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Abstract

Technological advances in biomarkers and imaging tests are creating new avenues to ad-

vance precision health for early detection of cancer. These advances have resulted in

multiple layers of information that can be used to make clinical decisions, but how to best

use these multiple sources of information is a challenging engineering problem due to the

high cost and imperfect sensitivity and specificity of these tests. Questions that need to

be addressed include which diagnostic tests to choose and how to best integrate them, in

order to optimally balance the competing goals of early disease detection and minimal cost

and harm from unnecessary testing. To study these research questions, we present new

optimization-based models and data-driven analytic methods in three parts to improve

early detection of prostate cancer (PCa).

In the first part, we develop and validate predictive models to assess individual PCa risk

using known clinical risk factors. Because not all men with newly-diagnosed PCa received

imaging at diagnosis, we use an established method to correct for verification bias to eval-

uate the accuracy of published imaging guidelines. In addition to the published guidelines,

we implement advanced classification modeling techniques to develop accurate classifica-

tion rules identifying which patients should receive imaging. We propose a new algorithm

for a classification model that considers information of patients with unverified disease and

the high cost of misclassifying a metastatic patient. We summarize our development and

implementation of state-wide, evidence-based imaging criteria that weigh the benefits and

harms of radiological imaging for detection of metastatic PCa.

In the second part of this thesis, we combine optimization and machine learning ap-

proaches into a robust optimization framework to design imaging guidelines that can ac-

count for imperfect calibration of predictions. We investigate efficient and effective ways

to combine multiple medical diagnostic tests where the result of one test may be used to

predict the outcome of another. We analyze the properties of the proposed optimization

models from the perspectives of multiple stakeholders, and we present the results of fast

xv



approximation methods that we show can be used to solve large-scale models.

In the third and final part of this thesis, we investigate the optimal design of composite

multi-biomarker tests to achieve early detection of prostate cancer. Biomarker tests vary

significantly in cost, and cause false positive and false negative results, leading to serious

health implications for patients. Since no single biomarker on its own is considered sat-

isfactory, we utilize simulation and statistical methods to develop the optimal diagnosis

procedure for early detection of PCa consisting of a sequence of biomarker tests, balancing

the benefits of early detection, such as increased survival, with the harms of testing, such

as unnecessary prostate biopsies.

In this dissertation, we identify new principles and methods to guide the design of early

detection protocols for PCa using new diagnostic technologies. We provide important

clinical evidence that can be used to improve health outcomes of patients while reducing

wasteful application of diagnostic tests to patients for whom they are not effective. More-

over, some of the findings of this dissertation have been implemented directly into clinical

practice in the state of Michigan. The models and methodologies we present in this thesis

are not limited to PCa, and can be applied to a broad range of chronic diseases for which

diagnostic tests are available.
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Chapter 1.

Introduction

Early detection of cancer can lower the incidence rate and prolong survival by detecting

disease at early stages when treatment outcomes are most favorable for patients. Recent

advances in diagnostic technology, including genomics, biomarkers and radiological imaging

offer the potential for early detection of cancer. However, these advances have made clinical

decision making difficult because the tests are not sufficiently sensitive and specific on their

own. Sensitivity is the probability that a test is positive given the disease is present, and

specificity is the probability that the test is negative given the disease is not present.

Moreover, there is often a tradeoff between the benefits of an accurate diagnosis of the

anticipated disease and harms and costs associated with the diagnostic tests themselves.

It is therefore challenging to determine how to use tests optimally.

Prostate cancer (PCa) is the perfect test-bed to explore these challenging problems

because of (1) its societal importance as the most common cancer among American men;

and (2) many new diagnostic tests have been discovered; however, it is unclear how to best

utilize them. PCa is now the second most commonly diagnosed cancer (more than 160, 000

new cases are expected in 2018) and is also the second leading cause of death from cancer

among American men (more than 25, 000 deaths estimated in 2018) [2]. The chance of

a man being diagnosed with PCa in his lifetime is 1 in 9 [2]. The management of PCa

is challenging because there are multiple types of cancer, ranging from likely indolent to

likely lethal. As a result, there is a need for individualized strategies that can judiciously

identify men in need of diagnosis and limit the costly and invasive nature of diagnostic

testing for those men who will not benefit. To accurately predict the prognosis and ensure

appropriate treatment of patients with PCa, accurate diagnosis and staging are crucial.

The risk of developing PCa varies among patients depending on many factors such as
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advanced age, ethnicity, and family history of the disease. More than 65% of all PCa cases

occur in men older than 65 years [3]. African American men have the highest incidence

of PCa in the world. The current diagnosis of PCa is made based on risk stratification by

the combination of digital rectal examination (DRE) and serum prostate-specific antigen

(PSA) level. Despite its widespread use at diagnosis, establishing a PSA cutoff that can

reliably indicate the presence of cancer or the need for a biopsy is not possible due to the

poor sensitivity and specificity of serum PSA [11, 134]. Because serum PSA is a gland-

specific rather than cancer-specific biomarker, it does not reliably distinguish either cancer

from benign prostatic conditions, or clinically significant from likely indolent cancers.

In recent years, several molecular biomarkers and corresponding diagnostic assays have

been developed with the potential to improve early detection of PCa. In particular, urine

biomarkers are attractive because they are noninvasive and can be used for prediction

purposes. They are based on DNA, RNA or protein analysis in urine. Prostate cancer

antigen 3 assay (PCA3) and TMPRSS2:ERG assay (T2:ERG) gene fusions are the most

advanced PCa-specific early detection biomarkers that have been shown to predict biopsy

outcome more accurately than PSA, and reduce the likelihood of false positive results [34,

123, 137, 139, 168, 179].

Patients who have suspicious clinical findings and biomarker test results are further

evaluated with biopsy, which is currently the gold standard test to confirm PCa. During a

biopsy, a hollow core needle is used to remove between 6 and 24 (usually 12) core samples of

tissue from the prostate to determine if the tissue is malignant. Biopsies have a specificity

close to 1 and a sensitivity of approximately 0.8 [158]. Biopsies expose patients to additional

anxiety and complications (e.g., bleeding, urinary retention and sepsis), and the risks of a

diagnosis of an indolent PCa which can lead to invasive procedures and treatments [172]. If

cancer cells are found upon evaluation of the biopsy by a pathologist, the cells are given a

Gleason score (GS). The two most common tissue patterns of the prostate tissue (obtained

during the biopsy) receive a grade between 1 and 5. This grade rates how different the

cancer cells are from normal cells. These two grades are added together to obtain a GS

between 2 and 10. A higher GS indicates that the tumor is more likely to grow and spread

quickly.

Because PSA is not cancer-specific, many men undergo one or more repeat biopsies

after an initial negative biopsy [37, 143]. Men with prior negative biopsies, but persistent

suspicion of PCa (e.g., a persistent elevated/rising PSA level and/or a suspicious DRE)

pose a diagnostic challenge. The positive predictive values of DRE and serum PSA are

2



relatively low, such that only 1 in 4 repeat biopsies will reveal PCa [164]. PCA3 and

T2:ERG have also been shown to better predict repeat biopsy outcomes in men with

elevated serum PSA levels and previous negative biopsy findings. Although there are

studies supporting increased diagnostic accuracy for both of these biomarkers, no previous

study has compared these biomarkers to determine the ideal thresholds to trigger a repeat

biopsy, and the resulting increase in survival and decrease in unnecessary biopsies.

Once a PCa diagnosis has been made, the urologist works to determine the extent (stage)

of the cancer. The most significant health outcome to consider when determining the cancer

stage is whether the cancer has metastasized (i.e., spread to other parts of the body).

Metastases are associated with significant morbidity, increased mortality and substantial

economic burden [31, 178]. Staging PCa is important not only for prediction of prognosis,

but also for choosing the optimal course of treatment. During staging, the urologist may

order a bone scan (BS) and/or a computed tomography (CT scan) to detect bone and

lymph node metastases, respectively, which are the most commonly used imaging tests.

However, not all patients with PCa have the same risk of harboring metastatic disease at

diagnosis, thus not every patient should have every test.

There are harms associated with both over-imaging and missing a patient with metas-

tasis. One of the risks associated with certain types of imaging, such as CT scan, is that

they expose patients to potentially harmful radiation. The effects of radiation add up over

a patient’s lifetime. A study by Smith-Bindman et al. found the median effective dose of

abdomen-pelvis CT scan to be 32 millisievert (mSv), and it was concluded that at that dose

1 in every 660 60-year-old men receiving an abdomen-pelvis CT scan will develop cancer

from the procedure [149]. Moreover, according to the Life Span Study cohort of atomic

bomb survivors, exposure to 32 mSv significantly increases the relative risk for developing

cancer [124]. Imaging tests can also result in false positives that lead to stress, more tests,

and treatment that is unlikely to benefit the patient. At the same time, these studies

are expensive and time-consuming, and the overall yield (i.e., the likelihood of detecting

metastases) is quite low for men with low- or intermediate-risk cancers.

Multiple clinical guidelines indicating the need for imaging in patients with certain risk

factors have been established; however, there is no consensus regarding the optimal use

of staging BS and CT scan for men with newly-diagnosed PCa. This causes persistent

variation in the use of these tests in practice, including potentially unnecessary testing

in many men at low risk for metastatic disease and the absence of testing for some men

with higher-risk cancers. Underscoring the significance of this issue, the American Urology
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Association (AUA) recently identified the avoidance radiological imaging in men with low-

risk prostate cancer as its number one priority for the national Choosing Wisely program

[6].

In determining which diagnostic tests should be used in the evaluation of metastases in

PCa, it is important to recognize the strengths and limitations of each test. Currently,

imaging for metastatic disease involves the application of BS and CT scan. The implica-

tions of this approach include patient time, imaging time, costs and radiation exposure.

However, there is no clinical guideline addressing the need for both BS and CT scan. The

correlation between imaging test results motivates a sequential testing paradigm in which

some patients may benefit from having tests one at a time so that the results of one test

can be used to predict the outcome of the follow-on test, with the potential to use the

individual diagnostic resources more efficiently and effectively.

Summary of contributions. Chapter 2 uses a novel collection of methods including

statistics, machine learning, and optimization methods, that we collectively refer to as

data-analytics methods, to determine which patients should receive a staging BS and/or a

CT scan and which patients can safely avoid imaging on the basis of individual risk factors.

The main contributions in the chapter are as follows:

• Risk Prediction Models for Metastatic Prostate Cancer. We develop new risk predic-

tion models that accurately estimate the probability of a positive imaging test. We

perform internal validation of these models via bootstrapping and an out-of-sample

evaluation of the predictions. These models are subsequently used to evaluate the

diagnostic accuracy of imaging guidelines accounting for the bias introduced by the

patients with nonverified disease status, and to optimize imaging guidelines for which

patients should receive a BS or CT scan.

• Classification Modeling for Metastatic Cancer Detection. We utilize existing opti-

mization and machine learning methods, and compare these to a new approach we

propose to design classification rules that distinguish metastatic patients from pa-

tients with localized cancer. To our knowledge, this is the first study to employ

classification modeling techniques in the detection of cancer considering (1) the ex-

ploitation of data for the patients who did not have the gold standard tests (either BS

or CT scan) at diagnosis and (2) the incorporation of a cost-sensitive learning scheme

to deal with the class imbalance problem simultaneously in the learning framework.
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• Bias-corrected Performance of Imaging Guidelines. Because not all men with newly-

diagnosed prostate cancer underwent imaging, we apply statistical methods to mit-

igate verification bias to evaluate the diagnostic accuracy of imaging guidelines for

detection of metastatic disease. Our definition of imaging guidelines is the union of

previously published clinical guidelines and optimized classification rules we develop

using machine learning methods.

• Implementation and Measurement of Impact. Following adoption of the guidelines,

the impact on BS and CT scan utilization was evaluated to confirm the predicted

results that indicated a similar or improved detection rate and substantial reductions

in unnecessary imaging. Therefore, this chapter also serves as a case study of the

practical implementation of data-analytics methods with measurable impact.

Chapter 3 investigates the optimal design of coordinated imaging protocols considering

different combinations of imaging tests to improve detection of metastatic cancer while at

the same time reducing unnecessary testing. The main contributions of the chapter are as

follows:

• Robust Coordinated Imaging Protocols for Metastatic Cancer Detection. To our

knowledge, we are the first to integrate robust optimization models with predictive

models to optimize diagnostic testing decisions pertaining to the selection of imag-

ing protocols for patient population. Furthermore, we propose models for sequential

testing where the outcome of one test informs the decision about the follow-up test.

These models are used to address the lack of a standardized holistic approach for rec-

ommending imaging tests on the basis of individuals’ risk of disease while accounting

for errors in predictions.

• Clinically Acceptable Heuristics. We propose heuristics that incorporate the perspec-

tives of multiple stakeholders participating in the decision making process for imaging

and that lead to more predictable decisions than solving an optimization model. We

evaluate the worst-case and average case behavior of the proposed heuristics using

test cases based on real data.

• Case Study on Medical Data. We use medical data from a large statewide collabora-

tive to answer important questions regarding the benefits of multi-modality imaging

for PCa staging.
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Chapter 4 presents decision analysis for men with elevated PSA to evaluate the value of

PCA3 and T2:ERG in the diagnosis of PCa at repeat biopsy by comparing the loss in the

overall survival to the gain in repeat biopsy rate. The main contributions of the chapter

are as follows:

• Head-to-head Comparison of Biomarkers. We are the first to investigate the long-

term health outcomes associated with the use of two new and promising biomarkers,

PCA3 and T2:ERG, in men with at least one previous negative biopsy and elevated

serum PSA when making repeat biopsy decisions for clinically localized PCa (i.e.,

cancer confined in prostate). We present a decision analysis model and results of

sensitivity analysis to assess the impact of model parameter uncertainty using Monte

Carlo simulation.

• Clinical and Policy Implications. We use our decision model to answer key questions

about early detection of PCa, such as whether and how to use newly discovered

biomarkers effectively to better select men for repeat biopsy. We show that the use

of PCA3 testing or T2:ERG for repeat biopsy decisions can reduce the number of

biopsies substantially without significantly affecting survival.

The remainder of this thesis presents the work described above in Chapters 2 - 4. The

thesis is concluded in Chapter 5 with a summary of the most important findings and an

outline of future research opportunities.
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Chapter 2.

Optimal Design of Imaging Guidelines

for Detection of Metastatic Prostate

Cancer

2.1. Introduction

Prostate cancer (PCa) is the most common cancer among men. It has been estimated

that in 2017 there will be more than 160,000 new cases of PCa diagnosed in the United

States. For each of these cases, clinical staging will be performed to determine the extent

of the disease. The most significant health outcome to consider when determining the stage

of PCa is whether the cancer has metastasized (i.e., spread to other parts of the body),

since this will determine the optimal course of treatment. During staging, the urologist

may order a bone scan (BS) and/or a computed tomography (CT scan), because they are

the most frequently used noninvasive imaging methods to detect bone and lymph node

metastases, respectively.

Optimal treatment of men with newly-diagnosed PCa depends on the stage of disease

at diagnosis. Accordingly, the performance of a staging BS and CT scan is pivotal to

the diagnostic evaluation and treatment planning for some men with PCa. At the same

time, however, there are harms associated with both over- and under-imaging. Under-

imaging results in patients’ metastatic PCa going undetected. In such cases, patients are

subjected to treatment, such as radical prostatectomy (surgical removal of the prostate),

that is unlikely to benefit the patient, and can lead to serious side effects and negative

health outcomes due to delays in chemotherapy. Over-imaging causes potentially harmful
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radiation exposure and often results in incidental findings that require follow-up procedures

that can be painful and risky for the patient. Additionally, unnecessary imaging blocks

access to the imaging resources for other patients, and unnecessarily increases healthcare

costs.

There are several international evidence-based guidelines indicating the need for BS and

CT scan only in patients with certain unfavorable risk factors (see Table 2.7); however,

the guidelines vary in their recommendations and there is no consensus about the opti-

mal use of BS and CT scan for men newly diagnosed with PCa [30, 36, 74, 115, 117,

161]. The net effect is that imaging practice patterns continue to vary widely, implying

immediate opportunities to improve value in this area of PCa care. Many believe that

an important next step in this process is to move away from recommendations based on

the risk of recurrence after treatment (e.g., D’Amico risk groups), and toward the iden-

tification and implementation of imaging criteria that most accurately forecast a positive

study that would actually change clinical decision-making. To address this issue, we took

a holistic perspective to determine which patients should receive a BS and/or a CT scan

and which patients can safely avoid imaging on the basis of individual risk factors. We

evaluated our proposed data-driven approaches in a population-based sample of men with

newly-diagnosed prostate cancer from the diverse academic and community practices in the

Michigan Urological Surgery Improvement Collaborative (MUSIC), which includes 90% of

the urologists in the state of Michigan (see http://musicurology.com/).

Figure 2.1 illustrates the linkages between each of the components of the research design

for this project from data processing to implementation. The remainder of this chapter is

structured as follows. Section 2.2 describes the methodological approach for development

and validation of risk prediction models, and proper measures for evaluating prediction

performance. Section 2.3 reviews the challenges of classification modeling in imbalanced

observational health data and describes our proposed algorithm for cost-sensitive semi-

supervised learning. Section 2.4 provides background on the problem of verification bias

and describes the methodological approach we considered in tackling the bias for correcting

the diagnostic accuracy of imaging guidelines. Section 2.5 describes the implementation

process and the impact of our work based on post-implementation analysis. Section 2.6

highlights our main conclusions and states some points for future research.
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Figure 2.1: Research framework illustrating the major steps from data-preprocessing
to implementation and measurement of impact.

2.2. Risk Prediction Models for Metastatic Prostate

Cancer

For a risk prediction model to be useful for personalized medicine and patient counseling, it

is necessary to ensure the model is calibrated to provide reliable predictions for the patients.

This section describes the development and testing of predictive models for estimating the

probability of an imaging test that was positive for metastases.

2.2.1. Clinical Datasets and Variables

Established in 2011 with funding from Blue Cross Blue Shield of Michigan, MUSIC is a

consortium of 43 practices from throughout Michigan that aims to improve the quality

and cost-efficiency of care provided to men with prostate cancer. Each practice involved

in MUSIC obtained an exemption or approval for participation from a local institutional
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review board.

PCa is diagnosed by biopsy, which involves extraction of tissue (normally 12 samples)

from the prostate. These samples produce useful predictors of metastasis, such as a pathol-

ogy grading called Gleason score (GS), percentage of positive samples (also called cores)

that show cancer, and the maximum percent core involvement. These risk factors are

determined by review of biopsy samples by a trained pathologist. GS is a pathological

characterization of the cancer cells that is correlated with the risk of metastasis, and the

percentage of positive cores and the maximum core involvement is correlated with tu-

mor volume. Other potentially relevant risk factors for metastasis include a patient’s age,

prostate-specific antigen (PSA) score, and clinical T stage. A PSA test is a simple blood

test that indicates the amount of PSA, a protein produced by cells of the prostate gland,

that escapes into the blood from the prostate. Patients with higher than normal PSA

values have a greater risk of metastatic PCa. Clinical T stage is part of the TNM staging

system for PCa that defines the extent of the primary tumor based on clinical examination.

The MUSIC registry contains detailed clinical and demographic information, including

patient age, serum PSA at diagnosis, clinical T stage, biopsy GS, total number of biopsy

cores, number of positive cores, and the receipt and results of imaging tests ordered by

the treating urologist. The initial analysis for BS included 1, 519 patients with newly-

diagnosed PCa seen at 19 MUSIC practices in Michigan from March 2012 through June

2013. Among this group, 416 (27.39%) patients underwent staging BS. Among the patients

that received a BS, 48 (11.54%) had a positive outcome with evidence for bone metastasis.

The cohort for CT scan included 2, 380 men with newly diagnosed PCa from 27 MUSIC

practices from March 2012 to September 2013. Among 2, 380 patients, 643 (27.02%) of

them underwent a staging CT scan, and 62 (9.64%) of these studies were interpreted as

positive for metastasis.

As a first step, we compared clinical and pathological characteristics of patients with or

without imaging. Differences between these two groups of patients in medians for quan-

titative variables, and differences in distributions for categorical variables, were compared

using Mann-Whitney’s U-test, and Chi-square test, respectively. We performed univariate

and multivariate analyses to examine the association between imaging outcomes and all

routinely available clinical variables in imaged patients.

Table 2.1 presents clinical characteristics of the 1, 509 patients with newly-diagnosed

PCa. Patients who received staging BS had higher mean PSA values as well as higher

percentages of positive cores compared to patients without BS (all p ≤ 0.001). Moreover,
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Table 2.1: Patient characteristics for BS cohort.

Variables
All patients
without BS
(n = 1,103)

All patients
with BS
(n = 416)

p-value

Age, (years) 0.02
Mean (median) 64.2 (64.4) 68.2 (67.7)
Range 40.4− 95.8 41.8− 90.5

Clinical stage, No. (%) < 0.0001
T1 881 (79.9) 216 (51.9)
T2 214 (19.4) 173 (41.6)
T3/4 8(0.7) 27 (6.5)

PSA, ng/mL 0.003
Mean (median) 8.0 (5.2) 61.8 (7.7)
Range 0.2− 620.8 0.4− 6873.4

PSA, ng/mL, No. (%) < 0.0001
≤ 10 1018 (92.3) 247 (59.4)
10.1− 20 58 (5.3) 81 (19.5)
20.1− 50 10 (0.9) 45 (10.8)
50.1− 100 12 (1.1) 20 (4.8)
> 100 5 (0.5) 23 (5.5)

Biopsy Gleason sum, No. (%) < 0.0001
≤ 6 488 (44.2) 33 (7.9)
3 + 4 439 (39.8) 105 (25.2)
4 + 3 137 (12.4) 58 (13.9)
8− 10 39 (3.6) 220 (52.9)

Biopsy cores taken, No. 0.50
Mean (median) 12.5 (12.0) 12.9 (12.0)
Range 4− 82 1− 78

Positive cores, No. 0.0004
Mean (median) 3.2 (3.0) 6.3 (6.0)
Range 0− 20 1− 16

Positive cores, % < 0.0001
Mean (median) 26.4 (21.1) 51.2 (50.0)
Range 0− 100 3.1− 100

patients with BS were significantly older and showed a higher GS as well as higher rate

of locally advanced PCa compared to patients without BS (all p ≤ 0.001). Table 2.2

summarizes results from univariate and multivariate analyses evaluating the relationship

between clinical parameters and BS findings. There was a wide range of serum PSA values,

(0.4−6873.4 ng/mL, coefficient of variation 651.2), and due to the dispersion in PSA levels,

we used the natural logarithm transformation. In univariate logistic regression analyses,

all variables were significant predictors of bone metastases (all p ≤ 0.01). In multivariable

analyses, only serum PSA and biopsy GS were significant predictors of a positive BS (both

p-values ≤ 0.004) (Table 2.2). Illustrating this point, the adjusted odds of a positive BS for
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patients with a biopsy GS 4 + 3 = 7 are 3.30 (95% confidence interval (CI): 0.55− 19.89)

times as great as for patients with GS 3 + 4 = 7 or GS = 6, while for patients with biopsy

GS 8 − 10, the odds of a positive BS are 9.53 (95% CI: 2.14 − 42.38) times the odds for

patients in the reference group.

Table 2.2: Univariable and multivariable logistic regression (LR) models predicting
the presence of bone metastases at diagnosis.

Univariable logistic
regression model

Multivariable logistic
regression model

Variables OR (95% CI) p-value OR (95% CI) p-value
Overall
p-value

Age at diagnosis (year) 1.04 (1.01− 1.08) 0.01 1.03 (0.99− 1.06) 0.14 (0.14)
ln(PSA+1), ng/mL 2.25 (1.76− 2.88) < 0.0001 2.00 (1.51− 2.64) < 0.0001 (< 0.0001)
Biopsy Gleason score, No. (%) (0.004)
≤ 3 + 4 Reference Reference
4 + 3 5.04 (0.90− 28.31) 0.07 3.30 (0.55− 19.89) 0.19
8− 10 16.05 (3.82− 67.45) 0.0002 9.53 (2.14− 42.38) 0.003

Clinical T stage, No. (%) (0.4)
T1 Reference Reference
T2 2.64 (1.31− 5.33) 0.007 1.61 (0.72− 3.57) 0.25
T3/4 9.19 (3.51− 24.03) < 0.0001 1.91 (0.57− 6.43) 0.30

Positive cores, % 13.32 (4.26− 41.72) < 0.0001 1.70 (0.42− 6.90) 0.46 (0.46)

Table 2.3 presents the clinical characteristics of 2, 380 patients included in the analytic

sample. Patients who underwent CT scan imaging had significantly higher PSA levels,

biopsy GS, and clinical T stages than those who did not receive a CT scan scan (all

p < 0.0001). Table 2.4 summarizes results from the univariate and multivariate logistic

regression models, and presents the associations between clinical variables and a positive

CT scan scan. The univariate analyses identified PSA, GS, clinical stage, and the ratio

of positive cores as statistically significant predictors of a positive study (all p-values <

0.0001). In the multivariate analysis, PSA, GS ≥ 8, and clinical stage ≥ T3 were predictors

of metastases (all p < 0.05) (Table 2.4). A separate model with PSA as a categorical

variable revealed that PSA > 20 was a statistically significant cutoff. Illustrating this

point, for the multivariate logistic regression model the odds ratio for PSA in the range

10.1 to 20 was 1.92 (95%CI : 0.82 − 4.49), compared to 5.37 (95%CI : 2.52 − 11.44) for

PSA > 20.

We included all variables with a statistically significant association which were as follows:

age at diagnosis, natural logarithm of PSA+1 (ln(PSA+1)), biopsy GS (≤ 3 + 4, 4 + 3, or

8− 10), clinical T stage (T1, T2, or T3/4) and the percentage of positive biopsy cores.
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Table 2.3: Patient characteristics for CT scan cohort.

Variables
All patients
without CT
(n = 1,737)

All patients
with CT
(n = 643)

p-value

Age, (years) 0.17
Mean (median) 63.8 (64) 66.0 (66)
Range 40.4− 95 40− 99

Clinical stage, No. (%) < 0.0001
T1 1, 386 (79.8) 359 (55.8)
T2 339 (19.5) 246 (38.3)
T3/4 12 (0.69) 38 (5.91)

PSA, ng/mL < 0.0001
Mean (median) 8.6 (5.2) 49.9 (7.7)
Range 0.21, 008.9 0.40− 6, 873.40

PSA, ng/mL, No. (%) < 0.0001
≤ 10 1576 (90.7) 377 (58.6)
10.1− 20 124 (7.1) 146 (22.7)
20.1− 50 20 (1.2) 64 (10.0)
> 50 17 (1.0) 56 (8.7)

Biopsy Gleason sum, No. (%) < 0.0001
≤ 6 747 (43.0) 62(9.6)
3 + 4 671 (38.6) 174 (27.1)
4 + 3 212 (12.2) 97 (15.1)
8− 10 107 (6.2) 310 (48.2)

Biopsy cores taken, No. 0.4
Mean (median) 12.5 (12.0) 12.7 (12.0)
Range 2− 82 1− 78

Positive cores, No. < 0.0001
Mean (median) 3.3 (3.0) 6.2 (6.0)
Range 1− 20 1− 16

Positive cores, % < 0.0001
Mean (median) 27.0 (23.1) 50.4 (50.0)
Range 2.4− 100 3.1− 100

2.2.2. Predictive Models

Suppose that l patients have been imaged and we are given the empirical training data

(x1, y1), . . . , (xl, yl) ∈ Rd × {±1} of those patients, where yi’s are the binary imaging

outcomes and d is the number of patient attributes (e.g., age, GS, PSA, etc.). Let X ∈ Rl×d

be the data matrix and y be the binary vector of imaging outcomes. For every attribute

vector xi ∈ Rd (a row vector in X), where i = 1, . . . , l, the outcome is either yi = 1 or

yi = −1; where 1 corresponds to a positive test and −1 to a negative test. We assume that

an intercept is included in xi.

We used LR models to estimate the probability of a positive imaging outcome. The
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Table 2.4: Univariable and multivariable LR models predicting the presence of lymph
node metastases at diagnosis.

Univariable logistic
regression model

Multivariable logistic
regression model

Variables OR (95% CI) p-value OR (95% CI) p-value
Overall
p-value

Age at diagnosis (year) 1.02 (0.99− 1.05) 0.02 1.00 (0.96− 1.03) 0.83 (0.83)
ln(PSA+1), ng/mL 2.79 (2.21− 3.54) < 0.0001 2.16 (1.65− 2.84) < 0.0001 (< 0.0001)
Biopsy Gleason score, No. (%) (0.004)
≤ 3 + 4 Reference Reference
4 + 3 15.49 (1.84− 130.48) 0.01 8.13 (0.91− 72.94) 0.06
8− 10 50.69 (6.96− 369.16) < 0.0001 19.72 (2.62− 148.39) 0.004

Clinical T stage, No. (%) (0.0005)
T1 Reference Reference
T2 2.05 (1.09− 3.86) 0.03 8.13 (0.91− 72.94) 0.06
T3/4 21.05 (9.52− 46.56) < 0.0001 19.72 (2.62− 148.39) 0.004

Positive cores, % 35.08 (12.06− 102.03) < 0.0001 1.82 (0.47− 7.01) 0.39 (0.439)

discriminative model for LR is given by:

P(yi = ±1 |xi,β) =
1

1 + e−yiβ
T xi

(2.1)

Under this probabilistic model, the parameter β is estimated via maximum likelihood

estimation (MLE) by minimizing the conditional negative log-likelihood:

− logL(β) = − log
l∏

i=1

P(yi = ±1 |xi,β) =
l∑

i=1

log
(

1 + e−yiβ
T xi

)
(2.2)

to obtain well-calibrated predicted probabilities.

2.2.3. Statistical Validation Methods

To evaluate the accuracy of our risk prediction models, we performed both internal and

external validation. Internal validation uses the same dataset to develop and validate the

model, and external validation uses an independent dataset to validate the model. We

used internal validation at early stages of the project when a limited number of samples

were available; we subsequently conducted external validation later in the project when a

suitable amount of additional data had been collected.

Validating a predictive model using the development sample will introduce bias, known

as optimism, because the model will typically fit the training dataset better than a new
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dataset. Given the intention to implement these guidelines for clinical practice, it was

necessary to carefully consider this bias. We used bootstrapping since it is an efficient

internal validation technique that addresses this bias to provide more accurate estimates

of the performance of a predictive model [52, 71].

Since internal validation has limitations in determining the generalizability of a predictive

model [27], we conducted external validation to confirm the validity of the predictive models

using new data that was unavailable during the initial model building process. Following

is a description of the performance measures that we used to evaluate our models for both

forms of validation, as well as a detailed explanation of our two-stage internal and external

validation approach.

Performance Metrics

There are two primary aspects in the assessment of the predictive model accuracy: assess-

ment of discrimination and calibration. Discrimination refers to the ability of the predictive

models to distinguish patients with and without metastatic disease, and calibration refers

to the agreement between the predicted and observed probabilities.

Discrimination was quantified using the area under the receiver operating characteristics

(ROC) curves. The area under the ROC curve (AUC) indicates the likelihood that for

two randomly selected patients, one with and one without metastasis, the patient with

metastasis has the higher predicted probability of a positive imaging outcome. The AUC

provides a single measure of a classifier’s performance for evaluating which model is better

on average, and assesses the ranking in terms of separation of metastatic patients from

cancer-free patients [163]. The larger the AUC the better the performance of the classifica-

tion model. Figure 2.2 illustrates the ROC curves for the BS and CT scan risk prediction

models based on the external validation samples (to be discussed in Section 2.2.3).

We assessed the calibration of the predicted probabilities via the Brier score. The

Brier score is the average squared difference between the observed label and the estimated

probability, calculated as
∑n

i=1(yi − P(yi = 1 | xi,β))/n, where we assume that n is the

size of the sample with which the model is being assessed and y ∈ {0, 1}. By definition, the

Brier score summarizes both calibration and discrimination at the same time: the square

root of the Brier score (root mean squared error) is the expected distance between the

observation and the prediction on the probability scale, and lower scores are thus better.

In addition to the Brier score, we evaluated the calibration of the model predictions by

15



0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

False positive rate

T
ru
e
p
os
it
iv
e
ra
te

BS model

AUC = 0.81

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

False positive rate

CT scan model

AUC = 0.86

Figure 2.2: The ROC curves for BS and CT scan risk prediction models based on
the validation samples.

estimating the slope of the linear predictor of the LR model, known as the calibration slope

[111]. The linear predictor (LP) is the sum of the regression coefficients multiplied by the

patient value of the corresponding predictor (i.e., for patient i, LPi = xiβ). By definition,

the calibration slope is equal to one in the development sample. In an external validation

sample, the calibration slope, βcalibration, is estimated using an LR model with the linear

predictor as the only explanatory variable (i.e, logit(P(y = 1)) = α + βcalibrationLP)[46].

The two estimated parameters in this model, α and βcalibration, are measures of calibration

of the LR model in the external validation sample. We can use these parameters to test the

hypothesis that the observed proportions in the external dataset are equal to the predicted

probabilities from the original model. The slope, βcalibration, is a measure of the direction

and spread of the predicted probabilities. Well-calibrated models have a slope of one,

indicating predicted risks agree fully with observed frequencies. Models providing overly

optimistic predictions will have a slope that is less than one, indicating that predictions of

low-risk patients are underestimated and predictions of high-risk patients are overestimated

[71, 111].

We assessed the model calibration graphically with calibration plots. We divided the pa-

tients into ten, approximately equal-sized groups, according to the deciles of the predicted

probability of a positive outcome as derived from the fitted statistical model. Within each

16



decile, we determined the mean predicted probability (x-axis) and the true fraction of pos-

itive cases (y-axis). If the model is well-calibrated, the points will fall near the diagonal

line.

Validation Process

In order to determine the internal validity of the predictive models, we used bootstrap-

ping. This involves sampling from the development sample, with replacement, to create a

series of random bootstrap samples. In each bootstrap sample, we fit a new LR model and

apply this model to the development sample. The expected optimism is then calculated

by averaging the differences between the performance of models developed in each of the

bootstrap samples (i.e., bootstrap performance) and their performance in the development

sample (i.e., test performance). The optimism is then subtracted from the apparent per-

formance of the original model fit in the development sample to estimate the internally

validated performance. Algorithm 1 parallels the approach in [53]. We used this approach

to internally validate the model calibration and discrimination.

Following our analysis and guideline development in the initial stages of this project,

new validation datasets became available for BS and CT scan, which we used to confirm

the validity of the developed predictive models. The inclusion and exclusion criteria, data

collection, and clinical variables were identical to those used for the development samples.

As part of our external validation, we validated the risk prediction models on these external

validation sets using the performance measures described above to estimate discrimination

and calibration. We also assessed the external calibration via calibration plots, which we

discussed in Section 2.2.3.

2.2.4. Statistical Validation Results

Based on the approach described in Section 2.2.3, we calculated the expected optimism for

the AUC, Brier score, and calibration slope (Table 2.5). Comparison of the apparent per-

formance of the risk prediction models with the optimism-corrected performance supported

the precision of the model performance estimates in the initial stage of the project.

To assess the generalizability of these models, we evaluated the performance estimates in

independent external validation samples collected approximately one year after our initial

analysis. Table 2.6 summarizes the results from the external validation of the predictive

models. The validation sample for BS included 664 patients, of which 64 (9.64%) had a
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Algorithm 1: Bootstrapping Algorithm for Internal Validation.

Input : A predictive model, a development sample of n patients and the number
of bootstrap replications m.

Output: The internally validated performance, Pvalidated.
1 Estimate the apparent performance of the predictive model, Papparent, fit in the

development sample.
2 for i = 1, . . . ,m do
3 Draw a random bootstrap sample of n patients from the development sample

with replacement;
4 Fit the logistic regression model to the bootstrap sample and measure the

apparent performance in the same sample, Pbootstrap(i);
5 Apply the bootstrap model to the development sample and estimate the test

performance of this bootstrap model, Ptest(i);
6 Calculate an estimate of the optimism, o(i) = Pbootstrap(i)− Ptest(i);
7 end
8 Estimate the expected optimism:

Optimism =

m∑
i=1

o(i)

m

9 Return Pvalidated = Papparent −Optimism.

positive outcome with evidence for bone metastasis, and for CT scan scan included 507

patients of which 42 (8.28%) were interpreted as positive for lymph node metastasis. The

change in AUC between the internal and external validation for BS and CT scan models was

not significant (e.g., 0.01). The increase in the calibration slopes and decrease in the Brier

score demonstrate that our models are well-calibrated to the external validation samples.

Overall, the expected optimism and optimism-corrected performance as estimated with

bootstrapping agreed well with that observed with independent validation samples.

The calibration plots in Figure 2.3 compare observed and predicted probability estimates

for the BS and CT scan models. The results show good calibration in the external validation

samples. Note that there is only one case in which there is a statistically difference from

perfect calibration. The results from internal and external validation demonstrate that the

risk prediction models are well-calibrated.
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Table 2.5: Bootstrap results for the development samples.

Development samples

BS (n = 416)
mean ± SEbootstrap

CT (n = 643)
mean ± SEbootstrap

Apparent performance
AUC 0.84 0.89
Brier score 0.075 0.057
Calibration slope 1 1

Bootstrap performance
AUC 0.86 ± 0.032 0.89 ± 0.021
Brier score 0.073 ± 0.0098 0.056 ± 0.0072
Calibration slope 1 1

Test performance
AUC 0.83 ± 0.011 0.88 ± 0.0086
Brier score 0.078 ± 0.0016 0.059 ± 0.0014
Calibration slope 0.86 ± 0.18 0.90 ± 0.12

Expected optimism
AUC 0.023 ± 0.032 0.014 ± 0.022
Brier score −0.0048 ± 0.0099 −0.0028 ± 0.0072
Calibration slope 0.86 ± 0.18 0.90 ± 0.12

Optimism-corrected performance
AUC 0.82 0.87
Brier score 0.080 0.060
Calibration slope 0.86 0.90

In the development samples for BS and CT scan, 1000 bootstrap repetitions were used for the
calculation of both the mean and standard deviations (SEbootstrap).

Table 2.6: Internal and external validation results of the risk prediction models.

Development samples Validation samples

BS (n = 416) CT (n = 643) BS (n = 664) CT (n = 507)

AUC 0.82 0.87 0.81 0.86
Brier score 0.080 0.060 0.068 0.061
Calibration slope 0.86 0.90 0.99 0.94

Performance measures were found by applying the predictive models fit in the development
samples to the validation samples.
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Figure 2.3: Calibration plots for BS and CT scan risk prediction models based on
the validation samples.

2.3. Classification Modeling for Metastatic Cancer

Detection

This section describes (1) an optimization based approach for the development of classifi-

cation models that account for missing labels (i.e., imaging outcomes) and class imbalance,

and (2) alternative classification modeling techniques that are adapted for advancing the

recognition of metastatic patients in imbalanced data.

2.3.1. Background on Classification with Unlabeled and Imbalanced

Data

We identify two important challenges regarding the development of classification models

in diagnostic medicine: learning from unlabeled data and learning from imbalanced data.

The first challenge, unlabeled data, arises from the fact that in practice not all patients

receive a BS or CT scan at diagnosis, which results in a missing data problem. The second

challenge, imbalanced data, arises from the fact that a minority of patients has metastatic

cancer. To address each of these challenges, we study two machine learning paradigms in

this chapter: semi-supervised and cost-sensitive learning.

Semi-supervised learning aims to improve the learning performance by appropriately

20



exploiting the unlabeled data in addition to the labeled data [38, 182, 185, 186]. The lack

of an assigned clinical class for each patient is the most common situation faced when using

observational data in medicine such as in our case. This naturally occurs because patients

who appear at high risk of disease receive the gold standard test while patients at lower

risk may not.

Class imbalance and cost-sensitive learning are closely related to each other [40, 73,

175]. Cost-sensitive learning aims to make the optimal decision that minimizes the total

misclassification cost [51, 57, 103, 106, 162]. Several studies have shown that cost-sensitive

methods demonstrated better performance than sampling methods in certain application

domains [100, 107, 155, 183].

The use of unlabeled data in cost-sensitive learning has attracted growing attention

and many techniques have been developed [67, 95, 98, 104, 130, 131]. To our knowledge,

however, there has not been an attempt to apply both semi-supervised and cost-sensitive

learning to improve cancer diagnosis (see the literature reviews in [48] and [90] ). In this

chapter, we focus on using kernel logistic regression (KLR) to address unequal costs and

utilize unlabeled data simultaneously based on a novel extension of the framework for

data-dependent geometric regularization [15].

2.3.2. Classification Models

We begin by introducing our approach for the construction of a classification model that

exploits data of patients with missing imaging outcomes and improves the identification

performance on the minority class by incorporating unequal costs in the classification loss.

Regularization is a key method for obtaining smooth decision functions and thus avoiding

over-fitting to the training data, which is widely used in machine learning [15, 58]. In this

context, we represent a classifier as a mapping x 7→ sign (f(x)), where f is a real-valued

function f : Rd → R, sometimes called a decision function. We adopt the convention

sign(0) = −1. A general class of regularization problems estimates the unknown function

f by minimizing the functional:

min
f∈H

1

l

l∑
i=1

L(yi, f(xi)) + γH‖f‖2H (2.3)

where L(y, f(x)) is the loss function, ‖ · ‖H is the Euclidean norm in a high-dimensional

(possibly infinite-dimensional) space of functions H. The space H is defined in terms of a
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positive definite kernel function K : Rd×Rd → R. Conditions for a function to be a kernel

are expressed by Mercer Theorem; in particular, it must be expressed as an inner product

and must be positive semidefinite [147]. The parameter γH ≥ 0 is called the regularization

parameter and is a fixed, user-specified constant controlling the smoothness of f in H. By

the Representer Theorem [88], the minimizer f ∗(x) of (2.3) has the form:

f ∗(x) =
l∑

i=1

α∗iK(x,xi) (2.4)

As a consequence, (2.3) is reduced from a high-dimensional optimization problem in H to

an optimization problem in Rl; where the decision variable is the coefficient vector α. The

same algorithmic framework is utilized in many regression and classification schemes such

as support vector machines (SVM) and regularized least squares [15].

The purpose of optimizing in the higher-dimensional space H is to consider decision

functions that are linear in H, but which may represent nonlinear relationships in the

feature space Rd. The kernel also implicitly defines a function Φ : Rd → H that maps a

data point x in the original feature space Rd to a vector Φ(x) in the higher dimensional

feature space H. Although explicit knowledge of the transformation Φ(·) is not available,

dot products in H can be substituted with the kernel function through the kernel trick,

that is, 〈Φ(x) ,Φ(x′)〉 = K(x,x′).

Scaling of (2.2) by a factor of 1/n establishes the equivalence between LR estimated by

maximum likelihood and empirical risk minimization with logistic loss, given as L(y, f(x)) =

ln(1 + exp−yf(x)), in (2.3), where f(x) = xβ and β ∈ Rd is a d-dimensional vector of pa-

tient attributes. This can be seen as the special case K(x,x′) = 〈x,x′〉, corresponding to

H = Rd and an identity mapping Φ(x) = x. However, LR linearity may be an obstacle

to handling highly nonlinearly separable data sets. In such cases, nonlinear classification

models can achieve superior discrimination accuracy compared to linear models. To include

nonlinear decision boundaries in our problem, we extend the construction from LR to KLR

by incorporating a non-linear feature mapping into the decision function: f(x) = Φ(x)β

[102, 184]. The optimization problem becomes as follows:

min
β∈H

l∑
i=1

log(1 + exp(−yi〈β,Φ(xj)〉) +
λ

2
‖β‖2, (2.5)

where β ∈ H is the parameter we want to estimate. By (2.4) and the kernel trick, the
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minimizer of (2.5) admits a representation of the form β =
l∑

i=1

αiΦ(xi). Thus, we can write

(2.5) as:

min
α∈Rl

l∑
i=1

log(1 + exp(−yi(Kα)i)) +
λ

2
αTKα (2.6)

where K is the kernel matrix of imaged patients given as K = (K(xi,xj))
l
i,j=1 with

K(xi,xj) = 〈Φ(xi),Φ(xj)〉 and (Kα)i stands for the i-th element of the vector Kα.

In order to address the issue of missing data for patients who did not receive a BS or CT

scan, we use the Laplacian semi-supervised framework proposed by [15], which extends

the classical framework of regularization given in (2.3) by incorporating unlabeled data

via a regularization term in addition to the H norm. Assume a given set of l imaged

patients {(xi, yi)}li=1 and a set of u unimaged patients {xj}j=l+uj=l+1 . In the sequel, let us

redefine K as an (l + u)× (l + u) kernel matrix over imaged and unimaged patients given

by K = (K(xi,xj))
l+u
i,j=1 with K(xi,xj) = 〈Φ(xi) ,Φ(xj)〉. Since we do not know the

marginal distribution which unimaged patients are drawn from, the empirical estimates of

the underlying structures (i.e., clusters) inherent in unimaged data is encoded as a graph

whose vertices are the imaged and unimaged patients and whose edge weights represent

appropriate pairwise similarity relationships between patients [148].

The concept underlying this new regularization comes from spectral clustering, which is

one of the most popular clustering algorithms [171]. To define a graph Laplacian, we let G

be a weighted graph with vertices corresponding to all patients. When the data point xi

is among the k-nearest neighbors of xj, or xj is among those of xi, these two vertices are

connected by an edge, and a nonnegative weight wij representing the similarity between the

points xi and xj is assigned. The weighted adjacency matrix of graph G is the symmetric

(l + u) × (l + u) matrix W with the elements {wij}l+ui,j=1, and the degree matrix D is the

diagonal matrix with the degrees d1, . . . , dl+u on the diagonal, given as di =
∑l+u

j=1wij.

Defining f = [f(x1), . . . , f(xl+u)]
T , and L as the Laplacian matrix of the graph given by

L = D−W, we consider the following optimization problem:

f ∗ = argmin
f∈H

1

l

l∑
i=1

L (yi, f(xi)) + γH‖f‖2H + γMfTLf (2.7)

where γH and γM are the regularization parameters that control the H norm and the

intrinsic norm, respectively. In this context, the Laplacian term forces to choose a deci-
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sion function f that produces similar outputs for two patients with high similarity, i.e.,

connected by an edge with a high weight, regardless of their imaging status.

For the purposes of this chapter, we will consider asymmetric loss functions with unequal

misclassification costs so that the cost of misclassifying a patient with metastasis outweighs

the cost of misclassifying a cancer-free patient. We can formulate the cost-sensitive classi-

fication loss given by Lδ : {−1, 1} × R→ [0,∞] with cost parameter δ ∈ (0, 1) as:

Lδ = δ1{y=1}L1(f(x)) + (1− δ)1{y=−1}L−1(f(x)) (2.8)

where we refer to L1 and L−1 as the partial losses of L ([144]). In KLR, the partial losses

can be defined as L1(f(x)) = log(1 + e−f(x)) and L−1(f(x)) = log(1 + ef(x)). From (2.8),

the cost-sensitive optimization problem can then be formulated as:

f ∗ = argmin
f∈H

1

l

l∑
i=1

[
δ1{yi=1} log

(
1 + e−f(xi)

)
+ (1− δ)1{yi=−1} log

(
1 + ef(xi)

)]
+γH‖f‖2H + γMfTLf (2.9)

We refer to the optimization problem in (2.9) as cost-sensitive Laplacian kernel logistic

regression (Cos-LapKLR). The extensions of standard regularization algorithms by solving

the optimization problems (posed in (2.3)) for different choices of cost function L and

regularization parameters γH and γM have been developed [15]. We extend their work by

formulating the logistic loss for KLR in terms of partial losses to adjust for class imbalance

while exploiting the information from unimaged patients.

As before, the Representer Theorem can be used to show that the solution to (2.9) has

an expansion of kernel functions over both the imaged and unimaged given as f ∗(x) =∑l+u
i=1 α

∗
iK(xi,x). Let α = [αT

L, α
T
U ]T be the l + u-dimensional variable with αL =

[α1, . . . , αl]
T and αU = [αl+1, . . . , αl+u]

T , and KL ∈ Rl×l be the kernel matrix for imaged

patients. In order to express (2.9) in terms of the variable α, we define PL = [Il×l 0l×u]

and substitute αL as αL = PLα. Let H(α) denote the objective function with respect

to α. Introducing linear mappings, (2.9) can then be equivalently re-written in a finite

dimensional form as:

H(α) = min
α∈Rl+u

1

2l

[
δ1 (1 + y)T log

(
1 + e−(KLPLα)

)
+ (2.10)

+ (1− δ)1 (1− y)T log
(
1 + e(KLPLα)

)]
+ γHα

TKα + γMαTKLKα
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The outline of the algorithm we propose for solving Cos-LapKLR is given in Algorithm 2.

It is natural to use the Newton-Raphson method to fit the Cos-LapKLR since (2.10) is

strictly convex. However, the drawback of the Newton-Raphson method is that in each

iteration an (u+ l)×(u+ l) matrix needs to be inverted. Therefore, the computational cost

is O((u + l)3). When (u + l) becomes large, this can become prohibitively expensive. In

order to reduce the cost of each iteration of the Newton-Raphson method, we implemented

one of the most popular quasi-Newton methods, the so-called Broyden-Fletcher-Goldfarb-

Shanno (BFGS) method. It approximates the Hessian instead of explicitly calculating it at

each iteration [49]. We used the limited-memory BFGS (LM-BFGS), which is an extension

to the BFGS algorithm which uses a limited amount of computer memory [35].

Algorithm 2: Cost-sensitive Laplacian Kernel Logistic Regression (Cos-
LapKLR).

Input : l labeled examples {(xi, yi)}li=1, u unlabeled examples {xj}l+uj=l+1.

Output: Estimated function f : R(l+u) → R.
1 Step 1: Construct the data adjacency graph with (l + u) nodes and compute the

edge weights wij by k nearest neighbors.
2 Step 2: Choose a kernel function and compute the kernel matrix K ∈ R(l+u)×(l+u).
3 Step 3: Compute the graph Laplacian matrix: L = D−W, where

D = diag (d1, . . . , dl+u) and di =
∑l+u

j=1wij.

4 Step 4: Choose the regularization parameters γH, γM, and the cost parameter δ.
5 Step 5: Compute α∗ using (2.10) together with the LM-BFGS algorithm.

6 Step 6: Output function f ∗(x) =
∑l+u

i=1 α
∗
iK(xi,x).

In addition to Cos-LapKLR, we implemented and tested several other well-known clas-

sification models including LR, Random forests (RF) [29], SVM [169], and AdaBoost [62].

As discussed earlier in this section, LR can be estimated by minimizing the logistic loss.

Hence, we adopted asymmetric loss functions in LR, which we refer to as cost-sensitive

logistic regression (Cos-LR), in a similar manner as proposed for KLR to counter the effect

of class imbalance due to having fewer patients with metastasis. Since the logistic loss

minimization problem in Cos-LR is convex, LM-BFGS was applied to this problem as well.

Similar to Cos-LapKLR and Cos-LR, the SVM hinge loss can be extended to the cost-

sensitive setting by introducing penalties for misclassification [170]. The regularization

parameter C in cost-sensitive support vector machines (Cos-SVM) corresponds to the mis-

classification cost which involves two parts, i.e., the cost of misclassifying negative class

into positive class and the cost of misclassifying positive class into negative class. In this
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work, the cost of misclassifying negative class as positive is set to C, whereas the cost of

misclassifying positive class into negative class is set to C × δ/(1− δ), where δ ∈ (0, 1).

To remedy the class imbalance problem with RF and AdaBoost, different data sampling

techniques were employed in the experimental evaluation, such as random oversampling

(ROS), random undersampling (RUS), and the combination of both methods. ROS and

RUS are non-heuristic methods that are initially included in this evaluation as baseline

methods. The drawback of resampling is that undersampling can potentially lose some

useful information, and oversampling can lead to overfitting [39]. To overcome these limita-

tions, we also implemented advanced balancing methods for comparison. A brief discussion

of the concepts underlying these methods is provided in Appendix A.1.

Classification Model Results

We adopted 2-fold cross validation (CV) in the model training process. The radial basis

function kernel of the form K(xi,xj) = exp (−γ‖xi − xj‖2) was used, where γ is the kernel

parameter. The continuous attributes were normalized to a mean of zero and standard

deviation of one. All models were built and evaluated with Python 2.7.11 on a HP Z230

work station with an Intel Xeon E31245W (3.4GHz) processor, 4 cores, and 16 GB of

RAM. We used the scipy.optimize package in Python as the optimization solver.

Our goal was to obtain a higher identification rate for metastatic patients without greatly

compromising the classification of patients without metastasis. Therefore, we created

trade-off curves to determine Pareto optimal models based on sensitivity and specificity.

Sensitivity, or true positive rate, indicates the accuracy on the positive class; specificity, or

true negative rate, indicates the accuracy on the negative class. In the concept of Pareto

optimality, a model is considered dominated if there is another model that has a higher

sensitivity and a higher specificity. For cost-sensitive classification models, we created

Pareto frontier graphs consisting of the non-dominated models for varying choices of cost

parameter based on 2-fold CV performance. We conducted experiments for δ ∈ {0, 1};
however, we report results for δ ∈ {0.90, 0.91, . . . , 0.99} to be consistent with the goals of

the project and the perspective of stakeholders who weigh the misclassification of patients

with cancer much higher than patients without cancer.

Following the approach of [80] recommended for SVM, the values of the remaining hy-

perparameters for Cos-LapKLR, Cos-LR and Cos-SVM models were chosen from a range of

different values after 2-fold CV at different cost setups. For Cos-LapKLR, candidate values
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for the regularization parameters γH and γM are chosen from the set {2i | −13,−11, . . . , 3},
the kernel parameter γ from {2i | −9,−7, . . . , 3}, and the nearest neighbor parameter k

from {3, 5}. For Cos-LR, candidate values for the regularization parameter λ is chosen

from the set {2i | −13,−11, . . . , 3}. For Cos-SVM, candidate values for the regulariza-

tion parameter C is chosen from the set {2i | −5,−3, . . . , 15} and the kernel parameter γ

from {2i | −15,−13, . . . , 3}. We defined the weight matrix W by k-nearest neighbor for

Cos-LapKLR models as follows [15]:

wij =

e−γ‖xi−xj‖2 , if xi,xj are neighbors

0, otherwise

We applied the Pareto frontier based approach to select the optimal classifiers for each of

these methods for distinguishing patients with metastasis at different cost setups during

the training process.

For RF, we used the nominal values recommended by [61] for the number of trees to grow

(500) and minimum node size (5). For AdaBoost, we used single-split trees with two nodes

as the base learner, since this was shown to yield good performance of AdaBoost [62, 141].

We performed 10 independent runs of 2-fold CV to eliminate bias that could occur as a

result of the random partitioning process. For conciseness, the detailed results from these

experiments are presented in Appendix A.1. In the remainder of this section, we summarize

results for the cost-sensitive methods (i.e., Cos-LapKLR, Cos-LR and Cos-SVM).

Our initial experiments explored how the cost ratio, δ, affects the classification perfor-

mance of the cost-sensitive methods as the cost ratio is changing. To illustrate the effect of

asymmetrical logistic loss functions, we present Pareto frontier graphs based on sensitivity

and specificity for the symmetric (δ = 0.5) and asymmetric (δ = 0.95) cases. Figure 2.4

shows that increasing δ can improve sensitivity significantly without greatly sacrificing

specificity. We observed the same trend for Cos-LapKLR models predicting CT scan out-

comes, and for Cos-LR and Cos-SVM models for both BS and CT scan with respect to

increasing values of δ.

Our next set of experiments, in Figure 2.5, illustrates the impact of increasing the penalty

of L1 loss on the discriminative ability of the LR and Lap-KLR models for predicting BS

outcomes. For simplicity, we present the results for only two dimensions (ln(PSA + 1)

and age). We see that higher penalty on L1 loss increases the region of P(y = 1 | x),

corresponding to patients with predicted outcome ŷ = 1, i.e., f(x) = xβ ≥ 0, and thus,
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Figure 2.4: Pareto frontier graphs demonstrating the efficient frontiers based on
sensitivity and specificity for Laplacian models predicting BS outcomes.

sensitivity of the classification rule increases while specificity decreases with increasing

values of δ.

2.4. Bias-corrected Performance of Imaging Guidelines

The results presented in Section 6 for the sensitivity and specificity of alternative classifica-

tion models are systemically biased since they are based on only the patients who received

BS or CT scan at diagnosis. This section provides some background on this problem of

verification bias and presents results for the application of the proposed methodology we

used to correct for this bias.

2.4.1. Background

Standard inferential procedures rely on several assumptions concerning study design such

as the existence of a reference test, usually referred to as a gold standard, a procedure that

is known to be capable of classifying an individual as diseased or nondiseased. In practice,

gold standard tests are often invasive and may be expensive (e.g., BS or CT scan scan are
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Figure 2.5: The impact of unequal misclassification costs on the decision boundaries
of Cos-LR and Cos-LapKLR.

gold standard tests for detecting metastatic cancer). As a result, the true disease status

is generally not known for some patients in a study cohort. Moreover, the decision to

verify presence of the disease with a gold standard test is often influenced by individual

patient risk factors. Patients who appear to be at high risk of disease may very likely to

be offered the gold standard test, whereas patients who appear to be at lower risk are less

likely. Thus, if only patients with verified disease status are used to assess the diagnostic

accuracy of the test, the resulting model is likely to be biased. This bias is referred to as
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verification bias (or work-up bias) [13]. This can markedly increase the apparent sensitivity

of the test and reduce its apparent specificity [13, 89, 121].

Several approaches have been proposed to address the problem of verification bias [180,

181]. The correction methods proposed recently have been mainly focused on treating

the verification bias problem as a missing data problem, in which the true disease status

is missing for patients who were not selected for the gold standard verification. In the

proposed missing data techniques, inferences depend on the nature of incompleteness. In

the usual terminology, data are missing at random (MAR) when the mechanism resulting

in its omission depends only on the observed data [97]. Thus, given the test results and

patient covariates, the missingness mechanism does not depend on the unobserved data

(i.e., metastatic disease status). Data are said to be missing completely at random if the

missing data mechanism doesn’t depend on the observed or missing data.

To obtain unbiased estimates of sensitivity and specificity, Begg and Greenes (B&G)

developed a method based on MLE [14]. This method uses the observed proportion of pa-

tients with and without the disease among the verified patients to calculate the expected

proportion among nonverified patients. The two are then combined to obtain a complete

two-by-two table, as if all patients had received the gold standard test. We used this

method to correct for verification bias in the assessment of imaging guidelines. The under-

lying assumption in this method is that the available covariates were the only factors that

influenced selection of patients recommended for imaging (i.e., MAR assumption). This

is a reasonable assumption given that the MUSIC data repository includes all standard

covariates related to metastatic PCa risk.

In this framework, we define the “test” to be the outcome of applying a given guideline

(G), where “+” and “−”, denote whether a patient is recommended to receive an imaging

test or not under the guideline G, respectively. The uncorrected sensitivity and specificity

are defined as:

Sensitivity = P(G+ | Disease present), Specificity = P(G− | Disease not present)
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Using Bayes ’s rule, we estimate the sensitivity and specificity of the guideline as follows:

Sensitivity = P(G+ | Disease present) =
P(Disease present | G+)P(G+)

P(Disease present)

Specificity = P(G− | Disease not present) =
P(Disease not present | G−)P(G−)

P(Disease not present)

where P(Disease present) and P(Disease not present) can be calculated as follows:

P(Disease present) = P(Disease present|G+)P(G+) + P(Disease present|G−)P(G−)

P(Disease not present) = P(Disease not present|G+)P(G+)+

P(Disease not present|G−)P(G−)

Thus, to estimate the sensitivity and specificity of each guideline, we need to calculate

P(Disease present | G+), P(Disease not present | G−), P(G+), and P(G−). To estimate

P(Disease present | G+) and P(Disease not present | G−), we first separate the entire

population (with and without imaging results) into two categories: (1) those patients with

G+ and (2) those patients with G−. To calculate P(Disease present | G+), we apply the

risk prediction model from Section 2.2 to estimate the mean probability that the disease

is present in the G+ category of patients. To calculate P(Disease not present | G−), we

apply the risk prediction model to estimate the mean probability that the disease is not

present in the G− category of patients. We further obtain unbiased estimates of P(G+) and

P(G−) as the proportion of the population in G+ and G−. We then use these estimates

to calculate the sensitivity and specificity using the formula defined above.

2.4.2. Bias-Corrected Results

There are several published clinical guidelines for BS and CT scans based on patient PCa

characteristics. These guidelines are summarized in Table 2.7. Table 2.8 presents the bias-

corrected results for these published guidelines. We found that the estimates of uncorrected

sensitivity are significantly higher than the bias-corrected estimates, while uncorrected val-

ues for specificity underestimate the true specificity of the existing guidelines. For exam-

ple, the uncorrected sensitivity and specificity of the American Urology Association (AUA)

guideline [161] for recommending BS were 97.92% and 43.48%, respectively, whereas the

bias-corrected values were 81.18% and 82.05%, respectively, on the development samples.
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Table 2.7: Published clinical guidelines for recommending BS and CT scan.

Bone scan CT

Clinical
guidelines

Recommend
imaging if any
of these:

Clinical
guidelines

Recommend
imaging if any
of these:

EAU [115]

GS ≥ 8

EAU [74]

GS ≥ 8
cT3/T4 disease cT3/T4 disease
PSA > 10 ng/ml PSA > 10 ng/ml
Symptomatic Symptomatic

AUA [161]
GS ≥ 8

AUA [36]

GS ≥ 8
PSA > 20 ng/ml PSA > 20 ng/ml
Symptomatic cT3/T4 disease

Symptomatic

NCCN [117]

cT1 disease & PSA > 20 ng/ml
cT2 disease & PSA > 10 ng/ml
GS ≥ 8
cT3/T4 disease
Symptomatic

Briganti’s CART [30]
GS ≥ 8
≥ cT2 disease & PSA > 10 ng/ml
Symptomatic

EAU: European Urological Association; AUA: American Urological Association; NCCN: National
Comprehensive Cancer Network; CART: classification and regression tree.

Table 2.8: Performance characteristics of the published guidelines before and after
correcting for verification bias.

Development samples Validation samples

Uncorrected Bias-corrected Uncorrected Bias-corrected

Clinical guidelines Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

Bone scan
EAU [115] 97.92 33.97 84.45 75.66 98.44 21.00 89.13 65.98
AUA [161] 97.92 43.48 81.18 82.05 96.88 36.00 85.82 74.84
NCCN [117] 97.92 40.76 82.23 80.86 96.88 32.67 86.94 73.23
Briganti’s CART [30] 89.58 45.38 79.31 83.28 93.75 37.67 85.07 75.99

CT scan
EAU [74] 98.39 36.49 89.92 74.43 100.00 32.04 87.47 75.47
AUA [36] 96.77 49.23 87.21 82.53 100.00 45.81 83.91 83.49

The numbers are the percentages.

We applied the bias-correction method on the optimized classification models of Sec-

tion 2.3. Figure 2.6 shows the Pareto frontier graph consisting of all the imaging guidelines.
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The results indicate that the classification rules obtained using the methods of Section 2.3

can provide a diverse range of classification rules that vary on the basis of sensitivity and

specificity. All of the published guidelines have high sensitivity for BS; however they vary

more significantly in specificity. For CT scan, the AUA guideline had higher sensitivity

and moderately lower specificity. For BS, all of the published guidelines were at the Pareto

frontier. For CT scan, all of the published guidelines were dominated by classification rules

described in Section 2.3 but were all close to the Pareto frontier.
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Figure 2.6: Pareto frontier graphs demonstrating the efficient frontiers for the bias-
corrected accuracy of the imaging guidelines for BS and CT scan estimated on the
validation samples.

To further assess the performance of the statistical methods, we determine the propor-

tions of the non-dominated models for each method based on these two competing criteria.

Table 2.9 shows that there is no single classification modeling technique that is sufficient

with respect to the estimated number of positive imaging tests missed and the number of

negative imaging tests. Thus, underscoring the importance of employing multiple methods

for optimization of classification rules.
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Table 2.9: Proportions of classification modeling techniques that are non-dominated
with respect to the bias-corrected accuracy.

Statistical models Bone scan (n = 40) CT (n = 42)

Cos-LapKLR 7.50 30.95
Cos-LR 47.50 0.00
Cos-SVM 27.50 40.48
RF 17.50 9.52
AdaBoost 0.00 19.05

The numbers are the percentages.

2.4.3. Patient Centered Criteria

In working with the MUSIC collaborative we found that interpreting the results was easier

when they were presented in terms of more patient-centered health outcomes. Therefore,

we considered two important criteria: expected number of positive outcomes missed and

expected number of negative studies. These estimates around the impact of specific guide-

line implementation can provide useful information for clinicians, specialty societies, and

other stakeholders seeking a satisfactory tradeoff between the benefits and harms of using

these imaging tests for the staging of patients with newly-diagnosed PCa.

To define the criteria to be considered in the objective function, let pi = P(yi = 1 | xi,β)

be the probability that patient i with attributes xi would have a positive imaging outcome,

where i = 1, . . . , n, and is estimated from an LR model. Let gi be an indicator variable

defined as:

gi =

1, if the guideline is satisfied

0, otherwise

If Z+ denotes a random variable for the number of positive outcomes missed and Z− a

random variable for the number of negative outcomes, then the criteria can expressed as:

E[Z+] =
n∑
i=1

pi (1− gi) , E[Z−] =
n∑
i=1

(1− pi) gi

where E is the expectation operator. Assuming the goal is to find an optimal guideline

that minimizes an unweighted function of these two competing criteria, the optimization
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model can be expressed as:

min Z(g) = [Z+(g), Z−(g)]

subject to g ∈ G

whereG is the set of all imaging guidelines consisting of the published clinical guidelines and

the non-dominated classification rules from Section 2.4.2. For each g ∈ G, we calculated

the expected number of positive imaging outcomes missed and the expected number of

negative imaging outcomes based on the validation samples. Figure 2.7 shows that the

published guidelines are very close to the efficient frontier for both BS and CT scan, while

also achieving a missed metastasis rate < 1%.
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Figure 2.7: Trade-off curves for the BS and CT scan imaging guidelines with respect
to the missed metastatic cancer rate and the number of negative studies estimated
on the validation samples.

Additionally, we estimated the change in total number of imaging tests that can be

expected from successful implementation of each clinical guideline compared to current

practice (Table 2.10). After assessing the performance of the available clinical guidelines

on the appropriate use of BS and CT scan in newly-diagnosed PCa patients, we showed

that implementation of the AUA guidelines would reduce the total number of BS and CT

scans by 25% and 26%, respectively, compared to current imaging practices; moreover, our
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models predicted the percentage of patients with missed metastatic disease to be less than

1% [110, 133].

Table 2.10: Performance of the published guidelines for recommending staging BS
and CT scan.

Clinical guidelines

No. of
patients

to be
scanned

No. of
metastases

missed

No. of
negative
imaging
studies

No. of
patients

to be
scanned

Expected no. of
metastases

missed

Expected no. of
negative

imaging studies

Bone scan Patients with BS (n = 416) Entire population (n = 1,519)
EAU [115] 288 (69.2) 1 (0.1) 127 (30.5) 405 (26.7) 10 (0.7) 350 (23.0)
AUA [161] 255 (61.3) 1 (0.1) 160 (38.5) 314 (20.7) 12 (0.8) 261 (17.2)
NCCN [117] 265 (63.7) 1 (0.1) 150 (36.1) 332 (21.9) 12 (0.8) 278 (18.3)
Briganti’s CART [30] 244 (58.7) 5 (1.2) 167 (40.1) 292 (19.2) 13 (0.9) 243 (16.0)

CT scan Patients with CT scan (n = 643) Entire population (n = 2,380)
EAU [74] 429 (66.7) 1 (0.2) 213 (33.1) 660 (27.7) 9 (0.4) 581 (24.4)
AUA [36] 355 (55.2) 2 (0.3) 286 (44.5) 475 (20.0) 11 (0.5) 399 (16.8)

The numbers in parentheses are the percentages. EAU: European Urological Association; AUA: American Urological Association; NCCN:
National Comprehensive Cancer Network; CART: classification and regression tree.

2.5. Implementation and Impact

MUSIC is a physician-led, statewide quality-improvement collaborative that includes 43

urology practices in the state of Michigan and about 90% of the urologists in the state.

A complete timeline of our project is shown in Figure 2.8. The first stage of the project

was data collection. MUSIC has data abstractors at each MUSIC urology practice in

the state to collect and verify the validity of the data in the MUSIC data repository.

The next stage was model development, which included variable selection, model fitting,

and guideline evaluation using the predictive models. During this stage, we had regular

weekly meetings with the co-directors of MUSIC to update them with our results and to

obtain feedback from a clinical perspective. The next stage was model validation, during

which we performed both internal and external validation. We subsequently started the

guideline design stage, during which our results for the performance of varying guidelines

were presented to practicing urologists. Although risk-based guidelines performed well,

MUSIC decided to endorse a threshold-based policy for several reasons: (1) according

to our models these guidelines were near-optimal with respect to the miss rate and image

usage; (2) a threshold-based policy is easier to understand and implement than a risk-based

policy; and (3) similar guidelines had already been endorsed by the AUA.

Our results and the resulting proposed guidelines were first reviewed by the MUSIC
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Data Collection
(3/2012 - 6/2013)

Model Development
(6/2013 - 5/2014)

Model Validation
(6/2014 - 8/2014)

Guideline Design
(10/2013 - 5/2014)

Implementation
(1/2014 - 12/2014)

Post-Implementation
Analysis

(1/2015-10/2015)

Figure 2.8: Project timeline from data collection to post-implementation analysis.

Imaging Appropriateness Committee, which included a sample of practicing urologists

from across the state and a patient representative. Next, a selected subset of guide-

lines were reviewed at a MUSIC collaborative-wide meeting with approximately 40 urol-

ogists, nurses, and patient advocates. After achieving consensus with the collaborative,

the MUSIC consortium instituted statewide, evidence-based criteria for BS and CT scan,

known as the MUSIC Imaging Appropriateness Criteria (see the following Youtube video:

https://youtu.be/FEIxb_HRHAA). The criteria recommends a BS for patients with PSA

> 20 ng/mL or Gleason score ≥ 8 and recommends a CT scan for patients with PSA > 20

ng/mL, Gleason score ≥ 8, or clinical T stage ≥ cT3.

fLLSIc
Michigan Urooqica Surgery
Improvement IoIIahorative

MUSIC Imaging Appropriateness Criteria

Bone Scan CT Scan

>20 >20

OR OR

8

OR

Order Bone
Scan If:

Order Bone
Scan If:

.PSA

Gleason

Clinical
T Stage

cT3

Imaging Goals

Perform imaging in 95% of
patients meeting criteria
Perform imaging in <10%
of patient NOT meeting
criteria

Figure 2.9: MUSIC placard.

Recognizing the importance of clinical judgment

in staging decisions, the MUSIC consortium set a

statewide goal of performing imaging in ≥ 95% of pa-

tients that meet the criteria and in < 10% of patients

that do not meet the criteria. To implement the work,

our collaborators presented our results at collaborative-

wide meetings with “clinical champions”, who returned

to their practices to present the results to their own

practice group. As part of this project, MUSIC mem-

bers were provided with a toolkit including placards

with the criteria (shown in Figure 2.9) and explanations

for patients. After implementation, members also re-

ceived comparative performance feedback that detailed

how well their practice patterns correlated with the

MUSIC Imaging Appropriateness Criteria.

After implementing this intervention in 2014, the

MUSIC collaborative measured post-intervention out-

comes from January to October 2015. The results

showed an increase in the use of BS and CT scans in patients that meet the criteria from

82% to 84% and from 74% to 77%, respectively. Although these values are not > 95%,
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the MUSIC consortium has made measurable improvements in a short period of time and

additional increases are anticipated. As shown in Figure 2.10, the MUSIC collaborative

decreased the use of BS and CT scans in patients that do not fit the criteria from 11% to

6.3% and from 14.7% to 7.6%, respectively. Both of these values are below their goal of

performing imaging in < 10% of patients that do not meet the criteria. These results were

presented at the AUA Annual Meeting in San Diego, CA [82].
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Figure 2.10: Avoidance of low-value imaging using MUSIC Criteria.

2.6. Conclusions

This work has had a significant societal impact by decreasing the chance of missing a case of

metastatic cancer and substantially reducing the harm from unnecessary imaging studies.

An important finding pertaining to the post-implementation is that the rate of positive BS

or CT scan when indicated remained stable both at the baseline and after the intervention

[82]. Additionally, this intervention has reduced healthcare costs without having a negative

impact on patient outcomes. We have estimated that the MUSIC collaborative saved more

than $262, 000 in 2015 through reducing unnecessary imaging studies and these savings will

continue to accrue in future years. This is a conservative estimate of savings, because these

are early results post-implementation that do not account for the savings from avoiding
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unnecessary follow-up procedures for false-positive imaging studies. These savings also do

not quantify the more important reduction in harm to patient health from reduced radiation

exposure, fewer unnecessary follow-up procedures, and decreased patient anxiety.

The overuse of imaging in the staging of low-risk PCa patients was raised as the top

priority by the AUA Choosing Wisely initiative. Our work extends this recommendation

showing how patient data collected in a large region can be used to improve the prevision

of clinical decision making. The publications of this work are building national recognition

of this effort that may result in improvements beyond the state of Michigan [82, 110, 133].

Recently, our publications have been cited in the new National Comprehensive Cancer

Network (NCCN) guidelines [117]. Thus, our work may ultimately influence national

policy for cancer staging.

This work has paved the way for the development of guidelines based on individual

risk factors in other areas; thus, we anticipate additional improvements to come in future

years by building upon the successes described above. For example, this work has led to

prototype of an iPhone app that reports a patient’s risk of positive BS or CT scan, as well

as a biopsy outcome prediction calculator, which has been implemented as a web-based

decision support system called AskMUSIC (see https://askmusic.med.umich.edu/).

The multi-step approach presented in this chapter can be applied to other forms of

cancer. For example, breast cancer is the most common malignancy in women, with

approximately 250, 000 cases diagnosed yearly in the United States [1]. Imaging tests

such as positron emission tomography (PET), CT scan, integrated PET with CT scan

and BS are used to determine the extent of cancer. There are several clinical guidelines

discouraging the routine use of staging scans for patients with clinically localized breast

cancer [66, 142]. The framework presented in this chapter can be applied to determine

the optimal imaging guidelines for breast cancer staging using observational data where

there exists systematic bias in the selection of patients for imaging tests. Moreover, our

framework allows the decision maker to choose from a spectrum of imaging guidelines

including the published clinical guidelines and the classification rules to be generated via

machine learning methods based on the trade-off between the available budget on imaging

and the allowable rate of missed metastatic cases for patient population being considered.

39

https://askmusic.med.umich.edu/


Chapter 3.

Robust Optimal Design of Coordinated

Imaging Protocols

3.1. Introduction

Imaging is playing an increasingly important role in the detection of cancer. In this context,

the goal of imaging is accurate disease characterization through synthesis of anatomic,

functional, and molecular imaging information. Many different kinds of imaging modalities

such as bone scan (BS), computed tomography (CT scan), magnetic resonance imaging

(MRI) and positron emission tomography (PET) are now being used for all facets of cancer

— diagnosis and localization, staging, active surveillance and recurrence monitoring. With

the recent changes in clinical care, scientific discoveries and technological advances, the

spectrum of available options is continuously evolving. However, despite the tremendous

advances in imaging in recent years, difficulty remains in selecting tests for patients as each

imaging test has advantages, disadvantages, and specific indications.

In the selection of an imaging test, the benefits of imaging must be weighed against

potential risks and harms. One of the risks of imaging tests is that they expose patients

to radiation. Although technical innovations have helped reduce the radiation dose from

imaging, the lifetime attributable risk of cancer from radiation exposure remains a sig-

nificant concern [81]. Moreover, because of their imperfect nature, the available imaging

tests can cause false positive and false negative results. The former leads to anxiety and

unnecessary referral of patients for costly and invasive tests and treatments; the latter re-

sults in patients’ cancer going undetected, and potentially progressing to a life threatening

stage. Additionally, unnecessary imaging blocks access to the imaging resources for other
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patients, and unnecessarily increases healthcare costs.

Cancer can spread regionally to lymph nodes, tissue or organs, and also to other parts

of the body (i.e, metastasis). Metastatic cancer is associated with considerable morbidity,

impaired health-related quality of life and reduced survival. Clinical staging is the process

of determining the identification and extent to which cancer has spread in the body. Staging

is important not only for prediction of prognosis, but also for providing a balanced approach

in designing a treatment plan for individual patients diagnosed with cancer addressing the

tradeoff between the benefits of treatments with the potential risks of complications and

effects on quality of life. For example, patients at an early-stage of cancer may benefit

from surgery or radiation treatment, while patients at a more advanced-stage may need to

be treated with chemotherapy.

Imaging has become the mainstay for cancer staging as it can guide treatment selection,

as well as treatment planning. In order for an imaging recommendation to be appropriate,

it needs to fully address the perspectives of patients and physicians. From a patient and

physician point of view, it needs to place an emphasis on individual health outcomes.

From a health system perspective, it needs to weigh the benefits and harms of imaging at

the population level. To satisfy both perspectives, the models we develop are aimed at

guiding the allocation of imaging resources with the goal of minimizing imaging subject

to constraints on the rate of missed disease at the patient population level. We provide

evidence later in this chapter that this approach is consistent with both the patient and

population perspective.

In this chapter, we evaluate the important evolving role of multi-modality imaging for

detection and localization of cancer from an operations research perspective. We study this

problem in the context of prostate cancer (PCa); however, the models and methods we

describe could apply equally well to many other forms of cancer. To optimize the decision

making for PCa imaging, we combine optimization and predictive analytics methods to

develop models for predicting cancer outcomes of imaging tests, and to integrate these

models into robust optimization models to design optimal imaging guidelines that can

account for errors in the predictions. Given its clinical significance, our work generates

important insights and findings for clinicians, health systems and other stakeholders seeking

a satisfactory tradeoff between the benefits and harms of using these imaging tests for the

staging of patients with newly-diagnosed PCa.

The remainder of this chapter is organized as follows. In Section 3.2, we provide back-

ground on PCa staging, predictive modeling, diagnostic testing and robust optimization.
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In Section 3.3, we introduce mathematical notation and provide mathematical formulations

of the decision problem in the cases of a single imaging test and multiple imaging tests. We

also analyze the structural properties of the problems, and provide robust formulations as

well as heuristic algorithms. In Section 3.4, we describe the methodological approach for

development and validation of a multinomial logistic regression model, and the analytical

approach to quantify statistical variation in probability estimates obtained from predictive

models. In Section 3.5, we present results using real medical data and discuss our findings.

Finally, in Section 3.6, we conclude with a summary of our findings.

3.2. Background and Literature Review

This section provides background on (1) PCa staging, (2) diagnostic testing decisions, (3)

predictive modeling in medicine, and (4) robust optimization. Furthermore, we review the

most relevant literature on each of these topics.

3.2.1. Prostate Cancer Staging

The goal of PCa staging is to determine whether the cancer has metastasized to lymph

nodes or to bones. PCa is a solid tumor that exhibits a tendency to metastasize to the

bones. The skeleton is the site of first and main metastasis in about 80% patients with PCa;

therefore, bone metastases are one of the most important prognostic factors [165]. Bone

metastases are associated with considerable morbidity (pain, reduced mobility, pathological

fractures, spinal cord and nerve compression), reduced survival (5-year survival is 3%) and

also significant health economic implications including the costs of systematic therapies,

imaging and hospital admissions [31, 127, 178]. The presence of lymph node metastasis is

also an important prognostic factor, indicating great risk for progression to bone metastases

and death [63]. As of today, metastatic PCa is still considered incurable but there are

treatment options that can increase survival. Therefore, accurate staging is crucial for

the clinical management of PCa changing from possible cure to alleviating symptoms and

improving quality of life.

Conventional imaging tests for PCa staging include BS and CT scan for detection of bone

and lymph node metastases, respectively. However, not all men with newly-diagnosed PCa

are at the same risk of harboring metastatic cancer. In screening trials, bone metastases

are detected at diagnosis in less than 10% of the patients [165], and lymph node metastases
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in between 4% to 6% of the patients [28]. These summary statistics suggest that it may

not be necessary to perform the imaging tests for every new patient. This is an impor-

tant consideration because there are harms associated with both under- and over-imaging.

Under-imaging results in patients’ metastatic PCa going undetected. In such cases, pa-

tients are subjected to treatment, such as radical prostatectomy (surgical removal of the

prostate), that is unlikely to benefit the patient, and can lead to serious side effects and

negative health outcomes due to delays in chemotherapy. Over-imaging causes potentially

harmful radiation exposure [96, 128, 149], anxiety for the patient, and false positive find-

ings that lead to risky and painful follow-up procedures (i.e., bone biopsy). Not only do

these imaging tests expose the patient to excess radiation, but they also increase financial

and time burdens both on the patient and healthcare system.

To facilitate the optimal imaging of newly-diagnosed PCa, professional societies such

as the National Comprehensive Cancer Network (NCCN), American Urology Association

(AUA), American Cancer Society (ACS) and European Association of Urology (EAU)

have established international evidence-based guidelines indicating the need for BS and CT

scan only in patients with certain unfavorable risk factors; however, the guidelines vary in

their recommendations [30, 36, 74, 115, 117, 161]. Thus, there exists persistent variation

in utilization of these imaging tests among urologists, including unnecessary imaging in

patients at low risk for metastatic disease and potentially incomplete staging of patients

at high risk. In 2012, the AUA highlighted the need to reduce imaging for low-risk PCa in

the Choosing Wisely campaign, a multidisciplinary effort to reduce unnecessary imaging,

decrease overuse of healthcare resources, and improve quality of care [6].

In Chapter 2, we studied the imaging problem independently for BS and CT scan in

a population-based sample of men with newly-diagnosed PCa from the diverse academic

and community practices in the Michigan Urological Surgery Improvement Collaborative

(MUSIC), which includes 90% of the urologists in the state [110, 133]. We used data-

analytics approaches to develop and validate risk prediction models to help urologists

make PCa staging decisions. In addition to the international evidence-based guidelines,

we implemented classification modeling techniques to develop accurate decision rules rec-

ommending patients for imaging tests. These models were used to design guidelines that

weigh the benefits and harms of radiological imaging. MUSIC implemented the proposed

guidelines which miss less than 1% of metastatic cancers while reducing unnecessary imag-

ing by more than 40%. In the work presented in this chapter, we seek to improve efficiency

and effectiveness of imaging by coordinating multiple imaging tests by drawing on the
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predictive models developing in Chapter 2.

3.2.2. Diagnostic Testing Decisions

In this chapter, we study robust optimization models for coordinated imaging protocols for

PCa staging that consider different combinations of BS and CT scan. There is no evidence-

based imaging guideline addressing the need for both BS and CT scan in a holistic approach

like this: clinicians often order both imaging tests simultaneously or no tests. However,

given the correlation observed between BS and CT scan results, the result of one imaging

test can be used to predict the result of another follow-on test, which in turn, motivates a

sequential imaging paradigm in which some patients may benefit from having the imaging

tests one at a time. In a more general context, applicable also to diseases other than PCa

staging, we are concerned with the problem of optimal allocation of composite diagnostic

tests that may combine multiple tests to more accurately and efficiently detect the presence

of disease. This is an important problem as imaging resources are expensive and limited.

Thus, poor decisions can lead to serious health outcomes, resulting in high healthcare costs

and a significant reduction in quality of life.

The optimal selection of diagnostic tests for disease screening has been studied in the

context of blood screening where the goal is to reduce the risk of transfusion-transmitted

infectious diseases (TTIs), including the human immunodeficiency virus, hepatitis viruses

B and C, human T-cell lymphotropic virus and syphilis [25, 26, 177]. In blood screening,

the testing strategies need to consider that (1) the screening tests are not perfectly accurate,

(2) there are often multiple tests available for each TTI, and (3) most tests are expensive

and resources are limited. Earlier work addressing different aspects of this problem showed

that optimized screening strategies result in a more effective and efficient screening for

donated blood compared to the current screening strategies, without increasing resource

requirement.

Recently, El-Amine et al. [5] expanded previous research on the optimization for blood

screening by accounting for the uncertainty in the prevalence rates of TTIs and the limited

information that the decision maker has. In the author’s proposed optimization framework,

nonlinear continuous knapsack problems are utilized, and robust blood screening strategies

are shown to offer substantial reduction in the risk of TTIs compared to the screening

strategies compliant with the Food and Drug Administration (FDA), at limited levels of

budget available to be allocated for screening.
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The literature on the optimal test selection problem for blood screening illustrates the

benefits of an optimization-based framework in resource-constrained settings. In this chap-

ter, similar to the existing literature for optimized blood screening, we are interested in

the decision of how to optimally assign patient types (to be discussed in Section 3.3) to

imaging protocols to minimize the burden of imaging while ensuring that the rate of missed

metastatic cancer cases is below a certain threshold (e.g., budget) in the population. A

commonly used formulation that is also related to our problem is the traditional knapsack

problem, which selects, from a set of candidates, each with a known reward and cost, an

optimal set that is budget-feasible and that maximizes the total reward of the selected

items.

The work presented in this chapter differs from the existing literature on diagnostic test-

ing decisions for blood screening in two main ways. First, we present a new multiple choice

knapsack problem (MCKP) formulation in which the objective is to minimize imaging in

the population while generating budget-feasible assignments of patient types into coordi-

nated imaging protocols. In contrast to our objective, the previous work on blood screening

aims to find the optimal test selection that achieves a low TTI risk. Second, our model

involves the use of predictive models for estimating the probability of imaging outcomes

based on patients’ risk factors, and the individual probability estimates obtained from pre-

dictive models are used to define uncertainty sets for the model parameters that depend

on predictions. The closest work that considers parameter uncertainty in this framework

is given in the work by El-Amine et al. [5]. It assumes that the only information available

to the decision maker is the support of the random prevalence rate vector of infectious

diseases, and this information relies on the estimates reported in the literature in other

studies. To our knowledge, we are the first to integrate predictive models into optimization

models to determine robust imaging protocols that take errors in predictions into account.

Consistent with the incentive of published imaging guidelines to reduce the overuse of

imaging at staging, the objective of the optimization-based models we develop is to reduce

the total number of imaging tests performed at the population-level, subject to a certain

budget level. In this context, the budget represents the maximum acceptable rate of

missed metastatic disease in the population. The significant impact of the preoperative

detection of metastases on the selection of appropriate treatment, quality of life and survival

underscores the importance of incorporating the missed disease rate as a constraint into

our mathematical formulations.

In our proposed framework, we take a clinical perspective that focuses on patients’ health
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but not specifically on healthcare costs. The reasons for this are two-fold: (1) more than

90% of PCa patients are diagnosed with clinically localized disease (i.e., tumor is confined

within prostate), rendering the routine use of radiographic staging largely unnecessary [84]

and (2) in that small high-risk population; however, it is critical to precisely rule out the

presence of metastasis as it is associated with significant symptom burden and increased

mortality [31, 32]. Nevertheless, alternative model formulations that incorporate cost or

other criteria are easily developed.

The appropriateness of testing is dependent on the likelihood that a patient has the

suspected disease, which in turn may depend on a number of clinical and demographic

factors. Hence, we study the problem from a perspective in which individualized patient

probability estimates for the presence of metastatic disease are estimated using predictive

models. In the following subsection, we briefly discuss predictive modeling in medicine,

and review the properties of a number of most commonly used measures for the assessment

of the performance of a predictive model.

3.2.3. Predictive Modeling in Medicine

Predictive models are increasingly used to provide guidelines for clinical decision making

and the personalized management of diseases [48, 90, 114, 153]. For a predictive model to be

useful in decision making, it must provide validated and accurate estimates of probabilities

of specific health conditions or outcomes. As discussed in Chapter 2, validating a predictive

model using the development sample will introduce bias, known as optimism, because the

model will typically fit the training dataset better than a new dataset. Therefore, it is

essential to quantify any optimism in the predictive performance of the developed model.

Internal validation techniques include randomly splitting the data, bootstrapping or cross-

validation [112, 113, 154].

Because we incorporate the probability estimates into the optimization models to de-

termine the optimal allocation of imaging protocols for the population, obtaining well-

calibrated probability estimates is of more importance than the discriminate value. A

predictive model is well-calibrated if, for example, it produces a predicted probability of

40% risk of having the disease for one patient, and similar patients would truly be diag-

nosed with the disease 40% of the time. Poor calibration, on the other hand, will lead to

systematic errors in the model performance.

Similar to Chapter 2, the discrimination of the predictive models is quantified using
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the area under the ROC curve (AUC), and the calibration of the predicted probabilities

is assessed via the Brier score. We also assess the model calibration graphically with

calibration plots that were described in Chapter 2. Figure 2.3 in Chapter 2 shows the

calibration plots for the multivariate logistic regression models developed for BS and CT

scan [108].

In practice, it is always the case that a predictive model will have imperfect calibration.

Several factors such as the challenges in data collection and management (incomplete, het-

erogeneous, incorrect, or inconsistent data), small sample size, existence of large numbers

of candidate predictors and the increased uncertainty surrounding rare events contribute

to the imperfect nature of predictive models. In our proposed framework, the predictions

are used to inform the assignment of imaging protocols to patients on the basis of their

estimated probability of disease. Therefore, it is important to immunize imaging decisions

against the statistical errors in calibration. For this purpose, we utilize robust optimiza-

tion concepts and techniques that are tailored to incorporate this error, and attempt to

identify solutions that are robust with respect to the implied parameter uncertainty. In

the following subsection, we provide background on robust optimization and a review of

the relevant literature.

3.2.4. Robust Optimization

Traditional modeling approach for decision-making assumes perfect information, i.e., the

input data is precisely known and equal to some nominal value. However, in real-world

applications data is often incomplete or contains errors. The data errors can be derived

from measurement or estimation errors resulting from the lack of knowledge of the model

parameters. For example, as illustrated in Figure 2.3, the statistical errors in our context

result from the insufficiency of the predictive models to provide perfectly calibrated esti-

mates of diagnostic probabilities. As illustrated by [18], solutions to optimization models

can exhibit substantial sensitivity to errors in the parameters of the mathematical models,

therefore rendering a computed solution infeasible, suboptimal, or both.

There are two common approaches to handle data uncertainty in optimization: stochastic

and robust optimization. In the stochastic optimization approach, the main assumption

is that the true probability distributions of the random variables are known or can be

estimated. For details on stochastic optimization, we refer to [24, 138] and [129] for an

overview of solution techniques. Determining an appropriate probability density function
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based on historical data can be difficult in some cases. Moreover, in some situations the

lack of historical data makes it impossible to obtain an accurate probabilistic description

of the uncertainty. In the robust optimization approach, the uncertainty model is not

stochastic, but deterministic and set-based, i.e., the value of an uncertain parameter varies

in a prespecified uncertainty set. Thus, robust optimization seeks to mitigate sensitivity

of the model-based solution to variations in the model parameters.

Robust optimization has emerged as a powerful modeling tool to handle erroneous or

noisy data in decision-making over the last decade because of its computational tractability

and practicability. For a detailed overview, see [16, 20] and [21], and the references therein.

In contrast to stochastic optimization where the goal is to optimize an expectation, the

goal in the robust optimization framework is to find a solution that is feasible for any

realization of the uncertainty in a given uncertainty set. In other words, it optimizes

against the worst-case instances using a min-max objective.

Soyster’s approach is the earliest work in this area [150]. He proposed a linear optimiza-

tion problem in which each coefficient can vary independently in an interval. Although the

proposed approach guarantees feasible solutions with respect to every realization of the

coefficients, the resulting model produces overly conservative solutions as the uncertain co-

efficients can take their worst values simultaneously. To avoid over-conservatism, [17, 19,

55] and [56] independently developed robust models of which the uncertainty sets for the

data are ellipsoids, and proposed efficient algorithms to solve convex optimization problems

under data uncertainty. The tradeoff between robustness and performance is controlled by

the decision-maker through the size of the ellipsoidal sets. A drawback of the proposed

robust models with ellipsoidal uncertainty sets is that it increases the complexity of the

problem, e.g., the resulting robust counterpart formulations involve quadratic constraints

leading to second-order cone programming.

Other prominent studies that attempt to avoid over-conservatism include the works of

[22, 23]. They proposed a robust optimization approach based on polyhedral uncertainty

sets. In their proposed framework, the budget of uncertainty can be adjusted by controlling

the number of uncertain parameters that are allowed to deviate from their nominal values,

thus providing a way of incorporating different attitudes of the decision-maker toward risk

(e.g., risk-averse, risk neutral, or risk-seeking). Moreover, as the proposed models retain

a linear structure similar to the framework of [150], they have the advantage of being

less demanding computationally compared with the former robust models with ellipsoidal

sets. All these factors have enabled this approach to be widely used in different areas
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including logistics and production systems, portfolio selection problem, data envelopment

analysis [83]. This robust counterpart optimization approach is also shown to be directly

applied to discrete optimization models [22]. Given the practicability and tractability of

the budgeted robust counterpart optimization approach in combinatorial problems that are

subject to data uncertainty, we adopted this approach in our mathematical formulations

for the robust optimal design of imaging protocols.

The robust counterpart of an uncertain optimization model is a deterministic formulation

in which model parameters are assumed to be uncertain, but symmetrically distributed over

a bounded interval, e.g., the uncertainty set U . The structure and scale of the set U is

determined by the decision maker. The structure refers to the geometry of the constraint set

U . The two most common ways of defining the geometry of uncertainty sets are ellipsoidal

and polyhedral sets, which will be the main focus of the review in this section. The scale

refers to the magnitude of the deviations of the uncertain parameters from their nominal

values.

In Soyster’s model, the worst-case solution is guaranteed to be feasible for all realizations

of the uncertain parameters. Bertsimas and Sim [23] relaxed this condition by proposing

that not every parameter will take its boundary value at the optimal solution. To represent

the robust counterpart with budgeted uncertainty in mathematical terms, we start by

considering the following nominal linear program (LP) model:

maximize c′x

subject to Ax ≤ b

l ≤ x ≤ u

(3.1)

where c, l,u are n-vectors, A is an m × n matrix, and b is an m-vector. Without loss

of generality, it is often assumed that the data uncertainty only affects the elements in

matrix A. If the coefficients of the objective function are subject to uncertainty, we can

then maximize the objective z, and add the constraint z − c′x into Ax ≤ b [23]. Let Ji

represent the set of coefficients in row i of the matrix A that are subject to uncertainty.

Each entry aij is modeled as a symmetric and bounded random variable ãij, representing

the actual value of the coefficient, and can take values in the range [aij − âij, aij + âij],

where aij is the nominal value of ãij, and âij is the maximum positive perturbation of the
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corresponding uncertain coefficient. Thus, we can define ãij as:

ãij = aij + ηij âij (3.2)

where ηij is a random variable with an unknown but symmetric distribution and takes

values in the range [−1, 1]. As noted in [23], it is unlikely that all of the aij, j ∈ Ji, will

change. For this purpose, the following polyhedral uncertainty set for the matrix A is

proposed:

UA =

{
ãij = aij + ηij âij

∣∣∣∣∣
n∑
j=1

|ηij| ≤ Γi,∀i ∈ Ji
}

(3.3)
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Figure 3.1: Polyhedral uncertainty set.

Polyhedral uncertainty associated with two different values of Γi, for a problem of two

uncertain coefficients is shown in Figure 3.1. If Γi is integer, a solution is considered as a

robust solution that is protected against all cases in which at most Γi coefficients of the

ith constraint are allowed to vary under the proposed polyhedral uncertainty set in (3.3).
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The corresponding robust counterpart is defined as follows:

maximize c′x

subject to
n∑
j=1

aijxj + max
{Si∪{ti} | Si⊆Ji,|Si|=bΓic,ti∈Ji\Si}

{ ∑
j∈Si

âijyj + (Γi − bΓic)âitiyti

}
≤ bi, ∀i

−yj ≤ xj ≤ yj, ∀j
lj ≤ xj ≤ uj, ∀j
yj ≥ 0, ∀j

(3.4)

For every constraint i, a parameter Γi is introduced that takes value in the interval

[0, |Ji|]. The solution of the model in (3.4) is protected against all cases that up to bΓic
of coefficients are allowed to change and one coefficient, aiti , changes by (Γi − bΓic)âiti .
By strong duality, Bertsimas and Sim [23] proved that the robust counterpart in (3.4) is

equivalent to the following LP model:

maximize c′x

subject to
n∑
j=1

aijxj + ziΓi +
∑
j∈Ji

pij ≤ bi, ∀i

zi + pij ≥ âijyj, ∀i, j ∈ Ji
−yj ≤ xj ≤ yj, ∀j
pij ≥ 0, ∀i, j ∈ Ji
yj ≥ 0, ∀j
zi ≥ 0, ∀i

(3.5)

The parameter Γi is referred to as the budget of uncertainty of constraint i. It allows

the decision maker to balance the tradeoff between the protection level of the constraint

and the level of conservatism of the solution. If Γi = 0, the ηij’s are forced to 0 so that the

coefficients ãij equal to their nominal values aij, which implies that there is no protection

against uncertainty. If Γi = |Ji|, the constraint
∑n

j=1 |ηij| ≤ Γi becomes redundant as

|ηij| ≤ 1 for all i ∈ Ji, which implies that the ith constraint is fully protected against

uncertainty yielding a very conservative solution. Thus, as Γ increases, more protection is

given and the solution is more robust to uncertainty.

We now briefly describe how the robust optimization framework based on polyhedral
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uncertainty sets can be extended to discrete robust optimization problems. Consider a

nominal mixed integer program (MIP) that is the nominal LP model with the additional

constraint that the first k of a set n variables are integrals. The uncertainty for the

constraint matrix A is modeled in the same way as described for the continuous case. The

uncertainty for the cost vector c is modeled such that each entry cj takes values in the range

[cj, cj + dj], where dj is the estimate of the deviation from the nominal cost coefficient cj,

dj ≥ 0 for all j. Similar to (3.4), the robust counterpart for this uncertain MIP is defined

as follows:

maximize c′x + max
{S0 | S0⊆J0,|S0|≤Γ0}

{ ∑
j∈S0

djyj

}
subject to
n∑
j=1

aijxj + max
{Si∪{ti} | Si⊆Ji,|Si|=bΓic,ti∈Ji\Si}

{ ∑
j∈Si

âijyj + (Γi − bΓic)âitiyti

}
≤ bi, ∀i

−yj ≤ xj ≤ yj, ∀j
lj ≤ xj ≤ uj, ∀j
yj ≥ 0, ∀j
xi ∈ Z, ∀i = 1, . . . , k

(3.6)

Furthermore, Bertsimas and Sim [22] proved that the robust counterpart in (3.6) has the

following equivalent MIP formulation:

minimize c′x + z0Γ0 +
∑
j∈J0

p0j

subject to
n∑
j=1

aijxj + ziΓi +
∑
j∈Ji

pij ≤ bi, ∀i

z0 + p0j ≥ djyj, ∀j ∈ J0
zi + p1j ≥ âijyj, ∀i 6= 0, j ∈ Ji
pij ≥ 0, ∀i, j ∈ Ji
yj ≥ 0, ∀j
zj ≥ 0, ∀j
−yj ≤ xj ≤ yj, ∀j
lj ≤ xj ≤ uj, ∀j
xi ∈ Z, ∀i = 1, . . . , k

(3.7)
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3.3. Model Formulations and Analysis

In this section, we give a detailed description of how we utilized the robust optimization

approach discussed in the previous section to design robust imaging guidelines for PCa

staging. We start by considering the case of a single imaging test, and introduce some

structural properties and algorithmic ideas which will later be used to establish a conceptual

basis for the case of multiple tests. We tailor the notation introduced in Section 3.2.4 to

the particular optimization problem at hand and point out the differences in the model

formulations.

We introduce common notation to be used in the mathematical formulations for the

two cases of the problem. We let T1 and T2 denote BS and CT scan, respectively. We

consider the assignment of patient types into ideal imaging protocols and assume N types

of patients differentiated on the basis of clinical risk factors, indexed by j = 1, . . . , N . The

most straightforward approach to define patient types is to use the risk factors that are

highly associated with the presence of disease. Similar to treating a continuous variable as

a dichotomous variable in statistical modeling, some established criterion or cutoff point

can be used to create certain categories of risk factors that are clinically relevant. These

categories can then be used to define patient types. We let wj denote the proportion of

patient type j in the population and Dk
j denote the random outcome of test Tk for patient

type j and k = 1, 2, where Dk
j ∈ {−1, 1}: 1 corresponds to a positive test and −1 to a

negative test.

We let gj(·) denote the probability of an imaging outcome for patient type j, e.g., gj(D
1
j =

1) and gj(D
2
j = 1) denote the probability of a positive BS and CT scan, respectively.

To estimate these patient-type specific probabilities, we used the predicted probability

estimates for each patient in the study population obtained from the predictive models, and

averaged them over each patient type to obtain the mean predicted probabilities for each

type (discussed in detail in Section 3.4). We let mj represent the expected proportion of a

patient type j with missed disease, which we let refer to as the missed rate for the patient

type j, under an imaging protocol. We let nj represent the expected cost of imaging for a

patient type j under an imaging protocol. Both mj and nj have an additional subscript,

p, in the case in which there are multiple imaging protocols. We let α, α ∈ [0, 1], represent

the maximum allowable rate of missed metastatic disease for the population determined

by the decision maker, which we let refer to as the missed-rate budget.
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3.3.1. Single Imaging Test Case

In the case of a single imaging test, we introduce a binary variable xj defined as:

xj =

1, if patient type j is assigned to imaging protocol

0, otherwise

The missed rate for patient type j is defined as mj = wjgj(D
k
j = 1). In the presence of a

single test, the expected cost of imaging becomes a constant in the optimization problems,

and therefore the cost can be ignored, i.e., the expected cost of imaging for patient type

j is defined as nj = wj for Test k, which represents the expected number of imaging

test performed for type j. The optimal assignment of patient types for imaging can be

formulated as follows:

min

{
N∑
j=1

wjxj

∣∣∣∣∣
N∑
j=1

mj(1− xj) ≤ α, xj ∈ {0, 1},∀j
}

(3.8)

This model can be transformed into the standard knapsack formulation by setting yj =

1− xj:

max

{
N∑
j=1

wjyj

∣∣∣∣∣
N∑
j=1

mjyj ≤ α, yj ∈ {0, 1},∀j
}

(SIM)

which we refer to in our context as the single imaging model (SIM). Intuitively, SIM

optimizes the selection of patient types to maximize the proportion of the population not

imaged while not exceeding a given threshold value α of the missed disease rate.

In order for an imaging recommendation to be recognized as reasonable and fair by

clinicians, it should be consistent with respect to each patient type’s estimated probability

of disease.

Definition 3.1. A collection of decisions guiding the assignment of patient types to imaging

is referred to as a consistent risk-ordering if it prescribes imaging for patient types of higher

risk disease at least as much as for patient types at lower risk of disease.

Unfortunately, the optimal SIM solution may not always be consistent with the risk

ordering. To illustrate, consider a simple example with two patient types, j = 1, 2, and

with w1 � w2 and g1(D1 = 1) � g2(D1 = 1) such that m1 ≤ α and m2 ≤ α but

m1 + m2 > α. It follows that the greedy heuristic would image patient type 2 but the
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optimal solution would be to image type 1. To address this problem, we propose greedy

algorithms for the single imaging test case that provide near optimal solutions and are

consistent risk-ordering.

We now show that although the optimal solution to SIM does not guarantee a consistent

risk-ordering, we can obtain imaging recommendations that satisfy this condition using a

simple greedy heuristic.

Proposition 3.1. The SIM-Greedy algorithm generates a feasible solution with a consistent

risk ordering that deviates from the optimal solution to SIM by at most wmax = max{wj |
j = 1, . . . , N}.

Proof. We let z∗ denote the optimal value of SIM, and zG the value obtained with the

greedy algorithm. The well-studied greedy algorithm for the 0-1 knapsack problems orders

the items (patient types) by their efficiency, which in this context corresponds to wj/mj =

1/gj, in decreasing order, which is a consistent risk-ordering by definition. The bound on

z∗ − zG follows from a proof based on the LP-relaxation of the 0-1 knapsack problem (see

p.19 in [86]).

Proposition 3.1 shows that the gap between the optimal solution value, z∗, and the

greedy solution value, zG, depends on the characterization of the patient types. It should

also be noted that all the data are assumed to be integer valued in the proof of this bound.

Therefore, the magnitude of the transformed input values can negatively affect how far zG

can deviate from z∗.

Another important property of the SIM-Greedy algorithm is related to the robustness of

the greedy solution. The greedy algorithm selects patient types for no imaging sequentially

from low to high risk. As we will show in Section 3.5.2, the deviations in predictions tend to

increase with respect to increases in gj. Therefore, the greedy algorithm tends to provide a

solution that is immunized against the uncertainty in the probability estimation, meaning

the solution mitigates the influence of uncertainties in the allocation of imaging resources

for the robust model described in the next subsection.

In addition to the SIM-Greedy algorithm, we propose a second algorithm, which we refer

to as the individualized SIM-Greedy algorithm, that is motivated by the perspective of our

clinical collaborators. This algorithm assigns individual patient types to imaging on the

basis of their estimated probability of missed metastatic disease. Each type is assigned

to imaging if the probability of missed disease for that type is above the budget α. It
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Algorithm 3: SIM-Greedy.

1 m = 0; m is the total missed rate of the currently unimaged patient types
2 zG = 1; zG is the total imaging tests performed based on the current allocation
3 Sort the patient types by their efficiency in decreasing order, i.e.,

1/g1 ≥ 1/g2 ≥ . . . ≥ 1/gN .
4 for j = 1 to N do
5 if m+mj ≤ α then
6 yj = 1;
7 zG = zG − wj;
8 m = m+mj;

9 else
10 yj = 0;
11 end

12 end
13 Return the solution vector (y1, . . . , yN) and zG.

is guaranteed that the greedy solution is feasible to SIM given the properties of wj, i.e.,

wj ∈ [0, 1] for all j and
∑N

j=1wj = 1.

Algorithm 4: Individualized SIM-Greedy.

1 zG = 1
2 for j = 1 to N do
3 if gj(D

k
j = 1) ≤ α then

4 yj = 1;
5 zG = zG − wj;
6 else
7 yj = 0;
8 end

9 end
10 Return the solution y with value zG.

We compare the results of SIM-Greedy and individualized SIM-Greedy to optimal solu-

tions in Section 3.5.2.

The Robust Model

To account for the variations in the probability estimates obtained from predictive models,

we adopt the uncertainty set proposed by [22]. Since the missed disease rates depend on
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the probability estimates, which in turn are affected by statistical variation, we represent

the uncertain mj using the following uncertainty set:

U =

{
(m̃j)

∣∣∣∣∣ m̃j ∈ [mj − δj,mj + δj], ∀j;
N∑
j=1

|m̃j −mj|
δj

≤ Γ

}

In this representation, the uncertain missed rate m̃j of type j has a nominal value mj and

a maximum variation δj (δj ≥ 0). The budget parameter Γ (Γ ∈ [0, |J |]) is introduced

to control the degree of solution conservatism as discussed in Section 3.2.4. Specifically,

this uncertainty representation postulates that a missed rate m̃j ∈ [mj − δj,mj + δj] is

determined for each type and the total variation in missed rates is less than or equal to Γ.

Remark 3.1. The formulation proposed by Bertsimas and Sim [23] assumes that m̃j is

a symmetric random variable; however, in our application this is not necessarily true.

This is still a reasonable assumption because the adversary seeks to maximize m̃j, and

in practice the lower bound is not achieved. Furthermore, because both the probability of

missed metastatic disease and the proportion are less than 1, the upper bound on m̃j does

not exceed 1.

The robust counterpart formulation of SIM under the uncertainty set U is defined as

follows:

maximize
N∑
j=1

wjyj

subject to
N∑
j=1

mjyj + max
{S∪{t} | S⊆J,|S|=bΓc,t∈J\S}

{∑
i∈S

δiyi + (Γ− bΓc)δtyt
}
≤ α

yj ∈ {0, 1} ∀j

(3.9)

where J is the set of coefficients in the missed-rate budget constraint that are uncertain.
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Problem (3.9) has the following equivalent MIP formulation:

maximize
N∑
j=1

wjyj

subject to
N∑
j=1

mjyj + tΓ +
∑
j∈J

vj ≤ α

t+ vj ≥ δjyj ∀j ∈ J
t ≥ 0

vj ≥ 0 ∀j ∈ J
yj ∈ {0, 1} ∀j

(R-SIM)

which we refer to as R-SIM. The variables vj and t correspond to the dual variables of (3.9)

[22]. The parameter Γ controls the price of robustness defined as the difference between the

robust optimal function value and that of SIM. The relevant range of Γ is lower bounded

at zero. The maximum relevant value of Γ beyond which Γ does not affect the optimal

objective value is denoted by Γ̂. In the derivation of such a bound, Γ̂ is assumed integer

since in the original formulation by [22] it is interpreted as the integer number of parameters

that can vary.

Proposition 3.2. Γ̂ is no larger than the integer number of unimaged patient types selected

by applying the greedy algorithm to SIM.

Proof. The robust counterpart in (3.9) can be interpreted as an adversary choosing the

constraint coefficients that are allowed to vary, i.e., those constraint coefficients, mj, such

that yj = 1. Given the optimal solution y∗j ∈ {0, 1} to (3.9), the maximum relevant range

of Γ is therefore:

Γ̂ ≤
N∑
j=1

y∗j , (3.10)

showing that Γ̂ is bounded by the maximum number of unimaged patient types. Now

consider a 0-1 knapsack problem in which the objective is to maximize the total number
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of patient types not to be imaged with respect to the budget constraint as:

maximize
N∑
j=1

yj

subject to
N∑
j=1

mjyj ≤ α

yj ∈ {0, 1} ∀j

(3.11)

Because SIM is a restriction of (3.11), for an optimal solution ỹ∗ to (3.11), we have:

Γ̂ ≤
N∑
j=1

y∗j ≤
N∑
j=1

ỹ∗j (3.12)

An upper bound on
∑N

j=1 ỹ
∗
j can be obtained by solving the LP-relaxation of (3.11). In

the LP-relaxation, we use the SIM-Greedy algorithm with a minor modification that if not

imaging a patient type would cause the violation of the budget for the split type s defined

as s = min
{
j :
∑j

i=1wipi > α
}

, we stop the algorithm and the residual budget is filled

by an appropriate fractional part of type s. As the greedy choice property holds for the

LP-relaxation, we have the following upper bound [86]:

Γ̂ ≤
N∑
j=1

ỹ∗j ≤ s− 1 +

(
α−∑s−1

j=1 wjpj

)
wsps

(3.13)

Because of the integrality of ỹ∗j , a tighter upper bound can be obtained by rounding down

the solution of the greedy algorithm for the LP-relaxation:

Γ̂ ≤
N∑
j=1

ỹ∗j ≤ s− 1 (3.14)

(3.14) shows that the maximum relevant value of Γ is at most the maximum number of

unimaged patient types determined by the greedy algorithm.

Proposition 3.2 provides a fast method to identify the relevant range of Γ in SIM. It is

important to point out that the split type s is nondecreasing in the missed-rate budget

α, and thus, the upper bound on Γ̂ is increasing in α. Moreover, when Γ = 0, R-SIM is

equivalent to SIM. An important implication of these findings is that the more strict the
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missed-rate budget α, the more the solution is robust to uncertainty.

3.3.2. Two Imaging Tests Case

In this section, we extend our models to develop coordinated imaging protocols that con-

sider different combinations of the imaging tests. Each branch of the decision tree in

Figure 3.2 represents an imaging protocol, indexed by p, p = 1, . . . , 4, and the circles

represent the application of the tests, with random outcomes denoted by branches.

T1, T2

T2

T1

T1

T2

Protocol 4

Protocol 3

D1
j = −1, D2

j = −1

D1
j = −1, D2

j = 1

D1
j = 1, D2

j = −1

D1
j = 1, D2

j = 1

Protocol 2

D2
j = −1

D2
j = 1

D1
j = −1

D1
j = 1

Protocol 1

D1
j = −1

D1
j = 1

D2
j = −1

D2
j = 1

Figure 3.2: Decision tree for the design of coordinated imaging protocols for the two
tests case.

We introduce a binary variable xjp defined as:

xjp =

1, if patient type j is assigned to imaging protocol p

0, otherwise

We let njp denote the expected cost and mjp denote the expected missed disease rate for

patient type j under protocol p. As in the single test case, α represents the budget on the

60



missed disease rate for the population. The decision problem of determining the optimal

assignment of patient types to imaging protocols so as to minimize the total number of

imaging tests performed, can be formulated as a MCKP:

min

{
N∑
j=1

4∑
p=1

njpxjp

∣∣∣∣∣
N∑
j=1

4∑
p=1

mjpxjp ≤ α,
4∑
p=1

xjp = 1, ∀j, and xjp ∈ {0, 1}, ∀j, p
}

(3.15)

This model can be transformed into the standard MCKP formulation by multiplying the

objective by −1, and adding the constant n̄j = max{njp | p = 1, . . . , 4} to all njp for

patient type j:

max

{
N∑
j=1

4∑
p=1

(n̄j − njp)xjp
∣∣∣∣∣

N∑
j=1

4∑
p=1

mjpxjp ≤ α,

4∑
p=1

xjp = 1, ∀j, and xjp ∈ {0, 1}, ∀j, p
}

(MIM)

which we refer to in our context as the multiple imaging model (MIM).

The parameters njp and mjp of MIM are determined based on the patient type-specific

probabilities. We let gj(·, ·) denote the probability of joint outcomes of imaging tests T1

and T2, and gj(· | ·) the probability of conditional outcomes of imaging tests T1 and T2 for

patient type j. We let c1 and c2 denote the costs of imaging tests T1 and T2, respectively.

We refer to c1 and c2 as costs; however, they can be generalized to represent asymmetrical

penalties for imaging tests on the basis of factors that differentiate imaging tests such as

cost, side effects, or patient or physician preferences in different concepts. The expected

cost of imaging for a patient type j type are defined as nj1 = wj(c1 + c2gj(D
1
j = 1))

under Protocol 1, nj2 = wj(c2 + c1gj(D
2
j = 1)) under Protocol 2, nj3 = 2wj(c1 + c2)

under Protocol 3 and nj4 = 0 under Protocol 4. The missed disease rate are defined as

mj1 = wjgj(D
1
j = −1, D2

j = 1) for Protocol 1, mj2 = wjgj(D
1
j = 1, D2

j = −1) for Protocol

2, and mj4 = wjgj(D
1
j = 1 or D2

j = 1) = wj(1 − gj(D1
j = −1, D2

j = −1)) for Protocol 4.

Note that mj3 = 0 since the protocol performing both tests simultaneously has a perfect

detection rate by our assumption that at least one positive test result confirms the absolute

presence of metastatic disease.

Similar to the single imaging test case, we now introduce the notion of consistent risk-

ordering in the context of two imaging tests. Given that our primary concern is the

detection of metastatic cancer, we associate the risk of disease for a patient type with the

probability of at least one positive imaging test, i.e., gj(D
1
j = 1 or D2

j = 1). Because there
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are multiple imaging protocols with varying costs, we define the risk-ordering based on the

expected cost of imaging protocols in the two imaging tests case.

Definition 3.2. Given two patient types j and j′ such that the risk of disease is greater for

patient type j than patient type j′, i.e., gj(D
1
j = 1 or D2

j = 1) > gj′(D
1
j′ = 1 or D2

j′ = 1),

the collection of decisions guiding the assignment of these patient types to imaging protocols

is referred to as a consistent risk-ordering if it results in an expected cost of imaging for

patient type j′ that is at most as high as the expected cost of imaging for patient type j.

We adopt the standard greedy algorithm developed for the MCKP [86]. In the greedy

algorithm for MCKP, the concept of dominance is important in the solution of MCKP

because several variables that will never be chosen in an optimal solution can be deleted a

priori.

Definition 3.3. Given two protocols s and t for patient type j, protocol s dominates t if

it results in a lower cost and lower missed disease rate than protocol t. More formally:

mjs ≤ mjt and njs ≤ njt (3.16)

Proposition 3.3. If the results of imaging tests are conditionally independent, there is

no dominance relation among the protocols for a patient type j if and only if the following

condition is satisfied:

(gj(D
2
j = −1)− gj(D1

j = −1))(c1gj(D
2
j = −1)− c2gj(D1

j = −1)) > 0 (3.17)

Proof. Protocol 3 results in the highest cost of imaging with zero missed rate. Protocol

4 does not perform any imaging and therefore has zero cost and the highest missed rate.

As illustrated in Figure 3.3, these protocols are nondominated. Therefore, we restrict our

focus to Protocols 1 and 2 in the rest of this proof.

We first show that when there is no dominance, then (3.17) is satisfied. The lack of

dominance implies that either mj1 < mj2 and nj1 > nj2, or mj1 > mj2 and nj1 < nj2.

Consider first the case that mj1 < mj2 and nj1 > nj2. From the conditional independence

of test results, we can express mj1 as:

mj1 = wjgj(D
1
j = −1)(1− gj(D2

j = −1))

mj1 = wj(gj(D
1
j = −1)− gj(D1

j = −1)gj(D
2
j = −1))
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Similarly, we can express mj2 as mj2 = wj(gj(D
2
j = −1) − gj(D

1
j = −1)gj(D

2
j = −1)).

Thus, mj1 < mj2 implies that gj(D
2
j = −1)− gj(D1

j = −1) > 0, and nj1 > nj2 implies that

c1gj(D
2
j = −1) − c2gj(D1

j = −1) > 0. Therefore, (3.17) is satisfied. A similar argument

holds true for the case that mj1 > mj2 and nj1 < nj2.

We now show that when (3.17) is satisfied, then there is no dominance relation between

Protocols 1 and 2. Consider first the case that gj(D
2
j = −1) − gj(D

1
j = −1) > 0 and

c1gj(D
2
j = −1) − c2gj(D1

j = −1) > 0. Based on the expressions for mj1 and mj2, we see

that gj(D
2
j = −1)− gj(D1

j = −1) > 0 implies mj1 < mj2. Based on the expressions for nj1

and nj2, c1gj(D
2
j = −1)− c2gj(D1

j = −1) > 0 implies that nj1 > nj2. These results show

that there is no dominance relation between Protocols 1 and 2 when gj(D
2
j = −1)−gj(D1

j =

−1) > 0 and c1gj(D
2
j = −1)− c2gj(D1

j = −1) > 0. A similar argument holds true for the

case that gj(D
2
j = −1) − gj(D

1
j = −1) < 0 and c1gj(D

2
j = −1) − c2gj(D

1
j = −1) < 0,

showing that mj1 > mj2 and nj1 < nj2. Thus, there is no dominance relation between

Protocols 1 and 2.

In a general two tests case, dominated protocols can be found according to criteria in

3.16 and can be eliminated for each patient type. We let Rj denote the set of protocols

that are nondominated for type j. The size of set Rj is denoted by rj. We assume the

ordering mj1 < mj2 < . . . < mjrj in Rj.

Protocol 3

Protocol 4

Protocol 1

Protocol 2

mjp

n
j
p

Figure 3.3: The illustration of dominance for MIM where Protocol 1 dominates
Protocol 2.

In the MIM-Greedy algorithm, the incremental number of imaging tests ñjp is a measure

of how much we decrease imaging, and the incremental missed-rate m̃jp shows how much
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Algorithm 5: MIM-Greedy.

1 For each patient type j, derive Rj and sort the protocols in Rj according to
increasing missed-rate, mjp. The following indices refer to protocols in Rj with
respect to this order.

2 Construct an instance of the 0-1 knapsack problem by setting ñjp = nj,p−1 − njp
and m̃jp = mjp −mj,p−1 for each Rj and p = 2, . . . , rj. Each item in this problem
can be seen as 2-tuples of (j, p).

3 Calculate the incremental efficiencies ẽjp = ñjp/m̃jp for each item and sort the
items according to decreasing ẽjp. With each value of ẽjp, we associate the
original indices j, p during the sorting. Use SIM-Greedy to assign patients types
to protocols according to the order of sorted incremental efficiencies.

4 Set xj1 = 1 and xjp = 0 for p = 2, . . . , rj for all j.
5 zG = 2 zG is the total imaging tests performed based on the current allocation
6 m = α m is the residual budget
7 for ∀(j, p) ∈ {ẽjp} do
8 while m̃jp ≤ m do
9 Assign type j to Protocol p;

10 m = m− m̃jp;
11 zG = zG − ñjp;
12 xjp = 1, xj,p−1 = 0;

13 end

14 end
15 return The solution x with value zG.

we decrease the missed-rate budget if we assign patient type j to Protocol p instead of

Protocol p− 1.

In addition to the MIM-Greedy algorithm, we propose the individualized MIM-Greedy

algorithm that is consistent with the perspectives of our clinical collaborators. This al-

gorithm assigns patient types to protocols on the basis of their estimated probability of

missed metastatic disease. Each protocol is considered sequentially until one is found for

which the probability of missed disease for the patient type falls below the budget α. If

the probability of missed disease for a patient type under Protocol 4 is above the budget,

we check the probability of missed disease for Protocols 1 and 2. If both Protocols 1 and

2 result in a probability of missed disease below the budget, we assign the type to the

protocol with the lowest missed disease rate mjp. It is guaranteed that the greedy solution

is feasible to MIM given the properties of wj, i.e., wj ∈ [0, 1] for all j and
∑N

j=1wj = 1.
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Algorithm 6: Individualized MIM-Greedy.

1 zG = 0
2 for j = 1 to N do
3 if gj(D

1
j = 1 or D2

j = 1) ≤ α then
4 xj4 = 1, xj1 = xj2 = xj3 = 0;
5 else if gj(D

1
j = −1, D2

j = 1) ≤ α and gj(D
1
j = −1, D2

j = 1) ≤ α then
6 if mj1 ≤ mj2 then
7 zG = zG + nj1, and xj1 = 1, xj2 = xj3 = xj4 = 0;
8 else
9 zG = zG + nj2, and xj2 = 1, xj1 = xj3 = xj4 = 0;

10 end

11 else
12 zG = zG + nj3, and xj3 = 1, xj1 = xj2 = xj4 = 0;
13 end

14 end
15 Return the solution x with value zG.

The Robust Problem

Because the model parameters njp and mjp of MIM are determined based on the probability

estimates, which in turn are both affected by statistical variation, we employ the robust

optimization approach discussed in Section 3.2.4. The model of data uncertainty considered

for the missed-rate budget constraint of MIM is similar to SIM. Each uncertain missed-

rate m̃jp of type j and protocol p is modeled as as independent, symmetric and bounded

random variable that takes values in [mjp−δjp,mjp+δjp], where δjp represents the maximum

deviation (δjp ≥ 0) from the nominal value mjp. For the uncertainty of the objective, each

uncertain ñjp of type j and protocol p takes values in [n̄j − njp, n̄j − njp + σjp], where σjp

(σjp ≥ 0) represents the maximum deviation from the nominal value njp. Adopting the
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approach in [22], the robust counterpart formulation of MIM is as follows:

maximize
N∑
j=1

4∑
p=1

(n̄j − njp)xjp + min
{S0 | S0⊆J0,|S0|≤Γ0}

{ ∑
(j,p)∈S0

σjpxjp

}
subject to
N∑
j=1

4∑
p=1

mjpxjp + max
{S1∪{k,l} | S1⊆J1,

|S1|≤bΓ1c,{k,l}∈J1\S1}

{ ∑
{j,p}∈S1

δjpxjp + (Γ1 − bΓ1c) δklxkl
}
≤ α

4∑
p=1

xjp = 1, ∀j

xjp ∈ {0, 1}, ∀(j, p)

(3.18)

where Γ0 and Γ1 are used to control the level of robustness in the objective and the

missed-rate budget constraint due to the uncertainty in the model parameters, respec-

tively. J0 and J1 are the sets of coefficients of the objective and missed-rate budget con-

straint, respectively, that are subject to uncertainty, and defined as J0, J1 ⊆ {(j, p) | j ∈
{1, . . . , N} and p ∈ {1, . . . , 4}}.

Remark 3.2. Similar to the single imaging test case, the formulation proposed by Bert-

simas and Sim [23] assumes that m̃jp is a symmetric random variable; however, in our

application this is not necessarily true. This is still a reasonable assumption because the

adversary seeks to maximize m̃jp, and in practice the lower bound is not achieved. Fur-

thermore, because both the probability of missed metastatic disease and the proportion are

less than 1, the upper bound on m̃jp does not exceed 1 for each protocol and patient type.
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The robust counterpart in (3.18) has the following equivalent MIP formulation:

maximize
N∑
j=1

4∑
p=1

(n̄j − njp)xjp + t0Γ0 +
∑

(j,p)∈J0
ujp

subject to
N∑
j=1

4∑
p=1

mjpxjp + t1Γ1 +
∑

(j,p)∈J1
vjp ≤ α

4∑
p=1

xjp = 1 ∀j

t0 + ujp ≥ σjpxjp ∀(j, p) ∈ J0
t1 + vjp ≥ δjpxjp ∀(j, p) ∈ J1
t0 ≥ 0, t1 ≥ 0

ujp ≥ 0 ∀(j, p) ∈ J0
vjp ≥ 0 ∀(j, p) ∈ J1
xjp ∈ {0, 1} ∀(j, p)

(R-MIM)

which we refer to as R-MIM. The variables ujp, vjp and t0, t1 of R-MIM correspond to the

dual variables of the linearized constraints in (3.18) [22].

3.4. Predictive Modeling

The robust optimization models described in the previous section are not limited to any one

type of predictive model. Thus, we provide an example based on logistic regression (LR).

LR is the most commonly used predictive modeling method in the biomedical literature.

To predict the positive outcome of BS and CT scan, we utilize the binary LR models that

were developed and validated in Chapter 2. In this section, we describe how we utilize the

LR method to predict the probabilities of nominal imaging outcomes, and how we measure

the uncertainty in predictions obtained from these models.

We develop a multinomial LR model to calculate the probabilities of joint outcomes

of tests T1 and T2. The design matrix of the independent variables, X, is the same as

in Section 2.2.2, i.e., it contains n rows and d columns where d is the number of inde-

pendent variables and the first element of each row, xi0 = 1, is the intercept. We let y

be the categorical dependent variable of which the categories result from the concurrent

application of T1 and T2 tests under Protocol 3. We assume that the categories of y are

coded 1, 2, 3 or 4: category 1 corresponds to T1 = 1 and T2 = 1, category 2 corresponds
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to T1 = 1 and T2 = −1, category 3 corresponds to T1 = −1 and T2 = 1, and category 4

corresponds to T1 = −1 and T2 = −1.

For the multinomial LR, we fit three independent binary LR models, in which the last

outcome is chosen to be the baseline outcome and the other three outcomes are separately

regressed against the baseline outcome. We estimate binary LR models, for k < 4, as

follows:

log

(
P(y = k | x)

P(y = 4 | x)

)
= βTk x (3.19)

where βk represents a set of regression coefficients for each category k with respect to the

reference category 4. Exponentiating both sides of (3.19) and using the fact that all four

of the probabilities must sum to one, we have:

P(y = 4 | x) =
1

1 +
3∑
l=1

eβ
T
l x

P(y = k | x) =
eβ

T
k x

1 +
3∑
l=1

eβ
T
l x

k < 4

(3.20)

Similar to the models in Section 2.3.2, we use LM-BFGS algorithm to find the maximum

likelihood estimation (MLE) estimate of βk for binary models for k < 4.

To measure the uncertainty of parameters in SIM and MIM, we need to measure the

uncertainty in the patient type-specific probabilities. Figure 3.4 displays the distribution of

individual probability estimates obtained from a LR model predicting the positive outcome

of BS for patients in a (a) low-risk and (b) high-risk type. The probability estimates

for the low-risk type do not diverge much from zero (negative BS), which implies that

the probabilities are well-calibrated for this type. For the high-risk type, the probability

estimates diverge strikingly from one (positive BS), which implies that the model can not

confidently assign a prediction for this type as there are not as many patients at high-risk

as at low-risk of bone metastasis.

To measure the uncertainty in predictions, we employ random sampling of the coeffi-

cient vectors of the binary and multinomial LR models based on the large-sample normal

distributions of MLEs. For random sampling of coefficient vectors, we need the variances

and covariances of the estimated coefficients of LR models. To illustrate the estimation

of the variances and covariances, we consider a binary LR model for predicting the pos-

68



0.5 1 1.5 2

100

200

300

400

Predicted probability (%)

N
u
m
b
er

of
p
a
ti
en
ts

(a) Low-risk type

45 50 55 60

Predicted probability (%)

(b) High-risk type

Figure 3.4: Distributions of individual probability estimates obtained from a LR
model predicting the positive outcome of BS.

itive outcome of a BS: logitπi = βTxi where πi = P(yi = 1 | xi). The variances and

covariances of the maximum likelihood estimates of β are obtained from the inverse of the

so-called observed information matrix, denoted as I(β), i.e., Var(β) = I−1(β). The esti-

mators of the variances and covariances, denoted by V̂ar(β̂), are obtained by evaluating

Var(β) at the maximum likelihood estimate β̂. The information matrix can be estimated

as Î(β̂) = XT V̂X, where X is the data matrix and V is a diagonal matrix defined as

V = diag(π̂1(1− π̂1), . . . , π̂n(1− π̂n)) [78].

3.5. Results

In this section, we present results for (1) predictive modeling and (2) optimization models

and greedy algorithms for the single test and multiple tests cases described in Sections

3.3.1 and 3.3.2. We used the clinical parameters that were highly associated with the

positive outcome of BS and CT scan based on our study in Chapter 2 to define patient

types. We chose the most commonly used categories for each of these parameters. For

PSA: ≤ 4, 4 − 10, 10 − 20 and > 20; for GS: < 7,= 7 and > 7; for clinical stage: T1, T2

and T3/4 were considered. Overall, we had 36 patient types.
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3.5.1. Predictive Model Results

We used the clinical datasets and variables that were described in Chapter 2.2.1 to develop

and validate a multinomial LR for predicting joint outcomes of BS and CT scan. For

the multinomial LR, we used a random half of the data for training and other half for

validation. All models were built and evaluated with Python 2.7.11 on a HP Z230 work

station with an Intel Xeon E31245W (3.4GHz) processor, 4 cores, and 16 GB of RAM. We

used the scipy.optimize package in Python as the optimization solver.

The study population included 938 newly-diagnosed PCa patients who received both

BS and CT scan at diagnosis, of which 67 (7.1%) had both tests positive, 36 (3.8%) had

BS positive but CT scan negative, 40 (4.3%) had BS negative and CT scan positive, and

finally, 795 (84.8%) had both tests negative. Depictions of the mean predicted value versus

the true fraction of cases with y = 1, 2 and 3 along with the pairwise receiver operating

characteristics (ROC) curves for binary models are shown in the appendix in Figure B.1.

The results show good calibration in the validation samples. As expected, the binary

model predicting y = 1 against y = 4 is good at discriminating patients who had both

tests positive from patients who had both negative. As also seen in the calibration plots,

low Brier scores indicate overall good calibration of the predicted probabilities.

To measure the statistical estimation error in the probability estimates obtained from

the validated predictive models, we conducted a random sampling of 1, 000 coefficient

vectors using the mean and covariances of the estimated coefficients for the binary models

and multinomial model. We let ĝj(·, ·) and ĝj(· | ·) denote the mean patient type-specific

probabilities, and let gmin
j (·, ·) and gmax

j (· | ·) denote the minimum and maximum of the

patient type-specific probabilities calculated based the random samples of the coefficient

vectors.

For the objective function of R-MIM, we set the nominal value of nj1 equal to wj(1 +

gmin
j (D1

j = 1)) for Protocol 1, and nj2 equal to wj(1 + gmin
j (D2

j = 1)) for Protocol 2 for

patient type j. Note that this corresponds to placing equal cost penalties on BS and CT

scan. We set the deviation in expected number of imaging tests performed for patient type j

equal to σj1 = wj(g
max
j (D1

j = 1)−gmin
j (D1

j = 1)) and σj2 = wj(g
max
j (D2

j = 1)−gmin
j (D2

j = 1))

for Protocols 1 and 2, respectively, whereas σj3 and σj4 are equal to zero for Protocols 3

and 4, respectively.

For the missed-rate budget constraint of both R-SIM and R-MIM, we set the nominal

value of mj1 equal to wj ĝj(D
1
j = −1, D2

j = 1) for Protocol 1, and mj2 to wj ĝj(D
1
j = 1, D2

j =
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−1) for Protocol 2, and mj4 to wj ĝj(D
1
j = 1 or D2

j = 1) for Protocol 4. We set the deviation

in missed-rate for patient type j equal to δj1 = 0.5wj(g
max
j (D1

j = −1, D2
j = 1)− gmin

j (D1
j =

−1, D2
j = 1)) for Protocol 1, and δj2 to 0.5wj(g

max
j (D1

j = 1, D2
j = −1)− gmin

j (D1
j = 1, D2

j =

−1)) for Protocol 2, and δj4 to 0.5wj(g
max
j (D1

j = 1 or D2
j = 1)− gmin

j (D1
j = 1 or D2

j = 1))

for Protocol 4.

3.5.2. Optimization Model Results

In this section, we present numerical results for the single imaging test case and two imaging

tests case based on the above model parameter choices. Unless otherwise specified, SIM

and MIM refer to the nominal SIM and MIM. Recall that R-SIM and R-MIM refer to

the robust counterpart models. To be consistent with the existing literature on knapsack

problems, we proposed optimization models for both cases of the problem in maximization

form in Section 3.3. For ease of interpretation, however, we present results in this section

considering the minimization of average number of imaging tests to be performed rather

than the true objective value. We assumed symmetrical cost penalties for BS and CT scan

in our case study.

Single Imaging Test Case

Figure 3.5 illustrates that the deviations in the predictions increase with respect to the

increasing probability of positive BS. We observed the same trend in the predictions for

positive CT scan. These findings imply that imaging recommendations that have a consis-

tent risk-ordering, such as solutions to the SIM-Greedy algorithm, are capable of mitigating

the adverse effect of statistical error on the optimal value.

Figure 3.6 depicts the diminishing returns with respect to the increasing budget on

missed disease rate for the optimal SIM and R-SIM solutions, the SIM-Greedy and indi-

vidualized SIM-Greedy solutions. In this figure, R-SIM has the full protection level against

statistical error, i.e., Γ = |J | = 36 and thus there is no constraint on parameter variation

in the uncertainty set. For both BS and CT scan, the SIM-Greedy algorithm provides

solutions that are close to the optimal solutions obtained by solving SIM to optimality. At

a missed-rate budget of α = 1%, the solutions to both SIM and SIM-Greedy reduce the

average number of BSs per patient by 72.7% compared to the individualized SIM-Greedy

solution. At the same missed-rate budget, the solutions to SIM and SIM-Greedy reduce

the average number of CT scans per patient by 66.7% and 60.6%, respectively, compared
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to the individualized SIM-Greedy solution. At a missed-rate budget of 2%, the solutions to

SIM and SIM-Greedy reduce the average number of BSs per patient by 81.2% and 77.9%,

respectively, compared to the individualized SIM-Greedy solution. At the same missed-

rate budget, the solutions to SIM and SIM-Greedy reduce the average number of CT scans

per patient by 79.5% and 75.7%, respectively, compared to the individualized SIM-Greedy

solution. Thus, the results suggest that the SIM-Greedy algorithm provides near optimal

solutions while the individualized SIM-Greedy algorithm has poor performance.
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Figure 3.5: Left: Illustration of the relation between the proportion of patient types
and the variations in the estimated probability of positive BS. The patient types are
sorted in the order of increasing risk of disease. Right: Illustration of the relation
between the proportion of patient types and the expected rate of missed disease.
The patient types are sorted in the order of increasing rate of missed disease.

In Chapter 2, we developed a state-wide imaging criteria that has been implemented

by MUSIC. This imaging criteria was found to be Pareto optimal with respect to the

expected number of positive outcomes missed and expected number of negative tests based

on the patients who received an imaging test at diagnosis. To evaluate the performance

of the MUSIC criteria on the basis of expected missed disease rate and expected number

of imaging test performed per patient at the population level, we assigned patient types

to receive or not receive a BS or CT scan according to the MUSIC criteria. Figure 3.6

demonstrates that the MUSIC criteria is on the efficient frontier for both BS and CT scan.

To examine the effect of the protection level, Γ, on the tradeoff between robustness

and optimality, we consider the probability of missed-rate budget violation by randomly

72



1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

MUSIC

A
ve
ra
ge

n
u
m
b
er

o
f
im

a
g
in
g
te
st

p
er

p
a
ti
en
t

BS

SIM
SIM-Greedy
R-SIM
Individualized SIM-Greedy

1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

MUSIC

Missed-rate budget (%)

A
ve
ra
ge

n
u
m
b
er

o
f
im

ag
in
g
te
st

p
er

p
at
ie
n
t

CT scan

SIM
SIM-Greedy
R-SIM
Individualized SIM-Greedy

Figure 3.6: The diminishing returns from the optimal SIM and R-SIM solutions, the
SIM-Greedy and individualized SIM-Greedy solutions as a function of the increasing
missed-rate budget for BS and CT scan. R-SIM represents the optimal value with
full protection against statistical variation.

sampling coefficient vectors of the binary LR models, as explained in Section 3.4. At a

certain missed-rate budget, we construct instances of SIM using 1, 000 randomly selected

coefficient vectors of the binary LR models. We estimate the probability of missed-rate

73



budget violation as the fraction of SIM instances that are infeasible by the original optimal

solutions of R-SIM with various protection levels. To examine the effect of sampling

variation on the model outcomes, we obtain 30 independent samples of 1000 coefficient

vectors of the binary LR models and constructed 95% confidence interval (CI)s.

Figure 3.7 illustrates the effect of the protection level Γ on the objective function value

and the probability of missed-rate budget violation for R-SIM. We observe that as the

protection level increases, the probability of missed-rate budget violation decreases while

the number of imaging test per patient increases. Based on Proposition 3.2, we found the

upper bound on maximum relevant value Γ̂ by applying the SIM-Greedy algorithm on SIM

for BS and CT scan as 23 and 25, respectively, at a missed-rate budget of 1%. Because we

solve SIM and R-SIM as minimization problems for easier interpretation of the results, these

upper bounds on Γ̂ correspond to 13 and 11 for BS and CT scan, respectively. Figure 3.7

confirms that Γ̂ < 10 for both BS and CT scan demonstrating that the true bounds for

these particular instances are tighter than the bound in Proposition 3.2. In the absence of

protection to the missed-rate budget constraint, the optimal value is 0.18 and 0.11 for BS

and CT scan, respectively. However, with maximum protection, the number of imaging

tests per patient is increased to 0.49 and 0.29 for BS and CT scan, respectively, indicating

a more conservative solution that recommends more imaging when Γ is unbounded.
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Figure 3.7: The tradeoff between the optimal value and the probability of missed-
rate budget violation of R-SIM as a function of the increasing protection level Γ at
a budget of 1% for BS and CT scan.
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In Table 3.1, we present a sample of the objective function value and the probability of

missed-rate budget violation for R-SIM at budgets of 1% and 2%. At a 1% missed-rate

budget, the solution to R-SIM with Γ = 0.5 and 1 decrease the probability of missed-rate

budget violation by 48.2% and 79.6%, respectively, while increasing the average number

of BSs per patient by 20.5% and 64.8%, respectively. At the same missed-rate budget,

the solutions to R-SIM with Γ = 0.5 and 1 decrease the probability of missed-rate budget

violation by 47.5% and 73.1%, respectively, while increasing the average number of CT

scans per patient by 14.3% and 43.8%, respectively. At a 2% missed-rate budget, the

solutions to R-SIM with Γ = 0.5 and 1 decrease the probability of missed-rate budget

violation by 40.1% and 67.8%, respectively, while increasing the average number of BSs per

patient by 17.5% and 42.9%, respectively. At the same missed-rate budget, the solutions

to R-SIM with Γ = 0.5 and 1 decrease the probability of missed-rate budget violation

by 24.3% and 56.7%, respectively, while increasing the average number of CT scans per

patient by 7.0% and 23.3%, respectively. These results suggest that the robust formulation

offers flexibility to the decision maker when trading off between the competing goals of

minimizing the number of imaging tests performed in the population and minimizing the

probability of missed-rate budget violation.

In Section 3.3.1, it was suggested that the SIM-Greedy algorithm tends to provide a

robust solution by selecting patient types for no imaging from high to low risk of disease.

As shown in Table 3.1, the SIM-Greedy solution provides more protection against missed-

rate budget violation than the optimal SIM solution for both BS and CT scan. At a

1% missed-rate budget, the SIM-Greedy solution reduces the probability of missed-rate

budget violation by 17.1% while increasing the average number of BSs per patient by 3.8%

compared to the optimal SIM solution. At a 2% missed-rate budget, the SIM-Greedy

solution reduces the probability of missed-rate budget violation by 40.3% while increasing

the average number of BSs per patient by 15.9%. At a 1% missed-rate budget, the SIM-

Greedy solution reduces the probability of missed-rate budget violation by 39.4% while

resulting in an increase of 10.6% in the average number of CT scans per patient. At a

2% missed-rate budget, the reduction in the probability of missed-rate budget violation is

58.0% with an increase of 15.7% in the average number of CT scans per patient compared to

the optimal SIM solution. These results suggest that the SIM-Greedy algorithm generates

more robust solutions as anticipated.

The SIM-Greedy algorithm provides greater reduction in the probability of missed-rate

budget violation for CT scan than BS compared to SIM. As illustrated in Figure B.4 on a

75



random sample of coefficient vectors, patients tend to have higher probability of a positive

CT scan than a positive BS. For the five patient types with highest risk of disease, the

mean probability of positive CT scan is 40.8% (ranging from 25.3% to 70.9%), whereas the

mean probability of positive BS is 34.0% (ranging from 17.7% to 52.0%). Moreover, these

patient types are subject to much higher statistical variation than patient types at low risk

of disease (illustrated in Figure 3.5). As the SIM-Greedy algorithm selects these patient

types for no imaging at missed-rate budgets of 1% and 2%, it provides more protection

against missed-rate budget violation than the optimal SIM solutions for CT scan than BS.

Compared to the MUSIC imaging criteria, the SIM-Greedy results in a lower average

number of BS and CT scan per patient at missed-rate budgets of 1% and 2%, and the

reduction in the average number of imaging tests per patient by the SIM-Greedy algorithm

becomes more significant as the missed-rate budget increases; however, the MUSIC criteria

solution provides more protection against missed-rate budget violation at each budget level.

For example, at a 2% missed-rate budget, the SIM-Greedy solutions reduce the average

number of BSs and CT scans per patient by 64.0% and 75.0%, respectively, compared

to the MUSIC criteria solution; however, they result in significantly higher probability

of missed-rate budget violation (26.2% and 14.6%, respectively) than the MUSIC criteria

solutions for BS and CT scan (0.4% and 0.1%, respectively).

The solution to the MUSIC imaging criteria results in 0.20 BSs per patient with 26.6%

probability of missed-rate budget violation at a budget of 1%. At the same missed-rate

budget, the solution to R-SIM with Γ = 1 reduces the probability of missed-rate budget

violation by 67.1% to 8.7% while increasing the number of BSs per patient by 42.9% to

0.29 compared to the MUSIC solution. At a 2% missed-rate budget, the solution to R-SIM

with Γ = 2 reduces the number of BSs per patient by 42.4% to 0.12; however, increases the

probability of missed-rate budget violation from 0.4% to 5.5%. For CT scan, the MUSIC

imaging criteria provides a good solution at a missed-rate budget of 1%, i.e., there is no

R-SIM resulting in a lower probability of missed-rate budget violation and a lower number

of CT scans per patient than the MUSIC criteria. At a 2% missed-rate budget, the solution

to R-SIM with Γ = 2 reduces the number of CT scans per patient by 65.7% from 0.20 to

0.07 while increasing the probability of missed-rate budget violation from 0.08% to 5.4%,

compared to the MUSIC criteria solution. At the same missed-rate budget, the solution

to R-SIM with Γ = 6 reduces the number of CT scans per patient by 40.7% to 0.12 while

increasing the probability of missed-rate budget violation to 0.6%. These findings show

that depending on the risk attitude of the decision maker, R-SIM with various choices of
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Γ can reduce the number of CT scans per patient substantially compared to the MUSIC

criteria.

Table 3.1: Comparison of imaging solutions for BS and CT scan at missed-rate bud-
gets of 1% and 2%.

Probability of
missed-rate

budget violation
(%)

Optimal
value

Probability of
missed-rate

budget violation
(%)

Optimal
value

BS

α = 1% α = 2%
MUSIC 26.60 (25.98− 27.22) 0.203 0.40 (0.33− 0.46) 0.203
SIM-Greedy 35.55 (34.94− 36.16) 0.184 26.22 (25.65− 26.79) 0.073
Individualized SIM-Greedy 0.01 (0.0− 0.02) 0.657 0.02 (0.0− 0.03) 0.329
R-SIM

Γ = 0.0 42.88 (42.38− 43.38) 0.176 (0.177− 0.178) 43.89 (43.35− 44.44) 0.063 (0.063− 0.064)
Γ = 0.2 33.94 (33.31− 34.56) 0.187 (0.186− 0.189) 36.23 (35.49− 36.97) 0.068 (0.068− 0.069)
Γ = 0.5 22.20 (21.17− 23.23) 0.212 (0.207− 0.216) 26.27 (25.53− 27.01) 0.074 (0.072− 0.075)
Γ = 0.7 15.74 (14.72− 16.76) 0.242 (0.235− 0.248) 21.06 (20.06− 22.06) 0.081 (0.079− 0.083)
Γ = 1.0 8.74 (7.82− 9.66) 0.290 (0.280− 0.299) 14.13 (13.37− 14.88) 0.090 (0.088− 0.091)
Γ = 2.0 2.67 (2.24− 3.10) 0.438 (0.425− 0.451) 5.48 (4.85− 6.11) 0.117 (0.113− 0.121)
Γ = 6.0 0.69 (0.58− 0.79) 0.514 (0.504− 0.524) 0.87 (0.74− 1.01) 0.179 (0.171− 0.188)

CT scan

MUSIC 3.23 (2.97− 3.49) 0.204 0.08 (0.04− 0.12) 0.204
SIM-Greedy 25.37 (23.04− 27.49) 0.125 14.57 (14.14− 15.00) 0.051
Individualized SIM-Greedy 0.68 (0.59− 0.78) 0.332 0.06 (0.03− 0.09) 0.212
R-SIM

Γ = 0.0 41.89 (41.36− 42.41) 0.112 (0.113− 0.114) 34.72 (34.15− 35.30) 0.043 (0.043− 0.044)
Γ = 0.2 32.76 (31.70− 33.82) 0.119 (0.120− 0.121) 34.18 (33.51− 34.84) 0.043 (0.043− 0.044)
Γ = 0.5 21.98 (20.67− 23.29) 0.128 (0.131− 0.134) 26.29 (24.96− 27.62) 0.046 (0.045− 0.047)
Γ = 0.7 16.85 (15.38− 18.33) 0.137 (0.141− 0.146) 21.13 (19.76− 22.50) 0.048 (0.047− 0.050)
Γ = 1.0 11.28 (10.06− 12.51) 0.161 (0.157− 0.166) 15.02 (13.50− 16.55) 0.053 (0.051− 0.055)
Γ = 2.0 3.68 (3.03− 4.33) 0.230 (0.199− 0.261) 5.38 (4.59− 6.16) 0.070 (0.066− 0.074)
Γ = 6.0 0.73 (0.57− 0.89) 0.360 (0.328− 0.392) 0.61 (0.50− 0.72) 0.121 (0.113− 0.129)

The numbers in the parentheses represent the 95% CIs calculated based on the 30 independent samples of 1000 coefficient vectors of the LR models.

As illustrated in Table 3.1, there is a clear trade-off between the level of protection against

the statistical estimation error and the value of the objective function. To investigate how

this tradeoff is affected when the protection level is changed at varying missed-rate budgets,

we consider a measure for the cost of robustness, referred to as the price of robustness. It

is defined as the difference between the worst-case objective function value of the robust

solution and the objective function value of the nominal solution [23]. For instance, as-

suming that zSIM and zR-SIM are the objective values of SIM and R-SIM, respectively, the

price of robustness is determined as follows:

Price of robustness =
zR-SIM − zSIM

zR-SIM
× 100%
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Figure 3.8 demonstrates that the average price of robustness increases with respect to

the increasing protection level for R-SIM at missed-rate budgets of 1%, 2% and 3%, based

on the random samples of coefficient vectors. For BS, the price of robustness at missed-rate

budgets of 2% and 3% are slightly lower than of a 1% budget for Γ < 8. For Γ > 8, the

maximum increase in the price of robustness between missed-rate budgets of 1% and 2%

is 46.5% whereas it is 78.8% between budgets of 2% and 3%. For CT scan, the price of

robustness is lower at a 2% missed-rate budget than a 1% budget for Γ < 10, and the

maximum increase in the price of robustness for Γ > 10 is 32.8%. However, the price of

robustness is always higher at a 3% missed-rate budget than 1% and 2% budgets. The

increase in the price of robustness between missed-rate budgets of 2% and 3% can be as

high as 351.2%. These findings suggest that the consideration of an uncertainty set is

crucial in the assessment of diagnostic testing decisions when the model parameters are

affected by statistical estimation error inherent in predictions.
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Figure 3.8: The price of robustness at varying missed-rate budgets for BS and CT
scan.

Two Imaging Tests Case

Figure 3.9 depicts the diminishing returns with respect to the increasing budget on missed

disease rate for the optimal MIM and R-MIM solutions, the MIM-Greedy and individu-

alized MIM-Greedy solutions. In this figure, R-MIM has the full protection level against

statistical variation, i.e., Γ0 = |J0| = 72 and Γ1 = |J1| = 108. Both the optimal MIM
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solutions and the MIM-Greedy solutions reduce the average number of imaging tests per

patient significantly compared to the individualized MIM-Greedy solutions. At a missed-

rate budget of 1%, both the optimal MIM solution and the MIM-Greedy solution reduce

the average number of imaging tests per patient by 55.7% compared to the individualized

MIM-Greedy solution. At a 2% missed-rate budget, the optimal MIM solution and the

MIM-Greedy solution reduce the average number of imaging tests per patient by 58.4% and

55.4%, respectively, compared to the individualized MIM-Greedy solution. These results

suggest that the individualized MIM-Greedy algorithm performs very poorly on the basis

of mean imaging per patient for a given missed-rate budget. However, the individualized

MIM-Greedy algorithm guarantees all patient types have an actual missed-rate that falls

below the missed-rate budget α. Thus, the difference between the optimal MIM solution

and the individualized MIM-Greedy solution can be viewed as the population benefit from

“central planning”.
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Figure 3.9: The optimal values of MIM, R-MIM, MIM-Greedy and individualized
MIM-Greedy algorithms as a function of the increasing missed-rate budget. R-MIM
represents the optimal value with full protection against statistical variation.

To evaluate the robustness of coordinated imaging protocols, we conduct sensitivity anal-

yses by varying the values of the protection levels Γ0 and Γ1 in the sets {0, 4, 8, . . . , 72} and

{0, 4, 8, . . . , 108}, respectively. Figures B.2 and B.3 show that the optimality and robust-

ness are not affected by the changes in Γ0 values, which controls the level of conservatism

in the objective function of R-MIM. Because the patient types at high risk of disease con-
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stitute a small portion of the population but are associated with high deviations in the

probability estimates for positive imaging tests (illustrated in Figure 3.5), it neutralizes

the impact of the protection level Γ0 on the robustness of the optimal R-MIM solution.

Figure 3.10 demonstrates that the tradeoff between the robustness and optimality of co-

ordinated imaging largely depends on the protection level Γ1, and the maximum relevant

value Γ̂1 < 8 at missed-rate budgets of 1% and 2%. Moreover, there are choices of Γ1

for which the optimal R-MIM solution provides substantial protection against missed-rate

budget violation without heavily penalizing the optimal value.
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Figure 3.10: The tradeoff between the optimal value and the probability of missed-
rate budget violation of R-MIM as a function of the increasing protection level Γ1.

To better illustrate the tradeoff between efficient imaging and protection against missed-

rate budget violation, Table 3.2 presents a sample of the objective function value and the

probability of missed-rate budget violation for R-MIM at budgets of 1% and 2%. At a

missed-rate budget of 1%, the optimal MIM solution and the MIM-Greedy solution exhibit

similar performance in terms of the probability of missed-rate budget violation and the

optimal value. At a 2% missed-rate budget, the MIM-Greedy solution, however, reduces the

probability of missed-rate budget violation by 20.3% while increasing the average number

of imaging tests per patient by 8.7% compared to the optimal MIM solution.

The solution to the MUSIC criteria results in a very high probability of missed-rate

budget violation at a missed-rate budget of 1% as the solution is estimated to miss 2% of
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Table 3.2: Comparison of imaging solutions at missed-rate budgets of 1% and 2%.
Probability of

missed-rate
budget violation

(%)

Optimal
value

Probability of
missed-rate

budget violation
(%)

Optimal
value

α = 1% α = 2%
MUSIC 98.32 (98.19− 98.45) 0.407 45.45 (44.80− 46.10) 0.407
MIM-Greedy 38.49 (37.05− 39.92) 0.848 (0.845− 0.851) 33.43 (32.28− 34.56) 0.448 (0.447− 0.449)
Individualized MIM-Greedy 0.0 1.938 1.85 (1.70− 2.00) 1.017 (1.014− 1.020)
R-MIM

Γ1 = 0.0 38.62 (38.22− 39.03) 0.861 (0.847− 0.864) 41.95 (41.54− 42.36) 0.409 (0.406− 0.413)
Γ1 = 0.2 24.52 (23.16− 25.88) 0.982 (0.967− 0.997) 31.28 (30.28− 32.27) 0.467 (0.461− 0.472)
Γ1 = 0.5 14.52 (13.23− 15.80) 1.142 (1.115− 1.169) 18.39 (16.69− 20.09) 0.571 (0.547− 0.595)
Γ1 = 0.7 9.98 (8.75− 11.20) 1.237 (1.208− 1.266) 13.67 (12.17− 15.16) 0.662 (0.630− 0.694)
Γ1 = 1.0 9.60 (7.84− 11.35) 1.368 (1.343− 1.393) 8.74 (7.66− 9.83) 0.782 (0.752− 0.811)
Γ1 = 2.0 5.54 (4.77− 6.31) 1.489 (1.474− 1.505) 3.12 (2.80− 3.44) 1.038 (1.008− 1.068)
Γ1 = 6.0 0.51 (0.41− 0.61) 1.655 (1.640− 1.670) 0.58 (0.47− 0.69) 1.288 (1.256− 1.319)

The numbers in the parentheses represent the 95% CIs calculated based on the 30 independent samples of 1000 coefficient vectors
of the LR models. The protection level Γ0 is set to its maximum (i.e., |J0| = 72) in R-MIM.

the metastatic cases in the population. At a missed-rate budget of 2%, the MIM-Greedy

solution provides a 26.4% reduction in the probability of missed-rate budget violation with

a 10.0% increase in the average number of imaging tests per patient compared to the

MUSIC criteria solution. At the same missed-rate budget, the optimal solutions to R-

MIM with Γ1 = 0.2 and Γ1 = 0.5 provide 31.2% and 59.5% reductions in the probability of

missed-rate budget violation, respectively, while increasing the average number of imaging

tests per patient by 14.7% and 40.3%, respectively. These findings suggest that the optimal

MIM solutions and the MIM-Greedy solutions offer the decision maker the capability to

adjust the tradeoff between the degree of conservatism of the solution and reduction in the

total number of imaging tests performed.

Similar to the single test case, we now investigate how the price of robustness is affected

by the changes in the protection level Γ1 at varying missed-rate budgets. Figure 3.11

illustrates that the price of robustness is similar for small values of Γ1 at missed-rate

budgets of 1%, 2% and 3%. Moreover, both the maximum cost of robustness and the

maximum relevant value of Γ̂1 increase as the budget on missed rate increases. The high

cost of robustness is driven by the high variations that exist in the expected missed disease

rates. As illustrated in Figure B.5, some protocols have very high deviations compared to

the nominal missed rates, e.g., the deviation from a nominal missed rate can be 9 times

more than the nominal rate for some patient types.
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Figure 3.11: The price of robustness at varying missed-rate budgets.

Independent versus Coordinated Imaging

In this section, we investigate benefits of coordinated imaging over optimizing imaging

independently for BS and CT scan. To do this, we solve SIM for both BS and CT scan,

and use the optimal solutions from these models to create a solution to MIM. We apply

the following rule in generating a solution to MIM: if type j is assigned to both BS and

CT scan, then xj3 = 1; if type j is assigned to BS but not to CT scan, then xj1 = 1; if type

j is assigned to CT scan but not to BS, then xj2 = 1; else xj4 = 1 for each patient type

j, j = 1, . . . , N . Next, we determine the expected number of imaging tests performed and

the resulting missed disease rate in the population using the solution we create to MIM.

Figure 3.12 shows that the optimal SIM solutions for BS and CT scan, when evaluated in

MIM, result in a lower number of imaging tests performed than the optimal MIM solution

at varying budgets on missed rate. However, Figure 3.12 also shows that the optimal SIM

solutions, when evaluated in MIM, result in a higher missed disease rate in the population

than the missed-rate budget, therefore, yielding infeasible solutions to MIM.
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Figure 3.12: The optimal SIM solutions for BS and CT scan results in a lower number
of imaging tests performed but higher missed disease rate than the budget, when
evaluated in MIM.

3.6. Conclusions

The decision of how to utilize imaging tests (BS and CT scan) for PCa staging effectively

and efficiently is important because (1) failure to detect metastatic disease leads to serious

health outcomes including increased morbidity and mortality, and (2) over-imaging leads to

more tests and treatments that are unlikely to benefit the patient and in the worst case can

cause harm from false positives and radiation exposure, and increase in healthcare costs.

Motivated by the lack of a holistic clinical perspective that integrates imaging decisions

for PCa staging, in this chapter we studied the optimal design of robust coordinated

imaging protocols under budget restrictions on the percentage of patients with missed

disease in the population. We modeled this problem within an optimization framework that

incorporates the perspectives of patients and physicians at the population level, and we

proposed models for sequential testing where the outcome of one test informs the decision

about the follow-up test. We integrated predictive modeling and robust optimization

methods to account for errors in predictions. In addition to the optimization-based models,

we proposed clinically motivated heuristics and evaluated the worst-case and average case

behavior of these heuristics.
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We studied two cases of the problem: single imaging test case and two imaging tests

case. In both cases of the problem, the models we developed aim to reduce imaging

burden while limiting the percentage of the population with missed disease to a certain

missed-rate budget predefined by the decision maker. Our case study on real medical

data suggested that both the robust optimization models and greedy algorithms offer the

decision maker the capability to reduce the risk of missed-rate budget violation significantly

without greatly comprising the optimal value.

In the single imaging test case, the greedy solution offered substantial safety benefits

against the missed-rate budget violation compared to the deterministic optimal solution

for both BS and CT scan. Moreover, the risk reduction became more significant when the

probability estimates for a positive test were subject to high statistical estimation error like

in the case of CT scan. These findings suggested that imaging recommendations that have

a consistent risk-ordering can be developed by implementing a simple greedy algorithm in

the presence of a single test. We also found that although not as significant as in the single

test case, the greedy algorithm resulted in lower risk of missed-rate budget violation than

the deterministic model in the two imaging tests case.

For both cases of the problem, the price of robustness was high because of high sta-

tistical estimation error, rendering the incorporation of robust optimization models into

clinical decision making useful to trade off the protection against missed-rate budget viola-

tion with the number of imaging tests performed in the population. Moreover, we showed

that the coordinated imaging in PCa staging is more beneficial than the optimized single

imaging. The coordinated imaging offers the potential to achieve better health outcomes

in the population while reducing imaging tests performed. Hence, these models are partic-

ularly relevant for clinical decision making with implications for patients and physicians.

Our results also shows that optimizing at the population level (i.e., central planning) may

differ significantly from optimizing for each patient type independently. This raises im-

portant questions abut how to trade off between the different perspectives of patients and

physicians.
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Chapter 4.

Decision Analysis for Assessment of

Long Term Outcomes Associated with

Newly Discovered Biomarkers at Repeat

Biopsy

4.1. Introduction

In this chapter, we shift the focus from imaging tests used to diagnose the spread of cancer

to continuous biomarker tests for early detection of prostate cancer (PCa) in men that

have not yet been diagnosed. This is an important public health concern because of the

propensity for men to develop PCa, and the dangers of PCa going undetected. It is also

an excellent case study because of the large number of new biomarker tests that have been

developed in recent years for screening and diagnosis of PCa. Since no single biomarker

on its own is considered satisfactory, one approach to improve early diagnosis of PCa is to

combine the information of several biomarker tests together. This chapter is based on the

findings reported in our paper [109].

In recent years, new blood serum, urine, and radiologic biomarkers have been discovered

that have the potential to improve early diagnosis of PCa [119]. Biomarker tests are distin-

guished clinically based on their sensitivity and specificity. The former is the probability

a test is positive given the disease is present, and the latter is the probability the test is

negative given the disease is not present. In dealing with a continuous biomarker, it is
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necessary to define thresholds for determining when to employ the additional biomarkers

and when to carry out the gold standard test (biopsy). Setting the threshold to a low

value results in high sensitivity but also false positive results that cause anxiety and un-

necessary referral of patients for costly and invasive procedures, such as biopsies. Setting

the threshold to a high value, on the other hand, leads to false negative results that cause

a disease to go undetected, and potentially progress to a life threatening stage.

Commonly used diagnostic indicators for the early detection of PCa include abnormal

digital rectal examination (DRE) and an elevated prostate-specific antigen (PSA). Serum

PSA levels above 2.5 to 4 ng/ml and/or suspicious DRE may indicate the presence of PCa;

however, the performance of PSA alone with a cutoff of 4 ng/ml is reported to yield a

positive predictive value of only 24 − 37% [33, 160], and up to 75% of these men have a

negative first biopsy. Furthermore, PCa is detected in 10− 35% of men with negative first

biopsy [132, 145]. In clinical practice, it is often uncertain whether a repeat biopsy should

be performed in men with clinically localized PCa and prior negative biopsy findings. In

men with a negative first biopsy but persistently high PSA, the European Association of

Urology (EAU) [75] guidelines recommend a prostate biopsy; however, among men with

suspicion of having PCa and a prior negative biopsy, a repeat biopsy was reported negative

in approximately 80% of the men. In addition to being costly, biopsies are associated with

morbidity, anxiety, discomfort and complications [132]. New biomarkers may increase the

diagnostic accuracy of repeat biopsies, and reduce the number of unnecessary biopsies, but

the long term health outcomes are unclear.

Results of recent studies have shown the potential clinical utility of the urine based

PROGENSA prostate cancer antigen 3 assay (PCA3) to predict repeat biopsy outcomes

in men with elevated serum PSA levels and previous negative biopsy findings [7, 8, 43,

47, 50, 65, 69, 105, 126, 136], and reported that an increasing PCA3 score corresponds

to an increasing probability of a positive repeat biopsy. The PCA3 test has been shown

in some studies to be superior to serum PSA in predicting biopsy outcome [60, 64, 105]

and has been included in recently developed nomograms [10, 42, 122]. A recent literature

review reported that current evidence suggests PCA3 is clinically useful for selecting which

patients should have a repeat biopsy [59]. Several studies have found that TMPRSS2:ERG

assay (T2:ERG) is also associated with biopsy outcome [44, 77, 92, 94, 140, 151, 167], and

may better discriminate between low and high grade cancers [167]. Although there are

studies supporting increased diagnostic accuracy for both biomarkers, the ideal thresholds

to trigger a repeat biopsy, and the resulting increase in survival and decrease in unnecessary
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biopsies are unknown.

In this chapter, we use decision analysis to evaluate the clinical value of PCA3 and

T2:ERG in men with clinically localized PCa who had at least one prior negative biopsy.

We perform head-to-head comparisons of protocols that use either PCA3 or T2:ERG in

terms of the incremental change in 10-year overall survival and the rate of negative biopsies.

Furthermore, we consider 15-year cancer-specific survival as an end point in our analyses.

We present results for both expected 10-year overall survival and 15-year cancer-specific

survival and the rate of repeat biopsy for each biomarker. We also present results of

sensitivity analysis using Monte Carlo sampling of clinical factors such as PSA level, biopsy

detection rate and age to provide evidence about which patients benefit most from the use

of an additional biomarker.

The remainder of this chapter is organized as follows. In Section 4.2, we describe the

decision model of the problem and the approach for probabilistic sensitivity analyses, and

provide a review of the relevant literature on the survival estimates. In Section 4.3, we

present results from statistical analyses and probabilistic sensitivity analyses addressing

the impact of parameter uncertainty on the model outcomes. Finally, in Section 4.4, we

highlight main conclusions and limitations of this study.

4.2. Model and Methods

We employ a decision analytic framework using Monte Carlo simulation and statistical

modeling to develop testing protocols integrating PSA with PCA3 and T2:ERG. We con-

duct sensitivity analysis around model parameters to assess the impact of parameter un-

certainty on model outcomes.

4.2.1. Study Population

The decision analysis model was based on the results from a prospectively collected cohort

design. For the study cohort, post-DRE urine was prospectively collected from 1, 977 men

presenting for diagnostic prostate biopsy at three U.S. academic institutions (n = 733)

and 7 community clinics (n = 1, 244). The vast majority of men had elevated serum PSA.

As this cohort reflects actual clinical practice, no specific indication for repeat biopsy was

required; however the vast majority was for persistently elevated serum PSA. Exclusion

criteria included the following: prior attempted curative therapy (radical prostatectomy
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(RP), radiation therapy (RT), androgen deprivation therapy (ADT) or brachytherapy),

surgical treatment of the prostate within 6 months of urine collection (or previous biopsy

within 6 weeks), taking 5a-reductase inhibitors or testosterone within 3 months of urine

collection, or prostatitis at the time of urine collection. All urine specimens were obtained

with institutional review board approval.

4.2.2. Decision Tree

We constructed a decision tree to compare the expected 10-year survival and and 15-year

cancer-specific survival for protocols that use one of the urinary biomarkers versus those

that do not for patients with elevated PSA. The complete decision tree schema is shown

in Figure 4.1. The initial decision is whether to use an additional biomarker (yes or no)

or no repeat biopsy; therefore the decision tree branches out to three separate decision

arms. Branch 1 represents the protocols that incorporate a urinary biomarker into repeat

biopsy decisions. Branch 2 represents the protocol that does not involve any additional

indication for repeat biopsy, therefore every patient is assumed to receive biopsy regardless

of his clinical parameters (age, serum PSA level etc.). Branch 3 represents the protocol

that no patient receives a repeat biopsy.

In the decision tree, men with detected and undetected clinically localized PCa were

assumed to have 10-year survival consistent with men who receive RP at diagnosis and men

under conservative treatment (whose cases were managed without surgery or radiation,),

respectively. The risk of PCa was derived from the PCPTRC version 2.0 risk calculator,

which incorporates age, race, PSA level, family history of PCa, DRE and history of a

negative biopsy [120]. The decision tree accounts for the different cancer grades based on

patients Gleason score (GS) (GS< 7, GS= 7, and GS> 7). The probability for each grade

was estimated based on the proportion of each outcome in the study population.

The biopsy decision in Branch 1 of the decision tree is determined by a pre-specified

threshold for the urinary biomarker. The probability that the biomarker score exceeds this

threshold is grade dependent and estimated from the study population (See Table 4.2). The

probability of a positive repeat biopsy was estimated from Haas et al. [68]. The primary

end point of each branch is the 10-year overall survival estimated from [159], which depends

on cancer grade, age, serum PSA level, race and Charlson comorbidity index (CCI). We

did not have CCI for the patients included in our study; thus, we assumed that they are

healthy patients with CCI in the range of 0− 1. Outcomes for patients without PCa were
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also taken from Tewari et al. [159]. The look-up tables for 10-year overall survival are

constructed separately for black and white males; however, Tewari et al. [159] did not

find race to be an independent predictor of survival, and most of the patients in our study

population were white. Thus, we considered the 10-year overall survival estimates in white

males with clinically localized PCa.

We conducted similar analyses using the 15-year prostate cancer-specific survival as the

primary end point in the decision tree. We used 15-year cancer-specific survival since there

does not exist a long follow-up study in literature that estimates 15-year overall survival.

We obtained the 15-year cancer-specific survival estimates for untreated, clinically localized

PCa from Johansson et al. [85], and the 15-year cancer-specific survival estimates after

RP from Stephenson et al. [152].

There is no consensus about the most appropriate threshold for the PCA3 and T2:ERG

tests. The FDA recommends a PCA3 threshold of 25, but a threshold of 35 is commonly

used [47, 50, 69, 76, 105, 135, 146, 174]. While some studies have found the cutoff of 25

provides a good balance between sensitivity and specificity [9, 116, 125, 157], others have

supported the use of different thresholds, e.g. 17 [10, 42], 43 [64] and 51 [122]. In this study

we consider the thresholds of 25, 35 and 100 for PCA3. Regarding the T2:ERG threshold,

Tomlins et al. [167] considered the specimens with T2:ERG score > 50 as positive, and

Leyten et al. [94] considered the threshold of 10 in their multivariate regression analysis. In

this study, to provide a diverse set of thresholds, we considered the thresholds of 7, 10, 30, 50

and 100.

4.2.3. Survival Estimates

We conducted a literature review to obtain estimates of overall survival in clinically local-

ized PCa patients. Some relevant studies were based on retrospective cohorts that did not

receive PSA screening. One important question about these studies is how the findings

from pre-PSA era relate to the current era when many cancers are detected by PSA test-

ing. Sweat et al. [156] estimated long-term (20-year) probability of death from prostate

cancer and other competing causes stratified by age and GS based on the study population

diagnosed with clinically localized PCa between 1971 and 1984. The estimates provided in

Albertsen et al. [4] were also derived from a retrospective cohort of patients diagnosed be-

tween 1971 and 1976. The estimates from these studies do not incorporate the effect of the

lead-time associated with the screening for PSA, and as a consequence, they underestimate
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long-term survival outcomes in contemporary settings.

The study by Liu et al. [99] evaluated the effectiveness of the RP compared to other

treatments in older men with local/regional PCa and CCI ≤ 1 based on a relatively large

population identified from Surveillance, Epidemiology, and End Results (SEER) and Medi-

care linked data. The study provided all-cause and cancer specific 5- and 10-year survival

rates for patients receiving RP versus other treatment modalities but not stratified by

clinical parameters of men with local/regional PCa. More recently, Kibel et al. [87] in-

vestigated the differences in overall-survival in men with clinically localized PCa treated

with RP or radiation therapy. Both studies by Liu et al. [99] and Kibel et al. [87] did not

provide overall grade-specific survival for patients with clinically localized PCa.

There are several studies that developed nomograms to predict the overall survival in

clinically localized PCa. For the patients included in our study, we did not have the com-

plete information for the 11 clinical variables required for the Cowen et al. [45] nomogram.

The nomogram developed by Walz et al. [173] has the advantage of being based entirely

on patients from the PSA screening era, and only requires two clinical parameters (age and

CCI) to predict the probability of 10-year life expectancy after RP or RT; however, the

probabilities do not account for the available clinicopathological information. Albertsen et

al. [4] has the benefit of having outcomes for approximately 20, 000 men who were treated

with conservative management after the diagnosis of the localized PCa, but the study con-

siders men older than 66 years, and 38% of our study population is under age 66 years. Due

to the shortcomings of the above referenced studies, we used the overall 10-year survival

estimates from Tewari et al. [159], which quantify the impact of treatment modality on

overall-survival of men with clinically localized PCa.

We further performed sensitivity analyses using the 15-year survival estimates obtained

from literature. We could not find 15-year grade-specific overall survival for cancerous and

cancer-free patients. Therefore, we used the 15-year cancer-specific mortality rates after

RP from Stephenson et al. [152] and 15-year cancer-specific survival for clinically localized

untreated PCa from Johansson et al. [85]. Additional assumptions related to the study

design of these two studies for 15-year cancer-specific survival are as follows:

15-year survival for clinically localized, untreated PCa from Johansson et

al.[85]:

1. The study cohort in Johansson et al. [85] included patients with early, initially

untreated PCa. PSA testing was not available and no screening activities for PCa
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took place during the period when the cohort was recruited. Thus, the survival

estimates from this study systematically underestimate the 15-year survival for

untreated clinically localized PCa diagnosed during the PSA era.

2. In this study, the World Health Organization (WHO) classification of malignant

diseases was used. It is mentioned in the study that the grades based WHO classi-

fication system are not directly translatable to the Gleason grading system. How-

ever, based on the report [41], grade 1 was compared with GS 2 to 4, grade 2 with

GS 5 to 7, and grade 3 with GS 8 to 10. Using this conversion, we had to make

the assumption that the 15-year untreated cancer-specific survival rates for GS < 7

and GS = 7 cancers are the same.

3. Patients were given no initial treatment if the tumor growth was localized to the

prostate gland as judged by DRE and no distant metastases were present. Patients

75 years or older were not included in the study. Clinical examination, laboratory

tests, and bone scans were performed every 6 months during the first 2 years after

diagnosis and subsequently once a year during the first 10 years of observation and

thereafter at least once every second year. Patients in whom the cancer progressed

to symptomatic disease were treated with exogenous estrogens or orchidectomy.

15-year cancer-specific mortality after RP from Stephenson et al.[152]:

1. The study cohort in Stephenson et al. [152] included patients who underwent RP

for localized PCa between 1987 and 2005 to construct a nomogram for patients

treated in the era of PSA screening.

2. Patients were observed for disease recurrence after biopsy with regular serum PSA

determinations and clinical assessment at 3- to 6-month intervals for the first 5

years and annually thereafter.

4.2.4. Probabilistic Sensitivity Analyses

We conducted multi-way probabilistic sensitivity analyses around model parameters (biopsy

sensitivity, sensitivity of biomarkers at different thresholds for different cancer grades and

10-year survival under different treatments) and clinical parameters (serum PSA and age)

using Monte Carlo simulation. We did not conduct multi-way sensitivity analyses repre-

senting the uncertainty around clinical parameters in the analysis of 15-year cancer-specific
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survival since the 15-year survival estimates are not given by PSA and age. Based on the

sample distribution, we assumed a gamma distribution for PSA and age. The uncertainty

around the other probabilities was represented using beta distributions. Parameters alpha

and beta were derived from the mean (µ) and standard deviation (σ) using the following

formulas: α = µ2 × (1− µ)/σ2 and β = µ× (1− µ)/σ2 − α. Table C.1 shows the assumed

distributions and the corresponding distribution parameters for the model probabilities and

patient parameters that were used in the probabilistic sensitivity analysis. Tables C.2 and

C.3 show the assumed distributions and the corresponding distribution parameters param-

eters for overall 10-year survivals and 15-year cancer-specific survivals used in probabilistic

sensitivity analysis. We sampled the parameters 1, 000 times drawn from independent dis-

tributions and compute the additional 10-year survival and percentage of men biopsied for

each resulting decision tree. We chose 4 and 30 ng/ml, and 50 and 75 years as lower and

upper bounds on serum PSA and age, respectively.

4.3. Results

In this section, we present numerical results from our analyses on base case and address

the effect of parameter uncertainty through probabilistic sensitivity analyses.

4.3.1. Specimen Collection and Processing: T2:ERG and PCA3 Assay

Urine processing for determination of PCA3 and T2:ERG scores was performed as described

in prior studies [44, 167, 179]. Urine specimens were obtained immediately after attentive

DRE, refrigerated, and processed within 4 hours by mixing with an equal volume of urine

transport medium and stored below 70◦C until analysis. Amounts of urine PCA3, T2:ERG

and PSA mRNA were determined with transcription mediated amplification (TMA) assays.

To generate a T2:ERG score, the amount of T2:ERG mRNA is normalized to the amount

of PSA mRNA, which is calculated using the following formula: (100, 000× average urine

T2:ERG copies/mL) / (average urine PSA copies/mL). Samples with average urine PSA

copies/mL of more than 10, 000 copies/mL were considered informative for urine T2:ERG

scores. Urine T2:ERG scores were assessed as described using the final T2:ERG TMA

assay as described in [44, 151, 179] or an earlier generation assay 22 that yield equivalent

T2:ERG scores.

The PROGENSA PCA3 assay similarly quantitates PCA3 and PSA mRNA in post-
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DRE urine. The PCA3 score was calculated with the following formula: 1, 000× (average

urine PCA3 copies/mL) / (average urine PSA copies/mL). Samples with average urine

PSA copies/mL of more than 10, 000 copies/mL were considered informative. Identical

primers for quantifying urine PSA are used in the PROGENSA PCA3 assay and T2:ERG

assay.

All urine PCA3 and T2:ERG analysis was performed at the University of Michigan or

Gen-Probe, Inc, with a subset of samples assessed at both to ensure concordance. A total of

1, 936 urine samples had sufficient urine PSA (> 10, 000 copies/mL) to provide informative

PCA3 and T2:ERG scores, and these samples were considered for analysis. The final study

population consisted of 140 men with informative urine PCA3 and T2:ERG scores who

had a history of at least one negative previous biopsy and were diagnosed with prostate

cancer in their study biopsy.

4.3.2. Study Population

Table 4.1 provides the characteristics of the 420 men who had previous negative biopsies.

Men with a positive biopsy had a statistically significant higher age, lower prostate volume,

and a higher mean PCA3 and T2:ERG scores than men with a negative repeat biopsy.

Mean serum PSA did not significantly change between men with negative versus positive

biopsy. Men with a positive biopsy had clinical stage T1 and T2 in 78.6% and 20% of

cases, respectively; 88.6% had a biopsy GS of 6− 7 and 75% had ≤ 33% positive cores.

Table 4.2 provides our estimates of the probability that a man’s biomarker scores exceed

different thresholds, based on the man’s grade of PCa. Among 420 men with stage T1 or

T2 prostate cancer, 140 (33.3%) had cancer on repeat biopsy. Of the 140 men with positive

repeat biopsy, 82 (58.6%) had GS < 7 cancer, 42 (30.0%) had GS = 7 and 16 (11.4%) had

GS > 7 cancer. Based on univariate analysis, all of the pre-biopsy clinical variables were

associated with a positive repeat biopsy (p < 0.04) (data not shown).

The performance characteristics at different PSA, PCA3 and T2:ERG thresholds are

presented in Table 4.3. The PCA3 threshold of 25 demonstrated the highest accuracy in

predicting the positive repeat biopsy (AUC : 0.652), compared to the PSA threshold of 10

(AUC : 0.54) in Table 4.3. The PCA3 threshold of 35 provided a good balance between

sensitivity (49.3%) and specificity (74.3%). In comparison, the sensitivity and specificity of

T2:ERG with a biopsy threshold of 10 were 50.7% and 68.6%, respectively. Considering the

test outcomes as continuous variables, the AUC was 0.687 for the PCA3 score (p < 0.0001),
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Table 4.1: Baseline characteristics of the study population.
Men with negative

biopsy (n = 280)
Men with positive
biopsy (n = 140)

p - value
All men (n = 420)

Mean ± SD / number (%) Mean ± SD / number (%) Mean ± SD / number (%)

Age (years) 65.4± 8.1 68.2± 8.9 0.002∗ 66.3± 8.5
Serum PSA (ng/ml) 7.2± 5.4 8.4± 6.5 0.0766† 7.5± 5.8
Men with serum PSA (ng/ml) (%)
< 4 55 (19.6) 24 (17.1) 79 (18.8)
4− 10 177 (63.2) 83 (59.3) 260 (61.9)
> 10 48 (17.1) 33 (23.6) 81 (19.3)

No. Ethnicity (%) 0.0113‡

African-American 12 (4.3) 15 (10.7) 27 (6.4)
Other 268 (95.7) 125 (89.3) 393 (93.6)

No. DRE result 0.0783‡

Normal 242 (86.4) 110 (78.6) 352 (83.8)
Abnormal 33 (11.8) 28 (20.0) 61 (14.5)
Not available 5 (1.8) 2 (1.4) 7 (1.7)

Prostate volume (n = 273/136/409) 69.3± 39.8 58.2± 33.1 0.0016† 65.6± 38.0
PCA3 score 32± 36.4 61± 78.4 < 0.0001† 41.7± 55.8
T2:ERG score 32.8± 110.4 127.5± 678.3 0.0006† 64.4± 403.4

Abbreviations: SD, Standard deviation; PSA, Prostate-specific antigen; DRE, digital rectal examination; PCA3, Prostate Cancer Antigen 3,
T2:ERG, the transmembrane protease, serine 2 (TMPRSS2): v-ets erythroblastosis virus E26 oncogene homolog (avian) (ERG) fusion. ∗t-test,
† Wilcoxon rank sum test, ‡χ2 test.

0.602 for T2:ERG (p = 0.0273) and 0.553 for serum PSA (p = 0.052).

Table 4.4 shows PCa detection rates for varying PSA, PCA3 and T2:ERG thresholds,

the number of prostate biopsies that would be avoided and PCa cases with GS ≥ 7 that

would be missed if the urinary biomarker (PCA3 or T2:ERG) was used to select men for

repeat biopsies. A PCA3 threshold ≥ 25 and ≥ 35 would detect 95 (67.9%) and 69 (49.3%)

of PCa cases, respectively. A T2:ERG threshold ≥ 7 and ≥ 10 showed similar performance

detecting 78 (55.7%) and 71 (50.7%) of PCa cases, respectively. A PCA3 threshold ≥ 25

would identify 42 (72.4%) of 58 cancer cases with GS ≥ 7 and avoid 52.4% of repeat

Table 4.2: Probability estimates for the biomarkers PCA3 and T2:ERG at different
thresholds.

Probability
No. of

Patients,
(%)

Probability
No. of

Patients,
(%)

Probability
No. of

Patients,
(%)

P(PCA3 ≥ 25 | GS < 7) 53/82 (64.6) P(T2ERG ≥ 7 | GS < 7) 43/82 (52.4) P(T2ERG ≥ 50 | GS < 7) 21/82 (25.6)
P(PCA3 ≥ 25 | GS = 7) 31/42 (73.8) P(T2ERG ≥ 7 | GS = 7) 23/42 (54.8) P(T2ERG ≥ 50 | GS = 7) 11/42 (26.2)
P(PCA3 ≥ 25 | GS > 7) 11/16 (68.8) P(T2ERG ≥ 7 | GS > 7) 12/16 (75.0) P(T2ERG ≥ 50 | GS > 7) 8/16 (50.0)

P(PCA3 ≥ 35 | GS < 7) 37/82 (45.1) P(T2ERG ≥ 10 | GS < 7) 38/82 (46.3) P(T2ERG ≥ 100 | GS < 7) 13/82 (15.9)
P(PCA3 ≥ 35 | GS = 7) 23/42 (54.8) P(T2ERG ≥ 10 | GS = 7) 21/42 (50.0) P(T2ERG ≥ 100 | GS = 7) 7/42 (16.7)
P(PCA3 ≥ 35 | GS > 7) 9/16 (56.3) P(T2ERG ≥ 10 | GS > 7) 12/16 (75.0) P(T2ERG ≥ 100 | GS > 7) 6/16 (37.5)

P(PCA3 ≥ 100 | GS < 7) 9/82 (11.0) P(T2ERG ≥ 30 | GS < 7) 30/82 (36.6)
P(PCA3 ≥ 100 | GS = 7) 10/42 (23.8) P(T2ERG ≥ 30 | GS = 7) 12/42 (28.6)
P(PCA3 ≥ 100 | GS > 7) 4/16 (25.0) P(T2ERG ≥ 30 | GS > 7) 8/16 (50.0)
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Table 4.3: Performance of serum PSA, PCA3, and T2:ERG in predicting PCa at
repeat biopsies: Univariate analyses.

Biomarkers
Sensitivity,

(%)
Specificity,

(%)
PPV,
(%)

NPV,
(%)

AUC (95% CI) p-value

PSA ≥ 10 24.3 56.8 44.5 78.7 0.54 (0.49− 0.58) 0.083

PCA3 score
≥ 25 67.9 62.5 47.5 79.6 0.65 (0.60− 0.70) < 0.0001
≥ 35 49.3 74.3 48.9 74.6 0.62 (0.57− 0.67) < 0.0001

T2:ERG
≥ 7 55.7 62.1 42.4 73.7 0.59 (0.54− 0.64) 0.0006
≥ 10 50.7 68.6 44.7 73.6 0.60 (0.55− 0.65) 0.0001
≥ 30 35.7 80.0 47.2 71.3 0.58 (0.53− 0.63) 0.0006
≥ 100 18.6 92.5 55.3 69.4 0.56 (0.52− 0.59) 0.001

Abbreviations: PPV, Positive predictive value; NPV, Negative predictive value.

biopsies, and a threshold of ≥ 35 would identify 32 (55.2%) cancer cases with GS ≥ 7, but

66.4% of all biopsies could have been avoided. Similarly, a T2:ERG threshold ≥ 7 would

identify 35 (60.3%) of 58 cancer cases with GS ≥ 7 and avoid 56.2% of repeat biopsies,

and a threshold of ≥ 10 would identify 33 (56.9%) cancer cases with GS ≥ 7, but 62.1%

of all biopsies could have been avoided.

4.3.3. Base Case Analysis

We considered a base case patient with the following characteristics: white, age 65 years,

most recent serum PSA of 6.3 ng/ml based on the mean PSA of patients in the study cohort,

CCI of 0, no family history of prostate cancer, normal DRE and a prior negative biopsy.

These attributes were chosen to represent an average patient in the study population.

Table 4.5 presents 10-year survival and biopsy rates for the protocols with varying biopsy

thresholds. Table 4.5 shows that Branch 2 (repeat biopsy) yields better 10-year survival

than Branch 1 (biomarker at repeat biopsy) under every protocol with various PCA3 and

T2:ERG thresholds. Similar results were obtained in the analysis of 15-year cancer-specific

survival (see Table 4.6).

4.3.4. Probabilistic Sensitivity Analyses

Multi-way probabilistic sensitivity analyses consisted of two steps. The first step involved

varying the model parameters. The results summarized in Table 4.7 show that the confi-
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Table 4.4: PCa detection with varying PSA, PCA3 and T2:ERG thresholds for repeat
biopsy.

Biopsied men,
No. (%)

PCa cases,
No. (%)

PPV, (%)
Missed PCa , No.

(%) (n =140)

Prostate cancers
GS ≥ 7 missed,

No. (%) (n =58)

Biopsies
avoided, No.
(%) (n =420)

No threshold 420 140 33.3 − − −

PSA, ng/ml
≥ 2.5 387 (92.1) 134 (95.7) 34.6 6 (4.3) 1 (1.7) 33 (7.9)
≥ 4.0 341 (81.2) 116 (82.9) 34.0 24 (17.1) 7 (12.1) 79 (18.8)
≥ 10.0 82 (19.5) 34 (24.3) 41.5 106 (75.7) 40 (69.0) 338 (80.5)

PCA3 score
≥ 25 200 (47.6) 95 (67.9) 47.5 45 (32.1) 16 (27.6) 220 (52.4)
≥ 35 141 (33.6) 69 (49.3) 48.9 71 (50.7) 26 (44.8) 279 (66.4)
≥ 100 42 (10.0) 23 (16.4) 54.8 117 (83.6) 44 (75.9) 378 (90.0)

T2:ERG
≥ 7.0 184 (43.8) 78 (55.7) 42.4 62 (44.3) 23 (39.7) 236 (56.2)
≥ 10.0 159 (37.9) 71 (50.7) 44.7 69 (49.3) 25 (43.1) 261 (62.1)
≥ 30.0 106 (25.2) 50 (35.7) 47.2 90 (64.3) 38 (65.5) 314 (74.8)
≥ 50.0 86 (61.4) 40 (28.6) 46.5 100 (71.4) 39 (67.2) 334 (79.5)
≥ 100.0 47 (11.2) 26 (18.6) 55.3 114 (81.4) 45 (77.6) 373 (88.8)

Table 4.5: 10-year life survival and percentage of men biopsied for the base case
patient at various biopsy thresholds for PCA3 and T2:ERG.

Biomarkers at
different thresholds

Percentage of men biopsied
at this threshold

10-year survival
Percentage change in

survival∗

Branch 1†

PCA3
≥ 25 44.6 83.98 0.93 (0.66, 1.14)
≥ 35 31.2 83.44 1.47 (1.04, 1.78)

T2:ERG
≥ 7 41.5 83.63 1.27 (0.91, 1.56)
≥ 10 35.3 83.50 1.41 (1.00, 1.73)
≥ 30 23.1 83.03 1.88 (1.33, 2.30)
≥ 50 18.6 83.84 2.07 (1.47, 2.53)
≥ 100 9.6 82.54 2.36 (1.68, 2.90)

Branch 2‡ 23.5 84.91 −
∗This is the absolute difference between Branch 1 and Branch 2. The numbers in the parentheses are calculated using
the 95% Confidence Intervals estimated by Tewari et al. [159] on the 10-year survival under radical prostatectomy and
conservative management; †Branch 1 uses urinary biomarkers at repeat biopsy; ‡Branch 2 has no indication at repeat
biopsy.
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Table 4.6: 15-year cancer-specific life survival and percentage of men biopsied for the
base case patient at various biopsy thresholds for PCA3 and T2:ERG.

Biomarkers at
different thresholds

Percentage of men
biopsied at this

threshold

15-year
survival

Percentage change
in survival§

Percentage change
in survival¶

Branch 1∗

PCA3
≥ 25 44.63 85.63 1.67 (0.80, 2.47) 3.42 (1.65, 5.02)
≥ 35 31.25 84.70 2.60 (1.25, 3.84) 2.49 (1.19, 3.64)

T2:ERG
≥ 7 42.05 85.08 2.22 (1.08, 3.29) 2.87 (1.36, 4.19)
≥ 10 35.95 84.83 2.47 (1.20, 3.66) 2.62 (1.24, 3.82)
≥ 30 23.70 84.10 3.20 (1.56, 4.72) 1.89 (0.89, 2.76)
≥ 50 19.28 83.71 3.59 (1.74, 5.30) 1.51 (0.70, 2.18)
≥ 100 10.11 83.20 4.10 (1.99, 6.06) 0.99 (0.46, 1.43)

Branch 2† 100.0 87.30 − −

Branch 3‡ 0.0 82.21 − −
The numbers in the parentheses are calculated using the 95% confidence interval (CI)s for 15-year cancer-specific mortality
after and survival for untreated clinically localized PCa given in studies by Stephenson et al. [152] and Johansson et al.
[85], respectively; ∗Branch 1 uses urinary biomarkers at repeat biopsy; †Branch 2 has no indication at repeat biopsy;
‡Branch 3 is no repeat biopsy; §The difference is calculated as the absolute difference between Branch 1 and Branch 2 in
the decision tree; ¶The difference is calculated as the absolute difference between Branch 1 and Branch 3 in the decision
tree.

dence interval for each protocol is relatively narrow, and the magnitude of effect difference

for each protocol was not changed when uncertainty was incorporated for the base case

patient. In the second step, we performed a sensitivity analysis including the uncertainty

around serum PSA level and age of the base case patient in addition to varying the model

parameters (Table 4.8). Multi-way sensitivity analyses demonstrated that Branch 2 (re-

peat biopsy) yields better 10-year survival than Branch 1 (biomarker at repeat biopsy)

under every protocol with various PCA3 and T2:ERG thresholds. Similar results were

obtained in the analysis of 15-year cancer-specific survival (See Table 4.9).

Figure 4.2 shows the results from multi-way probabilistic sensitivity analyses on the base

case. The y-axis shows the absolute change in 10-year survival between the decision arms

represented by Branch 1 and 2 in the decision tree, and the x-axis shows the percentage

of men biopsied under the protocols that use PCA3 and T2:ERG at different thresholds.

In this analysis, the age and serum PSA of the base case remained constant; however,

we represented the uncertainty around the other model parameters with the distributions

described in Tables 4.6 and 4.9. We can see from this figure that the use of PCA3 test

with a threshold of 25 at repeat biopsy provides expected 10-year overall survival close to

the case where there is no indication for repeat biopsy. Using T2:ERG assay would cause
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Table 4.7: Multi-way probabilistic sensitivity analysis representing the uncertainty
around model parameters.

Biomarkers at
different thresholds

Percentage of men biopsied
at this threshold , (95% CI)

10-year survival
Percentage change in
survival∗, (95% CI)

Branch 1†

PCA3
≥ 25 45.65 (45.12− 46.19) 83.91 (83.83− 84.0) 0.92 (0.91− 0.94)
≥ 35 32.33 (31.89− 32.33) 83.38 (83.30− 83.47) 1.45 (1.43− 1.48)

T2:ERG
≥ 7 42.85 (42.31− 43.39) 83.57 (83.48− 83.65) 1.27 (1.25− 1.29)
≥ 10 36.82 (36.35− 37.30) 83.43 (83.35− 83.52) 1.40 (1.38− 1.42)
≥ 30 24.70 (24.34− 25.05) 82.97 (82.89− 83.05) 1.87 (1.84− 1.89)
≥ 50 22.22 (21.89− 22.56) 82.79 (82.71− 82.87) 2.05 (2.02− 2.07)
≥ 100 8.62 (8.42− 8.82) 82.50 (82.41− 82.58) 2.34 (2.31− 2.37)

Branch 2‡ 100.0 84.84 (84.75− 84.93) −
∗The difference is calculated as the absolute difference between Branch 1 and Branch 2 in the decision tree. †Branch 1
uses urinary biomarkers at repeat biopsy; ‡Branch 2 has no indication at repeat biopsy.

Table 4.8: Multi-way probabilistic sensitivity analyses representing the uncertainty
around model and clinical parameters (serum PSA and age).

Biomarkers at
different thresholds

Percentage of men biopsied
at this threshold, (95% CI)

10-year survival
Percentage change in
survival∗, (95% CI)

Branch 1†

PCA3
≥ 25 46.80 (46.27− 47.32) 82.16 (81.72− 82.61) 1.36 (1.31− 1.42)
≥ 35 33.53 (33.10− 33.96) 81.38 (80.92− 81.85) 2.14 (2.22− 2.06)

T2:ERG
≥ 7 43.55 (43.04− 44.07) 81.65 (81.19− 82.11) 1.88 (1.81− 1.95)
≥ 10 37.99 (37.51− 38.47) 81.44 (80.98− 81.91) 2.09 (2.01− 2.17)
≥ 30 25.47 (25.12− 25.83) 80.77 (80.29− 81.26) 2.75 (2.65− 2.86)
≥ 50 22.66 (22.34− 22.98) 80.49 (80.0− 80.98) 3.04 (2.92− 3.15)
≥ 100 9.34 (9.13− 9.54) 80.07 (79.57− 80.57) 3.46 (3.59− 3.33)

Branch 2‡ 100.0 83.53 (83.12− 83.94) −
∗The difference is calculated as the absolute difference between Branch 1 and Branch 2 in the decision tree. †Branch 1
uses urinary biomarkers at repeat biopsy; ‡Branch 2 has no indication at repeat biopsy;
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Table 4.9: Multi-way probabilistic sensitivity analysis for 15-year cancer-specific sur-
vival representing the uncertainty around model parameters.

Biomarkers at
different thresholds

Percentage of men
biopsied at this

threshold, (95% CI)

15-year
survival

Percentage change
in survival§, (95% CI)

Percentage change
in survival¶, (95% CI)

Branch 1∗

PCA3
≥ 25 45.46 (44.91− 46.01) 85.57 (85.37− 85.77) 1.47 (1.44− 1.51) 2.34 (2.26− 2.42)
≥ 35 32.36 (31.92− 32.79) 84.64 (84.44− 84.84) 2.16 (2.10− 2.23) 2.11 (2.05− 2.17)

T2:ERG
≥ 7 42.82 (42.29− 43.35) 85.03 (84.83− 85.23) 2.21 (2.17− 2.25) 2.87 (2.82− 2.92)
≥ 10 36.79 (36.35− 37.30) 84.77 (84.57− 84.97) 2.47 (2.42− 2.52) 2.61 (2.56− 2.65)
≥ 30 24.59 (24.23− 24.95) 84.05 (83.85− 84.25) 3.17 (3.13− 3.24) 1.89 (1.86− 1.93)
≥ 50 21.93 (21.60− 22.27) 83.68 (83.48− 83.89) 3.55 (3.49− 3.62) 1.53 (1.50− 1.55)
≥ 100 8.54 (8.74− 8.35) 83.16 (82.95− 83.36) 4.08 (4.01− 4.15) 1.00 (0.98− 1.02)

Branch 2† 100.0 87.24 (87.04− 87.44) − −

Branch 3‡ 0.0 82.16 (81.95− 82.37) − −
∗Branch 1 uses urinary biomarkers at repeat biopsy; †Branch 2 has no indication at repeat biopsy; ‡Branch 3 is no repeat biopsy; §The
difference is calculated as the absolute difference between Branch 1 and Branch 2 in the decision tree; ¶The difference is calculated as
the absolute difference between Branch 1 and Branch 3 in the decision tree.

fewer biopsies; however, the additional 10-year survival would be less than the case where

PCA3 with a threshold of 25.
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Figure 4.2: Multi-way sensitivity analyses on the base case patient with fixed age
and PSA.

Figure 4.3 demonstrates the results from multi-way probabilistic sensitivity analyses. In

this analysis, we represented the uncertainty around age, serum PSA and model parameters

with probability distributions described in Tables 4.6 and 4.9. We can see from this figure

that the use of PCA3 test with a threshold of 25 and T2:ERG of 10 at repeat biopsy
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decisions provides expected 10-year overall survival close to the case where there is no

indication for repeat biopsy. In summary, T2:ERG and PCA3 perform similarly once we

incorporated uncertainty around serum PSA and age.
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Figure 4.3: Multi-way sensitivity analyses with variation in age and PSA.

4.4. Conclusions

There is no definitive criterion to decide whether to perform a repeat prostate biopsy.

Typically the decision to perform a repeat biopsy is based on the measurement of serum

PSA and the findings of a DRE. The use of diagnostic biomarkers such as PCA3 and

T2:ERG may help clinicians make better decisions about repeat biopsies. In this respect,

the PCA3 assay and T2:ERG have shown promising results, and the studies available

in the literature support the use of PCA3 in patients with persistent suspicions of PCa

who had undergone previous negative biopsies. However, these studies focus on diagnostic

performance and not health outcomes. In this study, we investigated the value of PCA3

and T2:ERG for improving the overall 10-survival and reducing unnecessary repeat biopsies

in the challenging subgroup of patients with previous negative biopsies and persistently

elevated PSA levels.

Based on multi-way sensitivity analysis for the base case patient, the protocols using a

PCA3 threshold of≥ 25 and a T2:ERG threshold of≥ 10 at repeat biopsy decisions resulted

in a 54.4% and 63.2% reduction in the total number of biopsies performed compared to the
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protocol that every man with suspicion of PCa is biopsied, while the loss in 10-year survival

was 0.9% and 1.4%, respectively. Multi-way sensitivity analyses varying base case patients

age and serum PSA level in addition to varying the model parameters demonstrated that

incorporating PCA3 or T2:ERG into repeat biopsy decisions provided a large reduction in

the total number of biopsies (53.2% and 62.0% with a PCA3 threshold of ≥ 25 and T2:ERG

threshold of ≥ 10, respectively) and resulted in a small change (< 2.1%) in 10-year overall

survival compared to the case where every man was biopsied. The reduction in number

of biopsies increased as the threshold for biomarkers increased, while the loss in 10-year

survival also increased slightly. In the analysis of 15-year cancer-specific survival, multi-

way sensitivity analysis for the base case patient showed that the protocols using a PCA3

threshold of ≥ 25 and a T2:ERG threshold of ≥ 10 at repeat biopsy decisions resulted

in the same amount of reduction in the total number of biopsies performed compared to

the protocol that every man with suspicion of PCa is biopsied, while the loss in 15-year

cancer-specific survival was 1.5% and 2.5%, respectively. Similar to 10-year overall survival

analysis, the reduction in number of biopsies increased as the threshold for biomarkers

increased, while the loss in 15-year cancer-specific survival also increased slightly.

In order to gain insights about the cost implications of the protocols incorporating

biomarkers into repeat biopsy decisions, we calculated the expected cost of the biomarker

arm. In the calculations, we assumed the cost of a biopsy and the cost of screening with

PSA to be at $904 [101] and $30.92 [54], respectively. With the assumption that the insti-

tutional costs of PCA3 and T2:ERG markers are the same, we used the bundle cost of $749

for Mi-Prostate Score (MiPS), which is an early detection test for PCa developed by the

researchers in University of Michigan and combines the amount of PSA with the amounts

of PCA3 and T2:ERG [168], to estimate the cost of each individual urinary markers. The

expected cost of protocols including PCA3 with a threshold of 25 and T2:ERG with a

threshold of 10 are estimated to be $782 and $753, respectively.

In summary, early detection of PCa must strike a careful balance. The serum PSA test

is an existing noninvasive biomarker test that is in common use; however, less predictive

than ideal. Although biopsies are much more predictive, they are stressful and traumatic,

and can lead to serious complications. The availability of many new biomarker tests has

created the opportunity to design new multi-biomarker testing protocols for early diagnosis

of PCa; however, the high cost and imperfect sensitivity and specificity of these biomarker

tests has raised questions about the most efficient and effective ways to use them.

The work presented in this chapter investigated, for the first time, the value of PCA3
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and T2:ERG in the diagnosis of PCa at repeat biopsy by comparing the loss in the overall

survival to the gain in repeat biopsy rate. We extend the work of the previous chapters by

developing models for the use of multiple continuous biomarkers with the need to identify

decision thresholds that account for false positive and false negative results of biomarker

tests. The results from this study suggest that PSA alone is ineffective for recommending

patients have a repeat biopsy after previous negative biopsies. The addition of PCA3

or T2:ERG for repeat biopsy decisions can reduce the number of biopsies substantially

without significantly affecting the patients’ survival.

This study has some limitations. We examined a relatively small proportion of patients

with clinically insignificant PCa. This raises the question whether our study consists of

a representative cohort. However, we need to emphasize that the data was prospectively

collected from multiple centers, thus selection-bias is minimal. Additional limitations of

this study are related to model inputs such as 10-year overall and 15-year cancer-specific

survival, and biopsy sensitivity. The limitations of the studies providing estimates of overall

survival include the nonrandomized treatment assignment and retrospective design. The

studies evaluated overall survival within 10 years of treatment. A cohort of patients with

longer follow-up (more than 10 years) would provide more accurate estimates of long term

outcomes. We assumed that the overall survival is independent of the biomarker test scores

since there is no study that provides survival estimates considering PCA3 and T2:ERG

test results.

These limitations notwithstanding, our study has several strengths, as well as important

clinical and policy implications regarding the application of PCA3 assay and T2:ERG in

repeat biopsy decisions. We performed a head-to-head comparison of these biomarkers in

providing supplementary information to guide repeat biopsy decisions, and found that the

PCA3 assay and T2:ERG appear to provide an incremental improvement in the ability to

increase the specificity while resulting in a slight decrease in the overall 10-year survival

relative to the case where every men is biopsied regardless of the clinical parameters. In

addition to the effect on healthcare usage, avoiding unnecessary repeat biopsies will reduce

the discomfort, pain, and the other complications associated with repeat biopsies.
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Chapter 5.

Summary and Conclusions

The overall objective of this thesis was to leverage the information from new biomarkers

and imaging tests to improve early detection of prostate cancer (PCa). Due to the high

cost and imperfect predictive accuracy of the tests, how to best use these multiple sources

of information is a challenging engineering problem. To address this problem, we developed

new optimization-based models and data-driven methods in two primary application areas:

(a) development of reliable risk prediction models to provide guidelines for clinical decision-

making and the personalized management of PCa, and (b) optimal design of composite

diagnostic tests that can account for individualized patient characteristics and uncertainty

in disease outcomes using the predictive models. Our models and methods were applied

and tested in the context of PCa. However, the utility of these approaches extends to

many diseases and other application areas. Following is a summary of the most important

findings from Chapters 2, 3 and 4.

In Chapter 2, we combined predictive analytic tools and optimization methods to enable

urologists in Michigan to assess individual cancer risk using known clinical risk factors,

and to provide clinical recommendations that weigh the benefits and harms of radiolog-

ical imaging of men with newly-diagnosed PCa. In addition to the published imaging

guidelines, we implemented advanced classification modeling techniques to develop accu-

rate classification rules identifying which patients should receive imaging on the basis of

individual risk factors. We proposed a new classification algorithm that extracts the infor-

mation of patients with nonverified disease and incorporates the high cost of misclassifying

a metastatic patient simultaneously in its learning framework. In our search for accurate

classification rules, we also tested and implemented alternative statistical models that were

adapted to improve the classification of imbalanced data through cost-sensitive learning

104



and resampling techniques. Because not all men with newly-diagnosed PCa underwent a

staging bone scan (BS) and computed tomography (CT scan) at diagnosis, we used an

established method to correct for the verification bias to evaluate the accuracy of imaging

guidelines.

We employed a bi-criteria based approach to determine the Pareto optimal imaging

guidelines with respect to the expected number of positive outcomes missed and the ex-

pected number of negative tests. We found that the proposed classification model per-

formed well compared to the other classification models that we considered in this work;

however, there was no single classification modeling technique that was sufficient with re-

spect to the Pareto optimality criteria. Moreover, the published imaging guidelines were

near-optimal for both BS and CT scan. Our work resulted in imaging guidelines for PCa

staging that since 2014 are being used across the state of Michigan. We concluded Chapter

2 by describing the post-implementation effects of the proposed guidelines, to confirm their

impact on reducing unnecessary imaging.

In Chapter 3, we developed a new sequential testing framework in which some patients

may benefit from having tests one at a time so that the results of one test can be used to

predict the outcome of the follow-on test. Building on the knowledge attained in Chap-

ter 2, we combined predictive modeling techniques and optimization methods to design

coordinated imaging guidelines in which the result of one test may inform the decision

about the next test. To incorporate the perspectives of a host of stakeholders (patients,

physicians and population) involved in the decision making process for imaging, the goal

of the models we developed was to reduce the burden of imaging, while also ensuring that

the average risk of missing a metastatic case in the population does not exceed a desirable

threshold (the missed-rate budget).

To account for the imperfect calibration of probability estimates obtained from a pre-

dictive model, we formulated the decision problem of determining the optimal assignment

of patients to imaging protocols as a robust mixed integer program (MIP). We adopted

polyhedral uncertainty sets for the model parameters affected by the statistical estimation

error, and derived important structural properties of the proposed models. Furthermore,

we developed fast, easy-to-understand and clinically motivated heuristics that can mitigate

the effects of statistical error by incorporating the knowledge about the estimated risk of

metastatic disease. We illustrated the practical performance of the proposed heuristics and

optimization models based on medical data collected at a large state-wide collaborative.

Several conclusions with important insights for clinical decision making of PCa imaging
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were inferred based on the real case studies. One of the findings was that a greedy algo-

rithm was effective in that it generated more clinically predictable decisions and provided

more protection against the missed-rate budget violation compared to optimal solutions

to the deterministic model that ignores parameter uncertainty. These results suggested

that a simple approximation can achieve clinically acceptable and naturally robust imag-

ing guidelines for the population. Another important finding from this work was that the

use of robust coordinated imaging protocols was more beneficial than independently opti-

mized single imaging protocols: they reduced the number of imaging tests performed in the

population while providing a significant risk reduction in the missed-rate budget violation.

Finally, we showed that there is a significant gap between solutions obtained from the pop-

ulation and individual patient perspectives, suggesting a need for further understanding of

ways to bridge this gap.

In contrast to Chapters 2 and 3, in Chapter 4 we focused on diagnostic tests used for

early detection of PCa that provide a continuous outcome, rather than a binary (+ or −)

outcome, and that are conducted sequentially. We utilized a decision analysis framework

and Monte Carlo sampling to determine whether and how to use the newly discovered

diagnostic biomarker tests effectively to better select men for repeat biopsy. We used the

decision model to examine alternative choices of testing protocols based on the biomarkers

with varying thresholds for when to perform additional biomarker tests. Our results sug-

gested that new biomarkers, when used in conjunction with the prostate-specific antigen

(PSA) test (with PSA triggering a second a biomarker test), have the potential to reduce

the number of biopsies substantially without adversely affecting the overall survival rate of

patients with a history of prior negative biopsies. The sensitivity analyses suggested that

our conclusions were robust with respect to the plausible variation in the model parameters.

There are several extensions to our work presented in Chapter 2. An important direction

is to test the proposed classification model, cost-sensitive Laplacian kernel logistic regres-

sion (Cos-LapKLR), for handling unlabeled and imbalanced data simultaneously in other

disease areas. The Cos-LapKLR model did not provide significant performance improve-

ment in our context; however, in clinical applications where labeled data is very limited

compared to unlabeled data and the accuracy on minority class is the major concern, the

Cos-LapKLR model has the potential to improve the detection of patients with high risk

of disease. Moreover, the multi-step approach presented in Chapter 2 can used to develop

clinical recommendations regarding the use of diagnostic tests in other diseases, that can

optimally balance the competing goals of an accurate detection of disease and harms of
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testing.

There are several promising variations and extensions to our work presented in Chapter

3. One important direction is to, in addition to the statistical estimation error, incorporate

what we call the model error into the modeling framework for robust coordinated imag-

ing. The model error results from the use of clinical predictors that are associated with

metastatic cancer risk to classify patients into groups for which the proportion of patients

in each group must be estimated based on sample data. While in theory this error can be

eliminated, in practice it exists because of the strong preference among physicians to have

easy-to-understand classifications of patients. Thus, it would be interesting to investigate

the impact of model error on the optimal design of coordinated imaging. Furthermore,

we focused on patients’ health, but not specifically on healthcare costs. Given the seri-

ous economic implications of imaging on the patients and on the healthcare system, it is

important to understand how the heuristics and optimization models, and the resulting

imaging guidelines, change when the costs of imaging tests are taken into account. Results

based on the implementation of our findings in Chapter 2 suggest that our models may

lead to significant cost savings [82].

With the technological advances in imaging, the spectrum of available imaging options for

the management of PCa is continuously evolving. Novel imaging methods such as magnetic

resonance imaging (MRI) and combined positron emission tomography (PET)/CT scan

have introduced additional options for PCa staging that offer improved sensitivity and

specificity, and thus the potential for more accurate assessment of metastatic disease [63,

79, 118]. However, these more advanced techniques are currently being incorporated into

clinical use and are not yet widely available. In our work presented in Chapter 3, we studied

the optimal design of coordinated imaging guidelines by considering the most commonly

used imaging tests (BS and CT scan) for PCa staging. Our results showed that coordinated

imaging improves the clinical decision process by achieving better health outcomes and by

reducing imaging in the patient population. An important direction would be to extend our

modeling framework to incorporate imaging tests that are newly introduced into practice,

and to provide insights into their clinical value to improve detection of metastatic cancer.

There are also a number of important avenues of investigation related to our work pre-

sented in Chapter 4. An important direction is to extend the decision model to design one-

time composite tests consisting of a sequence of biomarker tests. Standard clinical practice

assumes simultaneous application of biomarker tests; however, biomarker tests vary in the

outcome they predict (all cancer v.s. high-grade cancer), in their sensitivities and speci-
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ficities, and also vary significantly in cost. Another important source of uncertainty to

be included in the model is the imperfect sensitivity of prostate biopsies. In our work,

we considered composite tests that combine PSA with an additional biomarker (prostate

cancer antigen 3 assay (PCA3) and TMPRSS2:ERG assay (T2:ERG)) and showed that

these composite testing strategies provide clinical benefits to patients. Thus, this work

provides a starting point for estimating Pareto optimal composite tests that combine PSA

with multiple biomarker tests.

In conclusion, we investigated the optimal design of diagnostic testing strategies to deter-

mine efficient and effective ways to use individual diagnostic resources. We presented new

analytic modeling and algorithmic approaches to achieve an optimal trade-off between the

benefits of early detection and the cost and harms of testing, such as unnecessary biopsies.

We further tested these models and approaches in the context of PCa to evaluate their

potential impact. Moreover, our work provides important insights into how transforma-

tive impact can be attained in clinical practice, by addressing the perspectives of multiple

stakeholders with varying criteria, including cost (e.g., payers and patients) and clinical

criteria (e.g., patients and physicians). The rapid introduction of new discoveries and tech-

nologies into routine medical practice has the potential to improve cancer care; however,

the enormity of medical data continue to present challenges to improve care delivery and

to reduce wasteful utilization of diagnostic resources. The work presented in this thesis

could help lay the groundwork to improve early detection of other types of cancer and

other diseases by leveraging information from multiple sources of testing.
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Appendix A.

Supplements to Chapter 2

A.1. Results for Random Forests and Adaboost

Several data balancing techniques exist in literature to deal with the class imbalance prob-

lem in different forms of resampling. Two non-heuristic sampling methods are commonly

used: random oversampling (ROS) of the minority class and random undersampling (RUS)

of the majority class.

The Synthetic Minority Oversampling Technique (SMOTE) is a method of oversam-

pling, which produces synthetic minority instances by selecting some of the nearest minor-

ity neighbors of a minority instance and generating synthetic minority instance along with

the lines between the minority instance and the nearest minority neighbors [39]. Although

it has shown many promising benefits, the SMOTE algorithm also has drawbacks, such as

overfitting. It introduces the same number of synthetic patients for each minority patient

without considering the neighboring patients, which increases the occurrence of overlap-

ping between minority and majority class. Borderline-SMOTE was proposed to enhance

the original concept by identifying the borderline minority samples [70]. In order to obtain

well-defined class clusters, several data cleaning methods such as the Edited Nearest Neigh-

bor (ENN) rule [12] and Tomek links [166] have been integrated with SMOTE. SMOTE

combined with two data cleaning techniques, Tomek links and ENN Rule [176], have shown

better performance in data sets with a small number of minority instances.

To improve upon the performance of random undersampling, several undersampling

methods combined with data cleaning techniques have been proposed such as Tomek links,

Condensed Nearest Neighbor Rule (CNN) [72] and Neighborhood Cleaning Rule (NCR)

[91]. In this work, we implement and test ten different methods of under and oversampling
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to balance the class distribution on training data.

These methods are available in the imbalanced-learn package in Python [93]. We

used this package to perform 10 independent runs of 2-fold cross validation (CV) on the

development samples. The results from these experiments are summarized in Table A.1.

The experimental results indicate that the accuracy of classification rules on the bone

scan (BS) and computed tomography (CT scan) data sets developed by Random forests

(RF) and AdaBoost can be improved via model-independent data-driven approaches. For

instance, the baseline RF identifying patients with bone metastasis obtained a sensitivity of

24.97% and specificity of 98.05%, whereas RF combined with RUS improved the sensitivity

to 74.68% while reducing the specificity to 68.13%. RF and Adaboost combined with RUS

achieved the highest sensitivity and area under the ROC curve (AUC) in both BS and

CT scan datasets. These results clearly illustrate the inadequacy of the baseline Random

forests and AdaBoost in recognizing metastatic patients.

Table A.1: Performance of RF and AdaBoost for BS and CT scan in 10 independent
repetitions of 2-fold CV.

Bone scan (n = 416) CT (n = 643)

Models Sensitivity Specificity AUC Brier Sensitivity Specificity AUC Brier
RF

Original 24.97 98.05 79.35 0.087 32.68 98.18 86.80 0.062

RUS 74.68 68.13 78.88 0.20 75.19 77.22 84.20 0.16
CNN 34.68 94.44 76.53 0.11 45.36 96.54 86.51 0.076
NCR 40.95 93.47 79.47 0.096 46.44 95.72 85.79 0.070
Tomek Links 28.54 97.19 79.92 0.086 38.65 97.71 86.55 0.062

ROS 32.46 94.53 77.44 0.099 36.94 96.70 85.62 0.069
SMOTE 41.83 89.35 78.32 0.12 40.37 94.64 84.68 0.080
SMOTE-Borderline 44.10 90.78 78.44 0.11 40.07 95.16 85.06 0.078

SMOTE + Tomek links 45.11 88.80 78.16 0.12 40.63 94.47 84.83 0.080
SMOTE + ENN 65.56 78.16 79.37 0.17 56.80 83.52 82.89 0.14

AdaBoost
Original 18.78 95.63 64.29 0.24 33.91 96.55 80.87 0.24

RUS 62.67 62.13 68.87 0.24 71.64 73.10 81.08 0.22
CNN 33.41 84.85 61.86 0.24 43.99 84.69 75.21 0.24
NCR 38.62 92.42 76.37 0.23 43.63 95.69 80.74 0.23
Tomek Links 28.31 95.66 71.34 0.24 38.45 96.55 80.87 0.24

ROS 19.15 95.01 64.79 0.24 38.77 95.03 80.44 0.24
SMOTE 32.51 88.72 63.71 0.24 45.25 92.16 79.17 0.24
SMOTE-Borderline 35.13 89.91 66.29 0.24 42.08 92.40 79.53 0.24

SMOTE + Tomek links 33.84 87.63 64.76 0.24 43.23 91.58 78.64 0.24
SMOTE + ENN 65.98 74.90 79.14 0.23 63.44 83.98 81.99 0.23

Sensitivity, specificity and AUC are reported in percentages.

110



Appendix B.

Supplements to Chapter 3

B.1. Results for Multinomial Model
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Figure B.1: Pairwise performance comparisons of binary models based on the vali-
dation samples for category 1 v.s. 4.
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Figure B.1: Pairwise performance comparisons of binary models based on the vali-
dation samples for category 2 v.s. 4 and category 3 v.s. 4.
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B.2. Results for Optimization Models
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Figure B.2: The effect of the protection levels Γ0 and Γ1 on the optimality of solutions
to R-MIM.
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Figure B.3: The effect of the protection levels Γ0 and Γ1 on the robustness of solutions
to R-MIM.
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Figure B.4: Illustration of the ranges in the estimated probability of positive bone
scan (BS) and computed tomography (CT scan) for patient types. The patient types
are sorted in the order of increasing risk of disease.
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Figure B.5: Expected missed disease rates for Protocols 1, 2 and 4. The patient types
are sorted in the order of increasing expected missed disease rate in each panel.
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Appendix C.

Supplements to Chapter 4

C.1. Sensitivity Analyses
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Table C.1: Assumed distributions and parameters used in probabilistic sensitivity
analysis.

Point

Estimate (µ)
Range

Standard

deviation (σ)
α β

Probabilities∗

Patient has GS < 7 cancer given that he actually has prostate cancer 0.59 [0.29− 1] 0.042 81.41 57.59

Patient has GS = 7 cancer given that he actually has prostate cancer 0.30 [0.15− 0.60] 0.039 41.70 97.30

Patient has GS > 7 cancer given that he actually has prostate cancer 0.11 [0.06− 0.23] 0.027 15.89 123.11

Patient has PCA3 score ≥ 25 given that he actually has GS < 7 cancer 0.65 [0.32− 1] 0.053 52.35 28.65

Patient has PCA3 score ≥ 25 given that he actually has GS = 7 cancer 0.74 [0.37− 1] 0.068 30.26 10.74

Patient has PCA3 score ≥ 25 given that he actually has GS > 7 cancer 0.69 [0.34− 1] 0.116 10.31 4.69

Patient has PCA3 score ≥ 35 given that he actually has GS < 7 cancer 0.45 [0.23− 0.90] 0.055 36.55 44.45

Patient has PCA3 score ≥ 35 given that he actually has GS = 7 cancer 0.55 [0.27− 1] 0.077 22.45 18.55

Patient has PCA3 score ≥ 35 given that he actually has GS > 7 cancer 0.56 [0.28− 1] 0.124 8.44 6.56

Patient has T2:ERG ≥ 7 given that he actually has GS < 7 cancer 0.52 [0.26− 1] 0.055 42.48 38.52

Patient has T2:ERG ≥ 7 given that he actually has GS = 7 cancer 0.55 [0.27− 1] 0.077 22.45 18.55

Patient has T2:ERG ≥ 7 given that he actually has GS > 7 cancer 0.75 [0.38− 1] 0.108 11.25 3.75

Patient has T2:ERG ≥ 10 given that he actually has GS < 7 cancer 0.46 [0.23− 0.93] 0.055 37.54 43.46

Patient has T2:ERG ≥ 10 given that he actually has GS = 7 cancer 0.50 [0.25− 1] 0.077 20.50 20.50

Patient has T2:ERG ≥ 10 given that he actually has GS > 7 cancer 0.75 [0.38− 1] 0.108 11.25 3.75

Patient has T2:ERG ≥ 30 given that he actually has GS < 7 cancer 0.37 [0.18− 0.73] 0.053 29.63 51.37

Patient has T2:ERG ≥ 30 given that he actually has GS = 7 cancer 0.29 [0.14− 0.57] 0.070 11.71 29.29

Patient has T2:ERG ≥ 30 given that he actually has GS > 7 cancer 0.50 [0.25− 1] 0.125 7.50 7.50

Patient has T2:ERG ≥ 50 given that he actually has GS < 7 cancer 0.26 [0.13− 0.51] 0.048 20.74 60.26

Patient has T2:ERG ≥ 50 given that he actually has GS = 7 cancer 0.26 [0.13− 0.52] 0.068 10.74 30.26

Patient has T2:ERG ≥ 50 given that he actually has GS > 7 cancer 0.50 [0.25− 1] 0.125 7.50 7.50

Patient has T2:ERG ≥ 100 given that he actually has GS < 7 cancer 0.16 [0.08− 0.32] 0.040 12.84 68.16

Patient has T2:ERG ≥ 100 given that he actually has GS = 7 cancer 0.17 [0.08− 0.33] 0.058 6.83 34.17

Patient has T2:ERG ≥ 100 given that he actually has GS > 7 cancer 0.38 [0.19− 0.75] 0.121 5.63 9.38

Patient has PCA3 score ≥ 25 given that he does not have cancer 0.38 [0.19− 0.75] 0.121 5.63 9.38

Patient has PCA3 score ≥ 35 given that he does not have cancer 0.26 [0.13− 0.52] 0.109 3.86 11.14

Patient has T2:ERG ≥ 7 given that he does not have cancer 0.38 [0.19− 0.76] 0.121 5.68 9.32

Patient has T2:ERG ≥ 10 given that he does not have cancer 0.31 [0.16− 0.63] 0.116 4.71 10.29

Patient has T2:ERG ≥ 30 given that he does not have cancer 0.20 [0.10− 0.40] 0.100 3.00 12.00

Patient has T2:ERG ≥ 50 given that he does not have cancer 0.16 [0− 0.33] 0.093 2.46 12.54

Patient has T2:ERG ≥ 100 given that he does not have cancer 0.08 [0− 0.15] 0.066 1.13 13.88

Biopsy Sensitivity 0.80 [0.40− 1] 0.090 15.20 3.80

Patient parameters†

Serum PSA (ng/ml) − [4− 30] 5.78 2.55 2.96

Age (years) − [50− 85] 8.45 60.0 1.10

∗All the assumed distributions for probability estimates are beta distributions; †The assumed distributions for patient parameters are gamma

distributions.
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Table C.2: Assumed distributions and parameters used in probabilistic sensitivity
analysis.

Overall 10-year survival∗ Point
Estimate (µ)

Range
Standard

deviation (σ)
α β

Age: Younger Than 60 years

Survival without PCa 0.94 [0.47− 1] 0.005 2035.72 129.94
PSA: 0.0− 9.9
Untreated survival for GS < 7 cancer 0.85 [0.43− 1] 0.04 84.12 14.84
Untreated survival for GS = 7 cancer 0.81 [0.41− 1] 0.04 96.92 22.73
Untreated survival for GS > 7 cancer 0.77 [0.39− 1] 0.05 51.62 15.42
Treated survival for GS < 7 cancer 0.94 [0.47− 1] 0.02 225.36 14.38
Treated survival for GS = 7 cancer 0.92 [0.46− 1] 0.02 288.10 25.05
Treated survival for GS > 7 cancer 0.90 [0.45− 1] 0.03 123.57 13.73

PSA: 10− 19.9
Untreated survival for GS < 7 cancer 0.76 [0.38− 1] 0.05 52.49 16.58
Untreated survival for GS = 7 cancer 0.71 [0.36− 1] 0.05 45.70 18.67
Untreated survival for GS > 7 cancer 0.65 [0.33− 1] 0.07 28.33 15.26
Treated survival for GS < 7 cancer 0.90 [0.45− 1] 0.03 123.57 13.73
Treated survival for GS = 7 cancer 0.87 [0.44− 1] 0.03 150.33 22.46
Treated survival for GS > 7 cancer 0.84 [0.42− 1] 0.04 87.67 16.70

PSA: 20 or Greater
Untreated survival for GS < 7 cancer 0.73 [0.37− 1] 0.06 37.65 13.93
Untreated survival for GS = 7 cancer 0.67 [0.34− 1] 0.06 33.00 16.26
Untreated survival for GS > 7 cancer 0.60 [0.30− 1] 0.07 27.62 18.42
Treated survival for GS < 7 cancer 0.88 [0.44− 1] 0.03 98.28 13.40
Treated survival for GS = 7 cancer 0.85 [0.43− 1] 0.04 84.12 14.84
Treated survival for GS > 7 cancer 0.81 [0.41− 1] 0.04 74.02 17.36

Age: 61 - 70 years

Survival without PCa 0.85 [0.43− 1] 0.01 1039.98 183.53
PSA: 0.0− 9.9
Untreated survival for GS < 7 cancer 0.75 [0.38− 1] 0.03 149.31 49.77
Untreated survival for GS = 7 cancer 0.70 [0.35− 1] 0.04 87.54 37.52
Untreated survival for GS > 7 cancer 0.63 [0.32− 1] 0.05 55.79 32.76
Treated survival for GS < 7 cancer 0.89 [0.45− 1] 0.02 371.02 45.86
Treated survival for GS = 7 cancer 0.87 [0.44− 1] 0.02 235.38 35.17
Treated survival for GS > 7 cancer 0.83 [0.42− 1] 0.03 179.13 36.69

PSA: 10− 19.9
Untreated survival for GS < 7 cancer 0.62 [0.31− 1] 0.05 68.66 42.08
Untreated survival for GS = 7 cancer 0.55 [0.28− 1] 0.05 51.74 42.34
Untreated survival for GS > 7 cancer 0.47 [0.24− 1] 0.06 30.76 34.69
Treated survival for GS < 7 cancer 0.83 [0.42− 1] 0.03 124.14 25.43
Treated survival for GS = 7 cancer 0.79 [0.40− 1] 0.03 139.07 36.97
Treated survival for GS > 7 cancer 0.74 [0.37− 1] 0.04 84.72 29.77

PSA: 20 or Greater
Untreated survival for GS < 7 cancer 0.57 [0.29− 1] 0.06 43.79 33.03
Untreated survival for GS = 7 cancer 0.49 [0.25− 1] 0.05 46.55 48.45
Untreated survival for GS > 7 cancer 0.40 [0.20− 0.80] 0.05 36.48 54.72
Treated survival for GS < 7 cancer 0.8 [0.40− 1] 0.04 99.55 24.89
Treated survival for GS = 7 cancer 0.75 [0.38− 1] 0.03 149.31 49.77
Treated survival for GS > 7 cancer 0.70 [0.35− 1] 0.04 87.54 37.52

Age: Older than 70 years

Survival without PCa 0.77 [0.39− 1] 0.015 581.30 173.64
PSA: 0.0− 9.9
Untreated survival for GS < 7 cancer 0.66 [0.33− 1] 0.05 69.58 35.85
Untreated survival for GS = 7 cancer 0.59 [0.30− 1] 0.05 67.10 46.63
Untreated survival for GS > 7 cancer 0.51 [0.26− 1] 0.06 39.95 38.39
Treated survival for GS < 7 cancer 0.85 [0.43− 1] 0.03 165.68 29.24
Treated survival for GS = 7 cancer 0.81 [0.41− 1] 0.03 132.22 31.01
Treated survival for GS > 7 cancer 0.76 [0.38− 1] 0.05 68.12 26.49

PSA: 10− 19.9
Untreated survival for GS < 7 cancer 0.5 [0.25− 1] 0.06 39.19 39.19
Untreated survival for GS = 7 cancer 0.41 [0.21− 0.82] 0.05 37.69 54.24
Untreated survival for GS > 7 cancer 0.32 [0.16− 0.64] 0.05 26.43 56.16
Treated survival for GS < 7 cancer 0.76 [0.38− 1] 0.04 82.45 26.04
Treated survival for GS = 7 cancer 0.70 [0.35− 1] 0.04 87.54 37.52
Treated survival for GS > 7 cancer 0.64 [0.32− 1] 0.05 69.58 35.85

PSA: 20 or Greater
Untreated survival for GS < 7 cancer 0.44 [0.22− 0.88] 0.06 28.48 36.25
Untreated survival for GS = 7 cancer 0.35 [0.18− 0.70] 0.05 37.41 69.48
Untreated survival for GS > 7 cancer 0.26 [0.13− 0.52] 0.05 23.46 66.78
Treated survival for GS < 7 cancer 0.72 [0.36− 1] 0.05 68.12 26.49
Treated survival for GS = 7 cancer 0.66 [0.33− 1] 0.05 56.01 31.50
Treated survival for GS > 7 cancer 0.59 [0.30− 1] 0.05 44.72 31.08

∗All the assumed distributions for overall 10-year survival estimates are beta distributions.
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Table C.3: Assumed distributions and parameters for 15-year cancer-specific sur-
vivals used in probabilistic sensitivity analysis.

15-year cancer-specific survival∗ Point
Estimate (µ)

Range
Standard

deviation (σ)
α β

Survival without PCa 0.94 [0.47− 1] 0.01 508.23 32.44

Survival treated without curative intent
Untreated survival for GS < 7 cancer 0.65 [0.33− 1] 0.09 18.31 10.08
Untreated survival for GS = 7 cancer 0.65 [0.33− 1] 0.09 18.31 10.08
Untreated survival for GS > 7 cancer 0.29 [0.14− 1] 0.06 3.96 9.87

Survival after radical prostatectomy
Treated survival for GS < 7 cancer 0.94 [0.47− 1] 0.01 508.23 32.44
Treated survival for GS = 7 cancer 0.83 [0.42− 1] 0.05 54.71 11.21
Treated survival for GS > 7 cancer 0.66 [0.33− 1] 0.06 38.85 20.01

All the assumed distributions for overall 15-year survival estimates are beta distributions.
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[129] A. Prékopa. Stochastic programming. Vol. 324. Springer Science & Business Media,
2013.

[130] Z. Qi, Y. Tian, Y. Shi, and X. Yu. “Cost-Sensitive Support Vector Machine for
Semi-Supervised Learning”. In: Procedia Computer Science 18 (2013). International
Conference on Computational Science, pp. 1684–1689.

[131] Z. Qin, S. Zhang, L. Liu, and T. Wang. “Cost-sensitive semi-supervised classification
using CS-EM”. In: Proceedings of the IEEE International Conference on Computer
and Information Technology. IEEE. 2008, pp. 131–136.

[132] J. Raja, N. Ramachandran, G. Munneke, and U. Patel. “Current status of tran-
srectal ultrasoundguided prostate biopsy in the diagnosis of prostate cancer”. In:
Clinical Radiology 61.2 (2006), pp. 142–153.

[133] R. Risko, S. Merdan, P. R. Womble, C. Barnett, Z. Ye, S. M. Linsell, J. E. Mon-
tie, D. C. Miller, and B. T. Denton. “Clinical predictors and recommendations for
staging computed tomography scan among men with prostate cancer”. In: Urology
84.6 (2014), pp. 1329–1334.

[134] A. W. Roddam, M. J. Duffy, F. C. Hamdy, A. M. Ward, J. Patnick, C. P. Price, J.
Rimmer, C. Sturgeon, P. White, and N. E. Allen. “Use of prostate-specific antigen
(PSA) isoforms for the detection of prostate cancer in men with a PSA level of 2–10
ng/ml: systematic review and meta-analysis”. In: European Urology 48.3 (2005),
pp. 386–399.

132



[135] M. J. Roobol, F. H. Schroder, P. van Leeuwen, T. Wolters, R. C. van den Bergh,
G. J. van Leenders, and D. Hessels. “Performance of the prostate cancer antigen 3
(PCA3) gene and prostatespecific antigen in prescreened men: exploring the value
of PCA3 for a firstline diagnostic test”. In: European Urology 58.4 (2010), pp. 475–
481.

[136] J. Rubio Briones, A. Fernandez Serra, M. Ramirez, L. Rubio, A. Collado, J.
Casanova, A. Gomez Ferrer, J. Ricos, J. Monros, R. Dumont, et al. “Outcomes
of expanded use of PCA3 testing in a Spanish population with clinical suspicion of
prostate cancer”. In: Actas Urologicas Espanolas 35.10 (2011), pp. 589–596.

[137] J. Ruiz-Aragon and S. Marquez-Pelaez. “Assessment of the PCA3 test for prostate
cancer diagnosis: a systematic review and meta-analysis”. In: Actas Urológicas
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