Multicomponent Diffusion in Basaltic Melts

by

Chenghuan Guo

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Earth and Environmental Sciences) in the University of Michigan 2018

Doctoral Committee:

Professor Youxue Zhang, Chair Professor Rebecca A. Lange Professor Jie Li Associate Professor Adam C. Simon Professor Katsuyo S. Thornton Chenghuan Guo

chguo@umich.edu

ORCID ID: 0000-0001-7353-7640

© Chenghuan Guo 2018

То

my wife, You Wo

my parents, Zhihong Guo and Xiaoli Zhang

献给

我的妻子,沃游

我的父母, 郭志宏和张小丽

ACKNOWLEDGEMENTS

I would like to first thank my academic advisor, Youxue Zhang. Without his guidance, support and help, it would be impossible to successfully finish my dissertation. His eternal passion for science, rigorous attitude for detail and hardworking spirit have affected me in many aspects of my life. I would also like to thank my committee members, Rebecca Lange, Jie Li, Adam Simon and Katsuyo Thornton for their valuable suggestions and comments to substantially improve my dissertation.

I would like to thank all my colleagues, lab-mates and office-mates, who help me with my experiments and measurements. I would like to especially thank Zhengjiu Xu who provided me systematic lab training for piston-cylinder experiments, Yi Yu and Peng Ni who offered me countless instructive suggestion and help when I was stuck, and Gordon Moore who taught me electron microprobe analysis.

I would also like to thank all my families and my friends. Especially I deeply thank my wife, You Wo, and my parents, Zhihong Guo and Xiaoli Zhang, for their unconditional love and unequivocal support to me on every decision I made.

TABLE OF CONTENTS

DEDICATION	ii
ACKNOWLEDGEMENTS	iii
LIST OF TABLES	viii
LIST OF FIGURES	xii
LIST OF APPENDICES	xvi
ABSTRACT	xvii

CHAPTER

I. Introduction	1
1.1 General introduction	1
1.2 Outline of the dissertation	8
1.3 References	9
II. Methods	13
2.1 Experimental strategy	13
2.2 Sample preparation	14
2.3 Experimental procedure	15
2.4 Analytical methods	16
2.5 Preliminary data processing	16

	2.6 Numerical methods	. 18
	2.7 Error propagation	22
	2.8 Diffusion matrix when another component is used as the dependent component	23
	2.9 Eigenanalysis	. 23
	2.10 References	.25
III.	Multicomponent diffusion in haplobasaltic melts SiO ₂ -TiO ₂ -Al ₂ O ₃ -MgO-CaO-Na ₂ O-Ka	$_{2}O$
	System	27
	3.1 Abstract	27
	3.2 Introduction	
	3.3 Experimental strategy and analytical methods	30
	3.4 Experimental results	30
	3.5 Effective binary diffusion coefficients	33
	3.6 Fitting diffusion profiles of diffusion couples	43
	3.7 Eigenvalues and eigenvectors of the diffusion matrix	45
	3.8 Predictions of diffusion profiles during anorthite dissolution	47
	3.9 Summary and conclusions	52
	3.10 Acknowledgement	53
	3.11 References	. 53
IV	. Multicomponent diffusion in basaltic melts at 1350 °C	57
	4.1 Abstract	57
	4.2 Introduction	. 58
	4.3 Experimental strategy and analytical methods	60
	4.3.1 Diffusion couple experiments	60

4.3.2 Mineral dissolution experiments	61
4.4 Experimental results	61
4.5 Effective binary diffusion coefficients	64
4.6 Fitting diffusion profiles of diffusion couples	75
4.7 Predicting diffusion profiles during mineral dissolution	77
4.8 Fitting diffusion profiles of diffusion couples and mineral dissolution	81
4.9 Comparison with previous works	
4.10 Summary and conclusions	
4.11 Acknowledgement	
4.12 References	
V. Multicomponent diffusion in basaltic melts: temperature dependence	92
5.1 Abstract	92
5.2 Introduction	93
5.3 Experimental strategy and analytical methods	94
5.4 Experimental results	95
5.5 Effective binary diffusion coefficients	97
5.6 Fitting diffusion profiles of diffusion couples	117
5.6.1 Diffusion matrix $D_{1260^{\circ}C}^{\text{couples}}$	117
5.6.2 Diffusion matrix $D_{1260^{\circ}C}$	119
5.7 Predicting diffusion profiles during mineral dissolution	120
5.8 Fitting diffusion profiles of diffusion couples and mineral dissolution	125
5.8.1 Diffusion matrix $D_{1500^{\circ}C}^{\text{couples}}$	126
5.8.2 Diffusion matrix $D_{1500^{\circ}C}$	127

	5.9 Diffusion mechanism in basaltic melts	129
	5.10 Temperature dependence of diffusion matrix	130
	5.11 Predicting diffusion profiles during mineral dissolution at different temperatures	132
	5.12 Comparisons with previous works	.136
	5.13 Summary and conclusions	137
	5.14 Acknowledgement	138
	5.15 References	138
VI	. Conclusions	.142
	6.1 General conclusions	.142
	6.2 Geological applications	.144
	6.3 Perspectives and future works	148
	6.4 References	.148

APPENDICES15	50
--------------	----

LIST OF TABLES

Table Page
2.1 Analytical conditions of electron microprobe analysis16
2.2 Diffusion matrices for 3-component SiO ₂ -Al ₂ O ₃ -CaO system
3.1 Average compositions, 1σ errors and liquidus of initial haplobasaltic glasses
3.2 Interface compositions of each diffusion couple
3.3 Summary of experimental conditions and effective binary diffusion coefficients in
haplobasaltic melts at 1500 °C32
3.4 Diffusion matrix A obtained by fitting 9 diffusion couples43
3.5 Diffusion matrix B obtained by fitting 6 diffusion couples44
3.6 Multicomponent diffusion mechanism in haplobasaltic melts at 1500 °C47
3.7 Diffusion matrix obtained by fitting both diffusion couple and anorthite dissolution
experiments at ~1500 °C
4.1 Average compositions, 1σ errors and liquidus of initial basaltic glasses
4.2 Interface compositions of each diffusion couples
4.3 Summary of experimental conditions and effective binary diffusion coefficients in basaltic
melts at 1350 °C
4.4 Diffusion matrix $D_{1350^{\circ}C}^{\text{couples}}$ obtained by fitting only diffusion couple experiments at 1350 °C76

4.5 Diffusion matrix $D_{1350^{\circ}C}$ obtained by fitting both diffusion couple and min	eral dissolution
experiments at ~1350 °C	
4.6 Multicomponent diffusion mechanism in basaltic melts at 1350 °C	85
5.1 Summary of experimental conditions and effective binary diffusion coeffic	cients in basaltic
melts at 1260 and 1500 °C	96
5.2 Diffusion matrix $D_{1260^{\circ}C}^{\text{couples}}$ obtained by fitting only diffusion couple experim	nents at 1260 °C118
5.3 Diffusion matrix $D_{1500^{\circ}C}^{\text{couples}}$ obtained by fitting only diffusion couple experim	nents at 1500 °C119
5.4 Diffusion matrix $D_{1260^{\circ}\text{C}}$ obtained by fitting both diffusion couple and min	eral dissolution
experiments at ~1260 °C	126
5.5 Diffusion matrix $D_{1500^{\circ}\text{C}}$ obtained by fitting both diffusion couple and min	eral dissolution
experiments at ~1500 °C	
5.6 Multicomponent diffusion mechanism in basaltic melts at 1260, 1350 and	1500 °C130
5.7 Temperature dependence of eigenvalue $[\lambda(T)]$ and the invariant eigenvector	ors [P]131
C1. HB2&4A	171
C2. HB3&4A	178
С3. НВ5&6А	
C4. HB5&7A	
С5. НВ7&8В	
С6. НВ9&10А	
C7. HB11&12F	
C8. HB15&16A	199
C9. HB17&18A	
C10. An&HB4	

C11. BS1&2A	
C12. BS3&4A	211
C13. BS5&6A	
C14. BS7&8A	
C15. BS9&10A	
C16. BS11&12A	219
C17. BS13&14A	
C18. BS17&18A	
C19. BS19&20A	
C20. BS1&2C	
C21. BS3&4C	
C22. BS5&6C	
C23. BS7&8C	
C24. BS9&10C	
C25. BS11&12C	
C26. BS13&14C	
C27. BS17&18C	
C28. BS19&20C	
C29. BS1&2B	
C30. BS3&4B	
C31. BS5&6B	
C32. BS7&8B	
C33. BS9&10B	

C34. BS11&12B	
C35. BS13&14B	
C36. BS17&18B	
C37. BS19&20B	

LIST OF FIGURES

Figure Page
1.1 An illustration of magma evolution in the mid-ocean ridges2
1.2 An illustration of magma evolution at the subduction zones
1.3 Comparison between the experimental and calculated profiles for exp. 227 in Zhang et al.
(1989)
1.4 Comparison between the experimental and calculated profiles for exp. 26 in Cheng and
Zhang (2008)7
2.1 Eigenvalues and eigenvectors of diffusion matrices in 3-component system
3.1 Optical microscopic image of polished experimental charge HB7&8B31
3.2 Data of diffusion profiles of HB2&4A with fits
3.3 Data of diffusion profiles of HB3&4A with fits35
3.4 Data of diffusion profiles of HB5&6A with fits
3.5 Data of diffusion profiles of HB5&7A with fits
3.6 Data of diffusion profiles of HB7&8B with fits
3.7 Data of diffusion profiles of HB9&10A with fits
3.8 Data of diffusion profiles of HB11&12F with fits40
3.9 Data of diffusion profiles of HB15&16A with fits41
3.10 Data of diffusion profiles of HB17&18A with fits

3.11 Optical and BSE images of the polished experimental charge An&HB448
3.12 Predicted and fit diffusion profiles of An&HB450
4.1 Optical microscopic image of polished experimental charge BS13&14A
4.2 Data of diffusion profiles of BS1&2A with fits
4.3 Data of diffusion profiles of BS3&4A with fits
4.4 Data of diffusion profiles of BS5&6A with fits
4.5 Data of diffusion profiles of BS7&8A with fits
4.6 Data of diffusion profiles of BS9&10A with fits70
4.7 Data of diffusion profiles of BS11&12A with fits71
4.8 Data of diffusion profiles of BS13&14A with fits72
4.9 Data of diffusion profiles of BS17&18A with fits73
4.10 Data of diffusion profiles of BS19&20A with fits74
4.11 Predicted and fit diffusion profiles for olivine dissolution in basaltic melts at ~1350 °C78
4.12 Predicted and fit diffusion profiles for diopside dissolution in basaltic melts at ~1350 °C79
4.13 Predicted and fit diffusion profiles for anorthite dissolution in basaltic melts at ~1350 °C80
4.14 Comparison between observed frequency and calculated frequency by a standard normal
distribution
5.1 Temperature dependence of EBDC of each component
5.2 Data of diffusion profiles of BS1&2C with fits and prediction
5.3 Data of diffusion profiles of BS3&4C with fits and prediction100
5.4 Data of diffusion profiles of BS5&6C with fits and prediction101
5.5 Data of diffusion profiles of BS7&8C with fits and prediction102
5.6 Data of diffusion profiles of BS9&10C with fits and prediction103

5.7 Data of diffusion profiles of BS11&12C with fits and prediction104
5.8 Data of diffusion profiles of BS13&14C with fits and prediction105
5.9 Data of diffusion profiles of BS17&18C with fits and prediction106
5.10 Data of diffusion profiles of BS19&20C with fits and prediction107
5.11 Data of diffusion profiles of BS1&2B with fits and prediction108
5.12 Data of diffusion profiles of BS3&4B with fits and prediction109
5.13 Data of diffusion profiles of BS5&6B with fits and prediction110
5.14 Data of diffusion profiles of BS7&8B with fits and prediction111
5.15 Data of diffusion profiles of BS9&10B with fits and prediction112
5.16 Data of diffusion profiles of BS11&12B with fits and prediction113
5.17 Data of diffusion profiles of BS13&14B with fits and prediction114
5.18 Data of diffusion profiles of BS17&18B with fits and prediction115
5.19 Data of diffusion profiles of BS19&20B with fits and prediction116
5.20 Predicted and fit diffusion profiles for olivine dissolution in basaltic melts at ~1270 $^{\circ}C121$
5.21 Predicted and fit diffusion profiles for diopside dissolution in basaltic melts at \sim 1270 °C.122
5.22 Predicted and fit diffusion profiles for anorthite dissolution in basaltic melts at \sim 1280 °C.123
5.23 Predicted and fit diffusion profiles for anorthite dissolution in basaltic melts at ~1500 °C.124
5.24 Comparison between observed frequency and calculated frequency by a standard normal
distribution129
5.25 Temperature dependence of eigenvalues
5.26 Predicted diffusion profiles for olivine dissolution in basaltic melts at ~1400 °C133
5.27 Predicted diffusion profiles for diopside dissolution in basaltic melts at ~1400 °C 134
5.28 Predicted diffusion profiles for anorthite dissolution in basaltic melts at ~1400 °C135

6.1	Simulation	for magma m	ixing between	basaltic and	andesitic melts	14	-5
-----	------------	-------------	---------------	--------------	-----------------	----	----

6.2 Hacker diagram for the simulation of magma mixing between basaltic and andesitic melts 146

LIST OF APPENDICES

Appendix Page						
Appendix A. Analytical solutions to multicomponent diffusion problems						
A1. Analytical solution to multicomponent diffusion for diffusion couple150						
A2. Analytical solution to multicomponent diffusion during mineral dissolution152						
A3. Derivation of transformation of diffusion matrices when a different component is used a						
the dependent component156						
A4. References						
Appendix B. Matlab codes for fitting diffusion profiles						
B1. The main function "LMF_solver.m"160						
B2. Subroutine "initialization.m"						
B3. Subroutine "get_duration.m"165						
B4. Subroutine "get_distance.m"166						
B5. Subroutine "calc_conc.m"167						
B6. Subroutine "calc_residue.m"168						
B7. Subroutine "calc_jacobian.m"169						
B8. Subroutine "calc_error.m"170						
Appendix C. All electron microprobe data for all experiments						

ABSTRACT

This dissertation focuses on understanding multicomponent diffusion of major elements in basaltic melts. Diffusion in simpler 7-component FeO-free haplobasaltic melts was first investigated at a single temperature to establish the method and approach that a diffusion matrix can reproduce all features in multicomponent diffusion. After the success in the simpler melts, diffusion in realistic basaltic melts at various temperatures was studied and diffusion matrices were obtained and applied to predict mineral dissolution.

Nine successful diffusion couple experiments were carried out in a 7-component SiO₂– TiO₂–Al₂O₃–MgO–CaO–Na₂O–K₂O system at ~1500 °C and 1 GPa, to study multicomponent diffusion in haplobasaltic melts, with compositional gradients in only two components in each experiment. At least two concentration traverses were measured for each experiment. Effective binary diffusion coefficients (EBDC) for monotonic profiles were obtained by an error function fit, and the EBDC of a given component is dependent on its counter diffusing component, especially for SiO₂. The EBDC of SiO₂ varies from 15.7 μ m²/s when diffusing against Al₂O₃, to 102.9 μ m²/s when diffusing against K₂O. Furthermore, the multicomponent diffusion matrix was obtained by simultaneously fitting all diffusion profiles in all experiments. All features in the diffusion profiles, for example uphill diffusion, are captured well by this 6 × 6 diffusion matrix. The slowest diffusing eigenvector is largely due to the exchange between SiO₂ and Al₂O₃, and the fastest diffusing eigenvector is the exchange of Na₂O with all other components. An anorthite dissolution experiment was also conducted to test whether the diffusion matrix can be applied to mineral dissolution experiments. The calculated diffusion profiles in the melt during anorthite dissolution roughly match the measured profiles, demonstrating the validity and utility of the diffusion matrix in this FeO-free aluminosilicate melt system.

Twenty seven successful diffusion couple experiments were conducted in an 8component SiO₂-TiO₂-Al₂O₃-FeO-MgO-CaO-Na₂O-K₂O system at ~1260 °C and 0.5 GPa, at ~1350 °C and 1 GPa and at ~1500 °C and at 1 GPa, to study multicomponent diffusion in basaltic melts. At least 3 concentration traverses were measured to obtain diffusion profiles for each experiment. Multicomponent diffusion matrices at 1260, 1350 and 1500 °C were obtained by simultaneously fitting diffusion profiles of diffusion couple experiments. Furthermore, in order to better constrain the diffusion matrix and reconcile mineral dissolution data, mineral dissolution experiments in the literature, in addition to diffusion couple experiments from this study, were also fit to obtain a new diffusion matrix. All features of diffusion profiles in both diffusion couple and mineral dissolution experiments were well reproduced by this new diffusion matrix. Diffusion mechanism at each temperature is inferred from eigenvectors of diffusion matrix, and it shows that both eigenvectors of diffusion matrix and inferred diffusion mechanism in basaltic melts are insensitive to temperature. The diffusive exchange between network-formers SiO₂ and Al₂O₃ is the slowest and the diffusive exchange of Na₂O with all other components is the fastest, which are consistent with those for simpler systems in most literature. Temperature dependence of diffusion matrix is examined by assuming eigenvectors to be independent of temperature and eigenvalues to follow Arrhenius relation. Diffusion matrix at other temperatures can be calculated, and is successfully applied to predict diffusion profiles during olivine and anorthite dissolution in basaltic melts at ~1400 °C.

xviii

CHAPTER I

Introduction

1.1 General introduction

Natural silicate melts consist of numerous major components (e.g. SiO₂, TiO₂, Al₂O₃, FeO, MgO, CaO, Na₂O and K₂O). Diffusion in such melts is always multicomponent diffusion. Therefore, generally speaking, multicomponent diffusion is of fundamental significance in any natural processes involving mass transport, such as magma mixing and contamination (Sato, 1975; Watson, 1982; Koyaguchi, 1985, 1989; Oldenburg et al., 1989), magma double-diffusive convection (Turner, 1985; Liang et al., 1994; Richter et al., 1998), and mineral growth or dissolution in magmas (Watson, 1982; Zhang et al., 1989). More specifically, let's consider two cases where multicomponent diffusion plays a significant role in magma evolution.

In a mid-ocean ridge environment (Fig. 1.1), which accounts for the most abundant (~90%) magmatic activity on Earth, mass transfer takes place in the following processes during magma evolution: magma generation by the decompression partial melting of mantle; and fractional crystallization of magma. The evolution of magma is recorded by the different compositions of mid-ocean ridge basalts.

In a subduction environment (Fig. 1.2), where the most volcanoes on Earth are located, mass transfer takes place in the following processes during magma evolution: magma generation

1

by the hydration partial melting of mantle; magma ascent and emplacement to some reservoir; magmas mixing in the reservoir if there is pre-existing magma; magma contamination in the reservoir by country rocks; fractional crystallization after magma cools down. The evolution history of magma is recorded by diffusion profiles frozen during volcanic eruption. Therefore, there is multicomponent diffusion where there is mass transfer, and multicomponent diffusion treatment should be applied to understand those natural processes more rigorously and accurately.

Fig. 1.1 An illustration of magma evolution in the mid-ocean ridges. Magma is generated by the decompression partial melting of mantle. After magma cools down, there will be fractional crystallization. The evolution of magma is recorded by the different compositions of mid-ocean ridge basalts. (figure from Marshak, 2012, p82)

Fig. 1.2 An illustration of magma evolution at subduction zones. Magma is generated by the hydration partial melting of mantle. Magma ascends and emplaces to some reservoir in the lithosphere. If there is pre-existing magma in the reservoir, there will be magma mixing. Moreover, magma gets contaminated by the country rocks. After magma cools down, there will be crystallization near the boundary of the magma. The evolution history of magma is recorded by diffusion profiles frozen during volcanic eruption. (figure from Marshak, 2012, p82)

Instead of multicomponent diffusion treatment, effective binary diffusion treatment (Cooper, 1968) has been widely used as an alternative to treat monotonic diffusion profiles in a multicomponent system, in which case the often-observed uphill diffusion profiles in natural silicate melts (Sato, 1975; Watson, 1982; Zhang et al., 1989) are difficult to be dealt with, although some empirical models have been proposed for quantifying uphill diffusion (Cooper, 1968; Lasaga, 1979; Richter, 1993; Zhang, 1993; Liang et al., 1997). In addition, effective binary diffusion coefficient of a given component depends not only on the composition of silicate melts, but also on the concentration gradients of components in them (Cooper, 1968; Zhang et al., 1989;

Liang et al., 1996; Chen and Zhang, 2008, 2009; Guo and Zhang, 2016), making it more difficult to use the approach.

Tremendous efforts have been made in studying multicomponent diffusion in both synthetic and natural silicate melt systems: SiO₂-Al₂O₃-CaO (Sugawara et al., 1977; Oishi et al., 1982; Liang et al. 1996; Liang and Davis, 2002), SiO₂-CaO-Na₂O (Wakabayashi and Oishi, 1978; Watkins et al., 2014), SiO₂-Al₂O₃-MgO (Kress and Ghiorso, 1993; Richter et al., 1998), SiO₂-Al₂O₃-K₂O (Chakraborty et al., 1995), SiO₂-Al₂O₃-MgO-CaO (Kress and Ghiorso, 1993; Liang, 2010), SiO₂-Al₂O₃-CaO-Na₂O (Claireaux et al., 2016), SiO₂-Al₂O₃-Na₂O-K₂O-H₂O (Mungall et al., 1998), SiO₂-TiO₂-Al₂O₃-FeO-MgO-CaO (Kress and Ghiorso, 1995). Earlier studies by Sugawara et al. (1977), Wakabayashi and Oishi (1978) and Oishi et al. (1982) initiated multicomponent diffusion studies by diffusion couple experiments in simple ternary systems. Later studies in Na₂O- and K₂O-free SiO₂-Al₂O₃-MgO-CaO and simpler silicate melt systems by Kress and Ghiorso (1993), Liang et al. (1996), Richter et al. (1998), Liang and Davis (2002) and Liang (2010), found that there are strong diffusive coupling among different components, such as diffusion SiO₂ and Al₂O₃ is strongly coupled with MgO and CaO, and the degree of diffusive coupling depends strongly on the melt composition, moderately on pressure and weakly on temperature. Furthermore, diffusion of Na₂O and H₂O in Na₂O- and K₂O-bearing SiO₂-Al₂O₃–Na₂O–K₂O–H₂O or simpler silicate melt systems by Mungall et al. (1998), Watkins et al. (2014) and Claireaux et al. (2016) was found to be coupled with SiO₂. Diffusion matrices in simple silicate melt systems or partial diffusion matrices in natural silicate melt systems have been obtained (e.g., Kress and Ghiorso, 1995; Mungall et al., 1998; Guo and Zhang, 2016). Temperature dependence of diffusion matrix in simple systems SiO₂-Al₂O₃-CaO, SiO₂-Al₂O₃- K_2O and $SiO_2-Al_2O_3-MgO-CaO$ is summarized by Liang (2010), and it was found that

eigenvectors of diffusion matrix is roughly independent of temperature and eigenvalues of diffusion matrix follow good Arrhenius relation. Furthermore, several empirical models have been proposed to calculate multicomponent diffusion matrix based on thermodynamic models (Lasaga, 1979; Richter 1993; Liang et al, 1997). However, only very limited success is achieved in predicting diffusion in natural silicate melts by those experimentally obtained and empirically modeled diffusion matrices. For example, Kress and Ghiorso (1995) reported a partial diffusion matrix in Columbia River Basalts modeled as a 6-component system, but the prediction for olivine dissolution (Zhang et al., 1989) is not successful (Fig. 1.3); Alexander (2011) calculated diffusion matrix from empirical model of Liang et al (1997), by which olivine dissolution (Cheng and Zhang, 2008) is not predicted (Fig. 1.4). Multicomponent diffusion in natural processes usually happens at various temperatures in a more complex system with at least 8 components. Hence, understanding multicomponent diffusion in basaltic melts requires the temperature dependence of diffusion matrix in at least an 8-component system.

Fig. 1.3 Comparison between the experimental and calculated profiles for exp. 227 in Zhang et al. (1989), where the calculated profiles are by diffusion matrix of Kress and Ghiorso (1995) of multicomponent diffusion during forsterite dissolution in an andesitic melt at 1300°C and 5 kbar. Kress and Ghiorso (1995) ignored Na₂O and K₂O and other minor components, so SiO₂, Na₂O and K₂O are not shown here. The interface and far-field concentrations are determined from experiments. It can be seen that the calculated profiles are much longer than the experimental profiles, and the shape match is not close either. χ^2/n is calculated and shown for those five components.

Fig. 1.4 Comparison between the experimental and calculated profiles for exp. 26 in Chen and Zhang (2008), where the calculated profiles are by diffusion matrix of Alexander (2011) for multicomponent diffusion during forsterite dissolution in an basaltic melt at 1372°C and 4.7 kbar. It can be seen that the lengths of the calculated profiles roughly match the data, but the shape match is not so good. χ^2/n is calculated and shown for each component.

1.2 Outline of this dissertation

This dissertation is aimed to better understand major-component diffusion behavior in natural silicate melts, or more specifically in basaltic melts. Diffusion couple experiments with synthetic initial glasses are designed and conducted by ¹/₂-inch piston-cylinder apparatus at various temperatures. Diffusion profiles are measured by electron microprobe.

Chapter II gives the general methods for experimental strategy, sample preparation, experimental procedure, analytical methods, preliminary data processing, numerical methods, error propagation and eigenanalysis that are used in later chapters.

Chapter III is the first step, serving as a warm-up preparation for chapters IV and V to obtain diffusion matrix in natural silicate melts. We investigated multicomponent diffusion in a 7-component haplobasaltic melt SiO_2 -TiO_2-Al_2O_3-MgO-CaO-Na_2O-K_2O system at 1500 °C and 1 GPa. This FeO-free system is chosen to avoid complexities associated with FeO in melts, such as ferric/ferrous ratio variation and iron loss during experiments. Diffusion profiles in all experiments were simultaneously fit to obtain the 6 × 6 diffusion matrix. In addition, we tested the validity of the extracted diffusion matrix by carrying out an anorthite dissolution experiment in the same melt and using the extracted diffusion matrix to predict diffusion behavior during anorthite dissolution.

Chapter IV is a follow-up study of chapter III. We investigated multicomponent diffusion in an 8-component basaltic melt SiO₂–TiO₂–Al₂O₃–FeO–MgO–CaO–Na₂O–K₂O system at 1350 °C and at 1 GPa. This system is chosen to have an average composition close to that of Juan de Fuca mid-ocean ridge basalts (Dixon, 1986, 1988), because mid-ocean ridge magmatism is the most abundant magmatic activity on Earth. Diffusion profiles from all experiments were fit to obtain the 7×7 diffusion matrix, from which eigenvectors are used to interpret diffusion mechanisms. This diffusion matrix is successfully used to predict mineral dissolution.

Chapter V is the next step of chapter IV, where the temperature dependence of diffusion matrix in basaltic melts is investigated, in the same 8-component basaltic melt SiO_2 -TiO₂-Al₂O₃-FeO-MgO-CaO-Na₂O-K₂O system in the same way as in chapter IV, but at two different temperatures at 1260 and 1500 °C. Diffusion matrices at 1260 and 1500 °C are obtained, as well as their eigenvalues and eigenvectors. Combining diffusion matrix is obtained by assuming that eigenvectors are invariant with temperature and eigenvalues follow Arrhenius relation. The general formula of diffusion matrix is applied to mineral dissolution at other temperatures.

1.3 References

- Alexander C. M. (2011) Modeling diffusive dissolution in silicate melts. *Geochim. Cosmochim. Acta* **75**, 588–607.
- Chakraborty S., Dingwell D.B. and Rubie D.C. (1995) Multicomponent diffusion in ternary silicate melts in the system K₂O–Al₂O₃–SiO₂: I. Experimental measurements. *Geochim. Cosmochim. Acta* **59**, 255–264.
- Chen Y. and Zhang Y. (2008) Olivine dissolution in basaltic melt. *Geochim. Cosmochim. Acta* **72**, 4756–4777.
- Chen Y. and Zhang Y. (2009) Clinodiopside dissolution in basaltic melt. *Geochim. Cosmochim. Acta* **73**, 5730–5747.

- Claireaux C., Chopinet M., Burov E., Gouillart E., Roskosz M. and Toplis M (2016) Atomic mobility in calcium and sodium aluminosilicate melts at 1200 °C. *Geochim. Cosmochim. Acta* 192, 235–247.
- Cooper A. R. (1968) The use and limitations of the concept of an effective binary diffusion coefficient for multi-component diffusions. In *Mass Transport In Oxides*, Vol. 296 (ed. J.B. Wachman and A.D. Franklin), pp. 79–84. Nat. Bur. Stand. Spec. Publ.
- Dixon J. E., Clague D. A. and Eissen J.P. (1986) Gabbroic xenoliths and host ferrobasalt from the Southern Juan de Fuca Ridge. *J. Geophys. Res.* **91**, 3795–3820.
- Dixon J. E., Stolper E. and Delaney J. R. (1988) Infrared spectroscopic measurements of CO₂ and H₂O in Juan de Fuca Ridge basaltic glasses. *Earth Planet. Sci. Lett.* **90**, 87–104.
- Guo C. and Zhang Y. (2016) Multicomponent diffusion in silicate melts: SiO₂–TiO₂–Al₂O₃– FeO–MgO–CaO–Na₂O–K₂O system. *Geochim. Cosmochim. Acta* **195**, 126–141.
- Koyaguchi T. (1985) Magma mixing in a conduit. J. Volcanol. Geotherm. Res. 25, 365–369.
- Koyaguchi T. (1989) Chemical gradient at diffusive interfaces in magma chambers. *Contrib. Mineral. Petrol.* **103**, 143–152.
- Kress V. C. and Ghiorso M. S. (1993) Multicomponent diffusion in MgO–Al₂O₃–SiO₂ and Cao– MgO–Al₂O₃–SiO₂ melts. *Geochim. Cosmochim. Acta* **57**, 4453–4466.
- Kress V. C. and Ghiorso M.S. (1995) Multicomponent diffusion in basaltic melts. *Geochim. Cosmochim. Acta* 59, 313–324.
- Lasaga A. C. (1979) Multicomponent exchange and diffusion in silicates. *Geochim. Cosmochim. Acta* **54**, 2709–2715.
- Liang Y. (2010) Multicomponent diffusion in molten silicates: Theory, experiments, and geological application. *Rev. Mineral. Geochem.* **72**, 409–446.

- Liang Y. and Davis A. M. (2002) Energetics of multicomponent diffusion in molten CaO– Al₂O₃–SiO₂. *Geochim. Cosmochim. Acta* **66**, 635–646.
- Liang Y., Richter F. M. and Chamberlin L. (1997) Diffusion in silicate melts: III. empirical models for multicomponent diffusion. *Geochim. Cosmochim. Acta* **61**, 5295–5312.
- Liang Y., Richter F. M. and Watson E. B. (1994) Convection in multicomponent silicate melts driven by coupled diffusion. *Nature* **369**, 390–392.
- Liang Y., Richter F. M. and Watson E. B. (1996) Diffusion in silicate melts: II. multicomponent diffusion in CaO–SiO₂–Al₂O₃ at 1500°C and 1GPa. *Geochim. Cosmochim. Acta* 60, 5021–5035.
- Marshak S. (2012) Earth Portrait of a Planet. W. W. Norton & Company, Inc., New York, NY.
- Mungall J. E., Romano C. and Dingwel D. B. (1998) Multicomponent diffusion in the molten system K₂O–Na₂O–Al₂O₃–SiO₂–H₂O. *Am Mineral.* **83**, 685–699.
- Oishi Y., Nanba M. and Pask J. A. (1982) Analysis of liquid–state interdiffusion in the system CaO–Al₂O₃–SiO₂ using multiatomic ion models. *J. Am. Ceram. Soc.* **65**, 247–253.
- Oldenburg C. M., Spera F. J., Yuen D. A., and Sewell G. (1989) Dynamic mixing in magma bodies: Theory, simulations and implications. *J. Geophys. Res.* **94**, 9215–9236.
- Richter F. M. (1993) A method for determining activity–composition relations using chemical diffusion in silicate melts. *Geochim. Cosmochim. Acta* **57**, 2019–2032.
- Richter F. M., Liang Y. and Minarik W.G. (1998) Multicomponent diffusion and convection in molten MgO–Al₂O₃–SiO₂. *Geochim. Cosmochim. Acta* 62, 1985–1991.
- Sato H. (1975) Diffusion coronas around quartz xenocrysts in andesite and basalt from Tertiary Volcanic Region in northeastern Shikoku, Japan. *Contrib. Mineral. Petrol.* **50**, 49–64.

Sugawara H., Nagata K. and Goto K. S. (1977) Interdiffusivities matrix of CaO-Al₂O₃-SiO₂

melt at 1723 K to 1823 K. Metall. Trans. B 8, 605-612.

Turner J. S. (1985) Multicomponent convection. Ann. Rev. Fluid Mech. 17, 11-44.

- Wakabayashi H. and Oishi Y (1978) Liquid-state diffusion of Na2O–CaO–SiO2. J. Chem. Phys.68, 2046–2052.
- Watson E.B. (1982) Basalt contamination by continental crust: Some experiments and models. *Contrib. Mineral. Petrol.* 80, 73–87.
- Watkins J. M., Liang Y., Richter F., Ryerson F. J. and DePaolo D. J. (2014) Diffusion of multiisotopic chemical species in molten silicates. *Geochim. Cosmochim. Acta* **139**, 313–326.
- Zhang Y. (1993) A modified effective binary diffusion model. J. Geophys. Res. 98, 11901– 11920.
- Zhang Y., Walker D. and Lesher C. E. (1989) Diffusive crystal dissolution. *Contrib. Mineral. Petrol.* **102**, 492–513.

CHAPTER II

Methods

2.1 Experimental strategy

The average composition of silicate melts is referred as "base" hereafter, shown as "Base Comp" in Tables 3.1 and 4.1, for 7- and 8-component systems respectively. The base was chosen to be close to the composition of Juan de Fuca (JDF) mid-ocean ridge basalts (MORB): 50.98% SiO₂, 1.97% TiO₂, 13.81% Al₂O₃, 12.24% FeO, 7.15% MgO, 10.91% CaO, 2.77% Na₂O, 0.17% K₂O (in wt%), shown as "JDF Basalts" in Table 3.1 (Dixon et al., 1986, 1988), except for a significantly higher K₂O concentration (1.5%) for our experimental composition so as to better resolve the role of K₂O in multicomponent diffusion. Note that FeO is substituted by CaO for the 7-component haplobasaltic melts. A MORB composition was chosen because mid-ocean ridge magmatism is the most abundant magmatic activity on Earth. Diffusion couples were designed in such a way that: for each diffusion couple, one half deviates from the base by +1.5 wt% in one oxide component and -1.5 wt% in another oxide component, and the other half deviates by -1.5 wt% and +1.5 wt% in the same two oxide components for complementariness. Therefore, the compositional variation between the two halves is present in only two components. The 3.0-wt%

tradeoff between measurable diffusion profiles and negligible compositional dependence of diffusion matrix. 9 diffusion couple experiments were designed for each temperature.

2.2 Sample preparation

The initial glasses for each half of diffusion couple were synthesized in a Deltech furnace at the University of Michigan. SiO₂, TiO₂, Al₂O₃, Fe₂O₃ (only for 8-component basaltic melts), MgO, CaO, Na₂CO₃ and K₂CO₃ powders were weighed in the designed proportions, grinded in a mortar, mixed in ethanol and dried in a desiccator in vacuum. Mixed powders were placed in a glassy carbon crucible, heated up to 1450 °C at a programmed rate under N₂ flow at 1 atm, kept there at 1450 °C for 3 hours to homogenize and then quenched in air. For the 8-component basaltic melts, ferric iron is reduced to ferrous iron with 6% ferric iron in the initial glasses measured by XANES. The average compositions of initial glasses are shown in Tables 3.1 and 4.1 for 7- and 8-component systems respectively. Two complimentary compositions, such as BS1 and BS2, are put together to make a diffusion couple BS1&2.

Synthesized glasses were cut and shaped into cylinders with diameter of ~2 mm. Cylinders were sliced into disks with thickness of 1.5–2.0 mm (depending on estimated diffusion distance of the fastest diffusion component). Sample disks were polished on one side. Two sample disks were placed into a graphite capsule. Densities of initial glasses were estimated by Lange and Carmichael (1990), and the less dense sample disk in each diffusion couple was placed on top of the denser one to suppress convection. The graphite capsule was placed into an MgO rod. The MgO rod was placed into a graphite heater. The graphite heater was placed into a BaCO₃ pressure medium. This is called a sample assembly. The same design was used for all experiments to maintain consistency of actual temperatures among different experiments.

14

2.3 Experimental procedure

Chemical diffusion couple experiments were conducted in a ½-inch piston-cylinder apparatus at the University of Michigan. The temperature was chosen to be higher than the estimated liquidus of all initial glasses (Tables 3.1 and 4.1) by the MELTS program (Ghiorso and Sack, 1995; Asimow and Ghiorso, 1998). Temperature was controlled by a type-S thermocouple. The tip of the thermocouple was covered by alumina cement and separated from the graphite capsule by an MgO wafer with thickness of ~0.5 mm. The target controller (thermocouple) temperature was estimated so as to reach target temperature at the center (interface) of the diffusion couple based on the temperature calibration of Hui et al. (2008).

Experimental procedures are as follows. First, the sample assembly is brought to a pressure 10–15% higher than the target pressure, and then relaxed at 200 °C for over night (>12 hours). After relaxation, the pressure is decreased to the target pressure (piston-out procedure). Then, temperature is increased at a programmed rate to the target temperature within 1 minute. The sample assembly is kept at the target temperature and pressure for a planned duration, until quenched by turning off the power.

Both temperature and pressure were continuously recorded. Temperature fluctuation was less than 1 °C and pressure was manually controlled with a fluctuation of ~10 MPa. Actual temperature was calculated based on the post-experiment distance between the thermocouple tip and the center of diffusion couple using the calibration by Hui et al. (2008), which is typically slightly different from planned temperature due to a variable distance between the center of the diffusion couple and the thermocouple tip. Pressure was corrected by dividing the nominal pressure by 1.06 (Hui et al., 2008; Ni and Zhang, 2008).

15

2.4 Analytical methods

After experiments, the sample assembly was embedded in epoxy, grounded, polished and carbon coated. Diffusion profiles were measured at 15 kV using a 10 nA beam by a Cameca SX100 electron microprobe at Electron Microbeam Analysis Laboratory of the University of Michigan, where mass fraction (wt%) instead of mole fraction was used as concentration. Analytical conditions are listed in Table 2.1.

spectrometer	element	Xtal	position	background+	background-	counting time
Sp1	Na	LTAP	~46381	-1400	820	30s
Sp1	Si	LTAP	~27747	-560	980	30s
Sp2	Mg	TAP	~38505	-1600	1000	30s
Sp2	Al	TAP	~32449	-850	850	30s
Sp3	K	LPET	~42752	-530	1100	30s
Sp3	Ca	LPET	~38381	-700	1300	30s
Sp4	Ti	LLIF	~68278	-620	1380	30s
Sp4	Fe	LLIF	~48084	-1200	1250	30s

Table 2.1. Analytical conditions of electron microprobe analysis

Note: Multiple-period-counting sequence of elements in each spectrometer is the same sequence listed in the table. Peak positions change slightly for each analysis. No Na-loss was observed, so time-0 intercept was not used.

2.5 Preliminary data processing

The actual experimental temperatures at the center of the diffusion couple as determined after the experiment and effective experimental durations are listed in Tables 3.3, 4.3 and 5.1. In order to reduce the error in simultaneously fitting diffusion profiles in all experiments at different experimental temperatures, experimental temperatures were "normalized" to 1260, 1350 and 1500 °C by correcting the effective experimental durations. Experimental durations were

corrected by the relation $t_{\rm corr} = t_{\rm exp} \cdot e^{-E/(RT_{\rm exp})} / e^{-E/(RT_{\rm corr})}$, where $T_{\rm corr} = 1260$, 1350 or 1500 °C

(Zhang and Behrens, 2000) and E = 145 kJ/mol (from this study). The corrected experimental durations were used in fitting the diffusion profiles.

We defined $\text{SiO}_2^* = \text{SiO}_2 - (\text{total} - 100)$ and used it as replacement of SiO_2 in fitting the diffusion profiles, because (1) SiO_2^* shows smaller variation than SiO_2 at the far-field, (2) SiO_2^* removes the analytical error of the "total", by attributing it to SiO_2 , and (3) when using SiO_2 as the dependent component in fitting the diffusion profiles to obtain the diffusion matrix, it implicitly means SiO_2^* is used because concentrations of all components must add up to be 100%.

The boundary conditions in fitting the diffusion profiles were determined by taking average of numerous data points in the far-field. These boundary compositions can be slightly different from those average compositions of initial glasses in Tables 3.1 and 4.1, due to small compositional variation in a large synthesized initial glass and small difference in day-to-day electron microprobe calibration.

The fitting is weighted nonlinear multivariable regression, and the weight is the inverse square of the analytical 1σ error of each oxide component determined by numerous data points in the far-field (which are the same data points used to determine the boundary conditions).

The interface position for each diffusion couple was determined by fitting the best diffusion profile (i.e. the diffusion profile with the largest concentration difference and the smallest 1σ error), by the following equation:

$$w = \frac{w_{-\infty} + w_{+\infty}}{2} + \frac{w_{+\infty} + w_{-\infty}}{2} \cdot \operatorname{erf}\left(\frac{x - x_0}{2\sqrt{Dt}}\right),$$
(2.1)

where *w* is the concentration (in wt%) of the component, $w_{-\infty}$ and $w_{+\infty}$ are the left and right side boundary conditions in the far-field, *x* is the position, x_0 is the interface position, *D* is the effective binary diffusion coefficient, and *t* is the corrected experimental duration. After the
interface position was determined, we defined the new position as $x_{new} = x - x_0$, such that the new interface position was at $x_{new} = 0$. The new positions were used in fitting the diffusion profiles.

2.6 Numerical methods

Mass fraction (wt%) rather than mole fraction are used for fitting concentration profiles to obtain the diffusion matrix. All diffusion profiles from diffusion couples at the same temperature were fit simultaneously to obtain the diffusion matrix, by minimizing the following χ^2 using Levenberg-Marquardt-Fletcher method (Fletcher, 1971):

$$\chi^{2} = \frac{1}{2} \sum_{k=1}^{Ne} \sum_{j=1}^{Np_{k}} \sum_{i=1}^{Nc} \left(\frac{w_{ijk}^{\text{meas}} - w_{ijk}^{\text{calc}}}{\sigma_{ik}} \right)^{2}, \qquad (2.2)$$

where *Ne* is the number of experiments fit, *Np_k* is the number of data points in experiment *k*, *Nc* is the number of components, w_{ijk}^{meas} and w_{ijk}^{calc} are the respectively measured and calculated concentrations of component *i* at position *j* in experiment *k*, and σ_{ik} is the 1 σ error of w_{ijk}^{meas} . Each w_{ijk}^{calc} was calculated from the analytical solutions to the multicomponent diffusion equations given by eq. (A5) in Appendix A1 for diffusion couples and by eq. (A14) in Appendix A2 for mineral dissolution.

For calculating diffusion profiles during mineral dissolution, the interface melt composition was determined by extrapolation from experimental data in the literature, instead of being calculated from diffusion matrix and chemical potential relation between mineral and melt (Guo and Zhang, 2016). The dissolution rate was determined by eq. (A20) in Appendix A2, where only the interface melt concentration of the best-resolved component was used. The Levenberg-Marquardt-Fletcher method (LMF method hereafter) is a damped leastsquares method using trust region approach to solve nonlinear least squares problems. LMF method is a combination of Gauss-Newton method and descent gradient method through the damping parameter. It is more robust than Gauss-Newton method and faster than descent gradient method. However, this method can only find a local minimum, which requires a Monte Carlo search with different initial values to find the global minimum.

Generally, for a nonlinear least squares problem with a set of data (x_i, y_i) , find the model parameters β (where β is a vector of unknowns) in a nonlinear model function $f(x, \beta)$, such that the sum of squares is minimized:

$$\min S(\beta) = \frac{1}{2} \sum_{i=1}^{m} (y_i - f(x_i, \beta))^2 = \frac{1}{2} (y - f(x, \beta))^T (y - f(x, \beta)).$$
(2.3)

Define the residue between measurement y_i and calculation $f(x_i, \beta)$ as:

$$r_i(\beta) = y_i - f(x_i, \beta), \qquad (2.4)$$

and then eq. (2.3) can be written as:

$$\min S(\beta) = \frac{1}{2} \sum_{i=1}^{m} r_i^2(\beta) = \frac{1}{2} r(\beta)^T r(\beta) .$$
(2.5)

Starting with an initial guess of the model parameters β , in each iteration β is fixed and the step size δ of β is determined as follows. The residue $r(\beta + \delta)$ can be linearized near β as:

$$r(\beta + \delta) \approx r(\beta) + J\delta$$
, (2.6)

where *J* is the Jacobian matrix whose *i*-th row is the gradient of $r(\beta)$ with respect to β . Therefore, $S(\beta+\delta)$ can be approximated by a quadratic function $Q(\delta)$:

$$S(\beta + \delta) \approx Q(\delta) = \frac{1}{2} (r + J\delta)^T (r + J\delta),$$
 (2.7)

and δ that minimizes $Q(\delta)$ is given by:

$$\delta = -\left(J^T J\right)^{-1} J^T r \,. \tag{2.8}$$

In case of an ill-conditioned $J^T J$, a damping parameter v is adopted such that the term to be inverted $(J^T J + vI)$ is always positive definite, and eq. (2.8) is revised as:

$$\delta = -\left(J^T J + vI\right)^{-1} J^T r .$$
(2.9)

where *I* is the identity matrix.

The damping parameter *v* is modified in each iteration using trust region approach, by examining the ratio γ between the actual decrement $\Delta S = S(\beta) - S(\beta+\delta)$ and the calculated decrement from quadratic approximation $\Delta Q = Q(0) - Q(\delta)$:

$$\gamma = \frac{\Delta S}{\Delta Q}.$$
 (2.10)

 γ indicates the goodness of approximation during the iteration with $\gamma = 1$ meaning a perfect approximation. If $\gamma > 0.75$, meaning a good approximation, then increase the radius of trust region by decreasing the value of *v*; if $\gamma < 0.25$, meaning a bad approximation, then decrease the radius of trust region by increasing the value of *v*; and remain the same γ otherwise.

The general algorithm of Levenberg-Marquardt-Fletcher method is summarized:

Step 1: initialize model parameters β , v = 1; Step 2: terminate iteration if the terminating conditions are satisfied; Step 3: calculate residue *r* and Jacobian *J*; Step 4: calculate δ by eq. (2.9); Step 5: calculate γ by eq. (2.10); Step 6: v = v / 2, if $\gamma > 0.75$; $v = 2 \times v$, if $\gamma < 0.75$; v = v, otherwise; Step 7: $\beta = \beta + \delta$, if $\gamma > 0$; $\beta = \beta$ otherwise; then go to step 2. Specifically for minimizing χ^2 in eq. (2.2), the data are stored in a 3-dimension matrix from *Ne* experiments with *Np_k* data points measured in experiment k for *Nc* components in the system. The model parameters are a 2-dimension diffusion matrix. However, one complexity is that diffusion matrix must have real and positive eigenvalues, which makes it a least squares problem with constraints. Those constraints cannot be easily formulized. Fortunately, a diffusion matrix can be decomposed into the product of two symmetric matrices: a kinetic matrix *L* and a thermodynamic matrix *G*, where a symmetric matrix always has real eigenvalues. Therefore, the constraints on diffusion matrix are simplified to those on matrices *L* and *G* with positive eigenvalues, and matrices *L* and *G* are treated as the model parameters.

The specific algorithm of LMF method for minimizing χ^2 in eq. (2.2) is:

Step 1: initialize the model parameters *L* and *G* with identity matrix, v = 1, $\gamma = 1$; Step 2: terminate iteration if termination conditions are satisfied; Step 3: calculate residue *r* and Jacobian *J*, if $\gamma > 0$; Step 4: calculate step size δ by eq. (2.9); reshape δ to matrix format d*L* and d*G*; Step 5: calculate LL = L + dL and GG = G + dG; Step 6: dL = dL / 2, dG = dG / 2, and repeat step 5, until both *LL* and *GG* are positive definite; Step 7: calculate γ by eq. (2.10); Step 8: v = v / 2, if $\gamma > 0.75$; $v = 2 \times v$, if $\gamma < 0.75$; v = v, otherwise; Step 9: L = L + dL and G = G + dG, if $\gamma > 0$; then go to step 2.

The Matlab codes used to obtain diffusion matrix from diffusion couple and mineral dissolution experiments are given in Appendix B with more detailed explanation. The main

function is LMF_solver.m, with supporting subroutines initialization.m, get_duration.m, get_distance.m, calc_conc.m, calc_residue.m, calc_jacobian.m.

2.7 Error propagation

The errors of diffusion matrix are estimated by error propagation from data errors (Clifford, 1973). In each experiment, data errors of each component are assumed to the same and uncorrelated with data errors of other components, and they are estimated by taking the standard deviation of numerous points in the far-field. However, the errors of eigenvalues and eigenvectors of diffusion matrix are not given.

In general, let *x* represents data, *y* represents model parameters, $\sigma(x_i)$ represent the error of data x_i , and $\sigma(y_i)$ represents the estimated error of model parameter y_i . Denote the derivatives of data with respect to model parameters as A, the covariance matrix of data as M_x and that of model parameters as M_y, where the elements of A and M_x are given by:

$$[A]_{ij} = \frac{\partial x_i}{\partial y_i}, \text{ and}$$
(2.11)

$$[M_x]_{ii} = \sigma^2(x_i) \text{ and } [M_x]_{ij} = \rho(x_i, x_j)\sigma(x_i)\sigma(x_j) = 0.$$
 (2.12)

Therefore, M_{y} is given by error propagation as:

$$[M_{y}] = ([A^{T}][M_{x}^{-1}][A])^{-1}.$$
(2.13)

And the errors of model parameters are given by:

$$\sigma(y_i) = ([M_y]_{ii})^{1/2}.$$
 (2.14)

The Matlab codes for estimating the errors of diffusion matrix are given in Appendix B by the subroutine calc error.m.

2.8 Diffusion matrix when another component is used as the dependent component

Diffusion matrix when another component is treated as the dependent component can be derived. Assuming *k* is the new dependent component and denoting SiO₂ as *n* ($k \neq n$), the new diffusion matrix is (see Appendix A3 for derivation):

$$D_{ij}^{k} = D_{ij}^{n} - D_{ik}^{n}, \qquad \text{if } i \neq n \text{ and } j \neq n$$
(2.15a)

$$D_{in}^{k} = -D_{ik}^{n}, \qquad \text{if } i \neq n \tag{2.15b}$$

$$D_{nj}^{k} = \sum_{i=1}^{n-1} (D_{ik}^{n} - D_{ij}^{n}), \quad \text{if } j \neq n$$
(2.15c)

$$D_{nn}^{k} = \sum_{i=1}^{n-1} D_{ik}^{n} .$$
(2.15d)

Eq. (2.15b) is the same as that in Kirkaldy et al. (1963). In ternary systems, the above relations reduce to the relations in Kirkaldy and Young (1987, p.157). Using eqs. (2.15a)–(2.15d), diffusion matrix can be transformed into diffusion matrices using different components as the dependent component.

2.9 Eigenanalysis

Eigenvector of a matrix is a non-zero vector, which changes not in direction, but only in scale, after multiplied by the matrix, and the scale is called eigenvalue. Non-zero value λ and non-zero vector *v* that satisfy the following equation are called eigenvalue and eigenvector of matrix [D]:

$$[D]v = \lambda v \,. \tag{2.16}$$

Eigenvalues and eigenvectors of diffusion matrix are calculated from eq. (2.16) to examine the temperature dependence of diffusion matrix. To facilitate the discussion in 7- and 8-component

basaltic melts in later chapters, the concepts of eigenvalues, eigenvectors and their temperature dependence are illustrated in a simple well-studied ternary system.

temperature range of 1440 to 1650°C, together with their eigenvalues and eigenvectors (data from Llang and Davis, 2002).									.002).	
	T = 14	440 °C	T = 14	450 °C	T = 15	500 °C	T = 1	570 °C	T = 1	650 °C
$D(\mu m^2/s)$	Al_2O_3	CaO	Al_2O_3	CaO	Al_2O_3	CaO	Al_2O_3	CaO	Al_2O_3	CaO
Al_2O_3	4.2	-40.0	2.3	-53.7	13.8	-73.7	15.6	-117.5	37.8	-187.2
CaO	25.5	99.5	33.9	126.8	32.1	153.1	61.1	274.8	110.8	456.0
$\lambda (\mu m^2/s)$	λ_1	λ_2	λ_1	λ_2	λ_1	λ_2	λ ₁	λ_2	λ_1	λ_2
	16.5		19.2		33.6		47.1		95.3	
		87.2		109.8		133.3		243.3		398.5
2-component v	v_1	v_2	v_1	v_2	v_1	v_2	v_1	v_2	v_1	v_2
Al_2O_3	0.96	-0.43	0.95	-0.45	0.97	-0.52	0.97	-0.46	0.96	-0.46
CaO	-0.29	0.9	-0.3	0.89	-0.26	0.85	-0.26	0.89	-0.29	0.89
3-component v	v_1	v_2	v_1	v_2	v_1	v_2	v_1	v_2	v_1	v_2
SiO_2	-0.56	-0.43	-0.55	-0.40	-0.58	-0.31	-0.58	-0.39	-0.56	-0.39
Al_2O_3	0.80	-0.39	0.80	-0.41	0.79	-0.50	0.79	-0.42	0.80	-0.42
CaO	-0.24	0.82	-0.25	0.82	-0.21	0.81	-0.21	0.82	-0.24	0.82

Table 2.2 Diffusion matrices for 3-component SiO_2 -Al₂O₃-CaO system, with SiO_2 chosen as the dependent component in temperature range of 1440 to 1650 °C, together with their eigenvalues and eigenvectors (data from Liang and Davis, 2002)

For example, in the SiO₂–Al₂O₃–CaO silicate melts with an average composition of 45 wt% SiO₂, 20 wt% Al₂O₃ and 35 wt% CaO, diffusion matrices with Al₂O₃ chosen as the dependent component in the temperature range of 1440 to 1650 °C at 1 GPa are reported by Liang and Davis (2002). Using eqs. (A22)–(A25) in Appendix A3, those diffusion matrices can be transformed with SiO₂ chosen as the dependent component and are shown in Table 2.2, together with their eigenvalues and eigenvectors calculated from eq. (2.16). Eigenvectors in both 2- and 3-component vector space are shown, where the 3-component eigenvectors are calculated by adding the dependent component SiO₂ to the 2-component eigenvectors such that the sum of all 3 components is zero and then renormalized. The eigenvalues of diffusion matrix follow good Arrhenius relation $\lambda = \lambda_0 e^{-E/RT}$ shown in Fig. 2.1a, while the eigenvectors of diffusion matrix are insensitive to temperature with v_1 largely due to the exchange between Al₂O₃ and SiO₂ (with minor CaO) and with v_2 due to the exchange of CaO with SiO₂ and Al₂O₃ (with roughly equal contribution), shown in Fig. 2.1b in a ternary diagram.

The eigenanalysis of diffusion matrix in the 7- and 8-component basaltic melts follow a similar procedure as in the ternary system.

Fig. 2.1 Eigenvalues and eigenvectors of diffusion matrices in 3-component system. (a) Eigenvalues of diffusion matrices at different temperatures with good Arrhenius relation. (b) Eigenvectors of diffusion matrix plot in a ternary diagram. It can be seen that v_1 is largely due to the exchange between Al₂O₃ and SiO₂ with minor CaO and v_2 is due to the exchange of CaO with roughly equal contribution of SiO₂ and Al₂O₃.

2.10 References

Asimow P. D. and Ghiorso M.S. (1998) Algorithmic modifications extending MELTS to

calculate subsolidus phase relations. Am. Mineral. 83, 1127–1131.

- Clifford A. A. (1973) *Multivariate error analysis: a handbook of error propagation and calculation in many-parameter system*. Wiley, NY.
- Dixon J. E., Clague D. A. and Eissen J.P. (1986) Gabbroic xenoliths and host ferrobasalt from the Southern Juan de Fuca Ridge. *J. Geophys. Res.* **91**, 3795–3820.

Dixon J. E., Stolper E. and Delaney J. R. (1988) Infrared spectroscopic measurements of CO₂ and H₂O in Juan de Fuca Ridge basaltic glasses. *Earth Planet. Sci. Lett.* **90**, 87–104.

Fletcher R. (1971) *A modified Marquardt subroutine for nonlinear least squares*. Atomic Energy Research Establishment R6799, Harwell, England.

- Ghiorso M. S. and Sack R. O. (1995) Chemical mass transfer in magmatic processes IV. a revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid–solid equilibria in magmatic systems at elevated temperatures and pressures. *Contrib. Mineral. Petrol.* **119**, 197–212.
- Guo C. and Zhang Y. (2016) Multicomponent diffusion in silicate melts: SiO₂–TiO₂–Al₂O₃– FeO–MgO–CaO–Na₂O–K₂O system. *Geochim. Cosmochim. Acta* **195**, 126–141.
- Hui H., Zhang Y. and Behrens H. (2008) Pressure dependence of the speciation of dissolved water in rhyolitic melts. *Geochim. Cosmochim. Acta* **72**, 3229–3240.
- Kirkaldy, J.S. and Young, D.J. (1987) *Diffusion in the Condensed State*. The Institute of Metals, London.
- Kirkaldy, J.S., Lane, J.E. and Mason, G.R. (1963) Diffusion in multicomponent metallic systems
 VII. solutions of the multicomponent diffusion eqs. with variable coefficients. *Can. J. Phys.* 41, 2174–2186.
- Lange R. L. and Carmichael I. S. E. (1990) Thermodynamic properties of silicate liquids with emphasis on density, thermal expansion and compressibility. *Rev. Mineral. Geochem.* 24, 25–64.
- Liang Y. and Davis A. M. (2002) Energetics of multicomponent diffusion in molten CaO– Al₂O₃–SiO₂. *Geochim. Cosmochim. Acta* **66**, 635–646.
- Ni H. and Zhang Y. (2008) H₂O diffusion models in rhyolitic melt with new high pressure data. *Chem. Geol.* **250**, 68–78.
- Zhang Y. and Behrens H. (2000) H₂O diffusion in rhyolitic melts and glasses. *Chem. Geol.* **169**, 243–262.

CHAPTER III

Multicomponent Diffusion in Silicate Melts:

SiO₂-TiO₂-Al₂O₃-MgO-CaO-Na₂O-K₂O System

3.1 Abstract

Nine successful diffusion couple experiments were carried out in 7-component SiO₂--TiO₂-Al₂O₃-MgO-CaO-Na₂O-K₂O haplobasaltic silicate melts to study multicomponent diffusion at ~1500 °C and 1 GPa, typically with compositional gradients in only two components in each experiment. At least two concentration traverses were measured for each experiment. Effective binary diffusion coefficients (EBDC) for monotonic profiles were obtained by an error function fit, and the EBDC of a given component is dependent on its counter diffusing component, especially for SiO₂. The EBDC of SiO₂ varies from 15.7 μ m²/s when diffusing against Al₂O₃, to 102.9 μ m²/s when diffusing against K₂O. Furthermore, the multicomponent diffusion matrix was obtained by simultaneously fitting diffusion profiles of all components in all experiments. Most features in the diffusion profiles, for example uphill diffusion, are captured well by this 6 × 6 diffusion matrix. The slowest diffusing eigenvector is largely due to the exchange between SiO₂ and Al₂O₃, and the fastest diffusing eigenvector is due to the exchange of Na₂O with all other components. An anorthite dissolution experiment was also conducted to test whether the diffusion matrix can be applied to mineral dissolution experiments. The

27

calculated diffusion profiles in the melt during anorthite dissolution roughly match the measured profiles, demonstrating the validity and utility of the diffusion matrix in this FeO-free aluminosilicate melt system.

3.2 Introduction

Silicate melts consist of numerous components and diffusion in them is always of multicomponent. Hence, multicomponent diffusion in silicate melts is a fundamental part of mass transport in natural processes, such as mixing and contamination of magmas (Sato, 1975; Watson, 1982; Koyaguchi, 1985, 1989; Oldenburg et al., 1989), double-diffusive convection of magmas (Turner, 1985), and growth or dissolution of minerals in magma (Watson, 1982; Zhang, 1989). The often-observed uphill diffusion profiles in natural systems and experiments (Sato, 1975; Watson, 1982; Zhang et al., 1989) require multicomponent diffusion treatment, which has not been fully understood yet. Instead, effective binary diffusion approximation (Cooper, 1968) has been widely used to treat chemical diffusion of components without uphill diffusion, it has difficulty to account for uphill diffusion profiles, as well as the variability of effective binary diffusivity of a given component on other components (Zhang et al., 1989; Chen and Zhang, 2008, 2009). Empirical treatments of uphill diffusion have been developed (Cooper, 1968; Lasaga, 1979; Richter, 1993; Zhang, 1993; Liang et al., 1997).

Great efforts have been made in studying multicomponent diffusion in synthetic and natural silicate melts (including SiO₂–Al₂O₃–CaO, SiO₂–Al₂O₃–MgO, SiO₂–CaO–Na₂O, SiO₂– Al₂O₃–MgO–CaO, SiO₂–Al₂O₃–Na₂O–K₂O–H₂O and SiO₂–TiO₂–Al₂O₃–FeO–MgO–CaO) (Sugawara et al., 1977; Oishi et al., 1982; Kress and Ghiorso, 1993, 1995; Chakraborty et al., 1995; Liang et al. 1996; Mungall et al., 1998; Richter et al., 1998; Liang and Davis, 2002; Lundstrom, 2000, 2003; Liang, 2010; Watkins et al., 2014). Chemical diffusion in silicate melts in SiO₂–Al₂O₃–CaO–MgO and simpler systems shows the degree of diffusive coupling among components depends strongly on compositions (Sugawara et al., 1977; Oishi et al., 1982; Trial and Spera, 1994; Liang et al., 1996; Richter et al., 1998; Liang and Davis, 2002). Furthermore, diffusion of Na₂O and H₂O in Na₂O- and K₂O-bearing silicate melts was found to be strongly coupled to the diffusion of SiO₂ (Chakraborty et al. 1995; Mungall et al., 1998; Lundstrom, 2000 and 2003). Although diffusion matrices for a limited number of components in melts have been obtained (e.g., Kress and Ghiorso, 1995; Mungall et al., 1998; Lundstrom, 2000, 2003; Morgan et al., 2006), full diffusion matrices for major oxide components in natural silicate melts have not been reported yet. Several empirical models to calculate diffusion matrix in a multicomponent system have been proposed (Lasaga, 1979; Richter 1993; Liang, 1997), with which diffusive dissolution profiles were calculated (Alexander, 2011). However, limited success is achieved in natural silicate melts using these empirical models (e.g., comparison in Figs, 1.2–1.3).

To better understand the diffusion behavior in a multicomponent silicate system, and as part of the project to obtain diffusion matrix in natural silicate melts, we investigated multicomponent diffusion in a 7-component SiO₂-TiO₂-Al₂O₃-MgO-CaO-Na₂O-K₂O haplobasaltic melt at 1500 °C and 1 GPa. This FeO-free system is chosen to avoid complexities associated with FeO in the melt, such as ferric/ferrous ratio variation and iron loss during the experiments. The concentration profiles in all experiments were simultaneously fit to obtain the 6 × 6 diffusion matrix. In addition, we tested the validity of the extracted diffusion matrix by carrying out an anorthite dissolution experiment in the same melt, and using the extracted diffusion matrix to predict the diffusion behavior during anorthite dissolution.

3.3 Experimental strategy and analytical methods

The general experimental strategy, sample preparation, experimental procedure and analytical methods follow sections 2.1–2.4 in chapter II. The compositions and calculated liquidus of the starting glasses are listed in Table 3.1. The experimental temperature of 1500 °C is chosen because an initial experiment at 1400 °C resulted in partial crystallization although the calculated liquidus temperature from the MELTS program (Ghiorso and Sack, 1995; Asimow and Ghiorso, 1998) is less than 1380 °C. The pressure of 1 GPa is chosen for better experimental success rate.

	SiO ₂ *	TiO ₂	Al ₂ O ₃	MgO	CaO	Na ₂ O	K ₂ O	Total	Liquidus
	ave(σ)	$ave(\sigma)$	ave(σ)	ave(σ)	ave(σ)	$ave(\sigma)$	ave(σ)		°C
Base Comp.	50	1.5	15	10	19	3	1.5	100	1367
HB2	48.74(12)	1.53(5)	15.92(08)	9.69(07)	18.87(08)	2.69(3)	2.56(2)	100	1358
HB3	52.24(14)	1.27(4)	16.03(07)	10.05(07)	19.02(06)	0.53(1)	0.86(1)	100	1366
HB4	49.46(15)	1.53(4)	16.02(07)	9.85(10)	18.99(11)	2.88(3)	1.28(2)	100	1361
HB5	52.04(23)	1.48(4)	15.95(13)	9.82(12)	17.44(14)	2.00(4)	1.28(2)	100	1364
HB6	49.79(11)	1.45(4)	15.96(07)	9.92(07)	20.34(05)	1.56(2)	0.98(1)	100	1366
HB7	51.96(14)	1.50(4)	15.96(09)	8.27(11)	18.92(09)	2.08(4)	1.33(2)	100	1359
HB8	48.84(16)	1.49(4)	16.12(07)	11.25(10)	18.84(07)	2.12(3)	1.34(2)	100	1365
HB9	54.34(15)	1.53(5)	13.55(10)	9.26(07)	18.04(09)	1.98(3)	1.30(2)	100	1376
HB10	51.04(11)	1.49(3)	16.68(06)	9.30(06)	18.22(07)	2.00(3)	1.27(2)	100	1358
HB11	51.71(16)	0.02(2)	15.88(10)	9.62(07)	18.60(04)	2.66(2)	1.51(2)	100	1351
HB12	49.25(15)	2.91(5)	16.06(08)	9.68(07)	18.07(72)	2.59(2)	1.44(2)	100	1355
HB15	50.82(12)	1.52(4)	15.47(08)	9.55(09)	20.49(07)	0.95(1)	1.16(1)	100	1369
HB16	50.58(15)	1.51(4)	15.64(07)	9.71(08)	17.71(07)	3.45(3)	1.40(2)	100	1363
HB17	50.41(11)	0.02(2)	15.86(09)	11.10(07)	18.76(06)	2.40(2)	1.45(2)	100	1355
HB18	50.44(15)	2.95(7)	15.61(08)	8.21(06)	18.61(08)	2.65(3)	1.53(2)	100	1353

Table 3.1 Average compositions, 1σ errors and liquidus of initial haplobasaltic glasses.

Note: SiO_2^* is defined as $SiO_2^* = SiO_2 - (total - 100)$, so the "total" here is 100%. The values in parentheses indicate 1s errors on the last digit. Liquidus of glasses are estimated by the MELTS program (Ghiorso and Sack, 1995; Asimow and Ghiorso, 1998).

3.4 Experimental results

Nine successful diffusion couple experiments were carried out. The name of each diffusion couple indicates the two halves of the diffusion couple, e.g., HB7&8B means that one half is HB7, and the other half is HB8, and the last letter "A" means the first experiment for this couple and "B" means the second experiment for this couple (often because the first experiment

failed). The interface composition of each diffusion couple is listed in Table 3.2. The 1σ standard deviation of the interface composition of the 9 diffusion couple experiments is 1.1 wt% for SiO₂ and less than 0.5 wt% for all other oxide components.

Table 5.2 Interface compositions of each unrusion couple.								
Exp#	SiO2*	TiO2	Al2O3	MgO	CaO	Na2O	K2O	Total
Base composition	50.00	1.50	15.00	10.00	19.00	3.00	1.50	100
HB2&4A	49.07	1.54	15.98	9.74	18.98	2.79	1.92	100
HB3&4A	50.88	1.40	16.01	9.98	18.96	1.71	1.07	100
HB5&6A	51.01	1.47	15.90	9.92	18.83	1.76	1.12	100
HB5&7A	51.93	1.49	15.98	8.96	18.26	2.07	1.32	100
HB7&8B	50.36	1.50	16.07	9.81	18.86	2.08	1.33	100
HB9&10A	52.69	1.51	15.12	9.28	18.13	1.99	1.29	100
HB11&12F	50.48	1.47	15.97	9.65	18.34	2.63	1.48	100
HB15&16A	50.70	1.52	15.56	9.63	19.10	2.20	1.28	100
HB17&18A	50.43	1.49	15.74	9.66	18.69	2.53	1.49	100
Average	50.94	1.46	15.83	9.65	18.71	2.09	1.31	100
1σ deviation	1.01	0.08	0.30	0.32	0.34	0.49	0.29	

Table 3.2 Interface compositions of each diffusion couple.

Total is 100% because $SiO_2^* = SiO_2 - (total - 100)$ is used in the fitting.

Fig. 3.1 shows a microscopic image of a polished experimental charge. Quench crystals are not observed, and cracks are present in 6 out of 9 experiments. Interface between the two halves is not visible in the glass, but the physical interface can be seen near the graphite capsule by a small dent or misalignment in Fig. 3.1.

Fig. 3.1 Microscopic image of polished experimental charge HB7&8B. Three traverses (L1, L2 and L3) were measured. Physical interface position is preserved after experiment.

Two or more traverses were measured to obtain concentration profiles for each experiment. Profiles across cracks were re-connected smoothly using different traverses. Uphill diffusion is observed for most components if the initial concentration difference between the two halves is negligible. All microprobe analytical data can be found in the Appendix C.

Table 3.3 Summary of experimental conditions and effective binary diffusion coefficients in haplobasaltic melts at 1500 °C.

Exp#	Т	t	Diff	D(SiO ₂)	D(TiO ₂)	$D(Al_2O_3)$	D(MgO)	D(CaO)	D(Na ₂ O)	$D(K_2O)$
	(°C)	(s)	Couple	$(\mu m^2/s)$	$(\mu m^2/s)$	$(\mu m^2/s)$	$(\mu m^2/s)$	$(\mu m^2/s)$	$(\mu m^2/s)$	$(\mu m^2/s)$
HB11&12F	1505	333	Si–Ti	19.5±2.8	21.5±0.7					
HB9&10A	1499	332	Si-Al	15.7±1.5		12.3±0.8				
HB7&8B	1520	332	Si–Mg	30.0±1.7			49.7±1.5			
HB5&6A	1501	333	Si–Ca	28.7±2.8				60.4 ± 2.0		
HB3&4A	1491	332	Si–Na	44.2±4.0					401.5±8.6	129.7±7.4
HB2&4A	1496	332	Si–K	102.9±19.5						109.1±1.7
HB17&18A	1497	333	Ti–Mg		20.8±0.7		46.9±2.3			
HB5&7A	1495	361	Mg–Ca				61.1±3.8	115.7±7.2		
HB15&16A	1496	333	Ca–Na					70.4±2.6	260.1±3.7	
An&HB4	1484	172	An diss		13.3±0.6	17.9 ± 0.2	36.8±0.5			

Note: all experiments were at 1 GPa. For easy comparison, the effective binary diffusivities are those at 1500 °C; that is, in the fitting of effective binary diffusivities, the experimental temperatures are "normalized" to 1500 °C by "normalizing" the experimental duration using the relation $D_{1773\text{K}} \cdot t_{1773\text{K}} = D_{T_{exp}} \cdot t_{exp}$ (Zhang and Behrens, 2000) with activation energy of 230 kJ/mol (Zhang et al., 1989).

Table 3.3 shows experimental conditions and effective binary diffusion coefficients (EBDC) for monotonic diffusion profiles of all 9 successful experiments. Experimental temperatures are the actual temperatures at the center of the diffusion couple, which vary from 1495 to 1520 °C. Experimental durations are corrected following Zhang and Behrens (2000) with

$$t_{\exp} = \int D dt / D(T_{\exp}) = \int e^{-E/(RT)} dt / e^{-E/(RT_{\exp})}$$
 where $D(T_{\exp})$ is D at the experimental

temperature. The first 6 experiments listed in Table 3.3 have initial concentration gradients in SiO_2 and oxide *i*, where $i = TiO_2$, Al_2O_3 , MgO, CaO, Na₂O and K₂O. These 6 experiments are the minimum for obtaining the 6 × 6 diffusion matrix (Trial and Spera, 1994) unless the analytical accuracy is much higher than regular electron microprobe analyses (Liang, 2010).

Three additional and successful experiments with initial gradients in TiO₂–MgO, MgO–CaO, and CaO–Na₂O were carried out to further constrain diffusion matrix.

In order for fitting effective binary diffusion coefficients and diffusion matrix, the preliminary data processing follows section 2.5 in chapter II.

3.5 Effective binary diffusion coefficients

Effective binary diffusivities or effective binary diffusion coefficients (EBDC) were fit by eq. (2.1) for components with monotonic profiles (Table 3.3). Note that these diffusion couples have a similar bulk (or interface) composition, but the opposing concentration gradients are in different components. Because of our experimental design, most of the effective binary diffusivities may be regarded as inter-diffusivities between two components.

One observation is that EBDC of a given component is strongly dependent on the counter-diffusing component. That is especially significant for SiO₂, partially because more interdiffusion coupling experiments have been run for SiO₂. EBDC of SiO₂ varies from 15.7 μ m²/s when the counter-diffusing component is Al₂O₃, to 28.7 μ m²/s for SiO₂–CaO, to 44.2 μ m²/s for SiO₂–Na₂O, and to 102.9 μ m²/s when the counter-diffusing component is K₂O, with total variation by a factor of almost 7. This clearly shows that EBDC depends not only on the bulk composition (all the experiments in this study have a similar bulk composition), but also on the compositional gradients. Notably, EBDC of SiO₂ when diffusing against K₂O (102.9 μ m²/s) is much larger than that when diffusing against Na₂O (44.2 μ m²/s), although K₂O diffuses much slower than Na₂O. EBDC's of other components seem to depend less on the counter-diffusing component. EBDC of CaO varies by a factor of about 2, from 60.5 μ m²/s for SiO₂–CaO, to 70.4 μ m²/s for CaO–Na2O, and to 115.7 μ m²/s for MgO–CaO.

Fig. 3.2 Data of diffusion profiles of HB2&4A with fits. All the points are measured data. Different symbols indicate different traverses. The error bars are $\pm 1\sigma$ errors. The dashed curves are fits by matrix A in Table 3.4. The dash-dotted curves are fits by matrix B in Table 3.5. The solid curves are fits by the new matrix in Table 3.7 obtained by fitting diffusion profiles including anorthite dissolution. χ^2/n is calculated and shown for each type of fitting.

Fig. 3.3 Data of diffusion profiles of HB3&4A with fits. All the points are measured data. Different symbols indicate different traverses. The error bars are $\pm 1\sigma$ errors. The dashed curves are fits by matrix A in Table 3.4. The dash-dotted curves are fits by matrix B in Table 3.5. The solid curves are fits by the new matrix in Table 3.7 obtained by fitting diffusion profiles including anorthite dissolution. χ^2/n is calculated and shown for each type of fitting.

Fig. 3.4 Data of diffusion profiles of HB5&6A with fits. All the points are measured data. Different symbols indicate different traverses. The error bars are $\pm 1\sigma$ errors. The dashed curves are fits by matrix A in Table 3.4. The dash-dotted curves are fits by matrix B in Table 3.5. The solid curves are fits by the new matrix in Table 3.7 obtained by fitting diffusion profiles including anorthite dissolution. χ^2/n is calculated and shown for each type of fitting.

Fig. 3.5 Data of diffusion profiles of HB5&7A with fits. All the points are measured data. Different symbols indicate different traverses. The error bars are $\pm 1\sigma$ errors. The dashed curves are fits by matrix A in Table 3.4. The dash-dotted curves are fits by matrix B in Table 3.5. The solid curves are fits by the new matrix in Table 3.7 obtained by fitting diffusion profiles including anorthite dissolution. χ^2/n is calculated and shown for each type of fitting.

Fig. 3.6 Data of diffusion profiles of HB7&8B with fits. All the points are measured data. Different symbols indicate different traverses. The error bars are $\pm 1\sigma$ errors. The dashed curves are fits by matrix A in Table 3.4. The dash-dotted curves are fits by matrix B in Table 3.5. The solid curves are fits by the new matrix in Table 3.7 obtained by fitting diffusion profiles including anorthite dissolution. χ^2/n is calculated and shown for each type of fitting.

Fig. 3.7 Data of diffusion profiles of HB9&10A with fits. All the points are measured data. Different symbols indicate different traverses. The error bars are $\pm 1\sigma$ errors. The dashed curves are fits by matrix A in Table 3.4. The dash-dotted curves are fits by matrix B in Table 3.5. The solid curves are fits by the new matrix in Table 3.7 obtained by fitting diffusion profiles including anorthite dissolution. χ^2/n is calculated and shown for each type of fitting.

Fig. 3.8 Data of diffusion profiles of HB11&12F with fits. All the points are measured data. Different symbols indicate different traverses. The error bars are $\pm 1\sigma$ errors. The dashed curves are fits by matrix A in Table 3.4. The dash-dotted curves are fits by matrix B in Table 3.5. The solid curves are fits by the new matrix in Table 3.7 obtained by fitting diffusion profiles including anorthite dissolution. χ^2/n is calculated and shown for each type of fitting.

Fig. 3.9 Data of diffusion profiles of HB15&16A with fits. All the points are measured data. Different symbols indicate different traverses. The error bars are $\pm 1\sigma$ errors. The dashed curves are fits by matrix A in Table 3.4. The dash-dotted curves are fits by matrix B in Table 3.5. The solid curves are fits by the new matrix in Table 3.7 obtained by fitting diffusion profiles including anorthite dissolution. χ^2/n is calculated and shown for each type of fitting.

Fig. 3.10 Data of diffusion profiles of HB17&18A with fits. All the points are measured data. Different symbols indicate different traverses. The error bars are $\pm 1\sigma$ errors. The dashed curves are fits by matrix A in Table 3.4. The dash-dotted curves are fits by matrix B in Table 3.5. The solid curves are fits by the new matrix in Table 3.7 obtained by fitting diffusion profiles including anorthite dissolution. χ^2/n is calculated and shown for each type of fitting.

3.6 Fitting diffusion profiles of diffusion couples

The diffusion matrix is obtained by simultaneously fitting all diffusion profiles from all experiments using Levenberg-Marquardt-Fletcher methods (Fletcher, 1971), and the numerical methods are given by section 2.6 in chapter II. The error of diffusion matrix was estimated by error propagation (Clifford, 1973), and the numerical method is given by section 2.7 in chapter II.

$D (\mu m^2/s)$	TiO ₂	Al ₂ O ₃	MgO	CaO	Na ₂ O	K ₂ O
TiO ₂	18.12±0.19	-0.97±0.28	-5.59±0.33	-12.85 ± 0.67	-30.61 ± 1.58	-21.51±1.92
Al_2O_3	-4.13±0.53	10.23±0.53	-15.78±0.65	-35.57±1.08	-59.08 ± 2.56	-78.00 ± 2.96
MgO	-8.19 ± 0.63	2.25±0.61	35.58±0.89	-41.38±1.31	-83.00 ± 2.96	-51.51 ± 3.90
CaO	-10.05 ± 0.73	-3.29 ± 0.81	-24.75 ± 0.93	66.87±1.43	-26.35 ± 2.98	39.63±4.18
Na ₂ O	26.67±0.69	10.14±0.77	45.77±0.89	57.84±1.00	335.44±2.11	88.46±3.39
K ₂ O	5.86±0.28	3.83±0.26	12.63±0.34	15.78±0.52	-0.29 ± 1.04	113.97±1.39
eigenvalues	λ_1	λ_2	λ_3	λ_4	λ_5	λ_6
	14.46					
		19.55				
			33.26			
				78.70		
					123.19	
						311.05
6-component						
eigenvectors	v_1	v_2	v_3	v_4	v_5	v_6
TiO ₂	-0.08	0.87	-0.18	-0.06	-0.08	-0.09
Al_2O_3	0.98	-0.15	-0.33	-0.11	-0.35	-0.15
MgO	-0.18	0.25	0.71	-0.55	-0.33	-0.27
CaO	-0.03	0.35	0.56	0.81	0.66	-0.07
Na ₂ O	0.01	-0.13	-0.13	-0.02	-0.29	0.94
K ₂ O	-0.01	-0.14	-0.19	-0.14	0.49	-0.03
7-component						
eigenvectors	v_1	v_2	v_3	v_4	v_5	v_6
SiO ₂	-0.57	-0.73	-0.40	0.07	-0.11	-0.32
TiO ₂	-0.07	0.60	-0.16	-0.06	-0.08	-0.08
Al_2O_3	0.81	-0.10	-0.30	-0.10	-0.35	-0.15
MgO	-0.15	0.17	0.65	-0.55	-0.33	-0.25
CaO	-0.02	0.24	0.51	0.81	0.66	-0.07
Na ₂ O	0.01	-0.09	-0.12	-0.02	-0.28	0.90
K_2O	0.00	-0.10	-0.18	-0.14	0.49	-0.03

Table 3.4 Diffusion matrix A obtained by fitting 9 diffusion couples, with 1σ errors for each element, and eigenvalues and eigenvectors.

$D (\mu m^2/s)$	TiO ₂	Al_2O_3	MgO	CaO	Na ₂ O	K ₂ O
TiO ₂	17.21±0.24	-1.88 ± 0.28	-7.25 ± 0.48	-13.00 ± 0.77	-49.24±2.07	-18.71 ± 1.89
Al_2O_3	-2.65 ± 0.65	10.25±0.49	-18.77±0.79	-32.41 ± 1.18	-56.14 ± 3.10	-71.94 ± 2.83
MgO	-11.44±0.79	2.57±0.63	43.08±1.33	-46.70 ± 1.61	-94.21±3.63	-54.79 ± 3.97
CaO	-9.06 ± 0.87	-3.61±0.77	-27.44±1.19	67.66±1.64	-36.40 ± 3.60	41.50±4.05
Na ₂ O	28.51±0.75	9.89±0.72	41.43±1.16	60.14±1.08	339.42±2.47	89.89±3.22
K ₂ O	5.37±0.34	3.37±0.25	11.49 ± 0.43	18.85 ± 0.61	-7.49 ± 1.31	115.89±1.35
eigenvalues	λ_1	λ_2	λ_3	λ_4	λ_5	λ_6
	14.64					
		20.78				
			35.26			
				80.48		
					135.87	
						306.48
6-component	14	1/-	12-	12.	1/-	12-
eigenvectors	<i>v</i> 1	<i>v</i> ₂	<i>V</i> 3	<i>v</i> ₄	<i>V</i> 5	V6
TiO ₂	0.02	0.88	-0.10	-0.02	0.02	-0.14
Al_2O_3	0.99	0.11	-0.35	0.03	-0.27	-0.13
MgO	-0.14	0.22	0.64	-0.63	-0.29	-0.29
CaO	0.01	0.35	0.63	0.75	0.65	-0.11
Na ₂ O	-0.01	-0.13	-0.12	0.00	-0.36	0.93
K ₂ O	-0.02	-0.16	-0.23	-0.19	0.54	-0.07
7-component	11					
eigenvectors	<i>v</i> 1	<i>v</i> ₂	<i>V</i> 3	<i>v</i> ₄	<i>V</i> 5	V6
SiO_2	-0.65	-0.78	-0.42	0.08	-0.27	-0.18
TiO ₂	0.02	0.55	-0.09	-0.02	0.01	-0.14
Al_2O_3	0.75	0.07	-0.32	0.03	-0.26	-0.12
MgO	-0.11	0.14	0.58	-0.63	-0.28	-0.29
CaO	0.01	0.21	0.57	0.75	0.62	-0.11
Na ₂ O	-0.01	-0.08	-0.11	0.00	-0.35	0.91
K ₂ O	-0.02	-0.10	-0.21	-0.19	0.52	-0.07

Table 3.5 Diffusion matrix B obtained by fitting 6 diffusion couples, with initial gradients on SiO₂ and another component, with 1σ errors for each element, and eigenvalues and eigenvectors.

We carried out the fitting for two cases. One fit uses all the 9 diffusion couple experiments, and the obtained diffusion matrix is referred to as matrix A, which is shown in Table 3.4, together with the eigenvalues and eigenvectors. The other fit uses 6 experiments with initial gradients in SiO₂ and *i*, where *i* varies from TiO₂, Al₂O₃, MgO, CaO, Na₂O and K₂O (the first 6 experiments in Table 3.3), and the obtained diffusion matrix is referred to as matrix B, which is shown in Table 3.5. The fit curves by matrix A for all experiments are shown by dashed curves in Figs. 3.2–3.10; the fit curves for the first 6 experiments and the calculated curves for the rest three experiments by matrix B are shown by dash-dotted curves in Figs. 3.2–3.10. The purpose of reporting matrix B is to check how different the diffusion matrix B obtained from 6 experiments is from the better constrained matrix A. In other words, the purpose of carrying out more than 6 experiments to determine matrix A is to check whether significant improvement of the diffusion matrix can be obtained by extra experiments.

All features in the profiles of 7 oxide components of all experiments are well reproduced by diffusion matrix A (Figs. 3.2–3.10). Furthermore, matrix B successfully fits the profiles from the first 6 experiments (which are used in fitting) and predicts most features in the rest three experiments, which means 6 independent experiments are sufficient to obtain the diffusion matrix, but 9 experiments are better. Eigenvalues of matrix A and matrix B are close to each other (Tables 3.4–3.5), with relative differences of about 10%. We tested whether matrices A and B are significantly different by calculating $T_{ij} = (A_{ij} - B_{ij})/\sqrt{\sigma_{A,ij}^2 + \sigma_{B,ij}^2}$. If A and B agree with each other within error, then absolute values of T_{ij} should be less than 2 at 95% probability assuming a standard normal distribution. About 40% of the T_{ij} values are outside the range [–2, 2]. That is, A and B are statistically different. Therefore, the improvement by extra experiments is significant even though it is small.

3.7 Eigenvalues and eigenvectors of the diffusion matrix

Eigenvalues and eigenvectors of diffusion matrix A are calculated and shown in Table 3.4. The eigenvalues are in an increasing order, with their eigenvectors in both 6-component $TiO_2-Al_2O_3-MgO-CaO-Na_2O-K_2O$ and 7-component $SiO_2-TiO_2-Al_2O_3-MgO-CaO-Na_2O-K_2O$ vector space, where the 7-component eigenvectors are calculated by adding the dependent component SiO_2 to the 6-component eigenvectors such that the sum of all components is zero and then renormalized. The largest eigenvalue (λ_6) is 21.5 times the smallest eigenvalue (λ_1) in this system.

The eigenvectors are related to the diffusion mechanism, and are often difficult to interpret. The 7-component eigenvectors are examined by first looking for components with large absolute values, which means large contribution during diffusion, and then checking the signs of all components, where components with the same sign diffuse together and components with the opposite signs diffuse against each other. Following the rules, v_1 (the eigenvector associated with the smallest eigenvalue λ_1 , meaning the slowest diffusing eigenvector) has components with large values in SiO₂ and Al₂O₃ with the opposite signs, meaning v_2 is largely due the exchange between SiO₂ and Al₂O₃. It is reasonable that the slowest eigenvector is largely due to SiO₂–Al₂O₃ exchange, because both Si and Al are network-formers.

In a similar fashion, v_2 (the eigenvector associated with the second smallest eigenvalue λ_2) is largely due to the exchange between SiO₂ and TiO₂ (with minor MgO and CaO); v_3 (the third smallest eigenvector) is largely due to the exchange between SiO₂+Al₂O₃ and MgO+CaO; v_4 (the third largest eigenvector) is largely due to the exchange between MgO and CaO; v_5 (the second largest eigenvector) is due the exchange of CaO+K₂O with all other components; v_6 (the largest eigenvector) is due to the exchange of Na₂O with all other components is the largest, because Na self-diffusivity is the largest among the 7 components studied (see diffusivity sequence in Zhang et al., 2010).

In summary, the slowest diffusing eigenvector (v_1) is largely due to the exchange between two network-formers SiO₂ and Al₂O₃; the second slowest (v_2) is largely due to the exchange between SiO₂ and TiO₂; the third slowest (v_3) is due to the exchange between network-formers SiO₂+Al₂O₃ and divalent network-modifiers MgO+CaO; the third fastest (v_4) is largely due to the exchange between divalent network-modifiers CaO and MgO; the second fastest (v_5) is due to

46

the exchange of divalent plus monvalent network modifiers CaO+K₂O with all other components; and the fastest diffusing eigenvector (v_6) is due to the exchange of monovalent Na₂O with all other components. (Table 3.6)

One may also divide multicomponent diffusion eigenvectors into two groups: (1) relatively simple diffusion exchanges v_1 (SiO₂-Al₂O₃ exchange), v_2 (SiO₂-TiO₂ exchange), v_4 (MgO-CaO exchange) and v_6 (Na₂O exchange with all others); (2) more complex exchanges as a combination of two or more simple diffusion exchange along v_3 (MgO+CaO exchange with all others) and v_5 (CaO+K₂O exchange with all others) (Table 3.6). This classification is approximate because no eigenvector is purely due to the exchange of two components.

Table 3.6 Multicomponent diffusion mechanism in haplobasaltic melts at 1500 °C.

eigenvalue sequence	eigenvalues	eigenvectors	exchanging species
slowest	λ_2	v_2	SiO ₂ -Al ₂ O ₃
2 nd slowest	λ_1	v_1	SiO ₂ -TiO ₂
3 rd slowest	λ_3	v_3	(SiO ₂ +Al ₂ O ₃)-(MgO+CaO)
3 rd fastest	λ_4	v_4	MgO–CaO
2 nd fastest	λ_6	v_6	$(CaO+K_2O)$ -(all the others)
fastest	λ_5	<i>V</i> 5	Na_2O -(all the others)

3.8 Prediction of diffusion profiles during anorthite dissolution

In order to test the validity and utility of the diffusion matrix that we obtained, we conducted an anorthite dissolution experiment in this haplobasaltic melt (49.63% SiO₂, 1.52% TiO₂, 16.02% Al₂O₃, 9.87% MgO, 18.80% CaO, 2.88% Na₂O, and 1.28% K₂O, in wt%) at 1500 °C and 1 GPa for ~2.5 min. The composition of the anorthite (Waythomas et al., 2010; Yu et al., 2016) used is 44.77±0.15% SiO₂, 35.07±0.24% Al₂O₃, 0.50±0.03% FeO, 18.96±0.16% CaO, and 0.66±0.02% Na₂O (in wt%). Anorthite is chosen because it is almost FeO-free and its dissolution kinetics is fairly well known (Yu et al., 2016). The experimental procedure follows that of Yu et al. (2016). Fig. 3.11 shows microscopic and back-scattered electron (BSE) images of the

polished experimental charge. Cracks are present in the glass and sub-parallel to the interface, but no quench crystal is observed. The part of anorthite in contact with melt is dissolved and indented, while the corner part not in contact with the melt remains intact, allowing an independent estimation of the anorthite dissolution distance.

Fig. 3.11 Optical and BSE images of the polished experimental charge An&HB4. Three traverses (L1, L2, and L3) were measured on the right side, because the left side was affected by a piece of graphite in the melt. A flat glass-anorthite interface could be observed in both microscopic and BSE images. Note that the BSE image only shows the right side of the sample.

Three concentration traverses were measured. Profiles across cracks were reconnected smoothly. The three traverses (Fig. 3.12) are highly consistent with each other, and the Al₂O₃ concentration profile could be fit very well by the dissolution-diffusion equation (eqs. 13–14 in Zhang et al., 1989), yielding an effective binary diffusivity for Al₂O₃ of 17.9 μ m²/s. Strong uphill diffusion is observed in CaO, Na₂O and K₂O profiles, which requires a multicomponent diffusion treatment. Dissolution distance was estimated by three different ways: (1) direct measurement under optical microscope ($L_1 = 65.5 \mu$ m), (2) measurement from mass balance (L_2

= 71.6 µm) and (3) measurement from the profile with largest concentration gradient ($L_3 = 2\alpha \rho_m \sqrt{D_{Al_2O_3}t} / \rho_c = 74.5 \text{ µm}$).

Predictions by diffusion matrix A in Table 3.4 for diffusion profiles during anorthite dissolution using eq. (A14) in Appendix A2 are shown by the dash-dotted curves in Fig. 3.12. Note that the interface melt composition based on extrapolation of actual data points is used. The calculated anorthite dissolution distance is 69.4 μ m, close to $L_2 = 71.6 \mu$ m. It can be seen that all the major features of the concentration profiles are fairly well produced. SiO₂, TiO₂, Al₂O₃, MgO, CaO and Na₂O profiles show good agreement between predictions and experimental data. However, K₂O profile couldn't be predicted well. The disagreement may be partially due to the inaccuracy of the [D] matrix, especially the matrix elements related to K₂O diffusion, or due to the compositional dependence of the diffusion matrix. For the diffusion couple experiments from which the diffusion matrix is extracted, the compositional variation is small (± 1.5 wt%). Hence, the compositional dependence of the diffusion matrix is likely negligible. However, during anorthite dissolution, the Al₂O₃ concentration varies from 16 to 31 wt%, SiO₂ from 50 to 43 wt%, and MgO from 10 to 3 wt%. These variations may be large enough to cause significant variation in the values of the elements in the diffusion matrix, and hence cause the mismatch between the predicted K₂O concentration profile and the measured K₂O profile. The overall χ^2/n (*n* is the number of points multiplied by the number of oxides) for the prediction of oxide concentration profiles for anorthite dissolution in our Fe-free melt is 3.6 (Fig. 3.12), much smaller than the value (8.6) obtained from the calculation of Alexander (2011) for olivine dissolution in andesitic melt (Fig. 1.4), and the value (250.5) from the calculation of Kress and Ghiorso (1995) for olivine dissolution in andesitic melt (Fig. 1.3).

Fig. 3.12 Predicted and fit diffusion profiles of An&HB4, by diffusion matrix A in Table 3.4 and the new diffusion matrix in Table 3.7, with experimentally determined interface composition. Predictions are shown by dash-dotted curves, and fits are shown by solid curves. χ^2/n is calculated and shown for each component.

Furthermore, we could fit both the diffusion couple and anorthite dissolution experiments to obtain a new and more accurate diffusion matrix in this melt (Table 3.7). The fits for the diffusion profiles during anorthite dissolution are excellent (shown by the solid curves in Fig. 3.12) with overall $\chi^2/\nu = 1.2$. The fits for the diffusion profiles in the diffusion couple experiments are also excellent and shown by solid curves in Figs. 3.2–3.10. Therefore, this new diffusion matrix is preferred and we recommend the use of the new diffusion matrix in Table 3.7 for this 7-component haplobasaltic melt.

Table 3.7 Diffusion matrix obtained by fitting both diffusion couple and anorthite dissolution experiments at ~1500 °C, with 1σ errors for each element, and eigenvalues and eigenvectors.

$D(m^2/r)$	T:O		M-0	C-0	N- O	V O
$D(\mu m^{-}/s)$	1102	Al ₂ O ₃	MgU	Cau	Na ₂ O	K ₂ U
T_1O_2	18.78±0.36	-0.81 ± 0.53	-4.20 ± 0.62	-11.10 ± 1.26	-27.13 ± 2.96	-15.54 ± 3.60
Al_2O_3	-4.72 ± 0.99	8.96 ± 1.00	-17.40 ± 1.23	-36.01 ± 2.03	-60.32 ± 4.81	-80.65 ± 5.58
MgO	-6.77 ± 1.18	0.22 ± 1.15	39.02 ± 1.68	-39.62 ± 2.47	-82.61 ± 5.57	-45.38 ± 7.35
CaO	-11.20 ± 1.37	-4.56±1.53	-27.62 ± 1.75	64.89±2.69	-31.03 ± 5.60	30.37±7.88
Na ₂ O	27.40±1.29	11.66±1.44	48.66±1.67	59.90±1.89	341.56±3.97	98.05±6.37
K ₂ O	5.39±0.53	5.98±0.49	11.67±0.64	15.20±0.98	-0.37±1.94	114.29±2.61
Eigenvalues	λ_1	λ_2	λ_3	λ_4	λ_5	λ_6
	13.73					
		19.88				
			35.59			
				80.95		
					122.02	
						315.33
6-component						
Eigenvectors	v_1	v_2	v_3	v_4	v_5	v_6
TiO ₂	-0.03	0.90	-0.15	-0.06	-0.05	-0.08
Al_2O_3	0.99	-0.20	-0.35	-0.09	-0.37	-0.15
MgO	-0.07	0.18	0.69	-0.57	-0.27	-0.26
CaO	0.07	0.30	0.58	0.80	0.63	-0.09
Na ₂ O	-0.02	-0.12	-0.14	-0.01	-0.33	0.95
K ₂ O	-0.06	-0.11	-0.18	-0.14	0.54	-0.03
7-component						
Eigenvectors	v_1	v_2	v_3	v_4	v_5	v_6
SiO ₂	-0.66	-0.69	-0.41	0.07	-0.15	-0.32
TiO ₂	-0.02	0.65	-0.14	-0.06	-0.05	-0.08
Al_2O_3	0.74	-0.15	-0.32	-0.09	-0.36	-0.14
MgO	-0.05	0.13	0.63	-0.57	-0.27	-0.25
CaO	0.05	0.22	0.53	0.80	0.62	-0.08
Na ₂ O	-0.02	-0.09	-0.13	-0.01	-0.32	0.90
K ₂ O	-0.05	-0.08	-0.16	-0.14	0.53	-0.03

3.9 Summary and conclusions

Chemical diffusion profiles in silicate melts in a haplobasaltic SiO_2 --TiO₂--Al₂O₃--MgO-CaO--Na₂O--K₂O system have been determined at 1500 °C and 1 GPa. Effective binary diffusion coefficients (EBDC) of monotonic diffusion profiles in each experiment are extracted, and show strong dependence on the compositional gradients, specifically the counter-diffusing component, especially for SiO₂. More importantly, multicomponent diffusion matrix in this system is extracted from 9 diffusion couple experiments, and all features in the diffusion profiles have been captured by this diffusion matrix. The resulting diffusion eigenvectors are intuitively reasonable. The extracted multicomponent diffusion matrix has been applied to calculate diffusion profiles during anorthite dissolution in the haplobasaltic melt at 1500 °C and 1 GPa, and the diffusion distances and most features in concentration profiles are well reproduced, but with some mismatch for the K₂O profile. It is necessary to experimentally determine the effect of FeO to multicomponent diffusion and to evaluate the compositional effect for reliable applications to natural melts.

We have verified that with the electron microprobe precision, when the number of diffusion couple experiments is the same as the number of independent components and when every experiment is an "interdiffusion" couple between the dependent component and an independent component, the diffusion matrix can be roughly obtained, consistent with Trial and Spera (1994). More experiments of other "interdiffusion" couples will significantly improve the accuracy of the diffusion matrix.

3.10 Acknowledgement

We thank Pavel Izbekov and Owen Neill for providing the anorthite crystals. Constructive reviews by Yan Liang, Ralf Dolmen and an anonymous reviewer are highly appreciated. This research is supported by University of Michigan funding, NSF grants EAR-1019440 and EAR-1524473. The electron microprobe Cameca SX100 used in this study was purchased using NSF grant EAR-9911352.

3.11 References

- Alexander C. M. (2011) Modeling diffusive dissolution in silicate melts. *Geochim. Cosmochim. Acta* **75**, 588–607.
- Asimow P. D. and Ghiorso M.S. (1998) Algorithmic modifications extending MELTS to calculate subsolidus phase relations. *Am. Mineral.* **83**, 1127–1131.
- Chakraborty S., Dingwell D.B. and Rubie D.C. (1995) Multicomponent diffusion in ternary silicate melts in the system K₂O–Al₂O₃–SiO₂: I. Experimental measurements. *Geochim. Cosmochim. Acta* **59**, 255–264.
- Chen Y. and Zhang Y. (2008) Olivine dissolution in basaltic melt. *Geochim. Cosmochim. Acta* 72, 4756–4777.
- Chen Y. and Zhang Y. (2009) Clinopyroxene dissolution in basaltic melt. *Geochim. Cosmochim. Acta* **73**, 5730–5747.
- Clifford A. A. (1973) *Multivariate error analysis: a handbook of error propagation and calculation in many–parameter system*. Wiley, NY.
- Cooper A. R. (1968) The use and limitations of the concept of an effective binary diffusion coefficient for multi–component diffusions. In *Mass Transport In Oxides*, Vol. 296 (ed. J.B. Wachman and A.D. Franklin), pp. 79–84. Nat. Bur. Stand. Spec. Publ.
- Fletcher R. (1971) *A modified Marquardt subroutine for nonlinear least squares*. Atomic Energy Research Establishment R6799, Harwell, England.
- Ghiorso M. S. and Sack R. O. (1995) Chemical mass transfer in magmatic processes IV. a revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid–solid equilibria in magmatic systems at elevated temperatures and pressures. *Contrib. Mineral. Petrol.* **119**, 197–212.
- Koyaguchi T. (1985)Magma mixing in a conduit. J. Volcanol. Geotherm. Res. 25, 365-369.
- Koyaguchi T. (1989) Chemical gradient at diffusive interfaces in magma chambers. *Contrib. Mineral. Petrol.* **103**, 143–152.
- Kress V. C. and Ghiorso M. S. (1993) Multicomponent diffusion in MgO–Al₂O₃–SiO₂ and Cao– MgO–Al₂O₃–SiO₂ melts. *Geochim. Cosmochim. Acta* **57**, 4453–4466.
- Kress V. C. and Ghiorso M.S. (1995) Multicomponent diffusion in basaltic melts. *Geochim. Cosmochim. Acta* **59**, 313–324.
- Lasaga A. C. (1979) Multicomponent exchange and diffusion in silicates. *Geochim. Cosmochim. Acta* **54**, 2709–2715.
- Liang Y. (2010) Multicomponent diffusion in molten silicates: Theory, experiments, and geological application. *Rev. Mineral. Geochem.* **72**, 409–446.
- Liang Y. and Davis A. M. (2002) Energetics of multicomponent diffusion in molten CaO– Al₂O₃–SiO₂. *Geochim. Cosmochim. Acta* **66**, 635–646.

Liang Y., Richter F. M. and Chamberlin L. (1997) Diffusion in silicate melts: III. empirical

models for multicomponent diffusion. Geochim. Cosmochim. Acta 61, 5295-5312.

- Liang Y., Richter F. M. and Watson E. B. (1996) Diffusion in silicate melts: II. multicomponent diffusion in CaO–SiO₂–Al₂O₃ at 1500°C and 1GPa. *Geochim. Cosmochim. Acta* 60, 5021–5035.
- Lundstrom C. C. (2000) Rapid diffusive infiltration of sodium into partially molten peridotite. *Nature* **403**, 527–530.
- Lundstrom C. C. (2003) An experimental investigation of the diffusive infiltration of alkalis into partially molten peridotite: implications for mantle melting processes. *Geochem. Geophys. Geosyst.* 4, 1–25.
- Morgan Z. T., Liang Y. and Hess P. C. (2006) An experimental study of the kinetics of anorthite dissolution in lunar picritic magmas with applications to lunar crustal assimilation processes. *Geochim. Cosmochim. Acta* 70, 3477–3491.
- Mungall J. E., Romano C. and Dingwel D. B. (1998) Multicomponent diffusion in the molten system K₂O–Na₂O–Al₂O₃–SiO₂–H₂O. *Am Mineral.* **83**, 685–699.
- Oishi Y., Nanba M. and Pask J. A. (1982) Analysis of liquid–state interdiffusion in the system CaO–Al₂O₃–SiO₂ using multiatomic ion models. *J. Am. Ceram. Soc.* **65**, 247–253.
- Oldenburg C. M., Spera F. J., Yuen D. A., and Sewell G. (1989) Dynamic mixing in magma bodies: Theory, simulations and implications. *J. Geophys. Res.* **94**, 9215–9236.
- Richter F. M. (1993) A method for determining activity–composition relations using chemical diffusion in silicate melts. *Geochim. Cosmochim. Acta* **57**, 2019–2032.
- Richter F. M., Liang Y. and Minarik W.G. (1998) Multicomponent diffusion and convection in molten MgO–Al₂O₃–SiO₂. *Geochim. Cosmochim. Acta* 62, 1985–1991.

Sato H. (1975) Diffusion coronas around quartz xenocrysts in andesite and basalt from Tertiary

Volcanic Region in northeastern Shikoku, Japan. Contrib. Mineral. Petrol. 50, 49-64.

- Sugawara H., Nagata K. and Goto K. S. (1977) Interdiffusivities matrix of CaO–Al₂O₃–SiO₂ melt at 1723 K to 1823 K. *Metall. Trans. B* **8**, 605–612.
- Trial A. F. and Spera F. J. (1994) Measuring the multicomponent diffusion matrix: Experimental design and data analysis for silicate melts. *Geochim. Cosmochim. Acta* **58**, 3769–3783.

Turner J. S. (1985) Multicomponent convection. Ann. Rev. Fluid Mech. 17, 11-44.

- Watson E.B. (1982) Basalt contamination by continental crust: Some experiments and models. *Contrib. Mineral. Petrol.* **80**, 73–87.
- Watkins J. M., Liang Y., Richter F., Ryerson F. J. and DePaolo D. J. (2014) Diffusion of multiisotopic chemical species in molten silicates. *Geochim. Cosmochim. Acta* **139**, 313–326.
- Waythomas C.F., Scott W.E., Prejean S.G., Schneider D.J., Izbekov P. and Nye C.J. (2010) The
 7–8 August 2008 eruption of Kasatochi Volcano, central Aleutian Islands, Alaska. J. *Geophys. Res.* 115 B00B06.
- Yu Y., Zhang Y., Chen. Y. and Xu Z. (2016) Kinetics of anorthite dissolution in basaltic melt. *Geochim. Cosmochim. Acta* **179**, 257–274.
- Zhang Y. (1993) A modified effective binary diffusion model. J. Geophys. Res. 98, 11901– 11920.
- Zhang Y. and Behrens H. (2000) H₂O diffusion in rhyolitic melts and glasses. *Chem. Geol.* **169**, 243–262.
- Zhang Y., Ni H. and Chen Y. (2010) Diffusion data in silicate melts. *Rev. Mineral. Geochem.* **72**, 311–408.
- Zhang Y., Walker D. and Lesher C. E. (1989) Diffusive crystal dissolution. *Contrib. Mineral. Petrol.* **102**, 492–513.

CHAPTER IV

Multicomponent Diffusion in Basaltic Melts at 1350 °C

4.1 Abstract

Nine successful diffusion couple experiments were conducted in an 8-component SiO₂-TiO₂-Al₂O₃-FeO-MgO-CaO-Na₂O-K₂O system at ~1350 °C and at 1 GPa, to study multicomponent diffusion in basaltic melts. At least 3 traverses were measured to obtain diffusion profiles for each experiment. Multicomponent diffusion matrix at 1350 °C was obtained by simultaneously fitting diffusion profiles of diffusion couple experiments. Furthermore, in order to better constrain the diffusion matrix and reconcile mineral dissolution data, mineral dissolution experiments in the literature, in addition to diffusion couple experiments from this study, were also fit. All features of diffusion profiles in both diffusion couple and mineral dissolution experiments were well reproduced by the diffusion matrix. Diffusion mechanism is inferred from eigenvectors of the diffusion matrix, and it shows that the diffusive exchange between network-formers SiO₂ and Al₂O₃ is the slowest, the exchange of SiO₂ with other oxide components is the second slowest with an eigenvalue that is only $\sim 10\%$ larger, then the exchange between divalent oxide components and all the other oxide components with an eigenvalue that is twice the smallest eigenvalue, then the exchange of FeO+K₂O with all the other oxide components with an eigenvalue that is 5 times the smallest eigenvalue, then the exchange of

57

MgO with FeO+CaO with an eigenvalue that is 6.3 times the smallest eigenvalue, then the exchange of CaO+K₂O with all the other oxide components with an eigenvalue that is 7.5 times the smallest eigenvalue, and the exchange of Na₂O with all other oxide components is the fastest, with an eigenvalue that is 31 times the smallest eigenvalue. The slowest and fastest eigenvectors are consistent with those for simpler systems in most literature. The obtained diffusion matrix was successfully applied to predict diffusion profiles during olivine dissolution in basaltic melts.

4.2 Introduction

Numerous major components are present in natural silicate melts (e.g. SiO₂, TiO₂, Al₂O₃, FeO, MgO, CaO, Na₂O and K₂O). Therefore, multicomponent diffusion is of fundamental significance in natural processes involving mass transport, such as magma mixing and contamination (Sato, 1975; Watson, 1982; Koyaguchi, 1985, 1989; Oldenburg et al., 1989), magma double-diffusive convection (Turner, 1985; Liang et al., 1994; Richter et al., 1998), and mineral growth or dissolution in magmas (Watson, 1982; Zhang et al., 1989).

Effective binary diffusion treatment (Cooper, 1968) has been widely used as an alternative to treat monotonic concentration profiles for diffusion in a multicomponent system. However, it is difficult to deal with the often-observed uphill diffusion profiles in natural melts (Sato, 1975; Watson, 1982; Zhang et al., 1989), although some empirical models have been proposed for quantifying uphill diffusion (Cooper, 1968; Lasaga, 1979; Richter, 1993; Zhang, 1993; Liang et al., 1997). In addition, effective binary diffusion coefficient of a given component depends strongly on concentration gradients of other components (Cooper, 1968; Zhang et al., 1989; Liang et al., 1996; Chen and Zhang, 2008, 2009; Guo and Zhang, 2016), making it

difficult to use the approach. Therefore, multicomponent diffusion treatment is required for a more accurate quantification of diffusion in natural melts.

Tremendous efforts have been made in studying multicomponent diffusion in both synthetic and natural silicate melt systems: SiO₂–Al₂O₃–CaO, SiO₂–Al₂O₃–MgO, SiO₂–CaO– Na₂O, SiO₂–Al₂O₃–MgO–CaO, SiO₂–Al₂O₃–Na₂O–K₂O–H₂O, SiO₂–TiO₂–Al₂O₃–FeO–MgO– CaO, and SiO₂–TiO₂–Al₂O₃–MgO–CaO–Na₂O–K₂O (Sugawara et al., 1977; Oishi et al., 1982; Kress and Ghiorso, 1993, 1995; Chakraborty et al., 1995; Liang et al. 1996; Mungall et al., 1998; Richter et al., 1998; Liang and Davis, 2002; Liang, 2010; Watkins et al., 2014; Claireaux et al., 2016; Guo and Zhang, 2016). Diffusion matrices in simple silicate melt systems or partial diffusion matrices in natural silicate melt systems have been obtained (e.g., Kress and Ghiorso, 1995; Mungall et al., 1998; Morgan et al., 2006; Guo and Zhang, 2016). However, they have not been successfully applied to predict diffusion in natural melts, such as during mineral dissolution (e.g. Fig. 1.3). Several empirical models have been proposed to calculate multicomponent diffusion matrix (Lasaga, 1979; Richter 1993; Liang et al, 1997), by which diffusion profiles during mineral dissolutions are calculated (Alexander, 2011). However, only limited success is achieved in predicting diffusion in natural melts by those empirical models (e.g. Fig. 1.4).

To better understand major-component diffusion in natural silicate melts, or more specifically basaltic melts, and as a follow-up study of our previous work on a haplobasaltic melt (Guo and Zhang, 2016), we investigated multicomponent diffusion by diffusion couple experiments in an 8-component SiO₂–TiO₂–Al₂O₃–FeO–MgO–CaO–Na₂O–K₂O system at 1350 °C and at 1 GPa. Experiments were carried out and combined with literature data to determine the 7 × 7 diffusion matrix. From the diffusion matrix, diffusion eigenvectors are used to discuss diffusion mechanisms, and diffusion profiles during mineral dissolution are predicted.

59

4.3 Experimental strategy and analytical methods

4.3.1 Diffusion couple experiments

The general experimental strategy, sample preparation, experimental procedure and analytical methods for diffusion couple experiments follow sections 2.1-2.4 in chapter II. The 8-component SiO₂-TiO₂-Al₂O₃-FeO-MgO-CaO-Na₂O-K₂O basaltic melts have an average composition of 51% SiO₂, 2% TiO₂, 14% Al₂O₃, 11.5% FeO, 6.5% MgO, 10.5% CaO, 3% Na₂O, 1.5% K₂O (in wt%), shown as "Base Comp" in Table 4.1. The average composition of initial glasses is listed in Table 4.1. The temperature of 1350 °C is chosen to be higher than the liquidus of any basaltic melt at 1 GPa. The pressure of 1 GPa is chosen for better experimental success rate.

Table 4.1 Avera	age composit	10115, 10 01	Tors and fiqu	iuus or iiitia	i Dasanic g	3103503.				
	${\rm SiO_2}^*$	TiO ₂	Al_2O_3	FeOt	MgO	CaO	Na ₂ O	K ₂ O	Total	Liquidus
	ave(σ)	$ave(\sigma)$	$ave(\sigma)$	ave(σ)	ave(σ)	ave(σ)	ave(σ)	ave(σ)		°C
Base Comp	51.00	2.00	14.00	11.50	6.50	10.50	3.00	1.50	100	1317
JDF Basalts	50.98	1.97	13.81	12.24	7.15	10.91	2.77	0.17	100	1331
Haplobasalts	50.00	1.50	15.00	0.00	10	19.00	3.00	1.50	100	1367
BS1	51.74(23)	0.51(2)	14.17(10)	11.60(10)	6.70(5)	10.78(29)	3.03(6)	1.48(3)	100	1324
BS2	49.46(16)	3.37(6)	14.18(12)	11.20(10)	6.64(6)	10.68(09)	3.01(5)	1.45(2)	100	1309
BS3	51.79(15)	1.95(3)	12.76(05)	11.72(08)	6.64(5)	10.69(12)	2.99(4)	1.46(3)	100	1325
BS4	49.16(14)	1.96(5)	15.73(07)	11.46(07)	6.70(5)	10.56(10)	2.99(3)	1.44(3)	100	1307
BS5	52.16(17)	1.97(5)	14.19(06)	9.90(16)	6.57(7)	10.57(10)	3.10(5)	1.54(4)	100	1322
BS6	49.16(23)	1.96(6)	14.32(06)	12.84(08)	6.68(7)	10.54(06)	3.03(3)	1.51(4)	100	1311
BS7	51.97(15)	1.94(4)	14.30(09)	11.44(07)	5.33(4)	10.62(06)	3.00(3)	1.40(1)	100	1304
BS8	49.15(24)	1.95(6)	14.29(08)	11.40(13)	8.13(8)	10.55(09)	3.01(4)	1.52(3)	100	1330
BS9	51.69(10)	1.95(7)	14.39(09)	11.33(11)	6.60(6)	9.21(08)	3.21(5)	1.61(3)	100	1330
BS10	49.19(16)	2.00(5)	14.17(05)	11.36(08)	6.67(8)	11.99(09)	3.07(3)	1.56(3)	100	1321
BS11	52.19(18)	2.01(5)	14.07(06)	11.30(10)	6.77(4)	10.56(08)	1.55(2)	1.55(2)	100	1339
BS12	49.31(18)	2.00(3)	14.07(09)	11.38(13)	6.70(3)	10.53(07)	4.48(5)	1.53(3)	100	1315
BS13	52.54(23)	1.97(6)	13.94(12)	11.31(07)	6.67(8)	10.52(08)	3.01(6)	0.05(1)	100	1320
BS14	49.18(13)	2.01(5)	13.94(08)	11.62(07)	6.60(5)	10.53(09)	3.06(3)	3.06(7)	100	1317
BS17	51.21(24)	1.97(4)	13.95(17)	11.17(14)	8.00(9)	10.62(05)	3.05(4)	0.04(1)	100	1354
BS18	51.02(19)	1.96(4)	13.83(10)	11.46(14)	5.24(4)	10.52(06)	2.99(4)	2.98(3)	100	1309
BS19	51.11(27)	2.00(5)	15.39(21)	11.33(13)	6.59(7)	9.05(07)	3.04(4)	1.48(2)	100	1328
BS20	51.29(21)	1.98(5)	12.42(14)	11.38(14)	6.61(5)	11.84(07)	2.98(5)	1.50(3)	100	1331

Table 4.1 Average compositions, 1^o errors and liquidus of initial basaltic glasses.

Note:

1. SiO_2^* is define as $\operatorname{SiO}_2^* = \operatorname{SiO}_2 - (\operatorname{total} - 100)$, so that the new "total" is 100%.

2. The values in parentheses are 1σ errors on the last digit.

3. Liquidus of initial glasses at 1 GPa were estimated by MELTS (Ghiorso and Sack, 1995; Asimow and Ghiorso, 1998).

4. The composition of 7-component haplobasaltic melts for which diffusion matrix at 1500°C and 1 GPa was determined by Guo and Zhang (2016) is also listed for comparison and discussion.

4.3.2 Mineral dissolution experiments

During mineral dissolution in a natural melt, multicomponent diffusion profiles are also generated. These diffusion profiles are critical for understanding mineral dissolution kinetics, but also provide constraints on multicomponent diffusion matrix, and offer data for testing diffusion matrix obtained for a given bulk melt composition. In mineral dissolution experiments, the interface melt composition is dictated by mineral-melt equilibrium, meaning both the total concentration variation for specific components and the direction of concentration gradients cannot be precisely controlled as in diffusion couple experiments. Hence, these experiments may have larger total variations in concentrations of some components, and do not satisfy the ± 1.5 wt% total concentration variation as designed in diffusion couple experiments. The larger concentration variation may lead to non-negligible dependence of the diffusion matrix elements on concentrations. Nonetheless, if such data are available, they are useful in testing and constraining the diffusion matrix as long as possible complexities are recognized.

In this study, no new mineral dissolution experiments were carried out. Nonetheless, the choice of our melt composition is close to that of Juan de Fuca mid-ocean ridge basalts that was used in mineral dissolution studies of Chen and Zhang (2008, 2009) and Yu et al. (2016). Hence, we will use the literature data at similar temperatures to test and constrain the diffusion matrix.

4.4 Experimental results

Nine successful diffusion couple experiments were carried out. The name of each diffusion couple experiment ID indicates two halves of initial glasses in the diffusion couple. For example, BS13&14A means that one half is BS13 and the other half is BS14, where "BS" stands

61

for "basalts", and the last letter "A" indicates the experiment is at ~1350 °C. The interface composition of each diffusion couple is listed in Table 4.2. The average of the interface compositions of the 9 diffusion couple experiments is very close to the compositions of the base and the JDF basalts. The 1σ standard deviation of the interface compositions is less than 0.55 wt% for all components.

Table 4.2 Interface compositions of each diffusion couple.

Exp#	SiO ₂ *	TiO ₂	Al_2O_3	FeOt	MgO	CaO	Na ₂ O	K ₂ O	Total
Base Comp	51.00	2.00	14.00	11.50	6.50	10.50	3.00	1.50	100
JDF Basalt	50.98	1.97	13.81	12.24	7.15	10.91	2.77	0.17	100
BS1&2A	50.55	1.93	14.20	11.38	6.71	10.81	2.97	1.45	100
BS3&4A	50.37	1.98	14.26	11.74	6.60	10.58	3.00	1.47	100
BS5&6A	50.53	1.96	14.32	11.51	6.56	10.51	3.08	1.53	100
BS7&8A	50.44	1.93	14.27	11.52	6.77	10.60	3.03	1.44	100
BS9&10A	50.54	1.97	14.21	11.34	6.63	10.57	3.15	1.59	100
BS11&12A	50.70	2.00	14.03	11.45	6.72	10.53	3.02	1.55	100
BS13&14A	50.80	1.98	13.95	11.47	6.65	10.51	3.08	1.56	100
BS17&18A	51.73	1.97	13.57	11.20	6.53	10.42	3.06	1.52	100
BS19&20A	51.78	2.00	13.55	11.32	6.52	10.33	3.03	1.47	100
Average	50.83	1.97	14.04	11.44	6.63	10.54	3.05	1.51	100
1σ deviation	0.54	0.03	0.30	0.15	0.09	0.13	0.05	0.05	

Note: SiO_2^* is define as $\text{SiO}_2^* = \text{SiO}_2 - (\text{total} - 100)$, so that the new "total" is 100%.

Fig. 4.1 Optical microscopic image of polished experimental charge BS13&14A. Three traverses (Traverse 1, Traverse 2 and Traverse 3) were measured, indicated by solid lines. Physical interface position can be seen in the image.

Fig. 4.1 shows an optical microscopic image of sample charge BS13&14A, with 3 traverses indicated by solid lines. Two halves of initial glasses are molten together, and no crack is observed. Interface between two halves is not visible, but the physical interface could be seen near the graphite crucible as a dent or slight misalignment. In general, quench crystals are not observed, and cracks are present in 5 out of 9 experiments.

At least 3 traverses were measured to obtain diffusion profiles for each diffusion couple experiment. Figs. 4.2–4.10 shows diffusion profiles of all experiments. If cracks are present, profiles across cracks are re-connected smoothly by comparing different traverses. All microprobe analytical data can be found in the Appendix C.

Experimental conditions and effective binary diffusion coefficients (EBDC) for monotonic diffusion profiles of all 9 successful experiments are shown in Table 4.3. The actual experimental temperatures at the center of the diffusion couple are determined after the experiments. The temperature variation is from 1349.2 to 1354.6 °C, except for one experiment BS1&2A with significant higher temperature 1380.9 °C. Experimental durations were calculated by $t_{\text{eff}} = \int e^{-E/(RT)} dt / e^{-E/(RT_{exp})}$ where the integration includes the heating-up and cooling-down segments (Zhang and Behrens, 2000) and E = 145 kJ/mol (from this study). For well-resolved monotonic diffusion profiles, effective binary diffusion coefficients (EBDC) were obtained by fitting the data by an error function. The first 7 experiments have initial concentration differences of 3 wt% in SiO₂ and another component *i*, where *i* = TiO₂, Al₂O₃, FeO, MgO, CaO, Na₂O and K₂O. Those 7 experiments are the minimum requirement to obtain the 7×7 diffusion matrix in an 8-component system (Trial and Spera, 1994), unless the analytical precision is much higher than that of a regular electron microprobe (Liang 2010). The additional 2 experiments are for further constraint.

Table 4.3. Summary of experimental conditions and effective binary diffusion coefficients in basaltic melts at 1350 °C.

) e :										
Exp#	Т	t	couples	D(SiO ₂)	D(TiO ₂)	$D(Al_2O_3)$	D(FeO _t)	D(MgO)	D(CaO)	D(Na ₂ O)	$D(K_2O)$
	°C	sec		$\mu m^2/s$	$\mu m^2/s$	$\mu m^2/s$	$\mu m^2/s$	μm²/s	μm²/s	μm²/s	μm²/s
BS1&2A	1380.9	1204	Si–Ti	5.1±0.9	8.6±0.2						
BS3&4A	1354.6	1204	Si-Al	4.8±0.6		4.8±0.3					
BS5&6A	1349.2	904	Si–Fe	10.6±1.3			23.7±1.7				
BS7&8A	1352.3	959	Si–Mg	13.1±1.7				28.5±1.2			
BS9&10A	1354.6	546	Si–Ca	10.1±1.6					35.7±1.9		
BS11&12A	1349.2	396	Si–Na	-						249.7±7.6	
BS13&14A	1351.9	515	Si–K	25.6±3.1							42.0±1.2
BS17&18A	1349.9	336	Mg–K					19.8±1.2			28.4±1.7
BS19&20A	1354.6	335	Al–Ca			6.0 ± 0.9			29.3±1.2		

Note:

1. All experiments were at 1 GPa.

2. Reported temperatures are actual experimental temperatures at the center of diffusion couples.

3. Durations are calculated effective experimental durations.

4. For easy comparison, the effective binary diffusion coefficients are not those at the experimental temperatures, but those at 1350 °C, by correcting effective experimental durations using $t_{\text{corr}} = t_{\exp} \cdot e^{-E/(RT_{\exp})} / e^{-E/(RT_{exp})}$ (Zhang and Behrens, 2000) where $T_{\text{corr}} = 1350$ °C and E = 145 kJ/mol (from this study).

5. D(SiO₂) for experiment BS11&12A is not listed, because this extracted value is not accurate due to asymmetric SiO₂ profile.

In order for fitting effective binary diffusion coefficients and diffusion matrix, the preliminary data processing follows section 2.5 in chapter II.

4.5 Effective binary diffusion coefficients

Effective binary diffusion coefficients (EBDC) were fit by eq. (2.1) for the two components with 3-wt% concentration difference (i.e. the monotonic profiles) for each diffusion couple (Table 4.3). The fit is typically excellent in reproducing the data with r^2 values ranging from 0.969 to 0.999. EBDC of a given component in a multicomponent system is strongly dependent on its counter-diffusing component in a single bulk composition, which is consistent with theoretical consideration (Cooper, 1968) and observations in Guo and Zhang (2016). Because more diffusion couples have initial concentration gradients in SiO₂, the observation is especially notable for SiO₂. EBDC of SiO₂ varies from 5.1 μ m²/s when diffusing against TiO₂, to 25.6 μ m²/s when diffusing against K₂O. The total variation of EBDC of SiO₂ is by a factor of 5.0. This observation indicates that application of EBDC's is of limited value and caution should be exercised when applying EBDC's, since EBDC of one component is dependent not only on the bulk melt composition, but also on its counter-diffusing component(s). To apply EBDC's to a diffusion problem, not only the bulk composition, but also the directions of the concentration gradients need to be similar. For example, EBDS's obtained from dissolution experiments of a specific mineral in a specific melt are only applicable to diffusion during the dissolution of the same mineral in the same melt.

Fig. 4.2 Data of diffusion profiles of BS1&2A with fits. All the points are measured data. Different symbols indicate different traverses. The error bars are $\pm 1\sigma$ errors. The long-dashed curves are predicted profiles using the diffusion matrix given by Alexander (2011) (Note this diffusion matrix was corrected to 1350 °C for comparison). The short-dashed curves are fit profiles for obtaining the diffusion matrix $D_{1350^{\circ}C}^{\text{couples}}$ in Table 4.4. The solid curves are fit profiles for obtaining the diffusion matrix $D_{1350^{\circ}C}^{\text{couples}}$ in Table 4.5. Data of Diffusion profiles of other diffusion couple experiments with fits at ~1350 °C are shown in the supplementary file. χ^2/ν is calculated and shown for each type of fitting.

Fig. 4.3 Data of diffusion profiles of BS3&4A with fits. All the points are measured data. Different symbols indicate different traverses. The error bars are $\pm 1\sigma$ errors. The long-dashed curves are predicted profiles using the diffusion matrix given by Alexander (2011) (Note this diffusion matrix was corrected to 1350 °C for comparison). The short-dashed curves are fit profiles for obtaining the diffusion matrix $D_{1350^{\circ}C}^{\text{couples}}$ in Table 4.4. The solid curves are fit profiles for obtaining the diffusion matrix $D_{1350^{\circ}C}^{\text{couples}}$ in Table 4.5. Data of Diffusion profiles of other diffusion couple experiments with fits at ~1350 °C are shown in the supplementary file. χ^2/ν is calculated and shown for each type of fitting.

Fig. 4.4 Data of diffusion profiles of BS5&6A with fits. All the points are measured data. Different symbols indicate different traverses. The error bars are $\pm 1\sigma$ errors. The long-dashed curves are predicted profiles using the diffusion matrix given by Alexander (2011) (Note this diffusion matrix was corrected to 1350 °C for comparison). The short-dashed curves are fit profiles for obtaining the diffusion matrix $D_{1350^{\circ}C}^{\text{couples}}$ in Table 4.4. The solid curves are fit profiles for obtaining the diffusion matrix $D_{1350^{\circ}C}^{\text{couples}}$ in Table 4.5. Data of Diffusion profiles of other diffusion couple experiments with fits at ~1350 °C are shown in the supplementary file. χ^2/ν is calculated and shown for each type of fitting.

Fig. 4.5 Data of diffusion profiles of BS7&8A with fits. All the points are measured data. Different symbols indicate different traverses. The error bars are $\pm 1\sigma$ errors. The long-dashed curves are predicted profiles using the diffusion matrix given by Alexander (2011) (Note this diffusion matrix was corrected to 1350 °C for comparison). The short-dashed curves are fit profiles for obtaining the diffusion matrix $D_{1350^{\circ}C}^{\text{couples}}$ in Table 4.4. The solid curves are fit profiles for obtaining the diffusion matrix $D_{1350^{\circ}C}^{\text{couples}}$ in Table 4.5. Data of Diffusion profiles of other diffusion couple experiments with fits at ~1350 °C are shown in the supplementary file. χ^2/ν is calculated and shown for each type of fitting.

Fig. 4.6 Data of diffusion profiles of BS9&10A with fits. All the points are measured data. Different symbols indicate different traverses. The error bars are $\pm 1\sigma$ errors. The long-dashed curves are predicted profiles using the diffusion matrix given by Alexander (2011) (Note this diffusion matrix was corrected to 1350 °C for comparison). The short-dashed curves are fit profiles for obtaining the diffusion matrix $D_{1350^{\circ}C}^{\text{couples}}$ in Table 4.4. The solid curves are fit profiles for obtaining the diffusion matrix $D_{1350^{\circ}C}^{\text{couples}}$ in Table 4.5. Data of Diffusion profiles of other diffusion couple experiments with fits at ~1350 °C are shown in the supplementary file. χ^2/ν is calculated and shown for each type of fitting.

Fig. 4.7 Data of diffusion profiles of BS11&12A with fits. All the points are measured data. Different symbols indicate different traverses. The error bars are $\pm 1\sigma$ errors. The long-dashed curves are predicted profiles using the diffusion matrix given by Alexander (2011) (Note this diffusion matrix was corrected to 1350 °C for comparison). The short-dashed curves are fit profiles for obtaining the diffusion matrix $D_{1350^{\circ}C}^{\text{couples}}$ in Table 4.4. The solid curves are fit profiles for obtaining the diffusion matrix $D_{1350^{\circ}C}^{\text{couples}}$ in Table 4.5. Data of Diffusion profiles of other diffusion couple experiments with fits at ~1350 °C are shown in the supplementary file. χ^2/ν is calculated and shown for each type of fitting.

Fig. 4.8 Data of diffusion profiles of BS13&14A with fits. All the points are measured data. Different symbols indicate different traverses. The error bars are $\pm 1\sigma$ errors. The long-dashed curves are predicted profiles using the diffusion matrix given by Alexander (2011) (Note this diffusion matrix was corrected to 1350 °C for comparison). The short-dashed curves are fit profiles for obtaining the diffusion matrix $D_{1350^{\circ}C}^{\text{couples}}$ in Table 4.4. The solid curves are fit profiles for obtaining the diffusion matrix $D_{1350^{\circ}C}^{\text{couples}}$ in Table 4.5. Data of Diffusion profiles of other diffusion couple experiments with fits at ~1350 °C are shown in the supplementary file. χ^2/ν is calculated and shown for each type of fitting.

Fig. 4.9 Data of diffusion profiles of BS17&18A with fits. All the points are measured data. Different symbols indicate different traverses. The error bars are $\pm 1\sigma$ errors. The long-dashed curves are predicted profiles using the diffusion matrix given by Alexander (2011) (Note this diffusion matrix was corrected to 1350 °C for comparison). The short-dashed curves are fit profiles for obtaining the diffusion matrix $D_{1350^{\circ}C}^{\text{couples}}$ in Table 4.4. The solid curves are fit profiles for obtaining the diffusion matrix $D_{1350^{\circ}C}^{\text{couples}}$ in Table 4.5. Data of Diffusion profiles of other diffusion couple experiments with fits at ~1350 °C are shown in the supplementary file. χ^2/ν is calculated and shown for each type of fitting.

Fig. 4.10 Data of diffusion profiles of BS19&20A with fits. All the points are measured data. Different symbols indicate different traverses. The error bars are $\pm 1\sigma$ errors. The long-dashed curves are predicted profiles using the diffusion matrix given by Alexander (2011) (Note this diffusion matrix was corrected to 1350 °C for comparison). The short-dashed curves are fit profiles for obtaining the diffusion matrix $D_{1350^{\circ}C}^{\text{couples}}$ in Table 4.4. The solid curves are fit profiles for obtaining the diffusion matrix $D_{1350^{\circ}C}^{\text{couples}}$ in Table 4.4. The solid curves are fit profiles for obtaining the diffusion matrix $D_{1350^{\circ}C}^{\text{couples}}$ in Table 4.5. Data of Diffusion profiles of other diffusion couple experiments with fits at ~1350 °C are shown in the supplementary file. χ^2/ν is calculated and shown for each type of fitting.

4.6 Fitting diffusion profiles of diffusion couples

The diffusion matrix is obtained by simultaneously fitting all diffusion profiles from all experiments using Levenberg-Marquardt-Fletcher methods (Fletcher, 1971), and the numerical methods are given by section 2.6 in chapter II. The error of diffusion matrix was estimated by error propagation (Clifford, 1973), and the numerical method is given by section 2.7 in chapter II.

The fit diffusion matrix is denoted as $D_{1350^{\circ}C}^{\text{couples}}$ and is shown in Table 4.4. All the fits by matrix $D_{1350^{\circ}C}^{\text{couples}}$ for all 9 diffusion couple experiments are shown by short-dashed curves in Figs. 4.2–4.10. It can be seen that all features in the diffusion profiles are well reproduced by this diffusion matrix. The goodness of fit for each experiment is assessed by reduced chi-square (the same as mean squares weighted deviation, MSWD).

Eigenvalues and eigenvectors of the diffusion matrices $D_{1350^{\circ}C}^{\text{couples}}$ are shown in Table 4.4. Eigenvalues are listed in an increasing order (λ_1 always indicates the smallest eigenvalue and λ_7 always indicates the largest eigenvalue). Each column is an eigenvector, associated to the eigenvalue above it (e.g. v_1 is the associated eigenvector of λ_1), in both 7-component TiO₂– Al₂O₃–FeO–MgO–CaO–Na₂O–K₂O and 8-component SiO₂–TiO₂–Al₂O₃–FeO–MgO–CaO– Na₂O–K₂O vector space. The 8-component eigenvectors are calculated by adding the dependent component SiO₂ to the 7-component eigenvectors such that the sum of all components is zero and then renormalized (see footnote in Table 4.4). Eigenvalues indicate diffusivities along independent directions. Eigenvectors are often interpreted to indicate independent exchanging "species" during diffusion, i.e. the diffusion mechanism.

$D_{1350^{\circ}\mathrm{C}}^{\mathrm{couples}}$ ($\mu\mathrm{m}^{2}/\mathrm{s}$)	TiO ₂	Al_2O_3	FeO	MgO	CaO	Na ₂ O	K ₂ O
TiO ₂	8.47±0.35	-0.36±0.19	-2.83 ± 0.43	-1.31±0.61	-1.52 ± 0.68	-4.42±1.74	-1.53 ± 0.87
Al_2O_3	-1.86 ± 0.65	3.89 ± 0.32	-7.05 ± 0.60	-5.30 ± 0.99	-11.53 ± 1.19	-34.53 ± 2.80	-20.67±1.45
FeO	-11.81 ± 1.46	-0.59 ± 0.74	19.98 ± 1.70	-31.48 ± 1.86	-41.17±2.26	-75.38 ± 5.87	-47.71±2.68
MgO	-3.60 ± 0.72	1.17±0.45	-8.89 ± 0.93	24.09±1.22	-18.56 ± 1.30	-34.43 ± 3.03	-6.90 ± 1.63
CaO	-2.60 ± 1.67	-2.38 ± 0.62	-9.21 ± 1.10	-7.48 ± 1.26	32.36±1.44	-15.88 ± 3.97	15.98 ± 1.74
Na ₂ O	20.17±2.03	4.07 ± 0.97	20.77±1.34	40.08±1.59	62.64±1.67	223.75±4.77	77.80 ± 1.80
K ₂ O	3.49 ± 0.34	1.95 ± 0.25	3.88±0.55	9.10±0.59	7.67±0.66	7.60±1.98	41.28±0.91
Eigenvalues	λ_1	λ_2	λ_3	λ_4	λ_5	λ_6	λ_7
	5.07						

Table 4.4 Diffusion matrix $D_{1350^{\circ}C}^{\text{couples}}$ obtained by fitting only diffusion couple experiments at 1350 °C, with 1 σ errors for each element, and eigenvalues and eigenvectors.

12.22

6.32

33.26

41.01

						49.37	
							206.58
7-component Eigenvectors	v_1	<i>v</i> ₂	<i>v</i> ₃	<i>v</i> ₄	<i>v</i> ₅	v_6	v_7
TiO ₂	0.09	-0.55	-0.49	-0.07	0.03	0.04	-0.01
Al_2O_3	0.98	-0.45	-0.14	-0.18	0.02	0.04	-0.14
FeO	0.01	-0.44	0.57	0.85	-0.36	-0.61	-0.34
MgO	-0.01	-0.27	0.43	-0.25	-0.45	0.00	-0.15
CaO	0.12	-0.37	0.41	-0.31	0.81	0.72	-0.06
Na ₂ O	-0.03	0.17	-0.13	-0.04	-0.11	-0.26	0.92
K ₂ O	-0.08	0.24	-0.22	0.28	-0.08	0.16	0.02
8-component Eigenvectors	v_1	v_2	<i>v</i> ₃	<i>V</i> 4	<i>v</i> ₅	v_6	v_7
SiO ₂	-0.74	0.86	-0.40	-0.27	0.13	-0.08	-0.23
TiO ₂	0.06	-0.28	-0.45	-0.07	0.03	0.04	-0.01
Al_2O_3	0.67	-0.23	-0.13	-0.17	0.02	0.04	-0.14
FeO	0.01	-0.23	0.52	0.82	-0.35	-0.61	-0.33
MgO	-0.01	-0.14	0.39	-0.24	-0.45	0.00	-0.15
CaO	0.08	-0.19	0.38	-0.30	0.80	0.72	-0.05
Na ₂ O	-0.02	0.09	-0.12	-0.04	-0.11	-0.26	0.89
K ₂ O	-0.05	0.13	-0.20	0.27	-0.08	0.16	0.02

Note: The SiO_2 component in each eigenvector is calculated from the 7-component eigenvector, by adding the SiO_2 component so that the summation of all elements in the eigenvector is zero. Then the 8-component eigenvector is renormalized. This way, the contribution by all 8 components (including the dependent component SiO_2) to each eigenvector can be directly seen.

By examining eigenvectors of matrix $D_{1350^{\circ}C}^{\text{couples}}$ (Table 4.4), v_1 is largely due to the exchange between SiO₂ and Al₂O₃; v_2 is largely due to the exchange between SiO₂ and all other components; v_3 is due to the exchange of FeO+MgO+CaO with all other components; v_4 is due to the exchange of FeO+K₂O with all other components; v_5 is largely due to the exchange of FeO+MgO and CaO; v_6 is largely due to the exchange of CaO+ K₂O with all other components; and v_7 is due to the exchange of Na₂O (and very minor K₂O) with all other components. The relative values of eigenvalues along the eigenvectors essentially match expectations based on self

or tracer diffusivities that high-valence cations and network-formers diffuse slowly, lowervalence cations and network-modifiers diffuse more rapidly, and Na and Li (low valence and small cations) have the highest diffusivity (Zhang et al., 2010).

4.7 Predicting diffusion profiles during mineral dissolution

Predictions by matrix $D_{1350^{\circ}C}^{\text{couples}}$ for major oxide diffusion profiles during olivine, diopside and anorthite dissolution (Chen and Zhang, 2008, 2009; Yu et al., 2016) using eq. (A14) in Appendix A2 are shown by short-dashed curves in Figs. 4.11–4.13. Theoretically, the interface melt composition in a multicomponent system can also be calculated from the diffusion matrix and the chemical potential relation between mineral and melt (Guo and Zhang, 2016). Nonetheless, in calculating diffusion profiles during mineral dissolution, the interface melt composition was determined by extrapolation of actual experimental data points in the literature, rather than by thermodynamic models such as MELTS (Ghiorso and Sack, 1995; Asimow and Ghiorso, 1998), because chemical potentials of oxides in silicate melts cannot be accurately calculated yet (e.g., Alexander, 2011). The dissolution rate was subsequently determined by solving eq. (A20) in Appendix A2 using the extrapolated interface melt composition. Note that eq. (A20) contains n - 1 equations, but only the equation corresponding to the best-resolved component was used to calculate the dissolution rate.

Fig. 4.11 Predicted and fit diffusion profiles for olivine dissolution in basaltic melts at ~1350 °C (Chen and Zhang, 2008). The long-dashed curves are predicted profiles using the diffusion matrix given by Alexander 2011 (Note this diffusion matrix was corrected to 1350 °C for comparison). The short-dashed curves are predicted profiles using the diffusion matrix $D_{1350^{\circ}C}^{\text{couples}}$ in Table 4.4. The solid curves are fit profiles for obtaining the diffusion matrix $D_{1350^{\circ}C}^{\text{couples}}$ in Table 4.5. χ^2/v is calculated and shown.

Fig. 4.12 Predicted and fit diffusion profiles for diopside dissolution in basaltic melts at ~1350 °C (Chen and Zhang, 2009). The long-dashed curves are predicted profiles using the diffusion matrix given by Alexander 2011 (Note this diffusion matrix was corrected to 1350 °C for comparison). The short-dashed curves are predicted profiles using the diffusion matrix $D_{1350^{\circ}C}^{\text{couples}}$ in Table 4.4. The solid curves are fit profiles for obtaining the diffusion matrix $D_{1350^{\circ}C}^{\text{couples}}$ in Table 4.5. χ^2/v is calculated and shown.

Fig. 4.13 Predicted and fit diffusion profiles for anorthite dissolution in basaltic melts at ~1350 °C (Yu et al., 2016). The longdashed curves are predicted profiles using the diffusion matrix given by Alexander 2011 (Note this diffusion matrix was corrected to 1350 °C for comparison). The short-dashed curves are predicted profiles using the diffusion matrix $D_{1350^{\circ}C}^{\text{couples}}$ in Table 4.4. The solid curves are fit profiles for obtaining the diffusion matrix $D_{1350^{\circ}C}$ in Table 4.5. χ^2/ν is calculated and shown.

The predicted diffusion profiles and the experimental data match fairly well in both diffusion distances and profile shapes for SiO₂, TiO₂, Al₂O₃, FeO, MgO and CaO. The Na₂O profiles show good agreement for olivine and diopside dissolution (Figs. 4.11–4.12), but disagreement for anorthite dissolution (Fig. 4.13). The K₂O profiles are not predicted in all experiments. The disagreement is not easily explained, but it may be due to the composition dependence of diffusion matrix on K₂O concentration (1.5 wt% in the experiments vs. 0.17 wt% in natural basaltic melts, with almost a factor of 10), or may be related to the observation that K₂O is not a major component in any eigenvector (Table 4.4) and the effect of other components on K₂O diffusion is more difficult to resolve.

4.8 Fitting diffusion profiles of diffusion couples and mineral dissolution

To better constrain the diffusion matrix and reconcile the mineral dissolution data, in addition to the 9 diffusion couple experiments, mineral dissolution experiments (Exp #39, #40, #41 for olivine dissolution at ~1350 °C in Chen and Zhang, 2008; Exp #5 for diopside dissolution at ~1350 °C in Chen and Zhang, 2009; Exp #210, #212, #213, #215, #216 for anorthite dissolution at ~1350 °C in Yu et al., 2016) in basaltic melts were also used for fitting to obtain a new diffusion matrix (referred as $D_{1350^{\circ}C}$ hereafter). The mineral dissolution experiments were done at slightly different temperatures from 1350 °C, and in order for better consistency, the experimental temperatures were "normalized" to 1350 °C, by correcting the experimental durations by relation $t_{corr} = t_{eff} \cdot e^{-E/(RT_{exp})}/(e^{-E/(RT_{corr})})$ (Zhang and Behrens, 2000), where $T_{corr} = 1350$ °C and E = 145 kJ/mol (from this study). Another complexity is that the basaltic melts for mineral dissolution experiments in the literature contain minor and trace

elements, which are ignored in the fitting. That is, $SiO_2^* = SiO_2 + minor - (total - 100)$ is used, such that the total is 100%.

with 10 enois ioi	eden element, di	iu eigenvulues	and ergenveetors				
$D_{1350^{\circ}\text{C}} \ (\mu \text{m}^{2}/\text{s})$	TiO ₂	Al ₂ O ₃	FeO	MgO	CaO	Na ₂ O	K ₂ O
TiO ₂	7.81±0.32	-0.25 ± 0.07	-1.53 ± 0.23	-2.02 ± 0.31	-2.76 ± 0.46	-6.43±1.67	-3.17±0.72
Al_2O_3	-0.81 ± 0.70	5.69±0.14	-7.85 ± 0.43	-6.77±0.55	-14.96 ± 0.82	-29.73 ± 2.90	-20.57±1.43
FeO	-21.66 ± 1.30	-3.70 ± 0.27	23.21±0.91	-31.24 ± 1.08	-38.91±1.57	-72.85 ± 5.73	-46.15 ± 2.48
MgO	-5.52 ± 0.73	1.11±0.16	-7.93 ± 0.55	27.21±0.64	-21.46 ± 0.90	-39.21±3.11	-7.33±1.54
CaO	13.58 ± 1.48	-4.62±0.21	-17.94 ± 0.69	-8.93 ± 0.80	37.88±1.16	-38.15 ± 4.14	15.44±1.66
Na ₂ O	19.68±1.90	10.28±0.29	28.83±0.90	39.57±0.87	57.21±1.31	243.78±4.65	77.02±1.74
K_2O	5.54±0.33	1.42 ± 0.07	3.24±0.19	4.47 ± 0.28	8.47±0.44	21.37±1.51	39.83±0.73
Eigenvalues	λ_1	λ_2	λ_3	λ_4	λ_5	λ_6	λ_7
	6.43						
		8.18					
			14.95				
				31.43			
					41.68		
						58.24	
							224.52
7-component							
Eigenvectors	V_1	V2	V3	V4	V5	V6	V7
TiO ₂	0.04	-0.57	-0.16	-0.03	-0.01	-0.01	-0.02
Al_2O_3	0.99	-0.75	-0.64	-0.25	-0.13	-0.08	-0.11
FeO	0.07	-0.30	0.55	0.83	0.51	-0.42	-0.30
MgO	-0.04	-0.02	0.37	-0.24	-0.75	-0.30	-0.16
CaO	0.10	0.01	0.31	-0.09	0.39	0.84	-0.14
Na ₂ O	-0.06	0.08	-0.15	-0.17	-0.06	-0.15	0.92
K ₂ O	-0.04	0.11	-0.04	0.39	0.08	0.06	0.09
8-component	12.	1/2	1/2	17.	1/-	Ve	1/-
Eigenvectors	٧I	v <u>2</u>	V3	۴4	15	V 6	• /
SiO_2	-0.73	0.82	-0.22	-0.41	-0.04	0.05	-0.27
TiO ₂	0.03	-0.32	-0.16	-0.02	-0.01	-0.01	-0.02
Al_2O_3	0.68	-0.43	-0.63	-0.23	-0.13	-0.08	-0.10
FeO	0.05	-0.17	0.54	0.76	0.51	-0.42	-0.29
MgO	-0.03	-0.01	0.36	-0.22	-0.75	-0.30	-0.15
CaO	0.07	-0.00	0.30	-0.08	0.39	0.84	-0.14
Na ₂ O	-0.04	0.05	-0.15	-0.16	-0.06	-0.15	0.89
K_2O	-0.03	0.06	-0.04	0.35	0.08	0.06	0.09

Table 4.5 Diffusion matrix $D_{1350^{\circ}\text{C}}$ obtained by fitting both diffusion couple and mineral dissolution experiments at ~1350 °C, with 1 σ errors for each element, and eigenvalues and eigenvectors.

See footnote on Table 4 for the expression of each eigenvector in 8-component space.

Matrix $D_{1350^{\circ}C}$ is shown in Table 4.5, together with eigenvalues and eigenvectors. The solid curves in Figs. 4.11–4.13 are fit curves for olivine, diopside and anorthite dissolution. All the fits by matrix $D_{1350^{\circ}C}$ for all 9 diffusion couple experiments are shown by solid curves in Figs. 4.2–4.10. It can be seen from Figs. 4.2–4.13 that all the features of diffusion profiles in

diffusion couple and mineral dissolution experiments are well reproduced by matrix $D_{1350^{\circ}C}$. The goodness of fit is assessed by reduced chi-squares, which shows the quality of the fits by matrix $D_{1350^{\circ}C}$ for diffusion couples is slightly compromised, but still fairly close to the fits by matrix $D_{1350^{\circ}C}$.

The observation that mineral dissolution experiments with larger concentration variations across profiles (e.g., SiO₂ from 47 to 52 wt% in Fig. 4.13, Al₂O₃ from 14 to 24 wt% in Fig. 4.13, and MgO from 7 to 13 wt% in Fig. 4.11) can be fit well by a constant diffusion matrix means that our choice of total concentration variation of ± 1.5 wt% to insure constancy of the diffusion matrix is somewhat conservative. In the future, total concentration variation of ± 2.5 wt% may be used so as to better resolve the cross diffusion terms.

Fig. 4.14 Comparison between observed frequency and calculated frequency from a standard normal distribution.

Whether matrices $D_{1350^{\circ}C}^{\text{couples}}$ and $D_{1350^{\circ}C}$ are different can be tested by calculating

$$T_{ij}^{\text{couples}} = \frac{D_{ij}^{\text{couples}} - \mu_{ij}}{\sigma_{ij}^{\text{couples}}} \text{ and } T_{ij} = \frac{D_{ij} - \mu_{ij}}{\sigma_{ij}}, \text{ where } \mu_{ij} \text{ is the weighted average of } D_{ij}^{\text{couples}} \text{ and } D_{ij}.$$

If matrices $D_{1350^{\circ}\text{C}}^{\text{couples}}$ and $D_{1350^{\circ}\text{C}}$ are statistically the same, then the shape of the histogram of T_{ij}^{couples} and T_{ij} should match standard normal distribution. However, it can be seen from Fig.
4.14, that the shape of the histogram is different from a standard normal distribution, especially with a significant number of data outside $\pm 2\sigma$, which means matrices $D_{1350^{\circ}\text{C}}^{\text{couples}}$ and $D_{1350^{\circ}\text{C}}$ are different. Diffusion matrix $D_{1350^{\circ}\text{C}}$ is preferred because it is constrained by more data, and can fit and predict diffusion profiles in diffusion-couple experiments and mineral dissolution experiments.

Eigenvalues and eigenvectors of the diffusion matrix $D_{1350^{\circ}C}$ are shown in Table 4.5. By examining eigenvectors of matrix $D_{1350^{\circ}C}$ (Table 4.5), the eigenvectors are similar as those for $D_{1350^{\circ}C}^{\text{couples}}$: for example, v_1 is largely due to the exchange between SiO₂ and Al₂O₃; and v_7 is due to the exchange of Na₂O (and very minor K₂O) with all other components.

Therefore, the diffusion mechanism during multicomponent diffusion in basaltic melts is summarized in Table 4.6. One may classify it into 5 categories: (1) the exchange between network-formers, such as $SiO_2 - Al_2O_3$; (2) the exchange between divalent network-modifiers and all other components, such as (FeO+MgO+CaO) – (all others); (3) the exchange of divalent plus monovalent network-modifier with all other components, such as (FeO+K₂O) – (all others) and (CaO+K₂O) – (all others); (4) the exchange between divalent network-modifiers, such as (FeO+MgO) – CaO; and (5) the exchange of monovalent network-modifier Na₂O with all other components. Curiously, diffusion of K₂O does not dominate any diffusion eigenvector.

Tuote not municom		mont in ousuate ments at 150	
Sequence	Eigenvalues	Eigenvectors	Exchanging species at 1350 °C
slowest	λ_1	v_1	$SiO_2 - Al_2O_3$
2nd slowest	λ_2	v_2	$SiO_2 - (all others)$
3rd slowest	λ_3	v_3	(FeO + MgO + CaO) - (all others)
4th fastest	λ_4	v_4	$(FeO + K_2O) - (all others)$
3rd fastest	λ_5	v_5	(FeO + CaO) - MgO
2nd fastest	λ_6	v_6	$(CaO + K_2O) - (all others)$
fastest	λ_7	v_7	$Na_2O - (all others)$

Table 4.6. Multicomponent diffusion mechanism in basaltic melts at 1350 °C.

4.9 Comparison with previous works

There are no other diffusion matrices for 8-component system in the literature. Hence, no direct comparison between the diffusion matrix (Table 4.5) from this study and that in the literature can be made. There are diffusion matrices in simpler systems, but they are at different temperatures. Therefore, no comparison can be made by crossing out rows and columns of the diffusion matrix (Table 4.5) for our 8-component system. Nonetheless, diffusion mechanisms inferred from eigenvectors can be compared.

In general, diffusion matrices in simpler component systems indicate that the exchange between network-former SiO₂ and Al₂O₃ is the slowest for any SiO₂–Al₂O₃ bearing systems (Sugawara et al. 1977; Oishi et al., 1982; Chakraborty et al., 1995; Kress and Ghiorso, 1995; Liang et al., 1996; Mungall et al., 1998; Richter et al., 1998; Liang and Davis, 2002; Liang, 2010; Guo and Zhang, 2016) and the exchange between Na₂O and other components is the fastest for Na₂O-bearing system (Watkins et al., 2014; Claireaux et al., 2016; Guo and Zhang, 2016). These are consistent with our results.

For Na₂O-absent systems, diffusion matrix in 4-component SiO₂-Al₂O₃-MgO-CaO systems reported by Liang (2010) indicates that the fastest diffusion is due to the exchange of CaO with all other components, and diffusion matrix in SiO₂-TiO₂-Al₂O₃-FeO-MgO-CaO reported by Kress and Ghiorso (1995) indicates the fastest diffusion corresponds to the exchange

between divalent cations FeO, MgO and CaO, both of which are consistent with our findings if only SiO₂, Al₂O₃, FeO, MgO and CaO components are considered.

Furthermore, Guo and Zhang (2016) reported a diffusion matrix for 7-component SiO₂– TiO₂–Al₂O₃–MgO–CaO–Na₂O–K₂O system. Their inferred diffusion mechanism is that the slowest diffusion is largely due to the exchange between network-former SiO₂ and Al₂O₃, the second slowest diffusion is largely due to the exchange between SiO₂ and TiO₂, the third slowest diffusion is due to the exchange of network-former SiO₂+Al₂O₃ with divalent network-modifier MgO+CaO, the third fastest diffusion is largely due to the exchange between divalent networkmodifier MgO and CaO, the second fastest diffusion is due to the exchange of CaO+K₂O with all other components, and the fastest diffusion is largely due to the exchange of monovalent Na₂O with all other components. This is very consistent with the diffusion mechanism found in this study, if FeO component is ignored in Table 4.6.

However, there are also exceptions: In the 4-component $SiO_2-Al_2O_3-CaO-Na_2O$ system, Claireaux et al. (2016) found that the slowest diffusion eigenvector is predominantly due to the exchange between Al_2O_3 and CaO, rather than between SiO_2 and Al_2O_3 . In Columbia River basalt modeled as a 6-component $SiO_2-TiO_2-Al_2O_3-FeO-MgO-CaO$ system, Kress and Ghiorso (1995) obtained that the slowest diffusion eigenvector is mainly due to SiO_2 exchange with FeO+CaO at 1200 °C, and due to Al_2O_3 exchange with MgO at 1300 °C. It is not clear what caused the differences.

In summary, there is an overall agreement among different studies on diffusion mechanism, but inconsistencies are also present. The explanation for the inconsistencies is not readily available, but uncertainty in the diffusion matrix and differences in composition and temperature are possible contributing factors.

4.10 Summary and conclusions

Chemical diffusion profiles of 9 successful diffusion couple experiments at ~1350 °C and at 1 GPa, in basaltic melts in an 8-component SiO₂–TiO₂–Al₂O₃–FeO–MgO–CaO–Na₂O– K₂O system were determined. Effective binary diffusion coefficients of components with monotonic diffusion profiles at ~1350 °C show a strong dependence on its counter-diffusing component. Multicomponent diffusion matrix in basaltic melts was obtained in two ways: (1) by simultaneously fitting diffusion profiles of 9 diffusion couple experiments in this study, and (2) by simultaneously fitting diffusion profiles of both diffusion couple experiments in this study and mineral dissolution experiments in the literatures. The two diffusion matrices are similar, showing the robustness of the results. Furthermore, 9 diffusion couple experiments are enough for the extraction of diffusion matrix in an 8-component system. Nonetheless, when mineral dissolution data are used in the fitting, the obtained diffusion matrix can predict diffusion profiles during mineral dissolution experiments much better. Diffusion mechanism inferred from eigenvectors of the diffusion matrix is reasonable and consistent with previous studies by Liang (2010) and Guo and Zhang (2016).

4.11 Acknowledgement

Constructive reviews by Michael Toplis, Yan Liang and an anonymous reviewer are highly appreciated. This research is supported by NSF grant EAR-1524473. The electron microprobe Cameca SX100 used in this study was purchased using NSF grant EAR-9911352.

4.12 References

- Alexander C. M. (2011) Modeling diffusive dissolution in silicate melts. *Geochim. Cosmochim. Acta* **75**, 588–607.
- Asimow P. D. and Ghiorso M.S. (1998) Algorithmic modifications extending MELTS to calculate subsolidus phase relations. *Am. Mineral.* **83**, 1127–1131.
- Chakraborty S., Dingwell D.B. and Rubie D.C. (1995) Multicomponent diffusion in ternary silicate melts in the system K₂O–Al₂O₃–SiO₂: I. Experimental measurements. *Geochim. Cosmochim. Acta* 59, 255–264.
- Chen Y. and Zhang Y. (2008) Olivine dissolution in basaltic melt. *Geochim. Cosmochim. Acta* **72**, 4756–4777.
- Chen Y. and Zhang Y. (2009) Clinodiopside dissolution in basaltic melt. *Geochim. Cosmochim. Acta* **73**, 5730–5747.
- Claireaux C., Chopinet M., Burov E., Gouillart E., Roskosz M. and Toplis M (2016) Atomic mobility in calcium and sodium aluminosilicate melts at 1200 °C. *Geochim. Cosmochim. Acta* 192, 235–247.
- Clifford A. A. (1973) *Multivariate error analysis: a handbook of error propagation and calculation in many-parameter system*. Wiley, NY.
- Cooper A. R. (1968) The use and limitations of the concept of an effective binary diffusion coefficient for multi-component diffusions. In *Mass Transport In Oxides*, Vol. 296 (ed. J.B. Wachman and A.D. Franklin), pp. 79–84. Nat. Bur. Stand. Spec. Publ.
- Fletcher R. (1971) *A modified Marquardt subroutine for nonlinear least squares*. Atomic Energy Research Establishment R6799, Harwell, England.

- Ghiorso M. S. and Sack R. O. (1995) Chemical mass transfer in magmatic processes IV. a revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid–solid equilibria in magmatic systems at elevated temperatures and pressures. *Contrib. Mineral. Petrol.* **119**, 197–212.
- Guo C. and Zhang Y. (2016) Multicomponent diffusion in silicate melts: SiO₂–TiO₂–Al₂O₃– FeO–MgO–CaO–Na₂O–K₂O system. *Geochim. Cosmochim. Acta* **195**, 126–141.

Koyaguchi T. (1985) Magma mixing in a conduit. J. Volcanol. Geotherm. Res. 25, 365–369.

- Koyaguchi T. (1989) Chemical gradient at diffusive interfaces in magma chambers. *Contrib. Mineral. Petrol.* **103**, 143–152.
- Kress V. C. and Ghiorso M. S. (1993) Multicomponent diffusion in MgO–Al₂O₃–SiO₂ and Cao– MgO–Al₂O₃–SiO₂ melts. *Geochim. Cosmochim. Acta* **57**, 4453–4466.
- Kress V. C. and Ghiorso M.S. (1995) Multicomponent diffusion in basaltic melts. *Geochim. Cosmochim. Acta* 59, 313–324.
- Lasaga A. C. (1979) Multicomponent exchange and diffusion in silicates. *Geochim. Cosmochim. Acta* **54**, 2709–2715.
- Liang Y. (2010) Multicomponent diffusion in molten silicates: Theory, experiments, and geological application. *Rev. Mineral. Geochem.* **72**, 409–446.
- Liang Y. and Davis A. M. (2002) Energetics of multicomponent diffusion in molten CaO– Al₂O₃–SiO₂. *Geochim. Cosmochim. Acta* **66**, 635–646.
- Liang Y., Richter F. M. and Chamberlin L. (1997) Diffusion in silicate melts: III. empirical models for multicomponent diffusion. *Geochim. Cosmochim. Acta* **61**, 5295–5312.
- Liang Y., Richter F. M. and Watson E. B. (1994) Convection in multicomponent silicate melts driven by coupled diffusion. *Nature* **369**, 390–392.
- Liang Y., Richter F. M. and Watson E. B. (1996) Diffusion in silicate melts: II. multicomponent diffusion in CaO–SiO₂–Al₂O₃ at 1500°C and 1GPa. *Geochim. Cosmochim. Acta* 60, 5021–5035.
- Morgan Z. T., Liang Y. and Hess P. C. (2006) An experimental study of the kinetics of anorthite dissolution in lunar picritic magmas with applications to lunar crustal assimilation processes. *Geochim. Cosmochim. Acta* 70, 3477–3491.
- Mungall J. E., Romano C. and Dingwel D. B. (1998) Multicomponent diffusion in the molten system K₂O–Na₂O–Al₂O₃–SiO₂–H₂O. *Am Mineral.* **83**, 685–699.
- Oishi Y., Nanba M. and Pask J. A. (1982) Analysis of liquid–state interdiffusion in the system CaO–Al₂O₃–SiO₂ using multiatomic ion models. *J. Am. Ceram. Soc.* **65**, 247–253.
- Oldenburg C. M., Spera F. J., Yuen D. A., and Sewell G. (1989) Dynamic mixing in magma bodies: Theory, simulations and implications. *J. Geophys. Res.* **94**, 9215–9236.
- Richter F. M. (1993) A method for determining activity–composition relations using chemical diffusion in silicate melts. *Geochim. Cosmochim. Acta* **57**, 2019–2032.
- Richter F. M., Liang Y. and Minarik W.G. (1998) Multicomponent diffusion and convection in molten MgO–Al₂O₃–SiO₂. *Geochim. Cosmochim. Acta* 62, 1985–1991.
- Sato H. (1975) Diffusion coronas around quartz xenocrysts in andesite and basalt from Tertiary Volcanic Region in northeastern Shikoku, Japan. *Contrib. Mineral. Petrol.* **50**, 49–64.
- Sugawara H., Nagata K. and Goto K. S. (1977) Interdiffusivities matrix of CaO–Al₂O₃–SiO₂ melt at 1723 K to 1823 K. *Metall. Trans. B* **8**, 605–612.
- Trial A. F. and Spera F. J. (1994) Measuring the multicomponent diffusion matrix: Experimental design and data analysis for silicate melts. *Geochim. Cosmochim. Acta* **58**, 3769–3783.
- Turner J. S. (1985) Multicomponent convection. Ann. Rev. Fluid Mech. 17, 11-44.

- Watson E.B. (1982) Basalt contamination by continental crust: Some experiments and models. *Contrib. Mineral. Petrol.* 80, 73–87.
- Watkins J. M., Liang Y., Richter F., Ryerson F. J. and DePaolo D. J. (2014) Diffusion of multiisotopic chemical species in molten silicates. *Geochim. Cosmochim. Acta* **139**, 313–326.
- Yu Y., Zhang Y., Chen. Y. and Xu Z. (2016) Kinetics of anorthite dissolution in basaltic melt. *Geochim. Cosmochim. Acta* **179**, 257–274.
- Zhang Y. (1993) A modified effective binary diffusion model. J. Geophys. Res. 98, 11901– 11920.
- Zhang Y. and Behrens H. (2000) H₂O diffusion in rhyolitic melts and glasses. *Chem. Geol.* **169**, 243–262.
- Zhang Y., Ni H. and Chen Y. (2010) Diffusion data in silicate melts. *Rev. Mineral. Geochem.* **72**, 311-408.
- Zhang Y., Walker D. and Lesher C. E. (1989) Diffusive crystal dissolution. *Contrib. Mineral. Petrol.* **102**, 492–513.

CHAPTER V

Multicomponent Diffusion in Basaltic Melts: Temperature Dependence

5.1 Abstract

Eighteen successful diffusion couple experiments in an 8-component SiO₂-TiO₂-Al₂O₃-FeO-MgO-CaO-Na₂O-K₂O basaltic melts were conducted at ~1260 °C and 0.5 GPa and ~1500 °C and 1 GPa. These experiments are combined with 9 diffusion couple experiments at ~1350 °C (Guo and Zhang, 2017) to study multicomponent diffusion and their temperature dependence. Diffusion profiles were obtained by measuring 3 traverses for each experiment. Diffusion matrix at each temperature was first obtained by simultaneously fitting all diffusion profiles of all diffusion couple experiments. To better constrain the diffusion matrix and reconcile mineral dissolution data in the literature, diffusion profiles of mineral dissolution experiments were combined with those of diffusion couple experiments, to obtain a new improved diffusion matrix. All features of diffusion profiles in both diffusion couples and mineral dissolution are well reproduced by this new diffusion matrix. Diffusion mechanisms at both 1260 and 1500 °C are inferred from eigenvectors of diffusion matrices and compared with those at 1350 °C reported in Guo and Zhang (2017). The diffusion mechanism in basaltic melts is insensitive to temperature. The slowest eigenvector is the exchange of SiO₂ with other oxide components and the fastest eigenvector is the exchange of Na₂O with other oxide components, both of which are

consistent with results in most literature. Temperature dependence of diffusion matrix is obtained by assuming eigenvectors to be independent of temperature and eigenvalues to follow Arrhenius relation. Therefore, diffusion matrix at any temperature can be calculated, and is successfully applied to predict diffusion profiles during olivine and anorthite dissolution in basaltic melts at ~1400 °C.

5.2 Introduction

Natural basaltic melts consist of numerous major components (e.g. SiO₂, TiO₂, Al₂O₃, FeO, MgO, CaO, Na₂O and K₂O). Therefore, diffusion in such melts is always multicomponent diffusion, which is of significant importance in natural processes involving mass transport, such as magma mixing and contamination (Sato, 1975; Watson, 1982; Koyaguchi, 1985, 1989; Oldenburg et al., 1989), magma double-diffusive convection (Turner, 1985; Liang et al., 1994; Richter et al., 1998), and mineral growth or dissolution in magmas (Watson, 1982; Zhang et al., 1989).

Tremendous efforts have been made in studying multicomponent diffusion in silicate melts in various systems (e.g. Sugawara et al., 1977; Oishi et al., 1982; Kress and Ghiorso, 1993, 1995; Chakraborty et al., 1995; Mungall et al., 1998; Liang, 2010; Watkins et al., 2014; Claireaux et al., 2016; Guo and Zhang, 2016, 2017). Guo and Zhang (2017) first reported a diffusion matrix at 1350 °C in synthetic 8-component SiO₂–TiO₂–Al₂O₃–FeO–MgO–CaO– Na₂O–K₂O basaltic melts, and applied it to predict olivine, diopside and anorthite dissolution in basaltic melts at 1350 °C. However, it is necessary to quantify multicomponent diffusion in natural melts at various temperatures. Liang (2010) summarized the temperature dependence of diffusion matrix in simple SiO₂–Al₂O₃–CaO, SiO₂–Al₂O₃–K₂O and SiO₂–Al₂O₃–MgO–CaO

93

systems, and found that eigenvalues of diffusion matrix follows good Arrhenius relation and eigenvectors of diffusion matrix are insensitive to temperature. Hence, we have expanded out earlier study to investigate the temperature dependence of diffusion matrix in the same basaltic melts.

To understand the temperature dependence of diffusion matrix in basaltic melts, and following our previous work on multicomponent diffusion in basaltic melts at 1350 °C (Guo and Zhang, 2017), diffusion couple experiments in the same 8-component SiO₂–TiO₂–Al₂O₃–FeO–MgO–CaO–Na₂O–K₂O basaltic melts at two different temperatures 1260 and 1500 °C were conducted. Diffusion profiles in diffusion couple and literature mineral dissolution experiments were used to obtain diffusion matrix at each temperature. The temperature dependence of diffusion matrix is examined by the temperature dependence of eigenvalues with Arrhenius relation assuming eigenvectors are invariant.

5.3 Experimental strategy and analytical methods

The general experimental strategy, sample preparation, experimental procedure and analytical methods for diffusion couple experiments follow sections 2.1-2.4 in chapter II. The 8-component SiO₂-TiO₂-Al₂O₃-FeO-MgO-CaO-Na₂O-K₂O basaltic melts have an average composition of 51% SiO₂, 2% TiO₂, 14% Al₂O₃, 11.5% FeO, 6.5% MgO, 10.5% CaO, 3% Na₂O, 1.5% K₂O (in wt%), shown as "Base Comp" in Table 4.1. The average composition of initial glasses is listed in Table 4.1. The temperatures of 1260 and 1500 °C are chosen to reach the largest temperature range to obtain the temperature dependence of diffusion matrix. The pressure of 0.5 GPa for experiments at ~1260 °C is chosen to avoid crystallization at higher pressure than 0.5 GPa. The pressure of 1 GPa for experiments at ~1500 °C is chosen for better experimental

94

success rate. The experimental results at different pressures can be directly compared and combined because diffusion of major elements in basaltic melts is much less sensitive to pressure than temperature (Liang and Davis, 2002; Chen and Zhang, 2008, 2009).

Literature data from mineral dissolution experiments by Chen and Zhang (2008, 2009) and Yu et al. (2016) will be used to better constrain diffusion matrices.

5.4 Experimental results

Eighteen successful diffusion couple experiments were carried out, of which 9 experiments are at ~1260 °C and 0.5 GPa and the other 9 experiments are at ~1500 °C and 1 GPa. The name of each experiment ID indicates both two halves of initial glasses and experimental temperature. For example, BS5&6C indicates that one half is BS5, the other half is BS6, and the experimental temperature is at ~1260 °C (the last letter "B" means 1500 °C and "C" means 1260 °C). The interface composition of each diffusion couple is listed in Table 4.2. The average of the interface compositions of the 9 diffusion couple experiments is very close to the compositions of the base and the JDF basalts.

Two pieces of initial glasses are molten together, and quench cracks are observed in 3 out of 18 experiments. Interface between two halves is not visible, but physical interface could be seen by a small dent or misalignment near the contact with graphite crucible.

At least 3 traverses were measured to obtain diffusion profiles for each diffusion couple experiment. Diffusion profiles for crack-present experiments are re-connected smoothly by comparing different traverses. All microprobe analytical data can be found in the Appendix C.

Experimental conditions and effective binary diffusion coefficients (EBDC) for monotonic diffusion profiles of all 18 successful experiments are shown in Table 5.1. The actual

95

experimental temperatures at the center of the diffusion couple are determined after the

experiments. Effective experimental durations were calculated by $t_{eff} = \int e^{-E/(RT)} dt / e^{-E/(RT_{exp})}$, where the integration includes the heating-up and cooling-down segments (Zhang and Behrens, 2000) and E = 145 kJ/mol (from this study). For well-resolved monotonic diffusion profiles, effective binary diffusion coefficients (EBDC) were obtained by fitting the data by an error function. For experiments at each temperature, the first 7 experiments have initial 3-wt% concentration differences between SiO₂ and another component *i*, where *i* = TiO₂, Al₂O₃, FeO, MgO, CaO, Na₂O and K₂O, which are the minimum requirement to obtain 7×7 diffusion matrix in an 8-component system (Trial and Spera, 1994), unless the analytical data precision is much higher than that of a regular electron microprobe (Liang 2010). The additional 2 experiments are for further constraint.

Table 5.1 Summary of experimental conditions and effective binary antidision coefficients in basafile ments at 1200 and 15000 °C.										5000 C.	
Exp#	Т	t	couples	$D(SiO_2)$	$D(TiO_2)$	$D(Al_2O_3)$	$D(FeO_t)$	D(MgO)	D(CaO)	$D(Na_2O)$	$D(K_2O)$
	°C	sec		$\mu m^2/s$	μm²/s	μm²/s	$\mu m^2/s$	μm²/s	μm²/s	μm²/s	μm²/s
BS1&2C	1259	1836	Si-Ti	1.4±0.2	2.4±0.1						
BS3&4C	1258	1837	Si-Al	1.7±0.2		1.8 ± 0.1					
BS5&6C	1263	1293	Si–Fe	3.5±0.5			10.3±0.7				
BS7&8C	1258	1294	Si–Mg	_				7.2 ± 0.3			
BS9&10C	1262	934	Si–Ca	1.6 ± 0.4					10.1±0.5		
BS11&12C	1261	576	Si–Na	_						_	
BS13&14C	1263	725	Si–K	13.5±1.8							23.9±0.7
BS17&18C	1274	517	Mg–K					11.7±0.7			20.3±0.5
BS19&20C	1259	605	Al–Ca			2.9 ± 0.2			15.8±0.7		
BS1&2B	1500	276	Si-Ti	6.6±1.6	16.5±0.8						
BS3&4B	1506	216	Si-Al	11.0±2.3		16.9±1.3					
BS5&6B	1501	246	Si–Fe	26.9±3.8			49.7±3.5				
BS7&8B	1499	216	Si–Mg	21.7±2.6				69.3±2.7			
BS9&10B	1502	157	Si–Ca	27.9±5.5					102.0 ± 3.9		
BS11&12B	1501	156	Si–Na	39.8±6.0						515.4±16.4	
BS13&14B	1499	156	Si–K	88.0±10.7							134.8±3.0
BS17&18B	1499	186	Mg–K					69.1±3.5			89.3±1.6
BS19&20B	1505	216	Al–Ca			25.9±1.6			97.5±2.7		

Table 5.1 Summary of experimental conditions and effective binary diffusion coefficients in basaltic melts at 1260 and 15000 °C

Note:

1. Experiments at ~1260 °C were at 0.5 GPa; experiments at ~1500 °C were at 1 GPa.

2. Reported temperatures are actual experimental temperatures at the center of diffusion couples.

3. Durations are calculated effective experimental durations.

4. For easy comparison, the effective binary diffusion coefficients are not those at the experimental temperatures, but those at

1260 or 1500 °C, by correcting effective experimental durations using $t_{\text{corr}} = t_{\text{exp}} \cdot e^{-E/(RT_{\text{corr}})} / e^{-E/(RT_{\text{corr}})}$ (Zhang and Behrens, 2000) where $T_{\text{corr}} = 1260$ or 1500 °C and E = 145 kJ/mol (from this study).

5. $D(SiO_2)$ for experiments BS7&8C and BS11&12C are not listed, due to asymmetric SiO₂ profile. $D(Na_2O)$ for experiment BS11&12C are not listed either, due to non-monotonic Na₂O profile.

In order for fitting effective binary diffusion coefficients and diffusion matrix, the preliminary data processing follows section 2.5 in chapter II.

5.5 Effective binary diffusion coefficients

Effective binary diffusion coefficients (EBDC) were fit by eq. (2.1) for the two components with 3-wt% concentration difference. The fits are excellent with r^2 larger than 0.97. EBDC of a given component in this multicomponent system is strongly dependent on its counterdiffusing component even in one single bulk composition, consistent with Cooper (1968) and Guo and Zhang (2016, 2017). The observation is especially significant for SiO₂, partially due to more diffusion couples with concentration differences in SiO₂. At 1260 °C, EBDC of SiO₂ varies from 1.4 μ m₂/s when diffusing against TiO₂ to 13.5 μ m₂/s when diffusing against K₂O, by a factor of 9.6; at 1500 °C, EBDC of SiO₂ varies from 6.6 µm₂/s when diffusing against TiO₂ to 88.0 μ m₂/s when diffusing against K₂O, by a factor of 13.3. Notably, EBDC of SiO₂ when diffusing against K₂O is much larger than that when diffusing against Na₂O, although K₂O diffuses much slower than Na₂O. Fig. 5.1 shows temperature dependence of EBDC of each component, where each panel represents one component and different symbols indicate EBDC's obtained from different diffusion couples. It can be seen that there is a large variation in EBDC at a given temperature due to exchange with different components, but EBDC's for each exchange at different temperatures still roughly follow the Arrhenius relation.

Fig. 5.1 Temperature dependence of EBDC of each component. Each panel in the figure represents one component, and different symbols indicate EBDC obtained from different diffusion couples.

Fig. 5.2 Data of diffusion profiles of BS1&2C with fits and prediction. All the points are measured data. Different symbols indicate different traverses. The error bars are $\pm 1\sigma$ errors. The short-dashed curves are fit profiles for obtaining the diffusion matrix $D_{1260^{\circ}C}^{\text{couples}}$ in Table 5.2. The solid curves are fit profiles for obtaining the diffusion matrix $D_{1260^{\circ}C}$ in Table 5.4. The long-dashed curves are predicted profiles from calculated diffusion matrix by eq. (5.1) at 1260 °C. Data of Diffusion profiles of other diffusion couple experiments with fits at ~1260 °C are shown in the supplementary file. χ^2/ν is calculated and shown for each type of fits and prediction.

Fig. 5.3 Data of diffusion profiles of BS3&4C with fits and prediction. All the points are measured data. Different symbols indicate different traverses. The error bars are $\pm 1\sigma$ errors. The short-dashed curves are fit profiles for obtaining the diffusion matrix $D_{1260^{\circ}C}^{\text{couples}}$ in Table 5.2. The solid curves are fit profiles for obtaining the diffusion matrix $D_{1260^{\circ}C}$ in Table 5.4. The long-dashed curves are predicted profiles from calculated diffusion matrix by eq. (5.1) at 1260 °C. Data of Diffusion profiles of other diffusion couple experiments with fits at ~1260 °C are shown in the supplementary file. χ^2/ν is calculated and shown for each type of fits and prediction.

Fig. 5.4 Data of diffusion profiles of BS5&6C with fits and prediction. All the points are measured data. Different symbols indicate different traverses. The error bars are $\pm 1\sigma$ errors. The short-dashed curves are fit profiles for obtaining the diffusion matrix $D_{1260^{\circ}C}^{\text{couples}}$ in Table 5.2. The solid curves are fit profiles for obtaining the diffusion matrix $D_{1260^{\circ}C}$ in Table 5.4. The long-dashed curves are predicted profiles from calculated diffusion matrix by eq. (5.1) at 1260 °C. Data of Diffusion profiles of other diffusion couple experiments with fits at ~1260 °C are shown in the supplementary file. χ^2/ν is calculated and shown for each type of fits and prediction.

Fig. 5.5 Data of diffusion profiles of BS7&8C with fits and prediction. All the points are measured data. Different symbols indicate different traverses. The error bars are $\pm 1\sigma$ errors. The short-dashed curves are fit profiles for obtaining the diffusion matrix $D_{1260^{\circ}C}^{\text{couples}}$ in Table 5.2. The solid curves are fit profiles for obtaining the diffusion matrix $D_{1260^{\circ}C}$ in Table 5.4. The long-dashed curves are predicted profiles from calculated diffusion matrix by eq. (5.1) at 1260 °C. Data of Diffusion profiles of other diffusion couple experiments with fits at ~1260 °C are shown in the supplementary file. χ^2/ν is calculated and shown for each type of fits and prediction.

Fig. 5.6 Data of diffusion profiles of BS9&10C with fits and prediction. All the points are measured data. Different symbols indicate different traverses. The error bars are $\pm 1\sigma$ errors. The short-dashed curves are fit profiles for obtaining the diffusion matrix $D_{1260^{\circ}C}^{\text{couples}}$ in Table 5.2. The solid curves are fit profiles for obtaining the diffusion matrix $D_{1260^{\circ}C}$ in Table 5.4. The long-dashed curves are predicted profiles from calculated diffusion matrix by eq. (5.1) at 1260 °C. Data of Diffusion profiles of other diffusion couple experiments with fits at ~1260 °C are shown in the supplementary file. χ^2/ν is calculated and shown for each type of fits and prediction.

Fig. 5.7 Data of diffusion profiles of BS11&12C with fits and prediction. All the points are measured data. Different symbols indicate different traverses. The error bars are $\pm 1\sigma$ errors. The short-dashed curves are fit profiles for obtaining the diffusion matrix $D_{1260^{\circ}C}^{\text{couples}}$ in Table 5.2. The solid curves are fit profiles for obtaining the diffusion matrix $D_{1260^{\circ}C}$ in Table 5.4. The long-dashed curves are predicted profiles from calculated diffusion matrix by eq. (5.1) at 1260 °C. Data of Diffusion profiles of other diffusion couple experiments with fits at ~1260 °C are shown in the supplementary file. χ^2/ν is calculated and shown for each type of fits and prediction.

Fig. 5.8 Data of diffusion profiles of BS13&14C with fits and prediction. All the points are measured data. Different symbols indicate different traverses. The error bars are $\pm 1\sigma$ errors. The short-dashed curves are fit profiles for obtaining the diffusion matrix $D_{1260^{\circ}C}^{\text{couples}}$ in Table 5.2. The solid curves are fit profiles for obtaining the diffusion matrix $D_{1260^{\circ}C}$ in Table 5.4. The long-dashed curves are predicted profiles from calculated diffusion matrix by eq. (5.1) at 1260 °C. Data of Diffusion profiles of other diffusion couple experiments with fits at ~1260 °C are shown in the supplementary file. χ^2/ν is calculated and shown for each type of fits and prediction.

Fig. 5.9 Data of diffusion profiles of BS17&18C with fits and prediction. All the points are measured data. Different symbols indicate different traverses. The error bars are $\pm 1\sigma$ errors. The short-dashed curves are fit profiles for obtaining the diffusion matrix $D_{1260^{\circ}C}^{\text{couples}}$ in Table 5.2. The solid curves are fit profiles for obtaining the diffusion matrix $D_{1260^{\circ}C}$ in Table 5.4. The long-dashed curves are predicted profiles from calculated diffusion matrix by eq. (5.1) at 1260 °C. Data of Diffusion profiles of other diffusion couple experiments with fits at ~1260 °C are shown in the supplementary file. χ^2/ν is calculated and shown for each type of fits and prediction.

Fig. 5.10 Data of diffusion profiles of BS19&20C with fits and prediction. All the points are measured data. Different symbols indicate different traverses. The error bars are $\pm 1\sigma$ errors. The short-dashed curves are fit profiles for obtaining the diffusion matrix $D_{1260^{\circ}C}^{\text{couples}}$ in Table 5.2. The solid curves are fit profiles for obtaining the diffusion matrix $D_{1260^{\circ}C}$ in Table 5.4. The long-dashed curves are predicted profiles from calculated diffusion matrix by eq. (5.1) at 1260 °C. Data of Diffusion profiles of other diffusion couple experiments with fits at ~1260 °C are shown in the supplementary file. χ^2/ν is calculated and shown for each type of fits and prediction.

Fig. 5.11 Data of diffusion profiles of BS1&2B with fits and prediction. All the points are measured data. Different symbols indicate different traverses. The error bars are $\pm 1\sigma$ errors. The short-dashed curves are fit profiles for obtaining the diffusion matrix $D_{1500^{\circ}C}^{\text{couples}}$ in Table 5.3. The solid curves are fit profiles for obtaining the diffusion matrix $D_{1500^{\circ}C}$ in Table 5.5. The long-dashed curves are predicted profiles from calculated diffusion matrix by eq. (5.1) at 1500 °C. Data of Diffusion profiles of other diffusion couple experiments with fits at ~1500 °C are shown in the supplementary file. χ^2/ν is calculated and shown for each type of fits and prediction.

Fig. 5.12 Data of diffusion profiles of BS3&4B with fits and prediction. All the points are measured data. Different symbols indicate different traverses. The error bars are $\pm 1\sigma$ errors. The short-dashed curves are fit profiles for obtaining the diffusion matrix $D_{1500^{\circ}C}^{\text{couples}}$ in Table 5.3. The solid curves are fit profiles for obtaining the diffusion matrix $D_{1500^{\circ}C}$ in Table 5.5. The long-dashed curves are predicted profiles from calculated diffusion matrix by eq. (5.1) at 1500 °C. Data of Diffusion profiles of other diffusion couple experiments with fits at ~1500 °C are shown in the supplementary file. χ^2/ν is calculated and shown for each type of fits and prediction.

Fig. 5.13 Data of diffusion profiles of BS5&6B with fits and prediction. All the points are measured data. Different symbols indicate different traverses. The error bars are $\pm 1\sigma$ errors. The short-dashed curves are fit profiles for obtaining the diffusion matrix $D_{1500^{\circ}C}^{\text{couples}}$ in Table 5.3. The solid curves are fit profiles for obtaining the diffusion matrix $D_{1500^{\circ}C}$ in Table 5.5. The long-dashed curves are predicted profiles from calculated diffusion matrix by eq. (5.1) at 1500 °C. Data of Diffusion profiles of other diffusion couple experiments with fits at ~1500 °C are shown in the supplementary file. χ^2/ν is calculated and shown for each type of fits and prediction.

Fig. 5.14 Data of diffusion profiles of BS7&8B with fits and prediction. All the points are measured data. Different symbols indicate different traverses. The error bars are $\pm 1\sigma$ errors. The short-dashed curves are fit profiles for obtaining the diffusion matrix $D_{1500^{\circ}C}^{\text{couples}}$ in Table 5.3. The solid curves are fit profiles for obtaining the diffusion matrix $D_{1500^{\circ}C}$ in Table 5.5. The long-dashed curves are predicted profiles from calculated diffusion matrix by eq. (5.1) at 1500 °C. Data of Diffusion profiles of other diffusion couple experiments with fits at ~1500 °C are shown in the supplementary file. χ^2/ν is calculated and shown for each type of fits and prediction.

Fig. 5.15 Data of diffusion profiles of BS9&10B with fits and prediction. All the points are measured data. Different symbols indicate different traverses. The error bars are $\pm 1\sigma$ errors. The short-dashed curves are fit profiles for obtaining the diffusion matrix $D_{1500^{\circ}C}^{\text{couples}}$ in Table 5.3. The solid curves are fit profiles for obtaining the diffusion matrix $D_{1500^{\circ}C}$ in Table 5.5. The long-dashed curves are predicted profiles from calculated diffusion matrix by eq. (5.1) at 1500 °C. Data of Diffusion profiles of other diffusion couple experiments with fits at ~1500 °C are shown in the supplementary file. χ^2/ν is calculated and shown for each type of fits and prediction.

Fig. 5.16 Data of diffusion profiles of BS11&12B with fits and prediction. All the points are measured data. Different symbols indicate different traverses. The error bars are $\pm 1\sigma$ errors. The short-dashed curves are fit profiles for obtaining the diffusion matrix $D_{1500^{\circ}C}^{\text{couples}}$ in Table 5.3. The solid curves are fit profiles for obtaining the diffusion matrix $D_{1500^{\circ}C}$ in Table 5.5. The long-dashed curves are predicted profiles from calculated diffusion matrix by eq. (5.1) at 1500 °C. Data of Diffusion profiles of other diffusion couple experiments with fits at ~1500 °C are shown in the supplementary file. χ^2/ν is calculated and shown for each type of fits and prediction.

Fig. 5.17 Data of diffusion profiles of BS13&14B with fits and prediction. All the points are measured data. Different symbols indicate different traverses. The error bars are $\pm 1\sigma$ errors. The short-dashed curves are fit profiles for obtaining the diffusion matrix $D_{1500^{\circ}C}^{\text{couples}}$ in Table 5.3. The solid curves are fit profiles for obtaining the diffusion matrix $D_{1500^{\circ}C}$ in Table 5.5. The long-dashed curves are predicted profiles from calculated diffusion matrix by eq. (5.1) at 1500 °C. Data of Diffusion profiles of other diffusion couple experiments with fits at ~1500 °C are shown in the supplementary file. χ^2/ν is calculated and shown for each type of fits and prediction.

Fig. 5.18 Data of diffusion profiles of BS17&18B with fits and prediction. All the points are measured data. Different symbols indicate different traverses. The error bars are $\pm 1\sigma$ errors. The short-dashed curves are fit profiles for obtaining the diffusion matrix $D_{1500^{\circ}C}^{\text{couples}}$ in Table 5.3. The solid curves are fit profiles for obtaining the diffusion matrix $D_{1500^{\circ}C}$ in Table 5.5. The long-dashed curves are predicted profiles from calculated diffusion matrix by eq. (5.1) at 1500 °C. Data of Diffusion profiles of other diffusion couple experiments with fits at ~1500 °C are shown in the supplementary file. χ^2/ν is calculated and shown for each type of fits and prediction.

Fig. 5.19 Data of diffusion profiles of BS19&20B with fits and prediction. All the points are measured data. Different symbols indicate different traverses. The error bars are $\pm 1\sigma$ errors. The short-dashed curves are fit profiles for obtaining the diffusion matrix $D_{1500^{\circ}C}^{\text{couples}}$ in Table 5.3. The solid curves are fit profiles for obtaining the diffusion matrix $D_{1500^{\circ}C}$ in Table 5.5. The long-dashed curves are predicted profiles from calculated diffusion matrix by eq. (5.1) at 1500 °C. Data of Diffusion profiles of other diffusion couple experiments with fits at ~1500 °C are shown in the supplementary file. χ^2/ν is calculated and shown for each type of fits and prediction.

5.6 Fitting diffusion profiles of diffusion couples

The diffusion matrix is obtained by simultaneously fitting all diffusion profiles from all experiments using Levenberg-Marquardt-Fletcher methods (Fletcher, 1971), and the numerical methods are given by section 2.6 in chapter II. The error of diffusion matrix was estimated by error propagation (Clifford, 1973), and the numerical method is given by section 2.7 in chapter II.

5.6.1 Diffusion matrix $D_{1260^{\circ}C}^{\text{couples}}$

The obtained diffusion matrix for 1260 °C is denoted as $D_{1260°C}^{\text{couples}}$ and shown in Table 5.2. All the fits by $D_{1260°C}^{\text{couples}}$ for all 9 diffusion couple experiments at 1260 °C are shown by shortdashed curves in Figs. 5.2–5.10. It can be seen that all features in diffusion profiles are well reproduced by this diffusion matrix $D_{1260°C}^{\text{couples}}$. The goodness of fit is assessed by the reduced chisquares (also known as mean square weighted deviation, MSWD) shown in each figure.

Eigenvalues and eigenvectors of the diffusion matrix $D_{1260^{\circ}C}^{\text{couples}}$ are also shown in Table 5.2. Each column is an eigenvector, associated to the eigenvalue above it (e.g. v_1 is the associated eigenvector of λ_1), in both 7-component TiO₂–Al₂O₃–FeO–MgO–CaO–Na₂O–K₂O and 8component SiO₂–TiO₂–Al₂O₃–FeO–MgO–CaO–Na₂O–K₂O vector space. The 8-component eigenvectors are calculated by adding the dependent component SiO₂ to the 7-component eigenvectors such that the sum of all components is zero and then renormalized (see footnote in Table 5.2). Eigenvalues indicate diffusivity along their eigenvector directions; eigenvectors indicate exchanging species in independent directions, i.e. diffusion mechanism.

	U						
$D_{1260^{\circ}\mathrm{C}}^{\mathrm{couples}}$ ($\mu\mathrm{m}^2/\mathrm{s}$)	TiO ₂	Al_2O_3	FeO	MgO	CaO	Na ₂ O	K ₂ O
TiO ₂	2.47±0.07	-0.11±0.06	-1.12±0.18	-0.30 ± 0.22	-0.50±0.29	-1.79±0.89	-1.43 ± 0.34
Al_2O_3	-0.01 ± 0.21	2.01±0.11	-2.62 ± 0.40	-0.16 ± 0.47	-3.39 ± 0.63	-8.77 ± 2.38	-6.30 ± 0.75
FeO	-7.24±0.70	0.18±0.53	5.02±0.66	-30.39 ± 1.07	-40.07±1.18	-105.17 ± 2.80	-42.03 ± 1.32
MgO	-2.12 ± 0.31	0.66 ± 0.21	-6.83 ± 0.33	5.67±0.53	-12.12 ± 0.60	-30.31 ± 1.80	-13.71±0.74
CaO	-2.46 ± 0.26	-3.07 ± 0.18	-7.20 ± 0.32	-9.44±0.41	9.04±0.55	-26.83 ± 1.54	-0.65 ± 0.64
Na ₂ O	10.49 ± 1.08	2.03±0.69	20.59±0.67	32.51±0.86	47.61±1.13	186.27±1.94	58.96±1.08
K_2O	1.28±0.13	0.96 ± 0.09	2.38±0.15	3.65±0.20	5.13±0.27	4.22±0.68	25.42±0.36
Eigenvalues	λ_1	λ_2	λ_3	λ_4	λ_5	λ_6	λ_7
	1.76						
		2.02					

Table 5.2 Diffusion matrix $D_{1260^{\circ}C}^{\text{couples}}$ obtained by fitting only diffusion couple experiments at 1260 °C, with 1 σ errors for each element, and eigenvalues and eigenvectors.

3.55

22.74

16.39

					10.59		
						26.71	
							162.73
7-component Eigenvectors	v_1	v_2	<i>v</i> ₃	v_4	v_5	v_6	v_7
TiO ₂	-0.48	-0.37	-0.42	-0.04	-0.01	0.02	-0.01
Al_2O_3	-0.10	0.79	-0.33	-0.09	-0.09	-0.02	-0.04
FeO	-0.59	-0.37	0.61	0.93	0.29	-0.72	-0.51
MgO	-0.35	-0.27	0.42	-0.19	-0.60	-0.03	-0.13
CaO	-0.46	-0.11	0.35	-0.29	0.71	0.59	-0.11
Na ₂ O	0.21	0.11	-0.16	-0.02	-0.05	-0.19	0.84
K_2O	0.21	0.07	-0.15	0.08	-0.21	0.31	0.01
8-component							
Eigenvectors	v_1	v_2	V_3	V_4	v_5	v_6	v_7
SiO ₂	0.84	0.15	-0.31	-0.35	-0.05	0.04	-0.05
TiO ₂	-0.26	-0.37	-0.39	-0.04	-0.01	0.02	-0.01
Al_2O_3	-0.05	0.78	-0.32	-0.08	-0.09	-0.02	-0.04
FeO	-0.32	-0.37	0.58	0.87	0.29	-0.72	-0.51
MgO	-0.19	-0.26	0.40	-0.18	-0.59	-0.03	-0.13
CaO	-0.25	-0.11	0.33	-0.27	0.71	0.59	-0.11
Na ₂ O	0.11	0.11	-0.15	-0.02	-0.05	-0.19	0.84
K ₂ O	0.11	0.07	-0.14	0.08	-0.21	0.31	0.01

Note: The SiO_2 component in each eigenvector is calculated from the 7-component eigenvector, by adding the SiO_2 component so that the summation of all elements in the eigenvector is zero. Then the 8-component eigenvector is renormalized. This way, the contribution by all 8 components (including the dependent component SiO_2) to each eigenvector can be directly seen.

By examining the eigenvectors, v_1 is largely due to the exchange between SiO₂ and all other components; v_2 is largely due to the exchange between Al₂O₃ and all other components; v_3 is due to the exchange of FeO+MgO+CaO with all other components; v_4 is due to the exchange of FeO+K₂O with all other components; v_5 is largely due to the exchange between MgO and CaO; v_6 is due to the exchange of CaO+K₂O with all other components; and v_7 is due to the exchange of Na₂O (and very minor K₂O) with all other components.

5.6.2 Diffusion matrix $D_{1500^{\circ}C}^{\text{couples}}$

The obtained diffusion matrix for 1500 °C is denoted as $D_{1500°C}^{\text{couples}}$ and shown in Table 5.3.

All the fits by $D_{1500^{\circ}C}^{\text{couples}}$ for all 9 diffusion couple experiments at 1500 °C are shown by shortdashed curves in Figs. 5.10–5.18. It can be seen that all features in diffusion profiles are well reproduces by this diffusion matrix $D_{1500^{\circ}C}^{\text{couples}}$. The goodness of fit is assessed by the reduced chisquares shown in each figure.

Table 5.3 Diffusion matrix $D_{1500^{\circ}C}^{\text{couples}}$ obtained by fitting only diffusion couple experiments at 1500 °C, with 1 σ errors for each element, and eigenvalues and eigenvectors.

	0						
$D_{1500^{\circ}\mathrm{C}}^{\mathrm{couples}}$ ($\mu\mathrm{m}^2/\mathrm{s}$)	TiO ₂	Al ₂ O ₃	FeO	MgO	CaO	Na ₂ O	K ₂ O
TiO ₂	16.76±0.92	-0.82 ± 0.44	-5.35 ± 0.98	0.34±0.99	-6.51±1.33	-7.87±3.48	-4.97±1.40
Al_2O_3	-2.89±1.44	14.15±0.97	-11.51±2.31	-13.73±2.44	-39.24±2.94	-81.72 ± 8.20	-58.00 ± 3.61
FeO	-28.14 ± 2.40	-13.20 ± 2.10	54.70±3.17	-90.02 ± 3.32	-68.33±4.10	-114.78 ± 9.57	-103.56 ± 4.21
MgO	-5.42 ± 1.61	3.25±1.24	-29.30 ± 2.29	70.73±2.52	-43.68 ± 2.49	-84.86 ± 6.53	-26.62 ± 2.99
CaO	-4.10 ± 1.59	-5.01 ± 1.45	-20.65 ± 2.08	-20.21 ± 2.24	106.77±2.64	-14.10 ± 5.28	54.65±2.64
Na ₂ O	35.70±3.96	25.73±2.48	76.22±4.06	82.52±2.23	130.51±4.65	550.88±17.35	177.57±4.76
K ₂ O	7.07 ± 0.80	4.42±0.51	11.20±0.96	23.83±0.91	21.98±1.06	21.71±2.16	130.86±1.70
Eigenvalues	λ_1	λ_2	λ_3	λ_4	λ_5	λ_6	λ_7
	13.76						
		17.68					
			32.05				
				98.60			
					116.85		
						144.99	
							520.92
7-component	12.	12-	12-	12.	12-	12-	12-
Eigenvectors	<i>v</i> 1	v ₂	V3	V4	15	16	V7
TiO ₂	-0.69	-0.17	-0.24	-0.03	-0.06	-0.01	-0.01
Al_2O_3	0.31	0.97	-0.14	0.01	-0.09	-0.15	-0.15
FeO	-0.52	-0.12	0.70	0.84	0.55	-0.46	-0.20
MgO	-0.24	-0.15	0.43	-0.30	-0.61	-0.09	-0.17
CaO	-0.24	-0.03	0.41	-0.37	0.54	0.79	-0.01
Na ₂ O	0.15	0.00	-0.18	-0.07	-0.15	-0.25	0.95
K ₂ O	0.15	0.02	-0.21	0.24	0.03	0.26	0.03
8-component	1/1	1/2	1/2	1/4	1/5	Vc	1/7
Eigenvectors	VI	V2	13	V4	15	V 6	V /
SiO_2	0.74	-0.47	-0.61	-0.30	-0.22	-0.09	-0.41
TiO ₂	-0.47	-0.15	-0.19	-0.03	-0.05	-0.01	-0.01
Al_2O_3	0.21	0.85	-0.11	0.01	-0.08	-0.14	-0.13
FeO	-0.35	-0.11	0.55	0.80	0.54	-0.46	-0.19
MgO	-0.16	-0.13	0.34	-0.29	-0.60	-0.09	-0.15
CaO	-0.16	-0.02	0.32	-0.36	0.53	0.79	-0.01
Na ₂ O	0.10	0.00	-0.14	-0.07	-0.14	-0.25	0.87
K ₂ O	0.10	0.02	-0.17	0.23	0.03	0.26	0.03

See footnote on Table 5.2 for the expression of each eigenvector in 8-component space.

Eigenvalues and eigenvectors of the diffusion matrix $D_{1500^{\circ}C}^{\text{couples}}$ are also shown in Table 5.3. By examining the eigenvectors, v_1 is largely due to the exchange between SiO₂ and Al₂O₃; v_3 is due to the exchange components; v_2 is largely due to the exchange between SiO₂ and Al₂O₃; v_3 is due to the exchange of FeO+MgO+CaO with all other components; v_4 is due to the exchange of FeO+K₂O with all other components; v_5 is largely due to the exchange between FeO+CaO and MgO; v_6 is due to the exchange of CaO+K₂O with all other components; and v_7 is due to the exchange of Na₂O (and very minor K₂O) with all other components. These are consistent with the results at 1260 °C.

5.7 Predicting diffusion profiles during mineral dissolution

Predictions using diffusion matrices $D_{1260^{\circ}C}^{\text{couples}}$ and $D_{1500^{\circ}C}^{\text{couples}}$ for diffusion profiles during olivine, diopside and anorthite dissolution at ~1260 and ~1500 °C (Chen and Zhang, 2008, 2009; Yu et al., 2016) are shown by short-dashed curves in Figs. 5.20–5.23. Diffusion profiles during mineral dissolution were calculated by eq. (A14) in Appendix A2. The interface melt composition was determined by extrapolation from experimental data in the literature, instead of being calculated from diffusion matrix and chemical potential relation between mineral and melt (Guo and Zhang, 2016). The dissolution rate was determined by eq. (A20) in Appendix A2, where only the interface melt concentration of the best-resolved component was used. Note experimental data for mineral dissolution with similar temperatures and same pressures are plotted together against x/\sqrt{t} , and different experiments are indicated by different symbols.

Fig. 5.20 Predicted and fit diffusion profiles for olivine dissolution in basaltic melts at ~1270 °C (Chen and Zhang, 2008). The short-dashed curves are predicted profiles using the diffusion matrix $D_{1260^{\circ}C}^{couples}$ in Table 5.2. The solid curves are fit profiles for obtaining the diffusion matrix $D_{1260^{\circ}C}^{couples}$ in Table 5.4. The long-dashed curves are predicted profiles from calculated diffusion matrix by eq. (5.1). χ^2/v is calculated and shown for each type of predictions and fit.

Fig. 5.21 Predicted and fit diffusion profiles for diopside dissolution in basaltic melts at ~1270 °C (Chen and Zhang, 2009). The short-dashed curves are predicted profiles using the diffusion matrix $D_{1260^{\circ}C}^{\text{couples}}$ in Table 5.2. The solid curves are fit profiles for obtaining the diffusion matrix $D_{1260^{\circ}C}$ in Table 5.4. The long-dashed curves are predicted profiles from calculated diffusion matrix by eq. (5.1). χ^2/ν is calculated and shown for each type of predictions and fit.

Fig. 5.22 Predicted and fit diffusion profiles for anorthite dissolution in basaltic melts at ~1280 °C (Yu et al., 2016). The shortdashed curves are predicted profiles using the diffusion matrix $D_{1260^{\circ}C}^{\text{couples}}$ in Table 5.2. The solid curves are fit profiles for obtaining the diffusion matrix $D_{1260^{\circ}C}$ in Table 5.4. The long-dashed curves are predicted profiles from calculated diffusion matrix by eq. (5.1). χ^2/ν is calculated and shown for each type of predictions and fit.

Fig. 5.23 Predicted and fit diffusion profiles for anorthite dissolution in basaltic melts at ~1500 °C (Yu et al., 2016). The shortdashed curves are predicted profiles using the diffusion matrix $D_{1500^{\circ}C}^{\text{couples}}$ in Table 5.3. The solid curves are fit profiles for obtaining the diffusion matrix $D_{1500^{\circ}C}$ in Table 5.5. The long-dashed curves are predicted profiles from calculated diffusion matrix by eq. (5.1). χ^2/ν is calculated and shown for each type of predictions and fit.

In general, predicted diffusion profiles for SiO₂, TiO₂, Al₂O₃, FeO, MgO, CaO and Na₂O have slightly shorter diffusion distance than the average experimental data, but are consistent with the experimental data with the shortest diffusion distance. Predicted diffusion profiles and experimental data match well in profile shape. The K₂O diffusion profiles are not predicted in all mineral dissolution experiments. The reason for the disagreement is not clear, but it may be due to the composition dependence of diffusion matrix on K₂O concentration (1.5 wt% in the experiments vs. 0.17 wt% in natural basaltic melts, with almost a factor of 10), or may be related to the observation that K₂O is not a major component in any eigenvector and the unresolved diffusion effects of other components on K₂O.

5.8 Fitting diffusion profiles of diffusion couples and mineral dissolution

In order to better constrain diffusion matrix and reconcile literature data during mineral dissolution, mineral dissolution experiments in basaltic melts (Exp #15, #16, #18, #20, #21 for olivine dissolution at ~1260 °C in Chen and Zhang, 2008; Exp # 1 for diopside dissolution at ~1260 °C in Chen and Zhang, 2009; Exp #203, #207, #209 for anorthite dissolution at ~1260 °C in Yu et al., 2016; Exp #230 for anorthite dissolution at ~1500 °C in Yu et al., 2016) are also used for fitting besides diffusion couple experiments, to obtain a new diffusion matrix (referred as $D_{1260°C}$ for 1260 °C and $D_{1500°C}$ for 1500 °C). Note only anorthite dissolution is used for fitting at ~1500 °C because dissolution distances during olivine and diopside dissolution are significantly different from those predicted from diffusion couple experiments. Those mineral dissolution experiments were done at slightly different temperatures from 1260 or 1500 °C, usually deviating by 10–20 °C. Therefore, temperatures of those experiments were "corrected" to 1260 or 1500 °C, by correcting experimental durations using $t_{corr} = t_{eff} \cdot e^{-E/(RT_{exp})}/(e^{-E/(RT_{corr})})$
(Zhang and Behrens, 2000), where $T_{corr} = 1260$ or 1500 °C and E = 145 kJ/mol (from this study).

Minor and trace components such as MnO and P2O5 contained in basaltic melts were ignored.

 $SiO_2^* = SiO_2 + minor - (total - 100)$ is used as replacement for SiO₂, such that the total is 100%.

5.8.1 Diffusion matrix $D_{1260^{\circ}C}$

Table 5.4 Diffusion matrix $D_{1260^{\circ}C}$ obtained by fitting both diffusion couple and mineral dissolution experiments at ~1260 °C, with 1 σ errors for each element, and eigenvalues and eigenvectors.

$D_{1260^{\circ}\text{C}} \ (\mu \text{m}^{2}/\text{s})$	TiO ₂	Al_2O_3	FeO	MgO	CaO	Na ₂ O	K ₂ O
TiO ₂	2.36±0.07	-0.15 ± 0.03	-0.34±0.12	-1.03 ± 0.17	-1.32 ± 0.20	-2.21±0.84	-2.19±0.32
Al_2O_3	0.71±0.24	2.78 ± 0.09	-3.69 ± 0.33	0.02 ± 0.47	-1.73±0.53	-6.39±2.33	-5.90 ± 0.77
FeO	-11.16±0.72	-2.50 ± 0.19	3.42 ± 0.50	-30.62 ± 0.68	-36.50 ± 0.77	-114.17±2.71	-41.39±1.25
MgO	-0.72 ± 0.36	0.54±0.11	-7.13 ± 0.30	12.48±0.45	-14.23 ± 0.50	-28.97±1.94	-11.30 ± 0.83
CaO	-3.48 ± 0.29	-3.79 ± 0.09	-9.91±0.28	-9.19±0.36	13.16±0.44	-27.68±1.57	-0.13±0.69
Na ₂ O	13.71±1.02	6.17±0.22	22.43±0.54	33.52±0.54	40.13±0.76	186.16±1.89	58.39±0.95
K ₂ O	2.26±0.13	0.75±0.03	2.96±0.11	1.68±0.13	4.69±0.17	11.02±0.64	26.02±0.35
Eigenvalues	λ_1	λ_2	λ3	λ_4	λ_5	λ_6	λ_7
	2.11						
		2.86					
			5.06				
				23.23			
					21.28		
						27.80	
							164.06
7-component							
Eigenvectors	v_1	V_2	<i>V</i> ₃	V_4	V_5	V ₆	V7
TiO ₂	-0.71	-0.31	-0.16	-0.01	0.02	-0.02	-0.01
Al_2O_3	0.00	0.94	-0.60	-0.17	0.15	-0.03	-0.02
FeO	-0.51	-0.12	0.58	0.83	-0.65	-0.30	-0.55
MgO	-0.22	-0.05	0.41	-0.06	-0.32	-0.50	-0.12
CaO	-0.37	0.08	0.28	-0.41	0.51	0.77	-0.11
Na ₂ O	0.20	0.00	-0.16	-0.11	0.16	-0.13	0.82
K ₂ O	0.13	0.00	-0.05	0.31	-0.41	0.23	0.05
8-component							
Eigenvectors	V_1	V_2	<i>V</i> ₃	V4	V_5	V6	V7
SiO ₂	0.83	-0.48	-0.28	-0.36	0.46	-0.01	-0.06
TiO ₂	-0.39	-0.27	-0.15	0.00	0.02	-0.02	-0.01
Al_2O_3	0.00	0.83	-0.58	-0.16	0.14	-0.03	-0.02
FeO	-0.28	-0.10	0.55	0.77	-0.57	-0.30	-0.55
MgO	-0.12	-0.05	0.40	-0.06	-0.28	-0.50	-0.12
CaO	-0.21	0.07	0.27	-0.38	0.46	0.77	-0.11
Na ₂ O	0.11	0.00	-0.15	-0.10	0.15	-0.13	0.82
K_2O	0.07	0.00	-0.05	0.29	-0.36	0.23	0.05

See footnote on Table 5.2 for the expression of each eigenvector in 8-component space.

Diffusion matrix $D_{1260^{\circ}C}$ obtained by incorporating mineral dissolution experiments at ~1260 °C is shown in Table 5.4, together with its eigenvalues and eigenvectors. The solid curves

in Figs. 5.20–5.22 are the fit curves for olivine, diopside and anorthite dissolution at ~1260 °C. All the fits by diffusion matrix $D_{1260^{\circ}C}$ for 9 diffusion couple experiments are shown by solid curves in Figs. 5.2–5.10. It can be seen from those figures that diffusion profiles in both diffusion couple and mineral dissolution experiments are well reproduced by this diffusion matrix $D_{1260^{\circ}C}$. The goodness of fit for diffusion couple experiments is slightly compromised, but the fits for mineral dissolution are excellent with $\chi^2 = 2.2$, 0.8 and 1.4 respectively. Eigenvectors of $D_{1260^{\circ}C}$ are very similar to those of $D_{1260^{\circ}C}^{\text{couples}}$, with the only difference in that v_5 is largely due to the exchange between FeO+MgO and CaO.

Diffusion matrices $D_{1260^{\circ}C}$ and $D_{1260^{\circ}C}^{\text{couples}}$ are significantly different by comparing the shape of frequency of $T_{ij}^{\text{couples}} = \frac{D_{ij}^{\text{couples}} - \mu_{ij}}{\sigma_{ij}^{\text{couples}}}$ and $T_{ij} = \frac{D_{ij} - \mu_{ij}}{\sigma_{ij}}$ (where μ_{ij} is the weighted average of D_{ij}^{couples} and D_{ij}) and the shape of frequency calculated by a standard normal distribution shown

in Fig. 5.24. Diffusion matrix $D_{1260^{\circ}C}$ is preferred since it is constrained by more data and can fit diffusion profiles of both diffusion couple and mineral dissolution experiments.

5.8.2 Diffusion matrix $D_{1500^{\circ}C}$

Diffusion matrix $D_{1500^{\circ}C}$ obtained by incorporating mineral dissolution experiments at ~1500 °C is shown in Table 5.5, together with its eigenvalues and eigenvectors. The solid curves in Fig. 5.23 are the fit curves for anorthite dissolution at ~1500 °C. All the fits by diffusion matrix $D_{1500^{\circ}C}$ for all 9 diffusion couple experiments are shown by solid curves in Figs. 5.11– 5.19. It can be seen from those figures that diffusion profiles in both diffusion couple and

Eigenvectors of $D_{1500\,^{\circ}\mathrm{C}}$ are the same as those of $D_{1500\,^{\circ}\mathrm{C}}^{\mathrm{couples}}$.

with 1σ errors for each element, and eigenvalues and eigenvectors.								
$D_{1500^{\circ}\text{C}} \; (\mu \text{m}^2/\text{s})$	TiO ₂	Al_2O_3	FeO	MgO	CaO	Na ₂ O	K ₂ O	
TiO ₂	16.22±0.87	-0.40 ± 0.26	-4.47±0.77	0.03 ± 0.98	-6.99±1.08	-8.46 ± 3.50	-5.70 ± 1.38	
Al_2O_3	-3.99±1.49	16.66±0.57	-15.91±1.75	-17.42 ± 2.47	-33.68 ± 2.44	-96.67±8.30	-60.43±3.66	
FeO	-28.03 ± 2.36	$-10.80{\pm}1.04$	53.44±2.73	-91.28±3.27	-65.83±3.11	-117.14±9.61	-104.18 ± 4.22	
MgO	-5.15 ± 1.58	1.97 ± 0.68	-26.37±1.89	71.48±2.48	-47.70 ± 2.06	-83.74±6.51	-27.26±2.99	
CaO	-3.35 ± 1.47	-13.13±0.64	-14.86 ± 1.68	-18.27 ± 2.11	94.31±1.87	-13.85±5.17	53.12±2.55	
Na ₂ O	34.98±3.97	28.30±1.44	78.42±3.49	83.94±2.22	132.87±4.03	569.01±16.87	179.85±4.79	
K ₂ O	7.78±0.79	3.53±0.22	4.66±0.69	24.16±0.90	24.85±0.79	24.99±2.09	132.68±1.71	
Eigenvalues	λ_1	λ_2	λ_3	λ_4	λ_5	λ_6	λ_7	
	13.95							
		20.04						
			32.98					
				83.13				
					118.66			
						144.94		
							540.11	
7-component	.,	.,	.,				11	
Eigenvectors	v_1	V2	V3	<i>V</i> 4	V5	V6	V7	
TiO ₂	-0.76	-0.28	-0.20	-0.02	-0.05	-0.02	-0.01	
Al_2O_3	0.15	0.94	-0.16	-0.05	-0.07	-0.09	-0.17	
FeO	-0.53	0.06	0.76	0.85	0.34	-0.47	-0.20	
MgO	-0.20	0.00	0.42	-0.13	-0.61	-0.13	-0.16	
CaO	-0.20	0.18	0.35	-0.43	0.67	0.71	-0.01	
Na ₂ O	0.16	-0.07	-0.19	-0.08	-0.19	-0.27	0.95	
K ₂ O	0.12	-0.04	-0.16	0.25	0.13	0.41	0.04	
8-component	12.	12-	12-	12.	12-	12-	1/-	
Eigenvectors	VI	V2	V3	<i>v</i> ₄	V5	V6	V7	
SiO_2	0.79	-0.62	-0.64	-0.36	-0.22	-0.12	-0.40	
TiO ₂	-0.47	-0.22	-0.15	-0.02	-0.05	-0.02	-0.01	
Al_2O_3	0.09	0.74	-0.13	-0.05	-0.07	-0.09	-0.15	
FeO	-0.33	0.04	0.59	0.80	0.34	-0.47	-0.19	
MgO	-0.12	0.00	0.32	-0.12	-0.60	-0.13	-0.15	
CaO	-0.12	0.14	0.27	-0.41	0.66	0.71	-0.01	
Na ₂ O	0.10	-0.05	-0.15	-0.08	-0.18	-0.27	0.87	
K ₂ O	0.07	-0.03	-0.12	0.23	0.12	0.40	0.04	

Table 5.5 Diffusion matrix $D_{1500^{\circ}\text{C}}$, obtained by fitting both diffusion couple and mineral dissolution experiments at ~1500 °C, with 1 σ errors for each element, and eigenvalues and eigenvectors.

See footnote on Table 5.2 for the expression of each eigenvector in 8-component space.

Diffusion matrices $D_{1500^{\circ}\text{C}}$ and $D_{1500^{\circ}\text{C}}^{\text{couples}}$ are not significantly different shown in Fig. 5.24. Diffusion matrix $D_{1500^{\circ}\text{C}}$ is preferred since it is constrained by more data and can fit diffusion profiles of both diffusion couple and mineral dissolution experiments.

Fig. 5.24. Comparison of observed frequency and calculated frequency by a standard normal distribution.

5.9 Diffusion mechanism in basaltic melts

Diffusion mechanisms in basaltic melts at different temperatures are summarized in Table 5.6, where diffusion mechanism at 1350 °C is from Guo and Zhang (2017). It can be seen that diffusion mechanism is insensitive to temperature: v_1 is largely due to the exchange between SiO₂ and all other components for all 3 temperatures; v_2 is largely due to the exchange between SiO₂ and Al₂O₃ for all 3 temperatures; v_3 is due to the exchange of FeO+MgO+CaO with all other components for all 3 temperatures; v_4 is due to the exchange of FeO+K₂O with all other components for all 3 temperatures; v_5 is largely due to the exchange between divalent oxides themselves for all 3 temperatures; v_6 is due to the exchange of CaO+K₂O with all other components for all 3 temperatures; v_6 is due to the exchange of Na₂O (and very minor K₂O) with all other components for all 3 temperatures.

One may classify the diffusion mechanism in basaltic melts into 5 categories: (1) the exchange between network-formers, such as $SiO_2 - Al_2O_3$; (2) the exchange of divalent oxide components with all other components, such as (FeO+MgO+CaO) – (all others); (3) the exchange of a divalent oxide component plus a monovalent oxide component with all other

components, such as $(FeO+K_2O) - (all others)$ and $(CaO+K_2O) - (all others)$; (4) the exchange between divalent oxide components themselves, such as (FeO+MgO) - CaO and (FeO+CaO) - MgO; (5) the exchange of a monovalent oxide component with all other components, such as Na₂O - (all others).

Table 5.6 Multicomponent diffusion mechanism in basaltic melts at 1260, 1350 and 1500 °C.

λ	v	Exchanging species at 1260 °C	Exchanging species at 1350 °C	Exchanging species at 1500 °C
λ_1	v_1	$SiO_2 - (all others)$	$SiO_2 - (all others)$	SiO_2 – (all others)
λ_2	v_2	$SiO_2 - Al_2O_3$	$SiO_2 - Al_2O_3$	$SiO_2 - Al_2O_3$
λ_3	v_3	(FeO + MgO + CaO) - (all others)	(FeO + MgO + CaO) - (all others)	(FeO + MgO + CaO) - (all others)
λ_4	v_4	$(FeO + K_2O) - (all others)$	$(FeO + K_2O) - (all others)$	$(FeO + K_2O) - (all others)$
λ_5	v_5	(FeO + MgO) - CaO	(FeO + CaO) - MgO	(FeO + CaO) - MgO
λ_6	v_6	$(CaO + K_2O) - (all others)$	$(CaO + K_2O) - (all others)$	$(CaO + K_2O) - (all others)$
λ_7	v_7	$Na_2O - (all others)$	$Na_2O - (all others)$	$Na_2O - (all others)$

Note: the sequence of eigenvalues is not in any particular order.

5.10 Temperature dependence of diffusion matrix

The rigorous examination of temperature dependence of diffusion matrix consists of two parts: temperature dependence of eigenvalues and temperature dependence of eigenvectors. However, by examining eigenvectors of diffusion matrices at different temperatures (Table 5.3 for 1260 °C, Table 4.5 for 1350 °C, and Table 5.5 for 1500 °C), it is found that eigenvectors at 3 different temperatures are very similar, which indicates that eigenvectors of diffusion matrix are insensitive to temperature. Therefore, to simplify the treatment, we assume that eigenvectors of diffusion matrix is invariant with temperature at the temperature range from 1260 °C to 1500 °C.

The invariant eigenvectors are estimated by taking the weighted average of eigenvectors at 3 different temperatures. The weights for eigenvectors at each temperature are chosen as the inverse exponential of reduced chi-squares in fitting at each temperature (Edwards, 1972). Note that the sequence or signs of eigenvectors are not fixed, and therefore some eigenvectors need to be multiplied by -1 before taking the average. The estimated invariant eigenvectors, denoted as *P*, are shown in Table 5.7.

	Table 5.7 Temperature de	pendence of eigenvalues	$[\lambda(T)]$ and the	invariant eigenvectors	[P].
--	--------------------------	-------------------------	------------------------	------------------------	------

Eigenvalues $[\lambda(T)]$	λ_1	λ_2	λ_3	λ_4	λ_5	λ_6	λ_7
/.	$e^{13.752-19636/T}$						
	c	$e^{14.737-20912/T}$					
			$e^{14.897-19987/T}$				
				e ^{12.375-13880/T}			
				c	$e^{15.063-18569/T}$		
						$e^{15.083-18279/T}$	
							$e^{12.180-10808/T}$
Invariant eigenvectors [P]	v_1	<i>v</i> ₂	<i>v</i> ₃	<i>V</i> 4	<i>v</i> ₅	v_6	v_7
TiO ₂	-0.76	-0.20	-0.18	-0.02	-0.02	-0.02	-0.02
Al_2O_3	-0.18	0.97	-0.47	-0.15	-0.01	-0.07	-0.10
FeO	-0.51	0.00	0.66	0.86	0.06	-0.41	-0.36
MgO	-0.17	-0.03	0.41	-0.14	-0.71	-0.32	-0.15
CaO	-0.22	0.12	0.33	-0.33	0.70	0.79	-0.08
Na ₂ O	0.17	-0.04	-0.18	-0.12	-0.04	-0.19	0.91
K ₂ O	0.13	-0.02	-0.09	0.32	-0.10	0.25	0.06

Note: temperature is in K, and λ is in μ m²/s. The invariant eigenvectors [P] is represented in 7-component vector space.

Fig. 5.25 Temperature dependence of eigenvalues, obtained with the fixed invariant eigenvectors [P] in Table 5.7, with fits by Arrhenius relation.

Eigenvalues at each temperature were re-calculated by re-fitting diffusion profiles of both diffusion couple and mineral dissolution experiments by fixing eigenvectors as the invariant eigenvectors *P*. The obtained eigenvalues are shown in Fig. 5.25, and can be fit by Arrhenius relation $\lambda = \lambda_0 \cdot e^{-E/RT}$, where λ is in μ m²/s, *E* is activation energy in kJ/mol and *T* is temperature in K. The fit temperature dependence of eigenvalues is shown in Table 5.7, with the largest activation energy of 174 kJ/mol for the exchange between SiO₂ and Al₂O₃ (λ_2) and the smallest activation energy of 90 kJ/mol for the exchange of Na₂O with all other components (λ_7). The activation energies for both λ_1 and λ_2 are similar to that for self diffusion of SiO₂ in a basaltic melt at 1 GPa (e.g., Lesher et al., 1996). The activation energy for λ_7 is similar to that for tracer diffusion of Li₂O, Na₂O and Cu₂O (Zhang et al., 2010; Ni et al., 2016, 2017). The average activation energy is 145 kJ/mol, which was used for correcting experimental temperatures.

Therefore, diffusion matrix at any temperature *T* can be calculated:

$$[D] = [P] \cdot [\lambda(T)] \cdot [P^{-1}], \qquad (5.1)$$

where [D] is diffusion matrix in μ m²/s, [P] is a matrix of the invariant eigenvectors in Table 5.7 and [$\lambda(T)$] is a diagonal matrix of eigenvalues with Arrhenius relation in Table 5.7.

5.11 Predicting diffusion profiles during mineral dissolution at different temperatures

Diffusion matrices at 1260 and 1500 °C are calculated from eq. (5.1), and diffusion profiles in diffusion couple, olivine, diopside and anorthite dissolution experiments in basaltic melts at ~1260 and ~1500 °C (Chen and Zhang, 2008, 2009; Yu et al., 2016) are predicted using those two diffusion matrices. This is to test the robustness of eq. (5.1). The predicted diffusion profiles are shown by long-dashed curves in Figs. 5.1–5.22, which are very similar to calculated diffusion profiles by the fit diffusion matrices $D_{1260°C}$ and $D_{1500°C}$.

Fig. 5.27 Predicted diffusion profiles for diopside dissolution in basaltic melts at ~1400 $^{\circ}$ C (Chen and Zhang, 2008), from calculated diffusion matrix by eq. (5.1).

Fig. 5.28 Predicted diffusion profiles for anorthite dissolution in basaltic melts at ~1400 $^{\circ}$ C (Yu et al., 2016), from calculated diffusion matrix by eq. (5.1).

Diffusion matrix at 1400 °C is also calculated from eq. (5.1), and diffusion profiles during olivine and anorthite dissolution at ~1400 °C (Chen and Zhang, 2009; Yu et al., 2016) are predicted and shown in Figs. 5.26–5.28 by long-dashed curves. The predicted diffusion profiles during olivine and diopside dissolution are slightly shorter than that of experimental data, but the shapes are well predicted. The predicted diffusion profiles during anorthite dissolution and experimental data match well in both diffusion distance and profile shapes.

5.12 Comparisons with previous works

Other diffusion matrices reported in literatures are for simpler systems, and therefore no direct comparison can be made. However, the 7×7 diffusion matrices in 8-component system from this study, such as diffusion matrix in Table 5.3 for 1260 °C, diffusion matrix in Table 5.5 for 1500 °C and diffusion matrix calculated at any temperature from eq. (5.1), can be compared indirectly with diffusion matrices in literatures for simpler system, by retaining rows and columns of the common components. For example, Guo and Zhang (2016) reported a 6×6 diffusion matrix for 7-component SiO₂–TiO₂–Al₂O₃–FeO–MgO–CaO–Na₂O–K₂O system. No similarity is found between this matrix and the matrix generated by crossing out row and column of FeO component in diffusion matrix in Table 5.5. One explanation is that absence of FeO versus presence of FeO with 11.5±1.5 wt% has a significant effect on the diffusion matrix, especially on the eigenvalue of Na₂O exchange with other components.

Furthermore, diffusion mechanism inferred by eigenvectors of diffusion matrix can also be compared. It is shown that the slowest eigenvector is due to the exchange between SiO₂ and Al₂O₃ in simple systems (Sugawara et al. 1977; Oishi et al., 1982; Chakraborty et al., 1995; Kress and Ghiorso, 1995; Liang et al., 1996; Mungall et al., 1998; Richter et al., 1998; Liang and Davis, 2002; Liang, 2010; Guo and Zhang, 2016) and the fastest eigenvector is due to the exchange of Na₂O with other components in Na₂O-bearing systems (Watkins et al., 2014; Claireaux et al., 2016; Guo and Zhang, 2016), which are consistent with our results. More specifically, the diffusion mechanism reported by Guo and Zhang (2016) for 7-component system is very consistent with that in Table 5.6 if FeO component is ignored. In general, agreement on diffusion mechanism is reached among different studies in different systems, but inconsistency also exists. For example, Claireaux et al. (2016) found that the slowest diffusion eigenvector is predominantly due to the exchange between Al₂O₃ and CaO, rather than between SiO₂ and Al₂O₃ in a 4-component SiO₂-Al₂O₃-CaO-Na₂O system; and Kress and Ghiorso (1995) obtained the slowest diffusion eigenvector is mainly due to the exchange of SiO₂ with FeO+CaO at 1200 °C and the exchange between Al₂O₃ and MgO at 1300 °C in Columbian River basalts modeled as a 6-component SiO₂-TiO₂-Al₂O₃-FeO-MgO-CaO system. The inconsistencies are not readily explained, but uncertainty in diffusion matrix and difference in compositions in different systems may be possible factors.

5.13 Summary and conclusions

Diffusion profiles of 18 successful diffusion couples experiments at 1260 °C and 0.5 GPa and at 1500 °C and 1 GPa in an 8-component SiO₂–TiO₂–Al₂O₃–FeO–MgO–CaO–Na₂O–K₂O basaltic melts were measured by electron microprobe. Effective binary diffusion coefficients of components with monotonic diffusion profiles were extracted and show a strong dependence on their counter-diffusing component. Diffusion matrix at each temperature was obtained by fitting diffusion profiles of both diffusion couple and mineral dissolution experiments simultaneously.

All features in diffusion profiles are well reproduced by this diffusion matrix. Diffusion mechanisms inferred from eigenvectors in basaltic melts at different temperatures are consistent. Eigenvectors of diffusion matrix are insensitive to temperature, and eigenvalues of diffusion matrices at different temperatures follow good Arrhenius relation. Temperature dependence of diffusion matrix was obtained by temperature dependence of eigenvalues with Arrhenius relation assuming invariant eigenvectors. Diffusion matrix at 1400 °C was calculated and the predicted diffusion profiles during olivine and anorthite dissolution at 1400 °C match well with experimental data points.

5.14 Acknowledgement

This research is supported by NSF grant EAR-1524473. The electron microprobe Cameca SX100 used in this study was purchased using NSF grant EAR-9911352.

5.15 References

- Chakraborty S., Dingwell D.B. and Rubie D.C. (1995) Multicomponent diffusion in ternary silicate melts in the system K₂O–Al₂O₃–SiO₂: I. Experimental measurements. *Geochim. Cosmochim. Acta* **59**, 255–264.
- Chen Y. and Zhang Y. (2008) Olivine dissolution in basaltic melt. *Geochim. Cosmochim. Acta* **72**, 4756–4777.
- Chen Y. and Zhang Y. (2009) Clinodiopside dissolution in basaltic melt. *Geochim. Cosmochim. Acta* **73**, 5730–5747.

- Claireaux C., Chopinet M., Burov E., Gouillart E., Roskosz M. and Toplis M (2016) Atomic mobility in calcium and sodium aluminosilicate melts at 1200 °C. *Geochim. Cosmochim. Acta* 192, 235–247.
- Clifford A. A. (1973) *Multivariate error analysis: a handbook of error propagation and calculation in many-parameter system*. Wiley, NY.
- Cooper A. R. (1968) The use and limitations of the concept of an effective binary diffusion coefficient for multi-component diffusions. In *Mass Transport In Oxides*, (ed. J.B. Wachman and A.D. Franklin), Nat. Bur. Stand. Spec. Publ. 296, 79–84.

Edwards A. W. F. (1972) Likelihood. Cambridge University Press.

- Fletcher R. (1971) *A modified Marquardt subroutine for nonlinear least squares*. Atomic Energy Research Establishment R6799, Harwell, England.
- Guo C. and Zhang Y. (2016) Multicomponent diffusion in silicate melts: SiO₂-TiO₂-Al₂O₃-FeO-MgO-CaO-Na₂O-K₂O system. *Geochim. Cosmochim. Acta* **195**, 126–141.
- Guo C. and Zhang Y. (2017) Multicomponent diffusion in basaltic melts at 1350 °C. *Geochim. Cosmochim. Acta* in revision.
- Koyaguchi T. (1985) Magma mixing in a conduit. J. Volcanol. Geotherm. Res. 25, 365–369.
- Koyaguchi T. (1989) Chemical gradient at diffusive interfaces in magma chambers. *Contrib. Mineral. Petrol.* **103**, 143–152.
- Kress V. C. and Ghiorso M. S. (1993) Multicomponent diffusion in MgO–Al₂O₃–SiO₂ and Cao– MgO–Al₂O₃–SiO₂ melts. *Geochim. Cosmochim. Acta* **57**, 4453–4466.
- Kress V. C. and Ghiorso M.S. (1995) Multicomponent diffusion in basaltic melts. *Geochim. Cosmochim. Acta* **59**, 313–324.

- Lesher C. E., Hervig R. L. and Tinker D. (1996) Self diffusion of network formers (silicon and oxygen) in naturally occurring basaltic liquid. *Geochim. Cosmochim. Acta* **60**, 405–413.
- Liang Y., Richter F. M. and Watson E. B. (1994) Convection in multicomponent silicate melts driven by coupled diffusion. *Nature* **369**, 390–392.
- Liang Y. (2010) Multicomponent diffusion in molten silicates: Theory, experiments, and geological application. *Rev. Mineral. Geochem.* **72**, 409–446.
- Mungall J. E., Romano C. and Dingwel D. B. (1998) Multicomponent diffusion in the molten system K₂O–Na₂O–Al₂O₃–SiO₂–H₂O. *Am. Mineral.* **83**, 685–699.
- Ni P. and Zhang Y (2016) Cu diffusion in a basaltic melt. Am. Mineral. 101, 1474–1482.
- Ni P., Zhang Y., Simon A. and Gagnon J. (2017) Cu and Fe diffusion in rhyolitic melts during chalcocite "dissolution": Implications for porphyry ore deposits and tektites. *Am. Mineral.* **102**, 1287–1301.
- Oishi Y., Nanba M. and Pask J. A. (1982) Analysis of liquid–state interdiffusion in the system CaO–Al₂O₃–SiO₂ using multiatomic ion models. *J. Am. Ceram. Soc.* **65**, 247–253.
- Oldenburg C. M., Spera F. J., Yuen D. A., and Sewell G. (1989) Dynamic mixing in magma bodies: Theory, simulations and implications. *J. Geophys. Res.* **94**, 9215–9236.
- Richter F. M., Liang Y. and Minarik W.G. (1998) Multicomponent diffusion and convection in molten MgO–Al₂O₃–SiO₂. *Geochim. Cosmochim. Acta* 62, 1985–1991.
- Sato H. (1975) Diffusion coronas around quartz xenocrysts in andesite and basalt from Tertiary Volcanic Region in northeastern Shikoku, Japan. *Contrib. Mineral. Petrol.* **50**, 49–64.
- Sugawara H., Nagata K. and Goto K. S. (1977) Interdiffusivities matrix of CaO–Al₂O₃–SiO₂ melt at 1723 K to 1823 K. *Metall. Trans. B* **8**, 605–612.

Trial A. F. and Spera F. J. (1994) Measuring the multicomponent diffusion matrix: Experimental design and data analysis for silicate melts. *Geochim. Cosmochim. Acta* **58**, 3769–3783.

Turner J. S. (1985) Multicomponent convection. Ann. Rev. Fluid Mech. 17, 11-44.

- Watson E.B. (1982) Basalt contamination by continental crust: Some experiments and models. *Contrib. Mineral. Petrol.* **80**, 73–87.
- Watkins J. M., Liang Y., Richter F., Ryerson F. J. and DePaolo D. J. (2014) Diffusion of multiisotopic chemical species in molten silicates. *Geochim. Cosmochim. Acta* **139**, 313–326.
- Yu Y., Zhang Y., Chen. Y. and Xu Z. (2016) Kinetics of anorthite dissolution in basaltic melt. *Geochim. Cosmochim. Acta* **179**, 257–274.
- Zhang Y. and Behrens H. (2000) H₂O diffusion in rhyolitic melts and glasses. *Chem. Geol.* **169**, 243–262.
- Zhang Y., Walker D. and Lesher C. E. (1989) Diffusive crystal dissolution. *Contrib. Mineral. Petrol.* **102**, 492–513.

CHAPTER VI

Conclusions

6.1 General conclusions

Chemical diffusion profiles of diffusion couple experiments, in 7-component $SiO_2-TiO_2-Al_2O_3-MgO-CaO-Na_2O-K_2O$ haplobasaltic melts at ~1500 °C and 1 GPa and in 8-component $SiO_2-TiO_2-Al_2O_3-FeO-MgO-CaO-Na_2O-K_2O$ basaltic melts at ~1260 °C and 0.5 GPa, at ~1350 °C and 1 GPa and at ~1500 °C and 1 GPa, are determined.

Effective binary diffusion coefficients (EBDC) of components with monotonic diffusion profiles in each experiment are extracted and are strongly dependent on the concentration gradients of their counter-diffusing components, especially for SiO₂. That means extra care should be taken when EBDC's are applied, because they depends on not only the melt composition but also the melt compositional gradients. It may also potentially mean that results reported by previous works in literature based on experimentally determined EBDC's should be re-evaluated to check the conditions under which those EBDC's can be applied.

More importantly, multicomponent diffusion matrix in haplobasaltic and basaltic melts at each temperature is obtained by simultaneously fitting diffusion profiles of both diffusion couple experiments in this study and mineral dissolution experiments in the literature, and all features in the diffusion profiles have been captured by the diffusion matrix. Diffusion mechanisms inferred from eigenvectors of diffusion matrices in haplobasaltic and basaltic melts at different temperatures are reasonable and consistent with each other and previous works (e.g. Liang, 2010). Eigenvectors of diffusion matrix are insensitive to temperature, and eigenvalues of diffusion matrices at different temperatures follow good Arrhenius relation. Temperature dependence of diffusion matrix in basaltic melts is obtained by assuming eigenvectors to be independent of temperature and eigenvalues to follow Arrhenius relation, from which diffusion matrix in basaltic melts at any temperature can be calculated by eq. (5.1). The calculate diffusion matrix at 1400 °C is successfully applied to predict diffusion profiles during olivine and anorthite dissolution at ~1400 °C.

Therefore, it is verified that given the electron microprobe precision, when the number of diffusion couple experiments is the same as or more than the number of independent components with each diffusion couple experiment designed as an "interdiffusion" between two components, the diffusion matrix can be obtained and applied to mineral dissolution. Furthermore, it is suggested that the calculated diffusion matrix by eq. (5.1) is potentially applicable to more silicic melts such as andesitic melts, because of the success in predicting diffusion profiles during mineral dissolution in basaltic melts with a large concentration variation with 47–53 wt% SiO₂, 8–34 wt% Al₂O₃, 4–13 wt% FeO and 2–13 wt% MgO.

With the multicomponent diffusion matrix at any temperature, diffusion profiles during multicomponent diffusion in basaltic melts are readily obtained, without using the approximation of effective binary diffusion treatment. Although multicomponent diffusion in basaltic melts has been successfully solved, there are limitations in its applications. The predictions of K_2O diffusion profiles during mineral dissolution are not good, the reason to which is not readily explained, but it may be due to the composition dependence of diffusion matrix on K_2O

143

concentration (1.5 wt% K₂O in the experiments vs. 0.17 wt% K₂O in natural basaltic melts, with almost a factor of 10), or may be due to the unresolved diffusion effect of other components on K₂O. The temperature range of the diffusion matrix is from 1260 to 1500 °C, and therefore it remains to be determined whether temperature can be extrapolated to lower temperature such as 1000–1100 °C for the partial melting of mantle at subduction zones. The experiments were conducted in anhydrous basaltic melts, and therefore the effect of water on multicomponent diffusion is not determined. Iron in those basaltic melts is most ferrous iron and treated as one FeO component instead of two components (FeO and Fe₂O₃), and therefore it may have potential issues when the diffusion matrix is applied to more oxidized basaltic melts, such as are basaltic melts. Furthermore, the diffusion matrix is obtained specifically for basaltic melts and therefore it may not be applicable to more silicic melts, such as rhyolitic melts, because diffusion matrix is also dependent on the melt composition at least in a simple SiO₂–Al₂O₃–CaO silicate melts (e.g. Liang et al., 1996).

6.2 Geological applications

The obtained diffusion matrix by eq. (5.1) can be applied to predict the diffusion profiles of any natural processes involving mass transfer in basaltic melts at different time scales. Magma evolution in the Earth lithosphere from its generation by partial melting to its solidification by volcanic eruption is one of the many natural processes that can be better understood using the multicomponent diffusion simulation.

Fig. 6.1 Simulation for magma mixing between basaltic and andesitic melts, using the average compositions of basaltic and andesitic rocks in the Tancitaro-Nueva Italia region of the central Mexican arc at the subduction zone (Ownby et al., 2011) as two end members, is conducted, with the assumption of a constant diffusion matrix at ~1100 °C, and the calculated diffusion profiles are shown for different time scales from 0.1 to 10 Ma.

Fig. 6.2 Hacker diagram for the simulation of magma mixing between basaltic and andesitic melts, for the time scale of 10 Ma shown in Fig. 6.1.

For example, the magma evolution in mid-ocean ridges (Fig. 1.1) by fractional crystallization can be modeled by mineral growth in basaltic melts, at a typical temperature of ~1200 °C at the base of oceanic lithosphere. However, diffusion profiles during mineral growth cannot be readily predicted due to lack of thermodynamic data to calculate the interface melt composition that is in equilibrium with olivine, pyroxene or plagioclase from chemical potentials of oxides in silicate melts. Furthermore, the magma evolution at subduction zones (Fig. 1.2) by magma recharging and mixing can be modeled as diffusion between two melts with different compositions in a temperature range of 1000–1100 °C. A simulation for magma mixing using the average compositions of basaltic and andesitic melts as two end members in the Tancítaro-Nueva Italia region of the central Mexican arc at the subduction zone (Ownby et al., 2011) is conducted, with the assumption of a constant diffusion matrix at ~1100 °C, and the calculated diffusion profiles are shown in Fig. 6.1 for different time scales from 0.1 to 10 Ma, with diffusion distance on the order of one to ten meters. However, the time scale for magma mixing in this case cannot be obtained due to a low spatial resolution of collected samples from the field. Hacker diagrams for the simulation at time scale of 10 Ma are shown in Fig. 6.2, and the simulated compositional variation during magma mixing roughly match the data from Ownby et al., (2011). If magma is erupted, the time scales of magma recharging and mixing can be recorded by diffusion profiles (similar to those in Fig. 6.1).

This dissertation provides the first quantitative calculation of diffusion profiles in some natural processes from experimental data, such as magma mixing and mineral dissolution in magma. It could potentially modify or even revise the traditional way of understanding and calculating diffusion in natural processes, especially that in previous works based on experimentally determined effective binary diffusion coefficients, where multicomponent diffusion treatment should be used rather than effective binary diffusion treatment.

6.3 Perspectives and future works

More studies are required to fully understand the multicomponent diffusion in silicate melts. (1) Although diffusion matrix in basaltic melts is obtained, K₂O profiles during mineral dissolution is not predicted, which requires more experiments designed for diffusion effect of other components on K₂O at a lower concentration (0.2 wt%). (2) The temperature range is from 1260 to 1500 °C, and whether it can be extrapolated to lower temperature needs to be verified by partial melting experiments. (3) The effect of water and ferric iron needs to be determined by diffusion couple experiments in hydrous and oxidized basaltic melts, where water can be measured by FTIR and the ferric/ferrous ratio can be measured by XANES. (4) More importantly, the compositional dependence of diffusion matrix needs to be understood for its further application to magma mixing between basaltic and rhyolitic melts. That requires the understanding of multicomponent diffusion in rhyolitic melts, and mixing between basaltic and rhyolitic melts can be calculated by a compositional-dependent diffusion matrix.

6.4 References

- Liang Y. (2010) Multicomponent diffusion in molten silicates: Theory, experiments, and geological application. *Rev. Mineral. Geochem.* **72**, 409–446.
- Liang Y., Richter F. M. and Watson E. B. (1996) Diffusion in silicate melts: II. multicomponent diffusion in CaO–SiO₂–Al₂O₃ at 1500°C and 1GPa. *Geochim. Cosmochim. Acta* 60, 5021–5035.

Ownby S., Lange R., Hall C. and Delgado-Granados H. (2011) Origin of andesite in the deep curst and eruption rates in the Tancítaro-Nueva Italia region of the central Mexican arc. *Geol. Soc. Am. Bull.* 123, 274–294.

APPENDIX A

Analytical Solutions to Multicomponent Diffusion Problems

A1. Analytical Solution to Multicomponent Diffusion for Diffusion Couple

Diffusion in an *n*-component system can be described by a diffusion matrix [D]. In a mass-fixed frame of reference, when the melt density variation is negligible, without sink or generation, the non-convective multicomponent diffusion equation (e.g. Onsager, 1945; de Groot and Mazer, 1962) is:

$$\frac{\partial w_i}{\partial t} = \sum_{j=1}^{n-1} \nabla (D_{ij} \nabla w_j)$$
(A1)

where *t* is the time, w_i is the concentration (in mass fraction or wt%) of component *i*, and D_{ij} are elements of a $(n-1) \times (n-1)$ diffusion matrix [D] with component *n* treated as the dependent component.

With the assumption that the elements of the diffusion matrix do not change within the composition range, for infinite diffusion couple in one dimension, defining the interface as x = 0, diffusion equation (A1) can be simplified to:

$$\frac{\partial w}{\partial t} = [D] \frac{\partial^2 w}{\partial x^2}.$$
 (A2)

with the initial condition of

$$w\Big|_{t=0,x<0} = w_{-\infty} \text{ and } w\Big|_{t=0,x>0} = w_{+\infty},$$
 (A3)

and the boundary conditions of

$$w|_{x=-\infty} = w_{-\infty} \text{ and } w|_{x=+\infty} = w_{+\infty} \text{ at } t \ge 0,$$
 (A4)

where *x* is the distance from the interface x = 0, *w* is a column vector of concentrations (in mass fraction wt%), $w_{-\infty}$ and $w_{+\infty}$ are column vectors representing far-field concentrations on the left and right sides respectively.

The analytical solution to diffusion equations (eqs. A2–A4) is (Trial and Spera, 1994; Liang, 2010):

$$w = \frac{w_{-\infty} + w_{+\infty}}{2} + [P][\Lambda][P^{-1}] \cdot \frac{w_{+\infty} - w_{-\infty}}{2}, \qquad (A5)$$

where $[\Lambda]$ is a diagonal matrix with diagonal elements $\Lambda_{ii} = erf(x/\sqrt{4\lambda_i t})$ and $\Lambda_{ij} = 0$ when $i \neq j$, λ_i 's are the eigenvalues of [D], and columns of [P] are the eigenvectors of [D]. The solution is used to fit experimental concentration profiles.

A2. Analytical Solution for Multicomponent Diffusion during Mineral Dissolution

Denote the crystal dissolution rate as u_c , and the melt growth rate is $u = (\rho_c / \rho_m) \cdot u_c$, where r_c and r_m are crystal and melt density (Zhang, 2008). Diffusion in the melt is a moving boundary problem.

Assume that the melt density and elements of the diffusion matrix do not vary within the compositional range. For one-dimensional crystal dissolution in a semi-infinite melt medium, defining crystal-melt interface as x = 0 (i.e., using a crystal-melt interface-fixed frame of reference for this moving boundary diffusion problem), multicomponent diffusion in the melt can be described as (Zhang et al., 1989; Liang, 1999, 2000)

$$\frac{\partial w}{\partial t} = [D]\frac{\partial^2 w}{\partial x^2} - u\frac{\partial w}{\partial x},$$
 (A6)

with initial condition of

$$w\Big|_{t=0,\,x>0} = W_{\infty} , \qquad (A7)$$

and boundary condition of

$$w\Big|_{x=\infty} = w_{\infty} \text{ at } t > 0, \tag{A8}$$

$$\left([D] \frac{\partial w}{\partial x} \right) \Big|_{x=0} = u(w_0 - w_c), \qquad (A9)$$

where *t* is time, *x* is distance from the crystal-melt interface in the melt, *w* is a column vector of concentrations (in mass fraction wt%) in the melt, w_0 is a column vector of concentrations at the interface in the melt, w_c is a column vector of concentrations at the interface in the crystal, and w_{∞} is a column vector of concentrations in the melt at the far-field.

If the interface reaction is rapid, the transition stage can be ignored and the interface melt composition w_0 is practically a constant (Zhang et al., 1989; Chen and Zhang, 2008; Yu et al.,

2016). Then the dissolution can be treated as purely diffusion controlled, and the melt growth rate (Crank, 1975; Zhang et al., 1989) is

$$u = \alpha / \sqrt{t} . \tag{A10}$$

Equations (A6) to (A10) form the mathematical description of the diffusion problem, in which w_0 and α are unknowns to be solved. Note that u, α , t and x are scalars, w, w_0 , w_c and w_{∞} are column vectors, and [D] is a square matrix.

Decompose $[D] = [P][\lambda][P^{-1}]$, where $[\lambda]$ is a diagonal matrix of eigenvalues, and [P] is the associated eigenvector matrix. Define $C = [P^{-1}]w$, in which the diffusion of C_i is described by a single diffusion coefficient (eigenvalue) λ_i . Because w_0 (and therefore C_0) is constant, the problem can be solved as:

$$C_{i} = C_{i,\infty} + (C_{i,0} - C_{i,\infty}) \cdot erfc\left(\frac{x}{\sqrt{4\lambda_{i}t}} - \frac{\alpha}{\sqrt{\lambda_{i}}}\right) / erfc\left(-\frac{\alpha}{\sqrt{\lambda_{i}}}\right),$$
(A11)

or in matrix form:

$$C = C_{\infty} + [E](C_0 - C_{\infty}),$$
 (A12)

where [*E*] is a diagonal matrix with:

$$E_{ii} = erfc \left(\frac{x}{\sqrt{4\lambda_i t}} - \frac{\alpha}{\sqrt{\lambda_i}}\right) / erfc \left(-\frac{\alpha}{\sqrt{\lambda_i}}\right),$$
(A13)

Replacing *C* in (A12) by $C = [P^{-1}]w$, leads to:

$$w = w_{\infty} + [P][E][P^{-1}] \cdot (w_0 - w_{\infty}), \qquad (A14)$$

which is the solution once α (appearing in [E]) and w_0 are known.

To obtain the full solution, we also need to solve α and w_0 . For an *n*-component system, there are (n-1) unknowns in w_0 plus one unknown α , with a total of *n* unknowns. Combining (A9) and (A10) leads to:

$$\left([D]\frac{\partial w}{\partial x}\right)\Big|_{x=0} = \frac{\alpha}{\sqrt{t}} \left(w_0 - w_c\right).$$
(A15)

Use solution (A14) to obtain $(\partial w/\partial x)_{x=0}$, (A15) can be written as:

$$[P][\lambda]\left[\frac{\partial E}{\partial x}\Big|_{x=0}\right][P^{-1}]\left(w_0 - w_\infty\right) = \frac{\alpha}{\sqrt{t}}\left(w_0 - w_c\right).$$
(A16)

where $(\partial E/\partial x)_{x=0}$ is a diagonal matrix with:

$$\frac{\partial E_{ii}}{\partial x}\Big|_{x=0} = -\frac{e^{-\alpha^2/\lambda_i}}{\sqrt{\pi\lambda_i t} \cdot erfc\left(-\alpha/\sqrt{\lambda_i}\right)}.$$
(A17)

Define [F] as a diagonal matrix with F_{ii} :

$$F_{ii} = \sqrt{t} \left. \frac{\partial E_{ii}}{\partial x} \right|_{x=0} = -\frac{e^{-\alpha^2/\lambda_i}}{\sqrt{\pi\lambda_i} \cdot erfc\left(-\alpha/\sqrt{\lambda_i}\right)}.$$
(A18)

Therefore, (A16) is simplified as:

$$[P][\lambda][F][P^{-1}](w_0 - w_{\infty}) = \alpha (w_0 - w_c), \qquad (A19)$$

or,

$$w_{0} = \left([P][\lambda][F][P^{-1}] - \alpha[I] \right)^{-1} \cdot \left([P][\lambda][F][P^{-1}]w_{\infty} - \alpha w_{c} \right),$$
(A20)

if $[P][\lambda][F][P^{-1}] - \alpha[I]$ is invertible. Therefore, from (A20), w_0 is an explicit function of α . Equation (A20) provides n-1 equations, with only one unknown α left.

We need one additional equation to solve α . This additional equation is the thermodynamic constraint. For example, for quartz dissolution, the additional equation can be in general written as: $\mu_{SiO_2}^{melt,0} = \mu_{SiO_2}^{qtz}$. For the dissolution of a mineral that is a solid solution with *k* components, there would be *k* equations such as,

$$\mu_i^{\text{melt},0} = \mu_i^{\text{mineral},0}, \text{ where } i = 1, \dots, k.$$
 (A21)

Note that the composition of a mineral that is a solid solution is not fixed, and hence the interface mineral composition, which contains k-1 unknowns, is not necessarily the initial mineral composition and must also be solved (e.g., Fig. 4–18 in Zhang, 2008). Therefore, the total number of unknowns is n+k-1 (n-1 for w_0 , 1 for α , and k-1 for the interface mineral composition), which equals to the total number of equations in (A20) and (A21).

The chemical potential of a component in the melt cannot be easily expressed as a function of composition. Models such as MELTS (Ghiorso and Sack, 1995; Asimow and Ghiorso, 1998) are available, but they do not lead to simple algebraic equations for chemical potentials. Hence, solving the set of equations for the interface melt composition is not straightforward. Furthermore, there are unknown and possibly large uncertainties in the thermodynamic models. Hence, if the interface melt composition w_0 can be obtained from experimental data, it would remove much uncertainty in diffusion treatment.

A rough approach is when the interface melt concentration of one component can be roughly estimated, such as SiO₂ concentration during quartz dissolution in rhyolitic or basaltic melts, Al₂O₃ concentration during anorthite dissolution in basaltic melts (Yu et al., 2016), and MgO concentration during olivine dissolution in basaltic melts (Chen and Zhang, 2008). Once this condition is given, α can be solved by (A20) and therefore w_0 .

A3. Derivation of transformation of diffusion matrices when a different component is used as the dependent components

For an *n*-component system, with component *n* chosen as the dependent component, in a mass-fixed frame of reference, diffusion flux equals to:

$$\begin{aligned} \mathbf{J}_{i} &= -\rho \left(\sum_{j=1}^{n-1} D_{ij}^{n} \nabla w_{j} \right) \\ &= -\rho \left(\sum_{j \neq k}^{n-1} D_{ij}^{n} \nabla w_{j} + D_{ik}^{n} \nabla w_{k} \right) (\text{use identity } \nabla w_{k} = -\sum_{j \neq k}^{n} \nabla w_{j}) \\ &= -\rho \left(\sum_{j \neq k}^{n-1} D_{ij}^{n} \nabla w_{j} - D_{ik}^{n} \sum_{j \neq k}^{n} \nabla w_{j} \right) \\ &= -\rho \left(\sum_{j \neq k}^{n-1} (D_{ij}^{n} - D_{ik}^{n}) \nabla w_{j} + (-D_{ik}^{n}) \nabla w_{n} \right), \text{ for all } i \neq n. \end{aligned}$$

$$\begin{aligned} \mathbf{J}_{n} &= -\sum_{i=1}^{n-1} \mathbf{J}_{i} \\ &= \rho \Biggl(\sum_{i=1}^{n-1} \sum_{j \neq k}^{n-1} (D_{ij}^{n} - D_{ik}^{n}) \nabla w_{j} - \sum_{i=1}^{n-1} D_{ik}^{n} \nabla w_{n} \Biggr) \\ &= -\rho \Biggl(\sum_{j \neq k}^{n-1} \sum_{i=1}^{n-1} (D_{ik}^{n} - D_{ij}^{n}) \nabla w_{j} + \sum_{i=1}^{n-1} D_{ik}^{n} \nabla w_{n} \Biggr). \end{aligned}$$

The equations above express all diffusion flux J_i 's with all components but k, which is identical to choose component k as the dependent component:

$$\mathbf{J}_i = -\rho \sum_{j \neq k}^n D_{ij}^k \nabla w_j \; .$$

Therefore,

$$D_{ij}^{k} = D_{ij}^{n} - D_{ik}^{n}, \qquad \text{if } i \neq n \text{ and } j \neq n$$
(A22)

$$D_{in}^{k} = -D_{ik}^{n}, \qquad \text{if } i \neq n \tag{A23}$$

$$D_{nj}^{k} = \sum_{i=1}^{n-1} (D_{ik}^{n} - D_{ij}^{n}), \quad \text{if } j \neq n$$
(A24)

$$D_{nn}^{k} = \sum_{i=1}^{n-1} D_{ik}^{n} .$$
 (A25)

A4. References

- Asimow P. D. and Ghiorso M.S. (1998) Algorithmic modifications extending MELTS to calculate subsolidus phase relations. *Am. Mineral.* **83**, 1127-1131.
- Chen Y. and Zhang Y. (2008) Olivine dissolution in basaltic melt. *Geochim. Cosmochim. Acta* **72**, 4756-4777.
- Crank J. (1975) The mathematics of diffusion. Clarendon Press.
- de Groot S. R. and Mazur P. (1962) Non-equilibrium thermodynamics. Dover, New York.
- Ghiorso M. S. and Sack R. O. (1995) Chemical mass transfer in magmatic processes IV. a revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. *Contrib. Mineral. Petrol.* **119**, 197-212.
- Liang Y. (1999) Diffusive dissolution in ternary systems: Analysis with anpplications to quartz and quartzite dissolution in molten silicates. *Geochim. Cosmochim. Acta* **63**, 3983-3995.
- Liang Y. (2000) Dissolution in molten silicates: Effects of solid solution. *Geochim. Cosmochim. Acta* **64**, 1617-1627.
- Liang Y. (2010) Multicomponent diffusion in molten silicates: Theory, experiments, and geological application. *Rev. Mineral. Geochem.* 72, 409-446.
- Onsager L. (1945) Theories and problems of liquid diffusion. *Ann. New York Acad. Sci.* **46**, 241-265.
- Trial A. F. and Spera F. J. (1994) Measuring the multicomponent diffusion matrix: Experimental design and data analysis for silicate melts. *Geochim. Cosmochim. Acta* **58**, 3769-3783.
- Yu Y., Zhang Y., Chen. Y. and Xu Z. (2016) Kinetics of anorthite dissolution in basaltic melt. Geochim. Cosmochim. Acta 179, 257-274.

Zhang Y. (2008) Geochemical Kinetics. Princeton University Press, Princeton, NJ.

Zhang Y., Walker D. and Lesher C. E. (1989) Diffusive crystal dissolution. *Contrib. Mineral. Petrol.* **102**, 492-513.

APPENDIX B

Matlab Codes for Fitting Diffusion Profiles

B1. The main function "LMF solver.m"

```
%% Matlab codes to obtain diffusion matrix
% This is a program to obtain the diffusion matrix by fitting all diffusion profiles
from all experiments using Levenberg-Marquardt-Fletcher method, by Chenghuan Guo, most
recently updated on Dec 3, 2017
% The algorithm of LMF method is as follow:
% Step 1: initialize model parameters L and G with identity matrix, v = 1, gamma = 1;
% Step 2: terminate iteration if termination conditions are satisfied;
% Step 3: calculate residue r and Jacobian J, if gamma > 0;
% Step 4: calculate step size d, and reshape d to matrix format dL and dG;
% Step 5: calculate LL = L + dL and GG = G + dG;
 Step 6: dL = dL / 2, dG = dG / 2, and repeat step 5, until both LL and GG are
         positive definite;
% Step 7: calculate gamma;
% Step 8: v = v / 2, if gamma > 0.75; v = 2 * v, if gamma < 0.75; v = v, otherwise;</pre>
 Step 9: L = L + dL and G = G + dG, if gamma > 0; then go to step 2.
%% variable and parameter explanation
% C calc: a cell of calculated concentration for each experiment
% C_error: errors of measured concentration
% C meas:
           measured concentration
% chisqr:
           chi squares of residues
% C1:
          left-side boundary composition
% Cr:
          right-side boundary composition
% Cm:
          mineral composition during mineral dissolution
% d:
          step size
% Dataset: index for which data set to be fit
% dchi: decrement of chi squares in each iteration
\ dchisqr: gradients of chi squares with respect to model parameters L and G
           increment of model parameter G in matrix format
% dG:
% Diffusivity: diffusion matrix
% Distance: numerically determined mineral dissolution distance
% dT.:
           increment of model parameter L in matrix format
% dq:
           decrement of q (the quadratic approximation) in each iteration
% Eigenvalues: eigenvalues of diffusion matrix
% Eigenvectors: eigenvectors of diffusion matrix
% G:
           decomposed thermodynamic matrix from diffusion matrix
           the ratio of dchi and dq
% gamma:
         a temporary variable to store G matrix for next iteration
% GG:
          identity matrix
% I:
               index for current interation
% iteration:
```

```
% J:
            Jacobian of residues with respect to model parameters L and G
% JJ:
            a temporary variable to store J' * J
% L:
            decomposed kinetic matrix from diffusion matrix
% lambda:
           a temporary variable to store eigenvalues of (J'*J + vI)
% LL:
           a temporary variable to store L matrix for next iteration
% max it:
            termination condition for maximum iteration numbers
            termination condition for minimum step size
% min d:
% min dchisqr: termination condition for minimum gradients of chi squares
% NC:
           the number of independent components
            the number of diffusion couple experiments
% Nd:
% Ne:
           the number of experiments used to fit
% Nm:
           the number of mineral dissolution experiments
% Np:
           the number of data points measured for each experiment
% p:
            a temporary variable
% q:
            a temporary variable
           residue in current iteration
% r:
% r next:
           residue in next iteration
% r pre:
           residue in previous iteration
% Sigma:
           1-sigma errors of diffusion matrix
            experimental durations
% t:
% V:
            damping parameters in LMF method
% X:
            the x-axis in diffusion profiles
88
close all;
clear all;
%% data initialization
% Set1 = diffusion couples at 1260 ºC
% Set2 = diffusion couples and mineral dissolution at 1260 ºC
% Set3 = diffusion couples at 1350 ºC
 Set4 = diffusion couples and mineral dissolution at 1350 ^{\rm QC}
% Set5 = diffusion couples at 1500 ºC
 Set6 = diffusion couples and mineral dissolution at 1500 ^{\circ}C
Dataset = 'Set4';
[Nc, Np, Nm, Nd, Ne, Cl, Cr, Cm, t, Distance, X, C_meas, C_error] =
    initialization(Dataset);
%% start Levenberg-Marquardt-Fletcher Method
% (1) initial guess of matrices L and G
L = 11 * eye(Nc);
G = 13 * eye(Nc);
% (2) termination conditions
max_{it} = 50;
min_dchisqr = 1e-5;
min d = 1e-5;
% (3) initialize some matrices
dL = zeros(Nc);
dG = zeros(Nc);
I = eye(Nc*(Nc+1));
d = ones(Nc*(Nc+1), 1);
dchisqr = ones(Nc*(Nc+1), 1);
% (4) initialize some index
iteration = 1;
v = 1;
gamma = 1;
% (5) start iteration
```
```
while max(abs(dchisqr)) > min dchisqr && max(abs(d)) > min d && iteration < max it
% (5.1) calculate residue r for the first iteration
    if iteration == 1
        C_calc = calc_conc(Nc, Np, Nd, Nm, Ne, Cl, Cr, X, t, Distance, L*G);
        r = calc_residue(Nc, Ne, C_meas, C_calc, C_error);
    end;
% (5.2) calculate Jacobian if gamma > 0
    if gamma > 0
        J = calc_jacobian(Nc, Np, Nd, Nm, Ne, Cl, Cr, X, C_meas, C_error, r, t,
            Distance, L, G);
    end:
% (5.3) calculate chi squares and gradient of chi squares
    chisqr = r' * r / 2;
    dchisqr = J' * r;
 (5.6) adjust d such that (J'*J+v*I) is positive definite
    JJ = J' * J;
    lambda = eig(JJ+v*I);
    while max(real(lambda) < 0)</pre>
        v = 4 * v;
        lambda = eig(JJ+v*I);
    end;
    d = -(JJ + v * I) \setminus J' * r;
% (5.7) obtain the increment of model parameters in matrix format: dL and dG, from
those in vector format: d
    for p = 1 : Nc
        for q = 1 : p
            dL(p, q) = d(p*(p-1)/2+q);
            dL(q, p) = dL(p, q);
            dG(p, q) = d(Nc*(Nc+1)/2+p*(p-1)/2+q);
            dG(q, p) = dG(p, q);
        end;
    end;
    while 1
        LL = L + dL;
        GG = G + dG;
        if any(eig(LL) < 0) == 0 \&\& any(eig(GG) < 0) == 0
            break;
        else
            dL = dL / 2;
            dG = dG / 2;
        end;
    end;
% (5.8) calculate new residues
    C_calc = calc_conc(Nc, Np, Nd, Nm, Ne, Cl, Cr, X, t, Distance, LL*GG);
    r next = calc residue(Nc, Ne, C meas, C calc, C error);
% (5.9) calculate delta chi squares, delta q, and gamma
    dchi = r' * r / 2 - r_next' * r_next / 2;
    dq = d' * (v * d - J' * r) / 2;
    gamma = dchi / dq;
% (5.10) update model parameters L and G if gamma > 0
    if gamma > 0
        r pre = r;
        r = r_next;
        L = LL;
        G = GG;
```

```
end;
% (5.11) update v
   if gamma < 0.25
       v = 2 * v;
   elseif gamma > 0.75
       v = v / 2;
   end;
% (5.12) update iteration index n
   iteration = iteration + 1;
end;
% the model parameters L and G that minimize chi squares are found
%% get diffusion matrix and its eigenvalues and eigenvectors
Diffusivity = L * G;
[Eigenvectors, Eigenvalues] = eig(Diffusivity);
%% calculate 1-sigma errors of diffusion matrix by error propagation
Sigma = calc_error(Nc, Np, Nd, Nm, Ne, Cl, Cr, X, t, Distance, Diffusivity, C_error);
```

```
%% end the program
```

B2. Subroutine "initialization.m"

```
%% subroutine function for initialization
function [Nc, Np, Nm, Nd, Ne, Cl, Cr, Cm, t, Distance, X, C, Error] =
    initialization(Dataset)
%% read in boundary conditions, mineral composition, measured data, and data errors
    Boundary = xlsread(strcat(Dataset, '_Boundary', '.xlsx'));
Mineral = xlsread(strcat(Dataset, '_Mineral', '.xlsx'));
Data = xlsread(strcat(Dataset, '_Data', '.xlsx'));
Error = xlsread(strcat(Dataset, '_Error', '.xlsx'));
                                                          '.xlsx'));
%% remove the first component: the dependent component SiO2
    Boundary = Boundary(2:end-1, :);
    Mineral = Mineral(2:end-1, :);
%% find Nc = the number of independent components, Nd = the number of diffusion
    couples, Nm = the number of mineral dissolution
    [Nc, Ne] = size(Boundary); Ne = (Ne+1)/3;
    Nm = size(Mineral, 2);
    Nd = Ne - Nm;
%% get experimental durations and mineral dissolution distance
    t = get duration(Dataset);
    Distance = get_distance(Dataset, t, Nm);
%% get Cl = left-side boundary condition, Cr = right-side boundary condition, and Cm =
    mineral composition
    Cl = zeros(Nc, Ne);
    Cr = zeros(Nc, Ne);
    Cm = zeros(Nc, Nm);
    for k = 1 : Ne
         Cl(:, k) = Boundary(:, (k-1)*3+1);
         Cr(:, k) = Boundary(:, (k-1)*3+2);
    end;
    for k = 1 : Nm
         Cm(:, k) = Mineral(:, k);
    end;
% get X = x-axis, and C = measured concentrations for each diffusion couple
    Np = zeros(1, Ne);
    X = \{\}; C = \{\};
    for k = 1 : Ne
        X\{k\} = Data(:, (Nc+5)*(k-1)+1);
         X{k} = X{k}(isfinite(X{k}));
         Np(k) = size(X\{k\}, 1);
         C\{k\} = Data(1:Np(k), (Nc+5)*(k-1)+2:(Nc+5)*(k)-3);
    end;
end
```

B3. Subroutine "get_duration.m"

```
%% subroutine function to initialize experimental durations
function t = get duration(Dataset)
% explanation of experiments used in each dataset:
% Set1 = diffusion couples at 1260 ºC
       = [BS1&2C, BS3&4C, BS5&6C, BS7&8C, BS9&10C, BS11&12C, BS13&14C, BS17&18C,
8
        BS19&20C]
% Set2 = diffusion couples and mineral dissolution at 1260 ºC
       = [BS1&2C, BS3&4C, BS5&6C, BS7&8C, BS9&10C, BS11&12C, BS13&14C, BS17&18C,
응
        BS19&20C, Exp15, Exp16, Exp18, Exp20, Exp21, Exp1, Exp203, Exp207, Exp209]
% Set3 = diffusion couples at 1350 ºC
8
      = [BS1&2A, BS3&4A, BS5&6A, BS7&8A, BS9&10A, BS11&12A, BS13&14A, BS17&18A,
        BS19&20A]
% Set4 = diffusion couples and mineral dissolution at 1350 ºC
8
      = [BS1&2A, BS3&4A, BS5&6A, BS7&8A, BS9&10A, BS11&12A, BS13&14A, BS17&18A,
         BS19&20A, Exp39, Exp40, Exp41, Exp5, Exp210, Exp211, Exp212, Exp213, Exp215,
         Exp216]
% Set5 = diffusion couples at 1500 ºC
       = [BS1&2B, BS3&4B, BS5&6B, BS7&8B, BS9&10B, BS11&12B, BS13&14B, BS17&18B,
응
        BS19&20B]
% Set6 = diffusion couples and mineral dissolution at 1500 ºC
8
       = [BS1&2B, BS3&4B, BS5&6B, BS7&8B, BS9&10B, BS11&12B, BS13&14B, BS17&18B,
         BS19&20B, Exp230]
% Dataset is an index for which data set to be fit
    switch Dataset
                       % corrected experimental durations for Set1
       case 'Set1'
           t = [1826.0, 1809.6, 1325.5, 1269.2, 950.8, 579.5, 740.0, 577.4, 599.9];
        case 'Set2'
                       % corrected experimental durations for Set2
            t = [1826.0, 1809.6, 1325.5, 1269.2, 950.8, 579.5, 740.0, 577.4, 599.9,
                796, 1954, 3897, 335, 789, 1971, 395, 1408, 4228];
                      % corrected experimental durations for Set3
        case 'Set3'
            t = [1492.4, 1243.2, 899.0, 974.4, 563.9, 393.6, 522.0, 335.7, 346.3];
        case 'Set4' % corrected experimental durations for Set4
            t = [1492.4, 1243.2, 899.0, 974.4, 563.9, 393.6, 522.0, 335.7, 346.3, 298,
                1163, 601, 742, 1611, 395, 3087, 121, 2138];
       case 'Set5'
                      % corrected experimental durations for Set5
            t = [276.1, 223.6, 247.8, 213.7, 158.5, 157.1, 154.8, 184.9, 221.4];
       case 'Set6'
                     % corrected experimental durations for Set6
            t = [276.1, 223.6, 247.8, 213.7, 158.5, 157.1, 154.8, 184.9, 221.4,
                138.8];
        otherwise
            disp('error! input the set!');
    end:
end
```

B4. Subroutine "get_distance.m"

```
%% subroutine function to initialize mineral dissolution distance
function Distance = get_distance(Dataset, t, Nm)
% Dataset is an index for which data set to be fit
   switch Dataset
        case 'Set2'
           A = [0.2086, 0.2086, 0.2086, 0.2086, 0.2086, 0.4149, 0.3030, 0.3030]
                0.3030];
        case 'Set4'
            A = [0.5174, 0.5174, 0.5174, 1.1961, 0.9985, 0.9985, 0.9985, 0.9985,
                0.9985];
        case 'Set6'
           A = [5.6309];
        otherwise
           A = zeros(1, 0);
    end;
    Distance = 2 * A .* sqrt(t(end-Nm+1:end));
```

```
\operatorname{end}
```

B5. Subroutine "calc conc.m"

```
%% subroutine function to calculate concentration
function C = calc_conc(Nc, Np, Nd, Nm, Ne, Cl, Cr, X, t, Distance, Diffusivity)
    C = \{\};
    [Eigenvectors, Eigenvalues] = eig(Diffusivity);
    for k = 1 : Ne
        C\{k\} = zeros(Nc, Np(k));
        for j = 1 : Np(k)
            E = zeros(Nc);
            if k <= Nd % analytical solution for diffusion couples
                 for m = 1 : Nc
                     E(m, m) = erf(X{k}(j)/sqrt(4*Eigenvalues(m, m)*t(k)));
                 end;
                 C{k}(:, j) = (Cl(:, k)+Cr(:, k))/2 + Eigenvectors * E / Eigenvectors * (Cr(:, k)-Cl(:, k))/2;
            else
                       % analytical solution for mineral dissolution
                 for m = 1 : Nc
                     E(m, m) = erfc((X{k}(j)-Distance(k-Nd))/sqrt(4*Eigenvalues(m,
                        m)*t(k))) / erfc(-Distance(k-Nd)/sqrt(4*Eigenvalues(m,
                        m)*t(k)));
                 end;
                 C\{k\}(:, j) = Cr(:, k) + Eigenvectors * E / Eigenvectors * (Cl(:, k)-
                     Cr(:, k));
            end;
        end;
        C\{k\} = [100-sum(C\{k\}); C\{k\}];
        C\{k\} = C\{k\}';
    end;
end
```

B6. Subroutine "calc_residue.m"

```
%% subroutine function to calculate residues between measured and calculated
concentration
function r = calc_residue(Nc, Ne, C_meas, C_calc, C_error)
    r = [];
    for k = 1 : Ne
        for i = 1 : Nc+1
            r = [r; (C_meas{k}(:, i) - C_calc{k}(:, i)) / C_error(i, k)];
        end;
end;
end
```

B7. Subroutine "calc_jacobian.m"

```
%% subroutine function to calculate Jacobian of residues with respect to model
parameters
function J = calc jacobian(Nc, Np, Nd, Nm, Ne, Cl, Cr, X, C meas, C error, r, t,
Distance, L, G)
    J = ones((Nc+1)*sum(Np), Nc*(Nc+1));
    dL = 1e - 8;
    dG = 1e - 8;
    for p = 1 : Nc
        for q = 1 : p
            \overline{LL} = L;
            LL(p, q) = L(p, q) + dL;
            LL(q, p) = LL(p, q);
            C_calc = calc_conc(Nc, Np, Nd, Nm, Ne, Cl, Cr, X, t, Distance, LL*G);
            r_new = calc_residue(Nc, Ne, C_meas, C_calc, C_error);
            J(:, p*(p-1)/2+q) = (r_new - r) / dL;
        end;
    end;
    for p = 1 : Nc
        for q = 1 : p
            GG = G;
            GG(p, q) = G(p, q) + dG;
            GG(q, p) = GG(p, q);
            C_calc = calc_conc(Nc, Np, Nd, Nm, Ne, Cl, Cr, X, t, Distance, L*GG);
            r_new = calc_residue(Nc, Ne, C_meas, C_calc, C_error);
            J(:, Nc*(Nc+1)/2+p*(p-1)/2+q) = (r_new - r) / dG;
        end;
    end;
end
```

B8. Subroutine "calc_error.m"

```
%% subroutine function to calculate errors of diffusion matrix
function Sigma = calc error(Nc, Np, Nd, Nm, Ne, Cl, Cr, X, t, Distance, Diffusivity,
    C error)
    dD = 1e - 6;
    derivative = zeros((Nc+1)*(sum(Np)), Nc*Nc);
    weight = zeros((Nc+1)*(sum(Np)), Nc*Nc);
    Sigma = zeros(Nc*Nc, 1);
% calculate the derivative of concentration with respect to diffusion matrix
% calculate the weight
   C = calc conc(Nc, Np, Nd, Nm, Ne, Cl, Cr, X, t, Distance, Diffusivity);
    for p = 1 : Nc
        for q = 1 : Nc
            D = Diffusivity;
            D(p, q) = D(p, q) + dD;
            CC = calc_conc(Nc, Np, Nd, Nm, Ne, Cl, Cr, X, t, Distance, D);
            t1 = []; t2 = [];
            for k = 1 : Ne
                for i = 1 : Nc+1
                    temp = (CC\{k\}(:, i) - C\{k\}(:, i)) / dD;
                    t1 = [t1; temp];
t2 = [t2; temp / C_error(i, k)^2];
                end;
            end;
            derivative(:, Nc*(p-1)+q) = t1;
            weight(:, Nc*(p-1)+q) = t2;
        end;
    end;
% get the covariance by taking the inversion of weights
    error = inv(derivative'*weight);
% get the 1-sigma errors from diagonal elements in covariance matrix
    for i=1 : Nc*Nc
        Sigma(i) = sqrt(error(i, i));
    end:
% reshape the 1-sigma errors to a matrix and then transpose it
    Sigma = reshape(Sigma, Nc, Nc)';
end
```

APPENDIX C

All electron microprobe data for all experiments

Table C1.	. HB2&4A	۱									
X (µm)	SiO2	SiO2*	TiO2	Al2O3	FeO	MgO	CaO	Na2O	K2O	Total	Comment
-1425.4	48.935	48.787	1.466	15.779	0.070	9.658	18.931	2.760	2.549	100.15	HB2&4A_L1_S3
-1385.4	49.110	48.624	1.440	15.955	0.032	9.794	18.892	2.722	2.543	100.49	HB2&4A_L1_S3
-1345.4	49.033	48.873	1.559	15.863	0.050	9.658	18.756	2.699	2.543	100.16	HB2&4A_L1_S3
-1305.4	49.165	48.575	1.540	15.990	0.109	9.677	18.846	2.726	2.538	100.59	HB2&4A_L1_S3
-1265.4	49.159	48.855	1.484	15.938	0.059	9.626	18.768	2.718	2.552	100.30	HB2&4A_L1_S3
-1225.4	49.202	48.794	1.533	15.984	0.040	9.583	18.802	2.706	2.559	100.41	HB2&4A_L1_S3
-1185.4	48.928	48.898	1.489	15.826	-0.003	9.652	18.898	2.686	2.555	100.03	HB2&4A_L1_S3
-1145.4	48.898	48.672	1.546	15.958	0.063	9.662	18.863	2.677	2.559	100.23	HB2&4A_L1_S3
-1105.4	49.038	48.846	1.435	15.941	0.040	9.762	18.694	2.705	2.578	100.19	HB2&4A_L1_S3
-1065.4	48.954	48.970	1.564	15.872	0.105	9.628	18.708	2.634	2.519	99.98	HB2&4A_L1_S3
-1025.4	48.934	48.646	1.598	15.892	0.090	9.655	18.843	2.690	2.586	100.29	HB2&4A_L1_S3
-985.4	48.954	48.845	1.562	15.807	0.000	9.696	18.831	2.713	2.548	100.11	HB2&4A_L1_S3
-945.4	49.160	48.763	1.619	15.925	0.011	9.689	18.799	2.666	2.529	100.40	HB2&4A_L1_S3
-905.4	49.178	48.675	1.506	15.894	0.064	9.671	18.995	2.682	2.514	100.50	HB2&4A_L1_S3
-865.4	49.028	48.882	1.485	15.954	0.069	9.600	18.821	2.648	2.540	100.15	HB2&4A_L1_S3
-825.4	49.279	48.488	1.523	16.047	0.084	9.799	18.794	2.680	2.586	100.79	HB2&4A L1 S3
-785.4	49.198	48.772	1.507	15.942	0.139	9.710	18.740	2.658	2.532	100.43	HB2&4A_L1_S3
-745.4	49.183	48.613	1.462	15.965	0.143	9.694	18.860	2.685	2.579	100.57	HB2&4A_L1_S3
-705.4	49.076	48.806	1.555	16.007	0.012	9.661	18.806	2.622	2.531	100.27	HB2&4A_L1_S3
-665.4	49.215	48.787	1.500	15.729	0.055	9.809	18.893	2.694	2.534	100.43	HB2&4A_L1_S3
-625.4	49.179	48.927	1.546	15.897	0.067	9.625	18.693	2.681	2.563	100.25	HB2&4A_L1_S3
-585.4	49.043	48.845	1.504	15.913	0.088	9.719	18.771	2.635	2.526	100.20	HB2&4A_L1_S3
-545.4	49.153	48.654	1.525	15.964	0.089	9.684	18.873	2.704	2.509	100.50	HB2&4A_L1_S3
-505.4	49.198	48.748	1.567	15.984	0.029	9.599	18.845	2.680	2.549	100.45	HB2&4A_L1_S3
-485.4	49.066	48.704	1.578	15.940	0.052	9.798	18.724	2.687	2.517	100.36	HB2&4A_L1_S2
-465.4	49.047	48.748	1.545	16.022	0.047	9.707	18.778	2.650	2.503	100.30	HB2&4A_L1_S2
-445.4	49.056	48.913	1.555	15.871	0.067	9.690	18.773	2.672	2.459	100.14	HB2&4A_L1_S2
-425.4	49.197	48.964	1.494	15.946	0.035	9.743	18.717	2.656	2.445	100.23	HB2&4A_L1_S2
-405.4	49.198	48.708	1.549	15.992	0.028	9.764	18.829	2.654	2.477	100.49	HB2&4A_L1_S2
-385.4	49.316	48.770	1.547	16.011	0.059	9.811	18.656	2.713	2.434	100.55	HB2&4A_L1_S2
-365.4	49.235	48.628	1.544	16.142	0.053	9.722	18.820	2.690	2.402	100.61	HB2&4A_L1_S2
-345.4	49.233	48.852	1.582	15.869	0.040	9.727	18.837	2.662	2.431	100.38	HB2&4A_L1_S2
-325.4	49.395	48.987	1.478	15.921	0.006	9.697	18.805	2.691	2.415	100.41	HB2&4A_L1_S2
-305.4	49.119	48.908	1.577	15.851	0.080	9.704	18.823	2.686	2.373	100.21	HB2&4A_L1_S2
-285.4	48.974	49.054	1.528	15.921	0.065	9.639	18.681	2.700	2.413	99.92	HB2&4A_L1_S2
-265.4	49.276	48.919	1.495	15.943	0.044	9.776	18.761	2.697	2.366	100.36	HB2&4A_L1_S2
-245.4	49.370	48.895	1.535	16.034	0.034	9.617	18.886	2.687	2.313	100.48	HB2&4A_L1_S2
-225.4	49.410	49.233	1.462	15.909	0.038	9.650	18.770	2.662	2.276	100.18	HB2&4A_L1_S2
-205.4	49.276	48.939	1.528	15.989	0.096	9.644	18.831	2.708	2.264	100.34	HB2&4A_L1_S2
-185.4	49.204	49.025	1.483	16.003	0.062	9.665	18.767	2.725	2.270	100.18	HB2&4A_L1_S2
-165.4	49.276	48.909	1.513	16.091	0.090	9.661	18.714	2.757	2.265	100.37	HB2&4A_L1_S2
-145.4	49.416	49.070	1.592	16.020	0.023	9.745	18.646	2.716	2.189	100.35	HB2&4A_L1_S2
-125.4	49.353	48.985	1.510	16.017	0.035	9.759	18.825	2.714	2.156	100.37	HB2&4A_L1_S2

I	-105.4	49.334	48.998	1.523	16.079	0.069	9.738	18.758	2.728	2.108	100.34	HB2&4A L1 S2
	-85.4	49.289	49.078	1.569	16.032	0.017	9.613	18.849	2.784	2.060	100.21	HB2&4A L1 S2
	-65.4	49.445	49.021	1.585	15.967	0.044	9.849	18.745	2.763	2.026	100.42	HB2&4A L1 S2
	-45.4	49.528	48.877	1.497	16.087	0.053	9.759	18.934	2.764	2.029	100.65	HB2&4A_L1_S2
	-25.4	49 520	49 167	1 471	15 962	0.038	9 701	18 897	2 788	1 976	100.35	HB2&4A_L1_S2
	-5.4	49 406	49 142	1 494	15.984	0.020	9.672	18 947	2.700	1.907	100.26	HB2 $\&$ 4 Λ 11 S2
	-J. 4 14.6	40.410	40.101	1.528	15 022	0.060	0.600	18 875	2.773	1.907	100.20	$HD2@4A_L1_52$
	24.6	49.419	49.191	1.526	15.955	0.005	9.099	10.075	2.833	1.0/0	100.23	$\frac{11D2@4A}{11D2@4A} = 11S2$
	54.0	49.339	49.044	1.330	15.079	0.117	9.842	10.943	2.782	1.001	100.31	$\frac{\text{HD}_2\alpha_4\text{A}_{\text{L}_1}}{\text{HD}_2\alpha_4\text{A}_{\text{L}_1}} = \frac{1}{22}$
	54.6	49.483	49.143	1.49/	15.978	0.065	9./11	18.982	2.808	1.816	100.34	HB2&4A_L1_S2
	/4.6	49.571	49.046	1.559	15.900	0.084	9.734	19.056	2.839	1.782	100.53	$HB2\&4A_L1_S2$
	94.6	49.573	49.048	1.537	16.004	0.065	9.844	18.947	2.836	1.719	100.52	HB2&4A_L1_S2
	114.6	49.485	49.251	1.558	15.906	0.074	9.571	19.074	2.844	1.723	100.23	HB2&4A_L1_S2
	134.6	49.565	49.222	1.494	15.921	0.075	9.679	19.143	2.801	1.667	100.34	HB2&4A_L1_S2
	154.6	49.521	49.331	1.506	15.849	0.076	9.658	19.151	2.830	1.600	100.19	HB2&4A_L1_S2
	174.6	49.725	49.218	1.508	15.804	0.103	9.850	19.067	2.851	1.599	100.51	HB2&4A L1 S2
	194.6	49.601	49.428	1.593	15.790	0.099	9.614	19.094	2.828	1.555	100.17	HB2&4A L1 S2
	214.6	49.743	49.563	1.427	15.876	0.046	9.619	19.033	2.857	1.579	100.18	HB2&4A_L1_S2
	234.6	49 481	49 270	1 548	15 841	0.063	9 661	19 172	2 917	1 529	100.21	HB2&4A_L1_S2
	254.6	49 657	49 276	1.539	16.010	0.009	9.679	19.050	2.917	1 481	100.21	HB2&4A_L1_S2
	254.0	49.057	49.270	1.537	15 952	0.059	0.857	19.050	2.007	1 / 00	100.30	$HB2\&4A_L1_S2$
	274.0	49.505	49.070	1.542	15.952	0.059	9.657	19.130	2.800	1.477	100.49	$\frac{11D2@4A_L1_S2}{11D2@4A_L1_S2}$
	294.0	49.034	49.299	1.333	15.941	0.030	9.703	19.152	2.800	1.433	100.50	$\frac{\text{HD}_2 \alpha 4A}{\text{HD}_2 \alpha 4A} = 1 \frac{52}{10}$
	314.6	49.612	49.194	1.458	16.013	0.0//	9.726	19.226	2.8/5	1.431	100.42	HB2&4A_L1_S2
	334.6	49.655	49.322	1.512	15.910	0.137	9.779	19.061	2.877	1.402	100.33	$HB2\&4A_L1_S2$
	354.6	49.695	49.404	1.499	15.932	0.077	9.732	19.107	2.875	1.374	100.29	HB2&4A_L1_S2
	374.6	49.710	49.393	1.547	15.926	0.038	9.795	19.074	2.878	1.350	100.32	HB2&4A_L1_S2
	394.6	49.726	49.381	1.562	15.842	0.040	9.833	19.072	2.935	1.334	100.35	HB2&4A_L1_S2
	414.6	49.681	49.094	1.549	16.013	0.078	9.870	19.145	2.916	1.335	100.59	HB2&4A_L1_S2
	434.6	49.683	49.196	1.529	15.909	0.093	9.891	19.124	2.884	1.375	100.49	HB2&4A L1 S2
	454.6	49.660	49.579	1.541	15.861	0.050	9.641	19.102	2.883	1.344	100.08	HB2&4A L1 S2
	474.6	49.751	49.195	1.535	16.024	0.041	9.790	19.150	2.903	1.363	100.56	HB2&4A L1 S2
	494.6	49 749	49 440	1 520	15 954	0.076	9 723	19 059	2.925	1 304	100 31	HB2&4A_L1_S2
	514.6	49 873	49 266	1.520	16.072	0.056	9 740	19.099	2.925	1 321	100.51	HB2&4A_L1_S1
	554.6	10.881	10.200	1.555	16 101	0.000	0 785	18 003	2.915	1.321	100.01	$HB2\&4A \downarrow 1 S1$
	504.6	49.001	49.540	1.514	15.046	0.095	9.765	10.993	2.870	1.200	100.55	$\frac{11D2@4A_L1_S1}{UD2@4A_L1_S1}$
	(24.0	49.032	49.037	1.570	15.940	0.040	9.039	10.941	2.074	1.521	00.00	$\frac{\text{HD}_2 \alpha_4 A_{\text{L}} \text{L}_{\text{S}}}{\text{HD}_2 \alpha_4 A_{\text{L}} \text{L}_{\text{S}}}$
	634.6	49.601	49.608	1.503	15.960	0.059	9.620	19.030	2.900	1.322	99.99	HB2&4A_L1_S1
	6/4.6	49.696	49.341	1.640	15.942	0.116	9.844	18.924	2.881	1.313	100.35	HB2&4A_L1_S1
	714.6	49.830	49.102	1.543	16.126	0.065	9.899	19.049	2.927	1.289	100.73	HB2&4A_L1_S1
	754.6	49.611	49.235	1.486	16.033	0.040	9.886	19.105	2.927	1.288	100.38	HB2&4A_L1_S1
	794.6	49.751	49.354	1.530	16.004	0.044	9.752	19.094	2.974	1.249	100.40	HB2&4A_L1_S1
	834.6	49.736	49.254	1.604	16.006	0.076	9.781	19.055	2.908	1.316	100.48	HB2&4A_L1_S1
	874.6	49.750	49.207	1.547	15.970	0.114	9.900	19.113	2.865	1.285	100.54	HB2&4A_L1_S1
	914.6	49.656	49.285	1.569	15.957	0.064	9.922	19.035	2.886	1.283	100.37	HB2&4A L1 S1
	954.6	49.699	49.336	1.625	15.957	0.048	9.747	19.078	2.925	1.283	100.36	HB2&4A L1 S1
	994.6	49.743	49.240	1.599	16.039	0.038	9.814	19.052	2.923	1.295	100.50	HB2&4A L1 S1
	1034.6	49.719	49.522	1.534	15.975	0.120	9.658	19.001	2.921	1.269	100.20	HB2&4A_L1_S1
	1074 6	49 838	49 540	1 516	15 944	0.042	9 695	19 079	2.874	1 310	100 30	HB2&4A_L1_S1
	1114.6	49 711	49 784	1 581	15 905	0.037	9.611	18 924	2 872	1 286	99.93	HB2 $\&$ 4 Δ I 1 S1
	1154.6	/0 038	10.701	1.501	16 120	0.007	0.887	10.023	2.072	1.200	100 71	HB2 $\&$ 1Λ 1 1 S1
	1104.6	40.716	40.451	1.347	15.076	0.077	0.007	10.025	2.823	1.270	100.71	$\frac{11D2@4A_{L1}S1}{UD2@4A_{L1}S1}$
	1194.0	49.710	49.431	1.477	16 110	0.007	9.000	19.050	2.039	1.204	100.27	$\frac{11D2@4A_L1_S1}{11D2@4A_L1_S1}$
	1254.0	49.749	49.140	1.580	10.119	0.088	9.841	19.039	2.901	1.272	100.01	$HD2@4A_L1_S1$
	12/4.6	49.515	49.264	1.559	16.079	0.033	9.729	19.175	2.883	1.278	100.25	HB2&4A_L1_S1
I	1314.6	49.511	49.614	1.518	15.914	0.012	9.822	19.025	2.824	1.272	99.90	HB2&4A_L1_S1
	1354.6	49.492	49.344	1.516	16.030	0.077	9.735	19.155	2.840	1.303	100.15	HB2&4A_L1_S1
	1394.6	49.577	49.249	1.489	16.062	0.099	9.796	19.128	2.897	1.282	100.33	HB2&4A_L1_S1
	1434.6	49.551	49.459	1.535	16.053	0.030	9.648	19.123	2.883	1.270	100.09	HB2&4A_L1_S1
ļ	1474.6	49.620	49.390	1.559	16.059	0.048	9.787	19.002	2.877	1.279	100.23	HB2&4A_L1_S1
ļ	1514.6	49.550	49.214	1.553	16.113	0.076	9.689	19.194	2.902	1.260	100.34	HB2&4A_L1 S1
I	-1396.9	48.849	48.880	1.438	15.901	0.090	9.613	18.811	2.716	2.550	99.97	HB2&4A L2 S3
I	-1356.9	48.860	48.850	1.478	15.902	0.042	9.671	18.784	2.697	2.576	100.01	HB2&4A_L2_S3
I	-1316.9	48 872	48 763	1.495	15 927	0.027	9 698	18 842	2 651	2 598	100 11	HB2&4A 1.2 S3
I	-1276.9	48 855	48 638	1 573	15 929	0.050	9 752	18 823	2 668	2.568	100.22	HB2&4A 1.2 S3
I	_1276.0	49 036	48 672	1 5/2	16 000	0.030	9.685	18 8/11	2.000	2.500	100.22	HB2&4A I 2 S2
	1104.0	40.001	10.012	1.544	16.000	0.037	0.704	10.041	2.004	2.337	100.30	$\frac{1102}{4} + \frac{12}{5} = \frac{102}{5} + \frac{102}{5} + \frac{102}{5} = 10$
I	-1190.9	49.091	40.020	1.334	10.007	0.029	9./04	10.002	2.701	2.328	100.47	пd2a4A_L2_83

-1156.9	48.949	48.691	1.514	16.001	0.065	9.668	18.830	2.680	2.551	100.26	HB2&4A_L2_S3
-1116.9	48.998	48.575	1.501	16.053	0.002	9.789	18.851	2.672	2.558	100.42	HB2&4A_L2_S3
-1076.9	49.061	48.779	1.481	15.882	0.055	9.622	18.933	2.693	2.555	100.28	HB2&4A_L2_S3
-1036.9	49.076	48.812	1.458	16.021	0.031	9.665	18.755	2.672	2.587	100.26	HB2&4A_L2_S3
-996.9	48.799	48.959	1.506	15.825	0.011	9.728	18.776	2.656	2.540	99.84	HB2&4A_L2_S3
-956.9	49.098	48.717	1.529	15.984	0.015	9.693	18.806	2.699	2.557	100.38	HB2&4A L2 S3
-916.9	48.984	48.724	1.515	15.954	0.092	9.699	18.745	2.658	2.613	100.26	HB2&4A L2 S3
-876.9	48.984	48.822	1.508	15.971	0.025	9.650	18.836	2.627	2.561	100.16	HB2&4A L2 S3
-836.9	48.923	48.771	1.518	15.956	0.077	9.681	18.799	2.636	2.563	100.15	HB2&4A L2 S3
-796.9	48.976	48.997	1.454	15.929	0.043	9.606	18.723	2.687	2.561	99.98	HB2&4A L2 S3
-756.9	49.042	48.874	1.502	15.882	0.086	9.704	18.764	2.654	2.535	100.17	HB2&4A L2 S3
-716.9	48.892	48.668	1.523	15.976	0.046	9.758	18.813	2.701	2.516	100.22	HB2&4A L2 S3
-676.9	49.152	48.691	1.617	15.932	0.030	9.697	18.791	2.659	2.583	100.46	HB2&4A L2 S3
-636.9	48.890	48.899	1.538	15.828	0.079	9.630	18.770	2.688	2.568	99.99	HB2&4A L2 S3
-596.9	49.143	48.705	1.557	16.084	0.004	9.727	18.745	2.663	2.515	100.44	HB2&4A L2 S3
-556.9	49.083	48.764	1.577	15.861	0.062	9.649	18.905	2.651	2.531	100.32	HB2&4A L2 S3
-516.9	49.089	48,709	1.574	15.962	0.075	9.695	18.775	2.635	2.575	100.38	HB2&4A_L2_S3
-496.9	48.970	48.544	1.487	16.102	0.042	9.775	18.806	2.690	2.553	100.43	HB2&4A_L2_S2
-476.9	49.065	48.767	1.582	15.929	0.045	9.756	18.753	2.624	2.545	100.30	HB2&4A_L2_S2
-456.9	49 122	48 531	1 524	16 128	0.070	9.617	18 941	2.664	2.526	100.59	HB2&4A_L2_S2
-436.9	49 164	48 691	1 579	15 974	0.080	9 741	18 771	2 680	2 485	100.47	HB2&4A_L2_S2
-416.9	49 095	48 591	1.561	15 985	0.000	9 757	18 883	2.667	2.105	100.17	HB2&4A_L2_S2 HB2&4A_L2_S2
-396.9	49 158	48 655	1.556	15.958	0.039	9 897	18 782	2.672	2.173	100.50	HB2&4A_L2_S2 HB2&4A_L2_S2
-376.9	49 188	48 853	1.500	15,990	0.038	9.665	18 808	2.672	2.111	100.30	HB2&4A_L2_S2 HB2&4A_L2_S2
-356.9	49 129	48 855	1.509	16 019	0.030	9.620	18 775	2.687	2.115	100.27	HB2&4A_L2_S2 HB2&4A_L2_S2
-336.9	49 319	48 811	1.502	15 921	0.040	9 708	18 832	2.607	2.110	100.27	HB2&4A_L2_S2 HB2&4A_L2_S2
-316.9	49 248	48 786	1.570	15 939	0.010	9.758	18 808	2.676	2.122	100.51	HB2&1A_L2_52 HB2&4A_L2_S2
-296.9	49 276	48 723	1.555	16 014	0.020	9 756	18 735	2.070	2.451	100.40	HB2&4A_L2_S2 HB2&4A_L2_S2
-276.9	49.104	48 693	1.051	16.029	0.020	9.806	18 883	2.710	2.304	100.55	HB2&4A_L2_S2 HB2&4A_L2_S2
-276.9	49 262	48.839	1.401	16.025	0.030	9.761	18.005	2.704	2.373	100.41	HB2&4A_L2_S2 HB2&4A_L2_S2
-236.9	49.202	48.057	1.511	16.000	0.008	0 720	18 835	2.714	2.333	100.42	$HB2\&4A_L2_S2$
-230.7	10 231	40.771	1.507	16.016	0.008	9.729	18 750	2.754	2.350	100.38	$HB2\&4A_L2_S2$
106.0	40 227	40.061	1.551	16.023	0.058	0.706	18 710	2.074	2.334	100.23	$HD2@4A_L2_32$
-190.9	49.237	49.001	1.490	15.023	0.071	9.700	18.710	2.711	2.220	100.18	$HB2&4A_L2_S2$
-170.9	49.290	40.945	1.403	16.040	0.051	9.713	10.0/4	2.743	2.245	100.55	$HD2@4A_L2_S2$
-130.9	49.230	48.820	1.515	16.049	0.039	9.803	10./03	2.745	2.225	100.41	$\frac{\text{HD}2\alpha4A}{\text{HD}284A} \frac{\text{L}2}{\text{S}2}$
-130.9	49.547	40.007	1.384	16.032	0.074	9.847	18.//0	2.744	2.157	100.34	$\frac{\text{HD}2\alpha4A}{\text{HD}284A} \frac{\text{L}2}{\text{S}2}$
-110.9	49.295	40.015	1.001	16.193	0.097	9.709	10./90	2.088	2.143	100.48	$\frac{\text{HD}2\alpha4A}{\text{HD}284A} \frac{\text{L}2}{\text{S}2}$
-90.9	49.333	48./33	1.514	16.184	0.005	9.840	18.022	2.721	2.102	100.38	$\frac{\text{HD}_2 \alpha 4\text{A}_{\text{L}_2} 52}{\text{HD}_2 \alpha 4\text{A}_{\text{L}_2} 52}$
-/0.9	49.239	40.073	1.397	10.034	0.030	9.722	18.910	2.740	2.081	100.38	$\frac{\text{HD}_2 \alpha 4\text{A}_{\text{L}_2} 52}{\text{HD}_2 \alpha 4\text{A}_{\text{L}_2} 52}$
-30.9	49.300	40.904	1.4/0	15.994	0.074	9.714	18.932	2.780	2.020	100.38	$HD2@4A_L2_52$
-30.9	49.300	48.903	1.577	16.094	0.001	9.747	10.927	2.709	1.962	100.40	$\frac{\text{HD}_2 \alpha 4\text{A}_{\text{L}_2} 52}{\text{HD}_2 \alpha 4\text{A}_{\text{L}_2} 52}$
-10.9	49.285	49.208	1.518	15.092	0.030	9.629	18.81/	2.739	1.903	100.02	$HB2@4A_L2_S2$
2.1 22.1	49.518	49.550	1.515	15.962	0.042	9.390	10.023	2.800	1.000	99.90	$\frac{\text{HD}_2 \alpha 4\text{A}_{\text{L}_2} 52}{\text{HD}_2 \alpha 4\text{A}_{\text{L}_2} 52}$
25.1 42.1	49.400	49.040	1.384	10.121	0.092	9.399	10.908	2.789	1.802	100.30	$HD2@4A_L2_52$
45.1	49.452	49.207	1.545	15.915	-0.007	9.715	19.01/	2.774	1.834	100.25	$HB2@4A_L2_S2$
03.1	49.429	49.219	1.408	15.982	0.054	9.759	18.940	2.795	1.750	100.21	$HB2\alpha 4A_L2_S2$
85.1	49.398	49.436	1.548	15.835	0.010	9.6/1	18.923	2.824	1.753	99.96	$HB2@4A_L2_S2$
103.1	49.488	49.138	1.563	16.000	0.056	9.783	18.922	2.795	1./42	100.35	$HB2@4A_L2_S2$
123.1	49.505	48.852	1.601	15.907	0.153	9.794	19.170	2.827	1.696	100.65	$HB2@4A_L2_S2$
145.1	49.524	49.170	1.538	15.954	0.076	9.695	19.071	2.839	1.050	100.35	$HB2\alpha 4A_L2_S2$
163.1	49.466	49.110	1.530	16.048	0.050	9.690	19.054	2.896	1.623	100.36	HB2&4A_L2_S2
185.1	49.569	49.230	1.5/1	15.934	0.074	9.795	19.021	2.800	1.5//	100.34	$\Pi B 2 \alpha 4 A L 2 S 2$
203.1	49.595	49.286	1.535	15.956	0.056	9.740	19.042	2.812	1.5/4	100.31	HB2&4A_L2_S2
223.1	49.741	49.073	1.464	15.945	0.031	9.930	19.128	2.880	1.550	100.67	HB2&4A_L2_S2
243.1	49.664	49.267	1.570	16.025	0.115	9.677	19.000	2.815	1.532	100.40	HB2&4A_L2_S2
263.1	49.448	49.396	1.446	15.953	0.071	9.699	19.101	2.8/5	1.460	100.05	HB2&4A_L2_S2
283.1	49.696	49.160	1.564	16.013	0.063	9.780	19.113	2.862	1.446	100.54	HB2&4A_L2_S2
303.1	49.660	49.455	1.536	15.779	0.075	9.782	19.090	2.855	1.428	100.21	HB2&4A_L2_S2
323.1	49.579	49.279	1.505	16.091	0.108	9.642	19.117	2.851	1.408	100.30	HB2&4A_L2_S2
343.1	49.481	49.355	1.514	16.014	0.050	9.626	19.151	2.899	1.392	100.13	HB2&4A_L2_S2
363.1	49.605	49.297	1.540	16.000	0.046	9.723	19.114	2.880	1.400	100.31	HB2&4A_L2_S2
383.1	49.707	49.411	1.594	15.898	0.046	9.694	19.059	2.886	1.413	100.30	HB2&4A_L2_S2
403.1	49.713	49.480	1.546	15.959	0.050	9.732	19.013	2.889	1.331	100.23	HB2&4A_L2_S2

423.1	49.749	49.453	1.466	16.024	0.016	9.798	19.037	2.883	1.323	100.30	HB2&4A_L2_S2
443.1	49.545	49.384	1.481	16.051	0.029	9.701	19.103	2.894	1.356	100.16	HB2&4A L2 S2
463.1	49.737	49.537	1.502	15.913	0.067	9.692	19.100	2.871	1.317	100.20	HB2&4A L2 S2
483.1	49.592	49.410	1.561	15.938	0.027	9.680	19.181	2.870	1.333	100.18	HB2&4A_L2_S2
503.1	49 651	49 418	1 539	15 967	0.069	9 727	19.078	2 872	1 330	100.23	HB2&4A I 2 S1
543.1	49 765	49 350	1.532	15.969	0.009	9 758	19.070	2.072	1 320	100.23	HB2&4A_12_S1
583.1	40.703	49.550	1.552	15.007	0.105	0.605	10.053	2.922	1.320	100.41	HP2&4A I 2 SI
622.1	49.711	49.341	1.300	15.010	0.007	9.095	19.033	2.094	1.2/1	100.17	$\frac{11D2@4A_L2_51}{11D2@4A_L2_51}$
025.1	49.739	49.494	1.404	16.005	0.097	9.008	19.130	2.003	1.313	100.24	$HD2@4A_L2_SI$
663.1	49.736	49.434	1.4/0	16.085	0.121	9.706	18.998	2.910	1.2//	100.30	HB2&4A_L2_S1
703.1	49.788	49.477	1.523	16.025	0.059	9.810	18.964	2.843	1.300	100.31	HB2&4A_L2_S1
783.1	49.805	49.478	1.539	15.976	0.059	9.778	18.981	2.907	1.283	100.33	HB2&4A_L2_S1
823.1	49.762	49.414	1.561	15.990	0.088	9.733	19.095	2.859	1.260	100.35	HB2&4A_L2_S1
863.1	49.845	49.503	1.463	15.933	0.017	9.817	19.069	2.883	1.315	100.34	HB2&4A_L2_S1
903.1	49.784	49.770	1.537	15.923	-0.001	9.670	18.996	2.836	1.270	100.01	HB2&4A_L2_S1
943.1	49.849	49.491	1.506	15.987	0.099	9.711	19.037	2.862	1.308	100.36	HB2&4A L2 S1
983.1	49.629	49.244	1.561	16.151	0.080	9.731	19.051	2.896	1.287	100.38	HB2&4A L2 S1
1023.1	49.786	49.263	1.558	16.018	0.097	9.794	19.081	2.922	1.267	100.52	HB2&4A_L2_S1
1063.1	49 621	49 351	1 556	15 980	0.018	9 877	19 073	2.858	1 286	100.27	HB2&4A_L2_S1
1103.1	49 843	49 386	1 533	16.083	0.040	9 751	19.075	2.000	1 242	100.27	HB2&4A_L2_S1
11/3 1	49.045	49.300	1.555	16.005	0.040	0.827	10.034	2.914	1.242	100.40	$HB2\&4A \downarrow 2 S1$
1143.1	49.773	49.297	1.525	15.040	0.099	9.027	19.034	2.092	1.200	100.40	$\frac{11D2@4A_L2_S1}{11D2@4A_L2_S1}$
1105.1	49.700	49.323	1.38/	15.949	0.044	9.707	10.979	2.809	1.203	100.18	$HD2@4A_L2_SI$
1223.1	49.64/	49.281	1.5/6	15.983	0.090	9.880	19.078	2.854	1.258	100.37	HB2&4A_L2_SI
1263.1	49.714	49.313	1.544	15.986	0.061	9.911	19.026	2.875	1.284	100.40	HB2&4A_L2_S1
1303.1	49.825	49.266	1.579	15.979	0.080	9.859	19.083	2.895	1.260	100.56	HB2&4A_L2_S1
1343.1	49.612	49.533	1.559	16.015	0.043	9.765	18.941	2.882	1.263	100.08	HB2&4A_L2_S1
1383.1	49.569	49.392	1.517	16.013	0.098	9.796	19.046	2.860	1.276	100.18	HB2&4A_L2_S1
1423.1	49.624	49.298	1.501	16.115	0.099	9.771	19.093	2.848	1.275	100.33	HB2&4A_L2_S1
1463.1	49.563	49.387	1.600	16.042	0.008	9.800	19.041	2.848	1.276	100.18	HB2&4A L2 S1
1503.1	49.496	49.259	1.568	16.093	0.119	9.783	19.039	2.851	1.288	100.24	HB2&4A L2 S1
-1418 3	48 780	48 630	1 610	15 850	0.033	9 868	18 803	2.681	2 525	100.15	HB2&4A_L3_S3
-1378.3	48 876	48 635	1 542	15.000	0.032	9.653	18 975	2.680	2.525	100.12	HB2&4A_L3_S3
-1338.3	/8 001	18 596	1.312	15.900	0.052	9.695	18 007	2.600	2.577	100.21	$HB2 & M_{L3} \\ S3$
1208.2	40.991	40.390	1.472	16.016	0.100	9.005	10.997	2.001	2.551	100.40	$\frac{11D2@4A_L5_55}{11D2@4A_L2.52}$
-1298.3	48.900	48.472	1.550	15.000	0.023	9.0/1	19.015	2.000	2.581	100.45	$HB2\alpha 4A L3 S3$
-1258.3	48.727	48.838	1.515	15.902	0.055	9.667	18.845	2.616	2.562	99.89	HB2&4A_L3_S3
-1218.3	49.030	48.593	1.539	15.985	0.036	9.603	19.020	2.679	2.546	100.44	HB2&4A_L3_S3
-1178.3	49.083	48.469	1.624	15.954	0.063	9.703	18.914	2.737	2.537	100.61	HB2&4A_L3_S3
-1138.3	49.015	48.490	1.545	16.100	0.063	9.687	18.869	2.684	2.563	100.53	HB2&4A_L3_S3
-1098.3	48.890	48.755	1.615	15.751	0.041	9.779	18.805	2.691	2.563	100.13	HB2&4A_L3_S3
-1058.3	48.824	48.729	1.498	15.952	-0.007	9.611	18.975	2.653	2.587	100.10	HB2&4A_L3_S3
-1018.3	48.906	48.707	1.517	15.900	0.078	9.771	18.769	2.689	2.570	100.20	HB2&4A L3 S3
-978.3	49.041	48.855	1.498	15.923	0.079	9.603	18.808	2.685	2.551	100.19	HB2&4A L3 S3
-938.3	48.882	48.871	1.591	15.768	0.023	9.737	18.808	2.680	2.522	100.01	HB2&4A L3 S3
-898.3	48.876	48.620	1.556	15.914	0.045	9.712	18.873	2,705	2.576	100.26	HB2&4A_L3_S3
-858.3	49 016	48 735	1 522	15 980	0.073	9 621	18 866	2.661	2.544	100.28	HB2&4A_L3_S3
-818.3	48 996	48 660	1 445	16.079	0.083	9 734	18 796	2 652	2 552	100.34	HB2&4A_L3_S3
-778.3	40.770	48.801	1.510	15 008	-0.003	0 565	18 871	2.052	2.552	100.34	HB2&4A_L3_S3
720 2	49.010	40.021	1.510	15.001	-0.015	0.756	10.071	2.077	2.552	100.20	$HD2&4A_L5_55$
-/38.5	40.902	48.304	1.365	15.991	0.040	9.750	10.0/1	2.098	2.332	100.48	$\frac{\text{HD}_2 \alpha 4\text{A}_{\text{L}_2 \text{S}_2}}{\text{HD}_2 \alpha 4\text{A}_{\text{L}_2 \text{S}_2}}$
-098.3	48.979	48.790	1.504	15.981	0.044	9.759	18./33	2.003	2.525	100.19	HB2&4A_L3_S3
-658.3	48.894	48.56/	1.538	15.989	0.061	9./12	18.914	2.649	2.572	100.33	HB2&4A_L3_S3
-618.3	48.976	48.530	1.622	15.943	0.078	9.691	18.911	2.692	2.534	100.45	HB2&4A_L3_S3
-578.3	48.920	48.408	1.588	16.061	0.072	9.698	18.993	2.632	2.548	100.51	HB2&4A_L3_S3
-538.3	48.946	48.772	1.532	16.007	0.061	9.701	18.771	2.665	2.490	100.17	HB2&4A_L3_S3
-498.3	49.024	48.879	1.567	15.799	0.088	9.665	18.810	2.672	2.521	100.15	HB2&4A_L3_S3
-478.3	48.855	48.681	1.539	16.056	0.058	9.739	18.757	2.653	2.517	100.17	HB2&4A L3 S2
-458.3	49.078	48.799	1.513	15.860	0.058	9.713	18.933	2.637	2.487	100.28	HB2&4A L3 S2
-438.3	49.064	48.693	1.574	15.855	0.117	9.720	18.883	2.657	2.501	100.37	HB2&4A L3 S2
-398 3	49 124	48 690	1 564	16 009	0.038	9 765	18 861	2,654	2,422	100.43	HB2&4A 13 S2
-378 3	49 008	48 578	1 593	16 125	0.081	9 708	18 850	2.638	2.122	100.43	HB2&44 13 S2
_358.2	10.000	10.070	1.575	16 022	0.001	0 600	18 770	2.050	2.727	100.45	HB2 & AA I 2 C2
-338.3	49.070	40.010	1.30/	16.013	0.040	7.099	10.//U	2.082	2.400 2.420	100.27	$\frac{1102}{44} = \frac{12}{52}$
-338.5	49.031	40.940	1.310	10.013	0.033	9.043	10.721	2.085	2.430	100.11	$HD2@4A_L3_S2$
-318.3	49.213	48.626	1.459	10.064	0.008	9./48	18.980	2./18	2.397	100.59	нв2&4A_L3_S2
-298.3	49.108	48.701	1.586	15.973	0.069	9.678	18.846	2.719	2.428	100.41	HB2&4A_L3_S2
-278.3	49.125	48.854	1.602	16.058	0.048	9.694	18.726	2.680	2.339	100.27	HB2&4A_L3_S2

-258.3	49.004	48.867	1.442	16.045	0.050	9.663	18.869	2.742	2.324	100.14	HB2&4A_L3_S2
-238.3	49.162	48.686	1.601	16.138	0.082	9.681	18.762	2.718	2.332	100.48	HB2&4A L3 S2
-218.3	49.242	48.701	1.516	16.101	0.047	9.875	18.769	2.725	2.267	100.54	HB2&4A L3 S2
-198.3	49.174	48.837	1.567	16.128	0.120	9.600	18.786	2.688	2.274	100.34	HB2&4A L3 S2
-178.3	49 101	48 877	1 523	15 970	0.074	9 738	18 862	2 716	2 240	100.22	HB2&4A_L3_S2
-158.3	49 134	48 952	1.525	15 983	0.078	9.685	18 824	2.710	2.210	100.22	HB2&1A_L3_S2 HB2&4A_L3_S2
120.2	40 102	40.002	1.572	16.041	0.078	0.626	10.024	2.733	2.177	100.10	$\frac{11D2@4A}{L3}$
-130.5	49.192	49.005	1.529	16.041	0.078	9.020	10.020	2.710	2.100	100.19	$HD2@4A_L5_52$
-118.3	49.188	49.089	1.588	16.032	0.009	9.609	18.792	2.759	2.122	100.10	HB2&4A_L3_S2
-98.3	49.178	48.980	1.503	16.085	0.051	9.515	18.992	2.780	2.095	100.20	HB2&4A_L3_S2
-78.3	49.115	48.874	1.540	15.976	0.086	9.738	19.017	2.737	2.033	100.24	HB2&4A_L3_S2
-58.3	49.285	49.033	1.478	15.985	0.080	9.766	18.878	2.719	2.062	100.25	HB2&4A_L3_S2
-38.3	49.228	49.078	1.543	15.919	0.063	9.766	18.928	2.748	1.956	100.15	HB2&4A_L3_S2
-18.3	49.197	48.870	1.553	16.007	0.048	9.851	18.917	2.780	1.975	100.33	HB2&4A_L3_S2
1.7	49.290	49.349	1.533	15.888	0.063	9.605	18.867	2.756	1.941	99.94	HB2&4A L3 S2
21.7	49.305	49.276	1.445	15.885	-0.005	9.688	19.018	2.808	1.886	100.03	HB2&4A L3 S2
41.7	49.295	49.002	1.527	15.882	0.069	9.944	18.974	2.765	1.836	100.29	HB2&4A L3 S2
61.7	49 603	49 114	1 530	15 821	0.077	9 844	19 019	2 804	1 791	100 49	HB2&4A_L3_S2
81.7	49 334	49 223	1.550	15.021	0.061	9.697	19.019	2.001	1.755	100.12	HB2&1A_L3_S2 HB2&4A_L3_S2
101.7	40.264	40.068	1.515	15.847	0.001	0.800	10 11/	2.004	1.755	100.11	HB2&4A I 3 S2
101.7	49.204	49.000	1.500	16.040	0.034	9.800	19.114	2.042	1./10	100.20	$\frac{11D2@4A}{L3}$
121.7	49.393	49.080	1.372	15.040	0.040	9.782	19.024	2.775	1.085	100.31	$HD2@4A_L3_S2$
141./	49.540	49.309	1.548	15.894	0.076	9.639	19.074	2.838	1.622	100.23	HB2&4A_L3_S2
161.7	49.401	49.254	1.555	15.837	0.066	9.699	19.127	2.814	1.647	100.15	HB2&4A_L3_S2
181.7	49.435	49.108	1.559	15.974	0.028	9.782	19.110	2.835	1.607	100.33	HB2&4A_L3_S2
201.7	49.572	49.235	1.481	15.937	0.046	9.710	19.139	2.848	1.604	100.34	HB2&4A_L3_S2
221.7	49.425	48.968	1.532	16.035	0.098	9.794	19.166	2.865	1.542	100.46	HB2&4A_L3_S2
241.7	49.521	49.249	1.453	15.992	-0.003	9.786	19.122	2.860	1.542	100.27	HB2&4A_L3_S2
261.7	49.383	49.210	1.577	16.029	0.101	9.635	19.119	2.866	1.465	100.17	HB2&4A L3 S2
281.7	49.544	49.417	1.581	15.938	0.065	9.676	18.989	2.866	1.469	100.13	HB2&4A L3 S2
301.7	49 590	49 291	1 492	15 925	0 044	9 7 3 7	19 200	2 890	1 421	100 30	HB2&4A_L3_S2
321.7	49 543	49 404	1 490	15 915	0.082	9 693	19.031	2.936	1 450	100.14	HB2&4A_L3_S2
341.7	49 688	49 391	1 540	15.915	0.002	9 775	19.051	2.950	1 424	100.30	HB2&4A_13_S2
361.7	49.000	10 383	1.545	15.853	0.054	9.769	10.038	2.000	1.425	100.30	HB2&4A I 3 S2
201.7	40.606	40.256	1.540	15.055	0.008	0.701	10.055	2.910	1.425	100.35	$\frac{11D2@4A}{1D2@4A} = \frac{12}{52}$
201.7	49.000	49.550	1.548	15.957	0.045	9.784	19.033	2.903	1.333	100.23	$HD2@4A_L3_S2$
401.7	49.643	49.243	1.550	15.920	0.072	9./3/	19.213	2.899	1.301	100.40	HB2&4A_L3_S2
421.7	49.590	49.285	1.515	15.976	0.080	9.697	19.199	2.895	1.352	100.30	HB2&4A_L3_S2
441.7	49.626	49.316	1.542	16.011	0.087	9.799	19.056	2.887	1.303	100.31	HB2&4A_L3_S2
461.7	49.684	49.623	1.502	15.980	-0.043	9.740	19.000	2.905	1.294	100.06	HB2&4A_L3_S2
481.7	49.793	49.164	1.580	15.980	0.059	9.888	19.093	2.910	1.326	100.63	HB2&4A_L3_S2
501.7	49.731	49.595	1.477	15.919	0.032	9.648	19.078	2.906	1.344	100.14	HB2&4A_L3_S2
521.7	49.686	49.294	1.518	15.947	0.042	9.790	19.161	2.923	1.326	100.39	HB2&4A L3 S1
561.7	49.816	49.320	1.606	15.956	0.073	9.795	19.002	2.931	1.317	100.50	HB2&4A L3 S1
601.7	49.843	49.181	1.598	16.024	0.057	9.759	19.176	2.932	1.273	100.66	HB2&4A_L3_S1
641.7	49.587	49.621	1.459	15.927	0.059	9.754	19.001	2.870	1.310	99.97	HB2&4A_L3_S1
681.7	49 901	49 239	1 526	16.025	0.123	9 800	19.085	2 9 1 9	1 285	100.66	HB2&4A_L3_S1
721.7	49 803	49 435	1 595	15 982	0.077	9 718	19.000	2 887	1 304	100.37	HB2&44 I 3 S1
761.7	19.005	19.155	1.575	15.902	0.086	9.710	10.037	2.007	1.258	100.37	HB2 & 1A L3 S1
201.7	40 757	40.654	1.302	15.010	0.000	0.665	10.059	2.074	1.250	100.52	$\frac{11D2@4A}{1D2@4A} = \frac{12}{51}$
001.7	49.737	49.034	1.400	15.919	0.084	9.003	19.038	2.691	1.203	100.10	$HD2@4A_L3_S1$
841./	49.885	49.461	1.555	16.111	0.029	9.731	18.933	2.882	1.300	100.42	HB2&4A_L3_S1
881.7	49.733	49.415	1.575	15.951	0.076	9.797	19.017	2.895	1.274	100.32	HB2&4A_L3_S1
921.7	49.650	49.399	1.512	16.086	0.072	9.661	19.108	2.889	1.272	100.25	HB2&4A_L3_S1
961.7	49.700	49.190	1.532	16.034	0.090	9.926	19.002	2.943	1.283	100.51	HB2&4A_L3_S1
1001.7	49.722	49.288	1.534	16.157	0.046	9.719	19.129	2.875	1.253	100.43	HB2&4A_L3_S1
1041.7	49.708	49.169	1.592	16.132	0.101	9.843	18.990	2.877	1.296	100.54	HB2&4A_L3_S1
1081.7	49.582	49.314	1.522	16.018	0.031	9.843	19.078	2.916	1.278	100.27	HB2&4A L3 S1
1121.7	49.660	49.430	1.580	16.079	0.020	9.783	18.965	2.875	1.270	100.23	HB2&4A L3 S1
1161.7	49.538	49.570	1.492	16.061	0.074	9.565	19.101	2.853	1.284	99.97	HB2&4A L3 S1
1201 7	49 628	49 274	1 642	16 072	0.066	9 804	18 980	2,902	1 260	100.35	HB2&4A_L3_S1
1201.7	49 522	49 650	1 476	15 979	0.040	9 663	19.028	2.202	1 200	99.86	HB2&4A I 3 S1
1241.7	40 550	40.070	1.770	16 005	0.040	0 772	10 100	2.000	1 204	100 /0	$HB2 \mathscr{R}^{I} \Lambda I 2 \mathfrak{S}^{I}$
1201./	47.337	47.0/0	1.552	10.093	0.110	7.//3	17.100	2.077 2.077	1.200	00.07	$\frac{1102004A}{1000000000000000000000000000000000000$
1321./	49.308	49.398	1.500	13.983	0.055	9.81/	19.00/	2.89/	1.282	99.97 100 57	$IID2\alpha4A_L3SI$
1361.7	49.629	49.057	1.518	16.098	0.106	9.942	19.101	2.905	1.2/4	100.57	HB2@4A_L3_SI
1401.7	49.486	49.460	1.525	16.072	-0.011	9.759	19.049	2.849	1.297	100.03	HB2&4A_L3_S1
1441.7	49.509	49.052	1.576	16.128	0.050	9.866	19.229	2.840	1.260	100.46	HB2&4A_L3_S1

I	1481.7	49.419	49.262	1.526	16.047	0.027	9.801	19.226	2.840	1.272	100.16	HB2&4A_L3_S1
	1521.7	49.478	49.487	1.496	16.075	0.031	9.745	19.038	2.861	1.267	99.99	HB2&4A_L3_S1
	-1431.2	49.209	48.612	1.573	15.829	0.028	9.766	18.916	2.714	2.561	100.60	HB2&4A_L4_S3
	-1391.2	49.006	48.650	1.498	15.810	0.048	9.756	18.982	2.726	2.529	100.36	HB2&4A L4 S3
	-1351.2	48.989	48.532	1.549	15.845	0.038	9.848	18.908	2.706	2.575	100.46	HB2&4A L4 S3
	-1271.2	49.135	48.639	1.516	15.935	0.040	9.680	18.894	2.705	2.592	100.50	HB2&4A L4 S3
	-1231.2	49.163	48.685	1.555	15.930	0.059	9.713	18.849	2.664	2.546	100.48	HB2&4A L4 S3
	-1191.2	49.167	48.758	1.582	15.877	0.019	9.657	18.837	2.685	2.586	100.41	HB2&4A_L4_S3
	-1151.2	49 107	48 510	1.530	15 821	0.063	9 804	19.015	2.000	2 548	100.60	HB2&4A I 4 S3
	-1111 2	48 966	48 674	1.550	15.021	0.005	9.682	18.942	2.710	2.510	100.00	HB2&4A_14_S3
	1071.2	40.124	18 557	1.527	16.009	0.074	0.670	18 885	2.702	2.577	100.27	
	1031.2	49.124	40.557	1.590	15.008	0.008	9.079	18.005	2.001	2.545	100.37	$HB2&4A_L4_SS$
	-1051.2	40.990	40.701	1.500	15.0/1	0.058	9.030	10.970	2.052	2.333	100.30	$\frac{1102@4A}{14}$
	-991.2	40.939	40.030	1.304	15.900	0.003	9.089	18.995	2.032	2.300	100.30	$\frac{1102}{44} = \frac{14}{5}$
	-931.2	49.024	48.708	1.408	15.941	0.018	9.720	10.939	2.033	2.551	100.52	$\frac{112}{4} \frac{14}{5}$
	-911.2	49.103	48.832	1.525	15.898	0.034	9.722	18.804	2.629	2.556	100.27	HB2&4A_L4_S3
	-8/1.2	49.213	48.506	1.549	15.928	0.044	9.826	18.944	2.683	2.520	100.71	HB2&4A_L4_S3
	-831.2	49.051	48.745	1.453	16.042	0.069	9.612	18.934	2.631	2.514	100.31	HB2&4A_L4_S3
	-751.2	49.074	48.803	1.446	15.872	0.035	9.749	18.885	2.648	2.563	100.27	HB2&4A_L4_S3
	-711.2	49.097	48.594	1.589	15.916	0.080	9.723	18.871	2.698	2.529	100.50	HB2&4A_L4_S3
	-671.2	49.085	48.473	1.561	16.109	0.061	9.675	18.921	2.652	2.549	100.61	HB2&4A_L4_S3
	-631.2	49.271	48.481	1.499	16.004	0.066	9.662	19.099	2.652	2.537	100.79	HB2&4A_L4_S3
	-591.2	49.068	48.731	1.571	15.866	0.109	9.731	18.791	2.630	2.571	100.34	HB2&4A_L4_S3
	-551.2	49.032	48.801	1.522	15.904	0.115	9.662	18.826	2.634	2.536	100.23	HB2&4A_L4_S3
	-531.2	49.125	48.803	1.511	15.923	0.094	9.611	18.912	2.633	2.513	100.32	HB2&4A_L4_S2
	-511.2	49.123	48.757	1.555	15.903	0.016	9.612	18.940	2.650	2.567	100.37	HB2&4A_L4_S2
	-491.2	49.105	48.608	1.582	16.036	0.071	9.724	18.797	2.685	2.497	100.50	HB2&4A_L4_S2
	-471.2	49.173	48.703	1.540	15.925	0.066	9.724	18.815	2.697	2.530	100.47	HB2&4A L4 S2
	-451.2	49.099	48.760	1.608	15.976	0.053	9.625	18.815	2.671	2.493	100.34	HB2&4A L4 S2
	-431.2	49.250	48.585	1.475	16.125	0.055	9.736	18.892	2.676	2.458	100.67	HB2&4A L4 S2
	-411.2	49.055	48.687	1.534	15.887	0.091	9.712	18.909	2.688	2.492	100.37	HB2&4A L4 S2
	-391.2	49.209	48.751	1.541	15.987	0.052	9.629	18.904	2.655	2.482	100.46	HB2&4A L4 S2
	-371.2	49.197	48.747	1.473	15.959	0.088	9.743	18.872	2.658	2.460	100.45	HB2&4A L4 S2
	-351.2	49.287	48,750	1.488	15.935	0.040	9.724	18.915	2.696	2.453	100.54	HB2&4A_L4_S2
	-331.2	49.258	48.825	1.506	15.978	0.099	9.665	18.907	2.628	2.393	100.43	HB2&4A_L4_S2
	-311.2	49 168	48 637	1 426	16 030	0 143	9 693	18 940	2.736	2 396	100 53	HB2&4A_L4_S2
	-291.2	49 077	48 910	1 478	15 907	0.022	9 780	18 852	2.701	2.350	100.17	HB2&4A I.4 S2
	-271.2	49 289	48 798	1 512	15 989	0.096	9 668	18 858	2.702	2.377	100.49	HB2&4A I.4 S2
	-251.2	49 263	48 669	1 593	16.063	0.078	9.668	18 873	2.702	2.350	100.19	HB2&4A_L4_S2
	-231.2	49 332	48 848	1.575	16.148	0.070	9.600	18 759	2.700	2.300	100.39	HB2&4A_14_S2
	-231.2	49 263	48 836	1.545	15 950	0.057	9.718	18 848	2.704	2.300	100.40	HB2&4A I 4 S2
	-211.2	49.205	48.625	1.517	16 132	0.032	9.643	10.040	2.075	2.20)	100.45	HB2&4A I 4 S2
	171.2	40.320	48.025	1.517	15 005	0.013	0.766	19.003	2.737 2.710	2.310	100.70	$HD2@4A_L4_52$
	-1/1.2	49.309	40.052	1.509	16.056	0.092	9.700	18.792	2.710	2.245	100.46	$\frac{11112004A}{1102004A} = \frac{14}{52}$
	-131.2	49.500	40.027	1.525	15.067	0.010	9.039	10.950	2.091	2.215	100.41	$\frac{11112004A}{1102004A} = \frac{14}{52}$
l	-131.2	49.202	47.032	1.309	15.90/	0.042	7.04Z	10.0/0	2.702	2.130	100.25	$\frac{1102}{4} \times \frac{14}{5} \times \frac{102}{4} \times \frac{14}{5} \times \frac{14}{$
	-111.2	49.332	40.9/0	1.415	15.981	0.078	9.810	10.912	2.700	2.122	100.55	$\frac{1102 \times 4A}{14} = 52$
ļ	-71.2	47.319	40./13	1.33/	16.012	0.112	7./49	10.798	2.743	2.110	100.00	$\frac{1102004A}{1102004A} = \frac{14}{52}$
	-/1.2	49.4/4	49.058	1.540	16.012	0.019	9.737	18.833	2.728	2.073	100.42	$HB2\alpha 4A_L4_S2$
	-51.2	49.248	48.840	1.333	15.001	0.060	9.731	18.991	2.800	2.015	100.41	$HB2\alpha 4A_L4_S2$
	-31.2	49.356	49.111	1.484	15.886	0.037	9.735	19.044	2.758	1.945	100.25	$HB2@4A_L4_S2$
	-11.2	49.392	48.855	1.5/8	16.090	0.059	9.656	19.000	2.790	1.9/1	100.54	HB2&4A_L4_S2
	8.8	49.417	49.058	1.487	16.048	0.099	9.642	19.026	2.737	1.904	100.36	HB2&4A_L4_S2
	28.8	49.386	49.052	1.444	16.088	0.061	9.759	19.002	2.739	1.856	100.33	HB2&4A_L4_S2
ļ	48.8	49.347	49.016	1.562	15.911	0.051	9.725	19.137	2.780	1.820	100.33	HB2&4A_L4_S2
ļ	68.8	49.417	49.061	1.519	15.949	0.080	9.806	19.027	2.785	1.774	100.36	HB2&4A_L4_S2
ļ	88.8	49.503	49.087	1.593	15.943	0.076	9.658	19.161	2.756	1.727	100.42	HB2&4A_L4_S2
ļ	108.8	49.429	48.881	1.564	16.066	0.063	9.789	19.160	2.760	1.717	100.55	HB2&4A_L4_S2
ļ	128.8	49.469	49.272	1.531	15.979	0.028	9.697	19.069	2.783	1.641	100.20	HB2&4A_L4_S2
ļ	148.8	49.560	49.239	1.499	15.911	0.107	9.752	18.998	2.870	1.626	100.32	HB2&4A_L4_S2
ļ	168.8	49.410	49.300	1.545	15.744	0.078	9.761	19.175	2.817	1.580	100.11	HB2&4A_L4_S2
ļ	188.8	49.411	49.135	1.535	15.976	0.073	9.770	19.108	2.828	1.575	100.28	HB2&4A_L4_S2
ļ	208.8	49.542	49.191	1.501	15.949	0.067	9.777	19.171	2.820	1.524	100.35	HB2&4A_L4_S2
ļ	228.8	49.432	49.054	1.528	15.973	0.103	9.734	19.243	2.837	1.528	100.38	HB2&4A_L4_S2
I	248.8	49.455	49.418	1.496	15.880	0.065	9.657	19.118	2.872	1.494	100.04	HB2&4A_L4_S2
٠												

268.8	49.676	49.145	1.490	16.011	0.061	9.710	19.280	2.813	1.491	100.53	HB2&4A_L4_S2
288.8	49.650	49.374	1.601	15.954	0.055	9.642	19.090	2.854	1.432	100.28	HB2&4A_L4_S2
308.8	49.676	49.320	1.526	15.912	0.046	9.716	19.179	2.869	1.433	100.36	HB2&4A_L4_S2
328.8	49.552	49.263	1.513	15.976	0.086	9.572	19.252	2.904	1.435	100.29	HB2&4A_L4_S2
348.8	49.538	49.314	1.513	16.022	0.053	9.644	19.206	2.850	1.397	100.22	HB2&4A_L4_S2
368.8	49.629	49.404	1.547	15.925	-0.009	9.769	19.165	2.841	1.358	100.22	HB2&4A_L4_S2
388.8	49.609	49.198	1.466	15.981	0.105	9.803	19.217	2.870	1.362	100.41	HB2&4A_L4_S2
408.8	49.558	49.290	1.568	16.051	0.065	9.803	19.023	2.844	1.355	100.27	HB2&4A_L4_S2
428.8	49.659	49.490	1.473	15.905	0.103	9.636	19.157	2.882	1.355	100.17	HB2&4A_L4_S2
448.8	49.457	49.524	1.505	15.961	0.096	9.638	19.102	2.851	1.323	99.93	HB2&4A_L4_S2
468.8	49.573	49.212	1.615	15.920	0.068	9.747	19.204	2.887	1.347	100.36	HB2&4A_L4_S1
510.5	49.532	49.317	1.514	15.983	0.078	9.757	19.180	2.863	1.308	100.21	HB2&4A_L4_S1
552.1	49.577	49.089	1.539	16.020	0.077	9.870	19.241	2.862	1.303	100.49	HB2&4A_L4_S1
593.8	49.684	49.379	1.501	15.961	0.063	9.682	19.179	2.929	1.306	100.30	HB2&4A_L4_S1
635.5	49.637	49.480	1.504	16.065	0.019	9.727	19.079	2.837	1.289	100.16	HB2&4A_L4_S1
677.1	49.628	49.307	1.536	16.097	0.059	9.696	19.140	2.883	1.284	100.32	HB2&4A_L4_S1
718.8	49.682	49.239	1.541	15.952	0.091	9.876	19.094	2.918	1.290	100.44	HB2&4A_L4_S1
760.5	49.602	49.477	1.596	15.999	0.019	9.634	19.068	2.921	1.288	100.13	HB2&4A_L4_S1
802.1	49.741	49.251	1.536	16.078	0.092	9.775	19.162	2.853	1.253	100.49	HB2&4A_L4_S1
843.8	49.593	49.496	1.501	16.048	0.090	9.765	18.957	2.907	1.236	100.10	HB2&4A_L4_S1
885.5	49.813	49.460	1.554	15.938	0.118	9.659	19.092	2.894	1.286	100.35	HB2&4A_L4_S1
927.1	49.791	49.276	1.581	16.000	0.063	9.919	18.994	2.907	1.261	100.51	HB2&4A_L4_S1
968.8	49.692	49.339	1.510	16.032	0.080	9.743	19.155	2.860	1.282	100.35	HB2&4A_L4_S1
1010.5	49.781	49.490	1.588	15.948	0.079	9.645	19.103	2.845	1.302	100.29	HB2&4A_L4_S1
1052.1	49.579	49.620	1.542	15.962	0.065	9.610	19.056	2.872	1.273	99.96	HB2&4A_L4_S1
1093.8	49.575	49.555	1.547	15.938	0.027	9.636	19.113	2.920	1.264	100.02	HB2&4A_L4_S1
1135.5	49.575	49.316	1.607	15.976	0.035	9.717	19.148	2.908	1.293	100.26	HB2&4A_L4_S1
1177.1	49.638	49.296	1.519	16.019	0.076	9.851	19.103	2.839	1.298	100.34	HB2&4A_L4_S1
1218.8	49.655	49.282	1.556	16.070	0.009	9.741	19.201	2.873	1.268	100.37	HB2&4A_L4_S1
1260.5	49.705	49.284	1.505	15.921	0.040	9.908	19.211	2.888	1.242	100.42	HB2&4A_L4_S1
1302.1	49.617	49.347	1.545	16.079	0.068	9.794	19.019	2.878	1.271	100.27	HB2&4A_L4_S1
1343.8	49.586	49.308	1.558	16.032	0.054	9.741	19.123	2.901	1.282	100.28	HB2&4A_L4_S1
1385.5	49.558	49.199	1.522	16.029	0.086	9.839	19.159	2.893	1.274	100.36	HB2&4A_L4_S1
1427.1	49.741	49.253	1.524	16.051	0.058	9.795	19.150	2.925	1.243	100.49	HB2&4A_L4_S1
1468.8	49.604	48.999	1.553	16.133	0.059	9.954	19.120	2.883	1.301	100.61	HB2&4A_L4_S1

Table C2.	HB3&4A										
X (µm)	SiO2	SiO2*	TiO2	A12O3	FeO	MgO	CaO	Na2O	K2O	Total	Comment
-1298.8	51.989	52.146	1.283	15.946	0.023	10.053	19.174	0.531	0.844	99.84	HB3&4_L0
-1238.8	51.954	52.334	1.292	15.968	0.033	10.006	19.004	0.508	0.855	99.62	HB3&4_L0
-1178.8	51.778	52.383	1.211	16.020	0.003	9.978	18.997	0.537	0.870	99.39	HB3&4_L0
-1118.8	51.851	52.162	1.262	15.989	0.034	10.073	19.054	0.553	0.873	99.69	HB3&4_L0
-1058.8	51.772	52.459	1.277	15.970	-0.007	9.904	18.994	0.558	0.845	99.31	HB3&4_L0
-998.8	51.771	52.499	1.193	15.956	0.001	10.022	18.902	0.560	0.869	99.27	HB3&4_L0
-938.8	51.907	52.245	1.216	15.998	0.042	10.098	18.994	0.555	0.852	99.66	HB3&4_L0
-878.8	51.885	52.385	1.233	15.922	0.003	10.047	19.006	0.569	0.837	99.50	HB3&4_L0
-818.8	51.996	52.439	1.197	15.940	0.022	10.103	18.902	0.572	0.825	99.56	HB3&4_L0
-758.8	51.951	52.047	1.191	16.016	0.029	10.140	19.123	0.607	0.848	99.90	HB3&4_L0
-698.8	51.887	52.212	1.186	16.012	-0.013	9.994	19.065	0.664	0.880	99.67	HB3&4_L0
-638.8	51.814	52.193	1.162	15.922	0.011	10.055	19.115	0.693	0.849	99.62	HB3&4_L0
-578.8	52.065	52.065	1.150	15.942	0.024	10.063	19.122	0.777	0.856	100.00	HB3&4_L0
-458.8	51.785	51.978	1.248	15.917	0.022	10.027	19.025	0.915	0.870	99.81	HB3&4_L0
-398.8	51.781	52.097	1.071	15.870	0.043	9.954	19.085	1.027	0.854	99.68	HB3&4_L0
-338.8	51.782	52.335	1.131	15.773	-0.007	9.823	18.952	1.116	0.878	99.45	HB3&4 L0
-278.8	51.890	51.881	1.110	15.911	0.002	9.985	18.917	1.271	0.924	100.01	HB3&4_L0
-218.8	51.721	52.167	1.054	15.755	0.003	9.802	18.868	1.403	0.948	99.55	HB3&4_L0
-158.8	51.516	51.916	1.019	15.746	0.025	9.846	18.907	1.538	1.005	99.60	HB3&4_L0
-98.8	51.084	51.649	1.125	15.690	0.037	9.841	18.999	1.632	1.026	99.43	HB3&4 L0
-38.8	50.405	51.059	1.255	15.941	0.050	10.016	18.849	1.761	1.069	99.35	HB3&4 L0
81.2	49.746	50.056	1.573	16.183	0.016	10.124	18.963	1.977	1.108	99.69	HB3&4 L0
136.2	49.376	50.171	1.548	16.138	0.036	10.035	18.900	2.029	1.143	99.20	HB3&4 L0
196.2	49.327	49.916	1.514	16.121	0.037	10.168	18.939	2.134	1.172	99.41	HB3&4 L0
256.2	49.110	49.777	1.555	16.183	0.057	10.115	18.914	2.222	1.177	99.33	HB3&4 L0
316.2	49.257	49.707	1.641	16.113	0.049	10.025	18.948	2.314	1.204	99.55	HB3&4 L0
376.2	49.241	49.901	1.518	16.055	0.064	9.982	18.909	2.346	1.225	99.34	HB3&4 L0
436.2	49.046	49.768	1.516	16.021	0.048	10.002	18.954	2.441	1.250	99.28	HB3&4 L0
496.2	49.316	49.482	1.546	16.004	0.064	10.095	18.996	2.557	1.257	99.83	HB3&4 L0
556.2	49.071	49.535	1.588	15.925	0.077	9.999	18.962	2.640	1.276	99.54	HB3&4 L0
616.2	49.109	49.739	1.473	15.969	0.030	10.062	18.841	2.629	1.258	99.37	HB3&4 L0
676.2	48,905	49.620	1.537	15.934	0.054	10.022	18.865	2.700	1.269	99.29	HB3&4 L0
736.2	48.997	49.758	1.501	15.921	0.067	9.855	18.890	2.735	1.272	99.24	HB3&4 L0
856.2	48.888	49.412	1.595	15.937	0.070	10.052	18.823	2.808	1.304	99.48	HB3&4 L0
916.2	48,990	49.627	1.470	16.000	0.082	9.856	18.887	2.828	1.251	99.36	HB3&4 L0
976.2	48.862	49.519	1.554	15.928	0.088	9.899	18.912	2.819	1.281	99.34	HB3&4 L0
1036.2	49.073	49.521	1.468	15.954	0.070	9.956	18.880	2.834	1.318	99.55	HB3&4 L0
1096.2	48.885	49.518	1.580	16.004	0.083	9.866	18.784	2.885	1.279	99.37	HB3&4 L0
1156.2	49.057	49.520	1.527	15.964	0.041	9.917	18.896	2.877	1.259	99.54	HB3&4 L0
1216.2	48.931	49.561	1.467	15.994	0.081	9.939	18.809	2.879	1.270	99.37	HB3&4 L0
1276.2	48.975	49.335	1.521	16.003	0.076	9.926	18.965	2.900	1.275	99.64	HB3&4 L0
1336.2	48.847	49.430	1.527	15.986	0.088	9.909	18.943	2.861	1.255	99.42	HB3&4 L0
1396.2	48.955	49.526	1.420	16.042	0.068	9.953	18.827	2.895	1.270	99.43	HB3&4 L0
-1400.0	52.105	52.236	1.255	16.165	0.011	10.115	18.866	0.516	0.837	99.87	HB3&4 L1 S3b
-1360.0	52.170	52.013	1.290	16.123	0.018	10.141	19.035	0.532	0.849	100.16	HB3&4 L1 S3b
-1320.0	51.998	52.218	1.219	16.147	0.016	10.008	18.999	0.531	0.862	99.78	HB3&4 L1 S3b
-1280.0	51.889	52.151	1.304	15.956	0.031	10.096	19.085	0.523	0.854	99.74	HB3&4 L1 S3b
-1240.0	52.252	51.960	1.263	16.139	0.023	10.130	19.099	0.518	0.867	100.29	HB3&4 L1 S3b
-1200.0	52.084	52.094	1.321	16.033	0.007	10.128	19.040	0.532	0.844	99.99	HB3&4 L1 S3b
-1160.0	52.139	52.205	1.224	16.061	0.052	9.988	19.098	0.523	0.850	99.93	HB3&4 L1 S3b
-1120.0	52.120	52.294	1.200	15.982	0.014	10.111	19.009	0.530	0.860	99.83	HB3&4 L1 S3b
-1080.0	52.034	52.144	1 306	16 119	0.026	10.019	19.035	0.528	0.823	99.89	HB3&4 L1 S3b
-1040.0	52.100	52.294	1.224	16.019	0.033	10.123	18.912	0.543	0.852	99.81	HB3&4 L1 S3h
-1000.0	52.047	52.360	1.205	16.010	0.034	10.033	18.996	0.519	0.843	99.69	HB3&4 L1 S3h
-960.0	52.271	51 929	1.236	16 172	0.032	10 122	19 104	0 554	0.851	100 34	HB3&4 L1 S3b
-902.0	52.150	52.055	1.223	16 158	0.033	10 108	19 032	0 542	0.848	100.10	HB3&4 L1 S3a
-862.0	52 313	52.443	1,203	16 028	0.022	10 023	18 860	0 565	0.856	99 87	HB3&4 L1 S3a
-822.0	52.142	52 080	1 262	16 199	0.005	10.029	18 999	0.565	0.862	100.06	HB3&4 I 1 S3a
-782.0	52.142	52.000	1 252	16 090	0.005	10.027	19 009	0.505	0.834	100.00	HB3&4 I1 S2
-742.0	52.096	51 984	1 206	16 076	0.027	10.005	19.002	0.607	0.857	100.14	HB3&4 I 1 S3a
-702.0	52.332	52 166	1 142	16 130	0.027	10.099	18 972	0.627	0.853	100.17	HB3&4 L1 S3a
, , , , , , , , , , , , , , , , , , , ,	0 0 0 - 2		··· · · · · · ·	10.100	0.010		10.712	0.027	0.000	100.17	

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3&4_L1_S3a 3&4_L1_S3a 3&4_L1_S3a 3&4_L1_S3a 3&4_L1_S3a 3&4_L1_S3a 3&4_L1_S3a 3&4_L1_S3a 3&4_L1_S3a 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3&4_L1_S3a 3&4_L1_S3a 3&4_L1_S3a 3&4_L1_S3a 3&4_L1_S3a 3&4_L1_S3a 3&4_L1_S3a 3&4_L1_S3a 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d
-542.0 52.093 52.119 1.184 16.008 0.044 9.954 19.036 0.806 0.850 99.97 HB -502.0 52.038 52.254 1.104 16.009 0.011 9.953 18.949 0.853 0.867 99.78 HB -462.0 51.997 52.013 1.176 16.061 0.022 9.972 19.019 0.902 0.836 99.98 HB -422.0 52.162 52.000 1.077 16.046 0.041 9.939 19.059 0.975 0.862 100.16 HB -382.0 52.123 52.222 1.128 15.942 -0.008 9.770 19.021 1.063 0.860 99.90 HB -342.0 52.159 51.904 1.052 16.068 0.012 9.919 19.004 1.144 0.897 100.26 HB -302.0 51.923 51.856 1.139 15.923 0.064 9.823 18.953 1.228 0.912 99.99 HB -267.0 51.888 52.107 1.193 15.822	3&4_L1_S3a 3&4_L1_S3a 3&4_L1_S3a 3&4_L1_S3a 3&4_L1_S3a 3&4_L1_S3a 3&4_L1_S3a 3&4_L1_S3a 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3&4_L1_S3a 3&4_L1_S3a 3&4_L1_S3a 3&4_L1_S3a 3&4_L1_S3a 3&4_L1_S3a 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d
-462.051.99752.0131.17616.0610.0229.97219.0190.9020.83699.98HB-422.052.16252.0001.07716.0460.0419.93919.0590.9750.862100.16HB-382.052.12352.2221.12815.942-0.0089.77019.0211.0630.86099.90HB-342.052.15951.9041.05216.0680.0129.91919.0041.1440.897100.26HB-302.051.92351.8561.13915.9920.0249.96918.9151.1990.908100.07HB-287.052.00552.0201.07915.9230.0649.82318.9531.2280.91299.99HB-267.051.88852.1071.19315.8220.0179.88318.7901.2830.90499.78HB-247.051.98351.9471.07715.8740.0259.88118.9571.3120.927100.04HB-227.051.93651.7791.11315.9070.0209.88519.0311.3870.950100.22HB-207.051.93951.7151.10515.9070.0209.88519.0311.3870.950100.22HB-167.051.94451.7631.14915.7650.0249.88718.9731.4940.946100.18HB-167.051.94451.7641.154 <td>3&4_L1_S3a 3&4_L1_S3a 3&4_L1_S3a 3&4_L1_S3a 3&4_L1_S3a 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d</td>	3&4_L1_S3a 3&4_L1_S3a 3&4_L1_S3a 3&4_L1_S3a 3&4_L1_S3a 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d
-422.0 52.162 52.000 1.077 16.046 0.041 9.939 19.059 0.975 0.862 100.16 HB -382.0 52.123 52.222 1.128 15.942 -0.008 9.770 19.021 1.063 0.860 99.90 HB -342.0 52.159 51.904 1.052 16.068 0.012 9.919 19.004 1.144 0.897 100.26 HB -302.0 51.923 51.856 1.139 15.992 0.024 9.969 18.915 1.199 0.908 100.07 HB -287.0 52.005 52.020 1.079 15.923 0.064 9.823 18.953 1.228 0.912 99.99 HB -267.0 51.888 52.107 1.193 15.822 0.017 9.883 18.957 1.312 0.927 100.04 HB -247.0 51.983 51.979 1.113 15.907 0.025 9.881 18.957 1.312 0.923 100.16 HB -227.0 51.936 51.779 1.113 15.907	3&4_L1_S3a 3&4_L1_S3a 3&4_L1_S3a 3&4_L1_S3a 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3&4_L1_S3a 3&4_L1_S3a 3&4_L1_S3a 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d
-382.0 32.123 32.222 1.128 15.942 -0.008 9.770 19.021 1.063 0.860 99.90 HB -342.0 52.159 51.904 1.052 16.068 0.012 9.919 19.004 1.144 0.897 100.26 HB -302.0 51.923 51.856 1.139 15.992 0.024 9.969 18.915 1.199 0.908 100.07 HB -287.0 52.005 52.020 1.079 15.923 0.064 9.823 18.953 1.228 0.912 99.99 HB -267.0 51.888 52.107 1.193 15.822 0.017 9.883 18.790 1.283 0.904 99.78 HB -247.0 51.983 51.947 1.077 15.874 0.025 9.881 18.957 1.312 0.927 100.04 HB -227.0 51.936 51.779 1.113 15.907 0.020 9.885 19.031 1.387 0.950 100.22 HB -187.0 51.740 51.990 1.078 15.803	3&4_L1_S3a 3&4_L1_S3a 3&4_L1_S3a 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d
-342.0 52.159 51.904 1.052 16.068 0.012 9.919 19.004 1.144 0.897 100.26 HB -302.0 51.923 51.856 1.139 15.992 0.024 9.969 18.915 1.199 0.908 100.07 HB -287.0 52.005 52.020 1.079 15.923 0.064 9.823 18.953 1.228 0.912 99.99 HB -267.0 51.888 52.107 1.193 15.822 0.017 9.883 18.790 1.283 0.904 99.78 HB -247.0 51.983 51.947 1.077 15.874 0.025 9.881 18.957 1.312 0.927 100.04 HB -227.0 51.936 51.779 1.113 15.907 0.020 9.885 19.031 1.387 0.950 100.22 HB -207.0 51.939 51.715 1.105 15.907 0.020 9.885 19.031 1.387 0.950 100.22 HB -167.0 51.944 51.763 1.149 15.765	3&4_L1_S3a 3&4_L1_S3a 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d
-302.051.92351.8561.13915.9920.0249.96918.9151.1990.908100.07HB-287.052.00552.0201.07915.9230.0649.82318.9531.2280.91299.99HB-267.051.88852.1071.19315.8220.0179.88318.7901.2830.90499.78HB-247.051.98351.9471.07715.8740.0259.88118.9571.3120.927100.04HB-227.051.93651.7791.11315.9040.0049.95418.9461.3760.923100.16HB-207.051.93951.7151.10515.9070.0209.88519.0311.3870.950100.22HB-187.051.74051.9901.07815.8030.0199.84818.8841.4460.93399.75HB-167.051.94451.7631.14915.7650.0249.88718.9731.4940.946100.18HB-147.051.79151.8691.09415.7970.0239.75518.9431.5270.99299.92HB-127.051.61951.7641.15415.8200.0349.79618.8821.6661.042100.09HB-107.051.68551.5961.20315.7620.0529.90818.8321.6061.042100.09HB-87.051.57651.2891.159	3&4_L1_S3a 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d
-287.052.00552.0201.07915.9230.0649.82318.9531.2280.91299.99HB-267.051.88852.1071.19315.8220.0179.88318.7901.2830.90499.78HB-247.051.98351.9471.07715.8740.0259.88118.9571.3120.927100.04HB-227.051.93651.7791.11315.9040.0049.95418.9461.3760.923100.16HB-207.051.93951.7151.10515.9070.0209.88519.0311.3870.950100.22HB-187.051.74051.9901.07815.8030.0199.84818.8841.4460.93399.75HB-167.051.94451.7631.14915.7650.0249.88718.9731.4940.946100.18HB-147.051.79151.8691.09415.7970.0239.75518.9431.5270.99299.92HB-127.051.61951.7641.15415.8200.0349.79618.8821.5680.98499.86HB-107.051.68551.5961.20315.7620.0529.90818.8321.6061.042100.09HB-87.051.57651.2891.15915.8870.0109.99019.0071.6481.012100.29HB-50.051.10451.2561.197 <t< td=""><td>3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d</td></t<>	3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d
-267.051.88852.1071.19315.8220.0179.88318.7901.2830.90499.78HB-247.051.98351.9471.07715.8740.0259.88118.9571.3120.927100.04HB-227.051.93651.7791.11315.9040.0049.95418.9461.3760.923100.16HB-207.051.93951.7151.10515.9070.0209.88519.0311.3870.950100.22HB-187.051.74051.9901.07815.8030.0199.84818.8841.4460.93399.75HB-167.051.94451.7631.14915.7650.0249.88718.9731.4940.946100.18HB-147.051.79151.8691.09415.7970.0239.75518.9431.5270.99299.92HB-127.051.61951.7641.15415.8200.0349.79618.8821.5680.98499.86HB-107.051.68551.5961.20315.7620.0529.90818.8321.6061.042100.09HB-87.051.57651.2891.15915.8870.0109.99019.0071.6481.012100.29HB-50.051.10451.2561.19715.8930.0099.97818.9241.6961.04899.85HB-40.051.05350.8931.276 <td< td=""><td>3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d</td></td<>	3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d
-247.0 51.983 51.947 1.077 15.874 0.025 9.881 18.957 1.312 0.927 100.04 HB -227.0 51.936 51.779 1.113 15.904 0.004 9.954 18.946 1.376 0.923 100.16 HB -207.0 51.939 51.715 1.105 15.907 0.020 9.885 19.031 1.387 0.950 100.22 HB -187.0 51.740 51.990 1.078 15.803 0.019 9.848 18.884 1.446 0.933 99.75 HB -167.0 51.944 51.763 1.149 15.765 0.024 9.887 18.973 1.494 0.946 100.18 HB -147.0 51.791 51.869 1.094 15.797 0.023 9.755 18.943 1.527 0.992 99.92 HB -127.0 51.619 51.764 1.154 15.820 0.034 9.796 18.882 1.666 1.042 100.09 HB -107.0 51.685 51.596 1.203 15.762	3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d
-227.051.93651.7791.11315.9040.0049.95418.9461.3760.923100.16HB-207.051.93951.7151.10515.9070.0209.88519.0311.3870.950100.22HB-187.051.74051.9901.07815.8030.0199.84818.8841.4460.93399.75HB-167.051.94451.7631.14915.7650.0249.88718.9731.4940.946100.18HB-147.051.79151.8691.09415.7970.0239.75518.9431.5270.99299.92HB-127.051.61951.7641.15415.8200.0349.79618.8821.5680.98499.86HB-107.051.68551.5961.20315.7620.0529.90818.8321.6061.042100.09HB-87.051.57651.2891.15915.8870.0109.99019.0071.6481.012100.29HB-50.051.10451.2561.19715.8930.0099.97818.9241.6961.04899.85HB-40.051.05350.8931.27616.0220.04110.11418.8901.7251.039100.16HB	3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d
-207.051.93951.7151.10515.9070.0209.88519.0311.3870.950100.22HB-187.051.74051.9901.07815.8030.0199.84818.8841.4460.93399.75HB-167.051.94451.7631.14915.7650.0249.88718.9731.4940.946100.18HB-147.051.79151.8691.09415.7970.0239.75518.9431.5270.99299.92HB-127.051.61951.7641.15415.8200.0349.79618.8821.5680.98499.86HB-107.051.68551.5961.20315.7620.0529.90818.8321.6061.042100.09HB-87.051.57651.2891.15915.8870.0109.99019.0071.6481.012100.29HB-50.051.10451.2561.19715.8930.0099.97818.9241.6961.04899.85HB-40.051.05350.8931.27616.0220.04110.11418.8901.7251.039100.16HB	3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d
-187.051.74051.9901.07815.8030.0199.84818.8841.4460.93399.75HB-167.051.94451.7631.14915.7650.0249.88718.9731.4940.946100.18HB-147.051.79151.8691.09415.7970.0239.75518.9431.5270.99299.92HB-127.051.61951.7641.15415.8200.0349.79618.8821.5680.98499.86HB-107.051.68551.5961.20315.7620.0529.90818.8321.6061.042100.09HB-87.051.57651.2891.15915.8870.0109.99019.0071.6481.012100.29HB-50.051.10451.2561.19715.8930.0099.97818.9241.6961.04899.85HB-40.051.05350.8931.27616.0220.04110.11418.8901.7251.039100.16HB	3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d
-167.051.94451.7631.14915.7650.0249.88718.9731.4940.946100.18HB-147.051.79151.8691.09415.7970.0239.75518.9431.5270.99299.92HB-127.051.61951.7641.15415.8200.0349.79618.8821.5680.98499.86HB-107.051.68551.5961.20315.7620.0529.90818.8321.6061.042100.09HB-87.051.57651.2891.15915.8870.0109.99019.0071.6481.012100.29HB-50.051.10451.2561.19715.8930.0099.97818.9241.6961.04899.85HB-40.051.05350.8931.27616.0220.04110.11418.8901.7251.039100.16HB	3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d
-147.0 51.791 51.869 1.094 15.797 0.023 9.755 18.943 1.527 0.992 99.92 HB -127.0 51.619 51.764 1.154 15.820 0.034 9.796 18.842 1.568 0.984 99.86 HB -107.0 51.685 51.596 1.203 15.762 0.052 9.908 18.832 1.606 1.042 100.09 HB -87.0 51.576 51.289 1.159 15.887 0.010 9.990 19.007 1.648 1.012 100.29 HB -50.0 51.104 51.256 1.197 15.893 0.009 9.978 18.924 1.696 1.048 99.85 HB -40.0 51.053 50.893 1.276 16.022 0.041 10.114 18.890 1.725 1.039 100.16 HB	3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d
-127.0 51.619 51.764 1.154 15.820 0.034 9.796 18.882 1.568 0.984 99.86 HB -107.0 51.685 51.596 1.203 15.762 0.052 9.908 18.832 1.606 1.042 100.09 HB -87.0 51.576 51.289 1.159 15.887 0.010 9.990 19.007 1.648 1.012 100.29 HB -50.0 51.104 51.256 1.197 15.893 0.009 9.978 18.924 1.696 1.048 99.85 HB -40.0 51.053 50.893 1.276 16.022 0.041 10.114 18.890 1.725 1.039 100.16 HB	3&4_L1_S2d 3&4_L1_S2d 3&4_L1_S2d
-107.0 51.685 51.596 1.203 15.762 0.052 9.908 18.832 1.606 1.042 100.09 HB -87.0 51.576 51.289 1.159 15.887 0.010 9.990 19.007 1.648 1.012 100.29 HB -50.0 51.104 51.256 1.197 15.893 0.009 9.978 18.924 1.696 1.048 99.85 HB -40.0 51.053 50.893 1.276 16.022 0.041 10.114 18.890 1.725 1.039 100.16 HB	3&4_L1_S2d
-87.0 51.576 51.289 1.159 15.887 0.010 9.990 19.007 1.648 1.012 100.29 HB -50.0 51.104 51.256 1.197 15.893 0.009 9.978 18.924 1.696 1.048 99.85 HB -40.0 51.053 50.893 1.276 16.022 0.041 10.114 18.890 1.725 1.039 100.16 HB	5&4_L1_52u
-50.0 51.076 51.289 1.139 15.887 0.010 9.990 19.007 1.048 1.012 100.29 HB -50.0 51.104 51.256 1.197 15.893 0.009 9.978 18.924 1.696 1.048 99.85 HB -40.0 51.053 50.893 1.276 16.022 0.041 10.114 18.890 1.725 1.039 100.16 HB	204 11 024
-30.0 51.104 51.256 1.197 15.895 0.009 9.978 18.924 1.696 1.048 99.85 HB -40.0 51.053 50.893 1.276 16.022 0.041 10.114 18.890 1.725 1.039 100.16 HB	$3@4_L1_520$
-40.0 51.053 50.893 1.276 16.022 0.041 10.114 18.890 1.725 1.039 100.16 HB	3&4_L1_52C
	3&4_L1_S2b
-20.0 51.072 51.161 1.271 15.928 0.052 9.897 18.870 1.763 1.058 99.91 HB	3&4_L1_S2b
0.0 50.563 50.825 1.342 16.044 0.046 10.023 18.859 1.780 1.082 99.74 HB	3&4_L1_S2b
20.0 50.588 50.540 1.389 16.094 0.009 10.098 18.952 1.832 1.087 100.05 HB	3&4_L1_S2b
40.0 50.414 50.672 1.339 16.060 0.041 10.099 18.925 1.814 1.051 99.74 HB	3&4_L1_S2b
60.0 50.392 50.557 1.394 16.096 0.050 9.936 18.961 1.893 1.113 99.83 HB	3&4_L1_S2b
87.0 50.198 50.068 1.462 16.282 0.051 10.153 18.834 2.003 1.148 100.13 HB	3&4 L1 S2a
105.0 50.244 49.941 1.480 16.347 0.063 10.112 18.957 1.952 1.149 100.30 HB	3&4 L1 S2a
123.0 49.958 50.042 1.508 16.316 0.049 10.061 18.917 2.009 1.098 99.92 HB	3&4 L1 S2a
149.0 49.560 50.003 1.610 16.175 0.015 10.055 18.970 2.040 1.132 99.56 HE	3&4 L1 S1
189.0 49.651 49.728 1.513 16.233 0.034 10.256 18.976 2.102 1.157 99.92 HE	3&4 L1 S1
229 0 49 526 50 017 1 506 16 176 0 019 10 095 18 841 2 160 1 187 99 51 HE	3&4 L1 S1
260 0 40 600 40 781 1400 16 734 0.068 10.050 18 033 2.206 1.221 00 82 HE	23&1 I 1 S1
200, 0 $40,000$ $49,001$ 1.77 10.254 0.000 10.057 10.555 2.200 1.221 7.02 III	364_{1}
240 0 40 402 40 661 1570 10.115 0.061 10.00 10.078 2.260 1.212 75.54 HE	364_{11}
343.0 49.402 49.001 1.317 10.064 0.003 10.109 16.776 2.301 1.230 97.74 HE	3004_{1}
389.0 49.142 49.172 1.347 10.037 0.101 10.039 18.830 2.398 1.250 99.37 HE	5004_L1_S1
429.0 49.340 49.826 1.477 15.896 0.044 10.187 18.869 2.451 1.251 99.51 HE	3&4_L1_S1
469.0 49.346 49.623 1.563 15.979 0.058 10.025 18.977 2.499 1.275 99.72 HE	3&4_L1_S1
	3&4_L1_S1
509.0 49.260 49.756 1.504 15.979 0.047 10.015 18.951 2.490 1.259 99.50 HE	
509.0 49.260 49.756 1.504 15.979 0.047 10.015 18.951 2.490 1.259 99.50 HE 549.0 49.260 49.481 1.586 15.942 0.069 10.118 18.980 2.547 1.278 99.78 HE	3&4_L1_S1
509.0 49.260 49.756 1.504 15.979 0.047 10.015 18.951 2.490 1.259 99.50 HE 549.0 49.260 49.481 1.586 15.942 0.069 10.118 18.980 2.547 1.278 99.78 HE 589.0 49.144 49.566 1.492 15.993 0.057 10.143 18.882 2.606 1.261 99.58 HE	3&4_L1_S1 3&4_L1_S1
509.0 49.260 49.756 1.504 15.979 0.047 10.015 18.951 2.490 1.259 99.50 HE 549.0 49.260 49.481 1.586 15.942 0.069 10.118 18.980 2.547 1.278 99.78 HE 589.0 49.144 49.566 1.492 15.993 0.057 10.143 18.882 2.606 1.261 99.58 HE 629.0 49.406 49.570 1.519 15.996 0.071 9.950 19.005 2.622 1.269 99.84 HE	33&4_L1_S1 33&4_L1_S1 33&4_L1_S1
509.0 49.260 49.756 1.504 15.979 0.047 10.015 18.951 2.490 1.259 99.50 HE 549.0 49.260 49.481 1.586 15.942 0.069 10.118 18.980 2.547 1.278 99.78 HE 589.0 49.144 49.566 1.492 15.993 0.057 10.143 18.882 2.606 1.261 99.58 HE 629.0 49.406 49.570 1.519 15.996 0.071 9.950 19.005 2.622 1.269 99.84 HE 669.0 48.983 49.543 1.543 16.062 0.045 9.996 18.847 2.699 1.266 99.44 HE	33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1
509.0 49.260 49.756 1.504 15.979 0.047 10.015 18.951 2.490 1.259 99.50 HE 549.0 49.260 49.481 1.586 15.942 0.069 10.118 18.980 2.547 1.278 99.78 HE 589.0 49.144 49.566 1.492 15.993 0.057 10.143 18.882 2.606 1.261 99.58 HE 629.0 49.406 49.570 1.519 15.996 0.071 9.950 19.005 2.622 1.269 99.84 HE 669.0 48.983 49.543 1.543 16.062 0.045 9.996 18.847 2.699 1.266 99.44 HE 709.0 49.283 49.723 1.437 15.976 0.074 9.879 18.896 2.716 1.301 99.56 HE	33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 53&4_L1_S1
509.0 49.260 49.756 1.504 15.979 0.047 10.015 18.951 2.490 1.259 99.50 HE 549.0 49.260 49.481 1.586 15.942 0.069 10.118 18.980 2.547 1.278 99.78 HE 589.0 49.144 49.566 1.492 15.993 0.057 10.143 18.882 2.606 1.261 99.58 HE 629.0 49.406 49.570 1.519 15.996 0.071 9.950 19.005 2.622 1.269 99.84 HE 669.0 48.983 49.543 1.543 16.062 0.045 9.996 18.847 2.699 1.266 99.44 HE 709.0 49.283 49.723 1.437 15.976 0.074 9.879 18.896 2.716 1.301 99.56 HE 749.0 49.380 49.436 1.550 15.986 0.081 9.970 18.929 2.760 1.288 99.94 HE	33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1
509.0 49.260 49.756 1.504 15.979 0.047 10.015 18.951 2.490 1.259 99.50 HE 549.0 49.260 49.481 1.586 15.942 0.069 10.118 18.980 2.547 1.278 99.78 HE 589.0 49.144 49.566 1.492 15.993 0.057 10.143 18.882 2.606 1.261 99.58 HE 629.0 49.406 49.570 1.519 15.996 0.071 9.950 19.005 2.622 1.269 99.84 HE 669.0 48.983 49.543 1.543 16.062 0.045 9.996 18.847 2.699 1.266 99.44 HE 709.0 49.283 49.723 1.437 15.976 0.074 9.879 18.896 2.716 1.301 99.56 HE 749.0 49.380 49.436 1.550 15.986 0.081 9.970 18.929 2.760 1.288 99.94 HE 789.0 49.094 49.505 1.498 15.930	33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1
509.0 49.260 49.756 1.504 15.979 0.047 10.015 18.951 2.490 1.259 99.50 HE 549.0 49.260 49.481 1.586 15.942 0.069 10.118 18.980 2.547 1.278 99.78 HE 589.0 49.144 49.566 1.492 15.993 0.057 10.143 18.882 2.606 1.261 99.58 HE 629.0 49.406 49.570 1.519 15.996 0.071 9.950 19.005 2.622 1.269 99.84 HE 669.0 48.983 49.543 1.543 16.062 0.045 9.996 18.847 2.699 1.266 99.44 HE 709.0 49.283 49.723 1.437 15.976 0.074 9.879 18.896 2.716 1.301 99.56 HE 749.0 49.380 49.436 1.550 15.986 0.081 9.970 18.929 2.760 1.288 99.94 HE 789.0 49.094 49.505 1.498 15.930	33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1
509.0 49.260 49.756 1.504 15.979 0.047 10.015 18.951 2.490 1.259 99.50 HE 549.0 49.260 49.481 1.586 15.942 0.069 10.118 18.980 2.547 1.278 99.78 HE 589.0 49.144 49.566 1.492 15.993 0.057 10.143 18.882 2.606 1.261 99.58 HE 629.0 49.406 49.570 1.519 15.996 0.071 9.950 19.005 2.622 1.269 99.84 HE 669.0 48.983 49.543 1.543 16.062 0.045 9.996 18.847 2.699 1.266 99.44 HE 709.0 49.283 49.723 1.437 15.976 0.074 9.879 18.896 2.716 1.301 99.56 HE 749.0 49.380 49.436 1.550 15.986 0.081 9.970 18.929 2.760 1.288 99.94 HE 789.0 49.094 49.505 1.498 15.930	33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1
509.0 49.260 49.756 1.504 15.979 0.047 10.015 18.951 2.490 1.259 99.50 HE 549.0 49.260 49.481 1.586 15.942 0.069 10.118 18.980 2.547 1.278 99.78 HE 589.0 49.144 49.566 1.492 15.993 0.057 10.143 18.882 2.606 1.261 99.58 HE 629.0 49.406 49.570 1.519 15.996 0.071 9.950 19.005 2.622 1.269 99.84 HE 669.0 48.983 49.543 1.543 16.062 0.045 9.996 18.847 2.699 1.266 99.44 HE 709.0 49.283 49.723 1.437 15.976 0.074 9.879 18.896 2.716 1.301 99.56 HE 749.0 49.380 49.436 1.550 15.986 0.081 9.970 18.929 2.760 1.288 99.94 HE 789.0 49.094 49.505 1.498 15.930 0.070 10.029 18.932 2.754 1.282 99.59 HE 829.0 49.236 49.257 1.530 15.964 0.065 10.133 18.961 2.785 1.307 99.98 HE 909.0 49 148 49 569 1.481 15.955 0.059 9.921 18.958 2.804 1.254 99.58 HE <td>33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1</td>	33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1
509.0 49.260 49.756 1.504 15.979 0.047 10.015 18.951 2.490 1.259 99.50 HE 549.0 49.260 49.481 1.586 15.942 0.069 10.118 18.980 2.547 1.278 99.78 HE 589.0 49.144 49.566 1.492 15.993 0.057 10.143 18.882 2.606 1.261 99.58 HE 629.0 49.406 49.570 1.519 15.996 0.071 9.950 19.005 2.622 1.269 99.84 HE 669.0 48.983 49.543 1.543 16.062 0.045 9.996 18.847 2.699 1.266 99.44 HE 709.0 49.283 49.723 1.437 15.976 0.074 9.879 18.896 2.716 1.301 99.56 HE 749.0 49.380 49.436 1.550 15.986 0.081 9.970 18.929 2.760 1.288 99.94 HE 789.0 49.094 49.505 1.498 15.930 0.070 10.029 18.932 2.754 1.282 99.59 HE 829.0 49.236 49.257 1.530 15.964 0.065 10.133 18.961 2.785 1.307 99.98 HE 909.0 49.148 49.569 1.481 15.955 0.059 9.921 18.958 2.804 1.254 99.58 HE 949.0 49.036	33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1
509.0 49.260 49.756 1.504 15.979 0.047 10.015 18.951 2.490 1.259 99.50 HE 549.0 49.260 49.481 1.586 15.942 0.069 10.118 18.980 2.547 1.278 99.78 HE 589.0 49.144 49.566 1.492 15.993 0.057 10.143 18.882 2.606 1.261 99.58 HE 629.0 49.406 49.570 1.519 15.996 0.071 9.950 19.005 2.622 1.269 99.84 HE 669.0 48.983 49.543 1.543 16.062 0.045 9.996 18.847 2.699 1.266 99.44 HE 709.0 49.283 49.723 1.437 15.976 0.074 9.879 18.896 2.716 1.301 99.56 HE 749.0 49.380 49.436 1.550 15.986 0.081 9.970 18.929 2.760 1.288 99.94 HE 789.0 49.094 49.505 1.498 15.930 0.070 10.029 18.932 2.754 1.282 99.59 HE 869.0 49.236 49.257 1.530 15.964 0.065 10.133 18.961 2.785 1.307 99.98 HE 909.0 49.148 49.569 1.481 15.955 0.059 9.921 18.958 2.804 1.254 99.58 HE 949.0 49.036	33&4_L1_S1 34&4_L1_S1 34&4_L1_S1 34&4_L1_S1 34&4_L1_S1 34&4_L1_S1 34&4_L
509.0 49.260 49.756 1.504 15.979 0.047 10.015 18.951 2.490 1.259 99.50 HE 549.0 49.260 49.481 1.586 15.942 0.069 10.118 18.980 2.547 1.278 99.78 HE 589.0 49.144 49.566 1.492 15.993 0.057 10.143 18.882 2.606 1.261 99.58 HE 629.0 49.406 49.570 1.519 15.996 0.071 9.950 19.005 2.622 1.269 99.84 HE 669.0 48.983 49.543 1.543 16.062 0.045 9.996 18.847 2.699 1.266 99.44 HE 709.0 49.283 49.723 1.437 15.976 0.074 9.879 18.896 2.716 1.301 99.56 HE 749.0 49.380 49.436 1.550 15.986 0.081 9.970 18.929 2.760 1.288 99.94 HE 789.0 49.094 49.505 1.498 15.930 0.070 10.029 18.932 2.754 1.282 99.59 HE 869.0 49.236 49.257 1.530 15.964 0.065 10.133 18.961 2.785 1.307 99.98 HE 909.0 49.148 49.569 1.481 15.955 0.059 9.921 18.958 2.804 1.254 99.58 HE 949.0 49.278	33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1
509.0 49.260 49.756 1.504 15.979 0.047 10.015 18.951 2.490 1.259 99.50 HE 549.0 49.260 49.481 1.586 15.942 0.069 10.118 18.980 2.547 1.278 99.78 HE 589.0 49.144 49.566 1.492 15.993 0.057 10.143 18.882 2.606 1.261 99.58 HE 629.0 49.406 49.570 1.519 15.996 0.071 9.950 19.005 2.622 1.269 99.84 HE 669.0 48.983 49.543 1.543 16.062 0.045 9.996 18.847 2.699 1.266 99.44 HE 709.0 49.283 49.723 1.437 15.976 0.074 9.879 18.896 2.716 1.301 99.56 HE 749.0 49.380 49.436 1.550 15.986 0.081 9.970 18.929 2.760 1.288 99.94 HE 789.0 49.094 49.505 1.498 15.930 0.070 10.029 18.932 2.754 1.282 99.59 HE 869.0 49.236 49.257 1.530 15.964 0.065 10.133 18.961 2.785 1.307 99.98 HE 909.0 49.148 49.569 1.481 15.955 0.059 9.921 18.922 2.804 1.254 99.58 HE 94.0 49.278 <	33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1
509.0 49.260 49.756 1.504 15.979 0.047 10.015 18.951 2.490 1.259 99.50 HE 549.0 49.260 49.481 1.586 15.942 0.069 10.118 18.980 2.547 1.278 99.78 HE 589.0 49.144 49.566 1.492 15.993 0.057 10.143 18.882 2.606 1.261 99.58 HE 629.0 49.406 49.570 1.519 15.996 0.071 9.950 19.005 2.622 1.269 99.84 HE 669.0 48.983 49.543 1.543 16.062 0.045 9.996 18.847 2.699 1.266 99.44 HE 709.0 49.283 49.723 1.437 15.976 0.074 9.879 18.896 2.716 1.301 99.56 HE 749.0 49.380 49.436 1.550 15.986 0.081 9.970 18.929 2.760 1.288 99.94 HE 789.0 49.094 49.505 1.498 15.930 0.070 10.029 18.932 2.754 1.282 99.59 HE 869.0 49.236 49.257 1.530 15.964 0.065 10.133 18.961 2.785 1.307 99.98 HE 909.0 49.148 49.569 1.481 15.955 0.059 9.921 18.922 2.804 1.254 99.58 HE 949.0 49.278	33&4_L1_S1 33&4_L
509.0 49.260 49.756 1.504 15.979 0.047 10.015 18.951 2.490 1.259 99.50 HE 549.0 49.260 49.481 1.586 15.942 0.069 10.118 18.980 2.547 1.278 99.78 HE 589.0 49.144 49.566 1.492 15.993 0.057 10.143 18.882 2.606 1.261 99.58 HE 629.0 49.406 49.570 1.519 15.996 0.071 9.950 19.005 2.622 1.269 99.84 HE 669.0 48.983 49.543 1.543 16.062 0.045 9.996 18.847 2.699 1.266 99.44 HE 709.0 49.283 49.723 1.437 15.976 0.074 9.879 18.896 2.716 1.301 99.56 HE 749.0 49.380 49.436 1.550 15.986 0.081 9.970 18.929 2.760 1.288 99.94 HE 789.0 49.094 49.505 1.498 15.930 0.070 10.029 18.932 2.754 1.282 99.59 HE 829.0 49.236 49.257 1.530 15.962 0.057 9.970 19.053 2.779 1.248 99.88 HE 909.0 49.148 49.569 1.481 15.955 0.059 9.921 18.958 2.804 1.254 99.58 HE 949.0 49.278 <	33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1 33&4_L1_S1
509.0 49.260 49.756 1.504 15.979 0.047 10.015 18.951 2.490 1.259 99.50 HE 549.0 49.260 49.481 1.586 15.942 0.069 10.118 18.980 2.547 1.278 99.78 HE 589.0 49.144 49.566 1.492 15.993 0.057 10.143 18.882 2.606 1.261 99.58 HE 629.0 49.406 49.570 1.519 15.996 0.071 9.950 19.005 2.622 1.269 99.84 HE 669.0 48.983 49.543 1.543 16.062 0.045 9.996 18.847 2.699 1.266 99.44 HE 709.0 49.283 49.723 1.437 15.976 0.074 9.879 18.896 2.716 1.301 99.56 HE 749.0 49.380 49.436 1.550 15.986 0.081 9.970 18.929 2.760 1.288 99.94 HE 789.0 49.034 49.555 1.498 15.962 0.057 9.970 19.053 2.774 1.282 99.59 HE 869.0 49.236 49.257 1.530 15.964 0.065 10.133 18.961 2.785 1.307 99.98 HE 909.0 49.148 49.569 1.481 15.955 0.059 9.921 18.922 2.804 1.254 99.58 HE 909.0 49.218 <	33&4_L1_S1 33&4_L
509.0 49.260 49.756 1.504 15.979 0.047 10.015 18.951 2.490 1.259 99.50 HE 549.0 49.260 49.481 1.586 15.942 0.069 10.118 18.980 2.547 1.278 99.78 HE 589.0 49.144 49.566 1.492 15.993 0.057 10.143 18.882 2.606 1.261 99.58 HE 629.0 49.406 49.570 1.519 15.996 0.071 9.950 19.005 2.622 1.269 99.84 HE 669.0 48.983 49.543 1.543 16.062 0.045 9.996 18.847 2.699 1.266 99.44 HE 709.0 49.283 49.723 1.437 15.976 0.074 9.879 18.896 2.716 1.301 99.56 HE 749.0 49.380 49.436 1.550 15.986 0.081 9.970 18.929 2.760 1.288 99.94 HE 789.0 49.094 49.505 1.498 15.930 0.070 10.029 18.932 2.754 1.282 99.59 HE 829.0 49.236 49.257 1.530 15.964 0.065 10.133 18.961 2.785 1.307 99.98 HE 909.0 49.148 49.569 1.481 15.955 0.059 9.921 18.952 2.804 1.254 99.58 HE 949.0 49.364	33&4_L1_S1 33&4_L
509.0 49.260 49.756 1.504 15.979 0.047 10.015 18.951 2.490 1.259 99.50 HE 549.0 49.260 49.481 1.586 15.942 0.069 10.118 18.980 2.547 1.278 99.78 HE 589.0 49.144 49.566 1.492 15.993 0.057 10.143 18.882 2.606 1.261 99.58 HE 629.0 49.406 49.570 1.519 15.996 0.071 9.950 19.005 2.622 1.269 99.84 HE 669.0 48.983 49.543 1.543 16.062 0.045 9.996 18.847 2.699 1.266 99.44 HE 709.0 49.283 49.723 1.437 15.976 0.074 9.879 18.896 2.716 1.301 99.56 HE 749.0 49.380 49.436 1.550 15.986 0.081 9.970 18.929 2.760 1.288 99.94 HE 789.0 49.094 49.505 1.498 15.930 0.070 10.029 18.932 2.754 1.282 99.59 HE 869.0 49.236 49.257 1.530 15.964 0.065 10.133 18.961 2.785 1.307 99.98 HE 909.0 49.148 49.569 1.481 15.955 0.059 9.921 18.958 2.804 1.254 99.58 HE 949.0 49.366	33&4_L1_S1 33&4_L
509.0 49.260 49.756 1.504 15.979 0.047 10.015 18.951 2.490 1.259 99.50 HE 549.0 49.260 49.481 1.586 15.942 0.069 10.118 18.980 2.547 1.278 99.78 HE 589.0 49.144 49.566 1.492 15.993 0.057 10.143 18.882 2.606 1.261 99.58 HE 629.0 49.406 49.570 1.519 15.996 0.071 9.950 19.005 2.622 1.269 99.84 HE 669.0 48.983 49.543 1.543 16.062 0.045 9.996 18.847 2.699 1.266 99.44 HE 709.0 49.283 49.723 1.437 15.976 0.074 9.879 18.896 2.716 1.301 99.56 HE 749.0 49.380 49.436 1.550 15.986 0.081 9.970 18.929 2.760 1.288 99.94 HE 789.0 49.094 49.505 1.498 15.930 0.070 10.029 18.932 2.754 1.282 99.59 HE 869.0 49.236 49.257 1.530 15.964 0.065 10.133 18.961 2.785 1.307 99.98 HE 909.0 49.148 49.569 1.481 15.955 0.059 9.921 18.958 2.804 1.254 99.58 HE 909.0 49.278	33&4_L1_S1 33&4_L
509.0 49.260 49.756 1.504 15.979 0.047 10.015 18.951 2.490 1.259 99.50 HE 549.0 49.260 49.481 1.586 15.942 0.069 10.118 18.980 2.547 1.278 99.78 HE 589.0 49.144 49.566 1.492 15.993 0.057 10.143 18.882 2.606 1.261 99.58 HE 629.0 49.406 49.570 1.519 15.996 0.071 9.950 19.005 2.622 1.269 99.84 HE 669.0 48.983 49.543 1.543 16.062 0.045 9.996 18.847 2.699 1.266 99.44 HE 709.0 49.283 49.723 1.437 15.976 0.074 9.879 18.896 2.716 1.301 99.56 HE 749.0 49.380 49.436 1.550 15.986 0.081 9.970 18.922 2.754 1.282 99.59 HE 789.0 49.094 49.505 1.498 15.930 0.070 10.029 18.932 2.754 1.282 99.59 HE 829.0 49.236 49.257 1.530 15.964 0.065 10.133 18.961 2.785 1.307 99.98 HE 800.0 49.216 49.569 1.481 15.955 0.059 9.921 18.958 2.804 1.254 99.58 HE 949.0 49.036	33&4_L1_S1 33&4_L
509.0 49.260 49.756 1.504 15.979 0.047 10.015 18.951 2.490 1.259 99.50 HE 549.0 49.260 49.481 1.586 15.942 0.069 10.118 18.980 2.547 1.278 99.78 HE 589.0 49.144 49.566 1.492 15.993 0.057 10.143 18.882 2.606 1.261 99.58 HE 629.0 49.406 49.570 1.519 15.996 0.071 9.950 19.005 2.622 1.269 99.84 HE 669.0 48.983 49.543 1.543 16.062 0.045 9.996 18.847 2.699 1.266 99.44 HE 709.0 49.283 49.723 1.437 15.976 0.074 9.879 18.896 2.716 1.301 99.56 HE 749.0 49.380 49.436 1.550 15.986 0.081 9.970 18.922 2.760 1.288 99.94 HE 789.0 49.094 49.505 1.498 15.930 0.070 10.029 18.932 2.754 1.282 99.59 HE 869.0 49.236 49.257 1.530 15.964 0.065 10.133 18.961 2.785 1.307 99.98 HE 869.0 49.278 49.569 1.481 15.955 0.059 9.921 18.958 2.804 1.254 99.58 HE 949.0 49.262	33&4_L1_S1 33&4_L

	1429.0	49.195	49.648	1.486	16.014	0.048	9.816	18.839	2.872	1.279	99.55	HB3&4 L1 S1
	-1371.0	51.782	52.115	1.322	16.050	0.057	10.006	19.086	0.534	0.829	99.67	HB3&4 L2 S4
	-1331.0	51.820	51.989	1.382	16.079	0.026	10.138	18.992	0.535	0.860	99.83	HB3&4 L2 S4
	-1291.0	51.768	52.339	1.239	15.943	0.031	10.027	19.040	0.527	0.854	99.43	HB3&4 L2 S4
	-1251.0	52.027	52.115	1.273	16.028	0.066	10.108	19.017	0.521	0.873	99.91	HB3&4 L2 S4
	-1211.0	51.639	52.337	1.218	16.029	0.040	9.983	19.000	0.521	0.872	99.30	HB3&4 L2 S4
	-1171.0	51 997	52,439	1 274	15 910	0.043	9 970	18 958	0.533	0.873	99.56	HB3&4 L2 S4
	-1131.0	52.051	52 381	1 209	16.025	0.001	9 999	18 978	0.531	0.877	99.67	HB3&4 L2 S4
	-1091.0	52 061	52 260	1 232	16.043	0.013	10.083	18 965	0.545	0.859	99.80	HB3&4 L2 S4
	-1051.0	51 904	52.200	1 249	16.013	0.045	10.005	18 946	0.534	0.862	99.65	HB3&4 L2 S4
	-1011.0	51 889	52.200	1.302	15 977	0.036	10.053	18 851	0.550	0.857	99.51	HB3&4 L2 S4
	-931.0	52 093	52.350	1 246	16 101	0.009	10.020	18 844	0.550	0.881	99 74	HB3&4 L2 S3
	-892.0	51 843	52.330	1 313	15 935	0.009	10.020	18 932	0.570	0.856	99.50	HB3&4 L2 S3
	-853.0	51.804	52.073	1 310	16 133	0.007	10.081	18 920	0.589	0.868	99.73	HB3&4 L2 S3
	-814.0	51.886	51 934	1.263	16.054	0.021	10.001	19 106	0.600	0.863	99.95	HB3&4 L2 S3
	-775.0	51.822	52 456	1 235	15 921	0.021	9 952	18 959	0.603	0.855	99.37	HB3&4 L2 S3
	-736.0	52 027	52.100	1.202	16 129	0.020	9 904	18 940	0.635	0.872	99.72	HB3&4 L2 S3
	-697.0	51 994	52.367	1 238	15 994	0.010	9 897	18 995	0.633	0.871	99.63	HB3&4 L2 S3
	-658.0	52 137	52.265	1.230	16.064	0.051	9.921	18 948	0.678	0.842	99.87	HB3&4 L2 S3
	-619.0	51 995	52.205	1.207	15 900	0.008	10.009	18 903	0.722	0.867	99.61	HB3&4 L2 S3
	-580.0	52 007	52.000	1 243	16.002	0.038	9 980	19.021	0.722	0.859	99.93	HB3&4 L2 S3
	-541.0	51 996	52.074	1 1 1 4 1	16.002	0.002	9.906	18 981	0.817	0.857	99.70	HB3&4 L2 S3
	-502.0	51 993	52.275	1.173	15 932	0.002	9.912	19.018	0.870	0.866	99.70	HB3&4 L2 S3
	-463.0	52 105	52.201	1 1 1 4 8	15.932	0.025	9.895	19.010	0.902	0.841	99.88	HB3&4 L2 S3
	-424.0	51 954	52.223	1 1 1 50	15.967	0.041	9.870	19.020	0.962	0.861	99.83	HB3&4 L2 S3
	-385.0	51 749	51 990	1 1 5 9	15 961	-0.001	9.925	18 991	1.068	0.001	99.76	HB3&4 L2 S3
	-346.0	51 940	52 195	1.135	15.776	0.016	9.859	18 959	1.000	0.904	99.75	HB3&4 L2 S3
	-307.0	51.627	51 828	1 200	15.946	0.005	9 900	19.008	1 220	0.892	99.80	HB3&4 L2 S3
	-268.0	51.875	52 033	1.200	15 909	0.005	9 744	18 975	1.220	0.072	99.84	HB3&4 L2 S3
	-229.0	51.655	51 983	1 161	15.703	0.023	9.808	18 947	1.350	0.911	99.67	HB3&4 L2 S3
	-190.0	51 761	51 969	1.101	15.856	0.023	9 720	18 887	1.550	0.950	99 79	HB3&4 L2 S3
	-151.0	51 673	51 778	1 1 2 2	15.000	0.035	9 785	18 898	1 563	1 022	99.90	HB3&4 L2 S3
	-112.0	51 441	51 727	1.122	15 796	0.035	9 804	18 873	1.505	1.018	99.71	HB3&4 L2 S3
	-73.0	51 260	51 379	1.120	15.833	0.014	10.003	18 901	1.679	1.010	99.88	HB3&4 L2 S3
	-50.0	51.007	51 276	1 1 9 9	15.899	0.047	9 960	18 862	1.696	1.011	99.73	HB3&4 L2 S2
	-35.0	50 791	51 438	1 253	15.813	0.017	9 884	18 792	1.000	1.001	99 35	HB3&4_L2_S2
	0.0	50 654	51.075	1.235	15.870	0.021	9 964	18 900	1 789	1.082	99.58	HB3&4 L2 S2
	70.0	49 958	50 628	1 374	15 991	0.046	10.023	18 926	1 904	1 109	99 33	HB3&4 L2 S2
	105.0	49 922	50 186	1 476	16 199	0.062	10.075	18 905	1 988	1 1 1 0	99.74	HB3&4 L2 S2
	496.0	48 989	49 747	1 630	15 799	0.069	9 971	18 988	2.516	1 280	99.24	HB3&4 L2 S1
	536.0	48 832	49 577	1 560	16 041	0.093	9 9 5 9	18 939	2.555	1 276	99.25	HB3&4 L2 S1
	616.0	48 966	49 532	1 558	15 884	0.086	9 908	19 091	2.639	1 302	99.43	HB3&4 L2 S1
	816.0	48 868	49 421	1 576	15 999	0.060	10 010	18 860	2.787	1 288	99.45	HB3&4 L2 S1
	896.0	48.940	49.674	1.490	15.846	0.072	9.983	18.841	2.810	1.285	99.27	HB3&4 L2 S1
	1056.0	48 912	49 614	1 623	15 858	0.067	9 836	18 872	2.866	1 263	99 30	HB3&4 L2 S1
	1096.0	48.915	49.621	1.514	15.881	0.069	9.885	18.865	2.861	1.306	99.29	HB3&4 L2 S1
	1136.0	49.099	49,595	1.493	15.927	0.059	9.872	18,915	2.845	1.295	99.50	HB3&4 L2 S1
	1216.0	49.070	49.553	1.493	15.929	0.075	9.863	18,904	2.884	1.300	99.52	HB3&4 L2 S1
	1256.0	49.043	49.387	1.522	16.064	0.085	9.925	18.850	2.893	1.274	99,66	HB3&4 L2 S1
	1296.0	48,860	49.408	1.581	16.067	0.048	9.891	18.837	2.903	1.265	99.45	HB3&4 L2 S1
	1336.0	49,126	49.450	1.483	16.117	0.073	9.841	18.892	2.894	1.249	99.68	HB3&4 L2 S1
	1376.0	49.020	49.516	1.525	16.034	0.064	9.799	18,963	2.849	1.251	99,50	HB3&4 L2 S1
	1416.0	49.061	49.510	1.441	15.946	0.063	9,953	18,908	2.906	1.272	99.55	HB3&4 L2 S1
J												

Table C3.	HB5&6A										
X (μm)	SiO2	SiO2*	TiO2	Al2O3	FeO	MgO	CaO	Na2O	K2O	Total	Comment
-1380.9	48.657	49.800	1.456	15.873	0.039	9.955	20.316	1.578	0.982	98.86	HB5&6 L1 S3
-1300.9	48.622	49.767	1.375	15.930	0.027	9.948	20.393	1.563	0.998	98.86	HB5&6 L1 S3
-1140.9	48.767	49.888	1.474	15.881	0.040	9.875	20.307	1.554	0.982	98.88	HB5&6 L1 S3
-1060.9	48.858	49.837	1.472	15.840	0.026	9.972	20.328	1.553	0.973	99.02	HB5&6 L1 S3
-1020.9	48.777	49.834	1.475	15.893	0.035	9.960	20.297	1.541	0.966	98.94	HB5&6 L1 S3
-980.9	48 708	49 691	1 4 5 6	16 045	0.008	9 993	20 258	1 589	0.962	99.02	HB5&6 L1 S3
-940.9	48 670	49 803	1 493	15 901	0.035	9 907	20.341	1 538	0.981	98.87	HB5&6 L1 S3
-900.9	48 684	49 595	1 444	16 049	0.054	9 950	20.376	1 586	0.947	99.09	HB5&6 L1 S3
-820.9	48 892	49 462	1 479	16.041	0.067	9 981	20.391	1 593	0.987	99.43	HB5&6 L1 S3
-780.9	48 589	49 745	1 426	15 965	0.054	9 880	20.344	1 571	1 015	98.84	HB5&6 L1 S3
-740.9	48 730	49 723	1.120	15.900	0.051	9 905	20.313	1.571	0.950	99.01	HB5&6 L1 S3
-700.9	48 857	49 931	1 367	15 925	0.019	9 782	20.431	1 581	0.965	98.93	HB5&6 L1 S3
-660.9	48.923	49.673	1.563	15.891	0.036	9,990	20.334	1.548	0.965	99.25	HB5&6 L1 S3
-620.9	49 041	49 819	1 471	15 940	0.043	9 880	20.318	1.567	0.962	99.22	HB5&6 L1 S3
-580.9	49 094	49 458	1 502	16 117	0.042	10.025	20.332	1 540	0.984	99.64	HB5&6 L1 S3
-540.9	48 947	49 650	1.528	16.042	0.059	9 945	20.238	1 565	0.973	99.30	HB5&6 L1 S3
-460.9	49 082	49 669	1 507	16 041	0.047	9 985	20 226	1.576	0.948	99.41	HB5&6 L1 S3
-420.9	48 911	49 906	1.512	15 969	0.017	9 941	20 1 39	1 556	0.960	99.01	HB5&6 L1 S3
-380.9	49.198	49.556	1.503	16.042	0.025	10.056	20.254	1.601	0.964	99.64	HB5&6 L1 S3
-340.9	49.046	49.762	1.441	16.001	0.029	10.080	20.148	1.580	0.960	99.28	HB5&6 L1 S3
-300.9	49.050	50.038	1.347	16.063	0.030	9.946	20.057	1.573	0.947	99.01	HB5&6 L1 S3
-260.9	49.281	49.891	1.464	16.096	0.043	10.060	19.907	1.580	0.959	99.39	HB5&6 L1 S3
-220.9	49.318	49.861	1.489	16.181	0.044	10.011	19.865	1.608	0.941	99.46	HB5&6 L1 S2
-200.9	49.127	50.034	1.449	16.063	0.039	10.035	19.818	1.588	0.974	99.09	HB5&6 L1 S2
-180.9	49.343	50.140	1.406	16.126	0.016	9.941	19.764	1.642	0.966	99.20	HB5&6 L1 S2
-160.9	49.436	50.022	1.507	16.107	0.052	10.101	19.621	1.623	0.967	99.41	HB5&6 L1 S2
-140.9	49.217	50.074	1.415	16.024	0.050	10.021	19.819	1.607	0.989	99.14	HB5&6 L1 S2
-120.9	49.888	50.100	1.459	16.163	0.060	10.108	19.431	1.667	1.011	99.79	HB5&6 L1 S2
-100.9	49.768	50.066	1.535	16.108	0.043	10.114	19.461	1.687	0.986	99.70	HB5&6 L1 S2
-80.9	49.843	50.430	1.455	16.048	0.017	10.009	19.342	1.652	1.048	99.41	HB5&6 L1 S2
-60.9	49.805	50.729	1.437	15.915	0.056	9.999	19.115	1.709	1.040	99.08	HB5&6 L1 S2
-40.9	49.890	50.665	1.421	16.003	0.036	9.964	19.099	1.733	1.079	99.22	HB5&6 L1 S2
-20.9	50.134	50.701	1.455	15.863	0.030	9.979	19.100	1.783	1.091	99.43	HB5&6 L1 S2
-0.9	50.610	50.818	1.407	15.884	0.043	10.007	18.951	1.779	1.113	99.79	HB5&6 L1 S2
19.1	50.370	51.431	1.405	15.703	0.026	9.779	18.731	1.779	1.146	98.94	HB5&6 L1 S2
39.1	50.463	51.364	1.403	15.817	0.039	9.945	18.454	1.814	1.165	99.10	HB5&6_L1_S2
59.1	51.062	51.395	1.442	15.722	0.033	9.887	18.456	1.854	1.212	99.67	HB5&6_L1_S2
79.1	51.111	51.608	1.473	15.679	0.062	9.759	18.353	1.858	1.209	99.50	HB5&6_L1_S2
99.1	51.298	51.609	1.469	15.704	0.048	9.783	18.258	1.871	1.260	99.69	HB5&6_L1_S2
119.1	51.184	51.924	1.436	15.698	0.045	9.684	18.071	1.882	1.261	99.26	HB5&6_L1_S2
139.1	51.280	51.900	1.356	15.679	0.044	9.823	18.004	1.941	1.253	99.38	HB5&6_L1_S2
159.1	51.278	51.740	1.448	15.690	0.048	9.773	18.077	1.941	1.283	99.54	HB5&6_L1_S2
179.1	51.336	52.041	1.357	15.727	0.065	9.721	17.819	1.946	1.324	99.29	HB5&6_L1_S2
199.1	51.290	51.960	1.461	15.752	0.070	9.813	17.711	1.925	1.309	99.33	HB5&6_L1_S2
219.1	51.421	52.289	1.456	15.588	0.043	9.716	17.689	1.939	1.280	99.13	HB5&6_L1_S2
239.1	51.720	52.083	1.416	15.810	0.030	9.783	17.651	1.933	1.295	99.64	HB5&6_L1_S2
259.1	51.448	51.847	1.536	15.827	0.034	9.789	17.664	1.969	1.334	99.60	HB5&6_L1_S2
279.1	51.600	52.077	1.410	15.840	0.042	9.840	17.501	1.977	1.315	99.52	HB5&6_L1_S2
299.1	51.361	51.973	1.519	15.805	0.020	9.851	17.587	1.960	1.287	99.39	HB5&6_L1_S2
319.1	51.673	52.285	1.509	15.709	0.022	9.650	17.510	1.984	1.333	99.39	HB5&6_L1_S2
339.1	51.536	51.955	1.412	15.883	0.032	9.936	17.467	1.999	1.315	99.58	HB5&6_L1_S2
359.1	51.552	52.328	1.511	15.728	0.036	9.715	17.415	1.988	1.280	99.22	HB5&6_L1_S2
379.1	51.761	52.187	1.502	15.777	0.046	9.820	17.391	1.987	1.289	99.57	HB5&6_L1_S2
399.1	51.797	52.255	1.458	15.783	0.023	9.817	17.361	1.991	1.313	99.54	HB5&6_L1_S2
419.1	51.773	52.122	1.482	15.907	0.050	9.735	17.409	1.988	1.309	99.65	HB5&6_L1_S2
439.1	51.674	52.077	1.444	15.865	0.038	9.851	17.427	2.001	1.296	99.60	HB5&6_L1_S2
459.1	51.813	52.185	1.423	15.882	0.027	9.824	17.356	2.000	1.304	99.63	HB5&6_L1_S1
499.1	51.520	52.170	1.422	15.837	0.039	10.001	17.228	1.990	1.313	99.35	HB5&6_L1_S1
579.1	51.751	52.382	1.465	15.831	0.021	9.836	17.179	1.999	1.287	99.37	HB5&6_L1_S1
619.1	51.568	52.059	1.389	15.932	0.021	9.913	17.414	1.969	1.304	99.51	HB5&6_L1_S1
659.1	51.569	52.173	1.496	15.855	0.022	9.907	17.271	1.970	1.307	99.40	HB5&6 L1 S1

699.1	51.560	52.101	1.441	15.887	0.063	9.938	17.323	1.961	1.286	99.46	HB5&6_L1_S1
739.1	51.781	51.994	1.479	16.005	0.057	9.868	17.321	1.976	1.301	99.79	HB5&6_L1_S1
779.1	51.617	52.171	1.404	15.883	0.018	9.942	17.338	1.978	1.266	99.45	HB5&6_L1_S1
819.1	51.788	52.093	1.524	15.849	0.027	9.907	17.324	1.997	1.280	99.70	HB5&6_L1_S1
859.1	51.581	51.938	1.485	15.915	0.044	9.933	17.429	1.936	1.321	99.64	HB5&6_L1_S1
899.1	51.660	52.171	1.470	15.865	0.007	9.881	17.362	1.967	1.277	99.49	HB5&6 L1 S1
939.1	51.716	52.205	1.475	15.840	0.050	9.947	17.261	1.955	1.268	99.51	HB5&6 L1 S1
979.1	51.508	52.197	1.470	15.814	0.047	9.966	17.287	1.960	1.260	99.31	HB5&6 L1 S1
1019.1	51.613	52.154	1.468	15.782	0.043	9.893	17.397	1.970	1.294	99.46	HB5&6 L1 S1
1059.1	51.356	52.141	1.411	15.937	0.048	9.940	17.290	1.959	1.274	99.22	HB5&6 L1 S1
1099.1	51.624	52.002	1.537	15.785	0.044	10.082	17.330	1.959	1.261	99.62	HB5&6_L1_S1
1139.1	51.472	52.141	1.522	15.870	0.048	9.844	17.387	1.955	1.233	99.33	HB5&6 L1 S1
1179.1	51 716	52,225	1 469	15 877	0.037	9 910	17 306	1 915	1 262	99 49	HB5&6 L1 S1
12191	51 413	51 994	1 4 5 3	15 979	0.045	9 937	17 359	1 946	1 287	99 42	HB5&6 L1 S1
1259.1	51 687	52 154	1 516	15 761	0.024	9 9 5 9	17 310	2,000	1 276	99 53	HB5&6 L1 S1
1299.1	51 707	52 286	1 440	15 860	0.034	9 908	17 239	1 945	1 288	99.42	HB5&6 L1 S1
1339.1	51 468	52 374	1 4 5 4	15 775	0.020	9.858	17 295	1 963	1 262	99.09	HB5&6 L1 S1
1379.1	51.757	51 901	1.131	15.964	0.020	10.009	17 341	1.979	1 2 2 9	99.86	HB5&6 L1 S1
1419.1	51.757	52 251	1 449	15.961	0.070	9.815	17 340	1.980	1.227	99.19	HB5&6 L1 S1
1459.1	51.650	52.231	1.115	15,000	0.070	9 8 9 9	17.310	1 944	1.257	99.53	HB5&6 L1 S1
-1507.3	49 235	49 788	1 493	15.925	0.021	9.019	20 322	1.534	0.990	99.45	HB5&6 L2
-14573	49.070	49.658	1.512	15.929	0.020	10.046	20.322	1.554	0.994	99.45	HB5&6 L2
-1407.3	49.070	10 8/18	1.512	15.929	0.032	0.862	20.204	1.547	0.994	00 53	HB5&6 L2
-1407.3	49.375	49.040	1 /32	15.922	0.045	0.058	20.280	1.556	0.987	00.55	HB5&6 L2
-1307.3	49.205	49.731	1.452	15.007	0.050	0 002	20.44)	1.530	0.938	99.62	HB5&6 L2
-12573	49.090	49 726	1.303	15.972	0.000	9.931	20.327	1.554	1 000	99.36	HB5&6 L2
-1207.3	49.090	49.720	1.477	16.021	0.025	9.931	20.331	1.577	0.001	99.30	HB5&6 L2
-1207.3	49.100	49.705	1.444	15 080	0.055	0 753	20.338	1.504	0.994	00 13	HB5&6 L2
1107.3	49.000	40.807	1.505	15.075	0.030	0.832	20.303	1.555	0.955	00.50	HB5&6 L2
-1057.3	49.300	49.607	1.303	15.975	0.040	10.045	20.313	1.501	0.956	99.50	HB5&6 L2
-1007.3	49.320	49.001	1.477	16.013	0.049	0 006	20.257	1.540	0.970	00 /1	HB5&6 L2
-9573	49.060	49.703	1.405	15 935	0.071	10.055	20.333	1.504	0.985	99.33	HB5&6 L2
-907.3	49.000	50.012	1.400	15.955	0.022	0 021	20.300	1.527	0.952	00 04	HB5&6 L2
-8573	49.032	49 806	1.455	15.004	0.075	9.924	20.224	1.527	0.982	99.04	HB5&6 L2
-807.3	49.225	49 929	1.469	15.972	0.030	9.839	20.203	1.501	0.975	99.53	HB5&6 L2
-7573	49 297	50.003	1.402	15.950	0.043	9.888	20.202	1.531	0.980	99.29	HB5&6 L2
-707.3	49 222	49 755	1.373	15.887	0.045	9.962	20.227	1.549	0.982	99.47	HB5&6 L2
-657.3	49 154	50.043	1 413	15.862	0.035	9 922	20.192	1 544	0.990	99.11	HB5&6 L2
-607.3	49 277	49 878	1 350	15.819	0.055	10.053	20.323	1.550	0.970	99.40	HB5&6 L2
-557.3	49 116	49 979	1.530	15.870	0.030	9 884	20.223	1.550	0.956	99.10	HB5&6 L2
-507.3	49 360	49 713	1.330	15.070	0.030	10.035	20.205	1.510	0.937	99.65	HB5&6 L2
-457.3	49.300	49.715	1.427	15.903	0.056	10.033	20.310	1.577	0.963	99.57	HB5&6 L2
-407.3	49.473	49.855	1.420	15.045	0.030	9 977	20.207	1.503	0.905	99.57	HB5&6 L2
-3573	49.425	49 776	1.478	15.987	0.040	10.035	20.137	1.550	0.970	99.64	HB5&6 L2
-307.3	49 315	50.046	1.120	15.967	0.037	9 998	20.233	1.556	0.935	99.27	HB5&6 L2
-207.3	49.313	50.144	1.400	15.054	0.040	9.946	19 846	1.500	0.949	99.18	HB5&6 L2
-157.3	49 584	50 181	1.101	16.023	0.020	10.030	19.670	1.633	0.970	99.10	HB5&6 L2
-107.3	49 911	50 354	1 488	16.013	0.050	9 975	19 440	1.655	1 011	99.56	HB5&6 L2
-57.3	49 871	50.810	1 440	15 792	0.001	10.070	19.092	1.055	1.038	99.06	HB5&6 L2
-73	50 268	50.510	1 492	16.059	0.010	9.926	18 989	1.741	1.050	99.68	HB5&6 L2
42.7	50.200	51 333	1.152	15 750	0.062	9.920	18 536	1.853	1 1 9 4	99.30	HB5&6 L2
92.7	51 166	51 784	1 394	15.631	0.002	9.812	18 277	1.845	1 212	99.38	HB5&6 L2
142.7	51.100	51 922	1 348	15.649	0.040	9.757	18.075	1.015	1 293	99 44	HB5&6 L2
192.7	51 434	52 144	1 448	15.647	0.030	9 785	17 732	1 946	1 308	99.79	HB5&6 I 2
242.7	51 487	52.144	1 496	15 705	0.043	9 801	17 575	1 985	1 310	99.40	HB5&6 I 2
292.7	51 413	52.005	1 512	15 722	0.007	9.857	17 507	1 960	1 200	99. 1 0	HB5&6 I 2
342.7	51 58/	52.141	1 424	15 780	0.043	9.852	17 506	1 906	1 206	90 <i>11</i>	HB5&6 I 2
392.7	51 452	52.140	1.724	15 700	0.043	9 902	17.500	1 071	1 3 2 3	90.78	HR5 $\&6$ I 2
140 T	51.452	52.170	1.576	15.722	0.053	9.205	17 227	1 007	1 208	99.20 99.51	HB5&6 12
492.7	51.571	52.005	1 4 9 1	15 771	0.033	9 901	17 334	1.966	1 315	99 <i>4</i> 1	HB5 $\&6$ I 2
542.7	51.010	52.190	1 522	15 805	0.024	9.815	17 345	1 994	1 320	99 30	HB5 $\&6$ I 2
642.7	51 735	51 995	1 449	15 938	0.036	9 930	17 394	1 985	1 273	99 7 <u>4</u>	HB5&6 L2
692.7	51 293	52 098	1 537	15 895	0.033	9 997	17 219	1 934	1 2 8 9	99.20	HB5&6 I 2
074.1	51.475	22.070	1.551	10.075	0.055	1.111	1,.41)	1.757	1.207	11.40	112300_L2

742.7	51.429	52.103	1.506	15.839	0.047	9.911	17.297	2.006	1.292	99.33	HB5&6_L2
792.7	51.581	52.224	1.552	15.742	0.023	9.963	17.264	1.949	1.283	99.36	HB5&6_L2
842.7	51.443	52.235	1.479	15.700	0.041	9.881	17.388	1.990	1.286	99.21	HB5&6_L2
892.7	51.505	52.142	1.475	15.846	0.052	9.887	17.345	1.969	1.284	99.36	HB5&6_L2
992.7	51.191	52.114	1.520	15.792	0.046	9.895	17.361	1.985	1.287	99.08	HB5&6_L2
1042.7	51.240	52.259	1.459	15.779	0.021	9.937	17.295	1.957	1.293	98.98	HB5&6 L2
1092.7	51.126	52.234	1.515	15.848	0.025	9.921	17.235	1.959	1.264	98.89	HB5&6 L2
1142.7	51.520	52.063	1.497	15.813	0.035	10.010	17.321	1.984	1.278	99.46	HB5&6 L2
1192.7	51.503	51.971	1.459	15.861	0.034	9.929	17.488	1.989	1.270	99.53	HB5&6 L2
1242.7	51.297	52.380	1.553	15.752	0.016	9.839	17.254	1.936	1.271	98.92	HB5&6 L2
1292.7	51.493	52.037	1.445	15.819	0.038	9.971	17.407	1.968	1.316	99.46	HB5&6 L2
1342.7	51.289	52.250	1.449	15.773	0.053	9.918	17.297	1.974	1.286	99.04	HB5&6 L2
1392.7	51.389	52.166	1.543	15.778	0.034	9.947	17.329	1.961	1.241	99.22	HB5&6 L2
1442.7	51.469	52.230	1.411	15.936	0.063	9.834	17.297	1.966	1.265	99.24	HB5&6 L2
-1497.2	49.203	49.725	1.487	15.958	0.041	9.885	20.343	1.580	0.981	99.48	HB5&6_L3
-1447.2	49.202	49.837	1.460	15.936	0.057	9.829	20.401	1.501	0.980	99.36	HB5&6 L3
-1397.2	49.313	49.522	1.436	15.998	0.049	9,990	20.444	1.577	0.983	99.79	HB5&6_L3
-1347.2	49 212	49 457	1 474	16 079	0.033	10 017	20 372	1 587	0.981	99.75	HB5&6 L3
-1297.2	49 137	49 690	1 449	15 981	0.040	9 909	20.399	1.566	0.968	99.45	HB5&6 L3
-1247.2	49 280	49 764	1 397	16.034	0.048	9 981	20.243	1.566	0.967	99.52	HB5&6 L3
-1197.2	49 132	49 685	1 400	16.088	0.050	9 903	20.219	1.500	0.981	99.45	HB5&6 I 3
-1177.2	49.152	49 547	1 413	16.000	0.050	9.905	20.337	1.555	0.901	99.75	HB5&6 I 3
-1147.2	49.290	49.547 10 701	1.415	15 9/0	0.030	0 000	20.400	1.546	0.992	00 52	HB5&6 I 3
-107.2	49.217	49.701	1 3 8 3	16.020	0.041	0.068	20.415	1.540	0.987	00.28	HB5&6 I 3
-1047.2	49.101	49.017	1.305	16.020	0.045	0.788	20.280	1.542	0.940	00 12	HB5&6 I 3
-947.2	49.100	49.702	1.444	16.065	0.037	0.005	20.332	1.504	0.904	00 50	HB5&6 I 3
-807.2	49.190	49.009	1.440	15 957	0.044	0.076	20.300	1.550	0.977	00 /0	HB5&6 I 3
-097.2 847.2	49.012	49.010	1.508	15.957	0.048	9.970	20.303	1.574	0.900	99.40 00.71	HB5&6 I 3
707.2	40.117	10 838	1.327	15.056	0.037	0.808	20.377	1.550	0.990	00.28	HB5&6 I 3
-191.2	49.117	49.030	1.402	15.950	0.034	0.000	20.303	1.525	0.900	00 /3	HB5&6 I 3
-/4/.2 607.2	49.114	49.000	1.306	15.905	0.049	10.031	20.313	1.574	0.974	99. 4 5 00.56	HB5&6 I 3
-097.2 647.2	49.300	49.810	1.490	15.042	0.033	10.031	20.220	1.572	0.974	99.50	HB5&6 I 3
-047.2	49.233	49.500	1.495	15.952	0.034	0.825	20.280	1.574	0.980	99.07	
-397.2	49.140	49.980	1.405	15.000	0.021	9.823	20.288	1.572	0.980	99.17	HB5&6 I 3
-347.2	49.110	49.932	1.444	16.050	0.005	9.808	20.200	1.544	0.950	99.10	
-497.2	49.142	49.377	1.312	10.039	0.077	9.898	20.342	1.552	0.982	99.30	ПБ3&0_L3 ЦБ5&6_L3
-447.2	49.107	49.000	1.404	15.977	0.045	9.004	20.202	1.005	0.900	99.24	HB5&6 I 3
-397.2	49.390	J0.079 10.807	1.427	15.962	0.019	9.800	20.104	1.506	0.950	99.52	HB5&6 I 3
-297.2	49.307	49.097 50.000	1.545	15.969	0.045	0.000	10.024	1.570	0.908	99. 4 9	
-247.2	49.440	50.008	1.304	16.015	0.018	9.900	19.934	1.575	0.939	99.44	HD5&6_L3
-197.2	49.575	50.005	1.309	16.091	0.038	10.027	19.620	1.019	0.907	99.51	HD5&6_L3
-14/.2	49.075	50.226	1.440	16.045	0.040	10.033	19.408	1.015	0.987	99.33	
-97.2	49.727	50.520	1.405	10.020	0.041	0.004	19.412	1./13	0.990	99.40	
-4/.2	50.158	50.727	1.4//	15.930	0.048	9.904	19.100	1.09/	1.002	99.43	
2.8	50.205	51 222	1.428	15.902	0.034	9.090	18.907	1./05	1.120	99.30	
52.8 102.9	51,215	51.522	1.4/1	15.025	0.048	10.023	18.52/	1.812	1.1/3	99.40	
102.8	51.515	51.090	1.495	15.727	0.034	9.05/	18.278	1.890	1.223	99.03	HB5&6_L3
152.8	51.306	51.905	1.4/2	15./10	0.055	9.788	17.001	1.938	1.260	99.40	$HB5&6_L3$
202.8	51.495	51.800	1.523	15.696	0.056	9.824	17.601	1.931	1.305	99.63	$HB5&6_L3$
252.8	51.851	52.119	1.485	15.030	0.049	9.840	17.029	1.991	1.239	99.73	
302.8	51.795	52.128	1.502	15.770	0.001	9.795	17.200	1.9/5	1.308	99.07	HB5&6_L3
352.8	51.838	52.316	1.446	15.800	0.016	9./12	17.389	2.006	1.315	99.52	$HB5&6_L3$
402.8	51.828	52.353	1.415	15.700	0.048	9.860	17.384	1.9//	1.264	99.48	HB5&6_L3
452.8	51.722	52.259	1.392	15./58	0.051	9.826	17.393	2.023	1.298	99.46	HB5&6_L3
502.8	51.929	52.278	1.488	15./41	0.036	9.811	17.357	2.006	1.284	99.65	HB5&6_L3
552.8	51.723	52.419	1.4/6	15.831	0.035	9.//1	17.260	1.947	1.263	99.30	HB5&6_L3
602.8	51.888	52.305	1.457	15.672	0.046	9.920	17.300	2.018	1.283	99.58	HB5&6_L3
652.8	51.693	52.219	1.456	15.835	0.018	9.871	17.326	2.011	1.265	99.47	HB5&6_L3
702.8	51.837	52.198	1.542	15.874	0.034	9.885	17.229	1.980	1.258	99.64	HB5&6_L3
752.8	51.886	52.221	1.530	15.653	0.063	9.974	17.297	1.980	1.282	99.67	HB5&6_L3
802.8	51.770	52.428	1.436	15.675	0.027	9.906	17.301	1.979	1.249	99.34	HB5&6_L3
852.8	51.855	52.323	1.432	15.772	0.047	9.860	17.293	2.002	1.272	99.53	HB5&6_L3
902.8	51.566	52.044	1.426	15.862	0.014	9.955	17.417	1.989	1.294	99.52	HB5&6_L3
952.8	51.547	52.230	1.527	15.846	0.059	9.820	17.289	1.973	1.258	99.32	HB5&6_L3

1002.8	51.707	52.546	1.436	15.793	0.028	9.809	17.151	1.959	1.277	99.16	HB5&6_L3
1052.8	51.440	52.223	1.458	15.765	0.013	9.989	17.362	1.947	1.243	99.22	HB5&6_L3
1102.8	51.566	52.092	1.458	15.802	0.070	10.035	17.334	1.958	1.250	99.47	HB5&6_L3
1152.8	51.676	52.223	1.491	15.888	0.061	9.918	17.196	1.958	1.265	99.45	HB5&6_L3
1202.8	51.438	52.325	1.576	15.717	0.033	9.824	17.302	1.952	1.272	99.11	HB5&6_L3
1252.8	51.706	51.998	1.406	15.901	0.031	10.022	17.429	1.962	1.251	99.71	HB5&6_L3
1302.8	51.677	52.510	1.480	15.716	0.009	9.790	17.306	1.922	1.267	99.17	HB5&6_L3
1352.8	51.643	52.486	1.453	15.767	0.061	9.853	17.216	1.934	1.231	99.16	HB5&6_L3
1402.8	51.630	52.255	1.496	15.855	0.055	9.823	17.327	1.946	1.243	99.37	HB5&6_L3

Table C4.	HB5&7A										
X (µm)	SiO2	SiO2*	TiO2	Al2O3	FeO	MgO	CaO	Na2O	K2O	Total	Comment
-1324	51.782	51.939	1.440	15.931	0.043	9.733	17.637	2.012	1.265	99.84	HB5&7A_L1_S5
-1284	51.876	52.087	1.511	15.994	0.019	9.651	17.439	2.014	1.284	99.79	HB5&7A L1 S5
-1244	51.880	52.065	1.452	16.007	0.034	9.709	17.380	2.047	1.306	99.81	HB5&7A_L1_S5
-1204	51.759	51.813	1.451	16.088	0.012	9.765	17.512	2.050	1.309	99.95	HB5&7A_L1_S5
-1164	51.785	51.854	1.547	15.944	0.037	9.650	17.591	2.080	1.296	99.93	HB5&7A_L1_S5
-1124	51.722	51.921	1.471	16.045	0.032	9.637	17.558	2.017	1.320	99.80	HB5&7A_L1_S5
-1084	51.484	51.858	1.499	16.176	0.045	9.610	17.490	2.040	1.281	99.63	HB5&7A_L1_S5
-1044	51.551	51.799	1.485	16.100	0.039	9.689	17.580	2.022	1.286	99.75	HB5&7A_L1_S5
-1004	51.528	51.891	1.419	15.930	0.032	9.795	17.581	2.066	1.286	99.64	HB5&7A_L1_S5
-924	51.376	51.772	1.502	16.233	0.015	9.668	17.459	2.029	1.322	99.60	HB5&7A_L1_S5
-884	51.651	51.990	1.346	16.028	0.020	9.763	17.563	2.007	1.284	99.66	HB5&7A_L1_S5
-844	51.570	51.785	1.557	15.960	0.025	9.788	17.622	1.993	1.272	99.79	HB5&7A_L1_S5
-804	51.694	51.927	1.511	15.846	0.077	9.763	17.521	2.051	1.305	99.77	HB5&7A_L1_S5
-764	51.643	51.746	1.462	16.113	0.049	9.784	17.481	2.064	1.301	99.90	HB5&7A_L1_S5
-724	51.877	51.935	1.483	15.905	0.029	9.755	17.608	2.009	1.277	99.94	HB5&7A_L1_S5
-684	51.758	52.148	1.496	15.800	0.039	9.724	17.468	2.034	1.293	99.61	HB5&7A_L1_S5
-644	51.839	52.105	1.501	15.813	0.038	9.806	17.469	1.996	1.271	99.73	HB5&7A_L1_S5
-604	51.786	51.905	1.508	16.034	0.054	9.632	17.576	2.015	1.277	99.88	HB5&7A_L1_S5
-524	52.033	51.728	1.499	16.004	0.033	9.882	17.562	2.016	1.275	100.31	HB5&7A_L1_S5
-504	51.892	52.001	1.436	15.902	0.030	9.742	17.590	1.991	1.309	99.89	HB5&7A_L1_S4
-484	51.760	51.940	1.443	15.886	0.053	9.752	17.583	2.060	1.284	99.82	HB5&7A_L1_S4
-464	51.593	52.068	1.503	15.792	0.046	9.606	17.689	2.014	1.283	99.52	HB5&7A_L1_S4
-444	51.805	52.012	1.530	15.897	0.050	9.605	17.596	2.015	1.294	99.79	HB5&7A_L1_S4
-424	51.638	52.022	1.446	15.852	0.062	9.715	17.594	1.992	1.317	99.62	HB5&7A_L1_S4
-404	51.654	51.981	1.480	15.793	0.053	9.703	17.674	2.002	1.313	99.67	HB5&7A_L1_S4
-384	51.821	51.753	1.532	15.839	0.015	9.681	17.810	2.059	1.313	100.07	HB5&7A_L1_S4
-364	51.692	51.786	1.487	15.863	0.031	9.713	17.761	2.076	1.284	99.91	HB5&7A_L1_S4
-344	51.706	51.834	1.450	15.987	0.056	9.550	17.796	2.052	1.274	99.87	HB5&7A_L1_S4
-324	51.723	51.950	1.513	15.820	0.027	9.545	17.802	2.040	1.302	99.77	HB5&/A_L1_S4
-304	51.758	51.860	1.454	15.855	0.046	9.556	17.903	2.032	1.294	99.90	HB5&/A_L1_S4
-284	51./34	51.840	1.369	15.891	0.034	9.680	17.850	2.04/	1.290	99.89	$HB5 \alpha / A_L I_S 4$
-264	51.459	52.056	1.500	15.105	0.043	9.580	17.704	1.996	1.309	99.81	$HB5 \& /A_LI_54$
-244	51./5/	52.050	1.4/3	15.855	0.063	9.405	17.049	2.032	1.200	99.08	$HBS \alpha / A LI_{S4}$
-224	51.760	51 802	1.4//	15.039	0.042	9.441	17.759	2.012	1.201	99.74	$\frac{\text{HD}}{\text{HD}} \frac{\text{A}}{\text{A}} = \frac{1}{54}$
-204	51.751	51.695	1.403	15.924	0.052	9.551	17.730	2.038	1.318	99.00 100.04	$HDS@/A_L1_S4$ $HDS@7A_11_S4$
-164	51.057	51.017	1.402	15 765	0.007	9.008	18.001	2.010	1.207	99.76	HB5&7A I 1 S4
-144	51.707	51 810	1.532	15.705	0.037	9.422	17 992	2.041	1.302	99.93	HB5&7A I 1 S4
-174	51.750	51 985	1.552	15 901	0.052	9 264	18 012	2.005	1 313	99.68	HB5&7A_L1_S4
-104	51.000	51 719	1 439	15.901	0.070	9 360	18.068	2.051	1 313	100.05	HB5&7A_L1_S4
-84	51.700	51 765	1.159	15.863	0.040	9 263	18 112	2.059	1 336	100.02	HB5&7A_L1_S4
-44	51.637	51 905	1 4 5 9	16 000	0.025	9 146	18 098	2.050	1 317	99 73	HB5&7A_L1_S4
-24	51.789	52.113	1.440	15.879	0.067	8.990	18.143	2.056	1.312	99.68	HB5&7A L1 S4
-17	51.918	52.005	1.476	15.935	0.051	9.025	18.107	2.066	1.336	99.91	HB5&7A L1 S3
-8	51.600	51.678	1.561	16.045	0.034	9.102	18.158	2.108	1.314	99.92	HB5&7A L1 S3
-4	51.762	51.913	1.516	15.932	0.040	9.074	18.186	2.022	1.319	99.85	HB5&7A L1 S4
15	52.090	51.848	1.534	16.018	0.045	8.852	18.310	2.072	1.321	100.24	HB5&7A L1 S2
33	52.078	51.681	1.491	16.020	0.053	8.924	18.421	2.072	1.338	100.40	HB5&7A L1 S2
51	52.007	51.925	1.490	15.845	0.040	8.939	18.380	2.067	1.314	100.08	HB5&7A L1 S2
69	51.972	51.766	1.481	16.167	0.049	8.774	18.417	2.028	1.319	100.21	HB5&7A L1 S2
87	52.215	51.682	1.512	16.016	0.021	8.861	18.488	2.069	1.353	100.53	HB5&7A_L1_S2
105	51.964	52.022	1.557	15.847	0.043	8.671	18.474	2.092	1.295	99.94	HB5&7A_L1_S2
123	51.947	51.913	1.448	15.979	0.055	8.696	18.531	2.054	1.323	100.03	HB5&7A_L1_S2
141	51.983	51.840	1.457	16.179	0.052	8.532	18.544	2.076	1.320	100.14	HB5&7A_L1_S2
159	52.123	51.853	1.514	15.996	0.002	8.600	18.590	2.098	1.347	100.27	HB5&7A_L1_S2
177	51.955	51.934	1.488	16.007	0.074	8.518	18.616	2.062	1.302	100.02	HB5&7A_L1_S2
195	52.089	52.125	1.463	15.947	0.000	8.543	18.548	2.075	1.299	99.96	HB5&7A_L1_S2
213	52.082	51.788	1.520	16.167	0.069	8.411	18.600	2.100	1.346	100.29	HB5&7A_L1_S2
231	51.922	51.987	1.466	15.926	0.028	8.468	18.741	2.070	1.315	99.93	HB5&7A_L1_S2
249	52.098	51.986	1.515	15.947	0.036	8.394	18.701	2.097	1.324	100.11	HB5&7A_L1_S2
267	52.233	51.723	1.515	16.046	0.058	8.404	18.811	2.109	1.334	100.51	HB5&7A L1 S2

285	52.146	51.968	1.515	15.845	0.090	8.413	18.722	2.124	1.322	100.18	HB5&7A_L1_S2
303	52.028	51.902	1.488	15.874	0.053	8.452	18.788	2.077	1.366	100.13	HB5&7A_L1_S2
321	52.169	51.766	1.562	15.974	0.043	8.409	18.844	2.072	1.329	100.40	HB5&7A L1 S2
339	52.067	51.710	1.477	16.137	0.066	8.383	18.790	2.093	1.345	100.36	HB5&7A L1 S2
357	52,044	51 975	1 482	15 795	0.049	8 4 4 7	18 832	2.082	1 3 3 9	100.07	HB5&7A_L1_S2
375	52.011	52 149	1.502	15.876	0.010	8 254	18 754	2.002	1 351	100.01	HB5&7A_L1_S2
303	52.105	51 785	1.502	16.040	0.010	8 201	18 027	2.104	1 3 2 0	100.01	HB5 & 7A I 1 S2
393 411	51.205	51.705	1.323	16 157	0.015	0.301 0.377	10.957	2.078	1.320	00.09	$\frac{\text{HD}_{3} \alpha / A _ \text{L}_{1} _ \text{S}_{2}}{\text{HD}_{5} \varrho_{7} A _ \text{L}_{1} _ \text{S}_{2}}$
411	51.809	51.000	1.570	10.137	0.059	0.277	10.002	2.089	1.318	99.98	$HD_{3}\alpha/A_{L1}S_{2}$
429	52.242	51.964	1.511	15.950	0.052	8.245	18.893	2.062	1.323	100.28	HB5&/A_L1_S2
44′/	52.177	51.936	1.520	15.930	0.049	8.170	18.982	2.069	1.343	100.24	$HB5\&/A_L1_S2$
465	52.102	51.872	1.453	16.003	0.081	8.219	18.977	2.059	1.335	100.23	HB5&7A_L1_S2
485	52.057	51.758	1.538	16.156	0.044	8.305	18.771	2.084	1.344	100.30	HB5&7A_L1_S1
525	52.173	52.197	1.463	15.887	0.032	8.165	18.828	2.075	1.354	99.98	HB5&7A_L1_S1
565	52.155	51.777	1.424	15.988	0.038	8.387	18.881	2.151	1.353	100.38	HB5&7A_L1_S1
605	52.099	52.015	1.540	15.901	0.044	8.304	18.775	2.074	1.346	100.08	HB5&7A L1 S1
645	52.141	51.882	1.523	15.976	0.018	8.225	18.954	2.081	1.341	100.26	HB5&7A L1 S1
685	52.078	52,145	1.489	15.883	0.041	8.134	18.860	2.079	1.370	99.93	HB5&7A_L1_S1
725	52 155	51 933	1 445	15 873	0.037	8 290	18 973	2.098	1 351	100.22	HB5&7A_L1_S1
765	52.135	51.933	1.115	15 995	0.057	8 269	18 970	2.073	1 314	100.22	HB5&7A_L1_S1
805	52.520	52.056	1.558	15.975	0.005	8 1 2 4	18 058	2.075	1 2 2 2	100.50	HB5 & 7A I 1 S1
005	52.172	52.050	1.556	15.002	0.033	0.124	10.950	2.105	1.323	100.12	$\frac{11D}{3} \frac{\alpha}{A} \frac{A}{L} \frac{L}{S}$
845	52.202	51./52	1.459	15.992	0.039	8.200	18.9/4	2.144	1.380	100.45	HB5&/A_L1_S1
885	51.987	52.192	1.522	15.835	0.019	8.146	18.861	2.095	1.330	99.80	HB5&/A_L1_S1
925	52.265	52.019	1.506	16.017	0.030	8.115	18.864	2.117	1.332	100.25	HB5&7A_L1_S1
965	52.268	51.784	1.491	15.989	0.043	8.325	18.897	2.134	1.338	100.48	HB5&7A_L1_S1
1005	52.186	51.944	1.567	15.890	0.044	8.198	18.853	2.135	1.369	100.24	HB5&7A_L1_S1
1045	52.194	51.974	1.537	15.835	0.039	8.167	18.958	2.138	1.354	100.22	HB5&7A_L1_S1
1125	52.220	51.763	1.505	15.984	0.020	8.191	19.059	2.156	1.322	100.46	HB5&7A L1 S1
1165	52.237	51.871	1.427	15.805	0.047	8.353	19.017	2.130	1.351	100.37	HB5&7A L1 S1
1205	52.062	51.960	1.533	15.768	0.051	8.311	18.944	2.098	1.335	100.10	HB5&7A_L1_S1
1245	52 176	51 780	1 473	15 950	0.031	8 302	19.067	2.087	1 310	100.40	HB5&7A_L1_S1
1215	52.170	51.972	1.175	15.950	0.051	8 161	19.007	2.007	1 312	100.10	HB5&7A_L1_S1
1205	52.205	52 030	1.302	15.876	0.001	8 281	18 0/0	2.112	1.312	100.27	HB5 & 7A I 1 S1
1323	51.097	52.050	1.4/5	15.020	0.034	0.201	10.940	2.009	1.345	100.07	$HD_{3} \alpha / A L_{1} S_{1}$
1365	51.981	51.843	1.508	15.855	0.039	8.276	19.025	2.108	1.346	100.14	$HB5@/A_L1_S1$
1405	51./81	51.991	1.44/	15.982	0.06/	8.152	18.928	2.091	1.343	99.79	HB5&/A_L1_S1
1485	51.972	51.753	1.504	15.836	0.042	8.258	19.160	2.127	1.320	100.22	HB5&7A_L1_S1
-1318	52.132	51.746	1.466	16.149	0.055	9.682	17.508	2.069	1.324	100.39	HB5&7A_L2_S5
-1278	52.182	51.802	1.479	16.130	0.042	9.640	17.541	2.046	1.318	100.38	HB5&7A_L2_S5
-1238	51.759	51.920	1.441	16.118	0.035	9.623	17.520	2.075	1.268	99.84	HB5&7A_L2_S5
-1198	52.209	51.894	1.489	16.044	0.031	9.743	17.426	2.048	1.325	100.31	HB5&7A_L2_S5
-1158	52.081	51.683	1.466	16.146	0.032	9.850	17.474	2.033	1.318	100.40	HB5&7A L2 S5
-1118	52.047	51.700	1.566	16.159	0.035	9.654	17.559	2.026	1.301	100.35	HB5&7A L2 S5
-1078	52,007	51 750	1 534	16 117	0.020	9 688	17 579	2.026	1 288	100.26	HB5&7A_L2_S5
-1038	51.952	51 722	1 484	16.031	0.027	9.875	17 536	2.037	1 288	100.23	HB5&7A L2 S5
_008	51 012	51.722	1.101	16 112	0.027	9.075	17.623	2.037	1.200	100.25	HB5&7A_12_55
-550	51 017	51.704	1.401	16 145	0.047	0.726	17.025	2.077	1.200	100.20	$IID5&7A L2_55$
-938	52.170	51.794	1.491	10.143	0.017	9.720	17.505	1.990	1.20/	100.02	$\frac{\text{HD}_{3}\alpha/\text{A}_{2}}{\text{HD}_{5}^{\circ}7\text{A}_{2}} = \frac{12}{55}$
-918	52.179	51.635	1.498	16.143	0.028	9.846	17.521	2.045	1.285	100.54	HB5&/A_L2_S5
-878	51.998	51.799	1.457	15.973	0.039	9.745	17.670	2.026	1.291	100.20	HB5&/A_L2_S5
-838	52.095	51.971	1.386	15.998	0.044	9.772	17.551	2.006	1.272	100.12	HB5&7A_L2_S5
-798	51.864	51.755	1.460	16.037	0.043	9.725	17.664	2.052	1.265	100.11	HB5&7A_L2_S5
-758	52.132	51.701	1.498	16.043	0.025	9.847	17.607	1.998	1.282	100.43	HB5&7A_L2_S5
-718	52.218	51.931	1.414	15.931	0.054	9.829	17.517	2.003	1.322	100.29	HB5&7A_L2_S5
-678	52.132	51.876	1.475	15.958	0.050	9.688	17.666	2.008	1.279	100.26	HB5&7A L2 S5
-638	51.743	51.496	1.503	16.135	0.041	9.767	17.715	2.069	1.274	100.25	HB5&7A L2 S5
-598	52 004	51 713	1 391	15 943	0.028	9 897	17 710	2 051	1 268	100.29	HB5&7A_L2_S5
-558	52 200	51 872	1 454	16 023	0.031	9 707	17 578	2.059	1 278	100.34	HB5&7A 12 85
_538	52.207	51.072	1 470	15 800	0.031	9 757	17 559	2.030	1 2 7 0	100.04	HB5&7A I 2 SJ
-550	52.040	51.902	1.4/9	12.077	0.059	7./JZ	17.05	2.051	1.202	100.00	$\frac{110300}{A} \frac{A}{L^2} \frac{34}{54}$
-518	52.00/	51.685	1.50/	16.005	0.052	9./1/	17.685	2.052	1.299	100.32	пвэæ/A_L2_84
-498	52.211	51./11	1.528	15.928	0.063	9.720	1/.641	2.097	1.312	100.50	нвэæ/A_L2_S4
-478	52.193	51.787	1.476	15.951	0.041	9.719	17.702	2.057	1.268	100.41	HB5&7A_L2_S4
-458	52.005	51.990	1.477	15.842	0.017	9.657	17.653	2.057	1.306	100.02	HB5&7A_L2_S4
-438	52.043	51.610	1.549	16.007	0.023	9.712	17.741	2.062	1.297	100.43	HB5&7A_L2_S4
-418	51.975	51.685	1.490	15.935	0.048	9.769	17.692	2.072	1.309	100.29	HB5&7A_L2_S4
-398	52.135	52.043	1.479	15.896	0.038	9.535	17.673	2.069	1.268	100.09	HB5&7A L2 S4

-378	52.029	51.866	1.493	15.963	0.053	9.619	17.653	2.029	1.325	100.16	HB5&7A_L2_S4
-358	51.946	51.694	1.515	15.852	0.080	9.741	17.777	2.039	1.301	100.25	HB5&7A_L2_S4
-338	51.976	51.881	1.545	15.852	0.024	9.563	17.794	2.030	1.312	100.09	HB5&7A L2 S4
-318	52.052	52.034	1.549	15.846	0.052	9.564	17.653	2.015	1.287	100.02	HB5&7A L2 S4
-298	52,049	51 515	1 4 3 4	16 115	0.025	9 804	17 761	2.053	1 293	100 53	HB5&7A_L2_S4
-2.78	51 952	51 721	1 470	15 903	0.052	9 696	17 807	2.074	1 278	100.23	HB5&7A_L2_S4
-238	52 006	51.867	1 442	15 920	0.020	9 516	17.892	2.077	1.276	100.23	HB5&7A_L2_S4
218	51 623	51 507	1.538	16 161	0.020	0.584	17.072	2.077	1.200	100.14	HD5&7A I 2 S4
-210	52 120	51 611	1.550	16.025	0.030	0.541	17.000	2.052	1.275	100.05	$IID5&7A_L2_54$
-198	51.7(2)	51.011	1.408	10.023	0.052	9.341	1/.900	2.000	1.209	100.31	$HDS@/A_L2_S4$
-1/8	51.705	51.792	1.482	15.885	0.054	9.392	18.093	2.014	1.290	99.97	$HB5@/A_L2_S4$
-158	51.844	51.//5	1.456	15.938	0.024	9.423	18.06/	2.051	1.266	100.07	$HB5\&/A_L2_S4$
-138	51.815	51.684	1.410	16.090	0.043	9.424	17.976	2.059	1.314	100.13	HB5&/A_L2_S4
-118	51.876	51.817	1.435	15.836	0.056	9.472	18.013	2.061	1.310	100.06	HB5&7A_L2_S4
-98	51.996	51.770	1.500	15.946	0.021	9.338	18.084	2.036	1.305	100.23	HB5&7A_L2_S4
-78	51.916	51.767	1.341	16.037	0.059	9.201	18.244	2.037	1.315	100.15	HB5&7A_L2_S4
-58	51.956	51.847	1.446	16.050	0.022	9.121	18.181	2.056	1.277	100.11	HB5&7A_L2_S4
-38	51.759	52.182	1.471	15.865	0.042	9.041	18.122	1.983	1.294	99.58	HB5&7A_L2_S4
11	51.846	51.761	1.512	16.078	0.035	8.935	18.305	2.049	1.326	100.08	HB5&7A_L2_S3
-9	52.150	52.083	1.524	15.797	0.049	8.910	18.265	2.074	1.298	100.07	HB5&7A L2 S2
11	51.961	52.076	1.460	15.926	0.027	8.896	18.260	2.055	1.302	99.89	HB5&7A L2 S2
31	51.869	51.859	1.527	16.065	0.077	8.824	18.291	2.047	1.310	100.01	HB5&7A L2 S2
51	51 876	51 969	1 484	16 051	0.050	8 785	18 243	2.096	1 323	99 91	HB5&7A_L2_S2
71	51.890	51 989	1.460	15 852	0.035	8 751	18 488	2.050	1 3 5 8	99.90	HB5&7A I 2 S2
01	51 800	52 027	1.400	15.032	0.055	8 615	18 480	2.007	1.336	00.87	HB5&7A 12 S2
111	51 010	51 027	1.444	15.931	0.000	8 684	18 648	2.110	1.320	00.00	$HB5 \& 7A \downarrow 2 S2$
121	52.016	51.927	1.401	16 100	0.050	0.004 0.610	10.040	2.041	1.352	100 20	HD5&7A L2 S2
151	52.010	51.015	1.400	16.109	0.000	0.019	10.402	2.075	1.301	100.20	$HD_3 \alpha / A L_2 S_2$
151	52.095	51.754	1.548	15.007	0.027	8.332	18.081	2.070	1.302	100.54	$HB5@/A_L2_S2$
1/1	51.900	51./41	1.489	15.973	0.068	8.596	18.693	2.094	1.345	100.16	HB5&/A_L2_S2
191	52.141	52.042	1.524	15.937	0.044	8.423	18.613	2.088	1.330	100.10	HB5&/A_L2_S2
211	51.780	51.907	1.490	16.073	0.033	8.374	18.696	2.076	1.350	99.87	HB5&/A_L2_S2
231	52.084	52.108	1.454	15.926	0.053	8.338	18.686	2.119	1.318	99.98	HB5&7A_L2_S2
251	51.927	52.009	1.510	16.039	0.060	8.308	18.705	2.061	1.310	99.92	HB5&7A_L2_S2
271	52.043	51.868	1.422	15.948	0.030	8.457	18.888	2.058	1.329	100.17	HB5&7A_L2_S2
291	51.953	51.867	1.526	15.997	0.060	8.341	18.834	2.039	1.337	100.09	HB5&7A_L2_S2
311	52.067	51.976	1.487	16.054	0.041	8.190	18.860	2.048	1.345	100.09	HB5&7A_L2_S2
331	52.001	51.987	1.505	16.055	0.053	8.153	18.852	2.048	1.347	100.01	HB5&7A_L2_S2
351	51.881	51.718	1.479	16.047	0.031	8.333	18.958	2.078	1.357	100.16	HB5&7A_L2_S2
371	51.906	52.175	1.528	15.843	0.040	8.255	18.734	2.104	1.323	99.73	HB5&7A L2 S2
391	52.022	51.906	1.478	15.927	0.046	8.351	18.887	2.057	1.349	100.12	HB5&7A L2 S2
411	52.192	52.018	1.424	16.017	0.048	8.270	18.810	2.087	1.328	100.17	HB5&7A L2 S2
431	51.918	51.580	1.586	16.224	0.083	8.194	18.894	2.122	1.318	100.34	HB5&7A_L2_S2
451	52.037	52 113	1 519	15 835	0.053	8 242	18 851	2.067	1 321	99.92	HB5&7A_L2_S1
491	51 947	52 149	1 521	15 970	0.061	8.046	18 808	2.084	1 360	99.80	HB5&7A_L2_S1
531	51 990	52.037	1 470	15.879	0.071	8 1 2 9	19,009	2.001	1 333	99.95	HB5&7A_L2_S1
571	51 740	51 884	1 533	16.065	0.053	8 182	18 924	2.072	1 321	99.86	HB5&7A_L2_S1
611	51.850	51 763	1.535	15.003	0.023	8 134	10.724	2.050	1 3 3 2 1	100.00	HB5&7A_L2_S1
601	51 720	52 097	1.550	15.945	0.023	0.134	19.105	2.100	1.352	00.64	$HD5&7A L2_S1$
721	51.729	51.722	1.300	15.012	0.011	0.122	10.910	2.101	1.304	99.04	$HD_3 \alpha / A L_2 SI$
751	51.051	52 215	1.4//	16.034	0.004	8.100 9.170	19.08/	2.115	1.307	99.90	$\frac{\text{HD}_{\text{A}}}{\text{HD}_{\text{A}}} = \frac{\text{A}}{2} \frac{\text{A}}{2}$
//1	51.725	52.215	1.405	15.808	0.052	8.179	18.827	2.076	1.318	99.51	$HB5@/A_L2_S1$
811	51.699	52.127	1.452	15.807	0.071	8.070	19.002	2.105	1.367	99.57	HB5&/A_L2_S1
851	51.745	51.929	1.514	15.888	0.050	8.267	18.933	2.081	1.339	99.82	HB5&/A_L2_S1
891	51.625	51.871	1.505	15.993	0.070	8.181	18.939	2.096	1.346	99.75	HB5&/A_L2_S1
931	51.859	51.914	1.506	15.850	0.041	8.240	18.978	2.135	1.336	99.95	HB5&7A_L2_S1
1011	51.410	51.845	1.486	15.928	0.057	8.144	19.088	2.087	1.365	99.56	HB5&7A_L2_S1
1051	51.511	51.927	1.461	15.977	0.039	8.156	18.946	2.136	1.358	99.58	HB5&7A_L2_S1
1291	51.515	51.971	1.541	15.939	0.053	8.147	18.902	2.143	1.306	99.54	HB5&7A_L2_S1
-6	52.040	51.748	1.458	16.097	0.043	8.995	18.226	2.096	1.337	100.29	HB5&7A_L3_S2
13	52.146	51.798	1.523	16.056	0.034	8.898	18.306	2.083	1.302	100.35	HB5&7A_L3_S2
32	51.934	51.756	1.489	16.107	0.053	8.895	18.313	2.050	1.337	100.18	HB5&7A_L3_S2
51	51.957	51.801	1.519	15.932	0.063	8.847	18.463	2.050	1.324	100.16	HB5&7A_L3_S2
70	51.968	51.995	1.446	15.865	0.042	8.735	18.450	2.117	1.350	99.97	HB5&7A L3 S2
89	51.989	51.816	1.481	16.004	0.048	8.667	18.542	2.115	1.326	100.17	HB5&7A L3 S2
108	51.802	51.767	1.569	16.175	0.035	8.550	18.548	2.035	1.320	100.03	HB5&7A_L3_S2

127	52.128	51.957	1.489	16.001	0.047	8.606	18.493	2.084	1.324	100.17	HB5&7A_L3_S2
146	52.021	52.181	1.564	15.798	0.064	8.449	18.505	2.140	1.300	99.84	HB5&7A_L3_S2
165	51.968	52.013	1.538	15.884	0.041	8.544	18.595	2.081	1.304	99.96	HB5&7A_L3_S2
184	51.809	51.803	1.565	16.009	0.061	8.486	18.644	2.103	1.329	100.01	HB5&7A_L3_S2
203	52.038	51.945	1.602	15.788	0.055	8.462	18.709	2.095	1.344	100.09	HB5&7A L3 S2
222	51.935	52.127	1.512	15.865	0.031	8.306	18.735	2.082	1.343	99.81	HB5&7A_L3_S2
241	51.953	51.970	1.521	15.935	0.046	8.336	18.751	2.098	1.343	99.98	HB5&7A_L3_S2
260	51.969	51.950	1.504	16.038	0.025	8.367	18.783	2.018	1.315	100.02	HB5&7A_L3_S2
279	52.034	52.084	1.459	15.903	0.059	8.374	18.693	2.093	1.334	99.95	HB5&7A_L3_S2
298	52.008	51.798	1.484	15.995	0.027	8.425	18.759	2.138	1.374	100.21	HB5&7A_L3_S2
317	52.077	51.825	1.397	16.042	0.067	8.393	18.853	2.064	1.360	100.25	HB5&7A_L3_S2
336	51.974	51.792	1.571	16.061	0.052	8.381	18.704	2.104	1.335	100.18	HB5&7A_L3_S2
355	51.915	52.206	1.451	15.825	0.080	8.223	18.802	2.059	1.355	99.71	HB5&7A_L3_S2
374	51.828	52.069	1.444	15.905	0.040	8.272	18.891	2.068	1.311	99.76	HB5&7A_L3_S2
393	51.843	51.917	1.487	15.965	0.106	8.232	18.880	2.089	1.324	99.93	HB5&7A_L3_S2
412	51.921	51.857	1.482	16.012	0.063	8.283	18.895	2.079	1.330	100.06	HB5&7A_L3_S2
431	52.108	52.065	1.396	16.022	0.022	8.313	18.772	2.083	1.326	100.04	HB5&7A_L3_S2
451	51.844	51.944	1.415	15.989	0.069	8.264	18.885	2.100	1.334	99.90	HB5&7A_L3_S1
491	51.761	51.959	1.428	16.018	0.071	8.177	18.950	2.065	1.331	99.80	HB5&7A_L3_S1
531	51.921	52.087	1.499	15.930	0.042	8.139	18.881	2.079	1.343	99.83	HB5&7A_L3_S1
571	51.873	51.912	1.527	15.859	0.053	8.337	18.863	2.135	1.315	99.96	HB5&7A_L3_S1
611	51.623	51.911	1.496	15.902	0.031	8.223	18.983	2.105	1.349	99.71	HB5&7A_L3_S1
651	51.535	51.794	1.460	16.100	0.057	8.183	18.973	2.086	1.348	99.74	HB5&7A_L3_S1
691	51.895	51.893	1.481	15.933	0.029	8.219	19.010	2.111	1.324	100.00	HB5&7A_L3_S1
731	51.967	51.986	1.473	15.908	0.007	8.237	18.943	2.095	1.351	99.98	HB5&7A_L3_S1
771	51.897	51.998	1.448	15.928	0.058	8.191	18.889	2.153	1.336	99.90	HB5&7A_L3_S1
811	51.600	51.849	1.471	16.046	0.051	8.083	19.054	2.128	1.319	99.75	HB5&7A_L3_S1
851	51.949	52.182	1.540	15.800	0.054	8.111	18.879	2.089	1.344	99.77	HB5&7A_L3_S1
891	51.950	51.967	1.483	16.020	0.059	8.151	18.906	2.077	1.338	99.98	HB5&7A_L3_S1
931	51.867	51.998	1.485	15.950	0.039	8.195	18.929	2.108	1.297	99.87	HB5&7A_L3_S1
971	51.859	51.738	1.583	16.001	0.049	8.143	19.078	2.078	1.330	100.12	HB5&7A_L3_S1
1011	51.883	51.895	1.508	15.828	0.066	8.147	19.092	2.118	1.346	99.99	HB5&7A_L3_S1
1051	51.801	52.149	1.491	15.767	0.054	8.179	18.909	2.077	1.374	99.65	HB5&7A_L3_S1
1091	51.818	52.005	1.506	15.916	0.015	8.141	18.936	2.102	1.380	99.81	HB5&7A_L3_S1
1131	51.925	52.063	1.484	15.841	0.039	8.223	18.854	2.112	1.382	99.86	HB5&7A_L3_S1
1171	51.843	52.102	1.485	15.918	0.076	8.151	18.831	2.117	1.322	99.74	HB5&7A_L3_S1
1211	51.651	52.048	1.469	15.882	0.022	8.187	18.913	2.128	1.351	99.60	HB5&7A_L3_S1
1251	51.804	51.870	1.535	15.898	0.037	8.242	18.959	2.104	1.355	99.93	HB5&7A_L3_S1
1291	51.648	52.007	1.516	15.985	0.067	8.075	18.915	2.119	1.316	99.64	HB5&7A_L3_S1
1331	51.678	51.900	1.538	15.865	0.054	8.122	19.076	2.083	1.363	99.78	HB5&7A_L3_S1
1371	51.826	51.928	1.577	15.890	0.053	8.119	18.967	2.121	1.346	99.90	HB5&7A_L3_S1
1411	51.475	51.721	1.484	15.989	0.060	8.233	19.059	2.129	1.325	99.75	HB5&7A_L3_S1
1451	51.912	51.883	1.490	15.990	0.063	8.261	18.885	2.114	1.313	100.03	HB5&7A_L3_S1

Table C5.	. HB7&8E	8									
X (µm)	SiO2	SiO2*	TiO2	Al2O3	FeO	MgO	CaO	Na2O	K2O	Total	Comment
-1465.8	49.305	48.702	1.520	16.062	0.068	11.339	18.832	2.164	1.312	100.60	HB7&8B L0 S3
-1425.8	49.313	48.726	1.486	15.982	0.086	11.301	18.957	2.133	1.330	100.59	HB7&8B L0 S3
-1385.8	49.139	48.580	1.491	16.125	0.048	11.300	18.926	2.166	1.364	100.56	HB7&8B L0 S3
-1345.8	49.271	48.546	1.516	16.158	0.078	11.476	18.760	2.137	1.330	100.72	HB7&8B L0 S3
-1305.8	49.065	48.845	1.488	15.996	0.083	11.301	18.779	2.159	1.350	100.22	HB7&8B L0 S3
-1265.8	49.230	48.606	1.470	16.160	0.046	11.441	18.748	2.169	1.360	100.62	HB7&8B L0 S3
-1225.8	49 203	48 569	1 529	16 147	0.066	11 428	18 785	2 120	1 357	100.63	HB7&8B_L0_S3
-1185.8	49 172	48 840	1 431	16 100	0.091	11 373	18 724	2.134	1 307	100 33	HB7&8B L0 S3
-1145.8	49 171	48 719	1 533	16 108	0.057	11 293	18 822	2.153	1 316	100.55	HB7&8B L0 S3
-1105.8	49 278	48 840	1 469	16 080	0.026	11 323	18 794	2 148	1 322	100.44	HB7&8B L0 S3
-1065.8	49 370	48 610	1 451	16 130	0.020	11.325	18 838	2.174	1 327	100.76	HB7&8B_L0_S3
-1025.8	49 180	48 388	1 540	16 168	0.005	11 415	18 887	2.17	1 360	100.70	HB7&8B_L0_S3
-945.8	49 172	48 824	1 511	16.013	0.055	11 369	18 767	2 1 3 4	1 327	100.35	HB7&8B L0 S3
-905.8	49 201	48 628	1 505	16 184	0.052	11 419	18 778	2 134	1 300	100.57	HB7&8B L0 S3
-865.8	49 319	48 582	1 463	16 187	0.060	11 393	18 853	2.131	1 333	100.57	HB7&8B_L0_S3
-785.8	49 335	48 850	1.105	16.054	0.062	11 283	18 819	2.151	1.330	100.71	HB7&8B_L0_S3
-745.8	49 207	48 631	1.555	16 195	0.002	11.205	18 794	2.077	1.320	100.40	HB7&8B_L0_S3
-705.8	49 260	48.671	1.51)	16 132	0.075	11.307	18 915	2.140	1.343	100.50	HB7&8B_L0_S3
-665.8	49.200	48.784	1.400	16 106	0.102	11 338	18 760	2.14)	1 3 1 8	100.35	HB7&8B_L0_S3
-625.8	10 338	48 807	1.027	16.087	0.001	11.336	18 851	2.051	1 202	100.50	HB7&8B 10 S3
-585.8	10 303	48.670	1.450	16.030	0.051	11.320	18 087	2.033	1.2.72	100.55	HB7&8B 10 S3
-545.8	49.393	48.684	1.457	16 115	0.035	11.307	18 863	2.077	1 3 1 0	100.71	HB7&8B 10 S2
-525.8	10 / 08	48.004	1.471	16 146	0.073	11.411	18.803	2.042	1.317	100.04	HB7&8B 10 S2
-505.8	49.498	48.710	1.510	16 134	0.074	11.350	18.702	2.003	1.334	100.78	HB7&8B_L0_S2
-485.8	49 275	48.745	1.450	16 156	0.044	11 394	18 857	2.009	1.317	100.77	HB7&8B_L0_S2
-465.8	49 342	48 959	1 497	16.036	0.050	11.391	18 898	2.030	1.204	100.33	HB7&8B_L0_S2
-405.0	49.342	48 585	1 488	16 266	0.070	11.171	18 895	1 997	1 293	100.50	HB7&8B_L0_S2
-425.8	49 338	48 456	1.100	16 193	0.100	11.377	18.936	2 075	1 3 1 8	100.09	HB7&8B_L0_S2
-405.8	49 372	48 612	1.52)	16 164	0.051	11.101	18 983	2.075	1 308	100.00	HB7&8B_L0_S2
-385.8	49 238	48 782	1.510	16.068	0.005	11.200	18 941	2.100	1.285	100.70	HB7&8B_L0_S2
-365.8	49 510	48 879	1 481	16.000	0.107	11.259	18 899	2.015	1.203	100.10	HB7&8B_L0_S2
-345.8	49 362	48 805	1 511	16 165	0.065	11.237	18 905	2.001	1.275	100.05	HB7&8B_L0_S2
-325.8	49 379	48 756	1 464	16 158	0.000	11 293	18 952	2.027	1.207	100.50	HB7&8B_L0_S2
-305.8	49 390	48 825	1 492	16 200	0.078	11 107	18 979	2.029	1 290	100.57	HB7&8B L0 S2
-285.8	49 461	48 965	1 538	16.056	-0.008	11 139	18 997	2.028	1 285	100.50	HB7&8B L0 S2
-265.8	49.425	48.914	1.441	16.209	0.050	11.089	18.965	2.041	1.292	100.51	HB7&8B L0 S2
-245.8	49.542	49.095	1.536	16.121	0.072	10.912	18.984	2.017	1.265	100.45	HB7&8B L0 S2
-225.8	49 550	48 888	1 509	16 218	0 100	10 960	19 031	2.030	1 263	100.66	HB7&8B L0 S2
-205.8	49.670	49.018	1.512	16.189	0.076	10.926	18,989	2.020	1.269	100.65	HB7&8B L0 S2
-185.8	49.635	49.039	1.526	16.298	0.054	10.759	19.036	1.999	1.289	100.60	HB7&8B_L0_S2
-165.8	49.833	49.371	1.515	16.097	0.044	10.737	18.951	2.013	1.271	100.46	HB7&8B L0 S2
-145.8	49.911	49.122	1.458	16.295	0.078	10.721	19.035	2.025	1.266	100.79	HB7&8B L0 S2
-125.8	49.963	49.335	1.484	16.225	0.046	10.563	19.040	2.051	1.256	100.63	HB7&8B L0 S2
-105.8	50.089	49.589	1.482	16.164	0.128	10.397	18.964	1.998	1.279	100.50	HB7&8B L0 S2
-85.8	50.268	49.632	1.477	16.175	0.014	10.424	19.003	2.009	1.266	100.64	HB7&8B L0 S2
-65.8	50.251	49.514	1.501	16.273	0.065	10.286	19.033	2.022	1.308	100.74	HB7&8B L0 S2
-45.8	50.394	49.923	1.488	16.156	0.080	10.089	18.969	2.003	1.293	100.47	HB7&8B L0 S2
-25.8	50.635	50.118	1.487	16.043	0.067	10.047	18.917	2.013	1.308	100.52	HB7&8B L0 S2
-5.8	50.831	50.397	1.496	15.974	0.050	9.966	18.758	2.033	1.326	100.43	HB7&8B L0 S2
34.2	51.165	50.487	1.510	15.975	0.080	9.739	18.797	2.089	1.323	100.68	HB7&8B L0 S2
54.2	51.327	50.436	1.504	15.997	0.080	9.668	18.878	2.091	1.346	100.89	HB7&8B L0 S2
74.2	51.619	50.768	1.523	15.895	0.059	9.509	18.773	2.119	1.355	100.85	HB7&8B L0 S2
94.2	51.501	50.970	1.479	15.819	0.048	9.452	18.746	2.125	1.363	100.53	HB7&8B L0 S2
114.2	51.773	51.170	1.483	15.892	0.050	9.152	18.719	2.130	1.403	100.60	HB7&8B L0 S2
134.2	51.950	51.152	1.513	15.902	0.093	9.094	18.722	2.117	1.407	100.80	HB7&8B L0 S2
154.2	52.094	51.398	1.476	15.807	-0.028	9.097	18.689	2.193	1.367	100.70	HB7&8B L0 S2
174.2	52.182	51.390	1.517	15.820	0.005	8.960	18.692	2.210	1.406	100.79	HB7&8B L0 S2
194.2	52.122	51.485	1.576	15.878	0.037	8.876	18.626	2.128	1.396	100.64	HB7&8B L0 S2
214.2	52.300	51.812	1.466	15.790	0.054	8.689	18.662	2.131	1.397	100.49	HB7&8B L0 S2
234.2	52.287	51.655	1.437	15.835	0.031	8.715	18.771	2.145	1.412	100.63	HB7&8B_L0_S2
254.2	52.410	51.566	1.484	15.868	0.089	8.655	18.749	2.180	1.411	100.84	HB7&8B_L0_S2

I	294.2	52.601	51.886	1.413	15.966	0.057	8.565	18.632	2.117	1.365	100.71	HB7&8B L0 S2
	314.2	52 355	51 661	1 494	15 946	0.063	8 528	18 774	2 1 5 0	1 386	100.69	HB7&8B_L0_S2
	334.2	52.555	51 805	1.401	15.005	0.077	8 405	18 701	2.150	1 3 7 3	100.52	HB7&8B 10 S2
	254.2	52.520	51 622	1.500	15.001	0.077	0. 4)5 0.406	10.771	2.135	1.375	100.52	$\frac{11D}{600} \frac{10}{52}$
	354.2	52.521	51.055	1.509	15.984	0.013	8.490	18.802	2.1/5	1.389	100.89	HB/&8B_L0_52
	3/4.2	52.566	51.647	1.505	16.084	0.049	8.490	18.704	2.139	1.383	100.92	HB/&8B_L0_S2
	394.2	52.637	51.712	1.491	15.968	-0.025	8.528	18.765	2.191	1.370	100.93	HB7&8B_L0_S2
	414.2	52.490	51.788	1.508	15.979	0.048	8.432	18.757	2.118	1.370	100.70	HB7&8B_L0_S2
	434.2	52.614	51.842	1.472	15.932	0.094	8.417	18.787	2.140	1.316	100.77	HB7&8B L0 S2
	454.2	52.635	51.737	1.510	15.971	0.076	8.409	18.793	2.165	1.341	100.90	HB7&8B L0 S2
	494.2	52 625	52 053	1 465	15 934	0.006	8 382	18 735	2 058	1 368	100 57	HB7&8B 10 S1
	524.2	52.023	51 704	1.105	15.029	0.000	0.502 9.410	10.755	2.000	1 2 2 6	100.01	UD7&0D_L0_51
	(14.2	52.700	51.07	1.300	15.920	0.000	0.419	10.005	2.094	1.330	100.91	$HD780D L0_{S1}$
	614.2	52.830	51.867	1.448	15.982	0.036	8.483	18.729	2.119	1.337	100.96	HB/&8B_L0_S1
	694.2	52.637	51.779	1.527	16.021	-0.008	8.481	18.807	2.079	1.315	100.86	HB7&8B_L0_S1
	734.2	52.606	51.783	1.466	16.035	0.068	8.421	18.855	2.069	1.303	100.82	HB7&8B_L0_S1
	774.2	52.569	51.717	1.520	16.105	0.024	8.329	18.951	2.042	1.313	100.85	HB7&8B_L0_S1
	814.2	52.587	51.962	1.434	15.963	0.035	8.393	18.859	2.048	1.307	100.63	HB7&8B L0 S1
	894.2	52.594	51.957	1.519	15.969	0.060	8.361	18.793	2.035	1.306	100.64	HB7&8B L0 S1
	934.2	52 776	51.826	1 462	16 133	0.054	8 360	18 838	2.022	1 316	100.95	HB7&8B 10 S1
	074.2	52.770	51 822	1.102	16.001	0.009	8 475	18 763	2.012	1 200	100.95	HB7&8B 10 S1
	9/4.2 1014 2	52.029	51.055	1.475	16.075	0.008	0.4/5	10.705	2.005	1.290	100.80	$IID760D_L0_S1$
	1014.2	52.702	51.044	1.440	10.075	0.027	0.300	10.090	2.020	1.299	100.80	ПD/200 L0_51
	1054.2	52.606	51.997	1.54/	15.983	0.040	8.319	18.772	2.025	1.31/	100.61	HB/&8B_L0_SI
	1094.2	52.637	51.964	1.422	16.091	0.072	8.400	18.717	2.011	1.325	100.67	HB7&8B_L0_S1
	1134.2	52.606	51.790	1.536	16.052	0.073	8.329	18.864	2.028	1.328	100.82	HB7&8B_L0_S1
	1214.2	52.598	51.816	1.464	16.040	0.093	8.369	18.802	2.079	1.338	100.78	HB7&8B L0 S1
	1254.2	52.518	51.629	1.576	16.053	0.060	8.419	18.883	2.074	1.306	100.89	HB7&8B L0 S1
	1294.2	52.561	51.636	1.502	16.173	0.070	8.350	18.944	2.000	1.326	100.92	HB7&8B_L0_S1
	1334.2	52 489	51 849	1 529	15 979	0.033	8 3 5 5	18 911	2 048	1 296	100.64	HB7&8B 10 S1
	1374.2	52.107	51.602	1.52)	16.026	0.035	8 5 4 3	18 021	2.010	1 2 2 5	100.01	HB7&8B 10 S1
	1374.2	52.550	51.002	1.475	16.020	0.070	0.545	10.921	2.023	1.333	100.95	$IID760D_L0_S1$
	1454.2	52.074	51.825	1.529	15.000	0.035	8.507	18.810	1.981	1.302	100.85	HB/&8B_L0_S1
	1494.2	52.363	51.818	1.480	15.929	0.019	8.480	18.944	2.018	1.312	100.54	HB/&8B_L0_S1
	-1452.3	49.037	48.886	1.394	16.096	0.082	11.253	18.801	2.135	1.354	100.15	HB7&8B_L2_S3
	-1422.3	49.122	48.774	1.518	16.176	0.074	11.125	18.903	2.103	1.326	100.35	HB7&8B_L2_S3
	-1332.3	49.188	48.773	1.525	16.036	0.088	11.191	18.900	2.150	1.337	100.41	HB7&8B_L2_S3
	-1302.3	49.109	48.576	1.499	16.264	0.067	11.295	18.886	2.120	1.295	100.53	HB7&8B L2 S3
	-1272.3	49.016	48.915	1.501	16,100	0.114	11.125	18.772	2.121	1.353	100.10	HB7&8B L2 S3
	-1242.3	49 148	48 718	1 4 5 0	16 104	0.037	11 270	18 901	2 1 5 2	1 368	100.43	HB7&8B I 2 S3
	-1212.3	19.110	18 973	1.150	16.073	0.037	11.270	18 712	2.132	1 3 3 5	100.15	HB7&8B 12 S3
	1102.2	49.020	48.000	1.445	16 115	0.122	11.104	10.712	2.140	1.333	00.07	UD7&0D_L2_55
	-1162.5	48.930	48.990	1.4/1	10.113	0.145	11.109	10.740	2.102	1.331	99.97	ПD/@0D_L2_55
	-1152.3	48.982	48.823	1.466	16.069	0.069	11.269	18.844	2.134	1.327	100.16	HB/&8B_L2_S3
	-1122.3	49.091	48.625	1.530	16.069	0.090	11.308	18.919	2.104	1.355	100.47	HB7&8B_L2_S3
	-1092.3	48.958	48.768	1.476	16.171	0.081	11.173	18.846	2.148	1.338	100.19	HB7&8B_L2_S3
	-1062.3	49.044	48.793	1.534	16.096	0.027	11.269	18.842	2.093	1.346	100.25	HB7&8B_L2_S3
	-1032.3	48.932	48.851	1.500	16.066	0.063	11.191	18.853	2.109	1.368	100.08	HB7&8B L2 S3
	-1002.3	49.142	48.876	1.492	16.110	0.073	11.188	18.832	2.129	1.300	100.27	HB7&8B L2 S3
I	-972.3	49.024	48,746	1.499	16,110	0.072	11.291	18.854	2.090	1.338	100.28	HB7&8B L2 S3
	-942.3	49 157	48 934	1 522	16.076	0.080	11 164	18 749	2 1 2 5	1 351	100.22	HB7&8B L2 S3
	_012.3	18 08/	18 873	1.522	16 154	0.000	11.156	18 81/	2.120	1 3/3	100.11	HB7&8B 12 S3
	-912.5	40.004	40.075	1.592	16.027	0.017	11.150	10.014	2.100	1.343	100.11	$\frac{11D}{600} \frac{12}{53}$
	-002.5	48.933	40.939	1.383	10.027	0.030	11.111	10.040	2.104	1.341	100.00	$\Pi D / \alpha \delta D L 2 S $
	-852.3	48.991	48.688	1.509	16.16/	0.031	11.222	18.924	2.124	1.335	100.30	HB/&8B_L2_83
	-822.3	48.974	48.785	1.528	16.057	0.042	11.304	18.873	2.069	1.342	100.19	HB7&8B_L2_S3
	-792.3	49.049	48.752	1.551	16.149	0.056	11.188	18.873	2.120	1.311	100.30	HB7&8B_L2_S3
ļ	-762.3	49.087	49.065	1.493	16.091	0.067	11.141	18.738	2.064	1.342	100.02	HB7&8B_L2_S3
l	-732.3	49.015	48.760	1.432	16.143	0.033	11.178	18.975	2.129	1.350	100.26	HB7&8B_L2 S3
l	-702.3	48.932	48.825	1.498	16.141	0.056	11.197	18.856	2.070	1.357	100.11	HB7&8B L2 S3
l	-642.3	48.894	48.680	1.533	16.019	0.140	11.274	18.962	2.060	1.333	100.21	HB7&8B L2 S3
I	-612.3	48 930	48 929	1 423	16 218	0.047	11 258	18 776	2 017	1 333	100.00	HB7&8B L2 S3
	-587 2	10.550	18 657	1 / 22	16 255	0.109	11 220	18 875	2.017	1 3/6	100.50	HB7&8P 12 93
ļ	-562.5	47.133	40.037	1.403	16.150	0.100	11.232	10.0/5	2.044	1.340	100.50	$\frac{110}{0.00} \frac{12}{0.00} 1$
ļ	-302.3	49.1/3	40.000	1.311	10.130	0.129	11.398	10.000	2.074	1.327	100.57	$\frac{10}{000} \frac{12}{00} \frac{12}{00} \frac{12}{00} \frac{12}{00} \frac{12}{00} \frac{12}{000} 1$
l	-54/.3	49.022	48.853	1.559	16.054	0.040	11.241	18.926	2.029	1.300	100.17	HB/&8B_L2_S2
l	-532.3	49.143	48.621	1.533	16.252	0.014	11.345	18.842	2.059	1.334	100.52	HB7&8B_L2_S2
I	-517.3	49.137	48.782	1.518	16.140	0.111	11.319	18.796	2.028	1.305	100.35	HB7&8B_L2_S2
	-502.3	49.098	48.653	1.482	16.242	0.058	11.209	18.979	2.050	1.327	100.44	HB7&8B_L2_S2
	-487.3	49.197	48.552	1.574	16.183	0.081	11.301	18.946	2.028	1.334	100.65	HB7&8B L2 S2
٠												

-472.3	49.157	48.726	1.508	16.259	0.077	11.178	18.874	2.075	1.304	100.43	HB7&8B L2 S2
-4573	49 182	48 798	1 4 3 4	16 163	0 107	11 234	18 874	2.056	1 335	100 38	HB7&8B_L2_S2
-112 3	10 080	18.806	1 466	16 182	0.117	11 102	18 802	2.045	1 300	100.27	HB7&8B 12 S2
427.2	40.200	40.000	1.400	16.097	0.117	11.172	10.072	2.045	1 2 2 2	100.27	
-427.5	49.200	48.900	1.449	10.08/	0.085	11.120	10.978	2.033	1.322	100.29	$HD/\alpha \delta D_{L2}S2$
-412.3	49.104	48.8/4	1.532	16.166	0.088	11.129	18.923	2.009	1.280	100.23	HB/&8B_L2_S2
-397.3	49.005	49.066	1.437	16.105	0.084	11.075	18.901	2.029	1.305	99.94	HB7&8B_L2_S2
-382.3	48.942	48.695	1.545	16.222	0.076	11.187	18.923	2.008	1.344	100.25	HB7&8B_L2_S2
-367.3	49.053	48.836	1.489	16.165	0.067	11.186	18.966	1.998	1.295	100.22	HB7&8B L2 S2
-352.3	49.009	48.960	1.574	16.146	0.067	11.091	18.899	1.989	1.275	100.05	HB7&8B L2 S2
-337.3	49 101	49 105	1 473	16 175	0.053	10,990	18 968	1 965	1 272	100.00	HB7&8B L2 S2
222.2	18 024	40 100	1.175	16.078	0.002	10.955	10.001	1.078	1.272	00.82	HB7&8B 12 S2
-322.3	40.924	49.100	1.490	16.078	0.092	11.955	19.021	2.012	1.201	100 14	$IID7&0D_L2_52$
-307.3	49.135	48.991	1.495	10.1/8	0.080	11.000	18.8/4	2.013	1.305	100.14	$HB/\alpha\delta B_{L2}S_{2}$
-292.3	49.070	49.274	1.471	16.146	0.006	10.944	18.869	2.018	1.272	99.80	HB/&8B_L2_S2
-277.3	49.202	48.846	1.534	16.376	0.055	10.957	18.928	2.022	1.282	100.36	HB7&8B_L2_S2
-262.3	49.175	48.969	1.545	16.278	0.029	10.947	19.001	1.977	1.255	100.21	HB7&8B_L2_S2
-247.3	49.102	49.137	1.403	16.111	0.073	10.991	18.999	2.041	1.245	99.96	HB7&8B_L2_S2
-232.3	49.286	48.725	1.562	16.256	0.098	11.082	18.965	2.033	1.280	100.56	HB7&8B L2 S2
-217.3	49.111	49.188	1.572	16.218	0.103	10.702	18.997	1.965	1.255	99.92	HB7&8B_L2_S2
-202.3	49 140	49 190	1 565	16 131	0.055	10 797	19.026	1 986	1 250	99.95	HB7&8B I 2 S2
-187.3	10 0/3	10.150	1 500	16 226	0.067	10.716	10.001	2 000	1.256	00.83	HB7&8B 12 S2
172.2	40.220	40.002	1.50)	16.220	0.007	10.710	10.001	2.007	1.250	100.24	$\frac{11D}{6} \frac{60D}{2} \frac{12}{52}$
-1/2.3	49.550	49.095	1.503	16.340	0.101	10./10	18.901	2.021	1.205	100.24	$HB/\alpha\delta B_{L2}S_{2}$
-157.3	49.396	49.127	1.580	16.137	0.074	10.676	19.099	2.040	1.269	100.27	HB/&8B_L2_82
-142.3	49.468	49.565	1.468	16.166	0.044	10.535	18.967	1.969	1.287	99.90	HB7&8B_L2_S2
-127.3	49.485	49.468	1.553	16.156	0.040	10.534	18.985	1.988	1.277	100.02	HB7&8B_L2_S2
-112.3	49.422	49.566	1.584	16.134	0.083	10.406	18.965	2.016	1.246	99.86	HB7&8B_L2_S2
-97.3	49.484	49.698	1.553	16.108	0.033	10.292	19.003	2.049	1.264	99.79	HB7&8B L2 S2
-82.3	49.585	49.733	1.522	16.213	0.023	10.292	18.968	1.996	1.253	99.85	HB7&8B L2 S2
-52.3	49 868	49 905	1 480	16 110	0.069	9 976	19.069	2 049	1 342	99.96	HB7&8B L2 S2
-37.3	/0 005	50.050	1.100	16 104	0.001	0 070	18 9/7	2.019	1.2 12	00.05	HB7&8B 12 S2
-37.3	50 241	50.050	1.347	16.054	0.021	0.001	10.047	2.070	1.202	00.00	$\frac{11D}{600} \frac{12}{52}$
-22.5	50.241	50.344	1.405	16.034	0.040	9.004	10.095	2.072	1.300	99.90	$HD700DL2_52$
-7.5	50.501	50.110	1.555	16.034	0.065	9.890	18.935	2.096	1.318	100.19	HB/&8B_L2_S2
1.1	50.156	50.293	1.483	16.080	0.061	9.772	18.89/	2.077	1.337	99.86	HB/&8B_L2_S2
22.7	50.480	50.598	1.528	15.927	0.025	9.630	18.838	2.101	1.354	99.88	HB7&8B_L2_S2
37.7	50.514	50.792	1.497	15.854	0.061	9.549	18.777	2.128	1.344	99.72	HB7&8B_L2_S2
52.7	50.721	50.794	1.459	15.940	0.029	9.498	18.876	2.066	1.340	99.93	HB7&8B_L2_S2
67.7	50.850	50.921	1.438	15.861	0.078	9.379	18.796	2.158	1.370	99.93	HB7&8B L2 S2
82.7	50.985	50.941	1.475	15.863	0.054	9.327	18.883	2.135	1.321	100.04	HB7&8B L2 S2
97.7	51.219	51.223	1.405	15.865	0.044	9.303	18.691	2.120	1.349	100.00	HB7&8B_L2_S2
127.7	51 371	51 390	1 449	15 872	0.033	9.045	18 683	2 1 1 4	1 414	99 98	HB7&8B I 2 S2
142.7	51 321	51 385	1 // 0	15.072	0.082	9.015	18 710	2.117 2 147	1 3 8 5	00 01	HB7&8B 12 S2
142.7	51.521	51.565	1.449	15.770	0.082	9.050	10./17	2.14/	1.303	100.00	$\frac{11D}{0.00} \frac{12}{0.00} 1$
157.7	51.50/	51.505	1.510	15.821	0.048	8.800	18.039	2.150	1.39/	100.00	$HB/\alpha\delta B_{L2}S_{2}$
1/2./	51.54/	51.545	1.507	15./91	0.065	8.938	18.597	2.143	1.414	100.00	$HB/\&8B_L2_S2$
187.7	51.625	51.774	1.506	15.708	0.035	8.655	18.698	2.205	1.419	99.85	HB/&8B_L2_S2
202.7	51.778	51.639	1.409	15.872	0.025	8.757	18.740	2.159	1.399	100.14	HB7&8B_L2_S2
232.7	51.786	51.962	1.392	15.798	0.009	8.654	18.628	2.157	1.401	99.82	HB7&8B_L2_S2
247.7	51.825	52.051	1.445	15.760	0.019	8.536	18.619	2.157	1.413	99.77	HB7&8B_L2_S2
262.7	51.733	51.729	1.470	15.811	0.037	8.712	18.662	2.161	1.419	100.00	HB7&8B L2 S2
277.7	51.989	51.613	1.466	15.828	0.036	8.609	18.847	2.183	1.418	100.38	HB7&8B L2 S2
292.7	51.848	51.866	1.487	15.916	0.011	8.451	18.722	2.179	1.369	99.98	HB7&8B L2 S2
307.7	51 775	51 605	1 530	15 896	0.090	8 478	18 829	2 198	1 375	100 17	HB7&8B L2 S2
3227	51 708	51.675	1.556	15.053	0.035	8 500	18 740	2.170	1 / 00	100.17	HB7&8B 12 S2
2277	51 0 1 1	52.024	1.510	15.955	0.035	8.300 8.202	10.740	2.172	1.409	00.02	$\frac{11D}{0.00} \frac{12}{0.00} 1$
2527.7	51.841	52.024	1.342	15.850	0.029	0.393	10.001	2.122	1.339	99.82	$HD/\alpha \delta D_L 2_S 2$
352.7	51.955	51.954	1.4/8	15.865	0.059	8.327	18.762	2.1/9	1.376	100.00	HB/&8B_L2_S2
367.7	51.831	51.933	1.493	15.939	0.035	8.410	18.660	2.163	1.366	99.90	HB7&8B_L2_S2
382.7	51.859	51.920	1.541	15.926	0.084	8.390	18.664	2.123	1.351	99.94	HB7&8B_L2_S2
397.7	51.750	51.953	1.489	15.842	0.056	8.290	18.873	2.132	1.367	99.80	HB7&8B_L2_S2
412.7	51.978	51.618	1.540	15.984	0.039	8.461	18.838	2.152	1.367	100.36	HB7&8B L2 S2
427.7	51.813	51.717	1.512	15.954	0.071	8.397	18.842	2.137	1.369	100.10	HB7&8B L2 S2
442.7	51.985	51.722	1,498	16.071	0.040	8.258	18.882	2,158	1.371	100.26	HB7&8B L2 S2
462.7	52 153	51 794	1 436	15 992	0.062	8 379	18 875	2 110	1 353	100.36	HB7&8B 1.2 S1
492.7	52.105	51 824	1 545	15 985	0.082	8 202	18 800	2.110	1 344	100.24	HB7&8R 12 S1
522.1	51 070	51.024	1.545	15.040	0.000	0.272 8 277	10.007	2.114	1 2 2 4	100.24	11D7&0D_L2_01
522.1	51.9/9	51.793	1.43/	15.902	0.079	0.3//	10.000	2.139	1.330	100.19	$\frac{11D}{\alpha} \frac{\Delta D}{L^2} \frac{L^2}{S}$
332.7	52.016	52.046	1.523	15.849	0.009	8.331	18./19	2.161	1.343	99.97	HB/&8B L2 SI

582.7	52.069	51.840	1.513	16.059	0.025	8.282	18.832	2.083	1.366	100.23	HB7&8B_L2_S1
612.7	51.955	51.848	1.533	15.961	0.075	8.306	18.919	2.076	1.282	100.11	HB7&8B L2 S1
642.7	52.054	51.780	1.498	16.032	0.080	8.324	18.873	2.066	1.347	100.27	HB7&8B L2 S1
672.7	51.961	52.178	1.447	15.924	0.042	8.288	18.708	2.073	1.339	99.78	HB7&8B L2 S1
702.7	51 970	52,069	1 582	15 931	0.006	8 369	18 702	2.019	1 322	99 90	HB7&8B_L2_S1
732.7	51.850	51 829	1 478	16 014	0.038	8 409	18 862	2.019	1 293	100.02	HB7&8B_L2_S1
762.7	51 803	51.027	1.516	15 025	0.030	8 366	18 864	2.070	1.275	100.02	HB7&8B 12 S1
702.7	51 720	51.006	1.510	15.923	0.021	8.300 8.200	10.004	2.005	1.334	00.02	$\frac{11D}{0.00} \frac{12}{0.01} \frac{11}{0.00} \frac{12}{0.01} 1$
192.1	51.000	51.900	1.459	15.095	0.005	0.390	10.079	2.090	1.210	99.05	$HD700DL2_{51}$
822.7	51.800	51.921	1.45/	15.929	0.054	8.376	18.839	2.08/	1.337	99.88	HB/&8B_L2_S1
852.7	52.076	51.944	1.518	15.951	0.073	8.376	18.791	2.038	1.309	100.13	HB/&8B_L2_S1
882.7	51.945	51.981	1.560	15.902	0.004	8.315	18.830	2.083	1.326	99.96	HB7&8B_L2_S1
912.7	51.858	51.994	1.445	15.834	0.035	8.310	19.000	2.067	1.315	99.86	HB7&8B_L2_S1
942.7	51.898	51.695	1.528	16.013	0.102	8.395	18.881	2.059	1.328	100.20	HB7&8B_L2_S1
972.7	51.922	51.946	1.489	15.963	0.048	8.353	18.852	2.037	1.312	99.98	HB7&8B_L2_S1
1002.7	52.123	51.803	1.516	15.981	0.077	8.444	18.830	2.056	1.293	100.32	HB7&8B L2 S1
1032.7	51.955	51.773	1.480	15.924	0.084	8.420	18.910	2.083	1.327	100.18	HB7&8B L2 S1
1062.7	51.996	51.956	1.513	15.997	0.063	8.259	18.785	2.100	1.327	100.04	HB7&8B L2 S1
1092.7	51 786	51 859	1 485	15 982	0.065	8 307	18 923	2.065	1 315	99 93	HB7&8B_L2_S1
1152.7	51 814	51 840	1 494	16.014	0.046	8 364	18 839	2.078	1 326	99.97	HB7&8B L2 S1
1182.7	51.011	51.875	1.121	16.037	0.040	8 380	18 800	2.076	1.320	100.12	HB7&8B 12 S1
1212.7	51.092	51.025	1.507	15.042	0.040	0.500 0.417	10.077	2.020	1.200	100.12	UD7&0D_L2_51
1212.7	51.962	51.919	1.304	15.945	0.013	0.41/	10.044	2.034	1.303	100.00	$\frac{\text{DD}}{\text{A}} \frac{\text{DD}}{\text{A}} \frac{\text{DD}}{ \frac{DD}} $
1242.7	51.882	51.880	1.454	15.961	0.071	8.3/5	18.887	2.037	1.335	100.00	HB/&8B_L2_SI
12/2.7	51.946	52.033	1.496	15.965	0.040	8.285	18.844	2.015	1.323	99.91	HB/&8B_L2_S1
1302.7	51.916	51.885	1.501	15.992	0.051	8.284	18.926	2.052	1.309	100.03	HB7&8B_L2_S1
1332.7	51.811	52.020	1.468	15.934	0.055	8.328	18.808	2.063	1.325	99.79	HB7&8B_L2_S1
1362.7	52.038	51.961	1.497	15.893	0.010	8.356	18.931	2.034	1.318	100.08	HB7&8B_L2_S1
1392.7	51.765	51.598	1.531	16.042	0.094	8.455	18.914	2.058	1.309	100.17	HB7&8B_L2_S1
1452.7	52.138	52.043	1.466	15.969	-0.015	8.265	18.902	2.051	1.319	100.09	HB7&8B L2 S1
-1465	49.471	48.997	1.534	16.013	0.065	11.215	18.787	2.078	1.313	100.47	HB7&8B L3 S3
-1435	49.237	48.723	1.505	15.994	0.059	11.274	18,993	2.117	1.335	100.51	HB7&8B_L3_S3
-1405	49 243	48 987	1 496	16.012	0.086	11 198	18 832	2 077	1 311	100.26	HB7&8B_L3_S3
-1375	49 342	48 805	1.521	16 217	0.000	11 122	18 817	2.077	1 341	100.20	HB7&8B I 3 S3
13/5	40 247	40.003	1.521	16.002	0.044	11.122	18.840	2.154	1 2 2 5	100.34	HB7&8B 13 S3
-1343	49.247	49.033	1.422	16 110	0.009	11.133	10.049	2.037	1.323	100.21	$\frac{\text{HD}}{\text{A}} \frac{\text{A}}{\text{A}} \frac{\text{D}}{\text{A}} \frac{\text{D}}{\text{A}}$
-1515	49.558	40.000	1.431	10.110	0.027	11.318	10.700	2.008	1.370	100.47	$\frac{\text{DD}}{\text{A}} \frac{\text{DD}}{\text{A}} \frac{\text{DD}}{\text{D}} \frac{\text{D}}{\text{A}} \frac{\text{D}}{A$
-1285	49.155	48.766	1.4/3	16.14/	0.066	11.180	18.896	2.134	1.339	100.39	HB/&8B_L3_S3
-1255	49.240	48.948	1.483	16.206	0.020	11.072	18.868	2.095	1.309	100.29	HB/&8B_L3_S3
-1225	49.283	48.727	1.446	16.195	0.029	11.185	18.975	2.113	1.331	100.56	HB7&8B_L3_S3
-1195	49.213	48.513	1.551	16.212	0.067	11.286	18.897	2.143	1.331	100.70	HB7&8B_L3_S3
-1165	49.142	48.867	1.480	16.092	0.060	11.222	18.845	2.076	1.359	100.28	HB7&8B_L3_S3
-1135	49.289	48.997	1.492	16.131	0.048	11.092	18.805	2.094	1.342	100.29	HB7&8B_L3_S3
-1105	49.368	48.775	1.410	16.222	0.038	11.293	18.848	2.076	1.339	100.59	HB7&8B L3 S3
-1075	49.066	48.716	1.510	16.194	0.049	11.205	18.919	2.091	1.316	100.35	HB7&8B L3 S3
-1045	49.147	48.547	1.521	16.214	0.062	11.255	18.953	2.074	1.374	100.60	HB7&8B L3 S3
-1015	49.099	49.039	1.474	16.121	0.032	11.227	18.689	2.071	1.347	100.06	HB7&8B_L3_S3
-985	49 092	48 865	1 470	15 997	0.055	11 299	18 914	2 049	1 352	100.23	HB7&8B_13_S3
-955	49 120	48 686	1 525	16 104	0.044	11.271	18 918	2 090	1 363	100.43	HB7&8B L3 S3
025	10.086	10.000	1 4 4 3	16 110	0.053	11.271	18 812	2.050	1 3 4 9	100.15	HB7&8B 13 S3
-925	49.000	49.04/	1.445	16.029	0.055	11.122	10.012	2.003	1.340	100.04	11D760D 12 S2
-893	49.113	40.090	1.380	10.028	0.032	11.508	10.000	2.010	1.313	100.22	$\Pi D / \alpha \delta D L 3 S $
-865	49.153	49.103	1.436	16.174	0.062	11.056	18./26	2.099	1.344	100.05	$HB/\alpha 8B_{L3}S3$
-805	48.961	48.874	1.493	16.129	0.027	11.266	18.834	2.031	1.347	100.09	HB/&8B_L3_S3
-775	48.666	48.631	1.552	16.184	0.088	11.127	19.001	2.054	1.362	100.03	HB7&8B_L3_S3
-745	49.168	48.961	1.516	16.134	0.037	11.256	18.757	1.993	1.347	100.21	HB7&8B_L3_S3
-715	49.113	48.918	1.458	16.079	0.067	11.289	18.875	1.987	1.328	100.20	HB7&8B_L3_S3
-685	49.253	48.739	1.507	16.143	0.119	11.241	18.906	2.046	1.298	100.51	HB7&8B_L3_S3
-655	49.165	48.698	1.508	16.248	0.052	11.188	18.946	2.044	1.316	100.47	HB7&8B L3 S3
-625	49.220	48.704	1.574	16.126	0.058	11.282	18.893	2.019	1.345	100.52	HB7&8B L3 S3
-595	49,159	48,800	1.534	16.080	0.079	11.273	18,937	2.006	1.291	100.36	HB7&8B L3 S3
-565	49 189	48 833	1 451	16 170	0.060	11 246	18 951	1 977	1 313	100.36	HB7&8B L3 S3
-545	49 761	48 730	1 465	16 212	0.075	11 185	18 05/	2 030	1 222	100.50	HB7&8B 13 87
_520	40 177	18 701	1 520	16 125	0.075	11 210	10.204	2.039	1 255	100.32	HB7& 2D 12 C1
-330	47.1//	40./84	1.330	10.133	0.090	11.218	10.092	1.990	1.333	100.39	$\frac{11D}{0.0D} \frac{L^{3}}{L^{2}} \frac{52}{2}$
-515	49.281	48.905	1.480	10.1//	0.092	11.195	18.845	1.995	1.509	100.38	пв/а8в_L3_82
-500	49.247	48.887	1.460	16.166	0.073	11.138	18.936	2.036	1.303	100.36	HB/&8B_L3_S2
-485	49.152	48.813	1.560	16.167	0.082	11.271	18.788	1.989	1.331	100.34	HB7&8B_L3_S2

-470	49.201	48.802	1.568	16.104	0.048	11.205	18.986	1.980	1.307	100.40	HB7&8B_L3_S2
-455	49.338	49.185	1.413	16.127	0.068	11.050	18.913	1.970	1.274	100.15	HB7&8B_L3_S2
-440	49.393	48.928	1.539	16.131	0.090	11.212	18.811	2.001	1.287	100.47	HB7&8B L3 S2
-425	49.230	48.969	1.496	16.202	0.084	11.047	18.918	1.991	1.293	100.26	HB7&8B L3 S2
-410	49.267	49.011	1.554	16.107	0.123	11.136	18.800	2.011	1.257	100.26	HB7&8B_L3_S2
-395	49 128	48 895	1 562	16.096	0.054	11 225	18 908	1 967	1 295	100.23	HB7&8B_L3_S2
-380	49 173	48 814	1.502	16 166	0.076	11.223	18 988	2 015	1.293	100.25	HB7&8B 13 S2
-365	40 227	40.014	1.560	16 291	0.070	11.132	10.001	1 009	1.205	100.50	HD7&0D_L3_52
-303	49.237	40.099	1.502	10.201	0.055	10.090	10.901	1.990	1.279	100.34	$\frac{\text{HD}}{\text{A}} \frac{\text{A}}{\text{A}} \frac{\text{D}}{\text{A}} \frac{\text{D}}{\text{A}}$
-350	49.180	48.984	1.519	16.1//	0.061	10.989	18.970	1.994	1.307	100.20	$HB/\&8B_L3_S2$
-335	49.305	48.548	1.554	16.301	0.084	11.167	19.091	1.974	1.281	100.76	HB/&8B_L3_S2
-320	49.096	48.975	1.521	16.203	0.017	11.086	18.946	1.957	1.295	100.12	HB7&8B_L3_S2
-305	49.216	49.092	1.500	16.223	0.038	10.967	18.957	1.953	1.270	100.12	HB7&8B_L3_S2
-290	49.309	48.640	1.579	16.293	0.104	11.021	19.063	2.036	1.264	100.67	HB7&8B_L3_S2
-275	49.348	49.101	1.480	16.117	0.088	10.970	18.994	1.987	1.263	100.25	HB7&8B_L3_S2
-260	49.269	48.893	1.544	16.267	0.065	10.952	19.043	1.967	1.270	100.38	HB7&8B L3 S2
-245	49.347	48.924	1.589	16.211	0.088	10.866	19.040	1.978	1.305	100.42	HB7&8B L3 S2
-230	49.347	49.017	1.482	16.280	0.058	10.855	19.010	2.002	1.297	100.33	HB7&8B L3 S2
-215	49 412	48 879	1 554	16 312	0.046	10 867	19 057	2.033	1 253	100 53	HB7&8B_L3_S2
-200	49 420	49.033	1 527	16 305	0.032	10.785	19.058	2 004	1 257	100.39	HB7&8B L3 S2
-170	49 495	49 284	1.527	16 297	-0.010	10.705	19.000	1 970	1.237	100.57	HB7&8B 13 S2
-170	40.646	40 219	1.500	16 172	-0.010	10.574	10.112	2 006	1.275	100.21	HD7&0D_L3_32
-133	49.040	49.218	1.020	10.175	0.014	10.307	19.119	2.000	1.278	100.45	$\frac{\text{DD}}{\text{A}} \frac{\text{DD}}{\text{A}} \frac{\text{DD}}{ \frac{DD}} $
-140	49.584	49.532	1.510	16.21/	0.065	10.414	18.979	2.031	1.253	100.05	$HB/\alpha 8B_{L3}S2$
-125	49.830	49.609	1.513	16.136	0.050	10.318	19.045	2.038	1.291	100.22	HB/&8B_L3_S2
-110	49.774	49.354	1.505	16.308	0.052	10.428	19.050	2.032	1.270	100.42	HB7&8B_L3_S2
-95	49.780	49.578	1.522	16.093	0.073	10.310	19.115	2.007	1.303	100.20	HB7&8B_L3_S2
-80	49.973	49.767	1.520	16.056	0.094	10.180	19.068	2.021	1.294	100.21	HB7&8B_L3_S2
-65	49.965	49.957	1.489	16.167	0.041	10.089	18.916	2.049	1.292	100.01	HB7&8B_L3_S2
-50	50.275	49.913	1.575	16.082	0.048	10.151	18.937	2.004	1.290	100.36	HB7&8B L3 S2
-35	50.296	50.139	1.490	16.082	0.057	10.002	18.937	2.019	1.275	100.16	HB7&8B L3 S2
-20	50.459	50.262	1.527	16.041	0.088	9.841	18.911	2.023	1.308	100.20	HB7&8B_L3_S2
-5	50 569	50 395	1 424	16.017	0.076	9.805	18 892	2.039	1 351	100.17	HB7&8B_L3_S2
10	50.714	50.347	1.550	16.009	0.073	9 790	18 892	2.037	1 3 5 9	100.37	HB7&8B I 3 S2
25	50.052	50.209	1.536	16.079	0.025	0.715	10.072	2.051	1.337	100.57	HD7&0D_L3_32
23	50.932	50.398	1.320	10.078	0.013	9./13	10.0/0	2.090	1.308	100.33	$\frac{\text{DD}}{\text{A}} \frac{\text{DD}}{\text{A}} \frac{\text{DD}}{ \frac{DD}} \frac{\text{DD}}{\frac{\text{DD}}$
40	50.940	50.477	1.454	10.132	0.006	9.654	18./98	2.133	1.34/	100.40	$HB/\alpha \delta B_{L3}S_{2}$
55	51.122	50.537	1.471	15.939	0.118	9.580	18.881	2.132	1.344	100.59	HB/&8B_L3_S2
70	51.250	50.826	1.533	15.908	0.054	9.332	18.863	2.115	1.369	100.42	HB/&8B_L3_S2
85	51.312	50.842	1.510	15.872	0.081	9.372	18.817	2.123	1.382	100.47	HB7&8B_L3_S2
100	51.457	51.025	1.404	15.994	0.041	9.249	18.772	2.119	1.395	100.43	HB7&8B_L3_S2
115	51.346	51.514	1.485	15.787	0.028	9.078	18.636	2.078	1.394	99.83	HB7&8B_L3_S2
130	51.709	51.153	1.500	15.974	0.029	9.013	18.788	2.154	1.389	100.56	HB7&8B_L3_S2
145	51.705	51.430	1.534	15.757	-0.016	9.067	18.714	2.106	1.408	100.28	HB7&8B L3 S2
160	51.915	51.496	1.445	15.818	0.056	8.832	18.763	2.161	1.430	100.42	HB7&8B L3 S2
175	51.806	51.497	1.483	15.988	0.000	8.830	18.660	2.126	1.418	100.31	HB7&8B L3 S2
190	51.781	51,700	1.454	15.873	0.027	8.818	18.607	2.128	1.393	100.08	HB7&8B_L3_S2
205	51 899	51 491	1 403	15 921	0.073	8 812	18 736	2 163	1 400	100 41	HB7&8B_L3_S2
200	51.836	51 534	1.105	15.921	0.075	8 775	18 751	2.105	1.100	100.11	HB7&8B 13 S2
220	52 112	51.554	1.582	16.005	0.050	8 621	18 661	2.137 2 1 4 4	1.400	100.50	HB7&8B 13 S2
255	51 774	51.510	1.362	15.003	0.005	0.021	10.001	2.144	1.414	100.00	$\frac{\text{HD}}{\text{A}} \frac{\text{A}}{\text{A}} \frac{\text{D}}{\text{A}} \frac{\text{D}}{\text{A}}$
250	52.027	51.070	1.570	15.005	0.029	0.009	10.003	2.157	1.403	100.10	$\Pi D / \alpha \delta D L 3 S 2$
265	52.037	51.646	1.519	15.8/6	0.030	8.605	18.776	2.155	1.394	100.39	$HB/\&8B_L3_S2$
295	52.003	51.667	1.486	15.956	0.044	8.551	18.787	2.139	1.371	100.34	$HB/\&8B_L3_S2$
310	52.006	51.504	1.485	15.973	0.052	8.640	18.768	2.175	1.403	100.50	HB7&8B_L3_S2
325	51.992	51.550	1.554	15.982	0.094	8.463	18.820	2.164	1.374	100.44	HB7&8B_L3_S2
340	52.032	51.486	1.451	16.048	0.103	8.523	18.848	2.180	1.361	100.55	HB7&8B_L3_S2
355	52.000	51.809	1.481	16.011	0.051	8.410	18.791	2.102	1.346	100.19	HB7&8B_L3_S2
370	52.021	52.045	1.429	15.896	0.023	8.347	18.748	2.160	1.351	99.98	HB7&8B L3 S2
385	52.037	51.668	1.535	15.976	0.075	8.402	18.783	2.173	1.388	100.37	HB7&8B L3 S2
400	52 117	51 863	1 507	15 947	0.052	8 334	18 785	2 140	1 374	100.25	HB7&8B 13 S2
415	51 9/7	51.688	1 468	16 0/6	0.021	8 448	18 877	2.110	1 367	100.25	HB7& 8R 13 87
420	51.054	51.000	1 527	15 050	0.021	0.770 Q 210	18 701	2.1+0 2.171	1 2 / 0	100.20	HD780D 12 02
450	52 219	52.020	1.33/	16.000	0.037	0.349	10./91	2.1/1	1.348	100.14	$\frac{11D}{0.0D} \frac{L^{3}}{L^{2}} \frac{52}{2}$
445	52.218	52.039	1.469	16.008	0.033	8.275	18./61	2.097	1.318	100.18	HB/&8B_L3_82
465	52.237	51.981	1.390	15.932	0.000	8.383	18.890	2.089	1.335	100.26	HB/&8B_L3_S1
525	52.210	52.156	1.433	15.914	0.002	8.293	18.780	2.084	1.339	100.05	HB7&8B_L3_S1
555	52.184	51.765	1.536	16.055	0.010	8.439	18.783	2.082	1.331	100.42	HB7&8B_L3_S1

585	52.197	51.583	1.540	16.131	0.071	8.373	18.927	2.066	1.310	100.61	HB7&8B_L3_S1
615	52.190	51.518	1.585	16.111	0.031	8.455	18.905	2.076	1.319	100.67	HB7&8B_L3_S1
645	52.261	51.954	1.504	15.965	0.081	8.215	18.878	2.096	1.306	100.31	HB7&8B_L3_S1
705	52.225	51.922	1.451	15.975	0.006	8.343	18.898	2.103	1.301	100.30	HB7&8B_L3_S1
735	52.084	52.011	1.584	15.999	0.054	8.164	18.794	2.074	1.321	100.07	HB7&8B_L3_S1
765	52.234	51.990	1.397	16.057	0.024	8.344	18.801	2.075	1.313	100.24	HB7&8B_L3_S1
795	52.144	52.194	1.514	15.922	0.014	8.293	18.730	2.020	1.313	99.95	HB7&8B_L3_S1
825	51.757	51.742	1.442	15.998	0.072	8.424	18.974	2.064	1.284	100.02	HB7&8B_L3_S1
855	52.418	51.658	1.533	16.064	0.084	8.519	18.788	2.051	1.304	100.76	HB7&8B_L3_S1
885	52.200	52.020	1.512	15.919	0.018	8.380	18.766	2.072	1.313	100.18	HB7&8B_L3_S1
915	52.198	52.002	1.533	16.076	0.013	8.273	18.743	2.046	1.314	100.20	HB7&8B_L3_S1
945	52.060	51.716	1.494	16.097	0.069	8.314	18.928	2.058	1.323	100.34	HB7&8B_L3_S1
975	52.182	51.873	1.516	15.907	0.033	8.423	18.916	2.018	1.314	100.31	HB7&8B_L3_S1
1005	52.128	51.872	1.532	15.994	0.046	8.252	18.904	2.078	1.322	100.26	HB7&8B_L3_S1
1035	52.293	51.985	1.472	15.995	0.006	8.242	18.947	2.048	1.306	100.31	HB7&8B_L3_S1
1065	52.088	51.537	1.590	15.969	0.044	8.510	18.992	2.033	1.326	100.55	HB7&8B_L3_S1
1095	52.120	51.871	1.483	15.928	0.090	8.326	18.937	2.054	1.312	100.25	HB7&8B L3 S1
1125	51.988	51.938	1.470	16.075	0.058	8.205	18.877	2.054	1.323	100.05	HB7&8B_L3_S1
1155	52.178	51.718	1.528	16.141	0.055	8.318	18.869	2.043	1.328	100.46	HB7&8B_L3_S1
1185	52.244	51.874	1.457	16.035	0.035	8.350	18.824	2.097	1.329	100.37	HB7&8B_L3_S1
1215	52.122	51.765	1.558	15.995	0.048	8.520	18.756	2.053	1.304	100.36	HB7&8B L3 S1
1245	52.095	51.723	1.555	16.054	0.055	8.351	18.922	2.016	1.324	100.37	HB7&8B_L3_S1
1275	52.042	51.958	1.474	16.074	0.006	8.265	18.879	2.013	1.332	100.08	HB7&8B L3 S1
1305	52.035	51.937	1.427	16.025	0.074	8.299	18.914	2.018	1.306	100.10	HB7&8B_L3_S1
1335	52.031	51.680	1.493	16.071	0.067	8.447	18.883	2.034	1.326	100.35	HB7&8B_L3_S1
1365	52.001	51.753	1.552	16.032	0.079	8.345	18.895	2.030	1.314	100.25	HB7&8B_L3_S1
1395	52.161	51.714	1.487	16.146	0.046	8.375	18.895	2.022	1.315	100.45	HB7&8B L3 S1
1425	52.091	51.801	1.534	16.110	0.011	8.326	18.861	2.040	1.317	100.29	HB7&8B_L3_S1

Table C6. HB9&10A											
X (μm)	SiO2	SiO2*	TiO2	Al2O3	FeO	MgO	CaO	Na2O	K2O	Total	Comment
-1343.7	51.316	50.972	1.520	16.769	0.066	9.238	18.089	2.061	1.286	100.34	HB9&10 L0
-1243.7	51.270	51.072	1.467	16.606	0.060	9.329	18.242	1.971	1.252	100.20	HB9&10 L0
-1143.7	51.089	51.068	1.490	16.654	0.069	9.264	18.206	1.990	1.260	100.02	HB9&10_L0
-1043 7	51 197	51 198	1 467	16 674	0.062	9 1 7 1	18 166	2.011	1 251	100.00	HB9&10_L0
-943 7	51 274	51 111	1 473	16 659	0.045	9 2 9 8	18 132	2.003	1 280	100.16	HB9&10_L0
-843 7	51.271	50 921	1 445	16.682	0.057	9 3 2 4	18 296	1 983	1 293	100.10	HB9&10_L0
-743 7	51.226	50.867	1 485	16 740	0.057	9 308	18 308	1 989	1 247	100.50	$HB9\&10 \pm 0$
-643.7	51.200	51 260	1.105	16.640	0.057	9.266	18 1/2	1.909	1.217	00.03	HB0&10_L0
-543.7	51 155	50 922	1.404	16 680	0.050	0.338	18 150	1.002	1.201	100.23	HB0&10_L0
543.7	51 203	50.922	1.540	16 700	0.005	0.260	18 257	2 025	1.257	100.25	HB0&10_L0
-343.7	51.203	51 110	1.408	16.636	0.030	9.209	18.257	2.023	1.250	100.24	HB0&10_L1
-4/3.7	51.020	51 181	1.502	16 500	0.040	0 3 3 1	18 144	2.004	1.201	00.84	HB0&10_L1
-443.7	51 3/1	50 781	1.557	16.854	0.043	0.367	18 240	1.002	1.241	100 56	HB0&10_L0
-445.7	51 426	51 042	1.401	16 799	0.047	0.262	10.240	1.061	1.270	100.30	
-393.7	51.000	51.045	1.497	16.764	0.007	9.203	18.123	1.901	1.259	100.39	HB0&10_L1
-343.7	51.090	51.049	1.445	16.704	0.070	9.233	10.190	1.9/3	1.230	100.04	$\frac{\text{HD}9\&10_L0}{\text{HD}0\&10_L1}$
-343.7	51.214	51.020	1.490	16.079	0.058	9.231	10.301	1.982	1.234	100.19	ПБ9&10_L1
-293.7	51.102	51.078	1.4/2	10.//8	0.037	9.230	10.13/	1.900	1.203	100.08	ПБ9&10_L1
-243.7	51.085	51.000	1.54/	16.694	0.078	9.244	18.200	1.925	1.242	100.02	ПБ9&10_L0 ПБ9&10_L1
-243.7	51.174	50.074	1.591	10.030	0.009	9.201	18.202	1.934	1.234	100.10	ПБ9&10_L1
-193.7	51.5/5	50.903	1.501	16.704	0.040	9.301	18.194	1.940	1.224	100.41	HB9&10_L1
-143.7	51.504	51.277	1.330	10.592	0.051	9.239	18.004	1.977	1.244	100.03	HB9&10_L0
-143.7	51.557	51.15/	1.489	10.303	0.054	9.288	18.203	1.972	1.234	100.40	HB9&10_L1
-93.7	52.087	51.185	1.545	16.30/	0.076	9.392	18.19/	2.020	1.275	100.50	HB9&10_L1
-43.7	52.087	52.005	1.4/9	15.//8	0.060	9.185	18.143	2.023	1.279	100.02	HB9&10_L0
-43.7	52.150	52.214	1.409	15.388	0.055	9.245	18.109	1.985	1.2/8	99.94	HB9&10_L1
0.5	52.010	52.585	1.40/	15.152	0.042	9.279	18.210	1.980	1.294	100.43	HB9&10_L1
50.5	52.495	52.224	1.4/2	14.455	0.045	9.211	18.170	1.990	1.292	100.11	ПБ9&10_L0
50.5 106.2	52.015	53.234 52.726	1.555	14.382	0.070	9.311	18.072	2.050	1.320	100.50	HB9&10_L1
106.3	52.915	53.720	1.545	13.902	0.055	9.307	18.0//	2.009	1.323	100.19	HB9&10_L1
156.3	53.950	52.025	1.557	13.820	0.048	9.249	18.130	2.030	1.323	100.11	HB9&10_L0
130.3	54.250	51.925	1.392	12.625	0.038	9.510	10.097	2.037	1.312	00.07	ПБ9&10_L1
200.3	54.012	54.042	1.4/8	13.033	0.068	9.294	18.121	2.020	1.342	99.97	HB9&10_L1
230.3	54.221	54.080	1.527	12.507	0.009	9.293	17.005	2.041	1.321	100.14	ПБ9&10_L0
250.5	54.330	52.020	1.327	13.383	0.064	9.209	1/.905	2.002	1.318	100.08	HB9&10_L1
256.2	54.579	54 216	1.40/	12.730	0.034	9.313	10.115	2.055	1.310	100.44	ПБ9&10_L1
356.3	54.239	54.510	1.402	12.545	0.089	9.175	17.057	2 020	1.297	100 29	$HD9&10_L0$
330.3	54.475	54.109	1.544	12.0/4	0.043	9.292	17.937	2.020	1.201	100.28	HD9&10_L1
400.3	54.411	54.104	1.502	13./13	0.045	9.303	17.941	2.003	1.311	100.25	ПБ9&10_L1
430.3	54.307	54.215	1.34/	12.002	0.040	9.299	12.006	2.003	1.299	100.15	HB9&10_L0
550.5	54.555	54.440	1.480	13.374	0.057	9.102	18.000	1.991	1.303	99.89	ПБ9&10_L0
756.3	54.215	54.470	1.300	13.491	0.047	9.303	17.905	2.002	1.292	99.74 100.10	$\frac{HD9&10}{HD0&10}$
730.3 856.3	54.430	54.550	1.491	12.641	0.055	9.170	17.900	2.003	1.311	100.10	$\frac{HD9&10}{HD0&10}$
056.3	54.342	54.202	1.517	12 546	0.008	9.303	17.939	2.010	1.290	100.34	$\frac{11090010}{10000000000000000000000000000$
930.3	54.457	54.501	1.342	12.540	0.000	9.143	10.049	2.017	1.200	100.08	$HD9&10_L0$
1050.5	54.045	54.401	1.401	12 /22	0.044	9.299	17.000	1.905	1.295	100.24	$\frac{11090010}{10000000000000000000000000000$
12277	51 082	50.827	1.515	15.455	0.079	9.279	1/.903	2.026	1.501	100.02	$\frac{1090010}{100000000000000000000000000000$
-1337.7	51.062	50.016	1.522	16.600	0.000	9.444	10.217	2.020	1.234	100.20	$HD9&10_L2_S3$ $HD0&10_L2_S3$
-1237.7	50.046	51.043	1.541	16.618	0.037	9.207	18.352	2.015	1.272	00.18	HB0&10_L2_S3
-1137.7	51 202	50.922	1.518	16 754	0.090	9.203	10.250	2 020	1.260	100.27	$HD9@10_L2_S3$ $HD0&10_L2_S3$
-1037.7	51 203	50.035	1.400	16.681	0.077	9.300	18.205	2.029	1.202	100.37	HB0&10_L2_S3
-937.7	51.205	51 122	1.470	16 705	0.027	9.273	10.554	2.024	1.238	00.04	$HD9@10_L2_S3$ $HD0&10_L2_S3$
-051.1	51.038	51.122	1.404	16 742	0.032	9.302	10.093	1.7/0	1.202	77.74 100.16	HR0&10_L2_33
-131.1	51.250	50.027	1.515	16.742	0.003	7.224 0.207	10.121	1.777	1.201	100.10	HR0&10_L2_33
-037.7	51.558	50.927	1.341	16.699	0.074	9.30/ 0.27/	18.200	1.904	1.2//	100.45	HR0&10_L2_33
-357.7	51.397	51.064	1.4/4	16.000	0.03/	7.3/4 0.255	10.203	1.702	1.230	100.47	HB0&10_L2_52
-40/./	51.230 51.141	51.004	1.40/ 1.400	10.304	0.048	7.333	10.231	1.982	1.209	100.17	$\frac{11090010}{10000}$
-431.1	51.141	50.004	1.400 1.460	10.720	0.032	7.208 0.241	10.21/	1.990	1.243	100.11	$\frac{11090010}{10000}$
-38/./	51.550	51 151	1.400	10.005	0.0//	9.341	10.219	1.980	1.208	100.33	$\frac{1090010}{10000}$
-331.1	51.180	J1.134	1.595	10.031	0.003	9.302	10.222	1.981	1.233	100.03	HD0&10_L2_S2
-201.1	51.240	51.108	1.318	10.3/0	0.001	9.200	10.240	1.933	1.239	100.08	$\frac{1090010}{10000}$
-231.1	31.330	31.040	1.409	10./10	0.082	9.201	10.1/9	1.9/8	1.249	100.29	пруат0_L2_82

-187.7	51.350	51.001	1.556	16.688	0.053	9.176	18.301	1.974	1.253	100.35	HB9&10 L2 S2
-137.7	51 467	51 372	1 555	16 527	0.077	9 1 4 0	18 147	1 948	1 235	100.09	HB9&10 L2 S2
-87.7	51 749	51 457	1.575	16 193	0.042	9 2 5 6	18 261	1 963	1 252	100.29	HB9&10 L2 S2
-37.7	52 267	52 190	1 484	15 543	0.072	9.283	18 193	1.966	1.252	100.29	HB9&10_L2_S2
12.3	52.207	52.661	1.550	14 056	0.072	0.256	18 274	1.900	1.200	100.00	HB0&10 12 S2
62.3	52.915	52.001	1.339	14.950	0.003	9.250	10.274	2 000	1.270	100.25	HD9&10_L2_S2
02.5	54 102	52.592	1.4/1	14.215	0.057	9.203	10.131	2.000	1.294	100.03	HD9&10_L2_S2
112.5	54.102	55.075	1.31/	12.942	0.067	9.308	10.002	2.051	1.319	100.45	ПБ9&10_L2_52
162.3	54.431	54.059	1.51/	13.809	0.057	9.239	18.041	1.98/	1.292	100.37	HB9&10_L2_S2
212.3	54.439	54.227	1.554	13.416	0.051	9.319	18.104	2.018	1.311	100.21	HB9&10_L2_S2
262.3	54.458	53.959	1.594	13.546	0.077	9.373	18.050	2.069	1.332	100.50	HB9&10_L2_S2
362.3	54.650	54.138	1.558	13.484	0.057	9.318	18.128	1.993	1.325	100.51	HB9&10_L2_S1
462.3	54.426	54.028	1.603	13.567	0.063	9.281	18.144	2.007	1.308	100.40	HB9&10_L2_S1
562.3	54.401	54.218	1.537	13.518	0.048	9.244	18.165	1.988	1.283	100.18	HB9&10_L2_S1
662.3	54.586	54.028	1.592	13.503	0.043	9.383	18.145	1.964	1.343	100.56	HB9&10_L2_S1
762.3	54.510	54.496	1.473	13.351	0.051	9.280	18.100	1.952	1.297	100.01	HB9&10_L2_S1
862.3	54.523	54.285	1.503	13.559	0.051	9.198	18.114	1.968	1.323	100.24	HB9&10_L2_S1
962.3	54.420	54.254	1.549	13.438	0.061	9.222	18.149	2.028	1.300	100.17	HB9&10_L2_S1
1062.3	54.627	54.031	1.493	13.737	0.058	9.239	18.147	1.992	1.303	100.60	HB9&10 L2 S1
1162.3	54.626	54.056	1.643	13.611	0.076	9.255	18.057	1.986	1.315	100.57	HB9&10 L2 S1
-1410.1	50.936	50.917	1.433	16.647	0.075	9.436	18.199	2.022	1.270	100.02	HB9&10 L3 S3
-1310.1	50.895	51.033	1.449	16.606	0.054	9.312	18.190	2.055	1.301	99.86	HB9&10 L3 S3
-1210.1	50.801	51.082	1.527	16.513	0.058	9.396	18.163	2.011	1.250	99.72	HB9&10 L3 S3
-1110.1	50.849	51.098	1.442	16.646	0.055	9.280	18.250	1.987	1.242	99.75	HB9&10 L3 S3
-910.1	51 059	50 866	1 520	16 698	0.056	9 372	18 256	1 969	1 264	100 19	HB9&10_L3_S3
-810.1	51.095	50 897	1 478	16 729	0.061	9 2 5 3	18 319	1 980	1 283	100.20	HB9&10_L3_S3
-710.1	50.817	50.891	1 466	16 773	0.097	9 289	18 240	1 967	1 277	99.93	HB9&10_L3_S3
-610.1	50.891	50.963	1 486	16.635	0.070	9.286	18 273	1 995	1 292	99.93	HB9&10_L3_S2
-560.1	50.773	51.022	1 492	16 752	0.061	9 243	18 159	1 989	1 282	99.75	HB9&10_L3_S2
-510.1	50.774	50.057	1 /08	16 681	0.001	0 2/10	18 304	1 003	1.262	00.82	HB9&10_L3_S2
460.1	50.020	50.006	1.470	16 500	0.033	0.297	18 107	2 028	1.204	00.04	HB0&10_L3_S2
410.1	51 010	50.970	1.4/1	16 748	0.040	0.274	18 202	1 070	1.271	100.17	HB0&10_L3_S2
-410.1	50.082	50.840	1.508	16 9/1	0.087	9.274	18 206	1.979	1.271	100.17	HD9&10_L3_S2
-300.1	50.965	51 222	1.514	16.507	0.070	9.291	10.300	1.973	1.237	00.24	HD9&10_L3_S2
-310.1	51.042	51.255	1.34/	10.307	0.040	9.109	10.240	1.9/5	1.200	99.70	ПБ9&10_L5_52
-200.1	51.045	51.119	1.4/1	10.0/0	0.069	9.228	18.215	1.958	1.204	99.92	HB9&10_L3_S2
-210.1	51.1/3	51.130	1.499	16.538	0.04/	9.350	18.249	1.938	1.251	100.04	HB9&10_L3_S2
-160.1	51.261	51.298	1.458	16.495	0.083	9.089	18.335	2.001	1.241	99.96	HB9&10_L3_S2
-110.1	51.485	51.762	1.397	16.200	0.048	9.220	18.179	1.949	1.246	99.72	HB9&10_L3_S2
-60.1	51.924	51.679	1.632	15.991	0.055	9.163	18.227	2.002	1.251	100.24	HB9&10_L3_S2
-10.1	52.528	52.455	1.526	15.239	0.047	9.318	18.144	1.998	1.272	100.07	HB9&10_L3_S2
39.9	53.075	53.204	1.446	14.513	0.051	9.249	18.174	2.025	1.339	99.87	HB9&10_L3_S2
89.9	53.739	53.542	1.501	14.127	0.065	9.329	18.095	2.036	1.306	100.20	HB9&10_L3_S2
139.9	53.947	53.876	1.516	13.756	0.056	9.425	18.022	2.019	1.330	100.07	HB9&10_L3_S2
189.9	54.221	53.993	1.502	13.681	0.054	9.385	18.047	2.018	1.322	100.23	HB9&10_L3_S2
289.9	53.906	54.228	1.548	13.577	0.029	9.302	17.979	2.004	1.333	99.68	HB9&10_L3_S1
689.9	53.928	54.205	1.536	13.495	0.059	9.297	18.070	2.046	1.292	99.72	HB9&10_L3_S1
889.9	53.901	54.261	1.565	13.437	0.068	9.258	18.022	2.044	1.345	99.64	HB9&10_L3_S1
989.9	53.986	54.136	1.612	13.591	0.045	9.269	18.062	1.983	1.301	99.85	HB9&10 L3 S1
1089.9	54.058	54.149	1.559	13.634	0.048	9.394	17.940	1.995	1.282	99.91	HB9&10 L3 S1

Table C7. HB11&12F											
X (µm)	SiO2	SiO2*	TiO2	Al2O3	FeO	MgO	CaO	Na2O	K2O	Total	Comment
-1171.8	48.962	49.244	2.833	16.110	0.034	9.781	18.007	2.557	1.434	99.72	HB11&12_L1_S4
-1071.8	49.031	49.454	2.903	15.911	0.039	9.625	18.030	2.605	1.432	99.58	HB11&12_L1_S4
-971.8	48.767	49.227	2.884	16.057	0.071	9.694	18.042	2.589	1.435	99.54	HB11&12_L1_S4
-871.8	49.080	49.221	2.993	15.947	0.044	9.708	18.100	2.557	1.431	99.86	HB11&12_L1_S4
-771.8	49.007	49.255	2.894	15.974	0.072	9.619	18.165	2.613	1.409	99.75	HB11&12_L1_S4
-671.8	49.261	49.120	2.948	16.002	0.034	9.743	18.084	2.611	1.459	100.14	HB11&12_L1_S4
-571.8	48.938	49.346	2.873	16.030	0.055	9.668	18.090	2.503	1.437	99.59	HB11&12_L1_S4
-471.8	49.223	49.079	2.883	16.228	0.029	9.688	18.099	2.546	1.447	100.14	HB11&12_L1_S4
-321.8	48.805	49.282	2.921	16.014	0.077	9.518	18.190	2.558	1.441	99.52	HB11&12_L1_S3
-221.8	48.945	49.158	2.804	16.010	0.079	9.711	18.237	2.551	1.451	99.79	HB11&12_L1_S3
-171.8	49.296	49.131	2.643	16.089	0.022	9.767	18.330	2.580	1.439	100.16	HB11&12_L1_S3
-121.8	49.261	49.332	2.517	16.033	0.042	9.749	18.319	2.572	1.437	99.93	HB11&12_L1_S3
-71.8	49.800	49.800	2.125	15.962	0.050	9.718	18.371	2.541	1.434	100.00	HB11&12_L1_S3
-21.8	50.051	50.189	1.700	16.022	0.053	9.662	18.342	2.613	1.419	99.86	HB11&12_L1_S3
28.2	50.683	50.383	1.234	16.071	0.044	9.676	18.422	2.654	1.516	100.30	HB11&12_L1_S3
95.2	51.232	51.168	0.623	16.080	0.068	9.613	18.298	2.649	1.502	100.06	HB11&12_L1_S2
145.2	51.560	51.376	0.319	15.965	0.080	9.639	18.453	2.635	1.532	100.18	HB11&12_L1_S2
195.2	51.642	51.461	0.159	16.045	0.064	9.650	18.393	2.708	1.520	100.18	HB11&12_L1_S2
245.2	51.730	51.393	0.092	16.014	0.054	9.605	18.622	2.693	1.528	100.34	HB11&12_L1_S2
295.2	51.611	51.779	0.018	15.813	0.034	9.685	18.498	2.681	1.493	99.83	HB11&12_L1_S2
345.2	51.614	51.585	0.028	15.8/9	0.055	9.721	18.546	2.651	1.535	100.03	HB11&12_L1_S2
395.2	51.599	51.435	0.032	16.018	0.059	9.658	18.578	2.684	1.537	100.16	HB11&12_L1_S2
445.2	51.405	51.4/3	0.001	16.010	0.085	9.599	18.011	2.703	1.311	99.93	HBII $\&$ I2_LI_S2
005.2 705.2	51.700	51.309	0.013	15.978	0.060	9.050	18.394	2.049	1.488	100.19	$\frac{\text{HB}[[\&[2]] \text{L}[S]]}{\text{HB}[[\&[2]] \text{L}[S]]}$
705.2 805.2	51.750	51.401	0.021	15.955	0.030	9.084	10.00/	2.700	1.517	100.27	$\frac{\text{ID}[[\&[2]]]}{\text{ID}[[\&[2]]]}$
1005.2	51.744	51.945	0.010	15.790	0.045	9.510	18.550	2.040	1.508	99.80	$\frac{\text{HB}[1\&12_L1_S1]}{\text{HB}[1\&12_L1_S1]}$
1105.2	51.603	51.027	-0.007	15.000	0.051	9.005	18.610	2.004	1.525	100.14	$\frac{11011&12}{11812} = 1$
1205.2	51.005	51.307	0.028	15.969	0.055	9.021	18.661	2.005	1.521	100.10	$HB11&12_L1_S1$
1205.2	51.705	51 913	0.049	15.556	0.001	9.592	18.001	2.057	1.303	99 75	HB11&12_L1_S1
1405.2	51.821	51 596	0.004	15.050	0.070	9.661	18.507	2.033	1.470	100.22	HB11&12_L1_S1
-1284.8	48 973	49 476	2 840	16.034	0.045	9.609	17 948	2.587	1 460	99.50	HB11&12_L1_51 HB11&12_L2_S4
-1184.8	48 876	49 368	2.944	16.064	0.066	9 560	17 978	2.591	1 428	99.51	HB11&12_L2_S1 HB11&12_L2_S4
-1084.8	48 819	49 113	2.940	16 187	0.044	9 7 3 7	17 946	2.572	1 460	99.71	HB11&12_L2_S4
-984.8	48.942	49.189	2.916	16.052	0.049	9.598	18.164	2.590	1.442	99.75	HB11&12_L2_S4
-884.8	48.797	49.334	2.878	16.024	0.049	9.642	18.041	2.610	1.422	99.46	HB11&12 L2 S4
-784.8	48.889	49.201	2.902	16.005	0.065	9.722	18.110	2.558	1.437	99.69	HB11&12 L2 S4
-684.8	48.857	48.985	2.944	16.073	0.046	9.792	18.162	2.547	1.452	99.87	HB11&12 L2 S4
-584.8	49.105	49.289	2.828	16.069	0.066	9.656	18.083	2.549	1.461	99.82	HB11&12_L2_S4
-484.8	49.014	49.036	2.948	16.031	0.066	9.787	18.159	2.541	1.433	99.98	HB11&12_L2_S4
-384.8	48.891	49.383	2.914	15.981	0.074	9.562	18.058	2.570	1.458	99.51	HB11&12_L2_S3
-334.8	48.734	48.948	2.929	16.051	0.054	9.766	18.213	2.572	1.466	99.79	HB11&12_L2_S3
-284.8	48.839	49.376	2.873	15.935	0.051	9.621	18.164	2.538	1.442	99.46	HB11&12_L2_S3
-234.8	48.971	49.515	2.663	16.013	0.040	9.649	18.154	2.562	1.405	99.46	HB11&12_L2_S3
-184.8	49.157	49.283	2.679	15.991	0.079	9.822	18.246	2.505	1.396	99.87	HB11&12_L2_S3
-134.8	49.326	49.675	2.339	15.857	0.049	9.755	18.313	2.603	1.409	99.65	HB11&12_L2_S3
-84.8	49.612	49.666	2.201	16.064	0.068	9.675	18.347	2.523	1.457	99.95	HB11&12_L2_S3
-34.8	49.956	49.998	1.800	16.052	0.059	9.610	18.391	2.631	1.460	99.96	HB11&12_L2_S3
15.2	50.357	50.272	1.402	16.027	0.070	9.713	18.440	2.615	1.461	100.08	HB11&12_L2_S3
85.2	51.107	51.089	0.676	16.048	0.050	9.584	18.330	2.704	1.520	100.02	HB11&12_L2_S2
135.2	51.611	51.298	0.435	15.991	0.014	9.702	18.349	2.689	1.522	100.31	HB11&12_L2_S2
185.2	51.730	51.401	0.212	15.910	0.060	9.708	18.455	2.709	1.545	100.33	HB11&12_L2_S2
235.2	51.665	51.711	0.107	15.935	0.028	9.586	18.406	2.710	1.516	99.95	HB11&12_L2_S2
285.2	51.767	51.631	0.046	15.880	0.044	9.686	18.502	2.688	1.524	100.14	HB11&12_L2_S2
335.2	51.702	51.340	0.037	16.012	0.057	9.758	18.589	2.669	1.537	100.36	HB11&12_L2_S2
385.2	51.715	51.594	0.025	15.890	0.051	9.667	18.589	2.682	1.501	100.12	HB11&12_L2_S2
435.2	51.985	51.645	-0.002	15.784	0.083	9.690	18.543	2.729	1.527	100.34	HB11&12_L2_S2
485.2	51.962	51.657	0.005	15.855	0.062	9.663	18.562	2.704	1.493	100.31	HB11&12_L2_S2
585.2 695.2	51.545	51.455	0.032	15.895	0.075	9.6/2	18.695	2.655	1.520	100.09	HB11&12_L2_S1
085.2	51.880	51.539	0.017	15.914	0.051	9.706	18.600	2.683	1.491	100.34	HB11&12_L2_S1
/85.2	21.8/5	51./21	-0.010	15.823	0.057	9./10	18.536	2.670	1.493	100.15	HBIIA12_L2 SI
885.2	51.643	51.575	0.007	15.997	0.065	9.602	18.631	2.633	1.490	100.07	HB11&12_L2_S1
---------	--------	--------	--------	--------	-------	-------	--------	-------	-------	--------	---------------
985.2	51.676	51.985	-0.007	15.687	0.041	9.603	18.556	2.643	1.493	99.69	HB11&12_L2_S1
1085.2	51.840	51.791	0.028	15.865	0.066	9.494	18.593	2.662	1.501	100.05	HB11&12_L2_S1
1185.2	51.935	51.828	0.001	15.816	0.055	9.571	18.584	2.648	1.498	100.11	HB11&12_L2_S1
1285.2	51.722	51.602	0.046	15.881	0.053	9.582	18.600	2.713	1.526	100.12	HB11&12_L2_S1
1385.2	52.087	51.780	0.019	15.765	0.074	9.551	18.644	2.662	1.506	100.31	HB11&12_L2_S1
-1072.8	48.841	49.153	2.906	16.104	0.060	9.627	18.125	2.594	1.432	99.69	HB11&12_L3_S4
-972.8	48.752	49.130	2.850	16.224	0.057	9.679	18.040	2.597	1.423	99.62	HB11&12_L3_S4
-872.8	48.908	48.954	2.981	16.112	0.064	9.681	18.159	2.560	1.490	99.95	HB11&12_L3_S4
-772.8	48.849	48.926	3.024	16.076	0.056	9.756	18.118	2.588	1.456	99.92	HB11&12_L3_S4
-672.8	48.906	49.203	2.888	16.040	0.045	9.654	18.101	2.605	1.465	99.70	HB11&12_L3_S4
-572.8	48.801	49.164	2.903	15.967	0.086	9.673	18.130	2.603	1.475	99.64	HB11&12_L3_S4
-372.8	49.216	49.076	2.869	16.214	0.049	9.617	18.093	2.629	1.454	100.14	HB11&12_L3_S3
-322.8	48.959	49.227	2.908	16.003	0.017	9.701	18.144	2.562	1.438	99.73	HB11&12_L3_S3
-272.8	49.045	48.849	2.973	16.188	0.077	9.681	18.250	2.538	1.445	100.20	HB11&12_L3_S3
-222.8	49.006	49.126	2.835	16.161	0.046	9.667	18.192	2.541	1.432	99.88	HB11&12_L3_S3
-172.8	49.041	49.236	2.680	16.092	0.064	9.704	18.225	2.585	1.413	99.81	HB11&12_L3_S3
-122.8	49.262	49.435	2.506	16.093	0.054	9.662	18.270	2.564	1.417	99.83	HB11&12_L3_S3
-72.8	49.372	49.825	2.142	16.020	0.052	9.544	18.362	2.621	1.434	99.55	HB11&12_L3_S3
-22.8	49.759	50.254	1.679	15.915	0.052	9.626	18.365	2.656	1.454	99.51	HB11&12_L3_S3
27.2	50.286	50.461	1.164	16.236	0.060	9.605	18.333	2.670	1.470	99.83	HB11&12_L3_S3
155.2	51.313	51.158	0.296	16.290	0.044	9.571	18.428	2.666	1.547	100.16	HB11&12_L3_S2
205.2	51.431	51.586	0.131	15.991	0.064	9.549	18.490	2.696	1.493	99.85	HB11&12_L3_S2
255.2	51.558	51.426	0.058	16.192	0.035	9.616	18.484	2.661	1.528	100.13	HB11&12_L3_S2
305.2	51.567	51.353	0.039	16.094	0.053	9.745	18.560	2.676	1.480	100.21	HB11&12_L3_S2
355.2	51.435	51.612	0.041	15.887	0.062	9.594	18.619	2.685	1.499	99.82	HB11&12_L3_S2
405.2	51.562	51.695	0.017	16.074	0.035	9.495	18.548	2.676	1.460	99.87	HB11&12_L3_S2
455.2	51.542	51.629	0.011	15.926	0.056	9.561	18.648	2.657	1.514	99.91	HB11&12_L3_S2
505.2	51.331	51.649	0.023	15.906	0.058	9.662	18.562	2.665	1.474	99.68	HB11&12_L3_S2
605.2	51.448	51.559	0.004	16.066	0.069	9.603	18.518	2.690	1.492	99.89	HB11&12_L3_S1
705.2	51.598	51.432	0.026	16.002	0.063	9.770	18.594	2.638	1.475	100.17	HB11&12_L3_S1
805.2	51.665	51.605	0.010	15.862	0.074	9.669	18.631	2.642	1.508	100.06	HB11&12_L3_S1
905.2	51.714	51.835	-0.018	15.871	0.070	9.563	18.557	2.642	1.481	99.88	HB11&12_L3_S1
1005.2	51.573	51.459	0.025	15.919	0.067	9.682	18.702	2.640	1.506	100.11	HB11&12_L3_S1
1105.2	51.573	51.665	0.035	15.809	0.071	9.625	18.626	2.646	1.523	99.91	HB11&12_L3_S1
1205.2	51.665	51.734	0.028	15.822	0.050	9.629	18.571	2.669	1.497	99.93	HB11&12_L3_S1
1305.2	51.632	51.776	0.001	15.870	0.056	9.544	18.552	2.661	1.540	99.86	HB11&12_L3_S1
1405.2	51.888	51.526	0.019	15.969	0.062	9.594	18.618	2.696	1.516	100.36	HB11&12_L3_S1

Table C8.	Table C8. HB15&16A X (um) SiO2 SiO2* TiO2 Al2O3 FeO MaO CaO Na2O K2O Total Comment												
$X (\mu m)$	SiO2	SiO2*	TiO2	Al2O3	FeO	MgO	CaO	Na2O	K2O	Total	Comment		
-1404.7	50.303	50.575	1.548	15.636	0.060	9.634	20.470	0.931	1.147	99.73	HB15&16A_L1_S4		
-1364.7	50.330	50.690	1.502	15.433	0.088	9.732	20.461	0.930	1.164	99.64	HB15&16A_L1_S4		
-1284.7	50.456	50.714	1.515	15.489	0.074	9.489	20.632	0.932	1.155	99.74	HB15&16A_L1_S4		
-1244.7	50.325	50.708	1.527	15.450	0.069	9.552	20.603	0.928	1.164	99.62	HB15&16A_L1_S4		
-1204.7	50.453	50.748	1.545	15.582	0.004	9.537	20.476	0.948	1.160	99.71	HB15&16A_L1_S4		
-1164.7	50.396	50.652	1.560	15.468	0.058	9.566	20.578	0.955	1.163	99.74	HB15&16A_L1_S4		
-1124.7	50.332	50.735	1.532	15.532	0.045	9.590	20.453	0.972	1.141	99.60	HB15&16A_L1_S4		
-1084.7	50.261	50.591	1.516	15.481	0.042	9.607	20.642	0.956	1.165	99.67	HB15&16A_L1_S4		
-1044.7	50.344	50.931	1.480	15.367	0.060	9.586	20.447	0.964	1.164	99.41	HB15&16A_L1_S4		
-1004.7	50.360	50.912	1.473	15.351	0.039	9.664	20.443	0.959	1.159	99.45	HB15&16A_L1_S4		
-964.7	50.308	50.855	1.544	15.468	0.044	9.502	20.451	0.952	1.185	99.45	HB15&16A_L1_S4		
-924.7	50.464	50.746	1.562	15.501	0.034	9.643	20.383	0.985	1.147	99.72	HB15&16A_L1_S4		
-884.7	50.326	50.861	1.535	15.542	0.052	9.394	20.475	0.977	1.164	99.46	HB15&16A_L1_S4		
-844.7	50.205	50.673	1.572	15.557	0.085	9.472	20.494	0.983	1.163	99.53	HB15&16A_L1_S4		
-804.7	50.217	50.990	1.442	15.400	0.051	9.436	20.497	1.037	1.149	99.23	HB15&16A_L1_S4		
-764.7	50.292	50.815	1.546	15.489	0.025	9.513	20.459	1.012	1.142	99.48	HB15&16A_L1_S4		
-724.7	50.360	50.899	1.487	15.389	0.045	9.500	20.460	1.050	1.171	99.46	HB15&16A_L1_S4		
-684.7	50.196	50.993	1.407	15.432	0.078	9.452	20.395	1.089	1.154	99.20	HBI5&16A_L1_S4		
-644.7	50.219	50.932	1.481	15.395	0.046	9.440	20.448	1.098	1.160	99.29	HBI5&16A_LI_S4		
-604.7	50.218	50.993	1.524	15.366	0.043	9.367	20.429	1.147	1.130	99.22	HBI5&16A_L1_S4		
-564.7	50.294	50.813	1.526	15.363	0.056	9.494	20.431	1.140	1.178	99.48	HBI5&16A_LI_S4		
-524.7	50.247	50.804	1.532	15.346	0.035	9.486	20.451	1.172	1.176	99.44	HB15&16A_L1_S4		
-484./	50.059	50.847	1.523	15.353	0.071	9.460	20.357	1.22/	1.164	99.21	HB15&16A_L1_S4		
-444./	50.311	50.567	1.469	15.455	0.099	9.525	20.408	1.311	1.10/	99.74	HBIS& $16A_LI_S4$		
-424.7	50.213	50.470	1.500	15.4/2	0.032	9.511	20.525	1.310	1.1/5	99.74	$HB15 & 10A L1_{55}$		
-404.7	50.172	50.702	1.528	15.312	0.070	9.450	20.345	1.329	1.205	99.41	$HB15&10A_L1_S5$		
-364.7	30.120 40.080	50.618	1.430	15.301	0.034	9.550	20.449	1.333	1.141	99.31	$\frac{\text{IDI}3\alpha10A_\text{LI}_{33}}{\text{IDI}5\%16A_\text{LI}_{33}}$		
-304.7	49.980	50.024	1.408	15.410	0.043	9.503	20.305	1.420	1.102	99.30	$HB15&10A_L1_S5$		
-344.7	50.150	50.914	1.511	15.525	0.034	9.508	20.229	1.450	1.1/1	99.24	HB15&16A I I S3		
-324.7	50.072	50.809	1.322	15.259	0.041	9.510	20.225	1.430	1.190	99.51	$HB15&10A_{L1}S3$ $HB15&16A_{L1}S3$		
-284.7	50.072	50.754	1.437	15.578	0.054	9.407	20.107	1.515	1.105	00 72	HB15&16A_L1_S3		
-264.7	10 966	50.405	1.550	15 350	0.007	9.311	20.240	1.555	1.170	00.30	HB15&16A_L1_S3		
-204.7	50 126	50.071	1.555	15.555	0.070	9.344	20.177	1.572	1.200	00 20	HB15&16A_L1_S3		
-274.7	50.007	50 784	1.479	15 317	0.055	9 386	20.123	1.624	1.174	99.20	HB15&16A_L1_S3		
-204 7	50.007	50 940	1 451	15 291	0.085	9 392	19 969	1.688	1 1 8 4	99.14	HB15&16A_L1_S3		
-184 7	49 997	50 698	1 393	15 374	0.034	9 4 4 4	20 116	1 726	1 216	99 30	HB15&16A_L1_S3		
-164 7	50 111	50 750	1 471	15 373	0.057	9 467	19 880	1 786	1 217	99.36	HB15&16A_L1_S3		
-144.7	50.061	50.634	1.525	15.298	0.045	9.554	19.891	1.837	1.216	99.43	HB15&16A_L1_S3		
-124.7	50.130	50.704	1.454	15.405	0.015	9.529	19.762	1.924	1.207	99.43	HB15&16A_L1_S3		
-104.7	49,998	50.782	1.550	15.355	0.058	9.491	19.665	1.903	1.196	99.22	HB15&16A L1 S3		
-84.7	50.103	50.911	1.535	15.276	0.056	9.396	19.643	1.968	1.215	99.19	HB15&16A L1 S3		
-64.7	50.005	50.798	1.578	15.316	0.066	9.372	19.601	2.031	1.239	99.21	HB15&16A L1 S3		
-44.7	50.103	50.617	1.578	15.385	0.087	9.492	19.497	2.097	1.248	99.49	HB15&16A L1 S3		
-24.7	50.129	50.856	1.567	15.235	0.062	9.468	19.443	2.116	1.253	99.27	HB15&16A L1 S3		
-4.7	49.983	50.683	1.537	15.379	0.078	9.537	19.334	2.173	1.280	99.30	HB15&16A L1 S3		
15.3	50.129	50.922	1.510	15.331	0.078	9.454	19.198	2.209	1.300	99.21	HB15&16A L1 S3		
55.3	50.177	50.858	1.511	15.319	0.056	9.519	19.036	2.370	1.332	99.32	HB15&16A_L1_S3		
85.3	50.282	50.886	1.507	15.599	0.026	9.472	18.778	2.393	1.339	99.40	HB15&16A_L1_S2		
105.3	50.411	50.772	1.539	15.481	0.081	9.596	18.715	2.461	1.355	99.64	HB15&16A_L1_S2		
125.3	50.351	51.030	1.466	15.516	0.029	9.555	18.500	2.524	1.381	99.32	HB15&16A_L1_S2		
145.3	50.351	51.243	1.456	15.465	0.044	9.457	18.412	2.542	1.382	99.11	HB15&16A_L1_S2		
165.3	50.267	50.908	1.537	15.550	0.084	9.595	18.285	2.640	1.401	99.36	HB15&16A_L1_S2		
185.3	50.282	51.164	1.500	15.453	0.030	9.569	18.231	2.658	1.394	99.12	HB15&16A_L1_S2		
205.3	50.417	50.976	1.545	15.550	0.059	9.492	18.237	2.710	1.432	99.44	HB15&16A_L1_S2		
225.3	50.371	51.214	1.452	15.400	0.068	9.601	18.097	2.727	1.441	99.16	HB15&16A_L1_S2		
245.3	50.473	50.993	1.462	15.538	0.057	9.670	18.091	2.804	1.385	99.48	HB15&16A_L1_S2		
285.3	50.445	51.050	1.531	15.596	0.044	9.578	17.951	2.823	1.426	99.40	HB15&16A_L1_S2		
305.3	50.545	50.931	1.528	15.612	0.055	9.677	17.879	2.883	1.436	99.61	HB15&16A_L1_S2		
325.3	50.578	50.827	1.496	15.571	0.053	9.743	17.977	2.900	1.433	99.75	HB15&16A_L1_S2		
345.3	50.455	51.096	1.440	15.570	0.042	9.569	17.839	2.972	1.473	99.36	HB15&16A L1 S2		

385.3	50.511	50.743	1.536	15.623	0.052	9.684	17.869	3.032	1.462	99.77	HB15&16A_L1_S2
405.3	50.469	51.152	1.525	15.450	0.075	9.599	17.756	3.025	1.419	99.32	HB15&16A_L1_S2
425.3	50.417	50.687	1.510	15.638	0.070	9.761	17.825	3.060	1.451	99.73	HB15&16A L1 S2
445.3	50.455	51.100	1.507	15.463	0.085	9.629	17.653	3.126	1.438	99.36	HB15&16A L1 S2
465 3	50 397	50 959	1 4 9 0	15 559	0.085	9 527	17 801	3 171	1 407	99 44	HB15&16A_L1_S2
485.3	50.513	50.734	1 514	15 726	0.053	9 753	17.683	3 131	1 407	99.78	HB15&16A_L1_S2
505.3	50.268	50.754	1.514	15.720	0.035	0.651	17.620	3 151	1.407	00.20	HB15&16A_L1_S2
545.2	50.208	50.079	1.519	15.090	0.058	9.031	17.029	2 246	1.450	99.59 00.57	11D15&10A_L1_S1
545.5	50.450	50.000	1.521	15.595	0.007	9./13	17.755	3.240	1.433	99.37	пвізатоя_L1_S1
585.3	50.377	50.939	1.534	15.611	0.094	9.620	17.578	3.207	1.41/	99.44	HBI5&I6A_LI_SI
625.3	50.320	51.134	1.462	15.587	0.079	9.580	17.464	3.255	1.441	99.19	HB15&16A_L1_S1
665.3	50.353	50.807	1.487	15.650	0.073	9.615	17.615	3.287	1.466	99.55	HB15&16A_L1_S1
705.3	50.301	50.664	1.532	15.666	0.066	9.669	17.672	3.338	1.394	99.64	HB15&16A_L1_S1
745.3	50.278	50.517	1.425	15.705	0.097	9.817	17.689	3.331	1.419	99.76	HB15&16A_L1_S1
785.3	50.172	50.714	1.525	15.601	0.052	9.667	17.711	3.332	1.398	99.46	HB15&16A_L1_S1
825.3	50.221	50.517	1.590	15.598	0.077	9.787	17.718	3.322	1.393	99.70	HB15&16A L1 S1
865.3	50.008	50.790	1.515	15.536	0.042	9.666	17.688	3.387	1.375	99.22	HB15&16A L1 S1
905.3	50.123	50.693	1.495	15.491	0.060	9.774	17.653	3.410	1.423	99.43	HB15&16A_L1_S1
945.3	50.061	50 641	1 523	15 519	0.045	9 748	17 696	3 413	1 416	99.42	HB15&16A_L1_S1
985.3	50.001	50.326	1.525	15.647	0.075	9 779	17 782	3 447	1 389	99.77	HB15&16A_L1_S1
1025.3	50.070	50.320	1.555	15.047	0.073	9.750	17.702	3 386	1.307	00 75	HB15&16A_L1_S1
1025.5	50.075	50.570	1.517	15.700	0.075	0.750	17.747	2 424	1.411	00.51	11D15&10A_L1_S1
1005.5	50.075	50.507	1.514	15.505	0.056	9.752	17.700	3.434	1.411	99.51	HBISQIOA_LI_SI
1105.3	50.079	50.517	1.524	15.561	0.066	9.769	17.750	3.432	1.382	99.56	HBI5&16A_LI_SI
1145.3	49.942	50.327	1.577	15.707	0.067	9.767	17.726	3.431	1.397	99.62	HB15&16A_L1_S1
1185.3	50.121	50.441	1.502	15.668	0.066	9.757	17.723	3.432	1.413	99.68	HB15&16A_L1_S1
1225.3	50.078	50.755	1.519	15.599	0.082	9.620	17.566	3.458	1.402	99.32	HB15&16A_L1_S1
1265.3	49.995	50.240	1.505	15.700	0.046	9.813	17.858	3.451	1.388	99.76	HB15&16A_L1_S1
1345.3	50.112	50.361	1.525	15.782	0.045	9.731	17.654	3.512	1.391	99.75	HB15&16A L1 S1
1385.3	50.021	50.631	1.530	15.649	0.070	9.646	17.613	3.436	1.426	99.39	HB15&16A L1 S1
1425.3	49.924	50.721	1.460	15.566	0.076	9.637	17.652	3.455	1.433	99.20	HB15&16A L1 S1
1465 3	50 099	50 453	1 496	15 758	0.033	9 584	17 764	3 472	1 4 3 9	99.65	HB15&16A_L1_S1
1505.3	50.135	50.416	1.520	15.693	0.070	9 814	17.683	3 431	1.375	99.72	HB15&16A_L1_S1
-1/25.8	50.155	50.549	1.520	15.536	0.047	9.667	20.564	0.964	1.575	00 73	HB15&16A_L2_S4
1205 0	50.275	50.549	1.520	15.550	0.047	0.717	20.304	0.054	1.157	00.52	$\frac{11D15\&10A_{L2}_{S4}}{11D15\&16A_{L2}_{S4}}$
-1363.6	50.110	50.00	1.545	15.510	0.079	9./1/	20.431	0.934	1.150	99.52	$\frac{\text{ID15} \times 10\text{A} \text{L}2 \text{S4}}{\text{ID15} \times 10\text{A} \text{L}2 \text{S4}}$
-1345.8	50.529	50.692	1.504	15.412	0.070	9.540	20.622	0.949	1.152	99.04	HB15&16A_L2_S4
-1305.8	50.472	50.740	1.549	15.446	0.069	9.601	20.479	0.950	1.167	99.73	HB15&16A_L2_S4
-1265.8	50.322	50.767	1.478	15.393	0.071	9.659	20.524	0.943	1.165	99.56	HB15&16A_L2_S4
-1225.8	50.464	50.816	1.535	15.354	0.037	9.622	20.499	0.959	1.179	99.65	HB15&16A_L2_S4
-1185.8	50.429	50.798	1.449	15.511	0.031	9.590	20.522	0.934	1.166	99.63	HB15&16A_L2_S4
-1145.8	50.514	50.758	1.488	15.451	0.056	9.499	20.601	0.950	1.198	99.76	HB15&16A_L2_S4
-1105.8	50.561	50.729	1.515	15.520	0.044	9.545	20.514	0.968	1.165	99.83	HB15&16A L2 S4
-1065.8	50.281	50.911	1.521	15.393	0.054	9.484	20.507	0.955	1.177	99.37	HB15&16A L2 S4
-1025.8	50.515	50.810	1.509	15.540	0.012	9.489	20.523	0.954	1.162	99.70	HB15&16A L2 S4
-985.8	50.458	50.757	1.526	15.462	0.044	9.633	20.443	0.953	1.182	99.70	HB15&16A_L2_S4
-945.8	50 383	50 727	1 478	15 477	0.050	9 647	20 484	0.966	1 171	99.66	HB15&16A_L2_S4
-905.8	50 479	50 599	1.563	15 651	0.032	9 596	20.434	0.985	1 140	99.88	HB15&16A_L2_S4
-865.8	50.568	50.870	1.562	15 3/3	0.054	9.513	20.131	0.905	1 1/0	99.00	HB15&16A_L2_S1
-005.0	50.500	50.870	1.302	15.345	0.034	9.515	20.313	1.061	1.149	99.70 00.71	IID15&10A_L2_S4
-103.0	50.309	50 (02	1.40/	15.499	0.038	7.473	20.40/	1.001	1.1/0	77./1 00.05	$\frac{11015010A}{11015010A} = \frac{12}{50} = \frac{54}{50}$
-/45.8	50.641	50.692	1.333	15.549	0.023	9.54/	20.430	1.042	1.100	99.95	HB15&10A_L2_S4
-/05.8	50.545	50.680	1.452	15.609	0.029	9.611	20.403	1.061	1.156	99.8/	HB15&16A_L2_S4
-665.8	50.606	50.584	1.540	15.520	0.058	9.604	20.490	1.061	1.142	100.02	HB15&16A_L2_S4
-625.8	50.563	50.893	1.590	15.453	0.043	9.399	20.351	1.103	1.169	99.67	HB15&16A_L2_S4
-585.8	50.494	50.606	1.561	15.548	0.063	9.519	20.433	1.123	1.148	99.89	HB15&16A_L2_S4
-545.8	50.688	50.620	1.437	15.615	0.026	9.561	20.425	1.151	1.165	100.07	HB15&16A_L2_S4
-505.8	50.507	50.555	1.575	15.588	0.069	9.572	20.291	1.213	1.137	99.95	HB15&16A L2 S4
-465.8	50.410	50.514	1.526	15.697	0.055	9.391	20.385	1.260	1.171	99.90	HB15&16A L2 S4
-445.8	50.369	50.485	1.543	15.605	0.048	9.457	20.414	1.288	1.160	99.88	HB15&16A L2 S3
-425.8	50 409	50 623	1 534	15 415	0.040	9 4 5 9	20 405	1 338	1 186	99 79	HB15&16A L2 S3
-405.8	50 409	50 547	1 534	15 463	0.070	9 504	20.105	1 303	1 163	99.86	HB15&16A I 2 S3
_285.0	50.407	50.742	1 570	15 621	0.070	0 162	20.320	1 256	1 160	100.04	HB15&16A I 2 C2
-303.0	50 427	50.445	1.579	15.031	0.034	7.40Z	20.330	1.550	1.100	100.04	HD150-16A L2_00
-303.8	50.427	50.5/0	1.520	15.559	0.052	9.30/	20.332	1.445	1.1/1	100.00	HD15010A_L2_S3
-345.8	50.474	50.464	1.584	15.509	0.054	9.530	20.263	1.446	1.149	100.01	HB15&16A_L2_S3
-325.8	50.316	50.401	1.550	15.425	0.072	9.622	20.314	1.467	1.150	99.92	HB15&16A_L2_S3
-305.8	50.351	50.934	1.424	15.394	0.064	9.350	20.142	1.520	1.173	99.42	HB15&16A_L2_S3

-285.8	50.466	50.850	1.437	15.427	0.034	9.388	20.121	1.543	1.202	99.62	HB15&16A_L2_S3
-265.8	50.384	50.586	1.491	15.479	0.060	9.442	20.161	1.597	1.185	99.80	HB15&16A_L2_S3
-245.8	50.263	50.698	1.552	15.402	0.029	9.437	20.055	1.647	1.181	99.57	HB15&16A L2 S3
-225.8	50.356	50.381	1.489	15.584	0.037	9.545	20.087	1.689	1.189	99.98	HB15&16A L2 S3
-205.8	50 341	50 538	1 475	15 556	0.045	9 4 5 3	20.046	1 726	1 162	99 80	HB15&16A_L2_S3
-185.8	50.436	50.829	1 497	15 332	0.051	9 4 3 6	19 930	1 745	1 1 7 9	99.61	HB15&16A_L2_S3
-165.8	50.450	50.627	1.477	15.352	0.031	0.406	20.018	1.743	1.175	00.02	HB15&16A_L2_SS
-105.0	50.500	50.405	1.005	15.524	0.058	9.490	20.018	1.705	1.190	99.92	11D15&10A_L2_55
-145.8	50.303	50.508	1.500	15.334	0.007	9.508	19.747	1.643	1.224	99.94	HD15810A_L2_SS
-125.8	50.282	50.566	1.580	15.395	0.036	9.538	19.856	1.853	1.1//	99.72	HB15&16A_L2_S3
-105.8	50.439	50.353	1.582	15.463	0.052	9.645	19.784	1.912	1.210	100.09	HB15&16A_L2_S3
-85.8	50.371	50.631	1.570	15.390	0.061	9.621	19.522	1.975	1.231	99.74	HB15&16A_L2_S3
-65.8	50.406	50.798	1.494	15.410	0.059	9.634	19.373	2.007	1.226	99.61	HB15&16A_L2_S3
-45.8	50.387	50.747	1.443	15.432	0.052	9.603	19.344	2.145	1.234	99.64	HB15&16A_L2_S3
-25.8	50.265	50.696	1.454	15.422	0.100	9.555	19.373	2.137	1.262	99.57	HB15&16A_L2_S3
-5.8	50.410	50.636	1.516	15.497	0.072	9.577	19.258	2.186	1.257	99.77	HB15&16A L2 S3
14.2	50.373	50.734	1.508	15.456	0.095	9.599	19.130	2.195	1.284	99.64	HB15&16A L2 S3
34.2	50.299	50.802	1.608	15.478	0.049	9.505	18.987	2.276	1.296	99.50	HB15&16A_L2_S3
54.2	50 282	50.814	1 542	15 560	0.043	9 507	18 864	2 345	1 326	99.47	HB15&16A_L2_S3
88.2	50.202	50.635	1.536	15.678	0.039	9.657	18 704	2.5 10	1 3 2 7	99.81	HB15&164 I 2 S2
108	50.538	50.693	1.550	15.070	0.037	9.577	18 651	2.424	1.327	00.85	HB15&16A_L2_S2 HB15&16A_L2_S2
147.6	50.330	51.001	1.507	15.602	0.041	0.516	10.051	2.77	1.330	00.46	11D15&16A_L2_52
14/.0	50.400	50.017	1.327	15.005	0.030	9.540	10.337	2.327	1.363	99.40	HD15&10A_L2_S2
16/.4	50.561	50.917	1.440	15.622	0.06/	9.581	18.403	2.606	1.364	99.64	HB15&16A_L2_S2
187.1	50.556	50.749	1.549	15.721	0.062	9.621	18.300	2.637	1.361	99.81	HB15&16A_L2_S2
206.9	50.583	50.684	1.485	15.765	0.041	9.701	18.221	2.687	1.415	99.90	HB15&16A_L2_S2
226.7	50.592	51.233	1.495	15.579	0.034	9.515	17.985	2.781	1.379	99.36	HB15&16A_L2_S2
246.5	50.525	50.800	1.530	15.786	0.061	9.596	18.057	2.784	1.386	99.72	HB15&16A_L2_S2
266.3	50.528	50.906	1.519	15.651	0.048	9.734	17.909	2.842	1.390	99.62	HB15&16A L2 S2
286.1	50.570	50.878	1.481	15.706	0.065	9.640	17.969	2.835	1.426	99.69	HB15&16A L2 S2
305.9	50.428	51.032	1.552	15.636	0.052	9.564	17.863	2.867	1.436	99.40	HB15&16A L2 S2
325.7	50 670	50 833	1 574	15 698	0.092	9 662	17 828	2.922	1 392	99.84	HB15&16A_L2_S2
345.5	50 593	51.036	1 501	15 713	0.050	9.658	17 716	2 930	1 397	99.56	HB15&16A_L2_S2
365.3	50.575	50.969	1.001	15 7/1	0.050	9.656	17 706	2.950	1 / 30	99.50	HB15&16A_L2_S2
295	50.752	50.909	1.520	15.607	0.072	0.622	17.700	2.923	1.424	00.01	$\frac{11D15\&10A_{L2}_{S2}}{11D15\&16A_{L2}_{S2}}$
202	50.752	50.840	1.329	15.09/	0.030	9.022	17.823	2.997	1.454	99.91	$\frac{\text{ID15} \times 10\text{A} \text{L2} \text{S2}}{\text{ID15} \times 10\text{A} \text{L2} \text{S2}}$
404.8	50.689	50.775	1.48/	15.700	0.070	9.0/1	17.002	3.047	1.458	99.91	HB15&16A_L2_S2
424.6	50.605	50.970	1.523	15.650	0.049	9.547	17.803	3.059	1.399	99.64	HB15&16A_L2_S2
444.4	50.578	50.809	1.505	15.611	0.081	9.721	17.750	3.100	1.423	99.77	HB15&16A_L2_S2
464.2	50.604	50.687	1.554	15.735	0.076	9.663	17.716	3.131	1.438	99.92	HB15&16A_L2_S2
484.2	50.501	50.842	1.507	15.682	0.046	9.626	17.732	3.136	1.430	99.66	HB15&16A_L2_S1
524.2	50.580	50.641	1.528	15.679	0.048	9.693	17.846	3.144	1.421	99.94	HB15&16A_L2_S1
564.2	50.388	50.761	1.477	15.726	0.054	9.747	17.636	3.180	1.419	99.63	HB15&16A_L2_S1
604.2	50.723	50.691	1.552	15.677	0.074	9.738	17.613	3.234	1.421	100.03	HB15&16A L2 S1
644.2	50.481	50.633	1.491	15.783	0.071	9.671	17.644	3.288	1.420	99.85	HB15&16A L2 S1
684.2	50.439	50.672	1.494	15.554	0.043	9.742	17.763	3.328	1.405	99.77	HB15&16A L2 S1
724.2	50.364	50.817	1.492	15.605	0.067	9.635	17.646	3.334	1.405	99.55	HB15&16A_L2_S1
764.2	50 418	50 717	1 505	15 692	0.052	9 634	17 652	3 330	1 418	99 70	HB15&16A_L2_S1
804.2	50.311	50.728	1.553	15 508	0.092	9.650	17.675	3 3 8 5	1 409	99.58	HB15&164_L2_S1
8/1 2	50.258	50.720	1 509	15 599	0.072	0 701	17.654	3 202	1 /02	00 KN	HB15&16A I 2 S1
044.2	50.230	50.002	1.300	15.500	0.073	9.721	17.034	2 2 4 7	1.403	99.00	11D15&10A_L2_S1
884.2	50.343	50.891	1.492	15.5/1	0.042	9.594	17.070	3.347	1.393	99.45	HB15&16A_L2_S1
924.2	50.212	50.419	1.58/	15.672	0.060	9.774	17.728	3.375	1.385	99.79	HB15&16A_L2_S1
964.2	50.312	50.420	1.570	15.622	0.065	9.761	17.765	3.3/8	1.419	99.89	HB15&16A_L2_S1
1004.2	50.392	50.895	1.407	15.620	0.062	9.607	17.687	3.342	1.380	99.50	HB15&16A_L2_S1
1044.2	50.384	50.631	1.523	15.600	0.060	9.701	17.681	3.394	1.409	99.75	HB15&16A_L2_S1
1084.2	50.127	50.488	1.509	15.601	0.081	9.729	17.769	3.435	1.388	99.64	HB15&16A_L2_S1
1124.2	50.058	50.511	1.441	15.545	0.057	9.727	17.812	3.493	1.414	99.55	HB15&16A_L2_S1
1164.2	50.203	50.463	1.558	15.675	0.046	9.678	17.744	3.448	1.389	99.74	HB15&16A L2 S1
1204.2	50.070	50.388	1.533	15.621	0.075	9.687	17.831	3.494	1.372	99.68	HB15&16A L2 S1
1244.2	50,060	50,690	1.440	15.532	0.034	9,780	17.681	3.428	1.416	99.37	HB15&16A_L2_S1
1284.2	50.048	50 469	1 506	15 563	0.070	9 796	17 693	3 502	1 401	99 58	HB15&16A_L2_S1
1324.2	50.121	50.450	1.568	15.505	0.070	9.635	17 706	3 404	1 306	99.50	HB15&16A I 2 S1
1324.2	50.121	50.430	1.000	15.002	0.009	0.555	17.700	2.474	1.370	00 14	HD15&16A 12 01
1304.2	50.100	50.030	1.403	15.002	0.073	7.333	17.721	5.4/2 2.402	1.39/	77.40 00.60	$\frac{11013010A}{10A} L2 SI$
1404.2	50.190	50.495	1.486	15.6/0	0.064	9./10	1/.0/1	5.492	1.406	99.69 00.77	ПВ15&16A_L2_S1
1444.2	50.209	50.435	1.486	15.597	0.060	9.840	1/./34	5.449	1.399	99.77	HB15&16A_L2_S1
1484.2	50.268	50.638	1.524	15.567	0.056	9.628	17.679	3.518	1.391	99.63	HB15&16A_L2_S1

Table C9.	HB17&1	8A									
X (µm)	SiO2	SiO2*	TiO2	Al2O3	FeO	MgO	CaO	Na2O	K2O	Total	Comment
-1346.9	50.056	50.184	3.015	15.606	0.049	8.286	18.692	2.664	1.503	99.87	HB17&18_L1_S3
-1046.9	50.101	50.091	2.947	15.640	0.084	8.315	18.676	2.709	1.539	100.01	HB17&18_L1_S3
-946.9	49.949	50.382	2.852	15.572	0.018	8.342	18.607	2.705	1.523	99.57	HB17&18_L1_S3
-846.9	50.158	50.565	2.957	15.491	0.074	8.195	18.589	2.610	1.521	99.59	HB17&18_L1_S3
-746.9	50.121	50.243	3.074	15.763	0.038	8.188	18.473	2.672	1.550	99.88	HB17&18_L1_S3
-646.9	50.177	50.632	3.041	15.476	0.049	8.127	18.466	2.641	1.569	99.54	HB17&18_L1_S3
-546.9	50.226	50.536	2.892	15.550	0.035	8.237	18.567	2.630	1.553	99.69	HB17&18_L1_S2
-496.9	50.322	50.517	2.940	15.429	0.070	8.185	18.644	2.686	1.529	99.81	HB17&18_L1_S2
-446.9	50.209	50.528	2.939	15.567	0.074	8.206	18.537	2.627	1.521	99.68	HB17&18_L1_S2
-396.9	50.277	50.475	2.884	15.573	0.043	8.295	18.545	2.650	1.536	99.80	HB17&18_L1_S2
-346.9	50.328	50.204	2.957	15.547	0.057	8.304	18.687	2.681	1.565	100.12	HB17&18_L1_S2
-296.9	50.065	50.414	2.948	15.540	0.060	8.247	18.586	2.640	1.566	99.65	HB17&18_L1_S2
-246.9	50.043	50.347	2.791	15.566	0.063	8.563	18.543	2.592	1.535	99.70	HB17&18_L1_S2
-196.9	50.179	50.447	2.758	15.489	0.083	8.553	18.523	2.601	1.546	99.73	HB17&18_L1_S2
-146.9	50.152	50.332	2.662	15.532	0.047	8.792	18.608	2.521	1.506	99.82	HB17&18_L1_S2
-96.9	50.099	50.479	2.413	15.456	0.057	8.888	18.647	2.538	1.522	99.62	HB17&18_L1_S2
-46.9	50.222	50.028	1.938	15.687	0.047	9.490	18.736	2.557	1.518	100.19	HB17&18_L1_S2
3.1	50.433	50.414	1.419	15.784	0.063	9.671	18.666	2.500	1.483	100.02	HB17&18_L1_S2
53.1	50.561	50.516	0.990	15.743	0.067	9.946	18.743	2.502	1.493	100.05	HB17&18_L1_S2
103.1	50.745	50.355	0.585	16.070	0.068	10.099	18.852	2.502	1.469	100.39	HB17&18_L1_S2
153.1	50.751	50.339	0.237	15.945	0.041	10.667	18.887	2.452	1.432	100.41	HB17&18_L1_S2
203.1	50.789	50.233	0.157	16.020	0.045	10.807	18.836	2.434	1.469	100.56	HB17&18_L1_S2
253.1	50.882	50.309	0.072	15.895	0.078	10.914	18.927	2.418	1.389	100.57	HB17&18_L1_S2
303.1	50.682	50.629	0.028	15.761	0.049	10.932	18.737	2.422	1.443	100.05	HB17&18_L1_S2
353.1	50.731	50.251	0.011	15.840	0.068	11.1/9	18.835	2.389	1.428	100.48	HB1/&18_L1_S2
403.1	50.706	50.207	0.029	15.790	0.058	11.230	18.853	2.394	1.439	100.50	$HB1/@18_L1_S2$
455.1	50.090	50.300	0.012	15.858	0.042	11.043	18.88/	2.423	1.430	100.59	$HB1/@18_L1_52$
053.1	50.758	50.236	0.027	15.890	0.063	11.191	18./39	2.421	1.434	100.52	$HB1/\&18_L1_S1$
052.1	50.501	50.252	0.008	15.958	0.071	11.135	10./33	2.380	1.423	100.51	$HD17&18_L1_S1$
955.1	50.522	50.555	0.000	15.019	0.081	11.103	10.012	2.333	1.4/4	100.17	$HD17&18_L1_S1$
1153.1	50.224	50.107	0.021	16.004	0.059	11.194	18 851	2.404	1.447	100.47	HB17&18_L1_S1
1253.1	50.554	50.365	0.037	15 908	0.055	11.075	18 718	2.410	1.401	100.23	HB17&18_L1_S1
1253.1	50.642	50.367	0.023	15.908	0.001	10.078	18 730	2.423	1.424	100.20	HB17&18_L1_S1
-1363 5	50.042	50.273	2 953	15.577	0.071	8 252	18.757	2.585	1.404	100.28	HB17&18_L2_S3
-1263 5	50.202	50.654	2.955	15.025	0.037	8 180	18 591	2.020	1.501	99 72	HB17&18_L2_S3
-1163 5	50.102	50 192	3 019	15.765	0.037	8 178	18 642	2.653	1.501	99.91	HB17&18 L2 S3
-1063 5	50 110	50 335	2.870	15 738	0.061	8 146	18 671	2.660	1 519	99 77	HB17&18 L2 S3
-963.5	50.178	50.234	2.890	15.677	0.067	8.297	18.595	2.692	1.549	99.94	HB17&18 L2 S3
-863.5	50.082	50.530	2.943	15.501	0.059	8.199	18.619	2.643	1.506	99.55	HB17&18 L2 S3
-763.5	50.117	50.472	3.075	15.573	0.054	8.186	18.464	2.649	1.527	99.64	HB17&18 L2 S3
-563.5	50.162	50.273	2.923	15.698	0.070	8.208	18.660	2.659	1.510	99.89	HB17&18 L2 S2
-513.5	50.176	50.326	2.937	15.713	0.041	8.209	18.533	2.695	1.545	99.85	HB17&18 L2 S2
-463.5	50.008	50.585	2.911	15.538	0.069	8.252	18.419	2.680	1.546	99.42	HB17&18 L2 S2
-413.5	50.089	50.672	2.899	15.451	0.054	8.210	18.533	2.618	1.562	99.42	HB17&18 L2 S2
-363.5	50.001	50.423	2.992	15.702	0.054	8.173	18.519	2.600	1.538	99.58	HB17&18_L2_S2
-313.5	50.152	50.554	2.944	15.612	0.064	8.197	18.443	2.639	1.546	99.60	HB17&18_L2_S2
-263.5	50.264	50.400	2.849	15.695	0.051	8.315	18.520	2.608	1.562	99.86	HB17&18_L2_S2
-213.5	50.148	50.470	2.807	15.563	0.073	8.489	18.463	2.591	1.543	99.68	HB17&18_L2_S2
-163.5	49.997	50.234	2.726	15.672	0.055	8.692	18.524	2.564	1.534	99.76	HB17&18_L2_S2
-113.5	50.238	50.245	2.451	15.487	0.067	9.064	18.571	2.598	1.519	99.99	HB17&18_L2_S2
-63.5	50.277	50.084	2.171	15.641	0.058	9.210	18.733	2.578	1.524	100.19	HB17&18_L2_S2
-13.5	50.500	50.672	1.537	15.527	0.050	9.490	18.680	2.536	1.508	99.83	HB17&18_L2_S2
36.5	50.514	50.318	1.114	15.854	0.034	9.954	18.724	2.514	1.489	100.20	HB17&18_L2_S2
86.5	50.597	50.565	0.677	15.858	0.046	10.113	18.837	2.443	1.461	100.03	HB17&18_L2_S2
136.5	50.680	50.556	0.370	15.780	0.053	10.580	18.745	2.485	1.432	100.12	HB17&18_L2_S2
186.5	50.718	50.554	0.173	15.819	0.054	10.731	18.764	2.477	1.427	100.16	HB17&18_L2_S2
236.5	50.677	50.417	0.080	15.917	0.034	10.879	18.852	2.378	1.444	100.26	HB17&18_L2_S2
286.5	50.958	50.372	0.044	15.869	0.057	11.015	18.803	2.426	1.415	100.59	HB17&18_L2_S2
336.5	50.695	50.350	0.019	15.794	0.078	11.046	18.936	2.384	1.392	100.35	HB17&18_L2_S2
386.5	50.869	50.273	0.034	15.808	0.054	11.111	18.867	2.399	1.454	100.60	HB17&18_L2_S2

436.5	50.678	50.341	0.017	15.800	0.058	11.157	18.835	2.373	1.418	100.34	HB17&18_L2_S2
536.5	50.542	50.589	0.024	15.674	0.063	11.021	18.762	2.395	1.473	99.95	HB17&18_L2_S1
636.5	50.584	50.300	0.029	15.836	0.049	11.100	18.870	2.353	1.463	100.28	HB17&18_L2_S1
736.5	50.794	50.362	0.021	15.884	0.063	11.183	18.682	2.393	1.413	100.43	HB17&18_L2_S1
836.5	50.720	50.361	0.020	15.843	0.062	11.098	18.714	2.424	1.478	100.36	HB17&18_L2_S1
936.5	50.727	50.303	0.042	15.960	0.062	10.989	18.798	2.389	1.458	100.42	HB17&18_L2_S1
1036.5	50.603	50.219	-0.004	15.941	0.045	11.077	18.873	2.406	1.443	100.38	HB17&18_L2_S1
1136.5	50.608	50.496	0.018	15.755	0.057	11.039	18.785	2.395	1.454	100.11	HB17&18_L2_S1
1236.5	50.748	50.470	0.007	15.822	0.050	11.171	18.671	2.386	1.423	100.28	HB17&18_L2_S1
1336.5	50.635	50.512	-0.017	15.756	0.045	11.083	18.805	2.388	1.428	100.12	HB17&18_L2_S1
-1343.9	49.933	50.371	2.905	15.629	0.063	8.215	18.705	2.628	1.484	99.56	HB17&18_L3_S3
-1143.9	49.879	50.471	2.907	15.528	0.082	8.129	18.676	2.666	1.541	99.41	HB17&18_L3_S3
-843.9	49.920	50.415	2.905	15.638	0.073	8.190	18.595	2.641	1.543	99.50	HB17&18_L3_S3
-743.9	49.890	50.415	2.911	15.605	0.071	8.160	18.646	2.644	1.549	99.48	HB17&18_L3_S3
-543.9	49.965	50.289	2.923	15.661	0.069	8.133	18.681	2.669	1.575	99.68	HB17&18_L3_S2
-493.9	49.904	50.439	2.914	15.536	0.057	8.188	18.650	2.672	1.546	99.47	HB17&18_L3_S2
-443.9	50.008	50.424	3.004	15.590	0.060	8.197	18.532	2.620	1.572	99.58	HB17&18_L3_S2
-393.9	49.884	50.249	2.894	15.646	0.089	8.293	18.654	2.634	1.543	99.64	HB17&18_L3_S2
-343.9	50.145	50.263	2.960	15.575	0.059	8.282	18.694	2.613	1.554	99.88	HB17&18_L3_S2
-293.9	50.032	50.121	3.011	15.562	0.092	8.364	18.654	2.638	1.557	99.91	HB17&18_L3_S2
-243.9	49.911	50.368	2.888	15.580	0.057	8.293	18.648	2.637	1.529	99.54	HB17&18_L3_S2
-193.9	49.875	50.154	2.803	15.603	0.066	8.580	18.666	2.575	1.554	99.72	HB17&18_L3_S2
-143.9	49.981	50.270	2.552	15.595	0.069	8.761	18.617	2.612	1.524	99.71	HB17&18_L3_S2
-93.9	49.952	50.134	2.346	15.671	0.059	9.061	18.647	2.585	1.496	99.82	HB17&18_L3_S2
-43.9	50.121	50.392	1.953	15.597	0.053	9.324	18.677	2.548	1.455	99.73	HB17&18_L3_S2
6.1	50.292	50.370	1.370	15.787	0.061	9.635	18.764	2.534	1.478	99.92	HB17&18_L3_S2
56.1	50.470	50.272	0.953	15.944	0.053	9.996	18.788	2.504	1.490	100.20	HB17&18_L3_S2
106.1	50.513	50.641	0.565	15.904	0.062	10.150	18.733	2.487	1.458	99.87	HB17&18_L3_S2
156.1	50.638	50.714	0.288	15.836	0.042	10.426	18.767	2.491	1.436	99.92	HB17&18_L3_S2
206.1	50.855	50.436	0.135	15.918	0.042	10.722	18.898	2.417	1.432	100.42	HB17&18_L3_S2
256.1	50.790	50.405	0.088	15.897	0.026	10.815	18.885	2.457	1.428	100.38	HB17&18_L3_S2
306.1	50.826	50.454	0.020	15.918	0.079	10.889	18.777	2.427	1.438	100.37	HB17&18_L3_S2
356.1	50.661	50.445	0.009	15.842	0.055	11.043	18.746	2.436	1.425	100.22	HB17&18_L3_S2
406.1	50.786	50.365	0.019	15.848	0.028	11.073	18.820	2.408	1.440	100.42	HB17&18_L3_S2
456.1	50.627	50.345	0.007	15.759	0.062	11.122	18.797	2.440	1.468	100.28	HB17&18_L3_S2
556.1	50.721	50.260	0.024	15.933	0.060	11.143	18.678	2.433	1.470	100.46	HB17&18_L3_S1
656.1	50.612	50.234	-0.012	15.934	0.034	11.113	18.783	2.464	1.450	100.38	HB17&18_L3_S1
756.1	50.528	50.235	0.025	15.991	0.043	11.058	18.732	2.452	1.464	100.29	HB17&18_L3_S1
856.1	50.603	50.252	0.042	15.869	0.047	11.172	18.753	2.380	1.486	100.35	HB17&18_L3_S1
956.1	50.512	50.477	0.047	15.741	0.070	11.027	18.790	2.390	1.458	100.04	HB17&18_L3_S1
1056.1	50.580	50.205	0.049	15.848	0.089	11.093	18.841	2.427	1.449	100.37	HB17&18_L3_S1
1256.1	50.803	50.534	0.024	15.713	0.036	11.155	18.695	2.399	1.445	100.27	HB17&18_L3_S1

Table C10.	An&HB	4									
X (μm)	SiO2	SiO2*	TiO2	Al2O3	FeO	MgO	CaO	Na2O	K2O	Total	Comment
11.5	43.066	43.661	0.241	30.009	0.300	3.552	18.332	3.148	0.759	99.406	Glass L1 S1
16.5	43.287	44.143	0.273	29.695	0.285	3.655	18.239	2.996	0.715	99.145	Glass L1 S1
21.5	43.592	43.951	0.271	29.481	0.274	3.836	18.536	2.912	0.739	99.640	Glass L1 S1
26.5	43.614	44.343	0.299	29.273	0.253	3.892	18.357	2.823	0.760	99.272	Glass L1 S1
36.5	44.008	44.432	0.381	28.616	0.233	4.204	18.502	2.811	0.821	99.576	Glass L1 S1
41.5	44 351	44 627	0 4 3 4	28 225	0.216	4 4 3 9	18 429	2,754	0.876	99 724	Glass L1 S1
46.5	44 652	45 171	0.452	27 772	0.230	4 4 5 9	18 217	2.845	0.856	99 481	Glass L1 S1
51.5	44 810	45 500	0.464	27 142	0.232	4 640	18 416	2 765	0.842	99 310	Glass L1 S1
56.5	45 024	45 503	0.536	26.893	0.232	4 751	18 420	2.703	0.860	99 521	Glass L1 S1
61.5	45 286	45 788	0.557	26.075	0.231	4 943	18 363	2.001	0.000	99.321	Glass I 1 S1
66.5	45.200	46 042	0.557	25.916	0.251	5 011	18.505	2.771	0.920	00 776	Glass L1 S1
71.5	45 874	46 603	0.031	25.910	0.210	5 213	18 386	2.764	0.922	99 271	Glass I 1 S1
76.5	46 203	46 660	0.722	23.135	0.212	5 421	18 290	2.750	0.941	99 542	Glass I 1 S1
81.5	46.205	46.656	0.722	24.525	0.217	5 685	18 501	2.052	0.931	00 087	Glass I 1 S1
86.5	46.502	40.050	0.743	24.510	0.211	5 714	18.301	2.743	0.076	00 283	$Glass L1_{S1}$
01.5	40.392	47.500	0.017	23.704	0.207	5 996	10.447	2.747	0.970	99.205	$Class _ L1 _ S1$
91.5	47.125	47.301	0.912	25.550	0.216	5.000	10.311	2.772	0.962	99.344	$Class _ L1 _ S1$
109.0	47.905	40.300	1.010	21.009	0.230	6 909	10.400	2.712	1.017	99.557	$Class _ L1 _ S2$
119.0	40.432	40.030	1.075	20.728	0.237	0.808	10.304	2.004	1.040	99.394	$Class _ L1 _ S2$
129.0	40.370	49.144	1.100	20.095	0.100	7.075	10.300	2.094	1.033	99.434	Class L1 S2
139.0	48.737	49.303	1.313	19.303	0.137	7.500	18.703	2.708	1.050	99.434	$Glass_L1_S2$
149.0	48.974	49.008	1.295	10.014	0.201	7.033	10./30	2.578	1.041	99.303	$Glass_L1_S2$
159.0	49.292	49.813	1.30/	18.301	0.162	/.85/	18.808	2.504	1.069	99.4/9	$Glass_L1_S2$
109.0	49.482	49.304	1.420	17.957	0.175	8.204 8.202	19.025	2.025	1.049	99.978	$Glass_L1_S2$
1/9.0	49.339	50.200	1.427	17.433	0.119	0.223	10.939	2.555	1.070	99.134	$Glass_L1_S2$
189.0	49.578	50.042	1.405	1/.291	0.148	8.334	19.000	2.303	1.032	99.330	$Glass_L1_S2$
200.0	49.505	50.225	1.405	16.900	0.143	8.000	18.90/	2.557	1.080	99.342	$Glass_L1_S2$
209.0	49.320	30.243 40.051	1.495	10./33	0.134	0.004	18.933	2.324	1.090	99.277	$Glass_L1_S2$
219.0	49.405	49.951	1.588	10.095	0.138	9.005	18.912	2.550	1.095	99.455	$Glass_L1_S2$
229.0	49.440	50.330	1.550	10.300	0.129	9.089	18.9/1	2.491	1.089	99.110	$Glass_L1_S2$
239.0	49.541	50.245	1.4/8	10.412	0.141	9.208	18.892	2.550	1.095	99.297	$Glass_L1_S2$
249.0	49.200	50.134	1.324	16.233	0.140	9.237	19.062	2.483	1.098	99.134	$Glass_L1_S2$
239.0	49.340	30.249 40.000	1.545	16.194	0.123	9.239	18.931	2.303	1.155	99.291	$Glass_L1_S2$
209.0	49.559	49.990	1.318	16.230	0.109	9.480	10.9/0	2.339	1.135	99.570	$Glass_L1_S2$
279.0	49.574	30.091 40.776	1.498	16.293	0.110	9.457	10.910	2.515	1.129	99.285	$Glass_L1_S2$
289.0	49.323	49.770	1.556	16 200	0.104	9.017	19.071	2.331	1.101	99.749	Class L1 S2
299.0	49.343	49./1/	1.314	16.200	0.121	9.545	19.194	2.549	1.102	99.820	$Class _ L1 _ S2$
210.0	49.279	50.010	1.404	15.002	0.095	9.074	19.029	2.304	1.105	99.200	$Class _ L1 _ S2$
319.0	49.324	30.101 40.740	1.371	15.996	0.075	9.379	10.952	2.331	1.213	99.224	Class L1 S2
329.0	49.340	49.749	1.434	16 140	0.110	9.762	19.012	2.040	1.152	99.790	$Class_L1_S2$
339.0	49.497	49.897	1.307	16.149	0.091	9.700	10.033	2.015	1.209	99.000	$Glass_L1_S2$
349.0	49.427	49.795	1.002	16.041	0.100	9.810	10.014	2.392	1.242	99.034	Class L1 S2
309.0	49.321	49.712	1.541	16.033	0.009	9.704	19.023	2.005	1.210	99.809 00.574	Class I = S2
379.0	49.300	49.707	1.527	16.009	0.069	9.091	10.949	2.033	1.219	00 562	$Class _ L1 _ S2$
309.0	49.317	49.955	1.500	16 104	0.008	9.705	18.005	2.309	1.221	00 073	$Glass_L1_S2$
409.0	40 527	40.760	1.570	15 006	0.117	0.708	18 80/	2.078	1.241	00 760	$Glass L1_{S2}$
409.0	49.337	49.709	1.529	16.012	0.072	9.790	18 782	2.097	1.240	00 363	$Glass_L1_S2$
419.0	49.200	49.923	1.510	16.012	0.074	9.802	18.762	2.001	1.232	99.303 00.076	Class I = S2
429.0	49.330	49.500	1.493	15 080	0.007	9.700	18.775	2.750	1.230	00 248	$Glass_L1_S2$
439.0	49.237	49.909	1.515	16.041	0.070	9.750	10.723	2.092	1.273	99.240 00.570	Class L1 S2
449.0	49.323	49.733	1.512	15.052	0.084	9.024	10.010	2.722	1.255	99.370	Class L1 S2
439.0	49.200	49.923	1.323	16.027	0.072	0.040	10.731	2.091	1.257	00 669	Class L1 S2
409.0	49.330	49.882	1.470	16.037	0.075	9.828	10./30	2.724	1.233	99.008	$Glass_L1_S2$
479.0	49.512	49.734	1.300	16.020	0.087	9.795	10.045	2.720	1.295	99.377	Class L1 S2
489.0	49.332	49.015	1.445	16.010	0.100	9.945	10.094	2.725	1.207	99.939	Class L1 S2
499.0 500.0	47.430	47.403	1.240	16.039	0.071	7.0// 0.727	10.090	2.10J	1.2/1	77.70/ 00 156	$Glass _ L1 _ S2$
510.0	47.328 10 512	47.0/J 10 002	1.489	10.070	0.0/3	9.131	10.//4	2./10	1.208	77.430 00 617	$Glass_L1_S2$
519.0	49.313	47.090	1.218	15.9/2	0.001	9./91	10.004	2.080	1.248	77.01/ 00.672	$Class _ L1 _ S2$
529.0	49.342	49.009	1.481	10.031	0.082	9.829	10.902	2.123	1.282	77.0/3	Glass_L1_S2
539.0	49.328	49.320	1.480	10.118	0.089	9.921	10.003	2.138 2.756	1.298	99.802 00.000	Glass_L1_S2
549.0	49.024	49.023	1.491	10.151	0.092	9.780	10.030	2./30	1.290	77.777 00 714	Glass_L1_S2
5/3.0	47.340	49.020	1.400	10.005	0.070	9.912	10.840	2./01	1.201	99./14	Glass_L1 53

593.0	49.309	49.646	1.522	16.043	0.051	9.918	18.804	2.762	1.255	99.663	Glass_L1_S3
613.0	49.276	49.690	1.482	15.980	0.061	9.957	18.793	2.789	1.248	99.586	Glass_L1_S3
633.0	49.350	49.654	1.518	15.967	0.075	9.788	18.868	2.823	1.307	99.695	Glass_L1_S3
653.0	49.474	49.572	1.538	15.977	0.065	9.827	18.911	2.827	1.283	99.902	Glass_L1_S3
673.0	49.121	49.657	1.634	16.025	0.058	9.782	18.750	2.833	1.262	99.465	Glass_L1_S3
693.0	49.466	49.815	1.470	16.116	0.063	9.643	18.770	2.844	1.279	99.651	Glass L1 S3
713.0	49.268	49.630	1.592	16.059	0.082	9.780	18.775	2.802	1.280	99.638	Glass L1 S3
733.0	49.265	49.630	1.566	15.985	0.058	9.799	18.865	2.853	1.243	99.635	Glass L1 S3
753.0	49.487	49.502	1.566	16.140	0.042	9.852	18.775	2.833	1.289	99.986	Glass L1 S3
773.0	49.159	49.579	1.529	16.053	0.077	9.871	18.810	2.793	1.289	99.580	Glass L1 S3
793.0	49 269	49 668	1 468	15 896	0.078	9 960	18 752	2.878	1 299	99 601	Glass L1 S3
813.0	49 346	49 594	1 519	16 037	0.085	9 823	18 782	2.879	1 282	99 752	Glass L1 S3
833.0	49 359	49 792	1 538	16 003	0.047	9 804	18 670	2.862	1 285	99 568	Glass L1 S3
853.0	49 231	49 507	1 535	16 110	0.074	9 884	18 795	2.808	1 287	99 724	Glass L1 S3
873.0	49 250	49 589	1 500	16.033	0.067	9 746	18 930	2.832	1 304	99.662	Glass L1 S3
893.0	49 269	49 385	1.500	16.098	0.074	9 893	18 794	2.887	1 296	99.884	Glass L1 S3
913.0	49 463	49 535	1.575	16.048	0.085	9.803	18 860	2.007	1.273	99 979	Glass L1 S3
033.0	10 330	49.555	1.551	16.050	0.061	9.805	18 035	2.044	1.275	00 701	Glass L1 S3
953.0	10 303	49.555	1.540	15 008	0.001	9.700	18 803	2.045	1 207	00 627	Glass L1 S3
973.0	49.303	49.070	1.340	15.092	0.073	0 781	18 803	2.804	1.277	99.627	Glass L1 S3
003.0	40 203	40.755	1 / 2 2	16.005	0.073	0.784	18 810	2.074	1.202	00 520	Glass L1 S3
1033.0	49.293	49.733	1.455	16 103	0.072	9.704	18.610	2.852	1.309	99.559	Glass_L1_S3
1055.0	49.257	49./3/	1.440	16.105	0.062	9.791	18.007	2.092	1.201	99.300	Class L1 S2
1033.0	49.232	49.872	1.448	16.049	0.003	9.082	18.702	2.872	1.310	99.380	$Glass_L1_S3$
10/5.0	49.197	49.382	1.542	16.140	0.072	9.8/4	10.///	2.918	1.290	99.814	$Glass_L1_S3$
1093.0	49.370	49.820	1.550	16.029	0.073	9.044	10.713	2.8/8	1.28/	99.545	Glass_L1_S3
1113.0	49.211	49.093	1.5/1	16.008	0.072	9.057	18.828	2.894	1.278	99.518	Glass_L1_S3
1153.0	49.311	49.651	1.519	16.032	0.064	9./33	18./94	2.901	1.285	99.660	Glass_L1_S3
1153.0	49.084	49.833	1.515	16.020	0.074	9.737	18.641	2.879	1.300	99.251	Glass_L1_S3
11/3.0	49.124	49.608	1.508	16.080	0.061	9.831	18.785	2.857	1.270	99.516	Glass_L1_S3
1213.0	49.148	49.696	1.541	15.999	0.072	9.811	18./16	2.8/3	1.293	99.453	Glass_L1_S4
1253.0	49.243	49.868	1.522	15.868	0.043	9.850	18.68/	2.84/	1.316	99.375	Glass_L1_S4
1293.0	49.019	49.819	1.521	16.049	0.070	9.750	18.6/3	2.848	1.2/1	99.200	Glass_L1_S4
1333.0	49.324	49.559	1.4/0	16.048	0.049	9.882	18.881	2.8/1	1.240	99.764	Glass_L1_S4
13/3.0	49.114	49.410	1.494	16.02/	0.080	9.855	18.901	2.938	1.294	99./04	Glass_L1_S4
1413.0	49.086	49.624	1.490	15.915	0.066	9.908	18.854	2.853	1.291	99.462	Glass_L1_S4
1453.0	49.300	49.745	1.507	15.993	0.071	9.//4	18./58	2.86/	1.286	99.555	Glass_L1_S4
1493.0	49.065	49.908	1.502	16.030	0.070	9.620	18./23	2.856	1.292	99.15/	Glass_L1_S4
1533.0	49.218	49.494	1.514	16.024	0.079	9.804	18.910	2.880	1.297	99.724	Glass_L1_S4
15/3.0	49.131	49./99	1.4/4	16.073	0.089	9.636	18./82	2.8/3	1.2/4	99.332	Glass_L1_S4
1613.0	49.027	49.804	1.516	15.939	0.061	9.742	18.805	2.872	1.262	99.223	Glass_L1_S4
1653.0	49.294	49.762	1.562	16.073	0.071	9.660	18./42	2.868	1.262	99.532	Glass_L1_S4
1693.0	49.257	49.433	1.495	16.085	0.055	9.955	18.834	2.863	1.281	99.824	Glass_L1_S4
1/33.0	49.0/1	49.665	1.494	16.027	0.081	9.//1	18.853	2.856	1.253	99.406	Glass_L1_S4
1//3.0	49.060	49.602	1.519	15.9//	0.076	9.8/5	18.//3	2.892	1.28/	99.458	Glass_L1_S4
1813.0	49.165	49.620	1.545	15.997	0.072	9.783	18.810	2.883	1.291	99.545	Glass_L1_S4
1853.0	48.943	49.894	1.484	15.917	0.100	9.788	18.713	2.833	1.272	99.049	Glass_L1_S4
1893.0	49.037	49.572	1.553	16.040	0.066	9.761	18.780	2.926	1.302	99.465	Glass_L1_S4
1933.0	48.924	49.673	1.582	15.999	0.100	9.698	18.812	2.841	1.295	99.252	Glass_L1_S4
19/3.0	49.010	49.445	1.491	16.055	0.072	10.010	18.801	2.867	1.260	99.565	Glass_L1_S4
20.0	43.157	43.850	0.263	29.761	0.276	3.722	18.426	2.973	0.729	99.307	Glass_L2_S1
25.0	43.113	44.106	0.275	29.446	0.264	3.824	18.505	2.831	0.750	99.007	Glass_L2_S1
30.0	43.312	44.419	0.295	29.093	0.256	3.904	18.511	2.747	0.777	98.893	Glass_L2_S1
35.0	43.490	44.668	0.330	28.757	0.236	4.009	18.411	2.796	0.794	98.822	Glass_L2_S1
40.0	44.072	44.732	0.379	28.406	0.238	4.158	18.503	2.769	0.816	99.340	Glass_L2_S1
45.0	44.143	44.953	0.381	28.023	0.249	4.375	18.450	2.725	0.846	99.190	Glass_L2_S1
50.0	44.278	45.440	0.432	27.456	0.270	4.427	18.364	2.743	0.868	98.838	Glass_L2_S1
60.0	44.785	45.846	0.601	26.419	0.199	4.763	18.500	2.792	0.881	98.939	Glass_L2_S1
70.0	45.268	46.347	0.637	25.570	0.220	5.143	18.433	2.753	0.898	98.921	Glass_L2_S1
75.0	45.594	46.703	0.715	24.962	0.246	5.281	18.415	2.747	0.931	98.891	Glass_L2_S1
90.0	46.379	47.466	0.860	23.621	0.197	5.727	18.413	2.723	0.994	98.912	Glass_L2_S1
95.0	46.702	47.716	0.931	23.058	0.221	5.849	18.516	2.736	0.973	98.986	Glass_L2_S1
100.0	46.943	48.056	0.978	22.475	0.172	6.120	18.477	2.727	0.997	98.887	Glass_L2_S1
110.0	47.391	48.533	1.038	21.591	0.199	6.453	18.570	2.635	0.981	98.858	Glass_L2_S1

140.0	48.878	49.364	1.374	19.285	0.149	7.542	18.617	2.658	1.012	99.514	Glass_L2_S2
155.0	49.172	49.672	1.352	18.551	0.158	7.930	18.704	2.603	1.031	99.501	Glass_L2_S2
170.0	49.200	49.667	1.407	17.826	0.145	8.374	18.996	2.529	1.056	99.533	Glass_L2_S2
185.0	49.434	49.761	1.521	17.438	0.157	8.651	18.887	2.542	1.043	99.674	Glass_L2_S2
200.0	49.698	49.830	1.452	17.041	0.139	8.974	18.991	2.536	1.038	99.869	Glass L2 S2
215.0	49.643	49.935	1.476	16.795	0.125	8.952	19.137	2.510	1.070	99.709	Glass L2 S2
230.0	49.516	50.060	1.587	16.536	0.115	9.197	18.960	2.456	1.089	99.456	Glass L2 S2
245.0	49.299	50.160	1.529	16.439	0.107	9.219	18.997	2.452	1.096	99.139	Glass L2 S2
260.0	49.441	50.005	1.549	16.349	0.106	9.341	18,996	2.543	1.111	99.436	Glass L2 S2
275.0	49 273	49 912	1 515	16 296	0 147	9 553	18 919	2.535	1 1 2 4	99 362	Glass L2 S2
290.0	49 313	49.812	1 568	16 275	0.095	9.607	19.002	2 518	1 1 2 3	99 501	Glass L2 S2
305.0	49 291	49.816	1.560	16 236	0.095	9 560	19.052	2 533	1 1 4 5	99 476	Glass L2 S2
320.0	49 456	49 801	1.300	16 212	0.118	9 737	19.020	2.555	1 1 1 5	99.655	Glass L2 S2
335.0	49 219	49 604	1.623	16.085	0.077	9 758	19.020	2.511	1 202	99.615	Glass L2 S2
350.0	10.219	19.001	1 /00	16 146	0.121	9.750	18 8/15	2.572	1 1 0 5	00 37/	Glass L 2 S 2
365.0	49.240	10 660	1.477	16 131	0.121	9.710	18 0/0	2.011	1.175	00 771	$Glass L2_{S2}$
280.0	49.440	49.009	1.323	16 125	0.104	9.040	10.949	2.570	1.207	00 454	$Glass_L2_S2$
205.0	49.101	49.707	1.445	16 211	0.090	9.900	10.945	2.379	1.200	99.434	$Class L2_{S2}$
393.0 410.0	49.214	49.373	1.590	15.020	0.104	9.822	10.007	2.022	1.203	99.039	$Class L2_{S2}$
410.0	49.000	49.701	1.525	16.009	0.067	9.000	10.007	2.040	1.221	99.299	$Class L2_{S2}$
425.0	49.292	49.704	1.524	16.026	0.007	9.602	10.090	2.000	1.250	99.520	$Class L2_{S2}$
440.0	49.090	49.041	1.500	16.103	0.070	9.919	18.80/	2.043	1.252	99.449	$Glass_L2_S2$
4/0.0	49.290	49.724	1.450	16.081	0.048	9.775	18.978	2.08/	1.251	99.572	$Glass_L2_S3$
500.0	49.280	49.598	1.592	16.031	0.066	9.900	18.852	2.698	1.263	99.682	Glass_L2_S3
530.0	49.290	49.63/	1.500	16.069	0.139	9.816	18.803	2.723	1.248	99.653	Glass_L2_S3
500.0	49.410	49.308	1.401	10.1/9	0.101	9.915	10.047	2.810	1.270	100.042	$Glass_L2_S3$
590.0	49.234	49.511	1.520	16.084	0.072	9.934	18.84/	2.778	1.249	99.724	$Glass_L2_S3$
620.0	49.290	49.545	1.488	16.111	0.056	9.953	18./54	2.814	1.279	99.745	Glass_L2_S3
650.0	49.388	49.508	1.518	16.135	0.083	9.888	18.836	2.766	1.26/	99.880	Glass_L2_S3
680.0 710.0	49.139	49.783	1.552	16.001	0.070	9.//1	18./00	2.795	1.201	99.350	Glass_L2_S3
/10.0	49.170	49.759	1.458	16.055	0.067	9.757	18.806	2.818	1.279	99.411	Glass_L2_S3
740.0	49.071	49.707	1.540	15.928	0.062	9.703	18.84/	2.840	1.240	99.303	$Glass_L2_S3$
//0.0 800.0	49.279	49.745	1.401	16.039	0.037	9.707	10./09	2.014	1.270	99.550	$Class L2_{S3}$
820.0	49.237	49.301	1.494	10.072	0.075	9.882	10.030	2.880	1.241	99.730	$Class L2_S3$
850.0	49.033	49.920	1.300	15.709	0.051	9.000	10.730	2.079	1.300	99.100	$Class L2_{S3}$
800.0	49.121	49.049	1.470	15.900	0.000	9.001	10.779	2.092	1.310	99.472	$Glass_L2_S3$
020.0	49.105	49.000	1.510	15.951	0.075	9.830	10.704	2.097	1.239	99.495	$Glass_L2_S3$
920.0	49.290	49.505	1.592	15.001	0.105	9.047	10.000	2.920	1.294	99.995	$Glass_L2_S3$
930.0	49.244	49.302	1.335	15.949	0.070	9.095	10.0/2	2.902	1.275	99.742	$Class L2_{S3}$
980.0	49.220	49.020	1.495	15.079	0.064	9.732	18.705	2.930	1.209	99.400	$Glass_L2_S3$
1010.0	49.138	49.704	1.546	15.979	0.005	9.744	18.700	2.884	1.210	99.394	$Class L2_{S3}$
1040.0	49.240	49.301	1.511	10.05/	0.030	9.890	18.793	2.872	1.332	99.740	$Glass_L2_S3$
10/0.0	49.183	49.883	1.329	15.060	0.120	9.731	18.705	2.004	1.238	99.299	$Glass_L2_S3$
1120.0	49.089	49.780	1.4/1	15.909	0.009	9.112	18.720	2.905	1.310	99.309	$Glass_L2_S3$
1150.0	49.005	49.072	1.520	15.901	0.005	9.070	10./09	2.902	1.275	99.131	$Class L2_{S3}$
1100.0	49.332	49.927	1.542	15.025	0.002	9.803	10./04	2.007	1.209	99.400	$Glass_L2_S3$
1220.0	49.194	49.030	1.343	15.950	0.000	9.775	10.00/	2.004	1.275	99.550	$Class L2_{S3}$
1220.0	49.271	49.000	1.465	15.957	0.039	9.844	10.95/	2.800	1.273	99.072	$Glass_L2_S3$
1250.0	48.985	49.812	1.54/	15.909	0.062	9.814	18./19	2.803	1.2/4	99.175	$Glass_L2_S3$
1280.0	49.075	49.889	1.528	15.803	0.079	9.814	18.721	2.839	1.208	99.184	$Glass_L2_S3$
1310.0	48.905	49.951	1.531	15.790	0.08/	9./30	18.772	2.844	1.284	99.014	$Glass_L2_S3$
1340.0	48.911	49.740	1.532	15.931	0.073	9.807	18./30	2.902	1.286	99.171	Glass_L2_S3
13/0.0	48.946	49./9/	1.012	15.881	0.071	9.755	18./65	2.851	1.205	99.149	$Glass_L2_S3$
1400.0	48.9/1	49.810	1.551	15.924	0.0/1	9.729	18./40	2.887	1.289	99.161	Glass_L2_S3
1450.0	48.985	49.528	1.4/6	15.915	0.065	9.989	18.851	2.91/	1.280	99.450 00.227	$Glass_L2_S3$
1460.0	48.996	49./59	1.620	15.85/	0.079	9./8/	18./20	2.886	1.292	99.23/	Glass_L2_S3
1490.0	48.935	49.995	1.4/9	15.804	0.073	9.000	18.80/	2.844	1.283	98.938	$Glass_L2_S3$
1520.0	49.080	49.419	1.609	15.99/	0.069	9.902	18./95	2.919	1.294	99.661	$Glass_L2_S3$
1550.0	49.368	49.600	1.518	15.945	0.061	9.829	18.854	2.898	1.296	99.768 08.050	$Glass_L2_S3$
1580.0	48.955	49.996	1.436	15.925	0.056	9./11	18./49	2.861	1.265	98.959	$Glass_L2_S3$
1010.0	48.94/	49./30	1.502	15.9/2	0.071	9./44	18.812	2.862	1.285	99.191	$Glass_L2_S3$
1670.0	48.90/	49./10	1.596	15.910	0.090	9./80	18./30	2.8/8	1.209	99.23/	$Glass_L2_S3$
10/0.0	49.18/	49./19	1.303	15.019	0.070	7./41 0.705	10.910	2.0/3	1.281	99.408	$Class L2_{S3}$
1/00.0	47.08/	49.902	1.4/0	13.918	0.044	9.703	10.020	2.90/	1.227	77.100	Olass_L2_33

1730.0	49.051	49.968	1.482	15.757	0.068	9.818	18.798	2.864	1.246	99.083	Glass_L2_S3
1760.0	48.936	49.709	1.486	15.879	0.080	9.860	18.826	2.895	1.265	99.227	Glass_L2_S3
1790.0	48.753	49.651	1.561	15.864	0.074	9.858	18.863	2.842	1.288	99.102	Glass_L2_S3
1820.0	48.875	49.802	1.541	15.854	0.083	9.712	18.868	2.883	1.257	99.073	Glass_L2_S3
1850.0	48.748	49.920	1.505	15.864	0.071	9.741	18.746	2.884	1.268	98.828	Glass_L2_S3
1880.0	48.745	49.750	1.564	15.824	0.093	9.853	18.714	2.927	1.275	98.995	Glass_L2_S3
1910.0	48.933	49.741	1.562	15.650	0.093	9.916	18.901	2.839	1.299	99.192	Glass L2 S3
1940.0	48.861	49.959	1.620	15.781	0.064	9.705	18.698	2.900	1.273	98.902	Glass L2 S3
1970.0	48.858	49.956	1.516	15.801	0.069	9.726	18.837	2.831	1.263	98.902	Glass L2 S3
12.5	42.862	43.735	0.222	30.063	0.276	3.444	18.401	3.111	0.748	99.127	Glass L3 S1
17.5	42,902	44 002	0 269	29 788	0.282	3 607	18 327	2,967	0 7 5 9	98 900	Glass L3 S1
22.5	43 563	44 223	0.255	29 476	0.235	3 766	18 372	2.928	0 746	99 340	Glass L3 S1
27.5	43 571	44 047	0.282	29 413	0.238	3 861	18 543	2.835	0 781	99 523	Glass L3 S1
32.5	43 743	44 495	0.331	28 898	0.228	3 954	18 464	2.845	0.785	99 247	Glass L3 S1
37.5	43 786	44 600	0.209	28.542	0.209	4 152	18 470	2.015	0.833	99.187	Glass I 3 S1
12.5	43.700	45 130	0.405	28.000	0.209	1 3/1	18 270	2.703	0.816	08 880	Glass L3 S1
42.5	44.250	43.150	0.475	20.000	0.220	4.75	10.277	2.700	0.810	00 204	Class L2 S1
47.5	44.550	44.950	0.475	27.720	0.234	4.475	10.433	2.029	0.850	99.394	Class L3 S1
52.5	44.092	45.502	0.524	27.203	0.214	4.020	10.430	2.707	0.833	99.330	$Class L_2 S_1$
57.5	44.///	45.020	0.008	20.009	0.234	4.800	10.301	2.833	0.872	99.130	$Class L_2 S_1$
02.5	45.134	45.809	0.596	20.200	0.226	4.930	18.44/	2.802	0.924	99.323	$Glass_L3_S1$
67.5	45.365	46.38/	0.653	25.6//	0.205	5.064	18.328	2.766	0.921	98.978	Glass_L3_SI
/2.5	45.843	46.604	0.670	25.182	0.206	5.241	18.363	2.797	0.938	99.239	Glass_L3_S1
77.5	46.007	46.714	0.728	24.780	0.200	5.431	18.419	2.790	0.939	99.293	Glass_L3_S1
82.5	46.342	46.987	0.839	24.186	0.196	5.578	18.546	2.709	0.961	99.355	Glass_L3_S1
101.0	47.186	48.336	0.965	22.259	0.172	6.207	18.392	2.710	0.959	98.850	Glass_L3_S2
116.0	47.893	48.726	1.079	20.926	0.164	6.807	18.567	2.709	1.022	99.167	Glass_L3_S2
131.0	48.180	49.202	1.235	19.859	0.182	7.163	18.660	2.653	1.047	98.977	Glass_L3_S2
146.0	48.796	49.373	1.302	18.921	0.182	7.737	18.824	2.595	1.067	99.423	Glass_L3_S2
161.0	48.916	49.725	1.415	18.094	0.207	8.056	18.854	2.610	1.040	99.192	Glass_L3_S2
176.0	48.868	49.874	1.398	17.563	0.138	8.463	18.924	2.559	1.080	98.993	Glass_L3_S2
191.0	49.122	49.877	1.418	17.160	0.149	8.765	19.085	2.512	1.034	99.245	Glass_L3_S2
206.0	49.131	49.911	1.536	16.815	0.123	8.997	18.961	2.582	1.075	99.220	Glass_L3_S2
221.0	49.159	50.248	1.502	16.556	0.147	9.030	18.912	2.522	1.084	98.911	Glass L3 S2
236.0	49.225	50.172	1.555	16.403	0.165	9.122	18.971	2.506	1.105	99.053	Glass L3 S2
251.0	49.223	49.935	1.528	16.345	0.112	9.405	19.026	2.518	1.129	99.288	Glass L3 S2
266.0	49.073	50.209	1.494	16.159	0.085	9.495	18.896	2.537	1.125	98.864	Glass L3 S2
281.0	49.292	49.823	1.478	16.161	0.139	9.673	18.957	2.614	1.155	99.469	Glass L3 S2
296.0	49.178	50.039	1.591	16.013	0.118	9.567	18.946	2.576	1.149	99.139	Glass L3 S2
311.0	49.109	50.152	1.466	15.971	0.104	9.721	18.891	2.513	1.182	98.957	Glass L3 S2
326.0	49.207	49.897	1.495	16.125	0.116	9.705	18,906	2.557	1.199	99.309	Glass L3 S2
341.0	48 995	49 687	1 575	16 118	0.065	9 778	18 969	2.585	1 2 2 4	99 308	Glass L3 S2
356.0	49 221	49 574	1 599	16 097	0.067	9 871	19 006	2.607	1 180	99 648	Glass L3 S2
371.0	48 945	50.018	1 475	15 993	0.083	9 727	18 859	2 600	1 246	98 928	Glass L3 S2
386.0	48 975	49 891	1.520	15 924	0.084	9 907	18.834	2.620	1.210	99.083	Glass L3 S2
401.0	49 140	49 603	1.520	16.040	0.087	9.907	18 931	2.620	1 229	99.538	Glass I 3 S2
416.0	48 984	49.005	1.300	16.019	0.057	9 751	18 884	2.032	1.229	99.008	Glass I 3 S2
431.0	10 223	10 188	1.450	16 142	0.054	9.751	18 027	2.023	1.24)	99.000	Glass L3 S2
431.0	49.223	49.400	1.549	16.033	0.054	9.940	18 806	2.038	1.256	00 3/2	$Class L3_{S2}$
440.0	49.141	49.790	1.500	15 003	0.004	9.770	18.800	2.707	1.230	99.342 00.10 <i>1</i>	$Class L3_{S2}$
401.0	40.950	49.730	1.555	15.995	0.009	9.071	10./0/	2.093	1.273	99.194	Class L3 S2
4/0.0	49.323	49.740	1.501	16.035	0.034	9.700	10.931	2.090	1.204	99.577	$Class L_2 S_2$
491.0	49.182	49.000	1.034	10.010	0.000	9.894	18./81	2.694	1.200	99.527	$Glass_L_3_S_2$
506.0	49.063	49.603	1.553	16.091	0.078	9.783	18.936	2.707	1.249	99.460	Glass_L3_S2
521.0	49.097	49.795	1.492	16.065	0.101	9.744	18.//5	2.730	1.29/	99.302	Glass_L3_S2
536.0	48.946	49.753	1.482	16.030	0.0/4	9.767	18.889	2.724	1.281	99.193	$Glass_L3_S2$
551.0	49.129	49.745	1.481	16.070	0.068	9.713	18.893	2.757	1.2/3	99.384	Glass_L3_S2
566.0	49.195	49.892	1.506	15.966	0.080	9.797	18.751	2.756	1.253	99.303	Glass_L3_S2
581.0	49.303	49.800	1.502	15.964	0.057	9.755	18.878	2.740	1.304	99.503	Glass_L3_S2
596.0	49.157	49.783	1.557	16.024	0.063	9.840	18.705	2.748	1.281	99.374	Glass_L3_S2
611.0	49.139	49.857	1.479	15.955	0.067	9.773	18.790	2.783	1.295	99.282	Glass_L3_S2
626.0	49.218	49.744	1.533	15.994	0.095	9.776	18.813	2.790	1.256	99.474	Glass_L3_S2
641.0	49.038	49.918	1.532	15.812	0.073	9.786	18.851	2.775	1.254	99.120	Glass_L3_S2
656.0	49.211	49.459	1.531	16.014	0.089	9.911	18.942	2.770	1.285	99.753	Glass_L3_S2
671.0	49.145	49.576	1.572	16.009	0.062	9.801	18.875	2.846	1.259	99.569	Glass_L3_S2

686.0	49.196	49.613	1.524	16.042	0.071	9.809	18.810	2.841	1.291	99.583	Glass_L3_S2
701.0	49.105	49.674	1.559	15.954	0.065	9.800	18.854	2.812	1.282	99.431	Glass_L3_S2
716.0	49.292	50.041	1.422	15.867	0.059	9.743	18.738	2.813	1.318	99.251	Glass_L3_S2
731.0	49.360	49.687	1.468	15.996	0.096	9.825	18.785	2.835	1.309	99.673	Glass_L3_S2
766.0	49.268	49.776	1.506	15.969	0.081	9.845	18.720	2.830	1.274	99.492	Glass L3 S3
796.0	49.103	49.609	1.480	15.991	0.069	9.908	18.807	2.835	1.301	99.494	Glass L3 S3
826.0	49.277	49.835	1.463	15.984	0.022	9.826	18.719	2.859	1.293	99.443	Glass L3 S3
856.0	49.236	49.559	1.492	16.087	0.079	9.753	18.891	2.852	1.288	99.677	Glass_L3_S3
886.0	49.084	49.734	1.572	15.879	0.061	9.831	18.854	2.777	1.293	99.350	Glass L3 S3
916.0	49.212	49.754	1.574	16.074	0.046	9.666	18.743	2.825	1.317	99.458	Glass_L3_S3
946.0	49.302	49.771	1.529	15.973	0.046	9.747	18.813	2.843	1.278	99.531	Glass_L3_S3
976.0	49.338	49.567	1.484	16.109	0.116	9.837	18.750	2.884	1.252	99.770	Glass_L3_S3
1006.0	49.335	49.689	1.542	16.090	0.069	9.713	18.760	2.866	1.271	99.646	Glass_L3_S3
1036.0	49.246	49.648	1.498	16.101	0.089	9.700	18.772	2.911	1.281	99.598	Glass_L3_S3
1066.0	49.184	49.731	1.465	15.960	0.080	9.810	18.751	2.876	1.327	99.453	Glass_L3_S3
1096.0	49.196	49.570	1.535	15.968	0.059	9.881	18.785	2.910	1.293	99.625	Glass_L3_S3
1126.0	49.237	49.850	1.499	15.918	0.053	9.778	18.735	2.859	1.308	99.388	Glass_L3_S3
1156.0	49.372	49.636	1.502	16.030	0.069	9.805	18.798	2.870	1.290	99.736	Glass_L3_S3
1186.0	49.305	49.452	1.589	16.030	0.092	9.888	18.765	2.897	1.289	99.853	Glass_L3_S3
1216.0	49.256	49.461	1.523	16.068	0.066	9.893	18.818	2.859	1.312	99.795	Glass_L3_S3
1246.0	49.105	49.676	1.589	15.969	0.040	9.709	18.849	2.894	1.273	99.429	Glass_L3_S3
1276.0	49.213	49.634	1.479	15.941	0.062	9.852	18.905	2.862	1.266	99.579	Glass_L3_S3
1306.0	49.285	49.635	1.547	16.061	0.101	9.734	18.771	2.864	1.287	99.650	Glass_L3_S3
1336.0	49.147	49.449	1.441	15.988	0.062	9.950	18.877	2.920	1.314	99.698	Glass_L3_S3
1366.0	49.180	49.731	1.531	16.048	0.063	9.757	18.761	2.828	1.283	99.449	Glass_L3_S3
1396.0	49.175	49.557	1.517	16.099	0.044	9.762	18.881	2.856	1.285	99.618	Glass_L3_S3
1426.0	49.299	49.561	1.496	16.124	0.081	9.824	18.749	2.895	1.269	99.738	Glass_L3_S3
1456.0	49.145	49.791	1.533	15.991	0.056	9.743	18.751	2.857	1.277	99.355	Glass_L3_S3
1486.0	49.195	49.862	1.496	15.919	0.070	9.753	18.761	2.859	1.281	99.333	Glass_L3_S3
1516.0	49.096	49.587	1.530	15.999	0.076	9.864	18.809	2.857	1.279	99.509	Glass_L3_S3
1546.0	49.195	49.516	1.590	16.005	0.058	9.876	18.823	2.859	1.274	99.679	Glass_L3_S3
1576.0	48.969	49.548	1.506	15.995	0.071	9.912	18.810	2.880	1.279	99.422	Glass_L3_S3
1606.0	49.299	49.706	1.485	16.015	0.073	9.777	18.786	2.884	1.274	99.594	Glass_L3_S3
1636.0	49.454	49.597	1.509	16.078	0.077	9.748	18.765	2.963	1.263	99.857	Glass_L3_S3
1666.0	49.421	49.597	1.550	16.010	0.056	9.771	18.830	2.900	1.286	99.824	Glass_L3_S3
1696.0	49.178	49.649	1.616	16.033	0.063	9.843	18.702	2.854	1.240	99.529	Glass_L3_S3
1726.0	49.195	49.708	1.533	16.058	0.059	9.817	18.670	2.905	1.250	99.487	Glass_L3_S3
1756.0	49.125	49.718	1.508	16.086	0.071	9.750	18.724	2.882	1.260	99.408	Glass_L3_S3
1786.0	49.189	49.688	1.494	16.093	0.087	9.702	18.790	2.875	1.271	99.501	Glass_L3_S3
1816.0	49.079	49.617	1.521	16.080	0.062	9.870	18.685	2.909	1.257	99.462	Glass_L3_S3
1846.0	49.212	49.808	1.495	15.953	0.076	9.769	18.691	2.910	1.298	99.404	Glass_L3_S3
1876.0	49.299	49.500	1.473	16.129	0.077	9.812	18.873	2.873	1.263	99.799	Glass_L3_S3
1906.0	49.255	49.664	1.526	16.055	0.085	9.780	18.759	2.857	1.273	99.591	Glass_L3_S3
1936.0	49.172	49.457	1.508	16.020	0.095	9.843	18.915	2.889	1.273	99.715	Glass_L3_S3
1966.0	49.167	49.638	1.521	16.023	0.065	9.919	18.662	2.895	1.278	99.529	Glass_L3_S3
1996.0	49.17 <u>5</u>	49.6 <u>3</u> 7	1.499	16.147	0.057	9.825	18.767	2.826	1.243	99.538	Glass_L3_S3

Table C11	1. BS1&2	A									
X (µm)	SiO2	SiO2*	TiO2	Al2O3	FeO	MgO	CaO	Na2O	K2O	Total	Comment
1365.1	50.719	51.353	0.488	14.185	11.322	6.763	11.475	2.942	1.472	99.366	BS1&2A_L1_S1
1252.6	50.502	51.358	0.529	14.153	11.463	6.768	11.324	2.937	1.469	99.144	BS1&2A_L1_S1
1140.1	50.513	51.396	0.490	14.219	11.499	6.760	11.232	2.925	1.479	99.117	BS1&2A_L1_S1
915.1	50.583	51.513	0.486	14.213	11.426	6.781	11.123	2.962	1.496	99.070	BS1&2A_L1_S1
802.6	50.520	51.604	0.529	14.225	11.560	6.676	10.963	3.013	1.431	98.917	BS1&2A_L1_S1
690.1	50.657	51.767	0.511	14.200	11.343	6.665	11.078	2.981	1.455	98.890	BS1&2A_L1_S1
577.6	50.345	51.354	0.475	14.200	11.606	6.779	11.180	2.970	1.437	98.991	BS1&2A_L1_S1
465.1	50.869	51.219	0.494	14.295	11.582	6.760	11.078	3.067	1.506	99.650	BS1&2A_L1_S1
369.1	50.930	51.669	0.538	14.096	11.361	6.750	11.069	3.022	1.495	99.262	BS1&2A_L1_S2
309.1	50.968	51.506	0.566	14.241	11.571	6.674	10.979	3.002	1.462	99.463	BS1&2A_L1_S2
249.1	50.976	52.011	0.616	14.110	11.286	6.594	10.919	3.014	1.450	98.966	BS1&2A_L1_S2
189.1	50.870	51.472	0.845	14.266	11.319	6.683	10.855	3.031	1.530	99.399	BS1&2A_L1_S2
129.1	50.596	51.248	1.085	14.260	11.358	6.625	10.822	3.124	1.479	99.349	BS1&2A_L1_S2
56.1	50.137	50.546	1.580	14.356	11.291	6.795	10.940	3.050	1.442	99.591	BS1&2A_L1_S3
-3.9	49.537	50.539	1.957	14.103	11.292	6.718	10.923	2.997	1.471	98.998	BS1&2A_L1_S3
-63.9	48.931	50.139	2.381	14.066	11.440	6.693	10.888	2.962	1.432	98.792	BS1&2A_L1_S3
-123.9	48.592	49.789	2.650	13.977	11.376	6.784	11.123	2.905	1.396	98.803	BS1&2A_L1_S3
-183.9	48.340	49.496	2.947	14.069	11.468	6.867	10.883	2.890	1.380	98.844	BS1&2A_L1_S3
-243.9	48.248	49.305	3.114	14.087	11.643	6.764	10.827	2.890	1.371	98.943	BS1&2A_L1_S3
-303.9	48.138	49.304	3.298	14.029	11.552	6.745	10.724	2.942	1.406	98.834	BS1&2A_L1_S3
-363.9	47.874	49.522	3.356	14.016	11.402	6.682	10.694	2.933	1.395	98.352	BS1&2A_L1_S4
-461.9	47.932	49.333	3.333	14.086	11.280	6.679	10.892	2.953	1.444	98.599	BS1&2A_L1_S4
-559.9	47.919	49.515	3.348	13.944	11.355	6.767	10.759	2.884	1.428	98.404	BS1&2A_L1_S4
-657.9	48.083	49.385	3.366	14.096	11.468	6.645	10.666	2.935	1.439	98.699	BS1&2A_L1_S4
-755.9	47.883	49.568	3.326	14.006	11.381	6.683	10.660	2.938	1.438	98.316	BS1&2A_L1_S4
-853.9	47.801	49.329	3.252	14.148	11.425	6.710	10.688	2.975	1.473	98.472	BSI&2A_LI_S4
-1049.9	4/.86/	49.234	3.317	14.219	11.342	6./19	10./11	2.991	1.46/	98.633	BSI&2A_LI_S4
-114/.9	48.031	49.554	3.341	13.996	11.296	6.610	10.831	2.970	1.402	98.477	BSI&2A_LI_S4
-1245.9	4/.805	49.351	3.382	14.068	11.184	6.629	10.927	2.983	1.4/5	98.453	BSI&2A_LI_S4
/0/.3	50.932	51.500	0.550	14.270	11.323	0./09	11.235	2.941	1.404	99.432	BS1&2A_L2_S1
307.5	50.098	51.057	0.333	14.141	11.404	0.033	11.231	2.933	1.443	98.401	DS1&2A_L2_S1
407.5	50.805	51.552	0.430	14.520	11.342	0.074	11.13/	2 001	1.490	99.231	DS1&2A_L2_S1
207.2	50.870	51.552	0.540	14.227	11.394	6 702	10.050	2.991	1.455	99.330	DS1&2A_L2_S1
250.2	50.309	51.002	0.572	14.181	11.364	0.703	10.930	3.000	1.492	90.790	DS1&2A_L2_S2
103.3	50.418	51.692	0.074	14.105	11.219	6 707	10.771	3.083	1.517	98.320	BS1&2A_L2_S2 BS1&2A_L2_S2
136.3	50.474	51.552	1.051	14.273	11.340	6 5 9 3	10.740	2 985	1.515	98.922	BS1&2A_L2_S2 BS1&2A_L2_S2
70.3	10 058	51.003	1 300	14.370	11.107	6 668	10.822	2.985	1.515	08 055	BS1&2A_L2_S2 BS1&2A_L2_S2
22.3	49.538	50 515	1.390	14.264	11.201	6.655	11.010	2 903	1.514	99.034	BS1&2A_L2_S2 BS1&2A_L2_S2
-37.7	48 734	50.161	2 206	14 308	11.107	6.628	11.010	2.905	1 429	98 573	BS1&2A_L2_S2 BS1&2A_L2_S3
-97 7	48 546	50 211	2.200	14 161	11.500	6 788	10.893	2.846	1.122	98 335	BS1&2A_L2_S3
-157.7	48 245	49 571	2.921	14 255	11 393	6 721	10.894	2.849	1 396	98 674	BS1&2A_L2_S3
-217.7	47.973	49.612	3.049	14.096	11.358	6.707	10.852	2.949	1.378	98.361	BS1&2A L2 S3
-277.7	47.768	49.506	3.330	14.033	11.295	6.669	10.972	2.833	1.362	98.262	BS1&2A L2 S3
-337.7	47.821	49.309	3.311	14.200	11.359	6.635	10.930	2.861	1.395	98.512	BS1&2A L2 S3
-397.7	47.933	49.403	3.274	14.130	11.212	6.676	10.967	2.905	1.434	98.531	BS1&2A L2 S4
-497.7	47.723	49.483	3.316	14.242	11.226	6.688	10.798	2.840	1.406	98.240	BS1&2A L2 S4
-597.7	47.828	49.384	3.430	14.121	11.297	6.712	10.719	2.908	1.430	98.445	BS1&2A L2 S4
-697.7	47.626	49.352	3.309	14.130	11.368	6.647	10.823	2.940	1.430	98.273	BS1&2A L2 S4
-797.7	47.900	49.487	3.329	14.118	11.338	6.697	10.718	2.895	1.418	98.413	BS1&2A L2 S4
-897.7	47.680	49.414	3.415	14.021	11.435	6.695	10.732	2.858	1.431	98.266	BS1&2A L2 S4
-1097.7	47.817	49.350	3.339	14.297	11.168	6.764	10.723	2.919	1.440	98.467	BS1&2A L2 S4
-1197.7	48.092	49.522	3.313	14.143	11.217	6.634	10.806	2.964	1.402	98.570	BS1&2A L2 S4
-1297.7	47.985	49.374	3.326	14.210	11.278	6.622	10.825	2.892	1.474	98.611	BS1&2A_L2_S4
1292.6	50.938	51.811	0.518	14.286	11.636	6.760	10.556	2.978	1.455	99.128	BS1&2A_L3_S1
1192.6	51.041	51.662	0.488	14.334	11.546	6.744	10.774	2.979	1.473	99.379	BS1&2A_L3_S1
1092.6	50.927	51.669	0.518	14.276	11.687	6.797	10.677	2.917	1.459	99.258	BS1&2A_L3_S1
992.6	50.777	51.956	0.509	14.328	11.404	6.628	10.777	2.938	1.460	98.820	BS1&2A_L3_S1
892.6	50.835	51.690	0.527	14.480	11.520	6.786	10.598	2.939	1.461	99.146	BS1&2A_L3_S1
792.6	51.024	51.900	0.505	14.364	11.485	6.680	10.630	2.987	1.449	99.124	BS1&2A_L3_S1
692.6	51.143	52.045	0.486	14.402	11.302	6.651	10.652	2.984	1.478	99.098	BS1&2A_L3_S1

592.6	51.135	51.596	0.514	14.451	11.371	6.776	10.801	3.016	1.476	99.539	BS1&2A_L3_S1
492.6	51.032	51.482	0.479	14.477	11.518	6.734	10.889	2.949	1.472	99.550	BS1&2A_L3_S1
262.6	50.997	51.431	0.647	14.390	11.454	6.815	10.724	3.036	1.503	99.566	BS1&2A L3 S2
182.6	50.757	51.690	0.806	14.291	11.308	6.764	10.661	2.984	1.495	99.067	BS1&2A L3 S2
102.6	50.289	51.305	1.241	14.363	11.241	6.599	10.670	3.072	1.509	98.984	BS1&2A L3 S2
34.6	49.597	50.842	1.670	14.367	11.258	6.662	10.757	2.989	1.455	98.755	BS1&2A L3 S3
-25.4	49.225	50.273	2.158	14.342	11.416	6.762	10.666	2.980	1.403	98.953	BS1&2A L3 S3
-85.4	48.617	50.273	2.404	14.190	11.470	6.699	10.673	2.883	1.408	98.343	BS1&2A L3 S3
-145.4	48.126	49.825	2.810	14.151	11.443	6.721	10.724	2.942	1.384	98.301	BS1&2A L3 S3
-205.4	48.189	49.615	3.058	14.259	11.425	6.721	10.683	2.868	1.372	98.574	BS1&2A L3 S3
-265.4	47.936	49.520	3.244	14.332	11.490	6.646	10.521	2.847	1.401	98.416	BS1&2A L3 S3
-325.4	47.785	49.242	3.286	14.337	11.398	6.794	10.685	2.894	1.364	98.542	BS1&2A_L3_S4
-436.5	47.895	49.304	3.226	14.355	11.476	6.735	10.566	2.918	1.420	98.591	BS1&2A_L3_S4
-658.7	47.799	49.533	3.410	14.177	11.185	6.654	10.674	2.946	1.421	98.266	BS1&2A_L3_S4
-881	47.991	49.584	3.307	14.218	11.159	6.719	10.709	2.903	1.401	98.407	BS1&2A_L3_S4
-992.1	47.906	49.339	3.216	14.389	11.231	6.687	10.802	2.930	1.407	98.567	BS1&2A_L3_S4
-1103.2	48.219	49.272	3.231	14.397	11.244	6.597	10.871	2.942	1.446	98.947	BS1&2A_L3_S4
-1214.3	48.184	48.912	3.456	14.338	11.211	6.784	10.913	2.952	1.436	99.272	BS1&2A_L3_S4
1380.4	50.569	51.886	0.500	14.190	11.434	6.807	10.598	3.092	1.493	98.683	BS1&2A_L4_S1
1280.4	50.356	52.140	0.490	14.109	11.553	6.708	10.537	3.025	1.438	98.216	BS1&2A_L4_S1
1180.4	50.259	51.974	0.545	14.173	11.457	6.777	10.569	3.032	1.474	98.284	BS1&2A_L4_S1
1080.4	50.394	51.987	0.503	14.137	11.597	6.678	10.610	3.048	1.441	98.407	BS1&2A_L4_S1
980.4	50.504	51.952	0.489	14.199	11.554	6.669	10.701	2.991	1.445	98.552	BS1&2A_L4_S1
880.4	50.592	51.893	0.486	14.347	11.413	6.771	10.553	3.060	1.478	98.700	BS1&2A_L4_S1
780.4	50.502	51.964	0.502	14.209	11.438	6.712	10.714	3.020	1.440	98.538	BS1&2A_L4_S1
680.4	50.880	51.551	0.529	14.357	11.475	6.720	10.707	3.158	1.503	99.329	BS1&2A_L4_S1
580.4	51.041	51.565	0.499	14.238	11.459	6.793	10.837	3.139	1.470	99.476	BS1&2A_L4_S1
530.4	51.010	51.543	0.560	14.389	11.376	6.732	10.802	3.117	1.481	99.467	BS1&2A_L4_S2
480.4	50.921	51.846	0.474	14.151	11.422	6.768	10.797	3.078	1.466	99.075	BS1&2A_L4_S2
430.4	50.804	51.589	0.506	14.280	11.407	6.656	10.959	3.074	1.529	99.215	BS1&2A_L4_S2
380.4	50.861	51.261	0.574	14.417	11.590	6.819	10.719	3.125	1.494	99.599	BS1&2A_L4_S2
330.4	50.778	51.678	0.580	14.088	11.396	6.723	10.940	3.118	1.479	99.100	BS1&2A_L4_S2
280.4	50.687	51.389	0.643	14.308	11.623	6.794	10.635	3.120	1.487	99.298	BS1&2A_L4_S2
230.4	50.676	51.533	0.698	14.355	11.429	6.648	10.701	3.114	1.523	99.143	BS1&2A_L4_S2
180.4	50.410	51.604	0.917	14.310	11.152	6.721	10.696	3.091	1.511	98.806	BS1&2A_L4_S2
130.4	50.262	51.461	1.059	14.259	11.083	6.760	10.738	3.145	1.495	98.801	BS1&2A_L4_S2
25.4	49.425	50.909	1.770	14.201	11.382	6.615	10.683	2.997	1.443	98.516	BS1&2A_L4_S3
-24.6	48.964	50.395	2.068	14.151	11.445	6.650	10.792	3.041	1.458	98.569	BS1&2A_L4_S3
-74.6	48.606	49.675	2.520	14.178	11.537	6.862	10.877	2.942	1.409	98.930	BS1&2A_L4_S3
-124.6	48.381	49.733	2.745	14.089	11.541	6.694	10.850	2.920	1.429	98.648	BS1&2A_L4_S3
-174.6	48.133	49.024	2.975	14.298	11.627	6.858	10.866	2.973	1.379	99.109	BS1&2A_L4_S3
-224.6	48.151	49.317	3.101	14.155	11.536	6.733	10.845	2.942	1.370	98.834	BS1&2A_L4_S3
-274.6	48.040	49.297	3.150	14.172	11.415	6.734	10.887	2.949	1.398	98.744	BS1&2A_L4_S3
-324.6	48.066	49.218	3.321	14.010	11.447	6.742	10.916	2.962	1.385	98.848	BS1&2A_L4_S3
-374.6	48.136	49.285	3.241	14.258	11.327	6.685	10.888	2.907	1.410	98.851	BS1&2A_L4_S4
-474.6	47.733	49.283	3.378	14.173	11.459	6.715	10.652	2.918	1.423	98.449	BS1&2A_L4_S4
-574.6	47.520	49.170	3.436	14.121	11.453	6.678	10.704	3.009	1.429	98.351	BS1&2A_L4_S4
-674.6	47.889	49.309	3.392	14.215	11.281	6.711	10.656	2.972	1.464	98.580	BS1&2A_L4_S4
-774.6	47.572	49.342	3.395	14.157	11.402	6.572	10.709	2.975	1.448	98.230	BS1&2A_L4_S4
-974.6	47.770	49.055	3.387	14.379	11.289	6.746	10.766	2.960	1.418	98.715	BS1&2A_L4_S4
-1074.6	47.773	49.236	3.340	14.233	11.424	6.710	10.593	3.052	1.413	98.537	BS1&2A L4 S4

Table C12	2. BS3&4	A									
X (µm)	SiO2	SiO2*	TiO2	Al2O3	FeO	MgO	CaO	Na2O	K2O	Total	Comment
786.2	50.746	51.724	1.929	12.798	11.725	6.594	10.790	2.986	1.454	99.022	BS3&4A_L1_S1
686.2	50.852	51.615	1.962	12.861	11.826	6.586	10.788	2.935	1.427	99.237	BS3&4A_L1_S1
586.2	50.617	51.524	2.017	12.792	11.924	6.612	10.664	2.973	1.494	99.092	BS3&4A_L1_S1
486.2	50.427	51.779	1.923	12.801	11.780	6.504	10.736	2.952	1.525	98.648	BS3&4A_L1_S1
386.2	50.948	51.657	1.891	12.871	11.897	6.610	10.559	3.009	1.507	99.291	BS3&4A_L1_S2
341.2	50.549	51.674	1.925	12.695	11.810	6.767	10.691	2.925	1.515	98.875	BS3&4A_L1_S2
296.2	50.697	51.423	2.022	12.944	11.906	6.620	10.647	2.942	1.497	99.274	BS3&4A_L1_S2
251.2	50.697	51.603	2.008	12.828	11.851	6.639	10.558	2.986	1.527	99.093	BS3&4A_L1_S2
206.2	50.450	51.531	1.935	12.953	11.890	6.595	10.588	3.011	1.497	98.919	BS3&4A_L1_S2
161.2	50.332	51.735	1.919	13.012	11.786	6.643	10.437	3.042	1.428	98.597	BS3&4A_L1_S2
116.2	50.408	51.103	1.989	13.216	11.899	6.650	10.523	3.057	1.565	99.305	BS3&4A_L1_S2
71.2	50.324	51.085	1.870	13.683	11.771	6.628	10.445	3.032	1.486	99.239	BS3&4A_L1_S2
26.2	49.363	50.675	1.932	13.891	11.660	6.640	10.770	3.019	1.414	98.688	BS3&4A_L1_S2
-35.8	49.054	49.960	1.957	14.661	11.768	6.633	10.582	2.970	1.469	99.094	BS3&4A_L1_S3
-80.8	48.435	49.655	1.952	15.116	11.909	6.482	10.448	2.976	1.463	98.781	BS3&4A_L1_S3
-125.8	48.251	49.552	1.919	15.357	11.672	6.502	10.625	2.937	1.436	98.700	BS3&4A_L1_S3
-170.8	48.200	48.954	2.001	15.569	11.751	6.689	10.618	2.970	1.449	99.246	BS3&4A_L1_S3
-215.8	47.981	49.036	2.033	15.667	11.601	6.611	10.693	3.002	1.357	98.944	BS3&4A_L1_S3
-260.8	48.025	48.997	1.951	15.91/	11.680	6.501	10.509	3.019	1.425	99.028	BS3&4A_L1_S3
-305.8	47.888	48.817	1.914	15.796	11.787	6.627	10.562	3.051	1.447	99.072	BS3&4A_L1_S3
-350.8	47.620	49.026	1.940	15.762	11.703	6.582	10.490	3.034	1.464	98.595	BS3&4A_L1_S3
-395.8	47.856	49.091	1.890	15.6/3	11./69	6.581	10.5/1	3.007	1.418	98.765	BS3&4A_L1_S3
-495.8	47.878	49.109	1.982	15.708	11.001	6.603	10.600	2.969	1.369	98.769	BS3&4A_L1_S4
-595.8	47.512	49.320	2.027	15.085	11.4//	0.580	10.515	3.000	1.401	98.192	$BS3&4A_L1_S4$
-095.8	47.691	49.000	2.049	15.797	11.009	0.365	10.517	2.977	1.302	90.005	$DS3@4A_L1_S4$ $DS3@4A_L1_S4$
-895.8	47.020	48.870	2.010	15.711	11.077	6.630	10.500	3.022	1.407	98.744	$BS3&4A_L1_S4$ $BS3&4A_L1_S4$
-1095.8	47.007	40.070	1.970	15.054	11.700	6.546	10.303	2 976	1.428	98.709	BS3&AA I 1 SA
-1095.8	47.799	49.090	2 016	15.700	11.807	6 566	10.442	2.970	1.420	98.710	BS3&4A_L1_S4
-1295.8	47.910	49 044	1 888	15.005	11.701	6 671	10.340	3.059	1 440	98 868	BS3&4A_L1_S4
719.2	50 099	51 818	1.000	12.696	11.024	6 548	10.430	3.037	1 464	98 280	BS3&4A_L2_S1
608.1	49 961	51 460	1 981	12.833	11.031	6 667	10.622	3.043	1 465	98 502	BS3&4A_L2_S1
497.0	50.284	51.650	1.960	12.755	11.981	6.536	10.608	3.011	1.499	98.634	BS3&4A_L2_S1
385.9	50.320	51.781	1.939	12.732	11.860	6.700	10.549	3.003	1.437	98.539	BS3&4A_L2_S1
274.8	50.124	51.927	1.930	12.737	11.762	6.674	10.490	3.033	1.447	98.197	BS3&4A L2 S1
174.8	49.885	51.703	1.892	12.915	11.784	6.592	10.617	3.012	1.486	98.183	BS3&4A L2 S2
84.8	49.368	51.218	1.974	13.388	11.648	6.658	10.557	3.043	1.513	98.150	BS3&4A L2 S2
39.8	49.129	50.950	1.916	13.742	11.678	6.741	10.458	3.035	1.481	98.179	BS3&4A L2 S2
-28.2	48.640	50.200	2.030	14.525	11.587	6.561	10.625	3.029	1.444	98.440	BS3&4A L2 S3
-73.2	48.254	49.580	2.000	15.106	11.754	6.585	10.543	3.011	1.422	98.674	BS3&4A L2 S3
-118.2	47.972	49.565	1.932	15.294	11.542	6.641	10.568	2.989	1.471	98.407	BS3&4A_L2_S3
-163.2	47.829	49.113	1.991	15.566	11.670	6.589	10.667	2.931	1.474	98.715	BS3&4A_L2_S3
-208.2	47.681	49.196	1.950	15.542	11.589	6.529	10.702	3.037	1.456	98.486	BS3&4A_L2_S3
-308.2	47.488	49.407	1.930	15.779	11.482	6.474	10.537	3.000	1.391	98.081	BS3&4A_L2_S4
-408.2	47.254	49.127	2.019	15.820	11.511	6.620	10.396	3.012	1.496	98.128	BS3&4A_L2_S4
-508.2	47.366	49.169	1.944	15.788	11.633	6.519	10.493	3.036	1.417	98.196	BS3&4A_L2_S4
-608.2	47.410	49.261	1.953	15.636	11.577	6.573	10.531	3.008	1.462	98.150	BS3&4A_L2_S4
-708.2	47.176	49.013	2.051	15.630	11.632	6.666	10.524	3.027	1.456	98.163	BS3&4A_L2_S4
-808.2	47.249	48.920	1.931	15.696	11.791	6.679	10.493	3.027	1.463	98.330	BS3&4A_L2_S4
-908.2	47.362	48.902	1.956	15.736	11.713	6.648	10.616	2.992	1.437	98.460	BS3&4A_L2_S4
-1008.2	47.508	48.913	2.014	15.797	11.676	6.691	10.381	3.013	1.513	98.595	BS3&4A_L2_S4
-1108.2	47.357	48.771	2.044	15.667	11.785	6.526	10.755	2.976	1.478	98.587	BS3&4A_L2_S4
-1208.2	47.258	48.994	2.018	15.671	11.641	6.558	10.640	3.009	1.469	98.264	BS3&4A_L2_S4
804.4	50.572	51.779	1.986	12.842	11.739	6.560	10.603	3.039	1.452	98.794	BS3&4A_L3_S1
/04.4	50.657	51./15	2.052	12.846	11.748	0.051	10.437	3.020	1.532	98.942	възж4А_L3_SI
004.4	50.540	51.767	1.9//	12.81/	11.702	0.333	10.004	3.000 2.000	1.408	98.85/ 08.600	BS3 @4A L3 SI
304.4	50 422	51.929	1.999	12.812	11./95	0.313	10.480	2.989	1.480	98.02U	$DS3\alpha4A_L3_S1$
404.4	50.422	51.91/	1.93/	12.//8	11.023	0.3/1	10.01/	3.029 2.005	1.309	98.303 08.017	$DSJX4A_LJ_SI$ $BS284A_L2S2$
212.4 267 4	50.415	51.49/	2.033	12.801	11.849	0.090	10.391	2.995	1.4/8	90.91/ 08 760	$DSJX4A_LJ_SZ$ $BS3&4A_L2S2$
207.4	50.109	51.901	1 022	12./0/	11.723	6 671	10.341	2.019 2.076	1.450	90.200 98 8/1	BS3&4A I 2 S2
	20.004	51.175	1.755	12.702	11.0//	0.071	10.707	2.770	1.557	20.071	

177.4	50.569	51.267	2.013	13.054	11.829	6.740	10.548	3.036	1.513	99.302	BS3&4A_L3_S2
132.4	50.031	51.248	1.956	13.248	11.803	6.580	10.598	3.070	1.497	98.783	BS3&4A_L3_S2
87.4	50.168	51.094	1.925	13.530	11.730	6.585	10.632	3.012	1.493	99.074	BS3&4A_L3_S2
42.4	49.528	50.882	2.013	13.754	11.647	6.550	10.629	3.014	1.512	98.646	BS3&4A_L3_S2
-2.6	49.486	50.389	1.937	14.204	11.814	6.581	10.624	3.004	1.447	99.097	BS3&4A_L3_S2
-19.6	48.858	50.334	2.035	14.472	11.634	6.574	10.522	2.995	1.436	98.524	BS3&4A_L3_S3
-64.6	48.540	49.725	2.007	15.026	11.689	6.485	10.625	2.953	1.490	98.815	BS3&4A_L3_S3
-109.6	48.220	49.382	1.913	15.168	11.735	6.566	10.834	2.975	1.427	98.838	BS3&4A_L3_S3
-154.6	47.909	49.279	1.916	15.550	11.751	6.494	10.614	2.958	1.438	98.630	BS3&4A_L3_S3
-199.6	47.736	49.463	1.978	15.592	11.616	6.495	10.481	2.983	1.393	98.273	BS3&4A_L3_S3
-244.6	47.742	49.276	1.901	15.597	11.657	6.564	10.596	2.977	1.431	98.466	BS3&4A_L3_S3
-289.6	47.660	49.245	1.989	15.655	11.525	6.584	10.597	2.991	1.415	98.415	BS3&4A_L3_S3
-334.6	47.582	48.851	1.970	15.817	11.747	6.599	10.572	2.998	1.446	98.731	BS3&4A_L3_S3
-434.6	47.737	49.042	1.978	15.853	11.612	6.624	10.462	2.985	1.445	98.695	BS3&4A_L3_S4
-534.6	47.871	49.167	1.921	15.789	11.628	6.555	10.479	2.990	1.472	98.704	BS3&4A_L3_S4
-634.6	47.923	48.837	1.975	15.825	11.707	6.608	10.507	3.057	1.485	99.086	BS3&4A_L3_S4
-734.6	47.554	48.980	1.909	15.698	11.696	6.548	10.645	3.016	1.509	98.575	BS3&4A_L3_S4
-834.6	47.764	49.120	1.888	15.662	11.649	6.659	10.518	3.037	1.468	98.644	BS3&4A_L3_S4
-934.6	47.527	49.320	1.903	15.595	11.776	6.623	10.357	2.990	1.436	98.207	BS3&4A_L3_S4
-1034.6	47.842	49.124	1.944	15.730	11.740	6.591	10.431	2.980	1.461	98.718	BS3&4A_L3_S4
-1134.6	47.692	49.011	1.956	15.777	11.700	6.549	10.548	3.001	1.458	98.682	BS3&4A_L3_S4
-1234.6	47.687	49.094	2.026	15.567	11.654	6.655	10.551	2.968	1.486	98.594	BS3&4A_L3_S4
-1334.6	48.152	49.129	1.967	15.658	11.610	6.644	10.468	3.039	1.485	99.023	BS3&4A_L3_S4

Table C1	3. BS5&6	A									
X (µm)	SiO2	SiO2*	TiO2	Al2O3	FeO	MgO	CaO	Na2O	K2O	Total	Comment
1299.9	50.550	52.117	1.943	14.418	9.593	6.558	10.667	3.169	1.536	98.433	BS5&6A_L1_S1
1099.9	50.104	52.079	1.946	14.296	9.820	6.611	10.578	3.147	1.523	98.025	BS5&6A_L1_S1
999.9	50.186	51.998	1.987	14.420	9.912	6.628	10.420	3.135	1.501	98.188	BS5&6A_L1_S1
899.9	50.498	51.899	2.007	14.356	10.017	6.500	10.503	3.198	1.521	98.599	BS5&6A_L1_S1
799.9	50.119	52.168	1.976	14.312	9.817	6.563	10.450	3.190	1.524	97.951	BS5&6A_L1_S1
699.9	50.242	52.012	1.942	14.347	9.998	6.541	10.456	3.176	1.528	98.230	BS5&6A_L1_S1
599.9	50.389	51.837	1.949	14.398	10.098	6.481	10.461	3.242	1.533	98.552	BS5&6A_L1_S1
499.9	50.122	51.959	1.940	14.296	9.957	6.466	10.667	3.189	1.527	98.164	BS5&6A_L1_S1
399.9	50.485	51.979	1.940	14.313	10.037	6.458	10.465	3.233	1.574	98.506	BS5&6A_L1_S2
354.9	50.109	52.112	1.978	14.289	9.953	6.384	10.490	3.227	1.567	97.997	BS5&6A_L1_S2
309.9	50.129	51.838	2.033	14.191	10.225	6.482	10.368	3.226	1.638	98.291	BS5&6A_L1_S2
264.9	49.956	51.893	1.994	14.248	10.239	6.443	10.377	3.196	1.611	98.064	BS5&6A_L1_S2
219.9	50.093	51.861	1.963	14.287	10.378	6.366	10.285	3.235	1.625	98.232	BS5&6A_L1_S2
174.9	50.105	51.746	1.859	14.292	10.441	6.403	10.365	3.241	1.654	98.359	BS5&6A_L1_S2
129.9	49.457	51.629	1.874	14.125	10.626	6.465	10.456	3.220	1.606	97.828	BS5&6A_L1_S2
84.9	49.338	51.190	1.953	14.314	10.970	6.413	10.359	3.234	1.568	98.149	BS5&6A_L1_S2
39.9	49.009	50.601	1.992	14.287	11.277	6.621	10.435	3.192	1.595	98.408	BS5&6A_L1_S2
-5.1	48.349	50.602	1.909	14.355	11.550	6.517	10.544	3.039	1.484	97.747	BS5&6A_L1_S2
-50.1	48.163	49.978	2.041	14.446	11./9/	6.725	10.448	3.073	1.492	98.185	BS5&6A_L1_S2
-95.1	47.805	49.690	2.045	14.452	12.200	6.596	10.598	2.954	1.465	98.115	BS5&6A_L1_S2
-140.1	47.693	49.276	2.093	14.445	12.261	6.720	10.750	3.007	1.448	98.41/	BS5&6A_L1_S2
-185.1	47.705	49.439	2.100	14.304	12.504	6.6/3	10.591	2.932	1.45/	98.266	BS5&6A_L1_S2
-230.1	47.455	49.335	1.965	14.450	12.543	6./10	10.495	2.973	1.523	98.120	BS5&6A_L1_S2
-2/5.1	47.181	49.554	1.949	14.552	12.578	0.007	10.572	2.935	1.495	97.848	$BS5&6A_L1_S2$
-520.1	47.515	40.799	2.075	14.307	12.009	6 5 9 4	10.071	2 000	1.557	90.313	DS5&0A_L1_S2
-303.1	47.332	40.910	2.044	14.425	12.000	6.682	10.009	2.999	1.555	98.030	B\$5&6A_L1_S2
-510.1	47.230	49.090	1 060	14.252	12.912	6.637	10.405	2.925	1.501	08 3/7	B\$5&6A_L1_S2
-624.4	47.370	49.029	1.909	14.232	12.908	6 572	10.021	2 995	1.518	98.347	B\$5&64_L1_S3
-738 7	47.200	49 076	1.940	14 325	13.000	6 587	10.537	3 005	1.470	98 103	BS5&6A_L1_S3
-853.0	47 252	48 675	1.960	14.323	13 198	6 786	10.322	3.005	1.520	98 578	BS5&6A_L1_S3
-967.2	47 242	49.050	1.972	14 265	13 113	6 6 2 7	10.447	2.966	1.571	98 193	BS5&6A_L1_S3
-1081.5	47.085	48.931	2.005	14.315	13.148	6.610	10.472	2.982	1.538	98.154	BS5&6A_L1_S3
-1195.8	47.274	49.000	2.033	14.378	13.135	6.646	10.381	2.986	1.441	98.273	BS5&6A_L1_S3
1297.2	50.501	52.418	2.020	14.432	9.505	6.612	10.392	3.131	1.491	98.083	BS5&6A L2 S1
1197.2	50.359	52.133	1.915	14.248	9.945	6.546	10.556	3.134	1.523	98.225	BS5&6A L2 S1
1097.2	50.524	52.282	1.947	14.258	9.853	6.481	10.525	3.129	1.526	98.242	BS5&6A L2 S1
997.2	50.363	52.073	1.964	14.336	9.941	6.516	10.565	3.108	1.498	98.289	BS5&6A L2 S1
897.2	50.450	52.001	1.955	14.365	9.793	6.549	10.596	3.181	1.560	98.449	BS5&6A L2 S1
797.2	50.427	51.993	2.020	14.386	9.832	6.481	10.681	3.139	1.470	98.434	BS5&6A_L2_S1
697.2	50.231	52.311	1.966	14.279	9.817	6.411	10.535	3.128	1.553	97.920	BS5&6A_L2_S1
597.2	50.202	52.036	1.923	14.286	9.858	6.521	10.649	3.199	1.528	98.165	BS5&6A_L2_S1
497.2	50.347	51.705	2.092	14.337	10.053	6.598	10.463	3.176	1.577	98.642	BS5&6A_L2_S1
397.2	50.455	52.144	1.930	14.311	9.911	6.395	10.511	3.204	1.595	98.311	BS5&6A_L2_S2
352.2	50.242	52.093	2.076	14.157	10.012	6.439	10.401	3.211	1.610	98.149	BS5&6A_L2_S2
307.2	49.970	52.322	1.922	14.223	10.195	6.378	10.250	3.159	1.551	97.649	BS5&6A_L2_S2
262.2	50.200	52.259	1.957	14.175	10.108	6.362	10.329	3.228	1.582	97.940	BS5&6A_L2_S2
217.2	50.081	52.058	1.872	14.151	10.316	6.330	10.409	3.217	1.648	98.023	BS5&6A_L2_S2
172.2	50.208	51.762	1.890	14.197	10.556	6.378	10.387	3.219	1.612	98.446	BS5&6A_L2_S2
127.2	49.788	51.566	1.916	14.218	10.431	6.538	10.543	3.135	1.653	98.223	BS5&6A_L2_S2
82.2	49.608	51.411	1.895	14.274	10.905	6.399	10.433	3.156	1.528	98.197	BS5&6A_L2_S2
37.2	49.008	50.791	1.908	14.333	11.184	6.606	10.467	3.178	1.534	98.217	BS5&6A_L2_S2
-7.8	48.361	50.575	2.040	14.268	11.516	6.561	10.497	3.093	1.450	97.786	BS5&6A_L2_S2
-52.8	48.026	49.886	2.025	14.408	11.957	6.679	10.557	3.008	1.480	98.140	BS5&6A_L2_S2
-97.8	4/.5/8	49.628	2.036	14.476	12.021	6.725	10.643	2.944	1.527	97.950	BS5&6A_L2_S2
-18/.8	4/.2/3	49.465	2.01/	14.230	12.3/3	0.0/0	10.590	2.9/1	1.4/5	97.808	BSS & 6A L2 S2
-232.8	4/.481	49.181	1.9/9	14.414	12.3//	0.721	10.780	2.913	1.434	98.300	$DSJ \alpha 0A L2 S2$
-2//.8	4/.30/	40.000	2.005 1.040	14.412	12.900	0.093	10.039	2.983 2.027	1.421	98.302 07.072	$DSJ \propto 0A L2 S2$
-322.8	47.011	47.037 10.000	1.949	14.424	12.721	0.091	10.773	2.921 2.012	1.4/3	71.712 08 100	BS5&6A I 2 S2
-307.8	47.209	49.000	2.011 1 Q//	14.337	12.002	6 631	10.430	2.712	1.470	90.100 98 A01	BS5&6A I 2 S2
1 12.0	1.544	17.434	1.244	11.400	12.040	0.004	10.//1	2.004	1.750	20.071	D00001_D2_02

-502.8	47.268	48.842	1.918	14.407	13.065	6.716	10.645	2.943	1.465	98.426	BS5&6A_L2_S3
-602.8	47.317	48.984	1.877	14.370	12.983	6.684	10.567	3.016	1.518	98.332	BS5&6A_L2_S3
-702.8	47.283	48.935	1.946	14.269	13.086	6.715	10.557	2.961	1.531	98.348	BS5&6A_L2_S3
-902.8	47.229	49.462	1.871	14.296	13.043	6.489	10.419	2.976	1.444	97.768	BS5&6A_L2_S3
-1102.8	47.272	48.973	1.955	14.264	13.202	6.600	10.550	2.960	1.496	98.299	BS5&6A_L2_S3
1233.3	50.366	52.112	2.003	14.333	9.854	6.705	10.342	3.081	1.572	98.255	BS5&6A L3 S1
1133.3	50.045	52.012	1.963	14.289	10.034	6.648	10.457	3.068	1.530	98.033	BS5&6A_L3_S1
1033.3	50.409	51.838	2.021	14.333	10.102	6.474	10.594	3.130	1.509	98.572	BS5&6A_L3_S1
933.3	50.179	51.995	1.958	14.365	9.894	6.534	10.539	3.147	1.567	98.184	BS5&6A_L3_S1
833.3	49.930	51.643	2.107	14.212	10.102	6.487	10.600	3.243	1.606	98.286	BS5&6A_L3_S1
733.3	49.935	51.923	1.903	14.318	10.040	6.539	10.433	3.240	1.604	98.012	BS5&6A L3 S1
633.3	50.095	52.139	1.912	14.208	9.998	6.482	10.475	3.182	1.603	97.956	BS5&6A_L3_S1
533.3	49.766	51.971	1.991	14.224	10.074	6.419	10.495	3.250	1.576	97.795	BS5&6A_L3_S1
433.3	50.060	52.013	2.057	14.300	9.904	6.503	10.408	3.230	1.585	98.047	BS5&6A_L3_S1
333.3	49.627	51.779	2.000	14.277	10.232	6.394	10.519	3.205	1.595	97.848	BS5&6A L3 S2
288.3	50.012	51.748	1.981	14.259	10.364	6.354	10.426	3.229	1.639	98.264	BS5&6A_L3_S2
243.3	50.112	52.127	1.888	14.154	10.216	6.360	10.343	3.286	1.626	97.986	BS5&6A_L3_S2
198.3	49.787	52.026	1.794	14.104	10.531	6.289	10.405	3.253	1.598	97.761	BS5&6A_L3_S2
153.3	49.727	51.618	1.826	14.217	10.737	6.418	10.394	3.192	1.599	98.108	BS5&6A_L3_S2
108.3	49.374	51.155	1.984	14.282	10.949	6.456	10.371	3.154	1.649	98.220	BS5&6A_L3_S2
63.3	49.136	51.110	1.876	14.222	11.134	6.459	10.481	3.163	1.555	98.026	BS5&6A_L3_S2
18.3	48.545	50.606	1.891	14.294	11.398	6.546	10.617	3.075	1.573	97.940	BS5&6A_L3_S2
-26.7	48.436	50.714	1.845	14.238	11.640	6.512	10.547	3.025	1.480	97.722	BS5&6A_L3_S2
-71.7	47.783	50.043	1.930	14.350	11.887	6.669	10.649	3.016	1.455	97.740	BS5&6A_L3_S2
-116.7	47.855	49.670	1.969	14.299	12.411	6.649	10.559	3.003	1.441	98.185	BS5&6A_L3_S2
-161.7	47.514	49.331	2.060	14.418	12.591	6.588	10.571	2.969	1.473	98.183	BS5&6A_L3_S2
-206.7	47.183	49.518	1.945	14.482	12.535	6.528	10.468	3.034	1.490	97.665	BS5&6A_L3_S2
-251.7	47.480	49.181	2.007	14.457	12.695	6.713	10.504	2.978	1.466	98.300	BS5&6A_L3_S2
-296.7	47.055	48.942	2.059	14.420	12.802	6.677	10.623	2.952	1.525	98.112	BS5&6A_L3_S2
-341.7	47.345	49.232	1.966	14.334	12.829	6.579	10.463	3.077	1.521	98.112	BS5&6A_L3_S2
-431.7	47.296	49.023	1.966	14.444	12.794	6.690	10.516	2.987	1.581	98.273	BS5&6A_L3_S2
-476.7	47.031	48.999	1.951	14.398	13.031	6.649	10.445	3.025	1.503	98.032	BS5&6A_L3_S2
-576.7	47.087	49.057	1.965	14.316	13.087	6.543	10.502	2.988	1.543	98.029	BS5&6A_L3_S3
-676.7	47.303	49.329	1.983	14.328	12.956	6.468	10.409	2.984	1.543	97.974	BS5&6A_L3_S3
-776.7	47.293	48.847	2.012	14.273	13.158	6.657	10.524	3.014	1.516	98.446	BS5&6A_L3_S3
-876.7	47.216	48.749	1.977	14.361	13.113	6.672	10.507	3.030	1.591	98.467	BS5&6A_L3_S3
-976.7	47.249	48.814	1.893	14.381	13.287	6.612	10.514	2.979	1.519	98.435	BS5&6A_L3_S3
-1076.7	46.951	48.594	2.021	14.446	13.238	6.649	10.469	3.021	1.562	98.357	BS5&6A_L3_S3
-1176.7	46.998	49.214	1.870	14.326	13.047	6.612	10.352	3.051	1.529	97.784	BS5&6A_L3_S3

Table C14	4. BS7&8.	A									
X (µm)	SiO2	SiO2*	TiO2	Al2O3	FeO	MgO	CaO	Na2O	K2O	Total	Comment
1151.1	50.928	52.150	1.930	14.288	11.279	5.357	10.599	3.037	1.360	98.778	BS7&8A_L1_S1
1051.1	51.126	51.998	1.989	14.322	11.338	5.310	10.571	3.074	1.399	99.129	BS7&8A_L1_S1
951.1	51.010	51.900	1.981	14.331	11.360	5.318	10.672	3.049	1.391	99.110	BS7&8A_L1_S1
851.1	51.007	51.845	1.897	14.404	11.412	5.356	10.587	3.095	1.406	99.162	BS7&8A_L1_S1
751.1	50.987	52.008	1.993	14.186	11.289	5.361	10.681	3.110	1.372	98.979	BS7&8A_L1_S1
651.1	50.741	51.801	1.989	14.297	11.453	5.321	10.619	3.137	1.384	98.940	BS7&8A_L1_S1
551.1	50.638	52.033	1.850	14.114	11.376	5.491	10.474	3.226	1.435	98.604	BS7&8A_L1_S2
506.1	50.702	51.679	1.952	14.171	11.488	5.463	10.674	3.146	1.428	99.024	BS7&8A_L1_S2
461.1	50.698	51.817	1.856	14.189	11.572	5.521	10.411	3.175	1.460	98.881	BS7&8A_L1_S2
416.1	50.822	51.926	1.882	14.211	11.366	5.435	10.510	3.177	1.493	98.895	BS7&8A_L1_S2
371.1	50.583	51.722	1.979	14.203	11.318	5.534	10.569	3.193	1.482	98.861	BS7&8A_L1_S2
326.1	50.857	51.897	1.909	14.161	11.258	5.523	10.554	3.188	1.510	98.960	BS7&8A_L1_S2
281.1	50.668	51.827	1.847	14.148	11.204	5.716	10.618	3.185	1.456	98.842	BS7&8A_L1_S2
236.1	50.923	51.807	1.946	14.120	11.110	5.844	10.441	3.182	1.550	99.115	BS7&8A_L1_S2
191.1	50.480	51.885	1.863	14.205	11.087	5.833	10.429	3.181	1.517	98.594	BS7&8A_L1_S2
146.1	50.441	51.399	1.905	14.199	11.346	6.062	10.439	3.132	1.519	99.041	BS7&8A_L1_S2
101.1	49.936	51.022	1.882	14.267	11.471	6.267	10.486	3.123	1.483	98.914	BS7&8A_L1_S2
56.1	49.784	50.673	1.905	14.220	11.629	6.507	10.487	3.098	1.481	99.111	BS7&8A_L1_S2
11.1	49.483	50.097	1.915	14.426	11.742	6./51	10.596	3.026	1.448	99.386	BS/&8A_L1_S2
-33.9	49.228	49.96/	1.914	14.225	11.753	6.961	10.66/	3.046	1.46/	99.261	BS/&8A_L1_S2
-/8.9	48.511	49.734	1.991	14.212	11.730	7.240	10.744	2.899	1.444	98.///	BS/&8A_L1_S2
-123.9	48.401	49.933	1.933	14.301	11./12	7.492	10.655	2.836	1.338	98.46/	BS/&8A_L1_S2
-108.9	48.388	49.459	2 000	14.217	11.95/	7.482	10.729	2.8/8	1.30/	98.930	$BS/\alpha \delta A_{L1}S2$
-213.9	40.101	49.109	2.000	14.222	11.001	7.007	10.830	2.915	1.419	90.992	BS7&6A_L1_S2 BS7&6A_L1_S2
-238.9	40.129	49.000	1.991	14.309	11.794	7.840	10.720	2.950	1 200	99.009	BS7&8A_L1_S2
-348.0	47.741	49.274	2 004	14.204	11.841	7.040	10.003	2.912	1.399	98.407	B\$7&8A_L1_S2 B\$7&8A_L1_\$2
-393.9	47.074	49 204	1 889	14.107	11.300	8 030	10.474	2.900	1.421	98 755	B\$7&8A_L1_S2
-438.9	47.938	49.044	1.889	14.167	11.720	8.053	10.472	2.901	1.435	98.690	B\$7&8A_L1_S2 B\$7&8A_L1_S2
-538.9	47 517	49.058	1.000	14.107	11.04)	7 970	10.044	2.911	1.440	98 4 58	BS7&8A_L1_S2
-638.9	47 700	49 294	1.901	14 318	11 473	8 1 5 2	10.190	2.925	1 449	98 406	BS7&8A_L1_S3
-738.9	47 964	48 993	1.875	14 306	11.644	8 185	10.561	2.962	1 473	98 971	BS7&8A_L1_S3
-838.9	47.601	49.206	1.904	14.062	11.646	8.126	10.570	2.980	1.506	98.395	BS7&8A L1 S3
-938.9	47.707	48.871	1.913	14.189	11.643	8.262	10.645	2.994	1.483	98.836	BS7&8A_L1_S3
-1038.9	47.593	48.706	1.973	14.294	11.697	8.289	10.548	3.007	1.486	98.887	BS7&8A L1 S3
-1138.9	47.891	49.114	1.925	14.164	11.589	8.108	10.604	3.014	1.483	98.777	BS7&8A L1 S3
-1238.9	47.747	49.256	1.873	14.153	11.579	8.149	10.466	3.013	1.511	98.492	BS7&8A L1 S3
1120.2	50.737	52.258	2.033	14.152	11.265	5.331	10.586	3.004	1.371	98.479	BS7&8A L2 S1
1020.2	50.776	52.073	1.929	14.294	11.277	5.429	10.530	3.076	1.392	98.703	BS7&8A_L2_S1
920.2	50.893	51.973	1.945	14.211	11.415	5.390	10.584	3.111	1.372	98.920	BS7&8A_L2_S1
820.2	50.741	51.824	1.998	14.255	11.390	5.388	10.642	3.073	1.431	98.916	BS7&8A_L2_S1
720.2	50.458	52.007	1.955	14.142	11.337	5.371	10.704	3.086	1.400	98.452	BS7&8A_L2_S1
620.2	50.655	51.958	1.996	14.282	11.329	5.405	10.500	3.135	1.396	98.697	BS7&8A_L2_S1
520.2	50.668	51.621	1.915	14.421	11.359	5.476	10.550	3.190	1.467	99.047	BS7&8A_L2_S1
420.2	50.604	51.932	1.946	14.197	11.218	5.430	10.739	3.087	1.451	98.672	BS7&8A_L2_S2
375.2	50.734	51.774	1.945	14.164	11.255	5.542	10.653	3.187	1.480	98.960	BS7&8A_L2_S2
330.2	50.653	52.106	1.957	14.070	11.139	5.542	10.462	3.222	1.503	98.547	BS7&8A_L2_S2
285.2	50.660	51.945	1.867	14.167	11.062	5.718	10.557	3.201	1.483	98.716	BS7&8A_L2_S2
240.2	50.337	51.593	1.940	14.402	11.099	5.815	10.509	3.152	1.490	98.744	BS7&8A_L2_S2
195.2	50.395	51.328	1.912	14.316	11.220	5.957	10.581	3.188	1.500	99.068	BS7&8A_L2_S2
105.2	50.115	51.291	1.828	14.175	11.366	6.190	10.456	3.133	1.562	98.824	BS7&8A_L2_S2
60.2	49.645	50.800	1.894	14.246	11.381	6.471	10.614	3.092	1.503	98.845	BS7&8A_L2_S2
15.2	49.205	50.500	1.895	14.155	11.601	6.821	10.601	3.017	1.410	98.706	BS/&8A_L2_S2
-29.8	48.890	50.274	1.954	14.303	11.664	0.948	10.493	2.986	1.5/8	98.616	BS/&8A_L2_S2
-/4.8	48.439	49.932	1.952	14.229	11.030	1.1/2	10.726	2.95/	1.402	98.308	$BS/\alpha 8A_L2_S2$
-119.8	40.230	49.491	1.930	14.204	11.804	1.334	10.841	2.910	1.380	90./43 00.022	$DS/\alpha\delta A_L2_S2$ $BS786A_L2_S2$
-104.8	40.019	40.99/	1.962	14.3/0	11.900	1.039 7 670	10.080	2.090	1.407	99.022 08.015	DS/00A_L2_S2
-209.8	41.938 18 Noo	47.043 10 261	2.001 1.040	14.383	11.022 11.720	1.0/8 7.611	10.748	2.920	1.403	70.713 08 771	DS/00A_L2_S2 BS78281 12 52
-234.8	40.000 47 825	47.304 20 517	1.940	14.301	11./30	7 800	10.750	2.009 2.009	1.393	90.124 98 702	BS7& 8A ID SD
-2/9.0	47 800	49 394	1.205	14.520	11 807	7 953	10.402	2.900	1 402	98 <u>4</u> 06	BS7&8A 12 S2
1 217.0	17.000	17.574	1.075	11.202	11.007		10.110	<u></u>	1.104	20.100	20, worr_D2_02

	380.8	17 067	18 803	1 0 8 0	1/ 370	11 850	8 006	10 601	2862	1 412	00.075	BS7881 12 S2
	-309.0	47.907	40.095	1.909	14.579	11.039	8.000 7.010	10.001	2.002	1.412	99.075	DS/COA_L2_S2
	-434.8	47.381	49.122	1.932	14.205	11.09/	/.919	10.000	2.9/1	1.470	98.439	BS/@8A_L2_S2
	-4/9.8	4/.619	49.290	1.990	14.275	11.561	8.044	10.481	2.905	1.453	98.329	BS/&8A_L2_S2
	-524.8	48.048	49.202	1.987	14.229	11.569	8.165	10.484	2.880	1.485	98.846	BS/&8A_L2_S2
	-569.8	47.982	48.810	1.954	14.242	11.716	8.232	10.591	2.957	1.497	99.172	BS7&8A_L2_S2
	-669.8	47.973	48.782	2.002	14.326	11.621	8.178	10.690	2.924	1.477	99.191	BS7&8A_L2_S3
	-769.8	47.972	49.127	1.928	14.225	11.437	8.384	10.460	2.993	1.447	98.846	BS7&8A_L2_S3
	-869.8	47.813	48.879	2.039	14.281	11.583	8.135	10.584	3.023	1.475	98.934	BS7&8A_L2_S3
	-969.8	47.994	48.977	1.919	14.348	11.471	8.250	10.514	2.980	1.540	99.016	BS7&8A L2 S3
	-1069.8	47.723	49.102	2.007	14.307	11.393	8.213	10.561	2.970	1.447	98.621	BS7&8A L2 S3
	-1169.8	48 005	49 228	1 921	14 346	11 445	8 1 9 2	10 427	2,973	1 468	98 777	BS7&8A_L2_S3
	1180 3	51 064	52 192	1 959	14 289	11 216	5 402	10 495	3 055	1 391	98 872	BS7&8A_L3_S1
	1080.3	51.001	51.815	1 931	14 322	11.210	5 391	10.669	3 073	1 378	99 217	B\$7&84 I 3 S1
	980.3	50.944	51.015	1.931	14.522	11.421	5 370	10.007	3.054	1.370	00 188	B\$7&8A_L3_S1
	200.5	50.944	51.020	1.747	14 151	11.450	5 200	10.004	2 004	1.301	00.066	DS7&0A_L3_S1
	000.5 700.2	50.071	51.950	2.010	14.131	11.300	5.398	10.085	2.002	1.3//	98.900	DS7&0A_L3_S1
	/80.3	50.971	51.981	1.950	14.274	11.305	5.550	10.625	3.093	1.383	98.990	BS/&8A_L3_S1
	680.3	50.883	52.258	1.929	14.133	11.331	5.364	10.477	3.072	1.437	98.625	BS/&8A_L3_S1
	580.3	50.660	51.539	1.944	14.408	11.448	5.454	10.684	3.115	1.408	99.121	BS7&8A_L3_S1
	480.3	50.783	52.002	1.922	14.176	11.330	5.457	10.520	3.182	1.411	98.781	BS7&8A_L3_S2
	435.3	50.648	51.786	1.934	14.205	11.354	5.506	10.639	3.171	1.406	98.863	BS7&8A_L3_S2
	390.3	50.824	51.843	1.902	14.197	11.294	5.496	10.646	3.178	1.444	98.981	BS7&8A_L3_S2
	345.3	50.631	51.673	1.908	14.243	11.352	5.564	10.493	3.286	1.482	98.958	BS7&8A_L3_S2
	300.3	50.580	51.542	1.914	14.226	11.376	5.666	10.596	3.159	1.522	99.038	BS7&8A L3 S2
	255.3	50.704	51.685	1.920	14.259	11.234	5.686	10.512	3.220	1.484	99.019	BS7&8A L3 S2
	210.3	50.711	51.372	1.885	14.373	11.274	5.862	10.454	3.265	1.515	99.339	BS7&8A L3 S2
	165.3	50.349	51.345	1.895	14.296	11.166	6.036	10.463	3.191	1.610	99.004	BS7&8A L3 S2
	120.3	50.386	51.657	1.865	14.168	10.977	6.140	10.509	3.157	1.526	98.729	BS7&8A L3 S2
	75.3	50.125	50.894	1.890	14.274	11.334	6.356	10.619	3.141	1.492	99.231	BS7&8A_L3_S2
	30.3	49 421	50 674	1 914	14 212	11 364	6 727	10 543	3 085	1 482	98 748	BS7&8A_L3_S2
	-14 7	49 395	50 342	1 909	14 258	11.201	6.873	10.670	3 047	1 444	99.053	B\$7&8A_L3_S2
	-59.7	49 034	49 975	2 030	14 211	11.670	7 040	10.661	2 989	1 425	99.060	BS7&8A_L3_S2
	-104 7	48 589	49 697	1 964	14 278	11.782	7 1 9 9	10.757	2.907	1.125	98 892	B\$7&84 I 3 \$2
	-104.7	40.000	40.747	1.007	14.192	11.762	7.177	10.757	2.907	1 202	00.672	$DS7@SA_L5_S2$ $DS7@SA_L2_S2$
	-149.7	40.393	49.747	1.907	14.162	11.000	7.373	10.010	2.919	1.392	00.040	DS7&0A_L3_S2
	-194.7	40.330	49.373	1.950	14.200	11.005	7.708	10.046	2.075	1.394	90.937	DS7&0A_L3_S2
	-239.7	48.333	49.220	2.029	14.250	11.800	7.042	10.000	2.80/	1.338	99.109	BS/&8A_L3_S2
	-284.7	48.330	49.189	1.926	14.164	11.8/8	7.843	10.739	2.884	1.3/8	99.141	BS/&8A_L3_S2
	-329.7	47.978	48.962	1.907	14.313	11.874	7.846	10.739	2.916	1.444	99.016	BS7&8A_L3_S2
	-374.7	48.078	49.260	1.880	14.151	11.854	7.929	10.617	2.867	1.442	98.819	BS/&8A_L3_S2
	-419.7	48.202	49.089	1.847	14.172	11.765	7.976	10.656	2.996	1.498	99.113	BS7&8A_L3_S2
	-464.7	48.112	49.118	1.893	14.289	11.756	7.945	10.648	2.922	1.429	98.994	BS7&8A_L3_S2
	-509.7	47.805	48.806	1.970	14.246	11.799	8.137	10.629	2.988	1.426	98.998	BS7&8A_L3_S2
	-609.7	48.189	48.961	1.919	14.293	11.803	8.124	10.470	2.955	1.475	99.228	BS7&8A_L3_S3
	-709.7	47.928	48.750	1.997	14.294	11.716	8.195	10.493	2.996	1.558	99.178	BS7&8A_L3_S3
	-809.7	48.005	48.716	1.944	14.225	11.727	8.136	10.748	3.015	1.488	99.289	BS7&8A L3 S3
	-909.7	48.217	48.767	2.024	14.188	11.753	8.173	10.629	2.964	1.502	99.450	BS7&8A L3 S3
	-1009.7	48.124	48.781	1.967	14.204	11.758	8.170	10.536	3.041	1.544	99.344	BS7&8A L3 S3
	-1109.7	47.838	48,988	1.864	14.255	11.620	8.159	10.557	3.046	1.511	98,850	BS7&8A_L3_S3
	-1209 7	47 975	49 536	1 835	14 142	11 411	8 077	10 424	3 077	1 498	98 4 39	BS7&8A_L3_S3
IJ					· · · · · · · · · · · · · · · · · · ·		0.011	- · · · - ·	2.011	1.1/0	/ 0.10/	

Table C1	5. BS9&1	0A									
X(µm)	SiO2	SiO2*	TiO2	Al2O3	FeO	MgO	CaO	Na2O	K2O	Total	Comment
1003.6	50.578	51.905	1.821	14.172	11.449	6.681	9.063	3.225	1.686	98.673	BS9&10A_L1_S1
903.6	50.659	52.034	1.871	14.349	11.144	6.519	9.167	3.289	1.626	98.625	BS9&10A_L1_S1
803.6	50.684	51.711	2.012	14.384	11.213	6.479	9.214	3.331	1.657	98.973	BS9&10A_L1_S1
703.6	50.777	51.954	1.979	14.358	11.056	6.571	9.132	3.350	1.601	98.823	BS9&10A_L1_S1
603.6	50.669	51.904	1.920	14.353	11.132	6.520	9.203	3.339	1.630	98.765	BS9&10A_L1_S1
503.6	50.724	52.046	1.900	14.296	11.115	6.455	9.186	3.408	1.594	98.677	BS9&10A_L1_S2
458.6	50.490	52.157	1.936	14.280	11.027	6.382	9.188	3.420	1.611	98.333	BS9&10A_L1_S2
413.6	50.547	52.114	1.904	14.141	11.082	6.553	9.269	3.339	1.598	98.433	BS9&10A_L1_S2
368.6	50.486	51.740	1.946	14.350	11.169	6.619	9.162	3.383	1.632	98.746	BS9&10A_L1_S2
323.6	50.532	51.694	1.992	14.339	11.055	6.583	9.291	3.389	1.656	98.837	BS9&10A_L1_S2
278.6	50.505	51.885	1.948	14.273	11.049	6.453	9.336	3.393	1.663	98.620	BS9&10A_L1_S2
233.6	50.341	51.638	1.961	14.312	11.002	6.535	9.471	3.427	1.655	98.703	BS9&10A_L1_S2
188.6	50.458	51.617	1.956	14.190	10.988	6.553	9.670	3.356	1.670	98.841	BS9&10A_L1_S2
143.6	50.236	51.789	1.989	14.202	10.878	6.429	9.748	3.282	1.684	98.447	BS9&10A_L1_S2
98.6	50.070	51.520	1.890	14.220	11.047	6.521	9.898	3.246	1.658	98.550	BS9&10A_L1_S2
53.6	49.436	51.095	1.880	14.252	11.190	6.489	10.258	3.205	1.631	98.341	BS9&10A_L1_S2
8.6	49.227	50.627	1.919	14.207	11.297	6.647	10.638	3.123	1.541	98.601	BS9&10A_L1_S2
-36.4	48.754	50.189	1.976	14.174	11.531	6.727	10.873	3.045	1.485	98.564	BS9&10A_L1_S2
-81.4	48.258	49.889	2.125	14.163	11.626	6.793	10.965	2.975	1.465	98.370	BS9&10A_L1_S2
-126.4	47.969	49.699	2.000	14.343	11.394	6.801	11.350	2.919	1.495	98.270	BS9&10A_L1_S2
-1/1.4	47.972	49.689	1.944	14.140	11./3/	6./64	11.378	2.894	1.453	98.283	BS9&10A_L1_S2
-216.4	48.101	49.448	2.069	14.198	11.5/3	6.759	11.512	2.928	1.486	98./13	BS9&10A_L1_S2
-201.4	48.165	49.552	2.009	14.155	11.604	6.758	11.516	2.912	1.496	98.613	BS9&10A_L1_S2
-300.4	47.870	49.015	1.995	14.138	11.394	0./01	11.095	2.894	1.515	98.255	BS9&10A_L1_S2
-551.4	47.970	49.407	1.954	14.203	11.441	6.657	11.012	2.930	1.570	90.400	DS9&10A_L1_S2
-390.4	47.990	49.330	1.907	14.122	11.490	6 726	11.054	2.049	1.550	90.400	BS9&10A_L1_S2 BS0&10A_L1_S2
-441.4	47.997	49.324	1.958	14.177	11.515	6.640	11.902	2.924	1.010	98.075	BS9&10A_L1_S2 BS9&10A_L1_S2
-586.4	47.835	49.470	2.052	14.212	11.271	6 6 4 5	11.941	2.979	1.505	98 715	BS9&10A_L1_S2 BS9&10A_L1_S3
-686.4	47.837	49 261	1.930	14.005	11.300	6 702	11.990	3 030	1.008	98 553	BS9&10A_L1_S3
-786.4	47.850	49 372	1 988	14.103	11.374	6 771	11.955	2 983	1.503	98 478	BS9&10A_L1_S3
-886.4	47 798	49.055	2.007	14 148	11 441	6 764	11.071	3 034	1.505	98 743	BS9&10A_L1_S3
-986.4	47.964	49.109	2.035	14.262	11.335	6.674	12.067	2.993	1.526	98.855	BS9&10A L1 S3
-1086.4	47.991	49.164	2.075	14.089	11.358	6.711	12.081	2.983	1.539	98.827	BS9&10A L1 S3
-1186.4	47.984	49.160	1.950	14.148	11.342	6.868	12.016	2.962	1.555	98.823	BS9&10A L1 S3
977.0	50.500	51.821	1.965	14.359	11.252	6.568	9.189	3.198	1.648	98.679	BS9&10A L2 S1
877.0	50.458	51.828	1.887	14.313	11.230	6.623	9.250	3.239	1.631	98.630	BS9&10A L2 S1
777.0	50.469	51.912	1.880	14.345	11.295	6.590	9.053	3.298	1.627	98.557	BS9&10A L2 S1
677.0	50.591	51.800	1.913	14.335	11.322	6.511	9.124	3.321	1.675	98.791	BS9&10A L2 S1
577.0	50.456	52.446	1.941	14.203	10.981	6.383	9.059	3.328	1.659	98.010	BS9&10A_L2_S1
477.0	50.377	51.925	1.948	14.262	11.102	6.518	9.213	3.377	1.654	98.452	BS9&10A_L2_S2
432.0	50.515	51.868	1.975	14.308	11.089	6.546	9.175	3.394	1.645	98.648	BS9&10A_L2_S2
387.0	50.626	52.233	1.955	14.227	11.107	6.418	9.124	3.303	1.634	98.393	BS9&10A_L2_S2
342.0	50.395	51.940	2.013	14.306	11.042	6.416	9.248	3.382	1.653	98.455	BS9&10A_L2_S2
297.0	50.403	51.842	1.930	14.378	11.013	6.441	9.270	3.404	1.724	98.561	BS9&10A_L2_S2
252.0	50.511	52.127	1.889	14.113	11.021	6.358	9.375	3.416	1.702	98.384	BS9&10A_L2_S2
207.0	50.287	51.942	1.947	14.155	10.998	6.442	9.398	3.371	1.748	98.345	BS9&10A_L2_S2
162.0	50.184	51.776	1.911	14.237	10.914	6.355	9.738	3.329	1.740	98.408	BS9&10A_L2_S2
117.0	50.261	51.791	1.816	14.170	10.950	6.478	9.789	3.339	1.667	98.470	BS9&10A_L2_S2
72.0	50.150	51.263	1.913	14.172	11.124	6.425	10.129	3.234	1.740	98.887	BS9&10A_L2_S2
27.0	49.391	51.157	1.980	14.123	11.099	6.522	10.287	3.173	1.661	98.235	BS9&10A_L2_S2
-18.0	48.930	50.432	1.964	14.185	11.341	6.654	10.759	3.132	1.533	98.497	BS9&10A_L2_S2
-63.0	48.445	50.003	2.060	14.078	11.554	6.688	11.057	2.987	1.574	98.442	BS9&10A_L2_S2
-108.0	48.213	49.526	2.049	14.210	11.751	6.863	11.089	2.994	1.519	98.687	BS9&10A_L2_S2
-153.0	47.860	49.584	2.029	14.190	11.654	0./98	11.387	2.913	1.446	98.277	B59&10A_L2_S2
-198.0	47.900	49.050	2.055	14.181	11.040	0.0/0	11.419	2.908	1.4/2	98.250	B59&10A_L2_S2
-243.0	41.821	49.314	1.915	14.110	11./14	0./43	11.33/	2.890	1.300	98.313 07.000	DSY&10A_L2_S2
-288.0	47.020	47.045 10.202	1.9/2	14.158	11.40/	0.03/	11.000	2.943 2 010	1.510	91.898 08 510	BS0&10A_L2_S2
-355.0	47.730	47.382 10.622	1.969	14.104	11.090	0.0/1	11./80	2.04ð 2.806	1.404	70.J40 08 006	BS0&10A_L2_52
-378.0	47.729	49.033	2 017	14.120	11.347	6 6 5 8	11.730	2.090 2.871	1.505	98.090	BS9&10A_L2_S2
-25.0	17.700	17.540	2.017	11.107	11.577	0.050	11.0/2	2.071	1.540	JU.2-TU	DDDC1011_D2_D2

-468.0	47.642	49.354	2.011	14.029	11.522	6.743	11.893	2.893	1.556	98.289	BS9&10A_L2_S2
-513.0	47.789	49.395	2.003	14.048	11.409	6.774	11.914	2.945	1.511	98.394	BS9&10A_L2_S2
-613.0	47.689	49.549	1.988	13.958	11.322	6.712	12.022	2.944	1.505	98.140	BS9&10A_L2_S3
-713.0	47.762	49.300	2.028	14.126	11.514	6.745	11.824	2.914	1.549	98.463	BS9&10A_L2_S3
-813.0	47.620	49.247	2.037	14.131	11.439	6.636	11.990	2.965	1.556	98.373	BS9&10A_L2_S3
-913.0	47.878	49.086	2.004	14.255	11.500	6.825	11.876	2.933	1.520	98.791	BS9&10A_L2_S3
-1013.0	47.879	49.004	2.020	14.190	11.482	6.690	12.092	2.997	1.525	98.874	BS9&10A_L2_S3
-1113.0	48.017	49.235	1.981	14.142	11.537	6.727	11.933	2.949	1.496	98.782	BS9&10A_L2_S3
-1213.0	47.894	49.271	1.957	14.225	11.342	6.763	11.920	3.007	1.515	98.622	BS9&10A L2 S3
979.0	50.337	51.919	1.948	14.216	11.357	6.553	9.217	3.188	1.602	98.418	BS9&10A_L3_S1
879.0	50.492	52.018	1.942	14.174	11.359	6.566	9.111	3.221	1.609	98.474	BS9&10A_L3_S1
779.0	50.423	51.972	2.047	14.387	11.116	6.640	9.017	3.202	1.620	98.451	BS9&10A_L3_S1
679.0	50.342	52.296	1.927	14.122	11.115	6.568	9.121	3.257	1.595	98.046	BS9&10A_L3_S1
579.0	50.174	52.033	1.975	14.198	11.104	6.553	9.157	3.372	1.607	98.140	BS9&10A_L3_S1
479.0	50.280	52.002	1.965	14.226	11.202	6.609	9.147	3.319	1.529	98.278	BS9&10A L3 S2
434.0	50.284	52.112	1.925	14.194	11.062	6.599	9.194	3.327	1.587	98.172	BS9&10A L3 S2
389.0	50.167	51.800	1.972	14.356	11.135	6.550	9.300	3.300	1.586	98.367	BS9&10A L3 S2
344.0	50.122	51.669	2.014	14.187	11.235	6.590	9.283	3.363	1.659	98.453	BS9&10A L3 S2
299.0	50.270	51.475	1.970	14.301	11.142	6.725	9.408	3.394	1.584	98.795	BS9&10A L3 S2
254.0	50.107	51.347	1.988	14.230	11.195	6.578	9.711	3.296	1.655	98.761	BS9&10A L3 S2
209.0	49.958	51.646	1.957	14.099	11.099	6.644	9.534	3.354	1.667	98.312	BS9&10A L3 S2
164.0	49.938	51.442	1.925	14.300	11.142	6.478	9.664	3.373	1.676	98.496	BS9&10A L3 S2
119.0	49.912	51.535	1.855	14.234	10.995	6.473	9.976	3.277	1.655	98.377	BS9&10A L3 S2
74.0	49.667	51.255	1.928	14.057	11.140	6.690	10.023	3.247	1.658	98.411	BS9&10A L3 S2
29.0	49.354	50.821	1.958	14.170	11.307	6.557	10.346	3.167	1.674	98.533	BS9&10A L3 S2
-16.0	48.721	50.697	1.955	13.951	11.460	6.711	10.645	3.041	1.540	98.024	BS9&10A L3 S2
-61.0	48.337	49.999	1.912	14.152	11.624	6.835	10.908	3.018	1.552	98.338	BS9&10A L3 S2
-106.0	47.904	49.549	2.070	14.240	11.716	6.820	11.224	2.924	1.458	98.355	BS9&10A L3 S2
-151.0	47.860	49.398	2.058	14.179	11.760	6.841	11.256	2.978	1.532	98.462	BS9&10A L3 S2
-196.0	47.865	49.416	1.915	14.214	11.781	6.762	11.561	2.872	1.480	98.449	BS9&10A L3 S2
-241.0	47.901	49.424	1.950	14.157	11.705	6.851	11.554	2.865	1.495	98.477	BS9&10A L3 S2
-286.0	47.867	49.590	1.994	14.108	11.562	6.715	11.597	2.921	1.514	98.277	BS9&10A_L3_S2
-331.0	47.699	49.349	2.005	14.156	11.568	6.691	11.805	2.901	1.525	98.350	BS9&10A L3 S2
-376.0	47.712	49.438	1.953	14.144	11.468	6.646	11.983	2.873	1.494	98.274	BS9&10A L3 S2
-421.0	47.449	49.202	1.989	14.169	11.473	6.648	12.011	2.927	1.581	98.246	BS9&10A L3 S2
-466.0	47.692	49.489	1.987	14.071	11.453	6.661	11.788	2.993	1.559	98.203	BS9&10A L3 S2
-511.0	47.670	49.439	1.995	14.129	11.284	6.705	12.019	2.903	1.526	98.231	BS9&10A L3 S2
-611.0	47.611	49.227	2.034	14.099	11.529	6.660	11.937	2.941	1.574	98.384	BS9&10A L3 S3
-711.0	47.653	49.446	1.968	14.055	11.371	6.615	12.020	2.919	1.606	98.207	BS9&10A L3 S3
-811.0	47.788	49.288	1.904	14.174	11.431	6.637	11.946	3.034	1.586	98.500	BS9&10A L3 S3
-911.0	47.863	49.236	1.942	14.127	11.496	6.589	12.009	3.052	1.550	98.626	BS9&10A L3 S3
-1011.0	47.602	49.329	2.040	14.100	11.446	6.619	11.882	3.023	1.563	98.274	BS9&10A L3 S3
-1111.0	47.769	48.969	1.983	14.164	11.485	6.715	12.069	3.017	1.598	98.800	BS9&10A L3 S3
-1211.0	47.865	49.603	2.033	14.105	11.262	6.655	11.803	2.985	1.554	98.262	BS9&10A_L3_S3

Table C10	6. BS11&	12A									
X(µm)	SiO2	SiO2*	TiO2	Al2O3	FeO	MgO	CaO	Na2O	K2O	Total	Comment
1191.0	50.406	51.974	2.002	14.184	11.409	6.811	10.479	1.611	1.530	98.432	BS11&12A_L1_S1
1091.0	50.617	51.915	2.019	14.053	11.435	6.761	10.711	1.571	1.534	98.702	BS11&12A_L1_S1
991.0	50.550	52.180	1.950	14.025	11.408	6.807	10.477	1.591	1.563	98.370	BS11&12A_L1_S1
891.0	50.301	52.064	1.967	13.975	11.469	6.666	10.563	1.660	1.636	98.237	BS11&12A_L1_S1
791.0	50.348	52.261	1.980	14.007	11.256	6.768	10.488	1.662	1.579	98.087	BS11&12A_L1_S1
691.0	50.398	52.334	1.992	13.905	11.392	6.680	10.432	1.730	1.534	98.064	BS11&12A_L1_S1
591.0	50.537	52.295	1.964	14.056	11.231	6.594	10.511	1.792	1.557	98.242	BS11&12A_L1_S1
491.0	50.256	51.943	1.992	13.884	11.272	6.749	10.676	1.889	1.596	98.314	BS11&12A_L1_S1
391.0	50.240	52.067	2.002	13.974	11.265	6.652	10.398	2.084	1.559	98.173	BS11&12A_L1_S2
348.0	50.408	51.864	2.019	13.904	11.196	6.737	10.441	2.220	1.619	98.544	BS11&12A_L1_S2
305.0	50.175	52.140	2.042	13.859	11.121	6.581	10.398	2.237	1.621	98.035	BS11&12A_L1_S2
262.0	50.375	51.999	2.030	13.873	11.081	6.591	10.486	2.407	1.534	98.377	BS11&12A_L1_S2
219.0	50.373	52.002	1.998	13.813	11.162	6.557	10.333	2.486	1.650	98.371	BS11&12A_L1_S2
176.0	50.386	52.299	1.928	13.662	10.928	6.603	10.443	2.553	1.584	98.087	BS11&12A_L1_S2
133.0	50.337	51.867	2.011	14.011	10.802	6.676	10.306	2.748	1.579	98.471	BS11&12A_L1_S2
90.0	50.426	51.789	1.969	13.785	10.889	6.596	10.508	2.850	1.613	98.637	BS11&12A_L1_S2
4.0	49.865	51.740	1.994	13.731	10.995	6.628	10.328	3.014	1.572	98.126	BSII&I2A_L1_S2
-6.0	49.169	50.952	1.981	13.904	11.351	6.715	10.520	3.087	1.491	98.217	BSII&I2A_LI_S3
-51.0	48.672	50.242	1.945	14.129	11.585	6.813	10.662	3.155	1.469	98.430	BSII&I2A_LI_S3
-96.0	48.384	49.918	2.006	14.185	11.650	6.908	10.528	3.281	1.524	98.466	BS11&12A_L1_S3
-141.0	48.138	49.54/	2.055	14.152	11.829	6.902	10./12	3.387	1.41/	98.591	BS11&12A_L1_S3
-186.0	48.206	49.501	2.073	14.277	11./90	6.808	10.527	3.525	1.498	98.704	BSI1&12A_L1_S3
-231.0	48.218	49.496	2.045	14.223	11.694	6.934	10.600	3.5/5	1.434	98.722	BSI1&12A_L1_S3
-2/0.0	48.104	49.700	2.054	14.195	11.551	0./39	10.499	3.080 2.754	1.490	98.398	BS11&12A_L1_S3
-521.0	47.940	49.039	2.031	12.004	11.001	0.833	10.574	2 8 2 2	1.323	98.281	DS11&12A_L1_S5
-500.0	40.010	49.930	2.016	13.994	11.550	6.611	10.595	5.025 1 232	1.400	98.000	BS11&12A_L1_S5 BS11&12A_L1_S4
-011.0	47.072	49.414	2.010	14.070	11.015	6 7 2 3	10.505	4.232	1.555	98.238	BS11&12A_L1_S4
-811.0	47.707	49.160	2 013	14.100	11.501	6 719	10.588	4.340	1.511	90.327	BS11&12A_L1_54 BS11&12A_L1_54
-911.0	47.000	49.061	1 973	13 897	11.505	6 758	10.630	4.387	1.520	98.661	BS11&12A_L1_S4
-1011.0	47.723	49.150	1.973	14 073	11.04)	6713	10.050	4 506	1.585	98 641	BS11&12A_L1_S4
-111110	47 784	49 165	1 993	13 899	11.561	6 669	10.511	4 4 4 9	1.511	98 619	BS11&12A_L1_S4
-1211.0	47 847	49 342	1 982	13 897	11 516	6714	10.500	4 481	1 541	98 505	BS11&12A_L1_S4
1156.3	50.877	52.492	1.893	13.976	11.291	6.767	10.442	1.580	1.559	98.385	BS11&12A L2 S1
956.3	50.825	52.127	2.050	13.981	11.431	6.723	10.566	1.558	1.564	98.698	BS11&12A L2 S1
856.3	50.756	51.834	1.969	14.125	11.459	6.783	10.560	1.634	1.637	98.923	BS11&12A L2 S1
756.3	50.750	51.838	1.985	14.020	11.583	6.736	10.525	1.679	1.633	98.912	BS11&12A L2 S1
656.3	50.921	52.003	1.987	13.914	11.457	6.666	10.584	1.718	1.672	98.919	BS11&12A_L2_S1
556.3	50.774	51.948	2.047	13.997	11.440	6.669	10.522	1.838	1.540	98.826	BS11&12A_L2_S1
456.3	50.731	51.802	1.958	14.185	11.272	6.705	10.615	1.916	1.546	98.929	BS11&12A_L2_S1
356.3	50.680	51.889	1.906	13.961	11.384	6.642	10.472	2.148	1.598	98.791	BS11&12A_L2_S2
309.3	50.766	51.883	1.961	13.976	11.186	6.650	10.508	2.207	1.629	98.883	BS11&12A_L2_S2
262.3	50.687	52.053	1.946	13.868	11.117	6.634	10.450	2.304	1.628	98.634	BS11&12A_L2_S2
215.3	50.696	51.892	1.988	13.993	11.095	6.592	10.407	2.446	1.588	98.805	BS11&12A_L2_S2
168.3	50.657	51.924	1.921	13.937	11.056	6.588	10.400	2.571	1.603	98.733	BS11&12A_L2_S2
121.3	50.736	52.073	1.939	13.868	11.021	6.527	10.249	2.710	1.613	98.662	BS11&12A_L2_S2
74.3	50.658	52.057	1.968	13.758	10.917	6.576	10.256	2.827	1.640	98.600	BS11&12A_L2_S2
27.3	50.507	51.977	1.991	13.779	10.891	6.533	10.173	3.026	1.630	98.529	BS11&12A_L2_S2
-19.7	50.234	51.536	1.960	13.8/2	10.986	6.526	10.358	3.118	1.645	98.698	BS11&12A_L2_S2
-25.7	49.970	51.023	1.948	14.066	11.225	6.601	10.510	3.079	1.549	98.94/	BS11&12A_L2_S3
-/0./	49.086	50.129	2.052	14.128	11.619	6.826	10.511	3.208	1.527	98.95/	BS11&12A_L2_S3
-115./	48.658	49.8/1	2.0//	14.170	11.5/0	6.911	10.60/	3.275	1.520	98.788	BSI1&12A_L2_S3
-100.7	48.434	49.033	2.000	14.180	11.093	0.832 6 701	10.078	2.560	1.300	98./99	DS11&12A_L2_S3
-203.7	40.411	49.123	1.999 2.010	14.249	11.300	6822	10.580	3.509	1.494	90.000 00 102	BS11&12A_L2_53 BS11&12A_L2_53
-230.7	40.030	47.334 40 706	2.019	14.231	11.724	6 725	10.551	3.030	1.509	99.103	BS11&12A_L2_55 BS11&12A_L2_55
-2/3.7	48 741	49 874	2.010	14.101	11 545	6 747	10.300	3 776	1.517	98 367	BS11&12A_L2_SS
-385 7	48 364	49 555	1 937	14 140	11.545	6.830	10.445	3 902	1.524	98 808	BS11&12A_L2_SS
-430.7	48 370	49 675	1 977	13 978	11 507	6 697	10.610	4 019	1 537	98 695	BS11&12A_L2_SS
-530.7	48 290	49 432	2.013	14 102	11 452	6.757	10 533	4.167	1.544	98 858	BS11&12A L2 S4
-630.7	48.306	49.802	2.012	14.028	11.281	6.709	10.430	4.220	1.518	98.504	BS11&12A L2 S4

-730.7	48.270	49.326	1.998	13.989	11.459	6.751	10.557	4.365	1.555	98.944	BS11&12A_L2_S4
-830.7	48.013	49.393	1.970	14.104	11.378	6.663	10.561	4.399	1.532	98.619	BS11&12A_L2_S4
-930.7	48.099	49.550	1.963	13.987	11.361	6.645	10.553	4.427	1.514	98.549	BS11&12A_L2_S4
-1030.7	48.144	49.209	1.972	14.190	11.414	6.678	10.552	4.457	1.528	98.935	BS11&12A_L2_S4
-1130.7	48.332	49.527	2.010	14.013	11.396	6.644	10.445	4.434	1.531	98.805	BS11&12A_L2_S4
-1230.7	48.331	49.364	2.028	14.018	11.503	6.676	10.451	4.431	1.530	98.968	BS11&12A_L2_S4
1164.6	51.033	52.047	1.990	14.051	11.400	6.846	10.523	1.573	1.570	98.986	BS11&12A_L3_S1
1064.6	50.926	52.264	2.020	14.020	11.292	6.758	10.497	1.600	1.551	98.662	BS11&12A_L3_S1
964.6	50.862	52.083	1.961	13.983	11.608	6.712	10.517	1.624	1.513	98.780	BS11&12A_L3_S1
864.6	50.796	52.099	2.028	14.034	11.357	6.718	10.600	1.632	1.532	98.697	BS11&12A_L3_S1
764.6	50.732	52.525	1.989	13.950	11.173	6.666	10.484	1.652	1.561	98.207	BS11&12A_L3_S1
664.6	50.733	52.234	2.111	13.853	11.450	6.695	10.391	1.742	1.524	98.499	BS11&12A_L3_S1
564.6	50.713	52.117	2.056	14.085	11.087	6.760	10.569	1.803	1.522	98.596	BS11&12A_L3_S1
464.6	50.850	52.012	2.053	13.918	11.206	6.718	10.625	1.951	1.519	98.838	BS11&12A_L3_S1
364.6	50.769	52.131	2.021	13.849	11.221	6.650	10.533	2.084	1.512	98.639	BS11&12A_L3_S2
319.6	50.588	52.041	1.937	13.982	11.158	6.621	10.571	2.186	1.504	98.548	BS11&12A_L3_S2
274.6	50.701	51.802	1.976	13.976	11.265	6.612	10.524	2.273	1.573	98.899	BS11&12A_L3_S2
184.6	50.413	51.873	1.966	13.970	11.005	6.628	10.393	2.592	1.574	98.541	BS11&12A_L3_S2
139.6	50.652	52.041	2.015	13.818	10.967	6.462	10.403	2.707	1.588	98.611	BS11&12A_L3_S2
94.6	50.694	52.015	1.964	13.739	10.970	6.525	10.365	2.807	1.616	98.680	BS11&12A_L3_S2
49.6	50.500	51.852	1.995	13.841	10.900	6.530	10.321	2.904	1.658	98.648	BS11&12A_L3_S2
4.6	50.107	51.594	1.999	13.919	11.069	6.562	10.277	2.998	1.582	98.513	BS11&12A_L3_S2
12.6	49.901	51.225	1.994	13.981	11.020	6.659	10.535	2.997	1.588	98.675	BS11&12A_L3_S3
-32.4	49.002	50.837	2.023	13.972	11.381	6.677	10.519	3.123	1.467	98.165	BS11&12A_L3_S3
-77.4	48.673	50.143	2.051	14.037	11.726	6.828	10.570	3.220	1.426	98.530	BS11&12A_L3_S3
-122.4	48.612	50.146	2.003	14.086	11.762	6.717	10.638	3.263	1.386	98.465	BS11&12A_L3_S3
-167.4	48.437	49.593	2.009	14.077	11.953	6.841	10.669	3.384	1.476	98.844	BS11&12A_L3_S3
-212.4	48.221	49.670	2.015	14.055	11.827	6.768	10.701	3.489	1.475	98.551	BS11&12A_L3_S3
-257.4	48.153	49.492	1.976	14.243	11.814	6.886	10.602	3.508	1.479	98.661	BS11&12A_L3_S3
-302.4	48.356	49.688	2.016	14.008	11.835	6.751	10.546	3.675	1.481	98.668	BS11&12A_L3_S3
-347.4	48.328	49.235	2.037	14.287	11.761	6.761	10.583	3.816	1.520	99.093	BS11&12A_L3_S3
-392.4	48.266	49.319	2.080	14.097	11.772	6.747	10.573	3.879	1.533	98.947	BS11&12A_L3_S3
-492.4	47.927	49.434	1.960	14.108	11.517	6.710	10.706	4.045	1.520	98.493	BS11&12A_L3_S4
-604.9	48.141	49.521	2.075	14.025	11.476	6.659	10.579	4.182	1.484	98.620	BS11&12A_L3_S4
-717.4	48.046	49.118	1.948	14.024	11.689	6.767	10.638	4.277	1.540	98.928	BS11&12A_L3_S4
-829.9	47.991	49.148	1.988	13.912	11.797	6.635	10.547	4.444	1.530	98.843	BS11&12A_L3_S4
-942.4	48.098	49.082	2.029	13.988	11.722	6.659	10.644	4.328	1.548	99.016	BS11&12A_L3_S4
-1054.9	47.809	49.064	2.034	14.006	11.732	6.681	10.593	4.414	1.476	98.745	BS11&12A_L3_S4
-1167.4	48.046	49.117	1.939	14.102	11.546	6.679	10.629	4.419	1.569	98.929	BS11&12A L3 S4

Table C1'	7. BS13&	14A									
X(µm)	SiO2	SiO2*	TiO2	Al2O3	FeO	MgO	CaO	Na2O	K2O	Total	Comment
872.1	50.739	52.626	1.958	14.028	11.181	6.796	10.314	3.061	0.037	98.113	BS13&14A_L1_S1
772.1	50.946	52.750	1.895	14.041	11.153	6.601	10.415	3.093	0.053	98.197	BS13&14A_L1_S1
672.1	50.716	52.436	2.034	14.040	11.185	6.623	10.471	3.161	0.050	98.280	BS13&14A_L1_S1
572.1	50.890	52.622	1.989	13.901	11.167	6.629	10.419	3.236	0.037	98.268	BS13&14A_L1_S1
472.1	50.641	52.465	1.899	13.968	11.022	6.701	10.603	3.278	0.063	98.175	BS13&14A_L1_S2
427.1	50.716	52.459	1.959	13.909	11.189	6.598	10.503	3.308	0.075	98.257	BS13&14A_L1_S2
382.1	50.551	52.507	1.983	13.747	11.035	6.614	10.667	3.352	0.095	98.043	BS13&14A_L1_S2
337.1	50.591	52.497	1.921	13.818	10.977	6.605	10.717	3.328	0.138	98.094	BS13&14A_L1_S2
292.1	50.468	52.171	1.957	13.878	11.026	6.775	10.620	3.341	0.231	98.297	BS13&14A_L1_S2
247.1	50.147	52.155	1.977	13.811	10.987	6.678	10.785	3.294	0.315	97.992	BS13&14A_L1_S2
157.1	50.117	51.905	2.028	13.765	10.934	6.675	10.733	3.274	0.686	98.213	BS13&14A_L1_S2
112.1	50.042	51.969	1.902	13.717	11.081	6.630	10.587	3.208	0.908	98.073	BS13&14A_L1_S3
67.1	50.063	51.700	1.974	13.785	11.119	6.615	10.500	3.112	1.195	98.362	BS13&14A_L1_S3
22.1	49.789	51.560	1.936	13.715	11.111	6.655	10.444	3.084	1.495	98.230	BS13&14A_L1_S3
-22.9	49.365	51.206	1.891	13.833	11.245	6.577	10.472	3.096	1.679	98.158	BS13&14A_L1_S3
-67.9	48.737	50.633	1.957	13.926	11.448	6.629	10.436	3.024	1.948	98.104	BS13&14A_L1_S3
-112.9	48.611	50.208	2.031	13.979	11.599	6.615	10.382	2.953	2.235	98.403	BS13&14A_L1_S3
-157.9	48.190	49.910	2.038	14.068	11./29	6./41	10.319	2.919	2.276	98.279	BS13&14A_L1_S3
-202.9	4/.9/6	49.755	2.031	14.011	11.838	6.542	10.383	2.906	2.534	98.221	BS13&14A_L1_S3
-247.9	47.704	49.586	1.962	14.048	11.709	0.303	10.498	2.898	2.6/4	98.119	BS13&14A_L1_S3
-292.9	47.048	49.707	1.991	13.880	11./89	0.333	10.541	2.901	2.//3	97.881	BS13&14A_L1_S3
-337.9	47.003	49.308	2.009	13.903	11.945	0.333	10.552	2.844	2.844	98.295	BS13&14A_L1_S3 DS12&14A_L1_S3
-382.9	47.579	49.293	1.907	13.005	11.040	6.622	10.338	2.808	2.901	90.204	B\$13&14A_L1_55 B\$13&14A_L1_54
-402.9	47.565	49.286	1.995	13.970	11 723	6 575	10.451	2.885	3.081	98.066	B\$13&14A_L1_S4
-682.9	47 634	49 539	1 933	13.970	11.725	6 567	10.391	3.025	3.028	98.005	B\$13&14A_L1_S4
-782.9	47 358	49 394	1.955	13 902	11.037	6 579	10.320	2 977	3.020	97 964	B\$13&14A_L1_S4
-882.9	47 397	49 165	1 944	13 999	11.652	6 569	10.520	3 043	3 043	98 232	B\$13&14A_L1_S4
-982.9	47.517	49.192	1.988	13.909	11.690	6.641	10.562	3.003	3.015	98.325	BS13&14A_L1_S4
-1182.9	47.460	49.215	1.972	13.899	11.707	6.680	10.453	2.975	3.100	98.245	BS13&14A L1 S4
960.3	50.811	52.499	2.027	14.074	11.188	6.632	10.472	3.055	0.054	98.312	BS13&14A L3 S1
860.3	50.675	52.499	1.943	13.953	11.214	6.775	10.481	3.085	0.051	98.176	BS13&14A L3 S1
760.3	50.607	52.596	1.909	14.025	11.164	6.720	10.409	3.125	0.052	98.011	BS13&14A L3 S1
660.3	50.686	52.642	1.987	14.032	10.962	6.602	10.529	3.172	0.073	98.043	BS13&14A L3 S1
460.3	50.928	52.591	1.971	14.028	10.923	6.558	10.616	3.252	0.060	98.337	BS13&14A_L3_S2
415.3	50.827	52.396	1.952	14.046	11.022	6.671	10.525	3.303	0.086	98.431	BS13&14A_L3_S2
370.3	50.701	52.423	1.930	13.861	11.074	6.586	10.601	3.399	0.126	98.278	BS13&14A_L3_S2
325.3	50.691	52.585	1.919	13.895	10.889	6.584	10.586	3.371	0.172	98.106	BS13&14A_L3_S2
280.3	50.518	52.129	1.967	13.788	11.034	6.669	10.764	3.357	0.293	98.390	BS13&14A_L3_S2
235.3	50.370	51.950	1.953	13.969	10.967	6.668	10.659	3.406	0.429	98.421	BS13&14A_L3_S2
190.3	50.271	51.778	1.965	13.786	11.038	6.697	10.793	3.324	0.619	98.494	BS13&14A_L3_S2
145.3	50.209	52.063	1.950	13.885	10.953	6.546	10.578	3.245	0.781	98.146	BS13&14A_L3_S2
100.3	50.010	51.770	2.034	13./10	11.140	6.584	10.565	3.128	1.05/	98.234	BS13&14A_L3_S2
55.5 10.2	49.789	51.721	1.915	13.700	11.090	0.01/	10.391	3.228	1.338	98.008	BS13&14A_L3_S2
10.5	49.387	50 722	1.920	13./33	11.101	0.349 6 710	10.485	3.1//	1.011	98.242	DS13&14A_L3_S2
-34.7	49.200	50.722	2 002	13.009	11.323	6 5 9 0	10.340	2 00/	2 008	98.558	B\$13&14A_L5_52 B\$13&14A_L3_\$2
-124.7	48.373	50.460	2.002	14.020	11.420	6 512	10.405	2.774	2.008	98 168	B\$13&14A_L3_S2 B\$13&14A_L3_S2
-169.7	47 733	49 951	1 968	14 065	11.791	6.632	10.370	2.913	2.105	97 783	B\$13&14A_L3_S2
-2.14 7	47 528	49 482	2.083	14 080	11.895	6 6 3 9	10.368	2.891	2.562	98 046	BS13&14A_L3_S2
-259.7	47.310	49.341	2.052	14.000	11.882	6.658	10.468	2.971	2.629	97.970	BS13&14A L3 S2
-349.7	47.211	49.319	1.993	14.047	11.825	6.656	10.374	2.897	2.889	97.893	BS13&14A L3 S2
-394.7	47.231	49.314	2.081	13.913	11.964	6.673	10.242	2.893	2.920	97.917	BS13&14A L3 S2
-484.7	47.118	48.999	1.958	13.916	11.939	6.709	10.555	2.877	3.048	98.120	BS13&14A L3 S2
-529.7	47.104	49.163	2.028	13.855	11.850	6.665	10.438	2.897	3.104	97.941	BS13&14A L3 S2
-629.7	47.189	49.085	1.945	13.952	11.796	6.665	10.524	2.957	3.077	98.104	BS13&14A L3 S3
-729.7	47.013	48.973	2.068	14.002	11.767	6.565	10.502	2.935	3.188	98.040	BS13&14A_L3_S3
-829.7	47.226	48.981	2.080	13.928	11.728	6.524	10.529	3.005	3.225	98.244	BS13&14A_L3_S3
-929.7	47.084	49.203	2.025	13.882	11.724	6.630	10.507	2.970	3.059	97.881	BS13&14A_L3_S3
-1029.7	47.224	49.157	1.933	13.897	11.717	6.643	10.575	3.035	3.044	98.067	BS13&14A_L3_S3
-1129.7	47.051	49.331	2.021	13.836	11.593	6.601	10.536	3.036	3.046	97.720	BS13&14A_L3_S3

Table C18. BS17&18A X(um) SiO2 SiO2* TiO2 Al2O3 FeO MgO CaO Na2O K2O Total Comment													
X(µm)	SiO2	SiO2*	TiO2	Al2O3	FeO	MgO	CaO	Na2O	K2O	Total	Comment		
1295.7	49.489	51.811	1.935	13.553	11.159	5.184	10.380	3.001	2.978	97.678	BS17&18A_L1_S1		
1215.7	49.681	51.472	2.023	13.263	11.669	5.229	10.342	3.027	2.976	98.209	BS17&18A_L1_S1		
1135.7	49.645	51.376	1.895	13.645	11.637	5.198	10.283	2.947	3.019	98.270	BS17&18A_L1_S1		
1055.7	49.823	51.323	1.965	13.546	11.484	5.213	10.353	3.055	3.063	98.500	BS17&18A_L1_S1		
975.7	49.556	51.710	1.910	13.465	11.261	5.199	10.398	3.027	3.031	97.846	BS17&18A_L1_S1		
895.7	49.663	51.376	2.011	13.589	11.447	5.228	10.375	2.976	2.999	98.288	BS17&18A_L1_S1		
815.7	49.702	51.847	1.944	13.563	11.273	5.142	10.352	2.908	2.970	97.855	BS17&18A_L1_S1		
735.7	49.433	51.504	2.034	13.620	11.297	5.231	10.377	2.965	2.973	97.929	BS17&18A_L1_S1		
655.7	49.712	51.555	2.017	13.412	11.463	5.271	10.332	2.982	2.968	98.157	BS17&18A_L1_S1		
575.7	49.894	51.579	1.960	13.608	11.372	5.195	10.338	2.957	2.992	98.315	BS17&18A_L1_S1		
495.7	49.757	51.250	2.107	13.707	11.386	5.256	10.365	2.967	2.962	98.507	BS17&18A_L1_S2		
455.7	49.758	51.331	2.049	13.740	11.346	5.271	10.381	2.914	2.969	98.427	BS17&18A_L1_S2		
415.7	50.060	51.774	1.940	13.351	11.292	5.300	10.409	2.996	2.939	98.286	BS17&18A_L1_S2		
375.7	49.816	51.544	2.104	13.653	11.309	5.233	10.297	2.959	2.901	98.271	BS17&18A_L1_S2		
335.7	49.898	51.535	1.975	13.821	11.211	5.246	10.410	2.948	2.855	98.363	BS17&18A_L1_S2		
295.7	49.820	51.763	1.997	13.633	11.240	5.287	10.283	2.943	2.855	98.057	BS17&18A_L1_S2		
255.7	49.992	52.013	1.946	13.538	11.228	5.250	10.260	2.929	2.837	97.979	BS17&18A_L1_S2		
215.7	50.076	52.219	2.043	13.485	11.122	5.279	10.190	2.960	2.701	97.857	BS17&18A_L1_S2		
1/5./	50.110	51.732	2.065	13.921	11.08/	5.535	10.131	2.981	2.548	98.378	BS1/&18A_L1_S2		
135.7	50.251	51.871	2.068	13.765	10.993	5.628	10.203	2.983	2.489	98.380	BS17&18A_L1_S2		
95.7	50.566	51.840	1.945	13.933	10.904	5.920	10.084	3.108	2.261	98.521	BS1/&18A_L1_S2		
55./ 15.7	50.543	51.700	1.9/6	14.090	10.934	6.148	10.057	3.0/1	2.018	98.830	BS1/&18A_L1_S2		
15.7	50.472 40.028	51.955	1.944	13.045	10.792	0.540	10.520	3.123	1.0/8	98.519	BS1/&18A_L1_S2		
-55.0	49.928	51.008	1.907	13.070	10.912	0.988	10.550	3.041	1.219	98.200	DS1/&18A_L1_S3 BS17&18A_L1_S3		
-/5.0	49.002	51.090	2.042	12.509	10.091	7.505	10.000	2 0 9 0	0.697	98.100	DS17&10A_L1_SS DS17&10A_L1_S2		
-115.6	49.034	51.842	1.962	13.039	10.895	7.552	10.672	3 103	0.008	98.290	BS17&18A_L1_S3 BS17&18A_L1_S3		
-195.6	50.064	51.603	2 024	13.690	10.874	7.362	10.052	3 103	0.377	98.065	BS17&18A_L1_S3		
-195.0	50.004	51.664	2.024	13.639	10.809	7.703	10.000	3 201	0.249	98.402	BS17&18A_L1_S3 BS17&18A_L1_S3		
-235.0	50.092	52 051	1.972	13.638	10.723	7 823	10.588	3 235	0.093	98 149	BS17&18A L1 S3		
-315.6	50.200	52.031	1.030	13 579	10.765	7 983	10.500	3 183	0.055	98 136	BS17&18A L1 S3		
-355.6	50 467	52.165	1 977	13 536	10.734	7 795	10.552	3 201	0.021	98 301	BS17&18A_L1_S3		
-395.6	50.038	51.936	1.956	13.852	10.798	7.775	10.469	3.168	0.047	98.102	BS17&18A_L1_S3		
-435.6	50.442	52.046	1.963	13.795	10.697	7.785	10.523	3.146	0.046	98.396	BS17&18A L1 S3		
-475.6	50.335	51.948	1.991	13.781	10.834	7.808	10.492	3.107	0.039	98.387	BS17&18A L1 S3		
-515.6	50.468	52.312	1.892	13.568	10.768	7.877	10.451	3.096	0.036	98.155	BS17&18A L1 S3		
-595.6	50.382	52.234	1.957	13.437	10.820	7.873	10.526	3.113	0.041	98.148	BS17&18A L1 S4		
-675.6	50.265	52.167	1.932	13.719	10.808	7.815	10.396	3.123	0.042	98.098	BS17&18A L1 S4		
-755.6	50.235	51.937	2.013	13.521	11.042	7.892	10.477	3.082	0.036	98.298	BS17&18A_L1_S4		
-835.6	50.376	51.818	1.985	13.924	10.869	7.884	10.399	3.069	0.052	98.558	BS17&18A_L1_S4		
-915.6	50.530	52.050	1.876	13.763	10.906	7.837	10.382	3.145	0.042	98.479	BS17&18A_L1_S4		
-995.6	50.428	51.662	1.987	13.676	11.070	7.995	10.447	3.122	0.043	98.767	BS17&18A_L1_S4		
-1075.6	50.310	51.660	2.019	13.768	11.092	7.879	10.456	3.086	0.041	98.650	BS17&18A_L1_S4		
-1155.6	50.476	51.405	1.969	13.693	11.346	8.018	10.492	3.037	0.040	99.071	BS17&18A_L1_S4		
-1235.6	50.404	51.464	2.032	13.958	11.151	7.850	10.405	3.106	0.035	98.939	BS17&18A_L1_S4		
-1315.6	49.963	51.626	2.069	13.963	11.031	7.742	10.411	3.127	0.029	98.336	BS17&18A_L1_end		
1268.2	49.918	51.403	2.029	13.488	11.516	5.194	10.394	2.996	2.980	98.515	BS17&18A_L2_S1		
1188.2	49.486	51.286	2.015	13.638	11.509	5.195	10.362	2.993	3.002	98.200	BS17&18A_L2_S1		
1108.2	49.456	51.248	1.909	13.567	11.577	5.258	10.435	3.002	3.004	98.208	BS17&18A_L2_S1		
1028.2	49.550	51.401	1.940	13.438	11.564	5.200	10.435	3.038	2.985	98.149	BS17&18A_L2_S1		
948.2	49.642	51.635	1.927	13.378	11.549	5.181	10.355	3.035	2.941	98.007	BS1/&18A_L2_S1		
868.2	49.595	51.295	1.962	13.521	11.56/	5.189	10.444	3.003	3.019	98.300	BS1/&18A_L2_S1		
/88.2	49.707	51.41/	1.967	13.508	11.318	5.225	10.530	3.070	2.965	98.289	BS1/&18A_L2_S1		
/08.2	49.841	51.500	∠.005 2.007	13.309	11.300	5.110	10.409	2.998 2.072	2.982 1.224	90.2/J 08 120	$DSI/\alpha I\delta A_L2SI$ BS178.10A IS S2		
-33.1 72.1	47./31	51.012	∠.00/ 1.009	12.008	11.108	0.992 7 725	10.404	2.7/3	1.230	70.139 08 020	DS1/0/10A_L2_SS DS178-10A TO S2		
-/3.1	49.800	51.707	1.928	13.49/	10.937	7.233 7.571	10.088	3.049	0.000	90.039 Q8 106	BS17&10A_L2_SS BS17&18A I 2 S2		
-113.1	47.074 50.022	51.390	2.011 1.016	13.391	11.990	7.541	10.724	3.127	0.012	90.490 08 501	BS17&10A_L2_SS BS17&18A I 2 S2		
-103.1	20.022 20.022	51.420	1.910	13.750	10 700	7.024	10.074	3 172	0.411	90.394	BS17&10A_L2_SS BS17&18A_L2_SS		
-233 1	50 126	52.034	2 024	13 444	10.709	7 696	10.029	3 243	0.257	98 092	BS17&18A L2_S3		
-273.1	50.179	51.972	1.981	13.779	10.623	7.783	10.584	3.171	0.106	98.207	BS17&18A L2 S3		

-313.1	50.398	51.753	1.990	13.805	10.743	7.899	10.565	3.172	0.074	98.644	BS17&18A_L2_S3
-353.1	50.447	51.690	1.949	13.820	10.863	7.862	10.501	3.262	0.053	98.758	BS17&18A_L2_S3
-393.1	50.308	51.935	2.053	13.826	10.509	7.920	10.527	3.189	0.041	98.373	BS17&18A L2 S3
-433.1	50.313	52.061	1.888	13.583	10.914	7.965	10.433	3.123	0.033	98.253	BS17&18A L2 S3
-473.1	50.450	52.021	2.006	13.716	10.756	7.897	10.425	3.146	0.034	98.429	BS17&18A L2 S3
-513.1	50.301	51.854	1.949	13.877	10.801	7.895	10.449	3.139	0.037	98.448	BS17&18A L2 S3
-593.1	50.437	51.585	1.977	13,909	10.938	7.976	10.437	3.134	0.044	98.852	BS17&18A_L2_S4
-673.1	50.064	52.076	1.950	13.539	10.971	7.888	10.462	3.072	0.043	97.988	BS17&18A_L2_S4
-753 1	50 246	51 879	1 947	13 823	10.864	7 860	10.450	3 1 2 9	0.047	98 367	BS17&18A L2 S4
-833 1	50.071	51 727	2 020	13 751	11.031	7 976	10.423	3.042	0.031	98 344	BS17&18A L2 S4
-913.1	50.242	51.631	1.962	13 768	11.001	8 038	10.413	3.030	0.038	98 611	BS17&18A I 2 S4
-913.1	50.242	51.051	1.902	13.612	11.036	7 956	10.415	3.091	0.039	98 471	BS17&18A I 2 S4
-1073.1	10 0/3	51 830	2 031	13.612	11.000	8 037	10.494	3.056	0.030	08 10/	BS17&18A_L2_S4 BS17&18A_L2_S4
-1153.1	10 733	52 070	1 082	13 270	11.000	7 967	10.387	3.022	0.030	07 663	BS17&18A I 2 and
1222 1	40 770	51.052	1.962	13.277	11.132	7.907	10.402	3.022	0.040	07.805	BS17&18A I 2 and
-1255.1	49.779	51.952	1.940	12.505	11.234	7.830 8.012	10.373	3.037	0.041	97.027	$DS1/\alpha 10A L2$ end DS178 18A L2 and
-1313.1	49.935	51.499	1.942	12.000	11.300	6.012 5.110	10.397	2.047	0.054	90.434	DS17&10A_L2_CHU DS17&10A_L2_S1
1200.8	49.227	51.497	1.930	12.007	11.392	5.119	10.455	5.002 2.014	2.934	97.750	DS1/&10A_L5_S1
1180.8	49.333	51.505	2.004	13.434	11.380	5.241	10.374	3.014	2.985	97.792	BS1/&18A_L5_S1
1100.8	49.362	51.678	1.951	13.377	11.401	5.135	10.428	3.009	3.020	97.683	BS1/&18A_L3_S1
1020.8	49.275	51.456	1.882	13.612	11.423	5.146	10.387	3.082	3.013	97.819	BS1/&18A_L3_S1
940.8	49.306	51.868	1.933	13.400	11.276	5.129	10.333	3.058	3.003	97.438	BS17&18A_L3_S1
860.8	49.355	51.397	1.982	13.453	11.502	5.107	10.486	3.043	3.030	97.958	BS17&18A_L3_S1
780.8	49.494	51.679	1.980	13.353	11.297	5.211	10.372	3.053	3.055	97.814	BS17&18A_L3_S1
700.8	49.248	51.677	1.945	13.393	11.525	5.097	10.380	3.028	2.955	97.571	BS17&18A_L3_S1
620.8	49.497	51.688	2.027	13.394	11.274	5.124	10.450	3.037	3.005	97.809	BS17&18A_L3_S1
540.8	49.307	52.011	1.921	13.241	11.239	5.191	10.447	2.998	2.952	97.296	BS17&18A_L3_S1
460.8	49.280	51.442	2.018	13.652	11.407	5.209	10.458	2.903	2.912	97.838	BS17&18A_L3_S2
420.8	49.452	51.469	1.938	13.586	11.429	5.285	10.445	2.916	2.933	97.984	BS17&18A_L3_S2
380.8	49.277	51.910	1.921	13.307	11.346	5.224	10.380	2.985	2.928	97.367	BS17&18A_L3_S2
340.8	49.365	51.906	2.027	13.372	11.311	5.221	10.412	2.888	2.863	97.460	BS17&18A_L3_S2
300.8	49.391	51.334	2.043	13.670	11.452	5.219	10.419	2.979	2.885	98.058	BS17&18A_L3_S2
260.8	49.412	51.771	1.916	13.489	11.470	5.257	10.388	2.916	2.795	97.641	BS17&18A_L3_S2
220.8	49.676	51.659	1.941	13.451	11.605	5.324	10.351	2.952	2.717	98.017	BS17&18A L3 S2
180.8	49.825	51.800	1.985	13.613	11.361	5.393	10.245	2.962	2.642	98.026	BS17&18A L3 S2
140.8	50.080	52.011	1.990	13.768	11.088	5.502	10.196	2.943	2.501	98.069	BS17&18A L3 S2
100.8	50.038	51.907	2.006	13.728	11.172	5.762	10.168	2.975	2.282	98.130	BS17&18A L3 S2
60.8	49.842	52.145	1.923	13.919	10.692	5.985	10.138	3.073	2.126	97.698	BS17&18A L3 S2
20.8	50.185	52.105	1.963	13.744	10.799	6.286	10.284	3.101	1.719	98.081	BS17&18A L3 S2
-34.5	49.314	51.606	2.042	13.466	10.900	7.103	10.619	3.059	1.207	97.709	BS17&18A_L3_S3
-74.5	49.600	51.740	1.988	13.256	11.149	7.199	10.746	3.040	0.883	97.859	BS17&18A_L3_S3
-114 5	49 408	51 899	2.005	13 295	10.850	7 525	10 786	3 067	0.573	97 510	BS17&18A_L3_S3
-154.5	49 682	51.817	2.003	13 370	10.050	7 735	10.798	3 106	0.372	97.865	BS17&18A_L3_S3
-194 5	49 746	52.077	2.033	13 225	10.648	7 825	10.798	3 177	0.220	97.669	BS17&18A_L3_S3
-234 5	49 811	52.077	1 970	13 367	10.831	7 7 5 9	10.705	3 207	0.114	97 735	BS17&18A_L3_S3
-254.5	10 873	52.070	1.970	13.307	10.695	7 8/18	10.675	3 211	0.076	97.750	BS17&18A I 3 S3
-214.5	50.064	52.125	1.031	13.564	10.075	7.040	10.001	3 165	0.070	97.730	BS17&18A_L3_S3
-514.5	50.007	52.522	1.001	13.504	10.070	7.762	10.501	3 156	0.0+7 0.042	07.866	BS17&10A_L3_S3
-554.5	30.037 40.914	52.171	1.901	12.514	10.040	7.770	10.595	2 1 2 2	0.042	97.000	DS17&10A_L3_S3
-394.3	49.814	51.000	1.964	12,5001	10.805	7.803	10.304	2 100	0.039	97.082	DS1/&10A_L3_S3
-434.3	49.918	52 002	2.010	12.522	10.884	7.034	10.497	2 102	0.040	97.920	DS1/&10A_L3_S3
-4/4.5	49.938	51.003	1.999	13.520	10.894	7.912	10.445	5.192 2.117	0.036	y/.933	DS1/&18A_L3_S3
-514.5	49.904	51.964	2.01/	13.385	10.741	7.959	10.5/3	3.11/	0.045	97.940	BS1/&18A_L3_S3
-014.5	49.916	52.357	1.991	13.458	10.765	7.843	10.450	5.104	0.031	97.559	BS1/&18A_L3_S4
-694.5	50.222	52.064	2.017	13.566	10.883	7.813	10.440	3.180	0.038	98.158	BS1/&18A_L3_S4
-//4.5	50.253	51.935	1.991	13.497	10.912	8.000	10.537	3.087	0.040	98.317	BS1/&18A_L3_S4
-854.5	50.444	52.177	1.950	13.617	10.809	7.787	10.479	3.128	0.054	98.267	BS17&18A_L3_S4
-934.5	50.209	52.242	1.978	13.381	10.981	7.817	10.422	3.147	0.033	97.967	BS17&18A_L3_S4
-1014.5	50.326	51.839	1.893	13.711	11.020	7.838	10.530	3.131	0.039	98.487	BS17&18A_L3_S4
-1094.5	50.297	52.065	1.982	13.443	11.122	7.803	10.443	3.087	0.055	98.231	BS17&18A_L3_S4
-1174.5	50.199	52.011	1.992	13.572	10.960	7.844	10.472	3.106	0.043	98.188	BS17&18A_L3_S4
-1254.5	50.090	52.140	1.989	13.527	10.989	7.771	10.433	3.108	0.042	97.949	BS17&18A_L3_end
-1334.5	50.133	52.228	2.002	13.634	10.942	7.585	10.397	3.162	0.050	97.905	BS17&18A_L3_end

Fable C19. BS19&20A X(um) SiO2 SiO2 Total Commant												
X(µm)	SiO2	SiO2*	TiO2	Al2O3	FeO	MgO	CaO	Na2O	K2O	Total	Comment	
1215.1	49.588	51.444	1.938	15.319	11.439	6.464	8.895	3.015	1.487	98.144	BS19&20A_L1_S1	
1126.2	49.635	51.414	2.008	15.358	11.192	6.590	8.943	3.014	1.481	98.220	BS19&20A_L1_S1	
1037.4	49.770	51.188	1.927	15.401	11.445	6.586	8.881	3.074	1.499	98.582	BS19&20A_L1_S1	
948.5	49.766	51.783	2.042	15.167	11.185	6.502	8.801	3.037	1.484	97.984	BS19&20A_L1_S1	
859.6	49.714	51.296	2.077	15.314	11.361	6.519	8.876	3.068	1.490	98.418	BS19&20A_L1_S1	
770.7	49.587	51.188	1.968	15.202	11.513	6.527	8.971	3.103	1.529	98.399	BS19&20A_L1_S1	
681.8	49.556	51.485	2.015	15.207	11.313	6.498	8.881	3.136	1.466	98.071	BS19&20A_L1_S1	
601.8	49.644	51.321	2.011	15.255	11.362	6.583	8.871	3.101	1.496	98.323	BS19&20A_L1_S2	
561.8	49.379	51.571	2.010	15.124	11.285	6.450	8.940	3.160	1.462	97.808	BS19&20A_L1_S2	
521.8	49.468	51.372	2.039	15.153	11.190	6.540	9.024	3.196	1.486	98.096	BS19&20A_L1_S2	
481.8	49.363	51.486	2.005	15.121	11.210	6.552	8.947	3.161	1.519	97.877	BS19&20A_L1_S2	
441.8	49.385	51.461	2.035	15.165	11.313	6.425	8.909	3.201	1.491	97.925	BS19&20A_L1_S2	
401.8	49.417	51.358	1.984	15.110	11.397	6.489	8.884	3.242	1.535	98.059	BS19&20A_L1_S2	
361.8	49.306	51.755	2.049	15.106	11.028	6.451	8.935	3.209	1.468	97.552	BS19&20A_L1_S2	
321.8	49.512	51.761	2.033	15.158	11.058	6.400	8.914	3.175	1.501	97.751	BS19&20A_L1_S2	
281.8	49.446	51.564	1.919	15.092	11.202	6.499	8.984	3.245	1.496	97.882	BS19&20A_L1_S2	
241.8	49.484	51.241	2.032	15.201	11.125	6.490	9.096	3.290	1.523	98.243	BS19&20A_L1_S2	
201.8	49.503	51.510	2.005	14.90/	11.1/0	6.409	9.180	3.213	1.540	97.995	BS19&20A_L1_S2	
101.8	49.485	51.502	2.000	14.841	10.995	6.250	9.540	3.241	1.585	97.981	BS19&20A_L1_S2	
121.8	49.482	51.301	2.020	15.028	10.945	0.330	9.30/	3.223 2.177	1.500	98.181	BS19&20A_L1_S2	
01.0	49.232	51.100	1.909	14.910	11.104	6 402	9.779	2 0 9 2	1.545	98.000	DS19&20A_L1_S2	
17.6	49.501	51.411	1.927	14.140	11.1//	0.492 6.600	10.247	3.085	1.323	97.931	BS19&20A_L1_S3 BS10&20A_L1_S3	
-17.0	49.040	51.624	2.030	12 763	11.332	6.686	10.387	2 987	1.450	98.039	BS19&20A_L1_S3 BS19&20A_L1_S3	
-97.6	49 721	51.837	2.142	12.703	11.474	6 674	11 127	2.987	1.408	97.902	BS19&20A_L1_S3	
-137.6	49 583	52 083	2.025	12.424	11.337	6 692	11.127	2.951	1 395	97 500	BS19&20A_L1_S3	
-177.6	49 620	51 765	2.069	12.209	11.120	6 698	11.236	2.000	1 404	97.855	BS19&20A_L1_S3	
-217.6	49 576	51 689	2.007	12.10	11.101	6 6 5 2	11.628	2.903	1 437	97.888	B\$19&20A_L1_S3	
-257.6	49 660	51 893	2.027	12.230	11 290	6 6 5 7	11.619	2.913	1.157	97 767	BS19&20A_L1_S3	
-297.6	49.439	52.000	1.969	12.254	11.283	6.578	11.615	2.842	1.458	97.439	BS19&20A L1 S3	
-337.6	49.500	51.894	1.963	12.225	11.305	6.611	11.669	2.872	1.462	97.606	BS19&20A L1 S3	
-377.6	49.557	52.025	2.058	12.240	11.120	6.563	11.619	2.891	1.485	97.533	BS19&20A L1 S3	
-417.6	49.521	51.428	2.020	12.441	11.355	6.599	11.774	2.944	1.439	98.092	BS19&20A L1 S3	
-457.6	49.585	51.820	2.047	12.142	11.286	6.604	11.725	2.914	1.463	97.765	BS19&20A L1 S3	
-497.6	49.491	51.549	2.066	12.272	11.392	6.539	11.770	2.949	1.463	97.942	BS19&20A L1 S3	
-577.6	49.711	52.107	1.941	12.124	11.156	6.608	11.639	2.969	1.456	97.603	BS19&20A_L1_S4	
-657.6	49.532	51.647	1.989	12.298	11.324	6.575	11.724	2.973	1.470	97.885	BS19&20A_L1_S4	
-737.6	49.734	52.013	2.019	12.215	11.142	6.502	11.683	2.973	1.454	97.721	BS19&20A_L1_S4	
-817.6	49.855	51.708	1.960	12.240	11.375	6.546	11.773	2.940	1.457	98.147	BS19&20A_L1_S4	
-897.6	49.890	51.926	1.947	12.186	11.290	6.544	11.626	3.045	1.437	97.964	BS19&20A_L1_S4	
-977.6	49.647	51.672	2.072	12.214	11.365	6.602	11.645	2.963	1.468	97.975	BS19&20A_L1_S4	
1217.8	49.578	51.326	1.945	15.199	11.465	6.579	8.992	3.013	1.482	98.253	BS19&20A_L2_S1	
1128.9	49.066	52.085	1.929	14.888	11.325	6.409	8.910	3.032	1.423	96.981	BS19&20A_L2_S1	
1040.1	49.153	51.719	2.005	14.908	11.367	6.577	8.881	3.055	1.488	97.434	BS19&20A_L2_S1	
951.2	49.241	51.682	1.9/3	14.9/3	11.338	6.591	8.863	3.080	1.501	97.559	BS19&20A_L2_S1	
862.3	49.335	51.835	1.989	14.960	11.201	6.5//	8.864	3.102	1.4/1	97.500	BS19&20A_L2_S1	
//3.4	49.344	52.141	2.044	14.916	11.14/	6.41/	8.839	3.052	1.444	97.203	BS19&20A_L2_S1	
084.5 564.5	49.095	51 945	1.990	14.990	11.242	6 4 4 2	0.922 0.941	2 1 2 9	1.469	97.947	DS19&20A_L2_S1 DS10&20A_L2_S2	
524.5	49.307	51.645	1.030	14.990	11.500	6.400	0.041	2 1 4 5	1.319	97.721	DS19&20A_L2_S2	
J24.J 181 5	49.439	51.074	2 032	14.973	11.310	6 5 1 6	8 020	3 108	1.400	97.703	BS19&20A_L2_S2 BS19&20A_L2_S2	
404.5	49.300	51 584	2.032	1/ 880	11.210	6 576	8 932	3 7 3 7	1.407	07.818	BS10&20A_L2_S2 BS10&20A_L2_S2	
404 5	49 379	51.584	2.000	14.007	11.228	6 540	8 903	3 269	1 511	97.610	BS19&20A_L2_S2	
364.5	49 296	51.720	2.034	14 904	11 128	6 478	8 958	3 221	1 523	97 544	BS19&20A L2 S2	
324 5	49.371	51.573	2.096	14.848	11.268	6.488	8.953	3.254	1.521	97,798	BS19&20A L2 S2	
284 5	49.304	52.261	1,952	14.795	10.965	6.251	8.979	3,305	1.491	97.043	BS19&20A L2 S2	
244.5	49.233	51.700	2.083	14.779	11.222	6.379	9.023	3.271	1.542	97.533	BS19&20A L2 S2	
204.5	49.232	51.786	2.035	15.016	10.892	6.305	9.179	3.238	1.550	97.446	BS19&20A L2 S2	
164.5	49.071	51.859	2.014	14.780	10.920	6.311	9.267	3.283	1.567	97.212	BS19&20A L2 S2	
124.5	49.252	51.692	1.993	14.855	10.902	6.267	9.510	3.237	1.545	97.560	BS19&20A L2 S2	
84.5	49.215	51.630	1.973	14.640	10.957	6.300	9.798	3.152	1.550	97.586	BS19&20A L2 S2	

I	26.1	49.260	51.807	1.960	13.997	11.100	6.325	10.236	3.075	1.500	97.453	BS19&20A_L2_S3
	-13.9	49.490	51.865	1.920	13.314	11.350	6.533	10.582	2.957	1.479	97.625	BS19&20A_L2_S3
	-53.9	49.615	52.154	2.102	12.535	11.259	6.666	10.840	3.007	1.438	97.461	BS19&20A L2 S3
	-93.9	49.402	52.326	2.055	12.343	11.254	6.631	11.147	2.842	1.404	97.077	BS19&20A L2 S3
	-1339	49 319	52,260	2 0 2 3	12 125	11 439	6 692	11 238	2.807	1 4 1 6	97 059	BS19&20A_L2_S3
	-173.9	49 446	52.227	2.022	12.063	11 417	6 6 3 5	11 466	2.787	1 385	97 220	BS19&20A_L2_S3
	-213.9	49 279	52 128	2.036	12.018	11 390	6 690	11 503	2 825	1 411	97 151	BS19&20A L2 S3
	-253.9	49 420	51 773	2.030	12.010	11.370	6 762	11.603	2.025	1.452	97.647	BS19&20A_L2_S3
	203.0	40.362	51.605	2.057	12.014	11 225	6 6 6 0	11.075	2.057	1.452	07 667	BS10&20A_L2_S3
	-293.9	49.302	52.008	2.117	11 080	11.355	6 560	11.710	2.001	1.410	97.007	BS19&20A_L2_S3 BS10&20A_L2_S3
	272.0	49.209	52.008	1.023	12.094	11.300	6 5 8 0	11.750	2.910	1.445	97.201	DS19&20A_L2_S3
	-3/3.9	49.397	52.000	2 010	12.004	11.209	6.570	11.045	2.911	1.422	97.311	DS19620A_L2_S5
	-415.9	49.145	52.052	2.010	12.027	11.204	6.570	11.031	2.949	1.4//	97.111	DS19&20A_L2_S5
	-435.9	49.301	51.045	1.978	12.194	11.134	6.002	11.09/	2.00/	1.450	97.404	DS19&20A_L2_S5
	-495.9	49.402	51.945	2.050	12.100	11.214	0.485	11./4/	2.970	1.430	97.438	DS19&20A_L2_S5
	-5/5.9	49.529	51.591	2.085	12.24/	11.30/	0.403	11.910	2.900	1.425	97.938	BS19&20A_L2_S4
	-055.9	49.298	51.035	2.015	12.154	11.40/	0.339	11.798	2.925	1.40/	97.003	BS19&20A_L2_S4
	-/33.9	49.101	52.181	1.951	11.899	11.321	6.488	11.703	2.970	1.488	96.920	BS19&20A_L2_S4
	-813.9	49.083	52.282	1.966	11.944	11.132	6.527	11./22	2.964	1.465	96.801	BS19&20A_L2_S4
	-893.9	49.333	51.956	1.927	12.108	11.34/	6.481	11.820	2.964	1.399	97.378	BS19&20A_L2_S4
	-9/3.9	49.243	51.982	1.956	11.890	11.423	6.562	11./4/	2.967	1.4/5	97.261	BS19&20A_L2_S4
	-1053.9	49.245	51.698	2.001	12.141	11.427	6.570	11.712	3.003	1.448	97.548	BS19&20A_L2_S4
	1169.7	48.732	51.759	2.059	14.745	11.560	6.470	8.975	2.987	1.447	96.973	BS19&20A_L3_S1
	1080.8	49.038	51.547	2.015	14.929	11.613	6.431	9.002	2.991	1.472	97.491	BS19&20A_L3_S1
	992.0	48.936	51.884	2.042	14.730	11.277	6.585	9.001	3.015	1.466	97.053	BS19&20A_L3_S1
	903.1	49.163	51.451	2.040	14.821	11.614	6.469	9.068	3.063	1.474	97.712	BS19&20A_L3_S1
	814.2	48.762	51.938	1.992	14.805	11.401	6.414	8.963	3.009	1.479	96.824	BS19&20A_L3_S1
	725.3	49.071	51.683	1.956	14.795	11.550	6.444	9.026	3.072	1.474	97.388	BS19&20A_L3_S1
	636.4	48.944	52.043	2.012	14.671	11.383	6.422	8.936	3.057	1.476	96.901	BS19&20A_L3_S1
	556.4	48.932	51.959	1.974	14.789	11.371	6.376	8.934	3.152	1.444	96.973	BS19&20A_L3_S2
	516.4	49.199	51.660	2.010	14.795	11.423	6.518	9.000	3.104	1.491	97.539	BS19&20A_L3_S2
	476.4	49.217	51.577	1.927	14.829	11.459	6.547	9.014	3.177	1.469	97.639	BS19&20A_L3_S2
	436.4	49.177	51.787	1.907	14.852	11.268	6.456	9.032	3.168	1.531	97.390	BS19&20A_L3_S2
	396.4	49.049	51.646	1.958	14.867	11.382	6.416	9.014	3.235	1.483	97.403	BS19&20A_L3_S2
	356.4	49.145	51.621	2.013	14.789	11.391	6.419	9.025	3.222	1.521	97.523	BS19&20A_L3_S2
	316.4	48.928	51.762	1.957	14.750	11.314	6.390	9.071	3.266	1.491	97.167	BS19&20A_L3_S2
	276.4	48.959	51.776	1.998	14.685	11.244	6.406	9.151	3.255	1.485	97.182	BS19&20A_L3_S2
	236.4	48.973	51.469	1.972	14.817	11.303	6.438	9.159	3.294	1.548	97.503	BS19&20A_L3_S2
	196.4	49.005	51.665	1.898	14.738	11.235	6.397	9.290	3.226	1.552	97.340	BS19&20A_L3_S2
	156.4	48.552	51.908	1.957	14.603	11.110	6.284	9.348	3.226	1.565	96.644	BS19&20A_L3_S2
	116.4	48.974	51.673	1.980	14.752	10.985	6.227	9.634	3.185	1.565	97.302	BS19&20A_L3_S2
	76.4	48.917	51.875	2.039	14.426	10.870	6.195	9.837	3.183	1.576	97.042	BS19&20A_L3_S2
	12.0	49.073	51.913	1.977	13.650	11.158	6.364	10.323	3.120	1.495	97.160	BS19&20A L3 S3
	-28.0	49.131	52.156	1.974	12.861	11.328	6.413	10.775	3.021	1.473	96.975	BS19&20A_L3_S3
	-68.0	49.380	52.280	2.024	12.402	11.290	6.544	11.094	2.916	1.449	97.100	BS19&20A_L3_S3
	-108.0	49.273	52.233	1.939	12.099	11.473	6.691	11.186	2.926	1.453	97.040	BS19&20A L3 S3
	-148.0	49.385	52.213	2.007	12.045	11.526	6.642	11.286	2.840	1.442	97.172	BS19&20A L3 S3
	-188.0	49.166	52.085	2.002	12.039	11.485	6.660	11.462	2.841	1.425	97.081	BS19&20A L3 S3
	-228.0	49.201	52.052	1.987	11.973	11.438	6.613	11.604	2.907	1.425	97.149	BS19&20A L3 S3
	-268.0	49.290	52.327	2.045	11.907	11.241	6.511	11.640	2.860	1.469	96.964	BS19&20A L3 S3
	-308.0	49.262	52.168	1.915	12.112	11.133	6.592	11.714	2.901	1.466	97.094	BS19&20A L3 S3
	-348.0	49.374	51.795	2.032	12.055	11.397	6.542	11.782	2.949	1.447	97.579	BS19&20A L3 S3
I	-388.0	49.507	52.080	2.016	11.980	11.197	6.533	11.780	2.945	1.470	97.427	BS19&20A L3 S3
	-428.0	49 169	52 295	1 987	12.024	11 130	6 471	11 719	2.861	1 513	96 874	BS19&20A_L3_S3
I	-468.0	49.305	52.041	1.980	11.879	11.250	6.643	11.763	2.967	1.477	97.264	BS19&20A L3 S3
I	-508.0	49,136	52.039	1.959	12.002	11.075	6.542	11.823	3.030	1.532	97.097	BS19&20A L3 S3
l	-588.0	49.157	51.984	2.044	11.991	11.180	6.565	11.769	2,982	1,485	97.173	BS19&20A L3 S4
I	-668.0	49 061	52,200	1 957	11 928	11 154	6 4 9 2	11 740	3 049	1 482	96 861	BS19&20A I 3 S4
I	-748 0	49 057	52.047	2.070	11 854	11 392	6 464	11 732	2 985	1.457	97 010	BS19&20A 13 S4
l	-828.0	49 060	52 298	2.009	11 903	10 989	6 503	11 749	3 039	1 511	96 762	BS19&20A 13 S4
I	-908.0	49 232	51 967	1 979	12 034	11 079	6.613	11 794	3 039	1 496	97 265	BS19&20A L3 S4
I	-988 0	49 130	51 968	2.004	12.025	11 100	6 573	11 816	3 036	1 477	97 162	BS19&20A 13 S4
l	-1068.0	49.198	51.943	2.070	12.083	11.143	6.530	11.634	3.089	1.507	97.255	BS19&20A L3 S4
L											= = = =	

Table C20	. BS1&20	2									
X(µm)	SiO2	SiO2*	TiO2	Al2O3	FeO	MgO	CaO	Na2O	K2O	Total	Comment
1419.7	50.741	52.047	0.483	14.239	11.287	6.834	10.666	3.025	1.420	98.694	BS1&2C_L1_S1
1339.7	50.674	52.162	0.496	14.274	11.179	6.712	10.686	3.030	1.463	98.512	BS1&2C_L1_S1
1259.7	50.776	51.991	0.501	14.174	11.446	6.813	10.624	3.003	1.448	98.785	BS1&2C_L1_S1
1179.7	50.516	52.076	0.535	14.179	11.242	6.864	10.594	3.047	1.463	98.440	BS1&2C_L1_S1
1099.7	51.119	52.111	0.493	14.061	11.314	6.876	10.706	2.993	1.447	99.008	BS1&2C_L1_S1
1019.7	50.463	52.242	0.555	13.950	11.202	6.818	10.667	3.112	1.454	98.221	BS1&2C_L1_S1
939.7	50.576	52.310	0.507	14.059	11.212	6.742	10.646	3.048	1.475	98.266	BS1&2C_L1_S1
859.7	50.782	51.714	0.538	14.266	11.434	6.856	10.629	3.116	1.448	99.069	BS1&2C_L1_S1
779.7	50.586	51.988	0.525	14.147	11.217	6.851	10.682	3.117	1.473	98.598	BS1&2C_L1_S1
699.7	50.704	51.990	0.563	14.226	11.375	6.666	10.564	3.133	1.482	98.714	BS1&2C_L1_S1
619.7	50.923	51.929	0.538	14.205	11.354	6.738	10.608	3.175	1.454	98.994	BS1&2C_L1_S1
539.7	50.628	51.818	0.524	14.290	11.252	6.832	10.660	3.166	1.458	98.809	BS1&2C_L1_S2
499.7	50.492	51.966	0.516	13.957	11.390	6.819	10.694	3.171	1.487	98.526	BS1&2C_L1_S2
459.7	50.663	51.961	0.499	14.117	11.398	6.783	10.615	3.145	1.481	98.703	BS1&2C_L1_S2
419.7	50.557	51.823	0.533	14.136	11.459	6.816	10.700	3.108	1.426	98.735	BS1&2C_L1_S2
379.7	50.447	51.870	0.511	14.182	11.258	6.843	10.694	3.158	1.485	98.576	BS1&2C_L1_S2
339.7	50.453	51.771	0.545	14.171	11.372	6.867	10.674	3.150	1.451	98.682	BS1&2C_L1_S2
299.7	50.336	51.881	0.534	14.115	11.413	6.814	10.629	3.149	1.466	98.455	BS1&2C_L1_S2
259.7	50.322	52.009	0.472	14.101	11.305	6.803	10.689	3.138	1.483	98.313	BS1&2C_L1_S2
219.7	50.269	52.201	0.513	13.975	11.300	6.733	10.641	3.159	1.480	98.068	BS1&2C_L1_S2
179.7	50.382	51.890	0.605	14.022	11.376	6.801	10.573	3.226	1.509	98.492	BS1&2C_L1_S2
139.7	50.361	52.076	0.705	14.113	11.182	6.718	10.501	3.175	1.532	98.285	BS1&2C_L1_S2
99.7	50.089	51.906	0.8/1	14.104	11.240	6.615	10.530	3.175	1.560	98.184	BS1&2C_L1_S2
59.7	49.801	51.220	1.266	14.199	11.294	6./80	10.531	$\frac{3.1}{1}$	1.540	98.581	BSI&2C_LI_S2
19.7	49.046	51.108	1.592	14.013	11.200	6.///	10.635	3.100	1.443	97.938	BS1&2C_L1_S2
-20.3	48.337	50.599 40.621	2.142	13.902	11.5/0	0./84	10.052	3.140 2.076	1.412	97.938	$BS1&2C_L1_S2$
-00.5	47.722	49.031	2.392	14.007	11.793	0.821	10.792	2.970	1.38/	98.091	$DS1&2C_L1_S2$
-100.5	47.300	49.402	2.621	12.639	11.723	6.900	10./9/	2.007	1.380	98.097	$BS1&2C_L1_S2$
-140.5	47.214	49.232	3.103	13.000	11.750	6 801	10.813	2.980	1.370	97.902	BS1&2C_L1_S2 BS1&2C_L1_S2
-180.3	47.027	49.473	3 3 8 5	13.018	11.095	6 714	10.730	2.912	1.333	97.334	BS1&2C_L1_S2 BS1&2C_L1_S2
-220.3	47.020	49.120	3 3 2 9	13 958	11.572	6 712	10.707	3.024	1.370	97.693	B\$1&2C_L1_S2
-200.3	46 691	49 120	3 284	14 000	11.572	6.810	10.708	3 106	1.370	97 571	BS1&2C_L1_S2 BS1&2C_L1_S2
-340.3	46 887	49 006	3 377	14 014	11.51)	6 788	10.798	3 1 2 2	1 424	97.881	B\$1&2C_L1_S2
-380.3	46 645	49 151	3 3 5 8	13 980	11 489	6 794	10.754	3 044	1 430	97 494	BS1&2C_L1_S2 BS1&2C_L1_S2
-460.3	46.770	49.327	3.343	13.771	11.591	6.845	10.685	3.010	1.429	97.443	BS1&2C_L1_S2
-540.3	46.846	49.563	3.287	13.846	11.368	6.744	10.695	3.058	1.440	97.283	BS1&2C L1 S3
-620.3	46.971	49.203	3.286	13.954	11.548	6.887	10.702	3.025	1.394	97.768	BS1&2C L1 S3
1477.7	50.594	52.037	0.518	14.220	11.294	6.799	10.633	3.039	1.462	98.558	BS1&2C L2 S1
1317.7	50.771	51.950	0.554	14.236	11.394	6.838	10.537	3.017	1.475	98.821	BS1&2C L2 S1
1237.7	50.567	52.071	0.519	14.155	11.275	6.841	10.695	3.012	1.432	98.496	BS1&2C L2 S1
1157.7	50.482	52.146	0.518	14.004	11.270	6.909	10.691	3.029	1.433	98.336	BS1&2C L2 S1
1077.7	50.498	52.065	0.481	14.050	11.412	6.802	10.692	3.057	1.441	98.433	BS1&2C_L2_S1
997.7	50.460	51.837	0.555	14.098	11.386	6.903	10.704	3.090	1.427	98.623	BS1&2C_L2_S1
837.7	50.367	52.095	0.525	13.993	11.335	6.816	10.696	3.100	1.440	98.272	BS1&2C_L2_S1
757.7	50.374	51.787	0.539	14.198	11.518	6.755	10.710	3.063	1.429	98.587	BS1&2C_L2_S1
677.7	50.478	52.059	0.516	14.012	11.405	6.866	10.688	3.041	1.414	98.419	BS1&2C_L2_S1
597.7	50.572	51.794	0.534	14.101	11.430	6.951	10.703	3.074	1.413	98.778	BS1&2C_L2_S1
477.7	50.471	51.867	0.494	14.167	11.356	6.920	10.682	3.112	1.402	98.604	BS1&2C_L2_S2
437.7	50.436	51.934	0.520	13.966	11.445	6.925	10.692	3.083	1.433	98.501	BS1&2C_L2_S2
397.7	50.427	52.175	0.535	13.965	11.409	6.801	10.651	3.017	1.448	98.252	BS1&2C_L2_S2
357.7	50.319	51.860	0.506	14.170	11.367	6.891	10.596	3.170	1.439	98.459	BS1&2C_L2_S2
317.7	50.174	52.106	0.518	13.943	11.352	6.858	10.722	3.066	1.436	98.068	BS1&2C_L2_S2
277.7	50.318	51.877	0.514	14.029	11.461	6.828	10.748	3.092	1.451	98.441	BS1&2C_L2_S2
237.7	50.290	51.704	0.522	14.211	11.443	6.773	10.719	3.147	1.481	98.586	BS1&2C_L2_S2
197.7	50.207	52.225	0.507	13.820	11.325	6.903	10.597	3.161	1.461	97.981	BS1&2C_L2_S2
157.7	50.354	52.050	0.560	14.061	11.328	6.776	10.589	3.184	1.452	98.304	BSI&2C_L2_S2
117.7	50.345	51.751	0.730	14.104	11.266	6.813	10.635	3.201	1.501	98.594	BS1&2C_L2_S2
11.1	49.957	51.442	1.093	14.147	11.247	6.784	10.617	3.183	1.487	98.514	BS1&2C_L2_S2
57.7	49.397	51.086	1.505	14.091	11.307	0./83	10.606	3.126	1.497	98.311	BS1&2C_L2_S2
-2.5	48.030	50.631	1.992	13.845	11.491	0.785	10./84	3.056	1.418	98.025	DS1&2U_L2_S2

-42.3	47.977	49.683	2.585	13.843	11.661	6.919	10.887	3.055	1.368	98.295	BS1&2C L2 S2
-82.3	47.413	49.630	2.824	13.709	11.654	6.942	10.866	2.993	1.382	97.782	BS1&2C L2 S2
-122.3	47.255	49.524	3.086	13.839	11.502	6.975	10.809	2.925	1.341	97.731	BS1&2C L2 S2
-162.3	47.341	49.339	3.230	13.833	11.578	6.886	10.782	3.000	1.353	98.001	BS1&2C_L2_S2
-202.3	47 269	49 1 56	3 3 3 9	14 036	11 487	6 814	10 792	2 985	1 392	98 113	BS1&2C_L2_S2
-242.3	47 288	49 537	3 397	13 945	11 320	6 7 5 9	10.666	3 012	1 365	97 752	BS1&2C_L2_S2
-282.3	47 093	49 257	3 3 5 2	13 997	11.320	6 809	10.000	2 999	1.505	97.836	BS1&2C_L2_S2 BS1&2C_L2_S2
_322.3	46 948	49.431	3 403	13.854	11.112	6.850	10.72	3 044	1 364	97 517	B\$1&2C_L2_S2
-362.3	40.240	10 551	3 112	13 020	11.375	6 764	10.001	2 961	1 3 7 9	98.015	B\$1&2C_L2_S2
1520.7	51.036	52 065	0.535	14 232	11.500	6.831	10.630	2.901	1.575	08 072	B\$1&2C_L2_52
1360 7	50.863	52.005	0.555	14.252	11.257	6 730	10.057	3.036	1.435	08 811	B\$1&2C_L3_S1
1280 7	51.086	52.052	0.530	14.272	11.233	6.815	10.634	2 003	1.460	08 011	B\$1&2C_L3_S1
1209.7	50.980	52.175	0.550	14.150	11.227	6.878	10.653	2.775	1 443	08 066	B\$1&2C_L3_S1
1209.7	50.980	51 013	0.522	14.131	11.201	6 770	10.055	3.103	1.445	90.900	BS1&2C_L3_S1
1040.7	51.022	52 027	0.504	14.295	11.200	6 791	10.565	2.096	1.401	99.005	DS1&2C_L5_S1
060 7	50 712	52.027	0.333	14.155	11.391	6 712	10.575	3.080	1.431	90.995	DS1&2C_L5_S1
909.7	50.712	52.232	0.495	14.211	11.204	0./13	10.373	3.044	1.428	98.400	$DS1@2C_L5_S1$
889.7	50.970	52.039	0.514	14.1/3	11.300	0.089	10.033	3.109	1.4//	98.937	BS1&2C_L3_S1
809.7	50.876	52.041	0.520	14.184	11.301	6.//9	10.58/	3.084	1.504	98.835	BS1&2C_L3_S1
/29./	51.005	51.945	0.528	14.122	11.352	6.868	10.654	3.095	1.43/	99.059	BS1&2C_L3_S1
649.7	50.847	51.955	0.509	14.361	11.311	6.665	10.576	3.14/	1.4//	98.892	BSI&2C_L3_SI
569.7	51.033	52.162	0.507	14.135	11.229	6.723	10.619	3.173	1.453	98.872	BS1&2C_L3_S2
529.7	51.152	52.171	0.507	14.033	11.362	6.657	10.659	3.137	1.474	98.980	BS1&2C_L3_S2
489.7	51.101	51.711	0.516	14.232	11.513	6.718	10.730	3.107	1.474	99.391	BS1&2C_L3_S2
449.7	50.918	51.958	0.526	14.147	11.320	6.742	10.679	3.171	1.457	98.960	BS1&2C_L3_S2
409.7	50.780	52.053	0.519	14.029	11.401	6.727	10.682	3.141	1.450	98.727	BS1&2C_L3_S2
369.7	50.962	51.960	0.521	14.102	11.349	6.845	10.598	3.148	1.478	99.003	BS1&2C_L3_S2
329.7	51.034	52.178	0.503	14.018	11.335	6.747	10.591	3.178	1.452	98.856	BS1&2C_L3_S2
289.7	50.938	51.754	0.519	14.093	11.443	6.898	10.612	3.201	1.481	99.184	BS1&2C_L3_S2
249.7	50.759	51.816	0.506	14.249	11.300	6.832	10.639	3.148	1.511	98.943	BS1&2C_L3_S2
209.7	50.886	51.874	0.566	14.017	11.332	6.851	10.607	3.239	1.515	99.012	BS1&2C_L3_S2
169.7	50.537	51.746	0.639	14.213	11.390	6.755	10.514	3.214	1.529	98.791	BS1&2C_L3_S2
129.7	50.813	52.197	0.812	14.097	11.058	6.631	10.490	3.155	1.562	98.616	BS1&2C_L3_S2
89.7	50.591	51.685	0.982	14.188	11.198	6.774	10.449	3.221	1.503	98.906	BS1&2C_L3_S2
49.7	49.982	51.357	1.404	14.050	11.244	6.749	10.546	3.135	1.514	98.624	BS1&2C_L3_S2
9.7	49.433	50.647	1.914	14.084	11.413	6.741	10.598	3.146	1.457	98.786	BS1&2C_L3_S2
-30.3	48.741	50.378	2.287	13.927	11.481	6.828	10.742	2.950	1.409	98.363	BS1&2C_L3_S2
-70.3	48.214	49.939	2.655	13.855	11.653	6.759	10.774	2.977	1.390	98.275	BS1&2C_L3_S2
-110.3	47.896	49.296	2.905	14.006	11.761	6.828	10.831	3.030	1.344	98.600	BS1&2C_L3_S2
-150.3	47.841	48.945	3.191	13.922	11.869	6.918	10.760	3.029	1.366	98.896	BS1&2C_L3_S2
-190.3	47.501	49.367	3.212	13.900	11.663	6.783	10.708	2.987	1.380	98.134	BS1&2C_L3_S2
-230.3	47.628	49.446	3.209	13.895	11.606	6.732	10.721	2.993	1.398	98.182	BS1&2C_L3_S2
-270.3	47.666	49.247	3.210	13.947	11.700	6.736	10.775	2.988	1.397	98.418	BS1&2C_L3_S2
-310.3	47.736	49.273	3.323	14.000	11.665	6.634	10.696	3.004	1.404	98.463	BS1&2C_L3_S2
-390.3	47.608	49.253	3.342	13.998	11.601	6.690	10.681	3.019	1.417	98.355	BS1&2C_L3_S3
-470.3	47.692	49.424	3.260	14.091	11.408	6.708	10.673	3.038	1.399	98.268	BS1&2C_L3_S3
-550.3	47.704	49.107	3.283	14.061	11.532	6.848	10.678	3.058	1.433	98.597	BS1&2C_L3_S3
-630.3	47.384	49.054	3.353	13.891	11.629	6.834	10.679	3.117	1.444	98.330	BS1&2C_L3_S3
-710.3	47.549	49.118	3.358	13.927	11.459	6.831	10.770	3.068	1.468	98.431	BS1&2C_L3_S3
-790.3	47.500	49.053	3.405	13.971	11.573	6.874	10.690	3.016	1.419	98.447	BS1&2C_L3_S3
-870.3	47.670	49.248	3.460	13.975	11.445	6.783	10.643	3.042	1.403	98.422	BS1&2C_L3_S3
-950.3	47.573	49.320	3.368	13.855	11.418	6.787	10.701	3.146	1.405	98.253	BS1&2C L3 S3

Table C21	. BS3&40	2									
X(µm)	SiO2	SiO2*	TiO2	Al2O3	FeO	MgO	CaO	Na2O	K2O	Total	Comment
1492.1	50.691	52.180	1.928	12.491	11.448	6.786	10.695	3.043	1.429	98.512	BS3&4C_L1_S1
1412.1	50.349	51.869	1.928	12.563	11.501	6.913	10.859	2.952	1.416	98.480	BS3&4C_L1_S1
1332.1	50.425	51.837	2.045	12.446	11.593	6.858	10.805	2.998	1.418	98.588	BS3&4C_L1_S1
1252.1	50.263	52.042	1.943	12.588	11.498	6.809	10.779	2.972	1.369	98.220	BS3&4C_L1_S1
1172.1	50.091	52.035	1.990	12.626	11.456	6.808	10.706	2.968	1.412	98.056	BS3&4C_L1_S1
1092.1	50.184	51.607	1.960	12.716	11.591	6.916	10.864	2.955	1.392	98.577	BS3&4C_L1_S1
1012.1	50.142	51.716	1.991	12.531	11.629	6.953	10.777	2.992	1.412	98.426	BS3&4C_L1_S1
932.1	50.124	51.820	1.910	12.471	11.629	7.001	10.774	2.956	1.439	98.304	BS3&4C_L1_S1
852.1	50.138	51.777	2.005	12.544	11.471	6.987	10.809	3.009	1.399	98.361	BS3&4C_L1_S1
772.1	50.081	51.896	1.943	12.388	11.687	6.844	10.766	3.053	1.423	98.185	BS3&4C_L1_S1
692.1	50.089	51.612	2.018	12.611	11.686	6.930	10.717	3.005	1.422	98.478	BS3&4C_L1_S1
532.1	50.191	51.866	1.916	12.571	11.596	6.861	10.789	2.987	1.416	98.325	BS3&4C_L1_S1
452.1	50.139	51.817	1.978	12.605	11.603	6.827	10.810	2.987	1.373	98.322	BS3&4C_L1_S2
412.1	50.148	52.052	1.939	12.383	11.500	6.917	10.742	3.026	1.442	98.096	BS3&4C_L1_S2
372.1	49.978	51.954	1.901	12.627	11.493	6.808	10.810	2.995	1.413	98.024	BS3&4C_L1_S2
332.1	50.242	51.823	1.981	12.519	11.589	6.885	10.802	2.965	1.437	98.419	BS3&4C_L1_S2
292.1	50.327	52.116	1.903	12.474	11.593	6.819	10.693	3.005	1.398	98.211	BS3&4C_L1_S2
252.1	50.358	51.714	1.942	12.589	11.666	6.895	10.684	3.083	1.428	98.645	BS3&4C_L1_S2
212.1	50.405	51.849	1.952	12.493	11.635	6.866	10.743	3.044	1.418	98.556	BS3&4C_L1_S2
172.1	50.387	51.732	2.003	12.517	11.692	7.025	10.596	3.038	1.399	98.654	BS3&4C_L1_S2
132.1	50.236	51.838	1.938	12.741	11.620	6.824	10.596	3.028	1.415	98.398	BS3&4C_L1_S2
92.1	50.083	51.613	1.936	12.851	11.581	6.967	10.589	3.007	1.457	98.469	BS3&4C_L1_S2
52.1	49.501	51.248	1.988	13.273	11.4/8	6.919	10.666	3.006	1.423	98.253	BS3&4C_L1_S2
12.1	49.070	50.711	1.981	13.805	11.572	0.8/3	10.723	2.059	1.415	98.339	BS3&4C_L1_S2
-27.9	48.445	30.210 40.615	1.900	14.557	11.333	0.812	10.088	3.017	1.390	98.233	$D53&4C_{1}S2$
-07.9	40.130	49.013	1.950	15.008	11.450	6 712	10.091	3.000	1.390	90.341	$B33&4C_{L1}S2$
-107.9	47.775	49.702	2.054	15.125	11.510	6 700	10.782	2.028	1.378	98.071	$BS3&4C_{L1}S2$
-147.9	47.594	49.084	1 021	15.455	11.403	6 901	10.674	2.970	1.407	98.510	$BS3&4C_{L1}S2$
-107.9	47.620	49.172	1.921	15.277	11.507	6 739	10.004	2 984	1 380	98 191	BS3&4C_L1_S2
-267.9	47.500	49.377	1.900	15.307	11.500	6 708	10.007	3 022	1.300	98 425	BS3&4C_L1_S2
-307.9	47 481	49 141	1 959	15.442	11.506	6.812	10.707	3.053	1 381	98 341	BS3&4C_L1_S2
-347.9	47.422	49.371	2.045	15.508	11.262	6.746	10.610	3.061	1.399	98.051	BS3&4C L1 S2
-387.9	47.572	49.211	1.974	15.405	11.393	6.858	10.679	3.075	1.405	98.361	BS3&4C L1 S2
-427.9	47.363	49.104	1.992	15.451	11.478	6.883	10.621	3.044	1.428	98.259	BS3&4C L1 S2
-467.9	47.476	49.242	1.980	15.401	11.390	6.893	10.603	3.056	1.435	98.234	BS3&4C L1 S2
-507.9	47.383	49.028	2.023	15.573	11.399	6.848	10.622	3.123	1.385	98.355	BS3&4C L1 S2
-547.9	47.484	49.074	2.020	15.529	11.374	6.910	10.616	3.042	1.435	98.411	BS3&4C_L1_S2
-627.9	47.472	49.198	1.887	15.449	11.441	6.895	10.606	3.084	1.440	98.274	BS3&4C_L1_S3
-707.9	47.340	49.092	1.942	15.488	11.471	6.986	10.558	3.041	1.424	98.248	BS3&4C_L1_S3
-787.9	47.487	48.996	1.941	15.495	11.567	6.875	10.667	3.023	1.438	98.492	BS3&4C_L1_S3
-867.9	47.442	49.174	1.978	15.471	11.597	6.813	10.548	2.981	1.438	98.268	BS3&4C_L1_S3
-947.9	47.443	48.979	2.037	15.501	11.632	6.828	10.564	3.047	1.413	98.464	BS3&4C_L1_S3
1352.1	50.350	52.102	1.963	12.628	11.434	6.805	10.751	2.932	1.385	98.247	BS3&4C_L2_S1
1272.1	50.252	51.950	2.015	12.469	11.576	6.834	10.774	2.980	1.402	98.303	BS3&4C_L2_S1
1192.1	50.356	51.640	2.021	12.675	11.551	6.856	10.786	3.051	1.419	98.716	BS3&4C_L2_S1
1112.1	50.359	51.813	1.979	12.505	11.676	6.804	10.794	3.021	1.409	98.546	BS3&4C_L2_S1
1032.1	50.352	51.970	1.916	12.596	11.4/4	6.868	10.770	2.977	1.429	98.382	BS3&4C_L2_S1
952.1	50.147	52.298	2.015	12.476	11.368	6.768	10.747	2.938	1.391	97.850	BS3&4C_L2_S1
872.1	50.151	51.878	1.944	12.559	11.468	6.906	10.792	3.032	1.420	98.273	BS3&4C_L2_S1
792.1	50.069	52.065	1.954	12.379	11.552	6.881	10.741	2.999	1.427	98.004	BS3&4C_L2_S1
(12.1	50.181	52.072	1.984	12.611	11.535	0.885	10.707	3.005	1.393	98.300	възж40_L2_SI
032.1 552.1	49.943	52.073	1.981	12.537	11.362	6.912	10.763	2.962	1.410	97.870	възж40_L2_SI
352.1	50.132	51./3/	1.9/0	12.391	11.556	0.930	10./51	3.023 2.017	1.442	98.396 08 220	$BS3&4C_L2_SI$
4/2.1	50.250	51.918	1.938	12.708	11.400	0.808	10.08/	5.01/ 2.052	1.410	70.338 00 442	$DS3\alpha4U_L2_S1$
392.1	50.204	52.002	1.925	12.747	11.31/	0.848	10.090	5.052 2.074	1.402	70.445 08 100	$DS3&4C_L2_S2$
312.1	10 060	52.005	1.942	12.372	11.500	0.044	10.002	2.7/4	1.423	20.10U	D55040_L2_52
272.1	49.909	51.026	1.090	12.311	11.307	6 868	10.091	3.039	1.419	97.090 08 120	$BS3&4C_L2_S2$
272.1 232.1	50.500	52 210	1.990	12.302	11 530	6.915	10.707	2 936	1.45	98 086	BS3&4C 12 S2
192.1	50 288	51 697	1 945	12.771 12.672	11 508	6 920	10.508	3 078	1 463	98 591	BS3&4C L2 S2
	20.200	0 1.000		/ -		0.740		2.070		/ 0.0/1	

112.1	50.083	51.490	1.945	12.960	11.478	6.989	10.603	3.087	1.450	98.594	BS3&4C_L2_S2
72.1	49.755	51.329	1.986	13.160	11.525	6.909	10.646	3.000	1.445	98.426	BS3&4C_L2_S2
32.1	49.216	50.907	2.011	13.624	11.438	6.802	10.664	3.124	1.430	98.309	BS3&4C L2 S2
-7.9	48.524	50.378	2.001	14.038	11.560	6.862	10.721	3.023	1.418	98.146	BS3&4C L2 S2
-47.9	47.912	49.973	1.989	14.558	11.598	6.741	10.735	3.029	1.377	97.939	BS3&4C L2 S2
-87.9	47.547	49.737	2.029	14,970	11.399	6.796	10.738	2.969	1.362	97.811	BS3&4C_L2_S2
-127.9	47 251	49 243	1 994	15 188	11 519	6 893	10 788	3 000	1 376	98 008	BS3&4C_L2_S2
-167.9	47 218	49.065	1 962	15 338	11.614	6 830	10 759	3 041	1 391	98 153	BS3&4C_L2_S2
-207.9	17.210	19.005	1.902	15 307	11.011	6.845	10.799	3.044	1 380	98.054	BS3&4C 12 S2
247.0	47.227	40.122	1.955	15.357	11.420	6 800	10.798	3.074	1.300	08 084	$BS3&4C_{L2}S2$
-247.9	47.213	49.152	1.900	15.455	11.333	0.090	10.095	2.029	1.362	90.004	$D53@4C_L2_52$
-287.9	47.312	49.175	1.935	15.295	11.445	0.903	10.703	3.084	1.400	98.138	BS3&4C_L2_S2
-327.9	47.301	49.232	1.997	15.376	11.518	6.//4	10./04	3.028	1.3/1	98.070	BS3&4C_L2_S2
-407.9	4/.441	49.4/3	1.901	15.316	11.430	6.896	10.624	2.990	1.3/0	97.968	BS3&4C_L2_S2
-447.9	47.426	49.059	1.937	15.492	11.560	6.780	10.734	3.051	1.387	98.367	BS3&4C_L2_S2
-487.9	47.359	49.320	1.881	15.298	11.492	6.853	10.630	3.127	1.398	98.039	BS3&4C_L2_S2
-527.9	47.471	49.070	1.941	15.389	11.597	6.946	10.625	3.016	1.416	98.400	BS3&4C_L2_S2
-567.9	47.358	49.046	1.953	15.582	11.522	6.896	10.619	2.982	1.402	98.312	BS3&4C_L2_S2
-607.9	47.399	49.466	1.972	15.242	11.405	6.840	10.607	3.041	1.426	97.933	BS3&4C_L2_S2
-687.9	47.387	49.065	1.910	15.367	11.654	6.878	10.684	3.032	1.410	98.322	BS3&4C_L2_S3
-767.9	47.374	48.989	2.052	15.301	11.706	6.940	10.571	3.013	1.429	98.386	BS3&4C_L2_S3
-847.9	47.357	49.063	1.975	15.371	11.615	6.949	10.608	3.006	1.414	98.294	BS3&4C_L2_S3
-927.9	47.397	49.203	2.024	15.360	11.612	6.814	10.603	2.970	1.415	98.193	BS3&4C L2 S3
1472.1	50.828	51.992	1.942	12.617	11.533	6.817	10.761	2.937	1.403	98.837	BS3&4C L3 S1
1392.1	50.358	51.779	1.977	12.520	11.608	6.927	10.778	2.999	1.413	98.580	BS3&4C L3 S1
1312.1	50.418	51.923	2.008	12.550	11.575	6.838	10.800	2.914	1.393	98.495	BS3&4C L3 S1
1232.1	50.407	51.879	1.918	12.621	11.574	6.846	10.771	2.999	1.394	98.528	BS3&4C L3 S1
1152.1	50.055	51.498	1.961	12.589	11.739	6.957	10.837	2.994	1.426	98.557	BS3&4C_L3_S1
992.1	50 310	51 736	1 974	12.668	11 664	6 871	10.745	2.949	1 393	98 574	BS3&4C_L3_S1
912.1	50 119	51 773	1 983	12.450	11 713	6 863	10.816	2 989	1 414	98 346	BS3&4C_L3_S1
832.1	50.129	51.872	1.905	12.100	11.715	6 8 9 6	10.010	2.909	1.406	98 258	B\$3&4C_L3_S1
752.1	50.125	52 036	1.920	12.502	11.620	6.816	10.790	2.905	1 384	98 100	B\$3&4C_L3_S1
672.1	50.125	51 580	1.915	12.557	11.004	6.857	10.721	2.000	1.304	08 537	$BS3&4C_{L3}S1$
502.1	50.125	51.569	1.900	12.091	11.092	7.022	10.754	2 0 2 0	1.421	90.337 00 252	$DS3@4C_{L3}S1$
512.1	50.249	51.750	1.915	12.449	11.039	6.940	10.755	2.005	1.411	90.233	$DS3@4C_L3_S1$
512.1	50.548	51.///	1.940	12.499	11.095	0.849	10.817	3.005	1.412	98.3/1	BS3&4C_L3_S1
432.1	50.467	51.669	1.950	12.520	11.6/1	6.995	10.772	2.979	1.444	98.797	BS3&4C_L3_S2
392.1	50.329	51./81	1.918	12.453	11.640	6.938	10.787	3.071	1.412	98.548	BS3&4C_L3_S2
352.1	50.300	51.895	1.978	12.563	11.491	6.918	10.764	2.971	1.419	98.404	BS3&4C_L3_S2
312.1	50.269	51.789	1.938	12.650	11.584	6.920	10.687	3.010	1.422	98.480	BS3&4C_L3_S2
192.1	50.273	51.726	1.953	12.752	11.622	6.853	10.612	3.050	1.432	98.547	BS3&4C_L3_S2
152.1	50.178	51.979	1.984	12.559	11.651	6.778	10.643	2.973	1.433	98.199	BS3&4C_L3_S2
112.1	50.001	51.759	1.943	12.714	11.581	6.892	10.648	3.048	1.416	98.242	BS3&4C_L3_S2
72.1	49.673	51.443	2.058	12.990	11.506	6.973	10.551	3.032	1.449	98.230	BS3&4C_L3_S2
32.1	49.214	51.187	1.968	13.494	11.504	6.904	10.592	2.915	1.437	98.027	BS3&4C_L3_S2
-7.9	48.840	50.270	1.913	14.167	11.598	6.889	10.708	3.047	1.408	98.570	BS3&4C_L3_S2
-47.9	48.231	49.812	2.027	14.642	11.431	6.871	10.750	3.047	1.421	98.419	BS3&4C_L3_S2
-87.9	48.078	49.470	1.984	15.152	11.426	6.875	10.724	3.000	1.370	98.609	BS3&4C_L3_S2
-127.9	47.693	49.365	2.037	15.236	11.478	6.723	10.716	3.055	1.390	98.329	BS3&4C L3 S2
-207.9	47.682	49.264	1.931	15.528	11.447	6.823	10.641	2.992	1.375	98.418	BS3&4C L3 S2
-247.9	47.520	48.891	1.974	15.496	11.482	6.946	10.758	3.026	1.427	98.628	BS3&4C L3 S2
-327.9	47.384	49.251	2.043	15.317	11.389	6.924	10.645	3.013	1.418	98.134	BS3&4C L3 S2
-367.9	47.188	49.504	1.996	15.274	11.425	6.736	10.635	3.032	1.399	97.685	BS3&4C_L3_S2
-407.9	47.356	49.358	1.966	15.462	11.429	6.776	10.538	3.071	1.400	97,997	BS3&4C L3 S2
-487 9	47 349	49 108	2.028	15 574	11 475	6 842	10 540	3 014	1 420	98 241	BS3&4C_L3_S2
-527.9	47 397	49 215	1 922	15 594	11 307	6 763	10.540	3 081	1 438	98 187	BS3&4C I 3 S2
-527.9	47 571	40 200	2 026	15.594	11 212	6 700	10.505	3 119	1 /26	08 271	BS3&AC I 2 S2
-507.9	41.311	49.200	2.030	15 500	11.313	6 750	10.010	2 114	1.400	70.3/1 08 266	BS2&AC I 2 S2
-047.9	41.004	47.200	1.7/0	15.022	11.400	6000	10.509	2.114	1.422	70.300 00 07 0	$DSJC4U_LJ_SJ$
-121.9	4/.551	49.0/5	1.928	15.485	11.001	0.825	10.540	3.069	1.454	98.278	DS3&4C_L3_S3
-807.9	46.9/6	49.354	2.011	15.596	11.359	0./40	10.493	5.015	1.452	97.622	BS3&4C_L3_S3
-887.9	47.263	49.108	2.041	15.525	11.495	6.845	10.534	3.027	1.426	98.154	BS3&4C_L3_S3
-967.9	47.249	49.437	1.985	15.311	11.390	6.865	10.536	3.040	1.435	97.812	BS3&4C L3 S3

Table C22	. BS5&60	5									
X(µm)	SiO2	SiO2*	TiO2	Al2O3	FeO	MgO	CaO	Na2O	K2O	Total	Comment
1025.6	51.261	52.089	2.043	14.022	9.940	6.593	10.558	3.223	1.532	99.173	BS5&6C_L1_S1
945.6	51.383	52.119	1.993	13.984	9.979	6.609	10.536	3.217	1.562	99.265	BS5&6C_L1_S1
865.6	51.478	52.121	2.049	14.003	9.882	6.539	10.610	3.253	1.543	99.357	BS5&6C_L1_S1
785.6	51.477	52.249	1.890	14.018	9.968	6.511	10.558	3.262	1.544	99.228	BS5&6C_L1_S1
705.6	51.479	52.064	2.060	13.861	9.875	6.695	10.643	3.251	1.552	99.415	BS5&6C_L1_S1
625.6	51.347	52.023	1.982	13.896	9.982	6.582	10.565	3.396	1.576	99.324	BS5&6C_L1_S1
545.6	51.339	52.339	1.973	13.913	9.917	6.479	10.480	3.331	1.568	99.000	BS5&6C_L1_S1
475.6	51.495	52.179	2.021	13.858	10.100	6.491	10.514	3.270	1.566	99.316	BS5&6C_L1_S2
435.6	51.493	51.965	2.007	14.006	9.997	6.498	10.594	3.343	1.590	99.528	BS5&6C_L1_S2
395.6	51.433	51.610	1.968	13.999	10.310	6.636	10.548	3.335	1.594	99.822	BS5&6C_L1_S2
355.6	51.291	51.861	1.925	14.015	10.125	6.584	10.524	3.360	1.606	99.431	BS5&6C_L1_S2
315.6	51.369	51.818	1.999	13.909	10.150	6.633	10.527	3.369	1.596	99.550	BS5&6C_L1_S2
275.6	51.221	52.181	1.935	13.901	10.188	6.479	10.359	3.347	1.611	99.040	BS5&6C_L1_S2
235.6	51.460	51.880	1.958	13.932	10.263	6.504	10.505	3.359	1.600	99.580	BS5&6C_L1_S2
195.6	51.288	52.030	1.894	13.896	10.301	6.420	10.430	3.387	1.643	99.258	BS5&6C_L1_S2
155.6	51.011	51.931	1.933	13.900	10.453	6.480	10.403	3.275	1.625	99.079	BS5&6C_L1_S2
115.6	51.083	51.820	1.849	13.968	10.744	6.383	10.273	3.342	1.621	99.263	BS5&6C_L1_S2
75.6	50.697	51.543	1.887	13.937	10.816	6.436	10.437	3.364	1.580	99.154	BS5&6C_L1_S2
35.6	50.228	50.852	1.903	14.113	11.237	6.501	10.555	3.264	1.577	99.376	BS5&6C_L1_S2
-4.4	49.487	50.374	1.955	13.976	11.615	6.697	10.673	3.205	1.505	99.112	BS5&6C_L1_S2
-44.4	49.233	49.899	2.038	14.032	12.024	6.680	10.749	3.108	1.469	99.334	BS5&6C_L1_S2
-84.4	48.789	49.461	2.053	14.000	12.441	6.728	10.766	3.099	1.452	99.328	BS5&6C_L1_S2
-124.4	48./41	49.394	1.990	13.9/4	12.449	6.887	10.839	3.041	1.426	99.34/	BS5&6C_L1_S2
-164.4	48.350	49.534	1.980	13.984	12.466	6./5/	10.767	3.079	1.433	98.816	BS5&6C_L1_S2
-204.4	48.032	48.904	2.012	14.022	12.854	0.839	10.812	3.039	1.440	99.009	BS5&6C_L1_S2
-244.4	48.434	49.383	2.000	12.062	12.702	0.738 6713	10.755	2.970	1.437	99.071	DS5&0C_L1_S2
-204.4	40.370	49.440	1.934	12 905	12.775	6 707	10.098	2 1 2 9	1.442	99.133	BS5&0C_L1_S2
-524.4	40.170	49.309	2 034	13.031	12.929	6.683	10.010	3.120	1.470	90.700	BS5&6C_L1_S2
-304.4	40.439	49.200	2.034	13.875	12.965	6 735	10.054	3.075	1.309	08 000	B\$5&6C_L1_S2
-404.4	48.558	49 351	2.000	13.828	12.075	6 781	10.034	3.017	1.42)	99 157	BS5&6C_L1_S2
-484 4	48 293	49.096	1.947	13.891	13.057	6.826	10.635	3.047	1.466	99 197	B\$5&6C_L1_S2
-524.4	48 367	49 026	1.985	13.875	13 133	6 801	10.693	3.054	1 434	99 341	BS5&6C_L1_S2
-604.4	48.018	48 991	2.029	13 888	13 164	6 750	10.634	3 064	1 480	99.027	BS5&6C_L1_S2
-684.4	48.212	49.127	2.041	13.853	13.155	6.738	10.549	3.094	1.443	99.085	BS5&6C L1 S3
-764.4	48.259	49.320	1.911	13.801	13.012	6.753	10.665	3.066	1.472	98.939	BS5&6C L1 S3
-844.4	48.121	48.918	1.955	13.837	13.292	6.874	10.666	3.019	1.439	99.203	BS5&6C L1 S3
-924.4	48.277	49.128	1.949	13.820	13.199	6.791	10.612	3.034	1.467	99.149	BS5&6C L1 S3
-1004.4	48.521	49.306	1.986	13.783	13.108	6.722	10.569	3.063	1.464	99.215	BS5&6C L1 S3
-1084.4	48.323	48.965	2.005	13.912	13.172	6.743	10.724	3.005	1.474	99.358	BS5&6C L1 S3
-1164.4	48.482	49.139	2.005	13.860	13.093	6.668	10.718	3.042	1.476	99.343	BS5&6C L1 S3
-1244.4	48.365	49.362	1.962	13.784	13.055	6.724	10.601	3.038	1.475	99.003	BS5&6C_L1_S3
-1324.4	48.509	49.132	2.023	13.967	13.025	6.676	10.636	3.045	1.497	99.377	BS5&6C_L1_S3
1065.6	51.579	52.233	1.957	14.072	9.809	6.558	10.595	3.239	1.537	99.345	BS5&6C_L2_S1
985.6	51.364	52.364	1.973	13.790	9.908	6.655	10.560	3.216	1.534	98.999	BS5&6C_L2_S1
905.6	51.456	52.523	1.989	13.931	9.815	6.470	10.490	3.224	1.559	98.933	BS5&6C_L2_S1
825.6	51.461	52.573	2.031	13.882	9.786	6.486	10.496	3.192	1.554	98.888	BS5&6C_L2_S1
745.6	51.666	52.285	1.949	13.829	9.968	6.638	10.493	3.326	1.513	99.381	BS5&6C_L2_S1
665.6	51.681	52.272	1.979	14.035	9.861	6.528	10.508	3.230	1.587	99.409	BS5&6C_L2_S1
585.6	51.660	52.118	1.988	13.820	10.062	6.609	10.543	3.306	1.555	99.542	BS5&6C_L2_S1
505.6	51.247	52.018	1.945	13.966	10.072	6.618	10.527	3.317	1.537	99.228	BS5&6C_L2_S1
425.6	51.276	52.329	1.923	13.861	10.084	6.420	10.526	3.281	1.577	98.947	BS5&6C_L2_S2
345.6	51.441	52.035	1.967	13.853	10.185	6.503	10.541	3.328	1.588	99.406	BS5&6C_L2_S2
305.6	51.039	52.080	2.001	13.855	10.190	6.472	10.431	3.375	1.597	98.959	BS5&6C_L2_S2
265.6	51.090	51.890	1.97/8	13.970	10.112	6.588	10.534	3.313	1.615	99.200	BS5&6C_L2_S2
225.6	51.375	51.792	1.982	13.907	10.290	6.484	10.516	3.416	1.613	99.583	BS5&6C_L2_S2
185.6	51.069	51.902	2.019	14.032	10.284	6.433	10.398	3.309	1.623	99.167	BS5&6C_L2_S2
145.6	51.265	51.897	1.870	13.925	10.542	6.319	10.406	3.389	1.652	99.368	BS5&6C_L2_S2
105.6	50,400	51.005	1.906	13.952	10.751	0.38/	10.433	3.299 2.209	1.030	99.242	BS5&6C_L2_S2
05.0	20.049	50 551	1.930	12.992	11.009	0.333	10.41/	3.298	1.012	99.442 00.220	BS5&6C L2 S2
23.0	47.000	30.331	2.041	13.992	11.309	0.399	10.024	5.239	1.343	77.330	DS3&0C_L2_S2

-14.4	49.474	50.250	2.041	13.988	11.775	6.665	10.704	3.102	1.475	99.225	BS5&6C L2 S2
-54.4	49.037	49.869	1.995	14.013	12.057	6.688	10.822	3.108	1.447	99.168	BS5&6C L2 S2
-94.4	48.776	49.261	1.974	14.078	12.489	6.880	10.823	3.074	1.421	99.515	BS5&6C L2 S2
-134.4	48.551	49.355	1.996	14.055	12.453	6.816	10.831	3.072	1.422	99,197	BS5&6C L2 S2
-174 4	48 752	49 556	1 968	13 883	12 619	6 738	10 743	3 049	1 444	99 196	BS5&6C_L2_S2
-214.4	48 746	49 4 5 1	1 991	13 854	12.617	6 795	10.736	3.052	1 455	99 295	B\$5&6C_L2_S2
254.4	18 601	40.256	1 000	13.004	12.007	6.813	10.750	2 074	1.453	00 / 38	B\$5&6C_L2_S2
-234.4	40.094	49.230	2 002	13.920	12.700	6 6 6 9	10.612	2.974	1.454	00 141	DS5&0C_L2_S2
-294.4	40.440	49.303	2.005	12.040	12.729	0.000	10.000	2.000	1.451	99.141	DS5&0C_L2_S2
-334.4	48.4/3	49.272	2.054	13.816	12.952	6./80	10.639	3.009	1.4/9	99.201	B\$5&6C_L2_S2
-3/4.4	48.598	49.016	2.048	13.877	13.151	6.780	10.658	3.016	1.455	99.582	BS5&6C_L2_S2
-414.4	48.211	49.379	2.022	13.796	12.858	6.756	10.614	3.069	1.507	98.832	BS5&6C_L2_S2
-454.4	48.577	49.077	1.968	13.841	13.212	6.770	10.605	3.027	1.500	99.500	BS5&6C_L2_S2
-494.4	48.448	49.095	1.951	13.843	13.059	6.886	10.643	3.037	1.488	99.353	BS5&6C_L2_S2
-534.4	48.513	48.868	2.041	14.027	13.144	6.732	10.669	3.042	1.478	99.646	BS5&6C_L2_S2
-574.4	48.470	49.040	1.915	13.972	13.157	6.740	10.649	3.048	1.478	99.431	BS5&6C L2 S2
-654.4	48.396	49.142	2.026	13.953	13.029	6.742	10.615	3.016	1.478	99.254	BS5&6C L2 S3
-734.4	48.406	49.216	1.978	13.766	13,190	6.708	10.604	3.061	1.477	99,190	BS5&6C L2 S3
-814.4	48 447	49.065	1 978	13 664	13 294	6 805	10.652	3 088	1 4 5 5	99 383	BS5&6C_L2_S3
-894.4	48 540	49 249	1 949	13 790	13 136	6 741	10.664	3.026	1 446	99 291	BS5&6C_L2_S3
-974.4	18.510	19.219	1 0 3 0	13 788	13.002	6 773	10.607	3.051	1.110	00 203	B\$5&6C_L2_S3
1054.4	40.400	49.233	2 022	12 921	12 276	6727	10.047	2.056	1.457	00 554	DS5&6C_L2_S3
-1034.4	40.497	40.945	2.033	12.021	12.165	0.737	10.070	2.050	1.404	99.554	$DS5&0C_L2_S5$
-1134.4	48.557	49.054	2.077	13.800	13.105	0./33	10.010	3.064	1.480	99.483	BS5&6C_L2_S3
-1214.4	48.178	49.295	2.014	13.6/5	13.155	6.691	10.629	3.100	1.441	98.883	BS5&6C_L2_S3
-1294.4	48.196	49.082	1.985	13.876	13.182	6.724	10.617	3.079	1.457	99.114	BS5&6C_L2_S3
1095.6	51.551	52.112	2.002	13.947	10.029	6.594	10.617	3.174	1.526	99.439	BS5&6C_L3_S1
1015.6	51.469	52.030	1.984	13.878	10.091	6.651	10.593	3.213	1.561	99.439	BS5&6C_L3_S1
935.6	51.693	51.851	1.899	13.961	10.084	6.741	10.646	3.266	1.552	99.841	BS5&6C_L3_S1
855.6	51.514	52.134	1.993	13.947	9.903	6.628	10.649	3.192	1.554	99.381	BS5&6C_L3_S1
775.6	51.453	52.289	1.931	13.810	10.048	6.529	10.529	3.300	1.563	99.163	BS5&6C L3 S1
695.6	51.546	52.028	2.053	14.028	9.937	6.482	10.646	3.271	1.554	99.518	BS5&6C L3 S1
615.6	51.468	52.368	1.961	13.787	10.025	6.482	10.546	3.250	1.583	99.100	BS5&6C L3 S1
535.6	51.463	52,104	1.928	13.877	10.118	6.583	10.531	3.303	1.557	99.359	BS5&6C_L3_S1
455.6	51 288	52 340	1 906	13 779	10.043	6 566	10 551	3 250	1 566	98 948	BS5&6C_L3_S2
415.6	51.200	52.296	1 971	13 775	10.166	6.421	10.509	3 262	1.500	99 044	B\$5&6C_L3_S2
375.6	51 361	51 007	1.971	13.842	10.100	6.480	10.500	3 360	1.576	00 365	B\$5&6C_L3_\$2
225.6	51 274	51.997	2.006	12.029	10.232	6 5 2 1	10.529	2.500	1.570	99.303	$DS5&0C_{L3}S2$
205 (51.274	52.000	2.000	12.920	10.100	0.551	10.501	2.227	1.000	99.403	$DS5&0C_{L3}S2$
293.0	51.207	52.080	1.930	12,700	10.510	0.457	10.309	2.227	1.594	99.202	$DSS&0C_LS_S2$
255.6	51.465	52.073	1.940	13.728	10.401	6.409	10.4/5	3.38/	1.588	99.392	B\$5&6C_L3_S2
215.6	51.287	51.753	1.944	13.963	10.347	6.506	10.508	3.369	1.610	99.535	BS5&6C_L3_S2
175.6	51.129	51.889	1.959	13.882	10.515	6.443	10.398	3.304	1.610	99.239	BS5&6C_L3_S2
135.6	51.258	51.753	1.943	13.922	10.524	6.537	10.368	3.363	1.592	99.505	BS5&6C_L3_S2
95.6	50.987	51.569	1.954	13.938	10.713	6.433	10.383	3.359	1.651	99.418	BS5&6C_L3_S2
55.6	50.787	51.533	1.836	13.850	10.937	6.569	10.363	3.285	1.628	99.254	BS5&6C_L3_S2
15.6	50.226	50.932	1.989	13.864	11.286	6.632	10.497	3.245	1.556	99.294	BS5&6C_L3_S2
-24.4	49.483	50.419	1.979	13.865	11.882	6.572	10.697	3.086	1.500	99.064	BS5&6C_L3_S2
-64.4	49.222	49.919	2.022	13.984	12.048	6.756	10.732	3.081	1.458	99.304	BS5&6C L3 S2
-104.4	48.885	49.577	1.997	13.929	12.449	6.849	10.781	3.026	1.393	99.308	BS5&6C L3 S2
-144.4	48.573	49.461	2.058	13.850	12.508	6.771	10.778	3.093	1.482	99.112	BS5&6C L3 S2
-184.4	48 686	49 4 39	1 978	13 837	12 582	6 810	10.859	3 056	1 4 3 9	99 246	BS5&6C_L3_S2
-224.4	48 488	49 441	1 941	13 848	12.805	6 787	10 743	3 013	1 423	99.048	BS5&6C_L3_S2
-264.4	18 281	19.111	2 031	13.8/10	12.000	6 808	10.706	3.028	1.125	00 125	B\$5&6C_L3_S2
204.4	40.201	40.001	2.001	12 006	12.977	6.876	10.700	2 040	1 400	00 269	$D55&0C_{L5}S2$
-304.4	40.439	49.091	2.000	12.900	12.997	0.820	10.721	2.049	1.409	99.300	$B33&0C_L3_32$
-344.4	48.307	49.555	1.991	13.885	12.68/	6./56	10.658	3.007	1.461	98.752	B\$5&6C_L3_S2
-384.4	48.414	49.272	1.957	13.826	13.021	6.695	10.730	3.033	1.466	99.142	B\$5&6C_L3_S2
-424.4	48.402	49.259	1.963	13.835	13.069	6.689	10.640	3.068	1.478	99.143	BS5&6C_L3_S2
-464.4	48.353	49.398	2.018	13.775	12.943	6.754	10.640	3.036	1.436	98.954	BS5&6C_L3_S2
-504.4	48.416	49.103	2.035	13.911	13.068	6.729	10.660	3.040	1.454	99.313	BS5&6C_L3_S2
-544.4	48.346	49.229	2.059	13.743	13.098	6.715	10.651	3.042	1.464	99.118	BS5&6C_L3_S2
-624.4	48.420	49.356	1.953	13.680	13.067	6.806	10.615	3.077	1.446	99.064	BS5&6C L3 S3
-704.4	48.546	49.226	1.943	13.902	13.017	6.792	10.633	3.005	1.484	99.321	BS5&6C L3 S3
-784.4	48.479	49.145	2.031	13.915	13.142	6.730	10.581	3.030	1.426	99.333	BS5&6C L3 S3
-864.4	48.199	48.964	1.986	13.743	13.175	6.806	10.742	3.112	1.473	99.235	BS5&6C L3 S3
-944.4	48.501	49.158	1.994	13.755	13.142	6.746	10.663	3.066	1.476	99.343	BS5&6C L3 S3
					=						· · ·

-1024.4	48.304	48.974	1.932	13.772	13.311	6.805	10.658	3.078	1.471	99.330	BS5&6C_L3_S3
-1104.4	48.477	49.310	2.061	13.741	13.130	6.652	10.674	2.996	1.437	99.167	BS5&6C_L3_S3
-1184.4	48.482	49.070	2.026	13.714	13.153	6.781	10.719	3.064	1.474	99.412	BS5&6C_L3_S3
-1264.4	48.276	49.227	2.013	13.877	13.001	6.695	10.591	3.110	1.487	99.049	BS5&6C_L3_S3

Table C23	. BS7&80	5									
X(µm)	SiO2	SiO2*	TiO2	Al2O3	FeO	MgO	CaO	Na2O	K2O	Total	Comment
1385.6	50.832	51.947	2.016	13.976	11.522	5.414	10.759	3.003	1.364	98.885	BS7&8C L1 S1
1305.6	50.672	51.958	2.002	13.995	11.501	5.428	10.810	2.946	1.362	98.714	BS7&8C L1 S1
1225.6	50.674	51.801	2.058	14.037	11.622	5.354	10.773	3.005	1.350	98.872	BS7&8C L1 S1
1145.6	50.360	51.654	2.056	14.079	11.670	5.372	10.800	2.998	1.370	98.706	BS7&8C L1 S1
1065.6	50.187	51.670	2.002	14.088	11.594	5.390	10.858	3.024	1.374	98.517	BS7&8C L1 S1
985.6	50 461	51 699	1 990	14 152	11 563	5 396	10 769	3 054	1 378	98 762	BS7&8C_L1_S2
905.6	50 320	51 928	1 978	14 018	11 589	5 323	10.821	3 002	1 341	98 392	BS7&8C_L1_S2
825.6	50.694	51.659	2 101	14 173	11.505	5 320	10.762	3.069	1 342	99.035	B\$7&8C_L1_S2
745.6	50.530	52 208	1 992	13 970	11 381	5 283	10.762	3.043	1.3 12	98 322	B\$7&8C_L1_S2
665.6	50.627	52.200	1 929	13 934	11.501	5 349	10.702	3 103	1.354	98 544	B\$7&8C_L1_S2
585.6	50.027	52.005	1.929	14 036	11.536	5 295	10.674	3.065	1 386	98 420	B\$7&8C_L1_S2
505.6	50.068	51 698	2 1 2 5	14 207	11.550	5 324	10.671	3 1 2 5	1.356	98 370	B\$7&8C_L1_S3
465.6	50.536	51 903	2.125	14 030	11.313	5 369	10.052	3 180	1 339	98 633	BS7&8C_L1_S3
105.0	50.550	51.505	2.009	14 164	11.560	5 3 3 2	10.712	3 174	1 3 8 7	08 884	B\$7&8C_L1_S3
385.6	50.078	51.000	1 03/	1/ 110	11.500	5.332	10.074	3 1 2 7	1 373	08 268	B\$7&8C_L1_S3
345.6	50.730	51.005	2.010	14.117	11 302	5 207	10.747	3 201	1 3 9 0	08 754	B\$7&8C_L1_S3
345.0	50.739	51 817	1 080	13 020	11.302	5 402	10.050	3.201	1.309	90.734 08 732	B\$7&8C_L1_S3
265.6	50.349	51.017	2 037	13.929	11.401	5 402	10.044	3.213	1.444	90.752 08 706	B\$7&8C_L1_S3
203.0	50.653	51.951	2.057	14.070	11.337	5 5 5 3	10.582	3.217	1.425	08 820	B\$7&8C_L1_S3
195.6	50.531	51.024	2.027	14.022	11.420	5.555	10.561	2 2 2 2 5	1.450	90.029 00 700	DS7&8C_L1_S3
105.0	50.831	51.050	2.027	14.104	10.020	5.074	10.343	3.233	1.404	90.700	DS7&0C_L1_S3
103.0	50.645	51./58	2.048	12.948	10.989	5.902	10.400	3.287	1.540	99.084	$DS/ac_{L1}SS$
05.0	30.399	51.505	1.990	13.948	11.120	0.145	10.421	3.270	1.342	99.034	BS/&8C_L1_S3
23.0	49.900	50.757	1.909	14.272	11.240	0.440	10.052	2.079	1.403	99.143	DS7&0C_L1_S3
-14.4	48.905	30.307 40.791	2.043	14.004	11.504	0.831	10./10	2.021	1.441	98.330	DS7&0C_L1_S3
-34.4	40.039	49./81	2.124	14.014	11.3/4	7.204	10.887	2 801	1.300	99.038	$DS/ac_{L1}SS$
-94.4	48.330	49.030	1.903	14.075	11.831	7.418	10.84/	2.891	1.339	98.720	BS/&8C_L1_S3
-154.4	48.000	49.549	2.070	13.972	11.629	7.045	10.829	2.944	1.339	98.03/	$DS/ac_{L1}SS$
-1/4.4	48.100	49.180	2.093	14.144	11./52	7.001	10.789	2.882	1.395	98.98/	BS/&8C_L1_S3
-214.4	48.48/	49.554	2.024	13.951	11.039	7.901	10.779	2.980	1.380	99.155	BS/&8C_L1_S3
-254.4	48.240	49.462	1.9/5	14.003	11.303	7.990	10.728	2.967	1.444	98.//8	BS/&8C_L1_S3
-294.4	48.302	49.745	2.032	13.921	11.272	7.978	10.011	2.992	1.450	98.01/	BS/&8C_L1_S3
-334.4	48.340	49.740	1.965	13.913	11.331	7.935	10./15	2.933	1.469	98.600	BS/&8C_L1_S3
-3/4.4	48.159	49.381	2.032	14.091	11.439	/.968	10.621	2.965	1.502	98.778	BS/&8C_L1_S3
-414.4	48.597	49.345	1.9/1	13.948	11.534	8.142	10.598	2.994	1.468	99.252	BS/&8C_L1_S3
-454.4	48.282	49.315	1.969	13.981	11.39/	8.234	10.539	3.028	1.536	98.966	BS/&8C_L1_S3
-534.4	48.509	49.207	2.070	14.031	11.429	8.1/3	10.566	3.025	1.500	99.302	BS/&8C_L1_S4
-614.4	48.5/8	49.597	1.999	13.91/	11.253	8.082	10.601	3.04/	1.503	98.981	BS/&8C_L1_S4
-694.4	48.099	49.48/	1.9/1	13.973	11.320	8.13/	10.511	3.078	1.522	98.611	BS/&8C_L1_S4
-//4.4	48.360	49.589	2.01/	13.976	11.309	8.070	10.514	3.027	1.498	98.//1	BS/&8C_L1_S4
-934.4	48./10	49.420	1.958	14.031	11.2/4	8.112	10.522	3.143	1.540	99.290	BS/&8C_L1_S4
-1014.4	48.839	49.211	1.982	14.058	11.300	8.150	10.583	3.113	1.53/	99.628	BS/&8C_L1_S4
-1094.4	48.708	49.641	1.902	13.941	11.309	8.063	10.544	3.101	1.499	99.06/	BS/&8C_L1_S4
-11/4.4	48.785	49.546	1.914	13.924	11.301	8.049	10.510	3.14/	1.548	99.239	BS/&8C_L1_S4
-1254.4	48.55/	49.778	1.999	13.806	11.24/	8.027	10.507	3.113	1.523	98.779	BS/&8C_L1_S4
-1334.4	48.810	49.653	2.036	13.939	11.339	7.938	10.400	3.170	1.525	99.157	BS/&8C_L1_S4
-1414.4	48.607	49.600	1.979	13.929	11.321	7.957	10.487	3.185	1.543	99.007	BS/&8C_L1_S4
1335.6	50.730	51.884	1.989	13.958	11.630	5.470	10.702	3.005	1.363	98.846	BS/&8C_L2_S1
1255.6	50.881	51.800	2.009	14.140	11.537	5.401	10.772	3.002	1.339	99.081	BS/&8C_L2_S1
11/5.6	50.704	52.044	1.948	14.012	11.643	5.360	10.668	2.997	1.329	98.659	BS/&8C_L2_S1
1095.6	50.506	51.975	1.937	13.935	11.656	5.349	10.732	3.065	1.352	98.531	BS7&8C_L2_S1
1015.6	50.631	51.895	2.022	14.075	11.598	5.385	10.742	2.936	1.347	98.736	BS7&8C_L2_S1
855.6	50.844	51.799	1.909	14.151	11.591	5.330	10.763	3.103	1.354	99.044	BS7&8C_L2_S2
775.6	50.754	51.559	2.085	14.144	11.581	5.350	10.761	3.130	1.390	99.196	BS7&8C_L2_S2
695.6	50.850	51.978	2.011	14.064	11.449	5.390	10.697	3.052	1.359	98.873	BS7&8C_L2_S2
615.6	50.706	52.290	1.962	13.831	11.468	5.360	10.643	3.093	1.353	98.416	BS7&8C_L2_S2
535.6	50.926	51.746	2.007	14.251	11.369	5.332	10.752	3.166	1.377	99.181	BS7&8C_L2_S2
455.6	50.741	51.809	2.014	14.116	11.403	5.384	10.716	3.195	1.363	98.932	BS7&8C_L2_S3
415.6	50.695	51.717	1.993	14.053	11.553	5.380	10.793	3.167	1.345	98.977	BS7&8C_L2_S3
375.6	50.999	51.966	2.017	13.979	11.342	5.404	10.728	3.177	1.388	99.033	BS7&8C_L2_S3
335.6	51.119	51.694	2.049	14.055	11.518	5.436	10.685	3.165	1.400	99.425	BS7&8C_L2_S3
295.6	50.918	51.687	2.094	14.066	11.390	5.523	10.653	3.191	1.396	99.231	BS7&8C_L2_S3
255.6	50.923	51.752	2.038	14.089	11.424	5.433	10.628	3.177	1.459	99.171	BS7&8C L2 S3
---------	--------	------------------	-------	--------	--------	----------------------------	--------	-----------	--------	---------	--------------------------------
215.6	50.995	52.049	2.067	13.962	11.134	5.448	10.634	3.248	1.460	98.946	BS7&8C L2 S3
175.6	51.003	51.598	2.015	13.983	11.291	5.699	10.616	3.344	1.454	99.404	BS7&8C L2 S3
135.6	50.942	52,111	1.945	13.882	10.996	5.768	10.486	3.295	1.518	98.832	BS7&8C_L2_S3
95.6	51.065	51 811	1 985	14 002	11 004	6 000	10 428	3 223	1 548	99 254	BS7&8C_L2_S3
55.6	50 771	51.611	1 947	13.885	11 225	6 261	10.441	3 228	1.531	99.201	B\$7&8C_L2_S3
15.6	10 018	50 716	2.007	14.000	11.225	6.647	10.441	3 1 8 /	1.331	00 201	B\$7&8C_L2_S3
24.4	49.910	50.100	2.007	14.000	11.331	6.047	10.052	2.104	1.442	99.201	DS7&8C_L2_S3
-24.4	49.037	50.100	2.047	14.001	11.4/0	0.942	10.007	2.005	1.400	99.449	$DS7&0C_{L2}S3$
-64.4	48.848	50.220	2.036	13.997	11.488	7.154	10.838	2.905	1.364	98.628	BS/&8C_L2_S3
-104.4	48.454	49.420	2.069	14.015	11.820	7.453	10.906	2.964	1.354	99.034	BS/&8C_L2_S3
-144.4	48.509	49.337	2.052	14.123	11.651	7.780	10.772	2.906	1.380	99.172	BS/&8C_L2_S3
-184.4	48.576	49.609	2.027	14.043	11.475	7.734	10.799	2.914	1.399	98.967	BS7&8C_L2_S3
-224.4	48.355	49.467	2.078	14.147	11.517	7.802	10.645	2.951	1.393	98.888	BS7&8C_L2_S3
-264.4	48.446	49.633	1.997	14.039	11.388	7.928	10.646	2.922	1.448	98.813	BS7&8C_L2_S3
-304.4	48.584	48.989	2.042	14.227	11.441	8.105	10.661	3.058	1.477	99.595	BS7&8C_L2_S3
-344.4	48.710	49.460	1.997	13.943	11.416	8.097	10.593	2.978	1.516	99.250	BS7&8C_L2_S3
-384.4	48.472	49.506	1.989	13.886	11.352	8.093	10.660	3.027	1.488	98.965	BS7&8C_L2_S3
-464.4	48.685	49.620	1.960	13.954	11.253	8.097	10.576	3.050	1.491	99.066	BS7&8C L2 S3
-504.4	48.813	49.793	1.984	13.820	11.231	8.144	10.478	3.036	1.514	99.020	BS7&8C L2 S3
-544.4	48.577	49.337	2.008	14.122	11.264	8.119	10.527	3.093	1.529	99.240	BS7&8C L2 S3
-624.4	48.698	49.602	2.133	13.904	11.138	8.155	10.500	3.077	1.493	99.096	BS7&8C L2 S4
-704.4	48,709	49.776	1.947	13.823	11.227	8.024	10.573	3.057	1.573	98,933	BS7&8C L2 S4
-784 4	48 854	49 864	2 040	13 835	11 013	8 063	10 546	3 090	1 550	98 990	BS7&8C_L2_S4
-864.4	48 899	49 700	2.010	13.055	11 143	7 990	10.506	3 134	1.520	99 198	BS7&8C_L2_S1 BS7&8C_L2_S4
-944 4	48 850	49 679	1 990	14 006	11.043	8.038	10.500	3 1 1 9	1.521	99 170	B\$7&8C_L2_S1 B\$7&8C_L2_S4
-1024.4	48.875	49.079	1 080	14.000	11.045	8 054	10.377	3 1 5 7	1.520	00 124	B\$7&8C_L2_S4
1104 4	40.045	40.756	1.000	12 079	11.010	0.00 4 0.105	10.420	2 100	1.511	00 1 20	DS7&8C_L2_S4
-1104.4	40.943	49.750 50.051	1.920	12.970	11.050	7 050	10.450	2 114	1.522	00 027	DS7&8C_L2_S4
-1104.4	40.000	40.745	1.909	12.005	11.034	0 170	10.470	2 1 2 2	1.550	90.03/	DS7&6C_L2_S4
-1204.4	48.829	49.745	1.955	13.955	11.048	8.1/2	10.403	3.132	1.535	99.084	BS/&8C_L2_S4
-1344.4	49.218	49./15	1.908	14.002	11.189	7.981	10.499	3.201	1.505	99.504	BS/&8C_L2_S4
-1424.4	48.853	49.769	1.954	14.034	11.253	7.835	10.449	3.207	1.498	99.084	BS/&8C_L2_S4
1405.6	51.117	51.837	1.981	14.011	11.621	5.432	10.775	2.988	1.354	99.280	BS7&8C_L3_S1
1325.6	50.839	51.839	1.999	14.044	11.625	5.422	10.735	2.986	1.350	99.000	BS7&8C_L3_S1
1245.6	50.787	51.838	1.961	14.162	11.563	5.407	10.769	2.949	1.351	98.950	BS7&8C_L3_S1
1165.6	51.139	51.813	1.942	14.051	11.630	5.396	10.811	2.994	1.364	99.326	BS7&8C_L3_S1
1085.6	50.914	51.981	2.010	14.026	11.696	5.305	10.678	2.964	1.340	98.933	BS7&8C_L3_S1
1005.6	50.730	52.086	1.915	13.959	11.508	5.376	10.798	3.018	1.341	98.644	BS7&8C_L3_S2
925.6	51.222	51.884	1.959	14.069	11.611	5.409	10.669	3.016	1.383	99.338	BS7&8C_L3_S2
845.6	50.815	51.875	2.002	14.090	11.530	5.320	10.719	3.129	1.335	98.940	BS7&8C_L3_S2
765.6	50.928	52.097	1.982	13.916	11.496	5.316	10.708	3.125	1.361	98.831	BS7&8C_L3_S2
685.6	50.856	51.918	2.034	14.112	11.548	5.298	10.678	3.090	1.323	98.939	BS7&8C L3 S2
605.6	50.882	51.924	1.998	14.000	11.586	5.299	10.699	3.142	1.354	98.958	BS7&8C L3 S2
525.6	50.714	51.696	1.988	14.119	11.543	5.416	10.741	3.130	1.368	99.018	BS7&8C L3 S3
485.6	50.753	51.535	2.004	14.101	11.540	5.390	10.831	3.235	1.364	99.218	BS7&8C L3 S3
445.6	50.773	51.855	1.904	14.068	11.432	5.451	10.679	3.246	1.366	98.918	BS7&8C_L3_S3
405.6	50 763	51 793	2.032	14 148	11 454	5 372	10 664	3 1 9 0	1 347	98 970	BS7&8C_L3_S3
365.6	50 796	51 904	1 970	14 002	11 589	5 397	10.588	3 187	1 363	98 892	B\$7&8C_L3_S3
325.6	51.003	51.501	2 090	14 037	11.505	5 397	10.500	3 230	1.303	99 323	B\$7&8C_L3_S3
285.6	51.005	51.689	2.000	14.037	11.413	5 / 38	10.740	3 2 2 3 3	1 / 23	00 / 51	B\$7&8C_L3_S3
205.0	51 103	51.032	2.005	13 068	11.515	5.450	10.672	3 268	1.420	00 172	B\$7&8C_L3_S3
245.0	51.007	52 120	2.005	12.004	11.270	5.450	10.002	2.208	1.439	00 000	DS7&8C_L3_S3
205.0	51.027	52.139	2.020	12.904	11.233	5.510	10.552	2 2 1 1	1.440	90.000	DS7&6C_L3_S3
105.0	51.108	52.007	2.030	13.948	11.005	5.040	10.521	3.311	1.4/2	99.101	BS/&8C_L3_S3
125.6	50.866	52.007	1.949	13.955	11.058	5.785	10.454	3.242	1.549	98.858	BS/&8C_L3_S3
85.6	50.954	51.805	1.885	14.014	11.012	6.065	10.475	3.232	1.512	99.149	BS/&8C_L3_S3
45.6	50.264	51.308	1.877	14.010	11.158	6.328	10.538	3.242	1.538	98.955	BS/&8C_L3_S3
5.6	49.680	50.724	1.940	14.043	11.515	6.660	10.597	3.052	1.469	98.955	BS7&8C_L3_S4
-34.4	49.094	50.064	2.114	13.881	11.769	7.030	10.737	3.033	1.372	99.030	BS7&8C_L3_S4
-74.4	48.748	49.752	2.023	13.999	11.743	7.279	10.857	3.008	1.340	98.996	BS7&8C_L3_S4
-114.4	48.561	49.450	2.018	13.884	11.829	7.593	10.858	2.998	1.369	99.111	BS7&8C_L3_S4
-154.4	48.692	49.157	2.036	13.968	11.919	7.735	10.855	2.941	1.389	99.534	BS7&8C_L3_S4
-194.4	48.708	49.150	1.968	14.003	11.930	7.817	10.743	2.986	1.404	99.558	BS7&8C_L3_S4
-234.4	48.458	49.528	1.886	13.790	11.846	7.803	10.710	3.007	1.431	98.931	BS7&8C_L3_S4
-274.4	48.301	49.353	1.979	14.107	11.547	7.936	10.722	2.933	1.424	98.948	BS7&8C_L3_S4

-314.448.65149.0842.04314.11811.5587.94710.7303.0281.49299.567BS7&8C_L3_S4-354.448.43349.3141.96814.00611.5328.10110.5892.9651.52799.120BS7&8C_L3_S4-394.448.36049.6401.94013.94411.5307.95010.5202.9801.49698.720BS7&8C_L3_S4-434.448.42449.8701.92613.79011.3818.03710.5482.9371.51298.554BS7&8C_L3_S4-474.448.25149.2891.91614.03411.5588.07710.6093.0051.51498.962BS7&8C_L3_S4-554.448.54049.2432.04614.05511.3808.14310.5563.0691.50899.296BS7&8C_L3_S5-634.448.49649.5431.98513.87711.4148.00310.5633.1061.50998.953BS7&8C_L3_S5-714.448.17949.4911.91013.90611.3348.11510.5953.1111.53898.688BS7&8C_L3_S5-794.448.45349.2681.99214.17711.4717.97310.4743.1151.52999.185BS7&8C_L3_S5-874.448.50349.2851.96813.98311.5678.10110.5533.0461.49799.218BS7&8C_L3_S5-954.448.46549.2502.03313.93011.4988.07110.4963.												
-354.448.43349.3141.96814.00611.5328.10110.5892.9651.52799.120BS7&8C_L3_S4-394.448.36049.6401.94013.94411.5307.95010.5202.9801.49698.720BS7&8C_L3_S4-434.448.42449.8701.92613.79011.3818.03710.5482.9371.51298.554BS7&8C_L3_S4-474.448.25149.2891.91614.03411.5588.07710.6093.0051.51498.962BS7&8C_L3_S4-554.448.54049.2432.04614.05511.3808.14310.5563.0691.50899.296BS7&8C_L3_S5-634.448.49649.5431.98513.87711.4148.00310.5633.1061.50998.953BS7&8C_L3_S5-714.448.17949.4911.91013.90611.3348.11510.5953.1111.53898.688BS7&8C_L3_S5-794.448.50349.2851.96813.98311.5678.10110.5533.0461.49799.218BS7&8C_L3_S5-874.448.50149.2302.03313.93011.4988.07110.4963.1571.56899.215BS7&8C_L3_S5-1034.448.51249.4082.01713.81711.4218.06210.5743.1431.56099.104BS7&8C_L3_S5-114.448.51249.4082.01713.81711.4218.06210.5743	-314.4	48.651	49.084	2.043	14.118	11.558	7.947	10.730	3.028	1.492	99.567	BS7&8C_L3_S4
-394.448.36049.6401.94013.94411.5307.95010.5202.9801.49698.720BS7&8C_L3_S4-434.448.42449.8701.92613.79011.3818.03710.5482.9371.51298.554BS7&8C_L3_S4-474.448.25149.2891.91614.03411.5588.07710.6093.0051.51498.962BS7&8C_L3_S4-554.448.54049.2432.04614.05511.3808.14310.5563.0691.50899.296BS7&8C_L3_S5-634.448.49649.5431.98513.87711.4148.00310.5633.1061.50998.953BS7&8C_L3_S5-714.448.17949.4911.91013.90611.3348.11510.5953.1111.53898.688BS7&8C_L3_S5-794.448.50349.2681.99214.17711.4717.97310.4743.1151.52999.185BS7&8C_L3_S5-874.448.50349.2851.96813.98311.5678.10110.5533.0461.49799.218BS7&8C_L3_S5-954.448.46549.2502.03313.93011.4988.07110.4963.1571.56899.215BS7&8C_L3_S5-1034.448.50149.4312.02213.95611.5077.86610.4903.1571.57199.070BS7&8C_L3_S5-1114.448.51249.4082.01713.81711.4218.06210.574	-354.4	48.433	49.314	1.968	14.006	11.532	8.101	10.589	2.965	1.527	99.120	BS7&8C_L3_S4
-434.448.42449.8701.92613.79011.3818.03710.5482.9371.51298.554BS7&8C_L3_S4-474.448.25149.2891.91614.03411.5588.07710.6093.0051.51498.962BS7&8C_L3_S4-554.448.54049.2432.04614.05511.3808.14310.5563.0691.50899.296BS7&8C_L3_S5-634.448.49649.5431.98513.87711.4148.00310.5633.1061.50998.953BS7&8C_L3_S5-714.448.17949.4911.91013.90611.3348.11510.5953.1111.53898.688BS7&8C_L3_S5-794.448.45349.2681.99214.17711.4717.97310.4743.1151.52999.185BS7&8C_L3_S5-874.448.50349.2851.96813.98311.5678.10110.5533.0461.49799.218BS7&8C_L3_S5-954.448.46549.2502.03313.93011.4988.07110.4963.1571.56899.215BS7&8C_L3_S5-1034.448.50149.4312.02213.95611.5077.86610.4903.1571.57199.070BS7&8C_L3_S5-1114.448.51249.4082.01713.81711.4218.06210.5743.1431.56099.104BS7&8C_L3_S5-1194.448.66049.1311.93914.00111.6218.14010.556 <td< td=""><td>-394.4</td><td>48.360</td><td>49.640</td><td>1.940</td><td>13.944</td><td>11.530</td><td>7.950</td><td>10.520</td><td>2.980</td><td>1.496</td><td>98.720</td><td>BS7&8C_L3_S4</td></td<>	-394.4	48.360	49.640	1.940	13.944	11.530	7.950	10.520	2.980	1.496	98.720	BS7&8C_L3_S4
-474.448.25149.2891.91614.03411.5588.07710.6093.0051.51498.962BS7&8C_L3_S4-554.448.54049.2432.04614.05511.3808.14310.5563.0691.50899.296BS7&8C_L3_S5-634.448.49649.5431.98513.87711.4148.00310.5633.1061.50998.953BS7&8C_L3_S5-714.448.17949.4911.91013.90611.3348.11510.5953.1111.53898.688BS7&8C_L3_S5-794.448.45349.2681.99214.17711.4717.97310.4743.1151.52999.185BS7&8C_L3_S5-874.448.50349.2851.96813.98311.5678.10110.5533.0461.49799.218BS7&8C_L3_S5-954.448.46549.2502.03313.93011.4988.07110.4963.1571.56899.215BS7&8C_L3_S5-1034.448.50149.4312.02213.95611.5077.86610.4903.1571.57199.070BS7&8C_L3_S5-1114.448.51249.4082.01713.81711.4218.06210.5743.1431.56099.104BS7&8C_L3_S5-1194.448.66049.1311.93914.00111.6218.14010.5563.0891.52499.530BS7&8C_L3_S5-1274.448.77649.3942.02313.77911.5878.07310.480 <t< td=""><td>-434.4</td><td>48.424</td><td>49.870</td><td>1.926</td><td>13.790</td><td>11.381</td><td>8.037</td><td>10.548</td><td>2.937</td><td>1.512</td><td>98.554</td><td>BS7&8C_L3_S4</td></t<>	-434.4	48.424	49.870	1.926	13.790	11.381	8.037	10.548	2.937	1.512	98.554	BS7&8C_L3_S4
-554.448.54049.2432.04614.05511.3808.14310.5563.0691.50899.296BS7&8C_L3_S5-634.448.49649.5431.98513.87711.4148.00310.5633.1061.50998.953BS7&8C_L3_S5-714.448.17949.4911.91013.90611.3348.11510.5953.1111.53898.688BS7&8C_L3_S5-794.448.45349.2681.99214.17711.4717.97310.4743.1151.52999.185BS7&8C_L3_S5-874.448.50349.2851.96813.98311.5678.10110.5533.0461.49799.218BS7&8C_L3_S5-954.448.46549.2502.03313.93011.4988.07110.4963.1571.56899.215BS7&8C_L3_S5-1034.448.50149.4312.02213.95611.5077.86610.4903.1571.57199.070BS7&8C_L3_S5-1114.448.51249.4082.01713.81711.4218.06210.5743.1431.56099.104BS7&8C_L3_S5-1194.448.66049.1311.93914.00111.6218.14010.5563.0891.52499.530BS7&8C_L3_S5-1274.448.77649.3942.02313.77911.5878.07310.4803.1261.53899.382BS7&8C_L3_S5-1354.448.79449.4272.04413.81411.6117.91210.505<	-474.4	48.251	49.289	1.916	14.034	11.558	8.077	10.609	3.005	1.514	98.962	BS7&8C_L3_S4
-634.448.49649.5431.98513.87711.4148.00310.5633.1061.50998.953BS7&8C_L3_S5-714.448.17949.4911.91013.90611.3348.11510.5953.1111.53898.688BS7&8C_L3_S5-794.448.45349.2681.99214.17711.4717.97310.4743.1151.52999.185BS7&8C_L3_S5-874.448.50349.2851.96813.98311.5678.10110.5533.0461.49799.218BS7&8C_L3_S5-954.448.46549.2502.03313.93011.4988.07110.4963.1571.56899.215BS7&8C_L3_S5-1034.448.50149.4312.02213.95611.5077.86610.4903.1571.57199.070BS7&8C_L3_S5-1114.448.51249.4082.01713.81711.4218.06210.5743.1431.56099.104BS7&8C_L3_S5-1194.448.66049.1311.93914.00111.6218.14010.5563.0891.52499.530BS7&8C_L3_S5-1274.448.77649.3942.02313.77911.5878.07310.4803.1261.53899.382BS7&8C_L3_S5-1354.448.79449.4272.04413.81411.6117.91210.5053.1721.51499.367BS7&8C_L3_S5	-554.4	48.540	49.243	2.046	14.055	11.380	8.143	10.556	3.069	1.508	99.296	BS7&8C_L3_S5
-714.448.17949.4911.91013.90611.3348.11510.5953.1111.53898.688BS7&8C_L3_S5-794.448.45349.2681.99214.17711.4717.97310.4743.1151.52999.185BS7&8C_L3_S5-874.448.50349.2851.96813.98311.5678.10110.5533.0461.49799.218BS7&8C_L3_S5-954.448.46549.2502.03313.93011.4988.07110.4963.1571.56899.215BS7&8C_L3_S5-1034.448.50149.4312.02213.95611.5077.86610.4903.1571.57199.070BS7&8C_L3_S5-1114.448.51249.4082.01713.81711.4218.06210.5743.1431.56099.104BS7&8C_L3_S5-1194.448.66049.1311.93914.00111.6218.14010.5563.0891.52499.530BS7&8C_L3_S5-1274.448.77649.3942.02313.77911.5878.07310.4803.1261.53899.382BS7&8C_L3_S5-1354.448.79449.4272.04413.81411.6117.91210.5053.1721.51499.367BS7&8C_L3_S5	-634.4	48.496	49.543	1.985	13.877	11.414	8.003	10.563	3.106	1.509	98.953	BS7&8C_L3_S5
-794.448.45349.2681.99214.17711.4717.97310.4743.1151.52999.185BS7&8C_L3_S5-874.448.50349.2851.96813.98311.5678.10110.5533.0461.49799.218BS7&8C_L3_S5-954.448.46549.2502.03313.93011.4988.07110.4963.1571.56899.215BS7&8C_L3_S5-1034.448.50149.4312.02213.95611.5077.86610.4903.1571.57199.070BS7&8C_L3_S5-1114.448.51249.4082.01713.81711.4218.06210.5743.1431.56099.104BS7&8C_L3_S5-1194.448.66049.1311.93914.00111.6218.14010.5563.0891.52499.530BS7&8C_L3_S5-1274.448.77649.3942.02313.77911.5878.07310.4803.1261.53899.382BS7&8C_L3_S5-1354.448.79449.4272.04413.81411.6117.91210.5053.1721.51499.367BS7&8C_L3_S5	-714.4	48.179	49.491	1.910	13.906	11.334	8.115	10.595	3.111	1.538	98.688	BS7&8C_L3_S5
-874.4 48.503 49.285 1.968 13.983 11.567 8.101 10.553 3.046 1.497 99.218 BS7&8C_L3_S5 -954.4 48.465 49.250 2.033 13.930 11.498 8.071 10.496 3.157 1.568 99.215 BS7&8C_L3_S5 -1034.4 48.501 49.431 2.022 13.956 11.507 7.866 10.490 3.157 1.571 99.070 BS7&8C_L3_S5 -1114.4 48.512 49.408 2.017 13.817 11.421 8.062 10.574 3.143 1.560 99.104 BS7&8C_L3_S5 -1194.4 48.660 49.131 1.939 14.001 11.621 8.140 10.556 3.089 1.524 99.530 BS7&8C_L3_S5 -1274.4 48.776 49.394 2.023 13.779 11.587 8.073 10.480 3.126 1.538 99.382 BS7&8C_L3_S5 -1354.4 48.794 49.427 2.044 13.814 11.611 7.912 10.505 3.172 1.514 99.367 BS7&8C_L3_S5	-794.4	48.453	49.268	1.992	14.177	11.471	7.973	10.474	3.115	1.529	99.185	BS7&8C_L3_S5
-954.448.46549.2502.03313.93011.4988.07110.4963.1571.56899.215BS7&8C_L3_S5-1034.448.50149.4312.02213.95611.5077.86610.4903.1571.57199.070BS7&8C_L3_S5-1114.448.51249.4082.01713.81711.4218.06210.5743.1431.56099.104BS7&8C_L3_S5-1194.448.66049.1311.93914.00111.6218.14010.5563.0891.52499.530BS7&8C_L3_S5-1274.448.77649.3942.02313.77911.5878.07310.4803.1261.53899.382BS7&8C_L3_S5-1354.448.79449.4272.04413.81411.6117.91210.5053.1721.51499.367BS7&8C_L3_S5	-874.4	48.503	49.285	1.968	13.983	11.567	8.101	10.553	3.046	1.497	99.218	BS7&8C_L3_S5
-1034.448.50149.4312.02213.95611.5077.86610.4903.1571.57199.070BS7&8C_L3_S5-1114.448.51249.4082.01713.81711.4218.06210.5743.1431.56099.104BS7&8C_L3_S5-1194.448.66049.1311.93914.00111.6218.14010.5563.0891.52499.530BS7&8C_L3_S5-1274.448.77649.3942.02313.77911.5878.07310.4803.1261.53899.382BS7&8C_L3_S5-1354.448.79449.4272.04413.81411.6117.91210.5053.1721.51499.367BS7&8C_L3_S5	-954.4	48.465	49.250	2.033	13.930	11.498	8.071	10.496	3.157	1.568	99.215	BS7&8C_L3_S5
-1114.448.51249.4082.01713.81711.4218.06210.5743.1431.56099.104BS7&8C_L3_S5-1194.448.66049.1311.93914.00111.6218.14010.5563.0891.52499.530BS7&8C_L3_S5-1274.448.77649.3942.02313.77911.5878.07310.4803.1261.53899.382BS7&8C_L3_S5-1354.448.79449.4272.04413.81411.6117.91210.5053.1721.51499.367BS7&8C_L3_S5	-1034.4	48.501	49.431	2.022	13.956	11.507	7.866	10.490	3.157	1.571	99.070	BS7&8C_L3_S5
-1194.448.66049.1311.93914.00111.6218.14010.5563.0891.52499.530BS7&8C_L3_S5-1274.448.77649.3942.02313.77911.5878.07310.4803.1261.53899.382BS7&8C_L3_S5-1354.448.79449.4272.04413.81411.6117.91210.5053.1721.51499.367BS7&8C_L3_S5	-1114.4	48.512	49.408	2.017	13.817	11.421	8.062	10.574	3.143	1.560	99.104	BS7&8C_L3_S5
-1274.4 48.776 49.394 2.023 13.779 11.587 8.073 10.480 3.126 1.538 99.382 BS7&8C_L3_S5 -1354.4 48.794 49.427 2.044 13.814 11.611 7.912 10.505 3.172 1.514 99.367 BS7&8C_L3_S5	-1194.4	48.660	49.131	1.939	14.001	11.621	8.140	10.556	3.089	1.524	99.530	BS7&8C_L3_S5
-1354.4 48.794 49.427 2.044 13.814 11.611 7.912 10.505 3.172 1.514 99.367 BS7&8C_L3_S5	-1274.4	48.776	49.394	2.023	13.779	11.587	8.073	10.480	3.126	1.538	99.382	BS7&8C_L3_S5
	-1354.4	48.794	49.427	2.044	13.814	11.611	7.912	10.505	3.172	1.514	99.367	BS7&8C_L3_S5

Table C24.	BS9&100	2									
X(µm)	SiO2	SiO2*	TiO2	Al2O3	FeO	MgO	CaO	Na2O	K2O	Total	Comment
790.6	50.879	52.005	2.006	14.092	11.393	6.514	9.172	3.292	1.526	98.874	BS9&10C_L1_S1
710.6	51.063	52.040	2.008	13.997	11.304	6.550	9.161	3.406	1.536	99.024	BS9&10C_L1_S1
630.6	50.819	52.277	1.997	13.957	11.160	6.555	9.149	3.398	1.508	98.542	BS9&10C_L1_S1
550.6	50.885	52.453	1.935	13.870	11.061	6.617	9.131	3.404	1.531	98.431	BS9&10C_L1_S1
480.6	51.010	52.306	2.049	13.680	11.325	6.461	9.151	3.452	1.577	98.705	BS9&10C_L1_S2
440.6	51.130	52.038	1.912	13.928	11.374	6.600	9.192	3.419	1.538	99.092	BS9&10C_L1_S2
400.6	51.261	51.962	1.929	14.023	11.337	6.560	9.208	3.417	1.564	99.298	BS9&10C_L1_S2
360.6	50.900	51.953	2.022	13.877	11.370	6.517	9.219	3.459	1.583	98.947	BS9&10C_L1_S2
320.6	51.145	52.105	1.996	13.820	11.150	6.721	9.221	3.434	1.552	99.040	BS9&10C_L1_S2
280.6	51.105	51.764	2.089	13.860	11.220	6.661	9.345	3.480	1.582	99.342	BS9&10C_L1_S2
240.6	51.311	52.105	1.878	13.819	11.228	6.569	9.300	3.522	1.580	99.206	BS9&10C_L1_S2
200.6	51.002	52.071	1.995	13.895	11.162	6.536	9.411	3.358	1.572	98.931	BS9&10C_L1_S2
160.6	51.114	52.207	1.855	13.845	11.065	6.477	9.497	3.446	1.608	98.907	BS9&10C_L1_S2
120.6	51.053	52.131	1.908	13.841	10.959	6.427	9.716	3.406	1.612	98.922	BS9&10C_L1_S2
80.6	51.141	51.836	1.943	13.821	11.000	6.561	9.845	3.383	1.611	99.305	BS9&10C_L1_S2
40.6	50.671	51.892	1.846	13.854	10.813	6.620	10.100	3.277	1.598	98.779	BS9&10C_L1_S2
0.6	50.279	51.091	2.015	13.668	11.329	6.654	10.424	3.261	1.559	99.188	BS9&10C_L1_S2
-39.4	49.392	50.512	2.039	13.814	11.469	6.765	10.839	3.107	1.455	98.880	BS9&10C_L1_S2
-79.4	49.082	49.858	1.999	13.927	11.743	6.804	11.169	3.056	1.444	99.224	BS9&10C_L1_S2
-119.4	48.655	49.774	2.026	13.898	11.732	6.901	11.332	2.957	1.379	98.881	BS9&10C_L1_S2
-159.4	48.441	49.729	2.065	13.835	11.692	6.912	11.409	2.956	1.403	98.711	BS9&10C_L1_S2
-199.4	48.624	49.835	2.007	13.927	11.504	6.778	11.594	2.943	1.414	98.789	BS9&10C_L1_S2
-239.4	48.868	49.704	1.983	13.920	11.498	6.805	11.666	2.970	1.455	99.164	BS9&10C_L1_S2
-279.4	48.642	49.759	2.035	13.914	11.564	6.610	11.679	2.932	1.506	98.883	BS9&10C_L1_S2
-359.4	48.870	49.968	1.982	13.952	11.312	6.557	11.716	3.011	1.502	98.902	BS9&10C_L1_S2
-399.4	48.776	49.774	1.951	13.886	11.268	6.711	11.819	3.019	1.574	99.002	BS9&10C_L1_S2
-439.4	48.629	49.870	1.993	13.892	11.351	6.465	11.823	3.048	1.559	98.759	BS9&10C_L1_S2
-479.4	48.749	50.211	2.026	13.793	11.080	6.502	11.773	3.050	1.564	98.538	BS9&10C_L1_S2
-519.4	48.865	50.016	1.940	13.873	11.172	6.578	11.760	3.090	1.572	98.849	BS9&10C_L1_S2
-599.4	48.644	50.003	1.923	13.678	11.288	6.545	11.857	3.136	1.570	98.641	BS9&10C_L1_S3
-679.4	48.736	49.918	2.047	13.861	11.236	6.423	11.846	3.104	1.567	98.818	BS9&10C_L1_S3
-759.4	48.585	49.749	1.981	13.857	11.299	6.570	11.858	3.168	1.519	98.836	BS9&10C_L1_S3
800.6	51.025	52.302	1.920	13.795	11.332	6.555	9.191	3.346	1.560	98.723	BS9&10C_L2_S1
720.6	50.920	52.418	2.038	13.696	11.234	6.569	9.206	3.314	1.525	98.502	BS9&10C_L2_S1
640.6	51.199	52.354	2.022	13.800	11.228	6.584	9.176	3.316	1.520	98.845	BS9&10C_L2_S1
560.6	51.089	52.503	1.982	13.684	11.245	6.690	9.062	3.315	1.519	98.586	BS9&10C_L2_S1
480.6	51.030	52.433	1.973	13./10	11.366	6.428	9.180	3.390	1.521	98.598	BS9&10C_L2_S2
440.6	51.252	52.085	1.932	13.889	11.450	6.562	9.139	3.429	1.513	99.166	BS9&10C_L2_S2
400.6	51.253	52.210	2.092	13.68/	11.230	6./10	9.131	3.407	1.533	99.043	BS9&10C_L2_S2
360.6	50.958	52.179	1.979	13./4/	11.327	6.68/	9.186	3.351	1.544	98.778	BS9&10C_L2_S2
320.6	51.259	52.306	1.934	13.707	11.23/	6.632	9.232	3.404	1.549	98.954	BS9&10C_L2_S2
280.0	51.35/	52.575	1.913	13./21	11.205	0.489	9.270	3.38/	1.383	98.984	BS9&10C_L2_S2
240.0	51 296	52 291	2.040	12.043	11.213	0.04/	9.558	5.402 2.270	1.601	99.230	DS9&10C_L2_S2
200.0	51.200	52.381	1.803	13.622	11.084	6.480	9.405	2 267	1.549	98.903	DS9&10C_L2_S2
100.0	51.241	52.572	2.021	12.095	10.985	0.480	9.497	2 202	1.383	98.809	DS9&10C_L2_S2
120.0	51.200	52.217	1.997	12.345	10.000	6.420	9.024	2.293 2.277	1.008	98.985	DS9&10C_L2_S2
00.0 40.6	50.648	51 548	1.990	13.743	11.005	6.482	9.000	3.377	1.010	98.930	BS9&10C_L2_S2 BS9&10C_L2_S2
40.0	J0.040 10.020	51.546	1.904	13.772	11.208	0.402 6 553	10.120	3.273	1.025	99.100	BS9&10C_L2_S2 BS9&10C_L2_S2
30.4	49.939	50.860	1.962	13.040	11.207	6.614	10.495	3.078	1.557	90.430 08.406	BS9&10C_L2_S2 BS9&10C_L2_S2
-39.4	49.505	50.009	1.955	13.094	11.540	6 784	11 122	3.045	1.455	98.490 08.020	BS9&10C_L2_S2 BS9&10C_L2_S2
-/9.4	40.902	40.027	2.024	12 001	11.755	6 762	11.123	2 004	1.417	98.920	DS9&10C_L2_S2
-119.4	48 206	т <i>Э.ЭД </i> 40.006	2.024 2.006	13 751	11.799	6 707	11 520	2.904 2.861	1.393	98 811	BS9&10C_L2_S2
_100 /	48 811	50 020	2.000	13.751	11 762	6 664	11.529	2.001	1 426	98 781	BS9&10C_L2_S2
-199.4	48 564	49 815	2.029	13 836	11 395	6 860	11.407	2.050	1 426	98 740	BS9&10C_L2_S2
-237.4 -270 A	48 650	50.052	1 0/1	13.816	11 2/2	6 764	11 716	2.795	1 508	98 607	BS9&10C_L2_S2
-279.4	48 706	50.052	1 982	13.696	11.242	6 5 8 7	11 775	2.901	1 473	98 566	BS9&10C_L2_S2
_350 /	48 730	50.027	2 022	13.000	11 486	6.616	11 710	2.204	1 522	98 712	BS9&10C 12 S2
_300 /	48 950	50.027	1 930	13.390	11 150	6 5 8 9	11 778	2.799	1 525	98 770	BS9&10C_L2_S2
-439 4	48 949	50.237	2 032	13 708	11 214	6 593	11 792	2.983	1 551	98 877	BS9&10C 12 S2
-479.4	48.992	49,741	2.001	13.777	11.367	6.603	11.840	3.098	1.573	99.251	BS9&10C_L2_S2
							0 10	2.070			

-519.4	48.792	49.977	1.996	13.809	11.206	6.527	11.821	3.113	1.552	98.815	BS9&10C L2 S2
-599.4	48.780	49.969	1.967	13.911	11.167	6.579	11.724	3.082	1.600	98.811	BS9&10C L2 S3
-679.4	48.937	49.944	2.069	13.768	11.210	6.623	11.816	3.055	1.515	98.993	BS9&10C L2 S3
795.6	51.140	52.092	1.986	13.973	11.464	6.586	9.134	3.279	1.486	99.049	BS9&10C L3 S1
715.6	50.845	52.223	1.932	13.877	11.345	6.546	9.224	3.363	1.489	98.622	BS9&10C L3 S1
635.6	51.110	52.345	1.950	13.804	11.297	6.547	9.186	3.325	1.546	98.765	BS9&10C L3 S1
555.6	51.153	52.174	1.910	13.793	11.371	6.623	9.212	3.410	1.506	98.979	BS9&10C L3 S1
475.6	50.922	52.041	2.031	13.936	11.259	6.682	9.130	3.365	1.556	98.880	BS9&10C L3 S2
435.6	51.271	52.230	1.995	13.849	11.251	6.498	9.199	3.424	1.554	99.040	BS9&10C L3 S2
395.6	51.064	52.270	1.913	13.817	11.249	6.533	9.213	3.462	1.543	98.793	BS9&10C L3 S2
355.6	51.126	52.129	2.063	13.761	11.312	6.547	9.201	3.439	1.549	98.997	BS9&10C L3 S2
315.6	50.831	52.066	2.001	13.770	11.262	6.613	9.298	3.413	1.578	98.765	BS9&10C L3 S2
275.6	50.956	52.018	2.036	13.873	11.142	6.511	9.295	3.529	1.598	98.938	BS9&10C_L3_S2
235.6	51.026	51.922	2.001	13.955	11.267	6.486	9.363	3.421	1.585	99.104	BS9&10C_L3_S2
195.6	50.981	52.162	1.918	13.744	11.170	6.412	9.549	3.444	1.601	98.819	BS9&10C_L3_S2
155.6	51.075	52.218	1.942	13.697	11.125	6.417	9.542	3.447	1.613	98.857	BS9&10C_L3_S2
115.6	50.978	51.738	1.962	13.872	11.065	6.570	9.719	3.425	1.650	99.240	BS9&10C_L3_S2
75.6	50.932	51.978	1.934	13.791	11.011	6.346	9.918	3.383	1.641	98.954	BS9&10C_L3_S2
35.6	50.595	51.734	1.947	13.693	11.069	6.479	10.196	3.307	1.575	98.862	BS9&10C_L3_S2
-4.4	49.749	50.727	2.077	13.764	11.512	6.578	10.626	3.214	1.502	99.022	BS9&10C_L3_S2
-44.4	49.557	50.344	2.018	13.760	11.643	6.822	10.882	3.100	1.432	99.213	BS9&10C_L3_S2
-84.4	48.940	50.065	1.951	13.780	11.822	6.746	11.176	3.030	1.431	98.876	BS9&10C_L3_S2
-124.4	48.926	49.777	2.078	13.894	11.740	6.752	11.427	2.919	1.412	99.149	BS9&10C_L3_S2
-164.4	48.839	49.620	2.003	13.882	11.719	6.745	11.656	2.973	1.404	99.219	BS9&10C_L3_S2
-204.4	48.943	49.876	2.057	13.782	11.694	6.648	11.580	2.948	1.416	99.067	BS9&10C_L3_S2
-244.4	48.675	50.040	2.091	13.678	11.475	6.599	11.675	2.996	1.446	98.635	BS9&10C_L3_S2
-284.4	48.680	49.692	1.929	13.985	11.309	6.773	11.873	2.987	1.454	98.988	BS9&10C_L3_S2
-324.4	48.796	49.762	1.963	13.812	11.478	6.766	11.742	2.991	1.486	99.035	BS9&10C_L3_S2
-364.4	48.724	49.645	1.966	13.805	11.505	6.640	11.924	2.997	1.519	99.080	BS9&10C_L3_S2
-404.4	48.592	49.856	1.925	13.640	11.409	6.704	11.932	3.054	1.481	98.737	BS9&10C_L3_S2
-444.4	48.710	49.809	1.966	13.782	11.495	6.599	11.811	3.030	1.508	98.901	BS9&10C_L3_S2
-484.4	48.847	49.745	2.045	13.704	11.497	6.549	11.929	3.007	1.525	99.102	BS9&10C_L3_S2
-524.4	48.854	49.713	1.970	13.753	11.547	6.652	11.856	3.019	1.490	99.141	BS9&10C_L3_S2
-604.4	48.779	50.012	1.928	13.824	11.191	6.455	11.973	3.093	1.526	98.767	BS9&10C_L3_S3
-684.4	48.664	49.564	2.021	13.859	11.392	6.663	11.931	3.043	1.526	99.100	BS9&10C_L3_S3
-764.4	48.737	49.547	2.019	13.866	11.557	6.531	11.890	3.064	1.527	99.191	BS9&10C_L3_S3

Table C2	25. BS11&	212C									
X(µm)	SiO2	SiO2*	TiO2	Al2O3	FeO	MgO	CaO	Na2O	K2O	Total	Comment
1410	51.167	52.128	2.062	13.734	11.699	6.737	10.536	1.567	1.537	99.039	BS11&12C_L1_S1
1330	51.333	52.374	1.991	13.773	11.603	6.676	10.532	1.523	1.529	98.959	BS11&12C_L1_S1
1250	51.542	52.272	1.981	13.695	11.747	6.707	10.566	1.532	1.502	99.271	BS11&12C_L1_S1
1170	51.382	52.319	2.036	13.814	11.494	6.745	10.453	1.617	1.522	99.063	BS11&12C_L1_S1
1090	51.471	52.030	2.003	13.926	11.568	6.751	10.573	1.615	1.535	99.441	BS11&12C_L1_S1
1010	51.284	52.154	2.015	13.774	11.646	6.764	10.538	1.583	1.527	99.130	BS11&12C_L1_S1
930	51.591	52.616	1.954	13.785	11.360	6.617	10.479	1.635	1.556	98.975	BS11&12C_L1_S1
850	51.321	52.363	1.956	13.826	11.499	6.704	10.482	1.644	1.527	98.958	BS11&12C_L1_S1
770	51.408	52.472	1.995	13.731	11.451	6.613	10.534	1.685	1.519	98.936	BS11&12C_L1_S1
690	51.349	52.581	1.978	13.767	11.312	6.574	10.509	1.756	1.523	98.768	BS11&12C_L1_S1
610	51.348	52.340	1.896	13.798	11.427	6.684	10.508	1.806	1.541	99.009	BS11&12C_L1_S1
530	51.039	52.124	1.937	13.806	11.443	6.666	10.495	1.989	1.540	98.915	BS11&12C_L1_S2
490	51.264	52.197	1.954	13.878	11.266	6.653	10.464	2.028	1.559	99.067	BS11&12C_L1_S2
450	51.044	52.224	1.990	13.744	11.295	6.623	10.468	2.143	1.514	98.819	BS11&12C_L1_S2
410	51.044	52.291	1.947	14.029	11.132	6.477	10.426	2.178	1.520	98.753	BS11&12C_L1_S2
370	51.127	52.057	1.995	13.849	11.287	6.503	10.458	2.300	1.551	99.070	BS11&12C_L1_S2
330	51.153	52.355	1.954	13.736	11.017	6.575	10.366	2.468	1.529	98.797	BS11&12C_L1_S2
290	51.403	52.425	2.023	13.654	10.946	6.565	10.343	2.531	1.514	98.978	BSIT&T2C_LT_S2
250	51.188	52.244	1.931	13.756	10.916	6.557	10.364	2.647	1.585	98.943	BS11&12C_L1_S2
210	51.107	52.216	1.979	13.710	10.936	6.520	10.300	2.801	1.537	98.890	BSIT&T2C_LT_S2
170	51.040	52.394	1.950	13.789	10.621	6.490	10.268	2.899	1.590	98.646	BS11&12C_L1_S2
130	51.293	52.344	2.031	13.614	10.753	6.480	10.187	2.970	1.621	98.948	BS11&12C_L1_S2
90	51.291	51.956	1.995	13.708	10.723	6.550	10.215	3.172	1.681	99.334	BS11&12C_L1_S2
50	51.251	52.470	1.920	13.58/	10.536	6.360	10.1/1	3.2/3	1.682	98.780	BSI1&12C_L1_S2
10	50.540 40.525	50.072	1.905	13.813	10.929	0.518	10.209	2.212	1.001	98.949	BS11&12C_L1_S2
-30	49.555	50.075	2.032	12.788	11.405	0./19	10.303	3.208	1.495	98.803	BS11&12C_L1_S2
-/0	48.090	30.103	2.037	12.000	11./1/	0./81	10.747	5.54/ 2.272	1.412	98.327	DS11&12C_L1_S2
-110	48.941	49.847	2.051	12.989	11.010	6.810	10.705	2 5 2 2	1.451	99.094	DS11&12C_L1_S2
-130	40.017	49.005	2.017	13.9/4	11.919	6 708	10.725	3.555	1.435	98.932	BS11&12C_L1_S2 BS11&12C_L1_S2
-190	48.540	49.042	1 003	13.807	11.007	6 732	10.020	3.013	1.434	98.498	BS11&12C_L1_S2 BS11&12C_L1_S2
-270	48.329	49.884	1.993	13.655	11.714	6.816	10.561	3 874	1.4470	98 624	BS11&12C_L1_S2
-310	48.327	49.703	2 007	13.891	11.833	6 786	10.050	3 951	1 488	98 957	BS11&12C_L1_S2
-350	48.483	49 545	1 993	13 903	11.055	6 700	10.563	4 030	1.400	98 938	B\$11&12C_L1_S2
-390	48 668	49 906	1 943	13.697	11.771	6 676	10.505	4 083	1 471	98 762	BS11&12C_L1_S2
-430	48 340	49 630	2.029	13 803	11 807	6 641	10.487	4 109	1 494	98 710	BS11&12C_L1_S2
-470	48.600	49.707	2.012	13.728	11.560	6.692	10.594	4.212	1.495	98.893	BS11&12C_L1_S2
-550	48.318	49.662	2.062	13.768	11.631	6.571	10.494	4.302	1.509	98.655	BS11&12C L1 S3
-630	48.531	49.804	1.943	13.596	11.694	6.670	10.519	4.296	1.479	98.727	BS11&12C L1 S3
-710	48.523	49.506	1.967	13.770	11.533	6.660	10.542	4.532	1.491	99.017	BS11&12C L1 S3
-790	48.388	49.903	1.997	13.633	11.424	6.592	10.494	4.473	1.484	98.485	BS11&12C L1 S3
-870	48.446	49.247	2.057	13.837	11.595	6.571	10.549	4.623	1.521	99.199	BS11&12C L1 S3
-1030	48.601	49.709	2.000	13.628	11.380	6.592	10.532	4.645	1.513	98.892	BS11&12C_L1_S3
-1110	48.452	49.613	1.990	13.630	11.481	6.600	10.514	4.660	1.512	98.839	BS11&12C_L1_S3
-1190	48.152	49.447	1.962	13.594	11.575	6.707	10.623	4.642	1.449	98.705	BS11&12C_L1_S3
-1350	48.266	49.149	1.940	13.814	11.732	6.675	10.535	4.643	1.512	99.118	BS11&12C_L1_S3
-1430	48.222	49.072	1.996	13.945	11.647	6.765	10.472	4.631	1.473	99.150	BS11&12C_L1_S3
-1510	48.432	49.378	1.952	13.698	11.665	6.702	10.510	4.601	1.494	99.054	BS11&12C_L1_S3
1485	50.931	52.012	2.037	13.827	11.690	6.752	10.621	1.566	1.495	98.919	BS11&12C_L2_S1
1405	50.973	52.324	1.993	13.653	11.622	6.739	10.606	1.551	1.513	98.649	BS11&12C_L2_S1
1325	51.032	52.300	1.979	13.647	11.742	6.671	10.524	1.608	1.530	98.732	BS11&12C_L2_S1
1245	51.025	52.152	1.965	13.760	11.652	6.772	10.590	1.544	1.565	98.872	BS11&12C_L2_S1
1165	51.076	52.198	1.902	13.815	11.714	6.682	10.558	1.575	1.556	98.878	BS11&12C_L2_S1
1085	51.237	52.418	1.994	13.815	11.495	6.587	10.584	1.573	1.535	98.819	BS11&12C_L2_S1
1005	51.294	52.266	2.047	13.830	11.515	6.640	10.543	1.638	1.522	99.028	BS11&12C_L2_S1
925	51.005	52.337	1.986	13.669	11.560	6.727	10.568	1.625	1.529	98.668	BSI1&12C_L2_S1
845	51.101	52.177	1.998	13.792	11.592	6.632	10.598	1.677	1.534	98.924	BS11&12C_L2_S1
765	51.129	52.201	2.025	13.802	11.494	6.657	10.612	1.676	1.533	98.928	BS11&12C_L2_S1
605	51.086	52.290	2.072	13.689	11.405	6.701	10.499	1.846	1.499	98.796	BS11&12C_L2_S1
525	51.266	52.148	1.956	13.783	11.473	6.598	10.479	2.023	1.540	99.118	BS11&12C_L2_S2
485	51.061	52.136	2.014	13.908	11.2/1	0.002	10.507	2.052	1.510	98.925	BS11&12C L2 S2

445	51.164	52.427	1.876	13.783	11.257	6.534	10.503	2.110	1.511	98.738	BS11&12C L2 S2
405	51 181	52 417	1 936	13 765	11 190	6 4 2 1	10 530	2 221	1 520	98 763	BS11&12C_L2_S2
265	51.101	52.117	1.050	12 770	11.170	6.570	10.000	2.221 2.201	1.525	00.705	DS11&12C_L2_S2
205	51.110	52.204	1.939	12.772	11.104	0.570	10.409	2.301	1.555	90.900	DS11&12C_L2_S2
325	51.125	52.277	1.923	13.723	11.195	0.005	10.318	2.424	1.530	98.848	BS11&12C_L2_S2
285	51.156	52.041	2.038	13.768	11.055	6.505	10.384	2.652	1.558	99.115	BS11&12C_L2_S2
245	51.462	52.171	2.004	13.887	10.876	6.492	10.324	2.704	1.543	99.291	BS11&12C_L2_S2
205	51.344	52.333	1.947	13.798	10.743	6.473	10.263	2.873	1.571	99.011	BS11&12C_L2_S2
165	51.210	52.365	1.830	13.760	10.879	6.427	10.152	2.968	1.617	98.845	BS11&12C_L2_S2
125	51.468	52.242	1.984	13.823	10.625	6.428	10.136	3.103	1.659	99.226	BS11&12C L2 S2
85	51.302	52.556	1.850	13.800	10.512	6.338	10.101	3.176	1.668	98.747	BS11&12C_L2_S2
45	51 433	52 280	1 864	13 710	10 644	6 3 9 6	10 164	3 278	1 664	99 1 5 3	BS11&12C_L2_S2
5	50.428	51 275	1 806	13 781	11 253	6.450	10/131	3 3 3 5	1 579	00 153	BS11&12C_L2_S2
25	10 292	50 477	2 022	12 917	11.255	6 797	10.45	2 791	1.375	08 006	DS11&12C_L2_S2
-55	49.303	40.004	2.032	12.002	11.407	0.707	10.045	2.204	1.491	96.900	DS11&12C_L2_S2
-/3	49.098	49.904	1.994	13.985	11.042	0.801	10.035	5.541	1.423	99.194	BS11&12C_L2_S2
-115	48.866	49.840	2.022	13.813	11.836	6.878	10.669	3.523	1.419	99.026	BS11&12C_L2_S2
-155	48.506	49.589	1.908	13.962	12.140	6.783	10.705	3.491	1.422	98.917	BS11&12C_L2_S2
-195	48.707	49.555	2.084	13.877	11.973	6.781	10.656	3.617	1.457	99.152	BS11&12C_L2_S2
-235	48.418	49.667	2.036	13.751	11.958	6.684	10.673	3.770	1.460	98.751	BS11&12C_L2_S2
-275	48.557	49.532	1.915	13.779	12.011	6.843	10.630	3.829	1.461	99.025	BS11&12C_L2_S2
-315	48.574	49.715	2.003	13.786	11.866	6.714	10.604	3.805	1.508	98.859	BS11&12C L2 S2
-355	48.625	49.506	1.985	13.784	11.853	6.734	10.627	4.024	1.488	99.119	BS11&12C L2 S2
-395	48 764	49 406	2.048	13 983	11 767	6 600	10.683	4 026	1 486	99 358	BS11&12C_L2_S2
-435	18.701	19.100	2.010	13.845	11.846	6 702	10.549	1.020	1 /01	00 3/12	BS11&12C_L2_S2
475	40.727	40 202	2.004	12 745	11.040	6.627	10.547	4 227	1.471	00 001	DS11&12C_L2_S2
-4/5	40.577	49.393	2.040	12.002	11.040	0.027	10.594	4.237	1.510	90.904	DS11&12C_L2_S2
-555	48.524	49.090	2.094	13.903	11.//1	0./01	10.571	4.345	1.519	99.428	BS11&12C_L2_S3
-635	48.450	49.385	1.96/	13.81/	11.804	6.618	10.523	4.381	1.506	99.065	BS11&12C_L2_S3
-715	48.508	49.175	1.937	13.984	11.665	6.708	10.538	4.483	1.510	99.333	BS11&12C_L2_S3
-795	48.516	49.133	2.087	13.874	11.563	6.728	10.591	4.520	1.504	99.383	BS11&12C_L2_S3
-875	48.421	48.972	2.061	13.887	11.644	6.690	10.644	4.616	1.487	99.449	BS11&12C_L2_S3
-955	48.417	49.395	2.020	13.830	11.579	6.578	10.498	4.595	1.505	99.022	BS11&12C_L2_S3
-1035	48.508	49.134	2.077	13.705	11.612	6.640	10.587	4.715	1.531	99.375	BS11&12C L2 S3
-1115	48.319	49.353	1.950	13.818	11.579	6.592	10.560	4.663	1.486	98.967	BS11&12C L2 S3
-1195	48.517	49.382	1.979	13.868	11.574	6.563	10.548	4.586	1.501	99.135	BS11&12C_L2_S3
-1275	48.424	49.182	2.010	14.030	11.640	6.573	10.447	4.615	1.503	99.242	BS11&12C_L2_S3
-1355	48 291	49 339	2 011	13 692	11 690	6 590	10 543	4 628	1 507	98 952	BS11&12C_L2_S3
-1515	48 364	49 102	2 024	13 987	11 740	6 600	10.488	4 568	1 490	99 261	BS11&12C_L2_S3
1480	51 171	52 233	1 984	13 856	11 532	6 797	10.621	1 498	1 479	98 938	BS11&12C_L3_S1
1400	51 199	52.200	1.955	13 783	11.602	6 742	10.548	1.563	1.505	98 897	BS11&12C_L3_S1
1320	51.177	52.502	1.955	13.760	11.500	6 606	10.040	1.505	1.505	08 81/	B\$11&12C_L3_S1
1320	51.200	52.440	1.994	12 725	11.390	6.628	10.495	1.590	1.500	09 551	DS11&12C_L3_S1
1140	51 126	52.005	1.907	12.723	11.405	6 720	10.423	1,610	1.520	08 6 20	DS11&12C_L5_S1
100	51.000	52.510	1.002	12.///	11.423	6.720	10.551	1.010	1.517	96.020	DS11&12C_L3_S1
1080	51.090	52.039	2.029	13.010	11.303	0.001	10.01/	1.5/4	1.548	98.431	BS11&12C_L5_S1
1000	51.414	52.275	1.968	13.8/0	11.46/	6.696	10.511	1.625	1.588	99.139	BS11&12C_L3_S1
920	51.298	52.502	2.074	13.895	11.304	0.020	10.539	1.0/0	1.557	98.996	BS11&12C_L5_S1
840	51.336	52.333	1.996	13.820	11.504	6.680	10.465	1.645	1.559	99.003	BS11&12C_L3_S1
/60	51.414	52.536	2.030	13.766	11.276	6.633	10.454	1./59	1.54/	98.8/8	BS11&12C_L3_S1
680	51.147	52.349	2.063	13.848	11.301	6.549	10.506	1.812	1.573	98.798	BS11&12C_L3_S1
600	51.097	52.308	2.014	13.823	11.316	6.674	10.461	1.883	1.521	98.790	BS11&12C_L3_S1
520	51.195	52.268	1.981	14.080	11.181	6.551	10.403	2.007	1.530	98.927	BS11&12C_L3_S2
480	51.049	52.491	1.969	13.665	11.328	6.543	10.392	2.084	1.528	98.558	BS11&12C_L3_S2
440	51.393	52.208	2.081	13.646	11.309	6.619	10.468	2.152	1.517	99.185	BS11&12C_L3_S2
400	50.987	52.299	1.973	13.865	11.191	6.433	10.434	2.266	1.539	98.688	BS11&12C L3 S2
360	51.301	52.307	2.005	13.763	11.116	6.464	10.409	2.390	1.546	98.994	BS11&12C L3 S2
320	51.348	52.269	2.045	13.640	11.120	6.535	10.377	2.451	1.564	99.079	BS11&12C_L3_S2
280	51.186	51.911	2.033	13.922	11.027	6.548	10.356	2.647	1.557	99.275	BS11&12C L3 S2
240	51 054	52,302	1 980	13 750	10 949	6 4 5 0	10 325	2.676	1 569	98 752	BS11&12C_L3_S2
200	51 215	52.202	1 960	13 725	10 905	6 4 5 9	10 307	2.070	1 562	98 97/	BS11&12C_L3_S2
160	51.215	51 004	2 004	12 801	10.203	6 420	10.307	2.031	1.502	00 157	BS11&12C_L3_52
120	51.001	51.990	2.004	12.001	10.000	6 200	10.213	2.010	1.000	77.13Z	DS11&12C_L3_S2
120	51.007	52.255	1.939	12.70/	10.014	0.390	10.190	3.004	1.019	70.043	DS11&12C_L5_S2
80	51.007	51.901	1.8/0	13.720	10.914	0.433	10.270	5.224	1.668	99.106	взна12C_L3_S2
40	50.631	51.545	2.024	13.738	10.935	6.529	10.358	3.238	1.633	99.086	BS11&12C_L3_S2
-40	49.045	50.159	2.042	13.818	11.709	6.803	10.709	3.307	1.454	98.886	BS11&12C_L3_S2
-80	48.903	49.685	2.030	14.009	11.925	6.808	10.745	3.369	1.429	99.218	BS11&12C_L3_S2

-120	48.806	49.951	2.019	13.887	11.731	6.790	10.693	3.514	1.415	98.855	BS11&12C_L3_S2
-160	48.690	49.874	1.962	13.802	11.775	6.826	10.705	3.570	1.488	98.816	BS11&12C_L3_S2
-200	48.417	49.814	2.009	13.796	11.851	6.688	10.746	3.632	1.465	98.603	BS11&12C_L3_S2
-240	48.703	49.535	2.053	13.805	11.849	6.853	10.643	3.799	1.464	99.168	BS11&12C_L3_S2
-280	48.934	49.895	2.061	13.803	11.616	6.717	10.563	3.864	1.482	99.038	BS11&12C_L3_S2
-320	48.770	49.704	2.079	13.861	11.668	6.589	10.657	3.963	1.479	99.066	BS11&12C_L3_S2
-360	48.688	49.854	2.003	13.761	11.601	6.708	10.493	4.064	1.516	98.833	BS11&12C_L3_S2
-400	48.702	49.926	1.996	13.775	11.592	6.735	10.510	3.996	1.470	98.776	BS11&12C_L3_S2
-440	48.673	49.598	2.022	13.799	11.513	6.694	10.624	4.222	1.529	99.075	BS11&12C_L3_S2
-480	48.875	49.238	2.034	13.911	11.777	6.739	10.607	4.207	1.488	99.637	BS11&12C_L3_S2
-560	48.600	49.271	2.036	14.002	11.547	6.708	10.593	4.360	1.483	99.329	BS11&12C_L3_S3
-640	48.963	49.470	2.007	13.789	11.473	6.705	10.599	4.440	1.517	99.492	BS11&12C_L3_S3
-720	48.888	49.472	2.029	13.743	11.530	6.745	10.565	4.421	1.497	99.417	BS11&12C_L3_S3
-880	48.754	49.836	1.955	13.685	11.289	6.720	10.473	4.562	1.480	98.918	BS11&12C_L3_S3
-960	48.491	49.386	2.101	13.657	11.468	6.740	10.575	4.591	1.481	99.105	BS11&12C_L3_S3
-1040	48.427	49.497	2.002	13.624	11.588	6.594	10.629	4.624	1.444	98.930	BS11&12C_L3_S3
-1120	48.304	49.644	1.986	13.641	11.388	6.652	10.593	4.607	1.490	98.660	BS11&12C_L3_S3
-1200	48.683	49.283	2.043	13.646	11.642	6.624	10.672	4.613	1.478	99.400	BS11&12C_L3_S3
-1280	48.387	49.112	1.985	13.774	11.657	6.752	10.601	4.597	1.521	99.274	BS11&12C_L3_S3
-1360	48.667	49.355	1.924	13.558	11.604	6.837	10.583	4.638	1.501	99.313	BS11&12C_L3_S3
-1440	48.552	49.015	2.064	13.863	11.678	6.708	10.556	4.611	1.506	99.538	BS11&12C_L3_S3
-1520	48.548	49.266	2.020	13.717	11.724	6.638	10.479	4.648	1.509	99.282	BS11&12C_L3_S3

Table C2	6. BS13&	14C									
X(µm)	SiO2	SiO2*	TiO2	Al2O3	FeO	MgO	CaO	Na2O	K2O	Total	Comment
1311.5	48.878	49.056	2.066	14.099	11.319	6.774	10.625	3.080	2.982	99.823	BS13&14C_L1_S1
1231.5	48.533	49.304	2.023	13.984	11.136	6.804	10.707	3.057	2.985	99.229	BS13&14C_L1_S1
1151.5	48.392	49.001	2.073	14.109	11.232	6.831	10.679	3.092	2.985	99.391	BS13&14C_L1_S1
1071.5	48.271	49.249	1.986	13.948	11.343	6.866	10.677	3.024	2.907	99.022	BS13&14C_L1_S1
991.5	48.199	49.345	2.012	14.048	11.230	6.778	10.672	2.980	2.935	98.854	BS13&14C_L1_S1
911.5	48.284	49.270	2.058	13.991	11.280	6.835	10.681	2.992	2.894	99.013	BS13&14C_L1_S1
831.5	48.416	49.184	2.039	14.034	11.288	6.802	10.719	3.005	2.929	99.233	BS13&14C_L1_S1
751.5	48.230	49.216	2.059	13.882	11.283	6.817	10.719	3.055	2.969	99.015	BS13&14C_L1_S1
671.5	48.163	49.348	2.109	13.912	11.277	6.786	10.658	2.996	2.914	98.815	BS13&14C_L1_S1
591.5	48.323	48.993	2.041	14.106	11.458	6.819	10.683	2.994	2.907	99.330	BS13&14C_L1_S1
511.5	48.197	49.096	2.079	13.996	11.454	6.840	10.731	2.908	2.895	99.100	BS13&14C_L1_S2
471.5	48.260	49.063	2.132	13.989	11.533	6.870	10.643	2.889	2.880	99.196	BS13&14C_L1_S2
431.5	48.049	49.363	2.102	13.926	11.371	6.807	10.652	2.869	2.911	98.686	BS13&14C_L1_S2
391.5	48.338	48.947	2.105	14.114	11.706	6.805	10.608	2.874	2.843	99.392	BS13&14C_L1_S2
351.5	48.177	49.114	2.100	14.178	11.587	6.771	10.597	2.886	2.768	99.063	BS13&14C_L1_S2
311.5	48.411	49.552	2.005	13.938	11.631	6.660	10.617	2.883	2.715	98.859	BS13&14C_L1_S2
271.5	48.471	49.337	2.046	14.079	11.707	6.725	10.614	2.868	2.623	99.134	BS13&14C_L1_S2
231.5	48.491	49.574	2.023	13.910	11.570	6.872	10.521	2.959	2.573	98.917	BS13&14C_L1_S2
191.5	48.261	49.308	2.093	14.066	11.850	6.819	10.508	2.897	2.460	98.953	BS13&14C_L1_S2
151.5	48.786	49.737	2.026	14.105	11.641	6.711	10.629	2.870	2.282	99.049	BS13&14C_L1_S2
111.5	48./39	49.840	2.101	14.049	11.580	6.//3	10.669	2.868	2.120	98.899	BS13&14C_L1_S2
/1.5	48.86/	50.473	1.985	13.962	11.269	6./1/	10.625	3.065	1.904	98.394	BS13&14C_L1_S2
31.5	49.882	50.629	2.031	13.899	11.348	6./21	10.593	3.080	1.699	99.253	BS13&14C_L1_S2
-8.5	50.417	51.409	2.037	14.000	11.15/	0.034 6.554	10.519	3.205	1.481	99.51/	BS13&14C_L1_S2
-48.3	50.616	51.408	1.947	12.002	11.090	6.535	10.500	3.200	0.044	99.238	DS13&14C_L1_S2
-00.5	50.010	51 513	1.900	13.911	11.004	6.611	10.555	2 2 2 2 2	0.944	90.912	BS13&14C_L1_S2 BS13&14C_L1_S2
-120.5	51.082	51.515	1.959	13.070	11.210	6 5 8 5	10.720	3.365	0.700	00 2 2 2	BS13&14C_L1_S2
-108.5	51.062	52 131	1.901	13.929	11.100	6.624	10.007	3.412	0.300	99.323	B\$13&14C_L1_52 B\$13&14C_L1_\$2
-208.5	51 252	52.151	1.930	13.854	11.000	6 571	10.005	3 397	0.323	98 973	B\$13&14C_L1_S2
-248.5	51.252	51 927	1.977	13.034	11.075	6 719	10.637	3 4 2 6	0.137	99 479	B\$13&14C_L1_S2
-328.5	51 494	52 591	1.950	13 717	11.200	6 4 9 7	10.572	3 3 5 3	0.157	98 903	B\$13&14C_L1_S2
-368 5	51 427	52.243	1 841	13 925	11.251	6 612	10.572	3 373	0.063	99 185	B\$13&14C_L1_S2
-408.5	51.415	52.211	1.984	13.852	11.370	6.525	10.642	3.364	0.053	99.204	BS13&14C L1 S2
-448.5	51.148	52.222	2.020	13.917	11.389	6.582	10.518	3.312	0.041	98.926	BS13&14C L1 S2
-488.5	51.323	52.262	2.005	13.955	11.265	6.601	10.569	3.301	0.043	99.061	BS13&14C L1 S2
-568.5	51.369	51.896	2.011	13.896	11.458	6.740	10.627	3.322	0.050	99.473	BS13&14C L1 S3
-648.5	51.525	52.043	1.947	14.065	11.499	6.625	10.548	3.231	0.042	99.483	BS13&14C_L1_S3
-728.5	51.334	52.016	1.949	14.034	11.521	6.654	10.582	3.200	0.045	99.317	BS13&14C_L1_S3
-808.5	51.304	52.430	1.960	13.966	11.436	6.579	10.474	3.124	0.030	98.874	BS13&14C_L1_S3
-888.5	51.467	52.381	1.986	13.756	11.355	6.699	10.596	3.182	0.045	99.086	BS13&14C_L1_S3
-968.5	51.509	52.083	1.968	13.935	11.564	6.725	10.551	3.139	0.037	99.426	BS13&14C_L1_S3
1398.5	48.695	49.147	2.017	14.110	11.304	6.749	10.623	3.074	2.976	99.548	BS13&14C_L2_S1
1318.5	48.541	48.801	2.063	13.992	11.464	6.924	10.747	3.057	2.953	99.739	BS13&14C_L2_S1
1238.5	48.211	49.113	2.054	13.879	11.368	6.900	10.693	3.033	2.960	99.098	BS13&14C_L2_S1
1158.5	48.425	48.742	2.080	14.074	11.514	6.861	10.746	3.053	2.930	99.684	BS13&14C_L2_S1
1078.5	47.963	48.874	2.108	13.960	11.425	6.983	10.750	3.003	2.898	99.090	BS13&14C_L2_S1
998.5	48.257	48.788	2.003	14.109	11.683	6.919	10.717	2.933	2.849	99.468	BS13&14C_L2_S1
918.5	47.849	49.124	2.120	13.997	11.32/	6.817	10.722	3.000	2.893	98.725	BS13&14C_L2_S1
838.5	48.491	48.904	2.031	14.026	11.486	6.885	10.767	2.993	2.907	99.587	BS13&14C_L2_S1
/58.5	48.345	49.153	2.074	13.931	11.482	6./9/	10.762	2.900	2.901	99.192	BS13&14C_L2_S1
0/8.5	48.180	48.922	2.1/5	14.018	11.581	0.854	10.667	2.8/4	2.910	99.258	BS13&14C_L2_S1
598.5 510 5	48.035	48.9//	2.041	14.24/	11.504	0./33	10.705	2.886	∠.907	99.05/ 00.404	BS13&14C_L2_S1
518.5 170 5	40.003	49.009	2.074	13.932	11.3/0	0.838	10./10	2.930 2 070	2.901 2.924	99.494 00.201	BS13&14C_L2_S2 BS13&14C_L2_S2
4/0.0	40.322	47.138	2.023	14.083	11.038	0./01	10.031	2.0/0 2052	2.020	77.384 00 541	DS13&14C_L2_S2
438.3	40.034 18 551	49.093 18 086	2.007	14.052	11.392	6 951	10./13	2.032 2.882	2.030	99.301 00 565	$BS13&14C_L2_S2$ BS13&1AC_12_S2
350.5	40.331	40.200	2.033	14.134	11.500	6.817	10.033	2.002 2.802	2.033 2.776	99.303	$BS13&14C_L2_S2$ BS13&1AC_L2_S2
318 5	40.434	49.403	2.000	13 060	11.455	6.818	10.575	2.005 2.751	2.770	90.952	$BS13&14C_L2_S2$ BS13&14C_L2_S2
278.5	48 596	49 466	2.010	14 060	11 575	6 732	10.028	2.734	2.743	99 130	BS13&14C I 2 S2
238.5	48.715	49,709	1.983	13.895	11.618	6.836	10.560	2.808	2.592	99,006	B\$13&14C_L2_S2

198.5	49.039	49.603	2.043	14.082	11.681	6.747	10.572	2.830	2.442	99.436	BS13&14C_L2_S2
158.5	48.905	49.266	2.159	14.084	11.759	6.911	10.655	2.864	2.301	99.638	BS13&14C_L2_S2
118.5	48.929	49.788	2.059	14.143	11.625	6.761	10.595	2.881	2.149	99.141	BS13&14C L2 S2
78.5	49.157	49.895	2.083	14.143	11.640	6.765	10.617	2.904	1.952	99.262	BS13&14C L2 S2
38.5	49.868	50.652	2.017	13.888	11.346	6.690	10.647	3.004	1.757	99.216	BS13&14C L2 S2
-1.5	50.370	50.974	2.030	13.898	11.336	6.630	10.508	3.099	1.524	99.396	BS13&14C L2 S2
-41.5	50.739	51.359	1.927	13.864	11.103	6.639	10.576	3.217	1.315	99.380	BS13&14C L2 S2
-81.5	50.997	51.605	1.989	13.837	11.170	6.552	10.619	3.196	1.032	99.393	BS13&14C L2 S2
-121.5	51.146	51.892	1.968	13.692	11.248	6.482	10.704	3.257	0.757	99.254	BS13&14C L2 S2
-161.5	51.238	51.787	1.987	13.823	11.338	6.546	10.605	3.384	0.530	99.450	BS13&14C_L2_S2
-201 5	51 448	51 942	1 946	13 737	11 229	6 604	10 729	3 4 5 8	0.356	99 507	BS13&14C_L2_S2
-241.5	51 399	52.045	1 969	13 784	11 220	6 6 3 9	10.670	3 4 3 8	0.237	99 354	B\$13&14C_L2_S2
-281.5	51 358	52.365	1.926	13 722	11 339	6 4 9 8	10.676	3 348	0.137	98 993	B\$13&14C_L2_S2
-321.5	51 538	52.239	1 881	13 756	11.337	6 669	10.560	3 394	0.084	99 299	B\$13&14C_L2_S2
-361.5	51.650	52.239	1.001	13.821	11 390	6 6 2 0	10.580	3 342	0.066	99 240	B\$13&14C_L2_S2
-401.5	51.625	52.22)	1.975	13.824	11.550	6 599	10.500	3 351	0.052	99.1210	B\$13&14C_L2_S2
-401.5	51 387	52.477	1 000	13.024	11 233	6746	10.545	3 3 3 5	0.032	00 230	B\$13&14C_L2_S2
-481.5	51.507	52.150	2 045	13,006	11.235	6.607	10.350	3 3 2 0	0.040	00 110	B\$13&14C_L2_S2
-401.5	51 728	52.165	1 065	13.900	11 225	6.540	10.404	3 205	0.054	00 263	B\$13&14C_L2_S2 B\$13&14C_L2_S3
-501.5	51.720	52.405	2 011	13.072	11.333	6 568	10.409	3.295	0.030	99.203	BS13&14C_L2_S3 BS13&14C_L2_S3
-041.5	51.020	52.205	2.011	12.944	11.445	6.600	10.400	2 211	0.040	99.421	DS13&14C_L2_S3
-/21.5	51.745	52.389	2.023	13.824	11.398	0.022	10.494	3.211	0.039	99.337	BS13&14C_L2_S3
-801.5	51.667	52.364	1.899	13.804	11.468	6.668	10.536	3.229	0.033	99.303	BS13&14C_L2_S3
-881.5	51.612	52.152	2.011	13.841	11.580	6.652	10.565	3.155	0.044	99.460	BS13&14C_L2_S3
1049.5	48.986	49.342	2.051	14.046	11.221	6./24	10.534	3.064	3.018	99.644	BS13&14C_L3_S1
969.5	48.91/	49.354	2.012	14.060	11.195	6.686	10.68/	3.033	2.974	99.563	BS13&14C_L3_S1
889.5	48.844	49.459	1.998	14.016	11.212	6.775	10.591	2.976	2.972	99.384	BS13&14C_L3_S1
809.5	48.799	49.524	1.995	13.916	11.300	6.666	10.563	3.039	2.997	99.274	BS13&14C_L3_S1
729.5	48.964	49.562	2.017	14.038	11.281	6.595	10.590	2.983	2.934	99.401	BS13&14C_L3_S1
649.5	49.038	49.490	2.008	14.013	11.275	6.709	10.625	2.965	2.915	99.548	BS13&14C_L3_S1
569.5	48.859	49.687	2.033	13.811	11.244	6.736	10.584	2.950	2.956	99.172	BS13&14C_L3_S1
489.5	48.694	49.567	2.043	13.915	11.403	6.741	10.499	2.939	2.894	99.127	BS13&14C_L3_S1
409.5	48.737	49.577	1.973	14.034	11.319	6.812	10.545	2.864	2.877	99.160	BS13&14C_L3_S1
329.5	48.918	49.442	2.174	13.973	11.501	6.768	10.549	2.860	2.733	99.477	BS13&14C_L3_S2
288.5	48.943	49.630	2.089	13.927	11.495	6.767	10.569	2.866	2.657	99.313	BS13&14C_L3_S2
247.5	48.998	49.546	2.055	14.008	11.534	6.850	10.542	2.909	2.556	99.453	BS13&14C_L3_S2
206.5	49.058	49.471	2.008	14.148	11.673	6.842	10.521	2.888	2.449	99.588	BS13&14C_L3_S2
165.5	49.045	49.809	2.067	14.091	11.499	6.777	10.505	2.931	2.321	99.236	BS13&14C_L3_S2
124.5	49.308	50.023	2.054	13.858	11.572	6.755	10.626	2.964	2.148	99.285	BS13&14C_L3_S2
83.5	49.390	49.801	2.114	14.182	11.535	6.894	10.548	2.955	1.970	99.589	BS13&14C L3 S2
42.5	50.064	50.626	1.991	13.950	11.369	6.734	10.557	3.010	1.763	99.439	BS13&14C L3 S2
1.5	50.516	51.132	2.056	13.776	11.115	6.660	10.492	3.183	1.586	99.384	BS13&14C L3 S2
-39.5	51.133	51.385	1.950	13.808	11.191	6.640	10.479	3.228	1.320	99.748	BS13&14C L3 S2
-80.5	51.249	51.746	1.976	13.912	11.077	6.469	10.522	3.281	1.018	99.504	BS13&14C L3 S2
-121.5	51.396	51.790	1.967	13.881	11.128	6.548	10.649	3.268	0.768	99.605	BS13&14C L3 S2
-162.5	51 241	51 757	1 980	13 990	11 088	6 680	10.623	3 350	0.532	99 484	BS13&14C_L3_S2
-203 5	51 327	52 113	2.019	13 915	11.000	6 528	10.676	3 399	0.338	99 214	B\$13&14C_L3_S2
-244 5	51.307	51 908	1 983	13 880	11 281	6 5 7 5	10.719	3 411	0.242	99 399	B\$13&14C_L3_S2
-285.5	51 339	51.900	1.965	13.962	11.201	6.605	10.661	3 461	0.149	99 441	B\$13&14C_L3_S2
-205.5	51.557	52 320	1.955	13,902	11.300	6 5 3 5	10.534	3 377	0.149	99 259	B\$13&14C_L3_S2
-367.5	51 503	51 770	2 006	14 100	11.240	6 5 7 6	10.534	3 163	0.104	00 72 <i>1</i>	B\$13&14C_L3_S2
-307.5	51.505	52 269	2.000	12 912	11.457	6 5 6 9	10.549	2 4 2 2	0.070	00 202	$DS13@14C_L3_S2$ $DS13@14C_L3_S2$
-408.5	51.601	52.308	1.973	12.012	11.274	6.407	10.326	2 2 2 2 5	0.033	00 222	$DS13@14C_L3_S2$ $DS13@14C_L3_S2$
-449.5	51.001	52.508	1.777	12.732	11.320	0.49/	10.464	3.323 2.207	0.048	77.433 00.605	$DS13@14C_L3_S2$ $DS13@14C_L3_S2$
-490.5	51.729	52.054	2.049	12.9/1	11.410	0.720	10.431	3.307	0.040	99.093 00.476	$DS13@14U_L3_S2$ $DS13@14C_L3_S2$
-331.3	51.795	52.51/	2.013	13.890	11.289	0.394	10.491	5.55Z	0.048	77.4/0 00.404	DS13&14C_L3_S2
-5/2.5	51.5//	52.1/2	1.904	13.885	11.460	0.015	10.585	3.284 2.202	0.036	99.404	DS13&14U_L3_S2
-013.5	51.963	52.306	1.995	13.806	11.427	0.000	10.465	3.292	0.045	99.657	в§13&14C_L3_S2
-654.5	51.680	52.418	1.958	13.760	11.470	6.615	10.455	5.284	0.041	99.262	BS13&14C_L3_S2
-695.5	51.343	52.290	1.953	13.936	11.428	6.632	10.476	5.245	0.042	99.054	BS13&14C_L3_S2
-775.5	51.494	52.058	2.043	13.947	11.496	6.626	10.586	3.189	0.055	99.436	BS13&14C_L3_S3
-855.5	51.544	52.400	2.007	13.773	11.497	6.615	10.530	3.143	0.036	99.144	BS13&14C_L3_S3
-935.5	51.639	52.206	2.032	13.971	11.369	6.606	10.599	3.163	0.054	99.433	BS13&14C_L3_S3
-1015.5	51.843	52.279	1.954	13.937	11.368	6.709	10.608	3.113	0.033	99.564	BS13&14C_L3_S3

Table C27	7. BS17&	18C									
X(µm)	SiO2	SiO2*	TiO2	Al2O3	FeO	MgO	CaO	Na2O	K2O	Total	Comment
1063.7	49.686	50.439	1.919	14.188	11.634	5.156	10.545	3.077	3.043	99.246	BS17&18C_L1_S1
983.7	49.754	50.646	1.908	14.213	11.453	5.111	10.502	3.098	3.069	99.108	BS17&18C_L1_S1
903.7	49.556	50.125	1.997	14.306	11.599	5.200	10.594	3.118	3.062	99.432	BS17&18C_L1_S1
823.7	49.257	50.509	1.906	14.195	11.481	5.269	10.520	3.068	3.052	98.748	BS17&18C_L1_S1
743.7	49.221	50.304	1.984	14.372	11.444	5.319	10.429	3.085	3.063	98.917	BS17&18C_L1_S1
663.7	49.244	50.627	1.978	14.080	11.513	5.260	10.509	3.041	2.991	98.617	BS17&18C_L1_S1
583.7	49.409	50.561	1.871	14.270	11.415	5.200	10.606	3.057	3.021	98.848	BS17&18C_L1_S1
503.7	48.933	50.409	1.928	14.172	11.603	5.207	10.612	3.036	3.035	98.524	BS17&18C_L1_S1
423.7	49.662	50.302	1.916	14.234	11.613	5.368	10.574	3.051	2.942	99.360	BS17&18C_L1_S2
383.7	49.185	50.252	1.985	14.328	11.525	5.363	10.567	3.044	2.938	98.933	BS17&18C_L1_S2
343.7	49.492	50.519	1.992	14.252	11.457	5.331	10.566	3.018	2.866	98.973	BS17&18C_L1_S2
303.7	49.596	50.565	1.972	14.254	11.604	5.226	10.541	2.989	2.848	99.031	BS17&18C_L1_S2
263.7	49.381	50.290	1.970	14.416	11.548	5.425	10.484	3.066	2.802	99.091	BS17&18C_L1_S2
223.7	49.872	50.461	1.934	14.368	11.583	5.492	10.412	3.017	2.734	99.412	BS17&18C_L1_S2
183.7	49.523	50.518	2.050	14.439	11.397	5.484	10.429	3.077	2.606	99.005	BS17&18C_L1_S2
143.7	49.403	50.805	1.987	14.387	11.203	5.709	10.385	3.065	2.458	98.598	BS17&18C_L1_S2
103.7	49.419	50.635	2.035	14.513	11.105	5.905	10.344	3.159	2.304	98.784	BS17&18C_L1_S2
63.7	49.579	50.787	1.928	14.562	10.980	6.181	10.382	3.166	2.014	98.793	BS17&18C_L1_S2
23.7	49.593	50.749	1.969	14.371	11.056	6.525	10.427	3.153	1.751	98.844	BS17&18C_L1_S2
-16.3	49.582	50.045	1.975	14.378	11.262	7.079	10.656	3.202	1.403	99.536	BS17&18C_L1_S2
-56.3	48.668	50.083	2.034	14.09/	11.30/	7.425	10.840	3.134	1.081	98.585	BS1/&18C_L1_S2
-96.3	48.879	50.350	1.985	14.124	11.144	7.659	10.869	3.115	0.754	98.529	BS17&18C_L1_S3
-136.3	49.165	50.243	1.950	14.180	11.193	/.8/3	10.900	3.122	0.534	98.923	BS1/&18C_L1_S3
-1/0.3	49.100	50.541	1.881	14.31/	11.149	7.061	10.914	3.233	0.385	98.820	BS1/&18C_L1_S3
-210.5	49.577	50.701	1.978	14.298	10.817	7.901	10.702	2.240	0.238	98.070	DS1/&10C_L1_S3
-230.5	49.8/1	50.780	1.9/5	14.204	10.902	7.912	10.800	2 2 4 2	0.145	99.091	$DS1/@10C_L1_S3$ $DS17@19C_L1_S3$
-290.3	49.130	50.004	2.080	14.236	11.016	7.975	10.742	3.343	0.094	00 711	BS17&18C_L1_S3
-550.5	49.730	50.491	1.979	14.401	11.010	7.933 8.001	10.795	3.321	0.004	99.244	BS17&18C_L1_S3 BS17&18C_L1_S3
-416.3	49.740	50.438	1.975	14.425	11.004	7 998	10.727	3.350	0.000	99.205	BS17&18C_L1_S3
-456.3	49 355	50.640	2 014	14.356	10.967	8 020	10.710	3 277	0.043	98 714	BS17&18C_L1_S3
-496.3	49 386	50.854	1 944	14.550	10.968	7 974	10.057	3 260	0.020	98 532	BS17&18C_L1_S3
-536.3	49 277	50.596	2.019	14 343	11.076	8 000	10.700	3 2 5 6	0.047	98 681	BS17&18C_L1_S3
-616.3	49 529	50 627	1 965	14 526	10 899	8.002	10 724	3 225	0.033	98 902	BS17&18C_L1_S4
-696.3	49.816	50.778	1.988	14.367	10.923	7.992	10.689	3.224	0.039	99.038	BS17&18C L1 S4
-776.3	49.934	50.491	1.990	14.399	11.040	8.165	10.664	3.212	0.039	99.443	BS17&18C L1 S4
-856.3	49.800	50.606	2.005	14.505	10.886	8.085	10.623	3.240	0.050	99.194	BS17&18C L1 S4
-936.3	49.950	50.630	2.013	14.339	10.982	8.125	10.740	3.133	0.040	99.321	BS17&18C L1 S4
-1016.3	50.148	50.788	1.989	14.360	10.951	7.957	10.658	3.251	0.047	99.360	BS17&18C L1 S4
-1096.3	49.919	50.745	2.018	14.249	10.912	7.961	10.791	3.281	0.044	99.174	BS17&18C_L1_S4
-1176.3	49.783	50.642	2.078	14.423	10.901	8.085	10.653	3.178	0.041	99.141	BS17&18C_L1_S4
-1256.3	49.480	50.740	1.996	14.354	10.843	8.161	10.739	3.141	0.028	98.741	BS17&18C_L1_S4
708.7	49.204	50.491	2.014	14.264	11.415	5.189	10.471	3.123	3.032	98.713	BS17&18C_L2_S1
628.7	48.963	50.117	2.028	14.245	11.467	5.412	10.576	3.088	3.067	98.846	BS17&18C_L2_S1
468.7	48.353	50.503	2.000	14.202	11.598	5.205	10.521	3.005	2.966	97.850	BS17&18C_L2_S1
388.7	49.110	50.256	1.954	14.235	11.518	5.358	10.622	3.058	3.001	98.854	BS17&18C_L2_S2
348.7	48.866	50.251	1.989	14.273	11.500	5.380	10.533	3.104	2.970	98.615	BS17&18C_L2_S2
308.7	48.625	50.324	1.956	14.371	11.411	5.400	10.618	3.055	2.866	98.302	BS17&18C_L2_S2
268.7	49.035	50.230	1.948	14.423	11.463	5.413	10.602	3.086	2.836	98.805	BS17&18C_L2_S2
228.7	48.806	50.232	1.948	14.506	11.470	5.511	10.520	3.074	2.741	98.575	BS17&18C_L2_S2
188.7	48.581	50.650	2.026	14.308	11.446	5.538	10.332	3.080	2.620	97.931	BS1/&18C_L2_S2
148.7	49.190	50./16	1.986	14.530	11.161	5.636	10.370	3.136	2.465	98.4/4	BS1/&18C_L2_S2
28.7	49.109	50.014	1.932	14.401	11.070	0.300	10.479	5.154 2.145	1./80	98.333	BS1/&18C_L2_S2
-11.5	40.988 18 557	50.150	2.002	14.439	11.22/	0.905	10.030	3.143 3.179	1.443	70.030 08 511	BS17&18C 12 S2
-01.2	40.33/ 18 212	50.015	2.000 2.000	14.19/	11.2/4 11.212	7.510	10.799	3.172	1.138	20.244 08 NG2	BS17&10C_L2_52
-91.5	40.212	50.150	2.000	14.10/	11.212	7.301	10.040	3,100	0.040	98.002	BS17&10C_L2_S2 BS17&18C_L2_S2
_171 2	48 850	50.247	2.045	14 2/15	11.220	7 715	10.000	3 107	0.387	98 417	BS17&18C 12_55
-211 3	48 994	50.306	2.003	14 214	11.075	7 954	10.914	3 288	0.267	98 688	BS17&18C 1.2 S3
-251 3	49.023	50.284	1,986	14.336	11.060	8.045	10.763	3.354	0.172	98.740	BS17&18C L2 S3
-291.3	49.248	50.293	2.023	14.309	11.053	8.069	10.852	3.299	0.102	98.955	BS17&18C L2 S3

	-331.3	49.214	50.333	2.023	14.341	11.153	8.028	10.677	3.373	0.073	98.881	BS17&18C L2 S3
	-371.3	49.008	50.344	2.027	14.428	11.204	7.956	10.656	3.329	0.056	98.664	BS17&18C L2 S3
	-411.3	49.080	50.209	2.079	14.476	11.103	8.041	10.715	3.341	0.036	98.871	BS17&18C L2 S3
	-451.3	48.971	50.377	2.019	14.461	11.100	8.055	10.612	3.334	0.043	98.594	BS17&18C_L2_S3
	-491 3	49 346	50.416	1 990	14 411	11.097	8 070	10.672	3 294	0.050	98 930	BS17&18C_L2_S3
	-531.3	49 128	50.566	1 888	14 331	11.094	8 105	10.634	3 3 5 6	0.037	98 562	B\$17&18C_L2_S3
	571.3	40.165	50.864	2 022	14.351	10.851	7 080	10.034	3.330	0.037	08 301	B\$17&18C_L2_S3
	-5/1.5	49.105	50.250	2.022	14.504	10.031	7.960 0.075	10.052	2 257	0.040	96.301	DS17&10C_L2_S5
	-011.5	49.430	50.559	2.020	14.300	10.978	8.075	10.701	5.257	0.045	99.071	DS17&18C_L2_S3
	-691.3	49.175	50./14	2.018	14.234	10.898	8.114	10.732	3.253	0.038	98.461	BS1/&18C_L2_S4
	-771.3	49.583	50.644	2.006	14.476	11.028	7.961	10.628	3.209	0.047	98.940	BS1/&18C_L2_S4
	-851.3	49.041	50.619	2.006	14.318	11.023	8.054	10.651	3.283	0.045	98.422	BS17&18C_L2_S4
	-931.3	49.573	50.621	1.977	14.395	11.036	8.019	10.644	3.272	0.037	98.951	BS17&18C_L2_S4
	-1011.3	48.918	50.512	2.059	14.430	10.856	8.129	10.753	3.226	0.034	98.406	BS17&18C_L2_S4
	-1091.3	48.884	50.683	1.996	14.530	10.963	7.945	10.672	3.167	0.045	98.201	BS17&18C_L2_S4
	-1171.3	48.738	50.477	2.054	14.429	10.915	8.113	10.717	3.251	0.045	98.261	BS17&18C L2 S4
	-1251.3	48.581	50.772	2.006	14.318	11.045	7.901	10.675	3.236	0.047	97.809	BS17&18C L2 S5
	-1259.3	49.093	50.807	2.018	14.432	10.754	8.070	10.683	3.192	0.044	98.286	BS17&18C L2 S5
	-1267.3	48 491	50 463	2 0 2 5	14 450	10 984	8 086	10 746	3 210	0.037	98.028	BS17&18C_L2_S5
	-1275.3	49 098	50.686	2.023	14 370	10.960	8 1 5 6	10.617	3 1 4 1	0.050	98 412	B\$17&18C_L2_S5
	-1283.3	19.090	50.585	2.021	14 410	11 020	8.055	10.617	3 162	0.036	08 562	B\$17&18C_L2_S5
	1201.2	40.220	50.565	2.004	14.226	10.046	8.055 8.026	10.000	2 175	0.030	08 574	DS17&10C_L2_S5
	-1291.5	49.239	50.005	2.078	14.550	10.940	8.050	10.724	2.175	0.039	90.374	DS17&10C_L2_S5
	-1299.5	48.020	50.574	2.042	14.527	10.845	8.025	10.737	3.215	0.030	98.052	BS1/&18C_L2_S5
	-1307.3	48.618	50.743	2.041	14.38/	10.812	8.005	10./31	3.231	0.051	97.875	BS1/&18C_L2_S5
	-1315.3	49.246	50.744	2.041	14.491	10.741	8.000	10.750	3.194	0.039	98.502	BS17&18C_L2_S5
	-1323.3	48.755	50.837	2.043	14.394	10.777	8.012	10.724	3.173	0.042	97.919	BS17&18C_L2_S5
	-1331.3	49.222	50.848	1.951	14.370	10.890	8.062	10.731	3.113	0.035	98.374	BS17&18C_L2_S5
	1148.7	48.246	50.250	1.932	14.129	11.760	5.191	10.703	3.042	2.993	97.996	BS17&18C_L3_S1
	988.7	48.459	50.039	1.956	14.189	11.754	5.326	10.614	3.070	3.053	98.421	BS17&18C_L3_S1
	908.7	48.390	50.074	1.935	14.191	11.730	5.262	10.677	3.076	3.054	98.316	BS17&18C L3 S1
	828.7	48.441	50.010	1.966	14.321	11.668	5.288	10.657	3.065	3.025	98.432	BS17&18C L3 S1
	748.7	48.372	50.384	1.932	14.248	11.536	5.247	10.594	3.096	2.962	97.988	BS17&18C L3 S1
	668.7	48.382	49.887	1.941	14.271	11.807	5.319	10.676	3.092	3.008	98.495	BS17&18C_L3_S1
	588.7	48 562	50 316	1 966	14 086	11 603	5 286	10.673	3 047	3 024	98 246	BS17&18C_L3_S1
	508.7	48 334	50.206	2 048	14 054	11.005	5 392	10.608	2 998	2 997	97 928	B\$17&18C_L3_S1
	128 7	18 088	50.105	2.010	1/ 118	11.736	5 3 1 8	10.658	2.000	2.997	07.082	B\$17&18C_L3_S1
	420.7	40.000	50.105	2.030	14.110	11.750	5 274	10.058	2.026	2.995	00 161	DS17&10C_L3_S2
	200./ 240.7	48.703	50.304	1.904	14.204	11.339	5.5/4	10.381	2.000	2.918	98.401	$DS1/@10C_L3_S2$
	348.7	48./41	50.287	2.002	14.274	11.63/	5.284	10.625	3.000	2.891	98.454	BS1/&18C_L3_S2
	308.7	48.033	50.188	1.964	14.282	11.699	5.362	10.564	3.04/	2.894	97.845	BS1/&18C_L3_S2
	268.7	48.434	50.392	1.895	14.345	11.612	5.397	10.511	3.016	2.832	98.042	BS17&18C_L3_S2
	228.7	48.445	50.464	1.956	14.287	11.575	5.447	10.503	3.026	2.742	97.981	BS17&18C_L3_S2
	188.7	48.927	50.279	2.023	14.421	11.621	5.490	10.465	3.052	2.650	98.648	BS17&18C_L3_S2
	148.7	48.731	50.582	1.966	14.421	11.361	5.633	10.486	3.083	2.467	98.148	BS17&18C_L3_S2
	108.7	48.730	50.238	2.025	14.548	11.447	5.777	10.456	3.149	2.360	98.492	BS17&18C_L3_S2
	68.7	48.786	50.172	2.056	14.586	11.305	6.169	10.382	3.204	2.128	98.614	BS17&18C_L3_S2
	28.7	49.143	50.588	1.921	14.390	11.215	6.402	10.515	3.175	1.794	98.554	BS17&18C L3 S2
	-11.3	48.909	50.157	1.962	14.183	11.359	7.031	10.694	3.195	1.419	98.752	BS17&18C L3 S2
	343.7	48.613	50.315	1.946	14.229	11.627	5.333	10.645	2.960	2.945	98.298	BS17&18C_L3_S3
	258.7	48 203	50 217	2 023	14 406	11 624	5 383	10 565	3 007	2 776	97 985	BS17&18C_L3_S3
	173.7	48 276	50 474	1 900	14 329	11.633	5 520	10.478	3.078	2 589	97 802	BS17&18C_L3_S3
	887	18.648	50.540	1 038	14 575	11.035	6.014	10.361	3 1 1 7	2.309	08 108	B\$17&18C_L3_S3
	27	10.040	50.240	2.057	14.295	11.200	6 7 7 7	10.501	2 1 2 7	1 562	08 717	DS17&10C_L3_S3
	3./ 01.2	40.900	50.249	2.037	14.203	11.299	0.727	10.004	2.000	1.305	90./1/	DS17&10C_L3_S3
I	-01.5	40.010	50.264	1.934	14.102	11.384	1.438	10.89/	3.080	0.895	70.340	DS1/&18C_L3_S3
I	-166.3	48.753	50.253	1.932	14.280	11.137	1.797	10.928	3.262	0.412	98.500	BS1/&18C_L3_S3
I	-251.3	49.387	50.481	1.941	14.358	10.986	7.937	10.817	3.334	0.148	98.906	BS1/&18C_L3_S3
I	-336.3	49.123	50.319	1.999	14.426	11.030	8.034	10.794	3.336	0.061	98.804	BS17&18C_L3_S3
I	-421.3	49.575	50.564	2.000	14.299	11.018	8.019	10.686	3.366	0.049	99.012	BS17&18C_L3_S3
I	-506.3	49.305	50.436	1.956	14.294	11.197	8.003	10.743	3.317	0.054	98.869	BS17&18C_L3_S3
	-591.3	49.160	50.341	2.089	14.434	11.105	7.998	10.760	3.224	0.049	98.819	BS17&18C_L3_S3
	-671.3	49.505	50.650	2.044	14.454	10.864	8.030	10.671	3.243	0.045	98.855	BS17&18C L3 S4
	-751.3	49.345	50.773	1.974	14.376	10.947	8.003	10.709	3.180	0.037	98.572	BS17&18C L3 S4
ļ	-831.3	49.173	50.486	2.013	14.368	11.131	8.041	10.734	3.189	0.038	98.687	BS17&18C L3 S4
ļ	-911.3	48.967	50.719	1.977	14.339	11.031	8.073	10.643	3.184	0.034	98.248	BS17&18C L3 S4
I	-991 3	49 475	50 619	2 014	14 211	10 996	8 1 4 1	10 776	3 210	0.033	98 856	BS17&18C 13 S5
۱	111.5	17.175	20.017	2.017	11.411	10.770	0.1 11	10.770	2.210	0.055	20.000	

-1071.3	49.849	50.785	1.990	14.365	11.032	7.938	10.644	3.209	0.038	99.064	BS17&18C_L3_S5
-1151.3	49.217	50.635	2.001	14.296	11.016	8.045	10.730	3.230	0.047	98.582	BS17&18C_L3_S5
-1231.3	49.458	50.751	1.997	14.269	11.004	8.009	10.770	3.156	0.045	98.707	BS17&18C_L3_S6
-1311.3	49.119	50.626	2.010	14.355	10.943	8.147	10.760	3.125	0.035	98.492	BS17&18C_L3_S6

Table C2	28. BS19&	20C									
X(µm)	SiO2	SiO2*	TiO2	Al2O3	FeO	MgO	CaO	Na2O	K2O	Total	Comment
1160	50.118	50.928	1.954	15.414	11.178	6.746	9.034	3.241	1.505	99.190	BS19&20C_L2_S1
1080	50.274	50.930	2.008	15.544	11.264	6.530	8.957	3.250	1.518	99.344	BS19&20C L2 S1
1000	50.270	51.012	1.975	15.362	11.258	6.570	9.075	3.258	1.491	99.258	BS19&20C L2 S2
920	50.429	51.054	1.953	15.423	11.183	6.613	9.020	3.251	1.503	99.375	BS19&20C L2 S2
840	50.572	51.031	1.960	15.480	11.131	6.530	9.045	3.334	1.489	99.542	BS19&20C L2 S2
760	50.274	51.002	1.928	15.377	11.275	6.570	9.062	3.265	1.519	99.272	BS19&20C L2 S2
680	50.472	51.180	1.896	15.366	11.102	6.633	9.010	3.344	1.470	99.291	BS19&20C L2 S2
600	50.494	51.050	1.933	15.418	11.125	6.557	9.049	3.374	1.495	99.444	BS19&20C L2 S2
520	50.441	51.012	2.028	15.412	11.096	6.611	8.977	3.376	1.488	99.429	BS19&20C L2 S3
480	50 538	51 003	1 968	15 578	11 134	6 567	8 967	3 2 9 8	1 485	99 535	BS19&20C_L2_S3
440	50.488	51.054	2.032	15.458	11.036	6.562	8.987	3.351	1.520	99.434	BS19&20C L2 S3
400	50.475	51.188	2.031	15.426	10.977	6.544	8.962	3.369	1.504	99.287	BS19&20C L2 S3
360	50.574	51.032	1.994	15.447	10.981	6.648	8.947	3.429	1.521	99.542	BS19&20C L2 S3
320	50 565	51 161	1 978	15 517	10 914	6 5 1 4	9.007	3 386	1 524	99 405	BS19&20C_L2_S3
280	50.612	51 315	1 977	15.256	10.843	6 548	9.072	3 4 5 5	1.521	99 297	B\$19&20C_L2_S3
240	50.012	51.023	1 983	15 361	10.949	6.637	9.136	3 369	1 541	99.463	B\$19&20C_L2_S3
200	50.100	51 271	1.959	15.501	10.915	6 464	9 2 5 7	3 477	1 5 5 9	98 841	BS19&20C_L2_S3
160	50.539	51.049	1.962	15.170	10.858	6 487	9 4 2 3	3 376	1.555	99 490	BS19&20C_L2_S3
120	50.335	51 214	1 943	15.270	10.527	6 4 1 0	9 523	3 383	1.570	99 251	BS19&20C_L2_S3
80	50.105	50 741	1.935	15.120	10.821	6 4 6 9	9 901	3 3 4 5	1.565	99.880	B\$19&20C_L2_S3
40	50.022	51 077	1.955	1/ 603	10.832	6 5 3 3	10 160	3 226	1.505	00 307	B\$19&20C_L2_S3
+0	50.500	51.077	1.975	13 747	11.030	6 706	10.100	3.220	1.300	00 334	BS10&20C_L2_S5
40	50.599	51.205	2 006	13.747	11.030	6.826	10.031	3.111	1.475	99.554	BS19&20C_L2_S4 BS10&20C_L2_S4
-40	50.6072	51 360	2.000	12.098	11.549	6.040	10.996	2 011	1.429	99.390 00.327	BS19&20C_L2_S4 BS10&20C_L2_S4
-80	50.620	51.509	2.050	12.022	11.577	6 878	11.131	2.911	1.379	99.327	BS19&20C_L2_S4 BS10&20C_L2_S4
-120	50.579	51 227	2.004	12.477	11.549	6 802	11.525	2.850	1.400	00 241	DS19&20C_L2_S4
200	50.578	51.557	2.004	12.405	11.508	6.030	11.510	2.895	1.390	99.241 00 50 <i>1</i>	BS19&20C_L2_S4 BS10&20C_L2_S4
-200	50.705	51.110	2 000	12.450	11.391	6.930	11.095	2.809	1.404	99.394 00.400	DS19&20C_L2_S4
-240	50.545	51.120	2.009	12.575	11.329	0.040 6.014	11.021	2.025	1.470	99.490	DS19&20C_L2_S4
-200	50.545	50.860	1.965	12.320	11.300	6 8 2 2	11.770	2.914	1.450	99.304	DS19&20C_L2_S4
-520	50.479	51.009	1.934	12.08/	11.400	0.823	11.922	2.910	1.430	99.010	DS19&20C_L2_S4
-300	50.000	51.000	1.969	12.405	11.439	6.602	11.923	2.090	1.400	99.033	DS19&20C_L2_S4
-400	50.500	51.255	2.030	12.324	11.420	0.092	11.908	2.090	1.413	99.007	DS19&20C_L2_S4
-440	50.330	51.075	1.911	12.424	11.313	0.730	11.952	2.915	1.461	99.438	DS19&20C_L2_S4
-480	50.450	50.800	1.990	12.373	11.203	0.099	11.945	2.900	1.405	99.273	DS19&20C_L2_S4
-300	50.339	50.012	2.051	12.4/5	11.570	0.894	11.945	2.012	1.4/3	99.739	DS19&20C_L2_S5
-040	50.327	50.915	1.900	12.304	11.334	0.04/	11.0//	2.024	1.495	99.414	DS19&20C_L2_S5
-720	50.510	50.699	1.904	12.310	11.398	0.044	12.064	2.001	1.4/1	99.411	DS19&20C_L2_S5
-800	50.403	50.585	2.073	12.449	11.408	0.810	12.008	2.050	1.400	99.820	BS19&20C_L2_S5
-880	50.538	50.043	2.039	12.270	11.000	0.793	12.055	3.050	1.492	99.895	BS19&20C_L2_S5
-960	50.284	51.022	1.942	12.384	11.480	6./5/	11.888	3.048	1.4/4	99.262	BS19&20C_L2_S5
-1040	50.006	50.541	1.996	12.50/	11.690	6.690	12.024	3.058	1.496	99.465	BS19&20C_L2_S5
1195	49.956	50.382	1.941	15.531	11.011	6./21	9.239	3.078	1.498	99.574	BS19&20C_L3_S1
1115	49.8/6	50.721	1.966	15.43/	11.510	6.699	9.090	3.123	1.455	99.155	BS19&20C_L3_S1
1035	50.011	50.562	1.875	15.522	11.509	6.795	9.099	3.181	1.457	99.449	BS19&20C_L3_S2
955	50.242	50.559	1.951	15.503	11.532	6.660	9.151	3.16/	1.4//	99.683	BS19&20C_L3_S2
875	49.748	50.301	2.001	15.589	11.591	6.771	9.103	3.175	1.469	99.448	BS19&20C_L3_S2
795	49.941	50.895	1.976	15.424	11.270	6.765	9.087	3.173	1.411	99.047	BS19&20C_L3_S2
715	49.871	50.798	1.940	15.385	11.359	6.643	9.191	3.222	1.464	99.073	BS19&20C_L3_S2
635	50.104	50.557	2.051	15.489	11.353	6.702	9.104	3.293	1.452	99.547	BS19&20C_L3_S2
555	50.298	50.651	1.920	15.483	11.319	6.757	9.137	3.260	1.472	99.647	BS19&20C_L3_S3
515	50.174	50.431	1.976	15.578	11.414	6.694	9.134	3.309	1.465	99.743	BS19&20C_L3_S3
475	50.309	50.818	1.954	15.520	11.240	6.694	9.067	3.244	1.464	99.491	BS19&20C_L3_S3
435	50.217	50.454	2.040	15.457	11.301	6.797	9.136	3.351	1.464	99.763	BS19&20C_L3_S3
395	50.073	50.496	2.082	15.443	11.386	6.687	9.100	3.344	1.463	99.577	BS19&20C_L3_S3
355	50.183	50.841	1.979	15.347	11.312	6.710	9.077	3.288	1.446	99.342	BS19&20C_L3_S3
315	50.304	50.815	1.936	15.481	11.151	6.627	9.177	3.336	1.477	99.489	BS19&20C_L3_S3
275	50.078	50.678	2.001	15.477	11.213	6.594	9.175	3.362	1.501	99.399	BS19&20C_L3_S3
235	50.162	50.688	2.048	15.392	11.170	6.636	9.199	3.370	1.497	99.474	BS19&20C_L3_S3
195	50.325	50.570	2.015	15.469	11.086	6.702	9.306	3.328	1.524	99.755	BS19&20C_L3_S3
155	50.105	50.743	2.009	15.339	11.023	6.571	9.491	3.294	1.530	99.362	BS19&20C_L3_S3
115	50.266	50.856	1.963	15.288	10.857	6.594	9.616	3.288	1.539	99.410	BS19&20C_L3_S4

75	50.313	50.580	2.005	15.180	10.888	6.639	9.933	3.252	1.523	99.733	BS19&20C_L3_S4
35	49.954	50.558	1.977	14.867	11.065	6.570	10.266	3.202	1.495	99.396	BS19&20C_L3_S4
-5	50.139	50.790	1.893	14.003	11.369	6.734	10.653	3.112	1.447	99.349	BS19&20C_L3_S4
-45	50.215	50.658	2.029	13.292	11.693	7.033	10.930	2.995	1.370	99.558	BS19&20C_L3_S4
-85	50.591	50.704	1.970	12.932	11.909	7.050	11.187	2.891	1.358	99.887	BS19&20C_L3_S4
-125	50.250	50.697	2.042	12.737	11.900	7.018	11.425	2.814	1.367	99.553	BS19&20C_L3_S4
-165	50.428	50.865	2.029	12.484	11.708	6.985	11.676	2.907	1.347	99.564	BS19&20C_L3_S4
-205	50.512	50.914	1.992	12.494	11.742	6.937	11.733	2.802	1.386	99.598	BS19&20C_L3_S4
-245	50.389	50.789	2.000	12.419	11.691	6.956	11.842	2.918	1.384	99.600	BS19&20C_L3_S4
-285	50.330	50.831	1.999	12.415	11.774	6.819	11.917	2.852	1.394	99.499	BS19&20C_L3_S4
-365	50.268	50.771	1.944	12.528	11.632	6.845	11.968	2.905	1.408	99.497	BS19&20C_L3_S5
-445	50.438	51.030	2.024	12.359	11.434	6.788	11.994	2.916	1.456	99.408	BS19&20C_L3_S5
-525	50.252	50.721	2.005	12.531	11.447	6.761	12.109	2.980	1.447	99.532	BS19&20C_L3_S5
-605	50.052	50.605	1.952	12.516	11.594	6.810	12.083	2.999	1.441	99.447	BS19&20C_L3_S5
-685	50.198	50.746	2.023	12.335	11.603	6.833	12.017	2.991	1.452	99.453	BS19&20C_L3_S5
-765	49.914	50.627	2.008	12.495	11.571	6.785	12.005	3.098	1.410	99.287	BS19&20C_L3_S5
-845	50.103	50.874	2.000	12.550	11.361	6.767	12.020	3.000	1.428	99.228	BS19&20C_L3_S6
-925	50.138	50.673	2.006	12.430	11.511	6.812	12.017	3.103	1.448	99.465	BS19&20C_L3_S6
-1005	50.250	50.482	1.957	12.541	11.658	6.884	12.008	3.012	1.459	99.768	BS19&20C_L3_S6

Table C29	. BS1&2E	3									
X(µm)	SiO2	SiO2*	TiO2	Al2O3	FeO	MgO	CaO	Na2O	K2O	Total	Comment
720.7	51.295	51.689	0.525	14.029	11.715	6.726	10.735	3.070	1.512	99.606	BS1&2B_L1_S1
640.7	50.913	51.957	0.495	14.090	11.597	6.636	10.645	3.096	1.483	98.956	BS1&2B_L1_S1
560.7	51.083	52.012	0.507	14.003	11.601	6.659	10.599	3.130	1.490	99.071	BS1&2B_L1_S1
480.7	51.017	52.033	0.473	14.097	11.470	6.680	10.684	3.056	1.508	98.984	BS1&2B_L1_S1
400.7	51.205	51.765	0.512	14.127	11.573	6.701	10.689	3.141	1.492	99.440	BS1&2B_L1_S2
360.7	51.167	51.693	0.503	14.120	11.746	6.680	10.659	3.116	1.483	99.474	BS1&2B_L1_S2
320.7	51.125	52.048	0.527	14.163	11.378	6.682	10.674	3.057	1.471	99.077	BS1&2B_L1_S2
280.7	51.189	51.638	0.550	14.318	11.489	6.720	10.737	3.081	1.467	99.552	BS1&2B_L1_S2
240.7	51.082	51.825	0.512	14.150	11.420	6.766	10.663	3.116	1.550	99.257	BS1&2B_L1_S2
200.7	51.254	51.797	0.586	14.185	11.460	6.693	10.669	3.104	1.508	99.457	BS1&2B_L1_S2
160.7	51.384	51.494	0.669	14.269	11.416	6.770	10.679	3.156	1.548	99.890	BS1&2B_L1_S2
120.7	51.196	51.733	0.756	14.240	11.201	6.727	10.679	3.135	1.530	99.464	BS1&2B_L1_S2
80.7	50.775	51.651	1.128	14.175	11.076	6.721	10.587	3.185	1.477	99.124	BS1&2B_L1_S2
40.7	50.570	50.982	1.455	14.278	11.253	6.731	10.683	3.097	1.520	99.588	BS1&2B_L1_S2
0.7	49.840	51.009	1.925	14.215	11.126	6.634	10.630	2.999	1.463	98.831	BS1&2B_L1_S2
-39.3	49.444	50.262	2.347	14.264	11.361	6.716	10.630	3.012	1.410	99.182	BS1&2B_L1_S2
-89.3	48.612	49.714	2.946	14.207	11.328	6.761	10.628	2.991	1.426	98.898	BS1&2B_L1_S3
-129.3	48.499	49.428	3.189	14.140	11.362	6.744	10.734	2.998	1.405	99.072	BSI&2B_L1_S3
-169.3	48.656	49.356	3.321	14.268	11.166	6.779	10.634	3.006	1.469	99.300	BS1&2B_L1_S3
-209.3	48.428	49.423	3.373	14.220	11.200	6.742	10.624	2.977	1.441	99.005	BS1&2B_L1_S3
-249.3	48.419	49.240	3.445	14.326	11.184	6.696	10.613	3.020	1.4/6	99.179	BS1&2B_L1_S3
-289.3	48.762	49.861	3.252	14.259	10.974	6.550	10.627	3.006	1.473	98.902	BSI&2B_LI_S3
-329.3	48.898	49.354	3.385	14.383	11.052	6.609	10.650	3.093	1.475	99.544	BS1&2B_L1_S3
-369.3	48.561	49./11	3.3/2	14.169	11.140	6.330	10.650	2.977	1.425	98.850	$BSI&2B_LI_S3$
-409.5	40./31	49.277	2.410	14.519	11.044	0./14	10.030	2.056	1.491	99.434	$DS1@2D_L1_S3$
-449.5	40.073	49.701	3.270	14.179	11.008	6 5 5 7	10.047	3.030	1.456	90.094	BS1&2B_L1_S5 BS1&2B_L1_S3
-409.3	48.758	49.021	3.303	14.320	11.030	6.641	10.522	3.092	1.470	08 025	BS1&2B_L1_S3
-529.5	40.397	49.071	3.293	14.232	11.031	6.672	10.013	3.002	1.452	90.923	BS1&2B_L1_S3 BS1&2B_L1_S3
-649.3	48 204	49 671	3 392	14.228	10.948	6.636	10.027	3.030	1.455	98 534	B\$1&2B_L1_55
-049.3	48 300	49.071	3 490	14.303	11 150	6 599	10.552	3.083	1.400	98 877	B\$1&2B_L1_54 B\$1&2B_L1_54
-809.3	48 177	49 478	3 444	14 168	11.150	6 662	10.548	3 168	1.157	98 700	B\$1&2B_L1_S1 B\$1&2B_L1_S4
794.2	51 098	51 438	0 495	14 364	11.744	6.729	10.717	3 057	1 456	99 660	BS1&2B_L1_S1 BS1&2B_L2_S1
714.2	50 918	51 826	0 473	14 022	11 730	6 6 5 2	10 740	3 042	1 514	99.092	BS1&2B_L2_S1
634.2	51.111	51.683	0.502	14.180	11.772	6.626	10.648	3.066	1.524	99.429	BS1&2B_L2_S1
554.2	50.962	51.815	0.564	14.115	11.624	6.676	10.639	3.086	1.482	99.147	BS1&2B L2 S1
474.2	50.936	51.707	0.474	14.100	11.718	6.671	10.674	3.132	1.525	99.229	BS1&2B L2 S1
394.2	51.180	51.948	0.498	14.171	11.480	6.726	10.649	3.056	1.473	99.233	BS1&2B L2 S1
314.2	51.214	51.898	0.512	13.947	11.635	6.687	10.762	3.093	1.467	99.316	BS1&2B_L2_S2
274.2	51.127	52.118	0.467	14.029	11.536	6.642	10.614	3.111	1.483	99.009	BS1&2B_L2_S2
234.2	51.317	51.803	0.583	14.181	11.526	6.658	10.673	3.094	1.483	99.514	BS1&2B_L2_S2
194.2	51.247	52.040	0.559	14.111	11.281	6.622	10.686	3.172	1.530	99.208	BS1&2B_L2_S2
154.2	51.058	51.702	0.706	14.132	11.542	6.679	10.573	3.142	1.524	99.355	BS1&2B_L2_S2
114.2	51.032	51.970	0.860	14.160	11.188	6.587	10.598	3.095	1.542	99.061	BS1&2B_L2_S2
74.2	50.574	51.744	1.128	14.148	11.235	6.551	10.556	3.113	1.525	98.830	BS1&2B_L2_S2
34.2	50.400	50.886	1.570	14.244	11.352	6.609	10.723	3.120	1.496	99.514	BS1&2B_L2_S2
-5.8	49.355	51.159	2.028	13.952	11.080	6.550	10.635	3.111	1.484	98.196	BS1&2B_L2_S2
-45.8	49.224	50.182	2.464	14.153	11.419	6.565	10.745	3.019	1.455	99.043	BS1&2B_L2_S2
-70.8	48.451	49.830	2.805	14.195	11.417	6.644	10.745	2.949	1.416	98.621	BS1&2B_L2_S3
-110.8	48.582	49.423	3.099	14.155	11.390	6.756	10.738	2.991	1.447	99.158	BS1&2B_L2_S3
-150.8	48.409	49.988	3.097	14.020	11.195	6.617	10.658	2.994	1.431	98.421	BS1&2B_L2_S3
-190.8	48.410	49.545	3.380	14.131	11.283	6.600	10.615	3.018	1.430	98.865	BS1&2B_L2_S3
-230.8	48.218	49.371	3.312	14.314	11.303	6.610	10.640	3.010	1.438	98.847	BS1&2B_L2_S3
-270.8	48.180	49.532	3.439	14.188	11.200	6.570	10.653	2.995	1.424	98.648	BS1&2B_L2_S3
-310.8	48.252	49.545	3.524	14.062	11.151	6.547	10.619	3.108	1.445	98.707	BS1&2B_L2_S3
-350.8	48.351	49.734	3.264	14.066	11.053	6.628	10.689	3.087	1.478	98.617	BS1&2B_L2_S3
-390.8	48.058	49.489	3.408	14.109	11.263	0.494	10.700	5.0/4	1.465	98.570	BS1&2B_L2_S3
-430.8	48.088	49.264	3.361	14.284	11.072	0.591	10.699	3.086	1.444	98.824	BS1&2B_L2_S3
-4/0.8	48.109	49.521	5.452 2.420	14.154	11.12/	0.095	10.645	2.992	1.450	98.388 08 57 5	BS1 & 2B L2 S3
-330.8	40.133	49.30/	3.43U 3.270	14.100	11.084	0.0//	10.393	2.013	1.4/4	70.303 08 216	$DS1\alpha 2D L2 S4$ BS1&2D L2 S4
-030.0	-0.0JJ	77.030	5.514	14.000	11.004	0.544	10.030	2.704	1.434	10.210	DOTALD_L2 04

-710.8	47.962	49.095	3.510	14.229	11.353	6.710	10.647	3.015	1.441	98.867	BS1&2B L2 S4
-790.8	48.025	49.574	3.401	14.138	11.215	6.620	10.645	2.968	1.440	98.450	BS1&2B L2 S4
742.6	51.028	51.682	0.554	14.193	11.920	6.538	10.629	3.004	1.480	99.346	BS1&2B L3 S1
662.6	51.215	51.536	0.523	14.197	11.886	6.624	10.655	3.081	1.498	99.679	BS1&2B L3 S1
582.6	50.939	51.997	0.499	13.986	11.713	6.611	10.659	3.028	1.507	98.942	BS1&2B L3 S1
502.6	51.140	51.587	0.516	14.119	11.813	6.673	10.690	3.090	1.511	99.553	BS1&2B L3 S1
422.6	51.201	51.641	0.505	14.124	11.785	6.663	10.728	3.048	1.505	99.560	BS1&2B_L3_S1
342.6	51.041	51.809	0.512	14.125	11.624	6.652	10.746	3.045	1.486	99.232	BS1&2B_L3_S2
302.6	51.064	51.996	0.534	13.987	11.614	6.677	10.701	3.022	1.469	99.067	BS1&2B_L3_S2
262.6	50.808	51.814	0.529	14.189	11.554	6.676	10.664	3.100	1.475	98.994	BS1&2B_L3_S2
222.6	51.156	51.862	0.507	14.161	11.592	6.635	10.697	3.061	1.484	99.294	BS1&2B_L3_S2
182.6	51.069	51.834	0.648	14.154	11.419	6.678	10.652	3.074	1.541	99.235	BS1&2B_L3_S2
142.6	51.205	51.839	0.736	14.170	11.430	6.519	10.610	3.173	1.524	99.366	BS1&2B_L3_S2
102.6	50.917	51.712	0.870	14.214	11.300	6.638	10.587	3.142	1.537	99.205	BS1&2B_L3_S2
62.6	50.606	51.547	1.249	14.176	11.325	6.583	10.524	3.117	1.480	99.060	BS1&2B_L3_S2
22.6	50.240	51.288	1.690	14.023	11.202	6.588	10.603	3.118	1.488	98.952	BS1&2B_L3_S2
-17.4	49.405	50.691	2.142	14.145	11.273	6.599	10.717	2.977	1.455	98.714	BS1&2B_L3_S2
-57.4	49.028	50.135	2.550	14.078	11.399	6.683	10.706	3.004	1.446	98.893	BS1&2B_L3_S2
-83.4	48.597	49.621	2.888	14.106	11.589	6.604	10.756	3.040	1.396	98.976	BS1&2B_L3_S3
-127.8	48.491	49.699	3.115	14.157	11.452	6.631	10.634	2.928	1.384	98.792	BS1&2B_L3_S3
-172.3	48.474	49.925	3.114	14.037	11.322	6.463	10.643	3.036	1.458	98.549	BS1&2B_L3_S3
-216.7	48.444	49.598	3.455	14.099	11.076	6.583	10.733	3.023	1.434	98.846	BS1&2B_L3_S3
-261.2	48.126	49.680	3.402	14.093	11.306	6.532	10.558	2.971	1.459	98.445	BS1&2B_L3_S3
-305.6	48.361	49.446	3.360	14.321	11.108	6.605	10.548	3.107	1.506	98.915	BS1&2B_L3_S3
-350.1	48.439	49.821	3.352	14.121	11.088	6.524	10.620	3.013	1.460	98.618	BS1&2B_L3_S3
-394.5	48.338	49.735	3.400	14.005	11.295	6.527	10.527	3.041	1.470	98.603	BS1&2B_L3_S3
-439	48.226	49.969	3.283	14.026	11.052	6.556	10.551	3.076	1.487	98.257	BS1&2B_L3_S3
-483.4	48.448	49.394	3.438	14.318	11.073	6.637	10.565	3.071	1.504	99.054	BS1&2B_L3_S3
-563.4	48.652	49.939	3.227	14.109	11.084	6.572	10.559	3.045	1.465	98.712	BS1&2B_L3_S4
-651.4	48.317	49.244	3.438	14.179	11.279	6.510	10.683	3.140	1.528	99.073	BS1&2B_L3_S4
-739.4	48.353	49.739	3.336	14.070	11.031	6.601	10.631	3.072	1.519	98.614	BS1&2B L3 S4

Table C30	. BS3&4I	3									
X(µm)	SiO2	SiO2*	TiO2	Al2O3	FeO	MgO	CaO	Na2O	K2O	Total	Comment
821.3	50.716	52.189	1.973	12.713	11.473	6.557	10.655	2.987	1.453	98.528	BS3&4B_L1_S1
741.3	50.784	51.946	1.936	12.567	11.638	6.670	10.696	3.091	1.458	98.838	BS3&4B_L1_S1
661.3	50.655	51.957	1.944	12.787	11.597	6.635	10.693	2.921	1.467	98.698	BS3&4B_L1_S1
581.3	50.846	51.381	1.891	12.875	11.823	6.714	10.812	3.012	1.493	99.465	BS3&4B_L1_S1
501.3	50.963	51.605	1.849	12.802	11.708	6.788	10.788	2.985	1.476	99.358	BS3&4B_L1_S1
421.3	50.912	51.911	2.025	12.662	11.561	6.676	10.743	2.949	1.474	99.001	BS3&4B_L1_S1
341.3	50.514	52.082	1.941	12.544	11.613	6.760	10.679	2.938	1.444	98.432	BS3&4B_L1_S1
261.3	50.804	51.895	1.893	12.816	11.618	6.716	10.628	2.993	1.442	98.909	BS3&4B_L1_S2
221.3	50.907	51.627	1.909	12.760	11.752	6.783	10.671	3.040	1.459	99.281	BS3&4B_L1_S2
181.3	51.167	51.808	1.899	12.844	11.571	6.732	10.709	2.999	1.439	99.359	BS3&4B_L1_S2
141.3	50.657	52.076	1.905	12.797	11.475	6.653	10.624	3.030	1.440	98.581	BS3&4B_L1_S2
101.3	50.757	51.815	1.918	13.038	11.446	6.707	10.598	3.005	1.473	98.941	BS3&4B_L1_S2
61.3	50.150	51.239	1.907	13.491	11.505	6.745	10.626	3.013	1.474	98.911	BS3&4B_L1_S2
21.3	49.980	50.775	1.893	13.982	11.522	6.716	10.672	2.999	1.441	99.205	BS3&4B_L1_S2
-18.7	49.291	50.501	1.978	14.382	11.319	6.666	10.697	2.993	1.464	98.790	BS3&4B_L1_S2
-58.7	48.986	49.680	1.960	15.184	11.383	6.720	10.707	2.968	1.400	99.306	BS3&4B_L1_S2
-98.7	48.743	49.650	1.910	15.339	11.226	6.786	10.707	2.928	1.454	99.093	BS3&4B_L1_S2
-138.7	48.113	49.642	1.964	15.405	11.319	6.567	10.698	2.985	1.421	98.472	BS3&4B_L1_S2
-178.7	48.263	48.904	1.982	15.887	11.337	6.721	10.777	2.979	1.414	99.360	BS3&4B_L1_S2
-218.7	47.950	49.261	1.991	15.741	11.308	6.728	10.629	2.946	1.397	98.689	BS3&4B_L1_S2
-258.7	48.165	49.143	1.968	15.817	11.250	6.704	10.684	3.001	1.433	99.023	BS3&4B_L1_S2
-298.7	48.134	49.372	1.993	15.631	11.297	6.669	10.632	3.005	1.402	98.762	BS3&4B_L1_S2
-338.7	48.059	49.059	2.012	15.810	11.095	6.899	10.682	3.016	1.427	99.000	BS3&4B_L1_S2
-3/8./	48.374	49.398	1.937	15.688	11.310	6.773	10.503	2.967	1.424	98.975	BS3&4B_L1_S2
-418./	4/.8/5	49.198	1.999	15.811	11.306	6.782	10.530	2.969	1.404	98.6//	BS3&4B_L1_S2
-458.7	47.838	49.130	1.916	15.942	11.203	6./59	10.645	2.986	1.419	98.708	BS3&4B_L1_S2
-498.7	47.794	49.391	1.9/2	15.010	11.2//	0./08	10.609	2.963	1.410	98.404	B53&4B_L1_52
-538.7	48.025	49.529	2.018	15.811	11.140	0.804	10.595	2.920	1.38/	98.090	BS3&4B_L1_S2
-3/8./	48.080	49.303	1.00/	15.740	11.219	0.08/	10.554	2.930	1.445	98.377	DS3&4D_L1_S2
-010.7	40.029	40.907	2.011	15.707	11.209	6 730	10.001	3.010	1.420	99.002	BS3&4B_L1_S2 BS3&4B_L1_S2
-608 7	48.031	49.239	1.949	15.710	11.220	6 7 9 3	10.085	3.049	1.398	98.812	B\$3&4B_L1_S2 B\$3&4B_L1_\$2
-098.7	48.100	49.273	1.924	15,090	11.179	6.815	10.720	2 976	1.422	99.855	BS3&4B_L1_S2 BS3&4B_L1_S3
-858 7	47.904	40.005	1.074	15.557	11.557	6 780	10.057	2.970	1.420	08 700	BS3&4B_L1_S3
-038.7	48.031	49 371	1.970	15.596	11 322	6 698	10.600	3 017	1 381	98 661	BS3&4B_L1_S3
-1018 7	47 829	49 314	1.970	15.590	11.522	6.815	10.610	2.982	1 388	98 515	BS3&4B_L1_S3
-1098 7	47 946	49 479	1.037	15 661	11.091	6 8 3 6	10.588	2.992	1 415	98 468	BS3&4B_L1_S3
-1178 7	48 104	49 344	1 984	15 696	11 214	6 833	10.523	3 019	1 388	98 759	BS3&4B_L1_S3
-1258.7	48.057	49.491	1.962	15.854	11.133	6.710	10.459	2.990	1.402	98.566	BS3&4B_L1_S3
-1338.7	48.362	49.036	2.008	15.884	11.135	6.839	10.604	3.061	1.433	99.326	BS3&4B L1 S3
-1418.7	48.181	49.512	1.938	15.835	10.955	6.755	10.576	3.016	1.415	98.669	BS3&4B L1 S3
836.0	50.542	51.583	2.035	12.854	11.661	6.691	10.679	3.003	1.494	98.959	BS3&4B L2 S1
756.0	50.348	51.746	1.843	12.735	11.734	6.744	10.729	2.965	1.504	98.602	BS3&4B L2 S1
676.0	50.381	51.762	1.890	12.646	11.839	6.630	10.714	3.041	1.479	98.619	BS3&4B L2 S1
596.0	50.418	52.305	1.886	12.702	11.416	6.610	10.662	2.943	1.478	98.114	BS3&4B_L2_S1
516.0	50.437	51.570	1.977	12.727	11.708	6.706	10.784	3.083	1.446	98.867	BS3&4B_L2_S1
436.0	50.475	51.551	1.814	12.769	11.775	6.720	10.795	3.111	1.465	98.924	BS3&4B_L2_S1
356.0	50.359	51.778	1.973	12.738	11.779	6.579	10.690	3.034	1.430	98.581	BS3&4B_L2_S2
316.0	50.534	51.671	1.972	12.915	11.543	6.728	10.754	2.966	1.452	98.863	BS3&4B_L2_S2
276.0	50.349	52.172	1.942	12.618	11.534	6.687	10.671	2.938	1.438	98.177	BS3&4B_L2_S2
236.0	50.476	51.595	1.946	12.827	11.692	6.756	10.744	2.969	1.472	98.881	BS3&4B_L2_S2
196.0	50.318	51.944	1.858	12.824	11.390	6.752	10.692	3.048	1.492	98.373	BS3&4B_L2_S2
156.0	50.138	52.245	1.898	12.756	11.335	6.722	10.655	2.907	1.483	97.894	BS3&4B_L2_S2
116.0	50.150	51.563	1.941	13.105	11.526	6.724	10.650	3.021	1.471	98.588	BS3&4B_L2_S2
76.0	49.838	51.525	1.907	13.412	11.348	6.763	10.635	2.960	1.450	98.313	BS3&4B_L2_S2
36.0	49.380	50.863	1.883	13.813	11.438	6.713	10.802	3.010	1.477	98.517	BS3&4B_L2_S2
-4.0	48.762	51.004	1.928	14.056	11.339	6.682	10.641	2.937	1.414	97.759	BS3&4B_L2_S2
-44.0	48.699	49.474	1.997	14.925	11.589	6.806	10.740	3.047	1.423	99.225	BS3&4B_L2_S2
-84.0	48.073	49.374	1.971	15.254	11.649	6.671	10.659	3.018	1.405	98.699	BS3&4B_L2_S2
-124.0	47.785	49.465	1.992	15.367	11.394	6.752	10.715	2.920	1.394	98.319	BS3&4B_L2_S2
-164.0	47.484	49.315	2.021	15.599	11.392	6.666	10.655	2.930	1.422	98.169	BS3&4B_L2_S2

1											
-204.0	47.609	49.704	1.965	15.573	11.275	6.563	10.685	2.862	1.373	97.905	BS3&4B_L2_S2
-244.0	47.691	49.285	1.962	15.715	11.358	6.797	10.571	2.914	1.399	98.406	BS3&4B L2 S2
-284.0	47.701	49.702	1.942	15.588	11.213	6.574	10.650	2.930	1.401	97.999	BS3&4B L2 S2
-324.0	47.650	49 211	1 982	15 833	11 341	6 709	10.611	2 914	1 400	98 439	B\$3&4B I 2 \$2
-524.0	47.650	40.42(1.027	15.055	11.771	(70)	10.011	2.000	1.400	00.142	$DSJC+D_L2_S2$
-364.0	47.309	49.420	1.937	15.414	11.401	0.722	10.605	3.009	1.420	98.143	BS3&4B_L2_S2
-404.0	47.667	49.224	1.931	15.608	11.427	6.810	10.637	2.963	1.399	98.443	BS3&4B_L2_S2
-444.0	47.413	49.379	1.893	15.825	11.247	6.789	10.544	2.925	1.400	98.034	BS3&4B_L2_S2
-484.0	47.362	49.294	1.898	15.776	11.315	6.752	10.618	2.920	1.427	98.068	BS3&4B L2 S2
-524.0	47 491	49 302	1 930	15 730	11 339	6 671	10.678	2 957	1 3 9 4	98 189	BS3&4B 12 S2
564.0	17.191	10.100	1.042	15.750	11 / 22	6 857	10.561	2.969	1.405	08 300	BS3&/B_L2_52
-304.0	47.309	49.190	1.942	15.044	11.455	0.037	10.501	2.908	1.405	90.399	$D3304D_{L2}32$
-604.0	47.495	49.243	1.989	15.837	11.223	6.782	10.5/5	2.972	1.380	98.252	BS3&4B_L2_S2
-644.0	47.282	49.344	1.997	15.668	11.326	6.759	10.608	2.902	1.397	97.938	BS3&4B_L2_S2
-724.0	47.839	49.067	1.968	15.707	11.411	6.847	10.675	2.920	1.405	98.772	BS3&4B_L2_S3
-804.0	47.510	49.197	1.984	15.746	11.291	6.753	10.670	2.945	1.414	98.313	BS3&4B L2 S3
-884.0	47 641	49 306	1 9 2 9	15 646	11 328	6 821	10.639	2 931	1 401	98 336	BS3&4B L2 S3
-964.0	17.011	10 333	1 905	15.010	11.326	6 782	10.570	2.951	1 / 18	98 1/6	B\$3&/B 12 \$3
-704.0	47 (05	40.102	1.005	15.755	11.500	0.762	10.540	2.935	1.424	00.502	$D3300+D_{2}2_{3}$
-1044.0	47.685	49.103	1.995	15.601	11.54/	6.856	10.538	2.937	1.424	98.583	BS3&4B_L2_S3
-1124.0	47.931	49.271	2.036	15.672	11.325	6.824	10.523	2.932	1.417	98.660	BS3&4B_L2_S3
-1204.0	47.713	48.926	1.946	15.873	11.455	6.791	10.627	2.967	1.414	98.787	BS3&4B_L2_S3
-1284.0	47.765	49.320	1.929	15.805	11.173	6.846	10.579	2.962	1.387	98.446	BS3&4B_L2_S3
-1364.0	47.824	49.167	1.963	15.771	11.303	6.807	10.594	3.008	1.388	98.658	BS3&4B L2 S3
8593	49 942	51 914	1 966	12 623	11 590	6 774	10 757	2 956	1 4 1 9	98 027	BS3&4B_13_S1
770.3	50 212	51.669	1.025	12.023	11.006	6.652	10.744	2.002	1 / 20	08 544	DS2&4D_L2_S1
(00.2	50.212	51.008	1.955	12.004	11.900	0.052	10.744	2.995	1.439	90.344	$DS3@4D_L3_S1$
699.5	50.121	51.090	1.8//	12.002	11.835	0.720	10.802	2.962	1.448	98.432	B53&4B_L3_51
619.3	50.213	52.086	1.902	12.668	11.591	6.689	10.710	2.924	1.432	98.127	BS3&4B_L3_S1
539.3	50.394	51.849	1.931	12.659	11.663	6.738	10.779	2.916	1.466	98.545	BS3&4B_L3_S1
459.3	50.382	51.893	1.955	12.588	11.772	6.674	10.776	2.906	1.436	98.489	BS3&4B L3 S1
379.3	50.169	51.757	1.946	12.706	11.967	6.576	10.664	2.924	1.460	98.412	BS3&4B L3 S1
299.3	50 235	51 626	1 889	12,653	11 813	6 751	10 774	3 020	1 474	98 609	BS3&4B_L3_S2
259.3	50.150	51 778	1 948	12 659	11.661	6 685	10 790	3.016	1 462	98 372	B\$3&4B_13_\$2
210.3	50.150	51 994	1.027	12.037	11.640	6 762	10.790	2 001	1.466	08 105	$DS3@4D_L3_S2$ $DS3@4D_L3_S2$
219.3	50.078	51.004	1.937	12.021	11.049	0.705	10.001	2.001	1.400	90.195	$DS3@4D_L3_S2$
1/9.3	50.290	51.602	1.989	12.837	11.608	6.742	10.790	2.956	1.4/6	98.688	B\$3&4B_L3_\$2
139.3	50.258	51.888	1.898	12.801	11.570	6.790	10.565	3.037	1.452	98.371	BS3&4B_L3_S2
99.3	49.874	51.508	1.930	12.983	11.587	6.748	10.693	3.084	1.467	98.366	BS3&4B_L3_S2
59.3	49.765	51.368	1.894	13.365	11.508	6.721	10.670	3.037	1.438	98.396	BS3&4B L3 S2
19.3	49.109	50.692	1.982	13.958	11.537	6.737	10.663	2.972	1.459	98.418	BS3&4B L3 S2
-20.7	48 428	50 359	1 956	14 529	11 407	6 6 9 5	10 723	2,906	1 425	98 069	BS3&4B_L3_S2
-60.7	47 862	50 105	1 950	14 932	11 241	6 665	10.675	3 002	1 431	97 757	BS3&4B I 3 S2
100.7	17.670	10 5 19	1.079	15 447	11.211	6 726	10.577	2.002	1.101	09 122	DS3&1D_L3_52
-100.7	47.079	49.340	1.970	15.447	11.550	0.750	10.557	2.907	1.397	90.132	$DS3@4D_L3_S2$
-140./	47.506	49.428	1.922	15.61/	11.352	6.622	10.685	2.968	1.406	98.078	B\$3&4B_L3_\$2
-180.7	47.714	49.455	1.933	15.648	11.283	6.694	10.622	2.941	1.425	98.259	BS3&4B_L3_S2
-220.7	47.515	49.341	2.031	15.662	11.149	6.791	10.642	2.988	1.396	98.174	BS3&4B_L3_S2
-260.7	47.418	49.358	2.015	15.785	11.202	6.590	10.624	3.021	1.406	98.060	BS3&4B L3 S2
-300.7	47.351	49.396	2.001	15.721	11.238	6.730	10.551	2.962	1.402	97.955	BS3&4B L3 S2
-340 7	47.342	49,590	1.939	15.516	11,189	6.729	10.594	3.013	1.431	97,752	BS3&4B_L3_S2
-380.7	47 220	49 397	1 960	15 690	11 183	6 744	10.617	3 037	1 373	97 873	R\$3&4R 13 \$2
100.7	17.220	40.014	1.000	15 700	11 101	6 057	10.017	2.001	1 420	00 210	DC2 & AD I 2 C2
-420.7	47.332	49.214	1.982	15.780	11.121	0.83/	10.035	2.981	1.430	90.318	DS3&4B_L3_S2
-460.7	47.233	49.592	1.896	15./00	11.197	6.789	10.512	2.904	1.410	97.641	BS3&4B_L3_S2
-500.7	47.425	49.510	2.064	15.720	10.924	6.762	10.594	3.006	1.421	97.916	BS3&4B_L3_S2
-540.7	47.395	49.424	1.929	15.664	11.155	6.801	10.616	2.972	1.439	97.971	BS3&4B_L3_S2
-580.7	47.500	49.553	1.882	15.757	11.023	6.729	10.657	3.000	1.399	97.947	BS3&4B L3 S2
-620.7	47.525	49.213	1.998	15.802	11.163	6.863	10.581	2.957	1.423	98.312	BS3&4B_L3_S2
-660.7	47 453	49 250	1 931	15 902	11 127	6 720	10.614	2 999	1 457	98 203	BS3&4R 13 S2
_740.7	17.111	10 201	1 0 2 2	15 820	11 210	6 702	10.514	2.555	1 100	08 112	BC3&/1D_L3_C2
-/40./	7/.414	40.200	1.744	15.030	11.210	6 001	10.514	2.775	1.420	00.113	$DOJCHD_LJ_OJ$
-820.7	4/.455	49.580	1.918	15.752	11.250	0.804	10.511	2.9/5	1.412	98.0/4	B53&4B_L3_S3
-900.7	47.634	49.418	1.961	15.798	11.203	6.685	10.570	2.967	1.398	98.217	BS3&4B_L3_S3
-980.7	47.301	49.494	1.968	15.701	11.113	6.777	10.605	2.961	1.381	97.807	BS3&4B_L3_S3
-1060.7	47.504	49.056	2.019	15.764	11.289	6.912	10.610	2.918	1.433	98.448	BS3&4B_L3_S3
-1140.7	47.429	49.644	1.893	15.800	11.064	6.730	10.459	3.006	1.405	97.785	BS3&4B L3 S3
-12207	47,537	49.344	2.008	15.738	11,195	6.744	10.636	2,930	1.405	98,193	BS3&4B_L3_S3
-1300.7	47 847	49 617	1 914	15 709	11 038	6 777	10 586	2 950	1 409	98 230	BS3&4R 13 S3
-1380.7	47 880	49 582	1 037	15.658	11.056	6 703	10.601	2.950	1 410	98 306	B\$3&4B 13 \$3
-1300.7	T/.007	40.265	1.73/	15.000	11.000	6 005	10.021	2.742	1.410	00 071	$DOJCHD_LJ_OJ$
-1460./	48.150	49.263	2.049	15.792	11.081	0.823	10.604	2.972	1.412	98.8/1	D53&4B_L3_83

Table C31	. BS5&6I	3									
X(µm)	SiO2	SiO2*	TiO2	Al2O3	FeO	MgO	CaO	Na2O	K2O	Total	Comment
1258.9	50.529	51.803	1.960	14.290	10.038	6.737	10.628	3.024	1.520	98.725	BS5&6B_L1_S1
1178.9	50.357	52.495	1.941	14.017	9.736	6.643	10.583	3.062	1.524	97.863	BS5&6B_L1_S1
1098.9	50.225	52.099	1.961	14.225	9.922	6.604	10.643	3.028	1.517	98.125	BS5&6B_L1_S1
1018.9	50.550	52.248	1.876	14.153	9.924	6.653	10.611	3.029	1.506	98.301	BS5&6B_L1_S1
938.9	50.528	52.141	1.907	14.110	9.806	6.683	10.697	3.095	1.561	98.387	BS5&6B_L1_S1
858.9	50.630	52.081	1.963	14.124	10.057	6.535	10.618	3.067	1.555	98.549	BS5&6B_L1_S1
778.9	50.380	52.140	1.895	14.177	9.906	6.622	10.637	3.091	1.533	98.240	BS5&6B_L1_S1
698.9	50.576	52.237	1.973	14.097	9.821	6.530	10.632	3.155	1.556	98.339	BS5&6B_L1_S1
618.9	50.434	52.275	1.956	14.046	9.913	6.520	10.608	3.105	1.576	98.159	BS5&6B_L1_S2
578.9	50.239	52.154	1.975	14.056	9.905	6.670	10.589	3.104	1.548	98.085	BS5&6B_L1_S2
538.9	50.327	52.268	1.953	14.022	9.821	6.542	10.643	3.185	1.566	98.059	BS5&6B_L1_S2
498.9	50.176	52.566	1.947	13.909	9.662	6.599	10.629	3.120	1.568	97.610	BS5&6B_L1_S2
458.9	50.439	52.317	1.891	13.979	9.941	6.598	10.538	3.172	1.564	98.121	BS5&6B_L1_S2
418.9	50.407	52.212	1.950	14.047	10.040	6.502	10.493	3.214	1.542	98.195	BS5&6B_L1_S2
378.9	50.441	52.009	1.901	14.156	10.048	6.541	10.599	3.188	1.559	98.432	BS5&6B_L1_S2
338.9	50.548	52.181	1.884	14.019	10.057	6.530	10.576	3.187	1.567	98.368	BS5&6B_L1_S2
298.9	50.364	52.297	1.962	13.957	10.085	6.591	10.515	3.046	1.547	98.067	BS5&6B_L1_S2
258.9	50.220	52.276	2.017	14.090	9.959	6.507	10.542	3.025	1.583	97.944	BS5&6B_L1_S2
218.9	50.055	52.460	1.844	13.970	9.971	6.502	10.531	3.154	1.569	97.595	BS5&6B_L1_S2
178.9	50.310	52.065	1.905	14.020	10.262	6.547	10.429	3.155	1.617	98.246	BS5&6B_L1_S2
138.9	50.128	51.979	1.874	14.045	10.434	6.476	10.449	3.123	1.620	98.149	BS5&6B_L1_S2
98.9	49.800	51.557	1.942	14.183	10.540	6.535	10.513	3.123	1.608	98.244	BS5&6B_L1_S2
58.9	49.299	51.488	1.952	14.031	10.677	6.547	10.638	3.100	1.567	97.810	BS5&6B_L1_S2
18.9	49.059	50.881	1.930	14.138	11.120	6.674	10.618	3.091	1.548	98.178	BS5&6B_L1_S2
-21.1	48.731	50.554	2.038	14.260	11.315	6.629	10.661	2.996	1.547	98.178	BS5&6B_L1_S2
-61.1	48.400	50.325	1.877	14.241	11.657	6.732	10.683	3.007	1.477	98.075	BS5&6B_L1_S2
-101.1	48.032	49.994	2.051	14.142	11.959	6.743	10.727	2.899	1.484	98.038	BS5&6B_L1_S2
-141.1	47.896	49.630	2.066	14.231	12.212	6.758	10.766	2.920	1.417	98.266	BS5&6B_L1_S2
-181.1	47.641	49.376	1.977	14.400	12.264	6.852	10.743	2.907	1.482	98.265	BS5&6B_L1_S2
-221.1	47.642	49.605	2.027	14.300	12.210	6.824	10.656	2.939	1.441	98.037	BS5&6B_L1_S2
-261.1	47.649	49.596	1.955	14.208	12.437	6.821	10.592	2.920	1.472	98.054	BS5&6B_L1_S2
-301.1	47.692	49.514	1.949	14.277	12.377	6.728	10.692	2.996	1.468	98.178	BS5&6B_L1_S2
-341.1	47.870	49.662	1.902	14.200	12.389	6.832	10.567	2.930	1.518	98.208	BS5&6B_L1_S2
-381.1	47.711	49.239	1.932	14.352	12.668	6.731	10.580	2.982	1.516	98.472	BS5&6B_L1_S2
-461.1	47.615	49.344	2.012	14.264	12.497	6.758	10.616	2.988	1.520	98.271	BS5&6B_L1_S3
-541.1	47.776	49.806	1.965	14.202	12.380	6.611	10.542	3.005	1.490	97.970	BS5&6B_L1_S3
-621.1	47.678	49.280	2.045	14.250	12.586	6.777	10.546	3.019	1.498	98.398	BS5&6B_L1_S3
-701.1	47.584	49.363	1.957	14.190	12.619	6.718	10.654	3.012	1.487	98.221	BS5&6B_L1_S3
-781.1	47.448	48.984	1.977	14.614	12.602	6.665	10.665	3.017	1.477	98.464	BS5&6B_L1_S3
1313.7	49.955	52.283	1.957	14.167	9.695	6.712	10.689	2.997	1.502	97.672	BS5&6B_L2_S1
1233.7	49.920	52.057	2.002	14.064	9.945	6.711	10.678	2.999	1.545	97.863	BS5&6B_L2_S1
1153.7	50.027	52.260	1.998	13.931	9.937	6.635	10.681	3.068	1.489	97.768	BS5&6B_L2_S1
10/3.7	49.575	52.381	1.935	13.875	9.946	6.640	10.561	3.105	1.557	97.194	BS5&6B_L2_S1
993.7	49.977	52.505	1.949	13.906	9.903	6.622	10.529	3.078	1.507	97.471	BS5&6B_L2_S1
913.7	50.032	52.430	1.960	14.030	9.929	6.517	10.573	3.003	1.557	97.602	BS5&6B_L2_S1
833.7	50.415	52.030	1.906	13.899	9.966	6.723	10.705	3.229	1.542	98.385	BS5&6B_L2_S1
/53.7	49.964	52.412	2.062	13.907	9.922	6.527	10.525	3.090	1.555	97.552	BS5&6B_L2_S1
6/3./	50.41/	52.143	1.9/8	14.215	9.886	6.523	10.604	3.087	1.565	98.274	BS5&6B_L2_S2
633.7	50.078	52.164	2.009	14.073	9.860	6.666	10.546	3.103	1.578	97.914	BS5&6B_L2_S2
593.7	50.170	52.189	1.913	14.125	9.956	6.608	10.516	3.141	1.553	97.981	BS5&6B_L2_S2
553.7	50.143	52.369	1.935	13.9//	9.8/3	6.572	10.611	3.13/	1.527	97.774	BS5&6B_L2_S2
513.7	49.964	52.060	2.000	14.167	9.980	0.525	10.558	5.146 2.110	1.564	97.904	BS5&6B_L2_S2
4/3./	50.089	52.1/5	1.988	14.022	9.996	0.3/4	10.580	5.110	1.555	97.915	BS5&0B_L2_S2
433./	50.04/	52.409	1.85/	13.890	9.91/	0.3/1	10.628	3.103	1.581	97.039	$DSD&OB_L2_S2$
393./ 252 7	50.000	51.040	1.991	14.140	9.919	0.331	10.555	3.205	1.555	97.882	$DSD&OB_L2_S2$
2127	50.185	51.949	1.90/	14.268	9.954	0.582	10.585	3.122 2.190	1.5/5	98.230	BS5&6B_L2_S2
212./	50.119	51.999	1.9/0	14.088	9.943	0.023	10.581	5.189 2.170	1.003	90.121 08 201	DS3&0B_L2_S2
2/3./	50.074	52.028	1.8/6	14.112	10.054	0.3/3	10.603	3.1/9	1.5/6	98.391	BS5&6B_L2_S2
233./ 102.7	50.029	51.016	1.9//	14.128	10.1/1	0.3//	10.491	3.224 2.120	1.01/	70.238 00.002	$DSJ&0B_L2_S2$
195./	50.028	51.940	2.018	14.005	10.14/	0.389	10.4/2	5.139 2.142	1.02/	98.082 08 274	$DSJ&0B_L2_S2$
133./	50.007	51.193	1.737	14.122	10.309	0.401	10.307	5.142	1.02/	70.2/4	D33000_L2_32

113.7	49.793	51.859	1.902	14.110	10.433	6.570	10.454	3.105	1.568	97.934	BS5&6B L2 S2
73.7	49.392	51.524	1.806	14.035	10.836	6.588	10.557	3.064	1.590	97.868	BS5&6B L2 S2
33.7	49.230	50.965	1.951	14.055	11.178	6.582	10.642	3.090	1.537	98.266	BS5&6B L2 S2
-6.3	48.934	50.848	1.972	14.130	11.240	6.645	10.612	3.022	1.531	98.087	BS5&6B L2 S2
-46.3	48.581	50.183	1.990	14.217	11.749	6.689	10.636	3.037	1.499	98.398	BS5&6B_L2_S2
-86.3	48.247	49.775	2.014	14.271	11.912	6.823	10.708	3.010	1.487	98.472	BS5&6B L2 S2
-126.3	47.721	49.846	2.038	14.314	11.944	6.771	10.650	2.955	1.482	97.875	BS5&6B L2 S2
-166.3	47 844	49 541	2.072	14 293	12.138	6 805	10 711	2.975	1 465	98 303	BS5&6B L2 S2
-206.3	47 944	49 332	2.060	14 255	12 436	6.830	10.665	2,955	1 467	98.611	BS5&6B L2 S2
-246.3	47 564	49 541	1 995	14 241	12.130	6 814	10.633	2.922	1 466	98 023	B\$5&6B_L2_S2 B\$5&6B_L2_S2
-286.3	47 710	49 281	1 993	14 416	12.500	6 743	10.655	2.922	1 497	98 429	B\$5&6B_L2_52
-326.3	47.644	49.201	1 933	14.410	12.440	6 768	10.000	2.937	1.427	98 213	B\$5&6B_L2_S2
-406.3	47 562	49 315	2 003	14 329	12.620	6 785	10.501	2.968	1 463	98 246	B\$5&6B_L2_S2 B\$5&6B_L2_S3
-486.3	47.302	49.056	1 956	14.52)	12.057	6 8 9 5	10.501	3.005	1.405	98 731	B\$5&6B_L2_S3
-566.3	17 30/	49.050	1.950	14.277	12.700	6 7 2 8	10.362	2 970	1.307	07 073	B\$5&6B_L2_S3
-646.3	47.374	49.421	1.970	14.214	12.745	6 703	10.402	2.970	1.405	07 70/	B\$5&6B_L2_S3
726.3	47 200	48 827	1.951	14.107	12.77)	6 8 2 0	10.500	2.903	1.407	08 172	BS5&6B 12 S3
-720.5	47.299	40.027	1.900	14.452	0.800	0.029	10.019	3.009	1.492	90.472	DS5&0D_L2_S5
1240.7	49.909	51.011	2 010	14.191	9.800	6.650	10.002	3.094	1.539	97.075	DS5&0D_L5_S1
100.7	50.505	52.007	2.019	14.105	9.94/	6.651	10.701	3.002	1.545	90.392	DS5&0D_L5_S1
1000.7	50.055	52.097	1.904	14.174	9.071	6 6 9 7	10.597	2.004	1.545	97.930	DS5&0D_L5_S1
026.7	50.058	52.052	1.980	14.031	9.934	0.08/	10.033	2.094	1.540	98.020	D55%0D_L5_51
920.7	30.032 40.800	52.257	1.980	14.041	9.871	0.389	10.000	2.070	1.380	97.813	D53&0D_L3_51
840.7	49.890	52.308	2.010	13.941	9.835	0.393	10.621	3.078	1.548	97.521	B55&0B_L5_S1
/00./	50.091	51.012	1.85/	14.030	9.840	6.712	10.545	5.114 2.101	1.302	91.112	DS3&0D_L3_S1
6467	50.490	52.280	2.000	14.133	9.830	0./12	10.009	2 166	1.517	98.378	D55%0D_L5_52
040.7	50.151	52.280	1.9/5	13.975	9.895	0.003	10.582	3.100 2.141	1.525	97.871	B55&0B_L5_52
606.7	50.339	52.257	1.946	14.062	9.832	6.643	10.589	3.141	1.531	98.083	BS5&6B_L3_S2
500.7	50.435	51.800	1.900	14.158	10.080	0.034	10.575	3.172	1.545	98.309	B\$5&0B_L5_52
526.7	50.131	52.344	1.899	13.884	9.915	6.658	10.619	3.124	1.557	97.780	BS5&6B_L3_S2
480.7	50.280	52.409	1.850	13.9/4	9.913	0.083	10.552	3.039	1.502	9/.8//	B55&0B_L5_52
440.7	50.188	52.170	1.950	14.049	9.9/5	0.304	10.004	3.107	1.525	98.018	B55&0B_L5_52
406.7	50.450	51.978	1.978	14.110	10.000	0.398	10.04/	3.110	1.501	98.4/3	B\$5&0B_L5_52
366.7	50.042	52.114	1.929	14.041	10.051	6.499	10.638	3.189	1.539	97.928	BS5&6B_L3_S2
326.7	50.162	52.341	1.870	13.990	9.938	6.636	10.480	3.152	1.596	97.821	BS5&6B_L3_S2
286.7	50.479	52.077	1.950	14.104	10.004	6.513	10.607	3.169	1.5//	98.402	BS5&6B_L3_S2
246.7	50.224	52.140	1.962	14.091	10.195	6.4/6	10.466	3.128	1.543	98.084	BS5&6B_L3_S2
206.7	50.395	51.624	1.942	14.120	10.293	6./46	10.521	3.155	1.598	98.770	BS5&6B_L3_S2
100.7	50.303	51.850	1.8//	14.014	10.418	6.639	10.490	3.120	1.591	98.452	BS5&6B_L3_S2
126.7	50.291	51.634	1.930	14.122	10.564	6.513	10.509	3.182	1.545	98.65/	BS5&6B_L3_S2
86.7	49.742	51.606	1.916	14.138	10.570	6.590	10.4/0	3.133	1.5/8	98.136	BS5&6B_L3_S2
46./	49.682	51.421	1.956	14.029	10.884	6.605	10.529	3.064	1.512	98.261	BS5&6B_L3_S2
6./	49.265	51.051	1.928	14.122	11.093	6.542	10.624	3.062	1.5//	98.214	BS5&6B_L3_S2
-33.3	48.584	50.563	1.911	14.200	11.383	6./50	10.641	3.038	1.514	98.021	BS5&6B_L3_S2
-/3.3	48.344	49.868	2.041	14.288	11.860	6.813	10.743	2.939	1.448	98.4/6	BS5&6B_L3_S2
-113.3	48.003	49.989	1.976	14.367	11.834	6.763	10.731	2.898	1.443	98.014	BS5&6B_L3_S2
-153.3	47.853	49.688	1.930	14.324	12.101	6.865	10.717	2.918	1.457	98.165	BS5&6B_L3_S2
-193.3	47.659	49.313	2.009	14.305	12.466	6.856	10.677	2.957	1.418	98.346	BS5&6B_L3_S2
-233.3	47.857	49.102	2.024	14.464	12.470	6.866	10.673	2.934	1.466	98.755	BS5&6B_L3_S2
-273.3	47.614	49.371	2.038	14.338	12.482	6.854	10.590	2.909	1.419	98.244	BS5&6B_L3_S2
-353.3	47.840	49.588	1.954	14.387	12.518	6.634	10.564	2.914	1.441	98.252	BS5&6B_L3_S3
-433.3	47.703	49.589	1.949	14.341	12.568	6.581	10.563	2.929	1.481	98.115	BS5&6B_L3_S3
-513.3	47.793	49.707	1.938	14.407	12.315	6.582	10.566	3.000	1.485	98.087	BS5&6B_L3_S3
-593.3	47.988	49.410	1.941	14.334	12.516	6.785	10.545	2.977	1.493	98.578	BS5&6B_L3_S3
-673.3	47.797	49.115	1.964	14.451	12.597	6.779	10.548	3.040	1.507	98.683	BS5&6B_L3_S3
-753.3	47.876	49.010	1.940	14.536	12.724	6.863	10.543	2.880	1.506	98.866	BS5&6B L3 S3

Table C32	. BS7&8I	3									
X(µm)	SiO2	SiO2*	TiO2	Al2O3	FeO	MgO	CaO	Na2O	K2O	Total	Comment
965.9	50.471	51.793	1.972	14.409	11.574	5.263	10.577	2.998	1.415	98.679	BS7&8B_L1_S1
885.9	50.077	52.059	1.848	14.354	11.572	5.275	10.592	2.918	1.382	98.017	BS7&8B_L1_S1
805.9	50.166	51.892	1.931	14.268	11.565	5.294	10.648	3.002	1.401	98.275	BS7&8B_L1_S1
725.9	50.163	52.097	1.929	14.285	11.499	5.263	10.617	2.930	1.380	98.066	BS7&8B_L1_S1
645.9	50.501	52.138	1.951	14.268	11.390	5.233	10.594	2.995	1.432	98.363	BS7&8B_L1_S1
565.9	50.578	52.113	1.900	14.248	11.442	5.301	10.558	3.017	1.422	98.465	BS7&8B_L1_S2
525.9	50.355	51.992	1.930	14.354	11.407	5.240	10.623	2.993	1.463	98.363	BS7&8B_L1_S2
485.9	50.345	52.441	1.940	14.202	11.168	5.234	10.609	3.016	1.391	97.904	BS7&8B_L1_S2
445.9	50.438	52.071	1.924	14.280	11.334	5.333	10.610	3.004	1.445	98.367	BS7&8B_L1_S2
405.9	50.423	52.135	1.948	14.400	11.211	5.220	10.563	3.070	1.453	98.288	BS7&8B_L1_S2
365.9	50.490	52.236	1.938	14.297	11.163	5.326	10.518	3.044	1.478	98.254	BS7&8B_L1_S2
325.9	50.523	52.315	1.871	14.322	11.145	5.305	10.514	3.080	1.449	98.207	BS7&8B_L1_S2
285.9	50.229	52.335	1.955	14.312	11.025	5.342	10.467	3.068	1.497	97.894	BS7&8B_L1_S2
245.9	50.249	52.136	1.998	14.338	10.995	5.447	10.487	3.121	1.478	98.113	BS7&8B_L1_S2
205.9	50.378	51.858	1.958	14.330	11.037	5.671	10.490	3.139	1.518	98.520	BS7&8B_L1_S2
165.9	50.301	51.859	1.977	14.331	10.969	5.706	10.421	3.167	1.569	98.442	BS7&8B_L1_S2
125.9	50.301	51.985	1.979	14.214	10.932	5.829	10.469	3.048	1.543	98.316	BS7&8B_L1_S2
85.9	50.235	51.633	1.860	14.338	11.056	6.102	10.462	3.033	1.516	98.602	BS7&8B_L1_S2
45.9	49.835	51.340	1.975	14.246	11.086	6.335	10.494	3.045	1.479	98.495	BS7&8B_L1_S2
5.9	49.265	50.640	1.982	14.437	11.248	6.732	10.535	2.941	1.485	98.625	BS7&8B_L1_S2
-34.1	48.853	50.495	1.961	14.314	11.261	6.901	10.668	2.953	1.447	98.358	BS/&8B_L1_S2
-74.1	48.739	49.923	1.958	14.369	11.518	7.292	10.652	2.872	1.416	98.816	BS/&8B_L1_S2
-114.1	48.103	49.864	1.980	14.337	11.460	7.366	10.732	2.851	1.411	98.239	BS/&8B_L1_S2
-154.1	48.053	49.296	2.060	14.38/	11.619	7.632	10.662	2.921	1.422	98./58	BS/&8B_L1_S2
-194.1	48.1/5	49.337	1.9/5	14.459	11.334	7.703	10.659	2.910	1.404	98.838	BS/&8B_L1_S2
-234.1	47.988	49.569	1.986	14.392	11.329	7.805	10.640	2.852	1.42/	98.419	BS/&8B_L1_S2
-2/4.1	4/.851	49.380	1.947	14.280	11.424	7.977	10.677	2.827	1.4/5	98.405	BS/&8B_L1_S2
-514.1	48.115	49.549	2.022	14.200	11.4/0	7.984	10.521	2.935	1.454	98./00	BS/&8B_L1_S2
-554.1	47.904	49.248	1.900	14.420	11.414	7.952	10.004	2.891	1.324	98.030	DS/&0D_L1_S2
-394.1	47.974	49.709	2 023	14.190	11.219	8 154	10.502	2.970	1.492	98.205	B\$7&8B_L1_S2 B\$7&8B_L1_\$2
-51/1	47.005	10 200	1 053	14.352	11.230	8 100	10.525	2.900	1.505	08 607	B\$7&8B_L1_S2 B\$7&8B_L1_S3
-594.1	47.993	49.277	1.955	14.360	11.235	8.107	10.000	2.890	1.557	98 443	BS7&8B_L1_S3
-674.1	47.914	49 477	2 004	14.300	11.175	8.017	10.443	2.985	1.510	98 511	BS7&8B_L1_S3
-754 1	47 777	49 238	1 999	14 241	11.135	8 1 2 9	10.522	2.905	1.512	98 539	BS7&8B_L1_S3
-834 1	47 911	49 057	2.025	14 401	11 188	8 217	10.563	3 001	1.548	98 854	BS7&8B_L1_S3
-914.1	47.883	49.343	1.975	14.312	11.207	8.044	10.560	3.003	1.557	98.540	BS7&8B L1 S3
-1074.1	47.747	49.381	1.981	14.172	11.196	8.205	10.535	2.977	1.554	98.366	BS7&8B_L1_S3
-1154.1	48.000	49.105	1.952	14.324	11.346	8.255	10.502	2.971	1.544	98.895	BS7&8B L1 S3
-1234.1	47.882	49.324	2.019	14.328	11.179	8.192	10.480	2.980	1.498	98.558	BS7&8B L1 S3
-1314.1	48.001	49.462	2.003	14.266	11.156	8.083	10.566	2.950	1.514	98.539	BS7&8B L1 S3
932.3	50.624	52.012	1.851	14.444	11.455	5.234	10.597	2.999	1.407	98.612	BS7&8B L2 S1
852.3	50.481	51.882	1.913	14.310	11.527	5.348	10.662	2.951	1.408	98.598	BS7&8B L2 S1
772.3	50.481	52.087	1.952	14.207	11.485	5.319	10.572	2.963	1.415	98.394	BS7&8B_L2_S1
692.3	50.396	52.217	1.912	14.267	11.407	5.243	10.584	2.952	1.419	98.179	BS7&8B_L2_S1
612.3	50.399	52.123	1.882	14.245	11.478	5.199	10.592	3.043	1.439	98.276	BS7&8B_L2_S1
532.3	50.467	52.049	1.875	14.253	11.489	5.228	10.596	3.061	1.450	98.418	BS7&8B_L2_S2
492.3	50.703	52.033	1.935	14.238	11.364	5.212	10.701	3.074	1.444	98.670	BS7&8B_L2_S2
452.3	50.738	51.883	1.883	14.472	11.295	5.213	10.719	3.101	1.434	98.855	BS7&8B_L2_S2
412.3	50.521	52.066	2.025	14.277	11.376	5.245	10.559	3.024	1.429	98.455	BS7&8B_L2_S2
372.3	50.494	52.038	1.959	14.230	11.262	5.341	10.588	3.118	1.464	98.456	BS7&8B_L2_S2
332.3	50.554	52.099	1.932	14.355	11.159	5.313	10.518	3.179	1.444	98.455	BS7&8B_L2_S2
292.3	50.864	52.197	2.007	14.275	11.081	5.348	10.501	3.103	1.488	98.667	BS7&8B_L2_S2
252.3	50.742	52.081	1.895	14.291	11.105	5.522	10.494	3.083	1.529	98.661	BS7&8B_L2_S2
212.3	50.568	51.939	1.962	14.274	11.062	5.543	10.534	3.151	1.536	98.629	BS7&8B_L2_S2
172.3	50.650	51.888	1.965	14.344	11.039	5.653	10.427	3.117	1.567	98.763	BS7&8B_L2_S2
132.3	50.639	51.813	1.879	14.206	11.010	5.873	10.491	3.171	1.557	98.827	BS7&8B_L2_S2
92.3	50.256	51.573	1.924	14.347	10.951	6.078	10.496	3.110	1.521	98.683	BS7&8B_L2_S2
52.3	49.971	51.389	1.912	14.203	11.150	6.348	10.520	3.004	1.474	98.582	BS7&8B_L2_S2
12.3	49.691	50.681	1.985	14.452	11.323	6.605	10.473	3.037	1.445	99.009	BS7&8B_L2_S2
-21.1	49.020	50.708	1.957	14.250	11.2/2	0.801	10.613	2.971	1.429	98.312	BS/&8B_L2_S2

-67.7	48.396	50.046	1.959	14.428	11.512	7.095	10.644	2.895	1.421	98.351	BS7&8B_L2_S2
-107.7	48.381	49.837	2.024	14.410	11.529	7.334	10.634	2.789	1.445	98.544	BS7&8B_L2_S2
-147.7	48.216	49.261	1.943	14.611	11.611	7.638	10.658	2.887	1.393	98.955	BS7&8B L2 S2
-187.7	48.133	49.385	1.960	14.392	11.529	7.713	10.712	2.870	1.439	98.747	BS7&8B L2 S2
-227.7	47.822	49.642	1.993	14.397	11.403	7.670	10.623	2.845	1.427	98.180	BS7&8B L2 S2
-267.7	48.089	49.743	1.944	14.305	11.379	7.862	10.471	2.803	1.494	98.346	BS7&8B L2 S2
-307.7	48.073	49.268	2.018	14.408	11.555	7.858	10.582	2.848	1.463	98.805	BS7&8B L2 S2
-347.7	48.065	49.296	1.957	14.463	11.334	8.001	10.582	2.897	1.471	98,770	BS7&8B L2 S2
-387 7	47 993	49 361	1 968	14 412	11 301	8 004	10 551	2.887	1 516	98 632	BS7&8B L2 S2
-427.7	48 100	49 490	1 941	14 317	11 312	8 029	10 534	2.865	1 511	98.610	BS7&8B L2 S2
-467.7	48 055	49 3 19	2 041	14 365	11.267	8 112	10.493	2.802	1.509	98 736	B\$7&8B_L2_S2 B\$7&8B_L2_S2
-547 7	48 367	49 332	1 909	14 575	11.207	8.052	10.175	2.072	1.509	99.036	B\$7&8B_L2_S2 B\$7&8B_L2_S3
-627.7	48 158	49.613	1.953	14 345	11 102	7 987	10.505	2.972	1.522	98 545	B\$7&8B_L2_S3
-707.7	48 201	49 174	2 001	14 419	11.230	8 187	10.202	2.978	1.522	99.027	B\$7&8B_L2_S3
-787.7	18.116	19.171	2.001	14 270	11.230	8 1 2 7	10.100	2.970	1.525	99.627	B\$7&8B 12 \$3
-867.7	47 818	49 462	1 989	14.270	11.170	8 148	10.434	2.971	1.524	98 356	B\$7&8B 12 \$3
-047 7	47.010	49.402	1.907	14.252	11.045	8 038	10.530	2.990	1.524	08 311	B\$7&8B 12 \$3
-1027.7	47.752	49.022	2 002	14.255	11.107	8.058	10.557	2.947	1.517	00.068	B\$7&8B 12 \$3
-1027.7	40.410	49.330	2.002	14.372	11.177	8 1 2 1	10.490	2.991	1.539	99.008	B\$7&8D_L2_55
-1107.7	40.057	49.290	1.040	14.332	11.100	0.121	10.310	2.974	1.540	90.750	DS7&0D_L2_S3
-1107.7	50 217	51 010	1.949	14.407	11.070	5 229	10.422	2 001	1.331	90.001	$DS760D_{2}S3$
798.5	50.202	51.612	1.937	14.455	11.570	5.228	10.021	2.981	1.393	98.303	DS/COD_LS_SI
/18.5	50.292	51.008	2.028	14.338	11.201	5.313	10.094	2.980	1.413	98.025	BS/&8B_L3_SI
638.5	50.431	52.138	1.8//	14.351	11.323	5.278	10.655	2.989	1.389	98.293	BS/&8B_L3_S1
558.5 519.5	50.502	52.193	1.929	14.274	11.2/6	5.252	10.628	3.044	1.404	98.309	BS/&8B_L3_S2
518.5	50.531	51.903	1.994	14.351	11.284	5.327	10.68/	3.026	1.429	98.628	BS/&8B_L3_S2
4/8.5	50.346	52.119	1.972	14.245	11.345	5.264	10.586	3.064	1.406	98.227	BS/&8B_L3_S2
438.5	50.689	52.114	2.030	14.21/	11.313	5.192	10.603	3.054	1.4//	98.5/4	BS/&8B_L3_S2
398.5	50.465	52.212	1.890	14.256	11.196	5.271	10.614	3.122	1.440	98.253	BS/&8B_L3_S2
358.5	50.323	52.109	1.877	14.356	11.193	5.313	10.584	3.103	1.465	98.213	BS/&8B_L3_S2
318.5	50.704	52.250	1.978	14.320	11.096	5.344	10.495	3.073	1.443	98.454	BS/&8B_L3_S2
278.5	50.738	52.025	2.002	14.368	11.101	5.418	10.510	3.105	1.472	98.713	BS/&8B_L3_S2
238.5	50.649	52.077	1.964	14.293	11.065	5.545	10.427	3.138	1.491	98.572	BS/&8B_L3_S2
198.5	50.675	52.104	1.879	14.319	11.013	5.624	10.464	3.073	1.525	98.571	BS7&8B_L3_S2
158.5	50.563	51.828	1.970	14.360	11.035	5.730	10.465	3.069	1.543	98.735	BS7&8B_L3_S2
118.5	50.335	51.819	1.901	14.227	11.077	5.853	10.485	3.128	1.511	98.516	BS7&8B_L3_S2
78.5	50.128	51.576	1.917	14.342	10.972	6.152	10.465	3.070	1.505	98.553	BS7&8B_L3_S2
38.5	49.690	51.094	1.976	14.291	11.050	6.488	10.593	3.013	1.495	98.596	BS7&8B_L3_S2
-1.5	49.208	50.636	1.964	14.297	11.353	6.699	10.619	2.993	1.439	98.572	BS7&8B_L3_S2
-41.5	48.642	50.140	1.967	14.405	11.520	6.975	10.669	2.913	1.410	98.502	BS7&8B_L3_S2
-81.5	48.512	49.825	2.017	14.468	11.494	7.284	10.704	2.817	1.391	98.686	BS7&8B_L3_S2
-121.5	48.101	49.543	2.038	14.360	11.592	7.455	10.756	2.864	1.393	98.558	BS7&8B_L3_S2
-161.5	48.078	49.613	1.931	14.400	11.499	7.542	10.701	2.879	1.436	98.466	BS7&8B_L3_S2
-201.5	48.010	49.529	2.021	14.354	11.571	7.658	10.644	2.823	1.401	98.482	BS7&8B_L3_S2
-241.5	48.044	49.238	1.995	14.520	11.467	7.823	10.678	2.854	1.424	98.807	BS7&8B_L3_S2
-281.5	47.945	49.499	1.978	14.421	11.326	7.869	10.600	2.875	1.433	98.446	BS7&8B_L3_S2
-321.5	48.369	49.381	1.880	14.310	11.420	8.068	10.574	2.887	1.480	98.988	BS7&8B_L3_S2
-361.5	48.188	49.140	2.019	14.342	11.475	8.152	10.533	2.869	1.470	99.048	BS7&8B_L3_S2
-401.5	47.986	49.257	2.007	14.318	11.301	8.114	10.582	2.908	1.514	98.729	BS7&8B_L3_S2
-441.5	47.950	49.353	1.985	14.379	11.341	8.121	10.428	2.911	1.483	98.597	BS7&8B_L3_S2
-521.5	48.074	49.232	1.951	14.443	11.355	8.047	10.542	2.906	1.524	98.842	BS7&8B_L3_S3
-601.5	48.081	49.421	1.954	14.366	11.275	8.004	10.504	2.951	1.525	98.660	BS7&8B_L3_S3
-761.5	48.268	49.102	1.991	14.428	11.304	8.043	10.607	2.991	1.534	99.166	BS7&8B_L3_S3
-841.5	48.213	49.192	1.948	14.337	11.328	8.105	10.611	2.967	1.513	99.021	BS7&8B_L3_S3
-921.5	48.062	49.301	1.970	14.170	11.344	8.127	10.598	2.959	1.531	98.761	BS7&8B L3 S3
-1001.5	48.004	49.254	1.939	14.292	11.337	8.136	10.545	2.962	1.534	98.750	BS7&8B L3 S3
-1081.5	47.983	49.523	1.984	14.261	11.255	7.978	10.483	2.979	1.537	98.460	BS7&8B L3 S3
-1161.5	47.908	49.240	1.936	14.325	11.375	8.258	10.406	2.963	1.498	<u>98.66</u> 8	BS7&8B_L3_S3

Table C33.	BS9&10I	3									
X(µm)	SiO2	SiO2*	TiO2	Al2O3	FeO	MgO	CaO	Na2O	K2O	Total	Comment
729.9	51.011	51.330	2.001	14.527	11.365	6.677	9.259	3.223	1.618	99.681	BS9&10B_L1_S1
649.9	50.753	51.510	1.948	14.468	11.435	6.618	9.195	3.232	1.594	99.244	BS9&10B_L1_S1
569.9	50.914	51.444	1.950	14.608	11.300	6.563	9.225	3.283	1.626	99.470	BS9&10B_L1_S2
529.9	50.830	51.347	2.010	14.588	11.340	6.689	9.226	3.176	1.624	99.483	BS9&10B_L1_S2
489.9	50.596	51.557	1.941	14.441	11.395	6.561	9.288	3.224	1.594	99.039	BS9&10B_L1_S2
449.9	50.897	51.649	1.965	14.507	11.200	6.526	9.255	3.308	1.591	99.248	BS9&10B_L1_S2
409.9	50.678	51.580	1.952	14.441	11.173	6.597	9.353	3.276	1.628	99.098	BS9&10B_L1_S2
369.9	50.743	51.493	1.994	14.457	11.233	6.566	9.332	3.309	1.616	99.250	BS9&10B_L1_S2
329.9	50.724	51.240	1.950	14.635	11.387	6.640	9.268	3.278	1.602	99.484	BS9&10B_L1_S2
289.9	50.788	51.548	1.957	14.371	11.286	6.562	9.367	3.289	1.621	99.240	BS9&10B_L1_S2
249.9	50.914	51.253	1.944	14.636	11.220	6.644	9.409	3.259	1.636	99.660	BS9&10B_L1_S2
209.9	50.483	51.020	1.997	14.662	11.182	6.615	9.483	3.386	1.656	99.463	BS9&10B_L1_S2
169.9	50.612	51.120	1.913	14.509	11.165	6.667	9.713	3.298	1.616	99.492	BS9&10B_L1_S2
89.9	50.405	51.060	1.956	14.509	11.077	6.526	10.030	3.193	1.650	99.345	BS9&10B_L1_S2
49.9	49.909	50.698	1.884	14.520	11.225	6.62/	10.333	3.117	1.597	99.211	BS9&10B_L1_S2
9.9	49.563	50.423	2.091	14.3/3	11.254	6.661	10.5/4	3.04/	1.5/6	99.141	BS9&10B_L1_S2
-88.1	49.073	49.340	2.022	14.558	11.589	6.852	11.212	2.948	1.4/8	99./33	BS9&10B_L1_S3
-128.1	49.048	49.253	2.018	14.382	11.010	6.8/9	11.399	2.944	1.511	99./95	BS9&10B_L1_S3
-108.1	48.003	49.308	2.055	14.322	11.551	0./34	11.49/	2.872	1.501	99.137	DS9&10D_L1_S5
-208.1	40.002	49.323	1.928	14.300	11.357	0.098 6 714	11.309	2.939	1.500	99.100	DS9&10D_L1_S3
-240.1	40.023	49.41/	2.022	14.292	11.425	0./14 6.6/1	11.009	2.932	1.510	99.200	DS9&10D_L1_S3
-200.1	40.323	49.309	2.094	14.139	11.371	6.646	11.709	2.002	1.557	90.934	BS9&10B_L1_S3 BS9&10B_L1_S3
-368.1	48 541	49.370	2.030	14.082	11.398	6 785	11 909	2.914	1.509	99.096	BS9&10B_L1_S3
-408.1	48 571	49 139	2.024	14.002	11.200	6 783	11.909	2.982	1.595	99 432	BS9&10B_L1_S3
-448.1	48 353	49 076	2.000	14 437	11.230	6 803	11.077	2.930	1.595	99 277	BS9&10B_L1_S3
-488.1	48.374	49.365	2.035	14,191	11.230	6.681	11.918	3.012	1.567	99.009	BS9&10B_L1_S3
-528.1	48.528	49.572	1.945	14.212	11.140	6.643	12.009	2.915	1.564	98.956	BS9&10B L1 S3
-568.1	48.493	49.373	2.000	14.263	11.138	6.650	11.894	3.114	1.568	99.121	BS9&10B L1 S3
-608.1	48.589	49.230	1.976	14.260	11.234	6.650	12.003	3.023	1.624	99.359	BS9&10B L1 S3
-648.1	48.551	49.190	2.047	14.318	11.215	6.619	11.972	3.071	1.569	99.361	BS9&10B L1 S3
-688.1	48.424	49.017	1.943	14.203	11.353	6.776	12.030	3.090	1.589	99.407	BS9&10B L1 S3
-768.1	48.551	49.369	2.010	14.166	11.223	6.640	11.981	3.045	1.566	99.182	BS9&10B_L1_S4
-848.1	48.447	49.408	1.983	14.164	11.262	6.652	11.952	3.020	1.559	99.039	BS9&10B_L1_S4
-928.1	48.498	49.263	1.992	14.211	11.330	6.696	11.943	3.010	1.555	99.235	BS9&10B_L1_S4
-1008.1	48.539	49.300	2.008	14.148	11.237	6.650	12.039	3.009	1.610	99.239	BS9&10B_L1_S4
-1088.1	48.374	48.865	2.016	14.188	11.466	6.769	12.088	3.046	1.563	99.510	BS9&10B_L1_S4
-1168.1	48.565	49.274	2.009	14.121	11.342	6.652	12.046	2.987	1.570	99.291	BS9&10B_L1_S4
-1248.1	48.462	49.207	2.023	14.135	11.287	6.686	12.028	3.055	1.579	99.255	BS9&10B_L1_S4
766.7	50.801	51.819	1.926	14.248	11.436	6.584	9.228	3.145	1.615	98.982	BS9&10B_L2_S1
686.7	50.772	51.592	2.031	14.335	11.403	6.628	9.219	3.215	1.578	99.180	BS9&10B_L2_S1
606.7	50.680	51.232	1.979	14.551	11.608	6.599	9.266	3.15/	1.609	99.448	BS9&10B_L2_S2
526.7	50.708	51.038	1.929	14.240	11.422	0.374	9.337	2 202	1.578	99.110	DS9&10D_L2_S2
320.7 186.7	50.488	51.027	1.880	14.430	11.320	0.320 6.542	9.212	3.202	1.365	98.801	DS9&10D_L2_S2
400.7	50.804	51.525	2.022	14.405	11.549	6.629	9.505	2 272	1.500	99.279	DS9&10D_L2_S2
440.7	50.613	51 / 38	1.955	14.427	11.025	6.668	9.271	3 213	1.010	99.010	BS9&10B_L2_S2 BS9&10B_L2_S2
366.7	50.015	51 511	1.929	14.301	11.300	6 543	9 382	3 210	1.585	99.065	BS9&10B_L2_S2 BS9&10B_L2_S2
326.7	50.570	51 407	1.970	14 427	11.250	6 611	9 366	3 260	1.614	99 114	BS9&10B_L2_S2
286.7	50 683	51 129	1 935	14 577	11 463	6 587	9 400	3 314	1 596	99 554	BS9&10B_L2_S2
246.7	50.704	51.364	1.907	14.424	11.369	6.504	9.473	3.311	1.648	99.340	BS9&10B_L2_S2
206.7	50.588	51.311	1.979	14.434	11.118	6.585	9.591	3.320	1.663	99.277	BS9&10B L2 S2
166.7	50.600	51.303	1.946	14.366	11.238	6.508	9.690	3.262	1.688	99.297	BS9&10B L2 S2
126.7	50.750	51.545	1.923	14.151	10.978	6.578	9.864	3.294	1.666	99.205	BS9&10B L2 S2
86.7	50.508	51.151	1.940	14.184	11.162	6.596	10.098	3.215	1.655	99.357	BS9&10B L2 S2
46.7	49.927	50.850	2.036	14.354	11.168	6.557	10.304	3.130	1.602	99.077	BS9&10B_L2_S2
6.7	49.617	50.586	1.963	14.066	11.255	6.848	10.694	3.026	1.561	99.031	BS9&10B_L2_S2
-44.3	49.210	50.398	1.949	14.259	11.337	6.658	10.932	2.905	1.562	98.812	BS9&10B_L2_S3
-84.3	48.948	49.695	2.056	14.384	11.452	6.780	11.132	2.982	1.518	99.253	BS9&10B_L2_S3
-124.3	48.654	49.769	2.093	14.248	11.475	6.662	11.308	2.914	1.532	98.885	BS9&10B_L2_S3
-164.3	48.842	49.368	2.013	14.264	11.468	6.913	11.534	2.929	1.510	99.474	BS9&10B_L2_S3

-204.3	48.672	49.492	2.090	14.295	11.390	6.811	11.612	2.809	1.502	99.180	BS9&10B_L2_S3
-244.3	48.494	49.273	1.946	14.530	11.388	6.657	11.778	2.887	1.540	99.220	BS9&10B_L2_S3
-284.3	48.748	49.169	2.046	14.366	11.298	6.727	11.861	2.970	1.564	99.579	BS9&10B L2 S3
-324.3	48.435	49.128	2.020	14.279	11.408	6.702	11.953	2.975	1.535	99.307	BS9&10B L2 S3
-364.3	48.461	49.353	1.985	14.398	11.211	6.730	11.839	2.904	1.582	99.109	BS9&10B L2 S3
-404 3	48 4 56	49 323	2,009	14 300	11 355	6 611	11 916	2 949	1 538	99 133	BS9&10B_L2_S3
-444 3	48 361	49 435	1 940	14 240	11 198	6 667	11 954	2.987	1 580	98 926	BS9&10B L2 S3
-484 3	48 474	49 170	2 002	14 457	11 240	6 724	11.951	2.985	1.500	99 304	BS9&10B_L2_S3
524.3	18 674	10.103	1 034	1/ 370	11.210	6.645	12.014	2.960	1.517	00 / 81	BS0&10B_L2_S3
-524.3	40.074	49.193	1.954	14.579	11.320	6 700	12.014	2.900	1.555	00 115	DS9&10D_L2_S3
-504.5	40.304	49.270	1.901	14.100	11.300	6.652	12.040	2.909	1.574	00 602	$DS9@10D_L2_S3$
-004.3	48.209	49.327	1.999	14.034	11.140	0.035	12.001	2.041	1.570	98.082	DS9&10D_L2_S3
-044.3	48.401	49.191	2.073	14.320	11.202	0.0/1	11.987	2.907	1.585	99.210	BS9&10B_L2_S5
-/24.3	48.299	49.308	1.909	14.239	11.145	0.333	12.052	3.076	1.59/	98.932	BS9&10B_L2_S4
-804.3	48.512	49.376	2.016	14.248	11.1/8	6.651	11.969	2.959	1.604	99.137	BS9&10B_L2_S4
-884.3	48.582	49.226	2.047	14.064	11.316	6.707	12.018	3.059	1.564	99.355	BS9&10B_L2_S4
-964.3	48.588	49.098	2.014	14.161	11.279	6.770	12.078	3.000	1.602	99.490	BS9&10B_L2_S4
-1044.3	48.493	49.219	2.061	14.043	11.326	6.666	11.985	3.079	1.622	99.275	BS9&10B_L2_S4
-1124.3	48.457	49.097	1.923	14.135	11.448	6.702	12.061	3.009	1.626	99.360	BS9&10B_L2_S4
-1204.3	48.428	49.652	1.977	14.088	11.238	6.568	11.916	2.979	1.581	98.775	BS9&10B_L2_S4
691.7	51.166	51.565	1.940	14.511	11.290	6.688	9.229	3.185	1.593	99.601	BS9&10B_L3_S1
611.7	50.738	51.464	1.918	14.523	11.425	6.603	9.244	3.209	1.615	99.274	BS9&10B_L3_S1
531.7	50.823	51.510	2.065	14.590	11.154	6.647	9.181	3.267	1.586	99.312	BS9&10B_L3_S2
491.7	50.996	51.603	1.873	14.579	11.150	6.663	9.254	3.253	1.626	99.394	BS9&10B_L3_S2
451.7	50.785	51.762	1.901	14.317	11.224	6.557	9.270	3.379	1.591	99.023	BS9&10B L3 S2
411.7	50.575	51.975	1.914	14.362	11.112	6.505	9.261	3.299	1.572	98.600	BS9&10B L3 S2
371.7	50.865	51.268	1.947	14.622	11.360	6.561	9.297	3.284	1.661	99.596	BS9&10B L3 S2
331.7	50.641	51.430	2.018	14.429	11.127	6.657	9.359	3.343	1.638	99.211	BS9&10B L3 S2
291.7	50.790	51.285	1.964	14.524	11.217	6.595	9.459	3.302	1.656	99.505	BS9&10B L3 S2
251.7	50 751	51 479	1 963	14 447	11 057	6 726	9 409	3 276	1 644	99 273	BS9&10B_L3_S2
211.7	50 769	51 439	1 920	14 454	11 134	6 528	9 535	3 328	1 662	99 331	BS9&10B_L3_S2
171 7	50 523	51 480	1 880	14 389	11 029	6 563	9 691	3 325	1 643	99.043	BS9&10B_L3_S2
131.7	50.612	51 353	1 874	14 454	11.053	6 4 9 6	9 891	3 246	1.635	99 260	BS9&10B_L3_S2
91.7	50 433	51 340	1 912	14 332	11.073	6 600	10.016	3 108	1.620	99.093	BS9&10B_L3_S2
51.7	50.135	51.050	1.912	14 282	10.998	6.629	10.333	3 1 5 6	1.526	99.066	BS9&10B_L3_S2
11.7	49 585	50.812	1.907	14 167	11 176	6 649	10.555	3 098	1.566	98 774	BS9&10B_L3_S2
_28.3	49.565	50.173	2 061	14.107	11.170	6.675	10.000	2 954	1.500	08 832	BS0&10B_L3_S2
-20.5	40.155	10 803	1 055	14.420	11.401	6.874	10.787	2.934	1.524	00 352	BS0&10B_L3_S2
-08.3	49.133	49.803	1.955	14.404	11.475	6 717	11 279	2.944	1.551	00 020	DS9&10D_L3_S3
-108.3	40.714	49.770	1.997	14.272	11.491	6 717	11.270	2.940	1.329	90.930 00.075	$DS \mathcal{C} 10D LS S$
-148.5	40.729	49.034	1.9/5	14.297	11.310	6.724	11.438	2.921	1.400	99.073	DS9&10D_L3_S3
-100.5	40.074	49.401	1.964	14.331	11.460	0./34	11.05/	2.000	1.3/3	99.273	DS9&10D_L3_S3
-228.3	48.8/2	49.254	2.051	14.332	11.34/	0.830	11./44	2.903	1.540	99.018	BS9&10B_L3_S3
-208.3	48.052	49.251	2.022	14.339	11.41/	0.837	11.050	2.904	1.500	99.400	BS9&10B_L3_S3
-308.3	48.547	49./19	1.914	14.279	11.123	6.699	11.795	2.915	1.557	98.828	BS9&10B_L3_S3
-348.3	48.68/	49.372	1.981	14.303	11.230	6.//0	11.832	2.920	1.592	99.315	BS9&10B_L3_S3
-388.3	48.648	49.583	2.013	14.1/2	11.190	6.616	11.859	2.981	1.586	99.065	BS9&10B_L3_S3
-428.3	48.715	49.715	2.007	14.185	11.005	6.675	11.902	2.916	1.595	99.001	BS9&10B_L3_S3
-468.3	48.703	49.626	2.044	14.185	11.056	6.613	11.970	2.943	1.564	99.077	BS9&10B_L3_S3
-508.3	48.716	49.521	2.005	14.195	11.154	6.633	11.951	2.926	1.616	99.194	BS9&10B_L3_S3
-548.3	48.722	49.383	1.976	14.124	11.398	6.600	11.905	3.035	1.579	99.339	BS9&10B_L3_S3
-588.3	48.505	49.425	2.117	14.225	11.169	6.606	11.885	2.995	1.580	99.080	BS9&10B_L3_S3
-628.3	48.451	49.431	1.940	14.031	11.280	6.623	12.037	3.042	1.616	99.021	BS9&10B_L3_S3
-668.3	48.466	49.374	1.984	13.985	11.376	6.681	11.995	3.009	1.595	99.092	BS9&10B_L3_S3
-748.3	48.577	49.021	2.017	14.271	11.423	6.625	12.056	2.990	1.598	99.556	BS9&10B_L3_S4
-826.3	48.159	49.387	1.984	14.040	11.363	6.627	12.075	2.967	1.557	98.773	BS9&10B_L3_S4
-904.3	48.201	49.503	1.987	13.993	11.245	6.633	12.046	3.025	1.569	98.698	BS9&10B_L3_S4
-982.3	48.476	49.248	1.954	14.085	11.436	6.614	12.088	2.992	1.584	99.228	BS9&10B_L3_S4
-1060.3	48.308	49.006	2.058	14.140	11.482	6.669	12.147	2.949	1.549	99.303	BS9&10B L3 S4
-1138.3	48.276	49.291	2.006	13.967	11.441	6.639	12.035	3.086	1.535	98.984	BS9&10B L3 S4
-1216.3	48.150	49.130	<u>1.</u> 950	13.981	<u>11</u> .586	6.725	12.044	3.033	1.552	<u>99</u> .021	BS9&10B_L3_S4

Table C34	4. BS11&	12B									
X(µm)	SiO2	SiO2*	TiO2	Al2O3	FeO	MgO	CaO	Na2O	K2O	Total	Comment
1221.5	51.085	52.212	2.048	14.234	11.094	6.781	10.578	1.527	1.527	98.874	BS11&12B_L1_S1
1141.5	51.139	52.005	1.992	14.268	11.301	6.774	10.535	1.590	1.535	99.134	BS11&12B_L1_S1
1061.5	51.006	52.034	2.027	14.217	11.272	6.825	10.569	1.553	1.503	98.972	BS11&12B_L1_S1
981.5	51.129	52.210	1.973	14.128	11.151	6.813	10.682	1.521	1.521	98.919	BS11&12B_L1_S1
901.5	51.287	51.997	1.994	14.179	11.344	6.850	10.602	1.514	1.520	99.289	BS11&12B_L1_S1
821.5	51.094	52.191	2.010	14.153	11.171	6.792	10.583	1.565	1.536	98.903	BS11&12B_L1_S1
741.5	51.079	51.811	2.100	14.118	11.298	6.921	10.606	1.630	1.516	99.268	BS11&12B_L1_S1
661.5	51.398	51.969	2.059	14.079	11.116	6.792	10.750	1.673	1.562	99.429	BS11&12B_L1_S1
581.5	50.837	52.155	1.876	14.041	11.239	6.857	10.606	1.667	1.559	98.681	BS11&12B_L1_S1
501.5	51.021	52.061	2.034	14.050	11.238	6.741	10.588	1.735	1.554	98.960	BS11&12B_L1_S2
461.5	51.041	52.098	1.990	14.108	11.132	6.761	10.588	1.818	1.507	98.944	BS11&12B_L1_S2
421.5	51.046	52.070	2.012	13.991	11.107	6.807	10.593	1.880	1.539	98.975	BS11&12B_L1_S2
381.5	50.905	51.848	2.068	14.222	11.123	6.686	10.560	1.910	1.582	99.057	BS11&12B_L1_S2
341.5	50.894	51.919	1.940	14.005	11.187	6.724	10.612	2.042	1.572	98.975	BS11&12B_L1_S2
301.5	50.976	52.023	2.010	13.915	10.967	6.734	10.617	2.178	1.556	98.953	BS11&12B_L1_S2
261.5	50.978	51.844	2.003	13.887	11.076	6.822	10.602	2.216	1.550	99.134	BS11&12B_L1_S2
221.5	51.032	51.945	2.062	13.894	10.991	6.606	10.611	2.338	1.552	99.087	BS11&12B_L1_S2
181.5	50.865	52.081	2.040	13.806	10.949	6.568	10.468	2.488	1.599	98.784	BS11&12B_L1_S2
141.5	50.596	52.181	1.962	13.831	10.900	6.578	10.399	2.577	1.572	98.415	BS11&12B_L1_S2
101.5	50.839	51.696	1.891	14.007	11.015	6.562	10.557	2.714	1.558	99.144	BS11&12B_L1_S2
61.5	50.604	51.517	1.921	13.978	10.928	6.705	10.491	2.838	1.623	99.087	BS11&12B_L1_S2
21.5	50.689	51.709	1.991	14.026	10.780	6.553	10.364	2.995	1.583	98.980	BS11&12B_L1_S2
-18.5	50.469	51.462	1.946	14.031	10.923	6.554	10.427	3.081	1.577	99.007	BS11&12B_L1_S2
-58.5	49.783	50.978	2.041	14.169	11.071	6.516	10.543	3.174	1.509	98.805	BS11&12B_L1_S2
-98.5	49.219	50.307	2.053	14.176	11.305	6.796	10.555	3.349	1.460	98.912	BS11&12B_L1_S2
-138.5	49.133	50.205	2.050	14.158	11.376	6.761	10.694	3.278	1.479	98.929	BS11&12B_L1_S2
-178.5	49.025	49.879	2.030	14.315	11.372	6.807	10.619	3.505	1.474	99.146	BS11&12B_L1_S2
-218.5	48.977	49.816	1.968	14.388	11.372	6.798	10.629	3.569	1.461	99.161	BS11&12B_L1_S2
-258.5	48.846	49.502	2.083	14.292	11.372	7.007	10.582	3.659	1.503	99.345	BS11&12B_L1_S2
-298.5	48.654	49.844	1.893	14.266	11.261	6.870	10.546	3.847	1.472	98.810	BS11&12B_L1_S2
-338.5	48.601	49.659	2.024	14.194	11.327	6.854	10.511	3.938	1.494	98.942	BS11&12B_L1_S2
-378.5	48.816	49.704	1.996	14.283	11.271	6.763	10.560	3.916	1.509	99.113	BS11&12B_L1_S2
-418.5	48.588	49.601	2.037	14.341	11.1/3	6.//1	10.597	3.972	1.509	98.987	BS11&12B_L1_S2
-458.5	48./30	49.556	1.997	14.242	11.302	6./89	10.562	4.039	1.514	99.1/4	BS11&12B_L1_S2
-498.5	48.440	49.658	2.059	14.133	11.204	6.697	10.543	4.139	1.50/	98.782	BS11&12B_L1_S2
-558.5	48.494	49.094	2.051	14.1/5	11.229	0.393	10.590	4.152	1.51/	98.800	BS11&12B_L1_S2
-3/8.3	48.021	49.81/	1.970	14.045	11.191	0.073	10.010	4.134	1.539	98.804	$DS11@12D_L1_S2$ DS11@12D_L1_S2
-018.5	48.518	49.451	2.015	14.340	11.185	0.009	10.604	4.194	1.539	99.007	BS11&12B_L1_S2
-038.5	48.304	49.310	1.957	14.10/	11.5/4	0.035	10.539	4.320	1.40/	99.047	$DS11@12D_L1_S2$ DS11@12D_L1_S2
-098.5	48.0/1	49.275	2.034	14.330	11.303	0./13	10.300	4.555	1.464	99.399	$DS11@12D_L1_S2$ $DS11@12D_L1_S2$
-778.5	40.304	49.039	2.050	14.005	11.203	6.671	10.465	4.514	1.512	90.924	BS11&12B_L1_S3
-038.5	40.405	49.388	2 010	14.100	11.207	6.674	10.549	4.402	1.515	90.095	B\$11&12B_L1_S3
-1018 5	48.555	49.400	2.010	14.101	11.141	6746	10.334	4.302	1.551	08 070	B\$11&12B_L1_53
-1018.5	48 398	49 321	2.037	14.041	11.277	6 6 7 5	10.494	4 516	1.507	99.077	B\$11&12B_L1_53
-1178 5	48.370	49.521	2.036	14.067	11.132	6.634	10.320	4.518	1.555	98 875	B\$11&12B_L1_53
-1258 5	48 263	49 562	2.030	13 910	11.100	6 703	10.400	4.516	1.511	98 701	BS11&12B_L1_S3
1230.5	51 102	52 018	2.033	14 145	11.232	6 933	10.572	1.175	1.525	99.085	B\$11&12B_L2_S1
1167.5	51 133	52.259	2.011	14 091	11 220	6718	10.654	1 488	1.515	98 874	BS11&12B_E2_S1 BS11&12B_L2_S1
1087.5	51 259	52 442	1 942	14 041	11 231	6 730	10 579	1 504	1 531	98.817	BS11&12B_L2_S1
1007.5	51 186	52.172	2.021	14 164	11 150	6 849	10 593	1 520	1 532	99.015	BS11&12B_L2_S1
927.5	50 883	52.374	2.078	13 973	11.072	6 760	10.619	1 596	1 528	98 509	BS11&12B_L2_S1
847.5	51.138	52.152	2.060	14.066	11.291	6.799	10.541	1.566	1.525	98.986	BS11&12B_L2_S1
767.5	51.169	52.498	1.954	13.984	11.102	6.714	10.590	1.637	1.522	98.671	BS11&12B_L2_S1
687.5	51.279	52.171	2.030	14.139	11.214	6.773	10.550	1.611	1.511	99.107	BS11&12B L2 S1
607.5	51.148	52.126	1.991	14.094	11.195	6.738	10.605	1.696	1.555	99.021	BS11&12B L2 S2
567.5	51.257	52.267	2.018	14.071	11.096	6.716	10.644	1.668	1.522	98.990	BS11&12B L2 S2
527.5	51.206	51.836	2.065	14.226	11.157	6.871	10.565	1.736	1.545	99.370	BS11&12B L2 S2
487.5	51.174	52.145	2.083	14.076	11.076	6.667	10.602	1.797	1.553	99.029	BS11&12B L2 S2
447.5	51.166	52.132	1.997	14.074	11.004	6.776	10.573	1.880	1.565	99.035	BS11&12B L2 S2
407.5	51.095	52.083	1.950	13.901	11.135	6.809	10.612	1.946	1.564	99.012	BS11&12B_L2_S2

367.5	50.783	52.065	2.026	14.060	11.086	6.608	10.537	2.030	1.588	98.718	BS11&12B_L2_S2
327.5	50.951	51.837	1.971	14.069	11.151	6.734	10.602	2.092	1.545	99.114	BS11&12B_L2_S2
287.5	50.896	51.880	2.065	14.044	11.102	6.679	10.519	2.130	1.581	99.016	BS11&12B L2 S2
247.5	50.724	52.038	1.954	13.768	10.958	6.760	10.552	2.370	1.601	98.686	BS11&12B L2 S2
207.5	50.593	52.116	1.997	13.885	10.956	6.560	10.501	2.405	1.580	98.477	BS11&12B L2 S2
167.5	50.857	52.027	1.956	13.859	10.921	6.717	10.441	2.518	1.561	98.830	BS11&12B L2 S2
127.5	50.724	51.865	2.008	14.004	10.813	6.627	10.433	2.684	1.567	98.860	BS11&12B L2 S2
87.5	50.981	51.503	2.031	14.145	10.806	6.679	10.471	2.744	1.621	99.478	BS11&12B L2 S2
47.5	50.595	51.589	2.063	13.923	10.870	6.603	10.453	2.883	1.616	99.007	BS11&12B L2 S2
7.5	50.610	51.326	1.976	14.031	10.940	6.580	10.479	3.081	1.588	99.284	BS11&12B L2 S2
-32.5	49.653	50.987	2.002	14.128	11.062	6.790	10.431	3.079	1.522	98.666	BS11&12B L2 S2
-72.5	49.513	50.539	1.925	14.143	11.283	6.809	10.607	3.198	1.496	98.974	BS11&12B L2 S2
-112.5	49.024	50.218	2.050	14.241	11.274	6.794	10.658	3.283	1.483	98.806	BS11&12B L2 S2
-152.5	48.952	49.896	2.042	14.196	11.459	6.892	10.647	3.396	1.473	99.056	BS11&12B L2 S2
-192.5	48.884	49.750	1.989	14.326	11.491	6.910	10.637	3.443	1.455	99.134	BS11&12B_L2_S2
-232.5	48.609	49.845	1.999	14.308	11.385	6.779	10.561	3.646	1.477	98.763	BS11&12B L2 S2
-272.5	48.665	50.171	1.965	14.162	11.200	6.746	10.573	3.703	1.480	98.494	BS11&12B L2 S2
-312.5	48.725	49.644	1.991	14.225	11.368	6.867	10.568	3.847	1.490	99.081	BS11&12B L2 S2
-352.5	49.037	48.988	2.071	14.445	11.471	6.896	10.690	3.956	1.483	100.049	BS11&12B_L2_S2
-392.5	48.740	49.472	1.983	14.260	11.211	6.857	10.592	4.116	1.509	99.268	BS11&12B L2 S2
-432.5	48.770	49.729	2.030	14.347	11.216	6.698	10.548	3.935	1.499	99.041	BS11&12B L2 S2
-472.5	48.421	49.597	1.991	14.304	11.215	6.784	10.491	4.094	1.526	98.824	BS11&12B L2 S2
-512.5	48.733	49.626	1.968	14.264	11.163	6.872	10.476	4.097	1.535	99.108	BS11&12B L2 S2
-552.5	48.683	49.699	1.978	14.186	11.149	6.815	10.542	4.107	1.524	98.984	BS11&12B L2 S2
-592.5	48.706	49.612	2.038	14.207	11.107	6.740	10.565	4.211	1.521	99.094	BS11&12B L2 S2
-672.5	48.431	49.462	1.973	14.066	11.288	6.734	10.556	4.374	1.547	98.969	BS11&12B L2 S3
-752.5	48.639	49.576	2.002	14.212	11.004	6.735	10.566	4.397	1.509	99.063	BS11&12B L2 S3
-832.5	48.540	49.235	1.988	14.385	11.177	6.710	10.559	4.423	1.525	99.305	BS11&12B L2 S3
-912.5	48.427	49.628	2.040	14.049	11.122	6.612	10.535	4.504	1.509	98.799	BS11&12B L2 S3
-992.5	48.349	49.347	1.975	14.168	11.121	6.829	10.509	4.509	1.543	99.002	BS11&12B L2 S3
-1072.5	48.642	49.375	2.032	14.066	11.287	6.648	10.576	4.468	1.549	99.267	BS11&12B L2 S3
-1152.5	48.225	49.424	2.078	14.142	11.212	6.644	10.551	4.436	1.514	98.801	BS11&12B L2 S3
-1232.5	48.570	49.358	1.991	14.164	11.216	6.794	10.547	4.419	1.511	99.212	BS11&12B L2 S3
1220.9	51.497	52.279	2.077	14.075	11.132	6.839	10.510	1.527	1.561	99.218	BS11&12B L3 S1
1140.9	51.153	52.390	1.936	14.090	11.080	6.838	10.597	1.534	1.536	98.764	BS11&12B L3 S1
1060.9	51.173	52.251	2.012	14.083	11.247	6.812	10.596	1.478	1.522	98.922	BS11&12B L3 S1
980.9	51.385	51.939	2.006	14.198	11.307	6.827	10.569	1.605	1.549	99.446	BS11&12B L3 S1
900.9	51.037	52.099	2.027	14.022	11.196	6.834	10.669	1.619	1.534	98.938	BS11&12B L3 S1
820.9	51.244	52.335	1.999	13.951	11.119	6.849	10.631	1.590	1.526	98.910	BS11&12B L3 S1
740.9	50.933	52.237	2.032	14.003	11.358	6.741	10.585	1.545	1.498	98.696	BS11&12B L3 S1
660.9	50.916	52.249	1.984	13.943	11.264	6.853	10.575	1.628	1.504	98.667	BS11&12B L3 S1
580.9	51.035	52.010	2.086	14.108	11.166	6.785	10.621	1.686	1.539	99.025	BS11&12B L3 S1
500.9	51.162	51.884	2.106	14.002	11.174	6.879	10.606	1.791	1.559	99.278	BS11&12B L3 S2
460.9	51.111	51.926	1.978	14.083	11.223	6.790	10.635	1.830	1.536	99.185	BS11&12B_L3_S2
420.9	50.921	52.173	2.056	14.100	10.956	6.748	10.545	1.883	1.540	98.748	BS11&12B L3 S2
380.9	50.940	51.894	2.035	14.156	10.996	6.813	10.622	1.935	1.549	99.046	BS11&12B L3 S2
340.9	51.031	51.841	1.991	13.960	11.258	6.759	10.564	2.117	1.510	99.190	BS11&12B L3 S2
300.9	51.086	51.803	2.030	14.047	11.085	6.729	10.591	2.143	1.572	99.282	BS11&12B L3 S2
260.9	50.804	51.779	2.036	13.919	11.039	6.789	10.628	2.265	1.545	99.025	BS11&12B_L3_S2
220.9	51.076	51.632	2.050	13.946	11.025	6.799	10.606	2.409	1.534	99.443	BS11&12B_L3_S2
180.9	50.758	51.941	2.040	13.882	10.948	6.653	10.549	2.458	1.529	98.817	BS11&12B L3 S2
140.9	50.769	51.843	2.007	13.874	10.984	6.634	10.493	2.600	1.565	98.926	BS11&12B L3 S2
100.9	50.813	51.990	1.880	14.017	10.878	6.546	10.409	2.742	1.538	98.823	BS11&12B L3 S2
60.9	50.757	52.025	2.015	13.786	10.738	6.549	10.479	2.837	1.571	98.732	BS11&12B L3 S2
20.9	50.535	51.121	1.997	14.155	11.096	6.540	10.428	3.052	1.610	99.413	BS11&12B L3 S2
-19.1	50.094	51.401	1.946	14.016	10.952	6.679	10.405	3.038	1.564	98.694	BS11&12B L3 S2
-59.1	49.996	50.502	2.028	13.942	11.491	6.681	10.603	3.245	1.508	99.494	BS11&12B L3 S2
-99.1	49.347	50.052	2.015	14.285	11.469	6.833	10.598	3.254	1.494	99.295	BS11&12B L3 S2
-139.1	48.979	49.867	2.131	14.253	11.543	6.858	10.536	3.349	1.464	99.112	BS11&12B L3 S2
-179.1	48.725	49.820	2.114	14.215	11.465	6.923	10.600	3.402	1.462	98.905	BS11&12B L3 S2
-219.1	48.835	49.572	2.026	14.315	11.455	6.942	10.652	3.562	1.476	99.263	BS11&12B L3 S2
-259.1	48.646	49.943	2.039	14.266	11.449	6.738	10.581	3.502	1.482	98.703	BS11&12B_L3_S2
-299.1	48.640	49.804	1.977	14.176	11.587	6.743	10.480	3.703	1.531	98.836	BS11&12B_L3_S2

-339.1	48.684	49.682	1.991	14.123	11.451	6.785	10.608	3.854	1.508	99.002	BS11&12B_L3_S2
-379.1	48.772	49.459	2.005	14.182	11.567	6.821	10.551	3.918	1.499	99.313	BS11&12B_L3_S2
-419.1	48.380	49.747	1.936	14.137	11.492	6.706	10.512	3.969	1.501	98.633	BS11&12B_L3_S2
-459.1	48.509	49.340	2.109	14.216	11.467	6.828	10.473	4.070	1.498	99.169	BS11&12B_L3_S2
-499.1	48.501	49.408	2.053	14.239	11.389	6.864	10.531	4.019	1.496	99.093	BS11&12B_L3_S2
-539.1	48.523	49.419	2.069	14.084	11.470	6.706	10.536	4.218	1.499	99.104	BS11&12B_L3_S2
-579.1	48.531	49.558	2.110	14.096	11.356	6.738	10.498	4.145	1.501	98.973	BS11&12B_L3_S2
-619.1	48.511	49.406	1.969	14.174	11.420	6.719	10.551	4.224	1.537	99.105	BS11&12B_L3_S2
-659.1	48.286	49.719	2.065	14.002	11.282	6.722	10.508	4.174	1.530	98.567	BS11&12B_L3_S2
-699.1	48.460	49.459	1.939	14.151	11.383	6.685	10.537	4.332	1.514	99.001	BS11&12B_L3_S2
-789.1	48.447	49.419	2.051	13.990	11.215	6.757	10.567	4.461	1.540	99.028	BS11&12B_L3_S3
-869.1	48.397	49.382	2.061	14.131	11.344	6.729	10.491	4.349	1.512	99.015	BS11&12B_L3_S3
-949.1	48.379	49.508	1.929	13.991	11.346	6.668	10.670	4.376	1.512	98.872	BS11&12B_L3_S3
-1029.1	48.349	49.765	2.037	13.962	11.258	6.678	10.438	4.386	1.476	98.584	BS11&12B_L3_S3
-1109.1	48.445	49.411	2.018	14.069	11.277	6.736	10.532	4.458	1.499	99.035	BS11&12B_L3_S3
-1189.1	48.288	49.742	1.935	13.923	11.249	6.701	10.500	4.443	1.507	98.546	BS11&12B_L3_S3
-1269.1	48.567	49.178	1.989	14.056	11.289	6.790	10.646	4.522	1.530	99.389	BS11&12B_L3_S3

Table C35	5. BS13&	14B									
X(µm)	SiO2	SiO2*	TiO2	Al2O3	FeO	MgO	CaO	Na2O	K2O	Total	Comment
1297.0	51.765	52.238	2.000	13.956	11.597	6.720	10.561	2.890	0.039	99.527	BS13&14B_L1_S1
1217.0	51.415	52.405	1.994	13.894	11.506	6.665	10.520	2.953	0.063	99.010	BS13&14B_L1_S1
1137.0	52.012	52.339	2.006	13.984	11.556	6.575	10.560	2.938	0.043	99.674	BS13&14B_L1_S1
1057.0	52.101	52.316	2.017	13.845	11.502	6.783	10.527	2.961	0.050	99.785	BS13&14B_L1_S1
977.0	52.083	52.480	2.030	13.941	11.428	6.496	10.557	3.025	0.042	99.603	BS13&14B_L1_S1
897.0	51.970	52.665	1.963	13.737	11.318	6.635	10.548	3.096	0.037	99.305	BS13&14B_L1_S1
817.0	51.711	52.892	1.990	13.832	11.199	6.550	10.477	3.001	0.059	98.818	BS13&14B_L1_S1
737.0	51.605	52.959	1.983	13.536	11.298	6.522	10.561	3.091	0.051	98.646	BS13&14B_L1_S1
657.0	51.609	52.602	2.015	13.836	11.337	6.543	10.514	3.106	0.047	99.007	BS13&14B_L1_S2
617.0	51.922	52.341	2.049	14.002	11.290	6.629	10.556	3.093	0.041	99.581	BS13&14B_L1_S2
577.0	51.885	52.085	1.952	13.991	11.430	6.765	10.590	3.150	0.038	99.800	BS13&14B_L1_S2
537.0	51.872	52.534	1.921	13.860	11.258	6.630	10.612	3.131	0.054	99.338	BS13&14B_L1_S2
497.0	51.901	52.292	1.991	14.006	11.375	6.466	10.599	3.203	0.067	99.609	BS13&14B_L1_S2
457.0	51.512	52.684	1.925	13.786	11.301	6.535	10.548	3.152	0.069	98.828	BS13&14B_L1_S2
417.0	51.816	52.494	2.024	13.806	11.209	6.564	10.602	3.227	0.075	99.322	BS13&14B_L1_S2
377.0	51.704	52.372	1.999	13.879	11.282	6.521	10.652	3.186	0.110	99.331	BS13&14B_L1_S2
337.0	51.821	52.123	1.973	13.795	11.179	6.620	10.835	3.322	0.153	99.698	BS13&14B_L1_S2
297.0	51.856	52.425	1.927	13.975	11.116	6.460	10.631	3.250	0.216	99.431	BS13&14B_L1_S2
257.0	51.256	52.421	1.987	13.827	10.958	6.531	10.710	3.253	0.313	98.836	BS13&14B_L1_S2
217.0	51.478	52.233	1.933	13.791	11.134	6.583	10.728	3.189	0.410	99.245	BS13&14B_L1_S2
1//.0	51.244	52.256	1.950	13.892	10.946	6.549	10.706	3.138	0.562	98.988	BS13&14B_L1_S2
137.0	51.332	51.737	2.033	13.696	11.117	6.667	10.782	3.202	0.766	99.595	BS13&14B_L1_S2
97.0	50.976	51.883	1.972	13./21	11.023	6.516	10.739	3.163	0.984	99.093	BS13&14B_L1_S2
57.0	50.092	51.801	1.951	12.659	11.020	0.40/	10.495	3.114	1.233	98.831	BS13&14B_L1_S2
17.0	50.701	51.420	1.904	13.038	11.300	0.393	10.308	3.024	1.40/	99.275	BS13&14B_L1_S2
-25.0	30.409 40.070	50 726	2.030	13.009	11.278	0.320 6.520	10.452	2.070	1.083	99.125	DS13&14D_L1_S2
-05.0	49.970	50.750	2.008	14.01/	11.213	0.339	10.575	2.988	1.924	99.234	DS13&14D_L1_S2
-105.0	49.472	30.343 40.701	2.041	14.071	11.449	6.600	10.337	2.905	2.120	99.129	DS13&14D_L1_S2
-145.0	49.022	49.791	2.092	14.194	11.049	6 508	10.499	2.030	2.308	99.031	BS13&14B_L1_S2 BS13&14B_L1_S2
-105.0	49.559	49.780	1.927	14.230	11.675	6 5 5 1	10.342	2.830	2.403	99.380	B\$13&14B_L1_52 B\$13&14B_L1_\$2
-223.0	48.607	10.676	2 022	13.012	11.623	6.613	10.364	2.875	2.383	90.005	B\$13&14B_L1_52 B\$13&14B_L1_\$3
-383.0	48.092	49.070	2.022	14 109	11.672	6 584	10.436	2.894	2.758	99.042	B\$13&14B_L1_S3
-463.0	48 344	49 487	1 995	14.109	11.007	6 6 3 8	10.490	2.80)	2.922	98 857	B\$13&14B_L1_S3
-543.0	48 384	49 628	2.019	13 865	11.571	6 538	10.487	2.891	3 008	98 756	BS13&14B_L1_S3
-623.0	48 570	49 506	2.049	13 919	11.563	6 5 5 0	10.473	2.910	3 040	99.064	B\$13&14B_L1_S3
-703.0	48.557	49.097	2.040	14.166	11.545	6.619	10.557	2.964	3.012	99.461	BS13&14B_L1_S3
-783.0	48.678	48.956	2.063	14.035	11.618	6.625	10.649	2.958	3.096	99.722	BS13&14B_L1_S3
-863.0	48.434	49.456	2.029	13.788	11.609	6.607	10.503	2.956	3.053	98.978	BS13&14B L1 S3
-943.0	48.626	49.370	1.988	13.998	11.534	6.531	10.603	2.987	2.990	99.256	BS13&14B L1 S3
-1023.0	48.209	49.647	2.045	13.887	11.438	6.569	10.490	2.930	2.994	98.562	BS13&14B L1 S3
-1103.0	48.262	49.406	2.030	13.882	11.552	6.626	10.529	2.944	3.031	98.856	BS13&14B L1 S3
-1183.0	48.357	49.641	2.029	14.020	11.337	6.575	10.553	2.861	2.985	98.716	BS13&14B_L1_S3
1245.3	51.573	52.618	1.930	13.961	11.382	6.656	10.533	2.880	0.041	98.955	BS13&14B_L2_S1
1165.3	51.410	52.784	2.027	13.772	11.398	6.656	10.401	2.920	0.043	98.626	BS13&14B_L2_S1
1085.3	51.607	52.931	1.927	13.827	11.253	6.643	10.476	2.899	0.043	98.676	BS13&14B_L2_S1
1005.3	51.735	52.653	1.928	13.897	11.359	6.729	10.468	2.929	0.038	99.082	BS13&14B_L2_S1
925.3	51.987	52.560	1.943	13.698	11.497	6.768	10.513	2.983	0.038	99.427	BS13&14B_L2_S1
845.3	51.978	52.595	2.055	13.851	11.223	6.676	10.484	3.082	0.034	99.383	BS13&14B_L2_S1
765.3	51.855	52.576	1.977	13.807	11.294	6.653	10.538	3.116	0.039	99.278	BS13&14B_L2_S1
685.3	51.760	52.322	1.985	13.893	11.315	6.688	10.642	3.112	0.044	99.437	BS13&14B_L2_S1
605.3	51.508	52.794	2.018	14.025	11.159	6.503	10.402	3.060	0.039	98.715	BS13&14B_L2_S1
525.3	51.696	52.507	1.979	13.965	11.337	6.585	10.449	3.135	0.044	99.190	BS13&14B_L2_S1
445.3	51.806	52.542	1.999	13.963	11.097	6.589	10.592	3.142	0.076	99.263	BS13&14B_L2_S2
405.3	51.508	52.373	1.972	14.032	11.113	6.577	10.557	3.277	0.098	99.136	BS13&14B_L2_S2
365.3	51.571	52.438	2.010	13.976	11.005	6.601	10.603	3.237	0.131	99.133	BS13&14B_L2_S2
325.3	51.683	52.278	1.974	13.897	11.186	6.635	10.625	3.205	0.200	99.405	BS13&14B_L2_S2
285.3	51.808	52.126	1.948	13.955	11.196	6.593	10.692	3.213	0.277	99.682	BS13&14B_L2_S2
245.3	51.559	52.208	1.963	14.005	11.052	6.498	10.704	3.195	0.375	99.351	BS13&14B_L2_S2
205.3	51.337	52.096	2.017	13.843	11.045	6.629	10.716	3.123	0.532	99.241	BS13&14B_L2_S2
165.3	51.262	51.767	2.038	13.985	11.224	6.530	10.609	3.125	0.722	99.495	BS13&14B L2 S2

125.3	51.040	51.998	1.966	13.759	11.071	6.541	10.634	3.163	0.868	99.042	BS13&14B L2 S2
85.3	51.173	52.147	1.879	13.676	11.043	6.479	10.570	3.098	1.107	99.026	BS13&14B L2 S2
45.3	50.808	51.747	1.950	13.805	11.035	6.558	10.564	3.030	1.312	99.061	BS13&14B_L2_S2
53	50 571	51 194	1 935	13 785	11.342	6.630	10.481	3.086	1 547	99 377	B\$13&14B_L2_S2
-34 7	50.295	51.051	2 020	13 974	11.305	6 5 1 5	10.459	2 893	1.517	99 244	B\$13&14B_L2_S2
-34.7	10.275	50.487	2.020	14 003	11 383	6 594	10.457	2.075	1 070	00 102	B\$13&14B_L2_52
-/4./	49.079	50.407	2.091	14.095	11.565	6 4 4 7	10.434	2.920	2 1 5 5	99.192 09.046	DS13&14D_L2_S2
-114./	49.393	30.447	2.017	14.121	11.550	0.44/	10.420	2.044	2.133	98.940	DS13&14D_L2_S2
-154./	49.201	49.052	2.081	14.401	11.547	0.530	10.541	2.882	2.307	99.549	BS13&14B_L2_S2
-194.7	49.195	49.811	2.065	14.167	11.495	6.668	10.520	2.856	2.418	99.384	BS13&14B_L2_S2
-234.7	48.716	49.922	2.037	14.118	11.675	6.547	10.403	2.762	2.537	98.794	B\$13&14B_L2_\$2
-274.7	48.744	49.631	2.009	14.137	11.702	6.628	10.412	2.797	2.684	99.113	BS13&14B_L2_S2
-314.7	48.617	49.659	2.071	13.949	11.651	6.582	10.451	2.891	2.746	98.958	BS13&14B_L2_S2
-354.7	48.525	49.743	2.003	14.059	11.583	6.568	10.381	2.801	2.863	98.782	BS13&14B_L2_S2
-394.7	48.497	49.321	2.047	14.018	11.844	6.623	10.445	2.811	2.891	99.176	BS13&14B_L2_S2
-434.7	48.567	49.387	2.067	13.997	11.677	6.576	10.545	2.823	2.928	99.180	BS13&14B_L2_S2
-474.7	48.441	49.572	1.981	14.058	11.603	6.563	10.428	2.806	2.990	98.869	BS13&14B L2 S2
-514.7	48.530	49.343	1.991	14.183	11.555	6.584	10.454	2.900	2.989	99.187	BS13&14B L2 S2
-554.7	48,459	49.359	2.021	14.034	11.613	6.625	10.511	2.848	2.988	99,100	BS13&14B_L2_S2
-634 7	48 626	49 254	1 987	14 046	11 577	6 6 3 8	10 485	2.946	3 066	99 372	BS13&14B_L2_S3
-716.7	48 599	48 916	2.026	14 273	11 519	6 6 5 6	10.574	2 949	3 087	99 684	B\$13&14B_L2_S3
-798 7	48 443	49 099	1 978	13 992	11.609	6.608	10.625	2.9.19	3 1 2 4	99 344	B\$13&14B_L2_S3
-750.7	18 272	40.307	1.978	14 071	11.007	6.420	10.025	2.907	3.124	08 026	BS13&14D_L2_S3
-000.7	40.525	49.397	1.9/4	14.071	11.4/4	0.420	10.571	2.041	2.001	90.920	DS13&14D_L2_S3
-962.7	48.450	49.162	2.01/	14.085	11.60/	6.514	10.512	3.041	3.063	99.288	BS13&14B_L2_S3
-1044./	48.580	49.1/0	2.086	13.976	11.4/0	6.628	10.629	2.989	3.052	99.410	BS13&14B_L2_S3
-1126.7	48.465	49.548	2.017	13.825	11.467	6.496	10.587	3.020	3.041	98.917	BS13&14B_L2_S3
-1208.7	48.581	49.464	2.030	13.997	11.428	6.619	10.477	2.959	3.025	99.117	BS13&14B_L2_S3
1295.9	51.746	52.412	1.920	13.992	11.445	6.715	10.540	2.919	0.058	99.334	BS13&14B_L3_S1
1215.9	51.523	52.362	1.993	14.054	11.503	6.678	10.478	2.886	0.048	99.162	BS13&14B_L3_S1
1135.9	51.501	52.687	2.037	13.787	11.420	6.657	10.444	2.931	0.038	98.815	BS13&14B_L3_S1
1055.9	51.722	52.691	1.943	13.775	11.369	6.669	10.498	3.013	0.044	99.031	BS13&14B_L3_S1
975.9	51.843	52.595	1.948	13.834	11.406	6.645	10.561	2.963	0.048	99.248	BS13&14B_L3_S1
895.9	51.648	52.493	1.976	13.972	11.464	6.521	10.476	3.053	0.044	99.155	BS13&14B_L3_S1
815.9	51.940	52.024	1.966	14.095	11.516	6.695	10.605	3.053	0.048	99.916	BS13&14B L3 S1
735.9	51.911	52.650	1.929	13.738	11.340	6.628	10.604	3.052	0.059	99.261	BS13&14B L3 S1
635.9	51.767	52.316	1.938	13.988	11.507	6.518	10.629	3.058	0.045	99.452	BS13&14B L3 S2
595.9	51.561	52,191	2.023	13.828	11.535	6.614	10.539	3.227	0.044	99.370	BS13&14B_L3_S2
555.9	51 427	52 578	1 946	13 715	11 409	6 660	10 480	3 163	0.049	98 850	BS13&14B_L3_S2
515.9	51 589	52 540	1 950	13 767	11 392	6 540	10 540	3 216	0.056	99 049	B\$13&14B_L3_S2
175.9	51.645	52.310	1.950	13 820	11.372	6 6 5 2	10.510	3 1 5 9	0.053	00 207	B\$13&1/B_L3_S2
425.0	51 716	52.457	1.005	13.027	11.200	6.612	10.041	3.157	0.055	00 560	BS13&14D_L3_S2 BS13&14B_L3_S2
455.9	51 495	52.150	1.995	12.760	11.393	6.590	10.595	2 166	0.001	99.300	$DS13@14D_L3_S2$ DS12@14D_L2_S2
255.0	51.465	52.430	1.903	12.709	11.321	0.389	10.037	2.100	0.084	99.055	DS13&14D_L3_S2
355.9	51.301	52.190	2.008	13.8/4	11.342	0.024	10.592	3.238	0.107	99.303	BS13&14B_L3_S2
315.9	51.428	52.775	1.922	13.832	11.030	6.536	10.609	3.152	0.146	98.653	BS13&14B_L3_S2
275.9	51.2/4	52.275	2.008	13.808	11.108	6.604	10.763	3.227	0.208	98.998	BS13&14B_L3_S2
235.9	51.582	52.243	1.988	13.809	11.095	6.494	10.752	3.298	0.320	99.339	BS13&14B_L3_S2
195.9	51.054	52.261	1.993	13.607	11.171	6.608	10.674	3.255	0.432	98.793	BS13&14B_L3_S2
155.9	51.213	51.822	1.864	13.825	11.059	6.654	10.767	3.381	0.628	99.391	BS13&14B_L3_S2
115.9	50.946	51.898	1.972	13.620	11.117	6.536	10.755	3.258	0.845	99.048	BS13&14B_L3_S2
75.9	51.159	51.639	1.925	13.679	11.212	6.601	10.716	3.166	1.063	99.520	BS13&14B_L3_S2
35.9	50.697	51.313	1.954	13.926	11.146	6.511	10.640	3.129	1.381	99.384	BS13&14B_L3_S2
-4.1	50.338	51.483	1.829	13.749	11.214	6.602	10.443	3.060	1.621	98.856	BS13&14B_L3_S2
-44.1	50.077	50.967	2.019	13.777	11.234	6.575	10.526	3.024	1.878	99.111	BS13&14B L3 S2
-84.1	49.262	50.595	1.977	13.965	11.392	6.543	10.517	2.980	2.030	98.667	BS13&14B L3 S2
-124.1	49.213	49.802	2.030	14.171	11.676	6.651	10.492	2.956	2.222	99.411	BS13&14B L3 S2
-164.1	49.116	50.123	2.029	14.065	11.682	6.419	10.404	2.932	2.347	98.993	BS13&14B L3 S2
-204 1	48.673	49.607	2,098	14.007	11.744	6,568	10.488	2,934	2,556	99.066	BS13&14B L3 S2
-244 1	48 646	49.812	2.036	13 904	11 756	6 6 2 9	10 350	2.831	2.683	98 834	BS13&14B 13 S2
_28/ 1	48 106	40 / 21	2.000	14 051	11.750	6 6 5 1	10.550	2.051	2.005	00 015	B\$13&14D_L5_52
204.1	10.470	40 212	2.090	14.005	11 770	6 5 2 0	10.333	2.111	2.130	00 227	$BC12&14D_L3_02$
-524.1	40.339	47.312	2.014	14.093	11.//9	6 4 6 7	10.403	2.920	2.0/0	77.22/ 00.422	$DS13@14D_L3_52$ $DS13@14D_L3_52$
-304.1	48.85/	49.424	2.015	13.8/0	11.008	0.00/	10.478	2.948	2.924	99.432	DS13&14B_L3_S2
-444.1	48.459	49.520	1.92/	13.96/	11.054	0.588	10.490	2.889	2.966	98.939	BS13&14B_L3_S3
-524.1	48.245	49.286	2.051	13.932	11.648	6.593	10.531	2.919	3.042	98.959	BS13&14B_L3_S3
-604.1	48.250	49.646	1.960	13.821	11.620	6.537	10.459	2.922	3.035	98.604	BS13&14B_L3_S3

-684.1	48.353	49.647	1.996	13.706	11.493	6.616	10.547	2.966	3.029	98.707	BS13&14B_L3_S3
-764.1	48.586	49.400	2.014	13.903	11.462	6.586	10.585	3.010	3.040	99.185	BS13&14B_L3_S3
-844.1	48.619	49.176	1.998	13.894	11.621	6.616	10.561	3.056	3.078	99.443	BS13&14B_L3_S3
-924.1	48.532	49.172	1.967	13.986	11.630	6.665	10.617	2.915	3.049	99.360	BS13&14B_L3_S3
-1004.1	48.741	48.916	2.068	14.083	11.624	6.707	10.599	2.991	3.012	99.825	BS13&14B_L3_S3
-1084.1	48.353	49.023	1.987	14.187	11.534	6.681	10.575	3.009	3.005	99.330	BS13&14B_L3_S3
-1164.1	48.373	49.601	2.003	13.924	11.329	6.649	10.580	2.974	2.938	98.771	BS13&14B_L3_S3

Table C30	6. BS17&	18B									
X(µm)	SiO2	SiO2*	TiO2	Al2O3	FeO	MgO	CaO	Na2O	K2O	Total	Comment
963.9	49.428	50.465	2.051	14.029	11.478	5.293	10.705	2.972	3.008	98.964	BS17&18B_L1_S2
883.9	49.329	50.481	1.962	14.259	11.493	5.304	10.604	2.911	2.987	98.848	BS17&18B L1 S2
803.9	49.475	50.384	1.860	14.269	11.619	5.363	10.605	2.882	3.019	99.091	BS17&18B_L1_S2
723.9	49.613	50.449	1.881	14.223	11.554	5.277	10.674	2.927	3.016	99.164	BS17&18B_L1_S2
643.9	49.764	50.573	1.950	14.245	11.452	5.303	10.643	2.882	2.951	99.191	BS17&18B_L1_S2
563.9	49.635	50.887	1.897	14.094	11.570	5.258	10.488	2.838	2.969	98.748	BS17&18B_L1_S2
483.9	49.991	50.776	1.935	14.291	11.366	5.245	10.518	2.896	2.973	99.215	BS17&18B_L1_S3
443.9	49.621	50.760	1.960	14.103	11.580	5.194	10.514	2.938	2.952	98.862	BS17&18B_L1_S3
403.9	49.720	50.686	1.956	14.285	11.447	5.341	10.464	2.911	2.912	99.035	BS17&18B_L1_S3
363.9	49.602	50.817	1.916	14.135	11.633	5.391	10.453	2.848	2.808	98.785	BS17&18B_L1_S3
323.9	49.815	50.840	1.926	14.004	11.513	5.439	10.526	2.939	2.814	98.975	BS17&18B_L1_S3
283.9	49.597	51.005	1.931	14.309	11.354	5.383	10.387	2.904	2.727	98.592	BS17&18B_L1_S3
243.9	49.769	50.724	1.993	14.311	11.554	5.521	10.354	2.883	2.660	99.045	BS17&18B_L1_S3
203.9	49.828	50.674	2.011	14.375	11.448	5.563	10.408	2.941	2.581	99.153	BS17&18B_L1_S3
163.9	49.727	50.949	1.981	14.256	11.346	5.661	10.373	3.035	2.399	98.778	BS17&18B_L1_S3
123.9	49.688	50.850	1.976	14.282	11.338	5.900	10.367	2.984	2.304	98.838	BS17&18B_L1_S3
83.9	49.908	51.086	2.035	14.311	11.079	6.013	10.401	3.028	2.047	98.822	BS17&18B_L1_S3
43.9	49.801	50.588	1.988	14.35/	11.269	6.514	10.429	3.018	1.838	99.213	BS1/&18B_L1_S3
3.9	49.559	50.382	2.034	14.291	11.277	6.//4	10.007	3.042	1.533	99.178	BS1/&18B_L1_S3
-30.1	49.101	50.556	1.946	14.168	11.521	6.926	10.805	3.019	1.260	98.605	BSI/&I8B_LI_S3
-/0.1	49.225	50.237	1.990	14.004	11.3/1	7.203	10.879	2.900	1.029	98.98/	BS1/&18B_L1_S3
-110.1 106.1	48.890	50.514	2.030	14.071	11.301	7.500	10.920	3.004	0.789	98.5//	$BS1/@18B_L1_S3$ $DS17@19D_11_S4$
-190.1	49.030	50.405	1.995	14.065	11.347	7 803	10.009	3.100	0.425	90.035	DS1/&10D_L1_S4 DS17&10D_L1_S4
-230.1	49.039	50.545	1.991	14.030	11.420	7.893	10.949	3.105	0.310	98.097	B\$17&18B_L1_54 B\$17&18B_L1_\$4
-316.1	49 591	50.434	1.954	14.233	11.207	7.821	10.870	3 1 2 4	0.212	99 157	BS17&18B_L1_S4
-356.1	49 403	50 210	2 104	14.278	11.200	7 908	10.855	3 105	0.102	99 194	BS17&18B_L1_S4
-396.1	49 571	50.650	1 977	14 179	11.157	7 971	10.815	3.058	0.103	98 921	BS17&18B_L1_S4
-436.1	49.373	50.413	1.950	14.162	11.454	7.998	10.834	3.152	0.038	98.960	BS17&18B L1 S4
-476.1	49.420	50.707	1.967	14.118	11.205	8.066	10.824	3.072	0.040	98.712	BS17&18B L1 S4
-516.1	49.393	50.562	1.956	14.243	11.215	8.080	10.813	3.090	0.042	98.831	BS17&18B L1 S4
-556.1	49.202	50.706	1.999	14.303	11.219	7.954	10.659	3.115	0.047	98.496	BS17&18B L1 S4
-596.1	49.488	50.697	1.900	14.272	11.274	8.005	10.813	3.000	0.039	98.791	BS17&18B L1 S4
-636.1	49.464	50.553	2.033	14.179	11.287	7.987	10.826	3.098	0.036	98.910	BS17&18B L1 S4
-676.1	49.327	50.304	1.925	14.274	11.462	8.096	10.847	3.034	0.059	99.023	BS17&18B_L1_S4
-716.1	49.315	50.757	1.989	14.247	11.161	8.027	10.741	3.033	0.045	98.557	BS17&18B_L1_S4
-756.1	49.473	50.638	2.009	14.210	11.319	7.988	10.729	3.061	0.048	98.835	BS17&18B_L1_S4
-836.1	49.531	50.640	1.983	14.261	11.277	8.114	10.679	3.013	0.034	98.891	BS17&18B_L1_S5
-916.1	49.414	50.819	1.986	14.152	11.281	7.984	10.750	2.981	0.048	98.596	BS17&18B_L1_S5
-996.1	49.351	50.909	1.927	14.130	11.221	8.010	10.754	3.006	0.043	98.442	BS17&18B_L1_S5
-1076.1	49.279	50.407	2.069	14.184	11.366	8.143	10.704	3.071	0.057	98.873	BS17&18B_L1_S5
-1156.1	49.233	50.740	2.000	14.243	11.275	8.055	10.715	2.935	0.038	98.494	BS17&18B_L1_S5
-1236.1	49.272	50.754	1.874	14.143	11.378	8.138	10.702	2.969	0.043	98.518	BS17&18B_L1_S5
-1316.1	49.256	50.515	1.894	14.25/	11.452	8.035	10.799	3.004	0.045	98.740	BS1/&18B_L1_S5
-1390.1	49.338	50.559	1.905	14.124	11.318	8.135	10.744	2.900	0.049	98.//9	BS1/&18B_L1_S5
-14/0.1	49.204	50.307	1.938	14.188	11.482	8.209	10.858	2.9/1	0.048	98.898	$BS1/@18B_L1_S5$ $DS17@19D_11_S5$
-1550.1	49.510	50.409	1.900	14.337	11.306	8 203	10.030	2.902	0.055	90.907	DS1/&10D_L1_S5
-1716.1	49 762	50.887	1 909	14.12)	11.420	8.205	10.834	2.971	0.031	98.875	B\$17&18B_L1_55
968.2	49.030	50.524	1.960	14 049	11.000	5 379	10.679	2.962	2 963	98 506	BS17&18B_L2_S1
888.2	49 146	50.321	1 940	14 122	11.603	5 338	10.675	2.905	2.995	98 679	BS17&18B L2 S1
808.2	49.234	50.727	1.898	14.127	11.492	5.141	10.643	2.974	2.998	98.507	BS17&18B_L2_S1
728.2	49.056	50.266	1.961	14.187	11.646	5.300	10.679	2.933	3.028	98.790	BS17&18B L2 S2
688.2	49.145	50.343	1.934	14.158	11.679	5.289	10.719	2.899	2.980	98.801	BS17&18B L2 S2
648.2	49.150	50.748	1.968	14.116	11.474	5.273	10.572	2.870	2.980	98.402	BS17&18B L2 S2
608.2	48.915	50.595	1.942	14.187	11.355	5.336	10.656	2.897	3.033	98.319	BS17&18B L2 S2
568.2	48.967	50.612	1.899	14.111	11.653	5.284	10.585	2.905	2.951	98.355	BS17&18B_L2_S2
528.2	49.111	50.640	1.973	14.031	11.618	5.302	10.584	2.898	2.954	98.471	BS17&18B_L2_S2
488.2	49.006	50.333	1.973	14.301	11.683	5.264	10.584	2.906	2.957	98.673	BS17&18B_L2_S2
448.2	48.860	50.883	1.929	14.143	11.439	5.209	10.585	2.893	2.919	97.977	BS17&18B_L2_S2
408.2	49.146	50.547	1.994	14.198	11.580	5.338	10.598	2.854	2.890	98.599	BS17&18B L2 S2

368.2	49.157	50.782	1.988	14.138	11.509	5.362	10.501	2.914	2.806	98.375	BS17&18B_L2_S2
328.2	49.216	50.667	2.057	14.291	11.445	5.329	10.447	2.960	2.803	98.550	BS17&18B_L2_S2
288.2	49.241	50.701	1.956	14.256	11.440	5.506	10.496	2.886	2.760	98.540	BS17&18B L2 S2
248.2	49.101	50.749	2.061	14.250	11.450	5.473	10.450	2.927	2.640	98.352	BS17&18B L2 S2
208.2	49.145	50.603	2.041	14.252	11.523	5.627	10.388	3.002	2.564	98.542	BS17&18B L2 S2
168.2	49.262	50.919	2.032	14.145	11.393	5.726	10.387	2.924	2.475	98.343	BS17&18B L2 S2
128.2	49.303	51.260	1.932	14.263	11.239	5.745	10.342	2.932	2.287	98.044	BS17&18B L2 S2
88.2	49.519	50.764	1.928	14.432	11.129	6.182	10.395	3.040	2.130	98.755	BS17&18B L2 S2
8.2	48.736	51.004	1.949	14.129	11.111	6.617	10.631	2.968	1.591	97.732	BS17&18B L2 S3
-31.8	48.988	50.734	2.052	14.134	11.183	6.832	10.812	2.962	1.292	98.254	BS17&18B L2 S3
-71.8	48.545	50.307	1.977	14.117	11.411	7.203	10.901	3.065	1.021	98.238	BS17&18B L2 S3
-111.8	48.635	50.447	1.901	13.997	11.475	7.458	10.964	2.933	0.825	98.188	BS17&18B L2 S3
-151.8	48.546	50.181	2.018	14.050	11.396	7.713	11.007	3.026	0.609	98.365	BS17&18B L2 S3
-191.8	48.976	50.339	1.915	14.114	11.318	7.824	10.993	3.075	0.423	98.637	BS17&18B L2 S3
-231.8	48.889	50.652	1.927	14.040	11.273	7.707	10.979	3.095	0.327	98.237	BS17&18B L2 S3
-271.8	49.075	50.407	1.932	14.166	11.371	7.840	10.972	3.086	0.226	98.668	BS17&18B L2 S3
-311.8	49.101	50.287	2.009	14.225	11.273	8.015	10.905	3.146	0.141	98.814	BS17&18B L2 S3
-351.8	49.127	50.379	1.972	14.323	11.223	7.998	10.841	3.155	0.109	98.747	BS17&18B L2 S3
-391.8	49.165	50,465	2.046	14.187	11.204	8.015	10.833	3.170	0.079	98.700	BS17&18B L2 S3
-431.8	49.001	50.623	1.939	14.248	11.254	8.001	10.797	3.083	0.055	98.378	BS17&18B L2 S3
-471.8	49.239	50.326	2.049	14.265	11.323	8.039	10.765	3.185	0.048	98.912	BS17&18B_L2_S3
-551.8	49.366	50.513	1.938	14.253	11.332	8.081	10.702	3.139	0.043	98.853	BS17&18B L2 S4
-631.8	49 242	50 465	1 966	14 374	11 318	8 0 5 0	10 748	3 038	0.041	98 778	BS17&18B L2 S4
-711.8	49 263	50 714	1 997	14 194	11 301	7 985	10.746	3 024	0.039	98 550	BS17&18B_L2_S4
-791.8	49 201	50 770	2.002	14 127	11 296	7 969	10 777	3 024	0.037	98 431	BS17&18B_L2_S4
-871.8	49 243	50 743	1 958	14 202	11.221	7 934	10 796	3 096	0.049	98 500	BS17&18B_L2_S4
-951.8	49 398	50 448	1 969	14 206	11 372	8 097	10.852	3 025	0.032	98 950	BS17&18B_L2_S4
-1031.8	49 530	50.412	1.956	14 343	11.372	8.092	10.805	2.993	0.052	99 118	BS17&18B_L2_S5
-1111.8	49 263	50.932	1 966	14 118	11.237	8 014	10.709	2.972	0.054	98 331	BS17&18B_L2_S5
-1191.8	49 426	50.347	1.955	14 422	11.257	8.057	10.786	3.028	0.040	99 079	BS17&18B_L2_S5
-1271.8	49 135	50.662	1.955	14 210	11.307	8.068	10.700	2 953	0.010	98 473	BS17&18B_L2_S5
-1351.8	49 143	50.002	2 033	14 311	11.253	8.018	10.002	2.930	0.020	98 443	BS17&18B_L2_S5
-1431.8	49 164	50.701	1.882	14 218	11.200	8.008	10.700	2.930	0.043	98 449	B\$17&18B_L2_S5
-14511.8	49 622	50 335	2 029	14.210	11.300	8.000	10.314	2.931	0.0+3 0.046	99 287	B\$17&18B_L2_55
-1501.8	49.022	50.333	2.02)	1/ 31/	11.310	8 145	10.757	2.943	0.040	99.207	B\$17&18B_L2_S5
-1671.8	49.340	50.871	1.020	14.314	11.320	8.143	10.854	2.977	0.049	99.007	BS17&18B_L2_S5 BS17&18B_L2_S5
-10/1.8	49.380	50.587	1.902	14.001	11.295	5 223	10.807	2.910	2 030	98.510	BS17&18B_L2_S3 BS17&18B_L3_S2
902.7	49.415	50.587	1.901	14.154	11.070	5 267	10.590	2.804	2.939	98.828	BS17&18B_L3_S2 BS17&18B_L3_S2
802.7	49.390	50.079	1.923	14.051	11.514	5 262	10.055	2.094	2.050	90.717	DS17&10D_L3_S2
002.7 722.7	49.557	50.907	1.000	14.100	11.507	5.205	10.540	2.033	2.900	90.450	DS17&10D_L3_S2 DS17&10D_L3_S2
642.7	49.024	50.401	1.000	14.190	11.03/	5.301	10.020	2.952	2.950	99.105	DS17&10D_L3_S2
042.7 562.7	49.300	50.479	1.919	14.241	11.038	5.290	10.540	2.904	2.985	98.821	$DS1/@10D_L3_S2$ $DS17@10D_L2_S2$
502.7	49.225	50.007	1.041	14.173	11.045	5.270	10.534	2.900	2.945	98.330	$DS1/@10D_L3_S3$ $DS17@10D_L2_S2$
322.7	49.220	50.652	1.0//	14.198	11.397	5.557	10.520	2.841	2.931	98.308	$DS1/@10D_L3_S3$ $DS17@10D_L2_S2$
462.7	49.207	50.694	1.955	14.279	11.591	5.204	10.385	2.870	2.938	98.373	$DS1/@10D_L3_S3$ $DS17@10D_L2_S3$
442.7	49.298	50.594	1.959	14.221	11.052	5.287	10.493	2.8/8	2.910	98.705	BS1/&18B_L3_S3
402.7	49.330	50.890	1.965	14.193	11.43/	5.301	10.468	2.861	2.886	98.441	BS1/&18B_L3_S3
362.7	49.559	50.634	2.032	14.285	11.421	5.396	10.510	2.895	2.826	98.925	BS1/&18B_L3_S3
322.7	49.55/	50.862	1.8/9	14.24/	11.560	5.345	10.532	2.811	2.764	98.695	BS1/&18B_L3_S3
282.7	49.458	50.758	2.015	14.258	11.4/1	5.420	10.534	2.826	2./19	98.701	BS1/&18B_L3_S3
242.7	49.458	50.753	2.008	14.311	11.428	5.470	10.428	2.927	2.6/6	98.705	BS1/&18B_L3_S3
202.7	49.676	50.670	1.956	14.345	11.503	5.609	10.468	2.894	2.555	99.006	BS17&18B_L3_S3
162.7	49.682	51.052	1.937	14.363	11.211	5.707	10.358	2.915	2.457	98.630	BS17&18B_L3_S3
82.7	49.754	50.734	1.930	14.315	11.328	6.224	10.379	3.056	2.035	99.020	BS1/&18B_L3_S4
42.7	49.453	50.726	1.933	14.352	11.227	6.356	10.569	3.038	1.799	98.727	BS1/&18B_L3_S4
2.7	49.385	50.520	1.895	14.265	11.386	6.754	10.671	2.977	1.532	98.865	BS1/&18B_L3_S4
-37.3	49.115	50.553	1.908	14.142	11.334	7.104	10.773	2.943	1.243	98.562	BS1/&18B_L3_S4
-77.3	49.051	50.282	1.923	14.043	11.396	7.382	11.006	2.983	0.987	98.769	BS17&18B_L3_S4
-117.3	48.709	49.961	2.013	14.129	11.602	7.524	11.014	2.987	0.771	98.748	BS17&18B_L3_S4
-157.3	48.736	50.403	1.943	14.102	11.377	7.667	10.941	2.969	0.597	98.333	BS17&18B_L3_S4
-197.3	49.023	50.184	2.021	14.186	11.447	7.732	10.945	3.045	0.441	98.839	BS17&18B_L3_S4
-237.3	48.805	50.573	1.922	14.083	11.325	7.867	10.917	3.007	0.307	98.232	BS17&18B_L3_S4
-277.3	49.047	50.332	1.994	14.131	11.254	8.002	10.987	3.063	0.237	98.715	BS17&18B_L3_S4
-317.3	48.996	50.763	1.909	14.193	11.221	7.810	10.882	3.052	0.171	98.233	BS17&18B_L3_S4

-397.3	49.256	50.559	1.959	14.190	11.258	7.990	10.836	3.124	0.084	98.698	BS17&18B L3 S5
-477.3	49.282	50.708	1.970	14.287	11.218	7.968	10.739	3.071	0.040	98.574	BS17&18B L3 S5
-557.3	49.280	50.410	1.929	14.323	11.307	8.099	10.775	3.120	0.037	98.870	BS17&18B L3 S5
-637.3	49.218	50.324	1.971	14.191	11.409	8.133	10.831	3.099	0.043	98.893	BS17&18B_L3_S5
-717.3	49.125	50.449	1.928	14.264	11.424	7.986	10.824	3.087	0.039	98.675	BS17&18B_L3_S5
-797.3	49.332	50.575	1.951	14.199	11.312	8.040	10.862	3.017	0.045	98.757	BS17&18B_L3_S5
-877.3	49.022	50.318	2.037	14.233	11.419	8.153	10.809	2.986	0.045	98.704	BS17&18B_L3_S6
-957.3	49.157	50.477	1.952	14.366	11.347	8.021	10.767	3.027	0.043	98.679	BS17&18B_L3_S6
-1037.3	49.092	50.668	1.921	14.262	11.381	8.018	10.743	2.971	0.036	98.424	BS17&18B_L3_S6
-1117.3	49.257	50.477	1.955	14.349	11.337	8.035	10.828	2.983	0.036	98.779	BS17&18B_L3_S6
-1197.3	49.079	50.577	1.927	14.226	11.340	8.172	10.773	2.942	0.043	98.502	BS17&18B_L3_S6
-1277.3	49.001	50.342	2.045	14.288	11.473	8.068	10.844	2.903	0.038	98.659	BS17&18B_L3_S6
-1357.3	49.093	50.314	1.985	14.285	11.401	8.228	10.798	2.945	0.045	98.779	BS17&18B_L3_S6
-1437.3	49.045	50.334	1.996	14.333	11.369	8.150	10.832	2.936	0.052	98.711	BS17&18B_L3_S6
-1517.3	49.061	50.324	1.941	14.330	11.351	8.275	10.746	3.001	0.033	98.738	BS17&18B_L3_S6
-1597.3	49.115	50.412	1.970	14.230	11.369	8.250	10.820	2.906	0.044	98.702	BS17&18B_L3_S6
-1677.3	49.173	50.561	1.959	14.336	11.271	8.188	10.728	2.929	0.029	98.612	BS17&18B_L3_S6

Table C32	7. BS19&2	20B									
X(µm)	SiO2	SiO2*	TiO2	Al2O3	FeO	MgO	CaO	Na2O	K2O	Total	Comment
1368.6	50.154	50.728	2.028	12.811	11.304	6.690	11.962	2.982	1.496	99.426	BS19&20B_L1_S1
1288.6	49.846	50.758	2.026	12.746	11.433	6.733	11.958	2.863	1.484	99.088	BS19&20B_L1_S1
1208.6	50.053	50.473	1.986	12.905	11.543	6.674	11.958	2.926	1.536	99.580	BS19&20B_L1_S1
1128.6	50.067	50.591	1.914	12.876	11.558	6.785	11.871	2.907	1.498	99.475	BS19&20B_L1_S1
1048.6	49.939	50.669	1.999	12.738	11.512	6.607	11.943	3.001	1.531	99.270	BS19&20B L1 S1
968.6	50.213	50.584	2.007	12.847	11.461	6.687	11.942	2.930	1.543	99.629	BS19&20B L1 S1
888.6	49.935	50.902	1.972	12.673	11.438	6.589	11.896	2.996	1.534	99.034	BS19&20B L1 S1
808.6	50.293	51.062	1.896	12.766	11.387	6.520	11.818	3.057	1.494	99.231	BS19&20B L1 S1
728.6	50.144	50.710	1.892	12.936	11.291	6.621	11.977	3.017	1.557	99.434	BS19&20B L1 S2
688.6	50.121	50.725	1.931	12.754	11.468	6.708	11.896	3.016	1.503	99.395	BS19&20B L1 S2
648.6	50.239	50.889	1.937	12.678	11.496	6.579	11.929	2.955	1.537	99.350	BS19&20B L1 S2
608.6	50.325	50.799	1.976	12.848	11.366	6.603	11.943	2.972	1.494	99.526	BS19&20B L1 S2
568.6	50.225	50.381	1.977	12.801	11.713	6.749	11.937	2.924	1.519	99.844	BS19&20B L1 S2
528.6	50.228	50.661	1.977	12.890	11.445	6.645	11.910	2.978	1.494	99.567	BS19&20B L1 S2
488.6	49.909	50.884	1.956	12.648	11.436	6.782	11.819	2.948	1.527	99.026	BS19&20B L1 S2
448.6	50.073	50.865	1.940	12.688	11.527	6.664	11.833	2.964	1.519	99.208	BS19&20B L1 S2
408.6	49.866	50.553	1.900	12.867	11.690	6.656	11.896	2.935	1.503	99.313	BS19&20B L1 S2
368.6	50.401	50.719	2.038	12.747	11.533	6.789	11.817	2.849	1.508	99.682	BS19&20B L1 S2
328.6	49 993	50.831	2.006	12 712	11 443	6 792	11 859	2.864	1 494	99 162	BS19&20B_L1_S2
288.6	50 364	50.626	1 978	12.805	11 683	6 704	11 763	2.955	1 486	99 738	BS19&20B_L1_S2
248.6	50 325	50 892	1 943	12.839	11.521	6 773	11.658	2.858	1 516	99 433	BS19&20B_L1_S2
208.6	50.399	50.891	1.977	12.856	11.603	6.816	11.502	2.883	1.473	99.509	BS19&20B_L1_S2
168.6	49 980	50 645	1 991	12.888	11 693	6 847	11 476	2.975	1 485	99 335	BS19&20B_L1_S2
128.6	50.062	50.766	1.933	13.165	11.608	6.896	11.228	2.924	1.481	99.296	BS19&20B_L1_S2
88.6	50 288	50 570	2.057	13 391	11 569	6 841	11 136	2,969	1 467	99 719	BS19&20B_L1_S2
48.6	50.139	50.621	2.028	13.828	11.446	6.745	10.826	3.015	1.490	99.518	BS19&20B_L1_S2
8.6	49,994	50.567	1.967	14.129	11.371	6.661	10.715	3.089	1.502	99.427	BS19&20B_L1_S2
-31.4	49.453	50.619	1.878	14.554	11.350	6.550	10.412	3.084	1.553	98.834	BS19&20B L1 S2
-71.4	49.889	50.442	1.949	15.067	11.137	6.509	10.257	3.125	1.516	99.447	BS19&20B_L1_S2
-111.4	49.886	50.376	1.977	15.258	11.113	6.457	10.104	3.156	1.560	99.510	BS19&20B_L1_S2
-166.4	49.817	50.636	1.874	15.567	10.999	6.457	9.823	3.100	1.543	99.181	BS19&20B_L1_S3
-206.4	49.596	50.687	1.909	15.405	11.037	6.461	9.729	3.194	1.578	98,909	BS19&20B L1 S3
-246.4	49.730	50.390	1.980	15.632	11.199	6.436	9.558	3.231	1.575	99.340	BS19&20B L1 S3
-286.4	49.542	50.403	2.006	15.750	11.201	6.543	9.326	3.211	1.561	99.139	BS19&20B L1 S3
-326.4	49.811	50.579	1.968	15.775	11.044	6.547	9.354	3.171	1.562	99.232	BS19&20B L1 S3
-366.4	49.694	50.436	1.936	15.734	11.257	6.553	9.315	3.206	1.564	99.258	BS19&20B L1 S3
-406.4	49.590	50.542	1.957	15.677	11.270	6.547	9.290	3.188	1.530	99.047	BS19&20B L1 S3
-446.4	49.692	50.499	1.872	15.695	11.398	6.568	9.279	3.160	1.530	99.193	BS19&20B L1 S3
-486.4	49.714	50.486	1.923	15.641	11.441	6.610	9.167	3.223	1.509	99.228	BS19&20B L1 S3
-526.4	49.711	50.696	1.894	15.710	11.171	6.687	9.184	3.125	1.534	99.015	BS19&20B L1 S3
-566.4	49.750	50.697	1.943	15.565	11.303	6.602	9.209	3.168	1.513	99.053	BS19&20B L1 S3
-606.4	49.936	50.524	1.887	15.792	11.287	6.754	9.167	3.073	1.516	99.412	BS19&20B L1 S3
-646.4	49.512	50.475	1.972	15.674	11.329	6.692	9.161	3.179	1.519	99.037	BS19&20B L1 S3
-686.4	49.720	50.369	1.980	15.704	11.372	6.693	9.187	3.168	1.527	99.352	BS19&20B L1 S3
-726.4	49.765	50.684	1.927	15.773	11.269	6.570	9.232	3.087	1.458	99.080	BS19&20B L1 S3
-766.4	49.837	50.496	1.949	15.765	11.273	6.737	9.205	3.050	1.525	99.341	BS19&20B L1 S3
-806.4	49.643	50.487	1.990	15.805	11.324	6.586	9.177	3.139	1.492	99.156	BS19&20B L1 S3
-846.4	49.656	50.587	1.938	15.673	11.292	6.683	9.240	3.077	1.509	99.069	BS19&20B L1 S3
-886.4	49.694	50.632	1.918	15.744	11.294	6.698	9.150	3.058	1.506	99.062	BS19&20B L1 S3
-926.4	49.835	50.738	1.956	15.597	11.303	6.662	9.224	3.041	1.480	99.097	BS19&20B L1 S3
-966.4	49.684	50.605	2.003	15.720	11.263	6.700	9.146	3.073	1.489	99.078	BS19&20B L1 S3
-1046.4	49.679	50.557	1.971	15.704	11.270	6.696	9.255	3.038	1.509	99.121	BS19&20B L1 S4
-1126.4	49.749	50.338	2.075	15.847	11.398	6.686	9.179	3.015	1.462	99.411	BS19&20B L1 S4
-1206.4	49.737	50.359	2.000	15.932	11.122	6.768	9.261	3.066	1.492	99.378	BS19&20B L1 S4
-1286.4	49.761	50.494	2.034	15.858	11.138	6.720	9.179	3.057	1.521	99.267	BS19&20B L1 S4
-1366.4	49.971	50.770	1.999	15.924	11.163	6.574	9.119	2.977	1.474	99.201	BS19&20B L1 S4

1386	49.474	50.477	1.904	12.864	11.608	6.669	12.040	2.927	1.510	98.997	BS19&20B_L2_S1
1306	49.515	50.823	1.934	12.603	11.587	6.648	11.997	2.920	1.489	98.692	BS19&20B L2 S1
1226	49.440	50.781	1.891	12.742	11.599	6.661	11.880	2.912	1.533	98.659	BS19&20B L2 S1
1146	49.597	50.694	1.981	12.701	11.382	6.737	12.022	2.938	1.545	98.903	BS19&20B L2 S1
1066	49.708	50.626	1.939	12.757	11.539	6.706	11.934	2.966	1.533	99.082	BS19&20B L2 S1
986	49.540	50.668	2.003	12.815	11.467	6.696	11.925	2.908	1.518	98.872	BS19&20B L2 S1
906	49.667	50.766	1.961	12.629	11.571	6.656	11.927	2.988	1.503	98.901	BS19&20B L2 S1
826	49.559	50.740	1.933	12.648	11.492	6.674	11.983	3.000	1.529	98.818	BS19&20B L2 S2
787	49.665	50.642	1.989	12.680	11.601	6.625	12.002	2.967	1.495	99.024	BS19&20B_L2_S2
748	49.717	51.089	1.877	12.711	11.377	6.609	11.970	2.844	1.524	98.628	BS19&20B L2 S2
709	49.522	51,191	1.955	12.549	11.401	6.601	11.958	2.841	1.505	98.330	BS19&20B L2 S2
670	49 456	50 480	1 981	12,707	11 545	6 707	12.064	3 015	1 501	98 976	BS19&20B L2 S2
631	49.613	51.041	2.014	12.642	11.452	6.581	11.927	2.867	1.475	98.571	BS19&20B_L2_S2
592	49 614	50 487	1 966	12,900	11 601	6 680	11 928	2.915	1 524	99 127	BS19&20B_L2_S2
553	49 840	50.625	1 969	12.734	11.531	6715	11 984	2.942	1 500	99 215	BS19&20B_L2_S2
514	49 719	51.097	1 921	12.667	11.331	6 6 5 4	11.858	2.855	1 516	98.622	BS19&20B_L2_S2
475	49 710	50.875	1 980	12.007	11.623	6 664	11.020	2.830	1 500	98 835	BS19&20B_L2_S2
436	49 735	50 704	1.970	12.007	11 594	6 725	11.885	2.857	1 489	99.031	B\$19&20B_L2_S2 B\$19&20B_L2_\$2
397	49.755	50.704	1.970	12.770	11.594	6 684	11.005	2.837	1.469	99,091	B\$19&20B_L2_S2
358	40.601	50.000	1.958	12.800	11.002	6 781	11.010	2.820	1.45	08 602	BS10&20B_L2_S2 BS10&20B_L2_S2
310	49.091	50.650	1.904	12.702	11.300	6.816	11.702	2.021	1.405	98.092	BS19&20B_L2_S2 BS10&20B_L2_S2
280	49.001	50.837	1.990	12.705	11.757	6 844	11.779	2.015	1.442	99.201 00.137	BS19&20B_L2_S2 BS10&20B_L2_S2
280	49.974	50.037	2 022	12.820	11.010	6 774	11.095	2.790	1.4/4	08 787	BS19&20B_L2_S2 BS10&20B_L2_S2
241	49.734	50.702	2.055	12.772	11.550	6 009	11.010	2.055	1.441	90.762	DS19&20D_L2_S2
162	49.037	50.795	2 012	12.030	11.0//	6 9 9 1	11.327	2.011	1.450	99.044	DS19&20D_L2_S2
105	49.900	50.000	2.012	12.049	11.700	6 820	11.457	2.035	1.404	99.404	DS19&20D_L2_S2
124	49.008	50,605	1.933	12.952	11.0/3	0.830	11.213	2.930	1.490	98.019	DS19&20D_L2_S2
85	49.58/	50.005	2.031	13.439	11.000	0.841	11.005	2.907	1.402	98.985	BS19&20B_L2_S2
40	50.088	51.002	1.990	13./38	11.394	0.080	10.848	2.960	1.488	99.191	BS19&20B_L2_S2
4	49.629	51.003	1.936	14.152	11.205	6.539	10.627	3.003	1.4/4	98.626	BS19&20B_L2_S3
-36	49.424	50.567	1.943	14.5/1	11.404	6.622	10.421	2.918	1.554	98.857	BS19&20B_L2_S3
-/6	49.459	50.510	1.972	14.9/6	11.159	6.549	10.212	3.069	1.554	98.950	BS19&20B_L2_S3
-116	49.345	50.518	1.916	15.140	11.153	6.576	10.080	3.050	1.568	98.827	BS19&20B_L2_S3
-156	49.250	50.168	1.970	15.53/	11.381	6.525	9.829	3.054	1.536	99.082	BS19&20B_L2_S3
-196	49.3/3	50.334	1.884	15.706	11.096	6.605	9.684	3.136	1.556	99.039	BS19&20B_L2_S3
-236	49.290	50.580	1.984	15.493	11.120	6.529	9.548	3.140	1.608	98./11	BS19&20B_L2_S3
-276	49.414	50.336	1.991	15.674	11.208	6.527	9.500	3.207	1.557	99.078	BS19&20B_L2_S3
-316	49.423	50.205	1.981	15.766	11.257	6.673	9.423	3.131	1.565	99.218	BS19&20B_L2_S3
-356	49.430	50.514	2.055	15.521	11.444	6.539	9.277	3.116	1.536	98.916	BS19&20B_L2_S3
-396	49.599	50.489	1.938	15.655	11.358	6.675	9.241	3.125	1.519	99.109	BS19&20B_L2_S3
-436	49.331	50.226	2.022	15.747	11.466	6.703	9.218	3.103	1.516	99.105	BS19&20B_L2_S3
-476	49.367	50.600	2.019	15.647	11.373	6.590	9.212	3.078	1.481	98.767	BS19&20B_L2_S3
-516	49.443	50.692	1.949	15.578	11.370	6.613	9.224	3.074	1.500	98.751	BS19&20B_L2_S3
-556	49.495	50.525	1.991	15.638	11.415	6.625	9.213	3.100	1.493	98.970	BS19&20B_L2_S3
-596	49.388	50.777	1.947	15.575	11.284	6.688	9.185	3.067	1.476	98.611	BS19&20B_L2_S3
-636	49.296	50.727	1.890	15.591	11.287	6.735	9.190	3.095	1.486	98.569	BS19&20B_L2_S3
-676	49.464	50.599	1.950	15.609	11.380	6.696	9.226	3.054	1.486	98.866	BS19&20B_L2_S3
-716	49.288	50.568	1.850	15.773	11.396	6.630	9.204	3.050	1.528	98.719	BS19&20B_L2_S3
-756	49.447	50.531	1.992	15.737	11.352	6.705	9.129	3.058	1.496	98.916	BS19&20B_L2_S3
-796	49.493	50.837	1.881	15.643	11.311	6.677	9.158	3.021	1.473	98.656	BS19&20B_L2_S3
-876	49.372	50.768	2.049	15.712	11.293	6.509	9.200	3.007	1.462	98.604	BS19&20B_L2_S4
-956	49.335	50.397	2.023	15.701	11.391	6.778	9.189	3.041	1.480	98.938	BS19&20B_L2_S4
-1036	49.578	50.510	2.030	15.807	11.357	6.671	9.149	2.994	1.483	99.068	BS19&20B_L2_S4
-1116	49.788	50.637	2.003	15.824	11.249	6.645	9.145	3.019	1.479	99.151	BS19&20B_L2_S4
-1196	49.682	50.645	2.082	15.694	11.199	6.669	9.202	3.025	1.483	99.037	BS19&20B_L2_S4
1340.3	49.551	51.074	2.004	12.787	11.260	6.636	11.928	2.823	1.488	98.476	BS19&20B_L3_S1
1260.3	49.473	50.548	1.906	12.801	11.515	6.748	12.039	2.928	1.514	98.925	BS19&20B_L3_S1
1180.3	49.166	50.529	1.969	12.849	11.525	6.734	12.023	2.843	1.528	98.638	BS19&20B_L3_S1
1100.3	49.350	50.612	1.972	12.724	11.583	6.671	11.994	2.923	1.522	98.738	BS19&20B_L3_S1

1020.3	49.485	50.663	1.878	12.692	11.629	6.623	12.008	2.921	1.586	98.822	BS19&20B_L3_S1
940.3	49.378	50.938	1.957	12.725	11.413	6.694	11.878	2.858	1.538	98.441	BS19&20B L3 S1
860.3	49.837	50.819	1.961	12.734	11.474	6.653	11.905	2.916	1.539	99.018	BS19&20B L3 S1
780.3	49.413	50.612	1.948	12.841	11.582	6.729	11.898	2.872	1.519	98.802	BS19&20B L3 S1
700.3	49.547	50.745	2.055	12.681	11.445	6.635	11.924	2.977	1.538	98.802	BS19&20B L3 S1
620.3	49.520	50.837	1.966	12.771	11.353	6.579	11.895	3.050	1.550	98.683	BS19&20B L3 S1
540.3	49.567	50.521	2.023	12.739	11.570	6.702	11.964	2.942	1.539	99.046	BS19&20B L3 S2
501.3	49.640	50.815	1.930	12.617	11.541	6.783	11.897	2.912	1.505	98.824	BS19&20B L3 S2
462.3	49.126	50.727	2.030	12.820	11.436	6.732	11.860	2.896	1.499	98.399	BS19&20B L3 S2
423.3	49.467	50.684	2.014	12.801	11.421	6.731	11.890	2.914	1.544	98.784	BS19&20B L3 S2
384.3	49.493	50.807	1.946	12.776	11.525	6.678	11.870	2.893	1.506	98.686	BS19&20B_L3_S2
345.3	49.496	50.626	1.999	12.884	11.499	6.776	11.811	2.858	1.549	98.870	BS19&20B_L3_S2
306.3	49.490	50.975	1.959	12.702	11.565	6.689	11.684	2.934	1.493	98.515	BS19&20B_L3_S2
267.3	49.468	50.704	1.969	12.799	11.583	6.775	11.743	2.933	1.495	98.763	BS19&20B L3 S2
228.3	49.499	50.631	2.008	12.835	11.639	6.794	11.635	2.973	1.485	98.868	BS19&20B_L3_S2
189.3	49.434	50.979	1.971	12.723	11.550	6.843	11.536	2.951	1.447	98.455	BS19&20B_L3_S2
150.3	49.479	50.835	1.920	12.965	11.623	6.823	11.416	2.950	1.469	98.644	BS19&20B_L3_S2
111.3	49.763	50.959	2.088	13.157	11.419	6.817	11.154	2.939	1.467	98.804	BS19&20B_L3_S2
72.3	49.586	50.830	2.051	13.521	11.404	6.656	11.086	2.980	1.472	98.756	BS19&20B_L3_S2
33.3	49.452	50.524	1.883	13.829	11.653	6.725	10.822	3.008	1.556	98.927	BS19&20B L3 S2
-5.7	49.420	50.451	1.918	14.300	11.407	6.687	10.546	3.125	1.567	98.969	BS19&20B_L3_S2
-44.7	49.374	50.627	1.901	14.731	11.166	6.550	10.350	3.084	1.591	98.748	BS19&20B_L3_S2
-83.7	49.119	50.483	1.857	15.204	11.062	6.442	10.178	3.208	1.566	98.636	BS19&20B_L3_S2
-122.7	49.022	50.143	1.939	15.495	11.131	6.561	10.029	3.147	1.555	98.880	BS19&20B_L3_S2
-161.7	49.298	50.569	2.005	15.398	10.996	6.427	9.874	3.152	1.579	98.729	BS19&20B_L3_S2
-200.7	49.392	50.456	1.939	15.734	11.068	6.387	9.691	3.176	1.549	98.936	BS19&20B_L3_S2
-236.7	49.244	50.325	1.950	15.766	11.128	6.558	9.501	3.209	1.563	98.919	BS19&20B_L3_S3
-276.7	49.564	50.318	2.067	15.588	11.277	6.477	9.427	3.263	1.583	99.246	BS19&20B_L3_S3
-316.7	49.593	50.478	1.955	15.698	11.211	6.544	9.322	3.222	1.571	99.115	BS19&20B_L3_S3
-356.7	49.500	50.667	1.971	15.668	11.227	6.550	9.216	3.170	1.530	98.833	BS19&20B_L3_S3
-396.7	49.509	50.444	1.934	15.730	11.316	6.528	9.288	3.221	1.539	99.065	BS19&20B_L3_S3
-436.7	49.466	50.773	1.905	15.703	11.150	6.539	9.240	3.173	1.518	98.694	BS19&20B_L3_S3
-476.7	49.507	50.207	1.979	15.795	11.376	6.677	9.260	3.184	1.521	99.300	BS19&20B_L3_S3
-516.7	49.591	50.531	2.048	15.784	11.164	6.662	9.065	3.206	1.541	99.060	BS19&20B_L3_S3
-556.7	49.404	50.637	1.976	15.575	11.317	6.671	9.186	3.145	1.495	98.767	BS19&20B_L3_S3
-596.7	49.569	50.237	2.013	15.875	11.446	6.579	9.160	3.194	1.498	99.332	BS19&20B_L3_S3
-636.7	49.642	50.627	1.950	15.695	11.327	6.715	9.120	3.089	1.479	99.015	BS19&20B_L3_S3
-676.7	49.637	50.565	2.010	15.685	11.257	6.685	9.153	3.137	1.509	99.072	BS19&20B_L3_S3
-716.7	49.751	50.735	1.936	15.641	11.300	6.656	9.155	3.088	1.490	99.016	BS19&20B_L3_S3
-756.7	49.556	50.644	1.971	15.825	11.236	6.632	9.113	3.095	1.483	98.912	BS19&20B_L3_S3
-796.7	49.530	50.806	1.899	15.679	11.311	6.569	9.145	3.074	1.518	98.724	BS19&20B_L3_S3
-836.7	49.565	50.759	1.996	15.681	11.162	6.739	9.111	3.063	1.491	98.806	BS19&20B_L3_S3
-876.7	49.681	50.420	1.991	15.792	11.304	6.719	9.149	3.113	1.512	99.261	BS19&20B_L3_S3
-916.7	49.845	50.545	1.913	15.747	11.470	6.671	9.143	3.010	1.502	99.300	BS19&20B_L3_S3
-956.7	49.846	50.463	2.018	15.690	11.399	6.740	9.130	3.085	1.476	99.383	BS19&20B_L3_S3
-996.7	49.667	50.460	1.963	15.703	11.370	6.648	9.235	3.121	1.500	99.208	BS19&20B_L3_S3
-1036.7	49.516	50.552	1.945	15.841	11.280	6.720	9.154	3.050	1.459	98.964	BS19&20B_L3_S3
-1116.7	49.598	50.147	2.070	15.879	11.397	6.818	9.121	3.071	1.498	99.451	BS19&20B_L3_S4
-1196.7	49.467	50.727	1.998	15.633	11.289	6.659	9.157	3.042	1.496	98.741	BS19&20B_L3_S4
-1276.7	49.725	50.639	1.990	15.846	11.302	6.644	9.093	3.029	1.458	99.087	BS19&20B_L3_S4
-1356.7	49.757	50.636	2.015	15.880	11.164	6.631	9.142	3.038	1.494	99.121	BS19&20B_L3_S4
-1436.7	49.906	50.799	1.980	15.790	11.221	6.628	9.019	3.039	1.524	99.107	BS19&20B_L3_S4