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ABSTRACT

The primary objective of this work is to examine the effectiveness of metastructures for

vibration suppression from a weight standpoint. Metastructures, a metamaterial inspired

concept, are structures with distributed vibration absorbers. In automotive and aerospace

industries, it is critical to have low levels of vibrations while also using lightweight materials.

Previous work has shown that metastructures are effective at mitigating vibrations but does

not consider the effects of mass.

This work considers mass by comparing a metastructure to a baseline structure of equal

mass with no absorbers. The metastructures are characterized by the number of vibration

absorbers, the mass ratio, and the natural frequencies of the vibration absorbers. The metas-

tructure and baseline structure are modeled using a lumped mass model and a distributed

mass model. The lumped mass model allows for mass and stiffness parameters to be varied

independently without the need to consider geometry constraints. The distributed mass

model is a more realistic representation of a physical structure and uses relevant material

properties. The steady-state and transient time responses of the structure are obtained. The

results of these models examine how the performance of the structure varies with respect to

the number of vibration absorbers and the mass ratio. Additionally, the stiffness and mass

distributions of the vibration absorbers are considered. When the ratio of stiffness over mass

varies linearly, the absorbers create broad-band suppression. Overall, these results show it

is possible to obtain a favorable vibration response without adding additional mass to the

structure.

The distributed vibration absorbers are realized through geometry modifications on the

centimeter scale. To obtain the complex geometry needed for these structures, the metas-
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tructures are typically manufactured using 3D printers, specifically the Objet Connex 3D

printer. To better understand the damping properties of the materials used by the Objet

Connex, the viscoelastic properties are characterized. These properties are characterized

by measuring the frequency and temperature dependent complex modulus values using a

dynamic mechanical analysis (DMA) machine. The material properties are incorporated

into the Golla-Hughes-McTavish (GHM) model to capture the damping effect. Using the

time-temperature equivalence, the material properties are transformed to various tempera-

tures, allowing the response of the structures to be modeled at various temperatures. A 3D

printed metastructure is experimentally tested and compared to the GHM model. These

results show the GHM model can accurately predict the natural frequencies of the vibration

absorbers.

Lastly, the concept of adding active vibration control to a metastructure to get additional

vibration suppression is explored. This is done by attaching piezoelectric materials to the

metastructure and utilizing the positive position feedback (PPF) control law to further reduce

vibrations. Two active vibration absorber designs are explored; the first uses a stack actuator

to control the position of a single absorber and the second design bonds PZT patches in a

bimorph cantilevered configuration to the beam of one absorber. This work shows that the

active vibration absorber design utilizing a stack actuator is not practical, but the PZT

bimorph configuration is capable of further reducing vibrations. Due to the metastructure

design, each mode corresponds to the oscillation of a single absorber. When a single vibration

absorber is active, the controller can control the corresponding mode. Overall, this shows

that integrating active vibration control into a metastructure design can provide additional

performance improvements.
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CHAPTER I

Introduction

1.1 Motivation and scope of dissertation

In recent years, advances in manufacturing techniques have led to stronger and lighter

materials, specifically composite materials. Often, these advances result in structures with

less internal damping making vibrations a more critical issue [1]. Additionally, manufacturing

techniques allow more complex assemblies to be made as a single part. For example, in jet

engines, traditional fans and compressor stages are assembled from a single rotor and multiple

blades. The blades are attached to the rotor via a series of dovetail joints. Dovetail joints

are formed by two parts interlocking with corresponding notches. With recent advances, the

rotor and the blades can be created as a single part eliminating the dovetail joints, known as

a blisk or an integrally bladed rotor. Eliminating the dovetail joints is beneficial since they

commonly develop cracks. However, this is disadvantageous because the friction within the

joints results in higher internal damping of the assembly [2]. These examples show the need

for new lightweight vibration suppression solutions.

A traditional method for suppressing vibrations is through the use of a vibration absorber

or a tuned mass damper. These devices are tuned to the frequency at which a structure is

experiencing high vibrations and can significantly reduce the vibrations at that frequency.

These devices are advantageous but can add up to 30% additional mass to the structure.

Instead of adding a single large vibration absorber to the structure, this work looks at adding
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many small vibration absorbers distributed throughout the structure. The distributed nature

of the absorbers allows them to be integrated into the design of the structure. Since there are

many absorbers, there are a higher number of parameters to tune producing more desirable

results. Structures with distributed vibration absorbers are defined as metastructures. The

vibration absorbers are realized through geometry modifications on the centimeter scale.

Metastructures typically have complex geometry which is most easily manufactured using

3D printers.

3D printing of polymers has made significant developments in recent years leading to a

cost-effective and efficient method to create prototypes of structures with complex geometry

[3, 4]. In engineering applications, these prototypes are used to verify models which exhibit

a certain behavior. The printed material behavior is usually modeled using an elastic model

with viscous damping. When polymer materials are used, it is important to consider the

viscoelastic effects of these materials, particularly when used in vibration applications and

in scenarios where the temperature varies.

This dissertation focuses on using metastructures to determine light-weight vibration

suppression solutions, including methods to accurately model the materials commonly used

to create prototypes of the structures. Across the literature, a variety of terminology has

been used to describe the same concepts presented here. For consistency, the following

terminology will be used throughout this dissertation. References to the terms utilized in

the original work will also be included. The term metastructure is used to refer to structures

with distributed vibration absorbers designed to suppress vibrations. A metastructure is

composed of two parts, the vibration absorber system and the host structure. Vibration

absorbers consist of a mass and spring whose parameters may be tuned to absorb vibrations

at a specific frequency. The absorbers are connected to the host structure which is the main

load-bearing component of the structure. The vibration absorber system aims to reduce

vibrations in the host structure. Here, higher performance correlates to greater vibration

suppression with a focus on the lower frequencies.
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While metastructure concepts are widespread in the literature, there has been little in

focus on determining what characteristics lead to higher performance and the effects of ad-

ditional mass on the structure. The primary objective of this dissertation is to investigate

light-weight structures with high vibration suppression properties. This is accomplished by

examining a simple one-dimensional metastructure which is modeled using various methods.

Additionally, the polymer materials used in 3D printers commonly used to create prototypes

of metastructure are characterized, and an appropriate model developed to capture the vi-

bration properties. Lastly, the adding active vibration control to a metastructure is explored

to determine methods to increase the performance of the metastructures further.

1.2 Proposed design

This dissertation examines one-dimensional metastructures. The aim is to suppress vi-

brations in the longitudinal direction of the bar. The one-dimensional model was chosen

for simplicity. One-directional vibrations are straightforward to model allowing the dynam-

ics to be understood easily. In the future, the same ideas presented here could be applied

to bending motion. To provide a basis for performance improvement, the results for each

metastructure are compared to a baseline structure. The baseline structure is a comparable

structure with no vibration absorbers. The baseline structure is chosen such that it has

a similar design to the host structure without the absorbers, and so that the fundamental

natural frequencies of the baseline structure and the metastructure are relatively close. All

designs have the same mass to isolate the results from the effects of mass. The performance

metric used when evaluating the response of these structures is the area under the Frequency

Response Function (FRF) and the settling time. A lower area under the FRF corresponds to

increased suppression and subsequently higher performance. The settling time is a measure

of how quickly the time response of the structure dies out. A lower settling time indicates

that the vibrations die out more quickly, which is desired. The performance metrics for the

metastructure are compared to that of the baseline structure to calculate a percent change.
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All prototypes used in the experimental testing are fabricated using the Objet Connex

3D printer. This printer was chosen for its ability to print multiple materials in a single

print job and its ability to print viscoelastic materials. Viscoelastic materials inherently

have high damping but are also temperature dependent. To model the viscoelasticity of

the materials, the Golla-Hughes-McTavish (GHM) method is used. A Dynamic Mechanical

Analyzer (DMA) machine is used to characterize the complex modulus of the materials.

Using the characterization results, the viscoelastic metastructure is modeled using the GHM

model.

Active vibration control is added to the metastructure design using piezoelectric ma-

terials. The piezoelectric materials are added to a vibration absorber to create an active

absorber. Two different active absorber designs are considered. The first uses a stack ac-

tuator to control the position of a single absorber, and the second design attaches PZT

material to the beam of one of the absorbers to create a bimorph configuration. The effects

of change the location of the active absorber are explored along with how the design of the

metastructure affects the performance.

1.3 Background

This section provides the background on the various technologies used throughout this

dissertation. The main focus of this dissertation is on metastructures. Therefore, the begin-

ning of the background section talks about the history of metamaterials and how this work

is connected to previous work. The next section goes into detail about the previous work

completed on 3D printed materials and how that works fits into the context of metastruc-

tures. More detail about the specific 3D printer used in this dissertation is presented. The

last background section covers the active vibration control, specifically, control techniques

used for structures with piezoelectric actuators and sensors.
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1.3.1 Metastructures and metamaterials

Metastructures are a metamaterial inspired concept. Metamaterial research began by

investigating electromagnetic metamaterials which exhibited a negative permittivity and

or permeability [5, 6]. Inspired by the electromagnetic metamaterials, the concepts were

extended to acoustic metamaterials [7]. Traditional metamaterials utilize the theory of Bragg

scattering. The lattices are created such that when the waves reflect off the structure,

they destructively interfere with each other. For the Bragg scattering mechanism to work,

the periodic length of the material must be of a similar length as the wavelength. Thus,

for low frequencies very large structures are required [8]. Metamaterials that rely on the

Bragg scattering mechanism are commonly called phononic crystals. Phononic crystals are

materials which exhibit some periodicity and are reviewed in a paper by Hussein et al.

[9]. Milton and Willis were the first to conceive the idea of using local absorbers to create

structures with a negative effective mass that varies with frequency [10]. Liu et al. created

the first physical metastructure that was able to create a bandgap at a frequency lower than

that of the Bragg scattering mechanism. This structure is designed to suppress acoustic waves

above 300 Hz. Their acoustic metamaterial contains lead spheres coated in a silicone rubber

within an epoxy matrix. The lead balls in the rubber are referred to as local resonators. The

local resonator mechanism is the same mechanism used for vibration suppression [11]. Since

then locally resonant metamaterials have been studied extensively for both acoustic and

vibration isolation applications. The work presented here deals exclusively with vibration

mitigation applications. Structures or materials capable of suppressing vibrations using

these local resonators are often referred to as elastic or mechanical metamaterials [12]. In

a review paper by Zhu et al., the authors provide a review of various type of plate-type

elastic metamaterials and discuss possible applications. They also explain the negative mass

density and negative bulk modulus [13]. Here the term metastructure is used to refer to

structures with distributed vibration absorbers. These structures use conventional materials

with absorbers integrated into the structure through geometry and material changes on the
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centimeter scale. The periodic-type nature of these structures was inspired by metamaterials,

but the larger scale modifications make the term structure a more fitting term for this work.

In the literature, these are also referred to as locally resonant phononic crystals, elastic

metamaterials or mechanical metamaterials. The field of auxetics also has considerable

overlap with metastructures. Auxetics are materials that exhibit a negative Poisson’s ratio.

These materials are realized by creating periodic lattice structures. Because of the periodic

nature of auxetics, they affect how waves propagate through them and thus can be used for

vibration suppression among other applications [14].

As Hussein et al. describes in his review paper, metastructures are at the crossroads of

vibration and acoustics engineering, and condensed matter physics [9]. Thus, it is crucial

that strengths from both fields are considered and reviewed for relevancy. Sun et al. and

Pai looked into the working mechanism of metastructures for both bending and longitudinal

motion. They were able to conclude that the working mechanism that leads to vibration

suppression is based on the concept of mechanical vibration absorbers that do not need

to be small or closely spaced [15, 16]. Therefore, it is also relevant to explore the litera-

ture regarding vibration absorbers. A vibration absorber can also be called a Tuned Mass

Damper (TMD) or a dynamic vibration absorber. TMDs typically consist of mass-spring-

damper systems, while a vibration absorber does not use a damper to add significant localized

damping. Although there is no localized damper added to the vibration absorber, there is

still a small amount of material damping which is inherent in all structures. TMDs are stud-

ied widely in the field of earthquake engineering. Igusa and Xu were the first researchers to

look at the effects of using multiple TMDs to suppress a single mode of a structure [17, 18].

Later, this was also studied by Yamaguchi and Harnprnchai [19]. Their work focuses on at-

taching multiple TMDs to a single degree of freedom system and shows that multiple TMDs

can be more effective than a single TMD. These results can be leveraged in metastructure

research.

Another important aspect of the TMD literature is how the optimal parameters for the
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TMDs were determined. Many methods have been used and applied to various systems.

DenHartog developed the optimal parameters for a single TMD as an analytical expression

[20] and this result has since been studied by many others as summarized in Sun et al.s review

paper [21]. The work presented here focuses on some of the numerical methods utilized by

many TMD researchers specifically the H2 norm. Parameters are chosen such that the H2

norm is minimized. This performance metric describes the response of a structure excited

across all frequencies [22, 23]. The H2 norm provides different results than those obtained

by suppressing a specific frequency range and tend to suppress the fundamental mode which

typically has the largest magnitude response.

The model used in this paper is a one-dimensional lumped mass model, which was chosen

for its simplicity, and allows the dynamics to be understood more thoroughly. Some of the

most relevant work related to 1D metastructures is from Pai who models a longitudinal

metastructure consisting of a hollow tube with many small mass-spring systems distributed

throughout the bar. He suggests that the ideal design for a metastructure involves absorbers

with varying tuned frequencies [16]. Xiao et al. looks at a similar structure as Pai but

considers multiple degree of freedom resonators. Their work focuses on modeling procedures

and understanding the bandgap formation mechanisms [24]. Banerjee et al. examines a

frequency graded 1D metamaterial, using a similar model to this work using a mass-in-mass

mechanical model. The mass-in-mass model is similar to the lumped mass model used in

this work but assumes an infinite structure during the analysis [25]. The favorable dynamics

response of these structures can also be described as having a negative effective mass which

has been shown analytically and experimentally [10, 26, 27]. In addition, other researchers

have conducted experiments on longitudinal metastructures. Zhu et al. looked at a thin

plate with cantilever absorbers cut out of the plate. They were able to show the ability to

accurately predict the band-gap and also compared various absorber designs [28]. Wang et

al. tested a glass bar with cantilever absorbers made out of steel slices and a mass [29].

With the rise in additive manufacturing, 3D printing has become a good method to realize
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the complex geometry needed for these structures [30]. Hobeck et al. and Nobrega et al.

both created longitudinal 3D metastructures and obtained experimental results [31, 32].

The work of Igusa and Xu is similar to the work presented here, but there are some

important differences. They are comparing the effectiveness of a single TMD and multiple

TMDs whereas this work compares multiple vibration absorbers to no absorbers. Thus their

structure with vibration suppression is heavier than their structure without suppression. In

this work, the suppression system does not add weight to the structure. Additionally, Igusa

and Xu use TMDs so they can tune the mass, stiffness and damping of each absorber [18].

The work presented here does not add dampers with high levels of localized damping to the

vibration absorbers, thus only mass and stiffness can be tuned.

1.3.2 3D printing

3D printing of polymers has made significant developments in recent years leading to a

cost-effective and efficient method to create prototypes of structures with complex geometry

[3, 4]. Over the recent years, research has looked at modeling and improving the printing

process [33, 34] and the effects of varying printing parameters on the material properties

of the printed materials [35]. In engineering applications, these prototypes are used to

verify models which exhibit a certain behavior. Structures with complex geometry and are

most easily manufactured via 3D printing. In metastructure and metamaterial applications,

the printed material is typically modeled using an elastic model with viscous damping.

When polymer materials are used, it is important to consider the viscoelastic effects of

these materials, particularly when used in scenarios where there are vibrations and when

the temperature varies. Of these papers studying the material properties, the dynamic

modulus of the printed materials has only been explored a few times [36, 37] and even fewer

papers have used the dynamic modulus data to model the dynamic response of the resulting

structure [38]. Additionally, vibration suppression systems are required to function across

a range of temperatures, yet the literature ignores the effects of temperature on printed
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materials.

1.3.2.1 Objet Connex printer

This work will focus on a single 3D printer which has frequently been used in the area of vi-

bration suppression [30, 39, 40, 41, 42] and known to exhibit viscoelastic behavior [37, 43, 38].

The 3D printer being investigated in this work is the Objet Connex printer by Stratasys.

This printer is capable of printing rubber-like and stiff materials. These materials exhibit

viscoelastic properties [44]. The Object Connex printer uses PolyJet printing technology

which works like an inkjet printer. The parts are made by depositing many small dots of

material and then curing the resin resulting in a printed material that appears homogeneous.

Because of the digital nature of this method, these materials are referred to as Digital Ma-

terials (DM). This approach allows the printer to easily mix two different base materials in

various ratios to create a gradient of materials with multiple hardness levels [45]. Addition-

ally, this method also allows for parts made in a single print with both rigid and viscoelastic

components. Using this technique and the many base materials available, the Object Con-

nex printer can create many combinations with varying properties. For this paper, the focus

will be on the digital materials created using the two base materials, VeroWhitePlusTM and

TangoPlusTM. VeroWhitePlusTM is a rigid opaque material and TangoPlusTM is a rubber-

like transparent material [46]. Using these two base materials, the printer can print ten

different digital materials [47]. In the field of active composites and origami, Qi et al. has

done extensive work using the Objet Connex 3D printer, and his papers provide many details

the actual mechanisms the 3D printer utilizes [37, 48, 49, 50].

1.3.3 Viscoelastic materials

Viscoelastic materials are a common method for adding vibration damping to structures.

Many materials exhibit viscoelastic behavior such rubbers, adhesives, and plastics [44]. A

typical application method is constrained layer damping where a layer of viscoelastic ma-
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terial is added to a structure, and a stiffer material is attached to the top [51, 52]. When

subjected to oscillatory motion, the response of viscoelastic material has a phase lag, leading

to hysteresis which causes energy dissipation. Due to the phase lag of the response, the ratio

of stress, σ(t), over strain, ε(t), leads to a complex number, known as the complex modulus,

G?(ω), which is a frequency dependent value

σ(t)

ε(t)
= G?(ω) = G′(ω) + G′′(ω) = G′(ω)[1− µ(ω)] (1.1)

where G′(ω) is the strong modulus, G′′(ω) is the loss modulus, and µ(ω) is the loss

factor. Viscoelastic materials are known to have both frequency and temperature dependent

material properties [53, 54]. The complex modulus can also be written in the Laplace domain

as sG̃(s) and is referred to as the material dissipation function.

1.3.3.1 Modeling of viscoelastic materials

There is a range of modeling methods that can be used to model the viscoelasticity

of materials. The usefulness of the models depends on the application and the desired

accuracy. The classic viscoelastic models are the Maxwell and Kelvin-Voigt models. For these

models, the materials are represented as series of spring and dashpots. These models are

not applicable over a wide range of frequencies thus are not useful for vibration applications

[55].

For vibration applications, the Modal Strain Energy (MSE) method is widely used [56,

57]. The MSE energy method is easy to implement but is only applicable at a single frequency

[58]. To capture the effects of the frequency variance, a class of modeling methods known

as internal variable methods has been developed. These methods approximate the material

dissipation function over a range of frequencies. There are three commonly used interval

variable methods. The Fractional Derivative (FD) model was developed by Bagley and

Torvik in 1983 and closely fits experimental data over an extensive frequency range. The

FD model approximates the material dissipation function as
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sG̃(s) =
G0 +G1s

α

1 + bsβ
(1.2)

where G0, G1, b, α, and β are all parameters used to curve fit experimental data of

the material dissipation to the approximation [59, 60]. The Anelastic Displacement Fields

(ADF) model was developed by Lesieutre and Mingori in 1990 and approximates the material

dissipation function as

sG̃(s) = G0

[
1 +

n∑
j=1

∆j
s

ω2 + Ω2
k

]
(1.3)

where G, Ek, and bk are parameters used to curve fit the experimental data and n is the

number of terms used in the approximation [61]. The last internal variable method is the

GHM model developed by Golla and Hughes in 1985 and expanded upon by McTavish and

Hughes in 1987 [62, 63]. The GHM model is used to model viscoelastic materials in this

dissertation. The material dissipation function is approximated as

sG̃(s) = G∞

[
1 +

n∑
j=1

α̂j
s2 + 2ζ̂jω̂js

s2 + 2ζ̂jω̂js+ ω̂2
j

]
(1.4)

where G∞, α̂j, ζ̂j and ω̂j are the parameters of the model [62].

Since the original GHM model was published, many researchers have made developments

using the GHM model. Inman extended the model to be used with distributed parameters

[64]. Friswell et al. created a reduced parameter model [65]. Friswell and Inman developed

a method for creating a reduced order GHM model [66]. Lam et al. used the GHM method

to model active constrained layer damping [67]. de Lima provides a nice overview of all of

the internal variable methods and describes how they can be incorporated into finite element

models [68].
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1.3.3.2 Characterizing viscoelastic materials

To use the internal variable methods described in the previous section, the approxima-

tion of the material dissipation function must be curve-fit to experimental data. The book

by Jones describes different methods to obtain this experimental data [44]. Additionally,

Vasques et al. also provides a nice review [69]. The dynamic modulus of a material must

be obtained experimentally at various frequencies. There are two ways to accomplish this.

The first method is by applying an excitation force at varying frequencies and measuring the

magnitude and phase of the response. This is typically accomplished using DMA machine

according to ASTM standards D5026 and D5418 [70, 71]. The second method involves mea-

suring the natural frequency and damping in some simple structure such as a cantilevered

beam. Using the geometric dimensions of the sample, the dynamic modulus can be calcu-

lated. If multiple natural frequencies are measured, then the dynamic modulus can be found

at multiple frequencies. This method is outlined in ASTM standard E756 [72]. Using both of

these methods, only a limited range of frequencies are feasible for these testing methods. In

order get the modulus values over a larger range, the time-temperature superposition method

is utilized. The same procedure outlined above is performed at multiple temperatures. A

relationship between the frequency and temperature is determined experimentally. Using

this relationship, the values at various temperatures can be expressed at a single tempera-

ture but over a wide frequency range [44]. Once the complex modulus data is determined

for a single temperature over the application frequency range, the GHM material dissipation

function is evaluated along the imaginary axis (s = ω) and curve fit to the experimental

data [62].

1.3.4 Active vibration control

Active vibration control is a common method to suppress vibration is structures and has

been utilized by many researchers [73, 74]. Instead of simply taking an active approach,

this work looks at integrating active and passive vibration control into a single structure.

12



Other researchers have implemented active control in conjunction with viscoelastic mate-

rials [75, 76, 77]. This work looks at specifically implementing active vibration control

into metastructures. Much work has been completed in the field of active metamaterials

[78, 79, 80, 81, 82, 83], similar to Section 1.3.1 the focus of these metamaterials is typically

on higher frequency vibrations. The focus of this work is on the fundamental mode of the

structure and therefore lower frequencies. In addition to using metastructure for vibration

suppression, other research has also investigated using metastructures for simultaneous en-

ergy harvesting and vibration suppression [84, 85, 86]. These works integrate active elements

into a metastructure design but do not have a focus on active vibration control.

The specific control law utilized in this work is the Positive Position Feedback (PPF)

which was originally proposed by Goh and Caughey [87]. This control law is easy to im-

plement in vibration control scenarios and can be based on an experimental FRF [73]. The

PPF control law has effectively reduced vibrations in many scenarios [76, 88, 89].

The active vibration control in this work will be implemented using piezoelectric mate-

rials. When a voltage is applied to a piezoelectric material, the material produces a strain.

Additionally, the converse effect also occurs; if the piezoelectric material strains, a voltage

is produced [90]. Because of these properties, piezoelectric materials can be used as both

actuators and sensors in control scenarios. Leo provides specific information on how to use

piezoelectric materials for active vibration control [91]. A single piezoelectric element can

be used simultaneously as a sensor and an actuator; this is called self-sensing or collocated

control. Dosch et al. and Jones et al. provide details about how this can be implemented

[92, 93].

1.4 Outline of dissertation

This dissertation is divided into six chapters. This first chapter provides motivation,

defines the scope of the dissertation and provides a literature review of the various concepts

covered in this dissertation.
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Chapter II introduces the lumped mass metastructure model which is used to determine

the feasibility of a mass-conserved metastructure. This simple model allows the various

parameters of the system to quickly be modified and integrated into an optimization scheme.

The lumped mass model is characterized by the mass and stiffness of the various components.

These lumped parameters are influenced by a geometric design, but there is no geometry of

material properties associated with the model.

Chapter III examines the viscoelastic properties of materials printed on the Objet Connex

3D printer. This work steams from the need to have a more accurate model of the 3D printed

materials used to print prototypes of the metastructure. The GHM model is used to model

the viscoelastic properties of the 3D printed material. This model is also able to capture the

effects of temperature on the structures. Experimental verification of the GHM model using

a simple cantilevered beam is performed at various temperatures.

Chapter IV expands the concepts learned from the lumped mass model in the previous

chapter and applies them to a realistic distributed mass model. The distributed mass model

utilizes realistic geometry and viscoelastic material properties to model the response of the

metastructure. A design methodology for design the distributed mass metastructures is

presented. The metastructure GHM model is also experimentally verified.

Chapter V implements active vibration control methods into a metastructure model. The

chapter starts by looking at a lumped mass model to determine the general trends that the

addition of active vibration control can provide to the structure using the PPF control law.

Next, the concepts are extended to a distributed mass model and piezoelectric materials are

used to create an active vibration absorber. The effects of varying the position of the active

absorber are explored along with examining how well different metastructure designs can be

controlled.

Lastly, the conclusion provides a summary of the work complemented in this dissertation.

The contributions of this work on the fields of vibration suppression and 3D printing are

also stated.
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CHAPTER II

Mass-Conserved Lumped Mass Metastructure

This work begins by examining a one-dimensional lumped mass model, chosen for its

simplicity. The one-dimensional nature of this model allows the dynamics to be understood

more thoroughly. The metastructure models used in this chapter are compared to a baseline

structure of equal mass but with no distributed vibration absorbers. The mass-conserved

constraint implies that any increase in performance can be attributed to the addition of the

absorbers and not due to additional mass. The methodology used for this chapter begins by

introducing the model used and the parameter characterizing this model. The main param-

eters varied throughout this study are the number of absorbers, the mass ratio, the natural

frequencies of the individual absorbers, and the mass distributions of vibration absorbers.

Other variables in the model are calculated such that the mass of the structure is constant

and the fundamental frequency of the entire structure stays relatively constant throughout

the analysis. Both steady state and transient responses are examined. A performance mea-

sure is introduced, namely the H2 norm, which measures the total energy of the system. An

optimization procedure is used to minimize H2 norm. Various forms of the optimization pro-

cedure are used to highlight the trade-offs between the various parameters. The effects of the

mass ration, the number of vibration absorbers and the distribution of the mass and stiffness

values of the vibration absorbers are examines. The last part of this chapter compares the

performance of the metastructure to a structure with a tuned mass damper (TMD) attached

15



to the tip of the structure. The TMD damper is a common vibration suppression method

making it a nice comparison to better quantify the performance of the metastructure.

2.1 Description of lumped mass models

The design of the lumped mass model was chosen to behave similarly to an one-dimensional

axial bar but with vibration absorbers distributed throughout the length of the bar. The

metastructure bar lumped mass model is shown in Figure 2.1(a). This model consists of

masses and springs connected in series. Since this is a one dimensional model, all the defor-

mation occurs in the horizontal direction. The model consist of two parts, the host structure

and the vibration absorbers. The larger masses and springs make up the host structure

while the smaller masses and springs represent the vibration absorbers. Small deformation

is desired in the host structure. To provide a basis for performance improvement, the results

for the metastructure are compared to a baseline structure. A simple uniform bar is utilized

as the baseline structure and is modeled as mass and springs connected in series, seen in

Figure 2.1(b). The baseline structure and the metastructure have the same mass, which

shows that better performance from the metastructure is due to the addition of the ab-

sorbers and not from the additional mass. Throughout this chapter, the bars and absorbers

are modeled as lumped mass systems so the dynamics of the system are easily understood

and computational time is small.

The design of these structures was chosen such that the dynamics of structures will be

comparable between the metastructure and the baseline structure. Most importantly, they

will have fundamental natural frequencies near each other. The metastructure is character-

ized by the number of absorbers it has, denoted n. Therefore, n+1 masses make up the host

structure. All masses in the host structure, except the far right mass, have a small absorber

connected to it, modeled as a mass and spring. The larger masses will be referred to as the

host masses since these make up the host structure whereas the smaller masses are called

the absorber masses. The host masses all have the same mass to represent a uniform bar but
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(a)Metastructure: Vibration Absorbers

(b) Baseline Structure: No Vibration Absorbers

Figure 2.1: Lumped mass models of (a) the metastructure and (b) the baseline structure

the mass of the absorbers is allowed to vary throughout the structure. These masses have

values of m and mi respectively where the i refers to the ith absorber mass from the left

and ranges from 1 to n. The springs connecting the host masses are called the host springs

and are denoted k. The mass ratio, µ is the ratio of the mass of the absorber system to the

mass of the entire structure, and is calculated by

µ =

∑n
i=1mi

mtotal

=

∑n
i=1mi

(n+ 1)m+
∑n

i=1mi

(2.1)

The baseline structure has the same number of masses at the host structure, N = n+ 1.

The mass of each one of these masses, m0 is calculated by taking the total mass of the

metastructure divided by the number of masses. The springs in the baseline structure have

the same stiffness as the host springs in the metastructure. For all simulations, structural

damping is utilized to approximate the total material damping in the structure.
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Table 2.1: Continuous bar parameters

Property Values

Young’s Modulus, E 1970 MPa
Density, ρ 1.168 g cm−3

Length, ` 0.45 m
Cross Sectional Area, A 9.00 cm2

Total Mass, mtotal 597 g

2.1.1 Model parameters

In this section the specific parameters for both the baseline structure and the metastruc-

ture are described. The baseline structure is fully characterized by the number of vibration

absorbers. The metastructure is also characterized by the number of vibration absorbers, but

the mass ratio, µ and the distributions of the mass and stiffness of the vibration absorbers

also effect the dynamics of the structure. This chapter begins by characterizing the baseline

model then explains the metastructure used for the most general metastructure model, and

lastly goes into detail showing the various constraints that can be placed on the vibration

absorber mass and stiffness distributions. For ease of comparison, the fundamental natural

frequencies of the baseline structure and metastructure should be approximately equal. In

order to achieve relatively constant fundamental frequencies, the mass and stiffness values

are chosen based on a continuous uniform fixed-free bar with a rectangular cross section and

parameters shown in Table 2.1.

2.1.1.1 Baseline structure parameters

A finite element type approach is used to obtain m and k. This approach results in a

relatively constant natural frequency for varying degrees of freedom. The uniform fixed-free

bar of length ` is discretized into n elements so that the length of each element, `element is

calculated as `element = `/n. The mass and springs values are calculated for the baseline

structure as
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k0 =
EAn

`
(2.2a)

m0 =
mtotal

n+ 1
(2.2b)

where k0 and m0 represent the stiffness and mass values for the baseline structure from

Figure 2.1, and mtotal, E,A, and ` are defined in Table 2.1. These values fully define the

lumped mass baseline structure model.

2.1.1.2 Metastructure parameters

For the lumped mass metastructure model, the value of the host spring stiffness equals

the stiffness from the spring in the baseline structure. The mass of the host mass must

change in order to keep the mass constant between the two models and can be calculated

using the the mass ratio, µ.

k = k0 (2.3a)

m = (1− µ)
mtotal

n+ 1
(2.3b)

where k and m are the values of the host mass and host stiffness as shown in Figure

2.1. Once again to ensure the mass is conserved between the baseline structure and the

metastructure, the masses of the absorber masses must satisfy the following equation.

n∑
i=1

mi = µmtotal (2.4)

The values of the vibration absorber spring constants are calculated based on the desired

frequency of the absorbers. All the absorbers can be tuned to a single frequency or each one

can be tuned to a unique frequency, ωi

ωi =

√
ki
mi

(2.5)
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These equations provide the most general case of parameters for the metastructure.

2.1.1.3 Distribution simplifications for vibration absorber mass and stiffness

In this section, various constraints are set for the vibration absorber mass and stiffness

values. These constraints are used in the simulations through the rest of this chapter.

These simplify the problem to varying degrees and allow various trends to be observed. The

distributions of both the absorber masses and the absorber stiffness are modified. The most

restrictive case, constrains all the vibration absorbers to have to same mass and stiffness

values resulting in the natural frequencies of all the vibration absorbers to be the same.

Relaxing the constraints on the stiffness distribution, the stiffness values are allowed to

vary in a quadratic sense, resulting in linearly varying natural frequencies for the vibration

absorbers. The mass distribution of the vibration absorbers can also be allowed be allowed

to varying linearly. Lastly, the least restrictive configuration puts no restrictions on the

distributions of the mass or stiffness of the vibration absorbers.

For the constant absorber mass the mass of each vibration absorber is constrained to

be constant throughout the length of the bar. For these cases, the mass of the vibration

absorbers can be calculated directly using the mass ratio, µ as

mi = µ
mtotal

n
(2.6)

When the vibration absorber stiffness is also constrained to be constant, the stiffness

value can be calculated based on the desired frequency of the vibration absorbers, ω as

ki = miω
2 = µ

mtotal

n
ω2 (2.7)

The constant absorber mass constraint can be relaxed and the masses can be allowed

to varying linearly throughout the length of the beam. The amount of variation allowed is

represented by a percentage change in mass, ∆m. The distribution is constrained such that
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Figure 2.2: Definition of mass displacements

the sum of the absorber masses still meets the requirements of Equation 2.4.

mmin = (1−∆m)µ
mtotal

n
(2.8a)

mmax = (1 + ∆m)µ
mtotal

n
(2.8b)

mi =

[
mmin · · · mmax

]
∈ R(1×n) (2.8c)

Other simulations restrict the natural frequencies of the vibration absorbers to vary

linearly. This range is defined using the minimum and maximum frequencies, ωmin and ωmax.

From these defined parameters, the individual spring constants, ki can be calculated as

∆ω =
ωmax − ωmin

n− 1
(2.9a)

ki = mi[ωmax −∆ω(i− 1)]2 (2.9b)
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2.1.2 Development of mass, stiffness and damping matrices

Next, the model is assembled into mass, stiffness and damping matrices. The displace-

ments of the masses are defined in Figure 2.2. In formulas, the hat refers to displacements

of the absorber masses and the subscript refers the absorber number. The individual dis-

placements are arranged into vectors as

q0 = [ q01 q02 . . . q0n q0n+1
]T ∈ R(n+1)×1 (2.10a)

q0 = [ q1 q2 . . . qn qn+1 q̂1 q̂2 . . . q̂n ]T ∈ R(2n+1)×1 (2.10b)

where the 0 superscript refers to the displacements of the baseline structure masses. Since

the structure is a lumped mass model, all the masses are arranged on the diagonal of the

global mass matrix. The mass matrices are arranged as

M0 = diag([ m0 · · · m0 ]) ∈ R(n+1)×(n+1) (2.11a)

M0 = diag([ m · · · m m1 · · · mn ]) ∈ R(2n+1)×(2n+1) (2.11b)

where diag(·) indicates a square matrix with the vector components arranged on the

diagonal of the matrix. The stiffness matrices are arranged as follows

K0 =



2k −k −k · · · 0 0 0

−k 2k −k · · · 0 0 0

0 −k 2k · · · 0 0 0

...
...

...
. . .

...
...

...

0 0 0 · · · 2k −k 0

0 0 0 · · · −k 2k −k

0 0 0 · · · 0 −k k



∈ R(n+1)×(n+1) (2.12a)
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K =

 K0 + Vaug

−V

0

−V 0 V

 ∈ R(2n+1)×(2n+1) (2.12b)

V = diag([ k1 k2 · · · kn ]) ∈ Rn×n (2.12c)

Vaug = diag([ k1 k2 · · · kn 0 ]) ∈ R(n+1)×(n+1) (2.12d)

0 = [ 0 · · · 0 ]T ∈ Rn+1 (2.12e)

For this model, no dampers are added to the system but since all structures have ma-

terial damping inherent in them this must be modeled. This damping does not change the

dynamics of the system; it simply prevents the simulations from tending to infinity. A pro-

portional damping model is utilized choosing an arbitrary damping constant, α and defining

the damping matrices by

D = αK (2.13a)

D0 = αK0 (2.13b)

Note that proportionality to the mass matrix, commonly used, is not used here because

of the recent result of Kabe and Sako [94]. Results are presented as a pair of plots: the FRF

and the impulse response. Each plot shows the baseline structure with no absorbers as a

dotted line and the structure with absorbers as a solid line. The FRF is of the far right main

mass subjected to an input force, i.e. |[Q0
n+1(s)]/[Fn+1(s)]|. The impulse response function

is also calculated by applying a unit impulse to the same mass. As a quantitative measure,

the percent decrease of the H2 norm is also reported. This norm is explained in more detail

in the next section.
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2.2 Performance measure

This section describes the performance measure used to determine how effectively the

structure suppresses vibrations. Here the H2 will be utilized, which is widely used in control

literature to develop optimal control theory. The H2 norm is related to the total energy in

the system. To begin, the system must be transformed into state space. The equations of

motion for the structure are

Mq̈ + Dq̇ + Kq = F (2.14)

where M, D and K are the mass, damping and stiffness matrices defined in the previous

section, F is the force vector, and q are the displacements of the lumped mass. The force

vector, F is taken to have a unit value. The corresponding state space matrices are

A =

 0 I

−M−1K −M−1D

 (2.15a)

B =

 0

M−1F

 (2.15b)

C = [ I 0 ] (2.15c)

These can be used to express a transfer function matrix

H(s) = C(sI−A)−1B (2.16)

This results in a transfer function matrix, H(s), which has dimensions m×m and contains

complex numbers, where m is the total number of degrees of freedom in the system. For the

baseline structure, m = n+ 1 and for the metastructure, m = 2n+ 1. The specific entries of

this matrix can be named as
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H(s) =


H11(s) · · · H1m(s)

...
. . .

...

Hm1(s) · · · Hmm(s)

 (2.17)

The term of interest to this paper is the HNN(s) entry which describes the relationship

between an input at the tip and the response of the tip, where N = n+ 1. For convenience

the following definition is utilized, HNN(s) = G(s). The H2 norm is a measure of the total

vibration energy of the system over all frequencies and can be calculated by taking the norm

of frequency response function as follows

H2 = ‖G(s)‖22 =
1

2π

∫ ∞
−∞

tr[G?(ω)G(ω)]dω (2.18)

where the star indicates the complex conjugate of the number. This performance measure

is also related to the impulse response function by Parsevals theorem

‖G(s)‖22 = ‖H(t)‖22 =

∫ ∞
0

h(t)hT(t)dt (2.19)

where h(t) is the impulse response function defined as

h(t) = CeAtB (2.20)

The norms of the metastructure and the baseline structure are compared and presented

as a percent decrease in the following section defined as

H2 percent decrease =
|(H2)baseline − (H2)metastructure|

(H2)baseline
× 100 (2.21)

where (H2)metastructure is the H2 norm calculated for the metastructure and (H2)baseline is

the norm of the baseline structure calculated in the same manner as for the metastructure

but with the M0, D0 and K0 matrices replacing the M, D and K matrices in Equation 2.14.
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Figure 2.3: (a) FRF and (b) the impulse response of a structure with 2 absorbers tuned to
the same frequency

A larger percent decrease represents better performance.

2.3 Initial simulation results

Initially, a metastructure model with three main masses, two absorbers, and a mass

ratio of µ = 0.3 is examined. The corresponding baseline structure has a fundamental

natural frequency of 546 Hz. The two absorbers in the metastructure are tuned to that same

frequency, 546 Hz. Using Equations 2.6 and 2.7, m1 and k1 are calculated.

The results of this simulation are shown in Figure 2.3. The FRF on the left clearly

shows that the natural frequency peak of the baseline model gets split into two slightly

smaller peaks. If the metastructure system is excited around 546 Hz the response will be

minimal but deviation from that excitation frequency will cause in increase in response. This

correlates to a 26.3% decrease in the H2 norm. Looking at the impulse response plot on the

right, it is clear that overall, the response of the structure with the absorbers has smaller

amplitudes.
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Figure 2.4: (a) FRF and (b) impulse response of structure with 10 absorbers with constant
frequency

The next set of results looks at a system with 10 absorbers. Once again, all the absorbers

are tuned to a natural frequency that is equal to the fundamental natural frequency of the

baseline structure, which is at 614 Hz for this system. This system produces very similar

results to the previous system. The H2 decrease is slightly larger at 28.2%, but overall the

trends look the same. This indicates that if all the absorbers are tuned to the same natural

frequency, increasing the number of absorbers does not greatly affect the response of the

system.

Simply increasing the number of absorbers while keeping the natural frequency the same

for all absorbers does not make a significant impact, but it does allow for greater flexibility

in the tuning of the parameters. From the previous results, the frequency at which the

absorbers were tuned causes a dip in the FRF at that frequency. Instead of setting all the

absorbers to a single frequency and getting one large dip, the next case tunes the absorbers

to varying frequencies ranging from 350 to 950 Hz in an effort to smooth out the peak instead

of simply splitting the peak. The results displayed in Figure 2.5 show that this produces
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Figure 2.5: (a) FRF and (b) impulse response of a structure with 10 absorbers with linearly
varying frequencies

favorable results. The peak is smoothed out and the H2 norm has a decrease of 49.9%.

In the impulse response function, the magnitude of the vibrations is also greatly reduced.

Towards the end of the impulse response, beating phenomenon becomes apparent. Beating

behavior occurs when there are closely spaced natural frequencies causing the amplitude of

the impulse response to increase for a short period of time. Even with the increased levels due

to beating, the displacement levels remain below the baseline model. In a zoomed version of

the FRF, shown in Figure 2.6, the closely spaced peaks are visible. The inverse of difference

between the peaks corresponds to the time period of the beat seen in the time response.

2.4 Optimization procedure

Next, an optimized version of this model is examined using a similar procedure to that

of Zuo and Nayfeh, who applied their methods to multiple degree of freedom tuned mass

dampers [23]. Zuo and Nayfeh optimized their model by minimizing the H2 norm. A similar

approach is taken in this model, but will maximize the percent decrease in the H2 norm from
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Figure 2.6: Close-up view of beating behavior in the (a) FRF and (b) the impulse response
of a structure with 10 absorbers with linearly varying frequency

the baseline structure to the metastructure as described in Equation 2.21. The negative of

this percentage is used as the objective function and is minimized. The optimization is

performed in MATLAB using a constrained non-linear interior point algorithm (fmincon).

During the optimization, the mass distribution of the vibration absorbers is constrained to be

constant and the natural frequencies of the vibration absorbers are allowed to vary linearly.

When the optimization is performed, the number of vibration absorbers is constrained to

a single value and the algorithm determines the optimal values of the frequency range and

mass ratio. The number of absorbers was not used as a parameter of the optimization since

it does not take an optimal value. More absorbers lead to higher performance but also lead

to a more complex structure. The complexity of a structure is difficult to quantity. This

trade-off between performance and complexity is described in more detail in Section 2.5.1.

When this optimization procedure is applied to the system with ten absorbers from Section

2.3, the optimal range of frequencies is calculated as 406 to 1260 Hz and the optimal mass

ratio is µ = 0.31. The frequency range deviates slightly from the range estimated in Section
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Figure 2.7: (a) FRF and (b) the impulse response of a structure with 10 absorbers of linearly
varying optimized frequencies

2.3, 350 to 950 Hz and the mass ratio increases slightly from the estimated value of µ = 0.30.

These new values used in the optimized model result in a 58.2% reduction in the H2 norm,

which is a greater reduction compared to the non-optimized model; see Table 2.2 . The

FRF and impulse response can be seen in Figure 2.7. Through out the rest of this chapter,

the same basic optimization procedure is used but with slightly different parameters which

allows various trends to be examined.

2.5 Parameters trends

In this section, a variety of parameters are examined. This allows the capability of the

model to be understood and to help understand basic phenomenon. The various parameters

of the models are altered to determine how these parameters affect the performance of the

structure. The results for these various studies can be found in Table 2.2.
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Figure 2.8: Optimal percent decrease in H2 norm for varying number of absorbers

2.5.1 Number of absorbers

Here, the effect of the number of absorbers is examined for a structure where the mass of

the absorbers is constrained to be constant and the frequencies of the absorbers is allowed

to vary linearly. This analysis is run using the optimization procedure described in Section

2.4. For each data point shown in Figure 2.8 an optimization procedure is run to determine

the optimal mass ratio, and distribution of absorber frequencies. The results show there

is not an optimal number of absorbers, but the performance tends towards an asymptote.

The response improves as more absorbers are used, but at some point there is a trade-off

between increased performance and increased complexity. For this paper, ten absorbers is

chosen because any structure with more than ten absorbers provides only marginally better

performance. The FRFs for systems with 2, 26, and 50 absorbers are plotted in Figure 2.9.
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Figure 2.9: Optimal FRFs for various number of absorbers

2.5.2 Mass ratio

Next, the effect of the mass ratio on the system is determined for a structure where

the mass of the vibration absorbers is restricted to be constant and the frequencies of the

absorbers are allowed to vary linearly. Here, the mass ratio is not included in the optimization

procedure. Looking at the effects of varying the mass ratio provides insight into the behavior

of the system. Recall, the definition of the mass ratio is the ratio of the mass of the absorbers

over the mass of the entire structure, Equation 2.1. Once a mass ratio and a total mass is

defined, the mass of the absorbers can be calculated; see Equation 2.6 for details. Then the

optimization procedure is used to calculate the stiffness values of the absorber springs. For

each data point in Figure 2.10, the number of absorbers is set to ten, the mass ratio is varied,

and the optimization procedure is performed. The resulting percent decrease is plotted and

the shape of the plot shows there is an optimal mass ratio value which is why the mass

ratio was added to the optimization procedure in Section 2.4. The existence of an optimal

mass value shows that there is a trade-off between mass in the absorber system and mass in
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Figure 2.10: Optimal percent decrease in H2 norm for varying mass ratios

the host structure. Too little mass in the absorber system does not allow sufficient energy

transfer to the absorber mass and too much mass produces a large response from a higher

mode. From these results, a mass ratio of µ = 0.31 is optimal for this specific structure. The

shape of the plot has a flat curve; thus a slightly lower mass ratio value could be used with

only a slight loss in performance. Figure 2.11 shows the resulting FRF for four of the mass

ratios.

2.5.3 Distribution of stiffness

As shown previously, the models in which the absorbers are tuned to frequencies that

vary linearly provide better performance than those that are all tuned to a single frequency.

Next, other distributions are examined. Instead of constraining the distribution to be linear,

the optimization code allows each absorber to take on any value for its natural frequency.

Figure 2.12 shows the optimal distribution for a structure with 10 absorbers alongside the

distributions for the linear and constant cases. The x-axis denotes the absorber number,

ranging from 1 to n and the y-axis shows the natural frequency of that absorber. It is
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Figure 2.11: Optimal FRFs for various mass ratios

interesting to note the pattern of the optimal distribution, but it must also be noted that

transitioning from the linear to the unconstrained distribution produces less than a 1%

additional decrease. The decrease goes from 58.2% to 58.9%. The results are summarized

in Table 2.2. This is deemed not beneficial enough to outweigh the extra time it takes the

optimization code to run. For a majority of the following analyses, a linear distribution is

utilized.

2.5.4 Distribution of absorber mass

In this section, the effect of these absorber mass distribution is studied. Three different

distributions of absorber masses are examined. For the first case, the distribution of the mass

is uniformly distributed throughout the length of the bar and the stiffness of each absorber

was chosen such that the natural frequencies of each absorber vary linearly. For the second

case, the mass is allowed vary linearly and once again, the stiffnesses are chosen to produce

linearly varying natural frequencies. The last case has no constraints on the distributions

of the mass and stiffness of the absorbers. For each of these cases, an optimization is
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Figure 2.12: Natural frequencies of individual vibration absorbers

Table 2.2: Summary of optimized results for various configurations. *indicates mass ratio
values that are not optimized

Number Mass Mass Frequency Minimum Maximum H2

absorbers ratio distribution distribution frequency frequency decrease

2 0.165 constant constant 583 Hz 583 Hz 28.33 %
10 0.323 constant constant 640 Hz 640 Hz 28.39 %
10 0.323 linear constant 472 Hz 472 Hz 28.86 %
10 0.305 constant linear 406 Hz 1260 Hz 58.19 %
10 0.318 linear linear 381 Hz 1354 Hz 58.50 %
10 0.300* constant unconstrained 430 Hz 1260 Hz 58.91 %
10 0.400* constant unconstrained 430 Hz 1260 Hz 56.09 %
10 0.300* unconstrained unconstrained 405 Hz 2267 Hz 59.01 %
10 0.400* unconstrained unconstrained 364 Hz 1537 Hz 59.22 %
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Figure 2.13: Effects of varying the absorber mass distribution on performance measure versus
the mass ratio for uniform distribution, linear distribution and unconstrained
distribution

performed at varying mass ratio values. The optimal distribution for each mass ratio is

found by minimizing the H2. In Figure 2.13 the performance measure is plotted for each

of the mass ratios. The unconstrained distribution case gives the best performance results

for all mass ratio values. As the mass ratio increases, the unconstrained case has a greater

increase in performance compared to the linearly varying case. For a mass ratio of µ = 0.40,

Figure 2.14 shows the values that the absorber mass takes on for the various distributions.

For these, the unconstrained distribution follows the linear distribution closely with some

changes. The dynamic responses of this structure can be seen in Figure 2.15 for the three

different absorber mass distributions.

2.6 Tuned mass damper comparison

In addition to comparing the metastructure design to a baseline structure, the metas-

tructure design is also compared to a traditional tuned mass damper. The use of a tuned
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Figure 2.14: Optimal distribution of absorber mass for uniform distribution, linear distribu-
tion and unconstrained distribution for a metastructure with a mass ratio of
µ = 0.40
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Figure 2.15: The (a) frequency response function and the (b) impulse response function of
the metastructure for uniform, linear and unconstrained absorber mass distri-
butions for a mass ratio of µ = 0.40

mass damper is a traditional vibration suppression method and is used here to show the

differences between a tuned mass damper solution and a metastructure solution. A TMD is

similar to a vibration absorber but additionally contains a damper.

2.6.1 Tuned mass damper model

The model used in these simulations is shown in Figure 2.16 where kTMD, cTMD and mTMD

are the stiffness, damping and mass parameter of the TMD. The mass ratio of the structure

is defined in a similar way to as the metastructure as

µ =
mTMD

mtotal

=
mTMD

(n+ 1)m+mTMD

(2.22)

For these simulations the mass of the baseline structure, the metastructure, and the

structure with the TMD area all constrained to have the same mass, such that

mmetastructure = (n+ 1)m+
n∑
i=1

mi = mbaseline = (n+ 1)m+mTMD (2.23)
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Figure 2.16: Lumped mass model of a bar with a single tuned mass damper

2.6.2 Tuned mass damper comparison results

Here, the performance of a metastructure is compared to that of a structure with TMD.

As before, the performance of the structure is plotted versus the mass ratio as seen in Figures

2.17 and 2.18. For each mass ratio, an optimized metastructure, with absorber masses values

varying linearly, is used as described in the previous section. For the structure with the TMD,

the TMD parameters, kTMD, cTMD,mTMD, are determined using optimization where the H2

norm is minimized. For these cases structural damping was utilized as shown in Equation 2.18

with two different damping values, α = 2× 10−5 and α = 4× 10−5. These values correspond

to 2.03% and 4.11% of critical damping for the fundamental mode of the metastructure. For

the instance in which µ = 0.23 and ζ1 = 0.0203 the frequency response function and the

impulse response of the tip subjected to a tip excitation are plotted in Figure 2.19. This figure

shows that using a TMD and a metastructure with vibration absorbers of varied frequencies

achieve a similar effect, where the fundamental peak of the structure is flattened out allowing

for boarder band suppression around the fundamental natural frequency of the structure.

The optimal parameters for various mass ratios are shown in Table 2.3. When the structure

has more structural damping, the metastructure performs comparatively better compared

to a case with less structural damping. The amount of structural damping added to the

structure significantly affects the comparison. Thus, for this comparison to be useful, the

amount of structural damping in the structure must be determined. Additionally, in these
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Figure 2.17: Percent decrease in the H2 norm plotted versus varying mass ratio values for a
metastructure and a structure with a tuned mass damper for a damping ratio
of ζ1 = 0.0411

simulations the additional weight necessary to achieve the damping values for the TMD has

not been considered. The point here is that while the TMD and metastructure are capable of

producing similar results, the metastructure is able to produce vibration suppression without

increasing the mass and takes up less space, critical in some applications.

2.7 Chapter summary

The results of these simulations show that it is possible to use distributed vibration ab-

sorbers to reduce the response of a system without adding additional mass to the structure.

These simulations found that the distributed absorbers should be designed such that their

natural frequencies span a range of frequencies. For this specific structure, the results show

that the mass ratio (mass of the absorbers over the mass of the host structure) should be

around 0.30 and the number of absorbers should be around 20 or lower. The natural fre-

quencies of the vibration absorbers should be tuned such that their frequencies vary linearly.
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Figure 2.18: Percent decrease in the H2 norm plotted versus varying mass ratio values for
a metastructure and a structure with a tuned mass damper for a damping of
ζ1 = 0.0203

Table 2.3: Optimal tuned mass damper parameters for various mass ratios and structural
damping values

Mass ratio Damping value of TMD [kg/s] Natural frequency of TMD [Hz]
ζ1 = 0.0203 ζ1 = 0.0411 ζ1 = 0.0203 ζ1 = 0.0411

0.100 85.73 83.21 552.4 545.2
0.143 139.85 135.46 531.3 523.9
0.186 198.64 192.24 511.8 504.6
0.229 260.52 252.18 493.7 486.8
0.271 324.47 314.38 476.9 470.3
0.314 389.75 378.27 461.2 454.9
0.357 455.90 443.46 446.4 440.6
0.400 522.53 509.69 432.6 427.3
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Figure 2.19: The (a) frequency response function and (b) impulse response function for a
metastructure versus a structure with a tuned mass damper for µ = 0.229 and
ζ1 = 0.0203

If higher mass ratio are used, then using an unconstrained distribution of absorber mass and

stiffness should be considered. For mass ratios about 0.30, it is sufficient to use a constant

absorber mass distribution with linearly varying natural frequencies.

Additionally, the metastructure design is compared to that of a structure with a TMD.

The comparison of these structures has a strong dependence on the amount of structural

damping in the structure making it challenging to examine from a lumped mass model

perspective. In general, for lower mass ratios the metastructure can perform slightly better

than the TMD. The additional weight needed to achieve the high level of damping required

for the optimally tuned TMD has not been considered. Future work could consider the

additional weight necessary to achieve the required levels of damping and consider modeling

the amount of damping in the structure to get a better comparison. The metastructure is

able to provide good levels of suppression by integrating the vibration absorbers into the

structural design. The formulation and procedures outlined above provide a scenario for

designing metastructures and for helping designers to decide between a traditions TMD

approach versus a metastructure approach for their particular application.
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CHAPTER III

Dynamic Characterization of 3D Printed Viscoelastic

Materials

This chapter characterizes the viscoelastic properties of materials printed using the Ob-

jet Connex 3D printer and presents a modeling method used to capture the effects of the

viscoelastic behavior. The 3D printer being explored is used in Chapter IV to create a

metastructure prototype. Metastructures tend to have complex geometry, thus are easily

manufactured on 3D printers. The most cost-effective and readily available 3D printers

today, use polymer resins to create the parts. Polymers materials are composed of long

molecular chains, which lead to energy dissipation during cyclic deformation. The energy

dissipation experienced by polymer materials can be modeled using a viscoelastic model [44].

This chapter begins by explaining the modeling procedure used the characterize the viscoelas-

tic material properties which involve the complex modulus and the temperature-frequency

equivalence. After these modeling methods are described, the characterization of the Objet

Connex materials is presented. The characterization is performed using a DMA machine

which can measure the complex modulus of the specimen. The complex modulus values are

found for various frequencies and temperatures. The temperature-frequency equivalence is

used to determine a relationship between those variables. The characterization is performed

on four out of ten of the materials that the 3D printer is capable of printing. For one of these

materials, the testing configuration and the print direction are explored. For the complex
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modulus data to be used in a transient setting, the frequency dependence of the material

must be modeled. This work uses the GHM model, which utilizes an approximation for

the complex modulus versus frequency data. The GHM approximation is curve-fit to the

experimental data, and the resulting parameters are used to develop finite element mass,

damping and stiffness matrices for the viscoelastic materials. This allows the viscoelastic

material to be modeled in various dynamic applications. This chapter ends by using the

GHM model to examine the dynamic response of a simple bar and beam, specifically looking

at how a temperature change affects the response. For the simple beam case, these results

are experimentally verified.

3.1 Viscoelastic modeling

This section describes the modeling methods used in this work to model the viscoelastic

material behavior. In steady-state dynamic applications, the viscoelastic material behavior

can be described using the complex modulus model. The complex modulus of a viscoelastic

material varies with both frequency and temperature at which the specimen is excited. The

complex modulus data can be experimentally obtained using various methods which will be

described later. The temperature-frequency equivalence develops a relationship between the

frequency and temperature dependence of the complex modulus data, allowing the complex

modulus data to be represented at a wider range of frequencies and temperatures than those

obtained experimentally.

3.1.1 Complex modulus method

For dynamic applications, the most common method used to describe the dynamic re-

sponse of viscoelastic materials is to identify the response of the material subjected to a

sinusoidal load. When a harmonically varying stress is applied to an elastic material, the

strain response will have the same frequency and phase as the load. This is not the case

for a viscoelastic material; the response remains at the same frequency as the input but will
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have a phase lag. When the following time-varying stress σ(t) is applied to a viscoelastic

material

σ(t) = σ0 sin(ωt)

ε(t) = ε0 sin(ωt− δ)
(3.1)

where ω is the frequency of the forcing function, ε(t) is the strain-response of the material

and the phase lag is denoted as δ the dynamic modulus can be expressed as the following

complex number

G?(ω, T ) =
σ(t)

ε(t)
= G′ + G′′ (3.2)

where G? is the complex modulus, also referred to as the dynamic modulus. Because of

the phase lag, the modulus is a complex number and can be decomposed into its real and

imaginary components, where G′ is the storage modulus and G′′ is the loss modulus. The

complex modulus can also be expressed by factoring out the storage modulus

G?(ω, T ) = G′[1 + η] (3.3)

where η is the loss factor. The modulus values vary with both frequency and temperature

[44]. This relationship can also be expressed in the Laplace domain as

σ̃(s) = sG̃(s)ε̃(s) (3.4)

where the tilde represents the Laplace transform of the variable and the function sG̃(s) is

called the material dissipation function. When evaluated along the imaginary axis (s = ω)

the material dissipation function is equivalent to the complex modulus representation in

Equation 3.2.
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3.1.2 Temperature-frequency equivalence

Using the temperature-frequency equivalence, a relationship between the frequency and

temperature can be determined to reduce the number of the variables necessary to describe

the response of the material. We can assume that the complex modulus value at a fre-

quency, f1 and a temperature, T1 is equal to the value at any other frequency f2 and some

temperature, T2 such that the following relationship can be made

G?(f1, T1) = G?(f2 · α(T2)) (3.5)

where α(T2) is the shift factor and describes the relationship between frequency and

temperature. Using the shift factor, the effects of both temperature and frequency can be

combined into a single variable called the reduced frequency, fr(f, T ) = f · α(T ). The shift

factor relationship is determined by testing a material at multiple frequencies and temper-

atures. For each temperature, a shift factor value is determined graphically by examining

the modulus versus reduced frequency plots. Varying the shift factor causes the data at a

specific temperature to shift on the reduced frequency scale. Once the shift factors for each

temperature are determined, the log[α(T )] is plotted versus 1/T . This relationship resem-

bles a slightly curved line, which is approximated by a straight line using the Arrhenius shift

factor equation and takes on the following form

log[α(T )] = TA ·
(

1

T
− 1

T0

)
(3.6)

where T0 is an arbitrarily selected reference temperature, and TA is related to the activa-

tion energy and is represented by the slope of the line. Using this relationship, the storage

modulus and loss factor can be expressed as

G′(f, T ) = G′
(
f · exp

[
−2.303TA

T

]
· exp

[
−2.303TA

T0

])
(3.7a)
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η(f, T ) = η

(
f · exp

[
−2.303TA

T

]
· exp

[
−2.303TA

T0

])
(3.7b)

These relationships allow the storage modulus and the loss factor to be expressed each

as single curves plotted with respect to reduced frequency. Using the Arrhenius equation,

Equation 3.6, this curve can be shifted to show properties at any temperature [44].

3.2 Viscoelastic material characterization of Objet Connex 500

3D printer

This section describes the procedure used to characterize the material properties of the

Objet Connex 3D printer. This section begins by describing the 3D printer used in this work.

This printer can print ten different materials with varying moduli. Four of these materials are

characterized. Next, the characterization procedure is detailed. A DMA machine is utilized

for this characterization which can measure the complex modulus. The DMA machine can

test the specimens in various configurations using different clamping mechanisms. Here, the

two different configurations, tensile and cantilevered, are used, and the resulting properties

are compared. Additionally, the two different print directions are tested and compared. This

section ends by comparing and contrasting the different testing configurations and the print

directions.

3.2.1 Description of the 3D printer

The 3D printer investigated in this work is the Objet Connex 500 printer by Stratasys.

This printer is capable of printing many different materials. Of interest to this paper are the

rubber-like and rigid materials. The Objet Connex printer uses inkjet printing technology.

The parts are made by depositing many small dots of liquidized polymer base materials and

curing the resin using ultraviolet light, resulting in a printed material that appears homo-

geneous. Because of the digital nature of this method, these materials are called digital

materials. This approach allows the printer to easily mix two distinct base materials in
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Table 3.1: Manufacturer provided material properties of Objet Connex digital materials
printed using base materials VeroWhitePlus and TangoPlus [46, 47]

Material Young’s modulus Shore A Tensile strength Tested
[MPa] value [MPa]

VeroWhitePlus 2000 - 3000 - 50 - 65 ×
DM 8420 1400 - 2000 - 35 - 45 ×
DM 8430 1100 - 1700 - 29 - 38 ×
DM 9795 - 9 - 95 8.5 - 10.0
DM 9785 - 80 - 85 5.0 - 7.0
DM 9770 - 68 - 72 3.5 - 5.0
DM 9760 - 57 - 63 2.5 - 4.0
DM 9750 - 45 - 50 1.9 - 3.0
DM 9740 - 35 - 40 1.3 - 1.8
TangoPlus - 26 - 28 0.8 - 1.5 ×

various ratios to create a gradient of materials with multiple hardness levels [45]. Addition-

ally, this method allows for parts made in a single print with both rigid and rubber-like

components. Using this technique and the many base materials available, the Objet Connex

printer can create many combinations with varying properties. The focus of this work will

be on the digital materials created using the two base materials, VeroWhitePlus (RGD835)

and TangoPlus (FLX930). VeroWhitePlus is a rigid opaque material, and TangoPlus is a

rubber-like transparent material [47]. The printer can print ten different digital materials

using these base materials [46]. The manufactured provided properties of these materials

are shown in Table 3.1.

Previous work has shown that the materials produced from the Objet Connex printer

exhibit viscoelastic behavior, making the materials both frequency and temperature depen-

dent [39, 41, 37]. The work of Yu et al. measured the storage modulus and the loss modulus

versus temperatures for seven of the ten digital materials. Their work shows the storage

modulus varies by two orders of magnitude between 10◦ to 100◦ C [50]. These findings are

expanded upon by characterizing the frequency and temperature dependence of four digital

materials printed using VeroWhitePlus and TangoPlus on the Objet Connex 500 and by

examining the effects of print direction and testing configuration on the complex modulus.
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(a)

(b)

Figure 3.1: Schematic of (a) horizontal and (b) vertical print direction

(a) (b)

Figure 3.2: Schematic of (a) tensile and (b) cantilevered configurations

3.2.2 Experimental characterization methods

The complex modulus of these materials is characterized by varying both frequency and

temperature. Also, the effects of print direction and testing configuration on the complex

modulus are presented. The print direction is varied by rotating the orientation of the part

on the print bed of the 3D printer as seen in Figure 3.1. The material properties are measured

using a DMA machine with two different fixtures, cantilevered and tensile, shown in Figure

3.2.

The characterization of the materials is conducted using a DMA machine which applies
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Table 3.2: Material characterizations performed [97]

Material Temperature Testing
Range [◦C] Configuration

VeroWhitePlus 0 - 100 Tensile
DM 8420 0 - 100 Tensile
DM 8430 0 - 100 Tensile
TangoPlus -40 - 60 Tensile
DM 8430 35 - 60 Cantilevered
DM 8430 25 - 105 Tensile

a sinusoidal load and measures the magnitude and phase shift of response which can be used

to calculate the complex modulus as seen in Equation 3.2. The DMA machine varies the

excitation frequency and uses a thermal chamber allowing the temperature of the specimen

also to vary. Using the raw data, the temperature-frequency equivalence can be used to

transform the data to a single temperature and a wider range of frequencies. This testing

method was chosen over other testing methods because other testing methods can only

determine the complex modulus at the resonance frequency of the structure where this

method can determine the modulus at any frequency [95].

Using these relationships described in Section 3.1.2, the curves can be shifted to any

temperature. When shifting the data, the frequency range that the data covers will change,

so it is important, to start with a sufficient number of data points to ensure the shifted data

covers the entire desired frequency range for the temperature of interest. For this paper, the

frequency range of interest is 10 to 2,000 Hz. Table 3.2 shows a summary of the material

characterizations performed in this work [96, 97].

3.2.2.1 Sample preparation

When exploring the effects of printing direction and testing configuration, DM 8430

was used. The complex modulus properties for VeroWhitePlus, DM 8420, DM 8430 and

TangoPlus are presented for comparison to each other and tested over a wider temperature

range. The samples were printed on an Objet Connex 500 printer using the digital material
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mode and the two base materials, VeroWhitePlus and TangoPlus. For parts oriented in

the vertical configuration, the samples were positioned on the print bed such that the print

direction aligned with the long edge of the sample. The parts were rotated 90◦ on the print

bed for parts with the horizontal print direction as seen in Figure 3.1. After the printing

was completed, the support material was removed from the parts using a metal scraper and

water.

3.2.2.2 Dynamic mechanical properties

Rectangular specimens, having a size of approximately 9 × 1 × 5 mm, were used for

the tensile dynamic mechanical experiments and 17 × 3 × 12 mm for the cantilevered

configuration. The data were obtained using a DMA Q800 machine by Thermal Analysis.

The tensile configuration testing followed the ASTM D5026 standard [98]. Figure 3.3 shows

a setup of the test. The sample specimen was held in place by two clamps, the upper of which

was fixed while the bottom moved cyclically. For the cantilevered configuration, the sample

was tested using a single cantilevered set-up where a fixed clamp held one end of the beam

and excited at the tip shown in Figure 3.2. These tests closely followed the ASTM D5418

standard. The standard pertains to a dual cantilever beam, and here a single cantilever was

used [71].

All the samples were tested at nine to ten temperatures, varied linearly. The DM 8430

samples comparing print direction and testing configuration were tested at temperatures

between 25◦ and 105◦ C for the tensile and 35◦ and 90◦ C for the cantilever configuration.

VeroWhitePlus, DM 8420 and DM 8430 were tested at temperatures between 0◦, and 100◦

C. TangoPlus was tested between -40◦ and 60◦ C. A soak time of five minutes was used at

each temperature to ensure the sample reached the isothermal state. At each temperature,

the sample was tested at ten frequencies, varied logarithmically between 100 and 0.10 Hz.

The DMA Q800 software collected and analyzed the data for each temperature and

frequency. Based on the geometry of the testing specimen, the software outputs the storage
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Figure 3.3: Experimental set-up of the tensile configuration in the DMA machine

modulus and the loss factor for the material at the specified temperatures and frequencies.

3.2.3 Characterization results

To identify potential errors in the data, a Wicket plot of the experimental data is created

for all materials tested, displayed in Figure 3.4. The Wicket plot can be used to identify

possible sources of error through the identification of points which deviate significantly from

the primary sequence. The basis for a Wicket plot is because both the storage modulus and

the loss factors are functions of the reduced frequency, thus must also be unique functions

of each other. When the experimental data is plotted, the Wicket plot should be a unique

curve with all data points lying close to the curve [44]. As seen in Figure 3.4, this trend

holds for the four materials tested here. The Wicket plots for all characterizations can be

found in Appendix A.
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Figure 3.4: Wicket plots of experimental data for a) VeroWhitePlus, b) DM 8420, c) DM
8430 and d) TangoPlus
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Figure 3.5: Plot of the logarithmic value of the shift factor versus the inverse of the temper-
ature with the experimentally determined values plotted as plus symbols, and
an Arrhenius fit plotted as a solid black line for a) VeroWhitePlus, b) DM 8420,
c) DM 8430 and d) TangoPlus
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Table 3.3: Arrhenius fit data for materials tested

Material Reference Arrhenius
Temperature [◦C] Temperature [K]

VeroWhitePlus 60 16,183
DM 8430 60 13,492
DM 8420 60 13,831
TangoPlus 60 7,385

3.2.3.1 Temperature effects

The data outputted from the DMA machine is manually analyzed to determine the

relationship between temperature and frequency. This is accomplished using a shifting pro-

cedure to determine the relationship between the shift factors, α and the temperature, T as

described in section 3.2.2.1. The resulting master curve is the complex modulus data plotted

against reduced frequency. The relationship between the shift factor and the temperature

along with the Arrhenius fit, from Equation 3.6, are plotted in Figure 3.5. For the materials

tested, the reference temperature and the Arrhenius temperature are reported in Table 3.3.

The details for all characterization can be found in Appendix A.

3.2.3.2 Dynamic mechanical results

The storage modulus and loss factor as defined in Equation 3.2 are respectively plotted

in Figures 3.6 and 3.7 for each of the four materials tested. The storage modulus for the

three stiffest materials, VeroWhitePlus, DM 8420, and DM 8430, vary by over three orders

of magnitude from low frequencies to high frequencies. For TangoPlus, the storage modulus

varies by over four orders of magnitude, and at low frequencies, is an order of magnitude

lower compared to the other materials. Examining the loss factor plot (Figure 3.7), the Tan-

goPlus material achieves significantly higher values, which is expected from a more rubbery

material. The peak loss factor value occurs at a higher frequency, which corresponds to a

lower temperature using the temperature-frequency equivalence. See Appendix A for tables

with the data presented here.
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Figure 3.6: Master curve of storage modulus versus frequency for a reference temperature of
60◦ C
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Figure 3.7: Master curve of loss factor versus frequency for a reference temperature of 60◦ C

3.2.3.3 Effect of print direction

A horizontal and vertical print direction were tested, where vertical refers to the orienta-

tion in which the print direction is along the long edge of the sample, and horizontal refers to

when the part is rotated 90◦ on the print bed as seen in Figure 3.1. Figure 3.8 shows the re-

sults of these tests, where the results are virtually indistinguishable from each other, leading

us to conclude the in-plane print direction does not affect the complex modulus results.

3.2.3.4 Effect of testing configuration

The testing configuration of the samples appears to have a slight influence on the complex

modulus of the printed materials. Both a tensile and a cantilevered configuration were tested,

and their results are shown in Figure 3.9. A schematic of these configurations is shown in

Figure 3.2. The tensile configuration leads to a slightly higher loss factor peak value and

higher storage modulus.
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Figure 3.8: Effect of print direction on a) storage modulus and b) loss factor with a reference
temperature of 65◦ C
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Figure 3.9: Effect of testing configuration on a) storage modulus and b) loss factor with a
reference temperature of 65◦ C
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3.2.4 Summary of characterization

The complex modulus properties of the inkjet printed material from the Objet Connex

printer have been determined. These materials show viscoelastic effects, which should be

considered when modeling these materials for use in vibration applications, particularly

in situations where there are significant temperature changes. Although all materials show

viscoelastic effects, the TangoPlus material exhibits greater variations in the storage modulus

and loss factor than the VeroWhitePlus, DM 8430, and DM 8420. The master curves from

Figures 3.6 and 3.7 can be used to curve fit viscoelastic models to the experimental data

and can also be used for design purposes. Additionally, the effects of testing configuration

and print direction were also investigated. The results show that variations in the in-plane

print direction do not affect the response of the material for both the tensile and cantilevered

configurations. The testing configuration does have a slight effect on the complex modulus

values.

3.3 Frequency-dependent modeling of viscoelastic materials

The complex modulus model can be used to model steady-state applications but for

situations in which the frequency in varying, the frequency dependence of the modulus values

must be accounted for. Three common models are used in the field of vibration suppression

to account the frequency variation and are shown in Table 3.4 [66, 68]. These models are

characterized by the form of the equation used to represent the complex modulus data. The

fractional derivative model developed by Bagley and Torvik uses a derivative of fractional

order and is advantageous because five parameters are sufficient to represent the frequency-

dependent behavior over a broad range of frequencies [59, 60]. The anelastic displacement

fields model was developed by Lesieutre and his coworkers [99, 61, 100]. This model looks at

elastic and the anelastic parts and represents the anelastic part by a first order differential

equation. This model is formulated directly in the time-domain. The model that will be
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Table 3.4: Material dissipation function approximations for selected viscoelastic models

Model Form of Material Dissipation Function

Fractional Derivatives (FD) sG̃(s) =
G0 +G1s

α

1 + bsβ

Golla-Hughers-McTavish (GHM) sG̃(s) = G∞

[
1 +

n∑
j=1

α̂j
s2 + 2ζ̂jω̂js

s2 + 2ζ̂jω̂js+ ω̂2
j

]

Anelastic Displacement Fields (ADF) sG̃(s) = G0

[
1 +

n∑
j=1

∆j
s

ω2 + Ω2
k

]

used in the paper is the GHM model developed by representing the complex modulus as a

series of mini-oscillators [62, 101].

3.3.1 GHM method

This section provides an overview of the GHM modeling method used here to account for

the frequency dependence of the complex modulus. The GHM method was first introduced

in 1985 by Golla and Hughes [62] and expanded upon by McTavish and Hughes in 1987

[102, 63]. The GHM method was originally developed to analyze damping in large flexi-

ble space-structures but can be used wherever there are viscoelastic materials are present.

This internal-variable method uses auxiliary dissipation coordinates to model the frequency-

dependent loss factor inherent in viscoelastic materials. These dissipation coordinates are

augmented to the system adding degrees of freedom to the overall system. This method is

valuable because it produces mass, stiffness and damping matrices in the familiar second-

order time-domain format. The resulting matrices can be easily integrated into existing

finite element theory or analytical models following from Newtons laws. The only additional

information required is curving-fitting parameters from the complex modulus curve. These

parameters are obtained from material testing by curve-fitting the complex modulus versus

reduced frequency curve. These curve-fitting parameters are inherent of the materials, not

of the system.
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The GHM method approximates the material modulus using the following second-order

rational function involving three parameters. This approximation is comprised of terms

called mini-oscillator terms which come from the single degree of freedom physical realization.

In the Laplace domain, the material dissipation function takes the form

sG̃(s) = G∞

[
1 +

nMOT∑
j=1

α̂j
s2 + 2ζ̂jω̂js

s2 + 2ζ̂jω̂js+ ω̂2
j

]
(3.8)

where G∞ is the equilibrium value of the modulus and α̂j, ω̂j, ζ̂j are the parameters

determined by the shape of the curve. The number of terms utilized depends on the test

data, target frequency-range and desired accuracy. The following conditions, α̂j > 0, ω̂j >

0, ζ̂j > 0 ensure that the representation dissipates energy [62].

The viscoelastic finite element matrices will be developed for a material dissipation func-

tion with a single term (nMOT = 1) and then generalized for any number of terms. For more

details see McTavish and Hughes [63]. A typical finite element formulation, has the following

equation of motion

Meq̈(t) +GK̄eq(t) = f(t) (3.9)

where Me and Ke = GK̄e are the classical elastic finite element matrices and f(t) is

the elemental nodal force vector corresponding the elemental degrees of freedom, q(t). This

equation can be generalized by replacing the constant elastic constant with a viscoelastic

representation resulting in

Meq̈(t) +G(t)K̄eq(0) +

∫ t

0

G(t− τ)K̄e d

dτ
q(τ) = f(t) (3.10)

where q(t) is restricted to be zero for t ∈ (−∞, 0). Transforming Equation 3.10 into the

Laplace domain yields

s2Meq̃(s) + sG̃(s)K̄eq̃(s) = f̃(s) + sMeq0 + Meq̇0 (3.11)
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Introduce a column of dissipation coordinates ˜̂z such that

˜̂z =
ω2

s2 + 2ζ̂ω̂s+ ω̂2
q̃(s) (3.12)

Using the approximation given in Equation 3.8 and the relationship for Equation 3.12,

the following equation of motion is equivalent to Equation 3.11

 Me 0

0
α̂

ω̂2
Ke


 q̈

¨̂z

+

 0 0

0
2α̂ζ̂

ω̂
Ke


 q̇

˙̂z

+

 (1 + α̂)Ke −α̂Ke

−α̂Ke α̂Ke


 q

ẑ

 =

 f

0


(3.13)

Next, a spectral decomposition on the stiffness matrix is utilized to simplify the equations.

The elastic stiffness matrix possesses nq non-negative eigenvalues. The zero eigenvalues rep-

resent rigid body modes which cannot dissipate energy thus they are neglected. Considering

only the positive eigenvalues (λp) and their corresponding eigenvectors rp of K̄e, the following

matrices are constructed

R̄ = row{rp}, Λ̄ = diag{λp}, R̄TR̄ = I (3.14)

Leading to this spectral decomposition

Ke = G∞R̄Λ̄R̄
T

(3.15)

Taking Equation 3.13 and pre-multiplying the bottom row by R̄T and letting z = R̄
T
ẑ

the equations of motion become

Mv

 q̈

z̈

+ Dv

 q̇

ż

+ Kv

 q

z

 =

 f

0

 (3.16)

Where the viscoelastic mass, stiffness and damping matrices have the following form
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Mv =

 Me 0

0
α̂

ω̂2
Λ

 (3.17a)

Dv =

 0 0

0
2α̂ζ̂

ω̂
Λ

 (3.17b)

Kv =

 Ke(1 + α̂) α̂R

α̂RT α̂Λ

 (3.17c)

where Λ = G∞Λ̄ and R = R̄Λ. Since the spectral decomposition determines the number

dissipation coordinates that will be augmented onto the total system, the eigenvalue problem

must be completed before the total degrees of freedom are known. The degrees of freedom

depend on the number of non-negative eigenvalues of the stiffness matrix in addition to the

size of the stiffness matrix and the number of terms in the complex modulus approximation.

Generalizing this to a GHM approximation with nMOT terms, the viscoelastic mass, damping

and stiffness matrices have the following form

Mv =



Me 0 · · · 0

0
α̂1

ω̂2
1

Λ · · · 0

...
...

. . .
...

0 0 · · · α̂n
ω̂2
n

Λ


(3.18a)

Dv =



0 0 · · · 0

0
2α̂1ζ̂1
ω̂1

Λ · · · 0

...
...

. . .
...

0 0 · · · 2α̂nζ̂n
ω̂n

Λ


(3.18b)
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Kv =



(
1 +

n∑
i=1

α̂i

)
Ke −α̂1R · · · −α̂nR

α̂1R
T α̂1Λ · · · 0

...
...

. . .
...

α̂nR
T 0 · · · α̂nΛ


(3.18c)

The viscoelastic matrices are square matrices with a dimension nq + nz where nq is the

number of physical coordinates and nz is the number of dissipation coordinates dictated

by the number of terms included in the approximation from Equation 3.8. To arrive at the

global system of equations, the element matrices must be assembled into the global matrices.

The degrees of freedom associated with the physical degrees of freedom are assembled using

traditional finite element methods and the dissipation coordinate are simplify augmented to

the system since the dissipation degrees of freedom for neighboring elements do not interact

with each other.

3.3.2 Determination of damped natural frequency and damping values

For this system, the damping matrix is not necessarily a linear combination of the mass

and stiffness matrices thus the system must be transformed into state space to determine the

eigenvalues and eigenvectors. The method shown here does not require any matrix inversion

thus is computationally fast compared than other methods [73]. The coordinates, y1 and y2

are defined as

y1 =

 q

z

 , y2 =

 q̇

ż

 (3.19)

Using the fact that, ẏ1 = y2 and by rearranging the viscoelastic equation of motion,

Equation 3.16, the following relationships can be written

−Kvẏ1 = −Kvy2 (3.20a)
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Mvẏ2 = −Dvy2 −Kvy1 (3.20b)

Putting these equations into matrix form

 −Kv 0

0 Mv


 ẏ1

ẏ2

 =

 0 −Kv

−Kv Dv


 y1

y2

 (3.21)

This leads to the following eigenvalue problem

λAv = Bv (3.22)

The resulting complex eigenvalues can be related to the natural frequencies and damping

ratios using the following relationships

λi = ζiωi − ωi
√

1− ζ2i  (3.23a)

λi+1 = ζiωi + ωi

√
1− ζ2i  (3.23b)

with ωi is the ith natural frequency and ζi is the damping factor of the ith natural fre-

quency. Inverting these equations, the natural frequencies and damping ratios are calculated

as

ωi =
√

Re[λi]2 + Im[λ2i ] (3.24a)

ζi =
−Re[λi]√

Re[λi]2 + Im[λi]2
(3.24b)

where Re[·] represents the real part of the complex argument and Im[·] represents the

imaginary part.
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3.3.3 Determining the GHM parameters

To use the GHM model, the form of Equation 3.8, evaluated along the imaginary axis

(s = ω) must be curve-fit to the complex modulus data from the 3D printed materials.

The curve fit is performed in a logarithmic sense with equal weighting given to the real

and imaginary parts. The number of terms necessary to obtain a good fit of the GHM

approximation depends on the material, the frequency range, and the desired accuracy. In

this paper, the frequency range of interest is 10 to 2,000 Hz. Depending on the shape of the

curve at the temperature and frequency of interest dictates the number of GHM parameters

used. For a complete data table of the GHM parameters for all materials tested, see Appendix

B.

The DM 8430 tensile configuration data tested from 0◦ to 100◦ C, is shifted to various

temperatures and a curve fit is performed on the resulting curves. The GHM fits are plotted

over the frequency range of interest for temperatures ranging from 20◦ to 100◦ C in Figure

3.10. This figure shows the significant variation resulting from changes in temperature in

both the storage modulus and the loss factor.

3.4 Dynamic response of structure made from viscoelastic mate-

rials

This section utilizes the GHM model described in the previous section and applies the

model to specific structures to study the effect of the viscoelastic properties on the dynamic

response of the structure, including the effects of changing the temperature. Additionally,

the differences in the dynamic response due to the two testing configurations, tensile and

cantilever described above will be explored. Lastly, an experimental prototype of a beam

undergoing temperature change is used to validate the experimental characterization.

66



0 500 1000 1500 2000
10

0

10
1

10
2

10
3

10
4

Frequency [Hz]

S
to

ra
g
e
 M

o
d
u
lu

s
 [
G

P
a
]

0 500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency [Hz]

L
o
s
s
 F

a
c
to

r 
[−

]

 

 

20 °C

30 °C

40 °C

50 °C

60 °C

70 °C

80 °C

90 °C

100 °C

(b)(a)

Figure 3.10: (a) Storage modulus and (b) loss factor data for DM 8430 at various tempera-
tures

Table 3.5: Geometry properties of the bar model

Property Value
Density [kg/m3] 1168
Cross-section area [m2] 1.131 × 10-3

Length of bar [m] 45

3.4.1 Dynamic response of a viscoelastic solid bar

A uniform bar with a hollow rectangular cross-section made from a 3D printed viscoelastic

material is modeled using a GHM model. The geometry and material properties of the bar

are shown in Table 3.5. The bar is discretized into ten finite elements, with two nodes for

each element. The bar is fixed at the base.

The elastic mass and stiffness elastic finite element matrices are given as [62]

Me
bar =

ρA`

6

 2 1

1 2

 (3.25a)
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Ke
bar =

A

`

 1 −1

−1 1

 (3.25b)

By performing an eigenvalue analysis on the stiffness matrix, two degrees of freedom can

be eliminated since they correspond to eigenvalues of zero.

R̄T
bar =

[
−−

√
2

2

√
2
2

]
(3.26a)

Λ̄bar =
2A

`
(3.26b)

Using Equations 3.18 the resulting viscoelastic finite elements matrices are

Mv
bar =



ρA`
3

0 · · · 0 ρA`
3

0 2A
`
α̂1

ω̂2
1
· · · 0 0

...
...

. . .
...

...

0 0 · · · 2A
`

α̂nMOT

ω̂
n2
MOT

0

ρA`
6

0 · · · 0 ρA`
3


(3.27a)

Dv
bar =



0 0 · · · 0 0

0 4A
`
α̂1ζ̂1
ω̂1

· · · 0 0

...
...

. . .
...

...

0 0 · · · 4A
`

α̂nMOT
ζ̂1

ω̂nMOT
0

0 0 · · · 0 0


(3.27b)

Kv
bar =

G∞A

`



1 +
∑
α̂j

√
2α̂1 · · ·

√
2α̂nMOT

−(1 +
∑
α̂j)

√
2α̂1 2α̂1 · · · 0 −

√
2α̂1

...
...

. . .
...

...
√

2α̂nMOT
0 · · · 2α̂nMOT

−
√

2α̂nMOT

−(1 +
∑
α̂j) −

√
2α̂1 · · · −

√
2α̂nMOT

1 +
∑
α̂j


(3.27c)

where the degrees of freedom have been rearranged to facilitate the assembly process
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Figure 3.11: FRFs for a solid bar at varying temperatures

and to reduce the bandwidth of the final assembled matrices. Using the GHM parameters

obtained at various temperatures, the FRFs are shown in Figure 3.11. These results show

changing the temperature of a viscoelastic bar can cause a shift in the natural frequency and

also affect the amount of damping at each natural frequency.

Next, the response of the same structure subjected to an impulse load at the tip of the

bar is considered. The settling time of the response is calculated for the bar subjected to

different temperatures. A plot of the settling time versus temperature is shown in Figure

3.12. Initially, as the temperature increases, the settling time decreases. This is due to the

increasing damping in the material. After a certain temperature, an increase in temperature

causes an increase in the settling time. As the temperature increases, the storage modulus

decreases causing the material to be more compliant.

3.4.2 Dynamic response of a viscoelastic solid beam

A uniform beam made from a 3D printed viscoelastic material is modeled using a GHM

model. The geometry and material properties of the beam are shown in Table 3.6. The
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Figure 3.12: Settling time of a solid bar subjected to a unit impulse at varying temperatures

Table 3.6: Geometry and material properties of beam model

Property Value
Density [kg/m3] 1168
Cross-sectional width [mm] 12.71
Cross-sectional height [mm] 2.96
Length of beam [cm] 20.32
Cross-sectional area moment of inertia [m4] 2.747 × 10-11

VeroWhitePlus material properties are used for the model. The beam is discretized into five

finite elements, with two nodes and four degrees of freedom, a displacement and rotational

degree of freedom at each node.

The elastic mass and stiffness elastic finite element matrices are given as

Me
beam =

ρA`

420



156 22` 54 −13`

22` 4`2 13` −3`2

54 13` 156 −22`

−13` −3`2 −22` 4`2


=

 M11 M12

M21 M22

 (3.28a)
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Ke
beam =

G∞I

`3



12 6` −12 6`

6` 4`2 −6` 2`2

−12 −6` 12 −6`

6` 2`2 −6` 4`2


=

 K11 K12

K21 K22

 (3.28b)

where ` is the length of the beam, ρ is the density of the material, and I is the area

moment of inertia [62]. By performing an eigenvalue analysis on the stiffness matrix, two

degrees of freedom can be eliminated since they correspond to eigenvalues of zero. The

spectral decomposition results in

R̄T
beam =

 0 −
√
2
2

0
√
2
2

2

`
√

8/`2+2

1

`
√

8/`2+2

−2
`
√

8/`2+2

1

`
√

8/`2+2

 (3.29a)

Λ̄beam =

 2I
`

0

0 6I(`2+4
`3

 (3.29b)

RT
beam =

G∞I

`3

 6
√

2(`2 + 4) 3
√

2(`2 + 4) −6
√

2(`2 + 4) 3
√

2(`2 + 4)

0 −
√

2`2 0
√

2`2

 =

 RT
1

RT
2


(3.29c)

Using Equations 3.18, the viscoelastic finite element matrices are

Mv
beam =



M11 0 · · · 0 M12

0 α̂1

ω̂2
1
Λbeam · · · 0 0

...
...

. . .
...

...

0 0 · · · α̂n

ω̂2
n
Λbeam 0

M21 0 · · · 0 M22


(3.30a)
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Dv
beam =



0 0 · · · 0 0

0 2 α̂1ζ̂1
ω̂1

Λbeam · · · 0 0

...
...

. . .
...

...

0 0 · · · 2 α̂nζ̂n
ω̂n

Λbeam 0

0 0 · · · 0 0


(3.30b)

Kv
beam =



φK11 α̂1R1 · · · α̂nR1 φK12

α̂1R
T
1 α̂1Λ · · · 0 α̂1R

T
2

...
...

. . .
...

...

α̂nR
T
1 0 · · · α̂nΛ α̂nR

T
2

φK21 α̂1R2 · · · α̂nR2 φK22


(3.30c)

where φ = 1 +
∑nMOT

j=1 α̂j and the degrees of freedom have been rearranged to facilitate

global matrix assembly and reduce the bandwidth of the stiffness matrix reducing the com-

putational time required for matrix inversion. This model is used to model a beam at various

temperatures. Figure 3.13 shows how the settling time changes with temperature. The beam

shows similar trends to the bar explained in the previous section.

3.4.3 Effects of testing configuration on dynamic response

This section looks at how using a tensile versus a cantilevered testing configuration during

the material characterization affects the GHM model results. During the characterization

of the viscoelastic material properties of the 3D printed materials, two different testing

configurations were utilized, cantilevered and tensile. The DMA machine has various clamps

which can be utilized to obtain the dynamic modulus values. The cantilevered clamp fixes

one end of the beam while forcing the other end to move cyclically. The tensile clamp places

the specimen in tension with one end staying fixed and the other end moving cyclically [103].

The comparison in testing configuration was completed on the DM 8430 material, which is

slightly less stiff than the VeroWhitePlus material used in the previous sections. Using the
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Figure 3.13: Settling time of a solid beam subjected to a unit impulse at varying tempera-
tures

dynamic modulus data produced from the DMA machine, GHM parameters were fit to the

data for both testing configurations described above. The GHM parameters were then used

to model the solid beam described above. The natural frequency and damping of the first

two modes were obtained for temperatures ranging from 50◦ to 70◦ C. The focus of this work

is on the first mode, since this mode dominates the response in metastructure applications.

The second mode was obtained to see how accurate the model is. These natural frequency

and damping values are plotted in Figure 3.14. These results show that the tensile testing

configuration leads to a higher natural frequency than the cantilevered configuration. This

difference is more pronounced in the second mode than the first. Additionally, the tensile

configuration results in lower damping values than the cantilevered configuration. The FRF

for these two cases at a temperature of 50◦ C can be seen in Figure 3.15. This shows that the

testing configuration used to obtain the material properties can make a significant difference

in the results from the GHM model.
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Figure 3.14: Variations in the (a) natural frequency and (b) damping factor of a cantilevered
beam modeling using GHM parameters obtained from a cantilevered and tensile
testing configuration
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Figure 3.15: Variations in the FRF factor of a cantilevered beam at 50◦ C modeling using
GHM parameters obtained from a cantilevered and tensile testing configuration
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3.4.4 Experimental verification of material characterization

Next, the trends are experimentally validated using a beam model. The experimental

model was printed using the Objet Connex 3D printer with dimensions of 8 × 12 × 120 mm.

The beam was clamped at the base and placed in a thermal chamber. The chamber tested

the beam at 20◦, 30◦, and 40◦ C. Once the chamber reached the desired temperature, a soak

time of 30 mins was used to allow the entire specimen to reach a uniform temperature. A

small magnetic disk was glued to the tip of the beam, and a magnetic transducer provided an

excitation force to the tip. The response of the beam was measured as the tip using a laser

Doppler vibrometer mounted to the outside of the chamber and measured through a glass

window. A National Instruments data acquisition system was used provide the excitation

signal to the magnetic transducer via a voltage amplifier and to collect the signals from the

laser vibrometer. Ten sine sweeps from 0 Hz to 1500 Hz were conducted and the resulting

FRFs averaged together. A curve fitting procedure was then performed on the averaged

FRF to obtain the natural frequencies and damping factors for the first two modes. During

the tests at temperatures higher than 40◦ C, the beam became complaint resulting in the

tip of the beam getting stuck to the magnetic transducer.

For the GHM model used in the comparison, the material characterization from VeroWhitePlus

tested in the tensile configuration was used. The tensile configuration was performed at lower

temperatures allowing overlap between the experimental data and the modeled results. The

GHM model was created as described in the solid beam section above.

The results comparing the experimental results to the GHM model at various tempera-

tures are shown in Figure 3.16. For the natural frequency, the results show good agreement

of the first mode, which is the focus of this paper. The second mode has more significant

deviations. This could be attributed to a number of issues. The shift could be due to

the effect of testing configuration as described in the previous section. The experimental

beam was tested in a cantilevered configuration, but the material characterization data was

obtained using a tensile configuration. The tensile configuration produced higher natural
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frequency values than the cantilevered configuration, which was also more evident in the

second mode. Additionally, the frequency range of the curve fit could be increased and more

GHM parameters used to improve the accuracy of the model. This would also increase the

degrees of freedom of the model. Since the focus of this work is on the first mode, this was

not explored.

Based on the results from the previous section, it would be expected that the GHM

model would predict damping factors lower than that of the experimental results, but this

is not the case. This shows that the GHM mode is not able to accurately predict the

amount of damping in the beam for this example. This could be due to the mismatch in the

dimensions of the material characterization testing specimen compared to the beam used

for these experimental results. Additionally, the testing clamp used to obtain the dynamic

modulus could have introduced damping into the structure that was not produced from the

viscoelastic effects of the 3D printed material. The beam used for the experimental results

used a non-contact excitation method along with a non-contact transducer which introduces

less damping into the system. Although the GHM model is not able to predict the correct

amount of damping in the structure, it can capture the trends due to a temperature change

which will allow us to explore the effects of temperature change using a GHM model.

3.5 Chapter summary

The complex modulus properties of the inkjet printed material from the Objet Connex

printer have been determined. These materials show viscoelastic effects, which should be

considered when modeling these materials for use in vibration applications, particularly

in situations where there are significant temperature changes. Although all materials show

viscoelastic effects, the TangoPlus material exhibits greater variations in the storage modulus

and loss factor than the VeroWhitePlus, DM 8430, and DM 8420. Additionally, the effects

of testing configuration and print direction were also investigated. The results show that

variations in the in-plane print direction do not affect the response of the material for both
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Figure 3.16: Comparison of the (a) natural frequencies and (b) damping factors of a GHM
model and experimental results for a 3D printed VeroWhitePlus cantilevered
beam
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the tensile and cantilevered configurations. The testing configuration does have a slight effect

on the complex modulus values.

These results show that the GHM model can accurately predict the fundamental natural

frequency of a structure printed using the Objet Connex 3D printer. It can also predict

the changes in the natural frequency due to temperature changes. This paper shows the

complete process required to accurately use the GHM model; starting from the material

characterization of the viscoelastic material properties to the experimental verification of

the model.

The change in temperature can significantly alter both the storage modulus and the

loss modulus of the material; these changes lead to changes in the natural frequencies and

the damping of the resulting structure. When experimentally characterizing the viscoelastic

material properties of the 3D printed material, the testing configuration of the specimen

should be carefully considered. This work showed that the tensile testing configuration led

to higher natural frequencies and lower damping values than the cantilevered configuration.

The experimental verification results also had lower damping values than the modeled results.

Lastly, the GHM model developed was used to model the dynamics of a metastructure

and studies the effects of a changing temperature. The results showed that the changes in the

natural frequency of the host structure and the vibration absorbers changed at a similar rate,

resulting in similar trends in the dynamic response as the temperature increase. This was

true up to a specific temperature when the performance of the metastructure significantly

decreased resulting in the baseline structure have better performance.
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CHAPTER IV

Mass-Conserved Distributed Mass Metastructure

This chapter builds off of the previous two chapters. The lumped mass metastructure

concept developed in Chapter II is expanded to a distributed mass model to allow for a po-

tentially more accurate model. Additionally, the viscoelastic modeling methods developed

in Chapter III are applied to the distributed mass metastructure model to capture the ef-

fects of damping inherent in the 3D printed materials. Additionally, this model is used to

explore the effects of temperature on the performance of the metastructure. This chapter

begins by explaining the metastructure design used throughout the rest of this dissertation.

Similar to Chapter II, the metastructures in this chapter look to suppress vibrations along

the axial direction of the bar. Starting with a simple 1D model, allows the effects to be ex-

plored more easily. Cantilevered beams with tip masses are used for the distributed vibration

absorbers. Similar to the lumped mass metastructures, the main design parameters of the

metastructure are the number of absorbers, the mass ratio and the natural frequencies of the

absorbers. Initially, this design concept is verified using commercial finite element software

and experimental testing. The next section develops an elastic model of the absorbers and

the metastructure using finite element techniques. The following section extends the elastic

model to a viscoelastic model using the GHM model as described in the previous chapter.

Next, the effects of varying the metastructure parameters on the performance of the struc-

ture are explored. This is accomplished by examining many different configurations with a
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Figure 4.1: Cross-section of the host and baseline structure

different number of absorbers and different mass ratios. For each one of these configurations,

the optimal natural frequencies of the absorbers are found. Of these different metastructure

designs, one design is printed and experimentally tested. This design is printed on the Objet

Connex 3D printer, and a modal analysis is performed to compare the results. Lastly, the

effects of temperature on the metastructure are explored using the viscoelastic GHM model.

4.1 Metastructure design

The metastructure design used here has been studied in previous work [97, 104] and

is designed to suppress vibrations along the axial direction of the metastructure bar. The

metastructure is composed of the host structure and the vibration absorber system. The

host structure has a hollow square cross-section as seen in Figure 4.1 and is the component of

the structure in which lower vibrations are desired. The vibration absorbers are cantilevered

beams with a tip mass arranged such that the bending motion of the cantilevered beams

absorbs vibrations along the axial direction of the bar as seen in Figure 4.2, where the axial

vibrations are in the horizontal direction.

The performance of the metastructure is compared to a baseline structure which has the

same weight as the metastructure but with no vibrations absorbers distributed throughout

the length of the bar. The baseline structure has the same cross-section design as the host
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Figure 4.2: Schematic of metastructure. Vibrations occur along the horizontal direction.

section as depicted in Figure 4.1 but with a slightly different thicknesses to account for the

weight constraint. Restricting the metastructure and the baseline structure to have the same

weight allows any performance gains in the metastructure to be attributed to the addition

of the distributed vibration absorbers and not due to any mass added to the structure.

4.1.1 Design parameters

The design of the metastructure is characterized by the number of vibration absorbers,

N , the mass ratio, µ, and the natural frequency of the individual vibration absorbers, ωi.

The mass ratio is the ratio of the mass of the absorbers over the total mass of the structure

and is defined as

µ =

∑N
i=1mi∑N

i=1mi +mhost

(4.1)

where mi is the mass of the ith absorber and mhost is the mass of the host structure.

Similar to the lumped mass metastructure described in Chapter II, this mass ratio provides

a measure of how much mass is being redistributed to the absorber system. A higher mass

ratio represents more mass in the absorber system.

The natural frequencies of the vibrations absorbers are varied by changing the geometry

of the absorbers. For example, making the tip mass larger and therefore heavier will lead to

a lower natural frequency, but increasing the thickness of the beam leads to a higher stiffness

and therefore a higher natural frequency. Throughout this chapter, various methods are used
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to determine the relationship between the geometric parameters and the resulting natural

frequency.

4.1.2 Verification of design

This section looks at the proposed design and verifies that the design produces the de-

sired effects by looking a commercial finite element model and experimental results. The

finite element model is based on an elastic model. Verifying that an elastic model produces

similar trends as the experimental results is a necessary first step. This verification gives

us confidence in the actual design of the metastructure and provides an intermediate step

before using more complicated models.

The specific design used for this verification is based on the optimal lumped mass metas-

tructure design from Section 2.5.3. The metastructure has ten vibration absorbers and a

mass ratio of 0.206. This section begins by explaining how the natural frequencies of the

vibration absorbers were chosen then goes into the details of the finite element and the ex-

perimental results. The results of the finite element verification are based off two papers by

the authors [97, 104]. These results look at two different metastructure designs, one where

all the vibration absorbers are tuned to the same frequency and another design where the

vibration absorbers are tuned to linearly varying natural frequencies. The finite element

results compare both metastructure designs to the baseline structure. The experimental

results test the baseline structure and the metastructure with vibration absorbers having a

constant natural frequency.

The material properties utilized are those from the Objet Connex 3D printer by Stratasys,

specifically the DM 8430 digital material, which has been studied in detail in Chapter III.

The parameters used for the baseline structure and metastructures are detailed in Table 4.1.

Both the host structure and the baseline structure have cross-sections as shown in Figure

4.1. The parameters are chosen such that the baseline structure and the metastructure have

the same mass, cross-sectional width, and length. The other parameters are varied such that
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Table 4.1: Parameters for baseline structure and metastructure used in the design verification

Parameter Value
Young’s Modulus, E 1970 MPa
Density, ρ 1.168 g/cm3

Mass ratio, µ 0.206
Number of absorbers, N 10
Host width, whost 50 mm
Host thickness, thost 5 mm
Host cross-sectional area, Ahost 9.00 cm2

Host length, `host 45 cm
Host mass, mhost 474 g

Total absorber mass,
∑N

i=1mi 123 g
Individual absorber mass, mi 12.3 g
Total metastructure mass, mmetastructure 597 g
Baseline width, wbaseline 50 mm
Baseline thickness, tbaseline 6.5 mm
Baseline cross-sectional area, Abaseline 11.3 cm2

Baseline mass, mbaseline 595 g
Baseline length, `baseline 45 cm

the mass ratio and number of absorber parameters are met.

To determine the desired natural frequencies of the absorbers, a 1D finite element model

was created in MATLAB. Because of the simplicity of the 1D model, the simulation runs

quickly and can be optimized easily in order the find the ideal range of natural frequencies

of the absorbers. This 1D finite element model is depicted in Figure 4.3. The host structure

is modeled as a distributed mass bar represented as the grey rectangle, and the vibration

absorbers are modeled as lumped masses. The host structure is discretized into 110 elements
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Figure 4.3: 1D finite element model with lumped mass vibration absorbers
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along the length of the bar, and a simple 2-noded bar element is utilized. The vibration

absorbers are modeled as lumped masses and springs. The absorbers are distributed evenly

throughout the length of the bar. The necessary parameters for the finite element model are

calculated using the parameters from Table 4.1. The bar finite element matrices are

M =
me

6

 2 1

1 2

 (4.2a)

K = ke

 1 −1

−1 1

 (4.2b)

where ke and me for the metastructure are calculated by

ke =
nEAhost

`host
(4.3a)

me =
ρAhost`host

n
(4.3b)

where n is the number elements along the length of the bar. The lumped parameters,

mi and ki are added to the corresponding degrees of freedom. The value for mi is found

in Table 4.1 and ki is varied during the optimization. Varying the stiffness of the vibration

absorbers results in different natural frequencies of the of the absorbers leading to a different

response in the structure. All other parameters are kept constant, and just the stiffness

values are varied. The stiffness values are constrained to vary in a linear fashion; thus the

minimum and maximum values characterize these values. The objective function of the

optimization is the area under frequency response function, the H2 norm, as described in

Section 2.2. The optimization is done in MATLAB using a constrained non-linear interior

point algorithm (fmincon). The results of the optimization show that the natural frequencies

of the absorbers should vary from 1100 to 450 Hz in order the achieve the best performance.

The natural frequency of the host structure is 721 Hz.
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To vary the natural frequency of the absorber, the cross-sectional area of the beam is

varied. A larger thickness of the beam leads to a stiffer absorber which raises the natural

frequency. To keep the mass of all the vibration absorbers constant, the cross-sectional

area of the beam is restricted to be constant throughout the entire structure. Thus, an

increased thickness of the beam will result in a decrease in the width of the beam. To

determine the natural frequencies of the vibration absorbers, a 3D finite element model was

used. Each absorber was modeled by itself attached to the host structure and a modal

analysis performed. This allowed the stiffness of the host structure to be accounted for while

eliminating the interactions between the various vibration absorbers. The results of this

modeling are shown in Table 4.2. The entire range of frequencies from the optimization

procedure described above was not able to be achieved with the geometry constraints given.

The optimization called for frequencies ranging from 1100 to 450 Hz. To reach frequencies

above 940 Hz, the thickness of the beam needed to be greater than 21 mm. The absorber mass

is 21 mm in length on each side; thus the dimensions of the beam must be less than 21 mm.

The dimensions are shown in Table 4.2 are used for the final design of the metastructure with

varying frequencies. The metastructure with vibration absorbers having a single frequency

used absorber 7 for all ten of the vibration absorbers which has a natural frequency closest

to that of the host structure, 721 Hz.

4.1.2.1 Finite element modeling

The 3D finite element modeling is done in Abaqus using the geometry provided in the

previous section. The finite element models compare three different structures all of which

have the same weight as described in the previous section. Three-dimensional models of the

baseline structure and the metastructure with vibration absorbers of linearly varying natural

frequencies are shown in Figure 4.4.

Symmetry conditions were used, requiring only half of the model to be used as seen in

Figure 4.5. The model used 3D tetrahedral elements, and the mesh for the metastructure
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Table 4.2: Geometric properties of the vibration absorbers and the resulting natural frequen-
cies

Absorber Thickness Width Area Distance from Finite element
[mm] [mm] [mm2] root [cm] frequency [Hz]

1 20.3 4.93 100.1 40.9 939.8
2 18.7 5.30 99.1 36.8 913.9
3 17.2 5.81 99.9 32.7 875.4
4 15.6 6.38 99.5 28.6 839.2
5 14.1 7.07 99.7 24.5 794.8
6 12.6 7.94 100.0 20.5 764.0
7 11.1 9.05 100.0 16.4 648.3
8 9.5 10.5 99.9 12.3 610.6
9 8.0 12.6 100.4 8.2 564.2
10 4.9 20.5 100.0 4.1 426.5

Figure 4.4: Three dimensional models of (a) baseline structure and (b) metastructure with
vibration absorbers with linearly varying natural frequencies
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Figure 4.5: Mesh used for the metastructure with vibration absorbers having constant nat-
ural frequencies

with vibration absorbers with constant frequencies can be seen in Figure 4.5. The other two

structures had similar meshes. One end of the structure was fully constrained to simulate

a clamped condition. A cyclically varying force was applied to the other end in the axial

direction. The frequency of the force varied from 0 to 1500 Hz, the frequency range of

interest. At each frequency, the steady-state amplitude was calculated, and the resulting

FRF was plotted. All the FRFs plotted are normalized with respect to the static response

of the baseline structure.

4.1.2.2 Experimental testing

An experimental FRF was obtained using the set-up shown in Figure 4.6. The baseline

structure and the structure with absorbers tuned to a single frequency were tested experi-

mentally. The structure is secured to the surface of a large object to emulate the clamped

boundary condition. For these structures, a base with through holes for fasteners was added

to the CAD model and printed with the structure. The fasteners were inserted into tapped

holes on a large table as seen in Figure 4.7.
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Figure 4.6: Experimental set-up used for testing of metastructure

Two Macro Fiber Composite (MFC) patches were added to each side of the structure.

The MFC patches used are P1-type actuators manufactured by Smart Materials Corporation

with an active area of 85 by 28 mm (M8528-P1). The patches were attached to the surface

of the structure using 3MTM Scotch-WeldTM Epoxy Adhesive DP460. The adhesive was

applied to the surface of the MFC and placed onto the surface of the metastructure. Next,

the structure was placed in a vacuum bag to ensure the adhesive was evenly applied with

no air bubbles. The adhesive cured for 8 hours in the vacuum bag. After the MFCs were

bonded to the surface of the metastructure, wire leads were soldered to the electrodes of the

MFCs and arranged in parallel such that the same voltage is applied to each MFC. This

produces an elongation force along the axial direction of the structure.

The voltage applied to the MFC actuators is controlled using a National Instruments

Data Acquisition (NI DAQ) system and LabVIEW. The voltage signal is fed through an

amplifier to provide a sine signal with a peak-to-peak amplitude of 40 volts.

The response of the structure is measured using an accelerometer mounted to the top of

the structure oriented to measure accelerations along the axial direction of the structure. The

voltages are feed through a signal conditioner and read using the NI DAQ. The LabVIEW
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Figure 4.7: Experimental set-up for testing
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Figure 4.8: FRFs for the finite element models of the metastructures and baseline structure

software calculates an FRF of the tip acceleration due to an excitation force at the base

using these signals. The accelerations are then converted to displacements in the frequency

domain.

4.1.2.3 Results

This section presents the results from the finite element model and the experimental tests

described in the previous two sections. The FRFs from the finite elements models are shown

in Figure 4.8. For the metastructure with a single vibration absorber, there are clearly two

peaks on either side of the natural frequency of the baseline structure. The metastructure

with multiple frequencies has many small peaks which can be seen throughout the range of

frequencies of interest. These trends match those from the lumped mass models.

Figure 4.9 shows the experimental FRFs for the two structures tested experimentally, the

baseline structure and the metastructure with absorbers tuned to a single frequency. Once

again, the expected trend of the metastructure having two split peaks is clearly shown in

the experimental results. These results show that the proposed design leads to the desired
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Figure 4.9: FRFs from experimental testing of the metastructure and baseline structure

trends in the resulting FRF of the structures.

4.2 Elastic metastructure modeling

To develop a viscoelastic finite element model using the GHM model, the elastic model

finite element model must be developed first. This section explains the elastic modeling pro-

cedure used to model the vibration absorbers and the whole metastructure. These models

are based on the beam and bar models developed in the previous chapter and are expanded

upon here to be used for this specific metastructure design. This section begins by devel-

oping the model for a single vibration absorber, then incorporates that model into a full

metastructure model.

4.2.1 Elastic model of a single vibration absorber

A single vibration absorber is composed of a beam with a tip mass. The dimensions of

the vibration absorber are defined in Figure 4.10a and Figure 4.10b shows the equivalent
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Figure 4.10: Schematics of the vibration absorber consisting of a cantilevered beam with
a tip mass where (a) shows the dimensions of the vibration absorber and (b)
shows the effective properties used for modeling

Table 4.3: Effective properties of the vibration absorber

Property Equation
Area moment of inertia of beam I = 1

12
wBh

3
B

Cross-sectional area of beam A = wBhB
Eccentricity of tip mass e = `M

2

Mass of tip mass mM = ρ`MwMhM
Polar moment of inertia of tip mass J = 1

12
mM(h2M + `2M) + 1

2
mMe

2

properties used in the finite element model. These equivalent properties are calculated using

the equations shown in Table 4.3.

The vibration absorber is discretized into elements along the length of the beam and the

typical beam finite elements from the solid beam section are used for all elements except

the element closest to the tip. The tip element must also include the effects of the tip mass.

Since the tip mass is relatively large, both the rotational and translational motion of the

tip mass must be accounted for. This is derived using energy methods. The kinetic energy

expression of the tip element is

T =
1

2

∫ x2

x1

ρAẇ2dx+
1

2
mM [ẇ(x2) + eẇ′(x2)]

2
+

1

2
Jẇ′(x2)

2 (4.4)

where w(x) is the vertical displacement of the beam, x1 and x2 are the coordinates of the
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first and second node of the element, the dot represents the partial derivative with respect

to time, and the prime represents the partial derivative with respect to x. Using typical

finite element methods, the vertical displacement of the beam can be represented using the

following separation of variables

w(x, t) = H(x)r(t) (4.5)

where H(x) is a vector of shape functions and r(t) is a vector of the time-varying com-

ponents of each shape function

r(t) =

[
r1 r′1 r2 r′2

]T
(4.6)

The shape functions are defined as

H(ξ) =
1

4

[
(1− ξ)2(2 + ξ) 2

`
(1− ξ)2(ξ + 1) (1 + ξ)2(2− ξ) 2

`
(1− ξ)2(ξ − 1)

]
(4.7)

where the shape function is defined in terms of ξ instead of x. The transformation

between the two variables is described as

x =
x1 + x2

2
+
x2 − x1

2
ξ (4.8)

Substituting Equation 4.5 into Equation 4.4

T =
1

2
ṙT
{
ρAL

∫ x2

x1

HT(ξ)H(ξ)
`

2
dξ +mM [H(x2) + eH′(x2)]

T[H(x2) + eH′(x2)] + JH′(x2)
TH′(x2)

}
ṙ

(4.9)

where ` is the length of the element. Using the fact that T = rTMr, the elastic mass

matrix for the tip element becomes
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Me
tipmass =

ρA`

420



156 22` 54 −13`

22` 4`2 13` −3`2

54 13` 156 −22`

−13` −3`2 −22` 4`2


+



0 0 0 0

0 0 0 0

0 0 mM mMe

0 0 mMe mMe
2 + J


(4.10)

Since the tip mass only affects the kinetic energy of vibration absorber, the stiffness matrix

stays the same for all elements in the vibration absorber. This elastic tip mass element is

used for the elastic finite element model and also in the derivation of the viscoelastic finite

element matrices using a procedure similar to the one described above.

4.2.2 Elastic model of metastructure

The elastic model of the metastructure is created by assembling simple bar finite element

matrices and the vibration absorber finite element matrices explained in the previous section.

This section gives the details for that process starting with the process used to develop the

host structure finite element matrices.

The host structure is modeled using a simple bar finite element model. The bar finite

element matrices are given in Section 3.4.1. The number of elements used along the length

of the bar is one greater than the number of absorbers, ne = N + 1. This guarantees there

are nodes at the locations in which the absorbers are to be attached to the host structure,

allowing for easier assembly.

As described in Section 4.2.1, the finite element matrices for each vibration absorber

are developed. When the vibration absorber is attached to the host structure, it is done

such that the cantilever is fixed to the host structure. This arrangement constricts the

slope at the base of the cantilever to be fixed, but the displacement at the base is equal

to axial displacement at the corresponding location of the host structure. These boundary

conditions are accomplished by constraining the slope at the base of each absorber to be
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zero and assembling the finite element matrices such that the vertical displacement at the

base of the absorber is equal to the axial displacement at the location of the absorber.

Mathematically, this is described as

w′i(0) = 0 (4.11a)

wi(0) = u(zi) (4.11b)

where wi is the transverse displacement of the ith vibration absorber, u(z) is the axial

displacement of the host structure, and zi is the location of the ith vibration absorber from

the base of the host structure. Using these constraints, the metastructure finite element

matrices are assembled. The degrees of freedom are arranged in such a way to minimize the

bandwidth of the matrices which allows for a faster matrix inversion.

4.3 Viscoelastic modeling

This section takes the elastic model developed in the previous section and extends it

to a GHM viscoelastic model, this is first done for a single vibration absorber and then

for the entire metastructure. Next, the approach used to determine various designs for the

metastructure is explained.

4.3.1 Viscoelastic model of a single vibration absorber

The viscoelastic model for a single vibration absorber was developed using the beam

viscoelastic elements developed in Section 3.4.2 and adding the inertial effects of the tip

mass using the mass matrix in Section 4.2.1. The natural frequency of the absorber is

calculated by fixing the base degrees of freedom (both displacement and slope) and using

the methods described in Section 3.3.2 to determine the natural frequencies. Knowing the

natural frequency of the absorber is helpful when developing the design of the metastructure.

For a vibration absorber, clamped at the base, the resulting FRF of the tip displacement
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Figure 4.11: Elastic and viscoelastic comparison of the FRF for a single vibration absorber

response due to a force at the tip is shown in Figure 4.11. This figure shows the FRF for the

viscoelastic model and the elastic model developed in Section 4.2.1. Additionally, an elastic

Rayleigh-Ritz model is also shown. The Rayleigh-Ritz model has good agreement with the

elastic finite element model giving us confidence in the development of the finite element

model. The FRF for the viscoelastic model predicts a slightly lower natural frequency

with higher levels of damping. A mesh convergence study was used to determine that two

elements are sufficient to accurately predict the natural frequency of the absorber using the

GHM model.

4.3.2 Viscoelastic model of metastructure

The viscoelastic model for the entire metastructure combines the viscoelastic bar elements

developed in Section 3.4.1 and the vibration absorber model from the previous section and

assembles them using the process described in Section 4.2.2. To show how this model per-

forms, it is applied to an actual metastructure. The metastructure has a mass ratio, µ = 0.23

as defined in Equation 4.1 and 12 absorbers throughout the length of the bar. The vibration

absorbers have geometries such that the natural frequency of the absorbers varying linearly

from 980 to 500 Hz with the higher frequency absorbers located close to the base. The mass
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Figure 4.12: (a) FRF and (b) impulse response of the a metastructure bar with vertical lines
representing the setting time of the corresponding structures

of each vibration absorber is constrained to have a constant value of 12 g. Later sections

will go into more details about how these various parameters affect the performance. The

results from this model are shown in Figure 4.12. The FRF shows that the linearly varying

nature of the vibration absorbers leads to more board-band absorption near the fundamental

natural frequency. The response of the tip of the metastructure subjected to a unit impulse

also at the tip is shown in Figure 4.12b. The setting time of each structure is represented

by a vertical line. This plot shows that the metastructure design significantly decreases the

setting time of the structure.

4.3.3 Metastructure design approach

The basics of the metastructure design were shown in Section 4.1. The next step in the

design process for the metastructure is to choose the geometric parameters of the absorbers

to get the desired frequencies. In Section 4.1.2, the parameters of the metastructure were

chosen using a trail and error method and a commercial finite element model. For many

absorber geometries, the natural frequencies were calculated, and the absorbers with the

desired natural frequencies were used. In this section, instead of using a commercial finite
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element software to find the natural frequencies, a GHM finite element model of the absorbers

is used. This model is created in MATLAB. This allows the viscoelastic effects to be taken

into account while also speeding up the process by using a 1D model instead of a 3D model.

In Chapter II, choosing the parameters for the metastructure model was fairly straight-

forward because mass and stiffness values could be chosen independently. When designing

real structures, changing the geometric parameters changes both the mass and the stiffness.

Additionally, the geometry of absorbers is defined by six different geometric parameters, as

seen in Figure 4.10. Here, an iterative approach is taken. For many different absorber ge-

ometries, the frequency of the absorber is calculated using the GHM model of the absorber.

If the natural frequency of the absorber falls within the desired frequency range, 100 to

1500 Hz, then that absorber geometry is stored along with its frequency. In addition to the

frequency being within the desired frequency range, a number of other constraints must also

be met. First, there is a constraint on the total overall length of the absorber. The length of

the beam plus the length of the tip mass must be less than 35 mm so that the absorber can

fit inside the host structure which has an inside width of 40 mm. Additionally, the maximum

height of the absorber must be less than 30 mm, allowing for all the absorbers to fit along

the length of the host structure. The last constraint is on the slenderness ratio, SR, of the

absorber beam. The slenderness ratio must be high enough to ensure the Euler-Bernoulli

assumptions are valid. For this work, the slenderness ratio must take on a value higher than

4. The slenderness ratio is calculated as

SR =
`B
r

(4.12)

where r is the radius of gyration, calculated as

r =

√
I

A
(4.13)

where I and A are defined in Table 4.3. Different combinations of the six geometric
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Figure 4.13: Actual mass of various absorber designs versus natural frequency for absorbers
with a desired weight of 8 g. Black dashed line indicates desired weight.

parameters are used. Each combination of parameters leads to a different vibration absorber

design, and the various constraints must be met in order for that absorber to be a viable

option. For each metastructure design, the mass of the absorbers is constrained to be the

same mass which is informed by the analysis done in Section 2.5.4. When calculating the

natural frequency of the absorbers, the mass of the absorber is also calculated. The mass of

the absorber must be within 0.05 % of the desired mass in order for that specific absorber

geometry to stored. Fourteen different absorber mass values are used during this analysis,

ranging from 8 to 24 g in increments of 2 g. For absorbers with a desired weight of 8 g, a

plot of actual absorber mass versus natural frequency is shown in Figure 4.13. For each of

these absorber masses, the tip mass height and the tip mass width are constrained to have

specific value; these values are given in Table 4.4. For the other four geometric parameters,

a range of values is used. Within each range, 100 different values are used. The ranges are

shown in Table 4.5.

For the vibration absorber designs weighing 8 g, the values of the geometric properties

versus natural frequency of the absorber are shown in Figure 4.14. The values for the tip

mass height and tip mass width are constrained, as seen in the plot. These plots show
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Table 4.4: Values of the constrained geometric parameters

Absorber Tip Mass Tip Mass
Mass [g] Height [mm] Width [mm]
8 16 30
10 19 30
12 19 32
14 22 35
16 22 35
18 22 35
20 24 35
22 27 35
24 27 35

Table 4.5: Absorber geometry parameter ranges

Dimension Symbol Range
Beam Length `B 5 - 20 mm
Beam Width wB 5 - 35 mm
Beam Height hB 3 - 15 mm
Tip Mass Length `M 10 - 25 mm

different trends about how the natural frequency of the absorber varies with the geometry.

For example, lower values of the beam height led to lower natural frequencies, which is

expected. Figure 4.15 shows the values of the slenderness ratio versus natural frequency for

the absorbers weighing 8 g. This plot shows that absorber designs with lower slenderness

ratios have higher natural frequencies. The slenderness ratio constraint is also shown on

the plot. If this constraint is set too high, then vibration absorbers with higher natural

frequencies cannot be achieved.

The method described above leads to tables of absorber designs for various absorber

weights ranging from 8 to 24 g. For all metastructure designs, the same host structure

geometry is used. As defined in Figure 4.1, the width of the cross-section is 50 mm, and

the thickness is 5 mm. The length of the host structure is 45 cm. Different metastructure

configurations are studied by varying the number of absorbers and the mass of the absorbers.

The number of absorbers varies from 5 to 13, and the weight of the absorbers varies from
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Figure 4.14: Values of the geometric parameters versus frequency of the absorber weighing
8 g for the six geometric parameters: (a) beam height, (b) tip mass height, (c)
beam length, (d) tip mass length, (e) beam width, (f) tip mass width. The blue
dotted line represents the upper limit of the range used and the red dotted line
represents the lower limit.
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Figure 4.15: Trend of slenderness ratio versus natural frequency for absorber designs weight
8 g. Black dashed line shows slenderness ratio constraint.

8 g to 24 g. These two parameters dictate the weight of the absorber system. Using that

weight, the mass ratio of the metastructure can be calculated using Equation 4.1. Table 4.6

lists all the different configurations and the associated mass ratio. The mass ratio values

vary from 0.077 to 0.395. For each mass ratio, a baseline structure with the same weight as

the metastructure is used as a comparison.

For each of these configurations, various absorber frequency ranges are explored using

the absorber tables described above. For all designs, the natural frequencies of the absorbers

are constrained to vary linearly along the length of the beam. For each of the varying

ranges, both the H norm and the settling time, ts are calculated and compared the baseline

structure. In Chapter II, the H2 norm was calculated by calculating the area under the FRF

from negative infinity to infinity. In this section, simply the frequency range of interest is

used for the H norm calculation

H norm =

∫ 2,500 Hz

0

G(ω)dω (4.14)

where G(ω) is the FRF of the tip displacement due to an input force at the tip. For
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each configuration, the optimal frequency range is determined based on the design with the

lowest settling time. Table 4.6 reports the optimal frequency range. The first number in

the range is the frequency of the absorber closest to the base, and the last number is the

frequency of the tip absorber. Additionally, the percent decreases in the settling time and

the H norm are reported. These are calculated as

H percent decrease =
(H)metastructure − (H)baseline

(H)baseline
× 100 (4.15a)

ts percent decrease =
(ts)metastructure − (ts)baseline

(ts)baseline
× 100 (4.15b)

Table 4.6: Optimal results for metastructure designs for varying number of
absorbers and absorber weights

Number of Weight of Mass Frequency H Percent ts Percent
Absorbers Absorber [g] Ratio Range [Hz] Decrease Decrease
5 8 0.077 767 - 494 4.63 67.7
6 8 0.091 838 - 469 4.98 69.8
7 8 0.105 830 - 434 4.46 70.0
8 8 0.118 838 - 421 4.29 73.7
9 8 0.131 865 - 421 4.12 74.0
10 8 0.144 915 - 412 4.21 73.8
11 8 0.156 899 - 371 2.94 72.2
12 8 0.168 899 - 374 2.59 71.6
13 8 0.179 899 - 360 1.84 71.4
5 10 0.095 811 - 465 4.57 67.8
6 10 0.112 864 - 451 4.64 69.9
7 10 0.128 856 - 440 4.21 74.1
8 10 0.144 874 - 415 3.70 75.5
9 10 0.159 897 - 400 3.28 73.7
10 10 0.173 864 - 373 1.96 70.9
11 10 0.187 874 - 360 1.39 71.0
12 10 0.201 939 - 360 1.70 72.5
13 10 0.214 874 - 336 0.31 70.6
5 12 0.112 813 - 484 4.66 63.1
6 12 0.131 813 - 440 3.96 71.9
7 12 0.150 856 - 404 3.47 75.6
8 12 0.168 856 - 371 2.12 73.3
9 12 0.185 878 - 359 1.32 73.2
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Table 4.6: Optimal results for metastructure designs for varying number of
absorbers and absorber weights

Number of Weight of Mass Frequency H Percent ts Percent
Absorbers Absorber [g] Ratio Range [Hz] Decrease Decrease
10 12 0.201 937 - 330 1.09 73.5
11 12 0.217 937 - 348 0.32 71.7
12 12 0.232 962 - 330 0.13 73.2
13 12 0.246 878 - 303 2.43 70.9
5 14 0.128 829 - 482 4.57 63.1
6 14 0.150 840 - 424 3.47 75.6
7 14 0.170 912 - 404 3.12 73.4
8 14 0.190 893 - 370 1.65 73.9
9 14 0.209 926 - 337 0.74 73.5
10 14 0.227 926 - 321 0.30 73.9
11 14 0.244 912 - 343 1.11 74.9
12 14 0.260 912 - 234 3.34 72.9
13 14 0.276 1017 - 255 2.43 72.5
5 16 0.144 762 - 403 2.13 64.9
6 16 0.167 825 - 394 1.87 69.7
7 16 0.190 913 - 403 2.28 74.1
8 16 0.212 853 - 366 0.12 73.6
9 16 0.232 942 - 374 0.35 74.8
10 16 0.251 933 - 287 2.66 71.7
11 16 0.269 974 - 225 2.76 72.8
12 16 0.287 933 - 211 4.87 78.7
13 16 0.304 933 - 220 5.99 77.1
5 18 0.159 758 - 400 1.42 58.8
6 18 0.185 826 - 394 1.57 73.4
7 18 0.209 884 - 374 0.61 74.0
8 18 0.232 955 - 367 0.19 75.4
9 18 0.253 924 - 283 3.05 74.5
10 18 0.274 942 - 301 3.62 75.0
11 18 0.293 900 - 236 6.43 72.9
12 18 0.312 942 - 184 7.81 79.6
13 18 0.329 924 - 165 8.42 76.1
5 20 0.173 782 - 436 2.10 65.5
6 20 0.201 827 - 395 0.89 71.0
7 20 0.227 845 - 350 1.09 73.0
8 20 0.251 912 - 337 1.76 77.5
9 20 0.274 944 - 323 3.08 74.6
10 20 0.295 912 - 217 5.16 72.5
11 20 0.316 924 - 196 6.92 75.3
12 20 0.335 896 - 223 10.13 77.0
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Table 4.6: Optimal results for metastructure designs for varying number of
absorbers and absorber weights

Number of Weight of Mass Frequency H Percent ts Percent
Absorbers Absorber [g] Ratio Range [Hz] Decrease Decrease
13 20 0.353 912 - 178 9.98 75.3
5 22 0.187 778 - 421 1.49 65.0
6 22 0.217 787 - 383 0.73 67.0
7 22 0.244 827 - 332 2.56 72.7
8 22 0.269 851 - 267 5.57 72.4
9 22 0.293 880 - 267 6.60 74.0
10 22 0.316 893 - 169 8.24 74.3
11 22 0.337 880 - 191 9.47 76.5
12 22 0.356 880 - 179 11.40 75.5
13 22 0.375 893 - 133 13.64 75.0
5 24 0.201 769 - 416 0.52 65.2
6 24 0.232 753 - 335 3.33 67.1
7 24 0.260 827 - 277 4.55 72.3
8 24 0.287 918 - 348 3.34 74.7
9 24 0.312 964 - 357 4.11 75.8
10 24 0.335 860 - 218 10.44 76.5
11 24 0.356 918 - 174 10.73 74.5
12 24 0.376 873 - 172 12.74 75.7
13 24 0.395 1108 - 297 10.63 74.0

4.4 Metastructure trends

This section examines the trends exhibited in the metastructure when various parameters

are varied. This section begins by looking at the effect of varying the absorber natural

frequency. The previous section provided the optimal ranges for the absorber frequencies

(Table 4.6); this section will look into the non-optimal designs also. Next, the effect of mass

ratio and the number of absorbers are explored. Understanding these trends allows a final

metastructure design to be chosen and used going forward for experimental testing.

4.4.1 Effects of absorber natural frequency variation

This section will explore the effects of varying the natural frequency range of a metas-

tructure with ten absorbers each weighing 8 g, leading to a mass ratio of 0.144. Figure
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4.16 shows a contour plot depicting the performance of the structure for various frequency

ranges. The x-axis is the frequency of the tip absorber and the y-axis is the frequency of

the base absorber. The frequencies of the other absorbers varying linearly between those

two values. The color of the contour plot represents the percent decrease in the performance

measures of the structure, where yellow represents better performance and blue represents

worse performance. The top plot, (a) shows the percent decrease in the H norm whereas

the bottom plot, (b) shows the percent decrease in the settling time.

The diagonal line where the frequencies of the tip absorber and the base absorber are

equal represents metastructures in which all the absorbers are tuned to the same natural

frequency. Since the highest values do not lie on this line, we can see that is more beneficial to

have vibration absorbers with varying frequencies, as we saw with the lumped mass model.

Additionally, the contour plot is not symmetric about that line. The upper half, where

the frequency of the base absorber is higher than the frequency of the tip absorber has

higher performance values. This shows that placing the absorbers with higher frequencies

near the base of the metastructure leads to better performance compared to the opposite

arrangement. The agrees with the trends of absorber stiffness observed from the lumped mass

models. When the performance measures are compared, similar trends are observed. The H

norm has more variation where as good settling times are more localized. Additionally, the

H norm percent decrease takes on mostly negative values, meaning the baseline structure is

performing better than the metastructure with respect to the H norm. This will be explored

in more detail when examining the FRFs of specific metastructure designs.

The other configurations take on similar trends. For comparison, the metastructure

design with 13 absorbers weighing 24 g is shown in Figure 4.17. This metastructure has a

much higher mass ratio of 0.395. Although the mass ratio is higher, similar trends hold.

Next, specific metastructure designs for the configuration with ten absorbers weighing 8 g

will be examined in more detail by looking at the FRFs and the impulse response functions.

Figure 4.18 shows the optimal frequency range with respect to settling time where the
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Figure 4.16: Contour plots for a metastructure with 10 absorbers weighting 8 g showing the
variation in the percent decrease in the (a) H norm and (b) settling time for
varying frequency ranges
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Figure 4.17: Contour plots for a metastructure with 13 absorbers weighting 24 g showing
the variation in the percent decrease in the (a) H norm and (b) settling time
for varying frequency ranges
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absorbers vary from 915 to 412 Hz. The first number of the range is the frequency of the

base absorber and the second number is the frequency of the tip absorber. The plot on the

left shows the frequency response function of the tip displacement due to an applied force also

at the tip. The plot on the right shows the impulse response function of the tip displacement

due to a unit impulse applied at the tip. The vertical lines represent the settling time for the

corresponding structure. The plots for the optimal structure are compared to the optimal

frequency range with response to the H norm where the absorbers vary from 1,114 to 475

Hz shown in Figure 4.19. The configuration optimized with respect to the H norm provides

slightly better performance for the H norm but significantly worse performance with respect

to the settling time, whereas the design optimized with respect to the settling has good

performance for both the H norm and the setting time. This is why the settling time was

chosen as the performance measure for choosing the optimal frequency ranges.

As another comparison, the metastructure with absorbers having frequencies varying

from 412 to 915 Hz, is shown in Figure 4.20. These absorbers have the same frequencies

as the optimal structure shown in Figure 4.18 but with their locations flipped, meaning the

higher frequency absorbers are near the tip of the metastructure instead of near the base.

The responses of these two structures look very different, showing that the location of the

absorbers makes a significant difference in the response of the structure.

Lastly, a metastructure with all the absorbers tuned to the same frequency is shown

in Figure 4.21. This design shows the characteristic split peak behavior we expect out of

a structure with a single vibration absorber. This aligns with the trends observed in the

lumped mass metastructure results.

4.4.2 Effect of mass ratio and number of absorbers

This section looks at how the mass ratio of the metastructure design impacts the perfor-

mance of the structure. Various configurations with the optimal natural frequency ranges

from Table 4.6 are used to examine these trends. Figure 4.22 shows a plot of the percent de-
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Figure 4.18: Plots of the (a) FRF and (b) impulse response function for a metastructure
with 10 absorbers weighing 8 g each and natural frequencies varying from 915
to 412 Hz. The vertical lines represent the settling time of the structures.
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Figure 4.19: Plots of the (a) FRF and (b) impulse response function for a metastructure
with 10 absorbers weighing 8 g each and natural frequencies varying from 1,114
to 475 Hz. The vertical lines represent the settling time of the structures.
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Figure 4.20: Plots of the (a) FRF and (b) impulse response function for a metastructure
with 10 absorbers weighing 8 g each and natural frequencies varying from 412
to 915 Hz. The vertical lines represent the settling time of the structures.
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Figure 4.21: Plots of the (a) FRF and (b) impulse response function for a metastructure
with 10 absorbers weighing 8 g each and a constant natural frequency of 550
Hz. The vertical lines represent the settling time of the structures.

111



0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
55

60

65

70

75

80

85

Mass Ratio, µ

S
e

tt
lin

g
 T

im
e

 P
e

rc
e

n
t 

D
e

c
re

a
s
e

 

 

5 absorbers

6 absorbers

7 absorbers

8 absorbers

9 absorbers

10 absorbers

11 absorbers

12 absorbers

13 absorbers

Figure 4.22: Percent decrease in the settling time versus mass ratio for varying number of
absorbers

crease in settling time versus mass ratio for various number of absorbers. There is a general

trend in this plot; a higher mass ratio leads to better performance. For the individual lines

representing the designs with the same number of absorbers, there is significant variance.

For example, the line for metastructures with five absorbers has a clear optimal point around

a mass ratio value of 0.12 whereas the line for designs with nine absorbers, does not have an

optimal value, it simply increases with increasing mass ratio. Figure 4.23 is a similar figure

but looks the H norm instead of the setting time. From this plot there is a clear trend,

increasing the mass ratio decreases the performance with respect to the H norm, and this

holds true for designs with a varying number of absorbers.

4.4.3 Final design

This section describes in detail the final design chosen for the experimental testing and

to examine the effects of varying the temperature. Figure 4.24 shows a contour plot of the

optimal percent decrease in the settling time for all configurations discussed. This shows that

metastructures with few absorbers are less effective than metastructures with more absorbers.
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Figure 4.23: Percent decrease in the H norm versus mass ratio for varying number of ab-
sorbers

This is likely due to the decreased number of parameters to tune for the structure with only

5 or 6 absorbers. As the number of absorbers increases, there is are more parameters to vary

allowing for greater design flexibility and also more variation in the trends.

In the end, a design with ten absorbers weighing 8 g each was chosen to use in the exper-

imental testing. This design has a mass ratio of 0.144. This design has a sufficient number

of vibration absorbers allowing for greater flexibility in the design while also providing a

lower mass ratio value. A lower mass ratio leads to a better H norm performance while also

redistributing less material from the host structure to the absorber system. The absorbers

have natural frequencies ranging from 915 to 412 Hz, and the plot of the FRF and impulse

response function can be seen in Figure 4.18. The parameters of the final design are sum-

marized in Table 4.7. The geometries used to achieve vibration absorber with frequencies

varying from 915 to 412 Hz are shown in Table 4.8. A CAD model of the final design is

shown in Figure 4.25.
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Figure 4.24: Contour plot of the percent decrease in settling time for all configurations

Table 4.7: Parameters of the final metastructure design

Parameter Value
Number of absorbers, n 10
Mass of absorbers, mi 8 g
Mass ratio, mu 0.144
Host width, whost 50 mm
Host thickness, thost 5 mm
Host length, `host 45 cm
Host mass, mhost 473 g
Individual absorber mass, mi 8 g

Total Absorber mass,
∑N

i=1 80 g
Total metastructure mass, mmetastructure 553 g
Baseline width, wbaseline 50 mm
Baseline thickness, tbaseline 5.97 mm
Baseline length, `baseline 45 cm
Baseline mass mbaseline 553 g
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Table 4.8: Absorber parameters for the final metastructure design

Absorber Frequency Beam Beam Beam Tip Mass Tip Mass Tip Mass
Number [Hz] Length Width Height Length Width Height
1 915.0 14.31 23.62 5.90 10.0 30.0 16.0
2 842.1 7.59 11.21 5.90 13.1 30.0 16.0
3 803.0 5.52 23.62 3.83 13.1 30.0 16.0
4 743.3 15.86 17.41 6.31 10.5 30.0 16.0
5 689.9 13.28 11.21 6.72 12.1 30.0 16.0
6 631.6 19.48 9.14 8.38 11.0 30.0 16.0
7 567.6 17.41 22.59 5.07 10.0 30.0 16.0
8 518.9 7.59 6.03 5.48 13.6 30.0 16.0
9 464.4 16.38 6.03 7.55 12.6 30.0 16.0
10 412.1 16.38 21.55 4.24 11.0 30.0 16.0

Figure 4.25: Three dimensional CAD model of the final design used with transparent outer
walls to show the absorbers
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4.5 Temperature effects

This section uses the GHM model described above and looks at the effects of temperature

on the performance of the structure. Chapter III details how to incorporate temperature

change into the GHM model. First, the effect of temperature on a single vibration absorber

is explored. Then the effects on the entire structure are explored.

4.5.1 Temperature effects on a single vibration absorber

Using the same model described in Section 4.3.1, the temperature of the absorber was

varied, and the resulting FRFs are plotted in Figure 4.26. This absorber was designed to

have a natural frequency of 600 Hz at room temperature (20◦ C). The figure shows that as

the temperatures increases, the natural frequency of the vibration absorber decreases and the

level of damping increases which is consistent with results from Chapter III. To ensure this

trend holds for a variety of geometries, absorbers with room temperature natural frequencies

ranging from 200 to 1,000 Hz were modeled at temperatures from 20◦ to 100◦ C. The natural

frequencies and damping values are shown in Figure 4.27. These results show that regardless

of the design frequency of the vibration absorber, the trends from a temperature change are

similar.

4.5.2 Temperature effects on the metastructure

Next, the temperature of the metastructure is changed to determine if similar perfor-

mance increases are observed at off-design temperatures. The final design described in Sec-

tion 4.4.3 is used to explore these trends. The temperature is changed for both the baseline

structure and the metastructure. The results for various temperatures can be seen in Figure

4.28. For the temperatures, 20◦ to 40◦ C, we can see similar trends in FRF. This shows that

as the natural frequency of the host structure changes with temperature, the frequencies of

the vibration absorbers change at a similar rate leading to similar trends in the FRF. Also,

increasing the temperature results in higher damping in the structure leading to a smoother
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Figure 4.26: FRFs for a single vibration absorber made from VeroWhitePlus at various tem-
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FRF. For temperatures above 30◦ C, the damping in the structure begins to dominate the

response, almost completely flatting out the curve and leaving only slight differences in the

FRF curves. These trends can also be observed by looking at the impulse response func-

tion for various temperatures, shown in Figure 4.29. In this series of plots, the axes are

constrained to have the same limits to allow for easier comparison. At the temperature

increases, the frequency of the oscillations decreases resulting from the shift in the natural

frequency. Additionally, as the temperature of increases, the initial response of the structure

increases due to the lower modulus of elasticity.

At temperatures ranging from 20◦ to 70◦ C, the settling time of the baseline structure

and the metastructure are calculated and plotted in Figure 4.30. Initially, as the tempera-

ture increases, the settling time of both the baseline structure and the metastructure varies

somewhat but stays relatively constant. At 50◦ C, the settling time of both the metastruc-

ture and the baseline structure rapidly increases. Figure 4.31 shows the same data, but plots

the percent decrease in the setting time as temperature changes. Here, there is a general

trend that as the temperature of the structures increases, the performance of the metas-

tructure compared to the baseline structure decreases. At temperatures of 60◦ and 70◦ C,

the baseline structure outperforms the metastructure. This is due to the difference in static

response between the two structures, which can be seen in the slight vertical shift in the

FRF of the metastructure compared to the baseline structure. Since the baseline structure

and the metastructure are constrained to have the same mass, the host structure part of the

metastructure must have a slightly smaller wall thickness than that of the baseline structure.

The smaller thickness causes a decrease in the stiffness of the structure and an increase in

the static response. At higher temperatures, the static response of the structure dominates

the response leading to higher settling times. At lower temperatures, the static response has

a less-significant role in the response.

These results show that the metastructure design can provide performance benefits for a

range of temperatures even if the metastructure is designed for a fixed temperature, but the
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Figure 4.28: FRFs for the metastructure and the baseline structure at temperatures of (a)
20◦ C, (b) 30◦ C, (c) 40◦ C, (d) 50◦ C, (e) 60◦ C, (f) 70◦ C, where the red
dotted line represents the metastructure and the black solid line is the baseline
structure
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Figure 4.29: Impulse the metastructure and the baseline structure at temperatures of (a)
20◦ C, (b) 30◦ C, (c) 40◦ C, (d) 50◦ C, (e) 60◦ C, (f) 70◦ C, where the red
dotted line represents the metastructure and the black solid line is the baseline
structure
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Figure 4.30: Settling time of the baseline structure and the metastructure versus temperature

structure performs best at its design temperature. At high temperatures, the metastructure

no longer outperforms the baseline structure. In the end, this shows that operating tem-

peratures of the structure must be considered when determining if a metastructure design

should be utilized.

4.6 Experimental verification

This section presents the experimental results on the final design outlined in Section

4.4.3. During this experimental testing, only the metastructure is tested, and the baseline

structure is not tested. First, the experimental set-up is described. The set-up is the same

as the set-up used in Section 4.1.2. Next, the modeling procedure used to simulate the force

that the MCFs provide at the base of the structure is described. The previous sections

examined FRF of the tip response due to a force applied at the tip of the structure. Here,

the force is applied as the base of the structure, so slight modifications are used to account

for that change. Lastly, the experimental results are compared to the GHM model results.
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Figure 4.31: Percent change in setting time versus temperature

Table 4.9: Properties of M8528-P1 MFC patches from Smart Materials Corporation used in
the experimental testing

Property Unit Value
Active length mm 85
Active width mm 28
Capacitance nF 6.58
Free strain ppm 1800
Blocking force N 454

4.6.1 Experimental set-up

As in Section 4.1.2, the experimental model was printed on the Objet Connex 3D printer

and two MFC patches were bonded to the base of the structure. The properties of the

MFC patches are given in Table 4.9. The experimental set-up can be seen in Figure 4.32.

Close-up images of the MFCs and the accelerometer can been seen in Figures 4.33 and 4.34

respectively.
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Figure 4.32: Experimental set-up used to test final metastructure design
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Figure 4.33: Close-up image of MFC bonded to base of metastructure
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Figure 4.34: Close-up image of accelerometer mounted to tip of metastructure to measure
axial accelerations
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4.6.2 MFC patch modeling

The viscoelastic GHM model is modified slightly to match the experimental set-up de-

scribed. The force applied to the metastructure by the MFC patches can be modeled as

a traction force applied to the surface of the structure where the patch is bonded. The

magnitude of the force depends on the geometry of the metastructure and the properties of

the MFCs. This traction will be constant over the applied area and proportional to voltage.

The total force applied by the MFC patch is represented as

f = f̄v (4.16)

where v is the applied voltage. Since the final FRF of the results will be normalized, the

specific value of f̄ does not need to be calculated. To incorporate this into the GHM model,

Equation 4.16 must be converted to finite element form. The MFC patch applies a traction

force to the outer edge of the structure. The structure is modeled as a bar, so the two MFC

patches can be modeled as a traction force on the corresponding elements.

tx = 2
f

`p
(4.17)

Fi =
tx`e
2

 1

1

 =
f̄ `e
`p
v

 1

1

 (4.18)

The assembled force vector takes on the following form

F =
f`e
`p

[
0 · · · 0 1 2 · · · 2 1 0 · · · 0

]T
= F̄v (4.19)

where the locations of the nonzero entry depend on the elements on the MFC patch

is bonded to the structure. Next, the system must be transformed into state space. The

equations of motion for the structure are
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Mvq̈ + Dvq̇ + Kvq = F = F̄v (4.20)

where Mv, Dv, and Kv are the mass, damping and stiffness matrices defined in the

previous section, and q are the finite element displacements. The corresponding state space

matrices for a voltage input are

A =

 0 I

−M−1
v Kv −M−1

v Dv

 (4.21a)

B =

 0

M−1
v F̄

 (4.21b)

C = [ I 0 ] (4.21c)

These can be used to express a transfer function matrix

H(s) = C(sI−A)−1B (4.22)

The transfer function will is an n × 1 matrix with entries corresponding to the finite

element degrees of freedom. The degree of freedom corresponding to the tip displacement of

the bar will provide the desired FRF.

4.6.3 Comparison

This section looks at the comparison of the GHM model and the experimental results. The

experimentally obtained natural frequencies of the vibration absorbers are compared to the

natural frequencies predicted using the GHM model. These results are plotted in Figure 4.35.

This plot also shows the natural frequencies calculated using an undamped elastic model.

These results show that the GHM model is effective at predicting the natural frequencies of

the 3D printed absorbers. The elastic model over predicts the natural frequencies at room
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Figure 4.35: Comparison of the experimental absorber natural frequencies to the GHM
model and an undamped elastic model

temperature.

Although the GHM model was able to accurately predict the natural frequencies of the

absorbers, it did not accurately predict the natural frequencies of the host structure. The

GHM model predicted a natural lower than that found experimentally. This led to a non-

optimal design of the experimental metastructure. Although the non-optimal design was

experimentally tested, the vibration absorbers with closely-spaced natural frequencies can

still be observed. In traditional methods, where a single vibration absorber is used, the

performance of the vibration absorber is highly dependent on the accuracy of the natural

frequencies predictions. If the frequencies do not match, that can be detrimental to the

performance. Using vibration absorbers with frequencies that vary leads to a more robust

design. If the actual range of the frequencies is off from the predicted range, part of the

actual range may still overlap with the critical frequencies to absorb.
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4.7 Chapter summary

This chapter presents a metastructure design with vibration absorbers with linearly vary-

ing natural frequencies modeled using a distributed mass viscoelastic model. The design used

consists of a bar with a hollow square cross-section with vibration absorbers distributed along

the length of the bar. The vibration absorbers are cantilevered beams with large tip masses

and arranged such that the bending motion of the beam suppresses vibration in the axial

direction of the bar. The main contribution of this chapter is showing that a distributed

mass metastructure can have better performance than a comparable baseline structure of

the same weight. This was previously shown for the lumped mass model, and here it is also

shown for the distributed mass viscoelastic model.

This chapter begins by explaining the design used throughout the rest of the chapter and

by using a commercial finite element model and experimental results to show this design

produces the expected behavior. Next, this chapter goes into detail about how to model the

metastructure design proposed using a viscoelastic GHM model. The GHM model incorpo-

rates the damping inherent in the 3D printed materials while also providing a model that

takes into account temperature change. After the modeling strategies are presented, a de-

tailed design approach is presented. This dissertation shows the complete process necessary

to implement the GHM model in a metastructure. It starts with the material characteriza-

tion of the 3D printed material in Chapter III and then shows how that data can be used to

create a GHM model of a metastructure in this chapter.

The benefits of using the GHM model are two-fold. First, the model incorporates damp-

ing into the model based on material properties and second, the GHM model can account

for temperature change. A change in temperature can significantly alter both the storage

modulus and the loss modulus of the material; these changes lead to changes in the natural

frequencies and the damping of the resulting structure. The GHM model can capture these

effects.

The GHM model developed was used to model the dynamics of a metastructure and
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studies the effects of changing temperature. The results showed that the changes in the

natural frequency of the host structure and the vibration absorbers changed at a similar rate,

resulting in similar trends in the dynamic response as the temperature increase. This was

true up until a specific temperature when the performance of the metastructure significantly

decreased resulting in the baseline structure have better performance.

Lastly, the GHM model of the metastructure is compared to experimental results. These

results showed that the experimental metastructure successfully absorbed vibrations at vary-

ing frequencies by using the vibration absorbers with linearly varying natural frequencies.

The GHM model was not able to accurately predict the natural frequency of the host struc-

ture, producing a non-optimal design where the absorbers were absorbing frequencies lower

than necessary based on the predicted design. This shows that although there are many

benefits to using the GHM model, more needs to go into ensuring the model can predict the

natural frequency of structure made from these 3D printed structures.

This work provides a crucial first step in gaining a better understanding of how to model

the viscoelastic natural of 3D printed materials. Future work can explore the variability of

the properties of the 3D printed materials and also how the storage modulus and loss factor

are experimentally tested and how the GHM model parameters are determined.
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CHAPTER V

Active Vibration Control of a Metastructure

As previous chapters have shown, the concept of adding distributed vibration absorbers,

to create a metastructure, has been shown to improve the performance of the structure,

but these structures still suffer from the effects of temperatures changes. This chapter

will examine the effects of adding an active vibration control system to a metastructure to

counteract the effects of temperature change. The control system is implemented through a

single actuator placed on the structure, and the Positive Position Feedback (PPF) control

law is utilized. This chapter begins by explaining the details of the PPF control law then

describes the performance measures used. Both the settling time and the H2 norm are used,

but the emphasis is placed on the settling time since it can be measured in real-time.

The active vibration control concept is examined for both a lumped mass model and a

distributed mass model, using the models developed in Chapters II and IV. For the lumped

mass model, first, the observability and controllability norms are examined to determine

how the actuator and sensor locations affect the controllability and observability of the

structure. Next, two different lumped mass models designs are examined, a structure that

is optimized with respect to the H2 norm and a structure that is optimized with respect

to the settling time. The location of control force varies by the allowing the force to be

applied to each absorber. For each location, the controller parameters are optimized using

the settling time. This provides insight into how the location of the actuator affects the
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performance. The relationship between the gain and the settling time is also explored. For

the distributed mass models, the design from Chapter IV is used. The control force is applied

to the absorber masses using piezoelectric actuators. Two different concepts are explored,

one where a stack actuator is attached to the absorber mass and second where a piezoelectric

bimorph configuration is added to the beam of one of the absorbers. The addition of the

piezoelectric materials changes the stiffness of the absorbers, thus must be accounted for in

the design of the metastructure. For each of these cases, the modeling used is described in

addition to how the actuators can be used within the PPF control algorithms.

5.1 PPF control law and settling time

The control law used in this chapter is the PPF control law with a single actuator

on the structure. A single actuator is used because of its ease of implementation into a

metastructure. PPF was first introduced by Goh and Caughey in 1985 and is a popular

control method used in vibration control [87]. This control law adds additional dynamics to

the system. PPF is utilized because of its ease of implementation for vibration control; the

controller can be designed around an experimental transfer function and does not require

an analytic model [73]. Here, the PPF control law will be demonstrated using a single

degree of freedom system. Later in this chapter, the formulation will be developed for the

metastructure and will use piezoelectric materials. For a single degree of freedom system,

the equation of motion is

ẍ+ 2ζωnẋ+ ω2
nx = bu (5.1)

where ζ and ωn are the damping ratio and natural frequency of the structure, x is the

displacement of the structure, u is the control input, and b is the input coefficient. A

compensator is defined as
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η̈ + 2ζfωf η̇ + ω2
fη = gωfx (5.2a)

u =
g

b
ωfη (5.2b)

where η is the value of the compensator, ζf and ωf are the damping ratio and natural

frequency of the controller, and g is the gain, a constant value. Combining Equations 5.1

and 5.2 results in equations of motion in their usual second-order form

 ẍ

η̈

+

 2ζωn 0

0 2ζfωf


 ẋ

η̇

+

 ω2
n −gωf

−gωf ω2
f


 x

η

 =

 0

0

 (5.3)

To ensure stability of this system, the augmented stiffness matrix must be positive def-

inite. A matrix is positive definite when the determinant of the matrix is positive, leading

to the following stability requirement

g2 < ω2
n (5.4)

This chapter references both the H2 norm and the settling time as performance measures.

The H2 is defined in detail in Section 2.2. The settling time calculation will be described

here.

The settling time uses the time response to an impulse response function and determines

when the value of the system falls below a predefined threshold. The impulse response, h(t),

is calculated once the system is put into state space as

h(t) = CeAtB (5.5)

The time at which the error falls below a threshold value is known as the setting time,

ts and occurs with the following relationship is met
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|h(ts)− hf | = δh0 (5.6)

where hf is the final steady-state value, δ is the threshold percentage and h0 is the initial

value after the impulse. For this dissertation, the threshold percentage used is 5%.

5.2 Lumped mass metastructure model

This section will examine the lumped mass metastructure model developed in Chapter

II. The section begins by examining the controllability and observability of the lumped mass

metastructure model to determine the effects of where the controller force is placed. Next,

the PPF control law is implemented into two different metastructure designs [105]. Note

that the previous work uses q(t) to represent the displacement of the masses, here x(t) will

be used to avoid confusion with charge used later. The lumped mass model used is seen in

Figure 5.1 where Figure 5.1a shows the control force acting on one of the absorber masses

and Figure 5.1b shows. the control force acting on one of the host masses.

5.2.1 Observability and controllability

To determine the best placement of the sensor and actuator, we will examine the control-

lability and observability norms [106, 107]. This analysis is done on a lumped mass model

with ten absorbers, a mass ratio of 0.3, and linearly varying natural frequencies optimized

with respect to the H2 norm. The FRF response of this structure is shown in Figure 5.2.

The equations of motion of this structure including the control force and sensing are

Mẍ(t) + Dẋ(t) + Kx(t) = Bfu(t) (5.7a)

y(t) = Cpx(t) + Cvẋ(t) (5.7b)
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Figure 5.1: Lumped mass model with control force acting on (a) absorber mass and (b) main
mass

where u is the control force to the system, Bf describes the position of the control force, y

is the output vector, and Cp and Cv are the displacement and velocity influence coefficients,

respectively with their form determined by the placement of the sensors.

To examine the controllability and observability norms, the equations of motion (Equa-

tion 5.7) are transformed into modal coordinates using a transformation matrix of eigenvec-

tors, Sm such that

STmMSm = I (5.8a)

ST
mKSm = K̃ = diag(ω2

1, . . . , ω
2
N) (5.8b)

Letting x̃ = ST
mx and ignoring the damping, Equation 5.7 becomes

¨̃x + K̃x̃ = B̃fu (5.9a)
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Figure 5.2: Normalized frequency response function of the uncontrolled lumped mass metas-
tructure

y = C̃px̃ + C̃v
˙̃x (5.9b)

where B̃f = ST
mBf , C̃p = CpSm and C̃v = CvSm.

5.2.1.1 Observability norm

Using the modal coordinates, we will examine the cases with a position and rate sensor

placed at each absorber. The placements of the position and velocity sensors are dictated

by the definitions of the Cp and Cv vectors respectively. These are defined as

Cp =

[
0(n+1)×1 1i

]
(5.10a)

Cv =

[
0(n+1)×1 1i

]
(5.10b)

where n is the number of absorbers, and 1i is a row of n zeros except for a 1 in the

ith position which is the corresponding degree of freedom to the absorber which is being

controlled. To determine which absorber can best sense the system, we will examine the
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observability norm Oq which indicates the extent of the observability of the qth mode of the

structure and is defined as

Oq = [det(FqF
T
q )]1/4Nq (5.11)

where

Fq =

 (C̃p)q (C̃v)q

−λq(C̃v)q (C̃p)q

 (5.12)

where (C̃p)q and (C̃v)q are the partition of the matrices C̃p and C̃v according to the

multiplicities of the eigenvalues. Since this system has distinct eigenvalues (Nq = 1), the

partitions are simply the rows of the original matrix. The configurations in which there is a

position sensor on each absorber and a rate sensor are examined. For a position sensor, Fq

has the following form

Fq =

 (C̃p)q 0

0 (C̃p)q

 (5.13)

and for a rate sensor, Fq has the following form

Fq =

 0 (C̃v)q

λq(C̃v)q 0

 (5.14)

The observability norm is calculated for different configurations. For each configuration,

the sensor is placed on a different absorber. Since there are ten absorbers, ten different

configurations are used and labeled based on the absorber number where the sensor is placed.

Absorber 1 is the absorber closest to the base and absorber 10 is the absorber at the tip.

The values of the observability norms for the position sensors and velocity sensors are shown

in Tables 5.1 and 5.2, respectively. These tables show the value of the observability norm

for each of the first 11 modes of the structure when a single position sensor is placed on each
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Table 5.1: Observability norm values for the first 11 modes of the system, for position sensors
located on various absorbers. For each location of the sensor, an average value is
calculated.

Mode
Location of Position Sensor (Absorber Number)
1 2 3 4 5 6 7 8 9 10

1 0.045 0.091 0.140 0.192 0.249 0.318 0.409 0.559 0.930 7.279
2 0.074 0.153 0.237 0.331 0.441 0.587 0.819 1.365 6.931 1.348
3 0.109 0.228 0.359 0.514 0.713 1.021 1.699 6.398 2.269 0.712
4 0.142 0.302 0.488 0.725 1.081 1.817 5.826 3.194 0.970 0.459
5 0.176 0.382 0.644 1.027 1.785 5.379 3.870 1.154 0.573 0.316
6 0.220 0.500 0.905 1.682 5.072 4.286 1.288 0.673 0.398 0.240
7 0.292 0.714 1.505 4.734 4.594 1.427 0.795 0.504 0.328 0.209
8 0.399 1.128 3.789 5.106 1.622 0.981 0.675 0.476 0.330 0.218
9 0.344 1.317 6.104 1.497 1.016 0.773 0.596 0.449 0.325 0.221
10 0.253 7.164 0.205 0.357 0.358 0.322 0.272 0.216 0.162 0.112
11 7.428 0.449 0.067 0.031 0.063 0.071 0.067 0.057 0.044 0.032
Location
Average

0.862 1.130 1.313 1.472 1.545 1.544 1.483 1.368 1.206 1.013

absorber. The observability norms are also depicted using a bar graph shown in Figures 5.3

and 5.4. These values take on the highest value along a diagonal line. For example, when the

position sensor is placed at the tip absorber (absorber 10), it is best at sensing the first mode.

This can be explained by examining what the mode looks like for each natural frequency.

When excited at the first natural frequency, most of the motion occurs at the tip mass which

experiences significant bending motion. When designing the metastructure, the tip absorber

is tuned to have the lowest natural frequency of the absorbers which corresponds to the first

natural frequency of the metastructure. Since most of the motion is occurring in the tip

absorber, it makes sense that having a sensor at the tip absorber is best at sensing that

mode shape. The modes 12 and above correspond to longitudinal modes of the entire host

structure with minimal movement of the absorbers. For the velocity sensor, similar trends

are observed, but with more variation along that diagonal line. When the velocity sensor is

placed closer to the base, it is better at observing its corresponding mode.

These values are also examined by looking at the average observability norm values for

each of the sensor locations. These can be seen in Figures 5.5 and 5.6. For each absorber,
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Figure 5.3: Bar graph of observability norm values for position sensors located on various
absorbers

Table 5.2: Observability norm values for the first 11 modes of the system, for velocity sensors
located on various absorbers. For each location of the sensor, an average value is
calculated.

Mode
Location of Velocity Sensor (Absorber Number)
1 2 3 4 5 6 7 8 9 10

1 112 228 350 480 625 796 1025 1399 2329 18224
2 220 453 704 982 1310 1742 2432 4053 20573 4001
3 374 779 1230 1758 2441 3497 5816 21903 7768 2436
4 552 1171 1895 2817 4198 7058 22631 12406 3770 1782
5 766 1667 2808 4478 7786 23462 16880 5032 2497 1380
6 1068 2427 4393 8162 24611 20797 6251 3268 1933 1163
7 1561 3819 8047 25319 24570 7632 4250 2695 1755 1116
8 2325 6571 22070 29740 9446 5715 3931 2774 1924 1272
9 2139 8196 37982 9312 6320 4811 3708 2796 2022 1373
10 1666 47261 1349 2353 2365 2127 1794 1428 1069 742
11 52614 3181 472 216 449 504 475 404 315 224
Location
Average

5763 6887 7391 7783 7647 7104 6290 5287 4178 3065
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Figure 5.4: Bar graph of observability norm values for velocity sensors located on various
absorbers

the average of the observability norm is calculated for all modes and additionally for the

modes under 1500 Hz which corresponds to the first 11 modes of the metastructure. These

plots give us a sense of which sensor locations are best for observing all the modes of the

metastructure. These plots show that the absorbers located more towards the center of

the metastructure are better at observing more modes than absorbers located towards the

outside. This is because the absorbers near the center tend to oscillate significantly during

two modes of vibration. There are ten absorbers and 11 natural frequencies in the range

of 0 to 1500 Hz. The mode on the edges of that range corresponds to the movement of a

single absorber whereas the ones towards the middle part of that range correspond to the

movement of two absorbers.

5.2.1.2 Controllability norm

Next, the controllability norm is examined. Once again, cases in which the actuator is

placed at each absorber will be examined. This is dictated by the definition of the Bf vector,
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Figure 5.5: Average observability norm values for position sensors placed at each absorber
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Figure 5.6: Average observability norm values for velocity sensors placed at each absorber
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Bf =

[
0(n+1)×1 1i

]
(5.15)

where 1i is a row of n zeros except for a 1 in the ith position which is the corresponding

degree of freedom to the absorber which is being controlled. To determine which absorber

can exert the most control over the system we will examine the controllability norm Cq which

indicates the extent of the controllability of the qth mode of the structure and is defined as

Cq = [det(BqB
T
q )]1/2Nq (5.16)

where Bq are the partitions of the matrix B̃f according to the multiplicities of the eigen-

values. Since this system has distinct eigenvalues (Nq = 1), the partitions Bq are simply the

rows of B̃f .

Like the observability norm, the controllability norm is calculated for different configura-

tions. For each configuration, the control force is acting on a different absorber. Since there

are ten absorbers, ten different configurations are used and labeled based on the absorber

number where the control force is acting. The values of the controllability norm are shown

in Table 5.3. Once again these values are also depicted using a bar graph as seen in Figure

5.7. The values of the controllability norm take on the same values at the observability norm

for a position sensor. This means all the trends that we concluded from the observability

norms can also be used to describe how good the placing a sensor on a specific absorber is

at controlling the modes. Figure 5.8 shows the average values of the controllability norm for

a control force acting on a specific absorber.

5.2.2 PPF lumped mass model implementation

This section will look at the actual implementation of the PPF control law using a lumped

mass model. The formulation for a single degree of freedom system was shown in Section

5.1. Here that will be extended to a multiple degree of freedom system. The equations of
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Table 5.3: Controllability norm values for the first 11 modes of the system, for control forces
acting on various absorbers. For each location of the control force, an average
value is calculated.

Mode
Absorber Number
1 2 3 4 5 6 7 8 9 10

1 0.045 0.091 0.140 0.192 0.249 0.318 0.409 0.559 0.930 7.279
2 0.074 0.153 0.237 0.331 0.441 0.587 0.819 1.365 6.931 1.348
3 0.109 0.228 0.359 0.514 0.713 1.021 1.699 6.398 2.269 0.712
4 0.142 0.302 0.488 0.725 1.081 1.817 5.826 3.194 0.970 0.459
5 0.176 0.382 0.644 1.027 1.785 5.379 3.870 1.154 0.573 0.316
6 0.220 0.500 0.905 1.682 5.072 4.286 1.288 0.673 0.398 0.240
7 0.292 0.714 1.505 4.734 4.594 1.427 0.795 0.504 0.328 0.209
8 0.399 1.128 3.789 5.106 1.622 0.981 0.675 0.476 0.330 0.218
9 0.344 1.317 6.104 1.497 1.016 0.773 0.596 0.449 0.325 0.221
10 0.253 7.164 0.205 0.357 0.358 0.322 0.272 0.216 0.162 0.112
11 7.428 0.449 0.067 0.031 0.063 0.071 0.067 0.057 0.044 0.032
Location
Average

0.862 1.130 1.313 1.472 1.545 1.544 1.483 1.368 1.206 1.013

12345678910

0

5

10

15

20

25

0

2

4

6

8

 

Actuator Location
Mode Number

 

C
o
n
tr

o
lla

b
ili

ty
 N

o
rm

1

2

3

4

5

6

7

Figure 5.7: Bar graph of controllability norm values for a control force acting on various
absorbers
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Figure 5.8: Average controllability norm values for control forces acting on each absorber
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motion for this multiple degree of freedom system are

Mẍ(t) + Dẋ(t) + Kx(t) = Bfu(t) (5.17a)

y(t) = BT
f q(t) (5.17b)

where u is the input force to the system provided by the controller, Bf is based on the

location of the input force as shown in Equation 5.15, and y is the output of the sensor.

This form of the equations of motion assumes collocated control, where the sensing and the

actuating are occurring at the same location. The control is implemented using an auxiliary

dynamics system defined using the following equations

η̈(t) + 2ζfωf η̇(t) + ω2
fη(t) = gωfy(t) (5.18a)

u(t) = gωfη(t) (5.18b)

In which ζf and ωf are the parameters of the controller and g is the gain. Combining

the auxiliary system with the equations of motions yields

 M 0

0 1


 q̈

η̈

+

 D 0

0 2ζfωf


 q̇

η̇

+

 K −gωfBf

−gωfBT
f ω2

f


 q

η

 =

 0

0

 (5.19)

The augmented mass matrix is positive definite and the augmented damping matrix is

positive semi-definite. To ensure stability of the system, augmented stiffness matrix must

also be positive definite. The augmented stiffness matrix will be defined as

K̂ =

 K −gωfBf

−gωfBT
f ω2

f

 (5.20)

To test if the augmented stiffness matrix is positive definite, it will be multiplied by an
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arbitrary vector, z

zTK̂z =

[
zT
1 zT

2

] K −gωfBf

−gωfBT
f ω2

f


 z1

z2

 (5.21a)

= zT
1 Kz1 − gωfzT

2 Bfz1 − gωfzT
1 Bfz2 + ω2

fz
T
2 z2 (5.21b)

where z1 and z2 are partitions of z. Completing the square and defining an arbitrary

vector, y

zTK̂z = zT
1

(
K− g2BT

f Bf

)
z1 +

(
gBT

f z1 − ωfz2

)T (
gBT

f z1 − ωfz2

)
(5.22a)

= zT
1

(
K− g2BT

f Bf

)
z1 + yTy (5.22b)

Since yTy will never be negative, the augmented stiffness matrix, K̂ will be positive

definite if K− g2BT
f Bf is positive definite This provides a stability criterion.

Two different lumped mass metastructure designs are used in the following sections. Both

of these designs have ten absorbers, a mass ratio of 0.3, and absorbers with linearly varying

natural frequencies. For the first design, the natural frequencies are chosen such that the H2

norm is minimized. This will be referred to as Design 1, and the frequency response and the

impulse response are shown in Figure 5.9. For Design 2, the absorber natural frequencies

are chosen such that the settling time of the structure is minimized. The response of Design

2 can be seen in Figure 5.10.

5.2.2.1 Controller design

Two different designs from the previous section will be inspected to determine the effects

of a control system on the response of the structure. The best location of the actuator must

be determined. This section will examine cases where the control force is being applied to
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Figure 5.9: The (a) frequency response function and (b) impulse response function of Design
1, where the vertical line in the impulse response function shows the settling time
of structures
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Figure 5.10: The (a) frequency response function and (b) impulse response function of Design
2, where the vertical line in the impulse response function shows the settling
time of structures
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Figure 5.11: The (a) settling time and (b) H2 norm values for Design 1 when controller values

are optimized with respect to the settling time for various actuator locations

the vibration absorbers and the host masses. For each control force location, the structure

remains the same, the gain is held constant and the controller parameters are varied to

determine the best controller parameters for a each control force location. The structure has

11 host masses and ten absorber masses. The actuator is placed on each one of the masses

and then the controller parameters, ωf and ζf are optimized with respect to the settling

time. Optimizing the structure with respect to the H2 norm gave very similar results thus is

not included here. This accomplished using a simple a constrained non-linear interior point

optimization algorithm (fmincon) in MATLAB.

The response of Design 1 without control is shown in Figure 5.9. The time response of this

structure has more apparent beating behavior compared to the other design utilized. The

optimization of the controller parameters was run, and the performance measures plotted in

Figure 5.11. The lower mass and absorber numbers refer to masses closer to the base of the

bar. The results show that an actuator placed closer to the tip of the bar is more effective

reducing vibrations. The corresponding optimized controller values for each of these cases

are shown in Figure 5.12.

Three of the specific cases will be examined in more detail. The first case is when the
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Figure 5.12: Optimized values of controller (a) natural frequency and (b) damping value for
various actuator locations for Design 1

actuator is placed on the host mass closest to the tip of the metastructure bar. The response

of this structure can be seen in Figure 5.13. On the FRF, there is a slight decrease in the

magnitude near the first peak which corresponds to a settling time decrease from 58.2 ms

to 43.5 ms. The second case examined is when the actuator is placed on the absorber mass

located second from the tip. The response can be seen in Figure 5.14. In this case, you can

see that the controller can eliminate the second mode of the metastructure. This results in a

settling time decrease from 58.2 ms to 34.4 ms. The last case examined is when the actuator

is placed on the absorber mass which is fourth from the tip, and the results are shown in

Figure 5.15. For this case, the settling time decreases to 44.2 ms which is slightly higher than

the previous case. Looking at the FRF, this case is not able to completely control a single

mode but influences a few of the modes. This results in a slight settling time reduction.

Similar to Design 1, the same plots are examined for Design 2. The uncontrolled response

of Design 2 is shown in Figure 5.10. This response does not have the beating behavior that

dominates the response from design one. Instead, there are two peaks near the fundamental

natural frequency of the baseline structure. As with Design 1, the actuator is placed on

various masses, and the controller parameters are optimized, and the resulting performance
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Figure 5.13: The (a) FRF of the tip subjected to a force at the tip and (b) displacement of
the tip subjected to a unit impulse at the tip for design 1 when the actuator is
placed at the tip host mass
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Figure 5.14: The (a) FRF of the tip subjected to a force at the tip and (b) displacement of
the tip subjected to a unit impulse at the tip for design 1 when the actuator is
placed at the absorber mass second from the tip
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Figure 5.15: The (a) FRF of the tip subjected to a force at the tip and (b) displacement of
the tip subjected to a unit impulse at the tip for design 1 when the actuator is
placed at the absorber mass fourth from the tip

measures are shown in Figure 5.16. The H2 norm values are much higher than those from

Design 1 but the settling time values are comparable. For this design, the trend between the

location of the actuator and performance is less clear for the H2 norm values but follows a

similar trend for the settling time values. Figure 5.17 shows the optimized controller values

for the various locations.

The time and frequency responses for three different cases are examined. These are the

same three cases examined for Design 1. The FRFs shown for these three cases are zoomed

into the first peak of the system so the effects can be seen more easily. Figure 5.18 shows the

case when the actuator is placed at the tip host mass. For this situation, the settling time

is reduced from 58.5 ms to 52.1 ms. When the actuator is placed at the second absorber

from the tip, the response is shown in Figure 5.19. As with Design 1, the second mode is

eliminated and the settling time reduces from 58.2 ms to 41.5 ms. For the last case, when

the actuator is placed on the absorber mass fourth from the tip, the response is shown in

Figure 5.20. For this case, the fourth mode can be eliminated using the control force. This

results in a settling time decrease from 58.5 ms to 46.2 ms. In summary for Design 2, when
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Figure 5.16: The (a) settling time and (b) H2 norm values for Design 2 when controller values
are optimized with respect to the settling time for various actuator locations
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Figure 5.17: Optimized values of controller (a) natural frequency and (b) damping value for
various actuator locations for Design 2

152



0 1000 2000
10

-2

10
-1

10
0

10
1

10
2

Frequency [Hz]

N
o

rm
a

liz
e

d
 T

ip
 M

a
g

n
it
iu

d
e

 [
-]

(a)                                                                         

400 500 600
10

-1

10
0

10
1

Frequency [Hz]

N
o

rm
a

liz
e

d
 T

ip
 M

a
g

n
it
iu

d
e

 [
-]

(b)                                                                         

0 0.05 0.1

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Time [s]

T
ip

 D
is

p
la

c
e

m
e

n
t 

[m
m

]

(c)                                                                         

 

 

Baseline Structure

Metastructure

Metastructure with Control

Figure 5.18: The (a) FRF and (b) zoomed in FRF of the tip subjected to a force at the tip
and (c) displacement of the tip subjected to a unit impulse at the tip for Design
2 when the actuator is placed at the tip host mass

the actuators are placed on the absorbers masses, a specific mode is damped out, but since

the modes of the metastructure with no control system looks different than those in Design

1, the absorber masses which provide substantial performance increases are different.

5.2.2.2 Effects of gain

Examining these designs, a single location for the actuator is chosen and the effects of

increasing and decreasing the gain values on the settling time are examined. For Design

1, the actuator will be placed on the tip absorber mass. For Design 2, the absorber mass

fourth from the tip will be utilized. Both of these locations provided good performance

from the previous investigation. A plot of the gain values versus settling time are shown

in Figures 5.21 and 5.22. Because of the beating of the responses, there are jumps in the

relationships. Increasing the gain slightly, causes the beating to fall below the threshold

value thus providing a jump in the settling time.

The plots also show that there is a limit to the settling times that can be accessed. Once
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Figure 5.19: The (a) FRF and (b) zoomed in FRF of the tip subjected to a force at the tip
and (c) displacement of the tip subjected to a unit impulse at the tip for Design
2 when the actuator is placed at the absorber mass second from the tip
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Figure 5.20: The (a) FRF and (b) zoomed in FRF of the tip subjected to a force at the tip
and (c) displacement of the tip subjected to a unit impulse at the tip for Design
2 when the actuator is placed at the absorber mass fourth from the tip
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Figure 5.21: The effects of increasing the gain on settling time for Design 1 with the actuator
placed on the absorber mass closest to the tip

the gain value is increased to a certain value, the mode that the controller is adding damping

to is complete damped out, thus increasing the gain does not change the system.

5.3 Distributed mass metastructure model

This section extends the work from the previous section; a distributed mass model is used

instead of a lumped mass model. For the distributed mass model, specific materials and

their material properties are used in the modeling. The control force on the metastructure

is implemented using piezoelectric materials. These piezoelectric materials are attached

to the vibration absorbers to control the movement of the absorber resulting in an active

vibration absorber. Two different active vibration absorber designs are used. The first design

utilizes a stack actuator; the stack actuator is attached to an absorber on one end of the

metastructure. The second designs bonds piezoelectric material to each side of the beam of

one of the vibration absorbers, in a bimorph configuration. These two designs are depicted

in Figure 5.23. For each of these designs, the modeling procedures for both the piezoelectric

material and the metastructure are presented. Then the specifics of the PPF control law are
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Figure 5.22: The effects of increasing the gain on settling time for Design 2 with the actuator
placed on the absorber mass fourth from the tip

Table 5.4: Properties for NAC 2014-H16 stack actuator

Property Symbol Value
Area Ap 49 mm2

Length Lp 16 mm
Layer thickness tp 0.05 mm
Number of layers np 320
Coupling coefficient k33 0.74
Piezoelectric charge constant d33 433× 10−9 C/N
Elastic compliance sT33 = 1

Y E
3

19× 10−12 m2/N

Dielectric constant εT33 1.89× 10−8 F/m

explained, and lastly, the results of the two different designs are presented.

5.3.1 Metastructure with stack actuator

For this design, a stack actuator is attached to one of the vibration absorbers at the end

of the metastructure as seen in Figure 5.23a. The specific actuator used in the model is the

NAC 2014-H16 stack actuator from Noliac. The properties of this stack can be found in

Table 5.4.

For the specific metastructure design used during this analysis, the mass of the vibrations
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Figure 5.23: Schematics of active vibration absorbers using a (a) stack actuator and (b)
piezoelectric bimorph configuration

absorbers is chosen such that the mass ratio, µ = 0.26 is achieved and the stiffness of the

absorbers varies such that the natural frequencies vary linearly. There are ten vibration

absorbers (na = 10) with in the hollow section distributed throughout the length of the bar.

The host structure is a hollow square bar with an outer width of 50 mm and a thickness of 5

mm. The length of the bar is 45 cm. The host structure has a mass of 473 g leading to the

mass of the absorbers to be 123 g. The natural frequencies of the absorbers vary linearly from

426.5 to 939.8 Hz. This gives the structure a total mass of 600 g. The material properties

of the structure are those from the Objet Connex 3D printer by Stratasys, specifically the

DM 8430 digital material. The Young’s modulus and density of the material are 1.97 GPa

and 1168 kg/m3 respectively.

5.3.1.1 Modeling procedure

The model for this active metastructure consists of the structural model and the piezo-

electric stack actuator model. Both of these models are presented and the assembly process

to couple the structural and piezoelectric models are explained.
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The structural model uses a one-dimensional finite element model for the host structure

with lumped mass vibration absorbers as depicted in Figure 5.24. The host structure is

discretized into 100 elements, ne along the length of the bar and a simple bar 2-noded bar

element is utilized. The vibration absorbers are modeled as lumped masses and springs and

are distributed evenly throughout the length of the bar. The structural equations of motion

are

Msẍ(t) + Dsẋ(t) + Ksx(t) = f(t) (5.23)

where the matrices and vectors can be partitioned into the components associated with

the host structure and the absorbers

x(t) =

 xhost(t)

xabsorbers(t)

 (5.24a)

Ms =

 Mhost 0

0 Mabsorbers

 (5.24b)

Ks =

 Khost Kha

KT
ha Kabsorbers

 (5.24c)

Since the vibration absorbers are modeled as lumped masses, there is no mass coupling

between the host structure and the absorbers. For the stiffness matrix, there is coupling

between the host structure and the absorbers as represented by the non-zero off-diagonal

elements.

The necessary equations to create the piezoelectric model of the stack actuator are sum-

marized here; for more details see Leo [90]. Consider a thin piezoelectric plate operating in

its 3-3 mode and the direction of the polarization aligns with the thin direction of the plate;

the piezoelectric constitutive equations become
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Figure 5.24: One-dimensional finite element model with lumped mass vibration absorbers

 S3

D3

 =

 1
Y E
3

d33

d33 εT33


 T3

E3

 (5.25)

where S3 is stress, T3 is strain, Ds is electric displacement and E3 is electric field. As-

suming stress and strain are uniform through the thickness of the plate, the constitutive

equations can be rewritten as

u =
tp

Y E
3 Ap

fp + d33v (5.26a)

q = d33fp +
εT33Ap
tp

v (5.26b)

where u is the displacement in the 3direction, tp is the thickness of the piezoelectric

plate, Ap is the area, fp is the force applied to the plate, v is the applied voltage, and q

is the charge. A piezoelectric stack actuator consists of many layers of piezoelectric plates

places on top of each other. These plates are wired such that each layer experiences the same

voltage and electric field. For a stack actuator with np layers and a total length of Ls = npts

the following relationship is obtained.

us = npu =
1

kEp
fp +

d33Ls
tp

v (5.27a)

qs = npq =
d33Ls
tp

fp + CT
p v (5.27b)

159



where CT
P is the stress-free capacitance of the device and kEp is the short circuit mechanical

stiffness. These are calculated as

CT
p = np

εT33Ap
tp

(5.28a)

kEp =
Y E
3 Ap
Ls

(5.28b)

Interchanging the dependent and independent variables from Equation 5.27

fp = kDp us −
d33Lp
tp

kEp
CS
p

q (5.29a)

v = −d33Lp
tp

kEp
CS
p

us +
1

CS
p

q (5.29b)

where

kDp =
kEp

1− k233
(5.30a)

CS
p = (1− k233)CT

p (5.30b)

The stack actuator equations are coupled to the structural system via the applied force

vector, f(t) from Equation 5.23. The stack actuator will be attached to the tip vibration

absorber and the tip of the structure. The tip of the structure is the ne degree of freedom and

displacement of the absorber is the nt degree of freedom, where nt = ne+na. Assuming there

are no other external forces being applied to the structure, the force vector is composed of

all zeros except for f [ne] = +fp and f [nt] = −fp where v[i] refers to the ith component of the

vector, v. The displacement of the stack is equal to the difference between the displacement

of the tip of the bar and the displacement of the absorber closest to the tip, us = u[ne]−u[nt].

This leads to
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f [ne] = +fp = +kDp u[ne]− kDp u[nt]−
d33Lp
tp

kEp
CS
p

q (5.31a)

f [nt] = −fp = −kDp u[ne] + kDp u[nt] +
d33Lp
tp

kEp
CS
p

q (5.31b)

substituting Equation 5.31 to Equation 5.23, the equations of motion of the smart struc-

ture have the following form

Msẍ(t) + Dsẋ(t) + KD
s x(t)−Θq(t) = 0 (5.32a)

−ΘTx(t) + (Cs
p)
−1q(t) = v(t) (5.32b)

where

KD
s = Ks + KD

KD[ne, ne] = KD[nt, nt] = kDp

KD[ne, nt] = KD[nt, ne] = −kDp

(5.33a)

Θ[ne] = d33Lp

tp

kEp
CS

p

Θ[nt] = −d33Lp

tp

kEp
CS

p

(5.33b)

Eliminating q(t) from Equation 5.32 the equations of motion can be reduced to

Msẍ(t) + Dsẋ(t) + KEx(t) = Bcv(t) (5.34)

where

KE = Ks −ΘCs
pΘ

T (5.35a)

161



Bc = ΘCS
p (5.35b)

Equation 5.34 is the equation of motion for the metastructure with the active vibration

absorber.

5.3.1.2 PPF implementation

Next, the implementation of the PPF control law will be explained for a multiple degree

of freedom system. The general equations of motion for a system with piezoelectric materials

are

Msẍ(t) + Dsẋ(t) + KD
s x(t)−Θq(t) = 0 (5.36a)

−ΘTx(t) + (Cs
p)
−1q(t) = Bvv(t) (5.36b)

where Bv describes the position where the voltage is being applied. Rearranging Equation

5.36b an expression for charge is

q(t) = Cs
pBvv(t) + Cs

pΘ
Tx(t) (5.37)

Substituting Equation 5.37 in Equation 5.36a results in the following equations of motion

Msẍ(t) + Dsẋ(t) + KEx(t) = Bcv(t) (5.38)

where

KE = KD
s −ΘCs

pΘ
T (5.39a)

Bc = ΘCs
pBv (5.39b)
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Self-sensing actuation or collocated control will be utilized. This is where the same piezo-

electric element is used simultaneously as a sensor and an actuator. The charge generated

by the piezoelectric element is a linear combination of voltage and displacement of the struc-

ture, as seen in Equation 5.37. Since the applied voltage is known, we can eliminate the

dependence on the applied voltage by measuring the following

y(t) = BT
v q(t)−BT

v Cs
pBvv(t) (5.40)

where y(t) is the output. Substituting the charge expression (Equation 5.37) the output

becomes

y(t) = BT
v Cs

pΘ
Tx(t) = BT

c x(t) (5.41)

Measuring the specific output shown in Equation 5.40 can be accomplished by combining

the piezoelectric element with a bridge circuit that adds the associated capacitance of the

piezoelectric element into the output. Details on implementing this experimentally for a

stack actuator can be found in Jones and Garcia [93].

The auxiliary dynamics system is the same as before

η̈(t) + 2ζfωf η̇(t) + ω2
fη(t) = gωfy(t) (5.42a)

v(t) = gωfη(t) (5.42b)

Combining Equations 5.38, 5.41 and 5.42 leads to the closed-loop equations of motion

are
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Figure 5.25: FRF of normalized tip displacement due to a force at the tip for a metastructure
both with and without a a stack actuator

 Ms 0

0 1


 ẍ

η̈

+

 Ds 0

0 2ζfωf


 ẋ

η̇

+

 KE −gωfBc

−gωfBT
c ω2

f


 x

η

 =

 0

0


(5.43)

This closed-loop expression is almost identical to the expression found in Equation 5.19

with Bc substituted in for Bv. By the same reasoning explained in Section 5.2.2, to ensure

stability of the controller, the matrix KE − g2BcB
T
c must be positive definite.

5.3.1.3 Results

Using the modeling methods developed in the previous section, the results will be pre-

sented and discussed here. The results will be presented for the metastructure without the

stack actuator and for the metastructure with the stack actuator attached. Both the open

loop and closed loop responses are shown. The FRF of for these three cases is shown in

Figure 5.25 and the time response due to an impulse at the tip is shown in Figure 5.26.
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Figure 5.26: Time response of the tip displacement due to an impulsive force at the tip for
a metastructure both with and without a stack actuator shown (a) zoomed out
and (b) zoomed in

The FRF shows that the addition of the stack actuator eliminates the first mode of

vibration. This can be understood by looking at the shape of the mode shapes. When the

structure is excited at its first natural frequency, the vibration absorber at the tip of the

structure oscillates significantly whereas the rest of the structure stays relatively still. When

the stack actuator is attached to that absorber, the absorber becomes stiffer and its natural

frequency increases significantly this it no longer appears the same in the FRF. This can also

be observed in the time response. Once the stack actuator is added to the structure, the tip

of the metastructure initial exhibits high-frequency vibrations. Once the control system is

turned on, the stack actuator can eliminate those high-frequency vibrations. Although this is

somewhat beneficial, it does not influence the lower frequency vibrations that dominate the

response. These trends showed up in all the designs examined using a stack actuator. From

these results, it can be concluded that using a stack actuator for active vibration control in

a metastructure is ineffective because of the added stiffness resulting in the control of higher

frequency vibrations that do not contribute significantly to the response of the structure.
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Table 5.5: Properties of the active vibration absorber

Property Value
Young’s modulus of substrate Es
Density of substrate ρs
Thickness of substrate ts
Thickness of piezoelectric material tp
Width of substrate and piezoelectric material w
Area moment of inertia of substrate Is = wt3s/12
Area moment of inertia piezoelectric material Ip = wt3p/12
Thickness ratio τ = ts/tp

5.3.2 Metastructure with a piezoelectric bimorph actuator

This section presents the derivation for a metastructure with a piezoelectric bimorph

actuator as seen in Figure 5.23b. The metastructure design has a mass ratio of 0.26 and

has ten vibration absorbers located along the length of the bar. One of these absorbers uses

piezoelectric materials to act as an active vibration absorber. The geometry of the host

structure is the same as used in the stack actuator design for Section 5.3.1. The geometry

of the vibration absorbers will be different since the addition of the piezoelectric material

affects the frequency of the absorber.

5.3.2.1 Modeling procedure

The metastructure is modeled using a combination of a finite element approach and

a Rayleigh-Ritz approach. The host structure is modeled using one-dimensional bar finite

elements and the absorbers are modeled using a Rayleigh-Ritz approach. First, the modeling

approach for the absorbers is shown and then integrated into the finite element model of

the host structure to create the final metastructure model. The host structure uses 11

finite elements which creates nodes at the locations at which the absorbers are attached. A

schematic of the active vibration absorber is shown in Figure 5.27. The relevant properties

are given in Table 5.5.

The constitutive equations for a transversely isotropic material piezoelectric material are
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Figure 5.27: Schematic of the active vibration absorber using a piezoelectric cantilevered
bimorph concept



S1

S2

S3

S4

S5

S6





sE11 sE12 sE13 0 0 0

sE12 sE11 sE13 0 0 0

sE13 sE13 sE33 0 0 0

0 0 0 sE55 0 0

0 0 0 0 sE55 0

0 0 0 0 0 sE66


+



T1

T2

T3

T4

T5

T6



+



0 0 d31

0 0 d31

0 0 d33

0 d15 0

d15 0 0

0 0 0




E1

E2

E3

 (5.44a)


D1

D2

D3

 =


0 0 0 0 d15 0

0 0 0 d15 0 0

d31 d31 d33 0 0 0





T1

T2

T3

T4

T5

T6



+


εT11 0 0

0 εT11 0

0 0 εT33




E1

E2

E3

 (5.44b)

where {S} is the strain, {T} is the stress, {D} is the electric displacement and {E} is the

electric field. For the piezoelectric material, PZT-5A, the values of the matrices are given in

Table 5.6 [108]. Equations 5.44 can be rearranged to get the following relationships
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Table 5.6: Materials properties of PZT-5A piezoceramic [108]

Property Value
sE11 16.4 pm2/N
sE12 -5.74 pm2/N
sE13 -7.22 pm2/N
sE33 18.8 pm2/N
sE55 47.5 pm2/N
sE66 44.3 pm2/N
d31 -171 pm/V
d31 374 pm/V
d31 584 pm/V
ε0 8.854 pF/m
εT11/ε0 1730
εT33/ε0 1700
ρp 7750 kg/m3

{T} = [cD]{S} − [h]{D} (5.45a)

{E} = −[h]T{S}+ [βS]{D} (5.45b)

The absorber is modeled using a Rayleigh-Ritz model. The transverse deflection of the

ith absorber, wi is approximated as

wi(x, t) = ui +
Nr∑
j=1

rij(t)φj(x) = Φ̃T(x)r̃i(t) (5.46a)

ẇi(x, t) = Φ̃T(x) ˙̃ri(t) (5.46b)

where ui is the motion at the base of the ith absorber and φj(x) is an admissible function

approximating the displacement of the beam. The admissible functions can be arranged into

vector form as
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Φ(x) =


φ1

...

φNr

 , Φ̃ =

 1

Φ(x)

 (5.47)

The admissible functions are defined as

φj(x) =
(x
L

)j+1

(5.48)

which meets the geometric boundary condition of zero slope and zero displacement at

the base of the absorber. The time-varying coefficients of the admissible functions for the

ith absorbers can also be written in vector form as

ri =


ri1(t)

...

riNr

 , r̃i(t) =

 ui

ri(t)

 (5.49)

The total kinetic energy of the ith absorber, Ti is

Ti = Ts + Tp = Tbeam + Tmass + Tp (5.50)

where Ts and Tp represent the kinetic energy of the structure and the piezoelectric mate-

rial respectively. The kinetic energy of the structure consists of the kinetic energy from the

beam and the tip mass. These are defined as

Tbeam =
1

2

∫ L

0

ρsAsẇ
2
i (x, t)dx =

1

2
˙̃riMbeam

˙̃ri (5.51a)

Tmass =
1

2
M [ẇi(L) + eẇ′i(L)]

2
+

1

2
Jẇ′i(L)2 =

1

2
˙̃riMmass

˙̃ri (5.51b)

Tp =
1

2

∫ L

0

ρpwptpẇ
2
i (x, t)dx =

1

2
˙̃riMp

˙̃ri (5.51c)
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Substituting the Rayleigh-Ritz approximation into Equations 5.51a and 5.51c results in

the following mass matrices

Mbeam = ρswts

∫ L

0

Φ̃(x)Φ̃T(x)dx (5.52a)

Mp = ρpwtp

∫ L

0

Φ̃(x)Φ̃T(x)dx (5.52b)

The mass matrix for the tip mass requires slightly more derivation

Tmass =
1

2
M
{

˙̃rTi Φ̃LΦ̃T
L

˙̃ri + 2e ˙̃rTi Φ̃L[Φ̃′]TL ˙̃r + e2 ˙̃rTi [Φ̃′]L[Φ̃′]TL ˙̃ri

}
+

1

2
J ˙̃rTi [Φ̃′]L[Φ̃′]TL ˙̃ri (5.53a)

=
1

2
˙̃rTi

{
M
(
Φ̃LΦ̃T

L + 2eΦ̃L[Φ̃′]TL + e2[Φ̃′]L[Φ̃′]TL

)
+ J [Φ̃′]L[Φ̃′]TL

}
˙̃r (5.53b)

=
1

2
˙̃rT
{
MΦ̃LΦ̃T

L + 2MeΦ̃L[Φ̃′]TL + (Me2 + J)[Φ̃′]L[Φ̃′]TL

}
˙̃ri (5.53c)

leading to the following mass matrix

Mmass = MΦ̃LΦ̃T
L + 2MeΦ̃L[Φ̃′]TL + (Me2 + J)[Φ̃′]L[Φ̃′]TL (5.54)

The potential energy of the ith vibration absorber is

Ui = Us + Up = Ubeam + Up (5.55)

where Us and Up represent the potential energy of the structure and the piezoelectric

material. The tip mass has no potential energy, so the potential energy of the structure

solely consists of the potential energy of the beam and is given by

Ubeam =
1

2

∫ L

0

EI(w′′)2dx = ˙̃rTi Ks
˙̃ri (5.56)

leading to a structural stiffness matrix
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Ks =
EI

2

∫ L

0

[Φ̃′′(x)][Φ̃′′(x)]Tdx (5.57)

The potential energy for a system containing both elastic materials and piezoelectric

materials is given as

Up =
1

2
˙̃rTi
[
Ks + KD

p

]
˙̃ri − ˙̃rTi Θq +

1

2
qT(CS

p )−1q (5.58)

where q is a vector of the generalized charge coordinates [109]. For a cantilevered piezo-

electric bimorph beam the following relationships can be derived

KD
p =

ĉDIp
L4

(1 + 3τ + 3τ 2)

∫ L

0

[Φ̃′′(x)][Φ̃′′(x)]Tdx (5.59a)

Θ =
h̃t2p
8L3

(2τ + 1)
{

[Φ̃′]L − [Φ̃′]0

}
(5.59b)

Cs
p =

βs33tp
wL2

 1 0

0 1

 (5.59c)

where ĉD and h̃ are calculated using the components of the matrices defined in Equation

5.45

ĉD = cD11 − 2ν12c
D
12 − 2ν13c

D
13 + ν212c

D
22 + ν12ν13c

D
23 + ν213c

D
33 (5.60a)

h̃ = h13 − ν12h23 − ν13h33 (5.60b)

and using the alternate definition of [sE] to obtain values for ν12 and ν13
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[sE] =



1
Y E
1
− ν12
Y E
1
− ν13
Y E
1

0 0 0

− ν12
Y E
1

1
Y E
1
− ν13
Y E
1

0 0 0

− ν13
Y E
1
− ν13
Y E
1

1
Y E
3

0 0 0

0 0 0 1
GE

23
0 0

0 0 0 0 1
GE

13
0

0 0 0 0 0 1
GE

12


(5.61)

The host structure of the metastructure is modeled using finite element techniques. The

bar is discretized into 11 finite elements allowing for nodes where the absorbers will attach

to the host structure. The displacement of the nodes range from u0 to uNa+1 where u0 is the

displacement of the base of the metastructure, which will be constrained to zero, and uNa+1

is the displacement of the tip of the structure. The displacements in between, ui, correspond

to the displacement of the bar where the absorber is attached and show up in the degree

of freedom vector, r̃i(t) from Equation 5.49. Using this the final metastructure mass and

stiffness matrices can be assembled, and the final equation of motion of the active structure

has the form

Msẍ(t) + Dsẋ(t) + KEx(t) = Bcv(t) (5.62)

where KE and Bc are defined in Equation 5.35.

5.3.2.2 PPF implementation

For the piezoelectric bimorph configuration, the PPF control law using collocated charge

feedback is implemented using the same equations as the stack actuator design. Refer to

Section 5.3.1.2 for these equations. See Dosch et. al. for more information about how to

implement collocated control using piezoelectric materials on a cantilever beam [92].
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Figure 5.28: Natural frequencies of the vibration absorbers for the wide frequency range
design where absorber 1 is closest to the base and absorber 10 is closest to the
tip

5.3.2.3 Results

This section examines the design for three different metastructures and the effects using

an active vibration absorber for these designs. The three designs examined differ in the

natural frequencies of the absorbers. These designs are referred to as the higher frequency

range design, lower frequency range design, and constant frequency design. Plots of the

natural frequencies of the absorbers from the higher and lower frequency range designs are

shown in Figures 5.28 and 5.29. For the higher frequency range design, the active absorber is

the absorber closest to the tip whereas, for the lower frequency range, the active absorber is

the absorber second from the base of the structure. This corresponds to the absorber mode

with the largest response in the FRF. The design in which all the absorbers are tuned to the

same frequency and the tip vibration absorber acting as the active absorber.

These frequency ranges are obtained by varying the geometry of the absorbers. The

geometry for the higher frequency design is shown in Figure 5.30. For this specific design,

the tip absorber has the piezoelectric material bonded to the beam. Since the addition of the
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Figure 5.29: Natural frequencies of the vibration absorbers for the narrow frequency range
design where absorber 1 is closest to the base and absorber 10 is closest to the
tip

piezoelectric material results in a stiffer structure, the geometry must be modified to allow

for the natural frequency of the absorber with the piezoelectric material to still be within

the desired range.

For this design, the FRFs and impulse responses of the structure with the controller on

and off are shown in Figures 5.31 and 5.32. As the gain value increase, the performance

of the controller increases. In the impulse response, this is observed by the decrease in the

settling time. The decrease in the amplitudes of the peaks is observed in the FRF. To get a

better idea of how the gain influences the structure, the performance measures are plotted

versus gain in Figure 5.33. For this distributed mass model design, the controller seems the

effect the first two modes, whereas, for the lumped mass model, only one mode was effected.

For the other two designs, the closed loop FRFs for a gain value of 20,000 are shown in

Figures 5.34 and 5.36. The plots of performance measure versus gain are shown in Figures

5.35 and 5.37. Comparing the designs of the higher frequency range and the lower frequency

range, the mode that has the largest response is different. The higher frequency range design

174



0 20 40

-20

0

20

Absorber #1

0 20 40

-20

0

20

Absorber #2

0 20 40

-20

0

20

Absorber #3

0 20 40

-20

0

20

Absorber #4

0 20 40

-20

0

20

Absorber #5

0 20 40

-20

0

20

Absorber #6

0 20 40

-20

0

20

Absorber #7

0 20 40

-20

0

20

Absorber #8

0 20 40

-20

0

20

Absorber #9

0 20 40

-20

0

20

Absorber #10

Figure 5.30: Geometry of absorbers for the higher frequency range design, dimensions in mm
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Figure 5.31: The (a) FRF and (b) impulse response of the tip of the higher frequency range
metastructure design for a gain value of 10,000. Vertical lines represent the
settling time of the corresponding structure.
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Figure 5.32: The (a) FRF and (b) impulse response of the tip of the higher frequency range
metastructure design for a gain value of 20,000. Vertical lines represent the
settling time of the corresponding structure.
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Figure 5.33: The (a) percent decrease in the H2 norm and (b) settling time versus gain value
for the higher frequency range metastructure design.
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Figure 5.34: The (a) FRF and (b) impulse response of the tip of the lower frequency range
metastructure design for a gain value of 20,000. Vertical lines represent the
settling time of the corresponding structure.

has a large response of its first two nodes compared to the 11th mode of the lower frequency

range design. The structure with the larger response also has better performance increases

when the controller is added to the structure. This shows that the large the response of a

single mode, the more effective the controller will be. For the design where all the absorbers

are tuned to the same frequency, the effectiveness of the controller is not as significant. Since

this design only has two natural frequencies within that 0 to 1500 Hz range, each mode has

considerable motion of each absorber making a single active vibration absorber less effective.

In conclusion, the larger the response of the mode of the corresponding absorber, the more

effective the concept of adding a single active vibration absorber can be. For a metastructure

without varying natural frequencies, a single active vibration absorber is less effective.

5.4 Chapter summary

This chapter examines the effectiveness of adding active vibration control to the metas-

tructure designs explored previously. The chapter first examines a lumped mass model to
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Figure 5.35: The (a) percent decrease in the H2 norm and (b) settling time versus gain value
for the lower frequency range metastructure design.
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Figure 5.36: The (a) FRF and (b) impulse response of the tip of the constant frequency
metastructure design for a gain value of 20,000. Vertical lines represent the
settling time of the corresponding structure.
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Figure 5.37: The (a) percent decrease in the H2 norm and (b) settling time versus gain value
for the constant frequency metastructure design.

determine trends and then extends the work to a distributed mass model using realistic

piezoelectric material properties. The work shows that the concept of using a single active

vibration absorber can be used to control the settling time of a metastructure.

For the lumped mass metastructure model utilized has vibration absorbers tuned to

linearly varying natural frequencies. This design provides favorable decreases in the value of

the H2 norm but also leads to the appearance of beating behavior in the time response of

the structure. Because of this beating response, a slight variation in the system can cause a

jump in the settling time when a beat falls below the settling time threshold value. Another

effect of the linearly varying natural frequencies is how the location of the actuator for the

active control system affects various modes. When the actuator is placed on an absorber

mass, one of the modes of the structure is damped which is seen on the FRF of the system.

Examining these designs shows that the best location for the actuator depends on the

design of the structure. Although there is a rough pattern showing that placing the actuator

closer to the tip of the structure can provide better performance, this is not always true.

Once the metastructure design is finalized, the resulting FRF must be examined to determine
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which mode is contributing the most to the response. Once that mode is determined, the

corresponding absorber mass should have the actuator installed.

Once, the active control system is implemented, the nature of the beating behavior will

always cause jumps in the gain versus settling time relationships. This cannot be avoided

without removing the beating behavior. Additionally, there is a limit to the settling time

values the controller can reach. Since the controller damps out a specific mode of the

structure, once that mode is completely damped out, the controller cannot provide any

additional performance increases. These are all important considerations that must be taken

into account when designing an active control system for a metastructure with distributed

vibration absorbers of varying natural frequencies.

For the distributed mass models, two different active vibration absorber designs were

examined. The first design looked at using a stack actuator to control the displacement

of a single absorber. The second design implemented the active vibration absorber using a

piezoelectric bimorph design on a single vibration absorber. The models for both of these

designs were presented along with the necessary equations to implement active control using

the PPF control law. The active vibration absorber design using a stack actuator was shown

to ineffective because the additional stiffness of the stack actuator prevented motion of the

absorber in the lower frequency range only making it effective at higher frequencies.

For the active vibration absorber design using a piezoelectric bimorph configuration,

the PPF control was successfully implemented to reduce the vibrations in the structure.

Examining different designs showed that the larger the response of a mode, the more effective

the active vibration absorber could be. Since the first modes of the structure correspond to

the oscillations of a single absorber, making the absorber active is very effective at controlling

that mode of the metastructure.

In conclusion, depending on the design of the metastructure and the desired performance,

adding an active vibration absorber to the metastructure is a feasible solution to get an

increased performance of the metastructure.
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CHAPTER VI

Summary and Contributions

6.1 Summary

This dissertation studies the performance of one-dimensional metastructures. These

structures use distributed vibration absorbers to suppress low-frequency vibrations in the

longitudinal direction of the bar. The performance of the metastructures is determined by

examining the frequency response and the time response of the tip of the metastructure bar.

The metastructures are compared to a baseline structure that has the same mass, which

shows that any increase in the performance is due to the addition of the vibration absorbers

and not due to any additional mass being added to the structure. Both lumped mass and

distributed mass models are used to capture the dynamic response of the metastructures.

Additionally, the viscoelastic properties of 3D printed materials are characterized. The ma-

terial properties are implemented into a viscoelastic model of the metastructure and the

effects of temperature are studied. For situations in which high performance is required,

the concept of adding active vibration control to the structure was also investigated. The

following sections provide detailed summaries of the work completed in each chapter.

6.1.1 Chapter II

This chapter uses a lumped mass model to examine the response of a one-dimensional

metastructure. The metastructure is compared to a baseline structure with equal mass.
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This constraint shows that any increase in performance of the metastructure is due to the

addition of vibration absorbers and not due to the additional mass. The development of

the lumped mass model is shown, and different designs are explored. The metastructure

model is characterized by the number of vibration absorbers, the natural frequencies of the

absorbers, and the mass ratio. The mass ratio is defined as the mass of the absorbers over

the total mass of the metastructure.

The parameters of the structure are optimized with respect to the H2 norm to determine

the best-performing structures. First, the effects of the mass and the stiffness distributions

of the absorbers are studied. The results show that the primary factor influencing the

performance is the ratio of the stiffness over the mass of the absorber, which is related to

the natural frequency of the absorber. The best performance is achieved when the natural

frequencies of the absorbers vary linearly, leading to broadband vibration suppression. For

cases in which the mass ratio is high, the distribution of the mass of the absorbers also

influences the performance.

Looking at metastructures with a varying number of vibration absorbers show that ini-

tially adding more vibration absorbers to the structure results in a better performing struc-

ture, but the performance reaches an asymptote. Once there are around ten absorbers,

adding additional absorbers only increases the performance slightly. The mass ratio trends

show that adding more mass to the absorbers initially increases performance, but after a

certain point, the higher mass ratio leads to a decrease in performance. Lastly, the per-

formance of the metastructure is compared to that of a structure with a single tuned mass

damper. For structures with a lower mass ratio, the metastructure is more effective at re-

ducing vibrations. This comparison has a strong dependence on the level of damping in the

structure.
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6.1.2 Chapter III

Chapter III examines the complex modulus of inkjet materials printed using VeroWhitePlus

and TangoPlus on the Objet Connex 3D printer. These materials exhibit viscoelastic mate-

rial behaviors which must be considered when used in vibration applications. Viscoelastic

materials have material properties that vary significantly with temperature and frequency.

The frequency dependence of the materials leads to hysteresis which greatly influences the

amount of damping in the structure. The Objet Connex printer can print up to ten different

materials using varying ratios of the two base materials; VeroWhitePlus and TangoPlus.

TangoPlus is a rubber-like material which has material properties that vary significantly

with temperature and frequency. VeroWhitePlus still exhibits viscoelastic properties but is

substantially stiffer than TangoPlus.

Four of the ten materials the Objet Connex printer is capable of printing are tested to

determine the frequency and temperature dependence of the complex modulus of the mate-

rials. This material characterization is done using a dynamic mechanical analyzer (DMA)

machine. This device measures the modulus of the material in a dynamic sense while varying

the frequency of the material of the applied load and the temperature of the material. Using

the time-temperature superposition principle, the properties measured at various tempera-

tures are shifted to represent the material properties at a single reference temperature over

a larger frequency range. In addition to measuring these material properties, the effects of

various printer parameters are also studied. Two in-plane print directions are investigated

along with two testing configurations; a tensile configuration and a cantilever configuration.

The print direction did not alter the results, but the testing configuration had a slight effect

on the property values.

Using data obtained from the material characterization of the viscoelastic materials, the

GHM model is used to model the response of a structure made from these materials. The

GHM model uses internal variables to capture the viscoelastic effects of the material. The

model parameters are curve-fit to the complex modulus data determined experimentally. Us-
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ing the time-temperature superposition, the curve-fit is conducted at multiple temperatures

allowing the GHM model to also capture the effects of temperature.

The GHM model is verified experimentally by measuring the natural frequency and damp-

ing ratio of a simple cantilevered beam at various temperatures and compared to the pre-

dicted values of the model. The results show the GHM model can accurately predict the

fundamental natural frequency of the cantilevered beam at various temperatures.

6.1.3 Chapter IV

Chapter IV extends the work from Chapters II and III by using the material properties of

the viscoelastic 3D printed materials for a distributed mass metastructure model. A physical

design for a one-dimensional metastructure is proposed, consisting of a bar with a hollow

square cross-section making up the host structure. The vibration absorbers are cantilevered

beams with large tip masses which are distributed along the length of the bar and oriented

such that the bending motion of the cantilevered beams absorbs vibrations along the axial

direction of the bar. The effectiveness of this design is verified experimentally and by using

a commercial finite element model.

The metastructure is then modeled using the GHM model developed in the Chapter III.

The GHM model is beneficial as it allows the response of the metastructure to be calculated

at various temperatures while also incorporating material damping into the model. The

GHM model predicts the damping in a structure using the material properties, not by some

arbitrarily defined damping value.

Next, a design procedure is explained for determining how various parameters affect

the performance of the metastructure. Designs with varying mass ratios and number of

absorbers are examined. For each of these cases, the influences of changing the natural

frequencies of the absorbers are considered. This analysis shows similar results from the

lumped mass model; using vibration absorbers with varying natural frequencies leads to

more board-band suppression. From this analysis, a single metastructure design is chosen
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to be experimentally tested. The GHM model was able to accurately predict the natural

frequencies of the vibration absorbers within 20%.

The performance of this structure is analytically examined at various temperatures and

compared to a baseline structure of the same weight. The results show the natural frequencies

of the absorbers change at a similar rate to the host structure, allowing the metastructure

to be effective at suppressing vibrations at a range of frequencies. Once the structure gets

to higher temperatures, the damping of the material dominates the response. At these tem-

peratures, the static response of the structure dominates the response, making the baseline

structure more effective at higher temperatures.

6.1.4 Chapter V

Chapter V looks at improving the performance of a metastructure further by adding

active vibration control to the structure. The previously developed lumped mass and dis-

tributed mass models are used for this examination. The models in which controls are

implemented are metastructures with linearly varying natural frequencies. Understanding

the effects of the active vibration absorber requires knowledge about the mode shapes of

the metastructure. The lower-frequency mode shapes of these structures correspond to the

movement a single absorber tuned to the same natural frequency of the natural frequency

of the corresponding mode.

Using the lumped mass model, the controllability and observability norms are examined.

These norms show that placing a sensor on a single absorber is good at sensing the mode

that corresponds to the movement of that absorber. The same goes for an actuator affecting

the controllability of the same mode. Next, the positive position feedback control law is

implemented in the lumped mass model using collocated control, meaning the actuating and

sensing occur at the same location. The control force is placed at various locations. At each

location, the control parameters are optimized to achieve the best performance. This analysis

shows the controller can effectively eliminate a single mode of the structure. Additionally,
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increasing the gain on the controller causes the settling time of the structure to decrease.

This trend occurs up to a limit, corresponding to when the mode has been eliminated. After

this limit, the controller does not reduce the settling time any further.

For the distributed mass model, two different active vibration absorber designs are con-

sidered using piezoelectric materials. The first uses a stack actuator to control the force

acting on a single absorber. Attaching the stack actuator to the structure results in sig-

nificant additional stiffness, leading to the active vibration absorber only being effective at

higher frequencies. The second design adds PZT materials to the beam of one of the vibra-

tion absorbers in a bimorph configuration. Once again, the PZT materials add additional

stiffness to the structure, but for this design, the geometry of the absorber can be modified

to account for the stiffness change.

The PZT bimorph design is implemented on a few different metastructure designs using

material properties of actual materials. The results show that this design can effectively

be integrated into an actual metastructure design to control the response of the structure.

Additionally, the results show similar trends as the lumped mass model, where a single mode

can be damped out. Furthermore, the larger the uncontrolled response of a mode, the more

effective the controller is.

6.2 Main contributions

The major contributions of this dissertation are focused on the performance of a metas-

tructure bar with linearly varying natural frequencies compared to a baseline structure of

the same weight. The main contributions of this work are summarized as:

• Showing that the concept of using distributed vibration absorbers can effectively reduce

vibrations without adding additional mass to the structure.

• Using vibration absorbers with linearly varying natural frequency leads to more broad-

band suppression.
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• The creation of a physical one-dimensional metastructure model that experimentally

exhibits the predicted metastructure behavior.

• The characterization of the frequency and temperature dependence of the Objet Con-

nex 3D printed materials.

• Implementing the GHM model to predict the amount of damping in a metastructure

from measured material properties.

• Using the GHM model to accurately predict the fundamental natural frequencies of

cantilevered beams at various temperatures.

• Showing that the concept of adding a single active vibration absorber to a metastruc-

ture can control the response of a single mode of a metastructure with linearly varying

natural frequencies.

• Developing an active vibration absorber design that is effective at reducing the vibra-

tions in a metastructure.

6.3 Recommendations for future work

There are a few different directions the future work for this project could take. These

directions are categorized into the three major parts of this dissertation: metastructures,

viscoelastic modeling, and controls of metastructures. The recommendations for future work

within these three areas are described in future detail below.

6.3.1 Metastructures

This work focused on a one-dimensional metastructure which provided insight into the

general behavior of the metastructures. This work could be extended into two-dimensional

bending metastructures. Beam structures behave differently than bar structures. Thus the

trends for beam structures may look than those found for a metastructure bar here.
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Additionally, the inverse problem could be considered. This work looked at how changing

the parameters resulted in changes to the dynamic response of the structure. For the inverse

problem, a desired dynamic response could be given and the necessary parameters to achieve

that response could be determined. This would allow for metastructures to be designed for

specific situations.

Another direction of this work could examine the robustness of the metastructure con-

cepts This could be achieved by looking at how sensitive the performance of the metastruc-

ture is to specific parameters. If a vibration absorber is designed to suppress vibrations at a

certain frequency, but the actual frequency of the absorber is off by 5%, how does that affect

the performance of the metastructure?

Before these metastructure concepts can be implemented into real-life applications, the

effects of fatigue on the vibration absorbers must be determined. Since the vibration ab-

sorbers absorb the energy from the rest of the structure, they move significantly. This cyclical

nature can lead to fatigue failure and must be considered.

The work could also take a more application focus, where a specific scenario is chosen, and

a metastructure is designed for that specific case. This would also allow for a more realistic

comparison of the metastructure technique versus other vibration suppression solutions,

such as a tuned mass damper or the addition of viscoelastic materials via constrained layer

damping.

6.3.2 Viscoelastic modeling

This work made an essential first step in modeling the viscoelastic nature of 3D printed

materials. More work could be done in examining the effects of the testing methods used

to experimentally determine the complex modulus. An analysis in the effects of sample size

could be examined. Additionally, the effects of modifying more printing parameters could

be explored. This work examined the effects of two print directions, but a 3D printer has a

total of six different print directions that could be tested.
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This work solely used the GHM model to model the viscoelastic behavior of the printed

materials. Other viscoelastic models could be used and compared to the GHM model, such

as the augmenting thermodynamic fields model.

6.3.3 Controls

The controls work presented here considered the case in which only a single vibration

absorber was an active vibration absorber. Future work could look at the benefits of using

multiple active vibration absorbers and the trade-offs between adding more active vibration

absorbers and the performance of the active structure.

Additionally, different methods for implementing an active vibration absorber could be

explored. This work looked at using a stack actuator and also a piezoelectric bimorph

configuration. Other designs could be considered and their performance could be compared

to the results here. Additionally, different control laws could be considered.
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APPENDIX A

Complex Modulus Data Tables

This appendix provides the complex modulus data for the 3D printed material test for

this work. The specimens tested to compile this data, were all printed from the Objet Connex

3D printer as described in Section 3.2.1. Two different studies were conducted as part of this

work. The first examined the effects of printing direction and testing configuration (Section

3.2.2). Where as, the second study looked at the differences between four materials printed

using the Objet Connex 3D printer. The following sections provide the complex modulus

data for the eight different different testing scenarios using data collected from a dynamic

mechanical analysis (DMA) machine. Using this data, a frequency-temperature analysis

is performed, as described in Section 3.1 including the data for an Arrhenius shift factor

relationship describing the relationship between the temperature and frequency.

A.1 Print direction and testing configuration comparison

This section provides additional details for the DMA testing preformed in Sections 3.2.3.3

and 3.2.3.4 where the effects of print direction and testing configuration were examined for

the 3D printed material DM 8430. Four different specimens were used for this testing.

Schematics showing the print directions and testing configuration are shown in Figures 3.1

and 3.2 respectively. The Arrhenius factor relationship for the four specimens is provided in

Table A.1.
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Table A.1: Arrhenius fit data for DM 8430 for various configurations

Testing Printing Reference Arrhenius
Configuration Direction Temperature [◦C] Temperature [K]
tensile horizontal 66 12,011
tensile vertical 66 12,944
cantilevered horizontal 65 15,071
cantilevered vertical 65 15,271
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Figure A.1: Wicket plot of experimental data for DM 8420 printed in the horizontal direction
and testing using the tensile configuration

A.1.1 Results for DM 8420 printed in the horizontal direction and testing using

the tensile configuration

This sample was printed with approximate dimensions of 9 mm× 5 mm× 1 mm were used

in the DMA machine. The complex modulus data is summarized in Table A.2 including the

shift factor relationship determined from the frequency-temperature analysis. The Wicket

plot is provided in Figure A.1.1. A plot of the shift factor, log[α(T )] versus the inverses

of the temperature with an Arrhenius fit is plotted in Figure A.2. Using the shift factors

reported, the reduced frequency plot is in Figure 3.8.
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Figure A.2: Arrhenius fit for experimental data for DM 8420 printed in the horizontal direc-
tion and testing using the tensile configuration

Table A.2: Complex modulus data for DM 8420 printed in the horizontal
direction and testing using the tensile configuration

Temperature Frequency Storage Modulus Loss Factor Shift Factor
[◦C] [◦F] [Hz] [MPa] [-] log[α(T )]
27 80.6 31.60 1540.71 0.136 5.2

17.80 1479.48 0.141
10.00 1416.89 0.148
5.60 1351.22 0.156
3.20 1285.33 0.165
1.80 1215.66 0.175
1.00 1146.01 0.187
0.56 1058.06 0.199
0.32 970.63 0.214
0.18 882.22 0.230
0.10 804.27 0.248

36 96.8 31.60 1163.92 0.189 3.7
17.80 1080.56 0.202
10.00 1003.64 0.215
5.60 914.39 0.233
3.20 824.94 0.255
1.80 737.85 0.276
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Table A.2: Complex modulus data for DM 8420 printed in the horizontal
direction and testing using the tensile configuration

Temperature Frequency Storage Modulus Loss Factor Shift Factor
[◦C] [◦F] [Hz] [MPa] [-] log[α(T )]

1.00 662.88 0.301
0.56 547.65 0.340
0.32 474.35 0.372
0.18 413.32 0.401
0.10 355.16 0.436

46 114.8 31.60 624.68 0.324 2.2
17.80 544.09 0.353
10.00 475.31 0.383
5.60 398.03 0.425
3.20 330.04 0.466
1.80 269.31 0.517
1.00 221.10 0.559
0.56 171.70 0.617
0.32 140.29 0.656
0.18 114.77 0.697
0.10 92.08 0.732

56 132.8 31.60 286.93 0.530 1.0
17.80 230.70 0.584
10.00 185.48 0.638
5.60 140.43 0.704
3.20 105.73 0.771
1.80 78.62 0.830
1.00 58.51 0.865
0.56 42.62 0.925
0.32 33.39 0.935
0.18 26.32 0.930
0.10 19.89 0.918

66 150.8 31.60 108.12 0.804 0.0
17.80 78.65 0.873
10.00 57.63 0.939
5.60 41.03 0.974
3.20 29.56 0.990
1.80 21.69 0.959
1.00 16.69 0.873
0.56 13.04 0.794
0.32 11.14 0.691
0.18 9.72 0.581
0.10 8.58 0.457

76 168.8 31.60 36.10 1.014 -1.0
17.80 25.73 1.012
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Table A.2: Complex modulus data for DM 8420 printed in the horizontal
direction and testing using the tensile configuration

Temperature Frequency Storage Modulus Loss Factor Shift Factor
[◦C] [◦F] [Hz] [MPa] [-] log[α(T )]

10.00 19.34 0.965
5.60 14.67 0.865
3.20 11.74 0.733
1.80 9.85 0.586
1.00 8.72 0.449
0.56 7.88 0.326
0.32 7.43 0.239
0.18 7.13 0.172
0.10 6.90 0.117

86 186.8 31.60 14.50 0.828 -1.8
17.80 11.39 0.694
10.00 9.78 0.549
5.60 8.64 0.410
3.20 7.94 0.294
1.80 7.50 0.204
1.00 7.20 0.138
0.56 7.05 0.087
0.32 6.96 0.056
0.18 6.90 0.037
0.10 6.88 0.021

96 204.8 31.60 9.44 0.406 -2.5
17.80 8.21 0.282
10.00 7.76 0.198
5.60 7.46 0.132
3.20 7.29 0.086
1.80 7.19 0.054
1.00 7.13 0.033
0.56 7.11 0.020
0.32 7.10 0.012
0.18 7.09 0.007
0.10 7.09 0.006

106 222.8 31.60 8.34 0.158 -3.2
17.80 7.59 0.085
10.00 7.47 0.055
5.60 7.40 0.033
3.20 7.36 0.020
1.80 7.35 0.012
1.00 7.33 0.007
0.56 7.34 0.004
0.32 7.33 0.003
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Table A.2: Complex modulus data for DM 8420 printed in the horizontal
direction and testing using the tensile configuration

Temperature Frequency Storage Modulus Loss Factor Shift Factor
[◦C] [◦F] [Hz] [MPa] [-] log[α(T )]

0.18 7.33 0.002
0.10 7.32 0.001

A.1.2 Results for DM 8420 printed in the vertical direction and testing using

the tensile configuration

This sample was printed with approximate dimensions of 9 mm× 5 mm× 1 mm were used

in the DMA machine. The complex modulus data is summarized in Table A.3 including the

shift factor relationship determined from the frequency-temperature analysis. The Wicket

plot is provided in Figure A.1.2. A plot of the shift factor, log[α(T )] versus the inverses

of the temperature with an Arrhenius fit is plotted in Figure A.4. Using the shift factors

reported, the reduced frequency plot is in Figure 3.8.

Table A.3: Complex modulus data for DM 8420 printed in the vertical di-
rection and testing using the tensile configuration

Temperature Frequency Storage Modulus Loss Factor Shift Factor
[◦C] [◦F] [Hz] [MPa] [-] log[α(T )]
28 82.4 100.00 1641.62 0.130 4.8

56.00 1575.54 0.137
31.60 1506.84 0.137
17.80 1440.10 0.143
10.00 1372.69 0.150
5.60 1303.59 0.159
3.20 1233.85 0.168
1.80 1160.59 0.178
1.00 1084.45 0.191
0.56 997.89 0.203
0.32 908.02 0.220
0.18 820.51 0.238
0.10 745.95 0.250

36 96.8 100.00 1330.82 0.169 3.7
56.00 1254.55 0.177
31.60 1170.72 0.186
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Table A.3: Complex modulus data for DM 8420 printed in the vertical di-
rection and testing using the tensile configuration

Temperature Frequency Storage Modulus Loss Factor Shift Factor
[◦C] [◦F] [Hz] [MPa] [-] log[α(T )]

17.80 1088.74 0.198
10.00 1011.77 0.211
5.60 923.82 0.228
3.20 835.64 0.248
1.80 750.85 0.268
1.00 674.69 0.292
0.56 567.22 0.327
0.32 491.41 0.360
0.18 427.78 0.389
0.10 369.54 0.411

46 114.8 100.00 815.58 0.274 2.4
56.00 732.16 0.294
31.60 645.94 0.317
17.80 561.52 0.347
10.00 489.84 0.378
5.60 410.54 0.420
3.20 338.24 0.466
1.80 275.71 0.515
1.00 223.56 0.559
0.56 171.80 0.626
0.32 140.10 0.666
0.18 115.09 0.699
0.10 88.81 0.757

56 132.8 100.00 418.92 0.449 1.2
56.00 350.65 0.491
31.60 287.20 0.532
17.80 230.39 0.586
10.00 184.25 0.636
5.60 138.81 0.707
3.20 104.34 0.771
1.80 77.91 0.822
1.00 58.61 0.855
0.56 42.65 0.897
0.32 33.60 0.897
0.18 26.69 0.885
0.10 20.27 0.889

66 150.8 100.00 184.71 0.684 0.0
56.00 141.61 0.753
31.60 106.08 0.805
17.80 77.30 0.867
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Table A.3: Complex modulus data for DM 8420 printed in the vertical di-
rection and testing using the tensile configuration

Temperature Frequency Storage Modulus Loss Factor Shift Factor
[◦C] [◦F] [Hz] [MPa] [-] log[α(T )]

10.00 56.84 0.916
5.60 40.97 0.947
3.20 29.86 0.950
1.80 22.12 0.916
1.00 16.65 0.888
0.56 13.51 0.760
0.32 11.50 0.667
0.18 10.06 0.566
0.10 8.87 0.452

76 168.8 100.00 67.34 0.940 -1.1
56.00 49.20 0.995
31.60 35.76 0.980
17.80 25.80 0.970
10.00 19.67 0.913
5.60 15.03 0.824
3.20 12.09 0.704
1.80 10.16 0.572
1.00 8.86 0.449
0.56 8.07 0.327
0.32 7.59 0.243
0.18 7.26 0.176
0.10 7.04 0.121

86 186.8 100.00 24.82 0.999 -2.1
56.00 18.95 0.973
31.60 14.90 0.792
17.80 11.71 0.669
10.00 10.04 0.537
5.60 8.86 0.406
3.20 8.12 0.296
1.80 7.64 0.207
1.00 7.32 0.141
0.56 7.16 0.090
0.32 7.06 0.060
0.18 7.01 0.038
0.10 6.97 0.023

96 204.8 100.00 12.75 0.689 -3.1
56.00 11.11 0.632
31.60 9.70 0.399
17.80 8.38 0.283
10.00 7.91 0.201
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Table A.3: Complex modulus data for DM 8420 printed in the vertical di-
rection and testing using the tensile configuration

Temperature Frequency Storage Modulus Loss Factor Shift Factor
[◦C] [◦F] [Hz] [MPa] [-] log[α(T )]

5.60 7.59 0.134
3.20 7.41 0.090
1.80 7.30 0.056
1.00 7.25 0.035
0.56 7.21 0.020
0.32 7.20 0.012
0.18 7.19 0.008
0.10 7.17 0.004

A.1.3 Results for DM 8420 printed in the horizontal direction and testing using

the cantilevered configuration

This sample was printed with approximate dimensions of 17 mm × 12 mm × 3 mm

were used in the DMA machine. The complex modulus data is summarized in Table A.4

including the shift factor relationship determined from the frequency-temperature analysis.

The Wicket plot is provided in Figure A.1.3. A plot of the shift factor, log[α(T )] versus the

inverses of the temperature with an Arrhenius fit is plotted in Figure A.6. Using the shift

factors reported, the reduced frequency plot is in Figure 3.9.

Table A.4: Complex modulus data for DM 8420 printed in the horizontal
direction and testing using the cantilevered configuration

Temperature Frequency Storage Modulus Loss Factor Shift Factor
[◦C] [◦F] [Hz] [MPa] [-] log[α(T )]
35 95.0 17.80 1154.22 0.190 4.8

10.00 1073.05 0.204
5.60 983.04 0.222
3.20 896.65 0.239
1.80 811.30 0.258
1.00 733.02 0.275
0.56 638.93 0.301
0.32 560.68 0.325
0.18 488.68 0.349
0.10 426.10 0.371
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Table A.4: Complex modulus data for DM 8420 printed in the horizontal
direction and testing using the cantilevered configuration

Temperature Frequency Storage Modulus Loss Factor Shift Factor
[◦C] [◦F] [Hz] [MPa] [-] log[α(T )]
40 104.0 17.80 800.73 0.273 3.6

10.00 720.76 0.294
5.60 636.90 0.320
3.20 559.11 0.346
1.80 484.74 0.373
1.00 418.46 0.399
0.56 346.88 0.437
0.32 289.95 0.471
0.18 241.11 0.504
0.10 199.44 0.535

45 113.0 17.80 523.72 0.375 2.7
10.00 453.36 0.405
5.60 384.50 0.440
3.20 323.80 0.475
1.80 268.05 0.512
1.00 219.77 0.550
0.56 175.90 0.589
0.32 142.37 0.623
0.18 114.13 0.655
0.10 90.62 0.684

50 122.0 17.80 332.37 0.489 1.9
10.00 275.40 0.528
5.60 222.91 0.571
3.20 179.33 0.612
1.80 141.89 0.654
1.00 111.60 0.692
0.56 85.72 0.725
0.32 67.47 0.748
0.18 53.01 0.762
0.10 41.24 0.770

55 131.0 17.80 195.95 0.615 1.2
10.00 155.47 0.660
5.60 120.51 0.704
3.20 93.28 0.742
1.80 71.46 0.774
1.00 54.89 0.795
0.56 41.76 0.802
0.32 32.81 0.796
0.18 26.03 0.776
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Table A.4: Complex modulus data for DM 8420 printed in the horizontal
direction and testing using the cantilevered configuration

Temperature Frequency Storage Modulus Loss Factor Shift Factor
[◦C] [◦F] [Hz] [MPa] [-] log[α(T )]

0.10 20.59 0.742
60 140.0 17.80 109.18 0.734 0.6

10.00 83.97 0.772
5.60 63.47 0.804
3.20 48.37 0.822
1.80 36.88 0.826
1.00 28.35 0.816
0.56 22.06 0.780
0.32 17.82 0.732
0.18 14.64 0.669
0.10 12.18 0.589

65 149.0 17.80 59.79 0.816 0.0
10.00 45.59 0.831
5.60 34.47 0.834
3.20 26.58 0.818
1.80 20.71 0.782
1.00 16.45 0.726
0.56 13.38 0.646
0.32 11.40 0.560
0.18 9.95 0.466
0.10 8.85 0.370

70 158.0 17.80 34.08 0.823 -0.6
10.00 26.32 0.807
5.60 20.35 0.773
3.20 16.21 0.718
1.80 13.21 0.640
1.00 11.09 0.546
0.56 9.66 0.442
0.32 8.75 0.350
0.18 8.10 0.266
0.10 7.62 0.191

75 167.0 17.80 20.86 0.743 -1.1
10.00 16.70 0.690
5.60 13.47 0.622
3.20 11.31 0.537
1.80 9.81 0.441
1.00 8.78 0.343
0.56 8.11 0.255
0.32 7.69 0.187
0.18 7.40 0.132
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Table A.4: Complex modulus data for DM 8420 printed in the horizontal
direction and testing using the cantilevered configuration

Temperature Frequency Storage Modulus Loss Factor Shift Factor
[◦C] [◦F] [Hz] [MPa] [-] log[α(T )]

0.10 7.24 0.088
80 176.0 17.80 14.11 0.576 -1.7

10.00 11.94 0.502
5.60 10.20 0.422
3.20 9.07 0.339
1.80 8.30 0.258
1.00 7.80 0.188
0.56 7.49 0.129
0.32 7.30 0.089
0.18 7.18 0.058
0.10 7.13 0.035

85 185.0 17.80 10.69 0.361 -2.2
10.00 9.61 0.296
5.60 8.63 0.236
3.20 8.04 0.181
1.80 7.66 0.130
1.00 7.42 0.088
0.56 7.28 0.057
0.32 7.21 0.036
0.18 7.16 0.021
0.10 7.11 0.009

A.1.4 Results for DM 8420 printed in the vertical direction and testing using

the cantilevered configuration

This sample was printed with approximate dimensions of 17 mm × 12 mm × 3 mm

were used in the DMA machine. The complex modulus data is summarized in Table A.5

including the shift factor relationship determined from the frequency-temperature analysis.

The Wicket plot is provided in Figure A.1.4. A plot of the shift factor, log[α(T )] versus the

inverses of the temperature with an Arrhenius fit is plotted in Figure A.8. Using the shift

factors reported, the reduced frequency plot is in Figure 3.9.
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Figure A.3: Wicket plot of experimental data for DM 8420 printed in the vertical direction
and testing using the tensile configuration
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Figure A.4: Arrhenius fit for experimental data for DM 8420 printed in the vertical direction
and testing using the tensile configuration
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Figure A.5: Wicket plot of experimental data for DM 8420 printed in the horizontal direction
and testing using the cantilevered configuration

2.7 2.8 2.9 3 3.1 3.2 3.3 3.4

x 10
−3

−6

−4

−2

0

2

4

6

1/T

lo
g
[α

(T
)]

 

 

Arrhenius Fit

Data

Figure A.6: Arrhenius fit for experimental data for DM 8420 printed in the horizontal direc-
tion and testing using the cantilevered configuration
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Figure A.7: Wicket plot of experimental data for DM 8420 printed in the vertical direction
and testing using the cantilevered configuration
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Figure A.8: Arrhenius fit for experimental data for DM 8420 printed in the vertical direction
and testing using the cantilevered configuration
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Table A.5: Complex modulus data for DM 8420 printed in the vertical di-
rection and testing using the cantilevered configuration

Temperature Frequency Storage Modulus Loss Factor Shift Factor
[◦C] [◦F] [Hz] [MPa] [-] log[α(T )]
35 95.0 17.80 1077.53 0.201 4.8

10.00 1000.55 0.216
5.60 922.66 0.232
3.20 848.01 0.249
1.80 772.59 0.266
1.00 697.40 0.286
0.56 624.69 0.306
0.32 557.99 0.327
0.18 493.90 0.349
0.10 432.05 0.374

40 104.0 17.80 819.66 0.260 3.8
10.00 742.28 0.281
5.60 661.80 0.304
3.20 586.94 0.328
1.80 514.31 0.354
1.00 447.92 0.381
0.56 381.44 0.412
0.32 326.68 0.440
0.18 277.44 0.470
0.10 232.29 0.502

45 113.0 17.80 572.36 0.345 2.8
10.00 501.09 0.373
5.60 430.59 0.405
3.20 367.61 0.437
1.80 309.29 0.471
1.00 257.41 0.507
0.56 209.60 0.544
0.32 172.34 0.577
0.18 140.16 0.611
0.10 112.45 0.644

50 122.0 17.80 375.26 0.451 2.0
10.00 315.16 0.487
5.60 258.82 0.528
3.20 211.35 0.568
1.80 169.59 0.609
1.00 134.75 0.648
0.56 105.06 0.687
0.32 83.22 0.716
0.18 65.64 0.741
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Table A.5: Complex modulus data for DM 8420 printed in the vertical di-
rection and testing using the cantilevered configuration

Temperature Frequency Storage Modulus Loss Factor Shift Factor
[◦C] [◦F] [Hz] [MPa] [-] log[α(T )]

0.10 50.79 0.745
55 131.0 17.80 227.13 0.574 1.2

10.00 182.50 0.618
5.60 143.23 0.664
3.20 112.02 0.706
1.80 86.47 0.744
1.00 66.37 0.778
0.56 50.52 0.798
0.32 39.49 0.807
0.18 30.85 0.804
0.10 24.02 0.787

60 140.0 17.80 128.42 0.701 0.6
10.00 99.41 0.744
5.60 75.36 0.785
3.20 57.42 0.815
1.80 43.51 0.834
1.00 33.13 0.839
0.56 25.38 0.823
0.32 20.13 0.790
0.18 16.20 0.738
0.10 13.20 0.662

65 149.0 17.80 69.97 0.805 0.0
10.00 53.12 0.833
5.60 39.86 0.852
3.20 30.34 0.853
1.80 23.27 0.832
1.00 18.12 0.791
0.56 14.46 0.716
0.32 12.09 0.631
0.18 10.38 0.533
0.10 9.11 0.428

70 158.0 17.80 38.79 0.849 -0.6
10.00 29.58 0.846
5.60 22.48 0.827
3.20 17.57 0.782
1.80 14.05 0.708
1.00 11.57 0.615
0.56 9.93 0.502
0.32 8.88 0.402
0.18 8.15 0.307
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Table A.5: Complex modulus data for DM 8420 printed in the vertical di-
rection and testing using the cantilevered configuration

Temperature Frequency Storage Modulus Loss Factor Shift Factor
[◦C] [◦F] [Hz] [MPa] [-] log[α(T )]

0.10 7.62 0.224
75 167.0 17.80 22.72 0.802 -1.2

10.00 17.86 0.755
5.60 14.16 0.689
3.20 11.72 0.600
1.80 10.01 0.496
1.00 8.86 0.389
0.56 8.11 0.291
0.32 7.64 0.214
0.18 7.32 0.153
0.10 7.13 0.102

80 176.0 17.80 14.70 0.648 -1.8
10.00 12.26 0.562
5.60 10.34 0.475
3.20 9.11 0.382
1.80 8.28 0.291
1.00 7.73 0.211
0.56 7.39 0.147
0.32 7.19 0.101
0.18 7.06 0.066
0.10 6.97 0.045

85 185.0 17.80 10.76 0.417 -2.3
10.00 9.63 0.337
5.60 8.58 0.268
3.20 7.95 0.205
1.80 7.55 0.147
1.00 7.30 0.101
0.56 7.14 0.065
0.32 7.06 0.042
0.18 7.00 0.025
0.10 6.95 0.012

90 194.0 17.80 8.90 0.190 -2.9
10.00 8.38 0.151
5.60 7.80 0.117
3.20 7.47 0.088
1.80 7.27 0.060
1.00 7.16 0.041
0.56 7.09 0.023
0.32 7.05 0.013
0.18 7.03 0.005

209



Table A.5: Complex modulus data for DM 8420 printed in the vertical di-
rection and testing using the cantilevered configuration

Temperature Frequency Storage Modulus Loss Factor Shift Factor
[◦C] [◦F] [Hz] [MPa] [-] log[α(T )]

0.10 7.03 0.001

A.2 Various 3D printed materials comparison

This section provides additional details for the DMA testing preformed in Section 3.2.2.1

where four different materials are compared. These materials are described in Table 3.1. The

tensile configuration was used for testing all these materials the specimen have approximate

dimensions of 9 mm × 5 mm × 1 mm. The complex modulus data is presented in the

following sections. The Wicket plots for these four specimens is shown in Figure 3.4. The

results of the temperature-frequency equivalence are plotted in Figure 3.6. The plots of the

Arrhenius relationship is shown in Figure 3.5 and the parameters are given in Table 3.3.

A.2.1 Results for VeroWhitePlus

The VeroWhitePlus specimen was tested at temperatures between 0◦ and 100◦ C. The

complex modulus data is summarized in Table A.6 including the shift factor relationship

determined from the frequency-temperature analysis.

Table A.6: Complex modulus data for VeroWhitePlus

Temperature Frequency Storage Modulus Loss Factor Shift Factor
[◦C] [◦F] [Hz] [MPa] [-] log[α(T )]
0 32.0 21.50 2384.66 0.047 10.3

10.00 2342.76 0.049
4.60 2322.34 0.050
2.20 2292.68 0.053
1.00 2248.75 0.057
0.46 2239.56 0.059
0.22 2208.62 0.062
0.10 2156.95 0.070
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Table A.6: Complex modulus data for VeroWhitePlus

Temperature Frequency Storage Modulus Loss Factor Shift Factor
[◦C] [◦F] [Hz] [MPa] [-] log[α(T )]
10 50.0 21.50 2281.23 0.053 9.1

10.00 2235.47 0.056
4.60 2180.45 0.060
2.20 2121.15 0.065
1.00 2058.12 0.072
0.46 1964.55 0.081
0.22 1890.84 0.089
0.10 1818.17 0.095

20 68.0 21.50 1969.47 0.076 7.5
10.00 1909.80 0.082
4.60 1842.74 0.088
2.20 1773.41 0.095
1.00 1698.60 0.102
0.46 1593.90 0.115
0.22 1508.43 0.125
0.10 1432.96 0.134

30 86.0 21.50 1569.42 0.114 5.7
10.00 1492.38 0.123
4.60 1408.94 0.133
2.20 1330.00 0.144
1.00 1238.02 0.158
0.46 1136.25 0.172
0.22 1051.03 0.188
0.10 962.66 0.207

40 104.0 21.50 1055.33 0.193 3.6
10.00 961.30 0.213
4.60 861.61 0.237
2.20 773.71 0.260
1.00 676.98 0.289
0.46 595.90 0.322
0.22 496.55 0.368
0.10 412.04 0.422

50 122.0 21.50 529.97 0.362 1.7
10.00 443.30 0.410
4.60 356.27 0.471
2.20 279.87 0.535
1.00 208.33 0.622
0.46 167.85 0.667
0.22 126.17 0.742
0.10 86.81 0.835

60 140.0 21.50 201.26 0.665 0.0
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Table A.6: Complex modulus data for VeroWhitePlus

Temperature Frequency Storage Modulus Loss Factor Shift Factor
[◦C] [◦F] [Hz] [MPa] [-] log[α(T )]

10.00 143.10 0.761
4.60 97.01 0.861
2.20 64.71 0.944
1.00 42.76 0.944
0.46 28.57 0.983
0.22 20.68 0.917
0.10 14.76 0.832

70 158.0 21.50 51.23 1.023 -1.2
10.00 33.33 1.046
4.60 22.11 0.993
2.20 15.92 0.859
1.00 12.30 0.669
0.46 10.15 0.484
0.22 9.05 0.338
0.10 8.31 0.214

80 176.0 21.50 16.55 0.839 -2.3
10.00 12.59 0.674
4.60 10.34 0.479
2.20 9.17 0.321
1.00 8.46 0.196
0.46 8.14 0.115
0.22 7.96 0.067
0.10 7.86 0.036

90 194.0 21.50 10.46 0.365 -3.2
10.00 9.25 0.249
4.60 8.58 0.148
2.20 8.31 0.085
1.00 8.17 0.046
0.46 8.13 0.024
0.22 8.10 0.013
0.10 8.08 0.007

100 212.0 21.50 9.41 0.130 -3.8
10.00 8.79 0.085
4.60 8.51 0.045
2.20 8.42 0.024
1.00 8.39 0.013
0.46 8.38 0.007
0.22 8.37 0.004
0.10 8.36 0.002
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A.2.2 Results for DM 8420

The DM 8420 specimen was tested at temperatures between 0◦ and 100◦ C. The complex

modulus data is summarized in Table A.7 including the shift factor relationship determined

from the frequency-temperature analysis

Table A.7: Complex modulus data for DM 8420

Temperature Frequency Storage Modulus Loss Factor Shift Factor
[◦C] [◦F] [Hz] [MPa] [-] log[α(T )]
0 32.0 21.50 1576.09 0.083 9.1

10.00 1529.75 0.088
4.60 1504.81 0.091
2.20 1481.40 0.095
1.00 1427.35 0.103
0.46 1432.05 0.103
0.22 1402.53 0.108
0.10 1342.69 0.116

10 50.0 21.50 1503.99 0.090 8.0
10.00 1449.15 0.097
4.60 1385.34 0.105
2.20 1318.21 0.115
1.00 1252.17 0.124
0.46 1142.88 0.141
0.22 1068.90 0.154
0.10 999.41 0.168

20 68.0 21.50 1168.85 0.132 6.5
10.00 1101.87 0.143
4.60 1029.63 0.156
2.20 956.23 0.169
1.00 880.04 0.189
0.46 781.66 0.205
0.22 714.97 0.221
0.10 647.62 0.242

30 86.0 21.50 801.07 0.209 4.8
10.00 723.85 0.230
4.60 648.89 0.253
2.20 575.70 0.277
1.00 499.44 0.310
0.46 422.42 0.343
0.22 369.25 0.371
0.10 308.42 0.400

40 104.0 21.50 411.47 0.377 2.9
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Table A.7: Complex modulus data for DM 8420

Temperature Frequency Storage Modulus Loss Factor Shift Factor
[◦C] [◦F] [Hz] [MPa] [-] log[α(T )]

10.00 340.78 0.421
4.60 277.91 0.468
2.20 227.62 0.515
1.00 175.59 0.565
0.46 141.40 0.619
0.22 106.91 0.671
0.10 79.94 0.720

50 122.0 21.50 160.54 0.641 1.2
10.00 117.43 0.711
4.60 82.17 0.795
2.20 57.22 0.869
1.00 39.62 0.904
0.46 30.11 0.933
0.22 22.35 0.926
0.10 15.87 0.883

60 140.0 21.50 53.13 0.925 0.0
10.00 35.18 0.973
4.60 23.00 0.999
2.20 16.09 0.942
1.00 11.83 0.785
0.46 9.42 0.678
0.22 8.11 0.542
0.10 7.02 0.382

70 158.0 21.50 18.87 0.978 -0.8
10.00 13.20 0.892
4.60 9.91 0.715
2.20 8.16 0.535
1.00 7.04 0.366
0.46 6.53 0.241
0.22 6.23 0.161
0.10 6.01 0.099

80 176.0 21.50 10.00 0.616 -1.6
10.00 8.13 0.462
4.60 7.06 0.309
2.20 6.56 0.196
1.00 6.28 0.112
0.46 6.15 0.067
0.22 6.09 0.040
0.10 6.06 0.022

90 194.0 21.50 7.79 0.261 -2.4
10.00 6.93 0.182
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Table A.7: Complex modulus data for DM 8420

Temperature Frequency Storage Modulus Loss Factor Shift Factor
[◦C] [◦F] [Hz] [MPa] [-] log[α(T )]

4.60 6.51 0.106
2.20 6.36 0.060
1.00 6.30 0.030
0.46 6.26 0.017
0.22 6.25 0.010
0.10 6.24 0.005

100 212.0 21.50 7.36 0.093 -2.9
10.00 6.81 0.071
4.60 6.56 0.037
2.20 6.50 0.020
1.00 6.49 0.011
0.46 6.47 0.006
0.22 6.46 0.004
0.10 6.46 0.002

A.2.3 Results for DM 8430

The DM 8430 specimen was tested at temperatures between 0◦ and 100◦ C. The complex

modulus data is summarized in Table A.8 including the shift factor relationship determined

from the frequency-temperature analysis

Table A.8: Complex modulus data for DM 8430

Temperature Frequency Storage Modulus Loss Factor Shift Factor
[◦C] [◦F] [Hz] [MPa] [-] log[α(T )]
0 32.0 21.50 1739.90 0.114 8.5

10.00 1680.76 0.120
4.60 1653.61 0.125
2.20 1628.34 0.128
1.00 1565.48 0.136
0.46 1587.35 0.136
0.22 1567.62 0.139
0.10 1501.24 0.146

10 50.0 21.50 1728.68 0.113 7.8
10.00 1659.79 0.122
4.60 1579.88 0.132
2.20 1499.57 0.141
1.00 1419.34 0.149
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Table A.8: Complex modulus data for DM 8430

Temperature Frequency Storage Modulus Loss Factor Shift Factor
[◦C] [◦F] [Hz] [MPa] [-] log[α(T )]

0.46 1309.42 0.164
0.22 1230.43 0.175
0.10 1158.88 0.183

20 68.0 21.50 1349.30 0.150 6.3
10.00 1272.60 0.162
4.60 1191.36 0.174
2.20 1111.75 0.186
1.00 1027.38 0.198
0.46 926.46 0.218
0.22 845.36 0.234
0.10 766.70 0.248

30 86.0 21.50 927.03 0.215 4.6
10.00 844.37 0.235
4.60 764.68 0.254
2.20 686.74 0.275
1.00 602.08 0.306
0.46 520.47 0.334
0.22 463.97 0.358
0.10 397.66 0.395

40 104.0 21.50 515.56 0.351 2.8
10.00 436.51 0.392
4.60 366.69 0.434
2.20 306.63 0.479
1.00 242.60 0.529
0.46 200.54 0.594
0.22 151.43 0.645
0.10 109.72 0.752

50 122.0 21.50 222.59 0.599 1.2
10.00 164.83 0.689
4.60 116.65 0.770
2.20 82.99 0.851
1.00 57.09 0.906
0.46 41.32 0.954
0.22 30.03 0.962
0.10 20.85 0.935

60 140.0 21.50 71.67 0.926 0.0
10.00 47.20 0.989
4.60 30.32 1.036
2.20 20.83 0.991
1.00 15.04 0.852
0.46 11.61 0.724
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Table A.8: Complex modulus data for DM 8430

Temperature Frequency Storage Modulus Loss Factor Shift Factor
[◦C] [◦F] [Hz] [MPa] [-] log[α(T )]

0.22 9.89 0.585
0.10 8.50 0.420

70 158.0 21.50 23.66 1.023 -1.0
10.00 16.49 0.919
4.60 12.13 0.758
2.20 9.86 0.571
1.00 8.48 0.384
0.46 7.75 0.260
0.22 7.36 0.173
0.10 7.07 0.102

80 176.0 21.50 11.74 0.650 -1.9
10.00 9.51 0.489
4.60 8.26 0.327
2.20 7.64 0.208
1.00 7.29 0.126
0.46 7.11 0.070
0.22 7.03 0.042
0.10 6.97 0.023

90 194.0 21.50 8.90 0.284 -2.6
10.00 7.96 0.192
4.60 7.49 0.112
2.20 7.32 0.064
1.00 7.24 0.033
0.46 7.20 0.018
0.22 7.18 0.010
0.10 7.17 0.006

100 212.0 21.50 8.31 0.103 -3.2
10.00 7.72 0.073
4.60 7.53 0.038
2.20 7.46 0.020
1.00 7.42 0.011
0.46 7.42 0.006
0.22 7.41 0.004
0.10 7.40 0.002

A.2.4 Results for TangoPlus

The TangoPlus specimen was tested at temperatures between -40◦ and 60◦ C. The com-

plex modulus data is summarized in Table A.9 including the shift factor relationship deter-
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mined from the frequency-temperature analysis

Table A.9: Complex modulus data for TangoPlus

Temperature Frequency Storage Modulus Loss Factor Shift Factor
[◦C] [◦F] [Hz] [MPa] [-] log[α(T )]
-40 -40.0 10.00 1313.93 0.088 10.5

4.60 1314.24 0.088
2.20 1303.20 0.090
1.00 1254.05 0.098
0.46 1262.37 0.099
0.22 1241.47 0.105
0.10 1183.27 0.120

-30 -22.0 10.00 1158.59 0.107 9.1
4.60 1086.65 0.120
2.20 1009.17 0.136
1.00 933.87 0.152
0.46 809.61 0.185
0.22 739.17 0.207
0.10 660.49 0.241

-20 -4.0 10.00 690.53 0.205 7.2
4.60 589.39 0.244
2.20 494.40 0.289
1.00 420.36 0.329
0.46 308.93 0.424
0.22 253.26 0.487
0.10 192.65 0.583

-10 14.0 10.00 233.83 0.486 5.5
4.60 177.90 0.601
2.20 117.50 0.805
1.00 78.31 0.978
0.46 56.98 1.185
0.22 39.17 1.276
0.10 21.67 1.523

0 32.0 10.00 58.50 1.147 4.1
4.60 31.56 1.537
2.20 16.87 1.745
1.00 8.49 1.959
0.46 4.34 2.023
0.22 2.79 1.892
0.10 1.86 1.585

10 50.0 10.00 7.30 2.030 2.9
4.60 4.03 1.968
2.20 2.47 1.663
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Table A.9: Complex modulus data for TangoPlus

Temperature Frequency Storage Modulus Loss Factor Shift Factor
[◦C] [◦F] [Hz] [MPa] [-] log[α(T )]

1.00 1.77 1.230
0.46 1.19 0.925
0.22 0.98 0.708
0.10 0.83 0.529

20 68.0 10.00 2.22 1.181 2.0
4.60 1.45 1.014
2.20 1.11 0.775
1.00 0.90 0.557
0.46 0.76 0.378
0.22 0.69 0.260
0.10 0.64 0.166

30 86.0 10.00 1.28 0.622 1.0
4.60 0.93 0.513
2.20 0.78 0.377
1.00 0.70 0.251
0.46 0.65 0.155
0.22 0.62 0.101
0.10 0.61 0.059

40 104.0 10.00 1.04 0.367 0.5
4.60 0.77 0.274
2.20 0.69 0.183
1.00 0.65 0.112
0.46 0.63 0.067
0.22 0.62 0.041
0.10 0.61 0.021

50 122.0 10.00 0.97 0.258 0.2
4.60 0.73 0.166
2.20 0.67 0.099
1.00 0.65 0.053
0.46 0.64 0.032
0.22 0.64 0.018
0.10 0.63 0.008

60 140.0 10.00 0.96 0.156 0.0
4.60 0.73 0.118
2.20 0.68 0.067
1.00 0.66 0.032
0.46 0.66 0.017
0.22 0.65 0.008
0.10 0.65 0.003
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APPENDIX B

Golla-Hughes-McTavish (GHM) Model Parameters

This appendix presents the GHM parameters used for simulations in this dissertation.

The GHM model approximates the material dissipation function as

sG̃(s) = G∞

[
1 +

nMOT∑
j=1

α̂i
s2 + 2ζ̂iω̂is

s2 + 2ζ̂iω̂is+ ω̂2
i

]
(B.1)

where G∞, α̂i, ζ̂i, and ω̂i are all parameters of the model and nMOT represents the number

of mini-oscillator terms and is chosen based on the desired accuracy of the model. Equation

B.1 is evaluated along the imaginary axis (s = ω) and curve fit to the experimental data

over a frequency range. The curve fit is performed by optimizing the error fit for both

the complex and the imaginary parts using an equal weighting. For each of the testing

scenarios presented in Appendix A, a GHM fit is performed over the frequency range of 10

to 2,000 Hz at various temperatures. The number of terms, n in the GHM approximation

depends on accuracy of the fit and ranges from n = 3 to n = 5 in this dissertation. For

each temperature, the data is shifted on the reduced frequency scale using the procedure

described in Section 3.3.3. This converts the reduced frequency to the frequency values for

a specific temperatures. The temperatures used for the GHM fits, range the data set.
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Table B.1: GHM parameters for DM 8420 printed in the horizontal direction and testing
using the tensile configuration

Temperature G∞ [Pa] i α̂i [-] ω̂i [rad/s] ζ̂i [-]
40◦ C 9.58e+03 1 2.70e+04 7.49e+05 1.33e+03

2 8.37e+04 4.34e+04 1.38e+03
3 2.47e+04 7.68e+05 2.10e+02
4 3.58e+04 3.93e+06 1.64e+02

50◦ C 1.31e+05 1 3.08e+03 5.11e+04 1.34e+03
2 1.94e+03 4.47e+06 1.31e+03
3 1.93e+03 6.44e+05 1.38e+03
4 2.46e+03 3.26e+07 1.45e+03

60◦ C 1.12e+08 1 1.66e+00 2.16e+05 6.17e+02
2 2.10e+00 9.02e+06 1.32e+03
3 1.27e+00 2.74e+06 1.54e+03
4 1.92e+03 3.43e+07 8.78e-01

70◦ C 2.76e+07 1 1.90e+00 3.46e+05 1.41e+03
2 5.94e+00 6.46e+06 1.21e+03
3 2.86e+00 1.36e+06 1.26e+03
4 1.13e+01 2.91e+07 7.74e+02

80◦ C 1.26e+07 1 9.07e-01 3.29e+05 1.27e+03
2 4.85e+00 6.03e+06 1.31e+03
3 1.88e+00 1.45e+06 1.42e+03
4 1.61e+01 1.93e+07 6.92e+02

90◦ C 8.12e+06 1 3.00e-01 2.54e+05 1.02e+03
2 1.81e+00 5.51e+06 1.44e+03
3 5.68e-01 1.17e+06 1.60e+03
4 1.16e+01 9.24e+06 3.44e+02

100◦ C 7.19e+06 1 7.91e-02 3.53e+05 1.69e+03
2 7.65e-01 2.67e+06 5.38e+02
3 1.78e-01 4.79e+05 3.40e+02
4 6.85e+00 2.65e+07 4.67e+02

110◦ C 7.13e+06 1 7.67e-02 7.49e+05 5.24e+02
2 5.99e-03 2.87e+07 1.50e+02
3 1.27e-01 1.11e+07 1.39e+03
4 2.01e+00 2.88e+07 6.14e+02
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Figure B.1: GHM fit for DM 8420 printed in the horizontal direction and testing using the
tensile configuration
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Figure B.2: GHM fit for DM 8420 printed in the vertical direction and testing using the
tensile configuration
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Table B.2: GHM parameters for DM 8420 printed in the vertical direction and testing using
the tensile configuration

Temperature G∞ [Pa] i α̂i [-] ω̂i [rad/s] ζ̂i [-]
40◦ C 3.16e+04 1 2.78e+04 6.40e+01 2.11e+00

2 7.03e+03 7.75e+05 2.24e+02
3 9.47e+03 4.38e+05 7.12e+02
4 1.04e+04 7.51e+06 3.56e+02

50◦ C 3.14e+05 1 1.42e+03 5.26e+04 1.36e+03
2 7.02e+02 8.74e+05 5.41e+02
3 6.05e+02 6.85e+05 1.76e+03
4 7.34e+02 1.11e+07 1.27e+03
5 3.68e+03 3.29e+07 1.34e+02

60◦ C 4.04e+04 1 2.51e+03 4.64e+05 1.43e+03
2 4.22e+03 2.71e+06 1.97e+03
3 3.37e+03 1.30e+04 2.75e+02
4 2.93e+03 3.56e+06 9.17e+02
5 8.20e+03 1.16e+07 5.43e+02

70◦ C 7.25e+03 1 6.63e+03 8.38e+04 1.16e+03
2 1.59e+04 3.51e+06 1.29e+03
3 7.55e+03 7.95e+05 1.22e+03
4 4.44e+04 2.29e+07 1.06e+03

80◦ C 9.64e+06 1 1.20e+00 2.63e+05 1.30e+03
2 5.01e+00 4.67e+06 9.77e+02
3 2.37e+00 1.77e+06 1.50e+03
4 2.32e+01 2.76e+07 8.12e+02

90◦ C 6.61e+06 1 4.45e-01 1.53e+05 1.14e+03
2 1.68e+01 3.10e+07 6.82e+02
3 1.19e+00 9.63e+05 8.34e+02
4 2.55e+00 9.19e+06 1.55e+03

100◦ C 6.86e+06 1 1.92e-01 5.12e+05 1.08e+03
2 4.64e+02 3.42e+07 4.96e+00
3 1.79e+00 1.39e+07 1.04e+03
4 3.89e-01 2.72e+06 1.61e+03

110◦ C 7.02e+06 1 4.69e-02 4.43e+05 1.27e+03
2 3.70e-01 1.00e+07 1.75e+03
3 1.84e+00 4.56e+07 1.80e+01
4 1.32e+02 2.76e+07 6.84e+00

223



Table B.3: GHM parameters for DM 8420 printed in the horizontal direction and testing
using the cantilevered configuration

Temperature G∞ [Pa] i α̂i [-] ω̂i [rad/s] ζ̂i [-]
50◦ C 1.03e+05 1 3.22e+03 6.24e+04 1.32e+03

2 2.28e+03 4.53e+06 1.33e+03
3 2.02e+03 8.14e+05 1.41e+03
4 3.46e+03 3.32e+07 1.41e+03

60◦ C 6.88e+07 1 1.49e+00 3.53e+05 1.20e+03
2 3.23e+00 4.56e+06 5.16e+02
3 1.97e+00 2.22e+06 1.45e+03
4 4.46e+02 3.31e+07 5.28e+00

70◦ C 1.66e+07 1 1.28e+00 1.83e+03 9.75e+00
2 4.31e+00 4.07e+05 9.80e+01
3 2.28e+00 1.25e+05 1.31e+02
4 1.39e+01 2.67e+07 1.02e+03

80◦ C 8.97e+06 1 7.11e-01 4.07e+05 1.38e+03
2 2.93e+00 4.69e+06 6.08e+02
3 1.36e+00 2.63e+06 1.53e+03
4 1.39e+01 2.84e+07 5.44e+02

90◦ C 7.17e+06 1 1.64e-01 3.42e+05 1.23e+03
2 8.09e-01 5.37e+06 1.02e+03
3 5.35e+00 3.30e+06 6.95e+01
4 2.23e-01 2.07e+06 1.65e+03

100◦ C 7.11e+06 1 2.94e-02 1.09e+06 1.07e+03
2 2.30e+00 1.80e+06 1.74e+01
3 1.13e-01 5.29e+06 1.44e+03
4 2.00e-01 6.82e+06 6.17e+02
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Figure B.3: GHM fit for DM 8420 printed in the horizontal direction and testing using the
cantilevered configuration
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Figure B.4: GHM fit for DM 8420 printed in the vertical direction and testing using the
cantilevered configuration
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Table B.4: GHM parameters for DM 8420 printed in the vertical direction and testing using
the cantilevered configuration

Temperature G∞ [Pa] i α̂i [-] ω̂i [rad/s] ζ̂i [-]
50◦ C 1.28e+05 1 2.69e+03 6.31e+04 1.32e+03

2 1.82e+03 4.25e+06 1.34e+03
3 1.44e+03 8.25e+05 1.45e+03
4 2.81e+03 3.07e+07 1.42e+03

60◦ C 7.53e+07 1 1.51e+00 3.80e+05 1.30e+03
2 2.76e+00 3.52e+06 4.06e+02
3 1.91e+00 2.51e+06 1.47e+03
4 4.21e+03 2.77e+07 4.36e-01

70◦ C 1.98e+07 1 1.30e+00 3.58e+03 1.59e+01
2 4.40e+00 7.37e+04 1.63e+01
3 2.19e+00 3.74e+04 3.85e+01
4 1.26e+01 2.81e+06 9.65e+01

80◦ C 9.48e+06 1 8.12e-01 5.37e+05 1.64e+03
2 2.95e+00 3.33e+06 4.91e+02
3 1.46e+00 1.77e+06 1.04e+03
4 1.37e+01 2.65e+07 6.45e+02

90◦ C 5.57e+04 1 1.34e+02 5.26e+03 9.89e+02
2 2.98e+01 7.58e+05 1.52e+03
3 1.03e+02 4.55e+06 1.44e+03
4 6.85e+02 2.82e+07 9.15e+02

100◦ C 7.03e+06 1 4.27e-02 7.03e+05 1.71e+03
2 1.23e-01 1.40e+06 4.93e+02
3 4.57e+00 1.35e+07 7.24e+01
4 3.33e-01 1.15e+06 9.13e+01
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Table B.5: GHM parameters for VeroWhitePlus

Temperature G∞ [Pa] i α̂i [-] ω̂i [rad/s] ζ̂i [-]
20◦ C 1.78e+04 1 1.31e+04 1.74e+06 2.14e+02

2 1.44e+04 1.56e+05 8.65e+02
3 9.70e+03 5.93e+05 5.06e+02
4 8.95e+04 2.00e+03 8.77e+02

30◦ C 1.46e+04 1 1.36e+04 4.59e+05 7.69e+02
2 3.34e+04 1.29e+07 2.48e+02
3 8.94e+03 1.84e+06 8.26e+02
4 8.99e+04 2.72e+04 1.32e+03
5 7.42e+03 2.83e+06 4.88e+02

40◦ C 2.15e+05 1 1.18e+03 8.80e+05 9.98e+02
2 7.50e+02 7.29e+04 1.71e+03
3 3.36e+03 4.08e+04 1.46e+03
4 8.51e+02 4.82e+06 1.18e+03
5 2.62e+02 7.35e+06 1.40e+03
6 4.22e+04 2.98e+07 2.38e+01

50◦ C 8.08e+05 1 5.12e+02 1.18e+04 2.85e+02
2 3.61e+02 2.59e+06 9.55e+02
3 2.61e+02 2.75e+05 6.03e+02
4 1.71e+03 4.38e+07 4.36e+02

60◦ C 7.02e+04 1 7.82e+02 7.05e+03 1.15e+02
2 2.38e+03 8.25e+05 1.20e+03
3 1.42e+03 7.31e+03 1.20e+02
4 4.24e+03 3.38e+06 7.82e+02
5 9.90e+04 3.87e+07 5.58e+01

70◦ C 4.84e+03 1 9.83e+03 8.73e+04 1.16e+03
2 2.21e+04 6.87e+06 1.31e+03
3 1.70e+04 1.63e+06 1.34e+03
4 6.99e+04 2.48e+07 9.33e+02

80◦ C 1.07e+07 1 8.93e-01 4.39e+05 1.48e+03
2 1.65e+01 2.86e+07 8.19e+02
3 3.18e+00 2.80e+06 9.04e+02

90◦ C 8.51e+06 1 1.49e-01 6.85e+05 1.21e+03
2 5.86e-01 1.60e+06 6.20e+02
3 5.07e+00 3.72e+07 1.00e+03

100◦ C 8.03e+06 1 7.05e-02 3.13e+05 2.28e+02
2 3.52e+00 3.64e+07 3.72e+01
3 6.53e-01 2.40e+06 1.05e+02
4 1.64e+00 3.66e+07 6.54e+01
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Figure B.5: GHM fit for VeroWhitePlus
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Figure B.6: GHM fit for DM 8430
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Table B.6: GHM parameters for DM 8430

Temperature G∞ [Pa] i α̂i [-] ω̂i [rad/s] ζ̂i [-]
20◦ C 2.14e+06 1 4.65e+02 3.81e+04 1.48e+03

2 5.29e+01 6.86e+06 1.56e+02
3 1.04e+02 1.42e+07 1.72e+03
4 1.05e+02 6.34e+03 6.88e+00

30◦ C 6.86e+06 1 7.94e+01 2.86e+03 1.30e+02
2 2.90e+01 8.56e+02 2.15e+00
3 2.88e+01 8.56e+04 3.35e+01
4 3.13e+01 1.29e+04 8.06e-01

40◦ C 4.50e+04 1 4.42e+03 9.47e+05 1.65e+03
2 4.45e+03 2.60e+06 6.20e+02
3 6.70e+03 4.98e+04 1.29e+03
4 6.55e+03 3.37e+07 1.26e+03

50◦ C 5.83e+05 1 2.48e+02 5.60e+04 6.49e+02
2 3.86e+02 5.28e+06 7.61e+02
3 2.36e+02 6.70e+05 7.44e+02
4 3.90e+03 3.89e+07 8.12e+01

60◦ C 6.53e+03 1 8.05e+03 8.43e+02 7.71e+00
2 1.26e+04 1.57e+06 1.24e+03
3 5.35e+03 1.29e+07 1.68e+02
4 2.44e+04 2.44e+06 2.81e+02
5 5.68e+04 4.91e+07 5.06e+02

70◦ C 8.88e+06 1 1.09e+00 2.35e+05 1.37e+03
2 9.22e+00 6.87e+06 8.02e+02
3 2.85e+00 2.40e+06 1.84e+03
4 4.21e+02 4.20e+07 2.71e+01

80◦ C 6.98e+06 1 3.44e-01 5.53e+05 1.64e+03
2 2.36e+00 6.09e+06 7.11e+02
3 7.20e-01 9.65e+05 6.12e+02
4 1.50e+01 2.87e+06 3.39e+01

90◦ C 6.24e+06 1 1.24e-01 1.08e+06 1.60e+03
2 1.70e+00 1.90e+07 5.51e+02
3 4.13e-01 6.42e+06 1.18e+03
4 2.77e+00 2.90e+07 2.28e+02

100◦ C 6.24e+06 1 4.51e-02 3.11e+06 1.51e+03
2 1.76e+00 4.17e+07 1.19e+01
3 1.84e-01 1.70e+07 1.15e+03
4 6.20e+01 2.62e+07 4.27e+00
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Table B.7: GHM parameters for DM 8420

Temperature G∞ [Pa] i α̂i [-] ω̂i [rad/s] ζ̂i [-]
20◦ C 5.98e+04 1 5.95e+03 3.29e+07 4.56e+02

2 5.10e+03 1.20e+07 1.53e+03
3 4.51e+03 1.23e+06 1.33e+03
4 1.92e+04 4.55e+04 1.49e+03

30◦ C 9.63e+03 1 2.55e+04 1.01e+06 1.25e+03
2 3.10e+04 6.33e+06 1.02e+03
3 7.79e+04 1.04e+03 2.69e+01
4 5.59e+04 3.17e+06 3.75e+01

40◦ C 1.50e+05 1 1.10e+03 1.10e+06 1.75e+03
2 4.90e+02 1.11e+06 1.79e+03
3 2.65e+03 1.81e+04 4.73e+02
4 1.89e+03 2.11e+06 4.31e+02
5 4.21e+04 3.78e+07 4.73e+01

50◦ C 1.11e+08 1 1.61e+00 3.33e+03 1.11e+01
2 3.60e+00 7.26e+06 3.49e+02
3 1.98e+00 4.01e+06 1.67e+03

60◦ C 1.03e+04 1 7.44e+03 9.73e+04 8.68e+02
2 1.94e+04 4.99e+06 7.08e+02
3 1.05e+04 6.82e+05 5.72e+02
4 7.96e+04 3.49e+07 2.43e+02

70◦ C 8.11e+06 1 1.99e+00 2.55e+05 1.90e+03
2 1.55e+01 1.78e+07 1.78e+03
3 5.13e+00 2.60e+06 1.95e+03
4 6.06e+02 4.79e+07 3.11e+01

80◦ C 8.07e+06 1 5.08e-01 2.69e+05 9.21e+02
2 3.55e+00 1.63e+07 7.56e+02
3 1.86e+00 1.30e+06 5.13e+02
4 1.08e+01 4.93e+07 1.20e+03

90◦ C 7.33e+06 1 2.44e-01 7.37e+05 8.98e+02
2 1.92e+01 3.16e+07 7.21e+01
3 9.44e+00 3.02e+07 1.41e+02
4 6.90e-01 8.18e+06 1.53e+03

100◦ C 7.18e+06 1 4.58e-02 1.06e+06 1.53e+03
2 1.21e+00 3.60e+07 1.29e+02
3 3.16e-01 6.04e+06 5.95e+02
4 9.88e+00 3.16e+07 2.33e+01
5 7.95e+01 3.28e+07 2.73e+00
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Figure B.7: GHM fit for DM 8420
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Figure B.8: GHM fit for TangoPlus
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Table B.8: GHM parameters for TangoPlus

Temperature G∞ [Pa] i α̂i [-] ω̂i [rad/s] ζ̂i [-]
-20◦ C 7.53e+03 1 2.54e+04 8.93e+06 1.21e+03

2 2.82e+04 2.25e+05 1.36e+03
3 5.81e+04 2.87e+07 1.58e+02
4 8.10e+04 1.07e+04 1.32e+03
5 2.18e+04 5.82e+04 5.98e+01

-10◦ C 5.49e+03 1 7.71e+04 6.17e+04 1.33e+03
2 3.92e+04 8.47e+05 1.34e+03
3 2.54e+04 4.14e+06 1.31e+03
4 3.69e+04 2.81e+05 1.52e+01

◦ C 2.71e+04 1 1.01e+04 3.09e+04 1.88e+02
2 7.80e+03 1.43e+07 1.65e+03
3 6.09e+03 2.29e+06 1.43e+03
4 4.05e+04 3.10e+07 7.76e+01

10◦ C 1.38e+04 1 7.69e+03 6.13e+05 1.28e+03
2 1.87e+04 1.94e+05 5.36e+01
3 2.80e+03 7.43e+04 1.34e+03
4 8.66e+04 5.08e+06 2.68e+01

20◦ C 2.16e+06 1 4.70e+00 1.80e+05 1.86e+03
2 3.29e+01 9.69e+03 4.87e+00
3 1.11e+01 9.95e+02 2.06e+00
4 9.13e+01 4.24e+05 4.49e+01
5 5.39e+02 6.21e+06 9.06e+00
6 1.17e+03 6.13e+06 6.93e+00

30◦ C 3.43e+06 1 2.42e+00 2.40e+05 4.43e+02
2 7.15e+00 9.52e+05 1.56e+00
3 9.72e+00 1.30e+05 4.27e+01
4 7.10e+01 4.86e+05 2.05e+01

40◦ C 1.73e+06 1 1.35e+00 9.32e+05 1.55e+03
2 8.05e+00 1.15e+07 1.40e+03
3 2.00e+00 3.55e+06 1.54e+03
4 9.27e+01 2.64e+07 4.30e+02

50◦ C 9.30e+05 1 1.02e+00 8.24e+05 1.61e+03
2 1.89e+01 8.35e+06 2.34e+02
3 2.91e+00 2.00e+06 4.39e+02
4 1.53e+03 3.15e+07 7.99e+00

60◦ C 7.32e+05 1 5.82e-01 3.86e+06 1.41e+03
2 6.20e-01 4.63e+06 1.32e+03
3 3.73e-01 6.06e+05 1.22e+03
4 2.25e+01 2.67e+07 4.31e+02
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[7] S. A. Cummer, J. Christensen, and A. Alù, “Controlling sound with acoustic metama-
terials,” Nature Reviews Materials, vol. 1, no. 3, p. 16001, 2016.

[8] R. Mart́ınez-Sala, J. Sancho, J. V. Sánchez, V. Gómez, J. Llinares, and F. Meseguer,
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