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ABSTRACT  
 

 Ewing sarcoma is an aggressive bone and soft tissue tumor with a high 

propensity for metastasis; however, the mechanisms that contribute to this process are 

poorly understood. The Wnt/beta-catenin signaling pathway is critical for oncogenesis in 

numerous cancers, and although previous studies implicate a role for this pathway in 

Ewing sarcoma, its specific function and contribution is unknown. Previous work by our 

lab revealed that the Wnt-modulatory receptor LGR5 is highly expressed in patients with 

aggressive disease, and we hypothesized that LGR5 regulates activation of Wnt/beta-

catenin signaling. Through investigation of primary tumors, we discovered that focal 

nuclear beta-catenin is detectable in a subset of Ewing sarcoma patients and strongly 

associated with LGR5 expression. Patients whose tumors have nuclear beta-catenin or 

high expression of the downstream Wnt/beta-catenin target LEF1, experienced worse 

clinical outcomes and overall survival. 

We next used in vitro and in vivo models to determine the function of Wnt/beta-

catenin signaling in Ewing sarcoma. Importantly, we found that LGR5 expression and 

Wnt activation were highly heterogeneous. We then investigated the downstream 

effects of Wnt/beta-catenin activation in the most highly Wnt-responsive cells. RNA-

sequencing revealed that Wnt/beta-catenin paradoxically inhibits EWS-ETS 

transcriptional activity, resulting in a phenotypic change from a proliferative to a 
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migratory and metastatic state in vitro and in vivo. In addition, the metastasis-associated 

molecule Tenascin C was upregulated by Wnt/beta-catenin signaling, and was found to 

be a mediator of migration in vitro and metastasis in vivo. In the context of the tumor 

microenvironment, we further found that patient tumors with high Wnt/LEF1 expression 

had significant correlation with expression of stroma- and angiogenesis-related genes 

associated with a poor prognosis. Together, these data provide novel avenues of 

exploration for tumor-microenvironment interactions.  

In conclusion these findings implicate a critical role for Wnt/beta-catenin-signaling 

in mediating migration and metastasis. This occurs in part through antagonism of 

EWS/ETS fusion protein activity and by up-regulation of the metastasis-associated gene 

Tenascin C. In addition, tumor-microenvironment interactions modulated by Wnt/beta-

catenin further contribute to pathogenesis. Together these findings provide exciting new 

venues for therapeutic investigation. 
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Chapter 1 

Introduction 

                

Rationale 

Ewing sarcoma is an aggressive tumor that most commonly affects children and 

adolescents and young adults. It has an extremely high propensity to metastasize, and 

lower survival rates than other pediatric tumors [1]. In particular, patients with primary 

drug resistance or metastasis often have extremely poor outcomes, and novel 

therapeutic strategies are required.  Ewing sarcoma is characterized by oncogenic 

EWS/ETS fusion proteins that result from chromosomal translocations, the most 

common of which is the t(11;22) translocation that encodes the fusion protein EWS/FLI-

1 [1]. Although EWS/ETS fusions are the primary oncogenic insult in Ewing sarcoma, 

the mechanisms that confer particularly aggressive disease remain unclear.  Recent 

evidence suggests that Ewing sarcoma tumors hijack stem cell pathways to promote 

oncogenesis [2]. Further, we have found that a molecule that regulates Wnt/beta-

catenin signaling, namely the Wnt-modulatory stem cell marker LGR5, is highly 

upregulated in Ewing sarcoma patients with aggressive disease [3]. The Wnt/beta-

catenin pathway is a highly conserved and promotes cellular proliferation and stem cell 

self-renewal during development and in adult stem cells [4]. Wnt signaling plays a major 

role in the development and progression of numerous tumors [4]; however, the specific 
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function of this pathway in Ewing sarcoma remains unclear. The aim of this dissertation 

is to determine the function of the Wnt/beta-catenin signaling pathway in Ewing 

sarcoma, and elucidate its contribution to tumor pathogenesis. 

Ewing sarcoma overview 

Ewing sarcoma is an aggressive, undifferentiated tumor characterized by its 

small round blue-cell histology and pathognomonic chromosomal translocations that 

encode chimeric EWS/ETS fusion proteins [1]. The most common site of Ewing 

sarcoma development is the bone, with the highest prevalence of development in the 

pelvis (25%), femur (16.4%), and ribs (12%) [1]. Before current treatment regimens, 

survival for patients with Ewing sarcoma was fatal in 90% of patients. Today, the event 

free survival rate over 5 years is approximately 75% for patients with localized disease 

[5]. These advances are largely due to local control by surgery, radiation, and a 

chemotherapeutic regimen of alternating vincristine, doxorubicin, cyclophosphamide 

with ifosfamide and etoposide [6]. Despite these life-saving advances in local control, 

many pediatric patients suffer long-term side effects due to the highly toxic 

chemotherapy regimen [7]. Further, there has not been similar improvement for 

treatment of patients who experience metastasis and relapse. Patients who experience 

metastasis or relapse have an extremely poor prognosis, with only 20% of patients 

experiencing survival longer than five years [8]. When distant metastases develop, the 

most common locations are bone, bone marrow, and the lungs[1, 9].Histologically, 

Ewing sarcoma cells express CD99[10]  and exhibit a primitive neuroectodermal 

phenotype[9], but the exact histogenesis of this tumor remains unknown. 
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Molecular genetics 
 

EWS-ETS chromosomal translocations are the defining genetic aberration in 

Ewing sarcoma. The most common translocation t(11;22) (q24,q12) encodes the EWS-

FLI1 chimeric fusion protein, and occurs in approximately 85% of Ewing sarcoma 

tumors. The second most common translocation t(21;22)(q22,q12) encodes the EWS-

ERG fusion and occurs in approximately 10-15% of tumors[11]. The remaining tumors 

express more rare fusions including EWS-ETV1, EWS-ETV4, and EWS-FEV [12]. EWS 

is a ubiquitously expressed RNA binding protein, and its function in normal homeostasis 

is not well understood but likely to be involved in RNA processing [13]. The ETS family 

encodes transcription factors that are involved in regulation of diverse cellular functions 

including differentiation, cell cycle regulation, and apoptosis, and are frequently involved 

in oncogenesis [13]. In EWS/ETS fusions, the transactivation domain of EWS is fused in 

frame to the DNA binding domain of the ETS family protein. This results in direct 

transcriptional activation which in part mediates its oncogenic effect [14]; however, the 

EWS/FLI-1 oncogene exerts widespread effects on the epigenome, mediating profound 

changes in promoters, enhancers, and super-enhancers [15, 16], resulting in extensive 

effects on gene expression.  Important oncogenic genes that that contribute to 

pathogenesis and that are directly regulated by EWS-FLI-1 include NKX2.2  [17, 18], 

NR0B1[19, 20], VRK1 [15] and EZH2[21]. EWS/FLI-1 also functions as a transcriptional 

repressor, and its function in this capacity is only beginning to become understood, but 

likely involves displacement of wild type ETS transcription factors from enhancers [15], 

as well as through direct interaction with LSD1 (lysine specific histone demethylase 1), 

a component of the nucleosome remodeling deacetylase (NuRD) complex [22, 23]. 
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Important repressed targets of EWS-FLI1 are TGFBR2 [24, 25], LOX [23, 26], and, 

which have evidence of tumor suppressive functions and repress growth in Ewing 

sarcoma cells.  

` Recent whole-genome profiling studies have shown that few additional recurrent 

mutations are found in Ewing sarcoma apart from EWS/ETS rearrangements [27-29]. 

The most common recurrent secondary mutation is in the STAG2 gene, which occurs in 

up to 21% of tumors, followed by CDNK2A (up to 14%), and TP53 (7%) [27-29]. 

Although the majority of these tumors are genetically quiet at the time of diagnosis, with 

the median number of somatic mutations being 7 per tumor [29],   the prevalence of 

mutations doubles on average after therapy [28]. Interestingly, some patients were 

found to harbor only the EWS/ETS fusion as a single mutation [28], indicating the 

EWS/ETS alone is sufficient to promote tumor formation. The paucity of somatic 

mutation suggests that EWS/ETS fusions are the predominant oncogenic driver of this 

tumor, and leaves little hope for adaption of personalized medicine where drug selection 

is guided based on the presence of targetable mutations. Despite this, targeting 

EWS/ETS fusions themselves is an active area of investigation. EWS/ETS targets are 

extremely desirable targets for therapy because Ewing sarcoma cells are dependent 

upon their expression for survival, and they are not expressed in normal tissue [30]. A 

number of compounds including cytarabine [31], trabectedin [32], and mithramycin [33, 

34] have been shown to reverse the EWS/FLI-1 signature, but achieving therapeutic 

levels without toxicity has been challenging. Mithramycin analogs with improved 

targeted therapy are currently under investigation [34].  The design of small molecules 

targeting EWS/FLI-1 has also proven difficult, although the small molecule inhibitor YK-
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4-279, which targets protein-protein interactions between EWS/FLI-1 and RNA helicase 

[35], may yield promising results [36].  

Developmental origins 

 Ewing sarcoma cells are characterized by a lack of obvious histological 

differentiation and arise in various tissues of the body. As a result, little is understood 

about the cell-of-origin of this tumor. There is no known precursor lesion, which further 

contributes to the difficulty in understanding its development. Although it most 

commonly arises in bone and soft tissues, thus warranting its classification as a 

sarcoma, Ewing sarcoma tumors have also been reported in epithelial tissues such as 

the kidney [37], intestine [38], and bladder [39], among other tissues types [40-44].  

Further complicating its identity, it was originally classified by James Ewing as an 

endothelioma due to sheaths of intact blood cells found throughout the tumor [45], 

which may be caused by vascular mimicry by the tumor cells themselves [46]. Molecular 

characterization studies have found that Ewing sarcoma tumors express features of 

mesenchymal stem cells [47], neural crest stem cells [48], and endothelial cells[48]. 

Taken together, these findings result in the prevailing hypothesis that the cell-of-origin is 

likely a primitive stem cell with potential to differentiate along both neural and 

mesenchymal lineages [2]. In line with this observation, both mesenchymal stem cells 

[49] and neural crest stem cells[50] can tolerate expression of EWS/FLI-1 and undergo 

oncogenic transformation, despite the fact that EWS/FLI-1 is toxic to most cells [51, 52]. 

Although transformation can be achieved in stem cells in vitro, numerous investigators 

have unsuccessfully attempted to generate a transgenic mouse model of Ewing 

sarcoma. Given the highly variable clinical picture of this tumor, it is possible that the 
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cell-of-origin may vary among individual patients. Further, the EWS/ETS oncogenic 

mutation might occur at various times during development, in cells with varying degrees 

of neuro-mesenchymal differentiation. As it follows, the precise timing and specific 

cellular context that lead to Ewing sarcoma formation remain challenging and enigmatic. 

Mechanisms that promote aggressive disease 

Advances in local tumor control have improved survival rates for Ewing sarcoma 

patients; however, for patients who experience upfront chemotherapy resistance, 

metastasis at diagnosis, or relapse, survival remains dismally low. In particular, the 

presence of overt metastases at diagnosis is the most significant factor that determines 

long-term prognosis for Ewing sarcoma patients [8]. Despite this, the mechanisms that 

mediate metastasis in this tumor remain surprisingly understudied. Because the 

genome of Ewing sarcoma tumors is largely devoid of mutations apart from EWS/ETS 

translocations, and EWS/ETS translocations are present in both primary and metastatic 

tumors, it is unlikely that genetic driver mutations of metastasis alone are account for 

the metastatic propensity of this tumor. Known mediators of metastatic disease include 

caveolin [53, 54], ZEB2 [55], CXCR4 [56, 57], and ERBB4 through activation of PI3-

AKT-Rac1 [58]. These targets are promising and may likely have actionable therapeutic 

potential. In addition, emerging evidence suggests that modulation of EWS/FLI-1 activity 

changes the migratory and invasive potential of Ewing sarcoma cells. In addition to 

inhibition of proliferation, RNAi-mediated knockdown of EWS/ETS fusions promotes in 

vitro migration and invasion, as well as lung colonization by tumors cells in vivo [59, 60].  

Up-regulation of critical cytoskeleton genes zyxin (ZYX) and alpha-5 integrin [59], which 

are normally repressed by EWS/FLI-1, in part mediates these effects. This paradoxically 
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suggests that low EWS/FLI-1 activity or expression levels may contribute to metastatic 

disease. Despite these findings, the mechanisms by which EWS/FLI1 levels or activity 

are altered, especially in patients, remain unknown. 

Wnt/beta-catenin signaling 

The Wnt/beta-catenin pathway is a complex, evolutionary conserved signaling 

pathway that is critical for both development and adult tissue maintenance. Wnt ligands 

initiate a downstream signaling cascade which stabilizes the signaling molecule beta-

catenin and results in activation of transcription in association with TCF/LEF 

transcription factors. Beta-catenin activation is the hallmark of the ‘canonical’ signaling 

cascade. There are 19 identified Wnt ligands in mammals, and the cellular response is 

highly dependent upon the Wnt ligand and context of the signal-receiving cell [61, 62]. 

Wnt/beta-catenin signaling is essential for normal embryogenesis and contributes to 

patterning and maintenance of a diverse set of tissues, including but not limited to the 

bones, intestinal system, skin, teeth, mammary gland, hematopoietic system, brain, and 

nervous systems. Depending on the cell type, Wnt/beta-catenin-dependent activation of 

target genes results in proliferation, patterning, migration, and/or self-renewal [63]. Wnt 

ligands can also activate beta-catenin-independent pathways, which are considered 

non-canonical Wnt signaling pathways. The best studied of these pathways include (1) 

Wnt/JNK (Jun amino-terminal kinase) pathway, also known as the planar cell polarity 

(PCP) pathway, (2) Wnt/Rho GTPase pathway, and (3) Wnt/Calcium pathway [64]. 

These pathways are important for cellular migration and separation of germ layers 

during development. Wnt signaling through both beta-catenin dependent and 
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independent mechanisms result in a large array of important mechanisms required for 

regulation of many critical cellular behaviors. 

Mechanism of signaling 

 
Wnt/beta-catenin signaling is characterized by a signaling cascade that results in 

nuclear translocation of beta-catenin and transcriptional activation (Fig. 1.1).  Briefly, in 

the absence of Wnt ligands, beta-catenin is sequestered in a destruction complex 

comprised of glycogen synthase kinase 3 (GSK3), and the scaffolding proteins Axin2 

and adenomatous polyposis coli (APC) [4]. Together, these proteins serve to bind and 

phosphorylate beta-catenin, which targets it for degradation in the proteasome. Wnt 

signaling is activated when a Wnt ligand such as Wnt1 or Wnt3a engages with the 

transmembrane receptors frizzed and low-density lipoprotein receptor 5/6 (LRP5/6), 

which in turn causes the cytoplasmic protein Dishevelled (Dsh) to recruit the destruction 

complex to the cellular membrane [4]. GSK3-beta along with casein kinase 1 (CK1) then 

phosphorylate LRP5/6, causing inhibition the destruction complex and thereby resulting 

in stabilization of beta-catenin [4]. This allows beta-catenin to translocate into the 

nucleus, where it binds to members of the TCF/LEF family of transcription factors, 

alleviates transcriptional repression by Groucho/TCF, and results activation of Wnt 

target genes [4]. Depending on the cell and context, activation of these genes causes 

numerous responses including stem cell self-renewal, expansion, and lineage 

determination [63].  
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Figure 1.1 Mechanism of Wnt/beta-catenin mediated transcriptional activation. 

In the absence of Wnt ligands, the destruction complex phosphorylates and 
ubiquitinates beta-catenin, resulting in proteasomal degradation. When a Wnt ligand 
associates with the frizzled (Fz)-LRP receptor complex, the destruction complex is 
recruited and beta-catenin is stabilized in the cytoplasm, resulting in nuclear 
translocation and association with TCF/LEF family transcription factors. The repressive  
Groucho/TCF complex is replaced and context-dependent transcription occurs. In the 
absence of RSPO ligands, transmembrane E3 ubiquitin ligase proteins ZNRF3 or 
RNF43 ubiquitinate Fz/LRP, which results in internalization and lysosomal degradation 
of the receptor complex. When RSPO is present and associates with 
LGRs,  ZNRF/RNF and LGR proteins associate and are degraded, thus reducing 
Fz/LRP turnover, and allowing for potentiation of Wnt/β-catenin signaling.  
 

Regulation of Wnt/beta-catenin signaling 

Wnt genes encode cysteine-rich glycoproteins that are secreted over relatively 

short distances. Wnt ligands require palmitoylation for secretion, and this is 

accomplished by an O-acyltransferase called Porcupine [65]. In addition to regulation of 
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secretion, the Wnt pathway can be modulated at the cell surface by a number of 

exogenous factors.  The Dickkopf (DKK) family of proteins interact with the cell surface 

receptor Kremen, and promote internalization of LRP5/6, thereby inhibiting Wnt signal 

transduction [66]. The four members (DKK1-4) of this family of proteins are generally 

thought to be antagonistic of Wnt/beta-catenin signaling, with the exception of DKK2, 

which has been shown to be both antagonistic and  agonistic [67, 68]. In addition, Wnt 

signaling can be modulated by proteins binding directly to Wnt ligands, such as 

secreted frizzled-related proteins (sFRPs). These proteins contain a domain that is 

homologous to the Wnt-binding domain of frizzleds [69]. Recently, it has been 

elucidated that Wnt signaling can be potentiated by the RSPO/LGR/RNF signaling 

complex, in which R-spondin (RSPO) ligands associate with the LGR family of 

membrane-bound receptors [70, 71]. This RSPO-LGR association recruits E3-ubiquitin 

ligase family members ZNRF3 and RNF43 away from the LRP5/6-frizzeld complex. This 

thereby stabilizes the membrane Wnt receptor complex, which results in increased and 

sustained Wnt signaling activity [72, 73] (Fig. 1.1). 

Functions of Wnt/beta-catenin signaling in development and homeostasis 
 

During embryogenesis, Wnt/beta-catenin is essential for the development of 

numerous organ systems [63, 74]. In adult tissues, Wnt/beta-catenin is essential for 

regulation of intestinal homeostasis[4], and further contributes significantly to 

hematopoiesis [75] and regulation of hair follicle/ skin homeostasis[76]. The role of Wnt 

signaling in development homeostasis is broad, so the following introduction will focus 

on its role in normal cell types most likely to be relevant to Ewing sarcoma.  
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Wnt signaling plays a critical role in the development and function of the neural 

crest. The neural crest is a transient embryological structure found only in vertebrates 

which gives rise to peripheral nervous system structures such as sensory neurons, but 

also to non-neural cells such as melanocytes, bone, and cartilage. The neural crest 

arises from the ectoderm along the developing neuraxis at the border of neural and non-

neural ectoderm [11]. At this stage, the ectoderm must be patterned, or “induced” into 

NCSCs.  In experiments using model organisms, over-expression of canonical Wnts 

can induce neural crest formation [12, 13], and inhibition of the Wnt pathway can block 

induction [14]. After induction, NCSCs undergo an epithelial-to-mesenchymal transition 

(EMT) where they migrate as undifferentiated progenitors. The process of EMT in the 

neural crest requires the complex coordination of numerous signals, including Wnt/beta-

catenin signaling. When the Wnt pathway is blocked during this process, NCSCs are 

unable to migrate; however, overexpression of beta-catenin allows cells to regain their 

ability to migrate [15].  Once NCSCs arrive at their destination, they must differentiate 

into their ultimate cellular fate. Like other stem cells, NSCS differentiation depends on 

an intricate milieu of signaling molecules to provide the correct balance of extracellular 

cues. Correct regulation of beta-catenin is necessary for proper lineage specification 

[18]. Together these studies indicate that a critical role exists for Wnt/beta-catenin 

signaling at multiple stages during the transient life of NCSCs. 

The function of Wnt/beta-catenin signaling in mesenchymal stem cells (MSCs) 

and bone homeostasis is highly complex, but may also provide insight toward its role in 

Ewing sarcoma biology. In the bone, Wnts act as short-range signals, and are likely 

provided by osterix-positive bone progenitors cells [77].  MSCs reside in the bone 

marrow and have the capacity to differentiate into osteoblasts, chondrocytes, 
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myoblasts, and adipocytes. Wnt/beta-catenin signaling is important for allowing MSCs 

to remain in a self-renewing and proliferating, but undifferentiated state [19].  However, 

correct levels of endogenous Wnts are critically important for maintenance of this state, 

as high-doses of canonical Wnt signaling, as well as non-canonical signaling induced by 

Wnt5a, inhibit MSC proliferation [20, 21]. Wnt signaling further contributes to bone 

formation through MSC differentiation. Wnt/beta-catenin signaling has been shown to 

suppress osteogenesis [19], although this is likely dependent on the dose of Wnt3a, 

since overexpression of Wnt3a or beta-catenin can enhance osteogenesis and 

chondrogenesis [22, 23]. These studies have been elaborated upon further elsewhere 

(see [78]), and highlight the complexity of Wnt/beta-catenin regulation and function in 

bone and MSC homeostasis. Taken together, these studies demonstrate the vastly 

complex roles of Wnt/beta-catenin signaling in individual systems. The various 

developmental contexts in which the putative cells-of-origin of Ewing sarcoma may 

encounter Wnt signals are important, as they may provide insight and critical clues 

toward understanding the response of these tumor cells to Wnt ligands. 

Wnt/beta-catenin signaling in cancer 
 

The best described role for Wnt/beta-catenin signaling in the pathogenesis of cancer is 

in epithelial cancers, with colorectal carcinoma (CRC) being particularly well-studied. 

Classically in CRC, a critical component of the beta-catenin destruction complex, often 

APC, is mutated, allowing constant stabilization of beta-catenin and thus constitutive 

activation of Wnt target genes. This drives proliferation of the intestinal stem cells, 

leading to the formation of thousands of adenomas along the intestinal tract, which 

inevitably transform into carcinomas [79]. CRC can similarly be driven by activating 
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mutations in beta-catenin [79], as well as newly discovered mutations encoding RSPO2 

or RSPO3 fusions that occur in up to 10% of CRC and potentiate Wnt/beta-catenin 

signaling[80], underscoring the critical importance of this pathway in CRC pathogenesis. 

Activation of the Wnt signaling pathway has further been implicated in the progression 

of renal, bladder, prostate, breast, skin, and lung carcinomas [81-84].  In CRC and other 

epithelial cancers, a significant body of work has shown that activation of the Wnt/beta-

catenin pathway leads to tumorigenesis through unchecked stimulation of proliferation 

[4, 79, 85]. This occurs through up-regulation of Wnt/beta-catenin target genes that 

mediate the cell cycle progression, such as cyclin D1 [86] and MYC [87]. As a result, 

significant effort is ongoing toward therapeutically inhibiting the proliferative effects 

induced by this pathway [88]. 

Wnt signaling in sarcomas 
 

The role of Wnt signaling in tumors arising in tissues of mesenchymal origin, 

known as sarcomas, is not straightforward, because Wnt/beta-catenin activation been 

reported to be both tumor suppressive and oncogenic in sarcomas [64, 89]. Increased 

Wnt activity is observed in a large proportion of human sarcomas including 

osteosarcoma, rhabdomyosarcoma, synovial sarcoma, and liposarcoma [89]. Similar to 

CRC, sarcomas exhibit activating mutations in Wnt/beta-catenin regulatory components, 

but Wnt/beta-catenin activation also occurs through autocrine stimulation via up-

regulation of Wnt ligands [89]. In many types of sarcoma cells, up-regulation of CDC25A 

by Wnt/beta-catenin results in proliferative phenotypes, yet this is not true of all 

sarcomas [64]. Like its complex role in normal MSC homeostasis, the effects of beta-

catenin in sarcomagenesis are strongly dictated by the degree and type of 
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mesenchymal lineage specification [64]. Thus, the effects of Wnt/beta-catenin in 

sarcomas cannot be generalized and should be considered in the context of each tumor 

type. 

Wnt/beta-catenin signaling in Ewing sarcoma 

The first evidence for a role for Wnt/beta-catenin signaling in Ewing sarcoma was 

provided by Uren and colleagues [90], who characterized expression of multiple Wnt 

ligands and molecules involved in the signaling cascade in  Ewing sarcoma cell lines, 

and showed that Wnt3a induces beta-catenin nuclear localization and a migratory 

phenotype, suggesting that Wnt3a may influence the metastatic potential of Ewing 

sarcoma [90].  Further, Wnt3a signaling results in the formation of long cytoplasmic 

extensions, which lead to investigation of mechanisms that regulate cytoplasmic 

extensions, or “neurites” that some Ewing sarcoma cells generate in response to Wnt3a 

[91, 92]. Critical components of both Wnt/beta-catenin and non-canonical Wnt/JNK 

signaling cascades are necessary for neurite formation [91], however, the functional 

significance of these structures remains unknown.  Intriguingly, the Wnt inhibitor DKK1 

also induces neurite formation [91, 93]. Taken together, these studies reveal that factors 

influencing both Wnt/beta-catenin and non-canonical Wnt signaling pathways may be 

responsible for neurite formation. Considering that canonical and non-canonical Wnt 

ligands can antagonize the functions of each other [94], it may be possible that the 

balance of exogenous Wnt modifying molecules may influence different behaviors in 

Ewing sarcoma cells. Despite this, the function relevance of these cytoplasmic 

extensions to Ewing sarcoma pathogenesis remains unknown. 
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Since these studies, a recently published model of EWS/FLI-1-induced 

transformation in murine osteochondrogenic progenitors highlighted the Wnt/beta-

catenin axis as a key regulator of tumorigenesis [95]. In this study, expression of 

EWS/FLI-1 in primary murine osteochondrogenic precursor cells resulted in formation of 

Ewing sarcoma-like tumors. Gene set enrichment analysis (GSEA) and qRT-PCR 

revealed significant up-regulation of Wnt pathway genes in early tumor formation. 

Further, these tumors had immunohistochemical evidence of nuclear beta-catenin, and 

inhibition of tumor formation was achieved through shRNA-mediated silencing of beta-

catenin as well as by the beta-catenin inhibitor iCRT14 [95]. Taken together, these data 

provide the first evidence that Wnt/beta-catenin signaling is essential for in vivo 

oncogenic transformation by EWS/FLI-1. 

DKKs have also been implicated in the progression of Ewing sarcoma. Ewing 

sarcoma cells express low levels of DKK1 [96], but overexpress DKK2 [97, 98]. Ectopic 

DKK1 but not DKK2 expression inhibits the growth of Ewing sarcoma cells [97]. 

Recently, Hauer and colleagues confirmed that DKK2 was overexpressed in Ewing 

sarcoma, and discovered that DKK2 regulates invasion and metastasis through up-

regulation of numerous genes including the matrix metalloproteinase MMP1 [98]. The 

authors suggest that this may be due to activation of Wnt/beta-catenin signaling, 

although scant evidence was provided [98]. The role of DKK2 and its involvement in 

Wnt/beta-catenin activation in Ewing sarcoma is in need of further clarification, but initial 

studies provide intriguing evidence toward a significant role in pathogenesis. 

The EWS/FLI-1 fusion protein has been implicated in modulating Wnt activity, 

however, the data regarding its specific role is not clear. When EWS/FLI-1 was 

ectopically expressed in heterologous cell types, a strong up-regulation of neural crest-
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related genes was observed in addition to a Ewing sarcoma-like phenotype. Of these 

genes, a large proportion of them are associated with previously described Wnt/beta-

catenin as well as non-canonical Wnt target genes [99]. Despite this induction of 

downstream Wnt genes, no nuclear beta-catenin was observed in these cells. Thus, a 

subset of the target genes of EWS/FLI-1 may serve to hijack the Wnt signaling genes 

that drive proliferation during development and contribute to tumorigenesis.  In direct 

contrast to this study, Navarro and colleagues shows that EWS/FLI-1 directly inhibits 

transcription of Wnt target genes [96]. The proposed mechanism by which this occurs is 

through EWS/FLI-1 binding to the TCF family transcription factor LEF1. Thus, EWS/FLI-

1 may inhibit beta-catenin mediated transcription by interfering with transcriptional co-

activators, but may itself directly influence Wnt transcription through its own aberrant 

transcription factor activity. Further EWS/FLI-1 binds to the DKK1 promoter and inhibits 

its expression[96], consistent with earlier observations that DKK1 is found at very low 

levels in Ewing sarcoma and suppress proliferation [97].  Evidence for regulation of 

DKK2 by EWS/FLI-1 is conflicting, as DKK2 is shown to be regulated both directly [97] 

and independently [98] of EWS/FLI-1. Together, it is likely that EWS/FLI-1 and 

Wnt/beta-catenin cross-talk occurs, and EWS/FLI-1 may both activate and repress Wnt-

associated genes.  

Work by our lab has shown that the stem cell marker LGR5 is heterogeneously 

expressed by Ewing sarcoma cells, and associated with aggressive disease[3]. 

Importantly, we showed that RSPO potentiates Wnt/beta-catenin activation through 

LGR5, and that shRNA-mediated silencing of LGR5 abrogates this effect. Unlike 

carcinomas, this robust and potentiated Wnt/beta-catenin signaling has no effect on 
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tumor proliferation[3]. Apart from AXIN2, the downstream target genes and phenotypic 

effects of Wnt/beta-catenin remained unknown.  

Non-canonical Wnt signaling in Ewing sarcoma 

When Uren and colleagues first characterized expression of Wnt signaling mediators in 

Ewing sarcoma, it was noted that the prototypical ‘non-canonical’ Wnt ligands Wnt5a 

and Wnt11 are expressed by Ewing sarcoma cell lines [90]. Further studies have 

confirmed Wnt5a and Wnt11 expression in ES [100, 101]. Recently, it was shown that 

Wnt5a results in up-regulation of CXCR4 through JNK pathway activation, resulting in 

increased chemotaxis to CXCL12 [101].  Further, ROR1 (Receptor tyrosine kinase-like 

orphan receptor 1)/Wnt5a signaling has recently been implicated in Ewing sarcoma 

migration. ROR1 is a member of the ROR family of receptors known to function as 

Wnt5a receptors and induce PCP signaling [102]. In Ewing sarcoma, ROR1 silencing 

blocks migration, and may function as a receptor of Wnt5a [103], suggesting another 

mechanism of Wnt5a-mediated migration. As aforementioned, non-canonical Wnt/JNK 

signaling has also been implied in neurite extension [91], but relevance of this 

phenomenon is unclear. Thus, the implications non-canonical Wnt signaling in Ewing 

sarcoma is only beginning to be explored, and is in need of further characterization. 
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Summary 

 Ewing sarcoma is a highly aggressive disease and novel therapeutic strategies to 

prevent and treat metastasis are severely needed. The Wnt/beta-catenin signaling 

pathway is a key regulator of normal development and homeostasis that is frequently 

deregulated in cancers. Although studies have alluded to a role for Wnt/beta-catenin 

signaling in Ewing sarcoma pathobiology, few comprehensive studies have been 

performed, and little clinical evidence has yet been reported to implicate its relevance in 

disease. The studies that follow in this dissertation set out to establish whether or not 

there is a role for Wnt/beta-catenin signaling in Ewing sarcoma pathogenesis, and to 

determine the specific functions and downstream target genes regulated by this 

pathway. Together, these studies have elucidated a previously unknown role of the 

Wnt/beta-catenin signaling pathway in Ewing sarcoma biology. 
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Chapter 2  
                 

Activation of Wnt/Beta-Catenin Signaling in Tumor Cell Subpopulations Promotes 
Ewing Sarcoma Progression by Antagonizing EWS/ETS Fusions 

 

Abstract 

Mutations that deregulate Wnt/beta-catenin signaling underlie the pathogenesis 

of several human cancers, but the role of Wnt/beta-catenin in sarcomas in general, and 

Ewing sarcoma specifically, is not well understood. We evaluated beta-catenin levels 

and localization in primary Ewing sarcomas and found evidence of marked intra- and 

inter-tumor heterogeneity. Further, RNA sequencing studies showed that Wnt/beta-

catenin activation is associated with a distinct gene expression signature. Specifically, 

activation of Wnt/beta-catenin signaling in Ewing sarcoma cells was found to antagonize 

the transcriptional activity of EWS/ETS fusion oncoproteins. Moreover, activation of 

Wnt-beta-catenin signaling induced changes in Ewing sarcoma cells that phenocopy 

effects of EWS/ETS loss-of-function, including actin cytoskeleton changes and transition 

to a migratory cell state. Further, activation of Wnt/beta-catenin signaling promoted 

metastatic lung engraftment in vivo. The findings suggested that Wnt/beta-catenin 

activation results in the acquisition of a more aggressive cellular phenotype. These cell-

based findings were validated in a cohort of clinically annotated Ewing sarcoma tumors, 

where high expression of LEF1 was associated with poor outcome. Moreover, LEF1 

levels in primary patient tumors were significantly correlated with a poor prognosis gene 
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signature and inversely related to expression of EWS/ETS target genes. Our results 

reveal a critical role for Wnt/beta-catenin signaling as a key mediator of tumor 

heterogeneity and disease progression in Ewing sarcoma patients. 
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Introduction 

Despite in-depth investigations of the role of Wnt signaling pathway alterations in 

other cancer types, a key functional contribution for Wnt signaling in Ewing sarcoma 

pathogenesis has yet to be elucidated. Prior in vitro studies have shown that Wnt 

signaling induces morphological changes rather than changes in cell proliferation and/or 

survival in Ewing sarcoma cells [90]. Consistent with these findings, work by our own 

group has shown that exposure of Ewing sarcoma cells to canonical Wnt ligands leads 

to stabilization and nuclear localization of beta-catenin but does not promote cell 

proliferation [3]. Recent evidence suggests that Wnt activation via DKK2 may contribute 

to Ewing sarcoma metastasis in vivo [98]. In addition, a recently published model of 

EWS/FLI-1-induced transformation in murine osteochondrogenic progenitors highlighted 

the Wnt/beta-catenin axis as a key regulator of tumorigenesis [95]. Thus, while the 

current body of data suggests canonical Wnt/beta-catenin signaling may contribute to 

human Ewing sarcoma pathogenesis, the specific functions of and downstream target 

genes regulated by Wnt pathway activation in the context of Ewing sarcoma remain 

unknown. 

 In the current work, we investigated whether activation of Wnt/beta-catenin 

signaling is evident in primary Ewing sarcoma tumors. We defined the transcriptional 

targets of Wnt/beta-catenin signaling in Ewing sarcoma cells and used in vitro models 

and patient tumors to investigate the biologic and clinical significance of Wnt/beta-

catenin activation. Our data show that very significant intra- and inter-tumor 

heterogeneity exists in Ewing sarcoma with respect to Wnt/beta-catenin activation and 

that transcriptional and functional antagonism between EWS/ETS fusion proteins and 
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Wnt/beta-catenin signaling contributes to Ewing sarcoma cell plasticity and tumor 

progression.  
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Results 

The LGR-Wnt/beta-catenin signaling axis is heterogeneously active in Ewing 

sarcoma tumors in vivo 

Previous work by our group showed that the R-spondin receptor LGR5, which 

acts to enhance Wnt signaling, is expressed by Ewing sarcoma tumors, and that high 

levels of LGR5 are associated with aggressive disease [3]. LGR5 is a Wnt pathway-

regulated marker of intestinal stem cells in the intestine and is often elevated in 

colorectal cancers [104-106].  Having established that LGR5 is highly variably 

expressed between Ewing sarcoma tumors and cell lines [3], we next sought to 

determine if LGR5 expression varies at the level of individual Ewing sarcoma cells. We 

performed in situ hybridization (ISH) assays on both Ewing sarcoma cell lines (Fig. 

2.1A) as well as tumor biopsies (Fig. 2.1B). Among the cell lines, there was clear 

evidence of heterogeneity with respect to the total levels of LGR5 expression, as well as 

variable numbers of positive and negative cells apparent in the cell lines studied. 

Likewise, in primary tumors, LGR5-positive cells could be detected adjacent to LGR5-

negative cells (arrows, Fig. 2.1B). In keeping with our prior qRT-PCR-based studies [3], 

expression of LGR5 was generally very low in primary tumors, with few to no LGR5-

positive cells detected.  To better quantify LGR5 expression in primary tumor biopsies 

we performed fluorescence-based, semi-quantitative ISH (SQUISH) on a tumor tissue 

microarray (TMA) that contained 58 Ewing sarcoma tumor cores. These studies showed 

that most of the CD99-positive Ewing sarcoma cells expressed very little to no 

detectable LGR5 (Fig. 2.1C). In contrast, a small proportion of tumors were found to 

contain a large number of LGR5-positive cells (Fig. 2.1C). Next, we performed beta-

catenin immunofluorescence staining of an adjacent section of the same TMA to 
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determine if tumors with high expression of LGR5 also showed evidence of active 

Wnt/beta-catenin signaling. Using CD99 as a marker of Ewing sarcoma cells and DAPI 

as a nuclear stain, we observed that a subset of tumors showed strong nuclear beta-

catenin nuclear and cytoplasmic staining (Fig. 2.1D). These findings were quantified 

using AQuA technology (see Methods), which confirmed that only a minority of cases 

displayed evidence of beta-catenin activation (Fig. 2.1E). Significantly, in the tumor 

cells, there was a positive correlation between LGR5 expression and nuclear beta-

catenin staining (Fig. 2.1F).  

Together these studies confirm that Ewing sarcoma cells express LGR5 and 

nuclear beta-catenin, providing evidence for activation of the LGR-Wnt/beta-catenin 

signaling axis. In addition, there is a high degree of tumor cell heterogeneity with 

respect to both LGR5 expression and beta-catenin activation, both among tumors and 

within individual tumor specimens. Further, these studies reveal that tumors with high 

expression of LGR5 have increased evidence of beta-catenin activation in vivo.  
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Figure 2.1. Heterogeneous expression of LGR-Wnt-beta catenin ES cells in vivo.  

(A) In situ hybridization for LGR5 was performed on primary ES tumors. A 
representative LGR5-positive tumor is shown. Note marked heterogeneity among 
individual tumor cells (arrows). Scale bar = 20 μm. (C) Quantification of LGR5 
expression in 52 ES tumors by SQUISH of tumor TMA as described in methods. Data is 
shown as z-score (z= (sample-mean)/standard deviation). A small number of tumors 
expressed high levels of LGR5.  (D) Beta catenin (red) staining of CD99-postive ES 
cells (green). Note marked heterogeneity of staining within the biopsy (left panel). Beta 
catenin staining is detected in a subset of nuclei in this representative image of a 
positive tumor (inset, right). (E) Quantification of nuclear beta-catenin in ES tumors 
(TMA as in D), as determined by AQUA (see methods). (F) LGR5 correlates with 
nuclear beta-catenin in vivo. r=Pearson’s correlation between LGR5 (C) and nuclear 
beta catenin (E) expression in ES tumor biopsies.  
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The response of Ewing sarcoma cells to Wnt3a signaling in vitro is 
heterogeneous 

 

To further study the potential significance of the apparently marked intra-tumoral 

heterogeneity of Wnt/beta-catenin signaling in Ewing sarcoma, we evaluated the 

response of individual Ewing sarcoma cells to the canonical Wnt ligand, Wnt3a. Sub-

confluent cultures of Ewing sarcoma cells were exposed to control L-cell conditioned 

media (CM) or Wnt3a CM for 48 hr and beta-catenin expression and localization were 

studied in individual cells by immunocytochemistry. Under control conditions, 

cytoplasmic and/or nuclear staining for beta-catenin was lacking, and beta-catenin 

staining was predominately located at the cytoplasmic membrane (Fig. 2.2A). As 

expected, stimulation with Wnt3a CM led to increased beta-catenin staining in the 

cytoplasm and the nucleus (Fig. 2.2B). Importantly, however, the response among the 

cells studied was not uniform. While robust nuclear beta-catenin staining was evident in 

some cells, little to no increase in beta-catenin staining was observed in other cells (Fig. 

2.2B). To determine if this heterogeneous response in beta-catenin stabilization and 

nuclear localization resulted in heterogeneous activation of Wnt/beta-catenin-dependent 

transcription, we evaluated Wnt activation in Ewing sarcoma cells that had been 

modified to express a 7x TCF-promoter/GFP reporter (7TGP) construct. The 7TGP-

transduced Ewing sarcoma cells were exposed to L-cell or Wnt3a CM and then flow 

cytometry was used to measure activation of GFP as readout of Wnt/beta-catenin 

transcriptional signaling at the level of individual cells. Although all cell lines showed an 

increase in GFP-positive cells following Wnt3a stimulation (Fig. 2.2C), the responses 

were highly variable, ranging from <20% of GFP-positive cells in the case of the 

CHLA32 cell line to nearly 80% GFP-positive cells for TC71 cells (Fig. 2. 2D).  Notably, 
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in all cell lines studied, many cells did not activate the GFP reporter, as evidenced by a 

failure to induce GFP. In addition, consistent with the variability in LGR5 expression, 

both within and between cell lines, the LGR5 ligand RSPO2 was able to potentiate the 

Wnt response in only a subset of cells and was most effective in CHLA25 cells, the cell 

line with the highest basal expression of LGR5 [3] (Fig. 2.2D). RSPO2 is highly 

expressed in both developing [107] and adult [108] bones, and likely to be a key 

mediator in the Ewing sarcoma microenvironment. Taken together, these data show 

that individual Ewing sarcoma cells do not respond equivalently to exogenous Wnt 

ligand and that the heterogeneity of the cellular response is variable in the context of 

primary tumors in vivo as well as cell lines in vitro.  
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Figure 2.2. Ewing sarcoma cells display heterogeneous response to Wnt 
stimulation in vitro. 

(A) Cultured Ewing sarcoma cells were stained with anti-beta catenin antibody (red) and 
counterstained with DAPI (blue) 48 hr after exposure to control (L-cell) or (B) Wnt3a 
conditioned media (CM). Cells were visualized by immunofluorescence microscopy and 
representative high-power images are shown. Note highly heterogeneous response of 
cells to Wnt3a stimulation, both between and within cell lines. In particular in (B), cells 
with strong nuclear localization of beta catenin (arrows) are observed alongside cells 
with weak nuclear localization (arrowheads). Representative of n=3 independent 
experiments. Scale bars = 20 µm. (C) Ewing sarcoma cell lines were stably transduced 
with a TCF reporter construct (7xTCF-GFP (7TGP)) and then stimulated with either L-
cell, Wnt3a CM, or Wnt3a CM for 48 hr prior to analysis of GFP by flow cytometry. 
Representative dot plots showing GFP activation are shown. (D) 7TGP-transducedcells 
as in (C) were exposed to Wnt3a CM, alone or in combination with RSPO2. Flow 
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cytometry for GFP shows tumor cell heterogeneity with respect to response to both 
Wnt3a and RSPO2. Quantification of n=3 independent experiments (mean ± SEM). 
Significance was determined using a paired Student’s t-test. *p<0.05, **p<0.01 
***p<0.001, ****p<0.0001.  
 
 To further characterize the response of Ewing sarcoma cells to Wnt ligands, we 

performed a time course assay using 7TGP reporter cells. Cells were stimulated with 

CM for 8, 24, and 48 hr, and the percentage of GFP positive cells at each time point 

was assessed by flow cytometry. As shown in Fig. 2.3A, little GFP positivity was 

observed after 8 hr, and peak induction of GFP positivity was noted at 48 hr in all cell 

lines. We next sought to determine the extent to which other ligands induce TCF 

activity. We observed no induction of reporter activity with RSPO2 alone, Wnt5a CM 

alone, or with Wnt 5a CM +RSPO2, but robust induction of reporter activity with Wnt3a 

CM +/- RSPO2 (Fig 2.3B). These results are largely concordant with published 

literature, as RSPOs do not activate Wnt/beta-catenin activity in the absence of Wnt 

signals [71], and Wnt5a is a prototypical ‘non-canonical’ ligand that does not induce 

Wnt/beta-catenin/TCF signaling in other cell types. Next, we stimulated reporter cells 

with recombinant Wnt3a and observed a weak, dose dependent induction of 7TGP 

reporter activity (Fig. 2.3C), verifying that 7TGP reporter activity is specific to Wnt3a. 

We next tested to see if pharmacological activation of Wnt/beta-catenin signaling 

induced reporter activity. Using the GSK3-beta inhibitor SB-216763, we observed 

induction of nearly 100% of cells in both A673 and CHLA25 (Fig. 2.3D). This suggests 

that Ewing sarcoma cell all have the intracellular beta-catenin signaling machinery 

required to activate TCF-dependent transcription, and that heterogeneity of Wnt 

responsiveness likely occurs at the level of Wnt receptors.  
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Figure 2.3. Characterization of Wnt3a timing, specificity, and heterogeneity of ES 
cells. 

(A) 7TGP cell lines were stimulated with L-cell, Wnt3a CM, or Wnt3a CM for 8, 24, or 48 
hr prior to analysis of GFP by flow cytometry. The average percent of GFP-positive cells 
at each time point is shown. In all three cell lines tested, peak %GFP+ induction was 
achieved at 48 hr.  (B) CHLA25-7TGP cells were exposed to Wnt3a CM, Wnt5a CM, 
and/or RSPO2 for 48 hr. RSPO2 alone and Wnt5a do not induce 7TGP reporter activity. 
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(C) A673-7TGP cells were exposed to Wnt3a CM as a positive control, and conditions 
of either PBS, 100 ng/mL, or 500 ng/mL recombinant Wnt3a (rWnt3a). Stimulation with 
rWnt3a induces 7TGP reporter activity, although to a lesser extent that Wnt3a CM. (D) 
A673-7TGP (left two panels) and CHLA25-7TGP were stimulated for 24 hr with 
0.1%DMSO as vehicle control or 50 μg/ml SB216763, a GSK3-beta inhibitor and 
activator of Wnt/beta-catenin activity. Over 90% of cells activated the reporter in both 
cell lines, indicating that the response to this chemical is not heterogeneous. 
 
 Having established that Wnt3a CM heterogeneously activates TCF-dependent 

transcription, we next sought to determine the extent to which subpopulations are 

sustained. First, A673-7TGP cells were stimulated with CM as previously described, 

and sorted on the basis of reporter activity. Specifically, the top 10% of GFP-positive 

cells and the bottom 10% of GFP-negative cells were isolated using fluorescence 

activated cell sorting (FACS). Cells stimulated with L-cell CM were run through the flow 

cytometer as a control, but were not sorted. Cells were then re-plated and maintained in 

culture. After one week, each isolate of cells was re-stimulated with CM and reporter 

activity was determined by flow cytometry. Cells originally stimulated with L-cell CM had  

few GFP+ cells upon re-stimulation with L-cell CM, and  16.4% and 32.7% GFP-positive 

cells following exposure to Wnt3a CM and Wnt3a CM+RSPO2, respectively (Fig. 2.4A). 

These percentages were consistent with percentages observed at the time of initial 

stimulation (data not shown). Interestingly, in cells initially stimulated with Wnt3a CM 

(Fig. 2.4B) or Wnt3a CM +RSPO2 (Fig. 2.4C), the originally non-responsive cells 

(lowest 10% GFP+) were responsive to Wnt ligands after one week, albeit weaker than 

unsorted. Cells that were originally Wnt responsive (highest 10% GFP+) reverted back 

to negligible Wnt activity after one week as seen by little reporter activity in L-cell CM re-

stimulation conditions. These cells, however, were more Wnt responsive than unsorted 

cells, and this effect was even more dramatic in cells that were exposed to RSPO2 (Fig. 

2.4C). Taken together, these data suggest that subpopulations of highly Wnt-responsive 
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and weakly Wnt-responsive cells exist in standard tissue culture conditions, and that 

these subpopulations remain respectively enriched in culture for at least one week.  

                  

 

Figure 2.4 Wnt activity is reversible and subpopulations of Wnt-responsive cells 
are sustained. 
(A)A673-7TGP cells were stimulated for 24 hr with L-cell CM, Wnt3a CM, or Wnt3a 
CM+RSPO2. Cells were sorted into the top 10% of most Wnt-responsive, GFP-positive 
cells (10% GFP+) and bottom 10% of least Wnt-responsive, GFP-negative cells (10% 
GFP-) and re-plated, and allowed to grow in standard tissue culture conditions for one 
week. After one week, cells were re-stimulated for 24 hr with either L-cell CM, Wnt3a 
CM, or Wnt3a CM+RSPO2, and flow cytometry analysis was performed. (A) As 
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expected, cells that were initially stimulated with L-cell CM and re-plated 
heterogeneously induce GFP expression in response to Wnt3a CM, and this is 
potentiated upon addition of RSPO2. (B) Cells that were initially stimulated with Wnt3a 
CM and sorted responded differentially to re-stimulation. Non-responsive (bottom 10% 
GFP-) cells were less responsive than unsorted cells (A) or their top 10% GFP- 
counterparts. Highly Wnt-responsive cells (top 10% GFP+)  were more responsive to 
Wnt ligands than unsorted cells in panel A. (C) Cells that were initially stimulated with 
Wnt3a CM +RSPO2 reveal a similar but even more dramatic pattern of responsiveness 
compared to cell in (B). Notably, under all sorted conditions, little to no Wnt activity was 
maintained after 1 week in standard culture conditions, indicating that cells revert back 
to a Wnt-OFF state in the absence of ligands. 
 

RNA profiling identifies novel targets of canonical Wnt-signaling in Ewing 
sarcoma cells  

 

The function of Wnt signaling in development and disease is highly context-dependent. 

To study further the role of canonical Wnt signaling in Ewing sarcoma, we performed 

experiments to define downstream transcriptional targets of Wnt/beta-catenin signaling 

in Ewing sarcoma cells. First, we used qRT-PCR to determine if Wnt3a, alone or in 

combination with RSPO2, modulates the expression of genes that were previously 

established to be canonical Wnt targets in other cell types. Interestingly, although the 

well-known Wnt/beta-catenin target gene AXIN2 was reproducibly induced in all Ewing 

sarcoma cell lines by Wnt3a and Wnt3a plus RSPO2 treatment, other reported target 

genes showed no change in expression, including C-MYC, CDC25A, and CCND1 (Fig. 

2.5A). We next used RNA-sequencing to define, in an unbiased manner, downstream 

transcriptional targets. We used CHLA25 cells stably transduced with the 7TGP reporter 

gene and FACS of GFP-expressing cells to isolate the most highly-Wnt responsive 

cells. We compared gene expression between high GFP-expressing cells and 

unstimulated control cells (Fig. 2.5B). Expression of over 1,000 transcripts was altered 

by Wnt3a alone or by Wnt3a plus RSPO2, with slightly more genes being up-regulated 
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than down-regulated by either treatment (Fig. 2.5C). Analysis of the RNA-seq data 

indicated that numerous previously described Wnt/beta-catenin target genes were not 

induced by Wnt3a or Wnt3a plus RSPO2 treatment even in robustly Wnt-responsive 

cells (Fig. 2.5D). Besides AXIN2, we did find that two established Wnt target genes, 

LEF1 and NKD1, were among genes most responsive to Wnt3a or Wnt3a plus RSPO2 

(Fig. 2.5D and E). Genes for which expression was up-regulated more than two-fold by 

Wnt3a alone and more than ten-fold by Wnt3a plus RSPO2 are listed in Table 2.1. The 

RNA profiling studies of Wnt and Wnt plus R-spondin activated genes in Ewing sarcoma 

identified only a few known and many novel, transcriptional targets of the Wnt/beta-

catenin signaling axis.   
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Figure 2.5 Context-specific targets of Wnt-beta catenin signaling are identified in 
Ewing sarcoma.  

(A) qRT-PCR was performed on cells exposed to L-cell CM, Wnt3a CM, or Wnt3a 
CM+RSPO2 for 24 hr to assess induction of canonical Wnt target genes AXIN2, CMYC, 
CDC25A, and CCND1. Mean ± SEM relative to L-cell CM expression in n=3 
independent experiments. (B) CHLA25-7TGP cells were exposed to conditions as in (A) 
and FACS-sorted on the basis of GFP. (C) Over 1000 genes were significantly 
regulated (p<0.05) compared to L-cell controls for Wnt3a and Wnt3a+RSPO2 
conditions. (D) RNA-seq data validates induction of AXIN2, DKK1, LEF1 and NKD1 but 
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an absence of induction of other known canonical target genes identified in other cell 
types. (E) qRT-PCR validation of LEF1 induction in multiple Ewing sarcoma cell lines. 
 
 

Transcript ID Gene symbol 
Fold change 

Wnt3a 
Fold change 

Wnt3a+RSPO2 

ENST00000440284 ACSM3 12.6 40.5 

ENST00000397137 BLCAP 12.7 21.4 

ENST00000378615 C11orf49 9.3 15.4 

ENST00000592872 C19orf25 9.8 13.0 

ENST00000274368 CRHBP 14.2 20.0 

ENST00000510508 DIO3 32.2 67.9 

ENST00000373970 DKK1 7.7 13.6 

ENST00000344257 GAD1 6.7 13.7 

ENST00000429473 GNGT1 13.3 20.6 

ENST00000391588 KRTAP3-1 13.0 19.8 

ENST00000379951 LEF1 6.5 11.6 

ENST00000438313 LEF1 9.1 11.9 

ENST00000323851 NDRG1 8.6 11.1 

ENST00000397853 NDRG2 8.9 11.9 

ENST00000268459 NKD1 4.6 12.9 

ENST00000361478 PJA1 37.3 44.3 

ENST00000436066 PLEKHF1 14.3 21.3 

ENST00000338415 QPCT 5.6 10.0 

ENST00000399409 RABGGTA 12.8 15.5 

ENST00000586686 RPS15 10.1 11.9 

ENST00000373068 SLC25A25 11.9 17.9 

ENST00000397517 STK24 13.7 20.7 

ENST00000222543 TFPI2 8.1 16.1 

ENST00000350763 TNC 4.1 10.5 

ENST00000367315 TNNT2 13.0 16.0 

ENST00000376368 WDR45 8.8 10.3 

 

Table 2.1. List of most highly Wnt-responsive transcripts in Ewing sarcoma cells.  

List of 26 transcripts (encoding 25 unique genes) that were significantly induced at least 
2-fold following Wnt3a and more than 10-fold following exposure to both Wnt3a and 
RSPO2. 
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Activation of Wnt/beta-catenin antagonizes EWS/ETS-dependent transcription 
 

To gain further insight into the Ewing sarcoma-specific Wnt/beta-catenin 

transcriptional profile, we determined the extent of overlap between the identified target 

genes and previously published gene datasets in the Molecular Signatures Database 

(MSigDB) [109]. Strikingly, genes that were induced two-fold by Wnt3a plus RSPO2 in 

Ewing sarcoma overlapped most significantly with genes that are repressed by 

EWS/FLI-1 in Ewing sarcoma cells [20] (Fig. 2.6A). Conversely, genes that were 

repressed 2-fold by Wnt3a plus RSPO2 overlapped most significantly with genes that 

are up-regulated by EWS/FLI-1 (Fig. 2.6B). To further understand this potential inverse 

relationship between Wnt/beta-catenin and EWS/FLI-1, we next evaluated the entire list 

of genes regulated by Wnt3a plus RSPO2, ranked by log-fold change in gene 

expression, using gene set enrichment analysis (GSEA). GSEA confirmed that 

published EWS/ETS-induced and EWS/ETS-repressed targets were among the most 

the significantly correlated gene sets. Specifically, expression of genes that were altered 

by Wnt3a plus RSPO2 significantly and directly correlated with genes that are down 

regulated by EWS/FLI-1 (Fig. 2.6C top), and inversely correlated with genes that are up 

regulated by EWS/FLI-1 (Fig. 2.6C, bottom). These same genes were similarly 

correlated with EWS/ERG-regulated genes (Fig. 2.6D), indicating this antagonistic 

relationship extends beyond EWS/FLI-1 to include other EWS/ETS fusions.    Thus, 

genes that are regulated by canonical Wnt signaling in Ewing sarcoma are enriched and 

inversely correlated with genes that are regulated by EWS/ETS fusions. 
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Figure 2.6 Transcriptional targets of canonical Wnt in ES are enriched for 
EWS/ETS targets and are inversely correlated.   

Molecular signatures database analysis of genes that were significantly induced (A) or 
repressed (B) at least 2-fold following stimulation with Wnt3a + RSPO2. Top 10 most 
significantly overlapping gene sets are shown ranked by –log FDR. Rank-ordered gene 
set enrichment analysis (GSEA) of 1146 genes identified to be significantly modulated 
in CHLA25 cells by Wnt3a CM+RSPO2 showed a significant inverse relationship 
between Wnt target genes and EWS-ETS target genes. (C) Comparison of Wnt targets 
to EWS/FLI1 target genes.  (D) Comparison of Wnt targets to EWS/ERG target genes. 
Wnt target genes in each case were rank-ordered on the basis of fold change and 
compared to published datasets. NES indicates the normalized enrichment score.   



 
 

39 
 

Upon more in-depth analysis of the observed antagonism of the EWS/ETS 

signature, we noted that there was incomplete overlap between the gene sets (Fig. 

2.7A) and that the extent of Wnt/beta-catenin-dependent modulation of individual 

EWS/ETS target genes was highly variable (Fig. 2.7B). To understand the nature of the 

Wnt/beta-catenin response we focused our functional analyses on the identified set of 

236 co-regulated genes. Hierarchical clustering of these genes showed a clear 

segregation between Wnt/beta-catenin-induced and –repressed genes and confirmed 

both the opposing pattern of regulation by EWS/FLI1 and the potentiating effect of 

RSPO2 on gene modulation (Fig. 2.7C). Gene ontology analysis of the overlapping 

genes revealed that cell cycle and mitosis genes were most prominent among 

EWS/FLI1- induced genes that were repressed by Wnt/beta-catenin while actin 

cytoskeleton and adhesion genes that are normally repressed by EWS/FLI1 were 

induced in Wnt/beta-catenin activated cells (Fig. 2.7C). In addition, although cell cycle 

genes were classified to be the most highly enriched category among Wnt/beta-catenin-

repressed EWS/FLI1 targets, it is noteworthy that many of these genes encode for 

proteins that regulate the biomechanics of mitotic cell division including sister chromatid 

segregation (e.g. aurora kinases) and microtubule cytoskeleton structure and function 

(e.g. kinesins) (Fig. 2.7D). Thus, activation of beta-catenin in Ewing sarcoma cells 

partially antagonizes EWS/ETS transcriptional activity and results in altered expression 

of key regulators of actin and microtubule cytoskeleton structure and function. 
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Figure 2.7. Wnt/beta-catenin activation antagonizes EWS/ETS-mediated 
transcription of canonical EWS/ETS target genes as well genes involved in 
mitosis, microtubule cytoskeleton, and the actin cytoskeleton. 

(A) Overlap between published EWS/FLI-1 target genes and Wnt/beta-catenin regulated 
genes in Ewing sarcoma. (B) Expression of EWS/ETS-induced (left panel) and 
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EWS/ETS-repressed (right panel) genes is oppositely regulated by Wnt/beta-catenin 
activation but not all EWS/ETS genes are equally impacted. FPKM data shown as fold 
change. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.(C) Hierarchical clustering of gene 
expression of 236 overlapping genes from (A). Gene ontology analysis shows that 
genes involved in cytoskeleton organization and adhesion are significantly enriched 
among Wnt/beta-catenin induced genes. Conversely, genes involved in proliferation and 
mitosis are among Wnt/beta-catenin repressed genes. (D) EWS/ETS-induced 
cytoskeleton and microtubule genes are repressed by Wnt/beta-catenin activation. 
FPKM data shown as fold change relative to L-cell CM control. 
 

Given the striking inverse correlation between expression of Wnt/beta-catenin 

and EWS/ETS transcriptional targets, we investigated whether activation of the 

Wnt/beta-catenin axis resulted in transcriptional repression of EWS/ETS fusions 

themselves. Although EWS/ETS transcript levels were largely unchanged by Wnt/beta-

catenin activation, levels of expression did decrease in a dose-dependent manner in the 

most highly Wnt-responsive cells, TC71 (Fig. 2.8A). This raised the possibility that 

highly Wnt-responsive cells may down-regulate EWS-ETS fusions in response to 

Wnt/beta-catenin activation. To test this hypothesis, we measured expression of 

EWS/ETS transcripts in 7TGP-transduced reporter cells that had been sorted to isolate 

the most highly GFP-positive cells. Interestingly, this analysis showed reduced 

expression of the fusion transcript in the most responsive cells in all three EWS/FLI-1 

expressing cell lines, albeit to varying degrees (Fig. 2.8B). In contrast, levels of 

EWS/ERG transcript were unchanged in CHLA25 cells (Fig. 2.8B). Thus, the dramatic 

changes in EWS/ETS target gene expression that occur downstream of Wnt in Ewing 

sarcoma cells are unlikely to be mediated by down-regulation of EWS/ETS fusions 

themselves. 

Having shown that activation of Wnt/beta-catenin inhibits the transcriptional 

activity of EWS/ETS fusions, we next tested whether the inverse is also true – i.e. do 
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EWS/ETS fusions inhibit Wnt/beta-catenin?  To test this we used A673 cells that stably 

express an inducible EWS/FLI-1 knockdown shRNA (shA673-1C) [47]. Exposure of 

these cells to doxycycline led to both reduced EWS/FLI-1 transcript expression as well 

as reduced expression of the canonical EWS/FLI-1 target gene, NR0B1 (Fig. 2.8C). To 

determine if loss of EWS/FLI-1 impacted Wnt responsiveness, we transduced shA673-

1C cells with a 7xTCF-luciferase (7TFP) reporter of Wnt activity [110], and then 

stimulated cells with Wnt3a in the presence or absence of doxycycline. Cells with 

reduced expression of EWS/FLI-1 demonstrated a more than two-fold increase in TCF 

reporter activity in response to Wnt3a compared to control cells (Fig. 2.8D). Likewise, 

induction of Wnt target genes, AXIN2, LEF1, and NKD1 was significantly enhanced 

following EWS/FLI-1 knockdown (Fig. 2.8D). Thus, these data indicate that 

transcriptional antagonism between Wnt/beta-catenin and EWS/ETS signaling is bi-

directional.   
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Figure 2.8. Bi-directional transcriptional antagonism exists between EWS/FLI1 
and Wnt-beta catenin signaling.  

(A) Expression of EWS/FLI1 (A673, STA-ET-8.2, and TC71) or EWS/ERG (CHLA25) 
was assessed by qRT-PCR in cells stimulated with Wnt3a or Wnt3a + RSPO2. In the 
highly Wnt-responsive cell line TC71, EWS/FLI1 levels are reduced twofold upon 
stimulation of Wnt signaling. (B) The top 20% of Wnt responsive 7TGP reporter cells 
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were sorted and EWS/ETS expression was assessed as in (A). In all cell lines except 
CHLA25, EWS/ETS levels are decreased approximately twofold or more. (C) A673 cells 
containing a doxycycline-inducible EWS/FLI1 construct (shA673-1C) were stimulated 
with doxycycline and/or recombinant Wnt3a. In cells treated with doxycycline, 
expression of EWS/FLI1 and the EWS/FLI1 target gene NR0B1 transcripts are reduced. 
(D) shA673-1C cells were transduced with a 7xTCF-luciferase (7TFP) reporter of Wnt 
activity and stimulated with doxycycline and/or Wnt3a. Induction of reporter activity is 
observed upon addition of Wnt3a, but not after knockdown of EWS/FLI1 alone. 
Induction of reporter activity is significantly increased upon both stimulation with Wnt3a 
and knockdown of EWS/FLI1. (E) Endogenous gene expression was assessed by qRT-
PCR of Wnt target genes AXIN2, LEF1, and NKD1. Addition of Wnt3a induced 
expression of all genes, and knockdown of EWS/FLI1 induced further expression.  
 

Wnt/beta-catenin signaling promotes cytoskeleton changes and a migratory and 
metastatic phenotype 

 

In vitro EWS/ETS inhibition results in a decrease in Ewing sarcoma cell 

proliferation, but recent evidence showed that EWS/ETS inhibition also results in 

induction of actin stress fibers, and acquisition of a more migratory cell phenotype,  

enhanced tumor cell adhesion in the lung [59, 60]. These changes are mediated in part 

by de-repression of the actin-associated gene zyxin (ZYX). Our observation that 

activation of Wnt/beta-catenin leads to de-repression of numerous cytoskeleton genes, 

including ZYX (Fig. 2.9A), led us to test whether activation of Wnt/beta-catenin signaling 

in Ewing sarcoma cells would phenocopy EWS/ETS inhibition. Therefore, we 

investigated the impact of Wnt/beta-catenin signaling on the actin cytoskeleton and on 

cell migration. We used phalloidin staining to visualize the actin cytoskeleton in 7TGP-

transduced Wnt reporter cells and found that, compared to controls, Wnt3a treatment 

resulted in an increase in cell size and actin stress fibers that was further enhanced by 

the addition of RSPO2 (Fig. 2.9B). Notably, the differences in the actin cytoskeleton 

were most pronounced in the GFP-positive populations, demonstrating the direct 

relationship between morphologic, cytoskeletal changes and Wnt activation (Fig. 2.9B).  
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We next sought to determine if Wnt-dependent changes in the cytoskeleton had 

functional effects on cell migration. As shown, cells stimulated with Wnt3a +/-RSPO2 

were more migratory than control cells in a transwell migration assay, and migration 

was further enhanced by the presence of RSPO2 (Fig. 2.9C).   To determine if changes 

in the cytoskeleton were mediated by beta-catenin, we transduced cells with a 

constitutively active beta-catenin construct (EβP)[110] or empty vector control (empty). 

Ectopic expression of activated beta-catenin induced cytoskeleton changes (Fig. 2.9D) 

and a migratory phenotype (Fig. 2.9E) that reproduced those seen in highly Wnt-

responsive cells, confirming that the effects of Wnt activation on the Ewing sarcoma 

cytoskeleton are mediated, at least in part, by beta-catenin. Finally, we evaluated the 

formation of podosomes in Wnt-stimulated Ewing sarcoma cells. Podosomes are actin-

rich cytoskeletal structures that are essential for cell migration and can be visualized by 

their distinct morphology and cortactin immunocytochemical staining [111, 112]. 

Consistent with induction of migratory cytoskeleton architecture, podosomes were 

increased in Ewing sarcoma cells following exposure to Wnt3a (Fig. 2.9F). Thus, 

Wnt/beta-catenin signaling in Ewing sarcoma promotes cytoskeleton changes and a 

migratory phenotype that are strongly reminiscent of the EWS/FLI-1 knockdown 

phenotype. 
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Figure 2.9. Wnt signaling induces beta-catenin-mediated cytoskeleton changes 
and migration in ES cell lines. 

(A) EWS/ETS-repressed cytoskeleton and migration genes are induced by Wnt/beta-
catenin activation. FPKM data shown as fold change relative to L-cell CM control. 
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 (B) A673 and CHLA25 7TGP-reporter cells were stimulated with Wnt3a CM or Wnt3a 
CM + RSPO2 and F-actin filaments evaluated by phalloidin staining (red). Highly Wnt-
responsive cells are GFP-positive (green). Nuclei are stained with DAPI (blue). Stress 
fibers are most abundant in GFP-positive cells. Scale bar = 20 µM. (C) Migration of 
A673 and CHLA25 was assessed using transwell assays containing Wnt3a with our 
without RSPO2 and stained with crystal violet. Wnt3a and Wnt3a +RSPO2 induced 
more migration compared to control.  (D) A673 cells were transduced with either an 
empty vector or a vector containing a constitutively active beta-catenin (EβP) and 
stained with phalloidin. EβP cells are larger and exhibit more stress fibers than those 
containing an empty vector. Scale bar = 20 µM. (E) Migration was assessed using 
transwell assays and stained with crystal violet. Cells containing the EβP vector were  
more migratory than those containing an empty vector. (F) A673 and CHLA25 were 
stimulated with L-cell CM or Wnt3a CM and podosomes were evaluated by cortactin 
staining (red). Insets show higher magnification of area demarcated by dotted lines of 
punctate staining indicating podosomes.  Podosomes were increased in cells stimulated 
with Wnt3a compared to control. Scale bar = 5 µM. 
 

In order to determine if an increased migratory phenotype results in increased 

metastasis in vivo¸ luciferase-tagged A673 and TC32 cells were stimulated in vitro with 

either L-cell CM or Wnt3a CM +RSPO2 and injected via tail vein into NOD-SCID mice. 

Tumor establishment and growth was monitored by bioluminescence imaging over the 

course of six weeks (Fig. 2.10A). In A673 cells, Wnt3a CM +RSPO2 tumors initially 

grew faster than L-cell CM stimulated tumors (Fig. 2.10B). By six weeks, mice receiving 

Wnt3a CM +RSPO2-treated cells had an increased incidence of tumor formation (Fig. 

2.10C), as 9/10 mice formed tumors, compared to only 5/10 for L-cell CM recipient 

mice. However, among mice in which tumors were present there was no significant 

difference in overall tumor burden (data not shown), indicating that there was little 

difference in tumor growth once tumors were established.  Although no differences were 

observed in the size of tumors, the tissue tropism was markedly different between the 

two groups. Of the five tumors that formed in the L-cell group, three tumors were in the 

subcutaneous space, one tumor was in the mandible, and one tumor was on the 

exterior chest wall. No lung nodules were detectable by bioluminescence or inspection 
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upon dissection (Fig. 2.10A, D). In striking contrast, 7/10 mice in the Wnt3a CM+RSPO2 

group had tumor formation in the lungs, in addition to tumors in the subcutaneous 

space, ovary, and limbs (Fig. 2.10A, D). In mice receiving TC32 cells, Wnt3a 

CM+RSPO2 treated cells had a similar but modest trend toward earlier onset (Fig. 

2.10E), and little difference between groups in regards to overall tumor incidence (Fig. 

2.10F) and metastasis location (Fig. 2.10G). In both groups, TC32 cells formed multiple 

metastases per mouse, with an equally strong prevalence of lung tumors, suggesting 

that Wnt activation does not further increase the tumorigenicity of cells that are already 

highly aggressive. 
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Figure 2.10. Activation of Wnt/beta-catenin signaling promotes lung metastasis. 

(A) Representative bioluminescent images of mice injected with L-cell CM stimulated 
A673 cells (left panels) or Wnt3a CM +RSPO2 treated cells. Upon dissection, tumors 
were  located in in the mandible, exterior chest wall, and subcutaneous spaces in  mice 
with L-cell CM treated cells. In mice receiving cells stimulated with Wnt3a CM + RSPO2, 
tumors were located in the lungs, subcutaneous space, ovary, and limbs. (B) The onset 
of tumor formation was assessed by bioluminescence imaging at 3 weeks, and revealed 
that mice receiving A673 cells stimulated with Wnt3a CM+RSPO2 had higher tumor 
burden at 3 weeks compared to mice receiving L-cell CM stimulated cells. Data is 
expressed as radiance. P-values were determined using Student’s t-test. (C) After 6 
weeks, tumor incidence was determined by the presence or absence of bioluminescent 
signal in each mouse. More tumors formed from cells with Wnt stimulation compared to 
controls. P-values were determined using Fisher’s exact test. (D) The location of each 
tumor was assessed by bioluminescent imaging and confirmed by dissection. 
Significantly more lung tumors were observed as a result of Wnt stimulation P-values 
were determined using Fisher’s exact test. Tumor burden at 3 weeks (E), incidence (F), 
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and tumor location (G) for TC32 cells was similarly determined as in (B), (C), and (D), 
respectively. No significant differences exist between TC32 cells stimulated with Wnt3a 
CM+RSPO2 compared to controls. 

 

Ewing sarcoma tumors with evidence of robust Wnt/beta-catenin activation are 
associated with a worse clinical outcome 

 

Our in vitro and in vivo studies demonstrate that activation of Wnt/beta-catenin in 

Ewing sarcoma leads to phenotypic changes that are associated with more aggressive 

disease. To assess if these observations are relevant in the clinical setting, we analyzed 

patient tumors for evidence of canonical Wnt/beta-catenin activation and determined if 

activity associated with tumor relapse and/or patient survival. First, we assessed 

nuclear beta catenin staining in clinically annotated tumor specimens from 37 patients at 

the University of Michigan. These cases were included in the aforementioned TMA (Fig. 

2.1D). Six tumors robustly expressed nuclear beta-catenin and all six of these patients 

relapsed. Nuclear beta-catenin was low or undetectable in 31 patients, and 18 (58%) 

relapsed. Given the heterogeneity of this patient cohort, with respect to clinical 

presentation and treatment regimens, conclusions cannot be drawn, although a trend 

toward worse outcome was observed in patients whose tumors showed evidence of 

robust Wnt/beta-catenin activation. To assess Wnt/beta-catenin activation in a more 

homogeneous cohort of equivalently treated patients, we turned to gene expression 

microarray data that was obtained from 46 Ewing sarcoma patients who were treated 

according to the most recent Children’s Oncology Group (COG) protocols [113]. In the 

absence of nuclear beta-catenin data for these cases, we used expression of LEF1 as a 

biomarker of Wnt/beta-catenin activation. LEF1 was chosen given that it is not highly 

expressed by Ewing sarcoma cells in the absence of Wnt ligand, but is robustly and 
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reproducibly transcriptionally induced by treatment with Wnt3a or Wnt3a plus RSPO2 

(Fig. 2.5D,E), and by expression of constitutively active beta-catenin (Fig. 2.11A). 

Notably, this induction is not associated with an increase in proliferation (Fig. 2.11B and 

[3]). In keeping with the potential of Wnt/beta-catenin as a mediator of aggressive 

disease, increased expression of LEF1 was associated with worse event free and 

overall survival rates in this patient cohort (Fig. 2.11C). Finally, given our observation 

that Wnt/beta-catenin and EWS-ETS display transcriptional antagonism in vitro, we 

hypothesized that tumors that display evidence of activated beta catenin in vivo would 

show reduced levels of EWS-ETS transcriptional activity. To address this, we ranked 

genes by correlation with LEF1 expression in primary tumors and performed GSEA. 

Comparison of the Wnt-activated gene set to EWS-ETS target gene signatures revealed 

a striking and reproducible inverse correlation that was entirely consistent with our in 

vitro studies (Fig. 2.11D). Together, these patient tumor-derived data further 

demonstrate that activation of Wnt/beta-catenin signaling in Ewing sarcoma 

antagonizes EWS-ETS-dependent transcription. 

Together these findings reveal that beta-catenin activation in Ewing sarcoma 

leads to activation of a gene expression program that promotes adoption of a more 

clinically aggressive phenotype and results in worse clinical outcomes. Furthermore, 

this is mediated, at least in part, by Wnt/beta-catenin-dependent antagonism of EWS-

ETS transcriptional activity.   
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Figure 2.11. High LEF1 expression is associated with poor outcomes in Ewing 
sarcoma and inversely correlates with EWS/ETS target genes. 

(A) A673 and STA-ET-8.2 were transduced with a constitutively active beta catenin 
construct (EβP), and expression of LEF1 was assessed by qRT-PCR. LEF1 was found 
to be a highly sensitive readout of Wnt signaling. (B) Constitutively active beta-catenin 
and LEF-1 induction do not result in significant changes in proliferation. (C) Event free 
survival and (C) overall survival based on LEF1 expression was assessed in the COG 
patients. (D) An in vivo signature of Wnt/beta-catenin activation was generated from 46 
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primary tumors by ranking genes based on their correlation with LEF1 expression. 
Genes that are highly correlated with LEF1 expression in primary tumors are enriched 
for genes that are repressed by EWS/FLI-1 (top panel) and EWS/ERG (bottom panel). 
  



 
 

54 
 

Discussion  

A seminal role for Wnt/beta-catenin exists in colorectal carcinoma, where germ 

line and somatic genetic mutations contribute to constitutive pathway activation, 

resulting in tumor initiation and progression [63]. Involvement of canonical Wnt signaling 

in other cancer types has also been described [82, 114, 115] including in the sarcomas, 

although genetic mutations in the pathway are less frequent than in colorectal tumors 

and other carcinomas [89]. Prior studies of established Ewing sarcoma cell lines [3, 90, 

96, 99] as well as a new murine model of EWS/ETS-induced malignant transformation 

[95] suggest that the Wnt/beta-catenin axis contributes to the pathogenesis of Ewing 

sarcoma.  Nevertheless, the potential oncogenic role of Wnt signaling in Ewing sarcoma 

tumors in vivo, and the nature of Wnt/beta-catenin transcriptional targets in these 

tumors, had yet to be fully elucidated. In the current study we combined cell line models, 

patient tumors, gene expression and functional studies to investigate the impact of 

Wnt/beta-catenin signaling on Ewing sarcoma transcriptional profiles, biology and 

clinical behavior. The combined results of these studies converge on a model in which 

activation of canonical Wnt/beta-catenin signaling, by ligands in the tumor 

microenvironment, induces Ewing sarcoma cells to transition from relatively non-motile 

to more migratory and metastatic states. Paradoxically, this phenotypic transition is 

associated with functional inhibition of EWS/ETS-dependent transcription, thus 

revealing a highly complex and context-specific interplay between the tumor 

microenvironment, tumor cell autonomous Wnt/beta-catenin signaling molecules, and 

EWS/ETS fusion proteins (Fig. 2.12).  
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The transcriptional targets of Wnt/beta-catenin, both in normal development and 

in cancer, are highly context dependent and, as such, the functional impact of pathway 

activation varies between tissues and tumors of different ontogenies [68, 114]. Given 

the critical role that canonical Wnt signaling plays in modulating mesenchymal cell 

migration and morphogenesis during embryonic development [115], it is highly 

consistent that we have found that the axis plays a similar role in Ewing sarcoma. Prior 

studies showed that Wnt3a promotes Ewing sarcoma cell migration in vitro [90] and our 

current findings demonstrate that this is mediated by beta-catenin-dependent changes 

in the actin cytoskeleton. In particular, nuclear localization of beta-catenin in Ewing 

sarcoma cells results in cell spreading, an increase in actin stress fibers and the 

creation of podosomes, actin-rich cytoskeletal structures that are dynamically induced 

on the leading front of migratory and invasive cancer cells [112]. Significantly, the 

Figure 2.12. Schematic of heterogeneous RSPO/Wnt-mediated antagonism of 
EWS/ETS antagonism  

Wnt responsive LGR5-positive cells respond to RSPO2 and Wnt ligands in the 
microenvironment, and undergo phenotypic changes to switch from a proliferative to a 
migratory and metastatic phenotype through inhibition of EWS/ETS fusion activity.   
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observed changes in cell shape, stress fiber formation, and lung engraftment that we 

observed in Wnt-activated cells were highly reminiscent of a phenotype that was 

recently described in the context of RNAi-mediated EWS/ETS knockdown [59, 60]. In 

these studies, EWS/ETS knockdown cells were also shown to be more migratory and to 

harbor enhanced capacity for lung engraftment, observations that lead to the intriguing, 

and somewhat counterintuitive hypothesis, that a relative loss of EWS/ETS function 

could promote Ewing sarcoma metastasis [59]. Remarkably, our unbiased RNA profiling 

studies of Wnt-stimulated Ewing sarcoma cells identified a striking, and highly 

statistically significant, inverse relationship between Wnt/beta-catenin-dependent and 

EWS/ETS-dependent transcriptional targets. In addition, two genes that have been 

convincingly shown to be mediators of tumor metastasis in other tumor types, LEF1 

[116] and TNC [117], were both robustly induced by activated beta-catenin in Ewing 

sarcoma cells. Thus, canonical Wnt signaling in Ewing sarcoma antagonizes EWS/ETS 

transcriptional activity, promotes acquisition of a migratory phenotype, and induces 

expression of metastasis-associated genes.  

The precise molecular mechanisms underlying transcriptional antagonism between 

EWS/ETS and beta-catenin remain to be elucidated, although several potential 

possibilities now demand further study. First, prior work using A673 Ewing sarcoma 

cells and EWS/FLI-1-transduced heterologous cell types showed that EWS/FLI-1 can 

physically associate with LEF1, leading to reduced interactions between LEF1 and beta-

catenin and subsequent inhibition of TCF/LEF target gene activation [96]. We have 

discovered that LEF1 is strongly induced upon Wnt stimulation and that Wnt/beta-

catenin antagonizes the EWS/ETS transcriptional signature. Therefore, we speculate 

that high levels of LEF1 in Wnt-stimulated Ewing sarcoma cells may result in increased 
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LEF1-EWS/ETS protein-protein interactions, which could negatively impact on 

EWS/ETS transcriptional activity by blocking localization of the fusion to its DNA targets. 

Alternatively, activated Wnt signaling might directly repress expression of the fusions 

themselves. In support of this, we observed down regulation of EWS/FLI-1 transcript 

expression in the most robustly Wnt-responsive cells. Conversely, despite intense beta-

catenin activation, EWS/ERG levels were unaffected by Wnt3a or Wnt3a plus RSPO2 in 

CHLA25 cells. Moreover, expression of many established EWS/ETS target genes, 

including NR0B1 [19, 20] and NKX2.2 [17, 18] was unaffected by Wnt/beta-catenin 

activation, demonstrating that transcriptional antagonism between Wnt/beta-catenin and 

EWS/ETS does not extend to all targets of EWS/ETS fusions. Further investigations are 

required to elucidate the molecular mechanisms that account for these differential 

responses to Wnt/beta-catenin signaling among different EWS/ETS target genes, 

although it is likely that the different interactions of fusions with different transcriptional 

and chromatin regulatory complexes at target gene promoters and enhancers is likely to 

be key [15, 16]. 

Another potential explanation for the relative reduction in EWS/FLI-1 levels in the 

most Wnt-responsive cells is that heterogeneity exists among Ewing sarcoma cells with 

respect to fusion gene expression levels. In this scenario, cells with the lowest levels of 

EWS/FLI-1 expression would be most responsive to Wnt stimulation, resulting in 

detection of relatively fewer fusion transcripts in the most beta-catenin-active cell 

population. Our finding, also previously observed by Navarro et al. [96], that 

experimental down regulation of EWS/FLI-1 results in enhanced Wnt-responsiveness 

supports this possibility. The concept of non-mutational tumor cell heterogeneity is not 

new but it has recently emerged as a key player in the context of emergent drug 
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resistance and tumor progression [118-120]. In particular, plasticity of tumor cells that 

permits cell state transitions between proliferative and migratory states, such as 

epithelial to mesenchymal transitions in carcinoma, has been linked to metastasis [121, 

122]. The current studies identify a novel mechanism of phenotypic plasticity in Ewing 

sarcoma cells that is responsive to provision of an exogenous Wnt signal from the 

microenvironment. Significantly, however, our studies showed that not all cells respond 

to Wnt stimulation, and that the relative responsiveness varies both within and between 

cell lines and between neighboring cells in tumors in vivo. Numerous factors could 

contribute to this heterogeneity of response. We have discovered that expression of the 

Wnt-potentiating ligand, LGR5, is heterogeneous on a cell-to-cell basis and our previous 

studies showed that LGR5 modulates Wnt signaling in the absence of exogenous R-

spondins [3]. Thus, variability in the availability of endogenous or exogenous R-

spondins and Wnt ligands, as well as heterogeneous expression of LGR5, frizzleds, 

LRPs, and other Wnt-modulating receptors, would all impact on an individual cell’s 

ability to activate beta-catenin. Other cell-intrinsic factors, such as cell cycle state, may 

also have an effect. For instance, G2/M-phase is most permissive for Wnt signaling 

[123], so differences in cell cycle state might also contribute to differences in response 

among neighboring cells. The finding that heterogeneous Wnt signaling occurs in Ewing 

sarcoma is supported by data from other tumor systems. In colorectal cancer, nuclear 

beta-catenin is heterogeneous among tumor cells, despite the universal presence of 

activating mutations [124]. In lung adenocarcinoma, cells isolated from metastatic 

lesions were more Wnt responsive than their corresponding primary tumors, and 

aggressive phenotypes were enhanced in vitro in the presence of conditioned media 

from metastatic sites [116]. This further supports the idea that differences in Wnt 
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responsiveness among tumor cells can be dictated by the signaling microenvironment. 

Thus, these studies, together with our own findings, reinforce the conclusion that 

cellular heterogeneity in Wnt signaling is determined by both cell intrinsic and cell 

extrinsic factors.  

Finally, our studies of patient tumors support the conclusions from our experimental 

systems that activation of Wnt/beta-catenin in Ewing sarcoma cells promotes tumor 

metastasis and progression. In a small cohort of adult patient tumors, we were able to 

identify six patients with evidence of high nuclear beta-catenin staining and all of them 

relapsed. In an independent cohort of equivalently treated pediatric Ewing sarcoma 

patients we discovered that high expression of LEF1, a sensitive biomarker of Wnt/beta-

catenin activation in Ewing sarcoma cells, was associated with relapse and worse 

survival. In summary, through extensive molecular, cellular and tumor studies we have 

identified a Wnt/beta-catenin-dependent response in Ewing sarcoma that promotes 

transition of cells from less motile to highly migratory and metastatic states. This cell 

plasticity is heterogeneous and dependent on both cell intrinsic and extrinsic factors. 

The phenotypic transition of Ewing cells to a more migratory state is mediated by beta-

catenin-dependent changes in the actin cytoskeleton and by transcriptional antagonism 

with EWS/ETS proteins. Activation of Wnt/beta-catenin in tumors in vivo is associated 

with worse clinical outcomes, including increased rates of relapse and diminished rates 

of survival. Together these data support further investigation of Wnt pathway-targeted 

agents as adjuvant therapy for Ewing sarcoma patients. In particular, given that 

activation of Wnt/beta-catenin in Ewing sarcoma is likely to be mediated, in the vast 

majority of cases, by the microenvironment rather than through activating mutations, 

agents that inhibit the extracellular ligand-receptor interaction, as well as those that 
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target intracellular downstream signaling components, are strong candidates for testing 

in Ewing sarcoma. 
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Experimental Procedures 

Cell culture and lentiviral transductions 

Ewing sarcoma cell lines A673, CHLA25, CHLA32, STA-ET-8.2, TC71, and TC32 were 

kindly provided by Dr. Timothy Triche (CHLA, Los Angeles, CA, USA), Dr. Heinrich 

Kovar (CCRI, St. Anna Kinderkrebsforschung, Vienna, Austria), and the COG cell bank 

(cogcell.org). Identities of the cells were verified by short tandem repeat (STR) profiling. 

Cells were routinely tested for mycoplasma contamination, and were verified to be 

negative for all studies. Cells were cultured in RPMI 1640 media (Gibco) supplemented 

with 10% fetal bovine serum (FBS)(Atlas Biologicals) and 2mM L-glutamine (Life 

Technologies). CHLA25, CHLA32, and STA-ET-8.2 were grown on plates coated with 

0.2% gelatin. L-cells (ATCC CRL-2648) and Wnt3a L-cells (ATCC CRL-2647) were 

cultured in DMEM (Gibco) supplemented with 10% FBS. The identity of the cells was 

confirmed by short tandem repeat (STR) profiling. Lentiviral production and transduction 

was performed as previously described [3]. For generation of 7TGP and 7TFP reporter 

cells, plasmids #24305 and #24308 (Addgene) were used, respectively [110]. For 

generation of EβP cells, plasmid #24313 (Addgene) was used. The constitutively active 

beta-catenin element was removed using BamHI to generate EβP-empty vector. 

Luciferase-tagged cells were generated with a pLentilox-luciferase/GFP vector provided 

by the University of Michigan Vector Core. 

 

Reporter assays and cell sorting 

For luciferase assays, 5x103 stably transduced 7TFP cells were plated in triplicate on 

96-well plates in RPMI1640 containing 10% tetracycline-free FBS and 1% L-glutamine. 

The next day, the media was changed to contain either stimulated with 1:1 RPMI1640 
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supplemented with 5% FBS and 1% L-glutamine and CM +/- RSPO2 for 48 hr, or  PBS 

or 1ug/mL of doxycycline, and/or 500 ng/mL recombinant Wnt3a (R&D Systems) for 

shA673-1C cells.  After 48 hr, luciferase activity was measured using the Steady-Glo 

Luciferase Assay System (Promega) according to manufacturer’s protocol and 

measured on white opaque plates on a Synergy H1 Multi-mode plate reader (BioTek 

Instruments). Data is expressed as relative luciferase units (RLU), which is the mean 

value of luciferase activity normalized to the mean of the background signal in media-

only wells. 

To visualize and sort Wnt/beta-catenin active cells, stably transduced 7TGP cells were 

stimulated with 1:1 RPMI1640 supplemented with 5% FBS and 1% L-glutamine and CM 

+/- RSPO2 for 48 hr. Cells were dissociated using Accutase (Millipore) and fluorescence 

was measured and cells counted using an Accuri C6 cytometer. For fluorescence-

activated cell sorting (FACS), cells were similarly stimulated and dissociated, and sorted 

on the basis of GFP expression using the MoFlo Astrios instrument at the University of 

Michigan Flow Cytometry Core.  

 

Immunofluorescence microscopy 

Cells were plated on gelatin-coated coverslips. The next day, the media was changed to 

RPMI 1640 containing 5% FBS and 1% L-glutamine and an equal volume (1:1) of L-cell 

conditioned media (CM) or L-cell Wnt3a CM either with or without 20ng/mL recombinant 

R-spondin 2 (RSPO2) (R&D Systems). Cells were fixed in 4% PFA for 15 min at room 

temperature (RT), then permeabilized in PBS containing 0.5% Triton-X for 5 min. Cells 

were blocked in 5% donkey serum for 1 hr, then incubated with anti-beta-catenin (BD 

Transduction Laboratories, 1:300) for 1 hr at RT followed by 1 hr secondary antibody 
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(Alexafluor 594, 1:500) at RT. Cortactin was detected using a directly conjugated Alexa 

555 anti-cortactin antibody, clone 4F11 (EMD Millipore. 1:1000). For phalloidin staining, 

cells were fixed and permeabilized, and then incubated with 100 nM Acti-stain 555 

phalloidin (Cytoskeleton, Inc.) for 30 minutes in in the dark at RT. GFP expression was 

directly visualized by fluorescent microscopy in 7TGP reporter cells. Slides were 

counterstained using DAPI (1:10,000) (Invitrogen) for 10 minutes in the dark at RT, 

were mounted using Prolong Gold (Molecular Probes, Life Technologies) and imaged 

using an Olympus CKX41 or Nikon A1 spectral confocal microscope at 40X with Nikon 

Elements software version 3. 

 

Migration Assays 

Cells were dissociated with Accutase (Millipore), washed twice with PBS, and re-

suspended in serum-free RPMI1640. 2x10^5 cells were plated on a transwell coated 

with 0.2% gelatin, and media containing 10% FBS was used in the bottom chamber. 

500 ng/mL of Wnt3a with or without 20 ng/mL RSPO2 was added to the bottom 

chamber as indicated. Cells were allowed to migrate through the transwell for 24 hr, and 

then fixed using a solution of 25% crystal violet and 25% methanol. 

 

Proliferation assay  

5x103 cells were plated in triplicate on 96 well plates, and cells were allowed to 

proliferate for five days. Cell proliferation was monitored at days 0, 1, 3, and 5 using the 

CellTiter 96 AQueous One Solution Cell Proliferation Assay (Promega, Madison, WI) 

according to the manufacturer’s instructions. Colorimetric absorbance (490 nm) was 

quantified on a BioTek plate reader. Background readings for each day were subtracted 
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from blank wells. Data is expressed as the normalized cell index, which is the 

background-corrected absorbance normalized to the day 0 reading. 

 

Analysis of Wnt pathway gene expression  

 Expression of Wnt pathway genes in primary Ewing sarcoma and colorectal carcinoma 

tumors was determined using publicly available data (GSE 34630 [125], and GSE 4554 

[126]. Graphical representation of the data was achieved using the R2: Genomics 

Analysis and Visualization Platform (http://r2.amc.nl). Expression of Wnt pathway genes 

cell lines was determined by RNA–sequencing (see below) and by quantitative RT-

PCR, using standard methods as previously described [3] . Primers are listed in Table 

2.2. 

Table 2.2 Primer sequences used for qRT-PCR 

 

In vivo metastasis assay 

To assess metastatic capacity, luciferase-labeled A673 or TC32 were stimulated with L-

cell CM or Wnt3a CM +RSPO2 for 48 hr, dissociated with Accutase, and then injected 

via tail vein into 10-12 week-old NOD SCID mice. Each mouse received 1x106 cells in 

100 µl PBS. Satisfactory injection of viable cells was confirmed by detection of light 

Gene Forward primer sequence Reverse primer sequence 

AXIN2  AAGTGCAAACTTTCGCCAAC ACAGGATCGCTCCTCTTGAA 

CCND1 CCGTCCATGCGGAAGATC ATGGCCAGCGGGAAGAC 

CDC25A  CCAGCCCCAAAGAGTCAAC AAGGTCCCTTGGGTCATTGT 

CMYC CGTAGTTGTGCTGATGTGTGG CTCGGATTCTCTGCTCTCCTC 

EWS/ERG GTCAACCTCAATCTAGCACAGGG CTGTCCGACAGGAGCTCCAG 

EWS/FLI1 CGACTAGTTATGATCAGAGCAGT CCGTTGCTCTGTATTCTTACTGA 

HPRT1 TGACACTGGCAAAACAATGCA GGTCCTTTTCACCAGCAAGCT 

LEF1 TGGATCTCTTTCTCCACCCA CACTGTAAGTGATGAGGGGG 

NKD1 TCGCCGGGATAGAAAACTACA CAGTTCTGACTTCTGGGCCAC 

NR0B1 AGCACAAATCAAGCGCAGG GAAGCGCAGCGTCTTCAAC 



 
 

65 
 

emission in the lungs of recipient mice 30 minutes after cell injection on a Xenogen IVIS 

bioluminescence system (Perkin Elmer, Waltham, MA). Imaging was repeated weekly 

and tumor burden quantified using Living Image software (Perkin Elmer, Waltham, MA). 

Mice were monitored for 6 weeks, at which point mice were euthanized and examined 

for metastases. The location and amount of macroscopic tumors that correlated with 

bioluminescent signal was assessed with the assistance of the Unit for Laboratory 

Animal Medicine (ULAM) Pathology Core for Animal Research (PCAR).  

 

TMA Construction 

Formalin-fixed, paraffin-embedded tissue blocks (FFPE) of 65 cases of Ewing sarcoma 

tumors were obtained from the files of the Department of Pathology, University of 

Michigan Medical Center, Ann Arbor, MI. The University of Michigan Institutional Review 

Board provided a waiver of informed consent to obtain these samples. After pathological 

review, a tissue microarray was constructed from the most representative area using 

the methodology of Nocito et al. [127]. Each case was represented by one 1 mm 

diameter core obtained from the most representative, non-necrotic area of the tumor. 

 

Immunohistochemistry and Automated Quantitative Assay (AQUA)  

After deparaffinization and rehydration, sequential TMA sections were subjected to 

microwave epitope retrieval in 10 mM sodium citrate buffer, pH 6.0. After rinsing several 

times in 10 mM Tris/HCl buffer, pH 8 containing 0.154 M NaCl and 0.05% (v/v) Tween-

20 (TBST), endogenous peroxidase activity was blocked with Peroxidazed (BioCare 

Medical) for 15 min. Non-specific binding of the antibodies was extinguished by 30 min 

incubation with Background Sniper (BioCare Medical). The TMA slide was then 
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incubated with the tumor-specific antibody, CD99 (clone EPR309Y, 1:200, BioCare 

Medical) overnight at 4°C. The slides were then washed with TBST and subsequently 

incubated with an antibody to beta-catenin (BD Biosciences, Clone #14, 610153, 

1:7000) for 60 min at RT. Slides were then washed as described above and incubated 

with Alexafluor 555 (AF555) (Molecular probes, A21422, 1:200) secondary antibody in 

Envision+ (DAKO, K4003) or goat anti-rabbit IgG conjugated to AF555 (Molecular 

probes, A21429, 1:200) in goat anti mouse Envision+ (DAKO, K4001) for 60 min at RT 

in the dark. The slides were then washed and the target image was developed by a 

CSA reaction of Cy5 labeled tyramide (PerkinElmer, 1:50). The slides were washed with 

water, stained with DAPI, and mounted with in a ProLong Gold. 

 

AQUA was performed as previously described [128]. Briefly, images of each stained 

TMA core were captured with an Olympus BX51 microscope at 3 different 

extinction/emission wavelengths. Within each TMA spot, the area of tumor was 

distinguished from stromal and necrotic areas by creating a tumor specific mask from 

the anti-CD99 protein, which was visualized from AF555 signal. The DAPI image was 

then used to differentiate between the cytoplasmic and nuclear staining within the tumor 

mask. The pixel intensity of the protein/antibody complex was determined from the Cy5 

signal and reported as pixel intensity. The beta-catenin signal was further differentiated 

into the nuclear-associated pixel intensity and the non-nuclear-associated (membrane 

and cytoplasm) fraction. 
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RNA In-situ Hybridization 

RNA in-situ hybridization (ISH) was performed using a commercially available kit and 

probes according to the manufacturer’s instructions (Advanced Cell Diagnostics Inc., 

Haywood, Ca) and detailed in ([129]). Briefly, 4-μm thick sections of the EFT TMA were 

pretreated with 1 mM EDTA pH9 microwave epitope retrieval and protease digestion 

before digestion. Three sequential TMA sections were hybridized with UBC (positive 

control, catalog #310041), LGR5 (catalog #311021) and DAPB (negative control, 

catalog #310043). The preamplifier, amplifier and horseradish peroxidase-labeled 

probes were then sequentially applied to the sections with appropriate washing steps 

between each application. Hybridizations and all incubations were carried out at 42C in 

a humidified environment. This was followed by color development with 

diaminobenzadine and light counterstaining with hematoxylin. Specific staining signals 

were identified as brown well-defined dots present in the cytoplasm of the cell. For in 

vitro analysis of cell lines, cells were cultured on glass chamber slides coated with 0.2% 

gelatin, fixed in 4% paraformaldehyde, and ISH was similarly performed according to 

the manufacturer’s instructions using probes against PPIB (positive control, catalog # 

313901), LGR5, and DAPB. 

 

Semi-Quantitative In-Situ Hybridization (SQUISH). 

SQUISH was performed using the protocol described above for ISH with the exception 

that a CSA reaction of Cy5 labeled tyramide was used instead of DAB. Prior to the 

addition of the Cy5 tyramide, the slides were sequentially incubated with antibody to 

CD99 (1:200) for 1 hr at RT, followed by Alexafluor 555 (1:200) for 1 hr at RT, and 
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Background Sniper. The slides were washed water and stained with DAPI in ProLong 

Gold. Analysis was performed as described for AQUA. 

 

RNA profiling and identification of Wnt target genes  

CHLA25-7TGP cells were stimulated with CM and FACS sorted on the basis of GFP 

expression. RNA was extracted for RNA sequencing (RNA-seq) and analysis. Total 

RNA was isolated from 3 sample sets: L-cell CM, Wnt3a CM, and the Wnt3a CM 

+RSPO2. RNA-seq libraries were prepared according to Illumina TruSeq standard 

procedures. Three biological replicates per sample were used and further three 

technical replicates for each of the biological sample were sequenced on the Illumina 

HiSeq 2000 instrument (50 cycle single read). Fastq generation was performed using 

Illumina’s CASAVA-1.8.2 software. Quality control (QC) analyses were done on the 

fastq files using FASTQC. The fastq sequences that passed the QC were then aligned 

to Human genome (Ensembl GRCh37) using Tophat (v.2.0.5) embedded with Bowtie 

(v.2.2.0) with a maximum number of 2 mismatches. The RNA-seq data was aligned 

using Sailfish, a rapid alignment-free isoform quantification software[130]. The transcript 

coverage is accurately estimated using counts of k-mers occurring in reads instead of 

alignments of reads[130]. The criterion for considering a transcript as expressed was 

that more than one replicate from at least one sample group have RPKM (reads per 

kilobase per million mapped reads) greater than 1. For differential expression analysis, 

RPKM calculated using Sailfish methodology was used to estimate the expression 

levels of the transcripts, as it is based on the abundance of the unique read sequences 

of the transcripts. We used the statistical R package, edgeR[131] to determine 

differential transcript expression. This package uses an over-dispersed Poisson model 
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to account for both biological and technical variability. We performed two comparisons 

for the differential expression analyses: L-cell CM versus Wnt3a CM and L-cell CM 

versus Wnt3a CM +RSPO2. A p value < 0.05 was considered as significant. Heat map 

analysis was generated using the heatmap.2 function in the gplots R package. 

 

Gene set enrichment analysis (GSEA)  

Generation of a list of significantly overlapping datasets was computed using the 

Molecular Signatures Database v4.05 (MSigDB)[109]. Gene set enrichment analysis 

(GSEA) was performed by using the GseaPreranked function of GSEA v2.1.0 software 

(Broad Institute). For in vitro targets of Wnt/beta-catenin signaling, rank-ordered GSEA 

was performed by generating a rank-ordered list based on fold-change gene expression 

for either Wnt3a CM or Wnt3a CM+RSPO2 conditions relative to L-cell CM. EWS/ETS 

antagonism was determined in patient data by ranking genes based on correlation with 

LEF1 expression in the clinically annotated dataset from the Children’s Oncology Group 

(COG) (GSE 63157 [113], and gene set enrichment analysis (GSEA) was similarly 

performed. 

 

Statistics 

Unless otherwise indicated, data are expressed as mean ± standard error of the mean 

(SEM) from a minimum of three independent experiments. The data were analyzed 

using GraphPad Prism software by a Student’s t-test and a p-value of 0.05 or less was 

considered significant. 
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Chapter 3      
             

Tenascin C is regulated by Wnt/beta-catenin signaling and promotes ewing 
sarcoma metastasis 

 

Abstract 

Metastasis is a major cause of mortality for patients with Ewing sarcoma. We 

have recently shown that Wnt/beta-catenin signaling can be strongly induced in Ewing 

sarcoma cells, that it promotes metastatic phenotypes, and that signaling is potentiated 

by the LGR5 ligand, R-spondin 2 (RSPO2). Interrogation of RNA-sequencing data 

identified the metastasis-associated extracellular matrix glycoprotein tenascin C as a 

putative downstream mediator of this metastatic phenotype. Quantitative real-time PCR 

and immunocytochemistry studies of multiple Ewing sarcoma cell lines validated that 

tenascin C is regulated by Wnt/beta catenin signaling. Given the context-dependent 

nature of downstream gene regulation by Wnt/beta-catenin ligands, we further 

investigated putative cells-of-origin, as well as other cancer cell lines to determine if 

regulation of TNC by Wnt/beta-catenin was unique to Ewing sarcoma cell lines. Through 

these studies, we found that regulation of TNC by Wnt3a/RSPO2 is variable among 

adult and pediatric cancers, while TNC is reproducibly induced by Wnt/beta-catenin in 

stem cells and variably potentiated by RSPO2. Functionally, we found that knockdown 

of TNC inhibits Wnt-induced as well as Wnt-independent Ewing sarcoma cell migration 

and metastasis both in vitro and in vivo. Thus, we have shown that Wnt/beta-catenin 
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signaling induces metastasis-associated genes, including TNC, in Ewing sarcoma. 

Furthermore, we have identified that autocrine production of tenascin C promotes Ewing 

sarcoma cellular migration and metastasis, thus implicating the RSPO2-Wnt-TNC axis 

as a candidate effector of tumor metastasis. 
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Introduction 

Ewing sarcoma is an aggressive bone and soft tissue that has a high propensity 

for metastasis. The mechanisms that mediate migration, invasion and metastasis in this 

tumor remain poorly understood. For epithelial tumors, a predominant hypothesis is that 

extracellular signals, often from the microenvironment, promote transcriptional programs 

that upregulate proteins that are critical for metastasis. Most notably, cells undergo a 

program that induces an epithelial to mesenchymal transition (EMT) and become highly 

invasive [122]. By nature, Ewing sarcoma already exhibits a mesenchymal phenotype, 

yet not all Ewing sarcoma tumor or cells have the ability to invade or metastasize. It is 

becoming increasingly recognized that expression of mesenchymal factors alone are 

not sufficient to promote metastatic and invasive states, but rather that cells must 

undergo functional cell state transitions.   

In the previous chapter, we provided evidence that Wnt/beta-catenin signaling 

upregulates pro-metastatic adhesion and migration genes, and this results in 

cytoskeleton changes and induction of a migratory phenotype. It remains unclear which 

genes specifically mediate phenotypic changes. One of the genes most highly 

upregulated by Wnt3a CM and RSPO2 is tenascin C (TNC). TNC is strongly associated 

with metastasis and poor outcomes in numerous tumors [132, 133]. Thus, we 

hypothesized that tenascin C mediates aggressive phenotypes in Ewing sarcoma. TNC, 

encoded by the gene TNC, is a matricellular glycoprotein that functions as a modulator 

of interactions between the cell and the extracellular matrix [134]. It is minimally 

expressed in normal adult tissues, but up-regulated in numerous and diverse solid 

tumors including carcinomas [117, 132, 133, 135], melanoma [136], glioblastoma [135], 

and sarcomas [137]. TNC is a large multimeric protein composed of six similar subunits. 
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The TNC gene encodes a large region subject to alternative splicing, which generates 

190-300 kDa variants that ultimately associate to form the larger oligomeric complex. 

During embryogenesis, tenascin C is broadly expressed and promotes a wide range of 

cellular functions including proliferation, migration, adhesion, immune modulation, and 

regulation of angiogenesis [134]. Notably, during the physiological EMT that neural crest 

cells undergo during normal development, TNC is strongly upregulated, and expression 

is essential for proper neural crest migration [138-140]. In tumors, TNC is frequently 

expressed by the stroma of a tumor, but in some contexts is also expressed by the 

tumor cells themselves [134, 141]. In some cancer cells, TNC promotes proliferation 

and migration [132-134]. Further, TNC is required for metastatic survival of breast 

cancer cells, as shown in a xenograft model of metastasis, where breast cancer cells 

that disseminated from a primary tumor were shown to upregulate and maintain 

expression of TNC in as in micro-metastatic foci [117]. Once tumors progressed from 

micro-metastases to macro-metastases, a marked increase in stromal expression of 

TNC was observed, thus suggesting that TNC acts as a niche component necessary for 

metastatic survival and outgrowth [117]. In this chapter, we sought to further investigate 

the regulation of tenascin C by Wnt/beta-catenin signaling, and to determine the 

function of this protein in Ewing sarcoma. 
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Results 

TNC is expressed by Ewing sarcoma cells 

 Although TNC is highly expressed by many tissues during development, in 

adults its expression is limited with the exception of during wound healing. In contrast to 

normal tissue, adult and pediatric cancers frequently express TNC, but the expression 

patterns of TNC in Ewing sarcoma tumors and cell lines are only beginning to become 

understood [142]. To better understand TNC expression, we first interrogated publicly 

available microarray expression data for TNC in 117 Ewing sarcoma primary tumors 

relative to expression in 24 normal tissues (Fig. 3.1A). Here, we observed that TNC 

expression is on average higher in tumor samples than in normal tissue. In addition, a 

wide range of expression among patient samples is observed, indicating heterogeneity 

of expression among patients. We next used qRT-PCR to determine expression in a 

panel of Ewing sarcoma cells lines (Fig. 3.1B), and similarly observed heterogeneity of 

expression among cell lines. Immunocytochemistry studies were next performed in 

order to determine protein expression in the panel of cell lines (Fig. 3.1C). Here, we saw 

that TNC was detectable, albeit to varying degrees, in all cell lines, and was 

heterogeneous not only between cell lines, but also highly heterogeneous among 

individual cells. Taken together, these studies reveal that TNC is expressed by Ewing 

sarcoma tumor cells and this expression is heterogeneous among tumors, as well as 

variably expressed by individual cells. 

  



 
 

75 
 

       

Figure 3.1. Tenascin C is variably expressed in Ewing sarcoma. 

(A) Published microarray gene expression profiling data from 117 primary Ewing 
sarcoma samples (GEO accession # GSE34620) reveals that on average, TNC 
expression is higher in primary Ewing sarcoma tumors than in normal tissue. (B) qRT-
PCR of seven Ewing sarcoma cell lines reveals highly variable TNC transcript 
expression among cell lines with very high expression in TC32 cells and nearly 
undetectable levels in TC71. (C) Immunocytochemistry for tenascin C reveals both 
inter- and intra-cell line heterogeneity of tenascin C expression in Ewing sarcoma cell 
lines. 
 

TNC is regulated by Wnt/beta-catenin signaling in Ewing sarcoma 
 

The mechanisms that regulate TNC expression in Ewing sarcoma are largely 

unknown. Interrogation of the list of Wnt/beta-catenin and EWS/ETS co-regulated genes 

identified TNC as one of the most highly up-regulated genes by Wnt3a/RSPO2 in 

CHLA25 cells (see Table 2.1, Fig 2.9A ). We next sought to determine if regulation of 

TNC by Wnt3a is reproducible in other Ewing sarcoma cell lines. qRT-PCR (Fig. 3.2A) 
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and immunocytochemistry (Fig. 3.2B) confirmed that TNC is induced two-fold or more in 

Ewing sarcoma cells in response to exogenous Wnt ligands in all cell lines tested, 

although potentiation with RSPO2 was variable. In most cell lines, TNC induction was 

unaffected by RSPO2. As expected, the two cell lines that express high levels of LGR5, 

CHLA25 and CHLA32, had the most robust potentiation of TNC in response to RSPO2. 

Next, we investigated if Wnt activation was associated with TNC expression in primary 

tumors. Using LEF1 as readout of Wnt/beta-catenin activation, we found a positive and 

significant correlation between LEF1 and TNC expression (Fig. 3.2C), suggesting that 

high Wnt activity contributes to TNC expression in vivo. To establish that TNC is directly 

regulated by beta-catenin signaling, A673 cells were transduced with a constitutively 

active beta-catenin (EβP) construct. In EβP cells, and TNC expression was upregulated 

in the absence of exogenous ligands, confirming that Wnt-dependent regulation is, at 

least in part, mediated by beta-catenin (Fig. 3.2D). Evidence that EWS/FLI-1 regulates 

TNC is conflicting. In one report, TNC was induced upon introduction of EWS/FLI-1 into 

heterologous cells [142], while two other studies demonstrated TNC induction following 

EWS/FLI1 knockdown in Ewing sarcoma cells [19, 22]. We measured TNC expression 

with and without doxycycline-mediated silencing of EWS/FLI-1 in shA673-1C cells and 

observed a robust induction of TNC in cells with reduced EWS/FLI-1 (Fig. 3.2E). This 

induction was slightly enhanced upon addition of Wnt3a. These data indicate that TNC 

is indeed an EWS/ETS-repressed gene, and this repression is antagonized by 

Wnt/beta-catenin signaling. 



 
 

77 
 

 
 

 

Figure 3.2 TNC is regulated by Wnt/beta-catenin signaling in Ewing sarcoma 

(A) Ewing sarcoma cells were stimulated with Wnt3a CM +/- RSPO2 for 24 hr and TNC 

expression was measured by qRT-PCR. TNC was significantly induced by Wnt3a CM in 

all cell lines tested, but variably potentiated by RSPO2. P-values were determined using 

the Student’s t-test. *p<0.05, **p<0.01, ***p<0.001. (B) Tenascin C expression, 

assessed by immunocytochemistry, is induced by Wnt3a CM and potentiated by 

RSPO2 in LGR5-high expressing cell lines CHLA25 and CHLA32. Scale bar = 20 µm. 

(C) High LEF1 expression in primary Ewing sarcoma tumors is positively correlated with 

TNC expression. r=Pearson’s correlation between TNC and LEF1. (D) A673 cells 

transduced with a constitutively active beta-catenin construct (EβP) express significantly 

higher TNC compared to empty vector control cells. P-values was determined using the 

Student’s t-test. **p<0.01 (E) A673 cells transduced with a doxycycline-inducible shRNA 

against EWS-FLI1 (shA673-1C) reveal an induction of TNC both with addition of 

recombinant Wnt3a and doxycycline, indicating that TNC is repressed by EWS-FLI1.  P-

values were determined using the Student’s t-test. *p<0.05, **p<0.01. 
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TNC is variably regulated by Wnt/beta-catenin in stem cells and other tumors 

Regulation of TNC by Wnt/beta-catenin is evident in Ewing sarcoma, but it is 

unknown if expression of TNC in other tissues is governed by Wnt/beta-catenin 

signaling, including during normal development. In order to better understand the 

context in which TNC is a transcriptional target of Wnt/beta-catenin, we specifically 

focused on stem cells representing putative cells-of-origin. The stem cells assessed 

were of varying neural crest and mesenchymal potential, and included human 

embryonic stem cell-derived neural crest stem cells (hNCSC), human patient-derived 

mesenchymal stem cells (hMSC), and mouse cranial neural crest cells (mCNCs), which 

are considered to be of neuro-mesenchymal lineage. We interrogated basal TNC 

expression and found that hMSCs expressed over ten-fold as much TNC as hNCSCs, 

while mCNC cells had intermediate expression (Fig. 3.3A). To determine if expression 

was regulated by Wnt3a +/- RSPO2, we stimulated cells as aforementioned and found 

that hNCSC robustly induced TNC in response to Wnt3a, and this was further 

potentiated by RSPO2 (Fig. 3.3B). Regulation of TNC was only induced by Wnt3a CM 

in hMSCs but not Wnt3a +RSPO2, and not significantly induced in mCNC (Fig. 3.3B).  

In colorectal carcinoma, TNC is expressed at the invasive borders of tumors with 

nuclear beta-catenin [143]  but regulation of TNC by Wnt/beta-catenin in other cancer 

cells has not been reported. To better understand the context in which TNC is 

regulated, we stimulated other non-Ewing sarcoma cell lines of differing lineages, and 

included both pediatric (Fig. 3.3C,D) and adult (Fig. 3.3E) cancers. Upon stimulation 

with Wnt3a CM +/- RSPO2, neuroblastoma cells SH-SH-5Y (5Y), SHEP, and IMR32 

variably regulated TNC. The highly aggressive cell line IMR-32 showed a pattern of 

regulation most similar to hNCSCs and Ewing sarcoma cell lines, whereas the less 
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aggressive cell line SHEP down-regulated TNC (Fig. 3.3C). Osteosarcoma cell lines 

SaOS2 and U2OS similarly showed variable regulation, although the pattern of 

regulation in SaOS2 was highly reminiscent of the pattern observed with hMSCs (Fig. 

3.3D), likely reflecting its mesenchymal origin. The adult epithelial cancers A549 (lung 

adenocarcinoma), HeLa (cervical cancer), and MDA-MB-231 (breast cancer) showed 

inconsistent induction of TNC (Fig. 3.3E). Of all cell types tested, hNCSCs had a pattern 

of TNC regulation most similar to that seen in Ewing sarcoma. Other pediatric cancer 

and epithelial cancers exhibited divergent regulation of TNC, underscoring the context-

specificity of downstream Wnt/beta-catenin target genes. 
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Figure 3.3 TNC is expressed and variably induced by Wnt3a CM in stem cells and 
non-Ewing sarcoma tumors.  
 

(A) Basal TNC expression was measured in putative cells-of-origin by qRT-PCR.  Stem 
cells (B), pediatric cancer cell lines derived from neuroblastoma (C), and osteosarcoma 
(D), and adult epithelial cancer cell lines (E) were stimulated with Wnt3a CM +/-RSPO2 
and expression of TNC was measured by qRT-PCR. The regulation of TNC by Wnt3a 
was variable from tumor to tumor type, as well among cell lines of the same tumor type. 
All p-values were determined using the Student’s t-test. *p<0.05.  
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TNC promotes Ewing sarcoma cell migration and tumorigenicity in vivo 

Having established that TNC is consistently regulated by Wnt/beta-catenin in 

Ewing sarcoma, we next sought to determine its role in pathogenesis through loss-of-

function studies. TNC abrogation was achieved using shRNA delivered to cells by 

lentiviral transduction, and knockdown was verified using qRT-PCR to assess transcript 

levels (Fig. 3.4A), and immunocytochemistry to assess protein expression (Fig. 3.4B). In 

tumors, TNC can promote proliferation and migratory phenotypes in vitro. First, 

proliferation was assessed using an MTS assay. Knockdown of TNC had no effect on 

cell proliferation (Fig. 3.4C). Transwell assays were performed to assess migration, and 

revealed that loss of TNC strongly inhibited cell migration (Fig. 3.4D). The effects of 

TNC on tumorigenicity have not been described, so cells containing control or TNC 

knockdown were plated as single cells in soft agar and allowed to form colonies. After 

three weeks, shNS control cells readily formed colonies, but cells with TNC knockdown 

were severely inhibited in their ability to form anchorage-independent colonies (Fig 

3.4E). Thus, loss of TNC results in dramatic reductions in migration and tumorigenicity 

that are independent of proliferation. 
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Figure 3.4 Tenascin C promotes colony formation and migration in vitro.  

Validation of tenascin C knockdown by qRT-PCR (A) and immunocytochemistry (B) in 
two Ewing sarcoma cell lines using two independent shRNAs targeting TNC.P-values 
were determined using the Student’s t-test. *p<0.05. (C) shTNC cells have no significant 
changes in proliferation compared to shNS cells, as assessed by MTS assay. 
Differences between groups were not statistically significant as assessed by Student’s t-
test. (D) Loss of TNC strongly inhibits the ability of cells to form colonies in soft agar. 
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Data is shown as average colonies per well for n=3 independent experiments. P-values 
were determined using the Student’s t-test. *p<0.05, **p<0.01. (E) Loss of TNC 
significantly inhibits transwell migration of Ewing sarcoma cells. Data is shown as 
average colorimetric absorbance of migrated cells for n=3 independent experiments. P-
values were determined using the Student’s t-test. *p<0.05, **p<0.01. 

 

 We next sought to determine if TNC mediates the migratory phenotype induced 

by Wnt3a. In transwell assays, control or TNC knockdown cells were induced to migrate 

by Wnt3a +/-RSPO2. In cells with TNC knockdown, a significant reduction of Wnt-

induced migration was observed in both A673 (Fig. 3.5A) and CHLA25 (Fig. 3.5B) cells, 

indicating that the Wnt-induced migratory phenotype is mediated in part by TNC. 

 

Figure 3.5 Tenascin C mediates Wnt-induced migration. 

(A) A673 (B) CHLA25 cells transduced with lentivirus containing non-silencing (shNS) or 
shRNA against TNC (shTNC-3) were stimulated with control, Wnt3a, or Wnt3a +RSPO2 
and allowed to migrate for 24 hr. TNC abrogation in part inhibits migration induced by 
Wnt.  
 

TNC promotes in vivo metastasis of Ewing sarcoma cells 

To assess the impact of TNC knockdown in vivo, luciferase-tagged cells were 

similarly transduced with control non-silencing (shNS) or TNC knockdown vector 

(shTNC-3) (Fig. 3.6A).  Cells were injected subcutaneously in Matrigel and tumor 
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formation was measured by calipers. After three weeks, A673 shNS readily formed 

tumors, while shTNC-3 cells failed to grow (Fig. 3.6B). TC32 cells are highly tumorigenic 

and express high levels of TNC, even with shRNA-mediated knockdown (Fig. 3.6A). 

Tumors formed from both control and TNC knockdown cells, although tumors with TNC 

were smaller on average (Fig. 3.6C).  When TC32 cells were injected via tail vein into 

NOD-SCID mice, all but one of the control mice (7 of 8) formed metastatic tumors by 

seven weeks post-injection, whereas none of the TNC knockdown recipient mice 

showed evidence of tumor formation (0 of 7) (Fig. 3.6D,E), implicating TNC as important 

mediator of metastatic engraftment. Thus, like breast cancer cells [117], successful 

creation of metastatic tumors from circulating Ewing sarcoma cells is critically 

dependent on TNC, which we have identified to be induced in response to Wnt/beta-

catenin activation. Based on these data, it appears likely that TNC is more important for 

metastatic engraftment compared to subcutaneous engraftment and tumor formation, 

especially in TC32 cells, which have high levels of TNC even upon shRNA-mediated 

knockdown (Fig, 3.6A). In A673, however, which has lower levels of TNC (Fig. 3.6A), it 

is likely that TNC is required for any tumor engraftment (Fig. 3.6B). These data together 

provide compelling evidence to support a model of Ewing sarcoma tumor plasticity 

linking Wnt/beta-catenin signaling to metastatic progression and poor clinical outcomes 

via induction of TNC. 

 
 



 
 

85 
 

Figure 3.6 Tenascin C promotes tumor engraftment and metastatic establishment 
in vivo. 
(A) A673 and TC32 GFP/luc-cells were transduced with lentivirus containing shNS or 
shTNC3 vectors, and knockdown of TNC was achieved in shTNC3 cells as assessed by 
qRT-PCR. Data is expressed as percent of the housekeeping gene HPRT1. (B) Cells in 
(A) were injected subcutaneously in Matrigel and tumor growth was monitored for three 
weeks by calipers. Abrogation of TNC dramatically inhibited tumor formation in A673 
cells, while TNC knockdown in TC32 cells resulted in decreased proliferation. (C) TC32 
cells containing TNC knockdown were injected intravenously via the tail vein and 
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followed by bioluminescence imaging for seven weeks (D). Loss of TNC in TC32 cells 
dramatically inhibited metastatic tumor formation. P-value was determined using the 
Student’s t-test. ****p<0.0001. 
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Discussion 

In these studies, we have identified Tenascin C (TNC) as a critical and highly 

responsive target of Wnt/beta-catenin signaling in Ewing sarcoma. In all Ewing sarcoma 

cell lines tested, TNC was induced by Wnt3a, and this induction was even more 

pronounced in highly-Wnt responsive cells upon addition of RSPO2. Induction and 

potentiation of TNC by Wnt3a/RSPO2 was variably regulated in stem cells and other 

cancer cell lines. Functionally, we found that inhibition of TNC expression in part 

abrogates Wnt/RSPO2 induced migration in Ewing sarcoma cells, and also inhibits 

intrinsic Wnt-independent migration. Further, inhibition of TNC dramatically decreased 

the ability for Ewing sarcoma cells to form colonies in soft agar, thus reflecting a 

decrease in tumorigenicity.  In vivo tumor formation was reduced, and lung engraftment 

of cells with TNC knockdown was virtually eliminated compared to control cells, 

identifying a key role for TNC tumor engraftment, especially in the setting of lung 

metastasis.  Similar to how epithelial cells undergo phenotypic cell transitions to 

become more metastatic, these data suggest that Wnt/beta-catenin upregulate TNC to 

promote cell state transitions.   Interestingly, TNC can induce EMT in epithelial cells 

[144-146] and is also found in vimentin positive cells [147], suggesting that it is also 

involved in the metastatic EMT of epithelial tumors. Since Ewing sarcoma cells are 

already in a mesenchymal state, perhaps acquisition of TNC via Wnt-mediated 

phenotypic transitions are analogous to EMT and ultimately result in induction of the 

same critical metastasis protein. 

 Although TNC has been described as a transcriptional target of Wnt/beta-catenin 

in other studies [143, 148], regulation of TNC expression by the Wnt pathway has not 

been well-validated in other cancers. Our studies reveal that induction of TNC in Ewing 
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sarcoma cells is robust compared to other cancers tested, and underscores the context-

dependent nature of Wnt target genes.  Interestingly, the regulation of TNC by 

Wnt3a/RSPO2 in NCSCs was most similar to its regulation in LGR5-high Ewing 

sarcoma cell lines. Alternatively, MSCs have a pattern of regulation characterized by 

induction by Wnt3a but down-regulation by Wnt3a+RSPO2, this same pattern was 

observed in the osteosarcoma cell line SaOS2. This may suggest that cells with more 

osteo-mesenchymal characteristics may be subject to feedback down-regulation of 

TNC, or other regulatory mechanisms. This difference in regulation among different cell 

types may be a reflection of the original cell-of-origin. Perhaps some Ewing sarcoma 

tumors arise from cells with strong NCSC characteristics, such as high LGR5 

expression[3] and neuro-mesenchymal differentiation potential, whereas less Wnt-

responsive Ewing sarcoma tumors, as well as other tumors like osteosarcoma, may 

arise from MSC-like cells. Differences in TNC induction are also likely affected by 

expression of LGRs and other Wnt pathway receptors, but gain-and-loss of function 

studies of these receptors are required to definitively understand their contributions to 

TNC regulation. In addition, chromatin accessibility strongly differs among different cell 

types and states of differentiation. Given the heterogeneous presentation of Ewing 

sarcoma tumors, perhaps reflecting different cells of origin, it is likely that chromatin 

accessibility may influence the ability for the individual Ewing sarcoma tumors and other 

cell types to induce TNC expression in response to Wnt/beta-catenin.  

Heterogeneity of TNC expression is evident among patient transcript in published 

microarray data, and our studies reveal marked expression of TNC protein among 

individual cells in each cell line.  It remains unknown if this heterogeneity is evident in 

primary tumors, and histological staining of a tumor microarray would greatly benefit our 
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understanding. For instance, it is unclear whether TNC expression is primarily in the 

tumor cells, the surrounding stroma, both, or variable between tumors. If there is 

variability among patients between predominantly stromal and tumor cell expression, it 

would be interesting to separate patients based on expression patterns and compare 

outcomes. Given that breast cancer cells up-regulate tenascin C during the metastatic 

cascade, and then the stroma re-establishes expression in secondary sites[117], one 

could hypothesize that patients whose tumor cells display the ability to express TNC 

might be more metastatically competent than tumors that only have stromal TNC 

expression. 

In our studies, we observed that expression of TNC confers metastatic ability, 

and metastatic potential is dramatically reduced when its expression is abrogated. The 

mechanisms that mediate the migratory and metastatic potential remain unclear. The 

plethora of functions attributed to TNC provides many avenues for further exploration. 

One possibility is that TNC may modulate metastatic efficiency through cellular 

adhesion. In many contexts, tenascin C promotes de-adhesion from fibronectin to 

promote an intermediate state of adhesion conducive to migration, as strongly adherent 

cells do not move [134]. Despite this de-adhesive function, TNC also binds to numerous 

integrins [141]. Binding to certain integrin receptors combinations promotes cellular 

attachment, and thus may promote cellular attachment in distant metastatic sites. 

Further engagement of integrin receptors may also induce downstream signaling in 

stromal cells, which can induce expression of enzymes involved in matrix remodeling 

[149] and promote metastatic niche formation. TNC could also protect metastatic cells 

from anoikis, which is the process of apoptosis induced by cellular detachment. It has 

been shown that TNC promotes cell survival by activation of Akt [150]. Activation of Akt 
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in turn can protect cells from anoikis [151]. Thus, TNC expression may induce autocrine 

signaling required for survival during circulation and throughout the metastatic cascade. 

The heterogeneous expression of TNC among individual tumor cells in a cell line (Fig. 

3.1C), may also be indicative of a paracrine signaling process, suggesting that TNC 

could have differential effects on cells within a cell line.  Taken together, our data 

strongly warrants further explorations into the mechanisms of TNC-mediated tumor 

progression, and provides a novel therapeutic target for consideration of metastasis 

prevention in Ewing sarcoma. 
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Experimental Procedures 

Cell lines and lentiviral transductions 

Ewing sarcoma cell lines were maintained in RPMI 1640 media (Gibco) supplemented 

with 10% FBS (Atlas Biologicals) and 2mM L-glutamine (Life Technologies). CHLA25, 

CHLA32, and STA-ET-8.2 were grown on plates coated with 0.2% gelatin. SaOS2 and 

U2OS, and HeLa were similarly maintained. MB-MDA-231 was maintained in DMEM 

containing 10% FBS. A549 was maintained in F12K media containing 10% FBS. 

shA673-1C cells were kindly provided by Dr. Olivier Delattre and maintained as 

previously described (21). SH-SY-5Y (abbreviated 5Y) and SHEP were maintained in 

MEM (Gibco). IMR32 were maintained in MEM supplemented with 7.5% sodium 

bicarbonate. L-cells (ATCC CRL-2648) and Wnt3a L-cells (ATCC CRL-2647) were 

cultured in DMEM (Gibco) with 10% FBS. All cells were verified to be mycoplasma 

negative and identities confirmed by STR profiling. Lentiviral production and 

transduction was performed as previously described (20), and the following plasmids 

were used: Addgene #24305 (7TGP), Addgene #24313 (EβP), Sigma 

TRCN0000230788 (shTNC-3), Sigma TRCN000015400 (shTNC-5), UM-vector core 

pLentilox-luciferase/GFP (luc-tagged). Cells were selected in puromycin (2 μg/mL).  

 

Generation of stem cells 

The stable cranial neural crest cell line were a gift from the Robert Maxson laboratory 

and were cultured adherently in a basal medium conditioned by STO feeder cells and 

supplemented with 25 ng/ml bFGF (R&D Systems) and 1,000 U/ml mouse LIF 

(Millipore) [152]. hMSC were a gift from the  Paul Krebsbach lab and cultured in MEM 
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containing 10% Stem-cell grade FBS (Thermo Fisher). hNCSCs were derived from 

human embryonic stem cells as previously described[50]. 

 

Analysis of gene expression  

Wnt targets were validated by quantitative RT-PCR, using standard methods as earlier 

described. The sequences of primers used are listed in Table 3.1. 

Gene Forward primer sequence Reverse primer sequence 

HPRT1 TGACACTGGCAAAACAATGCA GGTCCTTTTCACCAGCAAGCT 

TNC GCAGCTCCACACTCCAGGTA  TTCAGCAGAATTGGGGATT 

Hprt1 AGTCCCAGCGTCGTGATTAG TTTCCAAATCCTCGGCATAATGA 
Tnc ACGGCTACCACAGAAGCTG ATGGCTGTTGTTGCTATGGCA 

Table 3.1 Primer sequences used for qRT-PCR 

 

Immunofluorescence microscopy 

Cells were grown on gelatin-coated coverslips and protein expression evaluated by 

standard techniques and immunofluorescence microscopy as previously described (20). 

Tenascin C was detected using anti-Tenascin C (Sigma, 1:100) primary followed 

secondary antibody (Alexafluor 594, 1:500). Slides were counterstained using DAPI 

(1:10,000) (Invitrogen), mounted using Prolong Gold (Molecular Probes, Life 

Technologies) and imaged using an Olympus CKX41 microscope with Nikon Elements 

software version 3. 

 

Proliferation assay  

5x103 cells were plated in triplicate on 96 well plates, and cells were allowed to 

proliferate for five days. Cell proliferation was monitored at days 0, 1, 3, and 5 using the 

CellTiter 96 AQueous One Solution Cell Proliferation Assay (Promega, Madison, WI) 
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according to the manufacturer’s instructions. Colorimetric absorbance (490 nm) was 

quantified on a BioTek plate reader. Background readings for each day were subtracted 

from blank wells. Data is expressed as the normalized cell index, which is the 

background-corrected absorbance normalized to the day 0 reading. 

 

Migration assays 

1x105 cells in serum-free RPMI were added to transwells containing 0.8 μm pores with 

serum-containing media in the bottom chamber. After 24hr cells were fixed using a 

solution of 25% crystal violet and 25% methanol and membranes were imaged and then 

cells eluted using crystal violet in 10% acetic acid. Colorimetric absorbance (540 nm) 

was quantified on a BioTek plate reader. 

 

Colony formation assay 

Colony formation was assessed by plating a single cell suspension of 1 × 104 cells per 

well of six well plates in 0.35% noble agar on a layer of 0.5% noble agar. Colonies were 

stained with a solution of 0.005% crystal violet and counted three weeks later.  

 

In vivo assays 

To assess tumor growth, 2.5x105 A673 or TC32 cells containing shNS or shTNC3 

vectors were re-suspended in Matrigel and implanted subcutaneously into 10-12 week-

old NOD SCID mice (strain 394, Charles River Laboratories, Wilmington, MA). Each 

mouse was implanted with a shNS tumor on the left flank and a shTNC-3 tumor on the 

right flank. Tumors were measured every other day by calipers, and tumor volume was 

determined using the formula V=1/2ab2, where a is the longer dimension and b is the 



 
 

94 
 

shorter.  To assess metastatic capacity, 1x106 luciferase-labeled TC32 cells containing 

shNS or shTNC3 vectors were injected via tail vein into 10-12 week-old NOD SCID 

mice. Satisfactory injection of viable cells was confirmed by detection of light emission 

in the lungs of recipient mice 30 minutes after cell injection on a Xenogen IVIS 

bioluminescence system (Perkin Elmer, Waltham, MA). Imaging was repeated weekly 

and tumor burden quantified using Living Image software (Perkin Elmer, Waltham, MA). 

Mice were monitored for 7 weeks, at which point mice were euthanized due to signs of 

tumor-related ill health in control mice. 

 

Statistics 

Unless otherwise indicated, data are expressed as mean ± standard error of the mean 

(SEM) from a minimum of three independent experiments. The data were analyzed 

using GraphPad Prism software by Student’s t-test and p-values < 0.05 considered 

significant. 
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Chapter 4 
 

Prognostic and Therapeutic Significance of Wnt/beta-catenin signaling in the 
context of the ewing sarcoma Microenvironment 

 

Abstract 

We have previously shown that Wnt/beta-catenin is heterogeneously active in 

Ewing sarcoma patient tumors, and that Wnt ligands similarly induce heterogeneous 

activation in vitro. Mechanistically, we found that Wnt/beta-catenin signaling 

antagonizes EWS/ETS transcriptional activity to promote metastatic phenotypes, in part 

through up-regulation of the metastasis gene tenascin C. In this chapter, we further 

investigated the clinical and therapeutic relevance of these findings, and expanded the 

scope of the effects of Wnt signaling to include potential interactions with the tumor 

microenvironment. In particular, we evaluated the prognostic significance of high 

nuclear beta-catenin in primary tumors, in addition to the downstream Wnt/beta-catenin 

target LEF-1. High expression of these molecules was significantly associated with poor 

clinical outcomes. LEF1 expression was correlated with 28/33 genes in a previously 

published signature of poor prognosis, as well as with genes involved in tumor 

microenvironment-mediated processes. To test the functional relevance of Wnt/beta-

catenin activation in a physiologic microenvironment, cells with beta-catenin activation 

were grown the in the chick chorioallantoic membrane (CAM) assay, and a pronounced 

migratory and mild angiogenic phenotype were observed. Despite the angiogenic 
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phenotype in the CAM assay, as well as induction of angiogenesis-associated pathways 

in response to beta-catenin activation, no significant effects were seen on angiogenic 

endothelial differentiation. This was further supported by the fact that expression of 

CD31, an immunohistological marker of angiogenesis, had no prognostic significance in 

patient tumors. Finally, we therapeutically targeted the Wnt/beta-catenin pathway by 

neutralizing endogenous RSPO2 in vivo using the monoclonal antibody MT130-230, 

and show that this inhibition results in decreased metastatic incidence. 
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Introduction 

   In order to generate therapeutic strategies to improve outcomes for patients, it is 

important to consider tumor biology in the context which tumors exist in patients—that 

is, in a physiologic microenvironment. The tumor stroma exists as a dynamic, 

multifaceted and interdependent ecosystem of cells, proteins, and ions. Key 

components of the microenvironment include the extracellular matrix, endothelial cells, 

immune cells, and fibroblasts, all of which can contribute to pathological processes. The 

bone microenvironment is particularly conducive to tumor growth and metastasis, as it is 

rich in cytokines and signaling molecules, and further possesses a well-defined cellular 

architecture, or “niche” that is conducive to stem cell maintenance and homeostasis 

[153, 154]. Tumor cells can co-opt this niche for their own survival [155]. Further, Ewing 

sarcoma is a highly osteolytic tumor, and its clinical presentation is characterized by 

extensive bone destruction. This osteolysis occurs though tumor-mediated activation of 

osteoclasts, and results in release of growth factors including TGF-beta, IGF-1, and 

PDGF, which can in turn signal back to tumor cells, promoting growth and further tumor 

progression [153]. 

 Although the specialized bone microenvironment is particularly conducive to 

Ewing sarcoma tumor growth and development, the fact that Ewing sarcoma cells in 

extra-skeletal tissue demonstrates that some tumors do not require the relatively 

specialized environment of the bone, and further may directly modify their surroundings 

to better suit their needs. It is likely that tumor interactions with the stroma have clinical 

and biological significance.  In a study to define gene signatures associated with poor 

prognosis, whole genome expression profiling revealed that Ewing sarcoma patients 

with poor clinical outcomes demonstrated enrichment for genes involved in integrin, 
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chemokine, and angiogenic pathways [113], thus suggesting microenvironment-

mediated processes.  

Given the lack of activating Wnt pathway mutations in tumors, and further 

absence of autocrine Wnt/beta-catenin activation in Ewing sarcoma cells lines, it is likely 

that tumors with evidence of nuclear beta-catenin are responding to Wnt ligands 

provided by the tumor microenvironment. Indeed cancer associated fibroblasts (CAFs) 

in the stroma [156], as well as normal osterix positive cells are a source of Wnt ligands 

[77] in the microenvironment, suggesting that microenvironment involvement promotes 

Wnt/beta-catenin activation. It further remains unknown, however, if Wnt/beta-catenin 

activation in Ewing sarcoma also influences the microenvironment.  In the following 

studies, we investigate the prognostic and functional significance of Wnt/beta-catenin 

activation both in and on the tumor microenvironments, and explore putative 

downstream pathways including IGF1 and TGF-beta, which provide opportunities for 

crosstalk. Finally, we attempt to therapeutically target the Wnt/beta-catenin pathway by 

neutralizing endogenous RSPO2 in vivo, and show that this inhibition results in 

decreased metastatic incidence. 
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Results 

Beta-catenin/LEF1 expression results in poor clinical outcomes 
 

In Chapter 2, we analyzed a small tumor microarray (TMA) of patient biopsies for 

evidence of Wnt/beta-catenin activation. In some of these biopsies, we found that beta-

catenin was detectable in both the cytoplasmic and nuclear compartments, and 

revealed marked inter- and intra-tumoral heterogeneity. Of the six tumors that robustly 

expressed nuclear beta-catenin, all (100%) relapsed. Nuclear beta-catenin was low or 

undetectable in 31 patients, and 18 (58%) relapsed. With similar methodology as 

previously described, we used tissue from a new and larger, clinically annotated tissue 

microarray (TMA), denoted as TMA9, to perform more detailed immunohistological 

analyses on a larger patient sample size. The new TMA included data for 108 patients, 

with multiples records for each patient. Of these patients, 51 Ewing sarcoma patient 

samples were able to be utilized for further analysis. The TMA was stained for beta-

catenin, and staining was quantified using AQuA technology. Correlation with nuclear 

beta-catenin expression and overall/event free survival was determined.  Patients with 

evidence of elevated nuclear beta-catenin (Fig. 4.1A) experienced significantly worse 

overall survival and progression free survival, further supporting our earlier findings that 

elevated nuclear beta-catenin is associated with worse clinical outcomes.  

As detailed in Chapter 2, the Wnt pathway gene LEF1 is strongly induced by 

Wnt/beta-catenin activation, and patients with evidence of high LEF1 transcript 

expression experienced worse outcomes. In addition to transcript data, we next sought 

to determine if LEF1 protein expression was similarly regulated and associated with a 

poor prognosis. In keeping with our transcript data, we found that cells stimulated with 
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Wnt3a +/- RSPO2 strongly upregulated protein expression of LEF1 (Figure 4.1B). To 

determine if patients with high levels of LEF1 protein expression experience poor 

clinical outcomes, we stained TMA9 for LEF1. Of note, we found LEF1 expression to be 

highly heterogeneous and only expressed in a minority of tumor cells (Fig. 4.1C). As 

shown by Kaplan-Meier survival analysis, patients with high LEF1 protein expression 

experienced very poor overall and event free survival (Fig. 4.1D). All five patients with 

high LEF1 expression did not experience long-term survival, and died of their disease 

with an average timespan of one year. Thus, our findings with LEF1 protein expression 

are strongly concordant with our aforementioned findings using LEF1 transcript 

expression. 
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Figure 4.1. High LEF1 expression is associated with poor prognostic and stroma-
associated genes. 

(A) Patients with high nuclear beta-catenin experienced worse overall (left) and event-
free survival (right). (B) LEF1 expression is strongly induced in cells with Wnt/beta-
catenin stimulation. (C) LEF1 expression is detectable and heterogeneous in a 
metastatic Ewing sarcoma tumor biopsy (red). Tumor cells are marked by CD99 (green) 
and nuclei are stained with DAPI (blue). (D) High levels of LEF1 protein expression are 
associated with worse overall (left) and event-free survival (right).  
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LEF1 expression is correlated with a stroma-enriched poor prognostic signature 
in Ewing sarcoma patients 

 

A recently published study of 46 Ewing sarcoma patients who were uniformly treated on 

Children’s Oncology Group (COG) therapeutic studies (GSE 63157) found that 

expression of 33 genes was associated with a poor prognosis [113]. Notably, this 

signature was enriched in tumors with significant stromal involvement; however, how 

the stroma contributes to aggressive disease is unclear. Given that Wnt and RSPO 

ligands are abundant in the microenvironment, we hypothesized that stroma-induced 

Wnt-beta catenin signaling may contribute to pathogenesis. Again using LEF1 as a 

transcriptional readout of Wnt/beta-catenin signaling, we interrogated if LEF1 

expression was correlated with expression of poor prognosis genes. Remarkably, LEF1 

expression was strongly correlated with 28 out of 33 genes prognostic genes (Fig. 

4.2A), even though LEF1 itself was not a gene found to be a marker of poor prognosis 

in this analysis. Many of these highly correlated genes are known mediators of 

angiogenesis and other tumor-stroma interactions. This relationship between LEF-1 

targets and candidate poor prognosis genes was reproduced in an independent set of 

117 tumors (Fig. 4.2B). In the COG dataset, the extent of stromal contamination in each 

patient was recorded, and we observed that patients with stromal-rich tumors had 

significantly higher LEF1 expression than patients with stromal-poor tumors (Fig. 4.2C). 

These data support our hypothesis that Wnt ligands provided by the stromal 

microenvironment activate Wnt/LEF1 and result in poor outcomes and aggressive 

disease.  
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Figure 4.2. LEF1 expression is associated with a poor prognostic signature and 
high stromal content. 

(A) LEF1 expression is correlated with expression of the 33 genes associated with a 
poor prognostic signature in COG patients as well as in the Delattre dataset (B) ND 
indicates no data available for indicate gene. P-values are indicated as shown in figure; 
NS indicates not significant. (C)  Patients with stroma-rich tumors express higher levels 
of LEF1 than those with stroma-poor tumors. **P<0.01. 
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 Having established that patients with evidence of Wnt/beta-catenin and LEF1 

expression experience poor prognoses, we next sought to determine if the reverse 

question was true: do patients who experience poor prognoses have any common 

evidence of Wnt/beta-catenin activity? We interrogated a previously performed 

microarray analysis [3], in which gene expression of tumors from four patients who died 

of their disease within one year were compared to 10 tumors, in which patients 

experienced long term survival. In this dataset, 311 genes were upregulated twofold or 

more in the patients with aggressive disease. Of the top ten most significantly 

overlapping datasets in the Molecular Signatures database (MSigDB), genes containing 

CTTTGT LEF1 binding sites in their promoters were significantly enriched (Table 4.1). 

Further consistent with our earlier hypothesis that antagonism of EWS/FLI1 activity 

promotes aggressive disease, of the 261 genes upregulated twofold or more in patients 

who experiencing long-term survival, the most significantly enriched dataset was for 

genes up-regulated by EWS-FLI1 (Table 4.2). This suggests that patients with a good 

prognosis have predominant and likely un-antagonized transcriptional activation by 

EWS/ETS proteins. 
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Table 4.1. MSigDB gene set enrichment analysis for 311 genes with at >2-fold 
higher expression in patients with aggressive disease 
The top 10 overlapping gene sets for the 311 genes with at least 2 fold higher 
expression in patients who experienced aggressive disease. Genes with LEF1 binding 
sites in the promoter were significantly enriched within this dataset.  



 
 

106 
 

 
Table 4.2. MSigDB gene set enrichment analysis for 261 with >2-fold higher 
expression in patients experiencing long-term survival. 

The top 10 overlapping gene sets for the 261 genes with at least 2 fold higher 
expression patients who experienced long-term survival. The most enriched pathway 
was for EWS/FLI-1 induced genes, suggesting that high EWS/ETS activity is associated 
with a better prognosis. 

 

To gain further insight into the pathways that are associated with high LEF1 

expression, we ranked genes in the COG dataset by correlation with LEF1, and 

performed gene set enrichment analysis (GSEA), on the genes with a correlation r>05. 

The top most significantly correlated datasets are shown in Table 4.3. Significantly, 

among genes highly correlated with LEF1 expression are genes that are down-

regulated by EWS/ETS, consistent with our hypothesis that activation of Wnt/beta-
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catenin signaling is associated with antagonism of EWS/ETS. Other top hits are 

pathways associated with TGF-beta/Smad signaling, blood vessel development, ECM, 

and focal adhesion. Taken together, these data lead us to hypothesize that in addition 

to EWS/ETS antagonism, activation of Wnt/beta-catenin signaling alters tumor-

microenvironment interactions. 



 
 

108 
 

Table 4.3. MSigDB gene set analysis for genes significantly correlated with LEF1 
(r>0.5). 

The top 25 pathways of gene sets most significantly correlated with LEF1 (r>0.5) 
in primary tumors are shown and reveal pathways involved in Smad signaling and blood 
vessel formation, as well as correlation with EWS/FLI-1-repressed genes. 
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Activation of beta-catenin signaling induces cell spreading and an angiogenic 
phenotype in ovo 

 

In order to substantiate the correlative patient data, we sought to study the 

effects of Wnt/beta-catenin activation in Ewing sarcoma cells in a physiologic 

microenvironment. Thus, we took advantage of the chick chorioallantoic membrane 

(CAM) assay. The CAM assay is ideal for understanding tumor microenvironment 

interactions because it contains stromal and endothelial cells, and a fully intact 

basement membrane. We reasoned that this assay would not only assess tumor growth 

and migration, but would also help us investigate the potential angiogenic signatures 

detected in analyses shown in Figure 4.2 and Table 4.3.  A673 cells containing either an 

empty vector on constitutively active beta-catenin construct (EβP) were seeded in equal 

numbers on the surface of the CAM of E11.5 eggs. Cells were allowed to grow for 72 hr, 

after which CAMs containing tumor cells were dissected out, fixed, and imaged on a 

stereomicroscope. After 72 hr of growth, we observed that empty vector control cells 

grew as cohesive tumor masses (Fig. 4.3A left panels) that did not spread across the 

CAM (Fig 4.3B, top panels) and had well-demarcated edges (Fig. 4.3C, top panels). In 

comparison, cells transduced with the constitutively active beta-catenin construct 

exhibited more diffuse growth (Fig. 4.3A, right panels), often spread across the CAM 

(Fig. 4.3B, bottom panels), and had infiltrative margins (Fig. 4.3C, bottom panels). The 

spreading and blood vessel density of the tumors was assessed by quantifying the area 

of GFP-positive cells and vessels covered by the CAM. This revealed that EβP cells 

covered a significantly larger surface area than cells containing an empty vector (Fig. 

4.3D). Further, we noticed that the EβP tumors contained a larger surface area of blood 
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vessels (Fig. 4.3E). Of note, the overall density of vessels in EβP tumors was not 

significantly different (Fig. 4.3F), yet revealed a trend toward increased angiogenesis. 

 
Figure 4.3. Beta-catenin activation promotes cell spreading and angiogenesis in 
the chick chorioallantoic membrane (CAM) assay. 
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(A) GFP-labeled A673 cells transduced with control (empty vector) or constitutively 
active beta-catenin (EβP) were grown on chorioallantoic membranes (CAMs) and 
spreading of the tumor was observed by bright field and fluorescence microscopy. Scale 
bar = 500 μm.  (B) Compared to empty tumors, some EβP tumors demonstrate 
extensive spreading, shown in the bottom panels. Scale bar = 2 mm. (C) Representative 
high-magnification images of tumor borders reveals more infiltrative edges in EβP cells 
compared to controls Scale bar = 250 μm, inset =100 μm. (D) Spreading of tumors was 
quantified by measuring the area of GFP-positivity. Quantification of n=11(empty) and 
n=13 (EβP) independent experiments (mean ± SEM). Significance was determined 
using a Student’s t-test. ***p<0.001. (E) Vessel area was determined by measuring the 
area of red pixels within the area of GFP-positivity of samples as in (D). Significance 
was determined using a Student’s t-test. **p<0.01.  (F) Vessel density was determined 
by dividing the tumor vessel area (E) for an individual tumor by its corresponding overall 
tumor area (D).  

 

Wnt/beta-catenin signaling induces expression of angiogenesis-related genes but 
does not induce secretion of pro-angiogenic factors 

Using our RNA-seq expression data in Chapter 2, as well as the prognostic gene 

signature in Fig. 4.3, we identified a small set of genes as putative candidates of 

angiogenic signature that included IGF-1, IL-6, and CYR61. By qRT-PCR, we observed 

a trend toward up-regulation of these genes by Wnt3a CM and/or RSPO2 (Fig. 4.4A), 

and modest but significant up-regulation of all three genes in EP cells (Fig. 4.4B). 

Induction of IGF-1 was particularly interesting, because the IGF-1 receptor (IGF-1R) is 

an established EWS/FLI-1-regulated oncogene for which targeted monoclonal 

antibodies have been designed, and are currently in clinical trials for Ewing sarcoma 

patients. To further understand the effects of Wnt/beta-catenin signaling on the IGF-

1/IGF-1R pathway, we performed an immunoblot analysis for IGF-IR, as well as for IGF-

R that has undergone phosphorylation at the tyrosine 1135, as this is one of the key 

initiating events of IGF-I signaling. Although no significant changes were observed in 

A673 cells treated with CM, a dramatic increase was observed in IGF-1R as well as p-

Y1135-IGF-1R expression in cells EP cell (Fig. 4.4C). This suggested that potent 
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constitutive activation of beta-catenin induces either autocrine or paracrine IGF-1/IGF-

1R signaling and may contribute to angiogenesis or other beta-catenin mediated 

processes.  

 
 
Figure 4.4. Genes involved in angiogenesis are up-regulated by Wnt/beta-catenin 
signaling. 

A) A673 and CHLA25 cells were stimulated with Wnt3a CM+/- RSPO2, and expression 
of IGF1, IL6, and CYR61 was assessed by qRT-PCR. A trend toward up-regulation was 
apparent in both cell lines, although differences between treatment groups were not 
statistically significant. (B) Expression of the same genes was assessed by qRT-PCR in 
A673 cells transduced with either an empty vector or constructively beta-catenin 

construct (EP). All genes were significantly upregulated in beta-catenin activated cells. 
*p<0.05, **p<0.01. (C) Little differences were observed in IGF-R expression or 
activation as assessed by Western blotting for IGF-1R and auto-phosphorylation IGF-
1R at Y1135 in Wnt-stimulated A673 cells, but a dramatic induction of IGF-1R activation 

was observed in EP cells compared to control.  
 

To determine if up-regulation of these angiogenesis-associated genes results in 

functional secretion of pro-angiogenic factors, we took advantage of an in vitro 

angiogenesis assay in which human umbilical endothelial cells (HUVECs) 
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spontaneously undergo differentiation and form capillary-like tubes. In the absence of 

angiogenic growth factors, HUVECs undergo apoptosis when plated on Matrigel within 

16 hr, but addition of growth factors promotes angiogenic tube formation (Fig. 4.5A). 

These conditions were used as negative and positive controls, respectively. To test the 

effects of Wnt/beta-catenin signaling on this process, Ewing sarcoma cells were 

stimulated with L-cell CM or Wnt3a CM +/-RSPO2, and the total media was collected 

after 48 hr (total tumor-CM). HUVECs were plated in media lacking angiogenic growth 

factors, and then either L-cell/Wnt CM or total tumor-CM was added.  Tube formation 

was assessed after 16 hr. Although L-cell and Wnt3a CM alone supported tube 

formation, no appreciable differences were observed when HUVECs were cultured in 

total tumor-CM from Wnt/beta-catenin-stimulated A673 or CHLA25 (Fig. 4.5B).  Further, 

when CM from A673 cells containing empty vector control or EP cells was added, 

similar results were observed (Fig. 4.5C). Taken together, these results suggest that 

Wnt/beta-catenin-activated Ewing sarcoma cells do not secrete pro-angiogenic factors. 
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Figure 4.5. CM from Wnt-activated cells does not promote angiogenesis.. 

(A) HUVECs plated on Matrigel underwent apoptosis after 16 hr in the absence of 
growth factors (left) but spontaneously differentiated to form angiogenic tubules in the 
presence of angiogenic growth factors (right). These conditions were used as negative 
and positive controls, respectively. (B) A673 and CHLA25 cells were stimulated with L-
cell CM or Wnt3a CM +/- RSPO2 for 48 hr, then all media was collected and added to 
HUVECs. L-cell CM or Wnt3a CM +/- RSPO2 mixed with RPMI was used as a control 
(top panels). All CM was able to promote some angiogenic tubule formation, although 
no significant differences existed between groups. (C) CM from A673 cells transduced 

with either an empty vector or constructively beta-catenin construct (EP) was collected 
after 48 hr in culture and added to HUVECs on Matrigel. No differences in tubule 
formation were apparent.   
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Wnt/beta-catenin signaling induces TGF-beta genes 

Our RNA-seq dataset revealed that TGFB2 and TGFBR2 were two genes that 

were significantly regulated in sorted, highly Wnt-responsive cells (Fig 2.7B). In table 

4.3, we observed a strong association with genes associated with LEF1 expression and 

the Smad/TGF-beta signaling pathway. To validate these findings, we performed qRT-

PCR on Wnt/beta-catenin activated cells and found a trend toward up-regulation with 

Wnt3a CM (Fig. 4.6A), and consistent induction of TGFB2 and TGFBR2 in cells 

containing constitutively active beta-catenin (Fig. 4.6B). To determine if up-regulation of 

TGFB2 results in autocrine TGF-beta signaling, we performed an immunoblot assay for 

phospho-Smad2 and total Smad2/3.  Phosphorylation of Smad2 results from 

engagement of TGF-beta receptors and leads to activation of Smad4 and transcription 

of downstream TGF-beta target genes. In A673 cells stimulated with Wnt3a CM +/-

RSPO2 (Fig. 4.6C) or in EP cell (Fig. 4.6D), we saw little evidence of Smad-2 

phosphorylation suggesting that Wnt/beta-catenin-signaling-induced TGFB2 expression 

does not induce TGF-beta/Smad signaling.  We also observed up-regulation of 

TGFBR2, so we question if induction of this receptor “primed” cells to be more 

responsive to TGF-beta ligands. After stimulation for 1 hr with TGF-beta-1, we observed 

robust induction of phospho-Smad2/3 in all conditions (Fig. 4.6C), with little notable 

differences among samples, suggesting that TGFBR2 up-regulation does not 

significantly contribute to TGF-beta ligand responsiveness.  
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Figure 4.6. TGFB2 and TGBR2 are induced by Wnt/beta-catenin signaling. 

(A) A673 and CHLA25 cells were stimulated with Wnt3a CM+/- RSPO2, and expression 
of TGFB2 and TGFBR2 was assessed by qRT-PCR. A trend toward up-regulation was 
apparent in both cell lines, although differences between treatment groups were not 
statistically significant. (B) Expression of TGFB2 and TGFBR2 was assessed by qRT-
PCR in A673 cells transduced with either an empty vector or constructively beta-catenin 

construct (EP). Both genes were significantly upregulated in beta-catenin activated 
cells. *p<0.05, **p<0.01. (C) Little differences were observed in TGF-beta activation as 
assessed by Western blotting for phosphorylation of Smad2 in Wnt-stimulated A673 
cells with or without TGF-beta exposure for 1 hr.  (D) No apparent difference was 

observed in phospho-Smad2 in A673 cells in EP cells compared to control. 
 

Pharmacologic inhibition of RSPO2 does not affect tumor burden but inhibits the 
incidence of distant metastases 

 

We have providing compelling data that the Wnt/beta-catenin pathway is a mediator of 

metastatic disease in Ewing sarcoma. In collaboration with OncoMed Pharmaceuticals, 

we sought to determine if this pathway can be effectively targeted in Ewing sarcoma by 

the anti-RSPO2 monoclonal antibody MT130-230. First, to determine if the antibody 
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blocks RSPO2 in vitro, we stimulated with A673-7TGP reporter cells with Wnt3a CM 

+RSPO2 in the presence of saline or 100 mg/mL MT130-230. As shown in Fig. 4.7A, 

MT-130-230 partially blocks the RSPO2-mediated potentiation of Wnt/beta-catenin-TCF 

activity. We next assessed the effects of the antibody on subcutaneous tumor growth. In 

order to assess the efficacy of the antibody as a therapeutic option in established 

tumors, cells were first allowed to engraft and form small tumors. Once tumors were 

200-500 mm3 in volume, weekly intraperitoneal (IP) administration of MT130-230 was 

started. Not unexpectedly, inhibition of RSPO2 had no significant effect on 

subcutaneous growth of A673 or TC32 tumors (Fig. 4.7B).  
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Figure 4.7. The monoclonal antibody against RSPO2 MT130-230 blocks RSPO2-
mediated potentiation of Wnt signaling but has no effect on subcutaneous tumor 
growth. 

(A) The ability of MT130-230 was determined by stimulating A673-7TGP reporter cells 
with Wnt3a CM +/- RSPO2 in the presence of saline (top panels) or 100 µg/ml MT130-
230, and assessing Wnt activity by flow cytometry. MT130-230 moderately blocked the 
RSPO2-mediated potentiation of reporter activity. (B) A673 (left) and TC32 (right) cells 
were implanted subcutaneously, and weekly IP administration of MT130-230 was 
started once tumors reached 200-500 mm3 in volume. No significant differences were 
observed between groups. 

 

To determine if RSPO2 inhibition had any effects on suppression of metastasis, 

we sought to use a model that recapitulates the entire metastatic cascade. Since Ewing 
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sarcoma cell lines do not effectively metastasize from subcutaneous tumors, and tail 

vein metastasis assays only model the steps of survival in the circulation, extravasation, 

and distant tumor formation, we utilized the sub-renal capsule model as a method to 

assess the full metastatic cascade.  In this study, TC32 cells were directly injected 

under the capsule of the kidney via ultrasound-guided needle and catheter. A primary 

tumor was established in the kidney, which is a highly vascularized organ thus providing 

ample opportunity for tumor cells to access the bloodstream. Weekly IP injection of 

MT130-230 was started at the time of tumor implantation. Primary tumor growth and 

appearance of large metastases was followed via bioluminescence imaging (Fig 4.8A). 

After six weeks, each mouse was individually euthanized and its kidney containing the 

primary tumor was removed (Fig. 4.8B). Immediately following dissection, the remaining 

organs were imaged by bioluminescence ex vivo, and the number of overt metastases, 

as well as the bioluminescent tumor burden of  distant metastases was measured (Fig 

4.8C). Representative images of metastases detected ex vivo are shown in Fig. 4.8D. 

Upon comparison of mice treated with saline and mice treated with MT130-230, we 

observed that both groups efficiently formed large primary tumors, and there was no 

notable difference in primary tumor burden (Fig. 4.8E). Upon primary tumor removal, all 

mice had evidence of distant metastases, and the bioluminescent signal intensity was 

largely similar (Fig. 4.8F). This suggests that once metastases grew, there was no 

apparent different difference in tumor burden generated. However, the overall number 

of distant metastases was strikingly reduced in mice treated with MT130-230 (Fig. 4.9D, 

G). Mice treated with saline had numerous metastatic nodules throughout the body and 

especially in the GI system, whereas mice treated with MT130-230 had fewer nodules, 

although they were similar in size to those in saline-treated mice one established. Taken 
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together, these data suggest that inhibition of RSPO2 via MT130-230 has little effect on 

the growth of Ewing sarcoma cells, but significantly reduces the ability of primary Ewing 

sarcoma tumors to seed distant organs with metastases.  

         
Figure 4.8. Inhibition of RSPO2 does not affect tumor burden but inhibits the 
number of metastatic nodules in a sub-renal capsule model of metastasis. 

(A) After ultrasound-guided injection into the sub-renal space, luciferase-tagged TC32 
cells formed primary tumors and tumor growth was monitored by bioluminescence for 
six weeks. (B) Representative image showing that primary tumors grew in and around 
the kidney. (C) After kidney and primary tumor were dissected out as in (B), mice were 
immediately re-imaged ex vivo, and metastases were detected by bioluminescent 
imaging (left panels) and confirmed as tumor nodules (arrows) upon inspection (right 
panel). (D) Representative ex vivo images of tumor burden from mice treated with saline 
control (top panels) or the anti-RSPO2 antibody MT130-230. No difference was 
observed in primary (E) tumor or metastatic (F) tumor burden between groups. Data is 
expressed as radiance in each mouse. (G) Distinct areas of bioluminescent signal were 
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counted, and revealed that mice treated with MT130-230 had significantly less 
metastatic nodule formation than mice treated with saline.  
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Discussion 

In these studies, we provide evidence that patients with high nuclear beta-catenin 

and LEF1 protein expression experience poor clinical outcomes. Further, tumors with 

high levels of LEF1 transcript expression are stroma-rich, and LEF1 expression is 

correlated with expression of genes in a validated poor prognostic signature. Notably, 

these genes are enriched for stromal- and angiogenesis-related genes, signifying that 

tumor-microenvironment interactions are important for tumor progression. These data 

suggest that the LEF1 transcription factor may directly induce expression of these 

genes in tumor cells and/or indirectly induce changes in the local microenvironment that 

lead to recruitment of stromal cells that express these genes and promote tumor 

progression. Although stroma- and angiogenesis-associated genes including TGFB2, 

CYR61, IL6, and IGF1 are induced by Wnt/beta-catenin signaling, activation of 

Wnt/beta-catenin signaling did not induce differentiation of HUVECs in a tube formation 

assay, indicating it is unlikely that any significant pro-angiogenic secreted factors are 

produced in response to Wnt/beta-catenin activation. Instead, the induction of 

angiogenesis observed in the CAM assay may be secondary to the increased cell 

spreading and coverage of a larger surface area and thus increased cell-cell contact of 

cancer cells and endothelial cells. Direct cell-cell interactions can induce angiogenesis, 

notably through membranous beta-catenin [157] or TNC [133, 158], raising the 

possibility that cell-cell contact mediated angiogenesis may occur in Ewing sarcoma and 

this may be mediated by both Wnt-dependent and Wnt-independent mechanisms.  

Interestingly, cells with a constitutively active beta-catenin more reproducibly 

upregulated the angiogenesis and TGF-beta associated genes than cells stimulated by 

Wnt CM. This is likely in part due to the heterogeneity of the Wnt response, and the fact 
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that not all cells may induce gene expression in response to Wnt3a CM. If cells were 

sorted on the basis of Wnt activity, as in Chapter 2, we might observe more dramatic 

regulation of the genes and pathways. Further EP cells are generated by lentiviral 

transduction followed by selected in puromycin, ensuring all cells in the population have 

expression of the constitutively active beta-catenin construct. This uniformity likely 

results in more consistent induction of expression of downstream target genes. Our 

findings that TGFBR2 is induced in highly Wnt responsive cells also raises the intriguing 

possibility that Wnt/beta-catenin signaling may “prime” highly Wnt-responsive cells to be 

more responsive to other ligands in the microenvironment, such as members of the 

TGF-beta family.  The role of TGF-beta/Smad signaling in Ewing sarcoma is relatively 

unexplored but is considered tumor suppressive due to the fact that it weakly inhibits 

proliferation[24]. Like Wnt signaling, TGF-beta signaling is highly context dependent 

[159], so although TGF-beta signaling is currently considered tumor suppressive in 

Ewing sarcoma, other context-dependent roles in tumorigenesis cannot be ruled out. It 

is possible that TGF-beta activation that may promote a migratory or an invasive 

phenotype, as it does in other tumors under certain conditions [159, 160]. Wnt/beta-

catenin and TGF-beta pathway crosstalk has been well-studied and implicated in 

tumorigenesis, and in some contexts can result in synergistic regulation of target genes 

[161, 162]. Future investigations into the nature of TGF-beta signaling in Ewing 

sarcoma, and potential cross-talk with the Wnt/beta-catenin pathway, such as the 

effects of TGF-beta on Wnt/beta-catenin target gene regulation, would undoubtedly 

provide important insights. 

 Another particularly interesting finding is that constitutively active beta-catenin 

strongly induces IGF-1R and its phosphorylation. Although this effect was not apparent 
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in A673 stimulated with Wnt ligands, an effect might be present but masked or diluted 

by the presence of cells that are not Wnt-responsive. Sorting on the basis of Wnt 

activity, or investigation of more cell lines may result in more apparent induction. 

Induction of IGF-1R signaling is extremely important for Ewing sarcoma biology, 

because monoclonal antibodies against IGF-1R are currently in clinical trials for 

advanced Ewing sarcoma disease [163, 164]. Most Ewing sarcoma cell lines and 

clinical samples exhibit activation of autocrine IGF-1R phosphorylation by IGF-1, and 

inhibition of IGF-1R results in cell death and tumor regression in animal models[164, 

165]. The overall effect of early clinical trials revealed that some patients experienced 

dramatic inhibition of tumor growth by anti IGF-1R therapy, whereas other patients were 

unresponsive or developed resistance [166]. The mechanisms that mediate resistance 

to IGF-1R inhibition are unknown. The striking induction of IGF-1R and its auto-

phosphorylation observed in cells with constitutively active beta-raise the fascinating 

possibility that Wnt/beta-catenin signaling may be a mediator of anti-IGF-1R therapy 

resistance.  

Finally, our early findings that anti-RSPO2 therapy may decrease the incidence of 

metastases provide evidence that the Wnt/beta-catenin pathway may be amenable to 

therapeutic targeting in Ewing sarcoma. Despite the modest reduction of TCF reporter 

activity upon administration of the anti-RSPO2 monoclonal antibody MT130-230, we 

observed a striking difference in the number of metastatic nodules formed after in vivo 

using the sub-renal capsule metastasis model. Subcutaneously, we observed no 

differences in tumor growth upon MT130-230 administration, and this is reflected by the 

fact that when metastatic tumors did grow in the sub-renal capsule model, there was 

little difference in the overall tumor burden. Given that Wnt/beta-catenin has little effect 
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on proliferation of Ewing sarcoma cells [3], (Fig. 2.11B), it is not unexpected that 

pharmacologic inhibition has little effect on tumor outgrowth. The overall incidence of 

metastatic foci, however, was decreased, and emphasizes the idea that tumor size is 

not the only therapeutic outcome that should be assessed. Reduction of metastatic 

seeding by this single agent is impressive, especially considering the fact that RSPO2 

inhibition only inhibited RSPO2-mediated potentiation of Wnt activity, but did not 

significantly reduce Wnt activity alone. (Fig.4.7A). Thus, combination therapy of MT130-

230 and an inhibitor of the Wnt ligand/receptor interaction, such as with the monoclonal 

antibody OMP-18R5 (currently in clinical trials) [88, 167, 168], may result in even 

greater benefits. Together the studies provide compelling evidence for further preclinical 

investigation toward the use of anti-RSPO/Wnt therapeutics for metastasis inhibition in 

Ewing sarcoma. 
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Experimental Procedures 

Cell culture and lentiviral transductions 

Ewing sarcoma cell lines A673, CHLA25, and TC32 were kindly provided by Dr. 

Timothy Triche (CHLA, Los Angeles, CA, USA), Dr. Heinrich Kovar (CCRI, St. Anna 

Kinderkrebsforschung, Vienna, Austria), and the COG cell bank (cogcell.org). Identities 

of the cells were verified by short tandem repeat (STR) profiling. Cells were routinely 

tested for mycoplasma contamination, and were verified to be negative for all studies. 

Cells were cultured in RPMI 1640 media (Gibco) supplemented with 10% fetal bovine 

serum (FBS)(Atlas Biologicals) and 2mM L-glutamine (Life Technologies). CHLA25 was 

grown on plates coated with 0.2% gelatin. L-cells (ATCC CRL-2648) and Wnt3a L-cells 

(ATCC CRL-2647) were cultured in DMEM (Gibco) supplemented with 10% FBS. 

Human umbilical vascular endothelial cells (HUVEC) were obtained from Lonza and 

cultured in EGM-2 (Lonza). Lentiviral production and transduction was performed as 

previously described [3]. For generation of 7TGP reporter cells, plasmids #24305 

(Addgene) was used [110]. For generation of EβP cells, plasmid #24313 (Addgene) was 

used. The constitutively active beta-catenin element was removed using BamHI to 

generate EβP-empty vector. 

 

TMA assembly, immunohistochemistry, and automated quantitative analysis (AQuA) 

A tumor microarray was assembled as described in Chapter 2 and denoted as TMA9. 

Samples were obtained from the files of the Department of Pathology, University of 

Michigan Medical Center, Ann Arbor, MI. The University of Michigan Institutional Review 

Board provided a waiver of informed consent to obtain these samples. The TMA 

contains108 cases of Ewing sarcoma tumors with multiple clinical records 51 patients 
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were used for analysis. The TMA was stained with antibodies against beta-catenin, 

LEF1, and CD31. Protein expression in individual tumors was quantified using AQUA 

technology as previously described in Chapter 2.  

 

Clinical correlations analysis  

Optimal method was applied to select the best cut-point for total beta-catenin, 

cytoplasmic beta-catenin, nuclear beta-catenin, LEF1, and CD31 primary tumor AQUA 

data. The method of Kaplan-Meier was used to estimate overall survival and event-free 

survival. Log-rank tests were used to compare survival distributions. LEF1 transcript 

data was obtained from a recently published, clinically annotated dataset from the 

Children’s Oncology Group (COG) (GSE 63157 [113] and GSE 34620 [125]). Log-rank 

tests were used to compare survival distributions. Correlations with LEF1 were 

measured by Pearson correlation and 95% confidence intervals determined. 

 

Gene set enrichment analysis (GSEA)  

Generation of a list of significantly overlapping datasets was computed using the 

Molecular Signatures Database v4.05 (MSigDB)[109]. An in vivo signature of Wnt/beta-

catenin signaling was generated by ranking genes based on correlation with LEF1 

expression in the clinically annotated dataset from the Children’s Oncology Group 

(COG) (GSE 63157 [113]), and gene set enrichment analysis (GSEA) was performed by 

using the GseaPreranked function of GSEA v2.1.0 software (Broad Institute).  

 

Chick chorioallantoic membrane (CAM) assay 

Fertilized eggs were obtained from the Michigan State University Department of Animal 



 
 

128 
 

Science Poultry Farm. Immediately upon arrival, eggs were placed in a humidified, 

rocking incubator (G.Q.F. Manufacturing, Savannah, GA) at 37°C for 11 days (E11). On 

E11, eggs were assessed for viability of the embryo using a handheld light source 

(G.Q.F. Manufacturing, Savannah, GA).  Eggs containing non-viable embryos were 

discarded. The chorioallantoic membrane (CAM) was “dropped” as previously described 

[169, 170], and 1x106 GFP-labeled A673 cells were placed on the CAM in 10 μL of 

2.5% growth-factor reduced Matrigel (BD Biosciences) in PBS. Cells were incubated for 

three days without rocking. On E14, the CAM was dissected out and fixed for 1 hr in 4% 

paraformaldehyde. Tumors on the CAM were identified and imaged by GFP 

fluorescence and bright field microscopy on an Olympus SZX16 Stereo-Dissecting 

macroscope and analyzed using NIS-Elements Imaging software. Cell spreading was 

assessed by measuring the surface area of GFP on the CAM, and vessel density was 

determined by quantifying the area of red pixels within the area of the tumor (as 

determined by GFP). 

 

Analysis of gene expression  

Wnt targets were validated by quantitative RT-PCR, using standard methods as 

previously described in earlier chapters. The sequences of primers used are listed in 

Table 4.4. 

Gene Forward primer sequence Reverse primer sequence 

HPRT1 TGACACTGGCAAAACAATGCA GGTCCTTTTCACCAGCAAGCT 

CYR61  ACCGCTCTGAAGGGGATCT ACTGATGTTTACAGTTGGGCTG 

IGF1 GCTCTTCAGTTCGTGTGTGGA GCCTCCTTAGATCACAGCTCC 

IL6 CCTGAACCTTCCAAAGATGGC TTCACCAGGCAAGTCTCCTCA 

TGFB2 CAGCACACTCGATATGGACCA CCTCGGGCTCAGGATAGTCT 

TGFBR2 AATGTGAAGGTGTGGAGAC  GGTAGGCAGTGGAAAGAG 

Table 4.4. Primer sequences used for qRT-PCR. 
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Western blots 

Lysis buffer, prepared by adding 1 tablet each of cOmplete protease inhibitor and 

PhosStop phosphatase inhibitor (Roche, Switzerland) to RIPA buffer, was added 

directly to culture plates after aspiration of culture media and washing 1x with PBS 

buffer. Cells were mechanically separated from the surface of the culture plate and then 

the lysate transferred to 1.5 mL micro-centrifuge tube and sonicated on ice for 5 cycles 

of 20 seconds, with 1 minute pauses. Total protein concentration was estimated using 

the Bio-Rad protein assay (Bio-Rad, Richmond, CA) and 50mg of total protein was 

loaded on 4-15% Mini-PROTEAN polyacrylamide gel. The protein samples were 

electrophoresed and transferred to nitrocellulose membranes (Invitrogen). The 

membranes were blocked for 1 hr at RT with a 1:1 mixture of Odyssey blocking buffer 

(LI-COR). The membranes were then incubated with primary antibody overnight at 4 °C. 

Primary antibodies were diluted in 5% (w/v) BSA in TBS buffer containing 0.1% Tween-

20 (TBS-T) at the following concentrations: rabbit anti-LEF1 (1:150, Sigma-Aldrich), 

mouse anti-glyceraldehyde-3-phosphate dehydrogenase (GAPDH) monoclonal antibody 

(1:200, AbCam), rabbit anti-IGF-I Receptor (1:1,000, Cell Signaling) and rabbit anti-

Phospho-IGF-I Receptor (Tyr1135) (1:1,000, Cell Signaling.) The membranes were 

washed three times with TBS-T for 5 minutes with shaking and then incubated with 

secondary antibodies, which were diluted in 1% BSA in TBS-T as follows: IRDye 

800CW goat anti-rabbit (1:10,000, LI-COR) and IRDye 680RD goat anti-mouse 

(1:10,000, LI-COR.) The membranes were washed twice more with TBS-T and once 

with TBS buffer. Finally, membranes were visualized with an Odyssey infrared imaging 

system (LI-COR.) 
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HUVEC tube formation assay 

Tube formation assays were performed in the method of Arnaoutova et al [171]. Briefly, 

96 well plates were coated with 50 µl of growth-factor reduced Matrigel (BioRad) and 

incubated at 37C for 30 min. HUVECs were plated at a density of 1.5x104 cells per well 

in either growth factor-reduced (EBM) media, or media supplemented with the growth 

factors (EGM) provided by the EGM Bullet Kit (Lonza). Generation of tumor CM was 

achieved by collecting the conditioned media from cells cultured in 6-well plates for 24 

or 48 hr, and then was added in a 1:1 ratio with EBM to experimental samples. 

Morphology was assessed after 16 hr on an Olympus CKX41 microscope with Nikon 

Elements software version 3. 

 

Assessment of MT130-230 activity 

Stably transduced A673-7TGP cells were stimulated with 1:1 RPMI1640 supplemented 

with 5% FBS and 1% L-glutamine and CM +/- RSPO2 for 48 hr, with either saline 

control or 100 µg/mL MT130-230. Cells were dissociated using Accutase (Millipore) and 

fluorescence was measured using an Accuri C6 cytometer.  

 

Subcutaneous tumor growth 

1x106 A673 or TC32 cells were re-suspended in Matrigel and implanted subcutaneously 

into 10-12 week-old NOD SCID mice (strain 394, Charles River Laboratories, 

Wilmington, MA). Tumors were measured every other day by calipers, and tumor 

volume was determined using the formula V=1/2ab2, where ‘a’ is the longer dimension 

and ‘b’ is the shorter dimension.  Once tumors reached 200-500mm3, weekly 
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administration of the anti-RSPO2 monoclonal antibody MT130-230 was administered 

intraperitoneally at a dose of 20 mg/kg or an equal volume of saline as a control. Mice 

were euthanized once tumors reached 18mm in any dimension.  

 
In vivo sub-renal capsule model 
 
2x105 luciferase-tagged TC32 cells were directly injected under the capsule of the 

kidney via ultrasound-guided needle and catheter. Weekly IP injections of 20 mg/kg  

MT130-230 or an equal volume of saline was started at the time of tumor implantation. 

Primary tumor growth and appearance of large metastases was followed weekly via 

bioluminescence imaging as previously described.  After six weeks, each mouse was 

first injected with luciferin and the primary tumor was imaged. Mice were then 

euthanized 5 minutes after luciferase injection, and its kidney containing the primary 

tumor was removed via dissection. Immediately following kidney dissection, the 

remaining organs were imaged by bioluminescence ex vivo, and the number of overt 

metastases, as well as the bioluminescent tumor burden of distant metastases was 

measured via bioluminescence and macroscopic visualization with the aid of ULAM-

PCAR.  
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Chapter 5  
 

Discussion 
 

Introduction 

 The Wnt/beta-catenin signaling pathway has a significant role in the 

pathogenesis of multiple cancers; however, its role in Ewing sarcoma is largely 

unknown. Previous work by our lab implicated the Wnt-modulatory receptor LGR5 as a 

mediator of aggressive disease, yet the mechanism of its contribution remained elusive. 

Emerging evidence supported a role for potentiation of Wnt/beta-catenin signaling by 

RSPOs through LGR5, and we thus hypothesized that LGR5 contributes to aggressive 

disease via activation of Wnt/beta-catenin. To date, however, there has been little 

evidence that Wnt/beta-catenin has a role in the development or progression of this 

tumor. The work in this dissertation set out to determine the extent to which the 

Wnt/beta-catenin signaling pathway is involved in Ewing sarcoma pathogenesis, and to 

further determine the downstream effects of activated signaling.  

 Through investigation of primary tumor samples, we have discovered that focal 

nuclear beta-catenin is detectable in a subset of Ewing sarcoma patients. Importantly, 

patients whose tumors have nuclear beta-catenin experience worse clinical outcomes 

and overall survival compared to patients whose tumors lack beta-catenin. These 

findings are supported by the fact that in separate study, patients who had high levels of 
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LEF1, a readout of Wnt/beta-catenin signaling, similarly experienced worse outcomes 

and rates of survival compared to patients whose tumors had low levels of LEF1. Taken 

together, these findings demonstrate that patients with evidence of Wnt/beta-catenin 

activation harbor aggressive disease.  

 Given the evidence that Wnt/beta-catenin signaling contributes to poor outcomes 

in patients, we used in vitro and in vivo models to probe the mechanism of how 

Wnt/beta-catenin signaling mediates this effect.  We first recognized that in cell lines, 

the response to Wnt ligands was heterogeneous at the level of individual cells within a 

cell line, and also among different cell lines. These findings reflected our observation 

that Wnt/beta-catenin was focal and heterogeneous within individual tumor biopsies, but 

was also highly variable between different patients as well. We then investigated the 

downstream effects of Wnt/beta-catenin activation in Ewing sarcoma cell lines, with 

particular focus on the most highly Wnt-responsive cells. Through RNA-sequencing and 

functional studies, we discovered that activation of Wnt/beta-catenin paradoxically 

inhibits EWS-ETS transcriptional activity, and promotes a phenotypic transition from a 

proliferative to a migratory and metastatic state. In addition, the metastasis-associated 

molecule Tenascin C (TNC) was identified as a gene that was consistently induced by 

Wnt/beta-catenin signaling. We validated its role as a mediator of both Wnt-mediated 

and Wnt-independent migration, and also established its significant role in promotion of 

metastasis. Regulation of TNC by Wnt/beta-catenin was not consistent in other cell 

types, thus underscoring the context-dependent nature of genes regulated by Wnt/beta-

catenin signaling.  

 We further investigated how Wnt/beta-catenin activation might contribute to 

pathogenesis in the scope of the tumor microenvironment. In particular, we found that 
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patient tumors with high LEF1 expression had higher stromal content in biopsies than 

tumors with low expression, and LEF1 expression correlated strongly with expression of 

stroma-and angiogenesis-related genes. Experimentally, we found that high LEF1 

expression induced by beta-catenin promoted a migratory phenotype on a physiologic 

basement membrane. We also observed that an angiogenic phenotype was induced, 

and this was likely through direct tumor-microenvironment interactions rather than 

through induction of secreted pro-angiogenic factors. Taken together, these findings 

suggest a model in which Wnt/RSPO activation inhibits EWS/FLI1 and results in a 

phenotypic transition from a proliferative to a more aggressive state characterized by an 

increase in migration, metastasis, and possible microenvironment involvement (Fig. 

5.1).  

In Chapter 4 we also investigated if the RSPO/Wnt/beta-catenin pathway could 

be therapeutically targeted in vivo. Although the anti-RSPO2 antibody MT130-230 

showed a decrease in the number of metastatic foci, our findings suggest that targeted 

inhibition is moderately effective at metastatic prevention, and warrant preclinical 

investigation for the use of additional inhibitors of the Wnt signaling pathway, as broader 

Wnt pathway inhibition may be more desirable for therapeutic intervention, which will be 

further discussed in this chapter.  
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Figure 5.1 Model of the downstream effects of activated Wnt/beta-catenin 
signaling on Ewing sarcoma cells. 

Wnt/beta-catenin activation in Ewing sarcoma cells promotes poor outcomes in patients 
through induction of migratory and metastatic phenotypes via EWS/ETS antagonism 
and TNC induction. Microenvironment interactions, through Wnt/LEF1-mediated 
modification of angiogenesis and signaling pathway and matrix crosstalk, may also 
contribute to aggressive disease, but further investigation is required to elucidate the 
specific contributions of these factors. 

 

Implications for Wnt/beta-catenin biology 

The Wnt/beta-catenin signaling is an evolutionarily conserved pathway that has 

generated an enormous body of work given its crucial role in development and cancer 

pathogenesis. The events in its signaling cascade are well-characterized and are 

reproducible in most cells. In Ewing sarcoma, we have found that the Wnt/beta-catenin 

signaling cascade is functionally intact in that ‘canonical’ Wnt3a ligands result in 

expected stabilization and nuclear accumulation of beta-catenin, leading to an increase 

in 7xTCF reporter activity and transcription of established and well-described target 

genes AXIN2 and LEF1.  These downstream effects are recapitulated by GSK3-beta 

inhibition and by ectopic expression of constitutively active beta-catenin and cannot be 
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induced by the non-canonical ligand Wnt5a. Thus in Ewing sarcoma, the Wnt/beta-

catenin signaling cascade proceeds largely in manner consistent with published 

literature. Further, the context-dependent nature of transcriptional regulation of Wnt 

target genes is consistent with published literature. While known targets of Wnt/beta-

catenin signaling such as CCND1 and CMYC are not regulated in Ewing sarcoma, the 

less-conventional target gene TNC is reproducibly induced. In addition to context-

dependent regulation of downstream target genes, this work further supports the idea 

that the phenotypic and functional response of cells to Wnt stimulation are context 

dependent, namely that the proliferative phenotype induced by Wnt/beta-catenin in 

many epithelial cancers is not recapitulated in Ewing sarcoma, but rather a migratory 

phenotype is induced, perhaps reminiscent of its putative neural crest and/or 

mesenchymal origins.  

A relatively novel finding of this work is that not all cells in a given cell line activate 

the Wnt/beta-catenin signaling cascade, and the responsive proportions vary among 

cells lines. This heterogeneity was observed at a cellular level by heterogeneous 

nuclear beta-catenin localization as well as transcriptionally by heterogeneous activation 

of the 7TGP-reporter. Evidence for examples of heterogeneous Wnt activation in other 

cancers is deliberated in the discussion of Chapter 2, yet the mechanism of this 

heterogeneity in Ewing sarcoma remains unclear. Our leading hypothesis is that LGR5 

and other cell surface receptors, such as Fzs and LRPs, are variably expressed on 

individual cells. Intracellular regulators of Wnt/beta-catenin signaling are less likely to be 

heterogeneously expressed, as most Ewing sarcoma cell lines have uniform absence of 

Wnt/beta-catenin activation, indicating that the destruction complex is functional intact in 

all cells. Further, pharmacologic GSK3-beta inhibition revealed that all cells possess the 
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ability to respond intracellularly, as almost 100% of cells activated reporter activity 

following exposure. Thus, the source of heterogeneity is likely to occur at the cell 

surface, especially given the highly heterogeneous expression of LGR5 by cell lines and 

primary tumors. The factors that contribute to LGR5 heterogeneity are also unknown, 

but LGR5 expression is likely to be regulated epigenetically, rather than through genetic 

mechanisms. Yet another source of heterogeneity in vivo that should be considered is 

the microenvironment.  Differential responsiveness of cells to signaling molecules has 

been described in vivo¸ as it was recently published that squamous cell carcinomas 

cells exhibit heterogeneous activation of the TGF-beta pathway [120].  In this study, 

TGF-beta ligand distribution was found to be expressed by the vasculature and immune 

cells in the tumor microenvironment, generating regional TGF-beta signaling within 

subpopulations of the tumor. Similarly, since Wnt ligands are short-range signaling 

molecules, the physical proximity of Wnt-secreting cells, such as osterix-positive bone 

cells [77], to Ewing sarcoma cells could further contribute to the complexity of the 

heterogeneous Wnt activation we observed in primary tumors.  

Implications for Ewing sarcoma pathogenesis 

Ever since the first implication of a role for Wnt/beta-catenin signaling in Ewing 

sarcoma in 2004, there have been suggestions in the literature but few dedicated 

investigations into the role of the this pathways in this tumor. In this work, we provide 

the first evidence that Wnt/beta catenin acts as a contributor to metastasis. It is 

important to note that Wnt/beta catenin activation only occurs in a minority of biopsies, 

indicating that either some but not all tumors may use this mechanism to promote 

metastasis, or that other tumors may have activation but may not be detectable upon 
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biopsy due to heterogeneous staining within a tumor. The contribution and potential 

cross-talk of other established metastatic pathways, such as ERBB4/Rac signaling and 

SDF-1/CXCR4, to Wnt-mediated metastasis remains unknown but could providing 

interesting insight toward mechanisms of disease progression. 

In this study, we established that the set of genes regulated by Wnt/beta-catenin is 

distinct in Ewing sarcoma, and has little overlap with Wnt/beta-catenin activation in 

other cell types. Published gene sets involving the Wnt pathway were not frequently 

observed in our GSEA analyses. The unique specificity of transcriptional targets in 

Ewing sarcoma, but not other cells may be influenced by it developmental origins as 

discussed in Chapter 3, but also be affected by the profound dysregulation of epigenetic 

modifiers in Ewing sarcoma. For instance, Polycomb group (PcG) proteins BMI1 [172-

174] and EZH2 [21] are overexpressed in Ewing sarcoma. PcG proteins regulated 

histone modifications that serve to promote activation or repression of numerous genes. 

In Ewing sarcoma, PcG dysregulation results in aberrant repression of many genes and 

inappropriate activation of others [175]. In addition to epigenetic dysregulation by PcG, 

EWS/FLI-1 itself has recently been described to act as a pioneer factor, meaning that 

the fusion protein opens chromatin and creates novel epigenetic enhancer regions [15], 

thus resulting in alterations in gene expression. Taking this together, the chromatin 

status of classic Wnt/beta-catenin target genes is likely to be considerably different in 

Ewing sarcoma compared to other cells, and thus may drastically affect what genes are 

accessible to TCF/LEF transcription factor binding.  

Ewing sarcoma cells express a complement of Wnt ligands and receptors, but for 

the most part, no autocrine signaling is observed in any of the cell lines tested. It is 

intriguing that expression of these ligands does not activate signaling. In contrast, other 
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sarcomas [89] and breast cancer similarly express numerous Wnts, but this results in 

and autocrine activation that can be blocked by SFRPs [176, 177].  Even though there 

is transcript expression of numerous Wnt genes, it remains unknown if there is sufficient 

protein expression of Wnts for autocrine activation, because detailed studies of protein 

expression of Wnt signaling components have not been performed, and are difficult due 

to lack of suitable antibodies for many components of the signaling cascade.  The 

receptor complexes and components of the signaling cascade are likely to contribute, 

but cannot be fully responsible for suppressing basal Wnt activation, as all cell lines 

exhibit some degree of Wnt responsiveness when assessed by TCF reporter assays. 

The possible explanation is that most cells inherently exhibit tight regulation of Wnt 

activity. This is achieved via the regulation by the destruction complex, as well as 

through fine-tuned regulation of the sub-cellular localization of ligands and receptors. In 

addition, we have shown that Wnt activation does not promote proliferation and 

antagonizes proliferative transcriptional programs, thus creating no selective growth 

advantage for cells to exhibit autocrine Wnt signaling. 

An important implication of this work is that Wnt/beta-catenin signaling provides a 

biological mechanism by which EWS/FLI-1 activity may be reduced and lead to 

metastasis. Recent studies have provided a novel mechanism of Ewing sarcoma 

metastasis by which inhibition of EWS/FLI-1 results in de-repression of critical 

cytoskeleton genes including ZYX. In these studies, EWS/FLI-1 inhibition was 

generated via RNAi technology, yet little discussion was provided of how EWS/FLI-1 

levels might be reduced endogenously in patients. This raised the question of whether 

or not EWS/FLI-1 levels could actually change in vivo or in patient tumors, and if the 

observed metastatic phenotype was just an artifact of in vitro manipulation. In this work, 



 
 

140 
 

we show that it is possible that Wnt/beta-catenin signaling may reduce EWS/FLI-1 

transcript levels in some cell lines, which could contribute to reduced EWS/FLI-1 

expression. Importantly, however, regardless of the extent of repression of EWS/FLI1 

transcript expression, functional inhibition of EWS/FLI-1 activity was observed in all cell 

lines tested. Thus, Wnt/beta-catenin activation might act as a biological mechanism by 

which EWS/FLI-1 activity is functionally reduced, thus phenocopying the effects of 

RNAi-mediated inhibition. 

Further evidence that inhibition of EWS/FLI-1 promotes metastasis is emerging.  

Unpublished work presented by Olivier Delattre at the 2015 Advances in Pediatric 

Cancer Research independently validated the  previous findings [60]  that RNAi-

mediated inhibition of EWS-FLI1 promotes lung engraftment in vivo [178]. In addition, 

heterogeneous expression of EWS/FLI-1-regulated cell surface proteins was observed, 

suggesting that  EWS/FLI-1 levels are heterogeneous at the level of single cells [178]. 

This raises the possibility that heterogeneous EWS/FLI-1 levels may be yet another 

contributor to the heterogeneous Wnt/beta-catenin signaling observed in Ewing 

sarcoma cells, as we have shown that EWS/FLI-1 knockdown strongly enhances the 

response of A673 cell to Wnt ligands. These findings are of considerable importance, as 

specific EWS/FLI-1 inhibitors are an ongoing topic of intense investigation. Compounds 

such as mithramycin specifically inhibit EWS/FLI-1 activity and reduce tumor growth and 

formation [34], but the effects of EWS/FLI-1 inhibitors on metastatic phenotypes is 

unknown. Hopefully, these drugs will actually eradicate tumor cells rather than merely 

reduce EWS/FLI-1 levels and inhibit tumor proliferation, as there is a possibility that 

reduced, nonzero levels of EWS/FLI-1 may result in devastating metastatic phenotypes.  
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As these therapeutics are optimized and transition into clinical trials, particular care and 

attention should be paid to determine the effects on metastatic phenotypes.  

 

Considerations for therapy 

The observations we have made using data from primary patient tumors in 

conjunction with our experimental findings demonstrate the importance of the Wnt/beta-

catenin signaling pathway in the pathogenesis of Ewing sarcoma. Both early and 

modern studies of colorectal carcinoma have demonstrated the irrefutable importance of 

this pathway in oncogenesis, which has been further supported by numerous studies in 

other cancer types. Thus, there has been significant interest in generating Wnt pathway 

inhibitors that may be useful in several cancer types. Our findings in Ewing sarcoma 

further broaden the utility of such therapeutics. Unlike other tumors, in which oncogenic 

dysregulation of Wnt/beta-catenin promotes tumor initiation, proliferation, and primary 

tumor growth, we have found that Wnt/beta-catenin promotes metastatic phenotypes. 

As it follows, targeted inhibition of the Wnt signaling pathway may be beneficial to 

patients in order to prevent the formation of distant metastases or relapse. Thus, 

different endpoints may be required for determining the efficacy of inhibitors of 

Wnt/beta-catenin signaling inhibitors. As demonstrated by our findings with an anti-

RSPO2 antibody, inhibition of the RSPO2/LGR5 interaction resulted in no changes in 

primary tumor growth either subcutaneously or in the renal capsule, however, inhibition 

decreased the formation of distant metastases. It is becoming more appreciated that 

when testing new therapeutics, in both pre-clinical and clinical studies, tumor shrinkage 

should not be the only end point determined, and this idea should hold true for Ewing 
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sarcoma as well. Although it may be clinically unfeasible, especially in Ewing sarcoma 

patients, factors such as time to progression and prevalence of distant metastases, as 

well as overall and event free survival should be included when assessing the efficacy 

of new therapeutics.  

Numerous levels of the Wnt/beta-catenin signaling cascade have potential for 

therapeutic intervention, including (1) Wnt ligand secretion (2) Wnt ligand/receptor 

interactions (3) intracellular pathway regulators, (4) nuclear partner transcription factors, 

and (5) epigenetic status of target genes. Numerous small molecule and biologic 

inhibitors of these are currently in phase I clinical trials. The porcupine inhibitor LGK974 

is an example of a drug that acts at the level of Wnt ligand secretion [179], and is 

currently under pre-clinical and clinical investigation Wnt-driven solid tumors [88]. Since 

it is likely that Wnt ligands are provided by Ewing sarcoma microenvironment, porcupine 

inhibitors might be useful as an adjuvant therapy. Similarly, inhibition at the level of Wnt 

ligand/receptor interactions is also likely to be useful and the aforementioned drug, 

OMP-18R5, is an example of a monoclonal antibody that should be considered [168]. 

Other drugs in this category in clinical trials include OMP-54F28, which is a FZD8 

mimetic that binds to Wnt ligands [180].  The evidence we provided in here and in the 

aforementioned chapters suggest that these therapeutics, acting at any level of the 

Wnt/beta-catenin signaling cascade, should be considered in Ewing sarcoma patients 

with evidence of Wnt/beta-catenin activation. 

Concluding remarks 

 Throughout this dissertation, we provide the first evidence for activation of 

Wnt/beta-catenin signaling in a subset of Ewing sarcoma patients. Through in vitro and 
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in vivo studies, we have discovered that the downstream effects of activated Wnt/beta-

catenin signaling result in metastatic phenotypes via novel mechanisms, namely 

through inhibition of EWS/ETS and up-regulation of metastasis genes, including TNC. 

We further raise the possibility that Wnt/beta-catenin signaling may influence the tumor 

microenvironment and contribute to signaling of other pathways important in Ewing 

sarcoma pathogenesis. In light of the recent advances toward development of Wnt 

pathway and EWS/FLI1 inhibitors, the data presented in this dissertation provide strong 

rationale to begin pre-clinical investigation for the use of Wnt inhibitors in Ewing 

sarcoma models of metastasis. It is my hope that these studies will eventually lay a 

foundation for discoveries that will lead to the eradication of metastasis in this terrible 

disease. 
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