity of BSM discoveries through precision Higgs measurements.

To close this section, we finally comment on the availability of a 1 TeV Higgsino thermal
dark matter candidate. From the figures we see that p = 1TeV (light green curves) can
only be achieved on the z; < 0 branches for tan 3 > 20.° The z; > 0 branches cannot
support such a small Higgsino mass because of cancellation between the squark-gluino and
squark-Higgsino loops contributing to dy, as discussed below Eq. (7.96). Meanwhile, when
tan [ is reduced, a larger u/Mj is generally needed to obtain sufficient threshold corrections
for both A and y,. The disappearance of the y = 1TeV curve is further accelerated by a

shrinking parameter space where matching of the Higgs quartic is simultaneously possible.

6The quantitative discrepancy between our conclusion and that of [233] is due to differences in the match-
ing calculation for the Higgs quartic. Our results are in good agreement with the more recent calculation
in [49)].
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7.5 Conclusions

As traditional naturalness and weak-scale new physics are under siege, it is worth considering
more attentively trans-TeV regimes. Here, effective field theory becomes the tool of choice
to accurately connect a vast range of BSM ideas to low-energy observation. In this chapter,
we have focused on the specific case of the MSSM, and performed a matching calculation
onto the SMEFT. In particular, we computed the full set of renormalizable operators of the
SMEFT by integrating out heavy superpartners from the path integral up to one-loop level,
which allowed us to extract SUSY threshold corrections with ease.

Our calculation highlights the simplicity of recently-developed functional matching and
covariant diagrams techniques. In fact, we were able to reproduce one-loop SUSY threshold
corrections for all SM parameters from just 30 covariant diagrams (shown in Tables 7.5
and 7.6), each of which is straightforward to compute. Essentially, we have taken a more
economic route than traditional Feynman diagram calculations, where just the information
needed for deriving the low-energy limit of the theory has been extracted from the path
integral. In the long run, it is hoped that these novel EFT techniques will aid the program
of (automated) precision calculation in trans-TeV supersymmetry, and other BSM scenarios
as well.

Taking unification as a key motivation for SUSY, we investigated implications of b-7
Yukawa unification on the MSSM parameter space, while remaining agnostic about further
details of the grand unified theory. The EFT approach we have taken allowed us to take
advantage of existing precision calculations within the SM, to ensure consistency with low-
energy observations, in particular m;, = 125 GeV. We found solutions that realize b-7 Yukawa
unification for SUSY scales from TeV up to 10*° GeV, with suitable choices of superpartner
mass ratios and tan 8 (see Figures 7.1 and 7.2). In this analysis, a key role is played by
SUSY threshold corrections to the Higgs quartic and bottom Yukawa couplings, which, when
forced to have the correct (finite) sizes (see Figures 7.3 and 7.4), dramatically constrain the
predicted SUSY parameter space.

The lower edge of this broad trans-TeV window is further motivated by the possibility of
having a dark matter candidate. For superpartners in the (1-10) TeV regime, we showed that
one-loop matching contributions can drastically modify tree-level predictions for the hbb (and
also h7"77) coupling, rendering some regions of the MSSM parameter space with heavier
squarks more accessible to precision Higgs measurements (see Figures 7.5, 7.6 and 7.7).

It is interesting to see that, even for superpartner masses out of LHC reach, precision
Higgs measurements can offer a powerful indirect probe of TeV-scale SUSY. For example,

in a benchmark scenario with a 5 TeV gluino and 10 TeV degenerate sfermions that realizes

190



b-r Yukawa unification, we showed that a 0.5-1% level determination of the hbb coupling
will be able to probe the heavy Higgs mass up to ~(2-4) TeV for a wide range of tan f (see
Figure 7.8). This constitutes an unambiguous example of a motivated BSM scenario that

may only reveal itself through precision Higgs measurements of the future.
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Chapter 8
Summary and Outlook

We are living in an exciting time for particle physics research. Steady experimental progress,
at the LHC in particular, is met with continual theoretical developments. The full estab-
lishment of the Standard Model (SM), including the Higgs boson as the last building block,
together with lack of new physics discoveries so far, has consolidated our view of elementary
particle interactions as described by layers of effective field theories (EFTs). Precision tests
of the SM in all sectors and critical examination of the EFT framework have become more
important than ever.

In this context, we have studied in this dissertation various aspects of precision analyses
and EFT. In particular, we have covered topics in precision tests of the electroweak and Higgs
sectors of the SM, and discussed how EFT techniques can shed light on both bottom-up and
top-down studies of new physics.

Continued exploration of the high energy frontier — the LHC at present, and possibly
next-generation colliders in the future — will put the SM to more stringent tests. The
tremendous experimental effort needed must be supported by improved understanding on
the theory side to give meaning to our data. We have reassessed the current status of state-
of-the-art precision electroweak calculations in Chapter 2, and pointed out new challenges in
precision Higgs calculations in Chapter 3. Especially, given the plethora of well-motivated
new physics scenarios that may show up in future precision Higgs measurements only at the
percent level, it is an urgent issue to understand and reduce theory uncertainties, especially
from our inadequate knowledge of the bottom and charm quark masses, so that they do not
become a limiting factor in our hunt for new physics.

Bottom-up EFT approaches have been widely used recently, in an effort to interpret
experimental measurements of SM processes, and extract broad features of new physics
consistent with data. In this process, various consistency issues arise, especially when one

attempts to embed historically influential simplified parameterizations of new physics effects
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into a more general EFT framework. We have critically examined the issues associated with
oblique parameters and triple gauge couplings in Chapters 4 and 5, respectively, and argued
for the necessity to go beyond these historical parameterizations to learn more general lessons
about new physics within the bottom-up EFT approach. Ongoing and future experimental
programs promise to deliver more and more data, which will likely reshape our conventional
view of the SMEFT parameter space. Our analysis frameworks should be updated in time
to serve the need of extracting most useful information from future data.

Meanwhile, top-down EFT approaches are also receiving more interest, as hypothesized
new particles are excluded up to higher masses. In this case, EFT provides the appropriate
framework to perform precision calculations of lower energy observables from a higher en-
ergy theory of new physics. We have developed a diagrammatic framework for systematic
functional matching calculations in Chapter 6, and applied it in a top-down EFT study of
trans-TeV supersymmetry in Chapter 7. As new model-building ideas continue to emerge,
it will be a fruitful exercise to study them in such top-down EFT approaches, in order to
form more accurate pictures of their low energy behaviors to guide experimental searches.
At the same time, we hope progress will continue to be made on functional matching and
related ideas, which will further expand our theoretical toolbox beyond conventional Feyn-
man diagram-based techniques, and perhaps also teach us new knowledge about quantum
field theory.

It is not an exaggeration to say that the EFT mindset has played a major role in shaping
our modern view of fundamental physics. It has guided us all the way through the establish-
ment of the Standard Model, and we are now hoping it will help us reach the next deeper
level of particle interactions. It is not certain how much further the EFT paradigm can take
us in our quest of Nature, or whether and when a paradigm change would be needed to move
forward. We should always keep our mind open to new ideas. However, there is no denying
that EFT research will continue to be fruitful in teaching us about the SM and new physics,
and quantum field theory as well. We should try our best to understand the subtleties and
limitations of EF'T approaches, while making progress in both theory and experiment toward

uncovering a deeper structure of Nature.
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Appendix A

Master Integrals in One-Loop
Matching

In this appendix, we discuss calculations of the master integrals encountered in one-loop
matching calculations of Chapters 6 and 7. Recall from Eq. (6.67) that the master integrals

7] qznc];}{%‘“” are defined by

ddq ql/‘l . qﬂan iz, I M MM L, A 1
@) (q? = My (> = My (e 7 i @A

where gHt#2ne is the completely symmetric tensor, e.g. g"?? = g"” g + g*’g"’ + g+ g"".
We have also defined the rescaled version,

?

Il ™ = T " s

7.0 7.0

(A.2)

These master integrals can in general be evaluated via the following decomposition for-

mula,

i 2nc iy mL nzz—:l i 9 " 1 I[ 2nc]m—pi
[C] ]ij.‘.O - pz' 8MZ2 (ME)HL H 79(A12a)na q i

pi=0
n;—1 .
. 1 o \" 1 .

4 [—( ) o na] T[] ™ +... (A.3)
2 ilae) e, ey 70

where A, = M}? — M?. To derive Eq. (A.3), we first recall the definition,

ddq q#l Ce q/l«ch o, 1_ 2ne1MiMNj---NL A 4
@m)e (@ — M2)i(g? — M2 - (@re Y ™ Jij ™" (A.4)
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where gt #2ne is the completely symmetric tensor, e.g. g"'?? = g" gP? + g g7 + g7 g*P. Tt

is easy to see that

e MiNj -1 1 nelMin;—1,..n nelMi—L,ng..n
Ilg “lij..0 o= E(I[qz lij 0 b - I[¢? “lij.0 L) ; (A.5)
]
Ne]iMj .- 1 ne]MiMj--np—1 neli—L,nj..n
I[QQ c]ij...O o= W(I[f C]z’j.,.o - I[q2 C]ij...O L)7 (A-G)
8 2neNing...n 2n.1nit+ln;..n
8M122[q ']z‘j...o "= nI[g ‘]z‘j...o ", (A7)

Note that in principle, we can just start from Z[¢g*"];", """ and use Eqgs. (A.5) and (A.6)

ij..-0
repeatedly to reduce the number of propagators, until arriving at a sum of heavy-only de-
generate master integrals of the form Z[¢?"] (recall Z[¢*"<]j* = 0), which cannot be further

reduced. However, the same result can be obtained via a more systematic and often easier

path, starting from applying Eq. (A.7),

2NN NL 1 a mt 1 8 n 2n.11l..np,
Zlq ]ij...O AV n, —1)! anz .. I[q ]ijmo . (A.8)

The master integrals Z [q2"6]2j1.'.'.6“, where each heavy propagator appears only once, are much

easier to reduce via Egs. (A.5) and (A.6) compared to the original master integral. In fact,

we can show that

1 1
I Nin" = sarere— Zd™ " + xo e Zld™ et + -
0 ATATAD o T AT AT A 4 o
1 1

— 0 Zlg*); + 0 Zlg* ) + -

(M2 AZAZAD (M2)TALALAY
1 1

= . Zlg*™) + - Zlge); + . .. (A9)

(Mzz) " Ha;éi Azza (MJQ) " Ha;éj A?G !

Plugging Eq. (A.9) into Eq. (A.8) and taking derivatives according to Eq. (A.7), we obtain

I[ 2nc]nm]~...nL o 1 o n;—1 ]
q ij...0 o (nz — 1)' (9M12 (MZZ)TLL (A?j)n] (Alzk)nk (AZQI>

Il )i

(2

+ 1 < a >nj_1 1 I[anC]l
w-\ay)  GErEyTer e
. (A.10)

which can be easily seen to lead to Eq. (A.3).
ning..np,

0.0 mto a sum

Eq. (A.3) allows us to decompose an arbitrary master integral Z[g*"]
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of degenerate master integrals of the form Z[g*"]?". For example,

1 0 1 1
TPPE = 2 TP+ (—) TP + —— T (A1)

The degenerate master integrals Z[¢?>"]" cannot be decomposed further in this way, but can
be worked out explicitly and tabulated; see Table 7 of [60]. Here, we note that if n; > 2 and

ne > 1, Z[g**]?* can in fact be further reduced using

1

T[] = o I V] A12
1 = g =y TR (A.12)

which follows from the explicit expression

_ i Ybm—n,; 1 NE—2—n.+n;) /2 M?
T[] = —— (= M) 2 (5-108=5), (A3
where % = % — v+ logdn with e =4 — d, and () is the renormalization scale. For example,
Eq. (A.11) can be further reduced to

1 0 1 !
TiPP - 7y <—) L") + — 5 Zle; - (A-14)
0 = SMPAS OM? \ MZ?A2, ME(AZ)"

We therefore only list irreducible master integrals here. For n; = {1,2,3,4,5,6},

I = {Mf(l_long)’_long’ _2J\143’ 6]\14;“ _12}\41.6’ 20}\428 } (A-15)
while for n. = {1, 2, 3},
T[]} = {Mf (§ ~log M?), My (E ~log M?), M <§ —logM?) b, (A16)
4 \2 24 \ 6 192\12
where we have dropped the % poles (as in MS and DR schemes), and abbreviated log ]g

to log M?. In cases where O(e) terms are produced from e.g. gamma matrix algebra, the
% pieces in the master integrals that have been subtracted off can be recovered by simply
replacing — log M? — % — log M?.

Using the formulas above, we can compute explicit expressions for the master integrals
appearing in our one-loop matching results in Chapters 6 and 7. As a convenient reference,
we list some frequently used master integrals in the following,

I} = M?(1-logM}?), 7# = —log M}, (A.17)

)
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1 ., 1

3 = I I = 6T Ti =1—log M?, (A.18)
% 4 ) % 12M22 ) 20 8 4 i .
N = 1- A2 (M7 log M? — M?log M?) , (A.20)
- 1 M? M?
' = -5 ——I5log—%, A21
’ RNV A2
- 2 M?+ M?  M?
o= - g (A.22)
(A%) (A%) k
. MM M2 M2
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TP = —— I log —Z | A.26
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- M? M? M} M}
i = Az A log 35 + R ZZ log 5 (A.27)
] 1 (2
- 1 1 [ M? M? M2 M2
= ~ATAT T A2 [ 23 lo M2 5 log MZ} : (A.28)
ik ik (Aij) (Azk)
T3 = — M ] [ Mj 0g My M 5 log M’“} (A.29)
7 2 A2 2 2 2 2 '
j INGAY, T AN (a2 O ME T (a2 M

In the equations above, we have used the notation A2 =M?— M ]2

Finally, let us also present some formulas that can be used to decrease n., because they
are often useful for simplifying loops involving fermions. When n. = 1, we can contract both
sides of Eq. (A.4) with g, ,, to obtain

A= IPIF" "™ = o™ "+ MPTE (A.30)
A= QZl@l ™ = T (=) (A.31)

Similarly, when n. = 2, we can contract both sides of Eq. (A.4) with g,, ., Gusu, to obtain

(24— 106) Z[ " =

i7...

/ d'q (¢ = MP)* +2M} ¢* — M
(2m)? (g% — MP)™(q? — M3)"s -+ (q*)"*
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_ I'n'i*Q,ﬂjan + 2(4 . E)M; I[qQ]ninj...nL . M4 Imnj...nL (nz Z 2) .

-0 ij..0 i Lij..0
(A.32)
Alternatively,
ning..n dlg (¢® — MP)(¢* — M?) + (M? + M?)q? — MZ?M?
(24 — 106) T[g""5 L:/ 0 (¢ = MP(G— M) + (M7 + Mg J
Gmt (= MY ( — M) ()
= T (4 QM+ MY TP - MIMIT T (g 2 1),

(A.33)

These formulas have been used in our calculation in Chapter 7.
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Appendix B

Explicit Expressions of Universal

Coeflicients

Here we give explicit expressions of the universal coefficients, namely coefficients of operator
traces in the UOLEA master formula Eq. (6.68) rederived in Section 6.4.1 (see Table 6.5),
in terms of heavy particle masses M;, M;, etc. In many cases, our expressions simplify those

originally derived in [56]. We define fy = 5= fn as in [56], and list fy in the following:

- M?
frear (110 ). (B.1)
- 1 M?
= ——log —~ B.2
i — 1 - M? log]\j—g2 - M? logZ\i—g2 (B3)
) AZ A, ’ '
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i B.4
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(B.9)
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4
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| (M7 + MEMP(ME + ME — 3M7)| MF log M
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As in the previous appendix, we have used the shorthand notation AY; = M} — M?, etc.
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Appendix C

The MSSM U Matrix

In this appendix, we present detailed expressions for the entries of the MSSM U matrix
needed in our one-loop matching calculation in Chapter 7. They are obtained from the
MSSM Lagrangian by the background field method explained in Chapter 6. Keeping in
mind that the U matrix is to be used at one-loop level, we do not distinguish between
and ', and write § throughout. Also, tree-level SUSY relations between couplings can be
used regardless of scheme choice, e.g. gaugino-sfermion-fermion couplings are identified with
gauge couplings (which is true beyond tree level in DR but not MS scheme).

In what follows, the heavy Higgs field ® is understood as ®. obtained in Section 7.2.2.
The other heavy fields do not appear because they are set to zero by the classical equations
of motion. We carefully keep all color and weak indices explicit for clarity, using i (A) and «
(I) for SU(3). and SU(2);, fundamental (adjoint) indices on the conjugate fields to appear
on the left side of the U matrix, and j, B, 3, J for those on the fields on the right side. We
will not explicitly show the entries involving leptons, because they can always be obtained
from those involving quarks by the obvious substitutions ¢ — I, d — e, Ay = 0, Ag = A,
g3 — 0.

C.1 R-parity-even block

Higgs-Higgs entries. From the MSSM Higgs potential, we obtain

1 —00c35|01 + 555000 535 Patdp
Ubo = 1(92 -l—g'Q) 2[32 * *25 2 252 2 gk
S95 O*o —52‘025|¢| + 325¢ “op
1, (026 — ¢ag™ 0
0 05|01* — 0™
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+5(9° +9%) ss (¢*® + d*¢)
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1 Pa®* + ™’ Pa®s + Pats
_|_§(92 +g/2) S45
¢*aq>*5 + q)*a¢*6 ¢*aq)5 + (I)*aQSﬁ
1 5B|D[2 + D, 0 0,04
+Z(g2 + 9%) 35 7 (C.1)

(I)*aq)*ﬁ 53‘(1)‘2 + (I)*aq)g

1 ’ 5g|¢‘2 + ¢a¢*ﬂ ¢a¢ﬁ
Uy = —5(92+92)845 ,
¢’ 651012 + o™ dp
1 (55 *O 4+ P*p) + QCI)*’B 0P
+Z(92 + g/g) Sgﬁ (¢ d)) (,ZS ¢ B
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—=(g*+9"?) Cg,@
4 q)*a¢*ﬁ q)*a¢ﬁ

Ll —05($*®) + Pud™  —hads + Pads
2 _¢*aq)*ﬂ + cp*a¢>k,8 _55(61)*925) + q)*agbﬁ
1 (5§|CI>|2 + o, D*8 OMOF
+§(92 + ¢*%) sug : (C.2)

(I)*aq)*ﬁ 5g|q)’2 + (I)*QCDB

The other two entries Uyy and Uy can be obtained from Uge and Usy by simply exchanging
D ¢, Sp <> Ca.

Higgs-fermion entries. From the MSSM Yukawa interactions, we obtain

—s5 087 A —Cgeag Ve, N

e (I o) 02
—Cp Eaﬂ QML )\u —Sg 52‘ Qﬂfb )\Z
— 5508 A1 i —C3 €50 N Vi

Ui = 3 0g d@Dd‘ 5 €8 u% | (C.30)
—cg ®* ALY —s5508 AT QY
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(dge)” AL 0 Au(t€)” 0

qu = Cﬁ @ B o\ s Uuq> = C@ i s (04)
0 (v5e); AL 0 A(¥5e),
0 e AT 0 Ad Ygip
U@d = —85 _ w d N Udcp = —8/3 ) e . (05)
D VR st 0

The ¢f, f¢ entries (not needed in our calculation) can be obtained from the equations above

by simple substitutions A,cg — AyuSg, AasSg — —A4Ca.

Fermion-fermion entries. The Yukawa interactions also give rise to

&7 Al (e67) 0 7 Al (e@*) 0
Upw = 5p ‘o +cp “ , (C.6a)
0 5i AT (eg)” 0 5 AT (e®)”
57 Au(e0)” 0 57 Ay (@)’ 0
Uiy = 5p 4 +cs . , (C.6b)
0 35 X5 (€6) 4 0 35 A%, (e@)
5 AT ¢ 0 5 Al o, 0
Ua = cs| ' a? —s5| ¢ : (C.7a)
% *Qu i T H*a
0 5i AT ¢ 0 5 AT @
I Agd? 0 67 Ag ©*° 0
qu = Cp ‘ d¢ ) — S5 i ) . (C?b)
0 05 Ay b 0 i X% g

In addition, there are nonzero entries involving the SM gauge bosons, which are however

not needed in our calculation.

C.2 R-parity-odd block

Sfermion-sfermion entries. From the sfermion-sfermion-Higgs interactions, we obtain

o7 AL (e 0
Usn = (Ausg — pcp) (<) , .
0 0; AT (eqb)
o AL (e@) 0
+(Aucp + psp) ' e (C.8a)
0 5 AT (ed)
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0 aan(eer),
59 A (e®)” 0
+(Aucs + p15p) ‘ , (C.8b)
0 35 A%, (e@)

I A da 0 5 AL,
U = (Aacs — psp) | — (Adgsg + pcs)
0 5AT g 0 GiATgw

(C
I Agd” 0 67 Ag &7
Ujz; = (Aacs — psp) , — (Aasg + picg)
0 SiALes 0 SiAnD,

(C.9b)

.9a)

Meanwhile, the scalar quartic interactions give rise to

sUL 0 & Uz 0 SJU; 0
U = . » Uwa = . » V= | , (C.10)
0 GUT, 0 &Ur 0 oUT

where

Ul = A3 (02161 — 600"
5505 (080" ® + °¢) — o™ — Doty + (32| — cpa<1>*ﬂ)]

FAIAG| B 000" = 5305 (02" + @™ + 3 0,0

+g° i alf [(sﬁ —c3) (90’ — @' ®) + 2s4¢5(¢7 0" + @*afgb)}

92 VoY, 02 (53 — B) (16 — [9) + 25505 (6@ + @°9) (C.11)
Us = A [sg 167 + 555 (67D + 70 + 3 yc1>|2]

—g2 VoY (53 = ) (9 = |0F) + 25505(0"@ + 070)] (C.12)
Ug = AaAL| [0 = s0cs(6"® + 0°0) + 53 [0f?]

~0° VoY (55— B) (16 — |9f) + 2505(0"® + @") |. (C.13)
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There are also off-diagonal entries between @ and d,

87 A AT (ped 0
U= | ° (9c®) | ., , (C.14a)
05 () ()
67 AgAl (p*ed* 0
Ujﬁ _ i N u(¢ € ) | . ' (C]_4b)
0 8% (AuX]) " (e®)

Sfermion-Higgsino entries. From the sfermion-fermion-Higgsino interactions, we obtain

—O0UG N, Cap Ul AL —OIATUT —eap ALy
Ugy = . , Usg= _ ; (C.15)
€ Pl Ay, —0g Vi Ag —eP XL g —05 Ag Yaj
Tc B T * c J
€). A 0 A € 0
Uﬂ)”( — (¢q )z u ) i 7 U)”(ﬁ — u(wq )a . ’ (C16)
0 (wqe)ﬁ AL 0 Ay (1/qu)j
0 — S5 AT 0 —Ad Ygja
Ud}”( = B\t ) U)Zci = ) . (Cl?)
—ViP A} 0 — A5 0

Sfermion-gaugino entries. From the sfermion-fermion-gaugino interactions, we obtain

Usg = \/593 (ETB%)?

| U= V2 ((geTA)? Ag). ). (Ca8
%TB)“’) o (T (14),). (9

O.Jc

Ui = V24'Y, (wqa) . U =V24'Y, (w;jﬁ wqﬂg) : (C.20)
vy
Usg = —V2s (E UL Usn=—V2gs ((¢5TA)j (TA¢u)j> . (C.21)

UﬁB = _\/Eg/ Yu (wm) , UB@ = —\/59/ Yu <¢Zj Q/Ju]> ) (022)
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Ugp Vd — Um”/,\?a .
u—d

(C.23)

Higgsino-gaugino entries. Finally, from the Higgs-Higgsino-gaugino interactions, we ob-

tain
Usy = U +UGA" . Upg = Upl + UG, (C.21)
with
(S) g1 (e79), g 1, ('),
Umr = V2 2 (sp +cs) ((qﬁ*aJ)o‘) /52 (85— cs) ((@*aJ)“ ; (C.25a)
1 1
UIEIZ)( = %5(5’54—05) (((b*af)ﬁ (de))ﬁ) —%5(55—05) <(<I>*01)ﬁ (UI(I))L?) :
(C.25Db)
® _ 91 o’9), g o’ ®)
Uw = E§(8ﬁ — cs) ( ((b*O'J)a) E§( 5+ ¢s) ( (0%07)" (C.25¢)
P 1
Uy = —% 5 (85— ¢s) ((¢*01)5 (o79) 5) - % = (85 +cp) ((CD*UI)ﬁ (') 5) ,
(C.25d)
/ o / (I)a
Ui‘;) - 5 Y5 (s +cp) ;b*a) G Yy (s — cp) (q)*a) ; (C.26a)
Ugy = 7/5 Yy (55 + ca) <¢*5 cbg) - \/—/— Yy (sp —cs) (cb*ﬂ <1>5> ,  (C.26b)
P ! o ! b,
U)E(B) — 97 Y¢ (S,B - Cﬁ) (Q;*a) + 7 Y¢ (85 + Cg) (q)*a) , (0.260)
Upy = —\% Y5 (55— cs) (W —¢ﬁ> - % Y (sp+ cs) <c1>*ﬂ —q)ﬂ) (C.26d)
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Appendix D

Cross-Check of SUSY Threshold

Corrections Against Feynman

Diagram Calculation

Our results for one-loop SUSY threshold corrections presented in Section 7.2.3, which are
obtained from computing just 30 covariant diagrams, have been cross-checked against con-
ventional Feynman diagram calculations reported in [231], with full agreement found. In
this final appendix, we explain how this comparison is made.

The general procedure is as follows. From [231], we obtain analytical relations between
the full theory parameters gs, g, ¢, yr, m* and A (related to MSSM Lagrangian parameters
via Eq. (7.40)) and the standard set of SM input observables (denoted with hats) és(mz),
my, G 7y Qem, My and my, computed via Feynman diagrams up to one-loop accuracy (we
consistently drop higher loop order corrections, some of which are also reported in [231]).
The same relations, with BSM contributions removed, define the corresponding effective

f
parameters gst, g, ¢’

, y;ﬂ, m?%g and \eg in the SMEFT, up to power-suppressed corrections
from d > 4 operators. One-loop threshold corrections are then obtained by comparing the
two, which should agree with what we have found via the more elegant covariant diagrams
approach. Note that the tadpole-free scheme for Higgs vevs is adopted in [231], so their
results should be compared to ours when Lgygpr is written in terms of 3 (as opposed to '),
tree

i.e. when the one-loop-generated piece co,(P:¢ + ¢*®P.) has been absorbed into L mpr-

Let us start with the strong coupling g3, which is simply extracted from &s(mz) via

2 47 @5(mz)
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Therefore,

95" =9 [ 1- %(Aas)f;fﬂ , (D-2)
where, according to [231],
2 2
(Aas)SUSY _ _1693;2 (é Z Zlogm% +2 logM??)
f=u,d i=1
_ 9—3[1(2i2+15+12)+2z?+0(”—2)}, (D.3)
167216\ "7 d g A2

with summation over three generations implicit. The X—z power-suppressed terms come from
electroweak symmetry breaking contributions to squark masses, and are not relevant here.
For simplicity, throughout this appendix, we denote non-power-suppressed terms as O(1)
(as in Eq. (D.2)) although they are formally O(7z=) when loop counting is also taken into

account. It is readily seen that Eq. (D.3) is in agreement with our 074 in Eq. (7.73a).

Next, to extract electroweak gauge couplings g and ¢', we recall the relations

7 (D.4)

where T - )
A — HWvI2/<O) "~ Re sz(;nz) + bup . (D.5)
My mz
Here, 1T}y, (p?) and 1%, (p?) are transverse parts of the W and Z self-energies, which rep-
resent “universal” contributions to u~ — e~ .v, which determines Gr. On the other hand,
dvp contains non-universal contributions from vertex corrections, box diagrams, and wave-
function renormalizations. Only the universal part of Ar, i.e.

T T 2
Ar, = 1Ly (0) — Re 117 ,(m%) (D.6)

—omiy m
is relevant for g, ¢’ threshold corrections, because dyg has an EFT counterpart in terms of

local effective operator contributions to muon decay. Thus, from Eq. (D.4),
e eff
o =all- (A3 ], (@) = [1- (i - @3] D7)
The QED coupling and weak mixing angle can be directly translated into SU(2), x U(1)y

gauge couplings via 4ma = gsy = ¢'cy. We therefore obtain

1 1
¢t =g {1 toa o [53 (Aa)piy + i (Aru)so[(]?;[]}
Co — Sp

209



11 471 2 SUSY
_ 142 [2 Ag)SUSY 2_<_HT 0) — Sy 2) }}7 D.S
g{ +2—C§_Sg 5 (AFEY + 5 (M (0) = STELm2)) |} (D)
eff 1
g = g'{ _5 — [Cg Ao SUSY+8€ (ATM)SUls)Y]}
1 4 1 C SUSY
/ SUSY T 0 17T 2
_ SN — Tl (0) — 2211 ) ]} D.9
7 {1 gl @ + sf 5 (ahw ) - ity T} (09

The SUSY part of the self-energies 11, and 115, are to be expanded in powers of X—z
Analytical expressions of these and other self-energies to appear below can be found in [231].
They are rather tedious and will not be displayed here.

Then, moving on to Yukawa couplings y;, we note that

) 1 Xe(my)
= — 1 — Re —2~ D.10

where X (p) is the fermion self-energy, and the light Higgs vev v is extracted via

m% + RellZ ,(m%)

2 __
vt =4 g2_|_g/2

(D.11)

In the SMEFT, it is ©, the vev of the canonically normalized light Higgs field gg, that is

extracted via this procedure,

Mm% + Re (115,(m%))™

=4 > 2 (D.12)
(9°7)" + (")
With Egs. (D.8) and (D.9), it is easily seen that
T SUsYy
02 = 02 {1 - (HW—Vg(O)> ] . (D.13)
myy
Therefore,
» SUSsYy 3 susy 1 ,TIZ . (0)\SUSY
y;ff:yfg|:1_( f(mf)) } —y; {1_< f(mf)> +_( WI/I2/( )) } (D.14)
) my o(1) my o(1) 2 mi, o(1)

When cross-checking with our results, it is worth noting the following correspondence be-

tween the terms in Eq. (D.14) and those in Eq. (7.6) (using f =t as an example),

(B B
O(1), By part 2

my my

0Z,+302,),
O(1), Bo part Yt ’ ( q+ )
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(D.15)

(H%},W (0) ) SUSY sz,

m¥, /o) -

where By and B; are different loop integrals that appear in ;.
Finally, we discuss the Higgs potential parameters m? and A\. The minimization condition
of the 1PI effective potential,

1 t,
0 = /f—l—quu—bcotﬁ—g(gz+g'2)025v2—v—
1 t
- ﬁ—l—qud—btanﬁ%—g(f—irg )CQBUQ_U_d (D.16)
d

allows us to eliminate p*> + m% and p® + mj; in favor of v and . From Eq. (7.40) we see

that m? and \ are related by

1 t t
m* = p* +mj, 35 +m3,ch — bsag = —g(g2 + g%)c0° + ;h = —? + ;h, (D.17)
where . ; ; . .
h_ SplutCala o tu | o la
—=—=53—+c53—. D.18
v v Boe Py ( )

To extract them from 7, we write the tree-level mass matrix squared in the (H,, Hy) basis,

M2, beot 3+ 2Mvcyish + L —b— 2AU265528505 | (D.19)
—b— 2)\1)202_;3505 btan 8 + 2\v? 025 3 + 4
Therefore,
A2 . 9 Huu Hud B th
m;, = smaller eigenvalue of My, — = 2)\0? —l— — — Iy, (D.20)
Mug Haa

where 11, 44,44 are one-loop self-energies of the Higgs doublets H,,, Hy, and
Hhh = S% Huu + C% Hdd + 28505 Hud . (D21)

From Eq. (D.20) we obtain

2 1 /¢t SUSY 2. (0)\ SUSY 1 /t SUSY
)\eff—)\_‘i‘_(_h_nhh) =A|l+ (M) +—<—h_Hhh) , (D.22)
202 O(v?) my, /o) 202 @)
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and then from Eq. (D.17),

¢ SM 1/ ¢t SUSY
msz = —)\eff@2 + <—h — Hhh) = m2 - = <3 —h — Hhh) . (D23)

v 2\ v O(A2)
Note that while both %h and I, contain O(A?) terms, they cancel in the combination %—Hhh
appearing in Eq. (D.22). The subleading O(v?) terms needed here come from both expanding
the loop integrals involved up to next-to-leading order, and electroweak symmetry breaking

contributions to superpartner masses. Also, note the different notation adopted in [231]:

t1,2 == td,ua Hslsl,slsg,SQSQ = Hdd,ud,uu-
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