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Abstract 

 

Despite the availability of vaccines, influenza causes approximately 3-5 million cases of 

severe illness and 400,000 deaths each year. Prevention efforts might potentially be strengthened 

by harnessing the host microbiome, which plays an important role in maintaining human health by 

promoting host immunity and colonization resistance.  Although vaccines are the best available 

means of prevention, vaccine effectiveness has been low to moderate in recent years and vaccine 

coverage remains low, especially in low- to middle-income countries. Exploring the relationship 

between influenza virus and the respiratory microbiome may contribute to alternative strategies of 

prevention. 

This dissertation explores the relationship between influenza virus and the nose/throat 

microbiome. In chapter 2, we describe our current understanding of respiratory virus-bacteria 

interactions using systematic and targeted literature searches. We explore whether respiratory 

viruses can place selective pressures on bacteria in the upper respiratory tract. Further, as 

colonization in the upper respiratory tract is a necessary precursor for many respiratory pathogens, 

we explore whether virus-associated changes in the upper respiratory tract microbiome can 

influence the etiology of bacterial pneumonia. We found strong biological support for a link 

between respiratory viruses, the upper respiratory tract microbiome, and bacterial pneumonia.  

However, we found a lack of longitudinal studies among human populations that examined all 

three components.  

To address this knowledge gap, we used a household transmission study of influenza in 

Nicaragua to explore potential relationships between influenza and the nose/throat microbiome. In 



 xvii 

chapter 3, we examine whether the respiratory microbiome mediates susceptibility to influenza 

virus infection and characterize structural changes to the nose/throat microbiome during influenza 

virus infection. We used Dirichlet multinomial mixture models to assign nose/throat samples to 

bacterial community types and generalized linear mixed effects models which account for 

clustering by household. We found a single community type associated with decreased 

susceptibility to influenza. Further, we found high rates of change in the microbiome structure 

following influenza virus infection as well as among household contacts who were never infected 

with influenza during follow up.  

In chapter 4, we use secondary cases from the Nicaraguan household transmission study to 

investigate whether the respiratory microbiome impacts influenza symptomology and viral 

shedding. We used generalized linear mixed effects models to examine the presentation of 

symptoms and viral shedding. Further, we used accelerated failure time models with a generalized 

estimating equation approach to examine time-to-event outcomes including symptom duration, 

shedding duration, and time to infection. The duration of symptoms varied by bacterial community 

type both prior to and during influenza virus infection. Further, a community type with low 

diversity was associated with shorter duration of viral shedding and delayed time to infection 

among secondary cases.  The results of these various analyses suggest the respiratory microbiome 

may be a potential target for reducing influenza risk, household transmission, and disease severity. 

In the final chapter, I review the skills I learned and the challenges I encountered during the 

dissertation process. Finally, I review future research directions that focus on deciphering the 

complex dynamics between the host, pathogen, and microbiome. 



 1 

Chapter 1 Introduction 

 

This dissertation explores the relationship between influenza virus and the respiratory 

microbiome. In this chapter, I discuss the global impact of influenza and the importance of 

identifying unknown risk factors and developing new strategies for prevention. With increasing 

support for the role of the host microbiome on human health, I explore the relationship between 

influenza and the respiratory microbiome. Further, I propose the respiratory microbiome may be a 

potential target for future interventions. 

 

1.1 Influenza Virus 

Influenza is a negative-stranded RNA virus from the Orthomyxoviridae family [1]. As a 

highly contagious and rapidly evolving pathogen [2], influenza virus is estimated to cause 3-5 

million cases of severe illness [3] and 400,000 deaths [4] each year. Animal experiments [5] and 

human challenge studies [6] provide highly valuable information about influenza pathology and 

factors that impact viral shedding and symptomology. However, results from these studies may 

not accurately represent true influenza dynamics in human populations. Household studies have 

played an important role in filling this gap by allowing researchers to examine the natural 

progression of infections among household contacts exposed to influenza virus [7–9]. These 

studies have been useful for identifying risk factors of influenza and for evaluating potential 

interventions. 

Currently, the most well-known risk factors include young and old age, chronic conditions, 

and immunodeficiencies [10] and common strategies for prevention have included vaccines, 



 2 

antivirals, facemasks, and hand hygiene [8,11,12]. Murine studies suggest the host microbiome 

may also mediate influenza virus infection, but this relationship has not yet been explored in human 

populations. Although influenza vaccines are the best available means of protection, vaccine 

effectiveness has been low to moderate in recent years [13,14] and vaccine coverage remains low, 

especially in low- and middle-income countries [15]. Exploring the relationship between the host 

microbiome and influenza virus may contribute to supplementary strategies of prevention. 

 

1.2 The Human Microbiome 

The human body is colonized by a dynamic microbial community consisting of bacteria, 

virus, archaea, and fungi. These microbes and their genetic content is collectively termed the 

microbiome. In recent years, research has shown the microbiome plays an important role in 

maintaining human health by shaping systemic and local host immunity [16–20] and preventing 

pathogen colonization or expansion (i.e. colonization resistance) [21–24]. As a relatively new 

field, one of the primary goals of microbiome research is to understand what constitutes a “healthy” 

microbiome. This involves examining the abundance of individual taxa as well as differences in 

the overall microbial community structure through clustering algorithms [25,26] and diversity 

metrics [27]. In addition to structural differences, exploring functional characteristics of the 

microbiome through metagenomics, metatranscriptomics, proteomics, and metabolomics can 

provide insight to which microbial activities and metabolites may contribute to health [28].  

 An important topic in microbiome research is ecological stability [29], defined as the 

capacity of an ecosystem to avoid perturbation (i.e. resistance) or return to the original state after 

perturbation (i.e. resilience). Perturbations can cause disease by promoting an expansion of 

opportunistic pathogens or through a loss of beneficial commensals [30]. An improved 
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understanding of factors that perturb the microbiome could lead to synbiotic interventions that 

prevent the microbiome from transitioning into diseased states (i.e. improve resistance) or promote 

a rapid return to a healthy state following perturbation (i.e. improve resilience). In addition to 

lifestyle and environmental factors, host immunological factors play a crucial role in the 

development and stability of the microbiome [27,30,31]. Although not yet fully understood, this 

relationship involves a complex network of interactions between host epithelial cells, innate and 

adaptive immune cells, and the microbiome. A thorough summary of biological mechanisms 

described in the literature is in an earlier review by Levy et al. [30]. Infection by an exogenous 

pathogen can perturb the microbiome by stimulating a host immune response and disrupting 

regular cross-talks between the host and microbiome. Perturbations by pathogens such as influenza 

virus can lead to secondary infections, associated with increased severity and mortality [32,33].  

 

1.3 The Bi-directional Relationship between Influenza and the Microbiome 

The relationship between influenza virus and the microbiome is believed to be bi-

directional. First, the microbiome may influence influenza virus infection. Although not yet 

examined in human populations, murine studies suggest the microbiome can influence influenza 

virus infection through immunomodulation [34,35]. Mice treated with antibiotics prior to 

inoculation with influenza expressed impaired macrophage responses to type I and type II 

interferons [35] and defective T-cell and B-cell responses [34]. It is still unclear which attributes 

of the microbiome may be driving this relationship. However, recent randomized controlled trials 

report substantial reductions in the incidence of respiratory tract infections among newborns given 

synbiotic treatment compared to placebo [36,37]. Further exploration in human populations could 

enhance synbiotic approaches for preventing influenza virus infection. 
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Second, influenza virus may influence the microbiome. Man et al. fittingly describes the 

upper respiratory tract as the “gatekeeper to respiratory health” [38] as colonization at this site is 

a necessary precursor of respiratory infection for certain bacterial pathogens [39,40]. Respiratory 

viruses such as influenza can perturb the microbiome, enhancing the acquisition [41,42] and 

overgrowth [43,44] of opportunistic pathogens in the upper respiratory tract. This perturbation 

increases risk of invasive disease [20,21], potentially through more frequent microaspiration into 

the lung or migration to the middle ear [22]. However, no longitudinal studies among human 

populations have yet examined how influenza virus infection alters the microbiome. As the 

majority of influenza deaths are attributed to secondary bacterial infections caused by common 

bacterial residents of the upper respiratory tract [32], characterizing these changes in the 

microbiome would be a first step towards designing synbiotic methods for improving microbiome 

resilience and reducing disease severity.  

 

1.4 Dissertation Aims 

The overall goal of this dissertation is to explore the relationship between influenza virus 

and the upper respiratory tract microbiome. In chapter 2, we review the role of respiratory viruses 

in the etiology of bacterial pneumonia. Through systematic and targeted literature searches, we 

examine whether respiratory viruses alter the bacterial community structure in the upper 

respiratory tract. Further, we investigate whether virus-related changes in the upper respiratory 

tract determine the etiology of bacterial pneumonia.  

In chapter 3, we use a household transmission study to examine whether the nose/throat 

microbiome is associated with susceptibility to influenza virus infection. Further, we explore 

whether influenza virus infection alters the bacterial community structure. Our unique study design 
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allows us to characterize the microbiome prior to influenza virus infection and to explore 

characteristics that may contribute to reduced influenza susceptibility. 

In chapter 4, we use the previously mentioned household study to examine whether the 

nose/throat microbiome impacts influenza symptomology or viral shedding. Using daily symptom 

diaries and laboratory test results over follow up, we examine whether the microbiome both prior 

to and during influenza virus infection is associated with differences in symptomology and viral 

shedding. 

The last chapter provides a reflective summary of the dissertation process. I discuss the 

skills I gained, the challenges I encountered, and the lessons I learned from working at the 

intersection of epidemiology and microbial ecology. Lastly, I discuss future research directions 

primarily focused on deciphering the complex dynamics between the host, pathogen, and 

microbiome. 
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Chapter 2 The Role of Respiratory Viruses in the Etiology of Bacterial Pneumonia: an 

Ecological Perspective 

 

Published in Evolution, Medicine, and Public Health on February 15, 2016: 

 

Lee K, Gordon A, Foxman B. The role of respiratory viruses in the etiology of bacterial 

pneumonia: An ecological perspective. Evol Med Public Health 2016; 2016:95–109. 

 

2.1 Abstract 

Pneumonia is the leading cause of death among children less than five years old worldwide. 

A wide range of viral, bacterial, and fungal agents can cause pneumonia: although viruses are the 

most common etiologic agent, the severity of clinical symptoms associated with bacterial 

pneumonia and increasing antibiotic resistance make bacterial pneumonia a major public health 

concern. Bacterial pneumonia can follow upper respiratory viral infection and complicate lower 

respiratory viral infection. Secondary bacterial pneumonia is a major cause of influenza-related 

deaths. In this review, we evaluate the following hypotheses: 1) Respiratory viruses influence the 

etiology of pneumonia by altering bacterial community structure in the upper respiratory tract 

(URT); and, 2) Respiratory viruses promote or inhibit colonization of the lower respiratory tract 

(LRT) by certain bacterial species residing in the URT. We conducted a systematic review of the 

literature to examine temporal associations between respiratory viruses and bacteria and a targeted 

review to identify potential mechanisms of interactions. We conclude that viruses both alter the 

bacterial community in the URT and promote bacterial colonization of the LRT. However, it is 
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uncertain whether changes in the URT bacterial community play a substantial role in pneumonia 

etiology. The exception is Streptococcus pneumoniae where a strong link between viral co-

infection, increased carriage, and pneumococcal pneumonia has been established. 

 

2.2 Introduction 

Pneumonia is the leading cause of death in children under five worldwide, responsible for 

one million deaths each year [1]. The burden is greatest in developing countries, at an estimated 

0.22 episodes per child-year, but remains a major public health concern even among developed 

countries where there are an estimated 0.015 episodes per child-year [2]. In the United States, 

pneumonia is second only to newborn infant births as the most common reason for hospital 

admissions (36 cases per 10,000 persons [3]) and causes nearly 50,000 deaths each year [4].  

A wide range of viral, bacterial, and fungal agents can cause pneumonia when aspirated 

into the lungs. The Centers for Disease Control and Prevention (CDC) Etiology of Pneumonia in 

the Community (EPIC) study identified viruses as the most commonly identified etiologic agent 

in children and adults hospitalized with pneumonia. An etiologic agent was detected in 81% of 

2,222 children under 18 years of age: 66% had one or more viral pathogens, 8% one or more 

bacterial pathogens, and 7% both bacterial and viral pathogens [5]. Among 2,259 adults, an 

etiologic agent was detected in 38%: 23% had one or more viral pathogens, 11% one or more 

bacterial pathogens, and 3% both bacterial and viral pathogens [6]. However, virtually all these 

serious pneumonia cases were treated with antibiotics, as secondary bacterial infection can 

complicate lower respiratory viral infection. Therefore, even in cases determined to be pneumonia 

solely of viral etiology, bacteria interactions of virus and bacteria may play some role.  
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The large proportion of pneumonia cases without a detected pathogen underscores the 

limitations of current surveillance and detection methods and how they frame our understanding 

of pneumonia etiology (Appendix 2.1). EPIC study results suggest we may not be detecting the 

full panel of pathogens in cases we currently define as viral pneumonia, nor considering the 

potential role of bacteria on the pathogenic potential of viruses. Bacterial causes of pneumonia are 

associated with more severe clinical symptoms and increasing antibiotic resistance complicates 

treatment [2,7–10], making bacterial causes of pneumonia a major concern. 

In this review, we examine two hypotheses that argue the etiology of bacterial pneumonia 

is a consequence of ecologic selection influenced by the interaction of respiratory viruses and 

bacteria within the host: 1) Respiratory viruses influence the etiology of pneumonia by altering 

bacterial carriage structure in the upper respiratory tract (URT); and, 2) Respiratory viruses 

promote or inhibit colonization of the lower respiratory tract (LRT) by certain bacterial species 

residing in the URT. We begin by describing the normal processes of bacterial selection in the 

upper and lower respiratory tracts and then present evidence on how these processes can potentially 

be altered by respiratory viruses. 

 

2.3 Methods 

We conducted a systematic literature search in PubMed for studies published between 

January 1, 1990 and December 9, 2015. We restricted studies to those conducted in the United 

States to minimize potential geographic variation of associations. The following search string was 

used: (bacteria[All Fields] OR bacterial[All Fields]) AND (virus[All Fields] OR viral[All Fields]) 

AND (lower respiratory tract infection[All Fields] OR LRTI[All Fields] OR lower respiratory 

tract[All Fields] OR LRT[All Fields] OR lower respiratory infection[All Fields] OR LRI[All 
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Fields] OR pneumonia[All Fields] OR bronchitis[All Fields]) AND (“1990/01/1”[PDAT] : 

“2015/12/09”[PDAT]) AND United States[All Fields] AND (time[All Fields] OR temporal[All 

Fields] OR season*[All Fields]). Among 464 articles written in English, exclusions were made 

based on titles, abstracts, and full articles. We excluded reviews, in vivo and in vitro experiments, 

and studies of immunocompromised populations. 9 articles were retrieved from the literature 

search and 3 additional studies were selected from the reference list of retrieved articles.  

 

2.4 Bacterial Selection in the Upper Respiratory Tract 

Bacterial pneumonia is primarily caused by the commensal bacteria normally residing in 

the URT [11,12]. The most common causes of bacterial pneumonia for children under five years 

of age are S. pneumoniae, followed by H. influenzae and S. aureus [11], although this varies over 

time and space. From a rudimentary ecological perspective, the human respiratory tract can be 

defined as an ecosystem with two distinct niches: the URT, characterized by regular asymptomatic 

carriage of commensal bacteria, and the LRT, which is inhabited at a low abundance by bacteria 

in healthy individuals [13]. During the first year after birth, the nasopharynx is rapidly colonized 

[14] and URT carriage is established via ongoing synergistic and antagonistic interactions among 

commensal bacteria [15]. Though pneumonia is an infection of the lungs, microbial selection in 

the URT may play an important role in etiology as bacterial strains in the URT can be readily 

aspirated into the LRT. For example, URT carriage is believed to be a necessary precursor of 

pneumonia due to S. pneumoniae [16,17]. 

Numerous epidemiologic studies describe synergistic and antagonistic relationships among 

various commensal bacteria [18–33] and, although the exact biological mechanisms remain 

unclear, in vivo and in vitro experiments suggest potential mechanisms involve either direct 
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interaction between bacterial species or indirect interactions via the host immune system (Table 

2.1). A number of population studies suggest S. pneumoniae carriage is positively associated with 

H. influenzae [18–27] and M. catarrhalis [18,23–28] carriage but negatively associated with S. 

aureus [19,20,24–27,29–32]. Furthermore, S. aureus carriage is generally negatively associated 

with H. influenzae and M. catarrhalis [19,24,31] carriage while H. influenzae and M. catarrhalis 

are believed to be positively associated [18,22,24,33]. Nevertheless, our understanding is limited, 

as the dynamics of niche competition likely consist of complex relationships between multiple 

species [31,34] and strains [15,35], further influenced by host and environmental factors [22,36]. 

As carriage is an important precursor of respiratory infections for certain bacterial species [12], 

unraveling the complex system of bacterial interactions that determine URT microbiota may be 

key factor for understanding the etiology of pneumonia. 

 

2.5 Bacterial selection in the lower respiratory tract 

Lung microbiome studies suggest that bacteria colonizing the LRT overlap with those 

found in the URT, but that the abundance of organisms is quite low [37], and their role in 

pneumonia etiology has yet to be explored. To colonize the LRT, an organism must overcome 

mucociliary clearance and phagocytosis by resident alveolar macrophages, neutrophils, and 

monocyte-derived macrophages [38,39], but many URT pathogens have developed strategies to 

overcome these barriers.  H. influenzae, Mycoplasma pneumoniae, and Bordetella pertussis resist 

mucociliary clearance by impairing ciliary function. Streptococcus pyogenes, Streptococcus 

agalactiae, H. influenzae, Neisseria meningitidis, and S. pneumoniae possess capsules which resist 

phagocytosis [38]. S. pneumoniae, the leading cause of pneumonia [40], is characterized by over 

90 serotypes differentiated by variations in the bacterial polysaccharide capsule [41,42] and 
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associated with different propensities of invasive potential [43]. In addition to protecting against 

phagocytosis, the capsule prevents clearance by mucous secretion and restricts autolysis [44]. 

Other species, including S. aureus, release anti-opsonizing proteins and possess surface protein A 

to evade phagocytosis. Furthermore, S. aureus secretes leukotoxins that lyse leukocytes and 

express superantigens that hinder immune response (reviewed by Naber et al. [45]).  

The crucial role these various mechanisms play in determining respiratory disease is 

demonstrated by contrasting M. catarrhalis with S. pneumoniae. Similar to S. pneumoniae, M. 

catarrhalis is a primary carriage species estimated to colonize between 31% to 50% of children 

under 2 years in the US [46] and frequently causes URT infections, such as acute otitis media. 

However, unlike S. pneumoniae, M. catarrhalis rarely causes pneumonia [47], suggesting that 

differences in mechanisms of pathogenicity may be the explanation.  

 

2.6 Risk Factors of Bacterial Pneumonia 

Various other factors -- including underlying medical conditions and smoking -- can 

increase the risk of pneumonia by compromising pulmonary clearance mechanisms and the host 

immune response [48], potentially influencing the selection of pathogens in both the upper and 

lower respiratory tracts. Age plays a major role in pneumonia risk. In developed countries such as 

the US, the risk of pneumonia is highest in individuals who are 65 years or over (Figure 2.1) [49]. 

The elevated risk in the elderly is likely due to impaired host defenses and an increase in 

comorbidities -- heart failure, liver disease, and underlying lung disease -- that increase risk of 

aspiration pneumonia that can occur from dysphagia and gastroesophageal reflux disease 

(reviewed by Akgün et al. [50]). In developing countries, the burden of pneumonia is greatest in 

young children [2] due to their inability to physically remove and immunologically deal with 
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bacterial pathogens (reviewed by Siegrist [51]). Very young children also have the greatest 

prevalence in the nasopharynx of common bacterial pneumonia pathogens: S. pneumoniae, H. 

influenzae, and M. catarrhalis [23,52]. Increased carriage may be an important risk factor for 

pneumonia if the URT bacterial community structure is a determinant of pneumonia etiology. 

Unfortunately, the majority of carriage studies have been conducted among children under five 

years of age, which limits our ability to establish the role of nasopharyngeal carriage in other age 

groups. 

Regardless of age, viral infection is an important risk factor for bacterial pneumonia. 

Viruses can lead to rapid, drastic increases in morbidity and mortality in all age groups as seen in 

historic influenza epidemics and pandemics [53], making it a major public health concern.  

 

2.7 Temporal Associations between Viruses and Bacteria 

The 1918 Spanish flu pandemic resulted in approximately 50 million deaths worldwide: 

most of the deaths were caused by secondary bacterial pneumonia [54,55]. During the 2009 H1N1 

pandemic, bacterial co-infection was detected in 18% to 34% of influenza cases (reviewed by 

Chertow and Memoli [8]) with vulnerability peaking approximately one week after influenza 

infection [56]. The association of viral infection and bacterial pneumonia is not limited to 

influenza, although that interaction has been most studied: adenovirus, human metapneumovirus, 

respiratory syncytial virus (RSV), and other viruses have been temporally associated with an 

increased risk of pneumococcal pneumonia and invasive pneumococcal disease (IPD), defined as 

the isolation of S. pneumoniae from a normally sterile site, in the United States (Table 2.2) [57–

67]. The majority of US studies suggest strong associations between S. pneumoniae infections 

(both pneumonia and IPD) and influenza virus and RSV, with potential effect modification by age. 
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Temporal associations with other viruses are less supported and limited to IPD. We did not find 

any studies in the US that examined temporal associations between viruses and bacterial species 

other than S. pneumoniae. Six studies conducted in other developed countries examined temporal 

associations between respiratory viruses and IPD [59,68–72]. Three out of five studies that 

examined influenza virus found associations with IPD in England and Wales, The Netherlands, 

and Sweden [69,70,72]. Among four studies that examined RSV in other countries, two indicated 

associations with IPD in all age groups [69,70], one found an association only among children 

[59], and the last observed an association only in individuals 2 years or older [68].   

Temporal associations provide evidence of virus-bacterial interactions, but do not 

necessarily prove these interactions exist. Many viral infections are seasonal, as is pneumonia 

infection, so the temporal associations may merely reflect the influence of other seasonal 

phenomena, environmental or host, that are shared by both viral infection and pneumonia [73]. 

However, evidence for true virus-bacterial interactions are supported by population studies that 

estimate a high prevalence of viral co-infection during pneumonia [5,6] and animal models which 

suggest increased susceptibility to pneumonia and increased disease severity during viral co-

infection [93]. In the US, approximately 47% of children and 19% of adults with bacterial 

pneumonia are co-infected with one or more viruses [5,6].  Further, vaccination for S. pneumoniae 

reduced pneumonia associated with RSV, influenza A, and PIV types 1-3 [74]. Influenza vaccine 

probe studies may provide additional insight to the burden of influenza co-infection on bacterial 

pneumonia.  

 

2.8 Respiratory Virus Alters Asymptomatic Carriage of Known Bacterial Pathogens 
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 Consistent with our first hypothesis, viral infection frequently has been associated with 

carriage of common pneumonia pathogens. In a cross-sectional analysis of Aboriginal and non-

Aboriginal children in Western Australia, Jacoby et al. observed positive associations between 

rhinovirus and S. pneumoniae, H. influenzae, and M. catarrhalis and a positive association 

between adenovirus and M. catarrhalis in the nasopharynx [18]. In a US study, children with a 

viral URT co-infection not associated with otitis media had a higher prevalence of nontypeable H. 

influenzae and M. catarrhalis relative to healthy children. Furthermore, children with viral co-

infection associated with acute otitis media had an increased prevalence of S. pneumoniae, 

nontypeable H. influenzae, and M. catarrhalis but a decreased prevalence of α-hemolytic 

Streptococci [75]. van den Bergh et al. assessed the prevalence of 20 respiratory viruses and the 

main commensal bacteria in the nasopharynx of 433 healthy Dutch children aged 6 to 24 months. 

In their study, rhinovirus was positively associated with S. pneumoniae and H. influenzae, RSV 

was positively associated with H. influenzae, coronaviruses and adenovirus were positively 

associated with M. catarrhalis, and influenza virus was positively associated S. aureus (Figure 

2.2) [26]. However, as the associations found in the above-mentioned studies are based on cross-

sectional analyses, we cannot determine whether viruses influenced carriage structure, bacterial 

carriage influenced host susceptibility to viruses, or if bidirectional interactions occurred. 

Prospective studies are required to resolve this temporal ambiguity.   

Although the impact of the host microbiota on viral infections is an important consideration 

(reviewed by Wilks et al. [76]), the majority of in vivo experiments pertaining to virus-bacterial 

interactions in the URT focus on the role of viruses on the host microbiota. The results of these 

studies suggest viruses can alter carriage structure by promoting the colonization of certain 

commensals. In both animal models and human adults, infection with influenza A virus showed 
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increased colonization by S. pneumoniae and H. influenzae in the URT [77–81]. Similarly, 

infecting rats and chinchillas with RSV led to increased colonization by nontypeable H. influenzae 

[82,83]. Collectively, epidemiologic studies and laboratory experiments suggest the introduction 

of a virus to the URT niche can substantially alter the bacterial community present [26]. 

 

2.9 The Missing Link between Bacterial Carriage Structure and Pneumonia 

While there is substantial evidence that viral infection influences the URT bacterial 

community, whether these changes are reflected in the LRT and ultimately in pneumonia etiology 

is unclear, which weakens our first hypothesis (i.e. respiratory viruses can influence the etiology 

of pneumonia by altering bacterial carriage structure in the URT). Studies that examine the joint 

effects of viral co-infection, bacterial carriage, and bacterial pneumonia would provide one 

strategy for filling this gap. However, we found only two such studies. In a South African hospital-

based surveillance study of severe acute respiratory illness, 969 nasopharyngeal-oropharyngeal 

specimens were tested for S. pneumoniae and a panel of respiratory viruses. A high pneumococcal 

colonization density in the nasopharynx and oropharynx was associated with both respiratory virus 

co-infection and pneumococcal pneumonia [84].  A second hospital-based case-control study 

compared nasopharyngeal carriage among 274 radiologically confirmed cases of pneumonia, 276 

cases of other LRT infections, and 350 controls in Vietnam. Their findings for S. pneumoniae were 

similar to that of the South African study. However, the investigators also studied H. influenzae 

and M. catarrhalis and found no clear association between viral co-infection, nasopharyngeal 

bacterial load, and pneumonia for these species [85]. As noted above, M. catarrhalis rarely causes 

pneumonia, but H. influenzae is second only to S. pneumoniae.  While there appears to be a 

persuasive argument for a link between viral co-infection, carriage, and pneumonia for S. 
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pneumoniae, whether or why the interaction is not true for other URT bacteria needs further 

exploration. In particular, studies that can directly test if viral infection led to bacterial colonization 

or overgrowth by a potential pathogen -- which led to bacterial pneumonia by that pathogen, are 

in order. In conclusion, there is no definitive answer to our first hypothesis. Epidemiologic studies 

and experiments indicate viruses alter the bacterial community in the URT, but they do not yet 

adequately address whether these changes in the URT bacterial community play a significant role 

in pneumonia etiology. 

 

2.10 Mechanisms of Interaction Suggest Virus Can Alter Bacterial Selection in the Lower 

Respiratory Tract 

There are several studies that support our second hypothesis, that respiratory viruses can 

promote bacterial colonization of the LRT by certain commensals in the URT. Viruses interact 

with bacteria and the host at various stages along the pathologic pathway to promote bacterial 

pneumonia (Table 2.3). For example, virus can increase shedding of URT bacteria into the LRT: 

in vitro biofilm and murine studies suggest influenza A virus infection can lead to the dispersion 

of S. pneumoniae biofilms, releasing virulent pneumococci for subsequent secondary infections in 

the LRT [86,87]. When in a biofilm, S. pneumoniae is less virulent; capsule polysaccharide and 

pneumolysin production are reduced and synthesis of the bacterial adhesin phosphorylcholine 

increased [88,89]. 

Viral infections also can promote bacterial adhesion to host cells [90–92]. Influenza and 

parainfluenza (PIV) promote bacterial adhesion with respiratory epithelium cells by cleaving sialic 

acid and exposing receptors on host cell oligosaccharide chains [93,94]. In vitro and in vivo 

experiments suggest free sialic acid released by viral neuraminidase can behave as signaling 
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molecules promoting pneumococcal biofilm formation, nasopharyngeal colonization, and bacterial 

spread to the lungs [95]. Free sialic acid is believed to play a role in invasion by nontypeable H. 

influenza as it is an important component of the biofilm matrix and incorporated into the bacterial 

capsular polysaccharide to evade host defense mechanisms [105. Though literature is scarce, the 

relationship may be bilateral as bacterial neuraminidase can promote virus survival during 

treatment with neuraminidase inhibitors [96]. In addition, viruses can promote bacterial adhesion 

by upregulating cell surface receptors for pathogenic bacteria. For example, RSV and PIV-3 

infection can lead to upregulation of receptors ICAM-1, CEACAM1, and PAF-r to promote 

binding of nontypeable H. influenzae and S. pneumoniae to epithelial cells [97]. 

Respiratory viral infection can damage and impede the repair of respiratory epithelial cells 

leading to reduced mucociliary clearance. Consequently, bacteria can more easily enter the lungs 

to cause pneumonia [98]. Many of the virus-bacteria interaction mechanisms involve viral 

compromise of the innate immune system. These include impairment and depletion of resident 

alveolar macrophages [99–101] and neutrophils, which are necessary for bacterial clearance, 

mediated by induction of type I interferons (IFN) [102] and desensitization to Toll-like receptor 

(TLR) ligands [103]. Detailed descriptions of potential biological pathways involved in these 

mechanisms are discussed in earlier reviews by Robinson et al. and McCullers [9,56]. Lastly, 

excessive inflammation in the lungs due to virus-initiated exacerbation of inflammatory mediators, 

cytokines and chemokines, can cause tissue damage [104], which increases susceptibility to 

secondary bacterial infections.  

Despite the considerable literature on potential mechanisms of viral-bacterial interactions 

that may lead to pneumonia, most studies are limited to experiments conducted in animal models 

using select viral and bacterial strains, which may not reflect what is occurring in human 
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populations. Furthermore, the interactions between virus and bacteria are undoubtedly far more 

complex than identified in animal models, and likely consists of a complex web of interactions 

between different viruses and bacteria with viruses similar to that described in the URT [12,26]. 

Even after considering these limitations, the overwhelming evidence for the existence of multiple 

biological mechanisms under various conditions supports our second hypothesis that respiratory 

viruses can alter bacterial selection in the LRT and is an important factor in pneumonia etiology. 

 

2.11 Conclusions 

 In this review, we discussed how the respiratory tract is an ecosystem with two niches, the 

URT and the LRT; each with ecological and microbial pressures that determine bacterial selection. 

We hypothesized that viruses influence bacterial selection in the URT leading to colonization of 

the LRT and sometimes pneumonia. There appears to be a complex network of interactions among 

viruses and bacteria in the URT that responds to viral introduction by altering what bacteria are 

present or modifying their relative abundance. For a least one species, S. pneumoniae, viruses can 

increase nasopharyngeal carriage density and increase risk of pneumococcal pneumonia. Whether 

this is true for other URT bacteria that cause pneumonia is uncertain.  We also proposed that 

bacterial selection in the LRT could be altered by viral infection. The LRT is normally inhabited 

by low density of microbes, a state maintained by local host defenses and bacterial mechanisms of 

evasion. In vitro and in vivo studies suggest viruses can promote entry and colonization of the LRT 

for select bacterial species via a range of biological mechanisms including URT biofilm dispersion, 

increased bacterial adhesion to host epithelial cell by upregulation of cell receptors, reduced 

pulmonary clearance, impairment of multiple components of the innate immune response, and 

changes in inflammatory response. Though there are limitations in interpreting the results of 
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experiments, evidence of numerous mechanisms observed under various conditions strongly 

suggest that viruses also play an important role in the selection of bacteria in the LRT and 

pneumonia etiology. 

 The greatest difficulty in addressing our hypotheses was our inability to determine the 

relative contributions of URT bacterial community structure and local host defenses on bacterial 

selection into the LRT. In the simplest case, how much is the risk of pneumonia following viral 

infection attributable to the presence of a known bacterial pneumonia pathogen (such as S. 

pneumoniae) in the URT? To determine this, studies must examine time-dependent carriage of 

bacteria, species-specific pneumonia outcomes, and the effects of viral co-infection among other 

known risk factors – which, to the best of our knowledge, do not currently exist. Nonetheless, the 

literature strongly supports the presence of an interaction between viral infection and secondary 

bacterial pneumonia; the failure to fully understand the mechanisms should act as a spur for future 

studies while continuing current efforts to reduce the worldwide burden of pneumonia.   
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Table 2.1 Known interactions and potential mechanisms for observed associations between 

primary bacterial colonizers of the nasopharynx. 

Organism 1 Organism 2 Interactiona Potential Mechanismsb 

S. pneumoniae S. aureus Antagonism [19,20,24–

27,29–32] 

Hydrogen peroxide production [105] 

Catalase [106] 

Pilus [107] 

Immune-mediated competition [108,109] 

S. pneumoniae H. influenzae Synergism [18–27,110] Provision of nutrients [15] 

Production of β-lactamase [111] 

Formation of biofilms [111] 

Phosphorychlorine expression [12] 

S. pneumoniae H. influenzae Antagonism [31] Hydrogen peroxide production [112] 

Catalase [112] 

Desialylation [113] 

Immune-mediated competition [15,114,115] 

S. pneumoniae M. catarrhalis Synergism [18,23–28] Passive antibiotic protection [116,117] 

S. pneumoniae M. catarrhalis Antagonism Hydrogen peroxide production [112] 

S. aureus H. influenzae Synergism [22] Provision of nutrients [15] 

S. aureus H. influenzae Antagonism [19,24,31]  

S. aureus M. catarrhalis Antagonism [24]  

H. influenzae M. catarrhalis Synergism 

[18,22,24,33] 

Outer membrane vesicles [118] 

aEpidemiologic studies 
bIn vitro and in vivo experiments 
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Table 2.2 Temporal associations between respiratory viruses and S. pneumoniae, the United 

States. 

Study Virus Outcome Age Group Temporal Association 

Kim et al. [57] HAdV 

IV 

PcV 

PIV 

RSV 

All except IV 

IPD All Yes 

Yes 

No 

No 

Yes 

Yes 

Talbot et al. [58] IV 

RSV 

IPD All Yes 

Yes 

Ampofo et al. [60] HAdV 

HMPV 

IV 

PIV 

RSV 

IPD  <18 years No 

Yes 

Yes 

No 

Yes 

Murdoch and Jennings [61] IV 

PIV1 

PIV2 

PIV3 

RSV 

IPD All Yes 

No 

No 

Yes 

Yes, only in <5 years 

Nelson et al. [62] IV IPD All Yes 

Walter et al. [63] IV Pneumonia All Yes 

Zhou et al. [119] IV 

RSV 

Pneumonia All Varies by season 

Varies by season 

Weinberger et al. 2012 [63] 2009 H1N1 season Pneumonia All Yes 

Shrestha et al. [64] Influenza seasons Pneumonia All Yes 

Fleming-Dutra et al. [65] 2009 H1N1 season Pneumonia All Yes 

Weinberger et al. 2014 [66] RSV Pneumonia <7 years Yes 

Weinberger et al. 2015 [67] RSV 

 

IV 

Pneumonia <1 years 

1 to <2 years 

<1 years 

1 to <2 years 

Yes 

Yes 

No 

Yes 

Abbreviations: HAdV, human adenovirus; HMPV, human metapneumovirus; IV, influenza virus; PcV, picornavirus; 

PIV, parainfluenza virus; RSV, respiratory syncytial virus; IPD, invasive pneumococcal disease. 
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Table 2.3 Mechanisms of synergistic virus-bacteria interaction. 

Mechanism Virus Bacteria 

Biofilm dispersion IAV S. pneumoniae [86,87] 

Increased expression of cell surface receptors HAdV 

IAV 

PIV 

 

RSV 

S. pneumoniae [120] 

S. pneumoniae [121] 

H. influenzae [97,122] 

S. pneumoniae [97,122] 

H. influenzae [97,122] 

S. pneumoniae [97,122] 

Direct binding of virus and bacteria RSV S. pneumoniae [123,124] 

Damaged and inhibited repair of respiratory epithelium cells IAV S. aureus [125] 

S. pneumoniae [98] 

Decreased mucociliary velocity IAV S. pneumoniae [126] 

Viral neuraminidase IAV S. pneumoniae [93,94] 

Impairment of leukocytes (i.e. neutrophils) response IAV 

 

RSV 

S. aureus [127] 

S. pneumoniae [102,103,128,129] 

S. pneumoniae [130] 

Impairment of alveolar macrophage response IAV S. aureus [99,131–133] 

Impairment of monocytes IAV 

RSV 

S. aureus [127] 

M. catarrhalis [134] 

NTHi [134] 

S. pneumoniae [134] 

Reduced natural killer cell recruitment IAV S. aureus [135] 

Exacerbation of inflammatory mediators and tissue damage HMPV 

IAV 

S. pneumoniae [136] 

S. pneumoniae [137–140] 

Abbreviations: HAdV, adenovirus; IAV, influenza A virus; HMPV, human metapneumovirus; NTHi, nontypeable 

Haemophilus influenzae; PIV, parainfluenza virus; RSV, respiratory syncytial virus.  
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Figure 2.1 Rate of hospitalization for pneumonia; the United States, 2007-2009.  

 

Adapted from Griffin et al. [49] 
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Figure 2.2 Network of interactions between virus and bacteria in the upper respiratory tract. 

 

Figure 1A in van den Bergh et al. [26] used under the Creative Commons Attribution License. 

Green lines indicate synergistic associations and red lines indicate antagonistic associations. Solid 

lines indicate associations with p-values <0.01 and dashed lines indicate associations with p-values 

between 0.01 and 0.05 for associations between species.  

 

Abbreviations: EV, enterovirus; HI, Haemophilus influenzae; HAdV, human adenovirus; HBoV, 

bocavirus; HCoV, human coronavirus; HPeV, human parechovirus; HRV, human rhinovirus; IV, 

influenza virus; MC, M. catarrhalis; PIV, parainfluenza virus; RSV, respiratory syncytial virus; 

SA, Staphylococcus aureus; SP, Streptococcus pneumoniae, WUPyV, WU polyomavirus. 

doi:10.1371/journal.pone.0047711.g00 
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Appendix 2.1 Challenges in Determining the Etiology of Pneumonia. 

 

Even in countries where pneumonia surveillance is routinely conducted such as the US, no 

information on microbial etiology is recorded for approximately 65 to 85% of hospitalized 

pneumonia cases [11,12].  Severely ill patients often are not included in surveillance, organisms 

on the causal pathway may have been cleared by the time that the patient presents clinically or 

prior to testing because of rapid treatment with antibiotics when pneumonia is suspected, and 

autopsies are infrequently done on the elderly. To optimally determine etiology, direct sampling 

via bronchoalveolar lavage is required, but usually detection of causal agents is conducted on 

blood, sputum and urine because of ease of collection, ethical issues and costs. Bacteremia is 

observed in only 7% to 13% of adult pneumonia cases and 1% to 5% in child pneumonia cases, 

sputum can potentially be contaminated by bacteria in the URT and is difficult to obtain from 

children, and blood and urine antigen assays require further validation or are limited to adults and 

specific to only a few pathogens (e.g. S. pneumoniae and Legionella species) (reviewed by 

Murdoch et al. [13]).  Although modern molecular biologic techniques make it feasible to conduct 

untargeted screens for all bacterial, viral and fungal species present, it is still difficult to distinguish 

between infection, colonization or contamination [14]. Continued efforts are needed to develop 

more accurate methods to determine the etiology of pneumonia, and thus maximize treatment and 

prevention efforts. 
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Chapter 3 The Respiratory Microbiome and Susceptibility to Influenza Virus Infection 
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Lee K, Gordon A, Shedden K, Kuan G, Ng S, Balmaseda A, Foxman B. 

 

3.1 Author summary 

Microbiome research has transformed our understanding of microbes and human health. 

Resident bacteria can protect the host from pathogens by shaping immunological responses. These 

new insights suggest the microbiome could be a target for preventing influenza virus infection, a 

major cause of illness and death worldwide. In this study, we explore the relationship between the 

nose/throat microbiome and influenza virus among Nicaraguan households. Household members 

were enrolled immediately after one member was diagnosed with influenza virus infection. This 

study design allowed us to identify an association between the microbiome structure and influenza 

susceptibility. Further, this association may be due differences in the abundance of Veillonella. 

We also explored whether influenza virus infection altered the microbiome structure and found 

short-term changes were common among both secondary cases and household members who 

remained uninfected. Age played a major role in influenza susceptibility and in short-terms 

changes in the microbiome. Although much work is needed, our findings suggest strategies that 

appropriately modify the microbiome might be useful in preventing influenza virus infections. 

 

3.2 Abstract 
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Influenza is a major cause of morbidity and mortality worldwide. However, vaccine 

effectiveness has been low to moderate in recent years and vaccine coverage remains low, 

especially in low- and middle-income countries. Supplementary strategies for prevention should 

be explored. The epithelial cells of the respiratory tract are a primary target for influenza virus 

infection and replication. They also are enveloped by complex bacterial communities, a respiratory 

microbiome, which plays a critical role in shaping host immunity. Using a household transmission 

study, we examined whether influenza susceptibility was associated with the nose/throat 

microbiome structure among participants exposed to influenza in the household. We also described 

changes in the nose/throat microbiome following influenza virus infection. We identified a single 

bacterial community type associated with decreased susceptibility to influenza using a mixed 

model accounting for household clustering of secondary cases, community types, and other risk 

factors. The community type – characterized by a low abundance of Veillonella – was rare and 

transitory among young children but a prevalent and stable community type among adults. We 

found high rates of change in the microbiome structure following influenza virus infection as well 

as among household contacts who were never infected with influenza during follow up. Further, 

age strongly influenced susceptibility to influenza and short-term dynamics of the nose/throat 

microbiome. These results suggest that the nose/throat microbiome might mediate influenza risk 

and may be a target for future interventions.   

 

3.3 Introduction 

Influenza is a major contributor of human illness and death worldwide, estimated to cause 

3-5 million cases of severe illness [1] and 400,000 deaths during interpandemic years [2]. 

Vaccination is the best available means of influenza prevention. However, low vaccine 
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effectiveness has been low to moderate in recent year [3,4]. Further, vaccine coverage remains 

low, especially in low- and middle-income countries [5]. With increasing support for the 

microbiome shaping host immunity [6–8], exploring whether these effects extend to influenza risk 

could contribute to supplementary methods of prevention. 

We hypothesized that the nose/throat microbiome is an unrecognized factor associated with 

susceptibility to influenza virus. Murine and human studies support this assertion. Compared to 

controls, mice treated with oral antibiotics exhibited enhanced degeneration of the bronchiole 

epithelial layer and increased risk of death following intranasal infection with influenza virus [7]. 

In two separate randomized controlled trials, newborns fed prebiotics and probiotics had 

significantly lower incidence of respiratory tract infections compared to placebo [9,10]. These 

studies suggest the manipulation of the microbiome, either through disruption or supplementation, 

can alter risk of respiratory tract infections. 

The epithelial cells of the upper and lower respiratory tracts are the primary targets for 

influenza virus infection and replication [11]. However, these cells are enveloped by complex 

bacterial communities that may directly or indirectly interact with influenza virus to mediate risk 

of infection. Commensal bacteria may prevent infection by regulating innate and adaptive host 

immune responses [6,7], but immune response to infection also might stimulate changes to the 

microbiome [12–14]. Alternatively, or in addition, infection may directly act on the microbiome 

[15,16]. A human experimental trial has shown intranasal administration of live attenuated 

influenza vaccine can alter the nasal microbiota of young adults by increasing taxa richness [17].  

Further, influenza-related changes in the bacterial community structure might explain the 

enhanced risk of bacterial pneumonia and otitis media following influenza virus infection [18–21]. 

The most commonly detected causative organisms of bacterial pneumonia and otitis media 
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increase in abundance in the upper respiratory tract following respiratory virus infection [22,23]. 

We previously showed that adults in the US with influenza virus infection expressed increased 

nose/throat carriage of Streptococcus pneumoniae and Staphylococcus aureus [22]. Similarly, 

other studies have observed an increase in pneumococcal density following rhinovirus infection 

[23] and changes in the microbiota during rhinovirus and respiratory syncytial virus infection [24]. 

Increased carriage elevates risk of invasive disease [25,26], potentially through more frequent 

microaspiration into the lung or migration to the middle ear [27]. However, an association between 

the nose/throat microbiome and influenza risk has not been demonstrated in human populations. 

In this study, we used data from a longitudinal household transmission study of influenza 

to assess the relationship between the nose/throat microbiota and susceptibility to influenza virus 

infection and to determine whether influenza virus infection alters the bacterial community 

structure using an untargeted 16S rRNA (V4) taxonomic screen. We classified the nose/throat 

microbiota into five community types using the Dirichlet multinomial mixture method [28] 

(Graphical abstract available in Figure 3.1). 

 

3.4 Results 

3.4.1 Study population 

Among the 537 household contacts from 144 households enrolled in the Nicaraguan 

Household Transmission Study during 2012 to 2014, 61 were children ≤5 years of age (median: 2 

years; interquartile range (IQR): 1-4), 163 were children 6-17 years of age (median: 10 years; IQR: 

8-14), and 313 were adults (median: 33 years; IQR: 24-43). At least one tobacco smoker resided 

in 51% of all households and 29% of all participants lived in crowded households, defined as 

households with, on average, >3 persons per bedroom. Household contacts were rarely vaccinated 
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against influenza (5%). Few used antibiotics (<1% two weeks prior to enrollment and <1% during 

follow up) or oseltamivir (6% during follow up) (Table 3.1). 71 secondary cases in 48 households 

were identified using real-time reverse transcription polymerase chain reaction (RT-PCR) on all 

nose/throat samples longitudinally collected during follow up. Fourteen out of the 48 households 

had >1 secondary case (29%), suggesting clustering of cases by household. Most secondary cases 

were older children and young adults (median: 13.0 years; IQR: 6, 23) and had at least one 

symptom of an acute respiratory infection (79%) (Table 3.2). 

We identified 5 bacterial community types in the nose/throat using Dirichlet multinomial 

mixture modeling [28] fit to 16S rRNA sequencing data from the first and last available nose/throat 

samples of each study participant (Figure 3.2: model fit by Dirichlet components; Figure 3.3: 

principal coordinates analysis). 97% of all sequenced samples were assigned to a community type. 

Among household contacts without influenza virus infection at time of enrollment, 19 first samples 

and 13 second samples were assigned to an undefined community type. Fifty percent of the 

difference between the single-community type model and the five-community type model was 

attributed to 15 out of the total 230 oligotypes (Figure 3.4). 

The prevalence of community types differed significantly by age. Most notably, 

community type 4 was rare among young children and became more prevalent with age (0-5 years: 

4.9%, 6-17 year: 11.0%, adults: 19.8%; χ2-test, p<0.004) (Table 3.1). We observed similar results 

when restricting our analysis to household contacts who remained uninfected during follow up 

(Figure 3.5A). The prevalence of community type 4 increased with age (0-5 years: 7%, 6-17 years: 

11%, adults: 20%; χ2 test, p=0.013). Young children were primarily colonized by community type 

5, which was less common among older age groups (0-5 years: 50%, 6-17 years: 6%, adults: 7%; 

χ2-test, p<0.001). 
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3.4.2 Bacterial community type associated with lower susceptibility to influenza virus 

infection 

To investigate the relationship between the bacterial community structure and influenza 

susceptibility, we first estimated secondary attack rates by bacterial community type. We observed 

a lower secondary attack rate among household contacts with baseline community type 4 compared 

to all other community types (6.0% vs. 10.3-16.4%; χ2-test, p=0.064). Similar patterns were 

observed after stratifying by age (Figure 3.5B).  

We used a generalized linear mixed effects model to examine the relationship between 

community types and influenza susceptibility after adjusting for age, a smoker in the household, 

household crowding, and clustering by household. Our decision to account for clustering of 

predictors and the outcome by household was supported by an intra-class correlation of 0.21. This 

indicates that 21% of the total variance was due to clustering. Household contacts with baseline 

community type 4 had a lower odds of influenza virus infection (odds ratio (OR): 0.27; 95% CI: 

0.07, 1.03). Further, young children were most likely to acquire influenza virus (OR: 4.71; 95% 

CI: 1.63, 13.64), followed by older children (OR: 2.89; 95% CI: 1.46, 5.74) (Fig 3.5C). We were 

inadequately powered for influenza type/subtype-specific models; however, no household contacts 

with community type 4 at baseline (n=83) were infected with H3N2, the most commonly identified 

subtype in this population (52% of all secondary infections). 
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3.4.3 Resistance of bacterial community structure to perturbation by influenza virus 

infection 

To characterize the ability of the bacterial community to resist perturbation by influenza 

virus (termed resistance), we compared changes in bacterial communities over time by influenza 

virus infection status. We restricted our analysis to household contacts with microbiota data at 

enrollment and follow up (n=513). The median days of follow up was 9.0 (IQR: 9.0, 10.0). In 

Figure 3.7, we used Markov chain plots to represent short-term dynamics of the nose/throat 

microbiota among household contacts. Arrow width and number indicate the magnitude of the 

transition rates between community types. Persistence was estimated as the proportion of 

household contacts that remained within a given community type over follow up. Circle size 

represents the prevalence of each community type at baseline. Among household contacts who 

remained uninfected, 62% remained in community type 4, compared to 40% among secondary 

cases. Further, among the uninfected there were 3 transitions to community type 4 with rates >10% 

compared to only 1 among secondary cases. Resistance among uninfected household contacts with 

community type 4 increased with age (0-5 years: 0%, 6-17 years: 43%, adults: 70%; Fisher exact 

test, p=0.018) (Figure 3.7B). We were inadequately powered for a similar analysis among 

secondary cases.  

We used a generalized linear mixed effects model to examine whether community 

resistance was associated with influenza virus infection, after adjusting for baseline community 

type, age, a smoker in the household, household crowding, and clustering by household (Figure 

3.9). We did not find an association between community persistence and influenza virus infection. 

However, we found resistance was lowest among children 6-17 years old (OR: 1.67; 95% CI: 1.07, 
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2.61) and potentially among those with community type 3 at baseline (OR: 1.61; 95% CI: 0.93, 

2.80). 

 

3.4.4 Notable characteristics of community type inversely associated with influenza virus 

infection 

To gain insight into why household contacts with community type 4 at baseline had a lower 

odds of influenza virus infection, even after adjusting for known risk factors, we explored whether 

community type 4 differed in bacterial diversity and taxa composition from all others. Bray-Curtis 

dissimilarity and Shannon diversity were significantly different between community type 4 and 

each of the other 4 community types (Wilcox rank-sum tests, all comparisons p<0.001) (Figure 

3.12). However, community type 4 was not notably distinct from other community types (Bray-

Curtis median: 0.57 vs. 0.47-0.76; Shannon diversity median: 3.43 vs. 2.56-3.58). We observed 

similar results with other alternative diversity metrics including the non-binary Jaccard distance 

and the Chao1 index (Figure 3.13; exception: Chao1 between community types 3 and 4, p=0.135). 

To further explore whether community diversity influenced the relationship between community 

types and influenza susceptibility, we reran a generalized linear mixed effects model using 

Shannon diversity as our primary predictor. Although not statistically significant, as diversity 

increased, so did influenza susceptibility (OR: 1.76; 95% CI: 0.83, 3.72) (Figure 3.14). 

Next, we explored whether community type 4 differed from others in taxa composition. 

The most noticeable difference was a lack of Veillonella dispar / atypica / parvula / rogosae, the 

oligotype contributing most to between-community variation (9.6%) (Figure 3.4 and Figure 3.15). 

To explore whether Veillonella and other oligotypes were associated with influenza susceptibility, 

we reran our models using the log10-transformed relative abundance of 15 oligotypes that 
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contributed most to between-community variation. After adjusting for age, a smoker in the 

household, household crowding, and clustering by household, a 10-fold increase in the relative 

abundance of Veillonella dispar / atypica / parvula / rogosae was associated with a 2-fold 

increased odds of influenza (OR: 2.04; 95% CI: 0.95, 4.41) (Figure 3.16).  

 

3.5 Discussion 

To our knowledge, this is the first human population study to prospectively explore the 

relationship between the nose/throat microbiome and influenza virus infection. We demonstrate 

the nose/throat bacterial community structure prior to infection is associated with susceptibility to 

influenza virus infection. Further, this relationship may be attributed to differences in taxa 

composition, most notably in the relative abundance of Veillonella, gram-negative anaerobes 

commonly found in the oral cavity. Although little is known about the interaction between 

Veillonella and influenza virus, Veillonella dispar in the nasal cavity was negatively correlated 

with influenza H1-specific antibody titers among healthy individuals inoculated with live 

attenuated influenza vaccine [17]. Generally unable to ferment sugars, Veillonella adhere to lactic 

acid-producing bacteria in the oral cavity for carbon and energy, making it an important component 

of multispecies bacterial networks [29,30]. Together this suggests Veillonella could modulate 

influenza susceptibility directly or indirectly by influencing the bacterial community structure 

within the nose and throat.  

Although the exact mechanisms that might account for the association between the 

respiratory microbiome and influenza susceptibility remain unclear, the few studies that have 

examined this in murine models indicate the association is likely mediated by immunomodulation. 

Antibiotic-treated mice exhibited impaired innate and adaptive immune responses, potentially due 
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impaired macrophage responses to type I and type II interferons (IFN) and a lack of bacterial 

lipopolysaccharides that stimulate Toll-like receptors and other pattern recognition receptors 

(PRRs) [6,7]. As the primary site for influenza virus infection and replication [11], the respiratory 

epithelium plays a critical role in the host immune response. Recognition of influenza virus by 

PRRs on epithelial cells and sentinel cells (i.e. dendritic cells and macrophages) leads to the 

activation of antiviral pathways including the secretion of IFN I and the expression of 

inflammasome-dependent cytokines [31]. Taken together with our current understanding of host 

immunity, our results highlight the importance of examining host-microbiome interactions at the 

primary site of infection in addition to the potential systemic effects of the gut microbiome on host 

immunity [32] and respiratory infections (i.e. the gut-lung axis) [33]. Further work is needed to 

explore whether these mechanisms are taxon-specific or driven by other factors at the bacterial 

community level. For example, metabolomic screening could be used to characterize functional 

differences between bacterial communities.  

Most studies that have characterized the upper respiratory tract microbiome are limited to 

infants [24,34,35]. Here, we demonstrate age effects both the prevalence and resistance of 

nose/throat bacterial communities in a population with both children and adults. Interestingly, the 

community type associated with decreased susceptibility to influenza became more prevalent and 

resistant to perturbation with age. Over the short period of follow-up (median: 9.0 days, IQR: 9.0-

10.0), the nose/throat microbiome changed frequently among study participants. We found the 

microbiome structure changed substantially for both influenza cases and household contacts who 

remained uninfected during follow up. This high degree of change among uninfected household 

contacts could represent a response to influenza exposure in the household. Characterizing the 

microbiome among individuals without household influenza exposure could help us examine this 
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hypothesis. Nonetheless, preliminary findings from our Markov chain analysis suggest community 

dynamics may differ by influenza status. This is consistent with studies demonstrating an increased 

colonization of some bacterial species in the upper respiratory tract following respiratory virus 

infection [22,23]. However, additional studies that compare by influenza type/subtype, in more 

defined groups of interests, such as young children, and with multiple longitudinal samples per 

participant are required to more completely explore this finding.   

Individuals can be infected with influenza virus (i.e. ≥4-fold increase in hemagglutinin 

inhibition antibody titer) and not shed virus [36]. Our results are limited to those with detectable 

influenza virus shedding. Future studies should evaluate the effects of the respiratory microbiome 

on viral shedding and symptomology. In addition, influenza transmission could be affected by pre-

existing immunity of household contacts. Although vaccination rates were low in our study 

population, pre-existing immunity from previous infections might potentially confound or modify 

associations between the microbiome and influenza. 

While much work is needed to translate these results into potential clinical and public 

health applications, our findings contribute to a growing literature suggesting that it may be 

possible to manipulate the microbiome and decrease risk of disease [9,10]. Influenza virus is a 

major cause of severe illness and death each year [1,2]. However, vaccine effectiveness varies by 

year [4] and there still much debate on the use of antivirals for prophylaxis, especially for 

preventing asymptomatic infections and transmission [37]. Our findings suggest synbiotic 

treatment may be a possible alternative.  

 

3.6 Methods 
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3.6.1 Study population and sample collection 

The Nicaraguan Household Transmission Study of Influenza is an ongoing prospective 

case-ascertained study conducted among urban households in Managua, Nicaragua. Patients 

attending the Health Center Sócrates Flores Vivas were screened for study eligibility. Index cases 

of influenza were identified as patients with a positive QuickVue Influenza A+B rapid test, 

symptom onset of an acute respiratory infection within the past 48 hours, and living with at least 

one other household member. Symptoms of acute respiratory infection included fever or 

feverishness with cough, sore throat, or runny nose.  

Index cases and household members were invited to participate and clinical, 

sociodemographic, and household data were collected at time of enrollment. Participants were 

followed for up to 13 days through 5 home visits conducted at 2-3 day intervals. At each home 

visit, oropharyngeal and nasal swabs were collected, combined, and stored at 4⁰C in viral transport 

media. All samples were transported to the National Virology Laboratory at the Nicaraguan 

Ministry of Health within 48 hours of collection and stored at -80⁰C. A symptom diary was 

collected for all participants during follow up. 

A total of 168 households were enrolled for follow up during 2012-2014. Households were 

excluded from analysis if a suspected index case was negative for influenza virus by real-time 

reverse-transcription polymerase chain reaction (RT-PCR) at time of enrollment. Two household 

contacts were excluded from analysis due to missing influenza virus infection status at time of 

enrollment. The remaining participants consisted of 144 index cases of influenza positive by RT-

PCR, 537 household contacts influenza negative by RT-PCR at time of enrollment, and 36 

household contacts who were RT-PCR positive for influenza virus on the first day of follow up. 
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3.6.2 Ethics statement 

Written informed consent was obtained from adult participants and from parents or legal 

guardians of participants under 18 years of age. In addition, verbal assent was obtained from 

children over 5 years of age. The study was approved by Institutional Review Boards at the 

University of Michigan, the Nicaraguan Ministry of Health, and the University of California at 

Berkeley. 

 

3.6.3 RNA extraction and RT-PCR 

Total RNA was extracted from all available nasal/oropharyngeal samples using the QIAmp 

Viral Mini Kit (QIAGEN, Hilden, Germany) per manufacturer’s instructions at the National 

Virology Laboratory in Nicaragua. Samples were tested for influenza virus by RT-PCR using 

standard protocols validated by the Centers for Disease Control and Prevention [38]. 

 

3.6.4 DNA extraction and 16S rRNA sequencing 

Total DNA was extracted from a pair of samples from each study participant: the first 

sample collected at time of enrollment and the second sample collected at the last day of follow 

up (median days between samples: 9.0 days, IQR: 9.0-10.0). Among the 717 total study 

participants, five first samples and 19 second samples were not available for DNA extraction. DNA 

was extracted using the QIAmp DNA Mini Kit and an enzyme cocktail composed of cell lysis 

solution (Promega, Madison, USA), lysozyme, mutanolysin, RNase A, and lysostaphin (Sigma-

Aldrich, St. Lious, USA) in 22.5:4.5:1.125:1.125:1 parts, respectively. 100 µL of sample was 

incubated at 37°C for 30 minutes with 80 µL of the enzyme cocktail. After adding 25 µL proteinase 

K and 200 µL of Buffer AL, samples were vortexed and incubated at 56°C for 30 minutes. Samples 
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were washed with 200 µL of 100% ethanol, 500 uL of Buffer AW1, and then 500 uL of Buffer 

AW2. To maximize DNA yield, DNA was eluted twice with 100 uL of Buffer AE and stored at -

80°C. 

The V4 hypervariable region of the 16S rRNA gene was amplified and sequenced at the 

University of Michigan Microbial Systems Laboratories using Illumina MiSeq V2 chemistry 

2x250 (Illumina, San Diego, CA) and a validated dual-indexing method [39]. Briefly, primers 

consisted of an Illumina adapter, an 8-nt index sequence, a 10-nt pad sequence, a 2-nt linker, and 

the V4-specific F515/R806 primer [40]. Amplicons were purified and pooled in equimolar 

concentrations. A mock community of 21 species (Catalog No. HM-782D, BEI Resources, 

Manassas, VA) or a mock community of 10 species (Catalog No. D6300, Zymo Research, Irvine, 

CA) was included by the Microbial Systems Laboratories to assess sequencing error rates. For 

every 96-well plate submitted for amplification and sequencing (90 study samples), we included 

two aliquots of an in-house mock community consisting of Streptococcus pneumoniae, 

Streptococcus pyogenes, Staphylococcus aureus, Haemophilus influenzae, and Moraxella 

catarrhalis and two aliquots of an oropharyngeal control sample. These internal controls were 

randomly assigned to plate wells and used to assess systematic variation in sequencing. All 

samples were sequenced in duplicate, demultiplexed, and quality filtered. 

 

3.6.5 Oligotyping and community typing 

We used mothur v1.38.1 [41] to align and perform quality filtering on raw sequences using 

the mothur standard operating procedures (https://www.mothur.org/wiki/MiSeq_SOP, accessed 

November 18, 2016). Sequences were converted to the appropriate oligotyping format as 

previously described [42]. We used the Minimum Entropy Decomposition (MED) algorithm [43] 
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with default parameters (-M: 13779.0, -V: 3 nt) to cluster sequences into oligotypes. Briefly, the 

algorithm identifies variable nucleotide positions and uses Shannon entropy to partition sequences 

into nodes. The process is iterative and continues to decompose parent nodes into child nodes until 

there are no discernable entropy peaks. Oligotyping has previously been used to examine within-

genus variations in the microbiota [42,44–46] and provides increased resolution relative to 

conventional distance-based clustering methods. 

After excluding five samples with less than 1,000 reads, our dataset consisted of 1,405 

samples with a total of 61,784,957 sequences decomposed into 230 oligotypes. To assign 

taxonomy, we searched representative sequences of each oligotype against the Human Oral 

Microbiome Database (HOMD) v14.51 [47] using blastn v2.2.23 [48].  

We used Dirichlet multinomial mixture models [28] in R v3.3.2 [49] and the 

DirichletMultinomial v1.16.0 package [50] to assign all samples to 5 community types. We 

determined the number of community types by comparing the Laplace approximation of the 

negative log models and identifying the point at which an increase in Dirichlet components 

resulted in minor reductions in model fit (Figure 3.2). Samples were assigned to community types 

with the greatest posterior probability. 96.8% of all samples had a posterior probability of 90% or 

higher. To minimize misclassification, samples were assigned as having an undefined community 

type if the posterior probability was less than 90%. Each community type contained between 12.9-

24.4% of all samples (n=181-343) and 3.2% of all samples (n=45) were undefined. 

 

3.6.6 Generalized linear mixed effects models 

To examine the association between baseline community types and susceptibility of 

influenza virus infection, we used a generalized linear mixed effects model estimating the odds of 
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infection after adjusting for community type (relative to community type 1), age (relative to 

adults), a smoker in the household, household crowding, and clustering by household.  Household 

crowding was defined as having, on average, more than three household members per bedroom. 

The model was adapted to examine the effects of alpha diversity and individual oligotypes on 

susceptibility of influenza virus infection. We examined the 15 oligotypes that contributed most 

to variation between community types (oligotypes listed in Figure 3.4). Relative abundance values 

were log10-transformed in consideration of the constant sum constraint, which is a characteristic 

of compositional data [51]. 

 To examine the effect of influenza virus infection on microbiota resistance, we used a 

generalized linear mixed effects model estimating the odds of any change in community type over 

follow up after adjusting for baseline community type (relative to community type 1), age (relative 

to adults), a smoker in the household, household crowding (average of >3 persons per bedroom), 

and clustering by household. All generalized linear mixed effects models were created using R 

v3.3.2 [49] and the lme4 package [52].  

 

3.6.7 Markov chain analysis 

We estimated community transition rates over time using methods described previously 

[53]. Briefly, we restricted our dataset to household contacts with complete nose/throat sample 

pairs (i.e. microbiota data at enrollment and at follow up). Community transition rates were 

calculated as Markov chain probabilities. Analysis was repeated after stratifying by influenza 

status and age. 
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Table 3.1 Characteristics of 537 household contacts of influenza cases from 144 households, 

Managua, Nicaragua, 2012-2014, by baseline community type. 

Characteristic Alla 

(n=537) 

Community 

Type 1 

(n=131) 

Community 

Type 2 

(n=122) 

Community 

Type 3 

(n=120) 

Community 

Type 4 

(n=83) 

Community 

Type 5 

(n=58) 

 No. (%) No. (%) No. (%) No. (%) No. (%) No. (%) 

Age (years)       

     0-5 61 (11) 9 (7) 14 (11) 3 (3) 3 (4) 26 (45) 

     6-17 163 (30) 51 (39) 40 (33) 38 (32) 18 (22) 9 (16) 

     ≥18 313 (58) 71 (54) 68 (56) 79 (66) 62 (75) 23 (40) 

Female 347 (65) 85 (65) 86 (70) 85 (71) 44 (53) 35 (60) 

Influenza  

infection 

71 (13) 20 (15) 20 (16) 15 (13) 5 (6) 6 (10) 

Influenza 

vaccinationb 

27 (5) 8 (6) 6 (5) 8 (7) 1 (1) 3 (5) 

Smoker in 

household 

245 (51) 54 (46) 55 (51) 56 (52) 43 (59) 27 (49) 

>3 persons per 

bedroom in the 

household 

156 (29) 40 (31) 34 (28) 36 (30) 22 (27) 18 (31) 

Antibiotic use 

<2 weeks prior 

1 (0) 0 (0) 0 (0) 0 (0) 0 (0) 1 (2) 

Antibiotic use 

during follow up 

4 (1) 2 (2) 0 (0) 1 (1) 0 (0) 1 (2) 

Oseltamivir use 

during follow up 

33 (6) 4 (3) 14 (12) 5 (4) 2 (2) 5 (9) 

aCommunity types were defined using Dirichlet multinomial mixture method (see Methods). Includes household contacts with 

undefined community types. 
bPrior to enrollment and in same year as index case 
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Table 3.2 Characteristics of 71 secondary cases from 48 households, Managua, Nicaragua, 2012-

2014, by baseline community type. 

Characteristic Alla 

(n=71) 

Community 

Type 1 

(n=20) 

Community 

Type 2 

(n=20) 

Community 

Type 3 

(n=15) 

Community 

Type 4 

(n=5) 

Community 

Type 5 

(n=6) 

 No. (%) No. (%) No. (%) No. (%) No. (%) No. (%) 

Age (years)       

     0-5 15 (21) 3 (15) 5 (25) 1 (7) 0 (0) 4 (67) 

     6-17 30 (42) 10 (50) 8 (40) 7 (47) 3 (60) 1 (17) 

     ≥18 26 (37) 7 (35) 7 (35) 7 (47) 2 (40) 1 (17) 

Female 43 (61) 11 (55) 15 (75) 9 (60) 3 (60) 3 (50) 

Influenza 

vaccinationb 

2 (3) 0 (0) 1 (5) 1 (8) 0 (0) 0 (0) 

Smoker in 

household 

29 (52) 7 (39) 9 (53) 6 (43) 3 (100) 3 (50) 

>3 persons per 

bedroom in the 

household 

25 (35) 8 (40) 8 (40) 4 (27) 2 (40) 1 (17) 

Antibiotic use 

<2 weeks prior 

0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 

Antibiotic use 

during follow up 

1 (1) 0 (0) 0 (0) 1 (7) 0 (0) 0 (0) 

Oseltamivir use 

during follow up 

9 (13) 2 (10) 4 (20) 2 (13) 0 (0) 1 (17) 

ARI symptom 56 (79) 14 (70) 17 (85) 13 (87) 5 (100) 4 (67) 

     Fever 37 (52) 9 (45) 12 (60) 6 (40) 4 (80) 3 (50) 

     Cough 43 (61) 8 (40) 16 (80) 11 (73) 4 (80) 3 (50) 

     Sore throat 29 (41) 7 (35) 11 (55) 7 (47) 1 (20) 2 (33) 

     Runny nose 42 (59) 9 (45) 15 (75) 10 (67) 3 (60) 3 (50) 

Abbreviations: ARI, acute respiratory infection 

aCommunity types were defined using Dirichlet multinomial mixture method (see Methods). Includes secondary cases with 

undefined community types 
bPrior to enrollment and in same year as index case 
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Figure 3.1 Graphical Abstract 
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Figure 3.2 Model fit of negative log models by number of Dirichlet components. 

 

We determined the number of community types by estimating the Laplace approximation of the 

negative log models and identifying the point at which an increase in Dirichlet components 

resulted in minor reductions in model fit. 
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Figure 3.3 Principal coordinates analysis of nose/throat samples assigned to community types. 

 

 

1,405 nose/throat samples from 717 study participants residing in 144 households in Managua, 

Nicaragua, 2012-2014. Based on Bray-Curtis dissimilarity.  
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Figure 3.4 Taxa composition of community types renormalized to the 15 oligotypes that account 

for >50% of the difference between community types. 1,405 samples from 717 study participants 

residing in 144 households in Managua, Nicaragua, 2012-2014. 
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Figure 3.5 Susceptibility to influenza virus infection following household exposure varies by 

bacterial community type. 

 

537 household contacts of influenza cases residing in 144 households in Managua, Nicaragua, 

2012-2014. (A) Distribution of community types by age, time, and whether acquired influenza by 

time of follow-up. (B) Secondary attack rates by baseline community type and age. Numbers 

represent sample size for each group. (C) Generalized linear mixed effects model estimating odds 

of influenza virus infection after adjusting for community type (relative to community type 1), age 

(relative to adults), a smoker in the household, household crowding (average of >3 persons per 

bedroom), and clustering by household. Model additionally adjusting for undefined community 

type did not show any notable change in estimates (Figure 3.6). 
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Figure 3.6 Influenza susceptibility model, additionally adjusting for undefined community type. 

 

 

Generalized linear mixed effects model estimating odds of influenza virus infection after adjusting 

for community type (relative to community type 1), age (relative to adults), a smoker in the 

household, household crowding (average of >3 persons per bedroom), and clustering by 

household. 537 household contacts of influenza cases residing in 144 households in Managua, 

Nicaragua, 2012-2014. No notable changes in estimates compared to model excluding household 

contacts with an undefined community type (Figure 3.5C). 
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Figure 3.7 Transitions between in nose/throat bacterial community type over time among the 513 

study participants with enrollment and follow up microbiota data. 

 

Household contacts of persons with influenza residing in 144 households in Managua, Nicaragua, 2012-2014. (A) By 

influenza status over follow up. (B) By age, among 443 household contacts who never developed influenza virus 

infection during follow up. (C) By age, among 70 secondary cases. Circles represent community types and circle size 

is proportional to prevalence of baseline community types. Community type u corresponds to samples with an 

undefined community type. Transition rates between community types were estimated as Markov chain probabilities 

and are shown numerically. Transitions rates <0.10 were removed for simplicity. Complete figures are available in 

Figure 3.8. 



 66 

Figure 3.8 Change in nose/throat bacterial community type over time among the 513 study 

participants with complete sample pairs, all transition rates. 

 

Household contacts of persons with influenza residing in 144 households in Managua, Nicaragua, 2012-2014. (A) By 

influenza status over follow up. (B) By age among 443 household contacts who never developed influenza infection 

during follow up. (C) By age among 70 secondary cases. Circles represent community types and circle size is 

proportional to prevalence of baseline community types. Community type u corresponds to undefined community 

type. Transition rates between community types were estimated as Markov chain probabilities and are shown 

numerically.  
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Figure 3.9 Resistance to change in community type by selected variables among the 484 study 

participants with defined community types at enrollment and follow up. 

 

Household contacts of persons with influenza residing in 141 households in Managua, Nicaragua, 

2012-2014. Mixed effects model estimating odds of change in community type after adjusting for 

influenza virus infection, baseline community type (relative to community type 1), age (relative to 

adults), a smoker in the household, household crowding (average of >3 persons per bedroom), and 

clustering by household. Household contacts with an undefined community type were excluded 

from analysis. Models additionally adjusting for days of follow up (Figure 3.10) and undefined 

community type (Figure 3.11) did not notably change point estimates. 
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Figure 3.10 Community resistance model, additionally adjusting for undefined community type 

 

 

513 household contacts of persons with influenza residing in 144 households in Managua, 

Nicaragua, 2012-2014. Mixed effects model estimating odds of change in community type after 

adjusting for influenza virus infection, baseline community type (relative to community type 1), 

age (relative to adults), a smoker in the household, household crowding (average of >3 persons per 

bedroom), and clustering by household. No notable changes in estimates compared to model 

excluding household contacts with an undefined community type (Figure 3.9). 
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Figure 3.11 Community resistance model, additionally adjusting for days of follow up. 

 

 

484 household contacts of persons with influenza residing in 141 households in Managua, 

Nicaragua, 2012-2014. Mixed effects model estimating odds of change in community type after 

adjusting for influenza virus infection, baseline community type (relative to community type 1), 

age (relative to adults), a smoker in the household, household crowding (average of >3 persons per 

bedroom), clustering by household, and days of follow up. Household contacts with an undefined 

community type were excluded from analysis. No notable changes in estimates compared to model 

without days of follow up (Figure 3.9). 
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Figure 3.12 Alpha and beta diversity and taxa composition of the nose/throat microbiome by 

bacterial community type. 

 

1,405 samples from 717 study participants residing in 144 households in Managua, Nicaragua, 

2012-2014. (A) Shannon diversity. (B) Bray-Curtis dissimilarity. 
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Figure 3.13 Chao 1 index and non-binary Jaccard distance of the nose/throat microbiome by 

bacterial community type. 

 

 

1,405 samples from 717 study participants residing in 144 households in Managua, Nicaragua, 

2012-2014. (A) Chao1. (B) Non-binary Jaccard distance. 
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Figure 3.14 Generalized linear mixed effects model estimating odds of influenza virus infection. 

 

 

Model adjusts for Shannon diversity, age (relative to adults), a smoker in the household, household 

crowding (average of >3 persons per bedroom), and clustering by household. 
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Figure 3.15 Taxa composition of community types, all oligotypes. 

 

A total of 1,405 samples from 717 study participants residing in 144 households in Managua, 

Nicaragua, 2012-2014. 
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Legend 
Oligotype Taxonomy 

1 Filifactor alocis 

2 Unclassified 

3 

Peptostreptococcaceae [XI][G-1] [Eubacterium] sulci / Peptostreptococcaceae [XI][G-1] [Eubacterium] 

infirmum 

4 Unclassified 

5 Oribacterium parvum / Oribacterium sinus / Oribacterium asaccharolyticum 

6 Unclassified 

7 Corynebacterium matruchotii / Corynebacterium diphtheriae 

8 Oribacterium sinus / Oribacterium parvum 

9 Oribacterium asaccharolyticum / Oribacterium parvum 

10 Unclassified 

11 

Streptococcus pneumoniae / Streptococcus tigurinus / Streptococcus dentisani / Streptococcus sp. / 

Streptococcus oralis / Streptococcus mitis / Streptococcus infantis / Streptococcus peroris / Streptococcus 

lactarius 

12 

Streptococcus sanguinis / Streptococcus oligofermentans / Streptococcus sinensis / Streptococcus cristatus / 

Streptococcus australis / Streptococcus parasanguinis II / Streptococcus sp. / Streptococcus gordonii / 

Streptococcus parasanguinis I / Streptococcus pneumoniae / Streptococcus oralis / Streptococcus intermedius / 

Streptococcus mitis 

13 Streptococcus mutans 

14 Streptococcus vestibularis / Streptococcus salivarius 

15 Leptotrichia sp. 

16 Leptotrichia sp. 

17 Leptotrichia sp. 

18 Leptotrichia sp. 

19 Leptotrichia sp. 

20 Leptotrichia sp. 

21 Bacillus subtilis 

22 Listeria monocytogenes 

23 Peptostreptococcus stomatis / Peptostreptococcus anaerobius 

24 Gemella haemolysans / Gemella sanguinis / Gemella morbillorum / Gemella bergeri 

25 Dolosigranulum pigrum 

26 Bergeyella sp. 

27 Leptotrichia shahii / Leptotrichia sp. / Leptotrichia hongkongensis 

28 Unclassified 

29 Alloprevotella tannerae 

30 Alloprevotella tannerae 

31 Rothia mucilaginosa 

32 Rothia mucilaginosa 

33 Rothia mucilaginosa 

34 Rothia aeria / Rothia dentocariosa 

35 Rothia dentocariosa / Rothia aeria 

36 Unclassified 

37 Unclassified 

38 Oribacterium asaccharolyticum 

39 Unclassified 

40 Ruminococcaceae [G-1] sp. 

41 Capnocytophaga leadbetteri / Capnocytophaga sp. / Capnocytophaga ochracea 

42 Unclassified 

43 Porphyromonas endodontalis / Porphyromonas sp. 

44 Actinomyces graevenitzii 
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45 

Actinomyces lingnae [NVP] / Actinomyces sp. / Actinomyces odontolyticus / Actinomyces meyeri / Actinomyces 

cardiffensis 

46 Actinomyces lingnae [NVP] / Actinomyces sp. / Actinomyces odontolyticus / Actinomyces meyeri 

47 

Actinomyces sp. / Actinomyces oris / Actinomyces naeslundii / Actinomyces johnsonii / Actinomyces viscosus / 

Actinomyces radicidentis / Actinomyces meyeri 

48 Butyrivibrio sp. 

49 Unclassified 

50 SR1 [G-1] sp. 

51 SR1 [G-1] sp. 

52 Abiotrophia defectiva 

53 Staphylococcus caprae / Staphylococcus epidermidis / Staphylococcus aureus / Staphylococcus warneri 

54 Granulicatella adiacens / Enterococcus italicus / Enterococcus faecalis 

55 Granulicatella elegans 

56 Lactobacillus gasseri / Lactobacillus johnsonii 

57 Escherichia coli 

58 Ruminococcaceae [G-2] sp. 

59 Leptotrichia sp. 

60 Unclassified 

61 Unclassified 

62 Unclassified 

63 

Fusobacterium periodonticum / Fusobacterium nucleatum subsp. animalis / Fusobacterium sp. / Fusobacterium 

nucleatum subsp. vincentii / Fusobacterium nucleatum subsp. polymorphum / Fusobacterium naviforme / 

Fusobacterium nucleatum subsp. nucleatum 

64 

Fusobacterium sp. / Fusobacterium nucleatum subsp. polymorphum / Fusobacterium nucleatum subsp. 

nucleatum / Fusobacterium naviforme / Fusobacterium nucleatum subsp. vincentii / Fusobacterium nucleatum 

subsp. animalis / Fusobacterium periodonticum 

65 Peptococcus sp. 

66 

Fusobacterium nucleatum subsp. animalis / Fusobacterium naviforme / Fusobacterium nucleatum subsp. 

vincentii / Fusobacterium periodonticum / Fusobacterium sp. / Fusobacterium nucleatum subsp. nucleatum / 

Fusobacterium nucleatum subsp. polymorphum 

67 

Fusobacterium sp. / Fusobacterium nucleatum subsp. animalis / Fusobacterium nucleatum subsp. polymorphum 

/ Fusobacterium nucleatum subsp. nucleatum / Fusobacterium periodonticum / Fusobacterium nucleatum subsp. 

vincentii / Fusobacterium naviforme 

68 

Fusobacterium periodonticum / Fusobacterium nucleatum subsp. animalis / Fusobacterium sp. / Fusobacterium 

nucleatum subsp. vincentii / Fusobacterium nucleatum subsp. polymorphum / Fusobacterium naviforme / 

Fusobacterium nucleatum subsp. nucleatum 

69 Fusobacterium necrophorum / Fusobacterium gonidiaformans 

70 Atopobium parvulum / Atopobium sp. / Atopobium rimae 

71 Catonella morbi / Catonella sp. 

72 Megasphaera micronuciformis 

73 Lachnospiraceae [G-2] sp. 

74 Lachnoanaerobaculum umeaense / Lachnoanaerobaculum sp. 

75 Lachnoanaerobaculum orale / Lachnoanaerobaculum saburreum 

76 Veillonella dispar / Veillonella atypica / Veillonella parvula / Veillonella rogosae 

77 Unclassified 

78 Treponema denticola / Treponema putidum / Treponema sp. 

79 Veillonella dispar / Veillonella atypica / Veillonella parvula / Veillonella rogosae / Veillonella denticariosi 

80 Selenomonas sputigena / Selenomonas sp. 

81 Selenomonas sp. 

82 Mitsuokella sp. 

83 

Aggregatibacter sp. / Aggregatibacter segnis / Haemophilus haemolyticus / Haemophilus sp. / Haemophilus 

influenzae / Haemophilus aegyptius 

84 Haemophilus pittmaniae / Aggregatibacter sp. / Aggregatibacter aphrophilus / Aggregatibacter paraphrophilus 
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85 

Mogibacterium neglectum / Mogibacterium pumilum / Mogibacterium diversum / Mogibacterium vescum / 

Mogibacterium timidum 

86 Unclassified 

87 Stomatobaculum sp. 

88 Campylobacter concisus / Campylobacter curvus 

89 Helicobacter pylori 

90 Pseudomonas aeruginosa / Pseudomonas otitidis / Pseudomonas sp. 

91 Alloprevotella sp. 

92 Alloprevotella sp. 

93 Prevotella sp. 

94 

Haemophilus aegyptius / Haemophilus influenzae / Haemophilus sp. / Haemophilus haemolyticus / 

Aggregatibacter sp. / Aggregatibacter segnis 

95 

Haemophilus sp. / Haemophilus haemolyticus / Haemophilus influenzae / Haemophilus aegyptius / 

Aggregatibacter sp. / Aggregatibacter segnis / Haemophilus parainfluenzae 

96 

Haemophilus sp. / Haemophilus haemolyticus / Haemophilus influenzae / Haemophilus aegyptius / 

Aggregatibacter sp. / Aggregatibacter segnis 

97 

Haemophilus parainfluenzae / Haemophilus parahaemolyticus / Haemophilus paraphrohaemolyticus / 

Haemophilus sputorum / Haemophilus sp. / Haemophilus haemolyticus / Haemophilus influenzae 

98 

Haemophilus parahaemolyticus / Haemophilus sputorum / Haemophilus paraphrohaemolyticus / Haemophilus 

parainfluenzae 

99 Prevotella sp. / Prevotella oulorum 

100 Prevotella sp. / Prevotella oulorum 

101 Prevotella oulorum / Prevotella sp. 

102 Prevotella sp. / Prevotella oulorum 

103 Prevotella sp. / Prevotella veroralis / Prevotella histicola / Prevotella fusca / Prevotella scopos 

104 

Prevotella veroralis / Prevotella sp. / Prevotella scopos / Prevotella fusca / Prevotella histicola / Prevotella 

melaninogenica 

105 Prevotella veroralis / Prevotella sp. / Prevotella scopos / Prevotella fusca / Prevotella histicola 

106 

Neisseria pharyngis / Neisseria sicca / Neisseria mucosa / Neisseria flava / Neisseria subflava / Neisseria 

flavescens / Neisseria polysaccharea / Neisseria lactamica / Neisseria meningitidis / Neisseria gonorrhoeae / 

Neisseria oralis 

107 

Kingella denitrificans / Neisseria elongata / Neisseria weaveri / Kingella sp. / Eikenella corrodens / Eikenella 

sp. 

108 Prevotella melaninogenica / Prevotella scopos / Prevotella sp. / Prevotella histicola / Prevotella veroralis 

109 

Prevotella sp. / Prevotella melaninogenica / Prevotella histicola / Prevotella veroralis / Prevotella scopos / 

Prevotella fusca 

110 

Prevotella melaninogenica / Prevotella scopos / Prevotella sp. / Prevotella histicola / Prevotella veroralis / 

Prevotella fusca 

111 

Prevotella sp. / Prevotella scopos / Prevotella histicola / Prevotella melaninogenica / Prevotella veroralis / 

Prevotella fusca 

112 

Prevotella melaninogenica / Prevotella sp. / Prevotella histicola / Prevotella scopos / Prevotella veroralis / 

Prevotella fusca 

113 

Prevotella melaninogenica / Prevotella scopos / Prevotella sp. / Prevotella histicola / Prevotella veroralis / 

Prevotella fusca 

114 

Prevotella histicola / Prevotella sp. / Prevotella veroralis / Prevotella fusca / Prevotella scopos / Prevotella 

melaninogenica 

115 Prevotella salivae 

116 Prevotella salivae 

117 Prevotella sp. 

118 Prevotella sp. 

119 

Prevotella sp. / Prevotella histicola / Prevotella veroralis / Prevotella scopos / Prevotella fusca / Prevotella 

melaninogenica 

120 Prevotella sp. 

121 

Prevotella histicola / Prevotella sp. / Prevotella veroralis / Prevotella scopos / Prevotella fusca / Prevotella 

melaninogenica 
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122 

Prevotella histicola / Prevotella scopos / Prevotella sp. / Prevotella melaninogenica / Prevotella veroralis / 

Prevotella fusca 

123 Prevotella histicola / Prevotella melaninogenica / Prevotella sp. / Prevotella scopos / Prevotella veroralis 

124 

Prevotella sp. / Prevotella scopos / Prevotella veroralis / Prevotella histicola / Prevotella fusca / Prevotella 

melaninogenica 

125 

Prevotella sp. / Prevotella veroralis / Prevotella fusca / Prevotella histicola / Prevotella scopos / Prevotella 

melaninogenica 

126 

Prevotella sp. / Prevotella scopos / Prevotella veroralis / Prevotella histicola / Prevotella fusca / Prevotella 

melaninogenica 

127 

Prevotella sp. / Prevotella scopos / Prevotella melaninogenica / Prevotella veroralis / Prevotella histicola / 

Prevotella fusca 

128 Leptotrichia sp. 

129 Leptotrichia sp. 

130 Capnocytophaga sputigena / Capnocytophaga sp. 

131 Moraxella catarrhalis 

132 Moraxella catarrhalis 

133 Prevotella sp. 

134 Prevotella sp. 

135 Prevotella sp. 

136 Porphyromonas sp. 

137 Porphyromonas sp. 

138 

Streptococcus constellatus / Streptococcus intermedius / Streptococcus anginosus / Streptococcus gordonii / 

Streptococcus sp. 

139 Streptococcus anginosus / Streptococcus constellatus / Streptococcus intermedius 

140 Streptococcus pyogenes / Streptococcus agalactiae 

141 

Prevotella histicola / Prevotella sp. / Prevotella veroralis / Prevotella fusca / Prevotella scopos / Prevotella 

melaninogenica 

142 

Streptococcus sp. / Streptococcus gordonii / Streptococcus oligofermentans / Streptococcus sinensis / 

Streptococcus cristatus / Streptococcus parasanguinis II / Streptococcus parasanguinis I / Streptococcus 

australis / Streptococcus sanguinis / Streptococcus intermedius / Streptococcus salivarius / Streptococcus mitis / 

Streptococcus oralis 

143 Streptococcus vestibularis / Streptococcus salivarius / Streptococcus gordonii / Streptococcus sp. 

144 

Streptococcus vestibularis / Streptococcus salivarius / Streptococcus oligofermentans / Streptococcus sinensis / 

Streptococcus cristatus 

145 Streptococcus vestibularis / Streptococcus salivarius 

146 Streptococcus vestibularis / Streptococcus salivarius 

147 

Streptococcus australis / Streptococcus parasanguinis II / Streptococcus parasanguinis I / Streptococcus sp. / 

Streptococcus oligofermentans / Streptococcus cristatus / Streptococcus sinensis / Streptococcus sanguinis / 

Streptococcus gordonii / Streptococcus lactarius / Streptococcus peroris / Streptococcus oralis 

148 

Streptococcus sinensis / Streptococcus oligofermentans / Streptococcus cristatus / Streptococcus australis / 

Streptococcus parasanguinis II / Streptococcus sp. / Streptococcus gordonii / Streptococcus sanguinis / 

Streptococcus parasanguinis I / Streptococcus oralis / Streptococcus mitis / Streptococcus infantis 

149 Streptococcus agalactiae / Streptococcus pyogenes 

150 

Streptococcus sp. / Streptococcus dentisani / Streptococcus mitis / Streptococcus oralis / Streptococcus infantis / 

Streptococcus tigurinus / Streptococcus lactarius / Streptococcus peroris / Streptococcus pneumoniae 

151 

Streptococcus peroris / Streptococcus lactarius / Streptococcus sp. / Streptococcus tigurinus / Streptococcus 

infantis / Streptococcus dentisani / Streptococcus oralis / Streptococcus mitis 

152 

Streptococcus sp. / Streptococcus dentisani / Streptococcus mitis / Streptococcus oralis / Streptococcus infantis / 

Streptococcus tigurinus / Streptococcus lactarius / Streptococcus peroris / Streptococcus pneumoniae 

153 Leptotrichia sp. 

154 Leptotrichia sp. 

155 Leptotrichia sp. 

156 Leptotrichia sp. 

157 Leptotrichia sp. / Leptotrichia wadei 

158 Leptotrichia sp. / Leptotrichia wadei 
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159 Unclassified 

160 Unclassified 

161 Unclassified 

162 Alloprevotella tannerae 

163 Alloprevotella tannerae 

164 Porphyromonas pasteri / Porphyromonas sp. / Porphyromonas catoniae 

165 Porphyromonas sp. / Porphyromonas pasteri / Porphyromonas catoniae 

166 Rothia mucilaginosa 

167 Rothia mucilaginosa 

168 Alloprevotella rava 

169 Alloprevotella rava 

170 Alloprevotella rava 

171 Campylobacter rectus / Campylobacter showae / Campylobacter gracilis 

172 Campylobacter rectus / Campylobacter showae / Campylobacter gracilis 

173 

Actinomyces sp. / Actinomyces odontolyticus / Actinomyces meyeri / Actinomyces cardiffensis / Actinomyces 

lingnae [NVP] / Actinomyces georgiae 

174 

Actinomyces sp. / Actinomyces odontolyticus / Actinomyces meyeri / Actinomyces cardiffensis / Actinomyces 

lingnae [NVP] / Actinomyces georgiae / Actinomyces gerencseriae / Actinomyces massiliensis 

175 

Enterococcus faecalis / Enterococcus durans / Enterococcus saccharolyticus / Enterococcus casseliflavus / 

Enterococcus italicus / Granulicatella adiacens 

176 Bacillus anthracis / Lysinibacillus fusiformis 

177 Capnocytophaga granulosa / Capnocytophaga sp. / Capnocytophaga gingivalis 

178 Capnocytophaga gingivalis / Capnocytophaga granulosa / Capnocytophaga sp. 

179 Stomatobaculum longum / Stomatobaculum sp. 

180 Stomatobaculum longum / Stomatobaculum sp. 

181 

Fusobacterium nucleatum subsp. vincentii / Fusobacterium naviforme / Fusobacterium sp. / Fusobacterium 

nucleatum subsp. nucleatum / Fusobacterium nucleatum subsp. animalis / Fusobacterium nucleatum subsp. 

polymorphum / Fusobacterium periodonticum 

182 

Fusobacterium nucleatum subsp. vincentii / Fusobacterium naviforme / Fusobacterium nucleatum subsp. 

animalis / Fusobacterium nucleatum subsp. nucleatum / Fusobacterium sp. / Fusobacterium nucleatum subsp. 

polymorphum / Fusobacterium periodonticum 

183 Atopobium parvulum / Atopobium rimae / Atopobium sp. 

184 Atopobium parvulum / Atopobium rimae / Atopobium sp. 

185 Veillonella sp. 

186 Veillonella sp. 

187 Veillonella sp. 

188 Veillonella sp. 

189 Veillonella dispar / Veillonella atypica / Veillonella parvula / Veillonella rogosae 

190 Veillonella dispar / Veillonella atypica / Veillonella parvula 

191 Veillonella parvula / Veillonella rogosae / Veillonella atypica / Veillonella denticariosi / Veillonella dispar 

192 Veillonella rogosae / Veillonella parvula / Veillonella atypica / Veillonella denticariosi / Veillonella dispar 

193 Parvimonas micra / Parvimonas sp. 

194 Parvimonas micra / Parvimonas sp. 

195 Alloprevotella sp. 

196 Alloprevotella sp. 

197 

Haemophilus parahaemolyticus / Haemophilus sputorum / Haemophilus paraphrohaemolyticus / Haemophilus 

parainfluenzae 

198 

Haemophilus parahaemolyticus / Haemophilus sputorum / Haemophilus paraphrohaemolyticus / Haemophilus 

parainfluenzae 

199 Prevotella sp. / Prevotella veroralis / Prevotella histicola / Prevotella fusca / Prevotella scopos 

200 Prevotella sp. / Prevotella veroralis / Prevotella histicola / Prevotella fusca / Prevotella scopos 

201 Bordetella pertussis / Achromobacter xylosoxidans 

202 Lautropia mirabilis 
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203 

Neisseria subflava / Neisseria flavescens / Neisseria flava / Neisseria sicca / Neisseria pharyngis / Neisseria 

mucosa / Neisseria polysaccharea / Neisseria weaveri 

204 

Neisseria subflava / Neisseria flavescens / Neisseria flava / Neisseria sicca / Neisseria pharyngis / Neisseria 

mucosa 

205 Solobacterium moorei 

206 

Neisseria subflava / Neisseria flavescens / Neisseria flava / Neisseria sicca / Neisseria pharyngis / Neisseria 

mucosa / Neisseria polysaccharea / Neisseria weaveri / Neisseria meningitidis / Neisseria lactamica 

207 

Neisseria subflava / Neisseria flavescens / Neisseria flava / Neisseria sicca / Neisseria pharyngis / Neisseria 

mucosa / Neisseria polysaccharea / Neisseria weaveri 

208 

Neisseria subflava / Neisseria flavescens / Neisseria flava / Neisseria sicca / Neisseria pharyngis / Neisseria 

mucosa / Neisseria polysaccharea / Neisseria weaveri 

209 

Prevotella melaninogenica / Prevotella scopos / Prevotella sp. / Prevotella histicola / Prevotella veroralis / 

Prevotella fusca 

210 Prevotella melaninogenica / Prevotella scopos / Prevotella sp. / Prevotella histicola / Prevotella veroralis 

211 Prevotella oris 

212 Prevotella denticola / Prevotella multiformis 

213 Leptotrichia sp. 

214 

Neisseria lactamica / Neisseria sicca / Neisseria flava / Neisseria polysaccharea / Neisseria pharyngis / 

Neisseria mucosa / Neisseria meningitidis / Neisseria oralis / Neisseria subflava / Neisseria bacilliformis / 

Neisseria gonorrhoeae / Neisseria flavescens 

215 

Neisseria meningitidis / Neisseria polysaccharea / Neisseria flava / Neisseria gonorrhoeae / Neisseria sicca / 

Neisseria pharyngis / Neisseria mucosa / Neisseria lactamica / Neisseria flavescens / Neisseria subflava 

216 Unclassified 

217 Acinetobacter baumannii / Acinetobacter sp. 

218 Prevotella nanceiensis 

219 Unclassified 

220 Prevotella nanceiensis 

221 Prevotella shahii / Prevotella sp. 

222 Prevotella pallens 

223 Prevotella pallens 

224 Prevotella intermedia 

225 Prevotella nigrescens 

226 Prevotella pallens 

227 Prevotella aurantiaca 

228 Prevotella aurantiaca 

229 Prevotella aurantiaca 

230 Prevotella aurantiaca / Prevotella pallens 
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Figure 3.16 Change in relative abundance of selected oligotypes associated with influenza virus 

infection. 

 

Odds ratio of 2 corresponds to a two-fold increase in odds of influenza virus infection per 10-fold 

increase in relative abundance. Results of separate generalized linear mixed effects models 

estimating the odds of influenza virus infection by selected taxa (log10-transformed relative 

abundance). Each model is adjusted for age (relative to adults), a smoker in the household, 

household crowding (average of >3 persons per bedroom), and clustering by household. Colors 

correspond to oligotypes shown in Figure 3.4. Duplicate genus names represent different 

oligotypes. 
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Chapter 4 The Respiratory Microbiota on Influenza Symptomology and Viral Shedding 

 

In preparation for publication in peer-reviewed journal 

Lee K, Foxman B, Kuan G, López R, Shedden K, Ng S, Balmaseda A, Gordon A. 

 

4.1 Author Summary 

Influenza virus infection varies considerably in symptomology and viral shedding. We 

found influenza symptom duration, viral shedding duration, and time to infection was significantly 

associated with differences in the nose/throat microbiota prior to infection. 

 

4.2 Abstract 

The aim of this study was to examine whether the nose/throat microbiota influences 

influenza symptoms and shedding. Exploring this relationship could lead to alternative methods 

for reducing influenza severity and transmission. Household index cases of influenza virus 

infection were identified at a primary healthcare center. An index case was defined as the first 

household member with symptom onset of a febrile acute respiratory infection and detectable 

influenza virus. Household contacts of index cases were followed for up to 13 days. A secondary 

case was defined as a household contact with detectable influenza virus or a >4-fold change in 

hemagglutinin inhibition antibody titers. We characterized the nose/throat microbiota of secondary 

cases at time of enrollment and compared symptomology and viral shedding by bacterial 

community types. We identified 124 secondary cases of influenza. The durations of fever and 
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cough varied by bacterial community type. Further, a community type with low diversity was 

associated with shorter duration of viral shedding and delayed time to infection. We demonstrate 

influenza symptomology and viral shedding are associated with differences in the nose/throat 

microbiota. Further work is needed to identify underlying factors that contribute to the associations 

we observed at the community type level. 

 

4.3 Introduction 

The clinical manifestation of influenza virus infection varies considerably, ranging from 

asymptomatic infections to severe illness and death [1]. Among the estimated 90 million new cases 

of influenza that occurred in young children in 2008, 20 million had acute respiratory infections 

(ARI), 1 million had severe ARIs, and 28,000-111,500 cases resulted in death [2]. Influenza cases 

also vary in degrees of viral shedding [3–6], which likely reflects infectiousness [3]. A meta-

analysis of challenge studies estimated the average duration of shedding among young adults to 

be around 5 days after inoculation [3]. However, viral shedding is often undetected during 

infections [3,4] and longer durations of shedding have been observed in more symptomatic cases 

[7] and in young children [4,8]. 

 This heterogeneity in influenza illness and infectiousness is largely attributed to the host 

immune response, which impacts pathogenicity and viral replication. Increasingly, the microbiome 

is recognized as an important mediator of host immunity [9–12], spurring epidemiologic studies 

to examine whether the microbiome impacts the risk and severity of infectious diseases [13–15]. 

To our knowledge, no epidemiologic study has examined whether the microbiome impacts 

symptoms or viral shedding during influenza virus infection. Identifying these links would lay 
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groundwork for synbiotic approaches to reducing influenza severity and transmission. Here, we 

aim to fill this gap using data from a household transmission study in Nicaragua.  

 

4.4 Methods 

4.4.1 Study Population 

This analysis uses data and samples collected from the Nicaraguan Household Transmission Study 

was conducted in Managua, Nicaragua, between 2012-2014. Household index cases of influenza 

virus infection were identified at a primary healthcare center using the following criteria: 1) a 

positive QuickVue Influenza A + B rapid diagnostic test, 2) symptom onset of an febrile acute 

respiratory infection (FARI; fever or feverishness with a rhinorrhea, sore throat, and/or cough) 

within the past 48 hours, 3) residing in a household with at least one other member (household 

contact), and 4) no household contacts with influenza symptoms in the two weeks prior to symptom 

onset in the index case.  

Index cases and household contacts were invited for study participation and monitored 

through up to 5 home visits, conducted at 2-3 day intervals. Nasal and oropharyngeal swabs were 

collected and combined at each visit. Blood samples were collected at enrollment and 30-45 days 

later. A secondary case was defined as a household contact with a positive real-time reverse 

transcription polymerase chain reaction (RT-PCR) result or a >4-fold change in hemagglutination 

inhibition (HAI) antibody titers specific to the subtype/type identified in the index case.  

A written informed consent or proxy consent was obtained for all participants. Verbal 

assent was obtained from children ≥5 years. The study was approved by the Institutional Review 

Boards at the University of Michigan and the Nicaraguan Ministry of Health.  
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4.4.2 Laboratory Assays 

Influenza type/subtype-specific RT-PCR was conducted on all samples using validated 

Centers for Disease Control and Prevention protocols [16]. Influenza type/subtype-specific HAI 

titers were measured using validated World Health Organization protocols [17]. 

 

4.4.3 Microbiota Characterization 

Detailed methods used for microbiota characterization are available in Appendix 4.1. Briefly, 

DNA was extracted from the first and last nasal/oropharyngeal sample collected from all index 

cases and household contacts. The V4 hypervariable region of the 16S rRNA gene was amplified 

and sequenced on an Illumina MiSeq System using a validated dual-indexing method [18]. 

Following alignment and quality filtering in mothur v1.38.1 [19] and oligotyping to assign reads 

to taxonomic units [20], Dirichlet multinomial mixture models [21] were used to assign all 

nasal/oropharyngeal samples to 5 bacterial community types (Figure 4.1). Each community type 

represents a group of samples with similar compositions. We determined the number of 

community types by estimating the Laplace approximation of the negative log models and 

identifying the point at which an increase in Dirichlet components resulted in minor reductions in 

model fit (Figure 4.2). Taxonomy was assigned using the Human Oral Microbiome Database 

v14.51 [22] and blastn v2.2.23 [23].  

We estimated the diversity of community types using data on samples from all study 

participants (n=1,405 samples). β-diversity, representing within-group dissimilarity of samples, 

was estimated using Bray-Curtis dissimilarity and Jaccard distance. α-diversity, representing 

within-sample community diversity, was estimated using Shannon diversity index and Chao1 
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index. Shannon diversity accounts for both richness and evenness of taxa while Chao1 only 

accounts for richness. 

 

4.4.4 Influenza Shedding and Symptom Data 

Household contacts with ≥1 positive RT-PCR result during follow were defined as 

secondary cases with viral shedding. Shedding duration was estimated as the time between the first 

positive RT-PCR result and a negative RT-PCR result. 

Study participants completed a daily symptom diary documenting the presence of the 

following symptoms: fever or feverishness, rhinorrhea, sore throat, and cough. To reduce potential 

bias from symptoms unrelated to influenza virus infection, we defined an influenza-associated 

illness period for each participant using symptom onset and alleviation dates. Illness onset was 

defined as the earliest date of any symptom. However, symptoms were excluded if they were 

alleviated >1 day prior to onset of viral shedding. Illness alleviation was defined as the date on 

which all symptoms were alleviated. Any recurring symptoms were excluded if the symptom 

recurred ≥3 days after viral shedding cessation or if fever recurred ≥3 days after fever alleviation. 

The duration of each symptom was estimated within the defined illness period. Febrile acute 

respiratory illness (FARI) was defined as the presence of fever plus rhinorrhea, sore throat, and/or 

cough and influenza-like illness (ILI) was defined as fever plus sore throat and/or cough. 

 

4.4.5 Statistical Analysis 

Generalized linear mixed effects models were used to examine the association between 

nasal/oropharyngeal bacterial community types and the presentation of symptoms and presentation 

of viral shedding among secondary cases, after accounting for clustering by household. Clustered 
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accelerated failure time (AFT) models using a generalized estimating equation (GEE) approach 

were used to examine the relationship between community types and symptom duration, viral 

shedding duration, the serial interval (defined as time between onset of symptoms between an 

index case and a secondary case), and time to shedding onset. Time to shedding onset was based 

on symptom onset dates of index cases. Survival time was parameterized as a Weibull distribution 

in all AFT models [24].  

For any statistically significant effect estimates observed at the community type level, we 

further explored whether outcomes were associated with the relative abundance of 15 oligotypes 

that contributed to >50% of the difference between community types. We ran single-oligotype 

models using log10-transformed relative abundance in consideration of the constant sum constraint 

[25] and the Benjamin-Hochberg method to correct for multiple testing. We also reran models 

using α-diversity metrics to explore whether community diversity contributed to associations at 

the community type level. 

We adjusted for age in models estimating viral shedding outcomes and adjusted for age 

and sex in models estimating symptom outcomes. We adjusted for age, a smoker in the household, 

and household crowding for our models estimating time to shedding onset. We additionally 

adjusted for sex for our model estimating the serial interval. A summary of our models is available 

in Table 4.1. All statistical analyses were conducted using R version 3.4.2 [26].  

 

4.5 Results 

4.5.1 Study population 

A total of 144 index cases and 573 household contacts were enrolled in the Nicaraguan 

Household Transmission Study during 2012-2014. 160 secondary infections were identified by 
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RT-PCR over a ≤13-day follow up period or a ≥4-fold increase in HAI titer specific to the influenza 

type/subtype of the household index case 30-45 days after enrollment. Analysis was conducted on 

124 secondary cases after excluding 36 household contacts with a positive RT-PCR result at the 

first home visit. Among secondary cases, 71 were positive for influenza by RT-PCR (57%) and 92 

(74%) were positive by HAI during follow up. 

We assigned 1,405 nose/throat samples from all study participants to 5 bacterial 

community types. Bray-Curtis dissimilarity and Shannon diversity of community types were 

significantly different between all community types (p<0.001). However, community type 5 was 

the most heterogeneous type and had the lowest community diversity compared to all other 

community types (Figures 4.3A & 4.3B). Results were similar when using Jaccard distance and 

Chao1 as alternative diversity metrics (Figure 4.4). The taxa composition of each community type, 

renormalized to 15 oligotypes that contributed to >50% of the difference between community 

types, is depicted in Figure 4.3C. The complete taxa composition is available in Figure 4.5. 

Half of all secondary cases were adults (48%) and most infections were symptomatic (61%) 

(Table 4.2). Thirty-six secondary cases experienced FARIs (29%), including 34 with ILI (27%). 

41% of households had more than 1 secondary case, suggesting clustering of secondary cases by 

household. Compared to secondary infections without viral shedding (n=53), most secondary 

infections with viral shedding (n=71) were among younger household contacts (mean: 16.7 years 

vs. 25.2 years, t-test, p=0.001), more likely to be symptomatic (75% vs. 43% with ≥1 symptom, 

χ2 test, p<0.001), and more likely to result in FARI (42% vs. 6%, χ2 test, p<0.001).  
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4.5.2 Bacterial community prior to infection on symptomology and viral shedding 

The duration of symptoms differed significantly by community type among secondary 

cases, after adjusting for age, sex, and clustering by household. Cough persisted longer for 

community type 2 (AF: 1.23; 95% CI: 1.15, 4.32), community type 3 (AF: 1.34; 95% CI: 1.26, 

4.35), and community type 4 (AF: 1.71; 95% CI: 1.42, 5.17) compared to community type 1 

(Figure 4.6). Further, fever persisted longer for community type 3 (AF: 1.75; 95% CI: 1.27, 5.97) 

and community type 4 (AF: 1.76, 95% CI: 1.04, 2.98). Although not statistically significant, we 

also observed longer fever for community type 2 (AF: 1.46; 95% CI: 0.93, 2.30). We found no 

associations between community types and the duration of rhinorrhea or sore throat. An alternate 

interpretation of these results is that the durations of cough and fever were attenuated among 

secondary cases with community type 1. We did not find any significant associations between 

community types and the presentation of symptoms, after adjusting for sex, age, and clustering by 

household (Table 4.3). However, we observed notably larger odds of FARI (adjusted odds ratio 

(OR): 4.12; 95% CI: 0.86, 19.74) and cough (OR: 3.67; 95% CI: 0.91, 14.78). 

Shedding duration was 47% shorter among secondary cases with community type 5 (AF: 

0.53; 95% CI: 0.32, 0.90), after adjusting for age and clustering by household (Figure 4.6). We 

found no associations between community types and the presence of viral shedding (Table 4.3). 

 

4.5.3 Bacterial community prior to infection on time to infection 

We examined whether community types were associated with time to infection using two 

different proxy measures, serial interval and time to shedding onset, after adjusting for age, sex, a 

smoker in the household, household crowding, and clustering by household. Compared to 

community type 1, the serial interval was longer among secondary cases with community type 5 
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(AF: 1.85; 95% CI: 1.03, 3.34) (Figure 4.7). Further, shedding onset was delayed among secondary 

cases with community type 5 (AF: 1.43; 95% CI: 1.01, 2.02). 

 

4.5.4 The role of community diversity 

We explored whether α-diversity influenced associations at the community type level. We 

found no associations between community diversity and symptom durations (Table 4.4). However, 

Shannon diversity was associated with longer shedding duration (AF: 1.62; 95% CI: 1.25, 2.10) 

and Chao1 was associated with earlier time to shedding onset (AF: 0.995; 95% CI: 0.990, 0.998). 

The serial interval was negatively associated with Shannon diversity (AF: 0.72; 95% CI: 0.53, 

0.97) and Chao1 (AF: 0.992; 95% CI: 0.986, 0.998). These results support associations found with 

community type 5, which was substantially less diverse than other community types. 

  

4.5.5 The role of individual taxa 

To explore the role of individual taxa on associations at the community type level, we 

examined whether the relative abundance of select oligotypes impacted symptomology and viral 

shedding. We considered the 15 oligotypes that contributed to >50% of the difference between 

community types and used the Benjamin-Hochberg method to correct for multiple testing (Table 

4.5).   

The duration of fever was negatively associated with Veillonella parvula / rogosae / 

atypica / denticariosi / dispar (AF: 0.66; 95% CI: 0.50, 0.86). Shedding duration was positively 

associated with the abundance of Fusobacterium (AF: 1.14; 95% CI: 7%, 22%), Neisseria (AF: 

1.16; 95% CI: 1.06, 1.27), and Haemophilus (AF: 1.13; 95% CI: 1.04, 1.23). Shedding duration 

was negatively associated with the abundance of Streptococcus vestibularis / salivarius / gordonii 
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/ sp (AF: 0.61; 95% CI: 0.48, 0.77). Fusobacterium (AF: 0.89; 95% CI: 0.83, 0.95) and Neisseria 

(AF: 0.87; 95% CI: 0.79, 0.95) were also associated with a shorter serial interval.  

 

4.5.6 Sensitivity analysis 

To investigate whether the criteria used to define illness periods affected our results, we 

reran our models with three sets of modified criteria: illness period does not exclude symptoms if 

fever recurs ≥3 days after fever alleviation, illness period only considers ILI symptoms, and all 

symptoms during follow up contribute to illness period. Model estimates either remained the same 

or there were minor differences that did not affect our overall conclusions (Tables 4.6-4.8).  

 

4.6 Discussion 

We explored whether the nose/throat microbiota influenced symptomology and viral 

shedding among secondary cases identified by RT-PCR or >4-fold increase in HAI titers. We 

found the bacterial community structure prior to influenza virus infection is associated with the 

duration of symptoms and duration of viral shedding. We also examined whether the bacterial 

community structure predicted earlier infection by considering the serial interval and time to 

shedding onset. We found secondary cases with a less diverse community type become infected 

earlier. Interestingly, secondary cases with this community type also had a shorter period of viral 

shedding. In addition to low diversity, these associations may also be driven by the abundance of 

specific oligotypes, such as Fusobacterium and Neisseria. Further investigations are needed to 

explore factors that may contribute to the associations we observed at the community type level. 

Metagenomics and metabolomic screening could assess functional differences between 

community types.  
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Murine experiments support our findings of a relationship between the microbiome and 

influenza symptoms and viral shedding. Mice treated with antibiotics prior to inoculation with 

influenza virus expressed enhanced disease severity and increased risk of death [12]. Among mice 

with microbiomes disrupted by antibiotics, macrophages expressed defective responses to type I 

and type II IFNs [12] and exhibited defective T-cell and B-cell responses linked to reduced priming 

of inflammasome-dependent cytokines [10]. These impairments resulted in higher viral replication 

[10,12]. However, these studies did not characterize the microbiota using an untargeted 16S rRNA 

taxonomic screen, making it difficult to connect our epidemiologic findings with specific 

biological mechanisms. One mechanism of protection described in mice involves Toll-like 

receptor 2 signaling by Staphylococcus aureus, which results in the recruitment of alveolar 

macrophages [27]. In our study, Staphylococcus represented only 1 of 230 total oligotypes and 

contributed <0.02% of the relative abundance in each community type. This suggests our finding 

were independent of Staphylococcus. Future studies should examine both aspects to better 

characterize the relationship between the host microbiome, host immunity, and influenza virus 

infection. 

Our study has several potential limitations. First, any criteria used to define an influenza-

associated illness period is subject to misclassification. However, sensitivity analysis indicates our 

criteria did not meaningfully impact our results. Second, our estimates for serial intervals and time 

to shedding onset assume the index case is the source of infection. Mathematical models [28] that 

allow secondary cases to contribute to transmission should be used in more adequately powered 

studies. Third, viral shedding may influence symptomology [7]. However, we were inadequately 

powered to examine the relationship between the microbiota and symptomology among secondary 

cases by shedding status. As the primary aim of this study was to explore whether differences in 
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the respiratory microbiota influenced symptomology and viral shedding, we did not control for 

multiple testing by symptom. Lastly, due to limited sample size we were unable to examine 

potential differences by influenza type.  

In conclusion, our study demonstrates influenza symptomology and viral shedding may be 

influenced by differences in the nose/throat bacterial community structure. By extension, the 

microbiota may influence influenza transmission, which is likely dependent on both the duration 

and level of viral shedding as well as the presence of symptoms. Current methods for reducing 

influenza transmission and disease severity involve reducing exposure to the virus, vaccination, 

and antiviral treatment. However, supplementary strategies should be explored to reduce the 3-5 

million cases of severe illness [29] and 400,000 deaths [30] estimated to occur each year. 

Randomized synbiotic studies have shown drastic reductions in respiratory tract infections [13,14]. 

As synbiotic trials are limited to newborns, more work is needed to understand their impact among 

different age groups and communities. Nevertheless, with week-long costs of synbiotic treatment 

estimated to be around $1 per person [13], synbiotics may be a simple, cost-efficient means for 

reducing influenza virus transmission and the burden of disease, especially in low- and middle-

income countries. In summary, our findings contribute to the growing support for the role of the 

microbiome on human health and the potential for microbiome-related strategies in reducing the 

global burden of infectious diseases. 
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Table 4.1 Summary of models used to investigate the relationship between bacterial community 

types and various symptom and viral shedding outcomes. 

Model Type Community type Age Sex Smoker in household Crowding 

Symptom presentation GLME Yes Yes Yes No No 

Symptom duration GEE 

AFT 

Yes Yes Yes No No 

Shedding duration GEE 

AFT 

Yes Yes No Yes Yes 

Serial interval GEE 

AFT 

Yes Yes Yes Yes Yes 

Time to shedding onset GEE 

AFT 

Yes Yes No Yes Yes 

Abbreviations: GLME, generalized linear mixed effects; GEE, generalized estimating equation; AFT, accelerated failure time. 

 

Models additionally controlled for clustering by household and are not specific to influenza 

type/subtype. Columns to the right of the bold vertical line indicate independent variables  

included in the model. Models with statistically significant associations at the community type 

level were rerun using log10-transformed relative abundance of 15 oligotypes that contributed to 

50% of difference between community types. Models were also rerun using α-diversity metrics. 
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Table 4.2 Characteristics of 124 secondary influenza cases from 70 households, Managua, 

Nicaragua, 2012-2014, by bacterial community type. 

Characteristics All  

(n=124a) 

Community 

Type 1 

(n=35) 

Community 

Type 2 

(n=31) 

Community 

Type 3 

(n=30) 

Community 

Type 4 

(n=14) 

Community 

Type 5 

(n=7) 

 No. (%) No. (%) No. (%) No. (%) No. (%) No. (%) 

Influenza type/subtype 

(RT-PCR) 

      

     H1N1 12 (10) 2 (6) 3 (10) 2 (7) 4 (29) 0 (0) 

     H3N2 37 (30) 12 (34) 9 (29) 9 (30) 0 (0) 5 (71) 

     B 21 (17) 6 (17) 7 (23) 4 (13) 1 (7) 1 (14) 

     Co-infection 1 (1) 0 (0) 1 (3) 0 (0) 0 (0) 0 (0) 

     None 53 (43) 15 (43) 11 (35) 15 (50) 9 (64) 1 (14) 

Influenza type/subtype 

(HAI) 

      

     H1N1 18 (15) 4 (11) 5 (16) 4 (13) 4 (29) 0 (0) 

     H3N2 48 (39) 13 (43) 8 (26) 15 (50) 6 (43) 1 (0) 

     B 26 (21) 6 (17) 8 (26) 7 (23) 3 (21) 1 (14) 

     Co-infection 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 

     None 23 (19) 7 (20) 7 (23) 4 (13) 1 (7) 2 (29) 

     Missing 9 (7) 3 (9) 3 (10) 0 (0) 0 (0) 3 (43) 

Age (years)       

     0-5 19 (15) 5 (14) 6 (19) 1 (3) 0 (0) 5 (71) 

     6-17 45 (36) 16 (46) 10 (32) 13 (43) 4 (29) 1 (14) 

     ≥18 60 (48) 14 (40) 15 (48) 16 (53) 10 (71) 1 (14) 

Female 80 (65) 20 (57) 23 (74) 19 (63) 10 (71) 4 (57) 

Influenza vaccinationb 6 (5) 1 (3) 3 (10) 2 (7) 0 (0) 0 (0) 

Smoker in household 59 (54) 16 (52) 14 (52) 17 (61) 6 (55) 4 (57) 

Number of symptoms       

     0 48 (39) 12 (34) 12 (39) 13 (43) 4 (29) 3 (43) 

     1 20 (16) 10 (29) 2 (6) 6 (20) 2 (14) 0 (0) 

     2 16 (13) 5 (14) 3 (10) 5 (17) 0 (0) 2 (29) 

     3 20 (16) 5 (14) 6 (19) 2 (7) 6 (43) 1 (14) 

     4 20 (16) 3 (9) 8 (29) 4 (13) 2 (14) 1 (14) 

FARIc 36 (29) 7 (20) 11 (35) 6 (20) 6 (43) 3 (43) 

ILId 34 (27) 7 (20) 11 (35) 6 (20) 6 (43) 2 (29) 

Symptoms       

     Fever 44 (35) 11 (31) 12 (39) 8 (27) 7 (50) 3 (43) 

     Rhinorrhea 53 (43) 14 (40) 16 (52) 10 (33) 7 (50) 3 (43) 

     Sore throat 35 (28) 8 (23) 12 (39) 6 (20) 5 (36) 2 (29) 

     Cough 60 (48) 14 (40) 18 (58) 14 (47) 9 (64) 3 (43) 

Abbreviations: RT-PCR, real-time reverse transcription polymerase chain reaction; HAI, hemagglutination inhibition; ARI, acute 

respiratory infection; ILI, influenza-like illness. 
aSecondary cases were defined as household contacts of index cases with a positive RT-PCR result for influenza or >4-fold 

change in HAI titer during follow up. 

Includes secondary cases with undefined community types 
bPrior to enrollment and in same year as index case 

cFever/feverishness with rhinorrhea, sore throat or cough 
dFever/feverishness with sore throat or cough 
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Table 4.3 Generalized linear mixed effects models examining associations between bacterial 

community types and the development of symptoms and viral shedding. 

Model Community 

Type 2 

Community 

Type 3 

Community 

Type 4 

Community 

Type 5 

Age 0-5 

Years 

Age 6-17 

Years 

Female 

Odd Ratio (95% Confidence Interval) 

≥1 symptom 0.57 

(0.13, 2.57) 

0.62 

(0.16, 2.45) 

1.83 

(0.30, 11.40) 

0.18 

(0.01, 3.03) 

6.36 

(0.74, 55.04) 

2.04 

(0.60, 6.93) 

1.48 

(0.45, 4.84) 

FARI 2.31 

(0.63, 8.45) 

1.21  

(0.31, 4.74) 

4.12  

(0.86, 19.74) 

1.84  

(0.23, 14.62) 

3.70  

(0.65, 21.06) 

2.06 

 (0.68, 6.23) 

2.06  

(0.68, 5.71) 

Fever 1.32  

(0.45, 3.82) 

0.84  

(0.27, 2.58) 

2.59  

(0.67, 9.45) 

1.28  

(0.19, 8.71) 

2.26  

(0.54, 9.45) 

2.12 

(0.81, 5.55) 

1.99  

(0.76, 5.20) 

Rhinorrhea 1.52  

(0.49, 4.71) 

0.94  

(0.30, 2.92) 

2.09  

(0.51, 8.52) 

0.32  

(0.03, 3.15) 

8.65  

(1.38, 54.37) 

0.75  

(0.17, 3.33) 

1.37  

(0.35, 5.45) 

Sore throat 2.32  

(0.67, 7.97) 

0.82  

(0.23, 2.92) 

1.87 

(0.43, 8.16) 

1.65  

(0.19, 14.32) 

0.81  

(0.17, 3.92) 

1.31  

(0.46, 3.74) 

1.69  

(0.59, 4.79) 

Cough 2.06 

(0.72, 5.87) 

1.52  

(0.53, 4.34) 

3.67 

(0.91, 14.78) 

0.68  

(0.10, 4.70) 

3.63  

(0.81, 16.24) 

2.37 

(0.91, 6.16) 

1.72  

(0.66, 4.43) 

Viral 

shedding 

1.58 

(0.49, 5.13) 

0.85  

(0.27, 2.64) 

0.53  

(0.12, 2.32) 

3.76  

(0.28, 49.87) 

3.12  

(0.68, 14.32) 

2.91  

(1.06, 8.01) 
- 

Abbreviations: FARI, febrile acute respiratory illness  

 

 

Among 124 secondary cases from 70 households, Managua, Nicaragua, 2012-2014. 
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Table 4.4 Generalized estimating equation accelerated failure time models assess the impact of 

alpha diversity on outcomes associated with community type 5. 

Outcome Shannon Diversity Chao1 Index 

 Acceleration Factor (95% Confidence Interval) 

Duration of fever 0.80 (0.31, 2.07) 1.00 (0.99, 1.01) 

Duration of cough 1.39 (0.56, 3.49) 1.00 (0.99, 1.02) 

Duration of shedding 1.62 (1.25, 2.10) 1.01 (0.998, 1.01) 

Serial interval 0.72 (0.53, 0.97) 0.992 (0.986, 0.998) 

Time to shedding onset 0.84 (0.67, 1.06) 0.995 (0.990, 0.999) 

 

 

Among 124 secondary cases from 70 households, Managua, Nicaragua, 2012-2014. 
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Table 4.5 Models assessing the impact individual oligotypes on outcomes associated with 

community types. 

Oligotype Fever duration 

GEE AFT 

Cough duration 

GEE AFT 

Shedding duration 

GEE AFT 

AF (95% CI) q-valuea AF (95% CI) q-valuea AF (95% CI) q-valuea 

Veillonella 1 1.20 (0.82, 1.75) 0.409 0.81 (0.47, 1.40) 0.759 0.82 (0.66, 1.02) 0.201 

Streptococcus 1 1.34 (0.83, 2.17) 0.409 0.69 (0.39, 1.22) 0.621 0.61 (0.48, 0.77) <0.001 

Fusobacterium  0.89 (0.64, 1.23) 0.772 1.33 (1.02, 1.72) 0.255 1.14 (1.07, 1.22) <0.001 

Streptococcus 2 1.04 (0.51, 2.09) 0.912 0.63 (0.28, 1.40) 0.621 1.26 (0.85, 1.86) 0.337 

Prevotella 1 1.05 (0.89, 1.25) 0.730 0.84 (0.64, 1.09) 0.621 0.86 (0.69, 1.07) 0.267 

Gemella 0.64 (0.42, 0.99) 0.200 0.85 (0.51, 1.42) 0.782 1.17 (0.87, 1.57) 0.372 

Neisseria 0.85 (0.65, 1.11) 0.730 1.37 (1.03, 1.82) 0.292 1.16 (1.06, 1.27) 0.005 

Haemophilus 0.64 (0.42, 0.98) 0.285 1.27 (0.78, 2.06) 0.694 1.13 (1.04, 1.23) 0.020 

Prevotella 2 1.12 (0.96, 1.31) 0.409 0.92 (0.73, 1.14) 0.759 1.04 (0.93, 1.17) 0.513 

Prevotella 3 1.23 (1.03, 1.48) 0.200 1.06 (0.84, 1.33) 0.782 1.04 (0.90, 1.21) 0.579 

Prevotella 4 1.10 (0.71, 1.70) 0.772 1.42 (0.88, 2.29) 0.621 1.22 (0.96, 1.54) 0.220 

Streptococcus 3 1.22 (0.74, 2.01) 0.648 0.79 (0.35, 1.78) 0.782 0.60 (0.38, 0.94) 0.078 

Megasphaera 1.02 (0.91, 1.14) 0.772 0.98 (0.86, 1.13) 0.844 0.97 (0.88, 1.06) 0.513 

Prevotella 5 1.09 (0.91, 1.31) 0.648 0.97 (0.79, 1.19) 0.844 1.09 (0.97, 1.22) 0.262 

Veillonella 2 0.66 (0.50, 0.86) 0.030 0.83 (0.62, 1.12) 0.621 1.01 (0.96, 1.27) 0.267 

 
Oligotype Serial Interval 

GEE AFT 

Time to shedding onset 

GEE AFT 

AF (95% CI) q-valuea AF (95% CI) q-valuea 

Veillonella 1 1.31 (0.98, 1.74) 0.255 1.16 (0.90, 1.50) 0.501 

Streptococcus 1 1.02 (0.74, 1.40) 0.920 0.90 (0.71, 1.15) 0.612 

Fusobacterium  0.89 (0.83, 0.95) 0.015 0.97 (0.92, 1.02) 0.501 

Streptococcus 2 1.07 (0.79, 1.44) 0.773 0.95 (0.62, 1.45) 0.884 

Prevotella 1 0.97 (0.79, 1.20) 0.840 0.95 (0.89, 1.02) 0.501 

Gemella 1.31 (0.91, 1.89) 0.362 1.21 (0.86, 1.69) 0.501 

Neisseria 0.87 (0.79, 0.95) 0.015 0.97 (0.89, 1.04) 0.587 

Haemophilus 0.93 (0.68, 1.26) 0.773 1.01 (0.95, 1.07) 0.884 

Prevotella 2 0.92 (0.83, 1.01) 0.255 0.94 (0.87, 1.00) 0.435 

Prevotella 3 1.07 (0.92, 1.25) 0.554 0.99 (0.92, 1.06) 0.884 

Prevotella 4 0.81 (0.63, 1.03) 0.384 0.89 (0.78, 1.01) 0.435 

Streptococcus 3 0.88 (0.66, 1.19) 0.255 0.83 (0.62, 1.10) 0.501 

Megasphaera 1.07 (0.96, 1.18) 0.409 1.00 (0.93, 1.08) 0.997 

Prevotella 5 0.94 (0.72, 1.22) 0.773 0.95 (0.89, 1.01) 0.435 

Veillonella 2 0.86 (0.66, 1.12) 0.435 0.97 (0.87, 1.07) 0.712 
aCorrected for multiple testing using the Benjamin-Hochberg method.  

Abbreviations: GEE, generalized estimating equation; AFT, accelerated failure time; AF, acceleration factor; CI, confidence 

interval. 

 

 

Models used log10-transformed relative abundance of 15 oligotypes that contributed 50% of 

difference between community types. Benjamin-Hochberg method to correct for multiple testing. 

Among 124 secondary cases from 70 households, Managua, Nicaragua, 2012-2014. 
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Legend 
Oligotype Full taxonomic classification 

Veillonella 1 Veillonella dispar / atypica / parvula / rogosae 

Streptococcus 1 Streptococcus vestibularis / salivarius / gordonii / sp 

Fusobacterium  Fusobacterium periodonticum / nucleatum subsp. animalis / sp. / nucleatum subsp. Vincentii / nucleatum 

subsp. polymorphum / naviforme / nucleatum subsp. nucleatum 

Streptococcus 2 Streptococcus sp. / dentisani / mitis / oralis / infantis / tigurinus / lactarius / peroris / pneumoniae 

Prevotella 1 Prevotella histicola / sp. / veroralis / scopos / fusca / melaninogenica 

Gemella Gemella haemolysans / sanguinis / morbillorum / bergeri 

Neisseria Neisseria subflava / flavescens / flava / sicca / pharynges / mucosa / polysaccharea / weaver / meningitidis 

/ lactamica 

Haemophilus Haemophilus parainfluenzae / parahaemolyticuss / paraphrohaemolyticus / sputorum / sp. / haemolyticus / 

influenzae 

Prevotella 2 Prevotella sp. / veroralis / histicola / fusca / scopos 

Prevotella 3 Prevotella sp. / veroralis / fusca / histicola / scopos / melaninogenica 

Prevotella 4 Prevotella melaninogenica / scopos / sp. / histicola / veroralis 

Streptococcus 3 Streptococcus australis / parasanguinis II / parasanguinis I/ sp. / oligofermentans / cristatus / sinensis / 

sanguinis / gordonii / lactarius / peroris / oralis 

Megasphaera Megasphaera micronuciformis 

Prevotella 5 Prevotella salivae 

Veillonella 2 Veillonella parvula / rogosae / atypica / denticariosi / dispar 
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Table 4.6 Sensitivity analysis: influenza-associated illness period does not exclude symptoms if 

fever recurs ≥3 days after fever alleviation. 

Model CT 2 CT 3 CT 4 CT 5 Age 0-5 Yr Age 6-17 

Yr 

Female 

GLME Odds Ratio (95% Confidence Interval) 

≥1 symptom 0.57  

(0.13, 2.57) 

0.62  

(0.16, 2.45) 

1.83  

(0.30, 11.40) 

0.18  

(0.01, 3.03) 

6.36  

(0.74, 55.04) 

2.03  

(0.60, 6.93) 

1.48  

(0.45, 4.84) 

ARI 2.31  

(0.63, 8.44) 

1.21  

(0.31, 4.74) 

4.12  

(0.86, 19.74) 

1.84  

(0.23, 14.62) 

3.70  

(0.65, 21.06) 

2.06  

(0.68, 6.23) 

1.87  

(0.61, 5.71) 

Fever 1.32  

(0.45, 3.82) 

0.84  

(0.27, 2.58) 

2.58  

(0.67, 9.95) 

1.28  

(0.19, 8.71) 

2.26  

(0.54, 9.45) 

2.12  

(0.81, 5.55) 

1.99  

(0.76, 5.20) 

Rhinorrhea 1.52  

(0.49, 4.71) 

0.94  

(0.30, 2.92) 

2.09  

(0.51, 8.52) 

0.32  

(0.03, 3.15) 

8.65  

(1.38, 54.34) 

1.39  

(0.51, 3.85) 

1.26  

(0.47, 3.39) 

Sore throat 2.32  

(0.67, 7.97) 

0.82  

(0.23, 2.92) 

1.87  

(0.43, 8.16) 

1.65  

(0.19, 14.31) 

0.81  

(0.17, 3.92) 

1.31  

(0.46, 3.75) 

1.69  

(0.59, 4.79) 

Cough 2.06  

(0.72, 5.87) 

1.52  

(0.53, 4.34) 

3.67  

(0.91, 14.78) 

0.68  

(0.10, 4.70) 

3.63  

(0.81, 16.24) 

2.37  

(0.91, 6.16) 

1.72  

(0.66, 4.43) 

AFT GEEb        

Fever 1.94  

(1.16, 3.22) 

2.54  

(1.15, 5.59) 

1.56  

(0.87, 2.77) 

0.88  

(0.37, 2.10) 

1.23  

(0.50, 3.00) 

0.77  

(0.44, 1.34) 

0.79  

(0.37, 1.69) 

Sore throatc 0.88  

(0.62, 1.25) 

0.72  

(0.47, 1.12) 

1.00  

(0.47, 2.35) 

0.79  

(0.50, 1.26) 

- 0.72  

(0.43, 1.20) 

0.52  

(0.21, 1.27) 

Cough 2.23  

(1.15, 4.32) 

2.34  

(1.26, 4.35) 

2.71  

(1.42, 5.17) 

1.63  

(0.48, 5.46) 

1.59  

(0.48, 5.29) 

0.99  

(0.62, 1.57) 

1.05  

(0.56, 1.99) 

Rhinorrhea 1.39  

(0.61, 3.13) 

1.26  

(0.59, 2.68) 

1.25  

(0.53, 2.96) 

0.56  

(0.09, 3.54) 

3.30  

(1.23, 8.91) 

1.33  

(0.76, 2.31) 

1.14  

(0.55, 2.37) 
 

Model CT 2 CT 3 CT 4 CT 5 Age 0-5 

Years 

Age 6-17 

Years 

Female Smoker in 

Household  

Household 

Crowding 

GEE 

AFT 

Acceleration Factor (95% Confidence Interval) 

Serial 

interval 

0.94 

(0.62, 

1.42) 

0.96  

(0.58, 

1.57) 

0.64  

(0.38, 

1.07) 

1.85  

(1.03, 

3.34) 

0.70  

(0.46, 1.08) 

1.04  

(0.74, 1.47) 

1.13  

(0.77, 1.65) 

0.99  

(0.68, 1.44) 

0.99  

(0.65, 1.50) 

Abbreviations: CT, community type; GLME, generalized linear mixed effects; GEE, generalized estimating equation; AFT, 

accelerated failure time. 
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Table 4.7 Sensitivity analysis: influenza-associated illness period only considers ILI symptoms. 

Model CT 2 CT 3 CT 4 CT 5 Age 0-5 Yr Age 6-17 

Yr 

Female 

GLME Odd Ratio (95% Confidence Interval) 

≥1 symptom 0.57  

(0.13, 2.57) 

0.62  

(0.16, 2.45) 

1.83  

(0.30, 11.40) 

0.18  

(0.01, 3.03) 

6.36  

(0.74, 55.04) 

2.04  

(0.60, 6.93) 

1.48  

(0.45, 4.84) 

ARI 2.31  

(0.63, 8.45) 

1.21  

(0.31, 4.74) 

4.12  

(0.86, 19.74) 

1.84  

(0.23, 14.62) 

3.70  

(0.65, 21.06) 

2.06  

(0.68, 6.23) 

1.87  

(0.61, 5.71) 

Fever 1.32  

(0.45, 3.82) 

0.84  

(0.27, 2.58) 

2.58  

(0.67, 9.95) 

1.28  

(0.19, 8.71) 

2.25  

(0.54, 9.45) 

2.12  

(0.81, 5.55) 

1.99  

(0.76, 5.20) 

Runny nose 1.52  

(0.49, 4.71) 

0.94  

(0.30, 2.92) 

2.09  

(0.51, 8.52) 

0.32  

(0.03, 3.15) 

8.65  

(1.38, 54.34) 

1.40  

(0.51, 3.85) 

1.26  

(0.47, 3.39) 

Sore throat 2.32  

(0.67, 7.97) 

0.82  

(0.23, 2.92) 

1.87  

(0.43, 8.16) 

1..65  

(0.19, 14.31) 

0.81  

(0.17, 3.92) 

1.31  

(0.46, 3.75) 

1.69  

(0.59, 4.78) 

Cough 2.06  

(0.72, 5.87) 

1.52  

(0.53, 4.34) 

3.67  

(0.91, 14.78) 

0.68  

(0.10, 4.70) 

3.63  

(0.81, 16.24) 

2.37  

(0.91, 6.16) 

1.72  

(0.66, 4.43) 

GEE AFT Acceleration Factor (95% Confidence Interval) 

Fever 1.46  

(0.93, 2.30) 

2.75 (1.27, 

5.97) 

1.76  

(1.04, 2.98) 

0.82  

(0.35, 1.92) 

1.71  

(0.78, 3.75) 

0.99  

(0.61, 1.60) 

0.89  

(0.43, 1.83) 

Runny nose 1.16  

(0.51, 2.64) 

1.23 (0.58, 

2.60) 

1.27  

(0.54, 2.97) 

0.78  

(0.18, 3.33) 

3.78  

(1.24, 11.52) 

1.45  

(0.83, 2.52) 

1.21  

(0.59, 2.47) 

Sore throatc 0.88  

(0.62, 1.25) 

0.72 (0.47, 

1.12) 

1.00  

(0.42, 2.35) 

0.79  

(0.50, 1.26) 

- 0.72  

(0.43, 1.20) 

0.52  

(0.21, 1.27) 

Cough 1.97  

(1.09, 3.56) 

2.37 (1.29, 

4.38) 

2.78  

(1.45, 5.33) 

1.55  

(0.48, 4.95) 

1.83  

(0.59, 5.71) 

1.06  

(0.67, 1.68) 

1.08  

(0.58, 2.01) 
 

Model CT 2 CT 3 CT 4 CT 5 Age 0-5 

Yr 

Age 6-17 

Yr 

Female Smoker in 

Household 

Household 

Crowding 

GEE 

AFT 

Acceleration Factor (95% Confidence Interval) 

Serial 

interval 

0.97  

(0.67, 

1.42) 

0.97  

(0.60, 

1.58) 

0.63  

(0.38, 

1.58) 

1.19  

(0.83, 

1.79) 

0.58  

(0.39, 

0.88) 

1.02  

(0.73, 1.43) 

1.11  

(0.76, 1.61) 

0.93  

(0.64, 1.34) 

1.01  

(0.70, 1.47) 

Abbreviations: CT, community type; GLME, generalized linear mixed effects; GEE, generalized estimating equation; AFT, 

accelerated failure time. 
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Table 4.8 Sensitivity analysis: all ARI symptoms during follow up contribute to influenza-

associated illness period. 

Model CT 2 CT 3 CT 4 CT 5 Age 0-5 Yr Age 6-17 

Yr 

Female 

GLME Odds Ratio (95% Confidence Interval) 

≥1  symptom 0.59  

(0.13, 2.60) 

0.52  

(0.13, 2.06) 

1.46  

(0.24, 8.89) 

0.17  

(0.01, 2.82) 

4.99  

(0.60, 41.30) 

1.73  

(0.51, 5.85) 

1.56  

(0.48, 5.05) 

ARI 1.87  

(0.54, 6.48) 

0.98  

(0.26, 3.69) 

3.24  

(0.71, 14.75) 

1.59  

(0.21, 12.39) 

3.20  

(0.59, 17.34) 

1.83  

(0.62, 5.38) 

1.94  

(0.64, 5.84) 

Fever 1.30  

(0.45, 3.74) 

0.71  

(0.23, 2.17) 

2.10  

(0.55, 8.08) 

1.18  

(0.17, 8.10) 

1.85  

(0.45, 7.69) 

1.78  

(0.69, 4.65) 

2.09  

(0.80, 5.46) 

Rhinorrhea 1.52  

(0.49, 4.71) 

0.94  

(0.30, 2.92) 

2.09  

(0.51, 8.52) 

0.32  

(0.03, 3.15) 

8.65 

(1.38, 54.34) 

1.40  

(0.51, 3.85) 

1.26  

(0.47, 3.39) 

Sore throat 2.08  

(0.57, 7.57) 

0.85  

(0.24, 3.01) 

1.54  

(0.34, 7.06) 

1.48  

(0.15, 14.41) 

0.70  

(0.14, 3.55) 

1.06  

(0.36, 3.14) 

1.94  

(0.65, 5.80) 

Cough 2.06  

(0.72, 5.87) 

1.52  

(0.53, 4.34) 

3.67  

(0.91, 14.78) 

0.68  

(0.10, 4.70) 

3.63  

(0.81, 16.24) 

2.37  

(0.91, 6.16) 

1.72  

(0.66, 4.43) 

GEE AFT Acceleration Factor (95% Confidence Interval) 

Fever 1.93  

(1.15, 3.22) 

2.72  

(1.27, 5.83) 

1.69  

(0.99, 2.88) 

0.91  

(0.38, 2.19) 

1.37  

(0.58, 3.23) 

0.83  

(0.49, 1.43) 

0.82  

(0.40, 1.69) 

Sore throatc 9.26  

(0.65, 1.32) 

6.91  

(0.48, 1.00) 

1.09  

(0.46, 2.61) 

0.82  

(0.52, 1.29) 

- 0.76  

(0.47, 1.22) 

0.48  

(0.21, 1.12) 

Cough 2.34  

(1.33, 4.13) 

2.47  

(1.40, 4.37) 

2.60  

(1.38, 4.89) 

1.68  

(0.51, 5.52) 

1.42  

(0.47, 4.28) 

0.91  

(0.59, 1.39) 

1.05  

(0.57, 1.91) 

Rhinorrhea 1.37  

(0.61, 3.09) 

1.26  

(0.60, 2.64) 

1.27  

(0.53, 3.01) 

0.80  

(0.18, 3.62) 

3.43  

(1.12, 10.48) 

1.35  

(0.77, 2.35) 

1.17  

(0.56, 2.47) 
 

Model CT 2 CT 3 CT 4 CT 5 Age 0-5 Yr Age 6-17 

Yr 

Female Smoker in 

Household 

Household 

Crowding 

GEE 

AFT 

Acceleration Factor (95% Confidence Interval) 

Serial 

interval 

0.91  

(0.66, 

1.25) 

0.94  

(0.57, 

1.54) 

0.69  

(0.40, 

1.17) 

1.19  

(0.82, 

1.74) 

0.69  

(0.45, 1.06) 

1.24  

(0.82, 1.87) 

1.09  

(0.75, 1.59) 

0.97  

(0.67, 1.40) 

0.88  

(0.59, 1.32) 

Abbreviations: CT, community type; GLME, generalized linear mixed effects; GEE, generalized estimating equation; AFT, 

accelerated failure time. 
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Figure 4.1 Principal coordinates analysis of nose/throat samples assigned to community types. 

 

 

1,405 nose/throat samples from 717 study participants residing in 144 households in Managua, 

Nicaragua, 2012-2014. Based on Bray-Curtis dissimilarity.  
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Figure 4.2 Model fit of negative log models by number of Dirichlet components using the first 

and last samples of all study participants (n=1,405 samples). 

 

We determined the number of community types by estimating the Laplace approximation of the 

negative log models and identifying the point at which an increase in Dirichlet components 

resulted in minor reductions in model fit.  
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Figure 4.3 Characteristics of bacterial community types based on first and last nose/throat 

samples of 717 study participants from 144 households, Managua, Nicaragua, 2012-2014. 

A                                                                                       B 

         
C  
     Community Type 1           Community Type 2           Community Type 3           Community Type 4           Community Type 5  

 n=343                                  n=336      n=282             n=218                     n=181 

 
1 square = 0.2% abundance 

 

  
 

(A) Shannon diversity. (B) Bray-Curtis dissimilarity by community type. Each violin plot contains 

a box plot with a kernel density estimation on each side depicting the distribution of data. (C) 

Relative abundance renormalized to 15 oligotypes that contributed to 50% of difference between 

community types. Each square represents 0.2% relative abundance. 
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Figure 4.4 Diversity by community type types based on first and last nose/throat samples of 717 

study participants from 144 households, Managua, Nicaragua, 2012-2014, using alternative 

metrics.ad 

                         A                                                                        

                    
 

                        B 

              
 

(A) Jaccard distance. (B) Chao1 index. Each violin plot contains a box plot with a kernel density 

estimation on each side depicting the distribution of data.  
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Figure 4.5 Relative abundance of oligotypes by community type. 

       

     Community Type 1    Community Type 2    Community Type 3    Community Type 4   Community Type 5 

 n=343                            n=336      n=282         n=218               n=181 

 
1 square = 0.05% abundance 

 

 Oligotypes 

 
 

 

Based on first and last nose/throat samples of 717 study participants from 144 households, 

Managua, Nicaragua, 2012-2014. Each square represents 0.05% relative abundance.   
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Legend 

Oligotype Taxonomy 

1 Filifactor alocis 

2 Unclassified 

3 

Peptostreptococcaceae [XI][G-1] [Eubacterium] sulci / Peptostreptococcaceae [XI][G-1] [Eubacterium] 

infirmum 

4 Unclassified 

5 Oribacterium parvum / Oribacterium sinus / Oribacterium asaccharolyticum 

6 Unclassified 

7 Corynebacterium matruchotii / Corynebacterium diphtheriae 

8 Oribacterium sinus / Oribacterium parvum 

9 Oribacterium asaccharolyticum / Oribacterium parvum 

10 Unclassified 

11 

Streptococcus pneumoniae / Streptococcus tigurinus / Streptococcus dentisani / Streptococcus sp. / 

Streptococcus oralis / Streptococcus mitis / Streptococcus infantis / Streptococcus peroris / Streptococcus 

lactarius 

12 

Streptococcus sanguinis / Streptococcus oligofermentans / Streptococcus sinensis / Streptococcus cristatus / 

Streptococcus australis / Streptococcus parasanguinis II / Streptococcus sp. / Streptococcus gordonii / 

Streptococcus parasanguinis I / Streptococcus pneumoniae / Streptococcus oralis / Streptococcus intermedius / 

Streptococcus mitis 

13 Streptococcus mutans 

14 Streptococcus vestibularis / Streptococcus salivarius 

15 Leptotrichia sp. 

16 Leptotrichia sp. 

17 Leptotrichia sp. 

18 Leptotrichia sp. 

19 Leptotrichia sp. 

20 Leptotrichia sp. 

21 Bacillus subtilis 

22 Listeria monocytogenes 

23 Peptostreptococcus stomatis / Peptostreptococcus anaerobius 

24 Gemella haemolysans / Gemella sanguinis / Gemella morbillorum / Gemella bergeri 

25 Dolosigranulum pigrum 

26 Bergeyella sp. 

27 Leptotrichia shahii / Leptotrichia sp. / Leptotrichia hongkongensis 

28 Unclassified 

29 Alloprevotella tannerae 

30 Alloprevotella tannerae 

31 Rothia mucilaginosa 

32 Rothia mucilaginosa 

33 Rothia mucilaginosa 

34 Rothia aeria / Rothia dentocariosa 

35 Rothia dentocariosa / Rothia aeria 

36 Unclassified 

37 Unclassified 

38 Oribacterium asaccharolyticum 

39 Unclassified 

40 Ruminococcaceae [G-1] sp. 

41 Capnocytophaga leadbetteri / Capnocytophaga sp. / Capnocytophaga ochracea 

42 Unclassified 

43 Porphyromonas endodontalis / Porphyromonas sp. 

44 Actinomyces graevenitzii 
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45 

Actinomyces lingnae [NVP] / Actinomyces sp. / Actinomyces odontolyticus / Actinomyces meyeri / Actinomyces 

cardiffensis 

46 Actinomyces lingnae [NVP] / Actinomyces sp. / Actinomyces odontolyticus / Actinomyces meyeri 

47 

Actinomyces sp. / Actinomyces oris / Actinomyces naeslundii / Actinomyces johnsonii / Actinomyces viscosus / 

Actinomyces radicidentis / Actinomyces meyeri 

48 Butyrivibrio sp. 

49 Unclassified 

50 SR1 [G-1] sp. 

51 SR1 [G-1] sp. 

52 Abiotrophia defectiva 

53 Staphylococcus caprae / Staphylococcus epidermidis / Staphylococcus aureus / Staphylococcus warneri 

54 Granulicatella adiacens / Enterococcus italicus / Enterococcus faecalis 

55 Granulicatella elegans 

56 Lactobacillus gasseri / Lactobacillus johnsonii 

57 Escherichia coli 

58 Ruminococcaceae [G-2] sp. 

59 Leptotrichia sp. 

60 Unclassified 

61 Unclassified 

62 Unclassified 

63 

Fusobacterium periodonticum / Fusobacterium nucleatum subsp. animalis / Fusobacterium sp. / Fusobacterium 

nucleatum subsp. vincentii / Fusobacterium nucleatum subsp. polymorphum / Fusobacterium naviforme / 

Fusobacterium nucleatum subsp. nucleatum 

64 

Fusobacterium sp. / Fusobacterium nucleatum subsp. polymorphum / Fusobacterium nucleatum subsp. 

nucleatum / Fusobacterium naviforme / Fusobacterium nucleatum subsp. vincentii / Fusobacterium nucleatum 

subsp. animalis / Fusobacterium periodonticum 

65 Peptococcus sp. 

66 

Fusobacterium nucleatum subsp. animalis / Fusobacterium naviforme / Fusobacterium nucleatum subsp. 

vincentii / Fusobacterium periodonticum / Fusobacterium sp. / Fusobacterium nucleatum subsp. nucleatum / 

Fusobacterium nucleatum subsp. polymorphum 

67 

Fusobacterium sp. / Fusobacterium nucleatum subsp. animalis / Fusobacterium nucleatum subsp. polymorphum 

/ Fusobacterium nucleatum subsp. nucleatum / Fusobacterium periodonticum / Fusobacterium nucleatum subsp. 

vincentii / Fusobacterium naviforme 

68 

Fusobacterium periodonticum / Fusobacterium nucleatum subsp. animalis / Fusobacterium sp. / Fusobacterium 

nucleatum subsp. vincentii / Fusobacterium nucleatum subsp. polymorphum / Fusobacterium naviforme / 

Fusobacterium nucleatum subsp. nucleatum 

69 Fusobacterium necrophorum / Fusobacterium gonidiaformans 

70 Atopobium parvulum / Atopobium sp. / Atopobium rimae 

71 Catonella morbi / Catonella sp. 

72 Megasphaera micronuciformis 

73 Lachnospiraceae [G-2] sp. 

74 Lachnoanaerobaculum umeaense / Lachnoanaerobaculum sp. 

75 Lachnoanaerobaculum orale / Lachnoanaerobaculum saburreum 

76 Veillonella dispar / Veillonella atypica / Veillonella parvula / Veillonella rogosae 

77 Unclassified 

78 Treponema denticola / Treponema putidum / Treponema sp. 

79 Veillonella dispar / Veillonella atypica / Veillonella parvula / Veillonella rogosae / Veillonella denticariosi 

80 Selenomonas sputigena / Selenomonas sp. 

81 Selenomonas sp. 

82 Mitsuokella sp. 

83 

Aggregatibacter sp. / Aggregatibacter segnis / Haemophilus haemolyticus / Haemophilus sp. / Haemophilus 

influenzae / Haemophilus aegyptius 

84 Haemophilus pittmaniae / Aggregatibacter sp. / Aggregatibacter aphrophilus / Aggregatibacter paraphrophilus 
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85 

Mogibacterium neglectum / Mogibacterium pumilum / Mogibacterium diversum / Mogibacterium vescum / 

Mogibacterium timidum 

86 Unclassified 

87 Stomatobaculum sp. 

88 Campylobacter concisus / Campylobacter curvus 

89 Helicobacter pylori 

90 Pseudomonas aeruginosa / Pseudomonas otitidis / Pseudomonas sp. 

91 Alloprevotella sp. 

92 Alloprevotella sp. 

93 Prevotella sp. 

94 

Haemophilus aegyptius / Haemophilus influenzae / Haemophilus sp. / Haemophilus haemolyticus / 

Aggregatibacter sp. / Aggregatibacter segnis 

95 

Haemophilus sp. / Haemophilus haemolyticus / Haemophilus influenzae / Haemophilus aegyptius / 

Aggregatibacter sp. / Aggregatibacter segnis / Haemophilus parainfluenzae 

96 

Haemophilus sp. / Haemophilus haemolyticus / Haemophilus influenzae / Haemophilus aegyptius / 

Aggregatibacter sp. / Aggregatibacter segnis 

97 

Haemophilus parainfluenzae / Haemophilus parahaemolyticus / Haemophilus paraphrohaemolyticus / 

Haemophilus sputorum / Haemophilus sp. / Haemophilus haemolyticus / Haemophilus influenzae 

98 

Haemophilus parahaemolyticus / Haemophilus sputorum / Haemophilus paraphrohaemolyticus / Haemophilus 

parainfluenzae 

99 Prevotella sp. / Prevotella oulorum 

100 Prevotella sp. / Prevotella oulorum 

101 Prevotella oulorum / Prevotella sp. 

102 Prevotella sp. / Prevotella oulorum 

103 Prevotella sp. / Prevotella veroralis / Prevotella histicola / Prevotella fusca / Prevotella scopos 

104 

Prevotella veroralis / Prevotella sp. / Prevotella scopos / Prevotella fusca / Prevotella histicola / Prevotella 

melaninogenica 

105 Prevotella veroralis / Prevotella sp. / Prevotella scopos / Prevotella fusca / Prevotella histicola 

106 

Neisseria pharyngis / Neisseria sicca / Neisseria mucosa / Neisseria flava / Neisseria subflava / Neisseria 

flavescens / Neisseria polysaccharea / Neisseria lactamica / Neisseria meningitidis / Neisseria gonorrhoeae / 

Neisseria oralis 

107 

Kingella denitrificans / Neisseria elongata / Neisseria weaveri / Kingella sp. / Eikenella corrodens / Eikenella 

sp. 

108 Prevotella melaninogenica / Prevotella scopos / Prevotella sp. / Prevotella histicola / Prevotella veroralis 

109 

Prevotella sp. / Prevotella melaninogenica / Prevotella histicola / Prevotella veroralis / Prevotella scopos / 

Prevotella fusca 

110 

Prevotella melaninogenica / Prevotella scopos / Prevotella sp. / Prevotella histicola / Prevotella veroralis / 

Prevotella fusca 

111 

Prevotella sp. / Prevotella scopos / Prevotella histicola / Prevotella melaninogenica / Prevotella veroralis / 

Prevotella fusca 

112 

Prevotella melaninogenica / Prevotella sp. / Prevotella histicola / Prevotella scopos / Prevotella veroralis / 

Prevotella fusca 

113 

Prevotella melaninogenica / Prevotella scopos / Prevotella sp. / Prevotella histicola / Prevotella veroralis / 

Prevotella fusca 

114 

Prevotella histicola / Prevotella sp. / Prevotella veroralis / Prevotella fusca / Prevotella scopos / Prevotella 

melaninogenica 

115 Prevotella salivae 

116 Prevotella salivae 

117 Prevotella sp. 

118 Prevotella sp. 

119 

Prevotella sp. / Prevotella histicola / Prevotella veroralis / Prevotella scopos / Prevotella fusca / Prevotella 

melaninogenica 

120 Prevotella sp. 

121 

Prevotella histicola / Prevotella sp. / Prevotella veroralis / Prevotella scopos / Prevotella fusca / Prevotella 

melaninogenica 
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122 

Prevotella histicola / Prevotella scopos / Prevotella sp. / Prevotella melaninogenica / Prevotella veroralis / 

Prevotella fusca 

123 Prevotella histicola / Prevotella melaninogenica / Prevotella sp. / Prevotella scopos / Prevotella veroralis 

124 

Prevotella sp. / Prevotella scopos / Prevotella veroralis / Prevotella histicola / Prevotella fusca / Prevotella 

melaninogenica 

125 

Prevotella sp. / Prevotella veroralis / Prevotella fusca / Prevotella histicola / Prevotella scopos / Prevotella 

melaninogenica 

126 

Prevotella sp. / Prevotella scopos / Prevotella veroralis / Prevotella histicola / Prevotella fusca / Prevotella 

melaninogenica 

127 

Prevotella sp. / Prevotella scopos / Prevotella melaninogenica / Prevotella veroralis / Prevotella histicola / 

Prevotella fusca 

128 Leptotrichia sp. 

129 Leptotrichia sp. 

130 Capnocytophaga sputigena / Capnocytophaga sp. 

131 Moraxella catarrhalis 

132 Moraxella catarrhalis 

133 Prevotella sp. 

134 Prevotella sp. 

135 Prevotella sp. 

136 Porphyromonas sp. 

137 Porphyromonas sp. 

138 

Streptococcus constellatus / Streptococcus intermedius / Streptococcus anginosus / Streptococcus gordonii / 

Streptococcus sp. 

139 Streptococcus anginosus / Streptococcus constellatus / Streptococcus intermedius 

140 Streptococcus pyogenes / Streptococcus agalactiae 

141 

Prevotella histicola / Prevotella sp. / Prevotella veroralis / Prevotella fusca / Prevotella scopos / Prevotella 

melaninogenica 

142 

Streptococcus sp. / Streptococcus gordonii / Streptococcus oligofermentans / Streptococcus sinensis / 

Streptococcus cristatus / Streptococcus parasanguinis II / Streptococcus parasanguinis I / Streptococcus 

australis / Streptococcus sanguinis / Streptococcus intermedius / Streptococcus salivarius / Streptococcus mitis / 

Streptococcus oralis 

143 Streptococcus vestibularis / Streptococcus salivarius / Streptococcus gordonii / Streptococcus sp. 

144 

Streptococcus vestibularis / Streptococcus salivarius / Streptococcus oligofermentans / Streptococcus sinensis / 

Streptococcus cristatus 

145 Streptococcus vestibularis / Streptococcus salivarius 

146 Streptococcus vestibularis / Streptococcus salivarius 

147 

Streptococcus australis / Streptococcus parasanguinis II / Streptococcus parasanguinis I / Streptococcus sp. / 

Streptococcus oligofermentans / Streptococcus cristatus / Streptococcus sinensis / Streptococcus sanguinis / 

Streptococcus gordonii / Streptococcus lactarius / Streptococcus peroris / Streptococcus oralis 

148 

Streptococcus sinensis / Streptococcus oligofermentans / Streptococcus cristatus / Streptococcus australis / 

Streptococcus parasanguinis II / Streptococcus sp. / Streptococcus gordonii / Streptococcus sanguinis / 

Streptococcus parasanguinis I / Streptococcus oralis / Streptococcus mitis / Streptococcus infantis 

149 Streptococcus agalactiae / Streptococcus pyogenes 

150 

Streptococcus sp. / Streptococcus dentisani / Streptococcus mitis / Streptococcus oralis / Streptococcus infantis / 

Streptococcus tigurinus / Streptococcus lactarius / Streptococcus peroris / Streptococcus pneumoniae 

151 

Streptococcus peroris / Streptococcus lactarius / Streptococcus sp. / Streptococcus tigurinus / Streptococcus 

infantis / Streptococcus dentisani / Streptococcus oralis / Streptococcus mitis 

152 

Streptococcus sp. / Streptococcus dentisani / Streptococcus mitis / Streptococcus oralis / Streptococcus infantis / 

Streptococcus tigurinus / Streptococcus lactarius / Streptococcus peroris / Streptococcus pneumoniae 

153 Leptotrichia sp. 

154 Leptotrichia sp. 

155 Leptotrichia sp. 

156 Leptotrichia sp. 

157 Leptotrichia sp. / Leptotrichia wadei 

158 Leptotrichia sp. / Leptotrichia wadei 
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159 Unclassified 

160 Unclassified 

161 Unclassified 

162 Alloprevotella tannerae 

163 Alloprevotella tannerae 

164 Porphyromonas pasteri / Porphyromonas sp. / Porphyromonas catoniae 

165 Porphyromonas sp. / Porphyromonas pasteri / Porphyromonas catoniae 

166 Rothia mucilaginosa 

167 Rothia mucilaginosa 

168 Alloprevotella rava 

169 Alloprevotella rava 

170 Alloprevotella rava 

171 Campylobacter rectus / Campylobacter showae / Campylobacter gracilis 

172 Campylobacter rectus / Campylobacter showae / Campylobacter gracilis 

173 

Actinomyces sp. / Actinomyces odontolyticus / Actinomyces meyeri / Actinomyces cardiffensis / Actinomyces 

lingnae [NVP] / Actinomyces georgiae 

174 

Actinomyces sp. / Actinomyces odontolyticus / Actinomyces meyeri / Actinomyces cardiffensis / Actinomyces 

lingnae [NVP] / Actinomyces georgiae / Actinomyces gerencseriae / Actinomyces massiliensis 

175 

Enterococcus faecalis / Enterococcus durans / Enterococcus saccharolyticus / Enterococcus casseliflavus / 

Enterococcus italicus / Granulicatella adiacens 

176 Bacillus anthracis / Lysinibacillus fusiformis 

177 Capnocytophaga granulosa / Capnocytophaga sp. / Capnocytophaga gingivalis 

178 Capnocytophaga gingivalis / Capnocytophaga granulosa / Capnocytophaga sp. 

179 Stomatobaculum longum / Stomatobaculum sp. 

180 Stomatobaculum longum / Stomatobaculum sp. 

181 

Fusobacterium nucleatum subsp. vincentii / Fusobacterium naviforme / Fusobacterium sp. / Fusobacterium 

nucleatum subsp. nucleatum / Fusobacterium nucleatum subsp. animalis / Fusobacterium nucleatum subsp. 

polymorphum / Fusobacterium periodonticum 

182 

Fusobacterium nucleatum subsp. vincentii / Fusobacterium naviforme / Fusobacterium nucleatum subsp. 

animalis / Fusobacterium nucleatum subsp. nucleatum / Fusobacterium sp. / Fusobacterium nucleatum subsp. 

polymorphum / Fusobacterium periodonticum 

183 Atopobium parvulum / Atopobium rimae / Atopobium sp. 

184 Atopobium parvulum / Atopobium rimae / Atopobium sp. 

185 Veillonella sp. 

186 Veillonella sp. 

187 Veillonella sp. 

188 Veillonella sp. 

189 Veillonella dispar / Veillonella atypica / Veillonella parvula / Veillonella rogosae 

190 Veillonella dispar / Veillonella atypica / Veillonella parvula 

191 Veillonella parvula / Veillonella rogosae / Veillonella atypica / Veillonella denticariosi / Veillonella dispar 

192 Veillonella rogosae / Veillonella parvula / Veillonella atypica / Veillonella denticariosi / Veillonella dispar 

193 Parvimonas micra / Parvimonas sp. 

194 Parvimonas micra / Parvimonas sp. 

195 Alloprevotella sp. 

196 Alloprevotella sp. 

197 

Haemophilus parahaemolyticus / Haemophilus sputorum / Haemophilus paraphrohaemolyticus / Haemophilus 

parainfluenzae 

198 

Haemophilus parahaemolyticus / Haemophilus sputorum / Haemophilus paraphrohaemolyticus / Haemophilus 

parainfluenzae 

199 Prevotella sp. / Prevotella veroralis / Prevotella histicola / Prevotella fusca / Prevotella scopos 

200 Prevotella sp. / Prevotella veroralis / Prevotella histicola / Prevotella fusca / Prevotella scopos 

201 Bordetella pertussis / Achromobacter xylosoxidans 

202 Lautropia mirabilis 
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203 

Neisseria subflava / Neisseria flavescens / Neisseria flava / Neisseria sicca / Neisseria pharyngis / Neisseria 

mucosa / Neisseria polysaccharea / Neisseria weaveri 

204 

Neisseria subflava / Neisseria flavescens / Neisseria flava / Neisseria sicca / Neisseria pharyngis / Neisseria 

mucosa 

205 Solobacterium moorei 

206 

Neisseria subflava / Neisseria flavescens / Neisseria flava / Neisseria sicca / Neisseria pharyngis / Neisseria 

mucosa / Neisseria polysaccharea / Neisseria weaveri / Neisseria meningitidis / Neisseria lactamica 

207 

Neisseria subflava / Neisseria flavescens / Neisseria flava / Neisseria sicca / Neisseria pharyngis / Neisseria 

mucosa / Neisseria polysaccharea / Neisseria weaveri 

208 

Neisseria subflava / Neisseria flavescens / Neisseria flava / Neisseria sicca / Neisseria pharyngis / Neisseria 

mucosa / Neisseria polysaccharea / Neisseria weaveri 

209 

Prevotella melaninogenica / Prevotella scopos / Prevotella sp. / Prevotella histicola / Prevotella veroralis / 

Prevotella fusca 

210 Prevotella melaninogenica / Prevotella scopos / Prevotella sp. / Prevotella histicola / Prevotella veroralis 

211 Prevotella oris 

212 Prevotella denticola / Prevotella multiformis 

213 Leptotrichia sp. 

214 

Neisseria lactamica / Neisseria sicca / Neisseria flava / Neisseria polysaccharea / Neisseria pharyngis / 

Neisseria mucosa / Neisseria meningitidis / Neisseria oralis / Neisseria subflava / Neisseria bacilliformis / 

Neisseria gonorrhoeae / Neisseria flavescens 

215 

Neisseria meningitidis / Neisseria polysaccharea / Neisseria flava / Neisseria gonorrhoeae / Neisseria sicca / 

Neisseria pharyngis / Neisseria mucosa / Neisseria lactamica / Neisseria flavescens / Neisseria subflava 

216 Unclassified 

217 Acinetobacter baumannii / Acinetobacter sp. 

218 Prevotella nanceiensis 

219 Unclassified 

220 Prevotella nanceiensis 

221 Prevotella shahii / Prevotella sp. 

222 Prevotella pallens 

223 Prevotella pallens 

224 Prevotella intermedia 

225 Prevotella nigrescens 

226 Prevotella pallens 

227 Prevotella aurantiaca 

228 Prevotella aurantiaca 

229 Prevotella aurantiaca 

230 Prevotella aurantiaca / Prevotella pallens 
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Figure 4.6 Accelerated failure time models estimating acceleration factor and 95% confidence 

interval for symptom and shedding durations. 

 
                FEVER                      SORE THROATa     COUGH                    SHEDDING  

    
          Acceleration Factor (95% CI) 

 

Among 124 secondary cases from 70 households, Managua, Nicaragua, 2012-2014. Acceleration 

factors estimate the relative change in survival time. Models are not specific to influenza 

type/subtype.  
 

a0-5 years removed from model as very few experienced a sore throat and all with sore throat were 

right censored. 
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Figure 4.7 Accelerated failure time models estimating acceleration factor and 95% confidence 

interval for serial interval and time to shedding onset. 

 

                                                   SERIAL INTERVAL         TIME TO SHEDDING 

                          
                                                                                 Acceleration Factor (95% CI) 

 

 

Among 124 secondary cases from 70 households, Managua, Nicaragua, 2012-2014. Acceleration 

factors estimate the relative change in survival time. Models are not specific to influenza 

type/subtype.  
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Appendix 4.1 Materials and Methods for Microbiota Data 

DNA extraction 

Total DNA was extracted from a pair of samples from each study participant: the first 

sample collected at time of enrollment and the second sample collected at the last day of follow 

up (median days between samples: 9.0 days, IQR: 9.0-10.0). Study participants included all index 

cases and household contacts. Among the 717 total study participants, five first samples and 19 

second samples were not available for DNA extraction. DNA was extracted using the QIAmp 

DNA Mini Kit and an enzyme cocktail composed of cell lysis solution (Promega, Madison, USA), 

lysozyme, mutanolysin, RNase A, and lysostaphin (Sigma-Aldrich, St. Lious, USA) in 

22.5:4.5:1.125:1.125:1 parts, respectively. 100 µL of sample was incubated at 37°C for 30 minutes 

with 80 µL of the enzyme cocktail. After adding 25 µL proteinase K and 200 µL of Buffer AL, 

samples were vortexed and incubated at 56°C for 30 minutes. Samples were washed with 200 µL 

of 100% ethanol, 500 uL of Buffer AW1, and then 500 uL of Buffer AW2. To maximize DNA 

yield, DNA was eluted twice with 100 uL of Buffer AE and stored at -80°C. 

 

16S rRNA sequencing 

The V4 hypervariable region of the 16S rRNA gene was sequenced at the University of 

Michigan Microbial Systems Laboratories using Illumina MiSeq V2 chemistry 2x250  (Illumina, 

San Diego, CA) and a validated dual-indexing method [18]. Briefly, primers consisted of an 

Illumina adapter, an 8-nt index sequence, a 10-nt pad sequence, a 2-nt linker, and the V4-specific 

F515/R806 primer [31]. Amplicons were purified and pooled in equimolar concentrations. A mock 

community of 21 species (Catalog No. HM-782D, BEI Resources, Manassas, VA) or a mock 

community of 10 species (Catalog No. D6300, Zymo Research, Irvine, CA) was included by the 

Microbial Systems Laboratories to assess sequencing error rates. For every 96-well plate submitted 
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for amplification and sequencing (90 study samples), we included two aliquots of an in-house 

mock community consisting of Streptococcus pneumoniae, Streptococcus pyogenes, 

Staphylococcus aureus, Haemophilus influenzae, and Moraxella catarrhalis and two aliquots of 

an oropharyngeal control sample. These internal controls were randomly assigned to plate wells 

and used to assess systematic variation in sequencing. All samples were sequenced in duplicate, 

demultiplexed, and quality filtered. 

 

Oligotyping 

We used mothur v1.38.1 [19] to align and perform quality filtering on raw sequences using 

the mothur standard operating procedures (https://www.mothur.org/wiki/MiSeq_SOP, accessed 

November 18, 2016). Sequences were converted to the appropriate oligotyping format as 

previously described [32]. We used the Minimum Entropy Decomposition (MED) algorithm [33] 

with default parameters (-M: 13779.0, -V: 3 nt) to cluster sequences into oligotypes. Briefly, the 

algorithm identifies variable nucleotide positions and uses Shannon entropy to partition sequences 

into nodes. The process is iterative and continues to decompose parent nodes into child nodes until 

there are no discernable entropy peaks. Oligotyping has previously been used to examine within-

genus variations in the microbiota [32,34–36] and provides increased resolution relative to 

conventional distance-based clustering methods. After excluding five samples with less than 1,000 

reads, our dataset consisted of 1,405 samples with a total of 61,784,957 sequences decomposed 

into 230 oligotypes. To assign taxonomy, we searched representative sequences of each oligotype 

against the Human Oral Microbiome Database (HOMD) v14.51 [9] using blastn v2.2.23 [10]. 

 

Community typing 
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We used Dirichlet multinomial mixture models [11] in R v3.3.2 [12] and the 

DirichletMultinomial v1.16.0 package [37] to assign all samples to 5 community types. This 

method has frequently been used as a method of dimension reduction in microbiome studies 

[38,39]. We determined the number of community types by comparing the Laplace approximation 

of the negative log models and identifying the point at which an increase in Dirichlet components 

resulted in minor reductions in model fit (Figure 4.2). Samples were assigned to community types 

with the greatest posterior probability. 96.8% of all samples had a posterior probability of 90% or 

higher. To minimize misclassification, samples were assigned as having an undefined community 

type if the posterior probability was less than 90%. Each community type contained between 12.9-

24.4% of all samples (n=181-343) and 3.2% of all samples (n=45) were undefined. Principal 

coordinates analysis of nose/throat samples assigned to community types is depicted in Figure 4.1. 
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Chapter 5 Summary and Conclusions 

 While publications serve as a public measure of scientific achievement, they often overlook 

the underlying and difficult process that is required to reach these achievements. As a doctoral 

student, my personal measure of achievement was based on the experiences that shaped me into a 

more capable and innovative researcher. In this chapter, I review the major lessons and challenges 

I experienced during the dissertation process. In addition, I discuss future research directions which 

may contribute to a better understanding of host-pathogen-microbiome dynamics. 

 

5.1 Lessons Learned  

5.1.1 Building Leadership Skills 

This study provided me with numerous opportunities for growth as a project manager and 

research supervisor. I took on several new responsibilities that I once took for granted. As a lab 

assistant, my main concern was in learning how to efficiently run lab protocols. As a project lead, 

I was responsible for developing these protocols and for asking the “what”, “why”, and “who” 

questions, in addition to “how”. I spent considerable time conducting literature reviews to optimize 

our protocols and in managing logistics. This transition into a leadership position was particularly 

difficult due to significant turnover of our lab team during my first semester, leaving few 

individuals with experience in managerial tasks. 

I was responsible for supervising and mentoring graduate and undergraduate students, 

many of whom had little to no experience in the lab. My initial mentoring approach was to make 

myself completely accessible, as many of my previous mentors had done before. I quickly learned 
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that this was impossible for a doctoral student with a full load of courses, teaching a course, 

conducting research, and studying for the competency exam. I learned to create a strict schedule 

to keep myself on track while maximizing my availability to students. More importantly, I realized 

my initial mentoring approach might be hindering critical thinking. While simply giving the 

answer to a student’s question may have been the easiest solution, I found the best long-term 

solution was to help students reach the answers themselves through active discussion and 

encouragement. 

 

5.1.2 Building Research Skills 

The multi-disciplinary nature of my dissertation project required me to develop a new set 

of research skills through courses at various departments, mentors and colleagues with specific 

expertise, and self-education. One of the goals of this project was to develop a bioinformatic and 

analytic pipeline, which could be used in future microbiome studies. Although our research group 

had prior experience with microbiome analysis, we used the QIIME program, conventional 

distance-based taxonomic units, and statistical models that only examined one taxon at a time. My 

first decision was to use mothur, software developed here at the University of Michigan. This 

decision doubled my work load as I attempted to learn this software on top of a unix-based coding 

language and a high-performance computer cluster. However, I feel this decision allowed our 

group to be proficient in two of the mostly commonly used microbiome programs. It took us two 

years to establish a pipeline which involves quality filtering of raw sequences in mothur or QIIME, 

oligotyping to create taxonomic units with improved resolution, and Dirichlet multinomial mixture 

modeling for community typing. As a team, we established an annotated pipeline which can be 
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used to train new students in microbiome analysis and serve as a foundation for new and improved 

methods as they are continually developed. 

 In addition to bioinformatics, I learned new statistical models that took into account 

clustered and longitudinal data. Mixed effects models were used to examine continuous and 

binomial outcomes while accounting for clustering by household. Accelerated failure time (AFT) 

models were used to examine time-to-event outcomes while accounting for interval and right 

censored data. AFT models were further expanded using a generalized estimating equation 

approach to account for clustering by household. I was only able to discover and apply these unique 

methods through the guidance of my committee members. 

 I have made significant efforts in learning the core concepts of immunology and using this 

knowledge to interpret epidemiologic results. As the association between influenza virus infection 

and the microbiome is likely mediated through the host immune response, I took courses to 

untangle the jumble of immunology acronyms and pathways that were discussed in various 

microbiome studies and animal experiments. Although my knowledge is still limited, it allows me 

to better understand the underlying biological mechanisms that may be driving what I observed in 

epidemiologic studies. Further, it spurs new research questions that I hope to investigate in the 

near future. 

 Lastly, I learned to develop strategies for scientific writing. Although I enjoyed sharing my 

results through presentations, I struggled with writing them down on paper. In the lab, I was taught 

to be extremely detail-oriented as minor measurement errors could lead to failed experiments. 

Instinctively, I was applying the same strategy in writing, which resulted in countless revisions of 

a single paragraph and, in some cases, a single sentence. By the end of the day, the paragraph had 

somehow remained unchanged. I have learned to fight this impulse and to begin the writing process 
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with an outline of unrefined statements. This approach helped me focus my time and energy into 

developing a clear story rather than contemplate trivial details, which could be improved at a later 

time. In addition, I identified unique strategies that personally worked for me, such as writing 

through dictation and learning to give my writing time to “settle” especially for sections that were 

particularly challenging.  

 

5.1.3 Surrounding Yourself with Good People 

 One of the most important lessons I learned during the PhD program was to surround 

myself with good people who shared my passion and interests. I would not have reached this point 

without compatible and supportive mentors. Dr. Betsy Foxman is an expert in infectious disease 

epidemiology and microbial ecology, with years of experience in training doctoral students. Dr. 

Aubree Gordon is an incredible resource in influenza epidemiology and continues to be a role 

model in global health. My co-advisors helped me establish a foundation needed to explore the 

relationship between influenza virus and the host microbiome. 

I learned the importance of identifying my weaknesses and finding mentors who could help 

me overcome them. Dr. Kerby Shedden is one of the few statisticians who has explored numerous 

approaches to analyzing microbiome data in epidemiologic studies. Dr. Marie Griffin is an 

infectious disease epidemiologist with clinical expertise in respiratory infections. Dr. Sophia Ng 

is an expert in household studies and influenza transmission modeling. This multi-disciplinary 

group of mentors provided me with invaluable advice, critiques, and perspectives in analyzing 

complex data. 

  I also learned to rely on fellow students who shared my interests in integrating molecular 

techniques to infectious disease epidemiology. This project has often felt like an expedition in 
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uncharted territories, largely due to my personal inexperience in microbiome analysis and the lack 

of any established methods in the literature. As a team, we worked together to explore and decipher 

new methods. This ultimately led to a bioinformatic and analytic pipeline, which we now use for 

other microbiome studies.  

 

5.1.4 Learning from Hardships 

 Two hardships stand out the most. The first was when my initial dissertation project was 

terminated. I started the PhD program with a specific study in mind and had received permission 

to use archival samples from the principal investigator, former project lead, and study 

collaborators. I spent considerable time exploring potential research questions that could be 

answered using this study design. However, the project fell apart due to miscommunication and 

other factors that are still unknown to me. The main lesson I learned from this experience was the 

importance of bouncing back after difficult circumstances and learning to keep moving forward as 

there will always be other important research questions that both fascinate me and can contribute 

to improving public health. 

 A second notable hardship was as a research supervisor. An important component of my 

dissertation project involved using qPCR to quantify the absolute abundance of select bacterial 

species. I had trained one of my research assistants in qPCR in hopes of having her run plates while 

I away in Nicaragua for a summer research trip. Unfortunately, the majority of qPCR runs had 

poor efficiencies and had to be scrapped. This experience taught me the importance of quality 

control checks throughout any research process and for providing adequate support my research 

assistants. 
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5.2 Challenges 

5.2.1 Challenges with Systematic Bias 

 One of the greatest challenges in my dissertation project was in learning and dealing with 

systematic bias that was specific to microbiome studies. In theory, microbiome data should 

represent a random sample of the bacterial community from which a specimen is collected. 

However, this is not achievable with current techniques and bias can be introduced at various 

stages of the study (Figure 5.1). A more realistic goal was to identify where bias could be 

introduced, to reduce bias when possible, and to standardized bias when it is unavoidable. 

 I learned bias can be introduced at the earliest stages of data collection, specifically during 

sample collection and storage. First, the microbiome differs by body site, even in areas of close 

proximity [1]. Site-specific differences can overwhelm and/or bias the effects of the primary 

exposure of interest (e.g. influenza virus infection). Nasal, oropharyngeal, and nasopharyngeal 

samples have all been used to characterize the upper respiratory tract bacterial community. 

However, differences in the community structure between these sites have been reported [2,3]. 

Second, bias can arise from differences in collection methodology and storage conditions [4,5]. 

For example, communities sampled through swabs may differ from those sampled as aspirates. 

Further, certain storage solutions may differentially impact DNA integrity and recovery. In our 

study, we combined oropharyngeal and nasal swabs into one sample and stored them at -80°C in 

universal transport media. Although potential bias may have been introduced as a result of 

combining samples from two different sites, this bias was minimized by using consistent methods 

across all study participants and limiting freeze/thaw cycles. Although sample collection and 

storage were already completed prior to my dissertation project, understanding how our protocols 

could affect our results and comparability between studies influenced how I interpreted our data. 
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 DNA extraction methods can influence DNA yield and bacterial community structure 

representation [6]. For example, DNA is more difficult to extract from gram positive bacteria due 

to their thick cell walls. To efficiently lyse bacterial cells, I used the Qiagen® DNA Mini Kit with 

an extra enzyme cocktail, which included cell lysis solution, lysozyme, mutanolysin, RNase A, 

and lysostaphin. Further, I personally conducted all DNA extractions to reduce potential inter-

personnel variability. 

 Sequencing bias is unavoidable due to limitations in our current technologies. The most 

common approach for characterizing the microbiota is to sequence the 16S rRNA gene and to 

quantify taxa based on differences in the sequence. Although the optimal approach is to sequence 

the entire gene using platforms such as the PacBio Single Molecule, Real-Time Sequencer 

(SMRT), it is not yet an affordable option especially for large population studies that examine 

hundreds to thousands of samples. Instead, most studies only sequence 1 to 3 of the total 9 

hypervariable regions, which greatly influences the results. Primer choice considerably influences 

abundance estimations [7]. Further, studies have reported region-specific differences in estimation 

of community richness and in identification of select taxa [8,9]. Unfortunately, there is still no 

consensus in the literature on which region most accurately depicts the oral microbiome. We 

sequenced the V4 hypervariable region in our study. This decision was largely based on 1) 

affordability and timeliness of V4 sequencing at the University of Michigan Microbial Systems 

Laboratory, 2) a publicly available and widely-used mothur standard operating procedure that was 

based on the V4 region, and 3) an increased potential for comparability of our results with prior 

and future microbiome studies. 
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5.2.2 Challenges in Working with Microbiome Data 

 I encountered many challenges in working with complex microbiome data. Microbiome 

data is compositional as sequencing data can only be used to estimate the relative abundance. In 

addition, a single sample can contain hundreds of different taxonomic units, each representing a 

potential variable for consideration in analysis. As there are no established methods in the 

literature, we spent considerable time exploring different approaches that would allow us to 

combine microbiome data and epidemiologic models. Our earliest approach involved using models 

with log-transformed relative abundances of the most common taxa [10]. We expanded this by 

exploring additional methods that involved identifying key taxa (e.g. lasso, elastic net, Bayesian 

variable selection, and random forest), using principle components analysis, and identifying 

bacterial community types using clustering algorithms (e.g. hierarchical clustering, Partitioning 

Around Medoids, Dirichlet multinomial mixture models). 

  Microbiome data are difficult to interpret. Statistical differences in beta diversity and alpha 

diversity do not necessarily represent biological significance. It is not clear how much diversity 

constitutes health. Further, diversity is not the answer to our research questions. Rather it should 

spur us to the identify the underlying factors that influence both community diversity and our 

outcome of interest [11].  The same challenge exists when examining the relative abundance of 

specific taxon and our outcomes of interest. In my dissertation, I found associations between 

bacterial community types and influenza susceptibility, shedding, and symptomology. Although 

community typing is an excellent method for dimension reduction and allows us to examine the 

relationship between the overall bacterial community structure and our outcomes of interest, it is 

difficult to identify specific characteristics that uniquely define these community types. 
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5.2.3 Challenges due to Sample Size 

 Sample size was a recurring challenge in this project. Although the Nicaraguan Household 

Transmission Study is one of the largest of its kind, our budget only allowed us to characterize the 

microbiome at two points in time for each study participant enrolled in 2012-2014. Further, there 

is no consensus in the literature on how to determine power for microbiome studies. Crude 

estimates could have been made if we had more information on how much the upper respiratory 

tract microbiome varied between individuals and over time. However, little data were available 

with exception to cross-sectional data from healthy adults in the Human Microbiome Project [1]. 

The few longitudinal studies that characterized the upper respiratory tract microbiome were not 

published until recently and are restricted to infants [12,13]. To our surprise, we found the 

nose/throat microbiome varied substantially even among healthy individuals. This high degree of 

heterogeneity in our population limited our analysis. While this was a novel and important finding, 

it also motivated me to explore news methods for exploring longitudinal data analysis. 

 

5.3 Future Directions 

5.3.1 A Numbers Game 

 As previously mentioned, a major challenge in this study was sample size. The full 

Nicaraguan household transmission study was conducted during 2012-2017 and included up to 5 

archival nose/throat samples per participant. Expanding microbiome analysis to all 6 years of the 

study may permit the use of models that were previously underpowered with our smaller subset. 

For example, applying an individual-based transmission hazard model [14] would allow us to 

examine whether the nose/throat microbiome influences the serial interval after accounting for 
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community infection risk and household transmission chains. We could also assess whether the 

microbiome of infected individuals contributes to the serial interval. 

 As samples were collected at 2-3 day intervals, expanding our analysis to all samples would 

allow us to longitudinally characterize changes in the upper respiratory tract microbiome during 

influenza virus infection. In addition, we could use these results to estimate periods of enhanced 

risk for secondary bacterial infections and examine which factors may mediate risk. To the best of 

my knowledge, no study has examined this using microbiome data. With the caveat that all or a 

majority of study participants were exposed to influenza virus in the household, we could also 

examine the stability of the nose/throat microbiome among healthy individuals and explore which 

factors may contribute to microbiome stability. For example, we could investigate whether 

asymptomatic viral infections (non-influenza viruses) can influence the microbiome structure. 

Lastly, we could compare these households to households without any influenza exposure (no 

index case) to assess whether household influenza exposure itself can perturb the microbiome. 

  

5.3.2 Investigating Viral Shedding 

 Influenza virus infection can be detected through hemagglutinin inhibition (HAI) antibody 

assays [15] or RT-PCR [16]. There are advantages and disadvantage to each method. HI assays 

are considered the gold standard but require blood samples and provide less information on time 

of infection, RT-PCR requires easily obtainable nose or throat samples and can be conducted 

relatively rapidly. However, RT-PCR only captures individuals with detectable viral shedding. 

 Preliminary results from our study suggest the relationship between the microbiome and 

susceptibility to influenza virus infection may differ by viral shedding status. Our original analysis 

only used RT-PCR to detect secondary infections as we did not yet have complete HI data for all 
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our study participants. Several months after submitting our results for publication, we had HI titers 

for all study participants who contributed blood samples. Due to curiosity, we decided to rerun our 

analysis using all secondary infections detected by RT-PCR or HAI. Although community type 4 

was associated with reduced susceptibility to infection with viral shedding, community type 5 was 

associated with reduced susceptibility to all influenza virus infections (both with shedding and 

without viral shedding). Further investigation is needed to decipher this difference and I plan to 

submit a brief report to address this in the near future.  

 

5.3.3 Functional Potential 

 In my dissertation, we examined the bacterial community structure of the nose and throat 

using 16S rRNA sequencing. However, the microbiome is more than just the composition of 

microbes in a given habitat but encompasses microbial genes and activity. The functional potential 

of the microbiome may be as or more important than the microbial composition itself. In the future, 

I hope to use various -omic tools to decipher how microbial genes (metatranscriptomics), proteins 

(metaproteomics), and metabolites (metabolomics) may influence human diseases. I would 

specifically focus on genes, proteins, and metabolites that influence innate and adaptive host 

immunity. For example, we could assess whether influenza risk, symptomology, or viral shedding 

is associated with differences in the production of flagellin and lipoproteins that stimulate Toll-

like receptors [17]. We could also examine differences in microbial metabolites such as butyrate 

which regulate macrophage function [18] and tryptophan which affect innate lymphoid cells [19].  
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5.3.4 Host-Pathogen-Microbiome Interactions  

Respiratory infections involve a complex network of interactions between the invading 

pathogen, the microbiome, and host immunity. I hope to conduct research that aims at elucidating 

these dynamics. In our study, we saw the relationship between the nose/throat microbiome and 

influenza virus infection may vary by influenza subtype/type. For example, H3N2 was never 

detected by RT-PCR in any household contact with community type 4. Although the study lacked 

the power for subtype-specific analysis, it made me consider how much strain variation may 

influence the relationship between the microbiome and infection. We could explore subtype-

specific associations if we expand our study period to include all 6 years of the household 

transmission study. In addition, we could conduct whole genome sequencing on circulating 

influenza strains to identify genes that may potentially mediate or modify the association between 

the microbiome and influenza virus infection. I would also like to use host transcriptomics to 

characterize microbiome-associated immunomodulation during influenza virus infection. With 

direct measurements of the host immune response, we could learn more about the underlying 

biological mechanisms that link the microbiome to influenza susceptibility, viral shedding, and 

severity. 

 

5.3.5 Interactions between Respiratory Viruses 

 I would like to explore whether interactions between respiratory viruses are mediated 

through the microbiome. A recent study reported interference between respiratory syncytial virus 

and human RSV infection in infants [20]. While there are likely direct mechanisms of interaction 

between these respiratory viruses, I am interested in investigating whether virus-virus interactions 

are also mediated by the microbiome. As the relationship between host immunity and the 
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microbiome is bi-directional, infection with one respiratory virus may lead to perturbations of the 

microbiome. These perturbations could lead to microbiome-related immunomodulation and alter 

susceptibility to other viruses. Murine experiments have shown influenza virus infection can lead 

to intestinal injury. After inoculation with influenza, lung-derived T-cells are recruited into the gut 

where they produce IFN-γ. IFN-γ then disrupts the gut microbiome, leading to an increased 

production of IL-15 and Th17 cells. Th17 promotes inflammation and neutrophil recruitment, 

which contributes to intestinal injury [21]. Interestingly, we also see similar microbiome-related 

upregulation of interferons and neutrophils during human RSV infections [22]. This suggests 

microbiome-related immunomodulation may contribute to altered susceptibility to other viruses. 

However, no study has yet investigated whether microbiome-related immunomodulation may 

contribute to viral interference. These types of studies could help in predicting downstream 

consequences of public health interventions. For example, if an RSV vaccine is introduced, should 

we expect changes in incidence of other respiratory viruses and can we develop synbiotic 

interventions to attenuate this risk? 

 

5.4 Conclusions 

 In conclusion, this dissertation examined three potential relationships between influenza 

virus and the respiratory microbiome. We found the respiratory microbiome is associated with 

susceptibility to influenza virus infection. Further, our analysis suggests community dynamics may 

differ by influenza status. Lastly, we observed associations between the microbiome and the 

development and duration of influenza symptoms as well as the duration of viral shedding. Our 

findings indicate the respiratory microbiome may be a potential target for reducing influenza risk, 

household transmission, and disease severity.  
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Figure 5.1 Potential systematic bias at various stages of microbiome study 
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Figure 5.2 Established pipeline for microbiome studies 
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