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ABSTRACT

Rapid adaptive evolution significantly contributes to the size and severity of sea-

sonal influenza epidemics. While influenza evolution has been well defined at the

global scale, these dynamics ultimately derive from processes that take place within

and between infected individuals. The dynamics of influenza evolution within and

between individual hosts are poorly understood.

In my thesis, I have applied an empirically-validated, next-generation sequenc-

ing approach to over 300 patient-derived samples from two vaccinated cohorts to

define influenza evolution within and between naturally infected individuals. I com-

pared influenza diversity between vaccinated and unvaccinated individuals enrolled in

the FLUVACS study, the last randomized, placebo-controlled trial of influenza vac-

cine efficacy. Phylogenetic analysis of consensus hemagglutinin and neuraminidase

sequences showed no stratification by pre-season HAI and NAI titer, respectively.

Additionally, within-host diversity did not significantly vary with day of sampling,

vaccination status, or pre-season antibody titer. Contrary to what has been suggested

in experimental systems, these data indicate that seasonal influenza vaccination has

little impact on intrahost diversity in natural infections and that vaccine-induced

immunity may be only a minor contributor to antigenic drift at local scales.

In the second study, I used quantitative models to define influenza virus dynam-

ics in individuals enrolled in a prospective, community-based cohort. Sequence data

from 35 serially sampled individuals suggested that within-host populations are dy-

xi



namic and not shaped by antigenic selection. Classical population genetic models

showed these dynamics were consistent with a within-host effective population size of

30-70 and an in vivo mutation rate of 4× 10−5 per nucleotide. Additionally, I char-

acterized the between-host effective transmission bottleneck in 43 epidemiologically

linked and genetically-validated transmission pairs. Maximum likelihood optimiza-

tion of multiple transmission models estimated an effective transmission bottleneck

of 1-2 genomes.

These data suggest that contrary to the global dynamics, positive selection is

inefficient at the level of the individual host. Genetic drift and other stochastic

processes likely dominate the host-level evolution of influenza viruses.
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CHAPTER I

Introduction

Note: The section entitled ‘Genetic bottlenecks in intraspecies virus transmission’ is a modified
version of the published article:

McCrone JT, Lauring AS. 2017. ScienceDirect Genetic bottlenecks in intraspecies virus transmis-
sion. Current Opinion in Virology 28:2025.

Elsevier grants authors full rights to reuse their articles in dissertations.

Overview

Influenza virus causes significant morbidity and mortality worldwide through sea-

sonal epidemics. The rapid evolution of the virus results in decreased drug and

vaccine efficacy, as well as ineffective long-term immunity. Despite a well-developed,

global, surveillance network, accurate forecasting and vaccine strain selection are

difficult. Furthermore, vaccine efficacy remains low even when the vaccine strain

and circulating strain are antigenically similar (Ohmit et al., 2008). The high attack

rates and low vaccine efficacy that characterize influenza epidemics suggest there is

a gap between our understanding of influenza evolution and the forces that influence

infection at the host level. Combating the rapid evolution of influenza virus requires

a full understanding of the evolutionary forces driving the process at all biological

scales.

1
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Influenza virus is an enveloped, negative-sense, RNA virus. Its genome consists of

eight genomic segments that encode for twelve known proteins (Petrova and Russell,

2017). The three largest segments, basic polymerase 2 (PB2), basic polymerase 1

(PB1), and polymerase acidic (PA), encode the heterotrimeric RNA dependent RNA

polymerase that is responsible for replicating the viral genome. PB2 and PA also

encode two accessory proteins PB2-F2 and PA-X. The nucleoprotein (NP) which

coats and organizes the genomic segments is encoded on the NP segment. The

surface proteins hemagglutinin (HA) and neuraminidase (NA) are encoded on their

own segments and are responsible for cell attachment and release. The M segment

encodes two proteins M1 and M2 that act as the viral matrix protein and ion channel

respectively. The nuclear export protein (NEP), which mediates the nuclear export

of genomic complexes and NS2, which interferes with the innate immune response

are encoded on the smallest segment, NS.

The study of influenza evolution has historically focused on hemagglutinin, which

is the primary determinant of antigenicity (Caton et al., 1982; Wiley et al., 1981;

Skehel et al., 1985). The accumulation of mutations in the antigenic epitopes of

HA leads to episodic shifts in virus antigenicity, a process known as antigenic drift

(Koelle et al., 2006). Antigenic mapping approaches have shown positive selection

drives antigenic drift. Over time, circulating viruses have explored novel regions of

antigenic space without returning to previously occupied areas (Smith et al., 2004).

Despite the undeniable role of positive selection at the global scale, phyloge-

netic analysis has shown that very little antigenic drift occurs within a localized

epidemic. Instead, stochastic forces, such as migration of distinct lineages into the

area and within-clade reassortment dominate local evolutionary dynamics (Nelson

et al., 2006). The current model of influenza evolution accounts for the differences
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between scales by partitioning the globe into regions, which play distinct roles in a

source-sink model. Persistently-infected, tropical areas act as the source of antigenic

evolution, while spillover from these regions seeds annual epidemics in more temper-

ate zones (which constitute the sink) (Rambaut et al., 2008; Bedford et al., 2015).

Although the global dynamics of influenza evolution have been well characterized,

the underlying evolutionary forces driving these dynamics are not fully understood.

Mutations that ultimately dominate the global population must first arise within and

transmit between individual hosts. Influenza evolution within and between hosts is

not well understood.

In my thesis, I have used next-generation sequencing of representative, patient-

derived isolates to characterize influenza evolution within and between individuals.

Challenges for using deep sequencing in studies of virus evolution

Advances in next-generation sequencing have revolutionized the study of viral

evolution and population genetics. It is now feasible to efficiently sequence patient

isolates to a sufficient depth of coverage to identify rare mutations present in the

population. Practically speaking, this technological advancement has removed the

need to passage isolates in cell culture prior to sequencing. It is now possible to

explore the dynamics of within-host virus populations directly from patient isolates.

While novel sequencing technologies have ushered in a new era of viral population

genetics, these approaches are not error-free. In addition to sequencing errors, library

preparation includes a number of error-prone reverse-transcription and PCR steps.

These errors are often overlooked in studies of virus evolution and confound the

accurate study of virus populations within human and animal hosts. As technological

advances have rapidly opened the door to new and exciting avenues of research,
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accounting for previously overlooked sources of error has become a rare but vital

part of studying virus evolution in naturally occurring populations.

Error profiles in deep sequencing approaches

Each high-throughput sequencing method has its own short-comings and tenden-

cies. Here, I focus on the Illumina platform as it is commonly used in identifying

low-frequency mutations present in virus populations.

Briefly, Illumina sequencing begins by binding small fragments of cDNA to a

flow cell and amplifying those segments to create small clusters of identical frag-

ments. Each cluster’s sequence is ‘read’ using a ‘sequencing by synthesis’ approach

in which nucleotides containing reversible terminators and flurophores are added in

a step-wise manner. At each step, the identity of the added nucleotide is determined

photographically. The terminator is removed; the next base is added to the nascent

strand, and the cycle repeats (Bentley et al., 2008). This process is highly efficient

and can generate up to 300 million paired-end reads per sequencing lane.

Illumina sequencing has greatly enhanced our ability to sequence virus popula-

tions, but it is not perfect. Error rates can reach as high as 1% in some experimental

set-ups (Schirmer et al., 2015). Additionally, the platform is plagued by biases that

must be accounted for in studies of virus populations. As mentioned above, Illumina

sequencers ‘read’ base calls from images of flow cells. The density and diversity of

such clusters can vary from run to run resulting in variable error rates and batch

effects. Furthermore, sequencing errors are not distributed uniformly across the se-

quencing read or the sample genome. Errors are disproportionately found near the

end of reads (Kircher et al., 2009), in GC rich regions (Dohm et al., 2008), and after

specific sequence epitopes and structures (Nakamura et al., 2011). Importantly, a sig-

nificant proportion of these errors are base substitutions, which are indistinguishable
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from the real single nucleotide variants (SNV) present in the population (Bentley

et al., 2008)

Variant calling approaches

There are many methods to help identify and eliminate sequencing errors from

studies of viral diversity. Bioinformatic and statistical approaches rely on estimates of

sequence quality to identify true SNV from false positive sequencing errors (Flaherty

et al., 2011; Gerstung et al., 2012; Isakov et al., 2015; Wilm et al., 2012; Macalalad

et al., 2012; Koboldt et al., 2009; Watson et al., 2013; Koboldt et al., 2012; Yang et al.,

2013; Gerstung et al., 2014). These approaches are based solely on sequence data and

can be applied to a wide range of datasets regardless of experimental design. They

have been shown to control for erroneous substitutions with a high level of accuracy

when applied to in silico datasets or libraries prepared under favorable conditions.

Varscan and LoFreq are two commonly-used, statistical, variant callers (Koboldt

et al., 2012, 2009; Wilm et al., 2012). Varscan takes a relatively simple approach,

which requires that a putative SNV pass a number of quality thresholds, such as

coverage, frequency, average base quality or Phred score, and position on a read

(Koboldt et al., 2009). Lofreq, which was one of the first variant callers designed to

identify SNV from high-coverage datasets, is slightly more complicated. It uses the

Phred score of a base and a Poisson-binomial model to estimate the probability that

sequencing error alone is responsible for a putative SNV (Wilm et al., 2012). Both of

these methods were validated by comparing the overlap between SNV identified from

two different sequencing runs of the same sample. Neither approach was tested on

its ability to identify variants that were known a priori, nor were they benchmarked

under conditions that mimic those of low-titer, patient-derived, isolates.
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Another class of variant calling approaches aims to identify false positive SNV by

‘tagging’ template nucleic acid before the error-prone steps in library preparation.

The presence of these identifiers provides a mechanism for eliminating errors that

arise during sample preparation as well as sequencing. Three such approaches are

widely used in the field of virus evolution.

Cirseq is a novel method in which template RNA is fragmented and circularized

prior to reverse-transcription PCR and library preparation. In this protocol rolling-

circle reverse transcription creates tandem cDNA repeats of the same template RNA

fragment (Acevedo and Andino, 2014). Any true mutation will exist in all tandem

repeats while RT-PCR, PCR, and sequencing errors are likely to occur only once.

Cirseq has been reported to accurately detect SNV at frequencies as low as 10−5 in

cell culture derived populations of poliovirus (Acevedo et al., 2014). However, its

application to patient-derived isolates is limited by its poor efficiency and the high

quantity of viral RNA required.

Primer ID is another well-known method that uses PCR primers with random

bar-codes to tag nucleotide templates. The added bar-codes allow one to track

the amplification of template strands during PCR. True SNV will be present in

each sequencing read that contains a given bar-code, while errors are likely to be

constrained to a small subset of the reads (Jabara et al., 2011). However, given

the short read-length of the Illumina platform (125-250 bp) is it only possible to tag

small regions of a genome at a time. Therefore, primer ID is an impractical approach

for whole genome sequencing.

Sequence-independent single-primer amplification (SISPA) uses a Klenow reaction

to shear and tag already amplified cDNA with random bar-codes. The approach does

not account for errors that can arise in the first RT-PCR reaction that is often used to
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enrich for viral genomes prior to sequencing, but it does control for errors that may be

propagated during library preparation (Djikeng et al., 2008). SISPA is easily applied

to whole genome sequencing of virus populations and is commonly used in studies

of influenza diversity. Despite its low cost and ease of application, SISPA priming

is biased in unpredictable ways and produces uneven coverage (Rosseel et al., 2013).

The protocol has also been shown to have a much higher error rate than other library

preparation methods (Kugelman et al., 2017b).

It is clear that deeply sequencing RNA virus populations from patient-derived

samples is an error-prone process. Despite the widespread availability and application

of computational and experimental approaches designed to mitigate these errors, the

accuracy of sequencing patient-derived isolates was largely unknown when I began

my thesis. In order to carefully and accurately study the within and between host

dynamics of influenza, I needed to determine the accuracy and limitations of our

sequencing approach. This work and its implications for studies of virus diversity

are the focus of Chapter II.

Influenza Virus evolution within hosts

Like most RNA viruses, influenza replicates through an RNA dependent RNA

polymerase that lacks proof-reading capabilities and has a very high mutation rate

(Sanjuán et al., 2010; Pauly et al., 2017). This high error rate is a major contributing

factor to the high rates of evolution often attributed to RNA viruses (Sanjuán, 2012).

Because of the large number of mutations present in infected hosts, RNA virus

populations exist as mutant swarms sometimes referred to as quasispecies (Lauring

et al., 2013). The diversity of these populations, specifically the availablity of low-

frequency mutations, is thought to be a virulence factor in some systems. (Vignuzzi
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et al., 2006; Pfeiffer and Kirkegaard, 2005). In the case of influenza, the relationship

among within-host diversity, the host immune response, and vaccine failure is largely

unknown.

Since the vast majority of influenza infections are acute and only last about a week,

acquiring representative sample isolates to study within-host dynamics has been

challenging. Much of what is known regarding influenza evolution at the host level

derives from animal models, human challenge experiments, and chronic infections.

Studies of experimental and naturally occurring infections in an equine model of

influenza have shown that within-host populations are diverse, dynamic, and char-

acterized by incomplete purifying selection. Clonal sequencing of longitudinal sam-

ples from experimentally infected horses failed to find any minority mutations that

persisted between time points (Murcia et al., 2013). This rapid turnover of the pop-

ulation is consistent with experimental infections in swine, which showed the rapid

fixation of synonymous mutations during infection (Murcia et al., 2012). However,

such dynamics contradict findings from similar studies in equine models, which have

found that intrahost diversity accumulates over time (Murcia et al., 2010).

Much has been made regarding the presence and transmission of putative antigenic

variants in animal studies (Johnson et al., 2017); however, no robust differences have

been observed between vaccinated and non-vaccinated subjects (Murcia et al., 2012,

2013). Furthermore, the average dN/dS ratios from these studies is around 0.8. The

dN/dS ratio compares the number of nonsynonymous mutations per nonsynonymous

sites with the number of synonymous mutations per synonymous sites. Under neutral

conditions this ratio is expected to be one. A dN/dS below one suggest the population

is under purifying selection. In one study, stop codons were shown to arise within

and transmit between hosts (Murcia et al., 2012). Taken together, these data suggest
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positive selection for novel antigenicity is rare and negative selection is inefficient at

the within-host scale.

Contrary to the qualitative dynamics observed in swine and equine models of

influenza, experimental infections in humans provide examples of selection shaping

within-host populations. In infections with an egg-adapted virus, nonsynonymous

mutations that had accumulated over the course of egg adaptation were rapidly

purged (Sobel Leonard et al., 2016). This finding is consistent with the rapid re-

versions observed in ferrets infected with poorly adapted viruses (Lakdawala et al.,

2015).

A quantitative study of the allele trajectories present in the human challenge

study mentioned above identified four mutations under the influence of selection.

Two of these resulted in nonsynonymous changes in HA and were hypothesized to

be evidence of purifying selection acting to revert egg adaptation (Sobel Leonard

et al., 2017a). Additionally, a similar, more complex, modeling of the longitudinal

swine infections discussed previously (Murcia et al., 2012), estimated nine sites be-

haved according to non-neutral processes. Of these nine mutations, one was located

in an antigenic epitope on HA and seemingly underwent time-dependent selection

(Illingworth et al., 2014). These studies offer a proof of principle, suggesting that

selective pressure can influence influenza evolution in the context of acute infections.

Studies of chronically infected and immunocompromised individuals offer more

evidence of selection shaping within-host populations. Oseltamivir treatment, which

is known to select for drug resistance in cell culture (Foll et al., 2014), has also been

shown to select for resistant variants in chronically infected individuals (Ghedin

et al., 2010). A longitudinal study of 4 chronically infected cancer patients found

evidence of parallel evolution across biological scales (Xue et al., 2017). The same
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nonsynonymous mutations arose independently of one another in distinct individu-

als. Interestingly, these mutations were also enriched in viruses that circulated at the

global level in the years following sample collection. These findings have been inter-

preted to suggest that within-host populations may face similar selective pressures

as global populations.

Despite the clear role of positive selection in global evolutionary dynamics, and its

potential to affect within-host populations, antigenic evolution has not been char-

acterized during representative, naturally-occurring, acute infections. Dinis et al.

(2016) found putative antigenic mutations present in acutely infected individuals,

including some present in the so-called ‘antigenic ridge’, which significantly influ-

ences antigenicity (Koel et al., 2013). However, these mutations were found in a

minority of infections and were present at low frequencies. These data suggest that

although putative antigenic variants may be present in acute infections, they do not

reach fixation or even significantly higher frequencies than other mutations, even

when expected to alter the antigenicity of the virus.

In Chapter III I use samples from a double-blind, placebo-controlled study to

directly characterize the role of vaccination and immune selection in shaping the

within-host population. In Chapter IV, I use longitudinal samples from acute in-

fections to further explore the factors that influence frequency trajectories within

individuals over time.

Genetic bottlenecks in intraspecies virus transmission

As previously discussed, many viral pathogens exist as diverse populations within

infected hosts. The diversity present in this ‘mutant swarm’ provides the raw material

on which selection can act. Although populations within a host may reach as high
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Figure 1.1: The effect of transmission bottlenecks on viral diversity. In a variety of hosts (e.g.
humans, pigs, plant shown here), stringent bottlenecks (top) limit the size and diversity
of a population and drastically alter their composition. The large populations that pass
through loose bottlenecks (bottom) allow for transmission of rare variants. As a result
the diversity of the population in the recipient approximates that of the donor.

as 1014 virions (Russell et al., 2012), viruses are frequently subject to bottleneck

events as they spread within and between hosts (Pfeiffer and Kirkegaard, 2006).

These bottlenecks drastically reduce the size of the population and, consequently, its

genetic diversity.

Because the population that develops after a genetic bottleneck is derived from

a small sample of the ancestral population, this process can dramatically alter the

relative frequency of mutations in the population. The stringency of the transmission

bottleneck plays an important role in linking within-host processes to a pathogen’s

larger evolutionary dynamics. Stringent, or tight, transmission bottlenecks limit

the diversity of the founding population in the recipient and alter the mutational

composition of the population in the recipient relative to that in the donor (Figure

1.1, top). By contrast, if the transmission bottleneck is loose, transmission does

not significantly impact variant frequencies and the composition of the founding
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population in the recipient more closely matches that present in the donor at the

time of transmission (1.1, bottom).

Although transmission bottlenecks play an important role in viral evolution, rel-

atively little is known about their size and determinants. In fact, only one study

had estimated the influenza transmission bottleneck in humans prior to my work in

Chapter IV. Here, I review what is know about transmission bottlenecks across all

viral systems.

Many quantitative studies suggest that bottlenecks are tight (Zwart and Elena,

2015; Gutiérrez et al., 2012); however, there are exceptions and even conflicting

reports for viruses with similar transmission pathways. Importantly, the factors that

determine the stringency of the transmission bottleneck are poorly understood.

Measuring transmission bottlenecks

Transmission bottlenecks are measured by their effect on viral diversity. In exper-

imental systems, within-host diversity can be approximated using a defined popula-

tion of viruses that are tagged with genetic markers. If the markers are selectively

neutral, the number of distinct markers that pass from donor to recipient reflects the

sampling event of the bottleneck as opposed to selection within either host (Figure

1.2A). This technique has been used to qualitatively estimate a stringent bottleneck

for aphid transmission of cucumber mosaic virus (an average of 3 of 12 markers were

transmitted) (Ali et al., 2006) and aerosol transmission of influenza in ferrets and

guinea pigs (2-5 of 100 sequence tags were transmitted) (Varble et al., 2014). In a

particularly elegant experiment, Moury and colleagues artificially inoculated aphid

vectors with mixtures of 2 Potato Y virus mutants prior to feeding the aphids on

pepper plants (Moury et al., 2007). By modeling the number of plants exposed to
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only one of the mutants, Moury et al. found that aphid transmission imposes a

bottleneck of 0.5-3.2 virions on Potato Y virus.

Because natural systems do not offer the opportunity for a bar-coding approach,

early studies characterized the transmission bottleneck qualitatively based on the

degree of shared diversity found within transmission pairs (Figure 1.2B). Clonal

sequencing of influenza virus isolates from swine and equine transmission chains

found transmission pairs shared minority variants (Murcia et al., 2012, 2013; Hughes

et al., 2012). Studies of aphid, mechanical, and vertical transmission of Zucchini

Yellow Mosaic Virus found similar results (Simmons et al., 2012, 2013). These studies

suggest that transmission bottlenecks are sometimes sufficiently loose to allow for the

transmission of low-frequency mutations.

A

B C

Figure 1.2: Measuring transmission bottlenecks. (A) The number of donor-derived, neutral markers
detected in the recipient is an indication of the stringency of the transmission bottleneck.
Here, 3 of the 6 markers were transmitted suggesting a stringent bottleneck. (B) Shared
diversity data from natural systems can be used to estimate a bottleneck. In the
example, only two donor genotypes, denoted with *, were transmitted to the recipient
suggesting a stringent bottleneck. Other de novo mutations arise on these backgrounds
after transmission. (C) Coalescent models allow one to work backward from the time
of sampling and estimate the number of genotypes that could plausibly give rise to the
observed diversity. In this case, the two lineages are traced back to two genetically
distinct variants present at transmission.
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More quantitative approaches can also be employed to estimate the transmission

bottleneck from shared diversity data. In these models, the transmission process is

assumed to be a random sampling of the donor population and individual variants

are assumed to be transmitted independently of one another. The probability that

a variant is transmitted is derived from a binomial distribution and is positively

correlated with its frequency in the donor and the size of the bottleneck. More

complexity can be incorporated into these models to tease apart the relative impact

of within- and between-host processes (Sobel Leonard et al., 2017b). One such model

has been used to estimate a loose bottleneck of roughly 200 genomes in a recent study

of human transmission of influenza virus (Sobel Leonard et al., 2017b; Poon et al.,

2016). This estimate is much larger than that provided by the bar-code experiments

previously discussed. The large discrepancy in these studies highlights the need for

a more complete understanding of the viral, host, and environmental factors that

determine transmission bottleneck sizes.

When only one member of a transmission pair is available, the diversity present

in the infected host can be used to estimate the number of genotypes in the found-

ing population. Coalescent theory works backward in time, tracing the evolutionary

history of the current population back to common ancestors (Kingman, 1982). Co-

alescent models based on the current diversity, the viral evolutionary rate, and the

estimated time of infection can be used to determine how many genotypes were

present in the founding population (Figure 1.2C). Phylogenetic analysis of HIV evo-

lution suggests that most infections derive from small founding populations of only

one genotype (Keele et al., 2008; Edwards et al., 2006). A similar approach has been

used to estimate a stringent transmission bottleneck for HCV (Bull et al., 2011; Ho

et al., 2017; D’Arienzo et al., 2013; Li et al., 2012).
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Determinants of bottleneck size

Most transmission studies suggest tight bottlenecks and small founding popula-

tions (see tables in (Zwart and Elena, 2015) and (Gutiérrez et al., 2012)). However,

as mentioned above, these estimates can vary significantly depending on the virus,

host, route of transmission, and experimental design. Understanding the factors that

determine the size of the transmission bottleneck is vital to interpreting the effect

transmission has on viral evolution. Work in Tobacco etch virus (TEV) suggests

that the size of the bottleneck is dose dependent, with higher exposure doses corre-

sponding to larger founding populations (Zwart et al., 2011). Evidence from mixed

infections of influenza virus in a guinea pig model is consistent with a dose depen-

dence model (Tao et al., 2014). Further support comes from experimental infections

with tagged influenza clones in ferret and guinea pig models, which indicate that

the more limiting exposure dose of aerosol transmission imposes a significantly more

stringent bottleneck than contact transmission (Varble et al., 2014). Additionally,

coinfection by other pathogens, which can limit innate defenses and modulate the

immune response, has been correlated with loose bottlenecks in HIV and HCV (Sagar

et al., 2004; Haaland et al., 2009; Fauteux-Daniel et al., 2017). Taken together these

data suggest that the transmission bottleneck is not constant, but rather a complex

function of viral, host, and environmental factors.

Complicating matters is the observation that segregation of the viral population

within the donor can also restrict the amount of diversity transmitted to the recipient.

Work in animal models of influenza virus suggest that populations in the upper

respiratory tract seed transmission and can be distinct from populations at other sites

of infection (Varble et al., 2014; Lakdawala et al., 2015). The stringent bottleneck

associated with aphid transmission of cucumber mosaic virus (Betancourt et al.,
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2008) is likely the result of extreme viral segregation within the donor. Most plant

cells are infected by only one genotype, and aphids are unlikely to feed on many

donor cells prior to transmission (Takeshita et al., 2004). Other vector-transmitted

viruses undergo an additional bottlenecking event within the vector. Smith et al.

(2008) used fluorescent Venezuelan equine encephalitis virus (VEEV) replicons to

show that an average of 28 midgut cells in the mosquito are initially infected by the

virus. This small population size is consistent with observations of Dengue virus in

infected mosquitoes (Lequime et al., 2016) and likely contributes to the stringent

bottleneck observed during mosquito-mediated transmission of VEEV in a mouse

model (Forrester et al., 2012).

Evolutionary consequences of transmission bottlenecks

Transmission bottlenecks determine the extent to which within-host diversity con-

tributes to evolutionary trends at higher scales. While the relatively high mutation

rates and large population sizes of many viruses may allow these pathogens to rapidly

adapt to their host, the rate of adaptation is not unlimited. In particular, the rate

depends on the effective population size (Rouzine et al., 2001). The effective pop-

ulation size can be roughly thought of as the number of viruses that replicate and

contribute genomes to the next generation. It is usually smaller than the census

population (Charlesworth, 2009). In large effective populations, selection is efficient,

deleterious mutations are purged, and beneficial mutations increase in frequency over

time (Willi et al., 2006). However, alleles in small populations are subject to sam-

pling error known as random genetic drift. Drift introduces noise so that selection

does not efficiently fix beneficial mutations or purge deleterious ones (Robertson,

1960). Stringent transmission bottlenecks reduce the effective population size of vi-
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ral pathogens between hosts, increase genetic drift, and decrease the efficiency of

selection.

Stringent transmission bottlenecks may therefore pose a significant barrier to

adaptive evolution. Because most mutations are deleterious, repeated bottleneck

events fix deleterious mutations and decrease viral fitness over time. This process,

known as Muller’s ratchet, opposes purifying selection and contributes to the delete-

rious load often observed at the tips of viral phylogenetic trees (Pybus et al., 2007;

Koelle and Rasmussen, 2015). Although the fixation of deleterious mutations de-

creases fitness along a single transmission chain, it is unlikely to drastically decrease

a virus’ overall fitness at a global scale. Competition at the interhost level can serve

to maintain viral fitness (Bergstrom et al., 1999; Elena et al., 2001). Notably, pop-

ulations with low fitness are not as susceptible to Muller’s ratchet as well-adapted

populations with high fitness (Novella et al., 2008, 1995).

While transmission bottlenecks are expected to slow adaptive evolution, they may

provide potential advantages to evolving pathogens. Stringent bottlenecks purge

the population of defective interfering particles, which limit viral replication (Visser

et al., 1999). Bottlenecks also increase genetic drift and provide a mechanism for

virus populations to traverse potential fitness valleys and escape local fitness maxima

(Rozen et al., 2008).

The available data suggest that transmission frequently imposes a stringent bot-

tleneck that dramatically reduces the level of diversity in the founding population.

In many cases, however, transmission bottlenecks appear to be sufficiently wide to

transmit minority variants. A more complete understanding of viral transmission

bottlenecks is necessary to link within-host population dynamics to larger evolution-

ary trends.
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In Chapter IV I use samples from transmission pairs enrolled in a large, repre-

sentative, household-based, prospective cohort to define the influenza transmission

bottleneck.



CHAPTER II

Measurements of intrahost viral diversity are extremely
sensitive to systematic errors in variant calling

Note: This chapter is a modified version of the published article:

McCrone JT, Lauring AS. 2016. Measurements of intrahost viral diversity are extremely sensitive
to systematic errors in variant calling. J Virol 90:JVI.00667166895.

The American Society of Microbiology grants all authors full rights to reuse their articles in disser-
tations.

Introduction

Many viral pathogens are thought to exist as a cloud of closely related mutants

within an infected individual (Lauring et al., 2013). Until recently, our understand-

ing of intrahost viral dynamics and the impact of viral diversity on evolution and

pathogenesis have been limited by low-throughput sequencing methods. However,

with the advent of next generation sequencing (NGS), it is now feasible to sequence

patient-derived samples at sufficient read depth to detect rare single nucleotide vari-

ants (SNV). There has been an explosion of studies that employ NGS to quantify

viral diversity within and between hosts (e.g. (Andersen et al., 2015; Grubaugh et al.,

2015; Rogers et al., 2015; Poon et al., 2016; Olp et al., 2015; Kugelman et al., 2015;

Lakdawala et al., 2015; Van Slyke et al., 2015; Cuevas et al., 2015; Gire et al., 2014;

Kundu et al., 2013; Lauck et al., 2012)). Although NGS produces the large quanti-

ties of sequence data needed to detect rare variants, the process is error prone (Lam

19
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et al., 2011; Schirmer et al., 2015; Nakamura et al., 2011), and many bioinformatics

tools do not explicitly address the challenges inherent in studies of patient-derived

viral populations.

A number of sample preparation protocols have been developed to control for

the errors in NGS-based studies of virus populations, but each approach has its

own caveats that ultimately limit its application. Cirseq is an ingenious technique

in which template RNA is sheared and circularized prior to reverse transcription

(Acevedo et al., 2014; Acevedo and Andino, 2014). Subsequent rolling circle cDNA

synthesis produces tandem reads, generating a consensus sequence for each RNA

fragment. While this method is likely to be highly sensitive for rare variant de-

tection and can control for reverse transcription, PCR, and sequencing errors, the

requirement for a large and relatively pure population of viral RNA limits its ap-

plicability to patient-derived samples (Acevedo et al., 2014; Acevedo and Andino,

2014). ”Primer ID” methods require less input and target sequencing to the viral

genome. This approach relies on barcoded primers to construct consensus sequences

for each cDNA template and can control for PCR and sequencing errors (Jabara

et al., 2011; Zhou et al., 2015). Because Primer ID methods require that each bar

code be physically attached to a PCR product, they are most easily applied to small,

targeted regions of the genome. As such, they have limited application in whole

genome sequencing.

Sequence independent single primer amplification (SISPA) is an alternative ap-

proach that allows for whole genome sequencing and controls for errors propagated

during library preparation (Djikeng et al., 2008). In this method RT-PCR products

are sheared and tagged with bar-coded random primers in a Klenow reaction, prior

to library preparation. SISPA controls for any errors that may arise during library
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amplification, including PCR biases. This method has been used in conjunction

with statistical algorithms to control for accuracy in studies of intrahost influenza

diversity (Poon et al., 2016; Nelson et al., 2014; Ghedin et al., 2010). However, the

bar-coding reaction used in SISPA can be biased in unpredictable ways, resulting in

uneven coverage and sensitivity across the genome (Rosseel et al., 2013).

Statistical algorithms have also been developed to distinguish true variants from

sequencing errors (Flaherty et al., 2011; Gerstung et al., 2012; Isakov et al., 2015;

Wilm et al., 2012; Macalalad et al., 2012; Koboldt et al., 2009; Watson et al., 2013;

Koboldt et al., 2012; Yang et al., 2013; Gerstung et al., 2014). These methods rely

solely on sequencing data, and are more easily applied to whole genome sequenc-

ing. In general, variant calling algorithms calculate base-specific error rates using

various metrics including, but not limited to, mapping quality (MapQ), base quality

(Phred), strand bias, and sequence context. True variants are identified as those

with frequencies exceeding the expected error rate according to some predetermined

statistical test. Despite being employed in many NGS-based studies of viral diversity

(e.g. (Rogers et al., 2015; Combe et al., 2015; Beck et al., 2014; Grubaugh et al., 2015;

Kundu et al., 2013) few of these algorithms have been benchmarked using defined

viral populations. To our knowledge, none have been tested under conditions that

mimic those found in patient-derived samples. The accuracy of such algorithms in

the context of NGS studies of patient-derived viral populations is largely unknown.

Here, we use genetically defined populations of influenza A virus with variable

input titers to determine the accuracy of rare variant detection in patient-derived

samples. We highlight the challenges that accompany NGS-based studies of viral

diversity and include a means for improved accuracy. This work exemplifies the
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controls that should be run prior to any NGS-based study of viral populations and

provides a comprehensive data set for benchmarking other pipelines.

Methods

Viruses and cells

Madin-Darby canine kidney (MDCK) cells were provided by Arnold S. Monto

(University of Michigan School of Public Health) and were maintained in Dulbecco’s

Modified Eagle Medium (DMEM, Invitrogen) with 10% fetal bovine serum (Gibco

and HyClone), 25mM HEPES (Invitogen), and 0.1875% bovine serum albumin (Life

Technologies). Influenza A/WSN/33(H1N1) virus was rescued from transfected

cells using the 8 plasmid reverse genetic system containing each genomic segment

(pHW181-188), a kind gift from Robert Webster (St. Jude’s Children’s Research

Hospital) (Hoffmann et al., 2002; Pauly and Lauring, 2015). A biological clone of in-

fluenza A/Puerto Rico/8/1934(H1N1) was obtained from ATCC (VR-1469) and the

genomic segments were cloned into the pHW2000 reverse genetic system (Pauly and

Lauring, 2015). The sequences of these clones were verified using Sanger sequencing.

Patient-derived samples of influenza A virus were collected as part of the House-

hold Influenza Vaccine Effectiveness (HIVE) study (Ohmit et al., 2015; Monto et al.,

2014) and kindly provided by Arnold S. Monto and colleagues at the University

of Michigan School of Public Health. The HIVE study was approved by the In-

stitutional Review Board at the University of Michigan, and all subjects provided

informed consent.

Viral populations

We extracted viral RNA from infected supernatants using QIAamp Viral RNA

kits (Qiagen) and generated cDNA using Superscript III one-step with HiFi platinum
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Taq (Invitrogen). PCR products were purified using the GeneJet PCR Purification

Kit (ThermoFisher Scientific) according to the manufacturer’s instructions.

PR8-WSN33 population

For the experiment in Figure 2.2, WSN33 and PR8 viruses were plaque purified

and passaged three times in MDCK cells. We then verified the sequences of these

viruses by Sanger sequencing. Two microliters of RNA template were used to gen-

erate cDNA in eight segment-specific one-step RT-PCR reactions with 0.2 M of the

following primers :

PB2-Forward-JT (5’-GCAGGTCAATTATATTCAATATGGAAA-3’),

PB2-Reverse-JT (5’-CAAGGTCGTTTTTAAACTATTCGACAC-3’),

PB1-Forward-JT (5’-GCAGGCAAACCATTTGAATGG-3’),

PB1-Reverse-JT (5’-CAAGGCATTTTTTCATGAAGGACAAG-3’),

PA-Forward-JT (GCAGGTACTGATTCAAAATGGAAG-3’),

PA-Reverse-JT (CAAGGTACTTTTTTGGACAGTATGG-3’),

NA-Forward-JT 5’-(GCAGGAGTTTAAATGAATCCAAACC-3’),

NA-Reverse-JT (5’-CAAGGAGTTTTTTGAACAAACTACTTG-3’),

HA-Forward-JT (5’-GCAGGGGAAAATAAAAACAACCAAAAT-3’),

HA-Reverse-JT (5’-CAAGGGTGTTTTTCCTTATATTTCTGAA-3’),

NP-Forward-JT (5’-GCAGGGTAGATAATCACTCACAG-3’),

NP-Reverse-JT (5’-CAAGGGTATTTTTCTTTAATTGTCGTACT-3’),

M-Forward-JT (5’-GCAGGTAGATATTGAAAGATGAGTC-3’),

M-Reverse-JT (5’-CAAGGTAGTTTTTTACTCCAGCTCT-3’),

NS-Forward-JT (5’-GCAGGGTGACAAAGACATAATG-3’),
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NS-Reverse-JT (5’-CAAAGGGTGTTTTTTATTATTAAATAAGCTG-3’).

Reaction conditions were 50°C (60 min), 94°C (2 min), followed by 30 cycles of

94°C (30 sec), 54°C (30 sec), and 68°C (3 min). Molar equivalents of each PCR

product were pooled to generate reconstituted cDNA genomes of both WSN33 and

PR8. The WSN33 cDNA pool was then serially diluted into the PR8 cDNA pool

to yield WSN33-PR8 mixtures in which WSN33 made up 5, 2.5, 1.25, 0.63, and

0.16% of the population. Seven hundred and fifty nanograms of each mixture were

sheared to an average size of 300-400 bp using a Covaris S220 focused ultrasonica-

tor with the following settings: Intensity: 4, Duty cycle: 10%, Burst/second: 200,

Duration: 80 seconds. Sequencing libraries were prepared from these fragmented

products using the NEBNext Ultra DNA library prep kit (NEB), Agencourt AM-

Pure XP beads (Beckman Coulter), and NEBNext multiplex oligonucleotides for

Illumina (NEB). Pooled libraries were sequenced on an Illumina MiSeq machine

with 2 x 250 paired end reads. A clonal plasmid control library was prepared

from 8 plasmids containing PR8 genomic segments. These plasmids were mixed

to equal molarity, and cDNA was generated using a multiplex one step RT-PCR

with the primers Uni12/Inf1 (5’-GGGGGGAGCAAAAGCAGG-3’),Uni12/Inf3 (5’-

GGGGGAGCGAAAGCAGG-3’), and Uni13/Inf1 (5’-5CGGGTTATTAGTAGAAA

CAAGG-3’) as in Hoffmann et al. (2001); Zhou et al. (2009). This library was pre-

pared in identical fashion to the experimental populations and was sequenced in the

same MiSeq lane.
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Experimental intrahost population

Twenty point mutants were generated in the WSN33 background using the pHW-

2000 reverse genetics system (Hoffmann et al., 2002; Visher et al., 2016). In short, we

used overlap PCR mutagenesis to introduce the following mutations: HA T1583G,

HA G1006T, HA G542T, M T861G, M A541C, NA G1168T, NA C454T, NP A454C,

NP A1160T, NS G227T, NS A809G, PA T964G, PA T237A, PA A1358T, PB1

G599A, PB1 G1764T, PB1 T1288A, PB2 A1854G, PB2 A440T, PB2 A1167T. Viruses

were rescued from transfected cells as in Pauly and Lauring (2015).

We passaged the 20 WSN33 point mutants and the WSN33 WT once in MDCK

cells and verified the identity of the mutants by sequencing each on an Illumina MiSeq

as above. We quantified the genome copy number of each supernatant using a Super-

Script III Platinum One-Step RT-qPCR kit (Invitrogen) and universal influenza A/B

primer and probe sets (Center of Disease Control, 2009). Equal genome equivalents

of each infected supernatant were mixed and diluted to generate a population con-

taining each of the 20 mutants present at 5% frequency and a total concentration of

105 genomes per microliter. We diluted this mixture into WT WSN33 supernatant to

create populations in which each mutant was present at 2, 1, 0.5,and 0.2% frequency

all with a total concentration of 105 genomes per microliter. These 5 populations

were diluted serially into basal media to generate samples with total nucleic acid con-

centrations of 104 and 103 genomes per microliter. Viral RNA was extracted from

these samples and cDNA was generated in a one-step multiplex RT-PCR as above.

The WT WSN33 sample (105 genomes per microliter) was processed and sequenced

in duplicate. We prepared libraries as before and used Quanti PicoGreen dsDNA

quantification (ThermoFisher Scientific) to quantify the concentration of each in-

dexed library. We pooled equal quantities (by nanogram) of each indexed library,
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and removed adapter dimers by gel isolation with the GeneJET Gel Extraction Kit

(ThermoFisher Scientific) prior to sequencing an on Illumina HiSeq 2500 with 2 x

125 paired end reads. A clonal control library was processed in an identical fash-

ion starting from an equimolar mix of 8 plasmids containing the WSN33 genomic

segments.

For the analysis in Figure 2.7, we isolated fresh RNA from the 5%, 2%, 1%,

and 0.5% 104 genomes per microliter samples. These samples were processed and

sequenced in duplicate as above.

Sequence analysis

Reads were aligned to either a PR8 or a WSN33 reference sequence using Bowtie2

(Langmead and Salzberg, 2012). Alignments were sorted and PCR duplicates re-

moved using Picard (http://broadinstitute.github.io/picard/). Variants were

called using either DeepSNV (Gerstung et al., 2012) or LoFreq (Wilm et al., 2012) and

filtered using the Pysam module in python (https://github.com/pysam-developers/

pysam) and custom R scripts available for download at https://github.com/lauringlab/

Benchmarking_paper. Bases with a Phred < 30 were masked in the DeepSNV

analysis. We connected all of these steps into an analytical pipeline using bpipe

(Sadedin et al., 2012) which is available for download at https://github.com/

lauringlab/variant_pipeline. To save memory during SNV processing only vari-

ants with p < 0.9 were included in our ROC curve analysis, as the vast major-

ity of true negatives are trivial to identify and have a p=1. For ease of viewing,

and to account for this analytical artifact, we extended the ROC curves horizon-

tally from the last observed change in sensitivity. All raw fastq files were sub-

mitted to the Sequence Read Archive (SRA) under BioProject PRJNA317621, and

all commands required to generate the figures in the manuscript are available for
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anonymous download at https://github.com/lauringlab/Benchmarking_paper.

An interactive Shiny app of our benchmarking work can be downloaded at https:

//github.com/lauringlab/benchmarking_shiny.

Diversity Metrics

The Shannon Entropy (H) of each genomic position was calculated as

H = −
n∑
i=1

xiln(xi)

where xi represents the frequency of the ith allele, and n represents the number of

alleles found at the given position. Since our data does not represent haplotypes, we

report Shannon’s Entropy as the mean across all genomic positions.

The L1-norm (L) between 2 populations was calculated as

L =
n∑
i=1

|pi − qi|

where n represents the union of variants between the two samples and pi and qi

represent the frequencies of the ith variant in each sample respectively.

Results

The ability to reliably identify single nucleotide variants (SNV) is integral to

accurate NGS-based studies of viral diversity. The accuracy of any SNV calling

pipeline can be described in terms of its sensitivity and specificity. Sensitivity is

the proportion of true variants that are properly identified, and specificity is the

proportion of true negatives that are properly identified. In other words sensitivity

measures an assay’s ability to detect true variants present in a viral population;

whereas, specificity is determined by how many false variants (errors of some kind)

are erroneously identified. An assay with perfect accuracy, in which all the true
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variants are found and only true variants are found, has a sensitivity and specificity

of 1.
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Figure 2.1: Example of an ROC curve. (A) Hypothetical variants are stratified by the log of the P
value. P value thresholds are indicated as dashed colored lines. These data are intended
to illustrate the concept and are not based on an actual experiment. (B) An ROC curve
made from the hypothetical data shown in panel A. The dashed colored lines indicate
the points on the curve corresponding to the thresholds in panel A.

There is an obvious trade-off between sensitivity and specificity. Improved sensi-

tivity often requires less stringent criteria in variant calling, but reduces specificity.

Conversely, increased stringency can improve specificity but often reduces sensitivity.

This relationship can be visualized using a receiver operating characteristic (ROC)

curve (Figure 2.1). An ROC curve plots the sensitivity of an assay along the y-axis

and 1-specificity, or the false positive rate, along the x-axis. A variant calling pipeline

must be tested against known data in order to construct an ROC curve. The out-

comes can then be stratified according to a metric that quantifies the probability that
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a given variant is real, often a p-value or quality score. In a controlled benchmarking

experiment, all true variants are known, and the sensitivity and specificity can be

calculated at different cut-offs (Figure 2.1A). These points are then used to construct

the curve (Figure 2.1B). A perfect ROC curve in which all the true positives can be

separated from all false positives is a right angle that follows the upper left perimeter

of the plot.

Initial accuracy

A comprehensive comparison of SNV calling approaches is beyond the scope of this

work. Instead, we robustly benchmark one variant caller, DeepSNV, and highlight

approaches for improving its accurate application to patient-derived populations. In

doing so, we demonstrate the importance of validating any variant calling method

under the experimental conditions to which it is applied. We chose DeepSNV as

our starting point, because at the time, it was the only variant caller that had been

benchmarked on a dataset of known viral variants (Gerstung et al., 2012).

DeepSNV is a variant calling algorithm that uses a clonal, plasmid-derived, control

to estimate local error rates across the genome (Gerstung et al., 2012). Because it

is clonal, the sequence of the control is known with a high degree of confidence, and

any nonconsensus base is indicative of an error in library preparation or sequencing.

Additionally, the control and experimental samples are processed together and are

assumed to have identical noise characteristics, thereby minimizing issues of batch

effect. DeepSNV then applies a hierarchical binomial model at each genomic position

and identifies true variants as those with frequencies significantly above the noise

found in the plasmid control. Like many variant calling algorithms, the accuracy

of DeepSNV was initially determined using samples that required minimal PCR

amplification. However, its accuracy has not been tested when applied to whole
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genome sequencing of a viral population amplified by reverse transcription PCR

(RT-PCR).

In our first benchmarking data set we created defined mixtures of two plaque

purified and expanded influenza strains, WSN33 and PR8. Complementary DNA

from both viruses was mixed serially such that WSN33 cDNA was present at fre-

quencies of 5, 2.5, 1.25, 0.63 and 0.16% (Figure 2.2A). These viruses differ at 491

positions (primer sites used in RT-PCR were excluded from analysis), providing 491

true positives in each dilution. On plasmids subjected to limited PCR, DeepSNV

identified known variants at 0.1% frequency with a sensitivity of 0.860 and speci-

ficity of 1.0 (Gerstung et al., 2012). Under our experimental conditions we found a

reduction in sensitivity (0.851 for variants at 0.63% and 0.173 for variants at 0.16%),

and specificity (0.9980 and 0.9987 for variants at 0.63 % and 0.16% respectively).

We were able to more closely approach the perfect specificity previously reported

for DeepSNV by applying a more stringent p value of 0.01. A minor decrease in

sensitivity accompanied this slightly more stringent p value (Figure 2.2C). We used

this p-value cut-off in all further experiments. The specificity was above 0.9980 in

all dilutions. While this drop in specificity (from 1.0) appears small, it corresponds

to 78 false positives when applied to the more than 39,000 potential variants in the

13,057 bp influenza genome.
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tificial populations with 491 single-nucleotide variants from WSN (relative to PR8) at
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0.01. Freq, frequency; Sens, sensitivity; TP, true positives; FP, false positives.
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An experimental intrahost population

Although the initial benchmarking experiment validated our ability to accurately

detect rare variants in influenza populations, the experiment was run under relatively

artificial conditions. Patient-derived populations are typically less divergent than

WSN33 and PR8 (Ghedin et al., 2010; Rogers et al., 2015; Poon et al., 2016), and

the number of viral genomes in patient-samples is much lower than that found in

cell culture. To mimic patient specific conditions, we generated 20 viral clones,

each with a single point mutation in the WSN33 background. We sequenced stocks

of these mutants on an Illumina MiSeq instrument to account for any additional

mutations that might have arisen between transfection and the passage 1 stock. Four

additional mutations were found above 1% frequency (frequencies 1.2%-3.7%). We

also determined the genome copy number of each stock using quantitative RT-PCR.

We then mixed equal genome equivalents of these 20 viruses, to generate a sample

population with 105 copies per microliter with each mutation present at 5% frequency.

This population was serially diluted into a stock of wild type WSN33, generating

samples with each of the 20 mutations present a 2, 1, 0.5, 0.2, and 0.1% frequency

(Figure 2.3 A). We then serially diluted these populations into basal media to obtain

mixtures with lower nucleic acid input. The range (103-105 copies per microliter)

matches the inputs typically found in many patient-derived influenza virus samples

(Table 2.2 and Figure 3.1). We sequenced these populations on the Illumina HiSeq

platform, and called variants using DeepSNV. We also processed and sequenced the

wild type WSN33 stock in duplicate to control for any mutations in the viral diluent.

The 20 mutations present in our initial viral mixture were the only true positives

considered in our analysis. Four SNV that were present at >1% frequency in either

both duplicates of the wild type stock or any one of the viral clones were masked,
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excluded from the analysis, and considered neither a true positive nor a true negative.

By applying these thresholds we were able to validate our analysis using only variants

identified a priori and avoid the circular logic of validating a variant pipeline using

SNV identified by the same pipeline.

In these populations with lower diversity and input titer, we maintained greater

than 0.85 sensitivity for SNV at 1% frequency or higher. Despite a high depth of

coverage (>10,000 reads per bp), our sensitivity was considerably lower for variants

at or below 0.5% frequency (Figure 2.3B and C). The drop in sensitivity, compared

to the first data set (Figure 2.2), is most likely due to the 1,000-fold decrease in

nucleic acid concentration, and the fact that library preparation requires a number

of sampling steps that may limit detection.

In our initial analysis of these data using the same default DeepSNV settings as

above, the specificity was significantly lower than what was observed in our PR8-

WSN33 populations (mean of 0.9812 with a minimum of 0.9598). These lower input

samples underwent more PCR cycles, which have been shown to skew the error dis-

tributions in the test libraries relative to the plasmid control (Gerstung and Beeren-

winkel, 2015). We were able to partially account for this variation by using an

alternative beta binomial model available in DeepSNV, which more appropriately

fits these conditions. With these settings, the specificity was greater than 0.9900

in all the samples with 105 genomes per microliter (Figure 2.3C). As above, while

0.9900 specificity appears adequate, it results in over 200 false positive variants when

applied to the over 39,000 potential variants in the influenza genome. The false pos-

itives outnumber the true positives by 10-fold in these populations with realistic

diversity and input. We were able to increase our specificity by applying a more

stringent p-value cutoff. However, as shown by the ROC curves in Figure 2.3, this
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move towards the y-axis markedly reduces sensitivity. Our data demonstrate that

with moderate concentrations of input nucleic acid, even statistically significant p-

values from a robust variant caller are not sufficient to accurately separate true from

false positive variants.
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frequencies. (C) Summary of the data in panel B at a P value threshold of 0.01.
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Additional filtering criteria

Many next generation sequencing studies utilize mapping quality (MapQ) and/or

base quality (Phred) thresholds to ensure that only the highest caliber sequencing

data is used to call variants. Mapping quality measures the probability that a given

read is mapped to the correct position in the genome, while base quality estimates

the likelihood that the base call by the sequencer is correct. In the above analysis

we masked bases that had a Phred score less than 30 (0.001 probability of being

incorrect) and did not apply any MapQ cut-offs. In our next analysis, we applied

seemingly stringent cut-offs such as a MapQ of 20 and a Phred of 30 to our data

(Koboldt et al., 2013, 2012; Dietz et al., 2013; Schmitt et al., 2012). These criteria

were unable to distinguish true from false positives in our 105 samples (Figure 2.4A)

and indicate that many false positives occur on well mapped reads with high quality

base calls.

We further parsed our false variant calls by locating them within individual se-

quencing reads. It is well known that sequence quality drops near the end of a read

(Schirmer et al., 2015; Wang et al., 2012), and we found that our false positives clus-

tered at the termini of our paired end reads (Figure 2.4B). The average Phred score

of these false positives was 37.1, further demonstrating that filtering on quality score

alone is insufficient. In contrast, true positives were uniformly distributed across the

reads resulting in an average read position near the middle of the read.

Based on these results, we applied a number of empirically determined cut-offs,

which markedly improved our specificity to >0.9990 without sacrificing sensitivity

(Figure 2.4C and 2.4D). For a variant to be considered in our analysis we required a

mean mapping quality of≥ 30, a mean Phred score of≥ 35, and an average read posi-

tion within the middle 50% of the read. Under these conditions we found 20 or fewer
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false positives in all 5 of the samples. Given this success, we applied a number of other

strategies to further increase our accuracy, including but not limited to Benjamini

Hochberg p-value correction, more stringent p values (< 0.01) or frequency cut-offs

(> 0.2%), retention of duplicate PCR reads, trimming the ends of the influenza

genome, and employing alternative statistical distributions to estimate the error rate

in the control sample. None of these approaches significantly improved our accuracy

over the above quality and read-position criteria. The impact of various filtering

criteria on our data can be visualized in an interactive Shiny application available

for download at https://github.com/lauringlab/benchmarking_shiny.git.

We also benchmarked the accuracy of our DeepSNV pipeline in estimating the

frequency of the true positive variants (Figure 2.5). Although the medians of the

measured frequencies match the expected values, we found substantial spread in each

sample and the overall the fit was modest (R2 = 0.65). The mean percent difference

between the measured frequency and the expected was 41%. This error is likely

due to amplification bias associated with RT-PCR (Zhou et al., 2015) and library

preparation and should be kept in mind when employing downstream analyses that

depend on frequency measurements (e.g. variant fitness, haplotype reconstruction,

Shannon’s Entropy, and other diversity metrics).
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Figure 2.4: Accuracy can be improved through more stringent quality thresholds. (A) All called
variants from the five samples with 105 genomes/µl and P values of 0.01 stratified by
the mean mapping quality of the reads containing the variant and the mean Phred
scores of the variant bases. The dashed lines indicate common cutoffs of 20 and 30
for mapping quality and Phred, respectively. (B) Histogram of average positions on a
paired-end read of the variants that passed our mean MapQ threshold of 30 and mean
Phred threshold of 35. (C) ROC curve measuring the accuracy of our analysis after
applying the following quality cutoffs: mean MapQ score, 30; mean Phred score, 35;
average read position, between 32 and 94 (the middle 50% of the read). (D) Summary
of the data in panel C at a P value threshold of 0.01.
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Relatively low accuracy is not unique to DeepSNV
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Figure 2.6: Accuracy of LoFreq on populations with 105 genomes/µl. (A) Accuracy of LoFreq
using standard parameters. The specificity of LoFreq was scaled to account for the
same number of tests as performed in DeepSNV. (B) Summary of the data in panel A
at a P value threshold of 0.01.

DeepSNV is one of many variant callers that employ a combination of empiric

and statistical approaches to model error rates. We asked whether the decreased

accuracy observed in our dataset was due simply to peculiarities specific to Deep-

SNV. We analyzed our 105 input populations using LoFreq, another variant caller

commonly used in next generation sequencing studies that has been reported to have

perfect specificity (Wilm et al., 2012). Under our experimental conditions, LoFreq

had marginally reduced sensitivity compared to DeepSNV when applied to variant

frequencies ≥ 1.0% but marginally increased sensitivity when applied to variant fre-

quencies < 1.0% (Figure 2.6). The specificity of LoFreq was comparable to what we

observed with DeepSNV in our high-input cell culture-derived populations (Figure
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2.2), and better than DeepSNV in our initial analysis of the 20 mutant populations

(Figure 2.3 prior to Phred, MapQ, and read position filtering). This increased speci-

ficity is most likely due to the fact that the LoFreq algorithm already takes MapQ

and Phred scores into account when calling variants and has a stringent strand bias

filter that removes many of the variants found only at one end of a paired-end read.

Because it does not compare test samples to a plasmid control, it is also more robust

to issues of PCR skewing than DeepSNV. However, even with these additional char-

acteristics, the specificity of LoFreq was lower than our improved DeepSNV pipeline

(compare Figure 2.6 and Figure 2.4), with over 40 false positives per sample. It

appears that higher than expected false positive rates are not specific to DeepSNV

and most likely plague many variant callers applied to patient-derived viral samples.

Accuracy at lower input levels

Host-derived viral populations vary in copy number and titer by several orders

of magnitude (Lau et al., 2013; Teunis et al., 2015; Takeyama et al., 2016). This

variability can be attributed to a variety of factors including, but not limited to:

collection site, ease of nucleic acid isolation, the presence of host nucleic acid, effi-

ciency of library preparation, and host and viral factors. To ensure accuracy across

a range of input levels, we diluted our experimental populations serially into basal

media (Figure 2.3A) and identified variants using our modified DeepSNV analysis

pipeline (Figure 2.7). As expected, our sensitivity was lower in populations with

fewer genomes. For example, a variant at 0.5% frequency in a 104 genomes per

microliter sample is expected to be present on only 700 genomes in the initial RT-

PCR. Many of these will be lost due to bottlenecks in the amplification and library

preparation process. We also found reduced specificity in lower input samples. The

increase in false positives is presumably due to a greater dependence on RT-PCR
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amplification and consequent propagation of errors. These data highlight the impor-

tance of controlling for input levels when comparing diversity across experimental

samples.

In most cases, RT-PCR errors should be sporadic and randomly distributed across

the amplified region. If RT-PCR errors are responsible for the reduced specificity

found at lower input levels, they should be easily identified as variants present in

only one of two RT-PCR reactions performed on the same RNA (Robasky et al.,

2014). To test this hypothesis, we sequenced duplicate RT-PCR reactions of the

5, 2, 1, and 0.5% variant frequency samples from our 104 genomes per microliter

collection. The duplicates were processed separately, but sequenced on the same

lane of an Illumina HiSeq. We applied the stringent quality cut-offs and required

that a given variant be found in both duplicates. By analyzing samples in duplicate,

we reduced the number of false positives in each sample to 10 or fewer resulting in and

a specificity of >0.9998 (Figure 2.8). This increased specificity was not accompanied

by a decreased sensitivity. In fact, we found a slight increase in sensitivity (compared

to Figure 2.4), most likely due to variability in library preparation. Thus, accurate

analysis of low input samples can be achieved through duplicate RT-PCR and careful

benchmarking experiments.
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Figure 2.7: Accuracy of DeepSNV on populations with lower input nucleic acid levels. (A) ROC
curve for the samples with 104 genomes/µl. (B) Summary of the data in panel A at a
P value threshold of 0.01. (C) ROC curve for the samples with 103 genomes/µl. (D)
Summary of the data in panel C at a P value threshold of 0.01.
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Sub-optimal SNV identification confounds diversity measurements

NGS of intrahost populations is commonly used to determine the impact of host

or environmental factors on viral diversity. Because measurements of viral diversity

rely entirely on SNV identified in NGS data, they are very sensitive to the accuracy of

these variant calls. To illustrate this problem, we calculated the diversity of our 105

genomes per microliter samples at each step of our benchmarking process using three

complementary metrics (Table 2.1). Richness is the count of nonconsensus variants

present in a population (often referred to as intrahost SNV). Shannon’s Entropy is a

diversity metric that accounts for both the number of variants present (richness) and

their frequencies (evenness). Because our data are unphased (i.e. no haplotypes), we

have reported the average entropy per nucleotide position (Grubaugh et al., 2015).

The last metric, L1-norm, is a distance measurement that describes how similar two

populations are to one another based on the frequencies of variants present. Iden-

tical populations will have an L1-norm of 0. To mimic experimental conditions, we

included all variants identified in each analysis regardless of whether or not subse-

quent benchmarking distinguished them as true or false positives. We found that the

accuracy of the SNV calling method has a profound effect on measurements of diver-

Table 2.1: Diversity measurements in experimental populations.

Variant Frequencya Diversity Metric Expected Lofreq DeepSNV DeepSNV modified

5% Richness 20 71 269 21
Entropy 2.97E-04 3.35E-04 1.60E-03 2.77E-04
L1-norm 0 0.519 4.006 0.378

1% Richness 20 115 120 39
Entropy 8.37E-05 2.78E-04 3.14E-04 7.30E-05
L1-norm 0 2.702 0.704 0.133

0.5% Richness 20 62 217 12
Entropy 4.71E-05 8.47E-05 1.12E-03 2.10E-05
L1-norm 0 0.196 3.156 0.089

a

Frequency of 20 true positive variants. Only the 105 genomes/µl input libraries were used
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Table 2.2: Diversity measurements in patient-derived samples

Sample ID DPSa Strain Seasonb
Log10 DeepSNV DeepSNV Modified

(genomes/µl) Richness Entropy Richness Entropy

1376 1 A/H1N1 2013-2014 5.3 90 8.70E-04 5 6.04E-05
1401 2 A/H1N1 2013-2014 5.0 110 1.04E-03 22 1.16E-04
1405 3 A/H1N1 2013-2014 4.3 120 1.08E-03 30 1.55E-04
1374 4 A/H1N1 2013-2014 4.6 185 1.25E-03 13 1.05E-04

1227 1 A/H3N2 2012-2013 5.3 79 5.21E-04 8 4.43E-05
1321 1 A/H3N2 2012-2013 4.3 20 2.35E-04 3 1.70E-05
1229 2 A/H3N2 2012-2013 4.6 32 3.34E-04 8 7.07E-05
1245 3 A/H3N2 2012-2013 4.4 197 1.38E-03 3 1.07E-05

a

Days post symptom onset.
b

Influenza season was considered to run from September to May.

sity. It is clear from the richness measurements in Table 2.1 that the number of false

SNV (i.e. the specificity) largely determines the accuracy of the downstream anal-

yses. Thus, our adapted DeepSNV protocol, which was able to distinguish between

true and false SNV with the highest accuracy, gave the most accurate measures of

diversity, followed by LoFreq and the default version of DeepSNV.

To determine the impact of our improved variant calling pipeline on actual host-

derived populations, we applied our approach to 8 patient-derived samples collected

as part of a household-based cohort study of influenza (Ohmit et al., 2015; Monto

et al., 2014) (Table 2.2). The samples were chosen from two influenza seasons and

include H1N1 and H3N2 subtypes over a range of input titer and day of infection

(measured as day post symptom onset). As in our benchmarking data set, the esti-

mated diversity of each sample was greatly reduced when we applied our empirically

determined quality thresholds. The number of intrahost SNV and the Shannon en-

tropy were reduced by up to 10 fold, suggesting the presence of a large number of false

positives in our unmodified pipeline. These data show that validation is necessary

to avoid overestimating the diversity present in patient derived samples.
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Discussion

Robust validation is essential in NGS-based studies of viral diversity. Differences

in experimental design and sample preparation can lead to wide variability in the ac-

curacy of SNV identification. We found that input nucleic acid concentration, which

can vary greatly in patient-derived samples, had a large impact on both the sensitiv-

ity and specificity of rare variant detection. At moderate levels of nucleic acid input

we could improve accuracy by filtering putative SNV based on quality metrics and

read position. We further improved our accuracy at low input levels by processing

these samples in duplicate. While our quality cut-offs may not be universally appli-

cable to all samples and variant callers, our data suggest that experimental design

is critical for accurate SNV detection. These findings are important as few, if any,

variant callers have been benchmarked under patient-derived conditions. Finally, we

showed that inaccuracies in SNV calling drastically impact downstream analysis and

lead to overestimations of intrahost diversity in patient-derived samples.

We initially chose DeepSNV for our studies, because it is one of the few variant

callers that has been validated on viral sequencing reads in which all true positive

variants and their frequencies were known a priori and independent of NGS (Gerstung

et al., 2012). A key strength of our study is that we applied DeepSNV to experimental

populations that more closely mimic the diversity and levels of virus found in patient-

derived samples of influenza virus. At a modest input of 105 genomes per microliter

and default DeepSNV settings, false positives can outnumber true positives by a

factor of 4. It should be noted that our specificity in all cases remained above

0.9900. When applied across an entire influenza genome, a specificity of > 0.9995

is required to reduce false positives to low levels. As above, the decreased accuracy
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of DeepSNV under these conditions is due to small but important differences in our

experimental design compared to what has been previously reported, namely input

nucleic acid concentration and RT-PCR amplification.

Because DeepSNV is somewhat agnostic towards the mapping quality and the

base quality of a given variant, we sought to improve our accuracy by identifying

thresholds that more effectively distinguished true positive SNV. In our data sets,

the distributions of average MapQ and Phred scores of putative SNV were bimodal

with true SNV found in the higher of the two distributions. In the data presented,

these cut-offs include ≥ 98% of the true positive variant calls. Our empirically

determined thresholds were chosen to eliminate putative SNV found in the lower of

the two distributions. These thresholds should be reproducible in our system, as we

have observed consistent MapQ and Phred quality distributions over 300 influenza

libraries and 5 HiSeq runs. We have also seen the same bimodal trend in libraries of

poliovirus populations, but have applied a lower empirically determined MapQ cut-

off to these data. The shift in MapQ is most likely rooted in differences in genomic

structure between the two viruses. While our MapQ and Phred thresholds are robust

in our system, they may need to be adjusted for use in others.

Even in the face of stringent MapQ and Phred cut-offs, we found many high-

quality false positive SNV that were identified only at the termini of paired end

reads. We removed these by filtering putative SNV based on their average position

in a paired end read. These false positives were found almost exclusively in regions

of the genome that were enriched for read start sites. This enrichment may be a

consequence of sequence context, the fragmentation process, or our size selection

protocol. We suggest that there might also be a biological reason for this effect, as

our PCR-amplified plasmid control samples did not exhibit this bias. For example,
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defective interfering particles, which commonly arise during cell passage, contain

truncated genomic segments and would only be present in infected supernatants and

not the plasmid control. We hypothesize that the large deletions in these segments

increase the number of reads that start at certain genomic positions. As the beginning

of reads can also be error prone, this enrichment would result in false positive SNV.

Our analysis was particularly vulnerable to this type of error, because we did not

trim the ends of our reads, and DeepSNV, unlike other variant callers, does not

directly test for strand bias or consider read position as a variable. While it is easy

to diagnose these shortcomings in retrospect, such errors had not been previously

reported for DeepSNV, and were only elucidated through our extensive validation.

While read filtering and trimming are common in NGS data sets (Del Fabbro et al.,

2013; Nielsen et al., 2011; Bolger et al., 2014), we have taken a slightly different

approach in our analysis. In the initial SNV identification step, we masked bases

with Phred < 30 but made no additional restrictions on the raw data. We only

imposed additional quality restrictions after putative SNV - those that exceeded the

expected frequency given the plasmid control - were identified. While our approach

treats variant nucleotides more stringently than consensus base calls, we do not think

that this differential stringency introduces unnecessary bias. Because we identified

specificity as the major problem in accurate SNV identification, stringent filtering of

potential false positives seems appropriate. Furthermore, the vast majority of reads

call a consensus base and our mean quality score thresholds would therefore not be

expected to remove many consensus base calls from the analysis.

Frequency thresholds of 0.1 to 1% represent an additional quality filter that is

applied to SNV after identification (Combe et al., 2015). We did not apply direct

frequency thresholds in our analysis, as we found that arbitrary cut-offs limited
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sensitivity without improving specificity. Read depth, or coverage, is another metric

that can be used in conjunction with frequency to ensure accurate SNV identification.

Although we did not apply a direct coverage cut-off, DeepSNV has been reported

to require coverage of ten times the reciprocal of frequency for sufficient power to

call SNV. For example, a coverage of 1,000x is needed to detect a variant at 1%

frequency. In our analysis, the lowest coverage for a true positive was 1795 reads

(4.8% frequency) while the lowest coverage for a false positive variant was 966 read

(8.5% frequency). If a given data set has variability in read depth across the genome,

SNV at identical frequencies may be detected with differing sensitivity. Under such

conditions, the application of variant frequency or read depth thresholds would lead

to severe ascertainment bias in subsequent analyses of diversity.

Few studies of intrahost diversity quantify or control for the number of genomes in

a sample. This is important, because we found that input copy number is a key factor

in variant detection. Despite high accuracy at 105 genomes per microliter we observed

a decrease in sensitivity in our 103 genomes per microliter samples. More importantly,

this drop in sensitivity was accompanied by reduced specificity. At lower nucleic acid

concentrations, NGS pipelines rely more heavily on RT-PCR amplification, which

tends to propagate errors that are otherwise indistinguishable from true positives in

sequence data. We were able to limit these sporadic and random errors by processing

low input samples in duplicate. Quantifying and controlling for RT-PCR errors in

this way will allow us to accurately compare patient-derived samples that vary over

a range of input.

Many variant callers are benchmarked on simulated data sets, plasmids, or PCR

products, and may not have comparable sensitivity and specificity when applied to

viral samples. Our goal was not to compare the strengths and weaknesses of a few
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algorithms, but rather to highlight how accuracy can be experiment-specific. We rec-

ognize that some variant callers may perform better than DeepSNV, and that others

may be better suited to other systems. However, our work with LoFreq suggests

that all methods have inherent limitations and that understanding these limitations

is essential. We have been able to greatly improve the accuracy of DeepSNV under

our experimental conditions, and we are now equipped with an understanding of the

limitations of our method.

Our study highlights previously under-recognized issues in variant calling and

suggests factors that should be considered in future studies of viral diversity. The

need for target amplification, the structure of the viral genome, and variation in

input genome copy number may lead to errors specific to a given experiment. We

have shown that these seemingly small differences in sensitivity and specificity (e.g.

0.9998 vs. 0.9900) can have profound effects on measurements of viral diversity

in experimental and patient-derived populations. These differences are especially

important in comparative studies of intrahost diversity. We realize that there are

many solutions to the problem of NGS accuracy and have made our data sets and

code available to the community. We hope that this will allow others to benchmark

their own pipelines or to improve on our work. This process should improve the

reliability of NGS in studies of virus evolution and molecular epidemiology.
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Introduction

Despite recommendations for universal influenza vaccination and the ample avail-

ability of vaccines in the United States, influenza continues to cause significant mor-

bidity and mortality (World Health Organization, 2014). This is, in part, a result of

the modest effectiveness of current vaccines, so that considerable numbers of vaccine

failures occur each year. Within individuals, influenza populations exist as a collec-

tion of closely related, and at times antigenically distinct, variants that may exhibit

diverse phenotypes (Ghedin et al., 2009, 2010, 2012; Poon et al., 2016; McCrone and

Lauring, 2016). Intrahost single nucleotide variants (iSNV) can be transmitted as

part of the infecting population (Poon et al., 2016; Murcia et al., 2010; Hughes et al.,

2012; Wilker et al., 2013; Varble et al., 2014) or generated over the course of an in-

fection due to the virus’ low replication fidelity (Parvin et al., 1986; Sanjuán et al.,
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2010). The evolutionary forces that shape the genetic structure of viral populations

within hosts and ultimately give rise to novel antigenic variants at the host popula-

tion level are poorly understood. A clear understanding of the intrahost diversity of

influenza virus populations and its impact on influenza virus evolution is central to

many questions of direct clinical and public health relevance (Holmes, 2009).

Influenza vaccines are considered for reformulation each year to counter the viral

antigenic drift that enables escape from the previous year’s vaccine (Center of Disease

Control, 2016). Annual influenza vaccine effectiveness is 60% on average, and can be

much lower during antigenically unmatched years (Osterholm et al., 2012; Skowron-

ski et al., 2015). While antigenic drift is monitored annually on a global scale, the

source of antigenic variation is ultimately at the level of the individual host. Phylo-

genetic studies of whole genome sequences from cities and smaller communities have

demonstrated that multiple lineages circulate over the course of a single influenza

season (Ghedin et al., 2009; Holmes et al., 2011), and individual hosts may har-

bor mixed infections that include antigenically novel variants (Ghedin et al., 2010,

2012). While human hosts could be preferentially infected with one lineage over an-

other based on pre-infection immune status, the degree to which circulating escape

variants contribute to vaccine failure is currently unknown.

Host immune selection is a major driver of influenza virus evolution on the global

scale. Both phylogenetic analysis and antigenic cartography have demonstrated that

antibodies exert positive selective pressure on the viral hemagglutinin (HA) and neu-

raminidase (NA) proteins (Smith et al., 2004; Nelson and Holmes, 2007). Vaccination

and natural influenza infection often lead to partial, or non-sterilizing immunity, and

post-vaccination antibody titers are only a moderate predictor of subsequent pro-

tection (Ohmit et al., 2011; Tsang et al., 2014). Previous work has demonstrated
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that sub-neutralizing concentrations of immune sera can select for antigenic vari-

ants, and some have argued that vaccination can accelerate the process of antigenic

drift (Archetti and Horsfall, 1950). A recent study in vaccinated people suggested

that novel antigenic variants could be present at low frequencies (Dinis et al., 2016).

Importantly, humans often differ in their prior exposure to influenza viruses and vac-

cines, and pre-existing immunity may confound such studies (Fonville et al., 2014).

Therefore, the extent to which partial immunity selects for antigenically relevant

variants during natural infection in humans is unclear.

By necessity, most of the available data on vaccination and intrahost evolution

have come from analyses of HA sequences in large animal models of infection, includ-

ing horses, pigs, and dogs. These studies have suggested that intrahost populations

include a number of somewhat rare single nucleotide variants that increase and de-

crease in frequency over the course of an infection with sporadic fixation events occur-

ring in some animals. The overall impact of vaccination on antigenic diversification

was not clear (Murcia et al., 2010; Hoelzer et al., 2010; Murcia et al., 2012, 2013),

and there were differences between experimentally and naturally infected animals

(Murcia et al., 2010; Hughes et al., 2012; Murcia et al., 2012). These differences are

also likely to be an issue in extrapolating results from human experimental challenge

models (Killingley et al., 2011).

Some have suggested that high intrahost diversity reflects increased viral fitness,

and mechanisms that alter intrahost diversity may impact evolutionary trajectories

(Vignuzzi et al., 2006; Beck et al., 2014; Lauring et al., 2012). If the transmission

bottleneck is sufficiently wide, low frequency variants that arise within a host can

plausibly be transmitted and spread through host populations (Poon et al., 2016;

Varble et al., 2014). Understanding how intrahost diversity is generated and main-
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tained and the extent to which host immune status impacts this diversity may be

important for defining influenza virus’ larger evolutionary patterns (Dinis et al., 2016;

Murcia et al., 2012, 2013).

Here we used next generation sequencing to define the impact of vaccine-induced

immunity on the intrahost diversity of influenza virus during natural infection. We

specifically asked: (i) whether influenza viruses in vaccinated individuals represent

escape variants, (ii) whether novel antigenic variants are found in hosts with non-

sterilizing immunity, and (iii) the degree to which vaccine-induced immunity impacts

the overall diversity of intrahost populations. Because we analyzed influenza popu-

lations from individuals enrolled in a randomized, double-blind, placebo-controlled

trial of influenza vaccine efficacy (Ohmit et al., 2006, 2008; Monto et al., 2009), we

were uniquely positioned to define this aspect of immunity to natural infection.

Results

Study subjects and specimens

We utilized influenza A RT-PCR-positive throat swab samples from a random-

ized, double-blind, placebo-controlled study of vaccine efficacy that took place during

the 2004-2008 influenza seasons at six study sites in Michigan (Ohmit et al., 2006,

2008; Monto et al., 2009). This trial measured vaccine efficacy of both the trivalent

inactivated (IIV) and live attenuated influenza vaccine (LAIV) compared to placebo

and each other. We sequenced patient-derived influenza populations without cul-

turing from three seasons: 2004-2005, 2005-2006, and 2007-2008. The 2006-2007

influenza season did not have enough influenza-positive samples for our study (total

n=16). Influenza A (H3N2) strains dominated the other three seasons, and the cir-

culating 2004-2005 virus was considered at the time to be only a modest mismatch

with the vaccine strain. The other seasons were antigenically matched. The num-
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bers of subjects each year were as follows: 2004-2005 season, 522 IIV, 519 LAIV,

and 206 placebo (Ohmit et al., 2006); 2005-2006 season, 867 IIV, 853 LAIV, and 338

placebo (Ohmit et al., 2008); 2007-2008 season, 813 IIV, 814 LAIV, and 325 placebo

(Monto et al., 2009). Over these 5119 person-years of observation, 165 individu-

als had culture- or RT-PCR-confirmed influenza A (H3N2) infection and specimens

available for analysis. Of these, 80 individuals had received LAIV, 42 had received

IIV, and 43 had received placebo. For 2004-2005, flu-positive samples were available

for 28 subjects: 7 IIV, 12 LAIV, and 9 placebo, and for 2005-2006, 32 samples were

available to study: 13 IIV, 14 LAIV, and 5 placebo. During the 2007-2008 season,

105 flu-positive samples were available: 22 IIV, 54 LAIV, and 29 placebo. We were

able to amplify and quantify genomes for 119 of the 165 influenza-positive samples

(Table 3.1). The average age of this sequenced cohort from all years was 24.5, in-

dicating that participants were generally young and likely shared similar influenza

pre-exposure histories particularly after randomization. The age, sex, and race of

the cohort were similar to that of the overall study cohort for each of the 3 seasons.

Despite subject randomization, differences in pre-existing immunity due to prior

vaccination or influenza infection could provide a dominant immune background that

is not significantly altered by vaccination against that season’s strain. In the 2007-

2008 season, 50.4% of individuals in the larger cohort and 44.3% in the sequenced

cohort reported having ever received a prior influenza vaccination. To obtain a more

reliable metric of strain-specific immunity, we measured pre-season antibody titers by

hemagglutination inhibition (HAI) and neuraminidase inhibition (NAI) assays for all

study participants against that season’s vaccine strain (Figure 3.6). Vaccine-induced

antibody titers and overall vaccine efficacy are generally stable for a single flu season

(Petrie et al., 2016). Therefore, our pre-season HAI and NAI titers are likely to
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Table 3.1: Samples analyzed over three FLU-VACS Seasons

2004-2005 2005-2006 2007-2008

H3N2 Vaccine Strain Wyoming/3/2003 California/7/2004 Wisconsin/67/2005

Circulating Strain(s) Wyoming/3/2003 California/7/2004 Wisconsin/67/2005
California/7/2004 Wisconsin/67/2005 Brisbane/10/2007

Demographics
Average Age (Years) 30.0 28.8 22.8
Sex (% Female) 71.4% 83.3% 70.1%
Race (% White) 92.9% 94.4% 86.2%

Sequenced Samples 14 18 87
IIV 4 9 16
LAIV 5 6 44
Placebo 5 3 27

Intrahost SNV Data 10 9 64
IIV 3 6 11
LAIV 4 1 30
Placebo 3 2 23

be similar to titers at the time of infection. Pre-season (post-vaccination) titers for

individuals in the IIV group were above the geometric mean for the entire sequenced

cohort, LAIV subjects had titers spanning the mean, and those in the placebo group

were generally below the mean for all seasons. Since an HAI titer of 40 is typically

considered to be associated with 50% protection given exposure (Ohmit et al., 2011;

Tsang et al., 2014; Potter and Oxford, 1979), these data demonstrate that in the

IIV group, and to a lesser degree, the LAIV group, individuals had strain-specific

antibody levels that are sufficient to apply selective pressure against the infecting

virus.

Viral load of sequenced samples

We have previously shown that viral load influences the sensitivity and specificity

of iSNV detection (McCrone and Lauring, 2016). In order to determine whether viral

load was different among the IIV, LAIV, and placebo samples that we sequenced,
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we measured genome copy number by RT-qPCR for the 2004-2005, 2005-2006, and

2007-2008 seasons. For the 2007-2008 season, which had the most samples, there

were no significant differences in copy number by vaccination group (Figure 3.1A).

In agreement with the 2007-2008 data, we did not detect differences in copy number

by vaccination group for the 2004-2005 and 2005-2006 seasons (Figure 3.7). Since

copy number is dependent on time from illness onset (Lee et al., 2009; Tsang et al.,

2015), we analyzed the data based on sample collection day (Figure 3.1B). Using days

2-4, for which there were at least 5 data points for each treatment group, we did not

find any significant differences (p=0.24-0.57 for days 2-4, non-parametric one way

ANOVA). We divided the larger group of 2007-2008 subjects into groups based on

pre-season HAI and NAI titers ≥ 40 or <40 against that season’s strain. This cutoff

was identical to the HAI and NAI geometric mean titers for our sequenced cohort

(61.9 and 34.5, respectively), given the dilutions used. We did not detect differences

in copy number based on HAI or NAI titer (Figure 3.1C-D), even when accounting

for day of symptom onset (p=0.25 for HAI, p=0.97 for NAI, Mann-Whitney U test).

Because we only measured copy number in the subset of virus populations that were

amplified and sequenced, these data should not be interpreted in the context of

vaccination and overall shedding (Petrie et al., 2011).
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Figure 3.1: Viral shedding by vaccination status. Genome copy number per µl of transport media
was determined by RT-qPCR all samples from the 2007-2008 season. (A) Copy number
by vaccination status. IIV, inactivated influenza vaccine; LAIV, live attenuated in-
fluenza vaccine. (B) Copy number by day of infection (onset of symptoms is day 0) and
vaccination status. Circle, IIV; Square, LAIV; Triangle, Placebo. (C) Copy number by
HAI titer (D) Copy number by NAI titer. There were no differences among any of the
groups by one-way ANOVA with Bonferroni correction.

Deep sequencing of intrahost influenza populations

We used the Illumina platform to determine the whole genome consensus sequence

and to identify intrahost single nucleotide variants for each patient-derived sam-

ple. Importantly, we have developed and rigorously benchmarked a variant calling

pipeline that maintains high sensitivity for rare iSNV detection while dramatically

reducing false positive variant calls (McCrone and Lauring, 2016) (Supplementary-

Table 3.3). We have found that the number of false positive iSNV calls is much higher

in samples with genome copy numbers < 103 per µl of transport media; therefore,

we only report iSNV from a high quality dataset that includes 64 samples from the

2007-2008 season. High quality iSNV data for the 2004-2005 and 2005-2006 influenza

seasons are included in Supplementary Figures and Tables. Our libraries yielded an
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average coverage above 20,000 reads per base with even coverage across the coding

region of all segments for each season (Figure 3.8).

HA and NA sequences do not cluster by vaccination status or pre-season antibody
titer

Given the frequent observation of community-level diversity in circulating in-

fluenza viruses (Ghedin et al., 2009; Holmes et al., 2011), we asked whether vac-

cinated individuals were infected with distinct strains relative to the placebo group.

If vaccine failures were due to infection with an antigenically distinct variant, we

would expect to see evidence of clustering by vaccination- or sero-status in HA and

NA phylogenetic trees. We therefore analyzed HA and NA consensus sequences from

all 87 individuals in the 2007-2008 season (Figure 3.2). There was very little diversity

in either gene, and we found that sequences from individuals in each treatment group

(e.g. IIV, LAIV, or placebo) were dispersed throughout the tree. More importantly,

we found no evidence for clustering based on pre-season HAI and NAI titer (by

colors in Figure 3.2, titers indicated at tips). We obtained similar results from the

2004-2005 and 2005-2006 seasons, albeit with fewer sequenced samples (Figure 3.9).

These data suggest that within-season and within-host antigenic drift due to higher

levels of vaccine-induced antibodies (HAI or NAI >40) were not major determinants

of vaccine failure in these seasons.
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Figure 3.2: Phylogenetic trees of HA and NA consensus sequences from the 2007-2008 season. Max-
imum likelihood trees of HA (left) and NA (right) with tips coded by vaccine status
and pre-season HAI (left; blue >40, magenta <40) or NAI (right; blue > 40, magenta
<40) titer. HAI (left) and NAI (right) titers are shown on tips as well. Outgroups are
HA (EU103823.1) and NA (CY114383.1) for the vaccine strain A/Wisconsin/67/2005.
Bootstrap values (n = 1000 bootstraps) are shown and nodes with bootstrap values
<50 are collapsed for easier visualization.

Intrahost diversity in vaccinated and unvaccinated individuals

We next analyzed the iSNVs present in 64 of our samples from the 2007-2008

season. We identified 360 minority variants across the entire genome, most of which

were present at a frequency of <0.1 (Figure 3.3A). We did not observe many samples

with a large number of higher frequency iSNV, which suggests that there were few,

if any, mixed lineage infections in the samples from this season. The vast majority

of iSNV were only found once (Figure 3.3B). We also evaluated whether partial

immunity impacts viral diversity by comparing the number of iSNVs per sample

in the HA and NA genes based on HAI and NAI titers, respectively. We did not
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Figure 3.3: Intrahost diversity in samples from the 2007-2008 season. (A) Histogram of the number
of iSNV at a given frequency. Bin width = 0.01. (B) Histogram of the number of
samples in which each iSNV is found. Arrows indicate bars with one SNV, which are
hard to discern in the histogram. These polymorphic SNV, at PB2 position 900 and
PA position 515 respectively, were found at 4-6% frequency within hosts and in similar
numbers of individuals across vaccination groups. (C) Number of HA iSNV per sample
stratified by pre-season HAI titer. ≥ 40 =serologically immune, <40 = not serologically
immune. (D) Number of NA iSNV per sample stratified by pre-season NAI titer. ≥ 40
= serologically immune, <40 = not serologically immune.

observe a difference in iSNV count based on HAI and NAI titers for either HA or

NA (Figure 3.3C-D, p=0.20 for HA, p=0.26 for NA, Mann Whitney U test; see also

Figure 3.10 for iSNV stratified by titer). The average number of iSNV per sample

was similar across the genome regardless of host treatment group (Table 3.2, p=0.35,

non-parametric one way ANOVA) or HAI and NAI titers (Figure 3.11, p=0.13 for

HAI, p=0.22 for NAI, Mann Whitney U test).



63

Table 3.2: Number of iSNV (mean ± interquartile range) by segment and treatment group for sam-
ples from the 2007-2008 season.

Segment IIV (n=11) LAIV (n=30) Placebo (n=23)

1 (PB2) 1.91 ± (2) 1.50 ± (1) 1.57 ± (1)
2 (PB1) 0.82 ± (1.5) 0.60 ± (1) 0.70 ± (1)
3 (PA) 1.64 ± (1) 1.57 ± (1) 1.65 ± (1)
4 (HA) 0.91 ± (1.5) 0.47 ± (1) 0.61 ± (1)
5 (NP) 0.64 ± (1) 0.27 ± (0) 0.30 ± (0)
6 (NA) 0.27 ± (0.5) 0.23 ± (0) 0.22 ± (0)
7 (M) 0.09 ± (0) 0.27 ± (0) 0.35 ± (1)
8 (NS) 0.36 ± (1) 0.23 ± (0) 0.39 ± (1)

Most iSNV from the 2004-2005 and 2005-2006 seasons were also found in only

one sample each and at frequencies <0.1 (Figure 3.12). The number of iSNV did not

differ based on treatment group or HAI and NAI titer (Supplementary Table 3.4).

We did not identify any variants specifically associated with vaccination group or

HAI and NAI titers for any of the influenza seasons analyzed. Unlike experimental

challenge studies, we only had one sample per person and could not evaluate changes

in diversity at the level of the individual host. However, we did not identify any sig-

nificant differences in diversity by day of infection across the cohort by vaccination

status (Figure 3.4, p=0.16-0.82 for days 2-4, non-parametric one way ANOVA) or

antibody titer. We identified only a marginal difference in the number iSNV across

the genome based on HAI titer on day 2 (uncorrected p-value 0.02 with >6 compar-

isons, Mann Whitney U test). These data suggest that our results are unlikely to be

confounded by temporal sampling issues.
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Figure 3.4: Temporal patterns of intrahost diversity. Number of genome-wide iSNV per sample (y-
axis) by day of symptoms (x-axis) stratified by (A) recipients of IIV, magenta; LAIV,
blue; placebo, white (B) HAI >40, magenta; HAI <40, white (C) NAI ≥ 40, magenta;
NAI <40, white. Mean number of iSNV in each group is indicated (bar).
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Evidence for low antigenic diversity within hosts

Some have suggested that vaccine-induced immunity will select for novel antigenic

variants within hosts (Dinis et al., 2016). We therefore compared iSNV in the HA

gene by vaccination group and serostatus. Of the 17 variants we identified that

resulted in nonsynonymous changes within HA, 11 were in HA1 and 6 were in HA2

(Figure 3.5, Supplementary Table 3.5). Five antigenic sites, comprising 131 amino

acid positions, have been described in HA1 for H3N2 viruses (Caton et al., 1982;

Skehel et al., 1985; Lee and Chen, 2004). Six of the HA1 variants identified in our

study were located in antigenic sites C and D (Figure 3.5B), one of which was found in

two samples (Supplementary Table 3.5). Of these potential antigenic variants, three

were found in vaccinated individuals (1 IIV, 2 LAIV) and four were found in those

in the placebo group. When grouped by HAI titer, four were found in samples from

individuals with titers≥ 40, while three were found in individuals with titers<40. No

variants were specific to vaccinated individuals, and antigenic diversity was similar

across all groups. None of the identified mutations were observed in subsequent

circulating H3N2 strains. There were no nonsynonymous iSNV in HA from the

2004-2005 samples and just 7 identified in individuals from the 2005-2006 season.

Of these 7, N225D was observed in strains dominating prior, but not subsequent

seasons.
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A B

Figure 3.5: Structural mapping of HA variants. A homology model of the A/Brisbane/10/2007
(H3N2) HA trimer is shown, with each monomer represented by a different color (purple,
grey, and teal) and HA1 and HA2 designated by lighter and darker shades of the same
color, respectively. (A) A side view of HA. All identified non-synonymous mutations and
known antigenic amino acid positions are shown as balls on the grey monomer. Those
variants colored red are within known antigenic sites, while light orange mutations are
not. (B) A side and top view of HA. All amino acid positions within known antigenic
sites are displayed as balls, with the antigenic mutations identified here shown in red
on all three monomers.

Discussion

We set out to define the relationship between vaccine-induced immunity and the

intrahost diversity of influenza virus. We hypothesized that non-sterilizing immu-

nity could potentially select for novel antigenic variants and contribute to larger scale

patterns of influenza evolution. We were able to definitively address these questions

using samples derived from a randomized, placebo-controlled vaccine trial in healthy,

young adults who likely had similar prior exposure to influenza viruses (Ohmit et al.,

2006; Monto et al., 2009). The availability of post-vaccination, preseason HAI and

NAI titers allowed us to examine directly the impact of measured serologic antibody

pressure rather than using vaccination alone as a surrogate marker. Because all indi-

viduals were infected naturally, our data provide a rare view of within-host influenza

virus diversity in humans. We directly sequenced the samples without passage in
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cell culture, eliminating the possibility of culture-adapted mutations and employed

a well-benchmarked variant calling pipeline (McCrone and Lauring, 2016) that dra-

matically reduces the false positive iSNV calls that often plague next generation

sequencing studies. In this exhaustive and well-controlled study, we found no differ-

ences in intrahost influenza diversity based on vaccination status or HAI and NAI

titers.

Our findings in a natural infection system are concordant with an equine influenza

virus evolution study in vaccinated horses. Intrahost variation was similar between

nave and vaccinated horses, regardless of whether they were infected naturally or

experimentally (Murcia et al., 2013). However, not all experimental infection studies

mirror results seen during natural infection. A study investigating swine influenza

virus found discrepancies in intrahost variation based on whether animals encoun-

tered natural infection or were experimentally infected (Murcia et al., 2012). Our

data are in contrast with a study of experimentally-infected dogs that uncovered dif-

ferences in intrahost diversity and evolution in antigenic sites based on vaccination

status (Hoelzer et al., 2010). Two other studies of equine influenza virus found mixed

infections of multiple influenza lineages during natural infection, which would not be

seen in an experimental model but may be relevant to the transmission and spread

of novel variants (Murcia et al., 2010; Hughes et al., 2012). Overall, it is challenging

to compare our results to those obtained in various animal models, where the hosts

are often immunologically naive and infected with a defined inoculum of a single

genotype.

We did not detect phylogenetic clustering of HA and NA sequences based on

vaccination status, type of administered vaccine, or pre-season HAI and NAI titers.

These results are consistent with those of Dinis et al., who found no segregation of
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HA sequences based on vaccination status in a case test-negative study of vaccine

effectiveness (Dinis et al., 2016). Together, these data suggest that vaccinated and

unvaccinated individuals are infected with similar strains and that within season

antigenic drift is not a major contributor to reduced vaccine efficacy in the seasons

analyzed. Because we also stratified our analysis by pre-season HAI and NAI titer,

we can similarly exclude viral escape from a non-sterilizing antibody response. Our

data further suggest that pre-existing antibody against circulating strains does not

apply sufficiently strong selective pressure to drive the emergence of antigenically

distinct strains within a given host.

High intrahost diversity may be an important factor in viral evolution, since it

increases the number of novel variants on which natural selection can act. Some have

proposed that the intrahost diversity of RNA viruses is linked to virulence (Vignuzzi

et al., 2006; Beck et al., 2014), suggesting that processes that act to restrict or

enhance intrahost diversity may alter disease phenotypes. We found that within-host

diversity of influenza virus was quite low. Most iSNV were present at frequencies of

less than 0.1, which means they would only plausibly be spread between hosts if the

transmission bottleneck were reasonably large (Poon et al., 2016). The number of

iSNV in a given host was similar between vaccine and placebo groups, both across

the genome and on the segments coding for HA and NA. Furthermore, there were no

significant differences in diversity when samples were grouped by HAI and NAI titer,

and we did not find evidence of treatment-specific iSNV. Together our data suggest

that vaccine-induced immunity does not significantly influence intrahost diversity

and is a relatively weak selective pressure at the level of the individual host.

While the number of iSNV was similar in all groups, we considered it possible that

partial immunity may drive the emergence of specific antigenic variants. Vaccination
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and natural infection can induce a wide range of immune responses depending on host

and viral factors. These can range from complete protection to leaky responses that

allow infection, but influence disease severity or duration. Non-sterilizing immune

responses have the potential to select for escape variants within each host. In the

setting of current recommendations for universal vaccination, a highly vaccinated

population could potentially select for antigenically evolved viruses more quickly

than the spread of natural infection. For this reason, it is important to tease apart

the role of vaccination on influenza evolution. We did find a number of variants in

antigenic sites, but these were no more frequent than in other regions of the genome

and did not vary with vaccination status or HAI and NAI titer. Importantly, our re-

sults are in conflict with earlier work in several model systems that demonstrate the

rapid selection of antigenic variants in the presence of sub-neutralizing antibody or

in experimentally infected animals (Murcia et al., 2012, 2013; GERBER et al., 1955;

Gerber et al., 1956; Hamre et al., 1958). This discrepancy may be due to differences

in infectious dose, host genetic background, history of prior influenza infection, im-

mune correlates not captured by HAI and NAI titers, or the strains tested. Animal

studies are often performed in immunologically naive or genetically identical animals,

whereas humans have complex genetic backgrounds and immunological histories that

could play a role in mediating population-wide immunity.

While global patterns of influenza transmission and evolution are complex, our

study provides important insights regarding influenza evolution on intra- and inter-

host scales. We were able to define aspects of intrahost evolution within a geographically-

constrained and relatively young cohort with similar vaccination histories and previ-

ous influenza exposures across groups, limiting potential confounding factors. Still,

we acknowledge that by reducing these confounders, we may be missing important
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determinants of intrahost evolution. For example, intrahost diversity may be differ-

ent in children, older adults, or those with high-risk conditions. Our study included

5119 person-years of observations to yield a dataset of 165 viruses, 119 of which were

sequenced. Large, placebo-controlled, randomized influenza vaccine trials involving

thousands of people are unlikely to be conducted in the future due to the recom-

mendation for universal vaccination. Therefore, our sample set likely represents the

best chance to directly assess the impact of vaccination on influenza evolution in the

context of natural human infection.

Despite our well-controlled study, we found little evidence for vaccine-driven evo-

lution in the context of the community that was sampled. None of the low frequency

variants identified in the antigenic sites were found in subsequent seasons. While we

cannot rule out the possibility that evolutionary patterns would be different in other

geographic regions, different influenza seasons, or with other subtypes, we did not

uncover differences between vaccinated and unvaccinated populations with respect

to genome-wide or antigenic diversity in three H3N2 seasons. We were not able to

evaluate the impact of vaccination on H1N1 or subtype B viruses. Furthermore,

our sample set cannot discern whether there are differences in evolutionary pressure

based on vaccine match/mismatch, as the vast majority of our samples were from

antigenically matched seasons. A major limitation of our study was that only one

sample was available for each participant, so we could not track changes in diversity

or mutation accumulation within each individual over the course of their infection.

However, we did not observe significant differences in the number of mutations over

the first 6 days of infection, which is consistent with previous work in horses (Murcia

et al., 2013) and a deep sequencing study of 7 humans in an experimental challenge

model (Sobel Leonard et al., 2016). Together with these works, our data suggest
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that within-host dynamics are dominated by purifying selection with the transient

appearance of minority variants and little sustained fixation. Selection and transmis-

sion of antigenically and epidemiologically important variants is likely to be a rare

event when studied at this scale. Given that our data are derived from 165 incident

infections in 5119 season-years of observation, detection of such events in the course

of a natural infection would require an unrealistic sample size.

We evaluated the potential for vaccine-induced immunity to drive intrahost evo-

lution, as this is an important issue in light of the current recommendation for

universal influenza vaccination. We did not find evidence for vaccine-induced pres-

sure on the intrahost or consensus level, despite employing several methods used to

study evolutionary processes. Our study is larger than other reports and involves

extensive analysis of both placebo and vaccination groups. While randomization,

placebo control, and reliance on a young healthy population allowed us to address

this question in a rigorous manner, these factors may have lessened person-to-person

variation. By better defining the intrahost evolutionary mechanisms and how they

impact population-wide influenza evolution, we hope to address questions of import

to clinicians and public health workers, improve vaccine design, and develop more

efficient epidemiological control measures.

Materials and Methods

Ethics Statement

This study was approved by the Institutional Review Board of the University of

Michigan Medical School, and all human subjects provided informed consent.
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Subjects and specimens

We characterized host-derived influenza populations archived from a randomized,

double-blind, placebo-controlled, clinical trial of influenza vaccine efficacy that ran

from the 2004-2005 through the 2007-2008 influenza seasons (ClinicalTrials.gov num-

ber, NCT00133523, (Ohmit et al., 2006, 2008; Monto et al., 2009)). Each year,

healthy adults, ages 18-49, were randomized to receive trivalent inactivated influenza

vaccine (IIV), live attenuated influenza vaccine (LAIV), or placebo. Throat swab

specimens were collected from individuals with influenza-like illness within 7 days of

onset; residual specimen material was stored in veal infusion broth (VIB) at -80C.

Viral RNA was extracted from 140µl of VIB using the QIAamp viral RNA mini kit

(Qiagen 52906), eluted in 50µl buffer, and stored at -80C. Hemagglutination inhi-

bition (HAI) and Neuraminidase agglutination inhibition (NAI) titers for subjects

in this study were previously measured and reported in (Ohmit et al., 2011; Monto

et al., 2015).

Determination of genome copy number

Quantitative reverse transcription polymerase chain reaction (RT-qPCR) was per-

formed on 5µl RNA from each sample using CDC RT-PCR primers InfA Forward,

InfA Reverse, and InfA probe, which bind to a portion of the influenza M gene (CDC

protocol, 28 April 2009). Each reaction contained 5.4µl nuclease-free water, 0.5µl

each primer/probe, 0.5µl SuperScript III RT/Platinum Taq mix (Invitrogen 111732)

12.5µl PCR Master Mix, 0.1µl ROX, 5µl RNA. The PCR master mix was thawed

and stored at 4C, 24 hours before reaction set-up. A standard curve relating copy

number to Ct values was generated based on 10-fold dilutions of a control plasmid

run in duplicate.
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Illumina library preparation and sequencing

We amplified cDNA corresponding to all 8 genomic segments from 3µl of the viral

RNA using the SuperScript III One-Step RT-PCR Platinum Taq HiFi Kit (Invitro-

gen 12574). Reactions consisted of 0.5µl Superscript III Platinum Taq Mix, 12.5µl

2x reaction buffer, 8µl DEPC water, and 0.2µl of 10µM Uni12/Inf1, 0.3µl of 10µM

Uni12/Inf3, and 0.5µl of 10µM Uni13/Inf1 universal influenza A primers (Zhou et al.,

2009). The thermocycler protocol was: 42C for 60 min then 94C for 2 min then 5

cycles of 94C for 30 sec, 44C for 30 sec, 68C for 3 min, then 28 cycles of 94C for

30 sec, 57C for 30 sec, 68C for 3 min. Amplification of all 8 segments was con-

firmed by gel electrophoresis, and 750ng of each cDNA mixture were sheared to an

average size of 300 to 400bp using a Covaris S220 focused ultrasonicator. Sequenc-

ing libraries were prepared using the NEBNext Ultra DNA library prep kit (NEB

E7370L), Agencourt AMPure XP beads (Beckman Coulter A63881), and NEBNext

multiplex oligonucleotides for Illumina (NEB E7600S). The final concentration of

each barcoded library was determined by Quanti PicoGreen dsDNA quantification

(ThermoFisher Scientific), and equal nanomolar concentrations were pooled. Resid-

ual primer dimers were removed by gel isolation of a 300-500bp band, which was

purified using a GeneJet Gel Extraction Kit (ThermoFisher Scientific). Purified li-

brary pools were sequenced on an Illumina HiSeq 2500 with 2x125 nucleotide paired

end reads. All raw sequence data have been deposited at the NCBI sequence read

archive (BioProject submission ID: SUB1907046)

Variant detection

Sequencing reads that passed standard Illumina quality control filters were binned

by index and aligned to the reference genome using Bowtie (Langmead et al., 2009).
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Single nucleotide variants (SNV) were identified and analyzed using DeepSNV (Ger-

stung et al., 2012), which relies on a clonal control to estimate the local error rate

within a given sequence context and to identify strand bias in base calling. The

clonal control was a library prepared in an identical fashion from 8 plasmids contain-

ing the genome for the respective circulating reference strain and sequenced in the

same flow cell to control for batch effects. True positive SNV were identified from

the raw output tables by applying the following filtering criteria in R: (i) Bonferonni

corrected p value <0.01, (ii) average MapQ score on variant reads >30, (iii) average

phred score on variant positions >35, (iv) average position of variant call on a read

>32 and <94, (v) variant frequency >0.01. We only considered SNV identified in a

single RT-PCR reaction and sequencing library for samples with copy number ≥ 105

genomes/µl transport media or in two separate RT-PCR reactions and sequencing

libraries for samples with copy number 103-105 genomes per µl. For variants at a fre-

quency of 50-99%, we called the minority base (i.e. 1-50%) as an iSNV. Our strategy

for variant calling is described in (McCrone and Lauring, 2016) and all code can be

found at https://github.com/lauringlab/variant_pipeline.

Phylogenetic analysis

Consensus nucleotide sequences for the HA and NA proteins were aligned using

MUSCLE (Edgar, 2004). The best-fit models for nucleotide substitution was identi-

fied using jModelTest v2.1.10 (Darriba et al., 2012). Maximum likelihood phyloge-

netic trees were generated using RAxML v8 (Stamatakis, 2014) with a GTRGAMMA

model, Genbank sequences for vaccine strains as outgroups, and 1000 bootstraps.

Trees were visualized and annotated using FigTree (v1.4.2).
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Data analysis and statistics

All statistical analyses were performed using Prism 6 and R. Description of the

analysis and annotated code are available at https://github.com/lauringlab/

fluvacs_paper. HA structural models were generated and visualized with PyMol.

Acknowledgements

We thank Suzanne Ohmit, Ryan Malosh, Emily Toth Martin, and Robert Woods

for helpful discussion. I would like to also acknowledge Kari Debbink who signifi-

cantly contributed to writing this chapter and is listed a co-first author in the pub-

lished version (Debbink et al., 2017).

Supplemental Figures and Tables

IIV LAIV PLACEBO

4

8

16

32

64

128

256

512

1024

2048

H
A

I T
ite

r 
(D

ilu
tio

n
)

A

IIV LAIV PLACEBO

4

8

16

32

64

128

256

512

H
A

I T
ite

r 
(D

ilu
tio

n
)

B

C

IIV LAIV PLACEBO

4

8

16

32

64

128

256

512

1024

2048

4096

H
A

I T
ite

r
(D

ilu
tio

n
)

D

IIV LAIV PLACEBO

5

10

20

40

80

160

320

640

1280

N
A

I T
ite

r
(D

ilu
tio

n
)

Figure 3.6: Pre-season hemagglutination inhibition (HAI, A-C) and neuraminidase inhibition (NAI,
D) titers against that season’s vaccine strain for all individuals in this study. (A) HAI
titers for individuals from the 2004-2005 season. (B) HAI titers for individuals from
the 2005-2006 season. (C) HAI titers for individuals from the 2007-2008 season. (D)
NAI titers for individuals from the 2007-2008 season. IIV, inactivated influenza vaccine;
LAIV, live attenuated influenza vaccine. Dotted line, geometric mean.
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Table 3.3: Variant Detection Specificity and Sensitivity by Copy Number. Sensitivity and speci-
ficity for variant detection in experimental influenza populations with variants of known
frequency and input titer. The benchmarking experiment and data are described in
(McCrone and Lauring, 2016)

Copy Numbera Variant Frequency Sensitivity Specificity

> 105 0.050 1.00 >0.9999
0.020 0.85 0.9999
0.010 0.95 0.9995
0.005 0.35 0.9999

104 − 105 0.050 0.95 0.9999
0.020 0.90 0.9999
0.010 0.80 0.9998
0.005 0.40 0.9999

103 − 104 0.050 0.80 >0.9999
0.020 0.45 0.9999
0.010 0.20 0.9997
0.005 0.10 0.9999

a

Per µl transport media

Table 3.4: Number of iSNV (mean ± interquartile range) by segment and treatment group and HAI
titer

Segment IIV LAIV Placebo HAI > 1:40 HAI <1:40

2004-2005 1 (PB2) 1.67 ± (1.5) 2 ± (0.5) 3.33 ± (0.5) 2 ± (1.25) 4 ± (0)
2 (PB1) 6 ± (8.5) 1 ± (0.5) 0.67 ± (0.5) 2.75 ± (1.25) 1 ± (0)
3 (PA) 6.33 ± (9.5) 0.5 ± (1) 2 ± (1) 2.75 ± (1) 3 ± (0)
4 (HA) 0 ± (0) 0 ± (0) 0 ± (0) 0 ± (0) 0 ± (0)
5 (NP) 0.67 ± (0.5) 0.75 ± (1.25) 1 ± (1) 0.88 ± (1.25) 1 ± (0)
6 (NA) 1.33 ± (0.5) 1 ± (0) 1.67 ± (0.5) 1.12 ± (0) 2 ± (0)
7 (M) 2.67 ± (4) 0 ± (0) 0.33 ± (0.5) 1 ± (0) 1 ± (0)
8 (NS) 0.33 ± (0.5) 0 ± (0) 0 ± (0) 0.12 ± (0) 0 ± (0)

Segment IIV LAIV Placebo HAI > 1:40 HAI < 1:40

2005-2006 1 (PB2) 2.33 ± (0) 4 ± (0) 3 ± (0) 2.33 ± (0) 3.33 ± (0.5)
2 (PB1) 0.83 ± (1) 1 ± (0) 0.5 ± (0.5) 0.83 ± (1) 0.67 ± (0.5)
3 (PA) 0.33 ± (0.75) 5 ± (0) 0.5 ± (0.5) 0.33 ± (0.75) 2 ± (2.5)
4 (HA) 1.67 ± (0.75) 5 ± (0) 0 ± (0) 1.67 ± (0.75) 1.67 ± (2.5)
5 (NP) 0.5 ± (1) 1 ± (0) 2 ± (0) 0.5 ± (1) 1.67 ± (0.5)
6 (NA) 1.5 ± (0) 1 ± (0) 1.5 ± (0.5) 1.5 ± (0) 1.33 ± (0.5)
7 (M) 0.33 ± (0.75) 0 ± (0) 0.5 ± (0.5) 0.33 ± (0.75) 0.33 ± (0.5)
8 (NS) 0.5 ± (0) 0 ± (0) 0.5 ± (0.5) 0.5 ± (0) 0.33 ± (0.5)



77

Table 3.5: Nonsynonymous variants in HA

HA Region Amino Acid Substitution Variant Frequency Vaccination Status Pre-season HAI Titer

HA1 G49S 0.030 Placebo 16
HA1 D53N* 0.012 Placebo 4
HA1 F79L 0.040 Placebo 8
HA1 K208R* 0.016 Placebo 8
HA1 K208R* 0.015 Placebo 4
HA1 I214V* 0.034 Placebo 512
HA1 K238N* 0.029 IIV 1024
HA1 R269K 0.079 LAIV 256
HA1 P273S* 0.014 LAIV 2048
HA1 I274M 0.010 LAIV 16
HA1 I278D* 0.030 LAIV 128
HA1 V323I 0.019 Placebo 512

HA2 A5S 0.017 LAIV 64
HA2 Q27L 0.021 Placebo 4
HA2 S29Y 0.057 IIV 512
HA2 Q65L 0.010 IIV 2048
HA2 A101T 0.028 LAIV 16
HA2 N169H 0.016 IIV 256

* Antigenic sites, as described in text and Figure 3.5
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Figure 3.7: Genome copy number per µl viral transport media (y-axis) as determined by RT-qPCR
for samples from 2004-2005 (left) and 2005-2006 (right) seasons by treatment group.
IIV, inactivated influenza vaccine; LAIV, live attenuated influenza vaccine.
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Stochastic processes dominate the within and between host
evolution of influenza virus
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Introduction

The rapid evolution of influenza viruses has led to reduced vaccine efficacy, wide-

spread drug resistance, and the continuing emergence of novel strains. Broadly

speaking, evolution is the product of deterministic processes, such as selection, and

stochastic processes, such as genetic drift (Kouyos et al., 2006). The relative con-

tribution of each is greatly affected by the effective population size, or size of an

idealized population whose dynamics are similar to that of the population in ques-

tion (Rouzine et al., 2001). If the effective population size of a virus is large, as in

quasispecies models, evolution is largely deterministic and the frequency of a muta-

tion can be predicted based on its starting frequency and selection coefficient. In

small populations, selection is inefficient, and changes in mutation frequency are

strongly influenced by migration or genetic drift.
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Viral dynamics may differ across spatial and temporal scales, and a complete un-

derstanding of influenza evolution requires studies at all levels (Nelson and Holmes,

2007; Holmes, 2009). The global evolution of influenza A virus (IAV) is dominated

by the positive selection of novel antigenic variants that circulate in the tropics and

subsequently seed annual epidemics in the Northern and Southern hemisphere (Ram-

baut et al., 2008). Whole genome sequencing has also demonstrated the importance

of intrasubtype reassortment to the emergence of diverse strains that differ in their

antigenicity. While continual positive selection of antigenically drifted variants drives

global patterns, whole genome sequencing of viruses on more local scales suggests

the importance of stochastic processes such as strain migration and within-clade

reassortment (Nelson et al., 2006).

It is now feasible to efficiently sequence patient-derived isolates at sufficient depth

of coverage to define the diversity and dynamics of virus evolution within individual

hosts (Kao et al., 2014). Studies of IAV populations in animal and human systems

suggest that most intrahost single nucleotide variants (iSNV) are rare and that intra-

host populations are subject to strong purifying selection (Rogers et al., 2015; Murcia

et al., 2010; Iqbal et al., 2009; Dinis et al., 2016; Debbink et al., 2017). While positive

selection of adaptive variants is commonly observed in cell culture (Doud et al., 2017;

Archetti and Horsfall, 1950; Foll et al., 2014), it has only been documented within

human hosts in the extreme cases of drug resistance (Gubareva et al., 2001; Ghedin

et al., 2010; Rogers et al., 2015), long-term infection of immunocompromised hosts

(Xue et al., 2017), or experimental infections with attenuated viruses (Sobel Leonard

et al., 2016). Indeed, we and others have been unable to identify evidence for positive

selection in natural human infections (Debbink et al., 2017; Dinis et al., 2016), and

its relevance to within host processes is unclear.
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Despite limited evidence for positive selection, it is clear that novel mutations

do arise within hosts. Their potential for subsequent spread through host popula-

tions is determined by the size of the transmission bottleneck (Alizon et al., 2011;

Zwart and Elena, 2015). If the transmission bottleneck is sufficiently wide, low fre-

quency variants can plausibly be transmitted and spread through host populations

(Geoghegan et al., 2016). While experimental infections of ferrets suggest a very

narrow transmission bottleneck (Varble et al., 2014; Wilker et al., 2013), studies

of equine influenza support a bottleneck wide enough to allow transmission of rare

iSNV (Hughes et al., 2012; Murcia et al., 2010). The only available genetic study

of influenza virus transmission in humans estimated a large transmission bottleneck,

allowing for transmission of 100-200 genomes (Poon et al., 2016; Sobel Leonard et al.,

2017b).

Here, we use next generation sequencing of within-host influenza virus popula-

tions to elucidate the evolutionary dynamics of influenza A viruses (IAV) within and

between human hosts. We apply a benchmarked analysis pipeline to identify iSNV

and to characterize the genetic diversity of H3N2 and H1N1 populations collected

over five post-pandemic seasons from individuals enrolled in a prospective household

study of influenza. We use these data to estimate the in vivo mutation rate and

the within and between-host effective population size. We find that intrahost pop-

ulations are characterized by purifying selection, a small effective population size,

and limited positive selection. Contrary to what has been previously reported for

human influenza transmission (Poon et al., 2016), but consistent with what has been

observed in other viruses (Zwart and Elena, 2015), we identify a very tight effective

transmission bottleneck that limits the transmission of rare variants.
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Results

We used next generation sequencing to characterize influenza virus populations

collected from individuals enrolled in the Household Influenza Vaccine Effectiveness

(HIVE) study (Monto et al., 2014; Ohmit et al., 2014, 2015, 2016; Petrie et al., 2013),

a community-based cohort that enrolls 213-340 households of 3 or more individuals in

Southeastern Michigan each year (Table 4.1). These households are followed prospec-

tively from October to April, with symptom-triggered collection of nasal and throat

swab specimens for identification of respiratory viruses by RT-PCR (see Methods).

In contrast to case-ascertained studies, which identify households based on an index

case who seeks medical care, the HIVE study identifies symptomatic individuals re-

gardless of illness severity. In the first four seasons of the study (2010-2011 through

2013-2014), respiratory specimens were collected 0-7 days after illness onset. Begin-

ning in the 2014-2015 season, each individual provided two samples, a self-collected

specimen at the time of symptom onset and a clinic-collected specimen obtained 0-7

days later. Each year, 59-69% of individuals had self-reported or confirmed receipt

of that season’s vaccine prior to local circulation of influenza virus.

Over five seasons and nearly 6,290 person-seasons of observation, we identified

77 cases of influenza A/H1N1pdm09 infection and 313 cases of influenza A/H3N2

infection (Table 4.1). Approximately half of the cases (n=166) were identified in the

2014-2015 season, in which there was an antigenic mismatch between the vaccine

and circulating strains (Flannery et al., 2016). All other seasons were antigenically

matched. Individuals within a household were considered an epidemiologically linked

transmission pair if they were both positive for the same subtype of influenza virus
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Table 4.1: Influenza viruses over five seasons in a household cohort
2010-2011 2011-2012 2012-2013 2013-2014 2014-2015

Households 328 213 321 232 340
Participants 1441 943 1426 1049 1431
Vaccinated, n (%)a 934 (65) 554 (59) 942 (66) 722 (69) 992 (69)

IAV Positive Individualsb 86 23 69 48 166
H1N1 26 1 3 47 0
H3N2 58 22 66 1 166

IAV Positive Householdsc

Two individuals 13 5 - 2 2
Three individuals - 9 3 1 7
Four individuals 3 2 23 11 4

High Quality NGS Pairsd 4 1 2 6 39
a

Self reported or confirmed receipt of vaccine prior to the specified season.
b

RT-PCR confirmed infection.
c

Households in which two individuals were positive within 7 days of each other. In cases of
trios and quartets, the putative chains could have no pair with onset >7 days apart.

d

Samples with > 103 genome copies per µl of transport medium, adequate amplification of
all 8 genomic segments, and average sequencing coverage > 103 per nucleotide.

within 7 days of each other. Several households had 3 or 4 symptomatic cases within

this one-week window, suggestive of longer chains of transmission (Table 4.1).
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Within-host populations have low genetic diversity

We processed all specimens for viral load quantification and next generation se-

quencing. Viral load measurements (genome copies per l) were used for quality

control in variant calling, which we have shown is highly sensitive to input titer

(McCrone and Lauring, 2016) (Figure 4.1A). Accordingly, we report data on 249

high quality specimens from 200 individuals, which had a viral load of > 103 copies

per microliter of transport media, adequate RT-PCR amplification of all eight ge-

nomic segments, and an average read coverage of > 103 across the genome (Table

4.1, Supplementary Figure 4.5).

We identified intrahost single nucleotide variants (iSNV) using our empirically

validated analysis pipeline (McCrone and Lauring, 2016). Our approach relies heav-

ily on the variant caller DeepSNV, which uses a clonal plasmid control to distinguish

between true iSNV and errors introduced during sample preparation and/or sequenc-

ing (Gerstung et al., 2012). There were a number of samples that differed from the

plasmid control at the consensus level. DeepSNV is unable to estimate an error

rate for the control or reference base at these positions. We therefore performed an

additional benchmarking experiment to identify a threshold for majority iSNV at

which we could correctly infer whether or not the corresponding minor allele was

also present (see Methods). We found that we could correctly identify a minor allele

at a frequency of ≥ 2% at such sites. We therefore report data on iSNV present at

frequencies between 2 and 98%. As expected, this threshold improved the specificity

of our iSNV identification and decreased our sensitivity to detect variants below 5%

compared to our initial validation experiment (McCrone and Lauring, 2016), which

did not employ a frequency threshold (Supplemental Table 4.3).
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Figure 4.1: Within-host diversity of IAV populations. (A) Boxplots (median, 25th and 75th per-
centiles, whiskers extend to most extreme point within median 1.5 x IQR) of the number
of viral genomes per microliter transport media stratified by day post symptom onset.
Notches represent the approximate 95% confidence interval of the median. (B) Box-
plots (median, 25th and 75th percentiles, whiskers extend to most extreme point within
median 1.5 x IQR) of the number of iSNV in 249 high quality samples stratified by day
post symptom onset. (C) Histogram of within-host iSNV frequency in 249 high quality
samples. Bin width is 0.05 beginning at 0.02. Mutations are colored nonsynonymous
(blue) and synonymous (gold) (D) Location of all identified iSNV in the influenza A
genome. Mutations are colored nonsynonymous (blue) and synonymous (gold) relative
to that sample’s consensus sequence. Triangles signify mutations that were found in
more than one individual in a given season.

Consistent with our previous studies and those of others, we found that the within-

host diversity of human influenza A virus (IAV) populations is low (Dinis et al., 2016;

Debbink et al., 2017; Sobel Leonard et al., 2016; McCrone and Lauring, 2016). Two

hundred forty-three out of the 249 samples had fewer than 10 minority(frequency

below 50%) iSNV (median 2, IQR 1-3). There were 6 samples with greater than

10 minority iSNV. In 3 of these cases, the frequency of iSNVs were tightly dis-

tributed about a mean suggesting that the iSNV were linked and that the samples
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represented mixed infections. Consistent with this hypothesis, putative genomic hap-

lotypes based on these minority iSNV clustered with distinct isolates on phylogenetic

trees (Supplementary Figures 4.6 and 4.7). While viral shedding was well correlated

with days post symptom onset (Figure 4.1A) the number of minority iSNV identified

was not affected by the day of infection, viral load, subtype, or vaccination status

(Figure 4.1B and Supplementary Figure 4.8).

The vast majority of minority variants were rare (frequency 0.02-0.07), and iSNV

were distributed evenly across the genome (Figure 4.1C and 4.1D). The ratio of

nonsynonymous to synonymous variants was 0.64 and was never greater than 1 in any

5% bin, which suggests that within-host populations were under purifying selection.

We also found that minority variants were rarely shared among multiple individuals.

Ninety-five percent of minority iSNV were only found once, 4.7% were found in 2

individuals, and no minority iSNV were found in more than 3 individuals. The

low level of shared diversity suggests that within-host populations were exploring

distinct regions of sequence space with little evidence for parallel evolution. Of the

31 minority iSNV that were found in multiple individuals (triangles in Figure 4.1D),

4 were nonsynonymous.

Although the full range of the H3 antigenic sites have not been functionally de-

fined, it is estimated that 131 of the 329 amino acids in HA1 lie in or near these

sites (Lee and Chen, 2004). We identified 17 minority nonsynonymous iSNV in these

regions (Supplemental Table 4.4). Six of these were in positions that differ among

antigenically drifted viruses (Smith et al., 2004; Wiley et al., 1981), and two (193S

and 189N) lie in the ‘antigenic ridge’, a region that has been identified as a major

determinant of antigenicity (Koel et al., 2013). Three of these have been detected

at the global level as consensus variants since the time of isolation (128A, 193S and
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262N) with two (193S and 262N) seemingly increasing in global frequency (Neher

and Bedford, 2015) (Supplementary Figure 4.9). Additionally, we identified 1 puta-

tive H1N1 antigenic variant (208K in Ca) (Caton et al., 1982; Xu et al., 2010). In

total, putative antigenic variants account for 1.0-2.5% of minority iSNV identified

and were found in 3.5-8.0% of infections. None of these iSNV were shared among

multiple individuals.

Estimation of effective population size

Given the above observations, we hypothesized that within-host populations of

IAV are under purifying selection and that variants that rise to detectable levels

do so by a neutral process as opposed to positive selection. Consistent with this

hypothesis, we found that nonsynonymous and synonymous iSNV exhibited similar

changes in frequency over time in the 35 individuals who provided serial specimens

that contained iSNV (Figure 4.2A and 4.2B). We used a maximum likelihood ap-

proach to estimate the within-host effective population size (Ne) of IAV by fitting

a diffusion approximation of the Wright-Fisher model (Kimura, 1955). This model

assumes that changes in iSNV frequency are due solely to random genetic drift and

not selection, that iSNV are independent of one another, and that the effective pop-

ulation is sufficiently large to justify a continuous approximation to changes in allele

frequency. The diffusion approximation of the Wright-Fisher model assigns prob-

abilities to frequency changes given an Ne and the number of generations between

sample times. In our model we fixed the within host generation time as either 6 or 12

hours (Geoghegan et al. 2016) and report the findings for the 6 hour generation time

below. We then asked what population size makes the observed changes in frequency

most likely (Figure 4.2B). We restricted this analysis to samples taken at least 1 day

apart (n = 29), as there was very little change in iSNV frequency in populations
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Table 4.2: Within-host effective population size of IAV

Model SNV Used Generation Time (h) Effective Population Size (95% CI)

Diffusion approximation All 6 35 (26-46)
All 12 17 (13-23)

Discrete model All 6 32 (28-41)
Nonsynonymous 6 30 (21-40)

Synonymous 6 37 (27-54)
All 12 23 (23-29)

Nonsynonymous 12 19 (19-21)
Synonymous 12 27 (22-33)

sampled twice on the same day (R2 = 0.986, Figure 4.2B and Supplementary Figure

4.10). The concordance of same day samples suggests that our sampling procedure

is reproducible. Maximum likelihood optimization of this diffusion model revealed a

within-host effective population size of 35 (95% CI 26-46, Table 4.2).

The diffusion approximation makes several simplifying assumptions, which if vio-

lated could influence our findings. To ensure our results were robust to the assump-

tion of a large population, we employed a discrete interpretation of the Wright-Fisher

model, which does not assume the population is large enough to justify continuous

allele trajectories (Williamson and Slatkin, 1999). In this case we found an effective

population size of 32 (95% CI 28-41), very close to our original estimate (Table 4.2).

Both models assume complete independence of iSNV. To ensure this assumption

did not affect our results, we fit the discrete model 1000 times, each time randomly

subsetting our data such that only one iSNV per individual was included. This sim-

ulates a situation in which all modeled iSNV are independent and our assumption

is met. Under these conditions we found a median effective population size of 33

(IQR 32-40), demonstrating negligible bias in the initial analysis due to correlation

between iSNV.
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As above, most iSNV in the longitudinal samples were rare (< 10%) and many

became extinct between samplings. To ensure that our models were capable of

accurately estimating the effective population size from such data, we simulated 1000

Wright-Fisher populations with iSNV present at approximately the same starting

frequencies as in our data set and an Ne of 30, 50, or 100. In these simulations,

we found mean Ne of 34, 56 and 117 (Figure 4.2C). These simulations suggest that

although this method may slightly overestimate the Ne, our estimates are not simply

artifacts of the data structure.

To this point, we have assumed that neutral processes are responsible for the

observed changes in iSNV frequency within hosts. Although this assumption seems

justified at least in part by the analysis above, we tested the robustness of our models

by fitting the nonsynonymous (n = 27) and synonymous iSNV (n = 36) separately.

Here, we estimated an effective population size of 30 using the nonsynonymous iSNV

and an effective population size of 37 using the synonymous iSNV (Table 4.2). These

estimates are very close to those derived from the whole dataset and suggest that

nonsynonymous and synonymous mutations are influenced by similar within-host

processes. To further ensure that our results were not driven by a few outliers

subject to strong selection, we ranked iSNV by their change in frequency over time

and consecutively removed iSNV with the most extreme changes. We estimated the

effective population size at each iteration and found that removing the top 50% most

extreme iSNV increased the effective population size to 161 (Figure 4.2D). Therefore,

our estimates are robust to a reasonable number of non-neutral sites. Finally, we also

applied a separate Approximate Bayesian Computational (ABC) method, which uses

a non-biased moment estimator in conjunction with ABC to estimate the effective

population size of a population as well as selection coefficients for the iSNV present
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(Foll et al., 2014). This distinct approach relaxes the previous assumption regarding

neutrality. We applied this analysis to the 16 longitudinal pairs that were sampled

1 day apart and estimated an effective population of 69. We were unable to reject

neutrality for just 7 of the 35 iSNV in this data set (Figure 4.2E). These seven

mutations consisted of 3 nonsynonymous and 4 synonymous mutations and were

split between two individuals. None were putative antigenic variants.



94

B

D

A C

−2 −1 0 1 2 3 4 5 6

Days post symptom onset

E

E
ff
e
c
ti
v
e
 P

o
p
u
la

ti
o
n
 S

iz
e
 (

N
e
)

Input Ne in Simulations

240

200

160

120

80

40

0

30 50 100

−0.2

0.0

0.2

0.4

0 1 2 3 4 6

Time within host (days)

C
h
a
n
g
e
 i
n
 I
S

N
V

 
F

re
q
u
e
n
c
y

Fraction iSNV Removed from Analysis

E
ff
e
c
ti
v
e
 P

o
p
u
la

ti
o
n
 S

iz
e
 (

N
e
)

0

100

200

300

400

500

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

PB1 E172K

PB1 G594 syn

NS1 I171T;NS2 L14 syn

HA S165 syn

Selection coefficient

−0.4 0.0 0.4

HA T203 syn
PB1 P138 syn

NA N161S

Figure 4.2: Within-host dynamics of IAV. (A) Timing of sample collection for 35 paired longitu-
dinal samples relative to day of symptom onset. Of the 49 total, 35 pairs had minor
iSNV present in the first sample. (B) The change in frequency over time for minority
nonsynonymous (blue) and synonymous (gold) iSNV identified for the paired samples
in (A). (C) The distribution of effective population sizes estimated from 1,000 simu-
lated populations. Simulations were run on populations with characteristics similar to
the actual patient-derived populations and with the specified effective population size
(x-axis). (D) The effect of iteratively removing iSNV with the most extreme change
in frequency (fraction of iSNV removed, x-axis) on the estimated effective population
size. The point represents the estimate when all iSNV are included. (E) The posterior
distributions of selection coefficients estimated for the 35 iSNV present in isolates sam-
pled one day apart. Distributions are colored according to class relative to the sample
consensus sequence, nonsynonymous (blue) synonymous (gold). Variants for which the
95% highest posterior density intervals exclude 0.0 are noted in the margin.
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Identification of forty-three transmission pairs

We analyzed virus populations from 85 households with concurrent infections to

quantify the level of shared viral diversity and to estimate the size of the IAV trans-

mission bottleneck (Table 4.1). Because epidemiological linkage does not guarantee

that concurrent cases constitute a transmission pair (Petrie et al., 2017), we used a

stringent rubric to eliminate individuals in a household with co-incident community

acquisition of distinct viruses. We considered all individuals in a household with

symptom onset within a 7-day window to be epidemiologically linked. The donor in

each putative pair was defined as the individual with the earlier onset of symptoms.

We discarded a transmission event if there were multiple possible donors with the

same day of symptom onset. Donor and recipients were not allowed to have symptom

onset on the same day, unless the individuals were both index cases for the household.

In these 6 instances, we analyzed the data for both possible donor-recipient direction-

alities. Based on these criteria, our cohort had 124 putative household transmission

events over 5 seasons (Table 4.1). Of these, 52 pairs had samples of sufficient quality

for reliable identification of iSNV from both individuals.

We next used sequence data to determine which of these 52 epidemiologically

linked pairs represented true household transmission events as opposed to coincident

community-acquired infections. We measured the genetic distance between influenza

populations from each household pair by L1-norm and compared these distances

to those of randomly assigned community pairs within each season (Figure 4.3A,

see also trees in Supplementary Figures 2 and 3). While the L1-norm of a pair

captures differences between the populations at all levels, in our cohort, it was largely

driven by differences at the consensus level. We only considered individuals to be

a true transmission pair if they had a genetic distance below the 5th percentile of
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the community distribution of randomly assigned pairs (Figure 4.3A). Forty-seven

household transmission events met this criterion (Figure 4.3B). Among these 47

sequence-validated transmission pairs, 3 had no iSNV in the donor and 1 additional

donor appeared to have a mixed infection. These four transmission events were

removed from our bottleneck analysis as donors without iSNV are uninformative

and mixed infections violate model assumptions of site independence (see Methods).

We estimated the transmission bottleneck in the remaining 43 high-quality pairs (37

H3N2, 6 H1N1, Figure 4.3B).

A transmission bottleneck restricts the amount of genetic diversity that is shared

by both members of a pair. We found that few minority iSNV were polymorphic in

both the donor and recipient populations (Figure 4.3C). Minority iSNV in the donor

were either absent or fixed in the recipient (top and bottom of plot). The lack of

shared polymorphic sites (which would lie in the middle of the plot in Figure 4.3C)

suggests a stringent effective bottleneck in which only one allele is passed from donor

to recipient.
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Figure 4.3: Between-host dynamics of IAV. (A) The distribution of pairwise L1-norm distances for

household (blue) and randomly-assigned community (gold) pairs. The bar heights are
normalized to the height of the highest bar for each given subset (47 for household,
1,592 for community). The red line represents the 5th percentile of the community
distribution. (B) Timing of symptom onset for 52 epidemiologically linked transmission
pairs. Day of symptom onset for both donor and recipient individuals is indicated by
black dots. Dashed lines represent pairs that were removed due to abnormally high
genetic distance between isolates, see (A). (C) The frequency of donor iSNV in both
donor and recipient samples. Frequencies below 2% and above 98% were set to 0% and
100% respectively. (D) The presence-absence model fit compared with the observed
data. The x-axis represents the frequency of donor iSNV with transmitted iSNV plotted
along the top and nontransmitted iSNV plotted along the bottom. The black line
indicates the probability of transmission for a given iSNV frequency as determined
by logistic regression. Similar fits were calculated for 1,000 simulations with a mean
bottleneck size of 1.66. Fifty percent of simulated outcomes lie in the darkly shaded
region and 95% lie in the lightly shaded regions. (E) The outcome from 1,000 simulated
‘transmission’ events with randomly assigned pairings. The black line represents the
observed data, as in (D) the shaded regions represent the middle 50% and 95% of
simulated outcomes. The results from the simulated logit models were smoothed by
plotting the predicted probability of transmission at 0.02 intervals. (F) The beta-
binomial model fit. Similar to (D) except the simulated outcomes are the based on a
beta-binomial model using a mean bottleneck of 1.73.
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Estimation of the transmission bottleneck

We applied a simple presence-absence model to quantify the effective transmis-

sion bottleneck in our cohort. The presence-absence model considers only whether

or not a donor allele is present or absent in the recipient sample. Under this model,

transmission is a neutral, random sampling process, and the probability of trans-

mission is simply the probability that the iSNV will be included at least once in

the sample given its frequency in the donor and the sample size, or bottleneck. We

estimated a distinct bottleneck for each transmission pair and assumed these bottle-

necks followed a zero-truncated Poisson distribution. This model also assumes that

the sensitivity for detection of transmitted iSNVs is perfect and that each genomic

site is independent of all others. We then used maximum likelihood optimization

to determine the distribution of bottleneck sizes that best fit the data. We found a

zero-truncated Poisson distribution with a mean of 1.66 (lambda = 1.12; 0.51-1.99,

95% CI) best described the data. This distribution indicates that the majority of

bottlenecks are 1, and that very few are greater than 5 (probability 0.2%). There

were no apparent differences between H3N2 and H1N1 pairs. The model fit was eval-

uated by simulating each transmission event 1,000 times. The presence or absence

of each iSNV in the recipient was noted and the probability of transmission given

donor frequency determined. The range of simulated outcomes matched the data

well, which suggests that transmission is a selectively neutral event characterized by

a stringent bottleneck (Figure 4.3D).

The majority of transmitted iSNV were fixed in the recipients. Although this

trend matches the expectation given a small bottleneck, these data could also be

consistent with a model in which the probability of transmission is determined by

the frequency at which iSNV are found at the community level. To ensure our bot-
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tleneck estimates were an outcome of neutral transmission and not an artifact of

the larger community population structure or selection for the community consen-

sus, we created a null model by randomly assigning community ‘recipient-donor’

pairings. Each community ‘recipient’ was drawn from the pool of individuals that

were infected after the ‘donor’ but in the same season and with the same subtype

as the donor. We then identified whether or not each donor iSNV was found in the

community recipient and determined the relationship between ‘donor’ frequency and

probability of ‘transmission’ for 1,000 such simulations. Given the low level of diver-

sity in our cohort, we predicted that rare iSNV would be unlikely to be found in a

random sample, while the major alleles should be fixed in most random pairs. This

trend is clearly demonstrated in Figure 4.3E. It is also clear that this null model fit

the data much more poorly than the presence/absence model, suggesting that the

observed data in our bona fide transmission pairs were not a product of community

metapopulation structure, but rather an outcome of neutral sampling events.

Because our bottleneck estimates were much lower than what has previously been

reported for human influenza (Poon et al., 2016), we investigated the impact that

our simplifying assumptions could have on our results. In particular, the presence-

absence model assumes perfect detection of variants in donor and recipient, and it

can therefore underestimate the size of a bottleneck in the setting of donor-derived

variants that are transmitted but not detected in the recipient. These ‘false negative’

variants can occur when the frequency of an iSNV drifts below the level of detection

(e.g. 2% frequency) or when the sensitivity of sequencing is less than perfect for

variants at that threshold (e.g. 15% sensitivity for variants at a frequency 2-5%).

To determine the impact of sequencing sensitivity and specificity on our bottleneck

estimates, we re-called variants using our original pipeline without the 2% frequency
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cut-off. As shown in Supplemental Table 4.3, this increases the sensitivity of iSNV

detection in the 1-5% frequency range, and also the number of false positive variant

calls (McCrone and Lauring, 2016). This analysis only slightly increased the average

transmission bottleneck to 2.10 (lambda = 1.67; 0.91-2.71, 95% CI), and indicates

that our results are not biased by the added stringency used in the initial analysis

(Supplementary Figures 7A and 7B).

To further investigate the impact of sequencing accuracy on our estimates, we

inferred minor variants in our current pipeline (see above and methods) without a

frequency cutoff. Ultimately, this reduced variant calling to a count method at a

number of positions and greatly increased the number of shared minority iSNV in

our samples (Supplementary Figure 4.11C). Many of these presumed false positive

variant calls were at similar frequencies (0.1-2%) in donor and recipient. As such,

the ‘apparent transmission’ of rare variants drives an inflated estimate of the trans-

mission bottleneck (118, see Supplementary Figure 4.11D). Simulation showed that

this inflated bottleneck no longer fit the trend in the data, likely because the model

is now forced to accommodate shared iSNV that are biased toward sequencing error

as opposed to the actual transmission process.

We also estimated bottleneck size using a beta binomial model, which Leonard et

al. have used to account for the stochastic loss of transmitted variants. This model

allows for a limited amount of time-independent genetic drift within the recipient

(Sobel Leonard et al., 2017b), and we modified it to also account for our bench-

marked sensitivity for rare variants (Supplemental Table 4.3, Current Pipeline). For

all donor-derived iSNV that were absent in the recipient, we estimated the likelihood

that these variants were transmitted but either drifted below our level of detection or

drifted below 10% and were missed by our variant identification. Despite the relaxed
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assumptions provided by this modified beta binomial model, maximum likelihood es-

timation only marginally increased the average bottleneck size (mean 1.73: lambda

1.22; 0.57-2.17, 95%CI) relative to the simpler presence-absence model. We simu-

lated transmission and subsequent random drift using the beta binomial model and

the estimated bottleneck distribution as above (Figure 4.3F). Although the model

matched the data well, the fit was not better than that of the presence-absence model

(AIC 83.0 for beta-binomial compared to 76.7 for the presence-absence model).

The mutation rate of influenza A virus within human hosts

The stringent influenza transmission bottleneck suggests that most infections are

founded by one lineage and develop under essentially clonal processes. The diffusion

approximation to the Wright-Fisher model (see above and Figure 4.2) can be used to

predict the rate at which homogenous populations diversify from a clonal ancestor

as a function of mutation rate and effective population size (Rouzine et al., 2001).

Maximum likelihood optimization of this model suggested an in vivo neutral muta-

tion rate of 4x10−6 mutations per nucleotide per replication cycle and a within-host

effective population size of 36 (given a generation time of 6 hours, Figure 4.4). These

estimates are consistent with those above (Table 4.2). As we have recently estimated

that 13% of mutations in influenza A virus are neutral (Visher et al., 2016), we es-

timated that the true in vivo mutation rate would be approximately 8 fold higher

than our neutral rate on the order of 3 − 4 × 10−5. This in vivo mutation rate is

close to our recently published estimate of influenza A mutation rates in epithelial

cells by fluctuation test (Pauly et al., 2017) and within the range of other estimates

for IAV (Sanjuán et al., 2010).
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Figure 4.4: Combined estimates of within-host mutation rate and effective population size. Contour
plot shows the log likelihood surface for estimates of the effective population size and
neutral mutation rate. The point represents the peak (µ = 4 × 10−6, Ne = 36, log
likelihood = -4,687 ). Log likelihoods for each contour are indicated.

Discussion

We find that seasonal influenza A viruses replicate within and spread among

human hosts with very small effective population sizes. Because we used viruses

collected over five influenza seasons from individuals enrolled in a prospective house-

hold cohort, these dynamics are likely to be broadly representative of many sea-

sonal influenza infections in their natural transmission context. Our results are

further strengthened by the use of a validated sequence analysis pipeline and models

that are robust to the underlying assumptions. The small effective size of intrahost

populations and the tight effective transmission bottleneck suggest that stochastic

processes, such as genetic drift, dominate influenza virus evolution at the level of

individual hosts. This stands in contrast to prominent role of positive selection in

the global evolution of seasonal influenza.

While influenza virus populations are subject to continuous natural selection,

selection is an inefficient driver of evolution in small populations (Rouzine et al.,

2001). Despite a large viral copy number, our findings demonstrate that intrahost

populations of influenza behave like much smaller populations. We therefore expect
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stochastic fluctuations to be the major force driving the fixation of novel variants

within human hosts. This finding contradicts previous studies, which have found

signatures of adaptive evolution in infected hosts (Gubareva et al., 2001; Rogers

et al., 2015; Ghedin et al., 2010; Sobel Leonard et al., 2016). However, these studies

rely on data from infections in which selective pressures are likely to be particularly

strong (e.g. due to drug treatment or infection with a poorly adapted virus), or in

which the virus has been allowed to propagate for extended periods of time (Xue

et al., 2017). Under these conditions, one can identify the action of positive selection

on within-host populations. We suggest that these are important and informative

exceptions to the drift regime defined in our cohort.

We used both a simple presence-absence model and a more complex beta binomial

model to estimate an extremely tight transmission bottleneck. The estimation of a

small bottleneck size is driven by low within-host diversity and very few minority

iSNV shared among individuals in a transmission pair. While our methods for vari-

ant calling may be more conservative than those used in similar studies, we found

that relaxing our variant calling criteria led to the inclusion of false positive variants

that inflated our estimates. Furthermore, the beta binomial model accounts for false

negative iSNV (i.e. variants that are transmitted but not detected in the donor),

which can lead to underestimated transmission bottlenecks (Sobel Leonard et al.,

2017b). Our formulation of this model incorporates empirically determined sensitiv-

ity and specificity metrics to account for both false negative iSNV and false positive

iSNV (McCrone and Lauring, 2016). Finally, if rare, undetected, iSNV were shared

between linked individuals, we would expect to see transmission of more common

iSNV (frequency 5-10%), which we can detect with high sensitivity. In our data, the



104

transmission probability iSNVs > 5% frequency in the donor were also well predicted

by small bottleneck size (Figure 4.3D).

Although the size of our transmission bottleneck is consistent with estimates ob-

tained for other viruses and in experimental animal models of influenza (Zwart and

Elena, 2015; Varble et al., 2014), it differs substantially from the only other study

of bottlenecks in natural human infection (Poon et al., 2016; Sobel Leonard et al.,

2017b). While there are significant differences in the design and demographics of the

cohorts, the influenza seasons under study, and sequencing methodology (Kugelman

et al., 2017a), the bottleneck size estimates are fundamentally driven by the amount

of viral diversity shared among individuals in a household. Importantly, we used

both epidemiologic linkage and the genetic relatedness of viruses in households to

define transmission pairs and to exclude confounding from the observed background

diversity in the community. This stringency is not expected to bias our bottleneck

estimate toward small founding populations. We removed cases in which the genetic

distance between the donor and host is large, and expect this would only bias our

analysis towards loose transmission bottlenecks.

In our analysis, we find that household transmission pairs and randomly assigned

community pairs had distinct patterns of shared consensus and minority variant di-

versity. The comparison to random community pairs is important, as an unexplained

aspect of the work of Poon et al. is that rare iSNV were frequently shared by ran-

domly selected individuals, and more common ones were not (Poon et al., 2016).

Reasons for these shared minority variants could include sequencing artifacts, par-

allel within-host evolution, and a stable and diverse population that is maintained

during transmission. The within-host data described in my study suggests that
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these shared variants could sequencing artifacts; however, a more mechanistic study

influenza transmission is needed to definitely rule out other possibilities.

Our estimates of IAV population dynamics are consistent across three separate

models and partitions of the data. We jointly estimated the in vivo mutation rate

and effective population size based on the frequency distribution of minor alleles

observed in the entire cohort. This model assumed a small transmission bottleneck,

produced a mutation rate that is consistent with previous estimates, and indepen-

dently reproduced the within-host population size estimate. Given the concordance

among these distinct approaches, it is unlikely that our findings are biased by hidden

assumptions or model limitations.

Accurately modeling and predicting influenza virus evolution requires a thorough

understanding of the virus’ population structure. Some models have assumed a large

intrahost population and a relatively loose transmission bottleneck (Geoghegan et al.,

2016; Russell et al., 2012; Peck et al., 2015). Here, adaptive iSNV can rapidly rise

in frequency and low frequency variants can have a high probability of transmission.

In such a model, it would be possible for the highly pathogenic H5N1 virus to de-

velop the requisite 4-5 mutations to become transmissible through aerosols during

a single acute infection of a human host (Herfst et al., 2012; Russell et al., 2012).

Although the dynamics of emergent avian influenza and human adapted seasonal

viruses likely differ (Petrova and Russell, 2017), our work suggests that fixation of

multiple mutations over the course of a single acute infection is unlikely.

While it may seem counterintuitive that influenza evolution is dominated by drift

on local scales and positive selection on global scales, these models are certainly

not in conflict. Within individuals we have shown that the effective population is

quite small, which suggests that selection is inefficient. Indeed, we have deeply se-
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quenced 332 intrahost populations from 283 individuals collected over more than

11,000 person-seasons of observation and only identified a handful of minority anti-

genic variants with little evidence for positive selection (this work and (Debbink

et al., 2017)). However, with several million infected individuals each year, even

inefficient processes and rare events are likely to happen at a reasonable frequency

on a global scale.

Methods

Description of the cohort

The HIVE cohort (Monto et al., 2014; Ohmit et al., 2014, 2015, 2016; Petrie

et al., 2013), established at the UM School of Public Health in 2010, enrolled and

followed households of at least 3 individuals with at least two children <18 years of

age; households were then followed prospectively throughout the year for ascertain-

ment of acute respiratory illnesses. Study participants were queried weekly about

the onset of illnesses meeting our standard case definition (two or more of: cough,

fever/feverishness, nasal congestion, sore throat, body aches, chills, headache if >3

yrs old; cough, fever/feverishness, nasal congestion/runny nose, trouble breathing,

fussiness/irritability, decreased appetite, fatigue in <3 yrs old), and the symptomatic

participants then attended a study visit at the research clinic on site at UM School of

Public Health for sample collection. For the 2010-2011 through 2013-2014 seasons,

a combined nasal and throat swab (or nasal swab only in children < 3 years of age)

was collected at the onsite research clinic by the study team. Beginning with the

2014-2015 seasons, respiratory samples were collected at two time points in each par-

ticipant meeting the case definition; the first collection was a self- or parent-collected

nasal swab collected at illness onset. Subsequently, a combined nasal and throat

swab (or nasal swab only in children < 3 years of age) was collected at the onsite
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research clinic by the study team. Families with very young children (< 3 years of

age) were followed using home visits by a trained medical assistant.

Active illness surveillance and sample collection for cases were conducted October

through May and fully captured the influenza season in Southeast Michigan in each

of the study years. Data on participant, family and household characteristics, and

on high-risk conditions were additionally collected by annual interview and review of

each participant’s electronic medical record. In the current cohort, serum specimens

were also collected twice yearly during fall (November-December) and spring (May-

June) for serologic testing for antibodies against influenza.

This study was approved by the Institutional Review Board of the University of

Michigan Medical School, and all human subjects provided informed consent.

Identification of influenza virus

Respiratory specimens were processed daily to determine laboratory-confirmed

influenza infection. Viral RNA was extracted (Qiagen QIAamp Viral RNA Mini Kit)

and tested by RT-PCR for universal detection of influenza A and B. Samples with

positive results by the universal assay were then subtyped to determine A(H3N2),

A(H1N1), A(pH1N1) subtypes and B(Yamagata) and B(Victoria) lineages. We used

primers, probes and amplification parameters developed by the Centers for Disease

Control and Prevention Influenza Division for use on the ABI 7500 Fast Real-Time

PCR System platform. An RNAseP detection step was run for each specimen to

confirm specimen quality and successful RNA extraction.

Quantification of viral load

Quantitative reverse transcription polymerase chain reaction (RT-qPCR) was per-

formed on 5µl RNA from each sample using CDC RT-PCR primers InfA Forward,



108

InfA Reverse, and InfA probe, which bind to a portion of the influenza M gene (CDC

protocol, 28 April 2009). Each reaction contained 5.4µl nuclease-free water, 0.5µl

each primer/probe,0.5µl SuperScript III RT/Platinum Taq mix (Invitrogen 111732)

12.5µl PCR Master Mix, 0.1µl ROX, 5µl RNA. The PCR master mix was thawed

and stored at 4C, 24 hours before reaction set-up. A standard curve relating copy

number to Ct value was generated based on 10-fold dilutions of a control plasmid

run in duplicate.

Illumina library preparation and sequencing

We amplified cDNA corresponding to all 8 genomic segments from 5µl of viral

RNA using the SuperScript III One-Step RT-PCR Platinum Taq HiFi Kit (Invitro-

gen 12574). Reactions consisted of 0.5µl Superscript III Platinum Taq Mix, 12.5µl

2x reaction buffer, 6µl DEPC water, and 0.2µl of 10µM Uni12/Inf1, 0.3µl of 10µM

Uni12/Inf3, and 0.5µl of 10µM Uni13/Inf1 universal influenza A primers (Zhou et al.,

2009). The thermocycler protocol was: 42°C for 60 min then 94°C for 2 min then

5 cycles of 94°C for 30 sec, 44°C for 30 sec, 68°C for 3 min, then 28 cycles of 94°C

for 30 sec, 57°C for 30 sec, 68°C for 3 min. Amplification of all 8 segments was con-

firmed by gel electrophoresis, and 750ng of each cDNA mixture were sheared to an

average size of 300 to 400bp using a Covaris S220 focused ultrasonicator. Sequenc-

ing libraries were prepared using the NEBNext Ultra DNA library prep kit (NEB

E7370L), Agencourt AMPure XP beads (Beckman Coulter A63881), and NEBNext

multiplex oligonucleotides for Illumina (NEB E7600S). The final concentration of

each barcoded library was determined by Quanti PicoGreen dsDNA quantification

(ThermoFisher Scientific), and equal nanomolar concentrations were pooled. Resid-

ual primer dimers were removed by gel isolation of a 300-500bp band, which was

purified using a GeneJet Gel Extraction Kit (ThermoFisher Scientific). Purified li-
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brary pools were sequenced on an Illumina HiSeq 2500 with 2x125 nucleotide paired

end reads. All raw sequence data have been deposited at the NCBI sequence read

archive (BioProject submission ID: SUB2951236). PCR amplicons derived from an

equimolar mixture of eight clonal plasmids, each containing a genomic segment of

the circulating strain were processed in similar fashion and sequenced on the same

HiSeq flow cell as the appropriate patient derived samples. These clonally derived

samples served as internal controls to improve the accuracy of variant identification

and control for batch effects that confound sequencing experiments.

Identification of iSNV

Intrahost single nucleotide variants were identified in samples that had greater

than 103 genomes/µl and an average coverage >1000x across the genome. Vari-

ants were identified using DeepSNV and scripts available at https://github.com/

lauringlab/variant_pipeline as described previously i(McCrone and Lauring,

2016) with a few minor and necessary modifications. Briefly, reads were aligned to the

reference sequence (H3N2 2010-2011 & 2011-2012 : GenBank CY121496-503, H3N2

2012-2013:GenBank KJ942680-8, H3N2 2014-2015 : Genbank CY207731-8, H1N1

GenBank : CY121680-8) using Bowtie2 (35). Duplicate reads were then marked and

removed using Picard (http://broadinstitute.github.io/picard/). We identi-

fied putative iSNV using DeepSNV. Bases with phred <30 were masked. Minority

iSNV (frequency <50%) were then filtered for quality using our empirically deter-

mined quality thresholds (p-value <0.01 DeepSNV, average mapping quality >30,

average Phred >35, average read position between 31 and 94). To control for PCR

errors in samples with lower input titers, all isolates with titers between 103 and 105

genomes/µl were processed and sequenced in duplicate. Only iSNV that were found

in both replicates were included in down stream analysis. The frequency of the vari-
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ant in the replicate with higher coverage at the iSNV location was assigned as the

frequency of the iSNV. Finally, any SNV with a frequency below 2% was discarded.

Given the diversity of the circulating strain in a given season, there were a number

of cases in which isolates contained mutations that were essentially fixed (>95%)

relative to the plasmid control. Often in these cases, the minor allele in the sample

matched the major allele in the plasmid control. We were, therefore, unable to

use DeepSNV in estimating the base specific error rate at this site for these minor

alleles and required an alternative means of eliminating true and false minority iSNV.

To this end we applied stringent quality thresholds to these putative iSNV and

implemented a 2% frequency threshold. In order to ensure we were not introducing

a large number of false positive iSNV into our analysis, we performed the following

experiment. Perth (H3N2) samples were sequenced on the same flow cell as both the

Perth and Victoria (H3N2) plasmid controls. Minority iSNV were identified using

both plasmid controls. This allowed us to identify rare iSNV at positions in which

the plasmid controls differed both with and without the error rates provided by

DeepSNV. We found that at a frequency threshold of 2% the methods were nearly

identical (NPV of 1, and PPV of 0.94 compared to DeepSNV).

dN/dS calculation

We calculated the genome-wide dN/dS as in (Miyata and Yasunaga, 1980) without

correction for iSNV frequency in the population. This analysis was run only on

canonical open reading frames (excluding PB1-F2 and PA-X).

Overview of models for effective population size

We estimated the effective population size using two separate interpretations of

a Wright-Fisher population (Ewens, 2004). At its base, the Wright-Fisher model
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describes the expected changes in allele frequency of an ideal population, which is

characterized by non-overlapping generations, no migration, no novel mutation, and

no population structure. We then asked what size effective population would make

the changes in frequency observed in our dataset most likely. We calculated these

values using two applications of the Wright-Fisher model (i) a diffusion approxima-

tion (Kimura, 1955) and (ii) a maximum likelihood approach based on the discrete

interpretation (Williamson and Slatkin, 1999).

For these estimates we restricted our analysis to longitudinal samples from a

single individual that were separated by at least 1 day and only used sites that were

polymorphic in the initial sample (29 of the 49 total serial sample pairs). We modeled

only the iSNV that were the minor allele at the first time point, and we assumed a

within-host generation time of either 6 or 12 hours as proposed by Geoghegan et al.

(Geoghegan et al., 2016).

Diffusion approximation

The diffusion approximation was first solved by Kimura in 1955 (Kimura 1955).

This approximation to the discrete Wright-Fisher model has enjoyed widespread use

in population genetics as it allows one to treat the random time dependent probability

distribution of final allele frequencies as a continuous function (e.g.(Zanini et al.,

2017; Kimura and Ohta, 1969; Kimura, 1971; Myers et al., 2008)). Here, we also

included the limitations in our sensitivity to detect rare iSNV by integrating over

regions of this probability density that were either below our limit of detection or

within ranges where we expect less than perfect sensitivity as follows.

Let P (p0, pt, t|Ne) be the time dependent probability of a variant drifting from an

initial frequency of p0 at time 0 pt at time t generations given an effective population

size of Ne where 0 < pt < 1.
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The time dependent derivative of this probability has been defined using the

Kolmogorov forward equation (Kimura, 1955) and for haploid populations is:

(4.1) P (p0, pt, t|Ne) =
∞∑
i=1

p0q0i(i+ 1)(2i+ 1)F (1− i, i+ 2, 2, p)×

F (1− i, i+ 2, 2, x)e−[i(i+1)/2Ne]t

Where q = 1 − p and F is the hypergeometric function. We approximated the

infinite sum by summing over the first 50 terms. When we added an additional 50

terms (100 in total) we found no appreciable change in the final log likelihoods.

We denote the frequency of allele that is not observed at the second time point as

pt ≈ 0 and the probability of such an event as P (p0, pt ≈ 0, t|Ne). This probability

is given in equation 2 as the sum of the probability that the variant is truly lost

by generation t (i.e. the other allele is fixed P (q0, 1, t|Ne))), the probability that it

is present but below the limit of detection (i.e. P (p, pt ≈ 0, t|0 < pt < 0.02, Ne))

and the probability the variant is not detected due to low sensitivity for rare variant

detection (i.e. P (p0, pt ≈ 0, t|0.02 < pt < 0.1, Ne)). The probability of not observing

an allele at the second time is then

(4.2) P (p0, pt ≈ 0, t|Ne) = P (q0, 1, t|Ne) + P (p, pt ≈ 0, t|0 < pt < 0.02, Ne)+

P (p0, pt ≈ 0, t|0.02 < pt < 0.1, Ne)

The first term in equation 4.2 is given by Kimura 1955 as

(4.3) P (q0, 1, t|Ne) = q0 +
∞∑
i=1

(2i+ 1)p0q0(−1)iF (1− i, i+ 2, 2, q0)e
−[i(i+1)/2N ]t
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Where q is defined as above. (Note : this is simply the probability of fixation for

a variant at initial frequency q). As in equation 4.1 the infinite was approximated

with a partial sum of 50 terms.

The probability of the allele drifting below our limit of detection can be found by

integrating equation 4.1 between 0 and our limit of detection, 0.02. This was done

numerically using the python package scipy.

(4.4) P (p, pt ≈ 0, t|0 < pt < 0.02, Ne) =

∫ 0.02

0

P (p0, pt, t, N)dpt

Finally, the probability of an iSNV being present at the second time point, but

escaping detection, is given by the integral of equation 4.1 between our benchmarked

frequencies (0.02,0.05) times the false negative rate for that range. Here, we assumed

the entire range had the same sensitivity as the benchmarked frequency at the lower

bound and rounded recipient titers down to the nearest log10 titer (e.g.103,104, 105

). We also assumed perfect sensitivity above 10%.

(4.5) P (p0, pt ≈ 0, t|0.02 < pt < 0.1, Ne)) =

[0.02,0.05,0.10)∑
fi

(
FNR|Titerr, fi)

∫ fi+1

fi

P (p0, pt, t|Ne)dpt

Where (FNR|Titerr, fi) is the false negative rate given the frequency and the

sample titer (See Supplemental Table 4.3) and P (p0, pt, t|Ne) is defined in equation

4.1 .

The log likelihood of an effective population size is the sum of the log of P (p0, pt, t|Ne)

for each minor allele in the data set, where either the position is polymorphic at time

t (i.e. equation 4.1) or the allele is not observed at time t (i.e. equation 4.2).
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Discrete Wright-Fisher estimation of Ne

The diffusion approximation treats changes in frequency as a continuous process

because it assumes sufficiently large Ne. That assumption can be relaxed, and the ef-

fective population size can be determined, by applying a maximum likelihood method

developed by Williamsom and Slatkin 1999 (Williamson and Slatkin, 1999). In this

model, the true allele frequencies move between discrete states (i.e. the frequency

must be of the form i/Ne where i is a whole number in the range [0, Ne]. In the orig-

inal application, allele counts were used, and sampling error was added to the model

as a binomial distribution with n determined by the sample size. Here, we use the

frequencies available from next generation sequencing and estimate sampling error

as a normal distribution with mean equal to the observed frequency and a standard

deviation equal to that observed in our benchmarking study for the 104 genomes/µl

samples (σ=0.014) (McCrone and Lauring, 2016).

In this model, the probability of observing an allele frequency shift from p̂0 to p̂t

in t generations provided an effective population of Ne is the probability of observing

p̂0 given some initial state p0 and the probability of the population having that state,

times the probability of observing p̂t given some final state pt and the probability of

moving from the initial to the final state summed across all possible states.

(4.6) P (p0, pt|Ne) =
∑
p0,pt

P (p̂0|p0)P (p0|Ne)P (p̂t|pt)P (pt|p0|Ne)

Where p̂x are the observed probabilities and px are the real ones (of the form i/Ne

discussed above). The likelihood of observing a given frequency p̂x given a defined

state px is given by the likelihood of drawing p̂x from a normal distribution with

mean px and standard deviation 0.014.
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(4.7) P (p̂x|px) = N(px, 0.014)

As in Williamson and Slatkin 1999, we assume a uniform prior on the initial state.

Because we know that our specificity is near perfect (above 2%, Supplemental Table

4.3) and we restrict our analysis to only polymorphic sites, the probability of any

initial state is given by

(4.8) P (p0|Ne) =
1

Ne − 1

and finally the probability of moving from one state to another in t generations

is given by

(4.9) P (pt, p0|Ne) = v0M
tvt

Where M is a square transmission matrix with Ne + 1 rows and columns. Where

imi,j is the probability of going from the ith configuration to the jth or the probability

of drawing j − 1 out of binomial distribution with mean (i − 1)/Ne and a sample

size Ne. v0 is a row vector of initial frequencies p0 with 100% chance of initial state

p0, and vt is column vector of the frequencies at time point t with 100% chance of

the final state. In other words v0 is a row vector of Ne + 1 states with 0 everywhere

except in the ith position where (i− 1)/Ne = p0, and vt is a column vector of Ne + 1

states with 0 everywhere except the jth position where (j − 1)/Ne = pt.

Using the scalar and cumulative properties of matrix multiplication equation 6

reduces to
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(4.10) P (p̂0, p̂t|Ne) =

[0, P (p̂0|p02)P (p02|Ne), ..., P (p̂0|p0Ne−1
)P (p0Ne−1

|Ne), 0]M t


P (p̂t|pt1)

...

P (p̂t|ptNe )


The first and last entries in v0 are 0 because we assume all measured sites represent

polymorphisms at the first time of sampling.

As above, the log likelihood of a given population size is then simply the sum of

the log of P (p̂0, p̂t, t|Ne) for each minor allele in the data set.

Simulations

To simulate within-host evolution we set Ne in equation 4.10 to either 30, 50 or

100. For each minor allele we used the closest available non-zero state given the

effective population size as the starting state. We then calculated the probability

of moving to any other state and selected a final state from this distribution. We

then drew a final measured frequency from the normal distribution accounting for

measurement errors.

ABC model

We estimated both the effective population size and selection coefficients using the

approximate Bayesian computation (ABC) described in (Foll et al., 2014) with the

WFACB v1.1 software provided in (Foll et al., 2015). In its current implementation,

this analysis requires the same time points for each sample, and we restricted this

analysis to longitudinal samples taken 1 day apart. This subset constitutes 16 of

the 29 modeled longitudinal samples. Briefly, we subsampled polymorphic sites to

1,000x coverage to estimate allele counts from frequency data as in (Foll et al. 2014).



117

We then estimated the prior distribution of the effective population size using 10,000

bootstrap replicates. We selected a uniform distribution on the range [-0.5,0.5] as

the prior distribution for the selection coefficients. The posterior distributions were

determined from accepting the top 0.01% of 100,000 simulations.

Overview of models used for estimating the transmission bottleneck

We model transmission as a simple binomial sampling process (Sobel Leonard

et al., 2017b). In our first model, we assume any transmitted iSNV, no matter the

frequency, will be detected in the recipient. In the second, we relax this assumption

and account for false negative iSNV in the recipient. To include the variance in

the transmission bottlenecks between pairs we use maximum likelihood optimization

to fit the average bottleneck size assuming the distribution follows a zero-truncated

Poisson distribution.

Presence/Absence model

The presence/absence model makes several assumptions. We assume perfect de-

tection of all transmitted iSNV in the recipient. For each donor iSNV, we measure

only whether or not the variant is present in the recipient. Any iSNV that is not

found in the recipient is assumed to have not been transmitted. We also assume the

probability of transmission is determined only by the frequency of the iSNV in the

donor at the time of sampling (regardless of how much time passes between sampling

and transmission). The probability of transmission is simply the probability that the

iSNV is included at least once in a sample size equal to the bottleneck. Finally, we

assume all genomic sites are independent of one another. For this reason, we dis-

carded the one case where the donor was likely infected by two strains, as the iSNV

were certainly linked.
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Because the presence/absence model is unaware of the frequency of alleles in the

recipient we must track both alleles at each donor polymorphic site. Let A1 and

A2 be alleles in donor j at genomic site i. Let P (A1) be the probability that A1 is

the only transmitted allele. There are three possible outcomes for each site. Either

onlyA1 is transmitted, only A2 is transmitted, or both A1 and A2 are transmitted.

The probability of only A1 being transmitted given a bottleneck size of Nb is

(4.11) Pi,j(A1|Nb) = pNb1

where p1 is the frequency of A1 in the donor. In other words, this is simply

the probability of only drawing A1 in Nb draws. The probability that only A2 is

transmitted is similarly defined.

The probability of both alleles being transmitted is given by

(4.12) Pi,j(A1, A2|Nb) = 1−
(
pNb1 + pNb2

)
where p1 and p2 are the frequencies of the alleles respectively. This is simply the

probability of not picking only A1 or only A2 in Nb draws.

This system could easily be extended to cases where there are more than 2 alleles

present at a site; however, that never occurs in our data set.

For ease we will denote the likelihood of observing the data at a polymorphic site

i in each donor j given the bottleneck size Nb as Pi,j(Nb) where Pi,j(Nb) is defined

by equation 4.11 if only one allele is transmitted and equation 4.12 if two alleles are

transmitted.

The log likelihood of a bottleneck of size Nb is given by

(4.13) LL(Nb) =
∑
j

∑
i

Ln(Pi,j)
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where i, j refers to the ith polymorphic site in the jth donor. This is the log of

the probability of observing the data summed over all polymorphic sites across all

donors.

Because the bottleneck size is likely to vary across transmission events, we used

maximum likelihood to fit the bottleneck distribution as oppose to fitting a single

bottleneck value. Under this model we assumed the bottlenecks were distributed ac-

cording to a zero-truncated Poisson distribution parameterized by λ. The likelihood

of observing the data given a polymorphic site i in donor j and λ is

(4.14) Pi,j(λ) =
∞∑

Nb=1

Pi,j(Nb)P (Nb|λ)

where Pi,j(Nb) is defined as above, P (Nb|λ) is the probability of drawing a bottle-

neck of size Nb from a zero-truncated Poisson distribution with a mean of λ
1−e−λ . The

sum is across all possible Nb defined on [1,∞). Although for practical purposes we

only investigated bottleneck sizes up to 100 as λ is quite small and the probability

of drawing a bottleneck size of 100 from a zero-truncated Poisson distribution with

λ = 10 is negligible. We follow this convention whenever this sum appears.

The log likelihood of λ for the data set is given by

(4.15) LL(λ) =
∑
j

∑
i

Ln
( ∞∑
Nb=1

Pi,j(Nb)P (Nb|λ)
)

Beta Binomial model

The Beta binomial model is explained in detail in Leonard et al. (Sobel Leonard

et al., 2017b). It is similar to the presence/absence model in that transmission is

modeled as a simple sampling process; however, it relaxes the following assumptions.
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In this model, the frequencies of transmitted variants are allowed to change between

transmission and sampling according a beta distribution. The distribution is not

dependent on the amount of time that passes between transmission and sampling,

but rather depends on the size of the founding population (here assumed to equal to

Nb) and the number of variant genomes present in founding population k. Note the

frequency in the donor is assumed to be the same between sampling and transmission.

The equations below are very similar to those presented by Leonard et al. with

one exception. Because we know the sensitivity of our method to detect rare variants

based on the expected frequency and the titer, we can include the possibility that

iSNV are transmitted but are missed due to poor sensitivity. Because the beta

binomial model is aware of the frequency of the iSNV in the recipient, no information

is added by tracking both alleles at a genomic site i. Let pi,jdrepresent the frequency

of the minor allele at position i in the donor of some transmission pairj. Similarly,

let pi,jd be the frequency of that same allele in the recipient of the jth transmission

pair. Then, as in Leonard et al., the likelihood of some bottleneck Nb for the data

at site i in pairj where the minor allele is transmitted is given by

(4.16) L(Nb)i,j =

Nb∑
k=1

p beta
(
pi,jr |k,Nb − k

)
p bin

(
k|Nb, pi,jd

)
Where p beta is the probability density function for the beta distribution and

p bin is the probability mass function for the binomial distribution.

This is the probability density that the transmitted allele is found in the recip-

ient at a frequency of pi,jr given that the variant was in k genomes in a founding

population of size Nb times the probability k variant genomes would be drawn in a

sample size of Nb from the donor where the variant frequency was pi,jd . This is then

summed for all possible k where 1 ≥ k ≤ Nb.
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As in equation 4.14 the likelihood of a zero truncated Poisson with a mean of

λ
1−e−λ given this transmitted variants is then given by

(4.17) L(λ)transmitted
i,j =

∞∑
Nb=1

L(Nb)i,jP (Nb|λ)

This is simply the likelihood of each Nb weighted by the probability of drawing a

bottleneck size of Nb from the bottleneck distribution.

In this model, there are three possible mechanisms for a donor iSNV to not be

detected in the recipient. (i) The variant was not transmitted. (ii) The variant was

transmitted but is present below our level of detection (2%). (iii) The variant was

transmitted and present above our level of detection but represents a false negative

in iSNV identification.

As in Leonard et al. the likelihood of senerios (i) and (ii) for a given Nb are

expressed as

(4.18) L(Nb)
lost
i,j =

Nb∑
k=0

p beta cdf
(
pi,jr < 0.02|k,Nb − k

)
p bin

(
k|Nb, pi,jd

)
Where p beta cdf is the cumulative distribution function for the beta distribution.

Note that if k = 0 (i.e. the iSNV was not transmitted) then the term reduces to the

probability of not drawing the variant in Nb draws.

The likelihood of the variant being transmitted but not detected in the recipient

given a bottleneck of Nb is described by

(4.19) L(Nb)
missed
i,j =

Nb∑
k=0

[0.02,0.05,0.1)∑
fe

p beta cdf
(
fe < pi,jr < fe+1

∣∣k,Nb − k
)
×

p bin
(
k|Nb, pi,jd

)(
FNR|Titerr, f)
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This is the likelihood of the variant existing in the ranges [0.02,0.05] or [0.05,0.1]

given an initial frequency of k/Nb and a bottleneck size of Nb multiplied by the

expected False Negative Rate (FNR) given the titer of the recipient and the lower

frequency tested. As in our diffusion model, we assumed perfect sensitivity for detec-

tion of iSNV present above 10%,rounded recipient titers down to the nearest log10titer

(e.g. 103,104, 105) and assumed the entire range [fe, fe+1] has the same sensitivity as

the lower bound.

The likelihood of λ for iSNV that are not observed in the recipient is then given

by summing equations 4.18 and 4.19 across all possible Nb.

(4.20) L(λ)nontransmitted
i,j =

∞∑
Nb=1

((
L(Nb)

lost
i,j + L(Nb)

missed
i,j

)
P (Nb|λ)

)

The log likelihood of the total dataset is then determined by summing log of

equations 4.17 and 4.20 (as applicable) across all polymorphic sites in each donor.

(As before here we sum of Nb within the range [1, 100].)

Simulation

In order evaluate the fits of the two transmission models, we simulated whether or

not each donor iSNV was transmitted or not. This involved converting each model

to a presence absence model. In each simulation, we assigned a bottleneck from the

bottleneck distribution for each transmission pair. We then determined the proba-

bility of only transmitting one allele (Ax where x ∈ [1, 2] as in the presence/absence

model above) and the probability of transmitted both alleles (A1, A2 above) for each

polymorphic site.

For the presence/absence model the probabilities for each possible outcome are

given by equations 4.11 and 4.12
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For the beta binomial model the probability of only observing Ax at site i is given

by

(4.21) P (Ax|Nb) = L(Nb)
lost
i,j + L(Nb)

missed
i,j

where L(Nb)
lost
i,j and L(Nb)

missed
i,j are defined as in equations 4.18 and 4.19 respec-

tively, but with pi,jd replaced by 1 − pi,jd . This is simply the probability of not

observing the other allele in the recipient.

Again, the probability of observing both alleles is

(4.22) P (A1, A2|Nb) = 1−
(
P (A1) + P (A2)

)
where P (A1) and P (A2) are defined as in equation 4.21.

Fitting mutation rate and Ne

The diffusion approximation to the Wright - Fischer model allows us to make

predictions on the allele frequency spectrum of a population given a mutation rate

and an effective population size. The probability of observing a mutation at frequency

pt given an initial frequency of 0 can be approximated as in (Rouzine et al., 2001).

(4.23) P (0, pt, t, |µ,Ne) =
2µNe

pt
e−

2Nept
t

Where µ is the mutation rate. In this model mutation increases an allele’s fre-

quency from 0 but after that initial jump, drift is responsible for allowing the mu-

tation to reach its observed frequency. Because the limit of equation 23 approaches

infinity as pt approaches 0 and for ease in numerical integration, we assumed that

any variant present at less than 0.1% was essentially at 0%.
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We then assumed each infection began as a clonal infection matching the consensus

sequence observed at the time of sampling. The likelihood of observing minor alleles

at the observed frequency is the given by equation 4.23.

As in the other within-host models, we can account for nonpolymorphic sites by

adding the likelihood that no mutation is present P (0, pt ≈ 0, t|pt < 0.001, µ,Ne),

that a mutation is present but below our level of detection P (0, pt ≈ 0, t|pt <

0.02, µ,Ne), and that a mutation is present but missed due to low sensitivity at

low frequencies P (0, pt ≈ 0, t|0.02 < pt < 0.1, µ,Ne). In this model we assumed

13133 mutagenic targets in each sample (the number of coding sites present in the

reference strain from 2014-2015).

The probability of not observing a mutation is given by

(4.24) P (0, 0, t, |µ,Ne) = P (0, pt ≈ 0, t|pt < 0.001, µ,Ne)+

P (0, pt ≈ 0, t|pt < 0.02, µ,Ne)+

P (0, pt ≈ 0, t|0.02 < pt < 0.1, µ,Ne)

Where

(4.25) P (0, pt ≈ 0, t|pt < 0.001, µ,Ne) = 1−
∫ 1

0.001

P (0, pt, t, |µ,Ne)dpt

and

(4.26) P (0, pt ≈ 0, t|pt < 0.02, µ,Ne) =

∫ 0.02

0.001

P (0, pt, t, |µ,Ne)dpt

and
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(4.27) P (0, pt ≈ 0, t|0.02 < pt < 0.1, µ,Ne) =

[0.02,0.05,0.10)∑
fi

(
FNR|Titerr, fi)

∫ fi+1

f

P (p0, pt, t|µ,Ne)dpt

Where we follow the same convention as in equation 4.5. The log likelihood of

a given µ and Ne pair is then the sum of the log of equations 4.23 and 4.24 for all

possible sites in the data set.
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Figure 4.5: Sequence coverage for all samples. For each sample, the sliding window mean coverage
was calculated using a window size of 200 and a step of 100. The distributions of these
means are plotted as box plots (median, 25th and 75th percentiles, whiskers extend
to most extreme point within median 1.5 x IQR) where the y-axis represents the
read depth and the x-axis indicates the position of the window in a concatenated IAV
genome.
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Table 4.3: Sensitivity and specificity of variant detection

Copy Variant Original Pipelineb Current Pipelinec

Numbera Frequency Sensitivity Specificity Sensitivity Specificity

> 105 0.05 1 >0.9999 0.85 1.000
0.02 0.85 0.9999 0.15 1.000
0.01 0.95 0.9995 - -
0.005 0.35 0.9999 - -

104 − 105 0.05 0.95 0.9999 0.85 1.000
0.02 0.9 0.9999 0.15 1.000
0.01 0.8 0.9998 - -
0.005 0.4 0.9999 - -

103 − 104 0.05 0.8 >0.9999 0.70 1.000
0.02 0.45 0.9999 0.15 1.000
0.01 0.2 0.9997 - -
0.005 0.1 0.9999 - -

a

Per µl transport media
b

As described in (McCrone and Lauring, 2016)
c

As described in Methods, benchmarked for frequencies 0.02-0.98 only

Table 4.4: Nonsynonymous substitutions in HA antigenic sites
House Enrollment Symptom

Subtype Frequency
Amino Acid Antigenic

Vaccinated
Day

ID ID Onset Change Site Day of Symptoms

1111 300481 3-30-2011 H3N2 0.071 E62G E* No 0
2166 320661 2-13-2012 H3N2 0.071 V297A C Yes 1
1302 301355 3-20-2011 H3N2 0.088 L86I E Yes 1
3075 331045 12-10-2012 H3N2 0.066 I214T D Yes 1
5219 50935 12-5-2014 H3N2 0.175 F193S B*a No 3
5263 51106 12-6-2014 H3N2 0.111 T128A B Yes 3
5290 51225 12-15-2014 H3N2 0.405 I260V E* Yes 1
5302 51273 12-13-2014 H3N2 0.030 S262N E* Yes 0
5098 50419 12-22-2014 H3N2 0.364 G208R D Yes 4
5033 50141 12-3-2014 H3N2 0.032 A163T B Yes 2
5034 50143 1-11-2015 H3N2 0.119 I307R C Yes 1
5289 51220 12-13-2014 H3N2 0.038 K189N B*a Yes -1
5033 50141 12-3-2014 H3N2 0.025 D53E C* Yes 1
5033 50141 12-3-2014 H3N2 0.023 S312G C Yes 1
5269 51132 12-6-2014 H3N2 0.028 I242T D Yes 2
5147 50630 11-18-2014 H3N2 0.164 I242L D Yes 1
5034 50143 1-11-2015 H3N2 0.161 I307R C Yes 2
4185 UM40738 12-14-2013 H1N1 0.021 R208K Ca No 2

∗ Sites observed to vary between antigenically distinct strains in (Wiley et al., 1981) and (Smith et al., 2004).
a

Sites located in the ‘antigenic ridge’ identified in (Koel et al., 2013).
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Figure 4.6: Approximate maximum likelihood trees of the concatenated coding sequences for high
quality H1N1 samples. The branches are colored by season; the tip identifiers are colored
by household. Arrows with numbers indicate consensus and putative minor haplotypes
for samples with greater than 10 iSNV. Trees were made using FastTree (Price et al.,
2010).
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Figure 4.7: Approximate maximum likelihood trees of the concatenated coding sequences for high
quality H3N2 samples. The branches are colored by season; the tip identifiers are colored
by household. Arrows with numbers indicate consensus and putative minor haplotypes
for samples with greater than 10 iSNV. Trees were made using FastTree (Price et al.,
2010).
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Figure 4.9: Minority nonsynonymous iSNV in global circulation. The global frequencies of the
amino acids that were found as minority variants in sample isolates (x-axis) plotted
overtime (y-axis). Each amino acid trace is labeled according to the H3 number scheme.
All samples were isolated in December of 2014 (gray line).
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Figure 4.10: Reproducibility of iSNV identification for paired samples acquired on the same day.
The x-axis represents iSNV frequencies found in the home-acquired nasal swab. The y-
axis represents iSNV frequencies found the clinic-acquired combined throat and nasal
swab.
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Figure 4.11: Estimate of effective bottleneck size with relaxed variant calling criteria. (A) The
frequency of iSNV in both recipient and donor isolates. iSNV were identified using
the original variant calling pipeline. (B) The presence-absence model fit compared to
the observed data for iSNV identified using the original variant calling pipeline. The
x-axis represents the frequency of donor iSNV with transmitted iSNV plotted along
the top and nontransmitted iSNV plotted along the bottom. The black line indicates
the probability of transmission for a given iSNV frequency as determined by logistic
regression. Similar fits were calculated for 1,000 simulations with a mean bottleneck
size of 2.10. Fifty percent of simulated outcomes lie in the darkly shaded region and
95% lie in the lightly shaded regions. (C) Similar to (A) but with minority iSNV
identified using the current analytical framework without a frequency threshold. (D)
Similar to B but with minority iSNV identified using the current analytical framework
without a frequency threshold.



CHAPTER V

Discussion

Rapid antigenic evolution allows influenza virus to infect a significant propor-

tion of the population each year. While the dynamics of influenza evolution are

observed on the global scale, selective forces act at the level of individual hosts.

In my thesis, I have used a validated sequencing approach to explore the evolu-

tionary dynamics of influenza within human hosts during naturally-occurring, acute

infections, and between susceptible hosts during transmission. I have found that

within-host populations are dynamic, and yet putative antigenic mutations are rare

and undistinguishable from other single nucleotide variants (SNV). Additionally, the

evolutionary dynamics during transmission are consistent with a random sampling

process and a tight transmission bottleneck. These findings challenge the assump-

tion that antigenic selection shapes influenza diversity at all levels. In over 10,000

person-seasons of observations, I found that selection for antigenic variants was not a

significant factor in determining within-host diversity. My results suggest that global

evolutionary dynamics likely result from selection for traits that increase infectivity

(i.e., host susceptibility) and allow a given lineage to infect more hosts than other

circulating strains. These findings help reshape our view of influenza evolution and
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will inspire a more nuanced study of the forces that drive the evolutionary trajectory

of the virus.

Sequencing methodology and evolutionary questions

Before studying patient-derived populations, I validated our sequencing approach

on known samples (Chapter II). This experiment provided estimates of our sensi-

tivity and specificity to detect low-frequency SNV. I found that previously validated

variant callers were unable to accurately discriminate true and false positive SNV

present in low-titer RNA virus populations. For samples with titers below 10−5

genome copies/µl, these inaccuracies persisted even after applying stringent quality

thresholds. Only by sequencing low-titer isolates in duplicate, was I able to control

for RT and PCR errors.

I identified true SNV from patient-derived samples by first including all possible

SNV and then removing those with sub-par mapping quality, Phred score, or average

position on the read. Although this method accurately identified low-frequency SNV,

it created discord between the raw data and the variant frequency measurements.

Under the current approach, sequencing artifacts and RT-PCR errors confounded the

frequency of SNV in the raw alignment data. These erroneous bases were removed

during the filtering stage, and the frequencies of true SNV were corrected before

secondary analysis. A more robust method would be to filter and trim sequencing

reads before variant identification. I have tested this approach in a pilot experiment

done in conjunction with the bioinformatic core on campus and found it identified

variants with similar accuracy as the method in Chapter II. This new approach

would also allow for additional analyses, like haplotype reconstruction, which rely

on alignment files and not variant calls alone. The dataset provided by my original
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benchmarking experiment offers a valuable resource for future validation of this and

other approaches to sequencing patient-derived isolates.

Throughout my thesis, I required SNV meet stringent criteria to be included in

the secondary analysis. Because these SNV represented real mutations, I was able to

interpret their dynamics as outcomes of biological processes and not methodological

artifacts. However, this approach limited my power to detect parallel evolution

within individuals. At the global level, antigenic mutations arise on similar, but not

identical backgrounds (Bedford et al., 2015), which suggests there is at least a small

degree of parallel evolution. If the same mutations were to arise repeatedly within

individuals, their presence could influence the evolutionary trajectories observed at

higher scales.

A recent study of within-host populations of HIV took an alternative approach

to variant calling, which could provide more power to capture parallel evolution in

within-host populations. Instead of limiting the number of putative SNV to only

those likely to be real, Zanini et al. (2017) included all putative variants. The

authors then partitioned loci into various groups and looked for differences in SNV

prevalence and frequency between groups. If the groups are sufficiently large, then

methodological errors should affect all groups equally so that any differences between

groups indicate underlying biological processes.

The forces that shape within-host populations

Many studies, including those in Chapters III and IV, have found evidence of

antigenic SNV present in within-host isolates from both human and animal models

(Debbink et al., 2017; Dinis et al., 2016; Murcia et al., 2013; Hughes et al., 2012;

Murcia et al., 2012, 2010). However, in all cases, these mutations were present at low
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frequencies and only found in a minority of infections. The presence of these muta-

tions alone is not evidence of selection. There are; however, a few instances where

within-host selection has been reported. These studies have often relied on poorly

adapted viruses or chronically infected patients. Under these conditions,beneficial

mutations are easily accessible, and selection is sufficiently strong to shape the popu-

lation. These situations do not capture the characteristics present in acute infections.

The two studies that have detected selection during acute infections have relied on a

recently developed algorithm which constructs haplotypes from short-read data and

then estimates selection coefficients consistent with the frequency changes present

in the data (Sobel Leonard et al., 2017a; Illingworth et al., 2014). This approach

assumes that any change in frequency, outside the variance of frequency measure-

ments, is evidence of selection. Such a model ignores neutral processes such as drift,

migration, and hitchhiking, which affect allele frequencies independent of selection.

If it exists, positive selection for growth and survival within a host is likely a rare

event. Influenza infections are acute, lasting only a week. By definition, infected

individuals do not have a strong, targeted immune response against the infecting

strain. Also, the adaptive immune system takes a week to mount a naive response,

by which point most infections are over (Petrova and Russell, 2017). Under these

circumstances, it would be remarkable for selection to efficiently drive antigenic alleles

to detectable frequencies over the course of an infection.

The findings in Chapter III are consistent with high barriers to efficient within-

host selection. I found that the strength of an individual’s immune response did

not predict the presence of putative antigenic mutations at least above a frequency

of 1%. There are several reasons why this cross-sectional study could have failed

to detected evidence of antigenic selection. It could be that serum samples provide
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little indication of the immunity faced by the virus replicating in the mucosal regions

of the upper respiratory track (Tumpey et al., 2001). It is also possible that the

HAI and NAI assays used to measure antibody titer do not perfectly capture all

the possible protective, interactions between antibodies and virus. In each of these

cases, my analysis would be confounded by an inaccurate proxy for immune pressure.

However, the sparsity of SNV on HA and NA, suggests that antigenic selection over

the course of an infection is unlikely.

The longitudinal samples used in Chapter IV allowed for a more detailed explo-

ration of within-host processes. Consistent with the findings in Chapter III, I found

that antigenic mutations follow similar within-host trajectories as other nonsynony-

mous mutations and do not reach higher frequencies (Figure 5.1). Mutations outside

of antigenic regions are expected to decrease HA stability and viral fitness ( Luksza

and Lässig, 2014). The similar frequencies observed between these groups of muta-

tions, which are expected to lie on opposite ends of the fitness spectrum suggest the

populations behave according to neutral processes. This observation is captured in

the small Ne size estimated in Chapter IV and is supported by the similar Ne sizes

found for nonsynonymous and synonymous mutations.

While the effective population size provides an interesting starting point, it does

not provide a mechanistic understanding of influenza evolutionary dynamics during

acute infections. The effective population size reported in Chapter IV is orders

of magnitude smaller than the census population. Understanding the mechanisms

behind the small Ne is essential for developing a more detailed understanding of

influenza evolution at the host level.

Of particular interest is the role of viral growth and decay over the course of an

infection. Influenza is known to undergo two to four days of exponential growth
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Figure 5.1: Within-host dynamics of antigenic iSNV. (A) The within-host frequency of nonsyn-
onymous mutations in HA stratified by whether or not they are in known antigenic
sites (p=0.46 Wilcoxon rank sum). (B) The change in frequency over time for minority
iSNV identified for longitudinal samples. Nonsynonymous and synonymous iSNV are
plotted separately. Mutations are colored according to whether they were detected in
both isolates (blue), detected only the first isolate (red), or detected only in the second
isolate (yellow). The threshold of detection was 2%. The arrows indicate mutations in
known antigenic sites.

followed by a rapid decay (Figure 4.1 A and (Xue et al., 2018)). During expo-

nential growth, minor fitness differences can allow slightly beneficial mutations to

reach meaningful frequencies. A mutation with a growth advantage of 5% made

during the first replication cycle can reach a frequency of 16% in only ten gener-

ations. If the same mutation arises in a similar population that is not expanding,

a selective advantage of 5% will only increase its frequency to 8% in ten genera-

tions. This simple example highlights the importance of accounting for infection

dynamics in models of influenza evolution. Because the mutation rate is 4 × 10−5

mutations/nucleotide/replication cycle and the transmission bottleneck is stringent,

we would have to sample tens of thousands of individuals to capture such an event.

However, given the large number of infections that take place each year, these rare

events could impact global trends.
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Population structure, and migration can also decrease the Ne and has been re-

ported in a ferret model of influenza (Lakdawala et al., 2015). Mutations may be

under strong positive selection at various locations within the respiratory tract, and

yet there would be little to no evidence of selection shaping the sampled population.

Understanding the factors that shape the nose and throat population is important

as this region likely contributes the most to transmission.

My work has not definitively shown that within-host populations of influenza

evolve neutrally. However, the work in Chapters III and IV suggest neutral evolu-

tion is a plausible explanation and provides a framework from which to address this

question in the future. As more longitudinal samples from acutely infected individu-

als become available, it will be possible to include selection coefficients in the models

discussed in Chapter IV. Better defined allele trajectories will provide more convinc-

ing evidence of which sites (if any) deviate from neutral processes. More longitudinal

sampling would also allow us to move beyond the assumption of site independence.

It would be possible to apply haplotype reconstruction algorithms, which take into

account overlapping reads and similarities in frequency trajectories to explore which

SNV are likely linked. This method would provide a fuller depiction of the within-

host population, and make the data more amenable to classical population genetic

approaches, in which allele frequencies represent genotypes.

Linking within- and between-host evolution

The transmission bottleneck links within-host processes to dynamics at higher

levels. My data suggest that even if positive selection affects the frequency of alleles

below the level of detection, the transmission of rare variants is extremely unlikely

(with probability roughly equal to the within-host frequency of the variant). How-
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ever, my estimate is confounded by the within-host dynamics that are likely to have

occurred in both the donor and recipient between the time of transmission and the

time of sampling. The reported bottleneck represents the effective or observed trans-

mission bottleneck. Rare variants may have been transmitted but then lost before

sampling. Stochastic forces early in infection have been shown to affect the pro-

gression of the infection (Duneau et al., 2017). Understanding the diversity of the

founding population would enhance our understanding of how early events shape

both influenza infection and evolution.

Rapid exponential growth early in infection could explain the stringent bottleneck

observed in Chatper IV. If selection is strong, growth advantages can have extreme

affects on allele frequencies. During exponential growth, a variant with a growth ad-

vantage of 30% can increase in frequency from 0.1% to 98% within ten generations.

This dramatic change in frequency is a possible mechanism for the stringent trans-

mission bottleneck. During exponential growth, less fit variants would be purged

from the population rapidly. However, strong selection alone can not explain the

diversity observed between transmission pairs. There are a few transmission pairs

in which recipient hosts contain multiple donor SNV. These events as well as the

mixed infections reported in Chapter IV would not be possible under a very intense

selective regime.

The independent action hypothesis offers a complementary explanation for the

tight bottleneck (Zwart and Elena, 2015). Under this model, each virion in the

inoculating dose has a small probability of successfully founding the infection. The

expected number of founders is the product of the inoculating dose and the probabil-

ity of infection. Our data suggest the likelihood of any virion successfully initiating

infection is very low. Looser transmission bottlenecks are possible if the probability
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of infection increases, either due to host or viral factors. Increased host suscepti-

bility may in part explain the discrepancy between my results and the much larger

transmission bottleneck reported by Poon et al. (2016) during a pandemic. However,

to explain the entire discrepancy, host susceptibility in the Poon et al. (2016) study

would have to be 100 fold higher than in our cohort. This is unlikely even during a

pandemic.

The within-host models developed in Chapter IV provide a solution for dissecting

the within and between-host effects on the effective transmission bottleneck. I have

shown that it is possible to measure evolutionary parameters such as the within-

host effective population size and the within-host mutation rate from patient-derived

samples. Combining my within-host and transmission models would allow us to

account for the time that passes in both the donor and recipient between sampling

and transmission. The aggregated model would estimate the largest transmission

bottleneck consistent with the data while providing a framework to account for SNV

that present in the recipient but not the donor.

A combined within and between host model could also be employed in epidemio-

logical studies to identify transmission pairs. Understanding the difference between

household and community-acquired infections is vital in determining accurate es-

timates of vaccine efficacy (Petrie et al., 2017). In Chapter IV I used the genetic

distance between isolates to differentiate between household and community-acquired

infection. However, this approach largely ignores the information provided by mi-

nority SNV. Current methods that account for SNV are based on partitioning the

genome into regions and then constructing a phylogeny for each region (Wymant

et al., 2017). However, the connection between the underlying biology and observed

trees is unclear. The proposed model directly relates to the evolutionary processes
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at play. Additionally, many households contain more than two concurrent infections,

which can be explained by multiple possible transmission chains. Combining the

within and between-host models would provide a framework for testing which of the

possible chains most likely occurred.

Evolutionary dynamics at larger scales

The next step in understanding influenza evolution is to connect host-level dy-

namics to processes at the global scale. It is possible to use a combined within-

and between-host model to simulate the evolution of influenza within the HIVE co-

hort. This model would have to account for the number of migration events into the

HIVE cohort as well as unobserved infections from the outside community. This ap-

proach would allow us to determine whether or not the rate of evolution in the cohort

matches the dynamics expected under neutral, host-level processes. The combined

model would also help estimate to what degree (if any) selection contributes to local

dynamics.

I suspect that selection for infectivity (i.e., increased host susceptibility) is the

principal mechanism behind antigenic evolution. This selection is expected to act

early in infection during the rapid exponential expansion of the virus. Depending

on the host’s specific immune response, antigenic mutations that are present early

in infection could have a sufficient fitness advantage to reach fixation quickly. In

the future, members of HIVE will provide self-samples as soon as a family mem-

ber becomes symptomatic. These additional time points will help characterize the

importance of early infection dynamics in influenza evolution.

Selection for increased infectivity also has the potential to drive influenza evolution

at higher scales. The transmission study in Chapter IV did not include cases where
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transmission did not occur. Characterizing the virus and host factors that restrict

transmission, would provide insight into the conditions required for antigenic selec-

tion at the host level. An SIR model, which incorporates selection as competition for

susceptible hosts, was able to account for several aspects of the global dynamics of

influenza (Zinder et al., 2013). The HIVE cohort provides an ideal setting for explor-

ing what viral and host characteristics contribute to antigenic selection in naturally

occurring infections. Do antigenically drifted samples have a higher probability of

transmission or transmit to more individuals? Are there differences in host immunity

not captured by only measuring the response against the vaccine strain? If so, do

these differences contribute to vaccine failure and infection?

The majority of samples included in my study came from the 2014-2015 season

in which there was an antigenic mismatch between the circulating strain and the

vaccine strain. However, in the intervening years, herd immunity in the HIVE cohort

has likely increased against this circulating strain. A careful analysis of household

transmission events in coordination with antibody titers and antigenic measurements

of circulating viruses may find evidence of higher transmission rates when there is a

mismatch between virus antigenicity and host immunity. These processes could be

modeled to determine how much of the global dynamics can be explained by neutral

dynamics within-hosts and herd immunity.

The global evolutionary dynamics of influenza virus emerge from a combination

of factors acting across biological scales. In my thesis, I have shown that anti-

genic selection, the dominant global phenomena, is not a major contributing factor

over the course of an individual infection. Importantly, I have also estimated sev-

eral evolutionary parameters including the within-host effective population size, the

within-host mutation rate, and the effective transmission bottleneck. These findings,
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parameters, and models provide the first steps in quantitatively linking host-level

processes to evolutionary dynamics at larger scales.
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Hervé Blanc, Marco Vignuzzi, and Noam Shomron. Deep sequencing analysis of viral infection
and evolution allows rapid and detailed characterization of viral mutant spectrum. Bioinformatics
(Oxford, England), 31(13):2141–2150, July 2015.



150

Cassandra B Jabara, Corbin D Jones, Jeffrey Roach, Jeffrey A Anderson, and Ronald Swanstrom.
Accurate sampling and deep sequencing of the HIV-1 protease gene using a Primer ID. Proceedings
of the National Academy of Sciences of the United States of America, 108(50):20166–20171,
December 2011.

Katherine E E Johnson, Timothy Song, Benjamin Greenbaum, and Elodie Ghedin. Getting the flu:
5 key facts about influenza virus evolution. PLOS Pathogens, 13(8):e1006450, August 2017.

Rowland R Kao, Daniel T Haydon, Samantha J Lycett, and Pablo R Murcia. Supersize me: how
whole-genome sequencing and big data are transforming epidemiology. Trends in Microbiology,
22(5):282–291, May 2014.

Brandon F Keele, Elena E Giorgi, Jesus F Salazar-Gonzalez, Julie M Decker, Kimmy T Pham,
Maria G Salazar, Chuanxi Sun, Truman Grayson, Shuyi Wang, Hui Li, Xiping Wei, Chunlai
Jiang, Jennifer L Kirchherr, Feng Gao, Jeffery A Anderson, Li-Hua Ping, Ronald Swanstrom,
Georgia D Tomaras, William A Blattner, Paul A Goepfert, J Michael Kilby, Michael S Saag,
Eric L Delwart, Michael P Busch, Myron S Cohen, David C Montefiori, Barton F Haynes, Brian
Gaschen, Gayathri S Athreya, Ha Y Lee, Natasha Wood, Cathal Seoighe, Alan S Perelson,
Tanmoy Bhattacharya, Bette T Korber, Beatrice H Hahn, and George M Shaw. Identification
and characterization of transmitted and early founder virus envelopes in primary HIV-1 infection.
Proceedings of the National Academy of Sciences of the United States of America, 105(21):7552–
7557, May 2008.

Ben Killingley, Joanne Enstone, Robert Booy, Andrew Hayward, John Oxford, Neil Ferguson,
and Jonathan Nguyen Van-Tam. Potential role of human challenge studies for investigation of
influenza transmission. The Lancet Infectious Diseases, 11(11):879–886, November 2011.

M Kimura. SOLUTION OF A PROCESS OF RANDOM GENETIC DRIFT WITH A CONTIN-
UOUS MODEL. Proceedings of the National Academy of Sciences, 41(3):144–150, March 1955.

M Kimura and T Ohta. The Average Number of Generations until Fixation of a Mutant Gene in
a Finite Population. Genetics, 61(3):763–771, March 1969.

Motoo Kimura. Theoretical foundation of population genetics at the molecular level. Theoretical
Population Biology, 2(2):174–208, June 1971.

J F C Kingman. On the Genealogy of Large Populations. Journal of Applied Probability, 19:27,
1982.

Martin Kircher, Udo Stenzel, and Janet Kelso. Improved base calling for the Illumina Genome
Analyzer using machine learning strategies. Genome biology, 10(8):R83, 2009.

Daniel C Koboldt, Ken Chen, Todd Wylie, David E Larson, Michael D McLellan, Elaine R Mardis,
George M Weinstock, Richard K Wilson, and Li Ding. VarScan: variant detection in massively
parallel sequencing of individual and pooled samples. Bioinformatics (Oxford, England), 25(17):
2283–2285, September 2009.

Daniel C Koboldt, Qunyuan Zhang, David E Larson, Dong Shen, Michael D McLellan, Ling Lin,
Christopher A Miller, Elaine R Mardis, Li Ding, and Richard K Wilson. VarScan 2: somatic
mutation and copy number alteration discovery in cancer by exome sequencing. Genome research,
22(3):568–576, March 2012.

Daniel C Koboldt, David E Larson, and Richard K Wilson. Using VarScan 2 for Germline Variant
Calling and Somatic Mutation Detection. Current protocols in bioinformatics, 44:15.4.1–15.4.17,
December 2013.



151

Björn F Koel, David F Burke, Theo M Bestebroer, Stefan van der Vliet, Gerben C M Zondag, Gaby
Vervaet, Eugene Skepner, Nicola S Lewis, Monique I J Spronken, Colin A Russell, Mikhail Y
Eropkin, Aeron C Hurt, Ian G Barr, Jan C de Jong, Guus F Rimmelzwaan, Albert D M E
Osterhaus, Ron A M Fouchier, and Derek J Smith. Substitutions near the receptor binding site
determine major antigenic change during influenza virus evolution. Science, 342(6161):976–979,
November 2013.

Katia Koelle and David A Rasmussen. The effects of a deleterious mutation load on patterns of
influenza A/H3N2’s antigenic evolution in humans. eLife, 4:e07361, September 2015.

Katia Koelle, Sarah Cobey, Bryan Grenfell, and Mercedes Pascual. Epochal evolution shapes the
phylodynamics of interpandemic influenza A (H3N2) in humans. Science, 314(5807):1898–1903,
December 2006.

Roger D Kouyos, Christian L Althaus, and Sebastian Bonhoeffer. Stochastic or deterministic: what
is the effective population size of HIV-1? Trends in Microbiology, 14(12):507–511, December 2006.

Jeffrey R Kugelman, Johanny Kugelman-Tonos, Jason T Ladner, James Pettit, Carolyn M Keeton,
Elyse R Nagle, Karla Y Garcia, Jeffrey W Froude, Ana I Kuehne, Jens H Kuhn, Sina Bavari,
Larry Zeitlin, John M Dye, Gene G Olinger, Mariano Sanchez-Lockhart, and Gustavo F Palacios.
Emergence of Ebola Virus Escape Variants in Infected Nonhuman Primates Treated with the
MB-003 Antibody Cocktail. CellReports, 12(12):2111–2120, September 2015.

Jeffrey R Kugelman, Michael R Wiley, Elyse R Nagle, Daniel Reyes, Brad P Pfeffer, Jens H
Kuhn, Mariano Sanchez-Lockhart, and Gustavo F Palacios. Error baseline rates of five sample
preparation methods used to characterize RNA virus populations. PLoS One, 12(2):e0171333–13,
February 2017a.

Jeffrey R Kugelman, Michael R Wiley, Elyse R Nagle, Daniel Reyes, Brad P Pfeffer, Jens H
Kuhn, Mariano Sanchez-Lockhart, and Gustavo F Palacios. Error baseline rates of five sample
preparation methods used to characterize RNA virus populations. PLoS One, 12(2):e0171333,
February 2017b.

S Kundu, J Lockwood, D P Depledge, Y Chaudhry, A Aston, K Rao, J C Hartley, I Goodfellow,
and J Breuer. Next-Generation Whole Genome Sequencing Identifies the Direction of Norovirus
Transmission in Linked Patients. Clinical Infectious Diseases, 57(3):407–414, July 2013.

Seema S Lakdawala, Akila Jayaraman, Rebecca A Halpin, Elaine W Lamirande, Angela R Shih,
Timothy B Stockwell, Xudong Lin, Ari Simenauer, Christopher T Hanson, Leatrice Vogel,
Myeisha Paskel, Mahnaz Minai, Ian Moore, Marlene Orandle, Suman R Das, David E Wentworth,
Ram Sasisekharan, and Kanta Subbarao. The soft palate is an important site of adaptation for
transmissible influenza viruses. Nature, 526(7571):122–125, October 2015.

Hugo Y K Lam, Michael J Clark, Rui Chen, Rong Chen, Georges Natsoulis, Maeve O’Huallachain,
Frederick E Dewey, Lukas Habegger, Euan A Ashley, Mark B Gerstein, Atul J Butte, Hanlee P
Ji, and Michael Snyder. Performance comparison of whole-genome sequencing platforms. Nature
Biotechnology, 30(1):78–82, December 2011.

Ben Langmead and Steven L Salzberg. Fast gapped-read alignment with Bowtie 2. Nature methods,
9(4):357–359, March 2012.

Ben Langmead, Cole Trapnell, Mihai Pop, and Steven L Salzberg. Ultrafast and memory-efficient
alignment of short DNA sequences to the human genome. Genome biology, 10(3):R25, 2009.

L L H Lau, D K M Ip, H Nishiura, V J Fang, K H Chan, J S M Peiris, G M Leung, and B J Cowling.
Heterogeneity in Viral Shedding Among Individuals With Medically Attended Influenza A Virus
Infection. Journal of Infectious Diseases, 207(8):1281–1285, March 2013.



152

Michael Lauck, Mónica V Alvarado-Mora, Ericka A Becker, Dipankar Bhattacharya, Rob Striker,
Austin L Hughes, Flair J Carrilho, David H O’Connor, and João R Rebello Pinho. Analysis
of hepatitis C virus intrahost diversity across the coding region by ultradeep pyrosequencing.
Journal of virology, 86(7):3952–3960, April 2012.

Adam S Lauring, Ashley Acevedo, Samantha B Cooper, and Raul Andino. Codon usage determines
the mutational robustness, evolutionary capacity, and virulence of an RNA virus. Cell host &
microbe, 12(5):623–632, November 2012.

Adam S Lauring, Judith Frydman, and Raul Andino. The role of mutational robustness in RNA
virus evolution. Nature Reviews Microbiology, 11(5):327–336, May 2013.

Min-Shi Lee and Jack Si-En Chen. Predicting Antigenic Variants of Influenza A/H3N2 Viruses.
Emerging Infectious Diseases, 10(8):1385–1390, August 2004.

Nelson Lee, Paul K S Chan, David S C Hui, Timothy H Rainer, Eric Wong, Kin-Wing Choi, Grace
C Y Lui, Bonnie C K Wong, Rita Y K Wong, Wai-Yip Lam, Ida M T Chu, Raymond W M Lai,
Clive S Cockram, and Joseph J Y Sung. Viral Loads and Duration of Viral Shedding in Adult
Patients Hospitalized with Influenza. Journal of Infectious Diseases, 200(4):492–500, August
2009.

Sebastian Lequime, Albin Fontaine, Meriadeg Ar Gouilh, Isabelle Moltini-Conclois, and Louis Lam-
brechts. Genetic Drift, Purifying Selection and Vector Genotype Shape Dengue Virus Intra-host
Genetic Diversity in Mosquitoes. PLOS Genetics, 12(6):e1006111, June 2016.

Hui Li, Mark B Stoddard, Shuyi Wang, Lily M Blair, Elena E Giorgi, Erica H Parrish, Gerald H
Learn, Peter Hraber, Paul A Goepfert, Michael S Saag, Thomas N Denny, Barton F Haynes,
Beatrice H Hahn, Ruy M Ribeiro, Alan S Perelson, Bette T Korber, Tanmoy Bhattacharya, and
George M Shaw. Elucidation of hepatitis C virus transmission and early diversification by single
genome sequencing. PLOS Pathogens, 8(8):e1002880, 2012.
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