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Abstract

The increased sensing, processing, communication, and control capabilities introduced
by cyber-physical systems bring many potential improvements to the operation of society’s
systems, but also introduce questions as to how one can ensure their efficient and secure
operation. This dissertation investigates three questions related to decision-making under
uncertainty in cyber-physical systems settings.
First, in the context of power systems and electricity markets, how can one design al-

gorithms that guide self-interested agents to a socially optimal and physically feasible out-
come, subject to the fact that agents only possess localized information of the system and
can only react to local signals? The proposed algorithms, investigated in the context of
two distinct models, are iterative in nature and involve the exchange of messages between
agents. The first model consists of a network of interconnected power systems controlled
by a collection of system operators. Each system operator possesses knowledge of its own
localized region and aims to prescribe the cost minimizing set of net injections for its buses.
By using relative voltage angles as messages, system operators iteratively communicate to
reach a social-cost minimizing and physically feasible set of injections for the whole net-
work. The secondmodel consists of amarket operator andmarket participants (distribution,
generation, and transmission companies). Using locational marginal pricing, themarket op-
erator is able to guide the market participants to a competitive equilibrium, which, under
an assumption on the positivity of prices, is shown to be a globally optimal solution to the
non-convex social-welfare maximization problem. Common to both algorithms is the use
of a quadratic power flow approximation that preserves important non-linearities (power

xiii



losses) while maintaining desirable mathematical properties that permit convergence under
natural conditions.
Second, when a system is under attack from a malicious agent, what models are appro-

priate for performing real-time and scalable threat assessment and response selection when
we only have partial information about the attacker’s intent and capabilities? The proposed
model, termed the dynamic security model, is based on a type of attack graph, termed a con-
dition dependency graph, and describes how an attacker can infiltrate a cyber network. By
embedding a state space on the graph, the model is able to quantify the attacker’s progres-
sion. Consideration of multiple attacker types, corresponding to attack strategies, allows
one to model the defender’s uncertainty of the attacker’s true strategy/intent. Using noisy
security alerts, the defender maintains a belief over both the capabilities/progression of
the attacker (via a security state) and its strategy (attacker type). An online, tree-based
search method, termed the online defense algorithm, is developed that takes advantage of
the model’s structure, permitting scalable computation of defense policies.
Finally, in partially observable sequential decision-making environments, specifically

partially observable Markov decision processes (POMDPs), under what conditions do op-
timal policies possess desirable structure? Motivated by the dynamic security model, we
investigate settings where the underlying state space is partially ordered (i.e. settings where
one cannot always say whether one state is better or worse than another state). The con-
tribution lies in the derivation of natural conditions on the problem’s parameters such that
optimal policies aremonotone in the belief for a class of two-action POMDPs. The extension
to the partially ordered setting requires defining a new stochastic order, termed the gener-
alized monotone likelihood ratio, and a corresponding class of order-preserving matrices,
termed generalized totally positive of order .

xiv



C 

Introduction

T echnolog is increasingly finding its way into all aspects of our lives. Beyond our

smartphones and computers, a growing number of devices and systems that we inter-

act with on daily basis are intelligent, capable of gathering information from the real-world

and processing it on-board in order to make real-time decisions and generate feedback.

Examples range from personal voice assistants (e.g. Amazon’s Alexa) and intelligent wear-

ables (e.g. the Apple Watch) to the larger scale settings of autonomous vehicles and smart

building management systems.

The feature of combining information processing with a real-world, physical system is a

representative characteristic of a class of systems termed cyber-physical systems. Specifi-

cally, a cyber-physical system is one in which a physical system or process is “monitored,

coordinated, controlled, and integrated” by a densely connected computation and commu-

nication network [Rajkumar et al., ]. Cyber-physical systems integrate sensing, infor-

mation processing, communication, and control capabilities into all levels of the physical





infrastructure with the aim of collecting a vast amount of information of the underlying

system in order to realize large gains in operational efficiency. This integration has been

made more feasible in recent years due to the shrinking size and cost of sensors and pro-

cessors, a societal shift described by popular terms such as the internet-of-things and the

internet-of-everything.

Society is increasingly recognizing the utility of cyber-physical systems for the design

and efficient operation of critical infrastructure systems. These systems form an integral

part of our modern lives, including the power systems that generate and distribute our

electricity, the transportation networks that enable us to quickly and safely reach our des-

tinations, the distribution networks that supply clean water to our homes, and the cellular

and wireless networks that we all rely upon to remain connected. It is undeniable that lever-

aging the full capabilities of cyber-physical systems in these domains have the potential to

drastically improve their efficiency, functionality, and profitability, resulting in beneficial

effects on our economy and society as a whole. Cyber-physical systems are also expected

to bring improvements to manufacturing, industrial control, factory automation, aerospace,

and defense systems [Khaitan & McCalley, ].

The promised benefits of cyber-physical systems do not comewithout the introduction of

some significant challenges and risks. The inherently distributed sensing, communication,

and control capabilities of cyber-physical systems raise questions as to how one will be able

to take full advantage of this new-found functionality, especially in the time-critical and

large-scale domains present in many real-world applications. Furthermore, while the dense

connectivity innate to cyber-physical systems enables devices to efficiently communicate

information, it also opens up the possibility of malicious agents being able to exploit this

functionality to their advantage and gain access to the system. As these systems grow

and more physical components become instrumented with processing and communication

capabilities, the set of attack pathways that amalicious agent can use to infiltrate the system
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(i.e. the attack surface) also unavoidably grows.

Addressing the above concerns involves developing algorithms, models, and theory that

study and exploit the conjunction between processing and communication capabilities and

the physical system. The analysis of cyber-physical systems uses ideas from decentralized

and distributed optimization to address the distributed nature of information and compu-

tation, graph theory to describe the interconnections between system components and de-

pendencies between operating conditions, and (stochastic) control theory and game theory

to capture the uncertain effects of actions on the dynamics of the underlying system and

the feedback of information to the decision-making process.

There are many rich and complex research questions that arise out of cyber-physical

systems settings. This dissertation focuses on the informational aspect of these problems,

specifically, how decisions are made when there is some uncertainty of the underlying

system. This involves analyzing the structure of how information exists in the system and

properties of how it is revealed to decision-makers in order to designmodels and algorithms

that can efficiently translate all of the available information into decisions, while keeping

an eye on tractability in realistic domains.

.. Decision-Making in Cyber Physical Systems under Imperfect

Information

Inherent to problems in cyber-physical systems settings is the requirement to make deci-

sions without necessarily having certainty of the current operating status or the underlying

structure of the system. Often, such decisions must be made under the restriction that the

information necessary for making the optimal decision does not reside in a single location

or with a single agent, that is, there is no centralized, all-knowing entity. Instead, the in-

formation is distributed among multiple, potentially self-interested, decision-makers. Fur-
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thermore, due to the physical laws dictating the operation of the system and its inherently

interconnected nature, the decisions of each agent have external, sometimes wide-spread,

effects.

The presence ofmalicious agents adds another layer of uncertainty to the decision-making

process. Malicious agents (termed attackers) have goals of their own, such as gaining access

to sensitive information, commandeering key system components, or, more subtly, inter-

fering with the agents’ abilities to gather information (e.g. by corrupting existing data or

injecting false data), impeding agents’ abilities to perform accurate estimation and infer-

ence. Design of secure systems must go beyond the standard concerns of robustness to

disturbances and random failures, but must also be capable of reasoning about attackers’

abilities to maliciously interfere with the intended operation of the system and be able to

take actions to ensure secure operation in the presence of such behavior.

This dissertation investigates three general questions related to decision-making under

imperfect information in cyber-physical systems settings:

) In the context of power systems and electricity markets, how can one design algo-
rithms that guide self-interested agents to a socially optimal and physically feasible
outcome, subject to the fact that agents only possess localized information of the
system and can only react to local signals?

) When a system is under attack from a malicious agent, what models are appropriate
for performing real-time and scalable threat assessment and response selection when
we only have partial information about the attacker’s intent/strategy and capabilities?

) In partially observable sequential decision-making environments, specifically par-
tially observable Markov decision processes (POMDPs), under what conditions do
optimal policies (functions mapping the decision-maker’s belief of the system to an
action) possess desirable structure?

Motivation, as well as the specific context, for each of these questions is described in more

detail in the following section. The research contributions are also made explicit.





.. Problem Settings and Contributions

The problems studied in this dissertation focus on the development and analysis of models

for decision-making under uncertainty subject to constraints arising from both physical

considerations and the problem’s information structure. This dissertation investigates this

general theme in two main application areas: decentralized decision-making in the context

of power systems and electricity markets, and sequential decision-making under uncer-

tainty in the context of cyber-physical systems security. A central theme of my work is

investigating how the information structure of the problem can be used to design efficient

algorithms and gain insight into the form of optimal solutions. Along these lines, I have

also investigated a more general question regarding the structure of optimal policies for

POMDPs. The work involves providing conditions on the problem’s parameters in order

to ensure that the optimal policy has specific structure, shedding light on the relationship

between the information pattern of the problem and the form of the optimal policy, as well

as laying the groundwork for the design of efficient policy search algorithms.

... Power Flow Algorithms and Electricity Market Meanisms (Ch.  and )

Deregulation of the electric power industry has resulted in systems that consist of many

self-interested agents. Under this setting, information is decentralized with each agent only

possessing a localized view of the system. As a result, if agents were to make decisions in

isolation, they would be unable to do so in a way that resulted in a feasible, let alone op-

timal, outcome for the system. To complicate matters, power flows through the network

according to rules dictated by the laws of physics, creating system-wide coupling between

variables and causing individual dispatch decisions to generate large and far-reaching ex-

ternalities. Furthermore, the equations dictating power flow are highly nonlinear.

The contribution of Chapters  and  is in the development of provably convergent al-

gorithms for obtaining socially optimal outcomes subject the aforementioned physical and
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informational constraints. Chapter  introduces a decentralized algorithm for determining

the optimal net power injections at each bus (node in the network) in a multi-area power

system. Each area is controlled by a system operator who is responsible for determining

the set of net injections for its own region, subject to local feasibility conditions. Through

an iterative message-exchange process (using relative voltage phase angles as messages)

the system operators agree upon a set of power flows between adjacent regions that re-

sult in a socially optimal set of net injections. Chapter  introduces a more general model,

consisting of many decision-makers, termed market participants – generation companies

(GenCos), distribution companies (DistCos), and transmission companies (TransCos) – each

with localized information of the system. Using the price of power at each bus as signals,

themarketmechanism involves themarket participants reporting their surplus-maximizing

outcomes, for a given set of prices, to a market operator, who is then responsible for updat-

ing the prices. The mechanism efficiently guides agents to an agreement, termed a compet-

itive equilibrium, while respecting their informational constraints. Exploiting the structure

of a quadratic approximation of the power flow equations, we are able to show that, under

natural conditions (positivity of edge-wise price sums), the resulting competitive equilib-

rium is a global saddle-point of the Lagrangian and results in a globally optimal solution of

the non-convex social welfare maximization problem.

... Dynamic Security Strategies for Cyber-Physical Systems (Ch. )

Cyber-physical systems promise to greatly improve our quality of life, but will unavoidably

come with the introduction of a myriad of vulnerabilities, allowing attackers to maliciously

interfere with their intended operation. The scale of the attack surfaces in such systems,

especially those of critical infrastructure, necessitates the development of automated de-

fense systems that are capable of efficiently translating large amounts of noisy security

alert information (from an intrusion detection system) into a quantification of the system’s

security status, with the goal of prescribing actions that prevent the attacker from achiev-
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ing its goal(s). Models must be able to reason about all possible attack pathways that a

malicious agent can use to infiltrate the system while permitting tractable computation of

security strategies.

The contribution of this chapter is in the development of a partially observable sequen-

tial decision model for real-time threat assessment and response selection in cyber-physical

systems. Sophisticated attacks unfold in a complex manner, involving the exploitation of

vulnerabilities across multiple system components. In order to capture this behavior, the

proposed model explicitly represents all attack pathways via a type of attack graph termed

a condition dependency graph. The dependency graph allows one to reason about the cur-

rent capabilities of the attacker and its proximity to its objectives. In the context of cyber-

physical systems, the attacker’s objectives represent conditions that permit the attacker to

inflict damage to the physical infrastructure. Taking into account the cost of an attacker

achieving its objective, as well as the cost of defense actions, one can cast the problem of

determining optimal security strategies as a POMDP, where the information state (belie) is

the joint distribution over the set of attacker’s current capabilities and strategy. Scalability

is achieved by employing an online, tree-based search method which involves simulating

future possible scenarios, from the current history, in order to gain accurate estimates of

the effectiveness of various defenses. Furthermore, taking advantage of the structure of

observations, we are able to process a high volume of security alerts, enabling efficient

inference in large-scale domains.

... Structural Properties of Optimal Policies for POMDPs (Ch. )

POMDPs have enormous practical value. Unfortunately, solving them (i.e. obtaining an

optimal policy) is typically a very computationally intensive task. Questions investigating

conditions under which optimal policies have desirable structure are helpful for not only

gaining insight into the optimal decision rule, but also allowing for the design of efficient

policy search algorithms, pruning the space in which optimal policies live.
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Our contribution lies in the derivation of natural conditions under which the optimal

policy is monotone in the belief when the underlying state-space is partially ordered (i.e.

motivated by the state space of the dynamic security model of Chapter , we investigate

settings in which one cannot always say whether one state is better or worse than another

state). Due to the partial ordering of the state-space, we propose a new stochastic order,

generalizing the monotone likelihood ratio order. The stochastic order has many desirable

properties, allowing us to establish monotonicity properties of the value functions and dy-

namic programming recursion, ensuring monotone optimal policies in a two-action setting.

The work represents a contribution to the existing theory regarding structural properties

of optimal policies for POMDPs.

.. Organization of the Dissertation

This work is divided into two parts. Each part begins with a preliminary chapter that pro-

vides necessary background information and gives context for the chapters that follow. In

the first part, technical preliminaries for problems related to the electrical grid are provided

in Chapter , followed by a decentralized algorithm for the operation of power systems in

Chapter , and a decentralized mechanism for deregulated electricity markets in Chapter .

The focus of these chapters is on determining social-cost minimizing (social welfare max-

imizing) outcomes under the condition that agents in the system only possess localized

information and can only react to local signals. In the second part, Chapter  describes

the issue of cyber-physical systems security in more detail, outlining the key features of

these problems. Chapter  proposes a formal model for real-time threat assessment and

response selection in large-scale cyber physical systems. Chapter  investigates a more

general setting and derives conditions such that optimal policies in POMDPs are monotone

in the belief. Closing remarks and views on future directions are provided in Chapter .
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C 

Power Systems & Markets

A power system is defined as a network of nodes Nb = {1, . . . ,nb }, termed buses in the

power systems community, connected by transmission lines, denoted by the undirected

edge-set El . Each edge, {n,m} ∈ El , has physical parameters described by a line limit

Knm = Kmn > 0 (capturing how much power flow it can sustain) and an admittance Ynm =

Gnm+ iBnm which consists of a conductanceGnm = Gmn > 0 and a susceptance Bnm = Bmn >

0. We setKnm = 0 andYnm = 0+ i0 for any {n,m} < El (i.e. any edge that doesn’t exist in El ).

Buses serve as a connection point for generators and loads to the rest of the network. Each

bus can, in general, have both generators and loads connected to it.* The net injection at

each bus is equal to difference between generation and demand at that bus, that is, the net

injection at bus n is given by In = pn − sn, where pn is the net generation at bus n and sn is

the net load (demand) at bus n. Each bus has two associated variables: a voltage magnitude,

Vn, and a voltage phase angle, θn. The pair of voltage magnitudes and angles for all buses,
*A bus can also have no generators or loads, such a bus is termed a zero-injection bus.
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written as (V ,θ), is termed the operating point of the system. Fig. . shows an example

of a -bus power system.†

Figure 2.1: A 3-bus power system example. Buses 1 and 3 have generators present, with generation levels
given by p1 and p3, respectively. Buses 2 and 3 have loads, with demand levels of s2 and s3. Net injections
at the buses are I1 = p1, I2 = −s2, and I3 = p3 − s3. The operating point of the above system is given by
(V ,θ) = ((V1,V2,V3), (θ1,θ2,θ3)).

The amount of power flowing along a line is given by the AC power flow equations.

Specifically, the (real) power flowing from bus n to busm, denoted by Pnm, is given by (from

[Elgerd, ]).‡

Pnm = GnmV
2
n −GnmVnVm cos(θn− θm) + BnmVnVm sin(θn− θm ). (.)

Due to the nonlinearity of the AC equations, it is common to use approximations. A well-

known approximation, termed the DC approximation, sets all voltages to 1 (per unit, p.u.)

and uses the small-angle approximations sin(θn − θm ) ≈ θn − θm and cos(θn − θm) ≈ 1, to

obtain an approximate flow expression between two buses, n andm, as PDC
nm = Bnm (θn −θm).

†Power systems are usually drawn as a single-line diagram, as seen in Fig. ..
‡Note that we only consider real power in our model.
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While the DC approximation is simple and permits efficient computation, it does have some

drawbacks (details in Appendix A.). We make use of an alternative approximation, which

we term the modified DC approximation, which is described in Section ..

The net injection at each bus, computed as the difference between the net generation and

demand at the bus, must agree with the injections due to the operating point (V ,θ). This

requirement describes the physical laws of power flow, and is represented by the power

balance equation. First, as stated above, the net injection at each bus due to generation and

demand is given by In = pn − sn. Second, the operating point induces an injection at each

bus n dictated (under the AC power flow equations) by the following equation.

fn (V ,θ) =
∑
m∈Nb

GnmV
2
n −GnmVnVm cos(θn− θm ) + BnmVnVm sin(θn− θm).

The power balance equation states that these two injections must agree at each node, and

is thus given by

In = pn − sn = fn (V ,θ). (.)

The existence of the power balance equation makes power systems a difficult class of net-

works to analyze. The following section elaborates on some of these difficulties.

.. e Nature of Power Flow

The set of net power injections at the buses in the network correspond to a physical op-

erating point, as dictated by the power balance equation, Eq. (.). Modification of the

injection at a single bus will induce a corresponding change in the operating point of the

entire system, in turn, requiring a modification of the injections at other buses in order

to ensure that balance in the network is maintained. In centralized information settings,
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the (single) decision-maker knows the structure and parameters of the network and is able

to completely capture these effects. That is, it is able to specify a set of injections and an

operating point of the system, such that the combination is physically consistent.

One can see how this causes an issue when information is decentralized, that is, when

each decision-maker only possesses knowledge of a localized region of the network. In

this setting, if each decision-maker were to specify a set of injections for its region of the

network, it would not be able to do so in a way that would be physically feasible for the sys-

tem. We argue that, under the decentralized information setting, decision-makers should

not propose power injections at buses, rather they should propose the operating point of

their localized region of the network.§ One can see, by inspecting the power balance equa-

tion, that the injection at bus n is completely characterized by the voltage magnitudes and

angles at, and immediately neighboring (buses with a connected line), bus n. This way,

each decision-maker is able to propose a set of voltage magnitudes and relative angles that

is physically consistent with their localized region of the network. The algorithms proposed

in the first part of this dissertation both take advantage of this idea.

.. Modified DC Approximation

We consider a power flow approximation, similar to that of Chao & Peck [Chao & Peck,

], that represents power flow between two buses as a convex function of the voltage an-

gle difference. To begin the derivation, recall that, by the AC power flow equation, the real

power flowing from busn to busm is Pnm = GnmV
2
n −GnmVnVm cos(θn−θm )+BnmVnVm sin(θn−

θm ). We set voltage magnitudes to  p.u., Vn = 1 ∀n ∈ Nb , and assume that voltage angle

differences, θn − θm, are small (similar to the DC approximation). However, unlike the DC

approximation, we use second-order small angle approximations, sin(θn−θm ) ≈ θn−θm and
§Inherent to all decentralized decision-making problems is the need to iteratively communicate with other

agents in order to reach an agreement. This communication process relies on the communication ofmessages
or proposals.





cos(θn −θm) ≈ 1− 1
2 (θn −θm )2, writing the expression for the power flow from bus n to bus

m as a convex function of the angle difference, θn −θm. The resulting approximation, which

we term the modified DC approximation, dictates that the flow of power on line (n,m) is

д(θnm) := Bnm (θn − θm ) +
1
2
Gnm (θn − θm )2 (.)

where θnm = θn − θm. This simple modification of the DC approximation maintains the

asymmetry of the power flow equations, д(θnm) , −д(θmn), and consequently allows for

power losses to be considered (unlike with the DC power flow approximation). The real

power losses along line {n,m}, Lnm = Pnm + Pmn, are approximated by Lnm ≈ Gnm (θn − θm )2.

For notational convenience, we split Eq. (.) into a DC component, д̄(θnm) := Bnm (θn−θm ),

and a (convex) loss component, д̃(θnm) := 1
2Gnm (θn − θm )2. The accuracy of the above ap-

proximation, Eq. (.), is demonstrated through load flow analyses on multiple test systems

(results in Appendix A.).

.. e Issue of Power Losses

The modified DC approximation allows for power losses to be approximately captured, of-

fering improved accuracy over the loss approximations in the literature. The inclusion of

power losses in optimal power flow problems is crucial for obtaining a realistic dispatch

solution, especially in large and heavily-loaded networks. Furthermore, in the context of

electricity markets, accurate modeling of losses is key for obtaining prices of power across

the grid that are representative of the true operating point. Ideally, one would perform an

optimal power flow analysis using the nonlinear (AC) power flow equations (in a central-

ized setting) in order to obtain the true power losses in the transmission network; however,

in pursuit of simpler and more computationally-friendly methods, multiple attempts at es-

timating the line losses have been developed in the literature. The main approaches for
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estimating power losses involve: ) augmenting load with an a priori estimate of losses, )

representating total system losses as a quadratic function of the net power injection vector

(through the B-coefficient loss expression [Kirchmayer, , Wood & Wollenberg, ],

also known as Kron’s loss formula, and qualitatively similar approach in [Aoki & Satoh,

]), ) including penalty functions in the objective function [Fan & Zhang, , Chen

&Chen, ], and ) providing individual loss expressions for each line [Alguacil &Conejo,

, Motto et al., b, dos Santos & Diniz, , Wood & Wollenberg, ]. First, a pri-

ori estimation of losses is difficult due to physical laws and the nonlinear nature of power

flows, making an accurate estimation of losses a futile task for large networks. The second

approach, of representing losses as quadratic functions of the net injection vector, can pro-

duce reasonable approximations for total system losses; however, due to the fact that the

coefficients in the quadratic expression (the B-coefficients in [Kirchmayer, , Wood &

Wollenberg, ]) are computed for a fixed operating point, the accuracy of themethod can

suffer significantly when the operating point changes. Third, penalty methods represent

transmission losses as penalty terms in the cost functions of generators. These penalties

are determined by computing an incremental transmission loss (ITL) coefficient, a process

that can be difficult and somewhat arbitrary. Lastly, the most accurate of the aforemen-

tioned methods, is via individual loss expressions for each line. Individual loss expressions

represent line losses as a function of the operating point directly. This property, while per-

mitting a very accurate approximation, introduces some difficulties from an operational

perspective. Multiple papers involve methods that address these difficulties. Alguacil and

Conejo [Alguacil & Conejo, ] formulate a multiperiod optimal power flow problem

which uses individual loss expressions. The loss functions are formulated using cosines

leading to a nonlinear optimization problem which is solved via Bender’s decomposition.

Motto et al. [Motto et al., b] form a second-order approximation to the cosine term

in [Alguacil & Conejo, ], much like the modified DC approximation; however, moti-
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vated by computational reasons, they further approximate the quadratic expression by a

piecewise linear function. A similar approach is taken in [dos Santos & Diniz, ] which

offers improved accuracy over [Motto et al., b] by choosing the linearized segments

iteratively.

The approach taken in this dissertation of expressing line losses as a convex function

of the angle difference offers advantages in both accuracy and computational efficiency

over the methods in the literature. For instance, the loss approximation of our work does

not suffer from inaccuracies when the operating point changes, unlike the B-coefficient

method. Additionally, we can avoid the errors introduced via (piecewise) linearization of

the loss expressions in [Motto et al., b, dos Santos & Diniz, ]. Furthermore, our

approach leads to a convex problem, as opposed to the computationally difficult nonlinear

problem found in [Alguacil & Conejo, ].

Many of the approaches taken in the literature either deal with the fully nonlinear flow ex-

pression or attempt to obtain a linearized form. We argue that a reasonable middle ground,

that of convexity, allows for one tomake theoretical guarantees (convergence of algorithms)

while still accurately describing important nonlinearities of the problem.

.. Overview of Part I

The remainder of Part I focuses on the development of models for the decentralized op-

eration of power systems and electricity markets. The model of Chapter  describes an

electrical grid with multiple control areas, each one containing multiple buses and trans-

mission lines, with each area operated by a distinct decision-maker, termed a system oper-

ator (SO). In this system-of-systems setting, we study the problem of how to determine a

cost-minimizing set of net power injections for the buses in each region, subject to the fact

that each system operator only possesses localized information. Since the regions are con-

nected, determining such injections requires each SO to determine the appropriate power
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trades with their adjacent SOs. Using the modified DC approximation, the net injection at

each bus can be fully described using its own voltage angle and the angles of its neighboring

buses. The resulting collection of optimization problems are convex and can efficiently be

solved iteratively using a well-known distributed optimization algorithm (the alternating

direction method of multipliers (ADMM)).

In Chapter , a mechanism for achieving an efficient outcome in deregulated electricity

markets is developed. The model consists of a market operator (MO) and multiple, self-

interested market participants. Each market participant possesses localized information

of the system and can only react to local price signals. Based on the dual decomposition

algorithm, we develop a provably convergent market mechanism that achieves a Pareto

efficient outcome.
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C 

A Decentralized Multi-Area

Optimal Power Flow Algorithm

with Power Losses

.. Introduction

In this chapter, we consider a network of interconnected power systems, run by system

operators (SOs), where the goal is to determine a cost-minimizing set of injections subject

to the constraint that each SO does not know the structure of the system outside of its

own localized region. Due to the interconnected nature of the problem, determining these

injections requires that SOs exchange power with adjacent SOs. The proposed algorithm,

based on the alternating direction method of multipliers (see [Boyd et al., ]), dictates that

SOs solve their respective localized-information problem and iteratively communicate the

shared components of their solutions (voltage angles) with adjacent SOs, eventually con-
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verging to an agreed-upon set of voltage angles.* The convergent set of angles induce power

trades between SOs and result in a socially-optimal set of net injections for the system.

... Literature Review

Problems related to determining the lowest cost generation that satisfies demand, subject

to the physical constraints of the system, are referred to in the power systems community

as optimal power flow (OPF) problems. OPF problems under centralized information have

been studied extensively since the problem’s inception [Carpentier, ] and the resulting

literature is vast. The literature review in this chapter includes the most relevant works; the

interested reader is referred to [Pandya & Joshi, , Frank et al., a, Frank et al., b]

for more complete reviews. A popular method for obtaining the solution to the OPF prob-

lem under the AC power flow equations (the general AC-OPF problem) involves forming

its semidefinite program (convex) relaxation [Bai et al., , Lavaei & Low, ]. While

an attractive approach (the relaxation allows for a polynomial time solution), it is known

that when the duality gap is non-zero, which can occur in many practical examples, the

resulting solution is not feasible [Molzahn et al., ]. Some additional methods for solv-

ing the OPF problem under centralized information include convex relaxation techniques

[Low, , Farivar & Low, a, Farivar & Low, b] and the holomorphic embedded

load-flow method [Trias, ].

Solutions to the OPF problem under decentralized information have been investigated in

many papers utilizing a wide variety of solution techniques. Many of the approaches use

techniques from distributed optimization to decompose the global optimization problem

into separate components which are then solved iteratively. Examples include approaches

using dual decomposition methods [Baldick et al., , Conejo & Aguado, , Galiana
*It is important to note that we are not proposing direct control of the voltage angles of the buses; rather,

we are using the voltage angles merely as the messages for each SO. Once the SOs reach an agreement, the
convergent angles uniquely specify the lossy net injection (controllable variable) at each bus.
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et al., , Motto et al., a, Biskas & Bakirtzis, ], augmented Lagrangian methods

[Batut & Renaud, , Kim & Baldick, , Baldick et al., , Kim et al., , Bakirtzis

& Biskas, ], and approximate Newton directions [Conejo et al., , Nogales et al.,

, Biskas et al., , Hug-Glanzmann & Andersson, ]. Recently, the ADMM al-

gorithm, a method combining the decomposability properties of the dual decomposition

method and the robustness of augmented Lagrangian methods [Boyd et al., ], has

seen much attention in the power systems community. Applications of the ADMM algo-

rithm to problems of decentralized information in power systems settings include: multi-

area unit commitment [Chung et al., ], decentralized optimal power flow for mesh

networks [Kim & Baldick, , Sun et al., , Kraning et al., , Dall’Anese et al.,

, Mosca, , Erseghe, , Magnusson et al., ] and radial networks [Dall’Anese

et al., , Šulc et al., , Peng & Low, , Christakou et al., ], and distributed

power system state estimation [Kekatos & Giannakis, ].

Convergence of decentralized OPF algorithms is a primary concern. The aforementioned

algorithms are known to converge under convexity; however, many of the papers consider

settings that are inherently non-convex (i.e. the general OPF problem), resulting in authors

demonstrating convergence on a small number of test systems [Batut & Renaud, , Kim

& Baldick, , Conejo & Aguado, , Baldick et al., , Kim & Baldick, , Kim

et al., , Galiana et al., , Motto et al., a]. Some papers investigate sufficient con-

ditions for convergence, but cannot guarantee convergence to a globally optimal solution

[Baldick et al., , Nogales et al., , Hug-Glanzmann & Andersson, ]. Other pa-

pers attempt to apply the ADMM algorithm to the general AC-OPF problem, but can only

guarantee convergence when the duality gap is zero [Erseghe, ] or convergence to local

optima [Sun et al., , Magnusson et al., ]. Other approaches employ the DC approx-

imation and can consequently guarantee convergence [Bakirtzis & Biskas, , Bakirtzis

& Biskas, , Biskas & Bakirtzis, , Biskas et al., , Mosca, ]; however, the con-
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vergence guarantee comes at the cost of ignoring important non-linearities in the model,

for example, not being able to consider power losses. The approach by [Kraning et al., ]

involves taking a convex hull of the non-convex constraints, permitting convergence, but

resulting in the solution potentially not being feasible. Desirable convergence properties

are obtained in [Šulc et al., , Peng & Low, , Christakou et al., ] but require one

to restrict attention to radial networks. The ADMM algorithm has also been investigated

in combination with the semidefinite relaxation approach [Dall’Anese et al., ], but as

with the centralized information approach, a zero duality gap solution is required to ensure

feasibility.

... Contribution

As discussed above, existing approaches either deal with the full complexity of the AC-

OPF problem, precluding convergence guarantees, or consider simplified settings, such as

the DC approximation or restricted network topologies, limiting their accuracy and appli-

cability. The approach taken in this chapter offers a simple convex approximation of the

OPF problem that preserves some important non-linearities of the problem (such as power

losses) while permitting convergence in general (mesh) networks.

.. e Multi-Area Power System Model

Throughout the discussion of the model the reader is directed to Fig. ., in Section .,

which represents an instance of an interconnected power system topology. We consider a

network ofnso ≥ 2 system operators (SOs), denoted by the setM. Each SOa , a ∈ M, contains

a set ofna
b
≥ 1 unique buses, denoted by the setN a

b
. The buses in the network are numbered

sequentially based upon their SO index, that is,N 1
b
:= {1, . . . ,n1

b
},N 2

b
:= {n1

b
+1, . . . ,n1

b
+n2

b
},

and so on, up to Nnso
b

:= {n1
b
+ · · · + nnso−1

b
+ 1, . . . ,nb }, where nb := n1

b
+ · · · + nnso

b
is the

total number of buses in the system. The set of all buses is denoted by the set Nb . Due
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to the physical locations of loads and generators, some buses are a priori specified as net

consumption or net generation buses. Net consumption buses (buses that contain only loads)

are denoted by Nd
b
, whereas net generation buses (buses that contain only generators) are

denoted by Nд
b
. All remaining buses are assumed to contain at least one load and at least

one generator†, which we term hybrid buses, and belong to the set Nb \ (Nd
b
∪ Nд

b
). We

assume a set of slack buses (at most one per system, further discussed in assumption  in

Section ..), denoted by N s
b
, which serve only as angle reference buses. We assume that

each slack bus has a generator present, that isN s
b
⊆ Nb \ Nd

b
. For notational convenience,

we introduce the following terminology for edges in the network. We term the network

connecting buses of each SOa as the intra-SOa network with undirected set of edges Eal . We

term the network between buses that connect two SOs, for example SOa1 and SOa2 , as the

inter-SOa1,a2 network, where the set of undirected edges between SOa1 and SOa2 are denoted

by Ea1,a2
l

. Lines in the inter-SOa1,a2 network are also referred to as tie-lines.

We define the set of neighboring buses to bus n by Rn, with n ∈ Rn. We denote by

R̄n as the set Rn with index n removed. We denote the set of buses in and immediately

connected to buses in SOa as Ra :=
∪

n∈N a
b
Rn. We define the set of adjacent SOs to SOa

asMa , that is,Ma is the set of SOs that contain at least one bus that is connected to a bus

in N a
b
, with a < Ma . We associate a voltage angle with each bus n, denoted by θn. The

vector θ ∈ Θ ⊆ Rn1b+···+n
nso
b is the complete set of bus angles across the network where

Θ is the feasible set of angles. We use θRn to represent the set of angles connected to

(and including) bus i , not including any slack indices (since these angles are fixed), that

is θRn := {θm : m ∈ Rn \ N s
b
}. We also define θRa as the vector of angles of buses in

and immediately connected to SOa , that is θRa := {θm : m ∈ Rn \ N s
b
,n ∈ N a

b
}, again not

including any slack indices. Notice that there is coupling between variables of two adjacent

SOs a and b, that is, θRa and θRb share some common variables from θ. As a result, we
†Note that topologies that contain zero injection buses are not permitted in the model of this chapter

(discussed in more detail in assumption  in Section ..).
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distinguish between each SO’s copy of the shared variables by denoting elements of θRa

that are shared with another SO by θ (a)
n and elements that are not shared simply by θn. The

reader is referred to the caption of Fig. . for an example of the SOs’ decision variables.

... Model Assumptions

We assume that the power flow obeys the modified DC power flow approximation defined

in Section .. Additionally, we make the following three assumptions for this chapter’s

model.

Assumption  (controllability of net injections): The net power injection In at each bus n

is assumed to be controllable within a bus-specific range, [pmin
n ,p

max
n ]. The bounds pmin

n

and pmax
n are defined by the feasible ranges of each generator and load. The feasible range

of each generator is defined as its minimum operating generation output to its maximum

generation capacity. With respect to loads, we assume that there are both fixed loads and

flexible loads (the level of demand can be adjusted within some range; this is reasonable

with the advent of widespread demand response capabilities) in the network. Implicit to

assumption  is that each bus contains either a generator or a flexible load (or both). Conse-

quently, zero-injection buses and buses with only fixed loads are not permitted in the model

of this chapter (the model of Ch.  removes this requirement). The ranges of generators

and flexible loads translate into controllability ranges on net injections at each bus. These

constraints take the form

fn (θRn ) =
∑
m∈Nb

д(θnm ) ≤ pmax
n , (.)

f̄n (θRn ) =
∑
m∈Nb

д̄(θnm) ≥ pmin
n (.)

where fn represents the net power injections, and f̄n represents the non-lossy net power
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injections at bus n (recall the discussion following Eq. (.) for the definition of д̄(θnm)).

The upper bound is placed on the net injection which ensures that the (upper) production

bounds of the generators are satisfied. The lower bound is placed on the non-lossy injection

in order to maintain convexity of problem.‡

Assumption  (slack buses): Every SO either contains or is immediately connected to exactly

one slack (reference) bus. That is, Ra ∩ N s
b
contains exactly one element for each a ∈ M.

These buses are termed area slack buses. Each SO is assumed to know the location of its

area slack bus. The slack buses serve as reference buses with each voltage angle fixed to a

reference value of zero, θn = 0 for all n ∈ N s
b
. Implicit to this assumption is that SOs agree

upon the same reference value a priori and keep this reference fixed for the duration of the

problem.

Assumption  (cost functions): Each bus n has an associated cost function cn : R → R

which is assumed to be twice continuously differentiable§, convex, and strictly increasing.

The cost function of a bus, denoted by cn, is the sum of the cost functions of generators

and the (negative) benefit functions of loads at the bus. The interpretation of the each cost

function is the same as the one used in [Wu & Varaiya, ]; if bus n’s net injection In is

positive, then cn (In) represents the generation cost of producing power In, whereas, if busn’s

net injection In is negative, then cn (In ) represents the negative of the benefit from receiving

power In. See [Stott et al., ] for a discussion of the validity of the convexity assumption.

... Knowledge Model

Wenowdescribe the knowledgemodel, that is, what each of the power system entities knows

about the system. Each SO possesses localized knowledge of their own system (control
‡Ideally, these constraints should take the form fn (θRn ) ≥ pmin

n ; however, since fn is a convex function,
constraints of this form generate non-convex sets. It is important to note that, since real power losses are
always positive, constraint (.) implies fn (θRn ) ≥ pmin

n .
§For simplicity; the results still hold if the cn ’s are not smooth.
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area). Specifically, each SOa possesses private information regarding the cost functions

cn and injection bounds pmin
n ,p

max
n for all buses in their system n ∈ N a

b
. Each SOa also

knows the admittances Ynm, line limits Knm, and stability bounds θnm, θnm, of its localized

region {n,m} ∈ Ea
l
∪∪

b∈Ma Eab
l
(note that this includes information regarding the tie-lines).

Additionally, SOa knows the location of its area slack bus (as described in assumption  in

Section ..).

.. e Multi-Area Optimal Power Flow Problem

The goal of themulti-area optimal power flow problem is to determine the net injections that

induce the optimal tie-line flows among the interconnected power systems while satisfying

the physical and informational constraints. The optimal tie-line flows are defined as the

flows that are induced by the social-cost-minimizing set of injections. First, in Section

.., we formulate the centralized information problem, termed Problem (PC ), where we

assume that there is an entity that has complete system knowledge. The solution to the

centralized information problem defines the optimal social cost. Second, in Section ..,

we consider an alternate formulation of Problem (PC ), termed the decentralized information

problem, Problem (PD), by introducing both local variables and a common global variable.

Later, in Section ., we present a message exchange process that results in the optimal cost

(the solution of the centralized information problem) while obeying the assumptions of the

knowledge model (see Section ..).

... Centralized Information Problem Formulation

We now formulate the centralized information problem assuming that there is an entity

that has complete knowledge of the network topology and system parameters. Recall that

every bus has an associated cost function; a cost for generating power, or a negative benefit

for receiving power. The social cost is defined to be the sum of all buses’ costs across the
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system. As mentioned earlier, the optimal tie-line flows are those that are induced by the

net injections that achieve the minimum social cost.

The centralized information problem (PC ) aims to determine the set of net power injec-

tions, I = (I1, . . . , Inb ), such that the total social cost is minimized subject to the physical

constraints.

minimize
I={In }n∈Nb

∑
n∈Nb

cn (In) (PC )

subject to I = f (θ) (PC-)

θ ∈ Θ (PC-)

where I represents the net injection vector and f (θ) = ( f1(θR1 ), . . . , fnb (θRnb )) represents

the injection induced by the operating point θ. Let us denote the optimal solution of Prob-

lem (PC ) by I∗C with corresponding objective value c∗C . Under the modified DC approxima-

tion, the operating point is defined as the set of voltage angles, denoted by θ. Constraint

(PC-) thus represents the power balance equation under the modified DC approximation.

Constraint (PC-), θ ∈ Θ, imposes the physical constraints of the system, and is defined as

Θ :=
{
(θR1, . . . ,θRnso ) ∈ ΘR1 × · · · × ΘRnso : θ (a)

n = θ
(a′)
n , i ∈ Ra ∩ Ra′,a,a′ ∈ M

}
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where each SOa’s feasible set, ΘRa , is

ΘRa :=
{
θRa

���θn ∈ [−π ,π ],n ∈ Ra \ N s
b ; (.)

θn = 0,n = Ra ∩ N s
b ; (.)

fn (θRn ) ≤ pmax
n , n ∈ N a

b ; (.)

f̄n (θRn ) ≥ pmin
n , n ∈ N a

b ; (.)

θnm ≤ θnm ≤ θnm,m ∈ Rn,n ∈ N a
b ; (.)

д(θnm ) ≤ Knm,д(θmn) ≤ Kmn,m ∈ Rn,n ∈ N a
b

}
. (.)

The first set of constraints (.-.) are the linear voltage angle constraints; trivial bounds

are placed on all non-slack bus angles, with indicesRa \N s
b
, whereas the angle of SOa’s area

slack bus is fixed to zero. The maximum injection constraints, (.), place an upper bound

on lossy net injections, and minimum injection constraints, (.), place a lower bound on

non-lossy net injections at each bus, as discussed in assumption . Voltage angle stability

constraints, (.), θnm ≤ θnm ≤ θnm for all {n,m} ∈ El , are in place to maintain synchronism

throughout the system. Quantities θnm,θnm are the maximum allowable angle differences

in order to maintain stability of the system. The maximum theoretical stability bounds,

θnm, θnm, are ±π/2 radians (for lossless lines); however, the precise stability bounds depend

upon installed equipment, its configuration, as well as transient stability considerations

throughout the network [Cain et al., ]. The remaining set of constraints, (.), termed

line limit constraints, specify that power flow must be within the limits of each line. Since

ΘRa ⊆ R|R
a |−1 consists of linear equalities, linear inequalities, and convex inequalities, it is

a convex and compact set, implying that Θ is compact. We assume that Θ is non-empty.

Problem (PC ) can be transformed into an equivalent problem that is expressed solely in

terms of voltage angles. This is done bymoving constraint (PC-) into the objective function,
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resulting in the optimization problem (P ′C ),

minimize
θ∈Θ

∑
a∈M

Ca (θRa ) (P ′C )

The objective function, C (θ) = ∑
a∈M Ca (θRa ), termed the social cost function, is expressed

in terms of functions Ca : R|R
a |−1 → R, where each Ca is termed SOa’s aggregated cost

function, given by

Ca (θRa ) =
∑
n∈N a

b

cn
(
fn (θRn )

)
. (.)

The following lemma regarding the convexity of the each SO’s aggregated cost function

will be useful in later demonstrating convergence properties of the proposed algorithm.

Lemma ... Each SOa’s aggregated cost function, Ca (θRa ), is strongly convex on ΘRa , a ∈

M.

Proof: See Appendix A..

Consequently, the social cost functionC (θ) is also strongly convex in θ. The solution of

Problem (P ′C ) uniquely defines the optimal net power injections (control variables) for each

bus and thus solves Problem (PC ).

... Decentralized Information Problem Formulation

We wish to determine the feasible net injections that minimize the social cost under the

informational constraints imposed by the problem structure (see Section ..). As in the

discussion of the centralized problem, we can express the problem of finding the optimal

net injections (those that minimize ∑
n cn (pn) subject to constraints (PC-) and (PC-)) as

a problem of finding the voltage angles that induce the injections. Instead of having one

decision variable, the variable θ in Problem (P ′C ), we introduce local variables for each SOa ,
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a ∈ M, denoted by θRa , and a global variable z. This modified problem, which we term the

decentralized information problem, denoted by Problem (PD), is defined as

minimize
θR1 ,...,θRnso ,z

∑
a∈M

Ca (θRa ) (PD)

subject to θRa ∈ ΘRa , a ∈ M, (PD-)

z ∈ Θ, (PD-)

θRa − zRa = 0,a ∈ M . (PD-)

The decision variables of Problem (PD) are the voltage angles of all SOs, θR1, . . . ,θRnso , and

the global voltage angle variable, z ∈ Rnb . Each SOa’s decision variables are restricted to

lie within the local constraint setΘRa , by constraint (PD-), and z ∈ Θ, by constraint (PD-).

We impose the coupling constraints (PD-), θRa − zRa = 0 for each SOa , which states SOa’s

proposal must agree with the relevant components from the global variable, denoted by

zRa .

.. Solution Methodology

The proposed solution method for Problem (PD) consists of an iterative message exchange

process which makes use of the ADMM algorithm (see [Boyd et al., ], original work

[Glowinski & Marroco, , Gabay & Mercier, , Gabay, ]). Due to the structure

of our problem, the conditions for convergence of the message exchange process are natu-

rally met. Furthermore, under the assumption that cn’s are strictly increasing (assumption

), we are able to ensure convergence of the optimizers of Problem (PD) to those of the

centralized information problem, Problem (P ′C ), and consequently, obtain the set of optimal

net injections, I∗C , for the centralized problem (PC ).
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... Message Exange Process

Wefirst form the partial augmented Lagrangian corresponding to Problem (PD) by dualizing

the coupling constraints (PD-) as

Lµ (θR1, . . . ,θRnso , z, y) =
∑
a∈M

(
Ca (θRa ) + y

⊤
Ra (θRa − zRa ) +

µ

2
| |θRa − zRa | |22

)
where µ is termed the penalty parameter. By the ADMM algorithm, primal variables are

updated in parallel, by each SO, via

θt+1Ra = argmin
θRa ∈ΘRa

Lµ (θR1, . . . ,θRnso , z
t , yt )

= argmin
θRa ∈ΘRa

(
Ca (θRa ) + y

t⊤
RaθRa +

µ

2
������θRa − ztRa ������22)

followed by

zt+1 = argmin
z∈Θ

Lµ (θ
t+1
R1 , . . . ,θ

t+1
Rnso , z, y

t )

= argmin
z∈Θ

∑
a∈M

(
−yt⊤RazRa +

µ

2
������θt+1Ra − zRa ������22) .

Lastly, the dual variables for eachm ∈ M are updated as

yt+1Ra = ytRa + µ
(
θt+1Ra − z

t+1
Ra

)
. (.)

It can be shown [Boyd et al., ] that the dual variables have a zero sum after the first

iteration resulting in the z update reducing to an averaging of the elements of the elements

of θt+1Ra . Each SO does this averaging locally and thus does not require a centralized entity

(details found in Algorithm ). Due to the convexity of the feasible sets ΘRa for all a ∈ M

and the fact that adjacent SOs, a and b, share common information of the line limits of their
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inter-SOab network, the averaged vector zRa also lies within ΘRa .

Algorithm Message Exchange Process
Initialize t = 0, choose θ0

Ra , y
0
Ra for a ∈ M, z0, and µ > 0

while ¬( | |p (t )r | |2 < εprimal and | |d (t )
r | |2 < εdual) do

for ( do (parallel optimization and broadcast))a ∈ M
SOa solves:

θt+1Ra = argmin
θRa ∈ΘRa

(
Ca (θRa ) + y

t⊤
RaθRa +

µ

2
������θRa − ztRa ������22)

Broadcast θ (a),t+1
n to SOa′ for all n ∈ Ra ∩ Ra′ , a′ ∈ Ma .

end for
for ( do(parallel average and dual variable update))a ∈ M

Average:

zt+1n =
1

|Ma | + 1

(
θ (a),t+1
n +

∑
a′∈Ma

θ (a′),t+1
n

)

for all n ∈ Ra ∩ Ra′ for all a′ ∈ Ma and sets zt+1n = θ t+1n for all non-shared buses.
Update: yt+1Ra = ytRa + µ (θ

t+1
Ra − z

t+1
Ra )

end for
Update residuals: compute p (t+1)r , d (t+1)

r via Eq.’s (.), (.)
Update counter: t ← t + 1

end while

... Algorithm Convergence

In order to establish convergence of the algorithm, we need to ensure that the unaugmented

Lagrangian, L0, has a saddle point. First, we assume that Problem (PD) satisfies Slater’s

condition, that is, the feasible set ΘR1 × · · · × ΘRnso × Θ has a nonempty interior (this

assumption is reasonable in practical problems; the constraint set can be trivially modified

to have a nonempty interior). As a result, by Cor. .. of [Rockafellar, ] (p.), the

unaugmented Lagrangian, L0, has a saddle point. Furthermore, since each SO’s aggregated

cost function is convex by construction and closed (since eachΘRa is compact), our problem

is convex and satisfies the conditions required for the ADMM to converge ([Boyd et al.,

], p.).
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The convergence result of [Boyd et al., ] ensures that the ADMM results in conver-

gence of the primal residuals to zero (solution approaches feasibility), the objective function

to the optimal value, and the dual variables to the optimal dual point. It does not, in general,

ensure convergence of the primal variables to their optimal values. However, by Lemma

.., each SO’s aggregated cost functionCa is strongly convex, ensuring that the sequence{
(θtR1, . . . ,θ

t
Rnso , z

t )
}
generated by Algorithm  converges to an optimal solution, as sum-

marized by the following corollary.

Corollary ... e sequence {zt } generated by Algorithm  converges to the unique optimal

solution of Problem (P ′C).

Using the sequence of angles {zt } generated by Algorithm , we define the correspond-

ing sequence of net power injections, denoted {ItD }, where each term is defined as ItD =(
f1(ztR1

), . . . , fnb (z
t
Rnb

)
)
, and state the following corollary.

Corollary ... e sequence of net injections {ItD } converges to I∗C , the unique optimal solu-

tion of Problem (PC), and achieves the same optimal social cost, c∗C .

Generators and loads at each bus are then required to meet their respective buses’ pre-

scribed optimal net injection. The resulting set of injections induce tie-line flows which are

consistent with the social-cost-minimizing solution under the modified DC approximation.

.. Numerical Examples

For purposes of simulation, we compute the primal and dual residual, which serve as op-

timality measures, and compare their norms to a fixed threshold to determine when to
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terminate the algorithm. The primal and dual residuals are defined respectively as

d (t )
r := (θtR1 − ztR1, . . . ,θ

t
Rnso − z

t
Rnso ), (.)

p (t )r := −µ (ztR1 − zt−1R1 , . . . , z
t
Rnso − z

t−1
Rnso ). (.)

For specified thresholds, εprimal, εdual > 0, we terminate the algorithmwhen | |d (t )
r | |2 < εprimal

and | |p (t )r | |2 < εdual.

We now demonstrate the performance of Algorithm  on two systems: () A  bus,

-region system illustrated in Fig. .; () A  bus, -region system (IEEE RTS- sys-

tem). For the  bus system, buses are classified as Nд
b
= {4, 8, 9, 12}, Nd

b
= {1, 6, 7, 10},

with remaining buses of hybrid type. Slack bus indices are N s
b
= {3, 5}. Injection bounds

are pmin
n = 0MW for all n ∈ Nд

b
, pmax

n = 300MW for all n ∈ Nд
b
and hybrid buses;

pmax
2 = −200MW, pmax

6 = −300MW, pmax
7 = −100MW (these buses must receive at least

pmax
n ); pmin

2 = −400MW (bus 2 cannot receive more than 400MW); and pmin
n = −∞ for all

remaining consumption and hybrid buses. Stability bounds θnm and θnm are set at ±π/2

and line limits are denoted by the parenthesized values on the lines in Fig. .. Algorithm

parameters are set as follows: initial conditions θ0
Ra = 0, y0Ra = 0 for a ∈ M, z0 = 0;

penalty parameter µ = ×-; and stopping thresholds εprimal = ×- and εdual = ×-.

Fig. . and Table . present the convergent flows and injections, respectively, for the 

bus system. Algorithm parameters the  bus system are: θ0
Ra = 0, y0Ra = 0 for a ∈ M,

z0 = 0, µ = 25, εprimal = ×-, and εdual = ×-. Fig. . shows convergence results

for both the  bus and  bus systems. Cost functions for both systems take the form

cn (pn) = an exp(pn + bn) + cn, where an > 0.
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Figure 3.1: 12 bus example; SO’s decision variables are θR1 = {θ1,θ (1)
2 ,θ

(1)
4 ,θ

(1)
12 }, θR2 =

{θ (2)
2 ,θ

(2)
4 ,θ6,θ

(2)
7 ,θ

(2)
8 ,θ

(2)
9 ,θ

(2)
10 }, and θR3 = {θ (3)

7 ,θ
(3)
8 ,θ

(3)
9 ,θ

(3)
10 ,θ11,θ

(3)
12 }; buses with double-encircled genera-

tors symbolize slack buses.

.. Discussion & Conclusion

As seen in Table ., the convergent injections satisfy the injection constraints defined in

Section .. For example, the convergent net injection at bus 4 binds the upper bound

constraint of pmax
4 = 300MW. Notice that this constraint is on the lossy net injection; this

can be seen by observing the power flowing out of bus 4 in Fig. .. Also notice that, due

to losses, the power leaving from bus i to bus j is higher than the power received at bus j

from bus i , and consequently, the line limit is on the loss-included flow (for example, in Fig.

., the line limit on line {7, 9} limits the power flowing from bus 9 to bus 7 to 300MW).





Bus Injection Bus Injection Bus Injection
1 -. 5 . 9 .
2 -. 6 -. 10 .
3 . 7 - 11 -.
4 . 8 . 12 .

Table 3.1: Convergent injections (in MW) for the 12 bus system.

The algorithm has been shown to converge quickly to the centralized optimum. Conver-

gence to the specified tolerances was achieved in a relatively small number of iterations; 

iterations for the  bus system and  iterations in the  bus system.¶ As discussed in

[Boyd et al., ] the ADMM behaves much like a first-order method, in the sense that it

can be slow to converge to high-accuracy; however, moderate accuracy can be obtained in

the order of tens of iterations. This behavior was confirmed by the simulations performed

on the test systems. The strong convexity of each SO’s cost function was found to prevent

oscillation between optimal solutions, resulting in faster convergence (observed through

simulation results). Empirically, we have observed that the speed of convergence is heavily

influenced by the choice of penalty parameter µ; poorly chosen values of µ can result in

slow convergence.

In summary, the proposed algorithm obtains a cost-minimizing solution which satisfies

the physical constraints of the system while obeying the informational constraints of the

SOs. The process involves SOs exchanging voltage angle messages with their neighbors,

eventually reaching an agreed-upon set of angles. The convergent angles define power

flows between SOs and a corresponding set of cost-minimizing net injections for the system.

¶Small loads were placed at the zero injection buses in the  bus test system.
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(a) -bus example
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Figure 3.2: Convergence plots for (a) the 12 bus (first column) and (b) the 73 bus (second column) systems;
primal and dual residual norms (top), see Eq.’s (4.6) and (4.7); centralized and decentralized cost sum (middle);
and angle mismatch, θ ∗n − ztn , i ∈ N , between the centralized optimal θ∗ and zt (bottom), as functions, n.
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C 

A Decentralized Meanism for

Computing Competitive Equilibria in

Deregulated Electricity Markets

Thee ae ome daback of he appoach aken in Chape  ha moiae the

development of a more realistic model. In Chapter , the requirement to have a convex

problem (in order to ensure convergence of the ADMM algorithm), results in some unreal-

istic assumptions, such as placing a lower bound on the non-lossy injection and not being

able to consider zero-injection buses. The approach of Chapter  does not require convexity

in order to ensure convergence, permitting a more realistic model.
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.. Introduction

From the introduction of the Public Utilities Regulatory Policies Act (PURPA) in  to

the establishment of the Energy Policy Act in , the deregulation of electricity markets

in the United States has grown continuously, primarily under the appeal of increased tech-

nological competition and innovation. Today, despite cases of market manipulation (such

as the California electricity crisis in -), many large electricity markets are, at least

in some capacity, deregulated. This transition has been centered around the formation of

specialized firms for generation, transmission, and distribution, to name a few, with mar-

kets typically consisting of the following companies [Christie & Bose, ] (termed mar-

ket participants): generation companies (GenCos) who produce and sell power, transmission

companies (TransCos) who own the transmission assets and are responsible for transmit-

ting power across the grid, and distribution companies (DistCos) who own the distribution

networks and are tasked with buying power from GenCos and distributing it to consumers.

The primary goal in an electricity market is determining an outcome that is not only eco-

nomically optimal (that is, it is Pareto efficient [Mas-Colell et al., , Kirschen & Strbac,

]) but also satisfies the physical constraints of the system.

Centralized market mechanisms are traditionally the approach used for determining the

optimal, feasible outcome of the market [Stoft, ]. Under these approaches a centralized

market operator receives bids from the market participants, in the form of cost/benefit func-

tions and technical constraints, and solves a large-scale centralized optimization problem to

determine the market clearing outcome. This outcome consists of a physically feasible oper-

ating point as well as a vector of bus-specific power prices termed locational marginal prices

(LMPs). Unfortunately, centralized mechanisms suffer from some drawbacks. First, report-

ing cost and technical information raises privacy concerns for market participants. Also, as

systems grow in size, the centralized optimization problem can become prohibitively large.
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This issue is made worse by the recent surge in distributed generation and demand side par-

ticipation [Papadaskalopoulos & Strbac, ], further increasing the dimensionality and

complexity of the problem and potentially making centralized mechanisms computation-

ally intractable.

In hopes of avoiding these drawbacks, we introduce a decentralized market mechanism

which achieves the economically optimal outcome, honoring the informational asymme-

tries of the problem and considering important nonlinearities of the system (such as power

losses and limits on transmission lines). The electricity market model consists of multiple

market participants, DistCos, GenCos, and TransCos, and a single market operator. Our

model allows for the consumption centers of each DistCo and the production centers of

each GenCo to be distributed across the network. For example, a given GenCo could own

generators at multiple buses in the network (a portfolio of plants). Additionally, our model

allows for the ownership of transmission lines in the system to be partitioned among multi-

ple TransCos. The market operator is responsible for obtaining a market clearing outcome.

The process of achieving this market clearing outcome, termed a decentralized market mech-

anism, is based on principles from Lagrangian duality theory, specifically making use of the

dual decompositionmethod [Bertsekas, ]. Themechanism, which we refer to as the pric-

ing process, consists of an iterative price response and price update procedure. All market

participants are assumed to act in a self-optimizing manner, that is, given the current LMPs

they adjust their decision variables in order to maximize their financial surplus subject to

their own local physical and operational constraints. This allows, for instance, for DistCos

to exercise flexible demand participation for the elastic component of their total demand

and for GenCos to self-dispatch. DistCos and GenCos optimize independently, reporting

their surplus-maximizing consumption and production profiles, respectively. TransCos par-

take in a cooperative message exchange process to reach an operating point that induces

power flows that maximize their surpluses for transmitting power along their respective
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lines. The optimizers are sent to the market operator who is responsible for updating the

LMPs in such a way that the self-interested behavior of market participants leads to an

outcome that is physically feasible. This outcome, when coupled with the associated set of

LMPs, forms a competitive equilibrium [Mas-Colell et al., , Motto et al., a], which

we show is Pareto efficient. Under relatively weak conditions (a convex DC approximation

and edge-wise positive sums of LMPs), the market participants’ optimization problems are

convex and the pricing process converges. The pricing process avoids the need for market

participants to reveal sensitive information, and additionally, the mechanism scales much

more effectively than its centralized counterpart.

... Literature Review

We focus on papers from the literature that are most similar to ours, primarily including

works that develop decentralized market mechanisms (under perfect competition) using

Lagrangian duality techniques. Duality theory allows one to solve the computationally

simpler dual problem; however, this can result in a non-zero duality gap in general. The

authors of [Motto et al., a, Galiana et al., ] construct a market model consisting of

GenCos, DistCos, and a single TransCo, considering a fully nonlinear AC power flowmodel.

Their decentralized mechanism, based on a dual approach, is conjectured to converge to a

zero duality gap solution under profit optimality and a convexifyingmarket rule (a restriction

of market participants’ behavior). Lavaei and Sojoudi [Lavaei & Sojoudi, ] consider a

competitive energy market setting with GenCos, DistCos, and an ISO under the AC power

flow model (using an SDP reformulation). Assuming positive LMPs, the authors are able to

show convergence to a zero duality gap solution under the assumption of either: a radial

network, or, in the case of a mesh network, the existence of a phase-shier for each network

cycle. In the absence of phase-shifters, a zero duality gap can be ensured if loads are allowed

to be over-satisfied (discarding extra power). Similar mechanisms have been applied in
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the context of the unit commitment problem (e.g. [Zhuang & Galiana, ], [Bard, ],

[Ongsakul & Petcharaks, ]) and demand response exchangemarkets (see [Nguyen et al.,

] and [Papadaskalopoulos & Strbac, ]).

... Contribution

The contributions of this chapter are twofold:

)Modeling generality: Our model allows for the ownership of power system assets to be

partitioned among the market participants. This allows for each DistCo and GenCo to own

multiple units that are distributed across the network (existing literature assumes that each

participant owns a single unit [Motto et al., a, Galiana et al., , Lavaei & Sojoudi,

]). Our model also allows for ownership of lines to be partitioned among multiple

TransCos ([Motto et al., a, Galiana et al., ] consider a single TransCo).

) Convergence to a zero duality gap solution: Existing models contain nonlinearities

that either preclude convergence guarantees [Motto et al., a, Galiana et al., ] or

require strong sufficient conditions [Lavaei & Sojoudi, ]. Ourmodel allows us to ensure

convergence (under natural conditions) while preserving important nonlinearities of the

problem, such as power losses.

.. Energy Market Model

In addition to the market operator (MO), the market model of this chapter contains three

types of agents (market participants): DistCos, denoted by the set DC = {1, . . . ,Dc }; Gen-

Cos, denoted by GC = {1, . . . ,Gc }; and TransCos, denoted by TC = {1, . . . ,Tc }. Each

DistCo i ∈ DC owns consumption units, consisting of elastic loads at buses N i
DCd

⊆ N

and inelastic loads at buses N i
DCs ⊆ N . The elastic and inelastic load profiles of DistCo

i ∈ DC are di =
{
din
}
n∈N i

DCd
and si =

{
sin
}
n∈N i

DCs
, respectively, where din ∈ [din, d̄

i
n] is the

elastic demand and sin ≥ 0 is the (given) inelastic demand of DistCo i’s consumption unit
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at bus n. Each GenCo i ∈ GC owns generation units at buses N i
GC ⊆ N . The real power

injection profile of GenCo i ∈ GC is pi =
{
pin
}
n∈N i

GC
where pin ∈ [pin, p̄

i
n] is the injection of

GenCo i’s generation unit at bus n. For convenience, let pin = 0 if GenCo i does not own

a generation unit at bus n (similarly for din, sin of DistCo i at bus n). Lastly, each TransCo

i ∈ TC owns a set of transmission lines Ei
l
with ownership of lines in the system partitioned

among TransCos, that is, E1
l
∪ · · · ∪ ETc

l
= El and Eil ∩ E

j
l
= ∅, i , j. Each edge-set Ei

l
has

an associated set of buses N i
TC defined as the endpoints of the edges in E

i
l
. The associated

voltage angle profile of TransCo i ∈ TC is θi =
{
θn
}
n∈N i

TC
. For later convenience, we also

define N i,j
TC := N i

TC ∩ N
j
TC as the set of shared buses between two TransCos’ edge-sets

Ei
l
and E j

l
and TCn := {i ∈ TC | n ∈ N i

TC } as the set of TransCos that own lines that are

connected to bus n. A sample network can be seen in Fig. ..

Figure 4.1: A sample 5-bus network. GenCo i = 1 owns generator units at busesN 1
GC = {1, 4} corresponding

to an injection vector p1 = (p11,p
1
4 ). GenCo i = 2 has generator units at buses N 2

GC = {1, 2}, p
2 = (p21,p

2
2 );

DistCo i = 1 has elastic loads at buses 4 and 5, d1 = (d14 ,d
1
5 ), and an inelastic load at bus 2, s1 = s12 , thusN 1

DCd =

{4, 5},N 1
DCs = {2}; and lastly, DistCo i = 2 has both an elastic and inelastic load at busN 2

DCd = N
2
DCs = {5},

thus d2 = d25 , s2 = s25 . Bus 3 is a zero-injection bus. TransCo i = 1 owns lines E1l = {{1, 2}, {1, 4}, {2, 3}} thus
N 1
TC = {1, 2, 3, 4} and TransCo i = 2 owns lines E2l = {{3, 4}, {4, 5}} so N

2
TC = {3, 4, 5}.

The load and generation profiles of DistCos and GenCos have associated utilities and

costs, respectively. For an elastic load profile di the aggregate utility (benefit) function of
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DistCo i is defined as ui
(
di

)
:=

∑
n∈N i

DCd
uin

(
din

)
, whereuin (din) is the benefit associated with

elastic demand level din. Similarly, GenCo i’s aggregate cost function (total generation cost)

is ci
(
pi

)
:=

∑
n∈N i

GC
cin

(
pin

)
where cin (pin) represents the cost for producing real power pin.

... Model Assumptions

In addition to the convex power flow approximation, introduced in Section ., we impose

the following four modeling assumptions for this chapter.

Assumption  (slack buses): Denote the set of slack buses by N s
b
. We require that each

TransCo has exactly one slack bus, that is, N i
TC ∩ N

s
b
contains one element for all i ∈ TC.

Slack buses serve solely as angle references, that is, θn = 0 for all n ∈ N s
b
.

Assumption  (strong convexity): We require that all DistCo utility functionsuin are strongly

concave and all GenCo cost functions cin are strongly convex (this condition is equivalent

to strict convexity if the functions are quadratic).

Assumption  (positive edge-wise sums of prices): We require that all edge-wise sums of

locational marginal prices are positive. That is, λn + λm > 0 for all {n,m} ∈ El .* Note that

this allows λn < 0 for some n.

Assumption  (price-taking behavior): We assume that the agents (market participants) are

price-taking, that is, they assume that the price will remain unchanged if they change their

response. This requires that agents are non-strategic, that is, they obey the rules of the

mechanism and do not need to be incentivized to participate.

... Knowledge Model

We now describe the assumptions regarding information in our problem. Each DistCo

i ∈ DC possesses private information regarding their utility functions {uin}n∈N i
DCd

and any

*Note: We are not enforcing this as a constraint in our problem, rather we are only considering topologies
where this assumption is naturally satisfied.
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bounds on the elastic load level di = {din}n∈N i
DCd
, d̄i = {d̄in}n∈N i

DCd
. Each GenCo i ∈ GC pos-

sesses private information regarding their cost functions {cin}n∈N i
GC

and production bounds

pi = {pi
n
}n∈N i

GC
, p̄i = {p̄in}n∈N i

GC
. Each TransCo i ∈ TC knows the connectivity of their re-

gion of the network, (N i
TC, E

i
l
), as well as the admittances of the corresponding lines, Ynm

for {n,m} ∈ Ei
l
. TransCos also possess private information of the line limits of their trans-

mission lines, Knm, {n,m} ∈ Eil . Each DistCo i ∈ DC knows the inelastic demands at its

buses, {sin}n∈N i
DC
, whereas the MO is assumed to know all inelastic demand levels. Further-

more, the MO knows the location of all DistCo and GenCo units, the network connectivity,

and the admittances of all transmission lines in the network.

.. Maximizing Social Welfare

We are interested in determining the set of variables, consisting of DistCo elastic demand

levels {di }i∈DC , GenCo real power injection levels {pi }i∈GC , and an operating point θ, such

that the social welfare is maximized, subject to physical and operational constraints. It is

known from microeconomic theory that maximizing the social welfare results in a Pareto

efficient outcome [Mas-Colell et al., ]. The single time-period problem can be formally

stated as Problem (P) below.
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max
x=({di }i ∈DC ,{pi }i ∈GC ,θ)

W (x) :=
∑
i∈DC

ui
(
di

)
−

∑
i∈GC

ci
(
pi

)
(P)

s.t. p − (d + s) = f
(
θ
)

(P.i)

pi ≤ pi ≤ p̄i , i ∈ GC (P.ii)

di ≤ di ≤ d̄i , i ∈ DC (P.iii)

д
(
θnm

)
≤ Knm,д

(
θmn

)
≤ Kmn, {n,m} ∈ El (P.iv)

θnm ≤ θnm ≤ θnm, {n,m} ∈ El (P.v)

θn = 0,n ∈ N s
b (P.vi)

θn ∈ [−π ,π ],n ∈ Nb (P.vii)

The objective function of Problem (P),W (x), represents the social welfare and can be written

as the total utility to DistCos minus the total cost to GenCos.†

The constraints of problem (P) arise from both physical laws and the operational require-

ments of the power system and the agents. The first constraint (P.i), termed the power

balance equation, takes the form

p − (d + s) = f (θ) (.)

where p = (p1, . . . ,pnb ), withpn =
∑

i∈GC p
i
n, is the net generation vector and (d+s) is the net

demand vector consisting of two components, the elastic demand vector d = (d1, . . . ,dnb )

†The reason for this form is as follows. The social welfare is defined as the sum of agents’ surplus
functions, that is (using the notation of Section ..), W (x) =

∑
i ∈DC Ψ

i
DC (d

i ,λ) +
∑

i ∈GC Ψ
i
GC (p

i ,λ) +∑
i ∈TC Ψ

i
TC (θ

i ,λ) =
∑

i ∈DC Ψ
i
DC (d

i ,λ) +
∑

i ∈GC Ψ
i
GC (p

i ,λ) + ΨTC (θ,λ). After substitution and rear-

rangement,W (x) =
∑

i ∈DC

(∑
n∈N i

DCd

[
uin

(
din

)
− λndin

]
−∑n∈N i

DCs
λns

i
n

)
+

∑
i ∈GC

∑
n∈N i

GC

[
λnp

i
n − cin

(
pin

)]
−∑

n∈Nb λn fn (θ) =
∑

i ∈DC u
i
(
di

)
−∑

i ∈GC c
i
(
pi

)
+ λn (pn − (dn + sn ) − fn (θ)). Applying the power balance

equation, constraint (P.i), results in the desired expression.
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and the (fixed) inelastic demand vector s = (s1, . . . , snb ) (with dn =
∑

i∈DC d
i
n and sn =∑

i∈DC s
i
n). The vector f (θ) =

(
f1(θ), . . . , fnb (θ)

)
denotes the power injections induced

by the operating point θ, where the injection at bus n is defined by the convex function

fn (θ) =
∑

m∈Nb д(θnm), where д(θnm ) represents the power flow from bus n tom defined in

Eq. (.); notice that д(θnm) is zero if {n,m} < El . Constraint (P.i) simply states that the

injections due to physical laws, f (θ), must agree with the net generation and demand at

every bus. Constraints (P.ii) and (P.iii) reflect the fact that GenCos/DistCos have bounds on

the amount of power they are able to produce/consume. Transmission constraints on the

amount of power flowing on each line, constraint (P.iv), stability constraints on the voltage

angle difference, (P.v), and slack references, (P.vi), are also imposed. The last constraint,

(P.vii), is a technical condition that ensures that the voltage angles are well-defined. We

group constraints (P.ii)-(vii) into a set denoted by X. It is clear that X is convex since it is

the intersection of half-spaces and convex inequality constraints. Lastly, we assume that

Problem (P) is feasible.

There are some fundamental difficulties in obtaining a solution to Problem (P). First, the

problem is nonconvex due the presence of the nonlinear power balance equation. Further-

more, by the discussion in Section .., no single entity in the system has the information

required to obtain a solution to Problem (P). The remainder of the chapter will focus on

obtaining a solution to Problem (P).

.. Surpluses & Competitive Equilibria

The notion of a competitive equilibrium will be of central importance in obtaining a solu-

tion to Problem (P). Before we formally define a competitive equilibrium in the context of

our problem, we need to discuss some aspects related to the Lagrangian dual function of

Problem (P).

A partial Lagrangian of Problem (P) is formed by dualizing the power balance equa-
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tion through the vector of dual variables, λ, where each component λn represents the

locational marginal price of power at bus n. Denoting the vector of variables by x =

({di }i∈DC, {pi }i∈GC,θ), and defining h(x) := f (θ) − p + d + s, the Lagrangian is

L
(
x,λ

)
: =W (x) − λ⊤h(x)

=
∑
i∈DC

ui
(
di

)
−

∑
i∈GC

ci
(
pi

)
− λ⊤(f (θ) − p + d + s)

=
∑
i∈DC

∑
n∈N i

DCd

uin
(
din

)
−

∑
i∈GC

∑
n∈N i

GC

cin
(
pin

)

−
∑
n∈Nb

λn
*.,fn (θ) −

∑
i∈GC

pin +
∑
i∈DC

(
din + s

i
n

)+/-
=

∑
i∈DC

*..,
∑

n∈N i
DCd

[
uin

(
din

)
− λndin

]
−

∑
n∈N i

DCs

λns
i
n

+//-
+

∑
i∈GC

*..,
∑

n∈N i
GC

[
λnp

i
n − cin

(
pin

)]+//- −
∑
n∈Nb

λn fn (θ). (.)

Due to the structure of the Lagrangian, Eq. (.), the evaluation the dual function, defined

as φ (λ) = maxx∈X
{
L

(
x,λ

)}
, is greatly simplified via separable optimizations.

φ (λ) = max
x∈X

{
L

(
x,λ

)}
=

∑
i∈DC

max
di∈Di

{ ∑
n∈N i

DCd

[
uin

(
din

)
− λndin

]
−

∑
n∈N i

DCs

λns
i
n

}

+
∑
i∈GC

max
pi∈Pi

{ ∑
n∈N i

GC

[
λnp

i
n − cin

(
pin

)] }
+max

θ∈Θ

{
−

∑
n∈Nb

λn fn (θ)

}
(.)

where the constraint sets are Di = {di |di ≤ di ≤ d̄i }, Pi = {pi |pi ≤ pi ≤ p̄i }, and Θ =

{(θ1, . . . ,θTc ) ∈ Θ1 × · · · × ΘTc : θ in = θ jn,n ∈ N i,j
TC, i, j ∈ TC} with each TransCo’s feasible
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set defined as

Θi :=
{
θi ���д(θnm) ≤ Knm,д

(
θmn

)
≤ Kmn, {n,m} ∈ Eil ;

θnm ≤ θnm ≤ θnm, {n,m} ∈ Eil ;

θn = 0,n ∈ N i
TC ∩ N

s
b ;θn ∈ [−π ,π ],n ∈ N

i
TC

}
.

For later reference, the dual problem of Problem (P) is simply

min
λ

φ (λ). (D)

... Agent Surplus Functions

The arguments of the maximizations in Eq. (.) represent surplus functions of the agents.

This follows from the fact that the dual variables,λ, of the power balance equation represent

locational marginal prices. The surplus for DistCo i ∈ DC for a given demand profile (di , si )

at price λ is equal to the utility obtained from di minus the cost of total demand (sum of

elastic and inelastic demand), defined as

Ψi
DC (d

i ,λ) :=
∑

n∈N i
DCd

[
uin

(
din

)
− λndin

]
−

∑
n∈N i

DCs

λns
i
n .

The surplus of each GenCo i ∈ GC is equal to the payment it receives for producing power

minus the generation cost,

Ψi
GC (p

i ,λ) :=
∑

n∈N i
GC

[
λnp

i
n − cin

(
pin

)]
.

TransCos receive a surplus for facilitating power flow across the network. Congestion and

losses in transmission lines creates different valuations for power across the network (repre-





sented by LMPs) and results in a discrepancy between the payments received from DistCos

and the payments made to GenCos. This creates a surplus (possibly negative) for transmit-

ting power from GenCos to DistCos, termed the merchandizing surplus. Under the convex

DC approximation, the total merchandizing surplus (argument of the last maximization

term in Eq. (.)) can be shown to be

ΨTC (θ,λ) = −
∑
n∈Nb

λn fn (θ)

= −
∑

(n,m)∈E⃗l

λnд(θnm)

=
1
2

∑
(n,m)∈E⃗l

(
(λm − λn )д̄(θnm ) − (λn + λm )д̃(θnm )

)
(.)

where E⃗l is the directed edge-set and is defined as the set that contains the pair (n,m)

and (m,n) for every edge {n,m} ∈ El . The quantity
(
λm − λn

)
д̄(θnm ) −

(
λn + λm

)
д̃(θnm) is

the merchandizing surplus for enabling flow between buses n andm at the price vector λ.

Notice that the first term,
(
λm −λn

)
д̄(θnm), is the familiar expression for the merchandizing

surplus under the DC approximation [Wu et al., ]. The second term, −
(
λn +λm

)
д̃(θnm ),

arises from the fact that we are considering losses in our model.

Since the ownership of transmission lines is partitioned among TransCoswe can separate

the total merchandizing surplus into each TransCo’s merchandizing surplus as

Ψi
TC (θ

i ,λ) =
1
2

∑
(n,m)∈E⃗il

(
(λm − λn)д̄(θnm) − (λn + λm)д̃(θnm)

)
. (.)

We show that, via a message exchange process described in Section .., TransCos com-

municate to obtain the angle profile which maximizes ΨTC (θ,λ) over θ ∈ Θ at price λ.
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... Competitive Equilibria in Energy Markets

We can now define the concept of a competitive equilibrium in the context of our energy

market model. The definition builds upon the one found in [Motto et al., a].

Definition .. (Competitive Equilibrium). A competitive equilibrium is defined as the tuple

({d̂i }i∈DC, {p̂i }i∈GC, θ̂, λ̂) such that

(i) ������fn (θ̂) − p̂n + d̂n + sn������ < ε for all n ∈ Nb , ε > 0

(ii) d̂i (λ̂) maximizes Ψi
DC (d

i , λ̂) s.t. di ∈ Di , ∀ i ∈ DC

p̂i (λ̂) maximizes Ψi
GC (p

i , λ̂) s.t. pi ∈ Pi , ∀ i ∈ GC

θ̂i (λ̂) maximizes Ψi
TC (θ

i , λ̂) s.t. θi ∈ Θi , ∀ i ∈ TC

Theabove definition states that a competitive equilibriummust not only satisfy the power

balance equation (condition (i)) but also result in maximum surplus for all DistCos, GenCos,

and TransCos (condition (ii)).

.. Solution Methodology

Throughout the remainder of the chapter we describe a procedure in which the MO and

agents interact in order to obtain a globally optimal solution x∗ to the nonconvex primal

problem (P).The procedure is based on the dual decomposition method; an iterative method

that first involves the evaluation of the dual function for a given set of dual variables (prices),

followed by an update of the dual variables.

In the context of the electricity market model in this chapter, the evaluation of the dual

function is performed in a distributed fashion by the agents. In fact, maximization of sur-

pluses by the agents corresponds exactly to the evaluation of the dual function. DistCos
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and GenCos maximize in parallel to obtain the optimal profiles for the current price λt ,

denoted by {di (λt )}i∈DC and {pi (λt )}i∈GC , respectively. TransCos partake in a message

exchange process (due to coupling of merchandizing surplus functions) in order to obtain

the operating point which maximizes the total merchandizing surplus at the current price,

denoted by θ(λt ). The MO uses these maximizers to update the price in such a way as to

enforce feasibility (condition (i) of Def. ..). A block diagram outlining the method can

be seen in Fig. ..

MO 
Price 

Update

TransCos

GenCos

DistCos

Figure 4.2: Outline of the pricing process. Given the current price vector λt , DistCo’s and GenCo’s update
the respective components of the consumption profiles {di (λt )}i ∈DC and generation profile {pi (λt )}i ∈GC , in
parallel. TransCo’s participate in a message exchange process to reach an angle profile agreement θ(λt ). The
MO then updates the price toλt+1 using the responses x(λt ) = ({di (λt )}i ∈DC, {pi (λt )}i ∈GC,θ(λt )) (outlined
in Section 4.5.2).
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... Price Response

The first step of the pricing process involves evaluation of the dual function for the current

price vector λt . This is achieved via the following agent surplus maximizations.

DistCo Optimizations

Each DistCo, i ∈ DC, wishes to specify the elastic demand level di in order to maximize its

surplus from buying power (both elastic and inelastic) at the current price λt . Each DistCo

i ∈ DC solves

di (λt ) = argmax
di∈Di

Ψi
DC (d

i ,λt ). (P iDC)

By assumption , eachuin is strictly concave and therefore the maximizer di (λt ) of Problem

(P iDC) is unique for each i .

GenCo Optimizations

Each GenCo, i ∈ GC, wishes to specify the injection levels pi in order to maximize its

surplus from selling power at λt . Each GenCo i ∈ GC solves

pi (λt ) = argmax
pi∈Pi

Ψi
GC (p

i ,λt ). (P iGC)

Again, by assumption , the maximizer pi (λt ) of Problem (P iGC) is unique for each i ∈ GC.

TransCo Optimizations

Each TransCo, i ∈ TC, aims to specify their voltage angle profile θi ∈ Θi such that the

induced flows maximize their merchandizing surplus at the current price, Ψi
TC (θ

i ,λt ). Do-
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ing so is complicated by the fact that there exist buses that are shared between one or more

TransCos, that is, N i,j
TC , ∅ for neighboring i, j ∈ TC. The presence of these shared buses

creates coupling between the merchandizing surplus functions of distinct TransCos.

As a result, all neighboring TransCosmust negotiate the angle value of their shared buses.

Arriving at a system-wide agreement for the shared buses, with each TransCo maximizing

their own merchandizing surplus, results in a maximization of the total merchandizing

surplus (achieving the value of the last term in Eq. (.)). The angle profile agreement is

achieved via a message exchange process that is based on the ADMM algorithm [Boyd et al.,

] in which neighboring TransCos iteratively exchange the voltage angle values of their

shared buses.

To make use of the ADMM algorithm, it is necessary to write the problem of maximizing

the total merchandizing surplus, maxθ∈Θ ΨTC (θ,λ), as the equivalent problem

max
{θi }i ∈TC ,z

ΨTC (θ,λ
t ) =

∑
i∈TC

Ψi
TC (θ

i ,λt ) (PTC)

subject to θi ∈ Θi , i ∈ TC

θi − zi = 0, i ∈ TC

where z ∈ RN is the global variable representing the system-wide angle profile θ and zi =

{zn}n∈N i
TC

is the relevant component of z corresponding to TransCo i’s angle profile. We

associate a set of dual variables, yi = {yn}n∈N i
TC
, with each of the consensus constraints

θi − zi = 0, i ∈ TC. The consensus constraints enforce the angle profiles of TransCos to

agree. Defining primal and dual residual norms [Boyd et al., ] as

p (k )r :=
(
θ1,(k ) − z1,(k ), . . . ,θTc ,(k ) − zTc ,(k )

)
(.)

d (k )
r := −µ

(
z1,(k ) − z1,(k−1), . . . , zTc ,(k ) − zTc ,(k−1)

)
(.)
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the TransCo message exchange process is given by Alg. .

Algorithm  TransCo Message Exchange Process
Initialize k = 0, yi, (0) = 0 for all i ∈ TC, z(0) = 0, µ > 0
while ¬( | |p (k )r | |2 < εprimal and | |d (k )

r | |2 < εdual) do
for ( do (parallel optimization and broadcast)) i ∈ TC

TransCo i solves:

θi, (k+1) (λt ) = argmax
θi ∈Θi

{
Ψi
TC (θ

i ,λt ) −
(
yi, (k )

)⊤
(θi − zi, (k ) )− µ

2
������θi − zi, (k ) ������2}

Broadcast {θ i, (k+1)n }n∈N i, j
TC

to neighboring j ∈ TC;
end for
for ( do(parallel average and dual variable update)) i ∈ TC

Average: z (k+1)n =
1

|TCn |
∑

j ∈TCn
θ j, (k+1)n , ∀n ∈ N i

TC

Update: yi, (k+1) = yi, (k ) + µ (θi, (k+1) − zi, (k+1) )
end for
Update residuals: compute p (k+1)r , d (k+1)

r via Eq.’s (.), (.)
Update counter: k ← k + 1

end while

By assumption , each TransCo i has a slack bus in its set of busesN i
TC , and the following

lemma holds.

Lemma ... emerchandizing surplus function Ψi
TC (θ

i ,λ) is strongly concave in θi for all

i ∈ TC.

Proof: See Appendix B.. □

Lemma .. and the convergence result of the ADMM in [Boyd et al., ] (p.) lead to

the following corollary.

Corollary ... Alg.  generates iterates {z(k ) } that converge to the unique solution θ(λt ) of

maxθ∈Θ ΨTC (θ,λt ).

All of the maximizers for the current price λt are then broadcast to the MO, as in Fig. .,

and the price is updated.
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... Price Update

The MO receives the maximizers from the agents for the current price λt , denoted by

x(λt ) = ({di (λt )}i∈DC, {pi (λt )}i∈GC,θ(λt )), and uses them to compute an updated price

λt+1. The price is updated in such a way as to iteratively enforce the power balance equa-

tion (see condition (i) of Def. ..). Before defining the price update, we state the following

result.

Lemma ... Under assumption , the Hessian of the Lagrangian is negative definite, that is,

∇2xxL (x,λ) ≺ 0 for all x.

Proof: See Appendix B.. □

As a consequence of the strong concavity of the Lagrangian, the dual function, Eq. (.),

is unique and its derivative exists. The gradient of the dual function is (see Thm. .. of

[Bazaraa et al., ])

∇λφ (λ) = h(x(λ))⊤ (.)

where h(x) was defined at the beginning of Section .. As a result, solving the power

balance equation is equivalent to finding where the gradient of the dual function vanishes.

The price is updated via a gradient descent algorithm. Specifically,

λt+1 = λt − αt∇λφ (λt )

= λt − αth(x(λt ))

= λt − αt
(
f

(
θ(λt )

)
− p(λt ) + d(λt ) + s

)
(.)

with step-size αt , net generation profile p(λt ) = (p1(λ
t ), . . . ,pnb (λ

t )), with net injection

pn (λ
t ) =

∑
i∈GC p

i
n (λ

t ), and net elastic demand profile d(λt ) = (d1(λ
t ), . . . ,dnb (λ

t )), with
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net demand dn (λ
t ) =

∑
i∈DC d

i
n (λ

t ). The injection term f
(
θ(λt )

) is computed from the

angle profile θ(λt ) (from Sec. ..).

The above recursion is guaranteed to converge to a stationary point of the dual func-

tion. To show this, we first demonstrate that the dual function is Lipschitz continuous

(this follows from the fact that a function with a bounded derivative is Lipschitz). By

Eq. (.), the gradient of the dual function satisfies ∇λφ (λ) = h(x(λ))⊤. Noting that

∥h(x(λ))∥ = ∥f (θ(λ)) − p(λ) + d(λ) + s∥ and the fact that f (θ(λ)), p(λ), and d(λ)

are all bounded, there exists someM < ∞ such that ∥∇λφ (λ)∥ = ∥h(x(λ))∥ ≤ M . Thus the

dual function is Lipschitz continuous. Furthermore, notice that the dual function φ (λ) is a

convex function of λ. It can be shown through standard arguments that, for a sufficiently

small step-size, gradient descent applied to a convex function generates iterates satisfying

φ (λt ) − φ∗ ≤
∥λ0 − λ∗∥2 +∑t

s=0 α
2
s ∥∇φ (λs )∥2

2
∑t

s=0 αs

where φ∗ denotes a minimum of φ. In order to ensure convergence, one must choose αt
such that ∑∞

s=0 α
2
s < ∞ and ∑∞

s=0 αs = ∞. Noting that ∥∇φ (λs )∥ ≤ M for all s , we have

φ (λt ) → φ∗. Selecting a step-size of the form αt = β/t , β > 0, ensures that the pricing

process converges to a minimizer λ∗ of the dual function φ (λ), solving the dual problem

(D).‡ Since the dual problem is unconstrained, ∇φ (λ) |λ=λ∗ = 0, and, again by Eq. (.),

h(x(λ∗)) = 0.

The convergent dual solution of pricing process results in a zero duality gapwith Problem

(P) as described by Theorem .. below.

eorem ... e pricing process generates a competitive equilibrium (x∗,λ∗), where x∗ =

x(λ∗) is a globally optimal solution to Problem (P).
‡Prices must satisfy assumption  at each iteration t in order to ensure the TransCo subproblems are

convex. This can simply be achieved through choice of a sufficiently positive λ0.
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Proof. See Appendix B.. □

In summary, the pricing process is guaranteed to generate the competitive equilibrium

(x∗,λ∗), resulting in a globally optimal solution x∗ to the (nonconvex) social welfare maxi-

mization problem (P). Consequently, x∗ is a Pareto efficient outcome.

.. Numerical Example

We demonstrate the performance of the pricing process on a modified version of the IEEE

 bus test system. The ownership of generators in the modified system is split among

three GenCos with p1 = (p11,p
1
2 ), p2 = (p23,p

2
6 ), and p3 = (p38 ). The network also consists

of seven DistCos with d1 = (d12,d
1
3 ), d2 = (d23,d

2
4 ), d3 = (d35 ), d4 = (d46,d

4
11,d

4
12), d5 =

(d59,d
5
10), d6 = (d612,d

6
13), d7 = (d714) and inelastic demands (in MW) s12 = 15, s35 = 10,

s412 = 15, s510 = 10, s614 = 15. The ownership of lines is split among two TransCos, E1
l
=

{{1,2},{1,5},{2,3},{2,4},{2,5},{3,4},{4,5},{4,7},{5,6}}, E2
l
= {{4,9},{6,11},{6,12},{6,13},{7,8},

{7,9},{9,10},{9,14},{10,11},{12,13},{13,14}} with slack bus N s
b
= {6}. Parameters for the

TransCo message exchange process (Alg. ) are µ = 0.21, εprimal = ×-, εdual = ×-. Fig.

. demonstrates the convergence of the pricing process.
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(b) Pricing process iterations, t

Figure 4.3: Convergence of pricing process: (a) TransCos reach an angle agreement for each price vector
λt via Alg. 1 (each negotiation cycle corresponds to a price vector); (b) The power mismatch at each bus n,
hn (x(λt )) = fn (θ(λ

t )) − pn (λt ) + dn (λ
t ) + sn , converges to zero.
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It is evident from Fig. .(b) that the pricing process generates a solution where the

power balance equation is satisfied (condition (i) of Def. ..). At the corresponding prices,

agents report their surplus-maximizing responses, satisfying condition (ii) of Def. ... By

Theorem .., the resulting competitive equilibrium is Pareto efficient.

.. Discussion and Conclusion

We have presented a mechanism that, through iterative price-response and price-updating,

guides the system to a socially optimal outcome. Interestingly, while giving the TransCos

the freedom to maximize their merchandizing surplus corresponds to them attempting to

congest their lines (since a larger power flow results in a higher merchandizing surplus),

this behavior is required for ensuring convergence to an efficient outcome. Furthermore, it

is important to note that giving the TransCos this freedom does not necessarily mean that

the resulting operating point will result in congested lines.

In summary, this chapter discussed the development of an electricity market model and

an associated decentralized market mechanism that, under natural assumptions, ensures

convergence to a Pareto efficient market (competitive) equilibrium. The market model in-

cludes multiple DistCos, GenCos, and (cooperative) TransCos all of which are assumed to

be surplus-maximizing given the current set of LMPs. A market operator updates LMPs via

a gradient method in order to achieve an operating point that satisfies the power balance

equations and consequently clears the market.
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P II

Dynamic Security of
Cyber-Physical Systems under

Partial Information
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C 

Cyber-Physical Systems Security

It won’t be difficult for society to adjust to the conveniences brought on by cyber-physical

systems. Unfortunately, our high reliance upon these systems, combined with their wide-

spread integration into nearly every aspect of our lives, will make us very sensitive to their

failures.

Recent events have demonstrated the scale of the disruption when cyber-physical sys-

tems fail, especially those related to critical infrastructure. A prime example is the blackout

of  that spanned the midwest and northeast regions of the United States as well as parts

of Canada [Abraham & Efford, ]. The failure was triggered by a sagging transmission

line coming into contact with foliage, causing it to trip and go offline. Due to a malfunction

in an alarm notification system (resulting from a software bug in General Electric’s XA/21TM

energy management system [Poulsen, ]), the loss of the transmission line went unno-

ticed. Making matters worse, the region’s state estimation system was not fully functional

(due to human error), resulting in an incomplete view of the system’s current operating sta-
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tus. These issues resulted in a sequence of cascading failures that operators were unable to

recognize in time to resolve. When the cascade eventually came to an end,  generators

were offline leaving more than  million people without power.

Another example of a wide-spread failure event is the power outage that impacted Delta

airlines in . Due to a malfunction in a power control module at Delta’s headquarters in

Atlanta, a transformer overloaded and took many of the airline’s servers offline. According

to an interview with Delta’s CEO Ed Bastian [Yamanouchi, ], “ of [Delta] airline’s

 servers were not wired to backup power.” This oversight caused a system-wide crash,

resulting in more than  flight cancellations world-wide, displacing large numbers of

customers, crew, and aircraft.

The above examples highlight the disruptions that critical infrastructure failures can have

on society. Fortunately, the likelihood that a catastrophic sequence of (essentially random)

events will occur is quite low and helps to explain why events of this scale are relatively

rare. That said, a particularly concerning realization is the wide-spread damage that could

result if events were triggered by an agent with malicious intent. While rare, we have

already started to see such intelligent, targeted attacks on critical infrastructure systems.

Due to our increased reliance on these systems, attacks of this nature have the potential to

significantly disrupt our everyday life, necessitating the study of how they unfold and the

design of defense systems that prevent them from succeeding.

.. An Emerging Class of Attas

Attacks on cyber-physical systems have started to emerge that exploit the deep connectivity

of the cyber layer with the physical infrastructure. The ability to control a physical process

from the cyber infrastructure, coupled with the growing connectivity of our societal sys-

tems, has introduced multiple attack pathways for malicious agents, allowing them to influ-

ence and potentially permanently damage the physical infrastructure. The two case-studies
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described below, Stuxnet and the Ukrainian power grid attack, illustrate the complexity of

such attacks.

... Stuxnet

Stuxnet is one of the most sophisticated attacks ever seen. First detected in , the at-

tack was targeted at Siemens programmable logic controllers (PLCs) with the intention of

interfering with centrifuges at Iran’s Natanz fuel enrichment plant [Cherry, , Albright

et al., , Falliere et al., ]. The complexity of Stuxnet was unprecedented, involving

extensive use of insider information and many stages of exploits. The attack evolved in four

steps: spread, discovery of target computers, disruption of physical processes, and evasion

of detection [Falliere et al., ]. Stuxnet spread through the local network using com-

binations of both exploits (including zero-days) and infected removable drives. The use

of removable drives allowed Stuxnet to cross the airgap and reach computers capable of

(re)programming the PLCs responsible for centrifuge control [Falliere et al., ]. Before

injecting malicious code into the PLC, Stuxnet measured the operation of the controller for

a period of time, checking if a “specific program [was] running on the PLC” [Cherry, ],

in turn allowing it to conclude that the PLC was indeed controlling a centrifuge. At this

point, Stuxnet injected malicious code to modify the frequency set-points of the centrifuge

rotors. In order to evade detection, Stuxnet fed back (the previously measured) normal

behavior to the monitoring systems, fooling operators and evading automated anomaly de-

tection systems. Furthermore, it also made use of stolen authenticity certificates to evade

antivirus software. According to a  report published by the Institute for Science and

International Security [Albright et al., ], “It is increasingly accepted that, in late 

or early , Stuxnet destroyed about , IR- centrifuges out of about , deployed

at the site.” Stuxnet represents the first case where physical infrastructure was damaged by

malicious code.
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... Ukrainian Power Grid Atta

In December of , the computer systems controlling the western region of the Ukrainian

power grid were hacked. Investigations revealed that the attack was initiated nearly a year

prior, with hackers carrying out spear-phishing attacks (malicious emails) on the workers’

computers [Zetter, ]. These attacks involved the use of malware, termed BlackEnergy,

which served to open a backdoor on the substation’s systems [Assante, , Pultarova,

]. Using this backdoor, the hackers spent the next few months performing reconnais-

sance, obtaining worker’s VPN credentials and permitting remote access to the system. The

hackers used these credentials to modify critical elements of the system, such as corrupt-

ing the uninterruptible power supply, resulting in a loss of back-up power to the control

centers, and injecting malware, termed KillDisk, preventing workers from being able to

remotely control the system [Pultarova, , Assante, , Zetter, ]. When the at-

tack was launched on December , , the hackers were able to remotely open multiple

substations’ breakers, disconnecting them from the grid and cutting the power to large re-

gions of the country, all while the workers were unable to do much to stop it. Furthermore,

hackers launched a denial-of-service attack on the phone systems, preventing customers

from being able to report outages [Pultarova, ]. While the attack did not do any per-

manent damage to physical infrastructure, it did disconnect  people from the grid.

The event represents the first time that an attack on critical infrastructure has impacted a

civilian population [Cherepanov & Lipovsky, ].

.. Key Features in Cyber-Physical Systems Security

Analyzing the nature of failure events, of both non-malicious and malicious origin, is help-

ful for identifying the key features that should be considered when designing secure cyber-

physical systems.
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() Successful attas involve multiple levels of exploits across numerous atta vec-
tors. In the above attack examples, a chain of multiple exploits needs to be successful
in order for the attacker to fulfill its objective. These exploits take advantage of vul-
nerabilities across multiple system components, giving the attacker access to various
attack pathways into the system. Thorough analysis of the Stuxnet attack [Langner,
] revealed that there were two distinct attack vectors that could have resulted in
centrifuge damage: the rotor overspeed attack outlined in Section .., as well as a
more advanced overpressure attack. As systems grow in complexity, one must rea-
son about a large number of possible attack vectors in the system in order to possess
an accurate view of its security and to guide appropriate defense decisions.

() Defense decisions must be made in real-time and subject to partial/noisy infor-
mation. Attackers take extensive measures to remain stealthy and evade detection,
resulting in one having only partial information of their current capabilities and
strategy/intent. Defense decisions must be made in the presence of this uncertainty.
Specifically, defense systems must be able to efficiently translate the information pro-
vided by noisy security alerts (subject to both missed detections and false alarms) into
defense decisions. Efficient processing of security alerts is especially important in the
context of cyber-physical systems, where myopically reacting to false alarms could
have catastrophic consequences on the availability of the underlying system, e.g. in-
terfering with the operation of a flight control system.

() e severity of the atta and subsequent failure depends on the status of the un-
derlying physical system. One of the factors that contributed to the large scale of
the  blackout was the fact that the system was stressed at the time of the initial
trigger event. In principle, an intelligent attacker could maliciously trigger a physical
failure such that the resulting cascade does maximal damage to the system, e.g. by
opening a breaker on a heavily-loaded transmission line. Maintaining the security
of the system should thus involve reasoning about the attacker’s capabilities in the
context of the current operating status of the physical system.

() A given atta can unfold on a wide range of time-scales. Investigations into both
Stuxnet and the Ukrainian power grid attack revealed that the attacks took place
over many days and months. Stuxnet was programmed to be patient, lying dormant
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for up to  days between successive frequency modifications [Falliere et al., ].
This had the effect of reducing its visibility to system operators and automated de-
tection systems. In the Ukrainian power grid attack, hackers stole workers’ creden-
tials which allowed them to perform reconnaissance and corrupt system components
many months before the power outage attack occurred. At the other end of the spec-
trum, we’ve witnessed attacks that unfold very quickly, as was the case with the
WannaCry malware attack [Security Response Team, ]. As a result, in order to
accurately infer the capabilities and intent of the attacker, one must be able to piece
together evidence from drastically different time-scales.

() e target system may not recognize becoming infected or suffering a loss of con-
trol. A particularly concerning feature of sophisticated attacks is that the attacker
and/or malicious code can spread among a large number of hosts without being de-
tected. Furthermore, the malicious code can modify the operation of the physical
system without the target system recognizing this loss of control. For example, as
of September , , Stuxnet was present among approximately  hosts span-
ning many countries [Falliere et al., ]. Once on the target machines, Stuxnet
was able to modify their operation without the operators’ knowledge. This raises
concerns that sophisticated malware could spread among many millions of devices
around the world, either modifying their operation covertly or lying dormant and
waiting for a trigger event, all without our knowledge.

.. Overview of Part II

Developing models that are able to capture all of the above features is a difficult task. The

objective of the model developed in Chapter  is to describe what pathways an attacker

can take to infiltrate a system (feature ()) while enabling real-time threat assessment and

response selection subject to uncertainty (feature ()). The model is built upon the notion

of an attack graph, which serves to describe the causal dependencies between security con-

ditions (attacker capabilities) and exploits. The graph allows one to model the dynamics of
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the attacker, i.e. how the attacker may use its capabilities to perform exploits and gain fur-

ther capabilities, and provides a basis for quantifying the system’s security (via a security

state). Through consideration of multiple attacker types, the model is able to capture a wide

range of attacker strategies (behavior). Using noisy security alerts, generated as the attacker

progresses through the network, the defender constructs a belief over the attacker’s capa-

bilities and true strategy. The belief provides context for efficiently processing subsequent

security alerts, especially in settings where the false-alarm rate is high. A sampling-based

algorithm allows for online prescription of effective defense actions. A discussion of how

the proposed model is useful for addressing feature (), in the context of the electrical grid,

is also presented. Features () and () are not considered in this work.

The requirement to make decisions over time under imperfect information (sequential

decision-making under uncertainty) is fundamental to problems related to security. Ob-

taining the solution to these problems, i.e. determining an optimal policy, poses significant

theoretical and computational challenges. Chapter  investigates conditions under which

a specific class of sequential-decision problems, POMDPs, possess optimal policies that are

monotone in the belief. Motivated by the model of Chapter , specifically the fact that we

cannot always say whether one security state is safer than another, the model of Chapter 

studies settings where the underlying state space is partially ordered. The partial ordering

of the state space requires the development of a new stochastic order. This stochastic or-

der has many desirable properties, allowing one to establish monotonicity properties of the

value functions and dynamic programming recursion, and resulting in monotone optimal

policies in a two-action setting.
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C 

A POMDP Approa to the

Dynamic Defense of Large-Scale

Cyber-Physical Systems

.. Introduction

The high connectivity of modern cyber networks and devices has brought with it many im-

provements to the functionality and efficiency of our networked systems. Unfortunately,

these benefits have come with the introduction of many new entry points for attackers,

making our systems much more vulnerable to intrusions. Recent events, such as infor-

mation leakage and theft [Finkle & Skariachan, ], car hacking [Greenberg, ], and

denial-of-service attacks [Etherington & Conger, ], have highlighted this vulnerabil-

ity. Particularly concerning is that the operation of critical infrastructure is becoming in-

creasingly reliant upon (potentially insecure) networked systems, generating significant
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vulnerabilities in many areas of society. As reported by the Department of Homeland Secu-

rity’s Industrial Control Systems Cyber Emergency Response Team (ICS-CERT), attacks on

critical infrastructure sectors (such as manufacturing, energy, communication, water, and

transportation systems) have remained persistent over the past few years, with  in ,

 in , and  in  [Department of Homeland Security, ]. Unfortunately, due

to the increased reliance of these systems on cyber networks, coupled with an escalation

in the sophistication of cyber attacks, many of the recent intrusions have had the potential

to inflict severe and widespread damage (an increasing number of attacks have reached the

control system layer of the system [Department of Homeland Security, ].) It is impera-

tive that methods are developed to detect and mitigate these attacks in order to ensure the

secure operation of society’s critical systems.

One approach to mitigating attacks is, upon discovery of a vulnerability, to develop and

release a patch to remove the vulnerability. Unfortunately, the period between discovery

of a vulnerability and the application of a patch (termed the vulnerability exposure window)

is long, often lasting on the order of five months or more [Gorenc & Sands, ]. This

significant delay results in many cyber networks being operational while multiple known

vulnerabilities are present, resulting in significant risks to society. This concern necessi-

tates the development of an active defense system that is capable of taking into account

information in real-time, inferring the security status of the system, and translating this

information into appropriate defense decisions that are able to immediately respond to and

mitigate the progression of the attacker through the system.

The development of such a defense system is complicated by the fact that sophisticated

and targeted cyber attacks, especially those carried out by nation-states, rarely consist

solely of an exploitation of a single vulnerability. Rather, these attacks usually consist

of a complex sequence of exploits, combining many vulnerabilities across multiple system

elements, enabling the intruder to infiltrate deep within the cyber network. In an attempt
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to address these concerns, researchers in the security community have developed theoreti-

cal tools (predominantly graphical approaches) to model the complex interactions between

vulnerabilities. Attack trees/graphs are a popular formalism for modeling such interac-

tions. First introduced by [Schneier, ], attack trees model the dependencies between

exploits and system states* in a cyber network, allowing one to construct the specific attack

paths that intruders can take to enter a network. Unfortunately, attack trees and graphs

can be enormously large even for modestly-sized systems [Sheyner et al., ], restrict-

ing their applicability to realistically-sized cyber networks. In order to improve scalability,

researchers proposed an assumption on the attacker’s behavior, termedmonotonicity [Am-

mann et al., ], which states that the success of a previous exploit will not interfere

with the success of a future exploit. Monotonicity enables one to restrict attention to de-

pendencies between exploits and security conditions (system attributes), in what is termed

a dependency graph, avoiding the need to enumerate over all system states. This enables a

more compact representation, allowing one to significantly reduce the amount of informa-

tion required to describe attacks.

Knowledge of how an attacker can infiltrate a system offers a useful starting point for

defining appropriate defenses; however, efficiently processing the available information

and translating it into the prescription of an effective defense decision is still a difficult task.

One difficulty arises fromhow to quantify the security status of the system at any given time.

The security status is constantly changing as a function of both the attacker’s progression

through the system and the defender’s actions. Furthermore, the defender does not know

the true strategy of the attacker and is unable to perfectly observe the attacker’s actions,

resulting in a lack of certainty of the security status of the system at any given time. The

defender only has access to a stream of noisy security information generated in real-time
*System states represent an assignment of values to system aributes such as: active services (and the

associated vulnerabilities), network connectivity, trust relationships between hosts, and attacker privileges
on hosts [Sheyner et al., ].
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(for example, security alerts generated via intrusion detection systems). Oftentimes, this

information suffers from a high-rate of false alarms, that is, alarms being triggered when

nothing of concern has actually occurred. Furthermore, the defender’s choice of a defense

action is complicated by its uncertain effects on the security status of the system (due to

the defender’s uncertainty regarding the true security state) as well as the need to strike a

trade-off between enforcing security and maintaining the availability of network resources

to trusted users.

In this chapter, we propose a formal model, based on the theory of stochastic control,

for selecting defense actions in real-time in order to mitigate the progression of an attacker

through the system while minimizing the negative impact to availability. We use a condi-

tion dependency graph to model how the attacker progresses through the cyber network

over time. We represent the dependency graph as a hypergraph, where nodes represent

possible security conditions and directed hyperedges (edges that connect a pair of sets of

nodes) represent exploits, relating preconditions, the security conditions that must be true

in order for the exploit to be attempted, to postconditions, the security conditions that be-

come true if the exploit is successfully carried out. Each security condition can either be

enabled or disabled, where an enabled condition is interpreted as the attacker possessing a

particular capability. We define a security state to be the set of currently enabled security

conditions. In this sense, the security state at any given time represents the current capa-

bilities of the attacker. For a given security state, the attacker uses its current capabilities

(the set of enabled security conditions) to attempt exploits, with the goal of reaching one

or more goal conditions. The specific strategy that the attacker employs is its own private

information and is assumed to dynamically adjust according to the deployed defense deci-

sion. In order to model the defender’s uncertainty of the attacker’s strategy, we consider

the attacker to be one of a finite set of aacker types. Consideration of many types allows

one to capture a wide-range of potential attacker behavior. Each type characterizes the na-
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ture of both the security state dynamics (how the attacker progresses through the system,

via probabilities of aack and success for each exploit) as well as the observation dynamics

(the nature of how the intrusion detection system generates security alerts as a function

of the attacker’s progression, via probabilities of detection for exploit attempts and proba-

bilities of false alarm for alerts). The defender is able to interfere with the progression of

the attacker by performing system modifications that have the effect of blocking exploits

from succeeding. The defender possesses uncertainty over both the current capabilities

and the true strategy of the attacker and must make its defense decisions based on its belief

matrix, that is, the joint distribution over security states and attacker types. This belief,

constructed such that it is consistent with the defender’s available information (the history

of security alerts and previously deployed defense actions), summarizes all of the necessary

information for making an optimal decision. Through appropriate assignment of costs to

both security states and defense actions, we are able to quantify the tradeoff between main-

taining security and preserving availability of the system. The resulting defense problem is

a partially observable Markov decision process (POMDP), the solution of which is a defense

policy that maps the current belief (of the security state and attacker strategy) to a defense

action.

Due to the high dimensionality of the defense problem, scalability of the solution ap-

proach is a primary concern. We employ an online algorithm, based on the partially ob-

servable Monte-Carlo planning (POMCP) algorithm [Silver & Veness, ], that simulates

future possible state trajectories from the current belief in order to evaluate the effective-

ness of various defense decisions, enabling the defender to make a selection in real-time.

While forming the basis for our algorithm, the standard POMCP algorithm is not directly

suitable for application to our problem. In particular, the belief update procedure does not

scale to large observation spaces. As a result, using the context provided by the (belief over

the) security state, we take advantage of the structure of the observation process in order to
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design an efficient belief update procedure that effectively scales to high-dimensional set-

tings. The proposed online defense algorithm enables us to compute good quality defense

policies for large instances of the defense problem, overcoming an important obstacle to

deployment in realistic cyber network settings.

... Literature Review

Systems that select defense actions in response to security alerts are referred to as intrusion

response systems (IRSs) in the cybersecurity literature. Early IRSs took the form of passive

systems, logging security information and notifying human operators in order for man-

ual response actions to be selected. Unfortunately, this process is slow and has proven to

be inadequate for defending networks against sophisticated modern-day attacks.† Conse-

quently, researchers have turned to the development of active systems that are capable of

automatically responding to intrusions without the need for a human operator to intervene.

Such systems are referred to as automated IRSs in the literature.

The past two decades have seen an increasing amount of research in automated IRSs.

For literature reviews of the area, the reader is directed to the surveys by [Foo et al., ],

[Shameli-Sendi et al., ], and [Inayat et al., ]. Automated IRSs can largely be catego-

rized into two groups: static and dynamic. Static IRSs focus on designing an attack-response

map that is capable of executing preprogrammed responses upon detection of attacks (see

for example, the work by [Ryutov et al., ]). Static approaches, as the name suggests,

use a fixed mapping (look-up table) from detected attacks to responses, and consequently,

as stated by [Lewandowski et al., ], select responses that can be potentially predicted

and exploited by an attacker. Furthermore, static IRSs do not take into account the poten-

tially negative side-effects of deploying defense actions and can thus unintentionally inflict

further damage to the system. Due to these concerns, researchers began to develop dy-

†As stated by [Balepin et al., ], “some of the most intense intrusions are automated.”
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namic IRSs. Dynamic IRSs are capable of factoring in additional information, such as the

effectiveness of previously deployed defense actions, e.g. [Ragsdale et al., , Foo et al.,

], or the cost of defenses, e.g. [Lee et al., , Toth & Kruegel, , Kheir et al., ],

in order prescribe a situation-dependent response to mitigate the attack. The ability of dy-

namic IRSs to modify their response based on new intrusion information raises the bar for

the adversary, proving to be much more difficult to circumvent than static IRSs.

One class of dynamic IRSs, termed state-based approaches, has received an increasing

amount of attention in recent years [Lewandowski et al., , Kreidl & Frazier, ,

Zonouz et al., , Miehling et al., , Iannucci et al., , Iannucci & Abdelwahed,

]. State-based IRSs aim to quantify the security status of a network via the assignment

of a security state and enable one to study how this state evolves as a function of both the

attacker’s and defender’s actions. As argued by [Iannucci et al., , Iannucci & Abdelwa-

hed, ], a state-based approach allows one to cast the problem of designing an automated

IRS as a problem of choosing defense actions that ensure the security state remains in a de-

sirable region of the state space. State-based approaches also allow one to avoid the issue

of crafting individual response actions for each attack, since a single defense action may

modify the dynamics of the security state’s evolution in such a way as to prevent many

attacks from being successfully carried out. One of the first to develop a state-based IRS

was [Lewandowski et al., ]. The authors proposed a state-based approach in order to

enable “global situational awareness,” ensuring that the selection of a defense action bene-

fits the entire system and not just a localized region. While significant in its contribution,

the approach taken in [Lewandowski et al., ] does not leverage any formal theory.

The nature of state-based IRSs make them a good fit for the application of formal tools. A

well-designed IRS must be able to quickly select defense actions over time when provided

with noisy security alert information (including false negatives and false positives) and eval-

uate the effectiveness of previous defense decisions, all while balancing inherent tradeoffs
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in the system, such as the conflicting objectives of security and availability. The tools found

in control and game theory are well-suited for addressing these requirements, a fact that has

been recognized by some in the security community, [Kreidl & Frazier, , Zonouz et al.,

, Miehling et al., , Iannucci et al., , Iannucci & Abdelwahed, ]. One of the

first to apply formal theory, namely stochastic control theory, to the design of an automated

IRS was [Kreidl & Frazier, ] in the development of their system αLADS (ALPHATECH

Lightweight Autonomic Defense System). The authors proposed a host-based IRS that re-

ceives alerts (as inputs) from an anomaly sensor in order to calculate the probability that

the host is in an attack state. The approach uses a POMDP to select countermeasures in

order to interfere with the progression of the attacker while attempting to minimize the

negative impact to the normal operation of the system. [Zonouz et al., ] formulate

an automated, network-based IRS as a two-player, sequential Stackelberg stochastic game,

termed the Response and Recovery Engine (RRE). The proposed scheme decomposes the

problem into a hierarchical structure of local engines (hosts) and a global engine. Local

engines contain graphs, termed aack-response trees (ARTs), that serve to quantify the se-

curity of the hosts based on noisy security alerts. The security information of each host is

sent to the global engine which is responsible for computing defense actions. The defense

actions are chosen using a (heuristic) fuzzy logic control-based technique under the behav-

ioral assumption that the attacker will attempt to inflict maximum damage to the system. In

previous work, [Miehling et al., ], we developed a defense scheme that used Bayesian

attack graphs (see [Liu & Man, ] for the definition) to model the progression of the at-

tacker and quantify the security state. Using noisy security alert information, the defender

maintains a belief over the current progression of the attacker. The resulting problem of

choosing defense actions over time as a function of the belief is cast as a POMDP. More

recently, [Iannucci et al., , Iannucci & Abdelwahed, ] proposed an autonomic IRS

that uses aMarkov Decision Process (MDP) to specify a sequence of defense actions to drive
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the system back to a normal operating state. They also offer a performance evaluation of

their proposed solution method.

The IRS proposed in this chapter differs from existing state-based approaches in multiple

ways. First, in the host-based IRS developed by [Kreidl & Frazier, ], only the state of

the host is taken into consideration when determining the security status of the system. In

our model, embedding a state space on the dependency graph allows for the security of

the entire network to be taken into account. Furthermore, due to the coarse-grained, small

state space in [Kreidl & Frazier, ], the scalability problem is not addressed. Second,

while the network-based IRS introduced by [Zonouz et al., ] addresses the scalability

problem via a hierarchical decomposition, our model presents an alternate approach that

addresses scalability by employing a Monte-Carlo sampling approach. Additionally, our

model uses an expected cost criterion, a less conservative objective than the worst-case cost

found in [Zonouz et al., ]. Third, compared to our previous work, our current model is

more expressive than the model we proposed in [Miehling et al., ], allowing for one to

consider more complex dependencies between exploits (the model allows for exploits that

have multiple postconditions), a more realistic observation model (alerts are triggered by

exploit activity and are subject to false alarms), and private attacker strategies. Further-

more, we directly address the scalability concerns in this chapter. Lastly, while [Iannucci

et al., , Iannucci & Abdelwahed, ] address the state space explosion problem, their

work assumes complete observability of the underlying state, whereas our model allows

for imperfect observations.

... Contribution

The formalism in this chapter offers a quantitative model for the computation and analysis

of defense policies under a wide-range of attacker strategies. The specific contributions are

as follows:
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)Quantification of security: The model of this chapter is the first to embed a state space

on a dependency graph for the purposes of designing a dynamic IRS. Such an approach

allows one to accurately quantify the progression of the attacker along (a combinatorial

number o) attack pathways, and provides valuable information for selecting defense ac-

tions that optimally mitigate the attacker’s progression while minimizing the impact to

availability. Furthermore, allowing the defender to possess uncertainty over the true un-

derlying (dynamic) attack strategy leads to a more realistic model of attacker-defender in-

teractions, permitting a more accurate quantification of the system’s security status.

) Management of false alarms: The security state provides context for which exploits

the attacker has already performed, and which exploits it needs to carry out in order to

achieve its goals. Such information is valuable for efficiently processing security alerts, al-

lowing the defender to weigh new security alert information by the likelihood of states in

the current belief. That is, the belief is informative for assessing probabilistically whether

the given alerts were generated by valid exploit attempts or were simply false alarms. This

feature of our model, described in more detail in Section .., is particularly useful in set-

tings where there is a high-rate of false alarms, a characteristic of many modern IDSs.

) Scalability: Even though the number of security states can be very large for some in-

stances of our model, the online defense algorithm (discussed in Section ..) does not re-

quire one to construct the entire state space. Instead, the algorithm samples regions of the

state space relevant to the current defense decision, allowing one to avoid the state space ex-

plosion problem. This feature, combined with some problem-specific modifications (taking

advantage of the structure of the observation process) allows for computation of defense

policies in realistically sized domains.
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.. e Dynamic Security Model

Theproposed dynamic security model provides a formal basis for how a defender can detect

and mitigate the infiltration of an attacker in a cyber network. Throughout the description

of themodel, the diagram of Fig. .will be useful. In particular, the remainder of Section .

will describe the model for the attacker’s progression through the cyber network (Section

..), the defender’s quantification of this progression via a security state (Section ..),

the evolution of the security state as a function of the interactions between the attacker and

defender (Section ..), the defender’s information and its formation of consistent beliefs

(Section ..), and finally the formulation of the defender’s problem (Section ..).

IRS 
(defender)

IDS

cyber 
network

a!acker

security 
alerts

exploit 
activity

defense 
actiona!ack

Figure 6.1: The dynamic security model. The attacker progresses through the cyber network by
performing exploits, triggering security alerts via an intrusion detection system. The defender uses
this intrusion information to construct a belief of the attacker’s capabilities and strategy, which is
then used to prescribe a defense action.
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... e Condition Dependency Graph

Researchers and cybersecurity analysts have long been interested in how to represent the

steps that intruders take when compromising a system. The concept of attack trees and

graphs were developed with this goal in mind, allowing one to study all possible sequences

of exploits that an intruder can take to infiltrate a network and reach its goal(s). An at-

tack graph consists of system states (nodes) and transition relations (edges), which relate

system states to each other via exploits. The construction of an attack graph requires one

to enumerate over all system states, a process which generates graphs that quickly grow in

dimension.

Making assumptions regarding the attacker’s behavior allows us to greatly simplify at-

tack graphs and reduce the amount of information required to describe an attack. One

such assumption, termed monotonicity [Ammann et al., ], states that the success of

an exploit does not render the precondition of any other exploit invalid. In simpler terms,

the success of one exploit does not interfere with the attacker’s ability to carry out a fu-

ture exploit.‡ Under monotonicity, one does not need to enumerate all system states in an

attack graph, but can rather construct a dependency graph describing how exploits relate

to security conditions [Ammann et al., , Noel & Jajodia, ]. The appeal of the de-

pendency graph representation is that the graph can more easily be constructed for large

networks, proving to be especially useful in cases where the corresponding attack graph

would be intractably large to generate. In the approach taken by [Ammann et al., ],

the authors construct such a graph where nodes represent security conditions and edges

represent exploits in what is termed a condition dependency graph.§ Security conditions are

atomic facts (they can either be true or false) that can reflect any of the aforementioned
‡See Section  of [Ammann et al., ] for an explanation of how the majority of non-monotonic attacks

can be modeled as monotonic under reasonable assumptions on the attacker’s behavior.
§This graph has a dual representation termed an exploit dependency graph [Noel & Jajodia, , Jajodia

et al., ].
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system attributes.¶ Exploits relate security conditions via preconditions and postconditions.

We adopt an approach similar to that of [Ammann et al., ] for modeling attack path-

ways, using a condition dependency graph to represent the dependencies between security

conditions and exploits. As discussed by [Ammann et al., ], the edges in a condition

dependency graph relate the security conditions “in a complex way,” where a given exploit

can have “both multiple preconditions and multiple postconditions.” We formalize this no-

tion by recognizing that such edges are in fact directed hyperedges (an “edge” that connects

two sets of nodes rather than simply a pair of nodes). For simplicity, we adopt a slightly

modified definition for the security conditions from the one found in [Ammann et al., ].

The security conditions in [Ammann et al., ] represent a mix of attributes that are true

under the normal network configuration (termed initial conditions, such as default network

connectivity and active services) and attributes that can be maliciously made true during

an attack (which we term aack conditions, such as attacker privileges or unintended trust

relationships between hosts). We do not include the conditions representing the normal

network configuration (the initial conditions) explicitly in the dependency graph, but in-

stead assume that the set of security conditions consists solely of attack conditions. This

modification is purely for convenience; under the modified definition, the condition depen-

dency graph for a network that has not yet been subject to an attack has all of its conditions

set to false.

Formally, we represent a condition dependency graph as a directed acyclic hypergraph

H = (N , E), where N = {c1, . . . , cnc } is the set of security conditions (nodes) and E =

{e1, . . . , ene } is the set of exploits (hyperedges). The acyclic nature of the graph follows

from the monotonicity assumption. As discussed earlier, each security condition ci ∈ N in

the hypergraph can either be true or false. The truth value of each condition is interpreted
¶The important distinction between a system state in an attack graph and a security condition in a depen-

dency graph is that, in attack graphs, each node represents a state, where each state is an assignment of values
for all of the attributes, whereas in the condition dependency graph, each node represents a single attribute.
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as follows: a true (enabled) condition means that the attacker possesses condition ci , and

a false (disabled) condition means that the attacker does not possess ci , where an enabled

condition is interpreted as the attacker having a particular capability. For example, an

enabled condition could mean that the attacker has maliciously enabled a trust relationship

between two hosts or has user access on a specific host (where a different privilege level on

the same machine would be represented by a distinct condition). Some of the conditions in

the hypergraph, when enabled, designate that an attacker has reached a goal. Such nodes

are termed goal conditions and are denoted by the subset Nд ⊆ N . Goal conditions are

defined by the defender and correspond to something that it wants to protect. For example,

a goal condition could represent the attacker possessing root access on a critical host or

access to a server that contains sensitive information. It is assumed that the attacker is

attempting to enable one of these goal conditions; however, we (as the defender) do not

know which one(s). Each hyperedge ei ∈ E represents an exploit and takes the form of

an ordered pair of sets, ei = (N −i ,N +i ), where N −i ⊆ N represents ei ’s preconditions and

N +i ⊆ N represents ei ’s postconditions. It is assumed that the attacker is able to attempt

exploit ei only if all preconditions j ∈ N −i are enabled. This is without loss of generality

since for cases where multiple sets of conditions allow for an exploit to be attempted (a

disjunction over preconditions), we simply duplicate the exploit for each of its sufficient

sets of preconditions. There exist some exploits ei ∈ E with N −i = ∅, that is, an exploit

with an empty set of preconditions. These exploits, termed initial exploits and denoted by

E0, represent entry points for the attacker and reflect the fact that they can be performed

without the attacker needing any prior (maliciously enabled) capabilities. If an attempted

exploit is successful, all postconditions j ∈ N +i become enabled, increasing the attacker’s

set of capabilities, allowing it to perform additional exploits and penetrate further into the

system. A pictorial representation of a condition dependency graph is provided in Fig. ..

We will use this example graph throughout the chapter to aid in the explanation of the
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model and the results.

a!acker’s progression

Figure 6.2: A sample condition dependency graph. The above dependency graph H = (N ,E) con-
sists of nc = 12 security conditions and ne = 13 exploits (in the form of hyperedges). Initial exploits,
E0 = {e1, e2, e3, e11}, where e1 = (∅, {c1}), e2 = (∅, {c2}), e3 = (∅, {c3, c4}), e11 = (∅, {c10}) and
exploits e4 = ({c1, c2}, {c5}), e5 = ({c2, c3}, {c6}), e6 = ({c3}, {c7}), e7 = ({c4}, {c7}), e8 = ({c5}, {c8}),
e9 = ({c6}, {c8}), e10 = ({c6, c7}, {c9}), e12 = ({c8, c9}, {c11}), e13 = ({c9, c10}, {c12}). We represent the
graph in a layered structure in which preconditions are drawn above postconditions, e.g. exploit
e4 has preconditions {c1, c2} and a single postcondition {c5}. Goal conditions, N д = {c11, c12}, are
represented by double-encircled nodes.

We assume that the dependency graph has already been constructed for the system (us-

ing vulnerability analysis tools such as the TVA tool of [Jajodia et al., ]) and instead

focus on the formulation and solution of a real-time (dynamic) defense problem, using the

dependency graph to describe the progression of the attacker.

... e Notion of a Security State

A primary objective of our dynamic security model is to quantify the level of security of

the system over time. To this end, we define a security state to represent the current level

of progression of the attacker in the system. The current security state, denoted by st ⊆ N ,
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is defined to be the set of currently enabled security conditions. Since an enabled condition

is interpreted as the attacker having a particular capability, the current security state, st ,

describes the set of capabilities of the attacker.

The monotonicity assumption on the attacker’s behavior implies a notion of feasibility

for the security states, defined formally below.

Definition .. (Feasible Security State). A security state, s ⊆ N , is called a feasible security

state if for every condition cj ∈ s , there exists at least one exploit ei = (N −i ,N +i ) ∈ E such

that cj ∈ N +i and N −i ,N +i ⊆ s .

That is, in order for a security state to be feasible, every enabled condition must have

been enabled through an exploit and all preconditions and postconditions of the associated

exploit must also be enabled. An implicit assumption behind the feasibility condition is

that our model for exploits is complete, in the sense that our model is not missing any

exploits that would allow the attacker to enable security conditions.‖ Fig. . illustrates a

few feasible security states.

The state space of the dynamic security model consists of all feasible security states, de-

noted by S = {s1, . . . , sns }. We do not have a closed-form expression for the number of

feasible states ns ; however, as discussed in Section ., the proposed online defense algo-

rithm does not require one to construct the entire state space.

... Evolution of the Security State

The security state evolves probabilistically as a function of both the defender’s and at-

tacker’s actions. In a given iteration of our problem, the defender is assumed to act first,

taking actions that interfere with the attacker’s progression through the system by dynam-
‖Relaxing this assumption amounts to including nodes in s that are not associated with any hyperedge

in E, meaning that they can become enabled via an unknown influence. The inclusion of these leaky nodes
greatly increases the state space and is not considered in this work.
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s = s ′ s = s ′′ s = s ′′′

Figure 6.3: A collection of feasible security states for the graph H = (N , E) of Fig. 6.2. Enabled
security conditions are represented by shaded nodes. Notice that for each feasible security state,
there is a path of exploits in E from enabled root condition(s) to each enabled (non-root) condition
such that all preconditions and postconditions of the respective exploits are enabled.

ically modifying the aack surface (the collection of various pathways that the attacker can

use to infiltrate the system). The attacker then uses its set of current capabilities to attempt

exploits, the dynamics of which are dictated by its (private) attack strategy. Finally, the

attempted exploits that end up succeeding determine the transition to the next security

state.

Defender’s Actions

The defender is assumed to select actions that have the effect of restricting the normal

network configuration (such as the network connectivity or active services). Performing

such systemmodifications has the effect of blocking the exploits that depend on the network

elements that weremodified. As a simple example, some exploits depend on the existence of

a connection between hosts via a specific port. By blocking this port between the hosts, we

are able to block the corresponding exploits that depend on the port being open, preventing

the attacker from using these exploits to progress through the system.

In reality, the defender is not able to block individual exploits at will. The system mod-

ifications involved in blocking one exploit will, in general, block multiple exploits in the
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system (e.g. blocking a port or disabling a service). On the other hand, some exploits may

not be able to be blocked by any of the defender’s available system changes (e.g. an exploit

of a local software vulnerability that results in the escalation of attacker’s privilege on a

specific host). This coarseness in the ability to block exploits translates into the defender

having limited control over the attacker’s progression through the system, a characteristic

which is captured in our definition of the defender’s set of actions (described below).

Formally, the defender is assumed to have access to nu + 1 defense actions, represented

by the set U = {u0,u1, . . . ,unu }. The defense action u0 represents the null action and cor-

responds to the defender not blocking any exploits, allowing the system (and attacker) to

operate uninterrupted. Each of the nu remaining defense actions, ui , i = 1, . . . ,nu , corre-

sponds to a set of systemmodifications that restrict the normal network configuration, such

as restricting the network connectivity (e.g. by blocking a port between some hosts) or the

set of active services, and can be associated with blocking a specific set of exploits, denoted

by B (ui ) ⊆ E. Notice that the defender does not, in general, have the ability to block indi-

vidual exploits, instead it must select a defense action u ∈ U which in turn induces a set of

blocked exploits B (u) ⊆ E.

Each defense action u ∈ U induces system modifications that interfere with the progres-

sion of the attacker but also, unavoidably, limit the availability of the system to trusted

users. It is the goal of the defense scheme to optimally balance this tradeoff. As described

in Section .., a cost is assigned to each defense action u in order to capture its impact

to availability. Combined with the assignment of costs for undesirable security states, the

defender is able to specify actions that limit the attacker while minimizing the negative

impact to availability.
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reat Model

It is assumed that there is a single attacker attempting to infiltrate the system. At any

given time-step, the attacker attempts to enable security conditions by performing exploits,

in hopes of increasing its set of capabilities and allowing it to progress through the system.

The specific nature of the attacker’s progression is given by its (private) strategy, dictated by

one of a finite set of attacker types. As will be described in the remainder of Section ., the

attacker type dictates the dynamics of both the security state and observation processes.

Lastly, the attacker is assumed to be monotone. As discussed earlier, the monotonicity

assumption states that the success of a previous exploit will not interfere with the success

of a future exploit. In the context of the proposed model, this implies that once the attacker

enables a security condition, it remains enabled.

Formally, for a given security state st , the set of exploits that the attacker can attempt,

termed the available exploits, is described by the set E (st ). This set represents the complete

set of exploits that are available from state st . The attacker does not necessarily know all of

the elements in this set; E (st ) simply representswhat can be attempted using the capabilities

described by st . The set of available exploits is given by

E (st = s ) =
{
ei = (N −i ,N +i ) ∈ E | N −i ⊆ s,N +i ⊈ s

}
. (.)

In order for an exploit ei = (N −i ,N +i ) to be available to the attacker, it must satisfy two

requirements. The first requirement, N −i ⊆ s , states that all of the exploit’s preconditions

must be satisfied in the current security state. The second requirement,N +i ⊈ s , states that

the exploit’s postconditions must not all be satisfied. This latter requirement arises from

the assumption that the attacker will not perform redundant exploits. This assumption is

reasonable since the attacker will not gain any new capabilities by performing such exploits

and will only increase its chances of being detected (discussed further in Section ..). The
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caption of Fig. . describes the set of available exploits, for a given security state st , in the

example condition dependency graphH of Fig. ..

The specific strategy that the attacker employs is dictated by its type. The attacker is

assumed to be one of na types, represented by the set Φ = (ϕ1, . . . ,ϕna ). Each type ϕi ∈

Φ corresponds to a set of conditional aack probabilities over the exploits, α (ϕi , st ,ut ) =(
αe1 (ϕi , st ,ut ), . . . ,αene (ϕi , st ,ut )

)
, specifying the likelihood that the attacker will attempt

each of the available exploits from the current security state st under defense actionut . The

conditional attack probability for a given exploit ej is given by

αej (ϕi , st ,ut ) =


αej (ϕi ) if ej ∈ E (st ) \ B (ut )

αej
(ϕi ) if ej ∈ E (st ) ∩ B (ut )

0 if ej < E (st )

. (.)

By partitioning the set of available exploits into two components, the threatmodel describes

how an attacker may modify its strategy based on the defender’s action. Specifically, avail-

able exploits that are not blocked by the current defense action, E (st ) \B (ut ), are attempted

with probability αej (ϕi ), whereas exploits that are blocked by the current defense action,

E (st ) ∩ B (ut ), are attempted with probability αej
(ϕi ). Exploits that are not available in the

current security state are not attempted.

Constructing the threat model in such a way allows one to encode various levels of at-

tacker knowledge. For example, if an attacker of typeϕi is not able to recognize that exploit

ej is blocked under a give defense action ut = u, then αej (ϕi ) = αej
(ϕi ), reflecting the fact

that the attacker is unable to modify its attack probability based on the defender’s action.

On the other hand, if the attacker knows with certainty that exploit ej has been blocked by

the defender, then setting αej
(ϕi ) = 0 reflects that the attacker would not attempt it. The

threat model can also capture intermediate cases where the attacker has partial informa-

tion and may attempt exploits that it believes are not blocked with a higher probability, i.e.
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αej (ϕi ) ≥ αej
(ϕi ).

Security State Dynamics

For any given iteration, the defender first chooses a defense action, ut = u ∈ U , in turn

blocking a set of exploits, B (u) ⊆ E. Next, given the current security state st ∈ S and

defense action ut = u, the attacker attempts a collection of available exploits according

to its own private strategy, α (ϕi , st ,ut ). Each of the attempted exploits succeeds with a

conditional probability of success. The probability of success models the fact that attacks

do not succeed with certainty (potentially due to the inherent difficulty in carrying out

the attack or the existence of defenses already in place). The probabilities are assumed to

depend upon the attacker’s type; this dependency arises from the fact that some attackers

may possess greater knowledge of the exploit or be able to expend more resources. The

set of conditional success probabilities is given by β (ϕi ,ut ) =
(
βe1 (ϕi ,ut ), . . . , βene (ϕi ,ut )

)
,

where the probability of success for a given exploit ej is given by

βej (ϕi ,ut ) =


βej (ϕi ) if ej < B (ut )

0 if ej ∈ B (ut )
. (.)

Exploits that are blocked by the defender do not succeed. The exploit attempts that are

successful enable the corresponding set of postconditions, forming the updated security

state st+1 ∈ S. Fig. .(b) illustrates a possible successor state st+1 for a given state st , type

ϕt , and defense action ut .

In summary, the security state dynamics can be described by a controlled Markov chain,

where the control is the defense action. The transition matrix of the Markov chain, for a

given defense action u and attacker type ϕl , is Pu (ϕl ) with elements pu
ijl
= P (St+1 = sj | St =

si ,Φt = ϕl ,Ut = u) (the analytical expression for this probability is given by Eq. (C.) in the
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(a) Current security state (b) Possible successor state

Figure 6.4: Sample evolution of the security state for a given state-type-action triple (st ,ϕt ,ut ): (a)
Consider the security state st = {c1, c2, c3, c4, c5} and defense action ut = u such that B (u) = {e5, e8}
(blocked exploits are shown by shaded hyperedges). By Eq. (6.1), the set of available exploits is
E (st ) = {e5, e6, e7, e8}; (b) The attacker attempts each exploit in ei ∈ E (st ) with a probability of
attack αei (ϕt , st ,ut ) as described in Eq. (6.2). Each attempted exploit ei that does not lie within the
set of blocked exploits, B (ut ) ⊆ E, succeeds with a probability of success βej (ϕi ) as described in Eq.
(6.3). In this example, only exploit e6 succeeded and thus st+1 = st ∪ N +6 = st ∪ {c7} .

appendix).** Note that defense actions only influence the attacker’s progression. Blocking

an exploit that already has all of its postconditions enabled does not disable any of the

exploit’s postconditions. An analogy to the physical security domain is useful: Consider

an intruder attempting to break into a building to access a safe. If the intruder has already

successfully broken through the front door, then barricading the door will have no effect

on the attacker’s ability to access the safe. However, securing the door before the attacker

reaches it will prevent the attacker from using that entry point, forcing it to use another

path, in turn increasing the attacker’s effort and decreasing the likelihood of the safe being

compromised.
**The proposed security model also allows for the underlying type to vary in time according to a Markov

chain (with transition matrix Q); however, for simplicity we consider a fixed (albeit unknown) underlying
attacker type.
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... e Defender’s Information

The defender lacks certainty of both the current security state and the underlying strategy

of the attacker and must infer/learn both using a stream of noisy security information. The

security information comes in the form of a sequence of security alerts generated by an in-

trusion detection system (IDS) as the attacker attempts exploits and progresses through the

system (see Fig. .). These security alerts are noisy, suffering from both missed detections

(the IDS not seeing an exploit attempt) and false alarms (the IDS generating alerts when no

attempt has occurred, e.g., alerts generated by legitimate network traffic).

LetZ = {z1, z2, . . . , znz } represent the finite set of security alerts that may be generated

by the IDS. Each exploit ei ∈ E, if attempted, has an associated set of alerts that can be

generated, given by the set Z (ei ) = {zAi (1), zAi (2), . . . , zAi (ai ) } ∈ P (Z), where Ai is the

set of ai alert indices from the set A = {1, 2, . . . ,nz } and P (Z) is the power set of Z. In

general, more than one exploit can generate the same alert, that isZ (ei ) ∩ Z (ej ) , ∅ for

ei , ej . Also, some exploits may not generate any alerts, that is,Z (ei ) = ∅ for some ei ∈ E

(such exploits are termed stealthy).

The IDS generates the security alerts probabilistically, based on detected exploit activity

and false alarms, the statistics of which depend upon the underlying strategy of the attacker.

Advanced attackers may be able to craft their attacks such that they are less likely to trigger

security alerts or, alternatively, influence the false alarm rate of specific alerts to mask their

true progression through the system. To capture this dependency, the securitymodel allows

for the probabilities of detection (the likelihood of seeing an alert given an exploit attempt)

and the probabilities of false alarm (the likelihood of seeing an alert in the absence of an

exploit attempt) to depend on the attacker’s type. For an attacker of type ϕl , an attempt

of exploit ei will generate the alertsZ (ei ) = {zAi (1), zAi (2), . . . , zAi (ai ) } with corresponding

probabilities of detection δij (ϕl ), j ∈ Ai . Similarly, the probability of false alarm for each

alert zi ∈ Z, under type ϕl , is dictated by ζi (ϕl ). The vector of security alerts received by
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the defender at time t + 1, denoted by yt+1 ∈ Y = {0, 1}nz , consists of all security alerts

triggered during the given iteration.

Using the received security alerts the defender constructs a belief, denoted by πt , that

summarizes its uncertainty over both the security state and the attacker type. This belief

(or information state [Åström, , Kumar & Varaiya, ]) is constructed using all of

the defender’s available information at time t : the (distribution over the) initial security

state and attacker type, the history of all defense actions from time 0 to time t − 1, and all

observations (security alerts) from time 0 to t , denoted by ht = (π0,u0,y0, . . . ,ut−1,yt ). The

belief represents the joint probability distribution over security states and attacker types,

and takes the form of a matrix, defined as

πt =



π 1,1
t π 1,2

t · · · π 1,na
t

π 2,1
t π 2,2

t · · · π 2,na
t

...
...
. . .

...

πns ,1
t πns ,2

t · · · πns ,na
t


∈ ∆(S × Φ)

where π il
t = P (St = si ,Φt = ϕl | Ht = ht ) is the likelihood that si is the true security state and

ϕl is the true type given the realized information ht . The space ∆(S × Φ) is the probability

simplex over the state-type space S × Φ. Notice that πt is a doubly-stochastic matrix for

each t ; each row represents a probability mass function over the type space for a given state

and each column represents a probability mass function over the space of security states

for a given type.

The defender maintains the belief matrix over time, updating it as new information,

consisting of the current defense action ut and new observation yt+1, is revealed. For a

given defense action ut = u and observation yt+1 = yk , the belief matrix update is de-

fined as πt+1 = [τjm
(
πt ,u,yk

)
]ϕm∈Φ,sj∈S where the (j,m)’th update function, τjm

(
πt ,u,yk

)
=
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P (St+1 = sj ,Φt+1 = ϕm | Ut = u,Yt+1 = yk ,Πt = πt ), is given by

π jm
t+1 = τjm

(
πt ,u,yk

)
=
pujm (πt )r

u
jk
(πt )

σ (πt ,u,yk )
. (.)

The above terms are defined as follows

pujm (πt ) = P (St+1 = sj ,Φt+1 = ϕm | Ut = u,Πt = πt )

=
∑

si∈S,ϕl ∈Φ
π il
t p

u
ijlqlm (.)

rujk (πt ) = P (Yt+1 = yk | St+1 = sj ,Ut = u,Πt = πt )

=
∑

si∈S,ϕl ∈Φ
π il
t r

u
ijkl (.)

σ (πt ,u,yk ) = P (Yt+1 = yk | Ut = u,Πt = πt )

=
∑

sj∈S,ϕm∈Φ
rujk (πt )p

u
jm (πt ) (.)

where pu
ijl
is the probability of transitioning from state si to sj under defense action u and

attacker type ϕl , qlm is the probability of transitioning between types (note that we assume

that qlm = 1 if l = m, zero otherwise, as mentioned in Section ..), and ru
ijkl
= P (Yt+1 =

yk | St+1 = sj , St = si ,Φt = ϕl ,Ut = u) is the probability that the IDS generates observation

yk given a transition from state si to sj under defense action u and attacker type ϕl . Addi-

tional details regarding the derivation of the belief update equations, as well as analytical

expressions for pu
ijl
and ru

ijkl
, can be found in the appendix.

The belief at any given time represents the defender’s view of the aacker’s current capa-

bilities and true strategy. The trajectory of beliefs, (π0,π1,π2, . . .), describes how this view

changes over time. As evidenced by Eq. (.), the trajectory of beliefs (given an initial be-

lie) is defined by the sequence of defense actions and observations (security alerts). Since

security alerts are triggered probabilistically by exploit attempts and background events,
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the presence of an alert does not necessarily mean that the attacker is progressing through

the system. That is, an exploit attempt may have triggered an alert but may not have suc-

ceeded, or an alert may have been triggered via a false alarm. Similarly, the absence of

an alert may mean that an exploit was in fact attempted (and successful), but didn’t trig-

ger an alert (due to a missed detection or a stealthy exploit). Since the current belief πt
assigns mass to security states (and attacker types) that are consistent with the available

information, the belief trajectory may assign mass to worsening security states even in the

cases where the underlying security state is unchanging or no alerts are generated. This

characteristic highlights the importance of information in our model, reflecting that the de-

fender’s imperfect observations of the security state and attacker type contribute to a more

pessimistic view of the system’s security over time.

... Assignment of Costs

In many systems, the cyber network needs to remain (at least partially) operational while

subject to an attack. The defender thus has two objectives: i) maintaining the availability of

the system, and ii) keeping the attacker away from goal conditions. These two factors are

largely in opposition of each other. If the defender were only concerned with maintaining

the availability of the system, it would not perform any system modifications, leaving the

system to run uninterrupted and in turn not interfering with the progression of the attacker.

On the other hand, if the defender were just concerned with preventing the attacker from

reaching goal conditions, it would immediately execute aggressive system changes in order

to block as many exploits as possible and maximally disrupt the attacker’s progression

through the system. Unfortunately, this latter option is clearly very costly to the availability

of the system. It is evident that one must strike a trade-off between these two extremes of

availability and security.

In order to quantify this trade-off, we construct a cost function that takes into account
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both the quality of the current security state and the negative impact to availability of each

defense action. Specifically, we assign a security cost, cs : S × Φ → R, to capture the cost

of the system being in various security states s ∈ S under different attacker types as well

as an availability cost, cu : U → R, for each defense action that is deployed. Using the

definition of a goal condition at the end of Section .., we can define the notion of a goal

state.

Definition .. (Goal state). A goal state is defined as a security state s ∈ S that contains

one or more goal conditions, that is, there exists some j ∈ s such that j ∈ Nд.

We denote the space of all goal states by Sд ⊆ S. Goal states are undesirable from the

perspective of the defender and are thus assigned a higher cost than non-goal states, that

is, 0 ≤ cs (s
′,ϕ) ≤ cs (s

′′,ϕ) < ∞ for s′ < Sд, s′′ ∈ Sд, ϕ ∈ Φ. Although not a requirement,

we can impose the additional property that for any two security states s′, s′′ ∈ S where

s′ ⊆ s′′, we have c (s′,ϕ) ≤ c (s′′,ϕ), reflecting the fact that if the attacker has enabled

more conditions, it should be more costly for the defender. To model the availability factor,

we assign an availability cost for each defense action, denoted by cu (u′). Recall that each

defense actionu′ ∈ U is a collection of systemmodifications. Some combinations of system

modifications may have little to no impact to availability while other combinations may

render important elements of the underlying system unavailable. The assignment of the

costs cu (u′), for each u′ ∈ U , allows one to incorporate such information (combinations of

system modifications that severely impact availability should be assigned a very high cost).

We assume that 0 ≤ cu (u
′) < ∞ for every u′ ∈ U . The cost for taking defense action ut in

security state st under attacker type ϕt is defined as

c (st ,ϕt ,ut ) = wcs (st ,ϕt ) + (1 −w )cu (ut ) (.)

where 0 ≤ w ≤ 1 is a weighting term that allows the defender to specify which factor is
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more important, wherew = 0 (w = 1) corresponds to only being concernedwith availability

(resp. security).

... Defender’s Problem

The defender wishes to determine an optimal defense action to deploy for any belief that it

may encounter. The decision rule determining this action is termed a defense policy and is

represented by the function γ : ∆(S ×Φ) →U , mapping a belief matrix π ∈ ∆(S ×Φ) to a

defense action u ∈ U . The problem of determining γ can be cast as a POMDP, represented

by problem (P) below.

min
γ∈Γ
Eγ


∞∑
t=0

ρtc (Πt ,Ut ) | Π0 = π0
 (P)

subject toUt = γ (Πt ) (P-)

Πt+1 = τ (Πt ,Ut ,Yt+1) (P-)

where Γ is the space of admissible defense policies and 0 < ρ < 1 is the discount factor.

The function c (πt ,ϕt ,ut ) represents the expected cost for being in belief state Πt = πt when

defense actionUt = ut is selected and is defined as c (πt ,ut ) =
∑

si∈S,ϕl ∈Φ π
il
t c (si ,ϕl ,ut ) where

c (s,ϕ,u) is the state-action cost function defined in Eq. (.). The current actionUt must be

generated according to the defense policy γ , as demonstrated by constraint (P-), and the

next belief Πt+1 must obey the update τ (Πt ,Ut ,Yt+1), constraint (P-).

The solution to problem (P) is an optimal defense policy, denoted by γ ∗ ∈ Γ, which

specifies an optimal defense action for every possible belief π ∈ ∆(S×Φ) that the defender

can possess. Following the optimal policy results in the minimum expected discounted

cost over the infinite time-horizon, t = 0, 1, . . .. In other words, taking into account all

uncertainty in the problem, the defense policyγ ∗ generates actions that achieve the desired

tradeoff as dictated by the cost function in Section ...
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.. Computation of Defense Policies

While the embedding of a state space on the dependency graph allows for one to accurately

quantify the level of progression of the attacker, the high dimensionality of the resulting

defense problem leads to significant scalability concerns. One approach to solving the de-

fense problem is to adopt an offline POMDP solver. Such solvers aim to explicitly solve the

problem by computing the optimal action for every belief that can be encountered, prior to

runtime. In spite of the fact that significant improvements have been made in the efficiency

of offline solvers in recent years, e.g. [Kurniawati et al., ], the requirement to specify

an action for every possible encountered scenario often leads to an intractable problem.

Online solvers represent an alternate paradigm in which one only considers the possible

future scenarios from the current belief, constructing a local policy during runtime. Online

methods interleave the computation and execution (runtime) phases of a policy [Ross et al.,

], yielding a much more scalable approach than offline methods, making them a more

natural fit for obtaining a solution to the defense problem.

The proposed algorithm for computing defense policies, which we term the online defense

algorithm, is based on an existing online solver developed by Silver & Veness [Silver &

Veness, ], termed the Partially Observable Monte-Carlo Planning (POMCP) algorithm.

While no existing algorithm is immediately applicable for computing defense policies, the

POMCP algorithm requires the fewest modifications to achieve efficient computation.

... e Online Defense Algorithm

Theonline defense algorithm is a heuristic search algorithm for determining defense actions

in real-time as the attacker progresses through the system and security alerts are generated.

The algorithm consists of two main stages: an action selection step and a belief update step.

The action selection step of the online defense algorithm is similar to that of the standard

POMCP algorithm (details pertaining to the specific operation of POMCP, as well as pseu-
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docode for the algorithm, can be found in [Silver & Veness, ]). The belief update step

has been modified by taking advantage of the structure of the observation process, enabling

computation in large-scale domains.

The action selection stage of the online defense algorithm operates by performingMonte-

Carlo simulations from the current belief in order to estimate the quality of various defense

actions. Each simulation consists of a call to a generative model, shown in Fig. .. Specifi-

cally, a simulation begins by sampling a state-type pair, (s,ϕ), from the current belief matrix

(approximated by a finite collection of state-type pairs, described in more detail in the fol-

lowing paragraph), and coupled with a given defense action, generates a successor state and

type, as well as an observation and cost, (s′,ϕ′,y, c ) ∼ G (s,ϕ,u). Through successive sam-

sample

sample

sample

sample

,

Figure 6.5: The generative model for the dynamic security model. For a given state-type-action triple
(s,ϕ,u), the generative model first determines the set of available exploits, E (s ), then, taking into
account the effect of the defender’s action and attacker type, samples the probability distributions
of the problem (probabilities of attack and success for exploits, and probabilities of detection and
false alarm for observations) in order to generate a next state st+1 = s ′, updated type ϕt+1 = ϕ ′, an
observation yt+1 = y, and a cost c .

pling from the current belief and calls to the generative model, a search tree of histories is

constructed, as shown in Fig. .. Due to the partial observability of the underlying process,
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the search tree consists of nodes representing histories, where branches of the tree originat-

ing from the current history represent future possible histories. Each branch begins with

the selection of a defense action, which is selectively sampled using a multi-armed bandit

rule, termed UCB [Auer et al., ], in order to optimally balance exploitation and explo-

ration. That is, selecting presumably promising actions in order to decrease their estimation

error must be balanced with checking other actions in order to rule out better alternatives.

The error associated with each defense action’s quality estimate decreases as the number of

simulations (and the size of the search tree) grows. The online defense algorithm continues

to perform simulations for the given history node, progressively expanding the tree, until

a maximum number of simulations, nsim, has been reached. The defense action that has

the lowest estimated cost is then taken, termed the real-world action, denoted by ur , and a

real-world observation, denoted byyr , is recorded. The relevant branches of the search tree

are identified (shown by the blue/shaded path to node h′ in Fig. .), the remaining tree is

pruned, and a new root node is specified as the current history.

Once an updated history h′ is realized, the defender’s belief must be updated. Due to

the computational complexity associated with updating the belief matrix analytically (see

Eq. (.) and the appendix), the defender maintains a belief approximation, denoted by

Bt , consisting of nk state-type pairs, termed particles. The update of the belief approxima-

tion under the standard POMCP algorithm involves making multiple calls to the generative

model in order to obtain samples (s′,y) wherey exactly matches the real-world observation

yr , at which point s′ is accepted into the updated belief set Bt+1 (repeating until nk particles

have been added). Instances of the security model with large observation spaces allow for

scenarios where the sampled observation rarely matches the real-world observation, pre-

venting the belief from being updated. To address this issue, we propose a modified belief

update that takes advantage of the structure of the observations, that is, how security alerts

are generated as a function of the security state and type. Instead of checking if the sample
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: 

: 

: 

: 

current history

Figure 6.6: A search tree of histories. Each node in the search tree represents a history. The root
node represents the current history from which simulations begin. Each descendant of the root
node represents a possible future history, for example, a possible realized history for htutyt+1ut+1
is htu0yju1. After a real-world action is taken, e.g. ur = u0, and a real-world observation is received,
e.g. yr = yj , the history is updated to h′ (represented by the blue/shaded path).

observation matches the real-world observation for every alert zi ∈ Z, the proposed belief

update only checks if the alerts agree over a security state dependent subset of elements

zi ∈ Z (s ) = ∪e∈E (s )Z (e ) and probabilistically accepts the particle if this modified condi-

tion is satisfied. The set Z (s ) represents the set of alerts that can be generated by exploit

attempts; alerts not in Z (s ), i.e. any alert in Z̄ (s ) = Z \ Z (s ), cannot be generated by

the attempt of any exploit available in state s , as dictated by Eq. (.). The rationale for

restricting the comparison to the elements Z (s ) is due to the fact that these are the only

alerts that are informative for a change in the underlying state. The remaining alerts Z̄ (s )

must have been triggered by false alarms under the current state s . Observations that pass

the modified test are accepted into the updated belief with a probability of acceptance that

depends on the security state and attacker type, pa (s,ϕ). The probability of acceptance is

dictated by the likelihood that the state-type pair (s,ϕ) could have generated the real-world
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observation and is defined as pa (s,ϕ) = p̄a (s,ϕ)/d where

p̄a (s,ϕ) =

( ∏
i∈I (yZ̄ (s )

r =1)

ζi (ϕ)

) ( ∏
i∈I (yZ̄ (s )

r =0)

(1 − ζi (ϕ))
)

and d = max(s,ϕ)∈Bt p̄a (s,ϕ) is a normalization term. The set I (yZ̄ (s )
r = 1) represents the

indices of the alerts zi ∈ Z̄ (s ) where yir = 1 is true (analogously for I (yZ̄ (s )
r = 0)). The

normalized probability of acceptance, pa (s,ϕ), ensures that particles are accepted into the

updated belief more frequently than the standard POMCP belief update while ensuring that

the relative mass under the modified belief procedure agrees with what would be achieved

under the standard belief update. The pseudo code for the modified belief update is given

in Algorithm  below.

Algorithm  – Modified Belief Update
Initialize: nk , Bt+1 = ∅, numAdded = 0;
: procedureModifiedBeliefUpdae(Bt ,ur ,yr )
: while numAdded < nk do
: (s,ϕ) ∼ Bt
: (s ′,ϕ ′,y,−) ∼ G (s,ϕ,ur )
: if yZ (s ) = yZ (s )

r then ▷ If alertsZ (s ) match
: Bt+1 ← Bt+1 ∪ {s ′,ϕ ′} with probability pa (s,ϕ)
: numAdded← numAdded + 1
: end if
: end while
: end procedure

In addition to the modified belief update procedure, a heuristic cost assignment can fur-

ther improve the scalability of the online defense algorithm. A key bottleneck for tree-based

heuristic search algorithms in large-scale domains is the rate at which the search tree grows

as a function of the depth from the root node, termed the branching factor. Problem in-

stances with many actions and observations result in search trees with large branching

factors, preventing the search algorithm from being able to search beyond a small depth,
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resulting in a poor quality, myopic policy. To avoid this, we can assign non-zero costs to

security states that are close to goal states. A simple procedure for such a cost assignment

is to assign higher costs to states that require fewer successful exploits to reach a goal state.

Such a heuristic cost assignment makes simulations more informative, decreasing the re-

quired search depth (and simulations) and resulting in more effective defense policies.

Using the above ideas, we are able to effectively scale the online defense algorithm to

large instances of our dynamic security model. Defense policies were successfully com-

puted for a graph consisting of 134 conditions (nodes), 143 exploits (hyperedges), 64 de-

fense actions, and 30 security alerts (resulting in over 109 possible observation vectors).

The resulting number of security states exceeded 100 million.

... An Illustrative Example

We investigate an illustrative example of the defense problem using the sample dependency

graph of Fig. .. We assumena = 3 attacker types of varying aggression (described by their

probabilities of attack and success, dictating the rate of movement through the system),

knowledge (described by the separation between αej (ϕi ) and αej
(ϕi ) terms in Eq. (.)), and

stealthiness (described by the probabilities of detection and false alarm). Specifically, the

three attack types Φ = {ϕ1,ϕ2,ϕ3} capture the following behavior.

aggression knowledge stealthiness
ϕ1 low low low
ϕ2 moderate high high
ϕ3 high moderate moderate

The problem parameters that capture the above behavior are now defined. Probabilities
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of attack for each exploit under each attacker type ϕi ∈ Φ are

(
αej (ϕ1),αej

(ϕ1)
)
= (0.5, 0.5) for all ej ∈ E0(

αej (ϕ1),αej
(ϕ1)

)
= (0.3, 0.3) for all ej ∈ E \ E0(

αej (ϕ2),αej
(ϕ2)

)
= (0.8, 0.1) for ej ∈ E0(

αej (ϕ2),αej
(ϕ2)

)
= (0.7, 0.3) for ej ∈ {e4, e5, e10, e12, e13}(

αej (ϕ2),αej
(ϕ2)

)
= (0.6, 0.4) for ej ∈ {e6, e7, e8, e9}(

αej (ϕ3),αej
(ϕ3)

)
= (0.7, 0.4) for ej ∈ E0(

αej (ϕ3),αej
(ϕ3)

)
= (0.6, 0.4) for ej ∈ {e4, e5, e10, e12, e13}(

αej (ϕ3),αej
(ϕ3)

)
= (0.6, 0.5) for ej ∈ {e6, e7, e8, e9}.

Notice the separation between αej (ϕi ) and αej
(ϕi ) for attacker types ϕ2 and ϕ3, reflecting a

higher level of assumed knowledge than type ϕ1. Similarly, probabilities of success are

βej (ϕ1) = 0.5 for all ej ∈ E0

βej (ϕ1) = 0.4 for all ej ∈ E \ E0

βej (ϕ2) = 0.6 for all ej ∈ E0

βej (ϕ2) = 0.5 for all ej ∈ E \ E0

βej (ϕ3) = 0.7 for all ej ∈ E0

βej (ϕ3) = 0.6 for all ej ∈ E \ E0.

Probabilities of detection are provided in Table .. Notice that increased stealthiness is

represented by a lower probability of detection. Lastly, the probability of false alarm for

each alert zi under each type is ζi (ϕ1) = 0.4, ζi (ϕ2) = 0.5, and ζi (ϕ3) = 0.6. The space
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e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13

z1

0.8 0.1 0 0 0 0 0 0 0 0 0.4 0 0
0.3 0.4 0 0 0 0 0 0 0 0 0.3 0 0
0.5 0.6 0 0 0 0 0 0 0 0 0.3 0 0

z2

0 0.6 0.8 0 0 0 0 0 0 0 0.6 0 0
0 0 0.4 0 0 0 0 0 0 0 0.2 0 0
0 0.4 0.5 0 0 0 0 0 0 0 0.5 0 0

z3

0 0 0 0.5 0 0.6 0.1 0 0 0 0 0 0
0 0 0 0.4 0 0.4 0 0 0 0 0 0 0
0 0 0 0.5 0 0.5 0.4 0 0 0 0 0 0

z4

0 0 0 0 0.7 0 0.7 0 0 0 0 0 0
0 0 0 0 0.3 0 0.5 0 0 0 0 0 0
0 0 0 0 0.4 0 0.6 0 0 0 0 0 0

z5

0 0 0 0 0 0 0 0.7 0.6 0 0 0 0
0 0 0 0 0 0 0 0.4 0.3 0 0 0 0
0 0 0 0 0 0 0 0.5 0.4 0 0 0 0

z6

0 0 0 0 0 0 0 0 0.4 0.7 0 0 0
0 0 0 0 0 0 0 0 0.2 0.5 0 0 0
0 0 0 0 0 0 0 0 0.3 0.6 0 0 0

z7

0 0 0 0 0 0 0 0 0 0 0 0.7 0
0 0 0 0 0 0 0 0 0 0 0 0.4 0
0 0 0 0 0 0 0 0 0 0 0 0.6 0

z8

0 0 0 0 0 0 0 0 0 0 0 0 0.8
0 0 0 0 0 0 0 0 0 0 0 0 0.4
0 0 0 0 0 0 0 0 0 0 0 0 0.6

Table 6.1: Table of probabilities of detection for each attacker type. Columns represent attempted
exploits wheres rows represent the triggered alert. Each entry represents the probability of detection,
for a given exploit ei (column) and alert zj (row), for each type (from top to bottom), δi j (ϕ1), δi j (ϕ2),
and δi j (ϕ3).

of defense actions is constructed as the powerset of a set of binary defense actions, that

is U = P ({u1,u2,u3,u4}), resulting in a total of |U | = 24 = 16 defense actions. Each

binary defense action induces a set of blocked exploits, defined as B (u1) = {e1, e2, e3, e4},

B (u2) = {e5, e7, e11}, B (u3) = {e8, e9, e10}, and B (u4) = {e12, e13}. The set of exploits that

a defense action ut ∈ U blocks is equal to the union of the blocked exploits of the binary

defense actions that it contains, that is, B (ut ) =
∪

ui∈ut B (ui ). Security states are assigned

a cost of 1 for each goal condition, Nд = {c11, c12}, that is contained in the state. The cost

of each binary defense action is cu (ui ) = 0.25, for all i ∈ {1, 2, 3, 4}. The cost weight in
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Eq. (.) is set to w = 0.5 and the discount factor is ρ = 0.95. There are ns = 215 security

states (computed offline) and nz = 8 security alerts leading to |Y | = 28 = 256 observation

vectors. All simulations for the example use nk = 1200 particles to approximate the belief.

The problem is assumed to start from the empty (safe) security state s0 = ∅. The defender

is initially completely uncertain of the true attacker type, reflected by a uniform belief over

all attacker types. A sample evolution of the defense problem is illustrated in Fig. ..

Figure 6.7: Sample evolution of the defense problem. The current (true) security state st is repre-
sented by the tagged nodes. The true attacker type is represented by the tagged node in the panel to
the left of each graph; the true type for the above simulation is ϕ2. The defender’s (marginal) proba-
bility for both the security state and true type is represented as a heat-map (representing values via
colors), computed from the current belief state πt , where a darker shade represents a higher proba-
bility. Blocked exploits B (ut ), represented by shaded hyperedges, and the observation vector yt+1
are displayed beneath each graph. The above sample evolution was performed using nsim = 5000
simulations.
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The computed defense policy is intuitive. Initially, in order to save on availability costs,

the defense policy does not block any exploits. During this period of inaction, the defender’s

belief gradually assigns mass to worsening security states based on the received security

alerts. The belief over the true attacker type (represented by the panel to the left of each

graph in Fig. .) is also updated as a function of the received alerts. Eventually the defense

policy begins to deploy defense actions, blocking exploits that it believes are available to

the attacker, as dictated by Eq. (.). The defense actions serve two purposes. First, the

actions slow down the progression of the attacker through the system in the event that any

of the blocked exploits are attempted. Second, the actions (along with the received obser-

vations) help the defender to gather information, serving to reduce its uncertainty of the

true security state and attacker type. In order to lessen the negative impact to availability,

the defense policy may prescribe the null action in some time-steps, as seen in t = 17, 18.

In these cases, the defender will briefly wait for the attacker to progress before blocking

exploits further downstream (as discussed at the end of Section .., only blocking not yet

successful exploits will impede the attacker’s progression). This idle behavior only occurs

in the early stages of the attack when the attacker is believed to be far from reaching a goal

condition. When the defender’s belief reflects that the attacker is close to reaching a goal

condition,†† the defense policy has no option but to block the exploit(s) that would allow

the attacker to reach its goal(s), e.g. exploits e12 and e13 in time-steps t = 40 – 42 of Fig.

.. This defense action is persistent, resulting in the corresponding exploits being blocked

for all subsequent time-steps. In summary, the defense policy initially behaves passively,

placing priority on preserving availability, only deploying defense actions to slow the at-

tacker and gain information. As the defender becomes more certain of the security state

over time, it identifies and persistently blocks the exploits that would allow the attacker to
††In the event that the attacker has gained many conditions in a short period of time and the defender does

not yet have a good estimate of the security state or attacker type, the defense policy will be more aggressive,
blocking many exploits, until the defender’s uncertainty is reduced.
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reach a goal condition.

The defender’s belief over the true attacker type exhibits more uncertainty than its belief

over the security state. This is expected since the observed security alerts are more infor-

mative for the current progression of the attacker, i.e. the security state, than they are for

inferring the true attacker type. In other words, the observed security alerts are largely

consistent with the range of attacker behavior specified by the type space Φ. Nevertheless,

the defender eventually becomes confident of the true attacker type (see time-steps t = 40

– 42 in Fig. .), and even under the lack of complete certainty, is able to prescribe defense

decisions that prevent the attacker from reaching the goal conditions.

The performance of the online defense algorithm improves as the number of simulation

iterations nsim increases, as shown by the plots in Fig. .. For low simulation counts, e.g.

nsim = 500, the defense policy makes selections based on poor-quality estimates of the

actions. This causes the defense policy to be overly aggressive initially, prescribing to block

exploits from time-step t = 0 and unnecessarily restricting availability. Furthermore, due

to the poor-quality estimates, the resulting defense policy also allows the attacker to reach

a goal condition in many of the sample runs. As the number of simulations increases, more

possible future histories are taken into account, resulting in higher quality estimates of

actions and a better performing defense policy (as evidenced by the remaining plots in Fig.

.). The number of times that the attacker reaches a goal state decreases as the number of

simulations increases. For nsim = 5000, the attacker failed to reach any goal in all of the 

sample runs.

... A Remark on the Processing of Security Alerts

A particularly desirable feature of our state-based dynamic security model is in regard to

how security alerts are processed, specifically false alarms. Existing approaches, such as the

CSM (cooperating securitymanagers) system of [White et al., ] or the EMERALD (event
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Figure 6.8: Discounted costs of sample paths for various simulation counts. The behavior of the
defense policy (for the example system of Fig. 6.2) is demonstrated for simulation counts nsim =
500, 1000, 2000, 3000, 4000, 5000. The simulations for each value of nsim are initiated by randomly
assigning a true attacker type uniformly fromΦ = {ϕ1,ϕ2,ϕ3}. For each value ofnsim, the discounted
cost is plotted (versus the time-step) for 20 sample paths. Trajectories that terminate in a marker
represent sample paths where the attacker reached a goal state.

monitoring enabling response to anomalous live disturbances) system developed by [Porras

&Neumann, ], attempt to deal with false alarms by definingmetrics that reflect both the

severity of an attack and the confidence that it is a real intrusion. In the presence of a high-

rate of false alarms, these metric-based approaches can incorrectly classify benign security

alerts as real intrusions. The state-based approach of our model avoids this drawback. Since

the security state precisely describes what exploits are available to the attacker, via the set

E (s ) in Eq. (.), the defender is able to use the likelihood of the individual security states

in its belief to weigh new security information. To see this, consider the following example:
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Consider belief matrices π ,π ′ ∈ ∆(S × Φ) such that for some security state si ∈ S and

type ϕl ∈ Φ, π il > 0 and π ′il = 0. Let there be a single available exploit in state si , that is,

E (si ) = {e} and assume that if exploit e is attempted, it generates the unique alert z (that

is, no other exploit attempt can trigger alert z). If the defender possesses belief π and sees

alert z, then the belief update allows for the possibility of the alert being generated by an

attempt of exploit e . On the other hand, if π ′ is the current belief and alert z is received, the

defender can say with certainty that the alert was a false alarm. In general, the likelihood of

the individual security states in the current belief influence how security alert information

is processed. In our simulations, we have observed that even in situations where the false-

alarm rate is high, the defender is able to accurately track the true security state over time.

.. Conclusion

Thecomplex nature of sophisticated cyber attacks necessitates the development of a defense

system that is capable of prescribing defense actions in real-time that both mitigate the at-

tack and preserve availability, all while enabling a solution that scales to realistically-sized

cyber networks. Furthermore, the defense scheme must be able to operate under uncer-

tainty of the attacker’s strategy, the inherently noisy security alert information generated

by the intrusion detection system, as well as use the evaluated effectiveness of previously

deployed defense actions to influence future defense decisions. The state-based model in-

troduced in this chapter addresses all of the above mentioned concerns. Specifically, using

ideas from stochastic control theory, we can precisely model how the security status of the

system evolves as a function of both the attacker’s and defender’s actions and formulate

how the defender can use its imperfect information to specify optimal defense actions over

time. Scalability is achieved via a sample-based, online defense algorithm that takes advan-

tage of the structure of the security model to enable computation in large-scale domains.
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C 

On Monotonicity Properties of

Optimal Policies for POMDPs on

Partially Ordered Spaces

Man deciion poblem possess state-spaces where not all states are comparable. For

example, in security settings we cannot always say whether one security state is safer than

another state. Similarly, the observation signals that we receive from the environment are

also not comparable. In this chapter, we investigate such settings in the context of POMDPS

and aim to derive conditions to ensure that the optimal policy is monotone in the belief.

While an intuitive property, the result is non-trivial to show, requiring us to propose a new

stochastic order and a corresponding class of order-preserving matrices.
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.. Introduction

Partially observable Markov decision processes (POMDPs) model settings in which deci-

sions must be made over time subject to imperfect information of the underlying status

of the system. They have found applications in a multitude of practical settings includ-

ing scheduling, optimal stopping, learning theory, threat and failure response, spoken di-

alogue systems, robot navigation, and many more. Unfortunately, obtaining a solution to

the POMDP, that is, solving for an optimal decision rule (termed an optimal policy), is a

computationally difficult process, particularly for the high-dimensional problems found in

realistic decision environments.

Structural results for POMDPs investigate conditions under which optimal policies pos-

sess desirable properties. For example, one such structural result involves determining con-

ditions under which the optimal policy is increasing in the information/belief state, termed

amonotone policy. Establishing such structure not only simplifies the search for an optimal

policy (often a set of numbers is sufficient for characterizing monotone policies; [Lovejoy,

]), but also provides insight into the problem, quantifying the relationship between

optimal policy structure and the information pattern of the problem.

... Literature Review

Questions concerning the structure of optimal policies are fundamental to decision analy-

sis, spanning back to the seminal works of [Girshick & Rubin, ] and [Bellman, ].

Early work in the area, such as that of [Derman & Sacks, ] and [Derman, ], fo-

cused on completely observable settings with the goal of determining the optimal time to

replace a system that is probabilistically degrading over time, so-called replacement rules. In

particular, [Derman, ] studied replacement rules for a completely-observable problem

on a totally-ordered state-space and derived “monotonicity-preserving” conditions on the

transition matrix (i.e. increasing failure rate or IFR) ensuring that the optimal decision rule
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takes a control-limit form.

Investigating structural properties in problems of imperfect information represent a sig-

nificant complication, primarily due to the requirement to (partially) order beliefs. The

work of [Ross, ], one of the first to investigate such properties under imperfect informa-

tion (in the context of POMDPs), largely avoids this requirement by considering a two-state

core process, resulting in a total order among beliefs. In his work, Ross introduced an addi-

tional action, inspect, serving to reveal the true state of the system, and derived conditions

that ensured the optimal policy takes an at-most-four-region (AMR) structure.* [Albright,

] considered a two-state process similar to that of [Ross, ], but restricted attention

to actions that transition the system to improved states, rather than reveal information. In-

stead, information is revealed to the decision-maker via a finite set of observations, gener-

ated probabilistically via an observation matrix as a function of the underlying state. Under

monotonicity conditions on the transition matrix and reward functions, as well as the as-

sumption that the observation matrix is totally positive of order  (TP2), see [Karlin, ],

the optimal policy is monotone in the belief. Albright illustrates the difficulties associated

with considering more than two core states, demonstrating that one loses important mono-

tonicity properties of the belief update when first-order stochastic dominance is used to

order beliefs. Nevertheless, building upon the structural results of [Porteus, ], [White,

] managed to derive sufficient conditions to ensure that optimal replacement policies

are monotone under first-order stochastic dominance (complementing the completely ob-

servable and unobservable cases studied in [White, ]). While a significant contribution

to the field, White’s conditions are fairly restrictive, requiring an upper bound on the dis-

count factor in addition to monotonicity conditions on the model parameters. [Lovejoy,

] derived less strict conditions by ordering beliefs using the monotone likelihood ratio
*[Rosenfield, a, Rosenfield, b] also derived conditions to ensure the AMR property under a

slightly different paradigm in which the state consists of the pair (i,k ), representing that it has been k time-
steps since the state was known to be in state i .
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order, a stronger partial order than first-order stochastic dominance. In his work, Lovejoy

presents natural sufficient conditions (monotonicity conditions and TP2 transitionmatrices)

that ensure monotone optimal replacement policies, avoiding the requirement to bound the

discount factor.

The strength of the partial order used to compare beliefs is intimately related to the re-

strictiveness of the conditions involved for establishing the structural result. The conditions

of [White, ] involve comparing beliefs in a first-order stochastic dominance sense, re-

sulting in more restrictive conditions than those obtained when beliefs are compared using

the stronger monotone likelihood ratio of [Lovejoy, ]. The reason for this disparity

arises directly from the fact that the monotone likelihood ratio, unlike first-order stochas-

tic dominance, is preserved under conditioning on new information, as demonstrated in

[Lovejoy, ]. This property illustrates that the monotone likelihood ratio order is a

more fitting stochastic order than first-order stochastic dominance for problems of imper-

fect information.

... Contribution

In this chapter, we extend the results of [Lovejoy, ] to problems where the underly-

ing state-space is partially ordered. With the exception of [White, ], the majority of

existing work considers settings where the underlying state-space is totally ordered. The

motivation for considering a partially ordered state-space is largely a practical one; many

problems have state-spaces where one cannot necessarily label every state as beer orworse

than other states. Our model also considers observations that are partially ordered, mod-

eling the fact that the quality of signals received from the environment is not always com-

parable. Under this setting, we investigate a similar topic as that of [White, , Lovejoy,

], namely the structure of optimal replacement policies. Specifically, we consider two

actions, one that lets the system operate uninterrupted and another that transitions the
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system to the best state with certainty (a problem that is often referred to as the machine

replacement problem) and investigate conditions that ensure the optimal replacement policy

is monotone in the belief.

Themodel of this chapter ismotivated by a stylized version of the dynamic securitymodel

of Chapter . Consider a setting in which the attacker is progressively moving through the

cyber network toward its goal(s) and the defender, using noisy security alerts, constructs

a belief of the attacker’s progression and attempts to determine when to reset the system

to the initial (empty) security state. Under the natural subset order, the space of security

states is partially ordered. A primary objective of the present chapter is to investigate if

optimal policies for problems of this type exhibit any structure.

Due to the partial ordering of the underlying state-space, the standard monotone likeli-

hood ratio definition does not apply. We propose a generalized definition of the monotone

likelihood ratio, termed the generalized monotone likelihood ratio, along with a class of ma-

trices, termed generalized totally positive of order , that preserve this order. Our proposed

stochastic order possesses many desirable properties, permitting natural sufficient condi-

tions to guarantee monotone optimal policies. The conditions we obtain are qualitatively

similar to those of [Lovejoy, ], with the addition of a condition (on the observation

probabilities) directly arising from the fact that the state and observation spaces are only

partially ordered.

.. e Partially Observable Sequential Decision Model

Consider a finite time-horizon of lengthT . At each time t , the state of the system takes on

one of finitely many states from the set S = {s1, . . . , sn}, where s1 is termed the best state

and sn the worst state. The controller has access to two actions,U = {u0,u1}, where u0 lets

the system evolve uninterrupted and u1 transitions the system to state s1 with certainty.

Actions are costly – for a given state-action pair, an instantaneous cost c (st ,ut ) is incurred.
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Let c (st ) denote the cost at the terminal stage, t = T . Given the current state st = si and

current action ut = u, the system evolves probabilistically as dictated by the conditional

transition probability matrices Pu , u ∈ U , with elements puij = P (St+1 = sj | St = si ,Ut = u).

The controller does not observe the underlying state st perfectly, instead it receives an

observationyk ∈ Y = {y1, . . . ,ym}, at each time t , as dictated by the conditional observation

(emission) matrix R, with elements rjk = P (Yt+1 = yk | St+1 = sj ). Notice for our model

that, without loss of generality, the conditional observation probabilities are assumed to

be independent of the control action. For a given iteration, events unfold in the following

order:

) A control action, ut = u ∈ U , is specified.

) A state-dependent cost, c (st ,ut ), is incurred.

) The state transitions to st+1 ∈ S as dictated by the transition probabilities
puij = P (St+1 = sj | St = si ,Ut = u).

) An observation yt+1 ∈ Y is received as dictated by the conditional observation prob-
abilities rjk = P (Yt+1 = yk | St+1 = sj ).

The information available to the controller at time t , represented by the history of actions

and observations (as well as the distribution π0 over the initial state), denoted by ht =

(π0,u0,y1,u1,y2, . . . ,ut−1,yt ), can be summarized by a probability mass function over the

state-space S, termed an information state or belief πt ∈ ∆(S) ([Åström, ], [Kumar

& Varaiya, ]). The i’th component of belief π ∈ ∆(S) is the conditional probability

that the system is in state si ∈ S given a history of ht , that is, πi = P (St = si | Ht = ht ).

Given new information, consisting of the current action ut and the observation yt+1, the

belief is updated according to the recursive function τ : ∆(S) × U × Y → ∆(S) as πt+1 =





τ (πt ,ut ,yt+1) = (τ1(πt ,ut ,yt+1), . . . ,τn (πt ,ut ,yt+1)) where each τj (π ,u,yk ) is given by

τj (π ,u,yk ) =

∑n
i=1 πip

u
ijrjk

σ (π ,u,yk )
(.)

where

σ (π ,u,yk ) =
n∑
i=1

n∑
j=1

πip
u
ijrjk . (.)

For later convenience, define σ (π ,u) ∈ ∆(Y ) as a probability mass function consisting of

elements σ (π ,u,yk ) over all yk ∈ Y for a fixed (π ,u), and ri ∈ ∆(Y ) as a probability mass

function consisting of elements rik over all yk ∈ Y .

The objective of the controller is to specify a control action at each time in order to

minimize the expected discounted cost over the time horizon, given by

E

T−1∑
t=1

ρtc (st ,ut ) + ρ
Tc (sT )


where ρ ∈ (0, 1) is the discount factor. The rule designating this choice is termed a control

policy, denoted by д = (д1,д2, . . . ,дT ), where each дt is a function mapping an element of

the probability simplex over S, denoted by ∆(S), to a control action in U . The optimal

control policy, denoted by д∗, is the control policy that achieves the minimum expected

total discounted cost.

The optimal policy can be characterized by the value function. Following [Porteus, ],

[White, ], and [Lovejoy, ], define the function η : ∆(S) ×U ×B(S) → R as

η(π ,u,V ) =
n∑
i=1

πic (si ,u) + ρ
m∑
k=1

σ (π ,u,yk )V (τ (π ,u,yk )) (.)

where B(S) be the set of bounded, real functions on ∆(S). The value function, denoted by
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V ∗t , maps each belief π ∈ ∆(S) to a value representing the best that one can do from the

given belief. Using the definition of h, the value function at any time t is given by

V ∗t (π ) = min
u∈U

(
η(π ,u,V ∗t+1)

)
.

Similarly, the optimal control policy д∗ = (д∗1,д
∗
2, . . . ,д

∗
T ), dictating the optimal control

action at each time t , is given by

д∗t (π ) = argmin
u∈U

(
η(π ,u,V ∗t+1)

)
. (.)

It is assumed that the states inS are partially ordered by≽, forming the partially ordered

set (poset) (S,≽). Two states s, s′ ∈ S are said to be unorderable, denoted by s ∥ s′, with

respect to the partial order ≽ if neither s ≽ s′ nor s′ ≽ s . Furthermore, it is assumed that

the observation space Y is partially ordered by ≽Y , forming the poset (Y,≽Y ), where
unorderable observations y,y′ ∈ Y are denoted by y ∥Y y′. Lastly, assume that the action

spaceU is totally ordered by ≥, such that u1 ≥ u0. Without loss of generality, assume that

states and observations are indexed according to their respective partial orders, that is, if

si ≽ sj (yk ≽Y yl ) then we index si and sj (yk and yl ) such that i ≥ j (k ≥ l ).

.. Preliminary Definitions

The structural results we are interested in obtaining in this paper require one to be able

to compare beliefs, that is, to say when one belief π is larger than another belief π ′. This

necessitates the use of stochastic orders. Two such stochastic orders that will be useful

for later discussion are first-order stochastic dominance and the monotone likelihood ratio

order, defined below.

Definition .. (First-order Stochastic Dominance). Given elements π ,π ′ ∈ ∆(S), π is said
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to be greater than π ′ with respect to first order stochastic dominance (FOSD), wrien π ≽s π
′,

if
∑

j≥i πj ≥
∑

j≥i π
′
j for all i = 1, . . . ,n.

Definition .. (Monotone Likelihood Ratio). Given elements π ,π ′ ∈ ∆(S), π is said to

be greater than π ′ with respect to the monotone likelihood ratio (MLR), wrien π ≽r π ′, if

πiπ
′
j ≥ πjπ

′
i for every i ≥ j.

Themonotone likelihood ratio is a stronger partial order than first-order stochastic dom-

inance, in the sense that if π ≽r π ′ then π ≽s π ′ (shown in [Whitt, ]). The above

definitions apply in the case where the underlying state-space S is totally ordered, that

is, for any two si , sj ∈ S, one can write either si ≤ sj or si ≥ sj . Since the state-space

(and observation-space) is assumed to be partially ordered in our model, we cannot directly

make use of the above definitions.

First-order stochastic dominance has been generalized to the case where the underly-

ing space is partially ordered. Let IK denote the indicator vector, containing a one for all

elements in the set K and a zero otherwise. The definition below, which we refer to as

generalized first-order stochastic dominance (GFOSD), is courtesy of [White, ].

Definition .. (Generalized First-order Stochastic Dominance). Given elements π ,π ′ ∈

∆(S), π is said to be greater than π ′ with respect to generalized first order stochastic dom-

inance (GFOSD), wrien π ≽дs π ′, if π IK ≥ π ′IK for all K ∈ K = {K ⊆ S | si ∈ K , sj ≽
si =⇒ sj ∈ K }.

It is worth noting that GFOSD reduces to FOSD (Definition ..) in the case where

the underlying space is totally ordered; the set K reduces to contain sets of the form

{s1, . . . , sn},{s2, . . . , sn}, . . . , {sn} (since all states are comparable).

Useful characterizations exist for both FOSD and GFOSD. A common characterization

for FOSD, courtesy of [Stoyan & Daley, ], is as follows: π is said dominate π ′ with

respect to ≽s if and only if
∑

i πi f (si ) ≥
∑

i π
′
i f (si ) for all increasing functions f : S → R.
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An analogous characterization for GFOSD is courtesy of [Kamae et al., ]. Let us first

define the notion of≽-increasing functions: a function f : S → R is said to be≽-increasing
if for any si , sj ∈ S such that si ≽ sj we have that f (si ) ≥ f (sj ). The characterization of

GFOSD, restated in terms of the notation of our paper, is summarized by the following

lemma.

Lemma .. ([Kamae et al., ]). Given elements π ,π ′ ∈ ∆(S), π is said to dominate π ′

with respect to ≽дs if and only if
∑

i πi f (si ) ≥
∑

i π
′
i f (si ) for all ≽-increasing functions f .

.. Generalization of the Monotone Likelihood Ratio Order to Partially

Ordered Spaces

As mentioned earlier, unlike FOSD, the (stronger) MLR order survives conditioning upon

new information (see Section  of [Lovejoy, ]). This property allows for more natural

conditions to ensure monotone optimal policies. One issue is that the definition of MLR

assumes that the underlying space is totally ordered, an assumption that does not hold in

our model. As a result, we propose a generalized definition of the MLR order for the case

where the underlying space is partially ordered.

Definition .. (Generalized Monotone Likelihood Ratio). Given elements π ,π ′ ∈ ∆(S), π

is said to be greater than π ′with respect to the generalizedmonotone likelihood ratio (GMLR),

wrien π ≽дr π
′, if

πiπ
′
j ≥ πjπ

′
i for si ≽ sj

πiπ
′
j = πjπ

′
i for si ∥ sj .

Notice that if S were totally ordered, there would be no si , sj ∈ S such that si ∥ sj ,

resulting in ≽дr reducing to ≽r (Definition ..). Furthermore, analogous to the totally
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ordered case where π ≽r π ′ implies π ≽s π
′, the GMLR order is stronger than GFOSD, a

property which is formalized by the following lemma.

Lemma ... If π ≽дr π
′ then π ≽дs π

′.

Proof. See Appendix D.. □

An important step in establishing the desired threshold properties is characterizing the

class of matrices that preserve the GMLR order, that is, given π ≽дr π ′, finding the class

of matrices P such that πP ≽дr π ′P . In the case where the underlying space is totally

ordered, it is known that the MLR order is preserved by a class of matrices termed totally

positive of order  (TP2), that is, if π ≽r π
′ and P is a stochastic, TP2 matrix then πP ≽r π

′P

(see [Karlin, , Karlin & Rinott, ]). We define a generalized notion of TP2 matrices

(in Definition ..) for the case where the underlying space is partially ordered, which we

term generalized totally positive of order 2 (GTP2), and show (in Proposition ) that stochastic

matrices of this type are sufficient for preserving the GMLR order.

Definition .. (Generalized Totally Positive of Order 2). A matrix P ∈ Rn×n is said to be

generalized totally positive of order 2 (GTP2) if for every sk ≽ sl

pl jpki − pkjpli ≥ 0 for si ≽ sj

pl jpki − pkjpli = 0 for si ∥ sj

Proposition . If π ≽дr π
′ and P is a stochastic, GTP2 matrix then πP ≽дr π

′P .

Proof. See Appendix D.. □

.. Main Result: Sufficient Conditions for Optimal reshold Policies

Establishing threshold properties of optimal policies involve deriving the appropriate con-

ditions on the state dynamics, observation dynamics, and structure of the instantaneous
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and terminal cost functions. The main result, stated below in Theorem .., provides suffi-

cient conditions for optimal policies to be monotone in the belief with respect to the GMLR

order.

eorem ... If π ≽дr π
′ and the following conditions hold

(a) c (s ) is increasing in s on (S,≽)

(b) c (s,u) is increasing in s on (S,≽) for each u ∈ U

(c) c (s,u1) − c (s,u0) is decreasing in s on (S,≽)

(d) Pu is GTP2 for each u ∈ U

(e) rikrjl = rjkril if either si ∥ sj and yk ≽Y yl , or si ≽ sj and yk ∥Y yl

() ri ≽дr rj for all si ≽ sj in S

then д∗t (π ) ≥ д∗t (π
′) for all t .

The remainder of Section . will be dedicated to proving the above theorem. The results

proceed by demonstrating, in Section .., that conditions (a), (b), and (d) – () ensure that

the value functions are increasing in the belief with respect to the GMLR order, that is,

the value functions are increasing on the poset (∆(S),≽дr ). This result is formally stated in

Lemma ... Next, an additional condition, (c), on the instantaneous cost function (decreas-

ing differences), along with a result from [Topkis, ], ensures that the optimal policy is

also monotone on the poset (∆(S),≽дr ). The section concludes in Section .. with the

proof of Theorem ...

... Monotonicity of the Value Functions

Establishing monotonicity of the value functions on the poset (∆(S),≽дr ), that is, showing

that V ∗t (π ) ≥ V ∗t (π
′) for any π ≽дr π ′, requires first establishing some properties of the
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information dynamics. Specifically, the lemmas below (Lemmas .. and ..) character-

ize monotonicity properties of the belief update function τ in both the observation and the

belief. Lemma .. introduces an assumption on the observation process, in turn establish-

ing equivalence between monotonicity of the belief update in y on the observation poset

(Y,≽Y ), for a fixed belief and action, and monotonicity of the observation pm’s ri ∈ ∆(Y )

in si . Lemma .. shows equivalence between monotonicity of the belief update in π on

the poset (∆(S),≽дr ), for a fixed action and observation, and preservation of the order be-

tween MLR-orderable beliefs. Lemmas .. and .. are the partially ordered analogues

to Lemma ., parts () and (), of the totally ordered setting found in [Lovejoy, ].

Lemma ... Assume that rikrjl = rjkril if either si ∥ sj in S and yk ≽Y yl in Y , or si ≽ sj

in S and yk ∥Y yl in Y . en for any π ∈ ∆(S) and u ∈ U ,

τ (π ,u,yk ) ≽дr τ (π ,u,yl )

for all yk ≽Y yl in Y if and only if ri ≽дr rj for all si ≽ sj in S.

Proof. See Appendix D.. □

Lemma ... For any u ∈ U and yk ∈ Y ,

τ (π ,u,yk ) ≽дr τ (π
′,u,yk )

for all π ≽дr π
′ in ∆(S) if and only if πP ≽дr π

′P for all π ≽дr π
′ in ∆(S).

Proof. See Appendix D.. □

Before showingmonotonicity of the value function, the following result regarding stochas-

tic ordering of the pm’sσ (π ,u) ∈ ∆(Y ), π ∈ ∆(S),u ∈ U will be useful. This result, shown

in Lemma .. below, follows from the conditions that Pu is GTP2 for each u ∈ U and the

pm’s ri ∈ ∆(Y ) are increasing on (∆(Y ),≽дr ) in si on (S,≽).
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Lemma ... If π ≽дr π
′ and the following conditions hold

. Pu is GTP2 for each u ∈ U

. ri ≽дr rj for all si ≽ sj in S

then σ (π ,u) ≽дs σ (π
′,u) for each u ∈ U .

Proof. See Appendix D.. □

Using Lemmas .. through .. and imposing monotonicity conditions on the instan-

taneous and terminal cost functions enable one to show that the optimal value function is

increasing on the poset (∆(S),≽дr ).

Lemma ... Let π ≽дr π
′ and assume the following conditions hold

. c (s ) is increasing in s on (S,≽)

. c (s,u) is increasing in s on (S,≽) for each u ∈ U

. Pu is GTP2 for each u ∈ U

. rikrjl = rjkril if either si ∥ sj and yk ≽Y yl , or si ≽ sj and yk ∥Y yl

. ri ≽дr rj for all si ≽ sj in S

then V ∗t (π ) ≥ V ∗t (π
′) for all t .

Proof. See Appendix D.. □

... Proof of the Main Result

Recall the function η : ∆(S) ×U ×B(S) → R of Eq. (.) and consider Lemma .. below,

a special case of Lemma . from [Topkis, ], restated using the notation of our model.
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Lemma .. ([Topkis, ]). If η(π ,u,V ∗t+1) has decreasing differences in (π ,u) on the space

(∆(S),≽дr ) ×U , then there exists a function д∗t (π ) = argminu∈U
(
η(π ,u,V ∗t+1)

)
that is

nondecreasing in π on (∆(S),≽дr ).

Under condition (c) of Theorem .., Lemma .. allows us to translate monotonicity

of the value function into monotonicity of optimal policies. The proof of Theorem .. is

now possible.

Proof of eorem ... First, we show that η(π ,u,V ∗t+1) has decreasing differences in (π ,u)

on (∆(S),≽дr )×U , that is, η(π ,u1,V ∗t+1)−η(π ,u0,V ∗t+1) is decreasing on (∆(S),≽дr ). Then,

application of Lemma .. proves the result. Recall that τ (π ,u1,yk ) = v1 for any π ∈ ∆(S),

yk ∈ Y , that is, the reset action u1 causes the system state to transition to s1 with certainty.

Using this fact, along with the definition of η, see Eq. (.), we can write the following

η(π ,u1,V
∗
t+1) − η(π ,u0,V ∗t+1)

=

n∑
i=1

πi (c (si ,u1) − c (si ,u0)) + ρ *,V ∗t+1(v1) −
m∑
k=1

σ (π ,u0,yk )V
∗
t+1(τ (π ,u0,yk ))

+- .
Thus, for π ≽дr π

′, we wish to show

n∑
i=1

πi (c (si ,u1) − c (si ,u0)) + ρ *,V ∗t+1(v1) −
m∑
k=1

σ (π ,u0,yk )V
∗
t+1(τ (π ,u0,yk ))

+-
≤

n∑
i=1

π ′i (c (si ,u1) − c (si ,u0)) + ρ *,V ∗t+1(v1) −
m∑
k=1

σ (π ′,u0,yk )V
∗
t+1(τ (π

′,u0,yk ))+- . (.)

By condition (c) of Theorem .., c (si ,u1) − c (si ,u0) is decreasing in si on (S,≽). Conse-

quently, since π ≽дs π
′, application of Lemma .. ensures that∑n

i=1 πi (c (si ,u1) − c (si ,u0))

≤ ∑n
i=1 π

′
i (c (si ,u1) − c (si ,u0)). Now, to ensure the relationship in Eq. (.) holds, we need
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to show that

m∑
v=1

σ (π ′,u0,yk )V
∗
t+1(τ (π

′,u0,yk )) ≤
m∑
k=1

σ (π ,u0,yk )V
∗
t+1(τ (π ,u0,yk )) (.)

Eq. (.) follows directly from the arguments found in the proof of Lemma .. (see the

arguments for establising the inequalities in Eqs. (D.) and (D.)). Specifically, notice that

by conditions (a), (b), and (d) – (), we have thatV ∗t+1(π ) ≥ V ∗t+1(π
′) for π ≽дr π

′ by Lemma

... Furthermore, by conditions (d) – (), and Lemmas .., .., and .., monotonicity

of the value function ensures that

m∑
k=1

σ (π ′,u0,yk )V
∗
t+1(τ (π

′,u0,yk )) ≤
m∑
k=1

σ (π ,u0,yk )V
∗
t+1(τ (π

′,u0,yk )). (.)

Additionally, by condition (d), Lemma .., and monotonicity of the value function, we

have

m∑
k=1

σ (π ,u,yk )V
∗
t+1(τ (π

′,u,yk )) ≤
m∑
k=1

σ (π ,u,yk )V
∗
t+1(τ (π ,u,yk )) (.)

Eq. (.) follows by the transitivity of Eqs. (.) and (.), and thus η(π ,u,V ∗t+1) has decreas-

ing differences in (π ,u) on (∆(S),≽дr ) × U . Application of Lemma .. ensures that the

optimal policy д∗t (π ) = argminu∈U
(
η(π ,u,V ∗t+1)

)
is increasing in π on (∆(S),≽дr ). □

.. Visualizing the GMLR Order

The conditions for orderability under GMLR may raise questions as to the existence of

orderable beliefs. For each pair of states, a halfspace in the probability simplex is induced

if the states are orderable whereas a hyperplane is induced if the states are unorderable. In

order to gain some intuition for the set of comparable beliefs under the GMLR order, it is
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useful to visualize the order for a given state-space ordering.

Consider a state-space consisting of four states S = {s1, s2, s3, s4} with the ordering s3 ≽
s1, s3 ≽ s2, s4 ≽ s2, s4 ≽ s1, s1 ∥ s2, and s3 ∥ s4. For the given state-space ordering, Fig. .

constructs the set of comparable beliefs π ′, for the given belief π = (0.3, 0.2, 0.1, 0.4), such

that π ≽дr π
′.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7.1: Construction of orderable beliefs for a given state-space ordering. Halfspaces corresponding to
orderable states are (b) π3π ′1 ≥ π1π

′
3 arising from s3 ≽ s1 with intersect v13 (π ) =

(
1 − π1

π1+π3
, 0, π1

π1+π3
, 0

)
, (c)

π3π
′
2 ≥ π2π

′
3 from s3 ≽ s2 with v23 (π ) =

(
0, π2

π2+π3
, 1 − π2

π2+π3
, 0

)
, (d) π4π ′2 ≥ π2π

′
4 from s4 ≽ s2 with v24 (π ) =(

0, π2
π2+π4

, 0, 1 − π2
π2+π4

)
, (e) π4π ′1 ≥ π1π

′
4 from s4 ≽ s1 with v14 (π ) =

(
π1

π1+π4
, 0, 0, 1 − π1

π1+π4

)
. Hyperplanes

corresponding to unorderable states are (f) π2π ′1 = π1π
′
2 from s1 ∥ s2 with v12 (π ) =

(
1 − π2

π1+π2
, π2
π1+π2

, 0, 0
)
,

and (g) π4π ′3 = π3π
′
4 from s3 ∥ s4 with v34 (π ) =

(
0, 0, π3

π3+π4
, 1 − π3

π3+π4

)
. The resulting set of comparable

beliefs π ≽дr π
′ is given by the line in (h).

One can perhaps imagine a state-space ordering that results in no beliefs that are com-

parable to a given belief π . For instance, if there are many unorderable pairs of states, with

each one inducing a hyperplane in the simplex, the resulting intersection of hyperplanes

could result in the single belief π . We conjecture that if there are at most k − 1 pairs of
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unorderable states, where k is the dimension of the probability simplex (e.g. k = 3 in the

above example), then the resulting set of beliefs is non-trivial (in the sense that ∆(S) \ {π }

is nonempty).

.. Discussion & Conclusion

We have derived conditions to ensure monotone optimal policies in the case where the

underlying state-space is partially ordered. While an intuitive property, establishing the

optimality of monotone policies is non-trivial, primarily due to the requirement to select

an appropriate partial order on the belief space. In this chapter, we have introduced a new

partial order, termed the GMLR order, that is appropriate for comparing beliefs when not all

of the underlying states are orderable. Furthermore, we have introduced a class of matrices,

GTP2, that preserve the GMLR order.

The conditions presented in our work are natural and are qualitatively similar to those

of [Lovejoy, ]. Conditions (a) and (b) of Theorem .. require that the instantaneous

and terminal costs are increasing as the state degrades. Condition (c) states that the cost

of doing nothing increases on (S,≽) more quickly than the cost of resetting. Condition (d)

is with respect to the state dynamics, requiring that transitions to worse states are more

likely as the state degrades. Condition (e), arising from the partial ordering of the state and

observation spaces, is new and imposes conditions on the observation probabilities. While

we do not have a clear intuition for this requirement, it can be interpreted as a type of

(stochastic) indifference between alternatives (either observations or states) that we can’t

compare. Finally, condition () means that we are more likely to see worse signals from the

environment as the underlying state degrades.
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C 

Summary & Directions for

Further Resear

This dissertation has investigated three questions related to decision-making under uncer-

tainty in cyber-physical systems. Specifically, the work has addressed the following ques-

tions: ) In the context of power systems and electricity markets, how can one design

algorithms that guide self-interested agents to a socially optimal and physically feasible

outcome, subject to the fact that agents possess localized information of the system and re-

act to local signals? ) When a system is under attack from a malicious agent, what models

are appropriate for performing real-time and scalable threat assessment and response selec-

tion when we only have partial information about the attacker’s intent and capabilities? )

Under what conditions do optimal policies of POMDPs possess desirable structure (specifi-

cally, monotonicity in the belie)? The discussion that follows reiterates the key points and

contributions involved in answering each of these questions, as well as providing a critique

of the results and suggestions for further research.
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Decentralized Operation of Power Systems and Markets

The first question, addressed in Chapters  and , involves the development of models that

capture the salient physical features of the electrical grid and algorithms that permit agents

to reach a socially optimal outcome subject to their informational constraints. A defining

feature of the proposed models is the ability to take into account power losses (via the mod-

ified DC approximation, see Section .) without giving up desirable properties (namely

convexity) that enable one to guarantee convergence. The algorithms that guide agents to

a socially optimal outcome are iterative in nature and involve the exchange of messages. In

Chapter , these messages are the operating point directly (specifically, the voltage phase

angles). Using the operating point as messages allows agents to localize their externality ef-

fects, resulting in a completely decentralized algorithm that efficiently guides agents to the

optimal outcome. In Chapter , a market operator sends price signals to the agents (Dist-

Cos, GenCos, and TransCos) who reply with their optimizers (for a given price, TransCos

undergo a message-exchange process similar to that of Chapter ). Through appropriate

price updating, agents are guided to an outcome that maximizes their financial surpluses

(competitive equilibrium) which is shown to be socially optimal.

The models of chapters  and  can be extended in various ways. While the agents are

self-interested, they are not strategic, in the sense that they do not need to be incentivized

to follow the rules of the algorithm (i.e. they do not try to game the system). Revisiting the

design of these algorithms in the presence of strategic behavior represents an interesting

and challenging research question. Additional extensions to the models include the con-

sideration of a multi-period setting with temporal constraints (e.g. generation ramp limits,

load shifting) and the consideration of stochastic generation and demand.
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Dynamic Security of Cyber-Physical Systems

The second question, addressed in Chapter , involves the development of a formal, state-

based sequential decision model. By embedding a state space on the dependency graph, the

model is able to capture the complex nature of the attacker’s progression. Furthermore, by

considering multiple attacker types, the model describes the defender’s uncertainty over

the true strategy of the attacker. Using the received security alerts, the defender maintains

a belief over both the capabilities/progression of the attacker (security state) and its strat-

egy (attacker type). While realistic instances of the model can be very large, the use of a

sampling-based approach avoids the state-space explosion problem and permits efficient

computation of defense policies.

The nature of the computed defense policies hints at rules for secure system design. In

particular, an interesting research direction is to investigate if it is possible to design a

cyber network such that its dependency graph possesses properties that lead to efficient

defense. For instance, secure systems should possess dependency graphs that have many

layers of exploits between entry points (initial exploits) and critical system elements (goal

conditions), requiring that the attacker perform many stages of exploits to reach its goal(s).

Such dependency graphs should also have a small number of initial exploits, minimizing the

number of entry points that the attacker can use to launch an attack. Furthermore, to ease

selection of defense actions, it is desirable for dependency graphs to possess bottlenecks

for the attacker, that is, many attack pathways that all pass through a small number of

exploits. Such a property will allow for the defense policy to prescribe defense actions

that effectively block many pathways while minimizing the negative impact to availability.

In the context of cyber-physical systems, physical functionality of the system should be

spread out across the dependency graph (i.e. one should not be able to exert system-wide

control from a single computer). While this may decrease the functionality of the system

for trusted users, it limits how much damage an attacker can inflict on the physical system
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from a given goal condition. Additionally, the defender’s belief over the security state will

be more informative for inferring likely future physical contingencies, permitting more

effective defense of the system.

One can use the dynamic security model of Chapter  as a basis for addressing zero-day

exploits. Recall that the model assumed knowledge of all exploits that the attacker could

use to reach its goal(s). This assumption may not always hold, especially in the case of

sophisticated modern-day attacks (such as Stuxnet, see Section ..). By allowing the de-

fender to possess uncertainty over the structure of the dependency graph, zero-day exploits

can be viewed as edges that the defender does not know exist. The problem of defending

the system would then involve learning the structure of the underlying dependency graph

in addition to selecting defense actions.

Structural Properties of Optimal Policies for POMDPs

The third question is addressed in Chapter  under the assumption that the underlying

state space is only partially ordered. In this setting, a generalized version of the monotone

likelihood ratio (termed the GMLR order, see Definition ..) and an associated class of

order-preserving matrices (termed GTP2, see Definition ..) are introduced. Conditions

are derived that ensure monotone optimal policies, with respect to the GMLR order, in a

two-action POMDP setting.

While the conditions of Theorem .. are quite natural, applying them to the dynamic

security model of Chapter  presents difficulties. To see this, recall the stylized version of

the security model described in Section ... In order to apply Theorem .., one must

first show that the transition matrices are GTP2. The conditions on the security model’s

parameters (probabilities of attack and success) in order to satisfy the GTP2 property turn

out to be very strict due to the additional requirement that the matrix is upper-triangular

(arising from the monotonicity assumption on the attacker’s behavior, Section .). The
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conditions on the observation dynamics are similarly difficult to satisfy in the context of

the security model.

Nevertheless, it is straightforward to construct POMDP instances that satisfy the condi-

tions ofTheorem ... In these settings, the results allow one to prune the space of optimal

policies and can thus be useful for designing efficient policy search algorithms. If one can

determine the optimal action for a sample belief then one say something about the optimal

action in beliefs that are comparable to the sample belief. Repeating this process for multi-

ple sample beliefs is informative for knowing the optimal action in regions of the probability

simplex, aiding the search for an optimal policy.

To further increase the applicability of the results, it would be useful to derive analogous

conditions for settings with more than two actions. This extension is non-trivial, primarily

due to the difficulty of ensuring monotonicity properties of the dynamic programming re-

cursion. Furthermore, in the case where not all actions are orderable, one would need to

determine how to partially order the action space.

A Closing Remark

The frequency of breaches in recent months has demonstrated that security events are on

the rise. As our societies become more interconnected and reliant upon technology, these

security events will start to have more disruptive impacts on our lives. Fortunately, as of

now, our society has not been subject to attacks that have impacted our critical infrastruc-

ture. Ensuring that this remains the case will require a persistent and coordinated effort

from industry, government, and academia.
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A A

Appendix: A Decentralized Multi-Area

Optimal Power Flow Algorithm

with Power Losses

A.. Benmark of the modified DC approximation

We demonstrate the accuracy of the modified DC approximation by carrying out load flow

analyses under the AC, DC, and modified DC approximations on thirteen test systems with

network sizes ranging from  buses to  buses.* The computational efficiency of each

load flow analysis under the three approximations (AC, DC, and modified DC) is also com-

pared. A Dell PowerEdge R equipped with four AMD Opteron  processors (each

-core, .GHz,  x KB L cache, MB L cache) and GB of RAM was used as the

computing platform for the simulations. Load flow analyses were carried-out in MATLAB.
*Case data obtained from IEEE and Matpower [Zimmerman et al., ].
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To provide some perspective on the modified DC power flow approximation, we first re-

call the classical DC approximation. Like the modified DC approximation, the DC approxi-

mation sets all voltages to  p.u. but uses the small angle approximations cos(θn − θm ) ≈ 1

and sin(θn − θm) ≈ θn − θm resulting in a linear expression in the voltage angles, denoted

by д̄(θnm) = Bnm (θn − θm ). The DC approximation is frequently chosen over the nonlinear

AC equation, see Eq. (.), for a multitude of reasons [Stott et al., ]: it yields unique

solutions, it lends itself to simple and efficient (non-iterative) solution methods, the com-

putation of a solution requires minimal network data, and its linear nature fits well with

market operation. On the other hand, the main concerns of the DC power flow approxima-

tion are the potential inaccuracy of the resulting phase angles and power flows as well as

the fact that it ignores real power losses (this follows from the symmetry of the equation,

д̄(θnm ) = −д̄(θmn)).

The modified DC approximation attempts to solve the concerns of the DC approximation

while yielding a faster solution method than that of the AC power flow. The main value of

modified DC approximation over the classical DC approximation comes from two factors:

) the increased accuracy of the computed phase angles and resulting power flows; ) the

inclusion of real power losses. This improved approximation results from preserving some

of the nonlinearity of the AC equation. Due to this nonlinearity, an iterative method (New-

ton’s method) is needed in order to obtain a solution to the power flow equations (outlined

below).

Load Flow – Modified DC Approximation

Step  – Initialization

Initialize: Set t = 0, θ0 = 0 (flat start) and choose stopping threshold ε > 0.

Compute initial mismatch: ∆P(θ0) =
(
f1 (θ

0) − I1, . . . , fnb (θ0) − Inb
)
where fn (θ) =

∑
m∈Nb д(θnm )

and In is the net real power injection at bus i .

Step  – Update





Update Jacobian: [J(θt )]i j =
[
∂∆P(θ)
∂θ

���θ=θt ] i j =


∑
k ∈R̄i (Bik +Gikθ

t
ik ) if j = i

−Bi j −Gi jθ
t
i j if j ∈ R̄i

0 if j < R̄i

where

θ tik = θ
t
i − θ tk .

Compute mismatch: ∆P(θt ) =
(
f1 (θ

t ) − I1, . . . , fnb (θt ) − Inb
)

Update voltage angle: θt+1 = θt − J−1 (θt )∆P(θt )

Step  – Termination

If | |∆P(θt ) | |2 < ε , terminate; else, increment counter, t ← t + 1, and return to step .

The accuracy and efficiency of the modified DC approximation when tested on the thir-

teen test systems is highlighted in Tables A. – A.. Table A. presents the power flow

and phase angle errors.† In all cases, the modified DC approximation yielded a lower total

power flow error than the DC approximation (computed by summing, over all lines, the

modulus of the power flow errors with respect to the AC load flow solution). Overall, the

modified DC approximation resulted in significant gains in accuracy, especially for large

systems. Power flow losses under the modified DC approximation are very close to those

obtained in the AC load flow solution, as seen in Table A.. In terms of efficiency, the mod-

ified DC approximation exhibited a speedup of about three times compared to the AC load

flow, sometimes nearly reaching a four-fold speedup, as seen in Table A.. The reason for

this is clear; the modified DC approximation only considers real power flows and thus the

Jacobian in the load flow algorithm contains one quarter of the number of elements com-

pared to in the full AC load flow algorithm. As a result, it is less of a computational load to

execute the load flow under the modified DC approximation.

As seen in the benchmark tests, the modified DC approximation offers a good trade-

off between speed (the approximation results in significant speed-up compared to the AC
†The power flow equations are not antisymmetric thus errors are presented for both the forward and

reverse flow directions.
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case (nb )
total losses relative error
AC mDC

 () . . .
 () . . .
 () . . .
 () . . .
 () . . .
 () . . .
 () . . .
 () . . .
 () . . .
 () . . .
 () . . .
 () . . .
 () . . .

Table A.2: Total real power losses (pu) and relative error (infinity norm) of the loss vector obtained from the
modified DC approximation compared to the AC solution.

case (nb ) DC AC mDC speedup

 () .×- .×- .×- .
 () .×- .×- .×- .
 () .×- .×- .×- .
 () .×- .×- .×- .
 () .×- .×- .×- .
 () .×- .×- .×- .
 () .×- .×- .×- .
 () .×- .×– .×- .
 () .×- . . .
 () .×- .× . .
 () .×- .× . .
 () . .× . .
 () . .× . .

Table A.3: Execution time (seconds) of the DC, AC, and modified DC load flow methods. The speedup factor
of the modified DC approximation, compared to the AC method, is also included.
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method) and accuracy. The modified DC approximation solves many of the concerns of the

DC approximation, such as accuracy of the phase angles and resulting flows and provides

a very good approximation of power losses (even in large systems).

A.. Proof of Lemma ..

Proof. First, consider a change of variables from angles, θRa , to differences of angles ϕRa =

AaθRa , where Aa ∈ R
(
∑
n∈Na

b
|R̄n |)×( |Ra |−1) . We define Āa ∈ R

(
∑
n∈Na

b
|R̄n |)×|Ra | as follows

Āa=



Ā1
a

Ā2
a
...

Ā
nab
a


, where Ān

a=



v⊤n −v⊤[R̄n]1
v⊤n −v⊤[R̄n]2

...

v⊤n −v⊤[R̄n] | R̄n |


,

where vn ∈ R|R
a | is the standard basis vector (zeros with a one in element n). Matrix Aa

is formed by removing the column of Āa corresponding to the slack bus index in Ra ∩ N s
b

(since the slack angle is fixed).

We now prove a result concerning the rank of the matricesAa , in Lemma A.., below.

Lemma A... e matrix Aa has full rank, that is, rank(Aa ) = |Ra | − 1.

Proof. Define Ba := A⊤a Aa ∈ R( |R
a |−1)×( |Ra |−1) as

[Ba]ij =


2|R̄i | if j = i

−2 if j ∈ R̄i
0 if j < R̄i

.

Matrix Ba has some special structure. First, notice that Ba is diagonally dominant. Fur-

thermore, since we have removed the column in Āa corresponding to the slack bus, each
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bus i that is immediately connected to the slack bus corresponds to a row i which satisfies���[Ba]ii
��� = [Ba]ii >

∑
j
���[Ba]ij

��� (strict diagonal dominance). As a result, matrix Ba falls within

the class of irreducibly diagonally dominant matrices, known to be non-singular (Theorem

.. of [Horn & Johnson, ]). By the rank relation rank(Aa ) = rank(Ba ) = |Ra | − 1

(Theorem .. of [Mirsky, ] (p.)), Aa is full rank. □

Using the result of Lemma A.. we proceed to complete the proof of the Lemma. Define

the composition Ca = Fa ◦ Aa , so that Ca (θRa ) = Fa (AaθRa ) = Fa (ϕRa ). We first show the

strong convexity of Fa (ϕRa ) in ϕRa . We compute the Hessian of Fa (ϕRa ) as

∇2ϕRa Fa (ϕRa ) := Ma (ϕRa ) + Da (ϕRa ). (A.)

The matrix Ma (ϕRa ) = diag(M1
a (ϕR1 ), . . . ,M

nab
a (ϕRnab

)) is block-diagonal and symmetric

and Da (ϕRa ) = diag(D1
a (ϕR1 ), . . . ,D

nab
a (ϕRnab

)) is diagonal where ϕRn (a subvector of ϕRa )

is the neighboring angle differences with respect to bus n. Submatrices Mn
a (ϕRn ) and

Dn
a (ϕRi ), n ∈ N a

b
, are

Mn
a (ϕRn ) := c

′′
n

(
f̂n (ϕRn )

)
mn

a (ϕRn )m
n
a (ϕRn )

⊤

Dn
a (ϕRa ) := c

′
n

(
f̂n (ϕRn )

) |R̄n |∑
m=1

G[ϕRn ]mvmv
⊤
m

where the column vector mn
a (ϕRn ) is defined as

mn
a (ϕRn ) :=

(
B[ϕRn ]1 +G[ϕRn ]1[ϕRn ]1, . . . ,B[ϕRn ] | R̄n |

+G[ϕRn ] | R̄n |
[ϕRn ]|R̄n |

)
∈ R|R̄n | .

We use f̂n : R|R̄n | → R to denote the injected power as a function of bus n’s neighboring

angle differences and B[ϕRn ]m ,G[ϕRn ]m > 0 to denote susceptance and conductance, respec-

tively, of the line corresponding to the angle difference [ϕRn ]m. Each Mn
a (ϕRn ), n ∈ N a

b
,
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is positive semi-definite since c′′n
(
f̂n (ϕRn )

)
≥ 0 by assumption , thus Ma (ϕRa ) is posi-

tive semi-definite. Each Dn
a (ϕRn ) is positive definite due to the fact that Gnm > 0 for all

{n,m} ∈ El and c′n
(
f̂n (ϕRn )

)
> 0 by assumption , therefore, Da (ϕRa ) ≻ 0. Thus, by

(A.), ∇2
ϕRa

Fa (ϕRa ) ≻ 0 on ΦRa and hence Fa (ϕRa ) is strongly convex in ϕRa . Recall that

Ca = Fa ◦ Aa . Using the strong convexity of Fa (ϕRa ) in ϕRa and the fact that Aa is full

rank, we have, for all θRa ∈ ΘRa ,

∇2θRaCa (θRa ) = A⊤a ∇2ϕRa Fa (ϕRa )Aa ≻ 0

and thus Ca (θRa ) is strongly convex in θRa . □





A B

Appendix: A Decentralized Meanism for

Computing Competitive Equilibria in

Deregulated Electricity Markets

B.. Proof of Lemma ..

Proof. Let v = θi . The Hessian of Ψi
TC (v,λ), see Eq. (.), with respect to v is given by

∇2vvΨi
TC

(
v,λ

)
= −1

2∇2vv
( ∑

(n,m)∈E⃗il
(λn + λm )д̃(vnm)

)
, where the first order terms do not

enter into the expression. Define ι = N i
TC as the (ordered) set of bus indices of TransCo i
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and define

Ajk =



−
∑
{j,l }∈Eil

(λι j + λιl )Gι j ιl if j = k

−(λι j + λιk )Gι j ιk if {j,k } ∈ Ei
l

0 if {j,k } < Ei
l

for each j,k = 1, . . . , |ι | = |N i
TC |. By assumption , there exists an index s ∈ ι that cor-

responds to a slack bus. The Hessian ∇2Ψi
TC is defined as matrix A with the s th row and

column removed. Consequently, ∇2Ψi
TC belongs to the class of irreducibly diagonally dom-

inant matrices, known to be non-singular (see Theorem .. of [Horn & Johnson, ]).

To see this, note that the Hessian is diagonally dominant for all rows. Additionally, it is

strictly diagonally dominant in rows that correspond to buses that are immediately con-

nected to a slack bus. By assumption , the diagonal elements of the Hessian are negative

and by Prop. .. of [Cottle et al., ], ∇2Ψi
TC ≺ 0. □

B.. Proof of Lemma ..

Proof. The Hessian of the Lagrangian, denoted by ∇2xxL, is a square, block-diagonal matrix

of dimension ∑
i∈DC |N i

DCe | +
∑

i∈GC |N i
GC | + |Nb \ N s

b
|. It consists of three blocks, U, C,

and M, where U and C are diagonal matrices consisting of elements (uin)′′ (corresponding

to DistCo units) and −(cin)′′ (corresponding to GenCo units), respectively. By assumption

, we have U,C ≺ 0. Similar to the proof of Lemma .., matrixM can be shown to be an

irreducibly diagonally dominant matrix with a negative diagonal and thus, again by Prop.

.. of [Cottle et al., ],M ≺ 0. Since ∇2xxL is block-diagonal with each block negative

definite, we conclude ∇2xxL ≺ 0. □
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B.. Proof of eorem ..

Proof. Consider Problem (Q), defined as

max
ω∈Ω⊆RW

{G (ω) :r(ω)= (r1(ω), . . . , rM (ω))=0} . (Q)

Also, consider the following definition.

Definition B.. (Global ω-max, ν-min saddle point [Morgan, ]). A point (ω̂, ν̂ ) is a

global ω-max, ν-min saddle point for the LagrangianM (ω,ν ) = G (ω) − ν⊤r(ω) if and

only ifM (ω, ν̂ ) ≤ M (ω̂, ν̂ ) ≤ M (ω̂,ν ) ∀ω ∈ Ω, ν ∈ RM .

The proof proceeds in two steps: (i) We prove a general result demonstrating that if

(ω̂, ν̂ ) is a global ω-max, ν-min saddle point for the LagrangianM then ω̂ is the global

optimum for the problem (Q) (similar to the proof found in [Morgan, ]); (ii) We show

that the pricing process generates a global x-max, λ-min saddle point for the Lagrangian

L of Problem (P).

Part (i): Assuming that (ω̂, ν̂ ) is a global ω-max, ν-min saddle point, we haveM (ω̂, ν̂ ) ≤

M (ω̂,ν ) for all ν . Thus

G (ω̂) −
M∑

m=1

ν̂mrm (ω̂) ≤ G (ω̂) −
M∑

m=1

νmrm (ω̂). (B.)

Let there exist an indexm′ such that rm′ (ω̂) > 0, then we can choose νm′ ≫ 0 such that Eq.

(B.) is violated. Similarly, let there exist an indexm′′ such that rm′′ (ω̂) < 0, we can violate

Eq. (B.) by choosing νm′′ ≪ 0. Thus rm (ω̂) = 0 for all m and therefore ω̂ is feasible for

Problem (Q).

Since (ω̂, ν̂ ) is a global ω-max, ν-min saddle point, we also haveM (ω, ν̂ ) ≤ M (ω̂, ν̂ )

for all ω ∈ Ω. Thus G (ω) − ∑M
m=1 ν̂mrm (ω) ≤ G (ω̂) − ∑M

m=1 ν̂mrm (ω̂). Since r(ω) = 0 for
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every feasibleω, we have thatG (ω) ≤ G (ω̂) everywhere on {ω |r(ω) = 0,ω ∈ Ω} and thus

ω̂ is optimal for Problem (Q).

Part (ii): Let x∗ = x(λ∗) = argmaxx∈X L (x,λ∗), where λ∗ is the converged price vector

obtained from the pricing process (Eq. .). The profile x∗ is returned from the agents

when provided with the price λ∗ (via the optimizations in Section ..). By assumption 

and Corollary .., x∗ is unique. Notice that (x∗,λ∗) is a competitive equilibrium by Def.

... Also, due to the concavity of L (Lemma ..), φ (λ∗) = L (x∗,λ∗) ≥ L (x,λ∗) for

all x ∈ X. We know that ∇φ (λ) |λ=λ∗ = 0 and thus, by Eq. (.), h(x(λ∗)) = h(x∗) = 0.

Consequently, L (x∗,λ∗) =W (x∗) − (λ∗)⊤h(x∗) =W (x∗) =W (x∗) − λ⊤h(x∗) = L (x∗,λ)

for all λ. In summary L (x,λ∗) ≤ L (x∗,λ∗) = L (x∗,λ) for all x ∈ X, λ and thus (x∗,λ∗)

is a global x-max, λ-min saddle point for the Lagrangian L (x,λ).

From parts (i) and (ii), we conclude that the pricing process generates the pair (x∗,λ∗)

where x∗ is a globally optimal solution to Problem (P). □





A C

Appendix: A POMDP Approa to the

Dynamic Defense of Large-Scale

Cyber Physical Systems

C.. Defender’s Belief State Update

The timing diagram in Fig. C. will be useful for the arguments of this section.

a!ack

Figure C.1: Event and update timing for the dynamic security model.
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The belief update of Eq. (.) is derived as follows

π jm
t+1 = P (St+1 = sj ,Φt+1 = ϕm | Ut = u,Yt+1 = yk ,Πt = πt )

=

P (St+1 = sj ,Φt+1 = ϕm | Ut = u,Πt = πt )
· P (Yt+1 = yk | St+1 = sj ,Ut = u,Πt = πt )

P (Yt+1 = yk | Ut = u,Πt = πt )

=
pujm (πt )r

u
jk
(πt )

σ (πt ,yk ,u)

The derivations for Eqs. (.) – (.) are now presented. Eq. (.) is obtained via

pujm (πt ) = P (St+1 = sj ,Φt+1 = ϕm | Ut = u,Πt = πt )

=
∑

si∈S,ϕl ∈Φ
P (St+1 = sj ,Φt+1 = ϕm, St = si ,Φt = ϕl | Ut = u,Πt = πt )

=
∑

si∈S,ϕl ∈Φ
P (St+1 = sj ,Φt+1 = ϕm | St = si ,Φt = ϕl ,Ut = u,Πt = πt )

· P (St = si ,Φt = ϕl | Ut = u,Πt = πt )

=
∑

si∈S,ϕl ∈Φ
P (St+1 = sj ,Φt+1 = ϕm | St = si ,Φt = ϕl ,Ut = u)

· P (St = si ,Φt = ϕl | Πt = πt )

=
∑

si∈S,ϕl ∈Φ
P (St+1 = sj | St = si ,Φt = ϕl ,Ut = u)

· P (Φt+1 = ϕm | St = si ,Φt = ϕl ,Ut = u)

· P (St = si ,Φt = ϕl | Πt = πt )

=
∑

si∈S,ϕl ∈Φ
π il
t p

u
ijlqlm .
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Eq. (.) is obtained via

rujk (πt ) = P (Yt+1 = yk | St+1 = sj ,Ut = u,Πt = πt )

=
∑

si∈S,ϕl ∈Φ
P (Yt+1 = yk , St = si ,Φt = ϕl | St+1 = sj ,Ut = u,Πt = πt )

=
∑

si∈S,ϕl ∈Φ
P (Yt+1 = yk | St+1 = sj , St = si ,Φt = ϕl ,Ut = u,Πt = πt )

· P (St = si ,Φt = ϕl | Ut = u,Πt = πt )

=
∑

si∈S,ϕl ∈Φ
P (Yt+1 = yk | St+1 = sj , St = si ,Φt = ϕl ,Ut = u)

· P (St = si ,Φt = ϕl | Πt = πt )

=
∑

si∈S,ϕl ∈Φ
π il
t r

u
ijkl .

Finally, Eq (.) is derived as follows

σ (πt ,yk ,u) = P (Yt+1 = yk | Ut = u,Πt = πt )

=
∑

sj∈S,ϕm∈Φ
P (Yt+1 = yk , St+1 = sj ,Φt+1 = ϕm | Ut = u,Πt = πt )

=
∑

sj∈S,ϕm∈Φ
P (Yt+1 = yk | St+1 = sj ,Φt+1 = ϕm,Ut = u,Πt = πt )

· P (St+1 = sj ,Φt+1 = ϕm | Ut = u,Πt = πt )

=
∑

sj∈S,ϕm∈Φ
P (Yt+1 = yk | St+1 = sj ,Ut = u,Πt = πt )

· P (St+1 = sj ,Φt+1 = ϕm | Ut = u,Πt = πt )

=
∑

sj∈S,ϕm∈Φ
rujk (πt )p

u
jm (πt ).

In order to define the transition probability, pu
ijl
, consider the set of transition events,

denoted by F (si , sj ,ϕl ,u), denoting the set of exploit events that could have caused the

transition between si and sj under action u and type ϕl . Each event in v ∈ F (si , sj ,ϕl ,u)
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is a binary assignment (either successful or not successful) to each of the available exploits

that are not blocked by the current defense action, E (si ) \ B (u). The transition probability

is

puijl =
∑

v∈F (si ,sj ,ϕl ,u)

*.,
∏
em∈v1

αem (ϕl )βem (ϕl ) ·
∏
em∈v0

(
1 − αem (ϕl )βem (ϕl )

)+/- (C.)

where we have used the fact that the events in F (si , sj ,ϕl ,u) are disjoint. The set v1 (resp.

v0) denotes the collection of exploits in v that must succeed (resp. must not succeed).

The observation probability ru
ijkl

is now defined. Introducing a variable Et representing

the set of exploits attempted by the attacker from state St , the probability ruijkl is

ruijkl = P (Yt+1 = yk | St+1 = sj , St = si ,Φt = ϕl ,Ut = u)

=
∑

Ea∈P (E (si ))
P (Yt+1 = ym,Et = Ea | St+1 = sj , St = si ,Φt = ϕl ,Ut = u)

=
∑

Ea∈P (E (si ))
P (Yt+1 = ym | Et = Ea, St+1 = sj , St = si ,Φt = ϕl ,Ut = u)

· P (Et = Ea | St+1 = sj , St = si ,Φt = ϕl ,Ut = u)

=
∑

Ea∈P (E (si ))
P (Yt+1 = ym | Et = Ea,Φt = ϕl )

· P (Et = Ea | St+1 = sj , St = si ,Φt = ϕl ,Ut = u) (C.)

where we have used the fact that the event {Yt+1 = ym} is independent of the event {St+1 =

sj , St = si ,Ut = u} given the exploit attempt event {Et = Ea}. The probability of seeing a

given observation vector given a set of exploit attempts, P (Yt+1 = ym | Et = Ea,Φt = ϕl ), is

defined as

P (Yt+1 = ym | Et = Ea,Φt = ϕl ) =
∏
j∈A

P (Y j
t+1 = y

j
m | Et = Ea,Φt = ϕl )
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where separability of the above terms follows from the fact that the elements of the obser-

vation vector are conditionally independent given the exploit attempt. Defining E (zj ) as

the set of exploits that can trigger alert zj , that is, E (zj ) = {ei ∈ E | zj ∈ Z (ei )}, each term

in the above product is

P (Y j
t+1 = y

j
m | Et = Ea ) =



(
1 − ζj (ϕl )

) ∏
ei∈Ea∩E (zj )

(
1 − δij (ϕl )

)
if yjm = 0

1 −
(
1 − ζj (ϕl )

) ∏
ei∈Ea∩E (zj )

(
1 − δij (ϕl )

)
if yjm = 1

.

The probability of exploit attempts given a transition from si to sj under action u and type

ϕl , P (Et = Ea | St+1 = sj , St = si ,Φt = ϕl ,Ut = u), is

P (Et = Ea | St+1 = sj , St = si ,Φt = ϕl ,Ut = u)

=
P (St+1 = sj | Et = Ea, St = si ,Φt = ϕl ,Ut = u)P (Et = Ea | St = si ,Φt = ϕl )

P (St+1 = sj | St = si ,Φt = ϕl ,Ut = u)
.

To define the probability P (St+1 = sj | Et = Ea, St = si ,Φt = ϕl ,Ut = u), let the set

F (si , sj ,ϕl ,u, Ea ) denote the collection of attempted exploit events that could have resulted

in a transition to state sj given that exploits Ea were attempted in state si under actionu and

type ϕl . Each event v ∈ F (si , sj ,ϕl ,u, Ea ) is a binary assignment (either successful or not

successful) to each of the available exploits that are attempted and not currently blocked,

(Ea ∩ E (si )) \ B (u). The probability is then given by

P (St+1 = sj | Et = Ea, St = si ,Φt = ϕl ,Ut = u)

=
∑

v∈F (si ,sj ,ϕl ,u,Ea )

*.,
∏
el ∈v1

βel (ϕl ) ·
∏
el ∈v0

(
1 − βel (ϕl )

)+/- .
The probability of exploits Ea being attempted given the current security state si , P (Et =
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Ea | St = si ,Φt = ϕl ), is

P (Et = Ea | St = si ,Φt = ϕl ) =
∏

el ∈Ea∩E (si )
αel (ϕl ) ·

∏
el ∈E (si )\Ea

(
1 − αel (ϕl )

)

and P (St+1 = sj | St = si ,Φt = ϕl ,Ut = u) is the transition probability given by pu
ijl
.
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A D

Appendix: On Monotonicity Properties of

Optimal Policies for POMDPs on

Partially Ordered Spaces

D.. Proof of Lemma ..

Proof. Let π ≽дr π
′, so πiπ ′j ≥ πjπ

′
i if si ≽ sj and πiπ ′j = πjπ

′
i if si ∥ sj . Recall the definition

of generalized first-order stochastic dominance (Definition ..). For each K ∈ K , define

K̄ = S \ K . As a result of the definition of the set K , and the fact that π ≽дr π ′, for each

(i, j ) ∈ K × K̄ there exists either an expression πiπ ′j ≥ πjπ
′
i if si ≽ sj or πiπ ′j = πjπ

′
i if si ∥ sj .

For a given K , K̄ pair, sum the corresponding expressions over all (i, j ) ∈ K × K̄ , yielding

∑
(i,j )∈K×K̄

πiπ
′
j ≥

∑
(i,j )∈K×K̄

πjπ
′
i





due to the fact that π ≽дr π
′. The above inequality can be factored into the form π IKπ

′IK̄

≥ π IK̄π
′IK . Now,

π IKπ
′IK̄ ≥ π IK̄π

′IK

≡ (π IK )(1 − π ′IK ) ≥ (1 − π IK ) (π ′IK )

≡ π IK − π IKπ ′IK ≥ π ′IK − π IKπ ′IK

≡ π IK ≥ π ′IK

for each K ∈ K , thus π ≽дs π
′. □

D.. Proof of Proposition 

Proof. Let P be GTP2 and π ≽дr π
′. Denoting P◦,i as the i’th column of matrix P , we wish

to show that πP◦,iπ ′P◦,j ≥ πP◦,jπ ′P◦,i for si ⪰ sj and πP◦,iπ ′P◦,j = πP◦,jπ ′P◦,i for si ∥ sj .

Equivalently, defining qij (π ,π ′) = πP◦,iπ ′P◦,j − πP◦,jπ ′P◦,i , we wish to show that

qij (π ,π
′) ≥ 0 for si ⪰ sj

qij (π ,π
′) = 0 for si ∥ sj .

Observe that

qij (π ,π
′) = πP◦,iπ

′P◦,j − πP◦,jπ ′P◦,i

= π (P◦,iP
⊤
◦,j − P◦,jP⊤◦,i )π ′⊤.

Define Aij = P◦,iP⊤◦,j − P◦,jP⊤◦,i and notice that Aij is skew-symmetric, that is, (Aij )⊤ = −Aij .

The (k, l )’th element of matrix Aij , denoted by aij
kl
, is given by aij

kl
= pl jpki − pkjpli where
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aij
kl
= 0 for k = l . The function qij (π ,π ′) = πAijπ ′⊤ can then be written as

πAijπ ′⊤ =
n∑
l=1

n∑
k=l+1

(pl jpki − pkjpli )(πkπ ′l − πlπ
′
k ). (D.)

Recall our objective of showing that πAijπ ′⊤ ≥ 0 for si ⪰ sj and πAijπ ′⊤ = 0 for si ∥ sj .

First, consider the case where si ≽ sj . If sk ≽ sl , then by π ≽дr π ′, πkπ ′l − πlπ
′
k
≥ 0, and

since P is assumed to be GTP2, we have that pl jpki −pkjpli ≥ 0, and the corresponding term

in the sum is positive (see Eq. (D.)). Otherwise, if sk ∥ sl then πkπ
′
l
− πlπ

′
k
= 0 and the

corresponding term in the sum is zero, regardless of the sign of pl jpki −pkjpli . Consequently

πAijπ ′⊤ ≥ 0 when si ≽ sj . Second, consider the case where si ∥ sj . As in the first case,

if sk ≽ sl then πkπ
′
l
− πlπ

′
k
≥ 0, but now since si ∥ sj , we have that pl jpki − pkjpli = 0

since P is GTP2, resulting in the corresponding term in the sum to be zero. If sk ∥ sl then

πkπ
′
l
− πlπ

′
k
= 0 and the corresponding term in the sum is zero, regardless of the sign of

pl jpki − pkjpli . Consequently πAijπ ′⊤ = 0 when si ∥ sj . □

D.. Proof of Lemma ..

Proof. For any π ∈ ∆(S), u ∈ U , and yk ,yl ∈ Y such that yk ≽Y yl , τ (π ,u,yk ) ≽дr

τ (π ,u,yl ) if and only if (by Definition ..)

τi (π ,u,yk )τj (π ,u,yl ) ≥ τj (π ,u,yk )τi (π ,u,yl ) for si ≽ sj

τi (π ,u,yk )τj (π ,u,yl ) = τj (π ,u,yk )τi (π ,u,yl ) for si ∥ sj

for all yk ≽Y yl . Using the definition of τi (π ,u,y), Eq. (.), we can expand the above

expressions to obtain
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(
rik

∑n
a=1 πap

u
ai

σ (π ,u,yk )

) *,
rjl

∑n
a=1 πap

u
aj

σ (π ,u,yl )
+- ≥ *,

rjk
∑n

a=1 πap
u
aj

σ (π ,u,yk )
+-
(
ril

∑n
a=1 πap

u
ai

σ (π ,u,yl )

)
for si ≽ sj(

riv
∑n

a=1 πap
u
ai

σ (π ,u,yk )

) *,
rjl

∑n
a=1 πap

u
aj

σ (π ,u,yl )
+- = *,

rjk
∑n

a=1 πap
u
aj

σ (π ,u,yk )
+-
(
ril

∑n
a=1 πap

u
ai

σ (π ,u,yl )

)
for si ∥ sj

for all yk ≽Y yl . Multiplying both sides of the expressions by σ (π ,u,yk )σ (π ,u,yl ), defined

in Eq. (.), we obtain

*,rik
n∑

a=1

πap
u
ai
+- *,rjl

n∑
a=1

πap
u
aj
+- ≥ *,rjk

n∑
a=1

πap
u
aj
+- *,ril

n∑
a=1

πap
u
ai
+- for si ≽ sj

*,rik
n∑

a=1

πap
u
ai
+- *,rjl

n∑
a=1

πap
u
aj
+- = *,rjk

n∑
a=1

πap
u
aj
+- *,ril

n∑
a=1

πap
u
ai
+- for si ∥ sj

for all yk ≽Y yl . Rearranging, the expressions can be equivalently written as

(rikrjl − rjkril ) *,
n∑

a=1

πap
u
ai
+- *,

n∑
a=1

πap
u
aj
+- ≥ 0 for si ≽ sj

(rikrjl − rjkril ) *,
n∑

a=1

πap
u
ai
+- *,

n∑
a=1

πap
u
aj
+- = 0 for si ∥ sj

for all yk ≽Y yl . The above expressions are true if and only if

rikrjl ≥ rjkril for si ≽ sj

rikrjl = rjkril for si ∥ sj
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for all yk ≽Y yl . By assumption, we have that rikrjl = rjkril if either si ∥ sj and yk ≽Y yl or

si ≽ sj and yk ∥Y yl , so the above is equivalent to

rikrjl ≥ rjkril for yk ≽Y yl

rikrjl = rjkril for yk ∥Y yl

for all si ≽ sj , which is ri ≽дr rj for si ≽ sj . □

D.. Proof of Lemma ..

Proof. We need to show that the information state update preserves the generalized MLR

order (for a fixed action and observation) if and only if the transition matrix preserves

generalized MLR order. For any u ∈ U , yv ∈ Y , and π ,π ′ ∈ ∆(S) such that π ≽дr π ′,

τ (π ,u,yk ) ≽дr τ (π
′,u,yk ) if and only if

τi (π ,u,yk )τj (π
′,u,yk ) ≥ τj (π ,u,yk )τi (π

′,u,yk ) for all si ≽ sj

τi (π ,u,yk )τj (π
′,u,yk ) = τj (π ,u,yk )τi (π

′,u,yk ) for all si ∥ sj

for π ≽дr π
′. The above can be shown to be equivalent to

rikrjk *,
n∑

a=1

πap
u
ai
+- *,

n∑
a=1

π ′ap
u
aj
+- ≥ rjkrik *,

n∑
a=1

πap
u
aj
+- *,

n∑
a=1

π ′ap
u
ai
+- for si ≽ sj

rikrjk *,
n∑

a=1

πap
u
ai
+- *,

n∑
a=1

π ′ap
u
aj
+- = rjkrik *,

n∑
a=1

πap
u
aj
+- *,

n∑
a=1

π ′ap
u
ai
+- for si ∥ sj
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for π ≽дr π
′. Let Pu◦,i denote the i’th column of Pu . Dividing both sides of both expressions

by rikrjk (note that rik , rjk > 0 by assumption) yields

πPu◦,iπ
′Pu◦,j ≥ πPu◦,jπ

′Pu◦,i for si ≽ sj

πPu◦,iπ
′Pu◦,j = πPu◦,jπ

′Pu◦,i for si ∥ sj

for π ≽дr π
′, which is equivalent to πPu ≽дr π

′Pu for π ≽дr π
′. □

D.. Proof of Lemma ..

Proof. Let Pui,◦ denote the i’th row of matrix Pu . By assumption ,

Pui,◦ ≽дs P
u
j,◦

for si ≽ sj . This can be seen by recognizing that, for any si ≽ sj , the degenerate beliefs

vi ,vj ∈ ∆(S) (where vi is a pmf with all mass on element i) satisfy vi ≽дr vj and noticing

that viPu = Pui,◦ ≽дr P
u
j,◦ = vjP

u by Proposition  and thus Pui,◦ ≽дs P
u
j,◦ by Lemma ... By

assumption , ri ≽дr rj for all si ≽ sj and thus ri ≽дs rj for all si ≽ sj by Lemma ... That

is

riI J ≥ rjI J

for all J ∈ J = {J ⊆ Y | yl ∈ J ,yk ≽Y yl =⇒ yk ∈ J }. Using the aforementioned

Lemma .. of stochastic dominance on a partially ordered set, we have that∑n
j=1 p

u
ijrjI J is

increasing in i on (S,≽) for all J ∈ J . Now, since π ≽дr π ′ by assumption, π ≽дs π
′ by
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Lemma .., and again by Lemma .. we have

n∑
i=1

πi

n∑
j=1

puijrjI J ≥
n∑
i=1

π ′i

n∑
j=1

puijrjI J

for all J ∈ J . Recall σ (π ,u,yk ) =
∑n

i=1 πi
∑n

j=1 p
u
ijrjk , so the above inequality is equivalent

to σ (π ,u) ≽дs σ (π
′,u). □

D.. Proof of Lemma ..

Proof. The proof proceeds by induction. By assumption π ≽дr π
′ and thus, by Lemma ..,

π ≽дs π
′. Under the assumption that c (s ) is increasing in s on (S,≽), Lemma .. yields

V ∗T (π ) =
n∑
i=1

πic (si ) ≥
n∑
i=1

π ′i c (si ) = V
∗
T (π

′).

Now, assume thatV ∗t+1(π ) is increasing on (∆(S),≽дr ), that is,V ∗t+1(π ) ≥ V ∗t+1(π
′) for π ≽дr

π ′ (induction hypothesis). Also, let action u′ be optimal in π ′, that is u′ = д∗t (π ′), so

V ∗t (π
′) =

n∑
i=1

π ′i c (si ,u
′) + ρ

m∑
k=1

σ (π ′,u′,yk )V
∗
t+1(τ (π

′,u′,yk ))

≤
n∑
i=1

π ′i c (si ,u) + ρ
m∑
k=1

σ (π ′,u,yk )V
∗
t+1(τ (π

′,u,yk ))

where u = д∗t (π ). By Lemma .. and assumptions  and , τ (π ,u,y) is increasing in y on

(Y,≽Y ) for any π ∈ ∆(S), u ∈ U , and by the induction hypothesis,V ∗t+1(τ (π ′,u,y)) is also
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increasing in y on (Y,≽Y ). Now by Lemmas .. and .., we have that

n∑
i=1

π ′i c (si ,u) + ρ
m∑
k=1

σ (π ′,u,yk )V
∗
t+1(τ (π

′,u,yk ))

≤
n∑
i=1

π ′i c (si ,u) + ρ
m∑
k=1

σ (π ,u,yk )V
∗
t+1(τ (π

′,u,yk )). (D.)

Next, note that since π ≽дs π
′ and by assumption ,∑n

i=1 π
′
i c (si ,u) ≤

∑n
i=1 πic (si ,u), follows

by Lemma ... Furthermore, by Lemma .. and assumption , τ (π ,u,y) is increasing in

π on (∆(S),≽дr ) for any u ∈ U , yk ∈ Y , and using the induction hypothesis, we have

n∑
i=1

π ′i c (si ,u) + ρ
m∑
k=1

σ (π ,u,yk )V
∗
t+1(τ (π

′,u,yk ))

≤
n∑
i=1

πic (si ,u) + ρ
m∑
k=1

σ (π ,u,yk )V
∗
t+1(τ (π ,u,yk )) = V

∗
t (π ). (D.)

The result holds by induction. □
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