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ABSTRACT 

 

Alternative splicing is a key mechanism for increasing the complexity of transcriptome 

and proteome in eukaryotic cells. A large portion of multi-exon genes in humans undergo 

alternative splicing, and this can have significant functional consequences as the proteins 

translated from alternatively spliced mRNA might have different amino acid sequences and 

structures. The study of alternative splicing events has been accelerated by the next-generation 

sequencing technology. However, reconstruction of transcripts from short-read RNA sequencing 

is not sufficiently accurate. Recent progress in single-molecule long-read sequencing has 

provided researchers alternative ways to help solve this problem. With the help of both short and 

long RNA sequencing technologies, tens of thousands of splice isoforms have been catalogued in 

humans and other species, but relatively few of the protein products of splice isoforms have been 

characterized functionally, structurally and biochemically. The scope of this dissertation includes 

using short and long RNA sequencing reads together for the purpose of transcript reconstruction, 

and using high-throughput RNA-sequencing data and gene ontology functional annotations on 

gene level to predict functions for alternatively spliced isoforms in mouse and human. 

In the first chapter, I give an introduction of alternative splicing and discuss the existing 

studies where next generation sequencing is used for transcript identification. Then, I define the 

isoform function prediction problem, and explain how it differs from better known gene function 

prediction problem. In the second chapter of this dissertation, I describe our study where the 

overall transcriptome of kidney is studied using both long reads from PacBio platform and RNA-
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seq short reads from Illumina platform.  We used short reads to validate full-length transcripts 

found by long PacBio reads, and generated two high quality sets of transcript isoforms that are 

expressed in glomerular and tubulointerstitial compartments. In the third chapter, I describe our 

generic framework, where we implemented and evaluated several related algorithms for isoform 

function prediction for mouse isoforms. We tested these algorithms through both computational 

evaluation and experimental validation of the predicted ‘responsible’ isoform(s) and the 

predicted disparate functions of the isoforms of Cdkn2a and of Anxa6. Our algorithm is the first 

effort to predict and differentiate isoform functions through large-scale genomic data integration. 

In the fourth chapter, I present the extension of isoform function prediction study to the protein 

coding isoforms in human. We used a similar multiple instance learning (MIL)-based approach 

for predicting the function of protein coding splice variants in human. We evaluated our 

predictions using literature evidence of ADAM15, LMNA/C, and DMXL2 genes. And in the 

fifth and final chapter, I give a summary of previous chapters and outline the future directions for 

alternatively spliced isoform reconstruction and function prediction studies.
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 CHAPTER 1
 

                                                                   Introduction 

 

1.1 Introduction 

Alternative splicing is a process that enables a messenger RNA (mRNA) to synthesize 

different protein variants. It happens by rearranging the pattern of intron and exon elements that 

are joined by splicing to modify the mRNA sequence. Alternative splicing is a key mechanism 

for increasing the complexity of transcriptome and proteome in eukaryotic cells. It is estimated 

that more than 95% of multi-exon genes in the human undergo alternative splicing [1, 2]. 

Alternative splicing can have significant functional consequences as the proteins translated from 

alternatively spliced mRNA might have different amino acid sequences and 

structures. Functional consequences of alternative splicing include but not limited to alterations 

in mRNA decay [3] and changes in the translation process [4].  

The study of alternative splicing events has been accelerated by the next-generation 

sequencing technology. RNA sequencing (RNA-seq) is a technology that enables identification 

of novel genes and splice variants and estimation of transcript abundances [5-7]. Sequencing 

reads are produced by RNA-seq from the expressed transcripts. Correctly assigning these reads 

to transcripts and assembling them into full-length expressed transcripts are two major 

computational challenges and crucial steps for transcript quantification and differential 

expression analysis. Thus, they have an important role in understanding tissue-specific splicing 

and the regulation of gene expressions [8]. 
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Transcript assembly remains an open and challenging problem, especially for complex 

transcriptomes with high diversity of splice variants. Several studies have shown that 

reconstruction of transcripts from short-read RNA sequencing is not sufficiently accurate [9, 10]. 

Recent progress in single-molecule long-read sequencing has provided researchers alternative 

ways to help solve this problem. Pacific Biosciences (PacBio) has introduced the sequencing 

technique that allows the sequencing of transcripts without fragmentation or PCR amplification. 

The sequencing length is enough to cover size distribution of most transcripts in eukaryotes. 

Thus, PacBio’s full-length or nearly full-length transcripts eliminate the need of assembly for the 

downstream analysis. However, transcript assembly or quantification is merely the first steps of 

gaining insights into complex transcriptomes. 

With the help of rapid progression of RNA sequencing technologies, tens of thousands of 

splice isoforms have been catalogued in humans and other species. Relatively few of the protein 

products of splice isoforms have been characterized functionally, structurally and biochemically. 

During the past few decades, significant progress has been made for gene function prediction 

problem. A major intellectual limitation of the gene function prediction paradigm is that it 

considers a gene as a single entity without differentiating the functional diversity of alternatively 

spliced isoforms. Attempts to capture differential functions of alternatively spliced isoforms are 

limited to low-throughput experimental approaches. We expect that computational methods such 

as the ones that will be explained in the later chapters developed to differentiate isoform 

functions through integrating functional genomic data will assist a deeper, high-resolution 

understanding of protein functions. 

This dissertation focuses on identification and functional annotation of alternatively 

spliced isoforms. In this chapter, I will introduce the alternative splicing and how RNA 
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sequencing is used to reconstruct transcripts with different splicing events. I will talk about 

differences of using short vs. long reads in terms of transcript reconstruction. Then, I will 

introduce the isoform function prediction problem and how it differs from the previous gene 

function prediction studies. Finally, I will give an overview of the following chapters. 

1.2 Background 

1.2.1 Alternative splicing 

Transcription is the first step of gene expression. During transcription, a particular 

segment of DNA is copied into mRNA which is catalyzed by RNA polymerase enzyme. 

However, in eukaryotes, before the mRNA is translated into proteins, non-coding portions of the 

sequence, which are called introns, are removed and protein-coding parts, which are called 

exons, are joined by RNA splicing process to produce a mature mRNA.  

RNA splicing was first discovered in viruses [11, 12] and later in eukaryotes [13]. Shortly 

after, alternative patterns of pre-mRNA splicing which generates different mature mRNAs 

containing different combinations of exons from a single precursor mRNA are discovered. This 

process by which exons or portions of exons or introns within a pre-mRNA transcript are 

differentially joined or skipped is called alternative splicing. Alternative splicing results in 

multiple protein products that are encoded by a single gene and it generates a great amount of 

protein diversity in eukaryotes.  

Alternative splicing mechanism has been studied extensively [14-16]. It is regulated 

by cis-acting factors within pre-mRNAs and trans-acting factors as well as by the secondary 

structure of the pre-mRNA transcript. These factors together form the “splicing code” and 

determine the cell type-specific splicing [17]. The 5′ splice site, the 3′ splice site, exonic or 

intronic splicing enhancers and silencers are the essential cis-acting factors [18, 19]. Trans-acting 
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factors regulate alternative splicing by associating with cis-acting elements [19, 20]. There are 

five basic types of alternative splicing events, namely exon skipping, mutually exclusive exons, 

alternative 5’ donor sites, alternative 3’ acceptor sites, and intron retention. In the first type, a 

complete exon is spliced out or retained. In the second type, only one of two consecutive exons 

is retained in a mutually exclusive manner. In the third type, an alternative 5' donor site is used 

which changes the 3' boundary of the upstream exon. In the fourth type, an alternative 3' acceptor 

site is used, which changes the 5' boundary of the downstream exon. And finally, in the fifth 

type, a sequence may be spliced out or simply retained in the final mRNA. This is different from 

exon skipping because the retained sequence is not flanked by introns. In addition to these five 

primary modes of alternative splicing, there are two other mechanisms by which distinct mRNAs 

may be generated from the same gene; alternative promoter usage and alternative 

polyadenylation sites. With the former mode, transcripts with different 5’-most exons are 

generated, whereas with the latter mode transcripts with different 3’ end points are generated. 

Alternative splicing may have significant functional consequences because it can modify 

protein-protein interactions [21], protein sequence and consequently the domains in the final 

protein product [22]. Moreover, it has been shown that alternative splicing may alter mRNA 

decay [3] and the translation process [4].  

1.2.2 RNA sequencing and transcript assembly 

A comprehensive way to measure transcriptome composition and to discover new exons 

or genes is through high-throughput sequencing of cDNA which is referred as RNA-seq. It is a 

well-established technology that enables measurements of expression abundances as well as 

identification of novel genes and splice variants. Reads that are produced by RNA-seq are 
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sampled from the expressed transcripts. Assembling these reads so that the full-length expressed 

transcripts can be accurately reconstructed is a major computational challenge.  

Existing transcript assembly strategies can be organized into two categories. First 

category is the de novo transcript assembly which is the direct assembly of sequenced reads into 

transcripts without mapping to a reference genome. Several software packages have been shown 

to generate contig sets reconstructing most of the expressed transcripts correctly. 

TransABySS[23], Trinity[24], and Oases[25] are the three of most widely used de novo 

assemblers. De novo methods are generally used for non-model species where a complete 

reference genome is not available and for cancer samples where reference genome is 

significantly diverged.  

The second category of transcript assembly methods is the reference-based methods, 

which require aligning the short reads to a reference genome. Reference-based methods 

generally start with using the alignments generated by one of the RNA-seq aligners (TopHat2 

[26], STAR [27], SpliceMap [28]) to create a splice graph for each locus, and then reconstruct 

the transcripts by decomposing the graph. Cufflinks [29], Scripture [30], IsoLasso [31], CIDANE 

[32] are some of the widely used reference-based transcript assemblers. Reference- based 

methods generally have better accuracy when compared to de novo assemblers when a high-

quality reference genome is available. These transcript assemblers get less accurate as the 

transcriptome under study is getting more complex. Their accuracy is low when multiple splice 

forms, sequencing and alignment errors are present. 

1.2.3 PacBio RNA sequencing as an alternative to assembly 

As explained in the previous section, development of the next-generation sequencing 

technology has accelerated the study of alternative splicing events. It provided new opportunities 
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to investigate the complexity of the transcriptomes in mammals. However, because of the limited 

length of RNA-seq sequences from Illumina, it is still difficult to reliably detect the alternative 

splicing events using only short reads. It is especially challenging to detect intron retention and 

alternative polyadenylation events. The retained introns that are detected by short reads cannot 

be reliably distinguished from the contamination of DNA [1, 33, 34]. In the case of alternative 

polyadenylation, it is difficult to differentiate real polyadenylation sites from internal priming 

events [35-40]. 

Another limitation of short reads arises for the case of detecting the correct combination 

of distant alternative splicing events on a transcript. Although, some earlier studies reported 

some cases of correlated inclusive or mutually exclusive splicing events [41-43], a more recent 

study claims that combination of alternative splicing events is largely independent along the 

transcript [44]. Thus, it remains challenging to investigate the combination of distant alternative 

splicing events only using short reads. The distance between two alternative splicing events is 

generally larger than the insert size of the fragments that short reads are produced from. RNA-

seq with short reads could only be used to investigate alternative splicing events that are nearby, 

within the insert size interval. In short, some novel alternative splicing events such as intron 

retention and alternative polyadenylation events could not be reliably detected by only using 

short reads. Moreover, it is difficult to position distant alternative splicing events along the 

transcript due to limited insert size of Illumina libraries. Considering the fact that these novel 

alternative splicing events as well as the novel combinations of these events on a transcript may 

lead to generation of thousands of novel isoforms, one can argue that transcript assembly studies 

using only short reads from Illumina RNA-seq will miss a considerable number of transcripts 

present in the sample.  



7 

 

Pacific Biosciences (PacBio) has introduced the sequencing technique that is based on 

single-molecule sequencing chemistry with real-time detection. It allows the sequencing of long 

sections of genomic DNAs or transcripts without fragmentation or PCR amplification. The 

sequencing length of the PacBio platform can go up to 10 kb, which is enough to cover size 

distribution of most transcripts in eukaryotes. Thus, PacBio’s full-length or nearly full-length 

transcripts eliminate the need of assembly for the downstream analysis. PacBio’s long RNA 

sequences can reliably differentiate intron retention and alternative polyadenylation events, as 

well as it can reliably position the distant alternative splicing events on the transcript.  

A drawback of the PacBio platform is its high sequence error rate. However, these errors 

show no context-specific bias, thus randomly distributed across the reads. Recently improved 

read-length and base-calling algorithms of the PacBio’s software platform and the use of circular 

molecules have mitigated the high error rate problem. When read length exceeds the length of 

the cDNA template, each base pair is covered on both strands multiple times and these low-

quality base calls are combined to derive high-quality reads.  

In the recent years, PacBio long-read transcriptome sequencing platform has been 

successfully applied to human and other species for the purpose of detecting novel alternative 

splicing events and novel transcripts that are otherwise difficult to distinguish with short reads. 

Many novel alternative splicing events and novel transcripts have been detected in various 

organisms including but not limited to circovirus [45], sugarcane [46], barley [47], chicken [48] 

and rabbit [49]. Zhang et al. used long read RNA sequencing to study isoform evolution in 

primates. They claim that they substantially expanded the repertoire of alternative RNA 

processing events in primates, and found that intron retention and alternative polyadenylation are 

more prevalent in primates than previously estimated [44]. O’Grady et al. reported a new 
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workflow where they integrated three sequencing technologies to overcome limitations to 

transcript structure resolution. Their approach integrates PacBio long read sequencing with 

deepCAGE data to identify and validate transcript 5′ ends and Illumina short-read RNA-Seq data 

to identify and validate splice junctions and 3′ ends [50]. 

1.2.4 Isoform function prediction paradigm 

Determining the functions of proteins is fundamental for understanding the molecular 

basis of diverse genetic diseases and is one of the central goals of genetics [51-57]. Traditionally, 

functional annotation studies have been centered on genes. Knock-out or knock-down 

experiments are generally performed for functional evaluation, and the resulting functional 

associations are resolved at the gene level and accumulated in databases such as Gene Ontology 

(GO) [58] and KEGG pathways [59]. Moreover, functional genomic data are usually resolved at 

the gene level. For example, the expression levels from a microarray study are generally assigned 

to genes, and most often gene-gene interactions are recorded in physical interaction datasets. 

With the exponential growth of such functional genomic data during the past decades, many 

computational studies have emerged for predicting gene functions [60-64].  These studies 

utilized many different machine learning methods including but not limited to Bayesian network-

based methods [65], kernel-based classifiers [61], and decision trees [66].  

A major limitation of the traditional gene function prediction paradigm is that it considers 

a gene as a single entity without differentiating the functional diversity of alternatively spliced 

isoforms. However, many studies support the fact that isoforms that are produced by alternative 

splicing may carry out different or sometimes opposing biological functions. For example, 

alternative splicing of the B cell lymphoma-x gene (Bcl-x) produces two variants, anti-apoptotic 

Bcl-xL and pro-apoptotic Bcl-xS [67]. Bcl-xS is missing two Bcl-2 family motifs, BH1 and 
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BH2, which may account for functional differences. Another example of such case is the 

carboxypeptidase E (CPE) gene in the Wnt signal transduction pathway [68]. This pathway has a 

key role in many diseases including cancers and particularly colorectal cancer. It has been shown 

that the alternative splice variant form of CPE activates the Wnt signal, but the full-length 

canonical CPE is an inhibitor of Wnt/B-catenin signaling [68]. Moreover, abnormal splicing 

events can lead to disease by creating isoforms with non-functional structures or by changing 

isoform expression levels [18, 69-71]. P53β is an isoform of the human tumor protein p53 

(TP53) gene, it can increase p53 target gene expression and it is apoptotic, whereas the isoform 

Δ133p53 inhibits p53-mediated apoptosis [72]. These specific examples represent only a small 

portion of the alternatively spliced isoforms with different functions.  

The computational approaches to gene function prediction problem are typically starting 

point for experimental validation of functions. However, experimentally validating functions for 

isoforms is difficult for several reasons. Isoform-specific antibodies are generally not available to 

be used in experiments like Western blot. Moreover, isoform-specific oligonucleotides are 

difficult to design because many isoforms of the same gene differ only by a short sequence 

fragment. This makes it difficult to perform isoform-specific qPCR and RNA interference 

experiments. Although there are several small scale experimental functional studies focusing on 

individual isoforms [67, 73, 74], computational prediction is often the only option for genome-

wide scale functional studies for isoforms because of the experimental limitations. Our study that 

is explained in Chapter 3 represents the first effort to predict and differentiate functions for 

isoforms through large-scale genomic data integration. Later, a similar method was used to 

predict isoform functions in humans by integrating RNA-seq data into co-expression networks 

and propagating isoform-level labels based on the same multiple instance learning concept [75]. 
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They assess the accuracy of their model with cross validation of single-isoforms genes which can 

introduce bias in the performance estimate, because multi-isoform genes were not included. They 

also gave five isoforms of TP53 as an example, for which the known apoptosis regulation 

function as well as the regulation direction were predicted correctly [75]. More recently, Luo et 

al. proposed a novel approach to differentiate functions of protein coding isoforms by integrating 

sparse simplex projection, which is a nonconvex sparsity-inducing regularizer, with the multiple 

instance learning framework [76].  

1.3 Dissertation overview 

Alternative splicing is a key mechanism for increasing the complexity of transcriptome 

and proteome in eukaryotic cells. A large portion of multi-exon genes in humans undergo 

alternative splicing, and this can have significant functional consequences. The study of 

alternative splicing events has been accelerated by the next-generation sequencing technology. 

However, reconstruction of transcripts from short-read RNA sequencing is not sufficiently 

accurate [9, 10]. Moreover, relatively few of the protein products of splice isoforms have been 

characterized functionally. The goal of this dissertation is to address abovementioned issues for 

identification and functional annotation of alternatively spliced isoforms.  

In Chapter 2, we describe our study where the overall transcriptome of glomerular and 

tubulointerstitial compartments of a kidney is studied using both long reads from PacBio 

platform and short reads from Illumina platform.  We used short reads to validate full-length 

transcripts found by long PacBio reads, and generated two high quality sets of transcript 

isoforms that are expressed in glomerular and tubulointerstitial compartments. Then, we 

compared the confirmed transcript isoforms to the set of known transcript isoforms in 

GENCODE and provided the final list of expressed transcript isoforms along with their 
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annotation status to be used by researchers in downstream kidney transcriptome studies. 

Integrating data from two different sequencing technologies allowed us to identify and validate 

nearly 14k known transcripts in tubulointerstitial and glomerular compartments. In addition to 

that, we identified and validated nearly 12k and 8k multi-exon potential novel transcripts from 

each compartment respectively. 

In Chapter 3, we present our generic framework that interrogates public RNA-seq data at 

the transcript level to differentiate functions for alternatively spliced isoforms. For a specific 

function, our algorithm identifies the ‘responsible’ isoform(s) of a gene and generates classifying 

models at the isoform level instead of at the gene level. Through cross-validation, we 

demonstrated that our algorithm is effective in assigning functions to genes, especially the ones 

with multiple isoforms, and robust to gene expression levels and removal of homologous gene 

pairs. We identified genes in the mouse whose isoforms are predicted to have distinct 

functionalities and experimentally validated the ‘responsible’ isoforms using data from 

mammary tissue. With protein structure modeling and experimental evidence, we further 

validated the predicted isoform functional differences for the genes Cdkn2a and Anxa6. Our 

generic framework is the first to predict and differentiate functions for alternatively spliced 

isoforms, instead of genes, using genomic data. It is extendable to any base machine learner and 

other species with alternatively spliced isoforms, and shifts the current gene-centered function 

prediction to isoform-level predictions. 

In Chapter 4, we describe the function prediction study for human protein coding 

isoforms. We used a multiple instance learning based approach for predicting the function of 

protein coding splice variants. We used transcript-level expression values and gene-level 

functional associations from the Gene Ontology database. A support vector machine (SVM)-
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based 5-fold cross-validation was applied for computational evaluation. Comparatively, genes 

with multiple protein coding isoforms performed better than single protein coding isoform genes, 

and performance also improved when more examples were available to train the models. We 

demonstrated our predictions using literature evidence of ADAM15, LMNA/C, and DMXL2 

genes.  
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 CHAPTER 2
 

A Catalogue of Alternatively Spliced Isoforms in Kidney
*
 

 

2.1 Abstract 

Background: Whole transcriptome studies are essential to understand the complexity of 

genetic regulation. However, short-read sequencing platforms cannot reliably differentiate 

between transcript isoforms. The Pacific Biosciences (PacBio) RS II platform with Iso-Seq 

protocol is capable of reading longer stretches of sequences, thus can sequence full-length 

transcripts and reliably distinguish between transcript isoforms of the same gene. 

Methods: In this study, tumor nephrectomy samples performed at Michigan Medicine 

were sequenced on PacBio RSII by Iso-Seq protocol using SMRT technology. Full length 

transcripts are identified from glomerular and tubulointerstitial compartments separately. These 

transcripts are then validated using short reads from Illumina RNA-seq data from matching 

samples and samples from a different cohort. Then, validated transcripts are compared against 

the latest GENCODE transcript list and novel transcripts are identified. 

Results: Through validation we identified 13536 and 13993 annotated transcripts, 15615 

and 17268 potentially novel transcripts in glomerular and tubulointerstitial compartments 

respectively, among them novel transcripts belonging to several kidney related genes. As an 

example, we presented seven novel transcripts for NPHS2 gene. 

                                                 
* Chapter 2 is submitted for publication as Ridvan Eksi, Rajasree Menon, Bradley Godfrey, Christopher L. O’Connor, Markus 

Bitzer ,Matthias Kretzler, Yuanfang Guan. (2017) “A Catalogue of Alternatively Spliced Isoforms for Glomerular and 

Tubulointerstitial Compartments in Kidney Through Integrating of Long-reads and Short-reads” (In review)  
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Conclusion: PacBio Iso-seq sequencing with its advantage of full-length transcript reads 

can expand the repertoire of the expressed transcripts in the kidney. 

2.2 Introduction 

Alternative splicing (AS) process which happens during transformation of a pre-mRNA 

transcript to a mature transcript greatly increases the information content of genomes by 

producing multiple transcripts from a single gene. Previous studies on ‘splicing code’ have found 

that cis- and trans-acting factors have a role in regulating the AS process as well as the 

secondary structure of the pre-mRNA transcript. These factors together form the “splicing code” 

and determine the cell type-specific splicing [1]. It is estimated that 95% of multi-exonic human 

genes undergo AS, producing >100,000 distinct transcripts from ~20,000 protein-coding genes 

[2]. In addition to creating multiple forms of mRNA from a single gene, AS can influence gene 

expression by altering the mRNA stability and translation through nonsense-mediated decay and 

miRNA regulation [3].  

High throughput short-read RNA sequencing has been a powerful tool for the study of 

gene expression levels and individual splice junctions [4, 5]. However, several studies have 

shown that reconstruction and quantification of transcript isoforms from short-read RNA 

sequencing is not sufficiently accurate [6, 7]. Recent progress in single-molecule long-read 

sequencing has provided powerful new tools to researchers to help solve this problem. Pacific 

Biosciences (‘PacBio’, http://www.pacificbiosciences.com/), has introduced the sequencing 

technique that is based on single-molecule sequencing chemistry with real-time detection 

(SMRT). It allows the sequencing of long sections of genomic DNAs or transcripts without 

fragmentation or PCR amplification. The sequencing length of the PacBio RS II platform can go 

up to 10 kb, which should be enough to cover size distribution of most transcripts in eukaryotes. 

http://www.pacificbiosciences.com/
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Thus, PacBio’s full-length or nearly full-length transcripts eliminate the need of assembly for the 

downstream analysis. A limitation of the PacBio platform is its high sequence error rate. 

However, these errors show no context-specific bias, thus randomly distributed across the reads. 

Recently improved read-length and base-calling algorithms of the PacBio’s SMRT analysis 

platform and the use of circular molecules have mitigated the high error rate problem. When read 

length exceeds the length of the cDNA template, each base pair is covered on both strands 

multiple times and these low-quality base calls are aggregated to derive high-quality, single-

molecule Reads of Inserts (ROIs).  

PacBio long-read transcriptome sequencing platform (Iso-Seq) has been successfully 

applied to human and other species, and it is shown that use of Iso-seq has a significant 

advantage over short-read RNA-Seq methods for identifying novel isoforms, detecting AS events 

and gene fusion events [8-11]. However, we did not come across a study where kidney 

transcriptome is exclusively studied with the Iso-Seq platform. Majority of kidney transcriptome 

studies use the generic transcriptome databases such as Ensembl, GENCODE or NCBI which are 

incomplete and may miss some of the important kidney specific transcripts. Moreover, when the 

complete set of annotated transcripts are used; some reads from expressed annotated transcripts 

may be assigned to very similar non-expressed annotated transcripts, resulting in miscalculated 

FPKM values, and less power in differential expression analysis. It is reported that primary non-

inflammatory glomerular diseases that include minimal change disease, focal and segmental 

glomerulosclerosis and membranous nephropathy are rare diseases that cause serious morbidity 

and high mortality. They account for approximately 15% of prevalent ESRD cases (2008) at an 

annual cost in the USA of more than $3 billion [12, 13]. A major obstacle to a successful 

therapeutic intervention is our limited knowledge of disease mechanisms. Especially, the role of 
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transcript isoforms, including splice and length variants is not well known and not well studied. 

Hence, there is a need for a complete and reliable database of transcript isoforms that are 

robustly expressed in kidney. 

In this work, the overall transcriptome of glomerular and tubulointerstitial compartments 

from a kidney is studied using both long reads from PacBio Iso-Seq platform and RNA-seq short 

reads from Illumina platform.  We used short reads from Illumina to validate full-length 

transcripts found by PacBio, and generated two high quality sets of transcript isoforms that are 

expressed in glomerular and tubulointerstitial compartments. Then, we compared the confirmed 

transcript isoforms to the known set of known transcript isoforms in GENCODE and provided 

the final list of expressed transcript isoforms along with their annotation status to be used by 

researchers in downstream kidney transcriptome studies. 

 

2.3 Methods 

2.3.1 RNA Extraction 

Human kidney cortex tissue was obtained from a nephrectomy.  Tissue was immediately 

placed in RNALater at 4°C for 12-24 hours and stored at -20°C thereafter.  Microdissection of 

glomerular and tubulointerstitial compartments were performed on 5 patient nephrectomy 

samples as previously described [14, 15]. For PacBio library, RNA was pooled in equal 

proportions for a total of 500nG for each compartment and processed for NGS library 

preparation.  
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2.3.2 RNA Library Preparation /Sequencing 

For Illumina RNA-seq runs, RNA was assessed for quality using the TapeStation 

(Agilent, Santa Clara, CA) using manufacturer's recommended protocols. Samples with RINs 

(RNA Integrity Numbers) of 8 or greater were prepared using the Illumina TruSeq mRNA 

Sample Prep v2 kit (Catalog #s RS-122-2001, RS-122-2002) (Illumina, San Diego, CA) using 

manufacturer's recommended protocols. Where 0.1-3ug of total RNA was converted to mRNA 

using a poly(A) purification. The mRNA is then fragmented and copied into first strand cDNA 

using reverse transcriptase and random primers. The 3 prime ends of the cDNA are then 

adenylated and adapters are ligated.  One of the adapters that are ligated has a 6 nucleotide 

barcode that will be unique for each sample which allowed us to sequence more than one sample 

in each lane of a HiSeq flow cell (Illumina). The products are purified and enriched by PCR to 

create the final cDNA library. Final libraries were checked for quality and quantity by 

TapeStation (Agilent) and qPCR using Kapa’s library quantification kit for Illumina Sequencing 

platforms (catalog # KK4835) (Kapa Biosystems, Wilmington MA) using manufacturer's 

recommended protocols.  They were clustered on the cBot (Illumina) and sequenced 4 samples 

per lane on a 50 cycle paired end for tumor nephrectomy samples, and 1 sample per lane on a 

100 cycle paired end run for ERCB samples on a HiSeq 2000 (Illumina) in High Output mode 

using version 3 reagents according to manufacturer's recommended protocols. 

PacBio sequencing library preparation was done according to the manufacturer’s 

recommendation for Isoform Sequencing using the Clontech SMARTer PCR cDNA synthesis kit 

and BluePippin Size-Selection System.  cDNA SMRTbell templates were fractionated into 1 kb 

– 2 kb, 2 kb – 3 kb, 3 kb – 6 kb, and 5 kb – 10 kb. Sixteen SMRT cells are used in total: two for 

each size fractions of both glomerular and tubulointerstitial compartments. Sequencing was 
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performed on a Pacific Biosciences PacBio RSII by University of Michigan DNA Sequencing 

Core. 

2.3.3 Sequence Generation and Alignments 

Pacific Bioscience SMRT raw reads were initially processed using the Pacific 

Biosciences' SMRT analysis software version 2.3.0. The polymerase reads were partitioned into 

sub reads. Read of Inserts (ROI) were generated using the default number of polymerase full 

passes. The Iso-Seq classify tool was then used to separate the ROIs into full length non-chimeric 

and non-full length reads. Full-length reads were defined as containing 5’ and 3’ cDNA primers 

and poly(A) tails. Then, the Iso-Seq cluster tool was used to cluster all the full-length reads 

derived from the same transcript to get the consensus full-length transcripts (CFLs). CFLs that 

are unpolished by Quiver are used in the rest of the analysis, because it has been reported that 

Quiver polishing sometimes obscures the introns [10]. 

SMRT CFLs were aligned and mapped with GMAP [16] release 2015-07-23 to the 

human genome(hg19 assembly). Reads mapping to a single location were kept (argument –n 1).  

Illumina RNA-Seq reads were aligned and mapped using STAR [17] version 2.5 to the 

human genome (hg19 assembly). STAR was ran in 2-pass mode with suggested parameters 

under “ENCODE options” heading in the STAR manual.    

As next phase of the analysis, pipeline for identification of transcription start sites, splice 

junctions and transcription end sites was adapted from the TRIMD pipeline by O’Grady et al. 

[10]. Single-exon CFLs are excluded from the following validation steps, as most of them are 

potential intronic fragments resulting from pre-processed mRNAs. Single-exon CFLs are added 

back to analysis before collapse step. 

2.3.4 Identification of Transcription Start Sites (TSS) 
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CFL 5’ ends clusters were generated with CFL 5′ ends mapping within 8 bp of each 

other. Only CFL isoforms whose 5’ ends did not contain mismatches are used.  A single TSS is 

determined for each of the clusters by calculating weighted (based on number of SMRT reads for 

each start coordinate) averages of the start coordinates of CFLs within the cluster. These 

consensus transcription start sites are considered validated if there is an annotated transcription 

start site within 10bp vicinity [10]. Annotated transcription start sites are extracted from 

GENCODE comprehensive annotation set (version 24). 

2.3.5 Identification of Splice Junctions 

Splice junctions from Iso-Seq CFLs were identified using GMAP, and splice junctions 

for Illumina reads were identified with STAR. Splice junctions from Iso-Seq CFLs are required 

to have at least 1 full-length reads spanning it to be identified. A splice junction from an Iso-Seq 

CFL is marked as validated if there are at least 3 short reads spanning it or if the junction is 

already annotated. Annotated junctions are extracted from GENCODE comprehensive 

annotation set (version 24). 

2.3.6 Identification of Transcription End Sites (TES) 

Iso-Seq CFL 3′ ends that align within 8 bp of each other on the genome are considered a 

single candidate transcription end site [10]. The CFL consensus transcription end sites were 

determined by calculating weighted averages of the end coordinates. Weights are determined by 

the number of PacBio consensus sequence reads ending at each coordinate. Only putative PacBio 

3’ end sites that are supported by at least three SMRT reads are kept. 

Illumina reads that has poly(A) tails were extracted from SAM alignment files. These 

putative reads with poly(A) tails are the reads that have FLAG code as being first-of-pair, and 

either end with a run of at least five As, at least two of which are mismatched on plus strand or 
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that start with a run of at least five Ts, at least two of which are mismatched on minus strand. 

The alignment position base next to mismatch location is considered a candidate transcription 

end site. TES that are within 8 bp of each other considered single candidate TES. The consensus 

TES coordinate was determined using weighted average of putative 3′ ends based on number of 

short reads supporting each TES coordinate. 

Transcription end sites are marked as validated either if there is an Illumina TES on the 

same strand within four bases upstream or ten bases downstream or if there is an annotated TES 

in the 10bp vicinity [10]. 

2.3.7 CFL validation and comparison to known annotations 

Overall flow of our study is shown in Figure 2-1. Transcription start sites, each splice 

junction and transcription end sites of each glomerular CFLs are compared to coordinates 

extracted from short-reads from ERCB glomerular samples and annotated transcripts. For 

tubulointerstitial compartment, transcript features are compared to short-read RNA-seq data from 

matching tumor nephrectomy samples and ERCB tubulointerstitial samples separately. Iso-Seq 

CFL validation was done through validating every splice junction present in the CFL. An Iso-

Seq CFL is considered validated if every splice junction is validated based on the criteria 

explained above. Two different short-read RNA-seq dataset for tubulointerstitial compartment is 

combined for this step. Single-exon CFLs are added to the set of validated multi-exon CFLs, 

pending further investigation based on their relative location to a known transcript. The set of 

validated multi-exon CFLs and single-exon CFLs are collapsed with the 

collapse_isoforms_by_sam.py script in the tofu package provided by PacBio which is 

developmental version of the official Iso-Seq protocol. Then, collapsed isoforms are compared to 
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GENCODE comprehensive set of annotations (version 24) with cuffcompare tool from Tuxedo 

suite of tools. [18-21]  

2.4 Results 

2.4.1 Long-read Sequencing of Kidney Transcriptome 

In this study, we examined human kidney cortex tissue obtained from patients 

undergoing nephrectomy to apply this method which requires larger amounts of RNA as would 

be available from kidney biopsy tissue samples. Library preparation and long-read sequencing 

were done using the PacBio’s Iso-seq protocol, and initial data analyses are done using PacBio’s 

SMRT Portal. Each of the glomerular and tubulointerstitial compartments had eight sequencing 

cells, generating 132240 and 125047 SMRT consensus “full-length” isoforms (CFLs) 

respectively. These CFLs are supported by 206415 and 232845 SMRT Reads of Inserts (ROIs) 

that were determined to be full length based on presence of 5’ and 3’ cDNA primer sequences, 

and poly(A) tail at 3’ end. Glomerular CFLs ranged in length from 300 to 27890 bases, with a 

mean of 2446 bases and a median of 2319 bases. Tubulointerstitial CFLs ranged in length from 

300 to 22765 bases, with a mean of 2862 bases and a median of 2613 bases. Size fractionation of 

library before sequencing reduced the bias toward shorter transcripts (Supplementary Figure 

2-1).  These CFLs are mapped to human genome (hg19 assembly) using GMAP [16]. 

Approximately 98% of the CFLs from both compartments are mapped uniquely to the genome.  

2.4.2 Transcriptome Resolution through Integration of Pacific Biosciences SMRT Reads 

and Illumina Short Reads 

Our goal is to identify glomerular and tubulointerstitial transcripts that are supported by 

reads from two different sequencing technologies. Even though PacBio platform produces long 
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enough reads to span the full length of most human transcripts, they have their limitations in 

attributing the final transcript structures. Most notable anomaly present in PacBio reads is the 

prevalence of CFLs with 5’ ends that map further downstream of annotated start sites. These 

varying 5’ ends locations suggest that these CFLs are likely to be truncated and do not represent 

full-length transcripts. This phenomenon was also observed for 3’ ends of the CFLs, with lower 

frequency (Figure 2-2). CFLs with truncated 3’ ends are less likely to be found, because full-

length read detection looks for poly(A) tail signal in addition to the presence of 3' end primers, 

which is usually more accurate. We also found some CFLs with splicing at non-canonical splice 

junctions, which appears to be result of deletions introduced during library preparation or 

sequencing. We have used short-reads from Illumina platform to eliminate CFLs with splice 

junctions that are due to technical artifacts. 

2.4.3 Transcription Start Site Validation in Kidney Transcriptome 

Using the criteria explained in the Methods sections, we identified 42,896 and 38,831 

putative transcription start sites from PacBio tubulointerstitial and glomerular multi-exon CFLs 

respectively. Since, TSS positions cannot be reliably inferred from Illumina short reads, our 

validation criteria relies only on annotated TSS. The fact that less than 10% of the putative TSS 

sites from PacBio CFLs are validated (Table 2-1) is due to very high proportion of PacBio CFLs 

with truncated 5’ ends. These truncations are likely stemming from strand invasion during cDNA 

synthesis, and truncated 5’ ends are more prevalent in longer transcripts, because reverse 

transcription process gets less efficient for longer transcripts. We showed this phenomenon on an 

example gene in Figure 2-2. As can be seen in section B of the Figure 2-2, gene AIF5 has 

multiple CFLs with varying start positions. During transcript collapsing by 

collapse_isoforms_by_sam.py script, the CFLs that are identical except their start positions are 
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merged together and start coordinate of CFL with longest 5’ end is taken as the true 5’ end for 

merged transcript. It should be noted that even the CFL with longest 5’end could still be 

truncated, and there is no way to distinguish a truncated CFL from a CFL with an alternative 

TSS using long or short reads. Thus, we decided not to eliminate any CFLs based on their TSS 

position, but readers should exercise caution with the transcript structures provided, as exact TSS 

position might be on the upstream of provided coordinates. 

2.4.4 Splice Junction Validation in Kidney Transcriptome 

Through mapping PacBio multi-exon CFLs to the genome, we identified 185,185 and 

171,742 splice junctions in tubulointerstitial CFLs and glomerular CFLs respectively. Each of 

these splice junctions has at least one full-length SMRT read spanning them. Validated set of 

splice junctions is the union of annotated junctions, and splice junctions that have at least three 

short reads spanning them from Illumina RNA-seq data. For tubulointerstitial, by using the 

shallower tumor nephrectomy Illumina RNA-seq data, we were able to validate around 64% of 

all PacBio tubulointerstitial splice junctions. Using the deeper ERCB RNAseq data allowed us to 

validate additional 5719 splice junction, all of which are novel. For glomerular, around 65% of 

PacBio junctions are validated (Table 2-1).  

2.4.5 Transcription End Site Verification in Kidney Transcriptome  

A total of 24,625 and 26,260 putative transcription end sites were identified in PacBio 

tubulointerstitial and glomerular multi-exon CFLs through the process explained in Methods 

section. Then, short reads containing poly(A) reads were extracted from Illumina RNA-seq data, 

and poly(A) site coordinates are extracted from those reads. Putative transcription end sites from 

PacBio are considered validated if they are in the vicinity of either an annotated transcription end 

site, or a poly(A) site extracted from short reads. Even though it is not as prevalent as 5’ ends, we 
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have a high variation in the transcript end sites extracted from PacBio CFLs (Figure 2-2), and 

this variation is not fully captured by short-reads as we have limited number of reads with 

poly(A) tails. It has been reported that translational efficiency is regulated by the length of the 3' 

untranslated region, and transcripts with varying 3’ UTR lengths might be regulated differently 

[22]. In the scope of this study, we decided to provide CFLs present in the sample with their 

original 3’ end locations to give readers a choice to process CFLs with different 3’ UTR lengths 

based on their study objective, and we did not filter out CFLs based on their TES. 

2.4.6 CFL Validation and Collapsing into Final Structures 

Since exact TSS and TES coordinates do not agree very well with annotated coordinates 

because of the reasons explained earlier, these transcript features were not used in whole CFL 

validation. Our validation criteria require the CFL to have all of its junctions validated either by 

short read support or by annotation. With this criteria 53,540 tubulointerstitial multi-exon CFLs, 

and 47,785 glomerular multi-exon CFLs are marked as validated. But, some of these CFLs are 

redundant, because they differ only by their truncated 5’ ends, and they need to be collapsed. 

Collapse script by PacBio honors 3' ends very tightly. This is because poly(A) tail is used as 3' 

signal, and no truncations expected on 3’ end. Hence, any two isoforms that differ on the 3' end 

by more than 100 bp (a defined threshold by PacBio) is considered a different isoform. The 

collapse script honors 5' ends much less. This is because PacBio’s regular cDNA protocol kit 

does not do cap trap and that results in 5’ end with varying lengths. If two isoforms differ only 

by their 5' ends, meaning one isoforms has 0, 1, or more 5' exons than the other but all remaining 

exons agree, then the shorter isoform is considered identical to the longer one, and it is collapsed 

to the longer isoforms. After collapsing, 45,778 and 58,378 isoforms are formed from 

tubulointerstitial and glomerular tissue.  
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2.4.7 Comparison of Validated Isoforms to Annotated Transcripts 

List of collapsed CFLs are compared to an annotated set of transcripts from GENCODE 

version 24. Comparison is done with cuffcompare tool in Cufflinks which classifies each input 

transcript into twelve distinct classes based on their overlap with an annotated transcript. The 

seven most prevalent classes and the numbers of collapsed transcripts from tubulointerstitial and 

glomerular compartments belonging to each of these seven classes are shown in Table 2-2. 

“Complete match of intron chain with an annotated transcript”, and “Contained within a 

reference transcript” classes together comprise the set of expressed annotated transcripts in the 

sample. The set of transcripts that belong to “A transfrag falling entirely within a reference 

intron” class was discarded. These are single exon transcripts which are most likely by-products 

of intron decay process [8]. Another single exon transcript class is “Single exon transfrag 

overlapping a reference exon and at least 10 bp of a reference intron” class, which was also 

discarded. These are possible pre-mRNA fragments that are pulled down due to inefficient 

poly(A) selection step. 

The class of “Potentially novel isoform” includes transcripts that share at least one 

junction with an annotated transcript, but have junctions that do not occur in any annotated 

transcript, or in the case that junctions occur in annotated transcript, they are present in a novel 

combination. Again, readers should be cautious about the exact location of TSS in these 

transcripts, as they might be truncated. 

The class of “Intergenic transcripts” includes transcripts that map to an intergenic 

location. Most of these intergenic transcripts are single exon transcripts, more likely regulatory 

non-coding mRNAs.  
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The two sets of validated and collapsed isoform sequences with their corresponding 

annotation class are provided in the Supplementary Files. 

2.4.8 Novel Isoforms of NPHS2 through New Combinations of Exon Skipping 

NPHS2 (podocin) is a protein coding gene located on chromosome 1. It encodes a protein 

that has a role in the regulation of glomerular permeability and is enriched in glomerular 

compartment. Single point mutations in this gene have been shown to cause steroid-resistant 

nephrotic syndrome [23]. This gene has 8 exons, and has two protein coding splice variants 

according to GENCODE database. NCBI’s RefSeq lists three other predicted protein coding 

splice variants. Our validated set of glomerular isoforms has 11 different splice variants for this 

gene (Figure 2-3). Two of these match exactly to the variants in GENCODE, and other two 

matches to the two of the predicted splice variants in RefSeq. Another four splice variants have 

the same first and last exon, but have a different combinations of exons making them novel. 

Remaining three novel splice variants have alternative end sites. Among the seven novel splice 

variants, there is one novel junction which is supported by multiple short reads.  

2.4.9 Novel Intergenic Transcripts 

Among the final set of isoforms, there are 4208 and 9501 intergenic transcripts from 

tubulointerstitial and glomerular compartments. Majority of these transcripts have single exon, 

and don’t have any junctions to be validated. There are 76 and 55 multi-exon intergenic 

transcripts in tubulointerstitial and glomerular. All of the junctions in these transcripts are 

supported by multiple short reads, as they passed the validation criteria. One of those multi-exon 

intergenic glomerular transcripts is shown in Figure 2-4. They are located on chromosome 12, 

and consist of four exons. Two novel transcripts differ by the length of their last two exons. To 

gain further insights into the functional nature of these transcripts, we assessed their coding 
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potential with CPAT (Coding Potential Assessment Tool) [24]. Even though there are short open 

reading frames present in the transcripts, both of the transcripts were predicted to be non-coding 

by CPAT. According to UCSC Genome Browser, there are evidences of transcription at this 

locus as it shows multiple Human ESTs and Human mRNAs from GenBank. 

2.4.10 Comparison of Expressed Set of Annotated Transcripts in Glomerular and 

Tubulointerstitial Compartments 

Glomerular and tubulointerstitial compartments each are expected to have distinct 

transcriptome profiles. In this section, we compared the set of expressed annotated transcript 

from each compartment. As shown in Table 2-2 B, 13,993 and 13,536 annotated transcripts are 

expressed in these compartments, for which 8198 are common transcripts (Figure 2-5 A). We 

performed KEGG pathway enrichment on the transcripts that are uniquely expressed in each 

compartment. Full list of enriched pathways is on Supplementary Table 2-1. Figure 2-5 B shows 

top 3 enriched pathway for each compartment. Glomerular-only expressed transcripts are 

enriched for Non-alcoholic fatty liver disease (NAFLD). Many of the genes in NAFLD pathway 

has been shown to play important roles in kidney. Su et al. stated the role of IL6 and IL6R in 

several renal diseases, such as IgA nephropathy, lupus nephritis, diabetic nephropathy, acute 

kidney injury, and chronic kidney disease [25].   Another pathway highly enriched in glomerular 

transcripts is the RAP1 signaling pathway. It has been suggested that small changes in RAP1 

signaling pathways critically affects podocytes [26]. 

2.5 Discussion 

Integrating data from two different sequencing technologies allowed us to identify and 

validate nearly 14k known transcripts in tubulointerstitial and glomerular compartments of a 

kidney. In addition to that, we identified and validated nearly 12k and 8k multi-exon potential 
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novel transcripts from each respectively. Using short reads for validation of splice junctions 

allowed us to eliminate PacBio transcripts with erroneous junctions. On the other hand, none of 

the sequencing technology is able to reliably and accurately locate TSSs for transcripts. PacBio 

tend to produce transcript with 5’ends truncated. Cartolano et al. proposed the implementation of 

the TeloPrime Full Length cDNA Amplification kit to the Pacific Biosciences Iso-Seq 

technology in order to enrich for genuine full-length transcripts in the cDNA libraries [27]. In 

another study, deepCAGE (Cap Analysis of Gene Expression) data is used as a mean to correct 

for exact 5’ end coordinate of transcripts with success [10]. In this study, we imputed the 

ambiguous start positions by assuming the 5′-most Iso-Seq finding as the true 5′ end which may 

still result in a shorter than actual transcript. 

The functions of these newly discovered novel alternatively spliced transcripts are 

unknown, but it is likely that alternative splicing creates variants with distinct functions. Protein 

coding variants with new exon skipping events can translate into proteins with a loss or gain of 

functional domains, which would result in a protein with a different function. The novel single-

exon intergenic transcripts which are likely non-coding may play a regulatory role. Future 

functional studies for these novel transcripts are crucial for assessing their functional importance. 
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2.6 Figures 

 

Figure 2-1 Overall flowchart of the study. 

Three features of every multi-exon Consensus Full-Length transcripts found in PacBio reads are 

validated through short reads from two different RNA-seq datasets. Then, whole CFL is 

validated by validating every junction in the CFL. Validated CFLs are collapsed and compared 

to GENCODE annotation. 
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Figure 2-2 Variation of transcription start and end positions of CFLs. 

(A) Thirteen multi-exon CFLs from AIF1 locus. (B) First exon in more detail. Vertical (green) 

lines show the location of annotated transcription start sites. Thirteen CFLs have a total of 13 

different TSS, only 6 out of 13 TSS are within 10 bp of an annotated TSS (C) Last exon in more 

detail. Vertical (red) line shows the only annotated TES. Thirteen CFLs have a total of 7 

different TES, only 4 out of 7 TES is within 10 bp annotated TES. 
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Figure 2-3 Gene model for NPHS2 

Panel A shows the transcript structures of two annotated transcripts of NPHS2 in GENCODE. 

Second shorter annotated transcript is missing exon number 5. Panel B shows the transcripts 

found in PacBio glomerular sample and validated by our method. First two isoforms (dark green) 

match exactly to the annotated transcripts in GENCODE. Next two isoforms (light green) match 

to two predicted transcript variants in NCBI’s RefSeq annotation (XM_017002298.1 and 

XM_005245483.3) Remaining seven isoforms (gray) isoforms are potential novel transcript 

variants of NPHS2. Numbers of uniquely mapped reads to each of the novel junctions are noted 

above junctions. 
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Figure 2-4 Two novel intergenic transcripts located on chromosome 12 that are expressed in 

glomerular compartment. 

(A) Four CFLs that mapped to the locus. (B) Final transcript models that are collapsed from 

validated CFLs. First CFL is not validated because the rightmost junction doesn’t have short-

read support. The remaining three CFLs are validated and collapsed into two transcripts. They 

differ in their third and fourth exons. Number of short reads uniquely mapped to each unique 

junction is shown below the junction 

 

Figure 2-5 (A) Venn diagram of expressed annotated transcripts from glomerular and 

tubulointerstitial compartments. (B) Enriched KEGG pathways and corresponding p-values for 

the set of transcripts expressed only in glomerular and tubulointerstitial compartments. 
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2.7 Tables 

Table 2-1 Validation of transcript features. 

This table gives number of validated features for each of the transcript feature examined. First column is for validation of features of 

PacBio Tubulo multi-exon CFLs by short reads from Illumina TN data. Second column is for validation of features of PacBio Tubulo 

multi-exon CFLs by Illumina ERCB tubulo data. Third column is for validation of features of PacBio Glomerular multi-exon CFLs by 

Illumina ERCB glomerular data. Last column gives number of multi-exon CFLs for which every splice junction is validated. For 

Tubulo, two validated sets from each of Illumina datasets are merged. 

* Transcript start sites are validated by annotation only. Short reads are used for splice junction and transcription end site validation. 

 



42 

 

Table 2-2 Comparison of validated-collapsed isoforms to GENCODE annotation. 

cuffcompare tool is used to compare the set of validated isoforms to the set of annotated 

transcripts from GENCODE. cuffcompare classifies each match into 12 classes. In (A), we listed 

seven classes with the most number of isoforms. The first two rows together comprise the list of 

all annotated transcripts. The third and fourth rows combined comprise the list of potentially 

novel isoforms. These totals are shown in (B). 
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2.8 Supplementary Files 

 

Supplementary Figure 2-1 Consensus full-length transcripts length distribution 

 



44 

 

Supplementary Table 2-1 Full list of enriched pathways for glomerular-only and 

tubularinterstitial-only expressed genes 

 

Validated Transcript in Glomerular (in fasta format) 

Validated Transcript in Tubulointerstitial (in fasta format) 

 

 

 

 

 

 

https://www.dropbox.com/s/yiypblhtnatvu8n/Glom_validated_transcripts.fa?dl=0
https://www.dropbox.com/s/lgmymbrsl4f22q5/Tubulo_validated_transcripts.fa?dl=0
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 CHAPTER 3
 

Systematically differentiating functions for alternatively spliced isoforms in mouse through 

integrating RNA-seq data
†
 

 

3.1 Abstract 

Integrating large-scale functional genomic data has significantly accelerated our 

understanding of gene functions. However, no algorithm has been developed to differentiate 

functions for isoforms of the same gene using high-throughput genomic data. This is because 

standard supervised learning requires ‘ground-truth’ functional annotations, which are lacking at 

the isoform level. To address this challenge, we developed a generic framework that interrogates 

public RNA-seq data at the transcript level to differentiate functions for alternatively spliced 

isoforms. For a specific function, our algorithm identifies the ‘responsible’ isoform(s) of a gene, 

the isoform that carries out the function that the gene is annotated to, and generates classifying 

models at the isoform level instead of at the gene level. Through cross-validation, we 

demonstrated that our algorithm is effective in assigning functions to genes, especially the ones 

with multiple isoforms, and robust to gene expression levels and removal of homologous gene 

pairs. We identified genes in the mouse whose isoforms are predicted to have disparate 

functionalities and experimentally validated the ‘responsible’ isoforms using data from 

mammary tissue. With protein structure modeling and experimental evidence, we further 

                                                 
† Chapter 3 is published as Ridvan Eksi, Hong-Dong Li, Rajasree Menon, Yuchen Wen, Gilbert S. Omenn, Matthias Kretzler, 

and Yuanfang Guan. "Systematically differentiating functions for alternatively spliced isoforms through integrating RNA-seq 

data." PLoS Computational Biology 9, no. 11 (2013): e1003314. 



49 

 

validated the predicted isoform functional differences for the genes Cdkn2a and Anxa6. Our 

generic framework is the first to predict and differentiate functions for alternatively spliced 

isoforms, instead of genes, using genomic data. It is extendable to any base machine learner and 

other species with alternatively spliced isoforms, and shifts the current gene-centered function 

prediction to isoform-level predictions. 

3.2 Author Summary 

In mammalian genomes, a single gene can be alternatively spliced into multiple isoforms 

which greatly increase the functional diversity of the genome. In the human, more than 95% of 

multi-exon genes undergo alternative splicing. It is hard to computationally differentiate the 

functions for the splice isoforms of the same gene, because they are almost always annotated 

with the same functions and share similar sequences. In this paper, we developed a generic 

framework to identify the ‘responsible’ isoform(s) for each function that the gene carries out, and 

therefore predict functional assignment on the isoform level instead of on the gene level. Within 

this generic framework, we implemented and evaluated several related algorithms for isoform 

function prediction. We tested these algorithms through both computational evaluation and 

experimental validation of the predicted ‘responsible’ isoform(s) and the predicted disparate 

functions of the isoforms of Cdkn2a and of Anxa6. Our algorithm represents the first effort to 

predict and differentiate isoforms through large-scale genomic data integration. 

3.3 Introduction 

Determining the functions of proteins is a central goal of genetics, fundamental for 

understanding the molecular basis of diverse genetic diseases [1-7]. During the past few decades, 

significant efforts have been made to integrate and develop diverse machine learning algorithms 

for gene function prediction through large-scale genomic data integration [8-12], such as Support 
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Vector Machines, Bayesian classifications and Artificial Neural Networks. Despite differences in 

implementation and performance of the specific algorithms, the essence of these methods for 

gene function prediction is ‘supervised learning’, in which a model of features derived from 

functional genomic data (such as microarray, protein-protein physical interactions, gene-gene 

genetic interactions) is constructed to delineate a defined set of ‘positives’ (genes annotated to 

the function under consideration) and ‘negatives’ (genes without the function). These algorithms 

have significantly accelerated our understanding of gene functions. 

A major intellectual limitation of the current function prediction paradigm is that it 

considers a gene as a single entity without differentiating the functional diversity of alternatively 

spliced isoforms. Alternative splicing is a major source of protein molecular function diversity 

and regulatory diversity. In humans, 95% of multi-exon genes undergo alternative splicing, 

generating proteins of potential different functions [13-21]. For example, TRPM3, which 

encodes a type of cation-selective channels in human, can be alternatively spliced into two 

variants targeting different ions [22-24]. Other splice variants have been reported with distinctly 

opposite functions. For example, the splice variants of BCLX are anti-apoptotic and pro-

apoptotic, respectively [25]. Similarly, CASP3-L variant is pro-apoptotic while CASP3-S is anti-

apoptotic [26]. Differences in function are sometimes reflected on the regulatory level: two 

alternatively spliced transcripts of OSR2 have opposite transcriptional activities, activation and 

repression [26]. Attempts to capture such differential functions are currently limited to low-

throughput experimental approaches and protein domain analysis. However, based on the protein 

domain annotation we downloaded in Dec, 2012, only 34% of the isoform pairs (of the same 

gene) in the NCBI database have different domains. The majority of the isoforms of the same 

gene differ in subtle ways which are not reflected by protein domains. We expect that 
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computational methods developed to differentiate isoform functions through integrating 

functional genomic data will assist a deeper, high-resolution understanding of gene functions. 

The key challenge facing isoform prediction is the lack of a systematic catalog of 

isoform-level function annotations and large-scale genomic data resolved at the isoform level. 

The latter is resolved by the unprecedented amount of transcriptomic data generated by next-

generation sequencing [27-29]. RNA-seq data available in public databases [30] now surpass the 

number of microarray data that have been previously used to infer functions at gene levels [31]. 

Algorithms have been developed to assign isoform-level expression values [27, 28, 32-38]. They 

provide a resource for isoform-level features that can be used as input data to infer isoform 

functions. 

However, the fundamental challenge remains: a genome-wide set of ‘ground-truth’ 

annotations of functions at the isoform level is still lacking. Isoform functions have been 

computationally inferred through domains, binding regions and individual binding sites [39-45]. 

In widely used databases such as Gene Ontology [46, 47] and KEGG [48], biological functions 

are defined at the gene level. Under these circumstances, to predict whether a gene is related to a 

specific function, supervised learning algorithms will be deployed to derive a model from the 

genomic data we collect. For example, to predict ‘mitochondria biogenesis’-related genes, we 

need a ‘gold standard’ set of genes known to be related to mitochondria biogenesis, and find out 

how these genes differ from other genes in their expression patterns. Without an existing and 

comprehensive set of annotated isoforms, standard ‘supervised learning’ approaches are not 

applicable to predicting different functions for splice isoforms. 

We developed a generic framework that improves gene function prediction and provides 

information for isoform-level functions. Our framework intends to locate the ‘responsible’ set of 
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isoform(s) of annotated genes of a specific function, through iteratively correcting the 

composition of this set to maximize its ‘discriminativity’ against the negatives. For example, for 

mitochondria biogenesis, we have a set of genes G
+

1, G
+

2, …, G
+

n annotated to this function 

(positive genes). Each gene is considered as a bag of alternatively spliced isoforms. We then try 

to find out which isoform(s) of this positive set of genes can be selected to maximize the 

difference between them and the negative isoforms, i.e., the G
i
k
+
, where k is the gene index, 

and i is the isoform index. The isoforms in the G
i
k
+
 set are iteratively updated to maximize the 

similarity within them. The model derived from the G
i
k
+
 set (instead of Gk

+
) is then used to 

classify whether an isoform has the biological function, mitochondria biogenesis, in this 

example. From this perspective, our problem is a multiple instance learning task [49-52], in 

which each example considered positive with respect to certain property contains multiple 

discrete elements, of which at least one of them must be positive. 

We used an iterative algorithm to approximate the solution to the above optimization 

problem. We found that our algorithm can successfully capture the differential isoform functions 

as evidenced by prediction accuracy on multi-isoform genes as well as literature and 

experimental validation on isoforms that are drastically different in their assigned functions. 

Computationally predicting isoform functions or differentiating functions for isoforms of the 

same genes in a genome-wide manner using high-throughput genomic data has not been done 

prior to our work. This framework is also generic. It can be integrated into any basic machine 

learning algorithm such as logistic regression, random forests or deep learning, and can be 

readily extended to predict isoform functions in other organisms as well as other properties of 

isoforms such as phenotypes and interaction networks. Our prediction results are available to the 

user community online at http://guanlab.ccmb.med.umich.edu/isoPred/. 

http://guanlab.ccmb.med.umich.edu/isoPred/
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3.4 Results 

We first established the workflow that generates isoform-level function predictions. Then 

we validated our models with computational cross validation, focusing on performance 

comparison between multiple-isoform genes and single-isoform genes. The predicted 

‘functional’ isoform(s) are further validated using breast cell proteomic data. Finally, through 

protein structure modeling and experimental evidence, we validated our predictions 

for Cdkn2a and for Anxa6, whose isoforms were predicted to be responsible for different 

functions. 

3.4.1 The isoform function prediction framework 

We aim at predicting isoform functions while functional annotations have been based on 

genes. The model therefore needs to be learned at the isoform level rather than at the gene level 

(see Supplementary Figure 3-1 for a comparison between a traditional gene function learning 

problem and our isoform function prediction problem). Our core idea is to model the common 

patterns of a subset of isoforms across genes associated with a particular function, with the 

requirement that at least one of the isoforms of each positive gene must retain the common 

feature pattern. This is a multiple instance problem, the aim of which is to identify the hidden 

labels of the isoforms of the positively annotated genes and use these hidden labels to construct 

classification models to label additional isoforms. 

We used maximum margin-based classification as base-learner in this iterative 

process [53], due to the success of SVM in the protein function prediction domain [9]. Such a 

framework could be integrated into any other machine learner, such as deep learning or Bayesian 

classification. 

To elucidate our algorithm, we will use the following definitions throughout the paper: 
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 A ‘bag’ refers to a gene, which consists of multiple isoforms. 

 ‘Instances’ refer to individual isoforms. 

 A ‘positive’ bag refers to a gene related to the specific function under study. 

 ‘Witness(es)’ refer to the isoform(s) of a positive gene related to the specific function 

under study. A ‘positive’ bag has at least one witness; 

Our algorithm aims to identify a subset of isoforms of the positive genes that maximizes 

the difference between them and the negative isoforms. Identifying the best combination of 

isoforms from the positive genes is difficult. The ideal solution requires excessive computational 

time. We therefore approximated the solution with an iterative algorithm (Figure 3-1). For the 

training set, in the first iteration, we assign every isoform of a positive gene to be positive. We 

then establish a classifier, with which we can go back to classify the training set. This classifier 

will assign some isoforms of the positive gene to be positive (the ‘witnesses’), and some to be 

negative, but at least one isoform of a positive gene must be positive. This subset of ‘witnesses’ 

is iteratively updated to maximize the inter-class distance. Using this assignment, a new 

classifier is established, which could again be used to classify the training set. We iterate this 

process to update the ‘witnesses’. This procedure is repeated until convergence is achieved 

(Figure 3-1). 

Because of the properties and relationships between genes and isoforms, this Multiple 

Instance Learning (MIL) framework is suitable for our problem. MIL assumes that there are one 

or more positive instances in a positive bag, and, if we can identify these positive instances in 

positive bags, we can expect to have a better classifier by excluding remaining instances from the 

positive class. Biologically, if a gene is annotated to a function, one or more of its isoforms will 

be selected as witness(es) as the ones that are related to this function and other isoforms will be 
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marked as non-functional. By excluding these non-functional isoforms, the classifier is expected 

to be more accurate. 

3.4.2 Implementation and testing parameters 

To generate alternatively spliced transcript-level features, we collected transcriptomic 

data from public RNA-seq experiments (Dataset S1). These RNA-seq datasets cover a wide 

sampling of tissues and different experimental conditions, such as liver, brain, muscle and testis. 

The ENCODE RNA-seq data covering ovary, mammary gland, stomach, kidney, liver, lung, 

spleen, colon and heart, are also included in our data. Co-expression patterns in these data can be 

highly informative for co-functionality. We assigned isoform-level expression values for each of 

these experiments using the state-of-the-art tools [32, 34, 35] (Figure 3-1). Public RNA-seq 

datasets came from different experimental protocols and such information is not always recorded 

in databases in a standardized way. We filtered these datasets based on their quality and coverage 

(see Methods). This data collection serves as our genomic data input. Essentially, each isoform 

was described by a vector of values specifying its normalized expression value in various RNA-

seq samples. Gene Ontology is arranged in a hierarchy, where complex relationships exist 

between different terms. To test different variations of MIL and tune the parameters of our 

algorithms, we focused on a list of biological process terms that have been voted by biologists to 

be able to describe and cover different biological processes that are experimentally testable [54]. 

This list included 99 terms, with GO term size 20–300. 

Two important parameters (other than the standard SVM parameters) in this algorithm 

are the proportion of positive isoforms to be labeled as positive in each iteration, and whether we 

should label the rest of isoforms in the positive bag negative or discard them. Therefore, we 

tested two basic formulations of the algorithm. The first approach tries to impute all non-witness 
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instances in positive bags as negative instances and then considers the problem as a supervised 

learning problem. The second approach tries to identify a single witness from each positive bag 

which is responsible for the positive label. Then, a classifier is built based on these witnesses 

only, while other instances are dropped. SVM formulations of these two approaches are, 

respectively, mi-SVM and MI-SVM [50]. For the first approach, we envisioned that different 

ratio of instances can be retained as ‘witnesses’ and tested three different cutoffs (Figure 3-2 A-

B). 

Ideally, testing of isoform function prediction should use isoform-level gold-standard 

functional annotation. However, such comprehensive functional annotation does not exist in any 

database (if they did exist, regular supervised classification would be sufficient to predict 

isoform functions). Therefore, we first evaluated the performance of our algorithms at the gene 

level. The probability of each gene to be associated to a function is assigned with the maximum 

value of all its instances, under the assumption that the eventual gene function is carried out by at 

least one of its isoforms. For all methods and parameters tested, the algorithm converged within 

several iterations. Additionally, we found that different thresholds or methods resulted in 

relatively stable performance on the gene level. mi-SVM with 75% of all negative scores as the 

cutoff for defining ‘witnesses’ resulted in the highest AUC of 0.73 (Figure 3-2 C). Therefore, we 

used this method for inferring isoform functions and all the evaluation and validation below is 

based on this threshold. 

3.4.3 Cross-validation of the function prediction algorithm. 

We adopted several lines of validation to test our algorithm, including computational 

validation of multi- and single-isoform genes, literature evidence for top predicted candidates 

and experimental validation of top predictions. For all the following evaluations, we presented 
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1792 biological process terms with 20 to 300 genes annotated to each. This size range was 

selected based on previous statistical studies showing that GO terms of this size show robust 

cross-validation behavior [55]. 

We first compared the performance of our algorithm in capturing gene-level functions to 

a direct SVM model using the same data input at the gene level. For each GO term, we carried 

out five-fold cross-validation to evaluate our prediction results. We partitioned the training and 

test groups by genes instead of isoforms to prevent information leak in the evaluation process. 

We used both the area under the ROC curve (AUC) and the area under the precision-recall curve 

(AUPRC) to measure predictive performance (complete evaluation results are included 

in Dataset S2). Because GO terms of different sizes vary in terms of predictability [9], we 

divided all GO terms into 5 groups so that each group contains roughly the same number of GO 

terms according to GO term size. This resulted in groups of [20, 27], [27, 39], [39, 60], [60, 105] 

and [105, 298]. For each GO term group, we calculated AUC, AUPRC, precision at 1% recall 

and precision at 10% recall (Figure 3-3). The median AUCs of the 5 GO term groups are 0.66, 

0.67, 0.68, 0.69, and 0.71, respectively. Strictly, these AUC values cannot be directly compared 

to those reported results in the literature because of the difference in the data used. However, it is 

still meaningful to benchmark, at least roughly, our results against the reported results. The work 

of Peña-Castillo et al. [56] is a benchmark of the mouse gene function prediction performance in 

2008, using heterogeneous genomic data including physical interaction, protein domain, 

phenotypes and expression. Peña-Castillo et al. reported a median AUC in predicting novel gene 

annotations across 72 GO biological function terms is 0.69 with a standard deviation 0.071. 

Thus, our algorithm achieved satisfactory results using transcriptomic data alone; the additional 

benefit of differentiating isoform functions will be detailed in the following sections. 
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For some of the biological processes, interpreting data at the isoform level can 

dramatically improve the prediction performance over gene level results. These biological 

processes are those likely to be affected or carried out by certain specific isoforms of the genes. 

For example, for GO terms GO:0019882 (antigen processing and presentation), GO:0019395 

(fatty acid oxidation), GO:0031032 (actomyosin structure organization), GO:0046649 

(lymphocyte activation), GO:0002252 (immune effector process), GO:0045058 (T cell selection) 

(Supplementary Figure 3-2), AUPRC increased from 0.087 to 0.105 (20% improvement, 

baseline 0.0018), from 0.026 to 0.036 (36% improvement, baseline 0.0021), from 0.047 to 0.060 

(28% improvement, baseline 0.0012), from 0.0414 to 0.0593 (43% improvement, baseline 

0.0101), from 0.037 to 0.046 (27% improvement, baseline is 0.0061), from 0.017 to 0.039 (137% 

improvement, baseline is 0.0011) respectively using our iterative algorithm compared to using 

the gene-level SVM method only. The improvement in performance is likely due to having 

access to more data and eliminating noisy, non-predictive patterns from positive class which is 

achieved by the MIL formulation. 

3.4.4 Better performance for multi-isoform genes than single-isoform genes 

The performance obtained in the previous section is a mix between single-isoform genes 

and multiple-isoform genes. We hypothesize that, if our framework does bring in discriminative 

power at the isoform level, multi-isoform genes should be predicted with better accuracy than 

single-isoform genes for the same set of GO terms evaluated. Single-isoform genes include both 

real ones and those that are missed in the database [57]. In fact, although it has been estimated 

that 95% of the multi-exon genes in human have multiple isoforms [13], only 13% of the genes 

are documented with validated multiple isoforms in NCBI. For these genes, the performance is 

expected to be poorer since the input features for each gene approximate the average of all its 
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isoforms and our algorithm is not applicable to these genes in differentiating isoform functions. 

Therefore, we separately evaluated the performance of single-isoform genes and multiple-

isoform genes. Two-fold cross-validation was carried out to evaluate our models to ensure there 

are sufficient genes in both the training and test sets for multi- and single-isoform genes. To 

make the comparison feasible, negatives in each group were randomly chosen to ensure that the 

ratio of positives to negatives is the same for multi- and single-isoform genes for the same GO 

term. In doing so, the AUC, AUPRC, precision at 1% recall and precision at 10% recall of each 

GO term are recalculated for both sets separately. These results are again organized into 5 

groups, based on the number of positive genes in the test set for each GO term (Figure 3-4). 

We found consistently better performance for multi-isoform genes than single-isoform 

genes for the same GO term evaluated (Figure 3-4; complete evaluation results are included 

in Dataset S3). For multi-isoform genes, we acquired median AUCs of 0.68, 0.70, 0.70, 0.73 and 

0.76 for the five groups of multi-isoform genes, compared to median AUCs of the same groups 

of GO terms for single-isoform genes, 0.62, 0.63, 0.65, 0.66 and 0.68, which correspond to 57%, 

56%, 34%, 47% and 40% improvements against the baseline (0.5), respectively. Similar better 

performance is seen for AUPRC values. We observed an increase from 0.002 to 0.006 (162% 

improvement, baseline is 0.0009), from 0.003 to 0.009 (168% improvement, baseline is 0.0015), 

from 0.005 to 0.012 (152% improvement, baseline is 0.0021), from 0.008 to 0.022 (156% 

improvement, baseline is 0.0034), from 0.016 to 0.042 (154% improvement, baseline is 0.0072). 

In fact, 71% of the 1591 GO terms with more than 20 positive genes and less than 300 positive 

genes have gained better performance for multi-isoform genes. This implies that our approach is 

effective in capturing the functionality of multi-isoform genes, which is robust regardless of the 

metrics used to quantify performance. For example, for GO terms GO:0000279 (M phase), 
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GO:0006952 (defense response), GO:0006936 (muscle contraction), GO:0007507 (heart 

development), GO:0002252 (immune effector process), GO:0003002 (regionalization), precision 

at 10% recall increased from 0.121 to 0.571 (baseline 0.0069), from 0.051 to 0.500 (baseline is 

0.0103), from 0.052 to 0.364 (baseline is 0.0038), from 0.045 to 0.389 (baseline is 0.0097), from 

0.042 to 0.750 (baseline is 0.0048), from 0.074 to 0.320 (baseline is 0.0089), respectively 

(Supplementary Figure 3-3). Such precision improvement is robust to accuracy measurement 

across the entire precision-recall spectrum and consistent across a wide sampling of GO terms. 

For the five groups of GO terms, median of precision at 1% recall increased from 0.005 to 0.014 

(baseline is 0.0009), from 0.008 to 0.031 (baseline is 0.0015), from 0.011 to 0.045 (baseline is 

0.0021), from 0.016 to 0.083 (baseline is 0.0034), from 0.028 to 0.154 (baseline is 0.0072) 

(Figure 3-5). This result indicates that our algorithm is more effective in predicting functions for 

genes with multiple isoforms than single-isoform genes, which is likely caused by the power of 

our algorithm in differentiating isoform functions for the same genes. 

3.4.5 Robustness of predictions with respect to gene expression levels and exclusion of 

homolog gene pairs 

We further considered two factors to validate the robustness of our algorithm. First, 

because the estimated expression levels are less reliable for genes that have low expression 

values, we tested whether our algorithm can predict the functions for low-expressing isoforms. 

We partitioned genes into three groups of equal numbers - the high, the medium and the low 

groups - based on their expression level averaged across all experimental conditions and 

evaluated prediction results separately for these groups to see if performance is affected by the 

overall expression level of genes. We showed that prediction performance is fairly robust to the 

genes' expression levels (Figure 3-6 A). Although the genes in the highest expression group do 
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show better performance (AUC = 0.79), AUCs for the medium (0.69) and low (0.69) groups are 

comparable to the global accuracy (Figure 3-6 A), indicating that our method is applicable to 

genes that have relatively low expression levels. 

Secondly, we tested whether our good performance comes from the homolog gene pairs 

of which one member is grouped into the training set and the other member is grouped into the 

test set. This can potentially cause overfitting by information leak, which is a common 

phenomenon in all functional prediction algorithms, especially those based on sequence 

information. In order to test robustness of our method with respect to having homolog pairs in 

test and training sets, we partitioned all genes into equal size test and training sets by putting all 

genes in a homolog group as defined in Ensembl [58] together and re-evaluated the performance. 

We found that the performance is comparable to the case where paralog genes can occur in 

training and test sets (Figure 3-6 B). This suggests that our method utilizing RNA-seq data 

integration is also robust to the information leak from homologs. 

3.4.6 Validation of predicted ‘functional’ isoform(s) 

To generate the final isoform function prediction, we applied bootstrap bagging to assign 

scores for each isoform (Figure 3-1, http://guanlab.ccmb.med.umich.edu/isoPred/ for complete 

prediction results). The median AUC for the bootstrap result across all GO terms is the same as 

the cross-validation result, indicating the robust performance of bootstrapping. Essentially, genes 

are sampled with replacement to construct a training set, and the rest of the examples form an 

“out-of-bag” set. This process is iterated, and the eventual predictions are drawn from the median 

across all “out-of-bag” sets. Bootstrap bagging is suitable for our isoform function prediction 

task, where the numbers of positive and negative examples are highly imbalanced [55]. The 

robustness of bootstrap bagging has been tested for positive example set sizes ranging from less 

http://guanlab.ccmb.med.umich.edu/isoPred/
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than 20 to more than 200 [55, 59], which is close to the GO term sizes for which we provide 

predictions in this study. 

Because each GO term has a different background probability for a gene to be associated 

with it, we calculated the fold change against background for each gene to be associated to a GO 

term. Indeed, it is pervasive that isoforms of the same gene are assigned with different 

confidence levels for the same function under consideration (see Supplementary Table 3-1 for a 

selection of examples and http://guanlab.ccmb.med.umich.edu/isoPred/ for complete prediction 

results). Because biological functions of transcripts are eventually delivered at the protein level, 

we hypothesized that the functional isoform(s) of a gene must be expressed at the protein level in 

the normal physiological condition. We therefore used splice variant protein expression data in 

normal mammary tissue to validate our predictions. Using our previously developed 

protocol [60], we identified genes of which only one isoform is strongly expressed (but the other 

isoforms are not detected). In this gene list, we focused on the ones that have a known specific 

function (i.e., the function has less than 300 genes annotated to them), but their isoforms are 

predicted with drastically different confidence levels to carry out this function. In total this 

resulted in 15 isoform groups. We could then check whether the predicted ‘responsible’ 

isoform(s) correspond to the expressed isoforms in normal breast tissues. 

We found a strong match between the expressed splice variant and the isoform(s) 

predicted to be responsible for the known specific function of the gene (Table 3-1 and Dataset 

S4). All the expressed isoforms are predicted with the highest value in at least one of the known 

functions, indicating the consistency between the predicted functional isoforms and the 

expressed isoform. For example, we predicted that NM_172745.3 of Tufm is responsible for its 

function translation (34 fold over background probability), while the other isoform, 

http://guanlab.ccmb.med.umich.edu/isoPred/
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NM_001163713.1, is much less likely to be functional (3 fold over background probability). 

Indeed, only NM_172745.3 is expressed in normal breast tissue. Among the six alternatively 

spliced isoforms of Tardbp, we correctly predicted that NM_145556.4 is the one responsible for 

its function in RNA splicing and stabilization; this variant is the only one identified in the 

proteomic sample. In fact, of the 9 functions annotated for Tardbp, NM_145556.4 is predicted 

with the highest value eight times. The majority of the exceptions occur for tissue or 

developmental-stage-specific GO terms, such as GO:0007507 heart development, GO:0035051 

cardiac cell differentiation and GO: 0006936 muscle contraction. The predicted functional 

isoform is not the one identified in our proteomic sample, most likely because our sample is 

tissue-specific and normal and these functions might be carried out by other isoforms in other 

tissues or conditions. However, overall, the predicted functional isoforms are consistent with the 

ones we identified in our proteomic data, indicating that our algorithm can correctly identify the 

functional splice variants in normal conditions. 

3.4.7 Validation of predicted disparate functions for isoforms of CDKN2a and of ANXA6 

Our algorithm is more than just identifying the ‘functional’ isoform of a gene. The power 

of our algorithm to predict the functional disparity between isoforms is further illustrated by 

isoforms that carry out different aspects of gene functions. It is relatively common that only one 

isoform is predicted to be responsible for one particular function of a gene, as described in the 

previous section. In this section, we focus on analyzing specific examples in which isoforms of a 

single gene are assigned with unrelated biological functions. 

CDKN2a is the only known example where alternative splicing results in different 

reading frames (Figure 3-7 A). Two genes (XBP1, GNAS1) produce alternate reading frames, 

but start with single transcript and therefore do not fall into the realm of alternative splicing. We 
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predicted that the two isoforms of CDKN2a would carry distinct functions for the gene (Figure 

3-7 B). NM_001040654.1 is predicted to be involved in apoptotic nuclear changes with a 

probability 74 times the background probability, while the probability for NM_009877.2 

approximates background. On the other hand, NM_009877.2 is predicted to be involved in 

positive regulation of the transmembrane receptor protein serine/threonine kinase signaling 

pathway (3 times background), while NM_001040654.1 is not. Because crystallized protein 

structures are available for both proteins in the human but not in the mouse, we used I-TASSER, 

the state-of-the-art protein structure prediction algorithm [61], to model the 3-D protein 

structures of the two isoforms (Figure 3-7 C-D). Although the translated products of 

NM_001040654.1 (168 aa) and NM_009877.2 (169 aa) are almost the same lengths, the 

transcript sequences are in different open reading frames. This resulted in five ankyrin repeats in 

the NM_001040654.1 (Figure 3-7 C), compared to a cyclin-dependent kinase inhibitor N-

terminus domain in NM_009877.2 (Figure 3-7 D). The drastically different 3-D structures 

support the potential disparate functions predicted by our algorithm. 

The function predictions for NM_009877.2 and NM_001040654.1, which we made by 

mining only large-scale public RNA-seq datasets, are consistent with the two distinct biological 

roles of the two isoforms. NM_009877.2 is an inhibitor of CDK4 kinase, a member of the 

Ser/Thr protein kinase family, directly supporting its role in GO:0071900, regulation of protein 

serine/threonine kinase activity. NM_001040654.1 encodes an alternate open reading frame 

(ARF) that generates a protein structurally unrelated to NM_009877.2. This protein enhances 

p53-dependent transactivation and apoptosis [62], supporting its role in apoptotic nuclear 

changes. Interestingly, although coding for structurally dissimilar proteins, both isoforms share a 

common functionality in cell cycle G1 control [63]. This shared functionality is correctly 
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predicted by our algorithm; for regulation of G1/S transition of mitotic cell cycle (GO:2000045): 

NM_001040654.1 has a probability 3.5 times the background probability, and NM_009877.2 has 

a probability 2.4 times that of background. 

The CDKN2a example involves isoforms of drastically different protein domains. We 

used the isoforms of ANXA6 (NM_013472.4 and NM_001110211.1) to validate our model in 

predicting isoforms of very similar structure. The only difference between the two isoforms at 

the protein sequence level is the presence of six residues in the longer NM_013472.4 

(‘VAAEIL’, 525–530) which are missing in NM_001110211.1. The three-dimensional structures 

of the translated sequences of these isoforms were published by some authors of this paper [64]. 

Although the global topology of the I-TASSER models for the two isoforms of ANXA6 is 

almost identical (with RMSD = 0.38 Å and TM-score = 0.99), there is an obvious structural 

variation identified by TM-align [65]. The positions of Thr-535 and Ser-537 in NM_013472.4 

compared to NM_001110211.1 make NM_013472.4 more likely to undergo 

phosphorylation [64]. The fold changes on GO-terms related to phosphorylation by our function 

prediction algorithm supported the conclusion from the structural comparisons. The fold change 

for peptidyl-serine phosphorylation for NM_013472.4 was 3.5 compared to 1.9 for 

NM_001110211.1. Re-searching the mass-spectrometric data with phosphorylation on Serine or 

Threonine (Phospho (S) and Phospho (T)) as potential residue modification, yielded a peptide 

‘DQAQEDAQVAAEILEIADTPSGDKTSLETR’ (found only in NM_013472.4) with 3281.506 

daltons as the mh (calculated peptide mass plus a proton) indicating potential 

phosphorylation [66]. In contrast, the peptide that matched the spliced region in 

NM_001110211.1 (residues ‘VAAEIL’ are missing in this peptide) did not show any 

phosphorylation. These observations further supported our predictions. In addition, the overall 
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function enrichment showed the smaller isoform, NM_001110211.1 as involved in biological 

processes related to cell adhesion and cell migration, whereas the longer form is predicted to be 

involved in localization. It is important to emphasize the fact that our computational predictions 

based on RNA-seq data alone were able to pick up the differences between these two isoforms 

with 99% sequence identity and predict distinct functions for the isoforms. These findings 

suggest that our approach can solve the pressing need of isoform function differentiation, which 

would be invaluable for a better understanding of the diversity of functions created by alternative 

splicing of a limited set of genes. 

3.5 Discussion 

Gene functions are delivered through alternatively spliced transcript isoforms that encode 

proteins of different functions. It is highly beneficial that the investigation of functions is carried 

out at the isoform level. From this point of view, the standard gene function prediction paradigm 

has a major drawback in that it considers a gene as one single entity without differentiating its 

isoforms. The availability of transcript-level expression data from RNA-seq provides a rich 

resource for addressing this drawback. However, algorithmically, any supervised learning 

algorithm developed for gene function prediction cannot be directly applied to isoform function 

prediction because of the lack of isoform-level, ‘ground-truth’ functional annotations. 

To address this challenge, we developed an iterative algorithm that predicts functions at 

the individual isoform level by conceptualizing a gene as a ‘bag’ of isoforms of potentially 

different functions. Our key idea is to iteratively extract the common pattern of a subset of 

isoforms across the positive genes of the function under investigation, aiming at maximizing the 

coherence within this subset of isoforms and the discriminative power against the other 

‘negative’ genes (genes not related to the specific function under consideration). 
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Through experimental validation, we demonstrated that our approach in combination 

with publicly available RNA-seq data is capable of differentiating isoform functions, promising 

better and deeper understanding of gene functions. RNA-seq data are the richest resource for 

genome-wide, isoform-level data so far. But the basic concept is extendable to other large-scale 

datasets providing isoform-level information, such as protein domain data and post-translational 

regulation datasets. These datasets are not included in this study due to their strong overlap with 

the ‘Gold-Standard’ gene ontology annotations, which might lead to a circularity problem in 

evaluating our algorithms. Furthermore, our study only focuses on the base learner SVM. 

However, our approach is highly extendable to other modeling methods, such as logistical 

regression and random forests. 

Our study is limited to the incomplete isoform catalog maintained by NCBI, but it can be 

readily updated whenever the genome annotation of isoforms is updated. Additionally, 

alternatively spliced isoforms often show tissue-specific expression and functions [23, 27, 67-

70]. Our generic algorithm does not yet take the tissue-specific functionality into consideration. 

We expect that more accurate and biologically meaningful isoform function prediction could be 

achieved if tissue specificity were taken into account. As a result, our validation carried out in 

breast tissue is only used to validate the ‘generic’ functions of the isoforms. Recent studies found 

that the same principal isoform is often present in different tissues [71-74]. We expect that 

tissue-specific functions can be validated in corresponding tissues when these tissue-specific 

predictions can be made. Our study is further limited by the current technology to assign 

isoform-level expression values, as well as the differential capability between platforms for 

capturing isoform-specific expression. We used Cufflinks in the Tuxedo suite [32], one of the 

state-of-the-art algorithms, to estimate the isoform-level read counts and achieved good 



68 

 

performance. However, if more advanced algorithms are developed, our algorithm could directly 

utilize the estimates from those algorithms and generate isoform function predictions. 

Our approach represents a novel and generic strategy to look at gene functions at a higher 

resolution. Cross-validation, literature, and experimental analysis of proteomic data provided 

evidence that our algorithm is powerful in differentiating isoform functions. Broadly speaking, 

the genomic data integration field typically relies on the supervised learning concept, which 

cannot generate predictions for spliced isoforms, e.g., predicting gene-disease association and 

gene regulatory networks. We envision that similar concepts will be developed for generating 

isoform-level models for these prediction tasks. 

3.6 Methods 

3.6.1 Pre-processing public RNA-seq datasets 

We downloaded 811 RNA-seq experiments for the mouse from the NCBI sequence read 

archive (SRA) database as of May 1, 2012 [30]. These datasets represent different conditions and 

tissues. Heterogeneity of the datasets allowed us to look at the isoform expression variations 

across different conditions and tissues. Because datasets are heterogeneous in terms of library 

preparation procedures and sequencing platform (Dataset S1), we adopted the following 

processing and filtering pipeline to ensure that all datasets included in the final predictions have 

sufficient coverage. NCBI build 37.2 reference genome was downloaded from the TopHat 

homepage and Bowtie2 [75] index files were created by bowtie2-build software. For each RNA-

seq dataset, short reads were aligned against the NCBI Mus musculus reference genome (Build 

37.2) using TopHat v2.0.051 [32, 34]. The reference GTF annotation file from NCBI (build 37.2, 

downloaded from TopHat homepage) was given to TopHat and the no-novel-juncs option was 

used. With this option, TopHat creates a database of splice junctions indicated in the supplied 
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GTF file and maps the previously unmapped reads against the database of these junctions to 

create an estimate of isoform expression levels. Then we used Cufflinks v2.0.0 [32] to measure 

the relative abundances of the transcripts using normalized RNA-seq fragment counts [32, 35]. 

The unit of expression levels is Fragments per Kilobase of exon per Million fragments mapped 

(FPKM). To ensure data quality and overall coverage, we removed those experiments with less 

than 10 million reads or with less than 50% reads being successfully mapped to the genome. The 

above procedure resulted in 365 experiments used in our study. Genes detected in less than half 

of the experiments were removed. After filtering these poorly-covered genes, there are 19209 

genes left with a total of 24274 isoforms. Distribution of the number of isoforms per gene is 

included in Supplementary Figure 3-4. FPKM values were log2-transformed; missing values 

were approximated with a value of “-15”. 

3.6.2 Assembling gene-level gold standard functional annotations 

We constructed gold standard gene functions using the Gene Ontology (GO) 

database [46, 47]. For each biological process term, we treated the genes which are annotated to 

that GO term and any of its descendent terms as positives and others as negatives. We 

maintained all GO evidence codes. The sources of these annotations include (1) hand annotation 

from primary literature, (2) electronic annotation based on gene name and symbols, (3) 

annotation from SwissProt keywords and (4) Enzyme Commission (EC) numbers [76]. These 

annotation sources are reasonably accurate for our analysis. 

3.6.3 Mathematical definition and solution of the isoform function prediction problem 

As stated in the Results section, the isoform function prediction problem is a Multiple 

Instance Learning problem. Since the introduction of MIL by [77] for the drug activity 

prediction, several methods to solve this problem have been proposed in the literature. In [78], 
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the authors introduced the concept of Diversity Density, whose aim is to find a point in feature 

space that has a high Diverse Density. This means high density of instances from positive bags 

and low density of instances from negative bags. Additionally, Ray and Page [79] proposed the 

method multiple-instance regression. Their algorithm assumed that each bag has a witness 

instance and treated it as a missing value; then the EM (Expectation-Maximization) method was 

used to learn the witness instances and do the regression simultaneously. Ramon et 

al. [80] utilized the Neural Network technique on Multiple Instance Learning and proposed the 

Multiple Instance Neural Network. Finally, Andrews et al. [50] applied the Support Vector 

Machines to Multiple Instance Learning. 

In this paper, we chose to use a method that utilizes the Support Vector Machine. Two 

different approaches have been proposed to solve the MIL problem using SVM. The first tries to 

impute all non-witness instances in positive bags as negative examples and then considers the 

problem as a supervised learning problem. The second tries to identify a single witness from 

each positive bag which is responsible for positive label. Then, a classifier is built based on these 

witnesses only, while other instances are dropped out of the classification process. SVM 

formulations of these two approaches are labeled mi-SVM and MI-SVM by Andrews et al. [50]; 

we implemented and tested several alternatives of these algorithms. 

Without loss of generality, we assume that the ith gene with m isoforms is denoted as

1 2{ , ,..., }, d

i i i im ijX x x x x X R   . The corresponding class label yi is set to 1 if the gene is 

annotated to the function under consideration and 0 if not. For each gene, we hypothesize that if 

a gene is annotated to a function, at least one of its isoforms should be annotated to the function; 

if a gene is a negative example used in training, none of its isoforms can be annotated to the 

function, i.e., 
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In the standard classification setting, the labels yij of the isoform xij would be given; 

however, in equation (2) labels of isoforms that belong to a positive gene are treated as 

unobserved hidden integer variables. Therefore, the soft-margin criterion is maximized jointly 

over hyperplanes and over all possible label assignments. The algorithm is looking for a 

separating hyperplane such that all isoforms of negative genes are in the negative half-space, 

whereas there is at least one isoform from every positive gene in the positive half-space. 

Meantime, the margin is maximized with respect to the selected labels. 

Alternatively, in the MI-SVM formulation, the definition of margins is extended to bag-

level. Margin of a bag with respect to a separating hyperplane can be defined as the maximum 

margin of its instances. In the case of positive bags, bag margin is defined by the most positive 

instance, whereas, for negative bags, the bag margin is defined by the least negative instance. 

Using this definition of bag margin, the MI-SVM formulation can be written as follows: 
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where yi takes the form  sgn max ,i ij
j

y w x b   and s(i) is the selector variable that denotes the 

isoform selected as witness from each positive gene. Note that, for the mi-SVM formulation, 

every instance in a positive bag has an effect on the margin maximization equation, whereas, in 

the MI-SVM formulation, only one instance per positive bag is taken into account, because this 

instance alone will determine the margin of the bag. 

Finding the optimum solution to (2) and (3) is a combinatorial optimization problem, 

which cannot be found efficiently with the state-of-the-art tools. Therefore, we approximated the 

solution by using the following optimization heuristics which is proposed by Andrews et al. [50]. 

Both formulations of MIL explained above can be considered as mixed-integer problems. In the 

mi-SVM formulation, instance margin is maximized over hidden labels of instances in positive 

bags, whereas, in the MI-SVM formulation, bag margin is maximized over selector variable, 

which selects a single witness from every positive bag. Optimization heuristic uses the fact that, 

given these integer variables, the problem reduces to a quadratic programming problem which 

can be solved exactly. The optimization heuristic includes two steps: (i) for a set of given integer 

variables (i.e. hidden labels in mi-SVM and selector variable in MI-SVM), solve the soft-margin 

maximization problem and find the optimal separating hyper-plane, (ii) for a given separating 

hyper-plane, update all integer variables so that they maximize the objective locally. These two 

steps are run iteratively until integer variables are not updated anymore in step (ii). The 

following workflow explains this optimization heuristic further in detail for both formulations. 
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1. Initialization: Initially, we assign all instances (isoforms) in positive bags (genes) as 

positives, i.e.,              
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                                                                          (4) 

where yi = 1 if the gene is annotated to the function under consideration, and yi = 0 if 

otherwise. 

2. Loop: 

(2.1) Model building: construct a maximum margin classification model using 

positive and negative instances. Using this model, we calculate a prediction score 

for all instances (including those instances in positive bags which are not 

“witnesses”) in the training set. 

(2.2) Integer variable updating: 

In the mi-SVM formulation, instances in each positive bag are assigned to a label 

based on prediction score calculated in the previous step. One can choose 

different thresholds for scores to partition instances into positive and negative 

classes. Here, we investigated following three thresholds and chose the second 

threshold, since it gave the best performance (Figure 3-2) 

(i) The first threshold is equal to the mode of the distribution of scores 

from negative instances in training set. 

(ii) The second threshold is equal to the 75% percentile of scores of all 

negative instances in training set. 

(iii) The third threshold is equal to the maximum score of negative 

instances in the training set. 
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These three thresholds represent different degrees of strictness for assigning 

labels. The first threshold is the least strict; it assigns most of the instances from 

positive bags as positive, whereas the third threshold is the most strict, generally 

leaving only one positive instance in every positive bag. 

In the MI-SVM formulation, we chose only the instance with the maximum score 

in each positive bag as the “witness”; the remaining instances from this bag are 

not assigned to any class. (i.e. dropped out of the margin calculation). 

Note that in mi-SVM every instance in positive bags is assigned to either positive 

or negative, but in MI-SVM only one instance per positive bag is assigned 

positive and other instances from the same bag are discarded. 

(2.3) Stop criterion checking: When the assignment of integer variables does not 

change anymore (i.e. label assignments of instances in positive bags for mi-SVM, 

witness selector variable for MI-SVM), or the assignment of integer variables 

reverts to one of the assignments in previous iterations, go to Step (3); otherwise 

go back to step (2.1). 

3. Ending iteration: use the model built in the last iteration to predict all instances. At the 

gene level, the score of each gene is assigned as the maximum score of all its isoforms. 

3.6.4 Estimation of probability score for isoforms using bootstrap bagging 

For every function, we need to assign each isoform a score no matter whether the gene 

that the isoform belongs to has an annotation or not. We therefore used bootstrap bagging to 

estimate the probability that an isoform is associated with a specific biological process. 

Essentially all genes are sampled with replacement (0.632 bootstrap) to construct a training set. 
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The scores of the held-out set are recorded and the process is iterated 30 times. For each isoform, 

the final score is assigned with the median across all iterations. 

3.6.5 Proteomic data processing 

Functions of splice variants must eventually be delivered at that protein level. To test 

whether the predicted differential functions are correct, we compiled the data from LC-MS/MS 

of normal mammary tissue [81]. The original study reported that normal tissues were harvested 

from 5 normal mice, processed into tissue lysates and pooled. The pooled sample was digested 

by trypsin for mass spectrometric analysis. The mzXML files were searched against our 

modified ECgene database for alternative splice variant analysis using X!Tandem [82]. 

3.6.6 Web implementation 

All prediction results are stored in MySQL databases and delivered through a searchable 

website: http://guanlab.ccmb.med.umich.edu/isoPred. 

3.7 Author Contributions 

Experiments are conceived and designed by Ridvan Eksi and Yuanfang Guan. 

Experiments are performed by Ridvan Eksi. The data is analyzed by Ridvan Eksi, Hong-Dong 

Li, Rajasree Menon, Gilbert S. Omenn, Matthias Kretzler and Yuanfang Guan. Paper is written 

by Ridvan Eksi, Hong-Dong Li and Yuanfang Guan. Website is developed by Ridvan Eksi and 

Yuchen Wen.  
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3.8 Figures 

 

Figure 3-1 : Overview of the computational approach for predicting functions for alternatively 

spliced isoforms. 

We collected RNA-seq data from the sequence read archive (SRA) database and estimated 

isoform-level expression values using state-of-the-art software [32,34]. We then generated a 

gene-level gold standard using Gene Ontology (GO) annotations. For each biological function, 

this gold standard contains positive genes (annotated to the function under investigation) and 

negative genes (other genes). Our study contains two major parts: cross-validation for 

performance estimation and bootstrap bagging for generating final predictions as well as 

performance evaluation. For cross-validation, we partitioned the examples into a training set for 

model development and a test set for model validation. For generating final predictions for all 

isoforms, we sampled with replacement to construct a training set, and then used this training set 

to construct models to assign prediction probabilities to the out-of-bag set. The final predictions 
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for all isoforms were made by calculating the median prediction values of all out-of-bag sets. For 

each training set, a model was derived from the RNA-seq data to delineate the positives and the 

negatives. This model was used to classify the training set and update the labels of the isoforms 

of the positive genes, under the criterion that at least one isoform of a positive gene must remain 

positive. This new assignment is then used to construct the model in the next iteration. This 

process is iterated until the assignment of positive isoforms no longer changes, and then the final 

model was used to assign a prediction value to the test or the out-of-the-bag set. Bootstrap was 

done for 30 iterations and the median value for each out-of-the-bag isoform was taken as the 

final prediction value. The predictive performance of our model was assessed through three 

approaches: (1) cross-validation of gene-level predictive performances, focusing on comparison 

between single-isoform genes and multiple-isoform genes, (2) literature validation and (3) 

experimental validation of top predictions using proteomic data. 

 

 

Figure 3-2: Performance comparison of different formulations of the SVM-MIL algorithm in 

predicting isoform functions. 

A. The histogram shows the score distribution of the instances in the positive bags and the 

negative bags in the training set. Different threshold choices in mi-SVM are based on the 

distribution of scores of negative genes. The first threshold is equal to the mode of distribution of 

scores from negative instances in the training set. The second threshold is equal to the 75% 

percentile of scores of the negative instances in the training set. The third threshold is equal to 

the maximum score of negative instances in the training set. B. This panel illustrates how 

different thresholds and formulations can divide the isoforms in a positive bag into positive, 

negative and neutral classes. Three thresholds in mi-SVM represent different degrees of 

strictness for assigning labels. The first threshold is the least strict, which assigns most of the 

isoforms from positive genes as positive, whereas the third threshold is the strictest, which in 

general leaves only one positive instance in every positive bag. For the MI-SVM formulation, 

only one isoform per positive gene is assigned as positive, and other isoforms are dropped 

(i.e. neutral class). C. Performance comparison of three different threshold choices for the mi-

SVM formulation, the MI-SVM formulation and the MI-SVM formulation with random witness 

selection. This plot shows that the mi-SVM formulation with threshold-2 performs best in terms 

of AUC. 
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Figure 3-3: Robust performance of our algorithm to predicting functions using RNA-seq data. 

We carried out five-fold cross validation to test the performance of our algorithm. For each 

function, the prediction value for each gene is assigned the maximum prediction value of all of 

its isoforms, under the assumption that at least one of its isoforms should carry out the function. 

Because the number of known genes of each GO term systematically affects the prediction 

performance, we group these terms into 5 groups according to their GO term sizes. (A)–(D) 

shows the distribution (10, 25, 50, 75, 90%) of the AUCs, the AUPRCs, the precisions at 1% 

recall and the precisions at 10% recall, respectively. 



79 

 

 

Figure 3-4: Prediction performance comparison of single-isoform genes (green) and multi-

isoform gene (blue) based on AUC (upper panel) and AUPRC (lower panel). 

We separately evaluated its prediction performance for single-isoform genes and multiple-

isoform genes. Two-fold cross-validation was carried out to ensure enough examples in both 

groups. To ensure comparability, the negatives were randomly selected to ensure that the ratios 

of positive to negative genes for the multi-isoform group and the single isoform group are the 

same for each GO term. GO terms were grouped according to the number of genes in the test set. 

Shown in the box-plot are the AUC (A) and AUPRC (B) at 10, 25, 50, 75 and 90 percentile, 

respectively. 
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Figure 3-5: Prediction precision between single-isoform genes (green) with multi-isoform gene 

(blue). 

Two-fold cross-validation was carried out to ensure that enough examples are included in both 

the single-isoform group and the multi-isoform group. The negatives were randomly selected to 

ensure that the ratios of positive to negative genes for the multi-isoform group and the single 

isoform group are the same for each GO term, so that the baseline precision for each GO term is 

equal for the two groups. GO terms were grouped according to the number of genes in the test 

set. Each dot represents the precision value of an individual GO term. A. Precision at one percent 

recall. B. Precision at ten percent recall. 
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Figure 3-6: Robust performance of our algorithm in predicting isoform functions. 

A. Genes are grouped according to their expression levels averaged across all samples in our 

RNA-seq data collection. The distribution of the performance in AUC across all GO terms is 

plotted using box-plot. B. The performance in AUC across all GO terms by partitioning the 

genes according to homologous groups between the training and the test set is compared against 

the performance of partitioning the genes randomly. 
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Figure 3-7: Predicted functions for isoforms of CDKN2a and their predicted protein structures. 

 A. Gene model for NM_001040654.1 and NM_009877.2. B. Predicted functions for 

NM_001040654.1 and NM_009877.2. C. The computationally modeled structure of 

NM_001040654.1 is characterized by five ankryin repeats. D. The modeled structure of 

NM_009877.2 has a CDKN2a N-terminus domain. 
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3.9 Tables 

Table 3-1: Examples for predicted functional isoforms that are validated using proteomic data. 
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3.10 Supplementary Files 

 

Supplementary Figure 3-1: Differences between the traditional gene function prediction problem 

and the isoform function prediction problem.  

We use maximum margin as a base learner to illustrate the differences between a traditional 

classification problem for gene function prediction and our scheme for predicting isoform 

functions. A. Traditionally, a gene is treated as one single entity. The positive examples, defined 

as genes annotated to a specific function, are separated from the negative examples (other genes) 

by an SVM classifier. B. A single gene may contain several isoforms of which only some carry 

out the function under investigation. Genes here are considered as ‘bags’, each of which may 

contain one to several isoforms, defined as ‘instances’. A positive gene must have at least one of 

its isoforms carrying out the function under consideration. None of the isoforms of a negative 

gene can carry out the function under study. The hyperplane trained to separate the positive 

isoforms and negative isoforms must satisfy the above criteria. 
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Supplementary Figure 3-2 : Comparison of gene-level prediction performance resulting from 

gene expression data (dashed green) and isoform expression data (solid blue). 

For each GO term-specific gold standard, we developed models using gene-expression data with 

standard SVM and isoform-expression data with our prediction framework, respectively, and 

compared their precision recall curves. Shown here are six representative examples, where 

significant improvements were achieved when using isoform-expression data and our iterative 

learning strategy. 
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Supplementary Figure 3-3: Precision recall curve comparison between single-isoform genes 

(dashed green) and multiple-isoform genes (solid blue) for some GO terms. 
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Supplementary Figure 3-4: Histogram of number of isoforms per gene according to NCBI 

annotation file (build 37.2). 

This figure shows only multi-isoform genes, single-isoform genes are excluded. 
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Supplementary Table 3-1: Example isoform groups that are predicted with differential functions. 

 

Dataset S1. Input RNA-seq dataset description. 

Dataset S2. Five-fold cross-validation results. 

Dataset S3. Separated evaluation for genes annotated with multiple isoforms and a single 

isoform. 

Dataset S4. Comparison between expressed splice variant in the normal breast cell sample 

and predicted ‘functional’ isoforms. 

https://www.dropbox.com/s/hfx3k72t7ec51lc/Dataset_S1.xlsx?dl=0
https://www.dropbox.com/s/mbuyb14l8syzw8l/Dataset_S2.txt?dl=0
https://www.dropbox.com/s/tafrp67gst874jc/Dataset_S3.txt?dl=0
https://www.dropbox.com/s/tafrp67gst874jc/Dataset_S3.txt?dl=0
https://www.dropbox.com/s/2ykpqybaucok53a/Dataset_S4.xlsx?dl=0
https://www.dropbox.com/s/2ykpqybaucok53a/Dataset_S4.xlsx?dl=0
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 CHAPTER 4
 

Functional annotation of human protein-coding splice variants
‡
 

 

4.1 Abstract 

The vast majority of human multi-exon genes undergoes alternative splicing and 

produces a variety of splice variant transcripts and proteins, which can perform different 

functions. These protein-coding splice variants (PCSVs) greatly increase the functional diversity 

of proteins. Most functional annotation algorithms have been developed at the gene level; the 

lack of isoform-level gold standards is an important intellectual limitation for currently available 

machine learning algorithms. The accumulation of a large amount of RNA-seq data in the public 

domain greatly increases our ability to examine the functional annotation of genes at isoform 

level. In the present study, we used a multiple instance learning (MIL)-based approach for 

predicting the function of PCSVs. We used transcript-level expression values and gene-level 

functional associations from the Gene Ontology database. A support vector machine (SVM)-

based 5-fold cross-validation technique was applied. Comparatively, genes with multiple PCSVs 

performed better than single PCSV genes, and performance also improved when more examples 

were available to train the models. We demonstrated our predictions using literature evidence of 

ADAM15, LMNA/C, and DMXL2 genes. All predictions have been implemented in a web 

                                                 
‡ Chapter 4 is published as Bharat Panwar, Rajasree Menon, Ridvan Eksi, Hong-Dong Li, Gilbert S. Omenn, and Yuanfang 

Guan. "Genome-wide functional annotation of human protein-coding splice variants using multiple instance learning." Journal of 

Proteome Research 15, no. 6 (2016): 1747-1753. 
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resource called “IsoFunc”, which is freely available for the global scientific community 

through http://guanlab.ccmb.med.umich.edu/isofunc. 

4.2 Introduction 

Functional annotation of the gene is an essential task for understanding both biological 

significance and underlying mechanisms of a particular gene [1-3]. In higher eukaryotes, 

alternative splicing plays a central role in gene regulation; ∼95% of human multiexon genes 

undergo alternative splicing [4]. It produces different splice variants from the single gene 

through such mechanisms as exon skipping, mutual exclusion of exons, alternative 5′ donor site, 

alternative 3′ acceptor site, and intron retention [5]. These numerous splicing events lead to the 

complex human transcriptome. There are more than 80 000 protein-coding transcripts encoded 

by fewer than 20 000 genes. It has been estimated that these transcripts synthesize 250 000 to 1 

million different proteins [6]; these alternative splicing events significantly increase the diversity 

of the human proteome [7]. Consequently, different protein sequences from different protein-

coding splice variants (PCSVs) can have different biological functions, sometimes even opposite 

functions. As an example, the two PCSVs Bcl-x(S) and Bcl-x(L) of B-cell lymphoma-x (Bcl-x) 

gene have pro-apoptotic and antiapoptotic functions, respectively [8]. Additionally, genetic 

variants alter the splicing patterns, and more of the human disease-causing point mutations affect 

splicing than coding sequences [9]. Aberrant splicing causes many cellular abnormalities and 

leads to various human diseases [10-13]. A recent genome-wide variation study suggested that 

genetic variants affecting RNA splicing contribute to such diseases as colorectal cancer, spinal 

muscular atrophy, and autism spectrum disorder [14].  

The functional diversity of alternative PCSVs is a major challenge for existing functional 

annotation algorithms, where each gene is commonly considered as a single entity without 

http://guanlab.ccmb.med.umich.edu/isofunc
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recognizing the effects of splicing on protein function [15]. The major problem is the 

unavailability of a systematic catalog of isoform functions. Most of the previous annotations are 

based on Gene Ontology (GO), a database of controlled and dynamic vocabulary of many 

defined biological functions at gene level [16]. Accumulating evidence of isoform functional 

diversity through different experiments gives us a chance to revisit functional genomics. Large-

scale whole transcriptome sequencing (RNA-seq) data provide unprecedented amounts of 

transcript-level expression data that can be used for developing predictive models; these methods 

provide high-resolution information about gene function [17]. Coexpression-based functional 

assignment of a gene is an established and useful strategy across diverse species [18-

20]. Furthermore, suitable machine learning algorithms can improve prediction performance 

significantly [21].  

An important challenge is how to coordinate gene-level annotation with transcript-level 

expression patterns. A multiple-instance learning (MIL) technique [22] has been applied to solve 

this kind of problem [15, 23]. Eksi et al. [15] developed an MIL-based generic framework for 

identifying splice variants from a set of well-annotated genes that perform a particular function 

in the mouse. We adopted a similar MIL-based strategy for functional annotation of human 

PCSVs and cross-validated prediction results computationally and from published literature. We 

also developed an open web resource for use by the scientific community. 

4.3 Material and Methods 

4.3.1 Preprocessing of RNA-seq Data Sets 

In this study, initially we used all 573 human RNA-seq data sets (runs) of the ENCODE 

project [1]. These data contain samples from different tissues and conditions. Therefore, a 

systematic data processing approach was implemented to ensure the quality of such 
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heterogeneous data (Figure 4-1). The human genome build GRCh37.75 from Ensembl was used 

to align the short-reads of each RNA-seq data set using TopHat (v.2.0.11) [24]. A GTF 

annotation file of the same build was used with an option of no-novel-junctions. Then, we 

employed Cufflinks to calculate the relative abundance of the transcript as fragment per kilobase 

of exon per million fragments mapped (FPKM). Because the coverage of mapped reads is 

different for different RNA-seq samples, we used only 248 of the 573 runs, those containing 

more than 50% mapping coverage of total reads. These 248 runs originated from 127 different 

samples, so we calculated the average expression values (FPKM) for each sample separately, 

comprising a total of 214,292 splice variants of 63,783 genes. 

We observed that FPKM values are exceptionally higher for very short transcripts (e.g., 

tRNAs); therefore, we removed the genes where the average length of all of the splice variants is 

equal to or less than 100 nucleotides and obtained 59,159 genes for further use. It is important to 

have sufficient nonzero values in the feature vector during the machine learning step and to 

enhance signal-to-noise; therefore, we used only the 14,339 genes detected as >1.0 FPKM in 

>50% of samples. This subset of genes contains 119,041 splice variants that include different 

biotypes such as protein_coding, nonsense_mediated_decay, non_stop_decay, 

processed_pseudogene, processed_transcript, and retained_intron. We focused only on protein-

coding splice variants (PCSVs); this term was previously used to report evidence of PCSVs of 

choline acetylase [25] and of CNTNAP2 [26] and distinguish them from noncoding splice 

variant transcripts. Thus, we analyzed 59,297 splice variants (of 11,946 genes) marked as 

protein_coding (37,811 known, 7555 novel and 13,931 putative) biotype in the Ensembl 

database. 
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There are many zero FPKM values present at the transcript level. The FPKM values were 

log2-transformed and while log2-transforming all FPKM values (transcript level), those zero 

values give −Infinity value, which is not acceptable as an input for machine learning. Therefore, 

we have to approximate those zero values with some negative values (e.g., −5). In this way we 

distinguished zero FPKM values from the FPKM values ≥1.0. We investigated how sensitive the 

results are to this choice using 94 GO terms (size 20–300) from GO-slim. We found that 

approximation with −5, −10, and −15 values is giving median AUC values of 0.649, 0.641, and 

0.637, respectively. This showed that choice of approximation only slightly changes the 

performance and all zero FPKM values were approximated with a value of ‘-5′ as an input for 

the machine learning. 

4.3.2 Gene-Level Gold Standards Based on Gene Ontology 

We downloaded Gene Ontology (data-version: releases/2014-05-27) and used biological 

process terms with their gene annotations. Each biological process GO term has multiple genes 

annotated to it; therefore, all of those genes and other genes from its descendent GO terms have 

been assigned as positive for that particular GO term, and the remaining genes have been 

designated as negative. GO terms-based functional annotation is well known from previous 

studies [15, 23]. There are 12,584 GO terms for biological processes. The number of positive 

genes for these GO terms varies. Some GO terms are very broad and contain a very high number 

of positive genes; while other GO terms contain very few positive genes. Previously, it was 

shown that GO term size 20–300 is robust for cross-validation [27]. Therefore, we used only GO 

terms with minimum 20 and maximum 300 positive genes; we found 2129 GO terms in this 

range. For analyzing results of different sizes, we nearly equally divided all GO terms into five 

ranges: (A) 20–27, (B) 28–40, (C) 41–64, (D) 65–114, and (E) 115–300. 
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4.3.3 Multiple Instance Learning and SVM (MIL-SVM) 

We adopted a hypothesis similar to that of Eksi et al. [15] that of many splice variants of 

a positive gene at least one splice variant is responsible for performing the GO term function. 

Similarly, all splice variants of negative genes are not responsible for that particular function. A 

gene is termed as a “bag” and each splice variant of that gene is termed as an “instance”. The aim 

of MIL is to identify subsets of splice variants from positive genes and maximize the difference 

between them and splice variants of negative genes. We used maximum-margin-based 

classification [28] to maximize the difference between positive and negative PCSVs. An initial 

subset of positive PCSVs was iteratively refined to get the final selection of PCSVs that 

optimizes the objective function. Although the MIL approach can be used with any machine 

learning technique, we chose to use SVM as a base learner because of its success in functional 

predictions [15, 29, 30].  

4.3.4 5-Fold Cross-Validation and Performance Evaluation 

Cross-validation is a well-adopted technique for calculating prediction performance. For 

each GO term, positive and negative genes were partitioned into five subsets. We used a gene-

level partition instead of PCSV-level to prevent leaking information during the evaluation 

process. There was a balancing problem between positive and negative genes; therefore, we used 

an equal number of positive genes in all five subsets; negative genes were also equally 

distributed in these five subsets. Then, five sets were created using one positive and one negative 

subset in each set. During SVM-based machine learning, we used four sets for training and the 

remaining fifth set for testing. This step was repeated five times, so each set was used once for 

testing [31-33]. Finally, the average performance of all five test sets was calculated. The 
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prediction performances were calculated in terms of area under the ROC curve (AUC) and area 

under the precision-recall curve (AUPRC). 

4.3.5 SVM Classification Score at PCSV-Level and Fold Change 

The SVM classification scores for each PCSV have been calculated using testing sets in 

the 5-fold cross-validation. The fold change value was calculated for each PCSV for every GO 

term. Fold change is a ratio of the rank probability of a PCSV to the base probability 

[15]. PCSVs were first ranked based on the SVM classification scores, and then rank probability 

was calculated. Rank probability is a ratio of occurrence of positive PCSVs (PCSVs from 

positive genes) to the number of PCSVs in the subset of a sorted list that ranked higher than the 

PCSV of interest. Base probability is a ratio of the total number of positively annotated genes to 

the total number of genes. 

4.4 Results and Discussion 

4.4.1 Abundance of Protein-Coding Splice Variants 

We analyzed a total of 59,297 PCSVs of 11,946 well-expressed genes. Figure 4-2 shows 

the distribution of number of PCSVs per gene. Although the average gene contains five PCSVs, 

there are quite a few genes with more than 10 PCSVs. 

4.4.2 Prediction of PCSV-Level Function 

We used expression-based input features to learning SVM models and predicted the 

functions for PCSVs. The prediction performance was calculated for all 2129 GO terms; median 

performances of 0.641 AUC and 0.011 AUPRC were achieved. GO:0019083 (viral 

transcription), GO:0006415 (translational termination), GO:0006614 (SRP-dependent 

cotranslational protein targeting to membrane), GO:0006613 (cotranslational protein targeting to 
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membrane), and GO:0072599 (establishment of protein localization to endoplasmic reticulum) 

were the top five performing GO terms and achieved AUC values of 0.989, 0.983, 0.966, 0.961, 

and 0.961, respectively. We divided GO terms into five equal parts based on their sizes. We 

calculated separate prediction performances for these five parts and found slightly better 

performance with increasing GO term size. The median AUC values for these sets A, B, C, D, 

and E are 0.616, 0.625, 0.641, 0.644, and 0.656 respectively (Figure 4-3 A); it means a higher 

number of positive examples is useful in the multiple-instance-based SVM learning. Similarly, 

the median AUPRC values for different GO term sizes A, B, C, D, and E are 0.004, 0.006, 0.010, 

0.015, and 0.033 respectively (Figure 4-3 B). The baseline values for these A, B, C, D, and E are 

0.0019, 0.0028, 0.0043, 0.0071, and 0.0155 respectively (Figure 4-3 B). 

4.4.3 Performance Comparison of Single and Multiple Protein-Coding Splice Variants 

In the previous section, mixed performance was evaluated from all the genes, whether 

those genes contain single PCSV or multiple PCSVs (Figure 4-3). The sole purpose of our 

prediction tool is to functionally discriminate PCSVs within a gene. Therefore, performance for 

multiple PCSV genes should be higher than for single PCSV genes [15]. Genes in our data set 

contain different numbers of PCSVs (Figure 4-2), so we divided genes into four different groups 

(single, 2–5, 6–15, and 16–66) based on the number of PCSVs. We found that AUC performance 

consistently improves with a higher number of PCSVs for all GO term sizes (Figure 4-4 A). 

Performance of single PCSV genes is lower in comparison with multiple PCSVs genes in terms 

of AUPRC (Figure 4-4 B). 

4.4.4 Illustration of Predicted Distinct Functions for PCSVs of ADAM15 and LMNA/C 

Although cross-validation-based computational evaluation provided good performance 

parameters, it is still important to validate predictions with real life examples. In this section, we 
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highlight two genes, ADAM15 and LMNA/C, for which there are available published 

experimental studies of splice isoforms, permitting a test of whether our PCSV functional 

predictions agreed. 

4.4.4.1 ADAM15 

ADAM Metallopeptidase Domain 15 (ADAM15) is a type I transmembrane glycoprotein 

known to be involved in cell adhesion. Zhong et al. [34] cloned and characterized alternatively 

spliced forms of ADAM15 in human breast cancers. They showed that higher levels of two 

PCSVs (ADAM15A and ADAM15B) were associated with poorer relapse-free survival in node-

negative patients. The ADAM15A (ENST00000271836, 814aa) and ADAM15B 

(ENST00000355956, 839aa) PCSVs differentially affected cell adhesion and invasiveness 

[34]. Cell adhesion, migration, and invasion were enhanced by expression of ADAM15A, 

whereas ADAM15B led to reduced adhesion. The fold changes for the GO terms linked to cell 

adhesion predicted by our function prediction algorithm tend to agree with this study: positive 

regulation of cell adhesion (GO:0045785) and regulation of cell–substrate adhesion 

(GO:0010810) were two times higher for ADAM15A compared with that of ADAM15B. 

Using our algorithm, the top-ranking GO term for ADAM15B was positive regulation of 

B cell activation (GO:0050871; 40 fold increase); in contrast, no change was observed for this 

term for ADAM15A. Similarly, observations with high fold changes for other immune-related 

terms (immune effector process, positive regulation of immune response, and immune response-

activating signal transduction) were found for ADAM15B and not for ADAM15A. Several 

studies have been published on the role of ADAM15 as a mediator of immune mechanisms 

underlying inflammation [35]. ADAM15 accounted for the increased level of soluble CD23 in 

synovial fluid and sera of rheumatoid arthritis patients [36]. Because CD23 is known to stimulate 
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immune cells [37], ADAM15 could play a role by amplifying inflammation of RA synovitis 

[35]. These reports and our function predictions imply that isoform ADAM15B may be much 

more involved in the B-cell-mediated immune mechanisms than ADAM15A. 

4.4.4.2 LMNA/C 

LMNA/C protein is a component of the nuclear lamina and plays an important role in 

nuclear assembly, chromatin organization, nuclear membrane, and telomere dynamics. 

Experimental functional validation of three main isoforms of LMNA has been reported 

by Lopez-Mejia et al. [38] The three PCSVs are lamin A (ENST00000368300, 664 aa), progerin 

(ENST00000368299, 614aa), and lamin C (ENST00000368301, 572aa). Lamin C expression is 

mutually exclusive with lamin A and progerin splice variants and occurs by alternative 

polyadenylation. Lopez-Mejia et al. [38] reported antagonistic functions of these three PCSVs in 

energy expenditure and life span. They found that mice with just lamin C expression live longer 

and have decreased energy metabolism, increased weight gain, and reduced respiration rate. 

Increased metabolism was observed in mice that expressed progerin. According to our function 

predictions, GO terms related to metabolic terms showed high fold changes for lamin A and 

progerin compared with minimal to no change in lamin C. 

Each of these three PCSVs had a unique top-ranking GO term associated with it. Protein 

targeting to membrane (GO:0006612) was one of the top-ranking GO terms (12-fold increase) 

for lamin A; no fold change was observed for progerin and lamin C for this term. Substrate 

adhesion-dependent cell spreading (GO:0034446) was the top-ranking term for progerin (12-

fold), with no change observed for that of lamin A and lamin C. Regulation of cation channel 

activity (GO:2001257) was one of the top terms (∼3 fold increase) for lamin C; little change was 

found for lamin A and progerin. Previously published studies have linked lamin A/C with protein 
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targeting to membrane [39] and cell spreading [40]; however, experimental evidence of the 

individual roles of specific human lamin A/C splice variants has not yet been reported, nor has 

expression been characterized at isoform level across different tissues. 

4.4.5 Identification of Alternative Splice Variants with Distinct Functions in HER2+/ER–

/PR– Breast Cancers 

In a recent publication we highlighted six alternative/noncanonical splice variants that 

were significantly overexpressed in HER2+/ER–/PR– breast cancers compared with normal 

mammary, triple-negative breast cancer, and triple-positive breast cancer tissues 

(HER2+/ER+/PR+) [41]. We were able to infer possible distinct functions for these six splice 

variants (DMXL2 isoform 3, HIF1A isoform 3, KLC1 isoform c, LNPEP isoform 2, RICTOR 

isoform 3, and RNF216 isoform 2) compared with their corresponding canonical forms. 

Biological processes including cell cycle events and glycolysis were linked to four of these six 

proteins [41]. For example, glycolysis was the top-ranking functional process for DMXL2 

isoform 3, with a fold change of 27 compared with just 2 for the canonical protein. No previous 

reports link DMXL2 with any metabolic processes; the canonical protein is known to participate 

in signaling pathways [41].  

These predictions alone cannot provide a complete functional annotation of each splice 

variant; however, integrating our predictions with other information such as amino acid 

sequence, 3D structure, and functional domains can definitely help to infer the potential function 

of a splice variant [41].  

4.4.6 IsoFunc Webserver 

A user-friendly Web server (http://guanlab.ccmb.med.umich.edu/isofunc) has been 

developed for the service of the scientific community. Different search options such as gene 

http://guanlab.ccmb.med.umich.edu/isofunc
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symbol, Ensembl gene/transcript ID, and GO term ID and keywords (e.g., apoptosis) have been 

provided. We have also provided different filtering options for users to select PCSVs based on 

expression level, Ensembl biotypes, and availability in neXtProt database. PCSVs that are 

expressed in more than one-third of the total 127 samples with >1.0 FPKM are designated as 

highly expressed PCSVs. We used only Ensembl transcripts that were marked as protein_coding 

biotype; this biotype is further subdivided into three different categories: known, novel, and 

putative; therefore, we provide an option to select the particular subcategory of interest. The 

proteomics community prefers neXtProt over Ensembl because Ensembl transcript entries are 

considerably changed with different versions; neXtProt is highly curated and serves as the gold 

standard for the Human Proteome Project (www.thehpp.org) [42]. To enhance consistency, we 

provide an option to select only PCSVs that are present in neXtProt release 2015-09-01 

[43]. These flexible search options will be useful for a variety of users to explore this web-

resource. 

All of the GO-based annotation results are displayed with columns of PCSVs sorted 

horizontally according to their maximum fold change values for any GO-term (rows). This fold 

change is a ratio of the rank probability of a particular PCSV to the base probability [15]. Higher 

fold change values have higher chances to perform the corresponding biological process 

function. Each gene/PCSV on the results page is linked to permit navigation of complementary 

useful resources (Ensembl, NCBI, UniProt, neXtProt, and GTEx). The GTEx portal is useful to 

explore relationships between genetic variation and gene/isoform expression in various human 

tissues [44]. The present IsoFuncWeb server is also linked with our recently developed in-house 

tools Hisonet [45-47] and MI-PVT [48]. The MI-PVT is a tool for visualizing the chromosome-

centric human proteome, while Hisonet displays predicted isoform-level functional networks. 

http://www.thehpp.org/


108 

 

Functionally connected PCSVs in Hisonet may be different from IsoFunc because Hisonet is 

based on the RefSeq database, while IsoFunc utilizes Ensembl and Hisonet used additional 

information such as pseudoamino acid composition, protein-docking, and protein domains with 

coexpression values to generate the functional networks. In the future, the Hisonet will be 

updated with Ensembl data to make it more compatible with IsoFunc. 

4.5 Conclusions 

These results demonstrate that our SVM-based algorithm combining RNA-seq expression 

data with Gene Ontology biological functions is capable of discriminating the functions of 

specific splice variants arising from genes generating multiple protein-coding splice variants 

(PCSVs). It is promising for deeper understanding of human gene functions considering the 

remarkable evolutionary emergence of multiple protein-coding splice variants from multiexonic 

genes in multicellular organizations. Experimental studies are needed to validate the predictions 

in this genome-wide resource and to characterize the functional dynamics of splice variants in 

different tissues and conditions. Integration of multiple omics data and multiple modeling 

methods will be useful for increasing the efficiency of the prediction tool. The data types that 

provide isoform-level information include but are not limited to, RNA-seq, exon array, protein 

domain information, post-transcriptional regulation, nucleotide or amino acid sequence 

variation/composition, and post-translational modification of protein. Large-scale integration of 

heterogeneous data may have the potential to improve prediction performance. The 

transcriptomic data provide mRNA-level expression, but biological functions are defined at the 

next level of protein expression, and this gap also affects the performance of functional 

annotation predictions. There is some inherent limitation of computational algorithms to 
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reconstruct transcript levels through transcriptomic data, and that is an open bioinformatics 

problem to solve. 

4.6 Author Contributions 

Experiments are conceived and designed by Bharat Panwar, Ridvan Eksi and Yuanfang 
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are performed by Bharat Panwar. The data is analyzed by Bharat Panwar, Rajasree Menon, 

Ridvan Eksi, Hong-Dong Li, Gilbert S. Omenn, and Yuanfang Guan. Paper is written by Bharat 

Panwar. Website is developed by Bharat Panwar. 
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4.7 Figures 

 

Figure 4-1 Overview of data preprocessing for predicting protein-coding splice variants.  

We collected RNA-seq data from the ENCODE project and estimated the expression values 

using standard tools and thresholds. These values were used as input features for developing 

SVM models for different GO terms using the multiple instance learning approach. 
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Figure 4-2 Distribution of number of protein-coding splice variants across well-expressed human 

genes. 

 

 

 

Figure 4-3 Performance of our multiple-instance learning based algorithm for predicting 

functions of protein-coding splice variants.  

We used two different parameters (A) AUC and (B) AUPRC to evaluate prediction performance 

of the algorithm. The baseline values are also given with AUPRC. The different performances 

calculated for five different GO term sizes are shown in different colors. 
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Figure 4-4 Comparative performance of single PCSV genes and multi-PCSVs genes. 

Two different parameters (A) AUC and (B) AUPRC have been used to evaluate prediction 

performances. There are different performances calculated for five different GO term sizes as 

well as genes with a different number of PCSVs. Genes with single, 2–5, 6–15, and 16–66 

PCSVs are shown in red, green, cyan, and magenta color, respectively. Each point shows the 

performance of a particular GO term in the defined size. 
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 CHAPTER 5
 

Conclusions and Future Work 

 

5.1 Conclusions 

A vast majority of multi-exon genes in humans undergo alternative splicing, and this can 

have significant functional consequences. Next-generation sequencing technology has greatly 

accelerated the study of alternative splicing events. However, there are limitations of using short 

read sequencing to study alternative splicing events. For example, reconstruction of transcripts 

from short-read RNA sequencing is not sufficiently accurate [1, 2]. Moreover, relatively few of 

the protein products of splice isoforms have been characterized functionally. In this dissertation, 

I outlined a way to use long read sequencing together with short read sequencing to reconstruct 

transcripts in a given sample. Moreover, I presented two studies, one for mouse and one for 

human, where we used machine learning tools and rich functional genomics data to predict 

functions for alternatively spliced isoforms.   

In Chapter 2, we described our study where we investigated the overall transcriptome of a 

kidney using both long reads from PacBio platform and short reads from Illumina platform.  We 

used short reads to validate full-length transcripts found by long PacBio reads, and generated two 

high quality sets of transcript isoforms that are expressed in glomerular and tubulointerstitial 

compartments. Then, the confirmed transcript isoforms are compared to the known set of known 

transcript isoforms in GENCODE and a final list of expressed transcript isoforms along with 

their annotation status is released to be used by researchers in downstream kidney transcriptome 
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studies. In this study, integrating data from two different sequencing technologies allowed us to 

identify and validate nearly 14k known transcripts in tubulointerstitial and glomerular 

compartments. Moreover, we identified and validated close to 12k and 8k multi-exon potential 

novel transcripts from each compartment respectively. 

In Chapter 3, we stated that it is highly beneficial that the investigation of functions is 

carried out at the isoform level, because gene functions are delivered through alternatively 

spliced transcript isoforms that encode proteins of different functions.  From this point of view, 

the standard gene function prediction paradigm has a major drawback in that it considers a gene 

as one single entity without differentiating its isoforms. The availability of transcript-level 

expression data from RNA-seq provides a rich resource for addressing this drawback. However, 

algorithmically, any supervised learning algorithm developed for gene function prediction cannot 

be directly applied to isoform function prediction because of the lack of isoform-level, ‘ground-

truth’ functional annotations. To address this challenge, we developed an iterative algorithm that 

predicts functions at the individual isoform level by conceptualizing a gene as a ‘bag’ of 

isoforms of potentially different functions. Our key idea was to iteratively extract the common 

pattern of a subset of isoforms across the positive genes of the function under investigation, 

aiming at maximizing the coherence within this subset of isoforms and the discriminative power 

against the other ‘negative’ genes (genes not related to the specific function under consideration). 

Through experimental validation, we demonstrated that our approach in combination with 

publicly available RNA-seq data is capable of differentiating isoform functions, promising better 

and deeper understanding of gene functions.  

In Chapter 4, we described the function prediction study for human protein coding 

isoforms. We used a multiple instance learning based approach for predicting the function of 
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protein coding splice variants. Our results demonstrated that our SVM-based algorithm 

combining RNA-seq expression data with Gene Ontology biological function annotations is 

capable of discriminating the functions of specific splice variants. This is promising for deeper 

understanding of human gene functions considering the remarkable emergence of multiple 

protein-coding splice variants from multi-exonic genes in multicellular organizations. 

Experimental studies are needed to validate the predictions in this genome-wide resource and to 

characterize the functional dynamics of splice variants in different tissues and conditions. 

5.2 Future directions 

In Chapter 2, we explained how we used short reads in conjunction with long reads to 

infer full structure of transcripts. Using short reads for validation of splice junctions allowed us 

to eliminate PacBio transcripts with erroneous junctions. On the other hand, none of the 

sequencing technology is able to reliably and accurately locate transcription start sites for 

transcripts. PacBio tend to produce transcript with 5’ends truncated. Two possible ways have 

been proposed to mitigate this problem. Cartolano et al. proposed the implementation of the 

TeloPrime Full Length cDNA Amplification kit to the Pacific Biosciences Iso-Seq technology in 

order to enrich for genuine full-length transcripts in the cDNA libraries [3]. In another study, 

deepCAGE (Cap Analysis of Gene Expression) data is used as a mean to correct for exact 5’ end 

coordinate of transcripts with success [4]. In this study, we imputed the ambiguous start positions 

by assuming the 5′-most Iso-Seq finding as the true 5′ end which may still result in a shorter than 

actual transcript. Incorporating either of these methods to ours would improve our ability to 

reconstruct transcription start sites accurately. 

There are many ways to expand upon our existing method for function prediction of 

alternatively spliced isoforms.  First, it is possible to extend the functional genomics dataset used 



121 

 

in our studies. RNA-seq data, which was the only type we used, are the richest resource for 

genome-wide, isoform-level data so far. But the basic concept is extendable to other large-scale 

datasets providing isoform-level information such as protein domain data, protein docking 

scores, exon array, amino acid sequence variation, post-transcriptional regulation, and post-

translational regulation datasets. Furthermore, our studies only focused on the base learner SVM. 

However, our approach is highly extendable to other modeling methods, such as logistical 

regression, random forests and deep learning methods. 

Our function prediction studies are limited to the incomplete isoform catalog maintained 

by NCBI and GENCODE, but it can be readily updated whenever the genome annotation of 

isoforms is updated. Additionally, alternatively spliced isoforms often show tissue-specific 

expression and functions [5-10]. Our generic algorithm does not yet take the tissue-specific 

functionality into consideration. We expect that more accurate and biologically meaningful 

isoform function prediction could be achieved if tissue specificity were taken into account. Our 

method is further limited by the accuracy of current methods that assign reads to individual 

isoforms and estimate isoform-level expression values. If more advanced algorithms are 

developed, our algorithm could directly utilize the estimates from those algorithms and generate 

isoform function predictions. 
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