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 ABSTRACT 

 

The objective of this thesis is to understand the role of pre-implanted helium, with and 

without the presence of excess carbon, on the cavity evolution of ion-irradiated T91. Alloy T91, 

heat C2269, was pre-implanted at room temperature with helium concentrations varying over 4 

orders of magnitude (0, 1, 10, 100, and 1000 appm). These samples were then irradiated with 5.0 

or 4.4 MeV Fe2+ ions at 460°C up to damage levels of 450 dpa at the Michigan Ion Beam 

Laboratory. An alumina coating was utilized to prevent carbon contamination on some samples 

during irradiation. Samples without an alumina coating experienced carbon uptake during 

irradiation, providing for a study on the effect of excess carbon. 

The swelling, precipitate, and dislocation evolution for the excess carbon and nominal 

carbon conditions for all helium concentrations was characterized. Scanning transmission electron 

microscopy (STEM) was used to characterize the microstructure of the irradiated specimens.  

In the nominal carbon conditions, swelling decreased with increasing helium concentration. 

At low helium levels (0, 1, and 10 appm), the cavity evolution was determined by the cavity sink 

strengths. Differences in density were observed at 50 dpa, however the three low helium conditions 

achieved very similar cavity distributions by 300 dpa. At high helium levels (100 and 1000 appm), 

bimodal cavity distributions were observed at all damage levels. High helium levels served to 

stabilize a population of bubbles with sizes below the gas-free critical radius. A substantial cavity 

sink strength, helium trapping, and a cavity interstitial bias contributed to reduced growth of larger 

cavities. 

In the excess carbon conditions, swelling was peaked at 10 appm He. The main role of 

carbon was to inhibit cavity nucleation, which reduced the cavity density at all damage and helium 

levels compared to the nominal carbon conditions. Additionally, excess carbon allowed for the 

formation of a very high density of M2X carbides. These carbides were strongly associated with 

helium bubbles and provided an interface for any emitted helium atoms. A bubble population was 



xviii 
 

never observed in the 100 appm He condition, and bubbles in the 1000 appm He condition 

disappeared completely by 450 dpa. 

This work provides substantial insight into the complex evolution of cavities at various 

helium and carbon levels. 
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CHAPTER 1: INTRODUCTION

 

 Concerns about global climate change and a desire to shift from natural gas and coal-

burning power plants to greener solutions for power generation have driven an interest in new 

nuclear power designs. These nuclear power plants, called Generation IV reactors, offer the 

advantages of increased safety, reduced radioactive waste, an extremely low carbon footprint, and 

efficient use of fuel via higher burnup. Driving reactors to higher burnups means that the structural 

materials of the reactors themselves will experience more extreme radiation and temperature 

conditions.  

The high neutron fluxes in reactors cause atomic displacements in the crystal lattice of the 

structural materials. These displaced atoms result in the formation of radiation-induced defects in 

the form of interstitial atoms and vacancies. When enough of these defects are created, they 

become defect clusters and take on forms such as dislocation loops or cavities. Radiation damage 

can also cause chemical changes within the material, resulting in transmutation, radiation-induced 

or enhanced precipitation, and segregation of solutes to grain boundaries. These changes in the 

microstructure will have significant consequences on the mechanical properties and dimensional 

stability of materials—such as embrittlement, hardening, and swelling, which could eventually 

lead to material failure.  

Historically, austenitic stainless steels have been used for structural materials in light-water 

reactors. However, it was discovered that their susceptibility to void swelling and creep made them 

unsuitable for high damage fast reactor applications. After showing promise in initial testing at the 

Fast Flux Test Facility (FFTF), ferritic-martensitic steels became the leading candidates for high 

temperature-high dpa applications. Ferritic-martensitic steels are body-centered cubic, iron-based 

alloys, with typically 7-15% chromium. Additions of minor solute elements such as Mo, Ni, Mn, 

Si, V, Cu, Ta, Ti and W are common.  These solute elements serve to add strength, ductility, or 
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reduced activation to the alloys. In contrast to austenitic stainless steels, ferritic-martensitic 

steels have a very complex microstructure consisting of very small grains and subgrains, laths, 

precipitates, and a high dislocation density. It is this complex microstructure that contributes to the 

radiation tolerance of the material, as there are many sites for the point defects to annihilate.  

The desire to test these radiation-tolerant materials to high damage levels has led to the use 

of accelerator-based methods of testing. Instead of waiting years equivalent to the lifetime of a 

reactor to determine if a material is viable for use, accelerated testing can provide answers in days 

or less. The use of ion beams to create displacement damage as a surrogate to neutron irradiation 

has risen as a method to induce high levels of radiation damage in a timely and cost-efficient 

manner. Whether the damage created by ion beams is directly applicable to neutron damage is still 

a matter of debate. However, ion beams have been used to a great degree of success in replicating 

similar radiation damage effects as neutrons [1][2][3].  

While ion beams can achieve a very high damage rate, there are some important drawbacks 

that must be considered when using them. Ion irradiations suffer from a shallow penetration depth, 

varying damage rate with depth, lack of transmutation reactions, effects of injected interstitials, 

and most recently, carbon contamination [4,5]. Most of these limitations can be overcome with 

careful implementation of irradiation and characterization techniques.  

Transmutation reactions, especially those leading to the production of noble gases such as 

(n,α) reactions, may have a dramatic effect on the microstructural stability of material in reactor. 

The lack of transmutation reactions in ion irradiation has been addressed by implanting 

transmutation gasses (such as helium) either prior to irradiation or simultaneously with irradiation 

in a dual-beam irradiation setup. The presence of helium in the microstructure can dramatically 

affect the radiation tolerance of the material. Helium is known to stabilize the formation of vacancy 

clusters, which evolve into cavities. At high damage levels these cavities contribute to significant 

swelling of the material. Many ion irradiation studies in the past have utilized pre-implanted 

helium to encourage cavity nucleation, but with little regard to the amount and its consequences. 

This is evident in the wide range of helium levels that have been explored—ranging from as little 

as 0 or 1 appm (atomic parts per million) to as much as 1800 appm. There is evidence that high 

levels of pre-implantation may actually serve to suppress swelling when compared to actual reactor 

conditions [6]. Additionally, there are conflicting reports of whether different helium levels may 
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affect the steady-state swelling rate [7][8][9]. A study that systematically explores a wide range of 

helium levels and captures the evolution of the cavity size distributions is necessary to understand 

the role of helium on cavity evolution.  

Additionally, the issue of carbon contamination in ion irradiation has been plaguing ion 

beam community for years [4,10,11]. High amounts of carbon have been shown to suppress 

swelling and result in the formation of carbides. Its unintended uptake may compromise the 

integrity of any swelling measurements and of any meaningful comparison with neutron irradiation. 

The effect of carbon uptake on cavity evolution has yet to be quantified, and the implementation 

of a solution to the carbon problem was undiscovered until recently [12].  

The objective of this thesis is to understand the role of pre-implanted helium and carbon 

on the cavity evolution of ion-irradiated T91. A combination of ion irradiation experiments, with 

careful post-irradiation characterization techniques coupled with a computational model were used 

to achieve this objective. Chapter 2 provides a background on the ferritic-martensitic steels and 

the effects of neutron and ion irradiation on their microstructure, with a special focus on helium 

and carbon effects. Chapter 3 summarizes the objective of the thesis and the approach taken to 

achieve the objective. Chapter 4 describes the experimental procedures and techniques used for 

the ion irradiation experiments and post-irradiation characterization. Chapter 5 summarizes the 

results gathered from the experiments. Chapter 6 offers an interpretation of the experimental 

results and addresses the objective. The conclusions and future work are provided in Chapters 7 

and 8, respectively. 
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CHAPTER 2: BACKGROUND

 

With increasing demand for clean energy, Generation IV reactor designs have become a 

very attractive alternative to coal, natural gas, and fission power plants. These reactor designs boast 

higher energy yield, less waste, breakdown of existing radioactive waste, and improved safety. 

However, the harsh conditions of these reactors (both in temperature and radiation) require the use 

of highly resilient structural materials. The degradation of the structural materials is closely related 

to changes in their irradiated microstructure. Components in Generation IV fast reactors will 

experience damage levels in excess of 200 displacements per atom (dpa) and up to about 600 dpa. 

Understanding how this high damage affects the microstructure in reactor conditions is critical to 

determining the correct material for use. 

Ferritic-martensitic steels have risen as a candidate for high damage applications. Their 

strength at elevated temperatures, swelling resistance, thermal stress resistance, and low activation 

makes them very desirable for high damage applications in reactor environments [13]. However, 

high damage neutron-irradiated samples are difficult to come by, as it takes a long time to irradiate 

samples. A typical damage rate for neutrons is on the order of 10-8 dpa/s. Therefore, both proton 

and heavy ion irradiations (10-6 and 10-3 dpa/s respectively) are being used to emulate neutron 

damage in a much faster and cost effective way. The major damage effects under irradiation 

include radiation-induced segregation, radiation-induced precipitation, dislocation evolution, and 

swelling. 

This chapter will set the context for the work performed in this thesis by describing the 

microstructure of ferritic-martensitic steels and how it behaves under both neutron and ion 

irradiation. Existing experimental and theoretical work regarding swelling and other effects during 
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irradiation will be considered. Special attention will be given to swelling and the effect of helium 

and carbon on swelling, as these topics are the focus of the thesis.  

2.1. Metallurgy and Microstructure of Ferritic-Martensitic Steel 

2.1.1 Physical Metallurgy  

Ferritic-martensitic (F-M) steels were originally developed from the combination of 

oxidation resistant high-Cr steels and high hardness martensitic steels.  A typical F-M steel will 

contain from 9-12 wt% Cr with low additions of C, Mo,W, V, Nb, and N. To develop these F-M 

alloys, high chromium (9-12%) steel is austenitized at a temperature in the range of 850°C to 

1200°C. These high chromium steels are either fully austenitic or duplex (austenite and δ-ferrite). 

After austenitizing, the steel is then rapidly quenched, which transforms the austenite to martensite. 

The martensite is subsequently tempered to improve ductility and toughness. 

During austenitization, the δ-ferrite phase tends to inhibit austenite grain growth, which 

ultimately can reduce the strength and toughness of the final steel. Chromium is a ferrite promoting 

element, and will therefore increase the amount of δ-ferrite. As seen in Table 2.1 [13], there is a 

14% increase of δ-ferrite per %mass of Cr. The addition of austenite-forming elements can 

counteract this, and help achieve a purely austenitic steel. 
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Table 2.1. The change in δ-ferrite is shown for additions of particular alloying 

elements [13] 
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Figure 2.1 The effect of increasing Cr concentration on the constitution of 0.1%C Fe alloys 

[13] 
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The behavior of 0.1% C alloys with increasing amounts of Cr is shown in the Figure 2.1 

phase diagram [13]. Addition of austenite-promoting elements will tend to extend the γ phase 

region. 

Upon rapid cooling, the austenite formed during the initial heating should fully form into 

martensite. The addition of austenite stabilizers, such as carbon, nitrogen, nickel, and manganese, 

can cause residual austenite to remain, which is undesirable as the strength of the alloy can be 

reduced.  

Following the quenching step is a tempering step to increase the toughness of the steel. 

Care must be taken not to exceed the austenitizing temperature to avoid reaustenization of the 

sample. Additions of alloying elements can change austenization temperature. The effect of adding 

some common alloying elements on the austenization temperature are summarized in Table 2.2 

[13]. 
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Table 2.2 The effect of alloying elements on austenization temperature (Ac1) [13] 

Element 

Change in 

Ac1 (°C) per 

Mass % 

Ni -30 

Mn -25 

Co -5 

Si +25 

Mo +25 

Al +30 

V +50 
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2.1.2 Precipitates and Microstructure 

The development of precipitates and microstructure is highly dependent on the tempering 

temperature. As summarized by Klueh and Harries [13], the following are general properties of 

precipitates observed at different tempering temperatures: 

• <350°C: A dispersion of Fe3C precipitates changes morphology and increases in 

chromium content resulting in a slower growth rate.  As a result, softening is 

retarded. 

• 400-500°C: Needles of M2X nucleate on dislocations and retard softening. 

• 500-550°C: M7C3 and M2X phases coarsen, increasing the softening. 

• >550°C: Cr-rich M23C6 precipitates nucleate and replace M7C3 and M2X at 

martensite laths and prior austenite grain boundaries resulting in a slowing of the 

softening. Dislocation density of the martensite decreases. 

• >650°C: Continued growth of M23C6 and further reduction in dislocation density. 

Pronounced subgrain formation on the martensite laths 

• >750°C: Subgrains grow into equiaxed grains, leaving little trace of original 

martensite lath. Growth of M23C6 continues, and almost all the carbon is 

precipitated as M23C6 for tempering >1 hour at 700 to 780°C. 

Table 2.3 shows some detailed effects of aging and creep straining on high chromium 

ferritic- martensitic steels and how the distribution of precipitates changes.  
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Table 2.3 Microstructural developments in high chromium ferritic-martensitic 

steels during aging and creep straining at 600-650°C [13] 

 

 
Normalized and 

Tempered 

Aged, 10,000-

30,000h 

Strained, 10,000-

30,000h 

Hardness High 85% of N & T 70-80% of N &T 

Phases 

Tempered martensite; 

M23C6; δ-ferrite, 

depending on grade 

Tempered martensite; 

M23C6; partly 

decomposed δ-ferrite 

Tempered martensite; 

M23C6; partly 

decomposed δ-ferrite 

Dislocation Density High Low Very Low 

Sub-grain/ 

martensite lath size 
Small lath width 

Martensite lath 

transformation to 

subgrains 

Sub-grains fully 

recovered 

M23C6 
On lath boundaries, 

typically 50-150 nm 

Partly coarsened on 

sub-grain boundaries 

Partly coarsened on 

sub-grain boundaries 

MX 
Finely dispersed (20-

50 nm) 

Finely dispersed (20-

50 nm) 

Finely dispersed (20-

50 nm) 

Laves phase None 

Medium and large 

sized precipitates 

(200-500 nm) 

Large sized 

precipitates (=500 

nm) 
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The resulting microstructure after tempering can be very complex, consisting of  martensite, 

austenite, and δ-ferrite phases. Figure 2.2 shows a typical microstructure of a tempered martensitic 

steel [14]. The martensite is distinguished by the lath, string-like structure. These martensite areas 

contain high dislocation densities due to the quenching process. The prior-austenite grain 

boundaries (PAGBs) are also apparent. These sites often contain precipitates and other segregated 

particles. Each of these PAGs are divided into subgrains of aligned tempered martensite laths. The 

size of the grains, resulting precipitates at boundaries, and density of dislocations are all a function 

of the heat treatment and tempering. 

The complexity of the microstructure developed in F-M steels is thought to be a critical 

feature in its radiation tolerance. The many interfaces between grain boundaries, subgrains, laths 

and precipitates, and the high density of dislocations all serve as sinks for vacancies and interstitials 

generated during irradiation.  
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Figure 2.2 A schematic of typical tempered martensitic microstructure [14] 
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2.2 Swelling in Ferritic-Martensitic Steels 

One of the greatest reasons ferritic-martensitic alloys are being pursued for high damage 

applications is their resistance to swelling. The complex microstructure of F-M steels provides 

strong sink strength for point defects generated during irradiation. If these point defects are 

annihilated at sinks rather than accumulate in the matrix, then it will become more difficult for 

voids to form. The driving force of void nucleation is the supersaturation of vacancies (
0

v

v

C

C
), where 

vC  is the concentration of vacancies in the matrix and 0

vC  is the thermal equilibrium concentration 

of vacancies [15]. The energetics lend themselves to a point where a critical void embryo size is 

required to nucleate a void. This occurs when the vacancy supersaturation overcomes the surface 

energy required to create the void, and can be represented by the following equation: 

  2 1/3 2/3ln (36 )VG nkT S n            (2.1) 

Where ΔG is the free energy change, n is the number of vacancies, k is Boltzmann’s 

constant, T is temperature, SV is the vacancy supersaturation, Ω is the atomic volume, and is γ the 

surface energy. Void nucleation will be favored as long as ΔG is less than 0. In this equation, void 

nucleation can be seen as a competition between two forces: the extent of vacancy supersaturation 

(the first term) and the surface energy required to form a void (second term).  

After a void has nucleated, its growth is determined by the flux of point defects to and 

away from it. A flux of vacancies into the void will grow it, while a flux of interstitials will cause 

it to shrink. The growth of a void (rate of change of volume) can be expressed by the net absorption 

rate multiplied by the defect volume: 

 4 V

V V V i i

dV
R D C C D C

dt
     

        (2.2) 

Where DV and Di are the diffusion coefficients for vacancies and interstitials, respectively, 

CV is the vacancy concentration in the solid, Ci is the interstitial concentration in the solid, R is the 

void radius, and V

VC  is the vacancy concentration at the void surface. 
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Under irradiation, both vacancies and interstitials are generated in equal numbers. This in 

and of itself will not allow for the growth of voids as there will be no net generation of vacancies 

and thus no supersaturation. Both the vacancies and interstitials will annihilate at sinks or 

recombine. However, in the presence of a sink that is biased for interstitials (such as dislocations), 

an excess of vacancies can accumulate in the matrix and lead to the creation of voids. Therefore, 

when examining the effects of irradiation on void swelling, it is important to also include an 

analysis of the other major sinks in the system, as they will heavily influence the swelling behavior. 

2.3 Neutron Irradiation of Ferritic-Martensitic Steels 

The high swelling resistance of ferritic-martensitic alloys has been the subject of many 

neutron irradiation experiments.  Most of the studies were performed in fast reactors, so damage 

levels of 100 dpa or higher are very rare. Sencer et. al. [16] performed a study on ferritic-

martensitic HT9 duct material irradiated to about 155 dpa over the course of 6 years.  The HT9 

was taken from a fuel duct in the Fast Flux Test Reactor Facility (FFTF). The average irradiation 

temperature was about 440°C.  The irradiation resulted in the formation of dislocations, loops, 

precipitates, and voids. This study showed that HT9 retained a considerable resistance to swelling 

(0.3%) under reactor conditions which entailed a complex neutron flux and temperature history. 

However, because of the large distribution of void sizes, it was not apparent whether a steady state 

swelling rate was achieved or being approached.  

In a separate study on the same HT9 duct material, Sencer et al. [17] irradiated specimens 

with up to 4 dpa at 505°C and 28 dpa, at 384°C. However, no significant swelling or void formation 

was observed. 

Gelles [18] looked at HT9, T91 and ODS steel samples irradiated up to 200 dpa at a 

temperature of about 420°C in FFTF.  This study constitutes one of the highest damage neutron 

irradiations performed on F-M steels, as the samples were irradiated in the reactor for its lifetime. 

Gelles performed microstructural analysis and density change measurements to determine swelling 

of the alloys. The results are summarized in Table 2.4.  
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Table 2.4. A summary of the swelling observed in the materials studied by Gelles [19] is shown below. 

CODE Alloy 
Dose 

(dpa) 

Swelling 

(density 

change) 

(%) 

Highest 

Swelling 

(%) 

Mean 

void 

size 

(nm) 

Void 

density 

(#/cm3) 

Void shape Dislocation Structure 

PTFL T91 203.2 1.76 5.0 21.4 4.8 x 1015 

Truncated between 

dodecahedra and 

cubes 

a/2 <111> network and a<100> network 

RFFL HT-9 203.5 0.09 3.2 21.2 3.1 x 1015 
Truncated 

dodecahedra 
a<100> loops and a/2 network 

RHFL HT-9 204.0 1.02 1.7 32.2 5.6 x 1014 

Truncated between 

dodecahedra and 

cubes 

a<100> loops and a/2<111> network 

RLH4 MA956 204.8 1.17 0.21 26.7 1.9 x 1014 

Truncated between 

dodecahedra and 

cubes 

a<100> and a/2 <111> network 

RMH4 MA957 205.7 1.75 3.73 6.1 9.2 x 1014 

Truncated between 

dodecahedra and 

cubes 

a<100> and a/2 <111> loops and a/2 <111> 

network in recrystallized regions 

RNH4 MA957 206.0 0.25 3.5 35.4 8.6 x 1014 

Truncated between 

dodecahedra and 

cubes 

a<100> and a/2 <111> loops and a/2 <111> 

network in recrystallized regions 

 

  



 17 

 

Based on Table 2.4, swelling in the steels ranged from 0.25% to 1.76%, showing excellent 

overall resistance to swelling across the board. The author noted that swelling varied between 

batches of the same steel and between different heats of the same steel by a difference of about 1% 

swelling. Voids were found in all of the specimens irradiated at these conditions. 

A summary of neutron irradiations [16,17,19–24] conducted in FFTF is shown in Figure 

2.3. This figure contains a compilation of results with a variety of heats of HT9 and T91. The 

general shape of the curve shows that a transition to growth-dominated behavior occurs for several 

of the cases by 200 dpa. Up to 200 dpa, these ferritic martensitic alloys show great swelling 

resistance, with an estimated swelling rate of ~0.01%/dpa or less. However, there is much variation 

between different heats and heat treatments of HT9 and T91.  The work from Gelles [19] especially 

shows great variation in swelling behavior with heat treatment, which could vary between 0.09% 

and 1.02% for HT9. In fact, swelling differences between alloy (T91 and HT9) were just as 

comparable as swelling differences between the heats of HT9.  
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Figure 2.3 A compilation of swelling data available for a variety of heats and heat treatments of neutron irradiated HT9 and 

T91.  
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Little [25] presented an overview of the microstructural evolution of ferritic-martensitic 

steels under irradiation.  In terms of void swelling, Little described the viability of using ferritic-

martensitic steels for their superior swelling resistance as compared with austenitic steels. Figure 

2.4 shows how swelling in F-M steels is much lower compared to swelling in austenitic stainless 

steels for a given damage level under a variety of irradiation spectra. 

In general, it is observed that increasing amounts of Cr from pure iron tend to increase the 

swelling resistance. Little proposed that F-M steels with 9-12% Cr exhibit the highest swelling 

resistance at dpa values >100. However lower levels of swelling (<0.5%) are also observed for 

higher Cr steels (14-22%). The resistance to swelling is also coupled with a large increase in the 

incubation period. 

To account for the increased swelling resistance, Little proposed that a solute atom point 

defect trapping effect could be responsible. In this mechanism, vacancies bind to solute atoms such 

as carbon, nitrogen, or silicon, which can ultimately enhance recombination and prevent vacancy 

super-saturation. Additionally, the complex microstructure of F-M steels, consisting of many lath 

and grain boundaries can provide regions for strong point defect sinks to prevent super-saturation 

as well. At the onset of irradiation, α’ precipitates could also serve as trapping sites and 

recombination centers. High concentrations of interstitial loops, dislocations, and even voids 

themselves serve to suppress swelling through serving as sinks for vacancies. Self-diffusion rates 

in ferritic alloys are higher than austenitic alloys, and this would lead to an increased incubation 

dose and lower helium production rates due to less nickel content also contribute. 
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Figure 2.4 Swelling of ferritic-martensitic and austenitic alloys under a variety of 

irradiation spectra [25]. 
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Odette [26] also reviewed the possible mechanisms for the lower  observed swelling in F-

M steels compared to austenitic steels. He also evaluated these factors using critical bubble-to-

void and rate theory models. The following is a list of the possible mechanisms in Odette’s 

references: 

• A lower dislocation bias for interstitials in bcc compared to fcc. This is due to a 

smaller relaxation volume of point defects. 

• The presence of a[100] loops.  Interstitials would be partitioned to a[100] loops and 

vacancies to a/2[111] loops. 

• Defect-solute trapping, which would promote recombination. However, at higher 

temperatures it is likely that this effect is small. 

• Complex and fine-scale sub-grain structure. The high density of sinks would 

eliminate many point defects and also trap helium. However, sub-grain structures 

are not necessarily stable under irradiation and they would be qualitatively similar 

to cold-worked austenitics. 

• The addition of solutes. Dislocation and void structures are affected. The addition 

of solutes could also affect surfaces energies and dislocation bias. 

• Intrinsic self-diffusion rates are higher in F-M steels than in austenitics. This would 

expect to resist swelling especially at higher temperatures. 

• There is a 3-4 times lower helium generation rate in F-M steels compared to 

austenitics. Helium serves to help nucleate voids so one would expect an increased 

incubation period required for F-M steels. 

Using a critical bubble/rate theory, Odette attempted to further analyze some of the 

mechanisms. He concluded that low bias, high-self diffusion, low helium generation, and possibly 

high subgrain boundary sink strengths all contribute to observed swelling trends. 

Dvoriashin et al. [27] analyzed the microstructure of EP-450 (an F-M alloy with 

compositions (0.1–0.15C, <0.8Mn, <0.5Si, 0.015S, <0.025P, 11.0–13.5Cr, 0.05– 0.30Ni, 1.2–

1.8Mo, 0.1–0.3V, 0.3–0.6Nbwt%) irradiated in three Russian fast reactors. Hexagonal wrappers 

were taken from BN-350 and BN-600 and fuel pin claddings taken from BR-10 and BN-350. The 

authors prepared the samples using jet-thinning for TEM analysis. Voids were observed in the 

temperature range of 285-520ºC. A uniform void distribution was observed in the temperature 
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range of 285-460°C.  At higher temperatures voids were not evenly distributed and were found 

along sub-grain boundaries and next to precipitates 

2.4 Heavy Ion Irradiation of Ferritic-Martensitic Steels 

In addition to neutron experiments, there have been several studies of heavy-ion 

irradiations performed on ferritic-martensitic steels to simulate the damage effects seen in reactor. 

Ward and Fisher [28] performed a heavy ion irradiation experiment with the goal of comparing 

swelling in ferritic steels and austenitic steels. They used 4 MeV iron ions to irradiate a Fe -10Cr 

ferritic steel (FV448) and a 316 stainless steel up to 10 dpa at temperatures between 510 and 540°C.  

Swelling was observed in the stainless steel, but not in the FV448. Figure 2.5 shows voids 

observed in the stainless steel at 10 dpa.  

The authors claim that the observed swelling resistance of FV448 is likely due to interstitial 

impurity concentrations. These experiments were performed at a rather low total damage level, 

and is therefore likely representative of difference in nucleation behavior between the alloys. 
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Figure 2.5 Voids were observed in the 316 stainless steel at 10 dpa after irradiation with  4 

MeV Fe ions at 525°C [28]. 
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Ayrault [29] performed an Ni+ irradiation study on a 9Cr-1Mo ferritic steel. Ayrault sought 

to discern the temperature and damage dependence from single and dual beam heavy ion 

irradiations on the steel.  The studies were performed at temperatures between 450-600°C and at 

damage levels of 5-25 dpa. The dual ion beam experiments used Ni+ and He+ ions and the single 

beam experiments utilized Ni+ with preinjected He.  For the dual beam experiments, cavity growth 

was observed with increasing dose (~ 3.5 nm at 5 dpa to ~ 9 nm at 25 dpa). The single beam 

experiments exhibited no cavity growth except at 450ºC. It was unexpected that swelling did not 

increase with increasing temperature, but that swelling was at a maximum at the lowest 

temperature studied. Overall, low swelling was observed (< 0.05%). Larger cavities seemed to 

form towards the centers of subgrains. The author suggests that the high swelling resistance is 

likely due to the high density of subgrain boundaries. While this study suggests high swelling 

resistance for the particular steel, it does not come to any conclusions about the peak swelling 

temperature. Additionally, the effects of helium pre-injection vs. simultaneous implantation are 

unclear because the amount of helium injected was different in both cases (the preinjected case 

had ~25 times less helium). 

Hide et al. [30] studied the 200keV C+ and 3 MeV Ni+ irradiation of six different ferritic 

alloys: MA957 (a Fe-14Cr-1Ti alloy with 0.25% Y2O3 particles), HT9, Fe-12Cr, 12Cr-2Mo, 9Cr-

8Mo-4Ni (solution anneal), 9Cr-8Mo-4Ni (aged). These metals were studied at damage levels 

from 50 – 200 dpa and temperatures from 425-625°C. All of the samples were pre-injected with 

helium to a fixed ratio of 0.1 appm/dpa. 

The microstructure of MA957 is rather stable up through 150 dpa. A low density of cavities 

was observed under C+ irradiation at 848K. These cavities still resulted in negligible swelling. Up 

to 0.3% swelling was observed in HT9 after irradiation. Cavities 3-5 nm in size were observed at 

temperatures greater than 798K, and they tended to increase in size with increasing damage and 

temperature. The cavity densities were calculated to be about 6 x 1022 /m3. The irradiated 

microstructure of HT9 is shown in Figure 2.6. In the Fe-12Cr alloy larger cavities (~10.8 nm) 

were observed at a density of about 1 x 1022 /m3 to a swelling value of about 0.28%.  The 12Cr-

2Mo alloy exhibited cavities from 4 – 10 nm in diameter and densities between 1- 3 x 1022/m3 up 
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to a swelling value of 0.42%. Large cavities (up to 280 nm) were observed in the austenite phase 

of the 9Cr-8Mo-4Ni alloy with densities around 3.4 x 1019 /m3.  

Overall, MA957 demonstrated the best swelling resistance, while HT9, 12Cr- 2Mo, and 

Fe-12Cr had similar cavity sizes and densities. The estimated swelling rate for the latter three steels 

is about 0.001% to 0.003%/dpa at the peak swelling temperatures. The temperature and damage 

dependence of swelling for all the alloys are shown in Figure 2.7. 

 While this study covered a large range of alloys and irradiation conditions, the authors did 

not address several important factors.  They ignored the chemical effect of implanting C and Ni 

ions. The presence of additional due to both carbon uptake and irradiation with C ions would serve 

to suppress swelling and cavity formation. This excess carbon would promote the formation of 

carbides, which would serve as an additional sink for point defects. The authors did not address 

the presence of this carbides even though they are clearly present in Figure 2.6. This would 

potentially explain why minimal swelling was observed at temperatures between 400°C and 500°C, 

despite hundreds of dpa of damage. The low energy carbon ions (200 keV) required that the 

samples were back-thinned to be analyzed in the TEM, which means that the area of analysis was 

very close to the surface and susceptible to high amounts of additional carbon. Swelling observed 

at temperatures above 500°C were likely due to bubble agglomeration, as the high levels of 

implanted helium became more mobile. Furthermore, there was no discussion on whether steady 

state swelling had been achieved. The authors did note the marked difference between the voids 

in the austenitic phase versus the martensite/ferrite phase. 
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Figure 2.6 Cavities were observed in HT9 at 150 dpa with C and Ni ions [30]. 

  



 27 

 

 

Figure 2.7. Temperature dependence and dose dependence of swelling are shown for the alloys under C ion irradiation [30].
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 Asano et al. [31] irradiated an ODS steel MA957 with single and dual beams up to 150 dpa 

at 723 and 923K.  Ion irradiation was performed with 4 MeV nickel ions and 1 MeV helium ions.  

Large voids were only observed in the 15 appm He dual-irradiated case. Additionally, the voids 

were found to preferentially nucleate at sites thought to be Ti precipitates. High densities of smaller 

voids were observed in the other dual beam conditions, but no voids were observed in the single 

beam conditions. Swelling was calculated to be below 0.1% at 150 dpa. 

 Ferritic steel 21/4 Cr-1 Mo  was studied by  Sindelar et al. [32]. The focus of this 

studying was to determine the microstructural response to irradiation at various damage levels and 

in different phases of the material. Irradiation was performed up to 350 dpa at 500°C using 14 

MeV nickel ions. No voids were present in any of the samples unless helium was pre-injected. 

Helium was pre-injected at 100 appm. The swelling results under this condition are summarized 

in Table 2.5.  

 The authors noted that the low swelling values were consistent with previous in-reactor 

irradiations of the same heat of material. Swelling values were determined both locally, and on a 

bulk basis. The authors also observed varying characteristics of the voids going further into the 

depth. Up to 0.7µm small cavities <10 nm in size were observed and were believed to be helium 

bubbles. Clusters of voids were observed from 0.7µm to 1.3µm, with no voids beyond 1.3µm.  The 

authors seemed to be puzzled by the absence of voids near the damage peak. However, it is likely 

that they did not consider the effect of injected interstitials and their suppression of voids. 
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Table 2.5. The swelling results of 21/4 Cr-1 Mo are summarized and divided into 

regions within the damage depth [32]. 

Void density  

(0.3 µm, 50 dpa) 6 x 1014 cm-3 

(0.7 -1.3 µm, 100 dpa) 2 x 1014 (locally) 

Average cavity diameter  

(0.3 µm, 50 dpa) 9 nm 

(0.7 -1.3 µm, 100 dpa) 38 nm 

Average swelling  

(0.3 µm, 50 dpa) 0.03% 

(0.7 -1.3 µm, 100 dpa) 0.5% (locally) 

(0.7 -1.3 µm, 100 dpa) 0.2% (homogenous) 

Average bubble density  

(0.3 µm, 50 dpa) 8 x 1015 cm-3 

Average bubble diameter  

(0.3 µm, 50 dpa) 2 nm 
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These studies present a very clear picture, in both neutron and heavy ion irradiation 

experiments, that ferritic-martensitic steels exhibit very high swelling resistance. However, few of 

these studies systematically explored the void evolution at a variety of damage levels, temperatures, 

or materials. Ultimately this has resulted in a database of demonstrating the swelling resistance of 

ferritic-martensitic steels, but with little fundamental knowledge of why it is observed. 

Additionally, because of this high swelling resistance, studies have been unable to analyze the void 

swelling evolution in the growth regime. Therefore, the origins of the swelling resistance and the 

swelling behavior of these materials at high damage remain relatively unexplored. To attempt to 

understand the origin of this swelling resistance, it is important to determine factors which void 

swelling is very sensitive to, and to discuss their role in both nucleation and growth of voids.  

2.5 Factors Affecting Cavity Evolution 

In assessing the current state of knowledge of swelling in ferritic-martensitic steels, it is 

important to consider both the theoretical models and available body of experimental evidence. 

Swelling results from the formation of cavities, a term which is inclusive to both voids and bubbles. 

Voids are formed without the presence of a residual gas, and bubbles are defined as voids with gas 

pressure in mechanical equilibrium with the lattice. Cavity evolution is very sensitive to changes 

in temperature, dislocation microstructure, and  gas content (usually in the form of helium). The 

expected changes in swelling behavior due to changes in these parameters can be assessed 

analytically. The experimental studies performed either refute or support these models to some 

extent. The following analyzes, in sequence, the effect of changes in temperature, dislocation 

microstructure, helium content, and carbon contamination on the cavity evolution of ferritic-

martensitic steels. Each section first discusses the analytical models, and then proceeds to discuss 

the relevant body of experimental evidence. Conclusions on the state of knowledge of each effect 

are summarized at the end of each section. 

2.5.1 Temperature Effect on Cavity Evolution 

Cavity nucleation rate is strongly dependent on the vacancy super-saturation. Therefore, 

changes in temperature which affect the super-saturation of vacancies will affect the length of the 

nucleation region as well. Theory has shown that swelling follows a bell-curve temperature 

dependence [15]. Cavity formation and swelling tends to prevail at irradiation temperatures from 

about 0.2Tm to about 0.6Tm. As temperature is increased, growth of cavities is enhanced due to 
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increased mobility of vacancies. As temperature increases further, nucleation and growth of 

cavities decreases with higher temperatures due to a higher emission of vacancies. At some optimal 

intermediate temperature, there is a maximum swelling where the inward vacancy flux is largest 

compared to the vacancy emission. At low temperatures, low point defect diffusivity restricts flow 

to the void nuclei. Vacancies have limited mobility at these temperatures and will also recombine 

with interstitials before clustering into voids. This behavior can be described by the number of 

vacancies required for a critically stable void to form: 
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Where  is the surface energy,  is the atomic volume, k is Boltzmann’s constant, T  is 
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 represents the vacancy super-saturation. Both temperature and 

vacancy super-saturation appear in the denominator, so at low temperatures and low vacancy 

super-saturations, the number of vacancies n  becomes extremely large, and void nucleation is 

difficult. At high temperatures, the vacancy super-saturation is reduced due to increases in thermal 

vacancies and thermal of emission of vacancies to sinks and therefore n will also become 

extremely large.  

Dvoriashin and colleagues [27] studied ferritic-martensitic steel EP-450 after irradiation in 

Russian fast reactors. Swelling was studied as a function of temperature in the range of 275ºC - 

690ºC.  Figure 2.8 shows swelling rate as a function of temperature, demonstrating the 

characteristic bell-curve dependence. A peak is observed near 420ºC. Considering the low overall 

swelling observed, it is likely that these swelling rates are representative are more representative 

of a nucleation rate rather than a growth rate, and therefore demonstrating that nucleation follows 

a similar bell-curve. 
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Figure 2.8 Temperature dependence of swelling rate in EP-450 [33]. 
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Ayrault [29] studied the effect of irradiation temperatures above 450°C on a 9Cr-1Mo steel. 

No swelling peak was found, but the highest swelling occurred at 450ºC. This may suggest that 

the tail-end of a temperature peak was caught in this study and the peak would appear somewhere 

close to 450ºC. 

Hide et al. [30] studied the 200keV C+ and 3 MeV Ni+ irradiation of six different ferritic 

alloys: MA957 (an ODS alloy), HT9, Fe-12Cr, 12Cr-2Mo, 9Cr-8Mo-4Ni (solution anneal), 9Cr-

8Mo-4Ni (aged). These metals were studied at doses from 50 – 200 dpa and temperatures from 

425-625°C. All of the samples were pre-injected with helium to a fixed ratio of 0.1 appm/dpa. The 

temperature and dose dependence of swelling was shown previously in Figure 2.7. Across the 

alloys, a common peak swelling temperature was observed at 575ºC. Based on the dose 

dependence, it is unclear whether steady-state swelling has been reached, especially considering 

the low overall values of swelling. 

Kai and Kulcinski [34] studied  HT9 irradiated with nickel ions at three different 

temperatures: 400ºC, 500ºC , and 600ºC. Voids were only observed at 500ºC.  The intermediate 

temperature was the only temperature which exhibited void nucleation. 

Schmidt et al. [35] observed a peak swelling temperature of 500ºC in HT9 and 550ºC in 

EM-12 after irradiation with 2.8 MeV Fe+ ions up to 250 dpa. The dependence of swelling as a 

function of temperature is shown in Figure 2.9. 
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Figure 2.9 Temperature dependence of swelling at 150 dpa for EM-12 and HT9 using 2.8 

MeV Fe+ ions [35]. 
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Sencer et al. [17] irradiated HT9 in FFTF and found the highest swelling at a temperature 

of about 443ºC and a dose of 155 dpa. However, it must be noted that the damage level was also 

highest at this temperature (155 dpa at 443°C compared to 28 dpa at 384ºC), which may cloud the 

effect of temperature. 

Wakai et al. [36] showed highest swelling at  470ºC, which then decreased with increasing 

temperature. Ferritic-martensitic steel F82H was irradiated with a triple beam system (Fe+, He+, 

and H+) at temperatures from 470ºC to 600ºC. It is likely that a peak swelling temperature is present 

at a temperature lower than that studied. 

Getto et al. [8] studied swelling in HT9 at temperatures ranging from 400°C to 480ºC after 

irradiation up to 375 dpa. The peak swelling temperature was determined to be near 460ºC. At 

lower and higher temperatures 480ºC and 440ºC, it was determined that the onset of swelling was 

delayed relative to experiments performed at 460ºC. The swelling behavior as a function of 

temperature at 188 dpa is shown in Figure 2.10. This set of experiments suggested that void 

nucleation was enhanced closer to the peak swelling temperature. 

Toloczko et al. [37] performed a study on MA957 tube up to 500 dpa with no pre-injected 

helium at a variety of temperatures (400ºC, 420ºC, 450ºC, 500ºC).  The peak swelling temperature 

was determined to be near 450ºC. The swelling results are shown in Figure 2.11. The study 

compared the swelling behavior at damage levels of 100 and 500 dpa. However, the coarseness of 

these damage levels does not allow us to determine whether steady-state swelling was achieved, 

or what the incubation period may have been. It does however, provide further evidence that 

nucleation was enhanced at damage levels closer to the peak temperature.  
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Figure 2.10 Temperature dependence of swelling, diameter, and number density at 188 dpa 

for  HT9 using 5 MeV Fe2+ ions [8]. 
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Figure 2.11. The temperature of dependence of swelling is shown for MA 957 at 500 dpa 

(red curve) and 100 dpa (blue curve) irradiated with 1.8 MeV Cr+ ions [37]. 
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The authors compared the swelling behavior of MA-957 to that of HT9 and EP-450. The 

swelling as a function of dpa is shown up through about 500 dpa in Figure 2.12. A steady-state 

swelling value of 0.2%/dpa was determined for HT9 and EP-450. From this, a nucleation region 

of about 450 dpa for HT9 and ~150 dpa for EP-450 can be determined. However, it is important 

to note that EP-450 was irradiated at a different temperature (480°C) compared to MA-957 and 

HT9. MA-957 exhibited the lower swelling up to 500 dpa and the achievement of steady-state has 

not yet been confirmed. This is further supported by the void distributions in the paper, which are 

skewed to smaller sizes. 

According to both theory and the studies described here, a swelling peak is expected at 

intermediate temperature. For neutron irradiations, this peak may be approximately centered at 

440ºC.  For ion irradiations, it may be higher from ~460ºC-500ºC. This swelling peak is usually 

referred to as occurring at steady-state, however since the processes affecting the growth of voids 

govern nucleation as well (i.e. super-saturation of vacancies), these concepts can also be extended 

to void nucleation. Therefore, we would expect the nucleation region to follow a similar trend, 

with the lowest incubation period seen at the peak swelling temperature.  
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Figure 2.12 The swelling dependency for MA 957, HT9, and EP-450 are shown through 

~600 dpa irradiated with 1.8 MeV Cr+ ions [37]. 
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Qualitatively, there is evidence that swelling as a whole follows the expected bell-curve 

behavior, and so it is reasonable to assume that nucleation behavior will follow, due its large role 

in determining overall swelling behavior.  Confirmation of the achievement of steady-state has not 

been achieved in many experiments, however the available body of literature all points to the same 

behavior of swelling with temperature. It is very likely that the steady-state growth rate will follow 

a similar bell-shaped curve. It has been postulated by Garner [7] that there exists a “universal 

steady-state swelling rate” which is independent of temperature, but this has not been 

experimentally confirmed. While a systematic set of experiments at incremental temperatures 

would be required to identify the location of the peak swelling temperature. Such a set of 

experiments will prove useful in determining the effect of varying the temperature from the peak 

on void nucleation and steady-state swelling rate, however there is little else to be explored in 

regard to the behavior of temperature with swelling.  

2.5.2 Dislocation Microstructure Effect on Cavity Evolution 

 The dislocation microstructure of a material plays a critical role in the swelling behavior. 

In fact, the existence of the dislocation microstructure is what allows voids to exist. Since 

dislocations are sinks biased for interstitials, this results in a vacancy super-saturation, creating the 

possibility for vacancies to cluster and eventually become stable voids. However, as the dislocation 

strength of a material increases, the overall sink-strength may become too high to support a 

vacancy super-saturation, therefore a delicate balance between the sink strength of the dislocations 

and that of the voids is required to maintain a maximum swelling rate. The ratio between sink 

strength of dislocations to voids (Q) has been explored by Mansur [38]. It was determined that at 

a Q value of approximately 1, a maximum swelling rate is achieved. 

 Much work has been done on austenitic stainless steels to determine the effect of high 

dislocation densities on the microstructure. Studies have shown that increases in dislocation 

densities through cold working have resulted in higher swelling resistance for austenitic stainless 

steels [39]. However, ferritic-martensitic steels possess a much more complex dislocation 

microstructure, therefore changes in microstructure are much more difficult to achieve and to 

characterize.  The origin of the swelling resistance of ferritic-martensitic steels is largely attributed 

to the high sink strength, of which the dislocation microstructure is a large contributor. Because of 
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high dislocation densities and the difficulty of characterization, few studies have explored the 

effects of dislocation densities on swelling in ferritic-martensitics, and even fewer have quantified 

the effects. Figure 2.13 taken from Mansur’s study [38] did show that swelling rate in F-M steels 

and austenitics follow the expected trend as a function of Q. 
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Figure 2.13 Swelling Rate is plotted versus sink strength ratio Q for a collection of 

experiments in austenitic alloys and ferritic-martensitic alloys [38]. 
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Gelles [18] explored the swelling behavior of two different heats of the same alloy HT9 

irradiated with neutrons up to 200 dpa. One heat was tempered at 700°C, and another heat was 

tempered at 760°C. The HT9 tempered at 700°C exhibited a higher density of dislocations 

compared to the 760°C temper. However, the dislocation microstructure was not quantified beyond 

reporting the existence of a/2<111> and a<100> loops. The heat with the higher reported 

dislocation density exhibited 0.09% swelling, while the more relaxed dislocation microstructure 

exhibited 1.7% swelling. While Gelles acknowledges that the precipitates between the two heats 

may be different, it is likely that the higher dislocation densities contribute more to the swelling 

resistance. 

Kim et al. [40] studied the swelling resistance of a series of steels with increasing sink 

strengths (316 stainless, 9Cr ferritic-martensitic steel, and three ODS: 17Y3, 12Y1, and 12YWT). 

After irradiation using both 3.2 MeV Fe+ and 330keV He+ at 650°C, the authors observed smaller 

densities and sizes of voids in the materials with higher sink densities (both dislocation densities 

and ODS particles). However, a rigorous characterization of the swelling and dislocation densities 

is lacking. The authors suggest that the resistance to swelling is mainly due to the higher densities 

of dislocations. Additionally, calculations were made in an effort to show the effect of high 

dislocation densities on the critical cavity radius, as shown in Figure 2.14. The critical cavity 

radius as a function of dislocation density was calculated using the previously discussed rate theory 

formulation developed by Lee and Mansur [41], which took into account detailed material and 

irradiation parameters which are summarized in [40]. At some intermediate dislocation density, 

the critical cavity radius is the smallest. This suggests that not only swelling rate (growth) of 

cavities follows a Q-like relationship, but also nucleation as well. 
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Figure 2.14 The critical cavity radius is plotted as a function of dislocation density [40]. 
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Garner [7] showed that the swelling trends may be more complicated when it comes to 

dislocations. In materials where dislocations are not already heavily present but are resistant to 

swelling, cold-working may actually increase the swelling. The behavior of swelling with 

dislocation density also largely depends on the temperature of irradiation, with lower temperatures 

resulting in a larger transient regime, while higher temperatures resulting in a shorter one. However, 

most of this work was performed with austenitic stainless steels, where the effect of cold-working 

and dislocations is obvious. 

 Dubuisson [42] explored the irradiation effects on the microstructure of several steels: 17Cr 

ferritic, EM12, FV448, HT9, 1.4914, and 9-12Cr ferritic-martensitic steels. Of particular interest 

is the effect of irradiation on EM12, which is a duplex steel, contain grains of both ferrite and 

martensite. It is well established that martensite grains contain a higher dislocation density (~1 x 

1015m-2), compared to ferrite grains (~2 x 1014m-2). Irradiation of this material allows for the 

determination of the effect of a higher dislocation density on swelling behavior. Additionally, the 

other materials covered in this study ranged from fully ferritic, to duplex, to fully martensitic. After 

irradiation at a variety of temperatures below 500°C, and doses up to ~116 dpa, voids were 

observed in all samples except the HT9. Only the fully ferritic steel and duplex steel exhibited a 

significant void density. The ferrite regions of EM12 and the ferritic steel F17 irradiated at 420°C, 

75 dpa resulted in the same void microstructure with swelling values of 0.5%, while the martensitic 

regions of EM12 exhibited much lower amounts of swelling. The authors suggest that the origin 

of this swelling resistance is due largely to the greater amount of point defect sinks in the 

martensitic microstructure compared to the ferritic microstructure. 

 While it is clear that there is a stark difference between austenitic swelling resistance and 

ferritic swelling resistance, and a further difference between ferritics and martensitics, the role of 

dislocations on that swelling resistance is not entirely clear. The dislocation densities change by 

orders of magnitude when going from austenitics to martensitics, however little work has been 

done to quantify the effect—especially in martensitics. In austenitic steels it is relatively easy to 

observe changes in dislocation density in the material due to cold working or heat treatment. 

However, the martensitic microstructure is largely saturated with dislocations and quantifying the 

initial microstructure is challenging. Furthermore, the effects of cold working on ferritic-
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martensitic alloys remain relatively unexplored—the increase in dislocation density or other 

microstructural changes are unknown. As mentioned above, studies have qualitatively seen 

changes in the dislocation microstructure and a resulting effect in the swelling resistance. Higher 

dislocation densities seem to delay the onset of swelling, likely due to contributions to a higher 

sink strength. This highlights the need for a rigorous quantitative study on the dislocation 

microstructure of ferritic-martensitic steels, perhaps with varied levels of cold-working is needed. 

However, the value of such a study is expected to be somewhat limited, as many experiments have 

shown to follow the expected behavior with sink strength balance. If that is the case, then such a 

study would be highly material specific, and not of much value to the scientific community. 

2.5.3 Gas Effect on Cavity Evolution 

The production of inert gas atoms in reactors may act to stabilize subcritical voids, and in 

the process, encourage nucleation of stable cavities. Helium is often the focus of inert gas studies 

as it is commonly produced in reactor materials, however other gasses, such as oxygen, have also 

been known to enhance cavity formation [43–45] . Helium is thought to enhance the nucleation of 

cavities by providing sites for vacancy clusters to form. This is achieved through lowering the free 

energy requirement to create a critical cavity embryo. In the presence of helium, Equation 2.1 

becomes: 
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Where x corresponds to the number of helium atoms in the cavity, M is the concentration 

of helium atoms in the solid (usually in atoms/cm3 or equivalent), and H is the Henry’s Law 

constant for the dissolution of helium in the metal. The entire third term in Equation 2.4 represents 

the lowered free energy due to the work required to move the helium from the solid into the cavity. 

From comparing Equations 2.1 and 2.4 it is clear that the presence of helium lowers the free 

energy required to form a stable void. This lower free energy results in a smaller critical void 

nucleus required for stable void formation, and thus enhances nucleation relative to a gas-free 

environment. 

In attempting to answer the question of how important helium is to void nucleation, Stoller 

and Odette [46] studied the effect of the cluster composition (helium vs. vacancy) on the nucleation 

path of voids. Two paths limiting void formation: one limited to growth by helium accumulation 
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alone, the other limited by stochastic fluctuations in vacancy cluster population. Gas accumulation 

path seemed to be generally dominant. Specific cluster compositions and distributions are not 

analyzed, however. This work was done for austenitic stainless steels, and whether this is still 

relevant for ferritic-martensitic steels has yet to be established. 

Stoller further suggests [47] that the relationship of helium with swelling is not monotonic, 

and depends on the sink structure which it forms. At low damage levels, the helium acts as vacancy 

traps which serve as nucleation sites for cavities. The resulting microstructure at higher damage 

levels would then be a function of the number of sites created. If helium is increased to the point 

where these sites become a major sink, the microstructure would then evolve along a different 

path—recombination rates at the cavities become high, and thus the vacancy supersaturation is 

decreased. Additionally, helium and vacancies must be distributed to a higher number of sites 

before growth can occur.  

2.5.4 Effect of helium injection mode 

 

In accelerator experiments, helium may be injected into the metallic lattice, rather than 

created through transmutation to simulate reactor environments. The implantation of helium is 

known to shorten the incubation period for cavity nucleation by stabilizing small clusters of 

vacancies and allowing them to more easily reach critical size. Farrell [48] [49]  studied the effect 

extensively. The work is heavily theoretical, backed by some experiments, but explains in detail 

the role helium plays in cavity nucleation and growth, and effects on dislocations and precipitates. 

While the work is not specific to F-M steels, it still provides valuable insight into the formation 

and growth of cavities.  

Gasses facilitate nucleation of cavities, especially non-reactive and insoluble gasses such 

as helium. Helium tends to reduce the incubation period required for the nucleation of voids, and 

tends to result in higher densities of smaller sized cavities. The implantation process also will affect 

the behavior of cavities.  Pre-implanted helium at room temperature seems to be more effective at 

nucleating cavities than implanted helium during the irradiation or helium implanted at the 

irradiation temperature. High amounts of helium can actually depress growth and retard swelling. 

If cavities become the dominant sink, then they will tend to resist void growth.  
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Hot helium implantation tends to result in a larger cluster but smaller densities. The less 

mobile cold pre-implantation results in vacancies being trapped on a smaller scale and thus creates 

a high concentration of smaller cavities.  Cold pre-implantation and co-implantation both tend to 

result in bimodal distribution of cavities with a large group smaller than the critical radius and a 

group that has stabilized beyond the critical radius. 

Lastly, grain boundaries can serve as traps for helium, thus forming grain boundary bubbles. 

These bubbles are not bias driven, as the concentration of point defects near grain boundaries is 

usually very low so supersaturation of vacancies at these sites is very rare. 

The most comprehensive work which explored the effects of the method of helium pre-

implantation was performed by Packan and Farrell [50] on 316 stainless steel. Doses up to 70 dpa 

were explored with helium either simultaneously injected at 20 appm/dpa (to a total of 1400 appm), 

or pre-implanted at room temperature or 627°C at 1400 appm. The highest swelling was observed 

in the unimplanted material (18%), with simultaneous injection resulting in 11% and pre-

implantation at 627°C resulting in 4% and only 1% at room temperature. These results are 

summarized in Table 2.6 below. 

From the images of the void microstructure (Figure 2.15) it is clear that the higher swelling 

in the unimplanted case is due to the fact that the voids were allowed to grow unimpeded. The 

addition of helium through any method resulted in lower swelling, likely due to the high void sink 

strength resulting from the very high density of nucleation.  
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Table 2.6 The swelling resulting from different methods of helium pre-implantation 

from [50]. 

Implantation Condition Swelling (%) 

None 18 

Co-Implantation (20 appm/dpa) 11 

627°C Pre-implantation (1400 appm) 4 

RT Pre-implantation (1400 appm) 1 
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Figure 2.15 Void microstructure produced at 70 dpa  with (a) no helium (b) coinjection (c) 

pre-implantation at 627C and (d) pre-implantation at room temperature [50]. 

  



 51 

 

While the addition of helium causes a reduction in swelling in all cases, it should be noted 

that only relatively high amounts of helium were studied—likely resulting in excessive void 

nucleation which inhibited growth. It remains unclear whether the addition of a smaller amount of 

helium would enhance the swelling beyond that of the unimplanted condition. However, the 

difference in swelling behavior between the room temperature implantation and the 627°C 

implantation is likely due to a coarsening effect of the pre-implanted helium clusters. The higher 

temperature pre-implantation created fewer but larger void nuclei.  

The authors suggest that for the room temperature pre-implantation the cavities were the 

overwhelming dominant sink and voids and dislocations were approximately equal in the co-

injected and no helium cases. The defect partitioning ultimately determines whether the voids will 

grow unimpeded or not, but a thorough comparison of the Q ratios is not presented in the paper. 

Based on the results, it is likely that hot pre-implantation pushes the microstructure to a more 

dislocation-favored regime. 

It is also postulated that the high levels of helium served to bind many vacancies, 

preventing them from clustering and promoting recombination. These helium-vacancy complexes 

served as non-biased sinks for point defects resulting in a decrease in the super-saturation and 

ultimately repressing the nucleation and growth of stable clusters. However, while this theory is 

postulated, there is no confirmation that this is the cause of repressed swelling. Furthermore, there 

is no comparison with other levels of pre-implanted helium, to be able to determine whether this 

is caused from pre-implantation, or just the high level of helium included. 

2.5.5 Effect of helium at high damage 

 

Some experimental studies have explored the effects of various helium levels on swelling. 

In a study mentioned previously, Kai and Kulsinki [34] irradiated sets of HT9 specimens up to 200 

dpa. One set had no helium pre-implanted, while the second set had 100 appm He pre-implanted.  

Cavities were only observed in the 100 appm samples. While this study demonstrates that the 

presence of helium does indeed enhance nucleation, it does not discuss to what extent it may 

enhance it since only a single damage and helium level was considered. No evidence of steady-
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state swelling is presented and thus, any information about the incubation period or the effect of 

helium on growth cannot be determined. 

Jiao et al. [51] performed a series of proton irradiations on T91 implanted with  various 

levels of helium. Experiments were performed at 450°C with implantation levels of 720 appm, 

1260 appm, and 1800 appm helium. The irradiations were performed using 2 MeV protons to doses 

of 2.2 dpa, 7 dpa, and 9.2 dpa. At these high levels of helium, bubbles were observed in all pre-

implanted cases and increased in diameter with increasing helium levels. Bubble sizes of 1.0nm, 

1.2nm, and 1.4nm were found in the 720 appm, 1260 appm, and 1800 appm samples respectively, 

at a concentration of about 1023m-3 were observed. After irradiation, the bubble sizes increased, 

and the swelling increased as well. However, since protons were used for irradiation high doses 

could not be achieved—and evaluations on the incubation period and steady-state swelling rates 

could not be determined. However, it is important to note that levels of helium pre-implantation 

of 720 appm and above caused the formation of visible bubbles prior to irradiation. 

 Getto et al.[8] performed a study at a variety of helium levels (0, 1, 10 and 100 appm). 

Overall, it was observed that increasing amounts of helium resulted in a decreasing damage level 

for cavities to appear. Steady-state swelling seemed to be achieved using 10 appm helium by 375 

dpa, however steady-state swelling was not confirmed for any other helium level. It appeared that 

a helium level of 1 appm may have been approaching a lower steady-state swelling rate. These 

effects are shown in Figure 2.16. Helium levels of 100 appm seemed to suppress swelling in the 

transition regime, which may suggest a difference in the steady-state swelling behavior.  

Wang et al.[9] studied RAFM steels similar to T91 and HT9 implanted with helium levels 

of 10 and 100 appm up to 188 dpa. Similar to Getto’s experiments, higher helium levels decreased 

incubation period, however there was not an observed change in steady-state swelling rate. The 

effect of different helium levels is shown in Figure 2.17. 
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Figure 2.16 Swelling dependence of HT9 for various helium levels at (a) 440°C and (b) 460°C [8].
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Figure 2.17 The dependence of swelling with damage for CNSI and CNSII for different 

helium levels at 460°C irradiated with 5 MeV Fe2+ ions [9]. 
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 A collection of experiments, utilizing both neutron and ions and spanning multiple He/dpa 

ratios has been performed on Cu and Cu-boron materials [52–56]. While the Cu system is face-

centered-cubic, and the microstructure is fundamentally different than the ferritic-martensitic 

system, the effect of helium on cavity development is likely similar. Figure 2.18 shows the 

normalized cavity swelling as a function of He/dpa ratio. The relationship is not monotonic, as a 

peak in swelling is observed at intermediate He/dpa ratios of about 5-10 appm. This peak occurs 

near the transition to a combination of both voids and bubbles is observed, before a high density 

of bubbles results in a reduction of swelling. Because of the variety in damage levels in the data, 

it is difficult to compare whether the normalized swelling is representative of cavity growth in all 

areas. It is unknown whether a maximum cavity density was achieved in the lower helium cases. 

However, combined with known results of helium with high levels in Fe-Cr systems, it is likely 

that this peak behavior with suppression at high helium and low nucleation at low helium levels 

causes this swelling behavior. 

  



 56 

 

Figure 2.18 Normalized Cavity swelling vs. appm He/dpa taken from a variety of 

experiments for Cu and Cu-boron doped irradiation experiments [52–56].  
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Qualitatively, the results from experiments along with theoretical predictions suggest that 

the pre-implantation of helium tends to encourage void nucleation, and thus shorten the incubation 

period.  Experiments have been performed on ferritic-martensitic steels with pre-implantation 

levels from 0 appm all the way up to 1400 appm and beyond. Most studies only use helium to 

encourage void nucleation and provide little to no reason why a particular level is used. This is 

illustrated by the range of over three orders of magnitude that helium levels have been studied. 

Little care has been used to justify or explore the effects a particular helium level may have on 

void nucleation and steady-state growth.  Stoller’s [46] study in austenitic steels suggests that the 

helium-vacancy composition of a defect cluster may be critical to the formation and evolution of 

the void microstructure, however no experimental studies have been performed to explore this. 

Few studies have systematically explored the effect of increasing helium levels and the subsequent 

effect on the incubation dose and steady-state growth rate. Some studies [6][8][9][51] suggest that 

higher helium levels (100 appm and beyond) may actually suppress swelling; however, the point 

where and why this switch occurs is not well understood. Additionally, there is no consensus 

whether different helium levels affect the steady-state swelling regime. Some studies [9] [7] 

suggest that the steady-state swelling rate is unaffected by helium, while other studies [8] provide 

evidence that there may be a dramatic effect on the swelling rate.  

It is likely that the cavity microstructure created during nucleation (as a result of a particular 

level of pre-implantation) will carry its effects into the growth regime. What these consequences 

are, at what helium levels they occur, and how they occur remain to be explored. There is a need 

for a systematic set of experiments at various helium levels in the same material which achieves 

steady-state swelling for each of the helium conditions. Such a set of experiments will provide 

invaluable information about the helium effect on cavity evolution in ferritic-martensitic steels—

both about the incubation and steady-state region. This could serve as a guide for future 

experiments on which helium levels are relevant for use and the potential consequences of 

implanting too much or too little helium. 

2.5.6 The Effect of Carbon on Cavity Evolution 

The presence of carbon in ferritic-martensitic steel is unavoidable, as it is an essential 

component during the processing of the steel. Typically levels of 0.1 atom percent carbon or less 
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are present as interstitial impurities within the Fe-Cr matrix. During processing, most of the carbon 

precipitates as M23C6 carbides on the grain and lath boundaries. Section 2.1.2 details the typical 

precipitates formed as a result of various processing and heat treatment conditions.  

Carbon, both in precipitates and as an interstitial impurity may have a dramatic influence 

on the development of cavities under irradiation. A number of studies on the irradiation of 

austenitic stainless steel have explored the effect of varying amounts of carbon on void swelling. 

Leitnaker [57] et. al. explored the effect of varying amounts of interstitial solutes (C, N, Si) on 

swelling. High purity steel (0.005% C, 0.0003% N, and 0.01% Si) was irradiated alongside Type 

316 stainless steel (0.05% C, 0.05% N, and 0.75% Si). The samples were irradiated in EBR-II to 

fluences of ~1022
 n/cm2 and at temperatures between 450 and 600°C. Type 316 exhibited a much 

higher swelling resistance in all comparable cases: at 510°C, swelling was 0.05% in 316, while 

11.8% in HPS at 500°C. At 580°C, 316 exhibited 0.21% swelling, while HPS suffered 5.03%. The 

authors attribute the higher swelling resistance in 316 to the higher concentration of interstitial 

impurities. Several mechanisms for the swelling resistance were proposed, such as the impurities 

creating a shell around void or dislocation sinks, preventing defects from being absorbed, and 

promoting recombination. They also suggest that the impurities may be acting as traps for point 

defects within the matrix and promoting recombination in that way as well.  

A study by Makin et al. [58] explored the effect of increased carbon on 316 stainless steel. 

Samples were carburized to varying degrees, up to 1% wt. carbon. A high voltage electron 

microscope was used to induce the irradiation damage up to ~20 dpa. Since the solubility of carbon 

in the material was exceeded (~0.1% at 1050°C), the formation of M23C6 precipitates was observed 

on grain boundaries in the lower carbon samples and in the matrix for the higher carbon samples. 

Figure 2.19 shows the estimated swelling rates for the 316 for various levels of carbon. As the 

carbon concentration is increased from 0.01% to 0.1% a dramatic decrease in the swelling rate is 

observed. The authors did not suggest any mechanisms for the reduction of swelling rate other 

than carbon trapping of vacancies. Void denuded zones around M23C6 precipitates were also 

observed. 
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Figure 2.19 Swelling as a function of damage in 316 steel for various carbon levels [58]. 
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It is especially critical to understand the effect of carbon when considering experiments 

done with ion irradiation. The unintended beam-induced uptake of carbon has been observed in 

some ion irradiation experiments. Work done by Singer et al. [9,10] found that irradiation of steels 

with Ti, Cr, and Ta ions caused the uptake of carbon into the surface of the samples with a 

diffusion-like profile. Figure 2.20 shows the carbon profiled through the surface of the sample 

after irradiation in normal vacuum conditions, and in the presence of additional CO.  When 

compared with the normal vacuum profile, it is clear that significant carbon was taken up by the 

sample. The authors suggested that the uptake of carbon was due to vacuum carburization 

catalyzed by the ion beam. Residual CO and CO2 molecules in the vacuum system, with the help 

of the ion beam, adsorbed onto the surface and then diffused inward. The appearance of an 

amorphous layer of C was observed in Ti-implanted Fe [59], which likely serves as the source for 

diffusion into the material, which is consequently enhanced by irradiation. 

A proton irradiation study by Thomas and Bauer [60] observed carbide formation on Nb 

samples. The authors proposed that the most likely possibility for the cause of this was beam-

enhanced or beam-induced adsorption and dissociation of residual vacuum components such as 

CO and CO2. 

This carbon contamination problem was also observed in an ion irradiation study on HT9 

[5]. After irradiation up to 600 dpa (at the peak), excessive carbon uptake and precipitation was 

found. Up to 7% atomic carbon was observed using SIMS, and it was reduced to 2% atomic carbon 

after a “beam-filtering” technique was used. However, the 2% atomic carbon was still well above 

the solubility limit of carbon in HT9. Figure 2.21 shows the SIMS carbon profiles, showing the 

enhanced carbon content in both the filtered and un-filtered beam conditions.  
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Figure 2.20 Profiles of carbon content as a function of sputtering time (related to depth) for 

a CO gas, normal vacuum, and unirradiated environment [4]. 

  



 62 

 

 

Figure 2.21 SIMS profiles of carbon in HT9 with and without beam filtering [5]. 
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Additionally, the authors identified the formation of several carbides, including M23C6, 

M7C3, and M3C. The authors concluded that the high sink strength of the carbides likely resulted 

in the suppression of swelling, when comparing the sample with 7% carbon to the sample with 2% 

carbon. An estimated for the swelling rates were made with ~0.001%/dpa for the 7% carbon 

sample and ~0.01%/dpa for the 2% carbon samples.  

From these studies exploring the effect of carbon on swelling, it is apparent that carbon 

tends to suppress swelling behavior. Carbon interstitials in the matrix likely trap vacancies and 

promote recombination [57,58,61–63]. Additionally, carbon levels beyond the solubility limit 

result in precipitation of carbides. In addition to providing void-denuded zones at the boundaries, 

these carbides may serve as additional sinks for point defects, absorbing excess vacancies and 

reducing their super saturation. Since this carbon contamination has been shown to have a 

deleterious effect on swelling, its incorporation into the material must be taken into account when 

analyzing the microstructure of ion irradiations. When considering ion irradiation experiments it 

is essential to determine the effect of carbon on the microstructure and to assess whether the carbon 

contamination compromises the integrity of the experiments.  
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CHAPTER 3: OBJECTIVE

 

 The objective of this thesis is to understand the role of pre-implanted helium, with and 

without the presence of excess carbon, on the cavity evolution of ion-irradiated T91. A hypothesis 

for the behavior of cavities both in the presence and absence of excess carbon uptake is presented 

as follows: 

 Ion-irradiated T91 will exhibit monotonically decreasing swelling as helium pre-

implantation level is increased. This is due to a reduction of growth with higher pre-implantation 

levels because of a high sink strength of small cavities and helium traps which promote 

recombination. 

 In the presence of beam-induced carbon uptake, ion-irradiated T91 will exhibit peaked 

swelling behavior at an intermediate helium pre-implantation level. The suppression of nucleation 

by carbon and carbides will inhibit swelling at lower pre-implantation levels, while swelling at 

higher pre-implantation levels is suppressed by both carbon and a high cavity sink strength. 

 Figure 3.1 shows a schematic of the hypothesized behavior. The overall swelling in the 

presence of carbon is also expected to be lower due to an overall lower density and growth rate.  
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Figure 3.1 A schematic showing the hypothesized swelling behavior as a function of pre-

implanted helium with and without carbon uptake. 

  

S
w

el
li

n
g

 

Pre-Implanted Helium Content 



 66 

To test this hypothesis a combination of ion-irradiation experiments with careful 

characterization of the microstructure was used. 

To achieve the main objective, two sub-objectives were first completed. The first sub-

objective required determining what happened to the swelling behavior as both helium and carbon 

uptake varied. To answer this, a series of experiments were performed in the laboratory with 

varying conditions. This required the establishment of a controlled and consistent process of 

performing the experiments and analyzing and processing the experimental data. The development 

of the following methods was essential in acquiring the relevant experimental data: 

• A method for consistent and controlled helium implantation and ion irradiation 

• A method for preventing the uptake of carbon during ion-irradiation 

• A post-irradiation characterization technique utilizing STEM (scanning 

transmission electron microscopy) to image the microstructure 

• A method for consistent quantification of the microstructure features (cavities, 

dislocations, precipitates, carbon) 

By utilizing these methods, the magnitude and direction of changes in swelling with 

changes in helium pre-implantation and carbon uptake were determined. Swelling rates, cavity 

size distributions, and quantification of precipitates and dislocations all provided a comprehensive 

picture of the microstructure evolution with increased irradiation damage. As a whole, these results 

answered the question of what happened to the cavity behavior as a function of helium level, 

carbon uptake, and damage level. 

The second sub-objective was to determine why a particular change in helium pre-

implantation or carbon uptake resulted in the changes observed in cavity evolution. This was 

accomplished by a detailed analysis of the cavity size distributions, sink strengths, and other 

microstructural developments. The results gathered from this work were applied to existing cavity 

evolution theories and compared with the other available experimental results. This analysis 

ultimately provided insight into the causes of the changes in cavity evolution due to helium pre-

implantation level and carbon uptake. 

Completion of these two sub-objectives ultimately demonstrated the highly influential 

roles of pre-implanted helium and carbon uptake on the cavity evolution.  
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CHAPTER 4: EXPERIMENTAL PROCEDURE 

 
This chapter presents the experimental procedures used to prepare, irradiate, and 

characterize the T91 samples explored in this thesis. 

4.1 Alloy and Sample Preparation 

 The alloy used for the work in this thesis was T91, heat C2269. The composition in weight 

percent is shown in Table 4.1. The alloy was produced by American Alloy Steel Inc. in accordance 

with ASTM SA387. The composition was verified with combustion infrared detection and direct 

current plasma emission spectroscopy. As mentioned previously, T91 is a nominally 9-Cr ferritic-

martensitic steel and is being considered as a candidate for fast reactor applications because of its 

high swelling resistance. This alloy was given a heat treatment consisting of a 46 min anneal at 

1066°C, followed by an air cool which provided for the transition to reach a fully martensitic phase. 

This was followed by tempering at 790°C for 42 min, to allow for carbide growth and to recover 

some ductility, followed by a final air cool. 

 The resulting microstructure was a tempered, fully martensitic material. Metallography on 

the as-received T91 samples revealed a microstructure of prior austenite grain boundaries 

approximately 10 µm in size and martensite laths of about 0.5 µm in width and 5 µm in length 

[64]. Figure 4.1 shows the microstructure of unirradiated, as-received T91 imaged using bright 

field scanning (BF-STEM) transmission electron microscopy. The presence of the martensite laths, 

carbides at grain boundaries, and a high dislocation density with the laths is very apparent. An 

initial dislocation density of 3.0 x 1014 m-2 was measured for the as-received condition. 

 Prior to irradiation, samples of T91 were cut in the form of 1.5 x 1.5 x 20mm bars using 

electrical discharge machining (EDM). EDM utilizes rapid current discharge through two 
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electrodes to break down material and effectively cut the metallic sample. The shape of the material 

can be programmed into the machine and can result in geometric precision of about 1µm.  
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Figure 4.1 The unirradiated, as-received microstructure of T91, heat C2269 imaged under bright field scanning transmission 

electron microscopy.
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Table 4.1 The composition of T91 C2269 in wt%. 

Alloy Content (wt%) 

Cr Mo Ni Mn Si V C Cu Fe 

8.37 0.9 0.21 0.45 0.28 0.22 0.1 0.17 Bal 
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The bar samples were then mechanically polished using successively lower grits of silicon 

carbide grinding paper. The samples were mounted on a metallic puck using Crystalbond™ 

adhesive glue. The metallic puck was heated on a hot plate such that a thin layer of adhesive melted. 

The T91 bar samples were then arranged on the adhesive in the center of the puck, side-by-side, 

as they would be on the irradiation stage. Extra “dummy” samples, called guide bars, were added 

bookend the irradiation samples. The guide bars allowed for more consistent polishing and for 

over-scanning during irradiation, and a welding point for thermocouples. It was necessary to 

ensure that the samples were adhered flat to the puck and at the same height. The puck was allowed 

to cool, usually with the help of deionized water so the adhesive would harden quickly. The 

samples were then hand-polished using a variable speed grinding wheel with silicon carbide 

grinding paper. Grits of 240, 320, 400, 600, 800 and 1200 were used to polish the sample. The 

polishing direction was rotated 90 degrees between each grit step so that it would be easy to 

identify when the previous damage had been removed. The samples were also rinsed with 

deionized water between grinding steps to remove rogue particles. After the 1200 grit grinding 

step, the puck was re-heated to melt the adhesive and the samples were flipped to the opposite side, 

while maintaining the same relative orientation. The grinding process was repeated for the opposite 

face. The to-be-irradiated surface was further polished with a cloth pad and diamond slurries of 

1µm and 0.25µm to provide a mirror-like finish. The samples were then removed from the puck 

by heating once again. To remove any residual adhesive, the samples were allowed to rest in a 

beaker of acetone until the adhesive had completely dissolved. They were then successively 

cleaned with methanol and ethanol.  

To remove any damage layer induced by mechanical polishing, the samples were then 

electropolished. The electropolishing solution consisted of a 10% perchloric acid, 90% methanol 

solution which was cooled to between -40 and -50°C using a methanol bath with dry ice or liquid 

nitrogen. The sample was completely submerged in a 1000 mL beaker containing approximately 

500 mL of electropolishing solution.  A magnetic stirrer rotating at ~250 rpm was used to create a 

vortex in the electropolishing solution which impacted the surface of the sample head on. The to-

be-irradiated surface of the sample was oriented to face the cathode, a 25 x 25mm square platinum 

wire mesh, which was also submerged in the solution. The sample itself served as the anode. A 
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diagram of electropolishing set-up is shown in Figure 4.2. The samples were electropolished at an 

applied voltage of -40V for approximately 20 seconds. During the electropolishing, the sample 

was agitated within the vortex to refresh the flow of solution at the surface. This procedure was 

estimated to remove about 2µm of material. To determine the appropriate length of time to 

electropolishing, a polishing curve for T91, as shown in Figure 4.3, was obtained beforehand. 

Samples of T91 were half-coated with protective lacquer and electropolished at various times. A 

confocal microscope was used to verify the amount of material removed by comparing the heights 

of the electropolished surface and that of the protected surface. As the final mechanical polish 

utilized 0.25µm particles, removal of 2µm was deemed more than sufficient for removal of a 

remaining damage layer.  
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Figure 4.2 A schematic of the electropolishing set-up. 
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Figure 4.3 The amount of material removed from the surface as a function of 

electropolishing time.  
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For some samples, a coating of alumina was applied to the surface of the samples to prevent 

carbon uptake during ion irradiation. An ALD (atomic layer deposition) machine was used to apply 

the coating at a thickness of 100nm. ALD is a thin film deposition technique which utilizes gaseous 

precursors to deposit the film (in this case Al2O3). The specific details for the reaction are 

dependent on the particular ALD process (i.e. whether deposition of oxide, metal, nitrides, etc. is 

desired). 

For the ALD of alumina, the substrates (T91 samples) were heated to 150°C in an inert 

argon environment. Trimethylaluminum (TMA, Al(CH3)3) was bubbled into the chamber and 

reacted with hydroxyl (OH) groups on the surface of the substrate. The TMA was then pumped 

out of the chamber and water was bubbled into the chamber to react with the methyl (CH3) groups 

to produce alumina and methane. The reaction which took place was the following (molecules 

denoted with an asterisk are attached to the substrate surface): 

 2 Al(CH3)3
* + 3 H2O  Al2O3* + 6 CH4 

The water was then pumped out of the chamber. This process was repeated for a number 

of cycles (980-1000) to achieve a 100nm thick film. It was important that the TMA was completely 

pumped out before the water bubbled in, since TMA and water readily react and could result in 

poor alumina deposition. 

4.2 Helium Pre-Implantation 

 Prior to irradiation with Fe2+ ions, some of the samples were implanted with helium at room 

temperature to concentrations of 0, 1, 10, 100, and 1000 appm. To reduce the irradiation area, one 

T91 bar sample was often used for two helium conditions. Half of the bar, lengthwise, was 

implanted with one helium level and the other half implanted with a second helium level. For 

example, one bar sample contained the 1 appm and 100 appm helium conditions, while a second 

bar sample contained the 10 appm and 1000 appm conditions (see Figure 4.4).   
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Figure 4.4 A diagram of the helium conditions implanted on each T91 sample. 
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A National Electrostatics Company (NEC) 400kV implanter was used to implant the 

helium. The samples were mounted on a rotatable wheel using copper tape. The tape was only 

used on the back end of the samples and cut such that it would not be irradiated or exposed to the 

beam. Care was taken to prevent any tape to contact the to-be-irradiated surface of the samples. A 

steel knife-edge was used to cover half of the sample so that each half could be implanted 

separately to the appropriate helium level. The rotatable wheel was placed in the implantation 

chamber, which allowed two helium conditions to be implanted without venting the chamber. The 

chamber was pumped down to a pressure of ~1 x 10-6 torr.  

The helium implantations were performed with a rastered beam of He+, with the samples 

at room temperature with no heating or cooling elements. Energies of 80, 140, 220, 310 and 420 

kV were used to obtain an approximately flat damage profile (±10%) from the depth range of 300-

1000nm from the samples surface. The presence of an alumina layer did not significantly alter this 

profile. The implantation profile was estimated using SRIM (Stopping Range of Ions in Matter). 

The resulting SRIM profile after He implantation at various energies is shown in Figure 4.5. 
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Figure 4.5 The helium profile as a function of depth in T91 as estimated by SRIM 

calculation as a result of implantation at various energies.  
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The 1 appm pre-implantation was performed at a damage rate of approximately 8 x 10-7
 

dpa/s, as estimated by SRIM. For the higher helium levels, the current (and consequently the 

damage rate) was increased by approximately an order of magnitude for each level to keep the pre-

implantation time roughly constant. At the highest helium level (1000 appm), the damage caused 

by pre-implantation was estimated to be 0.02 dpa. At this low damage level and at room 

temperature, no significant changes to the pre-existing microstructure were expected, aside from 

the presence of helium. The 1000 appm He condition was implanted using a current density of 

about 0.5 µA/cm2, which does not result in measurable beam heating over the course of a 10 minute 

implant. This determination was made using a reference experiment that was conducted at a power 

density 5 times that of the 1000 appm He implant experiment. In the reference experiment, the 

temperature was observed to rise a maximum of 55°C only after 3 h of irradiation [65]. Figure 4.6 

shows the microstructure of T91 pre-implanted with 1000 appm prior to ion irradiation. No helium 

bubbles were observed, even at very high magnifications using either conventional or scanning 

transmission electron microscopy. However, some damage from the focused-ion beam liftout 

technique is observed, especially near the sample surface. 
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Figure 4.6 Bright Field STEM cross-sectional image of T91 microstructure implanted with 

1000 appm helium at room temperature. 
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4.3. Fe2+ Irradiations 

4.3.1 Experiments and Characterization Performed 

 For clarity, the first irradiation campaign, with uncoated samples, will be referred to as the 

Excess Carbon Campaign and the second irradiation campaign, with alumina-coated samples will 

be referred to as the Nominal Carbon Campaign.  

A total of six irradiation experiments were performed for this thesis. Each irradiation was 

performed at 460°C and contained five helium implantation conditions (0, 1, 10, 100 and 1000 

appm). Three separate sets of samples were used to obtain a damage dependence, with multiple 

irradiations being performed a single set.  

The first irradiation campaign consisted of one set of samples which was irradiated without 

an alumina coating. Since no anti-contamination measures were used, these samples were 

susceptible to carbon uptake. The first irradiation utilizing these samples was performed up to a 

nominal damage level (at 600 nm depth) of 150 dpa. After the irradiation was performed, at least 

two TEM specimens were extracted for characterization and the samples were further irradiated. 

In the next experiment, an additional 150 dpa, to a total of 300 nominal dpa. The samples were 

characterized and the process was repeated at 150 dpa for a final damage level of 450 dpa. Table 

4.2 summarizes the experimental details of the irradiations performed in the first campaign and 

which microstructural features were characterized for each condition. 

The second irradiation campaign consisted of two sets of samples, which were coated with 

a layer of 100 nm of alumina to prevent carbon uptake during irradiation. The first irradiation was 

performed to a nominal damage level of 300 dpa. The second irradiation was performed on a new 

set of samples to 50 dpa. The third irradiation in this campaign added 100 dpa to the 50 dpa samples 

to achieve 150 dpa. As before, at least two TEM specimens were extracted from each sample after 

each damage step. Table 4.3 summarizes the experimental details and which microstructural 

features were characterized in the second irradiation campaign. 

 

 



 82 

Table 4.2. The experimental details and microstructural characterization for the 

first irradiation campaign with uncoated samples. 

Date of 

Completion 

Beam 

Energy 

(MeV) 

Damage 

added/total  

(Kinchin-Pease 

dpa) 

He 

(appm) 

Cavity 

Characterization 
Dislocations 

Carbide 

Precipitates 

3/18/2016 5 150/150 

0 ✓ N.M. N.M. 

1 ✓ N.M. N.M. 

10 ✓ ✓ ✓ 

100 ✓ N.M. N.M. 

1000 ✓ N.M. N.M. 

4/28/2016 5 150/300 

0 ✓ N.M. ✓ 

1 ✓ N.M. ✓ 

10 ✓ ✓ ✓ 

100 ✓ N.M. ✓ 

1000 ✓ N.M. ✓ 

6/16/2016 5 150/450 

0 ✓ N.M. ✓ 

1 ✓ N.M. ✓ 

10 ✓ N.M. ✓ 

100 ✓ N.M. ✓ 

1000 ✓ N.M. ✓ 
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Table 4.3 The experimental details and microstructural characterization for the 

second irradiation campaign with coated samples. 

Date of 

Completion 

Beam 

Energy 

(MeV) 

Damage 

added/total  

(Kinchin-Pease 

dpa) 

He 

(appm) 

Cavity 

Characterization 
Dislocations 

G-phase 

Precipitates 

9/29/2016 5 300/300 

0 ✓ N.M. N.M. 

1 ✓ N.M. N.M. 

10 ✓ ✓ ✓ 

100 ✓ N.M. N.M. 

1000 ✓ N.M. N.M. 

11/2/2016 4.4 50/50 

0 ✓ N.M. N.M. 

1 ✓ N.M. N.M. 

10 ✓ ✓ ✓ 

100 ✓ N.M. N.M. 

1000 ✓ N.M. N.M. 

12/2/2016 4.4 100/150 

0 ✓ ✓ ✓ 

1 ✓ ✓ ✓ 

10 ✓ ✓ ✓ 

100 ✓ ✓ ✓ 

1000 ✓ ✓ ✓ 
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The samples were irradiated using a 3 MV NEC Pelletron accelerator at the Michigan Ion 

Beam Laboratory. The accelerator, along with a series of diagnostic instruments allowed for the 

performance of well-controlled experiments. Irradiations in this thesis were performed using either 

5.0 MeV or 4.4 MeV Fe2+ ions. 5.0 MeV ions from the NEC Pelletron provided an adequate 

penetration depth to analyze the irradiated microstructure using a focused ion beam lift out 

technique (detailed later in Section 4.4.1). 4.4 MeV ions were used in some cases, as it was a 

practical limit when using the 1.7 MV accelerator instead of the 3.0 MV Pelletron accelerator. 

4.3.2 SRIM Damage Calculations 

During the experiment, the beam current hitting the samples was measured using periodic 

Faraday cup insertions. To calculate the damage induced during the ion experiments, a conversion 

needed to be made from the measured current in a Faraday cup to dpa (displacements per atom). 

Damage in ion irradiation experiments is typically measured in dpa. For ion irradiation 

experiments, dpa depends on many factors, including irradiating ion, ion energy, target 

composition, and depth of examination. 

SRIM was used to provide a depth-dependent estimation of the damage caused by an ion, 

given its energy and the target material composition. The SRIM damage calculations were 

performed using the “quick” Kinchin-Pease mode [66,67]. The composition of the target material 

was detailed in Table 4.1. The simulation was run for 100,000 ions to obtain smooth damage and 

implantation curves and adequate counting statistics. Figure 4.7 shows a schematic taken from 

SRIM of how the damage rate and injected interstitials change with depth for 5 MeV Fe2+ ions in 

T91 with a 100 nm thick alumina coating. As is clear in image, the damage varies with depth. The 

damage level at 600 nm depth was used as the nominal damage level for any given experiment. 

That is, if an experiment was said to be performed to 300 dpa, then it was irradiated until the 

damage at 600 nm reached 300 dpa. 600 nm was chosen because it lies in a relatively linear portion 

of the damage curve and avoids the peak and near-surface regions. The damage rates provided by 

SRIM for the relevant experiments performed (5.0 or 4.4 MeV, with or without alumina coatings) 

are tabulated in Table 4.4. A significant difference was not observed in the shape of the profile 

when the coating was or was not present, so both coated and uncoated samples could be included 

on the same stage while still achieving the same damage level. The addition of 100 nm of alumina 
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to the surface does not significantly change the shape of the SRIM profile other than off-setting 

the profile within the metal by 100 nm relative to the uncoated case.   
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Figure 4.7 The damage rate and implanted ion concentration as a function of depth for 5 

MeV Fe2+ in alumina coated T91 as calculated by SRIM. 
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Table 4.4 The calculated SRIM damage rates at a depth of 600 nm for relevant 

experimental conditions. 

Condition SRIM Damage Rate 

(disp/ion/Å) 

5.0 MeV no alumina coating 0.344 

5.0 MeV alumina coating 0.344 

4.4 MeV alumina coating 0.372 
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 The SRIM damage rate was used to estimate the total irradiation time required to reach any 

given damage level. By making periodic measurements of the beam current, and integrating it over 

the time of irradiation, an estimation of the total ion fluence was made. The equation below 

estimated the total irradiation time for a given condition (the units for each input and appropriate 

conversions are also given): 

 

4.3.3 Beam Raster-Scanning 

 In the above calculation, the time-averaged current on specimens was simply the current 

measurement made directly by the Faraday cup in front of the stage. However, not all of the current 

measured in the Faraday cup contributed to damage in the region of interest. This was due to the 

fact that the beam was over-scanned across the desired area in order to achieve uniform irradiation. 

Two techniques commonly used to to uniformly irradiate samples are raster-scanning and 

defocusing of a focused-beam. Several studies [68,69]  have shown that raster-scanning of the 

beam tends to suppress microstructural evolution relative to a defocused beam. That is, densities 

and sizes of microstructural features such as voids and dislocations are relatively lower in the 

raster-scanned condition relative to the defocused condition. The Fully Dynamic Rate Theory 

model suggests that in-cascade annealing of defects between pulses results in suppressed 

microstructural features. However, the overall suppression of microstructural features due to 

raster-scanning is a minor effect, especially at high scanning speeds. With regards to cavities, the 

diameter was within experimental error, and the densities and swelling were different by less than 

a factor of 2.  

Raster-scanning of the beam was used in all experiments in this thesis. The beam carries a 

roughly Gaussian profile, and the raster-scanning of the beam eliminates the effect of the Gaussian 

profile, but requires over-scanning of the target area. Before beginning an irradiation, the beam 

size was measured in a beam profile monitor (BPM) and it was ensured the FWHM (full-width at 

half maximum) was no larger than 2.5mm. The beam was raster-scanned at a frequency of 255Hz 

 𝐷𝑒𝑠𝑖𝑟𝑒𝑑 𝐷𝑃𝐴 (𝑁𝑢𝑚𝑏𝑒𝑟 𝐷𝑒𝑛𝑠𝑖𝑡𝑦)(𝐼𝑜𝑛 𝐶ℎ𝑎𝑟𝑔𝑒)(𝑆𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝐴𝑟𝑒𝑎 𝐼𝑟𝑟𝑎𝑑𝑖𝑎𝑡𝑒𝑑)

(𝑇𝑖𝑚𝑒 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑑 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑜𝑛 𝑆𝑝𝑒𝑐𝑖𝑚𝑒𝑛𝑠)(𝑆𝑅𝐼𝑀 𝐷𝑎𝑚𝑎𝑔𝑒 𝑅𝑎𝑡𝑒)
= 𝐼𝑟𝑟.𝑇𝑖𝑚𝑒 

 
𝑑𝑖𝑠𝑝
𝑎𝑡𝑜𝑚

 (𝑎𝑡𝑜𝑚/𝑐𝑚3)(𝐶/𝑖𝑜𝑛)(106µ𝐶/𝐶)(𝑐𝑚2)

(µ𝐴)(
𝑑𝑖𝑠𝑝

𝑖𝑜𝑛 ∙ Å
)(

108Å
𝑐𝑚

)
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in the x-direction and 2061Hz in the y-direction, which yielded cycle times of 3.92 and 0.48ms, 

respectively. Figure 4.8 shows the diagram of the raster-scanned path over the irradiated area and 

the aperture system. 

 

 

 

Figure 4.8 The path of the raster-scanned beam over the irradiated area and aperture. 
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 To define the irradiated area, a slit aperture system was used. The aperture system consisted 

of four independently controlled and electrically isolated slits that could be moved into and out of 

the beam path via digital control. The slit apertures also measured the unsuppressed current 

incident on each individual slit. With this system, the area of irradiation was directly determined. 

For example, if a 5mm x 6mm irradiation area was desired, both X slits were set to a distance of 

2.5mm and the Y slits were set to a distance of 3mm, resulting in a total area between the slits of 

5mm x 6mm. To achieve a uniform damage profile, the beam needed to raster-scanned such that 

it completely passed through each point of the irradiated area. Therefore, the beam was raster-

scanned an entire beam-width off of the irradiation area (and on to the apertures) in both the x and 

y directions. With a beam width of 2.5mm, the total raster-scanned area would then be 10mm x 

11mm. Figure 4.9 and Figure 4.10 show the typical geometry and intensity profile achieved by 

raster-scanning the beam to fully irradiate a 5mm x 6mm area. 
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Figure 4.9 A schematic of the raster-scanned area with overscanning the beam by a full 

beam width to fully irradiate a 5 x 6mm area. 
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Figure 4.10 The beam intensity profile in the x-direction due to overscanning a full beam 

width. 
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 As can be seen in Figure 4.10, a uniform profile is achieved over the desired area with the 

intensity falling off as the beam moves on to the slit apertures. This profile can be used to help 

determine how much of the beam should fall on the slits versus pass through them. If the beam 

intensity was equivalent across the entire area, then a simple ratio of the “fully irradiated area” 

compared with the “scanned beam area” could be used to determine the appropriate current 

partitioning. However, because of the Gaussian profile of the beam, less than 100% beam intensity 

falls on the slits. For calculational purposes, this intensity fall-off can be accounted for by reducing 

the effective overscan area by half a beam width on each slit. For example, for a 2.5mm beam, 

1.25mm would be taken from each slit, reducing each dimension by 2.5mm. For the case shown 

in Figure 4.9, the “effective” scanned beam area is then 7.5mm x 8.5mm (the actual area being hit 

by beam is still 10mm x 11mm).  To ensure that the beam is completely raster-scanned at least one 

beam width off of the target area, the following must be satisfied: 

𝑖𝑠𝑡𝑎𝑔𝑒 ≤
𝑋 ∙ 𝑌

 𝑋 + 𝑏𝑒𝑎𝑚 𝑤𝑖𝑑𝑡ℎ  𝑌 + 𝑏𝑒𝑎𝑚 𝑤𝑖𝑑𝑡ℎ 
𝑖𝑡𝑜𝑡𝑎𝑙 

Where istage is the current measured in the faraday cup right before the stage, X and Y are 

the x and y dimensions defined by the slits, and itotal is the total current in the beamline before the 

slits. For the case when a 5mm x 6mm fully irradiated area is desired with a 2.5mm beam width, 

less than 47% of the total beamline current (itotal) must pass through the slits to the stage faraday 

cup (istage). When this condition is met, the beam is being raster-scanned at least one beam width 

off the stage. Any amount less than 47% of itotal would also suffice, but would result in a lower 

damage rate in the fully irradiated region. This method assumed that any divergence of the beam 

caused by the slit apertures was negligible. 

4.3.4 The Irradiation Stage 

After helium implantation, the samples were readied for Fe2+ irradiation. An irradiation 

stage was used to hold the samples in place, and provide the necessary heating and cooling avenues. 

A schematic of the stage is shown in Figure 4.11. The stage consisted of 6-inch long head 

composed of Hastelloy X (nominally Ni-20Cr-8Mo) welded to a flange, which would be mounted 

on the end of the beamline. A 0.25mm thick square of copper foil was placed on the nickel head 

to facilitate heat conduction from the back of the stage to the samples. The samples, along with 
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the guide bars, were then arranged on the copper foil side-by-side with the helium (and to-be-

irradiated) side facing upward. The samples were held in place using a pair of hold-down bars and 

a shim which tightened into the stage using screws.  

Two J-type thermocouples were spot welded on the upper and lower portions of each guide 

bar. The thermocouples were custom built for each experiment using 0.001mm iron and constantan 

wires. These wires were threaded through ceramic insulator pieces which could be split into pieces 

of any desired length. The junction was created by spot welding on to the guide bars. The wires 

were connected to a feedthrough which led to the back of the stage and would eventually be 

connected to the cold junction (digitally controlled).  Figure 4.12 shows an image of a completely 

built stage.  
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Figure 4.11 A side-view schematic of the Hastelloy X irradiation stage. 
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Figure 4.12 An image of a fully constructed irradiation stage. 
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4.3.5 The Irradiation Beamline 

 Once the stage construction was complete, it was mounted on the beamline. The stage was 

mounted to the end of the ion irradiation beamline using a copper gasket and tightened down with 

nuts and bolts. A schematic of the beamline end-station with the stage mounted is shown in Figure 

4.13. Once mounted, a resistive cartridge heater was inserted into the back of the stage. The 

cartridge heater was approximately 4cm long and 1cm in diameter, with a temperature rating of up 

to 760°C. Additionally, a contact thermocouple was inserted into the back of the stage into an 

approximately 1mm diameter hole to monitor the temperature close to the heater. Cables from a 

computer readout were attached to thermocouple feedthroughs, and the airlines for cooling the 

stage were also attached. 
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Figure 4.13 A schematic of ion irradiation end-station detailing key components.  
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 The end station itself contained many diagnostic tools to monitor the status of the 

irradiation chamber before and during the irradiation experiment. An Inficon ion gauge was used 

to read the pressure. A CCD camera was available through a windowed port for a live view of the 

irradiation stage. In addition to the thermocouple system, a FLIR 2D infrared thermal imager was 

mounted to a port to provide in situ temperature measurements of the surface of the samples. All 

of these diagnostics provided digital outputs to computer systems, which recorded and displayed 

the information using custom built LabView™ programs.  

 After the appropriate diagnostic connections were made, the slit aperture system discussed 

in section 4.3.2 was set to the desired area. The alignment of the stage was then checked with a 

laser which had been previously aligned with the beam path. The laser was mounted at the end of 

a bending magnet near the accelerator. A plastic film was placed in front of the laser to diffuse the 

beam and simulate the effect of raster-scanning. The alignment of the laser illuminated area was 

checked via the CCD camera. If needed, minor adjustments were made with alignment screws at 

the end station of the beamline. Figure 4.14 shows an image of samples mounted on the beamline 

and aligned with the laser.   
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Figure 4.14 Samples aligned with the laser. 
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 Once appropriately mounted and aligned, the irradiation chamber was pumped down, 

starting with a rough pump. Pumping with the rough pump for about 15 minutes allowed the 

chamber to reach a pressure of approximately 1x10-2 torr, at which point a turbo pump was turned 

on. The turbo pump was allowed to spin up to full speed and pumped the chamber further until a 

pressure of about 1x10-4 torr was reached, which took approximately 30 minutes. The gate valve 

to a cryopump directly underneath the stage was then opened. This cryopump almost immediately 

brought the chamber pressure to about 1x10-6 torr. The ion irradiation chamber was then opened 

up to the rest of the beamline, which was maintained at 1x10-8 torr, to provide additional pumping 

power. The stage was then left to pump for at least 12 hours, usually overnight, to achieve a 

pressure in the range of 1x10-8 - 1x10-7 torr. 

 The beam was prepared as described in Section 4.3.2, with a FWHM of at most 2.5mm. 

The total current in the beamline typically ranged from 600nA to 1µA of Fe2+ ions, targeting a 

damage rate of 1x10-3 dpa/s. Steering elements in the beamline were used to ensure the beam was 

properly aligned and that the currents on the slit apertures were evenly balanced. Although the slits 

were unsuppressed, a calibration factor was determined for each slit to estimate the actual value of 

current. This calibration factor was typically around 12. That is, the currents read by the slits were 

approximately 12 times higher than the same current in a suppressed faraday cup. 

 When the beam was confirmed ready, the stage was heated to the irradiation temperature 

by applying a voltage to the cartridge heater in the back of the stage. For all experiments in this 

thesis, the irradiation temperature was 460°C. To preserve the integrity of the room temperature 

helium pre-implantations, no outgassing was performed on the samples and the heat up to 

temperature was done as quickly as possible. This resulted in a temporary increase in the pressure 

near the stage to about 9 x 10-7 torr. The thermocouples were carefully monitored during heat-up 

to ensure that the samples exhibited uniform heating behavior. To reach 460°C, the entire heat up 

process typically took about 15-20 minutes. As soon as 460°C was reached on the thermocouples, 

(typically a spread of ~5 degrees on the thermocouples was observed, so an average was taken) 

the FLIR thermal imager was calibrated. In the thermal imaging program, three Areas of Interest 

(AOIs) were placed on each sample in the irradiated region. These areas defined the spots which 

would be monitored in situ throughout the entire length of the irradiation. The emissivity of these 
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spots was calibrated such the temperatures read by the thermal imager matched those of the 

thermocouples. Figure 4.15 shows a typical thermal image with square AOIs on a heated 

irradiation stage. The hotter regions appear brighter. This calibration could be performed in under 

five minutes. As soon as the irradiation stage was at temperature and calibrated, the beam was 

allowed pass to the samples to begin the experiment. 
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Figure 4.15 An image taken from the FLIR 2D imager of a heated irradiation stage with 

three square AOIs on each sample. 

  



 104 

4.3.6 Running the Irradiation 

 While the experiment was running, it was monitored 24/7 to ensure all of the irradiation 

parameters remained within specifications. The target temperature for all irradiations was 460°C, 

and was maintained within ±10°C. While the thermocouples were still monitored, the AOIs from 

the FLIR imager were used to monitor the temperature throughout the experiment. It provided a 

spatial dependence on temperature, and could be used to see if all samples were experiencing 

uniform temperature behavior. The LabView™ program would sound an alarm if any of the AOIs 

strayed beyond 10°C of the target temperature. If fluctuations were observed, changes were made 

to the voltage on the cartridge heater to compensate and keep the temperature as close to 460°C as 

possible. For an Fe2+ beam, only a small amount of beam heating was observed, ranging from 5-

10°C depending on the current. The cooling lines for air flow were not typically used during the 

experiments, since the heater cartridge could stably maintain the temperature on its own. 

 The pressure near the stage and in the beamlines was also monitored digitally during 

irradiation using Inficon ion gauges. The target starting pressure before heat up was below 1x10-7
 

torr. With the combination of heating up and putting the beam on the samples, the stage pressure 

at the very beginning of irradiation spiked to high 10-7 range, but quickly recovered to below 1x10-

7 within a couple of hours. It was important to always make sure the pressure was below 10-6 torr 

during irradiation to prevent the possibility of oxidizing the samples. 

 The current was also monitored at all times during the experiment. As mentioned in Section 

4.3.2, the beam was raster-scanned such that a calculated proportion irradiated the samples and the 

slits. A suppressed faraday cup was periodically (every 30-40 min) inserted in front of the stage to 

measure the current that was impacting the samples. A continuous current measurement was not 

possible because the entire stage and irradiation chamber could not be suppressed. However, the 

slit apertures were used to continuously measure the presence of current and the alignment of the 

beam. If the balance of current the slits shifted, the bending magnet could be used to realign the 

beam. Additionally, while the current values on the slits were not quantitatively accurate, they 

could still be used to measure the relative stability of the beam (i.e. if the beam was increasing or 

decreasing in current). They would therefore provide an indication of whether the stage faraday 

cup needed to be inserted to capture a change in current. 
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 If at any point during the irradiation the pressure, current, or temperature were 

compromised (due to a power outage, accelerator or source malfunction, etc.) priority was given 

to maintain the integrity of the samples. If for example, the beam was lost for a period longer than 

20 minutes, the samples would be quickly cooled to room temperature. This would be achieved by 

shutting off the cartridge heater voltage and opening up the air cooling lines and applying a high 

air pressure. Typically, this would allow the samples on the stage to reach below 100°C within 10 

minutes. Once the issue had been resolved, the samples would be heated up similar to start-up, the 

AOIs for the thermal imager would be recalibrated, and the irradiation would resume. 

 Once the target damage level was achieved, the irradiation was complete. The irradiation 

was terminated by blocking the beam with the Faraday cup and rapidly cooling the stage. The 

heater voltage was turned off and the air cooling lines were opened to high pressure. The stage 

was cooled to room temperature and the irradiation chamber was vented before the stage and 

samples could be removed.  

4.4 Post Irradiation Characterization Methods 

 The following section details the preparation and analysis methods used to examine the 

microstructure of T91 after it was irradiated. It consists of TEM sample prep, TEM imaging, and 

the characterization of the images. In some cases, NRA (nuclear reaction analysis) was used to 

profile carbon content with depth. 

4.4.1 TEM Specimen Preparation 

 Due to the shallow penetration depth of the Fe2+ ions (see Figure 4.7), the FIB (focused 

ion beam) lift-out method needed to be used to prepare TEM samples. This method allowed for 

the extraction of cross-sectional slices of material just a few microns into the surface. Additionally, 

T91 is highly magnetic, and large samples would cause magnetic distortion in the electron beam 

during TEM imaging. The FIB lift-out method allowed for microstructural analysis and avoided 

magnetic issues during imaging. 

 The TEM foils were prepared using a dual beam FIB. This instrument utilizes an electron 

beam (normal to a horizontal surface) for imaging, and a gallium ion gun (52° from the electron 

beam) for imaging and milling. The currents and energies of these beams could be varied. The ion 

beam operated at energies up to 30keV and currents of about 10nA. Energies of 30keV were used 

for most preparation steps.  The specific instruments used in this thesis were FEI Helios 
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NanoLab™ Dual Beam™, Nova NanoLab™ DualBeam™, and Quanta™ 200 3D Focused Ion 

Beam Workstation. The FIB liftout method was utilized as follows. 

 The irradiated bar was mounted irradiated-side up using copper tape on an SEM mount and 

placed in the FIB chamber, which was then pumped down. The stage was tilted 52° to be 

perpendicular to the ion beam. An appropriate area on the sample was chosen in the irradiated (and 

potentially helium implanted) region. A gas injector was inserted and the gallium beam was used 

to deposit a small layer of platinum on the target surface, in dimensions of approximately 20 x 5 x 

5 microns, using a current of about 0.2 nA. Using a higher current (~7nA), the gallium beam was 

used to create trenches about 4 microns deep on three sides of platinum deposition. The long sides 

of the deposition were cleaned up using lower current (~3nA). The stage was then tilted back to 

0° so that the gallium beam could provide an undercut of the sample so that it was held only by 

one edge. A micromanipulator (called an Omniprobe™ needle) was inserted and slowly positioned 

such that it made contact with the corner of the platinum deposition. A small amount of platinum 

(~0.5 microns) was used to weld the Omniprobe™ needle to the sample. The final connecting edge 

was then cut with the gallium beam to free the specimen from the metal bulk. The Omniprobe™ 

needle was then carefully raised a safe distance away from the irradiated sample and the stage was 

moved to the location of a mounted Omniprobe™ grid (or the SEM chamber was evacuated and a 

mounted grid was placed inside). The needle with the attached sample was lowered to a position 

where it was just in contact with one of the Omniprobe™ grid posts. The gallium beam was used 

to weld the specimen to the post with about 1 micron of platinum. The needle was then cut free 

from the sample and retracted from the chamber. At this point, the specimen was still ~2 microns 

in thickness. To achieve the target thickness of 100 nm, successive thinning needed to be done. 

The sample was tilted to 52° and the current was lowered to 80 pA. The sample was alternately 

tilted ±2° about 52° to thin the sample in a wedge shape. This method was used to minimize the 

amount of material milled from the top of the sample to preserve the surface, while still thinning 

the entire specimen. The current was successively lowered as needed, while alternating the angle 

until the specimen was measured in the SEM to be less than 100nm thick. The chamber was then 

vented and the sample attached to the grid was placed in a labelled membrane box for safe keeping.  

Figure 4.16 highlights the key steps summarizing the FIB lift-out process. 
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v  

Figure 4.16 A schematic of the FIB process, showing a) platinum deposition on the surface, 

b) trenching around the platinum deposition, c) undercut of the sample at 52°, d) attaching 

of the Omniprobe to the sample, e) attaching of the sample to the copper grid and f) a 

thinned FIB specimen. 

  



 108 

4.4.2 Cavity Imaging 

 Imaging for all of the TEM specimens in this thesis was performed using a JEOL 2100F 

Cs Corrected Analytic Electron Microscope (AEM) at the Michigan Center for Materials 

Characterization (MC)2.  The JEOL 2100F is a 200keV microscope that operates mainly in 

scanning TEM (STEM) mode. This microscope also maintained the capability for XEDS using an 

EDAX® detector, with EDAX® acquisition software. Additionally, a Gatan® Imaging Filter (GIF) 

allowed for the capability to perform electron energy loss spectroscopy (EELS). A software suite 

called DigitalMicrograph® was used to acquire the images. The TEM specimen was mounted on 

a JEOL Single-tilt or Double-tilt stage and inserted into the microscope. 

 Imaging of the entire liftout was performed using STEM mode, capturing a high angle 

annular dark field (HAADF) image and a bright field (BF) image simultaneously. Typically, 

convention TEM (CTEM) images have been used to image cavities. However, while using CTEM 

some cavities may appear in focus while others appear out of focus. Because of this variation in 

focus, the sizing of these cavities may not be accurate while using CTEM. Therefore, STEM 

HAADF images are used. The contrast in STEM HAADF images arises mainly from thickness 

and “Z-contrast,” which is dependent on the atomic number of the material. Cavities, which lack 

both thickness and any atomic number appear as distinct, dark areas under these imaging 

conditions with well defined boundaries. The HAADF images are typically free from contrast 

caused by dislocation networks and FIB damage allowing for accurate and convenient imaging of 

cavities. Example images of a typical HAADF image and its corresponding BF image is shown in 

Figure 4.17. 
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Figure 4.17 HAADF STEM (left) and BF STEM (right) micrographs of the same area on a T91 specimen irradiated to 150 dpa 

at 460°C using 4.4 MeV Fe2+ ions.
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A standard procedure for consistent imaging across all samples was used. Images were 

taken at approximately 500kx magnification, which allowed for a field of view of about 2 x 2 

microns. Successive images were taken across the length of the sample with minimal overlap until 

a complete set of HAADF and BF images covering the entire specimen were taken. In many cases, 

higher magnification images were taken to acquire more detailed views smaller cavities and 

microstructural features.  

 The thickness of the TEM specimen was measured using EELS (electron energy loss 

spectroscopy). This method estimated the thickness of the sample by measuring the amount of 

electron energy loss as the beam passed through the sample. The electron beam was set to probe 

size of ~1nm and the camera length was set to 2cm (for a corresponding collection angle of about 

38mrad). A zero-loss spectrum was taken in an area without going through the sample to calibrate 

the beam. Then an EELS spectrum map was taken on at least six areas of the sample (within the 

500-700nm depth region). The DigitalMicrograph® software included an algorithm to calculate 

the thickness by calculating the error in a logarithmic fit of the inelastic mean free path of the 

electrons through the sample. The error in this calculation is estimated to be around 10% [70]. The 

average of these thickness measurements taken from the EELS map was used as the nominal 

thickness of the TEM Specimen. 

4.4.3 Cavity Characterization 

 Characterization of the cavities after the images were taken was performed using a freely 

available ImageJ software. Each HAADF image was divided into 100nm depth bins, starting with 

the surface of the sample. The cavities in each bin were counted and measured, the results stored 

separately. During counting, the HAADF images were cross-referenced with the BF images to 

ensure that the cavities being counted were indeed cavities and not precipitates or other 

microstructural features. After the counting of an image was complete, the next sequential image 

was examined for any overlapping regions and marked off. This ensured that no cavities would be 

double-counted. When the entire TEM specimen was counted, the lengths of all the counted 

regions (excluding overlapping regions) was tallied for the total length of the specimen. Taking 

this length into account, the 100nm depth of the bin, and the average thickness of the specimen a 

total volume of the bin, Vbin, was calculated. The volume of each individual cavity was calculated, 
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assuming each cavity was a sphere. The sum of the volume of each cavity was tallied for each bin. 

This value was effectively the change in volume, ΔV, of the bin. Swelling is calculated as the 

change in volume divided by the original volume, so the swelling of any particular bin in %, could 

be expressed as: 
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 where l is the length of the liftout, w is the width of the bin, δ is the thickness of the TEM 

specimen, N is the number cavities in the bin, and di is the diameter of the ith cavity. For the 

nominal swelling value within the 500-700 nm depth region, the volume change calculation 

included cavities from both the 500-600 nm and the 600-700 nm bins. Average cavity diameter 

and number densities were also determined as a function of depth. Additionally, a cavity size 

distribution with number density plotted as a function of size was also determined.  

 The sink strength of any particular bin was determined by summing over the size 

distribution of that bin: 
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 where d is the diameter of the cavity, ρl is the density of cavities with a diameter of l, and 

L is the maximum cavity size observed. Density bins in the size distribution were calculated with 

a resolution of at least 2 nm. 

 An example of the results of depth profiling cavities with size, number density, and 

swelling is shown in Figure 4.18.  
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Figure 4.18 An example of profiling cavities through depth in 150 dpa T91 for A) number 

density B) average diameter and C) swelling. The resulting size distribution from the 500-

700 nm region is shown in D).  
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4.4.4 Nominal Damage Level and Valid Depth of Analysis 

 As seen in the SRIM profile in Figure 4.7, the damage rate changes as a function of depth, 

so the calculation of a damage level for a particular experiment is not straightforward. As 

mentioned previously, a depth of 600 nm in the SRIM profile was used as the nominal damage 

level for each experiment. This depth was chosen as it adequately avoids the effects of injected 

interstitials at the higher depths, and avoids any surface effects at the lower depths. Zinkle [3] 

determined the valid depths of analysis for a Fe-10Cr system for 5 MeV ions, which takes into 

account diffusion of interstitials from higher depths and the void-denuded surface effects. For the 

T91 system at 450 dpa and 460°C, the valid depth regions remain within a range of 300 – 800 nm, 

which adequately avoids surface and interstitial effects. A similar depth range was determined as 

valid by Getto [8] in HT9. For the coated samples in this study, the surface is effectively adds 100 

nm to depth of the surface effect, so the valid analysis region becomes 400-800 nm. Partitioning 

within the 400-800 nm depth region was performed to obtain data from multiple damage levels 

from a single experiment. However, the nominal damage level for a particular experiment was 

calculated at the 600 nm depth. 

As seen in Table 4.4, the damage rate at 600 nm depth does not change if the sample is 

coated or uncoated. To remain consistent between samples which are coated and uncoated, this 

constant SRIM profile depth of 600 nm was used as the nominal damage level for all experiments. 

In this thesis, all depths are referred to in reference to the SRIM profile, unless stated otherwise. 

4.4.5 Error Calculations 

 For all conditions in this thesis, an effort was made to minimize the error due to counting 

statistics, to ensure the accuracy of the swelling measurements. At least two TEM specimens for 

each condition were extracted, which was nominally equivalent to 2 µm2 of material about 100nm 

thick (for the 500-700nm region). However, errors due to instrument limitations, such TEM 

resolution needed to be taken into account. The two types of error that needed to be accounted for 

were error due to TEM resolution, and error due to EELS thickness measurements. 

 The resolution for the images taken was 0.7nm/pixel. This would mean that the error on 

each end of a measurement would be less than 1nm, regardless of the size of the measurement. 

The error in the measurement of the size of the feature (cavity, precipitate, or dislocation), would 

then depend on the size of the measurement. The fractional error could then be represented by: 
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 Where L is the length of the measurement. Figure 4.19 shows how the error due to TEM 

resolution changes as a function of cavity size. This measurement error would also contribute to 

any calculation which depends on the cavity size, such as the calculation of swelling. 

 As mentioned previously, the fitting of the EELS zero loss method exhibits an error of 10%. 

This thickness measurement affects the calculation of number density, but is not dependent on any 

other factors. Therefore, error in number density at all times is estimated to be 10%. This is 

depicted as a flat line in Figure 4.19. 

 The calculation of swelling includes both diameter and thickness measurements, therefore 

the contributions of error in both TEM resolution and EELS thickness measurements both 

contribute to the swelling error. Void swelling is directly proportional to the number density and 

proportional to the cube of the diameter, as shown below: 
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 The propagation of error for multiplicative quantities and quantities raised to a power is 

shown below: 
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 Where n is the exponent. For swelling, these two propagations can be combined, resulting 

in the following calculation for swelling error: 
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 Where ND is the number density, D is the diameter, and DN  and  D are the fractional 

errors in number density and diameter, respectively. The swelling error therefore depends on errors 

in the number density and diameter. The dependence of the error with swelling on cavity size is 

also shown in Figure 4.19.  

It is also important to consider the high degree of homogeneity inherent to ferritic-

martensitic steels. Grain-to-grain variation in the microstructure contributes additional uncertainty 

to the swelling measurements, as cavity nucleation and growth can vary extensively in adjacent 

grains. In an effort to minimize this uncertainty, multiple TEM specimens were extracted for each 

condition from different regions of the irradiated sample. At least two TEM specimens were made 

per condition, encompassing an area of approximately 2 µm2, with foil thicknesses less than 100 

nm. Unless cavity nucleation was significantly suppressed, over 150 voids were characterized for 

each damage level (200 nm wide depth bin). 
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Figure 4.19 The error in diameter, number density and swelling is plotted as a function of 

cavity diameter. 
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4.4.6 Dislocation Imaging and Characterization 

 Imaging of dislocation loops in ferritic-martensitic steels requires careful imaging 

conditions and sample preparation. The TEM specimens which were used for cavities were also 

used for dislocations. Two types of loops exist in FM alloys: sessile b<100> loops aligned on the 

[100] planes and glissile ½ b<111> loops. The ratio between these loops typically favors a higher 

population of b<100> loops. Typically, CTEM has been used to investigate the presence of these 

loops using the weak two-beam condition. However, such a method requires a sequence of images 

in the same area using varying diffraction vectors g to satisfy the dislocation loop g·b invisibility 

criterion. This is especially difficult in ferritic-martensitic steels which typically exhibit small 

grains with limited orientations. Methods to image dislocation loops using STEM mode have been 

used to more easily characterize these loops [71]. STEM imaging of loops also smears out 

thickness-dependent contrast that may be present in CTEM, resulting in a cleaner image. On-zone 

STEM imaging allows for the simultaneous imaging of all possible diffraction vectors, allowing 

for viewing of b<100>, ½ b<111> loops and dislocation lines all in the same image. When imaging 

along the [100] zone axis, b<100> loops appear circular or as perpendicular lines aligned with the 

[002] directions, while the ½ b<111> loops appear as ellipses aligned with the [011] direction. A 

schematic of loop orientations when imaged along the [100] zone axis is shown in Figure 4.20.  

In practice, the loops were imaged in STEM mode just slightly off of the [100] zone axis 

so that perpendicular loops did not appear as lines, and the inside-outside contrast was seen. An 

example micrograph showing b<100> loops, ½ b<111> loops, and dislocation lines of T91 

irradiated to 150 dpa is shown in Figure 4.21.  
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Figure 4.20 Schematic of what b<100> and ½ b<111> loops look like when imaged down 

the [100] axis. 
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Figure 4.21 BF STEM image taken down the [100] zone axis showing b<100> loops, ½ 

b<111> loops and dislocation lines in T91 irradiated to 150 dpa. 
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Images of loops were taken from at least three different grains for every condition within 

the 500-700nm depth region. Using ImageJ, loops were counted and sized in a single orientation 

(for examples along the [001] direction for b<100> loops). EELS thickness measurements were 

used as before to calculate a loop density. The density was then multiplied by 3 to account for the 

loops in the two other directions which were not counted. From the values of diameter and density 

a total loop line length (or sink strength) was also calculated. The sink strength of the dislocation 

loops was calculated using the following equation: 
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2
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loop loop

d
k    

Where dloop is the average loop diameter and ρloop is the loop density. 

The dislocation network density was calculated using a method established by Smith et al. 

[72] This method utilizes an equidistant circular grid, and counts the number of intersections of 

dislocation lines with the grid. The following equation was used to calculate the network 

dislocation density, or sink strength (in units of m-2): 
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Where nc is the number of concentric lines, dc is the spacing of the concentric lines, t is the 

thickness of the TEM specimen, and N is the total number of intersections counted. Figure 4.22 

shows an example of the intersections counted using the concentric circle method.  
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Figure 4.22 BF STEM image with a concentric circle grid used to count intersections with 

dislocation lines. 
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4.4.7 Precipitate Imaging and Characterization 

Two different types of precipitates were characterized in this thesis: G-phase and M2X 

carbides. Images of precipitates were taken primarily in BF STEM. Magnification depended on 

the size of the precipitates, but typically ranged between 500kx and 1Mx. Thickness of the samples 

were estimated with EELS as before.  

The presence of the G-phase was verified using XEDS and BF STEM imaging. G-phase is 

a complex FCC silicide which typically exhibits stoichiometry of Ni6Mn16Si17. This exact 

stoichiometry was not confirmed, however spheroidal clusters shaped like G-phase and heavily 

enriched in Ni and Si under XEDS were observed. Similar clusters have been observed in other 

ion-irradiated ferritic-martensitic steels confirmed to be G-phase so it is not unusual to expect its 

appearance in T91. The calculation for sink strength of this Ni-Si clusters assumed a spherical 

geometry and was determined using the following equation: 
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Where dppt is the diameter of the cluster, and ρppt is the number density. 

 As beam-induced carbon contamination caused the uptake of carbon in many cases, 

characterization of the carbides formed as a result was very important. In samples that did not have 

a 100 nm coating of alumina on the surface, a high density of carbides was typically observed. 

These carbides were imaged primarily in BF STEM, but also using LAADF (low angle annular 

dark field), which is the STEM equivalent of CTEM dark field imaging. Magnification of the 

images varied between about 300kx and 600kx. XEDS and diffraction patterns were used to help 

identify these carbides as M2X. Additionally, these carbides were rod-like and grew along the [100] 

directions as ion-irradiated carbides in other ferritic-martensitic steels have been observed 

[5,73,74]. These carbides have also been identified as M2X with M=Cr and X=C. Since these 

carbides are not spherical, calculating their sink strength is more complex. The sink strength for 

an acicular precipitate with l>>w can be calculated using the following formalism, taken from [75]: 
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Where rp is the effective radius and κ is the capacitance for a precipitate where w ≈ t. The values 

of rp and κ are defined as follows: 
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Where l is the length, w is the width, t is the thickness of the precipitate. The widths and lengths 

of the precipitates were correlated with each other. Measurements of the thickness of the 

precipitates were taken from precipitates oriented perpendicular relative to those with length 

measurements. An average density, length, and sink strength was determined for each condition 

which contained M2X precipitates. 

4.4.8 NRA Measurements 

 To more completely characterize the amount of carbon taken up during irradiation, nuclear 

reaction analysis (NRA) was used to profile the carbon concentration with depth through several 

samples. NRA utilizes a set of detectors to collect a spectrums from a known nuclear reaction, in 

this case the reaction 12C(d,p0)
13C. The counts collected from this reaction are compared to a 

known standard without C and fit to simulation provide an estimate of the amount of carbon at 

various depths.  

The NRA experiment used the 1.7MV accelerator and ion beam analysis chamber at the 

Michigan Ion Beam Laboratory. The samples to be analysed were mounted on a holder which held 

the sample face perpendicular to the beam. This holder was attached to an electrically controlled 

goniometer which could translate and rotate the sample. Mounted along with the sample was a 

dummy sample of the same height, covered with a mylar sheet. This allowed for the beam to be 

imaged on the dummy sample via a CCD camera in the chamber so that the beam position could 

be precisely recorded. A 1.5 MeV deuterium beam was collimated using a 1mm diameter aperture 

about 3m from the sample and by a double slit system approximately 30cm from the sample. The 

position of the holder was adjusted such the beam was centered on the sample, without hitting any 

of the edges. A beam current of about 10 nA was used, and spectra were acquired for 6-12 hours. 
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The spectra were acquired using a silicon surface barrier detector positioned at a scattering angle 

of 170° with a solid angle of 3.2msr. The detector collected the Rutherford Backscattering (RBS) 

and NRA events. 

The spectra acquired consisted of counts collected within particular energy channels. They 

were analyzed using SimNRA software [76], with the cross-section of the 12C(d,p0)
13C reaction 

calculated using the SigmaCalc 2.0 library [77].  This reaction has been shown to provide high 

depth resolution, with the capability to separate a surface layer of carbon from any near-surface 

distributions [78]. This program was used to fit the high energy edge of the RBS events by 

inputting the number of ions and the solid angle of the detector. Carbon was profiled to a maximum 

depth of about 3µm with a resolution of about 200nm and 360nm at 3µm of depth. SimNRA was 

used to create layers that matched with the depth resolution. The carbon profile was determined 

by adjusting the concentration in each layer so that the SimNRA spectrum matched that of the 

experiment. An example of typical energy spectrum (with a carbon contaminated T91 sample) is 

shown in Figure 4.23.  
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Figure 4.23 A typical NRA spectrum obtained from an unirradiated sample of T91 overlaid with the fit simulated with 

SimNRA.
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CHAPTER 5: EXPERIMENTAL RESULTS

 

 This chapter presents the results from the characterization of the ion irradiation 

experiments detailed in Chapter 4. The results are divided between the characterization acquired 

pertaining to two irradiation campaigns. The first irradiation campaign (Table 4.2), utilized 

samples which were not coated with alumina, and the second irradiation campaign (Table 4.3) 

used alumina-coated samples. The purpose of this coating was to prevent the uptake of carbon.  

For clarity, the first irradiation campaign, with uncoated samples, will be referred to as the Excess 

Carbon Campaign and the second irradiation campaign, with alumina-coated samples will be 

referred to as the Nominal Carbon Campaign. Chronologically, the Excess Carbon Campaign 

occurred before the Nominal Carbon Campaign, however the results for the Nominal Carbon 

Campaign are presented first as the results are less complex than the Excess Carbon Campaign 

results. 

5.1 Nominal Carbon Campaign Cavity Results 

As mentioned previously, the Nominal Carbon Campaign utilized samples with the surface 

coated with 100 nm of alumina. Cavities were observed at all damage and helium levels within the 

analysis regions. The cavities were profiled through the depth. As mentioned in Chapter 4, the 

valid regions of interest were limited to 400-800 nm from the surface. Divisions with a width of 

200 nm consisted of 400-600, 500-700, and 600-800 nm. The nominal damage levels (600 nm 

depth) for the Coated Irradiation Campaign were 50, 150, and 300 dpa. Considering the three 200 

nm depth widths for each of these experiments resulted in a total of nine valid damage levels: 45, 

50, 58, 134, 150, 175, 276, 300, and 356 dpa.  

Figure 5.1 shows representative HAADF STEM images of the T91 microstructure at 300 

dpa and at all levels of helium pre-implantation. A generous population of cavities is evident within 
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the helium-implanted and ion-damaged region. Figure 5.2 and Figure 5.3 show how the cavity 

size, density, and swelling in T91 evolve at various damage and helium pre-implantation levels. 

Increasing the amount of helium from 0 to 1000 appm at any damage level resulted in an increase 

in cavity density and a decrease in diameter. The 0 appm He condition always exhibited the largest 

cavity size, which decreased monotonically with He up to 1000 appm. Swelling was highest in the 

low helium conditions (0, 1, and 10 appm), and was considerably suppressed in the 100 and 1000 

appm conditions. Table 5.1 summarizes the results of the cavity characterization, including the 

average size, densities, swelling, and sink strength at all damage levels and helium levels of 0, 1, 

10, 100, and 1000 appm. 
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Figure 5.1 HAADF STEM images of T91 irradiated to 300 dpa with pre-implanted helium levels of 0, 1, 10, 100, and 1000 

appm. The damage (dashed) and helium (solid) profiles are overlaid on the 10 appm He image. 
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Table 5.1 Summary of cavity results in T91 samples in the Nominal Carbon 

Campaign after ion irradiation for various combinations of damage and helium levels. 

Damage 

level (dpa) 

Depth of 

Analysis 

Pre-

Implanted He 

(appm) 

Average 

Diameter 

(nm) 

Cavity 

Density 

(1020 m-3) 

Swelling 

(%) 

Cavity Sink 

Strength 

(1014 m-2) 

45 400-600nm 0 9.7 11.5 0.079 0.70 

  1 8.6 19.5 0.098 1.05 

  10 8.5 25.5 0.124 1.36 

  100 3.2 85.7 0.048 1.72 

  1000 1.6 904.0 0.061 9.09 

50 500-700nm 0 10.1 11.7 0.091 0.74 

  1 8.72 20.1 0.107 1.10 

  10 8.5 24.2 0.124 1.29 

  100 3.3 87.8 0.052 1.82 

  1000 1.56 907.0 0.062 8.89 

58 600-800nm 0 10.3 11.5 0.094 0.74 

  1 8.9 19.9 0.114 1.11 

  10 8.8 24.8 0.147 1.37 

  100 3.3 87.2 0.051 1.81 

  1000 1.6 908.0 0.065 9.13 

134 400-600nm 0 17.0 17.8 0.67 1.90 

  1 13.9 17.6 0.37 1.54 

  10 13.3 23.6 0.44 1.97 

  100 4.9 70.4 0.17 2.17 

  1000 2.09 657.7 0.10 8.64 

150 500-700nm 0 19.2 17.6 0.92 2.12 

  1 15.3 20.7 0.58 1.99 
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  10 14.3 24.0 0.56 2.16 

  100 5.07 72.4 0.20 2.31 

  1000 2.1 658.6 0.11 8.69 

175 600-800nm 0 21.2 17.7 1.1 2.36 

  1 16.6 21.9 0.76 2.28 

  10 15.5 23.0 0.65 2.24 

  100 5.1 72.7 0.21 2.33 

  1000 2.08 655.7 0.11 8.57 

276 400-600nm 0 26.0 18.5 2.6 3.02 

  1 25.5 21.3 2.9 3.41 

  10 24.1 16.4 1.8 2.48 

  100 4.8 61.6 0.44 1.86 

  1000 1.79 757.7 0.12 8.52 

300 500-700nm 0 29.3 20.1 3.9 3.70 

  1 28.2 21.6 3.9 3.83 

  10 26.4 18.9 2.7 3.14 

  100 5.3 62.3 0.61 2.07 

  1000 1.79 757.0 0.13 8.51 

356 600-800nm 0 31.8 19.8 4.8 3.96 

  1 30.3 19.7 4.2 3.75 

  10 28.8 19.3 3.5 3.49 

  100 5.7 63.3 0.78 2.27 

  1000 1.80 755.8 0.15 8.55 
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Figure 5.2 a) Average cavity diameter b) number density, c) swelling and d) cavity sink 

strength as a function of damage in T91 for pre-implanted He levels of 0, 1, 10, 100, and 

1000 appm. 
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Figure 5.3 a) Average cavity diameter b) number density, c) swelling and d) sink strength 

as a function of helium concentration   for 50, 150, and 300 dpa.



 133 

 

5.1.1 Low Damage, Low Helium Regime 

 At low damage (50 dpa) and low helium levels (0, 1, 10 appm He), similar cavity sizes 

were observed. The 0 appm He condition had the highest size at about 10.3 nm, closely followed 

by the 1 and 10 appm conditions (8.9 and 8.8nm, respectively). The main difference between these 

helium conditions at low damage levels was in the cavity density. Density increased with helium 

content, with the biggest difference occurring between the un-implanted case, and the 1 appm He 

case. The 10 appm He condition exhibited a density of ~25 x 1020 m-3, the 1 appm a slightly lower 

density of ~20 x 1020 m-3, and then the 0 appm He case had the lowest value of ~11.5 x 1020 m-3.  

5.1.2 High Damage, Low Helium Regime 

As the damage level was increased to the high damage regime (150 and 300 dpa), the cavity 

size distributions for the 0, 1, 10 appm He conditions began to converge. Figure 5.4 shows how 

the cavity distributions evolved with damage. The size distributions of these three helium 

conditions all followed a single, roughly Gaussian profile. Differences between the helium levels 

are noticeable at low damage (50 dpa), but by 300 dpa the distributions appear very similar. Despite 

having different helium levels, very similar final cavity densities and sizes were observed between 

the 0, 1, and 10 appm conditions at 300 dpa (20.1, 21.6, and 18.9 x 1020 m-3, and 29.3, 28.2, and 

26.4 nm, respectively). Figure 5.5 shows representative images of the cavity evolution of the 0, 1 

and 10 appm He conditions. Differences in the cavity densities are apparent in the 50 dpa condition, 

however by 300 dpa, the microstructures and distributions were almost indistinguishable (Figure 

5.4). 

Throughout the entire damage range, the 0 appm He condition maintained a slightly larger 

cavity size (Figure 5.2a). However, by 150 dpa the cavity density in the 0 appm He case caught 

up to that of the 1 and 10 appm conditions (Figure 5.2b), confirming that it was still in the 

nucleation phase at 50 dpa. Beyond 150 dpa, no significant increases in cavity density were 

observed for the 0, 1, and 10 appm helium conditions. In fact, over the entire damage range studied, 

only the 0 appm helium condition showed any sign of cavity density dependence on dpa, and this 

was between 50 and 150 dpa. For any amount of He, there was no significant change in density 

with damage (Figure 5.2b), indicating that in any pre-implantation condition, the final cavity 

density was determined very early in the irradiation (< 50 dpa). 
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Figure 5.4 Cavity size distributions for the 0, 1, and 10 appm He conditions in T91 at 50, 150, and 300 dpa (500-700 nm depth).
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Figure 5.5 HAADF STEM images showing the evolution of the T91 microstructure with 

damage for the 0, 1, and 10 appm He conditions at 460ºC.
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5.1.3 High Helium Regime 

Inspection at high magnifications revealed the presence of an extremely high density of 

very small cavities in the 100 and 1000 appm He conditions at all damage levels. Figure 5.6 shows 

high magnification images of T91 irradiated at 150 dpa for all helium levels. The 100 appm He 

condition contained some very small cavities (< ~4nm), and the 1000 appm He condition shows 

the highest density of these cavities. Cavities in this size range were not observed in any helium 

condition lower than 100 appm. Because of local variation, characterization of these small cavities 

in the 100 and 1000 appm conditions was difficult to perform as a function of depth. Therefore, 

measurements of the maximum observed cavity densities in the 500-700nm region were used to 

estimate the maximum swelling contribution of the small cavities. The resulting densities and 

swelling values are summarized in Table 5.1 for the 100 and 1000 appm conditions.  

The presence of these small cavities in the 100 and 1000 appm He conditions resulted in 

bimodal cavity distributions. The evolution of these distributions with damage is shown in Figure 

5.7. Both 100 and 1000 appm He conditions exhibit high cavity densities of sizes < ~4 nm, with 

the 1000 appm He condition having a noticeably higher density than that of the 100 appm He. 

These small cavities appeared to be insensitive to damage, as their densities remained relatively 

unchanged from 45 to 356 dpa (Figure 5.2b). At the larger sizes, it is evident that a small amount 

of growth occurred, as the tails of the distributions in Figure 5.7 extended to higher sizes at higher 

damage levels. The limited growth was slightly higher in the 100 appm He condition increasing 

from 3.2nm to 5.7nm, while the 1000 appm He only increased from 1.2 nm to 1.8 nm with the 

addition of ~300 dpa. These very low amounts of growth resulted in minimal swelling, even at 

high damage levels (Figure 5.2c). 
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Figure 5.6 High magnification (1Mx) HAADF STEM images of T91 irradiated to 150 dpa (500-700 nm depth) with pre-

implanted helium levels of 0, 1, 10, 100, and 1000 appm.
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Figure 5.7 Cavity size distributions for the 100 and 1000 appm He conditions at 50, 150, and 300 dpa (500-700 nm depth).
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5.3 Nominal Carbon Campaign Dislocations and Precipitates  

The loop diameter and densities, along with representative images, at 50, 150, and 300 dpa 

are shown in Figure 5.8 for the 10 appm He condition. For both b<100> and ½ b<111> loops, a 

higher density was observed at 50 dpa, which dropped by 150 dpa and stabilized through 300 dpa. 

Both types of loops also experienced a small amount of growth from 50 to 300 dpa. Overall, 

b<100> loops were observed in a higher density by 3-4 times, and about twice the size of ½ 

b<111> loops at any given damage level.   

 <100> loops were also measured as a function of helium content. Figure 5.9 shows how 

the loop diameter and density varied with helium content at 150 dpa. For all of the pre-implanted 

cases, the loop diameter ranged between 21 and 29 nm at 150 dpa, with no obvious trend appearing 

as helium content was increased. A similar case was seen with the loop density, which ranged 

between 19 and 25 x 1020 m-3. The un-implanted (0 appm He) condition exhibited a slightly larger 

loop size of 36.3 nm.  
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Figure 5.8 Dislocation loop densities and diameters for b<100> and ½ b<111> loops are plotted as a function of damage for the 

10 appm He condition. Some loops are indicated in the images with white circles
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Figure 5.9 Densities and diameters for b<100> dislocation loops are plotted as a function of helium content at 150 dpa. Some 

loops are indicated in the images with white circles.
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The dislocation network showed an even lower sensitivity to helium. Across the full 

spectrum of helium concentration, the dislocation network density ranged from 2.2 to 4.2 x 1014 

m-2, well within any measurement error.  

Figure 5.10a shows how <100> loop line length, dislocation network, and total line length 

varied with helium content at 150 dpa. The total line length remained insensitive to He content and 

varied between 6-7 x 1014m-2 for the pre-implanted cases, and was slightly higher for the 0 appm 

He condition. A comparison of the total line length to the cavity sink strengths at 150 dpa for all 

helium levels is shown in Figure 5.10b. The ratio of sink strengths falls above 1 for the 0-100 

appm He conditions, indicating a dislocation dominant microstructure. For 1000 appm, the ratio 

falls slightly below 1, suggesting a cavity dominant microstructure. All of the results for the 

dislocation loops and network are summarized in Table 5.2.  

The evolution of Ni-Si rich clusters (G-phase) with damage and 10 appm He implanted is 

shown in Figure 5.11. Table 5.2 summarizes the measured size, density, volume fraction, and sink 

strength of G-phase. As the damage level increased, the precipitates experienced an increase in 

size and decrease in density. In addition to this coarsening effect, addition Ni and Si segregated to 

the clusters,  resulting in an increase in the total volume fraction up to about 0.04% by 300 dpa. 

The sink strength for G-phase remained low, ranging from 0.36 to 0.58 x 1014m-2. 
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Figure 5.10 a) Network and <100> loop sink strength are plotted along with the total line length and b) ratio of total line length 

to cavity sink strength as a function of helium content at 150 dpa.
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Figure 5.11 Number density, diameter, and volume fraction of G-phase plotted as a 

function of damage with 10 appm He pre-implanted in ion-irradiated T91. 
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Table 5.2 A summary of dislocation loops, dislocation network, and G-phase. 

Damage 

level (dpa) 

Pre-

Implanted 

He 

(appm) 

<100> 

Loop 

Diameter 

(nm) 

<100> 

Loop 

Density 

(1020 m-3) 

<111> 

Loop 

Diameter 

(nm) 

<111> 

Loop 

Density 

(1020 m-3) 

Network 

Density 

(1014 m-2) 

Total 

Dislocation 

Sink 

Strength 

(1014 m-2) 

G-phase 

Diameter 

(nm) 

G-phase 

Density 

(1020 m-3) 

G-phase 

Volume 

Fraction 

(%) 

G-phase 

Sink 

Strength 

(1014 m-2 ) 

50 10 16.9 59.3 7.9 24.8 3.04 10.6 4.5 14.9 0.012 0.42 

150 0 36.3 22.4 N.M. N.M. 4.27 9.88 N.M. N.M. N.M. 0.45 

 1 24.0 19.2 N.M. N.M. 3.05 5.96 N.M. N.M. N.M. 0.55 

 10 28.7 17.5 16.4 4.4 3.07 6.88 7.0 13.3 0.033 0.58 

 100 27.1 17.2 N.M. N.M. 3.59 6.53 N.M. N.M. N.M. 0.42 

 1000 21.6 24.4 N.M. N.M. 2.2 5.54 N.M. N.M. N.M. 0.35 

300 10 24.0 16.7 18.4 6.9 2.45 5.67 7.6 7.57 0.041 0.36 
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5.4 Excess Carbon Campaign 

As mentioned previously, the Excess Carbon Campaign utilized uncoated, or bare samples 

which were susceptible to carbon uptake. The details of the irradiation and the conditions 

characterized are presented in Chapter 4 in Table 4.3. Cavities were characterized for all 

conditions. As before, the three depth regions within the sample were characterized 400-600, 500-

700, and 600-800 nm. The nine damage levels characterized for cavities in this campaign were: 

134, 150, 175, 276, 300, 356, 414, 450, and 534 dpa. Carbide precipitates were characterized with 

10 appm He implanted (at all nominal damage levels, 150, 300, and 450 dpa), and at all helium 

levels at 300 and 450 dpa (0, 1, 10, 100, and 1000 appm He) to achieve both a helium and damage 

dependence. Dislocations were characterized for only the 10 appm He condition and for damage 

levels of 150 and 300 dpa. A very high density of carbides made dislocation imaging at 450 dpa 

extremely difficult and accurate measurements could not be made. For the same reason, G-phase 

or G-phase precursors could not be characterized in the excess carbon conditions. 

5.5 Excess Carbon Campaign Cavity Results 

Cavities were observed at all damage and helium levels. Higher levels of pre-implanted 

helium resulted in higher cavity densities and lower cavity sizes. The swelling increased with 

increasing He content up to 10 appm He, after which the swelling decreased with further increases 

in He content. The evolution of cavity size, density, swelling, and sink strength as a function of 

damage and helium are shown in Figure 5.12 and Figure 5.13, respectively. These values, along 

with the cavity sink strengths are summarized in Table 5.3. The cavity sink strengths were 

calculated as described in Chapter 4.  
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Table 5.3 Summary of cavity results in T91 in excess carbon samples after ion 

irradiation for all damage levels and helium levels.  

Damage 

level (dpa) 

Depth of 

Analysis 

Pre-

Implanted He 

(appm) 

Average 

Diameter 

(nm) 

Cavity 

Density 

(1020 m-3) 

Swelling 

(%) 

Cavity Sink 

Strength 

(1014 m-2) 

134 400-600nm 0 15.6 1.84 0.047 0.36 

  1 15.6 9.0 0.23 1.76 

  10 13.2 19.2 0.29 3.18 

  100 9.8 9.6 0.063 1.18 

  1000 1.44 511 0.018 9.25 

150 500-700nm 0 15.8 2.2 0.056 0.44 

  1 16.5 8.64 0.250 1.79 

  10 14.2 18.0 0.34 3.21 

  100 10.3 11.7 0.095 1.51 

  1000 1.44 511 0.018 9.25 

175 600-800nm 0 16.7 3.27 0.099 0.69 

  1 17.0 9.90 0.32 2.11 

  10 14.9 17.6 0.39 3.30 

  100 10.4 12.2 0.103 1.59 

  1000 1.44 510.0 0.016 9.23 

276 400-600nm 0 24.1 2.77 0.26 0.84 

  1 23.0 5.74 0.45 1.66 

  10 21.6 12.5 0.88 3.39 

  100 16.2 10.6 0.33 2.16 

  1000 2.29 146 0.036 4.20 

300 500-700nm 0 26.6 3.42 0.43 1.14 

  1 25.6 6.58 0.73 2.12 

  10 22.3 13.2 1.02 3.70 

  100 17.3 10.7 0.41 2.33 
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  1000 2.30 147 0.043 4.25 

356 600-800nm 0 27.9 3.98 0.58 1.40 

  1 26.5 7.53 0.95 2.51 

  10 23.0 14.3 1.24 4.13 

  100 18.0 11.3 0.49 2.56 

  1000 2.30 147 0.044 4.25 

414 400-600nm 0 24.6 2.29 0.24 0.71 

  1 28.3 9.04 1.47 3.21 

  10 26.0 9.50 1.25 3.10 

  100 23.0 7.92 0.67 2.29 

  1000 13.9 0.28 0.004 0.05 

450 500-700nm 0 27.8 2.63 0.42 0.92 

  1 30.5 9.35 1.88 3.58 

  10 28.0 10.3 1.65 3.62 

  100 23.4 8.37 0.80 2.46 

  1000 16.9 0.46 0.013 0.10 

534 600-800nm 0 28.6 3.21 0.58 1.15 

  1 31.8 10.6 2.50 4.24 

  10 28.5 10.3 1.76 3.69 

  100 25.2 9.48 1.14 3.00 

  1000 16.4 0.51 0.014 0.11 
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Figure 5.12 a) Average cavity diameter b) number density, c) swelling and d) cavity sink 

strength as a function of damage in T91 for pre-implanted He levels of 0, 1, 10, 100, and 

1000 appm irradiated with 5 MeV Fe2+ ions at 460°C.



 150 

 

Figure 5.13 a) Average cavity diameter b) number density, c) swelling and d) cavity sink 

strength as a function of helium content in T91 for damage levels of 150, 300, and 450 dpa. 
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Figure 5.14 shows representative HAADF STEM images of the cavity evolution for all of 

the implanted He conditions. The resulting cavity distributions are plotted in Figure 5.15 for the 

0, 1, and 10 appm He conditions, and in Figure 5.16 for the 100 and 1000 appm He conditions. 

As seen in Figure 5.13b, the cavity densities for all of the helium conditions, except for the 1000 

appm condition, did not dramatically change in the entire observed damage range, from 134-534 

dpa. The 0 appm He condition exhibited the lowest cavity density at all damage levels, ranging 

from ~2-3 x 1020 m-3 over the entire damage range. The cavity density increased with increasing 

helium content, with the 1 appm He cavity density ranging between 6-10 x 1020 m-3 and the 10 

appm He density ranging between 9-19 x 1020 m-3. The 100 appm He condition did not exhibit 

significantly higher cavity densities than the lower helium levels, ranging between 9-12 x 1020 m-

3.  

In general, all He conditions exhibited increases in the average cavity size with increasing 

damage. From 150 to 300 dpa, cavity sizes were the largest for the 0 and 10 appm He conditions 

(Figure 5.13a), however, the 0 appm He condition did not exhibit significantly increased growth 

from 300 to 450 dpa, and thus experienced a stagnation in swelling behavior (Figure 5.12c).  

The 1000 appm He condition exhibited extremely high densities of small cavities up to 

~300 dpa. The high density of small cavities (<~4 nm) was only visible at high magnifications. 

Cavities of this size were not observed in any other helium condition. These cavities resulted in 

the formation of a bimodal distribution in the 1000 appm He condition, seen in Figure 5.16. Figure 

5.17 shows high magnification images of the 1000 appm He condition at 150, 300, and 450 dpa. 

The presence of these very small cavities was observed at 150 and 300 dpa, but not at 450 dpa. 

The sudden loss of the population of small cavities resulted in a dramatic drop in cavity density 

(Figure 5.12b) and a corresponding increase in the average cavity size (Figure 5.12a). The 

swelling in the 1000 appm He condition remained very low at all damage levels (Figure 5.13c). 
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Figure 5.14 HAADF STEM images showing the evolution of the T91 microstructure with damage for the 0, 1, 10, 100 and 1000 

appm He conditions irradiated at 460°C with 5 MeV Fe2+ ions. 
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Figure 5.15 Cavity size distributions for the 0, 1, and 10 appm He conditions at 50, 150, and 300 dpa (500-700 nm depth). 
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Figure 5.16 Cavity size distributions for the 100 and 1000 appm He conditions at 50, 150, and 300 dpa (500-700 nm depth).
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Figure 5.17 High magnification HAADF STEM images of T91 implanted with 1000 appm He at damage levels of 150, 300, and 

450 dpa (500-700 nm depth) irradiated with 5.0 MeV Fe2+ at 460°C. 
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5.6 Carbon Content of Samples in Excess Carbon Campaign  

 

A high density of precipitates was observed throughout the irradiation region at all damage 

levels of the excess carbon samples. These precipitates were typically rod-like aligned along the 

[100] direction. Carbides with identical morphology and alignment consistent with M2X carbides 

observed in HT9 and other irradiated ferritic-martensitic steels [73,74,79–81]. These studies have 

identified the carbides as M2X, with M=Cr and X=C, in both HT9 and CNSI and CNSII. HRTEM 

and XEDS was used to confirm the identity of the carbides in this work as M2X as well. The XEDS 

map in Figure 5.18b shows that the carbides are Cr-rich. Indexing of the Fast Fourier Transform 

pattern from HRTEM imaged along the [001] axis of the carbide (Figure 5.18c) confirmed the 

identity as M2X, with a hexagonal structure with a = 2.8 Å and c = 4.4 Å. 

These carbides were characterized for their damage dependence in the 10 appm He 

condition. Figure 5.19 shows images of the evolution of the carbides with damage using LAADF 

(low angle annular dark field) STEM in which the carbides appear in lighter contrast. As damage 

was increased, the carbides grew both in density and size. Figure 5.20 plots the dependence of the 

carbide length, density, volume fraction, and sink strength as a function of damage. From 150 to 

450 dpa, the carbide length increased from 52 nm to 67 nm (Figure 5.20a), and the density 

increased from 5.8 x 1020 m-3 to 18.8 x 1020 m-3 (Figure 5.20b). This resulted in a corresponding 

increase of volume fraction from 0.15% to 2.12% (Figure 5.20c) and increase of sink strength 

from 2.9 x 1014 m-2 to 13.5 x 1014 m-2 (Figure 5.20d). 
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Figure 5.18 a) LAADF image, b) and a corresponding Cr XEDS along with c) HRTEM 

image of an M2X carbide in T91 imaged along [001] with inlaid FFT taken from a sample 

irradiated to 450 dpa with 1 appm He. 
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Figure 5.19 LAADF (Low Angle Angular Dark Field) STEM images of carbides taken at 150, 300 and 450 dpa (500-700 nm 

depth) in T91 with 10 appm He implanted and irradiated with 5 MeV Fe 2+ at 460°C. 
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Figure 5.20 The a) length, b) density, c) volume fraction, and d) sink strength evolution of 

carbides in T91 implanted with 10 appm He as a function of damage at 460°C. 
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The carbides were also characterized as a function of helium at 450 dpa. Figure 5.21 shows 

BF STEM images of the microstructure at 450 dpa, where a high density of carbides is visible 

regardless of helium content. Figure 5.22 plots the dependence of carbide length, density, volume 

fraction and sink strength for implanted helium concentrations of 0, 1, 10, 100, and 1000 appm. 

No significant trend was seen across helium levels with carbide size, with most ranging between 

45 and 50 nm (Figure 5.22a). The carbide densities for the low helium levels of 0, 1, and 10 

remained between 15-20 x 1020 m-3, but increased at 100 appm He to 28.5 x 1020 m-3 and again at 

1000 appm He to 33.1 x 1020 m-3 (Figure 5.22a). The highest volume fraction was observed in the 

10 appm condition at 2.12%, but no significant trend with helium and volume fraction was 

observed (Figure 5.22b). Similarly, no obvious trend was observed with carbide sink strength with 

the overall the sink strength remaining between 8-14 x 1014 m-2 (Figure 5.22b). A summary of the 

characterized carbides is provided in Table 5.4.  

To further quantify the carbon and carbides, the depth profiles of carbon were taken from 

several conditions using NRA. Figure 5.23 shows the depth profiles of the 450 dpa condition (with 

10 appm He implanted) along with an unirradiated profile. The unirradiated profile remained at 

0.5% C throughout the depth, which is the nominal concentration of the alloy. The 450 dpa profiles 

exhibited uptake of excess carbon, with a peak of about 2.5% C at the surface and through the 

irradiated region. The 2.5% C through 1000 nm fell to about 0.5% by about 1500 nm depth. 
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Figure 5.21 BF STEM images showing the presence of a high density of carbides in T91 in all helium conditions at 450 dpa 

irradiated with 5.0 MeV Fe2+ at 460°C. 
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Table 5.4 Summary of carbide length, density, volume fraction and sink strength in 

excess carbon T91 following irradiation with Fe2+ at 460°C. 

Damage 

level (dpa) 

Pre-

Implanted He 

(appm) 

Carbide 

Length 

(nm) 

Carbide 

Density (1020 

m-3) 

Carbide 

Volume 

Fraction 

(%) 

Carbide Sink 

Strength 

(1014 m-2 ) 

150 10 52 5.8 0.15 2.92 

300 0 33.2 18.5 0.22 6.67 

 1 40.7 16.35 0.26 6.49 

 10 65 15.8 0.93 8.64 

 100 36 19.2 0.53 8.26 

 1000 28.8 19.1 0.15 6.19 

450 0 45.3 17 0.56 9.59 

 1 47.9 18.7 0.46 7.94 

 10 67.2 18.8 1.65 11.6 

 100 44.7 28.5 0.8 9.8 

 1000 49.3 33.1 1.64 14.4 
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Figure 5.22 The a) length and density and b) volume fraction, and sink strength evolution of carbides in T91 at 300 and 450 

dpa at 460°C as a function of He content.
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Figure 5.23 The NRA carbon profiles through the depth in T91 in the 450 dpa (460°C) 

excess carbon condition and in the unirradiated condition. 
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5.7 Excess Carbon Campaign Dislocations and Precipitates 

 The density of carbide precipitation in the excess carbon conditions made dislocation 

imaging and characterization very difficult. The dislocations and the carbides both habit the same 

[100] family of planes. Additionally, in bright field STEM imaging, both features exhibit a similar 

contrast. Therefore, it can become exceedingly difficult to differentiate between lines that 

correspond to loops and thin carbides on the same plane. As such, dislocation characterization 

could only be performed in the 150 and 300 dpa conditions of the excess carbon conditions—the 

extremely high density of carbide precipitation in the 450 dpa condition prevented accurate 

characterization of dislocation loops. The results for the dislocations in the excess carbon condition 

are shown in Table 5.5. When increasing damage from 150 dpa to 300 dpa, an increase in both 

loop density and diameter is seen. 

 The difficulty in imaging in the presence of carbides also applied to G-phase. Sharing 

similar contrast with G-phase in BF-STEM, accurate distinctions could not be made between 

carbides and G-phase, especially at high damage levels. 
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Table 5.5 Dislocation density, diameter and line length are shown for the conditions 

characterized in excess carbon T91.  

Damage 

level 

(dpa) 

Pre-

Implanted 

He 

(appm) 

<100> 

Loop 

Diameter 

(nm) 

<100> 

Loop 

Density 

(1020 m-3) 

<111> 

Loop 

Diameter 

(nm) 

<111> 

Loop 

Density 

(1020 m-3) 

Network 

Density 

(1014 m-2) 

Total Line 

Length 

(1014 m-2) 

150 10 29.4 10.6 15.6 5.6 3.69 5.69 

300 10 41.3 19.8 16.5 15.2 5.84 10.97 
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CHAPTER 6: DISCUSSION

 

The discussion of the results in the Chapter 5 will be divided into three main components—

the influence helium on cavity evolution, the influence of carbon on cavity evolution, and finally 

the combined effects of helium and carbon on cavity evolution. To determine the influence of 

helium on cavity evolution, only the results from the Nominal Carbon Campaign are considered. 

The results from the both the Nominal and Excess Carbon Campaigns are used to determine the 

influence of carbon. Lastly, the results of both irradiation campaigns are discussed to determine 

the influence of the combined effects of helium and carbon on cavity evolution. The effect of both 

helium and carbon on other microstructural features (precipitates, dislocations) are discussed 

where relevant. 

6.1 The Influence of Helium on Cavity Evolution 

The cavity evolution in the Nominal Carbon Campaign samples depended highly on both 

the amount of implanted helium and the damage level. The following discussion addresses the 

influence of helium in causing sink strength-moderated behavior at low helium levels (0-10 appm), 

and on the formation of a bimodal distribution and suppression of growth at high helium levels 

(100 and 1000 appm). Lastly, it is shown that other microstructural features such as dislocations 

loops and network, and G-phase precipitates had a negligible influence on the cavity evolution. 

6.1.1 Sink strength-moderated cavity evolution 

At low helium levels (0, 1, and 10 appm), the cavity behavior was controlled by the cavity 

sink strengths. The effect of helium in promoting cavity nucleation is clearly seen in Figure 5.2b. 

At the lowest damage level, the swelling and cavity sink strengths were dominated by the cavity 

density. Therefore, an increase in cavity volume occurred with increasing He from 0, to 1, to 10 

appm He, (0.091%, 0.107%, and 0.124%, respectively at 50 dpa). At 50 dpa, the sink strength of 

the 10 appm He condition was almost double that of the 0 appm He condition. Figure 6.1 shows 
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how the cavity sink strengths varied with He content at different damage levels. The slightly higher 

size of cavities in the 0 appm He case was not large enough to overcome the ~2x density for the 1 

and 10 appm He conditions. 

The presence of pre-implanted helium served to create nucleation sites such that a high 

density of cavities was established early on in the irradiation. However, the 0 appm He condition 

did not have the aid of helium to assist nucleation, thus the formation of cavities (or voids in this 

case), occurred purely by vacancy agglomeration. The 0 appm He condition experienced a much 

slower nucleation rate such that at 50 dpa it was still in the nucleation-dominant regime.  

By 150 dpa, the 0 appm condition achieved the highest swelling of any of the helium levels 

studied. Cavities in the 0 appm He case grew at a faster rate, as seen by the larger cavity sizes 

(Figure 5.2a), while simultaneously nucleating new cavities over a longer period (Figure 5.2b). 

The same number of vacancies produced by irradiation were distributed over a higher number of 

cavities in the pre-implanted cases, resulting in lower growth rates compared to the 0 appm He 

case. This difference in growth rates resulted in a cross-over point in swelling between 50 and 150 

dpa (Figure 5.2c), where the 0 appm He case achieved a similar cavity sink strength as in the 1 

and 10 appm conditions (Figure 6.1). At 150 dpa, cavity sink strengths for the 0, 1, and 10 appm 

He conditions were essentially the same.  

After 150 dpa, no further increases in cavity density occurred, suggesting that vacancies 

were being absorbed into cavities at nearly the same rate across the three helium levels. Nucleation 

of new cavities was suppressed, and the sink strength of the established cavity microstructure was 

strong enough to assure a net absorption of vacancies causing growth in cavity size. Ultimately, 

similar sink strengths at 150 dpa with no further increases in density resulted in similar growth 

behavior and a convergence of the 0, 1, and 10 appm cavity distributions by 300 dpa. Figure 5.4 

shows how very different size distributions between the 0, 1, and 10 appm He conditions at 50 dpa 

converged to nearly identical distributions by 300 dpa. Small additions of helium did not change 

the final distribution or total amount of vacancies in cavities, rather, it only provided more sites 

for the cavities to nucleate. 
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Figure 6.1 Cavity sink strength is plotted as a function of helium content at damage levels 

of 50, 150, and 300 dpa in ion irradiated T91. 
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Only a small distinction could be made between additions of 1 and 10 appm helium, as 

both had achieved their highest densities by the lowest damage level. However, it is suspected that 

the 10 appm He condition nucleated more quickly than the 1 appm condition due to a higher 

density of nucleation sites. This difference in nucleation was not significant enough to result in 

different sink strengths, and thus the cavity evolution of the 1 and 10 appm conditions remained 

largely the same. 

 Overall, the role of small additions of helium was simply to accelerate cavity nucleation, 

but not to alter the final cavity microstructure. The difference in cavity microstructure was largest 

at low damage levels, where the swelling behavior was dominated by nucleation. However, similar 

cavity sink strengths between the 0, 1, and 10 appm He conditions ultimately led to nearly identical 

size distributions by 300 dpa. 

 

6.1.2 Formation of bimodal cavity distributions 

 

The cavity behavior in the high helium conditions (100 and 1000 appm) was fundamentally 

different than that of the low helium conditions. Bimodal distributions (Figure 5.7) and a clear 

suppression of growth resulting in low swelling (Figure 5.2c) were observed at all damage levels. 

The presence of a bimodal distribution suggests that helium levels were high enough to induce the 

formation of helium bubbles. Hishinuma and Mansur [82] postulated that the formation of a 

bimodal distribution is due to a reduction in the critical radius in the presence of helium. Bubbles 

below the critical radius are able to remain relatively stable and insensitive to damage as long as 

they retain a particular number of helium atoms.  

The analysis from [82] can be applied to the T91 system to create a map in which a bimodal 

distribution would be expected to be stable. The critical radius of a cavity, 𝑟𝑐
𝑐𝑟𝑖𝑡, as a function of 

its helium gas pressure can be expressed as: 

2 / ln 1
c d c d

crit i v v i v
c g c d o c d

v i v v i

Z Z C Z ZkT
r p

Z Z C Z Z


    
      

     

,   (6.1) 

 

where   is the surface energy, 
gp is the helium gas pressure of the cavity, k is Boltzmann’s 

constant, T is irradiation temperature,   is the atomic volume, c

iZ is the cavity capture efficiency 
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for interstitials, and d

iZ is the dislocation capture efficiency for interstitials, and c

vZ and d

vZ are the 

capture efficiencies for vacancies and lastly, / o

v vC C  is the vacancy super saturation. The gas 

pressure in the cavity,
gp , can be expressed by the number of helium atoms in the cavity: 

34
/

3
g g c gp n kT r n B

 
  

 
,    (6.2) 

where 
gn is the number of helium atoms, cr is the cavity radius, and B is the Van der Waals 

coefficient for helium. For a given cavity size, Eq. (6.2) predicts that the pressure within a cavity 

will increase as the number of gas atoms in the cavity increases. With increases in helium pressure, 

Eq. (6.1) predicts that the critical cavity radius will decrease. Eq (6.1) can also be used to calculate 

the critical radius for a gas-free cavity (void), by setting the gas pressure to zero. The gas-free 

critical cavity radius for the T91 system is calculated as 1.8 nm, using the parameters listed in 

Table 6.1. The effect of adding helium to the cavity on the critical radius is shown in Figure 6.2, 

which plots the critical radius as a function of the number of helium atoms in the cavity. For a 

given cavity size, the critical cavity radius decreases as the number of helium atoms in the cavity 

increases. Additionally, for smaller cavity sizes, the addition of helium has a much more dramatic 

effect on lowering the critical cavity radius. This makes sense, since the pressure of smaller cavities 

increases more easily than larger cavities when adding a set number of helium atoms. It is 

important to note that while Figure 6.2 predicts that the critical cavity radius will eventually 

approach zero, with increasing helium content, only values above the actual cavity radius are 

relevant. That is, for a 1 nm radius cavity, the critical cavity radius below 1 nm would not be 

achieved as the cavity will achieve bias-driven growth by 1 nm. 

The effect of helium lowering the critical cavity radius is essential in describing how a 

bimodal cavity distribution may form in T91. By substituting the expression for pg in Eq. (6.2) into 

Eq. (6.1), a cavity stability map (Figure 6.3) was created that shows the dependence of the critical 

cavity radius on the actual cavity radius and the number of gas atoms in the cavity. The key 

parameters used for this calculation are summarized in Table 6.1. Calculation of the vacancy 

supersaturation was required for both Figure 6.2 and Figure 6.3. This calculation is detailed in 

Appendix D. 
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Figure 6.2 The critical cavity radius for a cavity plotted as a function of the number of 

helium atoms in the cavity for cavity sizes of 0.5, 1.0, 1.5, and 1.8 nm. 
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Figure 6.3 Cavity stability map for T91 showing dependence of the critical radius on the 

actual cavity radius for various numbers of contained gas atoms. The highlighted grey area 

shows the possible size range for the presence of stabilized bubbles. 

 

 



 174 

 

 

 

Table 6.1 Key parameters for calculating the T91 cavity stability map. 

 

Symbol Definition Value Ref. 

T 
Irradiation 

Temperature 
460°C 

- 

γ 
Surface 

Energy 
1.7 J/m2 [82] 

Ω 
Atomic 

Volume 
2.38 x 10-29

 m
-3 

- 

B 

Van der 

Waals 

Coefficient 

for He 

0.0096 L/mol 

[82] 

c d

i v

c d

v i

Z Z

Z Z
 

 

Capture 

Efficiency 

 

0.95  

 

 

[82] 

*Ko Damage Rate 1 x 10-3 dpa/s - 

* m

vE  

Vacancy 

Migration 

Energy 

0.63 eV 

[14] 

* f

vE  

Vacancy 

Formation 

Energy 

1.6 eV 

[14] 

* m

iE  

Interstitial 

Migration 

Energy 

0.22 eV 

[14] 

*used to determine vacancy supersaturation, / o

v vC C  
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In Figure 6.3, the estimated critical radius when no gas is present ( 0gn  ) is shown by the 

horizontal dashed line at approximately 2 nm. When helium gas atoms are added to a cavity, the 

critical radius falls below this 2 nm line, indicating that the presence of helium results in a smaller 

critical radius than with no gas. As higher amounts of helium are added to the cavity, the effect of 

lowering the critical radius extends to larger cavity sizes.   

The diagonal dashed line in Figure 6.3 denotes the equality of the critical radius and the 

actual cavity radius. The intersection point of any of the curves with the diagonal line indicates a 

point of stability. At any point below the diagonal line, a cavity with a given number of helium 

atoms will grow along its respective curve until it reaches the diagonal. At that point, the cavity 

cannot grow any further because at all points above the diagonal line, the critical radius is greater 

than the actual cavity radius. This results in a relatively stable bubble at a size lower than the 

critical radius without gas (~2 nm). For the T91 system, curves describing cavities with less than 

~400 He atoms contain intersection points with the diagonal line, indicating that < 400 He 

atoms/cavity are required to form a bimodal distribution. In practice, cavities with radius smaller 

than 0.5 nm were not observed or could not be resolved reliably under STEM. Using this 0.5 nm 

lower limit, a more realistic threshold for the creation of a bimodal distribution would be a range 

of ~50-400 He atoms/cavity. The greyed area in Figure 6.3 highlights this range. 

To determine whether a bimodal distribution is reasonable to expect in the 100 and 1000 

appm He conditions, an estimation of the total amount of He in bubbles was made. Assuming that 

the smaller size groups (< 4 nm) were entirely equilibrium pressurized bubbles, Eq 6.2 was set 

equal to the cavity surface energy of an equilibrium bubble, 2γ/r, and integrated over the size 

distribution to determine the possible total number of gas atoms. The size distribution of bubbles 

in the size range of 0 to 4 nm was assumed to follow a Gaussian distribution. For the 1000 appm 

He case at 50 dpa, a mean bubble radius of 0.8 nm, a standard deviation of 0.23 nm and total 

bubble density of ~885 x 1020 m-3 was used to approximate the bubble size distribution as shown 

in Figure 5.7. Assuming each bubble was at equilibrium, Eq. 6.2 was solved for the number of 

gas atoms at each size and integrated over the size distribution to obtain the total amount of gas in 

the distribution. For the 1000 appm He condition the distribution could accommodate ~400 appm 

of He or an average of ~380 He atoms per cavity. For the 100 appm condition at 50 dpa, a mean 

bubble size of 1.1 nm, a standard deviation of 0.23 nm and total bubble density of ~70 x 1020 m-3 

was used to approximate the bubble size distribution, resulting in a total of ~84 appm He in the 
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distribution, or ~1000 He atoms per cavity. Thus, both the 100 and 1000 appm He conditions are 

capable of satisfying the required He threshold (~50-400 He atoms/cavity) to form a stable bimodal 

cavity distribution. Increasing the amountof helium in a given cavity reduces the critical cavity 

radius to establish a bubble-dominated microstructure. It should be stressed that the analysis 

presented here and inherent in the calculations for Figure 6.2 and Figure 6.3 are for increases in 

helium for a given cavity, not necessarily for increases in helium in the system as a whole. The 

calculations assume that helium is not changing the sink microstructure. In practice, higher levels 

of helium may result in a high cavity sink strength, which would reduce the vacancy super-

saturation, and in turn would increase the critical radius of system as a whole. However, for a given 

cavity, increases in the amount of helium within that bubble would lower its critical radius. 

 The 1 appm and 10 appm He cavity distributions could theoretically accommodate ~40 He 

atoms/cavity and ~350 He atoms/cavity, respectively, which is in the viable range for a bimodal 

distribution. However, since the cavities are much larger in the 1 and 10 appm He conditions, the 

cavities would be extremely underpressurized and do not behave as equilibrium bubbles. In fact, 

for the 1 appm He distribution, an additional 1100 appm He (or ~40,000 He atoms/cavity) would 

be required to convert the existing distribution into an equilibrium bubble distribution. Similarly, 

for the 10 appm He cavity distribution, an additional 2000 appm He (or ~70,000 He atoms/cavity) 

would be required to achieve an equilibrium bubble state. Since the cavities in the 1 and 10 appm 

He conditions are far removed from the equilibrium bubble state, the cavity stability map in Figure 

6.3 cannot describe their behavior.  

It is very likely that at the low helium content of 1 and 10 appm, there is not enough helium 

to readily achieve significant clustering. Clustering of helium atoms in these low helium cases 

remains below the visible range of 1 nm cavities. Increasing the amount of helium from 1 to 10 

appm only increases the number of sites available for nucleation, but does not achieve an 

observable difference in helium clustering. The low amount of clustering does not provide for a 

significant reduction in the critical cavity radius, so a bimodal distribution cannot form in the 1 

and 10 appm He conditions.  

6.1.3 Helium-suppressed cavity evolution 

 

In the 100 appm and 1000 appm conditions, a suppression of total swelling was observed. 

Suppression of swelling with high helium levels has often been attributed to the development of a 
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very high cavity sink strength [17,47,50]. At a sufficiently high cavity sink strength, it is expected 

that both vacancies and interstitials would annihilate in equal numbers, thus resulting in a 

suppression of growth. However, based on Figure 6.1, the 100 appm condition exhibits a very 

similar cavity sink strength as the 0, 1, and 10 appm conditions, which did not experience 

significant suppression of growth, suggesting that sink strength alone cannot account for the 

suppression of swelling. In fact, such suppression would only occur if cavities were the dominant 

sink in the system. For the 100 appm He condition at 150 dpa, dislocations are still the dominant 

sink as shown in Figure 5.10b where the dislocation sink strength is ~3x higher than the cavity 

sink strength. Similar cases were reported in stainless steel [6,83] where cavity sink strength alone 

was not sufficient to account for swelling suppression.  Therefore, other mechanisms must 

contribute to swelling suppression in the presence of helium.  

Hishinuma [82,83] suggested that the presence of helium could lower the bias of the system 

and result in reduced growth. Small cavities or helium clusters could serve as obstacles for 

dislocation climb, thus reducing their effectiveness in capturing interstitials and reducing vacancy 

supersaturation. Since growth is bias-driven, this effect would preferentially influence the larger 

size group. Alternatively, elasticity theory, kinetic Monte Carlo and molecular statics models have 

demonstrated that cavities of very small size do not behave as neutral sinks, and instead are biased 

toward interstitials [84–87]. This bias is strongest at small cavity sizes, decreasing as cavity size 

increases. For the size range observed in T91 (< 2 nm), the cavity bias can be significant, with a 

net interstitial bias ranging between 10-25%.  If this is the case, then the role of helium is to create 

a distribution of small cavities whose growth is restricted (stabilized) by this cavity bias and remain 

relatively insensitive to damage. Because of the bias toward interstitials, these small cavities 

reduce the net vacancy flow to cavities, and result in a suppression of swelling.  

While the interstitial biases discussed above were mostly calculated for voids, it is possible 

that the presence of gas in a bubble may counter-act the effect and reduce the interstitial bias. 

Kohnert and colleagues [87] studied the effect of helium gas on the cavity bias and found that the 

bias was not significantly affected unless the bubble was over-pressurized. Addition of helium to 

a cavity did not change the capture radius for interstitials, but beyond equilibrium pressure was 

found to increase the vacancy capture radius linearly with increasing helium content. Since the 

bubbles in this work are likely at or below equilibrium, a significant cavity bias would still apply. 
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A helium trapping mechanism has also been proposed [26,40,47,88–90] as a possible 

method of swelling suppression. High levels of helium may trap vacancies within the matrix and 

enhance recombination. As mentioned before, the small size group of the 1000 appm He 

distribution could accommodate at most ~400 appm of He. This means that ~600 appm He is 

elsewhere in the lattice. Even with the assumption that all cavities observed in the 1000 appm He 

condition at 50 dpa were equilibrium bubbles, only ~800 appm He could be accommodated in the 

entire cavity distribution.  No bubbles were observed at grain boundaries or at precipitates, so it is 

very likely that small invisible helium clusters remain in the matrix, either bound with dislocations 

or solute atoms. These helium sites could serve to immobilize the vacancies, enhancing 

recombination and preventing cavity growth.  

As mentioned previously, the dislocation sink strength in the 100 appm He condition at 

150 dpa was approximately 3x higher than the cavity sink strength (6.5 x1014 m-2 and 2.5 x1014 m-

2 for dislocations and cavities, respectively). In order for the cavity sink strength to begin to 

contribute to swelling suppression, the invisible clusters would have to add an additional sink 

component to make up for the difference, or about 4 x 1014 m-2. Assuming the cavities are just 

below the resolution limit of 1 nm, they would need to be present at a density of ~3 x 1022 m-3 to 

produce 4 x 1014 m-2 of sink strength. If these unresolvable cavities are assumed to be equilibrium 

bubbles, they would accommodate an additional ~11 appm He. Adding this to the 84 appm already 

accounted for by the rest of the distribution results in about 95 appm He. Therefore, there is enough 

helium available in the 100 appm He system to begin to experience an effect of helium trapping. 

The high cavity sink strength of the 100 and 1000 appm conditions was not sufficient to 

explain the observed suppression in swelling. Therefore, an alternative mechanism, such as helium 

trapping, or helium-induced alteration of cavity and dislocation bias are the likely causes of the 

reduction in swelling. 

6.1.4 Influence of dislocations and precipitates on cavity evolution 

 

The behavior of dislocations with damage (Figure 5.8) was not unusual and similar 

behavior has been reported in previous high damage irradiations on HT9 [81], which showed that 

loop diameter was relatively insensitive to damage beyond 200 dpa. A total sink strength of ~3-6 

x 1014 m-2 was reported in HT9, which is slightly lower than that observed in this study of T91 (5-

7 x1014 m-2, Figure 5.10a) due to a higher density of <100> loops observed in T91. At 300 dpa 
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with 10 appm He implanted, the <100> loops exhibited a higher sink strength when compared to 

the <111> loops (3.3 x 1014m-2 versus 0.5 x 1014m-2). Therefore, the <100> loops would be 

expected to be a much stronger sink over the <111> loops.  

The dislocation behavior was very similar across helium levels, suggesting that it did not 

influence the cavity evolution differently across the various helium levels, as seen in Figure 5.9. 

The 0 appm He condition experienced the biggest deviation in loop size, which was slightly larger 

than the other helium conditions at 36 nm versus about 21-28 nm for the pre-implanted conditions 

at 150 dpa. It is possible that the lack of helium in this condition allowed the loops to grow to 

larger sizes. Small pre-implanted helium clusters may have served as pinning sites for dislocation 

loops, restricting their growth. However, this trend did not continue with addition of helium 

beyond 1 appm. The 0 appm He condition exhibited similar loop densities as the pre-implanted 

cases, suggesting that the presence of helium had little to no effect on the nucleation of dislocation 

loops. Irradiation with helium has been shown to increase the dislocation density [48], however, 

the implantation was performed at room temperature and ferritic-martensitic steels naturally 

contain a high dislocation density. Furthermore, any effect on the dislocations by irradiation with 

helium was insignificant compared to the high damage induced by the 5 MeV Fe2+ ions. The 

dislocation density of the 1000 appm He implanted condition measured 3.71 x 1014 m-2, which was 

well within the measurement error of the unirradiated condition of 3.0 x 1014 m-3. 

To determine any possible effect the dislocations may have had on cavity behavior, their 

sink strengths need to be considered. Figure 5.10a plots the sink strengths of the <100> loops, the 

dislocation network, along with the total line length at 150 dpa. The sink strengths ranged between 

6–7 x 1014
 m

-2, with the exception of the 0 appm He case, which exhibited a sink strength of about 

1 x 1015m-2 due to the aforementioned larger loop size, and a slightly higher network dislocation 

sink strength. These sink strengths are reasonable, considering typical values for ferritic-

martensitic steels reported in the literature range from ~1 x 1014 – 1 x 1015 m-2 [13,40,42]. Previous 

work on HT9 [91] showed that changes in the dislocation sink strength within this range would 

not dramatically alter the swelling rate. Figure 5.10b compares the dislocation sink strengths at 

150 dpa with the cavity sink strengths across all helium levels. At every helium level except 1000 

appm, the ratio between sink strengths was above 1, signifying that the sink balance and relative 

importance of dislocations did not change across helium levels. Figure 5.10a shows that the total 

line length did not change significantly with helium content, therefore the dislocations did not 
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influence the sink structure differently across helium levels. Considering the consistency of the 

dislocation sink strength across four magnitudes of pre-implanted helium content, changes in the 

cavity microstructure cannot be attributed to changes in the dislocation microstructure. 

Ni-Si clusters (G-phase) experienced an increase in size and a decrease in density as 

damage level was increased (Figure 5.11).  A similar behavior was also observed in high damage 

irradiation on HT9 [81]. It was determined that G-phase in this alloy would have a negligible effect 

on the swelling behavior up to 650 dpa [91]. G-phase in the HT9 study was observed to have a 

sink strength of ~1 x 1014m-2. By 300 dpa, the Ni-Si clusters in T91 in this study achieved a sink 

strength of only 0.3 x 1014 m-2, or a factor of 20 less than that due to dislocations. Therefore, even 

less of an effect on cavity evolution would be expected.  

In summary, <100> loops and network dislocations appear to be insensitive to implanted 

He content, and G-phase and <111> loops exhibit very low sink strengths which are not expected 

to influence cavity evolution. Therefore, changes in the cavity microstructure cannot be attributed 

to changes in other microstructural features. The determining factor in the differences in cavity 

evolution was the concentration of implanted helium. 

 

6.2 The Influence of Carbon on Cavity Evolution 

 

The effect of carbon on cavity evolution was determined by analyzing the results of the 

Excess Carbon Campaign as a function of damage, and comparing them with the results from the 

Nominal and Excess Carbon Campaigns. The shared conditions between these series irradiations 

were 150 and 300 dpa with all helium contents. These irradiations can be used as a direct 

comparison to evaluate the effect of carbon on cavity evolution. The following discussion focuses 

on explaining the suppression of cavity evolution and the loss of helium bubbles. 

6.2.1 Carbon-induced suppression of cavity nucleation 

 

The main effect of excess carbon on cavity evolution was to inhibit cavity nucleation. This 

behavior is clear when comparing the microstructure between the excess and the nominal carbon 

conditions. Figure 6.4 shows bright field STEM images comparing the microstructure of T91 

nominal carbon and excess carbon conditions following irradiation to 300 dpa. The excess carbon 



 181 

conditions show a very high density of carbides and a noticeably lower density of cavities. Figure 

6.5 shows that there is a dramatic difference in the magnitude of the swelling between excess and 

nominal carbon conditions in the 0 appm He condition. This difference in swelling is mainly due 

to differences in cavity densities, as seen in Figure 6.6, which shows only a slight difference in 

the size of cavities, but almost an order of magnitude difference in density. Since the presence of 

excess carbon is the only difference between these conditions, it must be the cause of the difference 

in nucleation between the two conditions. 

Several studies [57,58,62,92] have suggested that higher amounts of carbon in solution 

could serve as trapping sites for vacancies, with a strong binding energy estimated at ~0.41 eV 

[93]. The trapping mechanism enhances recombination and reduces the supersaturation of 

vacancies which would inhibit cavity nucleation. While carbon could only be detected via the 

volume fraction of carbides, there is likely a high concentration of carbon in solution or associated 

with unresolvable carbon-defect clusters. At 460°C, the expected solubility of C in T91 is very 

low, approximately 0.05%, or 500 appm. Since precipitation occurred constantly from 150 to 450 

dpa, carbon in solution is likely maintained at or above the saturation point—which would provide 

a high density of vacancy trapping sites within the matrix.  

The NRA profiles in Figure 5.23 suggest a total concentration of about 2.5% carbon after 

450 dpa. A calculation of the amount of carbon in carbides can be used to estimate the amount of 

carbon accounted for by M2X. It is assumed that the carbides are M2X with a hexagonal crystal 

structure of a = 0.272 nm and c = 0.452 nm, and they have a regular parallelepiped shape with the 

same width and thickness. Utilizing the measured density and average volume of the carbides, the 

number of hexagonal unit cells and hence the average number of carbon atoms per precipitate was 

calculated, and yielded a concentration of 2.09 ± 0.42% C. Given that the initial carbon 

concentration in the alloy is approximately 0.5%, this calculation accounts for roughly all 2.5% of 

carbon measured by NRA.  

Since precipitation is occurring, it is likely that the amount of carbon in solution is 

maintained at the saturation point. The uptake of excess carbon due to irradiation could increase 

the amount of trapping sites in a couple of ways. Either the carbon in solution is increased to a 

super-saturated, metastable state due to the irradiation process, or small M2X precursors/carbon 

clusters not visible in TEM serve as traps for vacancies. However, given that almost all of the 

excess carbon was accounted for by visible M2X carbides, the amount of super-saturated carbon 
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or carbon in small clusters cannot exceed the error of the carbon content calculation (0.42% or 

4200 appm of C).  Work on HT9 by Getto [94] suggested that carbon in solution was a much 

stronger suppressor of swelling than M2X sink strength, and that significant swelling suppression 

would occur with 500 appm of carbon in solution. Therefore, the presence of up to 4200 appm of 

C in the form of super-saturation or small clusters would be expected to also have a significant 

suppressive effect on cavity nucleation in addition to any effect of the M2X sink strength.  
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Figure 6.4. Bright field STEM images of T91 irradiated to 300 dpa with nominal and excess carbon levels using 5.0 or 4.4 MeV 

Fe2+ ions at 460°C.
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Figure 6.5 Swelling as a function of damage for nominal and excess carbon T91 with no 

helium implantation. 
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Figure 6.6 Cavity number density (red dashed) and cavity diameter (blue solid) as a 

function of damage for nominal and excess carbon samples of irradiated T91, implanted 

with no He. 
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6.2.2 Carbon-induced suppression of cavity growth 

 

A significant carbide sink strength also likely contributed to suppression of cavity growth. 

Figure 6.5 shows a slightly reduced cavity diameter in the excess carbon condition with 0 appm 

He, suggesting that the presence of carbides may only have a minor effect on growth. The 

diameters between the excess and nominal conditions track very well, with similar growth rates. 

However, the excess carbon conditions experienced a slightly lower diameter through 300 dpa. 

This may be due to the role carbon plays in inhibiting nucleation, which would serve to increase 

the incubation period relatively to the nominal carbon condition. Since it was more difficult for 

cavities to nucleate in the excess carbon condition, growth could not occur until a higher damage 

level, so the diameter in the excess carbon condition lags behind that of the nominal condition.  

It is also possible that carbon begins to suppress the growth of cavities at 450 dpa due to a 

high carbide sink strength effect. The excess carbon samples were irradiated further to 450 dpa, 

where they experienced a complete arrest in swelling (Figure 5.12c). From 300 to 450 dpa, the 

swelling in the 0 appm He excess carbon condition essentially remained the same at ~0.43%, with 

the diameter increasing by only 1.2 nm and the density decreased from 3.4 to 2.6 x 1020 m-3. The 

size distributions plotted in Figure 5.15 also clearly show that growth in the 0 appm He condition 

was suppressed compared with the 1 and 10 appm He conditions. Both the 1 and 10 appm He 

conditions exhibit a noticeable shift in the size distribution to larger sizes when increasing from 

300 to 450 dpa, while the 0 appm He condition does not. 

This complete suppression of swelling in the 0 appm He condition can be explained by 

looking at the cavity and carbide sink strengths. Figure 6.7 plots the ratio of carbide sink strengths 

to cavity sink strengths for all implanted helium levels at 300 and 450 dpa. At both damage levels, 

the 0 appm He condition exhibited the highest ratio of carbide to cavity sink strength of 5 at 300 

dpa, which increased to ~10 at 450 dpa. The remaining helium levels (excluding 1000 appm at 450 

dpa) exhibited sink strength ratios ranging between 1 – 3. The 0 appm helium condition was the 

only condition to exhibit a complete arrest in swelling, and it is likely due to the fact that the 

carbide sink strength was much higher compared to the cavity sink strength.  In the 0 appm He 

condition, the carbides were clearly the dominant sink in the system, which left few excess 

vacancies to provide growth for the few existing cavities. 
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Swelling suppression in the presence of carbon is two-fold. Nucleation of cavities is 

suppressed, likely through a combination of carbide sink strengths and carbon in solution. The few 

cavities that do nucleate are subject to suppression of growth via the carbon trapping effect and a 

substantial sink strength of carbide precipitates. 
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Figure 6.7 The ratio of carbide sink strength to cavity sink strength for the excess carbon 

T91 samples at 300 and 450 dpa are plotted as a function of He content. 
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6.3 Interaction of Carbon and Helium 

 

In addition to suppressing overall swelling, the presence of carbon was also found to 

change the swelling behavior as a function of helium content. The study with nominal carbon 

samples showed that swelling tended to decrease monotonically with increasing helium content. 

Small additions of helium (1 or 10 appm) did not significantly alter the cavity distributions, and 

large additions of helium (100 or 1000 appm) resulted in the creation of a bimodal distribution and 

significant swelling suppression. 

Figure 6.8 shows a comparison of the cavity size, density, and swelling behavior between 

the nominal and excess carbon conditions in T91 at 150 dpa as a function of helium content. At all 

helium levels, the swelling is lower in the excess carbon condition. Additionally, the trend of 

swelling with helium is different in the excess carbon samples. The excess carbon samples exhibit 

a peak in swelling at 10 appm He, whereas maximum swelling occurs at 0 appm He in the nominal 

carbon samples (Figure 5.3c vs Figure 5.13c). This peaked behavior as a function of helium in 

the excess carbon condition is fundamentally different than that of nominal carbon condition. 

The peaked behavior in the excess carbon samples occurs due to competing effects on 

nucleation. As mentioned in the previous section, the main effect of excess carbon was to inhibit 

cavity nucleation, which can be clearly seen in Figure 6.8b. Addition of helium tends to counteract 

this effect to some degree and promote nucleation. Therefore, swelling increased with the addition 

of helium up to 10 appm. Conditions with helium levels lower than 10 appm suffered from cavity 

suppression due to excess carbon and lack of helium. Conditions with helium higher than 10 appm 

suffered from suppression due to excess carbon and high helium content. 
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.  

Figure 6.8 a) Cavity diameter, b) cavity number density, and c) swelling as a function of He content for the nominal and excess 

carbon conditions in T91 at 150 dpa.
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6.3.1 Carbon-induced helium bubble dissolution 

 

The most dramatic difference between the nominal and excess carbon conditions is the 

effect of carbon on the bubble populations in the highest helium condition. The 1000 appm He 

T91 nominal carbon condition exhibited a high density of bubbles that remained stable from 50 to 

300 dpa and disappeared by 450 dpa, resulting in a unimodal distribution, a drop in cavity density 

and an increase in diameter (Figure 5.12a and Figure 5.12b). The disappearance of bubbles was 

only observed in the excess carbon condition at the highest damage level, whereas the nominal 

carbon condition bubble population maintained its density at all damage levels. Since the only 

difference between the two cases was the presence of excess carbon, it had to play an integral role 

in the dissipation of helium bubbles.  

 The loss of bubbles between 300 and 450 dpa (Figure 5.16) cannot simply be explained 

by sink strengths.  While the carbide sink strength increased substantially (~3x) between 300 and 

450 dpa, the cavity distributions in Figure 5.16 show that the small bubbles were preferentially 

disappearing over the larger cavities. A strong carbide sink strength would mainly serve to reduce 

bias-driven growth, which would preferentially affect the larger cavities, not helium-stabilized 

bubbles. For carbides to be the factor influencing the disappearance of He bubbles, they must exert 

an effect not captured by the sink strength. 

The HAADF STEM images in Figure 5.17 show that many of the small bubbles appear to 

be decorating the carbides at 300 dpa, suggesting an association between the carbides and helium 

bubbles. Both carbon and chromium are known to segregate to cavity surfaces and form 

precipitates [62,95,96]. Figure 5.22a shows an increasing density of carbides in the 100 and 1000 

appm He conditions going from 300 to 450 dpa, indicating the carbides may have preferentially 

nucleated on helium bubbles. It is very likely that the bubbles nucleated prior to the carbides, since 

bubbles were observed as early as 50 dpa in the nominal carbon condition. 

For the helium bubbles to dissolve, helium atoms must be ejected from the bubbles. There 

are several mechanisms that could cause the disappearance of helium bubbles; resolution by 

displacement cascades, thermal emission, and bubble coalescence.  Resolution of helium atoms 

from damage cascades has been predicted by several models [97–100] and has also been observed 

to occur experimentally in Fe-Cr alloys [101]. Thermal emission of helium is only observed at 
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very high temperatures. The He dissociation energy from bubbles is estimated from molecular 

dynamics studies [102,103] to be ~2.12 eV, which is high enough to prevent helium emission at 

460ºC unless bubbles are extremely over-pressurized.  Helium bubbles with high pressure (high 

He/vacancy ratios in the range of 4-5) are likely to emit helium atoms. However, since bubbles in 

this work are assumed to be at or below equilibrium pressure, thermal helium emission is very 

improbable.  

Once free from a bubble, the helium atoms are free to migrate back to the bubble or diffuse 

elsewhere and possibly nucleate a second generation of bubbles. However, carbides can serve as 

a sink for emitted helium atoms. Further, the proximity of the carbides to the bubbles eliminated 

the need for long-range migration of He to reach the matrix-carbide interface. 

Since the M2X carbides grow to relatively large sizes (in excess of 50 nm by 450 dpa) and 

exhibit a high surface area, it is possible that helium emitted from bubbles disperses along the 

carbide interface rather than re-clustering into visible bubbles. M2X has been previously 

characterized by Getto [73] as semi-coherent within the HT9 matrix. M2X primarily grows in the 

[101] direction (length), which exhibits a 16% d-spacing mismatch with the matrix. This would 

result in misfit dislocations occurring along this direction approximately once every 1.4 nm. Misfit 

dislocation sites have been known to be the primary occupational site for helium at semi-coherent 

interfaces [104–107]. Given that the M2X carbide length nearly doubled between 300 and 450 dpa 

and their density increased significantly as well (Figure 5.22a), the number of sites for the emitted 

helium atoms would also have increased. Dissipation of bubbles only occurred in the presence of 

significant M2X precipitation at 300 dpa and above. At 150 dpa, the bubble density was similar to 

that of the nominal carbon condition (comparing Figure 5.13b with Figure 5.3b), indicating that 

carbides are yet to have an effect. However, once significant carbide densities formed by 300 dpa, 

the density of bubbles in the excess carbon condition decreased. The large drop in bubble densities 

between 300 and 450 dpa (seen in Figure 5.16 distributions) occurred only because of the increase 

in carbide size and density. 

Helium emitted by cascade displacement  would find a preferential site at misfit 

dislocations along the matrix-carbide interface. Molecular dynamics calculations by Heinisch et 

al. [108] estimate that the binding energy of helium atoms at dislocations to be approximately 2.5 

eV, which is strong enough to prevent helium emission up to temperatures of ~530°C. Therefore, 
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any helium emitted from bubbles will find energetically favorable sites to occupy at nearby misfit 

dislocations on the M2X-matrix interface. 

In addition to providing a site for helium atoms, the M2X carbides may also influence 

helium bubble loss by decreasing the vacancy flux to bubbles. The M2X carbides are oversized 

precipitates in the T91 matrix, and thus require a vacancy flux to grow. Since the precipitates grew 

significantly between 300 and 450 dpa (Figure 5.22), they must have served as strong vacancy 

sinks. The extremely high sink strength achieved in the 1000 appm He condition (14.4 x 1014 m-2 

by 450 dpa) and the spatial proximity of the carbides to the bubbles would significantly reduce the 

vacancy flux to bubbles. Incoherent or semi-coherent precipitates have been known to serve as fast 

diffusion paths for point defects created during irradiation [15], which can channel defects along 

the surface to pre-existing bubbles. A similar mechanism could result in the coalescence of helium 

bubbles at the precipitate interfaces. From the images shown in Figure 5.17, it is not clear whether 

the larger cavities in the 450 dpa case were pre-existing or formed as a result of coalescence of 

helium bubbles. While the exact mechanisms for the disappearance of the helium bubbles cannot 

be determined by taking snapshots at coarse damage levels, the displacement cascade resolution 

and bubble coalescence at the matrix-precipitate interface offer two likely explanations. 

The absence of bubbles in the excess carbon condition of the 100 appm He case also 

suggests  He bubble dissolution. No bimodal cavity distribution was observed at any damage level 

for the 100 appm He excess carbon case. Since swelling suppression was still apparent in the 100 

appm He condition (Figure 5.13a) relative to the lower helium conditions, it is possible that a 

bimodal distribution of cavities was present early in the irradiation, but by 150 dpa all of the bubble 

sites had been dispersed by carbide precipitation. Since the 100 appm He condition would exhibit 

a lower density of bubbles compared to the 1000 appm He condition, it is reasonable to expect that 

the bubbles were dispersed at a lower damage level. 

It is clear through the evidence presented in the 100 and 1000 appm He excess carbon 

conditions that the formation of M2X was responsible for the dissolution of helium bubbles. 

 

6.5 Helium retention 

 

In addition to enhancing the mobility of vacancies, higher temperature irradiations will also 

enhance the mobility of the helium atoms themselves. The high mobility of helium at temperature 
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becomes a concern of helium retention. As discussed in Section 6.1.2, all of the helium could not 

be accounted for in the observed bubble populations in the 100 and 1000 appm He conditions. It 

is possible that helium is capable of diffusing away from the irradiated/implanted region of the 

sample, or possibly escape through the surface. 

There was no evidence that helium escape was occurring in the T91 samples of this work. 

Helium is known to be a very fast diffuser in iron with a migration energy of only ~0.06 eV [109]. 

However, under irradiation conditions and in ferritic-martensitic alloys, helium’s mobility can be 

severely limited by the density of traps in the material. As mentioned previously, helium can be 

trapped at dislocations with a binding energy of ~2.5 eV, which is enough to prevent de-trapping 

up to 530ºC. High concentrations of vacancies, and the presence of Cr up to 10% have also been 

known to limit the mobility of helium in complex ferritic alloys [110]. Given that helium bubbles 

at grain boundaries were not observed in any condition in this work, it is likely that helium mobility 

was not high enough to escape trapping at dislocations or other features within the matrix. 

Additionally, if helium made it to the surface, it would be expected to agglomerate at the 

interface of the alumina coating and the metal in the nominal carbon samples.  However, no 

significant bubble formation was observed at this interface. In fact, alumina coatings have been 

shown to retain helium in spent nuclear fuel [111], and would actually serve a similar purpose for 

the alumina-coated T91. 

In the excess carbon samples, there was a distinct effect on swelling with each increment 

in helium level. Figure 5.15 shows significant differences in the cavity distributions between 0, 1, 

and 10 appm He. Even the addition of 1 appm of He had a dramatic effect on increasing the cavity 

nucleation. This suggests that if helium was escaping, it was less than 1 appm in all conditions.  

Furthermore, the bubble distributions of the 150 dpa, 1000 appm He excess and nominal carbon 

conditions are almost identical (Figure 5.16 and Figure 5.7), suggesting that helium was 

distributed similarly in both cases. Therefore, the excess and nominal carbon conditions likely 

retained the same amount of helium. Lastly, the carbides formed in the excess carbon samples 

would also contribute to reducing the mobility of helium by trapping it at misfit dislocation sites.  

Measurements of helium content and pressure contained in bubbles have been performed 

in martensitic steel EM10 using EELS techniques [112], however these measurements were only 

performed with extremely high helium levels (~5000 appm). While direct measurements of the 

helium content could not be made in the T91 samples, the lack of bubbles near the surface and at 
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grain boundaries, and the application of an alumina layer means that the majority of the helium 

was likely retained within the irradiated region. Even if a fraction of the helium escaped the 

irradiation region, the value of the results in this thesis remain, as it is the trends with varying 

helium content that are essential, rather than the actual helium values themselves. 

 

6.6 Applications to reactor systems 

 

 Pre-implanted helium is several steps removed from in-reactor generation of helium, and 

it is essential to consider the differences and the effects on cavity evolution that may result from 

these differences.  

Perhaps the most obvious difference is that in the pre-implanted helium case, the entire 

amount of helium is present from the beginning, whereas in-reactor the helium is slowly generated 

over time. This will generate a difference in the initial densities of the cavities. Figure 5.2b shows 

that the cavity densities for all pre-implanted conditions have essentially saturated by 50 dpa. The 

0 appm He condition shows an increase in cavity density up to about 150 dpa, but thereafter 

stabilizing at similar cavity densities with the 1 and 10 appm He conditions. In a reactor situation, 

where the helium will be slowly generated, it is likely that cavities will evolve in a manner in 

between that of the 0 appm He condition and the 10 appm He condition. The extent to which the 

evolution is more similar to the 0 appm He condition or the 10 appm He condition will depend on 

the helium generation rate. 

In the high damage regime (>150 dpa), the low helium cases and the 0 helium conditions 

all converged to similar cavity distributions (Figure 5.4). At this point, the growth process has 

become dominant and the swelling and cavity distributions become more and more similar. Initial 

differences in the nucleation behavior of the cavities become less important, so the differences 

between helium levels is less clear. In a reactor situation, this behavior for low helium generation 

rates would likely be the same. Small differences in He content do not seem to affect growth 

significantly, and therefore the cavity evolution would be governed by the cavity sink strengths, 

similar to the pre-implanted case. 

The formation of bimodal distributions in reactor may result in somewhat different 

swelling behavior at high helium levels compared to the pre-implanted case. Because the bimodal 
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distributions in the pre-implanted case are present very early (< 50 dpa), their suppressive effect 

on growth is present the entire time. Conversely, in a reactor environment, it would require more 

time for the helium levels to build up to a point where bimodal distributions will form. By the time 

this occurs, it is possible to have cavities which have already grown significantly. Since the 

bimodal distributions may not necessarily be present from early on in irradiation, their suppressive 

effects will not be as substantial and higher swelling would be expected in a reactor condition 

relative to a pre-implanted condition. However, the final value of swelling would depend on when 

exactly a bimodal distribution forms relative to the growth of other cavities. Additionally, because 

some cavities were allowed to grow, the relative size difference between the small bubble 

distribution and the cavity distribution would be expected to be larger in a reactor environment as 

well. 

The results of the nominal carbon samples from this thesis show that in general, swelling 

actually decreases with increasing helium content (Figure 5.3c). This result is counter-intuitive to 

the generally well accepted notion that helium tends to promote swelling. The results in this thesis 

show that helium’s effect on cavity evolution is mostly relevant in the nucleation regime, at low 

damage levels. While helium may promote swelling at lower damage levels (see 50 dpa case in 

Figure 5.3c), the work performed in this thesis was the first to show the lack of a helium effect on 

cavity evolution at high damage levels. At high damage levels, the swelling is dominated by 

growth, so small differences in helium content become unimportant. If helium levels are high 

enough to form a bimodal distribution, suppression of growth will occur, and swelling will remain 

low overall. 

Despite using ion irradiation and helium pre-implantation, this work highlights possible 

avenues to minimize swelling in reactor conditions. Swelling can be reduced either through 

minimizing cavity nucleation, or reducing cavity growth. For high damage applications, 

minimizing the growth of cavities will be the more effective strategy. Small amounts of helium do 

not result in significantly different growth rates compared to the 0 appm He condition. Additionally, 

very high amounts of helium early on will result in low swelling due to suppressed growth. 

Therefore, high helium concentrations may be beneficial for high damage applications.  However, 

for reactor applications where low overall damage levels are expected, helium will tend to increase 

swelling, as nucleation will dominate the cavity evolution. 
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The excess carbon results highlight the importance of understanding the interaction 

between helium and the microstructure. Excess carbon creates a difficult nucleation environment 

and delays the onset of cavity growth. Adding helium (up to 10 appm) actually increases swelling 

since helium combats the nucleation suppression effect of carbon. However, the suppression effect 

due to high helium levels remains the same. The results from the excess carbon samples are 

relevant for conditions where cavity nucleation is difficult, such as high sink strength materials, 

ODS alloys, or materials with high impurity concentration. Small amounts of helium in these 

environments may increase the swelling by encouraging cavity nucleation. 

The work performed in this thesis provides a map for different helium regimes, which can 

be used to evaluate the possible susceptibility of a system to swelling for reactor applications. With 

careful consideration of the material system, the damage level, and the amount of helium, this 

work can be used to guide efforts to minimize swelling. Additionally, this work also provides 

insight into the expected cavity evolution of other ion beam experiments, and the potentially 

deleterious effects of carbon contamination. The knowledge provided in this thesis will be useful 

to interpret both previous and future results for the ion beam and nuclear materials community.  
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CHAPTER 7: CONCLUSIONS

 

This chapter presents the significant conclusions gathered from the results and analysis presented 

in Chapters 5 and 6. These conclusions focus on addressing the objective discussed in Chapter 3: 

To determine the role of pre-implanted helium and carbon on the cavity evolution in ion-

irradiated T91.  

 Regardless of carbon content, cavity density increased monotonically with increasing 

helium concentration. 

 In nominal carbon conditions, and with low helium content (0, 1, and 10 appm He), cavity 

evolution was controlled by cavity sink strengths.  

 In nominal carbon conditions, and with high helium content (100 and 1000 appm He), the 

creation of helium clusters reduced the critical cavity radius and resulted in the formation of a 

stable bimodal cavity distribution.  

 In nominal carbon conditions, and with high helium content (100 and 1000 appm He), a 

high cavity sink strength, helium trapping, and cavity bias resulted in a suppression of swelling.  

 In nominal carbon conditions, dislocation loops, dislocation network, and G-phase 

precipitates had no effect on cavity evolution.  

 In excess carbon conditions, cavity nucleation was suppressed due to carbon trapping of 

vacancies and the formation of carbides.  

 In excess carbon conditions, cavity growth was suppressed at the highest dose due to a 

high carbide sink strength.  

 At low He contents, excess carbon suppressed nucleation of bubbles and cavities. 
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In excess carbon conditions, formation of M2X was responsible for the disappearance of 

the bubble population, likely with the aid of cascade resolution or bubble coalescence.  

 Helium content was retained within the irradiation region. 
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CHAPTER 8: FUTURE WORK

 

 The results and findings of this work provided considerable insight into the role of both 

helium and carbon on cavity nucleation. However, there are still many unanswered questions and 

areas which merit further study. 

 The effect of helium implantation method on cavity evolution. The ultimate goal of ion 

irradiations to be able to accurately emulate the effects of neutron damage as seen in-reactor. The 

experiments performed in this study all utilized pre-implanted helium, while in a reactor, the 

helium is produced over time. Performing dual beam irradiations, with a He beam in addition to 

an Fe beam in theory would approach a more realistic emulation of reactor experiments. A rigorous 

series of dual beam experiments would provide additional insight into how cavities evolve in-

reactor. 

 The effect of irradiation temperature on cavity evolution. All of the experiments in this 

thesis were performed at a single irradiation temperature. The behavior of helium, and its role on 

cavity evolution is no doubt sensitive to changes in temperature. Ion irradiation studies at various 

temperatures would help understand how temperature affects the formation of cavities and bubble 

populations. 

 The fate of helium atoms in the material. While it is obvious that helium had a significant 

role in cavity evolution, helium is very insoluble in metals and retains very high mobility. To fully 

understand its role in influencing cavity nucleation, it is important to know where the implanted 

helium atoms migrate to—whether they become trapped on dislocations, precipitates, or migrate 

to grain boundaries or the surface and how much is retained within cavities and bubbles. This is a 
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complex problem that would require advanced characterization techniques and would benefit from 

in situ experiments.  

 The effect of carbon in solution vs. in precipitates on cavity evolution. While this study was 

able to see a dramatic effect of carbon on the cavity evolution, the state of carbon could not be 

easily assessed. Techniques to further and accurately differentiate how much carbon was in 

solution and how much was in precipitates and how that evolved with damage would provide 

considerable insight into the mechanisms for carbon-induced cavity suppression. 

 Coupling of the results with modelling methods. The cluster dynamics modeling 

community will greatly benefit from the results presented in this thesis. However, the models 

currently available struggle to describe the behavior seen experimentally. As seen from the results 

presented in this thesis, the behavior of cavities with helium can be very complex. A 

comprehensive cluster dynamics model would serve to provide insight into how helium interacts 

with point defects at levels not observable with the microscope which ultimately result in the cavity 

distributions observed experimentally.  
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APPENDICES

 

 

 

 

APPENDIX A: TEMPERATURE HISTOGRAMS 

 The temperature histograms for each irradiation performed for this thesis are presented in 

this appendix. 

  



 203 

NOMINAL CARBON CAMPAIGN: 50 DPA (50 DPA TOTAL), 460ºC IRRADIATION 

Figure A1. Temperature histograms for the 50 dpa, 460°C irradiation of alumina-coated T91 C2269 with 4.4 MeV Fe2+ ions 

for implanted He levels of 0, 1, 10, 100, and 1000 appm. 
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NOMINAL CARBON CAMPAIGN: +100 DPA (150 DPA TOTAL), 460ºC IRRADIATION 

Figure A2. Temperature histograms for the +100 dpa (150 dpa total), 460°C irradiation of alumina-coated T91 C2269 with 4.4 

MeV Fe2+ ions for implanted He levels of 0, 1, 10, 100, and 1000 appm. 
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NOMINAL CARBON CAMPAIGN: 300 DPA (300 D PA TOTAL), 460ºC IRRADIATION  

Figure A3. Temperature histograms for the 300 dpa, 460°C irradiation of alumina-coated T91 C2269 with 5.0 MeV Fe2+ ions 

for implanted He levels of 0, 1, 10, 100, and 1000 appm. 



 206 

EXCESS CARBON CAMPAIGN: 150 DPA (150 DPA TOTAL), 460ºC IRRADIATION 

Figure A4. Temperature histograms for the 150 dpa, 460°C irradiation of uncoated T91 C2269 with 5.0 MeV Fe2+ ions for 

implanted He levels of 0, 1, 10, 100, and 1000 appm. 
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EXCESS CARBON CAMPAIGN: +150 DPA (300 DPA TOTAL), 460ºC IRRADIATION 

Figure A5. Temperature histograms for the +150 dpa (300 dpa total), 460°C irradiation of uncoated T91 C2269 with 5.0 MeV 

Fe2+ ions for implanted He levels of 0, 1, 10, 100, and 1000 appm. 
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EXCESS CARBON CAMPAIGN: +150 DPA (450 DPA TOTA L), 460ºC IRRADIATION  

Figure A6. Temperature histograms for the +150 dpa (450 dpa total), 460°C irradiation of uncoated T91 C2269 with 5.0 MeV 

Fe2+ ions for implanted He levels of 0, 1, 10, 100, and 1000 appm. 
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APPENDIX B: LIFTOUT IMAGES 

 High angle annular dark field images (HAADF) and Bright field (BF) STEM images for 

each irradiated condition are presented in this appendix.  
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NOMINAL CARBON CAMPAIGN:50 DPA:460ºC:0 APPM HE 

  

  

Figure B1. HAADF and corresponding BF STEM images for a liftout from the 50 dpa, 0 apppm He, nominal carbon 

condition. 
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NOMINAL CARBON CAMPAIGN:50 DPA:460ºC:1 APPM HE  

 

 Figure B2. HAADF and corresponding BF STEM images for a liftout from the 50 dpa, 1 apppm He, nominal carbon 

condition. 
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NOMINAL CARBON CAMPAIGN:50 DPA:460ºC:10 APPM HE 

  

 
Figure B3. HAADF and corresponding BF STEM images for a liftout from the 50 dpa, 10 apppm He, nominal carbon 

condition. 
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NOMINAL CARBON CAMPAIGN:50 DPA:460ºC:100 APPM HE 

 
Figure B4. HAADF and corresponding BF STEM images for a liftout from the 50 dpa, 100 apppm He, nominal carbon 

condition. 
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NOMINAL CARBON CAMPAIGN:50 DPA:460ºC:1000 APPM HE 

 
Figure B5. HAADF and corresponding BF STEM images for a liftout from the 50 dpa, 1000 apppm He, nominal carbon 

condition. 
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NOMINAL CARBON CAMPAIGN:150 DPA:460ºC:0 APPM HE 

 

Figure B6. HAADF and corresponding BF STEM images for a liftout from the 150 dpa, 0 apppm He, nominal carbon 

condition. 
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NOMINAL CARBON CAMPAIGN:150 DPA:460ºC:1 APPM HE 

 
Figure B7. HAADF and corresponding BF STEM images for a liftout from the 150 dpa, 1 apppm He, nominal carbon 

condition. 
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NOMINAL CARBON CAMPAIGN:150 DPA:460ºC:10 APPM HE 

 

 
Figure B8. HAADF and corresponding BF STEM images for a liftout from the 150 dpa, 10 apppm He, nominal carbon 

condition. 

 

 

 



 218 

 

NOMINAL CARBON CAMPAIGN:150 DPA:460ºC:100 APPM HE 

 

 
Figure B9. HAADF and corresponding BF STEM images for a liftout from the 150 dpa, 100 apppm He, nominal carbon 

condition. 
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NOMINAL CARBON CAMPAIGN:150 DPA:460ºC:1000 APPM HE 

 

 

Figure B10. HAADF and corresponding BF STEM images for a liftout from the 150 dpa, 1000 apppm He, nominal carbon 

condition. 
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NOMINAL CARBON CAMPAIGN:300 DPA:460ºC:0 APPM HE 

 
Figure B11. HAADF and corresponding BF STEM images for a liftout from the 300 dpa, 0 apppm He, nominal carbon 

condition. 
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NOMINAL CARBON CAMPAIGN:300 DPA:460ºC:1 APPM HE 

 

Figure B12. HAADF and corresponding BF STEM images for a liftout from the 300 dpa, 1 apppm He, nominal carbon 

condition. 
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NOMINAL CARBON CAMPAIGN:300 DPA:460ºC:10 APPM HE 

  

Figure B13. HAADF and corresponding BF STEM images for a liftout from the 300 dpa, 10 apppm He, nominal carbon 

condition. 
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NOMINAL CARBON CAMPAIGN:300 DPA:460ºC:100 APPM HE 

 

 

Figure B14. HAADF and corresponding BF STEM images for a liftout from the 300 dpa, 100 apppm He, nominal carbon 

condition. 
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NOMINAL CARBON CAMPAIGN:300 DPA:460ºC:1000 APPM HE 

 

 

Figure B15. HAADF and corresponding BF STEM images for a liftout from the 300 dpa, 1000 apppm He, nominal carbon 

condition. 
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EXCESS CARBON CAMPAIGN:150 DPA:460ºC:0 APPM HE 

 

Figure B16. HAADF and corresponding BF STEM images for a liftout from the 150 dpa, 0 apppm He, excess carbon 

condition. 

 



 226 

 

EXCESS CARBON CAMPAIGN:150 DPA:460ºC:1 APPM HE 

  

Figure B17. HAADF and corresponding BF STEM images for a liftout from the 150 dpa, 1 apppm He, excess carbon 

condition. 
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EXCESS CARBON CAMPAIGN:150 DPA:460ºC:10 APPM HE 

  

Figure B18. HAADF and corresponding BF STEM images for a liftout from the 150 dpa, 10 apppm He, excess carbon 

condition. 
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EXCESS CARBON CAMPAIGN:150 DPA:460ºC:100 APPM HE 

 

  

Figure B19. HAADF and corresponding BF STEM images for a liftout from the 150 dpa, 100 apppm He, excess carbon 

condition. 
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EXCESS CARBON CAMPAIGN:150 DPA:460ºC:1000 APPM HE 

Figure B20. HAADF and corresponding BF STEM images for a liftout from the 150 dpa, 1000 apppm He, excess carbon 

condition. 
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EXCESS CARBON CAMPAIGN:300 DPA:460ºC:0 APPM HE 

  

Figure B21. HAADF and corresponding BF STEM images for a liftout from the 300 dpa, 0 apppm He, excess carbon 

condition. 
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EXCESS CARBON CAMPAIGN:300 DPA:460ºC:1 APPM HE 

  

Figure B22. HAADF and corresponding BF STEM images for a liftout from the 300 dpa, 1 apppm He, excess carbon 

condition. 
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EXCESS CARBON CAMPAIGN:300 DPA:460ºC:10 APPM HE 

  

Figure B23. HAADF and corresponding BF STEM images for a liftout from the 300 dpa, 10 apppm He, excess carbon 

condition. 
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EXCESS CARBON CAMPAIGN:300 DPA:460C:100 APPM HE 

 
Figure B24. HAADF and corresponding BF STEM images for a liftout from the 300 dpa, 100 apppm He, excess carbon 

condition. 
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EXCESS CARBON CAMPAIGN:300 DPA:460ºC:1000 APPM HE 

 
Figure B25. HAADF and corresponding BF STEM images for a liftout from the 300 dpa, 1000 apppm He, excess carbon 

condition. 
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EXCESS CARBON CAMPAIGN:450 DPA:460ºC:0 APPM HE 

 
Figure B26. HAADF and corresponding BF STEM images for a liftout from the 450 dpa, 0 apppm He, excess carbon 

condition. 
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EXCESS CARBON CAMPAIGN:450 DPA:460ºC:1 APPM HE 

 
Figure B27. HAADF and corresponding BF STEM images for a liftout from the 450 dpa, 1 apppm He, excess carbon 

condition. 
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EXCESS CARBON CAMPAIGN:450 DPA:460ºC:10 APPM HE 

 

 
Figure B28. HAADF and corresponding BF STEM images for a liftout from the 450 dpa, 10 apppm He, excess carbon 

condition. 
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EXCESS CARBON CAMPAIGN:450 DPA:460ºC:100 APPM HE 

 
Figure B29. HAADF and corresponding BF STEM images for a liftout from the 450 dpa, 100 apppm He, excess carbon 

condition. 
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EXCESS CARBON CAMPAIGN:450 DPA:460ºC:1000 APPM HE 

 

Figure B30. HAADF and corresponding BF STEM images for a liftout from the 450 dpa, 1000 apppm He, excess carbon 

condition. 
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APPENDIX C: CAVITY DEPTH PROFILES AND DISTRIBUTIONS 

 Cavity diameter, density, swelling, are shown as a function of depth within the sample for 

every condition studied in this thesis. Cavity distributions from the profiling are shown for the 

500-700 nm depth range. Bubble populations are not considered in the depth profiling and 

distributions.

NOMINAL CARBON CAMPAIGN:50 DPA:460ºC:0 APPM HE 

 

 

Figure C1. Cavity diameter, density and swelling are plotted as a function of depth for the 

50 dpa, 0 appm He, nominal carbon condition. The cavity distribution at 500-700 nm is also 

shown. 
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NOMINAL CARBON CAMPAIGN:50 DPA:460ºC:1 APPM HE 

  

Figure C2. Cavity diameter, density and swelling are plotted as a function of depth for the 

50 dpa, 1 appm He, nominal carbon condition. The cavity distribution at 500-700 nm is also 

shown. 
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NOMINAL CARBON CAMPAIGN:50 DPA:460ºC:10 APPM HE 

  

Figure C3. Cavity diameter, density and swelling are plotted as a function of depth for the 

50 dpa, 10 appm He, nominal carbon condition. The cavity distribution at 500-700 nm is 

also shown. 
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NOMINAL CARBON CAMPAIGN:50 DPA:460ºC:100 APPM HE 

  

Figure C4. Cavity diameter, density and swelling are plotted as a function of depth for the 

50 dpa, 100 appm He, nominal carbon condition. The cavity distribution at 500-700 nm is 

also shown. 
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NOMINAL CARBON CAMPAIGN:50 DPA:460ºC:1000 APPM HE 

 

Figure C5. Cavity diameter, density and swelling are plotted as a function of depth for the 

50 dpa, 1000 appm He, nominal carbon condition. The cavity distribution at 500-700 nm is 

also shown. 

 

 

 

 

 

 

 



 245 

NOMINAL CARBON CAMPAIGN:150 DPA:460ºC:0 APPM HE 

 

Figure C6. Cavity diameter, density and swelling are plotted as a function of depth for the 

150 dpa, 0 appm He, nominal carbon condition. The cavity distribution at 500-700 nm is 

also shown. 
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NOMINAL CARBON CAMPAIGN:150 DPA:460ºC:1 APPM HE 

 

Figure C7. Cavity diameter, density and swelling are plotted as a function of depth for the 

150 dpa, 1 appm He, nominal carbon condition. The cavity distribution at 500-700 nm is 

also shown. 
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NOMINAL CARBON CAMPAIGN:150 DPA:460ºC:10 APPM HE 

 

Figure C8. Cavity diameter, density and swelling are plotted as a function of depth for the 

150 dpa, 10 appm He, nominal carbon condition. The cavity distribution at 500-700 nm is 

also shown. 
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NOMINAL CARBON CAMPAIGN:150 DPA:460ºC:100 APPM HE 

 

Figure C9. Cavity diameter, density and swelling are plotted as a function of depth for the 

150 dpa, 100 appm He, nominal carbon condition. The cavity distribution at 500-700 nm is 

also shown. 
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NOMINAL CARBON CAMPAIGN:150 DPA:460ºC:1000 APPM HE

  

Figure C10. Cavity diameter, density and swelling are plotted as a function of depth for the 

150 dpa, 1000 appm He, nominal carbon condition. The cavity distribution at 500-700 nm 

is also shown. 
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NOMINAL CARBON CAMPAIGN:300 DPA:460ºC:0 APPM HE 

  

Figure C11. Cavity diameter, density and swelling are plotted as a function of depth for the 

300 dpa, 0 appm He, nominal carbon condition. The cavity distribution at 500-700 nm is 

also shown 
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NOMINAL CARBON CAMPAIGN:300 DPA:460ºC:1 APPM HE 

 

Figure C12. Cavity diameter, density and swelling are plotted as a function of depth for the 

300 dpa, 1 appm He, nominal carbon condition. The cavity distribution at 500-700 nm is 

also shown. 
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NOMINAL CARBON CAMPAIGN:300 DPA:460ºC:10 APPM HE 

  

Figure C13. Cavity diameter, density and swelling are plotted as a function of depth for the 

300 dpa, 10 appm He, nominal carbon condition. The cavity distribution at 500-700 nm is 

also shown. 
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NOMINAL CARBON CAMPAIGN:300 DPA:460ºC:100 APPM HE 

  

Figure C14. Cavity diameter, density and swelling are plotted as a function of depth for the 

300 dpa, 100 appm He, nominal carbon condition. The cavity distribution at 500-700 nm is 

also shown. 
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NOMINAL CARBON CAMPAIGN:300 DPA:460ºC:1000 APPM HE 

 

Figure C15. Cavity diameter, density and swelling are plotted as a function of depth for the 

300 dpa, 1000 appm He, nominal carbon condition. The cavity distribution at 500-700 nm 

is also shown. 
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EXCESS CARBON CAMPAIGN:150 DPA:460ºC:0 APPM HE 

 

Figure C16. Cavity diameter, density and swelling are plotted as a function of depth for the 

150 dpa, 0 appm He, excess carbon condition. The cavity distribution at 500-700 nm is also 

shown. 
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EXCESS CARBON CAMPAIGN:150 DPA:460ºC:1 APPM HE 

 

Figure C17. Cavity diameter, density and swelling are plotted as a function of depth for the 

150 dpa, 1 appm He, excess carbon condition. The cavity distribution at 500-700 nm is also 

shown. 
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EXCESS CARBON CAMPAIGN:150 DPA:460ºC:10 APPM HE 

 

Figure C18. Cavity diameter, density and swelling are plotted as a function of depth for the 

150 dpa, 10 appm He, excess carbon condition. The cavity distribution at 500-700 nm is 

also shown. 
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EXCESS CARBON CAMPAIGN:150 DPA:460ºC:100 APPM HE 

 

Figure C19. Cavity diameter, density and swelling are plotted as a function of depth for the 

150 dpa, 100 appm He, excess carbon condition. The cavity distribution at 500-700 nm is 

also shown. 
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EXCESS CARBON CAMPAIGN:150 DPA:460ºC:1000 APPM HE 

 

Figure C20. Cavity diameter, density and swelling are plotted as a function of depth for the 

150 dpa, 1000 appm He, excess carbon condition. The cavity distribution at 500-700 nm is 

also shown. 
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EXCESS CARBON CAMPAIGN:300 DPA:460ºC:0 APPM HE 

 

Figure C21. Cavity diameter, density and swelling are plotted as a function of depth for the 

300 dpa, 0 appm He, excess carbon condition. The cavity distribution at 500-700 nm is also 

shown. 
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EXCESS CARBON CAMPAIGN:300 DPA:460ºC:1 APPM HE 

 

Figure C22. Cavity diameter, density and swelling are plotted as a function of depth for the 

300 dpa, 1 appm He, excess carbon condition. The cavity distribution at 500-700 nm is also 

shown. 
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EXCESS CARBON CAMPAIGN:300 DPA:460ºC:10 APPM HE 

 

Figure C23. Cavity diameter, density and swelling are plotted as a function of depth for the 

300 dpa, 10 appm He, excess carbon condition. The cavity distribution at 500-700 nm is 

also shown. 
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EXCESS CARBON CAMPAIGN:300 DPA:460C:100 APPM HE 

 

Figure C24. Cavity diameter, density and swelling are plotted as a function of depth for the 

300 dpa, 100 appm He, excess carbon condition. The cavity distribution at 500-700 nm is 

also shown. 
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EXCESS CARBON CAMPAIGN:300 DPA:460ºC:1000 APPM HE 

 

Figure C25. Cavity diameter, density and swelling are plotted as a function of depth for the 

300 dpa, 1000 appm He, excess carbon condition. The cavity distribution at 500-700 nm is 

also shown. 
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EXCESS CARBON CAMPAIGN:450 DPA:460ºC:0 APPM HE 

 

Figure C26. Cavity diameter, density and swelling are plotted as a function of depth for the 

450 dpa, 0 appm He, excess carbon condition. The cavity distribution at 500-700 nm is also 

shown. 

 

 

 

 

 

 

 

 



 266 

EXCESS CARBON CAMPAIGN:450 DPA:460ºC:1 APPM HE 

 

Figure C27. Cavity diameter, density and swelling are plotted as a function of depth for the 

450 dpa, 1 appm He, excess carbon condition. The cavity distribution at 500-700 nm is also 

shown. 
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EXCESS CARBON CAMPAIGN:450 DPA:460ºC:10 APPM HE 

 

Figure C28. Cavity diameter, density and swelling are plotted as a function of depth for the 

450 dpa, 10 appm He, excess carbon condition. The cavity distribution at 500-700 nm is 

also shown. 
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EXCESS CARBON CAMPAIGN:450 DPA:460ºC:100 APPM HE 

 

Figure C29. Cavity diameter, density and swelling are plotted as a function of depth for the 

450 dpa, 100 appm He, excess carbon condition. The cavity distribution at 500-700 nm is 

also shown. 
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EXCESS CARBON CAMPAIGN:450 DPA:460ºC:1000 APPM HE 

 

Figure C30. Cavity diameter, density and swelling are plotted as a function of depth for the 

450 dpa, 1000 appm He, excess carbon condition. The cavity distribution at 500-700 nm is 

also shown. 
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APPENDIX D: CALCULATION OF VACANCY SUPERSATURATION FOR CRITICAL 

CAVITY RADIUS 

 

 

The vacancy supersaturation is defined as / o

v vC C , where 
vC  is the steady-state concentration of 

vacancies in the solid, and o

vC  is the concentration of thermal vacancies.  
vC  was calculated 

assuming a low temperature, high sink density regime as per [15]. The equation for 
vC  is given 

as: 

1/2
2 2

0

22 4

is is is s
v

iv iv vs iv

K K K K C
C

K K K K

 
    

 
                     (D.1) 

  where isK , ivK and vsK are recombination constants, 0K is the damage rate (in 

displacements/volume/sec) and 
sC  is the concentration of sinks. The recombination constants 

were calculated using the following equations: 

4is i iK r D       (D.2) 

4iv i iK r D       (D.3) 

4vs i vK r D       (D.4) 

  where ir  is the interaction radius, estimated as 10 times the lattice parameter, and iD  and 

vD are the diffusion coefficients for interstitials and vacancies. iD  and vD were calculated using 

the following equations: 
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 where  is the frequency factor, a  is the lattice parameter, k  is the Boltzmann constant,  

T   is the irradiation temperature, and i

mE and v

mE  are the migration energies for vacancies and 

interstitials, respectively.  

 

The equation for the thermal vacancy concentration, o

vC , is given as: 
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 where   is the atomic volume ( 3a ), 
fS  is the vacancy entropy of formation, and 

fE is 

the vacancy formation energy. The necessary parameters for these equations are summarized in 

Table D.1. 
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Table D.1 Parameters used for calculation of vacancy super-saturation 

 

  

Symbol Definition Value Ref. 

T 
Irradiation 

Temperature 
460°C 

- 

Ω 
Atomic 

Volume 
2.38 x 10-29

 m
-3 

- 

Ko Damage Rate 1 x 10-3 dpa/s - 

m

vE  

Vacancy 

Migration 

Energy 

0.63 eV 

[14] 

fE  
Vacancy 

Formation 

Energy 

1.6 eV 

[14] 

m

iE  

Interstitial 

Migration 

Energy 

0.22 eV 

[14] 

a  
Lattice 

Parameter 
0.288 nm 

- 

  

Diffusion 

Frequency 

Factor 

1013 s-1 

- 

fS  
Vacancy 

formation 

entropy 

2.17k 

- 

sC  Sink density 10-10 nm-3 - 

    



 273 

REFERENCES

 

[1] G.S. Was, J.T. Busby, T. Allen, E.A. Kenik, A. Jenssen, S.M. Bruemmer, J. Gan, A.D. 

Edwards, P.M. Scott, P.L. Andresen, Emulation of neutron irradiation effects with 

protons : validation of principle, J. Nucl. Mater. 300 (2002) 198–216. 

[2] G.S. Was, Z. Jiao, E. Getto, K. Sun, A.M. Monterrosa, S.A. Maloy, O. Anderoglu, B.H. 

Sencer, M. Hackett, Emulation of reactor irradiation damage using ion beams, Scr. Mater. 

88 (2014) 33–36. doi:10.1016/j.scriptamat.2014.06.003. 

[3] S.J. Zinkle, L.L. Snead, Opportunities and limitations for ion beams in radiation effects 

studies : Bridging critical gaps between charged particle and neutron irradiations, Scr. 

Mater. (2017). doi:10.1016/j.scriptamat.2017.06.041. 

[4] I.L. Singer, Absorption of carbon from residual gases during Ti implantation of alloys, 

Appl. Phys. Lett. 43 (1983) 457. doi:10.1063/1.94387. 

[5] J.G. Gigax, H. Kim, E. Aydogan, F.A. Garner, S. Maloy, J.G. Gigax, H. Kim, E. 

Aydogan, F.A. Garner, S. Maloy, Beam-contamination-induced compositional alteration 

and its neutron-atypical consequences in ion simulation of neutron-induced void swelling, 

Mater. Res. Lett. 0 (2017) 1–8. doi:10.1080/21663831.2017.1323808. 

[6] K. Farrell, M.B. Lewis, N.H. Packan, Simultaneous Bombardment with Helium, 

Hydrogen, and Heavy Ions to Simulate Microstructural Damage from Fission or Fusion 

Neutrons, Scr. Metall. 12 (1978) 1121–1124. 

[7] F.. Garner, M.. Toloczko, B.. Sencer, Comparison of swelling and irradiation creep 

behavior of fcc-austenitic and bcc-ferritic/martensitic alloys at high neutron exposure, J. 

Nucl. Mater. 276 (2000) 123–142. doi:10.1016/S0022-3115(99)00225-1. 

[8] E. Getto, Z. Jiao, A.M. Monterrosa, K. Sun, G.S. Was, Effect of pre-implanted helium on 

void swelling evolution in self-ion irradiated HT9, J. Nucl. Mater. 462 (2015) 458–469. 

doi:10.1016/j.jnucmat.2015.01.045. 

[9] X. Wang, A.M. Monterrosa, F. Zhang, H. Huang, Q. Yan, Z. Jiao, G.S. Was, L. Wang, 

Void swelling in high dose ion-irradiated reduced activation ferritic–martensitic steels, J. 

Nucl. Mater. 462 (2015) 119–125. doi:10.1016/j.jnucmat.2015.03.050. 

[10] I.L. Singer, Carburization of steel surfaces during implantation of Ti ions at high fluences 

Carburization of steel surfaces during implantation of Ti ions at high fluences, 419 (1983). 

doi:10.1116/1.571934. 



 274 

[11] I.L. Singer, Surface analysis, ion implantation and tribological processes affecting steels, 

Appl. Surf. Sci. 18 (1984) 28–62. 

http://www.sciencedirect.com/science/article/pii/0378596384900370. 

[12] G.S. Was, S. Taller, Z. Jiao, A.M. Monterrosa, D. Woodley, D. Jennings, T. Kubley, F. 

Naab, O. Toader, E. Uberseder, Resolution of the Carbon Contamination Problem in Ion 

Irradiation Experiments, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. 

with Mater. Atoms. Accepted (2017). 

[13] D.R. Harries, R.L. Klueh, High-Chromium Ferritic and Martensitic Steels for Nuclear 

Applications, 2001. 

[14] J.J. Penisten, The Mechanism of Radiation- Induced Segregation in Ferritic-Martensitic 

Steels, Ph.D. Thesis. (2012). 

[15] G.S. Was, Fundamentals of Radiation Materials Science: Metals and Alloys, Springer, 

2007. 

[16] B.H. Sencer, J.R. Kennedy, J.I. Cole, S. a. Maloy, F. a. Garner, Microstructural analysis of 

an HT9 fuel assembly duct irradiated in FFTF to 155dpa at 443°C, J. Nucl. Mater. 393 

(2009) 235–241. doi:10.1016/j.jnucmat.2009.06.010. 

[17] B.H. Sencer, J.R. Kennedy, J.I. Cole, S. a. Maloy, F. a. Garner, Microstructural stability of 

an HT-9 fuel assembly duct irradiated in FFTF, J. Nucl. Mater. 414 (2011) 237–242. 

doi:10.1016/j.jnucmat.2011.03.050. 

[18] D.S. Gelles, Microstructural examination of commercial ferritic alloys at 200 dpa, J. Nucl. 

Mater. 237 (1996) 293–298. 

[19] D. Gelles, Microstructural examination of commercial ferritic alloys at 200 dpa, J. Nucl. 

Mater. 237 (1996) 293–298. 

http://www.sciencedirect.com/science/article/pii/S002231159600222X (accessed February 

4, 2014). 

[20] M.B. Toloczko, F.A. Garner, Irradiation creep and void swelling of two LMR heats of 

HT9 at 400C and 160 dpa, J. Nucl. Mater. 237 (1996) 289–292. 

[21] M.. Toloczko, F.A. Garner, Variability of Irradiation Creep and Swelling of HT9 

Irradiated to High Neutron Fluence at 400-600C, Eff. Radiat. Mater. 18th Symp. (1999) 

765–779. 

[22] M.B. Toloczko, F.A. Garner, C.R. Eiholzer, Irradiation creep and swelling of the US 

fusion heats of HT9 and 9CrklMo to 208 dpa at - 4OV ’ C *, 215 (1994) 604–607. 

[23] J.J. Kai, R.L. Klueh, Microstructural analysis of neutron-irradiated martensitic steels, J. 

Nucl. Mater. 230 (1996) 116–123. 

[24] J.M. Vitek, R.L. Klueh, Microstructure of 9Cr-1MoVNb Steel Irradiated to 36 dpa at 

Elevated Temperatures in HFIR, J. Nucl. Mater. 123 (1984) 254–259. 

[25] E.A. Little, Microstructural evolution in irradiated ferritic-martensitic steels: transitions to 

high dose behaviour, 206 (1993) 324–334. 



 275 

[26] G.R. Odette, On mechanisms controlling swelling in ferritic and martensitic alloys, J. 

Nucl. Mater. 157 (1988) 921–927. 

[27] A.. Dvoriashin, S.. Porollo, Y.. Konobeev, F.A. Garner, Influence of high dose neutron 

irradiation on microstructure of EP-450 ferritic–martensitic steel irradiated in three 

Russian fast reactors, J. Nucl. Mater. 329–333 (2004) 319–323. 

doi:10.1016/j.jnucmat.2004.04.309. 

[28] A. Ward, S. Fisher, A Comparison of Heavy Ion-Irradiated Ferritic and Austenitic Steels 

in the Early Stages of Damage, Eff. Radiat. Mater. 15th Int. Symp. ASTM STP 1125. 

(1992) 1167–1179. 

[29] G. Ayrault, Cavity Formation During Single and Dual-Ion Irradiation in a 9Cr-1Mo 

Ferritic Alloy, J. Nucl. Mater. 114 (1983) 34–40. 

[30] R. Hide, K. Kusanagi, M. Taguchi, Microstructural Change in Ferritic Steels Under Heavy 

Ion Irradiation, Eff. Radiat. Mater. 14th Int. Symp. ASTM STP 1046. (1989) 61–72. 

[31] K. Asano, Y. Kohno, A. Kohyama, T. Suzuki, H. Kusanagi, Microstructural Evolution of 

an Oxide Dispersion Strengthened Steel Under Charged Particle Irradiation, J. Nucl. 

Mater. 155–157 (1988) 928–934. 

[32] R. Sindelar, J.J. Kai, D. Plumton, R. Dodd, G. Kulcinski, Microstructural Modification of 

21/4 Cr-1Mo Steel by Irradiation with 14 MeV Nickel Ions, Nucl. Instruments Methods 

Phys. Res. 16 (1986) 260–269. 

[33] A.M. Dvoriashin, V.D. Dmitriev, V.S. Khabarov, The Effect of Neutron Irradiation on the 

Microstructure and Tensile Properties of 1Cr13Mo2NbVB Steel, Eff. Radiat. Mater. 15th 

Int. Symp. (1992) 1180–1189. 

[34] J.J. Kai, G.L. Kulcinski, 14 MeV nickel-ion irradiated HT-9 ferritic steel with and without 

helium pre-implantation, J. Nucl. Mater. 175 (1990) 237–243. doi:10.1016/0022-

3115(90)90212-6. 

[35] F.A. Smidt, P.R. Malmberg, J.A. Sprague, J.E. Westmoreland, Swelling Behavior of 

Commercial Ferritic Alloys, EM-12 and HT-9, as Assessed by Heavy Ion Bombardment, 

Irradiat. Eff. Microstruct. Prop. Met. (1976) 227–241. 

[36] E. Wakai, T. Sawai, K. Furuya,  a. Naito, T. Aruga, K. Kikuchi, S. Yamashita, S. Ohnuki, 

S. Yamamoto, H. Naramoto, S. Jistukawa, Effect of triple ion beams in ferritic/martensitic 

steel on swelling behavior, J. Nucl. Mater. 307–311 (2002) 278–282. doi:10.1016/S0022-

3115(02)01076-0. 

[37] M.B. Toloczko, F.A. Garner, V.N. Voyevodin, V. V. Bryk, O. V. Borodin, V. V. 

Mel’Nychenko, A.S. Kalchenko, Ion-induced swelling of ODS ferritic alloy MA957 

tubing to 500 dpa, J. Nucl. Mater. 453 (2014) 323–333. 

doi:10.1016/j.jnucmat.2014.06.011. 

[38] L.K. Mansur, Theory of transitions in dose dependence of radiation effects in structural 

alloys, J. Nucl. Mater. 206 (1993) 306–323. doi:10.1016/0022-3115(93)90130-Q. 

[39] T.A. Kenfield, W.K. Appleby, H.J. Busboom, W.L. Bell, SWELLING OF TYPE-316 



 276 

STAINLESS STEEL AT HIGH FLUENCES IN EBR-II, i (1978) 85–97. 

[40] I.-S. Kim, J.. Hunn, N. Hashimoto, D.. Larson, P.. Maziasz, K. Miyahara, E.. Lee, Defect 

and void evolution in oxide dispersion strengthened ferritic steels under 3.2 MeV Fe+ ion 

irradiation with simultaneous helium injection, J. Nucl. Mater. 280 (2000) 264–274. 

doi:10.1016/S0022-3115(00)00066-0. 

[41] E.H. Lee, L.K. Mansur, Unified theoretical analysis of experimental swelling data for 

irradiated austenitic and ferritic/martensitic alloys, Metall. Trans. A. 21 (1990) 1021–

1035. doi:10.1007/BF02656524. 

[42] P. Dubuisson, D. Gilbon, J. Seran, Microstructural evolution of ferritic-martensitic 

irradiated in the fast breeder reactor Phenix, J. Nucl. Mater. 205 (1993) 178–189. 

[43] R.L. Sindelar, A Comparison of the Response of 316 SS and the P7 Alloy to Heavy-Ion 

Irradiation, Ph.D. Thesis. (1985). 

[44] S.J. Zinkle, E.H. Lee, Effect of Oxygen on Vacancy Cluster Morphology in Metals, 

Metall. Trans. A. 21A (1990). 

[45] S.J. Zinkle, L.E. Seitzman, W.G. Wolfer, Energy calculations for pure metals, Philos. 

Mag. A. 55 (2006). doi:10.1080/01418618708209803. 

[46] R.E. Stoller, G.R. Odette, A comparison of the relative importance of helium and vacancy 

accumulation in void nucleation, Radiat. Induc. Chang. Microstruct. 13th Int. Symp. 

(1987) 358–370. 

[47] R.E. Stoller, The influence of helium on microstructural evolution: Implications for DT 

fusion reactors, J. Nucl. Mater. 174 (1990) 289–310. 

[48] K. Farrell, P.J. Maziasz, E.H. Lee, L.K. Mansur, Modification of Radiation Damage 

Microstructure by Helium, Radiat. Eff. 78 (1983) 277–295. 

[49] K. Farrell, Experimental Effects of Helium on Cavity Formation During Irradiation - A 

Review, Radiat. Eff. 53 (1980) 175–194. 

[50] N.H. Packan, K. Farrell, Simulation of First Wall Damage: Effects of the Method of Gas 

Implantation, J. Nucl. Mater. 86 (1979) 677–681. 

[51] Z. Jiao, N. Ham, G.S. Was, Microstructure of helium-implanted and proton-irradiated T91 

ferritic/martensitic steel, J. Nucl. Mater. 367–370 A (2007) 440–445. 

doi:10.1016/j.jnucmat.2007.03.118. 

[52] S.J. Zinkle, K. Farrell, Void swelling and defect cluster formation in reactor-irradiated 

copper, J. Nucl. Mater. 168 (1989) 262–267. 

[53] S.J. Zinkle, K. Farrell, Microstructure and cavity swelling in reactor-irradiated dilute 

copper-boron alloy, J. Nucl. Mater. 179–181 (1991) 994–997. doi:10.1016/0022-

3115(91)90258-9. 

[54] S.J. Zinkle, G.L. Klucinski, R.W. Knoll, Microstructure of copper following high dose 

14MeV Cu ion irradiation, J. Nucl. Mater. 138 (1986) 46–56. doi:10.1016/0022-

3115(86)90254-0. 



 277 

[55] B.N. Singh, S.J. Zinkle, Defect accumulation in pure fcc metals in the transient regime: a 

review, J. Nucl. Mater. 206 (1993) 212–229. 

[56] Y.N. Osetsky, A. Serra, B.N. Singh, S.I. Golubov, Structure and properties of clusters of 

self-interstitial atoms in fcc copper and bcc iron, Philos. Mag. A. 80 (2000) 2131–2157. 

doi:10.1080/01418610008212155. 

[57] J.M. Leitnaker, E. Bloom, J.O. Stiegler, The Effect of Minor Constituents on Swelling in 

Stainless Steel, J. Nucl. Mater. 49 (1973) 57–66. 

[58] M.J. Makin, G.P. Walters, A.J.E. Foreman, The Void Swelling Behaviour of Electron 

Irradiated Type 316 Austenitic Steel, J. Nucl. Mater. 95 (1980) 155–170. 

[59] D.M. Follstaedt, J.A. Knapp, S.T. Picraux, Carbon-induced amorphous surface layers in 

Ti-implanted Fe, 330 (1980). doi:10.1063/1.91893. 

[60] G.J. Thomas, W. Bauer, Carbide formation on Nb surfaces during high-temperature H 

irradiation, 490 (1975). doi:10.1116/1.568570. 

[61] T.M. Williams, The Effect of Soluble Carbon on Void Swelling and Low Dose 

Dislocation Structures in Type 316 Austenitic Stainless Steel Irradiated with 46.5 MeV 

Ni6+ Ions, J. Nucl. Mater. 88 (1980) 217–225. 

[62] E.A. Little, Void-Swelling in Irons and Ferritic Steels I. Mechanisms of swelling 

suppression, J. Nucl. Mater. 87 (1979) 11–24. 

[63] D. Terentyev, K. Heinola, A. Bakaev, E.E. Zhurkin, Carbon – vacancy interaction controls 

lattice damage recovery in iron, Scr. Mater. 86 (2014) 9–12. 

doi:10.1016/j.scriptamat.2014.04.003. 

[64] C. Xu, In-Situ Proton Irradiation Creep of FM Steel T91, Ph.D. Thesis. (2014). 

[65] F. Naab, Personal communication, (2018). 

[66] J.F. Ziegler, M.D. Ziegler, J.P. Biersack, Nuclear Instruments and Methods in Physics 

Research B SRIM – The stopping and range of ions in matter ( 2010 ), Nucl. Inst. 

Methods Phys. Res. B. 268 (2010) 1818–1823. doi:10.1016/j.nimb.2010.02.091. 

[67] R.E. Stoller, M.B. Toloczko, G.S. Was, A.G. Certain, S. Dwaraknath, F.A. Garner, On the 

use of SRIM for computing radiation damage exposure, Nucl. Instruments Methods Phys. 

Res. Sect. B Beam Interact. with Mater. Atoms. 310 (2013) 75–80. 

doi:10.1016/j.nimb.2013.05.008. 

[68] J.G. Gigax, E. Aydogan, T. Chen, D. Chen, L. Shao, Y. Wu, W.Y. Lo, Y. Yang, F.A. 

Garner, The influence of ion beam rastering on the swelling of self-ion irradiated pure iron 

at 450 C, J. Nucl. Mater. 465 (2015). doi:10.1016/j.jnucmat.2015.05.025. 

[69] E. Getto, Z. Jiao,  a. M. Monterrosa, K. Sun, G.S. Was, Effect of irradiation mode on the 

microstructure of self-ion irradiated ferritic-martensitic alloys, J. Nucl. Mater. 465 (2015) 

116–126. doi:10.1016/j.jnucmat.2015.05.016. 

[70] T. Malis, S.C. Cheng, R.F. Egerton, EELS Log-Ratio Technique for Specimen-Thickness 

Measurement in the TEM, J. Electron Microsc. Tech. (1988) 193–200. 



 278 

doi:10.1002/jemt.1060080206. 

[71] C.M. Parish, K.G. Field, Application of STEM characterization for investigating radiation 

effects in BCC Fe-based alloys, (2017). doi:10.1557/jmr.2015.32. 

[72] S. Smith, L. Guttman, Measurement of Internal Boundaries in Three-Dimensional 

Structures By Random Sectioning, J. Met. Trans. (1953) 81–87. 

[73] E. Getto, K. Sun, G.S. Was, Characterization of M2X formed during 5 MeV Fe2 + 

irradiation, J. Nucl. Mater. 485 (2016) 7–12. doi:10.1016/j.jnucmat.2016.12.027. 

[74] X. Wang, Q. Yan, G.S. Was, L. Wang, Void swelling in ferritic-martensitic steels under 

high dose ion irradiation : Exploring possible contributions to swelling resistance, Scr. 

Mater. 112 (2016) 9–14. doi:10.1016/j.scriptamat.2015.08.032. 

[75] A.D. Brailsford, L.K. Mansur, The effect of precipitate-matrix interface sinks on the 

growth of voids in the matrix, J. Nucl. Mater. 104 (1981) 1403–1408. doi:10.1016/0022-

3115(82)90796-6. 

[76] M. Mayer, SIMNRA , a Simulation Program for the Analysis of NRA , RBS and ERDA, 

Proc. 15th Int. Conf. Appl. Accel. Res. Ind. 475 (1999). 

[77] A.F. Gurbich, Nuclear Instruments and Methods in Physics Research B SigmaCalc recent 

development and present status of the evaluated cross-sections for IBA, Nucl. Inst. 

Methods Phys. Res. B. 371 (2016) 27–32. doi:10.1016/j.nimb.2015.09.035. 

[78] C.R. Gossett, V. Nuclear, R. Analysis, 2 Expenmental difficulties with the ( 3He , a ) 

reaction, 191 (1981) 335–340. 

[79] O. V Borodin, V.N. Voyevodin, V.F. Zelenskij, M. Ivan, P. V Platonov, R. Borodin, 

Radiation Damage Studies of the 10 to 13 % Chromium-Containing Steels and Alloys 

Irradiated with Heavy Ions, Eff. Radiat. Mater. 15th Int. Symp. ASTM STP 1125. (1992) 

1157–1166. 

[80] P.J. Maziasz, Formation and Stability of Radiation-Induced Phases in Neutron-Irradiated 

Austenitic and Ferritic Steels, J. Nucl. Mater. 169 (2008) 95–115. 

[81] E. Getto, K. Sun, A.M. Monterrosa, Z. Jiao, M.J. Hackett, G.S. Was, Void swelling and 

microstructure evolution at very high damage level in self-ion irradiated ferritic-

martensitic steels, J. Nucl. Mater. 480 (2016) 159–176. 

doi:10.1016/j.jnucmat.2016.08.015. 

[82] A. Hishinuma, L.K. Mansur, Critical Radius for Bias-Driven Swelling - A Further 

Analysis and its Application to Bimodal Cavity Size Distributions, 118 (1983) 91–99. 

[83] A. Hishinuma, J. Vitek, J. Horak, E. Bloom, Effect of Preinjected Helium on Swelling and 

Microstructure of Neutron Irradiated Pressurized Tubes of Type 316 Stainless Steel, Eff. 

Radiat. Mater. 11th Int. Symp. ASTM STP 782. (1982) 92–107. 

[84] D. Carpentier, T. Jourdan, Y. Le Bouar, M.. Marinica, Effect of saddle point anisotropy of 

point defects on their absorption by dislocations and cavities, Acta Mater. 136 (2017) 

323–334. doi:10.1016/j.actamat.2017.07.013. 



 279 

[85] V.A. Borodin, A.I. Ryazanov, C. Abromeit, Void bias factors due to the anisotropy of the 

point defect diffusion, J. Nucl. Mater. 207 (1993) 242–254. 

[86] M.P. Surh, W.G. Wolfer, Accurate Mean Field Void Bias Factors for Radiation Swelling 

Calculations, J. Comput. Mater. Des. 14 (2007) 419–424. doi:10.1007/s10820-007-9052-

2. 

[87] A.A. Kohnert, M. Alice, B.D. Wirth, Molecular statics calculations of the biases and point 

defect capture volumes of small cavities, J. Nucl. Mater. 499 (2018) 480–489. 

doi:10.1016/j.jnucmat.2017.12.005. 

[88] Q. Li, C.M. Parish, K.A. Powers, M.K. Miller, Helium solubility and bubble formation in 

a nanostructured ferritic alloy q, 445 (2014) 165–174. 

[89] R. Sugano, K. Morishita, H. Iwakiri, N. Yoshida, Effects of dislocation on thermal helium 

desorption from iron and ferritic steel, J. Nucl. Mater. 307–311 (2002) 941–945. 

doi:10.1016/S0022-3115(02)01098-X. 

[90] P.D. Edmondson, C.M. Parish, Y. Zhang, A. Hallén, M.K. Miller, Helium bubble 

distributions in a nanostructured ferritic alloy q, 434 (2013) 210–216. 

[91] E. Getto, G. Vancoevering, G.S. Was, The co-evolution of microstructure features in self-

ion irradiated HT9 at very high damage levels, J. Nucl. Mater. 484 (2017) 193–208. 

doi:10.1016/j.jnucmat.2016.12.006. 

[92] T.M. Williams, B.L. Eyre, Void-swelling in solution-treated FV548 steel irradiated in a 

high-voltage electron microscope, J. Nucl. Mater. 59 (1976) 18–28. doi:10.1016/0022-

3115(76)90004-0. 

[93] C.J. Ortiz, M. Caturla, C. Fu, F. Willaime, Influence of carbon on the kinetics of He 

migration and clustering in α-Fe from first principles, Phys. Rev. B. 80 (2009) 134109. 

doi:10.1103/PhysRevB.80.134109. 

[94] E. Getto, The Co-Evolution of Microstructure Features in Self-Ion Irradiated HT9 at Very 

High Damage Levels, 2016. 

[95] H. Takahasi, T. Takeyama, S. Nakahigashi, M. Terasawa, Carbon Segregation Around 

Voids in C+ Ion-Irradated Iron, J. Nucl. Mater. 98 (1981) 227–230. 

[96] K. Ono, K. Arakawa, K. Hojou, Formation and migration of helium bubbles in Fe and Fe 

– 9Cr ferritic alloy, J. Nucl. Mater. 311 (2002) 1507–1512. 

[97] J. Pu, L. Yang, X.T. Zu, F. Gao, A molecular dynamics study of helium bubble stability 

during high-energy displacement cascades in a-iron, Phys. B. 398 (2007) 65–70. 

doi:10.1016/j.physb.2007.04.091. 

[98] N.M. Ghoniem, Nucleation and growth theory of cavity evolution under conditions of 

cascade damage and high helium generation, J. Nucl. Mater. 174 (1990) 168–177. 

[99] H. Trinkaus, B.N. Singh, Helium accumulation in metals during irradiation – where do we 

stand?, J. Nucl. Mater. 323 (2003) 229–242. doi:10.1016/j.jnucmat.2003.09.001. 

[100] R.S. Nelson, The Stability of Gas Bubbles in an Irradiation Environment, J. Nucl. Mater. 



 280 

31 (1969) 153–161. 

[101] P. Dauben, R.P. Wahi, H. Wollenberger, Bubble Nucleation and Growth in an Fe-12 at% 

Cr Ferritic Alloy Under He+ Implantation and Fe+ Irradiation, J. Nucl. Mater. 141–143 

(1986) 723–726. 

[102] K. Morishita, R. Sugano, B.D. Wirth, MD and KMC modeling of the growth and 

shrinkage mechanisms of helium – vacancy clusters in Fe, J. Nucl. Mater. 323 (2003) 

243–250. doi:10.1016/j.jnucmat.2003.08.019. 

[103] G. Lucas, R. Schäublin, Stability of helium bubbles in alpha-iron : A molecular dynamics 

study, J. Nucl. Mater. 386–388 (2009) 360–362. doi:10.1016/j.jnucmat.2008.12.128. 

[104] M.J. Demkowicz, A. Misra, A. Caro, The role of interface structure in controlling high 

helium concentrations, Curr. Opin. Solid State Mater. Sci. 16 (2012) 101–108. 

doi:10.1016/j.cossms.2011.10.003. 

[105] W. Kesternich, Helium trapping at dislocations , precipitates and grain boundaries, 7579 

(2017). doi:10.1080/00337578308207376. 

[106] A. Kashinath, P. Wang, J. Majewski, J.K. Baldwin, Y.Q. Wang, M.J. Demkowicz, 

Detection of helium bubble formation at fcc-bcc interfaces using neutron reflectometry, J. 

Appl. Phys. 43505 (2014). 

[107] A. Kashinath, A. Misra, M.J. Demkowicz, Stable Storage of Helium in Nanoscale 

Platelets at Semicoherent Interfaces, 86101 (2013) 1–5. 

doi:10.1103/PhysRevLett.110.086101. 

[108] H.L. Heinisch, F. Gao, R.J. Kurtz, E. a. Le, Interaction of helium atoms with edge 

dislocations in α-Fe, J. Nucl. Mater. 351 (2006) 141–148. 

doi:10.1016/j.jnucmat.2006.02.027. 

[109] M.J. Caturla, C.J. Ortiz, Effect of self-interstitial cluster migration on helium diffusion in 

iron, 362 (2007) 141–145. doi:10.1016/j.jnucmat.2007.01.017. 

[110] M.K. Miller, P.D. Edmondson, C.M. Parish, Y. Zhang, A. Halle, Helium entrapment in a 

nanostructured ferritic alloy, 65 (2011) 731–734. doi:10.1016/j.scriptamat.2011.07.024. 

[111] S. Zhang, E. Yu, S. Gates, W. Cassata, J. Makel, M. Andrew, C. Bartel, A.W. Weimer, R. 

Faller, P. Stroeve, Helium interactions with alumina formed by atomic layer deposition 

show potential for mitigating problems with excess helium in spent nuclear fuel, J. Nucl. 

Mater. (2017). doi:10.1016/j.jnucmat.2017.11.029. 

[112] S. Fréchard, M. Walls, M. Kociak, J.P. Chevalier, J. Henry, D. Gorse, Study by EELS of 

helium bubbles in a martensitic steel, J. Nucl. Mater. 393 (2009) 102–107. 

doi:10.1016/j.jnucmat.2009.05.011. 

 


