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ABSTRACT

Controlling the dissemination of information about ourselves has become a minefield in
the modern age. We release data about ourselves every day and don’t always fully under-
stand what information is contained in this data. It is often the case that the combination
of seemingly innocuous pieces of data can be combined to reveal more sensitive informa-
tion about ourselves than we intended. Differential privacy has developed as a technique
to prevent this type of privacy leakage. It borrows ideas from information theory to in-
ject enough uncertainty into the data so that sensitive information is provably absent from
the privatised data. Current research in differential privacy walks the fine line between
removing sensitive information while allowing non-sensitive information to be released.

At its heart, this thesis is about the study of information. Many of the results can be
formulated as asking a subset of the questions: does the data you have contain enough
information to learn what you would like to learn? and how can I affect the data to ensure
you can’t discern sensitive information? We will often approach the former question from
both directions: information theoretic lower bounds on recovery and algorithmic upper
bounds.

We begin with an information theoretic lower bound for graphon estimation. This ex-
plores the fundamental limits of how much information about the underlying population is
contained in a finite sample of data. We then move on to exploring the connection between
information theoretic results and privacy in the context of linear inverse problems. We find
that there is a discrepancy between how the inverse problems community and the privacy
community view good recovery of information. Next, we explore black-box testing for
privacy. We argue that the amount of information required to verify the privacy guarantee
of an algorithm, without access to the internals of the algorithm, is lower bounded by the
amount of information required to break the privacy guarantee. Finally, we explore a set-
ting where imposing privacy is a help rather than a hindrance: online linear optimisation.
We argue that private algorithms have the right kind of stability guarantee to ensure low
regret for online linear optimisation.
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Introduction
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CHAPTER 1

Motivation and Background

Controlling the dissemination of information about ourselves has become a minefield in
the modern age. We release data about ourselves every day and do not always fully under-
stand what information is contained in this data. The privacy implications of some types
of data release are obvious: medical records, browser histories and education transcripts
obviously contain sensitive information. It is, however, often the case that seemingly
innocuous data contains more sensitive information than we initially recognise. For exam-
ple, Molina-Markham et al. showed that smart meter data from a home actually contains
not only the amount of energy used, but also fine grain information about the activities of
the residents. For a long time, we did not have a language to talk about this type of la-
tent variable privacy release. As a result, sincere efforts to prevent privacy leakage failed,
often resulting in blatant privacy violations. There is a long list of so-called anonymised
datasets that were revealed to still contain personally identifiable information [Barbaro and
Jr, 2006, Information Systems Audit and Control Association (ISACA), 2011, Shrivastva
et al., 2014]. The field of privacy preserving data analysis has developed to ease privacy
concerns while supporting meaningful data analysis.

Privacy preserving data analytics is predated by the field of information theory, which
studies a similar problem from a different perspective. Information theory is the study
of the fundamental limitations of extracting information from data in the presence of
uncertainty. A key example is attempting to reconstruct information after it has passed
through a noisy channel. Information theoretic limitations on reconstruction state not
only that known reconstruction algorithms fail but that any reconstruction algorithm will
fail [E. Shannon, 1948]. This idea epitomises the shift in thinking of modern privacy-
preserving data analytics. We want to inject enough uncertainty into the data that sensitive
information is provably absent from the privatised data.

A breakthrough in this field was the definition of differential privacy, which put the
concept of privacy preservation in data analysis on a mathematically rigorous foundation.
Differential privacy and its ilk allow us to argue rigorously about how much information

2



about an individual can be learned from the output of a computation. A major contribution
of the pioneering paper in this field was the stance that sensitive information is informa-
tion that could not have been obtained if the individual was not in the dataset [Dwork
et al., 2006]. As an example, suppose a study reveals that most people love Michigan.
Even if I were not in the dataset, you have learnt something about me: I probably love
Michigan. Differential privacy takes the stance that this is not a violation of my privacy
because the impact on me is the same, whether or not my information was used in the
study. This distinction between learning something about me and violating my privacy
is what allows differentially private data analyses to obtain meaningful results. The field
of differential privacy walks the fine line between removing sensitive information while
allowing non-sensitive information to be released. It has become the gold standard for
privacy-preserving data analysis and fostered a large body of work (See [Dwork, 2008,
Dwork and Roth, 2014a] for surveys).

At its heart, this thesis is about the study of information. Many of the results can be
formulated as asking a subset of the following questions:

• Does the data contain enough information to learn what you would like to learn?

• How can I affect the data to ensure you cannot discern sensitive information?

We will often approach the former question from both directions: information theoretic
lower bounds on recovery and algorithmic upper bounds.

We begin in Chapter II with an information theoretic argument of the type that will be
prevalent throughout this thesis. We establish fundamental limitations on graphon estima-
tion. We then move on to exploring the connection between information theoretic results
and privacy in the context of linear inverse problems in Chapter III. In Chapter IV, we
explore the problem of determining, without access to the internals of an algorithm, how
private it is. We argue that the amount of information required to verify the privacy guar-
antee of an algorithm is lower bounded by the amount of information required to break the
privacy guarantee. Finally, Chapter V is dedicated to studying how tools from the differ-
ential privacy literature can be used in the design and analysis of online linear optimisation
algorithms.

1.1 Overview of Results

1.1.1 Lower Bound on Graphon Estimation

Networks and graphs arise as natural modelling tools in many areas of science. In
many settings, particularly in social networks, networks display some type of community
structure. In these settings, one can model the structure of the network by something
called a graphon or, if there are only a finite number of communities, a stochastic block
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model. In a stochastic block model, one considers each node of the graph as belonging
to one of k communities and the probability that two nodes are connected depends on
the communities they belong to. Given an observed network, graphon estimation is the
problem of recovering the graphon model from which the graph was drawn.

In Part II, based on joint work with Adam Smith [McMillan and Smith, 2017], we
explore the fundamental limits of graphon estimation for block graphons. That is, given
an n-node network that was generated from a k-block graphon, how accurately can you
recover the graphon? Our lower bound improves upon previously known lower bounds
Klopp et al. [2015] for sparse graphs (graphs where the average degree ρ is sublinear in n)
and rules out non-trivial estimation in the very sparse regime.

1.1.2 Local Differential Privacy for Physical Sensor Data

The development of wireless technology has allowed an increasing amount of lightweight
(thermal, light, motion, etc.) sensors to be deployed. In many systems, the sensor mea-
surements are a linear function of the data we would like to keep private. In Part III,
based on joint work with Anna Gilbert [Gilbert and McMillan, 2018], we explore how
we can exploit the ill-posedness of some linear inverse problems when designing locally
differentially private algorithms for releasing sensor measurements.

This work had two main contributions. The first was noticing a connection between ill-
conditionedness and privacy. A linear problem y = Ax is ill-conditioned if only a small
amount of noise in the measurement vector y is needed to prohibit accurate recovery of
x. To the best of my knowledge this connection had not previously been made. We found
that if a problem is well-conditioned then we necessarily need to add a significant amount
of noise to maintain privacy. The converse, however, is not generally true: it is possible
to have an ill-conditioned matrix and still need to add a considerable amount of noise to
maintain privacy. The proof of this relies on analysing the spectral properties of the two
conditions.

After instantiating our formulation with the heat kernel, our second contribution was an
improved upper bound on the Earth Mover distance (EMD) error of basis pursuit denoising
with the heat kernel on the one-dimensional unit interval. Our work indicates that it is
possible to produce differentially private sensor measurements that both keep the exact
locations of the heat sources private and permit recovery of the general vicinity of the
sources. It was somewhat surprising that basis pursuit denoising, which is only known to
work for well-conditioned matrices, is also effective for the heat kernel in the EMD.

Diffusion on graphs is used to model the path of a random walker in a graph, as well
as the spread of rumours, viruses or information in a social network. In the final section
of Part III, we instantiate our framework with the graph diffusion operator and discuss
the relationship between connectivity and privacy. A particularly interesting example is
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community graphs, where we would like the measurement data to reveal the community
the rumour started in, but not the exact person. We discuss promising experimental results.

1.1.3 Property Testing for Differential Privacy

Recently differential privacy has gained traction outside of theoretical research as sev-
eral companies (Google, Apple, Microsoft, Census, etc.) have announced deployment of
large-scale differentially private mechanisms [Erlingsson et al., 2014, Apple, 2017, Ad-
owd and Schmutte, 2017, Ding et al., 2017]. This use of DP, while exciting, might be
construed as a marketing tool used to encourage privacy-aware consumers to release more
of their sensitive data to the company. In addition, the software behind the deployment of
DP is typically proprietary since it ostensibly provides commercial advantage. This raises
the question: with limited access to the software, can we verify the privacy guarantees of
purportedly DP algorithms?

In this early stage of commercial DP algorithms, approaches to transparency have been
varied. For some algorithms, like Google’s RAPPOR, a full description of the algorithm
has been released [Erlingsson et al., 2014]. On the other hand, while Apple has released
a white paper [Differential Privacy Team, 2017] and a patent [Thakurta et al., 2017], there
are still many questions about their exact implementations. In Part IV, based on joint work
with Anna Gilbert, we explore verifying the privacy of blackbox algorithms in two extreme
settings; when we are given no information about the black-box (except the domain and
range), and the full information setting where we have an untrusted full description of the
algorithm A.

A central theme of this work is that verifying the privacy guarantees that corporations
(or any entity entrusted with private data) claim requires compromise by either the verifier
or algorithm owner. If the verifier is satisfied with only a weak privacy guarantee (random
approximate DP with δ and γ small but not extremely small), then she or he can verify
this with no side information from the algorithm owner. If the company is willing to
compromise by providing information about the algorithm up-front, then much stronger
privacy guarantees can be verified. Given this level of transparency, one might be tempted
to suggest that the company provide source code instead. While verifying privacy given
source code is an important and active area, there are many scenarios where the source
code itself is proprietary. We have already seen instances where companies have been
willing to provide detailed descriptions of their algorithms. In the full information setting
we obtain a sublinear algorithm for verifying random approximate differential privacy on
discrete distributions.
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1.1.4 Online Linear Optimisation through the lens of Differential Privacy

Online learning is a common machine learning task where data becomes available in
a sequential order. In online supervised learning, there is a function f : X → Y to be
learned and at each time step, the learner outputs an updated estimate, ft to f and receives
a new data point (xt, f(xt)). The loss suffered `(ft(xt), f(xt)) is a measure of how far
ft(xt) is from the true label, f(xt). The learner’s goal is to minimise the loss they suffer
after T rounds. This is usually measured against the loss they would have suffered if they’d
played the best in hindsight answer. That is, the learner seeks to minimise

RegretT =
T∑
t=1

`(ft(xt), f(xt))− min
f∗∈X

T∑
t=1

`(f ∗(xt), f(xt)).

We typically assume that the data sequence is chosen adversarially.
Algorithms that perform well in the adversarial online setting tend to be stable under

small changes in the data [Ross and Bagnell, 2011]. This notion is very similar to the
requirement that differentially private algorithms should not be too dependent on the data.
In Part V, based on joint work with Chansoo Lee, Jacob Abernethy and Ambuj Tewari
[Abernethy et al., 2018], we explore the use of tools from differential privacy in the design
and analysis of online learning algorithms. This lead to a minimax optimal algorithm
for k-sparse online PCA and a connection between differential privacy and differential
consistency, another smoothness notion.

Chansoo Lee did much of the heavy lifting for the work in this Part V. The ideas in
Section 12.2.2 belong to him. Some of the prose in this Part was written by Chansoo,
Jacob or Ambuj, although the presentation has been altered from the preprint [Abernethy
et al., 2018] for the purposes of this thesis.

1.2 Preliminaries

In this section we introduce some of the notation, definitions and basic techniques
that will be used throughout this thesis. Unless specified otherwise A is a randomised
algorithm whose domain is the set of databases. We use PD to denote the distribution on
outputs for the input D. For any integer n, [n] = {1, · · · , n}. The `∞, `1, `2 norms on Rn

will be denoted by ‖ · ‖∞, ‖ · ‖1 and ‖ · ‖2. Typically Ω will denote our data universe and
D is a distribution on Ω.

We will deal with many measures of closeness between distributions. We collect these
definitions here for ease of reference.

Definition 1.1. Let P and Q be two distributions.

• Total Variance (TV) distance ‖P −Q‖TV = supE |P (E)−Q(E)|
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• Max divergence D∞(P,Q) = supE ln P (E)
Q(E)

.

• δ-approximate max divergence Dδ
∞(P,Q) = supE s.t. P (E)≥δ ln P (E)−δ

Q(E)
.

• Rényi divergence of order β Dβ(P‖Q) = 1
β−1

lnEx∼Q
(
P (x)
Q(x)

)β
.

• Kullbeck-Leibler (KL) divergence DKL(P‖Q) =
∫
R
P (x) ln P (x)

Q(x)
dx.

where the supE is the supremum over all events E in the outcome space.

1.2.1 Concentration Inequalities

In this section we review some concentration inequalities for random variables. The
results in this section can be thought of as non-asymptotic analogues of the central limit
theorem: the sum of many random variables tends to concentrate around it’s mean. In fact,
they concentrate so quickly that we get exponentially decreasing bounds on the probability
that the sum of random variables deviates from its mean. These results are the reason we
feel suspicious if a series of coin flips has too many heads or if a dice lands on 1 too
often. The interested reader is referred to Vershynin [2019] and Sridharan [2018] for a
more in-depth introduction.

Let X1, · · · , Xn be independent random variables such that ai ≤ Xi ≤ bi. Let

X̄ =
1

n

n∑
i=1

Xi

be the average of the random variables. Our first inequality, Hoeffding’s inequality, is
a special case of the more general Azuma-Hoeffding inequality. We will frequently use
Hoeffding’s inequality to argue that if a trial has a p probability of success than after a
small number of trials, we are very likely to have had approximately pn successes.

Lemma 1.2 (Hoeffding’s Inequality). For any t > 0 we have

P(X̄ − E[X̄] ≥ t) ≤ e
− 2n2t2∑n

i=1
(bi−ai)2 .

Hoeffding’s inequality did not use any knowledge about the distribution of the random
variables Xi. By taking the variance of the Xi’s into account, Bernstein’s inequality gets a
tighter bound.

Lemma 1.3 (Bernstein’s Inequality). Suppose |Xi| ≤ c with probability 1 and let
σ2 = 1

n

∑n
i=1 Var(Xi). Then for any t > 0 we have

P(X̄ − E[X̄] ≥ t) ≤ e
− nt2

2σ2+2ct/3
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CHAPTER 2

An Introduction to Differential Privacy and its Variants

In this Chapter, we give an introduction to the privacy definitions and techniques that
will play an important role in this thesis. For a comprehensive overview of the field, a
textbook treatment can be found in [Dwork and Roth, 2014a], and surveys can be found in
[Vadhan, 2016, Dwork, 2008, Ji et al., 2014].

2.1 The Definition

A randomised algorithm is differentially private (DP) if the output distributions do not
change very much with small changes in the input. It is important to note that it is the
algorithm that has the property of being DP, not the output. In particular, one can not look
at data and decide it is differentially private, and hence safe to release; the guarantee lies
with the method used to produce the privatised data. This is in contrast to privacy notions
like k-anonymity.

Recall that for a database D and algorithm A, we let PD denote the output distribution
on input D. We call two databases neighbours if they differ in a single datapoint. The
idea behind DP is simple: on neighbouring databases, the distributions PD and PD′ should
be close enough that given a sample from PD′′ , an adversary cannot determine whether
D′′ = D or D′′ = D′. The strongest of these definitions is the original, pure differential
privacy. There is now a broad literature on relaxations of pure DP which find various ways
to sacrifice privacy, with a view towards allowing a strictly broader class of algorithms to
be implemented.

Definition 2.1 (Data Distribution Independent Privacy Definitions). A randomised algo-
rithm A is

• ε-Pure Differentially Private (pDP) if supD,D′ D∞(PD, PD′) ≤ ε.

• (ε, δ)-Approximate Differentially Private (aDP) if supD,D′ D
δ
∞(PD, PD′) ≤ ε.

where the supremums are over all pairs of neigbouring databases D and D′.
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The motivation behind the definition of neighbours is that D contains my true data
and D′ has my data replaced with a random datapoint. If an adversary cannot distinguish
between D and D′ then they cannot identify by true data. The neighbouring definition
given here isn’t applicable for all types of data, and can be replaced with more suitable
definitions in different contexts. Differential privacy defined on the new neighbouring
relation will have the same interpretation: from the output of the algorithm, it is impossible
to distinguish between neighbouring datasets. We will use this idea in Part III.

Note that ε-pDP is exactly (ε, 0)-aDP. The parameter δ can be thought of as our prob-
ability of failing to preserve privacy. To see this, suppose the distributions PD output 0
with probability 1− δ, and a unique identifier for the database D with probability δ. Then
this algorithm is (0, δ)-DP. Thus, we typically want δ to be small enough that we can be
almost guaranteed that we will not observe this difference in the distributions. In contrast,
while it is desirable to have ε small, a larger ε still gives meaningful guarantees Dwork
et al. [2011]. Typically one should think of δ as extremely small, δ ≈ 10−8, and ε as quite
small, ε ≈ 0.1.

Approximate DP allows for low probability outcomes that result in catastrophic fail-
ures in privacy. We can also consider allowing privacy protection failures on unlikely
inputs. Philosophically, the downside of this approach is obvious: sometimes the outliers
in society are those that need the most protection.

It is often the case in practical data mining tasks that one has a distribution on the data
universe. That is, certain data points are more likely than others to be seen in a random
sample. For example, suppose the data universe is how far people travelled from home in
the summer of 1969. While a random dataset might contain a datapoint that is upwards of
238,900 miles, it is very unlikely to contain any datapoint larger than 12,500 miles. How-
ever, since DP is a worst-case guarantee it requires us to output approximately the same
value whether or not Neil Armstrong, Buzz Aldrin, or Michael Collins are in our dataset.1

Hence, DP can exhibit a poor utility/privacy tradeoff due to unlikely events. There is a
growing body of literature on weaker versions of privacy that can provide improved utility
in these types of circumstances Ebadi et al. [2015], Hall et al. [2012], Barber and Duchi
[2014]. These definitions may protect the privacy of everyone except Neil, Buzz and
Michael, whose data will be entirely leaked.

Let D be a distribution on the data universe Ω. For a database D and datapoint z, let
[D−1, z] denote the neighbouring database where the first datapoint of D is replaced by z.

Definition 2.2 (Data Distribution Dependent Privacy Definitons). An algorithm A is

• (ε, γ)-Random Pure DP (RpDP) if P
(
D∞(PD, P[D−1,z]) ≤ ε

)
≥ 1− γ.

• (ε, δ, γ)-Random Approximate DP (RADP) if P
(
Dδ
∞(PD, P[D−1,z]) ≤ ε

)
≥ 1 − γ.

1Michael is the unsung hero of the Apollo 11 mission. He piloted the command module alone in lunar orbit while Neil and Buzz
landed on the moon. He travelled at least 238,900 miles from home that summer.

9



where the probabilities are over D ∼ Dn, z ∼ D.

Similar to δ, γ represents the probability of catastrophic failure in privacy. Therefore,
we require that γ is small enough that this event is extremely unlikely to occur.

2.2 Properties of Differential Privacy

A key component of modern privacy-preserving data analytics is that the sensitive in-
formation is provably absent from the privatised data. The following proposition asserts
this claim. It says that no amount of ingenuity in post-processing the output of a private
algorithm can reveal the sensitive data.

Proposition 2.3 (Post-processing Inequality). LetA : ZΩ → O be an (ε, δ)-DP algorithm
and let f : O → O′ be an arbitrary randomised algorithm. Then f ◦ A : ZΩ → O′ is
(ε, δ)-DP.

The DP guarantee is that any event in the outcome space is almost equally likely to
occur whether the database is D or it’s neighbour D′. The following lemma allows us to
interpret the word event much more broadly. It allows us to say that any consequence of
the release of A(D) was almost equally likely to occur if the input database was D′. For
example, suppose the outputA(D) is being used to decide health insurance premiums. The
following lemma says that the expected increase in a person’s health insurance premium
is almost the same, whether or not their data is in D.

Lemma 2.4. SupposeA is an (ε, δ)-DP algorithm andD,D′ are neighbouring databases.
Then for any non-negative function f : B → [0, F ], we have

E[f(A(D))] ≤ eεE[f(A(D′))] + δF

where the expectation is over the randomness in A.

Of course, Proposition 2.3 doesn’t hold if the post-processing is allowed to involve
re-accessing the data. Fortunately, the composition of two DP algorithms is also a DP
algorithm with slightly weaker privacy guarantees. This property, combined with Propo-
sition 2.3 allows us to use DP algorithms as building blocks in larger machine learning
algorithms. We begin with the basic composition theorem for the composition of indepen-
dent DP algorithms.

Lemma 2.5 (Basic Composition Theorem). Suppose for all i ∈ [t] the algorithm Ai :

ZΩ → Oi is (εi, δi)-DP. Then their combination A[i] : ZΩ →
∏t

i=1Oi defined by
A[i](D) = (A1(D), · · · ,At(D)) is (

∑t
i=1 εi,

∑t
i=1 δi)-DP.

Now, suppose a data analyst sequentially chooses Ai, receives Ai(Di), then chooses
Ai+1, and so on. It is often the case that the choice of algorithm Ai+1 will depend on all
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the outputs the data analyst has received in the past, as well as all their past choices. That is,
the (i+1)-th mechanism can be written asAi+1 : ZΩ×(A1×· · ·×Ai)×(O1×Oi)→ Oi+1.
The composition of the algorithms A1, · · · ,At produced in this way is called the t-fold
adaptive composition.

Notice that the databases Di are also allowed to vary. Practically, this may occur be-
cause time has elapsed, more data collection has occurred, or a different type of data is
being used. This is an important attribute because individuals typically have data about
them spread across many different databases. Two vectors of databases (D1, · · · , Dt) and
(D′1, · · · , D′t) are called neighbours if they differ in exactly one person’s data. This may
mean that more than one datapoint changes in the union ∪ti=1Di.

Theorem 2.6 (Advanced Composition Theorem). For all ε, δ, δ′ > 0, the t-fold adaptive
composition of (ε, δ)-DP algorithms satisfies (ε′, tδ + δ′)-DP for

ε′ =
√

2t ln(1/δ′)ε+ tε(eε − 1)

Theorem 2.6 improves on Lemma 2.5 as it demonstrates a trade-off between ε and δ.
At a small cost to the δ parameter, we can allow the ε parameter to increase at a rate of

√
t

rather than t.

2.3 Toolbox

In this section we discuss three key differentially private algorithms. This is far from
an exhaustive list of DP tools but demonstrates the various important ways uncertainty in
the input can be created. Dwork and Roth [2014a] is a excellent resource for a textbook
treatment of the core DP algorithms.

2.3.1 Randomised Response

The first algorithm we are going to discuss, randomised response, actually predates
differential privacy by several decades. It was originally proposed by Warner [1965] to
encourage participation and truth-telling in surveys about sensitive personal information.
The algorithm is appropriate for binary data, for example answers to YES/NO questions.
It proceeds as follows: before answering a YES/NO question, the survey participant is
asked to flip a coin with probability p of HEADS and 1− p of TAILS. The outcome of the
coin flip is not disclosed to the data collector. If HEADS, then survey participant tells the
truth, and if TAILS, the survey participant lies.

The premise is that the participant retains plausible deniability since the data analyst is
uncertain of the outcome of the coin flip. None-the-less, the aggregate data is still useful.
Suppose X is a random person’s true data and X̂ is the output after randomised response.
The goal of the data analyst is to learn P(X = YES). The analyst receives samples of X̂ ,
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which give an empirical estimate to P(X̂ = YES). This can be translated to an empirical
estimate of P(X = YES), with slightly worse error bounds, via the formula:

P(X̂ = YES) = p P(X = YES) + (1− p)(1− P(X = YES)).

The closer p is to 1, the less plausible deniability the participant has, but the more accurate
the estimate is. The correct choice of p required to attain ε-DP is contained in the following
diagram where the LHS is the input to randomised response and the RHS is the output.

YES

NO

YES

NO

eε

1+eε

1
1+eε

1
1+eε

eε

1+eε

Lemma 2.7. Randomised response with p = eε

1+eε
is ε-DP.

Randomised response is called a local differentially private algorithm because the data
is made private before it is sent to the data analyst. In fact, in a statistical setting, ran-
domised response is optimal in the small ε regime for binary data [Kairouz et al., 2016].
We will return to local differential privacy in Part III.

2.3.2 The Gaussian Mechanism

Numeric queries of the form g : ZΩ → Rn form a fundamental class of statistical
queries. For example, learning a parametrised model of the data often lies in this category.
Fittingly, the algorithm we will discuss in this section, the Gaussian mechanism, was one
of the first differentially private mechanisms. The Gaussian mechanism involves adding
Gaussian noise with carefully calibrated standard deviation. The amount of noise is related
to two quantities: the amount of privacy desired, and how sensitive the function g is to a
single individual’s data. The latter quantity is captured by the `2 sensitivity of g:

42g = max
D,D′neighbours

‖g(D)− g(D′)‖2

Lemma 2.8 (The Gaussian Mechanism). [Dwork and Roth, 2014a] Let ε > 0, δ > 0 and
σ = 2 ln(1.25/δ)42g

ε
then

A(D) ∼ g(D) +N(0, σ2In)

is an (ε, δ)-differentially private algorithm.
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Unlike randomised response, the Gaussian mechanism achieves approximate differen-
tial privacy (δ > 0) rather than pure differential privacy. The nonzero δ term comes from
bounding the tail probability, since the ratio PD

PD′
is unbounded in the tail. The Laplacian

mechanism where Laplacian noise, with carefully calibrated standard deviation, is added
to the output g(D) is a common alternative to the Gaussian mechanism. The Laplacian
mechanism satisfies pure differential privacy. There has been some research on the optimal
noise model for achieving local DP [Geng and Viswanath, 2016].

2.3.3 The Exponential Mechanism

The exponential mechanism is used when we would like to choose the optimal response
to the data. Common machine learning tasks like least squares regression fall into this
category, as well as non-numeric queries like “what is the most common ailment?”

Given an arbitrary range O, a utility function u : ZΩ × O → R maps database/output
pairs to utility scores. The goal of the exponential mechanism is to output a differentially
private, near optimal, solution to arg maxo∈O u(D, o). As in the Gaussian mechanism, an
important quantity will be how much the utility score depends on a single individuals data:

4u = max
o∈O

max
D,D′neighbours

|u(D, o)− u(D′, o)|.

The exponential mechanismM(D, u) selects and outputs an element o ∈ O with prob-

ability proportional to e
εu(D,o)
24u .

Lemma 2.9. The exponential mechanism is ε-DP.

Since the probability of an element o ∈ O being chosen decays exponentially in
u(D, o), with high probability the exponential mechanism outputs an element of O whose
utility is close to optimal.

Lemma 2.10. Fixing a database D, for any t > 0 we have:

P
[
u(M(D, u)) ≤ max

o∈O
u(D, o)− 24u

ε
(ln |O|+ t)

]
≤ e−t.
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CHAPTER 3

Information Theory

In this section we review some of the tools from information theory that will be useful
throughout this thesis. The majority of the results in this section quantify the fundamental
limitations in information recovery in the presence of uncertainty. We begin with general
results that hold true for any error metric. We then specialise to the binary case: property
testing.

3.1 Estimation Lower Bounds

Let us begin by defining the estimation problem at hand. Let P denote a class of
distributions on a sample space M and let θ : P → Θ determine a function on P . Given
i.i.d. samples from P ∈ P , our goal is estimate θ(P ). For a distribution P , the quantity
θ(P ) can be a property of P like its mean or variance, or it can be a unique identifier for P
like θ(PD) = D. Thus, this framework captures both estimating properties of distributions
and recovering information under uncertainty.

An estimator is a function θ̂ : M r → Θ that takes as input r independent samples from
the distribution, X ∼ P r, and outputs at estimate θ̂(X) to θ(P ). Given a metric d(·, ·) on
Θ we can define the maximum risk of an estimator as

max
P∈P

EP r [d(θ̂(X), θ(P ))].

The fundamental limitation of reconstruction can then be characterised as the least maxi-
mal risk that can be achieved by any estimator:

Mr(θ(P ), d) := inf
θ̂

max
P∈P

EP r [d(θ̂(X), θ(P ))]

where the supremum is taken over all distributions P ∈ P , and the infimum is over all
estimator θ̂.

Our first lower bound result is Le Cam’s inequality. The TV distance between two
distributions is often referred to as the statistical distance because it measures how easy it
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is to distinguish between the distributions based on samples. Le Cam’s inequality states
that if there exists a pair of distributions that are close in TV distance but whose estimated
parameters are far apart, then estimating the parameter must be difficult.

Lemma 3.1 (Le Cam’s inequality). For any pair P0, P1 ∈ P ,

Mr(θ(P ), d) ≥ d(θ(P0), θ(P1))

8

(
1− 1

2

∫
|P0 − P1|

)2r

Fano’s inequality allows us to choose a family of distributions, rather than simply two
distributions as in Le Cam’s. It states that if there is a large family of distributions that are
close in KL divergence (another statistical distance measure) but far in estimated param-
eters then it is difficult to estimate the parameter. If (Θ, d) is a metric space, α > 0 and
T ⊂ Θ, then we define the α-packing number of T to be the largest number of disjoint
balls of radius α that can fit in T , denoted byM(α, T, d). For a collection S of probability
distributions, the KL diameter is defined by

(3.1) dKL(S) = sup
p,q∈S

DKL(p‖q).

The following version of Fano’s inequality is found in Yu [1997]. It will be the version
utilised throughout the remainder of this thesis.

Lemma 3.2 (Fano’s Inequality). Let (M,d) be a metric space and {Pθ | θ ∈ M} be a
collection of probability measures. For any totally bounded T ⊂M and α > 0,

(3.2) inf
θ̂

sup
P∈P

Pθ
(
d2(θ̂(X), θ(P )) ≥ ε2

4

)
≥ 1− DKL(PT ) + 1

logM(α, T, d)

where PT = {Pθ | θ ∈ T}.

Both Le Cam’s inequality and Fano’s inequality have many forms. The versions pre-
sented here will be the most useful to us.

3.2 Property Testing Lower Bounds

In property testing of distributions, the aim is to decide whether a distribution has a
property or not based on samples from the distribution. For example, is the distribution
log-concave? Lipschitz? Gaussian? In Part IV we will be considering whether a pair of
distributions satisfies the requirements for DP.

A property can abstractly be defined as a subset P̃ ⊂ P . Given X ∼ P r, the problem
is to decide if P ∈ P̃ or if P is far from P̃ . The meaning of far varies depending on
the context but is typically defined via a metric on the space of distributions P . The
error of an algorithm solving the decision problem is the probability, over draws from the
distributions, that the algorithm is wrong.
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Definition 3.3 (Property testing). A property testing algorithm with sample complexity r,
proximity parameter α, and property P̃ ⊂ P , takes r samples from P and

1. (Completeness) ACCEPTS with probability at least 2/3 if P ∈ P̃ .

2. (Soundness) REJECTS with probability at least 2/3 if P is α-far from P̃ .

Property testing is a special case of the general estimation framework where Θ = {0, 1},
θ(P ) = 1 − χP̃ and d(x, y) = |x − y| is the 0-1 loss. Then, EP r [d(θ̂(X), θ(P ))] is the
probability that the estimator θ̂ is wrong on the distribution P . Thus, we get the following
corollary of Le Cam’s inequality.

Corollary 3.4 (Le Cam’s inequality for property testing). Let α be the proximity parameter
and P̃ be a property. Suppose P ∈ P̃ and Q is α-far from P̃ . Then, any property testing
algorithm with query complexity 2r must satisfy

‖P r −Qr‖TV ≥
1

3

The previous results in this chapter were all based on the concept that if two distribu-
tions are close in statistical distance, then you need a lot of samples to distinguish between
them. We are going to restrict now to discrete distributions on [n]. The final lower bound
we will discuss is built on the idea of low frequency blindness. Low frequency elements,
that is elements that have low probability of occuring, are unlikely to appear in a random
sample. However, they may have a large effect on whether or not the property is satisfied so
an estimator cannot simply assume these unseen elements have probability zero. Lemma
3.5 captures the idea that “no tester can extract useful information from low-frequency
elements”.

We need to consider a generalisation of binary properties. A property π of a distribution
is a function π : 4[n] → R, where 4[n] is the set of discrete distributions on [n]. It is
called symmetric if for all permutations σ and distributions P we have π(p) = π(p◦σ). It is
(α, β)-weakly-continuous if for all distributions P+ and P− satisfying ‖P+−P−‖TV ≤ β

we have |π(P+)− π(P−)| ≤ α.

Lemma 3.5 (Low frequency blindness). [Valiant, 2011] Given a symmetric property π
on distributions on [n] that is (α, β)-weakly-continuous, if there exists two distributions,
P+, P− that are identical for any index occurring with probability at least 1/k in either
distribution but π(P+) > b and π(P−) < a, then no tester can distinguish between
π > b− α and π < a+ α in k · β

1000·24
√
logn samples.

As with the other Lemmas in this chapter, the key to using Lemma 3.5 is to find a pair
of distributions that are close, in that they agree for high frequency elements, but far in the
property parameter.
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Part II

When is Nontrivial Graphon Estimation
Possible?
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CHAPTER 4

Introduction

Networks and graphs arise as natural modelling tools in many areas of science. In
many settings, particularly in social networks, networks display some type of community
structure. In these settings one may consider the nodes of the graph as belonging to one
of k communities, and two nodes are connected with a probability that depends on the
communities they belong to. This type of structure is captured in the k-block graphon
model, also known as the stochastic block model. The more communities we allow in
the model, the richer the model becomes and the better we can hope to describe the real
world. One can think of a general graphon model as an ∞-block graphon where each
node is given a label in [0, 1] rather than [k].

Given an observed network, graphon estimation is the problem of recovering the graphon
model from which the graph was drawn. In this part, we are concerned with the funda-
mental limits of graphon estimation for block graphons. That is, given a n-node network
that was generated from a k-block graphon, how accurately can you recover the graphon?
We consider the “nonparametric” setting, where k may depend on n. Our lower bounds
apply even to estimation algorithms that know the true number of blocks k, though this
quantity typically needs to be estimated 1.

In many real world networks, the average degree of the network is small compared to
the number of nodes in the network. Graphons whose expected average degree is linear
in n are called dense, while graphons whose expected average degree is sublinear in n are
referred to as sparse. In this work, we prove a new lower bound for graphon estimation
for sparse networks. In particular, our results rule out nontrivial estimation for very sparse
networks (roughly, where ρ = O(k2/n2)). An estimator is nontrivial if its expected error is
significantly better than an estimator which ignores the input and always outputs the same
model. It follows from recent work [Mossel et al., 2014, 2015, Neeman and Netrapalli,
2014] that nontrivial estimation is impossible when ρ = O(1/n). Ours is the first lower
bound that rules out nontrivial graphon estimation for large k. Previous work by Klopp

1This Part is based on joint with Adam Smith [McMillan and Smith, 2017]
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et al. [2015] provides other lower bounds on graphon estimation that are tight in several
regimes. In work concurrent to ours [Klopp et al., 2016], the same authors provide a
similar bound to the one presented here.

Block graphon models were introduced by Hoff et al. [2002] under the name latent po-
sition graphs. Graphons play an important role in the theory of graph limits (see [Lovász,
2012] for a survey) and the connection between the graph model and convergent graph
sequences has been studied in both the dense and sparse settings [Borgs et al., 2006, 2008,
2014b,a,b]. Estimation for stochastic block models with a fixed number of blocks was
introduced by Bickel and Chen [2009], while the first estimation of the general model was
proposed by Bickel et al. [2011]. Many graphon estimation methods, with an array of as-
sumptions on the graphon, have been proposed since [Lloyd et al., 2012, Tang et al., 2013,
Latouche and Robin, 2016, Wolfe and Olhede, 2013, Chan and Airoldi, 2014, Airoldi
et al., 2013, Yang et al., 2014, Gao et al., 2015, Abbe et al., 2016, Chatterjee, 2015, Abbe
and Sandon, 2015]. Gao et al. [2015] provide the best known upper bounds in the dense
setting while Wolfe and Olhede [2013], Borgs et al. [2015] and Klopp et al. [2015] give
upper bounds for the sparse case.

4.1 Graphons

Definition 4.1 (Bounded Graphons and W -random graphs). A (bounded) graphon W is
a symmetric, measurable function W : [0, 1]2 → [0, 1]. Here, symmetric means that
W (x, y) = W (y, x) for all (x, y) ∈ [0, 1]2.

For any integer n, a graphon W defines a distribution on graphs on n vertices as fol-
lows: First, select n labels `1, · · · , `n uniformly and independently from [0, 1], and form
an n × n matrix H where Hij = W (`i, `j). We obtain an unlabelled, undirected graph
G by connecting the ith and jth nodes with probability Hij independently for each (i, j).
The resulting random variable is called a W -random graph, and denoted Gn(W ).

For ρ ≥ 0, we say a graphon is ρ-bounded ifW takes values in [0, ρ] (that is, ‖W‖∞ ≤ ρ).

We denote the set of graphs with n nodes by Gn, the set of graphons byW and the set
of ρ-bounded graphons byWρ. If W is ρ-bounded, then the expected number of edges in
Gn(W ) is at most ρ

(
n
2

)
= O(ρn2). In the case that ρ depends on n and limn→∞ ρ → 0,

we obtain a sparse graphon.
We consider the estimation problem: given parameters n and ρ, as well as a graph

G ∼ Gn(W ) generated from an unknown ρ-bounded graphon W , how well can we
estimate W ?

A natural goal is to design estimators that produce a graphon Ŵ that is close to W
in a metric such as L2. This is not possible, since there are many graphons that are far
apart in L2, but that generate the same probability distribution on graphs. If there exists
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a measure preserving map φ : [0, 1] → [0, 1] such that W (φ(x), φ(y)) = W ′(x, y) for all
x, y ∈ [0, 1], then Gn(W ) and Gn(W ′) are identically distributed. The converse is true if
we instead only require W (φ(x), φ(y)) = W ′(x, y) almost everywhere. Thus, we wish to
say that Ŵ approaches the class of graphons that generate Gn(W ). To this end, we use
the following metric on the set of graphons,

(4.1) δ2(W,W ′) = inf
φ:[0,1]→[0,1]

measure-preserving

‖Wφ −W ′‖2

where Wφ(x, y) = W (φ(x), φ(y)) and φ ranges over all measurable, measure-preserving
maps. Two graphons W and W ′ generate the same probability distribution on the set of
graphs if and only if δ2(W,W ′) = 0 (see [Lovász, 2012], for example).

Existing upper bounds for graphon estimation are based on algorithms that produce
graphons of a particular form, namely block graphons, also called stochastic block models
(even when it is not known that the true graphon is a block graphon).

Definition 4.2 (k-block graphon (stochastic block models)). For k ∈ N, a graphon is a
k-block graphon if there exists a partition of [0, 1] into k measurable sets I1, · · · , Ik such
that W is constant on Ii × Ij for all i and j.

We can associate a graphon of this form to every square matrix. Given a k×k symmetric
matrix M , let W [M ] denote the k-block graphon with blocks Ii = ( i−1

k
, i
k
] that takes the

value Mij on Ii × Ij .

4.2 Main result

We are concerned with the problem of estimating a graphon, W , given a graph sampled
from Gn(W ). A graphon estimator is a function Ŵ : Gn →W that takes as input a n node
graph, that is generated according to W , and attempts to output a graphon that is close to
W . The main contribution of this work is the development of the lower bound

(4.2) inf
Ŵ

sup
W

E
G∼Gn(W )

[δ2(Ŵ (G),W )] ≥ Ω

(
min

(
ρ,

√
ρk2

n2

))
.

Combined with previous work we can give the following lower bound on the error of
graphon estimators.

Theorem 4.3. For any positive integer 2 ≤ k ≤ n and 0 < ρ ≤ 1,

(4.3) inf
Ŵ

sup
W

E
G∼Gn(W )

[
δ2(Ŵ (G),W )

]
≥ Ω

(
min

(
ρ, ρ

4

√
k

n
+

√
ρk2

n2

))
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where infŴ is the infimum over all estimators Ŵ : Gn → G and supW is the supremum
over all k-block, ρ-bounded graphons. If ρn is non-decreasing and there exists a constant
c > 0 such that ρn ≥ c then

inf
Ŵ

sup
W

E
G∼Gn(W )

[
δ2(Ŵ (G),W )

]
≥ Ω

(
min

(
ρ, ρ

4

√
k

n
+

√
ρk2

n2
+

√
ρ

n

))

Note that k and ρmay depend on n. That is, the theorem holds if we consider sequences
ρn and kn. Our result improves on previously known results when ρ = O

((
k
n

)3/2
)

—that
is, when the graphs produced by the graphon are sparse. The upper bound
(4.4)

inf
Ŵ

sup
W

E
G∼Gn(W )

[
δ2(Ŵ (G),W )

]
≤ O

(
min

(
ρ, ρ

4

√
k

n
+

√
ρk2

n2
+

√
ρ log k

n

))

by Klopp et al. [2015] implies that our lower bound is almost tight. In particular, if k is
constant and ρ is within the designated range then the lower bound in Theorem 4.3 is tight.

When ρ = O
(
k2

n2

)
, Theorem 4.3 implies that the error is Ω(ρ), which is the error

achieved by the trivial estimator Ŵ = 0. That is, in the sparse setting, the trivial estimator
achieves the optimal error. To the authors’ knowledge this is the first result that completely
rules out nontrivial estimation in the case where k is large. Concurrent work [Klopp et al.,
2016] provides similar bounds.

The bound

(4.5) inf
Ŵ

sup
W

E
G∼Gn(W )

[δ2(Ŵ,W )] ≥ Ω

(
ρ

4

√
k

n

)

is due to previous work of Klopp et al. [2015] and the bound

(4.6) inf
Ŵ

sup
W

E
G∼Gn(W )

[δ2(Ŵ,W )] ≥ Ω

(
min

(
ρ,

√
ρ

n

))
for constant k follows from results of Mossel et al. [2014] and Banerjee [September 2016].
We give details on how to derive (4.6) from their results in the Appendix.

4.3 Techniques: Combinatorial Lower Bounds for δp

Our proof of the main theorem will involve Fano’s lemma. As such, during the course
of the proof we will need to lower bound the packing number, with respect to δ2, of a large
set of k-block graphons. Whilst easily upper bounded, little is known about lower bounds
on δ2. To the authors’ knowledge, this work gives the first lower bound for the packing
number ofWρ with respect to δ2. We will also give a combinatorial lower bound for the
δ2 metric that is easier to handle than the metric itself.
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To understand our technical contributions, it helps to first understand a problem related
to graphon estimation, namely that of estimating the matrix of probabilities H . Existing
algorithms for graphon estimation are generally analysed in two phases: first, one shows
that the estimator Ŵ is close to the matrix H (in an appropriate version of the δ2 metric),
and then uses (high probability) bounds on δ2(W,W [H]) to conclude that Ŵ is close to
W . Klopp et al. [2015] show tight upper and lower bounds on estimation of H . One can
think of our lower bound as showing that the lower bounds on estimation of H can be
transferred to the problem of estimating W .

The main technical difficulty lies in showing that a given pair of matrices A,B lead
to graphons that are far apart in the δ2 metric. Even if A,B are far apart in, say, `2, they
may lead to graphons that are close in δ2. For consistency with the graphon formalism,
we normalise the `2 metric on k × k matrices so that it agrees with the L2 metric on the
corresponding graphons. For a k × k matrix A,

(4.7) ‖A‖2 :=
( 1

k2

∑
i,j∈[k]

A2
ij

)1/2

= ‖W [A]‖2 .

As an example of the discrepancy between the `2 and δ2 metrics, consider the matrices

A =

1 0 1

0 1 0

1 0 1

 and B =

1 1 0

1 1 0

0 0 1

 .

The matrices A and B have positive distance in the `2 metric, ‖A−B‖2 = 2
3
, but

δ2(W [A],W [B]) = 0.

One can get an upper bound on δ2(W [A],W [B]) by restricting attention in the defini-
tion of δ2 to functions φ that permute the blocks Ii. This leads to the following metric on
k × k matrices which minimises over permutations of the rows and columns of one of the
matrices:

(4.8) δ̂2(A,B) := min
σ∈Sk
‖Aσ −B‖2 ,

where Aσ is the matrix with entries (Aσ)ij = Aσ(i),σ(j). This metric arises in other work
(e.g. [Lovász, 2012]), and it is well known that

(4.9) δ2(W [A],W [B]) ≤ δ̂2(A,B).

To prove lower bounds, we consider a new metric on matrices, in which we allow the
rows and columns to be permuted separately. Specifically, let

(4.10) ˆ̂δ2(A,B) := min
σ,τ∈Sk

‖Aσ,τ −B‖2 ,

where Aσ,τ is the k × k matrix with entries (Aσ,τ )ij = Aσ(i),τ(j).

22



Lemma 4.4 (Lower bound for δ2). For every two k × k matrices A,B,

(4.11) ˆ̂δ2(A,B) ≤ δ2(W [A],W [B]).

Because ˆ̂δ2 is defined “combinatorially” (that is, it involves minimisation over a discrete
set of size about 22k ln k, instead of over all measure-preserving injections), it is fairly easy
to lower bound ˆ̂δ2(A,B) for random matrices A,B using the union bound. In particular, it
allows us to give bounds on the packing number ofWρ with respect to the δ2 metric. The
following Proposition will be proved after the proof of Theorem 4.3.

Proposition 4.5. There exists C > 0 such that the Cρ-packing number ofWρ, equipped
with δ2, is 2Ω(k2), that isM(Cρ,Wρ, δ2) = 2Ω(k2).

Finally, we note that these techniques extend directly to the δp metric, for p ∈ [1,∞].
That is, we may define δp, δ̂p and ˆ̂δp analogously to the definitions above, and obtain the
bounds

(4.12) ˆ̂δp(A,B) ≤ δp(W [A],W [B]) ≤ δ̂p(A,B),

along with similar lower bounds on the packing number.

4.4 Related work

Work on graphon estimation falls broadly into two categories; estimating the matrix H
and estimating the graphon W . When estimating H , the aim is to produce a matrix that
is close in the `2 metric to the true matrix of probabilities H that was used to generate the
graph G. When estimating the graphon, our aim is the minimise the δ2 distance between
the estimate and the true underlying graphon W that was used to generate G.

Gao et al. studied the problem of estimating the matrix of probabilities H given an
instance chosen from W when ρ = 1. They proved the following minimax rate for this
problem when W is a k-block graphon:

(4.13) inf
M̂

sup
H

E
G∼Gn(H)

[
1

n2

∥∥∥M̂(G)−H
∥∥∥

2

]
�
√
k2

n2
+

log k

n

where the infinimum is over all estimators M̂ from Gn to the set of symmetric n× n ma-
trices, the supremum is over all probability matrices H generated from k-block graphons.
Klopp et al. extended this result to the sparse case, proving that for all k ≤ n and
0 < ρ ≤ 1,

(4.14) inf
M̂

sup
H

E
G∼GN (H)

[
1

n2

∥∥∥M̂(G)−H
∥∥∥

2

]
≥ Ω

(
min

(√
ρ

(
k2

n2
+

log k

n

)
, ρ

))
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where the supremum is over all probability matricesH generated from k-block, ρ-bounded
graphons.

[Klopp et al., 2015, Corollary 3] also studied the problem of estimating the graphon
W . They proved that Equation (4.4) holds for any k-block, ρ-bounded graphon, W , with
k ≤ n. They also exhibited the first lower bound (known to us) for graphon estimation
using the δ2 metric. They proved that Equation (4.5) holds for ρ > 0 and k ≤ n.

The related problems of distinguishing a graphon with k > 1 from an Erdös-Rényi
model with the same average degree (called the distinguishability problem) and recon-
structing the communities of a given network (called the reconstruction problem) have
also been widely studied. This problem is closely related to the problem of estimating
H . Recent work by Mossel et al. [2014] and Neeman and Netrapalli [2014] establish con-
ditions under which a k-block graphon is mutually contiguous to the Erdös-Rényi model
with the same average degree. Contiguity essentially implies that no test could ever def-
initely determine which of the two graphons a given sample came from. There is a large
body of work on algorithmic and statistical problems in this area and we have only cited
work that is directly relevant here.
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CHAPTER 5

Technical Contributions

5.1 Lower Bound for the δ2 Metric

As mentioned earlier, the main technical contribution of this part is lower bounding the
δ2 metric by the more combinatorial ˆ̂δ2 metric. In this section we will prove the inequality
given in Lemma 4.4.

Proposition 5.1. LetW,W ′ be k-block graphons with blocks Ii = [ i−1
k
, i
k
) and π : [0, 1]→

[0, 1] be a measure-preserving map. Then there exists a probability distribution P on Sk
such that

(5.1) ‖Wπ −W ′‖2
2 = E

σ,τ∼P
[‖Wσ,τ −W ′‖2

2] ,

where the expectation is taken over σ, τ selected independently according to P.

Proof. Let ai = i−1
k

and pij = µ(Ii ∩ π−1(Ij)). Now, consider a k × k matrix P with
Pij = kpij . Noting that

∑k
j=1 pij = µ(Ii) = 1/k and

∑k
i=1 pij = µ(π−1(Ij)) = 1/k, we

can see that P is doubly stochastic, that is, the rows and columns of P sum to 1. Berkhoff’s
theorem states that any doubly stochastic matrix can be written as a convex combination
of permutation matrices. Therefore, we have a probability distribution P on Sk such that
P =

∑
σ∈Sk P(σ)σ and

∑
σ∈Sk P(σ) = 1 and

(5.2) P(σ(i) = j) =
∑
{P(σ) | σ(i) = j} = Pij = kpij.

Taking expectations over σ, τ selected independently from P,

E[‖Wσ,τ −W ′‖2

2] =
∑
σ,τ

P(σ)P(τ)
∑
i,j

1

k2
(W (aσ(i), aτ(j))−W ′(ai, aj))

2

=
∑
i,i′,j,j′

1

k2
P(σ(i) = i′)P(τ(j) = j′)(W (ai, aj)−W ′(ai′ , aj′))

2

=
∑
i,i′,j,j′

pii′pjj′(W (ai, aj)−W ′(ai′ , aj′))
2

= ‖Wπ −W ′‖2
2 .

25



Proof of Lemma 4.4. Proposition 5.1 implies that for all measure preserving maps π :

[0, 1]→ [0, 1] and matrices A and B we have
(5.3)
‖W [A]π −W [B]‖2 ≥ inf

σ,τ∈Sk
‖W [A]σ,τ −W [B]‖2 = inf

σ,τ∈Sk
‖Aσ,τ −B‖2 = ˆ̂δ2(A,B).

Since this is true for any π, we have δ2(W [A],W [B]) ≥ ˆ̂δ2(A,B).

5.2 Proof of Theorem 4.3

To prove the main theorem we will use Fano’s lemma to find a constant that lower

bounds the probability that the estimation exceeds min

(
ρ,
√

ρk2

n2

)
, which then implies

the appropriate lower bound on the expected δ2 error. To that end, we aim to find a large
set, T , of k-block graphons whose KL-diameter and ε-packing number with respect to δ2

with ε = min

(
ρ,
√

ρk2

n2

)
can be bounded. Our proof is inspired by that of Gao et al.

The following lemma gives us a way to easily upper bound the KL divergence between
the distributions induced by two different graphons.

Lemma 5.2. For any graphons 1
4
≤ W,W ′ ≤ 3

4
, we have

(5.4) D(Gn(W )‖Gn(W ′)) ≤ 8n2 ‖W −W ′‖2
2 .

Proof. Let T be a variable denoting the choice of labels, so

(5.5) PGn(W )(G) =

∫
`∈[0,1]n

PT (`)PGn(W )(G|T = `)d`.

Now,

D(Gn(W )‖Gn(W ′)) =
∑
G∈Gn

PGn(W )(G) ln

(
PGn(W )(G)

PGn(W ′)(G)

)
≤
∑
G∈Gn

∫
`∈[0,1]n

PT (`)PGn(W )(G|T = `) ln

(
PGn(W )(G|T = `)

PGn(W ′)(G|T = `)

)
d`

=

∫
`∈[0,1]n

PT (`)D(PGn(W )(·|T = `)‖PGn(W ′)(·|T = `)d`,

where the inequality follows from the log-integral inequality [Lapidoth, 2017, Theorem
30.12.4]. Now, the probability density function of T is the constant function 1 so it follows
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from [Gao et al., 2015, Proposition 4.2] that

D(Gn(W )‖Gn(W ′)) ≤ 8

∫
`∈[0,1]n

n∑
i,j=1

(W (`i, `j)−W ′(`i, `j))
2d`

= 8
n∑

i,j=1

∫
`∈[0,1]n

(W (`i, `j)−W ′(`i, `j))
2d`

≤ 8n2

∫
[0,1]2

(W (x, y)−W ′(x, y))2dxdy

= 8n2 ‖W −W ′‖2
2

Recall that we are aiming to define a large set of k-block matrices that are close in

KL divergence, but that are ε-far apart with respect to δ2 (with ε = min(ρ,
√

ρk2

n2 )). The
following lemma shows that there exists a large set of matrices who are pairwise far in
Hamming distance, even after every possible permutation of the rows and columns. We
will use this in the proof of Theorem 4.3 to define a large class of k-block graphons who
are pairwise far in the ˆ̂δ2 metric and hence the δ2 metric. This gives us a bound on packing
number.

Lemma 5.3. There exists a set S of symmetric k×k binary matrices such that |S| = 2Ω(k2)

and, for every B,B′ ∈ S and σ, τ ∈ Sk, we have Ham(Bσ,τ , B
′) = Ω(k2).

Proof. Fix permutations σ and τ , and consider two randomly chosen symmetric binary
matrices B,B′. For i ≤ j, let Xij = 1 if Bσ(i),τ(j) = B′i,j and 0 otherwise so Xij is a
Bernoulli random variable with E[Xij] = 1

2
. Thus, by a Chernoff bound,

(5.6) P
(

Ham(Bσ,τ , B
′) <

k2

6

)
= P

(∑
i≤j

Xij ≤
k2

6

)
≤ e

−2

(
k2

6 −
1
2(k2)

)2
(k2) .

Therefore, for randomly chosen B,B′,

(5.7) P
(
∃σ, τ s.t. Ham(Bσ,τ , B

′) <
k2

6

)
≤ e

−2

(
k2

6 −
1
2(k2)

)2
(k2) (k!)2 = 2−Ω(k2).

For a constant c > 0, consider the process that selects 2ck
2 binary matrices {Bi}i uniformly

at random. The probability that all pairs are at Hamming distance at least k2/6 is at
least 1 − 22ck22−Ω(k2). Selecting c sufficiently small, we get that at least one such set S
exists.
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We are not aware of an explicit construction of a large family of matrices that are far
apart in ˆ̂δ2 metric; we leave such a construction as an open problem.

We now proceed to the proof of Theorem 4.3. We will use Lemma 5.3 to define a set
T with packing number 2Ω(k2). The elements of T are all close in ‖ · ‖∞ norm, so using
Lemma 5.2 we get a bound on the KL diameter. We then directly apply these bounds via
Fano’s lemma.

Theorem 5.4. For any positive integer k ≤ n and 0 < ρ ≤ 1,

(5.8) inf
Ŵ

sup
W

E
G∼Gn(W )

[
δ2(Ŵ (G),W )

]
≥ Ω

(
min

(
ρ,

√
ρk2

n2

))
.

where infŴ is the infimum over all estimators Ŵ : Gn → G and supW is the supremum
over all k-block, ρ-bounded graphons.

Proof. Let S be a set satisfying the conditions of Lemma 5.3 and let η = min(1, k
n
√
ρ
). For

B ∈ S, define

(5.9) QB = ρ

[
1

2
1 + cη(2B − 1)

]
,

where 1 is the all 1’s matrix and c is some constant that we will choose later. That
is, (QB)ij = ρ[1

2
+ cη] if Bij = 1 and (QB)ij = ρ[1

2
− cη] if Bij = 0. Let T =

{W [QB] |B ∈ S}. Using Lemma 5.2 we conclude that for all W,W ′ ∈ T , we have

(5.10) D(Gn(W )‖Gn(W ′)) ≤ 8n2(2cρη)2 ≤ 32c2k2ρ

so dKL(T ) = O(c2k2ρ).
Let B,B′ ∈ S and suppose σ, τ ∈ Sk. By construction,

(5.11) ‖(W [QB])σ,τ −W [QB′ ]‖2
2 ≥

1

k2
Ham(Bσ,τ , B

′)(2ρcη)2 = Ω(c2ρ2η2).

Thus by Corollary 5.1,

(5.12) δ2(W [QB],W [QB′ ]) ≥ ˆ̂δ2(W [QB],W [QB′ ]) ≥ Ω(cρη).

Therefore, there exists D > 0 such that if ε = Dρcη = Dmin
(
cρ,

ck
√
ρ

n

)
, we have

logM(ε, T, δ2) = Ω(k2). Lemma 3.2 implies

(5.13) inf
Ŵ

sup
W

Pr
(
δ2(Ŵ,W ) ≥ ε

2

)
≥ 1− O(c2k2ρ) + 1

Ω(k2)
.

We can choose c small enough that the right hand side is larger than a fixed constant for
all k and n. By Markov’s inequality we have

(5.14) inf
Ŵ

sup
W

E
[
δ2(Ŵ,W )

]
= Ω (ε) = Ω

(
min

(
ρ,

√
ρ
k2

n2

))
.
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Proof of Proposition 4.5. During the course of the proof of Theorem 4.3 we construct
2Ω(k2) graphons in Wρ that are pairwise at least Ω(ρcη) apart in the δ2 distance for any
c > 0 such that |cη| ≤ 1

2
. Therefore, for some C > 0, the Cρ-packing number ofWρ is at

least 2Ω(k2).

5.3 Proof of Equation (1.6)

We show here how to derive the lower bound in (4.6) from the results of Mossel et al.
[2014] and Banerjee [September 2016].

Let (Ωn,Fn) be a sequence of measurable spaces, each equipped with two probability
measures, Pn and Qn. We say Pn and Qn are mutually contiguous if for any sequence of
events An, we have limn→∞ Pn(An)→ 0 if and only if limn→∞Qn(An)→ 0.

Lemma 5.5. Let W1 be a k-block graphon generated by a matrix with diagonal entries,
p, and off-diagonal entries, q. Let W2 be the Erdös-Rényi model with the same expected
degree as W1. If W1 and W2 are mutually contiguous then

(5.15) inf
Ŵ

sup
W

E
G∼Gn(W )

[
δ2(Ŵ (G),W )

]
≥ Ω

(
|p− q|√

k

)
.

where infŴ is the infimum over all estimators Ŵ : Gn → G and supW is the supremum
over all k-block, max(p, q)-bounded graphons.

Proof. Let ε = |p− q|, so δ2 (W1,W2) =
√

(k−1)2

k3
ε2 + (k−1)

k3
ε2 ≥ C ε√

k
, for some constant

C. Suppose, for sake of contradiction, that there exists Ŵ such that

sup
W∈Wρ

EG∼Gn(W )

[
δ2(Ŵ (G),W )

]
is not Ω

(
ε√
k

)
. Then there exists a subsequence {nt}t∈N such that

sup
W∈Wρ

EG∼Gnt (W )

[
δ2(Ŵ (G),W )

]
≤ C

2t

ε√
k

for all t ∈ N.
The above inequality, combined with Markov’s inequality, implies

(5.16) lim
t→∞

PrG∼Gnt (W1)[δ2(Ŵ (G),W1) ≥ C

2

ε√
k

]→ 0

and

(5.17) lim
t→∞

PrG∼Gnt (W2)[δ2(Ŵ (G),W2) ≥ C

2

ε√
k

]→ 0.
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Table 5.1: Known results about contiguity of block graphons and the corresponding Erdös-Rényi model

CONDITION ON p AND q PARAMETER REGIME LOWER BOUND ON CITATION

FOR CONTIGUITY TO HOLD ESTIMATION ERROR

n(p− q)2 ≤ 2(p+ q) p = a/n, q = b/n FOR

CONSTANTS a, b, k =
2

Ω
(
min

(
ρ,
√

ρ
n

))
[MOSSEL ET AL.,
2014]

n(p− q)2 ≤ 2(p+ q) ρn → ∞, ρn = o(n),
k = 2

Ω
(
min

(
ρ,
√

ρ
n

))
[BANERJEE, SEPTEM-
BER 2016]

n2(p−q)2(k−1)
p+(k+1)q

≤ 2 log(k − 1) p = a/n, q = b/n FOR

CONSTANTS a, b
Ω

(
min

(
ρ√
k
,
√

ρ log k
n

))
[NEEMAN AND NE-
TRAPALLI, 2014],
[BANKS ET AL.,
2016]

By Equation 5.17 and the contiguity of W1 and W2,

(5.18) lim
t→∞

PrG∼Gnt (W1)[δ2(Ŵ (G),W2) ≥ C

2

ε√
k

]→ 0.

Therefore, Equations 5.16 and 5.18 imply that for large enough n, there exists a graph
G such that δ2(Ŵ (G),W1) < C

2
ε√
k

and δ2(Ŵ (G),W2) < C
2

ε√
k
, which implies that

δ2(W1,W2) < C ε√
k
, which is a contradiction.

There are many results in the literature exploring when block graphons are contiguous
with the corresponding Erdös-Rényi model. Table 5.1 summarises some of the known re-
sults in this area and translates them into lower bounds on the graphon estimation problem
via Lemma 5.5. Let ρ = max(p, q).
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Part III

Local Differential Privacy for Physical
Sensor Measurements
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CHAPTER 6

Introduction

Imagine dropping a few drops of ink into a glass of water. The ink drops spread out,
forming complicated tendrils that coil back on each other, expanding quickly, until all of
the ink has diffused and the liquid is a slightly darker shade than its original colour. There
is no physical process by which you can make the diffusing ink coalesce back into its
original droplets. This intuition is at the heart of what we call computational cloaking.
Because it is physically impossible to reconstruct the ink droplet exactly, we should be
able to hide or keep private in a precise sense its original location. When mathematicians
and physicists refer to cloaking, they usually mean transformation optics [Greenleaf et al.,
2009], the design of optical devices with special customised effects on wave propagation.
In this part, we exploit the ill-conditionedness of inverse problems to design algorithms to
release differentially private measurements of the physical system1.

We are motivated by the explosion in the power and ubiquity of lightweight (thermal,
light, motion, etc.) sensors. These data offer important benefits to society. For exam-
ple, thermal sensor data now plays an important role in controlling HVAC systems and
minimising energy consumption in smart buildings [Lin et al., 2002, Beltran et al., 2013].
However, these sensors also collect data inside intimate spaces, homes and workspaces, so
the information contained in the data is sensitive. To continue with the example of thermal
sensor data, one might consider sources of heat to be people, whose locations we aim to
keep private.

Our work indicates that it is possible to produce locally differentially private sensor
measurements that both keep the exact locations of the heat sources private and permit
recovery of the general vicinity of the sources. That is, the locally private data can be used
to recover an estimate, f̂ , that is close to the true source locations, f0, in the Earth Mover
Distance (EMD). This is the second aspect to our work: algorithms that reconstruct sparse
signals with error guarantees with respect to EMD (rather than the more traditional `1 or
`2 error in which accurate recovery is insurmountable).

1This Part is based on joint work with Anna Gilbert [Gilbert and McMillan, 2018]
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6.1 Source Localization

Suppose that we have a vector f0 of length n that represents the strengths and positions
of our “sources.” The ith entry represents the strength of the source at position i. Further,
suppose that we take m linear measurements of our source vector; we observe

y = Mf0

where M represents some generic linear physical transformation of our original data. Let
us also assume that the source vector f0 consists of at most k sources (or k non-zero
entries). The straightforward linear inverse problem is to determine f0, given M and a
noisy version of y. More precisely, given noisy measurements ỹ = Mf0 + N(0, σ2Im),
can we produce an estimate f̂ that is still useful?

For physical processes such as diffusion, intuitively, we can recover the approximate
geographic vicinity of the source. This is exactly the concept of closeness captured by the
Earth Mover Distance (EMD). Thus, in this part, we aim to recover f̂ that is close to f0 in
the EMD. The EMD can be defined between any two probability distributions on a finite
discrete metric space (Ω, d(·, ·)). It computes the amount of work required to transform
one distribution into the other.

Definition 6.1. [Rubner et al., 2000] Let P = {(x1, p1), · · · , (xn, pn)} and
Q = {(x1, q1), · · · , (xn, qn)} be two probability distributions on the discrete space {x1, · · · , xn}.
Now, let

(6.1) f∗ = arg min
f∈[0,1]n×n

n∑
i=1

n∑
j=1

fijd(xi, xj)

s.t. fij ≥ 0 ∀i, j ∈ [m],
n∑
j=1

fij ≤ pi ∀i ∈ [m],

n∑
i=1

fij ≤ qi ∀i ∈ [n], and
n∑
i=1

n∑
i=1

fij = 1.

then EMD(P,Q) =
∑n

i=1

∑n
j=1 f

∗
ijd(xi, xj).

6.2 Computational Cloaking Precisely

First, we clarify exactly what information we would like to keep private. We consider
the coordinates of f0 to be our data, that is the locations of the sources are what we would
like to keep private. We assume that there exists a metric d(·, ·) on the set of possible
source locations, which induces the EMD on the set of source vectors. For the remainder
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of this part, we will assume that the metric d is such that every pair of source locations is
connected by a path that travels via neighbours.

When the matrix M represents a physical process, we usually cannot hope to keep the
existence of a source private and also recover an estimation to f0 that is close in the EMD.
However, it may be possible to keep the exact location private while allowing recovery
of the “general vicinity” of the source. In fact, we will show in Section 8.2 that this
is possible for diffusion on the discrete 1-dimensional line and in Section 8.3 that we can
generalise these results to diffusion on a general graph. We are going narrow our definition
of “neighbouring” databases to capture this idea.

Definition 6.2. For α > 0, two source vectors f0 and f ′0 are α-neighbours if

EMD(f0, f
′
0) ≤ α.

The larger α is, the less stringent the neighbouring condition is, so the more privacy
we are providing. This definition has two important instances. We can move a source of
weight 1 by α units, hiding the location of a large heat source (like a fire) within a small
area. Also, we can move a source with weight α by 1 unit, hiding the location that small
heat source (like a person) over a much larger area. We will usually drop the α when
referring to neighbouring vectors.

A locally differentially private algorithm is a private algorithm in which the individual
data points are made private before they are collated by the data analyst. In many of our
motivating examples the measurements yi are at distinct locations prior to being transmit-
ted by a data analyst (for example, at the sensors). Thus, the “local” part of the title refers
to the fact that we consider algorithms where each measurement, yi, is made private indi-
vidually. This is desirable since the data analyst (e.g. landlord, government) is often the
entity the consumer would like to be protected against. Also, it is often the case that the
data must be communicated via some untrusted channel [Walters et al., 2007, FTC, 2015].
Usually this step would involve encrypting the data, incurring significant computational
and communication overhead. However, if the data is made private prior to being sent,
then there is less need for encryption. We then wish to use this locally differentially pri-
vate data to recover an estimate to the source vector that is close in the EMD. The structure
of the problem is outlined in the following diagram:

f0
M

ym

y1

A

A

ỹm

ỹ1 R
f̂

Design algorithms A and R such that:
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1. (Privacy) For all neighbouring source vectors f0 and f ′0, indices i, and Borel measur-
able sets E we have

P(A((Mf0)i) ∈ E) ≤ eεP(A(Mf ′0)i ∈ E) + δ.

2. (Utility) EMD(f0, f̂) is small.

6.3 Related Work

An in-depth survey on differential privacy and its links to machine learning and signal
processing can be found in [Sarwate and Chaudhuri, 2013]. The body of literature on
general and local differential privacy is vast and so we restrict our discussion to work that
is directly related. There is a growing body of literature of differentially private sensor
data [Liu et al., 2012, Li et al., 2015, Wang et al., 2016, Jelasity and Birman, 2014, Eibl
and Engel, 2016]. Much of this work is concerned with differentially private release of
aggregate statistics derived from sensor data and the difficulty in maintaining privacy over
a period of time (called the continual monitoring problem).

Connections between privacy and signal recovery have been explored previously in the
literature. Dwork et al. [2007] considered the recovery problem with noisy measurements
where the matrix M has i.i.d. standard Gaussian entries. Let x ∈ Rn, y = Mx ∈ Rm

where m = Ω(n), ρ < 0.239. Suppose y′ is a perturbed version of y such that a ρ fraction
of the measurements are perturbed arbitrarily and the remaining measurements are correct
to within an error of α. Then, Dwork et al. [2007] concludes that with high probability
the constrained `1-minimization, minx,y ‖y − y′‖1 s.t. Mx = y, recovers an estimate, x̂,
s.t. ‖x − x̂‖1 ≤ O(α). This is a negative result for privacy. In particular, when α = 0 it
says that providing reasonably accurate answers to a 0.761 fraction of randomly generated
weighted subset sum queries is blatantly non-private. Newer results of Bun et al. [2014]
can be interpreted in a similar light where M is a binary matrix. Compressed sensing has
also been used in the privacy literature as a way to reduce the amount of noise needed to
maintain privacy [Li et al., 2011, Roozgard et al., 2016].

There are also several connections between sparse signal recovery and inverse problems
[Farmer et al., 2013, Burger et al., 2010, Haber, 2008, Landa et al., 2011]. The heat
source identification problem is severely ill-conditioned and, hence, it is known that noisy
recovery is impossible in the common norms like `1 and `2. This has resulted in a lack of
interest in developing theoretical bounds [Li et al., 2014], thus the mathematical analysis
and numerical algorithms for inverse heat source problems are still very limited.

To the best of the author’s knowledge, the three papers that are most closely related to
this Part are Li et al. [2014], Beddiaf et al. [2015] and Bernstein and Fernandez-Granda
[2017]. All these papers attempt to circumvent the condition number lower bounds by

35



changing the error metric to capture “the recovered solution is geographically close to the
true solution”, as in this paper. Our algorithm is the same as Li, et al., who also consider
the Earth Mover Distance (EMD). Our upper bound is a generalisation of theirs to source
vectors with more than one source. Beddiaf, et al. follows a line of work that attempts to
find the sources using `2-minimisation and regularisation. They assume that the number
of sources is known in advance, while our algorithm avoids this assumption by instead
minimising the `1 norm to promote sparsity. The error metric they consider is different
but related to the EMD, it measures the `2 distance between the true source locations
and the recovered source locations. Experimental results in their paper suggest that their
algorithm performs well with noisy data. Their paper however contains no theoretical
performance bounds. In work that was concurrent to ours, Bernstein et al. also considered
heat source location, framed as deconvolution of the Gaussian kernel. They proved that
a slight variant of Basis Pursuit Denoising solves the problem exactly assuming enough
sensors and sufficient separability between sources. They also arrive at a similar result to
Theorem 8.6 for the noisy case [Bernstein and Fernandez-Granda, 2017, Theorem 2.7].
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CHAPTER 7

Privacy of measurements and Ill-conditioned Matrices

7.1 The Private Algorithm

Because we assume that our sensors are lightweight computationally, the algorithm A
is simply the Gaussian mechanism (Lemma 2.8): each sensor adds Gaussian noise locally
to its own measurement before sending to the perturbed measurement to the central node.
Recall that ill-conditioned linear inverse problems behave poorly under addition of noise.
Intuitively, this should mean we need only add a small amount of noise to mask the original
data. We show that this statement is partially true. However, there is a fundamental differ-
ence between the notion of a problem being ill-conditioned (as defined by the condition
number) and being easily kept private. Let Mi be the ith column of M .

Proposition 7.1. With α > 0 and the definition of α-neighbours presented in Definition
6.2, we have

A(Mf0) ∼Mf0 +
2 log(1.25/δ)42(M)

ε
N(0, Im)

is a (ε, δ)-differentially private algorithm where

42(M) = α max
ei,ej neighbours

‖Mi −Mj‖2

Proof. Suppose f0 and f ′0 are α-neighbours and let fkl be the optimal flow from f0 to f ′0
(as defined in Definition 6.1) so f0 =

∑
k,l fklek and f ′0 =

∑
k,l fklel, where ek are the

standard basis vectors. Then

‖Mf0−Mf ′0‖2 ≤
∑
k,l

fkl‖Mek −Mel‖2

=

(∑
k,l

fkld(ek, el)

)
max

i,jneighbours
‖Mej −Mei‖2

≤ α max
i,jneighbours

‖Mei −Mej‖2

Then the fact that the algorithm is (ε, δ)-differentially private follows from Lemma 2.8.
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Let (s1, · · · , smin{n,m}) be the spectrum of M , enumerated such that si ≤ si+1. The
condition number, κ2(M), is a measure of how ill-conditioned this inverse problem is. It
is defined as

κ2(M) := max
e,b∈Rm\{0}

‖M+b‖2

‖M+e‖2

‖e‖2

‖b‖2

=
smax{m,n}(M)

s1(M)

where M+ is the pseudo inverse of M . The larger the condition number the more ill-
conditioned the problem is Belsley et al. [1980].

The following matrix illustrates the difference between how ill-conditioned a matrix is
and how much noise we need to add to maintain privacy. Suppose

M =

(
1 0

0 ρ

)

where ρ < 1 is small. While this problem is ill-conditioned, κ2(M) = 1/ρ is large, we
still need to add considerable noise to the first coordinate of Mx0 to maintain privacy.

A necessary condition for ∆2(M) to be small is that the matrix M is almost rank 1,
that is, the spectrum should be almost 1-sparse. In contrast the condition that κ2(M) is
large is only a condition on the maximum and minimum singular values. The following
lemma says that if the amount of noise we need to add,42(M), is small then the problem
is necessarily ill-conditioned.

Lemma 7.2. Let M be a matrix such that ‖M‖2 = 1 then

42(M) ≥ α

κ2(M)
,

where α is the parameter in Definition 6.2.

Proof. Suppose ei is a neighbouring source to e1 then

1

κ2(M)
= min

rankE<min{m,n}
‖M − E‖2

≤ ‖M − [Mj M2 M3 · · ·Mn]‖2

≤ ‖M1 −Mi‖2.

Since we could have replaced 1 and i with any pair of neighbours we have

1

κ2(M)
≤ min

i,jneighbours
‖Mi −Mj‖2 =

∆2(M)

α
.

The following lemma gives a characterization of 42(M) in terms of the spectrum of
M . It verifies that the matrix M must be almost rank 1, in the sense that the spectrum
should be dominated by the largest singular value.
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Lemma 7.3. If ∆2(M) ≤ ν, then |‖Mi‖2 − ‖Mj‖2| ≤ ν
α

for any pair of neighbouring

locations ei and ej and |
∑

i 6=min{m,n} si| ≤
(n+1)3/2ρν

α
, where ρ is the diameter of the space

of source locations.
Conversely, if |

∑
i 6= min{m,n} si| ≤

ν
α

and |‖Mi‖2 − ‖Mj‖2| ≤ ν
α

then ∆2(M) ≤ 4ν.

Proof. Let ei and ej be neighbouring sources. Now, assume ∆2(M) ≤ ν then

|‖Mi‖2 − ‖Mj‖2| ≤ ‖Mi − Mj‖2 ≤
ν

α
.

Suppose wlog that maxi ‖Mi‖2 = ‖M1‖2 and let M ′ = [M1 · · ·M1] be the matrix whose
columns are all duplicates of the first column of M . Recall that the trace norm of a matrix
is the sum of its singular values and for any matrix, ‖M‖tr ≤

√
min{m,n}‖M‖F and

‖M‖2 ≤ ‖M‖F . Since M ′ is rank 1, ‖M ′‖tr = ‖M ′‖2 = smin{m,n}, thus,

|
min{m,n}−1∑

i=1

si| ≤ |‖M‖tr − ‖M ′‖tr|+ |‖M ′‖tr − smin{m,n}|

≤ ‖M ′ −M‖tr + |‖M ′‖2 − ‖M‖2|
≤ (
√

min{n,m}+ 1)‖M ′ −M‖F

≤ (
√

min{n,m}+ 1)ρ(n− 1)
ν

α

Conversely, suppose |
∑

i 6=min{m,n} si| ≤
ν
α

and |‖Mi‖2−‖Mj‖2| ≤ ν
α

. Using the SVD we
know,M =

∑
siUi⊗Vi where Ui and Vi are the left and right singular values, respectively.

Thus,

‖Mi −Mj‖2 = ‖
∑
k

sk(Uk)iVk −
∑
k

sk(Uk)jVk‖2

≤ smin{m,n}|(U1)i − (U1)j|+
ν

α
.

Also, ν
α
≥ ‖Mi‖2 − ‖Mj‖2 ≥ smin{m,n}(U1)i − ν

α
− smin{m,n}(U1)j − ν

α
so

|(U1)i − (U1)j| ≤ 3 ν
αsmin{m,n}

.

7.2 Backdoor Access via Pseudo-randomness

It has been explored previously in the privacy literature that replacing a random noise
generator with cryptographically secure pseudorandom noise generator in an efficient dif-
ferentially private algorithm creates an algorithm that satisfies a weaker version of privacy,
computational differential privacy [Mironov et al., 2009]. While differential privacy is se-
cure against any adversary, computational differential privacy is secure against a compu-
tationally bounded adversary. In the following definition, κ is a security parameter that
controls various quantities in our construction.
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Definition 7.4 (Simulation-based Computational Differential Privacy (SIM-CDP) Mironov
et al. [2009]). A family, {Mκ}κ∈N, of probabilistic algorithmsMκ : Dn → Rκ is εn-SIM-
CDP if there exists a family of εκ-differentially private algorithms {An}n∈N, such that for
every probabilistic polynomial-time adversary P , every polynomial p(·), every sufficiently
large κ ∈ N, every dataset D ∈ Dn with n ≤ p(κ), and every advice string zκ of size at
p(κ), it holds that,

|P[Pκ(Mκ(D) = 1)− P[Pκ(Aκ(D) = 1)| ≤ negl(κ).

That is,Mκ and Aκ are computationally indistinguishable.

The transition to pseudo-randomness, of course, has the obvious advantage that pseudo-
random noise is easier to generate than truly random noise. In our case, it also has the
additional benefit that, given access to the seed value, pseudo-random noise can be re-
moved, allowing us to build a “backdoor” into the algorithm. Suppose we have a trusted
data analyst who wants access to the most accurate measurement data, but does not have
the capacity to protect sensitive data from being intercepted in transmission. Suppose also
that this party stores the seed value of each sensor and the randomness in our locally pri-
vate algorithm A is replaced with pseudo-randomness. Then, the consumers are protected
against an eavesdropping computationally bounded adversary, and the trusted party has
access to the noiseless 1 measurement data. This solution may be preferable to simply
encrypting the data during transmission since there may be untrusted parties who we wish
to give access to the private version of the data.

Corollary 7.5 (Informal). Replacing the randomness in Proposition 8.5 with pseudo-
randomness produces a local simulation-based computational differentially private al-
gorithm for the same task. In addition, any trusted party with access to the seed of the
random number generator can use the output of the private algorithm to generate the
original data.

1This data may still be corrupted by sensor noise that was not intentionally injected
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CHAPTER 8

Recovery algorithm and Examples

We claimed that the private data is both useful and differentially private. In this Chapter
we discuss recovering an estimate of f0 from the noisy data ỹ. Algorithms for recovering
a sparse vector from noisy data have been explored extensively in the compressed sensing
literature. However, theoretical results in this area typically assume that the measurement
matrix M is sufficiently nice. Diffusion matrices are typically very far from satisfying
the niceness conditions required for current theoretical results. Nonetheless, in this Chap-
ter we discuss the use of a common sparse recovery algorithm, Basis Pursuit Denoising
(BPD), for ill-conditioned matrices. The use of BPD to recover source vectors with the
heat kernel was proposed by Li et al. [2014], who studied the case of a 1-sparse source
vector.

We begin with a discussion of known results for BPD from the compressed sensing
literature. While the theoretical results for BPD do not hold in any meaningful way for
ill-conditioned diffusion matrices, we present them here to provide context for the use of
this algorithm to recover a sparse vector. We then proceed to discussing the performance
of BPD on private data in some examples: diffusion on the 1D unit interval and diffusion
on general graphs.

8.1 Basis Pursuit Denoising

Basis Pursuit Denoising minimises the `1-norm subject to the constraint that the mea-
surements of the proposed source vector f̂ should be close in the `2-norm to the noisy
sensor measurements. To simplify our discussion, let σ be the standard deviation of the
noise added to the sensor measurements. The bound σ

√
m in Algorithm 1 is chosen to

ensure f0 is a feasible point with high probability.
The bound σ

√
m in Algorithm 1 is chosen to ensure f0 is a feasible point with high

probability.
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Algorithm 1 R: Basis Pursuit Denoising

Input: M,σ > 0, ỹ
f̂ = arg minf∈[0,1]n ‖f‖1 s.t. ‖Mf − ỹ‖2 ≤ σ

√
m

Output: f̂ ∈ [0, 1]n

Lemma 8.1. Hsu et al. [2012] Let ν ∼ N(0, σ2Im) then for all t > 0,

P[‖ν‖2
2 > σ2(m+ 2

√
mt+ 2t)] ≤ e−t.

So for large m and small ρ, we have ‖ν‖2 ≤ (1 + ρ)σ
√
m with high probability.

8.1.1 Basis Pursuit Denoising for RIP matrices

In order to present the results in this section cleaner, rather than keeping track of σ
√
m

we introduce parameters α, β > 0. Basis Pursuit Denoising

(8.1) arg min
f∈[0,1]n

‖f‖1 s.t. ‖Mf − ỹ‖2 ≤ α

is the convex relaxation of the problem we would like to solve, `0-minimisation:

(8.2) arg min
f∈[0,1]n

‖f‖0 s.t. ‖Mf − ỹ‖2 ≤ β.

The minimum of the `0 norm is the sparsest solution. Unfortunately, this version of the
problem is NP hard, so in order to find an efficient algorithm we relax to the `1 norm. The
`1 norm is the “smallest” convex function that places a unit penalty on unit coefficients
and zero penalty on zero coefficients. Since the relaxation is convex, we can use convex
optimisation techniques to solve it. In the next section we’ll discuss an appropriate opti-
misation algorithm. In this section, we focus on when the solution to the relaxed version
(8.1) is similar to the solution for Equation (8.2).

We call the columns of M , denoted by Mi, atoms. We will assume for this section
that ‖Mi‖2 = 1 for all i. Notice that the vector Mf0 is the linear combination of the Mi

with coefficients given by the entries of f0 so we can think of recovering the vector f0 as
recovering the coefficients1. A key parameter of the matrix M is its coherence:

µ = max
i,j
|〈Mi,Mj〉|

Similar to42(M), the coherence is a measure how similar the atoms of M . The larger the
coherence is, the more similar the atoms are, which makes them difficult to distinguish.
For accurate sparse recovery, it is preferential for the coherence to be small. The following
theorem relates the solutions to Equation (8.1) and (8.2).

1This is where BPD gets its name. We are pursuing the basis vectors that make up Mf0.
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Theorem 8.2. [Tropp, 2004, Theorem C] Suppose k ≤ 1
3
µ−1. Suppose fopt is a k-sparse

solution to Equation (8.2) with β = α√
1+6k

. Then the solution f̂ produced from Algorithm
1 satisfies

• supp(f̂) ⊂supp(fopt)

• f̂ is no sparser than a solution to Equation (8.2) with β = α

• ‖f̂ − fopt‖2 ≤ α
√

3/2

Theorem 8.2 says that if the matrix M is coherent then the solution to the convex
relaxation (Algorithm 1) is at least as sparse as a solution to (8.2) with error tolerance
somewhat smaller than α. Also, f̂ only recovers source locations that also appear in fopt,
although it may not recover all of the source locations that appear in fopt. The final property
bounds the weight assigned to any source identified in fopt and not f̂ . If ỹ = Mf0 + Z

then the worst case discrepancy between f0 and fopt occurs when Z concentrates its weight
on a single atom. In our case, the noise vector Z has i.i.d. Gaussian coordinates and hence
is unlikely to concentrate its weight.

The key property for exact recovery of f0, rather than fopt, is that M is a near isometry
on sparse vectors. A matrix M satisfies the Restricted Isometry Property (RIP) of order k
with restricted isometry constant δk if δk is the smallest constant such that for all k-sparse
vectors x,

(1− δk)‖x‖2
2 ≤ ‖Mx‖2

2 ≤ (1 + δk)‖x‖2
2.

If f0 is a feasible point and δk is small, then we can guarantee that f0 and f̂ are close in
the `2 norm.

Theorem 8.3. [Candès, 2008, Theorem 1.2] Assume δ2k <
√

2− 1 and ‖Z‖2 ≤ α and f0

is k-sparse. Then the solution f̂ to (8.1) satisfies

‖f̂ − f0‖2 ≤ Cα

for some constant C.

The exact constant C is given explicitly in Candès [2008] and is rather small. For
example, when δ2k = 0.2, we have C ≤ 8.5.

Theorems 8.2 and 8.3 only provide meaningful results for matrices with small µ and
δk. Unfortunately, the coherence and restricted isometry constants for ill-conditioned ma-
trices, and in particular diffusion matrices, are both large. It is somewhat surprising then
that BPD recovers well in the examples we will explore in the following sections.
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8.1.2 Bregman Iteration

There has been considerable work on methods for solving convex constrained optimisa-
tion problems. Many of the proposed algorithms for Basis Pursuit Denoising are variations
on Bregman iteration which we present in this section [Yin et al., 2008]. The more diffi-
cult part of the optimisation is converting from constrained optimisation to unconstrained
optimisation, which we have more tools to solve.

Bregman iteration techniques are used to solve problems of the form

arg min
f
J(f) s.t. H(f) ≤ α

where J and H are both convex and minf H(f) = 0. The Bregman divergence is

Dp
J(f, f ′) = J(f)− J(f ′)− 〈x, f − f ′〉, x ∈ ∂J(f ′)

where ∂J(f ′) is the set of subdifferentials of J at f ′. The Bregman divergence measures
the gap between the function J and its tangent plane at f ′.

Algorithm 2 Bregman Iteration

Input: M,λ, ỹ
Initialise u0 = 0, p0 = 0.
for t = 0, 1, · · · do
f t+1 = arg minf D

pt

J (f, f t) + λH(f)
pt+1 = pk − λOH(uk+1)

end for

A primary feature of Bregman divergences is that for any convex set C, the map
y 7→ arg minf∈C Dp(f, y) is a projection onto the set C. The update
f t+1 = arg minf D

pt

J (f, f t) + λH(f) is a regularised version of projection. It approx-
imates the constrained problem minDpJ(f, f ′) s.t. H(f) ≤ α by adding the objective
function and the constraint together and attempting to minimise both simultaneously. The
second update pt+1 = pk − λOH(uk+1) updates the subdifferential.

For Basis Pursuit Denoising, J(f) = ‖f‖1 andH(f) = ‖Mf− f̃‖2 and we can rewrite
the updates as f 0 = 0 and p0 = ỹ,

f t+1 = arg min
f
‖f‖1 + λ‖Mf − pt‖2

2

pt+1 = pt + (ỹ −Mf t+1)

There are many methods for solving for f t+1. We refer the interested reader to Li et al.
[2014] for a discussion of a greedy method designed to find sparse solutions efficiently.
Finally, the following theorem says Bregman iteration will converge to the correct answer
eventually, although we have no guarantee on how quickly.
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Figure 8.1: f0 has unit peaks 0.76 and 0.24. The parameters are n = 100, m = 50, T = 0.05 and σ = 0.1.
The red line is f0, the blue (dashed) line is f̂ .

Theorem 8.4. The constraint H monotonically decreases

H(f t+1) ≤ H(f t).

Also, if f0 is a feasible point then as long as ‖ỹ −Mf t+1‖2 > α we have

Dpt+1

J (f0, f
t+1) < Dpt

J (f0, f
t)

For strictly convex J , the last statement implies that f t+1 is moving closer to f0.

8.2 Diffusion on the Unit Interval

Let us define the linear physical transformation explicitly for heat source localization.
To distinguish this special case from the general, we denote the measurement matrix by A
(instead of M ). For heat diffusion, we have a diffusion constant µ and a time t at which

we take our measurements. Let T = µt in what follows. Let g(x, t) = 1√
4πT

e
−|x|2
4T . Let

n > 0 and suppose the support of f is contained in the discrete set { 1
n
, · · · , 1}. Let m > 0

and suppose we take m measurements at locations 1
m
, · · · , 1 so yi is the measurement of

the sensor at location i
m

at time t and we have

y = Af0 where Aij = g

(
i

n
− j

m
, t

)
.

The heat kernel, A, is severely ill-posed due to the fact that as heat dissipates, the measure-
ment vectors for different source vectors become increasingly close Weber [1981]. Figure
8.1 shows the typical behaviour of Algorithm 1 with the matrix A. As can be seen in the
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Table 8.1: Asymptotic upper bounds for private recovery assuming
√
T (
√
m

nT 1.5 + ke
−α2

4T ) ≤ c < 1.

VARIABLE EMD
(

f0
‖f0‖1

, f̂

‖f̂‖1

)
n O(1 + 1√

n
)

m O(1)

T min{1, O(1 + 1
T

+ T 2.5e−α
2/4T )}

figure, this algorithm returns an estimate f̂ that is indeed close to f0 in the EMD but not
close in more traditional norms like the `1 and `2 norms. This phenomenon was noticed
by Li et al. [2014], who proved that if f0 consists of a single source then EMD(f0, f̂) is
small where f̂ = R(ỹ).

Proposition 8.5. With the definition of neighbours presented in Definition 6.2 and restrict-
ing to f0 ∈ [0, 1]n we have

42(A) = O

(
α
√
m

T 1.5

)
Proof. For all i ∈ [n] we have

‖Ai − Ai+1‖2
2 =

1

4πT

m∑
j=1

(
e
−( in−

j
m )2

4T − e
−( i+1

n −
j
m )2

4T

)2

=
1

4πT

m∑
j=1

e
−( in−

j
m )2

2T

(
1− e

( in−
j
m )2−( i+1

n −
j
m )2

4T

)2

≤ 1

4πT
max
i∈[n]

max
j∈[m]

(
1− e

( in−
j
m )2−( i+1

n −
j
m )2

4T

)2 m∑
j=1

e
−( in−

j
m )2

2T

Now,
∑m

j=1 e
−( in−

j
m )2

2T ≤ m and

max
i∈[n]

max
j∈[m]

(
1− e

( in−
j
m )2−( i+1

n −
j
m )2

4T

)2

≤ max{(1− e
−3
4nT )2, (1− e

2
4nT )2} = O

(
1

n2T 2

)
.

Therefore,

‖Ai − Ai+1‖2 = O

( √
m

nT 1.5

)
.

Figure 8.2 shows calculations of 42(A) with varying parameters. The vertical axes
are scaled to emphasise the asymptotics. These calculations suggest that the analysis in
Proposition 8.5 is asymptotically tight in m, n and T .

Theorem 8.6. Suppose that f0 is a source vector, ŷ = R(ỹ) and assume the following:
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Figure 8.2: Empirical results of computation of42(A). Unless specified otherwise, m = 500 and t = 0.1.
In (8.2a), n = 500 and in (8.2c), n = 1000.

1. m
√
T/2 > 1

2.
√

2T < 1

3. |xi − xj| >
√

2T + 2A for some A > 0

then w.h.p.

EMD

(
f0

‖f0‖1

,
f̂

‖f̂‖1

)

≤ min

{
1, O

[
1

1−min{1, C}

(
1

k

√
T 1.5C√
T + 1

+ kmin{1, C}+
T 2C

(T + 1)k

)]}

where C = min
{
k,
√
T
[
σ + ke−A

2/4T
]}

.

Assumptions 1 and 2 state thatm needs to be large enough that for each possible source
and we need to take the measurements before the heat diffuses too much. Assumption 3
says that the sources need to be sufficiently far apart. We can remove this assumption by
noting that every source vector is close to a source vector whose sources are well separated
and that for all f, f ′, ‖Af0 − Af ′0‖2 = O

(√
m

T 1.5 EMD(f0, f
′
0)
)

.
The result is a generalisation to source vectors with more than one source of a result

of Li et al. [2014] . Our proof is a generalisation of their proof and is contained in Sec-
tion 8.4. In order to obtain a recovery bound for the private data, we set σ =

( √
m

nT 1.5

)
. The

asymptotics of this bound are contained in Table 8.1. It is interesting to note that, unlike
in the constant σ case, the error increases as T → 0 (as well as when T → ∞). This is
because as T → 0 the inverse problem becomes less ill-conditioned so we need to add
more noise.

The following theorem gives a lower bound on the estimation error of the noisy recov-
ery problem.
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Theorem 8.7. We have

inf
f̂

sup
f0

E[EMD(f0, f̂)] = Ω

(
min

{
1

2
,
T 1.5σ√
m

})
.

where inf f̂ is the infimum over all estimators f̂ : Rm → [0, 1]n, supf0 is the supremum
over all source vectors in [0, 1]n and ỹ is sampled from y +N(0, σ2Im).

Note that this lower bound matches our upper bound asymptotically in σ and is slightly
loose in T . It varies by a factor of

√
m from our theoretical upper bound. Experimental

results (contained in the extended version) suggest that the error decays like O(1 + 1√
m

).
A consequence of Theorem 8.7 is that if two peaks are too close together, roughly at a dis-
tance of O

(
min{1

2
, T

1.5σ√
m

)
, then it is impossible for an estimator to differentiate between

the true source vector and the source vector that has a single peak located in the middle.
Before we prove Theorem 8.7 we need following generalisation of the upper bound in
Proposition 8.5.

Lemma 8.8. Suppose ‖f0‖1 = ‖f ′0‖1 = 1 then

‖Af0 − Af ′0‖2 = O

(√
m

T 1.5
EMD(f0, f

′
0)

)
Proof. Firstly, consider the single peak vectors ei and ej . Then noting that Aei = Ai, we
have from Proposition 8.5 that

‖Aei − Aej‖2 ≤
j−i−1∑
l=0

‖Aei+l − Aei+1+1‖2 ≤ O

(
|i− j|

√
m

nT 1.5

)
Now, let fij be the optimal flow from f0 to f ′0 as described in Definition 6.1 so f0 =∑

i,j fijei and f ′0 =
∑

ij fijej . Then

‖Af0 − Af ′0‖2 ≤
∑
ij

fij‖Aei − Aej‖2

≤ O

(∑
ij

fij

∣∣∣∣ in − j

n

∣∣∣∣ √mT 1.5

)

= O

(√
m

T 1.5
EMD(f0, f

′
0)

)

Proof of Theorem 8.7. For any source vector f0, let Pf0 be the probability distribution in-
duced on Rm by the process Af0 + N(0, σ2Im). Then the inverse problem becomes esti-
mating which distribution Pf0 the perturbed measurement vector is sampled from. Let f0
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and f ′0 be two source vectors. Then

D(Pf0||Pf ′0) =
m∑
i=1

((Af0)i − (Af ′0)i)
2

2σ2

=
1

2σ2
‖Af0 − Af ′0‖2

2

≤ C
m

T 3σ2
(EMD(f0, f

′
0))2

for some constant C, where we use the fact that the KL-divergence is additive over inde-
pendent random variables, along with Lemma 8.8. Now, let a = min{1

2
, T 1.5σ√

2C
√
m
}. Let T

be the set consisting of the following source vectors: e1/2, (1/2)e1/2−a/2 + (1/2)e1/2+a/2,
(1/4)e1/2−a + (1/2)e1/2 + (1/4)e1/2+a, (1/2)e1/2 + (1/2)e1/2+a, which are all at an EMD
a from each other. Then dKL(T ) + 1 ≤ 3/2 and logM(a, T,EMD) = 2. Thus, by
Lemma 3.2,

inf
f̂

sup
f0

E[EMD(f0, f̂)] ≥ 3

4
a = Ω

(
min

{
1

2
,
T 1.5σ√
m

})
.

8.3 Diffusion on Graphs

In this section we generalise to diffusion on an arbitrary graph. As usual, our aim is to
protect the exact location of a source, while allowing the neighbourhood to be revealed.
Diffusion on graphs models not only heat spread in a graph, but also the path of a random
walker in a graph and the spread of rumours, viruses or information in a social network.
A motivating example is whisper networks where participants share information that they
would not like attributed to them. We would like people to be able to spread information
without fear of retribution, but also be able to approximately locate the source of mis-
information. The work in this section does not directly solve this problem since in our
setting each node’s data corresponds to their probability of knowing the rumour, rather
than a binary yes/no variable. In future work, we would like to extend this work to design-
ing whisper network systems with differential privacy guarantees. If a graph displays a
community structure, then we would like to determine which community the source is in,
without being able to isolate an individual person within that community.

Let G be a connected, undirected graph with n nodes. The n × n matrix W contains
the edge weights so Wij = Wji is the weight of the edge between node i and node j and
the diagonal matrix D has Dii equal to the sum of the i-th row of W . The graph Laplacian
is L = D −W . As above, we also have a parameter controlling the rate of diffusion τ .
Then if the initial distribution is given by f0 then the distribution after diffusion is given by
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Table 8.2: Examples of ∆2(AG) for some standard graphs. Each graph has n nodes.

G ∆2(AG)2

COMPLETE GRAPH 2e−τn

STAR GRAPH e−2τn +
(
e−τn−e−τ

n−1

)2
+
(
e−τn−e−τ

n−1
+ e−τ

)2

the linear equation y = e−τLf0 Thanou et al. [2017]. We will use AG to denote the matrix
e−τL. Note that, unlike in the previous section, we have no heat leaving the domain (i.e.,
the boundary conditions are different).

The graph G has a metric on the nodes given by the shortest path between any two
nodes. Recall that in Lemma 7.3 we can express the amount of noise needed for privacy,
∆2(AG), in terms of the spectrum ofAG. Let s1 ≤ s2 ≤ · · · ≤ smin{n,m} be the eigenvalues
of L then e−τs1 ≥ · · · ≥ e−τsmin{m,n} are the eigenvalues of AG. For any connected graph
G, the Laplacian L is positive semidefinite and 0 is a eigenvalue with multiplicity 1 and
eigenvector the all-ones vector.

Lemma 8.9. For any graph G,

∆2(AG) ≤
min{n,m}∑
k=2

e−τsi |(Ui)k − (Uj)k|,

where Ui is the ith row of the matrix whose columns are the left singular vectors of L.

Proof. With set-up as in Lemma 7.3 we have

‖(AG)i − (AG)j‖2 = ‖
∑
k

e−τsk((Uk)i − (Uk)j)Vk‖2

≤
∑
k

e−τsk |(Uk)i − (Uk)j|

Since the first eigenvector of L is the all ones vector, we |(U1)i − (U1)j| = 0.

An immediate consequence of Lemma 8.9 is that ∆2(AG) is bounded above by

e−τs2‖Ui − Uj‖1.

The second smallest eigenvalue of L, s2, (called the algebraic connectivity) is related to
the connectivity of the graph, in particular the graphs expanding properties, maximum
cut, diameter and mean distance [Mohar, 1991]. As the graph becomes more connected,
the rate of diffusion increases so the amount of noise needed for privacy decreases. The
dependence on the rows of the matrix of left singular vectors is intriguing as these rows
arise in several other areas of numerical analysis. Their `2 norms are called leverage scores
Drineas et al. [2012] and they appear in graph clustering algorithms.
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Figure 8.3: f0 has a unit peak at one of the nodes on the left side. The graph G was drawn from a stochastic
block model with intercommuntiy probability 5% and intracommunity probability 0.1%. The parameters
are τ = 2, n = 500, δ = 0.1, ε = 4.

Figure 8.3 shows the average behaviour of Algorithm 1 on a graph with community
structure. Preliminary experiments suggest that provided τ is not too large or too small
and ε is not too small, the correct community is recovered.

8.4 Appendix

We need some machinery before we can prove Theorem 8.6. The following lemma is
from Li et al. [2014]. Since T = µt is fixed we will let g(x) = g(x, t).

Lemma 8.10. [Li et al., 2014] Suppose s1 < x < s2 and |s1 − s2| ≤
√

2T and consider
the function W (z) = −g′(s2−x)g(z− s1)− g′(x− s1)g(s2− z). Then W (z) has a single
maximum at x and

W (x)−W (z)


> W (x)−W (s2 −

√
2T ) for z ≤ s2 −

√
2T

≥ C1‖z − x‖2
2 for z ∈ [s2 −

√
2T , s1 +

√
2T ]

> W (x)−W (s1 +
√

2T ) for z ≥ s1 +
√

2T

where C1 = infz∈[s2−
√

2T ,s1+
√

2T ][−W ′′(z)/2] > 0.

The following two lemmas are necessary for our proof of Theorem 8.6. For all i ∈ [k]

and j ∈ [p], let Wij(z) = −g′(sij+p − xi)g(z − sij) − g′(xi − sij)g(sij+p − z). Let
p = m

√
T/2. We will often replace the distance between sij and sij+p with

√
T/2 since

it is asymptotically equal to the true distance p/m = bm
√
T/c/m in m.

Lemma 8.11. Using the assumptions of Theorem 8.6 we have

p∑
j=1

inf
z∈[sij+p−

√
2T ,sij+

√
2T ]

[−W ′′
ij(z)/2] ≥ Ω

(
m
√
T/8 + 1

T 2.5

)
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Proof. Note first that sij+p − x1 =
√
T/2− (xi − sij) and sij+p − z =

√
T/2− (z − sij)

for any z ∈ [sij+p −
√

2T , sij +
√

2T ]. Let z ∈ [sij+p −
√

2T , sij +
√

2T ] then

−W ′′
ij(z) = g′(sij+p − xi)g′′(z − sij) + g′(xi − sij)g′′(sij+p − z)

=
1

16πT 3

[
(sij+p − xi)

(
1−

(z − sij)2

4T

)
e
−(sij+p

−xi)
2−(z−sij )

2

4T

+ (xi − sij)
(

1−
(sij+p − z)2

4T

)
e
−(xi−sij )

2−(sij+p
−z)2

4T

]

≥ 1

2T
√

4πT

1

2T
√

4πT
e
−5
8

[
(sij+p − xi)

(
1−

(z − sij)2

4T

)

+ (xi − sij)
(

1−
(sij+p − z)2

4T

)]

≥ e
−5
8

16πT 3
min{(sij+p − xi), (xi − sij)}

(
2−

(z − sij)2

4T
−

(sij+p − z)2

4T

)

≥ e
−5
8

16πT 3
min{(sij+p − xi), (xi − sij)}

3

4

Therefore,

p∑
j=1

inf
z∈[sij+p−

√
2T ,sij+

√
2T ]

[−W ′′
ij(z)/2] ≥ 3e

−5
8

64πT 3

p∑
j=1

min{(sij+p − xi), (xi − sij)}

=
3e
−5
8

64πT 3
2

p/2∑
i=1

i

m

=
3e
−5
8

64πT 3
2
m
√
T/8(m

√
T/8 + 1)

2m

Lemma 8.12. Using the assumptions of Theorem 8.6 we have

min
i∈[k]

min
l:l/n6∈Si

p∑
j=1

(Wij(xi)−Wij(l/n))

= Ω

(
m
√
T/2(m

√
T/2 + 1)2

m2

1

T 3.5

)
.

Proof. From Lemma 8.10 we know for all l s.t. l/n 6∈ Si we have

Wij(xi)−Wij(l/n) ≥ min{Wij(xi)−Wij(sij+p −
√

2T ),Wij(xi)−Wij(sij +
√

2T )}.
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Let’s start with

Wij(xi)−Wij(sij+p −
√

2T )

= −g′(sij+p − xi)
(
g(xi − sij)− g(sij+p −

√
2T − sij)

)
− g′(xi − sij)

(
g(sij+p − xi)− g(

√
2T )
)
.

Now, g(z) is concave down for z ∈ [−
√

2T ,
√

2T ] and λ-strongly concave on the
interval [−

√
T/2,

√
T/2] with λ = −7

16
√

4πT 1.5 e
−1
8 so

g(x)− g(y)

≥ −g′(x)(y − x) for x, z ∈ [−
√

2T ,
√

2T ]

≥ −g′(x)(y − x) + 7
32
√

4πT 1.5 e
−1
8 (y − x)2 for x, z ∈ [−

√
T/2,

√
T/2]

Thus, since |sij+p−sij | = p/m ∼
√
T/2 and |xi−sij | ≤

√
T/2 and |sij+p−xi| ≤

√
T/2

we have

Wij(xi)−Wij(sij+p −
√

2T )

≥ −g′(sij+p − xi)

(
− g′(xi − sij)(sij+p − xi −

√
2T )

+
7

32
√

4πT 1.5
e
−1
8 (sij+p − xi −

√
2T )2

)
− g′(xi − sij)

(
−g′(sij+p − xi)(

√
2T − sij+p − xi)

)
= g′(sij+p − xi)g′(xi − sij)

7

32
√

4πT 1.5
e
−1
8 (sij+p − xi −

√
2T )2

≥ (sij+p − xi)(xi − sij)e
−(sij+p

−xi)
2−(xi−sij )

2

4T
7

512
√

4πT 3.5
e
−1
8

≥ (sij+p − xi)(xi − sij)e
−1
8

7

512
√

4πT 3.5
e
−1
8

where the last inequality follow since 0 ≤ xi−sij =
√
T/2−(sij+p−xi) ≤

√
T/2. Now,

p∑
j=1

(sij+p − xi)(xi − sij) ≥
p∑
j=1

j

m
(
√
T/2− j

m
)

=
p(p+ 1)(3m

√
T/2− 2p− 1)

6m2

∼
m
√
T/2(m

√
T/2 + 1)2

6m2

53



We can now turn to our proof of the upper bound on the EMD error of Algorithm 1.

Proof of Theorem 8.6. Note that from Lemma 8.1, w.h.p. f0 is a feasible point so ‖f̂‖1 ≤ k.
Let Si = (xi−

√
T/2, xi+

√
T/2)∩[0, 1] for i ∈ [k]. Then we have that the Si’s are disjoint

and each interval Si contains
√

2Tm sensors. Let p = b
√
T/2mc and let si1 < · · · < sip

be the locations of the sensors in Si to the left of xi and sip+1 > · · · > si2p be the locations
to the right. By Condition 3 we know that for any pair l ∈ Ti and scj where i 6= c we have
|l/n− scj | ≥ A.

For all i ∈ [k] and j ∈ [p], let

Wij(z) = −g′(sij+p − xi)g(z − sij)− g′(xi − sij)g(sij+p − z).

Let Ti be the set of all l ∈ [n] such that l/n ∈ (xi − |xi−xi−1|
2

) ∩ [0, 1] then

g(xi − sij)−
∑
l∈Ti

f̂lg(l/n− sij) ≤ yij − ŷij +
‖x̂‖1√
4πT

e
−A2

4T .

Therefore,

k∑
i=1

p∑
j=1

∣∣∣∣∣Wij(xi)−
∑
l∈Ti

f̂lWij(l/n)

∣∣∣∣∣
=

k∑
i=1

p∑
j=1

[
− g′(sj+p − xi)

∣∣∣∣∣g(xi − sij)−
∑
l∈Ti

f̂lg(l/n− sij)

∣∣∣∣∣
− g′(xi − sij)

∣∣∣∣∣g(sij+p − xi)−
∑
l∈Ti

f̂lg(sij − l/n)

∣∣∣∣∣
]

≤ C2

[
‖y − ŷ‖1 +

2p‖x̂‖1√
4πT

e
−A2

4T

]
≤ C2

[√
m‖y − ŷ‖2 +

2p‖x̂‖1√
4πT

e
−A2

4T

]
≤ C2

[
2σm+

mk√
2π
e
−A2

4T

]
where C2 = maxi∈[k] maxj∈[2p][−g′(|sij − xi|)] and the last inequality holds with high
probability from Lemma 8.1. Also,

Wij(xi) ≤ −g′(sij+p − xi)g(xi − sij)− g′(xi − sij)g(sij+p − xi)

≤ 1

16πT 2
|sij+p − xi|+

1

16πT 2
|xi − sij |

≤ 1

8πT 1.5
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Therefore, since
∑

`∈Ti f̂` ≤ 1 we have

k∑
i=1

p∑
j=1

∣∣∣∣∣Wij(xi)−
∑
l∈Ti

f̂lWij(l/n)

∣∣∣∣∣ ≤ min

{
km

8πT
, C2

[
2σm+

mk√
2π
e
−A2

4T

]}
= B.

Conversely, by Lemma 8.10, we have

k∑
i=1

p∑
j=1

∣∣∣∣∣Wij(xi)−
∑
l∈Ti

f̂lWij(l/n)

∣∣∣∣∣
≥

p∑
j=1

[
k∑
i=1

(
1−

∑
l∈Ti

f̂l

)
Wij(xi) +

k∑
i=1

∑
l∈Ti

f̂l(Wij(xi)−Wij(l/n))

]

≥
p∑
j=1

k∑
i=1

(
1−

∑
l∈Ti

f̂l

)
Wij(xi) +

p∑
j=1

k∑
i=1

∑
l:l/n∈Si

f̂lC
j
1(xi − l/n)2 +

k∑
i=1

∑
l:l/n6∈Si

C3f̂l

≥
p∑
j=1

k∑
i=1

(
1−

∑
l∈Ti

f̂l

)
Wij(xi) + C5

k∑
i=1

∑
l:l/n∈Si

f̂l(xi − l/n)2 +
k∑
i=1

∑
l:l/n6∈Si

C3f̂l

where C3 = mini∈[k] minl:l/n6∈Si
∑p

j=1(Wij(xi)−Wij(l/n)) ≥ 0.

Now, by the uniformity of the sensor locations, Wj = Wij(xi) = Wi′j
(xi′) so

p∑
j=1

k∑
i=1

(
1−

∑
l∈Ti

f̂l

)
Wij(xi) =

p∑
j=1

k∑
i=1

(
1−

∑
l∈Ti

f̂l

)
Wj ≥

p∑
j=1

Wj(k − ‖f̂‖1) ≥ 0.

Similarly the other two terms are both positive. Therefore,
∑k

i=1

∑
l:l/n6∈Si f̂l ≤ B/C3 or

equivalently,
k∑
i=1

∑
l:l/n∈Si

f̂l ≥ ‖f̂‖1 −min{k,B/C3}.

This implies that most of the weight of the estimate f̂ is contained in the intervals S1, · · · , Sk.
Also,

B ≥
p∑
j=1

|Wij(xi)−
∑
i∈Ti

f̂lWij(l/n)|

≥
p∑
j=1

Wij(xi)−
∑
i∈Ti

f̂lWij(xi)

≥

(
p∑
j=1

Wij(xi)

)(
1−

∑
l∈Ti

f̂l

)
= C4

(
1−

∑
l∈Ti

f̂l

)
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Therefore,
∑

l∈Ti f̂l ≥ 1−min{1, B/C4} and∑
l:l/n∈Si

f̂l ≤
∑
l∈Ti

f̂l = ‖f̂‖1 −
∑
a6=i

∑
l∈Ta

f̂l

≤ ‖f̂‖1 − (k − 1)(1−min{1, B/C4}) ≤ 1 + (k − 1) min{1, B/C4}.

This implies that the weight of estimate f̂ contained in the interval Si is not too much
larger than the true weight of 1. Also,∑

l:l/n∈Si f̂l

‖f̂‖1

≤ 1 + (k − 1) min{1, B/C4}
k(1−min{1, B/C4})

=
1

k
+

min{1, B/C4}
1−min{1, B/C4}

In order to upper bound the EMD(f0
k
, f̂

‖f̂‖1
) we need a flow, we are going to assign

weight min{
∑
l:l/n∈Si

f̂l

‖f̂‖1
, 1
k
} to travel to xi from within Si. The remaining unassigned

weight is at most k min{1,B/C4}
1−min{1,B/C4} + min{1,B/C3}

k(1−min{1,B/C4}) and this weight can travel at most 1
unit in any flow. Therefore,

EMD

(
f0

k
,
f̂

‖f̂‖1

)
≤

k∑
i=1

∑
l:l/n∈Si

f̂l

‖f̂‖1

|xi − l/n|+ k
min{1, B/C4}

1−min{1, B/C4}

+
min{1, B/C3}

k(1−min{1, B/C4})

≤ 1

k(1−min{1, B/C4})

√
B

C5

+ k
min{1, B/C4}

1−min{1, B/C4}
+

min{1, B/C3}
k(1−min{1, B/C4})

(8.3)

Now, we need bounds on C1, C2, C3 and C4. Firstly, recall

C1 = inf
z∈[s2−

√
2T ,s1+

√
2T ]

[−W ′′(z)/2] > 0.

The sensors sij and sij+p are at a distance of p/m and recall that we only chose the sen-
sors such that |xi − sij | ≥ 1/m. Thus, any z ∈ [s2 −

√
2T , s1 +

√
2T ] we have either

|z − sij | ≤
√
T/8 or |z − sij+p | ≤

√
T/8 so

−W ′′(z) = g′(sij+p − xi)g′′(z − sij) + g′(xi − sij)g′′(sij+p − z)

≥ 1

16πT 3

(
1

m

(
1− 1

2T

T

8

)
e−

1
4T

T
8

)

Therefore, C1 ≥ 17e
−1
32

512
1
m

1
T 3 . Next,

C2 = max
i∈[k]

max
j∈[2p]

−g′(|xi − sj|) ≤
1

2
√

4πT
e
−1

4m2T .
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By Lemma 8.12 we have,

C3 = min
i∈[k]

min
l:l/n6∈Si

p∑
j=1

(Wij(xi)−Wij(l/n)) = Ω

(
m
√
T/2(m

√
T/2 + 1)2

m2

1

T 3.5

)
.

Finally,

C4 =

p∑
j=1

Wij(xi)

=
1

8πT 2

p∑
j=1

(sij+p − xi)e
−(sij+p

−xi)
2−(xi−sij )

2

4T + (xi − sij)e
−(sij+p

−xi)
2−(xi−sij )

2

4T

≥ 1

8πT 2
e
−1
8

p∑
j=1

(sij+p − sij)

≥ Ω

(
me

−1
8

16πT

)
.

Lemma 8.11 gives C5 = Ω

(
m
√
T/8+1

T 2.5

)
. Putting all our bounds into (8.3) we gain the

final result.
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Part IV

Property Testing for Differential Privacy
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CHAPTER 9

Introduction

Recently differential privacy has gained traction outside of theoretical research as sev-
eral companies (Google, Apple, Microsoft, Census, etc.) have announced deployment of
large-scale differentially private mechanisms [Erlingsson et al., 2014, Apple, 2017, Ad-
owd and Schmutte, 2017, Ding et al., 2017]. This use of DP, while exciting, might be
construed as a marketing tool used to encourage privacy-aware consumers to release more
of their sensitive data to the company. In addition, the software behind the deployment of
DP is typically proprietary since it ostensibly provides commercial advantage. This raises
the question: with limited access to the software, can we verify the privacy guarantees of
purportedly DP algorithms?

Suppose there exists some randomised algorithm A that is claimed to be Ξ- differen-
tially private and we are given query access to A. That is, the domain of A is the set
of databases and we have the power to choose a database D and obtain a (randomised)
response A(D). How many queries are required to verify the privacy guarantee? We
formulate this problem in the property testing framework for pure DP, approximate DP,
random pure DP, and random approximate DP1.

Definition 9.1 (Property testing with side information). A property testing algorithm with
query complexity q, proximity parameter α, privacy parameters Ξ and side information S,
makes q queries to the black-box and:

1. (Completeness) ACCEPTS with probability at least 2/3 if A is Ξ-private and S is
accurate.

2. (Soundness) REJECTS with probability at least 2/3 if A is α-far from being Ξ-
private.

In this early stage of commercial DP algorithms, approaches to transparency have been
varied. For some algorithms, like Google’s RAPPOR, a full description of the algorithm
has been released [Erlingsson et al., 2014]. On the other hand, while Apple has released

1This Part is based on joint work with Anna Gilbert.
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a white paper [Differential Privacy Team, 2017] and a patent [Thakurta et al., 2017], there
are still many questions about their exact implementations. We focus on the two extreme
settings: when we are given no information about the black-box (except the domain and
range), and the full information setting where we have an untrusted full description of the
algorithm A.

Both settings are subject to fundamental limitations. We first show that verifying pri-
vacy is at least as difficult as breaking privacy, even in the full information setting. That
is, suppose r samples are sufficient to verify that an algorithm is Ξ-private. Then Theo-
rem 10.2 implies that for every algorithm that is not Ξ-private, there exists some pair of
neighbouring databases D and D′ such that r samples fromA(D) is enough to distinguish
between D and D′. Differential privacy is designed so that this latter problem requires a
large number of samples. This connection has the unfortunate implication that verifiabil-
ity and privacy are directly at odds: if a privacy guarantee is efficiently verifiable, then it
mustn’t be a strong privacy guarantee.

For the remainder of this part we restrict to discrete distributions on [n]. Our upper and
lower bounds in each setting are contained in Table 9.1. We rule out sublinear verifica-
tion of privacy in every case except verifying approximate differential privacy in the full
information setting. That is, for all other definitions of privacy, the query complexity for
property testing for privacy is Ω(n).

Each privacy notion we consider is a relaxation of pure differential privacy. Gener-
ally, the privacy is relaxed in one of two ways: either privacy loss is allowed to occur on
unlikely outputs, or privacy loss is allowed to occur on unlikely inputs. The results in The-
orem 10.4 and the lower bounds in Table 9.1 imply that for efficient verification, we need
to relax in both directions. That is, random approximate DP is the only efficiently verifi-
able privacy notion in the no information setting. Even then, we need about 1/δ2 queries
per database to verify (ε, δ)-approximate differential privacy. Theorem 10.8 shows that
random approximate DP can be verified in (roughly) O(4n(1+e2ε) log(1/γ)

γδ2
) samples, where

(roughly) δ and γ are the probabilities of choosing a disclosive output or input, respec-
tively. This means verification is efficient if δ and γ are small but not too small. This may
seem insufficient to those familiar with DP, where common wisdom decrees that δ and γ
should be small enough that this query complexity is infeasibly large.

There have been several other relaxations of pure differential privacy proposed in the
literature, chief among them Rényi DP [Mironov, 2017] and concentrated DP [Dwork and
Rothblum, 2016]. These relaxations find various ways to sacrifice privacy, with a view
towards allowing a strictly broader class of algorithms to be implemented. Similar to pure
DP, Rényi and concentrated DP have the property that two distributions P and Q can be
close in TV distance while the pair (P,Q) has infinite privacy parameters. Thus, many
of the results for pure differential privacy in this part can be easily extended to Rényi and
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Table 9.1: Per Database Query complexity bounds for property testing of privacy

No Information Full information

pDP Unverifiable [Theorem 10.5] Ω
(

1
βα2

)
[Theorem 10.12]

O
(

lnn
α2β2

)
[Theorem 10.11]

aDP Ω(max{n1−o(1), 1
α2 }) [Theorem 10.7] O

(√
n

α2

)
[Theorem 10.10]

O( n
α2 ) [Theorem 10.8]

concentrated DP. We leave these out of our discussion for brevity.
One might hope to obtain significantly lower query complexity if the property tester

algorithm is given side information, even if the side information is untrusted. We find
that this is true for both approximate DP and pure DP, if we allow the query complexity
to depend on the side information. Recall, a randomised algorithm A can be abstracted
as a set of distributions {PD} where A(D) ∼ PD. We obtain a sublinear verifier for
approximate DP. For pure DP, we find the quantity that controls the query complexity is

β = inf
D

min
i
PD(i),

the minimum value of the collection of distributions. If β is large then efficient verification
is possible: verifying that the pure differential privacy parameter is less than ε+α requires
O( lnn

α2β2 ) queries of each database (Theorem 10.11). Note that this is not sublinear since
β ≤ 1/n and if β = 0 then we have no improvement on the no information setting.
However, for reasonable β, this is a considerable improvement on the no information
lower bounds and may be efficient for reasonable n.

A central theme of this work is that verifying the privacy guarantees that corporations
(or any entity entrusted with private data) claim requires compromise by either the verifier
or algorithm owner. If the verifier is satisfied with only a weak privacy guarantee (ran-
dom approximate DP with δ and γ small but not extremely small), then they can achieve
this with no side information from the algorithm owner. If the company is willing to
compromise by providing information about the algorithm up-front, then much stronger
privacy guarantees can be verified. Given this level of transparency, one might be tempted
to suggest that the company provide source code instead. While verifying privacy given
source code is an important and active area of research, there are many scenarios where the
source code itself is proprietary. We have already seen instances where companies have
been willing to provide detailed descriptions of their algorithms. In the full information
case, we obtain our lowest sample complexity algorithms, including a sublinear algorithm
for verifying approximate differential privacy.

This part proceeds as follows: we start by defining property testing for privacy in Sec-
tion 9.1. We then proceed to the main contributions of this work:
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• Verifying privacy is as hard as breaking privacy (Section 10.1).

• In the no information setting, verifying pure differential privacy is impossible while
there is a finite query complexity property tester for approximate differential privacy
(Section 10.3).

• If β > 0 then finite query complexity property testers exist for pure differential
privacy in the full information setting (Section 10.4).

• A sublinear property tester exists for approximate differential privacy in the full in-
formation setting.

The main lower bounds and algorithmic upper bounds in this part are summarized in Ta-
ble 9.1.

9.1 Background and Problem Formulation

We revert to the original definition of neighbouring: D, D′ neighbouring if they differ
on a single data point. We use the notation A = (P0, P1) to denote an algorithm that
accepts on two databases 0 and 1 as input, and A(0) ∼ P0 and A(1) ∼ P1. We will only
consider discrete distributions in this part, so PD is a discrete distribution on [n]. For a
distribution P , P r represents r independent copies of P .

Our results vary heavily depending on whether δ = 0 or δ > 0. As such, we use
approximate differential privacy or aDP to refer only to the case where δ > 0 and pDP
when δ = 0.

9.1.1 Problem Formulation

Our goal is to answer the question given these privacy parameters, is the algorithm A
at least Ξ-private? where Ξ is an appropriate privacy parameter. A property testing algo-
rithm, which outputs ACCEPT or REJECT, answers this question if it ACCEPTS when-
ever A is Ξ-private, and only ACCEPTS if the algorithm A is close to being Ξ-private.
A tester with side information may also REJECT simply because the side information is
inaccurate.

We say thatA is α-far from being Ξ-private if minΞ′ ‖Ξ′−Ξ‖ > α, where the minimum
is over all Ξ′ such that A is Ξ′-private. The metrics used for each form of privacy are
contained in Table 9.2. We introduce the scalar λ to penalise deviation in one parameter
more than deviation in another parameter. For example, it is much worse to mistake a
(0, 0.1)-RpDP algorithm for (0, 0)-RpDP than it is to mistake a (0.1, 0)-RpDP algorithm
for (0, 0)-RpDP. We leave the question of how much worse as a parameter of the problem.
However, we give the general guideline that if we want an α error to be tolerable in both ε
and γ then λ ≈ ε

γ
, which may be large, is an appropriate choice.
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Table 9.2: Privacy notions, parameters and metrics.

Privacy Notion Ξ ‖Ξ− Ξ′‖
pDP ε |ε− ε′|
aDP (ε, δ) |δε − δ′ε|
RpDP (ε, γ) min{|ε− ε′|, λ|γ − γ′|}
RaDP (ε, δ, γ) min{|δε − δ′ε|, λ|γ − γ′|}

The formal definition of a property tester with side information was given in Defini-
tion 9.1. A no information property tester is the special case when S = ∅. A full infor-
mation property tester is the special case when S = {QD} contains a distribution QD for
each database D. We use QD to denote the distribution on outputs presented in the side
information and PD to denote the true distribution on outputs of the algorithm being tested.
For α > 0 and privacy parameter Ξ, a full information (FI) property tester for this problem
satisfies:

1. (Completeness) Accepts with probability at least 2/3 if the algorithm is Ξ-private and
PD = QD for all D.

2. (Soundness) Rejects with probability at least 2/3 if the algorithm is α-far from being
Ξ-private.

We only force the property tester to ACCEPT if the side information is exactly accurate
(PD = QD). It is an interesting question to consider a property tester that is forced to
ACCEPT if the side-information is close to accurate, for example in TV-distance. We do
not consider this in this work as being close in TV-distance does not imply closeness of
privacy parameters.

For a database D, we will refer to the process of obtaining a sample from PD as query-
ing the black-box. It will usually be necessary to input each database into the black-box
multiple times. We will use m to denote the number of unique databases that are queries
to the black-box and r to denote the number of times each database is input. We will only
consider algorithms where the number of samples from PD for each input database is r, so
our query complexity is mr for each algorithm. Our aim is verify the privacy parameters
using as few queries as possible.

9.1.2 Related Work

This work connects to two main bodies of literature. There are several works on veri-
fying privacy with different access models that share the same motivation as this work. In
terms of techniques, our work is most closely linked to recent work on property testing of
distributions.
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Several algorithms and tools have been proposed for formal verification of the DP
guarantee of an algorithm [Barthe et al., 2014, Roy et al., 2010, Reed and Pierce, 2010,
Gaboardi et al., 2013, Tschantz et al., 2011]. Much of this work focuses on verifying
privacy given access to a description of the algorithm. There is a line of work [Barthe
et al., 2014, Roy et al., 2010, Reed and Pierce, 2010, Gaboardi et al., 2013, Tschantz et al.,
2011, Barthe et al., 2012, 2013, McSherry, 2009] using logical arguments (type systems,
I/O automata, Hoare logic, etc.) to verify privacy. These tools are aimed at automatic (or
simplified) verification of privacy of source code. There is another related line of work
where the central problem is testing software for privacy leaks. This work focuses on
blatant privacy leaks, such as a smart phone application surreptitiously leaking a user’s
email [Jung et al., 2008, Enck et al., 2010, Fan et al., 2012]. We are unaware of any work
verifying DP assuming only black-box access to the private algorithm.

Given sample access to two distributions P and Q and a distance measure d(·, ·), the
question of determining between d(P,Q) ≤ a and d(P,Q) ≥ b is called tolerant property
testing. This question is closely related to the question of whether A = (P,Q) is private.
There is a large body of work exploring lower bounds and algorithmic upper bounds for
tolerant testing using standard distances (TV, KL, χ2, etc.) with both a = 0 and a > 0

[Daskalakis et al., 2018, Paninski, 2008, Batu et al., 2013, Acharya et al., 2015, Valiant
and Valiant, 2014]. In our work, we draw most directly from the techniques of Valiant
[2011].

A relevant paper in the intersection of privacy and property testing is Dixit et al. [2013].
The access model in this paper is different to ours but their goal is similar, Dixit et. al
relate privacy testing to testing the Lipschitz property of functions and make progress on
the latter.
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CHAPTER 10

Technical Contributions

10.1 Lower Bounds via Distinguishability

We now turn to examining the fundamental limitations of property testing for privacy.
We find that even in the full information setting, the query complexity to verifying privacy
is lower bounded by the number of queries required to distinguish between two possible
inputs. We expect the latter to increase with the strength of the privacy guarantee.

Definition 10.1. DatabasesD andD′ are r-distinguishable underA if there exists a testing
algorithm such that given a description ofA and x ∼ P r

D′′ whereD′′ ∈ {D,D′}, it accepts
with probability at least 2/3 ifD′′ = D and rejects with probability at least 2/3 ifD′′ = D′.

A major reason that DP has gained traction is that it is preserved even if the (ran-
domised) algorithm is repeated (Lemma 2.6). That is, if k > 0 and (PD, PD′) is private,
then (P k

D, P
k
D′) is private with slightly worse privacy parameters. The rate of decay of

the privacy parameters (in k) varies with the notion of privacy. Typically we want the
privacy parameters to start small enough that k has to be quite large before any pair of
neighbouring databases can be distinguished between using the output.

The following theorem says that the per database query complexity of a privacy prop-
erty testing algorithm is lower bounded by the minimal r such that two neighbouring
databases are r-distinguishable under A.

Theorem 10.2. Consider any privacy definition, privacy parameter Ξ, and let α > 0.
Suppose there exists a Ξ-privacy property tester with proximity parameter α and (per
database) query complexity r. Let A be an algorithm that is α-far from Ξ-private. If the
privacy notion is

• pDP or aDP then there exists a pair of databases that are
r-distinguishable under A.

• RpDP or RaDP and Ξ = (ε, δ, γ), then a randomly sampled pair of databases has
probability at least γ + α

λ
of being r-distinguishable.
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Proof. We start with pDP or aDP and suppose such a Ξ-privacy property testing algorithm
exists. Let A be an algorithm that is α-far from Ξ-private. Since the privacy parameter
is defined as a maximum over all neighbouring databases, there exists a pair of databases
D and D′ such that (PD, PD′) has the same privacy parameter as A. We can design a
tester algorithm that distinguishes between D and D′ as follows: given input x ∼ P r

D′′ ,
first sample y ∼ P r

D. Then run the privacy property testing algorithm on B = (PD′′ , PD)

with sample (x, y). If D′′ = D then B is 0-DP, so the property tester will accept with
probability at least 2/3. If D′′ = D′ then B is α-far from from Ξ-private so the property
tester will reject with probability at least 2/3.

Finally, suppose such a (ε, γ)-RpDP property testing algorithm exists. Let A be an
algorithm that is α-far from (ε, γ)-private so that, in particular, A is not (ε + α, γ + α

λ
)-

RpDP. Thus, if we randomly sample a pair of neighbouring databases D and D′, with
probability γ + α

λ
, (PD, PD′) is not ε + α-pDP. The remainder of the proof proceeds as

above by noticing that the algorithm (PD, PD′) is α-far from (ε, γ)-RpDP and (PD, PD) is
(ε, γ)-RpDP. The proof of almost identical for RaDP.

10.2 Restriction to Two Distribution Setting

Differential privacy is inherently a local property. That is, verifying that A is Ξ-private
means verifying that (PD, PD′) is Ξ-private, either always or with high probability, for
pairs of neighbouring databasesD andD′. We refer to the problem of determining whether
a pair of distributions (P0, P1) satisfies Ξ-privacy as the two database setting. We argue in
this section that the hard part of privacy property testing is the two database setting. For
this reason, from Section 10.3 onwards, we only consider the two database setting.

An algorithm is non-adaptive if it chooses m pairs of distributions and queries the
blackbox with each database r times. It does not choose its queries adaptively. The fol-
lowing is a non-adaptive algorithm for converting a tester in the two database setting to a
random privacy setting.

Theorem 10.3 (Conversion to random privacy tester). If there exists a Ξ-privacy property
tester for the two database setting with query complexity r per database and proximity
parameter α, then there exists a privacy property tester for (Ξ, γ)-random privacy with
proximity parameter 2α and query complexity

O

(
r log

(
2λ

α

)
(α/λ+ γ)2 + α/λ

(α/λ)2

)
.

Proof. The conversion is given in Algorithm 3. We first prove completeness. Suppose A
is (γ,Ξ)-random private. Let

S = {(D,D′) | D,D′ are neighbours and (PD, PD′) is Ξ-private}
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Algorithm 3 Random-privacy Property Tester

Input: A two distribution property tester T , α, γ > 0, a data distribution D
for i = 1 : m do

Sample (D,D′) neighbours from D.
for j = 1 : log(2λ/α) do
xij = 1 if T (PD, PD′) REJECTS

end for
xi = b 12 + 1

log(2λ/α)

∑log(2λ/α)
j=1 xijc

end for
y = 1

m

∑m
i=1 xi

if y ≤ γ + α
λ then

Output: ACCEPT
else

Output: REJECT
end if

so 1− γ ≤ P(S) ≤ 1. Our goal is to estimate P(S) using the empirical estimate given by
1
m

∑m
i=1 xi. We perform the property tester log(λ/α) times on the pair (PD, PD′) to reduce

the failure probability from 1/3 to α
2λ

so

E[xi] = P(xi = 1 | (D,D′) ∈ S)P(S) + P(xi = 1 | (D,D′) /∈ S)P(Sc) ≤ α

2λ
+ γ.

Now,

P
(
y ≥ γ +

α

λ

)
≤ P

(
y − E[y] ≥ α

2λ

)
≤ e

−m(α/λ)2

2( α
2λ

+γ)2+2(α/λ) ≤ 1

3
where the first inequality follows from Bernstein’s inequality [Sridharan, 2018]. There-
fore, Algorithm 3 ACCEPTS with probability at least 2/3. To prove soundness suppose A
is 2α-far from Ξ-private. Let

S = {(D,D′) | D,D′ are neighbours and (PD, PD′) is 2α-far from Ξ-private}

so 1 ≥ P(S) ≥ γ + 2α/λ. Then E[xi] ≥
(
1− α

2λ

) (
γ + 2α

λ

)
≥ γ + α

λ
+ α

2λ
. Therefore as

above,

P
(
y ≤ γ +

α

λ

)
≤ P

(
y − E[y] ≤ −α

2λ

)
≤ 1

3
.

So, Algorithm 3 REJECTS with probability at least 2/3.

Notice that if γ ≈ α
λ

then the query complexity is approximately r log(λ
α

)λ
α
≈ r log( 1

γ
)

γ
.

One shortcoming of the conversion algorithm in Theorem 10.3 is that we need to know the
data distribution D. We can relax to an approximation D′ that is close in TV-distance, but
it is not difficult to see that ‖D − D′‖1 ≤ α

λ
is necessary.

Theorem 10.4 (Lower bound). Let γ, α > 0. Let r be a lower bound on the query com-
plexity in the two distribution settting. If γ + α

λ
is sufficiently small then any non-adaptive

(Ξ, γ)-random privacy property tester with proximity parameter α has query complexity
Ω(max{r, λ

α
}).
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We conjecture that the lower bound is actually Ω(r λ
α

). If this is true then Theorem 10.3
gives an almost optimal conversion from the two information setting to the random setting.

Proof. A random privacy property tester naturally induces a property tester in the two
distribution setting (P,Q) by setting PD = P for half the databases and PD = Q for the
other half. Then {PD} is (Ξ, γ)-random private if (P,Q) is Ξ and α-far if (P,Q) is α-far.
Therefore, the random privacy tester must use at least as many queries as a privacy tester
in the two database setting.

Suppose (P,Q) is α-far from Ξ-private and the data universe is uniformly distributed.
If γ + α

λ
is small enough then there exists a pair of nested subsets S ′ ⊂ S ⊂ ZΩ such that

P((S × Sc) ∩ {(D,D′) | D,D′ neighbours }) = γ +
α

λ

and
P((S ′ × S ′c) ∩ {(D,D′) | D,D′ neighbours }) = γ.

Define PD = P if D ∈ S, PD = Q if D ∈ Sc, QD = P if D ∈ S ′ and QD = Q if D ∈ S ′.
Then {PD} is (Ξ, γ)-random private and {QD} is α-far from (Ξ, γ)-random private.

Recall that a non-adaptive property testing algorithm can query by randomly sampling
a pair of neighbours D,D′, and then sampling PD × PD′ . If N is the normalisation factor,
the distributions 1

N

∑
(D,D′) neighbours PD×PD′ and 1

N

∑
(D,D′) neighbours QD×QD′ have total

variation distance 2‖P − Q‖TV P((S\S ′) × Sc) ∩ {(D,D′) | D,D′ neighbours }) ≤ α
λ

.
Therefore, it takes at least λ

α
queries to distinguish between {PD} and {QD}.

10.3 No Information Setting

We first show that no privacy property tester with finite query complexity exists for
pDP. We then analyse a finite query complexity privacy property tester for aDP, as well
query complexity lower bounds.

10.3.1 Unverifiability

The impossibility of testing pDP arises from the fact that very low probability events
can cause the privacy parameters to increase arbitrarily. In each case we can design dis-
tributions P and Q that are close in TV-distance but for which the algorithm (P,Q) has
arbitrarily large privacy parameters. This intuition allows us to use a corollary of Le Cam’s
inequality (Corollary 3.4) to prove our infinite lower bounds.

Theorem 10.5 (pDP lower bound). Let α > 0 and ε > 0. No ε-pDP property tester with
proximity parameter α has finite query complexity.
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Proof. Let r be the query complexity of any pDP property tester. Let A > 2ε + α. Our
goal is to prove that r > θ(eA/A). If this is true for all A, the query complexity cannot be
finite.

Consider algorithms, A = (P0, P1) and B = (Q0, Q1) where

P0 = Q0 = e−A−εχψ + (1 − e−A−ε)χω,

P1 = e−Aχψ + (1− e−A)χω and Q1 = e−2Aχψ + (1− e−2A)χω.

Then A is ε-pDP and B is α-far from ε-pDP. Now, by Pinsker’s inequality,

‖(P r
0 , P

2
1 ), (Qr

0, Q
r
1)‖TV ≤

√
r

2

√
DKL(P0|Q0).

Therefore, by Lemma 3.4,

r ≥ 2

9

1

DKL(P0|Q0)

=
2

9

1

e−A log(eA) + (1− e−A) log
(

1−e−A
1−e−2A

) = θ

(
eA

A

)
.

We designed two distributions that are equal on a large probability set but for which the
ratio P0(x)

Q0(x)
blows-up on a set with small probability. In Section 10.4 we will see that testing

pure DP becomes possible if we make assumptions on the algorithm A. The assumption
we need will ensure that P0(x)

Q0(x)
is upper bounded, and similar results hold for RDP.

10.3.2 Property Testing for aDP in the No Information Setting

Fortunately, the situation is less dire for verifying aDP. Finite query complexity prop-
erty testers do exist for aDP, although their query complexity can be very large. In the
previous section, we relied on the fact that two distributions P and Q can be close in TV-
distance while (P,Q) has unbounded privacy parameters. In this section, we first show
this is not true for aDP, which sets it apart from the other privacy notions. We then prove
that the query complexity is Ω

(
max

{
n1−o(1), 1

α2

})
, and there exists an algorithm that uses

O(4n(1+e2ε)
α2 ) queries per database. Define

(10.1) δAε ≥ max
D,D′neighbours

max
E

PD(E)− eεPD′(E).

An algorithm is (ε, δ)-aDP if and only if δ > δ∗ε . The following lemma shows the relation-
ship between the aDP parameters and TV-distance.

Lemma 10.6. Let A = (P0, P1) and suppose A is (ε, δ)-aDP and α > 0. If B = (Q0, Q1)

and
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1. ‖P0 −Q0‖TV ≤ α

2. ‖P1 −Q1‖TV ≤ α,

then B is (ε, δ+(1+eε)α)−aDP. Furthermore, if α ≤ 1−δ
1+eε

then this bound is tight. That
is, if δAε > 0, then there exists an algorithm B = (Q0, Q1) such that conditions (1) and (2)
hold but B is α-far from (ε, δAε ).

Proof. For any event E,

Q0(E) ≤ P0(E) + α ≤ eεP1(E) + δA + α ≤ eεQ1(E) + eεα + α + δA.

Similarly, Q1(E) ≤ eεQ0(E) + eεα + α + δA.
Conversely, let A = (P0, P1) and suppose δAε > 0. There must exist an event E such

that P0(E) = eεP1(E) + δAε . The condition on α can rewritten as 1− α ≥ eεα + δ so we
must have that either P0(E) ≤ 1− α or P1(E) ≥ α.

First, suppose that P0(E) ≤ 1− α. Then there exists a distribution Q0 such that
‖Q0−P0‖TV = α and Q0(E) = P0(E) + α. If we let Q1 = P1 then Q0(E) = eεQ1(E) +

α + δAε , which implies B = (Q0, Q1) is α-far from (ε, δAε )-aDP.
Finally, suppose P1(E) ≥ α. Then there exists a distribution Q1 such that

‖Q1 − P1‖TV = α and Q1(E) = P1(E) − α. Letting Q0 = P0, again B = (Q0, Q1) is
α-far from (ε, δAε )-aDP.

Theorem 10.7 (Lower bound). Let α, ε, δ > 0 and suppose eε/2 + δ + α < 1. Any
(ε, δ)-aDP property tester with proximity parameter α has query complexity

r ≥ max

{
n1−o(1),

1

α2

}
.

The proof of the n1−o(1) lower bound uses the low frequency blindness lemma
(Lemma 3.5). For aDP, our property is π((P,Q)) = δε, which is ((1 + eε)α, α)-weakly-
continuous.

Proof. Let P0 = Q0 be the uniform distribution on {ψ, ω}. Let

P1 =

(
eε

2
+ δ

)
χψ +

(
1− eε

2
− δ
)
χω

and

Q1 =

(
eε

2
+ δ + α

)
χψ +

(
1− eε

2
− δ − α

)
χω.

Then, (P0, P1) is (ε, δ)-aDP and (Q0, Q1) is α-far from (ε, δ)-aDP. Now,

DKL(P1|Q1) =

(
eε

2
+ δ + α

)
ln

(
1 +

α
eε

2
+ δ

)
+

(
eε

2
− δ − α

)
ln

(
1− α

eε

2
− δ

)
. α2.
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Algorithm 4 aDP Property Tester

Input: Universe size n, ε, δ, α > 0

λ = max{ 4n(1+e
2ε)

α2 , 12(1+e
2ε)

α2 }
Sample r ∼Poi(λ)
Sample D0 ∼ P r, D1 ∼ Qr
for i ∈ [m] do
xi = number of i’s in D0

yi = number of i’s in D1

zi = 1
r (xi − eεyi)

end for
z =

∑r
i=1 max{0, zi}

if z < δ + α then
Output: ACCEPT

else
Output: REJECT

end if

By the same argument as Theorem 10.5 we have r = Ω
(

1
α2

)
.

Suppose [n] is a disjoint union of the sets R1, R2 and R3, all of which have cardinality
n/3. Let a = 2δ+α

3
, b = 2a, η = δ−α

3
so a+ η = δ and b− η = δ + α. Let

P1 = P0 = Q0 =
3a

n
χR1 +

3(1− a)

n
χR2

Q1 =
3(1− a)

n
χR2 +

3a

n
χR3 .

Now, for (P0, P1), δε ≤ a and for (Q0, Q1), δε ≥ 2a = b. Since the distributions
agree on any index with probability greater than 3a

n
, Lemma 3.5 implies that no tester

can distinguish between δε ≥ b − η = δ + α and δε ≤ a + η = δ with less than
n
3a

(1 + eε)η = 3n(δ−α)
2δ+α

= Ω(n) samples.

At first glance, Theorem 10.7 doesn’t look too bad. We should expect the sample
complexity to scale like 1/α2 since we need to have enough samples to detect the bad
events. Our concern is the size of α. If we would like α to be the same order as δ, then our
query complexity must scale as 1

δ2
. As we typically require δ to be extremely small (i.e.

δ ≈ 10−8), 1
δ

may be infeasibly large. If we are willing to accept somewhat larger δ, then
1
δ2

may be reasonable.
We now turn our attention to Algorithm 4, a simple algorithm for testing aDP with

query complexity O(4n(1+e2ε)
α2 ). Its sample complexity matches the lower bound in Theo-

rem 10.7 in α when n is held constant and in n when α is held constant. We are going to
use a trick called Poissonisation to simplify the proof of soundness and completeness, as
in Batu et al. [2013]. Suppose that, rather than taking r samples from P , the algorithm first
samples r1 from a Poisson distribution with parameter λ = r and then takes r1 samples
from P . Let Xi be the random variable corresponding to the number of times the element
i ∈ [n] appears in the sample from P . Then Xi is distributed identically to the Poisson
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distribution with parameter λ = pir and all the Xi’s are mutually independent. Similarly,
we sample r2 from a Poisson distribution with parameter r and then take r2 samples from
Q. Let Yi be the the number of times i appears in the sample from Q, so Yi is Poisson with
λ = qir and the Yi are independent.

Theorem 10.8 (Upper bound). Let ε, δ, α > 0. Algorithm 4 is a (ε, δ)-aDP property tester
with proximity parameter 2α and sample complexity O(4n(1+e2ε)

α2 ).

Proof. Let pi = P (i) and qi = Q(i). Let Zi = 1
r

(Xi − eεYi) so E[Zi] = pi − eεqi and
Var(Zi) ≤ pi+e

2εqi
r

. Note also that (P,Q) is (ε, δ)-DP if ∆ :=
∑n

i=1 max{0,E[Zi]} ≤ δ.
First note that E[Z] ≥ ∆. If E[Zi] ≤ 0 then

E[max{0, Zi}] =

∫ ∞
0

P(max{0, Zi} > x)dx

=

∫ ∞
0

P(Zi > x)dx

≤
∫ ∞

0

P(Zi − E[Zi] > x− E[Zi])dx

≤
∫ ∞

0

min{1, V arZi
(x− E[Zi])2

}dx

=

∫ √V arZi+E[Zi]

0

1dx+

∫ ∞
√
V arZi+E[Zi]

V arZi
(x− E[Zi])2

dx

=
√
V arZi + E[Zi] +

√
V arZi

≤
√
pi + e2εqi

r

If E[Zi] > 0 then E[max{0, Xi}] ≤ E[Zi] +
√

pi+e2εqi
r

= pi− eεqi+
√

pi+e2εqi
r

. Therefore,

E[Z] ≤ ∆ +
n∑
i=1

√
pi + e2εqi

r
≤ ∆ +

√
n

r
(1 + e2ε)

Now, let Z ′i be an independent copy of Zi then

V ar[max{0, Zi}] =
1

2
E[(max{0, Zi} −max{0, Z ′i})2]

=

∫ ∞
0

P((max{0, Zi} −max{0, Z ′i})2 ≥ x)dx

≤
∫ ∞

0

P((Zi − Z ′i)2 ≥ x)dx

= V arZi =
pi + e2εqi

r
.
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So V arZ ≤ 1+e2ε

r
. Therefore,

P(|Z −∆| ≥ α) ≤ P(|Z − E[Z]|+ |E[Z]−∆| ≥ α)

≤ P(|Z − E[Z]| ≥ α−
√
n

r
(1 + e2ε))

≤ V arZ

(α−
√

n
r
(1 + e2ε))2

≤ 1 + e2ε

r(α−
√

n
r
(1 + e2ε))2

,

which is less than 1/3 if r ≥ max{4n(1+e2ε)2

α2 , 12(1+e2ε)
α2 }.

10.4 Full Information (FI) Setting

The situation is substantially rosier if we have side-information. Although there are
some realistic scenarios where one may have trusted side-information, we will focus on
untrusted side-information. In particular, we allow our property tester to REJECT simply
because the provided side-information is inaccurate. We will see that the untrusted side-
information can still be useful since verifying information is often easier than estimating
it.

The usefulness of side-information in property testing is informally lower bounded by
how easy it is to generate the same information, and how much the information tells us
about the property. For example, the means of the distributions (P0, P1) do not tell us
very much about whether or not the privacy guarantee is satisfied. If A is an unbiased
estimate for a function f , then the following proposition states that knowing the function
the black-box is computing does not help in verifying pDP.

Proposition 10.9. Let α, ε > 0 and suppose the side information is (a, b), which are
purported to be the means of P0 and P1. If there exists a Ξ-private algorithm (P0, P1)

supported on [n − 1] with E(P0) = a and E(P0) = b, then no ε-pDP property tester with
side information (a, b) and proximity parameter α has finite query complexity.

The requirement that a Ξ-private algorithm with the right side information exists is
necessary. If no such algorithm exists, then the tester should always REJECT and requires
no queries. Under the assumption that such an algorithm exists, it is reasonable to assume
that there exists an algorithm with slightly smaller support.

Proof. Let A > 0 and A = (P0, P1) be the algorithm promised. That is, (P0, P1) is Ξ-
private and supported on [n−1]. LetQ0 = (1−e−A)P0 +e−Aχn andQ1 = P1 so (Q0, Q1)

is α-far from pDP. Now, ‖P0 × P1 −Q0 ×Q1‖TV ≤ e−A so it requires eA →∞ samples
to distinguish between the two distributions.
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Algorithm 5 aDP FI Property Tester

Input: Universe size n, ε, δ, α > 0, (Q0, Q1) and identify tester T with sample complexity r
if (Q0, Q1) is not (ε, δ)-aDP then

Output: REJECT
else

if T (Q0, x ∼ P r0 ) = REJECT or T (Q1, x ∼ P r1 ) = REJECT then
Output: REJECT

else
Output: ACCEPT

end if
end if

We will focus on what we call the full information setting: we are given sample ac-
cess to A and a distribution QD for each database D. In contrast to the mean, this side
information is very informative about the privacy of the algorithm. It is also difficult to
generate based on samples. We can estimate it using Θ( n

α2 ) [Chan et al., 2014a] queries of
each database, where α is the accuracy in TV-distance. However, we already know that the
only privacy notion for which an estimate is sufficient is aDP. It is also known that testing
identity to a known distribution requires asymptotically less samples than estimating an
unknown distribution.

Proposition 10.10. There exists a identity tester T such that Algorithm 10.10 is a (ε, δ)-
aDP FI property tester with query complexity O

(√
n

α2

)
and proximity parameter α.

This is our first, and only, sublinear query complexity property tester for privacy. Since
closeness in TV-distance implies closeness in aDP, we only need to check that the true
distributions are close to (Q0, Q1) and that (Q0, Q1) is (ε, δ)-aDP. The difficult part is
testing closeness of the distributions, for which we borrow from Chan et al. [2014b].

Proof. Chan et al. [2014b] proved that there exists a property tester T that takes as input
a description of the discrete distribution P and O(

√
n

α2 ) samples from an distribution Q. If
P = Q then the tester ACCEPTS with probability at least 2/3 and if ‖P −Q‖TV ≥ α then
the tester REJECTS with probability at least 2/3. If we increase the sample complexity of
the tester T by a constant factor then we can replace 2/3 with

√
2/3.

To prove completeness, suppose (P0, P1) = (Q0, Q1) and (Q0, Q1) is (ε, δ)-aDP. Since
T ACCEPTS on both pairs (Q0, P0) and (Q1, P1) with probability at least

√
2/3, it AC-

CEPTS both with probability at least 2/3. To prove soundness, suppose (P0, P1) is
(1 + eε)α-far from (ε, δ)-aDP. Assume (Q0, Q1) is (ε, δ)-aDP because otherwise the tester
REJECTS. It must be the case that either ‖Q0 − P0‖TV ≥ α or ‖Q1 − P1‖TV ≥ α because
otherwise (P0, P1) would be (ε, (1 + eε)α)-aDP by Lemma 10.6. Thus, with probability at
least 2/3 either T (Q0, x ∼ P0) = REJECT or T (Q1, x ∼ P1) = REJECT.

Next, we show that for pDP, the side information allows us to obtain a finite query
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Algorithm 6 pDP FI Property Tester

Input: Universe size n, ε, α > 0, (Q0, Q1)
λ = lnn

α2β2

Sample r ∼Poi(λ)
Sample D0 ∼ P r0 , D1 ∼ P r1
for i ∈ [m] do
xi = number of i’s in D0

yi = number of i’s in D1

end for
ε̂ = supi max{ln xi

yi
, ln yi

xi
}

if ε̂ > ε+ 2α then
Output: REJECT

else
if ∀i e−α ≤ xi

(Q0)i
≤ eα and e−α ≤ yi

(Q1)i
≤ eα then

Output: ACCEPT
else

Output: REJECT
end if

end if

complexity property tester. The side-information gives us an easy way to switch from a
worst-case analysis to input specific upper bounds. We argue that

β = min
E

min
D

PD(E),

where the first min is over events E and the second is over databases D, is the crucial
quantity in understanding verifiability in the full information setting.

The lower bound proofs in the previous section all proceeded by finding two algorithms
A and B that were close in TV-distance but had very different privacy parameters. The
algorithms we chose all had one feature in common: the distributions PD contained very
low probability events. This property allowed us to drive the denominator of QD(E)

PD(E)
to

0, and hence the privacy loss to ∞, while remaining close in TV-distance. This method
works equally well in the full-information setting if low probability events exist in the
distributions QD.

If the distribution QD does not have low probability events, then any distributions close
to PD must have bounded privacy parameters. To see this, suppose (Q0, Q1) = (U,U)

where U is the uniform distribution U on {ψ, ω}. We can establish in approximately 1
α2

samples whether or not P0 and P1 are both within TV-distance α of uniform. If not, then
we REJECT. If so, then the worst case for privacy is P0 = (1/2 − α)χψ + (1/2 + α)χω

and P1 = (1/2 + α)χψ + (1/2− α)χω. However, the increase in the pDP parameter from
(Q0, Q1) to (P0, P1) is bounded by ln 1/2+α

1/2−α ≈ α.
Algorithm 6 is a full information property tester for pDP. Note that this algorithm is not

sublinear in n since β < 1
n

.
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Theorem 10.11 (pDP upper bound). Let ε > 0 and α > 0. Algorithm 6 is an ε-aDP FI
property tester with proximity parameter 10α and query complexity O

(
lnn
α2β2

)
.

Proof. We first show completeness. Suppose (P0, P1) = (Q0, Q1) and A is ε-pDP. By the
multiplicative Hoeffding’s inequality,

P
(

xi
(P0)i

≥ eα or
(P0)i
xi
≥ eα

)
≤ e−2r(eα−1)2β2

+ e−2r(1−e−α)2β2

.

Therefore,

P
(
∃i s.t.

xi
(P0)i

≥ eα or
(P0)i
xi
≥ eα

)
≤ n(e−2r(eα−1)2β2

+ e−2r(1−e−α)2β2

) ≤ 1

6
.

Thus with probability 2/3 we have for all i, e−α ≤ xi
(P0)i

≤ eα and e−α ≤ yi
(P1)i

≤ eα and
so

xi
yi

=
xi

(P0)i

(P0)i
(P1)i

(P1)i
yi
≤ eαeεeα.

This implies ε̂ ≤ ε+ 2α so we ACCEPT.
For soundness, we show that the ACCEPT conditions imply that (P0, P1) must be at

least (ε + 10α)-pDP. The condition e−α ≤ xi
(Q0)i

≤ eα implies |xi− (Q0)i| ≤ max{(eα−
1)(Q0)i, (1− e−α)(Q0)i}. Also, by the additive Hoeffding’s inequality

P
(
∃i s.t. |xi − (P0)i| ≥ (Q0)i max{(eα − 1), (1− e−α)}

)
≤ nmin{e−r(eα−1)2β2

, e−r(1−e
−α)2β2}

≤ 1

6
.

Therefore, with probability 2/3,

|(P0)i − (Q0)i| ≤ (Q0)i max{2(eα − 1), 2(1− e−α)} ≤ 2α(Q0)i

for sufficiently small α. This implies max{ (P0)i
(Q0)i

, (Q0)i
(P0)i
} ≤ e4α. Similarly,

max{ (P1)i
(Q1)i

,
(Q1)i
(P1)i

} ≤ e4α.

Since ε̂ ≤ ε+ 2α we have

(P0)i
(P1)i

=
(P0)i
(Q0)i

(Q0)i
xi

xi
yi

yi
Q1)i

(Q1)i
(P1)i

≤ e4α+α+ε+2α+α+4α.

We now turn to lower bounding the query complexity of aDP testing in the FI setting.
The sample complexity is tight in α but deviates by a factor of β.
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Theorem 10.12 (pDP lower bound). Let α > 0 and ln 2 > ε > 0. Given side information
(Q0, Q1), any ε-pDP property tester with proximity parameter α has query complexity
Ω
(

1
βα2

)
.

Proof. Let ψ, ω, φ ∈ [n] and notice that β < 1/2 provided n > 2. To prove the lower
bound let

Q0 = βχψ + βχω + (1− 2β)χφ and Q1 = eεβχψ + (2− eε)βχω + (1− 2β)χφ

be the side-information. Then (Q0, Q1) is ε-pDP. Let

P0 = e−αβχψ + (2− e−α)βχω + (1− 2β)χφ and P1 = Q1

so (P0, P1) is α-far from ε-pDP. Now,

DKL(P0|Q0) = β ln
β

e−αβ
+ β ln

β

(2− e−α)β
= βα + β ln

(
1− 1− e−α

2− e−α

)
≤ βα− βα + βα2 = βα2.

As in Theorem 10.5, we must have

r ≥ 2

9

1

DKL(P0|Q0)
= Ω

(
1

βα2

)
.
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Part V

Online Learning through the Lens of
Differential Privacy
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CHAPTER 11

Introduction

In the previous parts, data was released to us via some randomised process that ob-
fuscated the information we were trying to learn. We viewed this randomisation as a
hindrance to accurate recovery of the information. In Parts II and IV the uncertainty arose
from the sampling process where we were uncertain that the sample accurately represented
the underlying information. In Part III, we deliberately added noise to obscure the underly-
ing information, and saw a direct negative relationship between the amount of noise added
to the measurements and the accuracy of our recovered source vector. In the presence of
both types of uncertainty, it is not always the case that the latter is counterproductive [Yu,
2013, Poggio et al., 2004]. In fact, perturbing the data can often lower the impact of the
former type of uncertainty, sampling error, which is typically unavoidable. In this part of
the thesis, we will explore how DP techniques can be used not only to maintain privacy,
but to reduce regret in online learning algorithms. 1

Online learning is the process of making predictions based on (possibly partial) knowl-
edge of the outcome of previous predictions. Each round, the learner suffers a loss related
to how wrong their prediction was. As an example, consider an advertising company
deciding which adverts to show. Each day, they update their hypothesis on what each con-
sumer will click on and lose revenue if their hypothesis is wrong. This framework has two
main differences to the offline framework. Firstly, information is withheld from the learner
and only released after they have made their prediction. Also, we consider the sequence
of data to be adversarially chosen: the consumer is deliberately trying to mislead the ad-
vertiser. Unlike in the sampling setting, where we can bound the probability of obtaining
a bad sample, an adversarially chosen sample is certain to be as unrepresentative of the
underlying information as possible. Thus, the need to lower the impact of sampling error
is even more prevalent in the online learning setting.

Stability of the output in the presence of small changes to input is a desirable feature of
1This Part is based on joint work with Chansoo Lee, Jacob Abernethy and Ambuj Tewari. Chansoo Lee did much of the heavy

lifting and the ideas in Section 12.2.2 belong to him. Some of the prose in this Part was written by Chansoo, Jacob or Ambuj, although
the presentation has been altered from the preprint [Abernethy et al., 2018] for the purposes of this thesis.
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methods in statistics [Yu, 2013] and machine learning [Poggio et al., 2004]. Formal notions
of stability and learning guarantees derived from them have been studied both for statistical
[Bousquet and Elisseeff, 2002] and adversarial online learning [Ross and Bagnell, 2011].
Hardt et al. [2016] argues that training techniques used in deep learning promote stability
as the key ingredient. In this Part, we use the DP lens to design and analyze algorithms
for online linear optimization, an important family of problems in online learning. We use
tools from DP to provide a clean analysis of the Follow-the-Perturbed-Leader algorithm
in several settings.

We emphasize, at the outset, that our goal is not the design of low-regret algorithms
that satisfy the privacy condition; indeed there is already substantial existing work along
these lines [Jain et al., 2012, Thakurta and Smith, 2013, Tossou and Dimitrakakis, 2017,
Agarwal and Singh, 2017]. Our goal is instead to show that, in and of itself, the DP
methodology is quite well-suited to design randomized learning algorithms with excellent
gaurantees. An excellent introduction to online learning can be found in Shalev-Shwartz
[2012].

11.1 Online Linear Optimization

We define Online Linear Optimization (OLO) problem, which will be the main focus
of this part of the thesis. Let X ⊆ RN be the learner’s decision set, and Y ⊆ RN be the
loss set. Suppose both sets are convex and bounded in dual norms and we refer to these
norm bounds by ‖X‖ and ‖Y‖? respectively.

We consider an oblivious adversary that chooses a sequence of loss vectors `t ∈ Y
ahead of time. At every round t, the learner chooses a vector xt ∈ X , and suffers loss
〈xt, `t〉. Note that the learner is allowed access to its private source of randomness in
making its moves xt. The learner’s goal is to minimize the expected regret after T rounds:

ERegretT = E
∑T

t=1〈xt, `t〉 −minx∈X
∑T

t=1〈x, `t〉

where the expectations are over all of the learner’s randomness. In the loss-only setting,
losses are always positive: minx∈X 〈x, `t〉 ≥ 0 for all t. In the loss/gain setting, losses can
be positive or negative. If Y and X are both bounded then the worst regret that can be
suffered by any learner is linear in T .

We define a few shorthand notations: Lt =
∑t

s=1 `s is the cumulative loss,
x∗t = arg minx∈X 〈x, Lt〉 is the best action in hindsight at time t, and L∗t = 〈x∗t , Lt〉 is its
total loss. A sequence (a1, . . . , at) is abbreviated a1:t.
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11.2 Related work

The idea that answering a statistical query privately prevents overfitting has received
significant attention in recent years [Dwork et al., 2015, Nissim and Stemmer, 2015, Bass-
ily et al., 2016, Cummings et al., 2016]. In the online setting, the utility of the differential
privacy as a stability notion for analysing specific online learning has been noted before.
The connection between the exponential weight mechanism and the exponential mecha-
nism (Lemma 2.9) was recognised in the early stages of DP [Dwork and Roth, 2014b].
Dwork et al. [2014] showed that the Gaussian mechanism results in a low-regret algorithm
for online PCA.

Perturbation techniques for online learning have existed for some time. Follow-the-
Perturbed-Leader (FTPL) relies on adding noise directly to the global loss objective [Kalai
and Vempala, 2005]. Much of the work on analysing FTPL algorithms has been ad hoc and
context specific [Kalai and Vempala, 2005, Theorem 2] [Devroye et al., 2013, van Erven
et al., 2014, Syrgkanis et al., 2016]. Few recent works have proposed generic framework
that provide some useful insights; Rakhlin et al. [2012] derived FTPL as a minimax strat-
egy against a randomly simulated worst-case adversary. Abernethy et al. [2014] derived
FTPL as a mirror descent with a stochastically smoothed dual function. However, none of
the existing FTPL analyses make any explicit connections with DP as we do.
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CHAPTER 12

Analysing Follow-the-Perturbed-Leader using Differential Privacy

In this chapter we describe a popular online learning algorithm that can be interpreted
as a private mechanism, and use DP tools to prove generic regret bounds.

12.1 Follow-the-Leader

Let us begin by discussing the first algorithm that one might try: Follow-the-Leader
(FTL). The FTL algorithm selects the exact optimal action based on the data seen so far:

xFTL
t+1 = arg min

x∈X
〈x, Lt−1〉.

In the non-adversarial setting, FTL does just fine. In fact, a crucial fact used in statistical
learning is that models (or classifiers) learnt on randomly sampled training data are likely
to perform well on a random sample from the population. However, in the adversarial
setting, FTL can suffer regret linear in T .

To see this consider the situation where X = Y = [−1, 1]. Suppose the adversary plays
the sequence `1 = −0.5, `2 = 1, `3 = −1, `4 = 1, `5 = −1, etc. A learner using FTL will
respond by playing x1 = 0, x2 = −1, x3 = 1, x4 = −1, x5 = 1, · · · . Such a learner will
incur regret T because they consistently incorrectly guess the sign of `t. A FTL learner
is easily lead to overfitting the data: a small change in the adversaries data sequence can
cause the learner to drastically alter their guess. The following result indicates that stability
in the learner’s predictions may be the key to better regret bounds.

Lemma 12.1. Let x1, x2, · · · be the sequence of vectors produced by FTL. Then

RegretT ≤
T∑
t=1

〈xt, `t〉 − 〈xt+1, `t〉

The proof of Lemma 12.1 can be found in [Shalev-Shwartz, 2012, Lemma 2.1].
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12.2 Follow-the-Perturbed-Leader Analysis via One-Step Differential Privacy

We established in the previous section that it is in the learner’s interest to play an action
that is stable with respect to small changes in the input. Fortunately, differentially private
algorithms are designed to achieve this guarantee! We will explore this connection through
the analysis of a classical OLO algorithm: Follow-the-Perturbed Leader (FTPL). Given a
noise distribution D, FTPL selects the optimal action based on a perturbed version of the
data seen so far:

xFTPL
t+1 = arg min

x∈X
〈x, Lt−1 + Z〉

where Z ∼ D. The name FTPL was coined by Kalai and Vempala [2005], although the
main idea goes back to some of the earliest work in online learning [Hannan, 1957]. Note
that, for oblivious adversaries, the expected regret does not depend on whether the same
random Z is reused across all rounds or independent Zt’s are drawn at each round. We
will assume the reused randomness case throughout this part.

The FTPL algorithm is closely related to a fictitious algorithm called Be-the-Perturbed-
Leader (BTPL). BTPL also chooses the optimal action based on a perturbed version of the
data, but it imagines that the learner knows `t when they are choosing xt. That is,

xBTPL
t+1 = arg min

x∈X
〈x, Lt + Z〉

where Z ∼ D. BTPL obviously performs better than FTPL since the learner knows the
future. Differential privacy allows us to upper bound Regret(FTPL)T with a function of
Regret(BTPL)T , provided the map Lt 7→ Lt + Z is DP.

Definition 12.2 (One-step privacy). An online learning algorithm is (ε, δ)-one-step differ-
entially private if Dδ

∞(xt, xt+1) ≤ ε for all t = 1, . . . , T given any loss sequence.

FTPL is (ε, δ)-one-step DP ifD is chosen appropriately. One-step privacy is a powerful
condition on the stability of FTPL (and online learning algorithms in general), from which
we can derive generic regret bounds. The following theorem, relating privacy to regret,
provides a powerful tool which we build on in the remainder of this part. In order to state
the theorem more generally we introduce notation A+ for a fictitious algorithm that plays
at time t what A would play at time t+ 1. If A is FTPL then A+ is BTPL.

Theorem 12.3. If A is (ε, δ)-one-step DP for a loss-only OLO problem with ε ≤ 1, its
expected regret is at most:

2εL∗T + 3E[Regret(A+)T ] + δ‖X‖
∑T

t=1 ‖`t‖?

Proof. Using Lemma 2.4, we have for every t,

E[〈xt, `t〉)] ≤ eεE[〈xt+1, `t〉] + δ‖X‖‖`t‖?.
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By summing over t, we have

E
[∑T

t=1 Loss(A)t

]
≤ eεE[

T∑
t=1

Loss(A+)t] + δ
T∑
t=1

‖X‖‖`t‖?

≤ eε(L∗T + E[Regret(A+)T ]) + δ
∑T

t=1 ‖X‖‖`t‖?.

Subtract L∗T from each side and get:

(eε − 1)L∗T + eεE[Regret(A+)T ] + δ‖X‖
∑T

t=1 ‖`t‖?.

To complete the proof, we use the trivial upper bounds eε ≤ 1 + 2ε ≤ 3, which hold for
ε ≤ 1.

Theorem 12.3 suggests a strategy for analysing FTPL algorithms: first show that the
perturbation algorithm satisfies (ε, δ)-DP for some (ε, δ), then bound the regret of BTPL.
Without perturbation BTPL has zero regret, since it will always choose the optimal action.
In the presence of perturbation, BTPL suffers regret that does not grow in T but only in
the magnitude of the noise and the size of X [Kalai and Vempala, 2005]:

(12.1) E[Regret(BTPL)T ] ≤ EZ∼D[supx∈X 〈x, Z〉].

12.2.1 General First-Order FTPL Bound

Abernethy et al. [2014] showed that FTPL with Gaussian noise is a universal OLO
algorithm with regret O(‖X‖2‖Y‖2

4
√
N
√
T ). However, their analysis technique based on

convex duality does not lead to first-order bounds in terms of L∗T in the loss-only settings.
In other words, one would prefer a bound that increases according to the loss of the best
performing action, which grows linearly in T only in the most pessimistic scenarios.

With the analysis tools presented in this work, we establish that FTPL with Gaussian
noise does enjoy, up to logarithmic factors, the first-order regret bound that scales in L∗T .
Put differently, FTPL with Gaussian noise is able to adapt to the input if there is a strong
signal for the best action, a property that was not discovered in previous analysis.

Theorem 12.4. Consider a loss-only OLO problem. Let R = ‖X‖2‖Y‖2. FTPL with
Gaussian noise achieves expected regret of order O

(
4
√
N
√
RL∗T log T +

√
NR log T

)
.

Proof. Let σ = ε−1‖Y‖22 log(2/δ), where ε, δ will be determined later. By Lemma 2.8
and Lemma 2.3, FTPL with N (0, σI) is (ε, δ)-one-step DP with respect to Y . Also note
that the regret bound for the Gaussian BTPL is σ‖X‖2

√
2N .

We now apply Theorem 12.3 and get the regret bound:

2εL∗T + 5σ‖X‖2

√
N + δ‖X‖2

∑T
t=1 ‖`t‖∗ ≤ 2εL∗T + 10ε−1R

√
N log(2/δ) + δTR.
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Set δ = (2TR)−1, so that the last term becomes a constant. Then, choose

ε = min(
4
√
N
√

(R log T )/L∗T , 1).

If ε = 1, then we must have L∗T ≤
√
NR log T , then, which gives O(

√
NR log T ) regret.

Otherwise, we obtain O( 4
√
N
√
RL∗T log T ) regret.

When L∗T � ‖Y‖2T , our bound is a major improvement over O(R 4
√
N
√
T ) given by

Abernethy et al. [2014]. For example, when L∗T = O(R
√
T ), our bound givesO(R 4

√
NT ).

Note that we tuned both ε and δ as part of the analysis. This was allowed because low regret
is our goal, rather than privacy.

12.2.2 Online Sparse PCA

In offline Principle Component Analysis (PCA), data in Rn are projected onto a k-
dimensional subspace. The goal is, given data, to find the rank k projection matrix that
minimises the compression loss

∑
t ‖Xxt − xt‖2

2. In the online version, at each round
the learner chooses a k-dimensional subspace, or equivalently a rank k projection ma-
trix Xt. The next datapoint is then revealed and the learner suffers the compression loss
‖Xtxt − xt‖2

2. Due to the structure of RegretT , we can replace this loss function with
x>t Xtxt. In this section we show that, for Online Sparse PCA, there is a simple FTPL
algorithm that achieves the optimal regret.

Let SN be the set of N ×N symmetric real matrices, and λ : SN → RN be the function
that outputs the eigenvalues of a matrix in decreasing order. The spectral norm of a matrix
X ∈ SN is the `∞-norm of λ(X), denoted ‖λ(X)‖∞. An orthogonal invariant ensemble
(OIE) is a distribution over matrices such that for an arbitrary matrix A in its support, any
orthogonal transformation of A is also in the support and has the same density as A.

Online Sparse PCA is an OLO problem where

X = {X : X ∈ SN, 0 � X � I and tr(X) = k}

and Y = {aa> : a ∈ RN , ‖a‖2 = 1} is the set of rank-1 matrices with eigenvalue 1. The
loss function is a>Xa =

∑
i,j(aa

>)ijXij , making it an N2-dimensional problem. The
optimal regret isO(

√
L∗k log(N/k)+k log(N/k)), while the best known FTPL algorithm

by Dwork et al. [2014] achieves O(N
1
4

√
kL∗ log T ) regret using Gaussian Orthogonal

Ensemble.
The Laplace-on-Diagonal Orthogonal Invariant Ensemble (LOD) with scaling param-

eter 1/ε has probability density function p(Z) ∝ exp(−ε‖λ(Z)‖1). We propose the FTPL
algorithm with Z distributed according to the LOD distribution for Online Sparse PCA.
As per Theorem 12.3 we need to show both that BTPL has low regret and adding LOD
noise satisfies DP.
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Lemma 12.5. LOD mechanism, defined asM : RN×N → RN×N withM(A) = A + Z,
where Z is a sample from LOD(u/ε), is ε-differentially private with respect to the set
{X ∈ RN×N : ‖λ(X)‖1 ≤ u}.

Proof. We will prove this by showing a generic reduction technique to the vector case.
In particular, suppose that a distribution D over matrices has density function of the form
p(Z) = Cq(‖λ(Z)‖) for a normalizing constant C, arbitrary function of vectors q, and
some norm ‖ · ‖. Then, we will show that the privacy guarantee of distribution D′ over
vectors whose density function is some constant times q extends to the matrices.

Let A,A′, B be matrices. Then,

p(B−A)
p(B−A′) = q(‖λ(B−A)‖)

q(‖λ(B−A′)‖) .

By triangle inequality, ‖λ(B − A)‖ − ‖λ(B − A′)‖ ≤ ‖λ(A− A′)‖. So,

sup
A,A′,B∈RN×N
‖λ(A−A′)‖≤u

p(B − A)

p(B − A′)
≤ sup

a,a′∈RN
‖a−a′‖≤u

q(a)

q(a′)
.

Hence, if adding a noise fromD′ achieves ε-DP with respect to a set of vectors bounded in
‖ · ‖, then adding a noise from D achieves ε-DP with respect to a set of matrices bounded
in ‖λ(·)‖.

Lemma 12.6 (k-sparse Online PCA). BTPL algorithm with Laplace-on-Diagonal ensem-
ble for the k-sparse Online PCA problem has expected regret at most k(log(N/k) + 1)/ε.

Proof. For Online k-Sparse PCA problem, supx∈X 〈x, Z〉 is the is the sum of k-largest
eigenvalues of Z. When D is LOD ensemble, these eigenvalues follow the Laplace dis-
tribution. By [Neu, 2015, Lemma 10], the expected sum of k largest coordinates of an
N -dimensional vector sampled from the Laplacian distribution is k(log(N/k) + 1)/ε.

Corollary 12.7. FTPL with LOD achieves O(
√
L∗k log(N/k) + k log(N/k)) expected

regret on Online k-Sparce PCA.

Proof. Given Lemma 12.5 and Lemma 12.6 all we need to complete the proof is to apply
Theorem 12.3 with ε = min(

√
k(1 + log(N/k))/L∗, 1).
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CHAPTER 13

The Experts Setting, Hazard Rates and Privacy

We will now turn our attention to the classical online learning setting of prediction
with expert advice, or often known as the experts setting. In short, one imagines a set
of experts each making a prediction on every round, and a learner that must maintain a
belief distribution over the experts, in order to form a merged prediction; for background
please see, e.g., [Cesa-Bianchi and Lugosi, 2006, Littlestone and Warmuth, 1994, Freund
and Schapire, 1997]. We show in this section first-order optimal regret bounds for experts
setting that apply to FTPL with any finite hazard rate distribution.

The experts setting is in fact a canonical online linear optimization problem: we let X
be the probability simplex with N vertices, denoted ∆N , and Y = [0, 1]N . A central result
in online learning is that the minimax regret in the experts setting isO(

√
L∗T logN+logN)

[Abernethy et al., 2008]. Our main result in this section (Theorem 13.1) provides a generic
sufficient condition for the distributions that FTPL can use to match the minimax regret.

Theorem 13.1. For the loss-only experts setting, FTPL with Laplace, Gumbel, Frechet,
Weibull, and Pareto noise (i.i.d. for each of N coordinates), with a proper choice of
distribution parameters, all achieve O(

√
L∗T logN + logN) expected regret.

Although we are not the first to find FTPL with the above regret bound, L∗T bound for
FTPL with any of the mentioned noise is not found in the literature. In fact, previous
FTPL algorithms with L∗T regret bound all relied on one-sided perturbation that subtract
from the cumulative loss; Kalai and Vempala [2005] used the negative exponential noise
and van Erven et al. [2014] the dropout noise that is effectively a negative Bernoulli noise.

Symmetric distributions, on the other hand, were previously shown to achieve only
O(
√
T ) regret: such as Gaussian noise [Abernethy et al., 2014], random-walk noise [De-

vroye et al., 2013], and a large family of symmetric noises [Rakhlin et al., 2012]. Our
DP-based analysis shows that such discrepancy was merely due to the lack of proper
analysis tools. We will use the analysis framework established in the previous Chapter:
establishing privacy guarantees and bounding the regret of BTPL.
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For this section, let D be an absolutely continuous distribution over R with probability
density function µD and cumulative density function ΦD. Let f̃D and MD be functions
from RN to R defined as f̃D(x) = E[maxi∈[N ](xi + Zi)] andMD(x) = x + Z, where Z
in both definitions is a vector of N i.i.d. samples from D.

In the experts setting, the output of FTPL is always a vertex of the simplex. In fact,
the learner always plays i∗ = arg maxi∈[N ](xi + Zi). By Bertsekas [1972], we can swap
the order of differentiation and expectation so ∇f̃D(x) = E[ei∗ ]. That is, ∇if̃D(x) is the
probability that FTPL algorithm would play ei given a cumulative loss vector x.

13.1 Differential Consistency and Privacy

Abernethy et al. [2015], introduced a new kind of smoothness property called differen-
tial consistency. They showed that differential consistency is a key component of stable
online learning algorithms. In this section, we show that privacy plays a similar role to
differential consistency in the analysis of OLO algorithms.

Definition 13.2 (Differential Consistency). We say that a function f : RN → R is ε -
differentially consistent if f is twice-differentiable and∇2

iif ≤ ε∇if for all i ∈ [N ].

Since Differential consistency is inherently a continuous notion, we need to alter our
privacy notion. Lipschitz privacy is a variant of DP where we have a continuous, rather
than discrete, definition of neighbours.

Definition 13.3 (Lipschitz Privacy). We say that a mechanismM is (ε, δ)-Lipschitz pri-
vate with respect to a norm ‖ · ‖ if for all a, a′ ∈ dom(M),

Dδ
∞(M(a),M(a′)) ≤ ε‖a− a′‖.

The OLO analysis in [Abernethy et al., 2015] proceeds by showing that the differential
consistency property can be used to bound the divergence penalty term of the expected
regret of an FTPL algorithm, which measures how much the learner’s guess depends on
the most recently received loss function `t−1. The next proposition shows that we can
by-pass this analysis by appealing to privacy.

Proposition 13.4. If f̃D is differentially consistent, then the mapping from a ∈ RN to a
random sample drawn from∇f̃D(a) is ε-Lipschitz private with respect to ‖ · ‖1.

Conversely, if∇f̃D(a) is ε-Lipschitz private with respect to ‖·‖1 then f̃D is differentially
consistent.

Proof. First, note that the second derivative vector∇2
i·f̃D = (∇2

i1f̃D, . . . ,∇2
iN f̃D) satisfies

that the i-th coordinate is the only positive coordinate, and that its coordinates add up to 0
[Abernethy et al., 2014]. So, ‖∇2

i·f̃D‖∞ = ∇2
iif̃D.
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Define qi(u) = ∇if̃D(a′ + (a− a′)u). Its derivative is

q′i(u) = 〈∇2
i·f̃D(a+ (a− a′)u), a′ − a〉

≤ ‖∇2
i·f̃D(a+ (a− a′)u)‖∞‖a′ − a‖1

≤ ∇2
iif̃D(a+ (a′ − a)u)‖a′ − a‖1

≤ ε∇if̃D(a+ (a′ − a)u)‖a′ − a‖1

= εqi(u)‖a′ − a‖1

The last inequality is from our differential consistency assumption. It follows that for any
u ∈ [0, 1], we have

q′i(u)

qi(u)
=

d

du
log(qi(u)) ≤ ε‖a′ − a‖1

and therefore

ln ∇if̃D(a)

∇if̃D(a′)
= log qi(1)− log qi(0) =

∫ 1

0

d

du
log(qi(u)) du

≤ ε‖a′ − a‖1.

Now, suppose∇f̃D(a) is ε-Lipschitz private so for all i ∈ [N ] we have

ln
∇if̃D(a)

∇if̃D(b)
≤ ε‖a− b‖1.

Now, restricting to the case where a and b only differ in the ith coordinate this implies
ln∇if̃D(a)−∇if̃D(b)

|ai−bi| ≤ ε. Taking the limit as b→ a we recover

∇iif̃D(a)

∇if̃D(a)
=

∂

∂xi
ln∇if̃D(a) ≤ ε.

13.2 Proof of Theorem 13.1

The commonality between the noise models listed in Theorem 13.1 is that they have
bounded Hazard rates. The Hazard rate of a distribution is a statistical tool for survival
analysis that measures how fast a distribution’s tail decays. The lower the Hazard rate, the
slower the tail decays.

Definition 13.5 (Hazard Rate). The hazard rate of D at a is hazD(a) = µD(a)
1−ΦD(a)

. The
(maximum) hazard rate of D is

hazD = supa∈support(D) hazD(a).
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Abernethy et al. [2015] showed that if hazD ≤ ε, then f̃D is ε-differentially consistent.
The following corollary then follows directly from Proposition 13.4 since ∇f̃D(a) is the
probability vector for FTPL.

Corollary 13.6. If hazD ≤ ε, then FTPL with DN (sampling N i.i.d. samples from D to
generate noise) is ε-one-step Lipschitz private.

The final ingredient of our analysis is a bound on the BTPL regret.

Lemma 13.7. for all distributions mentioned in Theorem 13.1, Regret(BTPL)T is of order
(logN)/ε.

Proof. By Equation (12.1),

E[Regret(BTPL)T ] ≤ EZ∼D[supx∈X 〈x, Z〉] = EZ∼D[maxi Zi].

For each distribution, the expected maximum of N draws is asymptotically bounded by
(logN)/ε [Abernethy et al., 2015].

Proof of Theorem 13.1. All listed distributions have max hazard rate of ε (for the parame-
ter choice, see Abernethy et al. [2015]). From Corollary 13.6 and post-processing immu-
nity (Lemma 2.3), we conclude that FTPL with any of the listed distributions is ε-Lipschitz
private with respect to ‖ · ‖1. The loss set for experts setting, however, is bounded in the
∞-norm.

To address this gap, we will show that from the privacy perspective, the worst case is
when `t has only one non-zero element and thus ‖`t‖1 = ‖`t‖∞.

In the experts setting, the output of FTPL is always a vertex of the simplex. Consider
an arbitrary noise vector Z. If Lt,i + Zi < Lt,j + Zj , then Lt,i + zi < Lt,j + Zj + α for
any α > 0. So, {Z ∈ RN : ei = O(Lt + Z)} ⊆ {Z ∈ RN : ei = O(Lt + Z + `(−i))} for
any loss vector `(−i) ∈ Y whose i-th coordinate is zero. In other words, adding any loss to
coordinates other than i can only increase the probability of playing ei. So, for any fixed
`1,t−1 ∈ Y t−1,

sup
i∈[N ],`t∈Y

P[xFTPL
t = ei]

P[xFTPL
t+1 = ei]

= sup
i∈[N ]

P[xFTPL
t = ei]

inf`t∈Y P[xFTPL
t+1 = ei]

= sup
i∈[N ]

P[xFTPL
t = ei]

inf`t:‖`t‖1≤1 P[xFTPL
t+1 = ei]

= sup
`t:‖`t‖1≤1

sup
i∈[N ]

P[xFTPL
t = ei]

P[xFTPL
t+1 = ei]

.

Applying Theorem 12.3 with ε = min(
√
Regret(BTPL)T )/L∗T , 1) completes the proof.
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László Lovász. Large networks and graph limits. Amer. Math. Soc. Colloq. Publ., 60,
2012.

Audra McMillan and Adam Smith. When is non-trivial estimation possible for graphons
and stochastic block models?? Information and Inference: A Journal of the IMA, page
iax010, 2017.

Frank D. McSherry. Privacy integrated queries: An extensible platform for privacy-
preserving data analysis. In Proceedings of the 2009 ACM SIGMOD International Con-
ference on Management of Data, SIGMOD ’09, pages 19–30, 2009.

97
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