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ABSTRACT

Data and cyber security, whether defined from the point of view of corporations, individ-
uals, or Internet hosts/networks, have been studied from a variety of perspectives, ranging
from theoretical models, to measurement studies, and data-driven approaches that combine
statistical analysis and learning techniques with real-world measurements, to assess secu-
rity, find flaws in current systems, and regulate more secure designs. In this dissertation,
we explore the applicability of machine learning, and statistical modeling, in building al-
gorithms that are able to make generalized statements regarding the security of real-world
entities: (1) We assess the security of organizations, quantified as the likelihood of sustain-
ing data incidents, by combining previous breach disclosures, with geographic, industry,
size, and Internet traffic information, and evaluate techniques for estimating the distribu-
tion of risk among various incident categorizations, in order to guide resource allocation,
and improve security policies; (2) we leverage field measurements of patch deployment
on user machines, to quantify updating behaviors (resulting in a simple, single-parameter
model), inspect the dynamics between software vendors and consumers, and its impact on
the security posture of user machines; and (3) we develop a framework for scalable analy-
sis of Internet-facing hosts, by distilling an abundance of knowledge obtained from global
scans of the public Internet, into compact numerical fingerprints, and examine their utility
for detecting (potentially) malicious hosts, inferring unobserved attributes of web servers,
quantifying similarities, and characterizing networks of hosts.

Our presented techniques can be utilized by system administrators, analysts, or indi-
viduals, to make informed decisions by self-monitoring, or assessing other parties. We
select/develop our tools in accordance with the requirements of the examined supervised
and unsupervised tasks, and attempt to address deficiencies in the utilized data sets, to
advance the efficacy of our proposed algorithms for real-world applications. In order to
develop interpretable designs that can produce actionable forecasts and recommendations,
we provide case studies, perform statistical tests, and inspect trained models, to further
support our claims, and draw high-level conclusions based on our findings. We develop
and evaluate our frameworks on (often public) data sets that are available to us, though

ix



they can also be applied on top of other similar databases. While most of the focus of this
research is on cyber and data security, we also explore applications of data-driven analysis
for monitoring of Internet hosts and networks for non-security related objectives.

Thesis statement Fine-grained attributes of organizations, end-users, and hosts/networks
across many aspects, can produce macroscopic perspectives for evaluating host-level and
organizational risks, understanding user behaviors, and to draw high-level insights that can
provide guidelines for the enhancement of security and policies.
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CHAPTER 1

Introduction

1.1 Motivation and background

There have been numerous high-profile data breaches and large-scale cyber attacks in the
past few years, including Equifax (made public in 09/2017) affecting 143 million con-
sumers [78], Anthem (made public in 02/2015) affecting 80 million medical records [77],
Target (made public in 12/2013) affecting 40 million payment card accounts [79], as well
as the WannaCry [49] and NotPetya [48] outbreaks. Security incidents can cause service
disruptions, exert significant damage to a business’s assets and reputation, and compro-
mise users’ sensitive data (e.g. identity information, health records, credit card num-
bers, and so forth). Data incidents, and the risk they pose to end-users’ privacy, under-
line the need for, and have motivated a wide variety of research studies. These include,
e.g., understanding trends and risk forecasting (e.g. predicting data breaches, critical soft-
ware vulnerabilities, and exploits) [6, 19, 37, 86, 103, 134, 141, 145], the financial impact
of data incidents [2, 22, 24, 55, 64, 68], inspecting data breach litigation and disclosure
laws [120, 121], economics of cyber crime and the underground market [10, 44], models
for software vulnerabilities and their security implications [5, 9, 12, 14, 23, 137], empirical
analysis of software vulnerabilities and their disclosure [13, 27, 45, 83, 108, 116, 129, 153],
studies on exploits and zero-day attacks [18, 56, 76, 102], the patching process and hu-
man factors in security [26, 30, 50, 88, 99, 107, 142], intrusion detection and preven-
tion [118, 122], uncovering malicious behavior (e.g. systems for detecting phishing and
drive-by-download attacks) [1, 3, 85, 91, 100, 132, 152], examination of past large-scale in-
cidents and adoption of secure technologies [11, 33, 34, 93, 115, 149, 151], studies on the
emerging cyber-insurance market [69, 70, 87, 97, 109, 119, 150], security interdependence
and investments [41, 42, 81, 82], and privacy-preservation of big data systems [36, 101].

Additionally, security research can also be categorized into purely theoretical work,
measurement studies, and those that employ statistical analysis and machine learning, to
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inspect systems and entities through real-world measurements. A prominent example of
theoretical work for security includes studies on the dynamics between strategic agents,
through game theoretical models. On the other hand, various projects have been dedicated
to collecting data on the status and activities of real-world entities, facilitating research
that focus on quantitative and predictive analysis, e.g. databases containing detailed re-
ports of publicly disclosed data breaches [110, 113, 140, 143], software vulnerabilities and
exploits [40, 105, 136], field measurements on end-user machines [31], and measurements
conducted on the public Internet [8, 32]. Data-driven studies examine real-world observa-
tions in order to collect statistics and make heuristic deductions based on their findings.
Moreover, another class of security research combine statistical models, with real-world
measurements, in order to build detection algorithms and predictive models for the better-
ment of security. By fitting standard machine learning models to historical data, researchers
can make generalized statements about previously unobserved phenomena, and forecast fu-
ture events and trends.

Alternatively, the subject of analysis provides another aspect by which one can group
security related work. These include microscopic studies on software products, the vulnera-
bilities and exploits that affect them, and software patching mechanisms, as well as research
regarding Internet hosts/servers, and the security implications of individual (e.g. end-user)
behavior. On the other hand, macroscopic studies focus on organizations/networks, of-
ten regarded as collections of individuals or hosts, in order to examine security using
a more broad view point. Note, however, that these boundaries can be ambiguous, and
should not be regarded as a means to decouple the presented categories as, e.g., analysis
of hosts/servers can also be indicative of the behavior of individuals (i.e. administrators)
that control them, and measurements on lower-level entities (i.e. hosts and individuals) are
aggregated to describe and analyze organizations/networks.

1.2 Where we stand

Table 1.1 includes a tentative categorization of security related references of the current the-
sis, based on the aforementioned factors. Note that for most theoretical work, we have not
distinguished between the subject of cited studies, as proposed models can often be applied
to various types of entities. Motivated by recent advances in statistical learning and its ap-
plications in security and network monitoring, in the set of work presented here, we utilize
available (and often public) data sets, coupled with machine learning methods and statisti-
cal models, in order to develop tools that can characterize the underlying entities, such as
organization, individuals, or Internet hosts; these models can then be used for supervised
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Subject
Method Measurements & Statistical models

Theoretical studies
data-driven analysis & machine learning

Organizations
& networks [64, 119, 145] [2, 22, 24, 37, 42, 55, 68, 86, 118,

120,121,141], Chapters 2, 4.5.3

[36, 41, 69, 70, 81, 82, 87,
97, 109, 150]

Individuals &
end-users [88, 99, 101, 142] [50, 141], Chapter 3

Internet
hosts/servers

[11, 33, 34, 56, 93, 100,
115, 149, 151]

[1, 3, 85, 91, 132, 134, 137, 152,
153], Chapter 4

Software,
vulnerabilities,

& exploits

[12, 18, 26, 27, 30, 45, 76,
99, 102]

[5, 6, 9, 13, 19, 50, 83, 103, 107,
108, 116, 122, 129], Chapter 3 [14, 23]

Table 1.1: Categorization of security research, and the presented studies in this dissertation.

learning tasks, including risk assessment, and inference of unobserved attributes, as well
as to draw high-level conclusions that can guide the betterment of security, e.g. to monitor
one’s assets, and prioritize resource allocation. Hence, our main contributions (highlighted
in blue) belong in the third column in Table 1.1. Based on the complexity of the task at
hand, and the volume of our data sets, we employ a variety of tools and techniques, ranging
from simple statistical tests, to training and evaluation of deep neural networks incorpo-
rating millions of parameters. The resulting models can then offer efficient and automated
monitoring solutions that can be leveraged by security analysts, network administrators, or
even individuals with limited security background, in order to make more informed deci-
sions regarding their security, or assess the posture of other parties.

More specifically, in Chapter 2 we combine publicly available information about busi-
nesses, with labels obtained by manually inspecting previously reported data breaches, to
train and evaluate a set of classifiers for risk assessment, i.e. forecasting the risk of experi-
encing a data breach. In this context, the use of granular attributes of businesses (such as
industry, size, and web traffic information), distinguishes our work from existing literature
by providing more accurate risk forecasts, as well as the breakdown of risk in multiple cat-
egorizations (e.g. type of the data breach, and the actor and assets involved in the incident)
for producing actionable security recommendations.

In Chapter 3, we utilize field measurements of patch deployment, in order to mea-
sure and model end-user behavior in applying software patches, examine the dynamics
between users and software vendors, and study its implications on the security posture of
user machines. In contrast to most existing work in this domain, we aim to study software
vulnerabilities from the perspective of individual users, rather than individual vulnerabili-
ties, in order to examine the security posture of end-hosts over long observational periods
spanning many public disclosures of software susceptibilities..
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In Chapter 4, we develop a framework for obtaining numerical representations, or fin-
gerprints, of Internet hosts, based on information gathered from global scans of the public
Internet, and use the proposed framework for quantifying hosts similarities, detecting mali-
cious IP addresses, inferring masked attributes of web servers, and characterizing networks
(collections) of hosts. Common techniques for characterizing web servers (e.g. for phish-
ing detection [1, 3, 134, 152]), or networks of IP addresses (e.g. for risk forecasting [86])
rely on features that are extracted heuristically, though well-informed by domain expertise.
Furthermore, existing approaches to host fingerprinting, e.g. for detecting the installed
operating system [130, 131, 146], rely only on a single or few select probes due to their
intrusive nature. Our proposed techniques in this area can be applied on top of existing
probes across many ports/protocols for semi-automated feature extraction, in order to build
comprehensive representations of Internet hosts, that can be shared and applied to any of
the aforementioned applications using state-of-the-art machine learning techniques.

A major distinction between common machine learning research, and its utility for se-
curity analysis, is the need for actionable and interpretable predictions. For instance, in
tasks such as handwriting or image recognition, the objective is solely for the learning al-
gorithm to be able to correctly mimic what a human can naturally achieve. However, in the
context of security, simply building black-box models is not sufficient, as one cannot read-
ily infer why a model is making a certain prediction, and how it can interpreted to create
actionable recommendations for the subject of the analysis. Furthermore, a thorough un-
derstanding of the underlying data can prevent using a skewed/biased data set that inhibits
the resulting model from generalizing to real-world examples. To this end, for each of the
presented studies, we use a combination of case studies, statistical tests, and inspection of
trained models, in order to reinforce our claims, and provide further insight into the utility
of our techniques for real-world applications.

Moreover, the proposed tools in this dissertation are decoupled from the data sets they
are evaluated on. As long as one has access to databases containing similar measurements
to the ones employed in our studies, i.e. exhibiting the same level of fidelity, our tech-
niques can be applied to obtain similar results. More importantly, the continuous attempts
by malicious entities to discover and exploit security vulnerabilities, and the ensuing ef-
forts of their targets in order to thwart said attempts, have evolved into a cat and mouse
game between attackers and defenders. This property, along with the continuous advent
of new technologies and software, have created ever-changing ecosystems, underlining the
need for techniques that can keep up with shifts in the underlying data sets, e.g. promi-
nent attack vectors, individual behavior, and configuration of Internet-facing machines. By
keeping data sets up-to-date, the presented techniques can detect new and altered patterns,
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and utilize them to continue producing relevant predictions. Therefore, a key takeaway
from this dissertation, is the importance of transparency and data sharing in the field of
security. The availability of data sets containing measurements and events (i.e. labels) for
various levels of entities, enables the development of objective and unbiased models that
can produce valuable deductions, benefiting all benevolent parties.

1.3 Main contributions

In this section, we will provide a brief summary of the various studies presented in this
thesis, followed by an overview of our key contributions, and non-goals.

1.3.1 Fine-grained data breach prediction

Security incidents regarding loss or stolen data, as well as incidents leading to service inter-
ruptions, can cause considerable financial damage to victim organizations, and tarnish their
reputation. Security incidents have been extensively studied from a variety of perspectives,
aiming to prevent, or alleviate the detrimental effects of data breaches, and study their im-
plications. Our contribution in this field of security research, is demonstrating how details
about a business can be correlated with their risk of experiencing a data breach. Note that a
number of projects have been dedicated to collecting and indexing publicly disclosed data
breaches along with details such as cause of the incident and its monetary impact, as well
as available information about the victim and the actor(s) responsible [110, 113, 140, 143],
allowing us to procure labels for training supervised estimators of cyber-risk. Therefore,
in Chapter 2 we aim to understand if, and to what extent, business details about an organi-
zation can help to assess a company’s risk in experiencing a data breach incident, as well
its distribution of risk over multiple incident types, in order to provide guidelines to effec-
tively protect, detect, and recover from different forms of security incidents. In our previous
work [86], we have examined the use of attributes defined over an organization’s network,
such as number of blacklisted IPs, or misconfigured servers, aggregated over organiza-
tional boundaries, to assess cyber-risk. We extend this definition to include non-hacking
incidents such as internal error, insider misuse, and physical theft or loss, and leverage a
broad set of publicly available business details to provide a more comprehensive analysis
on incidents involving any form of data breach and data loss. We use reports collected in
the VERIS Community Database (VCDB) [143], as well as data from Alexa Web Informa-
tion Service (AWIS) [8], the Open Directory Project (ODP) [29], and Neustar Inc. [104], to
train and test a sequence of classifiers/predictors. For prediction, we use features obtained
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from AWIS, including traffic information and measurements collected on an organization’s
domain (traffic rank, website age, speed, number of pages linking to said domain, etc.),
the domain’s category (e.g. business, health, and so on) from ODP, and industry and size
information (employee count and network size) extracted from VCDB and Neustar.

For training estimators that can distinguish between low and high risk organizations,
we use random forests [128], a supervised classification technique. Assume i ∈ {1 . . .n} to
represent a set of observed samples (organizations), with xi denoting a numerical repre-
sentation of the underlying samples, i.e. numerical vectors containing the aforementioned
feature set. Further assume yi to provide labels for said samples, i.e. whether a given or-
ganization has encountered a data incident. Supervised models attempt to predict labels yi,
given the observations xi. In a Bayesian setting, trained models estimate the conditional
density p(y | x), and are evaluated over a held-out test set, in order to prevent over-fitting,
and to examine whether the model can generalize to previously unobserved samples. Ran-
dom forests are comprised of an ensemble of decision trees, where each individual estima-
tor is trained over samples drawn with replacement from the training set, and individual
nodes (splits) in each tree are chosen among a random subset of the features; by averaging
the probabilistic prediction of many trees, random forests reduce over-fitting, and produce
more accurate predictions.

Our results show that the proposed feature set can distinguish between victims of data
breaches, and non-victims, with a 90% true positive rate, and 11% false positive rate, mak-
ing it an effective tool for characterizing businesses, for the purpose evaluating their cyber-
risk. Note, however, that simply assessing the risk of a breach, fails to provide any action-
able recommendations on the weakest links that might lead to a data incident, and types
of assets that are at most risk. Therefore, in addition to overall risk, we also evaluate the
efficacy of public information in building risk profiles, i.e. distribution of risk over differ-
ent types of data breaches (i.e. hacking and targeted attacks, internal error, insider misuse,
and physical theft or loss), actors (internal, external, partners), and the assets involved in
the incident (media, servers, devices, etc.). We provide evidence that using a broad fea-
ture set can lead to sparse risk profiles, i.e. a small subset of incident categories with high
risk, or uniform profiles, when the organization’s risk is distributed evenly among all cat-
egories, depending on the organization being examined. For businesses with non-uniform
risk profiles and limited security budget, this method allows them to focus on a sparser
set of preventative measures, thus achieving the same level of protection by spending less
resources through more judicious prioritization.

Our evaluation of the presented techniques show how public information about a com-
pany can be used to characterize them and assess their cyber-risk. As opposed to studies
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that aim to understand and predict trends for the overall population [37,145], a fine-grained
analysis of individual entities enables companies to adjust their policies in accordance with
their own risk. Furthermore, risk profiles provide analysts with actionable information by
pointing out the weakest link in an entity’s security posture, allowing administrators to
tighten security by re-allocating resources for more effective self-protection, or enforcing
more strict security policies. Finally, the use of public information also allows third parties,
e.g. insurance underwriters, to obtain a more accurate assessment of an organization’s risk
in experiencing a data breach, thus resulting in more optimal cyber-insurance contracts,
and techniques for vendor risk management.

1.3.2 Modeling end-user patching behavior

In Chapter 3, we study the dynamics between vendors and end-users when it comes to soft-
ware vulnerabilities. Unpatched and susceptible software represent a valuable resource for
attackers, exploits for these vulnerabilities can allow miscreants to control the vulnerable
hosts remotely, e.g. to bootstrap a botnet or to launch distributed denial of service attacks,
or to steal sensitive information such as passwords, private keys, credit card numbers, med-
ical records, and so on. To counter these threats, software vendors create and disseminate
patches for security vulnerabilities, often increasing the automation of software updating
mechanisms in an attempt to accelerate the patching process and sidestep possible tardiness
on the part of the end-users. Nevertheless, constant discovery of software vulnerabilities,
vendors’ failure in deploying patches in time, and users’ delay in installing said patches,
create windows of opportunity for attackers to exploit unpatched vulnerabilities. Figure
1.1 displays the life-cycle of software vulnerabilities. Vendors’ failure in deploying a patch
before a vulnerability is publicly disclosed, imposes a windows of susceptibility on end-
hosts, which may be further extended by the amount of time it takes for a user to install the
patch on their respective machine.

To understand how end-users install software patches, and to examine the implication
of individual behavior on the end-host vulnerability state, we propose techniques for quan-
tifying the user updating behavior from field measurements of patch deployment provided
by the Worldwide Intelligence Network Environment (WINE) [31], from the perspective
of individual users, and examine the implications of this behavior on the vulnerability state
of the users’ machines. We utilize auxiliary data sets including the National Vulnerabil-
ity Database (NVD) [105] (to find publicly disclosed vulnerabilities of specific product
versions), databases of software flaws with known exploits [40, 136], as well as software
release notes from vendors or third parties, in order to find the exact release date of each
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Figure 1.1: The vulnerability life-cycle

product version in our study. We measure an end-host’s state (i.e. the set of installed ap-
plication on a machine) at any point during the observation period from WINE, and find
the exact time of installation for each software patch, which in turn results in recovering
the users’ delay in applying a patch from its release time by the vendor. Furthermore, we
develop schemes for dealing with inconsistencies, such as irregular (non-chronological) re-
lease dates, when a vendor is developing multiple product lines in parallel, and the resulting
challenges when a user installs multiple lines of the same product on their machine, allow-
ing us to minimize the error in our measurements. We conduct these measurements for four
client-side applications: Google Chrome, Mozilla Firefox and Thunderbird, and Adobe
Flash Player; the resulting data set consists of 11,017,973 events over 426,031 unique hosts
between 2010 and 2012.

Examining the obtained patch installation delays indicates that user behavior is fairly
simple-minded, and can be summarized using a single-parameter distribution, more specifi-
cally the geometric distribution; this implies that the users’ willingness to patch is memory-
less, i.e. it is independent of any past decisions, and is largely consistent across consumers
residing in different countries. Our findings result in a simple model for quantifying the
relationship between user behavior and end-host security, and examining the vendors’ role
in the overall security posture of user machines; the single-parameter distribution of user
behavior, suggests that we can rely on the average delay in applying software updates, for
sorting users, and examining the impact of their habits on the vulnerability state of their
respective machines.

Additionally, we quantify the security posture of end-hosts, by measuring the amount of
time they remain vulnerable to disclosed (or exploited) software flaws. Comparing across
different applications, we observe that silent updates do lead to shorter windows of vul-
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nerability for end-hosts; however, even with silent updates, the majority of hosts have long
windows of susceptibility, the large number of security flaws in popular client-side appli-
cations, coupled with the simple-minded behavior of end-users, limits the benefits of silent
updates. Our observations imply that the rate at which vendors unintentionally introduce
vulnerable code into their software, and not the speed at which they are removed, is mostly
driving the vulnerability state of machines that utilize these products, revealing a drawback
of a rapid release cycle.

Our main contribution in understanding software vulnerability cycles is studying them
from the perspective of individual users, rather than individual vulnerabilities. Observing
users over long periods spanning multiple vulnerability disclosures enables us to uncover
the simplicity of user behavior in applying software updates, and allows us to measure
the correlation between users’ promptness in applying patches, and the security posture
of their respective machines, i.e. the length of vulnerability windows. Additionally, we
observe the vendor’s role in making hosts susceptible to exploitation through (1) how often
vulnerable code is added to the software (affected by the product’s release cycle), and
(2) how long vulnerable code stays on an end-host (affected by patch delivery times, the
updating mechanism, and user behavior).

1.3.3 Numerical fingerprinting of Internet hosts

At any given moment, the IPv4 address space alone contains hundreds of millions of pub-
licly accessible devices, such as web servers, personal computers, webcams, routers, and
so forth. Furthermore, each individual device can be configured in a unique manner; these
configurations may include open ports, the type of software used on each port for con-
necting to clients and serving content, and technologies used for encrypting traffic. The
collection of configurations and traits associated with a device can be used to build a spe-
cific, and sometimes unique, fingerprint for an Internet host. Furthermore, with the advent
of network scanners such as Nmap and ZMap [35,106], researchers can now perform global
scans over the IPv4 address space to obtain hundreds of millions of such measurements, in
order to compose rich data sets for studying the Internet ecosystem across a diverse set of
traits. However, previous work mostly focus on specific attributes of IP addresses, for in-
stance studying the susceptibility of hosts to critical software vulnerabilities [34], studying
technology adoption rates [33], fingerprinting operating systems [130, 131, 146], or using
hand-crafted features to estimate cyber-risk [86].

In Chapter 4, we explore a more generalized approach to fingerprinting Internet hosts,
by generating machine learning compatible fingerprints that incorporate a wide range of
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available measurements on the public Internet. More specifically, we tap into Censys [32],
a large database of global scan measurements, as well as geolocation and routing infor-
mation, over the entire IPv4 address space. These measurements are contained within a
structured data format (JSON) for each IP address, and incorporate information gathered
from any discoverable host on the Internet through periodic scans. As an example, for a
host that responds to HTTP requests, headers and content of the HTTP GET response are
collected; for HTTPS scans, the parsed SSL certificate and encryption configurations are
also included. By combining attributes of an IP addresses over many ports/protocols, these
measurements can characterize and provide a wealth of knowledge on a specific host, and
can be utilized for various learning tasks. The comprehensiveness (breadth), granularity
(depth), and volume (number of probed hosts) of information that is available over the
public IPv4 address space, can result in models that can generalize using a diverse set of
features, and can compose a high level picture of an Internet host, by understanding the
underlying (and possibly abstract) factors that drive the observed attributes.

Note that documents in the Censys database correspond to a tree-like structure, i.e.
parsed responses from each port are included within distinct fields, which may themselves
encapsulate other fields, e.g. various headers from the HTTP response. Hence, extracting
information from these documents in a way that can be fed into machine learning algo-
rithms is a challenging task. In order to encode these structured records into numerical
vectors, we develop a customizable recursive algorithm that recognizes the shared schema
between all documents, and uses appropriate transformations for encoding each individual
field, producing high-dimensional, yet sparse, binary representations. Our proposed algo-
rithm results in feature vectors in the form of various tags that have been associated with an
IP address, incorporating both the embedded structure of a document, i.e. the set of avail-
able measurements (e.g. open ports), as well as the corresponding values for said fields.
Furthermore, our numerical representations also incorporate the context for the extracted
features, e.g. the keyword Microsoft can have different meanings when it is observed within
the description of an autonomous system (AS), or the HTTP server header; the ability to
distinguish between these two cases is a useful attribute of our proposed technique. We
then evaluate fingerprints comprised of roughly 10 000 features for a variety of supervised
learning tasks and case studies.

Although supervised learning has the advantage of using ground-truth labels to train
and evaluate the proposed models, issues arise when labels are scarce. Small training data
sets limit one to using simple models that can not take into account higher order interac-
tions between variables (features). However, with abundant unlabeled samples, one can
leverage unsupervised learning in order to directly model the data set under examination.
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Such techniques often attempt to learn the distribution of data points, i.e. finding the den-
sity p(x) given the vector of inputs x. By understanding how different features of an entity
interact with each other, and learning the data generating distribution, unsupervised mod-
els can achieve tasks like creating synthetic data (i.e. generative models), dimensionality
reduction, and dealing with missing data. From a topological point of view, vectors x
often lie on a low-dimensional manifold in a higher dimensional space; by learning this
manifold structure, unsupervised models may learn how to generate valid examples, or
complete partial observations by projecting onto the space of real data vectors. Unsuper-
vised algorithms can also be used as a pre-training stage to improve supervised techniques,
by learning well-behaved features that can explain the original data points. Examples of
unsupervised models include principal component analysis (PCA) [111], factor analysis
(FA) [66], and neural networks such as restricted Boltzmann machines [59, 133], varia-
tional autoencoders [73, 117], and generative adversarial networks (GAN) [52].

Therefore, we explore the utility of generative unsupervised models, in order to derive
a low-dimensional numerical representation, or embedding, of our high-dimensional fin-
gerprints. More specifically, we use (1) variational autoencoders (VAE), a recent method
combining ideas from deep learning, graphical models, and stochastic variational inference,
that can learn low-dimensional representation of data vectors, and (2) restricted Boltzmann
machines (RBM), a probabilistic graphical model for learning binary latent embeddings.
Both techniques attempt to estimate the data generating distribution p(x), where x denotes
the set of observed variables, through finding a set of auxiliary, or latent, variables z, and
learning the joint probability distribution p(x, z). Additionally, by limiting the dimension-
ality of z, both techniques can perform dimensionality reduction, by mapping the observed
variables to lower dimensional embeddings. This is achieved by learning efficient encoders
(representing the conditional density p(z | x)), and decoders (approximating the density
p(x | z)) that can convert between the original and latent representations. We evaluate both
models on binary fingerprints extracted from Censys records, and conclude that the use of
continuous latent variables and deep neural networks, allows VAEs to outperform RBMs in
constructing high precision and well-behaved numerical fingerprints. We train and evaluate
a series of VAEs trained over binary representations comprised of ∼10 000 binary features,
to find 2-50 dimensional embeddings of these records with varying degrees of accuracy.
This method can also be interpreted as a non-linear dimensionality reduction algorithm, as
opposed to linear models such as PCA, and can be used to speed up the resulting machine
learning algorithms for analyzing IP addresses.

Note that our main goal for applying dimensionality reduction, is to reduce memory and
computational requirements for processing and performing predictions on large populations
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of hosts. To this end, we compare the performance of multiple techniques in terms of the
loss for the encoded representations. From the numerous existing dimensionality reduction
algorithms, we compare two candidates that are applicable to binary observations (i.e. the
vector x), and utilize real-valued and binary latent variable models, namely VAEs and
RBMs, respectively. Additionally, we compare VAEs using linear transformations and
deep neural network structures as encoders and decoders, and observe the efficacy of deep
networks for approximating complex data generating distributions, thus resulting in higher
precision embeddings compared to linear models.

Our proposed framework enables scalable analysis of Internet hosts in a machine learn-
ing setting, and the wide range of information embedded within the resulting representa-
tions can be utilized for many learning tasks. We examine a number of these applications
for our numerical fingerprints, summarized as follows.

Visualization Our latent VAE representations of hosts result in well-behaved variables,
following an isotropic Gaussian prior. Moreover, the distance between two samples in the
latent space is a measure of their similarity, e.g. if they belong to the same geographical
region, or offer the same set of services. Therefore, even though it is not easy to deter-
mine what factor each dimension in the latent space is capturing, it is possible to use the
corresponding coordinates for an IP address for visualization. This can be achieved by
displaying 2-dimensional embeddings, or a projecting higher dimensional representations
onto two dimensions. We show that even in the case of coarse 2-D embeddings, a VAE
clusters specific classes of hosts, such as hosts from different countries, close to each other
in the latent space; this allows collections of examples to be readily categorized, when there
is a clear clustering in a visualized data set. Consequently, this methodology offers a fast
algorithm to visualize arbitrary collections of hosts, and can be used to facilitate analyzing
large quantities of IP addresses, for instance by projecting hosts for easy categorization
and filtering, or spotting conspicuous clusters of similar hosts within a collection, e.g. IP
addresses belonging to a certain organization.

Supervised classification We further evaluate our high-dimensional binary fingerprints,
along with their latent embeddings, for two supervised learning tasks, namely for classi-
fication of blacklisted malicious hosts, and inferring installed web server products. We
compare various state-of-the-art supervised models, and observe that decision tree based
models, specifically gradient-boosted trees [25], consistently outperform other models. The
sparsity of our binary representations, allows them to be stored efficiently using sparse ma-
trices, resulting in fast and accurate models; however, the low-dimensionality of our latent
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fingerprints produce even faster models. Our results demonstrate that our framework can be
used to quantify maliciousness, and to infer attributes of a host that might be masked from
external observers. The latter suggests a possible security threat, as potential attackers can
selectively target hosts susceptible to zero-day exploits in an automated fashion, even when
the use of vulnerable software is not directly disclosed in a server’s headers and banners.

Host similarity One drawback of common fingerprinting techniques, is the lack of the
ability to detect similar hosts. As previously mentioned, the euclidean distance between
two samples in the latent space can be used to quantify their similarity. This property, along
with the low-dimensionality of VAE embeddings, enables us to use the nearest neighbors
algorithm to query for similar hosts within a large corpus of IP addresses. Hence, we also
compare k-NN models to gradient-boosted trees for classification, and show evidence that
this technique produces similar results to state-of-the-art learning methods, establishing the
utility of our latent fingerprints for fuzzy matching of hosts.

Network signatures Finally, we aggregate fingerprints of IP addresses over arbitrarily
defined boundaries, i.e. autonomous systems, to obtain signatures for collections of hosts.
Our previous work [86] relies on features that are extracted heuristically, though well-
informed by domain expertise, to characterize collections of IPs. However, by aggregating
granular fingerprints of IP addresses, e.g. through averaging, we can define numerical fin-
gerprints of networks that are much more representative of the types of hosts they contain.
This approach to characterizing networks can lead to machine learning models that are able
to generalize over fine-grained attributes of hosts that compose the network. We evaluate
this technique for classifying types of ASes, i.e. consumer, business, education, govern-
ment, and information (hosting and content delivery networks). We show that capturing
the joint distribution of hosts in a network, by averaging our binary fingerprints over AS
boundaries, can produce significantly higher accuracies compared to classification at the
host level. For instance, observing only a few servers in a network that utilize a .edu

domain, can be a strong indication of an educational network. The scalability of the pre-
sented techniques, enables this form of analysis to be performed efficiently over the entire
Internet, providing tools for analysis of large networks containing millions of discoverable
hosts. Note that the proposed signatures can potentially be computed over partial measure-
ments on a few target hosts, as long as observations are representative of the entire network,
enabling one to perform less intrusive probes of networks, or to define signatures on IPv6
networks where global scans are not feasible.
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1.3.4 Overview and non-goals

The key contributions of this dissertation, as well as the motivations behind our approach
for each examined problem, can be summarized as follows.

• We present microscopic and macroscopic studies of entities’ (i.e. organizations, indi-
viduals, or Internet hosts/networks) security, using appropriate learning techniques,
and statistical models, for realizing the maximal value of utilized data sets.

• We choose our techniques in accordance with the following:

– Complexity of the problem at hand, and quality/quantity of available informa-
tion, e.g. fitting single-parameter distributions for inspecting user behaviors,
or training deep neural networks with the availability of large databases over
thousands of features.

– Compatibility with available measurements, e.g. using tree-based supervised
classifiers for binary and mixed (binary and continuous) features, and latent
variable models that are applicable to binary observations.

– We use cross-validation, by evaluating trained models on a held-out test set,
when selecting the best candidate out of multiple algorithms.

• We further reinforce our findings by providing case studies, performing statistical
tests, and inspecting trained models, in order to produce actionable and interpretable
recommendations/predictions. This enables individuals with limited security, or ma-
chine learning background, to effectively use our proposed tools and techniques.

• When applicable, we draw high-level conclusions regarding the underlying ecosys-
tems, e.g. the random nature of specific types of data incidents, the dynamics be-
tween vendors and end-users, and privacy implications of large data sets of global
Internet scans.

• We further explore the utility of our proposed framework in Chapter 4 for non-
security related applications, including visualizing collections of hosts, and quantify-
ing hosts similarities, extending and generalizing common fingerprinting techniques.

Non-goals While our classification results in Chapters 2 and 4 uncover correlation be-
tween the observed attributes of entities, and the targeted labels (data breaches, malicious
behavior, server software products), they do not necessarily denote a causal relationship. In
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other words, we do not intend to reveal vulnerabilities, or detect manifestation of an intru-
sion, or choice of software, but rather to detect patterns and interactions between various
characteristics of an entity, which can be leveraged for detection/prediction. Furthermore,
we use already available (and public, in the case of Chapters 2 and 4) data sets; conducting
our own measurements is another non-goal of this study. Nevertheless, we attempt to pro-
cess these data sets to produce the most relevant measurements for the examined problems,
and minimize noise/errors. Note that the separation between measurements and employed
methodology suggests that the utilized techniques can potentially be applied to similar data
sets, e.g. more comprehensive reports of data breaches, patch deployment measurement
from other software products, and probes on private networks, or the IPv6 address space,
extending the applicability of our studies to real-world scenarios.

1.4 Organization

The remainder of this thesis is organized as follows. In Chapter 2 (based on our published
work [125,126]), we will discuss our methodology for training a set of classifiers for quan-
tifying the overall risk of data breach, as well as its distribution over multiple categoriza-
tions of incidents, using publicly available information about businesses, and disclosures
regarding past data incidents. In Chapter 3, we will elaborate on our work [127] for dis-
tilling user patching behavior from a large corpus of patch deployment measurements, and
its implications on the end-host security posture over long observation windows spanning
many vulnerability cycles. In Chapter 4, we will present our framework for numerical fin-
gerprinting of Internet hosts, providing tools for generating machine learning compatible
representations of Internet-facing machines, and its applications for data set visualization,
quantifying host similarities, detection of malicious hosts, inferring masked attributes of
web servers, and numerical characterization of networks. We conclude and discuss possi-
ble future directions in Chapter 5.
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CHAPTER 2

Fine-grained Data Breach Prediction Using
Business Profiles

2.1 Introduction

Data is an important asset in every business; the valuable data of an organization may in-
clude private information such as medial records, credit card numbers, private customer
data stored on the cloud, or even trade secrets, as well as public information such as the
website of an online commerce company. Any incident involving such data, whether inten-
tional (targeted attacks) or unintentional (internal errors), can disrupt a business and inflict
damage on its assets and reputation. Therefore, a portion of an organization’s resources
should be dedicated to protecting itself from security incidents; preventive measures in-
clude maintaining regular backups, keeping software up-to-date, and employee education
in order to reduce miscellaneous errors.

However, determining how to allocate resources in protecting one’s assets, as well as
choosing an optimal level of investment in each preventive measure, is not a trivial task, as
there is a wide variety of ever-changing attack methods. To help identify common forms
of data incidents, a number of projects have been created to collect information about inci-
dents that involve some sort of data loss. Some of these projects, such as [110, 140], focus
exclusively on hacking attacks, while some, e.g. [113, 143], cover a broader range of inci-
dents, including human errors, and physical loss of data due to theft. Utilizing identifiable
patterns in these reports, organizations can recognize prevalent incident vectors, and invest
in self-protection in a more optimal way. However, a point that should not be overlooked
is that not all businesses should be treated the same, as each business is prone to different
forms of incidents. For instance, a cloud hosting company might be more likely to suffer
from hacking or denial of service attacks, while a medical institution with a large number
of personnel runs a relatively higher risk of data loss through human error.
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In this chapter, we aim to better understand how information about a business is cor-
related with its risk of falling victim to different forms of data incidents. Determining the
overall risk of experiencing any form of data incident will help organizations decide on an
optimal level of security investment. Moreover, estimating the distribution of risk among
multiple incident types (e.g. targeted attacks, miscellaneous errors, and insider misuse) will
allow us to narrow down the recommendation on the most effective preventive measures,
depending on the types of incidents the organization is most likely to face.

To this end, we use an incident data set collected by the VERIS community [143] re-
porting a broad class of data incidents; these reports consist of detailed information about
the incident itself (e.g. type of data breach, and assets involved in the incident), as well
as the victim organization (e.g. business sector, number of employees). Furthermore, we
select a set of non-victim organizations by randomly selecting network domains from the
Open Directory Project (ODP) [29]. We combine these with statistics obtained from Alexa
Web Information Service (AWIS) [8] about the websites of victim and non-victim organiza-
tions, as well as information about network assets of an organization obtained from Neustar
Inc. [104]. These features together constitute the business details of the organization. We
then utilize this information to assess its overall risk of experiencing a data breach. We are
able to identify, with 90% accuracy, victim organizations with the same attributes as com-
panies that have previously experienced a breach, while maintaining a false positive rate
of 11%. For victim organizations, we further estimate the conditional distribution of risk
for specific incident types by considering three different categorizations for the incidents:
(1) by type of data incident (e.g. error, hacking, misuse, etc.), (2) based on the source of
the incident (external, internal, or partner) and the motive behind it, and (3) by consider-
ing the assets that were involved in the incident (e.g. media, servers, user devices, and so
forth). Our results show that there is a clear correlation between each incident category and
the victim’s business details; this information can be used to provide guidelines on how
an organization with limited budget for security should prioritize its security investment in
allocating resources to different forms of self-protection.

In our earlier work [86] we examined the use of a different type of data, namely In-
ternet measurement data on organizations’ security posture (including malicious activities
observed from hosts, and misconfiguration of Internet-facing machines), to predict future
cyber-security incidents. In the present study, we broaden our scope to include not only
network/cyber incidents, but also non-cyber data incidents such as miscellaneous errors, in-
sider misuse, and physical theft and loss. This distinction warrants the use of non-network
related measurements for our analysis, as network measurements are likely to present less
value in forecasting non-cyber data incidents, while details regarding businesses, including
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location, industry, and size, can help charactarize how business are targeted by malicious
entities, and model other forms of data loss, e.g. due to human error.

We note that while correlation studies to identify prevalent attack vectors have been
done before, most notably see Verizon’s annual Data Breach Investigations Report (DBIR)
[145] using business sector information, our goal is to use additional business information
to enable a more fine-grained study, whereby the incident type distribution is quantified
not just for an entire business sector, but for specific individual businesses based on other
features such as employee size, region of operation, etc. This allows us to generate sharper
(more highly concentrated) incident type distributions; that is, with more fine-grained def-
inition of subsets within a sector, we are able to see incidents concentrated over a smaller
number of types. An immediate consequence of this is that security investment and re-
source allocation decisions informed by such analysis are much more targeted and effec-
tive. We show that on average an organization can protect against 90% of all incidents by
focusing on 70% of incident types; in some cases the latter can be significantly lower.

Our results are derived and presented in two parts. First, an unconditional prediction of
an organization falling victim to a data incident, and second, prediction of the conditional
distribution of risks over different incident types given that an incident occurs; the latter
complements our estimation of the probability of an incident happening in the former.
In practice, the absolute risk of experiencing an incident provides the organization with
insight on the total amount of resources that should be allocated to self-protection, while
the conditional risk can be used to decide the allotment of these resources to different
forms of preventive measures. By combining these two results, one can also determine
the absolute risk of a given incident type. In addition, the current study can guide better
breach detection efforts. From this perspective, our study is aligned with the growing
“assume breach” mentality in the security community [58]: everyone is a target hence all
organizations should take measures to prevent, detect, and respond to incidents, in the most
effective way. Last but not least, these findings can be used as guidelines in the emerging
cyber-insurance market. A study of the distribution of risk among different forms of data
incidents can help insurance providers better assess the potential amount of loss which in
turn helps determine the contract terms, including premiums and coverage levels.

Non-goals Note that our main goal in this study is to reveal attributes of a business that
are correlated with experiencing a data breach incident, rather than to detect the manifes-
tation of a breach. Examples of such attributes include, for instance, hacking attacks target
entities in the information sector more often than other industries, and an organization with
a large number of employees is inherently more prone to data breach through human er-
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ror. Detecting or forecasting a hacking incident by finding security flaws would require
probing an organization’s internal network and devices, another non-goal of this study.
Furthermore, predicting incidents such as internal error, or employee misuse through the
vectors that cause them are even more challenging, due to the presence of human elements.
Therefore, when using the terms risk prediction, or risk forecasting, we are referring to
risk assessment by comparing an arbitrary organization’s attributes to those of victims and
non-victims in our training samples, and not uncovering vulnerabilities that directly cause
a breach. However, this does not imply that it is not possible to forecast cyber-security in-
cidents without observing security flaws in how an organization is operating. A correlation
study on the impact of business features such as sector and size on data breach incidents,
can project how likely it is for an organization to be successfully targeted by an attacker, or
suffer a data breach through human error, by determining how often similar entities have
experienced data breaches in the past. Furthermore, even if a security flaw is detected in a
system, the chance of it turning into a data breach by an attacker targeting said vulnerabil-
ity, is partly determined by how the data breach can be monetized by the attacker, which is
in turn influenced by the business features utilized in this study.

The rest of the chapter is organized as follows. In Section 2.3 we summarize existing
work relevant to this study. In Section 2.2 we describe the data sets used in this chapter. In
Section 2.4 we explain in detail how we build our risk assessment model, and we discuss
and analyze the results in Sections 2.5 and 2.6. Section 2.7 concludes our study.

2.2 Data sets

In this section, we describe the data sets used in our study, namely the VERIS Community
Database (VCDB) [143], the Open Directory Project (ODP) [29], the Alexa Web Informa-
tion Service (AWIS) [8], and the IP Intelligence service from Neustar, Inc. [104].

2.2.1 VERIS Community Database (VCDB)

VCDB is a public database of reported data incidents, currently including roughly 7000
entries, more than 95% of which correspond to incidents after 2010. For this chapter, we
focus only on 2013 and 2014 incidents, consisting of (at the time of this study) 1850 and
794 entries, respectively. The reports cover a wide variety of events, some examples of
which are given in Table 2.1.

Each entry in the VCDB is reported using the Vocabulary for Event Recording and Inci-
dent Sharing (VERIS) [144]. The VERIS framework, as well as the VCDB, are initiatives

19



Incident summary

Hackers breach website of Hong Kong police force and publish non-public data, deface webpage.
A Lima, Ohio clinical psychologist is in the process of notifying clients that their office was robbed.
Pharmacy accidentally dumped hundreds of private medical records at a recycling depot.
Janitor is blackmailed into gathering documents from a court.
Parents of children at Hopkins Road Elementary Schools say their kids came home with sensitive data of other students.
Multiple Brazilian government sites defaced by Anonymous in protest to upcoming FIFA World Cup.
Hacking group DERP launches DDoS against Xbox Live networks.
Someone hacked into an electronic traffic sign on Van Ness Avenue in San Francisco.
Anonymous takes down 1,000 Israeli government and business websites for #OpSaveGaza.

Table 2.1: Incident examples from the VERIS Community Database.

by the Verizon RISK Team facilitating a unified approach to documenting and collecting
security incidents. The VERIS fields for an incident are populated to answer “who did
what to what (or whom) with what result?” [145]; details include the type of incident and
the means by which it took place, the actor and motive, the victim organization, the assets
which were compromised, timeline of the incident, and links to news reports or blogs doc-
umenting the incident. However, each entry might be only partially populated, since victim
organizations tend to not disclose all the details regarding the incident.

We now explain the fields extracted from VCDB which are of interest in training and
testing our classifiers. The first set is information regarding the type of a data breach, based
on which an incident can classified as one of seven categories: environmental, error,
hacking, malware, misuse, physical, and social. Each type may include additional
fields that can help further differentiate incidents of the type. For instance, a physical
incident might be further categorized as theft or loss, while a hacking incident might be
identified as a SQL injection or a brute force attack. The second set identifies the ac-
tor responsible for the incident, falling in one of three types: external, internal, and
partner. The data set may further include fields identifying the motive for each of these
actor categories. The third set identifies the assets that were compromised during the in-
cident. There are six possible asset types: kiosk/terminal, media, network, people,
server, and user-device.

We also extract three features about the victim organization from the existing VCDB
fields as input for our classifiers: industry code, number of employees, and the region of
operation of the victim organization. The industry code provided is the North American
Industry Classification System (NAICS) code [98] of the victim, which specifies the orga-
nization’s primary economic activity. Although NAICS codes can extend to up to six digits,
each further detailing the sector, we only extract the first two digits of the code for our in-
cidents; this classifies the company as one of 25 different sectors. The employee count
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captures information about the size of the organization; this entry may be a numeric range
(1-10, 11-100, 101-1000, 1001-10 000, 10 001-25 000, 25 001-50 000, 50 001-100 000, and
over 100 000), or simply small or large (for approximately below or over 1000 employ-
ees, respectively) when an exact number is not available. Finally, we use the region of the
organization as a feature by extracting the continent of operation for the victim. Note that
any said features can be missing for a specific VCDB entry; in such cases, we generally
add an additional unknown category.

2.2.2 Alexa Web Information Service (AWIS)

AWIS is a service offered by Amazon Web Services (AWS) [15], that provides information
and statistics about arbitrary websites (often second-level domains); these include traffic
volume and (regional) rank, number of visitors, speed, number of pages linking to the
website, and information about the organization that maintains the website, such as address,
contact information, and stock ticker symbol.

We gather the following data from AWIS for all organizations in our data set. We in-
clude the global and regional traffic rank, and the number of pages linking in to the target
website, as indicators of the popularity or familiarity of an organization. The regional rank
of a website is extracted by finding the country which has the most contribution of page
views to the website’s traffic, and adding the rank in that country, as well as the country
code, to our feature set. We also include the 30-day average and standard deviation of the
website’s global rank for a one month period before the incident, to identify recent trends
in popularity. Other selected features include speed of the website (as a percentile com-
pared to other websites), the age and locale of the website, the categories associated with
it, and whether the underlying company is publicly traded in the stock market. We con-
vert the number of pages linking in, and global, regional, and average historical rank to
logarithmic scale, due to their large range of quantities. We further break each category,
if possible, by separating the portion describing the region of the website. For instance,
for Regional/Caribbean/Barbados/Government, the general category is Government,
while Caribbean/Barbados is the regional category. For missing fields, we choose a
reasonable default value, e.g. unknown for text fields, and ∞ for traffic ranks.1 The afore-
mentioned attributes of an organization can provide further insight into its sector, region,
familiarity, and size. By combining these with features obtained from our other data sets,
we are able to build a detailed description of a business, which can in turn help assess an
accurate representation of its risk.

1Here, we use a fixed number larger than the maximum of all observed values as a proxy for∞.
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Other than age and historical traffic rank, AWIS only provides the most recent state of a
webpage. Therefore, there is a relatively large time gap between our incidents (which hap-
pened in 2013 and 2014), and features obtained from AWIS (September 2015). Features
such as main contributing country, locale, and category are related to the organization’s
region and sector of operation and are not expected to change over time. However global
and regional rank, number of pages linking in, and whether the company is publicly traded
can exhibit more dynamic behavior. For samples where both a global and historical rank
was available,2 the average mean absolute percentage error between the two was 6.5%.
We therefore concluded that the order of a website’s rank remains fairly static. Unfortu-
nately, we could not procure similar measurements for other statistics of a webpage, since
it involves caching results from AWIS and studying the changes over a long period. Nev-
ertheless, since regional rank and number of links also capture the popularity of a page, we
expect them to show similar behavior.

2.2.3 The Open Directory Project (ODP)

ODP (also known as DMOZ) was the largest publicly available directory of the web, until
it was discontinued on March 17, 2017. Each entry includes a website URL, the title of
the site and a short description, as well as the category of the website. By selecting ran-
dom entries from this data set, we can effectively choose random non-victim organizations.
For this study we use a snapshot of ODP obtained on September 19, 2015, consisting of
3 771 141 entries, of which a random selection of 16 780 entries that had not appeared in
our victim data set, is used in this study as non-victim organizations. Note that our random
selection may also capture victim organizations that were not reported in the VCDB. The
portion of tainted samples in our non-victim set is upper bounded by the overall rate of
data incidents.

To elaborate more on the process of selecting non-victim entities, we would first like
to point out that an alternative way to select non-victim organizations would be to choose
random entries from a global business directory. However, since we do no have access
to such a directory, websites are used as a proxy to identify organizations. In our earlier
work [86] we have used a random selection of networks to identify organizations which
matched our use of network security posture measurement data. However, this selection
method would limit us to companies that own network assets of their own, and those who
rely on hosting providers and content delivery networks would be excluded. By contrast,
almost all organizations own a website and would be included in our current approach.

2Alexa provides global and historical rank, for the top 30 million and 1 million websites, respectively.
This is also the primary reason we have included both types in our feature set.
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Furthermore, incidents covered in the VCDB include those concerning large companies,
as well as data breach reports on smaller entities such as personal webpages. Using a
web directory allows us to include smaller entities in our selection, resulting in a more
representative non-victim group; this cannot be easily achieved by using a business or
network directory.

2.2.4 Neustar IP Intelligence

IP Intelligence is a service offered by Neustar Inc. that includes geographic information,
network characteristics, and ownership information over the IPv4 address space. More
specifically, we use the ownership information in our study, consisting of the organiza-
tion name that manages a given IP address, along with, where available, its corresponding
NAICS code. This information allows us to identify the network responsible for maintain-
ing a given website. Moreover, since VCDB only provides business sector information for
victim organizations, the NAICS code included in the IP Intelligence data set allows us to
include this information in our overall risk prediction for both victim and non-victim orga-
nizations. The snapshot used in this study was obtained on May 22, 2015. We include the
name of the company listed as the owner of an IP address, its size (number of IP addresses
owned by the same organization), and the NAICS code associated with it in our feature set.
Doing so helps identify hosting providers with bad reputation, i.e. those with a higher than
average presence in incident samples.

2.2.5 Pre-processing

To be able to combine these data sets for our study, we first have to match each incident
report with the website of the victim organization. To obtain this information, we find the
name of the victim organization through the victim-id field in VCDB, and extract the
first Google search result for the organization name. We then manually verify the results
to ensure that the websites match the victim organizations. For ambiguous victim IDs
(e.g. “Indian government website”), we further read the incident report provided by a news
report or blog entry (samples of which are often referred to in the VCDB description) to
find the website of the entity that suffered the data breach. For the 2644 incidents that
occurred in 2013 and 2014, we extracted the website for 2062 of them, and dropped the
rest from our data set. Note that of the 582 incidents that we removed, 139 did not report
the name of the victim organization, and the rest were not included in our study either
because the victim name was too ambiguous (e.g. “Egyptian government”, and “law firm
in British Columbia”), or we could not find a website for the victim (e.g. “Ha Dinh primary

23



school”, and “Purple Cow gas station”). The mapping between a victim organization and its
respective website will allow us to combine entries in the VCDB with data collected from
AWIS. Note that for a given year, we omit duplicate incidents for the same organization,
i.e. corresponding to the same unique identifier (to be defined shortly). As an example,
there are over 200 entries in the VCDB corresponding to error incidents in the United
States Department of Veterans Affairs. We count all of these incident only two times, once
in 2013 and once in 2014. If there are multiple entries corresponding to different forms
of data incidents (e.g. hacking and misuse), we include them as separate entries when
assessing risk for specific incident types in Section 2.4.4.

Note that statistics obtained from AWIS are often provided only for the second-
level domain of a website. For instance domains such as mail.google.com and
maps.google.com are redirected to the second-level domain google.com. Sub-domains
are only regarded as separate entities when “they are identified as personal home pages or
blogs” [7]. On the other hand, website details from ODP are generally more detailed, and
can include any number of sub-domains and sub-pages. Therefore to avoid inconsisten-
cies, we replace URLs associated with victim organizations and our random selection of
URLs from ODP with their respective domains from AWIS. Hence, we will use the AWIS
domain (generally the second-level domain) as a unique identifier for merging duplicate
entries. This step reduces incident/victim and non-incident/non-victim samples to 1606
and 16 254 unique domains, respectively. We will further separate these samples, using an
even split, into two independent data sets for training and testing our models, respectively.

The next step is to include features from Neustar Inc. We resolve the domain to obtain
an IP address, and then look up the owner of that address. We augment our set of features
with the name of the owner, its size (number of IP addresses listed under the same name),
and the NAICS code associated with it. Out of the 17 860 domains from the previous
step, we were able to map 17 772 of them to 5805 unique owners. Note that for 88 of the
domains we were either not able to look up their IP address, or there was not any entry
in the IP Intelligence data set for that address. For these samples we list unknown under
owner and NAICS code, and a size of zero.

Finally we convert text fields to a set of binary features by tokenizing each distinct
value. For categories and NAICS codes from IP Intelligence, we break each entry into
multiple values with different levels of detail, and tokenize each separately. For example
Business/E-Commerce/Consulting is a sub-category of Business, as well as the more
detailed category Business/E-Commerce; and a NAICS code of 51 720 (Wired Telecom-
munications Carriers) is a sub-sector of 51 (Information), and 517 (Telecommunications).
To limit the total number of features, we ignore tokens that have been repeated less than
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10 times in our samples; this technique is often used when training predictive models over
text documents, to avoid the inclusion of highly sparse features that would not present any
value in a machine learning setting. The resulting reduction in features can also prevent the
learning algorithm from over-fitting.

2.3 Related work

The main contribution of this chapter, compared to existing literature, is an in-depth and
quantitative analysis of the risk distribution over security incident types for a given or-
ganization, which can help the latter more strategically allocate resources for prediction,
prevention and detection of data incidents. The have been an increasing number of studies,
leveraging data analysis and empirical evidence, in contrast to model-based approaches,
for examining data breaches and their impact.

Data-driven analysis A relevant study to this study is Verizon’s annual Data Breach In-
vestigations Report (DBIR) [145]. The 2014 report, which corresponds to the timeline of
this chapter, contains detailed analysis on more that 63 000 security incidents from multiple
sources including VCDB. The report contains a detailed analysis on statistics of the data
including action types and vectors, actor types and motives, as well as victim demograph-
ics and industry. Moreover, starting from DBIR 2014, the authors identify nine patterns
describing 92% of the incidents in their report. By categorizing incidents into separate pat-
terns, it is possible to analyze the distribution of incident varieties within each pattern and
provide entities with a more specific recommendations on how to invest in their security.
The report also provides the spread of attack patterns within each industry, to further narrow
down the risk. For instance, it is pointed out that the main threat to organizations providing
accommodation services is through point-of-sale intrusions (POS), which describes 75%
of the incident reports within this industry.

As mentioned earlier, compared to the DBIR, we aim to provide a more fine-grained
framework to give more specific guidance to organizations not only based on their industry,
but utilizing a host of other features available to us. This includes demographic information,
details about the size of the business and its popularity, and business sector information.
Moreover, we couple our conditional risk distribution with the overall probability of breach
in order to arrive at a more realistic sense of risk. For instance, even though a typical
business in the accommodation sector is more prone to POS intrusions, their risk within that
category might still be less than businesses in other sectors, given that their unconditional
probability of breach is low.
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In other data-driven studies, Thonnard et al. [141] perform an analysis on spear phish-
ing targeted attacks, identifying risk factors at the organization level (industry sector and
number of employees), and individual level (job level and type, location, and number of
LinkedIn connections), that are positively or negatively correlated with the risk of expe-
riencing targeted attacks. Aziz [16] presents an approach for analyzing access control
policies, and leverages VCDB for evaluating the proposed framework. Farhang et al. [42]
utilize VCDB to analyze the timing of security incidents and responses, and propose a two-
player game for time-based security. Other works related to this chapter include studies on
the trends and costs associated with data breaches. In [37], Edwards et al. use generalized
linear models to uncover trends in data breaches, and conclude that the frequency and size
of data incidents have not increased over the past decade. Furthermore, The 2015 Cost
of Data Breach Study by Ponemon Institute and IBM [64], finds the average cost of a data
breach to be $3.8 million, with $154 incurred for each lost or stolen record. [2,22,24,55,68]
conduct event-study analyses on the impact of data breach disclosures on market value, and
conclude that there exists a negative and statistically significant correlation between the
two. Moreover, in [120] Romanosky et. al. provide an empirical analysis of data breach
litigation, and in [121] discuss the impact of breach disclosure laws on identity theft.

Prediction of cyber incidents The notion of predicting cyber incidents (rather than de-
tection) has also enjoyed popularity recently. In [134], Soska el al. apply machine learning
tools to predict the chance of a website turning malicious in the future, and show that their
method can achieve 67% true positive and 17% false positive. In our previous study [86],
we examine to what degree cyber-security incidents may be predicted by using a range of
security posture data. Compared to the above studies, our goal in the present study is to
consider a broader range of data incidents, including targeted and untargeted physical and
cyber-attacks from both internal and external sources, and incidents due to error, while at
the same time recognizing the difference between specific incident types by emphasizing
the relative risk each incident type poses to a particular organization. Note that of the 2644
reports in the VCDB for 2013 and 2014, 981 are hacking and malware incidents (cyber
incident), and the rest are non-network related incidents (non-cyber incident).

2.4 Methodology

In this section, we will discuss the rationale behind the features selected for our model, fol-
lowed by a detailed description of how to build a risk assessment model using the features
and incident reports described in Section 2.2.
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2.4.1 Feature set

In Section 2.2 we listed the features extracted from VCDB, AWIS, and Neustar IP Intel-
ligence to be used in training our classifiers. We will now discuss our motivations for
selecting these features, and why we expect them to be indicative of a company’s risk of
data breach. Note that while we provide simple examples for why a certain feature can be
correlated with cyber-risk, our model can recognize more complex, i.e. higher order, rela-
tionships within out feature set that can help the classifier make more accurate assessments.

The first and foremost features are those that specify a company’s sector of operation,
namely the industry code extracted from VCDB, and the website category from AWIS. We
expect an organization’s industry to be strongly correlated with its risk of falling victim to
different types of data breaches. A company’s industry can provide insight into the types
of records that can potentially be compromised (e.g. credit card information for retailers,
or physical and digital records for health care), or motivations for targeted attacks (e.g.
hacktivism for public administration entities). In addition, a business’s sector can determine
the value of data records to an attacker, which in turn influences the attacker’s decision to
launch an attack on said entity; this type of correlation also applies to other features used
in our model, such as a business’s size and region of operation. As we discussed in Section
2.3, DBIR also uses industry information to give security recommendations to businesses
within a sector.

The next set of features are those that specify the size of a company: employee count
from VCDB, and whether a company is publicly traded, which is provided by AWIS. We
expect the size of a company to be correlated with how often it is targeted by cyber-attacks,
since compromising a large company tends to be more profitable for an attacker. Further-
more, as we will see in Section 2.6.2, a larger employee count can increase the chances
of breach through human error and employee misuse. Features like traffic rank (global,
regional, or historical) and the number of links to a website are indicative of a website’s
popularity, and therefore correlated with the chances of a company being targeted.

We also expect a company’s region of operation to be connected to its cyber-risk. The
region is obtained from VCDB, as well as the website’s top contributing country, locale,
and regional category. Other features such as the age and speed of an organization’s web-
page, can provide more insight into its security posture. Older companies tend to be more
experienced in protecting themselves against data breaches, and may have better policies
in place to prevent them; a website’s speed is an indication of how well it is being operated,
which in turn can be associated with security posture.

Finally, our measurements from Neustar IP Intelligence will provide more details about
an organizational network, which can be closely coupled with risk of network related
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breach incidents. Note that an organization’s website can be either hosted on the com-
pany’s internal network, or by a hosting provider. The industry code from IP Intelligence
can provide the classifier with the necessary information to distinguish between the two
cases, since the NAICS code 518 (Data Processing, Hosting, and Related Services) can
be associated with hosting providers. When an organization’s website is hosted by a third
party, the name of the hosting company and its size (in terms of number of IP addresses
owned by the provider), can determine its reputation and how protected customers are. For
self-hosted websites, the size of the organizational network will indicate the attack surface,
and therefore the risk of breach through network incidents.

Table 2.2 includes the list of all features used in the training/testing of estimators in this
study. We will further discuss this table in the remainder of this section.

2.4.2 Construction of the classifiers

Our ultimate goal is to provide risk assessment for an arbitrary organization given its fea-
tures, i.e. a distribution of risk over all incident types. This risk can be represented in two
parts as follows:

Pr(Incident type | x) = Pr(Incident | x)×Pr(Incident type | Incident,x), (2.1)

where x represents the organization in question, identified through its set of features. More-
over, the incident type can be any of the available data incident types, e.g. physical theft.
The first term in the RHS of Equation 2.1 will be referred to as the overall risk, and the sec-
ond term quantifies the conditional risk. These two probabilities are estimated separately
by constructing different classifiers.

Toward this end, we use random forest classifiers [128], an ensemble learning method
that constructs multiple decision trees over the training data, and outputs the average of
all individual trees’ outputs, hence producing more accurate prediction by averaging over
many strong estimators. Random forest classifiers improve upon single decision trees by
reducing over-fitting over the training set; this is achieved by training each estimator over
bootstrapped samples (i.e. samples drawn with replacement), where each split in a tree is
chosen among a random subset of features.3 For overall risk estimation, we use our set of
victim organizations coupled with a randomly selected set of non-victim organizations to
build a binary classifier; in this case all victim organizations no matter the type of incident
are given a label of one.

3For this study, the number of inspected features is set to be equal to the square root of the number of
available features.
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Industry Employee 
Count Region Rank Local   

Rank
Rank 

History Links In Website 
Age Speed Locale Traded Category Network 

Size
Network 

Name
Network 
Industry

 Overall

      Overall x x x 7.6 11.9 12.6 6.3 3 5.4 4.5 0.2 36.2 3.3 3.6 5.3

 Action

      Error 21.4 25.2 18.8 x x x x 9 x x 5.7 x 19.9 x x

      Hacking 27.8 9 29.2 8.7 x x 10.5 8.1 x x x x 6.8 x x

           Comp. Cred. 0 25 8.3 x x x x 16.7 25 x x 8.3 16.7 x x

           Other 0 17.4 33.3 x 10.7 11.7 x 4.6 10.6 x x x 11.6 x x

      Malware 20.5 8.2 4.2 x 13 33 x x 7.7 1.8 x x 11.5 x x

      Misuse 17.4 9.7 6.9 24.2 x x 19.5 9.3 x 11.4 1.6 x x x x

      Physical 11.3 3 7.6 x x 33.1 6.1 x 5.6 x 0.4 33 x x x

           Theft 26.4 0.5 2 x x 38.7 x 6.4 6.9 x 1.9 x 17.2 x x

           Other 24.9 9.6 4.1 x x x 16.1 24.9 x x x x 20.4 x x

       Social 14.2 21.4 18.9 x 18.8 x x x 26.8 x x x x x x

 Actor

      External 28.9 7.1 11.7 15.4 x x x 6.1 x 17.4 1.8 x 11.6 x x

           Financial 12.7 13.3 27.9 2.1 30.9 9.8 3.2 x x x x x x x x

           Ideology 18.7 38.5 25.8 6.8 x x 4.1 x 6 x x x x x x

           Other 13.6 4.1 40.6 x 33.5 x x x 8.2 x x x x x x

      Internal 28.3 16.6 40.8 x x x x 12.2 x x 2 x x x x

           Financial 17.4 0 0 x x x x 12.5 18 x x 37.8 14.3 x x

           Other 8.3 0 0 x x 37.4 18.3 x x x x 20.4 15.6 x x

      Partner 19.3 11.8 12.2 x x x x 16.5 x 5.3 x 22.3 12.6 x x

 Asset

      Kiosk/Terminal 13.3 11.7 5.1 x x 9.9 1.9 x 2.9 x 0.9 54.4 x x x

      Media 10.4 8.3 10.6 x 7.8 x 3.9 x 3.1 x 0.6 55.2 x x x

      People 19.7 15.4 24.7 x x x x x 28.9 10.5 0.7 x x x x

      Server 15.7 3.1 17.6 x 13 11.9 x 3.7 x 2.2 1.6 27.2 3.9 x x

      User Device 8.3 5.5 7.2 14.3 17.3 38.9 x 6 x 2.3 0.2 x x x x

Table 2.2: Features and feature importances for all classifiers.
Crosses indicate features that have not been used in training the corresponding classifier.
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Error Physical

Theft Other

Figure 2.1: A sample risk assessment tree. The risk at each node is quantified by
multiplying its conditional risk, by the risk of its parent node.

To assess the conditional risk, a naive way would be to take the incident signature (i.e.
action, actor, and asset) of an entry as a class label, and the victim’s features as input data
for the classifier. However, given the large number of possible incident signatures, there are
only a small number of samples per signature vector. Furthermore, as we have mentioned
before, a significant number of incident entries provide only partial information about their
corresponding incident. Ignoring such entries will leave us with even fewer samples.

Our solution to the above problem is to build multiple classifiers, each of them estimat-
ing a portion of the incident signature. This continues our previous use of the chain rule in
probability. Assume that we want to estimate the risk factor for an organization with the
feature vector x for experiencing a physical theft incident. We can break the conditional
risk into multiple parts as follows:

Pr(Theft | Incident,x) = Pr(Physical | Incident,x)Pr(Theft | Physical,x). (2.2)

As a result, entries that cite a physical incident without specifying additional details
will still be included for building and testing the first classifier (first term in the RHS of
Equation 2.2), but will be ignored when building the second classifier (i.e. theft). This
method can be visualized as a tree as shown in Figure 2.1, where each node represents a
data breach type. The risk score at a node is the result of multiplying the risk at its parent
node, by the output of the classifier corresponding to said (child) node.

Note that the output of Figure 2.1 is a conditional probability, conditioned on the event
that an incident has occurred. To derive the absolute risk for a given breach type, we need
to multiply the result by the overall breach probability (first term in the RHS of Equation
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Figure 2.2: Distribution of all victim and non-victim samples (both training and testing)
over Alexa’s top categories. Note that a website can belong to multiple or no categories.

2.1). In the remainder of this chapter, we discuss our results on overall risk estimation and
conditional risk for specific breach types separately. The rationale behind this separation is
that the former serves as a forecast on security incidents. On the other hand, the point of the
latter is not to make a single prediction on the type of incident that is going to happen, but to
estimate the distribution of risk among multiple incident types; as we shall see, predictions
for single categories are significantly less accurate than overall risk estimations due to its
density estimation nature. We further elaborate on this point in Section 2.5.2.

2.4.3 Forecasting overall risk

To forecast the overall risk of breach, we assign labels zero and one to our non-victim
and victim samples, and train a random forest consisting of 50 trees over victim samples
from 2013, and a random selection of 11 585 (out of 16 254) entries from the non-victim
data set. We use features from AWIS and IP Intelligence for prediction, and omit features
from VCDB since they have only been provided for victim organizations. We use incident
samples from 2014 and the remainder of our non-victim data set for testing.

The first row in Table 2.2 summarizes the importance of each feature in the final classi-
fier. As is evident from this table, The most used feature for this type of risk assessment is
the general category of the website. For further elaboration on this point, we have shown
the distribution of victim and non-victim samples over the top-level categories from AWIS
in Figure 2.2. While our incident samples have presence in most of the top level cate-
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gories (excluding adult, maps, and weather), it is possible to identify categories that
exhibit higher- or lower-than-average risk. For instance, the portion of incidents that be-
long to health and government are significantly larger than the global population, while
the world and arts categories can be associated with low risk. Note that the world cate-
gory describes webpages that are in languages other than English. The discrepancy in this
case can also be due to under-reporting, since VCDB tends to focus more on incidents that
happened in the US.

Note that inherent biases in our victim data set may affect the output of our trained
model. The most prominent examples are biases toward incidents in the US, and also
certain industries due to disclosure laws. For instance, businesses operating in retail are
more likely to disclose data breaches due to concerns that customer information may have
been compromised, while other industries might be under-represented in publicly disclosed
data breaches. Consequently, we may underestimate or overestimate a business’s cyber-risk
based on its region or sector. In other words, our model is estimating the risk of a publicly
disclosed breach, which is not necessarily the same as risk for undisclosed data incidents.
This issue may be alleviated by training models over specific groups of victims and non-
victims, e.g. training a classifier on the subset of samples that belong to a certain country,
or industry, ensuring that samples are compared to organizations of the same type, and
therefore with the same incident reporting rate. In this chapter, we do not train separate
models for overall risk prediction since our goal is to provide a single assessment that can
be used to compare organizational risk, regardless of region or sector. However, we will
further explore this technique in Section 2.6 for assessing risk of different incident types.

2.4.4 Forecasting conditional risk

Given the training and test samples (incidents belonging to 2013 and 2014, respectively),
we first train a binary classifier for each incident type, using a random forest model con-
sisting of 20 trees. To prevent over-fitting, we set the minimum number of samples at each
leaf of the decision trees to 25. However, we may still experience some over-fitting due
to the large number of features available to our classifier. To help alleviate this problem,
we limit the number of features used for each random forest as follows: we always use
the three features extracted from the VCDB, namely industry, employee count, and region.
Out of the remaining 10 features, we select the most significant through cross validation,
i.e. training multiple classifiers using different combinations of features, and selecting the
one with the best performance. The list of features used for each classifier, as well as their
importance in the resulting random forest classifiers, are included in Table 2.2.
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2.4.4.1 Incident categorizations

Using the classification method described above, we apply our risk assessment scheme
separately to three parts of the incident signatures: action, actor, and asset. Each of these
classifiers focuses on a separate aspect of an incident. If a single entry matches multiple
incident categories, e.g. a hacking incident through misuse of privileges, we break it into
multiple incidents that each belong to a single category.

Action type The action type falls into one of the seven general categories discussed
in Section 2.2.5: environmental, error, hacking, malware, misuse, physical, and
social. We omit environmental incidents, of which there are only four samples between
2013 and 2014. We further categorize hacking events into two sub-categories: (1) hack-
ing incidents that involve data breach through compromised credentials, including stolen
credential, brute force, and backdoor attacks, and (2) all other forms of hacking, 75% of
which are SQL injection and Denial of Service (DoS) attacks. We also divide physical
incidents into two sub-categories of (1) theft and (2) everything else, 88% of which are due
to tampering.

Knowing the action type can provide significant information on the types of preventive
measures that can be used to reduce loss. For instance, the first group of hacking incidents
can be prevented by setting strong passwords and changing them on a regular basis, as
well as not storing unencrypted credentials at insecure locations. Incidents due to human
error and misuse of privileges can be reduced by employee education, setting and enforc-
ing internal regulations, and avoiding unnecessary access privileges for employees and/or
business partners.

Actor type and motive In addition to action types, we train our classifier based on the ac-
tor responsible for the incident, i.e. external, internal, and partner. Internal actors are
divided, based on the underlying motive, into two sub-categories of (1) financial motives,
and (2) other motives, including convenience, espionage, grudge, ideology, and fun. Exter-
nal actors are similarly sub-categorized into (1) financial, (2) espionage, (3) ideology, and
(4) fear, fun and grudge. Incidents due to business partners are not further sub-categorized
due to insufficient samples.

Assessing the risk associated with various actor types can prompt organizations to de-
termine policies for employee education and access to data (for internal incidents), guard
their network periphery from external attackers, and perform due diligence when selecting
business partners.
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Incident type Crimeware Cyber Esp. DDos Stolen Cred. Error Skimmers PoS Misuse Web app Else
# of samples 67 16 106 326 333 66 19 272 399 356

Table 2.3: VCDB data categorized using DBIR 2014 patterns. Only 82% of the data can
be described by the nine patterns.

Asset type Finally, we look at the types of assets that were compromised during the inci-
dent. As detailed in Section 2.2.5, asset types include kiosk/terminal, media, network,
people, server, and user-device. We have omitted network related assets due to insuf-
ficient number of samples. Knowing what asset types are more likely to be affected can
significantly improve our ability to estimate the amount of potential loss following security
incidents. This can guide insurance underwriters in designing more appropriate policies
catered to specific client organizations. These predictions can also be used to adopt more
strict access policies for assets that are at most risk, and advice network administrators to
keep regular backups when assets such as media and servers are involved.

Comparison with DBIRs’ categorizations Our choice of categorizations is consistent
with the one adopted by Verizon in the 2008-13 DBIRs, but differs from the categorizations
proposed in their latest reports. DBIR 2014 uses hierarchical clustering to identify nine
incident classification patterns (combinations of actions, assets, and actors) that can be
used to describe 92% of all incidents. Examples of these patterns include cyber-espionage,
point of sale intrusions, and insider misuse. Despite the effectiveness of this clustering
method in accurately describing incidents in the data set used by Verizon, an application
to the subset available through VCDB would fail to provide a similar precision, see Table
2.3: due to lack of sufficient details, 18% of the VCDB data will not fit the nine proposed
patterns (as opposed to only 6% in Verizon’s larger data set). This is one of our main
motivations for selecting three different categorizations based on VERIS primitives only,
i.e., actions, actors, and assets.

2.5 Results

In this section we will evaluate the proposed empirical techniques for quantifying the over-
all risk of data breach, as well as the conditional risk distribution for various categorizations
of incidents, as described in the previous section. All evaluation is conducted on a held-
out test data set containing half of all available samples, which is not used for training the
evaluated models.
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Figure 2.3: Receiver operating characteristic (ROC) curve for overall risk estimation
(left), and cumulative distribution of risk (right)

Category Victims Non-Victims AUC TPR FPR

World 56 2204 0.928 91.1% 18.2%
Business 73 817 0.968 89.0% 4.0%
Society 20 325 0.922 90.0% 20.0%
Reference 21 134 0.841 85.7% 43.3%
Computers 25 119 0.939 88.0% 16.8%
Health 36 117 0.954 88.9% 21.4%
Government 58 42 0.876 89.7% 35.7%

Overall 482 4669 0.953 89.6% 11.3%

Table 2.4: Accuracy of overall risk estimation over Alexa’s top categories.

2.5.1 Overall risk

Figure 2.3a displays the receiver operating characteristic (ROC) curve of our overall risk
estimators, evaluated over the test samples. By identifying organizations with similar at-
tributes to those that have previously experienced a data breach, we can achieve a 90%
true positive rate in flagging organizations in our victim set as high-risk, while keeping
false positive rate at 11%. These numbers are comparable with our previous results in [86],
where we were able to forecast cyber incidents with 90% true positive and 10% false pos-
itive rate. Figure 2.3b shows the distribution of the classifier output scores for victim and
non-victim test samples. There is a clear distinction between the two distributions, with
victim samples having more bias toward higher scores, signifying more risk.

Moreover, Table 2.4 summarizes the accuracy of our model over Alexa’s top categories
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Figure 2.4: ROC curves for action (left), actor (middle), and asset (right) classifiers.

in Figure 2.2, as well as the overall accuracy on all samples. Each row in Table 2.4 displays
our model’s performance over the test samples in 2014 that belong to the corresponding
category. We have removed categories where we have less than 20 victim samples. We
have included the number of victims, and non-victims in each category, as well as the true
positive rate that is closest to 90%, along with its corresponding false positive rate. The
area under the curve (AUC) metric displays the area under the ROC curve. Note that the
AUC score is independent of the fraction of the test population in each class, making it a
useful metric for evaluating performance on unbalanced data sets, i.e. the efficay of the
trained estimator for rank-ordering samples. The best accuracy belongs to the business

category, and reference and government perform the worst.

2.5.2 Risk distributions

Figure 2.4 shows our results on prediction of specific incident types. We have drawn ROC
curves for three types each in the action, actor, and asset categorizations. Comparing to
Figure 2.3a, the accuracy of these classifiers is significantly lower, typically achieving a
80% true positive at 50-60% false positive rate, except for the kiosk asset type that achieves
the same accuracy at 11% false positive rate; note that this asset type is only owned by a
select few industries, which most likely contributes to the high accuracy observed here.

To explain the difference between Figure 2.3a and 2.4, we will consider a model with n

different incident types, and a sample entity with probability of breach of p. We will then
analyze this example for different scenarios. In the first case, the absolute (unconditional)
probability of breach for one incident type is equal to p, while other types have zero prob-
ability, and we will be able to predict with certainty the type of the data breach. In the
second case, assume that all breach types are equally probable, and the conditional risk is
a discrete uniform random variable. In this scenario, if our predictor outputs a label of one
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Industry/Organization Error
Hacking

Malware Misuse
Physical

SocialComp.
Other Theft Other

Cred.

Manufacturing 0.08 0.09 0.33 0.13 0.22 0.13 0.00 0.02
Retail Trade 0.15 0.26 0.11 0.19 0.09 0.09 0.11 0.02
Information 0.09 0.28 0.41 0.07 0.04 0.03 0.01 0.07

Russian Radio 0.14 0.16 0.40 0.02 0.10 0.10 0.03 0.03
Verizon 0.28 0.17 0.22 0.08 0.19 0.06 0.05 0.05

Finance & Insurance 0.25 0.09 0.11 0.05 0.12 0.10 0.19 0.07
Pro., Sci. & Tech. Svcs 0.16 0.09 0.56 0.04 0.13 0.09 0.00 0.02
Educational Svcs 0.30 0.13 0.21 0.06 0.11 0.14 0.00 0.05
Health Care & Social Asst 0.25 0.08 0.03 0.02 0.23 0.38 0.02 0.01
Accommodation & Food Svcs 0.08 0.37 0.00 0.18 0.16 0.11 0.11 0.00
Public Administration 0.27 0.09 0.29 0.03 0.17 0.10 0.01 0.03

Internal Revenue Service 0.21 0.08 0.15 0.06 0.17 0.09 0.02 0.03
Macon-Bibb County 0.20 0.13 0.23 0.07 0.14 0.23 0.04 0.04

Overall 0.22 0.12 0.21 0.06 0.15 0.14 0.04 0.04

Table 2.5: Conditional risk distribution by business sector, and for sample organizations
(highlighted rows).

with probability q for all types, we will on average see q true positives, and q(n− 1) false
positives, and the average true positive and false positive rates, averaged over all classifiers,
will be equal to q. If the risk is equally distributed between k incident types, then for every
true positive the predictor will be penalized by k− 1 false positives, and the overall true
positive and false positive rates will be q and q(k−1)/n−1, respectively. Note that regardless
of the type of an organization, its risk will never be zero for breach types such as error

and misuse, and as long as it owns any form of network assets, it will be vulnerable to
hacking incidents (e.g through zero-day vulnerabilities). As a result, the main value of this
risk distribution estimate is not as a forecast for a particular incident type, but rather as a
prediction of how the overall risk is distributed over all incident types by combining the
outputs of all classifiers. We will discuss how to interpret this conditional distribution in
Section 2.6, and show that it can lead to a sparse or diverse range of risks.

To gain insights on how details about a business can affect their risk of experiencing
various types of data breach, we start by deriving the distribution of risk over incident
action types for each industry sector. The results for nine business sectors, as well as the
overall distribution are included in Table 2.5; these results use only sector information in
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training the corresponding classifiers. Note that this is equivalent to simply measuring the
distribution of incidents in each sector, since the random forest classifier is using only a
single feature. There are a few observations on the risk distribution of different sectors. For
instance, information companies are more prone to both types of hacking, and less likely
to sustain damage due to physical incidents. In contrast, the health care industry has low
risk in hacking but high risk in physical attacks, especially theft. These observations are
intuitively to be expected, since information companies’ most valuable assets are generally
stored in non-physical formats (e.g. on the cloud), while the health care industry may still
use physical forms of archiving sensitive data such as patient information.

To highlight the additional gain we get by using more features than just industry sector
information, we also show in Table 2.5 a number of examples. In these cases our classifiers
can generate much more specific risk predictions. For instance, we can see that compared to
a typical information company, Russian Radio has less risk in malware, social, and hacking
through compromised credentials, but higher risk in error, misuse, and physical. Verizon
and Macon-Bibb County exhibit a more uniform risk across the board. The higher risk
for Verizon in error and misuse (also the lower risk of Macon-Bibb County in the same
categories) can be attributed to their respective sizes. As the number of employees grows
larger, so does the risk of data incidents due to human error and malevolent employees.
These much more refined and targeted predictions would not be possible without using
additional features. As we shall show later in Section 2.6.2, with proper thresholding the
actual incidents in these organizations were also correctly identified.

2.6 Dealing with rare events

Looking at Table 2.5, there is an imbalance in the overall frequency at which different
incident types appear in our data set. Social incidents occur rarely as compared to error
and hacking incidents. It is indeed possible that social incidents are rare events, and there-
fore should not be a priority when determining security policies. However, an important
challenge in building a risk assessment model is under-reporting of security incidents by
victims. Data breach reports are largely undisclosed, as organizations tend not to expose
their security posture information unless necessary. Our data set, VCDB, is a collection of
publicly disclosed breaches; these incidents have either been detected by external sources
(e.g. website defacement), or are incidents which an organization is obligated to report due
to the compromise of private customer information (e.g. payment information or health
records). Thus, not only incidents are commonly under-reported, but it is also safe to as-
sume the existence of selection bias in the data: each incident type is represented differently
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as a result of both availability and variation of detection methods, and the corresponding
industries’ disclosure policies. This bias could cause a tendency towards flagging and pro-
tecting from incidents that are reported more often, in turn resulting in poor protection
against less commonly reported incidents.

One way to address this issue is to ignore the frequency at which incident types are
reported. In other words, rather than looking at each row in Table 2.5, we could base
our decisions on the distribution of risk within each column. For instance, we can make
the observation that finance and insurance companies exhibit higher than average risk in
social incidents, even though the absolute risk in this category is the second lowest in its
respective row. By having different standards, or thresholds, of what signifies high-risk
in each category, we can alleviate the impact of potential under-reporting and reporting
bias in the data set and prevent the tendency of ignoring rare events by ensuring equal
protection among all incident types. Specifically, after training our classifiers and obtaining
risk outputs on the input data, we specify thresholds for each incident type separately, such
that the reduction in risk is consistent among all types; this is detailed in the next section.
Note that this normalization of risk scores is possible mainly due to the fact that we are
constructing a separate classifier for each incident type.

2.6.1 Interpreting the classifier output

After estimating an organization’s risk in each category by feeding its features into our
classifier, the next step is to interpret these scores by determining what range of values
indicate heightened risk. Based on our discussion in the previous section, this is achieved
by computing the ROC curve for each binary classifier on the training set, and choosing
the point that corresponds to a predefined true positive rate. We will use the family of
thresholds corresponding to these points to determine risky incident types for any arbitrary
organization, hereafter referred to as the risk profile. Selecting a more conservative set of
thresholds (i.e. higher true positive rate) will tighten the business’s security by advising
it to invest in a larger set of self-protection methods. This selection represents the trade-
off between the amount of resources an organization allocates to self-protection, and the
reduction in incidents it desires to attain. From this point on when referring to thresholds

used for deriving the risk profile, we simply mean the family of thresholds acquired for
a specific true positive rate. We find these thresholds by looking at the ROC curve of
each classifier, and finding the point that corresponds to a specific accuracy (e.g. 80%
true positive rate). Note that these thresholds are specific to our incident source (VCDB),
through its reporting rates on different incident types. Therefore, an incident data set with
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Figure 2.5: Detection rate vs. average number of high-risk incident types (top), and
distribution of organizations over the number of types in their risk profiles (bottom).

different reporting rates would yield a new set of thresholds.

2.6.2 Evaluation of risk profiles

For evaluation, we first obtain the risk profiles of organizations in our test samples, for
various sets of thresholds. We then calculate the accuracy of our risk assessment model,
by counting the number of incidents which belong to one of the risky types forecasted by
our risk profiles. An important advantage of our model is in reducing the number of pre-
dicted high-risk categories for each organization; achieving the same accuracy by advising
organizations to focus on a smaller set of incident types, will help achieve the same level
of protection by spending less resources on security through more informed allocation of
efforts for self-protection.

Figures 2.5a, 2.5c, 2.5e summarize our results over action, actor, and asset types, re-
spectively. Each point in the plot denotes the accuracy of risk profiles obtained from a
particular set of thresholds, versus the average number of risky types forecasted by these
profiles. To illustrate the improved performance of using our extended set of features, we
have also included the accuracy curve of a predictor using industry information alone (see
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Table 2.5). For action, actor, and asset types we can correctly forecast 90% of the inci-
dents in our data set by flagging, on average, 5.6 (70% of incident types), 4.0 (67%), and
3.5 (70%) incident types, respectively. In other words, we can achieve this accuracy by
eliminating at least 30% of all incident types. Using only business sector information, the
numbers increase to 6.5 (81%), 4.8 (80%), and 3.6 (72%). Our findings suggest that fine-
grained attributes of businesses can result in forecasts that are (on average) more accurate
than those obtained using industry information alone; this distinction is more visible when
predicting over action and actor categories.

Note that for a given point in the plot, the number of high-risk categories in the risk
profile can vary across organizations. Figures 2.5b, 2.5d, and 2.5f demonstrate the distribu-
tion of organizations over their predicted number of risky types, corresponding to the 80%
accuracy point in the top plots. Looking at Figure 2.5b we can see that using all features,
there are organizations whose risk profiles only consist of one or two incidents types, while
others may include up to seven types.

We present a number of these samples in Table 2.6, whose risk scores have already been
discussed in Table 2.5. The first two examples in the table belong to the information sector,
and the last two are public administration organizations. We have included the risk profiles
for these sample organizations using our extended feature set, as well as the risk profile
using only industry. For the information sector, the latter recommends focusing on both
types of hacking, as well as social incidents, whereas for public administration it deems all
but the second type of physical incidents risky. By contrast, using our extended feature set,
we are able to eliminate malware and social incidents as likely threats for Russian Radio,
and still provide an accurate risk profile. Similarly for the Internal Revenue Service we are
able to narrow down the list of threats to two types without losing accuracy. Macon-Bibb
County and Verizon are assessed to have a broad range of risks, more so than their respec-
tive industry average would suggest; this highlights that for these organizations they may
be attacked on multiple fronts, which may call for a different type of resource allocation
strategy. The point is that this type of fine-grained prediction is much more specific to an
organization itself rather than using the industry average as a proxy. We also note that in all
these cases our risk profile correctly captured the actual incident occurrences (as indicated
by an “×”).

It is worth noting that the grey cells in Table 2.6 not marked with an “×” are incident
types deemed likely by our classifier but unrealized in reality (not observed in our data set).
These should not be viewed as a discrepancy; rather, the relationship between a predicted
risk profile and actual incident occurrence is analogous to that between a dice with a certain
probability of turning up each side and the outcome of tossing the dice in a particular
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Industry/Organization Error
Hacking

Malware Misuse
Physical

SocialComp.
Other Theft Other

Cred.

Information

Russian Radio ×

Verizon ×

Public Administration

Macon-Bibb County ×

Internal Revenue Service ×

Table 2.6: Risk profiles for sample organizations, and their corresponding industries’
profiles. Gray cells signify high-risk types, and crosses indicate the actual incident.

Industry (number of samples) Error
Hacking

Malware Misuse
Physical

SocialComp.
Other Theft Other

Cred.
Manufacturing (39) 30.8 97.4 51.3 89.7 33.3 28.2 76.9 41.0
Retail Trade (63) 34.9 100.0 46.0 76.2 42.9 9.5 68.3 23.8
Information

Small (49) 22.5 100.0 100.0 65.3 12.2 8.2 38.8 59.2
Large (41) 36.6 100.0 80.5 70.7 36.6 0.0 51.2 87.8

Finance & Insurance
Small (53) 66.0 62.3 18.9 75.5 18.9 34.0 75.5 60.4
Large (91) 64.8 41.8 29.7 31.9 67.0 49.4 86.8 75.8

Pro., Sci. & Tech. Svcs (44) 54.6 72.7 27.3 50.0 27.3 45.5 36.4 43.2
Educational Svcs

Small (27) 81.5 44.4 14.8 63.0 40.7 92.6 25.9 33.3
Large (46) 89.1 34.8 2.2 19.6 41.3 82.6 41.3 26.1

Health Care & Social Asst
Small (97) 59.8 28.9 7.2 22.7 54.6 95.9 46.4 10.3
Large (97) 93.8 10.3 3.1 7.2 96.9 96.9 42.3 24.7

Accommodation & Food Svcs (33) 72.7 6.1 15.1 48.5 87.9 78.8 54.6 9.1
Public Administration

Small (41) 95.4 85.4 24.4 22.0 63.4 51.2 9.8 19.5
Large (96) 97.9 32.3 10.4 2.1 93.8 67.7 0.0 55.2

Overall (1426) 61.6 61.9 37.5 32.4 56.9 51.5 38.1 38.9

Table 2.7: Average risk profiles by business sector and size.
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random trial. In other words, in the example of the Internal Revenue Service, even though
misuse is the only incident that actually occurred, the result suggests that an error event
could just as well have happened. This is because in essence our classification constructs
risk profiles by extracting details about a business and examining actual incidents that have
occurred to other, similar companies. In this case, for organizations that share the same
business model as the Internal Revenue Service, error and misuse constitute the majority
of data breach reports; thus given the information available to us, both incident types are
regarded as high-risk.

To close this section, we display the average risk profile over action types of all organi-
zations, as well as average risk profiles over action types for different industry sectors and
sizes in Table 2.7. Each number in the table represents the percentage of organizations, for
whom the respective incident type is deemed risky. For instance, 61.9% of all organizations
have high risk in hacking incidents due to compromised credentials. However, for 100%
of organizations in the information sector this type of hacking poses a high threat. The risk
profiles are obtained for the 80% accuracy point in Figure 2.5a.

We can identify a number of trends in Table 2.7. As discussed previously, large com-
panies tend to have higher risk in error and misuse. Sectors that are more prone to error
include large health care, and both small and large public administration. Large health care
and large public administration companies also run a high risk of misuse. Incidents of error
exhibit a substantial presence in all business types, the minimum being 21.2% for informa-
tion companies. Note that overall, all of the incident types are flagged for at least 30% of
our samples, even tough their occurrence rate is widely different as evidenced in the last
row of Table 2.5. This is due to our choice of ignoring the a priori distribution of incidents,
as explained in detail in Section 2.6.

Comparing Tables 2.6 and 2.7 can help provide some insights on how having additional
features has helped eliminate (or introduce) possible risks for those sample organizations.
For instance, small information companies tend to have lower risk in social incidents, and
this has helped us eliminate this category as a possible threat for Russian Radio. We can
also see that small public administration and large information companies have a more
uniform risk among all types, attributed to the risk profiles for Macon-Bibb County and
Verizon, respectively. The Internal Revenue Service, a large public information company,
is expected to have less risk in the second type of physical incidents, as well as hacking
and malware. Note that one cannot completely explain the generated risk profiles by only
looking at business sector and size information alone, as they are a result of analyzing
the data set’s distribution over all the features in Table 2.2. For instance, large public
administration organizations tend to have higher risk in social events than small ones, even
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though this incident type has been flagged for Macon-Bibb County and not the IRS. In this
case, other features of the IRS have contributed to its lower risk.

2.7 Conclusion

Our results demonstrate how, and to what extent, can business details about an organiza-
tion help forecast its overall risk of data breach, as well as the relative risk of experiencing
different types of data incidents. We observe that it is possible to forecast future security
incidents with high accuracy. However, even though there is notable correlation between
organization features and the incident signatures in our data set, it is impossible to assert
with certainty the types of incident an organization is likely to face. We acknowledge the
fact that there is an inherent randomness in incidents suffered by organizations: no business
is prone to a single type of incident. As observed in our results, while risk in incidents such
as hacking and theft may vary largely across sectors, any organization is likely to experi-
ence incidents due to miscellaneous errors. Nonetheless, training our classifiers on a rich
and granular set of features can help construct more accurate risk profiles. The feature set
used in this chapter provides only high level information about the organization itself, and
not its security posture. Even though these features are the easiest to obtain, as they all are
publicly available, further information indicative of an organization’s security policies will
undoubtedly help narrow down its risk profile. Externally observable signals, such as the
ones used in [86], as well as inside information, may be used to infer a business’s security
posture from measurement on its policies, and how it manages its public and private assets.

Note that our model’s output is as good as the labels that our incident data set provides.
VCDB reports publicly disclosed data breaches, and therefore our model’s output is essen-
tially assessing the risk of experiencing a publicly reported incident. Whether these results
can generalize for data breaches that were not reported, depends on how representative our
incident samples are. There are a number of biases in self-reporting of incidents, and those
that are externally detected by a third party. For instance, incidents that involve customer
information such as credit card numbers are more frequently reported, and attacks such
as website defacement can be easily detected externally. However we might not have a
representative sample of incidents that result in the theft of trade secrets, and proprietary
information. Furthermore, the discrepancy in reporting rates of different incident types,
might lead to underestimation, or overestimation of risk in our assessments. While we
alleviate this issue in our treatment of rare events in Section 2.6 for estimating risk dis-
tributions, the problem remains for overall risk assessments. Moreover, we only focus on
discrepancies for specific incident types (by action, actor, and asset types), and do not take
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other factors into consideration. Other variables that may impact the reporting of incidents
include region (VCDB mainly focuses on US incidents), and business sector. A more com-
prehensive source of data breaches can improve our assessments, and allow us to use more
sophisticated machine learning methods in order to find factors that influence cyber-risk.

It is worth noting that incident types are often too ambiguous to act upon for a secu-
rity unaware business operator, hence the need for explicit, actionable security recommen-
dations. Note that there indeed exist frameworks providing such recommendations. For
example, the SANS institute’s critical security controls [124] provides categorizations of
security controls, where each category describes a specific action or policy that can be im-
plemented by a business in order to raise its security levels. Verizon uses this framework to
provide general security recommendations in its annual Data Breach Investigations Report,
and the SANS institute offers a partial mapping between these controls and the VERIS in-
cident categorizations. Translating risk profiles into actionable security recommendations
can further extend the practical utility of our risk profiles. Furthermore, our current data
set does not contain information on the monetary impact of each incident type. Obtaining
such information, and combining it with the cost of protection for each incident type, will
allow one to craft more economically-informed recommendations.
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CHAPTER 3

The Effects of Individual User Behavior on
End-Host Vulnerability State

3.1 Introduction

Unpatched software vulnerabilities represent a valuable resource for attackers. Exploits for
these vulnerabilities can allow miscreants to control the vulnerable hosts remotely (e.g. to
bootstrap a botnet or to launch distributed denial of service attacks) or to steal sensitive in-
formation (e.g. passwords, private keys, credit card numbers, medical records). Even small
populations of personal computers that fail to deploy a patch present a security threat for the
whole Internet, as networks of compromised hosts provide the computing infrastructure for
cyber crime operations [56,100] and the stolen sensitive information fuels the economic ac-
tivities conducted on underground markets [10,44]. Unpatched vulnerabilities also present
a threat for enterprises, as an outward facing machine with an exploitable vulnerability
can provide unauthorized access to the company’s internal network; for example, the Heat-
bleed bug has been used in several data breaches following its public disclosure [38,39,47].
Moreover, the emergence of exploit kits [56, 76], which provide exploitation capabilities
off-the-shelf, makes it easy for attackers to compromise large numbers of machines in an
automated fashion.

To counter these threats, software vendors create and disseminate patches that users
then install to remove vulnerabilities on their machines. Vendors have also increased the
automation of their software updating mechanisms [30, 50] in an attempt to accelerate the
patching process to sidestep possible tardiness on the part of the end users.

It follows that the vulnerability state of any given end host at any given time, reflected
in the number of known but unpatched vulnerabilities, and unpatched vulnerabilities with

known exploits, is the result of a combination of factors, including (1) the user’s updating
behavior, (2) the software products’ patch release timeliness with respect to the disclo-
sure of vulnerabilities, (3) the update mechanisms employed to deploy patches on user
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Findings Implications
+ The user behavior can be captured using

single-parameter distributions.
Users’ willingness to patch is memory-less (i.e. inde-
pendent of past decisions), and does not vary largely
across different countries.

+ The geometric distribution provides a good
fit, even for products that use silent updates.

This simple model significantly simplifies analysis of
the relationship between end-user patching behavior
and the resulting vulnerability state of their machines.

+ Silent updates lead to shorter windows of
vulnerability for end-hosts (as expected).

The product vendors can improve the vulnerability
state across the user population by adopting a silent
updating mechanism.

- Even with silent updates, the majority of
hosts have long windows of vulnerability
(somewhat to our surprise).

The large number of security flaws found in popular
client-side applications can limit the benefits offered
by silent updates.

- Many machines exhibit long windows of
susceptibility to known exploits.

Exploit kits present a direct threat to these hosts.

Table 3.1: Summary of findings. +/- indicate positive and negative impacts on security.

hosts, and (4) the frequency at which vulnerabilities are disclosed and exploits are devel-
oped. While the latter three elements have been extensively studied in the literature (see
e.g., [5,6,9,12–14,23,26,27,45,83,103,108,116,129,153] on vulnerability disclosure and
patch releases, [34, 93, 99, 114, 115, 149] on patch deployment, and [12, 18, 19, 45, 56, 122]
on exploits) relatively less is known about the impact and the factors influencing the in-
dividual user behavior. Prior work in this area has introduced several hypotheses on why
users might delay patching vulnerabilities [46,95], reported results from targeted user stud-
ies [142], and aggregated patching measurements for individual vulnerabilities over the
general population and over selected groups of users [99].

In this chapter, we present a broad field study of individual user behavior. Our study
includes a total of more than 400 000 end users over a period of 3 years (from 01/2010 to
12/2012), and their updating activities concerning 1822 vulnerabilities across four software
products (client-side applications). The updating automation employed by these applica-
tions ranges from prompting users to download or install patched versions to automated
(silent) updates, which require minimal user interaction. Our main goal is to understand
(1) how users behave on an individual level (as opposed to collectively), e.g. do they fall
into a few types, and what features characterize each type, and (2) how different updating
behaviors relate to the vulnerability state of their respective machines, and how this rela-
tionship differs across software products. Such an understanding would allow us to assess
the effectiveness of patching in protecting hosts against cyber attacks and its long-term
impact on the cyber-arms race.

To achieve the above goal, we employ a combination of empirical analysis and mathe-
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matical modeling. There are a number of significant challenges that arise in data processing
to tease out individual updating behavior. Specifically, on the user side, these include ob-
taining precise measurements and dealing with irregular user behavior such as installation
of multiple product lines. For specific products, extracting exact releases dates for succes-
sive software releases, and the number of security flaws associated with each application
version, is crucial to the accuracy of our analysis. In summary, the work presented in this
chapter makes the following three contributions:

• We propose methods for quantifying the user updating behavior from field measure-
ments of patch deployment.

• We conduct a systematic study of vulnerability patching, from the perspective of in-
dividual users (rather than individual vulnerabilities), and quantify the corresponding
vulnerability state of the users’ machines. Table 3.1 summarizes our findings.

• Building on insights from our measurements, we create and evaluate a parametrized
model for explaining individual patching behavior, and discuss its implications for
end-host security.

This remainder of this chapter is organized as follows. In Section 3.2 we review the
vulnerability life-cycle, and present our modeling approach. Section 3.3 describes our data
sets, and pre-processing steps taken to prepare them for analysis. Section 3.4 presents our
empirical results on modeling user behavior, and its implications for end-host security. We
discuss our findings in Section 3.5, and conclude in Sections 3.6 and 3.7.

3.2 Vulnerabilities from the perspective of end-users

Security vulnerabilities are recorded in public databases, such as the National Vulnerabil-
ity Database (NVD) [105]. In these databases, each vulnerability is assigned a unique
identifier, i.e. CVE-ID; for instance, the Heartbleed vulnerability [34] is identified as
CVE-2014-0160. Consequently, the vulnerability life-cycle is commonly modeled from the
perspective of individual vulnerabilities [12, 99], and prior measurement studies similarly
focused on quantifying per-vulnerability patching delays [34, 45, 99, 115, 149]. However,
because exploit kits include exploits for multiple vulnerabilities and fingerprint the targeted
hosts to determine which of these vulnerabilities are left unpatched [56, 76], the individual
vulnerability life-cycle does not completely capture the security threats that exploit kits
present to end-user machines.
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Figure 3.1: Evolution of number of vulnerabilities in successive Firefox versions (left),
and following a user’s update events (right). Each color represents a single version.

Our goal in this chapter is to study the vulnerability state of individual hosts, resulting
from disclosure and patching events across multiple vulnerabilities. Specifically, we aim to
estimate and model the duration when each host is vulnerable to at least one known exploit

and to study the relationship between a user’s promptness in installing software updates and
their security vulnerabilities over long observational periods. Our model for explaining a
host’s vulnerability state has two components: the product release dynamics, and the user
behavior. In this section we summarize the impact of each of these components and our
non-goals.

Product release dynamics The security posture of a product is determined by how of-
ten new security vulnerabilities are introduced in the product’s code, and how the vendor
responds by shipping patches to end-users. At the time of release, a product is prone to a
fixed number of (disclosed and undisclosed) security vulnerabilities. As time passes, undis-
closed vulnerabilities will be discovered, and the number of known vulnerabilities for the
product increases. Therefore, the number of known vulnerabilities for a product is influ-
enced by three processes: new product releases, generation of new software vulnerabilities
for each release, and the discovery and patching of vulnerabilities in subsequent versions.
Figure 3.1a depicts a sample scenario for four successive releases of Firefox, released at
times t = 0,35,50,75 (t = 0 corresponds to 2012-09-11). Firefox 15.0.1 is prone to six
vulnerabilities, all of which are undisclosed at the time of release. However, these vulner-
abilities are made public at times t = 34,36,53,76 (at t = 34 and t = 76, two vulnerabilities
are disclosed). Firefox versions 16.0.1, 16.0.2, and 17.0.0 resolve three, one, and two of
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these vulnerabilities, respectively.
Patches may be released before the official disclosure dates recorded in NVD. For ex-

ample, Nappa et al. [99] observe that most users patch vulnerabilities in Chrome and Fire-
fox browsers before disclosure. Such users are always protected from exploits that follow
vulnerability disclosures. However, when the vulnerability is disclosed before the patch or
when a user does not install the patch promptly, the user’s machine will be vulnerable. The
window of vulnerability spans the interval between the vulnerability disclosure date and the
patch installation date. If attackers create an exploit for the vulnerability during this win-
dow, the vulnerable hosts will be susceptible to attacks; such exploits are often included in
exploit kits, which are available to target large numbers of users on the Internet [56].

User behavior Even if the vendor releases patches for a product before or on the vulner-
ability disclosure dates, this does not protect users who run outdated product versions. A
user’s updating behavior reflects how often they update their products. For example, Figure
3.1b illustrates a sample user in our data set who installs the applications depicted in Figure
3.1a at t = 5,37,58,84, respectively. Note that with each update, the user inherits the set of
vulnerabilities in the new release.

We denote the version number of a specific product by integer i, with i = 0 denoting
the initial release at time t = 0. We denote the release time of version i by T i

r, and take
R(t) = max{i : T i

r ≤ t} to be the latest version available at time t. To model the behavior of
users, we assume that following the installation of a product, once an update is available,
the user waits for a random amount of time to perform an update. For example in Figure
3.1b, an update for the first version is made available at time t = 35, and the user initiates a
software update at time t = 37, therefore the user’s delay for the first update event is 2 days.
Similarly, the delay for the second, and third update events are 8, and 9 days, respectively.
Let T k

u be the time that the user initiates the kth update event, and take S k
u to be the delay

associated with that event, then:

T k
u =min{T i

r : T i
r > T k−1

u }+S k
u. (3.1)

The first term on the right-hand side of Equation 3.1 determines the first software re-
lease following T k−1

u , marking the earliest time the user can trigger a software update. Note
that the distribution of S k

u influences the user’s updating behavior; smaller values indicate
new versions are installed immediately after their release, ensuring that the latest updates
are always installed on the machine.

Note that a vendor can also affect the user’s behavior by facilitating the installation
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of updates, e.g. by providing an automatic update mechanism [30, 50]. Additionally, the
purpose of a software update (e.g. to patch security vulnerabilities, to fix other bugs, to
introduce new features) may also influence the user’s delay in installing the update.

Non-goals We exclude exploits for undisclosed vulnerabilities from our threat model.
Sometimes, vulnerabilities are exploited before their public disclosure in zero-day attacks
[18]. However, such exploits are not commonly included in exploit kits, as this would likely
result in the vulnerability’s discovery and public disclosure, and patching cannot prevent
these attacks. Additionally, we do not aim to quantify the risk of successful exploitation,
which also depends on the use of alternative defenses that can block exploits or make them
unreliable, e.g. intrusion prevention systems (IPS), address space layout randomization
(ASLR), or data execution prevention (DEP). Instead, we focus on the practical security
impact of vulnerability patching, which is the only defense that definitively eliminates the
threat posed by the vulnerability in end-hosts.

3.3 Data sets and their processing

Our study draws from a variety of sources that collectively characterize the users’ patch-
ing behavior, and allow us to assess the fraction of hosts susceptible to vulnerabilities and
exploits, at any time. These include Symantec’s Worldwide Intelligence Network Environ-
ment (WINE) [31], the National Vulnerability Database (NVD) [105], and release notes
from software vendors.

3.3.1 Raw data

Table 3.2 includes a summary of our raw data sets, which we will elaborate on in the
remainder of this section.

Patch deployment measurements The main data source required for a study on users’
patching behavior, is a collection of measurements drawn from a large population of hosts,
which can identify when each user has patched a vulnerability associated with the prod-
ucts under examination. The most common approach to obtaining such a data set is to
scan the IPv4 address space repeatedly, by sending packets that elicit a specific response
only from vulnerable hosts, in order to observe how these host are gradually patched
[34,93,114,115,149]. This method requires that (1) the vulnerable program accepts incom-
ing connections from the Internet, and (2) the program runs continuously. Consequently,
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Original data set Subset used
Hosts 9 122 830 426 031
Analysis Period 02/2008 - 07/2014 01/2010 - 12/2012
Events 170 920 450 11 017 973
Applications 10 4
Files 2579 1279
Vulnerabilities N/A 1822
Exploit Kits N/A 14
AV Signatures N/A 28
Exploited Vulnerabilities N/A 21

Table 3.2: Summary of data sets

this method is appropriate for measuring the patching of server software (e.g. OpenSSL),
but it would introduce substantial biases when examining the behavior of regular users,
who typically utilize client-side applications (e.g. Internet browsers, media players, doc-
ument readers and editors) and who may turn off their computers for extended periods of
time. Furthermore, because we aim to model the users’ updating behavior, we require a
data set that can provide the exact time a user has installed, or updated, a product, and the
exact application versions that have been installed at each event. Precisely identifying users
across repeated network scans is challenging. For example, when utilizing the IP address
as a unique host identifier, network address translation (NAT) or dynamic IP address allo-
cations introduce confounding effects, by respectively combining multiple hosts under one
address or by producing multiple addresses for a single host.

To sidestep these challenges, we utilize a corpus of patch deployment measurements
collected by Nappa et al. [99], on user hosts including average users, as well as profes-
sionals, software developers, and security analysts, and mostly consisting of Windows
XP/Vista/7 machines. These measurements were conducted by observing the installation
of subsequent versions of different applications, and are derived from the WINE data set
provided by Symantec [31]. The corpus includes daily measurements of vulnerable host
populations, collected between 02/2008 and 07/2014 on 9 122 830 hosts worldwide. The
measurements can be used to map records of binary executables, present on these hosts,
to the corresponding application version. The set of security flaws affecting each version
are extracted from NVD [105], using the Common Vulnerabilities and Exposures identi-
fier (CVE-ID) of the vulnerability. For this study, we exclude users with unreliable event
timestamps (explained in detail in Section 3.3.2). Furthermore, we analyze users’ patch-
ing behavior over four of the products included in this data set, namely Google Chrome,
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Mozilla Firefox, Mozilla Thunderbird, and Adobe Flash Player, and only include hosts that
have recorded more than 10 events for at least one of these applications. This results in
a data set consisting of 11 017 973 events over 426 031 unique hosts. Note that 99.3% of
these events are records starting from 01/2010 until the end of 12/2012, which effectively
reduces our study to a span of three years.

Exploits Although an open vulnerability is an important signal indicating the application
could be exploited, this potential threat does not necessarily mean that the vulnerability
will be exploited. In fact, few vulnerabilities are exploited in the wild; Nayak et al. [102]
estimate that the average fraction is 15%. Therefore, in order to analyze the user patching
behavior when the exploit is found in the wild, we collect the data from (1) public descrip-
tions of Symantec’s anti-virus signatures [136], and (2) metadata about exploit kits from
Contagiodump [40]. The signature descriptions portray the threats detected by Symantec’s
anti-virus products, e.g. trojans, viruses, worms. If a security threat exploits a known
vulnerability, the corresponding signature description indicates the CVE identifier of the
vulnerability. From these descriptions, we collect 28 unique threats that exploit at least
one of the vulnerabilities in our corpus, which contains 15 different vulnerabilities. Conta-
giodump includes the list of vulnerability exploits included in a number of popular exploit
kits, along with the approximate inclusion dates.

Software release notes To find the first time a vulnerability is introduced in a product,
and the subsequent patch time, we need to know the exact release dates for all product
versions. For Firefox, Flash Player, and Thunderbird, we manually scrape release history
logs, either provided on the vendor’s website, or collected by a third party, to find out when
each version is released to the public. We were unable to locate the historical release notes
for other products; we therefore develop an automated technique, described in detail in
Section 3.3.2, to infer the release dates for these products from field measurements.

3.3.2 Curated data

Our raw data presents several challenges for modeling the users’ patching behavior and for
evaluating the corresponding security threats. In this section we explain how we process
and integrate the multiple data sets used in this study. Specifically, we explain how we
extract reliable event timestamps from the patch deployment measurements, and how we
process these events to detect the state of a host, i.e. the set of software installed on the
machine, at any given time during our observation period. We describe a novel technique
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for inferring software release dates from patch deployment measurements. This technique,
coupled with manual scraping of vendor release notes, allows us to map a host’s state
transitions to the user’s updating behavior. We also describe a technique for mining the
release notes to determine the purpose of the update (e.g. security patch, new features).
Finally, we discuss challenges introduced by irregular user and vendor behavior and how
we resolve them.

Event timestamps Events in the WINE data set are characterized by three timestamps:
report time (local time when the event took place), submission time (local time when clients
submitted the report to Symantec), and server time (the time when server received the re-
port). The server times, which are recorded in a consistent manner, were reported in [99]
(we do observe that clients often batch reports and submit them later, often several days
after events occurred). In contrast, client timestamps are not recorded in a controlled envi-
ronment, and may be affected by unsynchronized clocks or by data corruption. To select a
set of precise measurements, we define two conditions:

|tsubmission− tserver| < 1 day (C1)

This condition aims to eliminate hosts with unsynchronized clocks, as the difference
between the times when the submission is sent and received should reflect only the time
zone difference between the two hosts and the Internet propagation delay. This condi-
tion alone does not completely rule out incorrect local time, e.g. 1969-12-31 23:59:59

(which have resulted from data corruption or from the Symantec agent’s inability to read
the local timestamp). We eliminate these hosts by applying a second condition:

|tsubmission− treport| < 30 days (C2)

40 755 519 update events, recorded on 2 535 966 hosts, satisfy both conditions. We
further filter out users with fewer than 10 events for all the products included in our analysis.
This leaves us with a curated data set of 11 017 973 events from 426 031 hosts.

Exploit release dates Similarly, we filter out all exploit records from Contagiodump that
do not have a release date or that have dates with granularity of a year. This results in
13 exploited vulnerabilities present in 14 exploit kits. After combining them with our
other sources of exploit information, we obtain exploit release dates for 21 vulnerabilities.
For these exploits, the median time between a vulnerability disclosure and an exploit kit
targeting the vulnerability is 17 days.
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Product Version Timestamp
Firefox 3.6.13 2010-12-17
Firefox 4.0.0 2011-01-20
Firefox 3.6.15 2011-04-01
Firefox 3.6.16 2011-04-27
Firefox 4.0.1 2011-05-09
Firefox 3.6.17 2011-05-25
Firefox 5.0.0 2011-07-05
Firefox 7.0.0 2011-09-10

Table 3.3: Sample event sequence from a WINE user

Host states Each update event corresponds to a (machine-ID, hash, timestamp) tu-
ple indicating that a certain file has been observed on the host on the given date. We use the
method adopted in [99] to map each file hash to a certain product, and its corresponding
version number. It follows that each observation can be translated into a tuple containing
(machine-ID, product, version, timestamp), allowing us to detect the installation
of a software on the host. However, the WINE database provides no information on when
a product has been removed, and we have to rely on future observations to extrapolate such
events. A naive way to address this issue is to use successive events concerning different
versions of the same product. As an example, if Firefox 3.6 is detected on a host, followed
by the installation of version 4.0, we may deduce that the user updated the software and
the former version is no longer present on the machine. However, it is possible to install
multiple lines of the same product in parallel, in which case we would observe updates of
both lines concurrently. Table 3.3 includes observations from a single host, which suggest
that the user has installed Firefox 3.6 in parallel to other product lines.

We utilize the following heuristic to update the state of a machine after each event
observation. Assume that an event at time t signals the installation of version v belonging
to product line `, and we have detected the presence of versions S t− = {(`1,v1), . . . , (`n,vn)}
on the machine prior to the event. For each `i in S t− , we look at all following observations
within 6 months of the current event, and if none of them points to the same product line,
we remove the (`i,vi) pair from S t− . We then add the (`,v) pair, or update the corresponding
pair in S t− if the same product line is already installed on the host, to obtain the state S t+

after the event.
After processing all events, we obtain a host’s state S t (the set of software installed

on the machine), at any time t. We then take the union of vulnerabilities that affect each
version in S t from NVD, as the set of vulnerabilities present on the host. The subset of
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vulnerabilities that have already been disclosed, and that have been exploited, represent
the machine’s security posture at time t. The most important feature we extract from this
times series is the portion of time during the observation period that the user has at least
one known vulnerability on their machine.

Version release dates For three of the products examined in this chapter (Firefox, Flash
Player, and Thunderbird) we can obtain the official release dates for each version by scrap-
ing version release notes from the vendor, or release histories collected by a third party.
For the remaining product (Chrome), we tap into our patch measurement data to estimate
release dates for each version. In previous work, Nappa et al. [99] identify the release date
automatically, by selecting the first date when the version appears in WINE. However, we
found that this approach can be unreliable in some cases. For example, Firefox has a rapid
release cycle, with new official versions released every 6 weeks and three additional chan-
nels for early releases [26]. The binary that corresponds to a new version might appear in
the wild half a year before it is made available on the release channel. Consequently, we
found many instances in our data when update events happen before the actual release date
to public. Another issue is that updates can be made available in stages, to different seg-
ments of the population, so that a large portion of users update at a later date. For example,
Firefox 9.0.1 is documented to be released on 2011-12-21. But in reality, it was available to
10% of update requests from clients between 2011-12-28 and 2012-01-03, then 50% from
2012-01-05, and then all requests from 2012-01-12.1

On release dates, we typically observe a high volume of patching events. We thus first
rank dates by the number of patching events, and then identify the patch release date as the
earliest day among the highest ranking dates. For this study, we extract the top 10 days with
the highest number of patching events, and take the earliest to identify the release date. We
manually compared our results with a few dates that were reported in release notes, and
found matching dates for all the versions we investigated, including Firefox 9.0.1.

Using the curated release dates we can obtain the patch deployment date for each of
the CVEs present in our data set. For each product line affected by a CVE, we extract
the release date of the first version unaffected by the vulnerability, and take the minimum
of these dates to be the patch deployment date. For Chrome, Flash Player, Firefox, and
Thunderbird, the median patch deployment date is 2, 8, 1, and 1 day(s) before the CVE dis-
closure. Therefore, software vulnerabilities are typically patched before they are publicly
disclosed. However, as we will discuss in Section 3.4.2, this does not provide an adequate
margin for users to update their software before the vulnerability is made public.

1Private communication with the Firefox release team.
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User updates There are certain challenges to applying the model in Section 3.2 to real-
world data. Extracting the user’s delay in applying updates is non-trivial when there are
multiple product lines present on the machine, or when the user downgrades to an earlier
release. Moreover, multiple product lines of a software are sometimes developed in parallel
by the vendor (e.g. Flash Player 10, and 11 lines), and obtaining the next release following
each version is not a trivial task.

To study the frequency of irregular user behavior (parallel lines, version downgrades),
we first obtain the number of events that result in the presence of more than one product
line on a host. For Chrome, Flash Player, Firefox, and Thunderbird, 0.9%, 4.9%, 1.2% and
0.3% of events lead to the installation of more than one product line. The higher rate for
multiple lines in Flash Player can be attributed to the fact that Flash Player plugins differ
on various browsers. For example Chrome has an integrated Flash Player [54], whereas on
Mozilla an external plugin needs to be installed [94].

For Flash Player, we further analyze the number of vulnerabilities associated with each
product line. On average, in the presence of multiple product lines, 79.5% of vulnerabilities
come from the lowest product version installed on the machine. Therefore, for our analysis
of user behavior, we take the lowest application version on the machine as its current state,
and only consider a new event as a version upgrade if it updates the lowest installed version.
Note that for evaluating whether a machine is prone to a known vulnerability, we will still
use the complete set of installed versions.

We perform a similar analysis on the number of version downgrades, and found that in
1.3% of events, users had downgraded the software on their machines. Given the rarity of
these events, we concluded that their impact on our results are negligible.

Finally, for each state transition that updates the lowest installed version, we need to
extract the user’s delay in applying the software update. As detailed in Section 3.2, we first
take the timestamps for the current, and previous update events (denoted by T k

u and T k−1
u ),

and extract the the first time an update was published for the previously installed version
(denoted by Tr). The user’s delay is then S k

u := T k
u −max(T k−1

u ,Tr). This means that we
measure the users’ delay from the day an update is available for the installed version, or the
product installation date, whichever comes last; the latter takes effect when the user installs
an outdated version. Note that successive software versions do not necessarily follow a
chronological order, as multiple product lines are often developed in parallel. For each
release, we take the next version, ordered by the version number, in the same line to be
the update for that release. For end-of-life releases in each line, we pick the first version
in subsequent product lines that has been deployed after the end-of-life release as the next
logical update.
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3.4 User behavior and its security implications

In this section, we characterize in detail users’ patching behavior, and how that maps to
their respective machine’s vulnerability state, as measured by the fraction of time a known
but unpatched vulnerability exists on a machine. This definition can also be extended to
exploitable vulnerabilities, i.e. the fraction of time a known, unpatched vulnerability with
a known exploits exists on a machine.

3.4.1 Modeling a user’s patching delay

After processing our curated patch deployment measurements, we derive the sequence of
patching delays (S k

u) for every (user, product) pair. Assuming that the user’s update
delays are drawn from a probability distribution specific to the (user, product) pair, we
need to determine its type and estimate its parameters. Note that some updating mecha-
nisms do not require user intervention, such as silent updates in Chrome. However, even
a silent updating mechanism may fail to deliver updates promptly (e.g. if the host does
not have network connectivity, if the updating daemon encounters an error and exits, or if
the user disables silent updates), so we expect that silent updates will also exhibit some
variability in a large user population.

The exponential distribution and its discrete counterpart, the geometric distribution,
are widely used to model random delays. A geometric distribution for S k

u indicates that
a user will perform an update every day with probability q, chosen independently of the
outcomes on previous days. In previous work, the survival function for number of hosts
that have not yet applied a security patch has been modeled as an exponential decay pro-
cess [114, 115]. A geometric distribution for a user’s delay in applying a software update
leads to the same model for the survival function over the whole population. We test this
hypothesis by performing a chi-squared goodness-of-fit test between each sequence and
a geometric distribution whose parameter is calculated using a maximum likelihood es-
timate. The chi-squared test determines if the empirical distribution of the data and the
hypothesized distribution, i.e. the geometric distribution, are statistically different, by bin-
ning observations and comparing the expected and realized number of observations in each
bin. The output of the test is a p-value that indicates whether there is a substantial differ-
ence between the expected and observed frequencies. For small p-values we can reject the
null hypothesis “the samples are drawn from a geometric distribution”, meaning that the
sequence is possibly generated by a different family of probability distributions. Table 3.4
summarizes our findings, for each product we have included the number of users tested,
and the percentage that return p-values higher than significance levels of 5% and 1%. For
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Product Users > 0.05 > 0.01
Chrome 167592 87.8% 97.6%
Firefox 21174 74.6% 93.0%
Flash Player 7722 98.2% 99.9%
Thunderbird 1857 86.5% 97.5%

Table 3.4: Chi-squared test results over update delays of different user. We cannot reject
the hypothesis that these sequences are drawn from a geometric distribution.

Product Chrome Firefox Flash Thunderbird
Chrome 1.00 0.11 0.13 0.08
Firefox 0.11 1.00 0.33 0.29
Flash 0.13 0.33 1.00 0.18
Thunderbird 0.08 0.29 0.18 1.00

Table 3.5: Correlation between patch times of products

the test, we ignore users with fewer than 20 update events, as a well established rule of
thumb for using the chi-squared test states that the expected frequency in each bin should
at least be five [74]. Among the inspected client-side application, the behaviors of Fire-
fox (Chrome) users exhibit the lowest (highest) match with the geometric distribution, with
74.6% (98.2%) of samples receiving a p-value higher than the 0.05 significance level. Nev-
ertheless, our results show that for the majority of users, and across all inspected products,
the geometric distribution is a good fit.

We also investigate whether the user patching behavior is consistent across different
applications. For instance, does a user who updates Chrome frequently also exhibit lower
patching delays for Flash Player? To test this hypothesis, we detect common users for
each product pair, and calculate the Pearson correlation coefficient between their average
patching delay, measure in days. Table 3.5 displays our results. The patching behavior for
Chrome is somewhat independent from the patching behavior corresponding to other appli-
cations, since automatic updates minimize the user’s control over update events. However
for other products (which prompt users for download/installation of updates for a portion
of our observation window), we observe higher correlation between the estimated profiles.
Note that the highest correlation between profiles of different products is 0.33. While this
value is statistically significant, it is not high enough to conclude that a user’s delay in one
product can be inferred from its profile in others; users that have installed multiple products
on their machines, tend to update one more frequently, e.g. as a result of higher usage due
to personal preference.
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Country Chrome Firefox Flash Thunderbird
AU 10.6 16.3 30.1 15.1
CA 10.4 15.6 30.7 14.6
DE 10.9 15.3 24.9 14.7
FR 10.4 16.2 28.8 14.4
IT 8.8 15.9 26.1 13.5
JP 13.0 14.2 26.6 16.3
NL 10.4 15.2 28.5 14.7
PL 8.2 13.8 26.9 14.2
UK 9.2 15.7 28.3 13.9
US 10.5 15.5 32.1 15.4
All 9.9 15.6 29.7 15.2

Table 3.6: Average patch times by country.

Additionally, to analyze how a user’s geographical location impact their patching de-
lays, we group users by country, and calculate the average time to patch for the top 10
countries in our data set (the countries with the largest numbers of users). Table 3.6 dis-
plays our findings; the last row lists averages over the entire population. Note that Chrome
uses silent updates to deliver patches to end-users, and therefore has the lowest patch times
among all products. Firefox and Thunderbird versions prior to 15.0, and 16.0 (released
on 2012-08-28, and 2012-10-09, respectively) download updates in the background and
prompt users for installation. Flash Player versions prior to 11.2 (released on 2012-03-28)
prompt users to download and install updates, and consequently exhibit the longest patch
times. All three products switch to silent updates after the indicated dates, however these
changes do not apply to the majority of our samples. For all four products, the patching
behavior is remarkably consistent across the top 10 countries in our data set, suggesting
that cultural differences among the examined countries do not play a significant role in the
user patching behavior.

The above results essentially suggests that the users’ response to new product releases
are fairly simple-minded, in the sense that they can be well-modeled using a one-parameter
distribution: an end-user will initiate a software update at every date with probability q,
chosen independently of other variables, such as the outcome for previous days, and the
types of improvement incorporated into the application since their last update. The average
patching delay of the user is then given by 1−q/q. This single-parameter characterization
greatly simplifies our analysis on the security implication of user behavior. In what follows,
we examine the relationship between patching delays and the vulnerability state of a given
host over long observational periods; note that we shall only rely on sorting users by their
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Figure 3.2: Scatter plots of normalized vulnerability duration vs. average user delay in
days (top), and the mean, and first and third quartiles for different user types (bottom).

Each point in the scatter plots corresponds to a single user. In 3.2c the yellow/red dots are
users active in 2010/only active starting 2011.

average patching delay rather than the actual distribution of their delays.

3.4.2 Vulnerability state

We take the fraction of time that a host remains susceptible to at least one known vulner-
ability as an indicator of its security posture or vulnerability state. Note that hosts in our
data set are observed during different time periods, which vary both in length and the start-
ing point. Therefore, these indicators are calculated over the observation period specific to
each individual host.

Figures 3.2a, 3.2c, and 3.2e display scatter plots of this vulnerability measure for
Chrome, Firefox, and Flash Player, respectively. For each figure, we have randomly se-
lected 5000 users, where each point represents one user. A point’s x and y coordinates
correspond to the average patching delay of that host, and its measured vulnerability state.
The histogram at the bottom of each plot shows the distribution of users with respect to
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their average patch time; these are generated using the entire population of users with an
observation interval at of at least one year, resulting in 140 588 sample points for Chrome,
64 016 for Firefox, and 55 042 for Flash Player. We have not included Thunderbird in this
analysis, since the 5243 samples we were able to gather were not enough for an accurate
demonstration. The plots suggest that users with higher delays experience longer vulner-
ability durations compared to those with lower patch times. Furthermore, we see a higher
concentration of users who patch quickly for Chrome and Firefox.

Vulnerability state as a function of average patching delay To quantify the relationship
between user behavior and vulnerability state, we further group users with similar behavior
by sorting them according to their estimated patching delay, and create bins consisting of
500 users. We then calculate the median vulnerability duration, along with the first and
third quartiles in each bin, allowing us to quantify the vulnerability state as a function of
users’ patching behavior; the results are illustrated in Figures 3.2b, 3.2d, and 3.2f. We
observe that a user with equal delays in each product experiences similar vulnerability
durations. At 20 days, the average user will remain vulnerable for about 60% of the time,
at 40 days this value increases to 80%.

Across the three products, Chrome users clearly are more likely to have a lower patch-
ing delay (as shown in the histograms), likely the effect of silent updates, whereas Flash
users are the most tardy. Interestingly, given the same average delay, the amount of vulner-
abilities a user faces is very consistent across all products. Note that these relationships are
shown as functions of the average patching delay, which we have taken as a factor for sort-
ing users; this consistency further validates the single-parameter characterization of users,
detailed in Section 3.4.1.

Outliers In Figure 3.2c we see high variability in vulnerability durations for users with
similar patch times. Upon further inspection, we discovered two vulnerabilities for Firefox,
CVE-2010-0654 and CVE-2010-1585, that were published on 2010-02-18 and 2010-04-
28, but first patched on 2010-07-20 and 2011-03-01, respectively. As a result, users that
have been observed during 2010, have remained vulnerable for most of that year, regardless
of their behavior. In Figure 3.2c, we have used a lighter color to display hosts that have
been observed at any time during 2010. The rest of the hosts (those that have opted in after
2010), exhibit similar variability to Chrome and Flash Player users.

We also notice other outliers in the scatter plots in Figure 3.2, those with much lower (or
higher) vulnerability durations compared to other similar users. Upon further inspection,
we concluded that the majority of these sample points belong to users who suddenly stop
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updating their software. If these users get stuck at a vulnerable release, then they will have
a higher than normal vulnerability duration, otherwise they will remain safe for most of the
observation period. Moreover, for Firefox, a significant portion of outliers are users who
install new releases before their official release dates, and are therefore less susceptible than
other typical end-users.

Comparison across products and the limited benefit of silent updates We further cal-
culated, for each product, the average vulnerability duration, over all users of each appli-
cation in our study. Note that these values are affected by the following properties of each
product: (1) the distribution of different user types (the histograms in Figure 3.2), and (2)
the expected vulnerability duration for different users (Figures 3.2b, 3.2d, and 3.2f). For
Chrome, Firefox, Flash Player, and Thunderbird, the average host was susceptible to at
least one vulnerability for 53.5%, 59.9%, 68.7%, and 55.7% of days. It follows that the
improvement in security provided by different updating mechanisms in these applications
is marginal.

A host’s vulnerability state is influenced by two conditions. First, for a single vulnera-
bility, the patch should be applied before the vulnerability is publicly disclosed. Neverthe-
less, even if the user misses the disclosure date, the damage can be minimized by prompt
patching, since the amount of time the hosts remains vulnerable is proportional to its patch-
ing delay. However, when taking into account successive vulnerabilities, if the user does
not apply the patch before the next vulnerability is disclosed, the clock is reset, in the sense
that they will now have to apply a new patch to secure their machine against attackers.

Quantitatively, for Chrome and Firefox, our data set includes 124, and 114 vulnera-
bility disclosures between 2010 and 2012, resulting in an average of approximately 10
days between successive disclosures. However, our estimated results show that the average
patch times for users of Chrome and Firefox, is 9.9 and 15.6 days, respectively, meaning
that users often cannot patch a vulnerability before the next one is discovered. For Chrome,
adopting silent updates does not seem to provide the necessary margin to see any significant
effect on the vulnerability duration of hosts, meaning an effective solution for vendors is to
lower the amount of vulnerable code introduced into the product, in addition to facilitating
the updating process for users.

Breakdown of the vulnerability window Note that the vulnerability of a machine can
be caused due to the vendor’s failure to release a patch before a vulnerability is disclosed,
or the user’s negligence in installing the patch. To further study the degree of control
that users have over the vulnerability state of their machines, we examined the portion
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Figure 3.3: Scatter plot (left) and mean, and first and third quartiles for exploited
vulnerabilities of Flash Player.

of the vulnerability window caused by the latter. We found that, summed over all users,
for Chrome, Flash Player, Firefox, and Thunderbird, 59.3%, 61.6%, 47.9% and 55.7%
of days where a machine was susceptible to a known vulnerability was caused by user
negligence. This means that a significant portion of the vulnerability window is incurred
by the software vendor, and prompt installation of software updates can roughly cut the
vulnerability duration of end-users by half.

3.4.3 Susceptibility to vulnerability exploits

Even though we consider being prone to known vulnerabilities as a security risk, this does
not necessarily translate into an imminent threat for the user, as the machine can only be
breached through a real exploit. However an unpatched vulnerability that has a known
exploit presents a direct threat to the host. If the host has such a vulnerability, and the
user navigates to a webpage that embeds targeting and redirection code from a kit that has
bundled the vulnerability exploit, the host will likely be infected [56], often without the user
noticing the fact. We perform a similar study on the percentage of days that a host remains
susceptible to an exploitable vulnerability. Figures 3.3a and 3.3b display the scatter plot
and vulnerability trends for 15 exploits of Flash Player, which is installed on 17.4% of
the hosts in our data set. We did not have a sufficient amount of exploits for Chrome and
Firefox (we were only able to find one known exploit for Chrome, and two for Firefox) to
perform a similar analysis.

Comparing these plots to Figure 3.2, we observe the same trend for the correlation
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between average patch times and vulnerability states. However, for similar user patch-
ing delays, we generally see lower risk for known exploits, compared to disclosed and
unpatched vulnerabilities. This is to be expected, given the fact that each Flash version suf-
fers from only a few exploited vulnerabilities at most. Nevertheless, we observe that many
hosts in our data set are susceptible to known Flash exploits more than 50% of the time,
highlighting the threat that exploit kits present to end-host security, and further supporting
our findings from Figure 3.2

3.5 Discussion

Our results represent a first step toward understanding the deployment-specific barriers for
updating software. We observe that user behavior can be modeled well using a simple
and elegant mathematical model, which depends on a single parameter: the user’s average
patch deployment delay for a given product. We do not observe clusters of users with re-
spect to the patching delay or the vulnerability state. Moreover, the willingness to patch
does not vary significantly across different countries. However, users seem to exhibit dif-
ferent patching behaviors for different products, suggesting that vendors may be able to
influence the users’ patching delays. For example, Figure 3.2 suggests that the vulnera-
bility duration for users of Flash Player exhibits a lower variability than for Chrome and
Firefox users, despite the lack of a silent updating mechanism. This consistency may result
from the fact that users are compelled to upgrade when sites that provide streaming media
content remove backward compatibility for older Flash versions. A deeper understand-
ing of these barriers could guide enhancements to software updating processes, leading to
improvements in users’ security posture.

The simple model that appears to govern the users’ behavior significantly simplifies the
analysis of optimal patching strategies. Prior work in this area often makes unreasonable
assumptions, e.g., that, once a patch has been created and tested, its deployment is instanta-
neous [107]. Such analytical modeling frameworks may also enable comparing the impact
of various design choices when implementing software updating mechanisms for the large-
scale distributed systems of the future (e.g. the Internet of Things), where user behavior is
likely to play a key role.

3.6 Related work

Patching behaviors of both end-users and servers, and the role of vendors in the soft-
ware updating process, have been extensively studied in the literature, through case studies
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of specific vulnerabilities, and comprehensive examination of various products and soft-
ware flaws. Moore et al. [93] probed hosts infected by the Code Red worm and found a
slow patching rate until the worm began to spread again. Rescorla [115] studied a 2002
OpenSSL vulnerability and observed two waves of patching: one in response to the vul-
nerability disclosure and one after the release of the Slapper worm that exploited the vul-
nerability. Ramos [114] analyzed several remotely-exploitable vulnerabilities and reported
a slow decay rate in some cases and some vulnerabilities that did not decay at all. Yilek
et al. [149] scanned OpenSSL servers affected by a 2008 key generation vulnerability in
the Debian Linux and found a high patch rate in the first 30 days, followed by patch-
ing waves for the next six months. Durumeric et al. [34] showed that more than 50% of
servers affected by the recent Heartbleed vulnerability in OpenSSL remained vulnerable
after three months. Zhang et al. showed that, even after patching OpenSSL, most web sites
remained vulnerable to a man-in-the-middle attack because they had not revoked certifi-
cates that may have been compromised owing to Heartbleed [151]. The rate of updating is
considerably higher for systems that employ automated updates [30, 50]. Dübendorfer et
al. [30] suggested that Google Chrome’s silent update mechanism is able to update 97% of
active browser instances within 21 days. Gkantsidis et al. [50] concluded that 80% of Win-
dows Update users receive patches within 24 hours after their release. Nappa et al. [99],
measured vulnerability decay in 10 client-side applications and identified security threats
presented by multiple installations of the same program and by shared libraries distributed
with several applications.

However, the factors that delay vulnerability patching are not well understood. Schnei-
der et al. [95] proposed several hypotheses, including an under-appreciation of risks and a
fear of destabilizing other software. Frei et al. [46] reported a typical Windows user must
manage 14 update mechanisms (one for the operating system and 13 for the other software
installed) to keep the host fully patched. Vaniea et al. [142] suggested that negative experi-
ences with past updates affect the users’ willingness to deploy patches. Tajalizadehkhoob
et al. [137] present an empirical analysis of security and patching practices in shared host-
ing providers, identify four latent factors that capture security efforts, and investigate their
impact on compromise rates.

On vulnerability discovery models, Alhazmi et al. [5] examine four different vulnera-
bility discovery models, and fit the proposed models using actual data from three operating
systems; they are then evaluated using chi-squared tests and the Akaike information cri-
teria; demonstrating that four of the examined models are a good fit for real world data.
Anbalagan et al. [9] model the discovery of vulnerabilities as a Poisson process. The vul-
nerability disclosure interval is thus exponentially distributed, and the parameter of the
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exponential distribution is chosen to follow the Gamma distribution. The model is further
tested using Firefox and SeaMonkey.

3.7 Conclusion

In this chapter we have conducted an in-depth analysis of the dynamics between vendors
and consumers when it comes to software security. To the best of our knowledge, this is the
first study on how individual behavior can influence the security state of a user’s machine
over long observational windows, where the continuous discovery of software vulnera-
bilities, patch deployment by vendors, and the installation of patches, create windows of
opportunities for malicious entities to exploit open vulnerabilities on a user’s machine. We
have shown that frequent updating, and steps taken by vendors to speed up the installa-
tion of software patches on hosts provides marginal benefits, especially when the rate at
which new vulnerabilities are introduced into the product’s code is high. Consequently,
developers should exercise due diligence when shipping new products to end-users, as the
detrimental effects of releasing vulnerable applications to the public often cannot be elimi-
nated by prompt patch deployment.

Although we have shown that users’ behavior can effectively be explained using a sim-
ple single-parameter model, we are not able to build similar profiles for vendors. This is
partly due to lack of a large data set on software vulnerability cycles. The set of unique
vulnerability disclosures and patch deployments concerning the products under examina-
tion was to small to carry out a comprehensive study on product behavior. Such an analysis
could close the loop when assessing the security posture of an end-user, by predicting the
host’s vulnerability state across different products, or for new products entering the market.
Furthermore, predicting a user’s profile by compiling a set of features that can explain their
behavior, such as profession and Internet connectivity, is another direction for extending
the current study.
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CHAPTER 4

Numerical Fingerprinting of Internet Hosts

4.1 Introduction

The development of open-source network scanners [35,106] has provided researchers with
large amounts of raw information on Internet hosts, which can be used to reveal miscon-
figured servers, uncover hosts susceptible to specific software vulnerabilities, and collect
statistics and trends on adoption of various protocols and technologies. Moreover, the di-
verse set of measurements on individual or groups of hosts, resulting from these global
scans of the Internet, can be leveraged in machine learning models for a wide variety of
learning tasks, including supervised classification, e.g. for quantifying maliciousness, or
for forecasting infection, as well as unsupervised modeling of factors that drive the ob-
served attributes of an arbitrary host.

At the same time, neural networks and deep learning methods have gained popularity
in the area of AI and machine learning, due to their success in many supervised and un-
supervised learning tasks. Numerous deep learning techniques have been developed in the
past few years, outperforming the previous state-of-the-art learning methods in their re-
spective fields [4,51,52], based on their performance (e.g. accuracy for classification tasks,
or log-likelihood estimates for generative models) on standard data sets. For instance, con-
volutional networks have been successfully applied to many image recognition tasks, and
recurrent neural networks have gained popularity for natural language processing.

In this study, we develop a framework for scalable analysis of Internet hosts by leverag-
ing advances in both network scanning and machine learning algorithms. This framework
can prove useful in a variety of applications involving, for example, visualization of data
sets, supervised classification, and quantifying hosts similarities. We demonstrate these
using three specific case studies: (1) detection of (actively or potentially) malicious IP
addresses, (2) inferring missing attributes of a host, and (3) categorizing networks.

Our proposed framework can be used on any network scan data set; in this chapter, in
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order to develop and evaluate the performance of our framework, we tap into Censys [32],
a large database of raw information obtained by regular scans on 20 different ports, pro-
viding us with parsed scan results, in addition to routing and geolocation information, on
roughly 150 million IPv4 addresses. One of the challenges we encounter in applying ma-
chine learning algorithms to host data is the need to first extract a numerical representation
of the available information. Hence, we will first develop a novel semi-automated tool
for extracting sparse binary feature vectors from Censys records, which are stored in the
human-readable JSON format. Such a binary representation can drastically reduce the
memory and computation required for analysis of large collections of IP addresses, at the
cost of only minimal information loss. It is worth mentioning that while we develop this
method for JSON documents, the same concept can be applied to find numerical represen-
tations of other documents with tree-like structures, e.g. HTML/XML, as well. We shall
then examine the efficacy of our binary representations in a supervised learning setting.

Furthermore, we explore the use of generative stochastic models on our binary represen-
tations of the information gathered by global scanners, in order to find low-dimensional nu-
merical representations, or embeddings, of Internet hosts. The explored techniques attempt
to learn efficient representations of observed attributes, by learning stochastic encoders and
decoders that convert between the original data vectors (i.e. binary representation) and their
low-dimensional embeddings. We then evaluate and compare two candidate algorithms for
dimensionality reduction, using the reconstruction loss (by passing samples through the
encoder and decoder) of trained models over a held-out test set as a performance criterion.
More specifically, we train and compare two types of unsupervised models: (1) restricted
Boltzmann machines (RBM) [59, 133], a probabilistic graphical model for learning binary
latent embeddings, and (2) variational autoencoders (VAE) [73, 117], a recent method de-
veloped for training deep graphical models on unlabeled data, which can be utilized to
map our proposed binary representations of hosts to continuous latent variables. Our ex-
periments demonstrate the advantage of VAEs in constructing low-dimensional, yet high
precision, embeddings of our binary representations, owing to their deep structure and the
use of continuous latent variables. Note that for image recognition, VAEs have been shown
to be capable of extracting meaningful features and generating synthetic samples in im-
age processing tasks, e.g. from the MNIST database of handwritten digits [73]. Hence,
for our main analysis, we train multiple VAEs on our binary representations of hosts for
varying number of dimensions in the latent space, and show that we can learn meaningful
representations with as little as two dimensions, and very rich representations for up to 50
dimensions. These latent representations can also be interpreted as factors that drive the
observed measurements, such as location, type of the host (e.g. web/mail server, router,
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end-user, and so on), or even more abstract factors such as negligence of network adminis-
trators that may, for instance, result in open ports or expired SSL certificates.

In addition to enabling faster computation, a main advantage of our low-dimensional
embeddings is that they are amenable to visualization. In particular, when mapping IP
addresses to two latent variables, the embeddings can be drawn as scatter plots or by visu-
alizing the density of points, e.g. using kernel density estimation (KDE). Furthermore, for
specific groups of hosts, such as different types of web servers, or devices, we can employ
principal component analysis (PCA) to project higher dimensional embeddings onto two
dimensions, thus enabling us to visualize any subdivision of the global population. Such a
tool can be utilized by analysts and network administrators to inspect the distribution of any
collection of hosts, e.g. those belonging to a particular organization, or blacklisted due to
a certain malicious activity, in order to identify clusters of IP addresses sharing a common
trait, or to compare multiple networks.

The output of our technique is therefore two types of representations, or fingerprints,
of Internet hosts: (1) high-dimensional, yet sparse, binary feature vectors, and (2) low-
dimensional latent embeddings that can explain the behavior of the observed variables, i.e.
binary representations, with high precision. The presented methodology can then be used to
automatically define and share features across many applications, thus removing the need
for extracting hand-curated features, e.g. for risk forecasting [86]. Additionally, instead
of focusing on a specific aspect of a host, such as techniques for fingerprinting operating
systems [130, 131, 146], or physical, e.g. Internet of Things (IoT), devices [43, 75, 84], our
proposed method produces representations that combine attributes across many aspects and
protocols. This then leads to flexible fingerprints that are adoptable for a variety of learning
tasks. We explore a number of these applications in this study, summarized as follows:

Supervised classification We evaluate both types of fingerprints for supervised classi-
fication, more specifically for detection of malicious IP addresses and prediction of hosts
exhibiting high risk of turning malicious in the future. We use two IP address blacklists,
namely PhishTank [112], and hpHosts [63], for training and evaluating a set of classi-
fiers, and comparing the predictive power of models over binary/latent representations. We
demonstrate that lower dimensional embeddings can results in faster models, while requir-
ing more pre-processing, i.e. computing and storing the latent embeddings. However, we
observe that our binary fingerprints result in the most accurate predictions, achieving a true
positive rate of 90%, while keeping the false positive rates at low as 6.3% and 8.6%, for
PhishTank and hpHosts, respectively. Note that the evaluated models can process hosts
much faster than content-based approaches [3, 134, 152], suggesting an efficient divide-
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and-concur method for fast identification of highly suspicious samples.

Inferring missing attributes We also explore the application of supervised learning
techniques in inferring attributes of a host that can potentially be masked by a network
administrator. For instance, the name of software deployed on a server may optionally be
included within headers/banners. We examine whether it is possible to infer this informa-
tion from other observed attributes of a host, including measurements from other ports, and
the location of said host. Our results demonstrate that masked attributes can be inferred
with high precision, unless all relevant information, i.e. headers/banners from other pro-
tocols, that may be used for inference is masked as well. However, we show that even
with thorough masking of information from all protocols, the information in question may
be leaked through unmaskable attributes, such as a server’s locations, and the set of ser-
vices offered to clients. Our second application therefore demonstrates a possible security
threat, as miscreants can selectively target hosts that use software with known exploitable
vulnerabilities, even if the fact that the host is using this vulnerable software is not directly
disclosed, in order to compromise Internet-facing machines in an automated fashion.

Host similarity Our latent variable model can also be considered a non-linear dimen-
sionality reduction technique, where the distance between points in the latent space can
be used as a similarity metric. This technique enables fuzzy matching of IP addresses,
which, when coupled with the low dimensionality of these fingerprints, allows us to use al-
gorithms such as k-nearest neighbors (k-NN) to query for similar hosts from a large corpus
of IP addresses. Thus, we also use k-NN based classifiers for detection/prediction of mali-
cious hosts, and inferring missing attributes. Our results show that these models can often
achieve similar performance to other state-of-the-art classification algorithms, supporting
our claim that the use of deep models can produce a meaningful, and robust, similarity
measure for IP addresses.

Network signatures Finally, we explore techniques for aggregating our host-level in-
formation over network boundaries, namely autonomous systems (AS), in order to extract
numerical representations of networks. Such a characterization of a macroscopic unit, us-
ing fine-grained attributes obtained at the host-level, can be used to capture many granular
aspects of the underlying entities (e.g. businesses or ISPs), that were previously not feasi-
ble. We explore this technique for detecting various types of ASes, namely business, con-
sumer, education, government, and information (hosting and content delivery) networks.
We observe a significant performance boost as compared to such a categorization at the
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IP-level, owing to the ability of our technique in leveraging the joint distribution of hosts
in a network (collection) of hosts.

One of the drawbacks of most common security analysis of the Internet is that they
often tend to focus on one or a small set of properties. This microscopic view often pre-
vents us from gaining a broad macroscopic view of the Internet across many features. The
techniques presented in this chapter can be utilized to make generalized statements about
hosts based on features acquired from various, often orthogonal, types of measurements.
Moreover, once the numerical fingerprints of hosts have been obtained by computing and
storing binary/latent fingerprints offline, it is possible to use fast models in order to per-
form classification/inference in an online fashion. This would make it feasible to perform
scalable analysis of large data sets of IP addresses, without the need for special tools such
as distributed computing platforms.

The remainder of the chapter is organized as follows. In Section 4.2 we go over the
data sets used in our study, and the pre-processing steps taken to prepare them for analysis.
In Section 4.3 we explain in detail how we convert Censys records to binary vectors in
order to feed them into a machine learning algorithm. In Section 4.4, we go over the
matchematical model of VAEs and RBMs, and evaluate/compare their performance for
finding latent embeddings, and visualization of Internet hosts. We examine applications of
our technique for the aforementioned case studies in Section 4.5, discuss our findings in
Section 4.6, and conclude in Sections 4.7 and 4.8.

4.2 Data sets

For this study, we use IP intelligence collected by Censys [32] to gather information
about arbitrary IPv4 addresses. The information offered by Censys includes regular global
scans over 20 different ports, geolocation information provided by the MaxMind GeoLite2
database [89], and autonomous system (AS) and routing information provided by Merit
Network [92], and Team Cymru [138].

The Censys database contains JSON records reporting all the information available for a
given IP address, including parsed fields from well-known protocols, such as HTTP headers
(port 80), parsed SSL certificates (ports 443, etc.), latitudes and longitudes, AS numbers,
and so on. This information is updated regularly, with full dumps of what is known about
all discoverable hosts on the public Internet, and is available for download by researchers.
For this study, we use five global snapshots, collected on 7/1, 7/16, 8/1, 8/16, and 11/1
of 2017; each scan includes roughly 150 million records. We concatenate and randomly
sample from the first four snapshots to generate the different data sets that are used in

72



our experiments for training/evaluation of our host-level machine learning algorithms. We
use the snapshot obtained on 2017-11-01 for evaluating our method of quantifying network
signatures, in order to align our measurements with AS boundary information, and obtained
labels, to be described shortly. Unless otherwise stated, all data sets used throughout the
remainder of this chapter have been selected by sampling from the four snapshots from
July and August of 2017, and are independent of data sets used in other sections.

We collect IP addresses listed by PhishTank [112] and hpHosts [63], on every day
during July and August of 2017, which we will use to produce labels to train classifiers for
identifying malicious hosts. These data sets include records on 123 823 and 15 026 unique
IP addresses for PhishTank and hpHosts, respectively. Note that the former is a blacklist
focusing on phishing, while the latter also targets ad/tracking and malware websites. We
will discuss the effectiveness of our methodology for profiling both types of malicious
servers in Section 4.5.

For obtaining AS boundaries, we utilize the MaxMind GeoIP2 ISP database [89], con-
taining a snapshot of IPv4 address blocks belonging to 58 622 ASes from 2017-10-31. In
addition to block definitions, this database also offers the name of each included network,
which we will use for manually inspecting predictions in Section 4.5. Finally, to procure
labels for classification, we query the MaxMind GeoIP2 precision services [90], providing
us with user types corresponding to queried IP addresses, which we will process to obtain
labels for the inspected learning task.

4.3 Feature extraction

To extract features from records collected from Censys, we develop a semi-automated al-
gorithm to parse JSON documents, learn their structure, and generate binary features that
describe each document. In the remainder of this section, we will present our general algo-
rithm, and elaborate on how we have tuned it for our data set to obtain meaningful features
from Censys records.

4.3.1 Encoding tree-like documents into numerical vectors

Tree-like document models such as JSON, or HTML/XML, are used to express complex
data structures containing nested fields and (possibly) polymorphic data types. In these
data models, each document can be summarized as a graph, more specifically a tree; Fig-
ure 4.1 illustrates an example for describing IP addresses. Each leaf (or field) in the tree
contains an attribute of the IP address, e.g. its origin country, while other nodes (interme-
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Figure 4.1: An example tree-like document describing a host.

diate fields) are sub-documents that encapsulate other nodes/leaves. Such data models can
be used to serialize documents into human-readable text, or facilitate programmatic data
manipulation. However, machine learning algorithms require numerical representations of
data samples, and simply applying a bag-of-words model to serialized documents fails to
recognize their embedded structure.

Note that if one already knows the schema (map) of the documents being analyzed,
then a numerical representation can be constructed by transforming each field accordingly,
and concatenating the resulting vectors to obtain a numerical array. For instance, a bag-of-
words model can be applied to text fields, or categorical variables can be converted using
one-hot encoding. However, constructing a schema manually can be tedious, especially for
deeply nested documents; specifically, the document tree corresponding to Censys records
contains more than 2000 leaves, with a maximum depth of 11. Moreover, the schema has
to be maintained as the data model changes as, e.g. additional ports are scanned, or parsers
are modified to include more detailed attributes. To address these challenges, we propose
a novel algorithm that can automatically recognize the structure of sample documents, and
generate feature vectors based on a learned schema. However, we maintain control over
the generated features using various hyper-parameters to avoid sparse features, ignore fields
that may not be useful in a machine learning setting, etc. While we develop this method
for semi-automated feature extraction from JSON documents, the same concept can also
be applied to other document models with a tree-like structure, such as HTML/XML.
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JSON (JavaScript Object Notation) is an open-standard format for describing and se-
rializing structured data. A typical JSON document can take a number of forms: null to
represent a missing value, boolean for binary values, as well as number, and string. In
addition, a JSON object can also be an array or a dictionary of (key→ value) mappings,
where array items, and dictionary values are themselves valid JSON objects. This defini-
tion allows for arbitrarily nested fields, such as HTTPS.TLS.Certificate.Subject.CN,
containing the common name of the subject of an SSL certificate obtained from the TLS
handshake of the HTTPS protocol on port 43. We use a simplified version of the JSON
schema [67] to define and learn a map by inspecting a series of sample documents. A
schema is itself a nested document that may contain any of the following (intermediate)
fields for describing the underlying document tree:

• type: Defines the data type(s) that the document can take, and is a subset of the
supported data types. For this study we use the following data types: null, boolean,
number, string, dictionary, and array.

• properties: Defined for dictionaries, a set of (key → value) mappings, where keys
are names of the properties that may be included within the dictionary, and values
are valid JSON schema that describe the property.

• items: Defined for arrays, a JSON schema for items of an array. We assume that all
items conform to the same schema.

• values: Additionally, for numbers and strings, we append the list of encountered
values for each field to the schema. We will later use these for generating features.

For learning a schema, we apply the simple recursive procedure defined by Algorithm
1, for every sample document in the examined data set. Once we have iterated over all
documents in our training set, we traverse the built schema, and define features for every
(intermediate) field X, based on the following rules:

• type: When |schema.type| > 1, i.e. the object can take multiple types, we use one-
hot encoding to reflect the type of the object as a set of binary features, e.g “X is

number” or “X is string”.

• dict: For dictionaries, we convert each property in the dictionary into the feature “X
has property Y”, taking a value of one if the given key is present. We also keep
track of required fields (those that are present in every document), so as to avoid
redundant features.
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Algorithm 1 Extending a JSON schema
1: function EXTEND(schema, document)
2: schema.type← schema.type ∪ TYPE(document)
3: if TYPE(document) = dict then
4: for all (key→ value) in document do
5: EXTEND(schema.properties[key], value)
6: end for
7: else if TYPE(document) = array then
8: for all (i→ item) in document do
9: EXTEND(schema.items, item)

10: end for
11: else if TYPE(document) ∈ {number, string} then
12: schema.values← schema.values ∪ document
13: end if
14: end function

• boolean: For booleans, we copy the value as is to define the feature “X = True”.

• number: For numerical values, we bin sample values and use one-hot encoding to
express the bin corresponding to each sample: “X ∈ [A, B)”.

• string: For strings, we tokenize the recorded values, and tokens into the binary fea-
tures “X has token Y”. For categorical variables (to be described shortly), we sim-
ply use one-hot encoding for each unique value, i.e. “X = Y”.

Note that alternatively, numbers can also be mapped as is to a single feature. How-
ever, this produces mixed feature types (i.e. both binary and real-valued features), which
can be problematic when used in machine learning models without proper normalization.
Therefore, for this study we have employed binning combined with one-hot encoding to
avoid this issue. We recursively apply the above rules to the learned schema over sample
documents and all its sub-schema, and concatenate all the extracted features to construct a
binary feature vector.1

4.3.2 Fine-tuning

While the algorithm presented above can summarize documents in numerical vectors out-
of-the-box and with minimal supervision, one can tune its parameters, motivated by domain
expertise, to extract more meaningful features for a specific application. For instance, one

1Note that for array data types, these rules result in n separate feature vectors, where n is the length of
the array for a given document. For this study, we take the logical or of all vectors to describe an array,
leveraging our earlier assumption that all array items conform to the same schema.
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can control the number of generated features, by pruning sparse fields from the schema, and
setting the number of bins for numerical fields, or filter tokens that are too short/sparse. Be-
low we summarize the operating parameters that we utilize for Censys. These parameters
have been set to avoid features that are sparser than 0.05% (500) of all sample documents
in the data set used for feature extraction, comprised of one million records, resulting in
roughly 10 000 features. It is possible to relax this constraint to produce more features,
however that would in turn result in slower machine learning models, and may also lead to
over-fitting due to the increased number of free parameters.

First, we prune the learned schema by dropping fields that are present for less than
0.05% (500) of all inspected samples. We bin numerical fields into min(100,n/500) bins,
where n is the number of recorded values for the field being inspected. We also convert
timestamps to unix times, and treat the resulting value as a numerical field.

For text fields, we treat it as categorical if there are less than min(250,n/4000) unique val-
ues; the second term is to avoid treating sparse fields as categorical due to the small number
of collected samples, while still detecting categorical variables with many valid options,
e.g. countries. For tokenizing non-categorical text, we utilize two distinct case-insensitive
patterns: (1) strings of length two and more consisting of alphabets and underscores, and
(2) string of length two and more consisting of numbers and dots. We use the former pat-
tern to extract words, and the latter to extract numbers and versions. For instance, the string
“Boa/0.94.14rc21” taken from a sample’s HTTP Server header is broken into the follow-
ing tokens: “boa”, “0.94.14”, “rc”, and “21”. We further limit the number of extracted
tokens from each individual field to the top 100 tokens ordered by term frequency, to avoid
features being dominated by a few fields.

Finally, we ignore fields that cannot not produce meaningful features, such as the IP
address of the host, SHA and MD5 hashes, and other fields that can act as unique identifiers,
as they behave like random noise and are not meaningful attributes in a machine learning
setting. We also ignore HTTP and CWMP bodies, and timestamps added by the scanner
(this doesn’t include timestamps such as validity start and end dates for certificates).

Our set of rules and parameters results in 11 156 binary features. For a specific sample,
features with a value of one can be regarded as tags that have been associated with the
corresponding host. We have included descriptions for a small number of our features in
Table 4.1, demonstrating how we can extract data from various sections of Censys records,
expressing both the structure of documents (e.g. open ports, usage of protocols), as well
as granular attributes extracted from field values (e.g. origin country, certificate validity
periods). The median and average number of tags associated with a host are 46.0 and
99.2 bits. For our implementation, it takes an average of 0.67 millisecond (per record) to
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Field name Data type Attribute
Root Dictionary has property “FTP”
CWMP.Headers Dictionary has property “Server”
DNS.OpenResolver Boolean =True
Location.Latitude Number ∈ [33.82,34.02)
HTTPS.TLS.Certificate.Validity.End Number ∈ [2019-12-12,2020-01-01)
Location.Country String = “United States”
IMAP.Banner String has token “dovecot”

Table 4.1: Sample features extracted from Censys records. The first and second columns
contain the path to a specific (intermediate) field in the learned document tree (separated

by dots), and its data type. The last column describes a single binary feature extracted
from said field.

transform JSON documents to their binary fingerprints on a single thread of an Intel Core
i7-7770K processor; this number is computed using batches consisting of 1000 records.

Note that the sparsity of our binary fingerprints is both due to the nature of extracted
features (i.e. one-hot encoded values, and tokenized strings), as well as the structure of the
underlying documents. A typical server offers only a small subset of all protocols probed by
Censys scanners. Hence, sample records often occupy a small sub-tree of a larger document
tree, learned through the procedure detailed in Algorithm 1. Nevertheless, contrary to other
types of tree-like documents such as webpages’ HTML codes, where each page can have
its own unique structure, individual fields are shared between many samples, allowing our
technique to capture their data through the described binary tags. This property of our data
set results in information heavy fingerprints, as evident by the length of resulting feature
vectors, the number of tags associated with a typical host, and the dimensionality of latent
representations, as we will discuss in the next section.

4.4 The latent variable model

In order to model the distribution of samples (hosts) in our data set and extract latent fea-
tures from them, we compare two different latent variable models, namely variational au-
toencoders [73, 117], and restricted Boltzmann machines [59, 133]. Both models provide a
framework for generative modeling, and can be used to learn low-dimensional embeddings
of high-dimensional data. These two candidates have been selected due to their compati-
bility with binary observations, while making different assumptions on the underlying data
generating distribution (i.e. using binary and continuous latent states). Note that our main
objective in applying a latent variable model to the extracted attributes detailed in the pre-
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Figure 4.2: A simple MLP with a single hidden layer.

vious section, is to reduce the dimensionality of our representations, which in turn reduces
the memory and computational requirements of subsequent algorithms. Hence, we shall
rely on the loss associated with encoded (latent) embeddings (to be described in Section
4.4.4), in order to rank-order and select the best model from the inspected candidates.

In this section we will provide a brief overview of neural networks, and their potential in
modeling complex non-linear relationships, followed by the mathematical model of VAEs
and RBMs. We will then evaluate and compare the proposed models’ effectiveness in
finding low-dimensional fingerprints of IP addresses, as well as the utility of VAEs for
visualizing collections of hosts.

4.4.1 Neural networks

Artificial neural networks [51] are constructed by combining multiple layers of units called
neurons, or perceptrons. A perceptron is a simple function that takes a vector of values
as input and returns a scalar output by applying a linear transformation followed by a non-
linearity (i.e. activation function), e.g. the logistic function (1+e−x)−1 for sigmoid neurons,
or the rectifier function max(0, x) for the rectified linear unit (ReLU). A layer of perceptrons
is then constructed by putting multiple neurons side-by-side for a vector of outputs. Such a
layer can be formulated as y = f (Wx+ b), where x and y are the input and output vectors,
W and b are the weight matrix and the vector of biases, and f (·) is the non-linearity. A
neural network is then constructed by combining multiple layers of neurons, using the
output from one layer as input for the next one. Figure 4.2 illustrates a simple network,
consisting of an input and output layer, and a single hidden layer. This structure, also
called a multilayer perceptron (MLP), or a feed-forward neural network, can then be used
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to define general non-linear functions, using parameters θ, where θ is the weights and
biases from all layers of the MLP. In fact, the universal approximation theorem [62] states
that with a single hidden layer, sufficiently many hidden units, and a continuous, bounded,
and non-constant activation function, MLPs can approximate functions on compact subsets
of Rn with arbitrary precision. However, in practice deep models consisting of multiple
hidden layers can approximate complex functions using far fewer units than one with only
a single hidden layer.

Once the structure for a MLP is specified, one can train the weights and biases for a
specific machine learning task using gradient descent. This is achieved by first defining a
loss function L(y, ŷ) over the desired output y and actual output ŷ; typical loss functions
include the mean squared error for real-valued outputs, and cross-entropy for binary out-
puts. The parameters of the MLP can then be updated using an estimate of the gradient
∇θ Ex∼pdata[L(y, ŷ)]. In practice, neural networks are trained using variations of stochas-
tic gradient descent (SGD), obtaining approximations to the aforementioned gradient by
averaging the loss function over a random mini-batch of real-world observations.

The ability of neural networks in learning complex functions makes them adaptable to a
wide variety of tasks. Note that while the universal approximation theorem guarantees the
existence of a solution with arbitrary precision, it does not touch upon on the learnability
of such a solution, i.e. the globally optimal point with respect to θ. In other words, the loss
function is generally not convex, and therefore SGD is not guaranteed to find the global
optimum. Nevertheless, when care is taken in designing the network, such as choosing
the non-linearity, the cost function, and initialization of parameters, many deep models
continue to outperform traditional machine learning algorithms.

4.4.2 Variational autoencoders

Autoencoders are a type of MLP network that can learn efficient representations (en-
codings) of data vectors, along with reconstructions (decodings) of the input data from
those representations. Hence, an autoencoder is trained to minimize the objective function
L(x, x̂), where x is the original data vector, x̂ is the reconstructed input, and L is a loss
function for computing the reconstruction error, e.g. squared error for real-valued data, and
cross-entropy for binary data.

A variety of methods have been developed to train deep autoencoders, for instance
greedy layer-wise pre-training of restricted Boltzmann machines followed by a fine-tuning
stage [61], and training denoising autoencoders by corrupting the input vectors, therefore
forcing the network to learn more robust features [147]. Variational autoencoders combine
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ideas from deep learning and statistical inference in order to train directed graphical mod-
els that can find latent representations of high-dimensional inputs, and generate synthetic
samples that are similar (in distribution) to real-world examples.

Let x ∈ Rn and z ∈ Rm denote a vector of visible variables, and continuous hidden (la-
tent) variables, respectively. Let pθ(z), pθ(x | z) be the prior for z, and the conditional
distribution of x given z, where both are chosen from a parametric family of distributions,
with θ specifying the parameters. Therefore, z drives the generation of x through the con-
ditional distribution pθ(x | z). Inference is performed by drawing from the posterior density
pθ(z | x), given by Bayes’ rule:

pθ(z | x) =
pθ(x | z)pθ(z)

pθ(x)
=

pθ(x | z)pθ(z)∫
z pθ(x | z)pθ(z)dz

. (4.1)

In general, the integral on the RHS of Equation 4.1 is intractable, and variational
Bayesian methods [17] use an approximation of the true posterior given by qφ(z | x). The
idea is to choose qφ(·) from a family of distributions with a simpler form than the true
posterior, selecting a distribution that minimizes the dissimilarity between the true and
approximate posteriors. The most common form of variational Bayes uses the Kullback-
Leibler (KL) divergence [80] of the true posterior from the approximate as a measure of
dissimilarity, given by:

DKL
[
qφ(z | x) ‖ pθ(z | x)

]
= Eqφ(z|x)

[
log

qφ(z | x)
pθ(z | x)

]
=

∫
z
qφ(z | x) log

qφ(z | x)
pθ(z | x)

. (4.2)

In the context of autoencoders, qφ(z | x) and pθ(x | z) denote the recognition model (en-
coder), and the generative model (decoder), where φ and θ are their respective parameters,
i.e. weights and biases in a MLP. The log-likelihood of the model can be written as follows:

log pθ(x) = Eqφ(z|x)

[
log

qφ(z | x)
pθ(z | x)

]
+Eqφ(z|x)

[
log

pθ(x, z)
qφ(z | x)

]
= DKL

[
qφ(z | x) ‖ pθ(z | x)

]
+L(x) , (4.3)

where L(x) can be refactored as:

L(x) = Eqφ(z|x)
[
log pθ(x | z)

]
+Eqφ(z|x)

[
log

pθ(z)
qφ(z | x)

]
= Eqφ(z|x)

[
log pθ(x | z)

]
−DKL

[
qφ(z | x) ‖ pθ(z)

]
. (4.4)

Note that since in Equation 4.3, log pθ(x) is fixed with respect to φ, maximizing L(x) is
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equivalent to minimizing the KL divergence term, which in turn minimizes the divergence
of the approximate from the true posterior. The second term on the RHS of Equation 4.4
denotes the Kullback-Leibler (KL) divergence [80] of the approximate posterior qφ(z | x)
from the prior pθ(z). The two terms in Equation 4.4 can be interpreted as the sum of a
reconstruction loss and a penalty term. The first term tries to minimize the error given by
the cross-entropy between x and its reconstruction, and the penalty term penalizes devia-
tion from the prior defined on z, most commonly the isotropic Gaussian distribution. This
penalty forces the recognition network to learn meaningful features by keeping represen-
tations of similar points close together in the latent space. Without this strong regularizer,
the encoder might learn to cheat by mapping each sample to a different region in the latent
space, a problem suffered by autoencoders trained without any regularization.

Note that L(x) is commonly referred to as the variational lower bound, or the evidence
lower bound (ELBO), and is a lower bound on the data log-likelihood according to the
modeling distribution, derived from Jensen’s inequality:

L(x) = Eqφ(z|x)

[
log

pθ(x, z)
qφ(z | x)

]
≤ logEqφ(z|x)

[
pθ(x, z)
qφ(z | x)

]
= log pθ(x) . (4.5)

Furthermore, when drawing multiple samples from the approximate posterior, Burda et
al. [20] propose importance weighing to obtain a tigher lower bound for log pθ(x) as the
objective function:

L(x) = Ez(1),...,z(k)∼qφ(z|x)

log
1
k

k∑
i=1

pθ(x, z(i))
qφ(z(i) | x)

 . (4.6)

In order to train the model, one needs to differentiate and optimize the ELBO with
respect to both θ and φ. However, obtaining the gradient with respect to φ is non-trivial,
and Kingma et al. [73] use a re-parameterization trick in order to get around this issue, by
approximating the required expectations and their gradients. Assume that the prior pθ(z)
follows a multivariate Gaussian distribution with zero mean and unit variance, in other
words pθ(z) ∼ N (0,I), and the approximate posterior also follows a factorial Gaussian
distribution, i.e. qφ(z | x) ∼N

(
µφ(x),σ2

φ(x)
)
, where µφ(x), and σ2

φ(x) are outputs from the
recognition MLP. We can then draw from the approximate posterior by taking:

z = µφ(x)+σφ(x)� ε , ε ∼N (0,I) . (4.7)

This re-parameterization transfers the randomness in z to ε and allows one to back-
propagate derivatives through the network for training the model. Finally, for binary x, the
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Figure 4.3: Graphical depiction of a restricted Boltzmann machine’s Markov random
field. The bottom and top rows correspond to visible and hidden variable, respectively,
and edges indicate direct interaction between two variables. Note that visible (hidden)

states are independent from each other, given the hidden (visible) vector.

reconstruction pθ(x | z) can be defined to follow the Bernoulli distribution, with parameters
taken from the output of the generative network.

4.4.3 Restricted Boltzmann machines

Restricted Boltzmann machines are another generative stochastic neural network model,
that learn the probability distribution of inputs through a set of binary latent variables.
Similar to Section 4.4.2, let x ∈ Rn and z ∈ Rm denote a vector of visible, and hidden
(latent) variables, respectively. A RBM is an energy-based model, meaning the underlying
probability distribution can be expressed as:

p(x, z) =
e−E(x,z)

Z
with Z :=

∑
x,z

e−E(x,z) , (4.8)

where p(x, z) is the joint probability mass function corresponding to the RBM, and E(x, z)
is the energy of the configuration (x, z). Z is also referred to as the partition function,
ensuring that

∑
x,z p(x, z) = 1. Note that the partition function of a RBM is intractable,

therefore in contrast to a VAE, it is not possible to directly estimate p(x, z), as well as its
marginal density p(x).

Figure 4.3 illustrates the undirected graphical model, or Marokov random field [71],
corresponding to a RBM. Each vertex in this graph corresponds to a variable (visible or
hidden), with edges indicating direct interaction between two vertices. Thus, the energy
function can be formulated as:

E(x, z) = −aT x− bT z− xTW z , (4.9)
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where W ∈ Rn×m, a ∈ Rn, and b ∈ Rm indicate the weights and biases of the RBM. Note
that since there are no direct connections between visible (hidden) units in Figure 4.3, each
unit is independent from other variables given the hidden (visible) vector; in other words:

p(z | x) = σ(WT x+ b) , (4.10)

p(x | z) = σ(W z+ a) , (4.11)

where σ(·) denotes the logistic function (1+e−x)−1. The simple form of Equations 4.10 and
4.11 makes it extremely efficient to sample from these two conditional densities, which is
then leveraged for training a RBM. The marginal distribution p(x) can also be obtained by
summing over the latent space, i.e. over all possible z, and can be rewritten as:

p(x) =
e−F(x)

Z
with F(x) := − log

∑
z

e−E(x,z) , (4.12)

where F(x) is called the free energy; note that Z can also be expressed as a function of the
free energy:

Z =
∑

x
e−F(x) .

Combining Equations 4.9 and 4.12, it is shown that the free energy of a RBM reduces
to the following closed form solution:

F(x) = −aT x−
∑

j

log
(
1+ exp

(
WT x+ b

))
j

(4.13)

For training a RBM, one is required to obtain an estimate of the gradient of the log-
likelihood log p(x) with respect to parameters θ := (W, a, b), given by:

−∇θ log p(x) = ∇θF(x)+∇θ logZ

= ∇θF(x)−Ex∼p(x)∇θF(x), (4.14)

where the expectation is taken over the model’s probability mass function p(x). In order
to estimate the second term in the RHS of Equation 4.14, one can sample from the model
distribution using Gibbs sampling. Naively, this can be achieved by selecting a random
visible vector x0, and alternating between Equations 4.10 and 4.11 in order to obtain the
Markov chain xi. For large k, the vector xk can then be taken as a sample from the model
distribution. However, this technique results in slow estimators due to the large number of
steps required for burning in the Markov chain.
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The contrastive divergence (CD) [59] algorithm alleviates the above issue by initializing
the chain using samples from a probability distribution that is fairly close to the model
distribution, i.e the data distribution. In other words, the same mini-batch of real-world
observations used for SGD, are also leveraged for initialing a set of Markov chains and
obtaining samples from the model distribution p(x); Equations 4.13 and 4.14 can then be
utilized for updating the parameters θ. This technique is refereed to as the CD-k algorithm,
with k denoting the number of Gibbs sampling rounds used for drawing from the model
distribution. In practice, CD-1 has been shown to work surprisingly well [60], especially
when the main objective is not to learn a good density model, but to construct embeddings
of visible vectors, as is the case with the current study.

4.4.4 Evaluation

Variational autoencoders For our evaluation of VAEs, we will compare two different
structures: (1) a VAE with simple linear transformations (i.e. no hidden layers) for the
recognition and inference networks, and (2) a VAE with two hidden layers consisting of
1000 units each for both networks. We shall then compare models with linear and deep
structures, to denote how models of IP addresses can benefit from deep structures. For
models with hidden layers, we use the ReLU non-linearity, and for the output of the decoder
we use sigmoid neurons that produce an output between zero and one for the Bernoulli dis-
tribution. We also add weight normalization [123] to all layers excluding the output layer,
and use Equations 4.4 and 4.6 with 10 draws from the approximate posterior for training
and evaluation, respectively. For training we use adaptive moment estimation (Adam) [72],
an optimization technique that keeps separate adaptive learning rates for each parameter,
and allows the model to converge faster with sparse input. We use a learning rate of 0.0005,
mini-batch sizes of 100, and train each model for 10 epochs.

Restricted Boltzmann machines For training RBMs we use CD-1, and train our models
for 10 epochs, using the Adam optimizer with a learning rate of 0.001, and mini-batch sizes
of 100. Note that when performing a bottom-up pass using Equation 4.10, or a top-down
pass (Equation 4.11) with reconstructions as inputs, one can use the real-valued probabili-
ties themselves, or stochastically pick a zero or one prior to plugging values into the corre-
sponding equation. Upon the recommendation of [60], we sample values for a bottom-up
pass, while using probabilities for Equation 4.11 in order to reduce sampling noise. The
former acts as a strong regularizer, by ensuring that a hidden unit can convey at most one
bit, and not a real value, to visible units. Note that when using the last update of hidden
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units for measuring the free energy, we also use probabilities to avoid sampling noise.

Comparison We train multiple models for different numbers of latent variables, using
a training set of 10 million samples from Censys. We then evaluate the trained models
using a separate data set containing one million records. Tables 4.2 and 4.3 summarize
the performance of the resulting models. For VAEs, the ELBO can be regarded as the
overall accuracy of a model, with higher values indicating a better match between the
learned probabilistic model, and real-world observations. We can see that deep models
do not benefit from increasing the number of latent dimensions beyond 50; interestingly,
their performance slightly decreases for 100 latent variables, possibly because the model is
converging to a bad local optimum. Note that this value is missing from Table 4.3, due to
the intractable nature of the partition function in Equation 4.8.

To further inspect the performance of these models as autoencoders, we examine the
reconstruction error over our testing data set. To obtain reconstructions for VAEs, we first
run these samples through the encoder to find latent representations, and then use those
representations to draw from the decoder. Note that the output of the decoder is not a
binary vector, but a vector of probabilities representing the probability that each bit should
be set to one. Furthermore, since decoding relies on the stochastic variable ε, it is a non-
deterministic process, and each draw could result in slightly different outputs. Hence, to
reduce sampling noise, we average the output probabilities over 10 draws, and then binarize
these probabilities to obtain reconstructed samples. For RBMs we obtain reconstructions
by conducting one Gibbs sampling round, i.e. the same process used for CD-1.

From Table 4.2b, we can see a clear advantage for using deep networks, especially for
small numbers of latent variables. However, even with 200-dimensional embeddings, we
see that a linear VAE exhibits 20.0% less reconstruction error, i.e mean error in bits, than
a deep VAE with 50 latent variables. Note that principal component analysis (PCA) is a
more common technique for dimensionality reduction with linear transformations; how-
ever, PCA assumes that x consists of real-valued variables, and therefore it is not an appro-
priate model for our binary representations. The models in Table 4.2a are more similar to a
generalization of PCA for exponential families of probability distributions [28], which can
be adapted to binary data, i.e. logistic PCA. However, VAEs also makes explicit assump-
tions on the prior for latent variables, and are trained using a variational framework.

Comparing Tables 4.2 and 4.3, we also observe that VAE embeddings exhibit higher
precision, especially for smaller number of latent variables. Note that since RBMs do not
leverage deep networks, it is more appropriate to compare their performance to the linear
models in Table 4.2a; nevertheless, our results suggest that even linear VAEs outperform
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# of
ELBO

Mean Percentage error
latent error

Mean
Percentiles

features (bits) 50 75 90 95

10 -118.5 30.2 37.1 35.2 54.5 70.0 77.3
20 -87.1 18.2 21.6 16.9 32.3 46.2 55.0
50 -64.6 8.1 9.9 7.1 13.9 23.2 29.6
100 -58.1 4.7 6.5 4.2 9.1 15.8 21.2
200 -56.4 3.6 5.6 3.4 7.8 13.7 18.8

(a) Linear recognition/generative networks

# of
ELBO

Mean Percentage error
latent error

Mean
Percentiles

features (bits) 50 75 90 95

2 -71.1 19.2 20.0 13.1 31.2 50.0 59.8
5 -46.9 10.4 9.5 4.5 12.9 26.9 37.5

10 -37.7 6.4 5.5 2.4 7.4 15.3 22.9
20 -33.1 4.0 3.7 1.7 5.3 10.0 14.5
50 -31.8 3.0 3.1 1.1 4.3 8.5 12.4
100 -32.2 3.3 3.4 1.4 4.9 9.3 13.3

(b) Deep recognition/generative networks

Table 4.2: Negative log-likelihood (in nats), and reconstruction error for VAE models with
linear (top) and MLP (bottom) structures for encoders/decoders. The percentage error is
computed by dividing the number of errors in the reconstructed vector, by the number of

ones in the original binary vector.

# of Mean Percentage error
latent error

Mean
Percentiles

features (bits) 50 75 90 95

10 61.8 55.6 53.3 73.9 92.9 109.4
20 48.9 38.1 33.3 52.8 74.1 86.7
50 24.5 17.8 12.7 25.6 40.5 50.7

100 12.7 7.9 4.3 11.1 21.2 29.1
200 5.4 2.6 0.0 3.2 8.1 12.6

Table 4.3: Reconstruction error for RBM models.
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RBMs in terms of reconstruction loss. This is to be expected, as real-valued latent variables
have the potential to convey much more information than binary states. This property, in
addition to the compatibility of VAEs with deep structures, results in models that reach
the same fidelity as RBMs with 4-10 times less latent dimensions. Moreover, since latent
embeddings produced by both types of models loose the sparsity of visible vectors, i.e.
our binary representations detailed in Section 4.3, they can no longer be stored efficiently
using sparse matrix formats. As an example, 200-dimensional embeddings occupy roughly
60% more memory than our sparse representations.2 Hence, motivated by our results in this
section, for the case studies presented in Section 4.5 we will only evaluate latent fingerprints
produced by models in Table 4.2b.

For our implementation of a deep VAE in TensorFlow [139], using a Nvidia GeForce
GTX-1080-Ti GPU, each training epoch on 10 million samples takes roughly one hour to
complete. For a trained model, it takes 40 microseconds (per sample) to transform a record
(find its latent representation), and 190µs (220µs) to reconstruct a sample with a single
draw (10 draws) from the decoder. These numbers are computed for our most accurate
VAE model with 50 latent variables, and averaged over batches consisting of 100 samples;
we observe similar times for other numbers of latent variables.

4.4.5 Visualization

When mapping binary fingerprints to two-dimensional latent embeddings, we can visual-
ize collections of hosts by drawing scatter plots, or an estimate of their density, over the
encoded samples. Figure 4.4 illustrates the overall distribution of latent variables for our
2-D VAE model. This figure is generated over a random selection of 10 000 IP addresses,
and drawing the kernel density estimate (KDE) of the resulting samples. As expected, we
observe that the latent representations approximately follow a Gaussian distribution, i.e.
we have mapped sparse binary vectors to well-behaved decoupled variables. Note that due
to the binary nature of RBM embeddings, they cannot produce efficient representations in
low-dimensional spaces, as is evident from our results in Table 4.3.

One of the objectives of VAEs, and autoencoders in general, is to also provide a measure
of similarity between points, quantified by the distance between samples in the latent space.
For instance, when training a model on hand-written digits, we expect to see samples of
each digit mapped to the same region, since which digit the picture belongs to is the major
deciding factor in what the picture should approximately look like, with other factors such
as handwriting only contributing to minor differences. To examine whether this is also

2Note that this number is unique to the present problem, as a different data set can result in binary finger-
prints with a different sparsity structure.
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Figure 4.4: Bivariate and marginal distributions for two-dimensional VAE representations
of Internet hosts, resembling an isotropic Gaussian distribution.

(a) (b) (c)

Figure 4.5: 2-D representations of IPs from different countries (left), different HTTP
servers (center), and correctly configured and misconfigured HTTPS servers (right).
Figure 4.5a uses our 2-D representations, and for Figures 4.5b and 4.5c we use PCA

projections from 50-dimensional fingerprints.

the case for IP addresses, we look at two-dimensional representations of different classes
of IPs. For this exercise we choose location, more specifically the country the IP address
belongs to, different types of HTTP servers, and also whether the host serves a browser
trusted or untrusted (such as self-signed) SSL certificate over the HTTPS protocol.

Figure 4.5a displays our results for three different countries, namely United States,
China, and Mexico, by illustrating the bivariate kernel density estimate of samples’ 2-D
representations. Note that not all samples fall within the drawn contour lines; however,
the plots show where most samples are concentrated. As expected, we can see that similar
IP addresses in terms of originating country fall within close proximity of each other. We
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further observe that IPs from China form a small, concentrated cluster. This is possibly due
to the fact that these hosts exhibit low variability in their measurements, hence the training
algorithm deems it sufficient to only allocate a small range of points for these samples.

Figure 4.5a illustrates that when examining a subsection of the global population, e.g.
IPs from different countries, or different types of servers, points generally become con-
centrated into one or multiple clusters. In this setting, for further examination of points
within the aforementioned sub-populations, it makes sense to find a transformation that
can re-normalize data points for creating interpretive plots. For web servers and SSL cer-
tificates, note that we are essentially examining a smaller subdivision of hosts, i.e. those
that respond to HTTP and HTTPS requests, respectively. Since we are working with real-
valued and well-behaved numerical embeddings, our experiments suggested that training
fast linear transformations using PCA is sufficient for this purpose. Furthermore, since
PCA can also be used for dimensionality reduction, we can train our normalizers to project
our higher dimensional embeddings onto two dimensions, thus leveraging the precision of-
fered by high dimensionality for characterizing sub-populations. Note that this technique
presents another advantage of VAE models over RBMs, as PCA is not an appropriate choice
for projecting binary RBM embeddings.

Following this technique we have illustrated different categories of (secure) web servers
in Figures 4.5b and 4.5c, using projections from 50-dimensional latent fingerprints. While
the depicted clusters do slightly overlap, they show a clear difference in distributions of the
encoded representations, motivating our claim that these are meaningful fingerprints.

4.5 Applications

In this section we explore applications of our numerical representations of IP addresses for
three concrete case studies, namely for detecting (potentially) malicious servers, inferring
hidden attributes of a host, and characterizing networks. Unless otherwise stated, all of our
results on latent fingerprints have been obtained using VAE embeddings corresponding to
deep models from Table 4.2b.

4.5.1 Quantifying maliciousness

IP addresses that are known for engaging in malicious activities, such as phishing or spam-
ming, can be reported through various independent blacklists. In this section, we utilize
reported malicious websites in order to assign reputations to arbitrary hosts, by training
a series of supervised models, or classifiers, and evaluating their performance. We use
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(a) PhishTank (b) hpHosts

Figure 4.6: Density for two-dimensional representations of blacklisted IP addresses from
PhishTank (left), and hpHosts (right). Hosts from the highlighted clusters correspond to

the depicted landing pages, taken from HTTP content recorded by Censys.

two blacklists, namely PhishTank [112] and hpHosts [63], to construct labeled samples for
training/evaluation. Note that PhishTank is a blacklist that focuses mainly on identifying
phishing websites, while hpHosts also targets ad/tracking and malware websites.

For each of the Censys snapshots included in our study, we take hosts that have been
blacklisted after the corresponding date, but before the next series of measurements, as
the set of known malicious IPs for that period. For instance, the set of blacklisted IPs
for July 1-15 constitute labels for the snapshot collected on July 1. For PhishTank and
hpHosts, this results in 43 641 and 401 264 labeled samples, 94.4% and 91.8% of which
have corresponding measurements in Censys, respectively. This mismatch is possibly due
to the time discrepancy between labels and network measurements for hosts with dynamic
IP addresses, or because these hosts do not respond to any of the scanners’ probes.3

4.5.1.1 Visualizing malicious hosts

We first illustrate the two-dimensional representation of these IP addresses in Figure 4.6,
where we can identify multiple clusters of hosts. It is possible that each is indicative of
a specific type of host, due to similarities between how IP addresses hosting these pages
are configured. We thus inspected the recorded HTTP content for 100 randomly picked
hosts from each cluster, i.e. samples within the highlighted contour lines, and found that
all of them correspond to the depicted pages. Both pages are default ISP landing pages,
namely for HostGator (Figure 4.6a) and Cloudflare (Figure 4.6b). Interestingly, for the
inspected samples from Figure 4.6a we also found a few pages following the same theme
but in Portuguese, and for Figure 4.6a we came across landing pages for Baidu, Cloudflare’s

3These web servers must at least serve content on either HTTP or HTTPS. However, servers may block
requests that do not include the URL of the requested page, as is the case with Censys’ network probes.
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partner in China. It is worth noting that none of our features are extracted from the contents
of a website, yet the resulting clustering clearly indicates concentration of contents.

Note that for these samples we are not seeing the actual phishing content, possibly
because the malicious content is hidden behind a URL not known by Censys scanners.
Nevertheless, the concentration of blacklisted IPs around these points suggests that they
correspond to a higher likelihood of serving malicious content, either deliberately or due
to infection. By training an estimator that can recognize such relationships, and leverage
them in order to distinguish between malicious and benign samples, we can then use the
trained model to assign reputations to arbitrary hosts.

4.5.1.2 Evaluation of supervised techniques

In addition to the selected blacklisted IPs, we randomly pick 800 000 samples (200 000
from each snapshot) from Censys that have not been blacklisted, and append them to our
data sets as a set of benign samples. We shall then train supervised estimators with the
objective of discerning between (potentially) malicious and benign hosts. Note that this
experiment enables our models to perform both detection and forecasting, depending on
whether a host is already serving malicious content when it is probed, or if it exhibits high
risk of turning malicious in the two week period following each snapshot. Thus, we hold-
out samples from August 16-31 for estimating the predictive performance of our models,
and use samples between July 1 and August 15 for training/testing on a 50/50 split. We
evaluate several supervised algorithms, summarized below; for each algorithm we train
three classifiers on binary, and 10-D and 50-D latent embeddings:

• Random forest: Random forests [128] are an ensemble of decision trees, that reduce
over-fitting by averaging over multiple estimators.

• Gradient-boosted trees: We also use XGBoost [25], a recent supervised model based
on decision trees, that uses gradient-boosting to improve upon individual trees.

• Multilayer perceptron: In addition to tree-based models, we train fully-connected
MLPs with two hidden layers. We regularize our MLPs using batch normaliza-
tion [65], and dropout [135].

After tuning the hyper-parameters of the above models, we found that XGBoost consis-
tently outperformed other algorithms, and therefore our results are reported using gradient-
boosted trees. We train estimators using 100 trees, a learning rate of 0.1, and a maximum
depth of 20 for each individual tree. We further regularize our models by sub-selecting
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50% of all training samples for each individual tree, and inspecting half of all features for
each individual split. The aforementioned parameters are chosen by cross-validation.

As demonstrated in the previous section, the distance between two hosts in the latent
space can be used as a similarity metric. Furthermore, the low dimensionality of these
fingerprints allows us to utilize the k-nearest neighbors algorithm (k-NN) for classification.
Compared to tree-based models and neural networks, k-NN is better suited for inspecting
predictions, since by associating samples with multiple similar and labeled hosts, scores can
be accompanied with real-world examples that are known for serving malicious content,
such as the examples provided in Figure 4.6. Therefore, we are also including results for k-
NN models with k = 50, trained over 10-dimensional embeddings; using higher dimensions
results in very slow models due to inefficiency of k-NN for high-dimensional vectors. This
experiment also provides further validation for the utility of latent fingerprints for fuzzy-
matching, i.e. measuring the similarity, between Internet hosts.

4.5.1.3 Discussion of results

The performance of the resulting classifiers is shown in Table 4.4. The output of each
model for an arbitrary sample is a number between zero and one, quantifying the likeli-
hood that the underlying host is malicious, or will turn malicious in the near future. One
can then discretize a model’s output by comparing it against a constant threshold, and eval-
uate the accuracy of estimations over a held-out test set. We have included true positive
rates (TPR), and false positive rates (FPR) for different operating points (corresponding to
different thresholds), the area under the curve (AUC) score, and the speed (time to evaluate
a single sample) of each model in Table 4.4. The latter is computed using one thread on an
Intel Core i7-7770K processor. For each statistic, we are reporting its mean and standard
deviation over five different runs, since each run can result in a slightly different model
due to inherent randomness in training procedures, and the choice of train/test data sets.
Note that the AUC score measures the overall classification accuracy by measuring how
accurately a classifier can rank-order samples, i.e. the probability that a randomly drawn
bad (malicious) sample is scored higher than a randomly drawn benign one.

Moreover, for assessing the predictive accuracy of our technique, we evaluate our mod-
els over blacklisted hosts from August 16-31, that have not been blacklisted in any of the
preceding dates. For PhishTank and hpHosts, this results in 893 and 6860 previously un-
observed IP addresses, respectively. For these examples, the measurements collected by
Censys correspond to hosts that have not turned malicious, or have not yet been detected
by the inspected blacklist. Hence, they allow us to assess how our technique can fore-
cast maliciousness, and generalize to previously unobserved samples. We have included

93



Features Binary Latent (10-D) Latent (50-D)

TPR XGBoost k-NN XGBoost XGBoost

FPR
(%)

50% 0.3±0.0 0.4±0.0 0.4±0.0 0.3±0.0
80% 2.2±0.1 3.0±0.1 3.1±0.1 2.7±0.1
90% 6.0±0.3 7.7±0.1 7.1±0.2 6.3±0.2
95% 10.7±0.4 13.7±0.4 12.1±0.5 10.9±0.4

AUC Overall 97.9±0.1 96.1±0.1 97.6±0.1 97.9±0.1
(%) Prediction 97.1±0.1 94.9±0.2 96.7±0.1 97.0±0.1

Time/sample ∼ 0.25ms ∼ 0.7ms ∼ 15µs ∼ 15µs

(a) PhishTank

Features Binary Latent (10-D) Latent (50-D)

TPR XGBoost k-NN XGBoost XGBoost

FPR
(%)

50% 0.8±0.0 1.0±0.0 0.8±0.0 0.7±0.0
80% 3.5±0.0 4.8±0.1 4.6±0.0 4.0±0.0
90% 7.4±0.1 9.2±0.1 9.3±0.1 8.6±0.1
95% 12.2±0.1 14.3±0.1 14.5±0.1 13.7±0.1

AUC Overall 97.4±0.0 96.3±0.0 96.9±0.0 97.2±0.0
(%) Prediction 95.8±0.0 93.6±0.1 94.9±0.1 95.3±0.1

Time/sample ∼ 0.35ms ∼ 0.7ms ∼ 20µs ∼ 20µs

(b) hpHosts

Table 4.4: Performance/speed of classifiers trained using PhishTank (top), and hpHosts
(bottom). When using latent fingerprints, k-NN models use 10-dimensional VAE

embeddings, while XGBoost models are trained on both 10-D and 50-D representations.
AUC scores are reported over all test samples, and previously unblacklisted IPs from

08/16/2016 to 08/31/2017.
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the AUC of our classifiers over these samples in Table 4.4. Ideally, one would want this
measure to be equal to the overall AUC, however in practice we observe slightly lower
values. Nevertheless, our results suggest that we can also forecast malicious websites with
plausible accuracy, thus resulting in reputations that are reliable and robust.

Our results in Table 4.4 show that the examined tree-based models perform roughly the
same in terms of overall and predictive performance, with models trained on binary rep-
resentations outperforming other classifiers, possibly due to the lossy nature of our latent
embeddings. We also observe that the higher fidelity of 50-dimensional embeddings re-
sults in slightly more accurate estimates compared to those obtained from 10-dimensional
representations. Another distinction between the models in Figure 4.4 is their speed. We
observe that latent embeddings result in estimators that are more than 10 times faster than
other models, though they require a GPU and more pre-processing for computing the la-
tent fingerprints. However, this distinction is only relevant in a large production/research
environment serving many clients, where latent fingerprints can be computed offline and
then shared across multiple applications. Nevertheless, all depicted models are capable of
processing thousands of hosts per second, enabling large-scale analysis of IP addresses for
fast identification of suspicious hosts.

Finally, we see that k-NN models are slower, and slightly less performing than tree-
based algorithms. However, as we mentioned earlier in the section, they can produce more
interpretive predictions, and can be used in conjunction with gradient-boosted trees, for
inspecting individual predictions.

Our results in this section demonstrate how to utilize our fingerprints in a supervised
learning setting. While we have only evaluated our fingerprints for a specific application,
the same approach can be similarly applied to other domains. For instance, the ability
to detect unsecured or infected devices is another interesting application of the presented
work as, e.g., infected IoT devices can form botnets, such as the Mirai botnet [11], for
launching distributed denial-of-service (DDoS) attacks. It is also worth noting that none of
our features are extracted from the contents of a website. Content-based methods [3, 134,
152], have been extensively studied for detecting phishing or malicious websites, but are
often slower than the techniques presented here. This naturally suggests an efficient divide-
and-concur method, whereby highly suspicious samples are first identified without using
the content itself, and are subsequently examined by more intensive content processing. It
would also be interesting to see whether our results can boost the performance of content-
based algorithms, or other approaches such as techniques for detecting malicious URL
redirections [85, 91, 132].
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4.5.2 Inferring masked attributes

Another interesting application of our fingerprints, is their utility in inferring missing or
masked attributes by using cross-correlation and higher order interactions between features
of an IP address. For instance, assume that a web server is masking the software used
for serving content, which can be revealed in the HTTP protocol’s Server header. This
technique hides the architecture of the server’s backend system, which in turn impedes a
potential attacker from using vendor specific vulnerabilities, specially zero-day exploits, to
compromise the host. However, it may still be possible to infer the installed application
from other attributes that have not been masked, e.g. servers in a certain region might be
more inclined to use Apache, or Microsoft products.

In order to test this hypothesis, we can manually mask reported attributes, e.g. head-
ers/banners, of hosts from available measurements, and train a supervised model for infer-
ring them back from the rest of our features. A drawback of this technique is that it does
not take into consideration behavioral differences in privacy-seeking and other types of
administrators. For example, a security expert who is more inclined to hide various head-
ers/banners, might also have different preferences on which software they deploy on their
respective servers. Nevertheless, the proposed technique can measure how these maskable
attributes can be inferred back from other visible features, on hosts for which this informa-
tion is currently being exposed.

For this experiment, we manually inspect tokens that were extracted from the Server
header during our feature extraction process, and recognize 23 types of web servers. These
categories will constitute labels for training and evaluating classifiers. For the observation
window of this study, we found that 84.0% of all HTTP servers include a Server header
in their responses, 88.9% of which belong to one of the 23 extracted categories; this re-
sult indicates that the majority of web servers (74.7%) are already reporting the product
deployed on their respective machines. We select 200 000 hosts with non-empty Server
headers, label and then remove the examined header from all of our samples, and compute
binary and latent fingerprints for the modified documents. Note that Censys parsers also
extract metadata such as manufacturer and product names from various headers/banners
and append them to their records. Thus, before computing fingerprints, we also remove all
metadata extracted from the masked header.

The above technique imitates a rather naive way of masking attributes. In practice,
security-conscious administrators can potentially hide headers and banners of other ports
and protocols on their respective machines, in order to make the task of inference more dif-
ficult. For instance, the use of Microsoft products on other protocols may also suggest their
deployment on the inspected one. Hence, we also repeat the proposed technique by mask-
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ing all headers/banners (as well as metadata), to obtain a series of examples corresponding
to a more meticulous masking strategy. Finally, we train supervised classifiers for inferring
the aforementioned categories of web servers, using an even split for training/testing. To
make our estimators robust to both types of information masking, we train them on both
sets of samples, and report their performance on each set, separately.

Table 4.5 displays our results. We have included the overall accuracy of trained classi-
fiers, as well as their performance over the four most frequent server products in our data
set (excluding AkamaiGhost4), namely Apache, Microsoft, NGINX, and Lighttpd. Similar
to the previous section, we train models on binary fingerprints, as well as 10-dimensional
and 50-dimensional latent representations. The hyper-parameters of the inspected models
are also the same as those used in Section 4.5.1, though we found that using trees with a
maximum depth of 10 was sufficient for this experiment. Since we are performing multi-
class classification, the output of the presented models for an arbitrary sample i (1 ≤ i ≤ n)
is a set of probabilities, summing up to one (pi, j :

∑k
j=1 pi, j = 1), indicating the likelihoods

corresponding to different categories, i.e. web server products. Take yi ∈ {1 . . .k} to be the
ground-truth labels, and ŷi := argmax j pi, j to be the predicted label, i.e. the most proba-
ble class, for sample i. Then the true positive rate (TPR), false positive rate (FPR), and
precision (PRC) over the kth class are defined as follows:

TPR(k) =
|{i : yi = k, ŷi = k}|

|{i : yi = k}|

FPR(k) =
|{i : yi 6= k, ŷi = k}|

|{i : yi 6= k}|

PRC(k) =
|{i : yi = k, ŷi = k}|

|{i : ŷi = k}|

, (4.15)

where | · | denotes the cardinality of a set. From Table 4.5a it is clear that we can infer the
hidden information with both high precision and recall (true positive rate), even for sparse
categories (e.g. Lighttpd), with a maximum overall accuracy of 97.9% when naive masking
is employed. We observe a lower accuracy of 80.9% for more throughly masked finger-
prints. Note that the reported precisions indicate the reliability of classifiers’ outputs, i.e.
the percentage of detected hosts that actually correspond to the inspected category. For in-
stance, using binary fingerprints in Table 4.5a (Table 4.5b), we can detect 88.1% (60.8%) of
Lighttpd servers with 95.7%, (89.8%) precision; although we are recalling labels at a lower

4AkamaiGhost (Akamai Global Host) are servers belonging to Akamai’s content delivery network, and
are the second most frequent (23.1%) web server in our data set. Since these are a very specific type of host,
they result in true positive rates and precisions higher than 99% for all models in Tables 4.5a and 4.5b.
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Binary Latent (10-D) Latent (50-D)
XGBoost k-NN XGBoost XGBoost

Apache
(30.1%)

TPR 97.9±0.1 87.9±0.3 91.1±0.2 95.9±0.1
FPR 1.5±0.0 9.2±0.2 10.9±0.2 4.5±0.1
PRC 96.5±0.1 80.5±0.3 78.4±0.3 90.2±0.2

Microsoft
(14.6%)

TPR 96.9±0.2 89.7±0.3 90.0±0.2 93.6±0.3
FPR 0.4±0.0 2.2±0.1 1.7±0.0 1.0±0.0
PRC 97.9±0.1 87.5±0.3 90.2±0.2 94.1±0.1

NGINX
(14.5%)

TPR 96.9±0.1 66.9±0.6 65.2±0.8 87.4±0.2
FPR 0.6±0.0 3.0±0.1 2.4±0.1 1.2±0.0
PRC 96.7±0.1 79.1±0.4 82.3±0.4 92.4±0.2

Lighttpd
(2.3%)

TPR 88.1±0.5 72.5±0.8 71.2±1.0 81.4±0.9
FPR 0.1±0.0 0.4±0.0 0.3±0.0 0.2±0.0
PRC 95.7±0.4 82.2±0.2 86.1±0.8 92.5±1.2

Accuracy 97.9±0.0 86.3±0.1 87.3±0.1 94.4±0.1
Time/sample ∼ 0.5ms ∼ 0.35ms ∼ 0.25ms ∼ 0.25ms

(a) Masked HTTP Server header

Binary Latent (10-D) Latent (50-D)
XGBoost k-NN XGBoost XGBoost

Apache
(30.1%)

TPR 86.3±0.4 80.8±0.4 80.3±0.3 83.9±0.4
FPR 12.0±0.4 12.3±0.4 12.9±0.2 11.1±0.2
PRC 75.7±0.6 74.0±0.5 72.9±0.4 76.6±0.4

Microsoft
(14.6%)

TPR 77.6±0.5 73.6±0.9 76.6±0.4 78.0±0.6
FPR 4.5±0.1 4.5±0.1 5.1±0.1 4.7±0.1
PRC 74.6±0.5 73.7±0.4 72.0±0.4 74.1±0.2

NGINX
(14.5%)

TPR 68.0±1.0 59.4±0.8 58.9±0.7 65.2±0.5
FPR 2.6±0.1 4.4±0.1 4.5±0.2 3.5±0.1
PRC 81.7±0.6 69.4±0.5 69.2±0.6 76.1±0.6

Lighttpd
(2.3%)

TPR 60.8±0.9 59.4±1.1 53.2±0.5 61.7±0.5
FPR 0.2±0.0 0.7±0.0 0.4±0.0 0.3±0.0
PRC 89.8±0.6 67.6±1.5 73.8±1.0 81.1±1.4

Accuracy 80.9±0.1 77.0±0.1 77.0±0.1 79.8±0.1
Time/sample ∼ 0.45ms ∼ 0.3ms ∼ 0.25ms ∼ 0.25ms

(b) Masking all headers/banners

Table 4.5: True positive rate (TPR), false positive rate (FPR), and precision (PRC) for
detection of different web (HTTP) server products. The reported results correspond to

predictions of a single model over samples where only the Server header is being masked
(top), or a more thorough masking of headers/banners from all protocols (bottom).
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Field name Contribution
Ownership (AS) information 24.1%
Geolocation 17.8%
Port 443 (HTTPS) 20.5%
Port 80 (HTTP) 20.3%

HTTP headers 12.6%
Port 22 (SSH) 4.1%
Port 25 (SMTP) 2.1%
Port 23 (Telnet) 1.6%
Other ports 3.7%

Table 4.6: Break-down of contribution from different fields for detection of different web
(HTTP) server products. Contribution of individual features extracted from a field (e.g. all

features extracted from ownership information) are aggregated to obtain the cumulative
importance of said field.

rate, the false positive rate remains low enough to retain the precision of our predictions,
thus resulting in models that are robust to different levels of information masking.

Similar to our results in Section 4.5.1, classifiers using latent variables are consistently
less performing than those using binary fingerprints. However, in contrast to the previous
section, we do not observe a significant advantage in term of speed for estimators trained
on latent embeddings. Additionally, we notice a bigger gap between the accuracy of k-NN
and tree-based models. Nevertheless, the accuracy of k-NN models (86.3% and 77.0%)
suggests that our technique for finding similar hosts continues to produce plausible results.

For models trained on binary fingerprints, we can also measure the contribution of each
variable to the trained model.5 We can then aggregate feature importances that fall under
any node in the document tree, resulting in the importance of specific fields in Censys docu-
ments (e.g. data observed on different ports) for the decision making process. For instance
in Figure 4.1, the contribution of features extracted from the Content-Type header are ac-
cumulated to obtain the contribution of this field to the classifier, which is in turn added to
the cumulative contribution of all HTTP headers for prediction. For classifiers examined in
the first column of Table 4.5, we have included a break-down of the average contribution
from different sections of the document in Table 4.6. We observe that ownership (AS) and
geolocation properties have a major impact on classifier predictions, indicating that hosts

5The utilized technique for generating feature importances [57], computes the contribution of features to
an individual decision tree, by iterating over all (non-leaf) nodes in the tree, and calculating “the reduction in
node purity from the split, and attributing it to the feature that was split on”, according to the following de-
scription: https://stats.stackexchange.com/questions/162162. Feature importances for the entire
ensemble are then computed by averaging over all estimators.
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belonging to different regions or ASes tend to behave differently when it comes to choosing
web server products. We also notice that data from HTTP headers (except the Server header
itself), as well as other information extracted from the HTTP response, also present high
importance in the resulting models. We further observe a high contribution from attributes
of the HTTPS protcol, the secure version of HTTP, given the close coupling between the
two. Data from the remaining protocols, the most notable being SSH, are only minor con-
tributors to our estimators; however, overall they constitute 11.5% of contributions to the
decisions of trained classifiers. This further motivates the use of a diverse feature set, in-
cluding cross-protocol information, for inference tasks regarding Internet hosts, even those
that may only target a single port as is the case with the study herein.

While we have evaluated our methodology for one case study, the same concept can
be applied to other protocols, such as FTP, different types of mail servers, or for OS fin-
gerprinting. Furthermore, it would be interesting to acquire independent measurements of
hidden attributes, in order to evaluate how our technique can generalize to hosts that are
currently masking these information in-the-wild. Note that while the majority of HTTP
servers report the utilized product, this is not necessarily the case for other categorizations.
For instance, only 5.4% of hosts in Censys report their operating system, highlighting the
importance of an independent data set for validation.

4.5.3 Network signatures

Thus far we have inspected the utility of our host fingerprints for classification at the IP
address level. However, another potential application of our numerical fingerprints, is ag-
gregating them over arbitrary boundaries, in order to obtain signatures for networks of IP
addresses. Characterizing collections of hosts, for instance Internet-facing servers in any
autonomous system (AS), or an organizational network, has previously been applied for
forecasting cyber-risk [86]. Constructing network signatures by aggregating our host fin-
gerprints at the network level, can capture many granular aspects of networks; this can
in turn lead to more accurate models for characterizing the underlying entities, e.g. busi-
nesses, or ISPs. The aggregated representations of networks can then be used similarly to
their host-level counterparts, e.g. for supervised classification.

In this section, we will examine this technique for detection of different categories
of networks. More specifically, we will use information provided by MaxMind, to train a
multi-class classifier at the AS level, in order to identify business, consumer, education,
government, and information networks. For aggregation boundaries, we obtain descrip-
tions of ASes from the MaxMind GeoIP2 ISP database [89]. We use a snapshot collected

100



Category (MaxMind) Frequency Category Frequency
Residential 50.4%

Consumer 53.0%
Cellular 2.3%
Traveler 0.3%
Dialup 0.1%
Business 32.6% Business 32.6%
College 4.6%

Education 5.2%School 0.6%
Library 0.1%
Hosting 2.6%

Information 2.9%Content delivery network 0.2%
Search engine spider 0.1%
Government 1.3%

Government 1.4%
Military 0.1%
Unknown 4.8% Unknown 4.8%

Table 4.7: Categorization of user types for queried IP addresses from MaxMind, and the
corresponding categories for the study herein.

on 2017-10-31, containing address blocks assigned to 58 622 ASes by the Regional Inter-
net Registries, to group probed hosts from a Censys snapshot obtained on 2017-11-01. It is
worth noting that networks with zero, or very few visible hosts (i.e. hosts with correspond-
ing records in Censys) cannot be characterized accurately. Therefore, we ignore networks
with less that 20 visible IP addresses, resulting in 41 027 ASes. The ignored networks con-
tain only 0.1% of probed hosts in Censys, and correspond to 2.0% of the allocated IPv4
address space, i.e. combined size of all 58 622 ASes; autonomous systems with no visible
IPs correspond to 0.7% of the allocated space.

Label curation To procure labels for classification, we utilize the MaxMind GeoIP2 pre-
cision services [90]. Note, however, that the aforementioned service provides user types at
the IP address level. Therefore, we query this database using five sample IPs from 8372
randomly picked autonomous systems. We use the mapping provided in Table 4.7 to con-
vert user types returned by MaxMind, to one of five aforementioned categories, in addition
to an unknown category; we have also included the frequency of each user type in Table
4.7. We then label each AS using the most reported category (from the third column in Ta-
ble 4.7). For the examined networks, we observe that 7327 (91.9%) exhibit the same user
type for all queried IP addresses, while 7679 (96.3%) and 7957 (99.8%) return the same
category for 4/5 and 3/5 IPs, respectively. This indicates that for the majority of ASes, our
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(a) Consumer (b) Business (c) Education

(d) Information (e) Government

Figure 4.7: 2-dimensional representations of IPs from different categories of autonomous
systems. Each plot is drawn using 20 000 sample IP addresses from the depicted category.
The observed differences in the structure of these networks can be used by a supervised

learning algorithm to distinguish between them.

ground-truth data set does not provide more granularity than the AS level, and aggregating
our fingerprints at this level is not far too coarse for the purpose of this study. For the
remainder of our analysis, we also remove networks with an unknown label, resulting in a
data set comprised of 7972 samples. We use 80% of our samples for training, and evaluate
trained estimators over the remaining held-out test samples.

Aggregation In order to obtain a numerical representation of each network in our curated
data set, we first obtain binary fingerprints of hosts from the 2017-11-01 Censys snapshot,
and group them according to the aggregation boundaries provided by MaxMind. However,
given that large ASes can contain millions of discoverable IP addresses, we select up to
1000 random hosts from each network, using out-of-bag sample without replacement, as
a representative subset; this significantly reduces computational and memory requirements
for this type of analysis. Figure 4.7 depicts the 2-dimensional visualization of each of
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the five AS categories; each figure has been generated by concatenating sample IPs from
ASes under the inspected category, and drawing the distribution for 20 000 sample points
from the resulting set. As is evident from Figure 4.7, we see a clear distinction between
the illustrated categories of IP addresses. For instance, hosts belonging to businesses and
information companies exhibit more diversity, while the other three categories form more
concentrated clusters; this is possibly due to the fact that the former typically include vari-
ous types of servers for providing services to clients, e.g. web and mail servers, which can
potentially manifest more variability in their probed configurations.

For classification, we explore various techniques for aggregating our host-level fin-
gerprints, including averaging binary (latent) fingerprints, binning low-dimensional (2-10)
latent embeddings and reporting the resulting histograms, clustering latent fingerprints and
concatenating the centroid and density of the obtained clusters, and neural network models
that process a collection of latent fingerprints to produce a multi-class output. However, our
results suggest that simply averaging our binary fingerprints, i.e. computing the percentage
of hosts that exhibit each of the 11 156 binary features, produces the most accurate repre-
sentation for the current application. This is partly owing to the granularity of our binary
tags, as we will discuss in more detail later in this section. We further append the size of
the AS, and the number and percentage of active IP addresses, to the extracted features,
resulting in a feature set comprised of 11 156 variables.

Evaluation For this experiment, we use gradient-boosted trees consisting of 100 esti-
mators with a learning rate of 0.1. To reduce model complexity and prevent over-fitting,
we limit the depth of decision trees to five, and train each estimator on a random subset
containing 80% of the training set, and using 80% of available features. We also set the
minimum number of samples that a decision tree leaf can represent to 10; this parameters
further reduces over-fitting by preventing the training algorithm from further splitting such
nodes. Additionally, given that we are using a relatively small training set, we also use
recursive feature elimination to reduce the number of utilized features to 1000. This is
achieved by training an initial estimator on all 11 159 features, computing the contribution
of each variable to the resulting classifier according to the algorithm detailed in Footnote 5,
and eliminating the least important features, along with those that are not used in any of the
trained estimators; the described procedure is continued until we reach the targeted number
of dimensions.

Table 4.8 includes the results of our evaluation; for each statistic we have included its
mean and standard deviation for five different runs. We observe an overall accuracy of
73.7± 0.9 for the trained supervised models. Note that while we do not observe compa-
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Category
Recall Precision Predicted categories (%)

(%) (%) Consumer Business Education Information Government
Consumer (55.7%) 78.9±1.3 79.9±0.9 78.9±1.3 20.0±1.1 0.7±0.2 0.3±0.2 0.2±0.1
Business (34.4%) 72.1±1.7 64.6±1.5 25.2±1.5 72.1±1.7 1.6±0.4 0.4±0.3 0.7±0.2
Education (5.4%) 57.7±4.6 77.0±2.2 22.3±2.1 19.5±3.0 57.7±4.6 0.0±0.0 0.5±0.9
Information (3.0%) 39.2±7.1 78.4±6.4 32.1±5.4 28.8±11.0 0.0±0.0 39.2±7.1 0.0±0.0
Government (1.4%) 44.5±7.3 65.7±9.3 13.6±9.5 40.9±11.1 0.9±1.8 0.0±0.0 44.5±7.3

Table 4.8: Recall (true positive rate), precision, and breakdown of the predicted classes,
for different AS categories. Scores are reported over five different runs, and correspond to

an overall accuracy of 73.7±0.9.

rable accuracies to those obtained from the previous case studies, Table 4.8 demonstrates
a clear correlation between the extracted signatures of networks, and the examined cate-
gories of ASes. Furthermore, our results significantly improve upon a more naive approach
to the task at hand: simply training a classifier at the IP addresses level, and averaging
predictions over AS boundaries, yields an accuracy of roughly 50%; this further supports
our technique for characterizing networks. For instance, observing only a few indicators,
such as hosts that utilize .edu domains, can provide strong evidence for an educational
network. Thus, it is more appropriate to aggregate measurements prior to feeding them to a
supervised model, in order to examine networks as a whole, and not at the host-level. Inter-
estingly, inspecting the top 100 features in our trained models, we observe the examination
of top-level domains extracted from banners and subject common and alternative names of
certificates. The importance of fine-grained characteristics of networks for the examined
task, can also explain the inferior performance of models that leverage latent fingerprints,
as the aforementioned attributes are possibly lost as a result of the lossy nature of latent
embeddings, as well as the aggregation process.

Note that for educational, information, and government networks, there exist a small
number of mis-categorized test samples, despite the rarity of such networks. We inspected
these examples for one of our classifiers, corresponding to an AUC of 73.3%. Interest-
ingly, for mis-classified educational, information, and government networks, we found that
10/13, 6/6, and 9/10 of the examined ASes were either given an incorrect label in our
ground-truth data set, or the underlying organizations conducted business at some capacity
in the predicted industries. We have included a number of these examples in Table 4.9,
where we have included the AS description from Maxmind, the number of visible hosts
in the network from Censys, and the ground-truth and predicted labels. For instance, the
Energy Sciences Network (ESnet) is the United States Department of Energy’s dedicated
science network; hence, it can be categorized as both an educational, and a government net-
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Autonomous system description Size
MaxMind Predicted
category category

Colombian National Research and Education Network 418 Consumer Education
Kalamazoo Regional Educational Service Agency (RESA) 237 Business Education
Independent College Enterprise, Inc. 60 Consumer Education
Holy Family University 34 Business Education
Vivio Technologies 4660 Business Information
Argon Data Communication (ArgonHost) 1264 Consumer Information
North Hosts Limited 244 Consumer Information
United States Department of Justice 1370 Business Government
Energy Sciences Network (ESnet) 502 Education Government
Spacenet, Inc. (absorbed by SageNet in 2014) 40 Consumer Government

Table 4.9: Examined mis-categories networks. The presented samples either correspond
to an error in the MaxMind data set, or identify a business with an ambiguous industry.

work. Furthermore, Spacenet (currently part of SageNet following its acquisition in 2014),
provides services to businesses, as well as government agencies.

The presented cases in Table 4.9 shed light on the difficulty of the examined classi-
fication task, even for a human observer, which can further explain the lower accuracies
observed in this section, as compared to the previous supervised problems. Furtermore,
it shows how our trained classifier can be used to selectively audit and correct conspicu-
ous errors in the curated ground-truth labels. Finally, the same concept can be applied to
other classification problems at the network level, e.g. assessing the security posture of
organizational networks, to compliment our study in Chapter 2. It would be interesting to
investigate whether signatures obtained from latent embeddings can prove useful for other
experiments, as they can be used to reveal certain clusterings of (unsecured) hosts in a net-
work, as we have seen with a number of examples for 2-dimensional representations in this
chapter; a shortcoming of signatures extracted from binary fingerprints.

4.6 Discussion

In the previous section, we provided examples on how to use the fingerprints obtained in
Sections 4.3 and 4.4, in conjunction with learning algorithms, for three real-world appli-
cations. Moreover, we evaluated our framework using Censys as the main data source for
providing demographic and probed measurement over the entire IPv4 space. Note, how-
ever, that the proposed framework is decoupled from the data set it is trained on, as long as
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samples follow the tree-like document structure detailed in Section 4.3, and the applications
for which it is ultimately utilized. In practice, research environments and production sys-
tems can install the proposed tools on top of their own databases, thus adding visualization
and machine learning capabilities to their existing toolkits.

4.6.1 Privacy

The privacy-preservation of machine learning algorithms is often a concern for big data
systems [36, 101]. Note that our measurements have been collected on the public Internet,
and are not as sensitive as other types of documents, such as medical records. However, one
may still want to anonymize samples in a specific collection, e.g. the identity of samples
used in a machine learning model. For each of the four global IPv4 snapshots in this study,
we found that ∼17% of obtained fingerprints were also unique identifiers for their respective
IP addresses. Hence, our binary fingerprints are not appropriate representations for the
purpose of privacy. However, the lossy nature of our latent fingerprints, discussed in Table
4.2, make them an appealing choice. One can also further add noise to anonymized samples
in order to gain additional privacy, which can easily be achieved for latent embeddings
due to the continuous nature of these variables. A full analysis of the trade-off between
privacy and accuracy of trained models and statistics collected on anonymized data sets is
an interesting extension of the current work.

4.6.2 Fingerprinting IPv6 hosts

More users are adopting IPv6 [53], with more than 25% of Alexa Top 1000 websites cur-
rently reachable over IPv6 [148], where obtaining global measurements is infeasible. While
we do not directly evaluate our methods over this space, the proposed techniques can also
be applied to measurements collected on IPv6 hosts, e.g. through targeted scanning [96].
This can be achieved by reusing IPv4 models, or training new models on a representative
subset of IPv6 hosts, in order to make generalized statements about visible hosts in this
space. The scalability of our techniques are also of particular interest in this space, as the
growing number of connected machines, especially IoT devices, underscore the need for
methods capable of fast analysis.

4.7 Related work

There has been an increasing number of studies using machine learning techniques to pro-
cess Internet measurement as well as social media data. For instance, vulnerability and
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Twitter data are analyzed in [122] to train classifiers for detecting software exploits. A
semi-supervised learning method was used in [118] to process social media data to iden-
tify un-reported data breaches. A supervised learning approach was used in [86] on In-
ternet host measurement data to perform data breach prediction. In virtually all these
cases, features were extracted heuristically, though well-informed by domain expertise.
The methodology presented here uses a systematic feature extraction, yet still guided by
domain knowledge, to produce high fidelity fingerprints for a diverse set of applications.
Most importantly, our techniques retain the scalability required for large-scale analysis.

Previous work on fingerprinting include [130, 131, 146] for OS fingerprinting, [43, 75,
84] for profiling physical devices, and [21] for automated fingerprint generation. However,
instead of focusing on specific attributes, e.g. the installed operating system, producing
unique fingerprints for device identification, or customizing probes for a specific appli-
cation, we propose a more general approach for fingerprinting hosts by consolidating an
existing, though diverse, set of measurements. Furthermore, we generate machine learning
compatible representations, which can then be customized for a specific application using
state-of-the-art learning techniques.

On detection of malicious websites and intelligent phishing classification, Zhang et
al. [152] examine the content of webpages, using the TF-IDF algorithm to extract informa-
tion from the content and detect phishing websites. Afroz et al. [3] use content similarities
in order to spot malicious sites imitating the appearance of legitimate websites. Soska
et al. [134] evaluate design a classifier leveraging both content and traffic data to predict
whether a given benign website will become malicious in the future. Li et al. [85], and
Mekky et al. [91], find malicious websites by examining HTTP redirections. Shibahara et
al. [132] propose a system for detecting drive-by-download attacks by inspecting redirec-
tion graphs of malicious, benign, and compromised websites. Abdelhamid et al. [1] use
associative classification to discover correlation between blacklisted pages, and produce
simple rules for phishing detection. Our proposed method for identifying malicious servers
can perform both detection and forecasting by comparing the recorded fingerprint of a host
with previously blacklisted servers, and can complement other approaches by tapping into
an orthogonal source of measurements.

4.8 Conclusion

In this chapter, we have demonstrated a novel approach to distilling an extremely broad
range of characteristics of IP addresses into two different types of hosts fingerprints, while
still maintaining the richness of the high-fidelity characteristics. We develop a novel
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method to extract binary feature vectors from tree-like documents that describe attributes of
Internet-facing hosts, and utilize recent developments for unsupervised modeling of large-
scale data to find low-dimensional representations of our high-dimensional, though sparse,
binary fingerprints. For our latent variable model, we compare two different generative
models, namely variational autoencoders and restricted Boltzmann machines. Through
empirical evaluation of trained models, we conclude that a variational autoencoder is a
more appropriate choice for training deep graphical models that can identify higher order
interactions between different measurements, and use those patterns to encode compact, yet
representative, numerical fingerprints. These encoded features can be thought of as latent
variables that drive the signals observed by Censys scanners, such as location, in addition
to human factors summarizing the behavioral patterns and (malicious) intentions of those
managing the observable Internet hosts, e.g. network administrators. To the best of our
knowledge, this is the first study on producing flexible numerical fingerprints, which can
then be customized through machine learning algorithms.

The latent representations learned as a result of our methodology can be used for vi-
sualizing hosts, in order to help researchers, security analysts and networking experts to
identify and inspect patterns for clustering of IP addresses, and recognizing outliers. We
also explore the application of these tools for three practical case studies: (1) quantifying
the maliciousness of hosts, (2) inferring hidden attributes of IP addresses, more specifically
for detecting the deployed product for serving web (HTTP) content, and (3) categorizing
autonomous systems, by inspecting the joint distribution of hosts in a network. The ability
to manipulate and analyze our numerical fingerprints using fast learnable transformations,
e.g. using gradient-boosted trees, enables an entire new class of security analysis that were
previously not feasible, or could only be performed inefficiently, such as on-demand fin-
gerprinting of specific software, or physical devices.

Note that a drawback of current fingerprinting techniques, is their inability in detecting
similar hosts. Thus, throughout our experiments, we have evaluated the performance of
k-NN classifiers, in order to examine the efficacy of distances in the latent space (using
10-dimensional embeddings) for quantifying host similarities. Our results indicate that our
numerical fingerprints also enable fuzzy-matching of hosts, producing a similarity mea-
sure that is robust and suitable for various applications. This property, along with the low
dimensionality of latent embedding, allows us to efficiently use the nearest-neighbors al-
gorithm in order to query for similar hosts within a large corpus of fingerprints, which can
then be leveraged to inspect and interpret predictions.

For estimators that utilize binary tags for inferring hidden attributes and categorizing
networks, we also inspect the resulting classifiers to gain insight into the contribution of

108



individual features, and to identify major drivers in the decision making process. However,
one drawback of algorithms based on latent embeddings, is the loss of interpretability, as
with virtually all deep learning models. While the latent variables contain a multitude of
knowledge on each arbitrary host, it is often unclear what each one is representing. It
is up to the person using these tools to interpret the results for specific tasks, by using a
combination of visualization and spot checking of samples. We have shown an example
of how to alleviate this issue by associating hosts with similar and labeled IP addresses,
using the nearest-neighbors algorithm, a capability offered by latent fingerprints due to their
low dimensionality. Nonetheless, we emphasize the need for the proposed techniques, to
complement other more interpretable models, in tasks for which scalability and feasibility
become an issue. Furthermore, highly sparse features, measured by the fraction of hosts
exhibiting certain characteristics, and new software and protocols introduced at later times
would not be captured by our methodology; to alleviate these issues we would need to re-
train models over more recent snapshots, or tweak hyper-parameters in order to allow for
more sparse features.
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CHAPTER 5

Conclusion

5.1 Summary of contributions

In this thesis, we have presented a number of microscopic and macroscopic security-
oriented studies (with further applications in network monitoring), combining measure-
ments on various types of entities, with statistical tools and machine learning methods, in
order to assess their security posture and privacy, detect maliciousness, and make high-level
deductions based on our findings. We choose our tools in accordance with the complexity
of the tasks at hand, the volume of our data sets and labeled samples, and the quality and
quantity of available information. Our statistical analysis of entities security reveals two
major insights: (1) the need for interpretable designs, which in turn lead to actionable rec-
ommendations and forecasts, and (2) the significance of transparency and data availability
for producing objective and unbiased models, for the betterment of security. Our main
contributions and findings are summarized below.

Fine grained data breach prediction In Chapter 2, we use publicly available infor-
mation about businesses, combined with labels curated from previously disclosed data
breaches, in order to train a set of classifiers for assessing risk of experiencing data in-
cidents. In addition to estimating the overall likelihood of suffering from a data breach,
we also estimate risk distributions over multiple categorizations, including incident types
(hacking, error, misuse, etc.), actors (internal, external, partners), and affected assets. Our
assessments can help organizations choose an optimal level of investment in preventa-
tive and self-protection measures, as well as guide the allotment of resources, and iden-
tify weakest links. Furthermore, the public availability of utilized features, enabled third
parties, such as insurance underwriters, to assess the security for designing more optimal
cyber-insurance contracts term, including premiums and coverage levels.

For overall risk estimation, we obtain a true positive rate of 90%, while while keeping
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false positives as low as 11%, and an area under the curve (AUC) score of 95%; these
statistics are collected over a held-out test set. For estimating risk distributions, we use a
combination of prediction histograms and case studies, in order to demonstrate how our
methodology can produce uniform or concentrated risk profiles based on the nature of the
underlying business. For the latter, organizations can use our findings to focus on a smaller
set of incident types, thus achieving the same level of protection by spending less resources
on security through more prudent prioritization.

Modeling end-user patching behavior In Chapter 3, we tap into field measurements of
patch deployment, in order to quantify and model user behavior, when it comes to apply-
ing software patches. We leverage various techniques for extracting precise ground-truth
information indicative of a user’s delay in installing software patches, for four client-side
applications: Google Chrome, Mozilla Firefox and Thunderbird, and Adobe Flash Player.
These include finding exact product release dates, and overcoming challenges regarding
parallel product lines. Our findings suggest that user behavior is memory-less (i.e. the de-
lay in applying patches follows an exponential distribution); we use statistical tests, namely
the chi-squared test, to support our claims. Furthermore, we observe that user behavior is
largely consistent across different countries.

Following the simple-mindedness of user behavior, we further measure its effects on
the end-host vulnerability state, over an extended observation window spanning many vul-
nerability disclosures. We observe that silent updates do lead to shorter windows of vul-
nerability; however, even with silent updates, the majority of hosts have long windows of
susceptibility. This is partly due to the memory-less property of user behavior, combined
with the large number of software flaws that affect the examined products, which results in
long windows of susceptibility that can be exploited by miscreants for compromising user
machines. We also observe this phenomena for exploited vulnerabilities of Flash Player,
though at a lesser extent.

Numerical fingerprinting of Internet hosts In Chapter 4, we conduct a fine-grained
analysis of Internet hosts, using recent advances in network scanning, to distill a wide range
of available measurements on the IPv4 address space, into compact numerical fingerprints.
We adopt a novel approach to host fingerprinting, by producing two types of machine learn-
ing compatible representations: (1) high-dimensional, yet sparse, binary fingerprints in the
form of various tags that have been associated with a hosts, and (2) low-dimensional latent
embeddings of our high-dimensional representations. To this end, we develop a technique
for extracting binary feature vectors from tree-like documents containing a wide variety of
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measurements, both in breadth (number of scanned ports/protocols) and depth (attributes
of a specific protocol), on probed IP addresses. Furthermore, we use a recent method for
training deep generative stochastic models, namely variational autoencoders [73, 117], in
order to perform dimensionality reduction on binary fingerprints.

We examine the utility of binary and latent fingerprints for supervised learning tasks,
namely detecting/predicting malicious hosts, and inferring installed web server products
(when this information is not directly disclosed). We show that the use of low-dimensional
fingerprints can results in faster models, while requiring more advanced hardware, and pre-
processing. Furthermore, our latent fingerprints are amenable to visualization, allowing
collections of hosts to be visualized for readily inspecting distributions, and detecting clus-
ters. Another capability of our low-dimensional representations, is that they can be used to
quantity host similarities, resulting in an efficient implementation of the nearest neighbors
algorithm for querying similar IP addresses from a large corpus of sample hosts. Finally,
we aggregate our fingerprints at the network level, in order to categorize autonomous sys-
tems; this demonstrates the applicability of our technique for characterizing networks, and
conducting macroscopic studies on the Internet.

5.2 Future directions

Our proposed framework for scalable analysis of Internet hosts can be extended in a va-
riety of ways, e.g. applying it to other domains such as private networks, or partial scans
on the IPv6 address space. One particularly interesting application of this technique is to
develop a solution for protecting servers against unsecured/infected devices on the Inter-
net. Currently, amplification attacks, and botnets consisting of compromised machines and
IoT devices, are used by cyber-criminals to launch distributed denial of service (DDoS)
attacks. Protecting against such attacks is fairly challenging; blackholing provides a viable
DDoS mitigation strategy, though at the cost of losing legitimate traffic. A more effective
protection method requires the ability to distinguish between benign and malicious traffic
in real-time during an attack. Our host fingerprinting framework can potentially provide a
scalable solution for this purpose, by obtaining signatures of unsecured/infected devices, or
malicious networks, and producing real-time rules for filtering out malicious traffic during
an attack. Curating data sets of previous DDoS campaigns, training machine learning al-
gorithms for the identification of their sources, and evaluating their efficacy for protecting
against future attacks, is a potential extension to the current work.

Finally, while machine learning, specifically neural network models, have been exten-
sively applied for image, text, and voice recognition, their utility for processing structured
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(and often nested) documents is fairly unexplored. Another extension to our presented
techniques in Section 4, is applying them to other forms of data, such as webpages, health
records, or business directories. Note, however, that while our binary fingerprints have been
fairly successful in extracting information from Internet probes, this is not necessarily the
case for other data sets. For instance, webpages’ HTML codes can follow widely varying,
often unique structures; in the absence of a shared schema, our proposed framework fails to
extract meaningful representations from tree-like documents. Addressing these challenges
and extending our methods is an interesting extension to the current work, providing valu-
able techniques for scalable manipulation of documents under a machine learning setting,
for application in security, monitoring, and other domains.
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