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ABSTRACT

The electrical properties - permittivity and conductivity - of a material describe

how electromagnetic waves behave in that material. Electrical properties are frequency-

dependent parameters and, for a liquid sample, are measured with a dielectric probe

and a network analyzer. This measurement technique is not feasible in vivo, but

methods have been developed to make these measurements using magnetic resonance

imaging (MRI). This work focuses on measuring conductivity, or the ability to con-

duct electric current. Mapping the electrical properties within the human body can

provide important information for MRI safety and diagnostic applications. First, the

specific absorption rate (SAR) in an MRI scan is proportional to conductivity, and

limited to minimize the risk of heating in a subject. Knowledge of subject-specific

conductivity maps could lead to better, subject-specific SAR estimation. Second,

several small studies in recent years have shown that conductivity is elevated in ma-

lignant tumors as compared to healthy tissue. There are open research questions

regarding the correlation between conductivity and other diagnostic metrics. Both of

these applications benefit from accurate conductivity maps. In this work we describe

three different methods for improving the accuracy of conductivity maps. The first is

a novel regularized, model-based approach which we refer to as the Inverse Laplacian

method. The Inverse Laplacian method resulted in lower reconstruction bias and

error due to noise in simulations than the conventional filtering method. The Inverse

Laplacian method also produced conductivity maps closer to the measured values in

a phantom and with reduced noise in the human brain, as compared to the filtering

method. The second is a method for combining multi-coil MRI data for conductiv-

xiii



ity mapping, because the use of multi-coil receivers can drastically improve the SNR

in conductivity maps. The noise in the combined phase data using the proposed

method was slightly elevated as compared to the optimal combination method, but

the conductivity uniformity in a uniform gel phantom was greater than that of the

optimal combination method. Furthermore, by visual inspection, the human brain

conductivity calculated from data combined using the proposed method had minimal

bias and noise amplification. Finally, we present a method for mapping conductivity

tensors, as opposed to scalar values, which provides an additional layer of information

to conductivity maps. Our proposed mathematical framework yields accurate ten-

sor quantities provided the object can rotate 90 degrees in any direction. However,

restricting the object rotation to mimic the constraints on a human subject yields

slightly inaccurate results. We also present a dictionary-based approach to tensor

calculations to try to improve the tensor estimates using restricted rotations.
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CHAPTER I

Introduction

The electrical properties of a material, which include permittivity and conductiv-

ity, describe how electromagnetic fields propagate throughout the material. Conduc-

tivity describes a material’s ability to conduct electric current whereas permittivity

describes a material’s resistance to establish an electric field. Conductive materials

include metals and aqueous salt solutions. Non-conductive materials are also referred

to as insulators and include air, glass, and plastics. Permittivity and conductivity are

frequency-dependent parameters, so the behavior of conductive and dielectric mate-

rials can change with the frequency of the application. The primary focus of this

work is on mapping conductivity in vivo, where we essentially encounter different salt

water solutions.

1.1 Motivation

Electrical properties of various human tissues have been studied ex vivo for a

wide range of frequencies (1–3), and these values are commonly used in electromag-

netic modeling applications. In the low-frequency range, conductivity depends on

the impedance of cell membranes (4). Low-frequency electrical properties measure-

ment techniques may be advantageous for planning therapeutic procedures, where

tissue conductivity affects current density. For example, conductivity maps may be
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useful or even necessary for planning transcranial magnetic stimulation (5, 6), with

frequency content between 0-10 kHz, or transcranial direct current stimulation (7, 8),

with frequency content primarily at 0 Hz.

At higher frequencies, above 100 MHz, the impedance of the membrane is negligi-

ble and electrical properties are primarily dependent on water and ion concentration.

There has been some work in studying the relationships between water and ions and

measured conductivity values (9–12). It is likely that the exact relationship between

tissue composition and electrical properties is complex in humans, and therefore may

be useful as biomarkers. Electrical properties have been shown to increase in tumors

in ex vivo experiments (13–16). Some smaller studies have shown that these elec-

trical property changes - primarily conductivity - can be detected using MR-EPT,

so there is potential for MR-EPT to provide an additional layer of information to

clinicians when examining tumors. A major area of focus of this application is mea-

suring electrical properties in breast cancer (17–21), including studying correlations

between conductivity and malignancy (22–24). The brain is the second major area of

focus. Brain cancer studies are similar to those in the breast, where the end goal is to

differentiate between tumor grades (11, 25–29). There is also active research in con-

ductivity changes after a stroke (30–32). These findings in the breast and brain also

align with sodium imaging MRI studies, which have shown that sodium concentration

increases in breast cancer, brain cancer, and stroke (33–35). This supports the idea

that conductivity at high frequencies depends on ion concentration, and furthermore

suggests using MR-EPT as a surrogate for less-readily available sodium imaging.

Other, less common, areas of study for the diagnostic value of electrical properties

include the heart, pelvis, and lung (36–40).

There are numerous open research questions as to how conductivity correlates to

other tumor metrics, as well as what additional information conductivity will provide

to clinicians. Some studies show that electrical properties may be redundant to

2



diffusion data (41, 42), but Tha et al. have provided evidence that not all diffusion

parameters correlate well with conductivity (43).

High-frequency electrical property mapping is also important for MRI safety ap-

plications. One risk to subjects during a MRI exam is tissue heating. As a surrogate

for temperature increase, the specific absorption rate (SAR) is closely monitored dur-

ing exams. SAR is proportional to the conductivity of a tissue, but typically this is

not measured and large safety factors are built in. Predicting and monitoring SAR is

a key safety factor in parallel transmit and high field MRI applications. Doing so on a

subject-specific basis requires accurate, subject-specific conductivity maps. Subject-

specific SAR predictions may be beneficial for subjects with atypical conductivity,

perhaps due to a lesion or implant. It may also be beneficial in designing MRI pulse

sequences because a more precise knowledge of conductivity would give more degrees

of freedom in the design process. Examples of preliminary work in predicting SAR

using conductivity maps can be found in (44, 45).

The common thread among all of these applications is the need for accurate, high

resolution, high signal-to noise ratio (SNR) conductivity maps.

1.2 Methods for Mapping Electrical Properties

There are a number of methods available for estimating the electrical properties

in vivo, that can generally be separated into low- and high-frequency domains. Due

to the frequency-dependent nature of the electrical properties, the best estimation

approach will depend on the frequency range of the application.

The low-frequency domain for measuring electrical properties typically covers

DC through the kilohertz range. The oldest method in this category is electrical

impedance tomography (EIT). An overview of the subject can be found in the text-

book by Holder (46). EIT involves attaching several electrodes to a subject and

injecting current into the body. Voltages are measured through electrodes as well,
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and the impedance distribution of the subject is reconstructed based on the mea-

surements. EIT is low cost, portable, and uses levels of current that are considered

safe. However, the EIT inverse problem is difficult to solve. The number of elec-

trodes can be a limiting factor in spatial resolution, but so is the non-local property

of impedance; the impedance in a small region of the body can influence the measure-

ments at all electrodes because measurements are only acquired at the boundary. Due

to the inherent coupling of electric and magnetic fields, magnetic resonance imaging

(MRI) was determined to be a useful tool to improve the spatial resolution of EIT

images. Initially, this combination of techniques used DC current injections and is

referred to as magnetic resonance current density imaging (MR-CDI) (47). Further

work in coupling MRI with EIT resulted in magnetic resonance electrical impedance

tomography (MREIT) (48–51). MREIT makes the EIT problem easier to solve be-

cause it measures the spatial distribution of the magnetic field inside the subject in

addition to measuring voltages at the boundary. Another low-frequency method is

magnetic induction tomography (MIT) (52). MIT does not involve direct contact

with the subject. Magnetic fields are applied and measured, but not using an MRI

scanner. Spatial resolution in these images is also relatively poor.

The high-frequency domain of electrical property measurement primarily consists

of magnetic resonance electrical properties tomography (MR-EPT). This method does

not involve direct contact with the subject and it is implemented as a typical MRI

exam. The electrical properties of the subject distort the magnetic fields within the

scanner, which can be measured using common MRI techniques. Due to the magnetic

fields used in MR-EPT, the electrical property maps are calculated at the Larmor

frequency of the MRI scanner. The electrical properties calculation is straight-forward

because we make measurements and calculate electrical properties at each spatial

location, but some of the limitations are discussed below in Section 1.7.
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1.3 The Homogeneous Helmholtz Equation

The complex permittivity of a material is defined as κ(x, y, z, ω) := ε(x, y, z, ω)−

i(σ(x,y,z,ω)
ω

) where ε is permittivity, σ is conductivity, and ω is the angular frequency of

interest. The electrical properties are not only a function of spatial location, but also

the angular frequency of interest. The complex permittivity of an object is related to

the magnetic field, H, by the Helmholtz wave equation (53):

−∇2H =
∇κ
κ
× [∇×H] + ω2µ0κH [1.1]

where ω is the resonant frequency and µ0 is the permeability of free space.

Under the assumption that the complex permittivity is spatially constant, the

term ∇κ
κ
× [∇×H] = 0, leading to the homogeneous Helmholtz equation (54):

−∇2H = ω2µ0κH. [1.2]

Therefore, one can calculate the complex permittivity of a material from the measured

complex-valued magnetic field.

1.4 Magnetic Resonance Electrical Property Tomography (MR-

EPT)

To measure the complex permittivity of a liquid sample, one would use a dielectric

probe and a network analyzer. This provides the complex permittivity values for a

wide range of frequencies. However, this method is not feasible in vivo. MRI is

naturally a reasonable option as a tool for calculating complex permittivity due to

its use of magnetic fields.

First proposed by Haacke et al. (54) and further described by Katscher et al.

(55), MR-EPT involves measuring magnetic fields with a MRI scanner to calculate
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electrical properties. While [1.2] relates κ to the magnetic field H, the magnetic field

and magnetic flux density, B, are related by the constitutive relationship B = µH.

Due to the linearity of the terms in [1.2] one can replace H with B. The term field will

be used to describe both of these quantities. There are several magnetic fields at play

in a MRI scanner, but one of the easiest to measure is the transmit radiofrequency

(RF) field, B+
1 . More details about the MRI data acquisition is discussed in the next

section. Rearranging the terms in [1.2] yields the governing equation for MR-EPT:

κ =
−∇2B+

1

ω2µ0B
+
1

. [1.3]

The right hand side of this equation is complex-valued. The real part of κ is the rela-

tive permittivity and the imaginary part is multiplied by ω to calculate conductivity.

1.5 Magnetic Resonance Imaging Considerations

The primary magnetic fields in a MRI experiment are the static field B0, and

the RF field, B1. We also use gradient fields to provide spatial variation in the

strength of the magnetic field. The Helmholtz wave equation holds for any time

harmonic magnetic field. Thus, the static B0 field will not be useful for MR-EPT.

There has been some exploration into the feasibility of using eddy currents induced

by switching gradients for conductivity imaging, which would result in MR-EPT at

much lower frequencies than the typical MHz range (56–58). The general conclusion

is that the signal contributions from the fields induced by the eddy currents fall below

the noise floor in a typical MRI scan, making this approach impractical. This leaves

us with the field B1, which has two components: B+
1 , the transmit RF field, and B−1 ,

the receive RF field or the sensitivity to relaxing spins of the receive coil (59). There

exist methods for measuring B+
1 , but not B−1 , which is why we use the transmit RF

field for MR-EPT.
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Methods for measuring the B+
1 field typically measure magnitude or phase, but

not both. The accuracy of MR-EPT relies on the accuracy of these measurements,

but there are tradeoffs between accuracy and feasibility. There are several methods

for measuring the magnitude of B+
1 , including the double angle method (60), actual

flip-angle imaging (61), and the Bloch-Siegert method (62). Measuring the exact

phase of B+
1 is more challenging than measuring the exact magnitude because the

phase of an MR image, often called the transceive phase, is the superposition of the

transmit and receive phases. For a coil operating in quadrature, Wen observed that,

if only considering the near field, the transmit and receive phases are approximately

equal (63). This gives rise to the transceive phase assumption, which states that the

transmit phase can be approximated as half of the phase of an MR image. However,

to use this approximation, MR phase data must be free from contributions due to

off-resonance effects, eddy currents, motion, and flow. This can be achieved with

a spin echo sequence or a balanced steady state free precession scan (64). A spin

echo sequence is free from off-resonance effects due to the 180◦ pulse. However, to

minimize the eddy current effects, the spin echo sequence must be acquired twice

with opposite slice-select gradient polarities. Ideally, the eddy currents induced by

the slice select gradient will be equal and opposite, so if the two resultant phase

images are averaged the phase contributions due to eddy currents will cancel out.

Contributions from motion can be mitigated with instructions to the subject and

providing padding or restraints to prevent movement. Contributions due to flow

can be minimized by prescribing saturation bands (65). An additional strategy for

minimizing flow artifacts in large vessels is described in Chapter II. A single steady-

state free-precession (SSFP) sequence has similar properties to the spin echo sequence

with respect to off-resonance and eddy currents, so it is also a viable candidate for

measuring the transceive phase.
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1.6 Phase-Based Conductivity Mapping

Two MRI scans are typically required to acquire the complex-valued B+
1 field -

one for the magnitude and one for the phase. An important observation by Wen

(63) noted that, to the leading order, the conductivity of a material primarily affects

the phase of the magnetic field and the permittivity primarily affects the magnitude

of the magnetic field. Let us write the magnetic field quantity as a product of the

magnitude and phase components,

B+
1 = |B+

1 |exp(iφ+) [1.4]

where |B+
1 | is the magnitude of the transmit RF field and φ+ is the phase of the

transmit RF field. Expanding the real and imaginary parts of Equation 1.3 gives the

following expressions:

ε =
1

ω2µ0

[
|∇φ+|2 − −∇

2|B+
1 |

|B+
1 |

]
[1.5]

and

σ =
1

ωµ0

[
∇φ+ · ∇ln|B+

1 |+∇2φ+
]
. [1.6]

With some assumptions, we can write two simplified approximations for calculat-

ing electrical properties, which are described in detail by Voigt et al. (66). The first

is the magnitude-based permittivity approximation:

ε ≈ −∇
2|B+

1 |
ω2µ0|B+

1 |
. [1.7]

Simplifying Equation 1.5 to Equation 1.7 requires the assumption that
−∇2|B+

1 |
|B+

1 |
�

|∇φ+|2, or that the gradient of the phase is much less than the curvature of the

magnitude.
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The second is the phase-based conductivity approximation:

σ ≈ ∇
2φ+

ωµ0

. [1.8]

where φ+ is the phase of the transmit RF field, or the transmit phase. It is crucial

that the phase maps used in this calculation have been unwrapped because the Lapla-

cian calculation requires a small neighborhood of pixels. To simplify Equation 1.6 to

Equation 1.8, we must assume that ∇2φ+ � ∇φ+ · ∇ln|B+
1 |, or that the gradient of

the magnitude is much less than the curvature of the phase. This is often simplified to

the assumption that the magnitude of the transmit RF field is relatively constant. As

the static magnetic field strength increases, the B+
1 magnitude becomes less uniform

and phase-based conductivity mapping is more biased (67). The phase-based conduc-

tivity approximation is generally acceptable for 1.5T and 3.0T MRI scanners. The

assumptions for magnitude-based permittivity mapping and phase-based conductiv-

ity mapping are somewhat contradictory. According to (67), the magnitude-based

permittivity mapping approximation is better for higher field strengths, opposite of

the phase-based conductivity approximation.

The linearity of the phase-based conductivity approximation supersedes the transceive

phase assumption discussed in the previous section, allowing for any coil to be used

for phase-based conductivity mapping. The theory is as follows.

One can measure conductivity from either the transmit or receive phase, both giv-

ing the same value of σ. The transceive phase contains both of those phase quantities

even if they are unequal. Thus, the conductivity is

σ =
∇2 (φ

++φ−)
2

ωµ0

=
1

2

(
∇2φ+

ωµ0

+
∇2φ−

ωµ0

)
=

2σ

2
. [1.9]

Due to the linearity of the phase-based approximation, we can simply divide the

transceive phase by two to calculate conductivity. Alternatively, the resultant con-
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ductivity calculation based on the transceive phase could be divided by two.

Figure 1.1 shows an example of the transceive phase measured in the brain of

a human subject. The phase map is relatively smooth and has an overall quadratic

shape, colloquially known as bowl-shaped. Equation 1.8 tells us that the conductivity

of a material is proportional to the curvature of the phase map, or the curvature of

this bowl. While the curvature appears to be constant, there are subtle variations

that will lead to spatially varying conductivity maps.

Figure 1.1: Representative transmit RF phase map from a human subject’s brain.

In summary, the phase-based conductivity approximation simplifies both the ac-

quisition and calculation for conductivity mapping. Only the phase of the transmit

field is required, halving the data acquisition requirements. Additionally, any coil
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can be used for conductivity mapping because the linearity of the approximation

supersedes the transceive phase assumption.

1.7 Limitations and Current Approaches

The primary limitation of MR-EPT and other conductivity mapping approaches

is the lack of a gold standard in vivo. For phantoms, one can measure a sample of

the liquid or gel using a dielectric probe attachment on a network analyzer. However,

this cannot be used in vivo. Reported textbook values on the conductivity of human

tissues have been measured on excised samples, potentially introducing error. There-

fore, much of the quantitative analysis on conductivity mapping approaches must be

done in simulation or phantoms.

In terms of calculating conductivity, SNR and boundary artifacts often obscure

the accuracy of the estimates. The low SNR comes from the Laplacian operator,

which amplifies noise in measured magnetic field data. The boundary artifacts arise

from using the homogeneous Helmholtz equation, which is not valid at the boundary

of materials with two different conductivities. More details about these issues will be

described in Chapter II.

A common approach to conductivity or complex permittivity mapping is to apply

the MR-EPT equations to measured B+
1 data and apply some variety of a spatial

filter to either the B+
1 images, the conductivity images, or both. A number of filters

have been used in the literature, but they all have a trade-off between filtering out

noise and smoothing over fine details in the image. There has been work on the utility

of magnitude images in the filtering process to help preserve small details (17, 68),

studying boundary artifacts (68, 69), exploring the assumption that conductivity

must be homogeneous (70, 71), improving SNR issues (17, 72–76), and other artifacts

in MR-EPT (69, 77). There has also been work on improving conductivity mapping

with alternative problem formulations to MR-EPT. Some present alternative forms
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of the forward problem, calculating conductivity from measured magnetic fields (78–

81). Other formulate the reconstruction as an inverse problem (82–88). Katscher

et al. (89) have also proposed a dictionary-based EPT algorithm. In most of these

formulations, the experiments are limited to simulations and experimental phantoms,

due to the complexities involved in implementing these advanced techniques in vivo.

1.8 Dissertation Structure

This dissertation is comprised of three main chapters of research. Chapter II is a

novel regularized, model-based approach to phase-based conductivity mapping. This

method provides a full three-dimensional conductivity map and can be implemented

on a desktop computer. Chapter III focuses on combining multi-channel data for

MR-EPT. This is a novel method that does not require a reference scan or reference

coil, but yields combined phase data that contains the low and high spatial frequency

content required for MR-EPT. Chapter IV describes a proof of concept for measuring

conductivity tensors in the MRI scanner. This is the first demonstration of measuring

the full tensor in practice.
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CHAPTER II

Model-Based Conductivity Mapping with

Regularization

2.1 Introduction

The primary issues in MR-EPT are boundary errors and low SNR. The boundary

errors arise from the assumption that the electrical properties are spatially constant.

The violation of this assumption is most prominent at material boundaries, but can

also be problematic in inhomogeneous materials. Seo et al. (70) provided a mathe-

matical analysis of this error and Duan et al. (71) investigated the error magnitude

at various tissue interfaces. Boundary errors are evident in the phase-based conduc-

tivity approximation as well. According to Equation 1.8, if a material has a spatially

constant conductivity it will have a parabolic phase profile. At the boundary of two

materials, there is a transition region between two parabolas. Naturally this would

form a cusp, but phase maps are inherently smooth and, instead, an apparent inflec-

tion in the curvature is observed. This can lead to negative calculated conductivity

values. Low SNR results from calculations that rely on the Laplacian operator. Elec-

trical properties are proportional to the Laplacian of the measured magnetic fields, so

their calculation amplifies any noise incurred during the MRI scan. Several methods

have been proposed to minimize one or both of these issues, such as gradient-based
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approaches (78–80, 90), magnitude image-based filter kernels (17, 68), and inverse

approaches.

There have been a few proposed MR-EPT methods focused on solving the inverse

problem as opposed to the forward problem. Balidemaj et al. developed the Con-

trast Source Inversion approach (CSI-EPT) (82), which is based on global integral

representations for the electromagnetic field quantities. CSI-EPT includes a Total

Variation regularization term to reduce noise and does not rely on the assumption

that conductivity is constant. Resultant conductivity maps for numerical phantoms

show excellent recovery of small details and tissue boundaries. However, CSI-EPT

requires knowledge of the background field, which is the field present in the scanner

in the absence of a dielectric object. To the best of our knowledge, this method

has not been extended to three-dimensions and also has only been used in numerical

experiments. Borsic et al. (84) proposed an Inverse Problems approach more simi-

lar to the method we present in this paper. Their Inverse Problems Approach also

updates the conductivity maps based on the difference between the forward prob-

lem formulation and the measured data. They have tested both quadratic and Total

Variation regularization schemes. The Total Variation formulation results in excellent

recovery of boundaries in numeric and experimental phantoms, but the method has

not been tested in vivo. Furthermore, this method presents a computational burden,

which the authors have mitigated by subdividing the problem, but there exist some

discontinuities at the boundary between subdivisions.

As an alternative to MR-EPT, Local Maxwell Tomography (LMT) (91, 92) and

Global Maxwell Tomography (GMT) (88, 93) have been proposed in recent years,

and are also formulated as inverse problems. LMT does not require assumptions

about RF phase or the coil structure and was generalized to solve for tensors and

rapidly varying electrical properties. However, the approach requires multi-channel

transceivers. GMT is based on volume integral equations and, as such, requires
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appropriate solvers. GMT uses only the magnitude of the RF field, so it does not

rely on phase assumptions. To the best of our knowledge, LMT and GMT have only

been demonstrated in numerical phantoms.

We use magnitude information from the MRI images as a priori information in

our proposed reconstruction process, specifically to identify a region of support and

identify tissue boundaries. Magnitude information has previously been used to adapt

the filter kernel shape and size to the anatomy in both Gaussian filtered Laplacian

(68) and parabolic fitting (17) approaches. Both methods have reduced the size of

boundary artifacts.

In this chapter we propose a novel method for phase-based conductivity mapping

that includes a model-based approach with regularization. The aim of this approach

is to produce conductivity maps with higher accuracy by reducing noise amplification

and boundary artifacts. This is a 3D method that uses magnitude information as

a priori information to improve the phase-based conductivity reconstruction. Fur-

thermore, we explore the benefits of including a non-negativity constraint to reduce

boundary artifacts. We demonstrate this method in numerical simulations, a saline

phantom, and human subjects. 1

2.2 Theory

We propose an estimator for penalized weighted least-squares reconstruction of a

conductivity map as

σ̂ = arg min
σ

1

2

∣∣∣∣∣∣ φ+

ωµ0

− Lσ
∣∣∣∣∣∣2
W1

+ βR(σ,W2), [2.1]

1Parts of this chapter have been published in: K.M. Ropella and D.C. Noll, A Regularized,
Model-Based Approach to Phase-Based Conductivity Mapping Using MRI, Magnetic Resonance in
Medicine, 2017;78:2011-2021.
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where σ̂ is the optimal conductivity estimate, ω is the Larmor frequency of the MRI

scanner, µ0 is the permittivity of free space - a constant, φ+ is the unwrapped mea-

sured transmit phase data, L is a system model relating the two, R is a regularization

function, and β is the regularization parameter. The weighting matrix W1 incorpo-

rates a priori information into the problem by determining the region of support. The

first term on the right hand side of the Eq. [2.1] is the data fit term, which enforces

the relationship between tissue conductivity and φ+ described in Eq. [1.8]. The

second term is a penalty, or regularization, term which incorporates some previous

knowledge of the object to improve the fidelity of the reconstruction.

In this problem, the system model L can be described as a filter representing an

approximate inverse of the discrete Laplacian operator, ∇2, where:

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
[2.2a]

∂2

∂x2
f(x, y, z) =

f(x− 1, y, z)− 2f(x, y, z) + f(x+ 1, y, z)

h2x
[2.2b]

∂2

∂y2
f(x, y, z) =

f(x, y − 1, z)− 2f(x, y, z) + f(x, y + 1, z)

h2y
[2.2c]

∂2

∂z2
f(x, y, z) =

f(x, y, z − 1)− 2f(x, y, z) + f(x, y, z + 1)

h2z
[2.2d]

where hx, hy, hz are the voxel dimensions. For isotropic unit voxels, this equates to

the 3 × 3 × 3 matrix ∇2, where at the center point ∇2 is -6 and at the six adjacent

neighbors to the center ∇2 is 1. In other words, ∇2(0, 0, 0) = −6 and ∇2(±1, 0, 0) =

∇2(0,±1, 0) = ∇2(0, 0,±1) = 1. For anisotropic voxels, Eqs. 2.2b-2.2d are scaled by

the appropriate voxel dimensions, and the ones in ∇2 will vary with the voxel size.

The inverse of this operator is calculated by zero-padding this kernel to the size

of the data, taking the 3D fast Fourier transform (FFT), and inverting the FFT

coefficients. Since the FFT of the Laplacian operator is zero-valued at DC, inverting
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that coefficient is ill-conditioned. To mitigate this problem, we added a small offset,

δ, to the DC coefficient of the Laplacian. Taking the inverse FFT of the inverted

coefficients results in the Inverse Laplacian (IL) filter L.

Similar to calculating the Laplacian of phase data, the IL calculation requires the

convolution of σ with the IL filter. To keep consistent with least-squares notation,

we represent the IL filter as a matrix, but in actuality this filter is an operator, where

Lσ := F−1{F{σ} · F{L}}.

The F operator is the FFT.

The regularizer for this problem, R(σ,W2), uses a three-dimensional roughness

penalty, which can be written as:

R(σ,W2) =
J∑
j=1

K∑
k=1

W2(k, j)ψ([Cjσ]k). [2.3]

This regularization term encourages a smooth conductivity map because the matrix C

is the first order finite difference operator with size K voxels by K voxels by J pairs of

differences. For a three-dimensional data set with size M ×N ×P , K = NMP . This

regularizer calculates a weighted sum of the differences between the voxel of interest

and its nearest adjacent neighbor in all 3 dimensions, so J = 3 and there is one Cj for

each dimension. In this formulation, σ is a vectorized version of the conductivity map

with length K voxels. The function ψ(t) is a potential function that operates on each

element of [Cjσ]. In this work we use a hyperbola potential function (94, 95). This

allows us to penalize any roughness in σ in a non-linear fashion, with larger penalties

associated with larger values of [Cjσ]. The values of the hyperbola form of ψ(t) grow

in a quadratic fashion for small values of t and in a linear fashion for large values

of t, which gives the hyperbola potential function edge-preserving qualities. This is

favorable for conductivity mapping because we have already neglected object edges
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in the system matrix by using the homogeneous Helmholtz equation. The weighting

matrix W2 is a binary mask of size K voxels by J pairs of differences.

The matrices W1 and W2 are used to mask out certain parts of the image based

on a priori information. While this work focuses on phase-based conductivity map-

ping, the scan protocol used to acquire the phase image also provides a magnitude

image at no extra cost. In addition, we acquire an MR angiogram because vessels

can cause spurious phase information. The mask W1 dictates the region of support

for the problem, which excludes any vessels from the angiogram as well as regions of

the magnitude image with very low signal. The mask W2 determines the regions on

which regularization should be applied. The finite differences matrix C is applied to

the magnitude image and the result is thresholded to determine the important edges

in the object. These large edges are excluded from regularization under the assump-

tion that edges in the conductivity maps will coincide with edges in the anatomical

images, and we do not wish to regularize across these boundaries. Because we want

to regularize in each of the three dimensions, W2 is a matrix of size K voxels times J

pairs of differences so that we can weight the regularization directions independently.

Masks W1 and W2 are valued 0 for voxels to be excluded from the calculation and

1 elsewhere. When a voxel in a given mask is zero-valued, that voxel becomes a

‘don’t care’ voxel for the data fit term, regularization term, or both. An example

of the masks is shown in Figure 2.6. We solve this optimization problem using the

conjugate gradient method, implemented using tools from Michigan’s Image Recon-

struction Toolbox (96).

The regularization parameter β determines the balance between accurate modeling

of the data and smoothing the results with regularization. While methods exist to

optimally select the regularization parameter β, we selected the parameter value to

approximately match the spatial resolution of the traditional filtering methods. In this

work we chose a restricted Gaussian filter for comparison. When employing Gaussian
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smoothing in the conductivity calculations, the two main reconstruction steps are to

1) calculate the Laplacian and 2) apply the filter. In the IL approach the data fit

term includes the Laplacian operator and the regularization term enforces some level

of smoothness. Since the data fit term is derived from the Laplacian operator, we can

show that, in the absence of noise, the IL method with no regularization will produce

highly accurate conductivity maps, as will the Laplacian operator. Therefore, we

directly compare the spatial resolution properties of the Gaussian filter with those of

the regularization term. Some EPT literature (68, 70, 97) uses filter widths of 5 voxels,

so we compare the point spread function (PSF) full-width-at-half-maximum (FWHM)

values for 5x5 Gaussian filters with a range of different standard deviation values to

those of the finite differences regularizer with a hyperbola potential function for a

range of β values. We did not include the edge mask W2 in the regularization term,

as this would certainly exclude the point object from regularization and thus prevent

the calculation of the PSF. Results from this experiment are shown in Figure 2.1. We

selected a filter standard deviation of 1 voxel to match the filters used in (68, 70, 97),

and a corresponding β value of 1. It is worth noting that this matching procedure

equates the spatial resolution properties for these two methods for a given impulse

amplitude. Due to the nonlinear nature of the regularizer, its smoothing properties

will vary depending on the amplitude of the differences. We selected a point object

amplitude of 0.3 to represent the approximate conductivity difference between white

and gray matter. We are less concerned about larger amplitude point objects because

of the edge-preserving nature of the regularizer and possible assistance from the edge

mask.

A flowchart describing the workflow is given in Figure 2.2.

A non-negativity constraint is also explored as an optional feature of the proposed

conductivity mapping method. The non-negativity constraint is based on the fact that

only non-negative conductivity values are feasible solutions. This is implemented in
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Figure 2.1: Comparison of spatial resolution for each reconstruction method. For
a given PSF width we are able to select corresponding regularization
parameter and filter standard deviation. Selected parameters are denoted
by the dotted line.

the optimization algorithm and does not require any additional data or masks. We

used the conjugate gradient algorithm in both the unconstrained and unconstrained

cases. By applying the non-negativity constraint in this manner, the conjugate gra-

dient algorithm is not guaranteed to converge. This is a heuristic extension of the

conductivity algorithm.
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Figure 2.2: Workflow for the data acquisition and processing associated with the pro-
posed Inverse Laplacian algorithm. The data required are the intensity
projections from a phase-contrast angiogram and the complex image data
from a spin echo sequence. The inputs to the Inverse Laplacian algorithm
are the support mask, W1, an edge mask, W2, and the transmit phase,
calculated from spin echo data using the transceive phase assumption.

2.3 Methods

2.3.1 EPT Reconstruction

Phase data was unwrapped prior to reconstruction using the method in (98). The

conductivity map reconstructions were first performed using the proposed IL method

with β = 1. To determine the appropriate DC offset value, δ, for the IL filter, the

value of δ was varied between 10−2 and 10−7. No noise was added to the simulation
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data for the δ experiments.

The proposed IL method also relies on circulant operations in calculating the

inverse of the Laplacian and the regularization term. The images have plenty of zero-

padding in the x- and y-directions, but a slice of zeros was added to both the top and

bottom of the volume.

The proposed method was compared against a restricted Gaussian filter. This

method also requires both the magnitude and the phase of the spin echo (SE) image.

First the conductivity was calculated according to Eq. [1.8] using the discrete Lapla-

cian kernel ∇2. Zero-padding in the z-direction was also used in the Gaussian filter

method because circulant end conditions were used to calulate the Laplacian. The

Gaussian filter was a 5 × 5 × 5 kernel with a standard deviation of 1 voxel, applied

to the raw conductivity images. The filter was restricted to include voxels within the

kernel that had a magnitude intensity within 20% of the center voxel, as described

in (17). For both the Gaussian filter method and IL method without non-negativity

constraint, to reflect the fact that conductivity must be non-negative, any resultant

negative conductivity values were set to zero.

The proposed IL method was also adapted to include a non-negativity constraint,

implemented by projecting the conductivity estimate at each iteration of the opti-

mization problem onto the set of non-negative values.

2.3.2 Numerical Simulations

Numerical simulations were performed using SEMCAD X (SPEAG, Switzerland).

The model consisted of a birdcage coil and a cylindrical, two compartment phantom.

The outer compartment was assigned the material properties of gray matter (σGM

= 0.59 S/m) and the inner compartment was assigned the material properties of

cerebrospinal fluid (CSF) (σCSF = 2.14 S/m). Simulations were performed at 128

MHz with 0.4× 0.4× 0.4 mm3 voxels. Since B+
1 is a direct product of the simulation,
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it was used in the reconstruction.

Zero-mean additive white Gaussian noise (AWGN) was added independently to

the real and imaginary parts of the data. The standard deviation of the noise was

varied from 10−3.8 to 10−2.5 to achieve a range of SNR values of 50 - 76 dB. Con-

ductivity maps were reconstructed using the proposed IL method and the restricted

Gaussian filter method. Furthermore, no angiogram information was included. At

each noise standard deviation level, both reconstruction methods were repeated for

100 noise realizations. In both Gaussian filtering and the IL method, there exists

a trade-off between accuracy of the conductivity maps (e.g. bias) and noise. Bias

will be evident in the conductivity maps regardless of the SNR of the input data

and, in our experience, dominates the root-mean-square error (RMSE) calculation.

Therefore, to measure the amount of bias we averaged the conductivity maps over all

realizations for each noise level. To give a more representative measure of the effective

conductivity map SNR, we subtracted this mean error at the respective noise level

from each realization before calculating the standard deviation of the conductivity

values across all 100 realizations.

Conductivity values were calculated using the IL method, with and without the

non-negativity constraint, and the restricted Gaussian filter method after AWGN with

a standard deviation of 5×10−4 was added to the simulation data. The experimental

mean and standard deviation values were calculated under two conditions. First,

using all voxels for a given material and, second, after eroding each material region

using a 9×9 square element. The erosion was performed to calculate the error without

the edge artifacts, a means of separating bias from noise.

The IL method was also used to calculate conductivity values with and without

the edge mask, W2, after AWGN with a standard deviation of 10−4 was added to the

simulation data.
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2.3.3 Dielectric Phantom

An aqueous phantom was constructed using two cylindrical plastic containers to

provide conductivity contrast. The outer container contained a solution of 7.5 g/L

NaCl, to increase the conductivity, and 1 g/L copper sulfate, to reduce the relaxation

constants. The inner container, allowed to move freely within the larger vessel, was

filled with only deionized water. We measured the conductivity of the outer container

to be 1.38 S/m using a dielectric probe. We used 0 S/m as the true conductivity value

of the inner container. Conductivity maps were reconstructed using the proposed IL

method, with and without the non-negativity constraint, and the restricted Gaussian

filter method. Angiogram information was not used for the dielectric phantom. The

same region erosion procedure used for the simulation data was used for the phantom

data.

2.3.4 In Vivo Experiment

Four healthy volunteers were scanned under approval by the Institutional Review

Board at the University of Michigan. Conductivity maps were reconstructed using

the proposed IL method, with and without the non-negativity constraint, and the

restricted Gaussian filter method.

2.3.5 Scan Protocols

All experiments were performed on a GE Discovery MR750 3.0T MRI scanner (GE

Healthcare, Waukesha, WI) using a birdcage head coil. Data was acquired using a 2D

SE sequence with TE/TR = 16/1200 ms, FOV = 24×24×2.1 cm, with 1.25×1.25×3

mm3 voxels. Data was acquired twice using the SE sequence with opposite slice select

gradient polarity and averaged to mitigate the effect of eddy currents. The transmit

phase, φ+, was calculated by dividing the unwrapped transceive phase of the SE

image by two.
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A phase contrast angiogram was acquired for each human subject with the same

slice prescription as the SE scan. The peak encoded velocity was set to 15 cm/s.

For the human subjects, a T1-weighted image was acquired using a 2D spoiled

gradient echo sequence with the same slice prescription as the SE sequence. This

image was used for segmentation with SPM8 (99). Each voxel was classified as either

gray matter, white matter, or CSF with probability greater than 95%. Voxels not

meeting this criteria for any tissue type were left unassigned. The segmented images

were used to calculate mean and standard deviation of the conductivity values for

each tissue type. Mean tissue values across all subjects were calculated as the mean

of individual subject means, weighted by the number of voxels in the tissue segment.

The standard deviations across all subjects were calculated as the square root of the

mean of the subject variances, also weighted by segment size.

All conductivity calculations were performed in 3D, but results are displayed for

representative slices from the reconstructed volumes. Mean and standard deviation

values reported in tables were calculated over the volume, excluding the top and

bottom slices to exclude artifacts in the Gaussian filter reconstruction due to applying

the Laplacian kernel at the edge of the volume.

2.4 Results

2.4.1 Simulation Data

Figure 2.3 shows the conductivity maps for noise standard deviation = 5× 10−4,

reconstructed using the Gaussian filter and both IL methods. Mean and standard

deviations for each region and reconstruction method are reported in Table 2.1. The

eroded regions used to calculate the mean and standard deviations are shown in

Figure 2.4.

Figure 2.5 shows the resultant conductivity maps for varying values of δ. For
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Figure 2.3: Conductivity maps for the simulation experiments. AWGN was added to
the complex data with standard deviation = 5× 10−4. (a) True conduc-
tivity (b) Restricted Gaussian filter reconstruction (c) Inverse Laplacian
reconstruction (d) Inverse Laplacian reconstruction with non-negativity
constraint (e) Profiles through y=0.

values of δ = [10−2, 10−3, 10−4] the conductivity maps are nearly identical. Some

cross-hatching is visible, but we believe this is simulation artifact. Conductivity

maps calculated with values of δ closer to zero result in more ringing and a loss of

the sharp transition between compartments. For all experiments, we used δ = 10−3

to minimize the bias due to the DC offset.

The effects of the masks used in the IL approach are shown in Figure 2.6. The

method does not yield accurate conductivity maps when no region of support is

specified. This is primarily due to the lack of data in the background region. Without

the support mask, W1, the model attempts to fit the sharp edge in the phase at the

object border resulting in spurious conductivity values. The edge mask, W2, helps
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Figure 2.4: Fraction of conductivity images used to calculate mean values after di-
lating the compartment masks with a 9x9 pixel square. Simulation re-
constructed with (a) restricted Gaussian filter and (b) Inverse Laplacian
method. Phantom reconstructed with (c) restricted Gaussian filter and
(d) Inverse Laplacian method.

to retain information close to material boundaries where large jumps in conductivity

occur. It is clear from Figure 2.6 that the edge artifact at the boundary between the

two materials is reduced in width by using the edge mask. Excluding the edge pixels

from regularization also allows for more accurate conductivity calculations adjacent

to these pixels because the transition between compartments is not regularized and
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Figure 2.5: Conductivity maps reconstructed with the Inverse Laplacian method for
the simulation data with varying values for the offset added to the DC
coefficient. No noise was added to the simulation data. The DC offset
was varied between 10−2 and 10−7.

therefore not encouraged to be smooth.

We assess the accuracy of each reconstruction method based on the RMSE of the

conductivity maps. Figure 2.7 (a) shows the effect of noise in the B+
1 data on the

standard deviation of the reconstructed conductivity map. These standard deviation

values were calculated after subtracting out the mean error for the given noise level,

so they provide a more accurate description of the effective conductivity map noise,

removing bias due to spatially varying conductivity. The IL method produces lower

conductivity standard deviations than the restricted Gaussian filter across all input

noise levels. Figures 2.7 (b-e) allow visualization of the bias associated with each

reconstruction method at the lowest and highest noise levels. These are the mean
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Figure 2.6: Conductivity maps reconstructed with the Inverse Laplacian method for
the simulation experiments. AWGN was added to the complex data with
standard deviation = 10−4. Masks W1 and W2 are shown, where W2

provides weightings for regularization in three dimensions independently.
(a) Only support mask, W1, used in the reconstruction. (b) Both masks,
W1 and W2, used in the reconstruction. (c) Profiles through y=0.

error values for their respective input noise levels. The restricted Gaussian filter

yields conductivity maps with larger error near the outer edge of the object and

less uniformity at higher noise levels. Figures 2.7 (d-e) suggest that the IL method

introduces a slight ringing across the object. There is a cross-hatching artifact that

is visible, particularly in Figures 2.7 (b),(d), due to simulation artifacts.

29



Figure 2.7: Measures of error due to noise and bias in both reconstruction methods.
(a) Standard deviation of conductivity map error as a function of the
standard deviation of the AWGN added to the complex simulated B+

1

fields. (b)-(e) Mean conductivity map error over all realizations for two
noise standard deviation levels to show the bias of the Gaussian filter,
(b) and (c), and Inverse Laplacian method, (d) and (e). Mean values are
calculated for the lowest, (b) and (d), and highest, (c) and (e), noise levels
as denoted by blue dashed lines in (a).

2.4.2 Phantom Data

Figure 2.8 shows the calculated conductivity maps for the phantom. Mean and

standard deviations for each region are reported in Table 2.1. As in the simulations,

the IL method produces conductivity maps with lower conductivity standard devia-

tions. For the phantom data, the inner compartment values are largely impacted by

setting negative values to zero, driving the mean and standard deviation values closer

to zero. For the outer compartment, the IL method calculated conductivity values

much closer to the measured value, especially after mask erosion. Adding the non-

negativity constraint to the IL method resulted in a notable bias in the conductivity

maps, confirmed by the values in Table 2.1.
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Figure 2.8: Conductivity maps for the experimental phantom. (a) True conductivity
(b) Restricted Gaussian filter reconstruction (c) Inverse Laplacian recon-
struction (d) Inverse Laplacian reconstruction with non-negativity con-
straint (e) Profiles through y=0.

2.4.3 In Vivo Data

Figure 2.9 shows the conductivity maps for a representative healthy volunteer sub-

ject calculated with the Gaussian filter and the IL method without a non-negativity

constraint. Mean and standard deviations for each tissue type in all four subjects, as

well as across all subjects, are reported in Table 2.2. The ventricles are well-defined

as is gray matter surrounding the sulci. The IL method resulted in lower values of the

standard deviation within a tissue type for most subjects, particularly the white mat-

ter values. The IL method produced higher standard deviations for the gray matter

and CSF in two of the four subjects, which may be a result of a mismatch in effective

resolution between the conductivity maps and the tissue segmentation.

Figure 2.10 shows a comparison of conductivity maps in a representative slice,
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calculated with the Gaussian filter, the IL method, and the IL method with the non-

negativity constraint. Adding the non-negativity constraint reduces the size of the

zero-valued regions surrounding the ventricles, yielding more reasonable conductivity

values in the CSF. Table 2.3 lists the mean and standard deviation of the conductivity

for each tissue type the subject shown in Figure 2.10.

Table 2.1: Nominal and measured conductivity values for simulation and phantom
experiments

Simulation† Phantom

Compartment Inner (S/m) Outer (S/m) Inner (S/m) Outer (S/m)

Nominal Value 2.14 0.59 0.00 1.38

No Erosion Filter 1.68 ± 0.88 0.47 ± 0.50 0.34 ± 0.78 1.20 ± 0.83
IL 1.93 ± 0.83 0.65 ± 0.36 0.08 ± 0.27 1.21 ± 0.84

non-neg. IL 1.88 ± 0.74 0.61 ± 0.38 0.77 ± 0.55 2.61 ± 0.99

Mask Erosion Filter 2.03 ± 0.56 0.62 ± 0.49 0.10 ± 0.25 1.65 ± 0.21
IL 2.22 ± 0.33 0.74 ± 0.29 0.01 ± 0.07 1.31 ± 0.30

non-neg. IL 2.11 ± 0.30 0.63 ± 0.27 0.77 ± 0.41 2.17 ± 0.39

†Reconstructed with added noise standard deviation = 5× 10−4.

Table 2.2: Nominal and measured conductivity values for four volunteer subjects
Tissue Nominal Value Measured Value Measured Value

Gaussian IL
Mean ± S.D. Mean ± S.D.

(S/m) (S/m) (S/m)

Subject 1 Gray Matter 0.59 2.47 ± 4.25 2.29 ± 2.30
White Matter 0.34 0.78 ± 0.75 0.78 ± 0.69

CSF 2.14 13.56 ± 45.76 3.08 ± 2.47

Subject 2 Gray Matter 0.59 1.40 ± 1.58 0.96 ± 1.82
White Matter 0.34 0.81 ± 0.64 0.24 ± 0.37

CSF 2.14 1.52 ± 2.61 2.28 ± 4.60

Subject 3 Gray Matter 0.59 1.42 ± 1.52 1.09 ± 1.33
White Matter 0.34 0.64 ± 0.58 0.26 ± 0.37

CSF 2.14 1.32 ± 2.10 1.13 ± 1.85

Subject 4 Gray Matter 0.59 1.22 ± 1.18 1.31 ± 1.26
White Matter 0.34 0.58 ± 0.54 0.33 ± 0.46

CSF 2.14 1.39 ± 2.40 1.66 ± 2.47

All Subjects Gray Matter 0.59 1.62 ± 2.41 1.38 ± 1.70
White Matter 0.34 0.71 ± 0.66 0.45 ± 0.52

CSF 2.14 1.97 ± 10.22 1.65 ± 2.87

Nominal values from (100).
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Table 2.3: Nominal and measured conductivity values for a representative subject
Tissue Nominal Value Measured Value Measured Value Measured Value

Gaussian IL IL + Constraint
Mean ± S.D. Mean ± S.D. Mean ± S.D.

(S/m) (S/m) (S/m) (S/m)

Gray Matter 0.59 1.13 ± 1.26 1.48 ± 1.35 1.88 ± 1.26

White Matter 0.34 0.65 ± 0.54 0.54 ± 0.42 0.76 ± 0.41

CSF 2.14 1.13 ± 2.22 1.46 ± 2.25 2.54 ± 2.08

Nominal values from (100).

2.5 Discussion

Conductivity mapping suffers from poor SNR because conductivity is proportional

to the noise-amplifying Laplacian of the phase. In addition, phase-based conductivity

mapping generally assumes that the conductivity is spatially constant, an assumption

that is not valid at or near tissue boundaries or in other regions of inhomogeneous

conductivity. In a complex structure such as the brain, these boundary errors can

greatly impact the accuracy of the results. For a simple filtering method, there ex-

ists a trade-off between SNR and edge artifacts and one must select a filter size that

adequately balances the two. In our proposed Inverse Laplacian method, we have se-

lected a regularization parameter that matches the spatial resolution properties of our

method to those of a Gaussian filter for comparison. However, we have reduced the

standard deviation of the conductivity values while retaining conductivity information

very close to boundaries. The use of a priori structural information plays an impor-

tant role in this reconstruction method. Furthermore, implementing a non-negativity

constraint in the optimization problem eliminates the negative values associated with

boundary errors with more reasonable conductivity values.

Our method differs from previously proposed inverse approaches in that it is a

fully 3D formulation that can be solved as a single problem. The CSI-EPT approach

(82) has only been demonstrated in 2D and the inverse approach published by Borsic

et al. (84) was formulated in 3D, but computational load required subdivision of the
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problem. Our calculation of the IL filter provides a manageable problem size for the

inverse approach, even for 3D volumes.

One might consider framing this as an image denoising problem by replacing φ+

ωµ0

with σcalculated and system matrix L with the identity matrix. This would likely

achieve similar noise reduction as the proposed problem, but any bias and artifacts

in the image would depend on how the conductivity map was calculated in the first

place. As discussed in the introduction, there has been work in improving the filter

and Laplacian kernels used in conductivity mapping to reduce artifacts. However,

using those techniques as well as the denoising approach would result in a multi-stage

conductivity mapping process. We believe it is simpler to use the proposed IL method

to combine these approaches into a single problem.

An important parameter in the IL filter calculation is selecting a small DC offset,

δ, so that the discrete Laplacian operator is invertible. As shown in Figure 2.5, we

have selected a value from a wide range of possibilities that will minimize error due

to this DC offset.

Based on Figure 2.6, the edge mask, W2, improves the accuracy of conductiv-

ity maps near material boundaries. Without this mask we observe a roll-off near

compartment boundaries where the conductivity is not locally constant, yet the regu-

larizer enforces a smooth transition. This effect is more pronounced in regions where

conductivity variation with space is large, such as the compartment boundary in the

simulations or at the boundary of CSF in the brain. These regions also provide good

contrast in the MRI magnitude images, making it easy to detect the edges. Other

regions of spatially varying conductivity may be more difficult to identify, but they

cause smaller errors so it is not as important to capture those areas in the edge mask.

Boundary errors can have a large impact in comparing reconstruction methods.

The conductivity values reported in Table 2.1 for the simulation data show that the

IL method mean values changed less with the mask erosion, supporting the idea that

34



the IL method can better recover conductivity information near boundaries. The

boundary errors in the Gaussian filter reconstruction are primarily due to applying

the Laplacian operator across boundaries and are propagated by filtering. One might

consider excluding these regions from the Laplacian calculation, but this would still

result in inaccurate conductivity values at those spatial locations. Figure 2.3 also

shows that adding the non-negativity constraint to the IL method reduces the width

of the zero-valued boundary artifact.

The phantom results show that the regularization parameters translated well from

simulation to phantom data, which is an encouraging result for a method that could

potentially be highly dependent on parameter tuning. The phantom benefits from

having a physical layer of separation between the two compartments, aiding in the

detection of edges for mask W2. There is a conductivity spike near the compartment

boundaries present in both methods, shown in Figure 2.8. The inner compartment

is deionized water, so the SNR for the B+
1 data is lower than in the outer compart-

ment. Coupled with the lower conductivity, this makes it more challenging to tease

out the underlying phase curvature from the noisy data. While much of the inner

compartment was set to zero in post-processing, the IL algorithm produced fewer high

conductivity values in the inner compartment. When the non-negativity constraint

was included in the IL method, the conductivity results were biased. This constrained

version of the IL method does not perform well in non-conductive materials, which

shouldn’t be an issue in vivo. The bias in the conductive region, however, may be an

issue with algorithm accuracy. We implemented the constraint using the conjugate

gradient method, but this may ruin the conjugacy of the search directions. We imple-

mented the constraint using gradient descent on one of the human subject data sets.

This appeared to converge to the same solution as the conjugate gradient method,

albeit at a much slower rate. Further studies should focus on alternative methods for

implementing the non-negativity constraint to ensure reliable solutions.
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For the human brain experiments, we present representative conductivity maps in

Figure 2.9. The ventricles are well-defined along with many of the sulci. Similar to

previous results, the Gaussian filter produced higher variation in conductivity values

as compared to the IL method. A combination of filters on the phase data as well as

the conductivity maps would be necessary to achieve better results, but when cascad-

ing filters one also risks loss of spatial resolution. The mean and standard deviation of

each tissue type for all four subjects are presented in Table 2.2. Mean tissue conduc-

tivity varied between subjects, but were generally close to reported values. Marked

differences between mean tissue values for the Gaussian filter versus the IL method

might be explained by large positive values near edges. Definition between tissue

types might be improved with high resolution B+
1 maps. Since our proposed method

provides reduced noise amplification while maintaining spatial resolution properties,

we can expect the IL method would be able to reconstruct accurate conductivity

maps from high resolution, lower SNR B+
1 data. Visual inspection of Figure 2.10

indicates the non-negativity constraint further improved the IL method conductivity

maps by reducing the size of the zero-valued regions and reducing the standard devi-

ation within tissue types. This is supported by the quantitative results presented in

Table 2.3, which shows that adding the non-negativity constraint generally reduces

the standard deviation within a tissue type. Additionally, the mean values increase

by adding the constraint, but this is likely due to replacing zero-valued pixels with

non-zero values.

2.6 Conclusions

We have developed a novel 3D regularized, model-based algorithm for phase-based

conductivity mapping that uses a priori structural information to increase the accu-

racy of the maps. The Inverse Laplacian method exhibits less noise amplification and

better edge responses than filtering methods and has proven successful in simulation,
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phantom, and the human brain. Furthermore, including a non-negativity constraint

in the IL method yields conductivity maps that, in vivo, appear to be more accurate

due to the reduction of zero-valued regions. The accuracy of the non-zero values is

unknown.

Accurate conductivity maps are essential for clinical or safety applications. To

improve the accuracy of our method, we plan to investigate the incorporation of non-

constant electrical properties into the system model. This would be equivalent to

deriving a system model from the Helmholtz equation as opposed to the homoge-

neous version. We believe this would result in more accurate values in regions with

spatially varying electrical properties, specifically at the locations we have excluded

from regularization in the current methodology.
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Figure 2.9: Spin Echo magnitude image (Row 1); tissue segmentation (Row 2) show-
ing CSF [red], white matter [yellow], and gray matter [blue]; and con-
ductivity maps reconstructed using the restricted Gaussian filter (Row 3)
and the Inverse Laplacian method (Row 4) for a representative healthy
volunteer subject. Each column corresponds to a different slice in the
acquired volume.
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Figure 2.10: Conductivity maps for a representative slice from one subject. (a)
Anatomical Image (b) Restricted Gaussian filter reconstruction (c) In-
verse Laplacian reconstruction (d) Inverse Laplacian reconstruction with
non-negativity constraint
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CHAPTER III

Reference-less Method for Combining Multi-Coil

Receiver Data for MR-EPT

3.1 Introduction

Electrical conductivity is proportional to the Laplacian of the RF transmit phase.

The Laplacian operator drastically amplifies any noise in the acquired field map, so

acquiring data with high SNR is essential.

SNR can be improved by using multi-channel receive coils. Each receive coil is

highly sensitive in the near field, so with adequate coil coverage and data combination

the overall SNR of the combined image is increased. Vegh et al. (101) stated that av-

eraging signal phase in areas of sufficiently high SNR is appropriate because the phase

distribution is approximately Gaussian. Therefore, the idea of combining channels

based on the local sensitivity properties in each coil is logical to avoid averaging coils

with low SNR in certain spatial regions. Combination of complex-valued data for

MR-EPT is further complicated by the additional phase components present in indi-

vidual coil data, which are not accounted for in averaging. Furthermore, open-ended

phase wraps, or open-ended fringe lines, exist in phase maps in regions of very low

signal. These signal null points occur where the flux lines in the coil sensitivity are

parallel to the coil plane. Open-ended phase wraps cause errors in phase unwrapping

40



algorithms because, as shown in Figure 3.1, there is not an enclosed region that can

be described by a 2π jump.

Figure 3.1: Example of an open-ended phase wrap in one channel of a multi-channel
array. Magnitude image (Left) and Phase image (Right) with magenta
arrows indicating the location of the artifact.

The transceive phase assumption, which states that the transmit phase is approx-

imately half of the measured transceive phase, is necessary for MR-EPT because it is

not possible to separate the transmit and receive phase. The transceive phase assump-

tion is valid for a coil operating in quadrature, but not necessarily for multi-channel

receivers. Therefore, we aim to develop a combination method to mimic the behavior

of a quadrature coil. As discussed in Chapter I, the transceive phase assumption is

not required for phase-based conductivity mapping due to the linearity of the ap-

proximation. We will also discuss the application of coil combination methods for

phase-based conductivity mapping, which, in theory, does not require a quadrature

coil.

Roemer et al. (102) described an optimal coil combination for phased array coils

using complex-valued coil sensitivity maps. Typically an extra scan is required to

measure these sensitivity maps, and additional smoothing is necessary to produce

high SNR combined images. Walsh et al. (103) proposed a combination method based

on the spatial matched filter, which does not require sensitivity map measurements.
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In (103), Walsh suggests applying this method in smaller regions to reduce noise in

dark areas of the image. This is feasible for magnitude images, but the resultant

phase images are not guaranteed to be smooth. By applying alignment techniques

provided by Zhang et al. (104), which ensure smooth combined phase images, complex

data can be combined on a pixel-wise basis for optimal SNR across the image while

maintaining smooth phase images (105). Lee et al. (106) have recently proposed a

coil combination method formulated as a magnitude least squares problem, which

was intended specifically for phase-based conductivity mapping.

In this work we present a method, which we refer to as Local Compression with

Background Phase Correction (LC-BC), for combining complex data from multi-

channel receivers without a reference scan or a reference coil. We use the methods

for aligning combination weight vectors described in (105), with an additional back-

ground phase correction step to reduce phase bias due to high-signal coils. We show

that by estimating common phase components from acquired images and combining

data pixel-wise, one can exploit the full benefits of the spatially varying coil sensi-

tivities for a high SNR image with minimal phase bias. We compare this method

to Roemer’s optimal combination (102) and Walsh’s adaptive combination (103).

We also provide results without the background correction to show its utility. Each

method is evaluated in phantoms and a human subject.

The goal of this work is to enable the use of multi-channel receiver coils for MR-

EPT to improve conductivity map SNR while maintaining the accuracy of a quadra-

ture coil. We focus on applying this method to MR-EPT because, theoretically, the

phase-based conductivity approximation does not require a quadrature coil. However,

we discuss the proposed method’s application to phase-based conductivity mapping

as a means of increasing conductivity map SNR. 1

1Parts of this chapter have been submitted as: K.M. Ropella and D.C. Noll, Data-driven back-
ground phase correction and combination to improve the accuracy of MR-EPT with multi-channel
receivers, In proceedings of the 25th ISMRM, 2017:3646.
K.M. Ropella and D.C. Noll, Data Driven Coil Combination Method for Phase-Based Conductivity
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3.2 Theory

MR-EPT assumes that the data is acquired using a quadrature coil. This work

focuses on combining multi-channel data to determine B+ to mimic that of a quadra-

ture birdcage coil, with an emphasis on the phase fidelity. The following methods

are applied to unprocessed image data, C, from a receiver array with N coils and

P = nx × ny × nz voxels.

The components of the phase data acquired by coil n, φn, can be divided into

those that are coil-specific and those that are coil independent:

φn = φn,coil + φcommon. [3.1]

Contributions to the coil-specific component, φn,coil, may be due to the receive phase

of the coil and the constant offset between coils. The common phase component,

φcommon, may have contributions from the transmit phase, object phase, field inho-

mogeneity, and eddy currents. In MR-EPT we are interested in the common transmit

RF phase and object phase, so it is desirable to minimize phase contributions from

other sources. The spin echo sequence used to acquire MR-EPT data accounts for

most other common phase components, but the coil-specific phase component must

be measured or estimated in some way to minimize bias.

3.2.1 Optimal Combination

The optimal combination (OC) of multi-channel data , xO(r), is (102):

xO(r) = λ(r) C(r)H R−1n S(r) [3.2]

Mapping, submitted to Magnetic Resonance in Medicine.
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where the individual channel data at a single spatial location C(r) has size N × 1

, Rn is the noise correlation matrix for the coil array with size N × N , and S(r) is

the complex-valued coil sensitivity information at a single spatial location with size

N × 1. The noise correlation matrix describes coupling between individual coils in a

receiver array. The conjugate transpose is represented as (·)H . The parameter λ(r)

affects scaling in the final image and, with spatially varying values, can be used to

reconstruct uniform magnitude or uniform noise images. In this work the parameter

λ is spatially constant, with its absolute value affecting the scaling of the final image

but not the relative weights used to combine the individual channels. Adaptations

involving a non-constant λ can be found in (102).

This combination procedure requires measurement of coil sensitivity maps, S, and

the noise correlation matrix in addition to the experimental data of interest. It can

be reasonably assumed that noise correlation matrices are relatively constant across

subjects and therefore only need to be measured once. Sensitivity maps, on the other

hand, should be measured for every object or subject. This increases the scan time

for an experiment and is susceptible to motion. Sensitivity maps account for the

undesirable coil-specific phase components for MR-EPT.

3.2.2 Adaptive Combination

To eliminate the need to measure sensitivity maps, one can treat both signal and

noise as stochastic processes, s(r) and n(r) with correlation matrices Rs and Rn,

respectively. Walsh et al. (103) describe the adaptive combination (AC) process as

xA = mH
A C. [3.3]

The vector of combination weights for the entire image, mA, is the eigenvector cor-

responding to the largest eigenvalue of R = R−1n Rs. The size of mA is N × 1.

We follow (103) to calculate the correlation matrices. The signal correlation matrix

44



is the correlation between coils, calculated from image data at all spatial locations

for each coil:

Rs,jk = E[Cj(r)C∗k(r)] [3.4]

where j = 1, ..., N ; k = 1, ..., N . Only signal-producing voxels are used in this calcu-

lation.

The noise correlation is calculated between coils over time:

Rn,ij = E[nj(t)n
∗
k(t)] [3.5]

where n(t) is the noise signal in the receiver channels. One can also approximate the

noise correlation matrix with the identity matrix, as in (103).

3.2.3 Local Compression

The AC method calculates combination weights to be used at every spatial location

of the object. To account for spatially varying coil sensitivities, as in the OC method,

we aim to calculate the combination weights voxel-wise. We modify the AC method to

calculate spatially varying vectors of combination weights and use Zhang’s alignment

procedure (104) to ensure smooth phase. First, coil combination weight vectors are

calculated for each pixel using the AC method in a square neighborhood of width w.

Next each vector, mi, is aligned with its neighbor, mi−1, by the rotation matrix ρ,

which minimizes the Euclidean distance between the vectors. We use the following

procedure:

P = mH
i mi−1 [3.6]

P = UPΣPV
H
P [3.7]

ρ = VPU
H
P [3.8]

m̃i = miρ
H . [3.9]
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The Local Compression (LC) vector of combination weights is

mL(r) = m̃i [3.10]

and the combined image is

xL(r) = mH
L (r) C(r). [3.11]

We use a region-growing algorithm to align the filter vectors in an outwardly-

growing fashion. Because we calculate a different filter vector for each pixel and

one can only minimize the Euclidean distance between the vector of interest and

one neighbor, two-dimensional and three-dimensional alignment are performed in a

similar manner.

3.2.4 Local Compression with Background Phase Correction

The LC method is susceptible to bias in the phase images from individual coil

phase profiles. To minimize the contributions due to individual coil phases, we propose

a data-driven phase correction step to be applied before the LC procedure.

Given the raw multi-coil image data, C, applying a low pass filter to each coil of

data yields C̃ = C ∗ Hlpf . First we use an approach inspired by Cao et al. (107)

for estimating the common object phase for all channels from the product of the
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smoothed individual coil data:

Θ = arg


∏
k∈K

C̃k∏
k∈K

∣∣C̃k

∣∣


= arg


∏
k

∣∣C̃k

∣∣exp
(
i
(∑

k

φk,coil +Kφcommon
))

∏
k

∣∣C̃k

∣∣


=
∑
k

φk,coil +Kφcommon [3.12]

where only K of the N coils are used in the approximation. This is the subset of

coils that do not contain open-ended phase wraps. The coil-specific phase contri-

bution from each coil are assumed to not be highly correlated due to the physical

distribution of the individual coils. Thus, the common phase term is the dominant

term in Θ. Unwrapping Θ and dividing by K yields negligible phase contributions

due to individual coils, giving an approximation of the common object phase. Using

this approximation of the common phase we calculate the image data with only the

coil-specific phase for all N coils:

Cn,coil =
C̃n

exp
(
iΘ/K

) [3.13]

Finally, we estimate the image data with only the common phase for all N coils

by subtracting this individual coil phase from the unfiltered data:

Cn,common =
Cn

Cn,coil

= |Cn|exp(iφcommon) [3.14]

This new, phase-corrected multi-channel data contains the original magnitude

information and can be used as an input to the local compression method. It is

important to note that the low pass filtered data is only used to estimate the coil-

specific phase contributions and the filtered data is not used in the compression
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step. The goal is to estimate a smooth coil-specific phase as to not change the noise

properties in the original data. This is analogous to estimating smooth sensitivity

maps for OC.

3.2.5 Phase-Based Conductivity Mapping with Multi-channel Receivers

As mentioned in Chapter I, the linearity of the phase-based conductivity approx-

imation supersedes the transceive phase assumption associated with a quadrature

coil. Multi-channel receivers are not operating in quadrature, so the phase-based

conductivity approximation is a logical choice for that situation. The linearity of

the approximation assumes that the transceive phase contains all components of the

transmit and receive phase quantities. Therefore, averaging the phase-based conduc-

tivity for each of the individual receiver channels will yield the correct conductivity

measurement, as all transmit and receive phase quantities have been accounted for.

In the interest of improving SNR, we compare the averaged conductivity maps to

the previously discussed combination methods to phase data only for phase-based

conductivity mapping. In addition, we implement the method proposed by Lee et al.

(106) for phase-based conductivity mapping, which we will refer to as the Magnitude

Least Squares (MLS) Combination method.

The MLS method can also be written in terms of a vector of combination weights:

xM = mT
M C. [3.15]

We follow the approach in (106) to calculate mM :

mM = arg min
m

∣∣∣∣∣∣∣∣mTC| − 1
∣∣∣∣∣∣2
2

+ β
∣∣m∣∣2 [3.16]

where β is the regularization parameter, determining the trade-off between magnitude

uniformity and SNR. The vector mM is calculated using a subset of the image data
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with approximately uniform magnitude, identified by thresholding the magnitude of

the acquired image data. We solved the optimization problem using the variable

exchange method suggested in (106). This approach is common in RF pulse design

problems, so we followed the variable exchange methods in (108) and (109).

3.3 Methods

3.3.1 Image Acquisition

All experiments were performed on a GE Discovery MR750 3.0T MRI scanner

(GE Healthcare, Waukesha, WI). Human experiments were approved by the Institu-

tional Review Board at the University of Michigan. Two phantoms and one healthy

volunteer were scanned. The first phantom was a spherical gel phantom (diameter

= 17 cm) with a conductivity of 0.586 S/m. The second was a cylindrical liquid

phantom (diameter = 9 cm, length = 16 cm) with a conductivity of 2.11 S/m, posi-

tioned parallel to the bore but very close to the inner edge of the coil. The measured

conductivity value for the spherical phantom, which is sealed, is the average value

over the volume measured using a quadrature birdcage coil. The conductivity for the

cylindrical phantom was measured using a dielectric probe.

The magnitude and phase images for MR-EPT were acquired separately. Two-

dimensional fast gradient echo scans with flip angles of 30 and 60 degrees were ac-

quired to calculate the magnitude of B+
1 using the double angle method. The ac-

quisition parameters were TE/TR = 3.1/150 ms, FOV = 24 × 24 × 6 cm, with

1.25× 1.25× 3 mm3 voxels. Two averages were used for a scan time of 59 seconds.

Two two-dimensional spin echo images with opposite slice-select gradient polarities

were acquired, averaged, and divided by two to calculate the phase of B+
1 . For the

phantoms, the sequence parameters were TE/TR = 11/1200 ms, FOV = 24× 24× 6

cm, with 1.25× 1.25× 3 mm3 voxels. Two averages were acquired with a bandwidth
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of 15.63 kHz. The sequence parameters for the human brain images were identical

with the exception of TE/TR = 18/1200 ms and FOV = 24 × 24 × 2.1 cm. Scan

times were 7 minutes and 46 seconds. All four data sets were acquired using both the

body transmit/receive coil and the 32-channel receiver array.

The noise correlation matrix for the 32-channel coil was determined by calculating

the correlation coefficients between noise signals on each channel while the coil was

loaded with the spherical phantom.

3.3.2 Phase Processing

The 32-channel array data for the phantoms and the volunteer subject were com-

bined using the OC, AC, LC, and LC-BC methods described above. The phase alone

was also combined using the MLS method. All phase unwrapping was performed

using a quality-guided approach (110).

For the OC method, sensitivity maps for the 32-channel array coil were calculated

dividing the individual coil data by the body coil data and using a regularized method

(111). The AC method was implemented with a constant λ value of 1. The MLS

method used a regularization parameter of β = 1000. In the LC method, a window

width of 11 pixels was used to calculate the combination weight vectors.

The low pass filter used in the LC-BC method was a Gaussian filter with a filter

parameter of 3 pixels and a width of 13 pixels. The filter parameter is the standard

deviation of the Gaussian distribution. To show the influence of this filter on the

resultant conductivity, we varied the filter parameter from 0.5 to 7.

The subset of K coils for the background phase correction was selected based on

the variance of the phase partial derivatives, which is the quality calculation in the

quality-guided phase unwrapping approach in (110). If the maximum variance for a

channel in a given slice exceeded a pre-set threshold, the channel contained an open-

ended phase wrap. The mean value of K per slice is reported in the Results section.
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As an example, we performed the LC-BC combination with all 32 coils, regardless

of whether they had open-ended phase wraps. Dividing K by Θ in Equation 3.13

assumes that the coil-specific components are not highly correlated. As a test of

worst-case scenarios, we select K from only the bottom hemisphere of the coil and

only those coils without open-ended phase wraps.

The four data sets (two gradient echo for magnitude and two spin echo for phase

calculations) were combined separately before calculating the full complex-valued B+
1

field. The two combined gradient echo images were used in the double angle method

to calculate the magnitude of B+
1 . The two combined spin echo images were averaged

to calculate the phase of B+
1 .

3.3.3 Phase Standard Deviation Calculations

To the leading order, conductivity primarily depends on the phase of the B+
1 field

(63, 66), so this analysis will focus on the phase of the combined data.

To assess relative SNR levels between the five methods, the standard deviation of

the phase images was calculated in the image domain. The standard deviation was

calculated for each pixel using its 7x7 pixel neighborhood. In each neighborhood, a

second order polynomial surface was fit to the data and the standard deviation of the

residuals was taken to be the standard deviation of the phase data. The standard

deviation was also calculated for a single channel of the receiver array for comparison

in the phase-based conductivity analysis.

3.3.4 Conductivity Calculations

The combined data was used for conductivity mapping via MR-EPT in the phan-

toms and human subject. Conductivity was calculated as the imaginary part of [1.3],

using the discrete Laplacian operator, and then applying a Gaussian filter with stan-

dard deviation = 2 pixels and width = 9 pixels.
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The uniformity of the phantom conductivity images was calculated based on the

UN2 method in (112), which quantifies how close the conductivity values are to the

mean value. Larger UN values denote a more uniform image.

3.3.5 Phase-Based Conductivity Mapping

The conductivity calculations in the previous section were repeated in the phan-

toms and human subject using the phase-based conductivity calculation in 1.8. The

same spatial filter was applied afterwards. Additionally, two conductivity averaging

techniques were used to compare methods that combine the phase data to methods

that combine conductivity maps. The first method, coil averaging, divides the aver-

age spin echo phase by two, calculates the phase-based conductivity in each of the 32

channels, and then calculates a weighted average of the channels based on the spin

echo image magnitude. After combining the 32 conductivity maps, the same filter as

above was applied - a Gaussian filter with standard deviation = 2 pixels and width =

9 pixels. The second method, selective coil averaging, was nearly identical to the first,

but involved cropping out regions near open-ended phase wraps in the individual coil

images after calculating conductivity but prior to the weighted average. These open-

ended phase wraps were identified using the same quality metric as in the background

correction process, and the excluded regions were all the pixels within 11 pixels of the

phase wrap. Finally, the mean and standard deviation of the resultant conductivity

maps were calculated.

3.4 Results

The resultant images from all five combination methods in a central slice of each

of the two phantoms are shown in Figure 3.2. We have combined the methods used

for MR-EPT and the phase-based combination into one figure because the same set of

combined data is used for both. For the LC-BC method, Kmean = 18.1 and 28.1 coils
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for the spherical and cylindrical phantoms, respectively. The OC method is used as a

basis of comparison for the other phase images. In the spherical phantom, AC and LC

show the largest difference in phase from OC. Of particular concern is the open-ended

phase wrap in the AC result. The LC-BC method shows lower error, which can be

described by lower order polynomials than the others. In the cylindrical phantom the

phase difference is much lower. There is a dominant linear phase difference between

OC and the LC-BC, which does not affect conductivity calculations, but the AC and

LC methods have higher order differences. The MLS data also has a linear phase

difference with respect to OC, with some additional artifact in the spherical phantom

near the outer edge.

Figure 3.2: Coil-combined image data for the spherical phantom (left) and cylindrical
phantom (right). Magnitude (top row) and phase (middle row) for com-
bined images using Optimal Combination (OC), Adaptive Combination
(AC), Magnitude Least Squares (MLS), Local Compression (LC), and
Local Compression with Background Phase Correction (LC-BC). The
bottom row shows the difference in the combined phase between each
combination method and Optimal Combination. Red crosses denote the
location of the center of the coil. Arrow shows the location of an open-
ended phase wrap.

Figure 3.3 shows the standard deviation of the combined phase images for both

phantoms, as well as for the phase from a single coil of the receiver array. Note there

is an order of magnitude increase in the single channel standard deviation image.

OC, LC, and LC-BC methods show higher variances in the center of the image due
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to low coil sensitivities in that region. The LC variance levels are very similar to the

OC method, with the LC-BC method slightly higher. The MLS has higher standard

deviation than those methods in the spherical phantom, but more uniform across the

slice. The MLS method yields values very close to those calculated using a quadrature

birdcage coil. AC has high variance near the left side of the object due to averaging

low signal regions with global coil combination weights. The high variance ring on the

OC figure for the cylindrical phantom is likely due to errors in calculating sensitivity

maps near the object edge.

Figure 3.3: Phase standard deviation maps for combined images using (a) Optimal
Combination, (b) Adaptive Combination, (c) Magnitude Least Squares,
(d) Local Compression, and (e) Local Compression with Background
Phase Correction. Representative slices are shown for the spherical phan-
tom (top) and the cylindrical phantom (bottom). Figure (f) shows the
phase standard deviation for a single channel of the receiver array.Figure
(g) shows the phase standard deviation for the quadrature birdcage coil.

Resultant conductivity maps using MR-EPT on the coil-combined data from the

two phantoms are presented in Figure 3.4, with column (e) showing the conductivity

calculated from quadrature birdcage data. The non-uniformity in the conductivity

maps reflect bias in the combined phase. The uniformity was quantified and is re-

ported below each image along with the average conductivity value for the slice. The

regions used for those calculations are shown in Figure 3.5.
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Figure 3.4: Conductivity maps calculated with MR-EPT for the spherical phantom
(top) and the cylindrical phantom (bottom). Results from multi-coil
phase data combined using (a) Optimal Combination, (b) Adaptive Com-
bination, (c) Local Compression, and (d) Local Compression with Back-
ground Phase Correction. (e) Quadrature Birdcage Coil results. Unifor-
mity (UN) and average conductivity (σ) for each image is listed. The
regions used for those calculations are shown in Figure 3.5.

Conductivity maps calculated using the phase-based approximation are shown

in Figure 3.6, with column (f) showing the conductivity calculated from quadrature

birdcage data. The uniformity and the average conductivity value for the slice are

provided below each image.

Conductivity maps from a human subject are shown in Figure 3.7 and 3.8, cal-

culated using MR-EPT and the phase-based approximation, respectively. For the

LC-BC method, Kmean = 20.5 coils across all slices. The phase bias in the AC and

LC methods are reflected with higher and lower conductivity values, indicated by red

and green arrows.

Figure 3.9 shows the effect of the filter size used to smooth the data in the back-

ground correction step on conductivity maps.

Figure 3.10 shows the effect of including open-ended phase wraps in the LC-BC
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Figure 3.5: Regions of the conductivity maps from Figure 3.4 used in the calculations
of mean conductivity and uniformity. Shown are the spherical phantom
(top) and the cylindrical phantom (bottom). Results from multi-coil data
combined using (a) Optimal Combination, (b) Adaptive Combination, (c)
Local Compression, and (d) Local Compression with Background Phase
Correction. (e) Quadrature Birdcage Coil results. Uniformity (UN) and
average conductivity (σ) for each image is listed.

method and Figure 3.11 shows the effect of selecting K from different physical sections

of the coil. In Figure 3.11, the left column shows the results presented in the main

text, where coils are spatially distributed around the entire phantom. The average

value of K over all the slices was 18.1 coils. The right column shows results using

coils that lie only on the bottom hemisphere of the coil, giving suboptimal separation

of the coil-specific components. The average value of K for the lower hemisphere was

7.5 coils.

Figure 3.12 shows the comparison of the conductivity maps and standard deviation

values for three phase-based calculations. Errors due to open-ended phase wraps are

apparent in the coil averaging conductivity map. The LC-BC methods yields a mean

closer to that of the birdcage coil as well as a lower standard deviation than the other

two methods.
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Figure 3.6: Phase-based conductivity maps for the spherical phantom (top) and the
cylindrical phantom (bottom). Results from multi-coil phase data com-
bined using (a) Optimal Combination, (b) Adaptive Combination, (c)
Magnitude Least Squares, (d) Local Compression, and (e) Local Com-
pression with Background Phase Correction. (e) Quadrature Birdcage
Coil results. Uniformity (UN) and average conductivity (σ) for each im-
age is listed.

3.5 Discussion and Conclusions

MR-EPT involves calculating the Laplacian of the transmit RF field, which ampli-

fies noise in the acquired data. Beginning with the highest SNR possible is desirable

for these calculations. SNR can easily be improved using multi-coil receivers, provided

the data can be accurately combined. Here we propose a reference-less approach to

coil combination to eliminate artifact from motion between the acquisition of sensi-

tivity maps and reduce scan time.

Since conductivity is proportional to the curvature of the B+
1 field, and depending

primarily on the phase, zero- and first-order polynomial terms in the phase will not

affect the conductivity calculation. As seen in Figure 3.2, none of the combination

methods exactly reproduce the OC data, but the AC and LC data have notably dif-

ferent curvature. These methods do not account for spatially varying coil-specific

phase contributions, only the constant offset between coils. The phase difference in
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Figure 3.7: Conductivity maps calculated with MR-EPT for three slices of a human
subject brain based on combined phase images using (a) Optimal Combi-
nation, (b) Adaptive Combination, (c) Local Compression, and (d) Local
Compression with Background Phase Correction. (e) Magnitude image
for reference. Green arrow indicates a region of reduced conductivity and
red arrows indicate regions of elevated conductivity, both due to bias in
the phase data.

the LC-BC method can be described by a lower order polynomial function, indi-

cating there will be minimal effect on the conductivity maps. This method better

estimates the coil-specific phase components and removes them from the combined

image. This is confirmed by the conductivity maps for both the phantom and the

human brain. The phantom conductivity images are more uniform for the LC-BC

method and the human brain conductivity shows fewer regions of over- or underesti-

mation. One notable difference between the two phantoms is the varying uniformity

of the conductivity map. We believe the spherical phantom has a lower uniformity

because more of the individual channels are important in the combination procedure.
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Figure 3.8: Phase-based conductivity maps for three slices of a human subject brain
based on combined phase images using (a) Optimal Combination, (b)
Adaptive Combination, (c) Magnitude Least Squares, (d) Local Compres-
sion, and (e) Local Compression with Background Phase Correction. (f)
Magnitude image for reference. Red arrow indicates a region of reduced
conductivity and green arrows indicate regions of elevated conductivity,
both due to bias in the phase data.

The cylindrical phantom has a higher percentage of the volume in close proximity to

the coil, but fewer channels are sensitive to the phantom, reducing the bias due to

errors in estimating coil-specific contributions.

The goal of using a multi-coil receiver is to improve the SNR of the unprocessed

images. The coil compression techniques used in LC and LC-BC yield optimal SNR

in the phase data, similar to OC. In the background correction process we use a

spatial filter for estimating the coil-specific phase contributions. However, we remove

this smooth phase component from the original, unfiltered data so the degree of

smoothing due to that filter affects only the phase SNR and not the spatial resolution

of the resultant phase images.

While the conductivity maps from the coil-combined data do not exactly match

those from quadrature birdcage coil data, the LC-BC minimizes the conductivity

variation in the uniform phantoms without requiring a reference scan. Furthermore,
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Figure 3.9: Comparison of Gaussian filter standard deviation size on LC-BC (Top)
Phase Variance in the combined phantom image. (Middle) Phantom con-
ductivity. (Bottom) Conductivity for a human subject. The Gaussian
filter standard deviations are (Left to Right) 0.5, 3, and 7 pixels. The
filter widths are (4σfilter + 1) pixels.

LC-BC yields very similar conductivity maps to OC in the human brain. In Figure 3.7,

we believe the OC conductivity maps are sub-optimal due to additional noise in the

magnitude data, which affects the conductivity calculation. Thus, we observe regions

with elevated or highly variable conductivity, similar to the AC method. In the brain,

the arrow in Figure 3.7 on the AC method shows notable noise amplification. Arrows

on the LC method show over- and underestimation of conductivity due to bias in the

phase data. The results in Figure 3.8 are from a different subject from Figure 3.7, but
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Figure 3.10: Combined phase using the LC-BC method with all 32 coils, regardless
of whether they had open-ended phase wraps. The black arrow denotes
an artifact that results from the open-ended phase wraps propagating
through the combination process.

we see similar results. The AC and LC methods show over- and under-estimations

of conductivity due to phase bias. Furthermore, it is clear that the regularization

parameter for the MLS method is too low in the brain because the conductivity map

is very noisy. This parameter would need to be re-tuned, which is a downfall of the

MLS method.

Figure 3.9 shows the phase standard deviation and conductivity results for differ-

ent values of the filter parameter, which is the standard deviation of the Gaussian
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Figure 3.11: Comparison of combination using all coils without open-ended phase
wraps (Left) and only coils in the bottom hemisphere of the coil without
open-ended phase wraps (Right) in the background correction step of
LC-BC. (Top) Phase difference with respect to the Optimal Combina-
tion. (Middle) Standard deviation of the combined phase data. (Bot-
tom) Resultant conductivity maps.

distribution. The phase standard deviation is much higher for a parameter of 0.5 pix-

els, but does not improve noticeably from 3 to 7 pixels. A filter with too low standard
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Figure 3.12: Comparison of phase-based conductivity calculations from multi-coil
data. The mean and standard deviation are given below the figures.
(Left) Phase data combined using the proposed LC-BC method and
conductivity calculated using the combined data. (Middle) Conductiv-
ity calculated for each receive coil independently, then combined using a
weighted average. (Right) Conductivity calculated for each receive coil
independently, regions near open-ended phase wraps removed, and then
combined using a weighted average.

deviation will cause noise amplification because the coil-specific phase is removed by

dividing the original unfiltered data by the background phase estimate with a uni-

form magnitude. The conductivity images are relatively similar for the three filter

standard deviations, with the higher noise clearly visible in the images corresponding

to a filter parameter of 0.5 pixels. We observe slightly more conductivity bias in the

spherical phantom for a parameter value of 7 pixels, indicating that too large of a

filter may smooth out some of the high spatial frequency content in the phase data.

Therefore, we conclude that a higher standard deviation will improve the phase SNR,

but has an upper bound due to phase bias. As a result we used a parameter value of

3 pixels for all other experiments, but believe any parameter value between 1 and 5

pixels will produce similar results.

The result of using all 32 coils in the LC-BC method is shown in Figure 3.10, where

the arrow denotes one of several open-ended phase wraps that propagated through the

combination process. We use a quality-guided phase unwrapping procedure , which
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allows us to unwrap most of the image, but there exist discontinuities that would

certainly present a problem in the conductivity calculations. Figure 3.11 shows the

effect of the physical locations of the individual coils on the LC-BC combination.

The slice shown was a combination of 7 coils. We observe a larger difference from the

optimally combined phase when only half of the coils are available, which leads to

elevated conductivity regions near the edges of the phantom. Overall, the conductivity

values are very similar, so we believe our method is not strongly dependent on the

spatial locations of the subset of coils used in the background correction phase.

Although combining multi-channel data for phase-based conductivity mapping is

not necessary, we believe it is beneficial. As seen in Figure 3.12, simply averaging

the individual channel conductivities is not always possible due to open-ended phase

wraps in the individual channel phase data. Cropping out regions affected by these

phase wraps is primarily a heuristic method, as the extent of the error depends on

the method used for conductivity mapping, which includes but is not limited to filter

selections. In addition, excluding these regions means that not all of the transmit

and receive phase quantities are accounted for and the resultant conductivity may

be inaccurate. Even when selectively averaging coils, the standard deviation of the

conductivity is higher than when using the proposed LC-BC method. This is because

the conductivity calculation amplifies noise in the phase data to an extent that would

require more low pass filtering. It is more beneficial to combine the phase data first

so that there is lower noise content for the conductivity calculation.

Furthermore, we have shown a comparison between the proposed LC-BC method

and the MLS method, which is also intended for phase-based conductivity mapping.

The MLS method performed poorly in the brain, most likely due to too low of a

regularization parameter. Tuning a parameter is undesirable, especially when it must

be tuned for different objects or body parts. Furthermore, we believe that while

a larger regularization parameter in the MLS method would increase the SNR in
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the phase, it would likely lead to some undesirable smoothing of fine details in the

anatomy.

In summary, we propose a data-driven multi-coil data combination method for

MR-EPT. The proposed LC-BC method first implements a background phase cor-

rection to reduce bias due to high sensitivity coils. Second, the data is combined

pixel-wise to optimize SNR in the combined data. This method preserves both high-

and low-frequency phase components and produces similar conductivity maps to the

Optimal Combination procedure in both uniform phantoms and the human brain. In

comparison to the conductivity maps calculated from a single birdcage coil, the multi-

coil conductivity maps show more variation due to bias in the combination. While

the multi-coil data provides gains in SNR, there are certainly applications where the

bias in the multi-coil data is far less desirable than noise in the image. We believe

the trade-off between SNR and bias is application- and object-dependent, and using

a birdcage coil may be a better option in some applications.
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CHAPTER IV

Conductivity Tensor Mapping

4.1 Introduction

Conductivity mapping has applications in clinical diagnostics as well as RF safety.

For applications such as SAR prediction where it is important to know how elec-

tromagnetic fields behave in the body, current practices typically use isotropic, or

scalar-valued, conductivity values. If conductivity is anisotropic, meaning that it has

some directionality, it can be represented by a tensor. Measuring conductivity as

a tensor provides additional information as to how tissues conduct electric current,

which could improve models used in SAR prediction and other applications.

The most common way to estimate the conductivity tensor is by scaling the dif-

fusion tensor. The model presented by Tuch et al. (113) is for low-frequency conduc-

tivity tensors, derived from a two compartment model. This assumes electric current

is spatially restricted in the same manner as diffusion, which may not be true. At

low frequencies, the conductivity of a tissue primarily depends on the cell membrane

impedance. Tissues with anisotropic diffusion typically have one long dimension, de-

termined by the structure of the tissue, restricting the travel of water. The model

in (113) assumes that conductivity is also restricted by tissue structure, presumably

because the molecules that determine the tissue structure are insulating. While the

low-frequency conductivity tensor is desirable for some applications, many of the MR-
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EPT applications require the high-frequency conductivity estimate. Furthermore, in

the high-frequency domain we believe that the two compartment model is not valid

due to the negligible impedance of the cell membrane, as discussed in Chapter I.

There have been attempts at measuring the degree of anisotropy of electrical prop-

erties using MR-EPT, but, to the best of our knowledge, no full tensor measurements.

Katscher et al. (114) proposed a method of estimating anisotropy of electrical con-

ductivity based on the MR-EPT equations presented in (55). In this formulation,

instead of taking the curl of Ampere’s law, we solve for the complex permittivity by

calculating the line integral of Ampere’s law around some area, A, and dividing by

the integral form of Faraday’s law. For an object with anisotropic conductivity, the

selection of the integration area A is important, as the calculated conductivity value

will change depending on the orientation of A with respect to the eigenvectors of the

tensor. The benefit of this approach is the ability to calculate conductivity for mul-

tiple integration areas with a single acquisition. The limitations are the complexity

of integration and the necessity to use a large number of integration planes in trying

to determine the primary eigenvector of an unknown tensor. The work by Lee et

al. (115) builds upon the theory in (114), and proposes a method for calculating the

tensor given the eigenvalues. This would require prior knowledge of the structure of

the object or, as the authors suggest, diffusion tensor data. The authors also propose

a qualitative metric for determining anisotropy which, in practice, requires rotation

of the object to capture the anisotropic behavior.

To measure the full tensor one must change the orientation of the object within

the main magnetic field. This is challenging due to bore size, coil size, and limited

subject mobility. The brain is one region of the body where conductivity tensor

measurements would not only be feasible, but also useful. The brain contains large

white matter tracts, which have an insulating outer layer composed of myelin and

a highly conductive inner layer for rapid communication between different regions
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of the brain. Isotropic estimates of white matter are typically low due to the large

fraction of myelin. However, it is reasonable to believe that electromagnetic fields

would propagate differently if applied along the length of the tract as opposed to

across its width. In this work we present a mathematical framework for calculating

the conductivity tensor. We also propose two methods for calculating the tensor -

a direct calculation and a dictionary-based approach - to explore the feasibility of

calculating the tensor with small degrees of rotation of the object within the bore.1

4.2 Theory

4.2.1 The Conductivity Tensor

Consider an object in an MRI scanner, allowed to freely rotate. Let the object

have a coordinate system, (x, y, z), separate from the scanner coordinate system,

(x′, y′, z′). In some initial orientation the coordinate systems are the same, but as we

rotate the object, the object coordinates are considered stationary while the scanner

coordinates rotate with respect to the object. The following derivations assume that,

because we can only measure the transverse component of the magnetic field in an

MRI scanner, only the longitudinal component of the corresponding electric field is

relevant to the problem. Thus, to describe these fields, we must define the unit

vector in the longitudinal direction of the scanner, or the B0 direction. We define

ẑ = [zx, zy, zz] as the unit vector in the direction of B0, or z′, with its components

defined in terms of the object coordinate system, as shown in Figure 4.1.

In deriving the equations for this approach to conductivity tensor mapping, we

will show, first, how the electromagnetic fields change with object orientation and,

second, how calculated conductivity changes with those fields. To begin, MR-EPT is

1Parts of this chapter have been submitted as: K.M. Ropella, S. J. Peltier, and D.C. Noll, A
Dictionary-Based Method for Conductivity Tensor Mapping, Submitted to the 26th annual meeting
of the ISMRM.
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Figure 4.1: Representation of the ẑ vector coordinates, defined with respect to the
object.

derived from the homogeneous Helmholtz equation:

−∇2H = ∇× jωκE [4.1]

where H is the magnetic field, E is the electric field, ω is the MRI resonant frequency,

and κ = ε − j σ
ω

is the complex permittivity, with ε the permittivity and σ the

conductivity. If κ is isotropic it can be written as a scalar value, and pulled out of

the curl operator. Applying Faraday’s law,

∇× E = −jωH, [4.2]

and rearranging terms gives the isotropic complex permittivity:

κ =
−∇2H

ω2µ0H
. [4.3]
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For an object with isotropic electrical properties, the calculated value of κ will

be independent of the object’s orientation within the MRI scanner. However, if κ is

anisotropic, the apparent measured value will depend on the orientation of the object.

Anisotropic complex permittivity is written as a tensor, κ, which is symmetric and

therefore can be written in two forms:

κ =


κ1 κ4 κ6

κ4 κ2 κ5

κ6 κ5 κ3

 [4.4]

κ =

[
κ1 κ2 κ3 κ4 κ5 κ6

]
. [4.5]

Although κ is a tensor, at a given orientation we measure an apparent scalar

value of κ̃. With conductivity measurements at six non-collinear orientations, we

hypothesize that we can estimate the full tensor. First we show how the electric and

magnetic fields change with orientation, followed by a discussion of how the calculated

conductivity changes with respect to the magnetic field measurement.

At a given orientation we measure the magnetic field, H̃, and calculate the ap-

parent value κ̃. Applying Faraday’s law is essential in deriving Equation 4.3 from

Equation 4.1, so we will first examine the electric fields, followed by the magnetic

fields, in this problem. We define the orientation-dependent electric field in terms of

the incident field E = [Ex′ , Ey′ , Ez′ ], whose components are in scanner coordinates,

Ẽ = κET = κ[Ex′ , Ey′ , Ez′ ]
T [4.6]

and assume E and κ are constant. The quantity κE is technically defined as the field

D. Because we are focusing on the orientation dependency of the electrical property

calculations, we have chosen to call this quantity Ẽ to emphasize this is the observed

electric field in a given orientation. This is the electric field that is the result of the
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incident field E interacting with the object with dielectric properties κ.

By Faraday’s law, H̃ is proportional to the curl of Ẽ, but only the longitudinal

component of Ẽ, Ẽz′ , is relevant:

Ẽ · ẑ =κ1Ex′zx + κ2Ey′zy + κ3Ez′zz + κ4Ey′zx + κ4Ex′zy+

κ5Ez′zy + κ5Ey′zz + κ6Ez′zx + κ6Ex′zz. [4.7]

As discussed earlier, we assume that the only non-zero component of the incident

electric field E is the longitudinal component, Ez′ . This is the longitudinal component

with respect to the scanner, but again we must write it in the object components.

Therefore, the observed field is a scalar times ẑ:

Ẽ · ẑ ∝
[
κ1zxzx κ2zyzy κ3zzzz 2κ4zxzy 2κ5zyzz 2κ6zxzz

]
. [4.8]

We define the vector

z =

[
zxzx zyzy zzzz 2zxzy 2zyzz 2zxzz

]
[4.9]

to write these relationships more succinctly. As discussed at the beginning of the

section, we measure the transverse component of the magnetic field which corresponds

to the longitudinal component of the electric field. The magnetic field is proportional

to the curl of the electric field. The curl operator is a linear operator. We have just

shown how the electric fields change with position in Equation 4.8, and therefore the

magnetic field changes in the same manner:

H̃ ∝ κ · z =

[
κ1 κ2 κ3 κ4 κ5 κ6

]
·
[
zxzx zyzy zzzz 2zxzy 2zyzz 2zxzz

]
.

[4.10]

This means that the tensor κ acts upon the field E, which has a non-zero z′-component,

71



to produce Ẽ. We are interested in how much of Ẽ remains in the z′-component to

estimate the tensor. The measured magnetic field is therefore proportional to the dot

product of the complex permittivity tensor and the vector z. For instance, the appar-

ent conductivity will be at a maximum when the primary eigenvector of the tensor is

aligned with ẑ and at a minimum when the primary eigenvector is perpendicular to

ẑ.

We have shown how the electric fields are altered by a medium with anisotropic

conductivity and how the measured magnetic fields change with the electric fields.

Next we examine how the measured conductivity changes with respect to the mea-

sured magnetic field. To the leading order, the conductivity of a material primarily

affects the phase of the magnetic field (63). The phase-based conductivity approxi-

mation is

σ ≈ ∇
2φ+

ωµ0

[4.11]

where φ+ is the phase of the transmit RF magnetic field, B+
1 . This approximation

is linear and phase enters the receive coils linearly. Let us define the conductivity

tensor in a similar manner as the complex permittivity tensor, as a symmetric 3× 3

matrix that can also be written as a vector of six elements:

Σ =

[
Σ1 Σ2 Σ3 Σ4 Σ5 Σ6

]
. [4.12]

Phase enters the MRI receiver coils in a linear fashion and Equation 4.11 is linear

with respect to the transmit phase. Given the linearity of the system for measuring

and calculating conductivity from the transmit RF field, we can assume that

φ+ ∝ Σ · z. [4.13]

Therefore, we can estimate the conductivity tensor from the phase-based conductivity
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measurements in six different orientations. The measured conductivity values are

concatenated into a vector

s =

[
σ1 σ2 σ3 σ4 σ5 σ6

]
[4.14]

and we can solve for Σ by a simple calculation:

Σ̂ = Z−1s. [4.15]

Here, Z is size 6× 6, where each column is the vector z corresponding to one orien-

tation. We refer to this as the direct calculation of the tensor.

Given more than six orientations, one can also solve for Σ using the pseudo-

inverse or truncating the singular value decomposition (SVD) of the matrix Z. After

calculating Σ, it is reshaped into Σ =


Σ1 Σ4 Σ6

Σ4 Σ2 Σ5

Σ6 Σ5 Σ3

. The eigen-decomposition

Σ =

[
v1 v2 v3

]
λ1 0 0

0 λ2 0

0 0 λ3


[
v1 v2 v3

]H
[4.16]

is useful in determining the directionality of the conductivity tensor.

4.2.2 Dictionary-Based Tensor Calculation

We also propose a dictionary-based method to calculate Σ. We created a dic-

tionary of tensors by incrementally changing the eigenvalues and direction of the

eigenvectors. The eigenvalues were constrained to be non-negative and the direction

of the eigenvectors covered one hemisphere of three-space, due to the symmetry of

tensors. For every atom, Σi, we calculate the conductivity for each of the acquisition
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orientations,

si = ΣiZ. [4.17]

The error between the calculated and measured conductivity is

errori = ||si − s||2 [4.18]

and the optimal tensor from the dictionary is that with the lowest error. One could

also use the `1-norm as an error metric.

4.3 Methods

4.3.1 Materials

Experiments were performed on a liquid phantom and a piece of beef shoulder.

The liquid phantom was a cylinder with a diameter of 9.5 cm and height of 14.6

cm. The phantom was filled with a solution of copper sulfate and sodium chloride,

which has a conductivity of 2.11 S/m, measured with a dielectric probe. The top

half of the phantom was filled with densely packed drinking straws, parallel to the

long axis of the cylinder. The beef shoulder had visible striations and dimensions of

15.2× 11.4× 3.8 cm.

4.3.2 MRI Data Acquisition

Data was acquired on a 3.0T GE MR750 MRI scanner using a quadrature birdcage

head coil. Sequence parameters were: TE/TR = 10/1000 ms, 128 × 128 matrix

size, 5 mm slice thickness, and two averages. The field of view was 21 cm for the

straw phantom and 24 cm for the beef. Diffusion tensor data was also acquired for

the beef shoulder using an 8-channel head coil and a 32 direction blip-up/blip-down

sequence with b=1000. The nominal orientations for data acquisition are listed in

74



Table 4.1. The optimal orientations are the best choice for accurately calculating the

conductivity tensor because they include acquisitions with the object rotated toward

each of the cartesian axes. The practical orientations are within the range of motion

of a subject’s head.

As a general exploration of how apparent conductivity in the straw phantom

changes with orientation, conductivity data was acquired at four different angles of

rotation about the x-axis of the scanner between 0 and 90◦. Then four experiments

for calculating the full tensor were performed. First, conductivity data was acquired

for the straw phantom and the optimal orientations listed in Table 4.1, where the

straws were aligned with B0 in the initial position. Next, conductivity data was

acquired for the straw phantom using the practical orientations, but the same initial

position. The third experiment also used the optimal orientations, but the straws

were aligned with the x-axis of the scanner in the initial position. The final straw

phantom experiment used the optimal orientations with the straws positioned at an

oblique angle, ≈ −50◦ about the y-axis, in the initial position. The third and fourth

experiments were designed to test the feasibility of this approach when the initial ẑ

vector was not aligned with the straws, which is the hypothesized primary eigenvector

of the tensor. Despite the straw position in these two experiments, the ẑ vectors listed

under Optimal Orientations in Table 4.1 are used so that the resultant tensors will

be with respect to the scanner coordinates, as the object and scanner coordinates are

collinear in the initial position.

For the beef shoulder, conductivity data was acquired using both the optimal and

practical orientations where the striations were approximately parallel to B0 in the

initial position. Diffusion tensor data was also acquired in the initial position.
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Table 4.1: Coordinates of the ẑ vector for two acquisition schemes. Optimal Orien-
tations allows for the direct tensor calculation. Practical Orientations is
based on the angles achievable by a human brain.

Optimal Orientations

Orientation No. 1 2 3 4 5 6

zx 0 0 1 0 0.707 0.707

zy 0 1 0 0.707 0 0.707

zz 1 0 0 0.707 0.707 0

Practical Orientations

Orientation No. 1 2 3 4 5 6

zx 0 0.259 0.5 0 0 0.433

zy 0 0 0 0.259 0.5 0.25

zz 1 0.966 0.866 0.966 0.866 0.866

4.3.3 Tensor Calculations

Due to the artifacts from the straws themselves, the straw phantom data was

down-sampled by a factor of 4 in-plane to yield smooth phase images. The beef

was not down-sampled. The conductivity for each orientation was calculated using

the phase-based approximation in Equation 4.11 with a 9× 9 Gaussian filter applied

to the transmit phase prior to calculating conductivity. The actual angle of rota-

tion of the object with respect to the first orientation was calculated using SPM8

(99). The actual rotations were used to determine Z. In the straw phantom, the

mean conductivity in each compartment at each orientation was used to compute a

mean conductivity tensor and the tensor at each pixel. In the beef, the conductivity

tensor was calculated pixel-wise after realignment based on the SPM rotation param-

eters. In addition, the mean conductivity tensor over the entire piece of beef was

calculated. Conductivity tensors were calculated directly, as in Equation 4.15, and

with the dictionary-based approach. The dictionary was constructed by defining the

eigenvectors and eigenvalues first. The eigenvalues were varied between 0 and 2 in in-

crements of 0.1. The eigenvectors were the unit vectors in the x-, y-, and z-directions

rotated by an azimuthal and a polar angle, each incrementing by 10◦ from 0 to 180◦.

This dictionary is overcomplete for symmetric tensors.
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The resultant conductivity tensors are given for the object in its initial orienta-

tion, from which all rotations are calculated. In the initial position the scanner and

object coordinate systems are the same, so the tensor can be described in the scanner

coordinates for ease of display. Diffusion tensors were calculated in the beef only

using FSL(116, 117). Diffusion tensors are not shown for the straw phantom due to

the mismatch in pixel size between the down-sampled conductivity images and the

diffusion tensor images.

4.4 Results

In the straw phantom we see anisotropic behavior in both compartments, but the

straws have a much higher degree of anisotropy. Figures 4.2 and 4.3 that conductivity

in both compartments is at a maximum when the long axis of the cylinder is parallel

to B0.

Figure 4.2: (a) Axial slice through open compartment in the zero degree of rotation
position. (b) Axial slice through straw compartment in the zero degree
of rotation position. (c) Axial slice through both compartments in the
ninety degree of rotation position. (d) Calculated conductivity in the
open compartment in the zero degree of rotation position. (e) Calculated
conductivity in the straw compartment in the zero degree of rotation
position. (f) Calculated conductivity in both compartments in the ninety
degree of rotation position.
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Figure 4.3: Measured conductivity for the straw and open compartments of the liquid
phantom versus angle of the phantom. Zero degrees corresponds to the
straws parallel to the B0 field in the scanner. Rotation angles are about
the x-axis, which runs from left to right.

The mean conductivity tensors were calculated for both regions of the straw phan-

tom using the mean conductivity values at each orientation. The resultant primary

eigenvectors of the tensor are shown in Figure 4.2, where the arrow length corre-

sponds to the degree of anisotropy. The full eigen-decompositions of these tensors are

listed in Table 4.2. Given the optimal orientations, the primary eigenvector in the

straw compartment aligns with the straws and we observe a high degree of anisotropy.

The anisotropy in the open compartment is much lower, but the primary eigenvector

is also aligned with the long axis of the cylinder. There is good agreement in the

tensors calculated with the direct approach and the dictionary-based approach. For

the practical orientations, the direct calculation yields one negative eigenvalue in the

straw compartment, which is undesirable. The dictionary-based approach yields all

positive eigenvalues, but the primary eigenvector appears to be a linear combination

of the primary and secondary eigenvectors that were calculated using the optimal

orientations. In the open compartment, the direct and dictionary-based tensors are
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in agreement but there is an apparent increase in the degree of anisotropy using the

practical orientations due to the underestimation of one of the eigenvalues. Based on

the structure of the object, we believe the eigenvalues given the optimal orientations

are accurate.

The primary eigenvector directions for tensors calculated from the optimal orien-

tations in representative slices in each compartment are shown in Figure 4.5. The

cross-sectional areas are slightly different in the two slices due to limited acquisition

areas at all angles. In the open compartment, a majority of the vectors are nearly

parallel to the z-direction. Those that are perpendicular to the z-direction are likely

due to noise or boundary artifacts in the measurements. Due to the symmetry of the

tensor, the arrows pointed up and pointed down are considered equivalent. In the

straw compartment, some of the vectors are at a more oblique angle than the arrows

in the open compartment. These may also be due to noise in the measurements.

When the direction of the straws was changed in the initial orientation, the direct

calculation of the tensors from optimal orientations yielded primary eigenvectors that

aligned with the straws, as shown in Figures 4.6 and 4.7. These images are shown

with respect to the scanner coordinates to show that the direction of the straws is

different. The primary eigenvector for the open compartment in the oblique angle

was not aligned with the straws, but the degree of anisotropy was very low.

The conductivity tensor in the beef shoulder was calculated both pixel-wise and

as a mean over the volume. Figure 4.8 shows the comparison of the conductivity ten-

sor map with the diffusion tensor image. The images for both the diffusion tensors

and conductivity tensors show the direction of the primary eigenvector of the ten-

sor. Eigenvectors in the x-, y-, or z-direction will be red, green, or blue, respectively.

Eigenvectors at an oblique angle will be a combination of those three colors. The

colors are not weighted by the degree of anisotropy. There is a general agreement

between the two tensors when the conductivity tensor is calculated with optimal ori-
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Figure 4.4: Sagittal view of the straw phantom showing the upper portion is filled
with drinking straws and the lower portion is only liquid. The red ar-
rows show the primary eigenvector of the mean conductivity tensor in
each compartment calculated using the dictionary approach with optimal
orientations. The blue arrows are the primary eigenvectors calculated us-
ing the dictionary approach with practical orientations. Vector length is
proportional to the degree of anisotropy of the conductivity tensor.

entations. The practical orientations give a biased estimate of the primary eigenvector

for a larger region of the beef shoulder, similar to the bias observed in the phantom.

This is also reflected in the mean tensors given in Table 4.3.

4.5 Discussion and Conclusions

Calculating the conductivity tensor is important for studying how electromag-

netic fields propagate through an object. The primary challenge in calculating the

conductivity tensor based on MR-EPT is moving the object of interest to different

orientations with respect to the main magnetic field. This is particularly challenging
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Figure 4.5: Quiver plots showing the direction of the primary eigenvector for the ten-
sors at each pixel in representative slices from (a) the open compartment
and (b) the straw compartment. The vector lengths are weighted within
each plot by the degree of anisotropy, but the vector lengths in the two
plots were scaled independently to aid in visualization.

in human subjects given the small bore size of the MRI scanner and limited degrees

of freedom for subject movement. Calculating conductivity tensors may be possi-

ble in the human brain, as the head is relatively mobile and there exist large white

matter tracts, in which conductivity is likely to be anisotropic. Previous work on

conductivity tensors requires some knowledge of the eigenvectors of the tensor, com-

monly estimated by the diffusion tensor. We propose a mathematical framework for

measuring the conductivity tensor that makes no assumption about the orientation

of the tensor. We also suggest direct and dictionary methods that may be useful in

estimating the tensor despite limitations on object movement.

The results of calculating the conductivity tensor the straw phantom, in three

different positions, show that our proposed mathematical framework can be used to

identify the tensor accurately, given the optimal orientations, with no prior knowledge

about the directionality of the tensor. The arrows shown in Figures 4.4, 4.6, and 4.7

have small differences in the angle of the arrow with respect to the straws. This is
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Table 4.2: Eigenvalues, λi, and eigenvectors, vi, of the mean conductivity tensor in
each compartment of the phantom. Tensors were calculated using the
optimal and practical orientation schemes and the direct calculation and
the dictionary approach.

λ1 v1 λ2 v2 λ3 v3

Straws Optimal 0.95 (-0.31, 0.21 (0.28, 0.12 (-0.91,
0.13, 0.96, 0.25,
0.94) -0.04) -0.34)

Optimal, 1.0 (0.32,) 0.2 (0.34, 0.1 (-0.88,
Dictionary -0.12, 0.94, 0.32,

0.94) 0.00) 0.34)
Practical 0.91 (-0.38, 0.38 (-0.89, -0.76 (0.26,

0.12, 0.23, 0.97,
0.92) -0.40) -0.02)

Practical, 1.5 (-0.38, 0.4 (0.56, 0.4 (-0.92,
Dictionary 0.66, -0.39, -0.28,

0.64) 0.73) -0.27)

Open Optimal 1.41 (0.01, 1.05 (0.81, 0.99 (-0.58,
-0.12, 0.58, 0.81,
0.99) 0.06) 0.10)

Optimal, 1.4 (0.09, 1.0 (0.99, 1.0 (-0.01,
Dictionary -0.15, 0.06, -0.99,

-0.98) 0.08) 0.15)
Practical 1.38 (-0.18, 1.11 (0.97, 0.31 (-0.17,

0.02, -0.17, -0.99,
0.98) 0.18) -0.01)

Practical, 1.4 (-0.17, 1.1 (-0.97, 0.3 (-0.17,
Dictionary 0.03, 0.17, -0.98,

0.98) -0.17) 0.00)

Table 4.3: Eigenvalues and eigenvectors of the mean conductivity tensor in the beef
shoulder. Tensors were calculated using the optimal and practical orien-
tation schemes and the dictionary approach.

λ1 v1 λ2 v2 λ3 v3

Optimal, 0.5 (-0.30, 0.4 (0.81, 0.3 (0.50,
Dictionary -0.17, -0.47, -0.87,

-0.94) 0.34) 0.00)

Practical, 0.6 (-0.75, 0.5 (-0.43, 0.3 (-0.50,
Dictionary -0.43, -0.25, 0.87,

-0.50) 0.87) 0.00)

likely due to inaccurate rotation angle calculations and projecting the vector into dif-

ferent planes. A second conclusion that can be drawn from the straw phantom results

is that conductivity may be anisotropic on a larger scale than diffusion, warranting
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Figure 4.6: Coronal view of the phantom rotated 90 degrees about the y-axis. The red
arrows show the primary eigenvector of the mean conductivity tensor in
each compartment calculated using the dictionary approach with optimal
orientations. Vector length is proportional to the degree of anisotropy of
the conductivity tensor.

an approach that is independent of diffusion tensor measurements. The measured

conductivity in the open compartment changed with orientation, indicating slight

anisotropy. We would not expect anisotropic diffusion in the open compartment. We

do not show diffusion tensor images for the straw phantom because the pixel size

would not match that of the conductivity images due to down-sampling and because

diffusion distance is much smaller than the diameter of the straw. Based on diffusion

principles, we expect that the diffusion would only be anisotropic near the boundary

of the straws, but not necessarily in the center of the straws.

In both the straw phantom and the beef, the conductivity tensors calculated from

the practical orientations were not completely successful. When using the direct cal-
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Figure 4.7: Coronal view of the phantom rotated approximately −50 degrees about
the y-axis. The red arrows show the primary eigenvector of the mean
conductivity tensor in each compartment calculated using the dictionary
approach with optimal orientations. Vector length is proportional to the
degree of anisotropy of the conductivity tensor.

culation approach, the primary eigenvector was fairly close to that calculated with

the optimal orientations, but one eigenvalue was either negative of much lower than

expected. We also tried restricting the eigenvalues to be non-negative, using the

approach suggested in (118). However, this simply set the negative eigenvalue to

zero. When using the dictionary-based approach, the primary eigenvector was biased

toward the secondary eigenvector, but all eigenvalues were positive. Based on the

tabular results, the dictionary-based approach seems to be similar to the direct calcu-

lation for more isotropic materials, like the open compartment. There are trade-offs

for each approach and one might consider whether eigenvectors or eigenvalues are

more important for describing conductivity.

Most of the results presented in this chapter are from the straw phantom. We
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Figure 4.8: (a) Axial view of the beef shoulder. (b) Primary eigenvector direction of
the diffusion tensors calculated in the beef. (c) Primary eigenvector direc-
tion of the conductivity tensor calculated using the optimal orientations.
(d) Primary eigenvector direction of the conductivity tensor calculated
using the practical orientations.

do not believe this is an accurate model of white matter tracts in the brain, but it

allowed us to work with anisotropic conductivity. We believe plastic material of the

straw was the source of two primary properties of the straw compartment. First,

the straw compartment had a lower conductivity than the open compartment, as

seen in Figure 4.3, despite being filled with the same saline solution. We hypothesize

that the presence of the non-conductive material affects the propagation of fields

and currents on a large scale, leading to lower apparent conductivity measurements.

Second, the straw compartment was more anisotropic than the open compartment.

We hypothesize the presence of the non-conductive straws makes for a more tortuous

current path when current is applied perpendicular to the straws, and is less disruptive

for current travelling parallel to the straws. A related observation about the phantom
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is the small degree of anisotropy observed in the open compartment. We believe this

is because all sides of that compartment are surrounded by plastic except for the

boundary shared with the straw compartment. Thus, it is more conductive along

that direction.

Finally, questions remain as to the meaning of the eigenvalues of the tensor. The

maximum conductivity measured in the open compartment was much less than the

conductivity measured with a dielectric probe. This underestimate may be due to the

phase-based approximation or the 2D calculations. In the Theory section, we noted

that the measured phase is proportional to the apparent conductivity. However, the

scale of the positive eigenvalues are in the range of the apparent conductivity values.

In conclusion, we propose a mathematical framework for calculating the conduc-

tivity tensor based on the phase-based approximation to MR-EPT. We provide direct

calculation and dictionary-based approaches to calculating the tensor, in an effort to

make these calculations feasible in the brains of human subjects. Our proposed dictio-

nary approach provides accurate tensor estimates for ideal object orientations. Given

small, practical orientations, we are able to eliminate negative eigenvalues but there is

a bias in the primary eigenvector. In the beef shoulder, conductivity tensors correlate

well with the diffusion tensors. However, conductivity may have anisotropic behavior

on a larger scale than diffusion, warranting an approach that does not depend on

diffusion tensor data.

To improve on this approach we need to further investigate the impact of the ob-

ject orientations on the accuracy of the conductivity tensor calculations, using either

calculation method. Adding a non-negativity constraint to the eigenvalues or requir-

ing two eigenvalues to be identical may also improve tensor estimates. Additionally,

more efficient dictionary searches would be beneficial for further exploration of the

dictionary-based calculations. Finally, the proposed method relies heavily on the elec-

tric fields only having a longitudinal component. A joint estimation of conductivity
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and electric fields may be useful in relaxing that assumption.

87



CHAPTER V

Contributions and Future Work

Conductivity mapping has applications in RF safety, clinical diagnostics, and

planning treatments involving electromagnetic fields. All of these applications have

in common the need for high resolution, accurate conductivity maps. The primary

goal of this dissertation is to present methods that improve conductivity mapping.

These improvements include increasing accuracy near boundaries, improving SNR,

and measuring anisotropic conductivity.

5.1 Phase-Based Conductivity Mapping

In Chapter II we presented a novel method for conductivity mapping using a reg-

ularized, model-based approach. We showed that our approach provides less noise

amplification and reduced boundary artifact as compared to a conventional filtering

method. While not directly compared to other inverse problems approaches, our

method has several advantages over those approaches. First, the problem is formu-

lated in three dimensions, whereas the CSI-EPT approach proposed by Balidemaj et

al. (82) is not. Second, it is a manageable problem size for computation on a stan-

dard desktop computer, unlike the inverse problems approach from Borsic et al. (84).

Finally, to the best of our knowledge, this is the first demonstration of an inverse

problems approach in vivo. Both the boundary error reduction and SNR improve-

88



ments contribute to better accuracy in conductivity maps. The SNR improvement,

or more specifically the reduction in noise amplification, is an important contribution

towards high resolution conductivity mapping, as SNR in MRI data is proportional

to voxel size.

There are some limitations to consider in using the proposed Inverse Laplacian

method. The first is the mask calculations. The region of support mask is relatively

straightforward, but the angiography can be time-consuming. We have also had suc-

cess with thresholding a T1-weighted spoiled gradient echo image to achieve the same

mask in a fraction of the time. The edge mask requires some tuning of the threshold

parameter, which does not require extra acquisition time but does require user input

for every reconstruction. The parameter value depends on the range of magnitude

values and the contrast in the image. Another limitation is the computation time.

As compared to a simple spatial filtering method, the proposed method computation

time is orders of magnitude longer.

There are several opportunities for future work on the proposed Inverse Laplacian

method. The simplest extension, although not trivial, involves adapting the Inverse

Laplacian system model to solve for permittivity or even complex permittivity. The

MR-EPT equation and magnitude-based permittivity approximation are nonlinear,

unlike the phase-based conductivity approximation, making the system model more

complex. Since phase-based conductivity approximations are less reliable at high field

strengths, a model-based solution for complex permittivity would be applicable at all

field strengths. Furthermore, RF safety is of greater concern at higher field strengths,

motivating the adaptation of the method. Another extension of this work would

be incorporating non-constant electrical properties into the model. We believe this

would provide more accurate estimates at boundaries than a simple non-negativity

constraint. This would most likely begin with quantifying the boundary error between

different steps in conductivity, building off of work presented in (71).
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5.2 Coil Combination

The methods described in Chapter III also aim to improve the SNR in conductiv-

ity maps, which contributes to accuracy and the feasibility of high resolution maps.

We presented a referenceless method for combining complex, multi-channel MRI data

for conductivity mapping. Conductivity mapping requires both the low spatial fre-

quency contributions from background phase and the high spatial frequency contri-

butions from local, object phase variations. Much of the phase combination literature

is focused on quantitative susceptibility mapping, which only requires the high fre-

quency component. The combination method for phase-based conductivity mapping

presented in (106) requires parameter tuning. In our experience, the motivation to

combine the complex data to achieve a uniform magnitude is not necessarily based on

the phase behavior. Our proposed method does not require parameter tuning and is

robust to coil arrangement. Additionally, it provides optimal SNR in the phase data.

The proposed combination method does not yield conductivity maps identical to

those calculated from birdcage coil data. There remains some bias due to individ-

ual coil phases. Future work for this research aim should focus on making the coil

combination more robust to individual coil phases. This is akin to better estimating

sensitivity maps without a reference. This estimation could perhaps be built into an

iterative, joint estimation of sensitivity maps and conductivity.

5.3 Conductivity Tensor Imaging

The research presented in Chapter IV provides a proof of concept for conductivity

tensor mapping in vivo. We have presented a novel mathematical framework for cal-

culating conductivity based on the phase-based approximation, accompanied by two

different calculation methods. We have shown that the proposed framework does not

require previous knowledge about the directionality of the conductivity tensor. The
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methods proposed in (114, 115) are derived directly from the MR-EPT equations,

with fewer approximations, but require knowledge of the eigenvectors of the tensor.

Lee et al. (115) propose using the diffusion tensor to provide this information, but our

phantom results suggest that conductivity is anisotropic on a larger scale than diffu-

sion. To the best of our knowledge, this is the first attempt at estimating the whole

conductivity tensor in an MR experiment, as opposed to the degree of anisotropy.

Furthermore, our dictionary-based method may be useful in providing better tensor

estimates despite low SNR in the conductivity measurements.

The major drawback of our conductivity tensor mapping approach is the time

required to acquire conductivity data at six different orientations. Another limitation

is the incomplete tensor estimation for acquisitions at practical orientations. While

the direct calculation and dictionary-based calculation each provide partial informa-

tion, we have yet to determine the best combination of practical orientations and

calculation method to estimate the full tensor given the practical constraints.

There is quite a bit of future work required to make the proposed conductivity

tensor mapping method feasible in the human brain. One item that would benefit the

research process, but not necessarily improve the tensor estimates, is implementing

more efficient dictionary searches. The search time could be reduced by creating a

dictionary that is not over-complete to minimize the number of atoms and by imple-

menting parallel processing. To further expedite the entire tensor mapping process,

we will explore the minimum number of orientations required for the dictionary-

based method to reduce acquisition time. Because the dictionary-based method finds

the tensor that best fits the data, there is a relaxed requirement for the number of

orientations and six acquisitions may be redundant. We believe we could optimize

the orientations to provide the most variation in conductivity in the fewest acquisi-

tions. Finally, the proposed mathematical framework employs assumptions about the

components of the magnetic and electric fields. We may be able to reduce these as-

91



sumptions with a joint estimation of conductivity and electric fields. This would likely

be an iterative process and involve more thorough modeling of the electromagnetic

fields.
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