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Abstract

In survival analysis, a common assumption is that all subjects will eventually expe-

rience the event of interest given long enough follow-up time. However, there are many

settings in which this assumption does not hold. For example, suppose we are interested

in studying cancer recurrence. If the treatment eradicated the cancer for some patients,

then there will be a subset of the population that will never experience a recurrence. We

call these subjects “cured.”

The Cox proportional hazards (CPH) mixture cure model and a generalization, the

multistate cure model, can be used to model time-to-event outcomes in the cure setting.

In this dissertation, we will address issues of missing data, variable selection, and pa-

rameter estimation for these models. We will also explore issues of missing covariate and

outcome data for a more general class of models, of which cure models are a particular

case.

In Chapter II, we propose several chained equations methods for imputing missing co-

variates under the CPH mixture cure model, and we compare the novel approaches with

existing chained equations methods for imputing survival data without a cured fraction.

In Chapter III, we develop sequential imputation methods for a general class of mod-

els with latent and partially latent variables (of which cure models are an example). In

particular, we consider the setting where covariate/outcome missingness depends on the

latent variable, which is a missing not at random mechanism.

In Chapter IV, we develop an EM algorithm for fitting the multistate cure model.

The existing method for fitting this model requires custom software and can be slow to

converge. In contrast, the proposed method can be easily implemented using standard

software and typically converges quickly. We further propose a Monte Carlo EM algo-

rithm for fitting the multistate cure model in the presence of covariate missingness and/or

unequal censoring of the outcomes.

In Chapter V, we propose a generalization of the multistate cure model to incorporate

subjects with persistent disease. This model has many parameters, and variable selec-

xiv



tion/shrinkage methods are needed to aid in estimation. We compare the performance of

existing variable selection/shrinkage methods in estimating model parameters for a study

of head and neck cancer.

In Chapter VI, we develop Bayesian methods for performing variable selection when

we have order restrictions for model parameters. In particular, we consider the setting

in which we have interactions with one or more order-restricted variables. A simulation

study demonstrates promising properties of the proposed selection method.
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Chapter I

Introduction

One goal of cancer research is to identify patient characteristics (clinical, demographic,

or molecular biomarkers) related to health outcomes such as time to death or time to

disease recurrence. A clear understanding of the relationship between characteristics and

outcomes can be used for prediction and inform medical decision-making. With the in-

creasing availability of patient information (from past medical records, new diagnostics,

genetic testing, etc), there is a strong need to develop statistical methods to handle the

challenges presented.

One substantial challenge is that of missing data. Missingness may occur for a variety

of reasons. For example, not all patients may undergo the same diagnostic testing, re-

sulting in missingness in the test results for some patients. Data may be combined across

multiple hospitals, and these hospitals may collect information differently. Data collected

over time may have missingness due to missed doctors appointments or loss to follow-up.

These types of missing data are particularly common in observational data, which are

often used in cancer research. Missing data may also arise from the conceptual framework

used to model the data. In the study of cancer recurrence, for example, we sometimes

introduce a partially latent variable representing whether the subject was cured of their

cancer by their initial treatment. When we have loss to follow-up, cure status is only

known for subjects with observed recurrences, resulting in an induced source of missing

data. Statistical methods are needed to account for the missing information appropri-

ately.

Another challenge arising from increased data availability is that of variable selection.

In the setting in which many predictors are available for each subject (large p), statistical

methods are needed to determine which of the variables are important and should be in-

cluded in the model. Inclusion of too many predictors can result in numerical issues and

1



overfitting. Additionally, greater data availability opens the door for more complicated

modeling strategies. For example, multistate models in survival analysis can incorporate

information from multiple time-to-event outcomes and are incredibly useful for prediction

and for identifying the impact of predictors on different parts of the disease process. With

even a modest number of covariates, however, these models can quickly end up with an

intractable number of model parameters, and variable selection or shrinkage methods are

needed to produce good model inference.

My dissertation will broadly consist of five projects, each of which tackles an issue of

missing data or variable selection arising in the study of cancer. The methods we develop,

however, can be applied to other diseases and different scientific questions. In particular,

we are interested in exploring issues of missing data and variable selection for cancer data

when there is a cured fraction of the population. We suppose that we are interested in

studying cancer recurrence after initial treatment. If the treatment eradicated the cancer

for some patients, then there will be a subset of the population that will never experience

a recurrence. We call these subjects “cured” of their primary cancer. Before introducing

the statistical methods explored in this dissertation, we describe the dataset motivating

the methodological development.

This dissertation is broadly motivated by data collected by the UM Head and Neck

Cancer Specialized Program of Research Excellence (SPORE). After initial treatment for

head and neck cancer, patients were followed for recurrence and death. Covariate infor-

mation was also collected at baseline. It is been well-established that some head and neck

cancer patients can be cured of their cancer through their primary treatment, and the

data further support the hypothesis that some subjects were cured (Taylor, 1995; Grau

et al., 1997; Cognetti et al., 2008). This cure setting also occurs for some other types

of cancers such as breast cancer. Our general interest lies in studying the association

between baseline covariates and the rate of recurrence, the rate of death after recurrence,

and the probability of being cured by treatment.

Several existing frameworks are available for modeling recurrence time data with a

cured fraction. The Cox proportional hazards mixture cure model is a common modeling

strategy (Sy and Taylor, 2000), and recently Conlon et al. (2013) proposed a generaliza-

tion of the mixture cure model called the multistate cure model that can also incorporate

death information. When we apply existing estimation methods to the head and neck

2



dataset, however, several problems arise. Firstly, HPV (human papillomavirus) status

is unavailable for roughly 50% of the subjects, and a small amount of missingness was

present in other study variables. Existing missing data methods for Cox proportional

hazards mixture cure model often involve modeling the joint distribution of the covari-

ates, which may not be easily done and may be restrictive. Additionally, these methods

make MAR assumptions, which may not always hold in practice. No methods have been

developed for dealing with missing covariates in the multistate cure model setting. Sec-

ondly, for many patients (about 60%), follow-up for recurrence was substantially shorter

than follow-up for death. For some subjects, this results in a time interval in which

death status is known but recurrence status is unknown. This creates missing data in

the outcome information. Little work has been done to address this issue. Thirdly, even

with a modest number of covariates, the number of parameters in the cure model and

multistate cure model can become large, which motivates the development of variable

selection methods. In tackling these issues, we must keep in mind that cure status is only

known for subjects with observed recurrences, which presents a further source of missing

information. In this dissertation, we propose statistical methodology to address these

issues.

In Chapter II, we develop chained equations methods for imputing missing covari-

ates for the Cox proportional hazards mixture cure model, and we will compare the novel

approaches with existing chained equations methods for imputing survival data without a

cured fraction. Simulations demonstrate improved performance of the proposed method

(in terms of bias of cure model parameters) over existing methods.

In Chapter III, we explore sequential imputation methods for a more general class

of models with latent and partially latent variables (of which cure models are a particular

example). In particular, we consider the setting where covariate or outcome missingness

depends on the latent variable, which is a missing not at random mechanism (Little and

Rubin, 2002). The proposed methods represent the first thorough exploration into the

implementation of sequential imputation methods for general latent-dependent missing-

ness.

In Chapter IV, we develop an EM algorithm for fitting the multistate cure model.

The existing method in the literature for fitting this model requires custom software and

can be slow to converge. In contrast, the proposed method can be easily implemented
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using standard software and typically converges quickly. We further propose a Monte

Carlo EM algorithm for fitting the multistate cure model in the presence of covariate

missingness and/or unequal censoring of the outcomes.

In Chapter V, we propose a generalization of the multistate cure model to incorpo-

rate subjects with persistent disease. Like many multistate models, this model has many

parameters, and variable selection/shrinkage methods are needed to aid in estimation.

However, such methods have not previously been explored in the multistate modeling

context. We compare the performance of existing variable selection/shrinkage methods

in estimating model parameters for the head and neck cancer data.

In Chapter VI, we develop Bayesian methods for performing variable selection when

we have order restrictions for model parameters. In particular, we consider the setting

in which we have interactions with one or more order-restricted variables. A simulation

study demonstrates promising properties of the proposed method.
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Chapter II

Covariate Imputation for the CPH

Cure Model

2.1 Introduction

In survival analysis, a common assumption is that all subjects will eventually experience

the event of interest given long enough follow-up time. However, there are many set-

tings in which this assumption does not hold. For example, suppose we are interested in

studying cancer recurrence in patients treated for head and neck cancer. If the treatment

completely eradicated the cancer in some individuals, then there will be a subset of the

population that will never experience a recurrence. We call these subjects “cured” or

“non-susceptible.” We note that cure status is only known for subjects with observed

recurrences.

One commonly used modeling approach for survival data with a cured fraction is a

mixture model with two components. The first component is a model for the probability

that a subject is not cured, which is usually modeled using logistic regression. The second

component is a model for the failure time in the susceptible (non-cured) population. Para-

metric, semiparametric, and nonparametric formulations of the failure time model exist

in the literature (Farewell, 1982; Yamaguchi, 1992; Lu and Ying, 2004; Kuk and Chen,

1992; Peng and Dear, 2000; Sy and Taylor, 2000; Zhuang et al., 2000). We consider a

formulation of the mixture cure model where failure time in the susceptible population

is modeled using a Cox proportional hazards regression model (Kuk and Chen, 1992; Sy

and Taylor, 2000; Cox, 1972). It is important to note that subjects with observed events

are known to be non-cured, but cure status is not known for censored subjects. Cure

models are appealing because they enable enhanced interpretation and inference from
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data with a cure structure as cure models allow us to model both the probability that a

subject is cured and the hazard of an event in the non-cured group separately.

A challenge that arises in the application of these cure models is that often one or

more covariates are only partially observed. One simple approach is to ignore the miss-

ing data and analyze only the patients with complete covariate data. “Complete case”

analysis is an undesirable approach since it does not use data from patients with missing

covariate values and is therefore inefficient. Also, complete case analysis may be biased if

the covariate missingness mechanism depends on the outcome. Other approaches in the

literature for handing missing covariates in the cure setting often involve modeling the

joint distribution of the missing covariates using general location models (Zhuang et al.,

2000; Cho et al., 2001) or by specifying a series of conditional distributions (Chen and

Ibrahim, 2002). Both approaches require us to explicitly specify the joint distribution of

the covariates, which may not be easily done, and they are not easily implemented using

standard software.

In this chapter, we explore multiple imputation as another approach for handling miss-

ing data in the cure model setting. When performing multiple imputation, it is important

to include outcome information in the model for imputing partially observed covariates

(Moons et al., 2006). In the cure setting, however, many aspects of the outcome (cure

status and event times in the non-cured subjects) are not fully observed due to censoring.

We are interested in comparing different methods for incorporating the observed outcome

information to impute partially observed covariates when the primary outcome has a Cox

proportional hazards cure structure. We will study covariate imputation approaches us-

ing fully conditional specification.

Fully conditional specification (FCS) is a multiple imputation approach in which we

specify a conditional distribution for each partially observed covariate (Van Buuren et al.,

2006; Raghunathan, 2001). We then use these conditional distributions to impute covari-

ates as part of an iterative algorithm that cycles through the conditional distributions

for all the partially observed covariates. This often involves specifying a regression model

for each partially observed covariate and then using the regression models to impute the

missing values. An attractive feature of FCS is that it does not require us to explicitly

specify the joint distribution of the covariates.

Suppose X is a set of covariates and Y is an outcome variable. Also, suppose our
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ultimate goal is to fit a standard regression model for Y |X (e.g. linear, logistic). Let

X(p) denote the pth covariate in X and X(−p) denote all covariates in X except X(p).

We would like to use the distribution of X(p)|X(−p), Y to impute each partially observed

X(p). If we have the distributions for Y |X and X(p)|X(−p), then we can derive the dis-

tribution for X(p)|X(−p), Y directly. When X(p)|X(−p) and Y |X are normally distributed

with predictors incorporated in the mean structure, then the distribution of X(p)|X(−p), Y

will also be normal and will correspond to a linear regression that can be readily used

to impute X(p). When the true distribution of X(p)|X(−p), Y is unknown or difficult to

sample from, we may attempt to approximate the distribution using a simpler and more

computationally convenient standard regression model. For example, for normal X(p),

we may specify the distribution of X(p)|X(−p), Y using some function of X(−p) and Y as

predictors in a linear regression model.

In survival analysis, the primary outcome usually consists of the pair (Y, δ). If T

is the underlying event time and C is the censoring time, then Y = min(T,C) and

δ = I(T ≤ C). The ultimate goal is usually to fit a model for T |X. Although T is the

outcome of interest, it is not directly observed due to censoring. We can still derive the

exact distribution of X(p)|X(−p), Y, δ to impute each partially observed X(p). However,

due to the complicated structure of survival data, the exact distribution of X(p)|X(−p), Y, δ

will often be inconvenient or computationally intensive to sample from (Bartlett et al.,

2014).

One possible alternative is to obtain a more convenient approximation to the ex-

act conditional distribution of X(p)|X(−p), Y, δ for each partially observed covariate X(p).

White and Royston (2009) derived an approximate conditional distribution for propor-

tional hazards survival data that reduced to a regression model of X(p) with predictors

X(−p), δ, and Ĥ0(Y ), where Ĥ0(Y ) is the estimated cumulative baseline hazard function.

One adaptation of this would be to using log(Y) in place of Ĥ0(Y ) (Van Buuren et al.,

1999). Another adaptation would be to use a regression model for X(p) with predictors

X(−p), δf1(Y ), and (1−δ)f2(Y ), where f1(Y ) and f2(Y ) are functions of Y specified using

splines or step functions.

Additionally, since Y = min(T,C) is a mixture of a censoring time and the event time

of interest, it may not be appealing to include Y in the imputation regression models,

and we may instead wish to incorporate T directly. We can treat T as another partially
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observed variable and impute the value of T from the distribution of T |T > C,X for

censored subjects. Assuming C is uninformative for X(p), we can then try to impute each

partially observed X(p) by specifying the exact conditional distribution X(p)|X(−p), T or

by approximating the exact distribution with a regression model using T .

When the ultimate goal is to fit a mixture cure model, the form for the distribu-

tion of T |X is more complicated. The most convenient estimation method introduces a

partially observed variable, G, which indicates cure status. Either an imputed value or

the expectation of G is used in the mixture cure model estimation algorithm (Sy and

Taylor, 2000). When we have partially observed covariates, we can impute each partially

observed X(p) from the corresponding distribution of X(p)|X(−p), Y, δ, G. Using assump-

tions for the distribution of X(p)|X(−p), we can derive the exact conditional distribution

from which to impute. We can also impute using approximations to the exact conditional

distribution that are more computationally convenient. Alternatively, we can impute the

event time T for censored individuals and then impute each partially observed X(p) using

the approximated conditional distribution of X(p)|X(−p), T,G.

In this chapter, we derive the exact conditional distribution and suggest a sampling

scheme for imputing partially observed covariates in the Cox proportional hazards mix-

ture cure model setting. Additionally, we propose several approximations to the exact

distribution that are more convenient to use for imputation. We compare the perfor-

mance of our proposed imputation approaches to methods for survival data without a

cure fraction.

In Section 2.2, we present details about the Cox proportional hazards cure model.

In Section 2.3, we present possible approaches for imputing partially observed covari-

ates in the cure setting. In Section 2.4, we report results from a set of simulations and

compare the performance of the imputation algorithms. In Section 2.5, we apply two

imputation approaches to a study of cancer recurrence in head and neck cancer patients,

and in Section 2.6 we present a discussion.1

1A version of this chapter has been previously published in Beesley et al. (2016).
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2.2 Cox Proportional Hazards Cure Model

We consider the setting where the primary outcome is a censored event time and there

is an underlying subset of the study population that will never experience the event

of interest. We call individuals that will never experience the event “cured.” The Cox

proportional hazards (CPH) cure model is a mixture model with two components: 1)

a model for the probability that an individual is not cured and 2) a Cox proportional

hazards model for the hazard of an event for non-cured subjects (Kuk and Chen, 1992).

Let Yi = min(Ti, Ci) be the observed event/censoring time for individual i where Ti is

the underlying event time (defined as infinity if a subject is cured) and Ci is the censoring

time. Let δi = I(Ti ≤ Ci). We define the cure status of individual i, Gi, as 1 when the

individual is not cured and 0 when the individual is cured. Gi is 1 when δi = 1 and is

unknown when δi = 0. We assume censoring is independent of G and T given covariates.

We model the data as follows:

Logistic Model of Cure Status: logit(P (Gi = 1|Xi)) = α0 + αTXi i = 1, ..., n

CPH Model of Failure Time: h(t|Xi, Gi = 1) = h0(t)eβ
TXi i = 1, ..., n

where h0(t) is the baseline hazard of having an event in the non-cured group. For sim-

plicity, we assume that we have the same set of covariates in both parts of the mixture

model. Estimation of model parameters can be done using an EM algorithm (Peng and

Dear, 2000; Sy and Taylor, 2000).

We consider the complete data partial log-likelihood corresponding to the CPH cure

model assuming that Gi is observed. The EM algorithm iterates between two steps. In

the E-step for a given iteration, we replace Gi in the complete data log-likelihood with

wi = E(Gi|δi, Yi, Xi) = δi + (1− δi)
piS(Yi|Xi, Gi = 1)

1− pi + piS(Yi|Xi, Gi = 1)
(2.1)

Here, pi = P (Gi = 1|Xi) = expit(α0 + αTXi) and S(Yi|Xi, Gi = 1) = e−H0(Yi)e
βTXi using

the estimates of α0, α, and β from the previous iteration and an estimate of H0(t) obtained

using a Breslow estimator weighted by wi (Breslow, 1972). To improve the stability

of the EM algorithm (model parameters are nearly unidentifiable), we define censored

individuals with very late censoring times as cured with wi = 0 (Sy and Taylor, 2000).

The M-step involves taking the complete data partial log-likelihood with wi substituted
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for Gi and maximizing it with respect to α0, α, and β. The EM algorithm allows us to

handle the fact that cure status is only partially observed. Variances of model parameter

estimates can be estimated via bootstrap.

2.3 Multiple Imputation of Missing Covariates

In this section, we discuss imputation by fully conditional specification in more detail.

Then, we derive the exact conditional distribution to impute partially observed covariates

in the cure setting. We also present several approximations to the exact distribution that

are more convenient to use for imputation. We include several covariate imputation

models for survival data without a cured fraction.

2.3.1 Fully Conditional Specification Approach

Fully conditional specification (FCS) or “chained equations” is a multiple imputation ap-

proach in which we specify the conditional distribution for each partially observed variable

and then use these distributions to impute variables one-by-one as part of an iterative

procedure (Van Buuren et al., 2006; Raghunathan, 2001). When imputing variable V ,

we first specify the full conditional distribution for V (with parameter v) given all the

other variables. This may be an approximation of the “exact” conditional distribution.

We then impute V by 1) drawing v from its posterior distribution and then 2) drawing

V using its full conditional distribution at the drawn value of v. We then iterate between

univariate imputation steps for the variables with missingness.

Suppose we are interested in fitting a model to outcome O with partially observed

covariates W = (X(1), . . . , X(d)) and fully observed covariates Z = (X(d+1), . . . , X(s)).

Let X = (W,Z). Recall that X(p) denotes the pth covariate in X and X(−p) denotes

all covariates in X except X(p). For each partially observed X(p), we specify the condi-

tional distribution f(X(p)|X(−p), O;φp) where φp is a set of parameters. Let f(φp|X,O)

denote the posterior distribution of φp and let X(p,miss) and X(p,obs) denote the missing

and observed portions of X(p). To impute missing values for X(1) . . . X(d), we perform

the following iterative chained equations algorithm. At iteration k, we obtain updated
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imputed values by drawing

φ1
(k) ∼ f(φ1|X(1,obs)

(k−1) , . . . , X
(d)
(k−1), Z,O)

X
(1,miss)
(k) ∼ f(X(1)|X(2)

(k−1), . . . , X
(d)
(k−1), Z,O;φ1

(k))

φ2
(k) ∼ f(φ2|X(1)

(k) , X
(2,obs)
(k−1) , . . . , X

(d)
(k−1), Z,O)

X
(2,miss)
(k) ∼ f(X(2)|X(1)

(k) , X
(3)
(k−1), . . . , X

(d)
(k−1), Z,O;φ2

(k))

. . .

φd(k) ∼ f(φd|X(1)
(k) , . . . , X

(d−1)
(k) , X

(d,obs)
(k−1) , Z,O)

X
(d,miss)
(k) ∼ f(X(d)|X(1)

(k) , . . . , X
(d−1)
(k) , Z,O;φd(k))

We iterate until convergence. When we have missingness in only one variable, no iteration

is required, and the algorithm reduces to standard parametric multiple imputation.

In our cure setting, we want to use the conditional distribution

f(X(p)|X(−p), Y, δ, G;φp) to impute each partially observed covariate X(p). In practice,

however, f(X(p)|X(−p), Y, δ, G;φp) may be difficult to use for imputation, and we may

use an approximation, f̃(X(p)|X(−p), Y, δ, G; φ̃p). If the distribution used for imputation

explicitly depends on G, we treat G as another partially observed variable and impute G

as part of the chained equations algorithm. If we also impute the true event time T for

censored subjects, we could impute partially observed X(p) using f(X(p)|X(−p), T,G;φp)

or a corresponding approximation. We will assume that the covariates are missing at

random (MAR).

For many of the imputation approaches we consider, drawing φ̃p and missing X(p)

values (assuming a flat prior for φp) will reduce to fitting a regression model for X(p)

using some function of X(−p), G, Y, δ, and maybe T as predictors. As in standard FCS,

we fit this regression model only for subjects with observed X(p). We then draw the

parameter φ̃p from a multivariate normal with mean and variance obtained using the

regression model fit and then use the drawn φ̃p and the conditional distribution implied

by the regression model to draw each missing value of X(p). We will call this regression

model the imputation model for X(p). Alternatively, we can obtain a draw of φ̃p by

fitting the imputation model to a bootstrap sample of the data (Little and Rubin,

2002). Multiple imputation using standard regression models can be implemented using

the package MICE in R (Van Buuren and Groothuis-Oudshoorn, 2011). For imputing
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covariates assumed to be normally distributed, we use predictive mean matching as

implemented in MICE.

The chained equations (FCS) algorithm will result in a single imputed dataset. We

repeat the algorithm to create several imputed datasets. Suppose our goal is to make

inference from a particular model fit (in our case, the CPH cure model). We fit this

model to each imputed dataset, and then we use Rubin’s Rules to produce a final

estimate of the parameters and their variances from which we can make the desired

inference (Rubin, 1987).

2.3.2 Imputation using the Exact Conditional Distribution

We can use the complete data likelihood from the CPH cure model and an assumption

about the distribution of X(p)|X(−p) to derive the imputation X(p)|X(−p), δ, G, and Y for

each partially observed X(p) up to proportionality. Let f(X
(−p)
i ; γ) be the joint distribu-

tion of X
(−p)
i . In practice, we will not need to explicitly specify this distribution. Let

f(X
(p)
i |X

(−p)
i ; θ) be the distribution of X(p) given all the other covariates. We assume

that censoring does not depend on X(p) but may depend on other covariates. Therefore,

we do not need to specify a model for the censoring mechanism to derive the conditional

distribution of X(p). We consider the complete data likelihood (assuming cure status is

known) for the CPH cure model:

L(α, α0, β, θ, θ0, γ, σ
2) =

n∏
i=1

[
h(Yi|Gi = 1, Xi; β)δiS(Yi|Gi = 1, Xi; β)

]GI
× [P (Gi = 1|Xi;α, α0)]Gi [P (Gi = 0|Xi;α, α0)]1−Gi f(X

(p)
i |X

(−p)
i ; θ)f(X

(−p)
i ; γ)

∝
n∏
i=1

{(
h0(Yi)e

βTXi
)δi
e−H0(Yi)e

βTXi eα
TXi+α0

1 + eαTXi+α0

}Gi {
1

1 + eαTXi+α0

}1−Gi
f(X

(p)
i |X

(−p)
i ; θ)

Using that the conditional distribution is proportional to L (with respect to X(p))

f(X
(p)
i |Gi, δi, Yi, X

(−p)
i ) ∝

{
eδiβ

TXie−H0(Yi)e
βTXi eα

TXi+α0

1 + eαTXi+α0

}Gi

×
{

1

1 + eαTXi+α0

}1−Gi
f(X

(p)
i |X

(−p)
i ; θ) (2.2)
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We can use this kernel (distribution known up to proportionality) to impute X
(p)
i within

the chained equations imputation procedure. This kernel depends on both Gi and H0(t),

and it is parameterized by φp = (α, α0, β, θ). When X
(p)
i is assumed to be normal, we

can draw from (2.2) using an accept-reject algorithm as described below. When X
(p)
i is

categorical, the full form of the imputation distribution can be easily derived using (2.2).

In order to impute partially observed covariates using (2.2), we treat G as another

partially observed variable and impute G within the chained equations algorithm. We

also append a step at the start of each chained equations iteration in which we estimate

H0(t). We can impute by iterating the following steps:

Step 1: Estimating H0(t)

We can estimate H0(t) several different ways. Firstly, we can estimate H0(t) us-

ing a weighted Breslow estimator (Breslow, 1972). Suppose we have event times t1, ..., tJ

and let Rj be the risk set at time tj. Using the imputed X from the most recent

iteration, we estimate H0(t) at the kth iteration of the imputation algorithm as the step

function

Ĥ
(k)
0 (t) =

J∑
tj≤t

# events at time tj∑
i∈Rj e

[β(k−1)]
T
Xiw

(k)
i

where w
(k)
i is the conditional probability that a person is not cured at iteration k as

expressed in equation (2.1) evaluated at β(k−1), the draw of β from the previous iteration

(Sy and Taylor, 2000). We use this approach to estimate H0(t) in our simulations.

We can also obtain a parametric estimate of H0(t) by fitting a CPH cure model

with a parametric baseline hazard such as Weibull. If the baseline hazard of an event

in the non-cured subjects is truly Weibull, then fitting a Weibull cure model rather

than a semi-parametric CPH cure model may produce extra efficiency in estimating β.

However, if the baseline hazard in the non-cured group is not believed to be Weibull,

using this approach is not advised. Alternatively, H0(t) can be estimated using only the

subset of the data such that Gi = 1 (non-cured) as imputed at iteration k − 1. This can

be estimated by fitting a Cox model and using a traditional Breslow estimator applied

to the Gi = 1 subset of the data or by assuming a parametric form for the event hazard
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in the Gi = 1 group.

Step 2: Imputing Cure Status

To produce proper imputations using the FCS algorithm, we first draw the pa-

rameters from their posterior distributions. Assuming flat priors, this can be done

(approximately) by either 1) fitting a cure model to a bootstrap sample of the data

or by 2) fitting a logistic model for G|X and a CPH regression model of (Y, δ)|X on

the G = 1 subset using bootstrap samples of the most recent imputed data (Little and

Rubin, 2002).

Using the complete data likelihood for the CPH cure model, we can show that

logit(P (Gi = 1|Xi, δi = 0, Yi)) = −Ĥ0(Yi)e
βTXi + αTXi + α0. We can draw imputed

values of Gi using this probability relation. We note that if δi = 1, then Gi is known

to be 1, so we will not need to impute. Also, we define censored individuals with late

censoring times (after some cut-point c) as cured. Therefore, G is treated as missing

only if δ = 0 and Y ≤ c, so we can view missingness in G as MAR conditional on δ and Y .

Step 3: Imputing the Missing Covariates

We specify the distribution f(X
(p)
i |Gi, δi, Yi, X

(−p)
i ;φp) for each covariate X(p) with

missing values. As described in Section 2.3.1, we 1) draw φp from its posterior

distribution and 2) impute missing values of X(p) from its conditional distribution using

the drawn φp. If only one covariate has missingness, we perform 1) and 2) a single time

for that covariate. If we have missingness in many covariates, we perform 1) and 2)

sequentially for each covariate with missingness using the most recent imputations of

the other variables.

Suppose first that X(p) is Bernoulli such that f(X(p)|X(−p); θ) is a logistic regression

model with X(p) as the outcome and X(−p) as covariates. We can impute missing values

of X
(p)
i from a Bernoulli(πi) distribution using πi = P (X(p) = 1|X(−p); θ) obtained from

(2.2).

Suppose instead that X
(p)
i ∼ N(θ0 + θ1X

(−p), σ2). In this case, the form of the full

conditional distribution implied by (2.2) is known only up to proportionality. We can

14



draw (θ0, θ, σ
2) under the Bayesian linear regression model with X(p) as the outcome

and with X(−p) as the predictors using the most recent imputed values. This model is

described by Rubin (1987) and used in MICE (Van Buuren and Groothuis-Oudshoorn,

2011). We then want to impute each missing value X
(p)
i by taking draws from the full

conditional distribution knowing only the kernel in (2.2). Many methods exist to draw

from a distribution using only the kernel. To obtain an imputed value for X
(p)
i at a given

iteration, we perform a Metropolis-Hastings draw from (2.2) using a normal random

walk proposal distribution centered at the imputed value from the previous iteration

(Hastings, 1970; Metropolis et al., 1953). The variance of this proposal distribution is

a tuning parameter that must be determined to ensure good mixing properties and a

reasonable acceptance rate (Sherlock et al., 2010). Due to this accept-reject sampling,

we may need to perform many iterations of the chained equations fitting algorithm to

reach convergence. Rejection sampling methods can also be used (Bartlett et al., 2014).

This “Exact Cure” approach imputes each partially observed X(p) using its con-

ditional distribution implied by the CPH cure model and the model for X(p)|X(−p).

However, for some specifications of f(X(p)|X(−p); θ), we must use an accept-reject

algorithm to impute each missing X
(p)
i using (2.2), and this can quickly result in a large

computational burden. This burden is amplified when we have missingness in multiple

covariates. To impute multiple partially observed covariates, we must specify the model

for X(p)|X(−p) for each partially observed X(p), which increases the number of parameters

that must be drawn. Additionally, we must derive the form of f(X
(p)
i |Gi, δi, Yi, X

(−p)
i )

separately for different forms of the model for each X(p)|X(−p) (e.g. Gamma, Poisson,

etc). Due to this, we do not apply the Exact Cure approach to the head and neck cancer

example later on, which has missingness in many variables.
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2.3.3 Approximations using Regression Models

In this section, we consider approximations to the “exact” conditional distributions (de-

rived in Section 2.3.2) that do not require accept-reject sampling and can more easily

by implemented with existing software. We are interested in approximations that corre-

spond to standard regression models.

We start by describing two simple covariate imputation approaches for survival data

without a cure fraction. We then describe an approach in the literature for imputing

survival data without a cure fraction that is motivated directly by the standard Cox pro-

portional hazards model. Then, we propose an approximate distribution that incorpo-

rates the cure structure of the data and is motivated by the CPH cure model formulation.

Finally, we consider a modification to these approaches in which event time T is imputed

for censored subjects.

logY Imputation for survival data without a cure fraction

One approach in the literature for imputing covariates for survival data without a cure

fraction is to use X(−p), δ, and log(Y ) as predictors in the imputation model for X(p)

used in the chained equations algorithm (Van Buuren et al., 1999). Unlike the method

in Section 2.3.2, this approach does not require us to impute cure status or estimate

H0(t), so we do not require iteration of the chained equations algorithm when we have

missingness in only one covariate. We can impute using MICE in R by specifying regres-

sion models with predictors X(−p), δ, and log(Y ) for imputing each partially-observed

X(p) (Van Buuren and Groothuis-Oudshoorn, 2011).

Outcome Binning Imputation for survival data without a cure fraction

One adaptation of existing approaches for imputing covariates in the non-cure setting

would be to use a regression model for imputing each partially observed X(p) with pre-

dictors X(−p), δf1(Y ), and (1− δ)f2(Y ) where f1(Y ) and f2(Y ) are some functions of Y.

We propose using f1 and f2 in the form of step functions with step height determined

by the data. This allows for a very flexible association between the outcome and the

partially observed covariate. Additionally, this approach does not require us to impute

cure status or estimate H0(t) explicitly.
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We call this approach “Outcome Binning” because it involves binning individuals

based on the composite outcome, (Y, δ). We first separate subjects into a δ = 1 and

δ = 0 group. We then define bins of Y within each δ group using summary statistic-

based cutoffs or by other methods. For convenience, we define the bins using quartiles

of Y within each of the δi = 1 and δi = 0 groups. We define a set of dummy indicator

variables, M1, . . . ,Mm, which identify the bin membership of each individual (Mk = 1

if the subject is in bin k). We then impute each partially observed covariate within the

chained equations procedure using a regression model for each X(p) with X(−p) and binary

indicators M2, . . . ,Mm as predictors. After determining M1, . . . ,Mm, we can perform the

chained equations imputation using MICE in R (Van Buuren and Groothuis-Oudshoorn,

2011). With missingness in only one covariate, we can perform a single iteration of the

chained equations algorithm.

White and Royston Imputation for the CPH model without a cure fraction

Based on algebraic derivation involving Taylor series approximations, White and Royston

(2009) suggests using X(−p), δ, and H0(Y ) as predictors in the imputation model for each

partially observed X(p) in the standard CPH model setting without a cure fraction. This

is quite similar to the method in Van Buuren et al. (1999) but replacing log(Y ) with

H0(Y ). This requires us to obtain an estimate of H0(t) but does not require us to impute

cure status.

We note that H0(t) is the cumulative baseline hazard of an event in the entire study

population. This is not the same as the cumulative baseline hazard in the non-cured

population, as the cured subjects cannot experience the event of interest. When applied

to survival data with a cure fraction, H0(t) is the cumulative baseline hazard of an event

in the (assumed to be misspecified) survival model without a cure fraction based on the

entire study population.

White and Royston (2009) ultimately recommends using the Nelson-Aalen estimator

of H(t) to estimate H0(t) before imputation. However, they also investigated an ap-

proach in which they add a step to the imputation algorithm and re-estimate H0(t) at

each iteration. We estimate H0(t) after each iteration of the chained equations algorithm

by fitting a Cox model to all subjects using the most recent imputed data, drawing the

Cox model parameter using a multivariate normal distribution with mean and covariance
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matrix from the Cox model fit, and then using a Breslow estimator. We can also draw

parameter values by fitting the models to a bootstrap sample of the data (Little and

Rubin, 2002). Alternatively, we can fit a Weibull regression model to all subjects and

estimate the cumulative baseline hazard in the total population as a parametric function.

As we estimate H0(t) at the end of each iteration, we iterate the chained equations

algorithm even when we only have missingness in a single covariate. We can impute

using MICE in R by iterating the following steps: 1) Estimate H0(t) 2) Impute each

partially observed covariate X(p) sequentially using an appropriate elementary imputa-

tion method in MICE (e.g. mice.impute.logreg() for binary covariates) with predictors

X(−p), δ, and Ĥ0(Y ) (Van Buuren and Groothuis-Oudshoorn, 2011).

Approximated Imputation for the CPH cure model

We use a similar approach to White and Royston (2009) to derive approximate imputation

models for normal and binary covariates in the CPH cure model setting. We will call

this imputation approach the “Approximate Cure” approach. Although not shown here,

we can derive approximate imputation models for covariates with other distributions

in a similar fashion. Suppose we have the same set of covariates in both parts of the

mixture cure model and that the set contains s covariates. Therefore, α and β both have

dimension s. Again, we suppose that a partially observed X(p) ∼ N(θT1 X
(−p) + θ0, σ

2).

Taking the logarithm of kernel (2.2), we have that

log
(
f(X

(p)
i |Gi, δi, Yi, X

(−p)
i )

)
=
−1

2σ2

(
X

(p)
i − θT1 X

(−p)
i − θ0

)2

+Giα
TXi

− log
(

1 + eα
TXi+α0

)
+Giδiβ

TXi

−GiH0(Yi)e
βTXi + constant

We treat terms that do not depend on X
(p)
i as constant. We note that log(1+z) ≈

log(1+c) + (z-c)/(1+c) if z is near c and eaX+bY ≈ eaX̄+bȲ
[
1 + a(X − X̄) + b(Y − Ȳ )

]
if Var(aX + bY) is small. Assuming Var(αTXi) and Var(βTXi) are small and using first

and zeroth order Taylor series approximations, we can approximate the above by:

log
(
f(X

(p)
i |Gi, δi, Yi, X

(−p)
i )

)
≈ −1

2σ2

(
X

(p)
i − θT1 X

(−p)
i − θ0

)2

+Giα
TXi
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− eα
T X̄+α0

1 + eαT X̄+α0

[
1 + αp(X

(p)
i − X̄(p)) +

s∑
j 6=p

αj(X
(j)
i − X̄(j))

]
+Giδiβ

TXi

−GiH0(Yi)e
βT X̄

[
1 + βp(X

(p)
i − X̄(p)) +

s∑
j 6=p

βj(X
(j)
i − X̄(j))

]
+ constant

=
−1

2σ2

(
X

(p)
i − θT1 X

(−p)
i − θ0

)2

+

[
Giαp −

eα
T X̄+α0

1 + eαT X̄+α0
αp (2.3)

+Giδiβp −GiH0(Yi)e
βT X̄βp

]
X

(p)
i + constant

where X̄(p) is treated as a constant because it only very weakly depends on X
(p)
i . If we

complete the square on (2.3), we see that the mean of this normal distribution will be a

linear combination of X
(−p)
i , Gi, Gi × δi and Gi ×H0(Yi). A second order Taylor series

approximation of eα
TXi and eβ

TXi will also give the interaction Gi×H0(Yi)×X(−p)
i . This

suggests that when X(p) is normal and the assumptions are satisfied, we can approximate

the exact distribution f(X
(p)
i |Gi, δi, Yi, X

(−p)
i ) using a linear regression model with X

(−p)
i ,

Gi, Gi × δi, Gi ×H0(Yi), and perhaps Gi ×H0(Yi)×X(−p)
i as predictors.

Suppose instead that X(p) ∼ Bernoulli(t) where t = expit(θT1 X
(−p) + θ0). Using the

complete data likelihood for the CPH cure model, we have

logit
(
P (X

(p)
i = 1|Gi, δi, Yi, X

(−p)
i )

)
= log

(
L(α, α0, β, θ1, θ0, γ)|

X
(p)
i =1

L(α, α0, β, θ1, θ0, γ)|
X

(p)
i =0

)

= log

{(eβp)δie−H0(Yi)e
βp+

∑s
j 6=p X

(j)
i

βj eα0+
∑s
j 6=pX

(j)
i αj+αp

1 + eα0+
∑s
j 6=pX

(j)
i αj+αp

}Gi

×

{
1

1 + eα0+
∑s
j 6=pX

(j)
i αj+αp

}1−Gi

eθ
T
1 X

(−p)+θ0


− log

{e−H0(Yi)e
∑s
j 6=p X

(j)
i

βj eα0+
∑s
j 6=pX

(j)
i αj

1 + eα0+
∑s
j 6=pX

(j)
i αj

}Gi {
1

1 + eα0+
∑s
j 6=pX

(j)
i αj

}1−Gi


= θ0 + θT1 X
(−p)
i +Giδiβp −GiH0(Yi)

(
eβp − 1

)
e
∑s
j 6=pX

(j)
i βj + αpGi

+ log
(

1 + eα0+
∑s
j 6=pX

(j)
i αj

)
− log

(
1 + eα0+

∑s
j 6=pX

(j)
i αj+αp

)
(2.4)

This relation gives the form for the exact conditional distribution, which we can use to

impute a partially observed, binaryX(p). Now, we attempt to find a simpler approximated

model. We use a similar approach as in the normal derivation. Assuming Var(αTXi) and
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Var(βTXi) are small, we approximate (2.4) by:

logit(P (X
(p)
i = 1|Gi, δi, Yi, X

(−p)
i )) ≈ θ0 + θT1 X

(−p)
i +Giδiβp + αpGi + constant

−GiH0(Yi)
(
eβp − 1

)
e
∑s
j 6=pX

(j)
i βj +

eα0+
∑s
j 6=pX

(j)
i αj

1 + eα0+
∑s
j 6=p X̄

(j)αj
− eα0+

∑s
j 6=pX

(j)
i αj+αp

1 + eα0+αp+
∑s
j 6=p X̄

(j)αj

≈ θ0 + θT1 X
(−p)
i +Giδiβp −GiH0(Yi)

(
eβp − 1

)
e
∑s
j 6=p X̄

(j)βj

[
1 +

s∑
j 6=p

βj(X
(j)
i − X̄(j))

]

+ αpGi +
eα0+

∑s
j 6=p X̄

(j)αj

1 + eα0+
∑s
j 6=p X̄

(j)αj

[
1 +

s∑
j 6=p

αj(X
(j)
i − X̄(j))

]

− eα0+
∑s
j 6=p X̄

(j)αj+αp

1 + eα0+αp+
∑s
j 6=p X̄

(j)αj

[
1 +

s∑
j 6=p

αj(X
(j)
i − X̄(j))

]
+ constant (2.5)

This equation is a linear combination of X
(−p)
i , Gi, Gi×δi, Gi×H0(Yi), and Gi×H0(Yi)×

X(−p). This suggests that we can impute X
(p)
i using X

(−p)
i , Gi, Gi × δi, Gi × Ĥ0(Yi),

Gi × Ĥ0(Yi) × X(−p) as predictors in a logistic regression model if we impute Gi for

censored subjects and estimate H0(Yi) as additional steps in the multiple imputation

algorithm.

The approximate imputation models implied by (2.3) and (2.5) explicitly depend on

H0(t) and Gi. To use the derived approximate distributions for covariate imputation,

we estimate H0(t) and impute Gi as part of the chained equations algorithm as we did

in Section 2.3.2. In contrast, the logY, Outcome Binning, and White and Royston

imputation approaches discussed previously do not require us to impute Gi.

The final interaction term in the imputation models implied by (2.3) and (2.5) may

have many parameters if Xi consists of many covariates, so that term may have to be

dropped for settings with many covariates. Also, it may be that the imputed Gi and

Gi × δi are highly correlated, so one may need to only use Gi due to collinearity issues.

In order to impute partially observed covariates using these approximations, we can

perform a modification of the Exact Cure algorithm proposed in Section 2.3.2. We can

impute using MICE in R by iterating the following steps: Step 1) Estimate H0(t) as in

Section 2.3.2, Step 2) Impute Cure Status as in Section 2.3.2, and Step 3) Impute each

partially observed covariate X(p) sequentially using an appropriate elementary imputation

method in MICE (e.g. mice.impute.logreg() for binary covariates) with predictors X
(−p)
i ,

Gi, Gi × δi, Gi × Ĥ0(Yi), and perhaps Gi × Ĥ0(Yi)×X(−p)
i (Van Buuren and Groothuis-
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Oudshoorn, 2011).

A natural alternative to the proposed Approximate Cure approach is to first impute

G and then impute covariates separately for the G = 1 and G = 0 groups. We could

then apply imputation approaches for survival data without a cure fraction (such as the

White and Royston method) for imputing covariates in the G = 1 group. In simulations

(not shown), this approach resulted in similar bias and inflated variances compared to

the Approximate Cure approach.

A Modification: Event Time Imputation

Since the observed event/censoring time Y = min(T,C) is a mixture of two underlying

random variables, it may not be very intuitive to include Y as a predictor in standard

regression models for imputing missing covariates. Instead, we may wish to include

the true event time, T , which is not fully observed. We can treat T as another

partially observed variable and impute values of T for censored individuals within the

chained equations algorithm used to impute missing covariates. This modification can

conceptually be applied to any of the imputation approaches we have discussed.

In the cure setting, T is defined as infinity for cured individuals and is an event time

for non-cured individuals. Although cure status is not known for censored individuals,

if we also impute G as part of the chained equations imputation algorithm, then we can

impute values of T for the non-cured, censored subjects using an assumed truncated

distribution f(t|t > C,G = 1, X). We can modify the Exact and Approximate Cure

imputation algorithms by adding a step to the chained equations imputation algorithm

to impute Ti for censored individuals who have Gi = 1 at iteration k. Then, we replace

(Yi, δi) in the subsequent imputation models for the partially observed covariates with

the imputed (Ti, Gi). In several simulations (not shown), however, T imputation does

not appear to improve the performance of the Exact Cure and Approximate Cure

imputation algorithms.

We are particularly interested to see how some simple covariate imputation ap-

proaches for survival data without a cure fraction are impacted by first imputing T and

then substituting (Y, δ) by (T, 1) in the covariate imputation models. We consider both

the logY and Outcome Binning approaches. For the Outcome Binning approach, we use

octiles to define bins of T among all subjects. In these two approaches, cure status is

21



not known or imputed for censored individuals, and so we cannot impute censored T

using the truncated distribution f(t|t > C,X,G = 1). Instead, we impute the event time

T using the truncated distribution f(t|t > C,X), which we assume has a proportional

hazards structure with a Weibull baseline.

We use a Cox proportional hazards model for the hazard of an event in the total

study population. The survival function of the truncated distribution f(t|t > Ci, Xi)

of Ti is in the form STRUNC(t|Xi) = e−[H0(t)−H0(Ci)]e
βTXi , t > Ci. To impute Ti for a

censored individual, we can first generate Ui from a Uniform(0,1) distribution. We can

then draw Ti using the relation Ti = H−1
0

(
−log(Ui)e

−βTXi +H0(Ci)
)

. This requires

us to draw β and estimate H0(t). If we assume the failure time is Weibull such that

S(t|Xi) = e−λt
ηeβ

TXi , then we can generate Ti as Ti =

(
−log(Ui)e

−βTXi+λCηi
λ

)1/η

after

drawing values for β, λ, and η. Within the chained equations algorithm, we generate a

Ti value for all censored subjects at each iteration. We can obtain draws of β, λ, and η

by first fitting a Weibull regression model to the entire study population using the most

recent imputed X and then drawing β, λ, and η from a multivariate normal distribution

with mean and covariance estimated by the Weibull fit.

We note that in the CPH cure model setting, the truncated distribution f(t|t > C,X)

is incorrectly specified, and it may seem unintuitive to use this misspecified model to

impute event times. However, event time imputation has been used in the non-cure

survival setting, and an analyst might naively try to apply the same approach to survival

data with a cure fraction (Taylor et al., 2002). We want to see whether this approach

improves or worsens the performance of imputation approaches for survival data without

a cured fraction when applied in the cure setting.
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2.4 Simulations

In this section, we present results from a simulation study to compare the imputation

approaches in terms of bias, empirical variance, and coverage of cure model parameters

across imputation methods. We also compare with complete case analysis and analysis

of the full data without any covariate missingness.

2.4.1 Simulation 1: Missingness in a Single Covariate

We create 500 simulated datasets of 500 observations each. For each dataset, we simulate

multivariate normal covariates X = (X1, X2) with zero means, unit variances, and a corre-

lation of 0.5. We then simulate cure status using the relation logit (P (Gi = 1|Xi,1, Xi,2)) =

0.5 + 0.5Xi,1 + 0.5Xi,2, leading to an average cure rate of 40%. For the non-cured

group, we simulate a survival time Ti. We model the event hazard in the non-cured

group as h(t) = h0(t)e0.5X1+0.5X2 with h0(t) = 0.002. We then generate censoring times

Ci ∼ U(250, 4500) and define Yi = min(Ti, Ci) and δi = I(Ti ≤ Ci).

We impose ∼50-55% missingness in X2 using three models: (1) missing completely at

random (MCAR) with P (X2 missing|X1, δ, Y ) = 0.5, (2) missing at random (MAR) with

logit(P (X2 missing|X1, δ, Y )) = X1, and (3) MAR with logit(P (X2 missing|X1, δ, Y )) =

0.3 − 0.4δ − 0.5X1δ. While this final missingness mechanism may seem implausible, it

could be induced when missingness depends on an unobserved variable U that is inde-

pendently related to T .

We note that we impose missingness in only a single covariate rather than many co-

variates (the typical setting where FCS is applied). However, we are mainly interested

in investigating various strategies for modeling the univariate conditional distribution for

one partially observed covariate. As such, we can compare the imputation approaches by

imposing missingness in only one covariate. Similar results can be seen when we apply the

imputation approaches with missingness in multiple covariates as shown in Simulation

2. We also consider the setting with many partially observed covariates in our head and

neck cancer example.

We perform multiple imputation of X2 using methods described in this chapter. For

each simulation and method, we produce 10 imputed datasets. We then fit a CPH cure

model to each imputed dataset (ignoring imputed cure status) and use Rubin’s Rules to
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obtain a single set of estimates for each simulation (Rubin, 1987). We then compute bias,

relative variance (compared to analyzing the full data with no covariate missingness), and

coverage in estimating model parameters across 500 simulations for each method. Alter-

natively, for imputation approaches that result in imputed values for G, we could have

performed our final analysis by fitting Cox and logistic regressions given the imputed G.

In simulations (not shown), this approach resulted in a slight increase in efficiency for

estimating the intercept for the logistic part of the model, but it also resulted in some

increases in bias for the approaches using approximated distributions for imputation.

We use 100 iterations for each imputation algorithm except Exact Cure, for which we

use 1500 due to the slower convergence of the Metropolis-Hastings algorithms. When fit-

ting the cure models to each imputed dataset, we use 100 iterations of the EM algorithm

and use 100 bootstrap samples of the imputed dataset to estimate variances.

Computational time is shortest for the Outcome Bins and logY approaches, followed

closely by the T imputation methods. The Approximate Cure approach takes about four

times as long as the Outcome Bins method to run and about two times as long as the

White and Royston method. The Exact Cure approach takes at least ten times as long

as the Approximate Cure approach to run.

Table 2.1 shows simulation results under three different missingness mechanisms for

X2. Under missingness models (1) and (2), complete case (CC) analysis is essentially un-

biased or has little bias. However, in model (3), CC analysis results in biased estimates,

particularly in estimating parameters for the logistic part of the mixture cure model.

In all missingness settings shown, the imputation methods have little bias in estimating

α0, α1, and β1, the logistic model intercept and the parameters associated with X1.

In all three missingness settings, the logY, White & Royston, Outcome Binning, T

imputation, and Approximate Cure (w/o extra interaction) approaches result in similar

or larger bias than CC analysis in estimating α2, the logistic parameter for X2. For all

three missingness models, the imputation approaches using T imputation result in larger

α2 bias than their counterparts without T imputation. The Approximate Cure approach

with the interaction term and the Exact Cure approach produce comparably low bias in

estimating α2.

All imputation methods except the Exact Cure approach result in biased estimates for

β2, the failure time model parameter associated with X2. Among the biased imputation
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methods, however, the Approximate Cure approach including the extra interaction term

consistently results in the smallest β2 bias. The logT approach produces smaller β2 bias

than the logY approach. Outcome Binning results in similar β2 bias with and without

the T imputation.

All imputation methods result in smaller empirical variance (so larger relative vari-

ance) in estimating α0, α1, and β1 compared to CC analysis in all three simulation set-

tings. Some reduction in the variance in estimating β2 can also be seen, suggesting that

we can still gain some information about the effect of X2 by including information from

subjects with missing X2. Coverage rates for α0, α1, and β1 are similar for all imputation

methods in all three simulation settings. CC coverage of 95% confidence intervals for

α0 and α1 under missingness model (3) is far below 0.95%. Reductions in coverage for

some imputation approaches can be seen for α2 and β2. Undercoverage is mainly due to

increased bias. The Exact Cure approach and the Approximate Cure approach with the

extra interaction term tend to produce higher coverage rates in estimating β2 compared

to the other imputation methods.

In all three sets of simulations, we see large reductions in the Approximate Cure ap-

proach’s corresponding biases by adding the extra interaction term. Although not shown,

we do not see corresponding decreases in bias by adding a Ĥ0(Yi) : X(−p) interaction term

to the White and Royston approach (White and Royston, 2009). We also see that the Ex-

act Cure imputation approach far outperforms all other imputation algorithms in terms of

bias, and among the biased imputation approaches, the Approximate Cure approach with

the interaction term is generally the best performer. In all three sets of simulations, the

non-cure imputation approaches that involve T imputation tend to have worse coverage

or bias properties than the corresponding approaches without T imputation. Finally, we

see that among the approaches that do not take the cure fraction into account (Outcome

Binning, logY, White & Royston, and logT), Outcome Binning without T imputation

tends to produce the smallest bias overall across the three simulation settings.
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Table 2.1: Cure Model Estimates with Imputation of One Missing Covariate

α0 α1 α2 β1 β2

Method Bias (RV) CI† Bias (RV) CI Bias (RV) CI Bias (RV) CI Bias (RV) CI

Full Data -0.01 (1.00) 0.93 0.02 (1.00) 0.93 0.02 (1.00) 0.94 -0.01 (1.00) 0.95 0.00 (1.00) 0.95

Missingness Model 1: MCAR missingness in X2

Exact Cure 0.00 (0.83) 0.94 0.01 (0.75) 0.92 0.03 (0.48) 0.94 -0.01 (0.82) 0.94 0.00 (0.48) 0.95
Approximations
Non-Cure w/ (Y, δ)

logY 0.00 (0.79) 0.94 0.00 (0.74) 0.91 0.08 (0.47) 0.92 0.01 (0.85) 0.95 -0.14 (0.71) 0.78
White & Royston 0.00 (0.81) 0.94 0.00 (0.73) 0.93 0.07 (0.47) 0.92 0.00 (0.82) 0.95 -0.13 (0.76) 0.81
Binning by (Y, δ) 0.00 (0.80) 0.94 0.01 (0.75) 0.93 0.04 (0.48) 0.93 0.00 (0.83) 0.96 -0.11 (0.66) 0.87

Non-Cure w/ T
logT 0.00 (0.80) 0.94 -0.02 (0.79) 0.93 0.14 (0.55) 0.89 0.01 (0.94) 0.96 -0.12 (0.90) 0.86
Binning by T 0.00 (0.81) 0.94 0.00 (0.78) 0.93 0.09 (0.53) 0.92 0.00 (0.86) 0.95 -0.10 (0.71) 0.89

Cure w/ (G, Y, δ)
Approx Cure 0.00 (0.85) 0.94 0.01 (0.75) 0.93 0.05 (0.50) 0.94 0.00 (0.81) 0.95 -0.13 (0.82) 0.82
Approx + Int* 0.00 (0.85) 0.93 0.02 (0.78) 0.92 0.02 (0.47) 0.93 0.00 (0.91) 0.95 -0.07 (0.75) 0.93

Complete Case -0.01 (0.48) 0.94 0.03 (0.52) 0.96 0.03 (0.49) 0.94 0.00 (0.52) 0.97 0.00 (0.46) 0.95

Missingness Model 2: MAR missingness in X2 dependent on X1

Exact Cure 0.00 (0.84) 0.95 0.01 (0.81) 0.94 0.04 (0.47) 0.93 0.00 (0.79) 0.95 -0.01 (0.34) 0.92
Approximations
Non-Cure w/ (Y, δ)

logY 0.00 (0.82) 0.94 0.01 (0.82) 0.95 0.13 (0.47) 0.91 0.02 (0.80) 0.95 -0.20 (0.63) 0.62
White & Royston 0.00 (0.79) 0.95 -0.02 (0.79) 0.95 0.14 (0.46) 0.89 0.02 (0.77) 0.96 -0.19 (0.63) 0.65
Binning by (Y, δ) 0.00 (0.83) 0.95 0.00 (0.80) 0.94 0.10 (0.51) 0.92 0.01 (0.78) 0.95 -0.16 (0.54) 0.73

Non-Cure w/ T
logT 0.01 (0.83) 0.94 -0.01 (0.85) 0.94 0.15 (0.61) 0.88 0.02 (0.85) 0.95 -0.16 (0.71) 0.73
Binning by T 0.00 (0.84) 0.94 0.00 (0.82) 0.95 0.11 (0.58) 0.93 0.01 (0.83) 0.95 -0.15 (0.53) 0.76

Cure w/ (G, Y, δ)
Approx Cure 0.00 (0.84) 0.94 -0.01 (0.76) 0.94 0.12 (0.49) 0.90 0.02 (0.71) 0.94 -0.20 (0.67) 0.61
Approx + Int* 0.00 (0.89) 0.95 0.01 (0.82) 0.94 0.05 (0.48) 0.94 0.00 (0.78) 0.94 -0.12 (0.65) 0.86

Complete Case 0.00 (0.41) 0.95 0.04 (0.43) 0.94 0.05 (0.50) 0.95 -0.02 (0.31) 0.95 -0.02 (0.33) 0.91

Missingness Model 3: MAR missingness in X2 dependent on X1, δ

Exact Cure 0.00 (0.86) 0.94 0.01 (0.77) 0.93 0.03 (0.44) 0.94 -0.01 (0.82) 0.95 0.00 (0.60) 0.95
Approximations
Non-Cure w/ (Y, δ)

logY 0.00 (0.81) 0.93 0.00 (0.77) 0.94 0.07 (0.42) 0.93 0.00 (0.88) 0.95 -0.11 (0.88) 0.89
White & Royston 0.00 (0.83) 0.94 0.00 (0.79) 0.93 0.06 (0.44) 0.94 0.00 (0.87) 0.96 -0.09 (0.87) 0.90
Binning by (Y, δ) 0.00 (0.86) 0.94 0.02 (0.79) 0.94 0.02 (0.44) 0.94 0.00 (0.81) 0.96 -0.08 (0.71) 0.92

Non-Cure w/ T
logT 0.01 (0.83) 0.94 -0.03 (0.81) 0.92 0.16 (0.52) 0.88 0.01 (0.94) 0.96 -0.09 (0.99) 0.92
Binning by T 0.00 (0.84) 0.94 0.00 (0.80) 0.94 0.09 (0.47) 0.92 0.00 (0.86) 0.96 -0.07 (0.78) 0.94

Cure w/ (G, Y, δ)
Approx Cure 0.00 (0.87) 0.93 0.02 (0.78) 0.94 0.02 (0.44) 0.95 -0.01 (0.81) 0.96 -0.08 (0.94) 0.92
Approx + Int* 0.00 (0.88) 0.93 0.02 (0.82) 0.94 0.03 (0.44) 0.94 0.00 (0.89) 0.96 -0.05 (0.93) 0.95

Complete Case 0.18 (0.39) 0.83 0.29 (0.41) 0.77 0.03 (0.43) 0.96 0.00 (0.54) 0.95 0.00 (0.57) 0.95

*Includes Ĥ0(Y ) : G : X1 interaction in imputation model
†CI indicates empirical coverage of 95% confidence intervals and RV indicates variance relative
to analysis of the full data.
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2.4.2 Simulation 2: Missingness in Two Covariates

We create 500 simulated datasets of 500 observations each. For each dataset, we

simulate multivariate normal covariates X = (X1, X2) with zero means, unit vari-

ances, and a correlation of 0.5. We then simulate a third, binary covariate X3 such

that P (X3 = 1|X1, X2) = expit(X1). We simulate cure status using the relation

logit (P (Gi = 1|Xi,1, Xi,2, Xi,3)) = −0.5 + 0.5Xi,1 + 0.5Xi,2 + 0.5Xi,3, leading to an av-

erage cure rate of 55%. For the non-cured group, we simulate a survival time Ti.

We model the event hazard in the non-cured group as h(t) = h0(t)e0.5X1+0.5X2+0.5X3

with h0(t) = 0.075t0.5. We then generate censoring times Ci ∼ U(2, 45) and define

Yi = min(Ti, Ci) and δi = I(Ti ≤ Ci).

We impose ∼50% missingness in X2 and X3 using two models: (1) MCAR with

P (X2 missing|X1, δ, Y ) = 0.5 and (2) MAR with logit(P (X2 missing|X1, δ, Y )) = X1. In

both cases, we set X3 to be missing if and only if X2 is missing. We perform multiple

imputation of X2 and X3 using methods described in this chapter. We compute bias,

relative variance (compared to analyzing the full data with no covariate missingness),

and coverage in estimating model parameters across 500 simulations for each method.

We use 150 iterations for each imputation algorithm except Exact Cure, for which

we use 1500 due to the slower convergence of the Metropolis-Hastings algorithms. When

fitting the cure models to each imputed dataset, we use 100 EM iterations and 100 boot-

strap samples to estimate variances.

Table 2.2 shows simulation results under two different missingness mechanisms for

X2 and X3. In both cases, complete case analysis is essentially unbiased. Simulation

results in this setting are broadly similar to results with missingness in only one covariate

(Table 2.1). All imputation approaches produce little bias in estimating α0, and all but

the logT approach result in little bias for α1. Substantial bias in estimating α2, α3, β1, β2,

and β3 can be seen for many methods. The Exact Cure Approach is the only imputation

approach considered which results in unbiased estimates for all parameters. Compared

to the other biased imputation approaches, the Approximate Cure approach with the

interaction term results in large reductions in bias for estimating many parameters. The

Approximate Cure approach without the interaction term produces smaller bias than the

White and Royston approach, and the Outcome Binning approach produces further re-
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ductions of bias for some model parameters. As in the Table 2.1 simulations, we see that

the imputation approaches using T do not result in a uniform reduction of bias compared

to their counterparts without T imputation.

All imputation methods result in smaller empirical variance in estimating α0, α1, and

β1 compared to CC analysis. Some reduction in the variance in estimating β2 and β3

can also be seen. The logY and logT imputation approaches resulted in much smaller

variances for β2 and β3 than analysis of the full data. Due to the large bias of these

two approaches, analysis using these approaches may produce small confidence intervals

centered far from the true value. As such, we would not recommend using the logT or

logY approaches for imputation.

Coverage rates for α0, α1, α2, α3, β1, and β3 are near the nominal 95% level for all but

the logT approach. Reductions in coverage for some imputation approaches can be seen

for β2. The Exact Cure approach and the Approximate Cure approach with the extra

interaction term produce higher coverage rates in estimating β2 compared to the other

imputation methods.

The Exact Cure imputation approach is the best performer in terms of bias. Among

the biased imputation approaches, the Approximate Cure approach with the interac-

tion term performs the best. Among the imputation approaches which do not take the

cure fraction into account, Outcome Binning without T imputation tends to produce the

smallest bias overall. We see some bias in estimating a parameter associated with a fully

observed variable, but it is biased to a lesser extent then the parameters for the imputed

variables. These simulations demonstrate that the proposed imputation approaches have

good performance when imputing multiple variables with binary or normal distributions.
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2.5 Application to Head and Neck Cancer Data

We consider data from a cohort study of time to cancer recurrence in N=1226 patients

with head and neck squamous cell carcinoma (HNSCC). This study was conducted by

the University of Michigan’s Head and Neck Specialized Program of Research Excellence

(SPORE) and included consenting patients treated for HNSCC at the University of

Michigan Cancer Center between November 2003 and July 2013. Details regarding

the cohort study can be found in Duffy et al. (2008) and Virani et al. (2015). Data

on newly-diagnosed patients were collected from the time of diagnosis, and patients

were then followed for cancer recurrence after the start of treatment. A patient is

considered to have recurred if cancer becomes detectable. Personal and disease-related

characteristics including age, cancer stage, cancer site, comorbidities, cigarette use,

alcohol use, gender, and BMI were collected at the time of diagnosis and are reported in

Table 2.3.

Table 2.3: Patient Characteristics

N (%) or Missing N (%) or Missing
Characteristic Mean (SD) N (%) Characteristic Mean (SD) N (%)

Model Variables

Age at Diagnosis 59.5 (11.7) ACE27 Comorbidities 1 (0.01)
Cancer Stage 0 (0) None 343 (27.9)

I/Cis 162 (13.2) Mild 535 (43.6)
II 123 (10.0) Moderate 239 (19.4)
III 181 (14.7) Severe 108 (8.8)
IV 760 (61.9) Cancer Site 0 (0)

Cigarette Use 0 (0) Larynx 245 (19.9)
Never 285 (23.2) Hypopharynx 53 (4.3)
Current 559 (45.5) Oral Cavity 413 (33.6)
Former 382 (31.1) Oropharynx 515 (42.0)

HPV Status 685 (55.8)
Negative 320 (26.1)
Positive 221 (18.0)

Auxiliary Variables

Gender 0 (0) Enrollment Year 0 (0)
Female 315 (25.6) 2003-2008 559 (45.5)
Male 911 (74.3) 2009-2011 363 (29.6)

Alcohol use 1 (0.01) 2012-2013 304 (24.7)
Never 115 (9.3) No. Sexual Partners 16.8 (53.4) 765 (62.3)
Current 300 (24.3) Body Mass Index (BMI) 26.9 (5.9) 6 (0.4)
Former 810 (66.0)
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Of the 1226 patients in the study, 374 (30.5%) experienced a cancer recurrence. Of

these, 149 (39.8%) had detectable cancer toward the end of their planned treatment.

These patients are called “persistent” and are given a recurrence time of 1 day as exact

recurrence times are unavailable for these subjects. Patients were followed for a me-

dian time of 36.6 months. Of the observed recurrences, 360 (96.2%) occurred within 36

months. Few patients had recurrences after 36 months, and the estimated survival curve

had a plateau in the later half of the study (∼36-60 months). For HNSCC, it is well

established that patients can be cured (Taylor, 1995). This provides some evidence that

these data may follow a cure structure.

Based on biological knowledge of HNSCC recurrence and empirical evidence in the

data, we assume that a subset of the study cohort had been cured of disease by treatment,

and we fit a mixture cure model. We assume a Cox proportional hazards model for the

hazard of cancer recurrence in the non-cured group, and we model probability of being

cured of the primary HNSCC after treatment using a logistic regression. In particular,

the first component is a model for time until cancer becomes detectable in the non-cured

group. We include persistent patients in our analysis as persistence was defined subjec-

tively and roughly corresponded to whether there were early signs that the cancer was

present. Because persistence is an outcome of the treatment that was unobserved at

baseline, these patients were included in the analysis. We fit a Cox proportional hazards

cure model to the complete case data using age at diagnosis, cancer stage, cigarette use,

HPV status, comorbidities, and cancer site as predictors in both parts of the mixture

cure model. Results of this model fit are shown in Table 2.4.

In the study of HNSCC, the association between HPV status and cancer recurrence

is of particular interest. However, HPV status was only obtained for 541 (44.1%) of the

patients. Investigation into the missingness of HPV status (not shown) suggests that

HPV missingness is associated with diagnosis date and therefore censoring time. How-

ever, assuming censoring is independent of HPV status, we can still assume HPV status

is missing at random (Rathouz, 2007). We want to impute HPV status using approaches

discussed and then compare results from corresponding CPH cure model estimates be-

tween imputation approaches and to complete case analysis.

We performed multiple imputation of HPV status (55.8% missing) and comorbidities

(0.01% missing) using both the Approximate Cure approach with the extra interaction
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term and the White & Royston approach. We did not use the Exact Cure approach as we

have many partially observed covariates, and when we have many covariates to impute,

the Exact Cure approach becomes increasingly computationally intensive. HPV status is

known to be associated with factors such as gender, smoking, alcohol use, and number of

sexual partners. HPV also has a much higher prevalence for oropharyngeal cancers com-

pared to other types of head and neck cancer. We observe that HPV status is associated

with calendar time and therefore year of study enrollment. As these variables are known

to be associated with HPV status, they may help us to obtain better imputations of

HPV. Therefore, we use all factors in Table 2.3 as predictors for the various imputation

models, requiring us to also impute BMI, number of sexual partners, and alcohol use as

part of the chained equations algorithm. We note that sexual partners has a large amount

of missingness (62.3%), but we include it in the imputation algorithm due to its strong

association with HPV status. Number of sexual partners is observed for 198 (28.9%) of

the subjects with missing HPV status. Year of study enrollment was categorized into

three intervals reflecting different rates of HPV missingness. Greater effort was made to

obtain HPV status for subjects enrolled after 2008, and some samples obtained in 2012

and 2013 have not yet been tested. Some of the Table 2.3 variables are not included in

the final cure model analysis as cure models become increasingly unstable with a large

amount of predictors. We therefore implicitly assume that the predictors not included

in the final model are not independent predictors of the outcome. In order to satisfy

the assumptions made in the derivation of the Approximate Cure approach, we assume

that censoring of recurrence time (including death from other causes) does not depend

on the partially observed variables and in particular HPV status and number of sexual

partners. We impute categorical covariates using polytomous regression in MICE (Van

Buuren and Groothuis-Oudshoorn, 2011). Number of sexual partners is imputed using

predictive mean matching on the log-scale. We produced 20 imputed datasets for each

approach.

Table 2.4 shows the Cox proportional hazards cure model results for two imputation

algorithms and complete case analysis. Point estimates and confidence intervals are very

similar between the two imputation approaches. Based on the simulation results, we may

expect the biggest difference between the two approaches to be the bias in estimating

parameters for HPV status. For this dataset, however, the estimates for the parameters
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corresponding to HPV status are very similar between the two imputation approaches.

When we apply other imputation approaches discussed in this chapter to these data (not

shown), we see similar results.

Differences can be seen between the model fits from imputation and from complete

case analysis. Confidence intervals tend to be narrower for the imputation approaches

than for complete case analysis. Point estimates tend to be somewhat similar with some

exceptions. The most notable difference between the imputation and complete case fits

is in the estimates for the cigarette use variable. Point estimates from the imputation

approaches suggest that cigarette use may be associated with a decrease in the probabil-

ity of being cured, but it is not associated with the hazard of recurrence. In contrast, the

complete case analysis suggests that cigarette use is associated with a decreased hazard

of recurrence in the non-cured group, but it is not associated with cure status. Addi-

tionally, the confidence intervals for some cigarette use parameters from the imputation

approaches do not include the complete case point estimates. The complete case fit shows

some signs of model instability.

Point estimates for HPV status parameters are similar between the complete case and

imputation approaches, but the confidence intervals are smaller in the imputation model

fits. This suggests that some additional information about HPV status is obtained by

including information from the patients with missing HPV status.
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2.6 Discussion

In this chapter, we have explored approaches for imputing missing covariates in the Cox

proportional hazards cure model setting. We considered multiple imputation using fully

conditional specification, an approach in which we impute partially observed covariates

by drawing from their conditional distributions.

We derived the “exact” conditional distribution and suggested a sampling scheme

for imputing normal and Bernoulli covariates in the CPH cure model setting. We also

proposed several approximations to the exact distribution that are simpler and more

convenient to use for imputation. Our approach can be generalized to impute covariates

with different distributions. We compared the performance of our proposed imputation

approaches to existing imputation methods for survival data without a cure fraction.

A simulation study demonstrates that all imputation methods considered can sub-

stantially increase precision in estimating many CPH cure model parameters compared

to complete case analysis. Imputation can produce smaller variances for estimating pa-

rameters corresponding to fully observed variables compared to complete case analysis.

Some variance reduction may also be seen in estimating parameters associated with the

imputed variables. The Exact Cure imputation approach outperformed all other impu-

tation approaches in terms of bias. In our simulations, all other imputation approaches

tended to have some bias in estimating at least one of the parameters associated with the

imputed variable/s. Among the biased imputation approaches, the Approximate Cure

approach with the interaction term was the best performer. Among the approaches that

do not account for the cure fraction, Outcome Binning tended to have the best perfor-

mance across the three simulation settings. The approaches in which the event time is

imputed without accounting for the cure structure of the data did not perform well in

the cure setting and are not recommended. In the head and neck cancer example, little

difference could be seen between the imputation approaches, but many differences were

present between imputation and complete case analysis.

While imputation using the exact conditional distribution is a clear frontrunner in

terms of bias, it is typically more difficult to implement and takes much longer to run

than other methods due to the many required Metropolis-Hastings draws. These issues

become even more pronounced when there is missingness in multiple covariates. If one is

35



willing to allow some bias in estimating some model parameters (particularly those as-

sociated with the imputed variables), then the Approximate Cure imputation approach

with the interaction term may be preferred. For example, if we are only adjusting for

an imputed variable as a possible confounder, then adding some bias in estimating its

parameters in exchange for computational simplicity may be acceptable. If we desire an

even simpler imputation scheme and do not want to impute cure status, we may still be

able to obtain some bias reduction by using Outcome Binning without the event time

imputation rather than other existing imputation approaches for survival data without a

cure fraction.

We compare imputation approaches in terms of performance in estimating CPH cure

model parameters, and most of the imputation approaches proposed are compatible with

and directly motivated by the final modeling strategy. If we change the modeling strategy

(for example, if we want to fit an accelerated failure time model with a cure fraction),

then the imputation approach may need to be adapted and the comparative performance

of the approaches may change. Additionally, although simulations suggest there is a

difference between imputation approaches, there may not always be a large practical dif-

ference when applied to particular datasets as seen with the head and neck cancer data.

The presented simulations are limited to a setting with normal and binary covariates with

linear covariate effects in the logistic and failure time models. When imputing covari-

ates with other distributions (e.g. ordered categorical), the comparative performance of

the imputation approaches may be different. Also, if the failure time or logistic models

include interactions/non-linear effects of the partially observed covariates, the difference

between the Exact Cure method and the approximated methods would be expected to

be even more pronounced than in the linear effects case considered here (Bartlett et al.,

2014).

We note that H0(t) in the CPH model is really an infinite-dimensional parameter,

and we do not directly incorporate this uncertainty into the estimation procedure. Addi-

tionally, we only consider multiple imputation using fully conditional specification. Fully

conditional specification is convenient to use for imputation as it does not require us to

explicitly specify the joint distribution of the covariates. However, in the case of multi-

ple imputed variables, the assumed distributions for each partially observed X(p)|X(−p)

are not guaranteed to be compatible and form a valid joint distribution. In some cases,
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this could lead to problems (e.g. bias) when estimating parameters in the final model

fitting (Bartlett et al., 2014). Several authors have provided conditions in which FCS is

equivalent to joint model imputation and converges to the desired sampling distribution

(Hughes et al., 2014; Liu et al., 2013).
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Chapter III

Sequential Imputation for Models

with Latent Variables

3.1 Introduction

Models that involve latent or partially latent variables in addition to an outcome variable

and covariates are frequently the target for estimation and inference. For example, in

the Cox proportional hazards mixture cure model, partially latent cure status describes

whether individuals are at risk for the event of interest. Cure status is only partially la-

tent because subjects with observed events are known to be non-cured. Another popular

model with latent variables is the linear mixed model, where fully latent random effects

account for correlation within clusters.

Additional considerations arise when dealing with missing covariates and/or outcomes

in the presence of latent variables. Many authors have explored the issue of missing data

for models with latent variables under assumptions that missingness is independent of the

latent variable given the observed data. We do this in Chapter II of this dissertation.

In this chapter, we explore a generalization of this missingness mechanism that allows

covariate/outcome missingness to depend on the latent variable, which is a “missing not

at random” (MNAR) mechanism (Little and Rubin, 2002). Previous examples of such

mechanisms are called “latent ignorable” or “latent missing at random” (LMAR) miss-

ingness (Frangakis and Rubin, 1999; Harel, 2003; Harel and Schafer, 2009). For example,

suppose we model a longitudinal outcome using a mixed model. One common LMAR

scenario in the literature relates dropout to the random effect, which can be viewed as a

measure of an individual’s propensity to drop out.

In general, the underlying missingness mechanism can never be determined from the
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data alone, and inference under MNAR may be sensitive to unverifiable assumptions

about the missingness mechanism. Additionally, inference under MNAR is suscepti-

ble to underidentification or weak identification of the model parameters (Little, 1995;

Molenberghs et al., 2008). In this chapter, we consider a particular MNAR missingness

mechanism (LMAR) in which missingness depends on unknown information only through

the latent variable, which by assumption has a structured relationship with the observed

variables. We may view LMAR missingness as a somewhat mild departure from MAR.

Still, we must keep these issues in mind when handling missing data under LMAR.

One approach for handling missing data is to analyze only the fully observed subset

of the data (complete case analysis). When missingness is LMAR, this approach will gen-

erally produce biased results (Little and Rubin, 2002). Several authors have discussed

likelihood-based approaches for linear mixed models with missingness dependent on the

random effect (e.g. Little, 1995; Wu and Carroll, 1988). These methods often involve an

EM algorithm or a likelihood that has integrated out the latent variable.

Multiple imputation is a common general approach for dealing with missing data. One

approach to multiple imputation requires one to specify a joint distribution for all the

variables and use that joint distribution for imputation, usually in a Gibbs sampling-type

algorithm. Each variable with missing values can be sequentially imputed using its condi-

tional distribution, which is determined by the joint distribution. The distribution of the

sampled parameters can then be used for inference. An alternative approach to inference

is to extract m completed datasets (each consisting of the observed data plus imputed

values), analyze each completed dataset using the desired model, and combine the results

using Rubin’s rules for inference from multiply imputed datasets (Rubin, 1987).

Several authors have proposed joint modeling approaches for handling latent ignor-

able missingness in specific modeling settings (Jung, 2007; Yang et al., 2008; Lu et al.,

2011). Harel (2003) proposes a non-iterative imputation approach for dealing with general

latent-dependent missingness under a joint model, but literature is sparse on the imple-

mentation of imputation based on joint models under general latent ignorable missingness.

The main drawback of the joint modeling approach to imputation is that specification of

the joint distribution may be difficult or too restrictive.

Chained equations imputation is an alternative to joint modeling in which variables

are imputed iteratively in a series of univariate imputation steps (Raghunathan, 2001;
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Van Buuren et al., 2006). These steps are usually accomplished using standard regression

models, and these regressions as a set usually do not correspond to a valid joint distribu-

tion. This approach is simple and flexible, but it is less coherent than joint modeling and

may not incorporate assumptions about the outcome model directly. Most literature on

chained equations assumes that missingness is independent of all unobserved information,

called “missing at random” (MAR) (Little and Rubin, 2002), and some authors have ex-

plored particular MNAR settings (e.g. Van Buuren, 2007; Little et al., 2009; Giusti and

Little, 2011). An alternative approach proposed in Bartlett et al. (2014) incorporates

the outcome model into the chained equations procedure, leading to improved properties.

Similar findings are given in White and Royston (2009) and Chapter II. In the context

of models with latent variable models, however, we have not found any literature explor-

ing chained equations under latent ignorable missingness in general.

In this chapter, we develop a sequential imputation algorithm that can handle MAR

and LMAR covariate and outcome missingness for models with latent or partially la-

tent variables. The proposed method imputes the latent variable as part of the missing

data, allowing the latent variable to be directly used when imputing the missing covari-

ate/outcome values. The proposed algorithm is very flexible and can accommodate either

a Gibbs sampling-type approach under joint model or a chained equations-type approach

to imputation. In the joint modeling setting, we describe how we can directly incorporate

our assumptions about the outcome and missingness model structures into the imputa-

tion procedure and provide several results. We then use results under a joint model to

inform a chained equations-type imputation approach without a joint model.

Many works have explored MAR-based imputation in settings with latent variables

under a joint model (e.g. Schafer, 1997; Schafer and Yucel, 2002; Chung et al., 2006).

However, a distinguishing feature of the proposed algorithm over existing methods is

that it provides a substantive model compatible approach to imputation, where the form

of the imputation distribution is directly motivated by our outcome modeling assump-

tions without requiring a fully-specified joint model. This approach to imputation has

been previously explored in the context of covariate imputation in Bartlett et al. (2014),

but a general imputation algorithm for handling missingness in multiple variables has

not previously been considered. To our knowledge, no other work has provided a chained

equations algorithm for performing imputation for general latent variable models under

40



MAR. Under LMAR, the proposed methods represent the first sequential imputation al-

gorithm for general LMAR settings.

In Section 3.2, we define latent ignorability. In Sections 3.3 and 3.4, we describe

the proposed imputation approach. In Section 3.5, we present simulations that evaluate

the performance of our method under a variety of scenarios. In Section 3.6, we apply

the proposed methods to a study of time to recurrence in patients with head and neck

cancer. In Section 3.7, we present a discussion.
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3.2 Latent Ignorability

Suppose that the goal is to make inference about a model for outcome Y given covariates

X and a latent (or partially latent) mixing variable, L. For example, the outcome model

may be a linear mixed model with a latent random intercept. We may also be interested in

the model for L|X. We restrict our attention to situations in which, if all of the covariate

and outcome information were observed, the outcome model would be fully identified,

and estimation using likelihood-based methods would be possible and lead to consistent

parameter estimates. We consider missingness in X and/or Y , and we allow missingness

to be related to the latent variable, L.

Let vector Di = (Xi, Yi) represent the (possibly incomplete) data for subject i. We

assume Di and Li are independent across subjects. Let RD
i be a vector corresponding to

whether each element of Di is observed and RL
i be an indicator for whether Li is known

(can be 0 for all subjects). Define Ri = (RD
i , R

L
i ). For any vector Vi, let V

(obs)
i and V

(mis)
i

be the observed and missing elements of Vi.

We assume that missingness in Di is independent of D
(mis)
i and RL

i such that

f(RD
i |Di, Li, R

L
i ;φD) = f(RD

i |D
(obs)
i , Li;φ

D) (3.1)

We assume that φD is distinct from all other model parameters. We call assumption

(3.1) the “latent missing at random” (LMAR) or “latent ignorability” assumption. This

missingness mechanism was first studied in Frangakis and Rubin (1999) and is a special

case of latent ignorability explored in Harel (2003) and Harel and Schafer (2009). In

longitudinal data analysis, a similar mechanism relating missingness in Y to latent ran-

dom effects in a linear mixed model has been explored by many authors including Wu

and Carroll (1988), Follmann and Wu (1995), Little (1995), and McCulloch et al. (2016).

Since Li is latent or partially latent by definition, the mechanism in (3.1) is a type of

MNAR, and when (3.1) does not depend on Li, the mechanism reduces to MAR. We can

view LMAR as a generalization of MAR with less restrictive assumptions.

We now consider assumptions regarding missingness in L, which may be latent or

partially latent. We make a subtle distinction between “partially latent” and “partially

missing” variables. Latent variable L can be viewed as a modeling construct representing
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unobserved or perhaps unobservable quantities. The “observed” values of the partially

latent L are usually just a function of the observed data, D(obs), and therefore contain

no additional information. For example, known values of the partially latent cure status

in a Cox proportional hazards cure model are entirely determined by the event indicator

and the event/censoring time for each subject. In this way, partially latent variables are

different from partially missing variables, which may contain additional information in

their observed values. However, we will treat latent and partially latent variables as if

they were missing data for the purposes of this method.

When Li is fully latent, we can view missingness in Li as missing completely at ran-

dom (MCAR) with probability of missingness equal to 1. When Li is partially latent, we

allow missingness in Li to depend on D
(obs)
i (so L is MAR) such that

f(RL
i |Di, Li, R

D
i ;φL) = f(RL

i |D
(obs)
i ;φL) (3.2)

Figure 3.1 shows the assumed relationships between variables. The arrows represent

dependence. For example, RL may depend on X(obs) and Y (obs).

Figure 3.1: Variable Relationships under Latent Ignorability
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Example 1, Linear Mixed Model with a Random Intercept: Suppose our model for

multivariate outcome Yi is a linear mixed model with a latent random intercept, bi, and

covariates Xi. This model is commonly used for longitudinal data, where the outcome is

measured within individuals over time. In such a setting, outcome missingness is partic-

ularly common due to dropout. Many authors have described scenarios in which dropout

may be related to the random effects (Wu and Carroll, 1988; Little, 1995; Yang et al.,

2008). In this example, bi represents an individual’s propensity to drop out. This is a

LMAR mechanism with Li = bi. Covariate missingness may also be LMAR.

Example 2, Cox Proportional Hazards Mixture Cure Model: The Cox proportional

43



hazards (CPH) mixture cure model is used in event time analysis when some (“cured”)

subjects are unable to experience the event of interest (Sy and Taylor, 2000). For subjects

with events, cure status is known, and it is unknown for censored subjects. Therefore,

cure status is partially latent. Missingness in cure status is entirely determined by ob-

served information, so its missingness can be viewed as MAR. Suppose we have covariate

missingness. We can imagine scenarios in which covariate missingness may depend on the

underlying cure status. For example, suppose covariate information is collected through

a patient survey. Cured subjects may be more or less likely to answer certain survey

questions, resulting in an association between missingness and cure status. Additionally,

cure status may be related to an unmeasured confounder that is related to missingness.

This will induce a dependence between missingness and cure status. We consider a simi-

lar LMAR mechanism in our data application.

Example 3, Mixture of Generalized Linear Models: Suppose our outcome Y is gen-

erated from a mixture of K generalized linear models (GLMs). Let Ci be a fully latent

mixing variable indicating which element of the mixture distribution generated the ob-

servation for subject i. Missingness in Ci can be viewed as MCAR with probability 1.

If covariate or outcome missingness is related to C, missingness is LMAR. For example,

suppose our data are collected using K different populations. For example, we may collect

data and multiple different locations and not record the location. The covariate/outcome

missingness rates may vary by population, resulting in LMAR missingness.
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3.3 Imputation of Missing Data

We first propose a sequential imputation algorithm for dealing with ignorable and latent

ignorable covariate and outcome missingness under a joint model for all the variables. We

treat the latent variable as part of the missing data, and we use the form of the joint model

to determine how each variable with missing values should be imputed. In particular, we

determine which variables need to be included as predictors for each imputation model

and describe the components of the joint model (e.g. outcome model, missingness model,

covariate model) that are used for imputing each variable. We then use these results to

guide our choice of sequential imputation models when a joint model is not specified.

3.3.1 Joint Modeling Approach

Suppose that the data are directly modeled using a fully-specified joint model as follows:

f(D,L,R; ν) =
n∏
i=1

f(Ri|Yi, Xi, Li;φ)f(Yi|Xi, Li; θ)f(Li|Xi;ω)f(Xi;ψ) (3.3)

where ν = (φ, θ, ω, ψ) is the set of all model parameters. We assume a flat prior for

ν such that φ, θ, ω, and ψ are all a priori independent (so they are distinct). The

factorization (3.3) is a form of shared parameter model, where the latent variable is

related both to missingness and to the distribution for Yi (Little and Rubin, 2002).

We can impute missing values of D and L by iteratively drawing the missing

values from their posterior predictive distributions, D(mis) ∼ f(D(mis)|D(obs), L,R)

and L(mis) ∼ f(L(mis)|D,L(obs), R). This leads to draws from the joint posterior

predictive distribution, f(D(mis), L(mis)|D(obs), L(obs), R) (Little and Rubin, 2002). Define

ρ = (θ, ω, ψ). We note the following properties of the (conditional) posterior predictive

distributions:

Lemma 1: Under MAR and LMAR, we can ignore R = (RD, RL) when imput-

ing D.

The missingness mechanism is ignorable for imputing D(mis) if f(D(mis)|D(obs), L,R) =
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f(D(mis)|D(obs), L). Using assumptions (3.1) and (3.2) and assuming φ and ρ are distinct,

f(D(mis)|D(obs), L,R) =
1

f(D(obs), L,R)

∫ ∫
f(D,L,R, ν)dρdφ

=
1

f(D(obs), L,R)

∫
f(R|D,L;φ)

[∫
f(D,L; ρ)f(ρ)dρ

]
f(φ)dφ

=
f(D(mis)|D(obs), L)f(D(obs), L)

f(D(obs), L,R)

∫
f(R|D(obs), L;φ)f(φ)dφ

=f(D(mis)|D(obs), L)

Therefore, the missingness mechanism is ignorable for imputing D. A similar result for a

related latent ignorable missingness setting was shown in Harel (2003). We note that in

practice, draws from the posterior predictive distribution are obtained by first drawing

the model parameter ρ from its posterior distribution and then drawing D(mis) from

f(D(mis)|D(obs), L,R; ρ). We can perform both of these draws ignoring R.

Lemma 2: Under MAR (but not under LMAR), we can ignore R = (RD, RL)

when imputing L.

The missingness mechanism is ignorable for imputing L(mis) if f(L(mis)|L(obs), D,R) =

f(L(mis)|L(obs), D). Again using assumptions (3.1) and (3.2) and assuming φ and ρ are

distinct,

f(L(mis)|L(obs), D,R) =
1

f(L(obs), D,R)

∫ ∫
f(D,L,R, ν)dρdφ

=
1

f(L(obs), D,R)

∫
f(R|D,L;φ)

[∫
f(D,L; ρ)f(ρ)

]
dρf(φ)dφ

=
f(L(mis)|L(obs), D)f(L(obs), D)

f(L(obs), D,R)

∫
f(R|D(obs), L;φ)f(φ)dφ

Suppose first that missingness is MAR. Then, f(R|D(obs), L;φ) = f(R|D(obs), L(obs);φ)

and f(L(mis)|L(obs), D,R) = f(L(mis)|L(obs), D). Therefore, R is ignorable. Under LMAR,

however, the term
∫
f(R|D(obs), L;φ)f(φ)dφ depends on L(mis), so R is not ignorable.

Lemma 3: Suppose that missingness in subset S of {D,L} is MAR. We can ig-

nore the corresponding subset of R when imputing L provided a distinctness property

holds.
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Let RS denote the set of missingness indicators for S and R−S denote the

missingness indicators for the remaining variables in {D,L}. Note by as-

sumption (3.2), L ⊂ S. Let f(R−Si |Di, Li;φ) = f(R−Si |D
(obs)
i , Li;φ

−S) and

f(RS
i |Di, Li, R

−S
i ;φ) = f(RS

i |D
(obs)
i , L

(obs)
i ;φS). Assume also that φ−S and φS are

distinct (a priori independent). Then we have

f(R|D(obs), L;φ) =f(RS|D(obs), L(obs);φS)f(R−S|D(obs), L;φ−S) =⇒

f(L(mis)|L(obs), D,R) ∝f(L(mis)|L(obs), D)

∫
f(R−S|D(obs), L;φ−S)f(φ−S)dφ−S

The contribution of RS drops out of the posterior predictive distribution, so RS is ignor-

able. A similar result, called “ignorability for submodels”, was shown in Harel (2003).

For an example of submodel ignorability, see our data application in Section 3.6.

3.3.2 Sequential Imputation Algorithm under a Joint Model

Rather than drawing D(mis) and L(mis) from their posterior predictive distributions di-

rectly, we instead impute each variable with missingness sequentially through a series of

univariate imputation steps. This will approximate draws of D(mis) and L(mis) from their

posterior predictive distributions. At each step, missing values of a particular variable,

V , are drawn from its posterior predictive distribution. In practice, we specify the full

conditional distribution of V given all other variables (with parameter v) and obtain a

draw from the posterior predictive distribution of V by 1) drawing v from its posterior

distribution and 2) drawing missing values of V from its full conditional distribution at

the drawn v.

Suppose we partition ν = (φ, ρ), where φ represents the missingness model parame-

ters and ρ represents all other model parameters. Define D(p) to be the pth variable in

D and D(−p) to be all variables in D except D(p). We sequentially impute the missing

values of L and D(1), . . . , D(d) for D with d elements and repeat for many iterations until

convergence. Just before the imputation step for each variable, we draw the parame-

ters necessary for the imputation from a current estimate of the parameters’ posterior

distribution. Depending on the variable being imputed, this posterior may or may not

condition on the most recent imputed values of the variable being imputed.

Assume we have independence of (D,L,R) across i. We show in Lemma 1 that we
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can impute D ignoring R under both MAR and LMAR. We can use a similar argument

to show that we can impute missing D
(p)
i from f(D

(p)
i |D

(−p)
i , Li; ρ). From Lemma 2, we

can impute missing Li from f(Li|Di, Ri; ν) = f(Li|Di; ρ) under MAR. See Appendix A

for details.

The sequential imputation algorithm under MAR proceeds as follows. In the

imputation step for each variable, we treat the most recent imputations of the other

variables as observed. At each iteration, we draw missing data and parameters from:

Impute L : ρ ∼ f(ρ|D,L(obs)), L
(mis)
i ∼ f(Li|Di; ρ)

Impute D(1) : ρ ∼ f(ρ|D,L), D
(1,mis)
i ∼ f(D

(1)
i |D

(−1)
i , Li; ρ) (3.4)

. . . Impute D(d) : ρ ∼ f(ρ|D,L), D
(d,mis)
i ∼ f(D

(d)
i |D

(−d)
i , Li; ρ)

In the sequential imputation algorithm under LMAR, the steps for drawing

missing values of D can proceed as in the MAR algorithm. In the step for imputing L

under LMAR, we draw missing L and ν from:

ρ ∼ f(ρ|D,L(obs)), φ ∼ f(φ|D,L,R), L
(mis)
i ∼ f(Li|Di, Ri; ν) (3.5)

Iteration is required even if we have only one variable in D with missing values. We

can ignore the imputation steps for each fully observed D(p). Details describing how

the proposed algorithm can obtain an approximate draw of the missing data from

the posterior predictive distributions and how to accomplish the various draws are

in Appendix A. We initialize the missing values for each variable in D by drawing

from the observed values with equal probability. We can initialize missing L using

the distribution f(L|X) obtained from a fit to the data with fully observed D (using

methods that treat L as latent).

We perform the imputation procedure m times to construct m filled-in datasets (with

m different initializations). We then estimate ρ by fitting our model of interest to each

of the imputed datasets ignoring R. When we perform this analysis, we may choose to

use only imputed D, only imputed L, or both. We can then use Rubin’s combining rules

to obtain a single set of parameter estimates and errors from which we make the desired

inference (Rubin, 1987).

It is important to consider the impact of ignoring R for each one of these final
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analysis strategies. Harel and Schafer (2009) shows that when imputed L is included

in the final analysis, we can ignore R. This result holds true under MAR and LMAR

and whether or not imputed D is included in the final analysis. In Lemmas 4-5, we

explore the ignorability of R when performing a final analysis using only the imputed

D. We show that R is ignorable under MAR and that such an analysis ignoring R

under LMAR is valid but not fully efficient. Even with a potential loss of efficiency,

we may still choose to perform our final analysis ignoring the imputed L as this may

provide improved numerical stability of the algorithm and more robustness to mis-

specification of the imputation models, and we may have little loss of efficiency in practice.

Lemma 4: R is ignorable for ρ in a final analysis using only imputed D under

MAR

Suppose we perform our final analysis using the imputed values of D but ignoring

the imputed L and again suppose that φ and ρ are distinct. In a Bayesian analysis, we

want to make inference from the joint posterior of φ and ρ:

f(ν|D,L(obs), R) ∝f(R|L(obs), D; ν)f(L(obs), D; ρ)f(ν)

∝
[∫

f(R|L,D;φ)f(L(mis)|L(obs), D; ρ)dL(mis)

]
f(L(obs), D; ρ)f(φ)f(ρ)

∝f(R|L(obs), D(obs;φ)f(φ)f(L(obs), D; ρ)f(ρ) under MAR

The posterior distributions of φ and ρ separate, and the posterior for ρ is independent

of R. Therefore, we can ignore R for inference about ρ under MAR.

Lemma 5: A final analysis for making inference about ρ using imputed D (but

not imputed L) and ignoring R is valid but not fully efficient under LMAR.

Under the setting of Lemma 4 except assuming LMAR, we again have that

f(ν|D,L(obs), R) ∝
[∫

f(R|L,D;φ)f(L(mis)|L(obs), D; ρ)dL(mis)

]
f(φ)f(L(obs), D; ρ)f(ρ)

Under LMAR, f(R|L,D;φ) depends on L(mis), so the contribution of R and φ does not

factor out of the integral. Therefore, we cannot separate φ and ρ in the above equa-

tion. We rewrite the above equation as f(ν|D,L(obs), R) ∝ h(ν)f(ρ|D,L(obs)) where

49



h(ν) =
[∫
f(R|L,D;φ)f(L(mis)|L(obs), D; ρ)dL(mis)

]
f(φ). Clearly, ν and ρ are not dis-

tinct. However, L is MAR given imputed D. Under the ignorability conditions in Lit-

tle and Rubin (2002) (pg. 119-120), inference ignoring the contribution of R (using

f(ρ|D,L(obs))) will be valid from a frequency perspective but may not be fully efficient.

Intuitively, the loss of efficiency comes from a loss of information about the missing L

that comes from ignoring R under LMAR. However, analysis is still valid since missing

L is MAR given D.

3.3.3 Specifying Predictive Distributions under a Joint Model

Assuming a fully-specified joint model as in (3.3), we derive the full conditional distri-

butions f(D
(p)
i |D

(−p)
i , Li; ρ) and f(Li|Di, Ri; ν) used to impute each of the variables with

missingness using the property that the full conditional distributions are proportional to

(3.3). This approach allows us to directly incorporate our modeling assumptions into the

imputation.

Predictive Distribution of Latent Variable for Imputation

Define RS and R−S as in Lemma 3 and assume the corresponding parameters φS and φ−S

are distinct. Then by Lemma 3 we can ignore RS when imputing L. Using assumptions

(3.1)-(3.2) and joint model (3.3) and treating terms that do not depend on Li as constants,

we have

f(Li|Xi, Yi, R
−S
i ; ν) ∝ f(R−Si |Y

(obs)
i , X

(obs)
i , Li;φ

−S)f(Yi|Xi, Li; θ)f(Li|Xi;ω) (3.6)

Under MAR, (3.6) simplifies to

f(Li|Xi, Yi, R
−S
i ; ν) ∝ f(Yi|Xi, Li; θ)f(Li|Xi;ω) ∝ f(Li|Xi, Yi; ρ)

When treated as a function of Li, expression (3.6) is proportional to the desired full

conditional distribution. We will call the distribution known up to proportionality the

“kernel.” The kernel in (3.6) involves the distribution of R−Si under LMAR but not under

MAR. In order to impute Li under LMAR using (3.6), we need to specify a model for

R−Si .
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In some particular settings (for example, when Li is binary), we can use (3.6) to

directly derive the full conditional distribution. When Li is continuous, the distribution

may only be known up to a proportionality constant. In this case, we may need to use

more advanced techniques to impute Li using (3.6). Many methods exists in the literature

for drawing from a distribution knowing only the kernel. These include the Metropolis-

Hastings algorithm and rejection sampling. For examples of such methods applied in the

context of imputation, see Bartlett et al. (2014) and Appendix D.

Predictive Distributions of Covariates and Outcome for Imputation

In Lemma 1, we show that we can impute missing values of D ignoring the missingness

mechanism under MAR and LMAR. We can similarly impute missing values of individual

variables in D from their full conditional distributions without conditioning on R.

We first determine the full conditional distribution for imputing missing outcome

values. We note that Y may be uni- or multivariate. Suppose that we are imputing the

tth element of Yi, denoted Y
(t)
i . Let Y

(−t)
i represent the terms in Yi excluding Y

(t)
i . Using

joint model (3.3), we can write the conditional distribution for imputing Y
(t)
i under MAR

and LMAR as

f(Y
(t)
i |Y

(−t)
i , Xi, Li; ρ) ∝ f(Yi, Xi, Li; ρ) ∝ f(Yi|Xi, Li; θ) (3.7)

When Y
(t)
i = Yi, the conditional distribution is equal to f(Yi|Xi, Li; θ).

Suppose that we are imputing the tth covariate in Xi, denoted X
(t)
i . Let

f(X
(t)
i |X

(−t)
i ;ψ) be the conditional distribution of X

(t)
i given all other variables in Xi.

Under joint model (3.3), we can write the conditional distribution for imputing X
(t)
i

under MAR and LMAR as

f(X
(t)
i |X

(−t)
i , Yi, Li; ρ) ∝ f(Yi|Xi, Li; θ)f(Li|Xi;ω)f(X

(t)
i |X

(−t)
i ;ψ) (3.8)

Equations (3.7) and (3.8) provide the kernels of the distributions we can use to impute

outcomes and covariates in D. The kernels take the same form under MAR and LMAR,

and they do not involve a model for R. As with the latent variable imputation, distribu-

tions (3.7) and (3.8) may only be known up to proportionality, requiring more advanced

statistical methods to draw imputations. In Appendix D, we provide details regarding
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how we can perform each of the imputation steps for the examples discussed Section

3.2.

3.3.4 Sequential Imputation without Specifying a Joint Model

The imputation distributions derived in previously were developed assuming a fully-

specified joint model as in (3.3), but often we will not want to specify such a joint model

in practice. Specification of the joint model may be particularly difficult or restrictive

in the setting with missingness in covariates of different types. Rather than specifying

an explicit joint distribution as in (3.3), we propose following the imputation approach

defined in (3.4) and (3.5) and imputing missing values using distributions (3.6) - (3.8) by

specifying only the modeling components needed for each imputation or by approximating

(3.6)-(3.8) using simpler imputation distributions. In practice, the resulting conditional

distributions may not together correspond to a valid joint distribution for all the vari-

ables.

Imputation of missing values of Y using (3.7) requires a model for Y |X,L, and im-

putation of missing L using (3.6) further requires a model for L|X and, under LMAR,

a model for missingness. Imputation of missing covariate X
(t)
i using (3.8) requires us

to specify f(X
(t)
i |X

(−t)
i ;ψ). In practice, we could specify explicit models for Y |X,L

and L|X (and possibly missingness) but avoid specifying f(X|ψ) by instead specifying

f(X
(t)
i |X

(−t)
i ;ψ) for covariates with missingness using simple regression models. A re-

lated approach (substantive model compatible fully conditional specification, SMC-FCS)

introduced in Bartlett et al. (2014) incorporates outcome model assumptions to inform

the structure of the imputation distributions without explicitly specifying the joint distri-

bution. An additional appealing feature of SMC-FCS is that it has additional flexibility

over joint modeling in terms of imputation model specification, and it also involves im-

puting with a model that is congenial with the final analysis model. By “uncongeniality,”

we mean that the imputation model and the final data analysis model are incompatible

(Meng, 1994). Since SMC-FCS directly uses the final analysis model in the imputation

procedure, it is attractive from a congeniality point of view.

Imputation using (3.6) - (3.8) may be difficult when the distributions are known only

up to proportionality. An alternative, simpler sequential imputation approach involves

using equations (3.6) - (3.8) solely to define what predictors are needed for each impu-
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tation. Specifically, equation (3.6) suggests that some function of Y , X, and possibly R

(under LMAR) should be used as predictors when imputing L. Equation (3.7) suggests

we need X, L, and Y (−t) when imputing Y (t), and equation (3.8) suggests we need Y ,

L, and X(−t) when imputing X(t). We can then perform imputation (by specifying a

regression model for imputing each variable) using standard software for chained equa-

tions imputation (Raghunathan, 2001; Van Buuren et al., 2006). Such an approach would

allow for increased flexibility in model specification (for example, by including quadratic

or interaction terms) while still allowing L to be used in the imputation. We may view

the working model actually used for imputation as an approximation to the “true” con-

ditional model as in (3.6)-(3.8). We recommend imputing L using the kernel in (3.6) if

possible.

We can modify the imputation algorithm in (3.4) and (3.5) for settings in which we

cannot easily specify a joint model. Let f̃(D(p)|D(−p), L; ρp) be the working conditional

distribution of D(p) used for imputation and f̃(ρp|D,L) denote the posterior distribution

of ρp. We can then replace the step in (3.4) for imputing D(p) with the following:

Impute D(p) : ρp ∼ f̃(ρp|D,L) D
(p,mis)
i ∼ f̃(D

(p)
i |D

(−p)
i , Li; ρ

p)

Suppose we specify explicit models for Y |X,L and L|X, and in the case of an imputed

covariate, we specify a regression model form for f(X(p)|X(p);ψ). Under flat priors, we

can obtain a (approximate) draw of ρp by fitting the corresponding models to a bootstrap

sample of (D,L). Given a draw for ρp, we can then impute D(p) using equations (3.6) -

(3.8) or using the regression model f(D(p)|D(−p), L; ρp).

The proposed imputation approach, therefore, can be easily modified to accommodate

settings without a fully-specified joint distribution. Indeed, Gelman (2004) argues that

“having a joint distribution in the imputation is less important than incorporating infor-

mation from other variables and unique features of the dataset (e.g. zero/nonzero features

in income components, bounds, skip patterns, nonlinearity, interactions).” The SMC-FCS

and chained equations approaches allow these unique features of the data to be directly

incorporated in the imputation models. This approach allows for greater flexibility in the

specification of the imputation distributions and simplifies the implementation.

53



3.4 Identifiability and Convergence

As with all missing data methods involving MNAR assumptions, one big concern is how to

model the missingness mechanism (which will be unverifiable) (Molenberghs et al., 2008).

Another concern is whether the resulting model parameters are identifiable (Little, 1995).

Even when the parameters are technically identified, weak identifiability may also have

implications on the numerical convergence of the proposed imputation algorithm. In this

section, we briefly comment on some identifiability- and convergence-related issues that

arise in the application of the proposed imputation algorithm.

3.4.1 Modeling the Missingness Mechanism

Under LMAR, we must specify a model for RD (or some subset R−S following Lemma 3 ).

While we can conceive of many different models for RD, the model parameter ν = (φ, ρ)

may not always be identifiable. In some specific settings (e.g. Wu and Carroll, 1988; Miao

et al., 2016), identifiability has been demonstrated analytically, but exploring identifia-

bility can be difficult in general. We explore identifiability in several particular modeling

settings in Appendices B and C. In this chapter, we will not attempt to prove identifi-

ability properties for general LMAR mechanisms. Instead, we will provide some guidance

for applying the proposed methods in the presence of possible identifiability issues.

In order to reduce the potential for identifiability issues, many authors (e.g. Little,

2009) recommend that we avoid overburdening the missingness model with extra vari-

ables. However, if we leave out variables that should be in the model, we may introduce

bias in estimating the parameter of interest as seen in our simulations. In our simu-

lations, imputation with LMAR outcome missingness tended to be more susceptible to

identifiability problems than covariate missingness. Some authors recommend perform-

ing a sensitivity analysis in which we specify the form of the missingness model and carry

out analysis using fixed values for φD (e.g. Little, 2009). We can then perform the desired

analysis many times using different values for φD. This approach allows us to directly

study the impact of φD on inference and avoid estimating the parameters of the missing-

ness model. Additionally, MNAR missingness mechanisms are known to be particularly

sensitive to assumptions about the structure of the missingness mechanism, and we could

perform a sensitivity analysis using different missingness model structures (Little, 1995).
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We take this approach in our head and neck cancer example. These sensitivity approaches

allow the proposed methods to be applied while avoiding some of the pitfalls of MNAR

settings.

3.4.2 A Note on Convergence

When the conditional models used for imputation correspond to a well-defined joint dis-

tribution with identified parameters, our imputation algorithm is expected to converge

to draws of the joint posterior distribution for the missing data (Liu et al., 2013; Hughes

et al., 2014; Bartlett et al., 2014). When the imputation models do not correspond to a

valid joint distribution (called incompatibility), our imputation method is not guaranteed

to converge. However, several works have demonstrated that we can often still obtain

“good” inference under incompatible imputation models (Van Buuren et al., 2006; Van

Buuren, 2007).

We will not attempt to prove convergence or consistency properties for the proposed

algorithm beyond what exists in the chained equations literature. Instead, we will use

simulation and some minor analytical exploration to identify settings that may be partic-

ularly susceptible to concerns about convergence. In particular, identifiability concerns

related to the missingness model have implications on the convergence of the algorithm.

When parameters are not identifiable (in terms of the observed data likelihood having a

unique maximizer), we may not expect the imputation algorithm to converge properly.

Even when the parameters are all identifiable, we may run into numerical issues if the

observed data likelihood is nearly flat. These issues appear to be of greater concern

for outcome missingness. We note that in our experience, even when we have numer-

ical convergence issues for φ (missingness model) and ω (model for L|X), the draws

for θ (model for Y |X,L) may still converge to reasonable values. In such cases, the

identifiability-related numerical problems may not strongly impact the draws for the pri-

mary parameter of interest, θ. It is important to monitor the convergence of all model

parameters, and we may still be able to make inference about θ in the presence of some

mild identifiability-related convergence issues for φ. We explore identifiability-related

convergence issues further in Section 3.5 and Appendices B and C.
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3.5 Simulation Study

In this section, we present a simulation study with five parts. In the first three parts,

we evaluate how the proposed algorithm performs in terms of bias, empirical variance,

and coverage for outcome model parameters in linear mixed models (Simulation 1), CPH

cure models (Simulation 2), and normal mixture models (Simulation 3). In Simulation

4, we explore convergence under a variety of modeling scenarios. In Simulation 5, we

explore the impact of different types of final analysis on efficiency. Unless otherwise

specified, imputations are drawn using kernels (3.6)-(3.8) rather than regression model

approximations.

3.5.1 Simulation 1: Linear Mixed Model with Random Inter-

cept

We consider data simulated under a linear mixed model with a random intercept. Each

dataset contains two binary covariates, X1 and X2. X1 takes the value 1 with a probability

of 0.5, and X2 is generated using logit(P (X2 = 1|X1)) = 0.5X1. We draw random

intercept bi ∼ N(0, 1) for each individual and then generate Y for each individual at each

of three time-points using the model

Yij = βIntercept + βX1Xi1 + βX2Xi2 + βT imej + bi + eij, j = 1, 2, 3

with independent N(0, 1) errors and with βIntercept = βX1 = βX2 = 0.5 and βT ime = 0.2.

In this simulation setting, Y = (Y1, Y2, Y3), X = (X1, X2), and L = b. We impose ∼ 50%

missingness in X2 using each of the following mechanisms:

(A) MAR with logit(P (X2 missing|X1, b, Y )) = −1.1 + Y1

(B) LMAR with logit(P (X2 missing|X1, b, Y )) = 0.5b

(C) LMAR with logit(P (X2 missing|X1, b, Y )) = 0.1 + 1.2b.

Mechanism (A) is MAR dependent on Y1, the baseline value of Y . Mechanism (B) is

LMAR with a moderate dependence between missingness and b, and mechanism (C) is

LMAR with a strong dependence on b. Y and X1 are fully observed.

We then impute values of X2 and b using methods discussed in this chapter under

various working models. When we impute under a LMAR working model, we model the
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covariate missingness indicator RD
i using a logistic regression with different functions of

b,X1, and Y as predictors. For each simulated dataset, we create 10 imputed datasets.

We then fit a linear mixed model to each of the imputed datasets and use Rubin’s rules

to obtain a single set of parameter estimates and their corresponding variances for each

simulation. We then compute the bias, empirical variance, and coverage rates across the

500 simulations. We note that the APPROX simulations involve imputation of X2 con-

ditional on X1, L and Y using a logistic regression form rather than using kernel (3.8),

so the imputation distributions for X2 and L in this case do not correspond to a coherent

joint distribution.

Table 3.1 shows the simulation results. Complete case analysis produced biased

parameter estimates in all three underlying missingness mechanisms considered. Under

MAR missingness mechanism (A), the MAR-based imputation approach produces un-

biased parameter estimates. LMAR imputation under mechanism (A) produces biased

parameter estimates when an incorrect working missingness model is used. When the

working model contains the underlying missingness model, however, the LMAR method

results in essentially unbiased parameter estimates. Under mechanism (A), the MAR-

based imputation approach and the LMAR imputation approach with the correct working

model result in very similar coverage and relative variance. APPROX Imputation using

a logistic regression model for imputing X2 had similar performance to imputation using

kernel (3.8).

Under mechanism (B), all imputation approaches produce essentially unbiased pa-

rameter estimates. The LMAR approaches, however, result in small increases in coverage

and reductions in variance compared to the MAR imputation approach. Under mecha-

nism (C), the MAR-based imputation approach produces noticeable bias in estimating

the mixed model intercept and parameter associated with the imputed covariate. We see

corresponding reductions in coverage for these parameters. In contrast, the LMAR-based

imputation approaches produce unbiased parameter estimates. For mechanisms (B) and

(C), the working model that uses I(b > 0) instead of b in the working model still shows

good performance despite the fact that the working model does not contain the true

model. We do not see evidence of problems arising from lack of identifiability or lack of

convergence under any of the working models considered here. MAR-based imputation

using a logistic regression model for imputing X2 resulted in slightly greater bias than
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MAR imputation using kernel (3.8).

Table 3.1: Linear Mixed Model Estimates using Proposed Imputation Methods

Parameters
Contains Intercept X1 X2 Time

Method Truth# Bias (Var) CI† Bias (Var) CI Bias (Var) CI Bias (Var) CI

Full Data - 0 (1.2) 95 0 (1.0) 94 -1 (1.0) 94 0 (0.10) 95

Missingness Dependent on Yi1, Independent of bi (Mechanism A)

Complete Case - -78 (1.9) 0 -8 (1.8) 91 -9 (1.7) 90 18 (0.19) 1
MAR Imputation Y 0 (1.8) 93 0 (1.1) 95 -1 (2.5) 95 0 (0.10) 95
LMAR Imputation: b* N 6 (1.5) 91 1 (1.0) 96 -9 (1.8) 93 0 (0.10) 95
LMAR Imputation: b,X1, b×X1 N 6 (1.5) 92 1 (1.0) 95 -9 (1.9) 93 0 (0.10) 95
LMAR Imputation: b, Y1 Y 0 (1.8) 93 0 (1.1) 95 -1 (2.6) 93 0 (0.10) 95
LMAR Imputation: I(b > 0), Y1 Y 0 (1.8) 94 0 (1.0) 95 -1 (2.5) 93 0 (0.10) 95
LMAR Imputation: b,X1, b×X1, Y1 Y 0 (1.9) 93 0 (1.0) 96 -1 (2.6) 93 0 (0.10) 95
MAR APPROX Imputation Y 0 (1.9) 94 0 (1.1) 95 0 (2.8) 93 0 (0.10) 95
LMAR APPROX Imputation: b N 6 (1.6) 92 1 (1.1) 95 -9 (2.1) 94 0 (0.10) 95

Missingness Moderately Dependent on bi (Mechanism B)

Complete Case - -23 (2.5) 96 0 (2.1) 93 0 (1.9) 95 0 (0.19) 94
MAR Imputation N -1 (1.7) 94 0 (1.1) 95 1 (2.2) 93 0 (0.10) 95
LMAR Imputation: b Y 0 (1.5) 95 0 (1.1) 95 0 (2.0) 94 0 (0.10) 95
LMAR Imputation: b,X1, b×X1 Y 1 (1.5) 96 0 (1.1) 94 0 (1.9) 94 0 (0.10) 95
LMAR Imputation: b, Y1 Y 0 (1.6) 95 0 (1.1) 95 0 (2.0) 94 0 (0.10) 95
LMAR Imputation: I(b > 0), Y1 N 0 (1.5) 96 0 (1.1) 94 0 (2.0) 94 0 (0.10) 95
LMAR Imputation: b,X1, b×X1, Y1 Y 0 (1.5) 96 0 (1.1) 94 0 (2.0) 94 0 (0.10) 95

Missingness Strongly Dependent on bi (Mechanism C)

Complete Case - -47 (2.6) 13 0 (1.8) 95 -1 (1.9) 94 0 (0.22) 94
MAR Imputation N -6 (1.9) 91 0 (1.1) 95 6 (2.6) 90 0 (0.10) 95
LMAR Imputation: b Y 0 (1.4) 96 0 (1.1) 95 -1 (2.0) 95 0 (0.10) 95
LMAR Imputation: b,X1, b×X1 Y 0 (1.5) 95 0 (1.1) 95 -1 (2.1) 95 0 (0.10) 95
LMAR Imputation: b, Y1 Y 0 (1.5) 96 0 (1.1) 94 -1 (2.0) 96 0 (0.10) 95
LMAR Imputation: I(b > 0), Y1 N 0 (1.5) 95 0 (1.1) 95 0 (2.1) 95 0 (0.10) 95
LMAR Imputation: b,X1, b×X1, Y1 Y 0 (1.5) 95 0 (1.1) 95 0 (2.0) 95 0 (0.10) 95
MAR APPROX Imputation N -7 (2.0) 91 -1 (1.1) 95 8 (2.7) 89 0 (0.10) 95
LMAR APPROX Imputation: b Y 0 (1.5) 96 0 (1.1) 95 0 (2.1) 97 0 (0.10) 95

*Variables after colon represent linear predictors in working model for RDi
† All values in table multiplied by 100. CI indicates coverage of 95% confidence intervals. Var indicates empirical variance.
# Indicates whether working missingness model contains true model.
APPROX: Imputation of X2 uses a logistic regression with predictors X1, b, Y1, Y2, Y3 (instead of kernel (3.8))
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3.5.2 Simulation 2: Cox Proportional Hazards Mixture Cure

Model

We simulate 500 datasets of 500 subjects under a CPH mixture cure model. Covariates

X1 and X2 are simulated as in Simulation 1. We simulate an underlying cure status

using the relation logit(P (Not Cured|Xi1, Xi2)) = 0.5 + 0.5Xi1 + 0.5Xi2. This results

in an average cure rate of 26%. For the non-cured group (G=1), we simulate an event

time using the hazard function λ(t) = 0.0005t0.3e0.5Xi1+0.5Xi2 . For cured subjects (G=0),

the event time is taken to be infinity. We generate censoring times using the relation

λC(t) = 0.00015t0.5 for the first 400 subjects and impose administrative censoring at

3000 for the remaining 100 subjects. The observed event/censoring time Ti is taken as

the minimum of the censoring and event time, and δi represents the event indicator. In

this simulation setting, Y = (T, δ), X = (X1, X2), and L = G. For the estimation, we

assume subjects with Ti greater than a late cut-point are cured. We choose a cut-point

of 50 as the Kaplan-Meier plots demonstrate a clear plateau by that point. We impose

∼50% missingness in X2 using each of the following mechanisms:

(A) MCAR with missingness probability of 0.5

(B) LMAR with logit(P (X2 missing|X1, G, T, δ)) = −0.2 + 0.3G

(C) LMAR with logit(P (X2 missing|X1, G, T, δ)) = −0.9 + 1.2G.

Mechanism (A) is MCAR, mechanism (B) is LMAR with a moderate dependence on cure

status (G), and mechanism (C) is LMAR with a strong dependence on cure status.

We assume a Weibull baseline hazard in the non-cured group for imputation. For

each imputed dataset, we fit a CPH cure model, which consists of a logistic regression

for the probability of not being cured and a Cox regression for the hazard of events in

the not cured group. We fit this model using the package smcure in R (Cai et al., 2012).

Variances were estimated using 100 bootstrap samples.

Table 3.2 shows the simulation results for the Cox proportional hazards mixture

cure model. As expected, complete case analysis is essentially unbiased under covariate

missingness mechanism (A) (MCAR), but the imputation-based methods are more ef-

ficient than the complete case analysis. When missingness depends on the underlying

cure status, however, complete case analysis is biased. We see comparatively little bias in

the imputation-based estimates across missingness mechanisms and imputation models
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using kernel (3.8). APPROX Imputation using a logistic regression model for imputing

X2 resulted in increased bias in all scenarios. For missingness mechanisms (A) and (B)

and using kernel (3.8) for imputation, we see very little difference between the MAR and

LMAR imputation approaches in terms of bias, coverage, and relative variance. APPROX

imputation under LMAR resulted in slightly larger variances than APPROX imputation

under MAR.

In mechanism (C) (when missingness depends strongly on cure status), we can begin

to see a difference between the MAR and LMAR imputation methods using kernel (3.8)

in terms of bias, but this difference is still small. Larger bias differences between MAR-

based and LMAR-based imputation can be seen when covariate imputation uses a logistic

regression instead of kernel (3.8). The LMAR imputation approaches using kernel (3.8)

(which differ only in terms of the working missingness model) produce essentially unbi-

ased estimates for all model parameters. LMAR imputation using G, X1, and G × X1

in the working model resulted in some numerical convergence issues for several of the

simulations (15 simulations failed), which may indicate issues with model identifiability

(possibly due to collinearity). We included only the converging simulations (485 of them)

in Table 3.2.
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3.5.3 Simulation 3: Mixture of Normals

We simulate 500 datasets of 500 subjects under a normal mixture model with two binary

covariates and two latent classes. Covariates X1 and X2 are simulated as in Simulation 1.

We generate the mixing variable Ci with P (Ci = 1) = 0.62 for each individual. We draw

N(0, 1) errors ei and then generate Y using the model Yi = 0.5 + 0.5Xi1 + 0.5Xi2 + ei if

Ci = 1 and Yi = 2 + 3Xi1 + 2Xi2 + ei if Ci = 0. In this simulation setting, X = (X1, X2)

and L = C. We then impose missingness in X2 using each of the following mechanisms:

(A) MAR with P (X2 missing|X1, C, Y ) = −0.5 + 0.2Y

(B) LMAR with P (X2 missing|X1, C, Y ) = −0.3 + 0.5C

(C) LMAR with P (X2 missing|X1, C, Y ) = −1.1 + 1.7C.

Mechanism (A) is MAR dependent on Y . Mechanism (B) is LMAR with a moderate

dependence on the latent class variable (C), and mechanism (C) is LMAR with a strong

dependence on the latent class.

For each imputed dataset, we fit a latent class model (with two classes) using the

package ‘flexmix’ in R to estimate θ through an EM algorithm (Leisch, 2004). The pack-

age ‘flexmix’ estimates the variance for θ̂ for each dataset by fitting a GLM weighted

by estimated class membership probabilities for each individual. When parameters are

drawn using latent class modeling, we may not be able to determine which value of C

belongs to which subclass identified by the latent class modeling. In other words, we may

not be able to differentiate which subset of θ belongs to which value of C. We can cir-

cumvent this issue by placing an additional assumption to differentiate between classes.

We impose an identifying restriction that defines class Ci = 1 to be the cluster deter-

mined by the latent class modeling with a smaller intercept value. We note that the two

clusters are well-separated in this example. We predict that we may encounter greater

identifiability issues (in differentiating the clusters) when the clusters have parameters

that are very close together.

Table 3.3 shows the simulation results for a mixture of normal distributions. Com-

plete case analysis results in biased parameter values for mechanism (A) and mild or

no bias for mechanisms (B) and (C). For mechanism (A), the MAR-based imputation

approach produces essentially unbiased parameter estimates. The LMAR imputation

approaches with working missingness models containing the true missingness model also
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produce very small bias. Mild increases in bias can be seen for the LMAR imputation

approach using an incorrect working model. Compared to the MAR approach, the LMAR

approach using the correct working model resulted in similar or slightly larger variances

for all parameter estimates.

For mechanism (B), little bias can be seen across all of the imputation approaches.

Similar coverage rates can be seen across imputation approaches. In this example, we see

slightly smaller variances for the LMAR approaches with the more complicated working

models. Under mechanism (C), we see increases in bias and small decreases in cover-

age for estimating mixture model parameters using the MAR-based imputation method

(either using kernel (3.8) or logistic regression for imputing X2). The LMAR-based im-

putation method using only C in the working missingness model produces essentially

unbiased parameter estimates for all parameters. Compared to the approaches using the

more complicated working model, the simpler LMAR approach using kernel (3.8) results

in smaller variances for estimating model parameters.
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3.5.4 Simulation 4: Exploring Identifiability and Convergence

One criticism of the selection model factorization in (3.3) is that it is often difficult to de-

termine whether the parameters of the working missingness model are identifiable (Little,

2009). By “identifiable,” we mean that the observed data likelihood has a unique maxi-

mizer. Even if the model parameters are technically identifiable, one additional concern

is that the likelihood surface near the maximizer may be nearly flat. These identifiability

concerns can lead to issues with model fitting and convergence of the imputation algo-

rithm. In order to better understand possible identifiability-related convergence issues,

we perform a set of simulations evaluating convergence of the imputation algorithm under

a variety of modeling scenarios.

We simulate 500 complete datasets under a linear mixed model, cure model, and

mixture of normals as in Simulations 1-3. We impose ∼ 50% covariate or outcome miss-

ingness (but not both) under a variety of missingness models.

For covariate missingness, we generate MAR and LMAR missingness using missing-

ness mechanisms (A) and (C) from Simulations 1-3. For both the linear mixed model and

mixture of normals model, we generate outcome missingness under MCAR and LMAR

using mechanism (C) from Simulations 1 and 3 applied to the outcome instead of the

covariate. We also impose LMAR outcome missingness for the mixture of normals model

using the relation logit(P (Y missing|X,C)) = −1.1 + 0.5X1− 0.5X2 + 1.7C. This results

in ∼ 50% outcome or covariate missingness in each scenario.

For each outcome model parameter, we estimate the fraction of missing information as

described in (Little and Rubin, 2002). We also calculate the Gelman-Rubin convergence

statistic (the potential scale reduction factor) for the outcome and missingness model

parameter draws across imputation streams. The Gelman-Rubin statistic is a measure of

the relative between and within-chain variance, and values less than 1.1 generally indicate

satisfactory convergence (Gelman and Rubin, 1992). We also calculate a multivariate ver-

sion of the Gelman-Rubin statistic to evaluate convergence overall across different model

parameters (Brooks and Gelman, 1998).

Table 3.4 shows the simulation results. Under covariate missingness, the fractions

of missing information tend to be generally small, particularly for parameters related to

X1, the fully-observed covariate. We see larger estimates for the fraction of missing in-
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formation when we impose similar rates of missingness in the outcome. Additionally, we

see good Gelman-Rubin convergence properties under covariate missingness and MAR

outcome missingness. Under LMAR outcome missingness, the outcome model parame-

ters appear to converge, but the parameters in the missingness model (in particular, the

parameter attached to the latent variable) show some evidence of convergence problems.

The drawn values of the outcome model parameters appear reasonable (with small or

no bias) even when the missingness model parameters do not converge, but this may

not be true in general. When we fix the value of the parameter related to the latent

variable in the missingness, we see a large improvement in the convergence properties of

the imputation algorithm.

66



T
ab

le
3.

4:
F

ra
ct

io
n

of
M

is
si

n
g

In
fo

rm
at

io
n

an
d

C
on

ve
rg

en
ce

P
ro

p
er

ti
es
†

—
–

F
ra

ct
io

n
of

M
is

si
n

g
In

fo
rm

a
ti

o
n

—
–

—
—

—
—

—
—

–
G

el
m

a
n

-R
u

b
in

S
ta

ti
st

ic
—

—
—

—
—

—
–

O
ve

ra
ll

O
u

tc
om

e
M

o
d

el
P

a
ra

m
et

er
s*

O
u

tc
o
m

e
M

o
d

el
P

a
ra

m
et

er
s*

φ
† 0

φ
‡ 1

G
el

m
a
n

-R
u

b
in

C
ov

a
ri

a
te

M
is

si
n

g
n

es
s

L
in

ea
r

M
ix

ed
M

o
d

el
,

M
A

R
0.

27
0.

07
0.

54
0

1
.0

1
1
.0

0
1
.0

2
1
.0

1
-

-
1
.0

3
L

in
ea

r
M

ix
ed

M
o
d

el
,

L
M

A
R

:
b#

0.
24

0.
06

0.
52

0
1
.0

1
1
.0

0
1
.0

1
1
.0

1
1
.0

0
1
.0

3
1
.0

4
C

u
re

M
o
d

el
,

M
C

A
R

0.
20

0.
03

0.
46

0
.0

6
0
.4

5
1
.0

1
1
.0

0
1
.0

2
1
.0

0
1
.0

1
-

-
1
.0

4
C

u
re

M
o
d

el
,

L
M

A
R

:
G

0.
16

0.
02

0.
36

0
.0

7
0
.5

2
1
.0

1
1
.0

0
1
.0

1
1
.0

0
1
.0

2
1
.0

0
1
.0

0
1
.0

4
M

ix
tu

re
of

N
or

m
al

s,
M

A
R

0.
17

0.
06

0.
39

0
.3

9
0
.3

2
0
.3

2
1
.0

0
1
.0

2
1
.0

1
1
.0

0
1
.0

1
1
.0

1
-

-
1
.0

2
M

ix
tu

re
of

N
or

m
al

s,
L

M
A

R
:
C

0.
33

0.
10

0.
62

0
.2

2
0
.1

4
0
.1

4
1
.0

0
1
.0

2
1
.0

1
1
.0

0
1
.0

1
1
.0

0
1
.0

0
1
.0

1
1
.0

2

O
u

tc
o
m

e
M

is
si

n
g
n

es
s

L
in

ea
r

M
ix

ed
M

o
d

el
,

M
C

A
R

0.
18

0.
22

0.
21

0
.4

9
1
.0

0
1
.0

1
1
.0

1
1
.0

3
-

-
1
.0

5
L

in
ea

r
M

ix
ed

M
o
d

el
,

L
M

A
R

:
b

0.
19

0.
22

0.
20

0
.5

7
1
.0

1
1
.0

1
1
.0

1
1
.0

7
1
.0

0
1
.1

0
1
.1

4
L

in
ea

r
M

ix
ed

M
o
d

el
,

L
M

A
R

:
b

0.
18

0.
21

0.
22

0
.5

2
1
.0

1
1
.0

1
1
.0

1
1
.0

4
1
.0

1
F

IX
E

D
1
.0

6
M

ix
tu

re
of

N
or

m
al

s,
M

C
A

R
0.

52
0.

54
0.

53
0
.5

4
0
.5

4
0
.5

4
1
.0

2
1
.0

3
1
.0

2
1
.0

2
1
.0

2
1
.0

1
-

-
1
.0

6
M

ix
tu

re
of

N
or

m
al

s,
L

M
A

R
:
C

0.
57

0.
57

0.
57

0
.4

6
0
.4

6
0
.4

7
1
.0

2
1
.0

2
1
.0

1
1
.0

1
1
.0

3
1
.0

1
1
.5

5
1
.6

5
1
.6

6
M

ix
tu

re
of

N
or

m
al

s,
L

M
A

R
:
C
,X

0.
58

0.
62

0.
57

0
.4

7
0
.4

8
0
.4

7
1
.0

2
1
.0

2
1
.0

2
1
.0

1
1
.0

3
1
.0

1
1
.3

8
1
.6

4
1
.6

5
M

ix
tu

re
of

N
or

m
al

s,
L

M
A

R
:
C

0.
68

0.
68

0.
66

0
.3

5
0
.3

5
0
.3

5
1
.0

4
1
.0

4
1
.0

2
1
.0

1
1
.0

3
1
.0

1
1
.0

5
F

IX
E

D
1
.1

3
M

ix
tu

re
of

N
or

m
al

s,
L

M
A

R
:
C
,X

0.
67

0.
71

0.
65

0
.3

5
0
.3

7
0
.3

4
1
.0

4
1
.0

3
1
.0

2
1
.0

1
1
.0

3
1
.0

1
1
.0

1
F

IX
E

D
1
.0

8

†
Im

p
u

ta
ti

on
s

d
ra

w
n

u
si

n
g

ke
rn

el
s

(3
.6

)
-

(3
.7

)
*F

or
ea

ch
m

o
d

el
,

th
es

e
ar

e
th

e
p

ar
am

et
er

s
fr

om
th

e
ou

tc
o
m

e
m

o
d

el
(s

a
m

e
a
s
T
a
b
le
s
3
.1

-
3
.3

):
—

–
L

in
ea

r
m

ix
ed

m
o
d

el
:

in
te

rc
ep

t,
X

1
,
X

2
,

an
d

ti
m

e
—

–
C

u
re

m
o
d

el
:

in
te

rc
ep

t,
X

1
,

an
d
X

2
in

th
e

lo
gi

st
ic

re
g
re

ss
io

n
a
n

d
X

1
a
n

d
X

2
in

th
e

C
ox

re
g
re

ss
io

n
—

–
M

ix
tu

re
of

N
or

m
al

s:
in

te
rc

ep
t,
X

1
,

an
d
X

2
fo

r
th

e
C

=
1

a
n

d
C

=
0

cl
a
ss

es
re

sp
ec

ti
v
el

y
‡
φ

0
is

th
e

in
te

rc
ep

t
in

th
e

m
is

si
n

gn
es

s
m

o
d

el
.
φ

1
is

th
e

p
a
ra

m
et

er
fo

r
th

e
la

te
n
t

va
ri

a
b
le

.
#

N
ot

at
io

n
:

T
ru

e
an

d
w

or
k
in

g
m

is
si

n
g
n
es

s
m

o
d

el
s

d
ep

en
d

o
n

va
ri

a
b

le
s

a
ft

er
co

lo
n

67



3.5.5 Simulation 5: Comparison of Final Analysis with and

without Imputed L

After imputation, we have several choices as to what combination of the imputed L and

D we want to include in the final analysis. We first suppose that we will perform our

final analysis ignoring the contribution of R. When both imputed D and L are included

in the final analysis, R is ignorable. In Lemma 4, we show that R is also ignorable if

only imputed D is included in the final analysis when missingness is MAR. When miss-

ingness is LMAR, we show in Lemma 5 that final analysis using only the imputed D and

ignoring R will be valid but not fully efficient. In this section, we want to briefly explore

the practical impact of including or excluding the imputed values of L (assuming we are

ignoring R) in the final analysis through simulation.

We generate simulated data under a linear mixed model, mixture of normals model,

and Cox proportional hazards model as described for Simulations 1-3. We impose either

MAR or LMAR (Strong Dependence) missingness in X2 as in Simulations 1-3 and im-

pute using a working missingness model with the correct structure (either MAR or LMAR

dependent only on the latent variable) and kernels (3.6) - (3.8). After imputation, we

perform the final analysis using the imputed values for X2 and either ignoring or using

the imputed values for the latent variable (and in both cases ignoring R). Additionally,

in the course of our simulations, we observed that some simulations under the mixture of

normals model had estimated variances that were very large when we used the imputed

latent variable in the final model fit. This may be an indicator of inadequate convergence

of the model fit. Therefore, we present the mixture of normals results 1) for all 500 sim-

ulations and 2) restricting to simulations in which the estimated variances were all less

than 0.2 (20 in the scale presented in the table). This issue did not arise for the linear

mixed model simulations. In Tables 3.1-3.3, we perform all final analyses ignoring the

imputed latent variable and without restricting to simulations that have variance < 0.2,

and the corresponding rows in this table are identical to the results in Tables 3.1-3.3.

Table 3.5 shows the simulation results. We first consider the results for the mixture

of normals model. We first notice that analyses using the imputed latent variable in the

final analysis result in substantial bias when we include all simulations in our estimation

of bias. This is the result of just a few simulations with parameter estimates far from
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the true value. This suggests some instability or lack of convergence in the model fitting.

However, when we restrict our focus to simulations that appear to have convergence (rea-

sonable standard errors), we see that final analyses including and excluding the imputed

latent variable perform similarly well. For some simulation settings, the variance esti-

mates using C are slightly larger, and the reverse is true for other simulations, so there

is not a clear trend in efficiency including or excluding the latent variable in the final

analysis in these simulations.

Although not included in our results, it is worth mentioning that analysis including

and ignoring the imputed L may be associated with different fractions of missing infor-

mation, which could have implications on the number of imputations needed for good

inference. Let Ū represent the average of the variance estimators for parameter θ across

the m imputed datasets and B represent the sample variance of the estimates of θ across

the m imputed datasets. Then, we can express the relative increase in variation due to

the missing data (r) and the fraction of missing information (λ) as (Schafer, 1999):

r =
(1 + 1

m
)B

Ū
λ =

r

1 + r

The relative efficiency of an estimate θ based on m imputations compared to the estimate

based of in infinite number of imputations is:

RE =
1

1 + λ
m

We may expect an analysis that conditions on the imputed L in the final analysis to have

larger relative between imputation variance vs. within imputation variance (r) compared

to an analysis that does not condition on L in the final analysis for some parameters.

This is because, when we include L in the final analysis, each fit treats the imputed L as

known, resulting in substantially reduced “within imputation” standard error estimates

for some parameters. This leads to larger values for the fraction of missing information,

λ, for the same value of m when we include L in the final analysis compared to an analysis

that ignores imputed L. In simulations (not shown), a final analysis using L did result

in larger fractions of missing information compared to an analysis ignoring imputed L

in the random intercept linear mixed model setting. We note that in practice this may

translate into only a very small difference in relative efficiency between the two methods
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of analysis. However, several authors have noted practical issues regarding estimation

of p-values and confidence intervals when a small number of imputations are used and

the fraction of missing information is moderate to large (e.g. White and Royston, 2011;

Bodner, 2008). Therefore, we may prefer to perform our final analysis using only the

imputed D in the final analysis in an attempt to reduce the potential negative impact of

larger fractions of missing information.

Table 3.5: Bias and Variance of Parameter Estimates under Different Final Analyses

Linear Mixed Model

Model# Analysis Intercept X1 X2 Time SIMS
Bias (Var)† Bias (Var) Bias (Var) Bias (Var)

MAR Ignoring b 0 (1.81) 0 (1.10) -1 (2.58) 0 (0.1055) 500
MAR Using b 0 (1.84) 0 (1.11) -1 (2.59) 0 (0.1055) 500
LMAR Ignoring b 0 (1.49) 0 (1.15) -1 (2.03) 0 (0.1055) 500
LMAR Using b 0 (1.50) 0 (1.08) -1 (2.05) 0 (0.1055) 500

Mixture of Normals

- - - - - - - - - - C = 1- - - - - - - - - - - - - - - - - - - C = 0 - - - - - - - - - SIMS
Model# Analysis Intercept X1 X2 Intercept X1 X2

Bias (Var) Bias (Var) Bias (Var) Bias (Var) Bias (Var) Bias (Var)

Variance Unrestricted

MAR Ignoring C 1 (1.98) 0 (4.35) 1 (4.64) -1 (6.18) -2 (7.80) 0 (5.53) 500
MAR Using C 2 (2.22) 6 (7.55) 5 (6.38) -3 (7.09) -8 (10.38) -3 (6.49) 500
LMAR Ignoring C 1 (2.89) 1 (4.63) 0 (6.42) -1 (4.56) -2 (5.91) 0 (5.29) 500
LMAR Using C 1 (3.28) 9 (9.71) 5 (7.76) -3 (5.18) -9 (10.03) -4 (7.18) 500

Variance Restricted*

MAR Ignoring C 1 (2.04) -1 (2.09) 0 (2.88) -1 (6.06) 0 (5.34) 0 (5.02) 483
MAR Using C 1 (2.07) -1 (1.95) 0 (2.94) 0 (5.73) -1 (5.14) 0 (4.25) 404
LMAR Ignoring C 0 (2.79) 0 (2.07) 0 (5.39) 0 (4.28) 0 (3.77) 1 (3.94) 477
LMAR Using C 0 (2.95) 0 (2.11) 0 (5.44) 0 (4.35) -1 (3.75) 0 (3.95) 418

† All values in table multiplied by 100
# Indicates true and working missingness model
* Ignoring simulations in which the estimated variance was greater than 0.2 (20 in the scale of this table)
for at least one parameter.
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3.6 Application to Head and Neck Cancer Data

In practice, the missingness mechanism is rarely known, and we may want to explore the

sensitivity of the model inference to assumptions about the missingness. In this section,

we evaluate the impact of missingness assumptions on inference for a particular dataset.

We consider data from a cohort study of N=1226 patients treated for head and neck

squamous cell carcinoma (HNSCC). This study was conducted by the University of Michi-

gan Head and Neck Specialized Program of Research Excellence (SPORE) and followed

patients who were treated at the University of Michigan Cancer Center for HNSCC be-

tween Nov. 2003 and July 2013. Details about this study can be found in Duffy et al.

(2008) and Peterson et al. (2016). After treatment, patients were followed for recurrence.

Covariate information was also collected at baseline. We are interested in studying the

association between covariates and the time to HNSCC recurrence after treatment. We

model the time to HNSCC recurrence using a Cox proportional hazards cure model.

HPV status was unavailable for 55.8% of the subjects, and small amounts of missing-

ness was present in other study variables. Chapter II explores imputation for dealing

with the missing covariate data for this study under MAR assumptions. However, an

induced LMAR association between missingness in HPV status and cure status (denoted

G) could occur if HPV missingness is related to an unmeasured variable that is also

related to the cure probability. For example, a more experienced doctor may be more

likely to recommend HPV testing and to have cured patients. Also, HPV missingness

rate could be related to calendar time, which may be associated with the cure rate.

We are interested in comparing model inference assuming MAR to inference obtained

when missingness in HPV is assumed to be LMAR. We assume missingness in all other

variables is MAR. We consider three working assumptions for HPV status missingness:

(A) MAR, (B) missingness dependent only on cure status, and (C) missingness dependent

on cure status, age at diagnosis, cancer site, and enrollment year. Assumptions (B) and

(C) are modeled using logistic regression.

We apply our proposed methods to impute the missing data. In this setting, G is

the partially latent cure status, Y is the censored event time data (time and indicator),

and X is the set of covariates. Here, the model Y |G = 1, X is a Cox regression and

the model for G|X is a logistic regression. We impute cure status G using (3.6). As
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suggested in Chapter II, we impute missing values of each pth covariate X(p) using a

standard regression model with X(−p), G, G× Ĥ0(T ), and G× Ĥ0(T )×X(−p) as predic-

tors. Here, Ĥ0(T ) is an estimate of the cumulative baseline hazard of having an event in

the non-cured group. Like in Chapter II, we will draw values for the regression model’s

parameter without conditioning on the imputed X(p) (as is done in usual chained equa-

tions). Variables included in X(−p) for the imputation include log-transformed number of

sexual partners, PNI, comorbidities, smoking habits, alcohol use, age, cancer site, cancer

stage, gender, and enrollment period (2003-2008, 2009-2011, 2012-2013).

Table 3.6 presents the cure model fit under different assumptions about the missing-

ness mechanism. We see that the fits are nearly identical. The largest difference between

the fits is in the estimate for the HPV effect on the time to recurrence in the non-cured

group. We estimate a slightly stronger effect of HPV status under LMAR assumptions

than under MAR assumptions, and the strongest effect is estimated when missingness is

assumed to be LMAR dependent on G and other covariates. However, the HPV effect is

not significant in any of the fits. We cannot make conclusions about the “correct” miss-

ingness mechanism, but regardless of the true missingness model, the CPH cure model

inference appears to be very robust to different specifications of the working missingness

model.
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3.7 Discussion

We present a sequential imputation algorithm that can handle both MAR and LMAR

covariate and outcome missingness for models with latent or partially latent variables.

The proposed algorithm imputes the latent variable as part of the missing data.

We first propose an imputation approach assuming a fully-specified joint model for

all the variables. In this setting, we demonstrate that the missingness mechanism can

be ignored in the imputation steps for missing covariate and outcome values under MAR

and LMAR when we condition on the latent variable. Additionally, we show that the

missingness mechanism is not ignorable when imputing the latent variable under LMAR.

We derive the forms of the posterior predictive distributions used for imputation under

a fully-specified joint model. We then describe how we can use results based on a joint

model to inform our imputation when we do not assume a fully-specified joint model,

resulting in increased flexibility in the potential specification of imputation models used

in practice.

The proposed imputation approach differs in several notable ways from existing ap-

proaches under MAR. In the joint modeling approach to imputation, the distributions

used for imputation correspond to a valid joint distribution for the missing data. In the

proposed algorithm, however, we allow missing covariate/outcome values to be imputed

using distributions that do not correspond to a valid joint model (as is done in chained

equations imputation). This allows for increased flexibility in the choice of the covariate

and outcome imputation models over the joint modeling approach. However, unlike usual

chained equations, we directly use the outcome model to inform our imputation of the

latent variable and potentially the imputation of missing outcome/covariate values. Our

proposed approach is similar to the covariate imputation approach in Bartlett et al. (2014)

under MAR, except that our approach further addresses how to handling missingness in

the outcome and latent variables. Therefore, the flexibility of the proposed imputation

algorithm and the method’s ability to incorporate outcome model assumptions into the

imputation procedure are innovative even under MAR assumptions. Comparatively little

work has been done to explore imputation under LMAR assumptions, and the proposed

methods provide a flexible and novel approach to imputation under LMAR.

Simulations demonstrate that the proposed methods can result in “good” performance
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(in terms of bias, coverage, etc) under a variety of modeling scenarios as long as the work-

ing model contains the true model. We demonstrate that imputation assuming MAR can

result in biased outcome model parameter estimates when missingness is truly LMAR.

The proposed approach using LMAR assumptions can correct this bias.

Additional simulations explore the numerical convergence properties of the proposed

imputation algorithm. We do not see evidence of convergence issues under MAR outcome

missingness or MAR/LMAR covariate missingness except in the case where the working

missingness model contains many highly correlated predictors. In some scenarios, we

see convergence issues when we have LMAR outcome missingness, and parameters of

the missingness model were particularly susceptible. Convergence problems can be sub-

stantially reduced by fixing parameters related to the latent variable in the missingness

model.

We apply the imputation approach to a study of head and neck cancer recurrence.

We impute missing values under MAR and LMAR assumptions, and the resulting model

fits are very similar. In this application, the model inference is robust to the assumptions

about missingness. We expect misspecification of the missingness model to have a greater

impact when we have a larger amount of missingness in the latent variable or a stronger

dependence between missingness and the latent variable.

One criticism of methods that do not assume a fully-specified joint distribution (e.g.

chained equations) is that the algorithm is not guaranteed to converge to draws from

a valid joint posterior predictive distribution for the missing values (Van Buuren et al.,

2006). Our proposed imputation approach is similarly not guaranteed to converge to a

valid joint distribution in general, and convergence can be impacted by identifiability is-

sues. In this chapter, we do not prove convergence properties for the proposed algorithm

beyond existing properties in the chained equations literature. Instead, we use simulation

to identify settings that may be particularly susceptible to concerns about convergence.

We demonstrate that the convergence of the proposed algorithm can be impacted by

parameter identifiability. Care should be taken to monitor algorithm convergence, par-

ticularly in the setting of LMAR outcome missingness or with working missingness models

containing many predictors. We similarly do not prove identifiability properties for gen-

eral LMAR mechanisms. In some settings (e.g. Wu and Carroll, 1988; Miao et al., 2016),

identifiability has been demonstrated analytically, but exploring identifiability can be
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difficult in general. We view proofs of identifiability for general LMAR mechanisms to

be outside the scope of this work. Instead, we provide some guidance for applying the

proposed methods in the presence of possible identifiability issues.

The proposed methods can be applied under MAR and LMAR outcome/covariate

missingness. Unlike usual MAR-based imputation, the proposed imputation approach

requires us to model the data missingness mechanism when missingness is assumed to

be LMAR. However, this direct dependence on the missingness model provides a con-

venient framework for studying the sensitivity of outcome model inference to different

assumptions about the missingness mechanism (Little, 1995; Molenberghs et al., 2008).

Simulations suggest that the proposed LMAR-based imputation approach can be applied

even in MAR settings as long as the working missingness model contains the true model

and the LMAR-based model is well-identified. Additionally, when missingness is MAR,

our proposed approach allows for greater flexibility in the specification of the covariate

and outcome imputation models compared to joint modeling. The proposed method

also allows us to incorporate the outcome model directly into the imputation of the la-

tent variable (and possibly missing covariate/outcome values), potentially resulting in

improved imputations and reduced bias in the downstream analysis compared to usual

chained equations. Our proposed method, therefore, provides a flexible generalization of

the usual MAR-based imputation that allows us to study a wider class of missingness

models, of which MAR is a special case.
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Chapter IV

Maximum Likelihood Estimation for

Multistate Cure Models

4.1 Introduction

In medical applications, multistate models describe the rates at which individuals move

between various health states. Multistate models have many valuable uses in medical

research. Firstly, multistate models allow us to incorporate information from multiple

event time outcomes (e.g. recurrence and death) in a unified way. Secondly, multistate

models allow us to study which patient characteristics are relevant to which aspects of

disease progression. Finally, multistate models are useful for making predictions, which

can be valuable for medical decision-making.

The illness-death model is a popular multistate model explored in the literature and

consists of three states: healthy (or no event), illness, and death (Andersen and Keiding,

2002). All subjects start out in the “healthy” state at baseline and can then move into

the illness or death states as they develop illness or die from other causes. Subjects that

develop illness can also transition into the death state. One common application of the

illness-death model is in the study of cancer recurrence and death. In this setting, the

“healthy” state represents subjects who have been treated for their initial cancer. For the

remainder of this chapter, we will focus on the scenario with outcomes cancer recurrence

and death, but these may be different types of events in general.

While the illness-death model is useful in many applications, one limitation is that

the model implicitly assumes that all subjects can experience the illness event. In the

context of cancer recurrence and death, this is equivalent to assuming that all subjects

can experience a cancer recurrence. For many types of cancer, however, this may not be
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a reasonable assumption. In the case of head and neck cancer, for example, it has been

well-established that some subjects can be completely cured of their initial disease, and

these subjects will never experience a recurrence of their primary cancer (Taylor, 1995).

We call the set of cured subjects the “cured fraction.”

In this chapter, we consider a generalization of the illness-death model called the mul-

tistate cure model that accounts for the cured fraction. The Bayesian multistate cure

model developed in Conlon et al. (2013) breaks the “healthy” state of the illness-death

model into two baseline states: cured and non-cured. The non-cured subjects can then

experience either cancer recurrence or death under an illness-death model. The cured

subjects can only experience the death event.

One challenge to fitting the multistate cure model is that cure status is partially latent.

Subjects with an observed recurrence are known to be non-cured, but subjects censored

for recurrence have unknown cure status. Cure status is unknown for all subjects at base-

line. A natural question that arises in the context of cure models is our ability to identify

the cured population when the event time distribution in the non-cured subjects may

have a long tail (Farewell, 1982; Conlon et al., 2013). We will assume that we have suffi-

cient follow-up after the last observed event time. One indicator of sufficient follow-up in

a cure setting is that a Kaplan-Meier estimator applied to the time to recurrence outcome

should have a clear plateau, indicating that there is a time-point after which recurrence

events are no longer being observed. In the illness-death model setting, we require further

follow-up for death before and after recurrence, so a lack of sufficient follow-up may be

less of a concern for datasets that are well-suited for illness-death models.

Another problem for illness-death models in general and multistate cure models in

particular is that the follow-up may not be the same for both outcomes of interest (Con-

lon et al., 2013). We call this situation “unequal follow-up.” For example, death status

may be more easily obtained through death records, while assessment of cancer recur-

rence status requires a clinic visit, so it may often be the case that death status is known

and recurrence status is unknown at a particular time t. Conlon et al. (2013) propose a

Gibbs-sampling algorithm for fitting the multistate cure model in which values of cure

status are drawn using a data augmentation approach and unequal follow-up is handled

through a modification to the likelihood involving an integral. Their proposed algorithm

performs well, but it requires substantial custom programming, it requires specification
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of prior distributions and tuning parameters, and it can take a long time to reach con-

vergence. Additionally, the algorithm discussed in Conlon et al. (2013) assumes that

covariates are fully-observed, which may not be the case in practice.

The Expectation-Maximization (EM) algorithm is an alternative, maximum-

likelihood-based method in the literature for fitting models with latent variables or other

types of missing data (Dempster et al., 1977). One advantage of the EM algorithm

over Bayesian methods is that, in some cases, an EM algorithm can be more readily

implemented using standard software. Additionally, the EM algorithm does not require

specification of prior distributions or tuning parameters. In some complicated missing

data scenarios, however, the conventional EM algorithm can be difficult to implement.

The Monte Carlo EM (MCEM) algorithm proposed in Wei and Tanner (1990) provides a

convenient, imputation-based approach for handling more complex missing data within a

modified EM algorithm. EM and MCEM algorithms have not been previously explored

in the context of multistate cure models in the literature, and development of such fitting

algorithms could make the multistate cure model much more accessible to investigators.

In this chapter, we first propose a simple EM algorithm for fitting the standard mul-

tistate cure model. We then propose a MCEM algorithm for fitting the model in the

presence of covariate missingness and/or unequal follow-up of the outcomes. The pro-

posed algorithms can incorporate either parametric or nonparametric baseline hazards

for the transitions between states and can incorporate different assumptions about the

rate of death from other causes. The proposed EM algorithm makes use of a weighted

likelihood representation, allowing it to be easily implemented using standard software.

We provide software for implementing the EM and MCEM algorithms. We describe

a novel approach for estimating standard errors for the MCEM algorithm. Simulations

demonstrate the performance of the EM and MCEM algorithms under different modeling

assumptions. We apply the proposed MCEM to a study of cancer recurrence and death

of head and neck patients. We then derive expressions for estimating state occupancy

probabilities, which can used to make predictions for individual patients.

In Section 4.2, we present details about the multistate cure model structure. In

Sections 4.3 and 4.4, we propose an EM and MCEM algorithm for fitting the model.

In Section 4.5, we discuss how to estimate standard errors. In Section 4.6, we derive

state occupancy probabilities. We present a simulation study in Section 4.7, and we
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apply the proposed methods to head and neck cancer data in Section 4.8. In Section

4.9, we include a discussion.2

2A version of this chapter will be published in Biostatistics in 2018 under the title “EM Algorithms
for Fitting Multistate Cure Models” by Lauren J Beesley and Jeremy M G Taylor.
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4.2 Multistate Cure Model Specification

Suppose we have two semi-competing events: recurrence and death. By semi-competing,

we mean that we can observe death after cancer recurrence but cannot observe recurrence

after death. We further suppose that there is some subset of the subjects that are cured

of their initial cancer and will never experience a cancer recurrence (even with very long

follow-up).

Let Tir and Tid be the underlying recurrence and death times for subject i. For cured

subjects, Tir = ∞. Let Cir be the censoring time for recurrence (loss to follow-up) and

Cid be the censoring time for death. Initially, we assume that the follow-up for recur-

rence and death is equal and define Ci = Cir = Cid. For all subjects, we observe censored

recurrence time information, Yir = min(Tir, Ci, Tid) and δir = I(Yir = Tir), and censored

death time information, Yid = min(Tid, Ci) and δid = I(Yid = Tid). Let Xi denote the

covariates for subject i, which we will initially suppose are fully observed.

We assume that all subjects have been previously treated for their initial cancer and

did not have observable cancer at baseline. For non-cured subjects, however, some un-

observable cancer cells remain and will grow until they are eventually observable, called

cancer recurrence. Subjects with an observed recurrence are known to have been non-

cured at baseline, but all other subjects have unknown baseline cure status. Let Gi be a

variable indicating baseline non-cure status: Gi = 0 if cured, Gi = 1 if not cured. While

we never know for sure that subjects are cured, we may strongly believe subjects still at

risk after some time t0 are cured and assign Gi = 0 for these subjects. Assigning some

subjects to be cured improves the stability of the proposed methods, and we use this

approach in our simulations and data example. Similar assumptions are often implicitly

made for standard cure rate models through restrictions on the event rate in the non-

cured subjects (Peng and Dear, 2000; Cai et al., 2012).

Figure 4.1 shows the conceptual structure of the model proposed in Conlon et al.

(2013). Solid arrows represent potential state transitions given baseline cure status. If we

removed state 4, the multistate cure model would reduce to the popular Cox proportional

hazards (CPH) mixture cure model (Kuk and Chen, 1992; Sy and Taylor, 2000). We will

assume that the underlying transition times between states are conditionally indepen-

dent given covariates. We will further assume that Cir and Cid are independent of all
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Figure 4.1: Diagram of the Multistate Cure Model

underlying transition times given covariates.

We model the probability of not being cured by initial treatment using a logistic

model: logit(P (Gi = 1|Xi)) = α0 + αT1XiG, where XiG is a subset of Xi. We model

the transition rate from state j to state k for all transitions except 3 → 4 using pro-

portional hazards model λjk(t) = λ0
jk(t) exp(βTjkXijk), where Xijk is the subset of Xi

used in the model for transition j → k. One important decision in multistate modeling

is whether we reset time back to zero upon entering a new state (Putter et al., 2007;

Meira-Machado et al., 2009). In the model for the 3 → 4 transition, we use the “clock

reset” method in which time is reset to zero upon entering state 3, and use a proportional

hazards regression to model the residual time in state 3 before entering state 4 as follows:

λ34(t − Tir) = I(t > Tir)λ
0
34(t − Tir) exp(βT34Xi34). We can incorporate the time spent in

state 1, Tir, as a covariate in Xi34 if desired.

Let Λjk(t) and Λ0
jk(t) represent the cumulative hazard and cumulative baseline haz-

ard for transition j → k, and let Sj(t) represent the probability of remaining in state

j at time t. We have that S1(t) = exp{−Λ13(t) − Λ14(t)}, S2(t) = exp{−Λ24(t)}, and

S3(t − Tir) = exp{−Λ34(t − Tir)} for t > Tir given Tir. We may use a parametric or

non-parametric form for the baseline hazards.

We may place additional assumptions on the hazards for the 2→ 4 and 1→ 4 tran-

sitions. Since these two transitions represent typically death from other causes, it may

be reasonable to assume that the hazards are identical (Λ14(t) = Λ24(t) ∀ t ≥ 0). In

this case, the multistate cure model reduces to a CPH cure model for recurrence time

with two additional regressions for time to death with and without recurrence (Conlon

et al., 2013). However, suppose we do not want to assume the hazards are equal. We
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may instead assume the hazards are proportional (Λ14(t) = Λ24(t) exp{β0}) or that the

baseline hazards are equal (Λ0
14(t) = Λ0

24(t), β24 and β14 unrestricted), or we may make

no equality assumptions (Λ14(t) and Λ24(t) unrestricted).

Let θ represent the set of model parameters. With parametric baseline hazards, θ

includes α = (α0, α1), β = (β13, β24, β14, β34), and baseline hazard parameters. With

nonparametric baseline hazards, θ includes α and β, and we treat the baseline hazards

as unknown but fixed within the algorithm. We will assume that α and β are distinct.

Let D = (Y, δ,G,X) denote the complete data. The complete data log-likelihood for the

multistate cure model takes the following form:

l(θ|D) =
n∑
i=1

(1−Gi) log
(
P (Gi = 0)λ24(Yid)

δidS2(Yid)
)

(4.1)

+Gi log
(
P (Gi = 1)

[
λ14(Yid)

δidS1(Yid)
]1−δir

×
[
λ13(Yir)S1(Yir)λ34(Yid − Yir)δidS3(Yid − Yir)

]δir)
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4.3 EM Algorithm

The EM algorithm is an approach for maximum likelihood estimation in the presence of

missing data, which in our setting is the partially latent cure status (Dempster et al.,

1977). Let D(obs) represent the observed data and D(mis) represent the missing data.

The goal is to maximize the observed data log-likelihood, l(θ|D(obs)), with respect to θ.

The algorithm breaks the problem of maximizing l(θ|D(obs)) into iterations of two simpler

steps: the E-Step and the M-Step. In the E-Step, we calculate the expected value of

the complete data log-likelihood conditioning on the observed data and the most recent

parameter estimate, θ(t), to obtain

Q(θ|θ(t)) =

∫
l(θ|D(obs),D(mis))f(D(mis)|D(obs), θ(t))dD(mis)

In the M-Step, we maximize Q(θ|θ(t)) with respect to θ. We iterate these steps many

times until convergence of the estimated θ to the MLE.

The EM algorithm is a common estimation method in the literature for models with

latent classes. Frydman and Kadam (2004) proposed an EM algorithm for estimation

for a continuous time multistate model in which the underlying population is split into

movers and stayers such that only the movers are eligible to experience a state transition.

This setting is very similar to our setting except that our model allows both the movers

and stayers to experience death.

4.3.1 E-Step

In the E-Step for fitting the multistate cure model, we take the expectation of (4.1).

Since (4.1) is linear in Gi, we can obtain Q(θ|θ(t)) by replacing Gi in (4.1) with

E(Gi|Xi, Yid, Yir, δid, δir; θ
(t)) when Gi is unknown. Let Ri = I(Gi known). For all sub-

jects, we replace Gi with

pi = δir + (1− δir)(1−Ri)P (Gi = 1|Xi, Yid, Yir, δid, δir = 0; θ(t)) (4.2)

= δir + (1− δir)(1−Ri)
P (Gi = 1)λ14(Yid)

δidS1(Yid)

P (Gi = 1)λ14(Yid)δidS1(Yid) + P (Gi = 0)λ24(Yid)δidS2(Yid)

∣∣∣∣
θ=θ(t)
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In order to use the formula in (4.2), we need estimates of the baseline hazard functions

for the 1 → 3, 1 → 4, and 2 → 4 transitions. Under parametric assumptions, the

complete form of the baseline hazards are determined in the M-Step. When the baseline

hazards are non-parametric, we estimate the baseline hazards prior to calculating (4.2). In

Appendix E, we use the profile likelihood method to derive estimators for the baseline

hazards. The form of the estimator depends on the estimate of pi from the previous

iteration and whether we assume that the baseline hazards for the 2 → 4 and 1 → 4

transitions are equal.

4.3.2 M-Step

In the M-Step, we maximize Q(θ|θ(t)) with respect to θ. After replacing Gi with pi in

(4.1) and reorganizing the terms, we have that

Q(θ|θ(t)) =
n∑
i=1

(1− pi) log [P (Gi = 0)] + pilog [P (Gi = 1)]

+ (1− pi) log
[
λ24(Yid)

δid exp{−Λ24(Yid)}
]

+ pi log
[
λ14(Yid)

δid(1−δir) exp{−Λ14(Yid)}1−δir exp{−Λ14(Yir)}δir
]

+ pi log
[
λ13(Yir)

δir exp{−Λ13(Yir)}δir exp{−Λ13(Yid)}1−δir
]

+ piδir log
[
λ34(Yid − Yir)δid exp{−Λ34(Yid − Yir)}

]
Since we assume that censoring times for recurrence and death are the same, δir = 0

implies Yir = Yid. Additionally, we note that δir = 1 implies pi = 1. We can therefore

rewrite Q as:

Q(θ|θ(t)) =
n∑
i=1

(1− pi) log [P (Gi = 0)] + pilog [P (Gi = 1)] (4.3)

+ (1− pi) log
[
λ24(Yid)

δid exp{−Λ24(Yid)}
]

+ pi log
[
λ14(Yir)

δid(1−δir) exp{−Λ14(Yir)}
]

+ pi log
[
λ13(Yir)

δir exp{−Λ13(Yir)}
]

+ δir log
[
λ34(Yid − Yir)δid exp{−Λ34(Yid − Yir)}

]
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The terms involving α and β separate, so we can maximize (4.3) with respect to α and β

separately. The terms involving α resemble the log-likelihood for a logistic model with pi

as the outcome. We can estimate α by fitting a logistic regression to pi using predictors

XiG. We can estimate β (and perhaps baseline parameters) by maximizing the last four

terms of (4.3) with respect to the parameters.

We can perform the maximization for β by fitting a single survival model to an

augmented version of the data. This single-survival model maximization strategy is con-

venient in settings where we want to impose additional parameter or baseline restrictions

across transitions. We first note that each of the last four summands of (4.3) takes the

form of a weighted proportional hazards regression model for a different state transi-

tion. We will use this property to combine the four terms in the above sum into a single

weighted proportional hazards regression model.

We consider an augmented version of the data that contains four rows for each sub-

ject (one for each transition in the multistate cure model). Each row contains a variable

indicating the transition being considered (S), the time the subject was at risk for that

transition (T), an indicator for whether the subject experienced that transition (D), a

weight variable (W), and covariates (Z). Table 4.1 shows the form of the rows in the

augmented dataset for each subject i.

Table 4.1: Augmented Data Structure for Subject i

Transition S T D W Z
1→ 3 13 Yir δir pi Xi

2→ 4 24 Yid δid 1− pi Xi

1→ 4 14 Yir δid(1− δir) pi Xi

3→ 4 34 Yid − Yir δid δir Xi

We note that subjects with an observed recurrence have pi = 1, so we could equivalently

replace δid in row 2 of Table 4.1 with δid(1− δir). Using the augmented data structure,

we can rewrite the last four terms in (4.3) as

4n∑
m=1

Wmlog
([
λ0
Sm(Tm) exp{g(Zm, Sm; β)}

]Dm
exp{−Λ0

Sm(Tm) exp[g(Zm, Sm; β)]}
)

(4.4)

where g(Zm, Sm; β) is a function of Zm and Sm that may include linear functions of Zm

and Sm along with interactions between Zm and Sm. The sum in (4.4) takes the form of

a single weighted log-likelihood for a proportional hazards regression model.
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When the baseline hazards are modeled parametrically, we can maximize (4.4) directly

with respect to β by fitting a single survival model to the outcome data (T, D) with

weights W and some function of S and Z as predictors. We can include interactions

between Z and S in the function g in order to allow the β’s to differ across transitions.

In order to impose different baseline hazards for different transitions, we can stratify

the baseline hazard by S (or a grouped version of S). We can accommodate different

covariate sets across transitions by not including particular covariate-strata combinations

(effectively setting some parameters in a covariate-strata interaction to zero).

Suppose we include the same set of covariates in each one of the transitions, so the

elements of Z are the same within subjects. Below, we describe how we can specify g and

stratify the baseline hazard to incorporate different assumptions about the 1 → 4 and

2→ 4 transitions. In each setting, we can then fit this model to (T,D) using weights W.

Example 1: No Restrictions

Suppose first that we do not impose any restrictions on the 1→ 4 and 2→ 4 transitions.

Then, we can formulate the survival regression model as follows:

g(Z, S; β) = β13Z ∗ I(S = 13) + β24Z ∗ I(S = 24) + β14Z ∗ I(S = 14) + β34Z ∗ I(S = 34)

where the baseline hazard is stratified by S.

Example 2: Equal Hazards

Suppose instead that we restrict the 1 → 4 and 2 → 4 hazard functions to be equal.

Then, we can formulate the survival regression model as follows:

g(Z, S; β) = β13Z ∗ I(S = 13) + β1424Z ∗ I(S = 24 or S = 14) + β34Z ∗ I(S = 34)

where the baseline hazard is stratified into three categories in which S = 14 and S = 24

are merged into one group.

Example 3: Equal Baseline Hazards

Suppose instead that we restrict the 1 → 4 and 2 → 4 baseline hazard functions to be

equal while allowing the corresponding β’s to be different. Then, we can formulate the

survival regression model as follows:

g(Z, S; β) = β13Z ∗ I(S = 13) + β24Z ∗ I(S = 24) + β14Z ∗ I(S = 14) + β34Z ∗ I(S = 34)
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where the baseline hazard is stratified into three categories in which S = 14 and S = 24

are merged into one group.

Example 4: Proportional Hazards

Suppose instead that we assume that the hazards for the 1 → 4 and 2 → 4 transitions

are proportional rather than equal. Then, we can formulate the survival regression model

as follows:

g(Z, S; β) = β13Z∗I(S = 13)+β1424Z∗I(S = 24 or S = 14)+β34Z∗I(S = 34)+β0I(S = 14)

where the baseline hazard is stratified into three categories in which S = 14 and S = 24

are merged into one group.

When the baseline hazards are modeled nonparametrically, we approximate

(4.4) by a single weighted Cox partial log-likelihood and maximize with respect to β by

fitting a Cox regression model as above. Through this single model fit, we can obtain

estimates of β and, if the baseline hazards are parametric, the parameters related to the

baseline hazard.

The proposed method for estimating β is similar to the methods used by mstate in

R and other multistate modeling software except that it incorporates transition-specific

weights and involves a different augmented data structure (de Wreede et al., 2011).
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4.4 Extension to Handle Additional Missing Data

The EM algorithm in Section 4.3 assumes that cure status is the only source of missing

data. However, additional missing data often arises in practice. One source of missing

data is missingness in the covariates. Another common source of missingness occurs

when the follow-up for recurrence is shorter than the follow-up for death. We call this

phenomenon “unequal follow-up.” In order to follow up for recurrence, patients must come

into the clinic, while death status can be more easily obtained from death registries. In

this case, recurrence status may only be known up to time t, while death status may be

known up to time s > t. This results in missing information about recurrence status on

the interval (t, s], which we will treat as missing data. This setting is similar to interval

censoring and panel data for illness-death models (Jackson, 2011).

Conlon et al. (2013) handles the problem of unequal follow-up by constructing a

modified likelihood function involving an integral. Another potential solution is to censor

death back to the follow-up time for recurrence for subjects with unequal follow-up.

This approach is unappealing since it throws out valuable information about death. A

third solution is to modify the conventional EM algorithm so that the E-Step takes

the expectation over all types of missing data. However, when we have complicated

patterns of missing data, these expectations can be difficult to compute. We consider an

alternative approach called the Monte Carlo EM Algorithm, which takes an imputation-

based approach to dealing with missing data.

4.4.1 Monte Carlo EM Algorithm

The Monte Carlo EM algorithm (MCEM) proposed in Wei and Tanner (1990) provides

a convenient approach to handling complicated missing data within a modified EM algo-

rithm. The strategy is to replace the usual E Step from the EM algorithm with a step in

which we obtain M imputations D(t,1),D(t,2), . . . ,D(t,M) of D by drawing the missing data

from f(D(mis)|D(obs), θ(t)).

The M Step of the MCEM algorithm then involves maximizing the complete data
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log-likelihood mixed over the imputed values:

Qmix(θ|θ(t)) =
1

M

M∑
m=1

l(θ|D(t,m)) ∝
M∑
m=1

l(θ|D(t,m))

Suppose we create a stacked version of the dataset, called D(t), obtained by stacking the

imputed versions of the data such that each subject appears in the dataset M times. We

then have that Qmix(θ|θ(t)) ∝ l(θ|D(t)). We can estimate θ by maximizing l(θ|D(t)) with

respect to θ. We then iterate between the imputation and M steps until “convergence”,

where successive estimates of θ fall around the θ = θ̂ line with noise (Wei and Tanner,

1990). We can estimate θ by taking the mean parameter estimate across the last few

iterations of the MCEM algorithm.

The imputation step involves drawing the missing data M times from

f(D(mis)|D(obs), θ(t)). Unlike conventional multiple imputation, missing data is drawn

from the predictive distribution of the missing data evaluated at a single estimated pa-

rameter value, θ(t), rather than independent draws of the parameter θ (Wei and Tanner,

1990; Neath, 2012). Therefore, the imputations produced are “improper” as described in

Little and Rubin (2002). In addition to imputing missing covariate or outcome values,

the Monte Carlo EM algorithm will also involve imputing values for the partially latent

cure status, and we will impute each type of missing data separately.

4.4.2 Imputation for Unequal Follow-up

Unequal follow-up is very common when the outcomes of interest are recurrence and

death and occurs in many other semi-competing risks settings. In Appendix G, we

present a derivation of the proposed imputation approach and provide recommendations

for implementation. Here, we include a brief description of the general approach.

Let Cr be the censoring time for recurrence and Cd be the censoring time for death, but

now assume that Cr ≤ Cd and for some subjects, Cir < Cid. For all subjects, we observe

Cir-censored recurrence information, Y 0
ir = min(Tir, Cir, Tid) and δ0

ir = I(Yir = Tir), and

Cid-censored death information, Yid = min(Tid, Cid) and δid = I(Yid = Tid). Our goal is

to impute values of Yir = min(Tir, Cid, Tid) and δir = I(Yir = Tir) that would have been

observed if we had followed subjects for recurrence as long as we followed them for death.

Suppose we treat previously imputed G and X as known. Values of Yir and δir are
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only unknown for subjects with imputed Gi = 1 and observed Y 0
ir < Yid and δ0

ir = 0.

Define Z = (Y 0
ir, δ

0
ir, Yid, δid, Gi, Xi). We impute missing δir from a Bernoulli distribution

with probability

P (δir = 1|Z; θ(t)) =

∫ Yid
Y 0
ir
λ13(t)S1(t)S3(Yid − t)λ34(Yid − t)δiddt∫ Yid

Y 0
ir
λ13(t)S1(t)S3(Yid − t)λ34(Yid − t)δiddt+ λδid14 (Yid)S1(Yid)

If imputed δir = 0, we set Yir = Yid. Otherwise, we draw Yir = Tir from

f(Tir = t|δir = 1,Z; θ(t)) ∝ λ13(t)S1(t)S3(Yid − t)λ34(Yid − t)δidI(Y 0
ir < t < Yid)

4.4.3 Imputation of Cure Status

The cure status imputation approach will depend on whether we have unequal follow-up

in the outcome. First, we will assume there is equal follow-up for all subjects. In this

case, we can draw missing Gi using P (Gi = 1|Xi, Yid, Yir, δid, δir = 0) as shown in equa-

tion (4.2).

Suppose instead that we have unequal follow-up. We perform imputation of Gi con-

ditioning on the observed Y 0
ir and δ0

ir but not the imputed values of Yir and δir, which

allows imputations to more easily move between Gi = 0 and Gi = 1 in successive it-

erations. We can impute missing Gi from a Bernoulli distribution using probability

P (Gi = 1|Xi, Yid, Y
0
ir, δid, δ

0
ir = 0):

P (Gi = 1)
[
λ14(Yid)

δidS1(Yid) + Ci
]

P (Gi = 1) [λ14(Yid)δidS1(Yid) + Ci] + P (Gi = 0)λ24(Yid)δidS2(Yid)

where Ci = I(Y 0
ir < Yid and δ0

ir = 0)

∫ Yid

Y 0
ir

λ13(t)S1(t)S3(Yid − t)λ34(Yid − t)δiddt

4.4.4 Imputation of Missing Covariates

Many methods can be used to perform the covariate imputation. For a detailed discus-

sion of imputation methods, we refer the reader to Little and Rubin (2002). Chained

equations is one popular approach to imputation in which we specify regression models

for each covariate with missingness and impute each covariate one-by-one (Van Buuren

et al., 2006).

A modification of chained equations proposed in Bartlett et al. (2014) uses the struc-
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ture of the outcome model (rather than a simple regression model) to obtain the imputa-

tion distributions. We use this approach in our simulations and data example. Let X(p)

denote the pth covariate in X and X(−p) denote all but the pth covariate. Under MAR

assumptions (as defined in Little and Rubin, 2002), we impute each X(p) with missingness

from its full conditional distribution, which is proportional to l(θ(t)|D)f(X(p)|X(−p);ψ(t)),

where f(X(p)|X(−p);ψ(t)) is the conditional distribution of X(p) given X(−p). This ex-

pression is viewed as a function of X(p), treating all other imputed variables as fixed and

using estimated values of θ and ψ.
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4.5 Estimating Standard Errors

The EM and MCEM algorithms provide an estimate of θ, but they do not readily pro-

vide corresponding standard errors. Many methods have been explored in the literature

for estimating standard errors for parameters estimated using an EM algorithm. Some

methods involve l(θ|D) and its derivatives (e.g. Louis, 1982). Bootstrap methods are also

popular. This approach is commonly used to estimate standard errors for the CPH cure

model, and we use this approach for estimating standard errors for the EM algorithm in

our simulations (Sy and Taylor, 2000).

A similar bootstrap approach can be used to estimate the standard errors from the

MCEM algorithm, but we do not recommend this approach due to the relative slowness

of the MCEM fitting algorithm. The usual approach for estimating standard errors after

an MCEM algorithm estimation of θ is a generalization of Louis’s method proposed in

Wei and Tanner (1990) with:

I(θ) = − 1

M

M∑
m=1

D2l(θ|D(t,m))

D2θ
− 1

M

M∑
m=1

(
Dl(θ|D(t,m))

Dθ

)2

+

(
1

M

M∑
m=1

Dl(θ|D(t,m))

Dθ

)2

where D(t,1), . . . , D(t,M) are the M imputed versions of D from the last iteration of the

MCEM algorithm. The estimated covariance matrix for θ̂ is I(θ̂)−1. This approach is

usually implemented using large M for the last few iterations of the model fitting al-

gorithm. This approach requires us to directly compute first and second derivatives of

l(θ|D) with respect to θ, which may not be convenient. Additionally, in the proposed

MCEM algorithm, the M imputations at a given iteration depend on the M imputations

from the previous iteration, so we cannot easily change the value of M across iterations.

As an alternative to the “standard” approach for estimating standard errors, we pro-

pose a post-processing method (below) to obtain proper multiple imputations of D. After

fitting the multistate cure model to each imputed dataset separately, we can then use

Rubin’s multiple imputation combining rules to obtain standard errors that correctly

account for the uncertainty related to the missing data (Little and Rubin, 2002). This

approach is convenient because 1) it does not require us to use large M for any iterations

and 2) it does not require us to directly compute derivatives of the observed data log-

likelihood. In simulations (not shown), we found similar performance under our proposed
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estimation method and the approach proposed in Wei 1990. However, the post-processing

step is important, and skipping the post-processing resulted in undercoverage of multi-

state cure model parameters.

We propose the following method to obtain proper multiple imputations of D us-

ing the (improper) multiple imputations obtained within the MCEM algorithm. Our

goal is to obtain M independent draws from f(D(mis)|D(obs)), which are our proper

multiple imputations. At the end of the MCEM algorithm, we have M independent

draws from f(D(mis)|D(obs); θ(t)), where θ(t) is the estimate of θ at the last iteration. Let

D(t,1),D(t,2), . . . ,D(t,M) denote the imputations at the final iteration t of the MCEM al-

gorithm. We can obtain M approximate draws from f(D(mis)|D(obs)) by performing the

following for each D(t,m). [Step 1]: Estimate θ on a bootstrap sample of the most recent

D(m). Since D(m) contains no missingness, this estimation is easy to perform. This re-

sults in an approximate draw of θ from f(θ|D(m)) under a flat prior (Little and Rubin,

2002). [Step 2]: Using the draw of θ, obtain an updated imputation D(m) of D as de-

scribed in Section 4.4. [Step 3]: Repeat Steps 1-2 several times. We can then use these

proper multiple imputations of D for variance estimation. We provide some theoretical

justification for this approach in Appendix H.
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4.6 Prediction

We can use the multistate cure model fit to estimate the probability that a subject

will be in a particular state at time t given that subject’s baseline predictors. These

probabilities can be useful for predicting prognosis or exploring the potential impact

of different treatments. Below, we provide expressions for estimating state occupancy

probabilities over time given only baseline covariate information. Then, we provide similar

expressions that also incorporate some limited post-baseline follow-up.

State Occupancy Probabilities Given Baseline Covariates

We are interested in estimating quantities related to the unmeasured (or incompletely

measured) variables, Tr and Td. While cure status theoretically exists at baseline, it is not

observed at the baseline time. Thus, we assume this is unknown for prediction. Instead,

we will only assume that the baseline predictors, X, are known. We recall that Tr is

defined as infinity when G = 0, so we have P (Tr < t|X,G = 0) = 0. Using the structure

of the multistate cure model, we derive the following probabilities, which sum to 1 for a

given t:

P (Tr < Td < t|X) = P (G = 1|X)

∫ t

0

[1− S3(t− Tr)]λ13(Tr)S1(Tr) dTr

P (Tr < t < Td|X) = P (G = 1|X)

∫ t

0

S3(t− Tr)λ13(Tr)S1(Tr) dTr

P (Tr > t, Td > t|X) = P (G = 1|X)S1(t) + P (G = 0|X)S2(t)

P (Td < Tr, Td < s|X) = P (G = 1|X)

∫ t

0

λ14(Td)S1(Td) dTd + P (G = 0|X)(1− S2(t))

These expressions can be calculated using numerical integration and a multistate cure

model fit. We can estimate these probabilities for different values of t to create probability

curves over time.
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State Occupancy Probabilities Given Baseline Covariates and

Alive, Non-Recurrent at Time t∗

Suppose now that we know the subject is alive and non-recurrent at time t∗. We then

want to estimate the state occupancy probabilities at time s ≥ t∗. For s ≥ t∗, we have

that:

P (Tr < Td < s|X,Td > t∗, Tr > t∗) =
π1(s)− π1(t∗)

π3(t∗)
C(t)

P (Tr < s < Td|X,Td > t∗, Tr > t∗) =
π2(s)− π2(t∗)

π3(t∗)
C(t)

P (Tr > s, Td > s|X,Td > t∗, Tr > t∗) =
π3(s)

π3(t∗)
C(t) +

S2(s)

S2(t∗)
(1− C(t))

P (Td < Tr, Td < s|X,Td > t∗, Tr > t∗) =
π4(s)− π4(t∗)

π3(t∗)
C(t) +

S2(t∗)− S2(s)

S2(t∗)
(1− C(t))

where

C(t) = P (G = 1|X,Td > t∗, Tr > t∗) =
π3(t∗)P (G = 1|X)

π3(t∗)P (G = 1|X) + S2(t∗)P (G = 0|X)

State Occupancy Probabilities Given Baseline Covariates and

Alive at Time t∗ with Prior Recurrence

Suppose that we know the subject is alive at time t∗ and had a prior recurrence at time

t0 ≤ t∗. We then want to estimate the state occupancy probabilities at time s ≥ t∗. For

s ≥ t∗, we have that:

P (Tr < Td < s|X,Td > t∗, Tr = t0) =1− S3(s− t0)

S3(t∗ − t0)

P (Tr < s < Td|X,Td > t∗, Tr = t0) =
S3(s− t0)

S3(t∗ − t0)

P (Tr > s, Td > s|X,Td > t∗, Tr = t0) =0

P (Td < Tr, Td < s|X,Td > t∗, Tr = t0) =0
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4.7 Simulation Study

4.7.1 Simulation 1: Bias, Efficiency, and Coverage of Multistate

Cure Model Parameters

We simulate 500 datasets with 2000 subjects each under a multistate cure model with two

bivariate normal covariates (standard normal with correlation of 0.5) and Weibull baseline

hazards. We then generate cure status using expit(P (Gi = 1|X)) = 0.5 + 0.5X1 + 0.5X2.

For cured subjects, we simulate a death time using a proportional hazards model with

Λ0
24(t) = 0.002t1.4. For non-cured subjects, we generate time to recurrence, time to

death from other causes, and time to death after recurrence with Λ0
13(t) = 0.005t2,

Λ0
14(t) = 0.002t1.4, and Λ0

34(t) = 0.08t1.9 respectively. These baseline hazards were chosen

to mimic relative event rates that we might expect to see in real data. We may expect

that the rate of death from other causes will be low relative to the rate of recurrence.

Additionally, we may expect that the death rate after recurrence is very high relative to

both the rate of death from other causes and the rate of recurrence. For all transitions,

β = (0.5, 0.5)T . We simulate event times such that the hazards for the 1→ 4 and 2→ 4

transitions are equal.

We consider three simulation scenarios: 1) no covariate missingness or unequal follow-

up, 2) covariate missingness, and 3) unequal follow-up. For scenarios 1 and 2, an outcome

censoring time was generated from U(10, 80). This provides sufficient follow-up so that

a clear plateau can be observed in the Kaplan-Meier plot of time to recurrence, allowing

the cure rate to be well-estimated. For scenario 3, censoring time for death was generated

from U(10, 80). For all but the first 750 subjects, we impose an earlier U(10, 40) censoring

time for recurrence. We use these simulated values to determine the observed data for

each subject. This leads to roughly 25% of the subjects needing imputation for unequal

censoring. For scenario 2, we impose ∼ 30% MCAR missingness in X2. In all scenarios,

we assume subjects still at risk for recurrence after time 50 are cured. This value was

chosen as to point in which the Kaplan-Meier plots for time to recurrence show a clear

plateau, indicating no more recurrence events are observed after that point.

For each simulated dataset, we fit a multistate cure model using the proposed EM

algorithm (scenario 1) or the MCEM algorithm (scenarios 2 and 3). For the MCEM
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algorithm, we use M = 10. Within each scenario, we consider different assumptions

regarding baseline hazards (Weibull or Cox) and restrictions for the 1 → 4 and 2 → 4

transition hazards. Simulations using the MCEM algorithm and Cox baseline hazards

used at least 50 iterations under Weibull baseline hazards and then switched to 50 it-

erations under Cox baseline hazards. All other simulations used 100 iterations of the

EM/MCEM algorithm. Variances of the parameter estimates from the EM algorithm are

estimated using 50 bootstrap samples. Variances from the Monte Carlo EM algorithm are

obtained using the Rubin’s rules-based approach described in Section 4.5 with 5 itera-

tions of post-processing. Unequal censoring imputation under Weibull and Cox baseline

hazards use the rejection sampling method and Metropolis-Hastings method respectively.

We then compute the bias, empirical variance, and coverage rates of the multistate cure

model parameter estimates across the 500 datasets. We also record the median run time

and the number of simulations with numerical issues (non-converging M-Step or difficulty

with variance estimation) for each scenario.

Tables 4.2-4.3 show the results. When we assume Λ14(t) = Λ24(t) under Weibull

or Cox baseline hazard assumptions, the proposed algorithms result in essentially unbi-

ased parameter estimates with nominal coverage rates in all scenarios. When we assume

Λ0
14(t) = Λ0

24(t), we again see good bias and coverage properties under Weibull or Cox

baseline hazards for scenarios 1 and under Weibull baseline hazards for scenario 2 and

3. For scenarios 2 and 3 under Cox baseline hazards, we see increased bias and/or un-

dercoverage for the parameters related to the 1 → 4 and 2 → 4 transitions and the

logistic regression. When we assume Λ14(t) ∝ Λ24(t), we generally obtain good bias and

coverage properties for all failure time model parameters. For the intercept in the logistic

model, we tend to see some undercoverage, particularly when we assume Cox baseline

hazards and when we have unequal follow-up. We explore possible causes of this issue in

Appendix I. When we do not restrict Λ14(t) and Λ24(t), we obtain good bias and co-

variate properties in scenario 1 under Weibull baseline hazards, but we see increased bias

and undercoverage in all other settings. Failing simulations provide additional evidence

of numerical instability. Overall, the proposed algorithms can provide good numerical

properties in all three scenarios when the assumptions for the 1 → 4 and 2 → 4 haz-

ards are sufficiently restrictive. When the restrictions are relaxed (particularly when the

baseline hazards are not equal), we can run into numerical problems, and these problems
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tend to be greater under Cox baseline hazards and when we have unequal follow-up.
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Table 4.3: Multistate Cure Model α Estimates using Proposed Methods

Results across 500 simulations are presented using the following notation: Bias (Empirical
Variance) Coverage of 95% Confidence Interval, each multiplied by 100. The number of
simulations (out of 500) with numerical issues and the median run time per simulation
are also shown.

Baseline 2 → 4, 1 → 4 Logistic Model* # Failed Run Time
Hazard Assumption Intercept X1 X2 (out of 500) (mins/sim)

Scenario 1: No Covariate Missingness or Unequal Follow-up

Weibull Λ14(t) = Λ24(t) 0 (0.33) 93 0 (0.42) 95 0 (0.44) 94 0 2.02
Weibull Λ0

14(t) = Λ0
24(t) 0 (0.34) 94 0 (0.51) 94 0 (0.51) 94 0 2.12

Weibull Λ14(t) ∝ Λ24(t) 0 (0.59) 93 0 (0.41) 95 0 (0.45) 95 0 2.07
Weibull None 1 (0.71) 93 0 (0.49) 96 0 (0.51) 97 46 2.16

Cox Λ14(t) = Λ24(t) 0 (0.33) 93 0 (0.42) 97 0 (0.44) 95 0 7.68
Cox Λ0

14(t) = Λ0
24(t) 0 (0.34) 93 0 (0.51) 95 0 (0.52) 95 0 8.04

Cox Λ14(t) ∝ Λ24(t) 1 (0.89) 84 0 (0.43) 94 0 (0.48) 95 0 7.98
Cox None 11 (0.37) 50 2 (2.64) 60 2 (2.83) 64 1 8.46

Scenario 2: Covariate Missingness

Weibull Λ14(t) = Λ24(t) 0 (0.32) 96 0 (0.44) 97 0 (0.60) 95 0 5.65
Weibull Λ0

14(t) = Λ0
24(t) 0 (0.33) 96 0 (0.54) 97 0 (0.70) 95 1 5.71

Weibull Λ14(t) ∝ Λ24(t) 0 (0.63) 90 0 (0.47) 97 0 (0.60) 95 0 5.73
Weibull None 2 (0.72) 89 0 (0.59) 95 0 (0.73) 93 141 5.57

Cox Λ14(t) = Λ24(t) 0 (0.32) 96 0 (0.46) 96 0 (0.60) 95 0 27.5
Cox Λ0

14(t) = Λ0
24(t) 0 (0.33) 94 1 (0.58) 96 -2 (0.71) 93 0 27.3

Cox Λ14(t) ∝ Λ24(t) 1 (1.59) 81 1 (0.50) 96 -3 (0.60) 94 0 27.4
Cox None 6 (0.63) 80 -2 (2.15) 61 -2 (2.28) 67 82 26.7

Scenario 3: Unequal Follow-up

Weibull Λ14(t) = Λ24(t) 0 (0.35) 96 0 (0.51) 95 0 (0.48) 96 0 8.49
Weibull Λ0

14(t) = Λ0
24(t) 0 (0.35) 96 0 (0.64) 95 0 (0.63) 94 0 8.61

Weibull Λ14(t) ∝ Λ24(t) 0 (0.63) 92 0 (0.54) 94 0 (0.51) 96 0 8.56
Weibull None 3 (0.69) 92 0 (0.66) 95 0 (0.64) 93 102 8.58

Cox Λ14(t) = Λ24(t) -2 (0.35) 94 1 (0.53) 93 1 (0.48) 95 0 18.3
Cox Λ0

14(t) = Λ0
24(t) 4 (0.43) 87 -2 (0.77) 93 -2 (0.81) 90 0 18.5

Cox Λ14(t) ∝ Λ24(t) 5 (1.95) 74 -2 (0.60) 94 -2 (0.57) 94 0 18.5
Cox None 4 (0.70) 83 -1 (2.65) 53 -2 (2.44) 60 19 17.8
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4.7.2 Simulation 2: Multistate Cure Model Estimates with

More Covariates

In the second set of simulations, we simulate 500 datasets with 2000 subjects each. Each

dataset contains 10 multivariate normal covariates with correlations of 0.5 for each pair.

We then fit four different multistate cure models to the simulated data with different

baseline hazards (Weibull and Cox) and different assumptions about the 2 → 4 and

1 → 4 transitions (equal hazards and no restrictions) using 100 iterations of the EM

algorithm. Standard errors are estimated using 50 bootstrap samples.

Figure 4.2 presents the bias and coverage for the estimated θ from each model fit.

When we assume Λ24(t) = Λ14(t), we obtain essentially unbiased parameter estimates

with nominal coverage under both Weibull and Cox baseline hazard assumptions. When

we assume Weibull baseline hazards and no 2→ 4 and 1→ 4 hazard restrictions, we see

some increased bias and overcoverage for estimating 1→ 4 parameters, but otherwise we

have good bias and coverage properties. However, we do see evidence of model instability

as 119 out of the 500 simulations had numerical issues. When we assume Cox baseline

hazards and no 2 → 4 and 1 → 4 hazard restrictions, we see substantial bias and/or

undercoverage, particularly in estimating β24, β14 and α. As in Simulation 1, we see

evidence of estimation instability in general when we place no restrictions on the hazards

for the 2→ 4 and 1→ 4 transitions.
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Figure 4.2: Bias and Coverage of Multistate Model Estimates with Ten Covariates
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4.8 Application to Head and Neck Cancer Data

We consider again consider the head and neck cancer data discussed in previous chapters,

but for this analysis, we have obtained an updated version of the dataset containing data

N=1519 patients treated for head and neck squamous cell carcinoma (HNSCC).

After treatment, patients were followed for recurrence and death. Covariate informa-

tion was also collected at baseline. We are interested in studying the association between

these covariates and the time to HNSCC recurrence and death after treatment. Addition-

ally, it is been well-established that some head and neck cancer patients can be cured of

their cancer through their primary treatment, and we are interested in identifying factors

related to the underlying cure probability (Taylor, 1995; Grau et al., 1997; Cognetti et al.,

2008). The analysis of an earlier version of these data presented in Chapter II explores

time to recurrence and cure probability in a Cox proportional hazards cure model, but

this analysis does not incorporate death information.

Missing data, however, poses an additional complication. For many patients (62.3%),

follow-up for recurrence was substantially shorter than follow-up for death, resulting in

unequal follow-up of recurrence and death for many subjects. Also, HPV status was

unavailable for 50.1% of the subjects, and a small amount of missingness was present in

other study variables. Table 4.4 provides descriptives of the analytical sample. We re-

stricted our analyses to subjects with the following cancer sites: oropharynx, oral cavity,

larynx, and hypopharynx. We further restricted these analyses to subjects that appeared

to clear their cancer through the initial treatment. As a result, we excluded 193 subjects

with persistent disease from our analysis, resulting in our dataset of size N=1519. Deaths

were observed for 556 (36.6%) of subjects, and recurrences were observed for 354 (23.3%)

of subjects. Median survival was 129 months [95% CI (108, 142)], and median follow-up

time for death was 65.6 months [95% CI (62.9, 72.5)]. The median follow-up time for

recurrence was 47.2 months [95% CI (38.4, 48.0)]. Table 4.4 provides descriptives of the

analytical sample. Table 4.5 provides a breakdown of the observed outcome information.

We assume that subjects still at risk for recurrence and death at 80 months are cured

(starting in State 2). We have a large portion of the subjects with unequal follow-up for

recurrence and death. Additionally, baseline cure status is unknown for many subjects.
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Table 4.4: Characteristics of Study Patients at HNSCC Diagnosis

N (%) or Missing N (%) or Missing
Characteristic Mean (SD) N (%) Characteristic Mean (SD) N (%)

Age at Diagnosis 59.5 (11.4) Comorbidities 4 (0.2)
Cancer Stage 0 (0) None 387 (25.4)

I/Cis 245 (16.1) Mild 667 (43.9)
II 183 (12.0) Moderate 318 (20.9)
III 222 (14.6) Severe 143 (9.4)
IV 869 (57.2) Cancer Site 0 (0)

Cigarette Use 28 (1.8) Larynx 334 (21.9)
Never 352 (23.1) Hypopharynx 61 (4.0)
Current 673 (44.3) Oral Cavity 509 (33.5)
Former 466 (30.6) Oropharynx 615 (40.4)

HPV Status 761 (50.1) Gender 1 (0.06)
Negative 404 (26.5) Female 386 (25.4)
Positive 354 (23.3) Male 1132 (74.5)

Table 4.5: Observed Outcome Information for HNSCC Dataset

N (% of 1519)

Initial State
State 1 354 (23.3)
State 2 160 (10.5)
Unknown 1005 (66.1)

Observed Transition
Recurrence

1→ 3 354 (23.3)
Death

3→ 4 287 (18.8)
2→ 4 22 (1.4)
1→ 4 0 (0)
1 or 2 (Unknown)→ 4 247 (16.2)

Unequal Follow-up
No 563 (37.0)
Yes 956 (62.9)

Figure 4.3 provides a visual display of the unequal follow-up in this dataset. The

black bars represent follow-up for death, and the red and blue dots indicate recurrence

censoring and events respectively. Censoring of recurrence time often occurs at yearly

check-ups, resulting in the banded pattern. However, observed recurrences do no follow

this banded pattern. We notice that for many subjects, there is a substantial difference

in follow-up for recurrence and death, so the method for handling unequal follow-up is

particularly important. Additionally, we notice that there are some (6) subjects with

very late observed recurrences among the subjects with recurrence events. The general

rule is that primary recurrences do not usually happen for head and neck cancer after
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60 months past treatment (Taylor, 1995; Grau et al., 1997). We were initially concerned

that these subjects were not experiencing recurrence of the primary tumor, but review

of the medical records does not provide enough evidence to rule out a classification of

primary recurrence. Figure 4.4 provides the Kaplan-Meier estimator applied to the time

to recurrence data. The red vertical lines indicate recurrence events. We can see that,

although there are a few late events, the majority of the events occur prior to 60 months,

and very few occur after 80 months.

Figure 4.3: Plot of Observed and Censored Recurrence Times
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Figure 4.4: KM Plot of Time to Recurrence
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We fit a multistate cure model assuming Weibull baseline hazards and equal 1 → 4

and 2 → 4 hazards using 100 iterations of the MCEM algorithm. A particularly tricky

element of the multistate cure model is that subjects experiencing the 1 → 4 transition

always have missing cure status. This means that there are no known events for that

transition, making estimation for that transition particularly difficult. We assume that

the hazards for the 1 → 4 and 2 → 4 transitions are equal, which greatly improves our

ability to estimate model parameters. Missing data were imputed using the method pro-

posed in Bartlett et al. (2014) as described in Section 4.4.4. Unequal follow-up was

handled using the approach described in Section 4.4.2. Standard errors were estimated

by treating the most recent imputations as proper imputations (after post-processing)

and estimating variance within each imputed dataset using 50 bootstrap samples. Ru-

bin’s rules were then used to obtain the final estimates for the standard errors.

Figure 4.5 presents the results of the multistate cure model fit to the head and neck

cancer dataset. Higher cancer stage and HPV negativity were associated with higher rates

of recurrence for non-cured subjects. Greater age, higher cancer stage, worse comorbidi-

ties, and increased smoking history were associated with higher rates of death from other

causes for both cured and non-cured subjects. Higher cancer stage and increased smok-

ing history were associated with higher rates of death after recurrence, and larynx site

was associated with lower rates of death after recurrence compared to oral cavity cancer.

Higher cancer stage and HPV negativity were associated with lower probabilities of being

cured by treatment.

One way to evaluate the convergence of an EM algorithm is by plotting the observed

data log-likelihood across iterations of the algorithm. We expect the observed data log-

likelihood to increase and then flatten out once convergence has been reached. In the case

of the Monte Carlo EM algorithm, we can obtain an estimate of the observed data log-

likelihood by taking the mean of the complete data log-likelihood across the imputations

of the data at a given iteration. With few imputations (we use 10), this is a noisy

estimate of the observed data log-likelihood, so the estimated observed data log-likelihood

may jump around the true observed data log-likelihood curve. Figure 4.6 shows the

estimated observed data log-likelihood. The estimate appears to stabilize around iteration

20 and then follow a flat line with noise. This suggests that the algorithm has adequately

converged.

107



Figure 4.5: Multistate Cure Model Fit to Head and Neck Data
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Figure 4.6: Estimation of Observed Data Log-Likelihood
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While we can develop methods to fit the multistate cure model, it is important to

evaluate whether the model itself is well-specified for a particular dataset. Figure 4.7

presents some goodness of fit diagnostics for the multistate cure model fit to the head and

neck cancer data. Figure 4.7a compares the Kaplan-Meier estimate of Overall Survival

with the model-predicted survival curve. The model-predicted curve is the average of

predicted survival curves for each individual. Each individual’s predicted survival curve

is an average of predicted survival probabilities across the 10 imputed datasets from the

Monte Carlo EM algorithm. The survival probability at time t given the subject’s co-

variate values can be calculated using the expressions in Section 4.6. The multistate

cure model fit does an excellent job at predicting the marginal survival probability. Fig-

ure 4.7b displays a Cox-Snell diagnostic plot. The Cox-Snell residuals are calculated as

ri = −log(P (Td > Yd|X)) for each subject, where P (Td > Yd|X) is the average of the

estimated survival probability for subject i at Yid across the 10 imputed datasets. If the

model fits well, we expect these residuals to be exponentially-distributed. We then use

the Kaplan-Meier method to estimate a cumulative hazard function with event time ri

and event indicator δid for each subject. If the residuals are exponentially-distributed, we

expect the cumulative baseline hazard to lie on the y = x line. This plot again indicates

that the multistate cure model fits these data well.
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Figure 4.7: Goodness of Fit Diagnostic Plots
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(b) Cox-Snell Diagnostic Plot
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Once we have established that the model fit has converged and appears reasonable

for the data, we can use the model to predict outcomes for new subjects given only

the baseline covariates. We note that cure status is not known at baseline. We can

use the expressions in Section 4.6 to estimate the probabilities of different outcome

events given the subject’s baseline characteristics. Figure 4.8 shows the predicted state

occupancy probabilities over time for a subject with particular baseline characteristics.

We note that other multistate cure model specifications could have been made. For

Figure 4.8: Predicted State Occupancy Probabilities

Male 60-year-old with Stage 4 Oropharyngeal Cancer, Mild Comorbidities, and No His-
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this dataset, we ran into numerical issues when we tried to relax the assumption of

equal 1 → 4, 2 → 4 transition hazards to equal baseline hazards. This is probably due

to the large number of predictors included in the model for each transition along with

the large amount of missing data. Additionally, imputation of the missing covariates

proceeded only using the covariates in the final model fit, but information regarding p16

mutations for oropharynx subjects was also available, and it was highly correlated with

observed HPV status in these patients. When we incorporate the p16 information into

the imputation of HPV status within the MCEM algorithm, we obtain a very similar

model fit as in Figure 4.5. An additional modification to this model would include

interactions between HPV status and cancer site, as the effect of HPV status may be

believed to differ across site. A model including a full site-HPV status interaction ran

into numerical troubles due to the small number of subjects with the hypopharynx

subsite in our dataset. We were able to fit a model including a separate term for

the HPV effects within the oropharynx subsite for each transition, and the resulting

interaction terms were all non-significant. An additional assumption we made when

fitting the multistate cure model to the head and neck data was that subjects at risk

for recurrence at time = 80 months are cured. This threshold was chosen as a point

in which the Kaplan-Meier plot of time to recurrence has reached a plateau, but other

thresholds could be chosen. We repeated our analysis use a threshold of t0 = 100, and

we obtained very similar results.

While the multistate cure model may appear to be well-suited to these data, we

may wonder whether a simpler illness-death model may provide an adequate fit to

the data while avoiding some of the numerical complications. We fit the illness-death

model to the head and neck cancer data (grouping the cured and non-cured groups in

the multistate cure model). We handle missing covariates through imputation using

SMC-FCS imputation based on the illness-death model structure and we handle unequal

censoring using the imputation approach proposed (Bartlett et al., 2014).

Figure 4.9 provides the illness-death model parameter estimates. As expected,

the parameter estimates for transitions to death from other causes and death after

recurrence are very similar between the two model fits. Where we expect differences

is in the estimation for the transition from the baseline state (a grouping of the cured

and non-cured state) and the recurrence state. We may expect covariate effects for this
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transition to be a combination of the covariate effects on the probability of cure and the

recurrence rate in the non-cured subjects from the multistate cure model. We first note

that some parameter estimates, particularly the covariate effect of HPV status on the

transition to recurrence, have a lot of uncertainty. Additionally, we consider the gender

effect. The multistate cure model fit to these data suggests a possible effect of gender on

the recurrence rate in the non-cured group and a possible effect in the other direction

for the probability of cure. In the illness-death model fit, it appears that these two

effects cancel out to produce no effect of gender on the recurrence rate. This provides an

example of how the multistate cure model can provide more granular inference that may

not be attainable from the standard illness-death model. For both the multistate cure

model and illness-death models, we use the imputed datasets and parameter estimates to

obtain estimates of the Akaike Information Criterion (AIC). The AIC for the multistate

cure model (63 parameters) was 10536.98, and the AIC for the illness-death model (48

parameters) was 11876.85, indicating that the multistate cure model provides a superior

fit to these data.
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Figure 4.9: Illness-Death Model Fit to Head and Neck Cancer Data
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Additionally, the multistate cure model fit can produce very different subject-specific

predictions compared to the illness-death model. Both models can provide the proba-

bilities of being in different states (alive without recurrence, alive with recurrence, dead

before recurrence, dead after recurrence) at a given time t. We compare the predicted

probabilities for two example patients in Figure 4.10. For the first patient, the predicted

probabilities given baseline covariates are very different, and for the second patient they

are quite similar. For each patient, we also show the predicted probabilities if we also

assume that subject was known to be event-free at 4 years. For both subjects, the pre-
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dicted probabilities look quite different when we incorporate post-baseline follow-up. In

particular, the predicted probability of having a recurrence given no recurrence or death

by 4 years is much smaller for the multistate cure model. This is because this model

weights the probability of recurrence by the probability that the subject is non-cured

given the observed data. When we have observed that the subject has had no events

by time t, we have greater evidence that the subject is cured, and the recurrence rate is

therefore shrunk toward zero as time t increases. This is not the case for the illness-death

model. These two example patients provide an illustration of the advantages of using the

multistate cure model over the illness-death model for this setting in terms of prediction,

particularly when incorporating post-baseline follow-up.

Figure 4.10: Comparing State Occupancy Probabilities

Subject 1 Covariates: Female, HPV +, 46 years old, Stage III, Mild Comorbidities, Current Smoker, Oral Cavity subsite
Subject 2 Covariates: Female, HPV -, 67 years old, Stage I, Moderate Comorbidities, Never Smoker, Oral Cavity subsite
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(c) Subject 1, No Event by 4 Years
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(d) Subject 2, No Event by 4 Years
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4.9 Discussion

In the study of cancer, multistate cure models can be used to identify factors related

to the rate of cancer recurrence, the rate of death before and after recurrence, and the

probability of being cured by initial treatment. Additionally, multistate cure models can

be very useful for prediction. However, the previous method for fitting multistate cure

models requires substantial custom programming, making multistate cure models less

accessible to analysts. We are interested in developing methods for fitting multistate

cure models that can be implemented more easily and can incorporate different modeling

assumptions into the fitting procedure.

In this chapter, we proposed an Expectation-Maximization (EM) algorithm for fitting

the multistate cure model using maximum likelihood. The proposed algorithm can be

fit using standard software, can incorporate either parametric or nonparametric baseline

hazards for the state transition rates, and can integrate parameter restrictions for the

transitions to death from other causes for cured and non-cured subjects. We then pro-

pose a Monte-Carlo EM (MCEM) Algorithm for fitting the multistate cure model in the

presence of covariate missingness and/or unequal follow-up of the two outcomes, and we

provide some software.

In simulations, the proposed EM and MCEM algorithms demonstrate good bias and

coverage properties when the modeling assumptions are sufficiently restrictive. Addition-

ally, we can still see good model fitting performance when we include more covariates in

the model. When the 1 → 4 and 2 → 4 restrictions are relaxed (particularly when the

baseline hazards are not restricted to be equal), we can run into numerical problems in

some settings, suggesting that care should be taken to make reasonably restrictive mod-

eling assumptions for these transitions. Additional exploration (not shown) suggests that

these numerical issues stem from identifiability issues related to the 1 → 4 and 2 → 4

model parameters that occur when we have weaker restrictions for the two transitions.

When applying the multistate cure model to a particular dataset, we recommend fitting

a model under different assumptions about the 1 → 4 and 2 → 4 transitions and eval-

uating convergence properties and goodness of fit to determine if the 1 → 4 and 2 → 4

hazard restrictions can be reasonably relaxed. See Conlon et al. (2013) for a discussion

of goodness of fit diagnostics for multistate cure models. We explore a shrinkage-based
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method to help guard against numerical issues related to relaxing the baseline hazard

assumptions in Appendix J.

We applied the proposed MCEM algorithm to study cancer recurrence and death rates

in subjects with head and neck cancer. Higher age, worse comorbidities, and increased

smoking were associated with higher rates of death from other causes for both cured and

non-cured subjects. Increased smoking was also associated with higher rates of death

after recurrence, and larynx subsite was associated with lower rates of death after recur-

rence. HPV positive subjects had significantly lower rates of recurrence and higher rates

of cure. Higher cancer stage was significantly associated with all transition rates and the

probability of being cured.

Given the various types of imputation required, the relative advantages of the MCEM

algorithm over the Bayesian MCMC algorithm should be considered. One disadvantage

of the Bayesian approach (even if we apply our proposed imputation methods) is that

we require accept-reject methods to draw the parameters, which involves careful con-

sideration of parameter tuning, acceptance rates, and mixing. In contrast, the M Step

of the MCEM algorithm is very simple to perform. As a result, the MCEM algorithm

can perform estimation more quickly than the Bayesian MCMC. However, unlike with

Bayesian approaches, the standard errors of θ using MCEM are not readily available.

Additionally, the Bayesian approach allows the user to more directly incorporate prior

assumptions into the estimation. The relative merits of the two approaches may depend

on the data and the experience of the analyst.

As illustrated by the head and neck cancer example, multistate cure models offer in-

vestigators with an extremely useful tool for identifying factors involved in different parts

of the disease process, and they can be used for prediction for future patients and in med-

ical decision-making. Additionally, multistate cure models can be applied in a variety of

settings and are certainly not limited to the study of cancer. In this chapter, we developed

methods to make multistate cure models easier to fit in practice. Previous work focused

on the setting with fully parametric baseline hazards, and our proposed methods allow us

to choose parametric or non-parametric baselines and incorporate different assumptions

about the transitions to death from other causes. The novel imputation-based approach

for dealing with unequal follow-up proposed as part of the MCEM algorithm is not spe-

cific to the multistate cure model setting, and it can be applied in general semi-competing
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risks settings. Additionally, we propose a novel approach for obtaining standard errors

for an MCEM algorithm, which can be applied in other MCEM settings. The proposed

methods provide a convenient estimation method for fitting the multistate cure model

and increased flexibility in model specification over existing methods.

Software

Software in the form of an R package called MultiCure is available on GitHub at https://

github.com/lbeesleyBIOSTAT. This package provides functions for fitting the multistate

cure model via the proposed EM and Monte Carlo EM algorithms and for estimating

corresponding standard errors. This package also includes applications for estimating the

derived state occupancy probabilities. MultiCure includes several vignettes describing

how to use the software. Example code is also provided on GitHub. The package is also

available on request from the corresponding author (lbeesley@umich.edu).
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Chapter V

Comparison of Selection and

Shrinkage Strategies for a Multistate

Model of Head and Neck Cancer

5.1 Introduction

In medical applications, multistate models describe the rates at which individuals move

between various health states. A common model considers the times it takes subjects

to move between healthy, cancer recurrence, and death states. Multistate models have

many valuable uses in medical research. Firstly, multistate models allow us to incorporate

information from multiple event time outcomes (e.g. time to recurrence, time to death)

in a unified way. These models are well-suited to handle issues of competing risks and

recurrent events. Secondly, multistate models allow us to study which patient character-

istics are relevant to which aspects of disease progression. In a model incorporating both

recurrence and death times, we can identify factors related to time to recurrence and time

to death with and without recurrence. These models provide appealing interpretations

in terms of the disease process. Finally, multistate models are useful for making predic-

tions for new patients based on their individual characteristics, which can be incredibly

valuable for medical decision-making.

One challenge for using multistate modeling in practice is related to the large number

of parameters. Multistate models often contain many component models (which we will

call submodels). With even a modest number of covariates in each submodel, the multi-

state cure model as a whole can quickly end up with a very large number of parameters.

We can easily run into issues of overfitting and other numerical issues when fitting such
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large models in practice. As such, we would like to explore variable selection/shrinkage

methods to improve estimation for multistate models with a large number of parameters.

Many methods have been developed to deal with issues of variable selection in both the

frequentist and Bayesian context. Bayesian methods usually approach selection/shrinkage

through the specification of the prior distributions. Some common examples include spike

and slab priors and horseshoe priors (George and McCulloch, 1993, 1997; Carvalho et al.,

2009). Popular frequentist methods include ridge and LASSO penalization (Hoerl and

Kennard, 1970).

While many variable selection/shrinkage methods have been developed, it is not

known how these methods will perform in the multistate modeling context. In particu-

lar, multistate models often involve incorporating the same covariate in multiple places

in the model, resulting in highly correlated (in fact, perfectly correlated) predictors in the

multistate model as a whole. To our knowledge, this setting has not be explored in the

literature. In this chapter, we are interested in comparing how various existing

variable selection and shrinkage strategies perform in a particular multistate

modeling setting. The explored methods, however, can be applied in other multistate

modeling settings.

We focus our attention on the head and neck cancer data explored previously. For

these data, we define the time to recurrence as the time from initial treatment to the time

at which the tumor becomes observable. However, for some subjects with particularly

aggressive tumors, initial treatment never reduces the size of the tumor to a point at

which it is not observable. We call subjects that never appear to clear their initial cancer

through treatment “persistent.”

At the time of treatment, we do not know which patients are persistent and which

are not. However, imaging and other medical diagnostics shortly after treatment (for

example, in the following weeks) can be used to determine if patients have persistent

disease. In the head and neck cancer data, we classified subjects with observable tumor

within one month of treatment as being persistent, and this amounted to about 10%

of subjects. The time period used to define persistence may vary from application to

application, but we may expect that recurrences observed very soon after treatment are

evidence of persistence disease, since it takes time for an unobservable tumor to grow to

become observable.
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Our interest is in modeling time to cancer recurrence and death for the head and neck

data when some subjects are persistent. We may expect persistent subjects to behave

differently than non-persistent subjects in terms of overall survival. Additionally, per-

sistent subjects cannot experience a primary recurrence after initial treatment, because

their cancer never appeared to go away. For the head and neck dataset, we also have

subjects who were cured of their initial disease by treatment. These cured subjects, too,

would be expected to have a different survival rate than the other subjects, and they also

cannot experience recurrence. When developing a model of recurrence and death in such

a heterogeneous population, it seems intuitive to separate out these different subgroups

of subjects within the model for recurrence and death.

In this chapter, we develop a generalization of the multistate cure model that can

account for both cured and persistent subpopulations. The multistate cure model in

Conlon et al. (2013) and Chapter IV of this dissertation consists of cured and non-

cured baseline states and models the recurrence and death rates. In our proposed model,

we break the population into three non-overlapping baseline states: never appearing to

clear their cancer (persistent), cured of their cancer, and appearing to clear their cancer

but will eventually recur (non-cured/non-persistent). For the cured and persistent sub-

jects, the only possible event is death. Non-cured/non-persistent subjects can experience

recurrence and/or death.

This model formulation is useful for a variety of reasons. Firstly, the model allows

us to study survival dynamics separately for the persistent and non-persistent subjects.

Additionally, we can identify covariates related to the rate of persistence. This allows

for more granular study of covariate effects on different parts of the disease process.

Secondly, by separating out the persistent subjects from the non-cured/non-persistent

subjects, we can directly model recurrence in the group of interest (the subjects that can

have a recurrence). Thirdly, it is useful to be able to incorporate persistence information

into predictions for new patients, which may allow us to generate improved predictions.

Parameter estimation for the proposed multistate model can be straightforward when

the covariate set is not too large. Bayesian methods in Conlon et al. (2013) can be easily

extended to accommodate the modified model formulation, and the EM and MCEM al-

gorithms in Chapter IV can also be easily modified to include estimation of the added

parameters.
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In this chapter, we are particularly interested in the setting where the number of

covariates in Xi is moderate to large. In this setting, estimation methods presented in

Conlon et al. (2013) and Chapter IV can begin to break down. In this chapter, we com-

pare various parameter estimation methods that incorporate variable selection and/or

shrinkage to help improve the estimation for this particular multistate model setting.

We first describe how we can perform Bayesian estimation incorporating modifications of

standard Bayesian variable selection methods. We then propose an extension of the EM

and MCEM algorithms in Chapter IV that can fit the proposed model and incorporate

parameter shrinkage. We apply the proposed estimation methods to the head and neck

cancer data, and we compare the resulting inference across the variables selection and

shrinkage strategies.
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5.2 Model Formulation and Parameter Estimation

In Chapter IV, we developed a multistate cure model. Here, we present a generalization

of the multistate cure model incorporating persistence. The population is broken into

three baseline states: persistent, cured, and non-persistent/non-cured. Figure 5.1 shows

the multistate model structure. Solid arrows represent possible state transitions. We note

that only the non-cured/non-persistent subjects can experience a recurrence. For the non-

Figure 5.1: Diagram of Multistate Cure Model with Persistence

persistent subjects, the model is identical to the multistate cure model in Chapter IV

with a logistic regression for the probability of being non-cured (in this setting, given

non-persistent) and Cox regression models for the state transition rates. We add a Cox

regression model for the death rate in the persistent subjects and a logistic regression for

the probability of persistence.

Let Gi be a categorical variable indicating the baseline state. As before, let Gi = 0

indicate cured. For persistent subjects, define Gi = 2, and define Gi = 1 for non-

cured/non-persistent subjects. All subjects are known to be either Gi = 2 or Gi 6= 2. For

subjects with observed recurrences, we know Gi = 1. Non-persistent subjects without an

observed recurrence will have unknown Gi. Let Xi be a set of covariates, and for the sake

of simplicity, we will assume that Xi is used as the set of predictors for all regressions.

For now, we will assume that the covariates are fully observed and that we do not have

unequal censoring. We will also assume that recurrence time is not included in the model

from recurrence to death, although the proposed methods can be easily adapted to allow

for this. We will further assume that we have parametric baseline hazards for each one

of the transitions. We define Td, Yir, δir, Yid, and δid as in Chapter IV. For non-cured,
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non-persistent subjects, Tr is the underlying recurrence time. For persistent and cured

subjects, Tr is defined as infinity. Using notation developed in Chapter IV, we have

the following models:

logit(P (Gi = 2|Xi)) =ω0 + ωT1 Xi

logit(P (Gi = 1|Xi, Gi 6= 2)) =α0 + αT1Xi

λ13(t) =λ0
13(t) exp(βT13Xi)

λ14(t) =λ0
14(t) exp(βT14Xi) = λ24(t)

λ34(t− Tir) =I(t > Tir)λ
0
34(t− Tir) exp(βT34Xi)

λ54(t) =λ0
54(t) exp(βT54Xi)

We call these different Cox and logistic regression models the “submodels,” which together

form the multistate model of interest. Rearranging the logistic regressions, we have that

P (Gi = 2|Xi) =
eω0+ωT1 Xi

1 + eω0+ωT1 Xi

P (Gi = 1|Xi) =
1

1 + eω0+ωT1 Xi
× eα0+αT1 Xi

1 + eα0+αT1 Xi

P (Gi = 0|Xi) =
1

1 + eω0+ωT1 Xi
× 1

1 + eα0+αT1 Xi

We will use Sj(t) to denote the probability of remaining in state j for time t. Let

Λjk(t) denote the cumulative hazard for the j → k transition. The multistate modeling

assumptions result in the following complete data likelihood:

L(com) =
n∏
i=1

[
eω0+ωT1 Xi

1 + eω0+ωT1 Xi
S5(Yid)λ54(Yid)

δid

]I(Gi=2) [
1

1 + eω0+ωT1 Xi

]I(Gi 6=2)

×
[

1

1 + eα0+αT1 Xi
S2(Yid)λ24(Yid)

δid

]I(Gi=0)

×

[
eα0+αT1 Xi

1 + eα0+αT1 Xi
S1(Yid)λ14(Yid)

δid

]I(Gi=1,δir=0)

×

[
eα0+αT1 Xi

1 + eα0+αT1 Xi
S1(Yir)λ13(Yir)S3(Yid − Yir)λ34(Yid − Yir)δid

]I(Gi=1,δir=1)
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The observed data likelihood is as follows:

L(obs) =
n∏
i=1

[
eω0+ωT1 Xi

1 + eω0+ωT1 Xi
S5(Yid)λ54(Yid)

δid

]I(Gi=2) [
1

1 + eω0+ωT1 Xi

]I(Gi 6=2)

×
[

1

1 + eα0+αT1 Xi

{
S2(Yid)λ24(Yid)

δid + eα0+αT1 XiS1(Yid)λ14(Yid)
δid
}]I(δir=0,Gi 6=2)

×

[
eα0+αT1 Xi

1 + eα0+αT1 Xi
S1(Yir)λ13(Yir)S3(Yid − Yir)λ34(Yid − Yir)δid

]I(δir=1,Gi 6=2)

We notice that the complete data likelihood is very similar to the complete data

likelihood for the multistate cure model in Chapter IV, and the terms coming from

the added persistence category (terms involving ω, S5(t), and λ54(t)) can be separated

multiplicatively in both likelihoods (complete and observed) from the terms coming from

the original multistate cure model. Under distinctness of the parameters, we can estimate

ω and β54 separately from the parameters in the multistate cure model. Additionally, we

can estimate ω and the 5 → 4 failure time parameters separately from each other. This

separability property makes parameter estimation easily handled once we have methods

for fitting the standard multistate cure model.

AssumingXi is not too large and we have no covariate missingness, we can estimate the

parameters β13, β24, β34, and α by fitting a multistate cure model to the data excluding the

persistent subjects using the methods described in Chapter IV. We can then estimate

ω by fitting a standard logistic regression using the outcome I(Gi = 2), which is known

for all subjects. Similarly, we can estimate the 5 → 4 failure time parameters by fitting

a Cox regression model for (Yd, δd) directly on the subjects with Gi = 2. If we do have

covariate missingness, we can incorporate the estimation of ω and 5 → 4 parameters

into an MCEM algorithm very similar to the algorithm proposed in Chapter IV for

the standard multistate cure model. This will allow the covariate imputation to take

advantage of observed covariates for both the persistent and non-persistent subjects.

The imputation step of the MCEM algorithm will be exactly the same except, if we use

SMC-FCS (Bartlett et al., 2014) to do the covariate imputation, we will want to use the

likelihood for the proposed multistate model with persistence rather than the standard

multistate cure model. The M-Step of the MCEM algorithm can be easily modified to

include two additional regression model fits (logistic regression for I(Gi = 2) and Cox

regression for survival in persistent subjects) given the most recent imputed covariates.
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Like the maximum likelihood methods proposed in this paper, the Bayesian methods in

Conlon et al. (2013) can also be easily extended to accommodate the modified model

formulation.

In this chapter, we are particularly interested in the setting where the number of

covariates in Xi is moderate to large. In this setting, estimation methods presented in

Conlon et al. (2013) and Chapter IV can begin to break down. Through the estimation,

we are interested in making inference about parameter Θ, which consists of α, ω, β, and

baseline hazard parameters. Suppose that Xi contains p elements. Then, Θ would contain

at least 6p+2 parameters in addition to baseline hazard parameters. Even with moderate

p, this can quickly result in a large number of parameters to estimate, which can lead

to issues of overfitting and numerical problems. In this chapter, we will describe two

estimation methods that incorporate variable selection/shrinkage to improve estimation.
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5.3 Estimation using Bayesian Variable Selection

In this section, we explore Bayesian methods for parameter estimation that incorpo-

rate variable selection and/or shrinkage. Bayesian methods usually approach selec-

tion/shrinkage through the specification of the prior distributions of parameters cor-

responding to the covariate effects. We will first describe several common prior specifi-

cations in the literature, and we will describe how these priors can be easily applied to

multistate modeling in general and our proposed multistate model in particular.

5.3.1 Common Priors

Suppose θ is a subset of parameters Θ on which we want to perform some sort of selec-

tion/shrinkage. In our problem, θ may consist of parameters related to the covariates in

each submodel component of the multistate model. Let θk be a single element of θ.

We accomplish this variable selection/shrinkage by putting a prior on θk that will

shrink it toward 0 (nearly or exactly zero) when we determine that the corresponding

covariate is not “important.” We consider three popular formulations of the prior distri-

bution of θk.

Horseshoe Priors

The horseshoe prior is described in Carvalho et al. (2009) and has gained a lot of popu-

larity in the variable selection literature. The prior takes the following form:

f(θk|γk) = N(0, λ2
kσ

2)

f(λk) = Cauchy+(0, 1)

where σ2 is a tuning parameter with smaller values corresponding to greater shrinkage.

Carvalho et al. (2009) suggests using σ2 = 1, but a hyperprior can also be used. Cauchy+

indicates the half-Cauchy distribution. This prior will strongly shrink weak signals to zero

while allowing very large signals to remain large (little shrinkage). This prior has proven

very useful in the setting of sparse signals. This is called a “horseshoe” prior due to the

horseshoe shape of the density of κ (a function of λk), which is a measure of the amount

of shrinkage. Under this prior, estimation is straightforward and can proceed using a
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Gibbs Sampler in which each parameter is drawn one-by-one in an iterative algorithm.

Each parameter draw can be performed using Metropolis-Hastings methods.

Mixture of Normals Priors

In this prior formulation, we assume that θk is generated from a mixture of normal

distributions, one of which has the majority of its mass very close to 0 (called the spike)

and one of which is a more diffuse normal distribution centered around zero (called the

slab). We define a set of binary latent variables, γ, such that γk takes the value one if the

covariate associated with θk should be included in the model. γk describes the component

of the mixture distribution generating θk, where γk = 0 corresponds to the tight normal

distribution around zero. The prior takes the following form:

f(θk|γk) = (1− γk)N(0, v0) + γkN(0, v1)

f(γk) = pγkk (1− pk)1−γk

v0 is taken to be a value near 0 resulting in a tight normal distribution around zero (the

spike) and v1 is taken to be a value larger than v0 corresponding to the more diffuse normal

distribution. For now, we will treat v0 and v1 as constants, but we can put hyperpriors

on their values. We can think of pk as the prior probability that we should include the

covariate associated with θk in the model. Other formulations of this mixture of normals

prior exist (including different hyperpriors, different variance structures, etc). As with

the horseshoe prior, estimation is fairly straightforward. We treat the elements of γ as

parameters and draw their values within a “Stochastic Search” Gibbs sampling algorithm

along with other parameter values (George and McCulloch, 1993, 1997). Each individual

parameter draw can be performed using a Metropolis-Hastings draw. More details about

this prior can be found in George and McCulloch (1993), George and McCulloch (1997),

and Ishwaran and Rao (2005).

Point Mass at Zero Priors

In this formulation, we assume that θk is either from a normal distribution (called the

slab) or is exactly zero (called the spike). We can then imagine θk is generated from a

mixture of a normal distribution and a distribution with point mass at zero. We again
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define indicator γk which takes value 1 when θk is nonzero. We model

f(θk|γk) = (1− γk)I(θk = 0) + γkN(0, v1)

In Newcombe et al. (2017), v1 is treated as a hyperparameter with its own hyperprior.

In this paper, we will assume v1 is pre-specified.

Several different models for γ have been used in the literature, but they tend to directly

model the sum of the elements of γ, which corresponds to the number of covariates to

be included in the model. Hastie and Green (2012) suggests using a truncated Poisson

or negative binomial prior. Newcombe et al. (2017) suggests a prior for the sum of

γ involving the beta-binomial distribution. We might also consider a simple binomial

distribution. We will use a Bernoulli prior for γk. Assuming prior independence across

γ, this results in a binomial prior for the sum of γ as follows

f(γk) = pγk(1− p)1−γk

f(
∑

γk) ∝
∏
k

p
∑
γk(1− p)d−

∑
γk

where d is the length of γ, and p is the probability of inclusion for each covariate, assumed

to be equal for all k.

Estimation is more challenging under this prior than the other two. Unlike the other

priors, θk is restricted to be exactly zero with probability one when γk = 0. This in effect

is saying that the covariate corresponding to θk should not be included in the model,

and it reduces the size of the parameter set, θ. When we go from θk = 0 to a nonzero

value of θk (or vice versa), we are essentially changing the dimension of the parameter

set. In order to have good operating characteristics and to properly account for changes

in model dimension, a reversible jump algorithm (Green, 1995) to obtain draws of γ

and θ at each iteration of the multistate cure model fitting algorithm. Without going

into too many details here, reversible jump is a MCMC algorithm which allows us to

go explore models with different numbers of parameters/dimension. At a given iteration

of the parameter sampling algorithm, we can decide to keep the parameter set from the

previous iteration or to change the set of parameters included in the model. When no

change in dimension is made, parameter updating then comes from usual Metropolis-

Hastings draws. When we propose a change the dimension of the parameter, however, we
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need to modify the Metropolis-Hastings proposal distribution to account for the changing

dimension of the parameter set. Rather than drawing individual elements of γ and θ, we

draw the entire vectors γ and θ jointly. More details about reversible jump can be found

in Newcombe et al. (2017), Troughton and Godsill (1997), and Green (1995). We discuss

how to implement reversible jump in our setting in Section 5.3.3.

5.3.2 Applying the Priors to Our Model

When applying the standard Bayesian variable selection priors in our setting, several

issues arise. One distinguishing feature of multistate models is that it consists of many

submodels, each of which may include the same set of covariates. Therefore, the same

covariate may appear in many different parts of the model. This presents several chal-

lenges. Firstly, for the point mass at zero prior, we could draw the entire vector γ jointly,

or we could break γ up into the components corresponding to each one of the submodels.

Restated, we could perform variable selection for the entire model as a whole or for each

submodel separately. We propose performing variable selection for each submodel sepa-

rately. This allows us to avoid drawing multiple elements of γ corresponding to the same

covariate at once. Additionally, this will allow us to explore the model space more easily

as at each iteration of the reversible jump fitting algorithm, we consider small changes to

each submodel rather than a single small change to the entire model.

Bayesian variable selection methods can have problems with autocorrelation, poor

mixing, and can spread posterior weight across many very similar models when we have

many highly correlated predictors (Chipman et al., 2001). In the multistate modeling

context in which the same covariates appear multiple places in the model, we have per-

fectly correlated predictors. For usual multistate models with fully observed outcome

data (up to censoring), this may not present much of a concern since, for these models,

the parameters in each submodel can often be separated in the observed data likelihood.

This suggests that inclusion/exclusion of a variable in one submodel should not impact

the inclusion/exclusion of a variable in another submodel. In the presence of missing

data, however, the observed data likelihood may not be separable. In our setting, Gi is

unknown for non-recurrent/non-persistent subjects. We have the following observed data
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likelihood:

L(obs) =
n∏
i=1

[
eω0+ωT1 Xi

1 + eω0+ωT1 Xi
S5(Yid)λ54(Yid)

δid

]I(Gi=2) [
1

1 + eω0+ωT1 Xi

]I(Gi 6=2)

×
[

1

1 + eα0+αT1 Xi

{
S2(Yid)λ24(Yid)

δid + eα0+αT1 XiS1(Yid)λ14(Yid)
δid
}]I(δir=0,Gi 6=2)

×

[
eα0+αT1 Xi

1 + eα0+αT1 Xi
S1(Yir)λ13(Yir)S3(Yid − Yir)λ34(Yid − Yir)δid

]I(δir=1,Gi 6=2)

In the above likelihood, we cannot separate out α from the parameters in S2(t) and S1(t).

This suggests that there is the potential for correlation of parameter estimates across

submodels and, consequently, the inclusion and exclusion of covariates across submodels.

In an extreme case, we could have that a covariate bounces back and forth between being

included in each of two submodels. In our experience, this has not been too much of

a problem, but it is worth consideration. Some work has been done in the literature

to explore variable selection when we have highly correlated predictors through dilution

priors, but we will not explore these here (George, 2010).

We may also want to apply restrictions to which covariates can and cannot be included

in the model together. It is common to include categorical covariates that enter the

model through a set of dummy variables. We would like to define our priors such that a

group of related dummy variables (e.g. dummies representing cancer stage) are included

or excluded from the model jointly. Note that this issue only arises for the two spike

and slab prior formulations as the horseshoe prior does not perform variable selection.

This problem is known as “grouped” variable selection in the literature, and it has been

explored by many authors in the context of Bayesian variable selection (George and

McCulloch, 1997; Farcomeni, 2010). The methods involve breaking up the covariate set

into groups of covariates to be included/excluded jointly. We then replace γ with a vector

representing inclusion of each group of covariates into the model. We then define the spike

and slab priors in terms of this new set of latent indicators and model the individual group

inclusion indicators rather than the individual elements of γ. This allows us to ensure

that our variable selection algorithm is not exploring unintuitive models such as a model

that includes only a dummy variable for cancer stage 2 but not stages 3 and 4 (with stage

1 as the reference).
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5.3.3 Estimation

Under the horseshoe and mixture of normal priors, estimation is fairly straightforward.

As we mentioned earlier, the proposed multistate cure model with persistence is just a

multistate cure model with two additional regressions. As such, we can easily modify the

Bayesian MCMC algorithm proposed for the multistate cure model in Conlon et al. (2013)

for our generalized multistate model with persistence and substitute either a horseshoe

or a mixture of normals prior for each element of θ. For the point mass at zero prior,

however, we cannot modify the existing methods so easily.

Rather than the usual Gibbs sampling algorithm, we use a reversible jump algorithm

to jointly draw the elements of γ (or a version reflecting the covariate groups). We can

use the following algorithm.

Reversible Jump Algorithm

At each iteration of the model fitting process, we will:

(1) Use standard Metropolis-Hastings method to draw the baseline hazard parameters

and the intercepts of the logistic regressions. Standard priors without variable selection

are used for these parameters.

(2) We perform a parameter drawing step for each of the six submodels separately (re-

gressions for transitions 1 → 4, 1 → 3, 3 → 4, 5 → 4 and the two logistic regressions).

Let γs and θs represent the parts of γ and θ corresponding to the covariates in the sth

submodel. For each of the submodels, we perform the following:

(2a) Draw candidate γ∗s and θ∗s from the reversible jump proposal distribution

q(γ∗s , θ
∗
s |γs, θs) where γs and θs are the current values. We choose a common specifi-

cation in the literature as follows: q(γ∗s , θ
∗
s |γs, θs) = q1(θ∗s |γ∗s )q2(γ∗s |γs).

Given the current value of γs, we first draw γ∗s using the following rules. At each

iteration of the reversible jump algorithm, we can do one of the following moves: add

a covariate into the model, remove a covariate, swap in a covariate for one already in

the model, and keep the covariate set the same (called a null move). Note that we can

incorporate grouping by performing the following for groups of covariates rather than

individual covariates. At a particular iteration of the algorithm, we choose our move

type as in Table 5.1.
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Table 5.1: Proposal Distribution for γ∗s

γs Possible Moves Probability
No covariates included Add a covariate 1/6

Null (keep the same) 5/6
All covariates included Subtract a covariate 1/6

Null (keep the same) 5/6
else Add a covariate 1/6

Subtract a covariate 1/6
Swap covariates 1/6

Null (keep the same) 1/2

For non-null moves, we then randomly select which covariate/s to move with equal

probabilities among candidate covariates. Set θ∗s = θs. If we subtract a covariate, we

then set the corresponding elements of θ∗s to zero. If we add a covariate, we draw from a

normal distribution centered at the previous value to update the corresponding element

of θ∗s . For null moves, we re-draw all nonzero elements from normal distributions centered

at the previous values.

(2b) Accept draw (γ∗s , θ
∗
s) with probability

Prob(Accept Draw) =
P (Data|γ∗s , θ∗s)f(θ∗s |γ∗s )f(γ∗s )

P (Data|γs, θs)f(θs|γs)f(γs)
× q(γs, θ|γ∗s , θ∗s)
q(γ∗s , θ

∗
s |γs, θs)

(2c) If the candidate move was Add, Subtract, or Swap, draw new parameter values for

each of the covariates included in the model conditioning on the given model (no change

in model dimension).

(3) Draw G for subjects with G unknown. We can use the same distribution as in Conlon

et al. (2013).
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5.3.4 Inference

After we run our MCMC algorithms to fit the model with variable selection through one

of the spike and slab priors, we may take either of two general approaches when it comes

to inference. The approach taken should depend on the motivations for performing vari-

able selection.

Suppose we are very interested in identifying the “best” model according to some

metric. This suggests that our goal is really to identify one or a few sets of covariates

which together are most strongly associated with the outcome. This might be our goal

if we are, for example, building a model for prediction purposes. In this case, we can

determine which combination of variables (value of γ) has the highest posterior probabil-

ity or choosing a model formulation including all covariates that have posterior inclusion

probabilities (posterior probability that the corresponding element of γ equals 1) over a

particular threshold (often 0.5). We then take the corresponding model formulation and

use that as “the model” for inference.

Suppose instead that our goal is to make inference on individual parameters associated

with covariates and identify individual covariates which seem to be “important.” In this

case, we are less interested in identifying the “best” model and more interested in getting

a good sense of important covariates and their parameter values. In this case, we can use

Bayesian model averaging, which makes inference about the model parameter by aver-

aging across all the different values of vector γ (all the different covariate combinations)

drawn within the MCMC algorithm (Hoeting et al., 1999). Under the horseshoe prior,

we do not introduce the latent variables γ into the modeling framework, and inference

proceeds directly using the posterior draws of θ as usual.
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5.4 Maximum Likelihood Estimation with Shrinkage

As discussed earlier, we can easily adapt the EM and MCEM algorithms developed in

Chapter IV to fit the multistate cure model with persistence. In this section, we describe

how we can incorporate shrinkage (in particular, ridge penalties) into the estimation. We

consider the following ridge-penalized complete data log-likelihood:

log(L(ridge)(θ)) = log(L(obs)(θ)) +
∑
jk

Mjk||βjk||22 +Mα||α1||22 +Mω||ω1||22

where jk indexes the possible state transitions and M = (Mjk,Mα,Mω) is the set of

penalty tuning parameters. Here, || ∗ ||22 represents the squared l2 norm. We impose

shrinkage on the covariate effects for each submodel, and we allow the shrinkage parameter

to vary by submodel. We recall that the E-Step of the EM algorithm involves taking the

expectation of the complete data log-likelihood with respect to the missing data. The

imputation step of the MCEM algorithm involves drawing imputations of the missing

data. Both of these steps condition on the most recent estimate of θ. Therefore, the

expectation and imputation steps of the EM and MCEM algorithm will not be impacted

by the ridge penalty given the current estimate of θ.

The penalty will impact the maximization step of the EM and MCEM algorithms.

Here, we will focus on the EM algorithm. The MCEM algorithm is similar. Defining pi as

in (4.2) from Chapter IV, we obtain the following expected complete data log-likelihood:

Q(θ|θ(t)) =
n∑
i=1

(1− pi)I(Gi 6= 2) log [P (Gi = 0|Gi 6= 2)]

+ piI(Gi 6= 2)log [P (Gi = 1|Gi 6= 2)]

+ (1− pi)I(Gi 6= 2) log
[
λ24(Yid)

δid exp{−Λ24(Yid)}
]

+ piI(Gi 6= 2) log
[
λ14(Yir)

δid(1−δir) exp{−Λ14(Yir)}
]

+ piI(Gi 6= 2) log
[
λ13(Yir)

δir exp{−Λ13(Yir)}
]

+ δir log
[
λ34(Yid − Yir)δid exp{−Λ34(Yid − Yir)}

]
+ I(Gi = 2) log

[
λ54(Yid)

δid exp{−Λ54(Yid)}
]

+ I(Gi 6= 2) log [P (Gi 6= 2)] + I(Gi = 2)log [P (Gi = 2)]
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+
∑
jk

Mjk||βjk||22 +Mα||α1||22 +Mω||ω1||22 (5.1)

As before, the terms involving α, ω, and β separate, so we can maximize (5.1) with

respect to α, ω, and β separately. The terms involving α resemble the log-likelihood for a

logistic model with pi as the outcome. We can estimate α by fitting a logistic regression

to pi (excluding the subjects with Gi = 2) and applying a ridge penalty to α1. We can

estimate ω by fitting a logistic regression to I(Gi = 2) and applying a ridge penalty to

ω1.

As in Chapter IV, we can perform the maximization for β by fitting a single survival

model to an augmented version of the data. We consider an augmented version of the

data that contains five rows for each subject (one for each transition in the multistate

cure model). Each row contains a variable indicating the transition being considered

(S), the time the subject was at risk for that transition (T), an indicator for whether

the subject experienced that transition (D), a weight variable (W), and covariates (Z).

Table 5.2 shows the form of the rows in the augmented dataset for each subject i.

Table 5.2: Augmented Data Structure for Subject i

Transition S T D W Z
1→ 3 13 Yir δir piI(Gi 6= 2) Xi

2→ 4 24 Yid δid (1− pi)I(Gi 6= 2) Xi

1→ 4 14 Yir δid(1− δir) piI(Gi 6= 2) Xi

3→ 4 34 Yid − Yir δid δir Xi

5→ 4 54 Yid δid I(Gi = 2) Xi

Using the augmented data structure, we can rewrite the last four terms in (5.1) as

4n∑
m=1

Wmlog
([
λ0
Sm(Tm) exp{g(Zm, Sm; β)}

]Dm
exp{−Λ0

Sm(Tm) exp[g(Zm, Sm; β)]}
)

+
∑
jk

Mjk||βjk||22

where g(Zm, Sm; β) is a function of Zm and Sm that may include linear functions of Zm

and Sm along with interactions between Zm and Sm. The sum in the above equation

takes the form of a single weighted log-likelihood for a proportional hazards regression

model with separate ridge penalties for each one of the β’s.

A natural question is how we can choose the values for the tuning parameters M .
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We choose the software default methods for choosing tuning parameters. We fit the

ridge-penalized logistic regressions using the R function glmnet, and the penalty term

is chosen through cross-validation. We estimate the failure time parameters in the M-

Step using the survreg or coxph functions in the survival package in R. These functions

use a method based on degrees of freedom to determine a “good” choice for the tuning

parameters. We use this approach in our application of the proposed methods to the

head and neck dataset. We can obtain standard errors using the same methods discussed

in Chapter IV.
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5.5 Predictions

We may also be interested in estimating the state occupancy probabilities. The state

occupancy probabilities are the probabilities of being in each state of the multistate model

at a given time t. We estimate these probabilities for various values of t to get a sense

of the overall death and recurrence rates over time. First, we will provide expressions

for estimating these probabilities conditioning only on baseline covariate information.

Then, we will show how we can estimate these probabilities incorporating additional

post-baseline follow-up. These probabilities rely on an estimate of the multistate model

parameter, θ. We may choose to use the posterior mean of θ in the Bayesian estimation

case or the MLE of θ in the maximum likelihood estimation case.

State Occupancy Probabilities Given Baseline Covariates

Let Tr and Td denote the underlying event times for recurrence and death. For cured and

persistent subjects, Tr =∞. Additionally, note that persistence status is assumed to be

unknown at baseline. We have the following:

P (Recurred and then died by time t) =P (Tr < Td < t|X)

=P (Tr < Td < t|X,G = 1)P (G = 1|X)

P (Alive at t with prior recurrence) =P (Tr < t < Td|X)

=P (Tr < t < Td|X,G = 1)P (G = 1|X)

P (Alive at t without prior recurrence) =P (Tr > t, Td > t|X)

=P (Tr > t, Td > t|X,G = 1)P (G = 1|X)

+P (Td > t|X,G = 0)P (G = 0|X)

+P (Td > t|X,G = 2)P (G = 2|X)

P (Died by time t without prior recurrence) =P (Td < Tr, Td < t|X)

=P (Td < Tr, Td < t|X,G = 1)P (G = 1|X)

+P (Td < t|X,G = 0)P (G = 0|X)

+P (Td < t|X,G = 2)P (G = 2|X)
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We recall that, given G 6= 2, the proposed multistate model is identical to the multistate

model developed in Chapter IV. Therefore, the form for probabilities conditioning on

G = 1 or G = 0 will take the same form as for the standard multistate cure model. Define

the following:

π1(t) =P (Tr < Td < t|X,G = 1) =

∫ t

0

[1− S3(t− u)]λ13(u)S1(u) du

π2(t) =P (Tr < t < Td|X,G = 1) =

∫ t

0

S3(t− u)λ13(u)S1(u) du

π3(t) =P (Tr > t, Td > t|X,G = 1) = S1(t)

π4(t) =P (Td < Tr, Td < t|X,G = 1) =

∫ t

0

λ14(u)S1(u) du

Then we have that

P (Tr < Td < t|X) =π1(t)
1

1 + eω0+ωT1 X
× eα0+αT1 X

1 + eα0+αT1 X

P (Tr < t < Td|X) =π2(t)
1

1 + eω0+ωT1 X
× eα0+αT1 X

1 + eα0+αT1 X

P (Tr > t, Td > t|X) =π3(t)
1

1 + eω0+ωT1 X
× eα0+αT1 X

1 + eα0+αT1 X

+ S3(t)
1

1 + eω0+ωT1 X
× 1

1 + eα0+αT1 X

+ S5(t)
eω0+ωT1 X

1 + eω0+ωT1 X

P (Td < Tr, Td < t|X) =π4(t)
1

1 + eω0+ωT1 X
× eα0+αT1 X

1 + eα0+αT1 X

+ (1− S3(t))
1

1 + eω0+ωT1 X
× 1

1 + eα0+αT1 X

+ (1− S5(t))
eω0+ωT1 X

1 + eω0+ωT1 X

State Occupancy Probabilities Given Post-Baseline Follow-up

Suppose we have followed a subject past baseline and want to use the observed outcome

information up to the current time t∗ > 0 to predict outcomes for t > t∗. We assume that

we are making predictions at t∗ such that baseline persistence status (yes/no) is known.

Let t be greater than t∗ and s = t− t∗.
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Predictions Given Persistent

The only event for subjects that are persistent is death. We have

P (Td > t|X,G = 2, Td > t∗) =
P (Td > t|X,G = 2)

P (Td > t∗|X,G = 2)
=

S5(t)

S5(t∗)

This is the probability that a subject is still alive at time t given that they are alive at

t∗ < t.

Predictions Given Not Persistent and Have Recurred

We now want to make predictions for a subject that is not persistent and has recurred by

t∗. Suppose that the recurrence time is 0 < r∗ ≤ t∗. After recurrence, the only possible

event is death. For t > t∗, we estimate:

P (Td > t|X,G = 1, Td > t∗, Tr = r∗) =
P (Td > t|X,G = 1, Tr = r∗)

P (Td > t∗|X,G = 1, Tr = r∗)
=

S3(t− r∗)
S3(t∗ − r∗)

This is the probability that a subject is still alive at time t given that they are alive at

t∗ < t and had a recurrence at time r∗ ≤ t∗.

Predictions Given Not Persistent and Have Not Recurred

Suppose that we know that a subject is alive, non-persistent, and has not recurred by

time t∗, and we want to predict outcomes for t > t∗. If the subject is known to be non-

persistent but has not had a recurrence, we do not know whether they are cured or not

cured. Their observed outcome information up to time t∗, however, can inform how likely

we think they are cured or not cured. Given the subject is not persistent, predictions

come directly from the multistate cure model in Chapter IV. After simplifying, we have

P (Tr < Td < t|X,G 6= 2, Td > t∗, Tr > t∗) =
[π1(t)− π1(t∗)] eα0+αT1 X

π3(t∗)eα0+αT1 X + S2(t∗)

P (Tr < t < Td|X,G 6= 2, Td > t∗, Tr > t∗) =
[π2(t)− π2(t∗)] eα0+αT1 X

π3(t∗)eα0+αT1 X + S2(t∗)

P (Td > t, Tr > t|X,G 6= 2, Td > t∗, Tr > t∗) =
π3(t)eα0+αT1 X + S2(t)

π3(t∗)eα0+αT1 X + S2(t∗)

P (Td < Tr, Td < t|X,G 6= 2, Td > t∗, Tr > t∗) =
S2(t∗)− S2(t) + [π4(t)− π4(t∗)] eα0+αT1 X

π3(t∗)eα0+αT1 X + S2(t∗)
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5.6 Application to Head and Neck Cancer Data

In this section, we apply the proposed Bayesian and maximum likelihood estimation

methods to fit the proposed multistate cure model with persistence to a dataset of 1692

subjects with head and neck cancer, of which 173 have persistent disease at baseline.

Given that we have discussed this dataset in detail earlier in this dissertation, we will

omit the details about the dataset. The reference category for cancer site is Oral Cavity.

Cancer stage was excluded from the model for death among the persistent subjects due

a lack of subjects in the lower stages.

We recall that the head and neck cancer dataset had both covariate missingness and

unequal censoring. For the Bayesian estimation, we add a step to the MCMC algorithm

in which we impute the missing covariate and outcome values (this time, single impu-

tation within each iteration of the MCMC) using the imputation methods discussed in

Chapter IV. For imputing covariates, we use the SMC-FCS approach of Bartlett et al.

(2014) to perform the imputation incorporating the multistate model structure into the

imputation. We handle the missingness in a similar fashion within a MCEM algorithm

when performing the maximum likelihood estimation. For the Bayesian estimation, meth-

ods in Zhang and Little (2011) could also be applied to incorporate variable selection in

the approach for dealing with the missing covariates. In fitting the multistate model to

the data, we assume that the β’s for the transitions to death from other causes are equal.

For the MCEM estimation, we further assume that the corresponding baseline hazards

are also equal.

5.6.1 Bayesian Estimation

We apply the proposed Bayesian methods to estimate parameters from the multistate

cure model with persistence for the head and neck dataset. We use four different prior

specifications: no selection/shrinkage, horseshoe priors, mixture of normals priors, and

point mass at zero priors. Table 5.3 provides more details about the prior distributions

used for the MCMC estimation.

For all variable selection/shrinkage priors, we perform selection separately for pa-

rameters in different submodels. For the mixture of normals and the point mass at zero

priors, we impose a grouped structure on the inclusion/exclusion indicators. We define
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Table 5.3: Prior Distributions

Parameter Prior Distribution Selection/Shrinkage Prior
log(λ)’s N(0, 4) -
ρ’s Γ(2.5,0.4) -
α0 N(0, 16) -
ω0 N(0, 16) -
θk N(0, 4) No Shrinkage

θk|λk N(0, λ2
k) Horseshoe

λk Cauchy+(0, 1) Horseshoe
θk|γg (1− γg)N(0, 0.12) + γgN(0, 4) Mixture of Normals
θk|γg (1− γg)I(θk = 0) + γgN(0, 4) Point Mass at Zero
γg Bernoulli(0.5) Point Mass at Zero, Mixture of Normals

*where θk is an element of β13, β24, β34, β54, α1, or ω1. γg represents that inclusion
indicator for the parameter group containing θk parameter, where the groups are defined
separately for each transition.

a group as a set of covariates that should be included/excluded jointly, and the same set

of covariates are treated as separate groups in different submodels. Following Carvalho

et al. (2009) and Carvalho et al. (2010), we choose σ2 = 1 in the horseshoe prior. For both

spike and slab priors, we choose v1 = 4, which corresponds to the variance of the “slab”

part of the distribution. In determining the prior variance of the “spike” distribution for

the mixture of normals prior, we chose a value to represent effect sizes that can “safely”

be replaced by zero (following George and McCulloch (1993) and Chipman et al. (2001)).

We may often view odds ratios or hazard ratios between 0.9 and 1.1 to represent very

small effect sizes (in terms of practical significance), and these correspond to roughly a

change in 0.1 on the log scale, which we used as our choice for v0. A prior inclusion

probability of 0.5 was chosen to allow many covariates to be included in the model but

still incorporate selection. We performed some minor sensitivity analysis to the choice of

the prior inclusion probability, and we did not see much impact on inference. We note

that the choice of the spike and slab priors results in inclusion/exclusion of covariates in a

group jointly. The horseshoe prior we use does not impose any such grouping restriction,

and covariates in the same group may have different amounts of shrinkage.

We run the Bayesian MCMC algorithm under each of the four prior specifications

for 10,000 iterations, with the first 1000 iterations as burn-in. Figure 5.2 shows the

resulting posterior means and credible intervals using Bayesian model averaging. Recall,

in Bayesian model averaging, we make inference using all draws of the parameter θ across

iterations of the MCMC algorithm, which represents the posterior distribution of θ av-
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eraging across different model specifications. Credible intervals are determined based on

posterior quantiles.

The four specifications of the prior distributions tend to give similar results with some

exceptions. Generally, the two spike and slab priors (the point mass at zero and the mix-

ture of normals priors) tend to have similar posterior means. Both priors result in strong

shrinkage towards zero for covariates determined to be unimportant. One notable differ-

ence between the two priors is in the stage effects for the transitions to death from other

causes. The point mass at zero prior suggests that there is not significant stage effect

for this transition, while the mixture of normals prior, while not significant, does seem

to suggest some relationship between stage and death from other causes. When both

spike and slab methods determine that a covariate is unimportant (with strong shrinkage

toward zero), the credible interval for the mixture of normals prior is wider than for the

point mass at zero. This is a result of the fact that the point mass prior allows the

parameter to be exactly zero while the mixture of normals prior assigns a value close to

zero when a covariate is determined to be unimportant.

The horseshoe and no shrinkage fits give very similar results to each other except

that the horseshoe prior tends to have slightly narrower credible intervals. One situation

in which these two priors differ from the spike and slab priors is in the stage effect in

the logistic regression for the probability of being non-cured given non-persistent. The

horseshoe and no shrinkage priors indicate a significant effect of stage, while the other

priors do not. However, the credible intervals for the spike and slab priors are large, so

the results are not contradictory. Another difference is in the effect of severe (ACE27)

comorbidities on the transition to death after recurrence (3 → 4). The spike and slab

priors indicate no effect, while the other priors suggest an increased transition rate com-

pared to subjects with no comorbidities.

Generally, we estimate a significant effect of HPV status and stage on the transition

to recurrence given not cured, where the HPV negative and higher stage subjects have

higher transition rates to recurrence. Larynx cancer site may also be associated with a

lower rate of recurrence compared to oral cavity. Higher stage, higher age, worse comor-

bidities, and increased smoking were related to higher rates of death from other causes

in the non-persistent subjects. We may not expect cancer stage to be related to death

from other causes, and this significant effect may be due to unmeasured confounding.
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Figure 5.2: Multistate Model Fit using Bayesian Estimation
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Higher cancer stage, male gender, and increased smoking were all generally associated

with higher rates of death after recurrence. We also observe that subjects with larynx

cancer had lower rates of death after recurrence compared to subjects with oral cavity

cancer.

We observe that HPV positivity may be associated with lower rates of death among

persistent subjects. HPV positivity was associated with higher rates of cure among the

non-persistent subjects. Higher cancer stage was associated with lower rates of cure

among non-persistent subjects. Higher comorbidities, older age, higher cancer stage, and

HPV negativity were all associated with higher rates of persistence.

In Appendix K, we explore the posterior inclusion probabilities for the spike and

slab priors, we compare the 5-year overall survival predictions across the four models,

and we present the correlations of the drawn values for the γ inclusion indicators within

and between submodels.

5.6.2 Maximum Likelihood Estimation

We apply the MCEM algorithm from Chapter IV incorporating two additional regres-

sions to fit our proposed multistate model. We obtain two model fits. In the first fit,

we perform estimation without imposing any parameter shrinkage. In the second fit,

we impose ridge shrinkage on all parameters in β, ω1, and α1. In both cases, we run

the MCEM for 100 iterations, and we use the Rubin’s rules-based approach discussed in

Chapter IV for variance estimation.

Figure 5.3 presents the results. We observe some very wide confidence intervals in

the fit without any shrinkage. As expected, the inference for the part of the model not

involving state 5 is very similar to the multistate cure model fit to the head and neck data

in Chapter IV. However, the fit is not identical. This is because we are incorporating

additional covariate information from the persistent subjects to do covariate imputation

for the non-persistent subjects, which results in similar but not identical parameter es-

timates. In contrast, the magnitudes of the estimated effect sizes under ridge shrinkage

are very different than in the fit without shrinkage. We note that the x-axis is differ-

ent for the fit with ridge shrinkage. Nearly all of the parameter estimates are strongly

shrunk towards zero. However, we still see some very intuitive covariates showing up as

significant in the various submodels. For example, higher age, worse smoking status, and
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Figure 5.3: Multistate Model Fit using Maximum Likelihood Estimation

(a) No Shrinkage

-2 -1 0 1 2 3 4
log(HR) or log(OR)

P
ar

am
et

er
 C

on
fid

en
ce

 In
te

rv
al

Head and Neck Data Multistate Cure Model Fit

HPV POSITIVE

STAGE 4

STAGE 3

STAGE 2

OROPHARYNX SITE

LARYNX SITE

HYPOPHARYNX SITE

FORMER SMOKER

CURRENT SMOKER

SEVERE COMORBIDITY

MODERATE COMORBIDITY

MILD COMORBIDITY

AGE STANDARDIZED

MALE

P(Not Cured)
P(Persist)
Transition 1->3
Transition 3->4
Transition 5->4
Transition 2->4, 1->4

*
*

*

*

*
*

*

*

*

*
*

*
*

*

*
*

*
*

*

*

*
*

*

*

*
*

*
*

*
*

*
*

* Significant at 0.05

(b) Ridge Shrinkage

-1.0 -0.5 0.0 0.5 1.0
log(HR) or log(OR)

P
ar

am
et

er
 C

on
fid

en
ce

 In
te

rv
al

Head and Neck Data Multistate Cure Model Fit

HPV POSITIVE

STAGE 4

STAGE 3

STAGE 2

OROPHARYNX SITE

LARYNX SITE

HYPOPHARYNX SITE

FORMER SMOKER

CURRENT SMOKER

SEVERE COMORBIDITY

MODERATE COMORBIDITY

MILD COMORBIDITY

AGE STANDARDIZED

MALE

P(Not Cured)
P(Persist)
Transition 1->3
Transition 3->4
Transition 5->4
Transition 2->4, 1->4

* *

*

*
*

*

*

*

*
*

*

*

*

*

*

*

*

Note: x-axis differs between plots

worse comorbidities are associated with higher rates of death from other causes.

There are some instances in which parameters are significant for the ridge fit and

not for the fit without shrinkage. The most striking differences are in the model for the

probability of persistence. For example, cancer stages 2 and 3 appear to be related to

reduced probabilities of persistence compared to stage 1 in the ridge shrinkage fit. We

see the opposite associations in the fit without shrinkage, and the opposite association is

more intuitive.

The MLE-based fit without shrinkage and the Bayes-based fit without shrinkage are

very similar, and they identify very similar or the same sets of covariates as significant

for each submodel as shown in Figure K.10 of Appendix K. In Appendix K, we

compare the 5-year overall survival predictions for the two fits without shrinkage and for

the ridge-penalized fit.
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5.7 Discussion

In this paper, we propose a multistate model for time to recurrence and death that

incorporates information about cancer-persistent and cured subpopulations after initial

treatment. This model is a generalization of the multistate cure model with two addi-

tional regression models for the probability of being persistence and the rate of death in

the persistent subjects. Our interest is in fitting the proposed model to a study of recur-

rence and death for patients with head and neck cancer. However, estimation presents

some challenge.

As is common with large multistate models, the proposed multistate model has many

model parameters, and we are interested in exploring variable selection/shrinkage meth-

ods for performing parameter estimation. One challenge for applying existing variable

selection/shrinkage methods in the multistate modeling setting is that the same pre-

dictors can appear in multiple places in the model. It is known that highly correlated

predictors can create problems in variable selection (George, 2010), and it is unclear how

existing methods will perform for large multistate models. We therefore seek to compare

the performance of various existing variable selection and shrinkage methods in our par-

ticular multistate model setting with the eventual goal of making inference for the head

and neck cancer data. Our results can be used to guide estimation in other multistate

modeling settings.

We consider two general strategies for estimation: 1) Bayesian estimation with three

different prior distribution specifications (two spike and slab priors and the horseshoe)

and 2) maximum likelihood estimation via EM and Monte Carlo EM algorithms with

ridge penalization. With some small modifications to account for covariate grouping and

submodel-specific selection, we apply the existing Bayesian methods to fit the proposed

multistate model to the head and neck dataset. We also develop and apply methods to

perform ridge penalization for the proposed multistate model. We then compare inference

across the different estimation procedures.

We find that the two spike and slab priors considered (mixture of normals and point

mass at zero priors) result in generally similar (Bayesian model averaged) credible inter-

vals for the head and neck data. Greater differences between the two spike and slab priors

can be seen in the estimated posterior inclusion probabilities. Additionally, we consider
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the number of iterations in which different combinations of covariates (different model

formations) are chosen for each submodel in Appendix K. The model formulation with

the highest posterior probability was different for many of the transitions.

If the goal is to obtain the Bayesian model-averaged credible intervals, we may rec-

ommend using the mixture of normals prior over the point mass at zero prior as the two

priors resulted in similar inferences and the fit under a point mass at zero prior is much

more difficult to implement (it involves a reversible jump algorithm). However, if the goal

is to obtain the model with the highest posterior probability or using all predictors with

a posterior inclusion probability over a particular threshold, the chosen prior may impact

the resulting model, and we would recommend applying both priors and comparing the

results.

In our example, the horseshoe prior obtained inference similar to the Bayesian fit

without shrinkage but with slightly narrower credible intervals and is similar but some-

what different to the fits using spike and slab priors. However, the amount of shrinkage

imposed by the horseshoe prior depends on the hyperparameters, and greater differ-

ences and similarities between the various fits may be seen with different values for the

horseshoe hyperparameters. Both the horseshoe and the mixture of normals priors are

straightforward to implement. The mixture of normals has a natural way to determine

the values of hyperparameters based on how we determine “meaningful” effect sizes, while

the specification of the hyperparameter for the horseshoe distribution is less clear. We

could have specified hyperpriors for the hyperparameters to reduce the dependence on the

choice of hyperparameters, but we ultimately chose not to do this for the current analysis

for the sake of simplicity. Some sensitivity analysis was performed to evaluate the impact

of the hyperparameters on the model inference, and very little impact was seen for small

to moderate changes in the hyperparameters. If the variable inclusion indicators are not

of primary interest, we would recommend applying both horseshoe and the mixture of

normals priors and comparing the model inference. This can give the analyst a sense of

the robustness of the model inference to choices about the selection/shrinkage method.

Ridge regression applied to the head and neck dataset resulted in strong shrinkage of

the model parameters compared to maximum likelihood estimation without shrinkage.

Many of the strong significant associations from the fit without shrinkage were preserved

in the fit with shrinkage, although the effect sizes were attenuated. Like in the Bayesian
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approach, the ridge penalization procedure involves specification of tuning parameters,

and these tuning parameters control the amount of shrinkage. In this analysis, we used

software default methods for determining the tuning parameters, but other approaches

could have been used. The ridge shrinkage approach has the attractive property of involv-

ing a small modification of the likelihood, and there is a large body of existing software

for fitting model with ridge penalties. For usual multistate model formulations (with-

out the missing data and latent variables), estimation often proceeds by fitting a single

regression model to the data (as in mstate in R). Ridge penalization (along with other

types of penalization such as LASSO) may often be easy to implement through the addi-

tion of ridge penalties to this regression model. However, we found that the parameters

from ridge penalization resulted in different 5-year survival predictions compared to the

other methods (Appendix K). In particular, the 5-year survival predictions seemed to

be attenuated towards the population average. Therefore, if the goal is to obtain out-

come predictions, we may recommend the Bayesian approach over ridge penalization.

We note that the ridge penalization method involves using a single tuning parameter for

each submodel. Therefore, different groups in the same submodel are given the same

degree of shrinkage. Future work could explore a generalization of the ridge penalty that

incorporates group-specific shrinkage.

In this chapter, we compared existing variable selection and shrinkage methods for

a particular modeling setting and made some tentative recommendations for the appli-

cation of these methods for general multistate modeling settings. Our evaluation was

entirely based on an application of these methods to a particular head and neck dataset,

and additional explorations with different datasets and model formulations are needed in

order to determine how well these methods perform for general multistate models. Our

results, however, provide some general intuition and tentative guidance for the applica-

tion of these methods in other multistate modeling settings.

This study provides a thorough exploration of the proposed multistate model applied

to the head and neck data. To our knowledge, this study is the first to explicitly model

persistence for head and neck cancer, and it is therefore if great interest from a clini-

cal point of view. By incorporating our study of persistence into the multistate model

structure, we can use the model to inform the way we handle missing covariates. Our

results suggest several predictors that may be related to the rate of persistence. Of note,
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we observe higher rates of persistence among HPV negative patients, patients with worse

comorbidities, and older patients in addition to patients with higher cancer stage. It is

well known that subjects with persistent disease have worse survival outcomes, and the

results of this study may help to reveal predictors that can be used to identify patients

at a higher risk of persistence for more careful observation after initial treatment. Future

work could use the state occupancy probabilities derived in Section 5.5 and the mul-

tistate model fits to obtain patient-specific predictions of the probability of persistence

and other quantities of interest.
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Chapter VI

Bayesian Variable Selection with

Order Restrictions and Interactions

6.1 Introduction

In cancer modeling, we are often interested in including predictors for which there is a

natural ordering of effect sizes. For example, we may expect subjects with higher cancer

stage (e.g. AJCC stage III) to do worse in terms of overall survival compared to subjects

with lower cancer stage (e.g. AJCC stage II). In the presence of strong prior beliefs about

the order of effects, we can incorporate parameter order restrictions into the estimation

procedure. By incorporating order restrictions, our goal is to improve efficiency for es-

timating the parameters of interest. Order restrictions can also ensure that nuisance

parameters take reasonable values. For example, suppose our interest is in identifying a

treatment effect on overall survival, and we are also adjusting for comorbidities. We may

strongly believe that worse comorbidities would be related to similar or worse survival

rates. Applying order restrictions to the parameters related to comorbidities may help

us in determining the treatment effect.

In Bayesian estimation, these order restrictions are often imposed through prior dis-

tributions. Many authors have discussed methods for incorporating order restrictions

into Bayesian parameter estimation (Dunson and Neelon, 2003; Gelfand et al., 1992).

In this chapter, we suppose we are interested in performing variable selection under the

order restrictions. Literature is relatively sparse in this setting. Kasim et al. (2012) and

Otava et al. (2014) propose an approach for performing variable selection in the presence

of order restrictions in the context of dose response modeling. Their approach generally

involves specifying an order restriction including the possibility of equality of adjacent
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effects and performing variable selection to determine whether adjacent effects in the

order restriction are equal or strictly ordered. This translates into variable selection for

the predictors corresponding to these ordered effects. Their proposed approach incorpo-

rates variable selection through use of the variable selection prior proposed in Kuo and

Mallick (1998). By incorporating variable selection, we can perform some regulariza-

tion/shrinkage to help control the effective number of parameters.

We suppose we are also interested in incorporating interactions in the model. This

can allow for increased flexibility in model specification. Many authors have discussed

methods for performing variable selection in the presence of interactions. Variable selec-

tion is particularly important in the presence of interactions due to the large number of

parameters. The methods for performing Bayesian variable selection with interactions

usually involve defining heredity restrictions in which the interaction term is allowed to

be nonzero only if one or both of the main effects are included in the model (Chipman,

1996; Farcomeni, 2010). Such heredity restrictions avoid model choices that include the

interaction term without main effects. In this chapter, we will also refer to these heredity

restrictions as “hierarchy constraints.” Suppose we are interested in including interactions

in which one or both of the interacted variables have order restrictions. This setting has

not been explored in the Bayesian variable selection literature. Additional work is needed

to explore how to incorporate both heredity and order restrictions into the variable se-

lection procedure.

In this chapter, we develop methods for performing Bayesian variable selection with in-

teractions incorporating both hierarchy constraints and (possibly two-way) order restric-

tions. In particular, we are interested in interactions between two categorical variables.

The form of the proposed prior distribution depends on whether we impose ordering for

one or both of the categorical variables in the interaction. We perform a simulation study

to explore the performance of the proposed methods.
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6.2 A Prior for Order-Restricted Selection with In-

teractions

In this section, we propose a prior distribution for incorporating order restrictions and

hierarchy constraints for variable selection with interactions. First, we will clarify the

types of order and hierarchy restrictions we are considering.

6.2.1 Order Restrictions

Let Y represent our outcome and A and B represent two categorical model predictors.

Define both variables to take the value 1 for the reference category and integer values

above 1 for all other categories. Let J be the number of possible values for A and K be

the number of possible values for B.

Suppose we model Y using the linear model:

Yijk = µjk + eijk eijk ∼ N(0, τ−1) (6.1)

where µjk is the mean of Y in category A = j, B = k and i indexes the subjects. Suppose

we want to impose parameter restrictions such that µjk is nondecreasing with increasing

values of B within categories of A. This is equivalent to the following:

µj1 ≤ µj2 ≤ . . . ≤ µjK j = 1, . . . , J

We will call this a one-way restriction because parameters are restricted in the B direction

but not in the A direction. This type of order constraint is considered for main effects

in Otava et al. (2014). Suppose we further want to impose order restrictions in the A

direction such that µjk is also non-decreasing with increasing values of A within categories

of B. This is equivalent to:

µj1 ≤ µj2 ≤ . . . ≤ µjK j = 1, . . . , J

µ1k ≤ µ2k ≤ . . . ≤ µJk k = 1, . . . , K

We will call this a two-way restriction.
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Existing Method for Main Effects

In developing our own prior for performing selection with order restrictions, we will build

off of a prior explored in Kasim et al. (2012), Otava et al. (2014), and Otava et al. (2017).

This prior was developed for performing selection with order constraints for main effects

variables. Suppose for now that A takes only one value, so the model in (6.1) is equivalent

to a main effects only model for B. Suppose we want to impose the following (one-way)

order restriction on B: µ1 ≤ µ2 ≤ . . . ≤ µK . Here, we suppress the index for A in the

notation for simplicity.

Otava et al. (2014) considers a reparameterization of θk = µk+1−µk for k = 1, . . . , K−

1. We can re-write

µk =

 µ1 k = 1

µ1 +
∑k−1

t=1 θt k > 1

The restrictions on µ are equivalent to the restrictions θk ≥ 0 for all k = 1, . . . , K−1.

Our goal is to impose the ordering on θk with added variable selection to determine

whether we have equality or strict ordering between any µk and µk+1.

Define latent variables Γk = I(θk 6= 0) and θ̃k such that θk = Γkθ̃k. We then re-write

µk =

 µ1 k = 1

µ1 +
∑k−1

t=1 Γtθ̃t k > 1

We now consider the model in terms of µ1, Γ and θ̃ rather than µ. The values of µ are

just functions of µ1, Γ and θ̃. The prior in Otava et al. (2017) (an update of Otava et al.

(2014)) can be written as

µ1 ∼ N(η0, τ
−1
0 )

θ̃k ∼ N(ηk, τ
−1
k )T (0,∞) k = 1, . . . , K − 1

Γk ∼ Bernoulli(πk) k = 1, . . . , K − 1

with hyperpriors for the hyperparameters η0, τ0, ηk, τk, τ (from (6.1)), and πk. Here,

T (a, b) indicates a distribution truncated at the left at a and the right at b. This prior

makes uses of the variable selection prior in Kuo and Mallick (1998), which defines a

parameter value (in this case θ̃k) that is then included or excluded from the model based
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on an inclusion indicator (in this case Γk). The prior for θ̃k is truncated such that that

the resulting values of θ and µ will satisfy the order restrictions.
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6.2.2 Hierarchy Restrictions

Before discussing the heredity/hierarchy restrictions, we will first rewrite (6.1) in terms of

the main effects and interactions of A and B. Let β be a set of parameters corresponding

to the linear regression mean structure. We can write:

E(Yi) = β0 +
J∑
j=2

βAjI(A = j) +
K∑
k=2

βBkI(B = k) +
J∑
j=2

K∑
k=2

βAjBkI(A = j, B = k)

This is a fully-saturated model, meaning that model has so many parameters that it can

exactly fit the data. Through variable selection, our goal is to reduce the number of

parameters. In terms of the original model parameters from (6.1), we have that

β0 = µ11

βAj = µj1 − µ11

βBk = µ1k − µ11

βAjBk = µjk − µ1k − µj1 + µ11

Let γAj = I(βAj 6= 0), γBk = I(βBk 6= 0), and γAjBk = I(βAjBk 6= 0).

The heredity principle discussed in Chipman (1996) suggests making restrictions

about the possible values of γAjBk given the values for γAj and γBk. Restated, the

inclusion/exclusion of an interaction term depends on whether the corresponding main

effects are included in the model. Weak heredity requires that at least one main effect is

included in the model in order for the interaction term to be potentially included. Strong

heredity requires both main effects to be included in order for the interaction term to be

potentially included. Figure 6.1 provides a visualization of the possible values of γAjBk

given values for γAj and γBk under weak and strong heredity.

The heredity restrictions imply a hierarchy of variables for inclusion/exclusion, where

the inclusion of interactions terms (the second level in the hierarchy) depends on the

inclusion of main effects terms (the first level in the hierarchy). In this chapter, we will

use “hierarchy constraints” to refer to heredity restrictions for the interaction terms.

Heredity constraints define the prior distribution of γAjBk based on the value of γAj
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Figure 6.1: Visualization of Heredity Restrictions

(a) Strong Heredity (b) Weak Heredity

Connected boxes show the possible values of γAjBk given the values of γAj and γBk under
different heredity constraints

and γBk as follows:

P (γAjBk = 1) =



p0 γAj = 0, γBk = 0

p1 γAj = 1, γBk = 0

p2 γAj = 0, γBk = 1

p3 γAj = 1, γBk = 1

(6.2)

Weak hierarchy constraints require that at least one main effect is included in the model

for the corresponding interaction to be included in the model (Chipman, 1996). This

corresponds to an assumption that p0 = 0. A strong hierarchy constraint will also require

that p1 = p2 = 0. We will continue under the assumption of weak hierarchy constraints.

However, we can approach strong hierarchy by choosing p1 and p2 small. If desired, we

can restrict p3 to be greater than both p1 and p2.

Table 6.4 explores what the weak hierarchy constraints on β imply in terms of

constraints on µ. Note that the constraints on β are satisfied if and only if the constraints

on µ are satisfied.

Table 6.1: Implications of Weak Hierarchy Constraints on µ

β Constraint µ Constraint
βAj = 0 µj1 = µ11

βBk = 0 µ1k = µ11

βAjBk = 0 µjk = µ1k + µj1 − µ11
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6.2.3 Incorporating Both Hierarchy and Order Constraints

In this section, we describe how we combine both types of constraints into a single

modeling framework. In the setting where J = K = 3, we can imagine the following

matrix for the mean of Y:

Table 6.2: Matrix of Means of Y

B = 1 B = 2 B = 3

A = 1 µ11 µ12 µ13

A = 2 µ21 µ22 µ23

A = 3 µ31 µ32 µ33

A one-way ordering restriction would require that the µ’s be non-decreasing row-wise.

A two-way ordering restriction would require that the µ’s be non-decreasing row-wise and

column-wise.

Developing the Notation

Similarly to the approach in Otava et al. (2014), we will define the differences between

the values of µ within reference categories for the other variable (value = 1) as follows:

θAj = µj+1,1 − µj1 j = 1, . . . , J − 1

θBk = µ1,k+1 − µ1k k = 1, . . . , K − 1

We will denote the sets of parameters θA and θB respectively. Let θ0 = µ11. In Otava et al.

(2014), indicators are introduced corresponding to whether each value of θ is nonzero.

We introduce similar indicators defined as follows:

ΓAj = I(θAj 6= 0)

ΓBk = I(θBk 6= 0)

The set of indicators ΓA indicates whether the value of µ changes for consecutive values

of A in the reference category of B. The set of indicators ΓB indicates whether the value
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of µ changes for consecutive values of B in the reference category of A. Using the method

of Kuo and Mallick (1998) and Otava et al. (2014), we define variables θ̃ such that

θAj = ΓAj θ̃Aj

θBk = ΓBkθ̃Bk

Here, we can view the set of parameters θ̃A and θ̃B as values of θA and θB without any

selection to impose equality for adjacent categories. We define θ̃0 = θ0. To account for

the inclusion/exclusion of the interaction terms, we define indicators

ΓAjBk = I(µjk = µ1k + µj1 − µ11) = I(βAjBk 6= 0)

for j > 1 and k > 1. ΓAjBk corresponds to whether the interaction term βAjBk is nonzero.

Denote the set of indicators ΓAjBk as ΓAB.

Define θ̃AjBk such that µjk = θ̃AjBk when j and k are both greater than 1 and ΓAjBk =

1. We can imagine θ̃AjBk corresponds to the value of µjk when the hierarchy constraint

is not imposed. Denote the set of θ̃AjBk as θ̃AB.

We can re-write µ in terms of Γ and θ̃ as follows:

µjk =



θ̃0 j = 1, k = 1

θ̃0 +
∑j−1

s=1 ΓAsθ̃As j > 1, k = 1

θ̃0 +
∑k−1

t=1 ΓBtθ̃Bt j = 1, k > 1

ΓAjBkθ̃AjBk + (1− ΓAjBk)(µ1k + µj1 − µ11) j > 1, k > 1

(6.3)

Therefore, we can entirely re-parameterize our model for µ in terms of θ̃ = (θ̃0, θ̃A, θ̃B, θ̃AB)

and Γ = (ΓA,ΓB,ΓAB). We can re-write the hierarchy constraint from (6.2) in terms of

Γ as follows:

P (ΓAjBk = 1|ΓA,ΓB, θ̃A, θ̃B, θ̃0) =



0
∑j−1

s=1 ΓAs = 0,
∑k−1

t=1 ΓBt = 0

p1

∑j−1
s=1 ΓAs > 0,

∑k−1
t=1 ΓBt = 0

p2

∑j−1
s=1 ΓAs = 0,

∑k−1
t=1 ΓBt > 0

p3

∑j−1
s=1 ΓAs > 0,

∑k−1
t=1 ΓBt > 0

(6.4)
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We propose a modification of the usual hierarchy constraint (from (6.2) and (6.4)) for

the order-restricted setting. There are some instances in which, in order to preserve the

ordering, we must have an interaction between variables. For example, suppose we have

J = K = 3 as in Table 6.2 and we have current values of µ as follows:

Table 6.3: Example Values of µ

B = 1 B = 2 B = 3

A = 1 µ11 = 0 µ12 = 1 µ13 = 2

A = 2 µ21 = 3 µ22 = 6 µ23 =?

A = 3 µ31 = 4 µ32 =? µ33 =?

If we are imposing (one- or two-way) order restrictions, we must have that µ22 ≤ µ23.

When determining if ΓA2B3 = 1, what we are really determining is whether µ23 equals

µ21 + µ13− µ11. In this example, we have that µ21 + µ13− µ11 = 3 + 2− 0 = 5. However,

we know that µ23 ≥ µ22 = 6. Therefore, it is necessary that µ23 is strictly greater than

µ22 (so ΓA2B3 = 1) for the order restrictions to be satisfied.

Define Rjk = I(µj,k−1 > µ1k +µj1−µ11) for j > 1, k > 1 for one-way order restrictions

and Rjk = I(max(µj−1,k, µj,k−1) > µ1k + µj1 − µ11) for two-way order restrictions. We

propose the following modified hierarchy constraint:

P (ΓAjBk = 1|ΓA,ΓB, θ̃A, θ̃B, θ̃0) =



p0

∑j−1
s=1 ΓAs = 0,

∑k−1
t=1 ΓBt = 0, Rjk = 0

p1

∑j−1
s=1 ΓAs > 0,

∑k−1
t=1 ΓBt = 0, Rjk = 0

p2

∑j−1
s=1 ΓAs = 0,

∑k−1
t=1 ΓBt > 0, Rjk = 0

p3

∑j−1
s=1 ΓAs > 0,

∑k−1
t=1 ΓBt > 0, Rjk = 0

1 Rjk = 1

(6.5)

Assuming p0 = 0, the distribution in (6.5) will impose the hierarchy constraint while

restricting the interaction to be present when it is needed in order to satisfy the order

constraint.
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Proposed Prior Distribution

We specify the variable selection prior for µ under the order and hierarchy constraints in

terms of Γ and θ̃.

f(Γ, θ̃) = f(ΓA,ΓB,ΓAB, θ̃0, θ̃A, θ̃B, θ̃AB)

= f(ΓAB, θ̃AB|θ̃0,ΓA, θ̃A,ΓB, θ̃B)f(ΓB, θ̃B|θ̃0,ΓA, θ̃A)f(ΓA, θ̃A|θ̃0)f(θ̃0)

We will assume that the main effects parameters for A and B are a priori independent

(so (ΓA, θ̃A) and (ΓB, θ̃B) are a priori independent). Following Kuo and Mallick (1998)

and Otava et al. (2014), we will also assume that the two elements of each Γ and θ̃ pair

are a priori independent. This results in the following simplification

f(Γ, θ̃) = f(θ̃AB|θ̃0,ΓA, θ̃A,ΓB, θ̃B)f(ΓAB|θ0,ΓA, θ̃A,ΓB, θ̃B)

× f(ΓB|θ̃0)f(θ̃B|θ̃0)f(θ̃A|θ̃0)f(ΓA|θ̃0)f(θ̃0)

Intercept

We first specify the prior for θ̃0 as

θ̃0 ∼ N(η0, τ
−1
0 )

where η0 and τ0 are hyperparameters. We will discuss hyperpriors later on.

Main effects of B

The priors for the main effects of B are

ΓBk ∼ Bernoulli(πBk)

θ̃Bk ∼ N(ηBk, τ
−1
Bk )T (0,∞)

This is the same prior as in Otava et al. (2017) for order-restricted variable selection.

Main Effects of A

The form of the prior for the main effects of A depends on whether we are imposing one-

or two-way order restrictions. If we do not impose order restrictions in the A direction,
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we perform selection for the main effects of A using grouped selection (Chipman, 1996;

Farcomeni, 2010). This means that we assume either all elements µj1 are equal or

unequal. We propose using grouped selection rather than separate selection for each

main effect of A since we assume that A represents a single categorical variable taking

different values. We could alternatively perform selection separately for each of the main

effects of A. Using the grouped selection approach, we define ΓA1 = ΓA2 = . . . = ΓA,J−1

and use prior

ΓA1 ∼ Bernoulli(πA1)

θ̃Aj ∼ N(ηAj, τ
−1
Aj )

In order to impose two-way order restrictions, we use the following prior

ΓAj ∼ Bernoulli(πAj)

θ̃Aj ∼ N(ηAj, τ
−1
Aj )T (0,∞)

where θ̃Aj is also restricted to be greater than zero as in the order-restricted selection

prior in Otava et al. (2017).

Interaction Terms

We specify f(ΓAB|ΓA,ΓB) using a Bernoulli distribution with probability given by

the hierarchy constraint prior in (6.5). Alternatively, we can perform the order-restricted

selection without any sort of hierarchy constraint by setting p0 = p1 = p2 = p3 > 0.

Now, we consider the specification of the prior for θ̃AB. We specify the prior for j > 1

and k > 1 as follows for one-way ordering:

θ̃AjBk ∼ N(µ1k + µj1 − µ11, τ
−1
AjBk)T (µj,k−1,∞)

where the values of µ are functions of θ̃A, θ̃B, ΓA, ΓB, and θ̃0 as shown in (6.3). For

two-way ordering, we have

θ̃AjBk ∼ N(µ1k + µj1 − µ11, τ
−1
AjBk)T (max(µj,k−1, µj−1,k),∞)
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Hyperparameters

The prior distributions depend on hyperparameters φ containing p1, p2, p3, πAj, πBk, ηAj,

ηBk, τAj, τBk, τAjBk, η0, and τ0. These hyperparameters can be pre-specified. However,

we suggest using the following hyperpriors

πAj, πBk ∼ U(0, 1)

ηAj, ηBk, η0 ∼ N(0, 10a)

τAj, τBk, τAjBk, τ0 ∼ Gamma(b, c)

p1, p2, p3 ∼ U(0, 1)

where a, b, and c are pre-specified constants. In our simulations, we choose a = 2, b = 3,

and c = 1. These choices of hyperpriors are very similar to the hyperpriors used for

order-restricted selection in Otava et al. (2017).

Posterior Distribution

We suppose our outcome of interest is the linear regression model

Yijk = µjk + eijk eijk ∼ N(0, τ−1)

We have the corresponding posterior distribution for Γ, θ̃, and τ :

f(Γ, θ̃, τ |Y,A,B) ∝
n∏
i=1

f(Yi|Ai, Bi; Γ, θ̃, τ)f(Γ, θ̃|φ)f(τ)f(φ)

The conditional posterior distributions for the elements of Γ are easy to derive since they

are binary. We now consider the posterior distribution for θ̃. We note that

f(θ̃|Y,A,B,Γ, τ) ∝ f(Y |A,B; Γ, θ̃, τ)f(θ̃AB|θ̃0, θ̃A, θ̃B,ΓA,ΓB)f(ΓAB|θ̃0, θ̃A, θ̃B,ΓA,ΓB)

× f(θ̃B|θ̃0)f(θ̃A|θ̃0)f(θ̃0)

These distributions are all normal, truncated normal, or Bernoulli. In the future, we will

explore the posterior distributions for each parameter in more detail. For now, we will

just mention that in the linear regression setting, the distributions take “nice” forms that

should prove easy to sample from. In the meantime, we can implement our proposed
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prior distribution using the Gibbs sampling algorithm implemented in existing programs

such as WinBUGS or JAGS.
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6.3 Simulation Study

In this section, we perform a simulation study to explore the performance of our proposed

methods in terms of posterior means, widths and coverage of credible intervals, and pos-

terior inclusion probabilities. We compare the performance of our proposed methods with

and without the hierarchy constraint. We call our approach the “collapsed” approach be-

cause it involves restricting neighboring values of µ to be equal (effectively collapsing two

covariate values together). In our simulations, we denote the two collapsed approaches

(without and without hierarchy restrictions) as CollapsedHierarchy and CollapsedNo-

Hierarchy. We also compare our proposed methods to several other prior formulations

including 1) order restriction with no variable selection (denoted OrderNoSelection), 2)

hierarchy constrained-selection with no order restriction (denoted Hierarchy), and 3) no

selection or order restrictions (denoted None).

6.3.1 Simulation Details

We perform simulations under two different outcome models as follows:

Model 1: Yijk = µjk + eijk, eijk ∼ N(0, τ−1) (true τ = 1)

Model 2: logit(P (Yijk = 1)) = µjk

where µjk is a function of E(Y ) in category A = j, B = k and i indexes the subjects. For

each model, we simulate data under eight different values of µ. In each simulation setting,

we simulate 200 datasets. We use 500 observations for Model 1 and 1000 observations

for Model 2.

Table 6.4 presents the values of µ used for each of the eight simulation settings.

The corresponding values for Γ and β are given in Table 6.5. The first four simulation

settings correspond to main effect only models, and the last four models incorporate

interactions. Setting 5 corresponds to situations in which weak hierarchy is violated.

This means we have a nonzero interaction term with no corresponding main effects. All

simulation settings satisfy a two-way order restriction across A and B.
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Table 6.4: Values for µ in each Simulation Setting

Simulation Setting 1

B = 1 B = 2 B = 3

A = 1 2 2 2

A = 2 2 2 2

A = 3 2 2 2

Simulation Setting 2

B = 1 B = 2 B = 3

A = 1 2 2 3

A = 2 2 2 3

A = 3 3 3 4

Simulation Setting 3

B = 1 B = 2 B = 3

A = 1 2 3 3

A = 2 3 4 4

A = 3 3 4 4

Simulation Setting 4

B = 1 B = 2 B = 3

A = 1 2 3 4

A = 2 3 4 5

A = 3 4 5 6

Simulation Setting 5

B = 1 B = 2 B = 3

A = 1 2 2 2

A = 2 2 2 2

A = 3 2 2 3

Simulation Setting 6

B = 1 B = 2 B = 3

A = 1 2 2 3

A = 2 2 2 4

A = 3 3 4 5

Simulation Setting 7

B = 1 B = 2 B = 3

A = 1 2 3 3

A = 2 3 5 5

A = 3 3 5 5

Simulation Setting 8

B = 1 B = 2 B = 3

A = 1 2 3 4

A = 2 3 5 6

A = 3 4 6 7
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Table 6.5: Corresponding Values for Γ and β

Setting ΓA1 ΓA2 ΓB1 ΓB2 ΓA2B2 ΓA2B3 ΓA3B2 ΓA3B3

1 0 0 0 0 0 0 0 0

2 0 1 0 1 0 0 0 0

3 1 0 1 0 0 0 0 0

4 1 1 1 1 0 0 0 0

5* 0 0 0 0 0 0 0 1

6 0 1 0 1 0 1 1 1

7 1 0 1 0 1 1 1 1

8 1 1 1 1 1 1 1 1

Setting βA2 βA3 βB2 βB3 βA2B2 βA2B3 βA3B2 βA3B3

1 0 0 0 0 0 0 0 0

2 0 1 0 1 0 0 0 0

3 1 1 1 1 0 0 0 0

4 1 2 1 2 0 0 0 0

5* 0 0 0 0 0 0 0 1

6 0 1 0 1 0 1 1 1

7 1 1 1 1 1 1 1 1

8 1 2 1 2 1 1 1 1

*The hierarchy principle is violated.

As mentioned earlier, we compare our collapsed approaches to three other prior formu-

lations. The prior OrderNoSelection involves imposing two-way order restrictions without

any selection/shrinkage. This is done through specifying normal prior distributions for

the µjk elements that are truncated to satisfy the order restrictions. The prior None uses

normal priors for each µjk with no selection or order restrictions.

The prior Hierarchy involves variable selection without any order restriction. The

prior involves seven indicators: one for whether the A main effects are nonzero (using

grouped selection where the main effects of A are included/excluded jointly), one for

whether the B main effects are nonzero (again using grouped selection), and one for each
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one of the four interaction terms. The priors for the inclusion of the interaction terms

involve a weak hierarchy constraint. We would like to clarify what this prior assumes

about the main effects. For example, we consider the main effects of A. This prior allows

1) all the main effects are equal to zero or 2) all the main effects are nonzero and unequal.

In terms of µ, this prior allows 1) µ11 = µ21 = µ31 or 2) µ11 6= µ21 6= µ31 and µ11 6= µ31.

Restated, we are using grouped selection to determine whether to include or exclude the

main effects of A and B (Chipman, 1996; Farcomeni, 2010). In these simulations, we

are assuming that A and B have some natural ordering, and it therefore makes sense to

either include or exclude the main effects of a particular variable jointly.

In each simulation setting and model formulation, we use the program JAGS to fit

the outcome model using each of five specifications of the prior distributions for Γ and

θ̃. For the methods assuming ordering, we impose a two-way order constraint (in both

the A and B direction). For each prior distribution and simulated dataset, we run the

Gibbs sampler (using JAGS) for 10,000 iterations with a burn-in of 1000 iterations. For

each fit, we first compute the posterior mean and 95% quantiles for µ and β and the

posterior probabilities for Γ. We then compute the average of these quantities across the

200 simulated datasets.
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6.3.2 Simulation Results

Model 1: Linear Regression

Figure 6.2 shows the average posterior probability that each element of Γ equals one

for each of the simulation settings. For this figure, we only consider three of the priors.

The other two priors automatically impose Γ = 1. We recall that the values of ΓA and

ΓB correspond to whether we have strict inequality for adjacent main effects in A and

B. The values of ΓAB correspond to whether we have a nonzero interaction term. The

CollapsedHierarchy and CollapsedNoHierarchy methods do an excellent job at identifying

nonzero effects when they are present.

In Simulation 5, weak hierarchy assumptions are violated, and as a consequence the

CollapsedHierarchy method results in inflated posterior probabilities for some main ef-

fects in order to also include the interaction. The CollapsedNoHierarchy method retains

low posterior probabilities for the main effects in this setting. The Hierarchy prior also

runs into some trouble with Simulation 5, where the posterior probability of ΓA3B3 (which

takes true value 1) is much smaller than for the collapsed methods. This is a result of

the violated weak hierarchy constraint. The CollapsedNoHierarchy method is better able

to account for the violation of weak hierarchy by making some but not all main effects

nonzero. In contrast, the Hierarchy prior can only have a nonzero interaction if either all

A main effects are nonzero or all B main effects are nonzero.

In Simulation 1, we have no main effects or interactions included in the model. In

Simulation 4, we have all main effects included (with no equality for adjacent main ef-

fects), and in Simulation 8 we have all main effects included (with no equality for adjacent

main effects) and all interactions included. These are the settings in which the Hierarchy

constraint is well-suited. In these settings, the Hierarchy constraint does a reasonable

job at determining which values of Γ should be nonzero. However, in Simulations 4 and

8, the collapsed methods do a better job at determining which values of Γ are nonzero.

In Simulations 2, 3, 6, and 7, we have one but not both of the values in ΓA and ΓB

that are nonzero. This is equivalent to having one equality and one strict inequality for

the values of µ corresponding to the main effects for that variable. In this setting, the

collapsed methods perform very well in terms of the posterior of Γ. The Hierarchy prior,

which uses grouped selection for the main effects of A and B, performs poorly.
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Figure 6.3 shows bias of the posterior mean of µ for each one of the methods through

heat maps. This figure allows us to more clearly see the impact of the various priors on

the resulting biases. Each three-by-three grouping corresponds to the posterior means of

µ for one of the methods. The color in a particular cell corresponds to the magnitude

of the bias. The OrderedNoSelection prior tends to result in greater bias compared to

the other priors. The two collapsed methods produce very similar results. The collapsed

methods do well in terms of bias except for Simulation 7. For this simulation, the col-

lapsed methods struggle with estimating the interaction term related to the A = B = 2

cell. The None method (with no selection or order restrictions) results in essentially un-

biased estimates for the posterior mean of µ. The Hierarchy prior also runs into problems

with bias for Simulations 3, 5, and 8. The bias in Simulation 3 is likely due to the grouped

selection used by the Hierarchy prior. The bias in Simulation 5 is due to the violated

hierarchy constraint, which the Hierarchy prior is ill-suited to handle. In contrast, the

CollapsedHierarchy prior performs well for this simulation in terms of bias. The bias of

the Hierarchy prior for Simulation 8 appears to be related to too much spread for the

main effects.

Figure 6.4 shows the estimated MSE for the estimate of the posterior mean of µ. The

None and OrderedNoSelection perform poorly for all but Simulation 8. In this simula-

tion, all main effects and interactions are present, and these two priors perform similarly

or better than other methods. The good performance of the None prior in this setting

may be attributed to the very strong effects chosen for the simulated data, and in this

setting there may not be as much advantage to imposing order restrictions. The Hierar-

chy prior performs poorly for Simulation 8 due to bias, and the collapsed priors perform

worse somewhat poorly in Simulations 7 and 8 prior due to some increased bias from too

much shrinkage and very slightly inflated standard errors for µ11 in Simulation 8. The

Hierarchy prior performs well in Simulations 1 and 4. In these simulations, the hierarchy

constraint is satisfied, and either all or no main effects are included. In Simulations 1-6,

the collapsed priors perform similarly or better than the other methods.

In Appendix L, we present additional results for this set of simulations including

coverage and average credible interval widths for µ, the average credible intervals for µ

and β, and heat maps for the posterior mean of µ.
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Figure 6.2: Average Proportion of Nonzero Γ (Linear Regression)
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This figure shows the proportion of iterations in which each element of Γ is nonzero,
averaged across 200 simulations. These proportions equal the posterior probability that
each element of Γ equals one. ‘*’ indicates a true nonzero value for Γ.
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Figure 6.3: Heat Maps for Bias of Posterior Mean of µ (Linear Regression)
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This figure shows the bias for the posterior mean values of µ for different combinations
of A and B, averaged across 200 simulations
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Figure 6.4: MSE for µ̂ (Linear Regression)
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This figure shows the MSE of the posterior mean of µ. This was calculated as the squared
bias of the posterior means across 200 simulations plus the variance of the posterior mean
estimates across the 200 simulations.
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Model 2: Logistic Regression

Figure 6.5 shows the average posterior probability that Γ = 1 for each of the simulation

settings. We generally see greater difficulties in determining which values of Γ equal 1

than in the linear regression case. The collapsed methods appear to do a reasonable job

at determining which main effect terms should be included, but they have a tendency to

estimate large posterior probabilities for interaction terms even when there are none. The

Hierarchy method, in contrast, estimates lower posterior probabilities for the interaction

terms even when there are interaction terms present. The Hierarchy totally misses the

interaction term in Simulation 5, where weak hierarchy is violated.

Figure 6.6 shows bias of the posterior mean of µ for each one of the methods through

heat maps. The OrderedNoSelection prior tends to result in greater bias compared to

the collapsed priors and the Hierarchy prior. The two collapsed methods produce very

similar results. The collapsed methods generally do well in terms of bias, but they tend

to overestimate µ33 in simulations in which ΓA1 and ΓB1 are nonzero. The None method

(with no selection or order restrictions) shows evidence of numerical issues, as the biases

for the interaction terms tend to be large. The Hierarchy prior also runs into problems

with bias for Simulation 5, where the hierarchy constraint is violated. In contrast, the

CollapsedHierarchy prior performs well for this simulation in terms of bias.

Figure 6.7 shows the estimated MSE for the estimate of the posterior mean of µ.

The None and OrderedNoSelection perform poorly in all simulation settings. The Hier-

archy prior performs well in Simulation 1, and the CollapsedHierarchy method performs

only slightly worse than the Hierarchy prior for the simulation. The CollapsedNoHier-

archy outperforms the None and OrderedNoSelection priors in Simulation 1. For other

simulations, the Hierarchy prior tends to have larger MSE than the collapsed methods

for parameter except µ33. For this parameter, the Hierarchy prior often performs better

than the collapsed methods due to an increased bias for this parameter for the collapsed

methods. For all other settings and parameters, the collapsed methods tend to have

smaller or similar MSE compared to the other methods. In general, the MSE values tend

to be much larger for the interaction terms due to the large standard errors.

In Appendix L, we present additional results for this set of simulations including

coverage and average credible interval widths for µ, the average credible intervals for µ

and β, and heat maps for the posterior mean of µ.
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Figure 6.5: Average Posterior Probabilities of Γ (Logistic Regression)
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This figure shows the proportion of iterations in which each element of Γ is nonzero,
averaged across 200 simulations. These proportions equal the posterior probability that
each element of Γ equals one. ‘*’ indicates a true nonzero value for Γ.
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Figure 6.6: Heat Maps for Bias of Posterior Mean of µ (Logistic Regression)
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This figure shows the bias for the posterior mean values of µ for different combinations
of A and B, averaged across 200 simulations
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Figure 6.7: MSE for µ̂ (Logistic Regression)
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This figure shows the MSE of the posterior mean of µ. This was calculated as the squared
bias of the posterior means across 200 simulations plus the variance of the posterior mean
estimates across the 200 simulations.
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6.4 Discussion

In this chapter, we developed a prior that can perform variable selection for interactions

in the presence of one- or two-way order restrictions. This prior can also incorporate

heredity restrictions (which we refer to as “hierarchy constraints”) into the estimation.

Previous work has explored order-restricted variable selection for main effects models

(Otava et al., 2014) and has explored hierarchy restrictions to improve variable selection

with interactions (Chipman, 1996), but no previous work has explored order-restricted

variable selection for models with interactions. Throughout the chapter, we casually refer

to the proposed methods as “collapsed” methods because they involve merging adjacent

categories in the order restriction together using variable selection.

It is well-known that inference under order restrictions can result in parameter esti-

mates that are biased away from each other. One advantage of the proposed method is

that this bias can be avoided or reduced through allowing some parameters in the or-

der restriction to be equal. Unlike usual order-restricted inference, the proposed methods

don’t require strict order restrictions, which reduces the strength of the prior assumptions

regarding ordering and allows greater flexibility in the resulting model. Additionally, it

is often unappealing to include interactions of variables without first including the main

effects in the model. The proposed prior can incorporate hierarchy constraints, allowing

us to restrict our focus to models that “make sense.” Through imposing order restrictions,

we are able to observe gains in efficiency over inference without the order restrictions,

and the variable selection component allows us some control over the parameter estimates

and the size of the resulting model.

Simulations compare the bias and efficiency properties of the proposed methods over

existing priors for linear regression and logistic regression models in a variety of simula-

tion settings. In particular, we compare our proposed methods to priors with no selec-

tion or ordering, order restrictions without selection, and hierarchy-constrained selection

without order restrictions. For linear regression, the proposed methods outperformed

all other methods considered in terms of estimation of the “true” inclusion/exclusion of

the main effect parameters and interaction terms. For logistic regression, the proposed

methods did a reasonably good job at determining values for the main effects, but they

struggled when estimating the interactions. This is because there is substantially less
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information in the observed outcome for logistic regression than for linear regression, and

consequently it is more challenging to determine which parameters should be included

and excluded from the model. Indeed, the proposed methods resulted in better estimates

for the interactions than the other methods considered. In both the linear and logistic

regression settings, the proposed methods generally produced parameter estimates with

no or little bias, and the widths of the corresponding credible intervals were generally

narrower for the other methods. Overall, simulations suggest that the proposed priors

can improve flexibility by allowing for the merging of adjacent categories. The proposed

priors can often improve efficiency and reduce bias compared to usual order-restricted

methods through selection and may do better in the face of violations of hierarchy than

the usual hierarchy-constrained selection priors.

This chapter focuses on the proposed prior itself and its properties in simulation, but

our ultimate goal is to apply this prior to the head and neck data. There is a belief in the

literature that different subsites for head and neck cancer (e.g. oral cavity, oropharynx,

hypopharynx) are very distinct and may have different covariate effects. For example,

the effect of HPV may differ across cancer subsites. We would like to add interactions

between cancer subsite and other covariates in our modeling of the head and neck data.

Given the large number of covariates, we also want to incorporate variable selection.

In the head and neck dataset, we have various covariates that have implied ordering.

For example, we have comorbidities, AJCC stage, T stage, N stage, etc. For some parts

of the model, we may want to impose order constraints for these variables. For example,

suppose we want to model the head and neck data using a multistate cure model as in

Chapter IV. We may want to constrain that the effects of comorbidities on the rate

of death from other causes is non-decreasing with worsening comorbidities. If we also

incorporate interactions between comorbidities and cancer subsite in the model, we can

apply the proposed variable selection prior imposing a one-way order restriction. Ad-

ditionally, suppose we wanted to include an interaction between T stage and N stage

in the model for time to cancer recurrence. We may believe that increases in either T

or N stage should result in greater or equal rates of recurrence. We could incorporate

this assumption using variable selection with two-way order restrictions. In this way, the

variable selection methods explored in this chapter are of great interest when modeling

the head and neck cancer data.
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One basic assumption made in this chapter is that we have some prior belief regarding

the outcome model and the scale on which we want to assess ordering and interactions.

For example, suppose that instead of modeling Y using a linear regression, we model
√
Y .

Monotonic transformations of Y will preserve the parameter ordering, but they may not

preserve the interactions, and modeling on different scales may change the posterior in-

clusion probabilities for the corresponding interaction terms. Additionally, in the linear

regression case, our proposed methods also assume that we have constant variance across

different combinations of A and B. We may have constant variance on the Y scale but not

on the
√
Y scale. We can generalize the proposed methods for the non-constant variance

setting, but this issue is still worth some thought. For many applications, there may be a

natural scale on which to explore interactions. In the head and neck cancer example, we

are interested in exploring multistate modeling involving Cox regression models. In this

modeling framework, we model the hazard λ(t) = λ0(t)eXβ where λ0(t) is the baseline

hazard function. In this setting, it is natural to explore interactions incorporated linearly

in the Xβ term.

The work in this chapter is a first look at this proposed prior distribution, and addi-

tional work is needed. This analysis implemented estimation under the proposed priors

automatically using the software JAGS. In the future, we will explore the structure of

the posterior distributions of the parameters and develop an MCMC sampling scheme

for parameter estimation. Additionally, we chose only 8 simulation settings in which to

explore the proposed methods, but additional exploration is needed to determine how

the proposed priors will perform in different scenarios. Finally, we may often tend to

believe that parameters related to interaction terms are generally small even when they

are included in the model. We can alter the specification of the prior distribution for

θAjBk values to incorporate this prior belief. In the future, we ultimately plan to explore

how to apply the proposed methods to multistate modeling of the head and neck data.

Development of an MCMC sampling scheme is particularly important when it comes

to applying the proposed methods to the head and neck dataset because JAGS is not

well-suited to deal with the covariate and outcome missingness present in the head and

neck dataset. Ultimately, we hope that by applying the proposed methods to the head

and neck data (and incorporating our prior beliefs regarding parameter ordering), we can

improve the efficiency of our estimation. The resulting modeling could be used to produce
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better outcome predictions, which could be extremely useful in clinical applications.
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Chapter VII

Conclusion

With the increasing availability of patient information (from past medical records, new

diagnostics, genetic testing, etc), there is a strong need to develop statistical methods to

handle the challenges presented. This is particularly true for the large-scale observational

data often used in cancer research. In this dissertation, we consider a study of recurrence

and death in patients with head and neck cancer. Through this dissertation, we aim to

address some of the statistical problems that arise for the head and neck cancer data, but

the methods we develop can be applied to other diseases and different scientific questions.

In particular, we consider the setting where a subset of the population is cured of their

disease and can never experience a cancer recurrence, of which the head and neck cancer

data is an example. Several frameworks exist for modeling recurrence with an underlying

cured fraction of the population. We will consider two such models: the Cox proportional

hazards mixture cure model (Kuk and Chen, 1992; Sy and Taylor, 2000) and the multi-

state cure model (Conlon et al., 2013). In this dissertation, we address issues of missing

data, parameter estimation, and variable selection that arise in the application of these

models to data.

Chapter II of this dissertation explores imputation-based methods for dealing with

missing covariate values for the Cox proportional hazards cure model. We consider

chained equations-type imputation strategies, which involve specifying a model for each

variable with missingness. We first use an imputation strategy developed in Bartlett

et al. (2014) that incorporates the structure of the cure model to guide the form of the

imputation distributions. We then propose several regression model approximations that

are easier to use for imputation in practice. We compare the proposed imputation meth-

ods to existing methods for imputing missing covariates for survival data without a cured

fraction, and we apply the proposed methods to the head and neck cancer data. This
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work is the first to explore chained equations imputation for the cure model, and it there-

fore provides an extremely useful addition to the cure model literature. In the course of

developing imputation methods for the cure model setting, we proposed a method we call

“Outcome Binning” that performs fairly well in the cure model setting. As this method is

not specific to the cure model setting, it would be interesting to explore the performance

of this method for imputing missing covariates in the standard survival setting without

a cured fraction in the future.

The second chapter of this dissertation considers covariate imputation under an as-

sumption of missing at random (MAR), where missingness is assumed to be related

to fully-observed information (Little and Rubin, 2002). However, this is a restrictive as-

sumption, and there are many situations in which missingness may depend on unobserved

information, called missing not at random (MNAR). In Chapter III of this dissertation,

we consider a particular MNAR mechanism called latent ignorability or latent missing at

random (LMAR), where missingness is allowed to depend on missing information through

a latent or partially latent variable. We consider a modeling framework in which covariate

or outcome missingness can depend on a latent variable that is part of the outcome model.

In a mixture of normals model, for example, covariate missingness may be related to the

underlying mixing variable. In the cure model setting, missingness may be related to cure

status. We propose a sequential imputation algorithm for dealing with LMAR or MAR

missingness in the covariates and/or outcomes. We derive the imputation distributions

under joint modeling assumptions, and we then describe how we can use the results under

a joint model to guide imputation when we do not assume a joint model. This allows for

increased flexibility in the models used for imputation over standard joint modeling. One

primary limitation of this work is the difficulty regarding parameter identifiability. In the

chapter, we explore issues of identifiability and convergence for the proposed algorithm,

but we do not present any theoretical results and instead address this problem through

simulation and several examples. We provide guidance for how to apply the proposed

methods in practice.

Chapters IV and V of this dissertation explore statistical issues arising for mul-

tistate cure models. Multistate models in general have many valuable uses in medical

research. They provide a unified way to incorporate information from multiple event

time outcomes, they allow us to study the impact of patient characteristics on different

182



aspects of disease progression, and they are extremely useful for making patient-specific

predictions. The multistate cure model is of particular interest in cancer research be-

cause it can allow us to study covariate effects on the cure rate, the rate of recurrence

among non-cured subjects, and the death rates before and after recurrence. Addition-

ally, incorporating the underlying cure structure into the multistate model may help us

obtained better patient-specific predictions for recurrence and death rates. Despite the

many advantages of using the multistate cure model, there are currently many statistical

barriers that may make this model difficult to apply to data.

The first barrier is the lack of standard statistical software for fitting this model. The

existing method in Conlon et al. (2013) for fitting the multistate cure model requires

custom software and technical knowledge, and it can take a long time to converge. Addi-

tionally, there is no previous discussion of how to handle missing covariate data, which is

extremely common in practice. In Chapter IV of this dissertation, we develop maximum

likelihood-based methods for estimating multistate cure model parameters. In the setting

with no missingness beyond the partially latent cure status, we propose an Expectation-

Maximization (EM) algorithm for estimation. The proposed method can accommodate

parametric or nonparametric baseline hazards and different assumptions regarding the

rates of death from other causes in the cured and non-cured subjects. This provides a

gain in the model flexibility over existing methods. We further propose a Monte Carlo

Expectation-Maximization (MCEM) algorithm for estimating multistate cure model pa-

rameters in the presence of covariate missingness and/or unequal censoring of the out-

comes. By unequal censoring, we refer to the setting in which we have longer follow-up for

death than we have for recurrence, which often arises in practice. The proposed method

involves imputing missing values for the covariates, underlying cure status, and outcome

data when we have unequal censoring. We develop a novel imputation-based approach for

dealing with unequal censoring, and this approach can be applied in general illness-death

model settings. Simulations demonstrate good performance of the proposed methods

when the modeling assumptions are sufficiently restrictive, and we apply the proposed

methods to the head and neck cancer data. We develop an R package called MultiCure

for fitting the multistate cure model using the proposed methods. We hope the devel-

oped methods and the corresponding R package can make multistate cure models more

accessible to analysts performing data analysis. Future developments for this R package
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can incorporate ridge and LASSO penalization options and shrinkage-based methods to

improve identifiability for the parameters in the transitions to death from other causes

as explored in Appendix J. We would also like to develop a separate R package that

can perform the imputation-based method for dealing with unequal censoring for general

illness-death model settings. Ideally, this package would be easily combined with other

multistate modeling software in R such as the package mstate.

A second barrier to the application of multistate models in general and the multistate

cure model in particular is the large number of model parameters. When the number

of model parameters is large, we can often run into numerical issues and overfitting. In

Chapter V, we explore how we can apply existing Bayesian and maximum-likelihood-

based variable selection methods (with some small modifications) in the multistate mod-

eling setting. We restrict our attention to a particular multistate model. We propose a

novel generalization to the multistate cure model that incorporates subjects with persis-

tent disease. By subjects with persistent disease, we mean subjects that never appeared

to clear their cancer through treatment. We expect these subjects to have different death

rates than other subjects, and the developed multistate cure model with persistence can

account for this. We apply this model to the head and neck dataset using several different

Bayesian and maximum likelihood-based variable selection/shrinkage strategies in the lit-

erature and compare the resulting parameter estimates and credible/confidence intervals.

We provide some tentative recommendations for the application of existing variable selec-

tion methods in general multistate modeling settings. Additional explorations comparing

the different Bayesian variable selection methods for the head and neck data can explore

different choices for hyperparameters and hyperpriors, which may change the compara-

tive rates of shrinkage and resulting model inference across the methods.

In order to improve efficiency and control the number of model parameters, we may

want to incorporate additional parameter restrictions into the variable selection proce-

dure. For example, suppose that we have a strong prior belief regarding the ordering of

parameters. For the head and neck cancer data, we may believe that worse comorbidities

will be related to similar or greater rates of death from other causes. Otava et al. (2014)

explores how we can incorporate order restrictions with Bayesian variable selection. Sup-

pose we want to impose the restriction µ1 ≤ µ2 ≤ µ3, where the µ parameters correspond

to different levels of a variable, A. The method in Otava et al. (2014) uses the Bayesian
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variable selection prior in Kuo and Mallick (1998) to determine whether adjacent values

of µ are equal or strictly ordered. By setting adjacent values of µ to be equal, we are

equivalently grouping (or collapsing) adjacent values of A together.

In Chapter VI, we explore a more general scenario where our goal is to perform

Bayesian variable selection for a model with interactions and order restrictions for one or

both of the interacted variables. Existing Bayesian variable selection methods for models

with interactions often incorporate heredity restrictions, which determine the inclusion of

interaction terms based on the inclusion of the corresponding main effects. We propose

a Bayesian variable selection prior that can incorporate both heredity constraints and

one- or two-way order restrictions. Simulations demonstrate the performance of the pro-

posed prior in the linear and logistic regression settings. One drawback of the proposed

approach is that it supposes that the model formulation and the scale for evaluating

interactions are specified ahead of time. Changes to the model or the scale for the in-

teractions (for example, by modeling
√
Y instead of Y ) may alter the importance of the

interactions. Our plan for the future is to apply these methods to study the interaction

between cancer site and order-restricted variables (such as comorbidities or cancer stage)

for the head and neck cancer data.

In the future, we would like to develop additional Bayesian variable selection (BVS)

methods to address problems for the head and neck data. For example, we note that we

tend to see high autocorrelation across iterations of the MCMC algorithm when applying

the BVS methods to the head and neck data, which negatively impacts mixing. This

issue is common for many applications of BVS, and it requires us to perform a large

number of MCMC iterations to estimate the posterior mean and credible intervals well.

This autocorrelation is a result of the Metropolis-Hastings methods used to perform the

various parameter draws. We hope to address the autocorrelation issue by performing

parameter draws via other methods such as rejection sampling, which we do not expect

to suffer from the same degree of inter-iteration correlation.

Using a multistate cure model fit to the head and neck cancer data, we would ulti-

mately like to develop a web application that can be used by clinicians and researchers

to estimate state occupancy probabilities given individual patient characteristics. Such a

tool could be extremely useful for medical decision-making and for studying the aggregate

effects of different covariates on prognosis. When the model parameters are estimated
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using BVS, it is not clear how to estimate the state occupancy probabilities. Do we use

the Bayesian model-averaged posterior mean of the parameter, do we use the covariate

combination with the highest posterior weight, or do we use some combination? Future

work could explore this issue along with how to estimate corresponding standard errors.

In the design of medical studies, there is great interest in obtaining estimates of

statistical power and sample size requirements. If the multistate cure model is to be

more widely used in medical research, methods are needed to estimate these and related

quantities. Additional generalizations of the multistate cure model may also widen the

applicability. In all previous explorations of the multistate cure model, the underlying

transition times between states are assumed to be independent within a subject and in-

dependent between subjects given covariates and baseline cure status. However, this may

not always be the case. For example, in the head and neck cancer dataset, we have data

from different hospitals. It may be that the recurrence and death times are correlated

across individuals treated at the same hospital. Additionally, event times within an indi-

vidual could be correlated even accounting for covariates. In literature for illness-death

models, many authors have explored the inclusion of frailty terms to the state transition

models to account for residual correlations within and between subjects (Bijwaard, 2014;

de Castro et al., 2015). Future work can generalize the multistate cure model explored in

this dissertation to incorporate different types of frailty terms and explore corresponding

estimation methods. This will allow us to relax the independence assumptions, which

can widen the scope of problems well-suited for the multistate cure model.

The ultimate goal of this dissertation is to provide statistical methods and guidance

for dealing with common problems of missing data, parameter estimation, and variable

selection in the cure model setting. In this dissertation, we have developed methods to

handle missing data and variable selection for cure models and multistate models. This

provides analysts with the statistical tools to apply cure models to messy data often

seen in practice. We further developed imputation methods to handle latent ignorable

missingness, which has not be previously explored in the cure model setting. In order

to make multistate cure models easier to fit, we developed a more convenient estimation

technique and provided an R package. This package can also be used to estimate state

occupancy probabilities, which are of great clinical interest. Through this methodological

work, we hope to improve the ability of analysts to apply cure models to “real data” both
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through providing solutions to common data problems and through creating software for

fitting the models. In this dissertation, we focus our methodological development around

problems observed in cure modeling of the head and neck cancer data, but the proposed

approaches can be applied to many other scientific questions and modeling frameworks.

This dissertation, therefore, provides methods to deal with issues of missing data and

variable selection for a wide range of problems.
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Appendix A

Performing Parameter Draws in

LMAR-based Imputation

In this appendix, we provide more details regarding the univariate imputation steps

for imputing missing values in D and L. In particular, we discuss distributions we can use

to perform the parameter draws within the sequential imputation algorithm. Our pro-

posed method for drawing model parameters within a given univariate imputation step

will depend on whether we are performing imputation of the latent variable or a variable

in D. The proposed method in Section 3.3.3 assumes that imputation proceeds under a

fully-specified joint model, and we generalize this algorithm in Section 3.3.4 for settings

in which the imputation distributions do not correspond to a valid joint distribution.

Here, we will suppose that L is imputed from the kernel in (3.6) and that missing X

and Y are imputed from working imputation models that may or may not correspond

(3.7) and (3.8). Therefore, the following exploration can be applied when outcomes and

covariates are imputed using (3.7) and (3.8) or using approximations.

First, we will review some notation. Define D(p) to be the pth variable in D and

D(−p) to be all variables in D except D(p). Parameter ν represents the parameters for the

joint distribution, f(D,L,R; ν). We partition ν = (φ, ρ) where φ represents the missing-

ness model parameters and ρ represents all other model parameters. We assume that ρ

and φ are distinct (a priori independent). Suppose that we specify f̃(D
(p)
i |D

(−p)
i , Li; ρ

p)

to be the working conditional distribution of D
(p)
i used for imputation. We can view

f̃(D
(p)
i |D

(−p)
i , Li; ρ

p) as an approximation of f(D
(p)
i |D

(−p)
i , Li; ρ). If we use the form of

the full conditional distribution as in (3.7) and (3.8) in the Chapter III, ρp will be a

subset of ρ. If we impute using regression models, ρp may not be directly related to ρ.

We suppose that we impute L from f(Li|Di, Ri; ν) as described in (3.6).
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A.1 Imputing D(p)

In Chapter III, we discuss how, when missingness is LMAR, we can impute D(mis)

ignoring the contribution of R (assuming some distinctness properties). This is a result

of the assumption that missingness is conditionally independent of D(mis). Rather than

imputing D(mis) directly from f(D(mis)|D(obs), L), we instead obtain a draw of D(mis)

by iteratively drawing missing values of each D(p,mis) from f(D(p,mis)|D(p,obs), D(−p), L)

or from an approximated version, f̃(D(p,mis)|D(p,obs), D(−p), L), treating the most recent

imputations for the other variables as if they were observed data (including L).

At a given iteration, we want to draw missing values of D(p) under MAR and LMAR

from its posterior predictive distribution:

f̃(D(p,mis)|D(p,obs), D(−p), L) =

∫
f̃(D(p,mis)|D(p,obs), D(−p), L; ρp)f̃(ρp|D(p,obs), D(−p), L)dρp

This integral suggests an approach for drawing from the posterior predictive distribution.

Assuming that the data D
(p)
i across subjects i are conditionally independent given L and

D
(−p)
i , we can obtain a draw from the posterior predictive distribution by performing the

following (Little and Rubin, 2002):

1) Draw ρp from f̃(ρp|D(p,obs), D(−p), L)

2) Draw missing D
(p)
i from f̃(D

(p,mis)
i |D(p,obs)

i , D
(−p)
i , Li; ρ

p) = f̃(D
(p)
i |D

(−p)
i , Li; ρ

p).

We note that step 1) involves drawing ρp conditioning on D(p,obs) using only

the observed part of D(p). This is consistent with chained equations imputation in

which we draw parameter values using only the observed values of D(p) (Van Buuren

et al., 2006). The step for drawing ρp conditioning only on the observed data can be

accomplished by using the data with observed values for D(p) and prior f̃(ρp). If we

assume the prior distribution is proportional to 1, we can draw ρp by fitting model

f̃(D(p)|D(−p), L; ρp) to a bootstrap sample of the data with observed values for D(p). We

note that while this step for drawing ρp does not use the most recent imputation of D(p),

it does use the imputed values for L.

An alternative to the above is to draw ρp using a Gibbs-type approach. In Gibbs
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sampling-type imputation algorithms, parameter values are drawn using all of the most

recent imputed data, including imputed values for D(p) from the previous iteration. This

approach is also used in SMC-FCS, a modified chained equations approach proposed

in Bartlett et al. (2014). If preferred, we can obtain valid parameter draws using this

approach as well. We note that we can write

f̃(ρp|D(p,obs), D(−p), L) =

∫
f̃(ρp|D(p), D(−p), L)f̃(D(p,mis)|D(p,obs), D(−p), L)dD(p,mis)

The above integral suggests that we can obtain a draw from f̃(ρp|D(p,obs), D(−p), L) by

drawing ρp from f̃(ρp|D(p), D(−p), L) using the drawn value of D(p,mis) from the previous

iteration, which was drawn from f̃(D(p,mis)|D(p,obs), D(−p), L). Rather than drawing pa-

rameter values using the complete case data as is in the usual implementation of chained

equations, we can alternatively draw parameters conditioning on the imputed values of

D(p) from the last iteration. We use this approach for drawing parameters in our simu-

lations and in our presentation of the proposed method in Chapter III.

Rather than approximating the distributions for each variable with missingness with

a regression model for imputation, suppose that we impute all variables using the kernel

forms in (3.6), (3.7) and (3.8). In this case, ρp is is a subset of ρ. For simplicity, we might

choose to perform only a single set of parameter draws per iteration of the sequential im-

putation algorithm and use that set of parameter draws for imputing all of the variables in

that iteration. This approach is used in Gibbs sampling-type algorithms. In this case, we

might perform a set of parameter draws for ρ in the step for imputing L, which involves

drawing ρ using methods treating L as latent as described in the following section. Then,

we can use that same drawn value for ρ for imputing the covariate/outcome values. We

note that the above derivations above suggest that we should draw ρ conditioning on the

imputed values of L when we are imputing covariates/outcomes. In our experience, how-

ever, a single draw of ρ using the above approach generally produces good results when

we perform our final analysis using only the imputed values of D. When we perform our

final analysis using the imputed values of D and L, drawing ρ before each imputation

can sometimes produce improved parameter coverage.
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A.2 Imputing the Latent Variable

In the imputation step for L at a given iteration of the sequential algorithm, we aim to

draw missing values from the posterior predictive distribution:

f(L(mis)|L(obs), D,R) =

∫
f(L(mis)|L(obs), D,R; ν)f(ν|L(obs), D,R)dν

under LMAR and the posterior predictive distribution:

f(L(mis)|L(obs), D) =

∫
f(L(mis)|L(obs), D; ρ)f(ρ|L(obs), D)dρ

under MAR. Here, we treat the most recent imputations for D as if they were the

observed data. As before, this integral suggests an approach for drawing from the

posterior predictive distribution. We can obtain a draw of the posterior predictive

distribution by performing the following:

1) Under LMAR, draw ν from f(ν|L(obs), D,R).

Under MAR, draw ρ from f(ρ|L(obs), D).

2) Under LMAR, draw missing Li from f(L
(mis)
i |L(obs)

i , Di, Ri; ν) = f(Li|Di, Ri; ν).

Under MAR, draw missing Li from f(L
(mis)
i |L(obs)

i , Di; ρ) = f(Li|Di; ρ)

We note here that we are assuming that Li values are conditionally independent

across different values of i. Suppose our outcome model is a linear mixed model with a

random intercept, L. Then i here would index the clusters (rather than the units within

clusters), and a single value of L would be drawn for all units within the cluster.

Drawing ρ under MAR

When L is partially observed, we can draw ρ from f(ρ|L(obs), D) ∝ f(L(obs), D; ρ)f(ρ)

using only the observed values of L and prior f(ρ) using methods that treat L as latent

or partially latent and ignoring R. For example, suppose our outcome model is a mixture

of GLMs and we use f(ρ) ∝ 1. Then, we can draw the parameter for the outcome model

by fitting a latent class model to a bootstrap sample of the data treating L as fully latent.
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Drawing ρ and φ under LMAR

We note that

f(ν|L(obs), D,R) = f(ρ|L(obs), D,R, φ)f(φ|L(obs), D,R) (A.1)

When L is partially latent (so it is partially observed), we can draw values of ν using only

the subjects with L observed. When L is fully latent, however, drawing from (A.1) may

not be so simple. Therefore, we will propose an alternative approach that can be applied

for latent and partially latent L. We will consider how to draw φ and ρ separately using

the factorization in (A.1).

We first consider how to draw values for ρ from f(ρ|L(obs), D,R, φ). We have that

f(ρ|L(obs), D,R, φ) ∝ f(L(obs), D,R; ρ, φ)f(ρ)

∝ f(R|D,L(obs); ν)f(L(obs), D; ρ)f(ρ)

This kernel separates into two factors: one that depends on φ and R and one that does

not. We note that L is treated as MCAR when L is fully latent and is assumed to be

MAR when L is partially latent, so the missingness in L is ignorable given D(obs). When

we condition on the imputed D, we can make valid inference about ρ (in a frequentist

sense) without conditioning on R and φ (Little and Rubin, 2002). However, R does

contain some information about the value of L under LMAR (ν and ρ are clearly not

distinct) and therefore would contribute some information about ρ. Ignoring R when

drawing ρ, therefore, may result in a loss of efficiency. We can validly (but with some

potential loss of efficiency) ignore the contribution of R and φ to f(ρ|L(obs), D,R, φ) and

instead draw ρ from f(ρ|L(obs), D). This is important because it may be difficult to draw

from f(ρ|L(obs), D,R, φ), but a draw from f(ρ|L(obs), D) can be obtained using standard

methods that treat L as latent or partially latent and ignoring R.

We now consider how to draw values for φ. The distribution f(φ|L(obs), D,R) may be

difficult to draw from under LMAR assumptions since this distribution does not condition

on L(mis). We instead use the integral decomposition:

f(φ|L(obs), D,R) =

∫
f(φ|L,D,R)f(L(mis)|L(obs), D,R)dL(mis)
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We can obtain a valid draw from f(φ|L(obs), D,R) by instead drawing from f(φ|L,D,R)

using the most recent imputation of L, which was drawn from f(L(mis)|L(obs), D,R).

Therefore, we can draw values of φ directly using the most recent imputed values of L.

This is easier than drawing from f(φ|L(obs), D,R) because it can directly incorporate the

working LMAR model for the missingness mechanism without integrating out missing

values of L. We do not choose to use this same integral decomposition approach for

drawing ρ as our proposed approach (which does not condition on the most recent

imputation of L) tends to result in more stable convergence properties in our experience

(for fully latent L).
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Appendix B

Identifiability under LMAR for Joint

Normal Models (Example 1)

In Chapter III, we restrict applications of the proposed methods to cases in which

the model parameters would be identified had the missing data been observed. Here,

we present an example in which parameters identified in the LMAR-based model would

not be identified if the missing data had been observed. In particular, we first explore

assumptions required to achieve identifiability for a measurement error model. Then, we

compare the measurement error model to linear mixed models and explain how the linear

mixed model is able to attain identifiability of all outcome model parameters.

B.1 Example 1.1: Measurement Error Model with

Covariates

Suppose we have a noisy version (Y ) of an underlying variable of interest, L. L is never

observed, and Y is observed at least for some subjects. We suppose Y and L are univariate

and related to fully measured covariates, X. Suppose we model

Yi = α0 + α1Li + α2Xi + ei, Li ∼ N(β0 + β1Xi,ΣL), ei ∼ N(0, σ2), ei ⊥ Li

This is an example of a measurement error model. This model contains 7 parameters.

This implies the following:Yi
Li

 |Xi = N

α0 + α1 (β0 + β1Xi) + α2Xi

β0 + β1Xi

 ,

σ2 + α2
1ΣL α1ΣL

α1ΣL ΣL


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Li|Yi, Xi ∼ N

(
β0 + β1Xi +

α1ΣL

σ2 + α2
1ΣL

[Y − α0 − α1 (β0 + β1Xi)− α2Xi] ,

ΣL −
α2

1Σ2
L

σ2 + α2
1ΣL

)

Suppose we have no missingness in Y . In this case, the observed data likelihood can

be expressed as follows:

Lik
(obs)
NoMissing =

n∏
i=1

f(Yi|Xi) =
n∏
i=1

N
(
Yi;α0 + β0α1 + [α2 + α1β1]Xi, σ

2 + α2
1ΣL

)
where N(a; b, c) indicates the normal density evaluated at a with mean b and variance c.

In order for the model to be identified, we must fix 4 of the 7 parameters in this

model (α0, α1, α2, σ
2, β0, β1,ΣL), so we can identify the 3 remaining parameters.

Suppose instead that we have LMAR missingness in Y is follows: Probit(P (RY
i =

1|Li, Yi, Xi)) = φ0 + φ1Li, so we assume that missingness in Y only depends on L. This

scenario is a simple case of the Heckman (1976) selection model if α1 = 0 with a mod-

ified missingness model (Little and Rubin, 2002; Heckman, 1976). The observed data

likelihood can be expressed as follows:

Lik(obs) =
n∏
i=1

[∫
Φ(φ0 + φ1Li)f(Yi, Li|Xi)dLi

]RYi[∫
(1− Φ(φ0 + φ1Li))f(Li|Xi)dLi

]1−RYi

=
n∏
i=1

[
f(Yi|Xi)

∫
Φ(φ0 + φ1Li)f(Li|Yi, Xi)dLi

]RYi[
1−
∫

Φ(φ0 + φ1Li)f(Li|Xi)dLi

]1−RYi

=
n∏
i=1

[
f(Yi|Xi)EL|Y,X (Φ(φ0 + φ1Li)) dLi

]RYi [1− EL|X (Φ(φ0 + φ1Li))
]1−RYi

We will make use of the following identity:

Let U ∼ N(µ1, σ
2
1) and V ∼ N(µ2, σ

2
2) be independent random variables. Now, U − V ∼

N(µ1 − µ2, σ
2
1 + σ2

2).

Φ

(
−(µ1 − µ2)√

σ2
1 + σ2

2

)
= P (U ≤ V ) =

∫
Φ

(
v − µ1

σ1

)
fV (v)dv = EV

(
Φ

(
v − µ1

σ1

))
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Using this identity and setting σ1 = 1/φ1 and that µ1 = −φ0/φ1, we have that

Lik(obs) =

n∏
i=1

[
1− Φ

(
φ0 + φ1(β0 + β1Xi)√

1 + φ2
1ΣL

)]1−RY

×

f(Yi|Xi)Φ

φ0 + φ1(β0 + β1Xi) + φ1α1ΣL
[
σ2 + α2

1ΣL
]−1

(Yi − α0 − α1(β0 + β1Xi)− α2Xi)√
1 + φ2

1(ΣL − α2
1Σ2

L [σ2 + α2
1ΣL]

−1
)

R
Y

This expression contains 9 parameters, but we cannot simultaneously identify all param-

eters. Suppose we set

A = φ1α1ΣL B = σ2 + α2
1ΣL C = α0 + α1β0 D = α1β1 + α2

E = φ0 + φ1β0 F = φ1β1 G = 1 + φ2
1ΣL

Then we can rewrite the observed data likelihood as:

Lik(obs) =

n∏
i=1

N(Yi;C +DXi, B)Φ

E + FXi + A
B (Yi − C −DXi)√
G− A2

B

R
Y [

1− Φ

(
E + FXi√

G

)]1−RY

Therefore, we can represent the 9 parameters as 7 parameters in the expression for the

observed data likelihood, and the 7 parameters are estimable. We must fix 2 parameters

in order for the remaining parameters to be (weakly) identified.

Suppose we fix φ0 and φ1. Then we can (weakly) identify all 7 remaining parameters

under LMAR. However, suppose that we had observed Y for all subjects. In this case, we

would need fix 4 parameters out of (α0, α1, α2, σ
2, β0, β1,ΣL) in order for the remaining

3 parameters to be identified. Therefore, the model fit without any outcome missingness

requires some parameters to be fixed that do not need to be fixed in the LMAR-based

model in order to achieve (weak) identifiability. Curiously, we have more information

about the parameter set under LMAR than if we had observed Y for all subjects. It

is worth noting that when we instead fix four parameters in (α0, α1, α2, σ
2, β0, β1,ΣL),

the resulting parameters A − G will be overidentified, but this should not present any

problems.

It is important to note that we cannot verify the form of the missingness model, and

here assumed missingness model results in additional parameters becoming identifiable

under LMAR. Therefore, the identification is a direct result of unverifiable assumptions,

and an analysis that relies on the missingness model being correct such that the outcome
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model parameters would not be identified if the model were incorrect seems untrustworthy.

This provides further justification for excluding situations in which the parameters would

not be identifiable if there was not covariate or outcome missingness.

While technically identified, our imputation algorithm leads to convergence problems

when imputing under this LMAR model with only two fixed parameters (simulations not

shown). If we fix additional parameters, the proposed imputation algorithm has better

performance. In general, we do not expect our imputation algorithm to perform well

in settings where the model would not be identified or would be very weakly identified

if there were no covariate/outcome missingness. In such settings, we recommend fixing

additional parameters to achieve good identification properties before performing the

proposed imputation algorithm.

197



B.2 Example 1.2: Linear Mixed Model Example

We notice that the form of the measurement error model in the previous section is similar

to the usual structure of a linear mixed model with a random intercept except that the

outcome in the linear mixed model case is multivariate. Suppose we observe K > 1 values

of Y for each subject and we assume that elements of Y within subjects are independent

conditional that subject’s covariates and the random intercept. We model:

Yi|Xi, Li ∼ NK(α0 + 1Kbi + α2Xi, σ
2IK), bi ∼ N(0,ΣL)

Here, 1K corresponds to α1 in the previous measurement error model. Additionally, this

model assumes that β0 = β1 = 0. Therefore, three parameters from the model in the

previous section are fixed by design. The modeling assumptions imply the following joint

distribution:Yi
Li

 |Xi = N

α0 + α2Xi

0

 ,

σ2IK + 1KΣL1TK 1KΣL

1TKΣL ΣL


Suppose we have no missingness in Y . In this case, the observed data likelihood can be

expressed as follows:

Lik
(obs)
NoMissing =

n∏
i=1

MVNK

(
Yi;α0 + α2Xi, σ

2IK + 1KΣL1TK
)

We can identify all four of these model parameters. We compare this to the situation with

the measurement error model with covariates in which 4 out of the 7 parameters needed to

be fixed in order to achieve identifiability. In this case, three of the 7 parameters are fixed

by design (α2 = 1K , β0 = β1 = 0), and we can identify an additional parameter due to

the compound symmetric structure of the variance for Y |X resulting from the repeated

measures within individuals. In this case, the model under no outcome or covariate

missingness is well-identified, and the proposed imputation approach can perform well

under some MAR and LMAR missingness scenarios.
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Appendix C

Identifiability under LMAR for a

Mixture of GLMs (Example 2)

In this section, we explore issues of identifiability for another simple modeling scenario.

Unlike the measurement error example, this example demonstrates a situation in which

the model is fully identified under no covariate/outcome missingness but has issues with

identifiability under a simple LMAR missingness mechanism. We present simulations

demonstrating evidence of identifiability-related numerical issues.

Suppose our model for outcome Y is a mixture of two GLMs and let C represent the

fully latent mixing variable. Within each latent class, we model the relationship between

Y and covariates X using a GLM. We will assume that C ⊥ X with P (Ci = 1|Xi) = ω.

We first suppose there is no covariate/outcome missingness. The observed data likelihood

takes the following form:

Lik
(obs)
NoMissing ∝

n∏
i=1

[ωf(Yi, |Xi, Ci = 1; θ) + (1− ω)f(Yi, |Xi, Ci = 2; θ)]

Assuming the distribution of Y |X,C depends on C and is an identifiable GLM in its own

right, then θ and ω are both identifiable.

Suppose now that we have latent-dependent missingness in the outcome for some

subjects. Let RY be a vector of indicators representing the response of Y . Let φ be the

parameter attached to the missingness model. We define pj(φ) = P (Ri = 1|Xi, Ci = j;φ)

for latent classes j = 1, 2. We can write the observed data likelihood as follows:

Lik(obs)(ν) ∝
n∏
i=1

∫ ∫
f(RY

i |Xi, Li;φ)f(Yi, |Xi, Ci; θ)f(Ci|Xi;ω)dY
(mis)
i dC

(mis)
i
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∝
n∏
i=1

[p1(φ)f(Yi, |Xi, Ci = 1; θ)ω + p2(φ)f(Yi, |Xi, Ci = 2; θ)(1− ω)]R
Y
i

× [(1− p1(φ))ω + (1− p2(φ))(1− ω)]1−R
Y
i

C.1 Example 2.1: RY is Independent of X (Noniden-

tifiable Model)

First, we assume that RY is independent of X, so it only depends on C. Define p1(φ) =

expit(φ0 + φ1) and p2(φ) = expit(φ0). We can write the observed data likelihood as:

Lik(obs)(ν) ∝
n∏
i=1

[
eφ0+φ1

1 + eφ0+φ1
ωf(Yi, |Xi, Ci = 1; θ) +

eφ0

1 + eφ0
(1− ω)f(Yi, |Xi, Ci = 2; θ)

]RYi
[
− eφ0+φ1

1 + eφ0+φ1
ω + 1− eφ0

1 + eφ0
(1− ω)

]1−RYi

This likelihood can be reparameterized using A = eφ0+φ1

1+eφ0+φ1
ω and B = eφ0

1+eφ0
(1−ω), so we

can represent three of the model parameters using just two parameters. Therefore, we

will not be able to identify all three of φ1, φ0, and ω, but A and B can be identified. We

suppose that θ is of primary interest. In this example, we can still identify θ even though

we cannot identify φ1, φ0, and ω. We note that under MAR, φ1 = 0, and both φ0 and ω

are identified.

Under LMAR, we can identify A and B, but we cannot identify φ1, φ0, and ω. We

want to know whether A and B are enough to perform the imputation of C and Y . In

order to impute Y , we will draw from f(Yi|Xi, Ci), which does not involve ω or φ. We

would impute C using:

P (Ci = 1|Xi, Yi) =

[
eφ0+φ1

1+eφ0+φ1
ωf(Yi|Xi, Ci = 1)

eφ0+φ1

1+eφ0+φ1
ωf(Yi|Xi, Ci = 1) + eφ0

1+eφ0
(1− ω)f(Yi|Xi, Ci = 2)

]RYi

×

[
ω(1− eφ0+φ1

1+eφ0+φ1
)f(Yi|Xi, Ci = 1)

ω(1− eφ0+φ1

1+eφ0+φ1
)f(Yi|Xi, Ci = 1) + (1− ω)(1− eφ0

1+eφ0
)f(Yi|Xi, Ci = 2)

]1−RYi

When we impute C and Y was observed, we are imputing using only functions of the

parameters that ARE identifiable. However, imputation when Y is missing requires

parameters that are not strictly identifiable. This may result in numerical issues within

200



the imputation algorithm.

While we cannot identify all three of φ1, φ0, and ω, we can identify the other two

parameters if we hold one parameter fixed. This provides a suggestion for imputation

under this unidentifiable model. We can fix values of one of the parameters and then

perform imputation. We can repeat this for different values of the fixed parameter and

explore the impact of the fixed parameter on model inference.

C.2 Example 2.2: RY Depends on X (Identifiable

Model)

Now, we assume that RY is not independent of X. Suppose we model p1(φ) = expit(φ0 +

φ1Xi + φ2) and p2(φ) = expit(φ0 + φ1X). We can write

Lik(ν) ∝
n∏
i=1

[
eφ0+φ1Xi+φ2

1 + eφ0+φ1Xi+φ2
ωf(Yi, |Xi, Ci = 1; θ) +

eφ0+φ1Xi

1 + eφ0+φ1Xi
(1− ω)f(Yi, |Xi, Ci = 2; θ)

]RYi

×
[
− eφ0+φ1Xi+φ2

1 + eφ0+φ1Xi+φ2
ω + 1− eφ0+φ1Xi

1 + eφ0+φ1Xi
(1− ω)

]1−RYi

When φ1 is nonzero, we can identify the model parameters. Therefore, additional com-

plexity in the missingness mechanism results in an identifiable model.
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C.3 Simulation using Nonidentifiable Model

We simulate a single dataset under a mixture of linear regressions model as in

Simulation 3 in Chapter III. We impose outcome missingness using the relation

logit(P (Y is observed|X1, X2, C, Y )) = φ0 + φ1C where φ0 = 1.1 and φ1 = −1.7. There-

fore, we have that p1(φ) = expit(−0.6) and p2(φ) = expit(1.1) (using notation from

Section C.1). This is a LMAR mechanism. Define β to be the parameters of f(Y |X,C)

and ω = P (C = 1|X).

We first perform our imputation algorithm using a correct working model structure

but without fixing values for φ0 and φ1. Previously, we showed in Section C.1 that the

parameters φ0, φ1, and ω are not all identifiable. However, at each iteration of the impu-

tation algorithm, we can draw values of these three parameters. We perform 10 streams of

our imputation algorithm in which we impute values of Y and L. Figure C.1(a) shows

the parameter draws for each iteration of the imputation algorithm. Different imputation

streams are shown with differently colored lines.

Figure C.1: Drawn Parameters in Nonidentifiable Model with No Fixed Parameters

(a) Parameter Draws Across 10 Imputation Streams
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(b) Gelman-Rubin Diagnostics
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(c) Draws of A and B Across 10 Imputation Streams
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Visually, we can see that we have some issues with convergence for φ1, φ0, and ω.
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However, the draws for the β parameters (the parameters ultimately of interest) appear

to converge. One criterion for evaluating the convergence is the Gelman-Rubin statistic

Gelman and Rubin (1992). This statistic is calculated by comparing the variation of

the parameter draws within each stream to the variation between streams. For good

algorithms, the value of this statistic should move toward 1 as the number of iterations

increases, and values greater than 1.1 are generally considered to represent insufficient

convergence. Figure C.1(b) shows the estimated Gelman-Rubin statistic for several

model parameters across iterations of the imputation algorithm. We do not include the

first 50 iterations in the calculations. The gray line represents a Gelman-Rubin statistic of

1.1. While the draws for the β parameters are converging, we do not see convergence for

φ0, φ1, and ω. While we cannot identify φ0, φ1, and ω, we previously showed that functions

A and B of these parameters are identifiable. Figure C.1(c) shows the parameter draws

for A and B, and we can see that these parameters appear to converge nicely even though

φ0, φ1, and ω do not.

Even though φ0, φ1, and ω are not all simultaneously identifiable, the parameter

related to the outcome model can be identified. In terms of the practical implications of

identifiability issues on inference, this hints that we may still be able to obtain reasonable

inference about the outcome model parameter in some cases. In this simulation, the β

parameters do appear to converge to values that are very close to the true values even in

the presence of convergence issues for the other parameters.

While we cannot identify φ0, φ1, and ω simultaneously, we can identify two of the

parameters if we fix values of the third. Fixing φ1, we perform imputation drawing values

for all other parameters. Figure C.2 shows the resulting parameter draws across the 10

streams of imputation. When we fix φ1, we see good numerical convergence properties

for the other model parameters.
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Figure C.2: Parameter Draws Across 10 Imputation Streams when φ1 is Fixed
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C.4 Simulation using Identifiable Model

We now consider the setting where missingness in the outcome is generated using the

relation logit(P (Y is observed|X1, X2, C, Y )) = φ0 + φ1X1 + φ2X2 + φ3C where φ0 = 1.1,

φ1 = 0.5, φ2 = −0.5, and φ3 = −1.7. Again, this is a LMAR mechanism.

We first perform imputation of Y and L using the correct working model without

fixing any parameter values. Figure C.3(a) shows the parameter draws for the 10 im-

putation streams. We can see evidence of convergence issues for several model parameters.

However, we still see that the parameters of interest in θ appear to converge nicely near

their true values.

While the parameters may all be technically identifiable, we can sometimes run into

problems when the observed data log-likelihood surface is nearly flat with respect to one

or more parameters. Figure C.3(b) shows the value of the observed data log-likelihood

for different values of φ0, φ3, and ω using the true values for all other parameters. The

plotted plane indicates the maximum of the observed data log-likelihood and the black

dot indicates the true values for the parameters. Fixing φ3 and φ0, we can see that the

shape of the log-likelihood with ω is fairly concave. However, the log-likelihood surface

as a whole is fairly flat across different combinations of φ0, φ3, and ω. When we fix the

value of φ3, however, we can do a better job at estimating ω and φ0, resulting in improved

convergence performance as shown in Figure C.3(c).
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Figure C.3: Drawn Parameters in Identifiable Model

(a) Parameter Draws with No Fixed Parameters
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(b) Log-Lik Surface with Respect to φ0, φ3, and ω

Log-Likelihood Values by Omega, Phi0, Phi3
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(c) Parameter Draws when φ3 is Fixed
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Appendix D

Implementation of LMAR-based

Imputation Algorithm under Various

Outcome Models

In this section, we provide specifics for how we can implement the proposed imputation

algorithm for the three examples of latent ignorability considered in Chapter III. In each

case, we will use notation defined in Chapter III and use R−S as defined in Lemma 3.

We will assume we are using flat priors for all model parameters. This assumption allows

us to draw parameter values using maximum likelihood methods on bootstrap samples

of the data.

D.1 Drawing from a Distribution Known up to Pro-

portionality

In Chapter III, we present distributions we can use to impute missing values for latent

variables, but in some cases these distributions may only known up to proportionality.

We call the form of the distribution known up to proportionality the “kernel” of the dis-

tribution. Many methods exist in the literature for drawing from a distribution knowing

only the kernel. In this section, we will briefly describe two such methods.

Rejection Sampling

The strategy of rejection sampling is to determine a easy-to-draw-from distribution that

dominates a hard-to-draw-from distribution. We can then draw values from the hard-
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to-draw-from distribution by instead drawing from the easy-to-draw-from distribution

distribution many times and accepting the first draw that satisfies a simple inequality. In

more concrete terms, rejection sampling algorithms involve determining a simple density,

g(v), that dominates the distribution known up to proportionality, k(v), such that we

can write

k(v) ≤ Kg(v) ∀ v

where K is a constant greater than or equal to 1. Once we have specified a density g(v)

that dominates k(v), we can obtain a draw V from k(v) by performing the following:

1) Generate V from g(v) and U from U(0, 1)

2) Accept draw V if U ≤ k(V )
Kg(V )

. Otherwise, we reject draw V and return to 1) (Robert

and Casella, 2004).

If Kg(v) is much larger than k(v), the rejection sampling algorithm may require many

repetitions in order to accept a draw. Therefore, the choice of g(v) and K is important to

the efficiency of the imputation algorithm. In the following sections, we propose possible

choices for K and g(v) in specific settings, but more efficient choices may be available.

Rejection sampling methods for imputation knowing the distribution only up to pro-

portionality were considered in Bartlett et al. (2014), which used dominating function

f(X
(t)
i |X

(−t)
i ;ψ) for covariate imputation. We can use a similar approach for covariate

imputation as discussed below.

Metropolis-Hastings

Like the rejection sampling algorithm, the goal of the Metropolis-Hastings algorithm is to

obtain a draw values of variable V from a distribution known only up to proportionality,

k(v). The strategy is to first specify a proposal distribution, p(v|u), from which we

propose new values for the variable V = v given the most recent drawn value of V , u.

We can obtain a draw V from k(v) by performing the following:

1) Generate v∗ from p(v|u). Generate U ∼ U(0, 1)

2) Define acceptance probability α = min
(

1, p(u|v
∗)k(v∗)

p(v∗|u)k(u)

)
. Accept draw V = v∗ if

U ≤ α.

Otherwise, we reject draw V = v∗ and keep V = u (Robert and Casella, 2004).

One popular choice of proposal distributions is a normal distribution centered at the most
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recent imputation u and with variance as a tuning parameter.
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D.2 Linear Mixed Model with Random Intercept

Suppose our outcome model is a linear mixed model with a latent random intercept,

bi. Let outcome Yi be a vector of K > 1 normal outcomes and Xi be a K × d matrix

containing a column of 1’s and covariates for subject i. We model

Yi|Xi, bi ∼ NK(Xiθ + 1Kbi,Σ) and bi|Xi ∼ N(0, ω2)

We have the following joint distribution:Yi
bi

 |Xi = N

Xiθ

0

 ,

Σ + 1Kω
21TK 1Kω

2

1TKω
2 ω2


In this modeling framework, random intercept bi is missing for all subjects. Suppose we

also have missingness in Y and X that may be MAR or LMAR. We also suppose that

Σ = σ2IK , so the outcomes are independent across subjects given b and X. We can

use the imputation algorithm described below to impute missing values in bi, X, and

Y . We can initialize the missing values of the covariates by drawing from the observed

values with equal probability. We can initialize the latent random intercept using the

Best Linear Unbiased Predictors (BLUPs) from a complete case fit.

Imputation of Latent Variable

Assuming MAR

Under MAR and using (3.6), we want to impute missing bi from

f(bi|Xi, Yi; ν) ∝ f(Yi|Xi, bi; θ)f(bi|Xi;ω) = f(bi|Xi, Yi; ρ)

Using properties of multivariate normal random variables, we have that

f(bi|Xi, Yi; ρ) = N(1TKω
2
[
Σ + 1Kω

21TK
]−1

(Yi −Xiθ), ω
2 − 1TKω

2
[
Σ + 1Kω

21TK
]−1

1Kω
2)

We can draw values of Σ, ω2, and θ by fitting a linear mixed model to a bootstrap sample

of the most recently imputed data and then draw missing bi from f(bi|Xi, Yi; ρ).
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Assuming LMAR

Under LMAR and using (3.6), we want to impute missing bi from

f(bi|Xi, Yi, R
−S
i ; ν) ∝ f(R−Si |Y

(obs)
i , X

(obs)
i , bi;φ

−S)f(bi|Xi, Yi; ρ) (D.1)

This distribution depends on R−Si , the subset of Ri corresponding to variables that are

LMAR. We must specify a model for R−Si given Y
(obs)
i , X

(obs)
i , and bi. When R−Si contains

missingness indicators for multiple variables (e.g. outcome at different time-points), this

may be a challenging task. Several authors have discussed specification of this missingness

model in the context of missingness dependent on random effects, and we will not discuss

this choice further here (Wu and Carroll, 1988; Yang et al., 2008).

The distribution in (D.1) is only known up to proportionality, but we can use one

of the two above methods for drawing from a distribution knowing only the kernel. For

example, we may use Metropolis-Hastings methods to draw values of bi with a normal

proposal distribution centered at the most recent imputed value of bi and with some small

variance, τ , which will be a tuning parameter. Given τ , the most recent imputation of

D, and draws of ρ and φ, we can use the above kernel to impute bi under LMAR.

Another option is to use rejection sampling. We note that f(R−Si |Y
(obs)
i , X

(obs)
i , bi;φ

−S)

is a probability, so it is less than or equal to 1. We define

k(bi) = f(R−Si |Y
(obs)
i , X

(obs)
i , bi;φ

−S)f(bi|Xi, Yi; ρ)

and can define dominating function g(bi) = f(bi|Xi, Yi; ρ) with K = 1. g(bi) is a normal

distribution with mean and variance as functions of model parameters, so this distribution

is easy to draw from. We can then perform the following algorithm to impute bi:

1) Generate V from g(bi) = f(bi|Xi, Yi; ρ) and U from U(0, 1)

2) Accept draw V = bi if U ≤ f(R−Si |Y
(obs)
i , X

(obs)
i , V ;φ−S).

Otherwise, we reject draw V and return to 1).

Under LMAR, we can obtain a draw of ρ using the same approach as under MAR. We can

obtain a draw of φ by fitting our specified model for the missingness given Y
(obs)
i , X

(obs)
i ,

and bi to a bootstrap sample of the data and using the most recent imputation of bi.
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Imputation of Missing Covariates and Outcomes

Covariates

We also note that Xi as defined in the above equation is a matrix. In the notation

developed in Section 3.2, covariate set Xi represents a vector. Therefore, we have some

notation mismatch that we will need to rectify in order to apply (3.8) for imputation.

Let Z
(t)
i represent the vector of elements corresponding to covariate t for subject i and

Z
(−t)
i be a stacked vector containing the remaining elements of Xi that are not in Z

(t)
i .

We note that by assumption, bi|Xi does not depend on Xi. Using this notation, we can

impute missing Z
(t)
i (and therefore the missing values for the tth variable in Xi) using:

f(Z
(t)
i |Z

(−t)
i , Yi, bi; ρ) ∝ f(Yi|Xi, bi; θ)f(bi|Xi;ω)f(Z

(t)
i |Z

(−t)
i ;ψ)

∝ f(Yi|Xi, bi; θ)f(Z
(t)
i |Z

(−t)
i ;ψ)

In this case, f(Z
(t)
i |Z

(−t)
i ;ψ) is a multi-dimensional distribution. For example,

f(Z
(t)
i |Z

(−t)
i ;ψ) may be multivariate normal.

We can obtain imputations of Z
(t)
i by performing a block-wise Metropolis-Hastings

draw. In settings with where f(Z
(t)
i |Z

(−t)
i ;ψ) is not easy to draw from, we recommend this

approach. Alternatively, we could perform the following rejection sampling procedure.

Define k(Z
(t)
i ) = f(Yi|Xi, bi; θ)f(Z

(t)
i |Z

(−t)
i ;ψ) and g(Z

(t)
i ) = f(Z

(t)
i |Z

(−t)
i ;ψ). We want to

find a constant that dominates f(Yi|Xi, bi; θ) across different values of Z
(t)
i . We note that

f(Yi|Xi, bi; θ) is multivariate normal by assumption, and its maximum value across all

covariate values will occur when Yi = Xiθ+ 1Kbi, at which point f(Yi|Xi, bi; θ) = 1√
|2πΣ|

.

Define K = 1√
|2πΣ|

. We can then impute Z
(t)
i jointly using the following rejection sam-

pling algorithm:

1) Generate V from g(Z
(t)
i ) = f(Z

(t)
i |Z

(−t)
i ;ψ) and U from U(0, 1)

2) Accept draw V = Z
(t)
i if

U ≤ f(Yi|Xi, bi; θ)

K
|
Z

(t)
i =V

= e−
1
2

(Yi−Xiθ−1Kbi)
TΣ−1(Yi−Xiθ−1Kbi)|

Z
(t)
i =V

Otherwise, return to 1).

We note that the above imputation algorithm allows the elements of Z
(t)
i to take dif-
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ferent values. Suppose the covariate represented by Z
(t)
i is time-independent. Then we

would want the elements of Z
(t)
i to be equal. We can impose this property by defining

f(Z
(t)
i |Z

(−t)
i ;ψ) such that it requires all of the elements of Z

(t)
i to be equal. In this case,

the rejection sampling algorithm would be simple to perform.

Imputation using the above approach requires draws of Σ, θ, and ψ. We can use the

drawn values of Σ and θ from the step for imputing the random intercept. However, sup-

pose we want to draw new values for the parameters conditional on the imputed values

of b. Since we assumed that Σ = σ2IK (so the elements of Yi are independent given bi),

we can draw Σ and θ by fitting a linear regression model to Y treating the elements of

Yi as independent and using offset term bi for all elements in Yi (to a bootstrap sample

of the data). We can draw ψ by fitting a model for Z
(t)
i |Z

(−t)
i to a bootstrap sample.

Outcomes

We note that Yi is a vector in this case. We can impute the tth element of Yi using:

f(Y
(t)
i |Y

(−t)
i , bi; ρ) ∝ f(Yi|Xi, bi; θ)

Since the elements of Yi are multivariate normal by assumption, we can easily work out

this conditional distribution. This distribution simplifies further when we assume that

the elements of Yi are independent given bi and Xi. In this case, we can impute Y
(t)
i from

a normal distribution with mean equal to the tth element of Xiθ and variance σ2. We can

draw θ and σ2 as we do for covariate imputation.

Final Analysis

We can use the above imputation method to obtain M imputed datasets. We can then

fit a model to each of the imputed datasets and use Rubin’s combining rules to obtain

a single set of parameter estimates and standard errors. As discussed in Chapter III,

there are several different ways we can perform the final analysis for any given imputed

dataset. If we choose to use the imputed random intercept values, we can estimate θ by

fitting a linear regression with offset term bi. For this fit, we can either use or ignore the

imputed D. We can estimate ω2 as the sample variance of the imputed bi. Alternatively,

we can ignore the imputed random intercept values and fit linear mixed model using the
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imputed values for D. This approach may be simpler and more stable in practice, but it

may not be fully efficient in the LMAR setting as shown in Lemma 4.

Brief Comparison to Some Existing Methods

Imputation-based approaches for dealing with missing linear mixed model outcome data

under MAR have been explored extensively in the literature. The proposed approach

under MAR is very similar to existing Gibbs Sampler-based approaches (e.g. Schafer and

Yucel, 2002). Unlike other Gibbs Sampling approaches, our method for imputing bi in-

volves drawing parameters from a distribution that does not condition on the imputed

values for bi and imputes missing data sequentially rather than jointly. Additionally, in

our application of the proposed methods, we assume flat priors for all model parameters.

This assumption substantially simplifies the step for drawing model parameters in prac-

tice.

Yang et al. (2008) describes a two-stage imputation approach for linear mixed models

with intermittent MAR outcome missingness and LMAR dropout. Unlike Yang et al.

(2008), we propose performing imputation of all outcome missingness (from different

causes) in a single stage. Missing outcome values are imputed under the same model

regardless of the mechanism generating the missingness, and information about different

sources of missingness can be incorporated into the missingness model used to impute the

latent variable. Additionally, Yang et al. (2008) takes a Gibbs Sampling approach, and

the steps for drawing the parameter values can be complicated and themselves require

methods for sampling from distributions known only up to proportionality. In the pro-

posed algorithm, parameter draws under uniform priors can be obtained my fitting models

using MLE methods to a bootstrap sample of the data. This substantially simplifies the

parameter drawing.
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D.3 Cox Proportional Hazards Cure Model Algo-

rithm

We define indicator Gi that takes the value 1 if subject i is not cured and 0 if sub-

ject i is cured. Let Ti be the observed event or censoring time and δi be the event

indicator. We have Yi = (Ti, δi). Let Xi be a set of covariates. The CPH mixture

cure model consists of 1) a logistic regression for the probability of being “not cured”

[logit(P (Gi = 1|Xi)) = ω0 + ω1Xi] and 2) a Cox proportional hazards model for the event

hazard in the “not cured” group
[
λ(t) = λ0(t)eθXi

]
.

We recall that non-cure status, Gi, is partially latent. For subjects with observed

events (δi = 1), we know that Gi = 1. We may also assume that subjects still at risk by

a certain time t are cured (Gi = 0). For all other subjects, Gi is unknown. In addition

to missingness in cure status, suppose we have ignorable or latent ignorable missingness

in covariates X. We can use the imputation algorithm proposed in Chapter III to

iteratively impute values for the latent variable and the covariates. Below, we present

some details for the approach for imputing the latent variable and covariates. We can

initialize the missing values of the latent variable and the covariates from drawing from

the observed values with equal probability.

Imputation of Latent Variable

Assuming MAR

We will first assume that missingness in Xi is MAR. In this case, we can impute Gi using

the following relation derived from (3.6):

logit(P (Gi = 1|Xi, Ti, δi = 0; ρ)) =ω0 + ω1Xi − Λ0(Ti)e
θXi

This imputation distribution depends on the most recent imputed values for Xi, pa-

rameters ω and θ, and the cumulative baseline hazard function, Λ0(t). An identical

imputation distribution was proposed in Chapter II for imputing cure status in the Cox

proportional cure model setting under MAR. In Chapter II, Λ0(t) is estimated using a

weighted Breslow-type estimator at each iteration of the imputation algorithm, and we
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can use the same estimation approach here. We can draw values for ρ by fitting a Cox

proportional cure model to a bootstrap sample of the most recent imputed data or by

fitting a cure model to the most recent imputed data and draw ρ from a multivariate

normal distribution with mean and variance from the cure model fit.

Assuming LMAR

Now, we assume missingness in Xi is LMAR. From (3.6), we can impute Gi using

logit(P (Gi = 1|Xi, Ti, δi = 0, Ri; ν)) =ω0 + ω1Xi − Λ0(Ti)e
θXi

+ log

[
f(R−Si |Ti, δi = 0, X

(obs)
i , Gi = 1;φ−S)

f(R−Si |Ti, δi = 0, X
(obs)
i , Gi = 0;φ−S)

]

This distribution differs from the one used under MAR by an offset term on the logit

scale. When the difference in the missingness distribution by cure status is small, the

offset term will be near zero. This distribution again depends on the cumulative baseline

hazard function, Λ0(t), which can be estimated as in the MAR case. It also depends on

ω, θ, and φ. We also must specify a model for missingness of the set of indicators that

are conditionally dependent on Li, R
−S
i .

We can draw θ and ω using the same approach as in the MAR case (ignoring the

most recent imputations of L). We can draw φ by fitting a model for R−Si to a bootstrap

sample of the data using the most recent imputation of cure status.

Imputation of Missing Covariates

By (3.8), we can impute missing values for covariate X(t) using:

f(X
(t)
i |X

(−t)
i , Yi, Gi; ρ) ∝ [P (Gi = 1|Xi;ω)f(Yi|Xi, Gi; θ)]

Gi P (Gi = 0|Xi;ω)1−Gif(X
(t)
i |X

(−t)
i ;ψ)

∝
[

eω0+ω1Xi

1 + eω0+ω1Xi

(
λ0(Ti)e

θXi
)δi

e−Λ0(Ti)e
θXi

]Gi [ 1

1 + eω0+ω1Xi

]1−Gi
f(X

(t)
i |X

(−t)
i ;ψ) (D.2)

When X
(t)
i is categorical, we can easily use the above expression to derive the full form

of the distribution used for imputation. For example, imputation of a binary covariate.

Then imputation can proceed using the following relation:

P (X
(t)
i = 1|X(−t)

i , Yi, Gi; ρ) =
(D.2)|

X
(t)
i =1

(D.2)|
X

(t)
i =1

+ (D.2)|
X

(t)
i =0
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When X
(t)
i has continuous structure, the imputation distribution may only be known

up to proportionality. We can use Metropolis-Hastings methods to draw missingX
(t)
i from

(D.2) using a proposal distribution centered at the most recent imputation of X
(t)
i . Alter-

natively, we could use the following rejection sampling algorithm: Define k(X
(t)
i ) =(D.2).

We note that

k(X
(t)
i ) ≤

[(
λ0(Ti)e

θXi
)δi
e−Λ0(Ti)e

θXi
]Gi

f(X
(t)
i |X

(−t)
i ;ψ)

≤ [f(Ti|Xi, Gi = 1)]δi f(X
(t)
i |X

(−t)
i ;ψ)

Suppose we define

K = (1− δi) + δi max
X

(t)
i

f(Ti|Xi, Gi = 1)

so K takes the value 1 if δi = 0 and takes the maximum of the event time distribution

function across X
(t)
i if δi = 1. This maximum can usually be easily calculated given

parameter values when the baseline hazard is parametric. We further define g(X
(t)
i ) =

f(X
(t)
i |X

(−t)
i ;ψ). Then we have that k(X

(t)
i ) ≤ Kg(X

(t)
i ). Then we can obtain a draw of

X
(t)
i from k(X

(t)
i ) through the following algorithm:

1) Generate V from g(X
(t)
i ) = f(X

(t)
i |X

(−t)
i ;ψ) and U from U(0, 1)

2) Accept draw V = X
(t)
i if U ≤

[
eω0+ω1Xi

1+eω0+ω1Xi
(λ0(Ti)e

θXi)
δie−Λ0(Ti)e

θXi

]Gi[
1

1+eω0+ω1Xi

]1−Gi

K
.

Otherwise, return to 1).

Imputation by (D.2) requires draws of ω, θ, and ψ. We can either use the draws of ω

and θ obtained in the imputation step for the latent variable or draw new values. If we

draw new values, we should use methods that use the most recent imputation of L. We

can then draw θ by fitting a Cox regression to a bootstrap sample of the subjects with

imputed G = 1. We can draw ω by fitting a logistic regression to G for a bootstrap sample

of the entire dataset. We can draw ψ by fitting a model for X
(t)
i |X

(−t)
i to a bootstrap

sample.

Final Analysis

We can use the above imputation method to obtain M imputed datasets. We can then

fit a model to each of the imputed datasets and use Rubin’s combining rules to obtain a

single set of parameter estimates and standard errors. There are several different ways
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we can perform the final analysis for any given imputed dataset. If we choose to use the

imputed G, we can estimate θ by fitting a Cox regression to the subjects with imputed

G = 1, and we can estimate ω by fitting a logistic regression for G. For these fits, we can

either use or ignore the imputed D. Alternatively, we can ignore the imputed G and fit

cure model using the imputed values for D. We recommend this last approach.

Brief Comparison to Some Existing Methods

Chapter II explores covariate imputation for the Cox proportional hazards cure model

under MAR assumptions, and our proposed algorithm under MAR is very similar with

some small differences in the methods for drawing parameters. We believe we are the

first to explore covariate imputation for the Cox proportional hazards cure model under

LMAR assumptions.
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D.4 Mixture of GLMs

Suppose our outcome Y is generated from a mixture of K generalized linear models

(GLMs) where K is known. Let Ci be a fully latent mixing variable indicating which

element of the mixture distribution generated the observation for subject i. Missingness in

Ci can be viewed as MCAR with probability 1. We suppose the distribution of Yi|Xi, Ci =

j is modeled using a GLM (e.g. normal, logistic, Poisson) for j = 1, . . . , K and that the

distribution for Ci|Xi is independent of Xi.

We suppose that we have ignorable or latent ignorable missingness in Y and/or X.

We can use the proposed methods for imputation. We can initialize the missing values

of the covariates from drawing from the observed values with equal probability. We can

initialize C based on the estimated probabilities P (Ci = 1) obtained by fitting a latent

class model to the complete case data.

Imputation of Latent Variable

Assuming MAR

The imputation distribution for the latent mixing variable Ci under MAR can be easily

worked out based on the kernel in (3.6) to be multinomial with corresponding probabilities

as follows:

P (Ci = j|Xi, Yi, Ri; ν) =
f(Yi|Xi, Ci = j; θ)P (Ci = j;ω)∑K
l=1 f(Yi|Xi, Ci = l; θ)P (Ci = l;ω)

We can obtain a draw of θ and ω by fitting a latent class model to a bootstrap sample

the most recently imputed data. In R, we can perform this latent class model fit using

the package flexmix (Leisch, 2004). This package will estimate θ and ω for a specified

number of latent classes, but it cannot differentiate between the different class labels.

Therefore, we will need to impose a restriction to relate the latent classes identified by

flexmix to values of C.
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Assuming LMAR

Under LMAR, we can impute missing values of Ci using:

P (Ci = j|Xi, Yi, Ri; ν) =
f(R−Si |X

(obs)
i , Ci = j, Y

(obs)
i ;φ−S)f(Yi|Xi, Ci = j; θ)P (Ci = j|Xi;ω)∑K

l=1 f(R−Si |X
(obs)
i , Ci = l, Y

(obs)
i ;φ−S)f(Yi|Xi, Ci = l; θ)P (Ci = l|Xi;ω)

This imputation distribution requires us to model R−Si . Draws of θ and ω can be obtained

as in the MAR case. We can obtain a draw of φ by fitting a model for R−Si to a bootstrap

sample of the data using the most recent imputation of C.

Imputation of Missing Covariates and Outcome

Covariates

By (3.8) and since f(Ci|Xi;ω) = f(Ci;ω) by assumption, we can impute missing values

for covariate X(t) using:

f(X
(t)
i |X

(−t)
i , Yi, Ci; ρ) ∝ f(Yi|Xi, Ci; θ)f(X

(t)
i |X

(−t)
i ;ψ)

When X
(t)
i is categorical, we can easily use the above expression to derive the full form

of the distribution used for imputation. Otherwise, we can use methods to draw from

the above distribution known only up to proportionality. For example, we can use the

following rejection sampling algorithm: Define k(X
(t)
i ) = f(Yi|Xi, Ci; θ)f(X

(t)
i |X

(−t)
i ;ψ)

and g(X
(t)
i ) = f(X

(t)
i |X

(−t)
i ;ψ). Define

K = max
X

(t)
i

f(Yi|Xi, Ci; θ)

Then we have that k(X
(t)
i ) ≤ Kg(X

(t)
i ). Then we can obtain a draw of X

(t)
i from k(X

(t)
i )

through the following algorithm:

1) Generate V from g(X
(t)
i ) = f(X

(t)
i |X

(−t)
i ;ψ) and U from U(0, 1)

2) Accept draw V = X
(t)
i if U ≤ f(Yi|Xi,Ci;θ)

K
.

Otherwise, return to 1).

Imputation using the above method requires draws of ω, θ, and ψ. We can draw θ by

fitting a GLM (or multiple GLMS) to a bootstrap sample of subjects using the most

recent imputation of C. We can draw ω by looking at the proportion of subjects with
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C = j for each j in a bootstrap sample of the data. We can draw ψ by fitting a model

for X
(t)
i |X

(−t)
i to a bootstrap sample.

Outcome

We will assume here that Y is univariate. By (3.7), we can impute missing values for

outcome Y using:

f(Yi|Xi, Ci; ρ) = f(Yi|Xi, Ci; θ)

We can obtain a draw for θ as in covariate imputation and then draw missing values of

Y simply using the GLM corresponding to the most recent imputed value for Ci.

Final Analysis

We can use the above imputation method to obtain M imputed datasets. We can then

fit a model to each of the imputed datasets and use Rubin’s combining rules to obtain a

single set of parameter estimates and standard errors. There are several different ways

we can perform the final analysis for any given imputed dataset. If we choose to use the

imputed C, we can estimate θ by fitting a GLM for f(Y |C,X) using the imputed C and

either using or ignoring the imputed D. Alternatively, we can ignore the imputed C and

fit a latent class model (e.g. using flexmix ) using the imputed values for D. This second

approach would require us to use an identifying assumption to determine which cluster

identified by the latent class modeling corresponds to which value of C. We recommend

this second approach.

Brief Comparison to Some Existing Methods

Many authors have explored similar imputation approaches for mixtures of GLMs un-

der MAR assumptions, but comparatively little work has been done exploring LMAR

missingness in this setting (e.g. Vidotto et al., 2015). Jung (2007) considers the case

of a multivariate outcome related to a categorical latent mixing variable and proposes a

MCMC imputation scheme that iteratively imputes missing values of the outcome and C.

Additionally, Jung (2007) assumes the outcome is independent of the covariates given C.

Our proposed approach can be viewed as a generalization of the approach in Jung (2007)
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that can handle LMAR missingness in the outcome and covariates while also allowing for

conditional dependence between Y and X.
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Appendix E

Estimation of Baseline Hazards for

EM Algorithm

In this section, we use profile likelihood to derive estimators for the nonparametric

baseline hazard functions used within the EM algorithm. In order to perform the E-step

of the EM algorithm, we require estimates for λ14(t), λ24(t), and λ13(t). The form of

the estimators for λ14(t) and λ24(t) depends on the assumptions imposed on the baseline

hazards. For these derivations, we will assume that we use the same set of predictors, Xi

in the model for each of the transitions. However, these estimators are easily generalized

to allow the covariate sets to differ across transitions.

2→ 4 and 1→ 4 Baselines Unrestricted

Suppose we have estimates of θ from the previous M-Step and an estimated pi from the

previous E-Step. We would like to maximize the expected log-likelihood with respect

to the baseline hazard functions. Suppose we do not assume any relationship between

λ0
14(t) and λ0

24(t). We consider the contributions of each of the baseline hazards to the

(expected) log-likelihood. For each hazard, the contribution is:

λ0
14(t) :

n∑
i=1

pilog
[
λ14(Yir)

δid(1−δir) exp{−Λ14(Yir)}
]

λ0
24(t) :

n∑
i=1

(1− pi)log
[
λ24(Yid)

δid(1−δir) exp{−Λ24(Yid)}
]

λ0
13(t) :

n∑
i=1

pilog
[
λ13(Yir)

δir exp{−Λ13(Yir)}
]

λ0
34(t) :

n∑
i=1

δir log
[
λ34(Yid − Yir)δid exp{−Λ34(Yid − Yir)}

]
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In obtaining the above equations, we used that δir = 0 for all subjects with nonzero 1−pi
and that, under equal follow-up, Yir = Yid for all subjects with δir = 0. Let T be the

event time, D be the event indicator, and W be the weight in one of the above cases.

Each of the contributions take the form

Q̃ =
n∑
i=1

Wilog
[
λ(Ti)

Di exp{−Λ(Ti)}
]

=
n∑
i=1

Wilog
[
λ0(Ti)

Di exp{βXi}Di exp{−Λ0(Ti)e
βXi}

]
This is the form of the log-likelihood for a weighted Cox regression model. In the litera-

ture, many authors have discussed profile-likelihood estimators for the baseline (cumula-

tive) hazard in such a setting, and the resulting estimator resembles a weighted Breslow

estimator. We derive its form below.

The function Q̃ will be maximized for λ0(t) taking value 0 when there is no event and

takes non-zero values when there is an event. Suppose t1, . . . , tK are the (unique) ordered

event times Ti such that Di = 1. Let Rk be the subjects at risk just before tk and Ek be

the subjects with events at tk. Define λ0
k to be the value of λ0(t) at tk. We can re-write

Q̃ as
Q̃ =

n∑
i=1

Wilog
[
λ0(Ti)

Di exp{βXi}Di
]
−

n∑
i=1

Wi exp{βXi}
∑

(tk≤Ti)

λ0
k

∝
K∑
k=1

[
log
(
λ0
k

) n∑
i∈Ek

Wi

]
−

K∑
k=1

[
λ0
k

∑
i∈Rk

Wi exp{βXi}

]

If we take the first derivative and set it equal to zero, we have

∂Q̃

∂λ0
k

=

∑n
i∈EkWi

λ0
k

−
∑
i∈Rk

Wi exp{βXi} = 0 =⇒ λ̂0
k =

∑n
i∈EkWi∑

i∈RkWi exp{βXi}

Table E.1 shows the resulting baseline hazard estimates for each transition. We then

define Λ̂0(t) =
∑

k:tk≤t λ̂
0
k for each transition.
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Table E.1: EM Baseline Hazard Estimates (Unrestricted)

Transition Di Ti Wi λ̂0
k

1→ 3 δir Yir pi

∑n
i∈Ek

pi∑
i∈Rk

pi exp{β13Xi}

2→ 4 δid(1− δir) Yid 1− pi
∑n
i∈Ek

(1−pi)∑
i∈Rk

(1−pi) exp{β24Xi}

1→ 4 δid(1− δir) Yir pi

∑n
i∈Ek

pi∑
i∈Rk

pi exp{β14Xi}

3→ 4 δid Yid − Yir δir

∑n
i∈Ek

δir∑
i∈Rk

δir exp{β34Xi}

We note that under the proposed estimator, P̂ (Tr > t|Xi) = e−Λ̂0
13(t) exp(β13Xi) will

never be exactly zero for any t, although it will get close. Previous work studying baseline

hazard estimators in the usual Cox proportional hazards cure model setting suggests that

model-fitting properties (via EM) may be slightly improved when we use a product-limit

type estimator for the baseline survival function directly (which can go exactly to zero)

rather than a Breslow-type estimator for the hazard function (which can have estimated

P̂ (Tr > t|Xi) near zero but never exactly zero) (Sy and Taylor, 2000). In simulations

(not shown), we did not see much impact of using a product-limit-type estimator rather

than the proposed Breslow-type estimators, but future work could explore the impact of

the different baseline hazard estimators.

2→ 4 and 1→ 4 Baselines Assumed Equal or Proportional

Suppose we assume that λ0
14(t) = λ0

24(t) for all t ∈ (0, τ ], where τ is the last event time

of any type observed. In this case, the estimators for λ0
13(t) and λ0

34(t) do not change,

but we do modify the estimator for λ0
14(t) = λ0

24(t). We can rewrite the expected log

likelihood contribution of λ0
14(t) as:

n∑
i=1

pilog
[
λ14(Yir)

δid(1−δir) exp{−Λ14(Yir)}
]

(E.1)

+
n∑
i=1

(1− pi)log
[
λ24(Yid)

δid(1−δir) exp{−Λ24(Yid)}
]

224



Using that Yir = Yid if δir = 0 and Cir = Cid and applying the equality assumption, we

can rewrite (E.1) as

n∑
i=1

pilog
[
λ0

14(Yir)
δid(1−δir) exp{−Λ0

14(Yir) exp(β14Xi)}
]

+ (1− pi)log
[
λ0

14(Yir)
δid(1−δir) exp{−Λ0

14(Yir) exp(β24Xi)}
]

+ C

where C is a constant with respect to λ0
14(t). Again, this function is going to be maximized

with respect to λ0
14(t) when the baseline hazard is nonzero only at event times. Suppose

t1, . . . , tK are the (unique) ordered values of Yir such that δid(1− δir) = 1 (death without

recurrence). Let Rk be the subjects at risk at just before tk and Ek be the subjects with

events at tk. Define λ0
k to be the value of λ0

14(t) at tk.

Q14 +Q24 =
n∑
i=1

pilog

[
λ0

14(Yir)
δid(1−δir) exp{− exp(β14Xi)

∑
tk≤Yir

λ0
k}

]

+
n∑
i=1

(1− pi)log

[
λ0

14(Yir)
δid(1−δir) exp{− exp(β24Xi)

∑
tk≤Yir

λ0
k}

]
+ C

=
K∑
k=1

[
log
(
λ0
k

)∑
i∈Ek

pi

]
−

n∑
i=1

[
pi exp{β14Xi}

∑
tk≤Yir

λ0
k

]

+
K∑
k=1

[
log
(
λ0
k

)∑
i∈Ek

(1− pi)

]
−

n∑
i=1

[
(1− pi) exp{β24Xi}

∑
tk≤Yir

λ0
k

]
+ C

=
K∑
k=1

[
log
(
λ0
k

)∑
i∈Ek

pi

]
−

K∑
k=1

[
λ0
k

∑
i∈Rk

pi exp{β14Xi}

]

+
K∑
k=1

[
log
(
λ0
k

)∑
i∈Ek

(1− pi)

]
−

K∑
k=1

[
λ0
k

∑
i∈Rk

(1− pi) exp{β24Xi}

]
+ C

∂Q14 +Q24

∂λ0
k

=

∑
i∈Ek pi

λ0
k

−
∑
i∈Rk

pi exp{β14Xi}+

∑
i∈Ek(1− pi)

λ0
k

−
∑
i∈Rk

(1− pi) exp{β24Xi} = 0

=⇒ λ0
k =

∑
i∈Ek pi +

∑
i∈Ek(1− pi)∑

i∈Rk pi exp{β14Xi}+
∑

i∈Rk(1− pi) exp{β24Xi}

=

∑
i∈Ek 1∑

i∈Rk pi exp{β14Xi}+
∑

i∈Rk(1− pi) exp{β24Xi}

We therefore obtain the estimators in Table E.2
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Table E.2: EM Baseline Hazard Estimates (Equal)

Assumption λ̂0
k

β24 6= β14

∑
i∈Ek

1∑
i∈Rk

pi exp{β14Xi}+
∑
i∈Rk

(1−pi) exp{β24Xi}

β24 = β14

∑
i∈Ek

1∑
i∈Rk

exp{β14Xi}

When β14 = β24, the estimator for the baseline hazard is just a traditional Breslow

estimator with event/censoring time Yir and event indicator δid(1− δir) using parameter

β14. We note that if the β’s are equal, the multistate cure model would reduce to a CPH

cure model with two additional Cox regressions for death before and after recurrence.

Suppose instead that we want to assume proportional baseline hazards, where λ0
14(t) =

λ0
24(t) exp{β0} for all t ∈ (0, τ ]. We can model:

λ24(t) = λ0
24(t) exp{βT24Xi}

λ14(t) = λ0
14(t) exp{βT14Xi} = λ0

24(t) exp{β0 + βT14Xi}

This situation is easily handled by including an intercept in the covariate set for the

model for λ14(t) and then assuming that the resulting baseline hazards are equal. The

resulting estimates for the baseline hazard jumps λ0
k for λ0

24(t) at event times t1, . . . , tK

are expressed in Table E.3.

Table E.3: EM Baseline Hazard Estimates (Proportional)

Assumption λ̂0
k

β24 6= β14 or β24 = β14

∑
i∈Ek

1∑
i∈Rk

pi exp{β0+β14Xi}+
∑
i∈Rk

(1−pi) exp{β24Xi}
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Appendix F

Estimation of Baseline Hazards for

MCEM Algorithm

In this section, we present estimators of the nonparametric baseline hazards for the

Monte Carlo EM Algorithm. The proposed estimators are different from those used in

the conventional EM algorithm. Let l(θ|D) be the complete data log-likelihood with

complete data D. In iteration t of the Monte Carlo EM Algorithm, we obtain M im-

puted values of D, D(t,1),D(t,2), . . . ,D(t,M), and an estimate of the parameter θ. At the

tth iteration, updated estimates of the baseline hazard can be obtained by maximizing

1
M

∑M
m=1 l(θ|D(t,m)) with respect to the baseline hazards we want to estimate, treating

the imputed data and the parameter estimate as fixed.

This time, we require estimates of all four baseline hazards. We note that the pro-

posed imputation-based algorithm for handling unequal follow-up has poor performance

when we use baseline hazard estimators that are nonzero only at event times. Instead, we

will restrict our estimators of the baseline hazards to be step functions that change value

at the observed event times for the event corresponding to the baseline hazard of interest.

For λ0
14, for example, this would be observed death times without prior recurrence.

First, we will use the profile likelihood method to derive the form of the estimators

assuming D is known. Then, we will generalize this estimators for use in the Monte Carlo

EM Algorithm.

For these derivations, we will assume that we use the same set of predictors, Xi in

the model for each of the transitions. However, these estimators are easily generalized to

allow the covariate sets to differ across transitions.
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2→ 4 and 1→ 4 Baselines Unrestricted

Assuming D is known

We would like to maximize l(θ|D) with respect to the baseline hazard functions. We

assume θ is fixed at the estimated value from the previous M-Step. Suppose we do not

assume any relationship between λ0
14(t) and λ0

24(t). We consider the contributions of each

of the baseline hazards to the log-likelihood. For each hazard, the contribution is:

λ0
14(t) :

n∑
i=1

Gilog
[
λ14(Yir)

δid(1−δir) exp{−Λ14(Yir)}
]

λ0
24(t) :

n∑
i=1

(1−Gi)log
[
λ24(Yid)

δid(1−δir) exp{−Λ24(Yid)}
]

λ0
13(t) :

n∑
i=1

Gilog
[
λ13(Yir)

δir exp{−Λ13(Yir)}
]

λ0
34(t) :

n∑
i=1

δirlog
[
λ34(Yid − Yir)δid exp{−Λ34(Yid − Yir)}

]
In each case, we can construct censored outcome T and event indicator D to represent the

outcome of interest with a corresponding weight term W . Let t1, . . . , tK be the ordered

event times. Let Rk be the subjects at risk just before tk and Ek be the subjects with

events at tk. We want to maximize the log-likelihood:

l(λ0(t)) =
N∑
i=1

WiDilog(λ0(Ti))−Wi exp{βXi}
∑
t≤Ti

λ0(Ti) + Constant

Suppose that the baseline hazard takes the form of a step function, so within each interval

[tj, tj+1), the baseline hazard is constant. We also restrict the hazard to be zero for all

t > tK . We define t0 = 0 and tK+1 to be just after the maximum time on study (so that

the maximum time is contained in [tK , tK+1)). Let λ0
j represent the baseline hazard in

the interval [tj, tj+1). We define λ0
0 = 0. For individual i, let Li represent the value of j

such that Ti is contained in [tj, tj+1). We can rewrite the log-likelihood as

l(λ0(t)) =
N∑
i=1

WiDilog[λ0
Li

]−Wi exp{βXi}

[
Li−1∑
j=0

λ0
j(tj+1 − tj) + λ0

Li
(Ti − tLi)

]

228



∂l

∂λ0
k

=
1

λ0
k

N∑
i=1

I(Li = k)WiDi −
N∑
i=1

WiI(Li > k) exp{βXi}(tk+1 − tk)

−
N∑
i=1

WiI(Li = k) exp{βXi}(Ti − tk)

=
1

λ0
k

∑
i∈Ek

Wi −
N∑
i=1

WiI(Li > k) exp{βXi}(tk+1 − tk)

−
N∑
i=1

WiI(Li = k) exp{βXi}(Ti − tk)

=⇒ λ̂0
k =

∑
i∈EkWi∑

i∈RkWi exp{βXi}(min(Ti, tk+1)− tk)
(F.1)

=⇒ Λ̂0(t) =
∑
j:t>tj

λ̂0
j(min(tj+1, t)− tj)

where Rk is the set of people at risk at just before tk and Ek is the group of subjects

with events in [tk, tk+1). This is the maximizer of l(θ|D). We note that a subject having

an event at tk contributes nothing to the denominator in (F.1). Table F.1 shows the

baseline hazard estimator for each transition.

Table F.1: MCEM Baseline Hazard Estimates (Unrestricted)

Transition Di Ti Wi λ̂0
k

1→ 3 δir Yir Gi

∑n
i∈Ek

Gi∑
i∈Rk

Gi exp{β13Xi}(min(Yir,tk+1)−tk)

2→ 4 δid(1− δir) Yid 1−Gi

∑n
i∈Ek

(1−Gi)∑
i∈Rk

(1−Gi) exp{β24Xi}(min(Yid,tk+1)−tk)

1→ 4 δid(1− δir) Yir Gi

∑n
i∈Ek

Gi∑
i∈Rk

Gi exp{β14Xi}(min(Yir,tk+1)−tk)

3→ 4 δid Yid δir

∑n
i∈Ek

δir∑
i∈Rk

δir exp{β34Xi}(min(Yid,tk+1)−tk)

We note that by this definition, we could have that the baseline hazard for the

1 → 3 transition does not go exactly to zero at the last event time. If there is truly a

cure structure to the data, however, we would like our estimator to go to zero at some

point. Therefore, we suggest defining λ̂0
k to be equal to zero at the last event time.

This restriction is equivalent to assuming that all subjects at risk for recurrence after

the last observed recurrence event are cured. A similar restriction is often made when

fitting Cox proportional hazards mixture cure models, and it is associated with improved

performance in that setting (Sy and Taylor, 2000).
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Additionally, we note that the estimator for the 3 → 4 transition will be exactly

zero if the subject with longest follow-up for this transition has an event. Unlike

for the 1 → 3 transition, we would like our estimator to allow for events after the

last observed event time. This subtle issue makes a difference for our imputation

approach for unequal follow (see Appendix G for details). Therefore, we will define

t1, . . . , tK for this transition such that tK is the next to last observed event (rather

than the last observed event). This will result in a nonzero value for the hazard rate at tK .

Using imputed D

The estimator in (F.1) is the maximizer of l(θ|D) for some fully-observed dataset

D. In the Monte Carlo EM Algorithm, we impute several (M) versions of the dataset

D. Suppose we create a stacked version of the dataset, D(t), by stacking the imputed

versions of the data at iteration t, D(t,1),D(t,2), . . . ,D(t,M). Then we can maximize

1
M

∑M
m=1 l(θ|D(t,m)) by instead maximizing l(θ|D(t)). The resulting estimators for the

baseline hazards take the same form as in (F.1) except T,D,W,Ek, and Rk are defined

and indexed by the elements of the stacked dataset D(t) (so individual subjects enter

the estimator M times). It is worth noting that this estimator may result in very large

estimates for the step heights when the event times are very close together. In this case,

we may choose to set cutpoints t1, . . . , tK to be a subset of the event times.

2→ 4 and 1→ 4 Baselines Assumed Equal or Proportional

Assuming D is known

We assume that λ0
14(t) = λ0

24(t) for all t ∈ (0, τ ], where τ is the last event time of any

type observed. In this case, the estimators for λ0
13(t) and λ0

34(t) do not change, but we do

modify the estimator for λ0
14(t) = λ0

24(t). We can rewrite the log likelihood contribution

of as λ0
14(t) as:

n∑
i=1

Gilog
[
λ0

14(Yir)
δid(1−δir) exp{−Λ0

14(Yir) exp(β14Xi)}
]

+ (1−Gi)log
[
λ0

14(Yir)
δid(1−δir) exp{−Λ0

14(Yir) exp(β24Xi)}
]

+ C
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where C is a constant. Suppose t1, . . . , tK are the (unique) ordered values of Yir such that

δid(1− δir) = 1 (death without recurrence) and Rk be the subjects at risk just before tk

and Ek be the subjects with events at tk.

As before, suppose that the baseline hazard takes the form of a step function, so

within each interval [tj, tj+1), the baseline hazard is constant. We also restrict the hazard

to be zero for all t > tK . We define t0 = 0 and tK+1 to be just after the maximum

time on study (so that the maximum time is contained in [tK , tK+1)). Let λ0
j represent

the baseline hazard in the interval [tj, tj+1). We define λ0
0 = 0. For individual i, let

Li represent the value of j such that Ti is contained in [tj, tj+1). We can rewrite the

log-likelihood as

l(λ0(t)) =
N∑
i=1

δid(1− δir)log[λ0
Li

]−Gi exp{β14Xi}

[
Li−1∑
j=0

λ0
j(tj+1 − tj) + λ0

Li
(Ti − tLi)

]

− (1−Gi) exp{β24Xi}

[
Li−1∑
j=0

λ0
j(tj+1 − tj) + λ0

Li
(Ti − tLi)

]

∂l

∂λ0
k

=
1

λ0
k

N∑
i=1

I(Li = k)δid(1− δir)−
N∑
i=1

GiI(Li > k) exp{β14Xi}(tk+1 − tk)

−
N∑
i=1

GiI(Li = k) exp{β14Xi}(Ti − tk)−
N∑
i=1

(1−Gi)I(Li > k) exp{β24Xi}(tk+1 − tk)

−
N∑
i=1

(1−Gi)I(Li = k) exp{β24Xi}(Ti − tk)

=
1

λ0
k

∑
i∈Ek

1−
N∑
i=1

GiI(Li > k) exp{β14Xi}(tk+1 − tk)

−
N∑
i=1

GiI(Li = k) exp{β14Xi}(Ti − tk)

−
N∑
i=1

(1−Gi)I(Li > k) exp{β24Xi}(tk+1 − tk)

−
N∑
i=1

(1−Gi)I(Li = k) exp{β24Xi}(Ti − tk)

λ̂0
k =

∑
i∈Ek 1∑

i∈Rk Gieβ14Xi(min(Ti, tk+1)− tk) +
∑

i∈Rk(1−Gi)eβ24Xi(min(Ti, tk+1)− tk)

Λ̂0(t) =
∑
j:t>tj

λ̂0
j(min(tj+1, t)− tj)
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Suppose instead we want to assume the baseline hazards are proportional with

λ0
14(t) = λ0

24(t)eβ0 for all t ∈ (0, τ ]. We can use the same trick as in the conventional

EM algorithm estimators to transform the proportional baseline hazards situation into

the equal baseline hazards situation (by adding an intercept to the model for the 1→ 4

transition). Then, we can use the estimator for equal baseline hazards above with β14Xi

replaced by β0 + β14Xi.

Using imputed D

As before, we can obtain the Monte Carlo EM estimate of the baseline hazard by

creating an stacked version of the dataset (created by stacking D(t,1),D(t,2), . . . ,D(t,M))

and applying the above estimator to the stacked version of the data.
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Appendix G

Derivation of Imputation Approach

for Handling Unequal Follow-up

G.1 General Approach

In this section, we derive the imputation approach used to handle unequal follow-up in

the outcomes. As before, we let Tir and Tid be the underlying recurrence and death times

for subject i. Let Cir be the censoring time for recurrence and Cid be the censoring time

for death, but this time we assume that Cr ≤ Cd with Cir < Cid for at least some subjects.

For all subjects, we observe Y 0
ir = min(Tir, Cir, Tid), δ

0
ir = I(Yir = Tir), Yid = min(Tid, Cid)

and δid = I(Yid = Tid).

When recurrence is sometimes censored before death, we can run into the issue where

recurrence status is unknown for part of the follow-up time for death. In this case, we do

not know to which transition we should attribute the time at risk for death after censoring

of recurrence. This setting is similar to issues of interval censoring and panel data for

standard illness-death models (Jackson, 2011). One difference between our setting and

usual panel data is that with panel data, subject’s states are known only at discrete time

points. However, for subjects with unequal censoring in our setting, we know that the

subject is in the death state at Yid if they have an observed death at Yid, but if they are

censored for death at Yid, we do not know whether they are in State 1, State 2, or State

3 at the time Yid.

In Conlon et al. (2013), unequal censoring is handled by directly incorporating what

was observed for each subject into the likelihood (conditional on cure status). For exam-

ple, for non-cured subjects with unequal censoring that had observed deaths at Yid, the

likelihood contribution of the outcome data would be P(in state 4 at Yid| state 1 at Y 0
ir
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and non-cured). For non-cured subjects with unequal censoring that had censored deaths

at Yid, the likelihood contribution of the outcome data would be P(in state 1 at t| state

1 at u and non-cured) + P(in state 3 at t| state 1 at u and non-cured). This leads to

the following likelihood contribution for subjects with unequal censoring (Conlon et al.,

2013):

[
P (Gi = 0)S2(Yid)λ24(Yid)

δid
]1−Gi ×[

P (Gi = 1)S1(Yid)λ14(Yid)
δid + P (Gi = 1)

∫ Yid

Y 0
ir

λ13(r)S1(r)λ34(Yid − r)δidS3(Yid − r)dr

]Gi

We note that this likelihood contribution involves an integral for non-cured subjects.

Rather than attempting to maximize a likelihood involving an integral in the M-Step of

the MCEM algorithm, we instead propose the following imputation strategy to handle

the unequal censoring.

Suppose we had followed all subjects for recurrence as long as we followed them for

death. Define Yir = min(Tir, Cid, Tid) and δir = I(Yir = Tir) to be the resulting values

for recurrence event/censoring time and event indicator under the later censoring time.

These versions of the outcomes do not suffer from the same problem regarding unknown

recurrence status. Define Pi = I(Y 0
ir < Yid and δ0

ir = 0). For subjects with Pi = 0,

Yir = Y 0
ir and δir = δ0

ir. For subjects with Pi = 1, however, Yir is only known to be

greater than Y 0
ir. Our goal is to impute values of Yir and δir for subjects with Pi = 1.

We will perform this imputation within the Monte Carlo EM Algorithm in which we also

impute values for G.

Suppose that we have already imputed Gi = 0 (cured) for subject i. By imputing

Gi = 0, we claim that this subject will never experience a recurrence. Therefore, we can

automatically set δir = 0 and Yir = Yid.

Suppose, however, that we imputed Gi = 1 (non-cured). By imputing Gi = 1,

we claim that this subject will eventually experience a recurrence, and therefore we

can ignore the contribution of the 2 → 4 part of the multistate model and focus in-

stead on the semi-competing risks model for recurrence and death in the non-cured

subjects. We can impute (Yir, δir) jointly from their posterior predictive distribu-

tion, f(Yir, δir|Xi, δid, Yid, Y
0
ir, δ

0
ir, Gi = 1, Pi = 1) (Little and Rubin, 2002). In prac-

tice, however, we can obtain a draw from the predictive distribution by drawing from
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f(Yir, δir|Xi, δid, Yid, Y
0
ir, δ

0
ir, Gi = 1, Pi = 1; θ(t)) using the most recent estimate of θ. How-

ever, drawing from the joint distribution of Yir and δir parameterized by θ(t) may still

be difficult. Instead, we propose to first impute δir from f(δir|Xi, δid, Yid, Y
0
ir, δ

0
ir, Gi =

1, Pi = 1; θ(t)) and then impute Yir from f(Yir|Xi, δid, Yid, Y
0
ir, δ

0
ir, Gi = 1, Pi = 1, δir; θ

(t)).

This approach is equivalent to first imputing whether a recurrence occurred in the time

between Y 0
ir and Yid (value of δir) and, if so, when the recurrence occurred. If not, then

Yir = Yid. Figure G.1 provides a visualization of the imputation approach.

Figure G.1: Diagram of Unequal Follow-up Scenario

End of Follow-up 
for Recurrence 

End of Follow-up 
for Death 

Baseline 

(!! , !!)	(!!! , !!! = 0)	

IMPUTATION: 
Recurrence in interval? If yes, when? 

(!! , !!)	

Step 1: Imputation of δir

First, we note that Pi = 1 implies Tir > Y 0
ir. We can draw δir with

P (δir = 1|Xi, δid, Yid, Y
0
ir, δ

0
ir, Gi = 1, Pi = 1; θ(t))

= P (δir = 1|Xi, δid, Yid, Y
0
ir, Gi = 1, Tir > Y 0

ir; θ
(t))

=

∫ Yid
Y 0
ir
λ13(t)S1(t)S3(Yid − t)λ34(Yid − t)δiddt∫ Yid

Y 0
ir
λ13(t)S1(t)S3(Yid − t)λ34(Yid − t)δiddt+ λδid14 (Yid)S1(Yid)

(G.1)

For parametric baseline hazards, we can substitute the parameter estimates from

the M Step into the (G.1) in order to impute δir. Suppose, however, that we want to

use nonparametric baseline hazards. Weighted Breslow-type estimators of the baseline

hazard function take nonzero values only at event times, which will create a problem

when imputing using (G.1). Instead, we will require our baseline hazard estimators to be

step functions as discussed in Appendix F.
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Step 2: Imputation of Yir

If the imputed value of δir = 0, then automatically set Yir = Yid. Otherwise, we know

that Yir = Tir < Yid. We note that {Yid > Y 0
ir, δ

0
ir = 0, δir = 1, Gi = 1} implies {Y 0

ir <

Tir < Yid}. Therefore, we can draw Tir from:

f(Tir = t|Xi, δid, Yid, Y
0
ir, Y

0
ir < Tir < Yid; θ

(t))

∝ λ13(t)S1(t)S3(Yid − t)λ34(Yid − t)δidI(Y 0
ir < t < Yid) (G.2)

We note that we actually know the full form of this distribution since we calculate

the proportionality constant for (G.2) in Step 1 (integral in expression (G.1)). Several

options exist to draw Tir from distribution (G.2), and we explore several approaches under

Weibull and nonparametric assumptions for the baseline hazards.

We note that, under nonparametric baseline hazards, the estimator for λ13(t) will

be exactly zero for t greater than the last observed recurrence time by construction.

Therefore, the distribution in (G.2) will be zero for t greater than the last observed

recurrence time. Additionally, in Appendix F, we restrict the hazard for the 3 → 4

transition to be nonzero at the last event time. This avoids the possibility that the

distribution in (G.2) evaluated at the proposed baseline hazard estimates will be zero

across all t for a particular subject.
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G.2 Implementation of Tr Draw

In this section, we propose various methods to accomplish the imputation in Step 2.

One proposed method is rejection sampling, which can be applied under parametric or

nonparametric baseline hazard assumptions. In our experience, this method has good

performance when that baseline hazards are parametric, but may have poor performance

in some nonparametric baseline settings. We therefore propose three additional methods

that tend to have better performance under nonparametric baseline assumptions.

Method 1: Rejection Sampling

We can draw from (G.2) using a rejection sampling algorithm assuming Weibull baseline

hazards. Rejection sampling algorithms involve determining a simple density, g(t), that

dominates the kernel of interest, k(t), such that we can write k(t) ≤ Kg(t) ∀ t,K ≥ 1.

We:

1) generate T from g(t) and U from U(0, 1)

2) Accept draw T if U ≤ k(T )
Kg(T )

. Otherwise, reject draw T and return to 1) (Robert

and Casella, 2004).

We define k(t) = λ13(t)S1(t)S3(Yid− t)λ34(Yid− t)δidI(Y 0
ir < t < Yid), which is equal to the

kernel in (G.2). We can obtain a draw of Tir from (G.2) using one of the following two

rejection sampling algorithms. Option 1 below can be applied to impute Tir for δid = 0

or δid = 1, but it may not be very efficient when δid = 1 and λ34(t) has a large range over

(Y 0
ir, Yid). We therefore propose a second approach, Option 2, for drawing from (G.2) for

subjects with δid = 1. Figure G.2 shows examples of the target and dominating kernel

for each approach.
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Figure G.2: Example of Target and Dominating Kernels in Rejection Sampling

(a) Kernels from Option 1 (with δid = 0)
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(b) Kernels from Option 2 (with δid = 1)
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Option 1:

Let g(t) ∝ λ13(t)e−Λ13(t)I(Y 0
ir < t < Yid). This is a truncated failure time distribution.

A draw from g(t) can be obtained much more easily than a draw from k(t). We can

obtain a draw from g(t) using

P (T > t|Y 0
ir < T < Yid; θ

(t)) =
e−Λ13(t) − e−Λ13(Yid)

e−Λ13(Y 0
ir) − e−Λ13(Yid)

I(Y 0
ir < t < Yid) ∼ U(0, 1)

Draw M ∼ U(0, 1). Then we can obtain a draw for T by solving

e−Λ13(T ) − e−Λ13(Yid)

e−Λ13(Y 0
ir) − e−Λ13(Yid)

= M =⇒ T = Λ−1
13

(
−log

[
M
{
e−Λ13(Y 0

ir) − e−Λ13(Yid)
}

+ e−Λ13(Yid)
])

Let T be a draw from g(t). We accept the draw Tir = T if U ≤ 1
K
e−Λ14(T )S3(Yid −

T )λ34(Yid−T )δid where constantK = max
Y 0
ir<t<Yid

e−Λ14(t)S3(Yid−t)λ34(Yid−t)δid . We continue

drawing T until the corresponding inequality is satisfied.

Option 2:

This option is only appropriate for imputation if δid = 1. Let g(t) ∝ λ34(Yid −

t)e−Λ34(Yid−t)I(Y 0
ir < t < Yid). This is again a truncated failure time distribution.

Again, a draw from g(t) can be obtained much more easily than a draw from k(t).

Define S = Yid−T . S has a truncated survival distribution f34(t). We can obtain a draw

from g(t) using

P (T > t|Y 0
ir < T < Yid; θ

(t)) = P (Yid − S > t|Y 0
ir < Yid − S < Yid)

238



= P (Yid − t > S|0 < S < Yid − Y 0
ir) =

P (0 < S < Yid − t)
P (0 < S < Yid − Y 0

ir)
I(Y 0

ir < t < Yid)

=
1− e−Λ34(Yid−t)

1− e−Λ34(Yid−Y 0
ir)
I(Y 0

ir < t < Yid) ∼ U(0, 1)

Draw M ∼ U(0, 1). Then we can obtain a draw for T by solving

1− e−Λ34(Yid−T )

1− e−Λ34(Yid−Y 0
ir)

= M =⇒ T = Yid − Λ−1
34

(
−log

[
1−M

{
1− e−Λ34(Yid−Y 0

ir)
}])

Let T be a draw from g(t). We accept the draw Tir = T if U ≤ 1
K
λ13(T )S1(T ) where

constant K = max
Y 0
ir<t<Yid

λ13(t)S1(t). We continue drawing T until the corresponding in-

equality is satisfied. We note that this approach should not be used if Tir is part of the

covariate set for the 3 → 4 transition as drawing from g(t) may be difficult in this case

(since the covariate set also would depend on t).

Method 2: Metropolis-Hastings

Like the rejection sampling algorithm, the goal of the Metropolis-Hastings algorithm is to

obtain a draw of variable V from a distribution known only up to proportionality, k(v).

The strategy is to first specify a proposal distribution, p(v|u), from which we propose

new values for the variable V = v given the most recent drawn value of V , u. We can

obtain a draw V from k(v) by performing the following:

1) Generate v∗ from p(v|u). Generate U ∼ U(0, 1)

2) Define acceptance probability α = min
(

1, p(u|v
∗)k(v∗)

p(v∗|u)k(u)

)
. Accept draw V = v∗ if

U ≤ α.

Otherwise, we reject draw V = v∗ and keep V = u (Robert and Casella, 2004).

Under parametric baseline hazards, we suggest using a Uniform(Y 0
ir, Yid) proposal distri-

bution. However, this proposal distribution can run into problems under nonparametric

baseline hazards when Yid > τR, the last observed recurrence time in the dataset. In this

case, the k(v) evaluated at the baseline hazard estimators could be zero for some values of

t in (Y 0
ir, Yid). To avoid this issue, we suggest using a Uniform(Y 0

ir, min(Yid, τR)) proposal

distribution under nonparametric baseline hazards.
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Method 3: Inversion

We can use the fact that we have already calculated the proportionality constant for the

distribution in (G.2) when imputing G to help draw from (G.2). Let S̃(t) be the survival

function corresponding to the distribution in (G.2). Then we can obtain a draw from

(G.2) by solving the following equation for T :

S̃(T ) =

∫ Yid
T

λ13(t)S1(t)S3(Yid − t)λ34(Yid − t)δiddt∫ Yid
Y 0
ir
λ13(t)S1(t)S3(Yid − t)λ34(Yid − t)δiddt

= U

where U is drawn from U(0, 1). This equation can be solved using a root solver such as

uniroot in R. In the case of Cox baseline hazards, this approach to drawing from (G.2)

may be faster than the rejection-sampling methods. This approach is convenient because

it is fairly simple, but it does require many numerical calculations of an integral within

the root solver.

Method 4: Nested Parametric Model

This fourth method is applicable only when we have nonparametric baseline hazard as-

sumptions. In this approach, we make parametric assumptions for the baseline hazards

only for performing the imputation to deal with the unequal follow-up. For all other

imputations and estimation, we assume nonparametric baselines.

We first obtain parameter estimates from a parametric multistate model fit to the

data using the imputed outcome data from the previous iteration. Using these parameter

estimates, we perform imputation of Yir and δir under parametric assumptions for the

baseline hazards.

Some Additional Comments

The proposed imputation-based approach for dealing with unequal follow-up can perform

well when some subjects have longer follow-up for recurrence such that each interval

(Y 0
ir, Yid) we are imputing over contains follow-up for recurrence for at least a few sub-

jects. Suppose no subjects have follow-up time for recurrence in the interval (Y 0
ir, Yid).

When we make parametric assumptions about the baseline hazard, the imputed outcome
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information will be entirely dependent on the parametric assumptions. When we have no

subjects with later follow-up for recurrence and we have non-parametric baseline hazards,

we might recommend the nested parametric model method for imputation, as the other

methods may have poor performance. In our simulations, we supposed that some subset

of the subjects had long follow-up for recurrence, allowing us to estimate the baseline

hazard for recurrence over each interval (Y 0
ir, Yid).

Suppose we want to use nonparametric baseline hazards in a multistate cure model

fit to data with unequal follow-up and all subjects have early censoring for recurrence.

In this case, several options exist. We could assume parametric baseline hazards just for

the unequal follow-up imputation step (Method 4 above). However, this approach would

be entirely dependent on the parametric assumptions. Another approach would be to

censor the death data back to the follow-up time for recurrence for subjects with Pi = 1

and then fit the multistate cure model to the data with the modified death information.

This may substantially decrease the death information included in the model fit, but it

would remove the issue of unequal follow-up from the dataset.
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Appendix H

Additional Comments on MCEM

Variance Estimation Method

In this section, we provide some comments justifying our proposed approach to vari-

ance estimation after the MCEM algorithm. Our approach can be directly motivated by

well-understood properties of multiple imputation.

Suppose D represents the complete data. In multiple imputation, we obtain M draws

from f(D(mis)|D(obs)) (proper imputations). We then fit the desired model for f(D) (in

our case, the multistate cure model) using each one of the imputed datasets. For each

imputed dataset, we obtain a set of parameter estimates and variances, and we use Ru-

bin’s combining rules to obtain a single estimate of the standard errors that correctly

accounts for the uncertainty due to the imputation. This approach is well-understood

and justified from a Bayesian perspective (Little and Rubin, 2002).

In our proposed method for estimating the standard errors, our goal is to obtain M

approximate draws from f(D(mis)|D(obs)) and then apply Rubin’s rules. At the end of the

Monte Carlo EM algorithm, we obtain M draws from f(D(mis)|D(obs); θ(t)) where θ(t) is the

parameter estimate at the final iteration of the MCEM algorithm. These are imputations

of the data, but they are “improper” ones. By “improper,” we mean that the imputations

were generated without correctly accounting for the uncertainty related to the missing

data. It is well known in the missing data literature that inference using “improper”

imputations can result in bad estimates for the standard errors (Little and Rubin, 2002).

Our goal is to obtain draws of f(D(mis)|D(obs)), which would produce proper imputations

to which we can apply Rubin’s combining rules and obtain good standard error estimates.
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We first note that

f(D(mis)|D(obs)) =

∫
f(D(mis)|D(obs); θ)f(θ|D(obs))dθ

We can obtain an approximate draw from f(D(mis)|D(obs)) by first obtaining a draw from

f(θ|D(obs)). Then, given that draw, we draw from the conditional predictive distribution,

f(D(mis)|D(obs); θ). We also note that

f(θ|D(obs)) =

∫
f(θ|D(mis), D(obs))f(D(mis)|D(obs))dD(mis)

This integral decomposition suggests that we can obtain a draw from f(θ|D(obs)) by

drawing from f(θ|D(mis), D(obs)) using the previous draw of D(mis) from f(D(mis)|D(obs)).

This strategy for obtaining a draw from f(D(mis)|D(obs)) is described in detail in Little and

Rubin (2002). Our proposed method for estimating the standard errors takes advantage

of these existing approaches.

The goal of the post-processing step proposed is to obtain M independent draws from

f(D(mis)|D(obs)) using the most recent imputations from the MCEM algorithm. We do the

following to each imputed dataset. First, we fit the multistate cure model to a bootstrap

sample of the imputed dataset and the complete data. This provides an approximate draw

from f(θ|D(mis), D(obs)). This is a common approach to obtain an approximate draw from

f(θ|D(mis), D(obs)) under flat priors. Given that draw, we re-impute the missing data

from f(D(mis)|D(obs); θ). This provides a draw from f(D(mis)|D(obs)). After doing this

for each imputed dataset separately and repeating for several iterations, we can obtain

M independent approximate draws from f(D(mis)|D(obs)). We can then directly apply

Rubin’s rules.
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Appendix I

Identifiability Issues Related to

Multistate Cure Model

In the simulations in Chapter IV, we see that we can run into some numerical issues

when we assume less restrictive assumptions for the 1→ 4 and 2→ 4 transition hazards.

We believe the numerical issues are tied to identifiability issues inherent in the multistate

cure model.

Just to review, the 1 → 4 and 2 → 4 transitions represent the transition to death

from other causes from the non-cured and cured baseline states respectively. Suppose

that we assume that subjects still at risk for recurrence after a certain threshold time τ

are cured. For subjects known to be cured, we can attribute all of their events and time

at risk to the 2 → 4 transition rather than the 1 → 4 transition. However, consider the

non-cured subjects. All subjects known to be non-cured experienced the 1→ 3 transition,

so we do not have any subjects with known events for the 1→ 4 transition. For subjects

with missing cure status, it is unclear whether their time at risk for death from other

causes should be attributed to the 2 → 4 or the 1 → 4 transition. Our inference about

the 1 → 4 transition comes entirely from 1) the time subjects experiencing the 1 → 3

transition were at risk for the 1→ 4 transition, 2) the model for the probability of being

non-cured, and 3) the assumptions we make linking the 2 → 4 and 1 → 4 transitions.

It is, perhaps, unsurprising that we would then run into identifiability-related numerical

problems when we do not make any additional assumptions about the 1→ 4 transition.

In this section, we will focus our attention to the situation in which we assume Λ14(t) ∝

Λ24(t) assumption. We note that there is only one additional parameter in the model

that assumes Λ14(t) ∝ Λ24(t) compared to a model that assumes Λ14(t) = Λ24(t), and yet

in our simulations we see some evidence of undercoverage of the logistic model intercept
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when we allow the hazards to be proportional. Here, we will briefly explore identifiability

issues related to the proportionality assumption and explore the form of the observed

data log-likelihood for the simulated data under the Λ14(t) ∝ Λ24(t) assumption.

We assume that we have fully-observed covariates and equal follow-up of the two

outcomes. The complete data likelihood (treating cure status as known) can be expressed

as

L(θ|D) =
n∏
i=1

(
P (Gi = 0)λ24(Yid)

δidS2(Yid)
)1−Gi

×
(
P (Gi = 1)

[
λ14(Yid)

δidS1(Yid)
]1−δir [

λ13(Yir)S1(Yir)λ34(Yid − Yir)δidS3(Yid − Yir)
]δir)Gi

Let Ri be an indicator for whether the cure status for subject i is known. Let Dobs

represent the observed information in D. Here, subjects assumed to be cured have Ri = 1.

The observed data likelihood is

Lobs(θ|Dobs) =
n∏
i=1

[
P (Gi = 1)λ13(Yir)S1(Yir)λ34(Yid − Yir)δidS3(Yid − Yir)

]δir
×
[
P (Gi = 0)λ24(Yid)

δidS2(Yid) + P (Gi = 1)λ14(Yid)
δidS1(Yid)

](1−δir)(1−Ri)
×
[
P (Gi = 0)λ24(Yid)

δidS2(Yid)
](1−δir)Ri

Suppose we assume that Λ14(t) = Λ24(t) exp{β0}. For notational convenience, we

will also assume we use the same covariate set for all components of the multistate cure

model. We have that

Lobs(θ|Dobs) =
n∏
i=1

1

1 + eα0+α1Xi

[
eα0+α1XiS2(Yir)

exp(β0)λ13(Yir)e
−Λ13(Yid)

×λ34(Yid − Yir)δidS3(Yid − Yir)
]δir

×
[
λ24(Yid)

δidS2(Yid) + eα0+α1Xieβ0δidS2(Yir)
exp(β0)λ24(Yid)

δide−Λ13(Yid)
](1−δir)(1−Ri)

×
[
λ24(Yid)

δidS2(Yid)
](1−δir)Ri

We notice that β0 only ever appears alongside α, but both parameters appear to be iden-

tifiable.

We consider two different datasets simulated under the same model as in sim-

ulation scenario 1 from Chapter IV with no missingness in covariates and no unequal
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follow-up, assuming equal hazards for the 2→ 4 and 1→ 4 transitions. Both simulated

datasets are generated using the same parameter values. We will use these two simulated

datasets to illustrate the numerical issues tied to estimating β0 under assumptions that

Λ14(t) = Λ24(t) exp{β0} and demonstrate that the extent of identifiability-related numer-

ical issues may vary across different datasets generated from the same model. Dataset 1

is an example of a dataset producing an observed data log-likelihood that is nearly flat,

resulting in difficulty in estimating β0 and subsequent difficult with α0. For Dataset 2,

the observed data log-likelihood is easier to maximize, and we can estimate β0 reasonably

well. We note that since the data were simulated assuming equal hazards for the 2→ 4

and 1→ 4 transition, the true value of β0 is 0.

For each dataset, we fit a multistate cure model using the EM algorithm under Weibull

baseline hazards and assuming either 1) Λ14(t) = Λ24(t) exp{β0} or 2) Λ14(t) = Λ24(t).

Evaluation of the corresponding observed data log-likelihoods indicates that the EM al-

gorithm reached convergence for each model fit. Table I.1 shows the resulting multistate

cure model fits. For Dataset 1, we see that the estimated β0 is far from the true value

of zero in Fit 1, but the confidence interval covers zero. In both model fits for Dataset

1, we see that the confidence intervals for β24,14 do not cover the true values. We notice

that the estimated intercept value is lower when we assume Λ14(t) = Λ24(t) exp{β0} for

Dataset 1, and the confidence interval under equality assumptions does not cover the

estimate under proportionality assumptions. For Dataset 2, the estimated β0 is close to

the true value of zero, and the confidence intervals all cover the true values. The model

fits are very similar under the two sets of assumptions for Dataset 2.
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Table I.1: Multistate Cure Model Fits to Two Simulated Datasets

Dataset 1 Dataset 2
Fit 1 Fit 2 Fit 3 Fit 4

Assumption* Proportional Equal Proportional Equal
Parameter Truth log-HR (95% CI) log-HR (95% CI) log-HR (95% CI) log-HR (95% CI)

β13 X1 0.5 0.50 (0.42, 0.58) 0.51 (0.43, 0.59) 0.47 (0.39, 0.56) 0.47 (0.39, 0.56)
β13 X2 0.5 0.54 (0.46, 0.62) 0.54 (0.44, 0.63) 0.50 (0.41, 0.59) 0.50 (0.42, 0.57)
β24,14 X1 0.5 0.30 (0.17, 0.43) 0.26 (0.14, 0.40) 0.49 (0.32, 0.66) 0.49 (0.35, 0.62)
β24,14 X2 0.5 0.66 (0.52, 0.80) 0.63 (0.51, 0.75) 0.46 (0.31, 0.60) 0.46 (0.32, 0.59)
β0 0 -1.46 (-3.66, 0.80) - -0.07 (-1.16, 1.01) -
β34 X1 0.5 0.48 (0.41, 0.55) 0.48 (0.40, 0.56) 0.47 (0.40, 0.55) 0.47 (0.41, 0.54)
β34 X2 0.5 0.43 (0.35, 0.50) 0.43 (0.35, 0.50) 0.50 (0.44, 0.55) 0.50 (0.44, 0.57)
α Intercept 0.5 0.38 (0.18, 0.59) 0.53 (0.40, 0.66) 0.41 (0.28, 0.55) 0.42 (0.31, 0.53)
α X1 0.5 0.48 (0.34, 0.61) 0.49 (0.36, 0.62) 0.56 (0.44, 0.68) 0.56 (0.42, 0.71)
α X2 0.5 0.51 (0.39, 0.63) 0.58 (0.44, 0.73) 0.40 (0.28, 0.53) 0.40 (0.30, 0.51)

*Proportional: Assume Λ14(t) = Λ24(t) exp{β0}. Equal: Assume Λ14(t) = Λ24(t)

We now want to explore the shape of the observed data log-likelihood for Fits 1 and

3 (proportional 1 → 4 and 2 → 4 hazards for Datasets 1 and 2) at their respective

EM-maximized values. We recall that α0 is the intercept from the logistic part of the

model, β0 is the proportionality parameter, and the shape, scale, and beta parameters

are assumed to be equal for the 1→ 4 and 2→ 4 transitions. We first look at the shape

of the observed data log-likelihood varying parameters one at a time and keeping all other

parameters fixed at the EM-maximized values. Figure I.1 shows the profile log-likelihood

values for several different parameters. We notice that the profile likelihood curve for β0

appears nearly flat for Dataset 1 and has a clear peak for Dataset 2.
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Figure I.1: Profile of Observed Data Log-Likelihood under Proportional Baselines

(at the EM-Maximized Values for Two Simulated Datasets)
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(b) Dataset 2
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We also explore the shape of the log-likelihood surface varying both β0 and α0 from

their EM-maximized values in Figure I.2. Figures I.2(a) and I.2(b) show a 3-

dimensional surface for Datasets 1 and 2, and Figures I.2(c) and I.2(d) show the

same curve projected onto the β0 x log-likelihood plane. The log-likelihood appears par-

ticularly flat for Dataset 1, and the EM-maximized value for β0 differs from the true value

substantially. For Dataset 2, the EM-maximized value is near the true value. Based on

these plots, it is unsurprising that we have difficulty estimating β0 for Dataset 1, but we

are able to estimate β0 well for Dataset 2.

248



Figure I.2: Log-Likelihood Surface under Proportional Baseline Hazards

(at the EM-Maximized Values varying α0 and β0 for Two Simulated Datasets)
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(b) Dataset 2
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(c) Dataset 1, Projected
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(d) Dataset 2, Projected
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Appendix J

Relaxing Hazard Restrictions

through Shrinkage

In Chapter IV of this dissertation, we develop an EM algorithm for fitting the

multistate cure model in Figure J.1. We explore different restrictions we can make on

the transitions to death from other causes (transitions 1 → 4 and 2 → 4 in diagram

below), and in the course of our simulations, we demonstrate at relaxing the restrictions

on these two transitions can result in some numerical trouble.

Figure J.1: Diagram of the Multistate Cure Model

In this appendix, we briefly explore a shrinkage-based approach that may allow us to

relax some restrictions on the 1→ 4 and 2→ 4 transition hazards while still avoiding some

numerical issues. Recall that we explore four different sets of restrictions on the baseline

hazards: no restrictions, Λ14(t) ∝ Λ24(t), Λ0
14(t) = Λ0

24(t), and Λ14(t) = Λ24(t). The

best numerical properties were obtained under the most restrictive assumption, Λ14(t) =

Λ24(t).

Rather than fully restricting the hazards to be equal, we propose shrinking the hazards

toward each other. This allows the hazards to be unequal if the data support it and will

250



shrink the hazards toward each other if the data do not support a difference. Suppose,

for example, we are unsure if we can assume that β24 = β14. We can write

Λ24(t) = Λ0
24(t)eβ24X

Λ14(t) = Λ0
14(t)eβ24X+(β14−β24)X

In the model likelihood, we can impose a ridge penalty or other shrinkage penalty on the

parameter β14 − β24. Under this modified likelihood, the E-Step of the EM algorithm

and the imputation step of the MCEM algorithm are both unchanged. The modified

likelihood impacts the M Step in both cases. As before, we can write the terms we want to

maximize for β and the baseline hazard parameters in the form of a single Cox regression

model fit. However, we will perform the maximization incorporating the ridge penalty on

β14− β24. Along with the ridge penalty comes a tuning parameter related to the amount

of penalization. We propose using the software standard approach for determining the

tuning parameter. In the survival package in R, an estimate for the approximate degrees

of freedom is used for the tuning parameter. More sophisticated methods can be used

to determine a reasonable tuning parameter, but by using the software standard, we can

make the modification to the proposed EM algorithms extremely easy to implement.

We can use a similar shrinkage trick for the restriction Λ14(t) ∝ Λ24(t). We have that

Λ14(t) = Λ24(t)eβ0 = Λ0
24(t)eβ24X+β0

As before, we can apply a ridge penalty on β0, and this will shrink Λ24(t) towards Λ14(t).

We perform a small simulation study to explore the impact of the shrinkage on the

numerical stability of the algorithm (in terms of bias, coverage, and empirical variance).

We generate 200 simulated datasets under scenario 1 in Chapter IV, where the data

are generated under a multistate cure model with no covariate missingness or unequal

censoring. For each simulated dataset, we fit a multistate cure model using the proposed

EM algorithm. We estimate the bias, empirical variance, and coverage for the resulting

parameter estimates and standard errors.

We note that, for these data, the truth is that Λ14(t) = Λ24(t) (so β24 = β14 and

β0 = 0). In the future, we will explore how the shrinkage approach impacts the numerical

properties when the model is misspecified under the stronger set of restrictions.
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Tables J.1 and J.2 shows the simulation results. In all the scenarios considered,

we don’t have too much bias in estimating parameters in β. However, when we only

restrict the baseline hazards to be equal, we see increased variances for estimating β24

and β14. These variances are substantially reduced when we apply shrinkage to β14−β24.

In previous simulations and in Table J.2, we see that undercoverage for the intercept

parameter of the logistic regression model when we assume the hazards are proportional.

When we apply shrinkage to β0, we see that the undercoverage goes away. We note that

when we apply the shrinkage, the estimation time goes up substantially. This is due to the

variance estimation. In all of the simulations presented here, we use bootstrap methods

to estimate the standard errors (recall, we are using the EM algorithm, not the MCEM

algorithm). There is a small increase in time related to fitting the survival model with the

ridge penalty, and this time is compounded substantially as the function is called many

times within the bootstrap variance estimation procedure. Additionally, in the Weibull

case with shrinkage, there is a substantial number of the 200 simulations that have some

numerical issues. These arise in the variance estimation, where the survival model fits

(using ‘survreg’ in R) have numerical problems for one or more of the bootstrap samples.

The improved numerical properties in terms of bias, empirical variance, and coverage may

be explained by failure of the shrinkage-based estimation on the simulated datasets that

are more challenging estimation-wise without the shrinkage. Additional explorations are

certainly needed in the future, but these quick simulations do suggest that shrinkage may

provide some means for improving the statistical properties for the more relaxed model

assumptions among the non-failing datasets.
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Table J.2: Multistate Cure Model Logistic Model Estimates (Shrinkage)

Results across 200 simulations are presented using the following notation: Bias (Empirical
Variance) Coverage of 95% Confidence Interval, each multiplied by 100. The number of
simulations (out of 200) with numerical issues and the median run time per simulation
are also shown.

Baseline 2 → 4, 1 → 4 Logistic Model # Failed Run Time
Hazard Assumption Intercept X1 X2 (out of 200) (mins/sim)

Scenario 1: No Covariate Missingness or Unequal Follow-up

Weibull Λ14(t) = Λ24(t) 0 (0.32) 94 0 (0.43) 94 0 (0.35) 98 0 1.94
Weibull Λ0

14(t) = Λ0
24(t) 0 (0.31) 94 0 (0.53) 94 0 (0.44) 95 0 1.72

Weibull plus SHRINK β 0 (0.31) 95 0 (0.43) 93 0 (0.35) 97 12 4.75
Weibull Λ14(t) ∝ Λ24(t) 0 (0.55) 93 0 (0.42) 95 0 (0.36) 99 0 3.07
Weibull plus SHRINK β0 0 (0.32) 96 0 (0.41) 96 0 (0.34) 97 47 4.54

Cox Λ14(t) = Λ24(t) 0 (0.32) 97 0 (0.43) 95 0 (0.35) 97 0 9.38
Cox Λ0

14(t) = Λ0
24(t) 0 (0.31) 94 0 (0.54) 94 0 (0.45) 96 0 9.65

Cox plus SHRINK β -1 (0.31) 92 0 (0.44) 93 0 (0.36) 97 0 29.3
Cox Λ14(t) ∝ Λ24(t) 1 (0.88) 84 0 (0.43) 94 0 (0.41) 97 0 9.62
Cox plus SHRINK β0 -2 (0.31) 94 0 (0.42) 95 0 (0.35) 98 0 28.6
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Appendix K

Additional HNSCC Results for

Multistate Model with Persistence

In this appendix, we present some additional exploration into the multistate cure

model with persistence fits to the head and neck data. We recall the model structure in

Figure K.1:

Figure K.1: Diagram of Multistate Cure Model with Persistence

First, we focus on the Bayesian estimation-based fits. Figure K.2 shows the posterior

inclusion probabilities for groups of variables under the two spike and slab priors con-

sidered. These probabilities are calculated as the proportion of iterations of the MCMC

algorithm in which the group of variables was assigned γg = 1. The two priors tend to

give similar results, but this is not always the case. The fit with the point mass prior has

a tendency to have larger posterior inclusion rates. This may be a result of our choice

of hyperparameters for the two priors. We see large differences in the posterior inclusion

probabilities for site for the 1 → 3 transition (recurrence given non-cured); cancer stage

in the 1 → 4, 2 → 4 transitions (death from other causes given not persistent); cancer

site, age, and smoking status for the 3 → 4 transition (death after recurrence), and age

for the model for persistence.
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Figure K.2: Posterior Inclusion Probabilities
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The line height for a group indicates the proportion of MCMC iterations in which that
group was included in the model.

Figure K.3 visualizes the (cumulative) proportion of MCMC iterations each com-

bination of predictors was chosen, where the filled-in area corresponds to the chosen

covariates and the height of the filled-in area corresponds to the proportion of iterations

in which that combination of covariates was chosen. The various model formulations

chosen by the MCMC algorithm for each submodel were sorted from most to least often

chosen. We note that the proportion of colored area above a particular variable in these

plots corresponds to the posterior inclusion probability for that variable in the corre-

sponding submodel. This type of plot was used in Chipman (1996) as a way to visualize

the highest posterior models. For example, consider the first plot under Transition 1→ 3.

The results suggest that the combination of HPV and cancer stage was the model chosen

for over 60% of the MCMC iterations. The cancer subsite variables (hypopharynx, lar-

ynx, oropharynx) were included in only a few of the iterations; they were included with

HPV and stage for about 5% of iterations and in some other covariate combinations for

smaller fractions of the iterations. They were excluded from the model for the majority of

the iterations. In contrast, cancer stage was included in all iterations. Overall, there are

many instances in which the posterior weight put on different combinations of variables
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differs between the two priors.

We use the posterior means of θ (using Bayesian model averaging) for each of the

four Bayesian model fits to predict the 5-year overall survival probability. Given θ, the

estimated overall survival probability can be calculated using the state occupancy prob-

abilities derived in Section 5.5 using a time of 5 years. Figure K.4 compares the

predictions across the Bayesian fits. The four Bayesian fits give nearly identical 5-year

OS predictions. We obtain similar results when we compare the predicted 5-year event-

free survival rates.

Figure K.5 compares the 5-year OS predictions for the Bayesian fit without shrinkage

and the two maximum likelihood estimation-based fits (with and without ridge shrink-

age). The two fits without any selection/shrinkage give very similar predictions, but we

obtain different predictions for the ridge-penalized model fit. For this fit, the predicted

5-year survivals appear to be more clustered around the population average.
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Figure K.3: Posterior Probabilities for Different Covariate Combinations
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(b) Transition 2→ 4, 1→ 4
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(c) Transition 3→ 4
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(d) Transition 5→ 4
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(e) P(Not Cured | Not Persistent)

Mixture of Normals Prior

0.
00

0.
25

0.
50

0.
75

1.
00

S
ite

H
P

V
 P

os
iti

ve

S
ta
ge

M
al
e

A
ge

C
om
or
bi
di
tie
s

S
m
ok
in
g

P
ro

po
rti

on
 o

f I
te

ra
tio

ns

Point Mass Prior

0.
00

0.
25

0.
50

0.
75

1.
00

S
ite

H
P

V
 P

os
iti

ve

S
ta
ge

M
al
e

A
ge

C
om
or
bi
di
tie
s

S
m
ok
in
g

P
ro

po
rti

on
 o

f I
te

ra
tio

ns

(f) P(Not Persistent)
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These plots show the proportion of MCMC iterations in which each combination of co-
variates was chosen for inclusion for each submodel. A filled-in rectangle indicates that
the covariate group was included in the model. The height of the rectangle indicates the
proportion of iterations.
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Figure K.4: 5-Year OS Predictions across Bayes Fits

Comparing Predicted 5-Year Survivals for CC Data
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Figure K.5: 5-Year OS Predictions across MLE and Bayes Fits

Comparing Predicted 5-Year Survivals for CC Data
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Figure K.6 shows the correlations of the posterior draws of γ across iterations for

each transition under the mixture of normals prior. If γ always equals zero or one (for

all iterations) for a particular group, that group is not plotted. We can see that the
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correlations are small for all but the 3→ 4 transition. For this transition, we have some

mild correlations in the inclusion/exclusion across groups. This may be due to a smaller

amount of available data for this transition. In the main paper, we expressed a concern

about correlation of the inclusion/exclusion indicators for a particular group across sub-

models. Figure K.7 shows the correlations across submodels of interest for the mixture

of normals prior. We do not see evidence of correlation in γ across submodels.

Figure K.8 shows the correlations of the posterior draws of γ across iterations for

each transition under the point mass at zero prior. We see greater evidence for γ corre-

lation issues within the 3→ 4 transition than we did with the mixture of normals prior.

Figure K.9 shows the correlations across submodels of interest for the point mass at

zero prior. Again, we see greater evidence of cross-submodel correlation in γ than we did

for the mixture of normals prior.

This last set of figures looking at the correlations of γ indicates that we may be at a

higher risk of correlation issues using the point mass at zero prior. This may be due to

the reversible jump algorithm, which only makes small modifications in the covariate set

at each iteration. We do see that the correlations across submodels are generally very

small. It is important to note that these diagnostics are looking at the correlation for γ,

not the resulting values of θ. The correlation structure for θ may be different.

Figure K.10 shows the confidence and credible intervals for each one of the model

parameters under each of the 6 methods (four Bayesian methods, 2 maximum likeli-

hood methods). We tend to see similar results between the methods with no shrinkage

(Bayesian and MLE), but the ridge regression fit produces very different estimates from

the other methods.
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Figure K.6: Correlations of Gamma within Submodels (Mixture of Normals)
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This figure presents heatmaps for the correlation of the γ indicators across MCMC it-
erations within submodels. If γ was always 0 or 1, that group was not included in the
plot.

Figure K.7: Correlations of Gamma across Submodels (Mixture of Normals)
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This figure presents heatmaps for the correlation of the γ indicators across MCMC iter-
ations across submodels. If γ was always 0 or 1 for one of the variables, the correlation
is listed as ‘-’
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Figure K.8: Correlations of Gamma within Submodels (Point Mass at Zero)
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This figure presents heatmaps for the correlation of the γ indicators across MCMC it-
erations within submodels. If γ was always 0 or 1, that group was not included in the
plot.

Figure K.9: Correlations of Gamma across Submodels (Point Mass at Zero)
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This figure presents heatmaps for the correlation of the γ indicators across MCMC iter-
ations across submodels. If γ was always 0 or 1 for one of the variables, the correlation
is listed as ‘-’
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Figure K.10: Credible and Confidence Intervals Across All Methods
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Appendix L

Additional Simulation Results for

Order-Restricted Selection with

Interactions

In this appendix, we present some additional results for the simulations in Chapter

VI. We perform simulations under both linear and logistic regression.

L.1 Linear Regression

Figure L.1 shows the average 95% credible interval widths for µ. We can see that the

collapsed methods generally result in the smallest posterior intervals. When we have

strict ordering and all interactions included, the None prior (which has no selection or

constraints) has the narrowest posterior intervals. The Hierarchy prior outperforms the

other methods in terms of credible interval width for Simulation 1, where there are no

main effects or interactions.

Figure L.2 shows the coverage rates for the 95% credible intervals for µ. The Ordered-

NoSelection method results in good coverage properties when strict ordering is present

(Simulations 4 and 8), but it results in undercoverage in other simulation settings. In

Simulation 5 (which violates weak hierarchy constraints), the Hierarchy prior produces

undercoverage. In contrast, the CollapsedHierarchy is able to obtain good coverage prop-

erties in spite of the violation to the hierarchy constraint. The collapsed methods generally

produce good coverage properties except in Simulations 7 and 8. In these simulations, we

have all interaction terms present and some or all main effects present. Undercoverage

seen for the collapsed methods is a result of bias due to the shrinkage.
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Figure L.3 shows the average posterior credible intervals for β. The horizontal black

bars correspond to the true values. We notice that for many of the simulation settings,

the OrderedNoSelection prior results in biased parameter estimates. In contrast, the col-

lapsed methods generally produce low bias and narrow intervals. Some hints of bias can

be seen in Simulations 5, 7, and 8 for the collapsed methods, but these biases appear very

small. The intervals for the None, OrderedNoSelection and Hierarchy priors tend to be

large in comparison to the collapsed methods. Figure L.4 shows the average posterior

credible intervals for µ. The results are similar.

Figure L.5 shows the posterior mean of µ for each one of the methods along with the

true values through heatmaps. This figure allows us to more clearly see the impact of the

various priors on the resulting parameter orderings and magnitudes. Each three-by-three

grouping corresponds to the posterior means of µ for one of the methods. The color in

a particular cell corresponds to the magnitude of the posterior mean. The OrderedNoSe-

lection prior tends to result in more spread out µ estimates compared to the other priors.

The two collapsed methods produce very similar results. The None method also performs

similarly. The Hierarchy prior performs similarly except for Simulation 5.
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Figure L.1: Average Width of 95% Credible Intervals for µ (Linear Regression)
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This figure shows the width of the 95% credible intervals, averaged across 200 simulations.
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Figure L.2: Coverage of Credible Intervals for µ (Linear Regression)
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Figure L.3: Average Credible Intervals for β (Linear Regression)
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This figure shows the posterior mean, 97.5% quantile, and 2.5% quantile of the posterior
draws of β, averaged across the 200 simulations. The horizontal black bars correspond
to the true values.
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Figure L.4: Average Credible Intervals for µ (Linear Regression)
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This figure shows the posterior mean, 97.5% quantile, and 2.5% quantile of the posterior
draws of µ, averaged across the 200 simulations. The horizontal black bars correspond
to the true values.
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Figure L.5: Heat Maps for Posterior Mean of µ (Linear Regression)
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This figure shows the posterior mean values of µ for different combinations of A and B,
averaged across 200 simulations. The final column shows the true values.
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L.2 Logistic Regression

Figure L.6 shows the average 95% credible interval widths for µ. As in the linear

setting, the collapsed methods generally result in the smallest posterior intervals. The

None prior generally produces the largest intervals. The Hierarchy prior often produces

inflated intervals for parameters corresponding to interaction terms.

Figure L.7 shows the coverage rates for the 95% credible intervals for µ. We see

more evidence of some undercoverage for the collapsed methods than in the linear case.

As before, this may be due to bias induced by the shrinkage. We note that the Hierarchy

prior tends to produce some undercoverage in all the simulation settings. The None prior

produces good coverage in all simulation settings.

Figures L.8 and L.9 show the average posterior credible intervals for β and µ

respectively. One striking difference between the logistic regression and linear settings is

the width of the credible intervals, which are much larger in the logistic regression case.

However, this is to be expected. All methods generally produce reasonable estimates for

the main effect parameters. The credible intervals for the interaction parameters tend

to be much narrower for the collapsed methods, which helps to control some of the large

variability and stabilize the parameter estimates.

Figure L.10 shows the posterior mean of µ for each one of the methods along with the

true values through heatmaps. We generally see greater differences across the methods

than we did in the linear regression case. As before, the OrderedNoSelection prior tends

to result in estimates of µ that are more “spread out.” The collapsed methods tend to

perform similarly, although there is more spread for the CollapsedNoHierarchy method in

Simulation 1 than there should be. We can see greater differences between the collapsed

methods and the Hierarchy prior than in the linear regression case.
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Figure L.6: Average Width of Credible Intervals for µ (Logistic Regression)
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This figure shows the width of the 95% credible intervals, averaged across 200 simulations.
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Figure L.7: Coverage of Credible Intervals for µ (Logistic Regression)
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Figure L.8: Average Credible Intervals for β (Logistic Regression)
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This figure shows the posterior mean, 97.5% quantile, and 2.5% quantile of the posterior
draws of β, averaged across the 200 simulations. The horizontal black bars correspond
to the true values.
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Figure L.9: Average Credible Intervals for µ (Logistic Regression)
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This figure shows the posterior mean, 97.5% quantile, and 2.5% quantile of the posterior
draws of µ, averaged across the 200 simulations. The horizontal black bars correspond
to the true values.
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Figure L.10: Heat Maps for Posterior Mean of µ (Logistic Regression)
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This figure shows the posterior mean values of µ for different combinations of A and B,
averaged across 200 simulations. The final column shows the true values.
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