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PREFACE

There is an exciting new field of interdisciplinary research at the
interface of invariant theory, tensors and computational complexity
that is being established. This area represents problems that are of
interest to mathematicians, physicists and computer scientists alike.
It is only natural then that there are several perspectives, which allow
for progress on many fronts, often simultaneously, with a variety of
ideas and techniques. In this dissertation, we will focus on the prob-
lem of giving upper bounds for the degree of generators for invariant
rings, especially for the cases of matrix invariants and matrix semi-
invariants. We will provide polynomial bounds for these cases. The
problem of degree bounds for matrix semi-invariants is very closely
related to the problem of rational identity testing in computational
complexity. The polynomial bounds are instrumental in giving a
polynomial time algorithm for rational identity testing. Tensors are
the link between the two, and serve as an intermediary language to
translate problems between invariant theory and computational com-
plexity.
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ABSTRACT

The main problem addressed in this dissertation is the problem of giving strong

upper bounds on the degree of generators for invariant rings. In the cases of ma-

trix invariants and matrix semi-invariants, we give polynomial upper bounds. An

exciting consequence of these bounds is a polynomial time algorithm for rational

identity testing. We use an approach inspired by ideas from Popov and Derksen

to reduce the problem to finding invariants that define the null cone. The the-

ory of blow-ups of matrix spaces and non-commutative rank is crucial in finding

invariants that define the null cone. We also give a polynomial time algorithm

for deciding if the orbit closures of two points intersect for matrix invariants and

semi-invariants. In addition, we give some applications for proving lower bounds

on the border rank of tensors.
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CHAPTER 1

Introduction

As early as in high school mathematics, we learn about algebraic identities. Here are some
simple ones:

• (a+ b)(a+ b) = a2 + 2ab+ b2.

• (a+ b+ c)(a2 + b2 + c2 − ab− bc− ac) = a3 + b3 + c3 − 3abc.

Most of us would be able to verify these identities without much effort. Here are some
more complicated ones:

• (a+ b+ c)7 − a7 − b7 − c7 =

7(a+ b)(b+ c)(a+ c)((a2 + b2 + c2 + ab+ bc+ ac)2 + abc(a+ b+ c))

• (a2
1 + a2

2 + a2
3 + a2

4)(b2
1 + b2

2 + b2
3 + b2

4) =

(a1b1 − a2b2 − a3b3 − a4b4)2 +

(a1b2 + a2b1 + a3b4 − a4b3)2 +

(a1b3 − a2b4 + a3b1 + a4b2)2 +

(a1b4 + a2b3 − a3b2 + a4b1)2

These identities would of course take much longer for us to verify. The first happens
to be an identity used by Lamé in his proof of Fermat’s last theorem for the case n = 7,
and the second is Euler’s four square identity. Nevertheless, this brings us to a fundamental
question – How quickly can you verify whether a given identity is correct? This problem
is often called polynomial identity testing (PIT) in theoretical computer science.

There is of course a naive algorithm to do this: expand out all multiplications, and then
check whether the coefficient of each monomial occurring on both sides match. This is of
course a very tedious process, and one might wonder if there is a quicker way to do this.
One strategy is to assign in a choice of numbers for each variable, and then test whether the
two sides evaluate to the same number. If we start with something that is not an algebraic
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identity, then it is likely that for a random choice, both sides will not match. For example,
if we are trying to verify whether (x − 1)2 + y2 = (x + y − 1)2, then this will not be true
unless we end up assigning in 1 for x or 0 for y. This is unlikely to happen when we choose
these numbers at random, but nevertheless possible. Hence, if both sides agree for a par-
ticular assignment, we cannot be fully convinced that it is an identity. If we take numerous
assignments, and both sides keep agreeing, then we become more and more convinced that
it is an identity. In fact, to be convinced with a very high degree of confidence, we do not
need too many assignments, and this analysis usually goes by Schwarz-Zippel Lemma. In
the language of computer science, this is an efficient randomized algorithm. However, to be
convinced beyond any doubt, the number of assignments we would need is likely too large.
One of the major open questions in this subject is whether we can find a small number of
assignments that will suffice to verify the identity beyond doubt.

One can formalize this more rigorously by constructing polynomials with arithmetic
circuits, and asking whether there is an algorithm to decide whether a given circuit com-
putes an identity or not. Ideally one would want an algorithm whose run time is polynomial
in the size of the circuit. We will not make this rigorous formulation, but will be content to
mention that a polynomial time algorithm is not known, and remains one of the big open
questions in computational complexity.

If we live in a world where multiplication is not commutative (and everyone who deals
with matrices lives in such a world), then we might be interested in “non-commutative”
polynomial identities. This is a world in which (a + b)2 = a2 + ab + ba + b2, as opposed
to a2 + 2ab + b2. Let us increase the difficulty a bit more by allowing inverses as well!
The problem of verifying whether two given non-commutative rational expressions are
equal is called non-commutative rational identity testing (RIT). In the commutative world,
any rational function can be written as a quotient of two polynomial functions. Rational
functions in the non-commutative world can be far more complicated. For example the
expression (a + ab−1a)−1 illuminates the possibility of nested inverses – an inverse inside
an inverse. It is in fact not possible to simplify the expression into one of the form PQ−1

as in the commutative situation.
Consider the equation

(a+ ab−1a)−1 + (a+ b)−1 = a−1.

When we were considering PIT, there was a naive algorithm to verify any given iden-
tity – simplify both sides by expanding all multiplications and additions and check the
coefficients of monomials on both sides. It is unclear how to simplify a non-commutative
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rational expression, primarily because nested inverses cannot always be removed. This
raises an alarming question – how then would one verify an identity like the one above? It
so happens that the above identity is indeed correct, and is known as Hua’s identity. It is
not very difficult to prove Hua’s identity by hand and I invite the reader to try it so as to
witness first hand the challenges that a nested inverse presents.

At this juncture, it seems like this problem (RIT) is far more complicated than the
simple one (PIT) we began with. If we cannot find an efficient algorithm for PIT, then is
there any hope of finding one for RIT? How about even an efficient randomized algorithm?
Recall, for PIT, a randomized algorithm is to evaluate the identity by assigning numbers
to the variables. In this non-commutative world, assigning numbers will clearly not be
sufficient. We would need to specialize the variables to something that is not commutative.
The canonical example of things that do not multiply commutatively are matrices! From
the work of Amitsur, Cohn and others, it can be deduced that if an identity is not true,
then indeed there is a assignment of matrices to the variables for which both sides do not
agree. The question then becomes whether we can find such an assignment? And if so,
how quickly can we find one? These questions throw us into an enchanting world at the
interface of invariant theory, tensors and computational complexity which we will explore
in this dissertation.

A lot of the work in this dissertation is joint with Harm Derksen. Most of the results
have already been published or in the form of a preprint, see [11, 12, 13, 14, 15, 16, 62].

3



CHAPTER 2

Invariant theory

In this chapter, we will first introduce invariant theory in Section 2.1, and then in Section 2.2
describe the method of Popov and Derksen for finding bounds for the degree of generators.
In Section 2.3, we recall a fantastic result of Weyl on polarization, and in Section 2.4 we
treat the notion of separating invariants. The central objects in this dissertation – matrix
invariants and matrix semi-invariants – are introduced in Section 2.5 along with the main
problems that we treat in this dissertation.

2.1 Introduction

Fix an infinite field K. Let G be an algebraic group acting on an (affine) algebraic variety
X . We denote the ring of regular functions on X by K[X]. A function f ∈ K[X] is called
invariant if it is constant along orbits, i.e., f(g · x) = f(x) for all g ∈ G and x ∈ X . The
set of all invariant functions forms a subring K[X]G ⊆ K[X] called the ring of invariants

or the invariant ring.
A vector space V is an example of an algebraic variety. If a groupG acts on V , then V is

called a representation of G. A representation V of G can also be seen as a homomorphism
G → GL(V ). If the map G → GL(V ) is given by regular functions, then we call V a
rational representation of G. The following result due to Hilbert is a landmark result in the
history of invariant theory.

Theorem 2.1.1 (Hilbert). Let V be a rational representation of a linearly reductive group

G, then the ring of invariants K[V ]G is finitely generated.

In fact, Hilbert’s papers on invariant theory (see [43, 44]) also propelled the rise of
algebraic geometry and commutative algebra, both of which have had a profound influence
on invariant theory. In characteristic 0, reductive groups and linearly reductive groups
coincide. In positive characteristic, this is not the case, and even the classical groups –
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GLn, SLn etc are not linearly reductive. Nevertheless, Nagata generalized Hilbert’s result
by weakening the hypothesis from linearly reductive to geometrically reductive, see [67].
Haboush proved that all reductive groups are geometrically reductive, see [41], and as a
result, we now know that invariant rings for rational representations of reductive groups are
finitely generated.

Theorem 2.1.2 (Nagata-Haboush). Let V be a rational representation of a reductive group

G, then the ring of invariants K[V ]G is finitely generated.

These theorems are unsatisfactory on one count – they are not constructive. In other
words, while we know that these invariant rings are finitely generated, the proofs do not
produce a set of generators. A fundamental question in classical invariant theory is the
following:

Problem 2.1.3. Construct a minimal set of generators for K[V ]G.

We know minimal sets of generators in very few cases, and it is an extremely difficult
question to answer in general. Note that K[V ] is a polynomial ring and hence has a natural
grading. This grading descends to the invariant ring K[V ]G. A more tractable problem is
to find a bound on the degree of generators. To make this precise, we make a definition.

Definition 2.1.4. The number β(K[V ]G) is defined to be the smallest nonnegative integer

d such that the invariants of degree ≤ d generate K[V ]G, i.e.,

β(K[V ]G) = min{d ∈ Z≥0| K[V ]G≤d generates K[V ]G},

where K[V ]G≤d denotes the invariants of degree ≤ d.

Problem 2.1.5. Can we give an upper bound for β(K[V ]G)?

2.2 Method of Popov and Derksen for degree bounds

We assume K is an algebraically closed field of characteristic 0 for this section. Several
decades after Hilbert, Popov came up with a strategy to find upper bounds for the degree of
generators. The core of this method is the Hochster-Roberts theorem and Kempf’s results
on the Hilbert series of an invariant ring. Let us recall the Hochster-Roberts theorem, see
[45].

Theorem 2.2.1 (Hochster-Roberts). Let V be a rational representation of a linearly reduc-

tive group G. Then the invariant ring K[V ]G is Cohen-Macaulay.
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We will explain the significance of this theorem, without bothering to define what a
Cohen-Macaulay ring is. A set of homogeneous invariants {f1, . . . , fr} is called a ho-
mogeneous system of parameters (hsop) if f1, . . . , fr are algebraically independent and
K[V ]G is a finite module overK[f1, . . . , fr]. In particular r must be the Krull dimension of
K[V ]G. That K[V ]G is Cohen-Macaulay implies that K[V ]G is in fact a finite free module
over K[f1, . . . , fr] for any hsop {f1, . . . , fr}.

Now, suppose we have a hsop {f1, . . . , fr}, and let g1, . . . , gs be a set of free module
generators (these can be chosen to be homogeneous). The fi are called primary invariants
and the gi are called secondary invariants. Observe that {f1, . . . , fr, g1, . . . , gs} is a gener-
ating set, and hence β(K[V ]G) is bounded above by the largest degree among the primary
and secondary invariants. Popov’s method was to utilize this.

In fact, a result of Kempf (see [54]) tells us that deg(gj) ≤
∑r

i=1 deg(fj). Kempf’s
result is often seen in the following form – the Hilbert series of the invariant ring is a
proper rational function. Let us define the Hilbert series.

Definition 2.2.2. For a graded K-algebra R =
⊕

d∈ZRd, we define its Hilbert series

H(R, t) =
∑
d∈Z

dim(Rd)t
d.

The two different formulations of Kempf’s results are the same, and this follows from
the fact that

H(K[V ]G, t) =

∑
j t

deg(gj)∏
i(1− tdeg(fi))

.

In any case, let us observe that Kempf’s result reduces the problem to finding a hsop,
and let us record this.

Proposition 2.2.3. Let f1, . . . , fr be a hsop. Then we have

β(K[V ]G) ≤
r∑
i=1

deg(fi).

Improvements to Kempf’s results were made by Knop in [57, 58], but we will not
recall them here. Having reduced the problem to finding a hsop, we give an alternate
characterization of a hsop in terms of the null cone. For a subset S ⊂ K[V ], define V(S) =

{v ∈ V | f(v) = 0 ∀f ∈ S}.

Definition 2.2.4. The null coneN (G, V ) is defined as the set of points in V that vanish on
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all invariant polynomials with no constant terms, i.e,

N (G, V ) = V(K[V ]G+),

where K[V ]G+ =
⊕

d∈Z>0
K[V ]Gd .

It turns out that a set of homogeneous invariants {f1, . . . , fr} is a hsop if and only if the
fi’s are algebraically independent and V(f1, . . . , fr) = N (G, V ).

Definition 2.2.5. The number γ(K[V ]G) is defined as the smallest non negative integer d

such that non-constant homogeneous invariants of degree ≤ d cut out the null cone, i.e.,

γ(K[V ]G) = max{d ∈ Z≥0 | V(
d⊕
i=1

K[V ]Gi ) = N (G, V )}.

Popov showed the existence of a hsop in terms of γ(K[V ]G). More precisely, he
observed that if D = lcm(1, 2, . . . , γ(K[V ]G)), then there exists a hsop f1, . . . , fr with
deg(fi) = D. So, if r = dim(K[V ]G), we have

β(K[V ]G) ≤ r(lcm(1, 2 . . . , γ(K[V ]G)).

In effect, Popov reduced the problem to finding a bound for γ(K[V ]G). Derksen sharpened
this result considerably in [8].

Theorem 2.2.6 (Derksen). We have

β(K[V ]G) ≤ 3

8
rγ(K[V ]G)2.

Derksen’s result is much stronger than Popov’s in the sense that Derksen’s bound is
polynomial in γ(K[V ]G), whereas Popov’s is not. However, this still requires us to find a
bound for γ(K[V ]G). We consider the representation G→ GL(V ) ⊂ End(V ), we look at
the image of G as a subvariety of the affine space End(V ). Popov showed that the degree
of this image happens to be an upper bound for γ(K[V ]G). The best bounds for the degree
are also due to Derksen, but we omit the details, referring the interested reader to [8].

2.3 Weyl’s polarization theorem

Let V be a representation of G. We are interested in considering the diagonal action of G
on several copies of V . More precisely, for g ∈ G and (v1, . . . , vm) ∈ V m := V ⊕m, we
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have
g · (v1, . . . , vm) = (g · v1, . . . , g · vm).

It is a theorem of Weyl (see [56]) in characteristic 0 that invariants in K[V m]G can be
obtained by polarization and restitution from invariants in K[V n]G, where n = dimV . As
far as degree bounds are concerned, this translates to the following:

Theorem 2.3.1 (Weyl). Assume char(K) = 0. Let V be an n-dimensional representation

of G. Then we have the inequality

β(K[V m]G) ≤ β(K[V n]G) ∀m ∈ Z>0.

We outline a proof of the above theorem not in terms of polarization and restitution,
but in terms of Schur modules. For a vector space V , let Sλ(V ) denote the Schur module
associated to a partition λ. If λ has at most n = dimV parts, then this is the irreducible
representation of GL(V ) with highest weight λ. If λ has more than n parts, then Sλ(V ) = 0.
The assignment V → Sλ(V ) is a functor, which is called the Schur functor. We recall some
basic facts on Schur functors.

Proposition 2.3.2. Let V,W be vector spaces and λ a partition. Then, we have

Sλ(V ⊗W ) =
⊕
µ,ν

(Sµ(V )⊗ Sν(W ))aλ,µ,ν ,

where aλ,µ,ν are known as the Kronecker coefficients.

When we take λ = (m), the Schur module is a symmetric power Symm. We write
λ ` d to denote that λ is a partition of d. Specializing the above proposition to this case,
we get

Corollary 2.3.3. Let V,W be vector spaces. Then we have

Symd(V ⊗W ) =
⊕
λ`d

Sλ(V )⊗ Sλ(W ).

Now, we can identify the representation V m with V ⊗W , whereW is anm-dimensional
vector space on which G acts trivially. Consider the degree d homogeneous polynomials

K[V m]d := Symd(V ∗ ⊗W ∗) =
⊕
λ`d

Sλ(V
∗)⊗ Sλ(W ∗).

We make two observations about the above formula. The first is that we can restrict to
partitions having at most n parts, since otherwise Sλ(V ∗) = 0. The second is that in this
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decomposition, G acts on only on Sλ(V ∗) and the action on Sλ(W ∗) is trivial. Hence, we
have

K[V m]Gd =
⊕

λ`d, l(λ)≤n

Sλ(V
∗)G ⊗ Sλ(W ∗), (2.1)

where l(λ) denotes the number of parts in the partition, also called the length of the
partition. The group GL(W ) acts on V ⊗ W by acting on the second tensor factor.
This action commutes with the action of G, and hence we have an action of GL(W ) on
K[V ⊗W ]G = K[V m]G. Further the multiplication in the ring K[V m]G is GL(W ) equiv-
ariant.

Proof of Theorem 2.3.1. We identify V m with V ⊗ W , where dimW = m. Suppose
β(K[V m]G) = D. This means that there is some invariant of degree D that cannot be
formed as linear combinations of products of invariants of smaller degree. In other words,
the multiplication map

D−1⊕
i=1

K[V m]Gi ⊗K[V m]GD−i → K[V m]GD

is not surjective. By equivariance of the multiplication map, and the semisimplicity of
the representation theory, the image is a direct summand of K[V m]GD. That the map is
not surjective implies that there is at least one irreducible GL(W )–subrepresentation P ⊆
K[V m]GD that is not in the image. We must have P ∼= Sλ(W

∗) for some λ ` D. For P to be
nonempty, we must have l(λ) ≤ dimW . From Equation 2.1, we also know that l(λ) ≤ n.

We also observe that this happens on a purely functorial level, and whether a summand
is in the image or not doesn’t really depend on the vector space W . As long as the sum-
mand is non-empty, the invariants in that summand cannot be generated from invariants of
smaller degree. Since l(λ) ≤ n, this summand is non-empty if we take dimW = n. This
shows the existence of invariants of degree D in K[V n]G that cannot be generated from in-
variants of smaller degree. This argument is perhaps best seen in the framework of twisted
commutative algebras, but we will refrain from doing that here.

2.4 Separating invariants

Assume K is algebraically closed. Let V be a representation of G. For a point v ∈ V , its
orbit G · v = {g · v | g ∈ G} ⊆ V is not necessarily closed. It follows from continuity that
any invariant polynomial must take the same value on all points of the closure of an orbit.

9



Hence invariant polynomials cannot distinguish two points whose orbit closures intersect.
We can ask the converse question – If v, w ∈ V such thatG · v∩G · w = ∅, then is there

an invariant polynomial f ∈ K[V ]G such that f(v) 6= f(w)? The answer to this question is
in general negative. Indeed, consider the additive group Ga acting on the affine plane K2

by t · (x, y) 7→ (x, tx+ y). The invariant ring is K[x] ⊂ k[x, y], and hence every invariant
polynomial takes the same value on every point on the y axis. On the other hand, every
point on the y-axis is a closed orbit! Hence invariant functions do not suffice to separate
points whose orbit closures do not intersect. However, if we enforce additional hypothesis,
we get a positive answer as the theorem below shows.

Theorem 2.4.1. Let V be a rational representation of a reductive group G. Then for

v, w ∈ V , there exists f ∈ K[V ]G such that f(v) 6= f(w) if and only if G · v ∩G · w = ∅.

While separating invariants can be defined for more general group actions, we will
assume from here on that V is a rational representation of a reductive group G as all the
cases we are interested in are of this form. For a more general treatment, we refer to [10].

Definition 2.4.2. A subset of invariants S ⊂ K[V ]G is called a separating set of invariants

if for every pair v, w ∈ V such that G · v ∩ G · w = ∅, there exists f ∈ S such that

f(v) 6= f(w).

Any generating set of invariants is a separating set, but we may be able to find simpler
separating sets that do not generate. We make another definition.

Definition 2.4.3. We define βsep(K[V ]G) to be the smallest non-negative integer d such that

the invariants of degree ≤ d form a separating set of invariants, i.e.,

βsep(K[V ]G) = min{d ∈ Z≥0 | K[V ]G≤d is a separating set of invariants}.

Clearly βsep(K[V ]G) ≤ β(K[V ]G). Weyl’s polarization theorem is unfortunately not
true in positive characteristic, see [22, 24]. Nevertheless, Draisma, Kemper and Wehlau
proved a version of this result for separating invariants in [32].

Theorem 2.4.4 (Draisma, Kemper, Wehlau). Let V be an n-dimensional representation of

G. Then for all m ∈ Z>0, we have

βsep(K[V m]G) ≤ βsep(K[V n]G).
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2.5 Matrix invariants and matrix semi-invariants: Main
Results

A lot of extremely interesting connections between invariant theory and computational
complexity have been found. Perhaps the most interesting and well known is Mulmuley and
Sohoni’s reformulation of Valiant’s algebraic version of P vs NP into a question about orbits
of algebraic groups. This is known as the Geometric Complexity Theory (GCT) program,
see [65, 66]. The most relevant to us is however the connection between non-commutative
circuits and identity testing with the ring of matrix semi-invariants formulated by Hrubes
and Wigderson in [46]. We will explain the connections in more detail later. Here we will
introduce matrix invariants and matrix semi-invariants, the primary objects of study in this
dissertation. We will also point out some of the main results.

2.5.1 Matrix invariants

Let Matp,q denote the set of p× q matrices. Consider the group G = GLn acting by simul-
taneous conjugation on Matmn,n, the space of m-tuples of n × n matrices. More precisely,
for g ∈ GLn and (X1, . . . , Xm) ∈ Matmn,n, we have

g · (X1, . . . , Xm) = (gX1g
−1, . . . , gXmg

−1).

We write S(n,m) = K[Matmn,n]GLn for the ring of invariants for this action. Let us
consider the simplest case when m = 1. For an n × n matrix X , consider it’s char-
acteristic polynomial det(I + tX). This is a degree n polynomial in t. Let σj(X) de-
note the coefficient of tj . Then it is easy to see that σj(X) is a polynomial in the en-
tries of X , and moreover it is invariant under the action of GLn by conjugation, i.e.,
σj ∈ K[Matn,n]GLn = S(n, 1). In fact, these form an algebraically independent set of
generators for S(n, 1).

Proposition 2.5.1. We have S(n, 1) = K[σj | 1 ≤ j ≤ n].

Proof. Let Σn denote the symmetric group on n letters. Let W = Kn and consider the
natural action of Σn on W by permuting the coordinates. Let x1, . . . , xn denote the coordi-
nate functions, then the invariant ring K[W ]Σn = K[x1, . . . , xn]Σn is known as the ring of
symmetric functions. Let

ej =
∑

1≤i1<i2<···<ij≤n

xi1xi2 . . . xij ,
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denote the jth elementary symmetric polynomial. The elementary symmetric functions
e1, . . . , en are algebraically independent and generate K[W ]Σn , a result that can be traced
back to Newton.

We have an inclusion φ : W ↪→ Matn,n sending λ = (λ1, . . . , λn) to the diagonal
matrix Dλ whose diagonal entries are λ1, . . . , λn. We get a map on the coordinate rings
φ∗ : K[Matn,n]→ K[W ]. We will show that this map descends to an isomorphism on the
invariant rings φ∗ : K[Matn,n]GLn = S(n, 1)→ K[W ]Σn sending σj 7→ ej .

For f ∈ S(n, 1), we first show that φ∗(f) ∈ K[W ]Σn . Indeed, if we take λ, µ ∈ W such
that λ is a permutation of µ, then Dλ and Dµ are in the same GLn orbit. Thus φ∗(f)(λ) =

f(Dλ) = f(Dµ) = φ∗(f)(µ).
Next, we show that the map is injective. Indeed if φ∗(f) = 0, then f vanishes on all

diagonal matrices. Since f must be constant on GLn–orbits, it vanishes on all diagonaliz-
able matrices, which are dense in Matn,n. Since f vanishes on a dense subset of Matn,n, it
vanishes on all of Matn,n, i.e., f = 0.

To show that it is surjective, observe that the image of σj is ej , and ej for 1 ≤ j ≤ n

form a generating set. This gives the required conclusion.

Remark 2.5.2. In characteristic 0, we also have S(n, 1) = K[Trj | 1 ≤ j ≤ n], where Trj

is the polynomial that maps a matrix X 7→ Tr(Xj). This is easy to see since Tr(Xj) is the

power sum symmetric function in the eigenvalues, whereas σj(X) is the elementary sym-

metric function in the eigenvalues. In characteristic 0, the power sum symmetric functions

are also an algebraically independent set of generators for the ring of symmetric functions,

and this is seen by Newton’s identites. However, these identities involve denominators, and

hence this is no longer true in positive characteristic.

Procesi generalized the description in terms of traces to get a description of generators
for S(n,m) in [70]. A word w in an alphabet set S is a string of elements w = w1w2 . . . wk

with wi ∈ S. We denote the set of all words in an alphabet set S by words(S). For a word
w = w1w2 . . . wk in the alphabet set [m] := {1, 2, . . . ,m}, we define Trw ∈ S(n,m) as the
invariant polynomial that sends (X1, . . . , Xm) 7→ Tr(Xw1Xw2 . . . Xwk)

Theorem 2.5.3 (Procesi). Assume char(K) = 0. Then the invariants {Trw |w ∈ words([m])}
generate the invariant ring S(n,m).

Procesi’s theorem gives an infinite set of generators. A couple of years prior to Procesi’s
theorem, Razmyslov had studied trace identities in [72], and in particular showed that the
trace of any word of length > n2 can be written in terms of traces of smaller words. In our
notation, this can be reformulated as follows:
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Theorem 2.5.4 (Razmyslov). Assume char(K) = 0. Then we have β(S(n,m)) ≤ n2.

In the case of positive characteristic, Donkin gave a description of generators in terms
of coefficients of the characteristic polynomials rather than traces, see [29]. For a word
w = w1w2 . . . wk ∈ words([m]), define σj(w) ∈ S(n,m) by σj(w)(X1, . . . , Xm) =

σj(Xw1 . . . Xwk).

Theorem 2.5.5 (Donkin). The invariants {σj(w) | 1 ≤ j ≤ n,w ∈ words([m])} generate

the invariant ring S(n,m).

Bounds on the degree of generators were given by Domokos, see [22].

Theorem 2.5.6 (Domokos). We have β(S(n,m)) = O(n7mn).

It is unfortunate that the bound on the degree of generators is far worse in positive
characteristic, and it is only natural to ask if whether there exists a polynomial bound (in n
and m)?

Problem 2.5.7. Is there a polynomial bound for β(S(n,m)) in positive characteristic?

Generating sets give separating sets, but can we find better bounds for separating in-
variants?

Problem 2.5.8. Give good bounds for βsep(S(n,m)).

We will resolve both these problems as part of this dissertation, see Corollary 5.2.3 and
Theorem 6.5.1.

2.5.2 Matrix semi-invariants

Consider the left-right action of G = SLn× SLn on V = Matmn,n. For (A,B) ∈ SLn× SLn

and (X1, . . . , Xm) ∈ Matmn,n, this action is given by

(A,B) · (X1, . . . , Xm) = (AX1B
−1, . . . , AXmB

−1).

We set R(n,m) = K[V ]G, the ring of invariants for this action. Once again, let us
consider the simplest case m = 1. We define det to be the polynomial that sends a matrix
X 7→ det(X), the determinant of X . The following can be proved in a fashion similar to
Proposition 2.5.1.

Proposition 2.5.9. The ring R(n, 1) = K[det].
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The case of m = 2 is already non-trivial and goes back to Happel. Consider the ex-
pression det(X1 + tX2) as a polynomial in t, and denote by fi, the coefficient of ti. Then
it is easy to see that fi is a polynomial in the entries of X1 and X2. In fact, it is an invariant
polynomial, i.e., fi ∈ R(n, 2).

Proposition 2.5.10 (Happel). The invariants f0, f1, . . . , fn are algebraically independent

and generate R(n, 2).

The description for the ring of invariants for general m is deduced from the description
for semi-invariants of quivers. Matrix semi-invariants are a special case – R(n,m) is the
ring of semi-invariants for the m-Kronecker quiver for the dimension vector (n, n) and we
will discuss this later. For now, we are content to give the description in this special case.

Given two matrices A = (aij) of size m × n, and B = (bij) of size p × q, we define
their tensor (or Kronecker) product to be

A⊗B =


a11B a12B · · · a1nB

a21B
. . . ...

... . . . ...
am1B · · · · · · amnB

 ∈ Matmp,nq .

For T = (T1, T2, . . . , Tm) ∈ Matmd,d, we define a homogeneous invariant fT ∈ R(n,m) of
degree dn by

fT (X1, X2, . . . , Xm) = det(X1 ⊗ T1 +X2 ⊗ T2 + · · ·+Xm ⊗ Tm). (2.2)

The following result can be found in [17, 25, 73].

Theorem 2.5.11. The invariant ring R(n,m) is spanned by all fT with T ∈ Matmd,d and

d ≥ 1.

Remark 2.5.12. There are no homogeneous invariants of degree d in R(n,m) unless d is

a multiple of n.

In fact, there are two ways of viewing the homogeneous invariant fT , simply because
the definition of the Kronecker product of matrices is not very symmetric. We could just as
well have defined fT with the tensor factors switched because we have

det(T1 ⊗X1 + T2 ⊗X2 + · · ·+ Tm ⊗Xm) = det(X1 ⊗ T1 + · · ·+Xm ⊗ Tm),
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even though on the level of matrices,
∑m

i=1 Ti ⊗ Xi and
∑m

i=1 Xi ⊗ Ti will usually be
different. Both descriptions have their advantages, and some results are more transparent
in one description. However, to avoid confusion, we will always use

∑m
i=1Xi ⊗ Ti.

The following bounds were known if K has characteristic 0:

1. β(R(n, 1)) = β(n, 2) = n;

2. β(R(1,m)) = 1;

3. β(R(2,m)) ≤ 4;

4. β(R(3, 3)) = 9;

5. β(R(n,m)) = O(n4((n+ 1)!)2).

The bounds in (1) follow from the descriptions of R(n, 1) and R(n, 2) above and (2) is
trivial. The bound (3) can be found in [20] (see also [50]). This bound also follows from
the First Fundamental Theorem of Invariant Theory for SO4, because SL2× SL2 is a finite
central extension of SO4 and the representation Mat2,2 of SL2× SL2 corresponds to the
standard 4-dimensional representation of SO4. The bound (4) was given in [21]. The gen-
eral bound on the degree of generating invariants due to Derksen mentioned in Section 2.2
gives a bound of O(n816n

2
) and Ivanyos, Qiao and Subrahmanyam showed in [49, 50] that

this bound can be improved to the factorial one (5).

Problem 2.5.13. Are there polynomial bounds for β(R(n,m)) and βsep(R(n,m))?

One of the main results of this dissertation is a positive answer to this question, see
Corollary 5.1.12 and Corollary 6.5.8.
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CHAPTER 3

Quivers

Matrix invariants and matrix semi-invariants are special cases of invariant rings associated
to quivers. Hence, it is only natural to generalize our results to this generality. In Sec-
tion 3.1, we introduce quivers and their representations. In Section 3.2, we discuss various
invariant rings associated to quivers, connecting them to matrix invariants and matrix semi-
invariants.

3.1 Quiver representations

A quiver is a (finite) directed graph. More formally, a quiver Q is a 4-tuple (Q0, Q1, h, t)

where Q0 is the set of vertices, Q1 is the set of arrows, and h, t : Q1 → Q0 denote the head
and tail of the arrow respectively.

Example 3.1.1 (m-loop quiver). The m-loop quiver Υ(m) is a quiver with one vertex

Q0 = {v}, and m arrows Q1 = {a1, . . . , am} whose head and tail are the only vertex v.

Example 3.1.2 (m-Kronecker quiver). The m-Kronecker quiver Θ(m) is the quiver with

two vertices Q0 = {x, y} and m arrows Q1 = {a1, . . . , am}, with h(ai) = x and t(ai) = y

for all 1 ≤ i ≤ m.

v

am

a1

...

Figure 3.1: m-loop quiver

16



x y

a1

am

...

Figure 3.2: Kronecker quiver

A representation V of a quiver Q is a vector space Vx for each vertex v ∈ Q0 and a
linear map from V (a) : V (ta) → V (ha) for each arrow a ∈ Q1. For two representations
V,W , a morphism f : V → W is given by a collection of linear maps fx : V (x)→ W (x)

such that for each arrow a, the following diagram commutes.

V (ta) V (ha)

W (ta) W (ha)

V (a)

W (a)

fta fha

The notions of subrepresentation, kernel, quotient, direct sum, summand etc are de-
fined in the obvious way. A representation V is called finite dimensional if V (x) is finite
dimensional for each x ∈ Q0. We denote by Rep(Q), the category of finite dimensional
representations of a quiver Q.

A path of length k is a sequence p = akak−1 · · · a1 where a1, . . . , ak are arrows such
that hai−1 = tai for i = 2, 3, . . . k. The head and tail of the path are defined by hp = hak

and tp = ta1 respectively. For every vertex x ∈ Q0 we also have a trivial path εx of length
0 such that hεx = tεx = x. For a path p = akak−1 · · · a1 is a path, then we define

V (p) = V (ak)V (ak−1) · · ·V (a1) : V (tp)→ V (hp).

We define V (εx) is the identity map from V (x) to itself.
We define the path algebra KQ first as a vector space with basis all paths of Q. For two

paths p and q, we define p · q to be the concatenation of p and q if it forms a path, and 0

otherwise. This gives KQ the structure of an algebra. To any representation V of Q, we
can associate a module MV over KQ in the following way. Let MV =

⊕
x∈Q0

V (x) as a
vector space. To describe an action of KQ, it suffices to describe what each path p acts by.
The path p acts on V (tp) as the map V (p) : V (tp)→ V (hp), and on all other summands of
MV by 0. This is in fact an equivalence of categories, i.e., the category of finitely generated
KQ-modules is equivalent to the category Rep(Q).
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For a finite dimensional representation V ofQ, we define its dimension vector dim(V ) :

Q0 → Z≥0 sending x 7→ dim(V (x)). For a dimension vector α, we define the representa-
tion space

Rep(Q,α) =
⊕
a∈Q1

Matα(ha),α(ta) .

If V is a representation with dimension vector α and we identify V (x) ∼= Kα(x) for all
x ∈ Q0, then V can be viewed as an element of Rep(Q,α). Consider the group GL(α) =∏

x∈Q0
GLα(x). The group GL(α) acts on Rep(Q,α) by:

(A(x) | x ∈ Q0) · (V (a) | a ∈ Q1) = (A(ha)V (a)A(ta)−1 | a ∈ Q1).

For V ∈ Rep(Q,α), choosing a different basis means acting by the group GL(α). The
GL(α)-orbits in Rep(Q,α) correspond to isomorphism classes of representations of di-
mension α.

Example 3.1.3 (1-loop quiver). For a dimension vector n, the representation space

Rep(Υ1, n) = Matn,n. The group GL(n) acts by base change with the formula g · X =

gXg−1 for g ∈ GL(n) and X ∈ Rep(Υ1, n). A classic linear algebra result translates to

the following – the orbits are in 1 − 1 correspondence with Jordan canonical forms (if K

is algebraically closed).

Example 3.1.4 (1-Kronecker quiver). For a dimension vector (p, q), the representation

space Rep(Θ1, (p, q)) = Matp,q. The base change group GL(p) × GL(q) acts by left-

right multiplication, i.e., (A,B) · X = AXB−1 for (A,B) ∈ GL(p) × GL(q) and X ∈
Rep(Θ1, (p, q)). It is easy to see that two matrices are in the same orbit if and only if they

have the same rank.

Of course, these examples are very basic. If we take more complicated quivers, then
trying to understand the isomorphism classes becomes exceptionally challenging. A quiver
is called finite type if the number of indecomposable representations (of any dimension) is
finite. The set of finite type quivers are precisely the simply laced Dynkin diagrams, and
in particular, cannot have any directed cycles. There is tripartite classification of quivers –
finite type, tame and wild. Tame quivers have the property that the number of indecompos-
ables up to isomorphism in any particular dimension vector are parametrized by a finite set
and finitely many 1-parameter families (in a way that Kac made precise). Any quiver that
is not tame is called wild, as no one has a clue how to classify their indecomposables.
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3.2 Invariant theory of quivers

3.2.1 Invariants

Fix a quiver Q, and a dimension vector α. The group GL(α) acts (on the left) on the ring
K[Rep(Q,α)] of polynomial functions on Rep(Q,α) by

A · f(V ) = f(A−1 · V )

where f ∈ K[Rep(Q,α)], V ∈ Rep(Q,α) and A ∈ GL(α).
The ring of invariants for this action is denoted

I(Q,α) := K[Rep(Q,α)]GL(α).

Example 3.2.1. For the m-loop quiver Υm and the dimension vector n, the representation

space is Matmn,n and the base change group GL(n) acts on the representation space by

simultaneous conjugation, i.e., we have

I(Υm, n) = S(n,m).

In fact, for any quiver Q and any dimension vector α, we can get a description of
the invariant ring in terms of the descriptions we have for S(n,m). A cyclic path is a
path p of positive length such that hp = tp. For a cyclic path p, we define an invariant
Tp : Rep(Q,α) → K by Tp(V ) = Tr(V (p)), the trace of the endomorphism V (p). It is
easy to see that this function is invariant under the action of GL(α). LeBruyn and Procesi
showed that such invariants generate I(Q,α) in characteristic zero.

Although it was only proved a couple of decades after Procesi’s result, the description
is only a little more complicated in positive characteristic. For a cyclic path p, we define
σj(p) ∈ I(Q,α) by σj(p)(V ) = σj(V (p)). That such invariants generate I(Q,α) is due to
Donkin. We will present this result in a slightly different format.

Let N =
∑

x∈Q0
α(x). For each a ∈ Q1, consider the natural inclusion map

Matα(ha),α(ta) = Hom(Kα(ta), Kα(ha)) ↪→ End(
⊕
x∈Q0

Kα(x)) = MatN,N .

Putting these inclusions together, we get an inclusion ι : Rep(Q,α) → MatMN,N , where
M = |Q1|. This gives a map ι∗ : K[MatMN,N ] → K[Rep(Q,α)]. Then LeBruyn–Procesi
and Donkin’s result can be succinctly presented as the statement that the map ι∗ descends
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to a surjection on invariant rings.

Theorem 3.2.2 (LeBruyn–Procesi, Donkin). Let Q,α,N and M be as in the discussion

above. Then the map ι∗ : S(N,M)→ I(Q,α) is surjective.

Remark 3.2.3. As a consequence of the above theorem, degree bounds for S(n,m) imme-

diately translate into degree bounds for I(Q,α).

Remark 3.2.4. There are no non-trivial invariants if the quiver Q has no oriented cycles.

3.2.2 Semi-invariants

If a quiver Q has no oriented cycles, then there are no invariants. Yet, it may have an
interesting ring of semi-invariants. For a quiver Q with no oriented cycles and a dimension
vector α, consider the subgroup

SL(α) =
∏
x∈Q0

SL(α(x)) ⊆ GL(α).

The invariant ring SI(Q,α) = K[Rep(Q,α)]SL(α) is called the ring of semi-invariants. A
multiplicative character of the group GLα is of the form

χσ : (A(x) | x ∈ Q0) ∈ GLα 7→
∏
x∈Q0

det(A(x))σ(x) ∈ K?,

where σ : Q0 → Z is called the weight of the character χσ. Define

SI(Q,α)σ = {f ∈ K[Rep(Q,α)] | ∀A ∈ GL(α) A · f = χσ(A)f}.

Then we have a weight space decomposition

SI(Q,α) =
⊕
σ

SI(Q,α)σ.

If σ · α =
∑

x∈Q0
σ(x)α(x) 6= 0, then SI(Q,α)σ = 0. Assume that σ · α = 0. We can

write σ = σ+ − σ− where σ+(x) = max{σ(x), 0} and σ−(x) = max{−σ(x), 0}. Define
n = σ+ · α = σ− · α.

Now we define an n× n linear matrix

A :
⊕
x∈Q0

V (x)σ+(x) →
⊕
x∈Q0

V (x)σ−(x)
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where each block Hom(V (x), V (y)) is of the form t1V (p1)+· · ·+trV (pr) where t1, t2, . . . , tr
are indeterminates and p1, p2, . . . , pr are all paths from x to y. We use different indetermi-
nates for the different blocks, so the linear matrix has m =

∑
x∈Q0

∑
y∈Q0

σ+(x)bx,yσ−(y)

indeterminates where bx,y is the number of paths from x to y. We can write A = t1X1 +

· · · + tmXm with X1, . . . , Xm ∈ Matn,n. We have the following result (see [17, Corollary
3], [25] and [73]).

Theorem 3.2.5. The space SI(Q,α)σ is spanned by det(t1X1+· · ·+tmXm) with t1, . . . , tm ∈
K.

Corollary 3.2.6. For any positive integer d, the space SI(Q,α)dσ is spanned by det(X1 ⊗
T1 + · · ·+Xm ⊗ Tm) with T1, . . . , Tm ∈ Matd,d.

Proof. This follows from the construction for dσ instead of σ.

Let us define a subring SI(Q,α, σ) =
⊕

d∈Z≥0
SI(Q,α)σ ⊆ SI(Q,α). The projective

variety Proj(SI(Q,α, σ), if nonempty, is a moduli space for the α-dimensional representa-
tions of Q, see [55]. The above discussion can be formulated as the following:

Corollary 3.2.7. Let Q,α, σ, n and m be as in the above discusiion. Then we have a

surjective ring homomorphism ψ : R(n,m) → SI(Q,α, σ) which sends homogeneous

elements of degree dn into SI(Q,α)dσ.

Remark 3.2.8. Once again, degree bounds forR(n,m) will immediately give degree bounds

for the subrings SI(Q,α, σ). However, to give degree bounds for the entire ring of semi-

invariants SI(Q,α), we will need additional work.
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CHAPTER 4

Linear matrices and non-commutative rank

We introduce linear matrices and the notions of commutative and non-commutative rank
in Section 4.1. In Section 4.2, we present an alternate proof of the regularity lemma. We
present some strange behaviour in the ranks of blow-ups in Section 4.3. A crucial result
on the rank of blow-ups is proved in Section 4.4, and in Section 4.5, we provide examples
where the ratio of non-commutative rank to commutative rank is large.

4.1 Introduction

We fix an infinite field K. A linear matrix (or matrix pencil) A over K is a matrix whose
coefficients are linear expressions in variables t1, t2, . . . , tm, i.e.,

A = A0 + t1A1 + t2A2 + · · ·+ tmAm, with Ai ∈ Matn,n(K).

There are several interesting ranks one can define on a linear matrix. We start with the most
obvious one.

Definition 4.1.1. The commutative rank crk(A) is defined as the rank over the commutative

function field K(t1, t2, . . . , tm)

We can also take t1, t2, . . . , tm to be independent non-commuting variables and com-
pute the rank over the free skew field K (<t1, t2, . . . , tm>) .

Definition 4.1.2. The non-commutative rank ncrk(A) is defined as the rank over the free

skew field K (<t1, t2, . . . , tm>)

We will not treat the skew field in detail as we will give a different characterization of
non-commutative rank. We refer to [46, 38, 37] for more details on the skew field. Over
any skew field (a.k.a division algebra), the rank of a matrix is defined as the (left) row rank,
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which is equal to the (right) column rank. In particular, adding left multiplied rows to other
rows and right multiplied columns to other columns does not affect the rank. Note also that
a square matrix is invertible over a skew field if and only if it is of full rank.

The following well-known example shows that the commutative and non-commutative
rank of a linear matrix may differ.

Example 4.1.3. This example is based on skew symmetric matrices. Let

A =

 0 1 t1

−1 0 t2

−t1 −t2 0

 .

It is easy to see that crk(A) = 2. However, over the free skew field K (<t1, t2>) , we can

do row and column transformations to transform A to 0 1 0

−1 0 0

0 0 [t2, t1]

 ,

which is clearly of full rank since [t2, t1] = t2t1 − t1t2 is non-zero over the skew field

K (<t1, t2>) .

Example 4.1.4. In [33], several low rank examples can be found. For example, they show

that 
c d 0 0

0 0 c d

−a 0 −b 0

0 −a 0 −b

 and


−b −d 0 0

0 0 −c −d
−d 0 b 0

c a 0 b


are linear matrices that have commutative rank 3, and non-commutative rank 4. Here

a, b, c, d are variables.

4.1.1 Linear subspaces of matrices

Linear matrices can also be studied from the point of view of linear subspaces and their
tensor blow-ups.

Definition 4.1.5. We define the rank of a linear subspace X ⊆ Matp,q to be the maximal

rank among its members, and denote it by rk(X ).
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The set of matrices inX having this maximal rank is Zariski open. Since the underlying
field K is infinite, we can relate the commutative rank of a linear matrix to the rank of a
linear subspace (see [37, Lemma 3.1]) as follows:

Lemma 4.1.6. Let A = X0 + t1X1 + t2X2 + · · · + tmXm be a linear matrix and let

X = span(X0, X1, X2, . . . , Xm). Then

crk(A) = rk(X ).

Proof. Suppose crk(A) = r. This means that there is an r× r minor M of A which is non-
zero. This minor is a polynomial in the variables t1, . . . , tm, i.e., 0 6= M = p(t1, . . . , tm) ∈
K[t1, . . . , tm]. Since the field is infinite, we can find a1, . . . , am such that p(a1, . . . , am) 6=
0. Hence A0 + a1A1 + · · · + amAm ∈ X with rank at least r. This shows that rk(X ) ≥
crk(A).

Now, suppose there is a matrix a0A0 + · · ·+amAm ∈ X , with rank s > r. Then there is
some s× s minor that is non-zero. Let t be a variable and consider the same s× s minor in
tA0 + a1A1 + · · ·+ amAm. This is a polynomial in t, say p(t), and we know that p(t) 6= 0

since p(a0) 6= 0. Hence, there exists a′0 6= 0 such that p(a′0) 6= 0. Thus w.l.o.g., replacing
a0 by a′0 if necessary, we can assume a0 6= 0. Then A0 + a1

a0
A1 + · · · + am

a0
Am ∈ X has

rank s > r. But this means that some s× s minor with s > r is non-zero. This same minor
in A0 + t1A1 + . . . tmAm is therefore a non-zero polynomial. Hence crk(A) ≥ k > r =

crk(A), which is a contradiction.

It turns out that non-commutative rank can also be understood from the perspective of
linear subspaces. In order to do this, we require the notion of tensor blow-ups for linear
subspaces.

Definition 4.1.7. Let X be a linear subspace of Matk,n. We define its (p, q) tensor blow-up

X {p,q} to be

X ⊗Matp,q =
{∑

i

Xi ⊗ Ti
∣∣∣ Xi ∈ X , Ti ∈ Matp,q

}
viewed as a linear subspace of Matkp,nq. We will write X {d} = X {d,d}.

The following characterization of non-commutative rank in terms of ranks of tensor
blow-ups appears in [49].
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Lemma 4.1.8 ([49]). Let A = X0 + t1X1 + t2X2 + · · ·+ tmXm be a linear matrix and let

X = span(X0, X1, X2, . . . , Xm). Then:

ncrk(A) = max
d

rk(X {d})
d

= lim
d→∞

rk(X {d})
d

.

It is not obvious that max
rk(X {d})

d
is an integer, or even that lim

d→∞

rk(X {d})
d

exists.
These will be justified in the following sections. But first, we observe that we can define
non-commutative ranks for linear subspaces of matrices, and do so.

Definition 4.1.9. For a linear subspace of matrices X , define

ncrk(X ) = max
rk(X {d})

d
= lim

d→∞

rk(X {d})
d

.

4.2 Regularity Lemma

Given X ∈ X having rank r = rk(X ), observe that X ⊗ I ∈ X {d} has rank rd. Hence
rk(X {d}) is at least d · rk(X ).

Example 4.2.1. Let X denote the linear subspace of skew symmetric 3 × 3 matrices. The

rank of this subspace is 2. Let X1, X2, X3 be any basis of X . Domokos showed in [21]

that X1 ⊗

(
1 0

0 0

)
+ X2 ⊗

(
0 1

1 0

)
+ X3 ⊗

(
0 0

0 1

)
∈ X {2} has full rank, i.e., 6, which

is larger than 2 · 2 = 4.

The above example shows rk(X {d}) could very well be larger than d · rk(X ). How-
ever, Ivanyos, Qiao and Subrahmanyam showed that there is a very strong restriction on
the possible ranks of tensor blow-ups. They proved the following regularity lemma ([49,
Lemma 11 and Remark 10]).

Proposition 4.2.2 (Regularity Lemma). IfX is a linear subspace of matrices, then rk(X {d})
is a multiple of d.

In [49], this is proved by giving an algorithm that takes a matrix of rank≥ rd+1 inX {d}

and produces another matrix in X {d} of rank ≥ (r + 1)d. Analyzing their algorithm (see
[49, 50]), they show that it runs in polynomial time. We give another proof of the regularity
lemma using Amitsur’s universal division algebras. While our proof is less constructive
than the original proof, it is conceptually more satisfying.

Let A = X0 + t1X1 + t2X2 + · · ·+ tmXm be an p×q linear matrix. The (i, j)th entry of
A is a linear function in the indeterminates tk’s with coefficients in K. In fact if ck ∈ K is
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the (i, j)th entry ofXk, then the (i, j)th entry ofA is given byAi,j = c0 +c1t1 + · · ·+cmtm.
Suppose S1, . . . , Sm are d × d matrices, then X0 ⊗ I + X1 ⊗ S1 + · · · + Xm ⊗ Sm is a
p × q block matrix and the size of each block is d × d. Moreover, the (i, j)th block is
c0I + c1S1 + · · ·+ cmSm.

In effect X0 ⊗ I + X1 ⊗ S1 + · · · + Xm ⊗ Sm is simply the block matrix obtained by
substituting Sk for tk in the linear matrix A. Hence, we make the following definition.

Definition 4.2.3. Let A = X0 + t1X1 + · · · + tmXm be a linear matrix. For any m-tuple

of matrices S = (S1, S2, . . . , Sm), we define

A(S) = X0 ⊗ I +X1 ⊗ S1 + · · ·+Xm ⊗ Sm.

Example 4.2.4. Let A =

 0 1 t1

−1 0 t2

−t1 −t2 0

. Then A(S1, S2) =

 0 I S1

−I 0 S2

−S1 −S2 0

 .

4.2.1 The ring of generic matrices

Let {tij,k|1 ≤ j, k ≤ d, i ∈ Z>0} be a collection of independent commuting indeterminates.
For each i ∈ Z>0, define the d × d matrix Ti = [tij,k]. By a generic matrix, we will refer
to a matrix of indeterminates. Let K[{tij,k}] denote the polynomial ring in the variables
tij,k for 1 ≤ j, k ≤ d, i ∈ Z>0. Observe that for each i, the generic matrix Ti lies in
Matd,d(K[{tij,k}]).

Definition 4.2.5. The ring of generic matrices Rd ⊆ Matd,d(K[{tij,k}]) is defined as the

subalgebra generated by {Ti|i ∈ Z>0}.

Lemma 4.2.6. Let A = X0 + t1X1 + · · · + tmXm be a linear matrix, and let X =

span(X1, X2, . . . , Xm). Then, we have

rk(X {d}) = rk(X0 ⊗ I +X1 ⊗ T1 + · · ·+Xm ⊗ Tm),

where Ti is a generic matrix for i = 1, 2, . . . ,m.

Proof. We first show rk(X {d}) ≤ rk(X0 ⊗ I + X1 ⊗ T1 + · · · + Xm ⊗ Tm). For S =

(S0, S1, . . . , Sm) in a non-empty Zariski open subset of Matm+1
d,d , we have rk(X0 ⊗ S0 +

X1⊗S1 + · · ·+Xm⊗Sm) = rk(X {d}) = r, sinceK is infinite. There is an S in this Zariski
open subset for which S0 is invertible. For such an S, observe that rk(X0⊗I+X1⊗S−1

0 S1+

· · ·+Xm⊗S−1
0 Sm) = r. The corresponding r×r minor inX0⊗I+X1⊗T1+· · ·+Xm⊗Tm

must be a non-zero polynomial.
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The other inequality, i.e., rk(X {d}) ≥ rk(X0 ⊗ I + X1 ⊗ T1 + · · · + Xm ⊗ Tm) is
straightforward, and follows the same argument as Lemma 4.1.6.

Example 4.2.7. Let A = X0 + t1X1 + t2X2 =

 0 1 t1

−1 0 t2

−t1 −t2 0

 . Then for generic

matrices T1, T2, we have:

A(T1, T2) = X0 ⊗ I +X1 ⊗ T1 +X2 ⊗ T2 =

 0 I T1

−I 0 T2

−T1 −T2 0

 .
As observed in the introduction, we can do row and column transformations to trans-

form  0 I T1

−I 0 T2

−T1 −T2 0

 −→
 0 I 0

−I 0 0

0 0 [T2, T1]

 .
Hence rkA(T1, T2) = 2d + rk([T1, T2]). If the Ti are generic matrices of size 1 × 1,

then [T1, T2] = 0, and if T1, T2 are generic matrices of size d× d for d ≥ 2, then [T1, T2] is

invertible, and hence of full rank. Thus for T1, T2 generic matrices of size d× d, we have

rkA(T1, T2) =

2 if d = 1,

3d if d ≥ 2.

In particular, observe that rkA(T1, T2) is always a multiple of d. Using Lemma 4.2.6,

one sees that the regularity lemma is satisfied for the linear subspace of 3 × 3 skew sym-

metric matrices.

4.2.2 Universal division algebras

Observe, as in Example 4.2.7, that for generic d × d matrices, the expression [T1, T2] was
either identically zero, or invertible depending upon the value of d. This is a special case
of a surprising general phenomenon, namely that any non-zero non-commutative rational
expression in some d × d generic matrices must in fact be invertible! This follows from
the fact that Amitsur’s universal division algebras are division algebras. We describe these
universal division algebras.

Recall the ring of generic matrices Rd ⊆ Matd,d(K[{tij,k}]). Let Zd denote the center
of Rd, and let the field of fractions of Zd be Qd. The following result is due to Amitsur (see
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[2, 3, 4]). One can also find it in standard texts (for example [7, Section 7.2]).

Theorem 4.2.8 (Amitsur). UD(d) := Qd ⊗Zd Rd is a division algebra and is called a

universal division algebra of degree d.

Proof. Posner proved that the central quotient of a prime PI-ring is a simple algebra (see
[69]). The ring Rd satisfies a polynomial identity, namely the Amitsur-Levitzki polyno-
mial. Amitsur showed (see [2, Theorem 4]) that Rd is in fact a (non commutative) integral
domain, and in particular a prime ring. Hence its central quotient UD(d) is a simple al-
gebra. By the Wedderburn-Artin theorem (see [52, Section 3.13]), it must be a matrix
algebra over a division algebra, i.e., UD(d) ∼= Matr,r(D) for some division algebra D
and r ∈ Z>0. Further, since Rd is an integral domain, UD(d) has no nilpotents. Hence
UD(d) ∼= Mat1,1(D) ∼= D.

Note that UD(d) ⊆ Matd,d(K({tij,k})). We now give another proof of the regularity
lemma, as we mentioned in the introduction.

Proof of Theorem 4.2.2. Let X0, X1, X2, . . . , Xm span the linear subspace X ⊆ Matp,q,
and set A = X0 + t1X1 + · · ·+ tmXm. Then by Lemma 4.2.6, we have

rk(X {d}) = rk(X0 ⊗ I +X1 ⊗ T1 + · · ·+Xm ⊗ Tm).

A(T1, T2, . . . , Tm) = X0 ⊗ I + X1 ⊗ T1 + · · · + Xm ⊗ Tm can be viewed as a
p × q block matrix whose blocks are linear expressions in the generic matrices Ti, and
in particular elements of UD(d), a division algebra. By row and column operations in
UD(d) ⊆ Matd,d(K({tij,k})), we can make the transformation:

(X0 ⊗ I +X1 ⊗ T1 + · · ·+Xm ⊗ Tm) −→



I
. . .

I

0

0 0


Since each I denotes a d × d identity matrix, it contributes d to the rank. Hence, it is

clear that rk(A(T1, . . . , Tm)) = rk(X {d}) is a multiple of d.
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4.3 Failure of the weakly increasing property in blow-ups

Observe that ncrk(X ) ≥ rk(X ), since rk(X {d}) is at least d · rk(X ). On the other hand, it
is shown in [37] using an argument of Flanders that ncrk(X ) ≤ 2 rk(X ). Modifying their
argument slightly, one can show that the ratio must be < 2.

Proposition 4.3.1. For any linear subspace X , we have ncrk(X ) < 2 rk(X ).

Proof. Let r be the smallest non-negative integer such that we have a linear subspace X ⊆
Matp,q of rank r for some p, q, such that ncrk(X ) = 2r. We have r > 1 since rk(X ) = 1

implies ncrk(X ) = 1 (see [37, Remark 1]). This also follows from Lemma 4.4.6 that we
will prove in the following section.

We use a result of Flanders (see [34, Lemma 1]) to see thatX is equivalent to a subspace

of the form

{(
A 0

C B

)}
withC of size r×r (see also [37, Corollary 2]). Since ncrk(X ) =

2r, we must have ncrk(A) ≥ r, since we must have at least 2r linearly independent rows.
But A has only r columns, and hence ncrk(A) = r. A similar argument considering
columns shows that ncrk(B) = r.

We have rk(A), rk(B) ≥ r/2 because the ratio is at most 2. We cannot have rk(A) =

r/2 or rk(B) = r/2 as that would violate the minimality of r. Thus rk(A), rk(B) > r/2.
However, this means that rk(X ) ≥ rk(A) + rk(B) > r.

The existence of max
d

rk(X {d})
d

and lim
d→∞

rk(X {d})
d

follows from the following partial
increasing property of ranks of blow-ups (see [49, Corollary 12]), along with the regularity
lemma.

Lemma 4.3.2. Let X be a linear subspace of matrices, Then for d ≥ n,
rk(X {d})

d
is weakly

increasing.

The authors of [49] comment that the statement of Lemma 4.3.2 is perhaps true for
d < n as well, but are unable to prove it. We are able to strengthen the result:

Proposition 4.3.3. Let X be a linear subspace of matrices, Then for d ≥ n
2
− 1,

rk(X {d})
d

is weakly increasing.

Proof. Proof of Proposition 4.3.3. Suppose rk(X {d})/d = r. Choose a basis X1, . . . , Xm

of X . There exist T1, . . . , Tm ∈ Matd,d such that
∑

iXi ⊗ Ti ∈ X {d} has rank rd. Choose
a1, . . . , am ∈ K such that

∑
i aiXi ∈ X has rank equal to rk(X ).
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Then let T̃i ∈ Matd+1,d+1 be given by

T̃i =

 Ti
0
...
0

0 . . . 0 ai

 .

Then it is easy to see that

rk(
∑m

i=1Xi ⊗ T̃i) ≥ rk(
∑m

i=1 Xi ⊗ Ti) + rk(
∑m

i=1 aiXi) = rd+ rk(X )

Furthermore, we have
rk(X ) > 1

2
ncrk(X ) ≥ 1

2
r.

In the above, the first inequality follows from Proposition 4.3.1, and the second follows
from the Definition 4.1.9. Hence, we have

rk(X {d+1}) ≥ rk(
∑

iXi ⊗ T̃i) > rd+ 1
2
r.

Since d ≥ n
2
− 1 ≥ r

2
− 1, we have rk(X {d+1}) > rd + 1

2
r ≥ (r − 1)(d + 1). Now,

by the regularity lemma (Proposition 4.2.2) we must have rk(X {d+1})/(d + 1) ≥ r =

rk(X {d})/d.

More importantly, we show that the increasing property need not hold for small values
of d. We combine a surprising construction of Bergman in [5] of an explicit rational identity
satisfied by 3 × 3 matrices but not by 2 × 2 matrices, with a construction of Hrubeš and
Wigderson in [46] to give a counterexample.

Proposition 4.3.4. There exists a linear subspace X such that

rk(X {2})
2

>
rk(X {3})

3
.

In fact, using an existential result in [5], we can show:

Theorem 4.3.5. For any n,m ∈ Z>0 such that n - m, there is a linear subspace X such

that
rk(X {n})

n
>

rk(X {m})
m

.

In order to prove the above claims, we will need to recall some results on rational
identities, and a construction from [46].
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4.3.1 Rational identities

In [5, 6], Bergman proved a number of remarkable results on rational relations and rational
identities in division rings. In particular, he came up with an explicit construction of a
rational expression which is an identity on 3 × 3 matrices, but invertible on general 2 × 2

matrices. We introduce some notation. Let Y ′ denote the commutator [X, Y ], and let
δ(Y ) denote (Y 2)′[(Y −1)′]−1. In [5], Bergman proves the following result (see also [7,
Theorem 7.4.3]).

Theorem 4.3.6 ([5]). Let n = 2 or 3. For X, Y generic n× n matrices, we have:

ψ = δ(Y ′)δ(Y ′′)[(δ(Y ′′)−1)′][(δ(Y ′′′)−1)′] =

1 if n = 3,

0 if n = 2.

Note that in the above theorem, 1 denotes the identity matrix, i.e., the identity element
in the ring of n× n matrices, and 0 denotes the zero matrix.

Corollary 4.3.7. The rational expression ψ − 1 is an identity for 3 × 3 matrices, but is

invertible for general choices of 2× 2 matrices.

Bergman also showed the existence of such rational functions more generally. Let E(d)

be the set of rational expressions that can be evaluated on generic d× d matrices.

Theorem 4.3.8 ([5]). Assume n,m ∈ Z>0. Then E(n) ⊆ E(m) if and only if n | m.

4.3.2 Non-commutative arithmetic circuits with division

A non-commutative arithmetic circuit is a directed acyclic graph, whose vertices are called
gates. Gates of in-degree 0 are elements of K or variables ti. The other allowed gates
are inverse, addition and multiplication gates of in-degrees 1, 2 and 2 respectively. The
edges going into an multiplication gate are labelled left and right to indicate the order of
multiplication. A formula is a circuit, where every node has out-degree at most 1. The
number of gates in a circuit is called its size. Let Φ be a circuit in m variables. It is easy to
observe that each output gate of a circuit Φ computes a rational expression. We denote by
Φ̂(T ) the evaluation of Φ at T = (T1, T2, . . . , Tm) ∈ Matmp,p. In the process of evaluation,
if the input of an inverse gate is not invertible, then Φ̂(T ) is undefined. Φ is called a correct
circuit if Φ̂(T ) is defined for some T . For further details, we refer to [46].

Given a non-commutative formula of size n, Hrubeš and Wigderson construct a family
of linear matrices Au for each gate u of the formula with certain properties outlined in the
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proposition below. We refer to [46, Theorem 2.5] for details. We are content to remark that
these matrices can be constructed explicitly in time which is polynomial in n. We recall
[46, Propostion 7.1].

Proposition 4.3.9 ([46]). Let R be a ring which contains K in its center. For a formula Φ,

and a1, a2, . . . , am ∈ R, the following are equivalent:

1. Φ̂(a1, a2, . . . , am) is defined.

2. For every gate u, the Au(a1, a2, . . . , am) is invertible.

Now, we can put Bergman’s results together with Hrubeš and Wigderson’s results to
give a proof of Proposition 4.3.4.

Proof of Proposition 4.3.4. Let Φ be the non-commutative formula that computes the ra-
tional expression (ψ−1)−1, where ψ is as in Theorem 4.3.6. By the construction of Hrubeš
and Wigderson mentioned above, we have linear matrices Au for each gate u. Observe
that Φ̂(T ) is defined for T = (T1, T2, . . . , Tm) where the Ti are generic 2 × 2 matrices by
Theorem 4.3.6. Thus, the Au(T ) is invertible for all u.

On the other hand, if the Ti are generic 3×3 matrices, then once again by Theorem 4.3.6,
Φ̂(T ) is not defined. Thus, for some u, Au is not invertible. For this u, write Au =

X0 + t1X1 + · · ·+ tmXm and let X = span(X0, X1, . . . , Xm). Then, using Lemma 4.2.6,
we conclude

rk(X {2})
2

>
rk(X {3})

3
.

For the general case, we use Theorem 4.3.8.

Proof of Theorem 4.3.5. If n - m, then there exists r ∈ E(n) such that r /∈ E(m). Let Φ

be the non-commutative formula that computes r. The argument in the proof of Proposi-
tion 4.3.4 applied to Φ gives the required conclusion.

4.4 Combinatorics of ranks of blow-ups

In this section, we prove an extremely useful stabilization result on the ranks of blow-ups.
Recall that

ncrk(X ) = max
rk(X {d})

d
= lim

d→∞

rk(X {d})
d

.

However, to compute the non-commutative rank, one potentially has to go to a very large
blow-up. This raises an important problem.
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Problem 4.4.1. Given a linear subspace X what is the smallest d such that ncrk(X ) =
rk(X {d})

d
?

In this section, we will in fact show that it suffices to consider small blow-ups – If
X ⊆ Matn,n, then blow-ups of size n− 1 suffice! Let us start with a definition.

Definition 4.4.2. We define the function r : Z≥0 × Z≥0 → Z≥0 by

r(p, q) = rk(X {p,q}).

Remark 4.4.3. Note that the set of all T = (T1, . . . , Tm) ∈ Matmp,q for which
∑m

i=1Xi⊗Ti
has maximal rank r(p, q) is Zariski dense in Matmp,q.

Lemma 4.4.4. The function r has the following properties:

1. r(p, q + 1) ≥ r(p, q);

2. r(p+ 1, q) ≥ r(p, q);

3. r(p, q + 1) ≥ 1
2
(r(p, q) + r(p, q + 2));

4. r(p+ 1, q) ≥ 1
2
(r(p, q) + r(p+ 2, q));

5. r(p, q) is divisible by gcd(p, q).

Proof.

(1) follows from viewing X {p,q} as a subspace of X {p,q+1}.
Now we will prove (3). Let T = (T1, . . . , Tm) ∈ Matmp,q+2. For a subset J ⊆

{1, 2, . . . , q + 2}, let T Ji be the submatrix where all the columns with index in J are omit-
ted, and let YJ be the column span of

∑
iXi ⊗ T Ji . If we choose T general enough, then∑

iXi ⊗ T Ji will have rank r(p, q + 2 − |J |) for all J ⊆ {1, 2, . . . , q + 2}. We have
Y1 + Y2 = Y∅ and Y1,2 ⊆ Y1 ∩ Y2. It follows that

r(p, q) = dimY1,2 ≤ dimY1∩Y2 = dimY1+dimY2−dim(Y1+Y2) = 2r(p, q+1)−r(p, q+2).

Parts (2) and (4) follow from (1) and (3) respectively by symmetry.
To see (5), write p = dp′ and q = dq′. Then we have X {p,q} = (X {p′,q′}){d} and the

result follows from the regularity lemma

In the above lemma, parts (1) and (3) give us that r(p, q) is weakly increasing and
weakly concave in the second variable, and parts (2) and (4) give the same conclusion for
the first variable.
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Corollary 4.4.5. The function r(p, q) is weakly increasing and weakly concave in either

variable.

Lemma 4.4.6. If r(1, 1) = 1, then we have r(d, d) = d for all d.

Proof. Choose a nonzero matrix A ∈ X of rank 1. Using left and right multiplication with
matrices in GLn(K) we may assume without loss of generality that

A =


1 0 · · · 0

0 0 0
... . . . ...
0 0 · · · 0

 .

It is clear that r(d, d) ≥ d. If i > 1, j > 1 and B ∈ X then Bi,j has to be zero, otherwise
tA+B will have rank at least 2 for some t. So X is contained in

∗ ∗ · · · ∗
∗ 0 · · · 0
...

... . . . ...
∗ 0 · · · 0

 .

Because all matrices of X have rank at most 1, B must be contained in the union W1 ∪W2,
where

W1 =


∗ 0 · · · 0

∗ 0 · · · 0
...

... . . . ...
∗ 0 · · · 0

 and W2


∗ ∗ · · · ∗
0 0 · · · 0
...

... . . . ...
0 0 · · · 0

 .
Because X is a subspace, it is entirely contained in W1 or in W2. Now it is clear that the
matrices in X {d} have at most d nonzero columns, or at most d nonzero rows, so r(d, d) ≤
d.

Proposition 4.4.7. Let n ≥ 2, and let d + 1 ≥ n. If r(d + 1, d + 1) = n(d + 1), then

r(d, d) = nd as well.

Proof. Suppose that r(d+1, d+1) = n(d+1). If 1 ≤ a ≤ d, then weak concavity implies
that

r(d+ 1, a) ≥ (d+ 1− a)r(d+ 1, 0) + ar(d+ 1, d+ 1)

d+ 1
=
an(d+ 1)

d+ 1
= an.
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The inequality r(d + 1, a) ≤ an is clear, so r(d + 1, a) = an. Similarly, we have r(a, d +

1) = an. If r(1, 1) = 1 then we get r(d + 1, d + 1) = d + 1 by Lemma 4.4.6 which
contradicts r(d + 1, d + 1) = n(d + 1). So we have r(1, 1) ≥ 2. Since r(p, q) is weakly
concave in the second variable, we have

r(1, d) ≥ (d− 1) · r(1, d+ 1) + 1 · r(1, 1)

d
≥ (d− 1)n+ 2

d
= n− n− 2

d
> n− 1,

where the last inequality follows as d ≥ n − 1. Since r(1, d) must be an integer, we have
r(1, d) ≥ n. Now, by the weak concavity in the first variable, we have

r(d, d) ≥ (d− 1) · r(d+ 1, d) + 1 · r(1, d)

d
≥ (d− 1)nd+ n

d
= nd− n+

n

d
.

Note that since d ≥ n − 1, we have d + n
d
> n or equivalently that −n + n

d
> −d. Thus,

we have
r(d, d) ≥ nd− n+

n

d
> d(n− 1).

Recall that r(d, d) must be a multiple of d by the regularity lemma. Thus r(d, d) = nd.

From the above proposition and Proposition 4.3.3, we deduce:

Corollary 4.4.8. We have ncrk(X ) = n if and only if r(d, d) = nd for all d ≥ n− 1.

4.5 Ratio of non-commutative rank to commutative rank

We know that for any linear subspace of matrices ncrk(X )
crk(X )

< 2 by Proposition 4.3.1. On
the other hand, Example 4.1.3 is an explicit linear matrix for which the ratio of non-
commutative rank to commutative rank is 3/2. Fortin and Reutenauer suspected that this
example was extremal, suggesting that the actual bound for the ratio is 3/2. We show that
this is not the case.

Given an element in v ∈ Kn, we can define a map Lv :
∧pKn →

∧p+1 Kn given by
x 7→ v ∧ x. This gives a linear map L : Kn → Hom(

∧pKn,
∧p+1Kn) sending v 7→ Lv.

The image is a linear subspace.

Theorem 4.5.1. Let X (p, 2p+ 1) denote the image of

L : K2p+1 → Hom(

p∧
K2p+1,

p+1∧
K2p+1).
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We have
ncrk(X (p, 2p+ 1))

rk(X (p, 2p+ 1))
=

2p+ 1

p+ 1
.

First, let us compute rk(X (p, n)). Note that a basis for
∧p(Kn) is given by

{ei1 ∧ ei2 ∧ . . . ∧ eip |1 ≤ i1 < i2 < · · · < ip ≤ n}.

Let A(p, n) denote the linear matrix given by t1Le1 + t2Le2 + · · ·+ tnLen .

Lemma 4.5.2. For a particular choice of basis, the linear matrix A(p, n) has the form
tnI A(p− 1, n− 1)

A(p, n− 1) 0


Proof. Let

A = {(ei1 ∧ ei2 ∧ · · · ∧ eip−1) ∧ en | 1 ≤ i1 < · · · < ip−1 ≤ n− 1}, and

B = {ei1 ∧ ei2 ∧ · · · ∧ eip | 1 ≤ i1 < · · · < ip ≤ n− 1}.

Then clearly A ∪B is a basis for
∧p(Kn). Similarly, let

C = {(ei1 ∧ ei2 ∧ · · · ∧ eip) ∧ en | 1 ≤ i1 < · · · < ip ≤ n− 1}, and

D = {ei1 ∧ ei2 ∧ · · · ∧ eip+1 | 1 ≤ i1 < · · · < ip+1 ≤ n− 1}.

Then C∪D is a basis for
∧p+1(Kn). It is easy to see that there Len : B → C is a bijection.

Now, order the basis elements for
∧p(Kn) by taking the basis vectors from B first, and

then from A. For
∧p+1(Kn), order the basis vectors by taking the basis vectors from C

first, and then from D. Within the basis vectors of C, we order them in the same order as
the vectors from B via the aformentioned bijection given by Le1 .

Remark 4.5.3. The description in [60, Section 4] is the same as the one above.

Corollary 4.5.4. If A(p, n) has full column rank, then so does A(p− 1, n− 1). Similarly,

if A(p, n) has full row rank, then so does A(p, n− 1).

Corollary 4.5.5. For any non-zero v ∈ Kn, rk(Lv) =
(
n−1
p

)
.
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Proof. Assume without loss of generality that v = en. By the above choice of basis Len =[
I 0

0 0

]
. Hence

rk(Lv) = |B| = |C| =
(
n− 1

p

)
.

Let X (p, n) denote the image of the linear map Kn → Hom(
∧p(Kn),

∧p+1(Kn))

given by v 7→ Lv.

Corollary 4.5.6. We have crk(A(p, n)) = rk(X (p, n)) =
(
n−1
p

)
.

Proof. This follows from Lemma 4.1.6.

Corollary 4.5.7. We have rk(X (p, 2p+ 1)) =
(

2p
p

)
.

Proposition 4.5.8. Let e1, . . . e2p+1 denote the standard basis for Km. Let Li denote Lei .

For 1 ≤ r ≤ 2p+ 1, let Sr be the (p+ 1)× (p+ 1) matrix such that

Sr(j, k) =

1 if k − j = p+ 1− r

0 otherwise

Then L := L1 ⊗ S1 + L2 ⊗ S2 + · · ·+ L2p+1 ⊗ S2p+1 is invertible.

The Si are the most obvious basis of the space of (p + 1) × (p + 1) Toeplitz matrices.
Since L ∈ X (p, 2p+ 1)2p+1 is invertible, we have:

Corollary 4.5.9. We have ncrk(X (p, 2p+ 1)) is full, i.e., ncrk(X (p, 2p+ 1)) =
(

2p+1
p

)
.

Proof of Theorem 4.5.1. This follows from Corollary 4.5.7 and Corollary 4.5.9.

Now, it remains to prove Proposition 4.5.8. In characteristic 0, this can be found in [61].
However, the argument does not extend to positive characteristic. Nevertheless, we give a
different argument using only elementary linear algebra to extend the result to arbitrary
characteristic. The rest of this section is devoted to this.

4.5.1 Preliminaries from Linear Algebra

Let B = {v1, . . . , vn} denote an ordered basis for an n-dimensional vector space V . Con-
sider the alternating power

∧r V . For a subset I = {i1, . . . , ir} ⊆ [n] of size r, with
i1 < i2 < · · · < ir, we define vI = vi1 ∧ vi2 ∧ · · · ∧ vir . Here [n] denotes the set
{1, 2, . . . , n}. The following lemma is a well known fact.
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Lemma 4.5.10. For a given ordered basis B = (v1, . . . , vn) for Kn, define B(r) as the set

{vI | I ⊆ {1, 2, . . . , n}, with |I| = r} ordered lexicographically. Then B(r) is an ordered

basis for
∧r V .

Example 4.5.11. Let n = 3, and r = 2, then B(r) is the ordered basis (v1,2, v1,3, v2,3).

Definition 4.5.12. Given an ordered basis B = (v1, . . . , vn) of V and an ordered basis

C = {w1, . . . , wm} of W , we define xi,j = vi ⊗wj . By B ⊗ C , we mean the set {xi,j | i ∈
[n], j ∈ [m]} ordered lexicographically. This is a basis of V ⊗W .

Example 4.5.13. Let n = 2,m = 2, then B⊗C = (v1⊗w1, v1⊗w2, v2⊗w1, v2⊗w2) =

(x1,1, x1,2, x2,1, x2,2).

Suppose that B is a basis of V and C is a basis of W and L : V → W is a linear map.
Then LC ,B denotes the matrix of the transformation Lwith respect to the bases B and C . If
M : W → Z is a linear map and D is a basis of Z, then we have (ML)D ,B = MD ,CLC ,B.

Let B = (b1, b2, . . . , bn) and B′ = (b′1, b
′
2, . . . , b

′
n) be two ordered bases for V . Then

denote by XB,B′ = (idV )B,B′ be the matrix of the identity with respect to B and B′.
This is the base change matrix and its colums are the vectors b′1, b

′
2, . . . , b

′
n expressed in

the basis B. Note that XB′,B = X−1
B,B′ . We recall the base change formula for linear

transformations.

Lemma 4.5.14 (Base change formula). We have

LC ′,B′ = XC ′,CLC ,BXB,B′ = X−1
C ,C ′LC ,BXB,B′ .

Let B = (b1, b2, . . . , bn) be an ordered basis of V and we multiply the ith basis vector
by some scalar λ 6= 0 to obtain the basis B′ = (b1, . . . , bi−1, λbi, bi+1, . . . , bn). ThenXB,B′

is a diagonal matrix. The ith diagonal entry of XB,B′ is λ and all other diagonal entries are
1. In particular, we have det(XB,B′) = λ. For our purposes we need to understand a more
interesting base change matrix.

Proposition 4.5.15. With B and B′ as above, we have we have det(XB(r),B′(r)) = λ(n−1
r−1).

Proof. It is easy to see that the basis B′(r) is gotten from B(r) by scaling some of its
basis vectors. More precisely, if a subset I contains i, then the basis vector bI is scaled by
λ. All other basis vectors remain unchanged. The number of subsets containing i is given
by
(
n−1
r−1

)
. Hence XB(r),B′(r) is a diagonal matrix in which

(
n−1
r−1

)
diagonal entries are λ and

all other diagonal entries are 1. The proposition follows since the determinant of a diagonal
matrix is the product of the diagonal entries.
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We also need to understand what happens to a linear map L ∈ Hom(
∧r V,

∧r+1 V )

when we change basis. For a basis B of V , let LB = LB(r+1),B(r) denote the matrix of L
in the basis B(r) and B(r + 1) for the domain and codomain respectively.

Corollary 4.5.16. Let B and B′ be as in Proposition 4.5.15. Then forL ∈ Hom(
∧r V,

∧r+1 V ),

we have det(LB′) = λ(n−1
r−1)−(n−1

r ) det(LB).

Proof. This follows from applying Proposition 4.5.15 to the base change formula

LB′ = X−1
B(r+1),B′(r+1)LBXB(r),B′(r).

In fact, we need slightly more general results. An argument along the lines of the proof
of Proposition 4.5.15 gives the following lemma.

Lemma 4.5.17. Let B and B′ be as in Proposition 4.5.15. LetW be a c-dimensonal vector

space with ordered basis C . Then we have det(XB(r)⊗C ,B′(r)⊗C ) = λc(
n−1
r−1).

For a linear transformation L ∈ Hom((
∧r V ) ⊗W, (

∧r+1 V ) ⊗W ), let LB⊗C denote
the matrix for the linear transformation of L in the bases B(r)⊗ C and B(r + 1)⊗ C for
the domain and codomain respectively. Following the same idea as Corollary 5.3.9, we get
the following:

Corollary 4.5.18. Let B and B′ be as in Propositon 4.5.15. Then for a linear transforma-

tion L ∈ Hom((
∧r V )⊗W, (

∧r+1 V )⊗W ), we have

det(LB′⊗C ) = λc((
n−1
r−1)−(n−1

r )) det(LB⊗C ).

4.5.2 Effects of scaling basis vectors on the matrices of Li’s

Let m = 2p + 1 be a positive integer. Let E = (e1, . . . , em) denote the standard ordered
basis of Km. Recall that for a v ∈ Km, Lv ∈ Hom(

∧pKm,
∧p+1Km) is the linear map

that sends w to v ∧ w. Let E ′ be the ordered basis obtained from E by scaling the ith basis
vector by λ, i.e., E ′ = (e1, . . . , ei−1, λei, ei+1 . . . , em). It is easy to understand the effect of
this base change on the matrices of Li.

Lemma 4.5.19. We have (Lj)E ′ =

(Lj)E if j 6= i,

λ−1(Li)E if j = i.
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Proof. It is easy to see that for any basis B = (b1, . . . , bm) of Km, the matrix of Lbi
written in the basis B(r) and B(r + 1) is the same, i.e., (Lbi)B = (Lci)C for any other
basis C = (c1, . . . , cm). For j 6= i, we have ej = e′j , and hence

(Lj)E ′ := (Lej)E ′ = (Le′j)E ′ = (Lej)E =: (Lj)E .

For j = i, we have ei = λ−1e′i, and so

(Li)E ′ := (Lei)E ′ = (Lλ−1e′i
)E ′ = λ−1(Le′i)E ′ = λ−1(Lei)E =: λ−1(Li)E .

Let

L = L1⊗S1+L2⊗S2+· · ·+L2p+1⊗S2p+1 ∈ Hom
(
(
∧pKm)⊗Kp+1, (

∧p+1 Km)⊗Kp+1
)
,

where Si is defined as in Proposition 4.5.8. Let F denote the standard basis of Kp+1.
Hence we have the bases E (p) ⊗F and E ′(p) ⊗F for the domain and the bases E (p +

1)⊗F and E ′(p + 1)⊗F for the codomain. Recall that for a linear transformation L ∈
Hom

(
(
∧r V )⊗W, (

∧r+1 V )⊗W
)
, LB⊗C denotes the matrix for the linear transformation

of L in the bases B(r)⊗ C and B(r + 1)⊗ C for the domain and codomain respectively,
where B is a basis for V and C is a basis for W .

Lemma 4.5.20. We have det(LE ′⊗C ) = λ−(2p
p ) det(LE⊗C )

Proof. This follows from Corollary 4.5.18, since (p+ 1)(
(

2p
p−1

)
−
(

2p
p

)
) = −

(
2p
p

)
.

Let λ = (λ1, λ2, . . . , λm) ∈ Km such that λi 6= 0 for 1 ≤ i ≤ m. Given an ordered
basis E = (e1, . . . , em), we define another ordered basis λ · E = (λ1e1, λ2e2, . . . , λmem).
Applying the above lemma several times, we get:

Corollary 4.5.21. We have det(L(λ·E )⊗C ) =

(
m∏
i=1

λi

)−(2p
p )

det(LE⊗C ).

Definition 4.5.22. Let Mi denote the matrix (Li)E . We define

M(t1, . . . , t2p+1) := t1M1 ⊗ S1 + t2M2 ⊗ S2 + · · ·+ t2p+1M2p+1 ⊗ S2p+1.

Define p(t1, . . . , t2p+1) := det(M(t1, . . . , t2p+1)).

Corollary 4.5.23. We have p(t1, . . . , tm) =

(
m∏
i=1

ti

)(2p
p )
p(1, 1, . . . , 1).

Proof. Apply Lemma 4.5.19 to Corollary 4.5.21, where λ = (t−1
1 , t−1

2 , . . . , t−1
m ).
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4.5.3 Examples

Let us first recall that for an m × n matrix A = (ai,j) and a B = (bk,l), we define the
Kronecker product A⊗B by

A⊗B =


a1,1B . . . a1,nB

... . . . ...
am,1B . . . am,nB


If A = (ai,j) is a square n × n matrix, then its determinant is equal to

∑
σ∈Σn

sgn(σ)rσ,
where σ runs over all elements of the symmetric group Σn, sgn(σ) is the sign of the per-
mutation σ and rσ =

∏n
i=1 ai,σ(i). To proceed further, we believe it is necessary to acquaint

the reader with small examples.

Example 4.5.24 (p = 1). Suppose that p = 1 and m = 3. Let E = (e1, e2, e3) be the

standard basis ofK3. Then the basis E (1) is E itself, and the basis E (2) = (e1,2, e1,3, e2,3).

In this basis t1L1 ⊗ S1 + t2L2 ⊗ S2 + t3L3 ⊗ S3 is given by the block matrix

A :=

−t2S2 t1S1 0

−t3S3 0 t1S1

0 −t3S3 t2S2


In other words A = M(t1, t2, t3). We also write out Si. We have

S1 =

(
0 1

0 0

)
, S2 =

(
1 0

0 1

)
, S3 =

(
0 0

1 0

)
.

Observe that the matrix A is a 6 × 6 matrix with entries in Z[t1, t2, t3]. We will try to

compute detA as an element of this ring. We will analyze the situation thoroughly as it will

be useful in handling the general case. We know detA = k(t1t2t3)2 by Corollary 4.5.23

and we want to establish that k = ±1.

Recall that detA =
∑

σ∈Σ6
sgn(σ)rσ, with rσ =

∏6
i=1 ai,σ(i). Now, observe that each

entry of A is either 0 or ±ti. Hence each rσ is either 0 or ± monomial (in the ti’s). We

know that the final answer must be a multiple of the monomial (t1t2t3)2. So, it suffices to

focus on the permutations σ such that rσ = ±t21t22t23.

We claim that there is at most one permutation σ such that rσ = ±t21t22t23. In other

words, there is at most one choice of 6 entries, satisfying the condition that no two entries

are in the same row and no two entries are in the same column such that the product of

their entries is ±t21t22t23.
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To see this, observe first there are only two entries of the form ±t1, since t1S1 =(
0 t1

0 0

)
and there are exactly two blocks which are ±t1S1. So, in order to get t21, we

have no choice but to pick both entries.

Now, there are four entries of the form ±t2, two in each block of the form ±t2S2.

Consider the northwest −t2S2 block. This block occurs in the same block row as a t1S1.

We focus on these two blocks in the top block row.

(
−t2S2 | t1S1

)
=

(
−t2 0 0 t1

0 −t2 0 0

)
We have already argued that we must pick the blue t1 in the t1S1, since all ±t1’s must

be picked. Hence we cannot pick any other entry from that row. This rules out the −t2
that we have colored red. So only the −t2 from the bottom row is available, which we have

colored blue. A similar argument shows that you can only pick the t2 in the left column

of the southeast most block of the form t2S2. Since there are only two ±t2’s available, we

have no choice but to pick both of them.

Remark 4.5.25. We want to think of this in the following way. While considering the

northwest block entry −t2S2, we observe that there is exactly 1 block entry of the form

±tiSi in the same row with i < 2. This is the condition that rules out the top 1 rows.

Similarly, there are 0 block entries of the form ±tiSi in the same column with i < 2. This

is the condition that rules out the right 0 columns. This leaves precisely one non-zero

entry in the northwest t2S2 to choose from. A generalization of such an argument (see

Proposition 4.5.36) will be the key to unlocking the general case.

Continuing with the example, observe that there are only two±t3’s, and hence we must

pick both of them. These ±t3’s could potentially be in the same row or column as the

choices of t1’s and t2’s, which would be disastrous. However, this doesn’t happen. In this

case, one can check explicitly. In the general case, however, instead of an explicit check

we will use the generalization of the argument mentioned in the above remark. Hence,

there is exactly one permutation σ for which rσ = ±(t1t2t3)2. Thus we have that detA =

±(t1t2t3)2.

4.5.4 The general case

We will prove Proposition 4.5.8 in this section. Let m = 2p + 1 be a positive integer, and
let A := M(t1, . . . , tm). We will begin with some structural results on the matrix A. Let
M = t1M1 + · · ·+ t2p+1M2p+1.
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Example 4.5.26. For p = 1, we have

M =

−t2 t1 0

−t3 0 t1

0 −t3 t2

 ,

and

A =

−t2S2 t1S1 0

−t3S3 0 t1S1

0 −t3S3 t2S2

 .

Lemma 4.5.27. The matrix M is a
(

2p+1
p

)
×
(

2p+1
p

)
matrix, whose block entries are either

0 or ±ti.

Proof. The positions of the nonzero entries of Mi’s are clearly distinct.

Lemma 4.5.28. For each i ∈ [2p+ 1], there are
(

2p
p

)
entries of the form ±ti in M , and all

other entries are 0.

Proof. There are
(

2p
p

)
subsets I of size p that do not contain i. For each such subset I , we

have Li(eI) = ±eI∪i. The corresponding entry in the matrix is ±1, and all other entries
are 0. Thus tiMi is a matrix with

(
2p
p

)
entries of the form ±ti, and all other entries 0. Since

the positions of the nonzero entries of the tiMi are distinct from the positions of nonzero
entries of tjMj for i 6= j, we have the required conclusion.

Lemma 4.5.29. Fix an entry ±ti in M . Then for each j 6= i, then the number of entries of

the form ±tj in the same row or column is exactly 1.

Proof. The fixed entry ±ti in M corresponds to the fact that Li(eI) = ±eI∪{i} for some
I that does not contain i. Now, if j ∈ I , then let J = I ∪ {i} \ {j}. Then we have
Lj(eJ) = ±eJ∪{j} = ±eI∪{i}. This corresponds to a ±tj in the same row. On the other
hand if j /∈ I , then Lj(eI) = ±eI∪{j} which corresponds to a ±tj in the same column.

Remark 4.5.30. It follows from the definition of the tensor product of matrices that by

replacing each ti in M with the block matrix tiSi, we get the block matrix A. See Exam-

ple 4.5.26.

The above remark applied to the above lemmas yield:

Corollary 4.5.31. The matrix A is a
(

2p+1
p

)
-block matrix, whose block entries are either 0

or ±tiSi.
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Corollary 4.5.32. For each i ∈ [2p + 1], there are
(

2p
p

)
block entries of the form ±tiSi in

A, and all other block entries are 0.

Corollary 4.5.33. Fix a block entry ±tiSi in A. Then for each j 6= i, the number of block

entries of the form ±tjSj in the same block row or same block column is exactly 1.

Definition 4.5.34. Let P = ±tiSi be a block entry of A. Suppose there are x entries of the

form ±tjSj with j < i in the same block row and y entries of the form ±tjSj in the same

block column. Then we call the (x+ 1, p− y)th entry of P , the elusive entry of P .

Lemma 4.5.35. The elusive entry of any block P = ±tiSi is a ±ti. Further, with x and y

as defined in the previous definition, all other nonzero entries of P are in the top x rows or

the right y columns.

Proof. The equality x+ y = i− 1 follows from Corollary 4.5.33. Indeed, we have Si(x+

1, p− y) = 1 as p− y = x+ 1− i+ p+ 1 follows from x+ y = i− 1. Thus there is a ti
in position (x + 1, p − y) in the block P . The second statement is obvious since the only
nonzero entries are along the diagonal containing (x+ 1, p− y).

Let us recall that a permutation σ ∈ Σn is a choice of n entries subject to the condition
that there are no two entries in the same row and no two entries in the same column. In
order for rσ = ±(t1t2 . . . t2p+1)(

2p
p ), we must make such a choice, where each entry chosen

is of the form ±ti and for each i, there are
(

2p
p

)
entries chosen of the form ±ti.

Proposition 4.5.36. In order for rσ = ±(t1t2 . . . t2p+1)(
2p
p ), we must choose the elusive

entry from each nonzero block entry.

Proof. Let P = ±tiSi be a nonzero block entry of A. We proceed by induction on i.

• Base Case: i = 1.

In this case, observe that there is exactly one nonzero entry, which is ±t1, and that is
precisely the elusive entry. There are

(
2p
p

)
such block entries. In order for the power

of t1 in rσ to be
(

2p
p

)
, we have no choice but to choose the elusive entries from each

block entry of the form ±t1S1.

• Induction Step:

Suppose the claim is true for all j < i. Let the block entries in the same row of the
form ±tkSk with k < i be Q1 = ±tj1Sj1 , Q2 = ±t2Sj2 , . . . , Qx = ±tjxSjx with
1 ≤ j1 < j2 < · · · < jx < i. Then clearly the block entry Qk satisfies the hypothesis
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of the claim for k − 1. Hence, by induction we would have picked the ±tjk from the
kth row. Hence, we cannot pick the ±ti’s in the first x rows of P .

By a similar argument, we cannot pick the ti’s in the right y columns, where y is the
number of the block entries of the form ±tkSk with k < i in the same column. This
leaves precisely one non-zero entry in P , which is the elusive entry. Now, once again
we have precisely

(
2p
p

)
blocks of the form ±tiSi, and we can pick at most one ±ti

from each one. Since we want the power of ti in rσ to be
(

2p
p

)
, we have no choice but

to pick all of them.

Corollary 4.5.37. There is at most one permutation σ such that rσ = ±(t1t2 . . . t2p+1)(
2p
p ).

Proof of Proposition 4.5.8. We know that

p(t1, . . . , tm) = det(M(t1, . . . , tm)) = k(t1t2 . . . t2p+1)(
2p
p ),

where k = p(1, . . . , 1) ∈ K by Corollary 4.5.23. We also know that each rσ is ±
monomial. Further, by the above Proposition, there is exactly one rσ which gives us
±(t1t2 . . . t2p+1)(

2p
p ), and hence we must have k = ±1 6= 0. But k = p(1, . . . , 1), and

hence L is invertible, since p(1, . . . , 1) = detM(1, . . . , 1) and M(1, . . . , 1) is the matrix
for L in some coordinates.

4.5.5 More examples

The linear subspaces in Theorem 4.5.1 provide a family of examples for which the ratio
approaches 2. In fact, these linear subspaces give rise to more examples which have a
discrepancy between the commutative and non-commutative rank.

Corollary 4.5.38. Let X (i, n) denote the image of L : Kn → (
∧iKn,

∧i+1 Kn). Then

1. ncrk(X (i, n)) is full;

2. If i 6= 0, n− 1, then rk(X (i, n)) is not full.

Proof of Corollary 4.5.38. To prove (1), consider A(i, n). If i < n/2, then let k = n −
2i− 1. The linear matrix A(i+ k, n+ k) has full column rank by Proposition 4.5.8, since
2(i+ k) + 1 = n+ k. By repeated application of Corollary 4.5.4, we conclude that A(i, n)
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has full column rank. Since i < n/2, the matrix A(i, n) has more rows than columns, and
hence has full non-commutative rank.

If i ≥ n/2, then we observe that A(i, 2i + 1) has full non-commutative rank. Once
again by repeated application of Corollary 4.5.4, we conclude that A(i, n) has full row
rank. SinceA(i, n) has more columns than rows, it has full non-commutative rank. Finally,
observe that the linear subspace defined by A(i, n) is the linear subspace X (i, n).

To prove (2), use Corollary 4.5.6.
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CHAPTER 5

Degree bounds for matrix invariants and matrix
semi-invariants

We prove polynomial bounds for generators for the ring of matrix semi-invariants in Sec-
tion 5.1. In Section 5.2, we deduce bounds for matrix invariants and invariants of quivers.
We analyze the case of the ring of semi-invariants for a quiver in Section 5.3. In Sec-
tion 5.4, we show an invariant of degree n2 in R(n,m) (m ≥ n2) that cannot be generated
by invariants of smaller degree. We treat the case of R(3,m) in more detail in Section 5.5,
and in Section 5.6, we compute the Hilbert series in several cases.

For this chapter, we will assume K to be an algebraically closed field. Most of the
statements remain true for an infinite field, but the proofs are cleaner for algebraically
closed fields.

5.1 Degree bounds for matrix semi-invariants

5.1.1 Null cone

Recall that the method of Derksen and Popov relied on giving degree bounds for invariant
rings by giving bounds for invariants defining the null cone. Let us recall the left-right
action of SLn× SLn on Matmn,n, i.e., for (A,B) ∈ SLn× SLn and X = (X1, . . . , Xm) ∈
Matmn,n, we have

(A,B) · (X1, . . . , Xm) = (AX1B
−1, . . . , AXmB

−1).

The ring R(n,m) = K[Matmn,n]SLn×SLn is the ring of matrix semi-invariants. Recall
that for each T ∈ Matmd,d, we defined the homogeneous invariant fT of degree dn by
fT (X) = det(

∑
iXi ⊗ Ti), and that these invariants spanned R(n,m).
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We will denote the null cone for the left-right action of SLn× SLn on Matmn,n by
N (n,m) in this section for notational convenience.

Proposition 5.1.1. Let X = (X1, . . . , Xm) ∈ Matmn,n. Denote by X = span(X1, . . . , Xm)

be the linear subspace spanned by X1, . . . , Xm, and let r(p, q) = rk(X {p,q}). Then the

following are equivalent.

1. X /∈ N (n,m);

2. ∃ non-constant homogeneous invariant f ∈ R(n,m) such that f(X) 6= 0;

3. ∃dsuchthat∃ T ∈ Matmd,d such that fT (X) 6= 0;

4. r(d, d) = nd for some d;

5. ncrk(X ) = n;

6. r(d, d) = nd for any d ≥ n− 1;

7. ∀d ≥ n− 1∃ T ∈ Matmd,d such that fT (X) 6= 0.

Proof. The equivalence of (1) and (2) follows from the definition of null cone. Since
invariants of the form fT are homogeneous and span the invariant ring R(n,m), we have
(2) ⇔ (3). The equivalence of (3) and (4) follows from the definition of tensor blow up.
(4)⇔ (5) follows from the characterization of non-commutative rank in terms of ranks of
blow-ups. The equivalence (5)⇔ (6) is the most crucial equivalence, and is the statement
of Corollary 4.4.8. Finally (6)⇔ (7) follows from the definition of tensor blow-ups.

Corollary 5.1.2. Let r = dimR(n,m). Then there exists f1, . . . , fr ∈ R(n,m)n(n−1)

which forms a hsop.

Proof. From the above Proposition, we know that the degree n(n − 1) invariants cut out
the null cone. Hence, by Noether normalization lemma, there exist f1, . . . , fr of degree
n(n− 1) form a hsop.

5.1.2 Degree bounds in characteristic 0

We can now get degree bounds by using Hochster-Roberts theorem and Kempf’s results
directly.

Theorem 5.1.3. If K has characteristic 0, then we have

β(R(n,m)) ≤ mn4.
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Proof. Note that we have r = dimR(n,m) ≤ dim Matmn,n = mn2. For n ≥ 2, we use the
hsop from Corollary 5.5.3 in Proposition 2.2.3 to get

β(R(n,m)) ≤ r(n2 − n) ≤ mn2(n2 − n) < mn4.

It is clear that β(R(1,m)) = 1, so we have β(R(n,m)) ≤ mn4 for all n and m.

Corollary 5.1.4. If K has characteristic 0, then we have β(R(n,m)) ≤ n6.

Proof. This follows from Weyl’s polarization theorem, i.e., Theorem 2.3.1.

Remark 5.1.5. The above Theorem and Corollary continue to be true as long as the field

K is infinite. This is because we have RK(n,m) ⊗K = RK(n,m) where K denotes the

algebraic closure of K.

5.1.3 Adaptation to positive characteristic: Good filtrations

Notice that the result on the null cone is independent of characteristic. To adapt the method
to positive characteristic, we need the theory of good filtrations. The theory of good fil-
trations is very powerful in positive characteristic. A comprehensive introduction to this
theory can be found in [26] (see also [27, 28, 30, 42, 63]). We also refer the reader to
[23, 75] for an exposition with a view of using them for invariant rings coming from quiv-
ers.

Let G be a reductive group. Fix a maximal torus T and fix a Borel subgroup B con-
taining the torus. Let Λ denote the set of dominant weights. Given λ ∈ Λ, we have
λ : T → K∗, and we can extend it to a map λ : B → K∗, by composing with the natural
surjection B � T .

Definition 5.1.6. For λ ∈ Λ, the dual Weyl module∇(λ) is defined as

∇(λ) := {f ∈ K[G] | f(bg) = λ(b)f(g) ∀ (b, g) ∈ B ×G}.

When G = GLn, the dual Weyl modules coincide with Schur modules.

Definition 5.1.7. A G-module V is called a good G-module if V has a filtration of the form

0 ⊆ V0 ⊆ V1 ⊆ . . . such that
⋃
i

Vi = V and each quotient Vi/Vi−1 is a dual Weyl module.

Such a filtration is called a good filtration.

It is well known that the coordinate ring of the representation space of a quiver for a
fixed dimension vector has a good filtration. We refer to [74] and [25] for details.
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Proposition 5.1.8. K[Rep(Q,α)] is a good GL(α)-module and hence a good SL(α)-

module.

We recall the main result from [42], which will be crucial to our purposes.

Theorem 5.1.9 (Hashimoto). Assume charK > 0. Let V be a rational representation of

a connected reductive group G, and assume its coordinate ring K[V ] is a good G-module.

Then K[V ]G is strongly F -regular and hence Cohen-Macaulay.

Corollary 5.1.10. The invariant rings SI(Q,α), I(Q,α), S(n,m) and R(n,m) are Cohen-

Macaulay.

It is a well known fact that if a G-module V has a good filtration, as a consequence, the
Hilbert series of the invariant ring is independent of the underlying field. In [26, page 399],
Donkin proves this, albeit for a special case. However, it is easy to see that the argument
holds in much greater generality.

Proposition 5.1.11. The Hilbert series H(SI(Q,α), t), H(I(Q,α), t), H(R(n,m), t) and

H(S(n,m), t) are independent of the underlying field K.

We can replace the Hochster-Roberts theorem with Corollary 5.1.10 and Kempf’s re-
sults with Corollary 5.1.11 to get the bounds we require in positive characteristic.

Corollary 5.1.12. Let K be an infinite field of any characteristic. Then we have

β(R(n,m)) ≤ mn4.

5.2 Matrix invariants

We consider the map

φ : Matmn,n −→ Matm+1
n,n

(X1, . . . , Xm) 7−→ (I,X1, . . . , Xm)

This gives a surjection on the coordinate rings φ∗ : K[Matm+1
n,n ] → K[Matmn,n], which

descends to a surjective map on invariant rings (see [21, 13]).

Proposition 5.2.1. The map φ∗ : R(n,m+ 1) � S(n,m) is surjective.

50



Proof. We want to first show that the image φ∗(R(n,m+ 1)) ⊆ S(n,m). Since {f ′T | T ∈
Matm+1

d,d } is a spanning set for the ring R(n,m + 1), it suffices to show that φ∗(fT ) ∈
S(n,m) for all T ∈ Matm+1

d,d . By definition, we have

φ∗(fT )(X1, X2, . . . , Xm) = fT (I,X1, X2, . . . , Xm).

For g ∈ GLn, we have

φ∗(fT )(g · (X1, X2, . . . , Xm)) = φ∗(fT )(gX1g
−1, gX2g

−1, . . . , gXmg
−1)

= fT (I, gX1g
−1, . . . , gXmg

−1)

= det(T1 ⊗ I + T2 ⊗ gX1g
−1 + . . . Tm+1 ⊗ gXmg

−1)

= det((I ⊗ g)(T1 ⊗ I + · · ·+ Tm+1Xm)(I ⊗ g)−1)

= det(T1 ⊗ I + T2 ⊗X1 + · · ·+ Tm+1Xm)

= fT (I,X1, . . . , Xm)

= φ∗(fT )(X1, . . . , Xm).

Now, we show that the image of φ∗ surjects onto S(n,m). For each f ∈ S(n,m), we need
to find an f̃ such that φ∗(f̃) = f . Define f̃ by

f̃(X1, . . . , Xm+1) = f(Ad(X1)X2, Ad(X1)X3, . . . , Ad(X1)Xm+1),

where Ad(X) denotes the adjoint of a matrix. It is easy to see that f̃ is invariant for the
action of SLn× SLn. Further, we have

(φ∗(f̃))(X1, . . . , Xm) = f̃(I,X1, . . . , Xm)

= f(Ad(I)X1, . . . , Ad(I)Xm)

= f(X1, . . . , Xm)

In fact, from the above proof, we can see that for f ∈ S(n,m), we can construct a
pre-image easily. We record this as a corollary.

Corollary 5.2.2. For f ∈ S(n,m), the invariant polynomial f̃ ∈ R(n,m+ 1) defined by

f̃(X1, . . . , Xm+1) = f(Ad(X1)X2, Ad(X1)X3, . . . , Ad(X1)Xm+1)

is a pre-image of f under φ∗, i.e., φ∗(f̃) = f .
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Corollary 5.2.3. We have β(S(n,m)) ≤ β(R(n,m+ 1)) ≤ (m+ 1)n4.

Corollary 5.2.4. For a quiver Q and a dimension vector α, the ring of invariants I(Q,α)

is generated by invariants of degree (M + 1)N4, where M = |Q1| and N =
∑

i∈Q0
αi.

Proof. Use the surjection from Theorem 3.2.2.

5.3 Semi-invariants of quivers

Let Q be a quiver with no oriented cycles. A representation V ∈ Rep(Q,α) is called σ-
semistable if there exists an semi-invariant f ∈ SI(Q,α)dσ with f(V ) 6= 0 (see [55]). From
the degree bounds for R(n,m) and the surjection in Corollary 3.2.7, we deduce

Proposition 5.3.1. Let Q = (Q0, Q1) be a quiver with no oriented cycles. Let σ ∈ ZQ0 be

a weight such that σ · α = 0, and let |σ|α := σ+ · α− σ− · α. Then

1. If V is σ-semistable, and d ≥ |σ|α − 1, then there exists a semi-invariant f ∈
SI(Q,α)dσ with f(V ) 6= 0;

2. If charK = 0, then the ring SI(Q,α, σ) is generated in degree ≤ |σ|5α.

While we have given bounds for these subrings of SI(Q,α), we require additional work
to give bounds for the entire ring of semi-invariants. We will prove the following results in
this section. Recall that ||α||1 =

∑
i∈Q0

|αi| and ||α||2 = (
∑
i∈Q0

α2
i )

1/2. We prove:

Theorem 5.3.2. Let Q = (Q0, Q1) be a quiver with no oriented cycles, and let |Q0| = n.

Then the null cone for the action of SLα on Rep(Q,α) is defined by semi-invariants for

nonzero weights σ such that |σ|α ≤
||α||2n1

4(n− 1)2n−2
.

The bounds on the degree of the invariants defining the null cone can be translated into
bounds for the degree of generating invariants.

Theorem 5.3.3. Let Q = (Q0, Q1) be a quiver with no oriented cycles, and let |Q0| = n.

Assume charK = 0 and let r be the Krull dimension of SI(Q,α). The ring SI(Q,α) is

generated by semi-invariants of weights σ with

|σ|α ≤
3rn2||α||4n1

128(n− 1)4n−4
.

Note that dim(SI(Q,α)) ≤ dim Rep(Q,α), which depends on Q0 and Q1. We show
that using a version of Weyl’s polarization theorem, we can give a bound that depends only
on n = |Q0| and α.
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Figure 5.1: Quiver for exponential lower bounds

Corollary 5.3.4. Let Q = (Q0, Q1) be a quiver with no oriented cycles, and let |Q0| = n

Assume charK = 0. The ring SI(Q,α) is generated by semi-invariants of weights σ with

|σ|α ≤
3

256

(
||α||21 − ||α||22

) n2||α||4n1
(n− 1)4n−4

.

Even though our bounds are not polynomial in n = |Q0|, we give an example to show
that it is not possible to obtain general bounds that are polynomial. Indeed consider the
quiver Qn shown in the above figure.

Proposition 5.3.5. For the quiver Qn, and dimension vector α = (2, 3, . . . , 3, 1), the semi-

invariants of weights σ with |σ|α < 2n − 2 do not define the null cone, and hence do not

generate SI(Qn, α).

The rest of this section will be devoted to proving all the aforementioned results.

5.3.1 Stability conditions and the null cone

Fix a quiver Q = (Q0, Q1) with no oriented cycles and let |Q0| = n. There is a criterion
for deciding σ-semistability of a representation in terms of the dimension vectors of sub-
representations due to King (see [55]). We use the conventions in [19]. Given a weight σ
and a dimension vector β, we define σ · β =

∑
i∈Q0

σiβi.

Theorem 5.3.6 ([55]). Let Q = (Q0, Q1) be a quiver with no oriented cycles, α be a

sincere dimension vector, and σ be a weight. Then we have:

1. A representation V ∈ Rep(Q,α) is σ-semistable if and only if σ · dimV = 0 and

σ · dimW ≤ 0 for all subrepresentations W ⊂ V ;

2. A representation V ∈ Rep(Q,α) is σ-stable if and only if σ · dimV = 0 and σ ·
dimW < 0 for all proper subrepresentations 0 6= W ( V .

The set of σ-semistable representations form an abelian subcategory of the category of
finite dimensional representations of a quiver Q. The simple objects in the category are
precisely the σ-stable representations.
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Corollary 5.3.7. If V is σ-semistable and σ ·dimW = 0 for some non-zero proper subrep-

resentation W of V , then W and V/W are also σ-semistable.

In fact, we have a Jordan-Hölder filtration 0 = V0 ( V1 ( · · · ( Vm = V . The com-
position factors Vi/Vi−1 are unique up to rearrangement and isomorphism. Further these
composition factors are σ-stable representations. We can define grσ(V ) =

⊕
i

Vi/Vi−1.

Remark 5.3.8. Let d ∈ Z>0. From Theorem 5.3.6, it follows that a representation V is

σ-semistable (resp. stable) if and only if V is dσ-semistable (resp. stable). Hence, in

particular, we have grσ(V ) = grdσ(V ).

Lemma 5.3.9. A representation V ∈ Rep(Q,α) is not in the null cone if and only if there

exists a nonzero weight σ such that V is σ-semistable.

Proof. We have already remarked that the null cone is the zero set of the semi-invariants
of nonzero weights. Thus if a representation V is not in the null cone, then there is a semi-
invariant f ∈ SI(Q,α)σ for some nonzero weight σ such that f(V ) 6= 0. Consequently for
this σ, f is σ-semistable. Conversely, if V ∈ Rep(Q,α) is σ-semistable for some nonzero
weight σ, then there is an invariant f ∈ SI(Q,α)dσ such that f(V ) 6= 0 for some d ∈ Z>0.
Hence V is not in the null cone.

5.3.2 Bounds for the null cone

We first discuss some linear algebra that we require. For any vectorw = (w1, w2, . . . , wn) ∈
Qn, recall that

||w||1 = |w1|+ |w2|+ · · ·+ |wn|,

and
||w||2 = (w2

1 + w2
2 + · · ·+ w2

n)1/2.

We have the inequalities

||w||2 ≤ ||w||1 ≤
√
n||w||2.

Let ~v1, ~v2, . . . , ~vn−1 ∈ Zn≥0 be linearly independent over Q, with ~v1 +~v2 + · · ·+~vn−1 =

~v ∈ Zn≥0. Considering each ~vi as a row vector, we can write a (n − 1) × n matrix M
whose ith row is ~vi. Since the ~vi are linearly independent over Q, the rank of this matrix is
n− 1. Hence it has a 1-dimensional kernel. The following proposition bounds the smallest
nonzero integral vector on this 1-dimensional kernel:
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Proposition 5.3.10. Let ~v1, ~v2, . . . , ~vn−1, ~v and M be as above. Then there is a nonzero

integral vector ~u = (u1, u2, . . . , un) ∈ Ker(M) such that |ui| ≤
(
||~v||1
n− 1

)n−1

Proof. Let M̂(i) denote the (n − 1) × (n − 1) minor of M obtained by removing the ith

column. Then define ui = (−1)iM̂(i). It is clear that ~u = (u1, u2, . . . , un) is an integral
vector and that it is in the kernel of M . Further, we have

|ui| ≤ ||~v1||2 · ||~v2||2 · · · ||~vn−1||2
≤ ||~v1||1 · ||~v2||1 · · · ||~vn−1||1

≤
(
||~v1||1 + ||~v2||1 + · · ·+ ||~vn−1||1

n− 1

)n−1

=

(
||~v||1
n− 1

)n−1

Without loss of generality, we can assume α is sincere, i.e., α(x) 6= 0 ∀x ∈ Q0. If
not, one can work with the subquiver Q̃ defined by supp(α), to get better bounds. Given a
representation V ∈ Rep(Q,α) which is not in the null cone, we denote by C(V ), the set of
weights σ for which V is σ-semistable, i.e,

C(V ) = {σ|V is σ-semistable}.

Notice that C(V ) ⊂ ZQ0 is cut out by a linear equation σ(α) = 0 and by linear inequalities
σ(dimW ) ≤ 0 for proper subrepresentations W of V . Let L be an extremal ray of C(V ).
It is clear that this extremal ray is defined by degenerating a subset of the linear inequali-
ties to equalities. Hence, there exist subrepresentations Wi, i ∈ I such that the equalities
σ(dimWi) = 0, and σ(α) = 0 define QL.

Lemma 5.3.11. There exist dimension vectors β(i), 1 ≤ i ≤ n− 1 with ||
∑n−1

i=1 β(i)||1 ≤
||α||1 such that the line QL is defined by the linear equalities σ(β(i)) = 0, 1 ≤ i ≤ n− 1.

Before we prove the lemma we remark that V is σ-stable for a weight σ precisely when
σ is in the interior of C(V ).

Proof. Let σ̃ ∈ L. Consider any Jordan-Hölder series (in the abelian subcategory of σ̃-
semistable representations) 0 = V0 ⊆ V1 ⊂ V2 ⊂ · · · ⊂ Vk = V , and let Zi = Vi/Vi−1,
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1 ≤ i ≤ k be the composition factors. Let α(i) = dimZi. We have σ̃(α(i)) = 0 since Zi
are σ̃-semistable.

Let us look at the set of subrepresentationsWi such that the linear equalities σ(dimWi) =

0 and σ(α) = 0 define QL. Each Wj is a σ̃-semistable subrepresentation of V , by Corol-
lary 5.3.7. Therefore, the composition factors for Wj must be a subset of {Zi | 1 ≤ i ≤ k},
and hence we have dimWj = α(i1)+α(i2)+ · · ·+α(il), for some subset {i1, i2, . . . , il} ⊆
{1, 2, . . . , k}. Hence the condition σ(dimWi) = 0 is a consequence of the conditions
σ(α(i)) = 0. In particular, we get that QL is defined by the linear equalities σ(α(i)) = 0

for 1 ≤ i ≤ k.
However, some of these may be redundant. Since these equalities define a 1-dimensional

subspace, there is a subset of the α(i)’s of size n− 1, say {β(1), β(2), . . . , β(n− 1)}, such
that σ(β(i)) = 0 for i = 1, 2, . . . , n− 1 define QL.

Proposition 5.3.12. Given a representation V ∈ Rep(Q,α) such that C(V ) is non-empty,

V is σ-semistable for some weight σ such that each coordinate of σ has size≤
(
||α||1
n− 1

)n−1

Proof. Pick an extremal ray L in C(V ). By Lemma 5.3.11, we have that QL is the kernel
of the (n− 1)×n matrix whose rows are the dimension vectors β(i). Let σ be the smallest
integral vector in L. Then apply Proposition 5.3.10.

We can now translate this into a bound for |σ|α.

Corollary 5.3.13. Given a representation V ∈ Rep(Q,α) such that C(V ) is non-empty, V

is σ-semistable for some weight σ such that

|σ|α ≤
(
||α||1
n− 1

)n−1( ||α||1
2

)
=

||α||n1
2(n− 1)n−1

.

Proof. If every coordinate |σi| ≤ M for some M , then we have |σi|αi ≤ Mαi. Note

further that since σ(α) = 0, we have
n∑
i=1

|σi|αi = σ+ · α + σ− · α = 2|σ|α. Thus |σ|α ≤
1
2
M ||α||1.

Proof of Theorem 5.3.2. Given V ∈ Rep(Q,α) which is not in the null cone, we have
that C(V ) is nonzero by Lemma 5.3.9. Hence there exists some σ with |σ|α ≤ ||α||n1

2(n−1)n−1 ,
such that V is σ-semistable. Then by the first part of Proposition 5.3.1, there is a semi-
invariant f ∈ SI(Q,α)dσ that does not vanish on V for each d ≥ |σ|α − 1. Observe that
|dσ|α = d|σ|α. Taking d = |σ|α gives the required conclusion.

56



Remark 5.3.14. It might seem very wasteful to find bounds using an extremal ray L, as it

is very likely that smaller weights lie in the interior of C(V ). However, observe that if σ is

an integral weight on an extremal ray L of C(V ), then for grσ(V ) we have C(grσ(V )) = L.

Hence these extremal rays cannot be avoided.

5.3.3 Bounds for generating semi-invariants

The ring SI(Q,α) has two natural gradings. We have the weight space decomposition
SI(Q, β) =

⊕
σ SI(Q,α)σ. We also have the natural grading inherited from viewing

K[Rep(Q,α)] as a polynomial ring. While the weight space decomposition is the more
interesting one, all the results from Computational Invariant Theory hold for the latter
grading. In the previous section, we found bounds for invariants defining the null cone
in terms of the weight space decomposition. In order to use get degree bounds for generat-
ing invariants, we must switch to the latter grading.

Lemma 5.3.15. Let f ∈ SI(Q,α)σ, then its homogeneous components are non-trivial only

for degrees between |σ|α and n|σ|α.

Proof. A set of semi-invariants spanning f ∈ SI(Q,α)σ was given in Theorem 3.2.5. A
semi-invariant in this set is given by the determinant of a matrix, whose size is |σ|α. The
matrix is described in block form, where each block defines a linear combinations of paths
between two different vertices. Such paths have length at least 1 and at most n. Hence
the entries of this matrix are polynomials whose homogeneous components are non-trivial
only for degrees between 1 and n.

The above lemma can then be used to convert the bounds given in Theorem 5.3.2 with
respect to weight spaces to one in the total degree grading.

Corollary 5.3.16. The null cone for the action of SLα on Rep(Q,α) is defined by homoge-

neous invariants of degree ≤ n||α||2n1
4(n− 1)2n−2

, i.e.,

γ(SI(Q,α)) ≤ n||α||2n1
4(n− 1)2n−2

.

Corollary 5.3.17. Assume charK = 0 and let r = dim(SI(Q,α)). The ring of semi-

invariants SI(Q,α) is generated by invariants of degree ≤ 3

8
r

(
n||α||2n1

4(n− 1)2n−2

)2

.

Proof. When K is algebraically closed, we can apply Theorem 2.2.6 to get the required
bound. As a result of the discussion on good filtrations, the bound continues to hold in
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positive characteristic as well. IfK is only an infinite field, then working over the algebraic
closure K, observe that the ring of semi-invariants is simply SI(Q,α) ⊗K K. Hence the
same bound holds over K as well.

Proof of Theorem 5.3.3. This follows from Lemma 5.3.15 and Corollary 5.3.17.

Remark 5.3.18. The bounds given in Theorem 5.3.3 depend on dim(SI(Q,α)). Kac gave a

formula (see [53]) for dim(SI(Q,α)) in terms of the canonical decomposition. There is in

fact an efficient algorithm to compute the canonical decomposition, see [18]. More impor-

tantly, as remarked in the introduction, dim(SI(Q,α)) is bounded by dim(Rep(Q,α)) =∑
a∈Q1

α(ha)α(ta).

5.3.4 Removing dependence on dim SI(Q,α)

The bounds in Theorem 5.3.3 depend on |Q0| = n, α and dim(SI(Q,α)). Note that
dim(SI(Q,α)) depends on Q1. We now show how one can use Weyl’s theorem on polar-
ization of invariants to remove the dependence on dim(SI(Q,α)), and get a bound which
is purely in terms of |Q0| = n and α.

Given a quiverQ = (Q0, Q1) with no oriented cycles, we can label the vertices 1, 2, . . . , n

so that for every arrow, ta < ha. Let n(i, j) denote the number of arrows with tail i and
head j. Fix a dimension vector α = (α1, α2, . . . , αn). Now, observe that

Rep(Q,α) =
⊕
i<j

Matn(i,j)
αj ,αi

.

Observe further that each Matαj ,αi is a representation of GLα as well as SLα. Observe
that dim Matαj ,αi = αiαj . Hence, as a consequence of Weyl’s theorem on polarization of
invariants Theorem 2.3.1, we can obtain the semi-invariant ring SI(Q,α) by the process
of polarization from K[

⊕
i<j

Matαiαjαj ,αi
]SLα . See also [32, Theorem 0.1] for a version that is

better suited to our situation. In other words, for the purposes of finding a bound on the
generating invariants, we can assume n(i, j) = αiαj .

Define a quiver Q̃ whose vertex set is 1, 2, . . . , n, and has αiαj arrows from i to j. The
above discussion can be summarized as follows:

Proposition 5.3.19. Assume charK = 0, then we have

β(SI(Q,α)) ≤ β(SI(Q̃, α)).
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x y
a

b

Figure 5.2: 2-Kronecker quiver

V = K K2

( 1
0 )

( 0
1 )

Figure 5.3: Indecomposable representation 1

Proof of Corollary 5.3.4. For Q̃, we have:

dim(SI(Q̃, α)) ≤ dim Rep(Q̃, α)

=
∑
i<j

αiαj

=
||α||21 − ||α||22

2
.

Now, use this bound for r in Corollary 5.3.17, and apply Lemma 5.3.15.

5.3.5 Exponential lower bound

We first recall some results on the 2-Kronecker quiver, the quiver with 2 vertices x and y
and two arrows a, b from x to y.

We look at two particular indecomposable representations. The indecomposable repre-
sentation V has dimension vector (1, 2) (see above), and the indecomposable representation
W has dimension vector (2, 1) (see below).

It is easy to check that V is σ-semistable precisely when σ ∈ Z>0(2,−1) and that W is
σ-semistable precisely when σ ∈ Z>0(1,−2).

W =K2 K
( 1 0 )

( 0 1 )

Figure 5.4: Indecomposable representation 2
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Proof of Proposition 5.3.5. Consider the quiver Qn, and observe that the odd vertices are
sources and the even vertices are sinks. For any i ∈ {1, 2 . . . , n − 1}, one of i and i + 1

is a source and the other is a sink. Let ψi be the embedding of the 2-Kronecker quiver,
that maps the vertices to i and i + 1, with source begin mapped to source and sink to sink.
Under this embedding, we see that ψi(V ) and ψi(W ) are indecomposable representations
of the quiver Qn. We consider the representation

R = ψ1(V )⊕ ψ2(W )⊕ ψ3(V ) · · ·

=
⊕
i odd

ψi(V )⊕
⊕
i even

ψi(W ).

We have dim(R) = (2, 3, 3, . . . , 3, 1). Moreover, R is σ-semistable for the indivisible
integral weight σ = (−1, 2,−4, 8, . . . ). Since R is a direct sum of indecomposables, it
suffices to check σ-semistability of these indecomposables. That each of these indecom-
posables is σ-semistable follows from the above discussion above on 2-Kronecker quivers.
Thus, in particular, C(R) is non-empty, and R is not in the null cone.

Moreover, we have thatR is a direct sum of n−1 indecomposables, and their dimension
vectors are linearly independent vectors, and hence it follows from King’s stability condi-
tions that C(R) is at most 1-dimensional. Since C(R) is non-empty, and (−1, 2,−4, 8, . . . )

is indivisible, we have that C(R) = Z≥0(−1, 2,−4, 8, . . . ). More concretely, we have the
condition that σ ∈ C(R), then σ is in the kernel of

2 1

2 1
. . . . . .

2 1

 .

The kernel of the above matrix is precisely the 1-dimensional subspace spanned by the
vector (−1, 2,−4, 8, . . . ), and the smallest integral vector in this 1-dimensional subspace
is (−1, 2,−4, 8, . . . ) by virtue of being indivisible. For the weight σ = (−1, 2,−4, 8, . . . ),
we get |σ|α = 2n − 2 by computation. Thus in this case, the semi-invariants of weights σ
with |σ|α < 2n − 2 do not define the null cone.

Remark 5.3.20. For any given quiver, one might be able to generate stronger bounds by

improving the estimates we make at various stages of obtaining our bounds.
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5.4 Quadratic lower bounds for matrix semi-invariants

5.4.1 Combinatorial description of R(n,m)

In this section, we introduce a combinatorial description of the invariants. We write λ ` d
to denote that λ is a partition of d. We denote by Sλ, the Schur functor corresponding to
the partition λ. We identify Matn,n with Cn ⊗ Cn, and consequently identify Matmn,n with
Cn ⊗ Cn ⊗ Cm. Thus

C[Matmn,n] = C[Cn ⊗ Cn ⊗ Cm] =
∞⊕
d=0

Symd(Cn ⊗ Cn ⊗ Cm).

Let λ ` d. We have the decomposition

Sλ(V ⊗W ) =
⊕
µ,ν`d

(Sµ(V )⊗ Sν(W ))aλ,µ,ν ,

where aλ,µ,ν are known as the Kronecker coefficients. A particular case is the Cauchy
formula,

Symd(V ⊗W ) =
⊕
λ`d

Sλ(V )⊗ Sλ(W ).

Applying the above two decompositions, we get

Symd(V ⊗W ⊗ Z) =
⊕
λ`d

Sλ(V ⊗W )⊗ Sλ(Z)

=
⊕
λ`d

(⊕
µ,ν`d

(Sµ(V )⊗ Sν(W ))aλ,µ,ν

)
⊗ Sλ(Z)

=
⊕
λ,µ,ν`d

(Sµ(V )⊗ Sν(W )⊗ Sλ(Z))aλ,µ,ν .

This shows in particular that the Kronecker coefficients are invariant under permuting
λ, µ and ν. The above is essentially a decomposition of Symd(V ⊗W ⊗Z) as a direct sum
of irreducible representations of GL(V )×GL(W )×GL(Z).

Proposition 5.4.1. The invariants of R(n,m) have the following description.

1. R(n,m)d = 0 if n - d.

2. R(n,m)kn = Skn(Cn)⊗ Skn(Cn)⊗
(⊕
λ`kn

Sλ(Cm)akn,kn,λ
)
.
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Proof. We want the polynomials which are invariant under the action of SL. SLn acts triv-
ially on the irreducible representations of GLn corresponding to the rectangular partitions
of length n (i.e the powers of the determinant representation). On all other irreducible
representations, SLn acts with no invariants.

Thus the SL invariants of degree d are the summands (Sµ(Cn)⊗Sν(Cn)⊗Sλ(Cm))aλ,µ,ν

in the decomposition of Symd(Cn⊗Cn⊗Cm) where µ, ν are rectangular partitions of length
n, i.e, µ = ν = kn for some k. So, in particular, unless d is a multiple of n, we cannot have
any invariants. This proves (1). For (2),

R(n,m)kn =
⊕
λ`kn

(Skn(Cn)⊗ Skn(Cn)⊗ Sλ(Cm))akn,kn,λ

= Skn(Cn)⊗ Skn(Cn)⊗

(⊕
λ`kn

Sλ(Cm)akn,kn,λ

)
.

Lemma 5.4.2. The dimenson of R(n,m)kn is given by the computable formula

dim(R(n,m)kn) =
∑
λ`kn

akn,kn,λ(dim Sλ(Cm)).

Proof. Since Skn(Cn) is 1-dimensional, as GLm representations, we have

R(n,m)kn =
⊕
λ`kn

Sλ(Cm)akn,kn,λ .

Hence we get the formula

dim(R(n,m)kn) =
∑
λ`kn

akn,kn,λ(dim Sλ(Cm)).

Remark 5.4.3. Let λ, µ ` d. If Tλ (resp. Tµ) denotes the irreducible representation of the

symmetric group on d letters corresponding to the partition λ (resp. µ), then

Tλ ⊗ Tµ =
⊕
ν

T
aλ,µ,ν
ν .
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Example 5.4.4. T1n ⊗ T1n = Tn. Therefore by Lemma 5.4.2,

dim(R(n,m)n) = dim(Sn(Cm)) =

(
m+ n− 1

n

)
.

Example 5.4.5. T23 ⊗ T23 = T6 + T(4,2) + T23 + T(3,1,1,1). Therefore by Lemma 5.4.2,

dim(R(3,m)6) = dimS6(Cm) + dimS(4,2)(Cm) + dimS23(Cm) + dimS(3,1,1,1)(Cm).

5.4.2 Lower bounds for β(R(n,m))

In this section, we prove the following theorem.

Theorem 5.4.6. Assume K = C, and m ≥ n2. Then we have β(R(n,m)) ≥ n2.

Let R ⊂ C[W ⊗ V ] be a GL(V ) stable graded subring. Then each Rd is a finite di-
mensional GL(V ) representation, and we can decompose it as a direct sum of irreducibles,
i.e,

Rd =
⊕
λ`d

(Sλ(V ))nλ , nλ ∈ N.

Note here that as GL(V ) representations, the kth exterior power
∧k(V ) is S1k(V ) for all

positive integers k.

Proposition 5.4.7. Let R ⊂ C[W ⊗ V ] be a GL(V ) stable graded subring. Assume

1.
∧i(V ) does not occur in the decomposition of Ri, for i = 1, 2, ..., t− 1 ;

2.
∧t(V ) occurs in the decomposition of Rt at least once ;

3. dimV ≥ t.

Then R is not generated by invariants of degree < t.

Proof. We have a GL(V ) equivariant map Ri ⊗ Rt−i → Rt given by multiplication. We
can collect the maps for various i to get a map

ϕ :

bt/2c⊕
i=1

Ri ⊗Rt−i → Rt.

It is clear that if R is generated by invariants of degree < t, then ϕ is surjective.
Let λ ` a and µ ` b. Recall the well known identity

Sλ(V )⊗ Sµ(V ) = ⊕ν (Sν(V ))c
ν
λ,µ ,
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where cνλ,µ are the Littlewood-Richardson coefficients. By the Littlewood-Richardson rule,
if
∧a+b(V ) = S1a+b(V ) appears in the decomposition for Sλ(V )⊗Sµ(V ), then λ = 1a and

µ = 1b.
We assume that for 1 ≤ i ≤ t−1,

∧i(V ) = S1i(V ) does not occur in the decomposition
for Ri. Hence,

∧t(V ) does not occur in the decomposition for Ri ⊗ Rt−i, and hence does
not occur in the decomposition for

⊕bt/2c
i=1 Ri ⊗Rt−i, and thus not in the decomposition of

its image under ϕ. But in the decomposition of Rt, there is at least one copy of
∧t(V ).

Since dimV ≥ t, we are guaranteed that
∧t(V ) is non-empty. So ϕ cannot be surjective.

ThusR cannot be generated in degree< t as the invariants corresponding to the isotypic
component for

∧t(V ) cannot be generated by smaller degree invariants.

Proof of Theorem 5.4.6. We want to apply Proposition 5.4.7 to the ring R(n,m), via the
combinatorial description in Section 5.4.1. Take W = Cn ⊗Cn and V = Cm. Then by the
results in Section 5.4.1, we have that

Ri =


⊕
λ`kn

(Sλ(V ))akn,kn,λ if i = kn,

0 otherwise.

From the representation theory of the symmetric group, we know that Tkn⊗T1kn = Tnk .
Moreover, since the Kronecker coefficients are invariant under permutations, we have

akn,kn,1kn =

0 if k 6= n,

1 if k = n.

This gives the first two conditions required for Proposition 5.4.7 (for t = n2) . Since we
assume dimV = m ≥ n2, the third condition holds as well. Hence we have β(R(n,m)) ≥
n2.

In fact, we can describe explicitly these invariants in degree n2. For a matrix M , denote
by M , a column matrix obtained by stacking the columns of M .

Example 5.4.8. If M =

 a b

c d

, then M =



a

c

b

d


.
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Define a function f on n2-tuples of n× n matrices by

f(X1, X2, . . . , Xn2) = det
(
X1 X2 . . . Xn2

)
.

Then f ∈ R(n, n2)n2 is the unique invariant (upto scalars) in the isotypic component
corresponding to

∧n2

(Cn2
). For n = 2, this is the invariant of degree 4 constructed in [20].

5.5 Matrix semi-invariants for 3× 3 matrices

In this section, we treat R(3,m) in more detail. We exhibit invariants that define the null
cone for R(3,m). We have

Proposition 5.5.1. The null cone for R(3,m) is defined by a finite set of invariants of

degree ≤ 6, namely

• A set of ≤ 9m − 16 degree 3 invariants that define the same subvariety as the van-

ishing of all degree 3 invariants.

• The degree 6 invariants gi,j,k := det

 Xj Xi

Xi Xk

 for 1 ≤ i < j < k ≤ m.

We can deduce from the proof of Proposition 5.5.1 that the invariants of degree 6 are
necessary to define the null cone if m ≥ 3.

Corollary 5.5.2. For m ≥ 3, we have γ(R(3,m)) = 6.

This in turn gives us a hsop.

Proposition 5.5.3. For m ≥ 3, there exists a set of 9m − 16 invariants of degree 6 that

form a hsop for R(3,m).

Proposition 5.5.4. The ring R(3,m) is generated by invariants of degree ≤ 309 for all m.

5.5.1 Krull dimension of R(n,m)

There is a formula for the dimension of the ring of semi-invariants of a quiver for a given
dimension vector in terms of the canonical decomposition of the dimension vector due to
Kac. In the case of the m-Kronecker quiver, the canonical decomposition of the dimension
vector (n, n) is the following :
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• m = 1, 2 : The canonical decomposition is (n, n) = (1, 1)⊕n;

• m ≥ 3 : (n, n) is an imaginary Schur root and its canonical decomposition is trivial,
i.e, (n, n) = (n, n).

The cases for m = 1, 2 have already been dealt with, so we only apply Kac’s formula
for m ≥ 3 to get the following lemma.

Lemma 5.5.5. If m ≥ 3, then we have dimR(n,m) = mn2 − 2(n2 − 1).

5.5.2 Invariants defining the null cone

Proposition 5.5.1 gives a finite set of invariants that define the null cone. We rely heavily
on the results in [21] for proving it.

Proof of Proposition 5.5.1. Let Z denote the vanishing set of all the degree 3 invariants.
Note that the dimension of R(3,m) is 9m − 16, by Lemma 5.5.5. Hence, there is a set of
≤ 9m − 16 degree 3 invariants that defines Z, by the Noether normalization lemma (see
[10, Lemma 2.4.7]).

In [21], Domokos analyses the maximal singular matrix spaces in order to compute a
hsop for R(3, 3). We quickly summarize the results which we’ll use.

A singular matrix space is a linear subspace of the space of matrices which does not
contain an invertible matrix. The m-tuples in Z are precisely the m-tuples whose span is a
singular matrix space, by the determinantal description of invariants.

In [21], Domokos classifies the maximal singular 3 × 3 spaces as being equivalent to
one of 4 types, which are denoted Hi, i = 1, 2, 3, 4 (see [21, Proposition 2.2]). A triple
of matrices belongs to the null cone if and only if it belongs to a maximal singular space
of type H1,H2, or H3, by [21, Proposition 3.2]. The same proof goes through for an m-
tuple of matrices for any m ≥ 3. Domokos remarks after [21, Proposition 2.2] that any
2-dimensional singular space is contained in H1,H2, or H3. H4 is the space of skew-
symmetric matrices, and in particular is a 3-dimensional space. In [21], Domokos shows

that the invariant det

 X2 X1

X1 X3

 does not vanish on a triple of matrices (X1, X2, X3) if

the span of the triple is equivalent toH4.
Suppose an m-tuple (X1, X2, . . . , Xm) is in Z, but not in the null cone, then the span

of the m-tuple is equivalent toH4, and hence 3-dimensional. Hence, there exist 3 matrices
Xi, Xj, Xk which span the space. Hence gi,j,k is an invariant that does not vanish on the
given m-tuple.
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Proof of Corollary 5.5.2. By Proposition 5.5.1, the invariants of degree ≤ 6 define the null
cone. We observe from the proof of Proposition 5.5.1, that the degree 3 invariants are not
sufficient to define the null cone if m ≥ 3.

Remark 5.5.6. The set of invariants in Proposition 5.5.1 forms a hsop for m = 3, but not

for m ≥ 4 as the number of invariants is larger than the dimension of the ring.

5.5.3 A hsop for R(3,m),m ≥ 3

Proof of Proposition 5.5.3. Recall that dim(R(3,m)) = 9m − 16. Since invariants of de-
gree 3 and degree 6 define the null cone, it is clear that just the set of invariants of degree
6 define the null cone. By the Noether normalization lemma (see [10, Lemma 2.4.7]), we
conclude that there exists 9m− 16 degree 6 invariants that form a hsop.

5.5.4 Upper bounds for β(R(3,m))

We want to bound the degrees of primary and secondary generators, in order to obtain
upper bounds on β(R(3,m)). The following result of Knop is very useful in that regard.

Theorem 5.5.7 ([57]). Let V be a rational representation of a semisimple connected group

G. Let r be the Krull dimension of C[V ]G, then

deg(H(C[V ]G, t)) ≤ −r.

In [10], this is used to get the following result.

Proposition 5.5.8 ([10]). Let V andG be as in the Theorem 5.5.7. Suppose f1, f2, . . . , fl ∈
C[V ]G are homogeneous invariants that define the null cone. Let di = deg fi. Then

β(C[V ]G) ≤ max{d1, d2, . . . , dl, d1 + d2 + · · ·+ dl − l}.

There is a stronger result by Knop on the degree of the Hilbert series.

Theorem 5.5.9 ([58]). Let V be a rational representation of a semisimple connected group

G. Let Z = {v ∈ V | dimGv > 0}. Then

deg(H(C[V ]G, t)) = − dimV ⇐⇒ codim(Z) ≥ 2.

In [20], the codimension condition was proved for R(n,m) for m ≥ 3, and n ≥ 2.
Since this stronger result on the degree of the Hilbert series holds, we can get a stronger
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result by repeating the proof of Proposition 5.5.8 (see the proof of [10, Corollary 4.7.7]).
Lemma 5.5.5 implies that for m ≥ 3, the difference between dimR(n,m) and dim Matmn,n

is 2n2 − 2. So, we get

Proposition 5.5.10. Let m ≥ 3 and n ≥ 2. Suppose f1, f2, . . . , fl ∈ R(n,m) are homoge-

neous invariants that define the null cone. Let di = deg fi. Then

β(R(n,m)) ≤ max{d1, d2, . . . , dl, d1 + d2 + · · ·+ dl − l − 2n2 + 2)}.

For computing upper bounds for β(R(3,m)), we can apply Proposition 5.5.10 to the set
of invariants defining the null cone given by either Proposition 5.5.1 or Proposition 5.5.3.
For m ≤ 3, tight upper bounds have already been computed. For 4 ≤ m ≤ 6, Proposi-
tion 5.5.1 gives better bounds, whereas for m ≥ 7, Proposition 5.5.3 gives better bounds.
So we get the following table.

m Upper bound for β(R(3,m))

1 3

2 3

3 9

4 44

5 92

6 160

7 219

8 264

9 309

Proof of Proposition 5.5.4. As remarked in the introduction, a theorem of Weyl (see [56,
Section 7.1,Theorem A]) gives us β(R(3,m)) ≤ β(R(3, 9)) ≤ 309.

5.6 Hilbert series computations

We know that for m = 1, 2, R(n,m) is a polynomial ring. It is also clear that R(1,m)

is a polynomial ring since SL1 is trivial. For R(2,m), the Hilbert series has already been
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computed by Domokos in [20]. So, we restrict to the cases m ≥ 3, n ≥ 3. Notice that for
these cases, we have degH(R(n,m), t) = − dim Matmn,n, as discussed in Section 5.5.4.

Remark 5.6.1. If we can compute a denominator for the Hilbert series ofR(n,m), then we

can compute the polynomial in the numerator once we know the dimensions of the graded

pieces of R(n,m) upto the degree of the numerator, which is given by

deg(Numerator) = deg(Denominator)− n2m.

Remark 5.6.2. Computing dimR(n,m)kn is a hard task even with a computer, and is

the bottleneck for these computations. So, it is desirable to minimize the degree of the

numerator as much as possible, and hence it is desirable to minimize the degree of the

denominator.

Fortunately, the theory of universal denominators (see [19]) gives us strong results in
our case. We first renormalize our grading to agree with the grading in [19].

Definition 5.6.3. The renormalized Hilbert series is defined as

H̃(R(n,m), t) =
∞∑
k=0

dimR(n,m)knt
k.

Remark 5.6.4. The usual Hilbert series and the renormalized Hilbert series are related by

H̃(R(n,m), tn) = H(R(n,m), t).

The most relevant result is [19, Corollary 1]. We restate it for our situation.

Proposition 5.6.5 ([19]). Let r be the Krull dimension of R(n,m). Then

H̃(R(n,m), t) =
P (t)

(1− t)r
,

where P (t) is a polynomial with integer coefficients.

This gives us denominators of the lowest degree possible, making several computations
accessible. Domokos proved a functional equation for the Hilbert series of R(n,m) for
m ≥ 3, n ≥ 2 in [20]. This implies that when we use the universal denominator, the co-
efficients of the polynomial in the numerator are palindromic, so we need to compute only
half the coefficients. In view of Remarks 5.6.1-5.6.2, this makes a few more computations
feasible.

We give a few explicit computations that we are able to compute.
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1. H̃(R(3, 3), t) =
1− t+ t2

(1− t)11
. This was already computed by Domokos in [21]. We

remark that even though β(R(3, 3)) = 9, we only needed the dim(R(3, 3)3) to com-
pute the Hilbert series.

2. H̃(R(3, 4), t) =
1 + 20t2 + 20t3 + 55t4 + 20t5 + 20t6 + t8

(1− t)20
.

3. H̃(R(3, 5), t) =
P (t)

(1− t)29
, where the coefficients of P (t) are 1, 6, 141, 931, 4816,

13916, 27531, 33391, 27531, 13916, 4816, 931, 141, 6, 1.

4. H̃(R(3, 6), t) =
P (t)

(1− t)38
, where the coefficients of P (t) are 1, 18, 626, 10246,

114901, 830484, 4081260, 13763184, 32507115, 54176230, 64224060, 54176230,
32507115, 13763184, 4081260, 830484, 114901, 10246, 626, 18, 1.

5. H̃(R(3, 7), t) =
P (t)

(1− t)47
, where the coefficients of P (t) are 1, 37, 2033, 62780,

1301634, 18067706, 173883458, 1186198090, 5851715254, 21192401230,
57013957462, 114926408114, 174616665986, 200665719450, 174616665986,
114926408114, 57013957462, 21192401230, 5851715254, 1186198090, 173883458,
18067706, 1301634, 62780, 2033, 37, 1.

6. H̃(R(4, 3), t) =
1− 3t+ 9t2 + 8t3 + 9t4 − 3t5 + t6

(1− t)18
.

7. H̃(R(4, 4), t) =
P (t)

(1− t)34
, where the coefficients of P (t) are 1, 1, 141, 981, 8534,

39193, 139348, 325823, 556368, 652716, 556368, 325823, 139348, 39193, 8534,
981, 141, 1, 1.

8. H̃(R(5, 3), t) =
P (t)

(1− t)27
, where the coefficients of P (t) are 1, -6, 36, -70, 231,

-189, 419, -189, 231, -70, 36, -6, 1.
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CHAPTER 6

Orbit closure problem and separating invariants

We introduce the orbit closure problem in Section 6.1 and describe the known algorithms.
In Section 6.2, we show polynomial reductions (in both directions) between the orbit clo-
sure problems for matrix invariants and matrix semi-invariants. We give a polynomial time
algorithm for finding the basis of a subalgebra of Matn,n in Section 6.3, and use this to give
an algorithm for matrix invariants in Section 6.4. Finally in Section 6.5, we give bounds on
separating invariants.

6.1 Introduction

Deciding whether the orbit closures of two points is an important problem in computational
invariant theory. For example, Mulmuley and Sohoni reformulated Valiant’s algebraic ver-
sion of P vs NP to a problem of deciding whether the orbit closures of two points intersect.

Problem 6.1.1. The orbit closure problem for the action of a group G on V is the problem

of deciding whether the orbit closures of two given points v, w ∈ V intersect.

We make a definition for ease of notation.

Definition 6.1.2. Two points v, w ∈ V are said to be closure equivalent ifG · v∩G · w 6= ∅.
We write v ∼G w if v and w are closure equivalent, and we write v 6∼G w if they are not

closure equivalent. We drop the subscript G if there is no ambiguity in the group being

considered.

6.1.1 Known algorithms for matrix invariants

In characteristic 0, Forbes and Shpilka show the existence of a quasi-polynomial sized set
of separating invariants for the simultaneous conjugation action of GLn on Matmn,n (see
[35]), but this alone is not sufficient to get a polynomial time algorithm.
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Nevertheless, Forbes and Shpilka give a polynomial time algorithm for the orbit closure
problem. Given an input X ∈ Matmn,n, they construct in polynomial time a noncommuta-
tive polynomial PX with the feature that the coefficients of the monomials in PX are the
evaluations of a generating set of invariants on X . Hence, to check if the orbit closures of
two points X, Y ∈ Matmn,n intersect, one needs to determine whether the noncommutative
polynomial PX −PY is the zero polynomial. There is an efficient algorithm to test whether
PX − PY is the zero polynomial (see [71]).

This algorithm has two shortcomings. The first is that it is not easily adapted to positive
characteristic. The second is that when the orbit closures of X and Y do not intersect, this
algorithm does not provide a specific invariant f ∈ S(n,m) such that f(X) 6= f(Y ).

In this chapter, we will rectify both shortcomings with a different algorithm. We will
also solve the corresponding problem for matrix semi-invariants.

6.2 Time complexity equivalence of orbit closure problems
for matrix invariants and matrix semi-invariants

In this section, we will show polynomial reductions between the orbit closure problem for
matrix invariants and the orbit closure problem for matrix semi-invariants. We will in fact
show a more robust reduction.

Let G be a group acting on V .

Definition 6.2.1. An algorithm for the orbit closure problem with witness is an algorithm

that decides if v ∼ w for any two points v, w ∈ V , and if v 6∼ w, provides a witness

f ∈ K[V ]G such that f(v) 6= f(w).

We use ∼LR to denote closure equivalence for the left-right action of SLn× SLn on
Matmn,n. We continue to use ∼GLn to denote the closure equivalence for the simultaneous
conjugation action of GLn on Matmn,n.

6.2.1 Reduction from matrix invariants to matrix semi-invariants

Let A,B ∈ Matmn,n. We can consider φ(A), φ(B) ∈ Matm+1
n,n , where φ : Matmn,n →

Matm+1
n,n is the map described in Section 5.2. Recall that this gives a surjection φ∗ :

R(n,m+ 1) � S(n,m).

Proposition 6.2.2. The following are equivalent:

1. There exists f ∈ S(n,m) such that f(A) 6= f(B)
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2. There exists g ∈ R(n,m+ 1) such that g(φ(A)) 6= g(φ(B)).

Proof. Let’s first prove (1) =⇒ (2). Given f ∈ S(n,m) such that f(A) 6= f(B), take g
to be a preimage of f , i.e., φ∗(g) = f . Now,

g(φ(A)) = φ∗(g)(A) = f(A) 6= f(B) = φ∗(g)(B) = g(φ(B)).

To prove (2) =⇒ (1), simply take f = φ∗(g).

Corollary 6.2.3. Let A,B ∈ Matmn,n. Then we have

A ∼GLn B if and only if φ(A) ∼LR φ(B).

Corollary 6.2.4. There is a polynomial reduction that reduces the orbit closure problem

with witness for matrix invariants to the orbit closure problem with witness for matrix

semi-invariants

Proof. Given A,B ∈ Matmn,n, we construct φ(A) and φ(B). Appeal to the orbit closure
problem with witness for matrix semi-invariants with input φ(A) and φ(B). There are two
possible outcomes. If φ(A) ∼LR φ(B), then we conclude that A ∼GLn B. If φ(A) 6∼LR
φ(B) and f ∈ R(n,m + 1) separates φ(A) and φ(B), then φ∗(f) is an invariant that
separates A and B. The reduction is clearly a polynomial one.

6.2.2 Reduction from matrix semi-invariants to matrix invariants

We will show that the orbit closure problem for matrix semi-invariants can be reduced to
the orbit closure problem for matrix invariants. We will need some preparatory lemmas
before we give the algorithm.

Lemma 6.2.5. Assume A = (I, A2, . . . , Am) and B = (I, B2, . . . , Bm). If we denote

Ã = (A2, . . . , Am) and B̃ = (B2, . . . , Bm). Then we have

A ∼LR B ⇐⇒ Ã ∼GLn B̃.

Proof. This follows from Corollary 6.2.3 applied to Ã and B̃.

The above lemma paves the way for a slightly more general result.

Proposition 6.2.6. AssumeA,B ∈ Matmn,n such that det(A1) = det(B1) 6= 0. If we denote

Ã = (A−1
1 A2, . . . , A

−1
1 Am) and B̃ = (B−1

1 B2, . . . , B
−1
1 Bm), then we have

A ∼LR B ⇐⇒ Ã ∼GLn B̃.
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Proof. Let us first suppose that det(A1) = det(B1) = 1. Then for g = (A−1
1 , id) ∈

SLn× SLn, we have g·A = (I, A−1
1 A2, . . . , A

−1
1 Am) = φ(Ã). Similarly for h = (B−1

1 , id) ∈
SLn× SLn, we have h ·B = φ(B̃). Now, we have

A ∼LR B ⇐⇒ φ(Ã) ∼LR φ(B̃) ⇐⇒ Ã ∼GLn B̃.

The general case for det(A1) 6= 0 follows because the orbit closures of A and B inter-
sect if and only if the orbit closures of λ·A = (λA1, . . . , λAm) and λ·B = (λB1, . . . , λBm)

intersect for any λ ∈ K∗.

Lemma 6.2.7. For any non-zero row vector v = (v1, . . . , vm), we can construct efficiently

a matrix P ∈ GLm such that the top row of the matrix P is v.

Proof. This is straightforward and left to the reader.

For 1 ≤ j, k ≤ d, we define Ej,k ∈ Matd,d to be the d × d matrix which has a 1 in the
(j, k)th entry, and 0 everywhere else.

Definition 6.2.8. If X = (X1, . . . , Xm) ∈ Matmn,n, we define X⊗d = (Xi ⊗ Ej,k)i,j,k ∈
Matmd

2

nd,nd, where the tuples (i, j, k) ∈ [m]× [d]× [d] are ordered lexicographically.

Proposition 6.2.9. The following are equivalent

1. There exists f ∈ R(n,m) such that f(A) 6= f(B);

2. There exists g ∈ R(nd,md2) such that g(A⊗d) 6= g(B⊗d) for either d = n − 1 or

d = n.

Proof. We first show (1) =⇒ (2). We can assume f = fT for some T ∈ Matme,e for some
e ≥ 1. Without loss of generality, assume f(A) 6= 0. Then we have µ = f(B)/f(A) 6= 1.
For any µ 6= 1, both µn−1 and µn cannot be 1. Hence for at least one of d ∈ {n − 1, n},
we have µd = f(B)d/f(A)d 6= 1, and hence f(A)d 6= f(B)d. Now, it suffices to show the
existence of g ∈ R(nd,md2) such that g(A⊗d) = f(A)d for all A ∈ Matmn,n.
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But now, consider

fT (A)d = det(
m∑
i=1

Ti ⊗ Ai)d

= det(
m∑
i=1

T⊕di ⊗ Ai))

= det(
m∑
i=1

(
d∑

k=1

Ti ⊗ Ek,k ⊗ Ai))

= det(
∑
i,k

Ti ⊗ (Ai ⊗ Ek,k))

Let S ∈ Matmd
2

e,e given by Si,j,k = δj,kTi. We can take g = fS .
We now show (2) =⇒ (1). Indeed, we can choose g = fS for some S ∈ Matmd

2

d′,d′ ,
with d′ ≥ 1. We have

fS(A⊗d) = det

(∑
i,j,k

Si,j,k ⊗ (A⊗d)i,j,k

)

= det

(∑
i,j,k

Si,j,k ⊗ Ai ⊗ Ej,k

)

= det

(∑
i

(∑
j,k

Si,j,k ⊗ Ej,k

)
⊗ Ai

)

= det

(∑
i

S̃i ⊗ Ai

)
,

where S̃i =
∑

j,k Si,j,k ⊗ Ej,k. Let S̃ = (S̃1, . . . , S̃m) ∈ Matmdd′,dd′ . Then the above
calculation tells us that fS̃(A) = fS(A⊗d) = g(A⊗d). Hence we have

fS̃(A) = g(A⊗d) 6= g(B⊗d) = fS̃(B).

We can take f = fS̃ .

Corollary 6.2.10. The orbit closures of A and B do not intersect if and only if the orbit

closures of A⊗d and B⊗d do not intersect for at least one choice of d ∈ {n− 1, n}.
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6.2.2.1 Commuting action of another group

Let G be a group acting on V . Suppose we have another group H acting on V , and the
actions of G and H commute. The orbit closure problem for the action of G on V also
commutes with the action of H . More precisely, we have the following:

Lemma 6.2.11. Let v, w ∈ V and h ∈ H . Then v ∼G w if and only if h · v ∼G h · w.

We have a natural identification of V = Matmn,n with Matn,n⊗Km. The latter viewpoint
illuminates an action of GLm on V that commutes with the left-right action of SLn× SLn,
as well as the simultaneous conjugation action of GLn. In explicit terms, for P = (pi,j) ∈
GLm and X = (X1, . . . , Xm) ∈ Matmn,n, we have

P · (X1, . . . , Xm) = (
∑
j

p1,jXj,
∑
j

p2,jXj, . . . ,
∑
j

pm,jXj).

Corollary 6.2.12. The orbit closure problem for both the left-right action of SLn× SLn

and the simultaneous conjugation action of GLn on Matmn,n commutes with the action of

GLm.

6.2.2.2 The reduction

Now, we can give the algorithm to reduce the orbit closure problem with witness for matrix
semi-invariants to the orbit closure problem with witness for matrix invariants. Let the
input be A,B ∈ Matmn,n.

Step 1: Check if A or B are in the null cone. This can be done in polynomial time by the
algorithm in [50]. We will henceforth refer to this as the IQS algorithm. If both of
them are in the null cone, then A ∼LR B. If precisely one of them is in the null cone,
then A 6∼LR B and the IQS algorithm gives an invariant that separates A and B. If
neither are in the null cone, then we proceed to Step 2.

Step 2: A and B are both not in the null cone. Now, for d ∈ {n − 1, n}, the IQS algorithm
constructs T (d) ∈ Matmd,d such that fT (d)(A) 6= 0 in polynomial time. We denote
fT (d) = fd. If fd(A) 6= fd(B), then A 6∼GLn B and fd is the separating invariant.
Else fd(A) = fd(B) for both choices of d ∈ {n− 1, n}, and we proceed to Step 3.

Step 3: For d ∈ {n − 1, n}, we have fd(A) = det(
∑

i,j,k(T (d)i)j,k(Ai ⊗ Ej,k)). We can
construct efficiently a matrix P ∈ Matmd2,md2 such that the first row is (T (d)i)j,k)i,j,k

by Lemma 6.2.7. Consider U = P · A⊗d, V = P · B⊗d ∈ Matmd
2

nd,nd . This has the
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property that det(U1) 6= 0. Since we did not terminate in Step 2, we know that
det(U1) = det(V1). Let us recall that by Corollary 6.2.10, A ∼LR B if and only
A⊗d ∼ B⊗d for both d = n− 1 and d = n. By Lemma 6.2.11, A⊗d ∼LR B⊗d if and
only if U ∼LR V .

To decide whether U ∼LR V , we do the following. Let Ũ = (U−1
1 U2, . . . , U

−1
1 Umd2)

and Ṽ = (V −1
1 V2, . . . , V

−1
1 Vmd2). By the above Proposition, we have U ∼LR V

if and only if Ũ ∼GLnd Ṽ . But this can be seen as an instance of an orbit closure
problem with witness for matrix invariants. Also note the fact if we get an invariant
separating Ũ and Ṽ , the steps can be traced back to get an invariant separating A and
B.

Corollary 6.2.13. There is a polynomial time reduction from the orbit closure problem

with witness for matrix semi-invariants to the orbit closure problem with witness for matrix

invariants.

6.3 A polynomial time algorithm for finding a basis for a
subalgebra of Matn,n

Let {C1, . . . , Cm} ⊆ Matn,n be a finite subset of Matn,n. Consider the (unital) subalgebra
C ⊆ Matn,n generated by C1, . . . , Cm. In other words, C is the smallest subspace of Matn,n

containing Id, C1, . . . , Cm closed under addition and multiplication. We will describe a
polynomial time algorithm for finding a basis for C. First observe that C is spanned by
{C(w) | w ∈ words([m])}. While this is an infinite spanning set, we will extract a basis
from this, in polynomial time. We define a total order on words([m]).

Definition 6.3.1. Given two words w1 = i1i2 . . . ib and w2 = j1j2 . . . jc, we write w1 ≺ w2

if either

1. l(w1) < l(w2) or

2. l(w1) = l(w2) and for the smallest integer m for which im 6= jm, we have im < jm.

Remark 6.3.2. If w ≺ w′, we will say w is smaller than w′.

We call a word a non-pivot if Cw is a finite linear combination of words wk with wk ≺
w, i.e., Cw =

∑
k akCwk , with ak ∈ K and wk ≺ w. We call a word pivot if it is not a

non-pivot. For a pivot (resp. non-pivot) word w, we will also refer to Cw as pivot (resp.
non-pivot). The following lemma is straightforward.
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Lemma 6.3.3. Let P = {w | w is pivot}. Then {Cw | w ∈ P} is a basis for C. We will call

this the pivot basis.

Definition 6.3.4. For two words w = i1i2 . . . ib and w′ = j1j2 . . . jc, we define the concate-

nation

w ◦ w′ = i1i2 . . . ibj1j2 . . . jc.

Lemma 6.3.5. If w is a non-pivot, then w ◦ w′ is a non-pivot for all words w′.

Proof. If w is non-pivot, then Cw =
∑

k akCwk for wk ≺ w and ak ∈ K. Then we have
Cw◦w′ =

∑
k akCwk◦w′ . Hence, w ◦ w′ is non-pivot as well.

Corollary 6.3.6. If there are no pivot words of length t, then there are no pivot words of

length ≥ t.

Corollary 6.3.7. There are no pivot words of length > n2.

Proof. Let N be the largest length of a pivot word. Then there must be at least one pivot
word of length d for each 1 ≤ d ≤ N , by Corollary 6.3.6. Hence,

n2 = dim(Matn,n) ≥ dim(C) = number of pivots ≥ N.

Lemma 6.3.8. If w is a non-pivot, then Cw is a finite linear combination of pivots xk with

xk ≺ w.

Proof. If w is non-pivot, then Cw is a finite linear combination of words wk with wk ≺ w.
For each one of these words wk, if it is not already a pivot, we can write wk as a finite linear
combination of smaller pivots, by induction.

Corollary 6.3.9. The set of pivots form a basis.

Proof. The above lemma shows that every non-pivot is a finite linear combination of pivots,
and hence the pivots form a spanning set. Now, suppose there was a non-trivial linear
combination of pivots

∑
k akCwk = 0. Let wk be the largest pivot such that ak 6= 0. This

means wk is a linear combination of smaller pivots, which contradicts the fact that wk is a
pivot. Hence, the pivots are linearly independent.

Now, we describe an efficient algoirithm to construct the set of pivots.

Step 0: Set t = 1. Set P = P0 = {(e, Id)}, where e represents the empty word.
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Step 1: Create a list Pt consisting of tuples (w,Cw), where w is a word of length t of the
form w′ ◦ i, where w′ ∈ Pt−1 is a pivot and i ∈ [m]. Create this list in order.

Step 2: Proceeding through the list Pt, check if an entry (w,Cw) is a pivot. This can be done
in polynomial time, as we have to simply check if Cw is a linear combination of
smaller pivots. If it is a pivot, add it to P . If it is not a pivot, then remove it from Pt.
Upon completing this step, the list Pt contains all pivots of length t.

Step 3: If Pt is nonempty, t = t+ 1, and go back to Step 1. Else, proceed to Step 4.

Step 4: Return P .

Corollary 6.3.10. There is a polynomial time algorithm to construct the set of pivots. Fur-

ther, this algorithm also records the word associated to each pivot.

Proof. To show that the above algorithm runs in polynomial time, it suffices to show that
the number of words we consider is at most polynomial. Indeed, if there are k pivots of
length d, then we only consider k×m words of length d+ 1. Since k ≤ n2, the number of
words we consider in each degree is at most n2m. We only consider words of length up to
n2, since there will be no pivots larger than n2. Hence, the number of words considered is
polynomial (in n and m).

6.4 Orbit closure problem for matrix invariants

We will first discuss the orbit closure problem for matrix invariants in characteristic 0.
We will need some additional results to adapt the algorithm to positive characteristic, and
we do that subsequently. Suppose A,B ∈ Matmn,n and write A = (A1, . . . , Am), B =

(B1, . . . , Bm). For every i ∈ [m], define a block matrix

Ci =

(
Ai 0

0 Bi

)
.

Let C ⊆ Mat2n,2n be the algebra generated by C1, . . . , Cm.

Proposition 6.4.1. We have A ∼GLn B if and only if for every matrix(
X 0

0 Y

)
∈ C
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we have Tr(X) = Tr(Y ).

Proof. Two orbit closures do not intersect if and only if there is an invariant that separates
them. We know that invariants of the form X 7→ TrXw for some word w in the alphabet
{1, 2, . . . ,m} are a set of generators. Note that C is the span of all

Cw =

(
Aw 0

0 Bw

)
,

where w is a word. Now the proposition follows by linearity of trace.

Theorem 6.4.2. Assume char(K) = 0. There is a polynomial time algorithm for the orbit

closure problem with witness for matrix invariants.

Proof. We can construct the set of pivots for C ⊆ Mat2n,2n in polynomial time by Corol-
lary 6.3.10. Since the pivots form a basis for C, it suffices to check whether TrAw = TrBw

for each pivot Cw =

(
Aw 0

0 Bw

)
. In fact, we only need to check for pivots w with

l(w) ≤ n2 by the degree bound for generating invariants.
If TrAw 6= TrBw for some pivot w, then Tw is an invariant that separates A andB.

6.4.1 The positive characteristic case

If char(K) = 0, then characteristic coefficients of a matrix can be written in terms of
traces of powers of a matrix. If char(K) = p > 0, this is no longer true, and hence
we are forced to consider characteristic coefficients in the description of the invariant ring
S(n,m). Higher characteristic coefficients lack the linearity of trace, and we must make a
more involved argument.

Suppose that K is an algebraically closed field, R is a finite dimensional associative
K-algebra and N : R→ K is a norm, meaning that it has the following properties:

1. N is a polynomial;

2. N(1) = 1;

3. N(ab) = N(a)N(b) for all a, b ∈ R.

We define a trace function as follows:

Tr(a) =
d

dt
N(1 + at)

∣∣∣
t=0
.

The map Tr is K-linear.
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Lemma 6.4.3. We have

d

dt
N(a+ bt) = N(a+ bt) Tr((a+ bt)−1b)

for all t ∈ K for which a+ bt is invertible.

Proof.

d

dt
N(a+ bt) =

d

ds
N(a+ bt+ bs)

∣∣∣
s=0

= N(a+ bt)
d

ds
N(1 + (a+ bt)−1bs)

∣∣∣
s=0

= N(a+ bt) Tr((a+ bt)−1b).

Lemma 6.4.4. Suppose that N = Nk1
1 Nk2

2 · · ·Nkr
r where N1, N2, . . . , Nr are distinct irre-

ducible polynomials, k1, k2, . . . , kr are positive and N1(1) = N2(1) = · · · = Nr(1) = 1.

Then N1, N2, . . . , Nr are norms as well.

Proof. We have

Nk1
1 (ab)Nk2

2 (ab) · · ·Nkr
r (ab) = N(ab)

= N(a)N(b)

= Nk1
1 (a)Nk2

2 (a) · · ·Nkr
r (a)Nk1

1 (b)Nk2
2 (b) · · ·Nkr

r (b)

If the irreducible polynomialNi(a) dividesNj(ab), then it also dividesNj(a) by setting b =

1. It follows that Ni(a) and Nj(a) have to be the same up to a scalar. Since Ni(1) = Nj(1)

we have Ni = Nj and i = j. So Ni(a) and Ni(b) divide Ni(ab) and Ni(ab) = λNi(a)Ni(b)

with λ ∈ K. For a = b = 1 we get λ = 1.

Theorem 6.4.5. Suppose that N1, N2 : R → K are two norms, a1, a2, . . . , ak ∈ R span

R as a K-vector space and N1(1 + tai) = N2(1 + tai) for all i and all t. Then we have

N1 = N2.

Proof. Without loss of generality we may assume that N1(a) and N2(a) do not have a
common factor as a polynomial. If the characteristic of F is p > 0 then we can also assume
that N1 and N2 are not p-th powers (because otherwise we replace N1 and N2 by their
(unique) p-th roots). For a, b ∈ R and t ∈ F with a+ tb ∈ R× we have

d

dt

N1(a+ tb)

N2(a+ tb)
=
N1(a+ tb)

N2(a+ tb)

(
Tr1((a+ tb)−1b)− Tr2((a+ tb)−1b)

)
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For a = 1, b = ai and t = 0 we get Tr1(ai) = Tr2(ai) for all i. Because Tr1 and Tr2 are
linear and a1, . . . , ak spans R, we get Tr1 = Tr2. It follows that d

dt
N1(a+ tb)/N2(a+ tb) =

0. This implies that N1(a)/N2(a) is constant, or N1(a)/N2(a) is a p-th power of a rational
function, where p is the characteristic. In the first case, N1(a)/N2(a) = N1(1)/N2(1) = 1

and N1 = N2 and we are done. In the second case, N1(a) and N2(a) both must be p-th
powers because they do not have a common factor, but this contradicts our assumptions.

Remark 6.4.6. For the previous theorem, it is not necessary thatK is algebraically closed.

Any norm N : R → K can be extended to a norm N : R ⊗K K → K where K is the

algebraic closure of K.

Remark 6.4.7. For A,B ∈ Matmn,n(K), we have A ∼GLn B if and only if A ∼GLn(K) B.

This is because S(n,m)⊗KK is the invariant ring for the action of GLn(K) on Matmn,n(K).

Theorem 6.4.8. Let A,B ∈ Matmn,n with A = (A1, . . . , Am) and B = (B1, . . . , Bm).

Define

Ci =

(
Ai 0

0 Bi

)
for all i. Let C be the algebra generated by C1, C2, . . . , Cm. Let Z1, Z2, . . . , Zs be the pivot

basis of C and write

Zj =

(
Xj 0

0 Yj

)
for all j. Then A ∼GLn B if and only if det(I + tXj) = det(I + tYj) as a polynomial in t

for all j.

Proof. By the above two remarks, we can assumeK is algebraically closed. We define two
norms on C, by

N1

((
A 0

0 B

))
= det(A), N2

((
A 0

0 B

))
= det(B).

Suppose for every j, we have

N1(I + tZj) = det(I + tXj) = det(I + tYj) = N2(I + tZj).

Since Z1, . . . , Zs spans C, we haveN1 = N2. This means that det(I+tA) = N1(I+tZ) =
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N2(1 + tZ) = det(I + tB) for every

Z =

(
X 0

0 Y

)
∈ C.

In particular, if w is a word, we have

Cw =

(
Aw 0

0 Bw

)
∈ C,

so
det(I + tAw) = det(1 + tBw)

for all words w ∈ words([m]). Hence σj(w)(A) = σj(w)(B) for all 1 ≤ j ≤ n and
w ∈ words([m]). By Theorem 2.5.5, these are a set of generating invariants, and hence
A ∼GLn B.

For the other direction, suppose det(I + tXj) 6= det(I + Yj) for some j. Since
Z1, . . . , Zs is a pivot basis, Zj = Cw for some w ∈ words([m]). So, we have Xj = Aw

and Yj = Bw, and det(I + tAw) 6= det(I + tBw). In particular, σj(w)(A) 6= σj(w)(B) for
some j. For this j, σj(w) is an invariant that separates A and B, and hence A 6∼GLn B.

Theorem 6.4.9. There is a polynomial time algorithm for the orbit closure problem with

witness for matrix invariants.

Proof. Given A,B ∈ Matmn,n, let Ci =

(
Ai 0

0 Bi

)
. Let C be the subalgebra generated by

C1, . . . , Cm. Construct the pivot basis Z1, . . . , Zs of C. For each Zi =

(
Ai 0

0 Bi

)
, we need

to check if det(I+tAi) = det(I+tBi) as a polynomial in t for each i. But this can be done
efficiently, as one only needs to check whether det(I + kAi) = det(I + kBi) for k ∈ S,
where S is a predetermined finite subset of size n+ 1 in K.

When A 6∼GLn B, the algorithm finds k ∈ S and w ∈ words([m]) such that det(I +

kAw) 6= det(I + kBw). This means det(I + kXw) ∈ S(n,m) is an invariant that separates
A and B.
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6.5 Bounds for separating invariants

6.5.1 Matrix invariants

We will prove the following:

Theorem 6.5.1. We have βsep(S(n,m)) ≤ 2n2
√
n. If we assume char(K) = 0, then we

have βsep(S(n,m)) ≤ 2n
√
n.

The bound in characteristic 0 is especially interesting because there are quadratic lower
bounds for the degree of generating invariants in this case, see [36]. This also improves the
bound in [13] for the degree of invariants defining the null cone.

Proposition 6.5.2. Suppose that w = w1w2 · · ·wd ∈ words([m]) is a word of length d, and

w has no subword of the form un (i.e., a subword that is repeated ≥ n times). Then the

total number of subwords of w is at least
(
d+1

2

)
/n.

Proof. Suppose that wi+1wi+2 · · ·wk = wj+1wj+2 · · ·wl with 1 ≤ j < i. Then we have
wj+1wj+2 · · ·wi = wi+1wi+2 · · ·w2i−j , wi+1wi+2 · · ·w2i−j = w2i−j+1w2i−j+2 · · ·w3i−2j

etc. The subwordwj+1wj+2 · · ·wi appears at least b(k−j)/(i−j)c insidewj+1wj+1 · · ·wk.
If i ≤ k/n, then a subword appears at least b(k − j)/(i − j)c = b(ni − j)/(i − j)c ≥
bki/ic = n consecutive times. This contradicts the assumption.

Let S be the set of all subwords of the form wi+1wi+2 · · ·wk with k ≤ d and i ≤ k/n.
These words are all distinct. For every k with 0 ≤ k ≤ d there are bk/nc+ 1 choices for i.
So the total number of subwords is:

d∑
k=0

⌊k
n

⌋
+ 1 >

d∑
k=0

k

n
=

(
d+1

2

)
n

.

Let A,B ∈ Matmn,n with A 6∼GLn B and write Ci =

(
Ai 0

0 Bi

)
. Let C ⊆ Mat2n,2n be

the subalgebra generated by C1, . . . , Cm. An argument similar to the proof of Lemma 6.3.5
gives us the following result.

Lemma 6.5.3. Every subword of a pivot word is again a pivot word.

Lemma 6.5.4. For any word u ∈ words([m]) , un cannot be a pivot.

Proof. If un is a pivot, then so is ui for all i < n. However, the Cayley-Hamilton theorem
tells us that I, Cu, Cu2 = C2

u, . . . Cun = Cn
u are linearly dependent, which is a contradiction.
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Corollary 6.5.5. Any word w containing a subword of the form un cannot be a pivot.

Since the upper right and lower left quadrants are always zero for every matrix in C, the
algebra C which is at most 2n2-dimensional,. Hence the number of pivots is at most n2. .

Lemma 6.5.6. Suppose the length of any pivot w is d, then we must have

d ≤ 2n
√
n.

Proof. For w to be a pivot, it cannot contain any subword of the form un by the above
corollary. Hence by Proposition 6.5.2, there are at least

(
d+1

2

)
subwords. All these subwords

must be pivots by Lemma 6.5.3. But the number of pivots is at most 2n2, and so we must
have 2n2 ≥

(
d+1

2

)
/n ≥ d2

2n
. Hence, we have d2 ≤ 4n3, and so we get d ≤ 2n

√
n.

Proof of Theorem 6.5.1. Given A,B ∈ Matn,n with A 6∼GLn B, we construct the set of
pivots of C. In characteristic 0, we must have Tr(Aw) 6= Tr(Bw) for some pivot w. This
means there is an invariant of degree = deg(Tw) = l(w) ≤ 2n

√
n that separates them.

In characteristic p > 0, we must have det(I + tAw) 6= det(I + tBw) for some pivot w,
and hence for some 1 ≤ j ≤ n, σj(w)(A) 6= σj(w)(B). This gives an invariant of degree
≤ 2n2

√
n that separates them.

6.5.2 Matrix semi-invariants

The reduction given in Section 6.2.2 is good enough for showing that the orbit closure
problems for matrix invariants and matrix semi-invariants are in the same complexity class.
In this section we give a stronger reduction with the aim of finding better bounds for the
degree of separating invariants for matrix semi-invariants. This reduction can also be made
algorithmic, and can replace the reduction in Section 6.2.2. However, we will only focus
on obtaining bounds for separating invariants.

Theorem 6.5.7. We have βsep(R(n,m)) ≤ n2βsep(S(n,mn2)).

Using the bounds on matrix invariants in Theorem 6.5.1, we get the bounds for matrix
semi-invariants.

Corollary 6.5.8. We have βsep(R(n,m)) ≤ 2n4
√
n. If we assume char(K) = 0, then we

have βsep(R(n,m)) ≤ 2n3
√
n.
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Let T ∈ Matmd,d such that fT 6= 0. For X ∈ Matmn,n, consider

LT (X) =
m∑
k=1

Tk ⊗Xk =


L1,1(X) . . . L1,d(X)

... . . . ...
Ld,1(X) . . . Ld,d(X)

 ,

where Li,j(X) represents an n × n block. From the definition of Kronecker product of
matrices, one can check that Li,j(X) =

∑m
k=1(Tk)i,jXk, i.e., a linear combination of the

Xi. By definition fT (X) = det(LT (X)). Let

MT (X) = Ad(LT (X)) =


M1,1(X) . . . M1,d(X)

... . . . ...
Md,1(X) . . . Md,d(X)

 ,

where Mi,j(X) represents an n × n block. The entries of MT (X) are not linear in the
entries of the matrices Xk. Instead the entries are deg(dn − 1) polynomials in the entries
(Xk)i,j . For X ∈Matmn,n, let us define

Xi,j,k = XkMi,j(X),

for 1 ≤ k ≤ m and 1 ≤ i, j ≤ d.
Consider the map ζ : Matmn,n → Matmd

2

n,n given by X 7→ (Xi,j,k)i,j,k. This gives a map
on the coordinate rings ζ∗ : K[Matmd

2

n,n ]→ K[Matmn,n].

Lemma 6.5.9. The map ζ∗ descends to a map on invariant rings ζ∗ : S(n,md2) →
R(n,m).

Proof. Observe that Li,j(X) is a linear expression in the matrices Xi. Hence for g =

(P,Q−1) ∈ SLn× SLn, we have

Li,j(g ·X) = Li,j(PX1Q,PX2Q, . . . , PXmQ) = PLi,j(X)Q.

In particular, we see that LT (g ·X) = (P⊗Id)LT (X)(Q⊗Id). For any two square matrices
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A,B of the same size, we have Ad(AB) = Ad(B)Ad(A). Hence, we have

MT (g ·X) = Ad(LT (g ·X))

= Ad((P ⊗ Id)LT (X)(Q⊗ Id))

= Ad(Q⊗ id)MT (X)Ad(P ⊗ Id)

= (Q−1 ⊗ id)MT (X)(P−1 ⊗ Id).

The last equality follows from the fact that for a matrix whose determinant is equal to 1,
the inverse and adjoint are the same. We deduce that Mi.j(g ·X) = Q−1Mi,j(X)P−1.

Hence, we have (g · X)i,j,k = (PXkQ)(Q−1Mi,j(X)P−1) = PXi,j,kP
−1. Now, it is

clear that ζ∗(g) ∈ R(n,m) since ζ∗(g ·X) = g(ζ(g ·X)) = g(Pζ(X)P−1) = g(ζ(X)) =

ζ∗(g)(X).

Corollary 6.5.10. Suppose we have g ∈ S(n,md2) such that g(ζ(A)) 6= g(ζ(B)), then

A 6∼LR B.

Assume A,B ∈ Matn,n and assume A 6∼LR B. We want to show the existence of an
invariant f ∈ R(n,m) such that f(A) 6= f(B) such that deg(f) is as small as possible.
Indeed, since A 6∼LR B, there is a choice of S ∈ Matmk,k, for some k ≥ 1, such that
fS(A) 6= fS(B). Without loss of generality, assume fS(B) 6= 0. Hence fS(A)/fS(B) 6= 1.
Once again we must have fS(A)d/fS(B)d 6= 1 for at least one choice of d ∈ {n− 1, n}. In
particular, for such a d, (fS)d is an invariant of degree dkn that separates A and B.

Lemma 6.5.11. Let A,B ∈ Matmn,n and let T ∈ Matmd,d such that fT (A) = fT (B) 6= 0.

Then there exists g ∈ S(n,md2) such that ζ∗(g)(A) 6= ζ∗(g)(B).

Proof. We have a degree dkn invariant f such that f(A) 6= f(B) by the above discussion.
We can find U ∈ Matmdk,dk such that fU(A) 6= fU(B) since such invariants are a spanning
set for invariants of degree dkn. Now for X ∈ Matmn,n, consider

N(X) =

(
m∑
k=1

Uk ⊗Xk

)
(MT (X)⊗ Idk).

We observe that N(X) is a dk × dk block matrix, where each block has size n × n and
is a linear combination of Xi,j,k. In other words, the (p, q)th block N(X)p,q is a linear
combination

∑
i,j,k λ

i,j,k
p,q Xi,j,k for some λi,j,kp,q ∈ K. Now we can define an invariant g ∈

S(n,md2). For Z = (Zi,j,k)i,j,k ∈ Matmd
2

n,n , we define NZ to be the dk × dk block matrix,
where the (p, q)th block is given by

∑
i,j,k λ

i,j,k
p,q Zi,j,k. Let g(Z) = det(NZ). It is easy to
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check that g ∈ S(n,md2). Moreover, we have

ζ∗(g)(X) = g(ζ(X)) = det(Nζ(X)) = det(N(X)) = fU(X) det(MT (X))k.

Since fT (A) = fT (B) 6= 0, we have that det(MT (A)) = det(MT (B)) 6= 0. In particular,
since fU(A) 6= fU(B), we have ζ∗(g)(A) 6= ζ∗(g)(B) as required.

Now, we can finally prove Theorem 6.5.7.

Proof of Theorem 6.5.7. Suppose A,B ∈ Matmn,n with A 6∼LR B. Both A and B cannot be
in the null cone. IfA is in the null cone, then we have an invariant f with deg(f) = n(n−1)

such that f(B) 6= 0 = f(A). Similarly if B is in the null cone.
Now, let us assume both A and B are not in the null cone. By the above discussion,

for at least one choice of d ∈ {n − 1, n}, we either have T ∈ Matmd,d such that fT (A) 6=
fT (B) or we have an invariant of the form f = ζ∗(g) such that f(A) 6= f(B). In the
former case, we have an invariant of degree nd ≤ n2 that separates A and B. The latter
implies that ζ(A) 6∼GLn ζ(B). Hence, we have an invariant g ∈ S(n,md2) of degree
≤ βsep(S(n,md2)) such that g(ζ(A)) 6= g(ζ(B)).

Now, since ζ is a map of degree dn, we have ζ∗(g) ∈ R(n,m) is a polynomial of degree
= deg(g)dn ≤ n2βsep(S(n,md2)) ≤ n2βsep(S(n,mn2)) that separates A and B.
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CHAPTER 7

Computational complexity

In Section 7.1, we introduce non-commutative circuits, and in Section 7.2, we discuss ap-
plications of our results to rational identity testing and other problems on non-commutative
circuits.

7.1 Non-commutative circuits

Hrubes and Wigderson in their paper titled “Non-commutative arithmetic circuits with divi-
sion” ([46]) raised four open problems. As a consequence of the results in this dissertation,
we settle two of the open problems, and make partial progress on the other two. Let us first
describe (non-commutative) arithmetic circuits, and we start with an example.

The circuit shown below is a simple circuit, which computes the expression ab−1 + c.
There are three input gates a, b and c, a muliplication gate (labelled ×), an addition gate
(labelled +), and an inverse gate (labelled �−1). Further, for the multiplication gate, the
two incoming arrows are labelled L and R to tell us the order in which to multiply the
inputs. The size of the circuit is taken as the number of gates, which in the above example
is 6.

We now give a formal definition. A non-commutative arithmetic circuit Φ over a field
K is a finite directed acyclic graph as follows. Nodes (or gates) of in–degree zero are

a

b

×

�−1 c

+ OutputL

R

Figure 7.1: Example of a circuit
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labelled by either a variable or a field element in K. All other nodes have in–degree one
or two. The gates of in–degree one are labelled by �−1, and the gates of degree two by
either + or×. The edges going into a gate labelled by× are labelled L andR, to determine
the order of multiplication. The gates are called input, inverse, addition and multiplication
gates. The nodes of out–degree zero are called output gates.

The size of a circuit Φ is the number of gates. A formula is circuit where every node
has out–degree at most one. A gate in a circuit Φ in variables x1, . . . , xn will compute (in
the obvious way) a non-commutative rational expression, i.e., an element of the free skew-
field K (< x1, . . . , xn >) . For a gate u ∈ Φ, we will denote the non-commutative rational
expression it computes by û. However, it may happen that the gate u is an inverse gate, and
the input to this gate is zero. In this case, we say that û is undefined.

A circuit Φ is called a correct circuit if û is defined for every gate u ∈ Φ. A correct
circuit computes a set of non-commutative rational expressions, one for each output gate.

One can try to evaluate a non-commutative arithmetic circuit (with single output gate)
by specializing the variables to elements in any (non-commutative) K-algebra R. Let Φ be
a circuit in variables x1, . . . , xn. We can define a partial map

ΦR : Rn → R.

Indeed, for (a1, . . . , an) ∈ Rn, we try to evaluate the circuit. We may come across an
inverse gate whose input is undefined, in which case we say ΦR(a1, . . . , an) is undefined.

7.2 Rational identity testing

We will consider rational expressions as given by formulas. We want to address the funda-
mental question: How can one decide if two rational expressions define the same rational
function? This is equivalent to deciding whether a single rational expression defines the
zero function. To decide whether a rational expression defines the zero function is the
same as deciding whether the inverse of the rational expression exists. This is the same as
adding an inverse gate to the output, and asking if the formula is correct.

Problem 7.2.1 (Rational Identity Testing). How do we decide if a given formula is correct?

As we mentioned in the introduction, we can test this on matrices.

Proposition 7.2.2. A formula Φ in variables x1, . . . , xm is correct if and only if the evalu-

ation Φ(A1, . . . , Am) is defined for some A1, . . . , Am ∈ Matmd,d for some d ∈ Z≥0.
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The above Proposition is really just a consequence of the construction of the free skew-
field. However, this raises an important question.

Problem 7.2.3. Given a formula Φ in variables x1, . . . , xm let d(Φ) be the smallest integer

such that Φ(A) is defined for some A = (A1, . . . , Am) ∈ Matmd,d. How do we compute

d(Φ)?

It is of course too ambitious in general to try and find the smallest such integer, and
so instead we might ask for a bound. Another thing we might ask for, is whether there is
a bound that depends only upon the size of the circuit. It is conceivable that even if we
consider the formulas of size n, for each integer D, there might be a correct formula ΦD

such that d(Φ) > D.

Problem 7.2.4. Is d(n) := max{d(Φ) | size(Φ) = n} <∞.

While both these problems have very good answers now, let us first connect these prob-
lems to the null cone for matrix semi-invariants. For this we need a construction of Hrubeš
and Wigderson that we mentioned previously in Section 4.3.2. We will demonstrate this
with an example.

Consider the rational expression Φ = (ba − ab)−1. We will look at the linear matrix

LΦ =

 0 1 a

−1 0 b

−a −b 0


Consider the sequence of row and column transformations

1. R3 → R3 + bR1;

2. R2 → R2 − aR1;

3. C3 → C3 + bC1;

4. C3 → C3 − aC2.

This transforms the linear matrix LΦ to

 0 1 0

−1 0 0

0 0 ba− ab

. Row and column trans-

formations do not change the rank. Hence, Φ(A,B) is correct if and only if LΦ(A,B) has
full rank. But now we see that the linear matrix LΦ = X0 + aX1 + bX2. There exist
matrices d × d matrices A,B such that LΦ(A,B) is invertible if and only if there is an
invariant f ∈ R(3, 3)3d such that f(X) 6= 0 for the 3-tuple X = (X0, X1, X2) ∈ Mat3

3,3.
This follows from Proposition 5.1.1 and Lemma 4.2.6.
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We have not explained how one gets the matrix LΦ from a formula Φ. There is a
procedure to do this in [46], where they spell out in detail how to deal with each kind of
gate. The most important part of the construction is of course that size of LΦ is at most
twice the size of Φ. We can assume that size of LΦ is exactly twice the size of Φ by padding
with some diagonal 1’s if necessary.

This connection alone tells us that there is a positive answer to Problem 7.2.4 since
we know by general results on invariant theory that bounds for invariants defining the null
cone exist. However, given the powerful results we have on the null cone for matrix semi-
invariants, we get much stronger results.

Theorem 7.2.5. We have d(n) ≤ 2n− 1.

We will not develop the connections more here, referring the interested reader instead to
[46], in particular their appendix on invariant theory. We will simply list the consequences
that our results on linear matrices and matrix semi-invariants have.

Rational identity testing

Deciding whether a non-commutative formula computes the zero function is called the
rational identity testing problem. Hrubeš and Wigderson give a randomized algorithm for
rational identity testing whose run time is polynomial in n and d(n). See [46, Section 7] for
the details. Thus the above bound on d(n) gives a polynomial time randomized algorithm
for rational identity testing for infinite fields in arbitrary characteristic.

If K = Q, Gurvits’ algorithm can decide the invertibility of a linear matrix if it satisfies
a certain property. In [49], they showed that a polynomial bound for d(n) (equivalently
γ(SLn× SLn,Matmn,n)) would suffice to extend Gurvits’ algorithm to all linear matrices.
Hence we have a deterministic polynomial time algorithm if K = Q. Although, in [38],
they showed that Gurvits’ algorithm suffices independent of our bounds.

Remark 7.2.6. Using the bounds on d(n), Ivanyos, Qiao and Subrahmanyam give a differ-

ent deterministic polynomial time algorithm that works for any sufficiently large field, see

[50].

Eliminating inverse gates

Let f be a non-commutative polynomial in K〈t1, t2, . . . , tm〉 of degree k, which can be
computed by a formula of size n. Then f can be computed by a formula of size nO(log2(k) log(n))

without inverse gates. (see [46, Corollary 8.4]).
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Lower bounds on formula size

Problem 1 in [46] asks for an explicit family of non-commutative polynomials which cannot
be computed by a polynomial size formula with divisions. We give an answer to this
problem. In [68], it was proved that any formula without divisions computing the non-
commutative determinant (or permanent) of degree k must have size 2Ω(k). To find the size
of a formula that allows divisions, we use our bound for eliminating inverse gates, and
solve 2Ω(k) = nO(log2(k) log(n)) for n. This shows that any formula with divisions computing
the non-commutative determinant (or permanent) of degree k has size 2Ω(

√
k/ log(k)).
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CHAPTER 8

Tensor rank

We introduce the notions of tensor and border rank in Section 8.1. In Section 8.2, we recall
Strassen’s equations for showing lower bounds on border rank, and strengthen the result
by reformulating it in terms of linear matrices. We also give an application of this method
to compute the 3 × 3 determinant and permanent tensors. In Section 8.3, we describe the
general method of finding lower bounds by using flattenings arising from linear matrices.
Finally in Section 8.4, we provide explicit tensors in Kd⊗Kd⊗Kd of border rank at least
2d− 3 when d is odd, and 2d− 2 when d is even.

8.1 Introduction

Over the last decade, tensors have received a lot of attention as a consequence of its wide
ranging applications in mathematics as well as other scientific disciplines. We refer to [59]
for several open conjectures in the subject, as well as a detailed introduction to the subject.
The subject begins with the concept of tensor rank which is a generalization of matrix rank.

Definition 8.1.1. For a tensor T ∈ Ka1⊗Ka2⊗· · ·⊗Kal , we define its tensor rank trk(T )

to be the smallest integer m such that T can be written as a sum of m pure tensors.

Let Zm denote the set of tensors of rank ≤ m. The set Zm need not be Zariski closed,
and we consider its Zariski closure Zm. This gives rise to the definition of border rank.

Definition 8.1.2. For a tensor T , we define its border rank brk(T ) to be the smallest integer

m such that T ∈ Zm.

It is only natural to try and understand the polynomials that define the closed subset
Zm. If f is a polynomial that vanishes on Zm (or even Zm), then if f(T ) 6= 0 for some
tensor, we immediately know that brk(T) > m. In other words, f can be used a test to
prove that a tensor has border rank > m.
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8.2 Strassen’s equations

We recall the well known result of Strassen for showing lower bounds on the border rank.

Theorem 8.2.1 (Strassen). Let T ∈ K3⊗Km⊗Km. We write T = e1⊗A+e2⊗B+e3⊗C.

Identifying Km ⊗Km with Matm,m, we think of A,B and C as m×m matrices. Suppose

A is invertible, then we have

brk(T ) ≥ m+
1

2
rk(BA−1C − CA−1B).

We can view Strassen’s equations from the perspective of linear matrices and linear
subspaces of matrices. Let

X1 =

 0 1 0

−1 0 0

0 0 0

 , X2 =

 0 0 1

0 0 0

−1 0 0

 and X3 =

0 0 0

0 0 1

0 −1 0

 ,

Let L : K3 → Mat3,3 be the map given by ei 7→ Xi, and consider the corresponding
linear matrix A = t1X1 + t2X2 + t3X3. Identifying Km ⊗Km with Matm,m, we consider
the map

φ : K3 ⊗Km ⊗Km = K3 ⊗Matm,m → Mat3,3⊗Matm,m → Mat3m,3m,

where the first map is given by L⊗ id and the second map is given by taking the Kronecker
product of matrices. Now, observe that the image of any rank 1 tensor under φ has rank at
most 2, since crk(A) = 2. Since the map is additive, the image of any rank r tensor will be
at most 2r. Thus the 2r + 1 × 2r + 1 minors of the image are polynomials that vanish on
Zr, and hence on Zr. In other words, we have the inequality

brk(T ) ≥ rk(φ(T ))

2
. (8.1)

Let us look at the map more carefully. We have

φ(e1 ⊗ A+ e2 ⊗B + e3 ⊗ C) =

 0 A B

−A 0 C

−B −C 0

 .
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But now, consider the sequence of (block) row and column transformations. 0 A B

−A 0 C

−B −C 0

 R2 7→A−1R2−−−−−−−→
R1 7→A−1R1

 0 I A−1B

−I 0 A−1C

−B −C 0


C3 7→C3−C2(A−1B)+C1(A−1C)−−−−−−−−−−−−−−−−−−→

R3 7→R3+CR1−BR2

 0 I 0

−I 0 0

0 0 CA−1B −BA−1C

 .

Hence, Equation 8.1 turns into

brk(T ) ≥ rk(φ(T ))

2
=

2m+ 1
2

rk(BA−1C − CA−1B)

2
= m+

1

2
rk(BA−1C −CA−1B).

This point of view yields a generalization of Strassen’s result to the case even when A
is not invertible.

Proposition 8.2.2. Let T ∈ K3 ⊗Km ⊗Km. We write T = e1 ⊗ A + e2 ⊗ B + e3 ⊗ C.

Identifying Km ⊗Km with Matm,m, we think of A,B and C as m×m matrices. Then we

have

brk(T ) ≥ 1

2
rk

 0 A B

−A 0 C

−B −C 0

 .

8.2.1 Application to 3× 3 determinant and permanent tensors

We illustrate the method described above to compute the border rank and tensor rank for
the 3× 3 determinant and permanent tensors. The 3× 3 determinant tensor is

det3 =
∑
σ∈Σ3

sgn(σ)eσ(1) ⊗ eσ(2) ⊗ eσ(3),

where Σ3 denotes the symmetric group in 3 letters. The 3× 3 permanent tensor is

perm3 =
∑
σ∈Σ3

eσ(1) ⊗ eσ(2) ⊗ eσ(3).

Lemma 8.2.3. We have brk(det3) ≥ 5 if charK 6= 2.

Proof. The matrix φ(det3) is an explicit 9×9 matrix, which can be checked to be invertible
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if charK 6= 2. We write the matrix explicitly.

φ(det3) =



0 0 0 0 0 0 0 0 -1
0 0 0 0 0 1 0 0 0

0 0 0 0 −1 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 −1 0 0 0 −1 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 −1 0 0 0 0

0 0 0 1 0 0 0 0 0

-1 0 0 0 0 0 0 0 0


This matrix contains only 12 nonzero entries of the form ±1. Six of these entries

(circled) are in a column or a row with no other nonzero entry, reducing our computation
to a 3 × 3 minor. It is easy to see that this minor is of full rank if charK 6= 2 (and drops
rank by 1 if charK = 2).

Hence, by Proposition 8.2.2, we have brk(det3) ≥ 9
2

= 4.5. Since the border rank must
be an integer, it must be at least 5.

On the other hand, there is an explicit decomposition of det3 as a sum of 5 simple
tensors if charK 6= 2, see [9].

Corollary 8.2.4. Assume charK 6= 2. Then we have trk(det3) = brk(det3) = 5.

Lemma 8.2.5. We have brk(perm3) ≥ 4.

Proof. A similar computation shows that rank of φ(perm3) is 8. Hence we have

brk(perm3) ≥ 8

2
= 4.

Once again, if charK 6= 2, there is an explicit decomposition of perm3 as a sum of 4

simple tensors due to Glynn, see [40].

Corollary 8.2.6. Assume charK 6= 2. Then we have brk(perm3) = trk(perm3) = 4.

In characteristic 0, the tensor rank of det3 and perm3 were shown to be 5 and 4 respec-
tively in [47]. While the arguments for bounding the tensor rank from above are still the
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same (i.e., explicit decompositions), the arguments for bounding the tensor rank from below
are more complicated. Their approach is to analyze certain Fano schemes parametrizing
linear subspaces contained in the hypersurfaces det3 = 0 and perm3 = 0, and even in-
volves a computation done with the help of a computer. The aforementioned method is far
more elementary, and works as long as characteristic is not two.

8.3 Flattenings

We consider tensor product spaces with three tensor factors. Given a tensor in T ∈ Ka ⊗
Kb ⊗Kc, we can write T =

∑
i si ⊗Xi, with si ∈ Ka and Xi ∈ Kb ⊗Kc. Let L : Ka →

Matp,q be a linear map, and denote the image by XL. We identify Kb⊗Kc with Matb,c and
identify Matp,q⊗Matb,c with Matpb,qc. This gives the following map.

ψL : Ka ⊗Kb ⊗Kc −→ Matpb,qc∑
i

si ⊗Xi 7−→
∑
i

L(si)⊗Xi.

Lemma 8.3.1. For a tensor T ∈ Ka ⊗Kb ⊗Kc we have rk(ψL(T )) ≤ brk(T ) rk(XL).

Proof. Let T = s⊗ b⊗ c be a tensor of rank 1. Then ψL(T ) = L(a)⊗ (b⊗ c), and hence
rk(ψL(T )) ≤ rk(L(a)) ≤ rk(XL). Therefore, if we take a tensor T ∈ Ka ⊗Kb ⊗Kc of
rank r, then rk(ψL(T )) ≤ r rk(XL) =: D. Observe that the (D + 1)× (D + 1) minors of
ψL(T ) are polynomial equations that vanish all tensors of rank ≤ r, i.e they vanish on Zr.
Hence these equations vanish on Zr as well.

Hence if brk(T ) = r, we must have rk(ψL(T )) ≤ D = r rk(XL) = brk(T ) rk(XL).

Remark 8.3.2. In particular,
rk(ψL(T ))

rk(XL)
is a lower bound for brk(T ). Further, observe

that ψL(T ) ∈ X {p,q}L , and hence rk(ψL(T )) ≤ rk(X {b,c}L ). Hence in order to get a good

lower bound, it would be useful for the blow-up to have large rank, which in turn is only

possible if XL has a large ratio of non-commutative rank to commutative rank.

Corollary 8.3.3. Let D = r rk(XL). Then the (D + 1) × (D + 1) minors of ψL(T ) give

equations that are satisfied by all tensors of border rank ≤ r.

Landsberg’s technique (see [61]) for obtaining lower bounds for border rank is the same
as the one we describe above. For any r, the above corollary gives polynomials that are
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satisfied by all tensors having border rank ≤ r. It follows that if these polynomials do
not vanish on a tensor T , then we must have brk(T ) > r, providing a possible method
for showing lower bounds for border rank. However, this method is only useful if these
polynomials are non-trivial, i.e., not identically zero. The non-triviality of these equations
essentially depends on the rank of the blow-up X {b,c}L .

Lemma 8.3.4. One of the d× d minors of ψL(T ) is a non-trivial polynomial if and only if

rk(X {b,c}L ) ≥ d.

Proof. Suppose rk(X {b,c}L ) ≥ d. Since im(ψL) = X {b,c}L , there exists T1 ∈ Ka ⊗Kb ⊗Kc

such that rk(ψL(T1)) = rk(X {b,c}L ) ≥ d. Hence there is a d × d minor in ψL(T1) that is
non-zero, and hence that d× d minor is a non-trivial polynomial.

The converse follows immediately since the underlying field K is infinite.

8.4 Border rank of tensors in Kd ⊗Kd ⊗Kd

8.4.1 The case d is odd

Let d = m = 2p + 1 be a positive odd integer. Let L : Km → Hom(
∧pKm,

∧p+1Km)

be the linear map defined in Theorem 4.5.1. For, this L, we define ψL as in the previous
section, i.e.,

ψL : Km ⊗Km ⊗Km −→ Mat(2p+1
p )m,(2p+1

p )m∑
i

si ⊗Xi 7→
∑
i

L(si)⊗Xi.

Theorem 8.4.1. Let ψL be as above, and let D =
(

2p
p

)
(2m − 4). Then at least one of the

(D+1)×(D+1) minors of ψL gives a non-trivial equation for tensors inKm⊗Km⊗Km

of border rank ≤ 2m− 4.

Proof. Observe that rk(XL) =
(

2p
p

)
by Corollary 4.5.6. Hence, by Corollary 8.3.3 and

Lemma 8.3.4, it suffices to show that rk(X {m}L ) ≥ D + 1.
By Proposition 4.5.8, we know that X {p+1}

L has full rank and so we have X {2p+2}
L has

full rank as well. To find lower bounds on rk(X {2p+1}
L ), we use the properties from Corol-

lary 4.4.5.
Let M = dim

∧pKm = dim
∧p+1 Km =

(
2p+1
p

)
, and let r(p, q) = rk(X {p,q}). Then

we have r(p + 1, p + 1) = (p + 1)M , and r(2p + 2, 2p + 2) = (2p + 2)M by the above
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discussion. We have

r(p+ 1, 2p+ 1) ≥ r(p+ 1, p+ 1) ≥ (p+ 1)M.

Further, by concavity in the second variable, we have

r(2p+ 2, 2p+ 1) ≥ (2p+ 1)r(2p+ 2, 2p+ 2) + r(2p+ 2, 0)

2p+ 2

≥ (2p+ 1)(2p+ 2)M

2p+ 2

= (2p+ 1)M.

Now, by concavity in the first variable, we have

r(2p+ 1, 2p+ 1) ≥ pr(2p+ 2, 2p+ 1) + r(p+ 1, 2p+ 1)

p+ 1

≥ p(2p+ 1)M + (p+ 1)M

p+ 1

=
2p2 + 2p+ 1

p+ 1
M.

Hence, we have

rk(X {2p+1}
L )(
2p
p

) ≥
(2p2 + 2p+ 1)

(
2p+1
p

)
(p+ 1)

(
2p
p

)
=

(2p2 + 2p+ 1)(2p+ 1)

(p+ 1)(p+ 1)

> 4p− 2

= 2m− 4

Thus rk(X {m}L ) >
(

2p
p

)
(2m− 4) as required.

Recall that the non-commutative rank is at most twice the commutative rank. Hence

rk(X {m}L )

crk(XL)
≤ m · ncrk(XL)

crk(XL)
< 2m.

This alone shows that there is very little room for improvement for the lower bounds we
obtain using this method.

100



Remark 8.4.2. For m = 5 i.e., p = 2, Landsberg shows that in fact X {m}L has full rank,

thus giving non-trivial equations for tensors of border rank 8. Experimental evidence shows

that in fact this is true for p = 3 and 4 as well, suggesting that it is perhaps true for all p,

which would give non-trivial equations for tensors of border rank 2m− 2.

In Km ⊗ Km ⊗ Km, Landsberg gives explicit tensors having border rank ≥ 2m − 2

(resp. 2m − 4) when m is even (resp. odd) (see [61]). For m odd, we can give explicit
tensors whose border rank is ≥ 2m− 3.

Let m = 2p+ 1 be odd, and let Si ∈ Matp+1,p+1 be as in Proposition 4.5.8. For each r,
consider Qr = Sr ⊕ Sr ∈ Mat2p+2,2p+2, and let Q̃r ∈ Mat2p+1,2p+1 be the matrix obtained
from Qr by removing the last column and last row of Qr. Identifying Mat2p+1,2p+1 with

Km ⊗ Km, we can consider the tensor T =
m∑
i=1

ei ⊗ Q̃i ∈ Km ⊗ Km ⊗ Km, where

e1, e2, . . . , em is the standard basis for Km.

Proposition 8.4.3. The tensor T =
m∑
i=1

ei ⊗ Q̃i ∈ Km ⊗ Km ⊗ Km has border rank

≥ 2m− 3.

Proof. Let L : Km → Hom(
∧pKm,

∧p+1Km) be the linear map defined in Theo-

rem 4.5.1. We have ψL(T ) =
m∑
i=1

L(ei) ⊗ Q̃i ∈ Mat(2p+1
p )m,(2p+1

p )m. Observe that A =

m∑
i=1

L(ei) ⊗ Qi ∈ Mat(2p+1
p )(m+1),(2p+1

p )(m+1) has full rank. Observe that ψL(T ) is obtained

by removing
(

2p+1
p

)
columns and

(
2p+1
p

)
rows from A. Hence, we have

rk(ψL(T )) ≥ rk(A)− 2

(
2p+ 1

p

)
= (m+ 1)

(
2p+ 1

p

)
− 2

(
2p+ 1

p

)
=

(
2p+ 1

p

)
(2p).

Thus, we have

brk(T ) ≥
(

2p+1
p

)
(2p)

rk(XL)

=

(
2p+1
p

)
(2p)(

2p
p

)
> 2m− 4.
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Hence brk(T ) ≥ 2m− 3 as required.

8.4.2 The case d is even

In this case, we set m = 2p+ 1 = d− 1. Let ψL be as in the previous section.
det(ψL) is a polynomial on Kd−1 ⊗Kd ⊗Kd. Take any projection π : Kd → Kd−1,

and let φ = π⊗ id⊗ id : Kd⊗Kd⊗Kd → Kd−1⊗Kd⊗Kd. Let f = φ∗(detψL) be the
pull back of the polynomial det(ψL) under φ.

Corollary 8.4.4. The polynomial f is a non-trivial polynomial that vanishes on tensors of

border rank ≤ 2d− 3.

Proof. The fact that f vanishes on tensors of border rank≤ 2d−3 is by a similar calculation
as in the previous section. The polynomial f does not vanish on the tensor T =

∑m
i=1 ei ⊗

(Si ⊕ Si), and hence is non-trivial.

Remark 8.4.5. The tensor T =
∑m

i=1 ei ⊗ (Si ⊕ Si)has border rank ≥ 2d− 2.
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