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ABSTRACT

The most commonly used regularization technique in machine learning is to directly
add a penalty function to the optimization objective. For example, L2 regularization is
universally applied to a wide range of models including linear regression and neural net-
works. The alternative regularization technique, which has become essential in modern
applications of machine learning, is implicit regularization by injecting random noise into
the training data.

In fact, this idea of using random perturbations as regularizer has been one of the first
algorithms for online learning, where a learner chooses actions iteratively on a data se-
quence that may be designed adversarially to thwart learning process. One such classical
algorithm is known as Follow The Perturbed Leader (FTPL).

This dissertation presents new interpretations of FTPL. In the first part, we show that
FTPL is equivalent to playing the gradients of a stochastically smoothed potential func-
tion in the dual space. In the second part, we show that FTPL is the extension of a differen-
tially private mechanism that has inherent stability guarantees. These perspectives lead
to novel frameworks for FTPL regret analysis, which not only prove strong performance
guarantees but also help characterize the optimal choice of noise distributions. Further-
more, they extend to the partial information setting where the learner observes only part
of the input data.
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CHAPTER I

Introduction

In this thesis, we study the problem of online learning, where a learner iteratively plays
a sequence of actions based on the data received up to the previous iteration. The learner’s
goal is to minimize the regret, defined as the difference between the learner’s loss and the
loss of the best fixed action in hindsight. In developing online learning algorithms, we
consider an adversarial environment where we do not make any stochastic assumptions
about the sequence of data. The learners goal in this case is to minimize the worst-case
regret.

The simplest heuristic for this setting is playing the optimal action on the observed se-
quence of the data up to the previous iteration. This algorithm, called Follow the Leader
(FTL) and formally defined in Section 2.2.1, is identical to Empirical Risk Minimization
(ERM), which has nice generalization guarantees when data is always an i.i.d. sample
from an unknown distribution. In the non-stochastic setting that we study, however,
FTL algorithm suffers a constant worst-case regret on the new data point no matter how
much data it has received. The problem is that FTL algorithm overfits to the observed
data, which may be adversarially designed to have large fluctuations. The key element in
developing optimal algorithms is to avoid overfitting and to induce stability by regular-
ization.

A standard regularization technique in machine learning is regularization via penalty,
which is to directly add a penalty function (called regularizer) to the optimization objec-
tive. A popular method in this category is the L2 regularization, which is universally
applied to a wide range of models including linear regression and multi-layer convolu-
tional neural networks.

Follow the Regularized Leader (FTRL) algorithm is the application of this technique to
the online setting. This algorithm is very well understood thanks to the powerful convex
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analysis tools; the regret analysis reduces to the analysis of the second-order behavior of
the regularizer (Shalev-Shwartz 2012). Srebro et al. (2011) proved that Mirror Descent,
which is equivalent to FTRL under some assumptions (McMahan 2011) achieves a nearly
optimal regret guarantee for a general class of online learning problems,.

The alternative regularization technique, which has become essential in modern appli-
cations of machine learning, is implicit regularization via perturbations by injecting random
noise into the training data. This method has been the main driving force behind success-
ful applications of complex deep learning architectures, with the most notable example
of dropout by Hinton et al. (2012).

Interestingly, one of the earliest online learning algorithm by Hannan (1957) uses a reg-
ularization via perturbations, and its extension was named Follow the Perturbed Leader
(FTPL) by Kalai and Vempala (2005). Due to the stochastic nature of these techniques,
however, it is difficult to analyze their behavior. The FTPL analysis relies substantially
on clever algebra tricks and heavy probabilistic analysis (Devroye et al. 2013; Erven et al.
2014; Kalai and Vempala 2005). These results are unsatisfying because these techniques do
not generalize among different distributions and thus fail to provide intuitions on what
are the core properties of the noise distributions that lead to optimal regret guarantees.

This thesis presents two new interpretations of FTPL, each of which leads to a new
framework for analyzing FTPL regret. The first interpretation in Chapter III is based on
convex duality. The key observation is that FTL, FTPL, and FTRL all belong to the same
family of algorithms that play the gradient of a potential function. This connection is not a
surprising fact; the gradient is the direction of the maximal rate of increase, and FTL-family
algorithms all plays an action that maximizes an objective function. In this framework,
FTPL naturally arises as a smoothing operation of a non-smooth potential function. The
FTPL regret analysis now boils down to understanding the second-order properties of
the smoothed function, in the same way that FTRL is analyzed. Indeed, we show that
FTPL implicitly defines a strongly convex regularizer via convex duality (Section 3.2.4).

This interpretation leads to a generic analysis framework for FTPL, especially for the
case where the noise distribution belongs to the exponential family. We obtain powerful
general-case regret guarantees effortlessly by directly applying the results from the opti-
mization literature (Section 3.3). By a more careful analysis, we prove that FTPL with the
Gaussian distribution is minimax-optimal for canonical online learning problems (Sec-
tion 3.4 and 3.5). Our analysis technique extends to the multi-armed adversarial bandit
setting (Section 3.7), proving that the hazard rate of the noise distribution plays a key role
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in the regret analysis.
The second interpretation in Chapter IV is that FTPL achieves differential privacy (DP)

(Dwork and Roth 2014). DP requires that the output distribution of a randomized algo-
rithm remains mostly identical given a small change in the input. This implies that a DP
algorithm, when applied to the online learning problem, naturally avoids overfitting to
any individual data point. Furthermore, DP is a multiplicative guarantee on the stability,
which natural leads to first-order regret bounds that can take advantage of easy problem
instances.

Given a DP algorithm, the regret analysis reduces to controlling the accuracy lost in
order to achieve privacy. In fact, differentially private algorithms are already developed
to obtain a favorable tradeoff between privacy and accuracy. We can directly use the
existing tools in DP literature, such as Gaussian mechanism, to obtain strong general-
case regret guarantees (Section 4.2). We establish that DP is also closely connected to the
hazard rate of a distribution. Based on this observation, we prove that the hazard rate is
the key to not only low-regret algorithms for the multi-armed bandits (Section 4.5), but
also minimax-optimal algorithms for the experts setting (Section 4.3).

3



CHAPTER II

Online Linear Optimization

2.1 Problem Definition

The online linear optimization (OLO) is defined as a repeated game between two en-
tities that we call the learner and the adversary. An instance of OLO is specified by two
convex and closed subsets of RN that define possible actions for learner and adversary,
respectively. We assume an oblivious adversary that chooses the whole sequence of moves
ahead of time. The learner is allowed access to its private source of randomness in making
its moves.

We present two equivalent formulations of OLO, one as a reward maximization prob-
lem and the other as a loss minimization problem.

2.1.1 Reward Formulation

On round t = 1, . . . , T,

• the learner plays an action xt ∈ X ;

• the adversary reveals a reward vector gt ∈ Y ;

• the learner receives a linear reward 〈xt, gt〉.

We say X is the decision set and Y is the reward set. Let Gt = ∑t
s=1 gs be the cumulative

reward. The learner’s goal is to minimize the expected regret, defined as:

ERegretT = max
x∈X
〈x, gT〉 −E

[
T

∑
t=1
〈xt, gt〉

]
(2.1)
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where the expectations are taken over the learner’s randomness. In the gain-only setting,
rewards are always non-negative: minx∈X 〈x, gt〉 ≥ 0. In the loss-only setting, rewards are
always non-positive: minx∈X 〈x, gt〉 ≤ 0. In the loss/gain setting, rewards can be positive
or negative.

2.1.2 Loss Formulation

We can equivalently define OLO in terms of losses as follows. On round t = 1, . . . , T,

• the learner plays an action xt ∈ X ;

• the adversary reveals a loss vector `t ∈ Y ;

• the learner receives a linear loss 〈xt, `t〉.

Let Lt = ∑t
s=1 `s be the cumulative loss. The learner’s goal is to minimize the expected

regret, defined as:

ERegretT = E

[
T

∑
t=1
〈xt, `t〉

]
−min

x∈X
〈x, LT〉 (2.2)

where the expectations are taken over the learner’s randomness. We use L∗T to denote
the comparator term in the regret definition, i.e., the best loss in hindsight. In the loss-only
setting, losses are always positive: minx∈X 〈x, `t〉 ≥ 0 for all t. In the loss/gain setting, losses
can be positive or negative.

2.1.3 Comparison

Note that it is easy to switch between the reward and loss formulations by simply
flipping the signs of the adversary’s moves. We use the reward formulation by default
up to Chapter III , so that we can directly analyze the convex function max(·) without
cumbersome sign changes.

We switch to the loss formulation in Chapter IV where we focus on proving first-order
regret bounds that grow in L∗T instead of T for the loss-only setting; such bounds give
a very strong guarantee that the algorithm is able to benefit from the existence of one
“good” action that suffers little loss. Note that its counterpart for the gain-only setting,
namely a regret bound that grows in the maximum gain in hindsight, does not have the
same implication and is not commonly studied in the literature. For the full comparison
of the gain-only and loss-only settings, please see (Kwon and Perchet 2016).
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2.2 Algorithms

This dissertation focuses on a family of online linear optimization algorithms that se-
lect their actions by solving an optimization problem. The only interface these algorithms
have to the data is the cumulative reward up to the previous time step; that is, we can
write xt = arg maxx∈X f (x; Gt−1) for some objective function f .

2.2.1 Follow the Leader

The most simple algorithm, Follow the Leader (FTL), does not incorporate any pertur-
bation or regularization into the optimization, and uses the objective f (x; G) = 〈x, G〉.
Unfortunately FTL does not enjoy non-trivial regret guarantees due to the inherent insta-
bility of linear optimization. Even small changes in the input can lead to large fluctuations
in the optimal solution.

2.2.2 Follow the Regularized Leader

Follow the Regularized Leader (FTRL) uses the regularized objective function

f (w; G) = 〈x, G〉 −R(x)

where R : X → R is a convex regularizer. The FTRL regret analysis involves a fictitious
algorithm called Be the Regularized Leader (BTRL), which looks at the loss vector one step
ahead and plays what FTRL would play at the next time step.

Theorem 2.1. The FTRL with regularizerR has the regret bound:

Regret(FTRL)T ≤ sup
x∈X
R(x)︸ ︷︷ ︸

BTRL regret

+
T

∑
t=1
〈xt+1 − xt, gt〉︸ ︷︷ ︸
stability term

The first term is the regret of BTRL, which only suffers the difference introduced byR(x).
The second term is the regret due to instability of the prediction.

2.2.3 Follow the Perturbed Leader

Follow the Perturbed Leader (FTPL) sets f (x, G) = 〈x, G + z〉 where z is a random
vector from a distribution D. Since losses are always linear in the learner’s action, the
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expected regret of FTPL is equal to the regret of the expected version of FTPL algorithm,
which plays

xt = Ez∼D

[
argmin

x∈X
〈x, Gt−1 + z〉

]
.

Also note that since we assume an oblivious adversary that does not adapt to learner’s
randomness, only a single sample of z is required.

Similarly to the FTRL, the FTPL regret analysis involves a fictitious algorithm called Be
the Perturbed Leader (BTPL), which looks at the loss vector one step ahead and plays xFTPL

t+1

at round t. By inductive argument, (Kalai and Vempala 2005) shows that BTPL suffers a
small regret that does not grow in T but only in the magnitude of the noise and the size
of X :

E[Regret(BTPL)T] ≤ Ez∼D[supx∈X 〈x, z〉]
≤ ‖X‖Ez∼D[‖z‖∗]. (2.3)

Thus, we get the counterpart of Theorem 2.1:

Theorem 2.2. The FTPL with distribution D has the regret bound:

E[Regret(FTPL)T] ≤ ‖X‖Ez∼D[‖z‖∗]︸ ︷︷ ︸
BTPL regret

+E

[
T

∑
t=1
〈xt+1 − xt, gt〉

]
︸ ︷︷ ︸

stability term

for any arbitrary dual norm pairs (‖ · ‖, ‖ · ‖?).

The stability term, however, is extremely hard to analyze in this case due to the
stochastic nature of the algorithm. Much of the existing literature focuses on directly
analyzing the stability term by clever algebra tricks that do not generalize across dif-
ferent distributions. For example, exponential (Kalai and Vempala 2005), random-walk
(Devroye et al. 2013), and dropout (Erven et al. 2014) noise have been shown to achieve
low regret for the experts problem (defined in Section 2.3.1), all using distribution-specific
arguments.

In contrast, the analysis techniques presented in this dissertation are generically ap-
plicable to a wide range of distributions. In fact, our main results, such as Theorem 4.15,
characterize a family of optimal distributions.

Prior to this work, Rakhlin et al. (2012) developed the first generic analysis framework
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for FTPL. They view FTPL as the minimax strategy against a random approximation of
the worst-case adversary and offered some intuitions on what distributions are optimal
for different settings. We compare their results to ours throughout the paper wherever
applicable.

2.3 Canonical Problems

2.3.1 Experts Problem

The experts problem is an instance of OLO where X = ∆N and Y = B1(R
N, ‖ · ‖∞),

the unit ball in the `∞-norm. The use of the term expert originated from Littlestone and
Warmuth (1994)’s formulation of the problem that the learner iteratively updates a belief
distribution over a set of experts, each of whom makes a prediction on every round.

The minimax regret is
√
(T/2) log N for the loss/gain setting (Cesa-Bianchi and Lu-

gosi 2006, Chapter 7). For the loss-only setting, Freund and Schapire (1997) proved that
the Weighted Majority algorithm achieves the first-order regret bound of

√
2L∗T log N +

log N, which is asymptotically minimax optimal (Vovk 1998).
Rakhlin et al. (2012) showed that FTPL with any symmetric noise distribution, with

a proper scaling, achieves the optimal O(
√

T log N) regret for the loss/gain setting. In

Section 3.5, we prove O(
√

∑T
t=1 ‖gt‖2

∞ log N) bounds for several exponential family dis-
tributions. Although the two bounds are asymptotically equivalent in the worst case
where ‖gt‖∞ = 1, our bound does not require the knowledge of T in advance and is
stronger against a sequence of small gain vectors. This is due to the fact that the game-
theoretic analysis framework Rakhlin et al. (2012) must reason recursively from the last
step, assuming the worst case in each step.

For the loss-only setting, Kalai and Vempala (2005) used the negative exponen-
tial noise and Erven et al. (2014) used the dropout noise to achieve the optimal
O(
√

L∗T log N + log N) regret. In Section 4.3, we prove a generic sufficient condition on
the noise distribution for this optimal regret bound.

2.3.2 Euclidean Balls Problem

The Euclidean balls problem is an instance of OLO where X = Y = Br(RN, ‖ · ‖2). In
this dissertation, we only consider the unit Euclidean balls problem, where r = 1. Aber-
nethy et al. (2008) showed that the minimax optimal regret (under the gain formulation)
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is precisely 1
2

√
∑T

t=1 ‖gt‖2
2. Note that this minimax regret has no explicit dependence on

the dimension N. The regret bound of the same order can be achieved by FTRL with the
Euclidean norm as regularizer, also known as Online Gradient Descent (Zinkevich 2003).

The optimal regret bound with FTPL was unknown for a long time until Rakhlin et al.
(2012, Lemma 9) proved that FTPL with uniform distribution on the surface of the unit
sphere has a regret at most 4

√
2T. We prove in Section 3.4 that FTPL with i.i.d. Gaussian

noise has a regret at most 2
√

1 + ∑T
t=1 ‖gt‖2

2, closely matching the minimax regret.

2.3.3 Online PCA

The OLO framework naturally extends to the space of symmetric matrices. For A, B ∈
SNN, the matrix inner product is the dot product between matrices flattened to vectors:

〈A, B〉 = Tr(AB) =
N

∑
i,j=1

AijBij.

To motivate the Online PCA problem, first consider the online data compression prob-
lem defined as follows. Let Pt be a rank k-matrix, which is a low-rank approximation of
a (potentially full-rank) covariance matrix Σt. We define the compression loss, the loss in
precision due to the approximation, to be

Tr((I − Pt)Σt) = Tr(Σt)− Tr(PtΣt).

Since the first term is independent of the learner’s action, we can equivalently say that
the learner gains reward of Tr(PtΣt) every round for faithfully preserving the data. The
Online PCA is an abstraction of this problem in which Σt is no longer restricted to a valid
covariance matrix.

As a formal definition, Online k-Dense PCA is an instance of OLO where X = {A ∈
SN
+ : ‖λ(A)‖1 ≤ k} and Y = {A ∈ SN : ‖λ(A)‖∞ ≤ 1}. The minimax regret is

O(k
√

T log(N/k)) for the loss/gain setting, and O(
√

L∗k log N
k + k log N

k ) for the loss-
only setting (Nie et al. 2013). Both bounds are achieved by FTRL with Von Neumann
entropy, which is also known as Online Matrix Exponentiated Gradient algorithm (Nie
et al. 2013). In this dissertation, we only consider the Online 1-Dense PCA problem, and
simply call it Online Dense PCA.

An interesting fact is that the minimax regret for Online Dense PCA is independent
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of whether the adversary may change the eigensystems between iterations or not. The
Online Dense PCA and the experts problem have the same minimax regret, even though
the reduction only works in one direction from experts problem to Online Dense PCA.

The Online k-Sparse PCA problem is a special case of Online Dense PCA where Y =

{aa> : a ∈ RN, ‖a‖2 = 1}, restricted to rank-1 matrices. The minimax optimal regret for

this problem is O(
√

Tk log N
k ). That is, for k = 1, the sparsity assumption on the reward

matrices does not change the problem complexity.
Whether there exists a computationally efficient algorithm that achieves the mini-

max optimal regret without requiring a full eigendecomposition every round had been
a long-standing open question posed by Warmuth and Kuzmin (2010). Allen-Zhu and Li
(2017) recently solved this problem by reducing the effective dimensionality of the matrix
problem to dimension 3, but the question still remains whether it can be solved using
FTPL, which only requires the computation of maximum eigenvector each round. The
best known regret bound using FTPL is O(

√
TN) for the dense case (Garber et al. 2015;

Kotłowski and Warmuth 2015), and O( 4
√

N
√

kL∗T log T) for the sparse case (Dwork et al.
2014).

For Online Dense PCA, we show that there is an FTPL algorithm that achieves
O( 4
√

N
√

L∗T log T) regret, which is generally an improvement over the best-known FTPL
bound of O(

√
TN) regret. For the Online Sparse PCA, we show that there is a simple

FTPL algorithm that achieves the optimal regret, partially resolving the open problem.

2.4 Adversarial Multi-Armed Bandits

Adversarial Multi-Armed Bandits (MAB) problem is a partial information variant of
the loss-only experts problem. The two main differences are: (a) the learner is required
to sample an action it ∈ {1, . . . , N} according to a chosen probability vector pt ∈ ∆N,
and (b) the learner observes only the scalar `t,it and receives no information regarding
the losses/gains for the other coordinates of `. The limited feedback is what makes MAB
significantly more challenging than the vanilla experts problem.

The MAB problem is useful for a wide range of applications including medical exper-
iment design (Gittins 1996), automated poker playing strategies (Van den Broeck et al.
2009), and hyperparameter tuning (Pacula et al. 2012). For the survey of work on MAB,
see the summary paper by Bubeck and Cesa-Bianchi (2012).

The minimax regret for this problem is O(
√

NT) (Bubeck et al. 2012), and it is also
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possible to achieve the first-order regret of O(
√

NL∗T log N) (Allenberg et al. 2006; Neu
2015). In Section 3.7, we show that FTPL with a wide variety of distributions enjoys
nearly optimal regret of O(

√
TN log N). In Section 4.5, we show a similar statement for

the first-order regret bound.

2.4.1 Connection to the Experts Problem

There is a standard reduction from adversarial MAB to the experts problem. Assume
we have an algorithm A, which outputs a probability vector xt ∈ ∆N given a sequence of
(potentially unbounded) loss vectors; for example,A can be any algorithm for the experts
problem that we consider in this dissertation.

Now we design an MAB algorithm, which performs two steps every round. In the
decision step, the MAB algorithm uses A as a subroutine to obtain xt. Then, we sample
it ∼ pt, where pt is a transformation of xt. In the estimation step, we construct an estimated
loss vector l̂t from `t,it , which is the only observed coordinate. The estimated loss is now
fed into A.

All known MAB algorithms in the literature follow this template. For example, the
well-known EXP3 algorithm (Bubeck et al. 2012) uses the Follow the Regularized Leader
with entropy regularizer as its subroutine for choosing xt. Then, it samples it directly from
xt (i.e., pt = xt) and then uses the unbiased importance weighting scheme for estimation:
l̂t = `t,it /pt,it .

2.4.2 Implementation of Follow the Perturbed Leader

The expected version of FTPL algorithm for the experts setting, which returns a full
probability vector instead of a single sample, can be used to generate a sequence p1:t. The
problem is in the estimation step, there is generally no closed form for p1:t. However, we
assume there is a close approximation for it such that the regret due to the approximation
error is subsumed in the regret bounds. Indeed, Geometric Resampling (GR) technique
by Neu and Bartók (2013) is one such method.
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CHAPTER III

Follow the Perturbed Leader Analysis via Convex Duality

3.1 Preliminaries

3.1.1 Convex Analysis

For this section, let f be a differentiable, closed, and proper convex function with
dom( f ) ⊆ RN. We say that f is L-Lipschitz continuous (or simply Lipschitz) with respect to
a norm ‖ · ‖ when f satisfies | f (x)− f (y)| ≤ L‖x− y‖ for all x, y ∈ dom( f ).

The Bregman divergence D f (y, x) is the gap between f (y) and the linear approximation
of f (y) around x. Formally, D f (y, x) = f (y) − f (x) − 〈∇ f (x), y − x〉. We say that f is
β-strongly convex with respect to a norm ‖ · ‖ if we have D f (y, x) ≥ β

2‖y − x‖2 for all
x, y ∈ dom f . Similarly, f is said to be β-strongly smooth with respect to a norm ‖ · ‖ if we
have D f (y, x) ≤ β

2‖y− x‖2 for all x, y ∈ dom f .
The Bregman divergence measures how fast the gradient changes, or equivalently,

how large the second derivative is. In fact, we can bound the Bregman divergence by
analyzing the Hessian, as the following adaptation of Abernethy et al. (2013, Lemma 4.6)
shows.

Lemma 3.1. Let f be a twice-differentiable convex function with dom f ⊆ RN, and let ‖ · ‖ be
an arbitrary norm. Assume that there exists B such that for every x ∈ dom f ,

sup
v:‖v‖≤1

v>∇2 f (x)v ≤ B.

Then, D f (x + v, x) ≤ B‖v‖2/2 for any x, x + v ∈ dom f .

The Fenchel conjugate of f is defined as f ?(x) = supw∈dom( f ){〈w, x〉 − f (w)}, and it is
a dual mapping that satisfies f = ( f ?)?. If f is differentiable and strictly convex we also
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have ∇ f ? ∈ dom( f ). The notions of strong convexity and strong smoothness are dual to
each other. That is, f is β-strongly convex with respect to a norm ‖ · ‖ if and only if f ?

is 1
β -strongly smooth with respect to the dual norm ‖ · ‖?. For more details and proofs,

readers are referred to an excellent survey by Shalev-Shwartz (2012).
In this dissertation, we slightly abuse the term gradient to refer to any sub-gradient of

a function.

3.2 Gradient-Based Prediction Algorithm

Recall that the comparator term in the regretdefinition (2.1) is a function of the final
cumulative reward vector GT. We define the baseline potential function for a given OLO
problem to be

Φ(G) := max
x∈X
〈x, G〉

so that the learner’s performance is compared against Φ(GT).
In convex analysis literature, this function is called the support function of X . For a

bounded compact set X , the support function of X has useful properties.(Rockafellar
1997, Section 13).

Lemma 3.2. Let f be the support function of a bounded compact set X . Then, f has the following
properties:

• It is positively homogeneous: f (αx) = α f (x) for all α > 0.

• It is sub-additive: f (x) + f (y) ≥ f (x + y).

• It is Lipschitz continuous with respect to any norm ‖ · ‖, where the Lipschitz constant is
equal to supx∈X ‖x‖∗.

Note that the gradient of the baseline potential function is

∇Φ(G) = arg max
x∈X

〈x, G〉.

By evaluating this gradient at Gt−1, we recover the FTL decision rule. Similarly, we can
see that FTRL decision rule is playing the gradients of a slight modification of the baseline
potential function, as in the following lemma:

Lemma 3.3. Let R be a convex function and let f (G) = maxx∈X {〈x, G〉 − R(x)}. Then,
x∗ = arg maxx∈X {〈x, G〉 −R(x)} is the (sub-)gradient of f at G.
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Proof. It suffices to note that

f (G) + 〈x∗, G′ − G〉 = 〈x∗, G′〉 −R(x∗) ≤ f (G′).

In this perspective, we can define a family of algorithms that play the gradients of a
function as in Algorithm 1, which we name Gradient-based Prediction Algorithm (GBPA).
We note that Cesa-Bianchi and Lugosi (2006, Theorem 11.6) presented a similar algorithm,
but our formulation is simpler as it eliminates all dual mappings.

Input: X ,Y ⊆ RN

Require: convex potentials Φ̃1, . . . , Φ̃T : RN → R, with ∇Φ̃t(G) ∈ X , ∀G
Initialize: G0 = 0
for t = 1 to T do

The learner plays wt = ∇Φ̃t(Gt−1)
The adversary reveals gt ∈ Y
The learner receives a reward of 〈wt, gt〉
Update the cumulative gain vector: Gt = Gt−1 + gt

end
Algorithm 1: Gradient-Based Prediction Algorithm (GBPA)

3.2.1 Regret Analysis

We begin with a generic result on the regret of GBPA.

Lemma 3.4 (GBPA Regret). Let Φ be the baseline potential function for an online linear opti-
mization problem. The regret of the GBPA can be decomposed as follows:

Regret=

T

∑
t=1

( (
Φ̃t(Gt−1)− Φ̃t−1(Gt−1)

)︸ ︷︷ ︸
overestimation penalty

+ DΦ̃t
(Gt, Gt−1)︸ ︷︷ ︸

divergence penalty

)

+ Φ(GT)− Φ̃T(GT)︸ ︷︷ ︸
underestimation penalty

, (3.1)

where Φ̃0 ≡ Φ.
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Proof. We note that since Φ̃0(0) = 0,

Φ̃T(GT) = ∑T
t=1 Φ̃t(Gt)− Φ̃t−1(Gt−1)

= ∑T
t=1

((
Φ̃t(Gt)− Φ̃t(Gt−1)

)
+
(
Φ̃t(Gt−1)− Φ̃t−1(Gt−1)

))
= ∑T

t=1

((
〈∇Φ̃t(Gt−1), gt〉+ DΦ̃t

(Gt, Gt−1))
)

+
(
Φ̃t(Gt−1)− Φ̃t−1(Gt−1)

))
,

where the last equality holds because:

Φ̃t(Gt)− Φ̃t(Gt−1) = 〈∇Φ̃t(Gt−1), gt〉+ DΦ̃t
(Gt, Gt−1).

We now have

RegretT := Φ(GT)−
T

∑
t=1
〈wt, gt〉

= Φ(GT)−∑T
t=1〈∇Φ̃t(Gt−1), gt〉

= Φ(GT)− Φ̃T(GT) + ∑T
t=1 DΦ̃t

(Gt, Gt−1) + Φ̃t(Gt−1)− Φ̃t−1(Gt−1),

which completes the proof.

We point out a couple of important facts about Lemma 3.4:

1. If Φ̃1 ≡ · · · ≡ Φ̃T, then the overestimation penalty sums up to Φ̃1(0) − Φ̃(0) =

Φ̃T(0)−Φ(0).

2. If Φ̃t is β-strongly smooth with respect to ‖ · ‖, the divergence penalty at t is at most
β
2‖gt‖2.

The above lemma proves an equality, which breaks down the regret into two sources.
The Bregman divergence of Φ̃t captures the fact that the GBPA always ascends along the
gradient that is one step behind. The adversary can exploit this and play gt to induce
a large gap between Φ̃t(Gt) and the linear approximation of Φ̃t(Gt) around Gt−1. The
learner can reduce this gap by choosing a smooth Φ̃t whose gradient changes slowly. On
the other hand, the overestimation and underestimation penalty terms prevent the learner
from achieving a low regret by choosing an arbitrarily smooth Φ̃t.
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In short, the GBPA achieves low regret if the potential function Φ̃t gives a favorable
tradeoff between the two sources of regret. This tradeoff is captured by the following
definition of smoothing parameters, adapted from Beck and Teboulle (2012, Definition 2.1).

Definition 3.5. Let f be a closed proper convex function. A collection of functions { f̃η : η ∈ R+}
is said to be an η-smoothing of f with smoothing parameters (α, β, ‖ · ‖), if for every η > 0:

1. There exists real numbers α1 (underestimation bound) and α2 (overestimation bound) such
that

sup
G∈dom( f )

f (G)− f̃η(G) ≤ α1η and sup
G∈dom( f )

f̃η(G)− f (G) ≤ α2η

with α1 + α2 = α.

2. f̃η is β
η -strongly smooth with respect to ‖ · ‖.

We say α is the deviation parameter, and β is the smoothness parameter.

A straightforward application of Lemma 3.4 gives the following statement:

Corollary 3.6. Let Φ be the baseline potential for an online linear optimization problem. Suppose
{Φ̃η} is an η-smoothing of Φ with parameters (α, β, ‖ · ‖). Then, the GBPA run with Φ̃1 ≡
· · · ≡ Φ̃T ≡ Φ̃η enjoys the following regret bound,

Regret≤αη +
β

2η

T

∑
t=1
‖gt‖2.

Choosing η to optimize the bound gives Regret≤

√
2αβ ∑T

t=1 ‖gt‖2.

In OLO, we often consider the settings where the reward vectors g1, . . . , gt are con-
strained in norm, i.e., ‖gt‖ ≤ r for all t. In such settings, the regret grows in O(r

√
αβT)

for the optimal choice of η. The product of smoothing parameters αβ is, therefore, at the
core of the GBPA regret analysis.

3.2.2 Follow the Regularized Leader as a Gradient Based Prediction Algorithm

Define the regularized potential as follows:

Φ̃(G) = R?(G) = max
x∈X
{〈x, G〉 −R(x)} (3.2)
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where R : X → R is some strictly convex function. The class of FTRL algorithms can be
viewed precisely as an instance of GBPA where the potential is chosen according to (3.2).

In the convex optimization community, this technique has been referred to as inf-conv
smoothing of Φ withR∗ (Beck and Teboulle 2012), due to the following equality:

R?(G) = inf
G′

{
Φ(G′) +R?(G− G′)

}
.

3.2.3 Follow the Perturbed Leader as a Gradient Based Prediction Algorithm

An important smoothing technique for this chapter is stochasting smoothing, which is
the convolution of a function with a probability density function.

Definition 3.7 (Stochastic Smoothing). Let f : RN → R be a function. We define f̃ (·;Dη) to
be the stochastic smoothing of f with distributionD and scaling parameter η > 0. The function
value at G is obtained as:

f̃ (G;Dη) := Ez′∼Dη
[ f (G + z′)] = Ez∼D[ f (G + ηz)],

where we adopt the convention that if z has distribution D then the distribution of ηz is denoted
by Dη.

The technique of stochastic smoothing has been well-studied in the optimization liter-
ature for gradient-free optimization algorithms (Glasserman 1991; Yousefian et al. 2010)
and accelerated gradient methods for non-smooth optimizations (Duchi et al. 2011).

Let D be a probability distribution over RN with a well-defined density everywhere.
Consider the GBPA run with a stochastic smoothing of the baseline potential:

∀t, Φ̃t(G) = Φ̃(G;Dηt) = Ez∼D
[

max
x∈X
〈x, G + ηtz〉

]
. (3.3)

Then, from the convexity of G 7→ maxx∈X 〈x, G + ηtz〉 (for any fixed z), we can swap the
expectation and gradient (Bertsekas 1973, Proposition 2.2) and evaluate the gradient at
G = Gt−1 to obtain

∇Φ̃t(Gt−1) = Ez∼D
[

arg max
x∈X

〈x, Gt−1 + ηtz〉
]
. (3.4)

Taking a single random sample of arg max inside expectation is equivalent to the deci-
sion rule of FTPL; the GBPA on a stochastically smoothed potential can thus be seen as
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playing the expected action of FTPL. Since the learner gets a linear reward in online linear
optimization, the regret of the GBPA on a stochastically smoothed potential is equal to
the expected regret of FTPL. For this reason, we will use the terms FTPL and GBPA with
stochastic smoothing interchangeably.

One very useful property of stochastic smoothing is that as long as D has a support
over RN and has a differentiable probability density function µ, f̃ is always differentiable.
To see this, we use the change of variable technique:

f̃ (G;D) =
∫

f (G + z)µ(z) dz =
∫

f (G̃)µ(G̃− G) dG̃,

and it follows that

∇G f̃ (G;D) = −
∫

f (G̃)∇Gµ(G̃− G) dG̃,

∇2
G f̃ (G;D) =

∫
f (G̃)∇2

Gµ(G̃− G) dG̃. (3.5)

This change of variable trick leads to the following useful expressions for the first
and second derivatives of f̃ in case the density µ(G) is proportional to exp(−ν(G)) for a
sufficiently smooth ν.

Lemma 3.8 (Exponential Family Smoothing). Suppose D is a distribution over RN with a
probability density function µ of the form µ(G) = exp(−ν(G))/Z for some normalization con-
stant Z. Then, for any twice-differentiable ν, we have

∇ f̃ (G) = E[ f (G + z)∇zν(z)], (3.6)

∇2 f̃ (G) = E[ f (G + z)
(
∇zν(z)∇zν(z)T −∇2

zν(z)
)
].

Furthermore, if f is convex, we have

∇2 f̃ (G) = E[∇ f (G + z)∇zν(z)T].

Proof. If ν is twice-differentiable, ∇µ = −µ · ∇ν and ∇2µ =
(
∇ν∇νT −∇2ν

)
µ. Plug-

ging these in (3.5) and using the substitution z = G̃− G immediately gives the first two
claims of the lemma. For the last claim, we first directly differentiate the expression for
∇ f̃ in (3.6) by swapping the expectation and gradient. This is justified because f is con-
vex (and is hence differentiable almost everywhere) and µ is absolutely continuous w.r.t.
Lebesgue measure everywhere (Bertsekas 1973, Proposition 2.3).
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Notes on estimation penalty If the perturbation used has mean zero, it follows from
Jensen’s inequality that the stochastic smoothing will overestimate the convex func-
tion Φ. Hence, for mean zero perturbations, the underestimation penalty is always
non-positive. When the scaling parameter ηt changes every iteration, the overestima-
tion penalty becomes a sum of T terms. The following lemma shows that we can col-
lapse them into one since the baseline potential Φ in OLO problems is sub-additive:
Φ(G + H) ≤ Φ(G) + Φ(H).

Lemma 3.9. Let Φ : RN → R be the baseline potential function of an OLO problem. Let D be
a continuous distribution with mean zero and support RN. Consider the GBPA with Φ̃t(G) =

Φ̃(G;Dηt) for t = 0, . . . , T where (η1, . . . , ηT) is a non-decreasing sequence of non-negative
numbers. Then the overestimation penalty has the following upper bound,

T

∑
t=1

Φ̃t(Gt−1)− Φ̃t−1(Gt−1) ≤ ηTEu∼D[Φ(u)],

and the underestimation penalty is non-positive which gives gives a regret bound of

Regret≤ηTEu∼D[Φ(u)] +
T

∑
t=1

DΦ̃t
(Gt, Gt−1). (3.7)

Proof. By virtue of the fact that Φ is a support function, it is also sub-additive and satisfies
the triangle inequality (Lemma 3.2). Hence we can see that, for any 0 < η′ ≤ η,

Φ̃(G;Dη)− Φ̃(G;Dη′) = Eu∼D[Φ(G + ηu)−Φ(G + η′u)]

≤ Eu∼D[Φ((η − η′)u)] = (η − η′)Eu∼D[Φ(u)],

where the final line follows from the positive homogeneity of Φ. Since we implicitly
assume that Φ̃0 ≡ Φ we can set η0 = 0. We can then conclude that

T

∑
t=1

Φ̃t(Gt−1)− Φ̃t−1(Gt−1) ≤
(

T

∑
t=1

ηt − ηt−1

)
Eu∼D[Φ(u)] = ηTEu∼D[Φ(u)],

which completes the proof.
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3.2.4 Connection between Follow the Perturbed Leader and Follow the Regularized
Leader

Now that we have seen that FTRL and FTPL can be viewed as a certain type of smooth-
ing operation, a natural question one might ask is: to what extent are stochastic smoothing
and inf-conv smoothing related? That is, can we view FTRL and FTPL as really two sides
of the same coin? The answer here is “partially yes” and “partially no”:

1. When X is 1-dimensional then (nearly) every instance of FTRL can be seen as a
special case of FTPL, and vice versa. In other words, stochastic smoothing and inf-
conv smoothing are effectively one and the same, and we describe this equivalence
in detail below.

2. For problems of dimension larger than 1, every instance of FTPL can be described
as an instance of FTRL. More precisely, if we have a distribution Dη which leads to
a stochastically smoothed potential Φ̃(·) = Φ̃(·;Dη), then we can always write the
gradient of Φ̃(·) as the solution of an FTRL optimization. That is,

∇Φ̃(G,Dη) = arg max
x∈X

〈x, θ〉 −R(x) where R(x) := Φ̃?(x),

and we recall that Φ̃? denotes the Fenchel Conjugate. In other words, the
perturbation D induces an implicit regularizer defined as the cojugate of
Ez∼D[maxg∈X 〈g, G〉]

3. In general, however, stochastic smoothing is not as general as inf-conv smoothing.
FTPL is in some sense less general than FTRL, as there are examples of regularizers
that can not be “induced” via a specific perturbation. One particular case is given
by Hofbauer and Sandholm (2002).

We now give a brief description of the equivalence between stochastic smoothing and
inf-conv smoothing for the 1-dimensional case.

On the near-equivalence between FTRL and FTPL in one dimension. Consider a one-
dimensional online linear optimization prediction problem where the player chooses an
action xt from X = [0, 1] and the adversary chooses a reward gt from Y = [0, 1]. This
can be interpreted as a two-expert setting; the player’s action wt ∈ X is the probability
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of following the first expert and gt is the net excess reward of the first expert over the
second. The baseline potential for this setting is Φ̃(G) = maxx∈[0,1] wG.

Let us consider an instance of FTPL with a continuous distribution D whose cumula-
tive density function (cdf) is FD. Let Φ̃ be the smoothed potential function (Equation 3.3)
with distribution D. Its derivative is

Φ̃′(G) = E

[
arg max

x∈[0,1]
x(G + u)

]
= P[u > −G] (3.8)

because the maximizer is unique with probability 1. Notice, crucially, that the derivative
Φ̃′(G) is exactly the expected solution of our FTPL instance. Moreover, by differentiating
it again, we see that the second derivative of Φ̃ at G is exactly the pdf of D evaluated at
(−G).

We can now precisely define the mapping from FTPL to FTRL. Our goal is to find a
convex regularization function R such that P(u > −G) = arg maxx∈[0,1] (xG −R(x)).
Since this is a one-dimensional convex optimization problem, we can differentiate for the
solution. The characterization ofR is:

R(x)−R(0) = −
∫ x

0
ϕ−1
D (1− z)dz. (3.9)

Note that the cdf ϕD(·) is indeed invertible since it is a strictly increasing function.
The inverse mapping is just as straightforward. Given a regularization function

R well-defined over [0, 1], we can always construct its Fenchel conjugate R?(G) =

supx∈[0,1]〈x, G〉 − R(x). The derivative of R? is an increasing convex function, whose
infimum is 0 at G = −∞ and supremum is 1 at G = +∞. Hence, R? defines a cdf of the
perturbation distribution that exactly reproduces FTRL corresponding toR.

3.3 Generic Bounds

In this section, we show how the general result in Corollary 3.6, combined with
stochastic smoothing results from the existing literature, painlessly yield regret bounds
for two generic settings: one in which the learner/adversary sets are bounded in `∞/`1

norms and another in which they are bounded in the standard Euclidean (i.e., `2) norm.
Kalai and Vempala (2005, Theorem 1.1) showed that FTPL with exponential distribu-

tion and uniform distribution over hypercube are universal OLO algorithms. These distri-
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butions have a simple and well-behaved probability density function that can be directly
analyzed. This analysis, however, does not generalize to other continuous distributions
even with a slightly more complex probability density function, such as Gaussian.

Our smoothing analysis framework lets us apply the convex optimization tools to the
regret analysis in a painless manner. As a result, we prove the following new result that
FTPL with Gaussian is a universal OLO algorithm.

Theorem 3.10. Consider GBPA run with a potential Φ̃t(G) = Φ̃(G;Dη) whereD is the uniform
distribution on the unit `2 ball. Then we have,

Regret≤
1

2η

√
N‖X ‖2

T

∑
t=1
‖gt‖2

2 + η‖X ‖2.

If we choose D to be the standard multivariate Gaussian distribution, then we have,

Regret≤
1

2η
‖X ‖2

T

∑
t=1
‖gt‖2

2 + η
√

N‖X ‖2.

In either case, optimizing over η we get Regret≤‖X ‖2
4
√

N
√

2 ∑T
t=1 ‖gt‖2

2.

Proof. The baseline potential function Φ is ‖X ‖2-Lipschitz with respect to ‖ · ‖2. Duchi
et al. (2011, Lemma E.2) show that the stochastic smoothing of Φ with the uniform distri-
bution on the Euclidean unit ball is an η-smoothing with parameters(

‖X ‖2, ‖X ‖2
√

N, ‖ · ‖1

)
.

Further, Duchi et al. (2011, Lemma E.3) shows that the stochastic smoothing of Φ with the
standard Gaussian distribution is an η-smoothing with parameters(

‖X ‖2
√

N, ‖X ‖2, ‖ · ‖1

)
.

The result now follows from Corollary 3.6.

We also revisit the FTPL with uniform noise on hypercube and improve the constant
factors in (Kalai and Vempala 2005, Theorem 1.1.a)

Theorem 3.11. Consider GBPA run with a potential Φ̃t(G) = Φ̃(G;Dη) whereD is the uniform
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distribution on the unit `∞ ball. Then we have,

RegretT ≤
1

2η
‖X ‖∞

T

∑
t=1
‖gt‖2

1 + η
‖X ‖∞N

2
.

Choosing η to optimize the bound gives RegretT ≤ ‖X‖∞

√
N ∑T

t=1 ‖gt‖2
1.

Proof. The baseline potential function Φ is ‖X ‖∞-Lipschitz with respect to ‖ · ‖1. By
Corollary 3.6, it suffices to prove that the stochastic smoothing of Φ with the uniform
distribution on the unit `∞ ball is an η-smoothing with parameters(

‖X ‖∞N
2

, ‖X ‖∞, ‖ · ‖1

)
.

These smoothing parameters have been indeed shown to hold by Duchi et al. (2011,
Lemma E.1).

3.4 Unit Euclidean Balls Problem

The generic bound of Theorem 3.10 results in the suboptimal O( 4
√

N
√

∑T
t=1 ‖gt‖2

2) re-
gret bound for the unit Euclidean balls problem. In this section, we will show that a more
careful analysis of the smoothing parameters for this setting yields the minimax-optimal
regret bound up to a constant factor. Prior to this work, Rakhlin et al. (2012) proved
that FTPL with the uniform distribution over the surface of the unit sphere enjoys regret
bound of 4

√
2T. We improve not only the constant factor but the dependence on time to√

∑T
t=1 ‖gt‖2

2 which is always less than or equal to T.
Note that the baseline potential function is Φ(G) = maxx∈X 〈x, G〉 = ‖G‖2.

Theorem 3.12. Let Φ be the baseline potential for the Euclidean balls setting. The GBPA run
with Φ̃t(·) = Φ̃(·;N (0, I)ηt) for all t has regret at most

Regret≤ηT
√

N + 1
2
√

N ∑T
t=1

1
ηt
‖gt‖2

2. (3.10)

If the algorithm selects ηt =
√

∑T
s=1 ‖gs‖2

2/(2N) for all t, we have

Regret≤

√
2 ∑T

t=1 ‖gt‖2
2.

23



If the algorithm selects ηt adaptively according to ηt =
√
(1 + ∑t−1

s=1 ‖gs‖2
2))/N, we have

Regret≤2
√

1 + ∑T
t=1 ‖gt‖2

2

Proof. The proof is mostly similar to that of Theorem 3.15. In order to apply Lemma 3.4,
we need to upper bound (i) the overestimation and underestimation penalty, and (ii) the
Bregman divergence.

The Gaussian smoothing always overestimates a convex function, so it suffices to
bound the overestimation penalty. Furthermore, it suffices to consider the fixed ηt case
due to Lemma 3.1. The overestimation penalty can be upper-bounded as follows:

Φ̃T(0)− Φ̃(0) = Eu∼N (0,I)‖G + ηTu‖2 − ‖G‖2

≤ ηTEu∼N (0,I)‖u‖2 ≤ ηT

√
Eu∼N (0,I)‖u‖2

2 = ηT
√

N.

The first inequality is from the triangle inequality, and the second inequality is from the
concavity of the square root.

For the divergence penalty, note that maxv:‖g‖2=1 gT(∇2Φ̃)g ≤ ‖λ(∇2Φ̃)‖∞, which we
bound in Lemma 3.13. The final step is to apply Lemma 3.1.

Lemma 3.13. Let Φ be the baseline potential for the Euclidean balls setting. Then, for all G ∈ RN

and η > 0, the Hessian matrix of the Gaussian smoothed potential satisfies

∇2Φ̃(G;N (0, I)η) � 1
η
√

N
I.

Proof. The Hessian of the Euclidean norm∇2Φ(G) = ‖G‖−1
2 I−‖G‖−3

2 GGT diverges near
G = 0. Expectedly, the maximum curvature is at origin even after Gaussian smoothing
(See Appendix A.1). So, it suffices to prove

∇2Φ̃(0) = Eu∼N (0,I)[‖u‖2(uuT − I)] �
√

1
N I,

where the Hessian expression is from Lemma 3.8.
By symmetry, all off-diagonal elements of the Hessian are 0. Let Y = ‖u‖2, which is
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Chi-squared with N degrees of freedom. So,

Tr(E[‖u‖2(uuT − I)]) = E[Tr(‖u‖2(uuT − I))] = E[‖u‖3
2 − N‖u‖2]

= E[Y
3
2 ]− NE[Y

1
2 ]

Using the Chi-squared moment formula (Simon 2002, p. 13):

E[Yk] =
2kΓ(N

2 + k)
Γ(N

2 )
,

the above becomes:

2
3
2 Γ(3

2 +
N
2 )

Γ(N
2 )

−
N2

1
2 Γ(1

2 +
N
2 )

Γ(N
2 )

=

√
2Γ(1

2 +
N
2 )

Γ(N
2 )

. (3.11)

From the log-convexity of the Gamma function,

log Γ
(

1
2 +

N
2

)
≤ 1

2

(
log Γ

(N
2

)
+ log Γ

(N
2 + 1

))
= log Γ

(N
2

)√N
2 .

Exponentiating both sides, we obtain

Γ
(

1
2 +

N
2

)
≤ Γ

(N
2

)√N
2 ,

which we apply to Equation 3.11 and get Tr(∇2Φ̃(0)) ≤
√

N. To complete the proof, note
that by symmetry, each entry must have the same expected value, and hence it is bounded
by
√

1/N.

3.5 Experts Problem

In our framework we have used language of maximizing gain, in contrast to the more
common theme of minimizing loss. However, the loss-only setting can be easily obtained
by simply changing the domain Y to contain only vectors with negative-valued coordi-
nates.
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3.5.1 Exponential Weights Algorithm as a Follow the Pertured Leader

The most well-known and widely used algorithm in the experts setting is the Expo-
nential Weights Algorithm (EWA), often referred to as the Multiplicative Weights Algorithm
and strongly related to the classical Weighted Majority Algorithm (Littlestone and Warmuth
1994). On round t, EWA specifies a set of unnormalized weights based on the cumulative
gains thus far,

w̃t,i := exp(ηGt−1,i) i = 1, . . . , N,

where η > 0 is a parameter. The learner’s distribution on this round is then obtained by
normalizing w̃t

wt,i :=
w̃t,i

∑N
j=1 w̃t,j

i = 1, . . . , N. (3.12)

More recent perspectives of EWA have relied on an alternative interpretation via an
optimization problem. Indeed the weights obtained in Eqn. 3.12 can be equivalently ob-
tained as follows,

xt = arg max
x∈∆N

{
〈ηGt−1, w〉 −

N

∑
i=1

wi log wi

}
.

We have cast the exponential weights algorithm as an instance of FTRL where the regu-
larization function R corresponds to the negative entropy function, R(w) := ∑i wi log wi.
Applying Lemma 3.4 one can show that EWA obtains a regret of order

√
T log N.

A third interpretation of EWA is obtained via the notion of stochastic smoothing (per-
turbations) using the Gumbel distribution:

µ(z) := e−(z+e−z) is the PDF of the standard Gumbel; and

Pr(Z ≤ z) = e−e−z
is the CDF of the standard Gumbel.

The Gumbel distribution has several natural properties, including for example that it is
max-stable: the maximum value of several Gumbel-distributed random variables is itself
distributed according to a Gumbel distribution1. But another nice fact is that the dis-
tribution of the maximizer of N fixed values perturbed with Gumbel noise leads to an
exponentially-weighted distribution. Precisely, if we have a values v1, . . . , vN, and we
draw n IID samples Z1, . . . , ZN from the standard Gumbel, then a straightforward calcu-

1Above we only defined the standard Gumbel, but in general the Gumbel has both a scaling and shift
parameter.
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lus exercise gives that

Pr
[

vi + Zi = max
j=1,...,N

{vj + Zj}
]
=

exp(vi)

∑j=1,...,N exp(vj)
i = 1, . . . , N.

What we have just arrived at is that EWA is indeed an instance of FTPL with Gumbel-
distributed noise. This was described by Adam Kalai in personal communication, and
later Warmuth (2009) expanded it into a short note available online. However, the result
appears to be folklore in the area of probabilistic choice models, and it is mentioned briefly
by Hofbauer and Sandholm (2002).

3.5.2 Exponential Family Perturbations

We will now apply our stochastic smoothing analysis to derive bounds on a class
of algorithms for the Experts Setting using three different perturbations: the Exponen-
tial, Gaussian, and Gumbel. The latter noise distribution generates an algorithm which is
equivalent to EWA, as discussed above, but we prove the same bound using new tools.
Note, however that we use a mean-zero Gumbel whereas the standard Gumbel has mean
1.

The key lemma for the GBPA analysis is Lemma 3.4, which decomposes the regret
into overestimation, underestimation, and divergence penalty. By Lemma 3.9, the under-
estimation is less than or equal to 0 and the overestimation penalty is upper-bounded by
Ez∼D [maxi=1,...,N zi]. This expectation for commonly used distributionsD is well-studied
in extreme value theory.

In order to upper bound the divergence penalty, it is convenient to analyze the Hessian
matrix, which has a nice structure in the experts setting. We will be especially interested
in bounding the trace of this Hessian.

Lemma 3.14. Let Φ be the baseline potential for the N-experts setting, and D be a continuous
distribution with a differentiable probability density function µD. We will consider the potential
Φ̃(G) = Φ̃(G;Dη). If for some constant β we have a bound Tr(∇2Φ̃(G)) ≤ β/η for every G,
then it follows that

DΦ̃(G + g, G) ≤ β‖g‖2
∞/η. (3.13)

Proof. The Hessian exists because µD is differentiable (Equation 3.5). Let H denote the
Hessian matrix of the stochastic smoothing of Φ, i.e., H(·) = ∇2Φ̃(·;Dη). In order to
apply Lemma 3.1, we must bound ∑i,j |Hij|, the sum of absolute values of all entries of H.
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We claim two properties on H:

1. Diagonal entries are non-negative and off diagonal entries are non-positive.

2. Each row or column sums up to 0.

All diagonal entries of H are non-negative because Φ̃ is convex. Note that ∇iΦ̃ is the
probability that the i-th coordinate of G + z is the maximum coordinate, and an increase
in the j-th of G where j 6= i cannot increase that probability; hence, the off-diagonal
entries of H are non-positive. To prove the second claim, note that the gradient ∇Φ̃ is
a probability vector, whose coordinates always sum up to 1. Thus, each row (or each
column) must sum up to 0.

It follows from these properties that ∑i,j |Hij| ≤ 2Tr(H), as desired.

The above result will be very convenient in proving bounds on the divergence penalty
associated with different noise distributions. In particular, assume we have a noise dis-
tribution with exponential form, then IID sample z = (z1, . . . , zn) has density µ(z) ∝

∏i exp(−ν(zi)). Now applying Lemma 3.8 we have a nice expression for the diagonal
Hessian values:

∇2
iiΦ̃(G;Dη) =

1
η

E
(z1,...,zn)∼µ

[
∇iΦ(G + ηz)

d
dzi

ν(zi)

]
=

1
η

E
(z1,...,zn)∼µ

[
1{i = i∗(G + ηz)}dν(zi)

dzi

]
. (3.14)

The above formula now gives us a natural bound on the trace of the Hessian for the three
distributions of interest.

• Laplace: For this distribution we have ν(z) = |z| =⇒ dν(z)
dz = sign(z), where the

sign function returns +1 if the argument is positive, −1 if the argument is negative,
and 0 otherwise. Then we have

Tr(∇2Φ̃(G)) =
1
η

E
(z1,...,zn)∼µ

[
∑N

i=1 1{i = i∗(G + ηz)} dν(zi)
dzi

]
=

1
η

E
z

[
∑N

i=1 1{i = i∗(G + ηz)}sign(zi)
]

≤ 1
η

E
z

[
∑N

i=1 1{i = i∗(G + ηz)}
]
=

1
η

.
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• Gumbel: Here, using zero-mean Gumbel, we have ν(z) = z + 1 + e−z−1 =⇒
dν(z)

dz = 1− e−z−1. Applying the same arguments we obtain

Tr(∇2Φ̃(G)) =
1
η

E
z

[
∑N

i=1 1{i = i∗(G + ηz)}(1− e−zi−1)
]

≤ 1
η

E
z

[
∑N

i=1 1{i = i∗(G + ηz)}
]
=

1
η

.

• Gaussian: Here we have ν(z) = z2

2 =⇒ dν(z)
dz = z. Bounding the sum of diagonal

Hessian terms requires a slightly different trick:

Tr(∇2Φ̃(G)) =
1
η

E
z

[
∑N

i=1 1{i = i∗(G + ηz)}zi

]
=

1
η

E
z

[
zi∗(G+ηz)

]
≤ 1

η
E
z
[max

i
zi] ≤

√
2 log N

η
.

where the last inequality follows according to moment generating function argu-
ments given below.

To obtain regret bounds, all that remains is a bound on the overestimation penalty.
As we showed in Lemma 3.9, the overestimation penalty is upper bounded as
ηEz∼D[Φ(z)] = ηE[maxi zi]. We can bound this quantity using moment generating func-
tions. Let s > 0 be some parameter and notice

sE[max
i

zi] ≤ log E[exp(s max
i

zi)] ≤ log ∑
i

E[exp(szi)] ≤ log N + log m(s)

where m(s) is the moment generating function2 (mgf) of the distribution D (or an upper
bound thereof). The statement holds for any positive choice of s in the domain of m(·),
hence we have

Ez∼D[Φ(z)] ≤ inf
s>0

log N + log m(s)
s

. (3.15)

• Laplace: The mgf of the standard Laplace is m(s) = 1
1−s . Choosing s = 1

2 gives us
that E[maxi zi] ≤ 2 log 2N.

• Gumbel: The mgf of the mean-zero Gumbel is m(s) = Γ(1− s)e−s. Choosing s =

1/2 gives that E[maxi zi] ≤ 2 log 2N since m(0.5) < 2.

2The mgf of a distribution D is the function m(s) := EX∼D [exp(sX)].
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• Gaussian: The mgf of the standard Gaussian is m(s) = exp(s2/2). Choosing s =√
2 log N gives E[maxi zi] ≤

√
2 log N.

Theorem 3.15. Let Φ be the baseline potential for the experts setting. Suppose we GBPA run with
Φ̃t(·) = Φ̃(·;Dη) for all t where the mean-zero distribution D is such that Ez∼D[Φ(z)] ≤ α and
∀G, Tr(∇2Φ̃(G)) ≤ β/η. Then we have

Regret≤ηα +
βT
η

.

Choosing η to optimize the bound gives Regret≤2
√

αβT. In particular, for Laplace, (mean-zero)
Gumbel and Gaussian perturbations, the regret bound becomes 2

√
2T log 2N, 2

√
2T log 2N and

2
√

2T log N respectively.

Proof. Result follows by plugging in bounds into Lemma 3.4. Mean-zero perturbations
imply that the underestimation penalty is zero. The overestimation penalty is bounded
by ηα and the divergence penalty is bounded by βT/η because of Lemma 3.14 and the
assumption that ‖gt‖∞ ≤ 1. Our calculations above showed that for the Laplace, (mean-
zero) Gumbel and Gaussian perturbations, we have α = 2 log 2N, 2 log 2N and

√
2 log N

respectively. Furthermore, we have β = 1, 1 and
√

2 log N respectively.

3.6 Online PCA

3.6.1 Spectral Functions

Many important matrix functions, including matrix norms, are spectral, which means
that they are symmetric functions of the eigenvalues. We say that F is a spectral extension
of a vector function f , i.e., F = f ◦ λ for some f : RN → R. The spectral extension of the
vector norm ‖ · ‖p is called the Schattern-p norm, denoted by ‖ · ‖λp .

Spectral functions are invariant to unitary transformations, i.e.,

F(VAVT) = F(A), for any unitary V. (3.16)

Furthermore, at points where f is differentiable, the gradient has the same eigenvectors
as A:

∇( f ◦ λ)(A) = UT∇ f (diag(λ(A)))U, (3.17)
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where U is a unitary matrix such that A = Udiag(λ(A))UT. It follows that

∇F(VAVT) = V∇F(A)VT, for any unitary matrix V. (3.18)

For the proof, see (Lewis 1996, Corollary 3.14) or (Baes 2007, Corollary 31)).

3.6.2 FTPL with Gaussian Orthogonal Ensemble

Gaussian Orthogonal Ensemble (GOE) is a distribution over real symmetric matrices
whose upper triangular entries are i.i.d. normal random variables with mean zero and
variance 1/2 and diagonal entries are i.i.d. standard normal (and also independent of
the upper triangular entries). Alternatively, if Y is an N × N random matrix with i.i.d.
Gaussian entries, then (Y + YT)/

√
2 follows GOE. The density measure µ of GOE on the

space of real symmetric matrices can thus be written as

µGOE(Z) ∝ exp

(
−∑

i<j
Z2

ij −∑
i

Z2
ii

2

)
,

Using the fact that (ZZ>)ii = ∑i,j Z2
ij, we can express µ more concisely:

µGOE(Z) = C exp(−Tr(ZZ>)/2).

The above expression shows an extremely useful property of GOE that it is a Unitary
Invariant Ensemble (UIE): for any matrix A in its support and a unitary matrix U, the
density is equal for A and UT AU.

Theorem 3.16. Let Φ be the baseline potential for the Online Dense PCA (k = 1). The GBPA
run with Φ̃(G) = Φ̃(G; GOEη) for all t has regret

√
N(η + η−1)∑T

t=1 ‖gt‖2
∞.

Proof. Duchi et al. (2011, Lemma 9) can be easily generalized (See Appendix A.2) to an
arbitrary norm to show that

‖λ(∇Φ̃(A)−∇Φ̃(B))‖1 ≤ η−1‖λ(A− B)‖2 ≤ η−1
√

N‖λ(A− B)‖∞ (3.19)

which implies that DΦ̃(Gt, Gt−1) ≤ η−1
√

N. Also, the GOE smoothing always overesti-
mates Φ̃ because Φ̃(A + ηZ) ≤ Φ̃(A) + ηΦ̃(Z). Thus, the overestimation penalty is at
most ηEZ∼GOE[Φ̃(Z)] = η

√
N. By plugging into Lemma 3.4, we obtain the desired regret

bound.

31



3.7 Multi-Armed Bandits

3.7.1 Gradient-Based Prediction Algorithms for the Multi-Armed Bandits

We give a generic template for constructing MAB strategies in Algorithm 2, and we
emphasize that this template can be viewed as a bandit reduction to the (full information)
GBPA framework. Randomization is used for making decisions and for estimating the
losses via importance sampling.

Require: fixed convex potential Φ̃ : RN → R, with ∇Φ̃ ⊂ interior(∆N).
Require: Adversary selects (hidden) seq. of loss vectors g1, . . . , gT ∈ [−1, 0]N

Initialize: Ĝ0 = 0
for t = 1 to T do

Sampling: Learner chooses it according to dist. p(Ĝt−1) = ∇Φ̃(Ĝt−1)
Cost: Learner “gains” gt,it , and observes this value
Estimation: Learner produces estimate of gain vector, Ĝt :=

gt,it
pit (Ĝt−1)

eit

Update: Ĝt = Ĝt−1 + Ĝt
end

Algorithm 2: GBPA Template for Multi-Armed Bandits.

Nearly all proposed methods have relied on this particular algorithmic blueprint. For
example, the EXP3 algorithm of Auer et al. (2003) proposed a more advanced version
of the Exponential Weights Algorithm (discussed in Section 3.5) to set the sampling dis-
tribution p(Ĝt−1), where the only real modification is to include a small probability of
uniformly sampling the arms.3 But EXP3 more or less fits the template we propose in Al-
gorithm 2 when we select Φ̃(·) = Ez∼GumbelΦ(G + ηz). We elaborated on the connection
between EWA and Gumbel perturbations in Section 3.5.

Lemma 3.17. The baseline potential for this setting is Φ(G) ≡ maxi Gi so that we can write the
expected regret of GBPA(Φ̃) as

ERegretT = Φ(GT)−E[∑T
t=1〈∇Φ̃(Ĝt−1), gt〉].

3One of the conclusions we may draw from this section is that the uniform sampling of EXP3 is not
necessary when we are only interested in expected-regret bounds and we focus on negative gains (that is,
where Ĝt ∈ [−1, 0]N). It has been suggested that the uniform sampling may be necessary in the case of
positive gains, although this point has not been resolved to the authors’ knowledge.
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Then, the expected regret of GBPA(Φ̃) can be written as:

ERegretT ≤Ei1,...,iT

[
Φ(ĜT)− Φ̃(ĜT)︸ ︷︷ ︸
underestimation penalty

+
T

∑
t=1

Eit [DΦ̃(Ĝt, Ĝt−1)|Ĝt−1]︸ ︷︷ ︸
divergence penalty

]

+ Φ̃(0)−Φ(0)︸ ︷︷ ︸
overestimation penalty

(3.20)

where the expectations are over the sampling of it, t = 1, . . . , T.

Proof. Let Φ̃ be a valid convex function for GBPA. Consider GBPA(Φ̃) run on the loss
sequence g1, . . . , gT. The algorithm produces a sequence of estimated losses Ĝ1, . . . , ĜT.
Now consider GBPA-FI(Φ̃), which is GBPA(Φ̃) run with the full information on the de-
terministic loss sequence Ĝ1, . . . , ĜT (there is no estimation step, and the learner updates
Ĝt directly). The regret of this run can be written as

Φ(ĜT)−∑T
t=1〈∇Φ̃(Ĝt−1), Ĝt〉 (3.21)

and Φ(GT) ≤ E[Φ(ĜT)] by the convexity of Φ.

It is clear that ∇Φ̃ is in the probability simplex, and note that

∂Φ̃
∂Gi

= EZ1,...,ZN 1{Gi + Zi > Gj + Zj, ∀j 6= i}

= EG̃j∗
[PZi [Zi > G̃j∗ − Gi]] = EG̃j∗

[1− F(G̃j∗ − Gi)] (3.22)

where G̃j∗ = maxj 6=i Gj + Zj and F is the cdf of Zi. The unbounded support condition
guarantees that this partial derivative is non-zero for all i given any G. So, Φ̃(G;D) satis-
fies the requirements of Algorithm 2.

3.7.2 Differential Consistency

Recall that for the full information experts setting, if we have a uniform bound on the
trace of∇2 ˜̃Φ, then we immediately have a finite regret bound. In the bandit setting, how-
ever, the regret (Lemma 3.17) involves terms of the form DΦ̃(Ĝt−1 + Ĝt, Ĝt−1), where the
incremental quantity Ĝt can scale as large as the inverse of the smallest probability of p(Ĝt−1).
These inverse probabilities are essentially unavoidable, because unbiased estimates of a
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quantity that is observed with only probability p must necessarily involve fluctuations
that scale as O(1/p).

Therefore, we need a stronger notion of smoothness that counters the 1/p factor in
‖Ĝt‖. We propose the following definition which bounds ∇2 ˜̃Φ in correspondence with
∇Φ̃.

Definition 3.18 (Differential Consistency). For constant C > 0, we say that a convex function
f (·) is C-differentially-consistent if for all G ∈ (−∞, 0]N,

∇2
ii f (G) ≤ C∇i f (G).

In other words, the rate in which we decrease pi should approach 0 as pi approaches
0. This guarantees that the algorithm reduces the rate of exploration slowly enough.
We later show that smoothings obtaining using perturbations with bounded hazard rate
satisfy the differential consistency property introduced above (see Lemma 3.22).

We now prove a generic bound that we will use in the following two sections, in order
to derive regret guarantees.

Theorem 3.19. Suppose Φ̃ is C-differentially-consistent for constant C > 0. Then divergence
penalty at time t in Lemma 3.17 can be upper bounded as:

Eit [DΦ̃(Ĝt, Ĝt−1)|Ĝt−1] ≤
NC
2

.

Proof. For the sake of clarity, we drop the t subscripts on Ĝ and Ĝ; we use Ĝ to denote
the cumulative estimate Ĝt−1, Ĝ to denote the marginal estimate Ĝt = Ĝt − Ĝt−1, and g
to denote the true loss gt.

Note that by definition of Algorithm 2, Ĝ is a sparse vector with one non-zero (and
negative) coordinate with value Ĝit = gt,it /∇it Φ̃(Ĝ). Plus, it is conditionally independent
given Ĝ. Now we can expand the expectation as

Eit [DΦ̃(Ĝ + Ĝ, Ĝ)|Ĝ] = ∑
i

P[it = i]E[DΦ̃(Ĝ + Ĝ, Ĝ)|Ĝ, it = i]

= ∑
i
∇iΦ̃(Ĝ)E[DΦ̃(Ĝ + Ĝ, Ĝ)|Ĝ, it = i]. (3.23)

For each term in the sum on the right hand side, the conditional expectation given Ĝ is
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now,

E[DΦ̃(Ĝ + Ĝ, Ĝ)|Ĝ, it = i] = DΦ̃

(
Ĝ +

gi

∇iΦ̃(Ĝ)
ei, Ĝ

)
=

g2
i

2(∇iΦ̃(Ĝ))2
∇2

iiΦ̃(Ji)

where Ji is some vector on the line segment joining Ĝ and Ĝ + gi
∇iΦ̃(Ĝ)

ei. Using differential

consistency, we have ∇2
iiΦ̃(Ji) ≤ C∇iΦ̃(Ji). Note that Ji agrees with Ĝ in all coordinates

except coordinate i where it is at most Ĝi. Note that this conclusion depends crucially on
the loss-only assumption that gi ≤ 0. Convexity of Φ̃ guarantees that∇i is a non-decreasing
function of coordinate i. Therefore, ∇iΦ̃(Ji) ≤ ∇iΦ̃(Ĝ). This means that

E[DΦ̃(Ĝ + Ĝ, Ĝ)|Ĝ, it = i] ≤ C
g2

i

2(∇iΦ̃(Ĝ))2
∇iΦ̃(Ĝ) ≤ C

2∇iΦ̃(Ĝ)
,

since g2
i ≤ 1. Plugging this into (3.23), we get

Eit [DΦ̃(Ĝ + Ĝ, Ĝ)|Ĝ] ≤∑
i
∇iΦ̃(Ĝ)

C
2∇iΦ̃(Ĝ)

=
NC
2

.

3.7.3 Hazard Rate analysis

Despite the fact that perturbation-based multi-armed bandit algorithms provide a nat-
ural randomized decision strategy, they have seen little applications mostly because they
are hard to analyze. But one should expect general results to be within reach: the EXP3
algorithm can be viewed through the lens of perturbations, where the noise is distributed
according to the Gumbel distribution. Indeed, an early result of Kujala and Elomaa (2005)
showed that a near-optimal MAB strategy comes about through the use of exponentially-
distributed noise, and the same perturbation strategy has more recently been utilized
in the work of Neu and Bartók (2013) and Kocák et al. (2014). However, a more gen-
eral understanding of perturbation methods has remained elusive. For example, would
Gaussian noise be sufficient for a guarantee? What about, say, the Weibull distribution?

In this section, we show that the performance of the GBPA(Φ̃(G;D)) can be character-
ized by the hazard function of the smoothing distribution D. The hazard rate is a standard
tool in survival analysis to describe failures due to aging; for example, an increasing haz-
ard rate models units that deteriorate with age while a decreasing hazard rate models
units that improve with age (a counter intuitive but not illogical possibility). To the best
of our knowledge, the connection between hazard rates and design of adversarial bandit

35



algorithms has not been made before.

Definition 3.20 (Hazard rate function). Assume we are given a distribution D whose probabil-
ity density function is given by µD and whose cumulative density function is given by ϕD. The
hazard rate function of D is

hazD(x) :=
µD(x)

1− ϕD(x)
.

We will use hazD without an argument to denote the supremal value obtained by hazD on its
domain; we drop the subscript D when it is clear from the context.

For the rest of the section, we assume that F(x) < 1 for all finite x, so that hazD is well-
defined everywhere. This assumption is for the clarity of presentation but is not strictly
necessary.

Theorem 3.21. The regret of the GBPA for multi-armed bandits (Algorithm 2) with Φ̃(G;Dη) =

EZ1,...,Zn∼Dmaxi{Gi + ηZi} is at most:

ηEZ1,...,Zn∼D

[
max

i
Zi

]
︸ ︷︷ ︸

overestimation penalty

+
N sup hD

η
T︸ ︷︷ ︸

divergence penalty

Proof. Due to the convexity of Φ, the underestimation penalty is non-positive. The over-
estimation penalty is clearly at most EZ1,...,Zn∼D[maxi Zi], and Lemma 3.22 proves the
N(sup hazD) upper bound on the divergence penalty.

It remains to prove the tuning parameter η. Suppose we scale the perturbation Z by
η > 0, i.e., we add ηZi to each coordinate. It is easy to see that E[maxi=1,...,n ηXi] =

ηE[maxi=1,...,n Xi]. For the divergence penalty, let Fη be the CDF of the scaled random
variable. Observe that Fη(t) = F(t/η) and thus fη(t) = 1

η f (t/η). Hence, the hazard rate
scales by 1/η, which completes the proof.

Lemma 3.22. Consider implementing GBPA with potential function

Φ̃(G;Dη) = EZ1,...,Zn∼Dmax
i
{Gi + ηZi}.

The divergence penalty on each round is at most NhazD.

Proof. Recall the gradient expression in Equation 3.22. We upper bound the i-th diagonal
entry of the Hessian, as follows. First, let where G̃j∗ = maxj 6=i{Gj +Zj}which is a random
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variable independent of Zi. Now,

∇2
iiΦ̃(G;Dη) =

∂

∂Gi
EG̃j∗

[1− F(G̃j∗ − Gi)] = EG̃j∗

[
∂

∂Gi
(1− F(G̃j∗ − Gi))

]
= EG̃j∗

f (G̃j∗ − Gi)

= EG̃j∗
[h(G̃j∗ − Gi)(1− F(G̃j∗ − Gi))] (3.24)

≤ (sup h)EG̃j∗
[1− F(G̃j∗ − Gi)]

= (sup h)∇iΦ̃(G).

We have just established that Φ̃ is differentially consistent with parameter C = hazD. We
apply Theorem 3.19 and the proof is complete.

Corollary 3.23. Algorithm 2 run with Φ̃ that is obtained by smoothing Φ using any of the dis-
tributions in Table 3.1 (restricted to a certain range of parameters) has an expected regret of order
O(
√

TN log N).

Table 3.1: Distributions that give O(
√

TN log N) regret FTPL algorithm. The parameter-
ization follows Wikipedia pages for easy lookup. We denote the Euler constant (≈ 0.58)
by γ0.

Distribution supx hazD(x) E[maxN
i=1 Zi] Parameters

Gumbel(µ = 1, β = 1) 1 as x → 0 log N + γ0 N/A
Frechet (α > 1) at most 2α N1/αΓ(1− 1/α) α = log N
Weibull(λ = 1, k ≤ 1) k at x = 0 O(

(
1
k

)
!(log N)

1
k ) k = 1

Pareto(xm = 1, α) α at x = 0 αN1/α/(α− 1) α = log N
Gamma(α ≥ 1, β) β as x → ∞ log N + (α −

1) log log N − log Γ(α) +
β−1γ0

β = α = 1
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CHAPTER IV

Follow the Perturbed Leader Analysis via Differential

Privacy

The core idea from the previous chapter is that the second derivatives can be used as a
measure of stability of online learning algorithms. Another area of research for which sta-
bility is a core component is differential privacy (DP). As Dwork and Roth (2014) observed,
“differential privacy is enabled by stability and ensures stability”. The natural robustness
of DP algorithms has found many useful applications, most notably to preventing false
discovery in statistical analysis (Bassily et al. 2016; Cummings et al. 2016; Dwork et al.
2015; Nissim and Stemmer 2015).

The utility of DP as a stability notion for analyzing specific online learning algorithms
also has been noted before. The connection between Exponential Weights Algorithms and
DP has been known since the early stages of DP literature; see, for example, Dwork and
Roth (2014, Section 11.2). Dwork et al. (2014) showed that for online sparse PCA, FTPL
with Gaussian Orthogonal Ensemble can be seen as an extension of Gaussian Mechanism,
one of the two fundamental DP algorithms.

In this chapter, we generalize such observations and take a systematic approach to
using the DP framework to design and analyze FTPL algorithms. We define the term
one-step privacy as a relaxation of DP and show that it is a sufficient condition for low re-
gret. Leveraging the powerful tools developed in the DP literature, we effortlessly derive
generic first-order regret bounds for FTPL, which are notoriously hard to obtain.

We stress that this chapter does not study the design of low-regret algorithms that
satisfy the privacy condition; indeed there is already substantial existing work along these
lines (Agarwal and Singh 2017; Jain et al. 2012; Thakurta and Smith 2013; Tossou and
Dimitrakakis 2017). Our goal is instead to show that, in and of itself, the DP methodology
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is quite well-suited to design randomized learning algorithms with excellent guarantees.

4.1 Preliminaries

4.1.1 Differential Privacy

We introduce the basic definitions and properties of differential privacy (DP). For a
more comprehensive overview, see an excellent survey by Dwork and Roth (2014). Fol-
lowing the convention in the privacy literature, we use the word mechanism to refer to a
stochastic mapping.

We will define DP in terms of a distance measure between random distributions as in
(Dwork et al. 2010).

Definition 4.1. Let Y, Z be random variables taking values in RN. The δ-approximate max
divergence of Y and Z is:

Dδ
∞(Y, Z) = sup

B⊆RN :P[Y∈B]>δ

log
P[Y ∈ B]− δ

P[Z ∈ B]
(4.1)

When δ = 0, we drop the superscript δ.

Note that the max divergence is not a metric, because it is asymmetric and does not
satisfy the triangle inequality.

Definition 4.2. We say that a mechanismM is (ε, δ)-differentially private (DP) with respect
to a set S if for every a, a′ ∈ dom(M) such that a′ − a ∈ S, we have

Dδ
∞(M(a),M(a′)) ≤ ε.

IfM is (ε, 0)-DP, we simply say it is ε-DP.

The DP definition requires a uniform bound on the max divergence. Because we pri-
marily analyze DP mechanisms that take a vector as input, it is useful to allow the bound
to scale in the distance between two inputs.

Definition 4.3 (Lipschitz Privacy). We say that a mechanism M is (ε, δ)-Lipschitz private
with respect to a norm ‖ · ‖ (and S) if for all a, a′ ∈ dom(M) (such that a− a′ ∈ S),

Dδ
∞(M(a),M(a′)) ≤ ε‖a− a′‖.
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Note that S is now an optional part of the definition.

An important property of DP is the post-processing immunity, which means that the
composition of a DP mechanism with any function(s) is still DP.

Lemma 4.4 (Post-Processing Immunity). For any random variables Y and Z,

Dδ
∞( f (Y), f (Z)) ≤ Dδ

∞(Y, Z).

Dwork et al. 2010 provided the following alternative characterization of δ-
approximate max divergence. The condition (iii) does not appear in the original state-
ment, but follows from their proof.

Lemma 4.5. (Dwork et al. 2010, Lemma 2.1.1) Let Y, Z be random variables over B with prob-
ability density function µY, µZ respectively. Then, Dδ

∞(Y, Z) ≤ ε, if and only if there exits a
random variable Y′ such that

(i) supB⊆B |P[Y ∈ B]−P[Y′ ∈ B]| ≤ δ,

(ii) Dδ
∞(Y′, Z) ≤ ε, and

(iii) µY(b) ≤ µY′(b) if and only if µY(b) ≤ eεµZ(b).

In short, we can alter Y into Y′ by moving no more than δ probability mass from
{b ∈ B : µY(b) > eεµZ(b)} to {b ∈ B : eεµY(b) < µZ(b)} such that D∞(Y′, Z) is bounded.

As an immediate corollary, we obtain the following characterization of DP that is use-
ful when we want to directly analyze the ratios between probability density functions.

Theorem 4.6. Let Y, Z be random variables. Then, Dδ
∞(Y, Z) ≤ ε if and only if

Pb∼Y

[
log µY [b]

µZ[b]
> ε

]
≤ δ (4.2)

where P is over the random sample b from Y .

We now state a result showing that if Y and Z are close in max divergence then the
expectations of a bounded function of Y and Z are also close.

Lemma 4.7. Let Y and Z be random variables taking values in B such that Dδ
∞(Y, Z) ≤ ε. Then

for any non-negative function f : B → [0, F], we have

E[ f (Y)] ≤ eεE[ f (Z)] + δF (4.3)
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Proof. Let B = {b ∈ B : µY(b) > eεP[Z = b]}, and BC = B − B. Let Y′ be the random
variable satisfying the conditions of Lemma 4.5.

E[ f (Y)] =
∫

S
f (b)µY(b)db +

∫
BC

f (b)µY(b)db

=
∫

B
f (b) (µY(b)− µY′(b)) db +

∫
B

f (b)µY′(b)db +
∫

BC
f (b)µY(b)db

≤ F
(
P[Y ∈ B]−P[Y′ ∈ B]

)
+
∫
B

f (b)µY′(b)db

≤ Fδ +
∫
B

f (b)eεµZ(b)db = Fδ + eεE[Z]

where the second-to-last inequality is due to Lemma 4.5.(iii) and the last inequality is due
to Lemma 4.5.(i)

Lemma 4.8. Let Y and Z be random variables taking values in B such that Dδ
∞(Y, Z) ≤ ε. Then

for any bounded function f : B → [−F, F], we have

|E[ f (Y)]−E[ f (Z)]| ≤ (eε + δ− 1)F. (4.4)

Proof. The proof is very similar to that of Lemma 4.7 Let B = {b ∈ B : P[Y = b] >

eεP[Z = b]}, and BC = B − B. Let Y′ be the random variable satisfying the conditions of
Lemma 4.5. As a shorthand notation, define µY−Z(b) = µY(b)− µZ(b).

|E[ f (Y)]−E[ f (Z)]| =
∣∣∣∣∫B

f (b) (µY−Y′(b) + µY′−Z(b) + µY−Z(b)) db
∣∣∣∣

≤
∣∣∣∣∫B

f (b)µY−Y′(b)db +
∫
B

f (b)µY′−Z(b)db
∣∣∣∣

≤ F
∣∣∣∣∫B

µY−Y′(b)db
∣∣∣∣+ F

∣∣∣∣∫B µY′−Z(b)db
∣∣∣∣

≤ F(δ + eε − 1).

This work focuses on DP mechanisms that add a random noise to the input. We in-
troduce two such mechanisms that are fundamental building blocks in the DP literature.
The proofs can be found in the Appendix.

Lemma 4.9 (Laplace Mechanism). DefineM : RN → RN such thatM(a) = a + Z where
Z ∼ Lap(u

ε )
N is a vector of N i.i.d. samples from Laplace distribution with scaling parameter

u/ε. Then,M is ε-DP with respect to {a : ‖a‖1 ≤ u}, and ε-Lipschitz private with respect to
‖ · ‖1 and RN.
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Lemma 4.10 (Gaussian Mechanism). Define M : RN → RN such that M(Ã) = Ã + Z
where Z is a vector of N i.i.d. samples from Gaussian distribution with standard deviation σ =

(ε−1u)2 log(2/δ)I. Then,M is (ε, δ)-DP with respect to {Ã : ‖Ã‖2 ≤ u}.

Compared to the Laplace mechanism, the Gaussian mechanism permits a greater
change in the input (as ‖a‖2 ≤ ‖a‖1), but achieves a weaker privacy guarantee with
δ > 0.

4.1.2 One-Step Privacy

Note that we can write FTPL as a composition of a (stochastic) mechanismM : RN →
RN that adds a noise to the input, and a (deterministic) linear optimization oracle O :
RN → X :

xFTPL
t = O(M(Lt−1)),

Similarly, write BTPL as

xBTPL
t = xFTPL

t+1 = O(M(Lt−1 + `t)),

Suppose that M is (ε, δ)-DP with respect to Y . By the post processing immunity
(Lemma 4.4), we have for every t that

Dδ
∞(xFTPL

t , xBTPL
t ) =Dδ

∞(O(M(Lt−1)),O(M(Lt)))

=Dδ
∞(M(Lt−1),M(Lt)) ≤ ε.

This shows that xFTPL
t and xBTPL

t follow very similar distributions, which implies they will
suffer similar total regret.

Note that this is not equivalent to saying that FTPL algorithm is DP, which would
imply that the distribution over the whole sequence of outputs x1:T is robust against a
small change in the loss sequence. The following definition of one-step privacy highlights
this distinction.

Definition 4.11 (One-step privacy). An online learning algorithm is (ε, δ)-one-step differen-
tially private if there exists ε, δ such that Dδ

∞(xt, xt+1) ≤ ε for all t = 1, . . . , T given any loss
sequence.

One-step privacy is a powerful condition on the stability of FTPL (and online learning
algorithms in general), from which we can derive generic regret bounds. The following
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theorem, relating privacy to regret, provides a powerful tool which we further develop in
this chapter.

Theorem 4.12. If A is (ε, δ)-one-step DP for a loss-only OLO problem with ε ≤ 1, its expected
regret is at most:

2εL∗T + 3E[Regret(A+)T] + δ‖X ‖∑T
t=1 ‖`t‖?

where A+ is a fictitious algorithm plays at time t what A would play at time t + 1.

Proof. Using Lemma 4.7, we have for every t,

E[〈xt, `t〉)] ≤ eεE[〈xt+1, `t〉] + δ‖X ‖‖`t‖?.

By summing over t, we have

E
[
∑T

t=1 Loss(A)t

]
≤ eεE[∑T

t=1 Loss(A+)t] + δ ∑T
t=1 ‖X ‖‖`t‖?

≤ eε(L∗T + E[Regret(A+)T]) + δ ∑T
t=1 ‖X ‖‖`t‖?.

Subtract L∗T from each side and get:

(eε − 1)L∗T + eεE[Regret(A+)T] + δ‖X ‖∑T
t=1 ‖`t‖?.

To complete the proof, we use the trivial upper bounds eε ≤ 1 + 2ε ≤ 3, which hold for
ε ≤ 1.

In this chapter, we only consider the loss-only settings where the above result suf-
fices. For completeness, however, we provide a similar statement for the loss/gain setting
based on the additive bound from Lemma 4.8.

Theorem 4.13. If an online learning algorithm A is (ε, δ)-uniformly-one-step DP for an OLO
problem with ε < 1, then its expected regret is at most:

∑T
t=1(2ε + δ)‖X ‖‖`t‖? + E[Regret(A+)T]

where A+ is a fictitious algorithm plays at time t what A would play at time t + 1.
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4.2 Generic Bounds

With the DP framework, we can improve Theorem 3.10 and establish that FTPL with
Gaussian noise in fact enjoys the first-order regret bound that scales in L∗T (disregarding
logarithmic factors). Put differently, FTPL with Gaussian noise is able to adapt to the
input if there is a strong signal for the best action, a property that was not discovered in
previous analysis.

Theorem 4.14. Consider a loss-only OLO problem. Let R = ‖X ‖2‖Y‖2. FTPL with Gaussian
noise achieves expected regret of order O

( 4
√

N
√

RL∗T log T +
√

NR log T
)
.

Proof. Let σ = ε−1‖Y‖22 log(2/δ), where ε, δ will be determined later. By Lemma 4.10
and Lemma 4.4, FTPL with N (0, σI) is (ε, δ)-one-step DP with respect to Y . Also note
that the regret bound for the Gaussian BTPL is σ‖X ‖2

√
2N.

We now apply Theorem 4.12 and get the regret bound of:

2εL∗T + 5σ‖X ‖2
√

N + δ‖X ‖2 ∑T
t=1 ‖`t‖2 ≤ 2εL∗T + 10ε−1R

√
N log(2/δ) + δTR.

Set δ = (2TR)−1, so that the last term becomes a constant. Then, choose ε =

min( 4
√

N
√
(R log T)/L∗T, 1). If ε = 1, then we must have L∗T ≤

√
NR log T, then, which

gives O(
√

NR log T) regret. Otherwise, we obtain O( 4
√

N
√

RL∗T log T) regret.

When L∗T � ‖Y‖2T, our bound is a major improvement over Theorem 3.10. For
example, when L∗T = O(R

√
T), our bound gives O(R 4

√
NT).

4.3 Experts Problem

We first state our main result, which provides a generic sufficient condition for the
distributions that FTPL can use to match the optimal first-order regret.

Theorem 4.15. For the loss-only experts setting, FTPL with Laplace, Gumbel, Frechet, Weibull,
and Pareto noise (i.i.d. for each of N coordinates), with a proper choice of distribution parameters,
all achieve O(

√
L∗T log N + log N) expected regret.

Although we are not the first to find FTPL with the above regret bound, L∗T bound
for FTPL with any of the mentioned noise is not found in the literature, with the excep-
tion of Gumbel noise that is equivalent to Exponential Weights. In fact, previous FTPL
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algorithms with L∗T regret bound all relied on one-sided perturbation that subtract from
the cumulative loss; Kalai and Vempala (2005) used the negative exponential noise and
Erven et al. (2014) used the dropout noise that is effectively a negative multinomial noise.

Symmetric distributions, on the other hand, were previously shown to achieve only
O(
√

T) regret: such as Gaussian noise Section 3.5, random-walk noise (Devroye et al.
2013), and a large family of symmetric noises (Rakhlin et al. 2012). Our DP-based analysis
shows that such discrepancy was merely due to the lack of proper analysis tools.

4.3.1 Connections between One-Step-Privacy and Bounded Hazard Rates

Let D be an absolutely continuous distribution over R with probability density func-
tion µD and cumulative density function ΦD. Let f̃D andMD be functions from RN to
R defined as f̃D(x) = E[maxi∈[N](xi + Zi)] andMD(x) = x + Z respectively, where Z in
both definitions is a vector of N i.i.d. samples from D.

In Section 3.7, we showed that if hazD ≤ ε, then f̃D is ε-differentially consistent. We
extend this result to connect hazard rate to Lipschitz privacy.

Proposition 4.16. If f̃D is differentially consistent, then the mapping from a ∈ RN to a random
sample drawn from ∇ f̃D(a) is ε-Lipschitz private with respect to ‖ · ‖1.

Proof. First, note that the second derivative vector ∇2
i· f̃D = (∇2

i1 f̃D, . . . ,∇2
iN f̃D) satisfies

that the i-th coordinate is the only positive coordinate, and that its coordinates add up to
0. So, ‖∇2

i· f̃D‖∞ = ∇2
ii f̃D.

Define qi(u) = ∇i f̃D(a′ + (a− a′)u). Its derivative is

q′i(u) = 〈∇2
i· f̃D(a + (a− a′)u), a′ − a〉

≤ ‖∇2
i· f̃D(a + (a− a′)u)‖∞‖a′ − a‖1

≤ ∇2
ii f̃D(a + (a′ − a)u)‖a′ − a‖1

≤ ε∇i f̃D(a + (a′ − a)u)‖a′ − a‖1

= εqi(u)‖a′ − a‖1

The last inequality is from our differential consistency assumption. It follows that for any
u ∈ [0, 1], we have

q′i(u)
qi(u)

=
d

du
log(qi(u)) ≤ ε‖a′ − a‖1
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and therefore

ln ∇i f̃D(a)
∇i f̃D(a′)

= log qi(1)− log qi(0) =
∫ 1

0

d
du

log(qi(u)) du ≤ ε‖a′ − a‖1.

Note that∇ f̃D(x) is always a probability vector and in particular,∇i f̃D(x) is the prob-
ability that FTPL algorithm would play ei given a cumulative loss vector x. Thus the
above proposition in fact proves that FTPL is one-step private.

Corollary 4.17. If hazD ≤ ε, then FTPL withDN (sampling N i.i.d. samples fromD to generate
noise) is ε-one-step Lipschitz private.

4.3.2 Optimal Family of FTPL Algorithms

We will now prove Theorem 4.15. All listed distributions have max hazard rate of ε

(for the parameter choice, see Table 3.1). From Corollary 4.17 and post-processing immu-
nity (Lemma 4.4), we conclude that FTPL with any of the listed distributions is ε-Lipschitz
private with respect to the L1-norm. The loss set for experts setting, however, is bounded
in the L∞-norm.

To address this gap, we will show that from the privacy perspective, the worst case is
when `t has only one non-zero element and thus ‖`t‖1 = ‖`t‖∞. Note that in the experts
setting, the output of FTPL is always a vertex of the simplex. Consider an arbitrary noise
vector Z. If Lt,i + Zi < Lt,j + Zj, then Lt,i + zi < Lt,j + Zj + α for any α > 0. So, {Z ∈
RN : ei = O(Lt + Z)} ⊆ {Z ∈ RN : ei = O(Lt + Z + `(−i))} for any loss vector `(−i) ∈ Y
whose i-th coordinate is zero. In other words, adding any loss to coordinates other than i
can only increase the probability of playing ei. So, for any fixed `1,t−1 ∈ Y t−1,

sup
i∈[N],`t∈Y

P[xFTPL
t = ei]

P[xFTPL
t+1 = ei]

= sup
i∈[N]

P[xFTPL
t = ei]

inf`t∈Y P[xFTPL
t+1 = ei]

= sup
i∈[N]

P[xFTPL
t = ei]

inf`t :‖`t‖1≤1 P[xFTPL
t+1 = ei]

= sup
`t :‖`t‖1≤1

sup
i∈[N]

P[xFTPL
t = ei]

P[xFTPL
t+1 = ei]

.

The BTPL regret is of order (log N)/ε for all distributions. Applying Theorem 4.12 with
ε = min(

√
Regret(BTPL)T)/L∗T, 1) completes the proof.
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4.4 Online PCA

The general intuition from the DP-based regret analysis is that in order to achieve one-
step privacy with respect to a loss set bounded in some norm, our noise distribution’s
density function must decay exponentially in the same norm. This motivates our Laplace-
on-Diagonal Orthogonal Invariant Ensemble (LOD). The LOD with scaling parameter 1/ε

has probability density function p(Z) ∝ exp(−ε‖λ(Z)‖1).

Lemma 4.18. LOD mechanism, defined asM : RN×N → RN×N withM(A) = A + Z, where
Z is a sample from LOD(u/ε), is ε-differentially private with respect to the set {X ∈ RN×N :
‖λ(X)‖1 ≤ u}.

Proof. We will prove this by showing a generic reduction technique to the vector case. In
particular, suppose that a distribution D over matrices has density function of the form
p(Z) = Cq(‖λ(Z)‖) for a normalizing constant C, arbitrary function of vectors q, and
some norm ‖ · ‖. Then, we will show that the privacy guarantee of distribution D′ over
vectors whose density function is some constant times q extends to the matrices.

Let A, A′, B be matrices. Then,

p(B−A)
p(B−A′) =

q(‖λ(B−A)‖)
q(‖λ(B−A′)‖) .

By triangle inequality, ‖λ(B− A)‖ − ‖λ(B− A′)‖ ≤ ‖λ(A− A′)‖. So,

sup
A,A′,B∈RN×N

‖λ(A−A′)‖≤u

p(B− A)

p(B− A′)
≤ sup

a,a′∈RN

‖a−a′‖≤u

q(a)
q(a′)

.

Hence, if adding a noise fromD′ achieves ε-DP with respect to a set of vectors bounded in
‖ · ‖, then adding a noise from D achieves ε-DP with respect to a set of matrices bounded
in ‖λ(·)‖.

To sample from LOD, first sample an orthogonal matrix U from N-dimensional Haar
measure (uniform over all N-by-N orthogonal matrices), sample a vector Λ iid from
Laplace distribution, and finally take U>ΛU. This requires O(N2 log N) time using but-
terfly matrices Genz 1998 and it is performed only once; for oblivious adversaries, sam-
pling once at the beginning and sampling fresh samples every round is equivalent as far
as the expected regret is concerned (Kalai and Vempala 2005).
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Theorem 4.19. FTPL with LOD achieves O(
√

L∗k log(N/k) + k log(N/k)) expected regret on
Online k-Sparce PCA.

Proof. By post-processing immunity (Lemma 4.4), it follows from Lemma 4.18 that FTPL
using LOD(1/ε) is one-step private for Online Sparse PCA. For the BTPL regret, we have
an upper bound of k(1 + log N/k))/ε (Appendix). To complete the proof, we apply The-
orem 4.12 with ε = min(

√
k(1 + log(N/k))/L∗, 1).

Applying LOD to the dense case, however, would result in an extra
√

N factor in the
regret bound, matching the regret bounds of rank-1 matrix perturbation algorithm by
Garber et al. (2015). Instead, we use the Gaussian-on-Diagonal Orthogonal Invariant Ensem-
ble (GOD) which has density function of

p(Z) ∝ exp(−‖λ(Z)‖2
2/(2σ2)).

Similarly to LOD, we can independently sample the eigenvectors from Haar measure and
eigenvalues from multivariate Gaussian.

Theorem 4.20. FTPL with GOD achieves O
(

4
√

N log N log T
√

L∗T +
√

N log T log N
)

regret
on Online Dense PCA.

Proof. Using the same arguments in the proof of Lemma 4.18 and the alternative char-
acterization of (ε, δ)-DP (Theorem 4.6), we can extend the guarantees of the Gaus-
sian mechanism (Lemma 4.10) to the matrices. It follows that FTPL with GOD with
σ = 2

√
N log(2/δ)/ε is (ε, δ)-private with respect to {A ∈ RN×N : ‖λ(A)‖2 ≤

√
N},

which contains the loss set Y .
For the BTPL regret bound, we have E[‖λ(Z)‖∞] = O(σ

√
log N).

We apply Theorem 4.12 with δ = T−1, and ε = min( 4
√

N log T log N/
√

L∗, 1) to com-
plete the proof.

4.5 Adversarial Multi-Armed Bandits

In MAB, the standard importance sampling scheme for unbiased estimates has
(1/pt,it) scaling, which produces estimated loss vectors that are unbounded. The problem
with applying the DP tools to MAB is that the DP mechanisms are originally designed to
protect the privacy of an individual in the dataset. As a result, they are not well-suited
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to provide stability guarantees when there is a large change in the input, let alone an
unbounded change.

In this section we see two different methods to address this issue. The first method
is mixing in the uniform distribution to lower bound pt,i, which in turn upper bounds
(1/pt,it). The second method is changing the estimation scheme to produce a biased esti-
mate.

For this section, we define additional notations as follows. For a fixed sequence of es-
timated losses l̂1:t, consider running only the decision step of a bandit algorithmA on l̂1:t as
if it is a full information (experts) setting; we use ˆLoss(A)T to denote the loss accumulated
in this run. For deriving an expected regret of A, we would then take the expectation of

ˆLoss(A)T over all randomness in sampling it. Because it is conditionally independent
given i1:t−1, it suffices to consider each time step separately and sum over t ∈ [T]. For a
more detailed exposition of this, see (Abernethy et al. 2012).

4.5.1 Mixing in Uniform Distributions

Given xt as an output from an experts algorithm A, our bandit algorithm Āγ samples
an arm it from

pt = xt(1− γ) + ( 1
N , . . . , 1

N )γ (4.5)

(for some γ ≥ 0), and use the standard inverse propensity weighting estimation:

l̂t =
`t,it
pt,it

eit . (4.6)

Theorem 4.21. Assume A is an ε-one-step Lipschitz private algorithm for the experts setting.
Then the bandit algorithm Āγ for any γ ≥ ε has expected regret at most

ERT + γT +
T

∑
t=1

ε‖`t‖2
2

where RT is the regret ofA+, a fictitious algorithm that plays at time t whatA would play at time
t + 1, given full information of `1:t.

Proof. Let x1:t be A’s output, and p1:t be defined as in (4.5). First note that because l̂t is an
unbiased estimate of `, ELoss(Aγ)T = E ˆLoss(Aγ)T. Hence, it is sufficient to consider the
expected regret on the estimated loss sequence.

From the one-step privacy of A, it follows pt,i/pt+1,i ≤ xt,i/xt+1,i ≤ exp(ε‖l̂t‖1), and
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thus
pt+1,i ≥ exp(−ε‖l̂t‖1)pt,i ≥ (1− ε‖l̂t‖1)pt,i

where the last inequality follows from ε‖l̂t‖1 ≤ ε/γ ≤ 1.
For any l̂t, we have:

〈pt − pt+1, l̂t〉 = ∑N
i=1(pt,i − pt+1,i)l̂t,i ≤ ∑N

i=1 εpt,i l̂2
t,i.

Taking the expectation of the above over i ∼ pt, the sum disappears because only the
sample coordinate has non-zero value in l̂t, and we have

N

∑
i=1

pt,i

(
εpt,i

(
`t,i

pt,i

)2
)

=
N

∑
i=1

ε`2
t,i = ε‖`t‖2

2.

We can thus conclude E[ ˆLoss(Āγ)t − ˆLoss(Ā+
γ )t]] ≤ ε‖`t‖2

2. To complete the proof, we
combine it with a trivial upper bound ˆLoss(Ā+)t ≤ ˆLoss(A+)t + γ.

Applying Corollary 4.17, we obtain the following result. The regret bound and the
distributions used are the same as Theorem 3.23, but the algorithms are different.

Corollary 4.22. For MAB, FTPL with Laplace, Gumbel, Frechet, Weibull, and Pareto noise (i.i.d.
for each of N coordinates) with a proper choice of distribution parameters (Table 3.1), uniform
distribution mixing (4.5), and estimation scheme (4.6), all achieve an expected regret of order

O
(√

log N ∑T
t=1(‖`t‖2

2 + 1)
)

.

4.5.2 Biased Sampling

Neu (2015) proposed the FTPL-TRIX algorithm, which achieves first-order regret
bound of O(

√
NL∗T log N) for combinatorial bandits problem, which includes MAB as

a special case. We focus on the multi-armed bandits to simplify formulation so that it is
easy to see how the DP framework is being applied. Our results in this section, however,
can be extended to combinatorial settings.

The base algorithm for FTPL-TRIX is FTPL with a truncated Exponential distribution.
From the privacy perspective, truncation of the noise distribution converts a ε-one-step
DP algorithm to a weaker (ε, δ)-one-step DP algorithm. There is now a δ probability that
the distribution over algorithm’s prediction changes rapidly, in a multiplicative sense,
within a single step.
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The estimation scheme, on the other hand, may benefit from the fact that (ε, δ)-one-
step DP allows to change from small pt,i to pt+1,i = 0, which would avoid having large
values of l̂t,i.

The δ parameter can be tuned to attain the optimal tradeoff between algorithmic sta-
bility and input stability, and it is indeed crucial in achieving the first-order regret bound.
We formalize this intuition in the following theorem. The proof mostly follows (Neu 2015)
and can be found in the Appendix.

Theorem 4.23. LetA be an FTPL algorithm that is (ε, δ)-Lipschitz one-step privacy with respect
to {` : ‖`‖1 ≤ 1/ε}. That is, there exists a set Z such that P[Z /∈ Z ] ≤ δ,

log
P[Lt−1 + Z = b]

P[Lt + Z = b]
≤ ε‖`t‖1 for all Z ∈ Z .

Furthermore, suppose supZ∈Z ‖Z‖∞ ≤ B. Then, A applied to MAB with a biased estimation
scheme

ˆ̀t,it =
`t,it

pt,it+ε (4.7)

has expected regret at most

E‖Z‖∞ + δT + (2ε + δ)N(L∗T + B + ε−1).

Note that the existence of Z is simply a restated definition of (ε, δ)-Lipschitz privacy
(Theorem 4.6) for FTPL. The only extra condition that the δ-probability event happens at
the tail of the distribution is not prohibitive, as reasonable noise-adding private mecha-
nisms should attempt to reduce the amount of noise and concentrate around zero. For
example, the Laplace and Gaussian mechanism both satisfy this property.

Proof. If Z /∈ Z , then we use the trivial regret bound T. In expectation, this becomes the
δT term. Let Ā be the algorithm that resamples Z until Z ∈ Z , and p1, . . . , pt be its output.

We will first show that the biased estimate L̂T,i stays close to L∗T for every i. Let τ be
the last time in which i was chosen by Ā. Since pτ,i > 0, L̂τ−1,i ≤ L̂τ−1,i∗ + B ≤ L̂∗T + B.
Hence,

L̂T,i = L̂τ−1,i + l̂τ,i ≤ L̂∗T + B + 1/ε ≤ L∗T + B + 1/ε. (4.8)

The last inequality holds because L̂ underestimates the true cumulative loss: E[l̂t,i] =

pt,i
`t,i

pt,i+ε ≤ `t,i.
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Now suppose the following chain of inequality holds true:

ELoss(A)t = E ˆLoss(A)t + ε
N

∑
i=1

l̂t,i (4.9)

≤ E ˆLoss(Ā)t + (ε + δ)
N

∑
i=1

l̂t,i (4.10)

≤ E ˆLoss(Ā+)t + (2ε + δ)
N

∑
i=1

l̂t,i (4.11)

where the expectation is over algorithm’s randomness.
Then, by summing over t and subtracting by L∗, we have

ERegret(A)T ≤ Regret(Ā+)T + (2ε + δ)
N

∑
i=1

L̂T,i.

Combined with (4.8), it follows

ERegret(A)T ≤ Regret(Ā+)T + (2ε + δ)N(L∗T + B + 1/ε),

as desired.
It remains to prove the inequalities (4.9)-(4.11). We will first prove (4.9):

E ˆLoss(A)t =
N

∑
i=1

pt,i l̂t,i = pt,it
`t,it

pt,it + ε
= `t,it − ε

`t,it
pt,it + ε

= `t,it − εl̂t,it = `t,it − ε
N

∑
i=1

l̂t,i

= ELoss(A)t − ε
N

∑
i=1

l̂t,i

Next, we prove (4.10), which follows from the fact thatA and Ā differ with probability
at most δ. When they differ with probability δ, the ∑N

i=1 l̂t,i is the trivial bound for the
difference in the losses, and therefore

E ˆLoss(A)t −E ˆLoss(Ā)t ≤ δ
N

∑
i=1

l̂t,i

Finally, we will prove (4.11) using the same argument as in the proof of Theorem 4.21:

〈pt − pt+1, l̂t〉 ≤ ∑N
i=1 εpt,i l̂2

t,i ≤ ∑N
i=1 εl̂t,i
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Corollary 4.24. EXP3, with the change of its unbiased estimator to the biased estimator (4.7), has
regret of order O(

√
L∗N log N + N log N log T)).

Proof. Note that EXP3 uses FTRL with entropy regularizer as its subroutine, which is
identical to FTPL with Gumbel distribution (Hofbauer and Sandholm 2002). The Gum-
bel distribution (with mean 0, β = ε) has hazard rate at most ε, which makes it ε-
Lipschitz private. Hence, we can arbitrarily choose B for applying Theorem 4.23. Set
B = (log NT√

L∗
)/ε and Z = {Z : ‖Z‖∞ ≤ B}. Note for each coordinate Zi of Z, we have

P[Zi ≥ B] = 1− exp(− exp(−εB) ≤ exp(−εB) =
√

L∗
NT .

By union bound, P[Z /∈ Z ] ≤ NP[Z1 ≥ B] ≤
√

L∗T.
The BTPL regret is (1 + log N)/ε. By choosing ε =

√
log N/

√
L∗N, we obtain the

claimed regret bound.

Corollary 4.25. FTPL with Gaussian noise with the biased estimator (4.7) has regret of order
O(
√

L∗N log N 4
√

log T + N log T)).
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Yousefian, Farzad, Angelia Nedić, and Uday V. Shanbhag (2010). “Convex nondifferen-
tiable stochastic optimization: A local randomized smoothing technique”. In: Proceed-
ings of American Control Conference (ACC).

Zinkevich, Martin (2003). “Online Convex Programming and Generalized Infinitesimal
Gradient Ascent.” In: International Conference on Machine Learning (ICML).

59

http://classes.soe.ucsc.edu/cmps290c/Spring09/lect/10/wmkalai-rewrite.pdf
http://classes.soe.ucsc.edu/cmps290c/Spring09/lect/10/wmkalai-rewrite.pdf


APPENDICES

60



APPENDIX A

Omitted Proofs for Chapter III

A.1 Proof that the origin is the worst case (Lemma 3.13)

Proof. Let Φ(G) = ‖G‖2 and η be a positive number. By continuity of eigenvectors, it
suffices to show that the maximum eigenvalue of the Hessian matrix of the Gaussian
smoothed potential Φ̃(G; η,N (0, I)) is decreasing in ‖G‖ for ‖G‖ > 0.

By Lemma 3.8, the gradient can be written as follows:

∇Φ(G; η,N (0, I)) =
1
η

Eu∼N (0,I)[u‖G + ηu‖] (A.1)

Let ui be the i-th coordinate of the vector u. Since the standard normal distribution is
spherically symmetric, we can rotate the random variable u such that its first coordinate
u1 is along the direction of G. After rotation, the gradient can be written as

1
η

Eu∼N (0,I)

u

√√√√(‖G‖+ ηu1)2 +
N

∑
k=2

η2u2
k


which is clearly independent of the coordinates of G. The pdf of standard Gaussian distri-
bution has the same value at (u1, u2, . . . , un) and its sign-flipped pair (u1,−u2, . . . ,−un).
Hence, in expectation, the two vectors cancel out every coordinate but the first, which is
along the direction of G. Therefore, there exists a function α such that Eu∼N (0,I)[u‖G +

ηu‖] = α(‖G‖)G.
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Now, we will show that α is decreasing in ‖G‖. Due to symmetry, it suffices to consider
G = te1 for t ∈ R+, without loss of generality. For any t > 0,

α(t) = E[u1

√
(t + ηu1)2 + u2

rest)]/t

= Eurest [Eu1 [u1

√
(t + ηu1)2 + b2|urest = b]]/t

= Eurest [Ea=η|u1|[a
(√

(t + a)2 + b2 −
√
(t− a)2 + B

)
|urest = b]]/t

Let g(t) =
(√

(t + a)2 + B−
√
(t− a)2 + B

)
/t. Take the first derivative with respect

to t, and we have:

g′(t) =
1
t2

(√
(t− a)2 + b2 − t(t− a)√

(t + a)2 + b2
−
√
(t + a)2 + b2 +

t(t− a)√
(t + a)2 + b2

)

=
1
t2

(
a2 + b2 − at√
(t− a)2 + b2

− a2 + b2 + at√
(t + a)2 + b2

)
(
(a2 + b2)− at

)2(
(t + a)2 + b2

)
−
(
(a2 + b2) + at

)2(
(t− a)2 + b2

)
= −4ab2t3 < 0

because t, η, u′, B are all positive. So, g(t) < 0, which proves that α is decreasing in G.
The final step is to write the gradient as ∇(Φ̃; η,N (0, I))(G) = α(‖G‖)G and differ-

entiate it:
∇2 fη(G) =

α′(‖G‖)
‖G‖ GGT + α(‖G‖)I

The Hessian has two distinct eigenvalues α(‖G‖) and α(‖G‖) + α′(‖G‖)‖G‖, which cor-
respond to the eigenspace orthogonal to G and parallel to G, respectively. Since α′ is
negative, α is always the maximum eigenvalue and it decreases in ‖G‖.

A.2 Proof of Equation 3.19

Duchi et al. (2011, Lemma 11) shows that the dual norm ‖ · ‖∗ on the left-hand side of
Duchi et al. 2011, Equation 39 can be any norm such that f is L0-Lipschitz with respect to
‖ · ‖. The rest of the proof for Duchi et al. 2011, Lemma 9 does not depend on the choice
of norm. Since λmax is 1-Lipschitz with respect to ‖λ(·)‖∞, we have

‖λ(∇λ̃max(A)−∇λ̃max(B))‖1 ≤ 1/η‖A− B‖F ≤
√

N/η‖A− B‖∞.
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APPENDIX B

Omitted Proofs for Chapter IV

B.1 Gaussian Mechanism

Theorem B.1.1. The Gaussian mechanism with σ = 2
√

log(2/δ)u/ε satisfies (ε, δ)-privacy
with respect to {x : ‖x‖2 ≤ u}.

The original proof of this theorem can be found in (Dwork and Roth 2014, Theo-
rem A.1), but we include the full proof to use consistent notations as well as to use as
a building block for proving Theorem B.1.2.

Proof. Note that due to the spherical symmetry of the normal distribution used for the
Gaussian mechanism, it suffices to consider the one-dimensional case. See (Dwork and
Roth 2014, Theorem A.1) for the full reduction.

We want to upper bound the following quantity:

log
exp

(
− x2

2σ2

)
exp

(
− (x+u)2

2σ2

) =

∣∣∣∣ 1
2σ2 (2xu + u2)

∣∣∣∣ . (B.1)

This is bounded by ε whenever x < σ2ε/u− u/2. We use the tail bound

P[x > t] ≤ exp
(
− t2

2σ2

)
(B.2)
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to bound the probability that the privacy loss is not bounded. In other words, we require
that

exp
(
− t2

2σ2

)
≤ δ/2 ⇐⇒ t2/(2σ2) > log(2/δ)

Taking t = σ2ε/u− u/2 and setting σ = cu/ε we get

t2/(2σ2) =
1
2
(c2 − ε + ε2/(4c2)) ≥ 1

2
(c2 − 1)

Hence, c2 = 4 log(2/δ) satisfies the condition.

Theorem B.1.2. The Gaussian mechanism with σ =
√

3 log(2.5/δ)/ε is (ε, δ)-continuous DP
with respect to ‖ · ‖2 and {x : ‖x‖2 ≤ 1/ε}.

In particular, if we write the Gaussian mechanism asM(a) = a+Z, then for any ‖a− a′‖2 ≤
1/ε, we have

log
P[a + Z = b]
P[a′ + Z = b]

≤ ε‖a− a′‖2

for all ‖Z‖2 ≤ 1
ε (3 log(2.5/δ)− 1/2), which occurs with probability at least 1− δ.

Proof. From (B.1), it is bounded by εu whenever x < σ2ε− u/2. It is sufficient to bound
the tail probability in the worst case when u = ε−1:

P[x > σ2ε− 1/(2ε)] ≤ δ

Using the tail bound (B.2), it is sufficient to satisfy

1
2σ2 (σ

2ε− 1/(2ε))2 ≥ log(2/δ)

Setting σ = c/ε,
1

2c2 (c
2 − 1

2
)2 ≥ log(2/δ).

Since δ < 1, c2 = 3 log(2.5/δ) ≥ 3 log(2/δ) + 1
2 satisfies the above.
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B.2 BTPL Regret

All BTPL regret bounds proven in this paper are based on the following result by Kalai
and Vempala (2005):

E[Regret(BTPL)T] ≤ EZ∼D supx∈X 〈x, Z〉 ≤ ‖X ‖EZ∼D[‖Z‖∗].

Lemma B.2.1. (Neu 2015, Lemma 10) Let Z1, . . . , ZN be i.i.d. exponential random variables
with unit expectation and let Z∗1 , . . . , Z∗N be their permutation in decreasing order. Then, for any
1 ≤ k ≤ N,

E

[
k

∑
i=1

Z∗i

]
≤ k(log(N/k) + 1).

Corollary B.2.2. (Experts setting) BTPL algorithm with Laplace distribution with scaling pa-
rameter 1/ε for the experts setting has expected regret at most (log(N) + 1)/ε.

Corollary B.2.3. (k-sparse Online PCA) BTPL algorithm with Laplace-on-Diagonal ensemble for
the k-sparse Online PCA problem has expected regret at most k(log(N/k) + 1)/ε.

Proof. For Online k-Sparse PCA problem, supx∈X 〈x, Z〉 is the is the sum of k-largest eigen-
values of Z. WhenD is LOD ensemble, These eigenvalues follow the Laplace distribution
and therefore we can apply Lemma B.2.1.

Lemma B.2.4. (Dense PCA) Let Z1, . . . , ZN be i.i.d. Gaussian random variables with zero mean
and variance σ2. Then,

E

[
max

i=1,...,N
Zi

]
≤ σ

√
2 log N.

Lemma B.2.5. (General OLO) Let Z1, . . . , ZN be i.i.d. Gaussian random variables with zero
mean and unit variance. Then,

E[‖(Z1, . . . , ZN)‖2] ≤ 2
√

N.

Proof. Note that ‖(Z1, . . . , ZN)‖2 is a χ-distributed random variable, which has mean√
2Γ((N + 1)/2)/Γ(N/2) ≤ 2

√
N.
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B.3 Multi-Armed Bandits

Corollary B.3.1. FTPL with Laplace noise with biased estimator (4.7) has regret of order
O(
√

L∗N log N + N log TN).

Proof. Consider the Laplace distribution with scaling factor (1/ε). When using Laplace
noise, the algorithm is (ε, 0)-one-step DP. Hence, we can arbitrarily set B for applying
Theorem 4.23. Set B = (log NT√

L∗
)/ε, which gives δ =

√
L∗/T with union bound. The

BTPL regret is (1 + log N)/ε. By choosing ε =
√

log N/
√

L∗N, we obtain the claimed
regret bound.

Corollary B.3.2. FTPL with Gaussian noise with biased estimator (4.7) has regret of order
O(
√

L∗N log N 4
√

log T + N log T)).

Proof. Set σ =
√

log δ−1/ε. Then, Gaussian FTPL satisfies the conditions for Theo-
rem 4.23 with δ = 1/T and B = σ2ε = ε−1 log T (See Appendix), and the BTPL regret is
σ
√

log N =
√

log N
√

log T/ε. Set ε =
√

log N 4
√

log T/
√

L∗T N to get the claimed regret
bound.
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