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ABSTRACT

This dissertation presents searches for dark matter particles and new resonances at

the LHC with the ATLAS experiment. The data used in these analyses are produced

in proton-proton collisions at a center-of-mass energy of 13 TeV and are collected by

the ATLAS experiment, with a total integrated luminosity of 36.1 fb−1.

The experimental signature of new physics in this work involves large missing

transverse energy (Emiss
T ) plus a di-lepton pair from a Z boson decay. In the dark

matter search program, it is hypothesized that the Higgs boson may couple to invisible

particles who serve as dark matter candidates. The Higgs boson is produced in

association with a Z boson, which is used as a ‘tag’ particle through its charged lepton

(ee or µµ) decays. The dark matter signature is large Emiss
T since the dark matter

particles, just like the neutrinos, escape from the detector (invisible). The challenge

of searching for dark matter is to understand sources of Emiss
T produced in proton-

proton collisions and design an efficient event selection criterion to separate the signal

from the backgrounds. Selected data is compared with the expected background and

the dark matter signal, assuming the Standard Model (SM) ZH production cross

section. Data is found to be consistent with the background expectation. An upper

limit on the branching fraction of the Higgs boson decaying to invisible particles of

67% is set at 95% confidence level (CL). The corresponding limits on the production

cross-section (σ) of beyond the SM Zh process with the invisible Higgs boson decays

are also presented in a mass range of 110 to 400 GeV.

The two-Higgs-doublet model and the electroweak singlet model are motivated

theoretical models, which predict additional Higgs bosons near the TeV scale that

may decay to pairs of Z bosons. The search for these non-SM Higgs bosons are also

conducted with di-lepton plus Emiss
T final states, but by considering the decay mode

ZZ → `+`−νν̄ (`= e, or µ). The transverse mass spectrum of the `+`− + Emiss
T system

is used as the discriminant to search for bumps created by new resonances. Comparing

data with the expected signal and background, no evidence is found for new resonance

production in the mass range between 300 GeV to 1500 GeV. Therefore, the limits on

new resonance production cross-section times a branching ratio are set. This result

is also interpreted as a search for a spin-2 Kaluza-Klein graviton excitation, G∗KK , in

the context of the bulk Randall-Sundrum model via G∗KK → ZZ∗ → `+`−νν̄ process.

An upper limit on σ × BR(G∗KK → ZZ∗) is set as a function of the KK graviton

mass between 600 GeV and 2 TeV.

xxi



CHAPTER I

Introduction

This dissertation presents searches for dark matter particles and new resonances

at the Large Hadron Collider (LHC) [1] with the ATLAS experiment [2] at CERN,

the European Nuclear Research Center.

The research in high energy physics is to address the most fundamental questions:

what are the fundamental constituents of matter and how do they interact with each

other? Modern physics experiments are conducted at the energy frontier with high

energy accelerators. These particle colliders allow us to study the structure of matter

at the distance of 10−18 m. We use particle accelerators to pump sufficient energy

into a point in space to re-create the short-lived particles and uncover the forces and

symmetries that existed in the earliest universe. The current most powerful particle

collider in the world is the LHC. Researches at the LHC are exploring forces that

governed the universe when it was about one trillionth of a second (one picosecond)

old.

Our physical world is governed by four fundamental forces: gravitation, the elec-

tromagnetic (EM) force, the weak force and the strong force. High energy physics

is concerned with the last three of these forces; gravitation is so much weaker than

the other three that it has negligible influence on subatomic processes and it is not

included in the Standard Model (SM) [4, 5, 6]. The SM consists of three distinct

quantum theories: Quantum Electrodynamics (QED), the theory of weak interac-

tions, and Quantum Chromodynamics (QCD) as the theory of strong interactions at

high energy. QED and the weak force are unified as the electroweak theory. Before

the LHC, predictions made by the SM, in terms of the elementary particles and their

interactions, had been verified by experiments, except one scalar particle, the Higgs

boson. The electroweak interaction is introduced in the SM by requiring gauge sym-

metry (SU(2)L × U(1)Y ). However, invariance under this gauge symmetry requires

massless gauge bosons, which conflicts with the observed massive weak interaction

1



bosons, Z and W±. During 1964 - 1968 Peter Higgs and Francois Englert introduced

a scalar field to the SM [7, 8]. Based on the theory, the electroweak symmetry is

spontaneously broken with the choice of a special potential. This potential is the

minimum value under the spontaneous symmetry breaking, known as vacuum ex-

pectation value. The weak gauge bosons (Z and W±) acquire their masses through

electroweak symmetry breaking process (called Higgs mechanism) by their interac-

tions with the scalar field. The quantum of this field is the Higgs boson. The search

for the SM Higgs boson was of high priority in high energy physics experiments over

past 50 years till its discovery in 2012 [9, 10] at the ATLAS and the CMS experiments

at the LHC.

Even though the last predicted particle in the SM, the Higgs boson, was discovered,

some big questions in particle physics remain and cannot be answered in the SM. For

example, what is the nature of dark matter in the universe? What is the origin of

neutrino masses? Can the fundamental interactions be unified? How can gravity be

incorporated? There are also many questions related to the newly discovered Higgs

boson, such as: Is it an elementary or composite particle? Will it decay to other final

states not predicted by the SM? Does it have other neutral or charged siblings? To

address these questions, US Particle Physics Project Prioritization Panel (P5) [11]

defined “Science Driver” for the field:

1) Use the Higgs boson as a new tool for discovery;

2) Pursue the physics associated with neutrino mass;

3) Identify the new physics of dark matter;

4) Understand cosmic acceleration: dark energy and inflation;

5) Explore the unknown: new particles, interactions, and physical principles.

The above science driver items 1), 3) and 5) are related to the physics researches in

this dissertation: search for dark matter using Higgs boson and new heavy resonances

of beyond the SM Higgs boson productions.

Data used in these physics searches are created in proton-proton collisions at the

highest center-of-mass energy, 13 TeV, at the LHC and collected by the ATLAS

experiment during 2015 and 2016, corresponding to a total integrated luminosity of

36.1 fb−1. The experimental signature of new physics involves large missing transverse

energy Emiss
T plus a di-lepton pair (ee, or µµ) from a Z boson decay. This thesis will

present two analyses:
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• A search for dark matter particles in the process of pp → Zh → `+`− + χχ,

where ` and χ denote leptons from the Z boson decay and invisible dark matter

particles from the Higgs boson decay, respectively;

• Search for additional Higgs bosons in high mass region (300 GeV - 1.5 TeV) in

the process pp → H
′
/G∗ → ZZ → `+`− + νν̄, where H ′ denotes a new Higgs

boson, G∗ denotes a Randall-Sandrum graviton and ν denotes neutrinos from

the Z boson decay.

In the dark matter search program the Higgs boson is used as a new portal that

couples to invisible particles as dark matter candidates. The Higgs boson is produced

in association with a Z boson, which is used as a “tag” particle through its decays

to charged leptons (ee or µµ), while the Higgs boson decays to probe dark matter

particles. The dark matter gives large missing transverse energy (Emiss
T ) since the

dark matter particle is just like neutrino escaping from the detector (invisible). The

previous search with the LHC Run I data collected by the ATLAS experiment set an

upper limit on the branching fraction (BR) of the Higgs boson decaying to invisible

particles BR(h→ inv.) = 75% at 95% confidence level (CL) [12]. With the increased

luminosity and energy of the LHC Run II program, this search is expected to increase

the sensitivity significantly. The challenge of searching for dark matter at high lumi-

nosity is to understand various sources of Emiss
T produced in proton-proton collisions

and design an efficient event selection criterion to separate the dark matter signal

from backgrounds. The Emiss
T spectrum is used as the discriminant for dark matter

searches. A statistical analysis program is performed in the search to quantitatively

interpret the final physics results.

There are highly motivated theoretical models, such as the two-Higgs-doublet

model (2HDM) [14] and the electroweak singlet model [15, 16], that predict the exis-

tence of additional Higgs bosons at higher mass scale. These additional Higgs bosons

can decay to pairs of Z bosons. Previous searches with the ATLAS data collected in

the LHC Run I presented a negative result [18]. We extend these searches at higher

mass range (from 300 GeV to 1.5 TeV) with the LHC Run II data collected at
√
s =

13 TeV. The search for these additional Higgs bosons are performed with `+`−+Emiss
T

final state, considering the decay mode of H → ZZ∗ → `+`−νν̄ (` = e, µ). The trans-

verse mass spectrum of the `+`−+Emiss
T system is used as the discriminant to search

for a high mass resonance. The major irreducible background comes from the SM

ZZ production, which is calculated using Monte Carlo simulations. The reducible

background from Z+jets process is estimated from data. This analysis result is also
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interpreted in a search for a spin-2 Kaluza-Klein graviton excitation, G∗KK , in the

context of the bulk Randall-Sundrum model in G∗ → ZZ∗ → `+`−νν̄ process.

This dissertation is organized as follows: Chapter II gives an overview of the SM of

particle physics, including the Higgs Mechanism. Theories beyond the SM related

to this thesis work and the physics phenomenology at the LHC are also described

in this chapter; An overview of the LHC and the ATLAS experiment is presented in

Chapter III; Reconstruction of physics objects in the ATLAS experiment, including

electrons, muons, jets, Emiss
T , and b-tagging, are described in Chapter IV; Chapter V

presents the dark matter search analysis and results; Chapter VI presents the searches

for new resonances at high mass region; Finally, a summary of the searches is given

in Chapter VII.
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CHAPTER II

Theory

This chapter describes the particle physics theory, the Standard Model (SM) with

emphases on Electroweak theory and Higgs mechanism, followed by descriptions of

theoretical models beyond the SM (BSM) related to this thesis work, predictions of

non-SM Higgs boson productions at the LHC, and dark matter models.

2.1 The Standard Model of Particle Physics

The SM of particle physics describes the elementary particles and their interactions

at the most fundamental level. The theory has been widely tested and can successfully

explain a large amount of experimental results with high precision. The recently

discovered particle, Higgs boson, has further increased the action of the SM. The

elementary particles of matter (fermions in three generations) and the force carriers

(vector bosons) as well as the Higgs scalar of the SM are shown in Figure 2.1.

2.1.1 The SM Particles

The building blocks of the SM can be divided into three classes of elementary

particles: fermions, gauge bosons and the Higgs boson.

• Fermions are spin-1
2

particles following the Fermi-Dirac statistics. There are

two types of fermions: leptons and quarks, which are basic components of mat-

ter. There are three generations of leptons: electron (e), muon (µ) and tau

(τ), each of them has the electric charge of -e,and their corresponding neutrino:

electron neutrino (νe), muon neutrino (νµ) and tau neutrino (ντ ), which do not

carry electric charges. There are also three generations of quarks: up and down

quarks as the first generation, charm and strange quarks as the second genera-

tion, top and bottom quarks as the third generation. Up, charm and top quarks
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have electric charge of 2
3
e, while other three types of quark have electric charge

of -1
3
e. Quarks carry both electric and color charge and thus they can interact

with other particles via both the strong interaction and the electromagnetic in-

teraction. Leptons do not carry color charge, they cannot get involved in strong

interactions. For neutrinos, they only participate in weak actions, since they

do not carry electric charge, therefore cannot have electromagnetic interaction.

All the fermions have corresponding antiparticles, which have the same mass,

spin, and the same amount but opposite sign of charge as the original particles.

• Gauge Bosons are spin-1 particles known as force carriers. There are three

types of gauge bosons: photons(γ) that mediate the electromagnetic force be-

tween electrically charged particles, W± and Z gauge bosons that mediate weak

interactions among fermions, and gluons (g) that mediate strong interactions

among quarks (colored particles). The photons and the eight gluons are mass-

less. Photons can be described by quantum electrodynamics (QED) while gluons

can be described by quantum chromodynamics (QCD). The W± gauge bosons

carry electric charge and couple to electromagnetic interaction while Z boson

is electrically neutral. W± and Z bosons along with photons are unified by the

electroweak theory in the SM. The electroweak symmetry is broken in the SM

so that the Z and W± boson can acquire masses in symmetry breaking process,

called Higgs mechanism.

• Higgs Bosons is a spin-0 massive scalar boson. It is introduced to break

the electroweak symmetry to explain how elementary particle acquire masses

through their interactions with the Higgs field.

2.1.2 The electroweak theory

The Electroweak theory unifies the electromagnetic and weak interactions medi-

ated by the γ, W± and Z bosons. It is based on the SU(2)L×U(1)Y gauge symmetry

group, where L refers to the left-handed fields and Y refers to the weak hypercharge.

The framework of the theory is built with the Lagrangian, which is presented as the

following equation 2.1:

LSU(2)L×U(1)Y = Lgauge + Lfermion + Lφ + LY ukawa (2.1)

The Lagrangian includes four terms: the gauge fields, the fermion interaction with

gauge fields, the scalar fields, and the interaction between fermions and scalar fields.
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Figure 2.1: Elementary particles in the Standard Model of particle physics [20].

The Lgauge term describes the gauge bosons(γ, W±, Z) kinetic terms:

Lgauge = −1

4
W i
µνW

µνi − 1

4
BµνB

µν , (2.2)

where W i
µ (i = 1, 2, 3) and Bµ are the SU(2)L and U(1)Y gauge fields respectively,

with the field strength tensors:

Bµν = ∂µBν − ∂νBµ

W i
µν = ∂µW

i
ν − ∂νW i

µ − g2εijkW
j
µW

k
ν , (2.3)

where g2 is the SU(2)L gauge coupling and εijk is the totally anti-symmetric Levi-

Civita symbol. The Lfermion term describes the fermion kinetic terms and interac-

tions:

Lfermion =
∑

ψ=LL,LR,QL,uR,dR

ψ̄iγµDµψ, (2.4)

where γµ are the 4×4 Dirac matrices, Dµ is covariant derivative operator (see equation

2.8), and ψ̄ ≡ ψ†γ0.

In the SM, the fermions form the left-handed weak-isospin doublet and right-

handed weak-isospin singlet. The first generation of leptons describe the theory and

can be generalized to the second and the third generations by involving the CKM
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matrix [22, 23]:

Le =

(
νL
eL

)
, and Re = (eR). (2.5)

The left and right handed states are defined by:

eL =
1− γ5

2
e, νL =

1− γ5

2
ν eR =

1 + γ5

2
e, (2.6)

where γ5 is a 4×4 matrix

(
0 I2×2

I2×2 0

)
and I2×2 represents the two-dimensional unit

matrix. Similarly, the first generation of quarks can be written as:

Qe =

(
uL
dL

)
, uR, dR. (2.7)

In order to keep the gauge invariance under SU(2)L×U(1)Y , one must introduce

a gauge field Bµ, which transforms as a four-vector and replace the derivatives by

gauge-covariant derivatives and a three vector fields W i
µ. The covariant derivative is

introduced as:

Dµ = ∂µ − ig1
Y

2
Bµ − ig2

τ i

2
W i
µ, (2.8)

where g1 and g2 are gauge couplings, Y and τ i are the generators for the U(1)Y and

SU(2)L gauge symmetry groups (τ i does not act on ψR), Bµ and W i
µ are the gauge

boson fields. If we re-define the gauge fields as

W+ =
−W 1 + iW 2

√
2

, W− =
−W 1 − iW 2

√
2

, W 0 = W 3 (2.9)

and

Aµ =
g2Bµ + g1W

0
µ√

g2
1 + g2

2

, Zµ =
−g2Bµ + g1W

0
µ√

g2
1 + g2

2

(2.10)

the electric charge e and weak mixing angle θW can be related to the coupling con-

stants g1 and g2:

e =
g1g2√
g2

1 + g2
2

, sin θW =
g1

g2
1 + g2

2

, cos θW =
g2

g2
1 + g2

2

. (2.11)
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The Electroweak (EW) Lagrangian for the first generation fermions is:

Lfermion =
∑

f=e,νe,u,d

eQf

(
fγµf

)
Aµ

+
g1

cosθW

∑
f

[
fLγ

µfL
(
T 3
f −Qfsin

2θW
)

+ fRγ
µfR

(
Qfsin

2θW
)]
Zµ

+
g2√

2

[
(uLγ

µdL + νeLγ
µeL)W+

µ + herm.conjugate
]

(2.12)

where Qf and T 3
f refers to EM charge and the third component of isospin for each

fermion f . The fields Aµ, Zµ, W+
µ and W−

µ are then identified as photon (γ), the Z,

and the W± fields, respectively. All fermions which have electric charge can interact

with EM field Aµ, with a strength proportional to their electric charges. The neutrino

which hasQν = 0 interacts only with Z andW± fields. Also, only left-handed fermions

interact with the W± fields. This is due to the fact that right-handed fermions are

SU(2) singlets with T 3
f = 0.

The scalar term of the Lagrangian is

Lφ = (Dµφ)†Dµφ− V (φ), (2.13)

where φ =

(
φ+

φ0

)
is a complex Higgs scalar, which is a doublet under SU(2)L. The

square of the covariant derivative leads to three and four-point interactions between

the gauge and scalar fields. The V (φ) is the scalar (the Higgs boson) potential. The

combination of SU(2)L×U(1)Y invariance and renormalizability restricts V (φ) to the

form

V (φ) = µ2φ†φ+ λ(φ†φ)2. (2.14)

For µ2 < 0 there will be spontaneous symmetry breaking, the potential will have non-

zero φ in the ground state. As will be described in the Higgs mechanism section, the

weak gauge bosons will acquire masses through the symmetry breaking process, and

the λ term describes triple and quartic self-interaction between the scalar fields when

expanding around the vacuum expectation value (vev). Vacuum stability requires

λ > 0.

The last term is LY ukawa, which explains how fermions interact with the Higgs field

and acquire masses and will be introduced in detail in Section 2.1.3.

The Lagrangian constructed based on SU(2)L×U(1)Y symmetry can completely
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φ

ν−ν

V (φ)

Figure 2.2: The Higgs potential (V (φ)) for µ2 > 0 (dash line) and µ2 < 0 (solid
line) [21].

describe the EW interactions. However, the fermions and gauge bosons must be mass-

less within this framework, and this conflicts with experimental measurements. Thus,

the Higgs mechanism is introduced to explain mass generation through electroweak

symmetry broken spontaneously.

2.1.3 The Higgs Mechanism

In this section, the Higgs mechanism is briefly described to explain how fermions

and gauge bosons acquire masses.

In the SM, the Higgs scalar field φ is a single complex doublet. and the Higgs

terms of Lagrangian can be written as:

Lφ = (Dµφ)†Dµφ− µ2φ†φ− λ(φ†φ)2. (2.15)

When minimizing the potential, the sign of µ2 has to be considered, as shown in

Figure 2.2. For µ2 > 0, the minimum occurs at ν = 0, which means the vacuum

is empty space, and SU(2)L × U(1)Y is unbroken at this point. For µ2 < 0, the

minimum occurs at a nonzero value of vev, ν = (−µ2/λ)
1/2

. At this minimum point,

the SU(2)L ×U(1)Y symmetry is broken spontaneously. We can study the spectrum

by expanding φ field around the vacuum:

φ (x) =
1√
2

(
0

ν +H (x)

)
, (2.16)
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where the minimum, vacuum φ0 is:

φ0 =
1√
2

(
0

ν

)
. (2.17)

The Higgs potential V (φ) can be rewritten as:

V (φ) = −µ
4

4λ
− µ2H2 + λνH3 +

λ

4
H4.

The second term in V (φ) represents the mass (at the tree-level) of the physical Higgs

boson:

MH =
√
−2µ2 =

√
2λ ν,

where λ is a parameter of the SM which is not specified in the model. The third and

the 4th terms are the Higgs boson self-interaction terms.

The (Dµφ)†Dµφ term in Lφ can be rewritten as:

(Dµφ)†Dµφ =
1

2
(∂µH)2 +M2

WW
µ+W−

µ

(
1 +

H

ν

)2

+
1

2
M2

ZZ
µZµ

(
1 +

H

ν

)2

=
1

2
(∂µH)2 +MW

2W µ+W−
µ +

2MW
2

ν
W µ+W−

µ H +
MW

2

ν2
W µ+W−

µ H
2

+
1

2
MZ

2ZµZµ +
MZ

2

ν
ZµZµH +

MZ
2

2ν2
ZµZµH

2

(2.18)

where MW = 1
2
νg2 and MZ = 1

2
ν
√
g2

1 + g2
2. This form of equation explicitly describes

the Higgs boson kinetic terms, the mass ofW± and Z bosons, the triple (an interaction

involves three bosons such as W µ+W−
µ H term) and quartic (an interaction involves

four bosons such as W µ+W−
µ H

2 term) boson interactions of the W±/Z boson with

the Higgs boson with coupling constants proportional to the mass of the gauge boson

squared.

The fermions also acquire masses by interacting with the Higgs filed and the

Lagrangian term is given by:

LfY ukawa = gf (LfφRf +Rfφ
†Lf ) (2.19)

Here, f refers to fermions, which all have similar terms and the coupling gf is called

Yukawa coupling. By inserting the expression of φ defined in equation 2.16 into
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equation 2.19, one can acquire the fermion mass as:

mf =
νgf√

2
(2.20)

2.1.4 Natural Units

It is common in the realm of the elementary particle physics to redefine units so

that speed of light in vacuum (c) and Plank’s constant become equal to one: c = 1

and (}) = 1. In this case, energy, momentum and mass can share the same unit, for

example MeV, GeV, TeV.

Conversions between SI units and Natural units are based on:

} = 6.58× 10−25 GeV · s, (2.21)

c = 3.00× 108 m/s. (2.22)

The expressions can provide three useful factor as shown below:

1 GeV−1 = 6.58× 10−25 sec, (2.23)

1 GeV−1 = 0.198 fm, (2.24)

1 GeV−2 = 3.89× 10−32 m2 = 3.89× 10−4 b. (2.25)

2.2 Beyond the Standard Model

2.2.1 Higgs portal in Search for dark matter particles

A large branching fraction of invisible Higgs decay (BR(h → inv.) ) can exist in

many extensions of the SM. A Higgs boson can decay to dark matter (DM) particles

through Higgs portal models [26, 27] as shown in figure 2.3.

Higgs Portal models [28, 29, 30] make a simple, ad-hoc extension to the SM by

introducing a new particle χ that couples to only the Higgs boson, with a coupling

strength, λhχχ. By using the Feynman rules, the Higgs partial width can be deter-
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�h

χ

χ

λhχχ

(a)

Z
H

Z

q̄

q

χ

χ

l−

l+

(b)

Figure 2.3: Feynman diagrams for the decay of the Higgs boson into dark matter
particles (a) and the Higgs boson produced in association with a Z boson (b).

mined in terms of λhχχ and its decay to dark matter particles for the scalar, vector,

and fermion cases.

In the SM, the invisible decay of the Higgs boson (H → ZZ∗ → νννν) has

a very low branching ratio BRH→inv. of 1.06 × 10−3 for mH = 125 GeV, In this

situation, searching for new physics in beyond the SM Higgs invisible decay looks

more promising.

2.2.2 BSM Higgs Benchmark Models

Since the Higgs boson was discovered, its properties have been broadly tested

using both Run I and Run II datasets at the LHC. The experimental results are

so far found consistent with the SM predictions in the measurements of production

cross section, couplings to fermions and bosons and spin and CP states of the Higgs

boson. Some extensions to the SM that have an extended scalar sector can predict

additional heavy Higgs bosons. Physicists want to determine whether this SM Higgs

boson is fully responsible for the electroweak symmetry breaking, in other words, that

it fully unitarizes the high-energy scattering amplitudes for VLVL → VLVL, (V = W

(mW = 80.4 GeV) or Z (mZ = 91.2 GeV) and VLVL → ff̄ . If this SM Higgs boson

at 125 GeV is not fully responsible for unitarizing the scattering amplitudes, then

additional new physics must exist to play the role. Two popular models that predict

an additional Higgs boson are the two-Higgs-doublet model [14] and the electroweak-

singlet model [15, 16].

2.2.2.1 Electroweak singlet

The electroweak singlet (EWS) model is the simplest extension of the SM Higgs

sector. In this model, a heavy singlet is introduced in addition to the SM scalar field

13



of the original Higgs mechanism. Through the spontaneous symmetry breaking, the

EWS can generate two CP -even (charge conjugation parity symmetry-even) Higgs

bosons. The lightest of these bosons (h) is considered to be the mh=125 GeV reso-

nance whose features are assumed to be same as in the SM and can be scaled by a

constant κ. The new heavy boson (H) is allowed to have non-SM decays which can

be parameterized by the corresponding branching ratio BRH,new.

The Lagrangian of this model can be expressed as below:

Ls = (DµΦ)†DµΦ + ∂µS∂µS − V (Φ, S), (2.26)

where S is an aditional real scalar singlet and V (Φ, S) is:

V (Φ, S) = −m2Φ†Φ− µ2S2 + λ1(Φ†Φ)2 + λ2S
4 + λ3Φ†ΦS2. (2.27)

λi are the coupling parameters related to the masses (mh,mH) and the effective

mixing angles (α). The additional parameters m and µ can be constrained by:

m2 = λ1v
2 +

λ3

2
x2, (2.28)

µ2 = λ2x
2 +

λ3

2
v2, (2.29)

where v and x are the non-zero vevs of both Higgs field Φ and S. κ and κ′ are two

scaling constants applied to the SM quantities to get the EWS ones. In order to

preserve the coupling to the SM particles, κ and κ′ must satisfy the relation

κ2 + κ′ 2 = 1.

The features of the EWS are summarized below:

• Cross section of h: σh = κ2 × σh,SM

• Width of h: Γh = κ2 × Γh,SM

• Branching fraction of h: BRh,i = BRh,SM,i

• H allowed to have non-SM decays parametrized by BRH,new

• Cross section of H: σH = κ′ 2 × σH,SM

• Width of H: ΓH = κ′ 2

1−BRH,new
× ΓH,SM

• Branching fraction of H: BRH,i = (1− BRH,new)× BRH,SM,i
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2.2.2.2 Two Higgs Doublet Model

The two-Higgs doublet model (2HDM) adds an additional doublet to the SM Higgs

sector. The lagrangian of 2HDM is built on two doublets Φ1 and Φ2 as following:

L2HDM = (DµΦ1)†DµΦ1 + (DµΦ2)†DµΦ2 + LY − V (Φ1,Φ2). (2.30)

The most general form for scalar potential of two doublets Φ1 and Φ2 is [14]:

V = m2
11Φ†1Φ1 +m2

22Φ†2Φ2 −m2
12(Φ†1Φ2 + Φ†2Φ1) +

λ1

2
(Φ†1Φ1)2 +

λ2

2
(Φ†2Φ2)2

+ λ3Φ†1Φ1Φ†2Φ2 + λ4Φ†1Φ2Φ†2Φ1 +
λ5

2

[
(Φ†1Φ2)2 + (Φ†2Φ1)2

]2

,

(2.31)

where all the constants are real.

Through the spontaneous symmetry breaking, it generates five physical Higgs

bosons:

• Two CP -even particles (h and H)

• A neutral CP -odd particle (A)

• Two charged particles (H±)

The Higgs sector of the 2HDM can be described by six parameters:

• the masses of the Higgs bosons: mh, mH , mA, and mH±

• tan β = v1/v2 (v1 and v2 are vacuum expectation values of the two doublets)

• α: the mixing angle between the two CP -even bosons

The renormalizable couplings of a single physical Higgs boson to two gauge bosons

can be fixed by gauge invariance in terms of the mixing angles in any CP-conserving

2HDM as [14]:

ghV V = sin(β − α)gV gHV V = cos(β − α)gV gAV V = 0 gH±W∓Z = 0 (2.32)

where for V = W,Z the Standard Model Higgs couplings are gW = g and gZ =

g/cosθW , where g is the SU(2)L gauge coupling and θW the weak mixing angle. The
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renormalizable couplings of two physical Higgs bosons to a single gauge boson are

likewise fixed in any CP-conserving 2HDM as [14]:

ghZA =
1

2
gZcos(β − α), gHZA = −1

2
gZsin(β − α)

ghW∓H± = ∓ i
2
gZcos(β − α) gHW∓H± = ± i

2
gZsin(β − α) gAW∓H± =

1

2
g

(2.33)

None of these couplings involve additional assumptions about the form of the full

non-renormalizable scalar potential, beyond CP conservation.

Since the Lagrangian of the 2HDM has a very general form, one degree of free-

dom comes from the choice of the symmetry of its Yukawa sector (which models the

interaction of the two fields with the fermions). Φ1 and Φ2 are the two fields that are

introduced in the Lagrangian to describe the model, and “fermions” means all SM

fermions excluding neutrinos. Several types of 2HDM models have been developed

depending on this choice and summarized as below:

• Type-I: all vector bosons couple only to Φ1 and all fermions couple only to Φ2;

• Type-II: This is an “MSSM-like” model, in which up-type right-handed fermions

couple to Φ2 while down-type right-handed fermions couple to Φ1,

• Type-III: This is a “lepton-specific” model, where the Higgs bosons have the

same couplings to quarks as in the Type I model and to leptons as in Type II.

• Type-IV: This is a “flipped” model, where the Higgs bosons have the same

couplings to quarks as in the Type II model and to leptons as in Type I.

2.2.3 Randall-Sundrum Graviton

Gravity is the weakest force of the four fundamental forces of physics, approx-

imately 1042 times weaker than the strong force at the scale of quarks, 1036 times

weaker than the electromagnetic force and 1029 times weaker than the weak force at

the scale of protons/neutrons. In order to solve such hierarcy problem, in 1999, Lisa

Randall and Raman Sundrum proposed a new higher-dimensional mechanism [32],

which relies on the existence of only a single additional dimension. This model as-

sumes our world is a 5-dimensional one described by warped geometry. Based on

the Randall-Sundrum (RS) framework with a warped a extra dimension, the most

distinctive novel feature of this scenario is the existence of spin-2 Kaluza-Klein (KK)

gravitons [33] whose masses and couplings to the SM are set by the TeV scale.
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Figure 2.4: Schematic representation of the RS warped model of hierarchy and fla-
vor [33].

A general formula for the couplings of a bulk filed to the KK gravitons is:

LG = C
1

M̄P

ηµαηνβhαβ(x)Tµν(x) (2.34)

where hαβ(x) corresponds to the KK graviton, Tµν(x) denotes the 4D energy-momentum

tensor of the modes of the bulk field and ηµα is the metric tensor, M̄P ≈ 2.4 × 1018

GeV is the reduced 4D Planck scale and C is the overlap integral of the wave functions

of the graviton and the bulk fields.

In this scenario, the production of graviton via qq̄ annihilation and decays to

the conventional photon and lepton channels are highly suppressed. However, the

graviton production via gluon fusion followed by decay to longitudinal Z/W can be

significant. In particular, the “golden” ZZ decay mode offers a distinctive 4-lepton

signal that could lead to the observation at the LHC. This is because in the RS model,

the entire SM are assumed to be localized on the TeV brane. The key feature of this

model is that KK gravitons have a mass TeV and are localized near the TeV brane

so that KK graviton coupling to the entire SM is only TeV suppressed. A schematic

representation of this setup is shown in Figure 2.4. Hence, KK graviton production

via qq̄ or gg fusion at the LHC followed by decays to dileptons or diphotons gives

striking signals.
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2.3 Physics Phenomenology at the LHC

2.3.1 Hadronic Collisions

LHC is a machine built for proton-proton (pp) collision. A proton consists of

partons: quarks and gluons. For the pp collisions at the LHC, the parton interactions

can be divided into hard and soft scattering processes depending on the momentum

transferred between partons. A pp collision event at the LHC can be illustrated in

Figure 2.5.

Figure 2.5: Schematic view of a hadron-hadron collision [37].

The theoretical model for an event from hadron-hadron collisions is described

below:

• Parton Distribution Function (PDF) quantifies the probability of finding a

certain type of quark or gluon with momentum fraction x at an energy scale Q.

Figure 2.6 shows the measured PDFs of gluons and quarks in NNPDF3.0 which

is accurate in perturbative QCD at next-to-next-to leading order (NNLO) [35].

• Hard Scattering shows the event produced by parton interactions. A hard

scattering process transfers large momentum among partons, which could be

either a violent scatter or creation of of a large mass system. For example, the

Higgs boson production from the gluon-gluon fusion and the final state of Higgs

boson decay for underlying physics process such as vector bosons or quark pairs.

• Jet Fragmentation produces the hadronic jets in the final state from the

partons (quarks and gluons) which are produced in the hard scattering.
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• Initial and Final State Radiation represents the QCD, in form of gluons,

or QED, in form of photons, radiation from incoming and outgoing particles.

• Underlying Event contains the particles produced by proton remnants.

Figure 2.6: NNPDF3.0 NNLO PDF set for Q2 = 10 GeV2 and Q2 = 104 GeV2 [38].

One of the physical quantities to connect the theory and experimental measure-

ment is the cross section (σ) for a certain physics process. According to the QCD

factorization theorem [36] the cross sections for hard scattering can be factorized

into a parton level hard scattering convoluted with the parton distribution functions.

For example, for the scattering of two hadrons A and B producing a final state X, a

general form to calculate the hadronic cross section can be written as:

σAB =

∫
dxadxb fa/A(xa, µ

2
F )fb/B(xb, µ

2
F ) σ̂ab→X(αS, µR, µF ) . (2.35)

where µF is the factorization scale, which can be understood as the scale that sep-

arates the short- and long-distance physics and µR is the renormalization scale for

the QCD running coupling. fa/A(xa, µ
2
F ) and fb/B(xb, µ

2
F ) represent the PDF for the

incoming particles. σ̂ab→X(αS, µR, µF ) is the parton level cross section, which can be

19



calculated perturbative in QCD, in form of fixed-order expansion in αS

σ̂ab→X(αS, µR, µF ) = (αS)n[σ̂(0) + (αS/2π)σ̂(1)(µF , µR) + (αS/2π)2σ̂(2)(µF , µR) + ...],

(2.36)

where σ̂(0) denotes the leading-order (LO) partonic cross section, and σ̂(1) is the next-

to-leading-order (NLO), σ̂(2) for NNLO.

The choices of µF and µR are arbitrary. To avoid unnaturally large logarithms

reappearing in the perturbation series it is sensible to choose µF and µR values in the

order of the typical momentum scales of the hard scattering process. And µF = µR

is often assumed. Taking the Higgs production through gluon-gluon fusion and decay

to ZZ? as an example, the standard choice is µF = µR = mZZ?
2

2.3.2 Monte Carlo event generator

Monte Carlo (MC) event generators are software that simulate particle physics

events using Monte Carlo methods. The MC event generators play a crucial role

throughout the whole process of an experiment, including the design of the experi-

ment, detector simulation and calibration, data analysis and comparison of the exper-

imental results and theoretical predictions. The structure of a proton-proton collision

at the LHC as built up by event generators can be described by a few main steps, as

illustrated in 2.7.

Here lists some typical MC generators used for the new physics searches in this

thesis:

• Pythia6 [40]: Multi-purpose LO generator mostly used for QCD final states.

• Pythia8 [41]: The successor to Pythia6.

• MadGraph [42]: Automation of the computations of tree-level and NLO cross

sections and matching to parton shower simulations.

• Sherpa [43]: Multi-parton Matrix Element (ME) + Parton Shower (PS) gen-

erator, including hadronization.

• PowhegBox [44]: It creates events at NLO in QCD, and can be used stan-

dalone to produce LHE files which can be passed to Pythia8, Herwig++, or

HERWIG+Jimmy for parton showering.

• gg2VV [45, 46]: Parton-level integrator and event generator for gg(→ H) →
V V processes.
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Figure 2.7: The basic structure of a showering and hadronization generator event is
shown schematically [39].
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CHAPTER III

The Large Hadron Collider and the ATLAS

Experiment

The Large Hadron Collider (LHC) [1] is the largest and the most powerful parti-

cle collider, the most complex experimental facility ever built, and the largest single

machine in the world. It was built by the European Organization for Nuclear Re-

search (CERN) between 1998 and 2008 in collaboration with over 10,000 scientists

and engineers from over 100 countries. It lies in a tunnel 27 kilometers (17 mi) in

circumference, as deep as 175 meters (574 ft) beneath the France-Switzerland border

near Geneva. On the circle of the LHC, there lies four major experiments, ALICE [48],

ATLAS [2], CMS [3] and LHCb [49]. The ATLAS experiment, utilzied in this thesis,

is a multi-purpose detector, designed to take advantage of the unprecedented energy

available at the LHC and observe phenomena that involve highly massive particles

which were not observable using earlier lower-energy accelerators. Along with CMS,

ATLAS was one of the two LHC experiments involved in the discovery of the Higgs

boson in July 2012. It was also designed to search for evidence of particle physics

beyond the Standard Model (BSM). In this chapter, a brief description of LHC is

given in section 3.1 and followed by an introduction to major part of the ATLAS

detector in section 3.2

3.1 The Large Hadron Collider

3.1.1 The LHC Complex

The accelerator complex at CERN, shown in Figure 3.1 [47] is a succession of

machines that accelerate particles to increasingly higher energies. Each machine

boosts the energy of a beam of particles before injecting the beam into the next

machine in the sequence. In the LHC, the last element in this chain, particle beams
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Figure 3.1: Distribution of the LHC complex [47].

are accelerated up to the record energy of 6.5 TeV per beam. Most of the other

accelerators in the chain have their own experimental halls where beams are used for

experiments at lower energies.

Inside the accelerator, two high-energy particle beams travel at close to the speed

of light before they are made to collide. The beams travel in opposite directions in

separate beam pipes - two tubes kept at ultrahigh vacuum state. They are guided

around the accelerator ring by a strong magnetic field maintained by superconducting

electromagnets. The electromagnets are built from coils of special electric cable that

operates in a superconducting state, efficiently conducting electricity without resis-

tance or loss of energy. This requires chilling the magnets to -271.3◦C - a temperature

colder than outer space. For this reason, majority of the accelerator is connected to

a distribution system of liquid helium, which cools the magnets, as well as to other

supply services.
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The proton source is a simple bottle of hydrogen gas. An electric field is used to

strip hydrogen atoms of their electrons to yield protons. Linac 2, the first accelerator

in the chain, accelerates the protons to the energy of 50 MeV. The beam is then

injected into the Proton Synchrotron Booster (PSB), which accelerates the protons

to 1.4 GeV, followed by the Proton Synchrotron (PS), which pushes the beam to 25

GeV. Protons are then sent to the Super Proton Synchrotron (SPS) where they are

accelerated to 450 GeV. These protons are finally transferred to the two beam pipes

of the LHC. The beam in one pipe circulates clockwise while the beam in the other

pipe circulates anticlockwise. It takes 20 ∼ 30 minutes for the protons to reach their

maximum energy of 6.5 TeV and both two beams circulate for many hours inside

the LHC beam pipes under normal operating conditions. The two beams are then

brought into collision inside four detectors: ALICE, ATLAS, CMS and LHCb, where

the total energy at the collision point is equal to 13 TeV. The four detectors where

collisions occur are summarized below:

• ALICE (A Large Ion Collider Experiment): A heavy ion experiment designed

to study the nature of quark-gluon plasma.

• ATLAS (A Toroidal LHC ApparatuS): One of two general-purpose detectors

to study a wide range of physics from testing the SM Higgs boson to looking

for new physics such as dark matter and etc..

• CMS (Compact Muon Solenoid): The other general-purpose detector, like

ATLAS, to study the SM including the Higgs boson and look for clues of new

physics.

• LHCb (Large Hadron Collider beauty): A specialized b-physics experiment

designed to slight differences between matter and antimatter by studying b-

hadrons.

3.1.2 LHC Design Parameters

The collider is designed to create proton-proton collisions with a peak luminosity

of 10−34 cm−2s−1 and a center-of-mass energy of
√
s = 14 TeV. The momentum of a

proton in a circular accelerator is determined by:

p[GeV] = 0.3B[T]ρ[m], (3.1)

24



where B is the magnetic field strength and ρ is the radius of the circle. In order to

reach the center-of-mass energy at the LHC, the magnetic field strength has to reach

8.3 T. 1232 dipole magnets are used to keep the beams on circular path and 392

quadrupole magnets are used to focus the beams. In total, over 1600 superconducting

magnets are installed.

The events are produced by beam-beam collisions at a rate of:

dN

dt
= L× σ, (3.2)

where L is the instantaneous luminosity and σ is the cross section. Luminosity is an

important parameter to describe the performance of the LHC. It has the dimension of

number of particles or events per time per area and thus has the unit of cm−2s−1. In

practice, L is dependent on the particle beam parameters [50] , such as beam width

and particle flow rate, as well as the target properties, such as target size and density.

Assuming a Gaussian beam distribution, the luminosity can be expressed as:

L =
N2
b nbfrevγr
4πεnβ∗

F, (3.3)

where Nb is the number of particles per bunch, nb is the number of bunches per beam,

fr the revolution frequency, γ the relativistic γ factor, εn the normalized transverse

beam emittance, β∗ the β function (to describe beam width) at the collision point

and F the geometrical luminosity reduction factor. The geometric luminosity reduc-

tion factor is added in the luminosity calculation due to the crossing angle at the

interaction point (IP, the point where two bunch of protons collide with each other),

which can be expressed as:

F =
1√

1 + ( θcσz
2σ∗

)2

, (3.4)

where θc is the full crossing angle at the IP, σz the root mean square (RMS) of the

bunch length and σ∗ the transverse RMS of the beam size at the IP.

The integrated luminosity is the integral of luminosity over a period of time, and

can be written as:

Lint =

∫
Ldt, (3.5)

which has the dimension of cm−2. In this thesis, it is expressed in the unit of inverse

femtobarn (fb−1, fb−1 = 1039 cm−2) and measures the number of events produced per

fb cross section. The integrated luminosity of pp collisions delivered by the LHC and
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recorded by the ATLAS detector in 2015 and 2016 are shown in Figure 3.2.

Table 3.1 [54] shows the main parameters required to reach a peak luminosity of

1034 cm−2s−1 for proton-proton collisions at
√
s = 14 TeV.

Circumference 26.7 km
Beam energy at collision 7 TeV
Beam energy at injection 0.45 TeV
Dipole field at 7 TeV 8.33 T
Luminosity 1034cm−2s−1

Beam current 0.56 A
Protons per bunch 1.1× 1011

Number of bunches 2808
Nominal bunch spacing 24.95 ns
Normalized emittance 3.75µm
Total crossing angle 300µrad
Energy loss per turn 6.7 keV
Critical synchrotron energy 44.1 eV
Radiated power per beam 3.8 kW
Stored energy per beam 350 MJ
Stored energy in magnets 11 GJ
Operating temperature 1.9 K

Table 3.1: The LHC parameters.

At the LHC, the average number of pp interactions per bunch crossing is often

referred as pile-up parameter (µ). The collision events from pileup are uncorrelated

with the hard-scattering process and often poses an contamination to the soft energy

deposits, leading to an adverse effects on the objects reconstruction. The pileup

parameter can be calculated from the integrated luminosity over a bunch crossing

time as:

µ =

tcrossing∫
0

Ldt× σinelastic, (3.6)

where σinelastic is inelastic interaction cross section, which takes value of 78 mb at the

center-of-mass energy of
√
s = 13 TeV.

Figure 3.3 shows the integrated luminosity versus the mean number of interactions

per crossing averaged over all bunch crossings (denoted as < µ >) for the 2015, 2016

pp runs.

Table 3.2 presents some highlighted LHC beam parameter values under opera-

tional conditions of the pp collision during Run 1 (2010-2012) and Run 2(2015-2016).
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Figure 3.2: The cumulative luminosity versus time delivered by the LHC (green) and
recorded by the ATLAS (yellow) during stable proton-proton beam periods at the
center-of-mass energy of

√
s = 13 TeV in 2015 (left) and 2016 (right) [51].
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Figure 3.3: Luminosity-weighted distribution of the mean number of interactions per
crossing in the 2015 and 2016 pp collision data [51].

Parameter Design 2010 2011 2012 2015 2016

Beam energy [TeV] 7.0 3.5 3.5 4 6.5 6.5

Bunches/beam nb 2808 348 1331 1380 2244 2220

Bunch crossing time tcrossing [ns] 25 150 50 50 25 25

Protons/bunch Nb [1011 protons] 1.15 0.9 1.2 1.7 1.1 1.1

εn [µ m] 3.75 2.6 2.4 2.4 3.5 3.4

β function at IP β∗ [m] 0.55 2.0-3.5 1.0-1.5 0.6 0.8 0.4

Peak luminosity [1034 cm−2s−1] 1.0 0.02 0.36 0.77 0.51 1.4

< µ > 25 2 9 21 14 25

N =
∫
Ldt LHC delivered [ fb−1] 0.047 5.5 22.8 4.2 38.5

Table 3.2: The LHC operational conditions in Run I (2010-2012) and in Run II
(2015-2016).
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Figure 3.4: The longitudinal cut-away view of the ATLAS detector [52].

3.2 The ATLAS Experiment

The ATLAS detector is a multi-purpose machine to probe different particles. It

is composed of four major parts: the inner detector (ID), the electromagnetic (EM)

and hadronic calorimeter, the muon spectrometer (MS) and the magnet systems. The

layout of the ATLAS detector is shown in Figure 3.4

The coordinate system used in the ATLAS detector is the right-handed Carte-

sian coordinate system with its origin at the interaction point (IP), the center of the

detector. The z−axis points to the beam dirextion, the x−axis points from the IP

to the center of LHC ring and the y−axis points upward. The side-A and side-C of

the detector are defined with positive z and negative z respectively. The polar angle

θ measures the angle from the beam axis and the azimuthal angle φ is measured

around the beam pipe. φ = 0 corresponds to the positive x-axis and increases clock-

wise when looking into the positive z-axis direction. The pseudorapidity is defined

as η = -ln tan(θ/2), in case of massive objects such as jets, the rapidity is used y =
1
2
ln(E+pZ

E−pZ ). The distance ∆R is the pseudorapidity-azimuthal angle space defined as

∆R =
√

∆η2 + ∆φ2. The momentum projected to x-y plane is defined as transverse

momentum pT , as well as missing transverse energy Emiss
T . As a multi-purpose detec-
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tor, the ATLAS should be capable of recognizing various particles in the final states,

including electron (e), muon (µ), tau (τ), photon (γ), jets (j) and etc.. To achieve

this goal, the ATLAS detector should meet the design criteria summarized as below:

• Excellent EM calorimeter for e and γ ID and energy measurements and hadronic

calorimeter for accurate jet and Emiss
T measurements.

• Efficient tracking at high luminosity for high-pT leptons, e and γ ID, τ and

heavy flavor ID and full event reconstruction at low luminosity.

• High-precision muon spectrometer for accurate measurements of µ momentum

at the high luminosity.

• Large acceptance in pseudorapidity with almost full azimuthal angle coverage.

• Efficient triggering system to record the particles of interest at low-pT thresh-

olds, as well as the efficiency at high pile-up.

3.2.1 Inner Detector

The ATLAS Inner Detector (ID), also known as inner tracking system, combines

high-resolution detectors at the inner radii with continuous tracking elements at the

outer radii, all contained in the Central Solenoid, which provides a nominal mag-

netic field of 2 T. The highest granularity is achieved around the vertex region using

semiconductor pixel detectors followed by a silicon micro-strip detector. Typically

for each track the pixel detector contributes three and the strips four space points.

At larger radii, 36 tracking points are provided by the straw tube tracker. The rel-

ative precision of the measurement is well matched, so that no single measurement

dominates the momentum resolution. The layout of the ID is shown in Figure 3.5,

three major parts of ID, the Pixel Detectors, the Semiconductor Tracker (SCT) and

the Transition Radiation Tracker (TRT) are introduced below.

3.2.1.1 Pixel Detector

The Pixel detector [55], the innermost part of the ID, provides a very high granu-

larity, high precision set of measurements as close to the interaction point as possible.

Its active part consists of three barrel layers at radii of 4.3 cm, 10.1 cm and 13.2 cm

from the center. The basic unit of the pixel detector is the module. A module is

a rectangular active device approximately 6cm by 2 cm with 46080 pixels, each 50

µm in azimuth by 400 µm along the beam. All modules are arranged in 3 concentric
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Figure 3.5: The cut-away view of the ATLAS Inner Detector [52].

cylinders with the axis along the beam (the barrel) at radii of 5 cm, 9 cm and 12 cm

from the center, known as B-layer, layer 1, layer 2, plus 3 disks concentric with the

beam at each end of barrel. There are 1456 barrel modules and 288 disk modules

covering pseudorapidity η < |2.5|.
During the LHC first long shutdown from 2013-2014, the detector was extracted

from the experiment to repair the modules and install an Insert-able B-Layer (IBL).

The IBL is a fourth layer of the pixel detectors, and has been installed between the

existing Pixel Detector and a new smaller radius beam-pipe at a radius of 3.3 cm to

improve the vertex resolution and b-tagging efficiency.

3.2.1.2 Semiconductor Tracker

The Semiconductor Tracker (SCT) [56] is the middle component of the ID. It is

designed to provide eight precision measurements per track in the intermediate radial

range, contributing to the measurement of momentum, impact parameter and vertex

position. In the barrel region of SCT, eight layers of the silicon micro-strip detectors

provide four space points in the r-φ and z coordinates crossed by each track. The

barrel modules are mounted on carbon-fibre cylinders at radii of 30.0, 37.3, 44.7, and

52.0 cm. In the end-cap region, the detectors have a set of strips running radially

and a set of stereo strips at an angle of 40 mrad, with mean pitch of approximately

80 mm.
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3.2.1.3 Transition Radiation Tracker

The Transition radiation Tracker (TRT) [57] is based on the use of straw detectors,

which can operate at the expected high rates due to their small diameter and the

isolation of the sense wires within individual gas volumes. The maximum straw

length is is 144 cm in the barrel, which contains about 50,000 straws, each divided in

two at the center and with the readout at both ends, to reduce the occupancy. The

end-caps contain 320,000 radial straws, with the readout at the outer radius. Each

channel provides a drift time measurement, giving a spatial resolution of 170 µm

per straw, and two independent thresholds. These allow the detector to discriminate

between tracking hits, which pass the lower threshold, and transition radiation hits,

which pass the higher one.

3.2.2 Calorimeter

The ATLAS Calorimeter, as shown in Figure 3.6, is built on three subsystems: an

EM calorimeter (ECal) covering the pseudorapidity range of |η| < 1.475 in the barrel

region and 1.375 < |η| < 3.2 in the end-cap regions, a hadronic calorimeter (HCal)

covering |η| < 1.7 for the barrel and 1.5 < |η| < 3.2 for the end-caps and a forward

calorimeter (FCal) covering 3.1 < |η| < 4.9.

3.2.2.1 Electromagnetic Calorimeter

The ATLAS EM calorimeter [58] is a lead-liquid argon (LAr) sampling detector

with accordion-shaped electrodes and lead absorber plates over its full coverage. It

consists of a barrel part and two end-cap parts. The barrel part consists of two

identical half-barrels, separated by a small gap (4 mm) at z = 0. Each end-cap

part is divided into two coaxial wheels: an inner wheel covering 1.375 < |η| < 2.5

and an outer wheel covering 2.5 < |η| < 3.2. With the accordion geometry, the

EM calorimeter can provide complete φ symmetry without azimuthal cracks. The

lead thickness in the absorber plates is optimized as a function of η in terms of EM

calorimeter performance in energy resolution, with a typical 2 mm thickness over a

large area. The LAr gap thickness is 2.1 mm in the barrel region, while changing

with radius with range of 0.9 - 3.1 mm in the end-cap region. Within the full range,

the EM calorimeter is divided into three sections in the barrel part and two sections

in each end-cap part in depth respectively, with finely segmented η and φ. In the

region of |η| < 1.8, a presampler detector is installed to correct for the energy lost

by electrons and photons upstream of the calorimeter. The presampler consists of an
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Figure 3.6: The cut-away view of the ATLAS Calorimeter [52].

active LAr layer of thickness 1.1 cm (0.5 cm) in the barrel (end-cap) region.

3.2.2.2 Hadronic Calorimeter

The ATLAS hadronic calorimeter consists of three parts: the tile calorimeter [59],

the liquid-argon hadronic end-cap calorimeter (HEC) [60] and the liquid-argon for-

ward calorimeter (FCal) [61].

• Tile Calorimeter: The tile calorimeter is a sampling calorimeter using steel

as the absorber and scintillating tiles as the active material, located outside the

EM calorimeter envelope with a central barrel and two extended barrels, in the

region of |η| < 1.7. It is segmented in depth in three layers, approximately 1.5,

4.1, and 1.8 interaction lengths (λ) thick for the central barrel and 1.5, 2.6, and

3.3 λ for the extended barrel. The total detector thickness at the outer edge

of the tile-instrumented region is 9.7 λ at η = 0. Two sides of the scintillating

tiles are read out by wavelength shifting fibers into two separate photomultiplier

tubes.

• LAr hadronic end-cap calorimeter: The HEC consists of two indepen-

dent wheels per end-cap, located directly behind the end-cap EM calorimeter

and sharing the same LAr cryostats. To reduce the drop in material density

at the transition between the end-cap and the forward calorimeter (around
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|η| = 3.1), the HEC extends out to |η| = 3.2, thereby overlapping with the for-

ward calorimeter. Each wheel is built from 32 identical wedge-shaped modules,

divided into two segments in depth, for a total of four layers per end-cap. The

wheels closest to the IP are built from 25 mm parallel copper plates, while those

further away use 50 mm copper plates. The copper plates are interleaved with

8.5 mm LAr gaps, providing the active medium for this sampling calorimeter.

• LAr forward calorimeter: The FCal is integrated into the same cryostats

as the end-cap calorimeter covering the range of 3.1 < |η| < 4.9. It consists

of three modules in each end-cap: the first, made of copper, is optimized for

electromagnetic measurements, while the other two, made of tungsten, measure

the energy of hadronic interactions. Each module consists of a metal matrix,

with regularly spaced longitudinal channels filled with the electrode structure

consisting of concentric rods and tubes parallel to the beam axis.

3.2.3 Muon Spectrometer

The Muon Spectrometer (MS) is the largest subsystem of the ATLAS detector,

designed to measure the muon momentum based on the magnetic deflection of muon

tracks in the large superconducting air-core toroid magnets, and cover the muon

measurement up to |η| = 2.7. The machine is instrumented with separate trigger

and high-precision tracking chambers. Over the range |η| < 1.4, magnetic bending

is provided by the large barrel toroid. For 1.6 < |η| < 2.7, muon tracks are bent

by two smaller end-cap magnets. Over 1.4 < |η| < 1.6, usually referred to as the

transition region, deflection is provided by a combination of barrel and end-cap fields.

This magnet configuration provides a field which is mostly orthogonal to the muon

trajectories, while minimizing the degradation of resolution due to multiple scattering.

In the barrel region, tracks are measured in chambers arranged in three cylindrical

layers around the beam axis; in the transition and end-cap regions, the chambers are

installed in planes perpendicular to the beam, also in three layers. The layout of MS

is shown in Figure 3.7. There are four types of muon chamber installed in the MS.

• Cathode Strip Chambers (CSC). The CSCs are multi-wire proportional

chambers segmented in φ on two wheels of eight chambers each. The (anode)

wires are oriented in the radial direction and have (cathode) strips oriented

perpendicular to them. A crossing muon will cause charges on several strips

and interpolation between the charges can provide the position. Each crossing

muon will leave four independent points in η and φ coordinate with a resolution
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Figure 3.7: The cut-away view of the ATLAS Muon Spectrometer [52].

of 60 µm in η and 5 mm in φ. This design makes the chambers effective in

high particle density environments. The sensitivity for neutrons is low, and the

drift times are small, resulting in a time resolution of 7 ns. Furthermore, due

to the ability to combine measurements in the η and φ coordinats it is possible

to resolve ambiguities when more than one particle is present.

• Monitored Drift Tubes (MDT). MDT provides the precision measurement

of the track coordinates in the principal bending direction of the magnetic field.

In the barrel region (|η| < 1.3), the MDTs are positioned in three concentric

layers around the beam axis, at an approximate radius of 5, 8 and 10 m. There

is a 16-fold segmentation in φ, which are called sectors. To avoid holes in

the acceptance, the chambers are partly overlapping. In the end-cap region

(1.0 < |η| < 2.7), MDT chambers are assembled onto three wheels, inner,

middle and outer layers positioned at z = 7.5, 14 and 22.5 m respectively. These

chambers are trapezoidal shapes, small and large sectors also have overlaps to

prevent any cracks in the detector coverage.

• Resistive Plate Chambers (RPC). RPCs constitute the muon trigger in

the barrel (|η| < 1.05). Like the MDT chambers, the RPCs are positioned
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in three concentric layers around the beam axis. The two inner chambers are

assembled together with the middle MDT chambers, and the outer layer is

assembled on the outer MDT chambers. Due to the large lever arm between

inner and outer RPCs, the trigger is able to select high momentum muons

with thresholds ranging from 9 to 35 GeV. The inner RPCs deliver the low

momentum trigger with thresholds from 6 to 9 GeV. Each RPC has independent

layers for η and φ measurements. Therefore, a muon trajectory usually provides

six RPC measurements.

• Thin Gap Chambers (TGC). TGCs provide two functions in the end-cap MS

(1.05 < |η| < 2.7, with trigger coverage |η| < 2.7): the muon trigger capability

(with good time resolution and high rate) and the determination of the second,

azimuthal coordinate to complement the measurement of the MDT’s in the

bending (radial) direction. TGCs are multi-wire proportional chambers. There

are two types of TGC modules: a doublet module has two wire layers, a triplet

module three and both structures have two strip layers. Position measurements

are obtained from both the wires (η) and the strips (φ).

3.2.4 Trigger

The Trigger consists of three level of event selection: Level-1 (L1), Level-2 (L2),

and event filter (EF). The L2 and event filter together form the High-Level Trigger

(HLT). Each trigger level refines the decisions made at the previous level and applies

additional selection criteria if necessary. The block diagram of the ATLAS trigger

and data acquisition systems is shown in Figure 3.8.

The L1 trigger performs the initial event selection based on the information from

the calorimeters and muon detectors. It reduces the event rate from 40 MHz to 75

kHz (Run I) or 100 kHz (Run II), a rate that most detectors can fit. The L1 Calorime-

ter Trigger (L1Calo) aims to identify high−ET objects such as electrons and photons,

jets, and τ leptons decaying into hadrons, as well as events with large missing trans-

verse momentum (Emiss
T ) and large total transverse energy. For the electron/photon

and τ triggers, isolation is also required. Isolation implies that the energetic particle

must have a minimum angular separation from any significant energy deposit in the

same trigger.

The L1 muon trigger is based on signals in the muon trigger chambers: RPC’s

in the barrel and TGC’s in the end-caps. It searches for patterns of hits consistent

with high−pT muons originating from the interaction region. The logic provides
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Figure 3.8: Block diagram of the ATLAS trigger and data acquisition systems. [63]

six independently-programmable pT thresholds and the information for each bunch-

crossing used in the L1 trigger decision is the multiplicity of muons for each of the

pT thresholds.

The overall L1 acceptance decision is made by the Central Trigger Processor

(CTP), which combines all the energetic object information in the current event.

When the L1 trigger decision is made based on the trigger objects, the information

about the location of those objects is still retained in the muon and calorimeter trig-

ger processors. Once the event being accepted by the L1 trigger, this information is

sent as region of interest (RoI) to the L2 trigger, where it is used to seed the selection

performed by the HLT.

The LV2 trigger reduces the event rate from 100 kHz to 3.5 kHz with an average

event processing time of approximately 40 ms by running more complex object identi-

fication algorithms with commercial software. It uses all the information within RoIs

specified by LV1, from the ID, the MS and full granular information of calorimeters,

which accounts for about 2% of the total event.
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The final selection step - the level 3 - is made by the event filter, which further

reduces the event rate to 400 Hz for Run I and 1 kHz for Run 2 [62]. EF consists of

many processing node, each handles tasks of receiving and processing events. Since

the average time of processing an event is 4 s, unlike the L2 trigger, these tasks can be

completed based on standard ATLAS event reconstruction and analysis applications.

For those events passing the selection criteria, a subset of the data generated during

the event analysis is sent to the event data structure, prepared for the subsequent

offline analysis. Otherwise, the information will be removed from the readout devices.

3.2.5 Detector Simulation

The ATLAS detector simulation is performed by using the Geant4 simulation

toolkit [78, 79]. The simulation software chain is generally divided into three steps,

as shown in Figure 3.9: generation of the events and immediate decays, simulation

of the detector and physics interactions, and digitization of the energy deposited in

the sensitive regions of the detector into voltages and currents for comparison to the

readout of the ATLAS detector. The output of the simulation chain can be presented

in either an object-based format or in a format identical to the output of the ATLAS

data acquisition system (DAQ), which can then be run through the ATLAS trigger

and reconstruction packages in the same way as the real data.

The ATLAS detector geometry used for simulation, digitization, and reconstruc-

tion is built from databases containing the information describing the physical con-

struction and conditions data. The latter contains all the information needed to

emulate a single data-taking run of the real detector, such as the detector misalign-

ment or temperatures. With the same geometry and simulation infrastructure, it is

able to reproduce the installation configurations of the ATLAS detector.

The event generators are already discussed in Section 2.3.2. These events can

be filtered during the generation process so that only events with a certain property

(e.g. leptonic decay or within a specific kinematics phase space) are kept. The

generated events are then read into the simulation. A record of all particles produced

by the generator is retained in the simulation output file, but cuts can be applied to

select only certain particles to process in the simulation. Each particle is propagated

through the full ATLAS detector by Geant4. Geant4 provides models for physics and

infrastructure for particle transportation through a geometry in the Geant4 format. In

both event generation and detector simulation, information called “truth” is recorded

for each event, which is a history of the interactions from the generator, including

incoming and outgoing particles. A record is kept for every particle, whether the
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Figure 3.9: The flow of the ATLAS simulation software, from event generators (top
left) through reconstruction (top right). [64]

particle is to be passed through the detector simulation or not.
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CHAPTER IV

Object Reconstruction

Events recorded by the ATLAS detector or from MC simulation of pp collisions are

reconstructed offline for physics analysis. Physics objects, such as electrons, muons,

taus, photons, jets etc., are reconstructed by sub-detector components. Figure 4.1

shows a wedge of the transverse plane of the ATLAS detector, indicating different

particles leave information in different sub-systems. All charged particles such as

electron, muon will leave tracks in inner detector, protons and neutrons can deposit

energies in calorimeters and muon will also leave tracks in MS. This chapter will

introduce how the object are reconstructed.

4.1 Track

A track is a trajectory that a charged particle leaves when flying from IP outward

to the ID. The ATLAS track system consists of two separate tracking sub-system:

the Inner Detector and the Muon Spectrometer. The ID, closest to the IP, deals with

highest density tracks, while the MS mainly focuses on reconstructing tracks from

muon.

The ID track reconstruction software involves a modular and flexible software

design to meet the requirements of both ID and MS reconstruction. These features

form a common event data model, which allows for standardized interfaces to all

reconstruction tools, such as track extrapolation, track fitting and vertex fitting.

Track reconstruction in the ID is logically sub-divided into three stages:

1. A pre-processing stage, in which the raw data from the pixel and SCT detectors

are converted into clusters, and the TRT raw timing information is translated

into calibrated drift circles. The SCT clusters are transformed into space-points,
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Figure 4.1: A wedge of the transverse plane of the ATLAS detector. Hadrons, leptons
and photons have different signatures left in the detector. With algorithms dealing
with such different characteristics, physics objects are reconstructed for following
analysis [65].

using a combination of the cluster information from opposite sides of a SCT

module.

2. A track-finding stage, in which different tracking strategies are implemented

to cover different applications. The default tracking, called inside-out with

minimum transverse momentum requirement pT > 400 MeV, exploits the high

granularity of the pixel and SCT detectors to find prompt tracks originating

from the interaction region. First, track seeds are formed from a combination

of space-points in the three pixel layers and the first SCT layer. These seeds

are then extended throughout the SCT to form track candidates. Next, these

candidates are fitted, “outlier” clusters are removed, ambiguities in the cluster-

to-track association are resolved, and fake tracks are rejected. This is achieved

by applying quality cuts. The selected tracks are then extended into the TRT

to associate drift-circle information in a road around the extrapolation and to

resolve the left-right ambiguities. Finally, the extended tracks are refitted with

the full information of all three detectors (Pixel, SCT, and TRT). The quality

of the refitted tracks is compared to the silicon-only track candidates and hits

on track extensions resulting in bad fits are labeled as outliers.
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A complementary track-finding strategy, called outside-in, searches for unused

track segments in the TRT. Such segments are extended into the SCT and

pixel detectors to improve the tracking efficiency for secondary tracks from

conversions or decays of long-lived particles.

3. A post-processing stage, in which a dedicated vertex finder is used to reconstruct

primary vertices.

The track reconstruction in the MS begins with searching for hits within each

muon chamber and nearby trigger chambers. Segments are reconstructed by per-

forming a straight-line fit to the hits in each MDT layer. The hits in RPC and TGC

can provide the coordinate orthogonal to the bending plane. And in CSC planes, a

combinatorial search for hits forms the segments with a loose compatibility require-

ment with the luminous region. Following the hits searching, muon track candidates

are built by fitting the hits from segments in different layer together. The segments

are selected with the criteria on hit multiplicity, fit quality and consistency among

them. A track requires at least two matched segments, except that a single high-

quality segment in the barrel-endcap transition region can also build a track. The

same segment can be used to build several different track candidates. Later on, an

overlap removal algorithm will select the best choice for a single track or allow a

segment used in different tracks. The hits associated with each track candidate and

the accepted track candidate are fitted using a χ2 fit. The accepted one will be fit-

ted again if the hits making large contribution are removed or additional hits are

recovered.

4.2 Primary Vertex

A primary vertex (PV) is a spatial point where the pp collision happens and

out-going particles originate. The reconstruction of primary vertices is organized in

two steps: firstly, finding the primary vertex to associate reconstructed trucks to the

vertex candidates and secondly, fitting the vertex to reconstruct the vertex position

and its covariance matrix. The PV reconstruction algorithm works as the following

steps:

• Pre-select reconstructed tracks satisfying track selection criteria and compatible

with originating from the interaction point.

• Find the vertex seed position by clustering the tracks based on their z coordi-

nates at their point of closest approach to the center of the beam spot.
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• Fit and estimate the vertex position using the adaptive vertex fitting algorithm

which takes seed and nearby tracks as input.

• Determine a new overtax using tracks incompatible with the vertex ( > 7σ).

• Repeat the procedure until all tracks are associated to the event and no addi-

tional vertex can be found.

Given an input set of reconstructed tracks, the PV reconstruction efficiency is

evaluated based on how often a vertex is reconstructed successfully and its position

found consistent with the true value. Vertices are matched to interactions by calcu-

lating the sum of the weights of the tracks in a vertex matched to each interaction.

If the sum of the weights of the tracks from the interaction is greater than 50%, the

interaction is regarded as reconstructed. This requirement ensures that the vertex

composition and hence the position is dominated by tracks of particles coming from

the given interaction.

4.3 Electron

In the ATLAS detector, electrons are triggered and reconstructed from the energy

deposits in the ECAL that are matched to a track in the inner detector. Electrons

are distinguished from other particles using identification criteria with different levels

of background rejection and signal efficiency. This section will introduce the electron

construction, identification and isolation.

4.3.1 Electron Reconstruction

In the ECAL, the η−φ space is divided into a grid of Nη×Nφ = 200×256 towers

of size ∆ηtower × ∆φtower = 0.025 × 0.025, corresponding to the granularity of the

ECAL middle layer. The electron reconstruction in the central region (|η| < 2.47)

contains 3 main steps:

1. Seed-cluster reconstruction:

To reconstruct the EM cluster, seed clusters of towers with total cluster trans-

verse of energy above 2.5 GeV are searched by a sliding-window algorithm with

size of 3 × 5 towers in η − φ space. A duplicate-removal algorithm is applied

to nearby seed clusters. For each seed EM cluster passing loose shower shape

requirement, a ROI with a cone-size of ∆R = 0.3 around the seed cluster
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barycenter is defined. The collection of these EM cluster ROIs is retained for

use in the track reconstruction.

2. Track candidate reconstruction:

Electron track reconstruction contains two steps, pattern recognition and track

fit. The standard pattern recognition uses the pion hypothesis for energy loss

in the material. If a track seed with pT > 1 GeV fails extended to a full track

and falls within one EM cluster ROI, it is retried with a new pattern recognition

using the electron hypothesis, which allows up to 30% energy loss accounting

for bremsstrahlung. In this way, pattern recognition performance is improved

while the interference with the main track reconstruction is minimized. The

parameters of the track candidates found by pattern recognition are then fitted

with the same hypothesis used in pattern recognition, using the ATLAS Global

χ2 Track F itter. If a track candidate fails the pion hypothesis track fit, it is

refitted with the electron hypothesis.

3. Electron candidate reconstruction:

An electron is reconstructed if at least one track is matched to the seed cluster.

If multiple tracks are assigned to a cluster, the best-matched one is chosen as

the primary track with following criteria: the track with at least 1 Pixel hit; or

the track with the smallest ∆R if more than one track has at least 1 Pixel hit.

All seed clusters together with their matching tracks are treated as electron

candidates. Each of these electron clusters is then rebuilt in all four layers

sequentially, starting from the middle layer, using 3×7(5×5) cells in η×φ space

in the barrel (end-caps) region. The cluster position is adjusted in each layer

to take into account the distribution of the deposited energy. Then, the energy

calibration is applied as the next step [66].The four-momentum of the electron

candidate is computed using both the final cluster and its primary track. The

energy is given by cluster energy and (η, φ) is extracted from corresponding

track parameters, except for TRT-only tracks, cluster η and φ are used.

In the forward region (2.5 < |η| < 4.9), where ID loses its coverage, the electron

reconstruction uses only the information from the EMEC and forward calorimeters

and therefore no distinction is possible between electrons and photons. Due to the

reduced detector information in this region, the use of forward electrons in physics

analyses is restricted to the range ET > 20 GeV. In contrast to the fixed size sliding-

window clustering used in the central region, the forward region uses a topological
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clustering algorithm [66]. The direction of the forward-electron candidates is defined

by the barycenter of the cells belonging to the cluster.

4.3.2 Electron Identification

The identification criteria for central electron candidates are implemented based on

sequential cuts on calorimeter, on tracking, and on combined track-cluster variables.

Signal electrons are identified by different sets of likelihood-based identification

criteria which are chosen to be 95%, 90% and 80% efficient for electrons with ET ≈
40 GeV, and referred to as loose, medium and tight operating points respectively.

Figure 4.2 shows the electron ID efficiencies in Z → ee and J/Ψ → ee (in low

transverse energy ET region) events as a function of transverse energy (ET ).

Figure 4.2: The electron identification efficiency for loose, medium, and tight cate-
gories as a function of transverse energy ET [67].

The increased background-rejection power is obtained both by adding discriminat-

ing variables at each step and by tightening the requirements on the original variables.

Detailed selections can be found in [67]. The identification of the forward electron

is also based on sequential cuts on discriminating variables; however, these variables

are mostly based on topological cluster moments. Three reference sets of selection

criteria, same as the central region, are defined. To compensate for the absence of

tracking information in the forward region, variables describing both the lateral and
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longitudinal shower development are employed. In addition, due to the significantly

harsher pile-up conditions in the forward region, the identification criteria for forward

electrons were optimized directly with data in nine cluster-η bins and four number of

PV bins.

The identification efficiency of electron as loose, medium, or tight is calculated

w.r.t a reconstructed electron candidate, labeled as εloose, εmedium, and εtight. The

efficiency ranges from 60% to 90% according different types of electron in different η

regions.

4.3.3 Electron Isolation

Electron isolation is used to reject the backgrounds such as photon conversion,

mis-identified jets and so on. Most analyses require electrons to pass some isolation

criteria in addition to the identification requirements. Two isolation variables are

defines:

• Calorimeter-based isolation:

The calorimetric isolation variable Econe∆R
T is defined as the sum of transverse

energy ET deposited in the calorimeter cells in a cone size of ∆R around the

electron, excluding the contribution of electron itself, which is the energy de-

posited within ∆η ×∆φ = 0.125× 0.175 around the particle.

• Track-based isolation:

The track isolation variable pcone∆RT is the scalar sum of the transverse momen-

tum of the tracks with pT > 0.4 GeV in a cone of ∆R around the electron,

excluding the track of electron itself. The tracks in the sum must share the

same primary vertex associated with the electron track and pass the good qual-

ity requirement: at least nine silicon hits, one of which must be in the innermost

pixel layer. This variable is quite robust to pile-up.

In addition to isolation cuts, final requirement on transverse and longitudinal impact

parameters, which are denoted as d0 and z0 respectively, are also applied to ensure

the electron candidates come from PVs. σ(d0) and σ(z0) denote the corresponding

uncertainties estimated by the track fit. Generally, d0 and z0 are small if the track

come from the center of the beam spot, indicating they are tracks from PV.
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4.4 Muon

Muons are a crucial ingredient for some of the most important physics results

published by the ATLAS at the LHC. These include the discovery of the Higgs boson

and the measurements of its properties, precise measurements of the SM processes,

and searches for the BSM physics. How to efficiently and accurately identify muons

and measure their four momenta is a major task of the ATLAS detector. This chapter

will introduce how to reconstruct and identify muons.

4.4.1 Muon Reconstruction

Muon reconstruction is performed independently in the ID and MS. The informa-

tion from individual subdetectors is then combined to form the muon tracks prepared

for physics analyses. In the ID, muons are reconstructed like any other charged

particles described in [68]. In the MS, muons are reconstructed following the steps

described in section 4.1.

The combined ID-MS muon reconstruction is performed using different algorithms

according to the information provided by the ID, MS and calorimeters. There are

four types of muon depending on which reconstruction method and subdectors are

used.

• Combined (CB) muon: track reconstruction is performed independently in the

ID and MS, and a combined track is formed with a global refit that uses the hits

from both the ID and MS subdetectors. To improve the fit quality, MS hits may

be added to or removed from the track. Most muons are reconstructed following

an outside-in pattern recognition: muons are first reconstructed in the MS and

then extrapolated inward to match to an ID track. Another reconstruction

method called inside-out, in which ID tracks are extrapolated outward and

matched to MS tracks, is used as a complementary approach. CB muon is the

main type of four and has the highest muon purity, but with coverage limited

to |η| < 2.5.

• Segment-tagged (ST) muon: a track in the ID is classified as ST muon if it’s

extrapolated to the MS and matches to at least one local track which is not yet

associated with any CB track. ST muon are used to increase acceptance when

the muons cross only one layer of the MS, either due to their low pT or because

they fall in regions with reduced MS acceptance.
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• Calorimeter-tagged (CT) muon: a track in the ID is identified as a muon if

it matches to a minimum-ionizing particle (energy deposit in the caolrimeter

meeting certain criteria). Two calorimeter-seed algorithms are used to search

for muons: the LArMuID finds muon from ECAL and the TIleMuID trigger

the HCAL information for muon. Then, a track-seed algorithm, CaloMuonTag,

extrapolates ID tracks through the calorimeters to match and identify those

energy deposits and thus form the pattern of a muon. This type has the lowest

purity of all the muon types but it recovers acceptance in the region where

the MS in only partially instrumented to allow for cabling and services to the

calorimeters and inner detector.

• Extrapolated (ME) muon: a muon trajectory is reconstructed based on the MS

track and a loose requirement on compatibility with originating from the IP.

The muon is required to pass through at least two layers of MS chambers to

provide a track measurement, three layers in the forward region. This type of

muon is used to extend the acceptance of muon reconstruction into the region

2.5 < |η| < 2.7, which is not covered by the ID (|η| < 2.5).

For the overlap among four muon types, there are certain preferences applied.

When two muon types share the same ID track, preference is given to CB muons,

then to ST and finally to the CT muons. To resolve the overlap with ME muons in

the system, one can analyze the track hit content and select the track with better fit

quality and larger number of hits.

The muon reconstruction in LHC Run II uses algorithms named Chain3 in [69].

These algorithms implement the performance in several aspects: 1) Using Hough

transform to identify the hit patterns to make the reconstruction faster and more

robust against misidentification of hadrons. 2) Improvement in the early stage of

pattern recognition process to reduce the background contamination. 3) Involving

the analytic parameterization to improve the precision of the energy loss calculation

in the calorimeter ( a precision on the mean energy loss of about 30 MeV for 50 GeV

muons).

4.4.2 Muon Identification

Muon identification is performed by applying quality requirements that suppress

background, while keeping high efficiency and robust momentum measurement. Sev-

eral variables provide good discrimination between prompt muons (signal) and back-

grounds (diboson, tt̄, etc.):
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• q/p significance, defined as:

σq/p =
|q/pT,ID − q/pT,MS|√

σ2
pT,ID

+ σ2
pT,MS

, (4.1)

the absolute value of the difference between the ratio of the charge q and trans-

verse momentum of the muons pT measured in the ID and MS divided by the

corresponding uncertainties sum in quadrature;

• ρ′ , defined as:

ρ
′
=
pT,ID − pT,MS

pT,CB

(4.2)

the absolute value of the difference between the transverse momentum measure-

ments in the ID and MS divided by the p T of the combined track;

• normalized χ2 of the combined track fit.

To guarantee a robust momentum measurement, some requirements on the num-

ber of hits in the ID and MS are applied. For the hits in ID, the cuts require at least

one Pixel hit and five SCT hits, less than three Pixel or SCT holes. At least 10% of

TRT hits assigned to the track should be included in the final fit. There are four sets

of identification selection (Medium, Loose, Tight, High − pT ) used to address the

specific needs of different physics analyses.

• Medium muon: the medium identification criteria, designed to minimize the

systematic uncertainties associated with muon reconstruction and calibration,

is used as default selection for muons in the ATLAS. Only CB and ME tracks

are used, with additional requirement on the number of hits in muon chambers

and a loose selection on the compatibility between pT measurements in the ID

and MS. Specifically, CB tracks require at least three hits in at least two MDT

layers, ME tracks require at least three MDT/CSC layers within the coverage

2.5 < |η| < 2.7. The requirement q/p significance < 7 is also applied.

• Loose muon: the loose identification criteria are designed to maximize the re-

construction efficiency while providing good-quality muon tracks. All four muon

types are used. CB and ME muons satisfying the Medium requirements are

included in the Loose selection, CT and ST muons within |η| < 0.1 region are

also included. In the region |η| < 2.5, about 97.5% of the Loose muons are

combined muons, 1.5% are CT muons and the remaining 1% are ST muons.
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• Tight muon: tight muons are selected to maximize the purity of muons at the

cost of some efficiency. Only CB muons with hits in at least two stations of the

MS and satisfying the Medium selection criteria are considered. In addition,

the normalized χ2 of the combined track fit is required to be less than eight. A

two-dimensional cut on the ρ
′

and q/p significance is applied as a function of

muon pT to further reject background.

• High-pT muon: The High-pT selection aims to maximize the momentum reso-

lution for tracks with transverse momentum above 100 GeV. CB muons passing

the Medium selection and having at least three hits in three MS stations are

considered. Specific regions of the MS where the alignment is optimal are vetoed

as a precaution.

Figure 4.3 shows the muon reconstruction efficiency as a function of η as measured

from the Z → µµ events for different muon selections. The overall efficiency for

medium muon, which is used in these analyses, is over 98%.

(a) (b)

Figure 4.3: Muon reconstruction efficiency as a function of η measured in Z → µµ
events for muons with pT > 10 GeV shown for Medium (left), Tight (right) muon
selections. In addition, the left plot also shows the efficiency of the Loose selection
in the region |η| <0.1 where the Loose and Medium selections differ significantly.
The error bars on the efficiencies indicate the statistical uncertainty. Panels at the
bottom show the ratio of the measured to predicted efficiencies, with statistical and
systematic uncertainties [68].

50



4.4.3 Muon Isolation

Muons originating from the decay of heavy particles, such as W , Z, or Higgs

bosons, are often produced isolated from other particles. The measurement of detector

activity around a muon candidate, referred to as muon isolation, is a powerful tool

to reject background in physics analyses. Two variables are defined to access muon

isolation: a track-based isolation variable and a calorimeter-based isolation variable.

The track-based isolation variable (pvarcone30
T ) is defined as the scalar sum of the

transverse momentum of the tracks with pT > 1 GeV in a cone of size ∆R = min(10

GeV/pµT , 0.3) around the muon pT , excluding the muon track itself. The calorimeter-

based isolation variable (Evarcone20
T ) is defined as the sum of the transverse energy

of topological clusters in a cone of size ∆R = 0.2 around the muon, subtracting

the energy deposit contributed by muon itself. Contributions from pile-up and the

underlying event are estimated using the ambient energy-density technique and are

corrected on an event-by-event basis. Muon isolation selection criteria are defined

using relative isolation variables, pvarcone30
T /pT and Evarcone20

T /ET , defined as the ratio

of the track- or calorimeter-based isolation variables to the transverse momentum or

energy of the muon.

4.5 Jet

Jets, collimated sprays of hadrons, are the dominant physics objects in pp collision

and play a key role in various physics analyses. In ATLAS, jets are observed as groups

of topologically related energy deposits in the calorimeters, associated with tracks of

charged particles measured in the inner tacking detector. This section will introduce

the jet reconstruction and calibration.

4.5.1 Jet reconstruction and calibration

The main jet identification algorithm used by the ATLAS collaboration is the anti-

kt algorithm with a distance parameter R = 0.4. Jets reconstructed from tracks, also

referred to as the track jets, have low dependence on the pile-up activity but limited to

the coverage |η| < 2.5. Jets reconstructed using the energy deposits in the calorimeter

are referred to as calorimeter jets. The inputs for calorimeter jets reconstruction are

the topologically clustered calorimeter cells, so-called topo-clusters [70].

The topo-clusters are initially reconstructed at the electromagnetic (EM) scale

which correctly measures the energy deposited in the calorimeter by particles pro-
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duced in EM showers. A second topo-cluster collection is built by calibrating the

calorimeter cell such that the response of the calorimeter to hadrons is correctly re-

constructed. This calibration uses the local cell weighting (LCW) method that aims

at an improved resolution compared to the EM scale by correcting the signals from

hadronic deposits, and thus reduces fluctuations due to the non-compensating nature

of the ATLAS calorimeter. The LCW method first classifies topo-clusters as either

electromagnetic or hadronic, primarily based on the measured energy density and

the longitudinal shower depth. Then energy corrections are derived according to this

classification from single charged and neutral pion MC simulations. Dedicated cor-

rections address effects of calorimeter non-compensation, signal losses due to noise

threshold effects, and energy lost in non-instrumented regions close to the cluster.

The ATLAS jet energy calibration can be summarized in the following five steps:

1. Origin Correction: The origin correction forces the four-momentum of the jet

to point to the hard-scatter primary vertex rather than to the center of the

detector while keeping the jet energy constant.

2. Pile-up Correction: Jets formed from topo-clusters at the EM or LCW scale

are first calibrated by applying a correction to account for the energy offset

caused by pile-up interactions. This correction is derived from MC simulations

as a function of the number of reconstructed primary vertices (NPV , measuring

the actual collisions in a given event) and the expected average number of

interactions (µ) in bins of jet η and pT .

3. Monte Carlo numerical inversion: The calibration of the energy and pseudora-

pidity of a reconstructed jet is a simple correction derived from the relation of

these quantities to the corresponding ones of the matching truth jet in MC sim-

ulations. The numerical inversion calibration restores the average reconstructed

jet energy to the mean value of the truth jet energy. It can be applied to jets

formed from topo-clusters at EM or at LCW scale with the resulting jets being

referred to as calibrated with the EM+JES or with the LCW+JES scheme.

4. Global sequential correction: A global sequential correction uses additional ob-

servables to adapt the jet energy calibration to account for the variation caused

by numerical inversion, thereby improving the jet resolution without changing

the scale. Three variables are used as inputs for this correction: 1) the fraction

of the jet energy measured from constituent tracks; 2) the fraction of jet energy
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measured in the third EM calorimeter layer and 3) he fraction of jet energy

measured in the first Tile calorimeter layer.

5. Residual in situ Calibration: The in situ calibration is derived as the last step to

correct the jets reconstructed in data. The correction calculates the jet response

difference between data and MC simulation using transverse momentum balance

between the jet and a well-measured reference object to assess the data-to-MC

differences.

4.5.2 B-jet tagging

A B-jet candidate may be reconstructed by using the a new algorithm has been

developed, referred to as MV2c20 [71]. The algorithm is based on a boosted decision

tree approach, which utilizes jet properties and variables based on the reconstructed

charged particle tracks as input. The algorithm is trained on b-jets as signal and a mix

of c- and light jets, in the proportion of 80% and 20%, as background. The training

is performed using simulated tt̄ events. The MV2c20 inputs are based on algorithms

that exploit the relatively long b-hadron lifetime: a likelihood-based combination of

the transverse and longitudinal impact parameter significance (IP3D), the presence

of a secondary vertex and related properties (SV), and the reconstruction of the b-

hadron decay chain using a Kalman filter to search for a common direction connecting

the primary vertex to both the beauty and the tertiary charm decay vertices, referred

to as JetFitter (JF) [72].

4.6 Missing Transverse Momentum

The missing transverse momentum Emiss
T is defined as the momentum imbalance

in the plane transverse to the beam axis, where the the vector transverse momenta of

the collision products should sum to zero. Such imbalance indicates the presence of

undetectable particles, such as neutrinos, new weakly-interacting particles escaping

the detector. The scheme of Emiss
T production is shown in Figure 4.4. The vector mo-

mentum imbalance in the transverse plane is the negative vector sum of the momenta

of all particles detected in a pp collision events.

4.6.1 Emiss
T reconstruction and calibration

Three types of Emiss
T reconstruction are defined according to the information they

used. Calorimeter-based soft term (CST) Emiss
T uses the energy deposits in the
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Figure 4.4: The scheme of Emiss
T generation according to detectable particles.

calorimeters for all objects. Track-based soft term (TST) Emiss
T uses energy deposits

in the calorimeters for hard objects ( e, γ, µ etc..) and track information from soft

term (soft radiation, underlying event activity). Track Emiss
T uses the information

purely based on momenta of ID tracks.

The CST Emiss
T is sensitive to pile-up interactions due to an additional contribution

from calorimeter-based soft term. The track Emiss
T is robust to pile-up, but insensitive

to neutral particles since they do not leave any tracks in ID and limited to the

acceptance due to tracking volume of the ATLAS detector. Therefore, TST Emiss
T ,

a good compromise between CST Emiss
T and track Emiss

T is the primary method of

Emiss
T reconstruction in ATLAS Run II.

A direct measurement of the performance of Emiss
T is performed under different

pile-up conditions. The resolution in Emiss
x and Emiss

y is shown as a function of the

number of primary vertices in the event, NPV in Figure 4.5.

The Emiss
T calculation process uses reconstructed and calibrated physics objects

to estimate the transverse momentum imbalance in an event. As described above,

calorimeter energy deposits are associated with reconstructed and identified hard

objects in the following order: electrons (e), photons (γ), hadronically decaying tau-

leptons (τ), jets and finally muons (µ). The soft term part whose energy deposits not

associated with any hard objects is also considered in the Emiss
T calculation based on

ID tracks. The Emiss
T is calculated as follows:

Emiss
x(y) = Emiss,e

x(y) + Emiss,γ
x(y) + Emiss,τ

x(y) + Emiss,jets
x(y) + Emiss,µ

x(y) + Emiss,SoftTerm
x(y) , (4.3)
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Figure 4.5: Comparison of the performance of Emiss
T built from TST and CST, and

the Track Emiss
T , under different pile-up conditions. The resolution (RMS of Emiss

x ,
Emiss

y ) is shown shown as a function of NPV. [75]

where each term is calculated as the negative sum of the calibrated reconstructed

objects, project onto the transverse plane (x-y plane). The electrons are reconstructed

and calibrated with the standard ATLAS calibration as described in Section 4.3.

Photon identification exploits the different evolution of the electromagnetic showers

resulting from photons and from jets. The Tight working point is used to efficiently

reject fake photons from neutral meson decays as well as requirement on calibrated

pT greater than 25 GeV and |η| < 2.37. The τ -lepton are calibrated with the LCW,

and the tau energy scale (TES) correction is applied [73]. In addition, hadronically

decaying tau-leptons are required to have pT > 20 GeV and |η| < 2.5. The jets

are reconstructed with the anti-kt algorithm with distance parameter R = 0.4, as

described in Section 4.5. The track soft term is built on tracks coming from the hard

scatter vertex and not associated to high-pT objects. Tracks are excluded if they

are within ∆R = 0.05 of an electron or photon cluster, or within ∆R = 0.2 of a

hadronically-decaying tau-lepton and are removed if associated with jets using the

ghost-association technique [74].
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CHAPTER V

Search For Dark Matter Particles

This chapter presents the search for dark matter particles from an invisibly de-

caying Higgs boson produced in association with a leptonically decaying Z boson

(Z → ll) in proton-proton collisions at
√
s = 13 TeV. This search uses 36.1 fb−1 of

data collected by the ATLAS experiment at the LHC.

5.1 Introduction

The Feynman diagrams for qq → ZH and gg → ZH productions are shown in

Figure 5.1. In this analysis, we search for a beyond the SM (BSM) Higgs boson (h)

invisible decay and assume h is produced with the SM Higgs boson (H) cross-section.
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Figure 3: Upper panel: representative Feynman diagrams for the Loop2 contribution. While the gluon fusion contributions
to ZH (a,b) and ZHj (c,d) are indisputably purely loop induced, the squared loop amplitude of diagrams with external
quarks and a closed fermion loop (e–h) constitute a finite and gauge invariant subset of NNLO corrections to ZHj. The
latter diagrams of course also interfere with the tree level amplitude and are therefore included, on the amplitude level, in
the NLO corrections as well (cf. Fig. 2(e)).

loop-induced diagrams with three external gluons (Fig. 3(c,d)), we include all diagrams with a closed quark loop
and an external quark line (Fig. 3(e–h)). This definition, like the 0-jet gluon fusion component, forms a finite and
gauge invariant subset of NNLO corrections to ZHj and captures all diagrams which contain a squared Yukawa
coupling at the squared amplitude level at NNLO QCD. Note that at the amplitude level there is an overlap
of Feynman diagrams between DY and GF. E.g., diagram Fig. 2(e), interfered with the tree level amplitude,
contributes to NLO DY ZHj, while the same diagram Fig. 3(g) is also part of the GF amplitude, contributing at
loop-squared NNLO.

Assuming that the invisible sector couples to the Higgs boson only, there is no interference between signal
and background amplitudes in ZH, H ! inv. This is not true for H ! bb̄ decays, in which case additional
contributions must be considered. Besides the Higgs decay, bb̄ pairs can be produced through QCD and through
weak interactions, for example via Z ! bb̄. Accordingly, when the H ! bb̄ decay is treated as a part of the
matrix elements as shown in Fig. 4(b,c), the amplitude interferes with the tree-level QCD continuum l+l�bb̄
production Fig. 4(a). Analogously, the tree-loop interference with diagrams of the kind Fig. 4(d–g) occurs as a
background. In order to capture spin correlations and o↵-shell e↵ects in the gluon fusion ZZ background, we take
the loop-squared amplitude of diagrams like Fig. 4(f,g) into account with the full final state. At this point it is
worth mentioning that due to spin considerations Z ! bb̄ and H ! bb̄ diagrams do not interfere. Some of these
contributions have not been considered before in the literature.

While multi-jet merged predictions for the DY channel at NLO have been discussed in [12] and the merging
in the loop-induced channel has been technically introduced in [13], here we are mostly interested in using this
technology for detailed studies. In this context, it is worth pointing out that the theoretical precision for the
DY channel at fixed order is known up to NNLO in the QCD and up to NLO in the electroweak perturbative
series [14, 15]. For the GF contribution, only estimates [16] of NLO corrections in the infinite top mass limit exist;
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and background amplitudes in ZH, H ! inv. This is not true for H ! bb̄ decays, in which case additional
contributions must be considered. Besides the Higgs decay, bb̄ pairs can be produced through QCD and through
weak interactions, for example via Z ! bb̄. Accordingly, when the H ! bb̄ decay is treated as a part of the
matrix elements as shown in Fig. 4(b,c), the amplitude interferes with the tree-level QCD continuum l+l�bb̄
production Fig. 4(a). Analogously, the tree-loop interference with diagrams of the kind Fig. 4(d–g) occurs as a
background. In order to capture spin correlations and o↵-shell e↵ects in the gluon fusion ZZ background, we take
the loop-squared amplitude of diagrams like Fig. 4(f,g) into account with the full final state. At this point it is
worth mentioning that due to spin considerations Z ! bb̄ and H ! bb̄ diagrams do not interfere. Some of these
contributions have not been considered before in the literature.

While multi-jet merged predictions for the DY channel at NLO have been discussed in [12] and the merging
in the loop-induced channel has been technically introduced in [13], here we are mostly interested in using this
technology for detailed studies. In this context, it is worth pointing out that the theoretical precision for the
DY channel at fixed order is known up to NNLO in the QCD and up to NLO in the electroweak perturbative
series [14, 15]. For the GF contribution, only estimates [16] of NLO corrections in the infinite top mass limit exist;

(b)

Figure 5.1: Feynman diagrams for leading order ZH production through (a) qq anni-
hilation and (b) gg fusion. In this analysis, we search for an invisible Higgs (h) decay
by assuaming this Higgs boson (h) is produced with the SM Higgs Boson (H) cross
section.
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In experiment, the dark matter signature is large missing transverse energy (Emiss
T ).

The major background is SM ZZ production with one Z boson decaying to di-lepton

(`+`−, ` = e, or µ) and another Z boson decaying to neutrino pair (vv̄, v= e, µ, τ).

ZZ is a typical irreducible background since it has exactly the same final state as

the signal. The second major background is SM WZ production with Z decaying to

di-lepton and W decaying to lv if the lepton decay from W is mis-classified or not

recorded by the detector. Some other backgrounds also contaminate the signal. For

example WW decaying to lvlv, Z+jets with Z decaying to di-lepton and jets faking

the Emiss
T , and top processes( tt̄, tW ...) and so on.

The physics analysis can be divided into following steps: 1) Object reconstruction,

to reconstruct the objects (electron, muon, jets, Emiss
T ...) used in this analysis; 2) Op-

timization, which is also known as event selection to detect the signal; 3) Background

estimation, to estimate the contribution of each background; 4) Systematic uncer-

tainties, to estimate the systematic uncertainties for both signal and backgrounds; 5)

A statistical analysis to interpret the physics results.

5.2 Data and MC Samples

5.2.1 Data Sample

The proton-proton collision data used in this search were collected by the ATLAS

detector at a center-of-mass energy of 13 TeV with a 25 ns bunch-spacing config-

uration during 2015 and 2016. Single-lepton triggers are used for data collection, a

combination of a lower pT threshold trigger with an isolation requirement and a higher

pT threshold trigger without any isolation requirement is used. The pT threshold of

the isolated electron (muon) trigger ranges from 24 (20) to 26 GeV depending on the

instantaneous luminosity. The higher pT threshold is 50 (60) for the electron (muon)

case over all the data-taking periods. If any relevant detector component is not op-

erating correctly during a period in which an event is recorded, the event is rejected.

With all these quality requirements, the total accumulated data sample corresponds

to an integrated luminosity of 36.1 fb−1 with 3.2% systematic uncertainty.

5.2.2 Monte Carlo Samples

5.2.2.1 Zh→ ``+ invisible signal samples

Zh → `` + invisible samples are generated by Powheg [44] and interfaced to

Pythia8 [77] for parton showering. Both gg → Zh and qq → Zh processes are
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Process Generator mh (GeV) σ (fb)
qq → Zh→ ``+ inv. Powheg + Pythia8 125 76.89
gg → Zh→ ``+ inv. Powheg + Pythia8 125 12.42

Table 5.1: Cross section for the Zh → `` + invisible signal with mh = 125 GeV,
where ` = e, µ, τ .

simulated. The Higgs boson is forced to decay to 4ν to give the invisible signature

in these samples. Then, the ATLAS detector simulation is performed for each event

with Geant4 [78] framework. The invisible Higgs boson decay branching fraction

is assumed to be 100% when making the distributions and estimating signal yields.

The CT10nlo parton distribution function (PDF) set and AZNLO tune are used for

generating these samples.

The Zh production cross sections are assumed to be the same as the SM cross

section ZH, provided by the LHC XS Working Group based on the CERN Yellow

Report 3 [82]. The cross sections are calculated at NNLO QCD and NLO EW accura-

cies. The cross sections for the Zh→ ``+ invisible with mh = 125 GeV can be found

in Table 5.1. The gg → Zh process accounts for 14% of the total Zh production.

EW corrections are applied for the qq → Zh process with the mh = 125 GeV, as a

function of pT (Z).

5.2.2.2 Background samples

Monte Carlo samples have been used to simulate background processes as well

as signal processes. All the samples have been generated for a center-of-mass energy

of 13 TeV and passed through the full simulation of the ATLAS detector. Several

processes can produce the same experimental signature of di-lepton plus Emiss
T as the

signal. Background topologies can be classified in these categories:

• 2 real leptons + Emiss
T (real or fake)

• 1 real + 1 fake lepton + Emiss
T (real or fake)

In all these cases the real Emiss
T comes from neutrinos, while the fake Emiss

T is

mainly due to pile-up interactions, mis-calibrations and jet energy resolution.

Monte Carlo samples are used to simulate all the background processes considered.

These have been centrally produced by the ATLAS Physics Modeling Group (PMG),

who also provides the cross section values and the filter efficiencies (fraction of events
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that pass from the general sample into the final simulated sample). If higher order

cross section computation is available, it is taken into account, together with the above

information, to normalize the sample to the data integrated luminosity. Different

Monte Carlo generators interfaced to different parton showering programs were used,

which are described in the followings.

5.2.2.3 ZZ production

Pair production of Z bosons, referred to as the ZZ process, is the main background

in this analysis, which is irreducible. Samples of ZZ production for the processes

ZZ → `+`−νν̄, ZZ → `+`−`
′+`

′−, ZZ → νν̄νν̄(l = e, µ, τ) are simulated using the

Powheg event generator with AZNLO CTEQ6L1 tune, interfaced with Pythia8 for

the parton showering. A minimum mass of 4 GeV is required for each charged lepton.

Details about these samples are given in Table 5.2.

Process Generator σ (pb) k-factor Filter efficiency

qq → ZZ → `+`−`
′+`

′− POWHEG+Pythia8 1.2673 1.0 1.0

qq → ZZ → νν̄νν̄ POWHEG+Pythia8 0.54901 1.0 1.0

qq → ZZ → `+`−νν̄ POWHEG+Pythia8 0.91795 1.0 1.0

gg → ZZ → `+`−νν̄ POWHEGgg2vv+Pythia8 0.05187 1.0 0.66248

qq → ZZ → `+`−νν̄ POWHEG+Pythia8 ( mT filtered) 0.92118 1.0 0.016068

qq → ZZ → `+`−νν̄ SHERPA 12.465 1.0 1.0

Table 5.2: Cross sections at the NLO in perturbation theory, k-factors and filter
efficiencies for ZZ POWHEG+Pythia8 samples at

√
s = 13 TeV. Processes listed

refer to both quark-quark and gluon-gluon production modes.

5.2.2.4 WZ and WW production

Similarly to ZZ, WZ and WW productions are also simulated with POWHEG

interfaced with Pythia8. In WZ, two final states have been considered as being

dominant, WZ → `ν`+`− and WZ → `ννν. In WW , the final state with both W

bosons decaying to leptons, WW → `ν`ν has been considered. A minimum mass of

4 GeV is required for each charged lepton couple. Details about these samples are

given in Table 5.3.
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Process Generator σ (pb) k-factor Filter efficiency

WZ → `ν`+`− POWHEG+Pythia8 4.4625 1.0 1.0

WZ → `ννν POWHEG+Pythia8 2.7778 1.0 1.0

WW → `ν`ν POWHEG+Pythia8 10.631 1.0 1.0

WZ → `ν`+`− POWHEG+Pythia8 ( mT filtered) 4.4953 1.0 0.004893

WZ → `ν`+`− SHERPA 4.583 1.0 1.0

Table 5.3: Cross sections at the NLO in perturbation theory, k-factors and filter
efficiencies for WZ and WW POWHEG+Pythia8 samples at

√
s = 13 TeV.

5.2.2.5 Z+jets production

The Z+jets process is simulated using SHERPA 2.2.1 event generator. However,

studies have shown considerable ZpT mismodeling with SHERPA samples, a bin-

by-bin reweighting of the ZpT distribution is applied to Z+jets samples, which was

performed using the ratio between data and MC.

Details for SHERPA Z+jets sample are summarized in Tables 5.4, 5.5, and 5.6

for Z → ee, Z → µµ and Z → ττ processes respectively.

Process Generator σ (pb) k-factor Filter efficiency

Z → ee MAXHTPTV0 70 CVetoBVeto SHERPA 1981.8 0.9751 0.82106

Z → ee MAXHTPTV0 70 CFilterBVeto SHERPA 1980.8 0.9751 0.11295

Z → ee MAXHTPTV0 70 BFilter SHERPA 1981.7 0.9751 0.063809

Z → ee MAXHTPTV70 140 CVetoBVeto SHERPA 110.5 0.9751 0.69043

Z → ee MAXHTPTV70 140 CFilterBVeto SHERPA 110.63 0.9751 0.18382

Z → ee MAXHTPTV70 140 BFilter SHERPA 110.31 0.9751 0.11443

Z → ee MAXHTPTV140 280 CVetoBVeto SHERPA 40.731 0.9751 0.61452

Z → ee MAXHTPTV140 280 CFilterBVeto SHERPA 40.67 0.9751 0.23044

Z → ee MAXHTPTV140 280 BFilter SHERPA 40.643 0.9751 0.14966

Z → ee MAXHTPTV280 500 CVetoBVeto SHERPA 8.6743 0.9751 0.56134

Z → ee MAXHTPTV280 500 CFilterBVeto SHERPA 8.6711 0.9751 0.26294

Z → ee MAXHTPTV280 500 BFilter SHERPA 8.6766 0.9751 0.17223

Z → ee MAXHTPTV500 1000 SHERPA 1.8081 0.9751 1

Z → ee MAXHTPTV1000 E CMS SHERPA 0.14857 0.9751 1

Table 5.4: Cross sections at the NNLO in perturbation theory, k-factors and filter
efficiencies for Z+jets SHERPA Z → ee samples at

√
s = 13 TeV.
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Process Generator σ (pb) k-factor Filter efficiency

Z → µµ MAXHTPTV0 70 CVetoBVeto SHERPA 1983 0.9751 0.8221

Z → µµ MAXHTPTV0 70 CFilterBVeto SHERPA 1978.4 0.9751 0.11308

Z → µµ MAXHTPTV0 70 BFilter SHERPA 1982.2 0.9751 0.064161

Z → µµ MAXHTPTV70 140 CVetoBVeto SHERPA 108.92 0.9751 0.68873

Z → µµ MAXHTPTV70 140 CFilterBVeto SHERPA 109.42 0.9751 0.18596

Z → µµ MAXHTPTV70 140 BFilter SHERPA 108.91 0.9751 0.11375

Z → µµ MAXHTPTV140 280 CVetoBVeto SHERPA 39.878 0.9751 0.60899

Z → µµ MAXHTPTV140 280 CFilterBVeto SHERPA 39.795 0.9751 0.23308

Z → µµ MAXHTPTV140 280 BFilter SHERPA 43.675 0.9751 0.13769

Z → µµ MAXHTPTV280 500 CVetoBVeto SHERPA 8.5375 0.9751 0.55906

Z → µµ MAXHTPTV280 500 CFilterBVeto SHERPA 8.5403 0.9751 0.26528

Z → µµ MAXHTPTV280 500 BFilter SHERPA 8.4932 0.9751 0.17559

Z → µµ MAXHTPTV500 1000 SHERPA 1.7881 0.9751 1

Z → µµ MAXHTPTV1000 E CMS SHERPA 0.14769 0.9751 1

Table 5.5: Cross sections at the NNLO in perturbation theory, k-factors and filter
efficiencies for Z+jets SHERPA Z → µµ samples at

√
s = 13 TeV.

Process Generator σ (pb) k-factor Filter efficiency

Z → ττ MAXHTPTV0 70 CVetoBVeto SHERPA 1981.6 0.9751 0.82142

Z → ττ MAXHTPTV0 70 CFilterBVeto SHERPA 1978.8 0.9751 0.11314

Z → ττ MAXHTPTV0 70 BFilter SHERPA 1981.8 0.9751 0.064453

Z → ττ MAXHTPTV70 140 CVetoBVeto SHERPA 110.37 0.9751 0.68883

Z → ττ MAXHTPTV70 140 CFilterBVeto SHERPA 110.51 0.9751 0.1829

Z → ττ MAXHTPTV70 140 BFilter SHERPA 110.87 0.9751 0.110886

Z → ττ MAXHTPTV140 280 CVetoBVeto SHERPA 40.781 0.9751 0.60821

Z → ττ MAXHTPTV140 280 CFilterBVeto SHERPA 40.74 0.9751 0.22897

Z → ττ MAXHTPTV140 280 BFilter SHERPA 40.761 0.9751 0.13442

Z → ττ MAXHTPTV280 500 CVetoBVeto SHERPA 8.5502 0.9751 0.56036

Z → ττ MAXHTPTV280 500 CFilterBVeto SHERPA 8.6707 0.9751 0.26245

Z → ττ MAXHTPTV280 500 BFilter SHERPA 8.6804 0.9751 0.17313

Z → ττ MAXHTPTV500 1000 SHERPA 1.8096 0.9751 1

Z → ττ MAXHTPTV1000 E CMS SHERPA 0.14834 0.9751 1

Table 5.6: Cross sections at the NNLO in perturbation theory, k-factors and filter
efficiencies for Z+jets SHERPA Z → ττ samples at

√
s = 13 TeV.
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5.2.2.6 Tri-boson production

Tri-boson production V V V , with V = W or Z, is simulated by the SHERPA event

generator at the NLO; cross sections, k-factors and filter efficiencies are reported in

Table 5.7.

Process Generator σ (pb) k-factor Filter efficiency

WWW → 3`3ν SHERPA 0.008343 1.0 1.0

WWZ → 4`2ν SHERPA 0.001734 1.0 1.0

WWZ → 2`4ν SHERPA 0.0034299 1.0 1.0

WZZ → 5`1ν SHERPA 0.00021783 1.0 1.0

WZZ → 3`3ν SHERPA 0.0019248 1.0 0.44444

ZZZ → 6`0ν SHERPA 1.7059×10−5 1.0 1.0

ZZZ → 4`2ν SHERPA 0.00044125 1.0 0.22542

Table 5.7: Cross sections at the NLO in perturbation theory, k-factors and filter
efficiencies for triboson samples at

√
s = 13 TeV.

5.2.2.7 Inclusive W production

As for W+jets, W → eνe, W → µνµ and W → τντ processes have been simu-

lated with different generators to check the modeling of various distributions. The

POWHEG event generator with AZNLO CTEQ6L1 tune, interfaced with Pythia8 for

the parton showering was used as a baseline, details are given in Table 5.8.

Process Generator σ (pb) k-factor Filter efficiency

W → eνe, µνµ, τντ POWHEG+Pythia8 11306.0 1.0172 1.0

Table 5.8: Cross sections at the NLO in perturbation theory, k-factors and filter
efficiencies for W+jets POWHEG+Pythia8 samples at

√
s = 13 TeV.

5.2.2.8 Top-pair and single top production

Background samples for top-pair production, as well as single top and Wt pro-

duction are simulated using POWHEG interfaced with Pythia6. The tt̄ is filter at the

event generator level requiring at least one lepton originating from a W boson with

pT > 1 GeV. Single top production is considered in s-channel and t-channel, while
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for Wt single top associated production, di-lepton filtered samples have been used.

Details about these samples are given in Table 5.9.

Process Generator σ (pb) k-factor Filter efficiency

tt̄ POWHEG+Pythia6 696.12 1.1949 0.543

single t (s-channel, W → lν,
l = e, µ, τ)

POWHEG+Pythia6 2.052 1.005 1.0

single anti-top (s-channel, W → lν,
l = e, µ, τ)

POWHEG+Pythia6 1.262 1.022 1.0

single t (t-channel, W → lν,
l = e, µ, τ)

POWHEG+Pythia6 43.739 1.0094 1.0

single anti-top (t-channel, W → lν,
l = e, µ, τ)

POWHEG+Pythia6 25.778 1.0193 1.0

Wt (di-lepton, W → lν, l = e, µ, τ) POWHEG+Pythia6 3.584 1.054 1.0

Wt̄ (di-lepton, W → lν, l = e, µ, τ) POWHEG+Pythia6 3.581 1.054 1.0

Table 5.9: Cross sections at the NLO in perturbation theory, k-factors and filter
efficiencies for top-pair, single top and Wt Powheg+Pythia6 samples at

√
s = 13

TeV.

5.2.2.9 tt̄V and tt̄V V production

Background samples for top-pair production in association with one or two vector

bosons (W or Z) are simulated with MadGraph generator interfaced with Pythia8.

These samples have a minor impact on the total background in `+`−+Emiss
T final state;

their cross sections are given in Table 5.10.

Process Generator σ (pb) k-factor Filter efficiency

ttZ Np0, Z → ll MADGRAPH+Pythia8 0.018103 1.2 1.0

ttZ Np1, Z → ll MADGRAPH+Pythia8 0.030629 1.2 1.0

ttW Np0 MADGRAPH+Pythia8 0.009624 1.35 1.0

ttW Np1 MADGRAPH+Pythia8 0.017344 1.35 1.0

ttW Np2 MADGRAPH+Pythia8 0.009625 1.35 1.0

ttWW MADGRAPH+Pythia8 0.008098 1.22 1.0

Table 5.10: Cross sections at NLO in perturbation theory, k-factors and filter effi-
ciency for ttV/ttVV MADGRAPH+Pythia8 samples at

√
s = 13 TeV.

63



5.3 Event Selection

This section describes the selection of the objects used in the analyses and event

selection to separate signal from backgrounds.

5.3.1 Object Selection

5.3.1.1 Muons

Combined muons as described in Section 4.4.1 are selected and used in this anal-

ysis. A transverse momentum pT greater than 20 GeV and |η| < 2.5 are required for

the signal muons.

Identification is performed following recommendations provided by the Muon

Combined Performance Group [85] (MCP) and is applied through the MuonSelectorTools-

00-05-41. The “medium” identification criterion is chosen, which is based on the

requirements on the number of hits in the different inner detector and muon spec-

trometer sub-systems, and on the compatibility between inner detector and muon

spectrometer momentum measurements to suppress the contamination due to hadrons

mis-identified as muons.

To suppress the contribution from cosmic muons and non-prompt muons a cut

on the impact parameters with respect to the primary vertex is applied to the muon

track in the ID, specifically |d0/σ(d0)| (d0 significance) < 3 and |z0 · sin(θ)| < 0.5 mm

are required.

In order to avoid muons associated with jets, in particular, to additionally suppress

semi-leptonic decays of b hadrons, the candidates are required to be isolated. Isolation

is based on the activity observed in the calorimeter and in the tracker respectively, in

a cone of radius ∆R =
√

(∆η)2 + (∆φ)2 = 0.2 around the muon object. Isolation is

applied using IsolationSelection-00-06-05 tool, which defines different working points

according to the target isolation efficiencies. “Loose” selection has been requested for

muons, which corresponds to an isolation efficiency ≥ 99% for muons with pT > 20

GeV.

Finally, to account for effects of detector resolution that are not well reproduced

in MC samples, the transverse momentum of muon is smeared and weights are ap-

plied to account for the difference in efficiency. Smearing is applied through the

MuonMomentumCorrections-01-00-60, which also provides scale factors for differ-

ences in efficiency between data and MC.

Table 5.11 summarizes the muon selection.
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Identification Combined with Medium quality

Kinematic cuts pT > 20 GeV

|η| < 2.5

Cosmic cuts |d0 significance | < 3

|z0 · sin(θ)| < 0.5 mm

Isolation Loose

Table 5.11: Summary of muon selection.

5.3.1.2 Electrons

Electrons are reconstructed by matching the ID track to an energy cluster in the

electromagnetic calorimeter (EM). The track is required to have a minimum number

of hits in the tracking detectors. To the scope of these analyses, ET > 20 GeV and

|η| < 2.47 are selected.

Electrons identification is applied using the ElectronPhotonSelectorTools-00-02-

92-18 tool provided by the Egamma Combined Performance group (ECP) [86]. Iden-

tification is done forming a likelihood discriminator built with the shower shapes,

track-cluster matching and some of the track quality distributions. The tool provides

several working points for likelihood identification of electron candidates correspond-

ing to different efficiency and fake rejection probability. The “medium” working point

is used for electrons in this analysis. The pseudorapidity of the electron is taken from

the cluster when applying the fiducial cuts and from the track in all other cases.

To suppress the contribution from non-prompt electrons a cut on the impact

parameters with respect to the primary vertex is applied to the electron track in the

ID, specifically |d0 significance | < 5 and |z0 · sin(θ)| < 0.5 mm are required.

Electrons are required to be isolated with respect to other tracks and calorime-

ter clusters. A pT-dependent cone-based isolation requirement is applied with the

IsolationSelection-00-06-05 tool and the Loose working point is chosen.

Energy calibration and smearing are retrieved through the ElectronPhotonFour

MomentumCorrection-02-03-00 package, to account for differences in data and MC,

and the corresponding efficiency scale factors are obtained with the package Electron

EfficiencyCorrection-00-01-94.

Table 5.12 summarizes the electron selections.
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Identification Likelihood Medium ID

Kinematic cuts pT > 20 GeV

|η| < 2.47

Cosmic cuts |d0 significance| < 5

|z0 · sin(θ)| < 0.5 mm

Isolation Loose

Table 5.12: Summary of electron selection.

5.3.1.3 Jets

Jets are reconstructed with the anti-kT algorithm [87] with a radius parameter

of R = 0.4. Three dimensional topological clusters (topo-clusters) of calorimeter

cell energies are used to feed the jet finding algorithm [88]. The three-dimensional

topo-clusters are built from topologically connected calorimeter cells that contain a

significant signal above noise. Jets are first calibrated to the hadronic scale with

the effect of removing pile-up, then in-situ techniques are used to obtain calibration

constants that correct MC to obtain a better agreement with data.

Jet with pT > 20 GeV and reconstructed in the region |η| < 4.5 are used in the

analyses. To further reduce the effect of pile-up jets a cut on the jet-vertex-fraction

(JVF) variable is applied for each jet. The JVF is defined as the scalar sum of the

transverse momentum of the tracks associated to the jet and originates from the

hard-scattering vertex, divided by the scalar sum of the transverse momentum of all

the tracks. The JVF is combined with other variables in a multivariate discriminant

called the Jet Vertex Tagger (JVT) which is then used in the corresponding tool at

the analysis level to select jets from the hard-scatter vertex [89]. The recommended

0.59 upper threshold on the JVT is used in the analyses to reject jets with pT < 60

GeV, |η| <2.4 , which corresponds to an efficiency of 92% and to an observed fake

rate of 2%. If such a jet passes the JVT cut, but is “bad” [95], then the whole event

is rejected.

Last, jets are retained in the analyses only if they pass the “Loose” selection

criteria for the Jet Cleaning [90], designed to provide an efficiency of selecting jets

from proton-proton collisions above 99.5% for pT > 20 GeV.

A veto on b-tagged jets with pT > 20 GeV and |η| < 2.5 is applied in the analyses
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to reject the contribution from tt̄ background events. For these analyses, a jet is b-

tagged if the MV2c10 weight is larger than a cut value corresponding to approximately

85% b-tagging efficiency for b-jets in tt̄ events.

5.3.1.4 Missing Transverse Momentum

The imbalance of visible momenta in the plane transverse to the beam axis is

known as the Missing Transverse Momentum, Emiss
T . It is computed as the negative

of the global vector sum of all identified physics objects (electrons, muons, jets, etc.)

as well as “soft term” accounting for unclassified soft tracks and calorimeter clusters.

These analyses use the track-based soft term Emiss
T , also called TST Emiss

T [93]. It

is built by combining the information provided by the ID and the calorimeter in order

to minimize the effect of pile-up which causes a degradation of Emiss
T performance, as

already observed in Run-I. In TST Emiss
T the soft term is computed using momentum

of those tracks associated to the primary vertex, while the momentum of hard objects

is computed at the calorimeter level, to allow also the measurement of neutral particles

momenta.

Emiss
T is reconstructed at the analysis level using the METUtilities-00-02-46 pack-

age provided by the Jet-Emiss
T performance group [94], considering all the calibrated

objects in the event. The Emiss
T interface is provided by METInterface-00-02-08 pack-

age.

Jet-muon overlap handling is enabled in Emiss
T . This corrects for fake jets due to

pile up close to muons which pass the JVT requirement and double counts jets from

muon energy losses. In addition, jets from final-state-radiation (FSR) photons are

converted from hadronic jet energy scale to EM scale.

5.3.1.5 Overlap Removal

Possible overlaps among the various objects are resolved followed recommenda-

tions from the harmonization group [92].

Table 5.13 summarizes the overlaps removal strategy used in the analyses.

5.3.2 Event Selection

5.3.2.1 Trigger Requirement

The data used in the analysis are triggered with single lepton triggers (electron

or muon). The trigger menu used is reported in Table 5.14.
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Reference objects Criteria

Remove jets

electrons ∆Re−jet < 0.2

muons
∆Rµ−jet < 0.2

if NTrk(jet) < 3 OR (pjetT /pµT < 2 and pµT/ΣTrkPt > 0.7)

Remove electrons
jets 0.2 < ∆Re−jet < 0.4 AND pile-up jets check

muons share the same ID track

remove muons jets ∆Rµ−jet < 0.4 AND pile-up jets check

Table 5.13: Overlap removal criteria adopted in the analyses. Pile-up jets check
means JVT > 0.59 if jet pT < 60 GeV and |η| < 2.4.

Trigger selection

Single Muon mu20 iloose L1MU15 OR mu50 (2015)

mu24 ivarmedium OR mu50 (2016)

mu26 ivarmedium OR mu50 (2016, after 1034cm−2s−1)

Single Electron e24 lhmedium L1EM18VH OR e60 lhmedium OR e120 lhloose (2015)

e24 lhtight nod0 ivarloose OR e60 lhmedium nod0 (2016)

OR e140 lhloose nod0 (2016)

e26 lhtight nod0 ivarloose OR e60 lhmedium nod0 (2016, after 1034cm−2s−1)

OR e140 lhloose nod0 (2016, after 1034cm−2s−1)

Table 5.14: Trigger requirement in `+`−+Emiss
T analyses in 2015 and 2016 data peri-

ods.
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According to the studies using with 2015 data and MC15b [96], the combination of

the single-electron and single-muon trigger turns out to be always greater than 99%.

Similarly, checks were done for single lepton triggers with 2016 data and MC15c for

signals. Efficiencies for individual triggers always exceeded 95%. Due to the sharp

turn-on curve of single lepton trigger efficiencies, we use the pT > 30 GeV for the

leading lepton, which has been proven to keep the high signal efficiency.

5.3.2.2 Event Preselection

To exclude events in problematic luminosity blocks, all data events are required

to pass the “All Good” Good Run List (GRL). A set of other quality checks on data

events are applied, following the recommendations of the data preparation group.

In particular events affected by detector/read-out problems are removed if either

Calorimeter quality flags are not good or events are incomplete.

The presence of an hard-scattering vertex with at least two associated tracks is

required, being this vertex the one with the highest sum of p2
T.

In order to remove jets originating from non-collision events, such as hardware

problems, cosmic-ray showers or beam related backgrounds, a set of jet cleaning

criteria is applied. These jets can give rise to fake missing transverse momentum that

manifests in a poor description of the tail of the Emiss
T distribution. Events with bad

quality jets, defined as pT > 20 GeV jets not passing the “Loose” selection criteria

for the Jet Cleaning [90], are then rejected.

5.3.2.3 Final Event Selection

By studying various physics kinematic distributions related to the di-lepton +

Emiss
T final state, one can choose seven most sensitive variables (as shown in Figure 5.3)

to separate signal and backgrounds.

Potential signal candidate can be selected by applying the following requirements:

• The invariant mass of the two leptons is required to be compatible with Z

boson mass: 76 < m`` < 106 GeV. This requirement can significantly reduce

the events that do not include Z boson, for example, tt̄, WW → `ν`ν, etc.

Figure 5.2 shows the invariant mass of the two selected leptons for 5.2a electron

channel and for 5.2b muon channel.

• In order to suppress the Z+jets background, the signal events are required to

have Emiss
T greater than 90 GeV.
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• Due to the large pT of the boosted Z boson in Zh → `` + invisible signal, the

angular distance (∆R =
√

∆φ2 + ∆η2) between the two leptons is required to

be smaller than 1.8.

• Considering that the Emiss
T is expected to be back-to-back with the Z boson

in the signal, the azimuthal angular difference between Emiss
T and Z boson is

required to be greater than 2.7.

• Given the momentum conservation in the transverse plane, the Emiss
T plus jets

are expected to be balanced against the pT of Z boson. Hence, the fractional

pT difference |pmiss,jet
T − p``T |/p``T < 0.2, where pmiss,jet

T = | ~Emiss
T +

∑
jet ~p

jet
T |.

• To further suppress the Z+ jets background, events are required to have Emiss
T /HT >

0.6, where HT =
∑

jet p
jet
T + p`1T + p`2T .

• Finally, in order to suppress the top backgrounds, the events with at least one

b-tagged jet are vetoed.

The criteria for selecting signal events are summarized in Table 5.15.

Variable Value
Di-lepton selection Exactly one ee or µµ pair (as defined above) with

leading (subleading) lepton pT > 30 (20) GeV.
Opposite charge is required for both ee and µµ pairs.

Third lepton Veto any additional leptons with pT > 7 GeV.
m`` 76 - 106 GeV
Emiss

T > 90 GeV
∆R`` < 1.8

|∆φ(pZT , E
miss
T )| > 2.7

Fractional pT difference < 0.2
Emiss

T /HT > 0.6
b-jet veto Veto events with b-tagged jets

Table 5.15: List of the event selections.

The cut points (optimal values) in the above table can be derived by performing

statistical significance scan of all the variables in a multi-dimensional space. The

combination of each cut values achieving the highest significance will be the optimal

values. The significance is defined as [111]:

Z =
√

2 ((S +B) log(1 + S/B)− S), (5.1)

70



which is a standard for Poisson counting experiment for regions of high and low

statistics where the background is known with small uncertainty. In the equation, S

means signal yields and B represents background yields.
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Figure 5.2: The invariant mass of leptons that pass the object selections in the (a)
electron channel and (b) muon channel. Only events with two same flavor and oppo-
site sign leptons and no additional leptons are accepted, whose invariant mass is 76
< Mll <106 GeV. MC samples are normalized to their cross section values as given
in Section 5.2.2 and re-scaled to the data integrated luminosity reported in figure.
The error band in the ratio plot shows the systematic uncertainty on the MC.

5.3.2.4 Signal acceptance and systematic uncertainties

After all the cuts applied, the expectation for signal is 107.8 for ee channel and

113.9 for µµ channel (numbers are scaled to 36.1 fb−1). The cutflow of signal sample

is summarized in Table 5.16.

The theoretical uncertainties considered in the signal come from the following

sources: the choice of PDF set, QCD scale uncertainties, and parton shower (PS)

parameters. In addition, EW corrections are applied to the mh = 125 GeV sample,

and the systematic errors are also discussed.

• PDF uncertainty: The Zh→ ``+invisible signal samples are generated with

the CT10nlo PDF set. Alternative PDF sets considered in the estimation of the

PDF systematic uncertainty are the 26 eigenvector variations of the CT10nlo

set, the nominal value of the MSTW2008nlo set, and the nominal value of the

NNPDF set. The estimation of the systematic error is done by reweighting

the events with the alternative MC weights (calculated using alternative PDF
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Figure 5.3: Kinematic distributions that are used for event selections in the
``+ Emiss

T analyses for the signal, backgrounds and data in the electron channel after
applying Z mass window cut : (a) Emiss

T , (b) the distance between leptons, ∆Rll, (c)
the fractional pT difference, (d) the opening angle between Emiss

T and di-lepton pair,
(e) number of central jets that have pT > 20 GeV and |η| < 2.5, and (f) number of
b-tagged jets. The bottom plot shows the ratio between data and all the background
MC expectation. MC samples are normalized to their cross section values as given in
Section 5.2.2 and re-scaled to the data integrated luminosity reported in figure. The
error band in the ratio plot shows the systematic uncertainty on the MC expectation.
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Figure 5.4: Kinematic distributions that are used for event selections in the
``+ Emiss

T analyses for the signal, backgrounds and data in the muon channel af-
ter applying Z mass window cut : (a) Emiss

T , (b) the distance between leptons, ∆Rll,
(c) the fractional pT difference, (d) the opening angle between Emiss

T and di-lepton
pair, (e) number of central jets that have pT > 20 GeV and |η| < 2.5, and (f) number
of b-tagged jetse. The bottom plot shows the ratio between data and all the back-
ground MC expectation. MC samples are normalized to their cross section values
as given in Section 5.2.2 and re-scaled to the data integrated luminosity reported in
figure. The error band in the ratio plot shows the systematic uncertainty on the MC
expectation.
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Zh→ ``+ inv (mH = 125 GeV)
Selection ee µµ
m`` 399.8 ± 5.5 436.4 ± 6.0
Emiss

T 206.9 ± 3.1 220.1 ± 3.5
∆R`` 170.1 ± 2.5 178.9 ± 2.8

∆φ(pZT , E
miss
T ) 138.7 ± 2.3 145.7 ± 2.5

frac. pT diff. 136.9 ± 2.2 142.7 ± 2.5
Emiss

T /HT 113.0 ± 2.1 119.5 ± 2.3
b-jet veto 107.8 ± 2.0 113.9 ± 2.3

Table 5.16: Expected Zh→ ``+invisible cutflow yields scaled to 36.1 fb−1. Statistical
errors are included.

sets) and comparing to the nominal results. The envelope that can cover the

differences is treated as the systematic uncertainty. The errors evaluated for

the mh = 125 GeV signal are given in Table 5.17.

• QCD scale uncertainty: The choice of the QCD renormalization scale µR and

factorization scale µF is arbitrary, and for the Zh → `` + invisible signal they

are chosen as µR = µF = mZh. In order to estimate the uncertainties due to the

choice of these scales, µR and µF are varied individually by a factor of 1/2 and

2 with respect to the nominal values. There are 8 combination of variations

in the scales, including the case where only one scale is set to the nominal

value, and excluding the case where both are nominal. The estimation is done

by reweighting the nominal results with alternative weights (calculated using

alternative QCD scales) and comparing to the nominal results. The envelope

that can cover the differences between the scale variations and the nominal

results is taken to be the QCD scale systematic uncertainty. The results are

shown in Table 5.17

• Parton Shower uncertainty: The parton shower (PS) uncertainty is esti-

mated by modifying the showering procedure. The nominal showering in the

analysis is done using Pythia8. The alternative showering tool, Herwig 7, is

interfaced with the same generator. The acceptances are derived at the truth

level and compared and the difference is at the level of 0.5% for both electron

and muon channels, therefore we neglect them. The results are once again

shown in Table 5.17.

• EW correction uncertainty: NLO EW correction can have a sizable impact
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on the shape of the distribution of the Higgs boson momentum, which is not

accounted for in the MC Powheg + Pythia8 prediction. The EW correction has

therefore been applied to the qq → Zh (mh = 125 GeV)sample as a function of

the truth pT(Z), extracted from the computation of the Zh→ ``+invisible dif-

ferential cross section using the HAWK MC software. The corrections are pro-

vided by the LHC cross-section working group [105]. The systematic uncer-

tainty on the EW correction is computed following the prescriptions in YR4

I.5.20 [106], and shown in Figure 5.5. Its impact on the signal acceptance is

evaluated to be −1.8%+2.7%
−2.9% in the ee channel and −1.9%+2.8%

−2.6% in the µµ channel.
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Figure 5.5: Emiss
T distributions for the Zh→ ``+invisible process with EW correction

systematic uncertainty applied in the (a) ee and (b) µµ channels.

PDF QCD Scale PS
up down up down up down

ee 1.1% 1.2% 2.7% 5.3% 0.5% 0.5%
µµ 1.2% 1.2% 2.3% 2.7% 0.5% 0.5%

Table 5.17: Uncertainties from PDF, QCD scale, and PS variations on the Zh →
``+ invisible (mh = 125 GeV) signal acceptance.

The experimental systematic uncertainties are mainly from luminosity, pileup and

objects reconstruction.

Luminosity Uncertainty

The uncertainty on the integrated luminosity of combined 2015 and 2016 ATLAS

data is ±3.2%, which assumes partially correlated uncertainties, and is applied to

signal and the backgrounds estimated from MC predictions.
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Electron

The systematic uncertainties for electron are considered from following sources:

• Electron energy calibration and smearing: The uncertainties on the electron en-

ergy calibration and smearing are introduced and provided by ATLAS egamma

group based the description [108]. A simplified model, used for this analysis,

considers two systematic uncertainties: resolution and scale.

• Electron reconstruction, identification and isolation efficiency: Electron recon-

struction, identification and isolation efficiencies are corrected based on the

difference of MC and Data and the corresponding uncertainties are assigned as

systematic uncertainties in the analysis.

• Electron trigger efficiency: The difference between Data and MC on electron

trigger efficiency are corrected and the corresponding systematic uncertainty is

assigned.

Muon

The systematic uncertainties for muon are considered from following sources.

• Muon momentum calibration and smearing: The estimation of effect of muon

momentum calibration and smearing follow the recommendations from ATLAS

Muon group[85]. Two systematic variation considered for smearing: muon id

and muon ms represent the effect of smearing variation for ID track and MS

track respectively. One scale uncertainty muon scale is included for the effect

of varying the scale of muon momentum.

• Muon reconstruction and identification: Muon reconstruction efficiency is cor-

rected using the difference between data and MC. Two systematic variation

assigned for the correction considering the statistic part and systematic part.

• Muon isolation: Similar to reconstruction efficiency, two systematic uncertainty

terms for the isolation are included from statistic and systematic parts.

• Muon trigger efficiency: Similar to reconstruction efficiency, two systematic un-

certainty terms for muon trigger efficiency are included: muon trigger efficiency

stats uncertainty and muon trigger efficiency systematic uncertainty.
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Jet

The systematic uncertainties for jets include following sources:

• Jet energy scale(JES): The determination of JES uncertainties can be found

in [109]. The uncertainty from JES for each jet can be retrieved using JetUncertainties

package which is provided by ATLAS Jet group. Three grouped uncertain-

ties are considered i this analysis. One additional uncertainty, calibtation

non-closure, is added because of an observed highly localized non-closure at

2.4 < η < 2.5.

• Jet energy resolution(JER): Jet resolution (jet JER) is corrected due to the

difference of data and MC with assigned uncertainty.

• The systematic uncertainty on efficiency of JVT requirement is also included in

the analysis.

Jet flavor tagging

The flavor tagging efficiency has been corrected comparing data and MC with

assigned systematic uncertainty. The envelope method used in this analysis which

only considers three systematic uncertainties corresponding to the uncertainties for

the correction on the tagging efficiency of bottom, charm and light jets (not bottom

and charm) respectively. Two additional systematic uncertainties considered for the

jets with pT > 300 GeV are extrapolated using MC-based method[110].

Missing Transverse Momentum

The determination and description of Emiss
T systematic uncertainty can be found in

ATLAS PubNote[93]. In this analysis, only the systematic uncertainties on Emiss
T soft

term(track-based soft term) are estimated. The effects on Emiss
T from other terms

(electron, muon, jets, and etc.) will be automatically considered when varying

their corresponding objects uncertainties. Three systematic uncertainties resolu-

tion parallel, resolution perpendicular, soft term scale are included representing the

uncertainties from the soft term resolution effect on the direction parallel to vector

sum of hard objects pT (phard
T ), soft term resolution effect on the direction perpen-

dicular to phard
T and the effect of soft term scale on the direction parallel to phard

T

respectively.

The experimental systematic uncertainties on signal acceptance are summarized

in the Table 5.18 below.
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Experimental Systematic Uncertainty
ee channel µµ channel

up (%) down (%) up (%) down (%)
Luminosity 3.2 3.2 3.2 3.2

pile-up 2.15 2.38 1.26 1.32
Electron (reso., scale, effi.) 1.75 1.83 0.0 0.0

Muon (iso. reco. id.) 0.0 0.0 1.91 1.88
Jet (scale, reso.) 3.34 4.58 3.67 3.91

Emiss
T 0.05 0.35 0.07 0.07

Total 5.4 6.4 5.4 5.6

Table 5.18: Experimental systematic uncertainties on the Zh→ ``+ invisible (mh =
125 GeV) signal acceptance. Up/down means the impact on fianl yields by varying
the systematic uncertainties of one standard deviation upwards and downwards

The final Zh→ ``+ invisible signal acceptance is 107.8 ± 2.0 (stats) ± 9.4 (sys.)

for ee channel and 113.9 ± 2.3 ± 7.5 for µµ channel.

5.4 Background Estimation and Systematic Uncertainty

The main backgrounds in this search are the Standard Model productions of ZZ

and WZ, where the W bosons decay leptonically. Other backgrounds considered

in the analysis are Z+jets, W+jets, WW , top single and pair productions. The

following methods are used for each background estimations:

• ZZ: ZZ → ``νν is the main irreducible background. Both normalization

and shape are estimated from theoretical predictions. The higher order correc-

tions [100] are applied to MC samples to get better description for data.

• WZ: Second dominant background in the high Emiss
T region. Normalization is

derived from the three lepton control region (3lCR) and the shape is taken from

data.

• Z+jets: The normalization for Z +jets background is derived from data using

the ABCD method. The shape of this background is estimated from data.

• top/Zττ/WW : The normalization is derived from data using eµ Control Region

considering the flavor symmetry and the shape is estimated from data.

• W+jets: Both normalization and shape are estimated from data using fake

factor method.
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• ttV /tri-boson: Small backgrounds, both normalization and shape are estimated

from theory predictions.

5.4.1 ZZ Background

The ZZ background consists of contributions from two production modes, the

qqZZ and ggZZ processes. In this analysis the simulated Monte Carlo sample for

ZZ background originating from initial states with quarks (qq̄ → ZZ) are generated

with PowhegBox which is next-to-leading order in QCD and leading order in EW

effects. Subsequently, Pythia8 is used for parton showering and final state radiation

of the leptons. Recent theory calculations suggest an enhancement of the inclusive

cross section due to NNLO QCD effects [102, 103]. To incorporate those results,

an event-based k-factor reweighting of the Monte Carlo sample depending on the

invariant mass of the ZZ system is performed. The k-factor is calculated using

“MATRIX”, which is a tool provided by the NNLO paper author.

The “MATRIX” computation is carried out differentially in m(4l) spectrum and

an optimized scheme of defining m(4l) intervals (mass slicing) is used to ensure that

the NNLO QCD k-factors are calculated with sufficient statistical precision. This

optimization turned to be important, and it is found that an improper mass slicing

could result in artificial statistical fluctuations on the differential NNLO cross-sections

and cause unexpected features in the k-factor distribution. The derived NNLO QCD

k-factors binned in m(4l) for the qq̄ → ZZ process are shown in Figure 5.6.

Besides QCD effect, there is another effect: NLO electroweak (EW) effect [104]

taken account for the Powheg prediction using a reweighting method. It only corrects

for weak effects in order to avoid potential double counting of final state radiation of

the leptons which has already been included in the MC generation. The details of

EW correction are described in [100].

The Higher order correction (NLO/LO) to the gg → ZZ continuum is considered

by calculating a k-factor for massless quark loops, in the heavy top approximation

and for gg(→ h∗)→ ZZ. A flat k-factor of 1.7 ± 1.0 is applied while the applied

uncertainty of 60% results from conservative consideration.

The yields of qqZZ and ggZZ are summarized in Table 5.19 below:

For qqZZ process, experimental systematic uncertainty sources are from the items

listed in 5.3.2.4 and major ones are JET term 4% and luminosity 3.2%, as indicated

in the Table below:

For ggZZ, the uncertainty is mainly from 60% variation on flat k-factor.

As for the theoretical uncertainties, details can be found in Section 5.4.7.1.
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Figure 5.6: The derived NNLO QCD k-factors in binned m(4l) for the qq̄ → ZZ
process. Also shown for comparison with the k-factors used in the previous study
note which are calculated from the charged four-lepton channel [100]. The error bar
in the plot represents the statistical uncertainty on the k-factor.

process ee µµ

qq̄ → ZZ 212.08 ± 2.94 ± 15.39 220.69 ± 2.94 ± 16.94

gg → ZZ 18.89 ± 0.32 ± 11.18 19.25 ± 0.32 ± 11.41

Table 5.19: qqZZ and ggZZ yields in signal region for both ee and µµ channel. In
each box, first number is central value of yields, second number is statistical uncer-
tainty and third one is systematic uncertainty.

Experimental Systematic Uncertainty
ee channel µµ channel

up (%) down (%) up (%) down (%)
Luminosity 3.2 3.2 3.2 3.2

pile-up 1.16 1.51 1.60 2.76
Electron 1.81 1.75 0.0 0.0

Muon 0.0 0.0 1.84 1.82
Jet 3.61 4.07 3.53 4.17
Emiss

T 0.10 0.18 3.53 4.17
Total 5.3 5.7 5.4 6.2

Table 5.20: Experimental systematic uncertainties on the qq̄ → ZZ background
process.

5.4.2 WZ Background

WZ → `ν`+`− process in which the lepton from the W decay is not reconstructed

is the second largest background for `+`−+Emiss
T analysis. To correct the normaliza-
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tion of WZ → `ν`+`− prediction with data, we defined a 3-lepton control region

(3lCR), where one additional lepton is required in addition to the two leptons from

the Z boson decay. The third lepton is defined in the same way as the two lep-

tons from the Z boson decay, as given in Table 5.11 and Table 5.12. Figure 5.7 and

Figure 5.8 show pT, η and φ distribution for the third lepton in 3lCR.

The shape of the final discriminant (the variable used for fit) is extracted from MC

and the effect of theoretical uncertainties, coming from the variation of QCD scale

and PDFs, are considered as systematic uncertainties for the shape. More details on

the shape systematics are described in Section 5.4.7.1. The effect of experimental

systematic uncertainties has also been considered in the shape.

5.4.2.1 Scale factor for WZ 3-lepton Control Region (3lCR)

The 3lCR is used to obtain a scale factor for the correction between observed

events and WZ expectation. The scale factor is applied to renormalize the WZ

expectation in the signal regions.

Nexpected
2lSR = NMC

2lSR ·
Ndata

3lCR

NMC
3lCR

= Ndata
3lCR ·

NMC
2lSR

NMC
3lCR

(5.2)

Figure 5.9 shows the transverse mass mT between the additional lepton and the

Emiss
T . In a region with the transverse mass between the additional lepton and the

Emiss
T greater than 60 GeV and b-jet veto, the WZ events dominate. Figure 5.10

shows the Emiss
T distribution after the 60 GeV cut on mT , and the b-jet veto cut. The

mT selection removes the Z+jets contribution from the 3lCR, and the purity of WZ

events in that region turns out to be ∼90%.

Three Lepton Control Region definition

Two same flavor opposite-sign leptons (e+e− OR µ+µ−)

Require one additional lepton with pT > 20 GeV

76 < M`` < 106 GeV

mT (W ) > 60 GeV

b-jet Veto

Table 5.21: List of selections applied at the event selection level for the 3lCR.
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Figure 5.7: The pT (top two), η (middle two) and φ (bottom two) distributions of the
additional muon in events with two electrons (left three) or two muons (right three)
with an invariant mass consistent with Z boson mass. MC samples are normalized
to their cross section values as given in Section 6.2.2.2 and re-scaled to the data
integrated luminosity reported in the figure. The scale factor of 1.29± 0.03± 0.07 is
applied to the WZ MC, and NNLO and NLO corrections are applied for ZZ. The
error band in the ratio plot includes only the statistical uncertainty on MC.
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Figure 5.8: The pT (top two), η (middle two) and φ (bottom two) distributions of the
additional electron in events with two electrons (left three) or two muons (right three)
with an invariant mass consistent with Z boson mass. MC samples are normalized
to their cross section values as given in Section 6.2.2.2 and re-scaled to the data
integrated luminosity reported in the figure. The scale factor of 1.29± 0.03± 0.07 is
applied to the WZ MC, and NNLO and NLO corrections are applied for ZZ. The
error band in the ratio plot only includes the statistical uncertainty on MC.
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Figure 5.9: Transverse mass of the W boson for both data and Monte Carlo in (a)
the ee + e channel, (b) ee + µ channel, (c) µµ + e channel and (d) µµ + µ channel
in events with one additional electron or muon with respect to the lepton pair whose
invariant mass is consistent with the Z boson mass. MC samples are normalized
to their cross section values as given in Section 6.2.2.2 and re-scaled to the data
integrated luminosity reported in the figure. The scale factor of 1.29± 0.03± 0.07 is
applied to the WZ MC, and NNLO and NLO corrections are applied for ZZ. The
bottom plots show the ratio of the data and Monte Carlo. The red arrow in the ratio
plot indicates the ratio is up/down beyond y-axis range.
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Figure 5.10: Emiss
T distributions after MT cut for data and Monte Carlo in (a) the

ee + e channel, (b) ee + µ channel, (c) µµ + e channel and (d) µµ + µ channel in
events with one additional electron or muon with respect to the lepton pair whose
invariant mass is consistent with the Z boson mass. MC samples are normalized
to their cross section values as given in Section 6.2.2.2 and re-scaled to the data
integrated luminosity reported in the figure. For WZ background, the scale factor of
1.29± 0.03± 0.07 from data-driven estimate is applied, NNLO and NLO corrections
are applied for ZZ. The bottom plots show the ratio of the data and Monte Carlo.
The red arrow in the ratio plot indicates that the ratio is up/down beyond y-axis
range.
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The systematic uncertainty on the simulation-based transfer factor between con-

trol region (CR) and signal region (SR), shown in Equation 5.2, is evaluated through

the difference in acceptance due to PDF and scale variation, and has been found to

be negligible (less that 5 permil as discussed in Section 5.4.7.1 ). The effect of the

experimental systematics on this factor is taken into account and found to be ∼ 4%.

In addition, a systematic uncertainty has been considered on the MC expectation

for the two-lepton signal region concerning the third lepton veto and the inefficiency

scale factor for additional leptons in the events. Finally, the statistical uncertainty

on the scale factor comes from the statistics of the 3lCR in data.

In Table 5.22 the number of background and data events in the 3lCR is given

for each decay mode of the Z and W bosons, together with the corresponding scale

factors obtained.

channel Expected Observed factor

ee + e 632.2 ± 5.0 958 1.39 ± 0.05

ee + µ 673.7 ± 5.2 941 1.25 ± 0.05

µµ + e 702.7 ± 5.3 993 1.26 ± 0.06

µµ + µ 797.6 ± 5.7 1121 1.28 ± 0.04

Total 2806.1 ± 10.6 4013 1.29 ± 0.03

Table 5.22: The expected number of background and observed number of events in
the 3lCRs in MT > 60 GeV and b-jet veto region. The final column shows the scale
factor. It is obtained by subtracting other backgrounds (in MC) from the observed
events in data, and taking the ratio between this and the expected number of events
from the WZ MC. Number of observed events is for an integrated luminosity of
36.1 fb−1. Error is statistical only.

The final scale factor to normalize WZ contribution is then obtained by averaging

all the different decay modes together. A scale factor of 1.29± 0.03± 0.07 is applied

on the expected WZ yield as shown in Table 5.23.

Channel MC only Data-driven

ee 82.39 ± 1.91 ± 6.28 106.28 ± 2.47 ± 6.12

µµ 87.91 ± 1.88 ± 6.87 113.40 ± 2.64 ± 5.39

Table 5.23: WZ yields in signal region for both ee and µµ channel. First column
shows estimates based on MC only, numbers in second column are applied with scale
factor 1.29± 0.03± 0.07.
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5.4.3 Top, WW , Wt and Z → ττ Background

tt̄, WW , Wt and Z → ττ production all have a minor impact on the total back-

ground of `+`−+Emiss
T analyses. Physics processes with one or more top quarks in the

final state are suppressed by applying the b-jet veto cut. The WW contribution is

mainly removed by requiring first that the two leptons have an invariant mass com-

patible with a Z boson (the “m``” selection), and then by applying a high Emiss
T cut.

Z → ττ is suppressed because the two leptons usually have a lower invariant mass

than the Z mass (due to the presence of neutrinos in the taus decay which carry

away part of the energy). Finally, the Wt contribution is suppressed by the low cross

section.

5.4.3.1 The method

The contribution of these backgrounds is estimated from data through a dedicated

control region, named the eµ Control Region, built with the same selections as the SR

except the requirement of two opposite flavor leptons (see Table 5.24). The reason

for selecting opposite flavor leptons is the following: tt̄, WW, Wt and Z → ττ

backgrounds all decay in the ee : µµ : eµ channel with the relative probability of 1

: 1 : 2. This allows the measurement of these backgrounds directly from data using

the eµ final state; the contribution in the SR is then obtained by considering the

difference in the electron/muon reconstruction efficiency, accounted in the so-called

ε-factor, defined as:

ε2 =
Nee

Nµµ

(5.3)

where Nee and Nµµ are the number of ee and µµ events with an invariant mass

compatible with a Z boson.

The number of eµ background events in the SR is obtained as:

N eµ
SRee =

1

2
× ε×Ndata,sub

eµ (5.4)

N eµ
SRµµ =

1

2
× 1

ε
×Ndata,sub

eµ (5.5)

where Ndata,sub
eµ is the number of eµ data events in the CR, estimated as

Ndata,sub
eµ = Ndata

eµ −N other
sub (5.6)
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eµ Control Region Definition

Zh→ ``+ invisible

Two Opposite flavor Opposite sign leptons (e±µ∓)

Veto any additional lepton with Loose ID and pT >7 GeV

76 < Meµ < 106 GeV

Emiss
T > 90 GeV

∆Reµ < 1.8

∆φ(Z,Emiss
T ) > 2.7

Fractional pT difference< 0.2

Emiss
T /HT > 0.6

b-jet Veto

Table 5.24: Event selection applied to define the eµ Control Region. The control
region reflects the SR definition except the opposite flavor requirement of the two
selected leptons.
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N other
sub is defined as the non-tt̄/WW/Wt/Z → ττ background subtracted using

data-driven (DD) estimates where available, or Monte Carlo simulations where no

DD estimates are available, as in Equation 5.7.

N other
sub =

non−eµ∑
i

Ni (5.7)

The benefit of the eµ CR defined with two opposite flavor leptons is that the

eµ events from tt̄/WW/Wt/Z → ττ dominate in this region, since most of the

contribution from processes with a Z boson is eliminated.

5.4.3.2 Efficiency correction as functions of pT and η

In order to estimate the eµ background more precisely, the efficiency factor ε has

been computed in bins of pT and η for the leading and sub-leading lepton, Equation 5.3

becomes:

ε2 =
Ne1

(pT,η)
e2
(pT,η)

Nµ1
(pT,η)

µ2
(pT,η)

(5.8)

The binning is chosen to ensure enough statistics in each bin to obtain efficiency

factors with low statistical uncertainty. The η phase space has been divided in Barrel

(B) and Endcap (E) resulting four different bins: BB, BE, EB, EE. The order is

related to the order in pT. For example: BE stands for a leading lepton in the Barrel

and subleading lepton in the Endcap. The binning in pT has been optimized as well

by requiring the same amount of events for the leading lepton in three pT bins for each

η region. Those values have been cross-checked to provide enough and homogeneous

statistics in each bin of the pT scatter plot among leading and subleading lepton for

each η region. The final choice of the 3 pT bins is the following: pT < 44 GeV, 44 GeV

< pT < 52 GeV, 52 GeV < pT < 2 TeV. The efficiency factors are then evaluated in

each bin using Data, shown in Table 5.25.

The final estimates are evaluated event-by-event by applying the binned efficiency

factor.and are shown in Table 6.13.

5.4.4 Z+jets background

Z+jets background is largely reduced by the Emiss
T requirement. Moreover, other

selections applied in the SR, such as ∆R``, ∆φ(Z,Emiss
T ), the fractional pT difference,

Emiss
T /HT , also contribute to the reduction of Z+jets, ending with a small number

of events left in the SR. However, this background has significant uncertainties, as
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Lepton pT(lead, sub-lead) BB BE EB EE

(30-44,20-44) 0.9469 ± 0.0004 0.8745 ± 0.0005 0.8429 ± 0.0004 0.8291 ± 0.0012

(44-52,20-44) 0.9686 ± 0.0004 0.8435 ± 0.0007 0.8226 ± 0.0006 0.7985 ± 0.0006

(44-52,44-52) 0.9380 ± 0.0007 0.7742 ± 0.0019 0.7748 ± 0.0019 0.7248 ± 0.0009

(52-2000,20-44) 0.9980 ± 0.0005 0.8715 ± 0.0008 0.8537 ± 0.0008 0.7898 ± 0.0007

(52-2000,44-52) 0.9808 ± 0.0014 0.8605 ± 0.0030 0.8648 ± 0.0030 0.7639 ± 0.0018

(52-2000,52-2000) 1.0331 ± 0.0019 0.9024 ± 0.0037 0.9180 ± 0.0038 0.8395 ± 0.0028

Table 5.25: Efficiency factor values in bin of pT and η from Data. Errors contain
statistical uncertainty only.

Channel MC only Data-driven

ee 25.52 ± 2.63 ± 5.93 29.47 ± 3.79 ± 1.58

µµ 26.11 ± 2.86 ± 4.81 33.22 ± 4.27 ± 1.62

Table 5.26: eµ background yields in signal region for both ee and µµ channel.
The first column shows estimates based on MC only, numbers in second column are
estimated using data-driven method. Both statistical and systematic uncertainties
are included.

the modeling of Emiss
T mis-measurement in the Mc depends strongly on the correct

modeling of detector, pile-up interactions, the jet energy response and the track re-

construction. It is crucial to estimate the Z+jets background by using data.

The Z+jets background is estimated by two independent data-driven methods:

the “ABCD” method 5.4.4.1 and the one side-band method 5.4.4.2. The strategy is

to:

• Estimate the background yields in the SR by using the “ABCD” method

• Estimate the shape of the discriminant variable distributions from the MC with

a looser selection

• Estimate the uncertainty on the shape of Emiss
T from experimental uncertainties

and compare to the single side-band method.

5.4.4.1 ABCD Method

The “ABCD” method is a data-driven technique that is used to estimate the

number of background events in a defined SR. The side-band control regions are

built in such a way to enrich the background events and diminish the number of

signal events, which is achieved by reversing some signal selections. The non-Z+jets
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backgrounds contribution is further reduced by subtracting other backgrounds from

side-band regions based on MC and data-driven estimates.

Provided the variables are uncorrelated, event count in signal region (A) can be

estimated from side-band regions (B,C,D) using the following formula:

N est
A = Nobs,sub

C × Nobs,sub
B

Nobs,sub
D

, (5.9)

where N est
A is the number of estimated background events in SR, while Nobs,sub

X are the

numbers of observed events in side-band regions X = B, C, D, where the contribution

of non-Z+jets background is subtracted before applying this equation.

Due to large Z+jets reduction by applying additional cuts (in particular, Emiss
T /

HT ), all attempts to construct “ABCD” suffered from very low event counts in

some side-band regions and poor agreement between data and MC, as well as high

correlation after final cuts, resulting in non-closure. Non-closure in this section

means that particular implementation of the method does not work on MC, i.e.

NMC
C × NMC

B

NMC
D
6= NMC

A . It is decided to combine several selections in one boolean

variable (pass/fail), thus increasing event counts in side-band regions by allowing

events to fail any of the cuts used to construct boolean variable instead of just one

cut as in traditional two-variable “ABCD”. Scheme of a boolean “ABCD” regions

can be seen in Figure 5.11.

Figure 5.11: Scheme of the boolean “ABCD” method. Signal region A is defined by
both variables equal true, representing all selections passed.

In order to construct combination of boolean variables with low correlation, cuts

on highly-correlated variables are combined in one boolean variable. The following

boolean variables are chosen based on correlation studies:
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var1 = Emiss
T > 90 GeV and Emiss

T /HT > 0.6 (5.10)

var2 = |Emiss,jets
T −p``T |/p``T < 0.2 and ∆φ(Z,Emiss

T ) > 2.7 and ∆R`` < 1.8 andNb-jets = 0.

(5.11)

However, with regions defined above, the method still suffers from high level

of correlation, indicated by more than two-fold difference in ratios NMC
A /NMC

B and

NMC
C /NMC

D . Two additional cuts are added to all side-band regions: Emiss
T > 60 GeV

and Emiss
T /HT > 0.12, which are optimized to remove the highly-correlated Z+jets bulk.

The sizes of experimental uncertainties are also considered for optimization: the op-

timal points where the detector response are not well modeled by MC, resulting large

uncertainties, are rejected. The resulting ratios for MC, as well as for data, are shown

in Tables 5.27. Data-driven estimates are presented in Table 5.28.

NA/NC [MC] NB/ND [MC] NB/ND [Data]

ee channel 0.017± 0.005 0.0137± 0.0004 0.0159± 0.0003

µµ channel 0.012± 0.003 0.0125± 0.0003 0.0145± 0.0002

Table 5.27: Ratios NA/NC , NB/ND for the ee- and µµ-channel. Only the statistical
errors shown. Statistical errors due to the MC subtraction are also considered for
NB/ND (Data). WZ background yields for subtraction from data are rescaled using
a scale factor of 1.29. For ZZ background, NNLO QCD & NLO EW corrections are
applied. Sherpa 2.2.1 samples are used for the Z+jets background.

Channel MC only Data-driven

ee 35.04 ± 10.75 ± 14.50 30.45 ± 1.09 ± 27.57

µµ 34.78 ± 7.48 ± 13.71 37.03 ± 1.21 ± 18.82

Table 5.28: Summary of the Z+jets background estimation using the “ABCD”
method with statistical and systematic uncertainties. Systematic uncertainties come
from the level of correlation in MC, estimated by difference between NA/NC (MC)
and NB/ND (MC), experimental uncertainties on this difference and subtraction of
non-Z+jets backgrounds.

To determine systematic uncertainties of the method, the difference between

NA/NC (MC) and NB/ND (MC), which is representing correlation-induced bias in
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MC (non-closure), is taken into account. The impact of the experimental uncertain-

ties on this difference is also investigated. Experimental uncertainties on subtraction

of non-Z+jets background are also included. Contribution of each source to the total

systematic uncertainties is summarized in Table 5.29.

ee-channel µµ-channel

Methodology +90.2%
−54.5%

+37.2%
−49.4%

Non-Z+jets sub. 13.6% 11.2%

Total systematic unc. +91.3%
−56.2%

+38.8%
−50.6%

Table 5.29: Systematic uncertainties sources combine methodology uncertainty and
uncertainty on subtraction of non-Z+jets backgrounds from MC. Methodology un-
certainty consists of correlation-induced bias 1− NC∗NB

ND∗NA including experimental uncer-
tainties (dominated by JetGroupedNP 1&3 5.3.2.4) and uncertainty associated with
selection of optimal additional Emiss

T and Emiss
T /HT cuts, estimated by varying the

cuts by 40% from their nominal values; both of these sources having roughly equal
contribution.

5.4.4.2 Single Side-band Method

The single side-band method is a simple and straightforward approach, construct-

ing a single side-band by reversing one of the selection cuts to enhance the Z+jets

events as schematically described in Figure 5.12, where the events in the signal region

are estimated with Equation 5.12.

Hideki Okawa H→ZZ→llvv, ZH invisible & mono-Z, January 30, 2017

Single Sideband Method

2

• Single Sideband Region Method is a simple & straightforward approach. The first report 
was on January 6 at the HZZ Weekly: https://indico.cern.ch/event/586239/ 

• Considered ETmiss/HT to start with (has good Z enhancement with reversed 
selection), but other variables could also be considered in principle. 

• A drawback is the fact that we fully rely on the MC for the SR/CR ratio. This will be one of 
the major systematic uncertainties and need careful studies (especially, whether the size 
of mismodeling is consistent between the SR & CR). 

• Today, the numbers are updated with the v03 minitrees produced by Cong (now 
without the muon TRT cut).

ETmiss/HT 0.4 or 0.6 

Signal 
Region 

(SR)
Sideband/Control

Region (CR)
N est

SR = Ndata,sub
CR � NMC

SR

NMC
CR

Purely 
from MC 

From Data

Figure 5.12: Scheme of the one side-band method. A selection is reversed to construct
the side-band region.

N est
SR = Ndata,sub

CR × NMC
SR

NMC
CR

(5.12)
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The Emiss
T /HT is considered to construct the side-band, since this variable provides

a good separation between the Z+jets and other events with intrinsic Emiss
T , i.e.

diboson, Top or signal events. However, the method also works with other variables

in principle.

The pros of this method are the simplicity and the fact that the method does not

suffer from non-trivial correlations between the various kinematic variables as is the

case with the “ABCD” method. One drawback is the fact that it fully relies on the

MC for the SR/CR ratio. The main systematic uncertainty comes from the prediction

of this ratio. With the full selection applied, the purity of the Z+jets events in the

side-band region is 67.7 ± 4.0% (73.9 ± 2.9%) for the ee (µµ) channel.

Z+jets background estimation with the single side-band method is summarized

in Table 5.30. The estimations have larger yields with the single side-band method

than the MC expectation due to more data observed in the side-band region. The

statistical uncertainties of NMC
SR /NMC

CR are included in the statistical uncertainties of

the estimation. Uncertainties on NMC
SR /NMC

CR from JES, JER, and Emiss
T soft-term

experimental systematic uncertainties are 29% (55%) in the ee- (µµ-) channel. The

systematic uncertainties from the non-Z backgrounds is 7.4% (4.6%) in the ee- (µµ-)

channel.

Z+jets ee-channel µµ-channel

Yields 37.7 ± 12.2 (stat) ± 23.5 (syst) [32.4 ± 10.1 (stat)] 41.8 ± 9.6 (stat) ± 21.4 (syst) [30.1 ± 6.7 (stat)]

Table 5.30: Estimated Z+jets background yields with the one side-band method.
Numbers in brackets are from the MC expectation for comparison. Errors are shown
for both statistical uncertainty and systematic uncertainty.

5.4.5 W+jets background

A contribution to the `+`−+Emiss
T final state can arise from a misidentified lepton

from a jet, when it is produced in association with a leptonically decaying W boson.

The rate at which hadronic jets are misidentified as leptons may not be accu-

rately described in the simulation, because these events are produced due to rare

fragmentation processes or interactions with the detector. This background is there-

fore estimated from data. Although this background is found to be negligible, it is

still important to set up a methodology with a robust data-driven estimate of this

fake-dominated background. Two different methods have been explored to estimate

the W+jets contribution, the same-sign method and the fake-factor method. How-

ever, the estimation with the same-sign method is found to be contaminated by the
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Z+jets, whose modeling is shown not to be well represented by MC. For this reason

the estimation is done using the fake-factor method only.

5.4.5.1 Fake factor method

The fake-factor method is used to estimate the W+jets contribution in SR, by

first evaluating the probability for a jet to be mis-identified as a lepton, and then by

applying the fake factor to data events in a W+jets control sample.

The fake factor is measured by using control samples dominated by Z+jets where

all the other components are subtracted using simulation (W+jets control samples

are used for comparison). In the Z+jets control sampples, a di-lepton pair from Z

boson decay is selected as a “tag”. In addition to the “tag”, it requires an extra

electron or muon passing the full selection criteria (referred to as “good” lepton) and

a lepton-like jet (referred to as “bad” lepton), which is a reconstructed electron or

muon that is selected as likely to be faked from a jet. For electrons, the lepton-

like jets are electron candidates that fail the requirements on isolation or likelihood

ID. For muons, lepton-like jets are muon candidates that fail the requirement on

isolation. These events are further required to pass the full event selection, treating

the lepton-like jet as if it is a fully identified lepton. The W+jets background is then

estimated by scaling this control sample by a measured pT-dependent or η-dependent

fake-factor. The fake-factor is the ratio of the probability for a jet to satisfy the full

lepton identification criteria to the probability to satisfy the lepton-like jet criteria,

as shown in Equation 5.13:

F.F. = N fake
Good/N

fake
Bad (5.13)

The following part describes the fake-factor determination and the W+jets control

region definition for the background estimation. Before the data-driven estimate is

performed, the robustness of the method is checked by evaluating the fake factor in

two different jet-enriched MC samples, the W+jets and the Z+jets samples, and a

consistency test between them is done.

5.4.5.2 MC consistency

For the consistency test, control samples dominated by W+jets and Z+jets events

are used, where the other background components are subtracted using simulation.

Details of the W+jets and the Z+jets samples are given below.
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For W+jets MC: The fake factor is measured via a Tag and Probe method using

W+jets events. The events are constructed by requiring one lepton as a tag passing

the full selection criteria and then an additional “Good” lepton or “Bad” lepton as

a probe. The “Good” lepton is defined in the same way as the lepton in the nominal

analysis, but requiring the charge to be opposite to that of the W boson. The one that

has same sign as the W boson is regarded to come from the W . The “Bad” lepton,

which is our lepton-like jet, has the same selection as the nominal one but with one

or two cuts that are reverted. For “Bad” electron, one can invert track isolation and

medium working point, while for “Bad” muon, only invert track isolation cut. The

definitions of “Good” and “Bad” leptons are summarized in Table 5.31. With these

definitions one can select a sample of events which have a reconstructed lepton from

W± → l± + ν as the tag and then look for an additional lepton-object in the event

that satisfies either the “Good” lepton or “Bad” lepton requirements, as the probe.

The details of the “W-tagged” jet event selection can be found in Table 5.32.

For Z+jets MC: The “Good” lepton selection for the Z+jets sample is the same as

the lepton selection in the nominal analysis. The “Bad” lepton selection has instead

one or two cuts that are reverted. The definitions of “Good” and “Bad” leptons are

summarized in Table 5.31. Then select a sample of events which have a reconstructed

Z → l+l− as the tag and then look for an additional lepton-object in the event that

satisfies either the “Good” lepton or “Bad” lepton requirements, as the probe. The

details of the “Z-tagged” jet event selection can be found in Table 5.33.

For the final data-driven estimate, the fake factor is instead estimated from data.

In this case the same selection used in the Z+jets MC sample above is applied on

data. Subtracting the contribution from ZZ and WZ processes using MC, the re-

maining part can be regarded as coming from Z+jets. The fake-factor comparison

among Z+jets MC, W+jets MC and data-driven is shown in Figure 5.13 for the ee

channel and in Figure 5.14 for the µµ channel.

Difference of MC-based fake factor between W+jets and Z+jets samples, the “MC

inconsistency”, is used as a systematic uncertainty for the data-driven estimate, along

with uncertainties associated with subtraction of non-W+jets backgrounds from MC.

Good (G) Bad (B)
Electrons Track iso: Loose Track iso: !Loose

and lh: Medium or lh: !Medium
Muons Track iso: Loose Track iso: !Loose

Table 5.31: Summary of requirements for “Good” and “Bad” leptons
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Criteria Selection
Tag lepton 1 selected Muon or Electrons
Probe lepton only one extra lepton
Trigger Single lepton trigger
Emiss

T > 20 GeV

Table 5.32: Summary of the requirements used to select a control sample from W+jets
MC for fake factor measurement.

Criteria Selection
Leptons 2 selected Muons or 2 selected Electrons
Trigger Single lepton trigger
Z-reconstruction oppositely charged leptons

|Mll −MZ | <15 GeV
Probe lepton only one extra lepton

Table 5.33: Summary of the requirements used to select a control sample from Z+jets
MC for fake factor measurement.
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Figure 5.13: (a) Fake factor as measured in data, W+jets, and Z+jets MC samples
with regarding to lepton pT(a), η (b) in ee channel
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Figure 5.14: (a) Fake factor as measured in data, W+jets and Z+jets MC samples
with regarding to lepton pT(a), η (b) in µµ channel.
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5.4.5.3 W+jets background estimation

For the final estimation, the W+jets control region is defined by requiring the

presence of one “Good” lepton and one “Bad” lepton with same flavor, both pass-

ing the nominal selection criteria. The fake factor is then applied to the event with

regarding to bad lepton η. For the events selected from data, we subtract the contri-

bution of WW , WZ, ZZ and tt̄ (normalized to current luminosity: 36.1 fb−1). The

final W+jets contributions to SR are summarized in Table 5.34.

Data-driven yields
ee 0.43± 0.09± 0.04
µµ 1.53± 1.92± 0.73

Table 5.34: W+jets estimation in the electron and muon channel as obtained from
the “fake factor” data-driven technique. The systematic uncertainties are calculated
as the differences between the W+jets and Z+jets MC-based fake-factors, as well as
uncertainty associated with subtraction of non-W+jets backgrounds from MC.

5.4.6 Other Backgrounds

Other backgrounds including tt̄V/V V V make minor contribution to the contam-

ination. Such small backgrounds are estimated based on MC prediction for both

yields and shapes. The yields in final SR are 0.96 ± 0.04 ± 0.08 for ee channel and

0.96± 0.03± 0.10 for µµ channel.

5.4.7 Systematic Uncertainty

In general, uncertainties that can impact the analysis come from event reconstruc-

tion, theory calculation, data-driven estimation of backgrounds as well as luminosity

determination. For the signal process, reconstruction and theory uncertainties both

play a role in the determination of the Emiss
T shape as well as acceptance. Theory part

is described in Section 5.3.2.4 while reconstruction uncertainties are introduced below.

For MC-based backgrounds, both yield and shape can be affected by reconstruction

and theory uncertainties as well as the luminosity uncertainty. For backgrounds esti-

mated with data, the yield and shape are fully determined in data, while for the WZ

background the predicted yield is determined from data and the Emiss
T shape comes

from MC. Table 5.35 summarizes the implementation of various types of uncertainties

on the physics processes involved in this analysis.
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The following sections will briefly discuss the experimental and theoretical un-

certainties concerned in this analysis and for simplicity the uncertainties are demon-

strated as their impact on the predicted yields of given processes.

Process Lumi. Reconstruction Data-Driven Theory
Signal Yield Yield, Shape - Yield
ZZ Yield Yield, Shape - Yield, Shape
WZ - Shape Yield Shape
Z + jets - Shape Yield -
top/WW/Zττ - Shape Yield -
W + jets - Shape Yield -
ttV/V V V Yield - - Yield, Shape

Table 5.35: Impact of various uncertainty sources on the physics processes involved in
this analysis. For processes labeled with “Yield,” the number of events in the signal
region is affected (.e.g by uncertainties on the luminosity). For processes labeled with
“Acceptance,” (e.g. the signal), the cross section is unknown and so the uncertainties
will affect the acceptance but not the yield.

5.4.7.1 Theoretical Uncertainty

The theoretical uncertainties involved in background estimation are mainly for ZZ

and WZ processes. The qq̄ → ZZ background (modeled with Powheg + Pythia8)

has been normalized to NNLO total cross section using mass-binned k-factors (ap-

proximately 10% in average), and the theoretical uncertainty is considered using the

MC samples which are at NLO+PS precision. The PDF and scale uncertainties on

the expected yields are evaluated using MC truth events produced with the nom-

inal Powheg generator showered with official Pythia8 release, and found quite

constant along the Emiss
T and mT distribution. The typical sizes of PDF and QCD

scale uncertainties are about 2.4% and 3.6%, respectively. The theoretical shape

uncertainty (PDF and QCD scales) is found to be insignificant (up to 0.5%). In ad-

dition, the effect of parton-shower choices are studied by comparing Powheg truth

events showered with Pythia8 and Herwig, the difference is found to be less than

0.1% and flat across the mass spectrum. In addition, the NLO electroweak correction

is applied to the qq̄ → ZZ process, and the averaged effects on qq̄ → ZZ yield is

about 10%. The k-factors are applied to the central value and results are shown in

Figure 5.15.

The non-resonant gg → ZZ process (modeled with gg2V V + Pythia8) is a sub-

process of the total ZZ production process and it enters formally at α2
s. The gg → ZZ
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predicted has been calculated to its relative next-to-leading order and we apply a

constant k-factor of 1.7 ± 1.0 to the MC prediction that is at the LO. This relative

60% uncertainty on the gg → ZZ prediction is applied in the Emiss
T distribution.

The WZ background is estimated partially based on data, i.e. the normalization

comes from data, while its shape is predicted by MC. Therefore, the shape uncer-

tainty is evaluated for the WZ background and considered in the limit setting. The

theoretical shape uncertainty (PDF and QCD scales) is also found to be negligible

(up to 0.5%) and total results are shown in Figure 5.16,
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Figure 5.15: Theoretical systematic uncertainties on ZZ background due to QCD
scale and PDF variation, as a function of the transverse mass of the ZZ resonance.
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Figure 5.16: QCD and PDF scale included shape uncertainties as a function of the
mass of the WZ resonance.

5.5 Results

5.5.1 Data Comparison with Predicted Background and Signal

Table 5.36 gives the observed data yields, the estimated background contributions,

and the expectation for the signal processes after the final selection. The Emiss
T dis-
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tributions after applying full event selections and with signals overlaid are shown in

Figure 5.17.

ee µµ

Data 437 497

Zhinv (mh = 125 GeV, MC) 107.79 ± 2.02 ± 9.39 113.91 ± 2.29 ± 7.54

qqZZ (MC) 212.08 ± 2.94 ± 15.39 220.69 ± 2.94 ± 16.94
ggZZ (MC) 18.89 ± 0.32 ± 11.18 19.25 ± 0.32 ± 11.41
WZ (Data-Driven) 106.28 ± 2.47 ± 6.12 113.40 ± 2.64 ± 5.39
Z+jets (Data-Driven) 30.45 ± 1.09 ± 27.57 37.03 ± 1.21 ± 18.82
Zττ/top/WW/Wt (Data-Driven) 29.47 ± 3.79 ± 1.58 33.22 ± 4.27 ± 1.62
W+jets (Data-Driven) 0.43 ± 0.09 ± 0.05 1.53 ± 1.92 ± 0.82
Others (MC) 0.96 ± 0.04 ± 0.08 0.96 ± 0.03 ± 0.10
Total Bkg. 398.56 ± 5.51 ± 34.09 426.08 ± 6.24 ± 28.35

Table 5.36: The observed data and expected yields in ee and µµ SRs after full event
selections for 36.1 fb−1. Estimates include statistical and systematic errors given
where available in both MC and data-driven estimations. The data-driven estima-
tion on WZ has a significant impact on total background yields. The statistical
and systematic errors on the total background prediction are summed quadratically
from each individual process. The “Others” category is composed of ttV and V V V
backgrounds.

5.5.2 Likelihood definition

As shown in Figure 5.17, data is observed to agree with the SM background

prediction well, which means no obvious signal of h → inv.. Therefore, an upper

limit is set on BR(h → inv.). The statistical analysis of the data uses a binned

likelihood function constructed as the product of Poisson probability terms,

Pois(n|µS +B)

[ ∏
b∈bins

(
µνsig

b + νbkg
b

µS +B

)nb
]
, (5.14)

where µ, a signal strength parameter, multiplies the expected signal yield νsig
b in each

histogram bin b, and νbkg
b represents the background content for bin b. nb is the

oberserved data events in bin b. The dependence of the signal and background pre-

dictions on the systematic uncertainties is described by a set of nuisance parameters

(NP) θ, which are parametrized by Gaussian priors; the latter are used for normaliza-
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Figure 5.17: The Emiss
T distribution after final selections in the (a) ee channel, (b) µµ

channel, and (c) ee + µµ combined channel. The yields of WZ, Top/WW/Z → ττ
(Non-resonant-ll) and Z → ee/Z → µµ backgrounds are estimated using data-driven
method and the Emiss

T shapes for these backgrounds are derived from MC samples.
The ZZ backgrounds are fully estimated from theoretical predictions and higher order
corrections are applied. Both statistical and systematic uncertainties are included in
the uncertainties bands, and they are summed quadratically.

102



tion uncertainties in order to maintain a positive likelihood. The expected numbers

of signal and background events in each bin are functions of θ and µ (in the case of

signal process).

The priors act to constrain the NPs to their nominal values within their assigned

uncertainties. They are implemented via so-called penalty or auxiliary measurements

added to the likelihood which will always increase when any nuisance parameter

is shifted from the nominal value. The likelihood function, L(µ, θ), is therefore a

function of µ and θ.

The nominal fit result in terms of µ and σµ is obtained by maximizing the like-

lihood function with respect to all parameters. This is referred to as the maximized

log-likelihood value, MLL. The best statistic qµ is then constructed according to the

profile likelihood: qµ = −2 ln(L(µ,
ˆ̂
θ)/L(µ̂, θ̂)), where µ̂ and θ̂ are the parameters

that maximize the likelihood (with the constraint 0 ≤ µ̂ ≤ µ), and
ˆ̂
θ are the nuisance

parameter values that maximize the likelihood for a given µ.

The compatibility (p-value) between data and the assumed signal+background

model with µ is tested using q̃µ. The corresponding p-value, pµ, is defined as:

pµ =

∞∫
q̃µ,obs

f(q̃µ|µ)dq̃µ (5.15)

Here f(q̃µ|µ) is the probability density function of q̃µ assuming the µ hypothe-

sis, and q̃µ,obs is the value of q̃µ computed for the observed data. The asymptotic

formula [111], widely used in ATLAS statistical analyses, are used to calculate the

closed form for f(q̃µ|µ). pµ can also be written as:

pµ ≡ ps+b = P (q̃µ ≥ q̃µ,obs|s+ b) (5.16)

Performing exclusion tests with ps+b is known as the CLs+b method. This analysis

uses the CLs method, where the p-value, or the “CLs value,” is defined as:

CLs ≡
ps+b

1− pb
, (5.17)

where

pb = P (q̃µ ≤ q̃µ,obs|b). (5.18)

For the Zh → `` + invisible signal, any µ values that give CLs < 0.05 are ex-

cluded at the 95% CL. The observed limit can be compared with the expected limit

derived using an Asimov dataset treated as the Emiss
T distribution after profiling the
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background-only model (µ=0) to data. In this case, the ±1σ and ±2σ bands on the

expected limits can also be reported to test the compatibility between observed and

expected limits. The limits on BR(h → inv.) is exact the limits on µ. The corre-

sponding limits on σ(Zh → `` + inv.) production cross section are calculated based

on the limits on µ and the theoretical cross section for different models.

5.5.3 Limits

Assuming the Higgs boson is produced in both the qq → ZH and gg → ZH

processes, the upper limit on BR(h→ inv.) can be derived using the SM cross section

and branching ratio: σ(qq → ZH)×BR(Z → ``, ` = e, µ, τ) = 76.89 fb and σ(gg →
ZH) × BR(Z → ``, ` = e, µ, τ) = 12.42 fb. Limits on BR(h → inv.) are shown

in Tables 5.37 and 5.38. Table 5.37 shows the limit results using only statistical

uncertainties in the fit. Table 5.38 presents the limits using statistical and systematic

uncertainties. With the full statistical and systematic treatment, the observed upper

limit on BR(h → inv.) is 66.8%, with an expected value of 38.8%. A CL scan is

performed with BR(h → inv.) varying from 0 to 1.0, and the results are shown in

Figure 5.18.

Mass points Exp. limit Exp. +2σ Exp. +1σ Exp. −1σ Exp. −2σ Obs. limit

Combined

125 GeV 0.240 0.457 0.337 0.1701 0.127 0.579

ee

125 GeV 0.347 0.668 0.490 0.248 0.183 0.539

µµ

125 GeV 0.338 0.652 0.478 0.242 0.179 0.891

Table 5.37: The 95% CL upper limits on BR(h→ inv.) for ee, µµ, and ee+µµ channel
fits. Both observed and expected limits are presented as well as the ±1σ and ±2σ
error bands on the expected limit. Only statistical uncertainties are included in the
fit.

In order to check the effects of systematic uncertainties from different sources

on BR(h → inv.), we break down the systematic uncertainties into several inde-

pendent groups and repeat the limit setting by including each group exclusively as

well as statistical uncertainties. The relative differences with respect to the nomi-

nal limit (computed without systematic uncertainties) are treated as the systematic

uncertainty impact on the limit for a certain group. These results are summarized

in Table 5.39 for both the observed and expected limits. Inclusion of pileup and
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Figure 5.18: The CL scan as function of BR(h → inv.) for Zh → `` + invisible with
mh = 125 GeV. Plots (a) and (b) are the ee and µµ channel results, and plot (c) is
the ee+ µµ combined channel results. The observed and expected curves are shown
with solid and dashed lines. Signal is scaled to the SM cross section value times the
best-fit µ value 0.3. The ±1σ and ±2σ bands are shown as yellow and green bands
respectively. The crossing point between 95% CL line solid (dashed) line gives the
observed (expected) upper limit on BR(h→ inv.).
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Mass points Exp. limit Exp. +2σ Exp. +1σ Exp. −1σ Exp. −2σ Obs. limit

Combined

125 GeV 0.388 0.768 0.555 0.276 0.206 0.668

ee

125 GeV 0.505 0.994 0.718 0.357 0.263 0.591

µµ

125 GeV 0.480 0.938 0.679 0.344 0.256 0.974

Table 5.38: The 95% CL upper limits on BR(h→ inv.) for ee, µµ, and ee+µµ channel
fits. Both observed and expected limits are presented as well as the ±1σ and ±2σ
error bands on the expected limit. No significant excess is seen in all channels, and the
observed and expected limits are compatible within the error bands. Both statistical
and systematic uncertainties are included in the fit.

Z+jets uncertainties makes the observed limit better than that from the stat-only

case, and that is due to that fact there is a slight data excess over the SM expectation

in the low Emiss
T bins. The nuisance parameters responsible for Z+jets and pileup

uncertainties are pulled during the fit to reduce the excess.

Change in expected Change in observed
Category BR(H → inv.) (%) BR(H → inv.) (%)
electron 1.46 2.09
muon 1.00 0.27

jet 4.34 0.75
Emiss

T 0.09 0.06
luminosity 11.44 8.22

pileup 0.14 -1.01
WZ 9.36 4.05

qq → ZZ 19.55 7.26
gg → ZZ 58.07 13.98
Z+jets 5.54 -0.93

bkg MC statistics 1.77 0.84
signal MC statistics 0.02 0.11

Table 5.39: The systematic uncertainty impact on the expected and observed limits
for BR(h → inv.) (relative errors). The systematic uncertainties are grouped into
different categories. For each repetition of the limit setting, one group is added on
top of the stat-only configuration. The difference w.r.t. to the stat-only limit is then
taken as the systematic uncertainty impact.

In addition to the limits on the invisible decay branching fraction of h with the

mass of mh = 125 GeV, limits on σ(pp → Zh → `` + inv.) are also calculated as a
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function various non-SM values of mh. Table 5.40 presents the cross section limits for

mh from 110-400 GeV as obtained from the combined ee + µµ fit. Observed limits

range from 4.70 fb for mh = 400 GeV to 136.82 fb for mh = 110 GeV. Figure 5.19

shows the 95% CL limit as a function of mh. The observed limits are compatible with

the expected limits.

Mass points Exp. Limits [fb] Exp. +2σ Exp. +1σ Exp. −1σ Exp. −2σ Obs. Limits
110.0 GeV 78.42 153.03 111.67 55.98 41.62 136.82
120.0 GeV 27.80 54.14 39.56 19.85 14.76 46.78
125.0 GeV 25.83 50.32 36.77 18.46 13.73 44.58
130.0 GeV 23.61 45.98 33.59 16.86 12.53 39.26
140.0 GeV 20.12 39.24 28.63 14.37 10.68 33.01
150.0 GeV 18.17 35.53 25.87 12.97 9.62 29.77
200.0 GeV 9.98 19.64 14.21 7.10 5.27 14.54
250.0 GeV 7.03 13.88 10.01 4.99 3.69 9.33
300.0 GeV 5.22 10.36 7.46 3.70 2.73 6.60
400.0 GeV 4.09 8.16 5.86 2.89 2.13 4.70

Table 5.40: The 95% CL upper limits on σ(pp→ Zh→ ``+ inv.) for various values
of mH as obtained from the combined ee+µµ channels. Both observed and expected
limits are given, as well as ±1σ and ±2σ error bands on the expected limits. No
significant excess is seen in all channels, and the observed and expected limits are
compatible within the error bands. Full statistical and systematic uncertainties are
included in the fit.

5.5.4 Short Summary

No significant deviation from the SM prediction is observed. Assuming the Stan-

dard Model ZH production cross-section, an observed upper limit of 67% at 95%

confidence level (CL) is set on the branching ratio of invisible decays of the Higgs

boson with mass mh = 125 GeV. The corresponding limits on the production cross-

section (σ) of the BSM Zh process with the invisible Higgs boson decay are also

presented in the mass between 110 GeV and 400 GeV.

5.5.5 Discussion on DM Searches

5.5.5.1 Compare to search for invisible Higgs boson decay with VBF

Higgs productions

The invisible Higgs boson decay is also searched in VBF Higgs production mode

in ATLAS. Instead of di-lepton from Z boson decay as a tag, two forward jets with

large pT (> 60 GeV) are used as the tag in VBF process.
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Figure 5.19: The 95% CL upper limits on σ(pp → Zh → `` + inv.) as a function of
mH , as obtained from the combined ee+µµ channels. Observed and expected limits
are given, as well as ±1σ and ±2σ error bands on the expected limit. No significant
excess is seen in all channels, and the observed and expected limits are compatible
within the error bands. Full statistical and systematic uncertainties are included in
the fit.

The Higgs boson VBF production cross section is 3.8 pb at center-of-mass energy

of 13 TeV, which is significantly higher than the ZH production cross section times

BR(Z → ``), 0.08 pb. However, the event tag (forward jets) in VBF process has large

systematic uncertainty in both modeling and measurement. The expected limit in

ATLAS Run II (36.1 fb−1data) is 33% for invisible Higgs decay in VBF production

mode, which is compatible with the search sensitivity in ATLAS Run I with the

luminosity of 20.3 fb−1. The systematic uncertainties dominate this channel.

For the search of invisible Higgs decay produced in association with a Z boson,

the signal from Z → `` is robust to high lumionosity and pile-up experimental

conditions. The search in this mode, the statistical error still dominates. The current

expected limit is 39% with 36.1 fb−1 data. By the end of Run II, the total data size

will increase by a factor of ≈ 3.9 and the expected limit will be suppressed to 20%,

which looks more prosmising than the search with the Higgs VBF production mode.
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5.5.5.2 Comparisons with the underground direct DM search experi-

ments

The direct detection experiments typically operate in deep underground laborato-

ries to reduce the background from cosmic rays. Experiments can be sensitive to both

nuclear spin-independent (SI) interactions and spin-dependent (SD) interactions. Ex-

ample of the direct detection experiments are: XENON [112], COUPP [113], and

CDMS [114]. Figure 5.20 [115] shows the current SI landscape, where strict upper

limits exist for higher mass WIMPs. It is possible to relate the invisible Higgs branch-
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Figure 5.20: Spin-independent WIMP-nucleon cross section limits vs WIMP mass as
of summer 2013 [115].

ing fraction to the direct detection cross section. Both partial Higgs decay width into

dark matter Γ(h→ χχ) and the SI χ-proton elastic cross section σSI
χp are proportional

to λ2
hχχ; therefore, the ratio Γ(h → χχ)/σSI

χp depends only on the dark matter mass

Mχ and known masses and couplings [116]. By the end of LHC Run II, the expected

limit of Higgs invisible decay will be 20%, which implies a limit on the direct detection

cross section that is stronger than the current bounds from XENON100, as shown in

the Figure 5.21. Hence, in the context of Higgs-portal model, the LHC is currently

the most sensitive dark matter detection apparatus.
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Figure 5.21: Bounds on the spin-independent direct detection cross section σSI
χp in

Higgs portal models derived for mh = 125 GeV and the invisible branching fraction
of 20% (colord lines). For comparison, the current and future direct bounds from the
XENON experiments are plotted (black lines) [116].
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CHAPTER VI

Search For New Resonances in High Mass Scale

This chapter presents the search for heavy resonances decaying into a pair of Z

bosons leading to `+`−νν̄ final state using the full 2015 and 2016 dataset collected

by the ATLAS detector in 13 TeV pp collisions. Different mass ranges for the hypo-

thetical resonances are considered, depending on the model.

6.1 Introduction

This section introduces the search for a new heavy resonance (X) in the X → ZZ

→ ``νν process. X represents an additional heavy Higgs boson (H) or a bulk RS

graviton (G∗). The Feynman diagram is shown in Figure 6.1.

Figure 6.1: Feynman diagram for new heavy resonance produced in gluon-gluon fusion
and decay to dilepton + Emiss

T final state. X represents an additional heavy Higgs
boson (H) or a bulk RS graviton (G∗).

The transverse mass of the dilepton and Emiss
T system, mZZ

T , is used to discriminate

between the high mass Higgs boson and the SM prediction. The transverse mass is

defined as follows:
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m2
T ≡

[√
m2
Z + |~P ll

T |2 +

√
m2
Z + |~Pmiss

T |2
]2

−
[
~P ll
T + ~Pmiss

T

]2

. (6.1)

The irreducible background originating from non-resonant ZZ production pre-

dicted by the SM is the major background in regions sensitive to the search. The

Drell-Yan process contributes largely at lower mass than signal region due to large

production cross section and possibility of jets faking Emiss
T . Other backgrounds in-

cluding WZ, WW , top processes also contribute to the signal region due to their

capability of decaying to or faking `+`−νν̄ final states. Details about background

estimation are introduced in Section 5.4.

The observed mT distribution is compared to SM prediction for events satisfying

the full kinematic selections. In the case no obvious deviation from the SM is observed,

95% C.L. upper limits on the production cross sections of additional heavy Higgs

bosons are derived as a function of the pole mass of the new particles. In addition,

the mT distribution is also used to set upper limit on the production cross section of

the graviton candidate (G∗) predicted by the bulk RS model.

6.2 Data and MC Samples

6.2.1 Data Sample

The data used in this search is exactly same as the one used in search for dark

matter, as described in Section 6.2.1

6.2.2 Monte Carlo Samples

6.2.2.1 Heavy Higgs and RS Graviton signal samples

The heavy Higgs boson produced through gluon-gluon fusion and its subsequent

decay to the ``νν final state is modeled with Powheg + Pythia8 using CT10 PDF

set. The MC samples, as listed in Table 6.1 are generated using the narrow width

approximation (NWA) for various Higgs pole masses ranging from 300 GeV to 1400

GeV. The provided cross sections of heavy Higgs production with different masses

are calculated at the NLO in αS with the Powheg generator assuming a Standard

Model Higgs Boson at that mass.

A bulk Randall-Sundrum (RS) Graviton sample, featuring a spin-2 graviton (G∗)

is produced with the MadGraph generator and showered with Pythia8, using the

A14 tune and the NNPDF23LO PDF set. The MC samples with mass from 600 GeV
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Process Generators PDF Events Filter eff. Cross section
ggH300NW Powheg + Pythia8 CT10 99600 0.44477 6.646 pb
ggH400NW Powheg + Pythia8 CT10 100000 0.44411 6.356 pb
ggH500NW Powheg + Pythia8 CT10 100000 0.44467 3.077 pb
ggH600NW Powheg + Pythia8 CT10 98000 0.44463 1.376 pb
ggH700NW Powheg + Pythia8 CT10 100000 0.44610 640.57 fb
ggH750NW Powheg + Pythia8 CT10 99000 0.44517 446.36 fb
ggH800NW Powheg + Pythia8 CT10 99800 0.44549 315.39 fb
ggH900NW Powheg + Pythia8 CT10 100000 0.44543 163.61 fb
ggH1000NW Powheg + Pythia8 CT10 99600 0.44499 88.953 fb
ggH1200NW Powheg + Pythia8 CT10 100000 0.44598 26.437 fb
ggH1400NW Powheg + Pythia8 CT10 100000 0.44521 9.546 fb
ggH1600NW Powheg + Pythia8 CT10 99800 0.44448 3.778 fb

Table 6.1: Summary of the heavy Higgs signal samples. The cross sections are for
Standard Model Higgs Boson of corresponding masses

.

to 2 TeV are listed in Table 6.2 below.

Process Generators PDF Events Filter eff. Cross section
RS G ZZ llvv c10 m0600 MadGraphPythia8 NNPDF23LO 30000 1 31.41 pb
RS G ZZ llvv c10 m0700 MadGraphPythia8 NNPDF23LO 30000 1 12.76 pb
RS G ZZ llvv c10 m0750 MadGraphPythia8 NNPDF23LO 30000 1 8.568 pb
RS G ZZ llvv c10 m0800 MadGraphPythia8 NNPDF23LO 30000 1 5.915 pb
RS G ZZ llvv c10 m0900 MadGraphPythia8 NNPDF23LO 30000 1 3.012 pb
RS G ZZ llvv c10 m1000 MadGraphPythia8 NNPDF23LO 28000 1 1.644 pb
RS G ZZ llvv c10 m1200 MadGraphPythia8 NNPDF23LO 30000 1 0.568 pb
RS G ZZ llvv c10 m1400 MadGraphPythia8 NNPDF23LO 30000 1 0.225 pb
RS G ZZ llvv c10 m1600 MadGraphPythia8 NNPDF23LO 30000 1 0.098 pb
RS G ZZ llvv c10 m1800 MadGraphPythia8 NNPDF23LO 29000 1 0.046 pb
RS G ZZ llvv c10 m2000 MadGraphPythia8 NNPDF23LO 30000 1 0.022 pb

Table 6.2: Summary of the RS graviton samples used in this analysis.

6.2.2.2 Background samples

Background MC samples are same as the ones used in dark matter search, as

described in Section 5.2.2.2.
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6.3 Event Selection

The object selection and event pre-selection are same as the requirements de-

scribed in Section 5.3.1 and 5.3.2.2, respectively.

6.3.1 Final Event Selection

The Final event selections are similar but not identical to the cuts used in dark

matter search. For example the Emiss
T cut is required to be larger than 120 GeV. The

minimal space angle ∆φ between Emiss
T and any jet with pT > 100 GeV should be

larger than 0.4.

The following Table 6.3 lists the details about each cut used in this analysis.

Criterion
|mZ −m``| < 15 GeV
Emiss
T > 120 GeV
∆R`` < 1.8

∆φ(pZT , E
miss
T ) > 2.7

Fractional pT difference < 0.2
min(∆φ(jet, Emiss

T )) > 0.4, (jet pT> 100 GeV)
Emiss

T /HT > 0.4
nb-jets = 0, (jet pT> 20 GeV, b-tagging WP 85%)

Table 6.3: Summary of the event selection for the high mass resonance search.

6.3.2 Kinematic Distributions

This section shows various kinematic distributions related to the cuts listed in

Section 6.3.1. When showing each variable, all the previous used variable cuts are

applied. Here is the list of what is shown in each plot:

• Figure 6.2 contains the Emiss
T distribution after applying all analysis cuts up

through the di-lepton invariant mass cut.

• Figure 6.3 contains the ∆R distribution after applying all analysis cuts up

through the Emiss
T cut.

• Figure 6.4 contains the ∆φ(Z,Emiss
T ) distribution after applying all analysis cuts

up through the ∆R cut.
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• Figure 6.5 contains the fractional pT difference distribution after applying all

analysis cuts up through the ∆φ cut.

• Figure 6.6 contains themin(∆φ(j, Emiss
T )) distribution after applying all analysis

cuts up through the fractional pT difference cut.

• Figure 6.7 contains the Emiss
T /HT distribution after applying all analysis cuts

up through the min(∆φ(j, Emiss
T )) cut.

• Figure 6.8 contains the distribution of the number of b-tagged jets after applying

all analysis cuts up through the Emiss
T /HT cut.
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Figure 6.2: The Emiss
T distribution of the expected backgrounds after applying all

analysis cuts up through the di-lepton invariant mass window. The plot on the left
shows the result for the di-electron channel whereas the right plot shows the result
for the di-muon channel. The structure in the data/MC ratio is due to mismodeling
of the Emiss

T , and is covered by the relevant jet and Emiss
T systematics. The red arrows

in the ratio plot indicate that the point is off the scale. The uncertainty band in the
ratio includes systematic uncertainties, while the statistical uncertainty is propagated
to the data/MC points.

6.3.3 Signal Acceptance and Systematic Uncertainties

The cutflow of signal sample H → ZZ∗ → `+`−νν̄ (with mH = 600 GeV) are

shown in Table 6.4. Numbers are normalized to integrated luminosity of 36.1 fb−1.

With all cuts applied, the signal efficiency is about 15% for both ee and µµ channel.

Figure 6.9 shows the signal acceptance for both NWA heavy higgs and graviton with

various pole masses.

The theoretical uncertainties on signal acceptance are considered for heavy Higgs

signal samples including PDF, QCD scale and parton shower, as introduced in Sec-
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Figure 6.3: The ∆R distribution of the expected backgrounds after applying all
analysis cuts up through the Emiss

T cut. The plot on the left shows the result for the
di-electron channel whereas the right plot shows the result for the di-muon channel.
The red arrows in the ratio plot indicate that the point is off the scale. The uncertainty
band in the ratio includes systematic uncertainties, while the statistical uncertainty
is propagated to the data/MC points.
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Figure 6.4: The ∆φ(Z,Emiss
T ) distribution of the expected backgrounds after applying

all analysis cuts up through the ∆R cut. The plot on the left shows the result for the
di-electron channel whereas the right plot shows the result for the di-muon channel.
The red arrows in the ratio plot indicate that the point is off the scale. The uncertainty
band in the ratio includes systematic uncertainties, while the statistical uncertainty
is propagated to the data/MC points.
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Figure 6.5: The fractional pT difference distribution of the expected backgrounds
after applying all analysis cuts up through the ∆φ(Z,Emiss

T ) cut. The plot on the left
shows the result for the di-electron channel whereas the right plot shows the result
for the di-muon channel. The red arrows in the ratio plot indicate that the point
is off the scale. The uncertainty band in the ratio includes systematic uncertainties,
while the statistical uncertainty is propagated to the data/MC points.
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Figure 6.6: The min(∆φ(j, Emiss
T )) distribution of the expected backgrounds after

applying all analysis cuts up through the fractional pTdifference cut. The plot on the
left shows the result for the di-electron channel whereas the right plot shows the result
for the di-muon channel. The red arrows in the ratio plot indicate that the point is
off the scale. The uncertainty band in the ratio includes systematic uncertainties,
while the statistical uncertainty is propagated to the data/MC points.
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Figure 6.7: The Emiss
T /HT distribution of the expected backgrounds after applying

all analysis cuts up through the min(∆φ(j, Emiss
T )) cut. The plot on the left shows

the result for the di-electron channel whereas the right plot shows the result for the
di-muon channel. The red arrows in the ratio plot indicate that the point is off the
scale. The uncertainty band in the ratio includes systematic uncertainties, while the
statistical uncertainty is propagated to the data/MC points.
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Figure 6.8: The nb−jets distribution of the expected backgrounds after applying all
analysis cuts up through the Emiss

T /HT cut. The plot on the left shows the result
for the di-electron channel whereas the right plot shows the result for the di-muon
channel. The red arrows in the ratio plot indicate that the point is off the scale. The
uncertainty band in the ratio includes systematic uncertainties, while the statistical
uncertainty is propagated to the data/MC points.
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Criterion Electron Channel Muon Channel
Events Abs. [%] Rel. [%] Events Abs. [%] Rel. [%]

|mZ −m``| < 15 GeV 113.35 100 100 109.25 100 100
Emiss
T > 120 GeV 105.92 93.45 93.45 101.65 93.04 93.04

∆R < 1.8 104.84 92.52 98.98 100.42 91.92 98.79
∆φ(Z,Emiss

T ) > 2.7 89.04 78.55 84.93 84.91 77.72 84.55
Fractional pT difference < 0.2 88.13 77.75 98.98 83.91 76.81 98.82
min(∆φ(jet, Emiss

T )) > 0.4 86.17 76.02 97.78 82.08 75.13 97.82
Emiss
T /HT > 0.4 83.48 73.65 96.88 79.51 72.78 96.87

b-jet veto 75.85 66.92 90.86 72.26 66.14 90.88

Table 6.4: Cutflow table presenting absolute event counts as well as relative and
absolute efficiencies for the H → ZZ∗ → `+`−νν̄ sample (mH = 600 GeV).
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Figure 6.9: The signal acceptance versus resonance mass for heavy Higgs and Gravi-
ton. Only the statistical uncertainty is shown.
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tion 5.3.2.4. The impact of these uncertainties are listed in Table 6.5 for signals with

different masses.

PDF QCD SHW

ee (%) µµ (%) ee (%) µµ (%) ee (%) µµ (%)
NW300 GeV +0.9− 0.7 +1.2− 1.4 +0.5− 0.5 +0.6− 0.8 +2.6− 2.6 +9.0− 9.0
NW400 GeV +0.7− 0.9 +0.8− 0.9 +0.4− 0.5 +0.4− 0.4 +1.0− 1.0 +3.0− 9.0
NW500 GeV +0.6− 0.8 +0.6− 0.8 +0.4− 0.4 +0.3− 0.4 +1.0− 1.0 +2.5− 2.5
NW600 GeV +0.5− 0.7 +0.5− 0.7 +0.3− 0.4 +0.3− 0.4 +0.8− 0.8 +2.5− 2.5
NW700 GeV +0.5− 0.8 +0.4− 1.1 +0.3− 0.4 +0.2− 0.3 +0.2− 0.2 +0.6− 0.6
NW800 GeV +0.4− 0.6 +0.6− 0.6 +0.2− 0.3 +0.2− 0.3 +1.7− 1.7 +0.7− 0.7
NW900 GeV +0.3− 0.6 +0.3− 0.5 +0.2− 0.3 +0.2− 0.3 +0.8− 0.8 +0.1− 0.1
NW1000 GeV +0.3− 0.5 +0.3− 0.7 +0.2− 0.2 +0.2− 0.2 +1.0− 1.0 +0.6− 0.6
NW1200 GeV +0.2− 0.3 +0.2− 0.4 +0.2− 0.2 +0.1− 0.2 +0.2− 0.2 +1.0− 1.0
NW1400 GeV +0.1− 0.2 +0.2− 0.3 +0.1− 0.2 +0.1− 0.2 +0.4− 0.4 +3.2− 3.2

Table 6.5: Theory uncertainties of PDF, QCD and shower variation on acceptance of
heavy higgs signals with mass point from 300 GeV to 1400 GeV.

Theoretical uncertainties on the acceptance of RS graviton samples have been

examined and the effects are found to be much less than 1%. Given that in the

high mass region sensitive to Graviton exclusion limit, data statistical uncertainty

dominates the obtained limits, the theoretical uncertainties are ignored.

The experimental systematic uncertainties also impact signal acceptance, such as

luminosity, pile-up, Emiss
T , jet and so on. These experimental uncertainty sources are

introduced in Section 5.3.2.4 in dark matter search analysis. Table 6.6 exhibits various

experimental systematic uncertainty impacts on the H → ZZ∗ → `+`−νν̄ (with mH

= 600 GeV) signal acceptance.

Tables 6.7 and 6.8 show the overall experiment systematic uncertainties for heavy

Higgs and Graviton with different masses, respectively.

6.4 Background Estimation and Systematic Uncertainty

The main backgrounds and estimation strategies in this search are same as dark

matter search. For ZZ process, MC is used for both yield and shape, for WZ a

3lCR is defined and involved the data-driven method, for Z+jets, a boolean “ABCD”

method is adopted while for WW and Top physics, an eµ CR is defined. One major

difference is that in this analysis, transverse mass mZZ
T spectrum is used for final fit

while Emiss
T spectrum is used in dark matter search analysis.
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Exp. Sys. Unc. Terms
ee chancel µµ chancel

up (%) down (%) up (%) down (%)
Luminosity 3.2 3.2 3.2 3.2

pile-up 0.5 0.71 0.7 1.1
Electron 2.5 2.48 0.0 0.0

Muon 0.0 0.0 2.33 2.3
Jet 2.68 2.68 2.7 3.0
Emiss

T 0.09 0.0 0.0 0.07
Total 4.9 4.9 4.8 5.1

Table 6.6: Experimental systematic uncertainties on the H → ZZ∗ → `+`−νν̄ (with
mH = 600 GeV) signal acceptance.

Heavy Higgs Signals
ee chancel µµ chancel

up (%) down (%) up (%) down (%)
NW300 GeV 5.6 4.7 4.9 4.1
NW400 GeV 4.8 4.9 4.9 4.9
NW500 GeV 4.7 4.8 4.8 5.0
NW600 GeV 4.9 4.9 4.8 5.1
NW700 GeV 5.1 5.1 5.0 5.1
NW800 GeV 5.3 5.5 5.3 5.2
NW900 GeV 5.6 5.5 5.3 5.3
NW1000 GeV 5.6 5.6 5.6 5.5
NW1200 GeV 6.0 6.0 5.9 5.7
NW1400 GeV 6.4 6.3 6.3 5.9

Table 6.7: Overall experimental systematic uncertainties on the acceptance of H →
ZZ∗ → `+`−νν̄ signal with different masses.
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RS G Signals
ee chancel µµ chancel

up (%) down (%) up (%) down (%)
RS G 600 GeV 5.2 5.2 4.9 4.8
RS G 700 GeV 5.2 5.3 5.1 5.0
RS G 750 GeV 5.3 5.2 5.2 5.3
RS G 800 GeV 5.5 5.2 5.1 5.1
RS G 900 GeV 5.5 5.6 5.4 5.2
RS G 1000 GeV 5.9 5.6 5.6 5.5
RS G 1200 GeV 6.1 6.0 5.9 5.8
RS G 1400 GeV 6.4 6.4 6.3 6.1
RS G 1600 GeV 7.1 7.0 6.9 6.5
RS G 1800 GeV 7.7 7.5 6.9 6.8
RS G 2000 GeV 8.1 7.7 7.1 7.2

Table 6.8: Overall experimental systematic uncertainties on the acceptance of RS
Graviton signal with different masses.

6.4.1 ZZ Background

The MC used for ZZ background including qqZZ and ggZZ processes are listed in

Section 5.2.2.3. Higher order corrections NNLO QCD (as in Section 5.4.1) is applied

for qqZZ as a function of mzz and a flat NLO/LO k-factor 1.7 ± 1.0 applied to the

ggZZ continuum. With all event selections shown in Table 6.3 applied, the final ZZ

contributions to the signal region are:

process ee µµ
qq̄ → ZZ 161.2 ± 2.6 ± 18.6 163.8 ± 2.5 ± 18.9
gg → ZZ 16.0 ± 0.4 ± 9.4 15.9 ± 0.4 ± 9.4

Table 6.9: qqZZ and ggZZ yields in signal region for both ee and µµ channel. In
each box, the first number is central value of yields, the second number is statistical
uncertainty and the third one is systematic uncertainty.

For the qqZZ process, the experimental systematic uncertainty sources are from

the items listed in 5.3.2.4 and most significant contribution is luminosity 3.2%, as

indicated in Table 6.10. The theory uncertainties due to choices of PDF and QCD

scales are considered, using same method as in Section 5.4.7.1. The size of the PDF

and QCD scale uncertainties are about 3.0% and 10.0%, respectively. The effect of

parton shower choices are found to be less than 0.1% and thus been ignored. For

ggZZ, the uncertainty is mainly from 60% uncertainty on the flat k-factor.
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Experimental Systematic Uncertainty
ee channel µµ channel

up (%) down (%) up (%) down (%)
Luminosity 3.2 3.2 3.2 3.2

pile-up 0.03 0.0 0.6 1.48
Electron 2.2 2.1 0.0 0.0

Muon 0.0 0.0 1.98 1.94
Jet 1.7 2.06 1.98 1.62
Emiss

T 0.43 0.03 0.07 0.00
Total 4.3 4.3 4.3 4.3

Table 6.10: Experimental systematic uncertainties on the qq̄ → ZZ background
process.

6.4.2 WZ Background

Same as strategy used in dark matter search, a 3lCR is applied involving data-

driven method. The scale factor 1.29 ± 0.03 ± 0.07, as described in Section 5.4.2.1,

is applied to MC in 3lCR. Table 6.11 shows WZ background yields in final SR using

MC only and data-driven methods. Numbers from data-driven one are used in the

final fit.

Channel MC only Data-driven

ee 71.5 ± 1.7 ± 4.5 92.8 ± 2.2 ± 4.3

µµ 75.6 ± 1.8 ± 4.4 99.5 ± 2.3 ± 3.2

Table 6.11: WZ yields in signal region for both ee and µµ channel. First column
shows estimates based on MC only, numbers in second column are applied with scale
factor 1.29± 0.03± 0.07.

The experimental systematic uncertainties on WZ process are reflected by the

experimental uncertainties of scale factor about 5.5%, which is elaborated in Sec-

tion 5.4.2.1. The theoretical uncertainties are from PDF and QCD scales and have

an impact less than 0.5% on mZZ
T shape.

6.4.3 Top, WW , Wt and Z → ττ Background

tt̄, WW , Wt and Z → ττ production all have a minor impact on the total

background of `+`−+Emiss
T analyses. Physics processes with one or more top quarks

in the final state are suppressed by applying a b-jet veto. WW contribution is mainly

removed by requiring first that the two leptons have an invariant mass compatible

with that of a Z boson (the “m``” selection), and then by applying a high Emiss
T cut.
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Z → ττ is suppressed because the two leptons usually have a lower invariant mass

with respect to the Z mass (due to the presence of neutrinos in the taus decay which

take part of the energy). Finally the Wt contribution is suppressed by the low cross

section.

The contribution of tt̄, WW , Wt and Z → ττ backgrounds is estimated from

data-driven method using eµ control region, same as the strategy in Section 5.4.3.1.

The eµ control region definition is a bit different from the one defined in dark matter

search, and is shown in the Table 6.12 below:

eµ Control Region Definition

Two Opposite flavor Opposite sign leptons (e±µ∓)

Veto any additional lepton with Loose ID and pT >7 GeV

76 < Meµ < 106 GeV

Emiss
T > 120 GeV

∆Reµ < 1.8

∆φ(Z,Emiss
T ) > 2.7

Fractional pT difference< 0.2

∆φ(jet(pT > 100GeV), Emiss
T ) > 0.4

Emiss
T /HT > 0.4

b-jet Veto

Table 6.12: Event selection applied to define the eµ Control Region. The control
region reflects the SR definition except that the opposite flavor requirement of the
two selected leptons.

By applying the efficiency factor reported in Table 5.25 to the events defined in

eµ CR defined above (Table 6.12), the final eµ background contribution is:

6.4.4 Z+jets background

Z+jets background is largely reduced by the Emiss
T > 120 GeV requirement but has

a larger systematic uncertainty. To accurately estimate this background, we use the
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Channel MC only Data-driven

ee 9.9 ± 1.6 ± 2.4 9.2 ± 2.2 ± 1.4

µµ 14.0 ± 2.4 ± 2.7 10.7 ± 2.5 ± 0.9

Table 6.13: eµ background yields in signal region for both ee and µµ channel. First
column shows estimates based on MC only, numbers in second column are estimated
using data-driven method. Both statistical and systematic uncertainties are included.

same boolean “ABCD” method as described in Section 5.4.4.1. However, different

from the boolean variables defined in Equations 5.10 and 5.11, two new boolean

variables are defined below:

var1 = Emiss
T > 120 GeV and Emiss

T /HT > 0.4 (6.2)

var2 = |Emiss,jets
T − p``T |/p``T < 0.2 and ∆φ(Z,Emiss

T ) > 2.7 and ∆R`` < 1.8

and ∆Φ(jet(pT > 100GeV), Emiss
T ) > 0.4 and Nb−jets = 0

(6.3)

to match the signal region selections.

To further reduce the correlation between two variables, two additional cuts were

added to all side-band regions: Emiss
T > 30 GeV and Emiss

T /HT > 0.1, which were

optimized to remove the highly-correlated Z+jets bulk. The sizes of experimental

uncertainties are also considered for optimization.

The resulting ratios for MC, as well as for data, are shown in Tables 6.14. Data-

driven estimates are presented in Table 6.15.

NA/NC [MC] NB/ND [MC] NB/ND [Data]

ee channel 0.005± 0.002 0.007± 0.0001 0.0086± 0.00006

µµ channel 0.008± 0.002 0.0066± 0.0001 0.0076± 0.00005

Table 6.14: Ratios NA/NC , NB/ND for the ee- and µµ-channel. Only the statistical
errors are shown. Statistical errors due to the MC subtraction are also considered
for NB/ND (Data). WZ background yields for subtraction from data were rescaled
using a scale factor of 1.29 obtained using data-driven estimate. For ZZ background,
NNLO QCD & NLO EW corrections were applied. Sherpa 2.2.1 samples are used for
the Z+jets background.

To determine the systematic uncertainties of the method, the difference between

NA/NC (MC) and NB/ND (MC), which represents the bias induced by correlation
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Channel MC only Data-driven

ee 8.9 ± 3.2 ± 8.1 16.6 ± 0.6 ± 11.4

µµ 18.6 ± 5.6 ± 7.5 19.3 ± 0.6 ± 17.2

Table 6.15: Summary of the Z+jets background estimation using the boolean
“ABCD” method with statistical and systematic uncertainties. Systematic uncer-
tainties come from the level of correlation in MC, estimated by difference between
NA/NC [MC] and NB/ND [MC], experimental uncertainties on this difference and
subtraction of Non-Z+jets backgrounds.

in MC (non-closure), was taken into account. The impact of the experimental un-

certainties on this difference was also investigated. Experimental uncertainties on

subtraction of non-Z+jets background were also included. The contribution of each

source to the total systematic uncertainties is summarized in Table 6.16.

ee-channel µµ-channel

Methodology +30.8%
−66.2%

+84.2%
−42.8%

Non- Z+jets sub. 26.3% 21.3%

Total systematic unc. +40.5%
−67.5%

+86.9%
−47.8%

Table 6.16: Systematic uncertainties sources combine methodology uncertainty and
uncertainty on subtraction of Non-Z+jets backgrounds from MC. Methodology un-
certainty consists of correlation-induced bias 1 − NC∗NB

ND∗NA including experimental un-
certainties (dominated by JetGroupedNP 1&3 5.3.2.4) and uncertainty associated
with selection of optimal additional Emiss

T and Emiss
T /HT cuts, estimated by varying

them by 40% from their nominal values; both of these sources having roughly equal
contribution.

6.4.5 W+jets background

The details of “fake factor” method to estimate W+jets minor background has

been described in Section 5.4.5.1. The final contribution after applying all the event

selection within this analysis are shown in Table 6.17 below:
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Data-driven yields
ee 0.38± 0.1± 0.04
µµ 1.27± 1.53± 0.75

Table 6.17: W+jets estimation in the electron and muon channel as obtained from
the “fake factor” data-driven technique. The systematic uncertainties are calculated
as the differences in the W+jets and Z+jets MC-based fake-factors, as well as uncer-
tainty associated with subtraction of non-W+jets backgrounds from MC.

6.4.6 Other Background

Other backgrounds including tt̄V/V V V make minor contribution to the contami-

nation. Such small backgrounds are estimated based on MC-only prediction for both

yields and shapes. The yields in final SRs are 1.12 ± 0.04 ± 0.09 for ee channel and

1.03± 0.04± 0.08 for µµ channel.

6.5 Results

6.5.1 Data Comparison with Predicted Background and Signal

Table 6.18 shows the observed data yields, the estimated background contribu-

tions, and the expectation for the signal processes after the final selection. The mZZ
T

distributions after applying full event selections and with signals overlaid are show in

Figure 6.10.

6.5.2 Limits

As shown in Figure 6.10, data is observed to agree with the SM background. No

obvious new resonance in high mass scale is observed. Expected and observed 95%

CL upper limits are set on σ×BR(H → ZZ∗) for a heavy, narrow-width Higgs for ee,

µµ and combined channels in Figure 6.11

The expected and observed cross section upper limits at 95% CL for each con-

sidered mass point are also listed in Table 6.19 for ee, µµ and combined channels

separately.

In addition to the upper limits on production cross-section of additional heavy

Higgs bosons, an interpretation of analysis result in terms of upper limits on produc-

tion cross-section of Randall-Sundrum Gravitons is also performed. The limit setting

procedure is very similar to the above description for heavy Higgs boson search except
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ee µµ

Data 324 357

H(mH = 300 GeV, MC) 46.6±1.27±2.92 51.9 ±1.4±5.36
H(mH = 600 GeV, MC) 74.22±0.71±3.74 70.74 ±0.68±4.03
H(mH = 1 TeV, MC) 6.43±0.06±0.37 5.62 ±0.05±0.32
Graviton(m = 600 GeV, MC) 155.3±2.66±8.11 150.4±2.6±7.32

qqZZ (MC) 161.2 ± 2.6 ± 18.6 163.8 ± 2.5 ± 18.9
ggZZ (MC) 16.0 ± 0.4 ± 9.4 15.9 ± 0.4 ± 9.4
WZ (Data-Driven) 92.8 ± 2.2 ± 4.3 99.5 ± 2.3 ± 3.2
Z+jets (Data-Driven) 16.6 ± 0.6 ± 11.4 19.3 ± 0.6 ± 17.2
Zττ/top/WW/Wt (Data-Driven) 9.2 ± 2.2 ± 1.4 10.7 ± 2.5 ± 0.9
W+jets (Data-Driven) 0.4 ± 0.1 ± 0.04 1.3 ± 1.5 ± 0.8
Others (MC) 1.12 ± 0.04 ± 0.09 1.03 ± 0.04 ± 0.08
Total Bkg. 297.2 ± 4.1 ± 24.2 311.5 ± 4.6 ± 27.4

Table 6.18: The observed data and expected yields (scaled to 36.1 fb−1) in ee and µµ
signal regions after full event selections. Estimates include statistical and systematic
errors given where available in both MC and data-driven estimations. The total
background prediction is given in the last row. The statistical and systematic errors
on the total background prediction are summed quadratically from each individual
process. The “Others” category is composed of ttV and V V V backgrounds.
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Figure 6.10: The mZZ
T distribution after final selections in the (a) ee channel, (b) µµ

channel, and (c) ee+µµ combined channel. The yield of WZ, Top/WW/Z → ττ and
Z → ee/Z → µµ backgrounds are estimated using data-driven method and the mZZ

T

shapes for these backgrounds are derived from MC samples. Signals are scaled to the
SM cross section values time branching fraction of H → ZZ∗ and ZZ → ``νν. The
ZZ backgrounds are fully estimated from theoretical predictions and higher order
corrections are applied. Both statistical and systematic uncertainties are included in
the uncertainties bands, and they are summed quadratically.
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Figure 6.11: 95% C.L. limits on σ×BR(H → ZZ∗) for a narrow width heavy Higgs
boson produced a function of its pole mass. The limits are derived using events in
ee (top left), µµ (top right) and combined channels (bottom). The observed and ex-
pected limits are derived with considering the full uncertainties discussed in previous
sections. The limits are derived for mass points between 300 GeV and 1 TeV with a
100 GeV interval. Two additional mass points are added, 1.2 TeV and 1.4 TeV. And
limit lines between each mass points are interpolated using an exponential function.
Both the statistical and systematic uncertainties are considered in the limit setting.
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Limits on production cross section of heavy Higgs signals
Mass Point [GeV] Expected Limits [fb] Exp+2σ, Exp+1σ Exp-1σ, Exp-2σ Observed Limits

ee channel

300.0 GeV 1159.26 2259.26 , 1637.31 835.31 , 622.20 1968.06
400.0 GeV 248.45 486.63 , 352.86 179.02 , 133.35 258.23
500.0 GeV 129.72 257.88 , 184.90 93.47 , 69.62 204.01
600.0 GeV 81.90 166.66 , 117.68 59.01 , 43.96 64.96
700.0 GeV 59.99 125.00 , 86.96 43.23 , 32.20 38.06
800.0 GeV 47.50 100.23 , 69.25 34.23 , 25.50 26.77
900.0 GeV 36.73 79.29 , 54.00 26.46 , 19.71 23.82
1000.0 GeV 37.34 79.57 , 54.69 26.90 , 20.04 25.04
1200.0 GeV 26.84 59.41 , 39.87 19.34 , 14.41 20.59
1400.0 GeV 23.09 51.64 , 34.42 16.64 , 12.39 18.66

Mass Point [GeV] Expected Limits [fb] Exp+2σ, Exp+1σ Exp-1σ, Exp-2σ Observed Limits

µµ channel

300.0 GeV 1160.43 2298.49 , 1644.86 836.15 , 622.83 1411.22
400.0 GeV 274.35 547.03 , 389.23 197.69 , 147.25 254.58
500.0 GeV 140.74 278.04 , 200.01 101.41 , 75.54 172.62
600.0 GeV 95.17 191.19 , 136.08 68.57 , 51.08 109.28
700.0 GeV 69.63 142.29 , 100.20 50.17 , 37.37 96.85
800.0 GeV 54.10 112.89 , 78.47 38.98 , 29.04 64.14
900.0 GeV 43.32 93.09 , 63.56 31.22 , 23.25 52.80
1000.0 GeV 41.49 88.53 , 60.80 29.90 , 22.27 58.10
1200.0 GeV 33.74 74.62 , 50.03 24.31 , 18.11 48.86
1400.0 GeV 31.15 69.82 , 46.46 22.44 , 16.72 44.79

Mass Point [GeV] Expected Limits [fb] Exp+2σ, Exp+1σ Exp-1σ, Exp-2σ Observed Limits

combined channel

300.0 GeV 863.56 1679.65 , 1218.76 622.25 , 463.50 1320.04
400.0 GeV 191.93 371.53 , 270.52 138.29 , 103.01 168.34
500.0 GeV 96.01 187.45 , 135.89 69.18 , 51.53 142.67
600.0 GeV 60.62 120.53 , 86.39 43.68 , 32.54 53.60
700.0 GeV 43.65 88.28 , 62.60 31.45 , 23.43 38.49
800.0 GeV 34.04 69.60 , 49.01 24.53 , 18.27 23.79
900.0 GeV 26.17 54.75 , 38.01 18.86 , 14.05 21.01
1000.0 GeV 26.12 53.99 , 37.77 18.82 , 14.02 24.27
1200.0 GeV 19.33 41.24 , 28.32 13.93 , 10.38 20.26
1400.0 GeV 16.99 37.67 , 24.98 12.24 , 9.12 18.28

Table 6.19: The observed and expected 95% CL upper limits on production cross-
section of additional narrow-width heavy Higgs bosons times the branching fraction of
Higgs to ZZ decay σ×BR(H → ZZ∗), Limits are derived using ee, µµ and combined
(ee + µµ) channels, as indicated in the table. Both the statistical and systematic
uncertainties are considered in the limit setting.
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that signal samples are Graviton samples with mass points between 600 GeV and 2

TeV.

Figure 6.12 gives the predicted and observed limits of the RS Graviton samples.

Currently, it is possible to exclude the graviton mass up to around 1.3TeV. The

expected and observed limits are also shown in Table 6.20 (both statistical and sys-

tematic uncertainties).

6.5.3 Short Summary

The number of observed events is found to be consistent with the SM prediction

and both observed and expected upper limits are set on the production cross section

of heavy Higgs boson in the mass range from 300 GeV to 1.4 TeV. The limits are

derived at 95% CL using a fit to the transverse mass distribution of the di-lepton

and Emiss
T system. Interpretation is also performed in terms of a spin-2 graviton from

Randall-Sundrum model in the mass range from 600 GeV to 2 TeV.
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Figure 6.12: 95% C.L. limits on σ×BR(G∗ → ZZ) for a Randall-Sundrum Graviton
as a function of its pole mass. The limits are derived using events in ee (top left),
µµ (top right) and combined channels (bottom). The observed and expected limits
are derived with considering the full uncertainties discussed in previous sections. The
limits are derived for mass points between 600 GeV and 2 TeV. Limit lines between
each mass points are interpolated using an exponential function.
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Limits on Randall-Sundrum Graviton
Mass Point [GeV] Expected Limits [fb] Exp+2σ, Exp+1σ Exp-1σ, Exp-2σ Observed Limits

ee channel

600.0 76.65 155.70 , 110.11 55.23 , 41.14 52.00
700.0 52.51 108.75 , 75.97 37.84 , 28.18 30.15
800.0 40.40 85.12 , 58.89 29.11 , 21.69 22.89
900.0 29.26 63.42 , 43.09 21.08 , 15.70 19.54
1000.0 30.57 65.72 , 44.90 22.03 , 16.41 22.08
1200.0 21.11 47.18 , 31.46 15.21 , 11.33 17.37
1400.0 18.69 41.94 , 27.89 13.47 , 10.03 15.85
1600.0 19.92 44.83 , 29.75 14.35 , 10.69 17.08
1800.0 22.65 51.09 , 33.86 16.32 , 12.15 19.49
2000.0 29.71 67.64 , 44.45 21.41 , 15.95 25.61

Mass Point [GeV] Expected Limits [fb] Exp+2σ, Exp+1σ Exp-1σ, Exp-2σ Observed Limits

µµ channel

600.0 83.30 167.30 , 119.12 60.03 , 44.71 101.07
700.0 58.96 121.22 , 85.04 42.48 , 31.64 82.30
800.0 45.89 96.20 , 66.70 33.07 , 24.63 55.39
900.0 35.94 77.33 , 52.77 25.89 , 19.29 45.02
1000.0 33.63 72.49 , 49.44 24.23 , 18.05 46.56
1200.0 27.03 60.39 , 40.25 19.47 , 14.51 38.46
1400.0 25.59 57.65 , 38.22 18.44 , 13.73 36.19
1600.0 28.35 64.00 , 42.39 20.43 , 15.21 39.96
1800.0 28.53 64.45 , 42.68 20.56 , 15.31 40.21
2000.0 29.60 67.43 , 44.30 21.33 , 15.89 41.63

Mass Point [GeV] Expected Limits [fb] Exp+2σ, Exp+1σ Exp-1σ, Exp-2σ Observed Limits

combined channel

600.0 55.18 109.31 , 78.52 39.76 , 29.62 46.46
700.0 37.55 75.77 , 53.82 27.06 , 20.16 30.56
800.0 28.84 58.92 , 41.52 20.78 , 15.48 20.49
900.0 21.15 44.33 , 30.76 15.24 , 11.35 17.67
1000.0 21.14 44.04 , 30.64 15.23 , 11.35 20.97
1200.0 15.21 32.72 , 22.36 10.96 , 8.16 16.64
1400.0 13.79 29.79 , 20.31 9.94 , 7.40 15.26
1600.0 14.91 32.24 , 21.95 10.74 , 8.00 16.51
1800.0 16.16 34.97 , 23.80 11.65 , 8.67 18.20
2000.0 19.03 41.17 , 28.02 13.71 , 10.21 22.02

Table 6.20: The observed and expected 95% CL upper limits on the production cross-
section of a Randall-Sundrum Graviton times the branching fraction of Graviton to
ZZ decay σ×BR(G∗ → ZZ), shown for mass points between 600GeV and 2TeV.
Limits are derived using ee, µµ and combined (ee+µµ) channels, as indicated in the
table. Both the statistical and systematic uncertainties are considered in the limit
setting.
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CHAPTER VII

Summary

This thesis presents the searches for dark matter particles from the associated

production of Zh, Z → ll, h → invisible with mh = 125 GeV and new resonances

with beyond the SM Higgs boson productions in H → ZZ∗ → `+`−νν̄ channel at

high mass scale. Both analyses have the same experimental final state: di-lepton plus

large Emiss
T . The data used in these analyses are created in proton-proton collisions

at the center-of-mass energy of 13 TeV and are collected by the ATLAS experiment,

with a total integrated luminosity of 36.1 fb−1 during 2015 and 2016. Results of

these searches are summarized below:

1) Search for dark matter particles

For the dark matter search, Emiss
T is used as the discriminant to observe signature

of the dark matter. Data is observed to be consistent with the SM predictions. An

observed (expected) upper limit of 67% (39%) is set on BR(h→ inv.) at the 95% CL

for mh = 125 GeV. The observed limit is higher than the expected one due to some

accesses of current observed data in µµ channel, correpsonding to a significance of

1.9σ. Upper limits at 95% CL are also set on production cross sections of invisible

Higgs decay with mh between 110 GeV and 400 GeV.

2) Search for new resonances

For new heavy resonance searches, transverse mass of the di-lepton and Emiss
T system

is used as the discriminant to separate signals and backgrounds. Data is found to

be consistent with the SM predicted backgrounds, no new physics is observed. Both

observed and expected upper limits at 95% CL for production cross-sections of an

additional heavy Higgs boson with a narrow width are derived within the mass range

from 300 GeV to 1.4 TeV. In addition, cross-section limits are set on the production of

graviton candidates predicted by the Randall-Sundrum model within the mass range

from 600 GeV to 2 TeV.
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By the end of LHC Run II, at the end of 2018, approximately 140 fb−1 data

from proton-proton collisions will be collected by the ATLAS detector. Comparing

to the data used in these analyses (36.1 fb−1), a factor of 3.9 increase in data sample

will improve the sensitivity of dark matter search by about a factor of 2, which will

improve the expected limit from 39% (current result) to 20% (at the end of Run II).

The sensitivity of search for the new heavy resonances will be significantly improved.

For example, the limit of graviton mass will be extended from 1.3 TeV to 1.6 TeV.

Ultimately, the LHC will deliver 3000 fb−1 data, which will provide great potential

to discover new physics.
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