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PREFACE

The work contained in this thesis was started around 2012 in collaboration with my

friend and colleague Brandon Demory from P.C. Ku’s group in the EECS department

at the University of Michigan. Our goal was to make quantum dot emission brighter

and faster with the aid of plasmonic coupling to silver, enhancing the emission of an

entire 2-dimensional array of dots using a single silver coating [18].

Our work on this project attracted the attention of Professor Barry Sander’s of the

University of Calgary in 2014. He was interested in using our ability to make regular

2-dimensional arrays of quantum dots to study cooperate effects in 2 dimensions -

i.e. superradiance phenomena, as he had recently worked with a group that had

experimentally demonstrated cooperative effects in 1-dimension [84]. It turned out

that our quantum dots were not a good candidate for experimental demonstration

of cooperative effects in two dimensions due to issues with their inhomogeneity, so

I began a theoretical investigation into how the phenomena would behave in two

dimensions, which was unstudied unlike one dimensions [47] and three dimensions

[49]. I discovered that the one, two, and thee dimensional theories could all be made

to look alike, developing a theory of cooperative effects in any dimension [35].
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ABSTRACT

Matter coupled to light can emit photons. In the absence of an external field this

process is known as spontaneous emission. The radiation properties depends in detail

the nature of the emitter. In this thesis we consider a two level point-source emitter,

and examine how the emission is affected by engineering the local environment.

We begin by studying analytically how embedding an emitter in a multi-layer

cylindrical structure with radius much smaller than the emission wavelength alters

the intensity of the emitted light. We find that for carefully chosen metal-dielectric

interfaces, the emission can be strongly enhanced by the plasmonic effect.

With this intuition, we experimentally study an InGaN semiconductor quantum

dot-in-wire structure as our two level emitter, and manipulate the local field environ-

ment by coupling to a lossy plasmonic cavity. We find that the strong enhancement

of the field around the quantum dot due to the metal more than compensates for the

non-radiative losses, leading to order-of-magnitude increases in the radiative sponta-

neous emission rate, as well as overall brightness.

We then examine how the emission of light can be affected by other nearby emit-

ters. The cooperative effects are strongly dependent on the dimension of the system

which controls the electromagnetic mode overlap of the emitters. We present a unified

formalism capturing how these cooperative effects change from one dimension to the

next.

xi



Cooperative light scattering between emitters underpins collective effects such as

super- and sub-radiance, and we numerically investigate how our previous results give

rise to the key experimental signatures that can be used to identify those phenomena.

Specifically, we study how the superadiant decay rate scales with the size of a 2-

dimensional atomic cloud, and how cooperative effects between a small number of

emitters alter the emission spectrum of strongly driven resonance fluorescence.

xii



CHAPTER I

Introduction

In this work we study the effect of geometry on spontaneous emission processes.

We pay particular attention to how the spontaneous emission of an emitter may be

manipulated by changing the local environment with the addition of metal or dielec-

tric materials, or by changing the effective dimension of the system using a structure

to confine the electromagnetic field. We begin with a discussion of the physics un-

derlying spontaneous emission, and then review means of obtaining approximate and

exact analytic expressions for the spontaneous emission in terms of the classical elec-

tromagnetic field.

1.1 Spontaneous Emission

Spontaneous emission occurs when a quantum mechanical system emits photon

when transitioning from a high energy state to a low energy state. It can occur in the

absence of an external driving field. In this work we will be concerned with a 2-level

quantum system. The rate of spontaneous emission is governed by Fermi’s golden

rule.
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1.1.1 Fermi Golden Rule

Fermi’s golden rule describes the transition probabilities of a system described by

a Hamiltonian H = H0 + H ′, where H ′ is a perturbation of Hamiltonian H0. Then

if states |i〉 and |j〉 are energy eigenstates of H0, the transition rate between these

states is given by [24]

Γi→j =
2π

~
|〈j|H|i〉|2ρ(ν) (1.1)

where ρ(ν) is the density of photon states at frequency ν. Calculation of the transition

rate then simply requires knowledge of the matrix element |〈j|H ′|i〉| and ρ.

1.1.2 Purcell Effect

The Purcell effect describes how the spontaneous emission rate changes due to the

presence of a cavity. In a cavity, the density of modes

ρc(ω) =
1

∆νV
=

1

ν

Q

V
, (1.2)

Q =∆ν/ν (1.3)

where V is the volume of a single mode and ∆ν is linewidth of the cavity (spacing

between modes) and Q is the quality factor. The density of modes in 3-dimensional

free space is [65]

ρf (ν) =
8πn3ν2

c3
. (1.4)

The Purcell factor Fp is the amount the emission rate increases in the cavity [65],

Fp =
Γi→j,c
Γi→j,f

=
3

4π2

(
λ

n

)3
Q

V
∝ ρc
ρf
. (1.5)

2



1.1.3 Radiative Enhancement

The Purcell factor measures the total change in the emission rate, but in general

we have that [44]

Γtot = Γrad + Γnr + Γg, (1.6)

where Γrad is the radiative decay, Γnr is the nonradiative decay, and Γg is the decay

into guided modes of the system. We can isolate the radiative part following the

treatment of [44] by examining the change in the electric field over time, which gives

the emitted power

(
dE

dt

)
rad

=
c

8π

∫
|
(
E(0) +E(R)

)
×
(
H(0) +H(R)

)
|2r→∞r2dΩ, (1.7)

=
ck4

3
|dtot|2. (1.8)

Here E(0) is the electric field in free space and E(R) is the additional field from

reflection off the cavity. From (1.8) we see that

Γrad

Γ0

=
|dtot|2

|d0|2
. (1.9)

Here Γ0 is the emission rate in free space and d0 is the free space dipole moment.

Combining (1.8) and (1.9) we see that the radiative emission rate is proportional to

the local field E,

Γrad ∝ |d0 ·E|2ρf . (1.10)

3



1.1.4 Quasistatic Approximation

In general to find the electric field in a given geometry it is necessary to solve for the

dyadic Green’s function from Maxwell’s equations. However, significant implication

can be made when all objects of interest have subwavelength spacing (eikr/r ≈ 1/r),

so that the field is essentially constant over this region. In that case, we can invoke the

quasistatic approximation and find the electric field using scalar potentials, and have

that the magnetic field H ≈ 0. In this case, there are only two Maxwell’s equations

∇ ·D =ρC (1.11)

∇×E =0 (1.12)

A dipole emitter has charge density [44, 11]

ρC = − (d0 · ∇′) δ(3) (r − r′) e−iωt (1.13)

In that case the electric field is given by

E = −∇ (d0 · ∇′) g(r, r′), (1.14)

where the potential g is the solution to Poisson’s equation with r being the position

of the dipole in region with dielectric constant ε1

∇2g = − 1

ε1
δ(3)(r − r′). (1.15)

Here ∇′ is the gradient with respect to the primed coordinates and we suppress the

time dependence of the electric field. The radiative enhancement is then calculated

4



(a) (b)

Figure 1.1: Images taken from [44]. This shows a comparison of the quasistatic ap-
proximation vs a full analytic solution in how in affects the spontaneous
emission near a nanofiber. (a) The nanofiber has ε = 3 (b) The nanofiber
has ε = 10.

using

Γrad

Γ0

=

∣∣∣∣ d0 ·E
d0 ·E0

∣∣∣∣2 . (1.16)

Numerical study on the quasistatic approximation’s applicability shows it is very

accurate for [44]

ka < 1/ε. (1.17)

As can be seen from Fig. 1.1 the quasi-static approximation remains reasonably ac-

curate for ka < 1/
√
ε.

1.2 Quantization of the electromagnetic field

Up to now we have discussed radiation from the perspective of quantum mechanics,

but to understand cooperative light scattering phenomenon it will be necessary to

delve into the realm of quantum electrodynamics, where light is described in terms

5



of photons, which are modes of the electromagnetic field. To quantize the field, we

begin with Maxwell’s equations

∇ ·B =0 (1.18)

∇ ·D =ρf (1.19)

∇×E =− ∂tB (1.20)

∇×H =Jf + ∂tD (1.21)

and take the source terms Jf = 0 and ρf = 0 Both the potential A and electric field

E satisfy very similar wave equations

(
∇2 − 1

c2
∂2
t

)
A =0 (1.22)(

∇2 − 1

c2
∂2
t

)
E =0 (1.23)

Because these fields satisfy a wave equation we can write them as a sum over modes

of the field that satisfy the wave equation, and assume they satisfy a separable form

E(r, t) =
∑
k,l

ck,luk,l(r)âk,l(t) +H.c. (1.24)

The normalization constant can be found by requiring the electromagnetic field por-

tion of the Hamiltonian appear as a harmonic oscillator

HF =
1

8π

∫ (
|E|2 + |B|2

)
dV :=

∑
k,l

ωk,l

(
â†k,l(t)âk,l(t) +

1

2

)
(1.25)

6



The 1/2 is the zero point energy and for the purposes of this thesis will be discarded.

We then have

E(r, t) = i
∑
k,l

(2πωk,l)
1/2 (âk,l(t)uk,l(r) +H.c.) , (1.26)

where the uk,l(r) have the normalization condition

1

V

∫
V

u†k,l(r) · uk,l(r)dV = 1 (1.27)

Furthermore the operators uk,l(r) and âk,l(t) satisfy the boundary conditions

(
∇2 +

ω2
k,l

c2

)
uk,l(r) =0 (1.28)

(
∂2
t + ω2

k,l

)
ak,l(t) =0 (1.29)

The second equation implies harmonic eiωk,lt time dependence of the photon creation

operator ak,l. The spatial mode uk,l(r) depends in detail upon the geometry of the

system. One common choice is the quantize the field in a large box of volume V , with

the requirement the field vanishes at the box boundary. In this case traveling waves

satisfy (1.28) and we can write

Ê(r)

B̂(r)

 =
∑
k

2∑
l=1

√
2πωk,l

V

 êl

k̂ × êl

(eik·râkl(t) + H. c.
)

(1.30)

Here the photon creation operator â†kl producing a photon with wavevector k,

frequency ωk,l, and polarization êl, k̂ · êl = 0.

7



1.3 Dyadic Green’s function

As we saw in a previous section, the rate of spontaneous emission is proportional

to the local electromagnetic field. In this previous section, we described an approxi-

mation for obtaining the electromagnetic field in the limit the object is very small. In

general, we can obtain an exact result for the electromagnetic field using the method

of Dyadic Green’s functions.

We sketch the derivation of electromagnetic Green’s functions Here. We begin

by considering the relationships between the electromagnetic field and their vector

potential A and scalar potential φ for a material with electric permittivity ε and

magnetic permeability µ:

E(r) =iωA(r)−∇φ(r) (1.31)

H(r) =
1

µ
∇×A(r) (1.32)

Taking the curl of the microscopic Maxwell’s equations we find the wave equation

∇×∇×A(r) = µJ − iωµε (iωA(r)−∇φ(r)) (1.33)

We are still free to choose a gauge condition for A, and for the simplicity of the

Dyadic Green’s function it will be convenient to choose Lorentz gauge

∇ ·A(r) = iωµεφ(r) (1.34)

We can use this gauge condition and the identity

∇×∇× u = −∇2u+∇ (∇ · u) , (1.35)

8



valid for any u to find, assuming harmonic fields, that

(
∇2 + k2

)
A(r) = −µJ(r) (1.36)

We can now construct a scalar Green’s function for the vector potential by solving

for the case of a point source, i.e.

(
∇2 + k2

)
G(r, r′) = −δ(r − r′) (1.37)

where r is the observation point and r′ the position of a source, and δ the delta

function. Using this G we calculate A by summing over all the individual sources

A(r) = µ

∫
V

J(r′)G(r, r′)dV ′ (1.38)

For a point source J(r) = (iµω)−1δ(r − r′)x̂ we find

A(r) =
1

iω
G(r, r′)x̂ (1.39)

Using (1.31) and (1.32) we find

E(r) = iω

[
1 +

1

k2
∇∇·

]
A(r) (1.40)

Returning to Maxwell’s Equations we have the inhomogenous wave equation for the

electromagnetic field

∇×∇×E(r)− k2E(r) = iωµJ(r) (1.41)
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We can write a Dyadic Green’s function solution to this wave equation as

∇×∇×
←→
G (r, r′)− k2←→G (r, r′) = 13δ(r − r′) (1.42)

where 13 = x̂ ⊗ x̂ + ŷ ⊗ ŷ + ẑ ⊗ ẑ is the 3-dimensional unit dyad. The connection

between this Green’s function and the field E is

E(r) = E0(r) + iω

∫
V

←→
G (r, r′) · J(r′)dV ′ (1.43)

where E0(r) is a solution to (1.41) when J = 0. Similarly we can write an equation

for H(r)

H(r) = H0(r) +

∫
V

[
∇×

←→
G (r, r′)

]
· J(r′)dV ′ (1.44)

Comparing the Green’s functions for E(r) and A(r), we find

←→
G (r, r′) =DG(r, r′) (1.45)

D :=13 +
1

k2
∇∇ (1.46)

Once we have the Dyadic Green’s function, we can calculate the spontaneous emission

rate of a dipole emitter at position ri with dipole moment µi as [22, 32]

Γtot =
2ω2

0

ε0c2~
Im
[
µ∗i ·
←→
G (ω0, ri, ri) · µi

]
(1.47)

As expected, the total emission is proportional to the electromagnetic field.
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1.4 Outline of thesis

In the present chapter we outlined key physical and mathematical concepts that

will serve as a framework for the subsequent parts of this thesis. In chapter 2 we use

the quasi-static approximation and examine the radiative enhancement of a multi-

layer concentric cylinder structure. These results provide intuition into the results of

chapter 3, where we experimentally and numerically investigate plasmonic enhance-

ment of an InGaN single photon source in a truncated pillar structure. In chapter 4

we will look at the role dimension plays in the properties of cooperative light scatter-

ing phenomenon, that serve as the precursor to important experimentally observable

phenomena such as superradiance. In chapter 5, we will apply the theory of the

previous chapter to obtain signatures of superradiance in the minimally studied two

dimensional case. We will also examine the interplay between the photon mediated

cooperative coupling between atoms and the dressing of individual atoms with a

strong driving laser field.
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CHAPTER II

Radiative enhancement of cylindrical nano-pillar:

theory

In this section we analytically explore how metal and dielectric coatings change the

spontaneous emission of an infinite dielectric cylinder. Multi-layer cylinders, spheres,

and planar slabs have all been the subject of considerable study. We will review some

of the previous work to understand how dielectric coatings change the spontaneous

emission rate, and present our own simple analytic formula for how the spontaneous

emission rate is changed in the context of the quasi-static approximation.

2.1 Slabs and Mirrors

It was predicted theoretically [60, 10] and shown experimentally [21] that the

spontaneous emission of molecules near a perfectly conducting mirror was oscillatory

dependent upon the distance to the mirror. Such a perfectly conducting mirror could

be treated by the method of images, where the result is due to the fact that the

electromagnetic field of one emitter effects that of the other by modification of the

electromagnetic environment. Later authors realized that further improvements could

be made using multi-layer structures, and formed cavities using planar distributed

bragg reflector (DBR) mirrors [85]. By using metal/dielectric alternating layers, en-
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hancement by of the spontaneous emission rate by hyperbolic metamaterials has been

considered, which yielded broadband purcell enhancement [38].

2.2 Spheres

Inside a nanosphere of dielectric constant ε1 with surrounding medium described

by dielectric ε2 we have an enhancement of the spotaneous emission rate compared

to when the nanosphere is not present [12]

Γ

Γ0

=

(
3

2 + ε1/ε2

)2

(2.1)

Study has also been done on the multi-layered sphere case, with a derivation of a

complicated expression for the dyadic Green’s function for a multi-layered spherical

structure [51]. When alternating metal and dielectric layers are used, hyperbolic

metamaterials can be constructed, and these structures have been studied with the

goal of optical cloaking [46].

2.3 Cylinders

Previous work has been done investigating spontaneous emission near for an emit-

ter near a cylindrical structure [44, 11] in the quasistatic approximation. Dyadic

Green’s functions have also been thoroughly investigated in the cylindrical geometry.

For the case of a photonic crystal made of cylinders, the dyadic Green’s function found

in [30] shows that the local density of states, proportional to the spontaneous emission

rate, can be manipulated by an order of magnitude. We also have dyadic Green’s

function for multi-layered cylindrical structures [50] that can be used to calculate the

spontaneous emission rate.
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2.4 Analytic infinite nano-cylinder

In this section we will derive results for the change in spontaneous emission rate

for a dipole emitter embedded in a multi-latyer nano-cylinder with different dielectric

constants for each later. We will use this structure to provide intuition to compare

to theoretical and simulation results for a truncated cylinder [18]. Our treatment

follows that of [11], but considers the case of a dipole embedded inside the cylinder,

and also extends the results to the case of multiple concentric cylinders with different

dielectric constants.

2.4.1 Two dielectric regions

We consider an infinite dielectric cylinder of radius R with possibly complex di-

electric constant ε1 surrounded by a media of dilectric constant ε2. We will consider

a point charge at position ρ′ and solve for the field at position ρ. Poisson’s equation

for a point charge in this case gives

∇2g(r, r′) = −4π

ρ
δ(ρ− ρ′)δ(φ− φ′)δ(z − z′) (2.2)

Using [44, 11] we can expand the delta function in cylindrical coordinates

δ(z − z′) =
1

π

∫ ∞
0

dk cos k(z − z′) (2.3)

δ(φ− φ′) =
1

2π

∞∑
m=0

(2− δm0) cosm(φ− φ′) (2.4)

which allows us to write g(r, r′) as

g(r, r′) =
1

2π2

∞∑
m=0

∫ ∞
0

(2− δm0) cosm(φ− φ′) cos k(z − z′)gm(k, ρ, ρ′), (2.5)
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where the radial component of the green’s function gm(k, ρ, ρ′) satisfies Bessel’s equa-

tion

1

ρ
∂ρ (ρ∂ρgm)−

(
k2 +

m2

ρ2

)
gm = −4π

ρ
δ(ρ− ρ′) (2.6)

The two linearly independent solutions to (2.6) are the modified Bessel functions

Im(kρ) and Km(kρ). We consider the form of gm in regions ρ < ρ′ < R, ρ′ < ρ < R

and ρ > R respectively, and find for ρ < R by symmetry we have

gm(k, ρ, ρ′) = Im(kρ<)[Km(kρ>) + Am,1(k)Im(kρ>)] (2.7)

Where Am,1 is a function of k to be determined by boundary conditions and ρ<(ρ>)

is the lesser(greater) of ρ an ρ′. For ρ > R we wish to avoid the divergence at ρ =∞

so we have

gm(k, ρ, ρ′) = Am,2(k)Km(kρ) (2.8)

To get the overall normalization correct, we note that when ε1 = ε2 we recover the

case of a dipole in free space, which gives

g(r, r′) =
1

4πε1|r− r′|

=
1

2π2ε1

∞∑
m=0

(2− δm0) cosm(φ− φ′)
∫ ∞

0

cos k(z − z′)Km(kρ>)Im(kρ<) (2.9)

Comparing to this solution, we must have that for ε1 6= ε2 and ρ < R

g(r, r′) =
1

2π2ε1

∞∑
m=0

(2− δm0) cosm(φ− φ′)

×
∫ ∞

0

cos k(z − z′)Im(kρ<)[Km(kρ>) + Am,1(k)Im(kρ>)], (2.10)
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and for ρ > R

g(r, r′) =
ε

2π2ε1

∞∑
m=0

(2− δm0) cosm(φ− φ′)

×
∫ ∞

0

cos k(z − z′)Am,2(k)Im(kρ′)Km(kρ). (2.11)

Here ε = ε1/ε2.

2.4.1.1 Radiative enhancement

We can find the unknowns Am,1(k) and Am,2(k) by imposing boundary conditions:

i) continuity of the field, ii) continuity of the displacement field, which is continuity

of normal derivative multiplied by the dielectric permittivity. Solving we find

Am,1(k) =
(ε− 1)Km(kR)′Km(kR)

Im(kR)Km(kR)′ − εIm(kR)′Km(kR)
, (2.12)

Am,2(k) =
Im(kR)Km(kR)′ − Im(kR)′Km(kR)

Im(kR)Km(kR)′ − εIm(kR)′Km(kR)
. (2.13)

The ′ denotes a derivative with respect to the function argument ∂
∂(kρ)

. The m = 1

term is the dipole term which will provide the dominant contribution to the far-field

emission. The integrands involving Bessel functions fall off exponentially for ρ � ρ′

and so we can take the small argument approximation of the bessel functions valid

for m ≥ 1 (cite)

Im(x)→ 1

Γ(m+ 1)

(x
2

)m
(2.14)

Km(x)→Γ(m)

2

(
2

x

)m
(2.15)
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For the purpose of finding radiative enhancement in the far-field we are interested in

A1,2(k),

A1,2(k) ≈ 2

1 + ε
(2.16)

which gives radiative enhancement of a radial dipole

(
Γrad

Γ0

)
ρ

= |A1,2(k)|2 =

∣∣∣∣ 2ε1
ε1 + ε2

∣∣∣∣2 (2.17)

2.4.1.2 Nonradiative decay

As shown by Fermi’s golden rule, the transition rate between states is proportional

to the density of modes, which is in turn proportional to the electromagnetic field.

The nonradiative decay is proportional to the losses in the near-field, which is given

by the nonradiative part of the electric field. From [11] we have that

(
Γnr

Γ0

)
ρ

≈ 6πε0
k3

0

√
ε1

Imρ̂ ·E(ρ′,ρ′)

|d0|
, (2.18)

We find that for a dipole located inside the inner cylinder (as opposed to outside as

considered by [11]) that the decay is then

(
Γnr

Γ0

)
ρ

≈ 6

πk3
0

√
ε1

∞∑
m=1

∫ ∞
0

dkk2
[
Im(kρ′)

′
]2

ImAm,1(k), (2.19)

:=
6

πk3
0

√
ε1

∞∑
m=1

∫ ∞
0

dklm(k, ρ′, R1). (2.20)

The function Am,1(k) can be found using Cramer’s rule. The challenge is finding the

nonradiative decay rate analytically is infinitely many m terms contribute, unlike the

far-field which is dominated by the m = 1 term. Furthermore, both large and small
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k contribute to the result, and we find

lm(k, ρ′, R1) ≈


m

2ρ′2ε1
Im
(
ε1−ε2
ε1+ε2

)(
ρ′

R1

)2m

k → 0

k
2R1ε1

Im
(
ε1−ε2
ε1+ε2

)
e−2k(R1−ρ′) k →∞

(2.21)

This is the same result as found by [11] for a dipole outside a wire but with the

roles of ρ′ and R1 switched and the roles of the dielectrics switched. Following that

treatment we model lm as a Lorentzian

lm ≈
m

2ρ′2ε1
Im
(
ε1−ε2
ε1+ε2

)(
ρ′

R1

)2m

1 + k2(R1 − ρ′)2
(2.22)

This allows the integration to be performed exactly, yielding

(
Γnr

Γ0

)
ρ

≈ 3

16k3
0(R1 − ρ′)3ε

3/2
1

Im

(
ε1 − ε2
ε1 + ε2

)
(2.23)

2.4.2 Three dielectric regions

We consider the case of an infinite cylinder of radius R1 and dielectric constant ε1

for ρ < R1 concentrically embedded in a dielectric cylinder with outer radius R2 and

dielectric constant ε2 for R1 < ρ < R2. For ρ > R2 this infinite cylinder is in a media

with permittivity ε3. The situation is analogous to the previous 2-dielectric region

infinite cylinder case, with the key ingredient being to solve for the radial Green’s

function gm(k, ρ, ρ′). We find that

gm(k, ρ, ρ′) =Im(kρ<) [K(kρ>) + Am,1(k)Im(kρ>)] 0 < ρ < R1 (2.24)

gm(k, ρ, ρ′) =Im(kρ′) [Am,2(k)Km(kρ) + Am,3(k)Im(kρ)] R1 < ρ < R2 (2.25)

gm(k, ρ, ρ′) =Im(kρ′) [Am,4(k)Km(kρ)] ρ > R2 (2.26)
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These equations have 4 unknowns Am(k), Bm(k), Cm(k), Dm(k) but also 4 boundary

condition equations: the continuity of the displacement field and gm itself. We can

write the equations in matrix form Mx = y with

M =



IR1 −KR1 −IR1 0

ε1I
′
R1
−ε2K ′R1

ε2I
′
R1

0

0 KR2 IR2 −KR2

0 ε2K
′
R2

ε2I
′
R2
−ε3K ′R2


x =



A1

A2

A3

A4


y =



−KR1

−ε1K ′R1

0

0


(2.27)

Here we have employed the notation

Iα =Im(kα) (2.28)

Kα =Km(kα) (2.29)

Am,i(k) =Ai (2.30)

The far field, which determines radiative enhancement, is given by |A1,4(k)|2. To find

A4 we employ Cramer’s rule,

xi =
det (Mi)

detM
, (2.31)

where Mi is the matrix formed by replacing the ith column of M by y. Taking the

small argument form of the Bessel functions valid in the far-field and taking the m = 1

dipole term, we find

det
(
M (m=1)

)
→R2

1(ε1 − ε2)(ε2 − ε3) +R2
2(ε1 + ε2)(ε2 + ε3)

4R1R3
2

(2.32)

det
(
M

(m=1)
4

)
→ ε1ε2
R1R2

(2.33)
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We then find the radiative enhancement as

(
Γrad

Γ0

)
ρ

= |A1,4(k)|2 =

∣∣∣∣ 4ε1ε2
(ε1 + ε2)(ε2 + ε3) + (R2

1/R
2
2) (ε1 − ε2)(ε2 − ε3)

∣∣∣∣2 (2.34)

We note the potential for an even stronger resonance than in the 2-dielectric region

case when ε1 ≈ −ε2 ≈ ε3 and R1 � R2 � λ.

2.4.3 Four dielectric regions

We consider the case of three concentric cylinders of radii R1, R2, R3 dividing space

into 4 dielectric regions of constant dielectric constants ε1, ε2, ε3, ε4. As in the 2- and

3-dielectric region cases, we can write the radial component of the green’s function in

the 4 regions

gm(k, ρ, ρ′) =I[A2i−2K + A2i−1I] Ri−1 < ρ < Ri i ∈{1, 2, 3, 4}. (2.35)

Here, the arguments of the Bessel functions I and K are understood, and A0 :=

1, A7 := 0, R0 := 0, R4 := ∞. At the three boundaries between dielectric regions

there are 2-boundary condition equations each, resulting in 6 equations total. Using

the notation where the arguments of the Bessel functions are understood, we have



I −K −I 0 0 0

ε1I
′ −ε2K ′ −ε2I ′ 0 0 0

0 K I −K −I 0

0 ε2K
′ ε2I

′ −ε3K ′ −ε3I ′ 0

0 0 0 K I −K

0 0 0 ε3K
′ ε3I

′ −ε4K ′





A1

A2

A3

A4

A5

A6


=



−K

−ε1K ′

0

0

0

0


(2.36)

Employing the small argument limit of the Bessel functions are looking at the
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m = 1 dipole term we have

det
(
M (m=1)

)
=

1

(2R1R2R3)3

(
R2

1R
2
2R

2
3(ε1 + ε2)(ε2 + ε3)(ε3 + ε4)

+R4
1R

2
2(ε1 − ε2)(ε2 + ε3)(ε3 − ε4) +R4

1R
2
3(ε1 − ε2)(ε2 − ε3)(ε3 + ε4)

+R2
1R

4
2(ε1 + ε2)(ε2 − ε3)(ε3 − ε4)

)
(2.37)

det
(
M

(m=1)
6

)
=

ε1ε2ε3
R1R2R3

(2.38)

This gives a radiative enhancement in the far-field of

(
Γrad

Γ0

)
ρ

=

∣∣∣∣ 23ε1ε2ε3
ε+12ε

+
23ε

+
34 + ε−12ε

−
23ε

+
34(R1/R2)2 + ε−12ε

+
23ε
−
34(R1/R3)2 + ε+12ε

−
23ε
−
34(R2/R3)2

∣∣∣∣2
(2.39)

ε±ij =εi ± εj (2.40)

2.4.4 N dieletric regions

2.4.4.1 Radiative decay

Here we consider the general case of N − 1 concentric cylinders of radii Ri, i ∈

{1, . . . , N −1} dividing space in to N dielectric regions εj, j ∈ {1, . . . , N}. As before,

the critical piece for determining the radiative enhancement is the radial component

of the scalar dyadic green’s function, which in each of the N regions is given by

gm(k, ρ, ρ′) =I[A2i−2K + A2i−1I] Ri−1 < ρ < Ri i ∈{1, . . . , N}, (2.41)

where A0 := 1, A2N−1 := 0 and R0 = 0, RN = ∞. There are N − 1 boundaries

between the N dielectric regions, at at each region boundary we require continuity

of gm and continuity of the normal derviative of gm times the dielectric permittivity,

giving 2N−2 total boundary condition equations. These equations can then be solved
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via Cramer’s rule. The result is

Γrad

Γ0

=

∣∣∣∣ a

b+(m = 1)

∣∣∣∣2 , (2.42)

a =
N−1∏
i=1

(2εi), (2.43)

b± =
∑

α1∈{−1,1}

· · ·
∑

αN−1∈{−1,1}

f±gh±, (2.44)

f±(α1, . . . , αN−1) =
1

2

(
1±

N−1∏
i=1

αi

)
, (2.45)

g (α1, . . . , αN−1) =
N−1∏
i=1

(εi + αiεi+1) , (2.46)

h± (α1, . . . , αN−1, R1, . . . RN−1,m) =(R1)mα1(α1∓1)

N−1∏
i=2

(
R
±mα1(αi−1)

∏i
j=2 αj

i

)
.

(2.47)

There are 2N−1 terms in the N − 1 sums over ±1. Half of those terms vanish, as the

function f = 1 when the product of all the signs is positive and f = 0 otherwise, so

there are 2N−2 nonzero terms. Each term is made up of the product of N −1 sums or

differences of adjacent dielectrics given by the function g. The function h describes

the appearance of the radii, and only for αi = 1 does Ri appear, so a given Ri will

appear in 2N−3 terms of b for N ≥ 3. Note that b− is the same as b+ but with the

replacements ε±12 → ε∓12. As an example, for N = 5 we have

b± =ε±12ε
+
23ε

+
34ε

+
45 + ε∓12ε

−
23ε

+
34ε

+
45

(
R1

R2

)2m

+ ε∓12ε
+
23ε
−
34ε

+
45

(
R1

R3

)2m

+ ε∓12ε
+
23ε

+
34ε
−
45

(
R1

R4

)2m

+ ε±12ε
−
23ε
−
34ε

+
45

(
R2

R3

)2m

+ ε±12ε
−
23ε

+
34ε
−
45

(
R2

R4

)2m

+ ε±12ε
+
23ε
−
34ε
−
45

(
R3

R4

)2m

+ ε∓12ε
−
23ε
−
34ε
−
45

(
R1R3

R2R4

)2m

(2.48)
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2.4.4.2 Nonradiative decay

The determinant of the (2N − 2) × (2N − 2) matrix M of from the boundary

conditions at the N − 1 dielectric interfaces is given by

detM (m) =
b+∏N−1

i=1 (2Ri)
(2.49)

To solve for Am,1 we also need

detM
(m)
1 =

22m−NΓ(m+ 1)Γ(m)

(kR1)2m

b−∏N−1
i=1 Ri

(2.50)

This allows us to write

Am,1 =
detM

(m)
1

detM (m)
=

22m−1Γ(m)Γ(m+ 1)

(kR1)2m

b−
b+

(2.51)

which gives

(
Γnr

Γ0

)
ρ

=
6

πk3
0

√
ε1

∞∑
m=1

∫ ∞
0

dklm(k, ρ′, R1, . . . , RN−1)

lm(k, ρ′, R1, . . . , RN−1) =
m

2ρ′2

(
ρ′

R1

)2m

Im

(
b−
b+

)
k → 0 (2.52)

The k → ∞ behavior of lm can be found using Im
(
b−(e2kR1/m,...,e2kRN−1/m)

b+(e2kR1/m,...,e2kRN−1/m)

)
instead

of Im
(
b−(R1,...,RN−1)

b+(R1,...,RN−1)

)
. Since b+ and b− are dependent on m for N ≥ 2 it becomes

difficult to write a simple analytic expression for the non-radiative decay rate in the

general case.

2.5 Application of quasi-static theory

We now apply the results of our analytic cylinder theory to a realistic experimental

geometry. In our experiments we have a GaN based core, which we surround with
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an Al2O3 spacer layer and then coat with Ag for plasmonic enhancement. We find

that the maximum radiative enhancement is proportional to the ratio of the real to

imaginary part of the dielectric constant of the metal when it is on resonance with a

real dielectric,

(
Γrad

Γ0

)
ρ,max

∝
∣∣∣∣Re(εAg)

Im(εAg)

∣∣∣∣2 . (2.53)

The width of the resonance is proportional to Im(εAg) and the wavelength of the

resonance is given by Re(εAg). For plasmonic structures with Gan and silver, applying

(1.17) the quasistatic approximation is quite accurate for Rmax < 11nm and remains

a valid approximation for

Rmax < 28nm (2.54)

This requirement is not met by the nanostructures we consider here, as it is difficult

to make multilayer structures with such small size. From Fig. 2.1 we see the maxi-

mum enhancement is obtained around Rmax ≈ 52nm (which assumes the quasistatic

approximation). However, from (2.42) we have the scaling property

(
Γrad

Γ0

)
ρ

(αR1, . . . , αRN−1) =

(
Γrad

Γ0

)
ρ

(R1, . . . , RN−1) . (2.55)

So, if we scale all radii by the same factor, the quasistatic approximation predicts

the same radiative enhancement, and this by scaling the structure small enough the

approximation will eventually become valid. However, as the size of the structure is

reduced, the non-radiative decay processes become enhanced as the lossy metal layer

comes closer to the emitter. From (2.23) and (2.52) we see

(
Γnr

Γ0

)
ρ

(αR1, . . . , αRN−1) ≈ 1

α3

(
Γnr

Γ0

)
ρ

(R1, . . . , RN−1) (2.56)
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The different scaling behavior of the radiative and non-radiative enhancement

suggest the usefulness of a dielectric spacer layer, which will reduce the non-radiative

recombination while having a smaller effect on the radiative rate.
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Figure 2.1: (a) The plot shows the radiative enhancement (Γrad/Γ0)ρ for a 25nm GaN
pillar with dielectric constant εGaN = 6.27 surrounded by a 10 nm thick
layer of Al2O3 with dielectric constant εAl2O3 = 3.17 sounded by a variable
thickness coating of silver with dielectric constant εAg = −6.27 + 0.20i
at 435 nm surrounded by air, εair = 1. (b) shows the cross-sectional
view of the concentric cylinders with variable dielectric coatings, labeling
R1, R2, R3 used in the theory. In (c) we caclulate the enhancement as a
function of wavelength for 12.5nm GaN, 10nm Al2O3 and 30nm Ag using
GaN data from [3] and Ag data from [41]
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CHAPTER III

Plasmonic enhancement of quantum dot-in-pillar:

experiment

In this section we aim to demonstrate plasmonic enhancement of the intensity

and radiative emission rate of size- and site-controlled InGaN quantum dots. Our

methodology is simple - encapsulate the pillar-like structure of the quantum dots

in a layer of silver, which gives broadband enhancement of the photoluminescence.

The work in this chapter was done is close collaboration with Brandon Demory from

Associate Professor P.C. Ku’s group in the EECS department at the university of

Michigan. Brandon carried out the simulation and fabrication, whereas I carried

out optical measurements. Both authors contributed to the analysis, with author

contributions as shown in [18].

3.1 Introuction

Epitaxial quantum dots have the potential to serve as rapid emitters of single

photon, as compared to atoms [9], molecules [54], colloidal quantum dots [8, 17], and

vacancy-centers in diamond [39]. Gallium Nitride quantum dots are of particular

interest due to their potential for non-cryogenic operation temperatures [42, 37].

Radiative enhancement can be accomplished in III-V quantum dots by coupling
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Figure 3.1: (a) geometry of an individual quantum dot, which consists of a 3nm
InGaN disk embedded in a GaN pillar created via inductively coupled
plasma reactive ion etching (ICP-RIE) (b) a regular array of QD with
subwavelength spacing (c) SEM image of an individual dot. Figure from
[18]

to photonic crystals [66, 34, 81] and plasmonic cavities [1, 69, 36]. In each case,

the emission enhancement is governed by the Purcell effect, which is proportional to

Q/V (1.2) Photonic crystals can have very high Q but due to the diffraction limit

the mode volume V cannot go below the cubic wavelength. On the other hand,

plasmonic cavities have relatively small Q ∼ O(10) but the metal allows for very

tight confinement of the modes and so small V . Due to the inhomogeneity present in

quantum dots, we adopt the plasmonic coupling approach which enables broadband

enhancement and easier fabrication [13].

3.2 Quantum dot properties

Details of the quantum dot fabrication can be found in [48] and extensive review

of their optical properties in [88, 87]. The sample is shown in Fig. 3.1, it is located

at the tip of a truncated cylinder. Once coated with a conformal layer of silver, this

allows very tight confinement of the field near the active dot region. By employing

a conformal layer of silver, we can simultaneously enhance an entire grid of quantum

dots, as outlined in Fig. 3.1(b).
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Figure 3.2: Taken from [18]. (a) gives a schematic of the structue (b) shows the ra-
diative enhancement as a function of wavelength for varying Ag thickness.
(c) gives the quantum efficiency.

3.3 Simulation of quantum dot enhancement

The result is two plasmon resonances, the greater of which gives radiative en-

hancement of approximately 50 as shown in Fig. 3.2(b). The nature of the multiple

resonances is explained in [64] as a result of plasmon hybridization: the high en-

ergy resonance is between the InGaN and Al2O3 interface, whereas the lower energy

resonance is across the Al2O3 shell. As silver thickness is increase, the resonances

converge to the single resonance that would result from a metallic void. Numerical

simulations in Fig. 3.2(c) show that the quantum efficiency

QE =
Γrad

Γnr + Γrad

(3.1)

remains relatively high across the entire broadband low energy resonance. The posi-

tion and Q value of the resonance are reasonably predicted by the crude quasistatic

approximation.
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3.4 Experimental results of quantum dot plasmonic enhance-

ment

We perform photoluminescence (PL), time-resolved photoluminescence (TRPL),

and second order correlation (g(2)) measurements on the quantum dot samples before

and after the deposition of silver. Details of the measurements can be found in

[18]. The goal is to show enhanced PL intensity, which indicates that the radiative

enhancement overcomes the metal losses, with more rapid emission of photons, and

maintenance of the single photon properties.

From Fig. 3.3(f) we see that the quantum dot maintains its single photon source

properties after the addition of the plasmonic cavity. Both the g(2) dip in Fig. 3.3(e),(f)

and the time-resolved photoluminescence in Fig. 3.3(c),(d) show an order of magni-

tude reduction in the emission rate with the addition of Ag. We verify that this reduc-

tion in decay rate is mostly radiative as predicted by a simulated quantum efficiency

of ≈ 0.7 by demonstrating enhancement of the photoluminescence in Fig. 3.3(a),(b).

The photoluminescence intensity of the exciton line saturates in our InGaN quantum

dot, and the fact that the low and high power pumping gives the same intensity

in Fig. 3.3(b) after the addition of silver while being significantly different prior as

shown in Fig. 3.3(a) demonstrates that we have enhanced the local field. This local

field enhancement makes it easier to reach saturation with lower excitation power.

To solidify our finding that the silver coating enhances the radiative rate sufficiently

to overcome the metal losses as predicted by experiment we measure the before and

after photoluminescence and time-resolved photoluminescence of many dots, with the

results shown in Fig. 3.4. We find that before and after if no change is made to the

sample, intensity and lifetime remain relatively constant as expected. If aluminum

is added, which is not on plasmon resonance, the metal increases the nonradiative

decay more than the radiative decay, resulting in a decrease in lifetime and intensity.
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Figure 3.3: Taken from [18]. (a) photoluminescence before adding Ag (b) photolu-
minescence after adding Ag (c) time-resolved photoluminescence before
adding Ag (d) time-resolved photoluminescence after adding Ag (e) g(2)

before Ag (f) g(2) after Ag
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Figure 3.4: Taken from [18]. We show the intensity and lifetime enhancement across
multiple quantum dots for no change (control, blue), addition of Alu-
minum (red), and addition of silver (black)

However, the addition of silver increases the intensity nearly an order of magnitude

well reducing the lifetime an order and a half, indicating that the lifetime reduction

is primarily radiative.

In conclusion, we demonstrated simultaneous broadband enhancement of the sin-

gle photon emission of an array of InGaN quantum dots. This result is significant

because it would be extremely difficult to replicate with photonic crystal cavities,

and is an experimental demonstration the ability of plasmonic cavities to yield a net

benefit to both emission rate and intensity despite losses in the metal.
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CHAPTER IV

Cooperative light scattering in any dimensions

This chapter is a reproduction of the paper [35]. It presents a unified theory of

cooperative light scattering valid for an open line, open plane, and open space.

4.1 Introduction

Interatomic dipole-dipole coupling yields remarkable collective effects such as

super- and sub-radiant emission [20, 27, 19, 5], Anderson localization [74, 55], and

collective Lamb shifts [49], which test fundamentals of quantum electrodynamics

(QED) and have applications to superradiant lasers [7], quantum simulation [31],

and protecting quantum information [52]. Waveguide quantum electrodynamics en-

ables improved spatial mode matching compared to three-dimensional (3D) sys-

tems [56], thereby increasing photon-mediated coupling between distant atoms in one-

dimensional (1D) [43, 32, 89, 47, 84, 73] and two-dimensional (2D) systems [55, 31].

We present an elegant unified model for cooperative light scattering by N two-level

atoms in an open spatial region of arbitrary dimension d, providing a single expres-

sion for the collective effects in terms of “cardinal” Bessel functions. We propose a

scheme to observe the phenomena in 2D using vacancy centers in diamond.

We develop a theory of multi-atom superradiance for electromagnetic fields con-

fined to dD (d ∈ [1, 2, 3]). We solve the collective Lamb shifts and spontaneous
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emission rates as a function of dimension d ∈ [1, 2, 3], dipole orientation, and dipole-

dipole separation. We find that orientation effects are especially prominent at small

atom-atom separations as dimension increases. Our theory provides intuition into

how superradiance can be controlled via field confinement, orientation, and place-

ment of dipoles in realistic structures such as our proposed diamond vacancy center

scheme.

In our theory we find that 2D has the most complex orientation dependence be-

tween dipoles with subwavelength separations. This complex dependence is due to the

lack of cylindrical symmetry with respect to the separation between dipoles, different

from both 3D and 1D. Vacancy centers in diamond allow for subwavelength position-

ing of centers [83, 72, 73, 68] where the orientation-effects are especially prominent.

4.2 Quantum master equation in d dimensions

Our physical system comprises identical two-level systems (here called “atoms”)

coupled to electromagnetic fields propagating in vacuum. For a dD system, the fields

are described by a plane-wave decomposition with wavevector k ∈ Rd and dispersion

ωk = c|k|. In this work a vector a =
∑3

l=1 xlx̂l ∈ Rd if a · 1d = a =
∑d

l=1 xlx̂l,

where 1d is the dD unit dyad
∑d

l=1 x̂lx̂l, which projects vectors into dD for {x̂l} the

orthogonal Cartesian unit vectors.

We solve a master equation describing the evolution of atom states in our system,

so following Lehmberg [49] we quantize the electromagnetic field. We consider the

field quantized in a volume V , with photon creation operator â†kl producing a photon

with wavevector k, frequency ωk, and polarization êl, k̂ · êl = 0. We can write the

fields at point r as in (4.1),

 Ê(r)

B̂(r)

 =
∑
k

2∑
l=1

√
2πωk

V

 êl

k̂ × êl

(eik·râkl + hc
)

(4.1)
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(b)

+

D

-

(a)

Figure 4.1: (a) Schematic showing a pair of emitters embedded in a 2D slab extending
in the x1x2 plane. The emitters are separated a distance rı apart in the
x̂2 direction. Emission is detected by a detector D. (b) Energy diagram
for 2-atom superradiance, with |0〉 = |g〉1|g〉2, |E〉 = |e〉1|e〉2, and the
superradiant and subradiant states |±〉 = 1

2
(|e〉1|g〉2 ± |g〉1|e〉2). |±〉 have

transition energies ω0 ∓ ω12 and rates γ ± γ12, as labeled in diagram.

with hc denoting the hermitian conjugate andˆdenoting operator or unit vector

(which case pertains is discernible from the context).

Identical atoms are placed at positions r ∈ Rd. We label atoms with indices ı and

 so that for atom ı energy ~ω0 separates its excited state |e〉ı from ground state |g〉ı,

and the atomic dipole moment µı can be oriented in any direction in R3. Henceforth

~ ≡ 1. De-exciting and exciting the atom is achieved by operators σ̂ı = |g〉ı〈e| and

σ̂†ı , respectively.

Theorem IV.1. The vacuum expectation of any self-adjoint N-atom operator Q̂ for

times ω0t� 1 is

˙̂
Q =

N∑
ı

iωı

[
σ̂†ı σ̂, Q̂

]
+
γı
2

(
2σ̂†ı Q̂σ̂ − σ̂†ı σ̂Q̂− Q̂σ̂†ı σ̂

)
(4.2)
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for ωıı := ω0, and

ωı =− 2π

cd

∫
/d
d−1

Ωk̂µı ·
[
13 − k̂k̂

]
· µ

×
∑
±

P
∫ ∞

0

/dω
ωd

ω ± ω0

eiωk̂·rı/c, (4.3)

γı =
2πωd0
cd

∫
/d
d−1

Ωk̂µı ·
[
13 − k̂k̂

]
· µeiω0k̂·rı/c, (4.4)

with P denoting principle value, rı := rı − r, /d
d

:= dd/(2π)d, dd−1Ωk̂ the dD solid

angle integrating over directions k̂.

Proof. The Hamiltonian for N identical atoms (with individual frequency ω0) coupled

to the field is

Ĥ =
N∑
ı=1

ω0σ̂
†
ı σ̂ı +

∑
kl

ωkâ
†
klâkl −

N∑
ı=1

∑
kl

(
2πωk

V

)1/2

× êl · µı
(
eik·rı âkl + hc

) (
σ̂ı + σ̂†ı

)
. (4.5)

The quantum master equation for Q̂ any N -atom operator was originally solved for

3D fields by treating atoms as point dipoles and neglecting strong fields and non-local

effects [49], and recently the master equation was solved for 1D fields [47]. Here we

employ the Markovian approximation and solve for it in dD with d ∈ [1, 2, 3] when

the time of flight across the sample is faster than any spontaneous emission rate so

that non-local effects may be neglected.

We first eliminate the photon operators âkl(0) which represents the field amplitude

of the excitation source. We rewrite it in terms of atomic operators using

âkl(t) =âkl(0)e−iωkt + i
∑
ı

(
2πωk

V

)1/2

êl · µıe−ik·rı

×
∫ t

0

dt′
[
σ̂ı(t

′) + σ̂†ı (t
′)
]

e−iωkl(t−t′). (4.6)
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We then take vacuum expectation values of the master-equation solution to obtain

˙̂
Q =iω0

∑
ı

[
σ̂†ı σ̂ı, Q̂

]
+

1

V

∑
ı

[
σı + σ̂†ı , Q̂

]
×

{∑
kl

2πωk(êl · µı) (êl · µ) eik·rı

×
[
f−σ̂ + f+σ̂

†


]
+ hc

}
(4.7)

with f± = −iP(ω ± ω0)−1 + πδ(ω ± ω0).

We then express the master equation in terms of collective frequency shifts and

corresponding linewidths, which involves converting the sum over k into integration

over ω(k) using the dispersion relation ω = c |k| and obtain

1

V

∑
k

→
∫
/d
d
k→ 1

cd

∫
/dωωd−1

∫
/d
d−1

Ωk̂, (4.8)

dd−1Ωk̂ =
d−1∏
l=1

sind−l−1 θldθl. (4.9)

Here dd−1Ωk̂ is the dD solid angle over directions k̂ with azimuthal angles θ1, . . . , θd−2 ∈

[0, π] and polar angle θd−1 ∈ [0, 2π). Substituting

2∑
l=1

(êl · µı) (êl · µ) = µı · (13 − k̂k̂) · µ, (4.10)

and Eq. (4.8) into Eq. (4.7) completes the proof.

For N = 1 atom and a dD field, with k0 := ω0/c = 2π/λ0 and µı := µıµ̂ı, Eq. (4.4)

yields spontaneous emission rate

γıı =
23−dπ2−d/2µ2

ı k
d
0

Γ(d/2)

(
1− µ̂ı · 1d · µ̂ı

d

)
(4.11)

for Γ the Gamma function. In 3D, γıı = 4µ2
ı k

3
0/3 is independent of dipole orientation.
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In 1D and 2D, γıı is maximized for the dipole perpendicular to the Rd subspace

(µ̂ı · 1d · µ̂ı = 0) and thus falls by half for in-plane dipoles in 2D (µ̂ı · 12 · µ̂ı = 1)

compared to out-of-plane dipoles [55] and is zero for in-line dipoles in 1D.

For rı � λ, Eq. (4.3) is divergent and cannot be used to calculate the single-atom

Lamb shift. The breakdown of this theory to describe the single-atom Lamb shift is

a consequence of approximating a physical dipole with a point dipole. We thus treat

the single-atom Lamb shift as being incorporated into a renormalized frequency ω0.

For N ≥ 2 atoms, signatures of collective-effects, such as enhanced spontaneous

decay and Lamb shifts, are quantified by γı and ωı (ı 6= ), respectively, as illustrated

in Fig. 4.1(b) for N = 2 atoms. We now express γı and ωı in terms of the dD dyadic

Green’s function.

Definition IV.2. The dyadic Green’s function in dD is
←→
G d := DGd for D :=

13 + 1
k20
∇d∇d a dyadic operator, Gd the solution of the dD Helmholtz equation

[∇2
d + k2

0]Gd (rı, ω0) = −δ (rı).

Definition IV.3. Analogous to the relation between sin x and sincx (“cardinal

sine”), we introduce “cardinal” versions of the Bessel functions (first and second

kind) and Hankel function of the first kind as, respectively,

J̌α(x) :=
Jα(x)

xα
, Y̌α(x) :=

Yα(x)

xα
, Ȟ(1)

α (x) :=
H

(1)
α (x)

xα
.

Theorem IV.4. The complex collective frequency shift is

Γı := −ωı + iγı/2 = 4πk2
0µı ·

←→
G d(rı, ω0) · µ. (4.12)

Proof. Solutions of the dD Helmholtz equation are [75] AJ̌d/2−1 (r̃ı) + BY̌d/2−1 (r̃ı)

for r̃ı := k0rı = r̃ı ˆ̃rı and A and B arbitrary complex constants. Imposing the
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Sommerfeld radiation condition

lim
r̃ı→∞

|rı|(d−1)/2

(
∂

∂r̃ı
− i

)
Gd (rı, ω0) = 0. (4.13)

on an outgoing spherical wave satisfying energy conservation yields the purely radial

expression

Gd (rı, ω0) =
i

4

[
k2

0

2π

]d/2−1

Ȟ
(1)
d/2−1 (r̃ı) . (4.14)

For G′d := dGd
dr̃ı

and G′′d := d2Gd
dr̃2ı

, applying D to Gd (4.14) yields

1

k2
0

∇d∇dGd = r̂ır̂ıG
′′
d +
∇dr̂ı
k0

G′d. (4.15)

We apply the identity

∇dr̂ı
k0

=
1

r̃ı
(1d − r̂ır̂ı) (4.16)

to obtain

1

k2
0

∇d∇dGd =
1

r̃ı
G′d1d +

(
G′′d −

1

r̃ı
G′d

)
r̂ır̂ı. (4.17)

Hankel function recurrence relations then yield

←→
G d (r̃ı, ω0) =

i

4

[
k2

0

2π

]d/2−1(
Ȟ

(1)
d/2−1 (r̃ı) [13 − r̂ır̂ı]

− Ȟ(1)
d/2 (r̃ı) [1d − dr̂ır̂ı]

)
. (4.18)

We now obtain Γı directly from Eqs. (4.3) and (4.4). Substituting

−k2
0k̂k̂eiωk̂·rı/c = ∇d∇de

ik̂·rıω0/c, rı 6= 0, (4.19)

into Eq. (4.4), and using

∫
dd−1Ωk̂eik̂·rıω0/c = (2π)d/2 J̌d/2−1 (r̃ı) , (4.20)
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yields

γı =
kd0

(2π)d−2
µı · D

[
(2π)d/2J̌d/2−1 (r̃ı)

]
· µ. (4.21)

Similarly,

ωı =
1

2

kd0
(2π)d−2

µı · D
[
(2π)d/2Y̌d/2−1 (r̃ı)

]
· µ. (4.22)

Comparing Eqs. (4.21) and (4.22) with (4.18) proves the result.

4.3 Analysis of collective effects

Equation (4.12) is a unified solution of collective atom-atom couplings for dD, and

includes the previous results for 1D [47], 2D [55], and 3D [49]. Now we separate the

terms governing the separation and orientation dependence of the collective atom-

atom coupling by rewriting Eq. (4.12) as

Γı =
i

2

µıµk
d
0

(2π)d/2−2

(
Ȟ

(1)
d/2−1 (r̃ı) Θı − Ȟ(1)

d/2 (r̃ı) Θ′ı

)
(4.23)

for

Θı =µ̂ı · µ̂ − (µ̂ı · r̂ı)(µ̂ · r̂ı), (4.24)

Θ′ı =µ̂ı · 1d · µ̂ − d(µ̂ı · r̂ı)(µ̂ · r̂ı). (4.25)

Here the cardinal Hankel functions express the separation dependence of the collective

effects, whereas (4.24) and (4.25) summarize the orientation dependence of these

effects. Asymptotically r̃ı � 1,

Ȟ
(1)
d/2−1 (r̃ı)→

exp
{

i
[
r̃ı − π

4
(d− 1)

]}
r̃
d−1
2

ı

, (4.26)
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leading to Ȟ
(1)
d/2−1 (r̃ı) /Ȟ

(1)
d/2 (r̃ı)→ ir̃ı, which shows that the first term in Eq. (4.23)

dominates for r̃ı � 1 (defined here as far field) and the second term in Eq. (4.23)

which typically dominates for near field, defined as r̃ı � 1. We see that the near-

and far-field terms are π/2 out of phase, so it is possible to use orientation control to

suppress either γı or ωı by a factor of r̃ı for distant atoms.

Now we examine angular dependence of Γı (4.23) by studying the properties

of Θı (4.24) and Θ′ı (4.25). We restrict to parallel dipoles (µ̂ı = µ̂) separated

along the x1 axis (r̂ı = x̂1) to visualize the angular dependence. In the far-field,

the angular dependence is governed by the d-independent term Θı = 1 − (µ̂ı · x̂1)2.

Setting µ̂ı = sin θ1 cos θ2x̂1 + sin θ1 sin θ2x̂2 + cos θ1x̂3 yields Θı = 1− sin2 θ1 cos2 θ2,

which is a torus. In the near field, Γ becomes d-dependent with

Θ′ı =


0, d = 1,

− sin2 θ1 cos 2θ2, d = 2,

1− 3 sin2 θ1 cos2 θ2, d = 3.

(4.27)

We plot real and imaginary parts of Γı in Fig. 4.2 for parallel dipoles as functions

of dipole orientation µ̂ı given by x1,x2,x3. The interatomic separation is fixed to

be very small (r̃ı � 1) in order to correspond to the Dicke limit. The cylindrical

symmetry of ωı for the 1D and 3D cases, as seen in Fig. 4.2(a,c), is replaced the

four-leaf structure in 2D shown in Fig. 4.2(b), and the simple plot of γı in Fig. 4.2(f)

transforms to more complicated surfaces in Fig. 4.2(d,e) due to enhanced emission

for atoms oriented perpendicular to its confinement.

Collective effects (4.23) are strongly dependent on dimensional confinement, as

evidenced by the contrast between inverse-distance dependence in 3D vs constant in

1D for large separation r̃ı � 1 [49, 47]. The d-dependence of Γı is captured by

the asymptotic expression for the cardinal Hankel function (4.26) whose denominator
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(a) (b) (c)

(d) (e) (f)

d=1 d=2 d=3

Figure 4.2: Spherical polar plots of dimensionless ω̃12 = ω12/γ11 (a)-(c) and γ̃12 =
γ12/γ11 (d)-(f) up to a multiplicative constant for parallel dipoles µ1 =
µ2 =

∑3
l=1 xlx̂l, r12 � λ, and r̂12 = x̂1.

shows d-dependent fall-off and whose oscillatory exponential numerator shows that γı

and ωı are π/2 out of phase. Furthermore Ȟ
(1)
d/2−1 experiences a π/4 phase shift for

each integer leap in dimension d, corresponding to a λ0/8 shift in relative positions

of the atoms in different dimensions for maximizing atom-field coupling.

Whereas ωı and γı display similar features for well separated parallel dipoles,

the closely spaced parallel-dipole case is quite different due to γı being sensitive

to both near- and far-field terms in (4.23) while ωı is only sensitive to near field

terms. Specifically, the asymptotic expressions for the cardinal Bessel functions yield
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γı 7→ γıı
[
1−O(r̃2

ı)
]
, which is independent of d, whereas

ωı ∼


r̃−dı , Θ′ı 6= 0,

r̃−d+2
ı , Θ′ı = 0, d 6= 2,

log r̃ı, Θ′ı = 0, d = 2.

(4.28)

We now have asymptotic expressions of γı and ωı in the asymptotic small and large r̃ı

regimes and now explore the dependence on the full range of r̃ı.

We plot each of ωı and γı as a function of both r̃ı and d as surface plots in

Fig. 4.3(a,c) and present slices of those plots in Fig. 4.3(b,d). We have interpolated

between integer dimensions by inserting the modified identity

1d =

dde∑
l=1

x̂lx̂l + (d− dde) x̂ddex̂dde (4.29)

into Eq. (4.25), where d e is the ceiling function. The small and large r̃ı features

have been explained already, and the plot shows that these small and large limits

apply everywhere except a small region near r̃ı ∼ 1. Interestingly our d-dependent

functions are smooth for real-valued d, thus giving us clear predictions of collective

behavior for non-integer dimension. Exploration of non-integer d collective effects

would be quite interesting and could relate to electromagnetic field anisotropy [33].

4.4 Experimental proposal for observation of collective ef-

fects in two dimensions

As 1D and 3D collective effects have been explored experimentally, we propose

a 2D experiment with vacancy centers in diamond as our “atoms”. In addition to

requiring a structure that confines the electromagnetic field to 2D, we have three

requirements for the emitters for realizing 2D superradiance: sub-wavelength relative
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Figure 4.3: (Color online) Dimensional and separation dependence of dimensionless
ω̃ı := ωı/γıı ((a)-(b)) and γ̃ı := γı/γıı ((c)-(d)) vs dimensionless sep-
aration r̃ı = 2π rı

λ
for identical parallel dipoles µ̂ı = µ̂ = x̂3. (a) and

(c) show results interpolated for real valued dimensions 1 ≤ d ≤ 3. (b)
and (d) compare d = 1 (dotted blue line), d = 2 (solid red line), d = 3
(dot-dashed green line).
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position control, lifetime-limited linewidths, and spectrally overlapping energies. The

2D structure and emitter-position control ensure the ability to control superradiance

phenomena, while the spectral requirements are necessary for their observation.

There are two promising approaches towards a 2D diamond structure: ultra-high

aspect ratio diamond thinned via plasma etching [82] and membrane structures of sub-

wavelength thicknesses [62]. As the diamond medium is not the vacuum described

thus far, we extend our result to dielectric media using [45, 4]

Γı,ε(ω)(rı) = Re
[
ε(ω0)1/2

]
|l|2Γı

(
Re
[
ε(ω0)1/2

]
rı
)
, (4.30)

where ε(ω) is the dielectric coefficient, and l is a local electric field factor.

To satisfy the requirements on the emitters, ion implantation techniques allow

either nitrogen or silicon vacancies to be positioned with impressive rı ∼ λ0/20

accuracy [83, 72, 73, 68]. We propose working with a single pair of vacancies as shown

in Fig. 4.1(a) to minimize inhomogeneity inherent in an ensemble. Nitrogen vacancy

centers are appealing due to their narrow homogeneous linewidths [70] but suffer from

strain-induced inhomogeneous broadening that can be ameliorated by Stark shifting

from an external field [80].In contrast, silicon vacancies have inversion symmetry

that protects them from external fields, thereby reducing inhomogeneity but makes

spectral control via Stark shifts challenging [68]. However each silicon vacancy can be

addressed with a tunable off-resonant laser to obtain spectrally overlapping Raman

transitions, as has been used to demonstrate 1D superradiance [73].

For either nitrogen- or silicon- vacancy centers, the pair can be excited sym-

metrically by a resonant pulse with bandwidth much less than γıı and propagating

perpendicular to rı. Superradiant effects can be quantified by ωı(r̃ı,µı,µ) and

γı(r̃ı,µı,µ) through time-resolved photoluminescence measurements as outlined in

Fig. 4.1(b).
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4.5 Conclusions

In conclusion, we present a unified solution for collective spontaneous emission,

for electromagnetic field confined to dimension d ∈ [1, 2, 3], with arbitrary dipole

orientation and separation. We explain the scaling behavior of cooperative effects

for systems much larger or smaller than the resonance wavelength. Furthermore

we suggest a potential implementation scheme using vacancy centers in diamond to

explore the effects in 2D.
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CHAPTER V

Super- and sub-radiance

5.1 Introduction

In this section we apply the theory of cooperative light scattering to multi-atom

systems to show the emergence of collective modes of the system with very rapid

decay rates. In 1954 Dicke [20] showed that N identical atoms each with single atom

decay rate Γ0 in their excited state in a subwavelength volume form a collective mode

that decays at Γ = NΓ0. Because their are N atoms, at short times the total emission

rate is proportional to N2. Later work studied the effect when the atoms spacing grew

beyond the subwavelength limit [49, 57].

5.1.1 Single photon superradiance

For the case of a single photon excitation, the analytic theory underlying superra-

diance simplifies considerably. To see why, we consider that for N two-level emitters,

there are 2N possible states, where each factor of 2 is whether a given atom is excited

or not excited. In this case of very low excitation power such that only one atom can

be excited, we instead only have N possible excited states. Thus, when considering

many atoms, it quickly becomes vastly simpler analytically to consider the low power

limit. In particular, these N coupled states lead to N collective modes, where the

modes that that emit more rapidly than the single-atom case are called superradiance
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modes and those that emit more slowly are called sub-radiant modes. The coupling

between the N atoms can be considered pairwise, in which case we can construct an

N × N matrix that describes the coupling. Since their are N total 1-atom excited

states, we expect that once coupling is included, we can still describe the system by

N different eigenstates of N ×N coupling matrix. In this way, single photon super-

radiance may be described as a many-body eigenvalue problem [76, 78, 79]. In our

work, we will consider this approach.

5.1.1.1 Atomic clouds

Studies have been done on superradiance in extended atomic cloud samples in

three dimensions. To effectively treat the many-atom case, it is common to consider

the case of single-photon excitation [76]. For extended samples, evolution depends

on an effective Rabi frequency Ω ∝
√
N . If the time of flight is greater than this

characteristic time ΩR/c � 1, then there are oscillations between a collective state

and a ground state with frequenct Ω and rate c/R. However, if the time of flight

across the sample is short, ΩR/c < 1, then the state exponentially decays with rate

proportional to N as in the Dicke limit.

For the case where the sample is excited by as single atom, it is frequently assumed

the initial state is the timed Dicke state [76]

|+〉k0 =
1√
N

N∑
j=1

eik0·rj |g1, g2, . . . ej, . . . , gN〉 (5.1)

where |g1, g2, . . . ej, . . . , gN〉 is a fox state with only atom j excited and the others in

the ground state.

Beyond simply increased emission, there are further signatures of superradiance.

It is found that the radiation is directional coincident with the direction of excitation

[49, 76, 15]. Futhermore, the radiation pressure and absorption are both affected by
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the superradiance phenomena [15]

5.1.1.2 Superradiance and cooperative effects on atom lattices

In addition to a uniform cloud, another critical geometry to consider collective

effects is on a regularly spaced lattice of atoms. Because atoms can interact as a

phased array, the exact spacing can be critical to determine the overall emission. For

atoms trapped optically in a lattice with spacing d0 and length L and wavelength λ,

the collective emission rate is found to be [63]

Γ1D ∝λ/d0 (5.2)

Γ3D ∝(λ/d0)2(L/d0) (5.3)

5.1.1.3 Virtual Lamb shifts

If we consider N two level atoms with evergy levels a and b, with Ea − Eb = ~ω,

which are prepared in a one atom excited state (such as the timed Dicke state). If

β(t, r) is the probability amplitude of excitation, i.e. the probabilty to find an atom

at position r excited at time t. If we assume a dense cloud on a volume V such that

their are � 1 atom per volume λ3, then the amplitude evolves as

∂β(t, r)

∂t
= iγ

N

V

∫
dr′

exp(ik0|r − r′|)
k0|r − r′|

β(t, r′) (5.4)

Here γ is the single atom decay rate. The integration kernel can be separated in

terms of the real and virtual transitions as [28, 78, 29, 79, 77]

∂β(t, r)

∂t
= iγ

N

V

∫
dr′
[

cos(ik0|r − r′|)
k0|r − r′|

+ i
sin(ik0|r − r′|)
k0|r − r′|

]
β(t, r′) (5.5)

Here the sine term corresponds to the real transitions [23], while the cosine term

corresponds to virtual transitions [79, 77]. These virtual transitions play an important
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role in the overall superradiance effects of the system, and in particular can lead to

population trapping in the subradiant state [79].

5.1.1.4 Non-local effects

If we assume a dense cloud as in the previous section, that is large compared to

the time of flight, then we must include relativistic retardation effects to accurately

describe the system. If we include time of flight, then

∂β(t, r)

∂t
= iγ

N

V

∫
dr′

exp(ik0|r − r′|)
k0|r − r′|

β(t− |r − r
′|

c
, r′) (5.6)

5.1.1.5 Directional Emission

The collective mode of a many-atom system can be highly directional [49, 76, 15,

58]. In particular, it has been found that several hundred atoms can interact with a

single mode of light to provide highly directional single photon emission [58], where

the spatial emission profile can be controlled by manipulating the geometry of the

atomic array. The authors note they also obtain temporal control over the emitted

wave-packet, which suggests that collective mode emission may be a promising single

photon source candidate for applications in quantum communication networks.

5.1.2 Few atom superradiance

While an analytic solution in the N -atom case exponentially difficult for large

N , one can obtain solutions in the few atom case even if we relax the single photon

excitation requirement. Let E0 cos(kL · x − ωLt) is the field of the monochromatic

excitation laser and σ0 is scattering cross section of a single atom. For example,

we find the radiated intensity in the 2-atom case for atoms with positions x1, x2,
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x12 = x1 − x2 in the weak field Ω� γ0 limit, 2Ω = d ·E0, we have [67]

I =σIL (5.7)

σ =σ0

[
γ0(γ0 + γ12)

(ωL − (ω0 + ω12))2 + (γ0 + γ12)2 [1 + cos(kL · x12)]

+
γ0(γ0 − γ12)

(ωL − (ω0 − ω12))2 + (γ0 − γ12)2 [1− cos(kL · x12)]

]
(5.8)

Here the first term is superradiant emission, while the second is subradiant emission,

and γ12 and ω12 are given by (4.23). For a line of classical oscillators in a phased match

array, emission is enhanced in the phased match direction and suppressed otherwise.

It has been shown that a similar effect emerges in the cooperative emission of N

identical atoms as a requirement of energy conservation [6]. One may also employ

the Lehmberg master equation to calculate photon statistics in the few atom case

[26, 27].

5.1.2.1 Strongly driven atoms

For the case of a single atom strongly driven on resonance, we find a Mollow triplet

[59]. It has been conjectured that in the very high power limit the N -atom case gives

emission that is simply N -times the one atom case, recovering the Mollow triplet [2].

As we reduce the power, cooperative effects modify the triplet [16]. In our work, we

will further numerically explore the effect of strongly driven multi-atom systems.

5.1.3 Acknowledgements
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emission was done with Songbo Xie (REU student). The work on the effect of high
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them all for their extremely hard work in obtaining these results.
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5.2 QuTiP toolbox for solving quantum master equation

The simulations on directional emission were performed using the QutiP python

toolbox [40]. Our goal will be to solve a master equation of the density matrix [25]

ρ̇ =− i [HS, ρ] +
∑
α,β

γαβ

[
σβρσ

†
α −

1

2

(
ρσ†ασβ + σ†ασβρ

)]
HS =

∑
α

(ω0 − Ωαα)σ†ασα +
∑
α6=β

Ωαβσ
†
ασβ +HL

HL =− 1

2

∑
α

(
Ωαe

i(k·rα−ωt)σ†α +H.c.
)

(5.9)

Here Ωαα is the Lamb shift of atom α and is assumed to be 0. Ωα := µα · E is the

Rabi frequency. QuTip solves master equations of the form

ρ̇ = −i [H(t), ρ(t)] +
∑
n

1

2

[
2CnρC

†
n − ρC†nCn − C†nCnρ

]
(5.10)

To make (5.9) look like (5.10) we need to define new operators that are linear com-

binations of σα that diagonalize the Hamiltonian,

Aα =
∑
β

uβασβ (5.11)

This transforms 5.9 into

ρ̇ = −i [H, ρ] +
∑
α

λα

[
AαρA

†
α −

1

2
ρC†αCα − C†αCαρ

]
, (5.12)

which is of the appropriate form. We then switch into the interaction picture to

eliminate the time dependence on the laser field terms in HL. The master equation

can then by solved by the QuTiP toolbox by calling

〈Eβ(t)〉 = mesolve (H, ρ0, timelist, Cα, Eβ(0)) (5.13)
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Here Eβ(t) are the expectation values of some operators, H is the Hamiltonian as

in (5.10) , timelist is a list of times the program will use while solving, Cα are the

collapse operators from (5.10).

To calculate intensity, we use [49],

I(t) =
∑
α,β

γαβ〈σ†α(t)σβ(t)〉. (5.14)

5.2.1 Emission spectra

In order to calculate the emission spectra as a function of wavelength, we use

S(ω) = Re

[∫ ∞
0

dt

∫ ∞
0

dt′f(t, t′)e−iω(t−t′)
]

(5.15)

QuTiP can also solve multi-time expectation values using the quantum regression

theorem. Practically,

〈A(t+ τ)B(t)〉 = correlation 2op 2t(H, ρ0, timelist1, timelist2, Cα, A,B) (5.16)

As shown in Fig. 5.1(a),(b) there is very good agreement between simulation and

theory, they are almost perfectly overlapping. The additional delta like peak in the

mollow triplet is due to elastic scattering [59].

5.3 Directional emission

One hallmark of superradiance is highly directional emission [86, 61]. A simple

way to understand this is that the phenomenon of superradiance results from phase

coherence between emitters, and carefully spaced in-phase dipoles will interfere con-

structively, which leads to the directionality.
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(a) (b)

Figure 5.1: (a) Mollow triplet for a peak at 1 eV with decay rate 50 meV pumped
with Rabi frequency 300 meV. (b) Super- and sub- radiant emission for
a pair of atoms as in (a), separated by 0.2λ in 3 dimensions.

5.3.1 Directional emission: theory

We now have the tools to calculate the experimental signatures of superradiance:

an N -fold increase in the spontaneous emission rate for closely spaced atoms, and

highly directional emission when N � 1.

The angle-resolved emission intensity IR̂,d(t) for a detector at position R = RR̂

in dD is

IR̂,d(t) = lim
∆ΩR̂→0

1

∆ΩR̂

∑
k(∆ΩR̂)l

d

dt

〈
a†kl(t)akl(t)

〉
(5.17)

Theorem V.1. For rı,max � R,

IR̂,d(tR) =
∑
ı

wR̂,ıe
ik0R̂·rı〈σ̂†ı (t)σ̂(t)〉, (5.18)

wR̂,ı,d =(2π)2−dkd0µı ·
[
13 − R̂R̂

]
· µ. (5.19)
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Here tR = t+R/c.

Proof. In (5.17), we first substitute âkl(t) by (4.6) and drop the âkl(0) terms since

those correspond to the initial source of excitation. Then, in analogy with (4.8), we

convert the sum over k into integration over ω as

1

V
lim

∆ΩR̂→0

1

∆ΩR̂

∑
k(∆ΩR̂)

→ 1

(2πc)d

∫
dωωd−1. (5.20)

Also using (4.10), we obtain

IR̂(tR) =2π
∑
ı

∫
dω
( ω

2πc

)d
eiωR̂·rı/c

× µı ·
[
13 − R̂R̂

]
· µ (5.21)

×
[∫ t

0

dt′ŝı(t
′)ŝ(t)e

−iω(t′−t)

+

∫ t

0

dt′ŝı(t)ŝ(t
′)e−iω(t−t′)

]
, (5.22)

ŝı(t) =σ̂†ı (t) + σ̂ı(t). (5.23)

Evaluating the integrals over t, the term in brackets becomes

2π
[
δ(ω + ω0)σ̂ı(t)σ̂

†
 (t) + δ(ω − ω0)σ̂†ı (t)σ̂(t)

]
. (5.24)

Integration over ω is trivial due to the δ-function, and comparing (5.18) and (5.21)

completes the proof. This agrees with the previously derived 3D result [49].

The total spontaneous emission intensity as a function of time is obtained by
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integrating (5.18) over all angles:

Id(tR) =

∫
dd−1ΩR̂IR̂,d(tR)

=
∑
ı

γı〈σ̂†ı (t)σ̂(t)〉, (5.25)

where γı is the given in (4.4).

To examine the N -dependence of the directionality and intensity of the emission,

we evaluate IR̂(tR) and Id(tR) explicitly. We consider the simplified case where there

is no external field and the atoms are initialized into the symmetric state |SN〉:

|SN〉 =
1√
N

N∑
ı=1

|g〉1 · · · |e〉ı · · · |g〉N (5.26)

For this initial condition ρSN ,SN (0) = |SN〉〈SN | = 1 and all other density matrix

elements are 0. For later times we assume

ρSN ,SN (t) = e−γSN t, (5.27)

and that the other density matrix elements remain 0, where γSN is the spontaneous

emission rate of state |SN〉. In the Dicke limit this result is exact, with γSN =

Nγıı. This assumption is a reasonable approximation for closely spaced atoms with

k0rı,max � 1. For these initial conditions

〈σ̂†ı (t)σ̂(t)〉 =
1

N
ρSN ,SN (t), (5.28)
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For parallel dipoles we have,

IR̂,d(tR) =IR̂,d,1(tR)
e−(γSN−γ)t

N

×
∑
ı,

cos
(
k0R̂ · rı

)
, (5.29)

IR̂,d,1(tR) =wR̂,ı,de
−γt. (5.30)

Here IR̂,d,1(tR) is the angle-resolved intensity from a single atom. Hence IR̂,d(tR)

consist of N2 terms that are proportional to the single-atom spontaneous emission,

with the cosine factor of each term resulting in an interference effect. This results

shows that the collective emission of the atoms in the far field is analogous to that of

a phased antenna array of classical dipoles. The dimensional dependence is the same

as that of a single atom.

To examine the emergence of directionality, we consider a pencil shaped array of

emitters with equal spacing L, or

rı = (− ı)LL̂. (5.31)

Using (5.29) we obtain

Iθ,d(tR) =Iθ,d,1(tR)
e−(γSN−γ)t

N

sin2(Nk0L cos θ/2)

sin2(k0L cos θ/2)
, (5.32)

for cos θ = R̂ · L̂. As N increases, the emission becomes increasingly directional,

consistent with earlier results for 3D [14].

Integrating over all solid angles we find the total emitted intensity,

I(tR) = γSN e−γSN t , γSN =
∑
ı

γı
N

(5.33)

This shows the N -fold increase in the spontaneous emission rate for closely spaced
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atoms, independent of dimension.

5.3.2 Directional emission: QuTiP simulation

We can also simulate directional emission for atoms with spacing k0L = 0.1. The

exact solution has expontential computational cost in the number of atoms, so we are

limited to simulation of up to 9 atoms with this method. However, the emergence

of directional emission is clearly visible, and matches very well with the analytic

prediction (5.32) of increasing directionality with the number of atoms.

5.4 Generalizing the Mollow triplet

A single atom strongly interacting with the electromagnetic field results in a mol-

low triplet, as shown in Fig. 5.1(a). The usual explanation is that the strong field

“dresses’ the bare states, resulting in three peaks as shown in Fig. 5.4. We seek to

explore numerically and quantitatively what occurs when we have a system exhibiting

superradiance and subject it to an intense optical driving field. When two atoms are

sufficiently close, they may exchange photons often enough to split the emission mode

into symmetric and antisymmetric emission modes, referred to as a super- and sub-

radiant emission. This occurs when the atoms are strongly coupled to each other.

The mollow triplet occurs when individual atoms are strongly coupled to the field. As

a result, at low power, we will see the super- and sub-radiant emission, as expected.

At sufficiently high power, the coupling to the intense driving field will be stronger

than the super-radiant coupling, and the emission will return to exhibiting a single

mollow triplet. At intermediate power, when the coupling to the driving field and

the coupling to each other through cooperative scattering are comparable, we expect

that the field will dress the super- and sub- radiant modes, resulting in a complex

emission pattern with many peaks. This is quantitatively what we see via simulation.

In Fig. 5.5(a) we see that at low driving power, the split between the super- and
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Figure 5.3: This shows 2 through 9 atoms spaced in a line with k0L = 0.1 spacing.
The emission is normalized to 1 at 0 degrees.
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Figure 5.4: Explanation of mollow triplet in terms of dressed state picture. Image
taken from [71].
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𝜔/𝛾0 𝜔/𝛾0 𝜔/𝛾0

Figure 5.5: (a) two atoms spaced r = 0.05λ, 0.1λ, 0.15λ excited with lower power
ΩRabi � 1 (b) Same atom spacing as (a) but with ΩRabi > 1 (c) two
atoms with r = 0.15λ spacing and varying excitation power.
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Figure 5.6: Here we have 3 very closely spaced atoms arranged in an equilateral tri-
angle such that ω12 = ω13 = ω23 ≈ 50γ0, and very the driving field.

sub- radiant peak increases as the photon mediated coupling increases with decreasing

atomic separation. In Fig. 5.5(b) the peak position is approximately the same for the

closest atom spacing, but as the atoms are placed further apart the coupling to the

field wins out and the mollow triplet is recovered. In Fig. 5.5(c) the spacing is fixed

and as we increase the driving field, the super- and sub- radiant peaks collapse before

the emergence of the usual mollow sidebands.

For the case of three atoms in an equilateral triangle with very close spacing such

that ω12 ≈ 50γ0, γ0 the single atom decay rate, we see an extremely complicated

dependence of the emission spectra on driving field. At very low power there are two

peaks at ω − ω12 and ω + 2ω12 as expected. As power is increased, additional peaks

appear with spacing between them approximately spaced ω12 ≈ 50γ0. As power is

further increased, these individual peaks split into two to four peaks, with splitting

on the order of the driving field frequency.

62



5.5 Superradiance in a two dimensional atomic gas

The master equation for an atomic operator in an N atom system can be written

in matrix form as

Q̇ = i
[
σ̃†ω̃σ̃T , Q

]
+

(
σ̃†γ̃Qσ̃T − 1

2
σ̃†γ̃σ̃TQ− 1

2
Qσ̃†γ̃σ̃T

)
(5.34)

Here σ̃ is an N element row vector with ith element σi = |−〉ii〈−|. ω̃ and γ̃ are N×N

matrices with entires that satisfy, for two dimensional dipoles oriented perpendicular

to the plane of confinement,

Γ̃ı := −ω̃ı +
i

2
γ̃ı =

iγ0

2
H

(1)
0 (k0rı). (5.35)

The eigenvalues of γ̃ give the decay rates of the system, with the largest decay rate

the most strongly superradiant mode. Here we investigate how the largest eigenvalue

of the system, which we label γ1, scales with the size and density of a two dimensional

atomic gas.

Fig. 5.7(c) implies γ1 has a power law relationship with the density

γ1 ∝ ρβ. (5.36)

For a lattice, we expect β ≈ 0.5 [53]. We find from Fig. 5.7(c) that for ρ >

1atom/(λ/2π)2, β ≈ 0.45.
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Figure 5.7: (a) 1000 atoms randomly placed in a cirle of radius equal to λ. (b) shows
γ1, the largest superradiant eigenvalue, as a function of number of atoms
in a circle of radii r = λ, 2λ, 3λ, 4λ. (c) plot of γ as a function of density
on a log-log plot.
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CHAPTER VI

Conclusions

How does geometry affect the spontaneous emission properties of a two level sys-

tem? We obtained the following results:

In chapter 2 we find the radiative enhancement in the quasi-static approximation

of a dipole placed in ‘wire’ that consists of an arbitrary number of infinite concentric

dielectric cylinders. Our solution is a simle closed-form result We predicted over 1000-

fold enhancement of the radiative emission rate for GaN-Silver plasmonic resonance

near the 435nm, even in the presecence of a Al2O3 spacer layer. The addition of the

spacer layer has relatively minimal effect on radiative enhancement, but significantly

decreases the non-radiative enhancement based on scaling argument. We obtain a

series solution for the non-radiative emission rate for the same case of a wire consisting

of concentric cylinders.

In chapter 3 we experimentally demonstrate radiative enhancement via plasmonic

coupling of a InGaN quantum dot single photon source embedded in a GaN pillar

surrounded by a conformal coating of silver with an Al2O3 spacer layer. The quan-

tum dot is at the tip of a truncated cylinder. We demonstrate the enhancement is

radiative by showing over order of magnitude enhancement of the photoluminescence

intensity in conjunction with an even greater enhancement of the emission lifetime

which contains both radiative and non-radiative components. We verify that the
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plasmonic coupling does not destroy the single photon source property by showing

second order correlation g(2) < 0.5 before and after the addition of the silver cavity.

In chapter 4 we examine cooperative light scattering changes as a function of

the dimension of the system. We develop a formalism that unifies the treatment of

cooperative effects in an open line, open plane, and open space appear. Our results are

some of the earliest to fully describe the two dimensional case [55]. We examine the

changes in the cooperative scattering in the asymptotic limits where the expressions

take on particularly simple form. Furthermore, we discuss a potential implementation

involving silicon vacancy centers in diamond in the nascent field of superradience in

two dimensions.

In chapter 5 we demonstrate that the cooperative scattering effects we outlined in

the previous chapter lead to the signatures of superradiance - enhanced spontaneous

emission rate proportional to the number of ‘atoms’ contributing to the emission, and

enhanced directionality of the emission. We present simulation results for enhanced

directionality for an exact solution of atoms in a line with two dimensional coupling

for up to 9 atoms, and have close agreement with a simple analytic result we derive.

We examine how the spontaneous emission of the superradiant mode scales with

density for a dilute two dimensional case, obtaining evidence of a clear power law

relationship with density. The scaling power of 0.45 is similar to the power of 0.5

recently predicted for a regularly spaced infinite square lattice in two dimensions

[53]. We furthermore examine computationally the interplay between the cooperative

mode effects of superradiance and the effects of an ultra-high intensity excitation field,

finding rich and complex behavior when the superradiant coupling and the coupling

of individual ‘atoms’ to the field are of similar magnitude.
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