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ABSTRACT

Turbine bladed disks (blisks) which constitute critical components of most modern turboma-

chinery, are known for their complex vibratory behavior. A good blisk design necessitates the

knowledge of the dynamic behavior of the component in different regimes of operation. However,

small parametric uncertainties and inter-blade structural variations called mistuning are known

to affect blisk dynamics drastically under certain conditions. Introduced by manufacturing toler-

ances, thermal stresses, wear and other causes, these variations make the design process especially

challenging. The dynamics of blisks often also involve nonlinearities, such as those arising from

friction damping structures such as shrouds or under-platform dampers or from nonlinear damping

coatings adhered to the blades. Since it is not possible to eliminate uncertainties due to mistuning,

the designer must ensure safe operation within the field of uncertainty of all the design parame-

ters. Presently, the widely accepted method for obtaining a comprehensive understanding of the

effects of these uncertainties is to conduct probabilistic analyses with many simulations of differ-

ent systems generated by applying random mistuning to the nominal tuned system. Finite element

modeling techniques when applied in isolation prove too cumbersome and time-intensive to use

for this task. To make these simulations computationally feasible, reduced order models which

accurately capture the nonlinear mistuned dynamics while being computationally tractable must

be developed. This work presents model reduction methods for blisk dynamics involving two spe-

cific nonlinear mechanisms. An adaptive microslip projection method is developed to reduce the

dynamics of blisks with frictional contacts characterized by complex stick-slip behavior. A re-

duced order modeling technique developed for blisks with nonlinear coatings using an amplitude

dependent mistuning framework to simulate the dynamics is presented also. Both reduced order

xii



models are found to provide significant computational time savings, while retaining high accuracy

in comparison to their higher order baseline models. Another practical challenge for accurate non-

linear dynamic simulation of blisks, is the identification of physical parameters which represent the

physics of the system and are thus employed by both the full and reduced order models. Contact

parameters are identified from experimental data using optimization techniques and are used to

validate the reduced order model. The specific effects of variations in these contact parameters on

the dynamic response of the blisk are also studied by carrying out probabilistic analyses.
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CHAPTER I

Introduction

Bladed disks, also alternatively called blisks or rotors which constitute the compressor and

turbine stages of all turbomachinery experience high thermal and cyclic structural stresses during

their operation which involves extremely high rotational speeds. As a consequence, a significant

thrust of research in the field of turbomachinery has been dedicated to understanding, quantifying

and modeling the dynamic behavior of bladed disks with the aim of accounting for these inherent

harsh conditions and producing reliable and robust designs. Early studies into the subject during

the 1960’s and 1970’s involved quantifying the linear mass, stiffness and damping characteristics

of the blisks employing lumped mass representations [1, 2]. With the improvement in modeling

techniques and computational capabilities, these simplistic models were replaced by high fidelity

finite element (FE) models, which became the standard for industry by the mid 1990’s- early 2000’s

[3]. Although a single linear analysis for even a very large FE model which often contain millions

of degrees of freedom (DoFs) can be performed within a reasonable period of time typically on

the order of hours or days with current computational speeds, the multiple analyses that need to

be carried out during the design procedure makes a design approach based only on such high fi-

delity simulations impractical. As a result the development of reduced order models (ROMs) of

blisks which allow faster simulations for accurate response predictions, emerged as an important

research area in the field. The most obvious reduction one may apply to any blisk model is based on
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its property of cyclic symmetry. If any cyclic sector of the blisk is considered to be geometrically

and materially identical to any another, the DoFs of the blisk dynamic may be reduced by a factor

of the number of blades by the application of suitable constraints. However, it was well known that

even small differences which exist between different sectors in practice due to manufacturing tol-

erances and variability in operating conditions, collectively called mistuning, can have significant

effects on blisk response amplitudes [3–5]. Mistuning may be small when the variability in param-

eters between the sectors does not significantly affect the modes of the structure or large when the

response of the mistuned blisk in a certain frequency region cannot be captured by a set of nomi-

nally cyclic symmetric or tuned modes whose natural frequencies lie in the corresponding region.

Thus, the phenomenon of mistuning limits the applicability of a cyclic symmetric model to ap-

proximately determining the natural frequencies of a system with small mistuning. The response

amplification which occurs due to mistuning also necessitates the use of probabilistic analyses

[6, 7] in the design of blisks to account for uncertainties associated with the values of mistuning

parameters such as material stiffness and density which cannot be exactly specified in the design as

they are subject to the vagaries of manufacturing. ROMs are indispensable for Monte-Carlo (MC)

type probabilistic analyses which require multiple runs of different mistuning patterns applied to

the same underlying tuned system. The effects of mistuning were studied widely and a number of

different ROMs were proposed for linear mistuned blisks. These include modifications of general

linear reduction methods such as Craig-Bampton component mode synthesis (CB-CMS) [8–13],

as well as more specialized techniques developed especially for blisks such as subset of normal

modes (SNM) [14], fundamental model of mistuning (FMM) [15], component mode mistuning

(CMM) [16–18] and asymptotic model of mistuning (AMM) [19–21].

However, not all blisks are designed to behave linearly. In fact, nonlinearities are often in-

troduced into blisk design to lower resonant responses and stresses. Traditionally, friction inter-

faces on shrouds, under-platform dampers (UPDs) or ring dampers have been employed to provide

additional damping. Nonlinearities can also occur unintentionally such as cracks or defects in
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blades. Modeling these nonlinear effects is paramount to achieve accurate estimates of responses

and stresses in the blisks. The earliest attempts at modeling nonlinear contacts in blisks involved

approximating the nonlinear forces using lumped parameters [22, 23] at every sector. The research

focus then shifted to modeling complex localized behavior of frictional forces [24, 25]. Iwan mod-

els which were initially developed for modeling hysteretic behavior under constant unidirectional

normal load have been employed extensively to model certain types of interfaces [26–29]. Later,

models which predict the local frictional forces under different regimes of stick, slip and separation

under varying periodic normal loads were proposed [30–33]. To model nonlinear Coulomb friction

accurately, a number of these models must be used at every contact interface to calculate the local

values of normal and tangential frictional forces from the local relative displacements. Moreover,

to find steady state solutions, the friction forces over the entire period must be calculated iteratively

till convergence is achieved. These additional calculations greatly increase the computational ef-

fort required to predict forced responses for blisks with frictional interfaces. The computational

cost associated also increases sharply with the number of nonlinear degrees of freedom. Practi-

cally, simulation times for calculation of the steady state forced response of a high fidelity blisk

model with nonlinearities at single frequency using time-marching or transient dynamic analysis

(TDA) are in the order of days or weeks, even with modern computational hardware. Hence, re-

duction in the dynamic simulation times was essential to make computational predictions feasible

for nonlinear blisks.

Reductions in calculations were initially obtained in the time-domain by using well-known

general approaches to nonlinear differential equation solving such as the harmonic balance method

(HBM) [34, 35]. HBM converts the nonlinear differential equations in the time-domain associated

with the blisk dynamics into algebraic equations in the frequency domain associated with periodic

harmonics of the response. Reductions in calculations are obtained by retaining a finite number of

harmonics for calculating the solution. The conversion to the frequency domain entails a complica-

tion due to the nonlinear forcing functions in the time-domain equations which appear as functions
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of displacements at the interfaces. In general, it is not possible to find a closed form expressions for

the equivalent harmonic nonlinear forcing functions which must appear in the frequency domain

HBM equations. To address this issue, an alternating frequency-time technique (AFT) [36, 37]

was proposed, to numerically obtain the harmonic nonlinear forces by calculating them in the time

domain as functions of displacements and converting them back into the frequency domain by

using Fourier and inverse-Fourier transforms. Calculation of the forced frequency responses for

nonlinear blisk using HBM and AFT has become standard practice in the field [38–48].

Due to the local nature of the forces which act only at contact interfaces, it is possible to

obtain further reductions. Researchers have used previously developed linear reduction techniques

to obtain spatial reductions at the non-contact linear DoFs only [35, 40, 49, 50]. However, these

techniques retain all the nonlinear DoFs from the original models and must perform associated

HBM and AFT simulations, which contribute to the majority of the calculation costs. Another

perspective on understanding the response of nonlinear systems is the formulation of nonlinear

normal modes (NNMs) [51–54] which are nonlinear synchronous motions of the system where the

motion of a single DoF of a system can describe the motion along all other DoFs. Unlike linear

modes of a system, these modes are energy dependent and change with the level of activation

and consequently with response frequency [55, 56]. The calculation of these modes is no easier

than calculating the nonlinear response itself. In fact, HBM is commonly used to calculate these

modes for large and complex systems such as nonlinear blisks [55, 56]. Since the concepts of

superposition and orthogonality do not generally apply for NNMs [55, 57], model reduction by

using a reduced order basis is not an option. Instead, researchers have sought to find invariant

manifold descriptions [54, 57–60] of these NNMs to reduce the nonlinear dynamics. In the past,

such methods have been applied to simple models with relatively few DoFs [57]. Reduction of the

dynamics of large models such as blisks with complex friction nonlinearities using NNMs is quite

challenging due to high computational costs and remains a field of active research [61].

More commonly for such nonlinear systems, researchers have used other methods to calculate
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a linear basis which approximately spans the nonlinear motion space and projected both the linear

and nonlinear dynamics onto the basis to obtain ROMs. Many popular methods use proper or-

thogonal modes (POMs) [62] to estimate the span of the nonlinear response. The main drawback

of such POM based methods [63–67] and their derivatives is the computational power required

to calculate the nonlinear response. Even with the associated computational cost, they may be

feasible for creating models of well-understood systems which are not expected to change their

behavior with time. However, they remain a poor choice for systems like blisks where fundamen-

tal uncertainties of mistuning and associated probabilistic calculations would require that nonlinear

calculations be performed every time the model is changed slightly. Other projection based reduc-

tion methods seek to devise specific reduction bases which serve well in the specific circumstances

of application they are designed for, but cannot be broadly generalized to all types of nonlineari-

ties. One such reduction method, which is pertinent to blisks with intermittent contact or cracks, is

based on ideas of bilinear modes (BLMs) representing the dynamics of localized piece-wise linear

systems [68–70]. BLMs are linear normal modes for the system with special boundary conditions

at the surface where the intermittent contact takes place. In [69] it was shown that BLMs are able

to capture the nonlinear dynamics of a cracked plate with intermittent contact by approximating the

dominant POMs calculated from the nonlinear response. The concept of BLMs was extended in

[71] to directly calculate approximations for the periodic steady-state response at resonant frequen-

cies using modes similar to BLMs. This method, referred to as bilinear amplitude approximation

(BAA) and was considerably faster than the BLM ROMs used in [69] and was also used to con-

struct ROMs for blisks in [72]. More recently, in [70], BLMs were used to reduce a cracked plate

where the effects of tangential frictional forces were also considered in addition to the normal re-

action forces. Another important operational regime for nonlinear blisks, especially with friction

damping mechanisms is microslip [24]. A structure in microslip is dominated by frictional effects

and exhibits complex stick-slip behavior at contact interfaces both spatially and temporally. [50]

presents ROMs for blisks with ring dampers by using reduction basis comprised of linear modes
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of the damper in full stick and gross slip. [73] uses the same reduction basis and achieves further

simplification of the dynamics by approximating equivalent linear modal damping and stiffness

parameters for the nonlinear forces using an energy equivalence calculation.

In chapter II of this work, ROMs are developed for calculating steady-state dynamics of non-

linear shrouded blisk with frictional contacts. The dynamics of a shrouded blisk is significantly

different from the afore-mentioned structures with cracks or blisks with ring dampers. Unlike in

cracked structures, friction plays a more dominant role in shrouded blisks. Moreover, due to the

contacts at the shrouds being in the proximity of the blade tip, there is a significant effect of the fric-

tional forces on the blisk response to such an extent, that the nonlinear displacements no longer lie

on the subspace spanned by the linear modes corresponding to stick and slip. Ideas from previous

works are synthesized, modified and amalgamated, to develop a basis called the adaptive microslip

projection (AMP) basis which can span the required subspace by approximating the spatial correla-

tions exhibited by the system. The AMPs are obtained from modes of intermediate linear systems

corresponding to special boundary conditions (BCs) at the contact interfaces. These BCs are ob-

tained by approximating the blisk’s movement with linear modes at different levels of amplitude

and predicting its effect on the contact state at the interfaces. Forced frequency responses of ROMs

for shrouded blisks with and without small stiffness mistuning in the blades are calculated using

HBM and AFT and validated against full order model responses. The subspaces spanned by the

AMP modes and the dominant POMs of the nonlinear responses are also compared.

In chapter III, the AMP reduction procedure is validated experimentally. To do so, experimen-

tal apparatus and techniques were developed which would allow the detection of spatial coherences

in the response of an elastic system subject to contact nonlinearities. The experimental rig consists

of a blade-like cantilevered beam, constrained by a contact at its non-fixed end. The contact is

relatively large compared to those used in traditional contact experiments [74] to allow complex

microslip phenomenon of interest. One of the challenge was the prediction of the actual behavior

with simulations, which required accurately identifying model parameters. Frequency responses
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and linear modes of this structure were measured experimentally. FE models of the structure

were adjusted to match the linear modes and obtain the mass and initial stiffness matrices. These

were used in conjunction with node-to-node contact models to simulate nonlinear responses with

HBM. All contact parameters were then identified using an optimization process whose objective

was to minimize the error between the experimental and simulated frequency responses at mul-

tiple excitation levels. The identified nonlinear model was then used to validate the AMPs by

comparing ROMs with the non-reduced model frequency responses in simulations. Additionally,

POMs were obtained from experimentally observed responses and were compared against AMP

modes calculated by assuming stick-slip conditions along the contact interface based on observed

displacements near contact.

An important aspect of contact dynamics in blisks, which is not often considered in literature,

is the variability in the contacts across a blisk. It is well known that variability in the material

properties of the blades plays a significant role in the dynamics and there is a bulk of existing

literature on the effects of blade mistuning [5, 7, 19, 75–78]. However, there is a dearth of research

regarding the effects of mistuning in the properties of the contacts themselves. Some studies which

considered such mistuning in the parameters of the contact interfaces of a blisk [22, 40, 49] used

only simple lumped or single-node contact models for modeling friction interfaces. Also, most

existing studies focus on the mistuning of damping characteristics in UPDs. Thus, a study is

conducted in chapter IV to glean greater insight into the effects of contact mistuning in shrouded

blisks analyses. The effect of mistuning in the stiffness parameters of localized contacts at the

shrouds of an otherwise tuned blisk is studied, separating the effect of contact mistuning from that

of mistuning due to inter-blade variability. The contact stiffness parameters are varied randomly

both across and within sectors. The effect of the parameter variations on maximum response

amplitude and frequency are analyzed. Probabilistic analyses are carried out by fitting a Weibull

function to probabilistic distributions of amplification factors (AFs) obtained from Monte Carlo

(MC) simulations of linear and nonlinear forced responses.
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Another nonlinear mechanism, which has gained interest from the industry and academia re-

cently, is the use of damping coatings adhered to the blades of the blisk [79–83]. In existing

literature, the nonlinear effects of the coating applied to a single blade or beam have been an-

alyzed [81, 83]. In chapter V of this work, the effects of amplitude dependent behavior of the

coating are analyzed for an entire blisk with coated blades and a ROM is developed to reduce its

dynamics. Studies have shown that at the sector or individual blade level, these coatings behave

nonlinearly, providing increasing damping with increase in amplitude. In some cases, the stiffness

(and hence the resonant frequencies) are also affected differently by the different excitation levels

due to coatings [81, 83]. However, the response amplitude which dictates the level of activation of

this nonlinearity does not affect the blade modes significantly [81]. In addition, nonlinear forces

due to the coating act everywhere on the face of the blades. These factors distinguish the coating

nonlinearity from the more localized friction nonlinearities in terms of its behavior and effects.

Consequently a different tactic is motivated for designing ROMs for coated blisks. The level of

local response differs substantially from sector to sector in mistuned systems. This implies that

the nonlinear effects are different in magnitude from sector to sector. Hence, there are mistuning

effects due to the coatings which are dependent on both the nonlinearity and the linear mistuning in

coated blades. Hence, a suitable ROM for the nonlinear coated blisk is constructed by modifying

the mistuning parameters in a linear blisk ROM to be amplitude dependent. ROM responses are

compared with TDA responses of FE models augmented with coating nonlinearities. Probabilistic

analyses are also conducted by varying underlying linear mistuning pattern in the blades which

affects the nonlinear dynamic response due to the inherent amplitude dependency. MC simula-

tion results for blisks with both linear and nonlinear coatings are compared to show the effect of

nonlinearity in coatings and prove the necessity of nonlinear analyses.

This work also expounds on the mathematical formulation of cyclic symmetric matrices for

blisks in appendix A and the corresponding CB-CMS reduction for such a blisk in appendix B.

CB-CMS is used in chapter II as a pre-reduction step to reduce linear DoFs before the AMPs are
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applied for further reductions.
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CHAPTER II

Adaptive Microslip Projection

Turbine bladed disks (blisks) which constitute critical components of most modern turboma-

chinery, are known for their complex vibratory behavior [1, 2, 4]. A good blisk design necessi-

tates the knowledge of the dynamic behavior of the component in different regimes of operation.

However, small parametric uncertainties and inter-blade structural variations called mistuning are

known to affect blisk dynamics drastically under certain conditions. Introduced by manufactur-

ing tolerances, thermal stresses, wear and other causes, these variations make the design process

especially challenging. Since it is not possible to reduce or eliminate these uncertainties beyond

a certain point, the designer must ensure safe operation within the field of uncertainty of all the

design parameters [2, 4]. To achieve this, probabilistic analyses are often used to study behaviors

of various blisk designs with random deviations in certain parameters such as blade stiffness [4].

Finite element (FE) modeling is a powerful technique which may be used to accurately capture

the dynamic characteristics of a physical blisk in the computational domain. However, a single

time domain analysis of a blisk FE model with millions of DoFs may take days or weeks to simu-

late. Hence, it is too cumbersome and time-intensive to use FE models with probabilistic analyses,

which require a large number of runs to generate meaningful results. Instead, reduced order models

(ROMs) derived from the FE models are employed. ROMs aim to reduce the DoFs of the original

FE model to facilitate faster simulation, while retaining their accuracy by reducing redundancies
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and capturing coherent behaviors between multiple DoFs [4, 6].

Hence, generation of blisk ROMs is an important and well-established field of research. Var-

ious techniques have been developed to reduce mistuned blisk models without nonlinearities [10,

11, 13–16, 18–21, 84]. Blisks with friction damping structures such as shrouds or under-platform

dampers introduce additional complexity due to localized nonlinearities at the contact interfaces

which can lead to complex stick-slip behavior [30–32]. General approaches to nonlinear differen-

tial equation solving such as the harmonic balance method (HBM) are often employed to reduce

temporal complexity of such problems [34, 35, 38, 42, 43]. In addition, the linear DoFs of the

model which do not directly experience the contact forces may be reduced by techniques such

as Craig-Bampton component mode synthesis (CB-CMS) [8–10, 12]. However, this still leaves a

large number of nonlinear equations at the interface DoFs which must be solved in full. Since,

the solution of the nonlinearities is the aspect which requires the most computational effort; it is of

significant interest and the primary object of this work to reduce the number of nonlinear equations

by reducing the corresponding DoFs.

The case of a blisk with friction interfaces at contacting surfaces on its shrouds is analyzed.

The tuned case is analyzed first where all the blades are identical. Later a small-stiffness mistun-

ing is also introduced in the blades. A baseline model considered as a full order model is used to

compute the nonlinear forced response using HBM. The baseline response is spatially correlated

for various levels of microslip. Also, a relatively low number of these correlations are dominant

in the blisk dynamics compared to the number of DoFs in the model and this offers the possibility

of model reduction. A novel method is proposed to obtain a set of reduction basis functions for

the contact interface DoFs and the remaining DoFs called adaptive microslip projection (AMP).

It is postulated that the microslip regime which involves nonlinear friction dynamics can be cap-

tured by a set of intermediate linear systems generated by imposing specifically chosen boundary

conditions at the contact interfaces. These boundary conditions are generated by comparison of

estimated normal and tangential forces as a function of amplitudes of the modes of the fully stuck
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system. The modes of these intermediate systems which lie in the frequency range under consid-

eration collectively form the AMP reduction basis which is then used to construct the ROM. The

AMP procedure used to develop ROMs involves the solution of linear systems in addition to math-

ematical operations such as vector multiplication and comparators. No nonlinear equations are

solved during the calculation of reduction modes as is the case with other reduction methods such

as proper orthogonal decomposition (POD). Simulated responses of full models and ROMs are

studied at various engine orders, with single and multiple harmonics included and under varying-

conditions of stick and slip. It is seen that the AMP procedure is successful in creating ROMs

which predict the response amplitudes with nearly the same accuracy as the baseline model, while

reducing computational effort significantly.

2.1 Methodology

2.1.1 Craig-Bampton component mode synthesis

The methodology used to reduce the blisk system is detailed in Fig. 2.1. The system matrices of

the full wheel free finite element (FE) model (MF and KF ) correspond to the physical degrees of

freedom (DoFs) qF . Here the moniker free refers to the fact that no contact conditions are enforced.

i.e. no boundary conditions are enforced at nodes on contact interfaces. The DoFs qF may be

divided into master DoFs qM and slave DoFs qS belonging to master and slave nodes respectively.

Master nodes include the nodes on contact interfaces, the nodes where static or dynamic forces

are applied and nodes where response is calculated. The nodes in the FE model which are not

master nodes, are termed as slave nodes. A Craig-Bampton component mode synthesis (CB-CMS)

substructuring procedure [8] is then used to reduce the slave DoFs qS to a reduced set of modal

DoFs ηS . The modes employed for this reduction, also called the slave modes or the normal modes,

are modes of the structure with all the master DoFs constrained to zero displacement. The master

DoFs qM which include the DoFs where nonlinear contact forces act, are retained without any
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Figure 2.1. Craig-Bampton component mode synthesis

reductions by this procedure. The CB-CMS reduced system DoF vector is represented qr and the

corresponding system matrices are Mf and Kf representing mass and stiffness respectively.

2.1.2 Relative co-ordinates

The dynamic equations describing the shrouded blisk system may be represented in the time

domain as:

Mf q̈r + Cf q̇r + Kfqr = fE + fC(qr) (2.1)

where Mf and Kf are the free mass and stiffness matrices of the blisk with no contact conditions

enforced. i.e. the contacting nodes are free and not constrained in any manner when developing

these matrices. Cf is the linear damping matrix of the free system. fE is the vector of excitation

forces applied to the model. The contact conditions are enforced through the vector of contact

forces fC which arise due to Coulomb friction nonlinearities and are determined as a function of

the displacements using a suitable contact model. The displacements qr in Eqn. (2.2) are expressed
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Figure 2.2. Contact surfaces S1 and S2

in the relative co-ordinates such that:

qr =


qS2,l − qS1,l

qS1,l

qO

 =

qN

qL

 (2.2)

where

qN = [qS2,l − qS1,l] ; qL =

qS1,l

qO

 (2.3)

qS1,l and qS2,l represent the corresponding DoFs of matching node-pairs on contacting surfaces S1

and S2 in the local co-ordinate system l shown in Fig. 2.2. qO represents all other DoFs including

any reduced co-ordinates. qN is the vector of nonlinear co-ordinates which contains the relative

displacements of the contact nodes. The rest of the co-ordinates form the vector of linear co-

ordinates qL. This partition into nonlinear and linear DoFs has been used before in [85] and [86].

It leverages the fact that the nonlinear contact forces, when expressed in these relative co-ordinates
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Figure 2.3. Harmonic balance and response calculation

act only along the DoFs of the relative local displacements. Thus, fC may be expressed as:

fC =

fC,N

0

 (2.4)

The linear DoFs do not directly experience the nonlinear contact forces. Since fC is the variable

introducing nonlinearity in Eqn. (2.2) the formulation using relative co-ordinates is particularly

beneficial as the number of nonlinear equations it involves is proportional to the number of con-

tact node-pairs. If expressed in other co-ordinate systems which do not include the local relative

displacements, Eqn. (2.2) will in general, have twice the number of nonlinear equations i.e. pro-

portional to the number of contact nodes. There are other advantages to choosing the relative

co-ordinates which will become apparent in section 2.2.2.
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2.1.3 Harmonic balance

The steady state solution of the dynamic Eqn. (2.1) can be obtained using a harmonic balance

method (HBM) [34, 35, 38]. In HBM, the steady state displacements and nonlinear forces are

assumed to be periodic. Hence, they are expressed as a sum of harmonic terms. As the harmonic

functions are linearly independent, equating their coefficients yields a set of algebraic balance

equations in the frequency domain for harmonic-indices h = 0 to h = nh at a frequency ω as

follows:

Dhq̄hr = f̄hE + f̄hC (2.5)

where

Dh :=
[
−(h.ω)2Mf + (ihω)Cf + Kf

]
(2.6)

Eqn. (5.4) may be solved using a nonlinear algebraic equation solver which tries to optimize q̄hr

to obtain a zero residual. The iterative solver uses the alternating frequency time (AFT) procedure

[34, 36, 37] in conjunction with a contact model. At each step of the solver, the Fourier coefficients

of local relative displacements in the tangential (ūhx,i, ū
h
y,i) and normal (v̄hi ) directions are extracted

for every node-pair i from the appropriate DoFs of q̄h. An Inverse Fast Fourier transform (IFFT)

is employed to expand these coefficients into periodic functions in the time domain. These time

displacements are then used in contact models to determine the local contact forces (T̄h
x,i, T̄

h
y,i and

N̄h
i ) which are converted back to the frequency domain using a Fast Fourier transform (FFT) .

Once the procedure is carried out for every node-pair i, it is used to determine f̄hC which is then

used in Eqn. (5.4) to obtain q̄hr . Although this information is sufficient for the solver to converge to

the solution, convergence rates may be greatly improved by adding the Jacobian of the residual of

Eqn (5.4) as an input to the solver. This requires the contact model to also output the derivatives of

the Fourier coefficients of the contact forces with respect to the Fourier coefficients of the relative

displacements. Though the calculation of these derivatives has been implemented in this study,

their calculation procedure is not shown here. The intricacies of such derivations may be found in
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[38] and [87].

An arc-length continuation method [35] which uses a predictor-corrector approach, is used to

determine the evaluation frequencies during the simulation run-time. This is more robust in track-

ing the actual response curve than pre-specifying frequency calculation points before simulation.

A minimum frequency resolution is specified which limits how far apart two consecutive solution

frequency points might be. In this analysis, it is assumed that the dynamics due to higher har-

monics do not affect the 0th harmonic static solution [38]. The displacement at static equilibrium

q̄0
r represents the steady state static solution at ω i.e. the mean displacement over a period. It is

the time-independent state about which the higher harmonics which represent the dynamics of the

system may be solved. As shown in Fig. 2.3, this static solution may be calculated separately. f̄0
E is

the vector of static forces applied to the system and in this analysis corresponds to nodal forces ap-

plied to the contact nodes normal to the contact surface to enforce the contact. These are balanced

by static contact forces f̄0
C generated by the contact and the forces exerted due to the stiffness Kf

of the system. q̄0
r is determined by solving the set of static nonlinear equations in Eqn. (5.6) which

are obtained by substituting h = 0 in Eqns. (5.4) and (5.5).

2.1.4 Contact model

The contact conditions are enforced at the contacting surfaces by means of 2 independent

nonlinear 1D contact models which capture the dynamics in mutually orthogonal directions at

each contact node-pair. The models employed here were first developed in [88] and later used in

[35, 89]. They are found to perform suitably well when compared to 2D contact models (which

simultaneously model 2 directions of motion [35, 90–92]), while reducing the computational cost

significantly. Tangential contact stiffnesses kx,i and ky,i and normal contact stiffnesses kz,i are

represented as 1D spring elements. w is the magnitude of slip. The normal contact forces Ni at

node-pair i may be obtained as a function of their normal relative displacement vi as shown in
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Eqn. (2.7).

Ni(t) = max (kz,i.vi(t), 0) (2.7)

When the surfaces penetrate each other vi is positive and Ni is non-zero [35]. Unlike in the sources

cited for the contact model, the normal contact pre-stress is not included explicitly in Eqn. (2.7)

because vi(t) includes the static solution and indirectly accounts for the pre-stress. The tangential

contact forces depend on the contact condition of the system as shown in Eqn. (2.8). Separation

occurs at node-pair i when Ni(t) = 0. If Ni(t) is positive the nodes are in contact and might be

in stick or slip. The nodes are said to be in stick in the x-direction if wx,i(t) remains constant i.e.

ẇx,i(t) = 0 and similarly for the y-direction. If the nodes are not in separation or in stick, they are

said to be in slip.

Tx,i(t) =


kx,i (ux,i(t)− wx,i(t)) stick

sign(ẇx,i)µ.Ni(t) slip

0 separation

(2.8)

The y-direction tangential forces may be obtained similarly. It is not possible to pre-determine the

contact condition at each instant of time. Instead the model starts off with the assumption that the

nodes are sticking at time t = 0 and eventually converges to the correct conditions over a period.

Switching between the contact conditions involve several transition criteria which may be found

in [35].

2.2 Model order reduction

2.2.1 Reduction methods

Figure 2.4 shows an outline of the reduction strategy employed in this study. As described in

previous sections, HBM is used to generate the frequency response of the baseline blisk model.

The objective is to obtain a reduction basis Φ, which might be employed to reduce the baseline

model. The AMP procedure is employed to obtain this reduction, the details of which are explained
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Figure 2.4. Reduction strategy

in section 2.2.2. As shown in Fig. 2.4, depending on whether, all the DoFs of the reduction basis

are employed for reduction or only the nonlinear DoFs, different types of reduced order models

(ROMs) are obtained. The formulation of and the difference between the two reduction techniques

is now explained. It is possible to completely reduce all the DoFs of Eqn. (5.4) to a set of reduced

co-ordinates p if one is able to obtain a reduction basis Φ such that:

q ≈ q0 + Φp (2.9)

Applying the reduction in Eqn. (2.9) to only the dynamics in Eqn. (5.4), one may obtain:

Dh
ROM p̄h = ḡhE + ḡhC ; (h ≥ 1) (2.10)

where

Dh
ROM := ΦTDhΦ (2.11)
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ḡhE := ΦTf̄hE (2.12)

ḡhC := ΦTf̄hC (2.13)

This reduction is henceforth referred to as the full DoF reduction abbreviated as FR. The matrix

equation in Eqn. (5.4) may be separated into two sets of equations, corresponding to the linear and

nonlinear DoFs of qr in Eqn. (2.2) as follows :

Dh
N,N Dh

N,L

Dh
L,N Dh

L,L


q̄hN

q̄hL

 =

f̄hE,N

f̄hE,L

+

f̄hC,N

0

 (2.14)

It may be seen from Eqn. (5.6) that the linear DoFs are completely determined by the nonlinear

DoFs by the relationship:

q̄hL =
(
Dh
L,L

)−1 (−Dh
L,N q̄hN + f̄hE,L

)
(2.15)

Using Eqns. (5.6) and (2.15) one might describe the dynamics of the system only in terms of the

nonlinear DoFs:

Hhq̄hN = −Dh
N,L

(
Dh
L,L

)−1
f̄hE,L + f̄hE,N + f̄hC,N (2.16)

where

Hh :=
(
Dh
N,N −Dh

N,L

(
Dh
L,L

)−1
Dh
L,N

)
(2.17)

The reduction basis may also be split into its linear and nonlinear DoFs:

Φ =

ΦN

ΦL

 (2.18)

A reduction may be applied to only the nonlinear DoFs for the dynamics as follows:

qN ≈ q0,N + ΦNs (2.19)
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Eqn. (2.19) may be substituted into Eqn. (2.16) to yield the reduced equations:

Hh
ROM s̄h = l̄hE,L + l̄hE,N + l̄hC,N ; (h ≥ 1) (2.20)

where

Hh
ROM := ΦT

NHhΦN (2.21)

l̄hE,L := −ΦT
NDh

N,L

(
Dh
L,L

)−1
f̄hE,L (2.22)

l̄hE,N := ΦT
N f̄hE,N (2.23)

l̄hC,N := ΦT
N f̄hC,N (2.24)

This is referred to here as the nonlinear DoF reduction and abbreviated as NLR. As mentioned,

the static solution is separately evaluated before and is not reduced in either FR or NLR. When

nonlinear DoFs are captured by the reduction basis accurately, the NLR reduction is accurate while

the FR reduction might not be accurate. This is because the FR reduction reduces the linear DoFs in

addition to the nonlinear DoFs. In other words, the approximation made in Eqn. (2.9) is a stronger

condition than the approximation made in Eqn. (2.19). However, NLR is also comparatively slower

than FR per iteration as it involves the inversion of a full matrix Dh
L,L in Eqns. (2.16), (2.17)

and (2.22). This comparison does not consider the convergence rates of the two procedures and

it is possible for NLR to be faster over a range of frequencies under certain circumstances. This

trade-off is analyzed in detail later.

Another important point to note is that in both cases, the reduced co-ordinates must be ex-

panded back to obtain the local displacements during the AFT procedure. However, the nonlinear

solver handles only the reduced co-ordinates which accounts for the bulk of the computational ef-

fort saved. Although, it might be possible to reduce the contact model itself to some set of reduced

co-ordinates, this is beyond the scope of this study. It is possible that such a reduction can lead

to significant improvement in simulation time over a large number of iterations. However, since
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most of the operations involved in the contact model are comparators and linear operators, which

are much faster than the rest of the HBM procedure, the time savings offered by them will be

proportionally smaller to those offered by DoF reduction for a fixed number of iterations.

2.2.2 Calculation of AMP modes

Microslip is a nonlinear phenomenon which is a result of the spatial variation of contact condi-

tions across the contacting surfaces. One may imagine an extreme case in which the conditions are

such that all the nodes at the interfaces are stuck at all times. In this case, none of the nonlinearities

of Eqns. (2.7) and (2.8) are activated at any time. The slip is always zero in all tangential directions

and contact is never lost. In effect, the nonlinear blisk system behaves in the same manner as that

of a linear system with the contact nodes permanently joined by stiffness elements. Such a stuck

system will have the stiffness matrix:

Kst = Kf + ∆Kst (2.25)

In the relative co-ordinate system, ∆Kst is a diagonal matrix with entries equaling contact stiff-

nesses at the corresponding nonlinear contact DoFs and zeros everywhere else:

∆Kst :=



. . . . . . . . . · · · · · · · · · · · · · · · · · · ...
... 0 kx,i 0 · · · · · · · · · · · · · · · ...
...

... 0 ky,i 0 · · · · · · · · · · · · ...
...

...
... 0 kz,i 0 · · · · · · · · · ...

...
...

...
... . . . . . . . . . · · · · · · ...

...
...

...
...

... . . . kz,nN

. . . · · · ...
...

...
...

...
...

... . . . 0
. . . ...

...
...

...
...

...
...

... . . . . . . ...

0 · · · · · · · · · · · · · · · · · · · · · · · · 0



(2.26)

22



This diagonal form of ∆Kst is another advantage of choosing the relative co-ordinates and plays

an important role in keeping the calculation simple and reducing computational redundancy. The

contact condition does not affect the mass of the system and hence the mass matrix remains the

same as that of the free system for the stuck system.

Mst = Mf (2.27)

One may envision several intermediate linear systems between the free and the stuck systems which

correspond to different contact boundary conditions at different nodes. A stuck node-pair has all

three contact stiffnesses present. Slipping in a particular tangential direction may be thought of as

removing the tangential stiffness element between the nodes in that direction altogether. Separa-

tion at a node-pair may be represented by removing all three stiffnesses between the nodes. Thus,

a simple masking process may be carried out on ∆Kst by either retaining a particular stiffness

along the diagonal or zeroing it based on the boundary condition. Every masking operation will

correspond to a linear system in the microslip regime with unique spatial contact conditions where

nodes are in stick, slip or separation for all time. It is postulated that the modes of these inter-

mediate linear systems with constant boundary conditions will, in unison, be able to capture the

complex nonlinear dynamics wherein the contact conditions keep changing constantly. However,

there are exponentially many possible boundary conditions and choosing them randomly might not

yield the required basis. Instead, a method to predict boundary conditions which are representative

of the contact behavior is proposed . To do so, the stuck system analyzed first as follows:

KstΨst = MstΨstΛst (2.28)

The modes of the stuck system in the frequency range of interest can be obtained by solving the

generalized eigenvalue problem posed in Eqn. (2.28) where Ψst = [ψst,1 . . . ψst,α] is the matrix

consisting of the α mass normalized modes of the system which are expected to respond to the
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excitation the system is subjected to. Λst = diag ([λst,1 . . . λst,α]) is the diagonal matrix of the cor-

responding eigenvalues. Next, normal and tangential force estimate vectors (N̂, T̂) at the contact

interfaces are calculated by considering an artificial modal displacement p̂ along a stuck mode in

the frequency range of interest ψst,j, where j ∈ {1, 2, . . . , α} as follows:

N̂(p̂, j) = N0 + kz ◦ (ψst,j,z p̂) (2.29)

T̂x(p̂, j) = kx ◦ (ψst,j,x p̂) (2.30)

where N0 = f̄0
C,N,z(q0) is a vector of static normal contact forces which may be extracted from the

converged static solution. kz = [kz,1kz,2 . . . kz,i . . .]
T and kx = [kx,1kx,2 . . . kx,i . . .]

T , i being the

node-pair or DoF index, represent contact stiffness vectors. The symbol ◦ represents the entry-wise

Hadamard or Schur product of vectors. The stiffness matrix of the linear system corresponding to

the predicted microslip boundary condition which itself is a function of p̂ and stuck mode-index j

is given by:

Kms(p̂, j) = Kf + ∆Kms(p̂, j) (2.31)

where ∆Kms(p̂, j) is obtained by a simple masking procedure carried out node-wise on the diago-

nal elements of ∆Kst as follows:

(∆Kms)3i−2,3i−2 :=

 kx,i if (T̂x)i ≤ µ(N̂)i i.e. stick at DoF i

0 if (T̂x)i > µ(N̂)i i.e. slip at DoF i
(2.32)

(∆Kms)3i,3i :=

 kz,i if (N̂)i ≥ 0 i.e. contact at DoF i

0 if (N̂)i < 0 i.e. separation at DoF i
(2.33)

For a general mistuned blisk the boundary conditions are evaluated at every node-pair i on all the

contact-surfaces of the blisk. Tuned cyclically symmetric systems in general, may exhibit localized

responses due to nonlinearity. However, no such intrinsically localized modes (ILMs) were found
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in the cases used for the study, at least in the regime of microslip under investigation. Hence, for

a tuned blisk, the boundary conditions are assumed to be cyclically symmetric for all the cases

studied here. i.e. the boundary conditions evaluated for the first sector are enforced at all the

sectors. If localized response is expected from a tuned baseline case, then that localized response

may be captured by including reduction modes with multiple nodal diameters as opposed to a

single nodal diameter by choosing the appropriate stuck modes for the AMP generation process.

Alternatively, the symmetric boundary condition requirement may be relaxed and the AMP modes

may be evaluated in a procedure similar to the one employed for a mistuned system. The linear

system corresponding to the microslip boundary condition specified by p̂ and j may be represented

as:

KmsXms = MstXmsΛms (2.34)

The corresponding matrix of mass normalized modes may be expanded as:

Xms = Xms(p̂, j) = [χ1(p̂, j) . . . χα(p̂, j)] (2.35)

The equations for the local y-direction are similar to those for the local x-direction and may be

obtained by replacing subscript ‘x’ with ‘y’ in Eqns. (2.30) and (2.32) and changing the masking

index on the diagonal of ∆Kms from 3i− 2 to 3i− 1 in Eqn. (2.32). In the interest of brevity

the function arguments p̂ and j have been dropped in Eqns. (2.32) to (2.34). Eqn. (2.34) is solved

and the appropriate modes Xms are included in the reduction basis. The procedure is repeated for

other stuck-modes of interest ψst,j and a range of values for the modal amplitude p̂ = p̂k where

k ∈ {1, 2, . . . , β}. p̂ can take both positive and negative values. These values of p̂ are a user-

supplied input to the AMP generation process. p̂ = 0 corresponds to the static condition of the

system (h = 0 solution) which is usually the same as the stuck system when N0 > 0 at all DoFs.

Increasing the magnitude of p̂ in either the positive or negative direction eventually correspond to

boundary conditions which represent slip and ultimately separation when p̂ becomes high enough.
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The AMP reduction basis consists of the columns of matrices Xms(p̂, j) which are referred to as

the AMP modes:

Φ := [Xms(p̂1, 1) . . .Xms(p̂1, α)Xms(p̂2, 1) . . .Xms(p̂2, α) . . .

. . .Xms(p̂β−1, α)Xms(p̂β, 1) . . .Xms(p̂β, α)]

(2.36)

To choose practical values of p̂, a maximum value of |p̂| = |p̂|max is choosen first to reflect the

expected response of the blisk. This is a value the user can estimate from a variety of sources

such as conservative linear estimations which depend on material damping (amongst other factors

such as contact stiffness) and forcing level. Then the range of values between −|p̂|max and |p̂|max

is sampled (either uniformly or in some other manner, e.g., with more samples near 0 than near

±|p̂|max) to create the vector of chosen p̂ values. Then, boundary conditions are generated corre-

sponding to the chosen values of p̂. It may be observed that for some particular stuck mode ψst,j

the boundary conditions arising out of two different values of p̂ might be the same. Non-unique

boundary conditions may also arise from applying different values of p̂ to different stuck modes

in the AMP procedure. Since the boundary conditions are applied to the full system, care must

be taken to eliminate such duplicate conditions and retain only those values of p̂ which generate

unique boundary conditions; otherwise the AMP basis may be rank deficient. The boundary con-

ditions can be generated and checked for uniqueness very fast. Hence, it is computationally easy

and inexpensive to initially choose a large number of potential p̂ values (i.e., oversampling p̂) first

and then selecting only those values of p̂ which correspond to unique boundary conditions. Those

fewer values of p̂ are used for the actual AMP mode generation.

If several chosen values of p̂ (for the same stuck mode) are too close to each other, the boundary

conditions generated from them might be unique but still lead to a Φ which is nearly rank deficient.

Such a situation might also arise from boundary conditions generated from different stuck modes

which are very similar to each other (e.g. they differ in the contact state at only a few nodes). That

is, even when care is taken to exclude non-unique boundary conditions, it is possible to obtain
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very similar boundary conditions from the AMP procedure which differ in the contact status at

only a few nodes. Such a situation might lend to an ill conditioned Φ. This is especially true for

mistuned cases where boundary conditions might change in the p̂-space node-wise as opposed to a

tuned case where boundary conditions at each sector change identically with p̂. Poor conditioning

often leads to convergence problems and must be avoided whenever possible. In such a case the

AMP basis may be further conditioned by obtaining a singular value decomposition of all the AMP

modes as follows [93–95]:

UΦSΦVT
Φ = Φ (2.37)

Φcond := UΦ,γ (2.38)

Instead of eliminating individual vectors in the basis Φ to improve conditioning, vectors are se-

lected from the left singular vector matrix UΦ. These vectors span the same space as Φ, but are

ordered according to the magnitude of their corresponding singular values (in the diagonal matrix

SΦ). The conditioning of the matrix refers to the ratio of the maximum singular value in SΦ and

the minimum singular value retained. To ensure good conditioning this ratio is chosen such that it

lies below a user defined threshold. As this ratio decreases the number of conditioned basis vectors

retained γ also decreases. The conditioned AMP reduction basis Φcond may be substituted for Φ

in the equations of FR and NLR reductions.

2.3 Results

2.3.1 Baseline model

For the purposes of this study, a sector model of the blisk containing an individual blade at-

tached to a disk sector was developed first in ANSYSr as shown in Fig. 2.5. The sector model

is comprised of 6052 nodes and 14134 elements. A full blisk model, also shown in Fig. 2.5, was
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Figure 2.5. FE models of sector and full blisk

developed from the sector model by arranging 27 sector models contiguously around the blisk’s

central axis and merging the coincident nodes on the adjacent faces of the disk portions of the sec-

tor models. Unlike the disk surfaces in the full model, there are other surfaces at the shrouds shown

in detail in Fig. 2.6, which also touch, but are designed to be in contact rather than be contiguous.

The contacting nodes on these surfaces are not merged but instead form a set of co-incident nodes

in contact as in Fig. 2.2. There are 25 pairs of these nodes at each contacting surface pair and 27

such surface pairs across the model. It must be noted that no contact elements are introduced in this

FE model. This is a free model where gross penetration or separation of the contacting surfaces is

permitted. The blades of all the sectors are modeled with the same elastic material stiffness for the

tuned blisk. For the generation of the mistuned blisk, the blade material stiffnesses at the sectors

are varied with a standard deviation of 4% around an average stiffness which is the same as that

of the tuned case. A rotational velocity about the axial direction is applied to the blisk. Then, a

pre-stressed linear static analysis is carried out to obtain the equilibrium position of the free struc-

ture. Contact pre-stresses cannot be included at this stage of the analysis with the free model. They

are applied later with contact models in MATLABr. After recording the equilibrium position, the

co-ordinates of the structural model are updated. To facilitate analysis and model development the
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Figure 2.6. Shroud and contact patch

size of the linear model is reduced by conducting CB-CMS sub-structuring analysis of the updated

structure in ANSYSr . Well established in the literature, CB-CMS and was originally developed

in [8] and [9] and has been subsequently used extensively for modeling of blisks [10, 35, 38, 84]. It

involves retaining a certain number of interface DoFs corresponding to specifically chosen master

nodes of the full model, while reducing the dynamics rest of the DoFs into a reduced set of orthog-

onal slave modes. The master nodes selected for this analysis include the ones on the contacting

surfaces, in addition to certain nodes near the blade tip where the structure is to be forced externally

and the response is to be calculated. The locations of these nodes are shown for a single sector in

Fig. 2.6. The master DoFs are chosen in a circularly symmetric fashion around the model i.e. if

a node in a certain sector is a master node; the corresponding nodes in all other sectors are also

master nodes. After CB-CMS analysis, the mass Mf and stiffness Kf matrices of the free system

are extracted in the basis of the relative co-ordinates qr shown in Eqn. (2.2). These are exported

to MATLABr where the rest of the analysis is carried out. For this study, it is assumed that Cf is

proportional to Kf .

The 1D contact models discussed earlier are applied at each node-pair and the set of nonlinear

equations obtained are considered the full order baseline CB-CMS nonlinear system. Although
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this baseline contains reduced linear DoFs, it retains all the nonlinear DoFs of contact from the FE

model. To simulate the contact pre-stresses due to thermal effects, design interferences and other

factors, a vector of constant normal forces f̄0
E = fp is applied on the contact nodes. The static

displacement q0 due to this pre-stress and the ensuing normal contact forces N0 are calculated.

A representative normal contact force magnitude due to the pre-stress |F0| may be defined as

the sum of all entries of N0 i.e. |F0| =
∑
i

N0,i, where i is the node-pair index. The dynamic

excitation force vector determines the first harmonic of external forcing f̄1
E . The higher harmonics

of f̄hE are zero vectors. In this work, an engine order (EO) excitation is used. A traveling wave

excitation is applied axially at preselected nodes near the blade tip which are selected in a circularly

symmetric manner. The EO represents the number of peaks of forcing that pass across each blade

per revolution. Alternatively, it is the number of peaks the spatial forcing function has at any instant

of time. The forcing amplitude is represented by |F|. The baseline model is solved with HBM.

A trust region algorithm is used for solving the algebraic balance equations. The amplitude of the

periodic response at any excitation frequency along the axial direction of the blisk obtained after

the HBM solution at each response data node is denoted by |X|.

The system is then reduced by generating AMP modes and using the reduction basis to either

employ FR or NLR reduction. The SVD filtering is carried out wherever necessary. The normal-

ized response |X|/|F| of systems with friction damping, is dependent on the level of microslip in

the system. The dimensionless parameter µ|F0|/|F| is one of the metrics which has been used to

study the dynamic response at various levels of microslip [30, 35, 88]. For a sufficiently high value

of this parameter, the nonlinear system is fully stuck at all times and its response is the same as the

corresponding stuck linear system. As the value of the parameter decreases, more nodes tend to

enter slip. Hence, normalized blisk responses are analyzed for different values of this dimensional

parameter to study the response of the system at different levels of microslip. The values of the

input parameters such as µ, fp and |F| are adjusted based on the desired level of microslip and the

corresponding magnitude of µ|F0|/|F|.
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Figure 2.7. Frequency vs number of nodal diameters plot for stuck tuned blisk

2.3.2 ROMs for tuned blisk model

This section involves the comparison between the ROMs generated by using the AMP proce-

dure and the baseline model. The natural frequencies of the linear stuck system are plotted versus

the number of nodal diameters (ND) exhibited by their corresponding modes ψst,j’s in Fig. 2.7.

For the tuned system the natural frequencies are repeated (except for ND 0 modes) and thus each

frequency has two modes (called a mode-pair) with the same ND associated with it. A mode-pair

is excited by a forcing with the same EO as its ND and by higher EO= jns±ND where j is any

integer and ns is the number of sectors. Thus, for this system with ns = 27 a ND 1 mode-pair may

be excited by forcing with EO 1, EO 26, EO 28 and so on. Each line in Fig. 2.7 passing through

frequencies of mode-pairs of all NDs is said to correspond to a family of modes. It may be ob-

served that the second and third families in Fig. 2.7 exhibit a softening behavior as the number of

ND increases. This softening behavior in the second and third families (for the stuck tuned blisk)

arises out of the interaction between adjacent parts of the shrouds. Although, higher harmonics
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Figure 2.8. Engine order 1 AMP ROM responses

Figure 2.9. Engine order 12 AMP ROM responses
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Figure 2.10. ROM (based on full reduction AMP) responses for different AMP basis sizes, EO 1
response, µ|F0|/|F| = 1.35× 104

do also contribute to the response, the contribution of the first harmonic to the response dominates

in systems with weak nonlinearities such as friction damping [96]. Thus, the accuracy with which

the AMPs capture the first harmonic response is quite significant. In the tuned case, two uncon-

ditioned AMP modes are generated from a single boundary condition. Each boundary condition

is determined from either one of the two tuned stuck modes which are clocked versions of each

other. The same estimated amplitude levels (i.e., p̂ values) are applied to a pair of stuck modes and

only the unique boundary conditions arising from the AMP procedure applied to both tuned stuck

modes are retained. No discrimination is made between the boundary conditions arising from one

stuck mode of the pair or the other. The boundary conditions for several p̂ values applied to a mode

can yield the same boundary conditions (e.g., due to mesh resolution and other factors). The high-

est such p̂ value which corresponds to each boundary condition are retained. The unconditioned

AMP modes correspond to the AMP modes generated from these boundary conditions arranged in

ascending order of the value of (maximum) p̂ at which the boundary condition was observed for a
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particular generating mode. Hence, the number of unconditioned modes generated from a family

of stuck modes is referred to as nχ. If SVD conditioning is applied to the basis, the number of

conditioned modes is referred to as nφ.

The normalized responses for both the baseline model and the ROMs using FR reduction for

a single harmonic HBM (nh = 1) are shown in Figs. 2.8 and 2.9. The markers on the figures are

provided as a visual aid to differentiate between the lines and do not represent all the calculated

frequency points. The response of the baseline model for µ|F0|/|F| = 2.70 × 105 for both EO 1

and 12 excitation corresponds to a fully stuck linear case. Developing ROMs for the stuck cases

would be trivial and the baseline stuck responses are shown here only for purposes of comparison.

The stuck frequency response peak at 880 Hz for EO 1 excitation matches the natural frequency

of the first family at ND 1 in Fig. 2.7. Similarly, the peaks at 2044 Hz and 2102 Hz for the EO

12 case match the frequencies of the first two families for ND 12. The response amplitudes at

all 27 response data nodes (in every blisk sector) are always identical in the tuned case due to

circular symmetry. Hence, only responses from the first sector are plotted. The corresponding

stuck mode-pairs are used to generate the AMPs using the procedures detailed before. Responses

for the ROMs as well as the baseline are plotted for 2 different levels of microslip for every EO

excitation case. For EO 1, 22 and 32 unconditioned AMP reduction modes are employed in the

ROMs for µ|F0|/|F| = 2.70×104 and 1.35×104 respectively. For the EO 12 case where 2 mode-

pairs from different families are excited in the frequency range under consideration, the response is

more complex. This necessitates SVD filtering and more AMPs are used for reduction in the higher

slip case. For the µ|F0|/|F| = 2.70×104 case, 18 AMPs were obtained by conditioning a basis of

44 unconditioned modes, 22 unconditioned modes generated from each of the 2 stuck mode pairs.

For the µ|F0|/|F| = 2.70× 103 case, 32 unconditioned AMPs were generated from stuck modes

of each family to obtain an unconditioned basis of 64 modes which were conditioned to obtain the

final basis of 38 AMPs. The ratio of largest and smallest singular values used for conditioning in

both cases was 104. The number of AMPs used for reduction are determined here on an empirical

34



basis. Hence, it is possible that fewer number of AMPs than used here might be able to capture the

response with the desired accuracy. Empirically choosing the number of AMPs used for reduction

is feasible because adding a few more AMPs to the reduction basis than those strictly required for

a particular microslip case is generally not prohibitive in terms of computational cost as will be

shown later.

However, a more systematic method of determining the required number of AMPs is to conduct

a convergence study as shown in Figs. 2.10 - 2.12. Figure 2.10 shows responses of both the baseline

and ROMs to EO 1 excitation at µ|F0|/|F| = 1.35 × 104 near the peak frequency. No SVD

conditioning is employed to calculate the AMPs here. The percentage absolute error in response

for the ROMs at peak amplitude (resonance) when compared to the full order baseline is plotted

versus the number of AMP modes employed for FR reduction in Fig. 2.11. It is seen that the error

decreases monotonically as the number of reduction AMP modes increase upto 42 AMPs, at which

point the solution has converged. This behavior is convenient for the determination of a suitable

ROM using an iterative procedure where the number of AMPs might be increased at each iteration

until the difference in error between subsequent iterations falls below a certain threshold. One may

wish to trade-off accuracy with speed in their choice of the number of modes to include in the

AMP basis. The responses for different NLR ROMs are not shown here to keep the discussion

brief. However, Fig. 2.12 shows the absolute response error for NLR ROMs versus the baseline

with different number of AMPs in the reduction bases, for the same conditions as those in Fig. 2.11.

It is seen that when 12 AMPs are used, the NLR reduction is nearly 4% more accurate than FR

reduction. With 22 AMPs and above, the error is essentially the same for both reduction methods.

The convergence in displacement at the response node with number of AMPs for EO 12 excitation

at µ|F0|/|F| = 2.70 × 103 is shown in Fig. 2.13. The number of unconditioned modes nχ from

which the conditioned basis was generated is shown as the sum of AMP modes generated from

boundary conditions predicted by the 1st and 2nd family ND 12 stuck modes. The conditioning

criterion of singular value ratio was maintained at 104 for all cases. It is seen that if AMP modes
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Figure 2.11. FR ROM error vs no. of amps, EO 1 response, µ|F0|/|F| = 1.35× 104

Figure 2.12. NLR ROM error vs no. of amps, EO 1 response, µ|F0|/|F| = 1.35× 104
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Figure 2.13. FR ROM responses for different AMP basis sizes, EO 12 response,
µ|F0|/|F| = 2.70× 103
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generated exclusively from either the 1st and 2nd families are used, the ROMs display resonance

near only the frequency of the corresponding family and the amplitude converges to incorrect

values with increase in the number of modes. Inclusion of AMPs generated from stuck modes

of both families in the ROMs causes them to capture both resonances and converge to the correct

amplitude levels. The errors in the ROMs versus the baseline response at both resonances are listed

in Table 2.1. Figure 2.14 shows the applicability of AMP modes to higher harmonics. It considers

Table 2.1. Errors at resonances ROM (based on full reduction AMP) vs. baseline, EO 12
excitation, µ|F0|/|F| = 2.70× 103

nχ from
1st fam.

nχ from
2nd fam.

nφ
error at 1st resonance (2034.2

Hz)(%)
error at 2nd resonance (2093.2

Hz)(%)
4 0 4 33.73 96.18
8 0 8 34.33 96.22
0 4 4 61.05 21.59
0 8 8 59.92 7.03
0 12 10 58.84 5.41
0 22 14 58.55 5.58
4 8 10 0.64 14.98
4 12 14 0.52 1.64
8 12 18 0.32 1.31
4 28 24 0.54 0.28

a case with the same parameters as in Fig. 2.10. The baseline nh = 1 simulation has an amplitude

difference of 7.84% versus nh = 3 at resonance. It is seen that despite including more harmonics in

the simulation, ROMs with 42 and 52 AMPs still only converge to the nh = 1 baseline case. This

occurs because the modes required to reduce the dynamics of the higher harmonics are different

from the reduction modes required for the first harmonic. In general no harmonics can be ruled

out a priori. Nevertheless, it is known that in case of negligible variation of the normal relative

displacements, as in the case under analysis, even harmonics do not contribute significantly to the

response [96]. Thus, only the third harmonic is expected to contribute significantly in addition to

the first. Due to the nature of how higher harmonics contribute to the response, it is expected that
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Figure 2.14. ROM (based on full reduction AMP) responses for higher harmonics, EO 1
response, µ|F0|/|F| = 1.35× 104

modes of the structure lying near a frequency region thrice as high (near 2640 Hz) as the one under

consideration (near 880 Hz) will contribute to the response. Moreover, due to the cyclic symmetric

nature of the structure, it is expected that a ND 3 mode will respond to the third harmonic of an

EO 1 excitation (which corresponds to an EO 3 excitation). AMPs are generated from stuck ND 3

modes of the third family, whose modal frequencies (at 2810 Hz) lie near the expected frequency

range and append them to the AMP basis used for nh = 1 reductions. The resulting ROM responses

begin to converge towards the baseline nh = 3 response. In Fig. 2.14 the ROMs with 64 and 94

AMPs contain 22 and 42 AMPs generated from the third family ND 3 stuck modes, in addition to

the same AMPs as those used in the ROM with 52 AMPs (generated from first family ND 1 stuck

mode). The errors for the 64 and 94 AMP ROMs at resonance versus the nh = 3 response are

4.11% and 1.13% respectively. In the analysis for the EO 1 response convergence for nh = 1 and

for the reduction of the higher harmonics, only unconditioned AMP bases were used.
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It must be noted that the actual number of nonlinear equations used in HBM is proportional to

the product of the number of DoFs of the model and the number of harmonics retained. Although

the number of HBM equations per harmonic for the ROM increases from nh = 1 to nh = 3 due to

inclusion of more AMPs, the corresponding increase for the baseline model is much higher. Thus,

the time savings versus the baseline for the ROMs is more with nh = 3 than nh = 1 despite the

increase in number of reduction modes. Ideally, it might be possible to save even more computa-

tional effort by reducing the equations corresponding to each harmonic of the baseline separately

using different AMP bases for different harmonics as opposed to a concatenated basis for all the

harmonics as is done here. In general, for a tuned blisk, for some harmonic nh, modes of the stuck

system which are expected to respond to an nh×EO excitation near nh times the frequency range

of evaluation must be retained for use in the AMP procedure [41]. For a mistuned blisk, only the

frequency based selection rule will apply as cyclic symmetry will be broken. However, the appli-

cation of such separate reduction bases for each harmonic and the reduction of a mistuned blisk

system with higher harmonics are beyond the scope of the current study. To evaluate the speed

Table 2.2. Simulation times

Reduction
method

No. of
AMPs

Frequency
resolution (Hz)

AMP calculation
time (min)

HBM solution
time (min)

Baseline – 0.1 0.00 711.62
NLR 32 0.1 17.75 238.26
FR 32 0.1 17.28 88.22

NLR 12 0.1 6.61 216.57
FR 12 0.1 6.71 80.37

NLR 32 0.5 18.49 51.54
FR 32 0.5 17.24 19.68

NLR 12 0.5 6.54 45.69
FR 12 0.5 6.48 15.85

of the ROMs an evaluation range between 860 and 890 Hz is considered for an EO 1 excitation,

µ|F0|/|F| = 1.35× 104 and nh = 1 for simulations on a machine with 8 GB RAM and an Intelr
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Figure 2.15. Natural frequencies of stuck mistuned blisk

CoreTM 2 Quad Q9450 @ 2.66 GHz processor. The results may be seen in Table 2.2. The time re-

quired for the solution of the nonlinear HBM equations are shown. The overhead time required to

calculate the AMP contact conditions and generate the AMP modes for ROMs of different sizes are

displayed as well. It is seen that the total time required for the baseline simulation is much higher

than for the ROMs. It is found that every additional AMP mode calculated adds an overhead of

30-40 seconds to the simulation. The FR ROMs simulate much faster than NLR ROMs. It may

also be observed that an increase in the number of AMPs for the same ROM type and frequency

resolution only leads to small increases in the actual simulation time, especially when compared

in proportion to the simulation time of the baseline model.

2.3.3 ROMs for mistuned blisk model

Figure 2.15 exhibits the natural frequencies of the stuck linear model corresponding to the

mistuned blisk with small stiffness mistuning in its blades. As opposed to the tuned case, the

frequencies are not repeated and the mode shapes which emerge from the solution of the stuck
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Figure 2.16. Stuck response of mistuned blisk

Figure 2.17. Response of mistuned blisk in microslip
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mistuned system do not have distinct nodal diameters. Depending on the mode, although a partic-

ular nodal diameter pattern might dominate the mode shape, it is not the only component of that

mode shape. A nodal diameter pattern may still be noticeable. However, if one conducts a spatial

FFT of the mode shape choosing cyclically symmetric DoFs, one observes not only a dominant

harmonic, but also non-zero coefficients of other harmonics as well. A frequency range is chosen

near the natural frequencies in the circled area in Fig. 2.15, which is close to the first family ND

1 mode-pair of the tuned case. Figure 2.16 shows the baseline mistuned model response to an EO

1 excitation for the stuck case at µ|F0|/|F| = 2.7 × 105 in the chosen frequency range. In the

mistuned case, the response amplitude at every data node (blisk sector) is different. The 27 distinct

response curves corresponding to different sectors are plotted on the same axes. Two resonant

peaks corresponding to the stuck modal frequencies are observed. Figure 2.17 shows the baseline

mistuned model response to an EO 1 excitation at µ|F0|/|F| = 2.7 × 104 when the system is in

microslip. The effect of friction damping on the peak response is apparent. The dynamics of the

mistuned blisk are more complex than the tuned case. ROM formulation for this case is generally

more challenging. Proper sampling must be carried out in the p̂ domain to obtain suitable AMP

modes and then SVD filtering must be employed to ensure convergence. An unconditioned basis

of 62 modes generated from the mistuned stuck modes was conditioned to a obtain a basis of 22

AMPs. The ratio of largest and smallest singular values used in the conditioning SVD procedure

was 3 × 103. Responses for sectors 8 and 19 of a FR and NLR model with 22 AMPs each are

plotted in Fig. 2.18 alongside the response of the baseline model to the same excitation conditions

as those used in Fig. 2.17. The accuracy of the ROM responses compared to the baseline in these

sectors is representative of the accuracy in other sectors. Both the ROMs capture the response very

well. The maximum of absolute error in peak response across all sectors is found to be 1.39% for

the NLR ROM and 2.48% for the FR ROM.
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Figure 2.18. ROM responses of mistuned blisk

2.4 Analysis, applicability and limitations of AMPs

The AMP reduction relies on the existence of dominant spatial correlations in the nonlinear

dynamics of the baseline system. If the number of these spatial correlations is comparable to the

size of the baseline system, neither the AMPs, nor any other reduced basis based method will be

able to offer any significant reduction. To generate the boundary conditions needed for the AMPs,

modes which represent the dominant motion of the system in the frequency range of interest are

used. Motion along these generating modes must dominate (e.g., they can contain most of the

energy of the whole system dynamics) in the frequency and amplitude range of interest for the

AMPs to be effective in that range. In this work, the dominating stuck mode were adopted as the

generating shape because the analysis is limited to microslip near the full-stick region. That is the

region of practical interest to most designers, and in this region the stuck modes do dominate the

response. However, other generating modes may be used to obtain the AMPs for other ranges if

they dominate the motion in the frequency and amplitude of interest, such as the gross-slip modes
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Figure 2.19. Eigenvalues of POMs for EO1 response, µ|F0|/|F| = 1.35× 104

Figure 2.20. Eigenvalues of POMs for EO 12 response, µ|F0|/|F| = 2.70× 103

near the corresponding gross-slip amplitudes and frequencies.

The generating modes themselves are also included in the AMP basis. Since they dominate the

dynamics, they capture the larger portion of the displacement. However, the nonlinear forces due to

small (subtle) displacements at the contact can have a significant effect on the dynamics especially

because they affect friction-induced damping. To accurately capture the dynamics, a reduction

basis must not only span the space of the displacements of the system, but also span the space

of these nonlinear forces. Thus, convergence of the ROM response with the number of AMPs

depends on how accurately the span of the AMPs captures both the force and the displacement

spaces. The AMP basis consists of modes which represent motion along the linear modes for

special boundary conditions. The accuracy with which the space of nonlinear forces is captured by

the AMP basis shows how accurately the boundary conditions are predicted. Another assumption

is that the kinematics of the generating modes can capture the boundary conditions accurately

enough. If this assumption is violated, the ROM will not be able to predict the response accurately,

even if the displacement is spanned by the AMPs.

45



To analyze the spatial correlations in the response, proper orthogonal decomposition (POD)

[62] is applied to the baseline system. The dynamic response of the baseline system at all DoFs

is converted from the frequency to the time domain. The time response at different frequencies

are collated into a single matrix Q. The proper orthogonal modes (POMs) Θ = [θ1θ2 · · · θnθ ] may

then be obtained by an eigenanalysis of QQT [62]. The POMs represent the spatial correlations

observed in the baseline response arranged in the decreasing order of their contribution to the re-

sponse. The relative dominance of the POMs in the response is indicated by the corresponding

eigenvalue λθ. The POD analysis was performed for the highest microslip level baseline responses

for the frequency ranges shown in Figs. 2.8 and 2.9. The POM eigenvalues normalized by the

maximum are shown in Figs. 2.19 and 2.20. These results show that the EO 1 response is domi-

nated by 2 POMs while the EO 12 response contains 4 POMs with non-negligible contributions.

These results show the presence of spatial correlations in nonlinear response, which indicates the

possibility to reduce the model.

Next, an error metric is introduced to characterize how well an AMP basis captures these

correlations. The error eθj in capturing a particular correlation represented by a POM θj by an

AMP basis is defined as the error between the POM and its projection on the AMP basis, namely:

eθj =
||θj −ΦnχΦ

†
nχθj||2

||θj||2
(2.39)

where nχ is the number of AMP modes in an unconditioned basis. The POM θj is captured per-

fectly when eθj is zero. For a conditioned basis, nχ may be replaced by nφ, the number of condi-

tioned AMP modes. If an unconditioned AMP basis is used, it is arranged such that the first modes

in the basis represent the generating stuck modes, and subsequent AMPs are derived by applying

increasing values of p̂. A conditioned basis is arranged in the decreasing order of singular values

in the diagonal of SΦ in Eqn. (2.37).

Figures 2.21 and 2.22 show the change of the error metric for different POMs for AMP modes
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chosen from the bases used for reduction. For the EO 1 case shown in Fig. 2.21, only unconditioned

AMPs were used for the reduction. In this case, the first 2 dominant POMs account for most of the

response and have large projections (small residual error) on the first 2 AMPs in the basis (which

are the same as two of the tuned stuck modes). This validates the assumption that stuck modes

dominate the response and may be used for AMP generation in this case. Since the EO 12 case in

Fig. 2.22 consists of response contributions from two families, it is seen that this range requires 4

conditioned AMP modes to capture the 4 most dominant POMs which contribute significantly to

the response in this case. However, since the basis is conditioned, the first 4 AMPs in the basis

might not exactly represent tuned stuck modes. The errors in the projection of the first 4 POMs

on all 4 stuck tuned modes from the two families under consideration for EO 12 response are

presented in Table 2.3. Again the residual is very low, which shows that the dominant motion

of the system is along the stuck modes. Another fact which supports this argument is that in the

frequency region of analysis, the resonant frequency in microslip does not shift significantly from

the stuck response frequency. This implies that the elastic energy in the contact is dominated by

the elastic energy in the rest of the system. The projections of the POMs for the EO 12 case on the

unconditioned AMP mode bases generated from the 1st and 2nd family exclusively are shown in

Figs. 2.23 and 2.24. The error residuals for the AMP modes from the 2ndfamily modes are smaller.

This is expected because the response near the frequency region of the 2ndfamily is higher and thus

it contributes more to the POMs.

Table 2.3. eθj for stuck modes from 1st and 2nd families, EO 12 response, µ|F0|/|F| = 2.70× 103

j 1 2 3 4
eθj 0.0014 0.0014 0.0017 0.0017

It may be seen in Figs. 2.21 and 2.22 that the AMP bases do not capture the PODs which have

small contributions to the response (3-4 for the EO 1 case, and 5-8 for the EO 12 case). Although

the contribution of these PODs to the response is small, their contribution to the dynamics might
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Figure 2.21. eθj for unconditioned AMPs, EO1 response, µ|F0|/|F| = 1.35× 104

Figure 2.22. eθj for conditioned AMPs, EO12 response , µ|F0|/|F| = 2.70× 103
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Figure 2.23. eθj for unconditioned AMPs generated from 1st family stuck modes, EO12 response,
µ|F0|/|F| = 2.70× 103

Figure 2.24. eθj for unconditioned AMPs generated from 2nd family stuck modes, EO12 response,
µ|F0|/|F| = 2.70× 103
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be significant. POMs can be used as a reduction basis in the same manner as the AMPs to check

the convergence versus the number of POMs. This is shown in Figs. 2.25 for the EO 1 and EO

12 cases. It may be seen that although the ROMs with 2 and 4 dominant POMs as reduction

modes, predict the response frequency accurately for EO 1 and EO 12 cases respectively, the less

dominant POMs are required to predict the damping and converge to the response of the baseline.

This shows that merely spanning the response with the reduction modes may not be sufficient for

accurate response prediction with a ROM. Nonlinear contact forces must be captured also. To

see how the ROM bases capture the nonlinear contact forces an error metric which calculates the

residual between the baseline nonlinear contact force (along a particular direction) at a particular

frequency ω and its projection on the reduction basis is defined:

εx(ω) =
maxh ||̄fC,x,ω,h −Φnχ,C,xΦ

†
nχ,C,x

f̄C,x,ω,h||2
maxh ||̄fC,x,ω,h||2

(2.40)

where f̄C,x,ω,h is a vector representing the real or imaginary part of the complex dynamic force

for the harmonics included in the analysis at frequency ω. εx(ω) represents the maximum of the

errors across all harmonics h = 1 to nh. Similar formulae hold for y and z directions. Φnχ,C,x in

Eqn. (2.40) is replaced with Φnφ,C,x or Θnθ,C,x for conditioned AMP or POM ROMs respectively.

The force errors at resonance frequency for the EO 1 and EO 12 cases with different number

of POMs retained in the reduction basis are shown in Figs. 2.27 and 2.28. The values of the ε

metrics for the AMP modes are shown in Figs. 2.29 and 2.30. Figs. 2.31 and 2.32 show how

unconditioned AMP modes of the EO 12 modes span the force space. These figures show why

more reduction modes are required to capture the nonlinear forces and damping. More modes have

a non-negligible effect on the ε values than they do on the response indicated by the e values.

It must be noted that the error metric ε measures the collective error in forcing at all

contact DoFs. The dynamic receptance (which determines the relationship between these forces

and displacements), might not ascribe equal importance to all the contact forces. Hence, the error in
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Figure 2.25. Engine order 1 POM ROM responses, µ|F0|/|F| = 1.35× 104

Figure 2.26. Engine order 12 POM ROM responses, µ|F0|/|F| = 2.70× 103
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Figure 2.27. ε for POMs, EO 1 response, µ|F0|/|F| = 1.35× 104 at resonance (877.6 Hz)

Figure 2.28. ε for POMs, EO 12 response, µ|F0|/|F| = 2.70× 103 at resonance (2,093.2 Hz)

Figure 2.29. ε for AMPs, EO 1 response, µ|F0|/|F| = 1.35× 104 at resonance (877.6 Hz)
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Figure 2.30. ε for conditioned AMPs, EO 12 response, µ|F0|/|F| = 2.70× 103 at resonance
(2,093.2 Hz)

Figure 2.31. ε for unconditioned AMPs generated from 1st family stuck modes, EO 12 response,
µ|F0|/|F| = 2.70× 103 at resonance (2,093.2 Hz)

Figure 2.32. ε for unconditioned AMPs generated from 2nd family stuck modes, EO 12 response,
µ|F0|/|F| = 2.70× 103 at resonance (2,093.2 Hz)
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displacements predicted by the ROM and this error metric cannot be compared directly. Figs. 2.25

to 2.28 show that predicting the correct displacement at the blade-tip with a ROM might not require

a reduction basis which spans the entire space of nonlinear forces. The correlation between the

degree of accuracy required in capturing the force space and the accuracy of the displacement

response cannot be established a-priori without solving the nonlinear equations. As noted earlier,

convergence studies (for increasing ROM sizes) are the suggested method to determine the required

number of reduction modes.

The ROM converges in terms of number of modes when both error metrics for displacements

and forces flatline. As the span of the reduction modes grows (with increasing number of modes

to capture the contact displacements more accurately), the predicted contact forces are more ac-

curate, and that affects the accuracy of the calculated displacements. The question of accuracy

in determination of the nonlinear forces depends on the ability of the AMP procedure to predict

instantaneous contact conditions through the AMP boundary conditions. The method herein of

using estimated modal amplitudes to predict these boundary is one of many possible methods. For

instance, one may use an iterative scheme where AMP modes at a particular p̂ value are used first

to predict the boundary conditions. These are then used to generate the next iteration of AMP

modes and predict again the boundary conditions, and so on. The use of the generating mode used

in this study may be seen as the first iteration of this scheme. It is found that the basis obtained

from this first iteration (i.e., the one based on stuck modes) is sufficient to capture the response.

However, such an iterative scheme could be employed in future developments of the AMP method

for cases where the dominant mode changes with response amplitude levels.

2.5 Conclusions

A novel method to obtain ROMs for shrouded blisks in the microslip regime using an AMP

reduction basis was proposed. The ROM was validated against a full order CB-CMS model for

cases with and without small stiffness mistuning in the blades, for single and multiple harmonics.
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Two separate methods of reduction, FR and NLR using the same reduction basis are proposed. It

is seen that NLR is more accurate but slower. Alternative reduction techniques which reduce the

linear and nonlinear DoFs separately and avoid matrix inversion might also be feasible. However,

such techniques have not been explored in this study and remain ripe for future investigation. It

is seen that the ROMs are able to capture the overall response characteristics of the blisk model

accurately. The AMP reduction method itself, is based on simple linear analyses and masking pro-

cedures, making the process highly efficient. The procedure is user-friendly and requires relatively

few inputs. The accuracy of the ROMs also increases monotonically with the number of AMPs in-

cluded in the reduction till convergence, making it an attractive candidate for convergence studies

to predict model dynamics where the full order model is too cumbersome to solve for validation.

AMPs have been used in this study in conjunction with HBM and CB-CMS to facilitate analysis

and method development. However, the reduction procedure is independent of these methods and

can be used with other nonlinear differential equation solving techniques either in the time or fre-

quency domain. AMPs may also be applied directly to FE models or other reduced models based

on those FE models. The contact conditions must be applied separately as these are integral to the

procedure for AMP determination, but there is some flexibility in the range of friction models that

might be chosen as long as they enforce node to node contact. Although AMPs were developed

in this study for shrouded blisks, they may possibly be adapted for reducing other systems with

frictional contacts, but the accuracy and effectiveness of the AMP method will need to be evaluated

separately.

55



CHAPTER III

Experimental Contact Parameter Estimation and AMP

Validation

A reduced order model (ROM) for systems with frictional nonlinearities called adaptive mi-

croslip projection (AMP) was presented and validated using simulations in chapter II. There are

also several practical considerations associated with the application of such ROMs to estimate

dynamic responses for real systems. One of these challenges, which is independent of dynamic

reduction, is proper modeling of friction nonlinearities. This involves choosing suitable contact

models and estimating associated contact parameters accurately. Experimental measurements can

also be used to verify the AMP procedure by using measured data to confirm the underlying as-

sumptions associated with AMPs. Spatial correlations in the observed nonlinear response may be

verified. The idea of estimating contact conditions for the AMPs by varying amplitudes of linear

modes of the system can also be validated.

For this study, an experimental rig was developed. The rig consisted of a blade-like beam

cantilevered at one end and a large (non-point) floating contact under a normal load at the other

end. Frequency responses and linear modes of this structure were measured experimentally. Finite

element (FE) models of the structure were adjusted to match the linear modes and obtain the mass

and initial stiffness matrices. These were used in conjunction with node to node contact models

to simulate nonlinear responses with HBM. It was observed that in addition to the aforementioned
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parameters, in the case of a large contact such as in the experiment, the static normal load distri-

bution plays a major role in the nonlinear response. No well-known experimental techniques exist

to directly measure this distribution without affecting the system response itself. Only the total

applied normal load was known. Hence, the normal load distribution was also parameterized as a

spatial function of quantities which expressed the relative distribution at certain spatial locations

at the contact. These locations were identified through FE simulations. All parameters were then

identified using an optimization routine whose objective was to minimize the error between the

experimental and simulated frequency responses at multiple excitation levels. AMP modes were

estimated based on measured relative displacements at the contact. These estimated AMP modes

were then compared to proper orthogonal modes (POMs) obtained from measured beam responses

to investigate how well they capture the nonlinear spatial correlations in the actual response. It was

found that the estimated AMP basis was able to capture not only the dominant response, but also

the less dominant POMs which may be important for capturing the nonlinear dynamics [97]. The

final validation of the efficacy of of the AMPs in capturing the dynamics is obtained by comparing

simulated responses of the full order system and reduced order model (ROM) using the contact

parameters estimated from experimental responses.

3.1 Experimental rig

3.1.1 Rig design

Experiments to validate the AMP procedure were conducted at the Aeromechanics (AERMEC)

laboratory at Politecnico di Torino, Italy. The rig design was conducted with the objective of

studying the dynamics of a blade-like structure which would consist of a frictional contact attached

to a flexible structure. The final design of the rig is shown in Figs. 3.1 and 3.2. It consists of the

dynamic assembly shown in Fig. 3.3, which is the main moving part, and contains the main beam

attached to the winglet. One of the surfaces of the winglet is the contact surface. The other (target)
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Figure 3.1. Final rig design: solid model

Figure 3.2. Final rig design: experimental apparatus
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Figure 3.3. Dynamic assembly and misalignment recovery device

surface is on the target block which is attached to the target block holder by screws. The contact

area between the two components has the dimensions 22mm x 4mm. The wedge shape of the target

block ensures a no slip contact between itself and the target holder. A normal load is applied via a

pulley mechanism to the top of the target holder through a bracket. The target holder is held in a

misalignment recovery device which consists of the V-rod and straight rod. This provides stiffness

in the direction of measurement of tangential forces, but allows small rotations of the plane of

the target surface along the axes of the rods to allow for dynamic misalignment recovery and thus

prevents separation and ensures that the normal load is applied uniformly at the contact. A shaker

is used to provide dynamic excitation to the beam through a stinger.

Modal frequencies of the dynamic assembly at gross slip and full stick, calculated using sim-

ulations of baseline FE models in ANSYSr, are shown in Fig. 3.4. It may be seen that the mode

of interest (1Fx) does not cross any other modes during microslip (which occurs between the two
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Figure 3.4. Modal frequencies of the dynamic assembly

Figure 3.5. Analysis procedure for rig design
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Figure 3.6. Separation thresholds with applied normal load

limiting linear situations shown). This is desirable as having frequency crossings would imply

nonlinear spatial correlations in the microslip response arising from multiple modes, which would

complicate the AMP validation procedure without any benefit to the research objective. Figure 3.5

shows the procedure adopted for analyzing the separation thresholds for the rig under various sit-

uations. First, normal load is applied with gross slip conditions enforced at the contact nodes of

the dynamic assembly FE model. Under this pre-stressed condition, a modal analysis is conducted

and the gross slip mode is obtained. Next, modal damping is applied, and a harmonic force is

applied to the beam to replicate the excitation from the shaker. Following a harmonic analysis,

the dynamic normal contact force amplitudes are evaluated at the contact nodes. The amplitude of

excitation for which one of these contact force amplitudes first exceeds the static applied normal

load determines the dynamic separation threshold.

The thresholds are plotted in Fig. 3.6 for various values of modal damping and static applied

normal load. It may be seen that at for reasonable values of normal load and a modest (2 %)

modal damping, very high excitation forces are required to achieve separation. Figure 3.7 shows
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Figure 3.7. Separation thresholds with misalignments

the separation thresholds under different kinds of static misalignments and various values of modal

damping. It is seen that the misalignments between the target and contact surfaces (of about 0.5

mm) do not affect the thresholds very much, and hence the operation of the rig without separation

can be ensured even under these conditions.

The hysteresis cycle of the rig near gross slip frequencies are obtained by enforcing gross

slip displacements to the rig and calculating the friction forces. The hysteresis cycle is plotted in

Fig. 3.8 with the microslip regions shown in yellow. The contact conditions at the contact nodes

at various stages of the microslip are shown in Fig. 3.8 also. Of particular interest are the contact

conditions at nodes on the outside edge of the contact region, where the dynamic velocities can be

measured with a laser beam.
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Figure 3.8. Different spatial coherences during microslip at contact in rig simulation
(displacement along gross slip mode)

3.1.2 Experimental data collection setup

The experimental setup is shown in Fig. 3.9. Velocities are measured at different locations

on the main beam of the test rig using a Polytec scanning laser vibrometer. Velocities near the

contacting surfaces of the winglet and the target block are measured by Polytec differential lasers.

The beam velocities may be processed either by a PC with proprietary Polytec software which

has the capability of calculating linear modes directly, or by a laptop running a LabVIEW based

software (developed in-house in Politecnico di Torino) which can synchronize and collect data

from 4 different input channels as well as send a output voltage signal for the applied force using

a National Instruments (NI) data acquisition (DAQ) system. The contact velocities from the two

differential lasers as well as the measured tangential contact forces may be collected by the laptop

in addition to the beam velocities. Different measurement points used for the laser vibrometers on

both the beam (Bpos) and the contact (Cpos) are shown in Fig. 3.10. The velocities measured by the

vibrometers are post-processed to obtain displacements. The experimental test matrix consists of

4 possible input variables, which may be varied to change the outcome of the experiment as shown

in Fig. 3.11. The forcing amplitude may be changed for nF different experiments. A frequency

response function may be obtained by changing the excitation and measurement frequency nw. The
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Figure 3.9. Experimental data collection setup

Figure 3.10. Measurement positions on beam (Bpos) and contact (Cpos)
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Figure 3.11. Test matrix variables

response may be measured at different beam positions at nB different points, with other variables

and test conditions being held constant to obtain modes under a linear operating condition or the

spatial correlations under a nonlinear condition. Responses may be measured at nC different points

across the contact to gather relative displacements at those points, which may be used along with

the measured tangential contact force to plot hysteresis cycles.

3.2 Experimental results and analysis

3.2.1 Experimentally observed modes and responses

The first free mode at different forcing amplitudes and the fully stuck mode of the beam, cap-

tured using the scanning laser vibrometer are shown in Figs. 3.12 and 3.13 respectively. The

normalized free beam modes at different amplitudes are essentially the same. Also, as expected,

the first mode is in bending for both the free and stuck cases and the variance of displacement along

the Y-direction (as described in Fig. 3.10) of the beam is minimal. For further experimentation,

only velocities along the centerline of the beam were measured, as they were sufficient to charac-

terize the motion of the entire beam under the experimental conditions in the frequency ranges of

interest.
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Figure 3.12. Free modes measured using scanning laser vibrometer

Figure 3.13. Stuck modes measured using scanning laser vibrometer
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Figure 3.14. Frequency sweeps for free beam and beam with contact

The normalized frequency responses of the beam with contact enforced at different forcing

amplitudes are shown in Fig. 3.14 for a point near the middle of the beam (Bpos 17). This response

clearly exhibits nonlinear behavior and microslip with a marked decrease in resonant amplitude and

frequency with increased forcing magnitude. The overall stiffness of the beam with the contact

established is also much higher and the first bending mode frequency is consequently much higher.

The resonant frequencies are also close to the simulated values mentioned before.

3.2.2 Estimation of contact parameters from experimental results

To identify the contact parameters from experimental results, first the material properties and

constraint conditions near the beam root in baseline FE model were adjusted such that the fully

stuck modes and modal frequencies of the fully stuck beam from the model matched those mea-

sured experimentally. Craig-Bampton component mode synthesis (CB-CMS) [8] was then used to

obtain reduced free mass and stiffness matrices Mf and Mf from the FE model of the assembly,

where the active degrees of freedom (DoFs) which are retained unchanged from the FE model
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Figure 3.15. Comparison of first stuck mode obtained from experiment and simulations

include the nonlinear contact DoFs and the nodal DoFs corresponding to the locations where the

excitation is applied and where displacements are calculated. The normalized first stuck mode

from the experimental measurements, baseline FE model and CB-CMS are compared in Fig. 3.15

and are found to be a good match. The CB-CMS system matrices are used to formulate the equa-

tion of motion corresponding to the model in the frequency domain obtained using the harmonic

balance method (HBM) [34, 35]:

[
−(h.ω)2Mf + (ihωmββ + 1)mKf

Kf

]
q̄h = f̄hE + f̄hC (3.1)

where h is the harmonic index, ω is the excitation frequency, β is linear proportional damping

parameter, q̄h is the complex displacement vector corresponding to harmonic h, fhE and fhC are the

complex excitation and contact force vectors corresponding to harmonic h. fhC has non-zero values

only at DoFs corresponding to contact nodes corresponding to the tangential and normal frictional

forces calculated at each node-pair as a function of the local relative displacement [31, 32, 35].

Parameters affecting the nonlinear dynamics are pre-multiplied by multipliers m with subscripts

68



representing the modified quantities. In addition to the multipliers shown in Eqn. (3.1), we have

multipliers for contact parameters which influence the contact force fhC , namely kx and kz for

tangential and normal contact stiffness and µ for coefficient of friction respectively, which are im-

plemented directly in the contact model. The multipliers form a part of the parameter space that

is identified to determine the contact characteristics. The rest of the quantities which are identified

determine the normal load distribution at contact. Initial FE simulations showed that the normal

load distribution is fairly uniform perpendicular to the beam axis and varies primarily along the

beam axis. Hence, the distribution was parametrized by specifying the relative magnitudes of nor-

mal load at 5 points along the contact surface such that the distribution over the surface could be

obtained by interpolating linearly between the points and constraining the sum of load values over

the entire contact surface to the known total load value measured during experiments. The 5 multi-

pliers and 5 normal load parameters were then identified by treating them as optimization variables

in a problem where the objective was to minimize the norm of the error between the experimentally

observed and simulated responses at various selected frequencies and excitation levels. Eqn. (3.1)

was solved using trust-region nonlinear algebraic equation solvers and the alternating frequency-

time technique [36], at every step of the optimization procedure for identifying the multipliers,

which itself also uses a gradient based optimization technique.

Figures 3.16-3.19 compare the optimized simulated responses with the experimentally mea-

sured responses. As shown in Fig. 3.16, the optimization case where only peak responses at every

excitation level is used to calculate the error for optimization cost is not very effective with the

optimized simulated responses varying significantly from the experimental results, both in terms

of peak response and peak frequency. From these simulations, it was gleaned that the problem was

not very sensitive to mkz which was dropped for subsequent simulations. In Fig. 3.17, where 3

points near the peak are used for error calculation better results are obtained at higher excitation

levels, but the peaks of simulated optimum are far off from the experimental case for lower ex-

citation levels. An attempt was made to enforce the mβ value estimated at the highest excitation
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Figure 3.16. Optimized simulated responses using errors at single peak frequency vs experimental
responses for beam

Figure 3.17. Optimized simulated responses using errors at 3 frequency points near peak vs
experimental responses for beam
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Figure 3.18. Individually optimized simulated responses at each excitation level vs experimental
responses for beam

Figure 3.19. Comparison of normalized values of estimated multipliers obtained by individual
optimization at each excitation level
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level and optimize the rest of the parameters at individual excitation levels with error calculated at

multiple frequencies as shown in Fig. 3.18. The simulated frequency responses matched well with

experiments in this case. However, as seen in Fig. 3.19, the optimized values of m
f

varied with

the excitation level. The optimized static normal load distributions were also found to be signifi-

cantly different at low and high excitation amplitude cases. Hence, the identified parameters from

Fig. 3.17 are used for further analysis in this study. For this model, higher percentage errors may be

observed at both the resonance of the lowest excitation amplitude case and the off-resonance am-

plitudes of the high excitation amplitude cases where the response amplitudes are low. Although

the identified model fits the data poorly for lower magnitude responses, it captures the peak ampli-

tudes in microslip well, which is the primary region of interest in this study. These errors may be

due to unmodeled effects such as the contact of the main beam with the support and variance of

response at low amplitudes, which was proportionally much higher for the low amplitude cases in

comparison to the high amplitude cases.

3.2.3 Verification of AMP procedure

In one of the experiments, the response of both the beam and the contact was measured at

steady state with the contact at microslip near resonance at 112 Hz. The 5 most dominant POMs

calculated from the time responses of the beam are denoted as θj (j = 1, 2, · · · , 5) are shown in

Fig. 3.20. A measure of the relative dominance of the POMs in the response are the corresponding

eigenvalues λPOM associated with them, which are plotted in Fig. 3.21, with the corresponding bar

colors representing the POMs in Fig. 3.20.

Figure 3.22 shows the nodes on the contact patch in the FE model, where contact conditions are

applied. Nodes of different colors represent different groups of nodes based on their proximity to

the nearest contact displacement measurement point in the experiments. Since, measurements were

made at only discrete points along the edge of the contact patch the true contact conditions could

not be determined without uncertainty. Instead, estimates of the contact conditions were obtained
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Figure 3.20. POMs obtained from experimental responses near resonance at microslip

Figure 3.21. Eigenvalues of POMs
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Figure 3.22. FE model of experimental rig

by applying a threshold value on experimentally measured displacements near the contact patch.

If the relative displacements were close to zero for a particular measurement, the group of contact

nodes near that measurement point was assumed to be stuck at that point in time. If the relative

displacement was above the threshold, the corresponding contact nodes were assumed to be in slip.

These estimated boundary conditions (BCs) were calculated for the entire period of oscillations

from measured experiments and were arranged in order from stick to gross slip. Then AMP modes

were calculated from the first 5 BCs closest to stick. Both the experimentally measured stuck mode

and estimated AMP basis were compared to POMs using error metrics. est captures the percentage

error between a POM and its corresponding projection on the stuck mode and is defined as follows:

est =
||θj − ψψ†θj||2 × 100

||θj||2
(3.2)

where θj is the POD mode being considered, ψ is the first stuck mode, † represents the pseudo-

inverse of a matrix or vector and ||.||2 is trhe 2-norm a vector. eAMP is a similar metric which
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Figure 3.23. Projection error of POMs on experimentally measured stuck mode

Figure 3.24. Projection error of POMs on estimated AMPs

captures the percentage error between a POM and its corresponding projection on an AMP basis

and may be calculated as:

eAMP =
||θj −ΦnχΦ

†
nχθj||2 × 100

||θj||2
(3.3)

where Φnχ is a matrix whose columns are composed of nχ AMP reduction basis vectors.

Figures 3.23 plots est for all the POMs. It may be seen that while, the stuck mode captures the

dominant POM well, the other POMs are completely orthogonal to it. It was shown in chapter II

that the less dominant POMs might contribute to the dynamics due to important effects at contact

surfaces where the displacements are small. Figure 3.24 shows the projection error of POM on

AMPs. Each POM is projected onto AMP bases increasing size formed by progressively appending

the bases with the 5 estimated AMP modes. The correspondingly decreasing projection errors

eAMP as nχ varies from 1 to 5 for each POM are shown as bars of increasing opacity in Figure 3.24,

with the bar color representing the POD mode being projected. It is seen that the AMP basis is able

to capture a significant portion of the first 2 POMs. While, this analysis establishes that the AMPs

do capture some of the spatial coherences seen in the nonlinear response, this is not sufficient to

prove that they can also capture the dynamics.

To prove that the dynamics may be reproduced in a reduced space by projection on the AMPs,
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Figure 3.25. Response of ROM created using full stick and gross slip modes for |F|=38.33 N vs
baseline

Figure 3.26. Response of AMP ROMs vs baseline
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Figure 3.27. Responses of AMP ROMs created using different contact conditions for |F|=30.74 N

full dynamic simulations were carried out using realistic contact parameters estimated in sec-

tion 3.2.2. Baseline responses of the CB-CMS model augmented with contact models at all the

contact nodes were obtained. Then a ROMs were developed by projecting these dynamics onto a

basis consisting of only the stick and slip modes. Figure 3.25 shows that at a high excitation ampli-

tude of |F|=38.33 N the ROM using stick-slip modes only fails to capture the nonlinear response

of the baseline, proving that the reduction problem is not trivial and that the nonlinear dynamics

cannot be estimated simply by using the limiting linear conditions. Another ROM was developed

by projection onto the AMP basis consisting of 11 AMPs calculated from 41 BCs. Figure 3.26

shows that the responses obtained from this AMP ROM with far fewer DoFs than the baseline,

almost perfectly approximates the baseline response at all excitation levels. Figure 3.27 shows that

another AMP ROM created using only 21 BCs but containing more basis vectors (14) is unable

to capture the baseline microslip response for an excitation of magnitude |F|=30.74 N. This re-

sult validates the assumption that the BCs arising out of the spatial coherences in the nonlinear

interactions at the contact interface play a significant role in the dynamics and must be estimated
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accurately for model order reduction.

3.3 Conclusions

An experimental rig with a non-point contact designed to operate in microslip, was used to con-

duct experiments to estimate contact parameters and validate the AMP method. An optimization

method was used to minimize errors between simulated and experimentally measured responses.

It was possible to successfully identify common contact parameters which could capture the max-

imum frequency response amplitudes across a range of excitation levels and consequently capture

nonlinear damping effects. The predicted responses using estimated parameters were compared to

experimentally measured values. Some poor fits were observed at regions of low response ampli-

tudes, which may be due to higher uncertainties and measurement errors in these regions. However,

the responses matched the measurements well near resonance peaks at higher excitation amplitudes

where the microslip phenomenon being investigated was dominant. Experimentally measured re-

sponses were used to calculate POMs of the system, which were then compared to AMP basis

vectors generated using contact conditions estimated from experimental measurements. The AMP

vectors were found to not only capture the dominant POMs, but also a significant portion of the

less dominant POMs which may be necessary to capture not only the bulk response but also the

nonlinear dynamics of the system. AMP ROM responses simulated using realistic estimated con-

tact parameters were found to match the baseline responses, validating the procedure for practical

applications. ROMs based on projection on stick and slip modes as well as on an AMP basis gen-

erated from insufficient number of boundary conditions, were found to not capture the dynamics or

predict the response accurately. Hence, the underlying assumptions of the AMPs, namely the ex-

istence of spatial correlations in nonlinear response, the boundary condition based reduction basis

formulation were validated using experimental measurements.
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CHAPTER IV

Effects of Contact Mistuning on Shrouded Blisk Dynamics

The effect of small and large variations of design parameters or material properties in differ-

ent blades or sectors of a nominally cyclically symmetric tuned structure such as a bladed disk

(blisk) has been a popular topic of research in turbomachinery in the past few decades. Even small

inter-blade variations or mistuning can radically modify the dynamic response of blisks in certain

regimes of operation [5, 75, 98]. Thus, quantifying the effect of such a variation, which often arises

out of unavoidable natural uncertainties in material properties and manufacturing processes, is of

significant interest to designers. Presently, the widely accepted method for obtaining a comprehen-

sive understanding of the effect of these uncertainties, is to conduct a large number of simulations

with different systems generated from the nominal tuned system by altering a mistuning parameter

such as material stiffness or density in each sector of the blisk either randomly or deterministically

[1, 4].

To reduce the prohibitive simulation times that would be involved in generating finite element

models of blisks and then simulating them, different reduction techniques exist depending on the

nature of mistuning parameter. Reduction using a subset of nominal system modes (SNM) is a pop-

ular method for small mass and stiffness mistuning [14]. Component mode mistuning (CMM) has

been used to study stiffness and damping mistuning [16]. However, these SNM and CMM methods

were developed for model reduction of blisks with linear degrees of freedom (DoFs) only. Turbine
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blisks are often designed with mechanisms such as under-platform dampers (UPDs) or shrouds

which provide dynamic damping through a nonlinear Coulomb friction mechanism at a certain

interface. In addition to mistuning in the blade parameters which render the linear system matri-

ces non-cyclic, it is also possible to introduce a variation in the parameters defining the localized

contacts at the interfaces. The nonlinear ordinary differential equations (ODEs) which represent a

structure with contacts may be solved using techniques such as harmonic balance method (HBM)

[34, 35, 38, 42, 43] which reduce temporal complexity of such problems but do not reduce the

number of nonlinearities. The development of a method to reduce the spatial nonlinear degrees of

freedom called adaptive microslip projection (AMPs) is detailed in chapter II of this work. How-

ever, the results shown there assume tuned localized contacts throughout the blisk. Research to

understand the effects of mistuning in both the blades and contact parameters of the interfaces

have been conducted in the past [22, 40, 49]. However, only lumped or single-node contact mod-

els were used for modeling friction interfaces in these studies. Also, most existing studies focus

on the mistuning of damping characteristics in UPDs. It is known that the distribution of linear

resonant frequencies of shrouded blisks with stuck interfaces for different nodal diameters of ex-

citation differs characteristically from those for UPDs. There is a significant difference between

modal frequencies of the same family even at higher engine order in the case of shrouded blisks

[97]. Therefore, it is of significant interest to research in this field, to analyze how the mistuning

of contact parameters in shrouds will influence the system response in microslip.

In this chapter, the effect of mistuning in the stiffness parameters of localized contacts at the

shrouds of an otherwise tuned blisk is studied, thus separating the effect of contact mistuning

from that of mistuning due to inter-blade variability. The same nominal shrouded blisk as that

used in chapter II is used for this study. It has 27 blades with 25 pairs of node to node contacts

at each shroud interface. A Craig-Bampton component mode synthesis (CB-CMS) [8–10, 12]

method is applied to the finite element model to reduce the linear degrees of freedom in the model.

The nonlinear contact DoFs are retained as master nodes without any reductions during the CB-
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Figure 4.1. Mistuning patterns:
A (σ = 0.1),B (σ = 0.3), C (σ = 0.6)

CMS procedure. Localized contact is simulated by using contact models at each of these DoFs.

HBM is used to simulate the nonlinear model and obtain the frequency response of the structure

to a traveling wave excitation. The contact stiffness parameters are varied randomly both across

and within sectors. The effect of the parameter variations on maximum response amplitude and

frequency are analyzed. Probabilistic analyses are carried out by fitting a Weibull function to

probabilistic distributions of amplification factors obtained from Monte Carlo simulations of linear

and nonlinear forced responses. The study provides a better understanding of the role of mistuning

due to local and global variations of friction damping parameters in dictating the response of a

blisk structure.

4.1 Forced response simulations

4.1.1 Contact mistuning

For the tuned blisk, all the contact surfaces of the blisk are assumed to have the same total

normal and tangential stiffness. However, this total stiffness is not distributed uniformly among
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the local contact stiffnesses used in the contact models between different node-pairs on that surface.

Stiffnesses used in contact models between node-pairs on the corners of contacting surfaces and

nodes on the edges are 0.25 and 0.5 times those used on interior node-pairs respectively. In this

way, the local contact stiffness at a node is proportional to the area of contact surrounding that

node. This distribution is the same at all contact surfaces for the tuned blisk. For a mistuned

contact case each tuned nodal contact stiffness (indexed by i) is multiplied by a scaling factor

si to obtain the mistuned stiffness. Normal and tangential contact stiffnesses are assumed not to

vary independently of each other and therefore, the same scaling factor is applied both stiffnesses

at each node. Thus, for a randomly generated mistuning pattern, at each contact, an independent

random variable si, generated from a Gaussian distribution with a mean of 1 and standard deviation

σ which determines the level of mistuning is used. si is bounded to be non-negative since the

contact stiffness cannot be negative. This bound means that the actual distribution of si is slightly

different from that of a Gaussian random variable with a spike in its probability density function

at 0. For reference, numerically calculated values of the mean and standard deviation of the actual

distribution for corresponding values of standard deviation σ of the generating distribution are

presented in Table 4.1.

Table 4.1. Mean and standard deviation of actual distribution of si calculated using 108 samples

σ
Actual
mean

Actual std.
dev.

0.1 1.0000 0.1000
0.2 1.0000 0.2000
0.3 1.0001 0.2999
0.4 1.0008 0.3978
0.5 1.0043 0.4900
0.6 1.0119 0.5751
0.7 1.0241 0.6541
0.8 1.0404 0.7281

For low values of variance (of the generating Gaussian distribution), zero values of si are very
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rare. Thus, the mean and standard deviation of the distribution of si do not differ significantly from

those of the generating variable for low values of σ. For higher values of σ, the mean is slightly

higher than 1 and the variance slightly lower than that of the generating function. However, the

trends observed in blisk response with the level of mistuning are the same. In this study, the mean

and standard deviation of the generating Gaussian distribution are used when referring to the si

random variable. Three such mistuning patterns A,B and C, picked from sets with different levels

of mistuning standard deviation, are shown in Fig. 4.1. Case C has some si at 0, which indicates a

separation at those nodes. The coefficient of friction µ is the same at all locations and all surfaces

for both the tuned and mistuned case. Even though the mistuning is introduced in the contact

stiffness, due to the nature of the microslip the values of the contact stiffness actually affect the

damping of the blisk more significantly than the response frequency [35, 97]. Hence, the range

of values of mistuning standard deviation at which significant effect is observed on the response

statistics is of the order of the standard deviations of standard deviations of damping mistuning in

linear blisks [17].

4.1.2 Microslip responses

To simulate the contact pre-stresses due to factors such as thermal effects and design inter-

ferences, constant equal and opposite normal forces are applied to each contact node-pair. The

normalized responses are calculated for different levels of microslip indicated by the dimension-

less parameter µ|F0|/|F| using the same procedure as described in section 2.3.1.

The frequency versus nodal diameter plots for the tuned blisk in full stick and gross slip cases

are shown in Figs. 4.2 and 4.3. Examples of the response of the tuned and mistuned systems with

the contact mistuning patterns in Fig. 4.1 are shown for three different combinations of forcing

scenario, frequency range and microslip conditions in Figs. 4.4, 4.5 and 4.6. Figure 4.4 shows

the EO 1 excitation response with µ|F0|/|F| = 13500, near the ND 1 stuck mode belonging

to the first family (see circle with solid line in Fig. 4.2). Figures 4.5 and 4.6 show the EO 12
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Figure 4.2. Frequency vs no. of nodal diameters for tuned blisk in full stick

Figure 4.3. Frequency vs no. of nodal diameters for tuned blisk in gross slip
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Figure 4.4. Response to EO1 excitation µ|F0|/|F| = 13500

Figure 4.5. Response to EO12 excitation µ|F0|/|F| = 5400
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Figure 4.6. Response to EO12 excitation µ|F0|/|F| = 9450

Figure 4.7. AF vs µ|F0|/|F| for EO 1 excitation (one simulation per point)
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Figure 4.8. AF vs µ|F0|/|F| for EO 12 excitation (one simulation per point)

excitation response for µ|F0|/|F| = 5400 and µ|F0|/|F| = 9450 in a frequency region where

ND 12 stuck modes from both the first and second families contribute to the response (see circle

with dashed line in Fig. 4.2). In Figs. 4.4 - 4.6 the markers do not represent the actual frequency

resolution but are simply aids to distinguish between the lines which are composed of small straight

segments connecting the solution points. The maximum is picked from these solution points. The

specified minimum frequency resolution was 1 Hz for EO 1 cases and 3 Hz for EO 12 cases. In

practice, the actual frequency resolution is much higher near the peaks when the response is not

well damped. The amplification factor (AF) is defined as the ratio of the maximum normalized

mistuned response to the maximum normalized tuned response in the frequency region of interest

and may be calculated from the responses. The AFs calculated from single simulations of systems

with mistuning patterns shown in Fig. 4.1, at different levels of microslip, are displayed in Figs. 4.7

and 4.8. Values at µ|F0|/|F| = 0 correspond to the gross slip condition. This shows that the AF

obtained is dependent on the response frequency region and the EO of excitation. It may be seen

that even at higher σ no significant amplification is seen for EO 1 responses. EO 12 responses

show significant AFs compared to the EO1 case. For unshrouded blisks it is generally agreed in the

literature [17, 76] that regions of high modal density containing modes from multiple families, also
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known as veering regions, are regions of mixed disk and blade motion allowing for higher energy

transfer between the blades and disk and higher amplification factors. In the shrouded blisks, the

energy transfer between the blades can occur not only through the disk but also through the shrouds

and these veering regions can be found at higher nodal diameters as well. The EO 12 region of high

modal density is one such case and a similar argument can be used to explain the high amplification

factors observed in this region. Also the nature of the variation versus the level of microslip

(µ|F0|/|F|), changes with mistuning pattern A to C (increase in σ). For case A EO 12 response,

the AF decreases from stick as microslip level increases (µ|F0|/|F| decreases). However, for cases

B and C the AF increases from stick as level of microslip increases. The nonlinear simulations

carried out, include only the first harmonic in the dynamics in the HBM procedure (nh=1). This

is done in the interests of saving computational time, especially since a large number of analyses

need to be performed. Even with a single harmonic solution of a single case, such as the one

shown in Figs. 4.5 and 4.6 requires 3-10 hours based on factors such as CPU speed and frequency

resolution. However, this is a reasonable assumption since it has been shown that for systems with

weak nonlinearities such as Coulomb friction the first harmonic dominates the response [96, 97].

For the levels of mistuning and microslip investigated in this study only a few nodes at any surface

may be in separation. The friction and normal forces estimated at these nodes might not be very

accurate due to single harmonic retained in the HBM. However, most of the nodes on a surface

are in contact and hence, the node in separation is affected by the elastic forces exerted on it

by its neighbors preventing separation of the entire surface. At any given time, the calculation

of the energy dissipated at contact and its effect on the damping which affects the response at

the blade-tip is not expected to be affected significantly. The contribution of higher harmonics

are likely to increase at high values of mistuning, values high enough to induce separation at

multiple neighboring nodes at the same interface and for high levels of microslip; cases which are

not investigated in this study. Also, the constant of proportionality used to determine the linear

damping matrix from the stiffness matrix is very small (of the order of 10−7). This is because, the
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effect of damping provided by nonlinear forces is the primarily of interest in this analysis.

4.2 Probabilistic simulations

The entire possible range of complex dynamics and response behavior of a blisk with contact

mistuning in microslip can only be properly captured through probabilistic analyses. Nonlinear

analysis is extremely expensive in computation time and only a few simulations can be carried

out. Also, to qualify the limits of nonlinear response behavior, the responses of the two linear

systems which define its limiting cases may be used: the linear full stick and gross slip cases.

Although popular reduction techniques mentioned earlier such as SNM and CMM [14, 16] exist

for simulating linear mistuned blisks fast, they cannot be directly applied to shrouded blisks or

do not offer significant reductions in this case. To accurately capture the effects of the mistuning

patterns which are applied randomly to all the interfaces at all the sectors, a full wheel analysis

in CB-CMS co-ordinates is carried out. However, this is still highly time consuming for a large

number of simulations.

4.2.1 Weibull distribution

In general, to obtain the true statistics for the amplification factor of a mistuned blisk a large

number of Monte Carlo (MC) simulations are necessary. However, in this case, simulation times

are large and a number of different cases must be analyzed (e.g. different levels of microslip and

mistuning). It would be impractical to carry out many simulations for each case. It has been

shown in [76] by Bladh et al. that since the forced vibration response of mistuned linear blisks

are bounded [5, 75, 76], the probability distribution of the amplification factors will approach

a 3-parameter Weibull distribution. It was also shown that the overall response statistics of a

mistuned linear blisk could be derived from a relatively small set (approximately 50 cases) of MC

simulations. Hence, to obtain the response statistics of the full stick and full slip systems 100 MC

simulations are run for the linear system. The AFs of these simulations are then obtained and fit to
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a 3-parameter Weibull distribution whose cumulative distribution function (CDF) which is given

in Eqn. (4.1) to the MC CDF.

F (x) = e(−(λ−x)/δ)β (4.1)

where x is a random variable and λ, δ and β are the Weibull distribution parameters to be fitted to

the probabilistic data. In this case, x is the AF.

4.2.2 Statistical analysis

The EO 12 response for randomly mistuned blisks in full stick and microslip near the tuned

second family stuck ND 12 frequency is analyzed and the AFs in the frequency range of 2,040-

2,120 Hz are obtained for several σ. The second family is chosen as opposed to the first family

as it is seen from forced responses such as the one in Fig. 4.6 that it responds more than the first

family ND 12 mode. To validate if a Weibull fit to a small set of randomly generated cases does

give us accurate statistics, 1000 MC simulations are carried out as a baseline by performing a linear

analysis on 1,000 blisks with randomly generated si with σ = 0.1 and its CDF is obtained. The

number of MC cases chosen for validation (1,000) is the same number as in [76]. Then, sets of

100 MC simulations (10 sets numbered 1 through 10) are taken from this superset and a Weibull

distribution is fitted to each set using the method described in [76] to obtain one Weibull fit CDF

for each set. Figure 4.9 shows the fits obtained from the different sets compared to the empirical

CDF from the 1,000 MC simulations. The 50th and 95th percentile AF values obtained from these

different fits are compared to the 1,000 case MC values in Fig. 4.10. It is seen that the Weibull

fit AFs are quite accurate for the estimated percentiles. The accuracy of the 95th percentile values

are the most important since the highest values of the AF is the quantity which most concerns

designers.

For nonlinear cases involving microslip, only 50 forced response simulations with different

randomly generated mistuning patterns could be reasonably carried out for each probabilistic anal-

ysis. For the linear response the AF is bounded by the Whitehead limit [5, 75, 76]. No such limit
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Figure 4.9. Weibull fit to 1,000 case MC CDF using sets of 100 cases for σ = 0.1

Figure 4.10. Percentiles obtained from Weibull fits using sets of 100 cases
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Figure 4.11. Percentiles obtained from Weibull fits using sets of 50 cases

has been established for nonlinear AFs. Without the criteria of bounded response it is not pos-

sible to state conclusively that the AFs for the nonlinear cases will follow a Weibull distribution

[76] and that a fit obtained with few cases conclusively estimates the statistics. In this study, it

was assumed that nonlinear response AFs follow a Weibull distribution and the statistics obtained

from fitting the data were analyzed. It is also not possible to conclusively determine the number

of MC cases that would be required to obtain accurate fits of a distribution for the microslip cases.

This number can be obtained through a convergence study which requires very large amounts of

computational time. However, since the microslip region investigated in this study are closer to the

full stick linear case than the gross slip situation as mentioned before, it is assumed that the errors

in the Weibull fit will not change significantly between full stick and the microslip cases studied

here. Hence, one may observe how the accuracy of the Weibull fit varies if only sets of 50 cases (as

used in microslip simulations) are used for the full stick case. As seen in Fig. 4.11, using 50 cases

instead of 100 does not significantly affect the accuracy of the percentile estimates for the linear

case. To investigate and validate the true distribution of AFs for blisks in microslip, it would be

necessary to develop ROMs for contact mistuning, as it would be impractically time consuming to

perform enough MC simulations otherwise. This offers an interesting subject for future research
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Figure 4.12. Weibull fits for nonlinear response AFs for σ = 0.1

in this area.

Figure 4.12 shows the Weibull CDF fits for the AF distributions for two different levels of

microslip. Figure 4.13 shows AF percentiles for different levels of random mistuning calculated

using the procedure described above. In addition to the stuck blisk response statistics represented

by the lines without markers, statistics for the blisk in microslip are shown by lines with markers

for different values of µ|F0|/|F| and σ. The 50th and 95th percentile values at each σ are obtained

from Weibull fits to AFs of a set of mistuned response simulations. The stuck system is a limiting

response scenario for a blisk in microslip with very high µ|F0|/|F|. It may be seen that for low

levels of contact mistuning (σ = 0.1), as microslip level increases (µ|F0|/|F| decreases) there is a

decrease in percentile values of AFs, in the range of microslips simulated. It may also be seen that

at σ = 0.1 the percentile AFs are lower than the corresponding values of the stuck case. However,

it is also seen that at a higher mistuning level (σ = 0.4) the trend is reversed and in microslip

the 95th percentile AFs are higher than in the stick case and also increase as microslip increases.

Therefore, the level of microslip where 95th percentile AF is minimum, is lower for σ = 0.4

than for σ = 0.1. Cases with the same mistuning pattern were used to calculate the statistics for
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Figure 4.13. AF percentiles for mistuned blisks in full stick and microlsip vs σ

different microslip levels at a given σ. This clearly shows that although the stick cases might be a

bound for the damped nonlinear responses, it is not a bound for the AFs especially at higher levels

of mistuning.

To obtain a better understanding of these trends, the procedures mentioned for the stuck blisk

are repeated to also generate the AF percentile plots for the mistuned systems in gross slip near

the frequency range close to the tuned second family ND 12 gross slip frequency (see Fig. 4.3) in

the range 1285-1340 Hz in Fig. 4.14. It may be seen that the percentile values for the slip AFs are

much higher than that for the stuck case for higher σ. This is expected, because the second modal

family of the tuned blisk case shown in Fig. 4.3 is much flatter, with greater modal density than

the stick case. Hence, a mistuned blisk in slip is likely to have more tuned modes contributing to

the mistuned mode which responds the most, and ultimately yield higher AFs [19] than the stick

case. It is clear that at some level of mistuning the maximum AF will vary from the stick to the slip

case as the level of microslip increases. However, how the maximum AF varies between these two

limits changes with the level of microslip. Of interest to designers is the point where the minimum

value of percentile AFs is observed along this path. The maximum value of percentile AFs is likely

not limited by these linear cases. But due to the limited number of nonlinear simulations available,
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Figure 4.14. AF percentiles for mistuned blisks in full stick and and gross slip vs σ

and the range of microslip levels considered, this can be shown only for the stick case.

4.3 Conclusions

A shrouded blisk with mistuned local contact stiffnesses was analyzed in full stick, gross slip

and microslip. Probabilistic analyses were carried out and response statistics were determined by

fitting Weibull distributions to data from Monte Carlo simulations. The amplification factor is

found to be dependent on the engine order of vibration even for microslip cases. Some engine

orders show very little amplification even for very high levels of mistuning. It was seen that both

the level of microslip and mistuning determine the amplification factor. Although the response of a

blisk in microslip is known to be bounded by the linear cases, it is shown that this is not necessarily

true of amplification factors. Even though the microslip cases analyzed were close to the full stick

case in terms of resonant frequency, it was seen that at a higher level of mistuning the amplification

factor exceeded that of the stick case. The optimum value of amplification factor in microslip varies

with the level of mistuning. When designing damping for blades it would be beneficial for design-

ers to use this as an additional criteria along with the optimal damped response. In other words,
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the designed level of microslip in the operating region should try to trade-off between the tuned

damped response and the highest amplification factors expected due to uncertainty in the contact

parameters in that region. To ensure reasonable simulation times in this study, assumptions were

made regarding the number of harmonics included in the simulation, and the nonlinear response

amplification factor was assumed to follow a Weibull distribution. Also, mistuning is considered

only to be at the friction interfaces only. In practice, this interface mistuning will always be ac-

companied by other effects such as stiffness and damping mistuning in the blade material. This

study focuses on the effects of friction parameter mistuning at the interfaces only, with the goal of

establishing trends. The simulation results obtained herein might be of use to designers to interpret

experimental results. As discussed, the friction mistuning studied herein has a similar effect to that

of damping variability in the blades, for near-stuck conditions. A well designed experiment should

characterize mistuned blisk response both at fully stuck conditions where the effect of variability

in blade materials will dominate the effects of mistuning at the interface, and also at microslip

conditions where the interface mistuning can play a greater role.
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CHAPTER V

Reduced Order Modeling of Blisks with Nonlinear Coatings

The bladed disks (blisks) found in compressor and turbine stages of turbomachines are nomi-

nally designed as cyclic symmetric structures. Although they are designed to be nominally identi-

cal, in practice, different sectors of a blisk have small differences due to manufacturing tolerances

and material non-uniformities, primarily in the blade segments. Collectively termed as mistuning,

this breaking of perfect cyclic symmetry has been studied extensively in the literature. It is known

that a mistuned blisk may exhibit significantly higher resonant forced responses, even for small

mistuning, when compared to the nominally tuned case [3, 76, 98]. Since mistuning values can-

not be predicted before manufacture of the blisk, designers usually account for this fundamental

uncertainty by performing probabilistic simulations with different mistuning patterns applied to

the nominal design [7, 76, 77]. The number of simulations and associated computational costs

required for reasonable probabilistic analyses renders simulation of complex high fidelity models

such as finite element (FE) models intractable for this purpose. Thus, the necessity for reduced

order models (ROMs) arises.

Various model order reduction methods have been employed for linear blisks with mistuning.

These include modifications of general linear reduction methods such as component mode syn-

thesis (CMS) [8–12], as well as more specialized techniques developed especially for blisks such

as subset of normal modes (SNM) [14], fundamental model of mistuning (FMM) [15], compo-
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nent mode mistuning (CMM) [16–18] and asymptotic model of mistuning (AMM) [19]. How-

ever, not all blisks are designed to be linear. In fact, nonlinearities are often introduced into blisk

design to lower resonant responses and stresses. Traditionally, friction interfaces on shrouds or

under-platform dampers have been employed to provide additional damping. Model reduction and

simulation techniques for these structures have also been developed. Some techniques involve

employing spatial reduction for the linear degrees of freedom in the model while retaining the

non-reduced nonlinear degrees of freedom [35, 40, 49, 50]. There also exist methods which reduce

both linear and nonlinear spatial degrees of freedom, for example by projecting the dynamics onto

a basis [97] or finding equivalent linear representations [73]. Another possible nonlinear mecha-

nism, which has gained interest from the industry and academia recently, is the use of damping

coatings adhered to the blades of the blisk. The nonlinearity in the coating is strain dependent and

less localized than frictional damping. Studies have been conducted to determine material prop-

erties of these coatings [79, 82] and to analyze the dynamic behavior for a single coated blade or

beam [81, 83]. It was found that at the individual blade level, these coatings behave nonlinearly,

with their damping and stiffness (and consequently the resonant frequencies) changing based on

excitation amplitudes [81, 83]. In this chapter, models and simulation paradigms for a structure

with nonlinear coatings are developed. Furthermore, model order reduction for mistuned blisks

with nonlinear coatings based on the known amplitude dependent behavior of the coatings for

individual blades is investigated.

An academic finite element model of a coated blisk is developed. Linear system matrices are

extracted from this model and nonlinearities are enforced at the elemental level for each coating

element as a function of local strain values. Dynamic simulations of individual coated blades as

well as the coated blisk are performed in the frequency domain using harmonic balance method

(HBM) [34, 35] and alternating frequency time (AFT) techniques [36, 37]. These are validated

by comparison to time-marching solutions at certain frequencies. From these simulations it is

observed that the amplitude dependent behavior of the coated blades causes additional mistuning
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in stiffness and damping in the blades due to the different dynamic response of each blade. Thus,

the overall effect of the nonlinearity is a mistuning pattern which is amplitude dependent. This

fact is leveraged to develop a ROM. The mistuned blisk dynamics are projected onto a set of

tuned system modes which allows the dynamics of the reduced system to be expressed in terms of

quantities representing the tuned system and parameters representing underlying linear mistuning

as well as additional nonlinear stiffness mistuning and damping. The nonlinear parameters are

determined as a function of individual blade response amplitudes. This ROM not only reduces

spatial degrees of freedom, but also bypasses the expensive element level calculations performed

during AFT. The ROM is found to be very accurate when compared to baseline simulations and is

suitable for use in probabilistic analyses.

5.1 Modeling a structure with nonlinear coatings

5.1.1 Dynamic equation

The dynamic equation corresponding to a the FE model of a system with nonlinear coating in

the time domain with structural damping may be represented as:

MLq̈ +
1

ω
[CL + CN ]q̇ + [KL + KN ]q = fE (5.1)

where M, C and K represent system mass, damping and stiffness matrices respectively. q and f

represent the displacement and excitation force vectors. Subscripts L and N represent linear and

nonlinear components of the matrices. The nonlinear components have non-zero value only at the

coating degrees of freedom (DoFs). ω is the frequency of excitation. This equation can be used to

used to analyze either an individual blade or a full wheel blisk FE model. Alternatively, Eqn. (5.1)

may be written as:

MLq̈ +
1

ω
CLq̇ + KLq = fE + fN (5.2)
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where the nonlinear force in the system is given by:

fN = − 1

ω
CN q̇−KNq (5.3)

The corresponding equations of motion in the frequency domain for harmonic h are given by:

[
−MLh

2ω2 + jhCL + KL

]
q̃h = f̃hE + f̃hN (5.4)

In addition to the conversion to frequency domain in Eqn. (5.4) the solution is carried out in modal

co-ordinates p such that q̃h = Φp̃h, where Φ is a model reduction matrix composed of linear

modes which are retained in the solution. For a baseline model, this reduction is applied to reject

some high frequency modes which make convergence slower although they do not contribute sig-

nificantly to the response in the frequency region of interest, by retaining sufficient modes whose

natural frequencies lie near the solution frequencies. In a reduced order model the modes in Φ

simply represent the reduction modes. Thus, Eqn. (5.4) is reduced to:

[
−ρLh2ω2 + jhβL + κL

]
p̃h = g̃hE + g̃hN (5.5)

where the reduced system linear matrices and excitation and nonlinear forces are given by:

ρL = ΦTMLΦ

κL = ΦTKLΦ

βL = ΦTCLΦ

g̃hE = ΦTf̃hE

g̃hN = ΦTf̃hN

(5.6)
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5.1.2 Coating matrices

The linear damping of the entire system, which is the sum of the damping in the coating portion

of the system and the rest of the system is given by:

CL = γL,bKL,b + γL,cKL,c

= γL,b(KL,b + KL,c) + (γL,c − γL,b)KL,c

= γL,bKL + (γL,c − γL,b)KL,c

(5.7)

where γL represents linear structural damping coefficient and additional subscripts c and b repre-

sent the coating and non-coating portions of the system respectively. To formulate the nonlinear

matrices for the coating stiffness and damping the formulation described in [81] is used. Each

element of the coating has a complex-valued Young’s modulus with real and imaginary parts ER,el

and EI,el which are a polynomial functions of the equivalent elemental strain εel as follows:

ER,el = Eel,R,0 +

nk∑
k=1

Eel,R,k(εel)
k (5.8)

where the subscript el refers to elemental quantities. The imaginary part of the Young’s modulus

may be obtained by replacing the subscript R with I in Eqn. (5.8). Eel,R,0 and Eel,I,0 are the linear

or strain-independent components of the real and imaginary parts of the of the coating modulus.

Hence, the coating structural damping coefficient is given by γL,c = Eel,I,0/Eel,R,0. The nonlinear

stiffness and damping matrices of the system KN and CN are comprised of (finite) elemental

stiffness and damping matrices KN,el and CN,el, which are functions of the linear elemental coating

matrices and the elemental strain as follows:

KN,el =
KL,el

Eel,R,0

nk∑
k=1

Eel,R,k(εel)
k (5.9)
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CN,el =
KL,el

Eel,R,0

nk∑
k=1

Eel,I,k(εel)
k (5.10)

At any instant of time the elemental strain is given by [81]:

εel =

√
qT
el

KL,el

Eel,R,0Vel
qel (5.11)

where qel is the vector of nodal displacements for the element, KL,el is the corresponding elemental

linear stiffness matrix and Vel is the elemental volume at zero strain.

5.1.3 Solution of dynamic equation

The forced frequency response of the system is obtained by solving Eqn. (5.5) which were

obtained by employing HBM [35]. Multiple harmonics of Eqn. (5.5) (h = 0, 1, 2, . . . , nh) are

retained in the solution. A trust-region based algorithm (TRA) is used to find p̃h(ω) by solving

the optimization problem in which the residual of Eqn. (5.5) becomes zero at the frequency of

calculation ω. The optimization routine uses only real valued variables and hence the real and

imaginary values of displacement and forces are used instead of a single complex value. To find

the nonlinear forces at every iteration of the solver, the AFT [36] method is used where the modal

displacements in the frequency domain are converted to physical displacements in the time domain

by using fast fourier transforms (FFT) and used to calculate the physical nonlinear forces which are

converted back to modal forces in the frequency domain through an inverse fast fourier transform

(IFFT) and modal projection. The optimization algorithm used for solution does not require ana-

lytical Jacobians to be supplied by the user as estimates of the Jacobian can be calculated by using

finite difference. However, in practice, the time required to calculate the finite difference based

Jacobians can be prohibitive in terms of computation time. In this study, the analytical Jacobians

were provided to the solver. To do so, the derivatives of the nonlinear force with respect to the

the real and complex parts of the Fourier coefficients of the nodal displacements are derived at the
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elemental level as functions of time from Eqns. (5.3) as:

dfN,el
dq̃hR,el

= −KN,elcos(hωt)−
dKN,el

dqel
qelcos(hωt)

+h
dCN,el

dqel
q̇elsin(hωt) + hCN,elsin(hωt)

(5.12)

dfN,el
dq̃hI,el

= KN,elsin(hωt) +
dKN,el

dqel
qelsin(hωt)

+h
dCN,el

dqel
q̇elcos(hωt) + hCN,elcos(hωt)

(5.13)

where t represents a vector of time instances over a period of vibration. The unknown quantities

in Eqns. (5.12)-(5.13) may be derived from Eqns. (5.9)-(5.11) and are given by:

dKN,el

dqel
qel =

KL,el

Eel,R,0

nk∑
k=1

Eel,R,kk(εel)
k−2 qT

elKL,elqel
Eel,R,0Vel

(5.14)

dCN,el

dqel
q̇el =

KL,el

Eel,R,0

nk∑
k=1

Eel,I,kk(εel)
k−2 qT

elKL,elq̇el
Eel,R,0Vel

(5.15)

Eqns. (5.12)-(5.15) are used during the AFT procedure. Taking IFFT of the quantities in

Eqns. (5.12)-(5.13) the derivatives of the fourier coefficients of the physical nonlinear forces with

respect to nonlinear physical displacements are obtained at the elemental level. These derivatives

are then assembled into global matrices and a modal projection is applied to obtain the deriva-

tive of the fourier coefficients of the nonlinear modal forces with respect to nonlinear modal dis-

placements, which can then be used to easily formulate the anaytical Jacobian of the residual of

Eqns. (5.3).
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5.2 Reduced order modeling for coated blisks

5.2.1 Projection onto tuned modes

A reduction method for the nonlinear blisk is presented with different linear components of

Young’s modulus ER,0 at each blade, also commonly known as small stiffness mistuning. The first

step in the reduction is the assumption that the nonlinear dynamics of the mistuned blisk can be

captured by projecting them onto the linear modes of the tuned system Φo in the frequency region

of interest. Such a projection, which has been successfully employed for linear blisks in the past

[14] is based on the fact that the mistuned modes of a linear blisk with small stiffness mistuning,

can be approximated by a linear combination of the tuned modes. In the case of blisks with

coatings which entail nonlinearity, there is the additional implicit assumption that the nature of the

nonlinearity is weak, such that it does not affect the modes of the responding blisk significantly. If

the reduction modes employed to obtain the dynamic equation Eqn. (5.5) are the tuned modes of

the blisk in the frequency region of interest Φ = Φo, then the reduced order dynamic equation for

a coated blisk can be alternatively expressed as:

[
−ρL,rh2ω2 + jhβL,r + κL,r + jhβhN,r + κhN,r

]
p̃hr = g̃hE,r (5.16)

where ρL,r, βL,r and κL,r are the reduced linear system matrices obtained by projection onto the

tuned modes in the frequency region of interest. κhN,r and βhN,r are the reduced additional stiffness

and damping matrices due to nonlinearity for harmonic h. p̃hr and g̃hE,r are the displacements and

excitation forces in tuned modal co-ordinates.

5.2.2 Amplitude dependent nonlinearity

Even though the dimensionality of the system of nonlinear equations might be reduced in

Eqn. (5.16), the nonlinear stiffness and damping effects and correspondingly the nonlinear forces

must be calculated in the physical domain (at each coating node) at each step of the solution iter-
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ation, which is higher dimensional than the reduced domain. Hence, a significant portion of the

computational effort for solving Eqn. (5.16) using traditional techniques will be spent during the

AFT procedure. To avoid this, one may use the fact that the nonlinear coating parameters and

consequently the additional nonlinear stiffness and damping κhN,r and βhN,r are dependent on the

response amplitudes at each blade. It is assumed that the effect of the nonlinearity equivalent to

a change in linear stiffness or damping at each harmonic which is functionally dependent on the

nonlinear blade amplitude. Hence for a blisk with mistuning in the linear stiffness and damping,

whose blades have non-identical responses, this amplitude dependency of the nonlinear terms man-

ifests itself as a an additional mistuning and damping parameter whose values are dependent on

the response amplitudes at the individual blades.

βhN,r = βhN,r(AN,s);κ
h
N,r = κhN,r(AN,s) (5.17)

where AN,s are the nonlinear blade amplitudes at sectors s = 1, 2, . . . , ns, ns representing the

number of sectors. AN,s is a single amplitude value determined at one point or node on each blade

which can be calculated from the multiharmonic response. For this study, it is assumed that a single

dominant blade mode is responsible for blade motion, which implies that a single family of blisk

modes can capture the nonlinear blisk response. As the nonlinearity in all blades are assumed to

be identical for analysis, the functional dependencies of nonlinear stiffness and damping on blade

amplitudes are identical for all blades. Hence, using Eqn. (5.17) in conjunction with Eqn. (5.16)

one may avoid AFT and reduce the computational cost of the nonlinear solution.

5.2.3 Nonlinearity as amplitude dependent mistuning

It has been shown in previous studies that the response of a blade with nonlinear coating can be

accurately captured by the first harmonic [81]. If this is assumed to be the case for all the blades of

the blisk, the representation of the dynamics in Eqn. (5.16) can be simplified greatly. Henceforth,
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only the first harmonic of every relevant quantity is calculated and the harmonic index h is dropped

for brevity. From, Eqns. (5.16) and (5.17) it follows that:

[−ρL,rω2 + jβL,r + κL,r + jβN,r(AN,s) + κN,r(AN,s)]p̃r = g̃E,r (5.18)

The restrictions imposed by dropping higher harmonics for the externally applied excitation force

g̃E,r does not reduce the usability of the model for design studies as the engine order excitations

prescribed by designers to study blisk responses can be perfectly expressed as a first harmonic

excitation [3, 10, 97]. If the functional dependencies of βN,r and κN,r on AN,s were ignored in

Eqn. (5.18) it would represent the dynamics of a linear mistuned blisk model. Hence, the nonlinear

coated blisk may be thought of as a linear blisk with additional amplitude dependent stiffness and

damping mistuning. In light of this realization, the equations may be recast by introducing linear

stiffness mistuning parameter and additional nonlinear stiffness mistuning and damping param-

eters. For a blisk with small stiffness mistuning the mistuned linear stiffness matrix in reduced

coordinates may be calculated as:

κL,r = ΦT
o KLΦo = κL,r,o +

ns∑
s=1

mL,sκL,r,m,s (5.19)

where the tuned component κL,r,o is given by:

κL,r,o = ΦT
o KL,oΦo (5.20)

and the mistuned component at sector s due to unit stiffness mistuning, κL,r,m,s is calculated as:

κL,r,m,s = ΦT
o,sK̄L,sΦo,s (5.21)

mL,s is the linear stiffness mistuning at each sector s. KL,o is the linear tuned blisk matrix. Φo,s is

the partition of tuned modes at sector s. K̄L,s is the change in linear stiffness at sector s from the
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tuned case due to a unit stiffness mistuning at that sector. Note that, this might not be proportional

to the tuned linear stiffness value for that sector, as usually the blades are mistuned more than the

disk portions of the sectors. For the purposes of this study, mistuning has only been considered in

the blade and coating portions of the blisk. Using Eqns. (5.7) and (5.19) it may be shown that:

βL,r = ΦT
o CLΦo = ΦT

o (γL,bKL+(γL,c−γL,b)KL,c)Φo = γL,bκL,r+(γL,c−γL,b)
ns∑
s=1

(1+mL,s)κL,r,o,c,s

(5.22)

where

κL,r,o,c,s = ΦT
o,sK̄L,o,c,sΦo,s (5.23)

where K̄L,o,c,s is the tuned linear stiffness of the coating portion of sector s. The additional ampli-

tude dependent stiffness due to nonlinearity in reduced coordinates κN,r at any particular response

configuration of the blades may be expressed as:

κN,r ≈
ns∑
s=1

gm(AN,s)κL,r,m,s =
ns∑
s=1

mN,sκL,r,m,s (5.24)

where the effective additional stiffness mistuning due to nonlinearity at each blade is determined as

a function gm of nonlinear blade amplitude AN,s and has the value mN,s at sector s. The additional

damping matrix due to nonlinearity in modal co-ordinates βN,r may be obtained by summing up

the additional damping nonlinearity at each sector which is proportional to the linear damping at

that sector as follows:

βN,r ≈
ns∑
s=1

fm(AN,s)βL,r,s =
ns∑
s=1

αN,sβL,r,s (5.25)

where the effective additional damping parameter is also expressed as a function fm of parameter

AN,s and has the value αN,s at sector s. βL,r,s is calculated as follows:

βL,r,s = ΦT
o,sCL,sΦo,s = γL,bκL,r,s + (γL,c − γL,b)(1 +mL,s)κL,r,o,c,s (5.26)
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where CL,s is the linear damping matrix at sector s. κL,r,s is the reduced stiffness matrix at sector

s obtained as follows:

κL,r,s = Φo,s
TKL,sΦo,s = κL,o,s +mL,sκL,r,m,s (5.27)

where

κL,o,s = ΦT
o,sKL,o,sΦo,s (5.28)

where KL,o,s is the tuned linear stiffness matrix at sector s. Substituting Eqns. (5.19)-(5.28) in Eqn.

(5.18) a set of nonlinear equations may be obtained in reduced coordinates where the nonlinearity

is expressed solely in terms of blade amplitudes AN,s and is captured through additional damping

and stiffness mistuning parameters represented by αN,s and mN,s.

[−ρL,rω2+(jγL,b+1)(κL,r,o+
ns∑
s=1

mL,sκL,r,m,s)+j(γL,c−γL,b)
ns∑
s=1

(1+αN,s)(1+mL,s)κL,r,o,c,s+. . .

jγL,b

ns∑
s=1

αN,sκL,o,s +
ns∑
s=1

(jγL,bαN,smL,s +mN,s)κL,r,m,s]p̃r = g̃E,r (5.29)

Eqn. (5.29) can be solved by using TRA. A single iteration step of this model will be much faster

as it will avoid the AFT procedure and any involved calculations in higher order co-ordinates

such as the physical domain during iteration. The nonlinear parameters in this formulation can be

calculated from the amplitude directly in reduced co-ordinates. This also clarifies the choice of

the tuned modes as the reduction basis. The objective was to avoid calculations of new reduced

order matrices with new mistuning patterns. As shown in Eqns. (5.19)-(5.28) it is only necessary

that the requisite reduced order matrices (κL,r,o,κL,r,m,s,κL,r,o,c,s,κL,o,s) be generated once for

any tuned blisk and the corresponding nonlinear equations for the any linear mistuning pattern can

then be generated directly in the reduced co-ordinates. As an alternative to TRA, use of fixed point

iterations (FPI) at each frequency may also be employed. FPI iterations will involve re-substituting

the solution of the previous iteration into the current iteration and repeating until convergence.
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5.2.4 Functional dependencies on amplitude

The functions fm and gm which establish the dependency of additional nonlinear damping αN,s

and stiffness mistuning mN,s on the nonlinear cantilevered blade response AN,s at blade s may be

obtained analytically, from simulations or from experiments. In this study, it is obtained using the

simulated nonlinear responses of a cantilevered blade at different excitations. Since these functions

are assumed to be identical for all blades, the may be determined for a single nominal blade and

its amplitudes AN,o. Any small linear stiffness mistuning which modifies the elastic modulus of

the blades, will not affect these functions as it will affect the linear and nonlinear amplitudes

and frequencies consistently for any blade and the functions are dependent only on the relative

measures between the two. Hence, these functions are estimated from the nominal cantilevered

blade responses may applied to the mistuned blades in simulations. Specifically, mN,o which

represents the additional stiffness due to the nonlinearity for a nominal blade can be estimated

using resonant frequencies of the linear and nonlinear simulations (squared resonant frequency is

proportional to stiffness) as follows:

mN,o ≈
ω2
N − ω2

L

ω2
L

(5.30)

where ωN and ωL are the nonlinear and linear resonant frequencies of the cantilevered blade in the

frequency region of interest. αN,o which represents the additional damping for a nominal blade can

be determined using the ratio linear and nonlinear normalized responses as follows:

αN,o ≈
AL,o,max/|F|L
AN,o,max/|F|N

− 1 (5.31)

where AN,o,max and AL,o,max are the nonlinear and linear resonant response amplitudes. |F|L and

|F|N are the amplitudes of the excitation forces used in the linear and nonlinear cases respectively.

mN,o and αN,o are obtained for different AN,o for different excitation levels and a polynomial least
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squares fit is performed to obtain fm and gm. It may be shown that the order of these polynomials

will be the same as the highest power of equivalent strain in the expression for storage and loss

moduli of Eqn. (5.11). Substituting Eqn. (5.11) in Eqn. (5.9) for a single coating element:

KN,el =
KL,el

Eel,R,0

nk∑
k=1

Eel,R,k

(√
qT
el

KL,el

Eel,R,0Vel
qel

)k

(5.32)

Assuming motion at blade s to be along single blade mode with amplitude pb,s such that qel =

Φb,s,elpb,s from Eqn. (5.32) one may obtain:

KN,el =
KL,el

Eel,R,0

nk∑
k=1

Eel,R,k

(√
κL,el

Eel,R,0Vel

)k
pkb,s =

nk∑
k=1

KN,k,elp
k
b,s (5.33)

where κL,el = ΦT
b,s,elKL,elΦb,s,el. Since the nonlinearity has been separated in terms of powers

of pb,s, the elemental matrices KN,k,el may be assembled to form blade level matrices KN,s,k.

Consequently, blade matrices KN,s may be formulated as a matrix polynomial of pb,s representing

additional stiffness matrix at blade s due to the nonlinearity as:

KN,s =

nk∑
k=1

KN,s,kp
k
b,s (5.34)

Subsequent projection onto the tuned blisk modes partition Φo,b,s at the blade s will yield:

κN,r,s = ΦT
o,b,sKN,sΦo,b,s =

nk∑
k=1

κN,r,s,kp
k
b,s (5.35)

where κN,r,s,k = ΦT
o,b,sKN,s,kΦo,b,s. Since it is assumed that the nonlinear effect can be approxi-

mated as additional linear mistuning, in the reduced space the relationship κN,r,s,k ∝ κL,r,m,s holds

true. Also, AN,s ∝ pb,s as the physical blade amplitude at any point will be proportional to the
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Figure 5.1. Coated blisk

modal amplitude. Hence, using Eqn. (5.24) and (5.35) it follows that:

κN,r,s ≈

(
nk∑
k=1

ηs,kA
k
N,s

)
κL,r,m,s = mN,sκL,r,m,s (5.36)

where ηs,k are proportionality constants and coefficients of the polynomial. Thus, the additional

mistuning may be approximated by a polynomial in blade amplitude AN,s of the order nk which is

the same as the order of the dependence of storage and loss moduli on strain at the elemental level.

A similar argument can be applied for additional nonlinear damping.

5.3 Results and analysis

5.3.1 Finite element models

For the purposes of this study an academic FE blisk model of blisk with 12 blades as shown

in Fig. 5.1 was developed in ANSYSr. As shown in Fig. 5.2 each blade has the same material as

the disk and with total height 42 mm, a width of 16 mm and a thickness of 2 mm. Comparatively

the coating is much thinner with a thickness of 0.2 mm. Solid brick finite elements were used

to model both the body of the blisk and the coating. Values of important nominal properties
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Figure 5.2. Coated blade

Table 5.1. Nominal material properties

Property Value Units

γL,b 0.0001 dimensionless
Eb 200 GPa
ER,0,c 109.8 GPa
ER,1,c -0.011 GPa m/µm
EI,0,c 1.525 GPa
EI,1,c 0.003125 GPa m/µm

used for the materials are listed in table 5.1. Properties of structural steel were used for the blisk

body. The material properties of the coating are those used in [81], which were validated with

experimental data. Storage and loss moduli of the coating, as described in Eqn. (5.8) are linear

functions of equivalent strain. The negative value of ER,1,c indicates the softening behavior of

coating (decrease in stiffness with increase in strain). As shown in Fig. 5.2, two nodes are chosen

at opposite sides of each blade at the tip for applying the excitation force and for calculating the

response along the axial direction normal to the face of the blade. All the requisite elemental linear

(zero strain) blade and full blisk matrices are extracted from these FE models and are then used

for simulations in MATLABr where nonlinearities are enforced as per the equations of motions
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Figure 5.3. Normalized responses of cantilevered blade

mentioned previously in sections 5.1 and 5.2.

5.3.2 Baseline response simulations

Figure 5.3 shows the simulated maximum response amplitudes |X| of a nominal coated can-

tilever blade normalized by the excitation amplitude |F| at various excitation levels in the neigbor-

hood of its first bending mode frequency. The first 100 linear modes of the blade were retained for

this analysis. In these baseline cases single harmonic (nh = 1) HBM was employed to obtain fre-

quency responses with a specified minimum resolution of 0.1 Hz. In addition, a transient dynamic

analysis (TDA) was also carried out to obtain response amplitudes at selected frequencies for |F|

= 0.1, 0.2 and 1 N excitation cases. In TDA, the equations of motion are simulated in the time

domain using a Runge-Kutta time marching method for differential equations and obtain the am-

plitude after convergence [73]. TDA is computationally very expensive and intractable for design

purposes, but is more accurate in general as it does not involve truncating harmonics as in HBM.
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Figure 5.4. Frequency vs No. of nodal diameters

All HBM solutions herein were obtained using TRA unless specifically noted otherwise. Using

TDA results for verification, one may observe in Fig. 5.3 that a nh = 1 HBM solution captures

the dynamics and predicts the response very accurately, even for the higher excitation cases where

the contribution of nonlinearity to the dynamics is greater. It may also be observed that as the ex-

citation amplitude increases, the blade exhibits higher damping (lower normalized response) and

a softening behavior (lower resonant frequency) which is consistent with the behavior of coated

blades [81]. At the higher excitation levels, it is also observed that the system has multiple solu-

tions for amplitude at some frequencies near the peak which indicates a bifurcation phenomenon.

It must be noted that while HBM is able to capture both the stable and unstable branches of such a

curve, TDA only converges to points on a stable branch.

Figure 5.4 shows the natural frequencies of the tuned zero strain linear coated blisk plotted

against the number of nodal diameters (ND) exhibited by the corresponding modes Φo’s. For such

a system, there exist two modes with identical natural frequencies (called a mode-pair) with the
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Figure 5.5. Normalized response of tuned blisk:: |F| = 0.1 N, EO 2 excitation

same ND associated with it [3, 97]. Since, the ND patterns exhibited by these tuned linear system

mode-pair have a specific spatial harmonic associated with them, they can be excited by a travelling

wave excitation of a specific shapes with similar spatial harmonic content, also known as an engine

order (EO) excitation which may be expressed in the time-domain as:

fE(t, θ) = |F|cos(2πEO

ns
t+ θ) (5.37)

where t is the time index, θ is the circumferential angle on the blisk, |F| is the excitation amplitude

and EO is the non-negative integral engine order of excitation. Any mode-pair will excited by a

forcing with the same EO as its ND and by higher EO= kns±ND where k is any integer. Each line

in Fig. 5.4 connecting mode-pair frequencies of all NDs represents what is colloquially termed a

family of modes with the lowest one being the first family, the next one the second family and so

on.

Figure 5.5 shows the maximum response across all blades |X| of the tuned linear and nonlinear
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Figure 5.6. Normalized response of mistuned blisk: |F| = 0.1 N, EO 2 excitation, σ = 4%

blisks normalized by the amplitude |F| of an externally applied EO 2 excitation near the frequency

of ND 2 mode-pair of the first family. 60 linear modes corresponding to the first five families

of the blisk were retained for this simulation. A specified minimum resolution of 0.3 Hz is used

for all blisk HBM simulations in this section. It is seen that including the third harmonic in the

nonlinear HBM case does not change the simulated response significantly and the first harmonic

is deemed sufficient for accuracy. Then, blisks with small linear stiffness mistuning in the blades

are investigated. Figures. 5.6 and 5.7 show a case with a single mistuning pattern picked from a

set of randomly generated patterns with 4% standard deviation (σ) in the stiffness of the blades.

The same excitation is used as in the tuned case. Due to mistuning the modes no longer have

perfect nodal diameter patterns and do not exist as perfect mode-pairs. Hence, more than two

mistuned modes respond to the EO 2 excitation as is observed from the multiple resonant peaks

for the linear and nonlinear cases in Fig. 5.6. In addition to the nonlinear baseline case where 60

mistuned modes are retained in solution, Fig. 5.6 also shows HBM responses for the case where
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Figure 5.7. HBM vs TDA for single mistuning pattern: |F| = 0.1 N, EO 2 excitation, σ = 1%

the dynamics are projected onto the 12 tuned modes of the first family whose accuracy is validated

by the close match between the two curves. The nh = 1 nonlinear mistuned baseline in Fig. 5.6

was also validated against the TDA simulations at selected frequencies as shown in Fig. 5.7. The

nonlinear damping and softening effects for the mistuned responses are also more clearly observed

in Fig. 5.7.

5.3.3 Linear probabilistic analysis

The small linear stiffness mistuning value of σ = 4% used in section 5.3.2 is picked somewhat

arbitrarily from the 1-5% range where maximum mistuned response is generally observed for

linear blisks [76, 97]. Usually designers are interested in σ’s which have the potential of yielding

the highest amplification of the response of a mistuned blisk when compared to the response of

the corresponding tuned blisk [7, 76, 77]. This measure is quantified by the ratio of the maximum

response of the mistuned blisk to that of the tuned blisk in the frequency region of interest and
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Figure 5.8. Percentile linear amplification factors

is termed amplification factor (AF). A probabilistic analysis for the linear blisk was carried out

by simulating different blisks with randomly generated stiffness mistuning patterns with different

values of σ. 1000 randomly generated patterns were used for each value of σ. Figure 5.8 shows

the 95th and 50th percentile AFs for this data set when simulated in response to an EO 2 excitation

in a frequency region spanning natural frequencies of the first family. It is observed that the 95th

percentile AF curve, peaks near σ = 1%, which is used henceforth in simulations as it has the

greatest potential for yielding the extreme cases with highest AFs. The projection onto tuned

modes is also validated for different nonlinear cases by simulating the mistuned blisks found to

have the 50 highest linear AFs from the set of 1000 simulated for σ = 1%. This comparison is

shown in Fig. 5.9. It may be seen that the nonlinear AFs for the cases with projection onto 12 tuned

modes match very with the nonlinear baseline where 60 mistuned modes were retained, validating

the accuracy of the projection.
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Figure 5.9. AFs for different mistuning patterns: |F| = 0.1 N, EO 2 excitation, σ = 1%

5.3.4 Determining explicit amplitude dependency for mistuning parameters

It is observe that since the that the projection of mistuned blisk dynamics on a basis of tuned

modes is accurate and first harmonic is dominant, the reduced order model described by Eqn. (5.29)

may be used. However, the functions fm and gm which establish the dependency of additional non-

linear damping on the nonlinear cantilevered blade response AN,s must be determined first. Using

Eqns. (5.30) and (5.31), the additional stiffness mistuning and and damping (mN,o and αN,o) may

be calculated for various excitation levels and plotted against tuned cantilevered blade nonlinear

amplitude AN,o as shown in Figs. 5.10 and 5.11. AL,o,max and AN,o,max in Eqn. (5.31) may be

obtained from the response |X| at peak frequency for the corresponding curve in Fig. 5.3. For

the linear case AN,o is considered to be 0 and the corresponding damping and stiffness mistuning

parameters are 0 by definition. As the dependency of storage and loss moduli of the coating on

strain is linear, it is seen that the values calculated for the parameters from the simulations exhibit

a linear dependency on the response amplitude. Hence, a linear least squares fit is employed to
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Figure 5.10. Additional stiffness mistuning due to coating

Figure 5.11. Additional damping due to coating
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Figure 5.12. ROM vs Baseline: |F| = 0.1 N, EO 2 excitation, σ = 1%

calculate the slopes of these linear curves (1345.63 m−1 for αN,o and -10.49 m−1 for mN,o), which

completely determine fm and gm as the curves pass through the origin. The entire AFT procedure

can now be replaced by this simple algebraic relationship to determine the nonlinear parameters

from amplitudes in the ROM.

5.3.5 Reduced order model with amplitude dependent nonlinearities

In addition to simulating the ROM using TRA, the accuracy of the FPI method described in

section 5.2.3 is also tested. Figures 5.12-5.14 show the comparison of the ROM to the baseline

model in response to and EO 2 excitation with amplitudes |F| = 0.1, 0.4 and 1 N near first family

natural frequencies. The dynamics of the blisk with 60 mistuned modes retained in simulation is

used as the baseline. A specified minimum resolution of 0.1 Hz and a maximum of 200 iterations

per frequency is used for all ROM simulations. It may be seen that the ROM simulated using TRA

is able to predict the response very accurately for all cases including the highest excitation case
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Figure 5.13. ROM vs Baseline: |F| = 0.4 N, EO 2 excitation, σ = 1%

Figure 5.14. ROM vs Baseline: |F| = 1 N, EO 2 excitation, σ = 1%
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Figure 5.15. ROM vs Baseline: |F| = 0.1 N, EO 5 excitation, σ = 1%

where the effect of nonlinearities is most dominant. Only the fully converged points are plotted in

the figures. It is seen that for the particular mistuning case shown in Figs. 5.12-5.14, FPI is able

to predict the response well for |F| = 0.1 N case. However, convergence is not reached for all

frequencies at higher excitation levels and FPI is unable to predict the highest response accurately.

It is plausible that increasing the number of maximum iterations or decreasing the frequency reso-

lution will yield better convergence for FPI. However, the results clearly establish the superiority

of TRA in terms of accuracy for identical parameters. Figure 5.12 shows the response of the same

mistuned case to an EO 5 excitation, validating the accuracy of the ROM in response a different

excitation pattern.

5.3.6 Simulation times

Simulation times will vary widely with the computational hardware used, the physical dynamic

system being simulated and simulation parameters such as frequency resolution and maximum it-
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eration limits and the level of nonlinearity which varies with excitation amplitude. The simulations

in this study were conducted on different but comparable machines with desktop CPUs. Only ball-

park figures are mentioned for the different simulation types based on empirical observation, as

a detailed analysis of CPU times will be rendered invalid for the end user by factors mentioned

above. The TDA simulations are very expensive and require simulation times on the order of 2-5

days to converge for a single frequency point. HBM simulations solved using TRA without pro-

jection on tuned modes (60 modes) require 2-3.5 hours for a simulation with a frequency range

of approximately 100 Hz and 0.3 Hz resolution. A similar HBM simulation with projection (12

modes) requires 1-2 hours. ROMs with TRA and FPI are comparatively much faster requiring

only 30-90 seconds for similar frequency ranges and resolutions. Note that although, the baseline

simulation times will change based on the number of nonlinear elements in the system being sim-

ulated, the ROM size and consequently the simulation time depends only on the number of blades

or sectors of the system.

5.4 Discussion

5.4.1 Amplitude dependent mistuning

The primary assumption that enabled the development of the ROM presented in this study

is that the strain dependent nonlinearity of the coatings acts to modify the underlying mistuning

pattern of the corresponding linear blisk. In the linear case this response is determined by the linear

combinations of contributions from various mistuned modes. Each blade responds differently at

different frequencies for a mistuned blisk. Figures 5.16 and 5.17 show how the nonlinear effects

vary the stiffness at each blade based on their individual amplitudes at different frequencies. Thus,

the mistuning pattern itself becomes a function of amplitude and as a consequence also varies with

excitation frequency. The negative values of the additional nonlinear mistuningmN,s for the blades

in Figs. 5.16 and 5.17 are due to the softening effect (reduction in stiffness) of the nonlinearity. At
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Figure 5.16. Amplitude dependent mistuning: |F| = 0.1 N, EO 2 excitation, σ = 1%

Figure 5.17. Amplitude dependent mistuning: |F| = 0.4 N, EO 2 excitation, σ = 1%
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Figure 5.18. ROM vs Baseline AFs for multiple mistuning patterns: |F| = 0.1 N, EO 2 excitation,
σ = 1%

its maximum value of approximately -0.45%, this additional mistuning value is significant when

compared to the underlying linear mistuning of 1% for an excitation of |F| = 0.1 N in Fig. 5.16.

This contribution of the nonlinearity increases at higher excitations where the response amplitudes

are higher as shown in Fig. 5.17.

5.4.2 Applicability of ROM for nonlinear simulations of coated blisks

Nonlinear simulations with 1000 different underlying linear mistuning patterns with σ = 1%

were conducted for a particular excitation regime as shown in Fig. 5.18. The baseline used in

this case is the dynamics projected onto the tuned modes. The different cases are arranged in

decreasing order of AF for the baseline and compared to the ROMs. It is seen that the response

and hence the AF predictions for the ROM with TRA are very accurate. The ROM simulated with

FPI falters in predicting accurate AF values for certain mistuning patterns due to the convergence

issues mentioned in section 5.3.5. This analysis provides additional validation of the accuracy of
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Figure 5.19. Rank comparison of AFs for multiple mistuning patterns: |F| = 0.1 N, EO 2
excitation, σ = 1%

the ROM solved using TRA for a coated blisk in different excitation regimes and shows that it can

be used to predict nonlinear responses for probabilistic simulations.

However, whether such a simulation might be useful at all is yet to be analyzed. If the AFs for

nonlinear blisks do not vary significantly from the linear case, a designer might choose to conduct

probabilistic analysis with linear simulations which are by far less expensive than nonlinear ones.

To test whether this is the case, the nonlinear AFs are compared to the linear AFs for the same

set of linear mistuning patterns. Each pattern is ranked from the highest AF (rank 1) to the lowest

(rank 1000) for both the linear and nonlinear cases. The two rankings for all the patterns are then

plotted against each other in Fig. 5.19. If the rank and hence the percentile of a particular AF for

a particular pattern does not change much with nonlinearity it should lie along the antidiagonal in

this plot. It may be seen that several patterns in the plot deviate from this behavior. Hence, it is

shown that nonlinearity not only has an effect on the response but also the AFs and it is not possible

to predict the mistuning patterns which will exhibit the highest AF in a nonlinear case from linear
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simulations. Probabilistic analysis with nonlinear ROMs is an essential tool for designers to predict

coated blisk behavior under uncertainty in a nonlinear regime of operation.

5.4.3 Assumptions, possible generalizations and extensions

In this study a single dominant mode was assumed in the blade response. These assumptions

will be accurate in frequency regions near isolated flat families. Near veering regions of the fre-

quency versus nodal diameter plot, where multiple blade modes and tuned modal families may be

involved [3, 10] the ROM will be less accurate. However, it is well known that in these regions

there are significant contributions to the response from disk dominated modes [3, 98] which im-

plies that damping provided by the coated blades will be less effective and the use of the ROM less

pertinent. To regain accuracy of the ROM in such a region, the amplitude dependent mistuning

and damping would have to be expressed not as function of blade amplitude at a single point, but

as a function of the multiple dominant blade modal amplitudes. The use of cantilevered blade re-

sponses to approximate the functional dependence of blade nonlinearity on blade amplitudes might

also lead to inaccuracies in a veering region where disk-dominant modes contribute to blade mo-

tion at the disk-blade interface. Instead it would be advisable to use tuned blisk blade responses or

include amplitudes of attachment modes between blades and disk as additional parameters for the

functional dependencies. In such a case, it may also be advisable to use other projection bases such

as CMM modes whose formulation would be more convenient as the linear CMM ROM already

contains mistuning parameters for multiple cantilevered blade modes and uses attachment modes

for reduction in its most general formulation [16–18]. Another assumption of the ROM which

may be possibly relaxed is the dominance of the first harmonic. In a situation where this is nec-

essary, it is possible that the nonlinear parameters no longer depend directly on physical blade or

sector level amplitudes but on the amplitudes of individual harmonics of the modes that comprise

it. Accounting for this would require extending the number of additional nonlinear mistuning and

damping parameters by a factor of the number of harmonics retained in the simulation, with each
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one of these parameters being expressed as a function of all the blade modal harmonic amplitudes.

The efficacy of such a ROM may be improved by determining if all these functional dependencies

are significant and which harmonic modal amplitudes may me ignored for their calculation.

5.5 Conclusions

In this chapter, simulation techniques were developed for predicting the responses of a blisk

containing blades with nonlinear coatings. An academic FE model of a coated blisk is developed.

Baseline simulations of both the nominal cyclic symmetric tuned blisk and blisks with linear mis-

tuning in the blades are carried out using the harmonic balance method, which is validated by

comparison to time-marching transient dynamic analysis. It is determined that for small stiffness

mistuning the nonlinear dynamics of the blisk, can be captured by projection onto the nominal

tuned mode family corresponding to the dominant mode of the blade response. It is assumed that

there is a dominant blade mode in the response and the strain-dependent nonlinear forces in the

coating have the effect of changing the stiffness and damping of a each blade as a function of its

amplitude. This effect is verified in simulations of individual cantilevered coated blades. A reduced

order model for mistuned coated blisks is developed through the use of the tuned modes projection

and additional nonlinear mistuning and damping parameters which capture the dependency of the

nonlinearity on nonlinear blade response amplitudes. The reduced order model is compared with

the baseline simulations in different regimes of excitation and found to be accurate, while reducing

the simulation cost significantly. The amplification of coated blisk responses due to mistuning in

the blades is studied for both the linear and nonlinear cases. It is found that the mistuning pat-

terns which exhibit the highest amplifications for a linear case, might not necessarily do so for

a nonlinear case, necessitating the use of probabilistic analysis with reduced order models such

as the one developed herein to quantify and design for uncertainties. Hence, the representation

of strain dependent nonlinearities in a nominally cyclic symmetric structure as additional mistun-

ing and the consequent benefits for model reduction are established for coated blisk simulations,
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while providing the requisite mathematical abstraction for possible application to similar nonlinear

structures.
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CHAPTER VI

Conclusions and Summary of Contributions

In this work, various novel methods for analysis and simulation of turbine bladed disk (blisk)

models were developed. These methods primarily address the challenges of characterizing the dy-

namics in blisks due to the nominal cyclic nature of such systems and the inherent uncertainties

in their design and manufacture. Commonly referred to as mistuning, these uncertainties lead to

non-uniformity in dynamic parameters such as stiffnesses and damping across the cyclic sectors of

these structures, which are also often nonlinearly dependent on blade displacements. These effects

act in tandem to engender the complex vibratory behavior observed in these structures. The non-

linearities can be caused due to various distinct mechanisms such as friction, intermittent contacts

or coatings and may be intentional or non-intentional. The physics underlying these dynamics

may thus be very different and require specialized strategies for modeling. High-fidelity modeling

based on first principles is of limited practical use for design because the computational complexity

involved in simulating such models renders them infeasible for carrying out probabilistic analyses

required to account for uncertainties and mistuning. Hence, the focus of this work has been the

development of reduced order models (ROMs) for these structures which are orders of magnitude

faster than corresponding high-fidelity models and yet capture the responses and stresses in blisks

accurately.

A structure whose dynamics is particularly challenging to analyze and reduce is the shrouded
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blisk. The frictional contacts at the shrouds near the blade tip play a major role in the dynamics

of such systems. The localized stick-slip conditions and associated nonlinear frictional forces at

the interfaces give rise to a microslip regime which refers to any combination of localized contact

conditions between two linear extremes: full stick where all contacts are stuck at all times and

gross slip where all contacts are slipping beyond the friction limit at all times. The modes of the

structure change with excitation amplitude and frequency in the microslip regime making model

order reduction a challenging task. In this study, ROMs were obtained for shrouded blisks in the

microslip using an adaptive microslip projection (AMP) reduction basis which captures the spatial

correlations in the nonlinear blisk response at steady-state across a range of excitation frequencies.

The AMP basis vectors are linear modes of intermediate linear systems corresponding to special

boundary-conditions at the contact interfaces derived by approximating the effect of the structural

response at varying amplitude levels on localized contact conditions at those interfaces. The AMP

ROM was validated in simulations by comparing its forced responses against a full order baseline

model for various cases of mistuning in different excitation regimes. A convergence study of

the ROMs was performed to analyze the number of AMP reduction basis vectors required for

accurate dynamic reduction by comparing them to the proper orthogonal modes (POMs) describing

the dominant spatial coherences in the response. The AMP reduction procedure avoids explicit

calculations of full-order nonlinear responses while performing spatial reduction for both linear

and nonlinear degrees of freedom (DoFs) of the model. This makes it highly computationally

efficient compared to other commonly used techniques which require nonlinear calculations (eg.

POMs) or reduce only linear DoFs (eg. Craig-Bampton component mode synthesis (CB-CMS)).

Other advantages include user-friendliness and monotonically decreasing errors with the size of

the reduction basis. Although AMP was developed in this study for shrouded blisks, they may

possibly be adapted for reducing other systems with frictional contacts in microslip.

Experimental verification was also sought to confirm the presence of spatial coherences in a

nonlinear system with contact and validate the AMP procedure. Another experimental objective,
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in view of practical application of the developed ROMs, was estimating the contact parameters

such as contact stiffnesses, coefficient of friction and normal load distributions which are used to

model nonlinear Coulomb friction in both full and reduced order models, but cannot be readily

measured directly. An experimental rig consisting of a blade-like cantilevered beam with a large

flat-on-flat frictional contact was designed and constructed. Experiments were conducted to mea-

sure linear stuck beam modes and to obtain frequency responses of the beam with the contact in

microslip. Responses were measured both on the beam face and close to the contact. Finite el-

ement (FE) modeling and CB-CMS were used to obtain a linear model of the free beam. This

model was augmented with localized contact models and optimization techniques were used to

estimate the contact parameters by minimizing the error in simulation responses with respect to

experimentally measured values. The identified parameters were then used to create AMP ROMs

which were compared with the CB-CMS baseline model for verification and found to accurately

predict responses at multiple excitation levels. An AMP basis was also estimated by applying spe-

cific boundary conditions to the linear model based on experimentally observed displacements near

the contact. This AMP basis was compared to the POMs obtained directly from the experimental

response and the two subspaces were found to be a good match, providing further verification for

the AMP reduction procedure.

Another aspect of microslip in blisks that was not well-researched in the past, is the effect of

variances in contact parameters within a single contact interface and across different interfaces

of such a nominally cyclic structure. In this study, contact mistuning in a shrouded blisk with

mistuned local contact stiffnesses was analyzed at different contact conditions including linear

(all interfaces in full stick or gross slip) and nonlinear (different levels of microslip) operational

regimes. Monte Carlo simulations were used to generate probabilistic data of mistuned blisk re-

sponse amplification compared to tuned blisk response, which is also colloquially referred to as

amplification factor (AF) and is a metric commonly used to ascertain the effects of a mistuning.

The AF is found to be dependent on the spatial harmonic or engine order (EO) associated with the
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traveling-wave forced excitation commonly used for these studies. It was seen that both the level of

microslip and mistuning determine the AF. Although the response of a blisk in microslip is known

to be bounded by the linear cases of full stick and gross slip, it was seen that this is not necessarily

true of AFs. The optimum value of microslip at which the amplification is minimum was found

to vary with the level of mistuning. It was concluded that the designed level of microslip in the

operating region should try to trade-off between the tuned damped response and the highest AFs

expected due to uncertainty in the contact parameters in that region.

A nonlinear damping mechanism, which is increasingly more common in modern blisks and

was made possible due to advances in materials and manufacturing technology, is nonlinear damp-

ing coatings applied onto blades of blisks. The nonlinear forces due to these coatings are not

localized at a few interfaces like in shrouded blisks. Hence, the number of nonlinear DoFs in

the models for coated blisks are comparatively higher. However, the silver lining for model order

reduction of the dynamics is that the modes of the blades are not affected significantly by the dis-

tributed coating nonlinearities and the dynamics can be captured by a set of linearized modes. This

work builds upon previous work on modeling coated blades and beams and extends such analyses

to tuned and mistuned coated blisks. Modeling methods were developed for obtaining frequency

responses of high-fidelity nonlinear FE based models of coated blisks with small linear stiffness

mistuning in the blades. It was observed that the nonlinear dynamics of such a mistuned blisk can

be captured by projection onto the nominal modes of the corresponding tuned blisk irrespective

of the mistuning pattern. It was further shown, that the damping and stiffness at each blade could

in general be expressed as polynomial functions of the blade amplitude. This is equivalent to a

mistuning in stiffness and damping of the blades which is amplitude dependent. This allowed the

development of an extremely fast ROM, where the nonlinearity in the dynamics could be captured

directly in the reduced order space by using amplitude-dependent mistuning parameters. ROMs

responses were calculated for several different mistuning patterns and operational regimes and val-

idated against full-order model responses. Probabilistic analyses were also carried out using blisks
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with randomly generated mistuning patterns. It was found that the mistuning patterns which ex-

hibit the highest AFs for blisks where the coating is assumed to be linear, might not necessarily do

so for a nonlinear case. This highlights the indispensability of the developed ROMs, particularly

to design for uncertainties.

In summary, the specific contributions of the research included in this thesis to the field of

turbomachinery and mechanical engineering in general may be stated as follows:

• The nonlinear vibration response of complex rotating systems that contain Coulomb friction

due to shroud-to-shroud dampers was modeled.

• A reduced order modeling tool, namely the adaptive microslip projection (AMP) method

was developed for such shrouded blisks and verified in simulation.

• An experimental rig was designed and manufactured to study the effects of nonlinear damp-

ing in microslip regime.

• Contact parameters were identified and the AMP method was validated using experimental

data obtained from measuring vibratory responses of the experimental rig.

• The effect of variation in contact parameters both within a contact interface and across vari-

ous interfaces on a nominally cyclic symmetric system was studied using probabilistic anal-

yses with shrouded blisk models.

• An modeling tool was created for capturing the effects of nonlinear damping coatings on the

vibration of complex rotating systems.

• The inherent amplitude-dependent stiffness and damping mistuning introduced into the sys-

tem by these coatings was utilized to create an efficient reduced order modeling technique.

The efficacy and accuracy of these models were verified using probabilistic analyses.
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In the future, various possible extensions for this work may be envisioned. One possibility

for obtaining further reductions in simulation times for AMP ROMs is to forego the alternating-

frequency time procedure for all nonlinear DoFs during solution. Methods may be developed to

instead estimate nonlinear forces from displacements directly in the frequency domain. One pos-

sibility is the use of sampling at certain DoFs, similar to hyper-reduction methods. Although, the

inclusion of multiple harmonics were discussed in this work, alternate methods may be developed

to obtain AMPs for the coupled multi-harmonic system equations directly, which can then be used

for reduction. Application to AMPs other systems with microslip and using more advanced contact

models is a possibility. Inspiration may also be gained from the underlying tenets of the AMPs.

Particularly, trying to capture spatial correlations in the response and predicting boundary condi-

tions may be good first steps toward developing other ROMs for problems with different physical

phenomena.

Damping estimation in systems with contacts remains an industry priority. Both the type and

volume of available sensor data from experiments will only increase in the future. It may soon be

possible to apply other, more data-hungry, system identification techniques such as those based on

auto-regression or neural networks applied with more advanced contact models to get better esti-

mates of nonlinear damping from experimental data. With better estimation of localized contact

parameters and greater control over these properties provided by advanced manufacturing tech-

niques, the lessons learned from the study on the effects of contact mistuning may be put to good

use.

Advances in materials have also made damping coatings feasible for blisks. The ROM devel-

oped and validated for coated blisks in this work may be applied to larger models representing real

blisks. More involved studies may be conducted to understand the modifications required to the

ROM to account for specific cases such as pre-stress and responses dominated multiple blade fam-

ilies which were not studied in detail here. The idea of reduction based on amplitude dependent

mistuning may be also be applied to other similar nonlinear systems with cyclic symmetry.
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APPENDIX A

System Matrices of a Cyclic Symmetric Structure

Figure A.1. DoFs for system matrices

The free stiffness matrix KSn for a single shrouded blade which comprises sector Sn may be

represented as:

KSn =


KSn
LL KSn

LI KSn
LH

KSn
IL KSn

II KSn
IH

KSn
HL KSn

HI KSn
HH

 (A.1)

137



where subscript L refers to degrees of freedom (DoFs) at the Target/Low disk surface, subscript I

refers to DoFs in the interior of the blade and subscript H refers to DoFs at the Contact/High disk

surface.

Since all the operations applied to the system matrices in this discussion will be similar, only

the operations applied to the stiffness matrix are shown. The matrices corresponding to mass and

damping will have similar forms.

Figure A.2. Full blisk DoFs

The full 360◦ blisk system matrix which is formed by merging the disk interface DoFs of

adjacent sectors as shown in Fig. A.2 is given by:

K =



K
S1
II K

S1
IH 0 0 0 ··· ··· ··· 0 K

S1
IL

K
S1
HI K

S1
HH+K

S2
LL K

S2
LI K

S2
LH 0 ··· ··· ··· 0 K

S1
HL

0 K
S2
IL K

S2
II K

S2
IH 0 ··· ··· ··· ··· 0

0 K
S2
HL K

S2
HI K

S2
HH+K

S3
LL K

S3
LI K

S3
LH 0 ··· ···

...

0 0 ··· ···
. . .

...
...

0 0 0 ··· ··· ··· ··· ··· K
SN
II K

SN
IH

K
S1
LI K

S1
LH 0 ··· ··· ··· ··· ··· K

SN
HI K

SN
HH+K

S1
LL


(A.2)

whereN is the number of sectors/blades. For a tuned system the superscripts Sn (n = 1, 2, · · · , N )

may be dropped and then the generating stiffness matrices [99, 100] of the full blisk system may
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be written as:

Kgen,1 =

KII KIH

KHI KHH + KLL

 (A.3)

Kgen,2 =

 0 0

KLI KLH

 (A.4)

Kgen,j =

0 0

0 0

 j = 3, 4..., N − 1 (A.5)

Kgen,N =

0 KIL

0 KHL

 (A.6)

The complex stiffness matrix in the cyclic co-ordinates corresponding to the spatial harmonic index

h may now be obtained by using the equation [99, 100]:

K̃h
C =

N∑
n=1

Kgen,je
i(n−1)hα (A.7)

where i is the square root of -1, h is the spatial harmonic index (not the number of harmonics in

the harmonic balance method), subscript C represents the complex nature of the matrix and α is

given by:

α = 2π/N (A.8)

hα is commonly referred to as the inter-blade phase angle. Substituting Eqns. A.3- A.6 into

Eqn. A.7 one may obtain:

K̃h
C =

 KII KIH + KILe
−ihα

KHI + KLIe
ihα KHH + KLL + KLHe

ihα + KHLe
−ihα

 (A.9)
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Figure A.3. Cyclic Symmetric CBCMS setup

The stiffness matrix in Eqn. (A.9) may also be obtained by applying constraints between the

complex displacements of matching nodes on low and high surfaces of the sector model [41] as

shown in Fig. A.3. The constraint equation describing the positive (forward) traveling wave for a

blisk free shrouds (with no contact established) may be given by:

q̃hL = q̃hHe
−ihα (A.10)

where q̃ represents a constrained displacement vector. Eqn. (A.10) can be expanded using the

complex nature of the quantities as follows:

<(q̃hL) + i=(q̃hL) = (<(q̃hH) + i=(q̃hH))(cos(hα)− isin(hα)) (A.11)
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or

<(q̃hL) + i=(q̃hL) = (<(q̃hH)cos(hα) + =(q̃hH)sin(hα))

+i(=(q̃hH)cos(hα)−<(q̃hH)sin(hα))

(A.12)

Equating real and imaginary parts of Eqn. (A.12) then yields:

<(q̃hL) = <(q̃hH)cos(hα) + =(q̃hH)sin(hα) (A.13)

and

=(q̃hL) = =(q̃hH)cos(hα)−<(q̃hH)sin(hα) (A.14)

The complex free blade displacements for any sector of a cyclic symmetric (tuned) blisk corre-

sponding to the stiffness matrix of Eqn. (A.1) may be represented by:

qhC =


qhL

qhI

qhH

 (A.15)

qhC may be transformed into a reduced set of complex co-ordinates q̃hC which corresponds to the

matrix in Eqn. (A.9) given by:

q̃hC =

 q̃hI

q̃hH

 (A.16)

The transformation is represented by the equation:

qhC = Th
Cq̃hC (A.17)
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Transformation matrix Th
C may be defined using Eqn. (A.10) as follows:

Th
C =


0 Ie−ihα

I 0

0 I

 (A.18)

Then the stiffness matrix in cyclic co-ordinates K̃h
C of Eqn. (A.9) may be recovered by substituting

Eqns. (A.1) and (A.18) in the equation:

K̃h
C = Th

C
H
KSnTC

h (A.19)

where superscript H represents the Hermitian of a complex matrix. Thus, ignoring the superscripts

Sn for a tuned blisk and simplifying Eqn. (A.19) one may obtain:

K̃h
C =

 0 I 0

Ieihα 0 I

 ·


KLL KLI KLH

KIL KII KIH

KHL KHI KHH

 ·Th
C (A.20)

or

K̃h
C =

[
KIL KII KIH

KLLe
ihα+KHL KLIe

ihα+KHI KLHe
ihα+KHH

]
·


0 Ie−ihα

I 0

0 I

 (A.21)

or

K̃h
C =

 KII KILe
−ihα + KIH

KLIe
ihα + KHI KLL + KHLe

−ihα + KLHe
ihα + KHH

 (A.22)

which is the same as Eqn. (A.9).

Often, commercially available software cannot enforce complex constraints. In such a situation

the complex constraint described by Eqn. (A.10) may be replaced by the real constraints in the
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Figure A.4. Constraints on real displacements

Eqns. (A.13) and (A.14). To apply this in practice two identical free sectors of the blisk must

be considered, one representing the real part of the free blade displacements and the other the

imaginary part as shown in Fig. A.4. The vector of real displacements corresponding to this model

is given by:

qhR ,

qh<

qh=

 ,

<(qhC)

=(qhC)

 =



<(qhL)

<(qhI )

<(qhH)

=(qhL)

=(qhI )

=(qhH)


(A.23)

where subscript < represents DoFs belonging to the real sector and subscript = represents DoFs

belonging to the Imaginary sector.
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The corresponding stiffness matrix for this free 2 blade system is given by:

K2S =


KLL KLI KLH 0 0 0
KIL KII KIH 0 0 0
KHL KHI KHH 0 0 0

0 0 0 KLL KLI KLH
0 0 0 KIL KII KIH
0 0 0 KHL KHI KHH

 (A.24)

The intention is to reduce the system displacements in Eqn. (A.23) to the set of reduced DoFs:

q̃hR ,

q̃h<

q̃h=

 ,

<(q̃hC)

=(q̃hC)

 =



<(q̃hI )

<(q̃hH)

=(q̃hI )

=(q̃hH)


(A.25)

This may be achieved using the equation:

qhR = Th
Rq̃hR (A.26)

where the transformation matrix Th
R may be described using Eqns. (A.13) and (A.14) as:

Th
R =



0 Icos(hα) 0 Isin(hα)

I 0 0 0

0 I 0 0

0 −Isin(hα) 0 Icos(hα)

0 0 I 0

0 0 0 I


(A.27)

By applying this transformation to the the matrix in Eqn. (A.24) one may obtain:

K̃h
R = Th

R
T
K2STh

R (A.28)
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where superscript T represents the transpose of a matrix.

Expanding Eqn. (A.28):

K̃h
R =

[
0 I 0 0 0 0

Icos(hα) 0 I −Isin(hα) 0 0
0 0 0 0 I 0

Isin(hα) 0 0 Icos(hα) 0 I

]
·


KLL KLI KLH 0 0 0
KIL KII KIH 0 0 0
KHL KHI KHH 0 0 0

0 0 0 KLL KLI KLH
0 0 0 KIL KII KIH
0 0 0 KHL KHI KHH

 ·Th
R (A.29)

or

K̃h
R =


KIL KII KIH 0 0 0

KLLcos(hα) KLIcos(hα) KLHcos(hα) −KLLsin(hα) −KLIsin(hα) −KLHsin(hα)
+KHL +KHI +KHH

0 0 0 KIL KII KIH

KLLsin(hα) KLIsin(hα) KLHsin(hα) KLLcos(hα) KLIcos(hα) KLHcos(hα)
+KHL +KHI +KHH


·

 0 Icos(hα) 0 Isin(hα)
I 0 0 0
0 I 0 0
0 −Isin(hα) 0 Icos(hα)
0 0 I 0
0 0 0 I


(A.30)

or

K̃h
R =



KII KILcos(hα) 0 KILsin(hα)
+KIH

KLIcos(hα) KLLcos
2(hα) −KLIsin(hα) KLLcos(hα)sin(hα)

+KHI +KHLcos(hα) +KHLsin(hα)
+KLHcos(hα) −KLLcos(hα)sin(hα)

+KHH −KLHsin(hα)

+KLLsin
2(hα)

0 −KILsin(hα) KII KILcos(hα)
+KIH

KLIsin(hα) KLLsin(hα)cos(hα) KLIcos(hα) KLLsin
2(hα)

+KLHsin(hα) +KHI +KLLcos
2(hα)

−KLLcos(hα)sin(hα) +KHLcos(hα)
−KHLsin(hα) +KLHcos(hα)

+KHH


(A.31)

or

K̃h
R =



KII KILcos(hα) 0 KILsin(hα)
+KIH

KLIcos(hα) KLL −KLIsin(hα) KHLsin(hα)
+KHI +KHLcos(hα) −KLHsin(hα)

+KLHcos(hα)
+KHH

0 −KILsin(hα) KII KILcos(hα)
+KIH

KLIsin(hα) KLHsin(hα) KLIcos(hα) KLL

−KHLsin(hα) +KHI KHLcos(hα)
+KLHcos(hα)

+KHH


(A.32)
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Thus, K̃h
R may be represented as:

K̃h
R =

K̃<<(hα) K̃<=(hα)

K̃=<(hα) K̃==(hα)

 (A.33)

where

K̃<<(hα) =
[

KII KILcos(hα)+KIH

KLIcos(hα)+KHI KLL+KHLcos(hα)+KLHcos(hα)+KHH

]
(A.34)

K̃<=(hα) =
[

0 KILsin(hα)
−KLIsin(hα) KHLsin(hα)−KLHsin(hα)

]
(A.35)

K̃=<(hα) =
[

0 −KILsin(hα)
KLIsin(hα) KLHsin(hα)−KHLsin(hα)

]
= K̃<=(−hα) (A.36)

K̃==(hα) =
[

KII KILcos(hα)+KIH

KLIcos(hα)+KHI KLL+KHLcos(hα)+KLHcos(hα)+KHH

]
= K̃<<(−hα) = K̃<<(hα)

(A.37)

It may be noted that:

K̃<<(hα)− iK̃<=(hα) = K̃<<(hα) + iK̃<=(−hα) = K̃==(hα) + iK̃=<(hα) (A.38)

To recover Eqn. (A.9) or (A.22) which describes the free system matrix corresponding the positive

(forward) traveling wave of harmonic index h in cyclic co-ordinates from Eqns. (A.34)- (A.37) one

may use:

K̃<<(hα)− iK̃<=(hα)

=
[

KII KIL(cos(hα)−isin(hα))+KIH

KLI(cos(hα)+isin(hα))+KHI KLL+KHL(cos(hα)−isin(hα))+KLH(cos(hα)+isin(hα))+KHH

]
=
[

KII KIH+KILe
−ihα

KHI+KLIe
ihα KHH+KLL+KLHe

ihα+KHLe
−ihα

]
= K̃h

C

(A.39)

Thus,

K̃h
C = K̃<<(hα)− iK̃<=(hα) = K̃==(hα) + iK̃=<(hα) (A.40)
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Care must be taken while using Eqn. (A.40) as using the incorrect sign for i in the equation will

yield the complex conjugate of the system matrix which represents the matrix of the system corre-

sponding to the negative (backward) travelling wave in cyclic co-ordinates as follows:

K̃<<(hα) + iK̃<=(hα) =
[

KII KIH+KILe
ihα

KHI+KLIe
−ihα KHH+KLL+KLHe

−ihα+KHLe
ihα

]
= K̃−hC (A.41)

It may also be noted that the real matrix corresponding to constrained two sector system which

represents the cyclic symmetric system K̃h
R may also be expressed as:

K̃h
R =

<(K̃h
C) −=(K̃h

C)

=(K̃h
C) <(K̃h

C)

 (A.42)

147



APPENDIX B

Component Mode Synthesis in Cyclic Symmetric Structures

The CB-CMS of the constrained system in Eqns. (A.9) and (A.22) can be carried out by first

partitioning the corresponding complex co-ordinates of Eqn. (A.23) into a set of master and slave

DoFs as follows:

q̃hC =

q̃hC,M

q̃hC,S

 =

 q̃hI,M
q̃hH,M
q̃hI,S
q̃hH,S

 (B.1)

where subscript M refers to the master DoFs and subscript S refers to the slave DoFs.

The complex cyclically constrained system matrix K̃h
C can be partitioned as:

K̃h
C =

K̃h
C,MM K̃h

C,MS

K̃h
C,SM K̃h

C,SS

 (B.2)

where subscripts MM , MS, SM or SS represent a matrix partition based on the master-slave

partition of the displacement vector.

In a CB-CMS reduction [8] the master nodes are retained while applying a reduction to the

slave DoFs to reduce them to DoFs corresponding to a set of slave modes ˜̃qhC,N . The reduction is
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represented as follows:

˜̃qhC ,

˜̃qhC,M

˜̃qhC,N

 = Γh
C ·

q̃hC,M

q̃hC,S

 = Γh
Cq̃hC (B.3)

where ˜̃qhC are the set of reduced complex CB-CMS co-ordinates, ˜̃qhC,M are displacements of master

DoFs retained in the CB-CMS reduction, ˜̃qhC,N are complex modal co-ordinates corresponding to

a set of slave modes and Γh
C is the complex CB-CMS reduction matrix represented as:

Γh
C =

InM×nM 0nM×nS

Ψh
C Φh

C

 (B.4)

where nM and nS are the number of master and slave nodes retained per harmonic in the CB-CMS

reduced model. Ψh
C is a nS × nM complex matrix whose columns represent the constraint modes

and Φh
C is a nS × nS complex matrix whose columns represent the normal (slave) modes.

The constraint modes are obtained by applying a unit displacement to the master DoFs individ-

ually. Hence, it must satisfy the relation:

K̃h
C,MM K̃h

C,MS

K̃h
C,SM K̃h

C,SS

 ·
 I

Ψh
C

 =

f̃hC,M

0

 (B.5)

where f̃hC,M is the complex force applied at the master DoFs along cyclic co-ordinates to enforce

the constraint. Simplifying the second row of the matrix Eqn. (B.5), the constraint modes may be

determined using the equation:

Ψh
C = −K̃h

C,SS
−1

K̃h
C,SM (B.6)

The normal modes are the linear mode-shapes of the system obtained by completely constraining

all the master DoFs and can be determined as the solution to the eigenvalue problem:

K̃h
C,SSΦh

C = M̃h
C,SSΦh

CΛh
C,SS (B.7)
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where M represents a mass matrix and Λ represents a diagonal matrix containing eigenvalues of

the system.

The reduced order CB-CMS matrices may then be obtained by using the reduction matrix Γh
C

in Eqn. (B.4). The CB-CMS reduced stiffness matrix may given by:

˜̃Kh
C = Γh

C
H
K̃h

CΓh
C =

[
K̃h

C,MM+ΨhH

C K̃h
C,SM+K̃h

C,MSΨh
C+ΨhH

C K̃h
C,SSΨh

C K̃h
C,MSΦh

C+ΨhH

C K̃h
C,SSΦh

C

ΦhH

C K̃h
C,SM+ΦhH

C K̃h
C,SSΨh

C ΦhH

C K̃h
C,SSΦh

C

]
(B.8)

where ˜̃Kh represents the reduced CB-CMS stiffness matrix.

The reduced matrix given in Eqn. (B.8) may be simplified further based on Eqns. (B.6) and (B.7).

However, this simplification is not applied here to prevent loss of generality. The reduced CB-

CMS mass matrix also has a similar form and may be simply obtained by replacing K with M in

Eqn. (B.8).

A regular CB-CMS sub-structuring analysis [8] might be carried out on the real constrained

two sector system. Alternatively to Eqn. (A.25) The DoFs of the cyclic symmetric system may be

expressed as:

q̃hR =

q̃hR,M

q̃hR,S

 =



<(q̃hI,M )

<(q̃hH,M )

=(q̃hI,M )

=(q̃hH,M )

<(q̃hI,S)

<(q̃hH,S)

=(q̃hI,S)

=(q̃hH,S)


(B.9)

The master and slave DoFs belong to nodes in the FEM model in both the real and imaginary

sectors. The real system matrix K̃h
R which represents the constrained two sector system can be

partitioned as:

K̃h
R =

K̃h
R,MM K̃h

R,MS

K̃h
R,SM K̃h

R,SS

 (B.10)

It follows from Eqn. (A.42) that each of the submatrices in Eqn. (B.10) can in turn be represented
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by the real and imaginary parts of the corresponding partition of the complex matrix K̃h
C as follows:

K̃h
R,XX =

<(K̃h
C,XX) −=(K̃h

C,XX)

=(K̃h
C,XX) <(K̃h

C,XX)

 (B.11)

where XX represents a matrix partition such as MM , MS, SM or SS.

The CB-CMS reduction in the real domain is represented as:

˜̃qhR ,

˜̃qhR,M

˜̃qhR,N

 = Γh
R ·

q̃hR,M

q̃hR,S

 = Γh
Rq̃hR (B.12)

where Γh
R is the real CB-CMS reduction matrix represented as:

Γh
R =

I2nM×2nM 02nM×2nS

Ψh
R Φh

R

 (B.13)

where Ψh
R is a 2nS × 2nM real matrix whose columns represent the constraint modes. Φh

R is a

2nS × 2nS real matrix whose columns represent the normal (slave) modes.

As before, the constraint modes Ψh
R are obtained by applying a unit displacement to the master

DoFs individually. Hence, it must satisfy the relation:

K̃h
R,MM K̃h

R,MS

K̃h
R,SM K̃h

R,SS

 ·
 I

Ψh
R

 =

f̃hR,M

0

 (B.14)

where f̃hR,M is the real force applied at the master DoFs along cyclic co-ordinates to enforce the

constraint.

The normal modes are the linear mode-shapes of the system obtained by completely constrain-

ing all the master DoFs of both the sectors and can be determined as the solution to the eigenvalue
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problem:

K̃h
R,SSΦh

R = M̃h
R,SSΦh

RΛh
R,SS (B.15)

The diagonal eigenvalue matrix Λh
R,SS corresponds to a system of two constrained sectors with real

displacements and is twice the size of Λh
C,SS which corresponds to a single constrained sector with

complex displacements.

Consider the jth real constraint mode ψh
R,j and the kth real normal mode φhR,j . The can be

partitioned into sub-vectors corresponding to the real and imaginary sector as follows:

ψh
R,j =

ψh
<,j

ψh
=,j

 φhR,k =

φh<,k
φh=,k

 (B.16)

Based on Eqns. (B.11), (B.14) and (B.16) the jth real constraint mode must thus satisfy:



<(K̃h
C,MM) −=(K̃h

C,MM) <(K̃h
C,MS) −=(K̃h

C,MS)

=(K̃h
C,MM) <(K̃h

C,MM) =(K̃h
C,MS) <(K̃h

C,MS)

<(K̃h
C,SM) −=(K̃h

C,SM) <(K̃h
C,SS) −=(K̃h

C,SS)

=(K̃h
C,SM) <(K̃h

C,SM) =(K̃h
C,SS) <(K̃h

C,SS)


·



1j

0

ψh
<,j

ψh
=,j


=



f̃hM,<,j

f̃hM,=,j

0

0


(B.17)

where subscripts < and = represent the DoFs of the real and imaginary sector respectively. 1j =

[0 0 · · · 1 · · · 0]T is vector with 1 at the jth index and 0’s everywhere else. If Eqn. (B.17) stands it

may be seen that the following will also be true:



<(K̃h
C,MM) −=(K̃h

C,MM) <(K̃h
C,MS) −=(K̃h

C,MS)

=(K̃h
C,MM) <(K̃h

C,MM) =(K̃h
C,MS) <(K̃h

C,MS)

<(K̃h
C,SM) −=(K̃h

C,SM) <(K̃h
C,SS) −=(K̃h

C,SS)

=(K̃h
C,SM) <(K̃h

C,SM) =(K̃h
C,SS) <(K̃h

C,SS)


·



0

1j

−ψh
=,j

ψh
<,j


=



−f̃hM,=,j

f̃hM,<,j

0

0


(B.18)

Thus, if ψh
R,j = [ψh

<,j ψh
=,j]

T is a real constraint mode so is ψ̂h
R,j , [−ψh

=,j ψh
<,j]

T. Based on
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Eqns. (A.42), (B.15) and (B.16) the kth real normal mode must satisfy the equation:

<(K̃h
C,SS) −=(K̃h

C,SS)

=(K̃h
C,SS) <(K̃h

C,SS)

 ·
φh<,k
φh=,k

 =

<(M̃h
C,SS) −=(M̃h

C,SS)

=(M̃h
C,SS) <(M̃h

C,SS)

 ·
φh<,k
φh=,k

λk (B.19)

where λk is the eigenvalue of the kth normal mode. It follows from Eqn. (B.19) that the following

also holds true:<(K̃h
C,SS) −=(K̃h

C,SS)

=(K̃h
C,SS) <(K̃h

C,SS)

 ·
−φh=,k
φh<,k

 =

<(M̃h
C,SS) −=(M̃h

C,SS)

=(M̃h
C,SS) <(M̃h

C,SS)

 ·
−φh=,k
φh<,k

λk (B.20)

Thus, if φhR,j = [φh<,j φh=,j]
T is a real normal mode so is φ̂hR,j , [−φh=,j φh<,j]

T. If ψh
C,j ,

ψh
<,j + iψh

=,j is a complex mode which represents the forward traveling constraint mode, then its

complementary mode given by ψ̂h
C,j , −ψh

=,j + iψh
<,j represents the backward traveling constraint

mode. A similar argument also holds true for a forward traveling normal modeφhC,j , φ
h
<,j+iφ

h
=,j

and its backward traveling companion φ̂hC,j , −φh=,j + iφh<,j . Hence, the set of constraint and

normal modes may be represented in the real domain in terms of the complex constraint and normal

modes by:

Ψh
R =

<(Ψh
C) −=(Ψh

C)

=(Ψh
C) <(Ψh

C)

 Φh
R =

<(Φh
C) −=(Φh

C)

=(Φh
C) <(Φh

C)

 (B.21)

The reduced CB-CMS matrices may now be given in the real domain by:

˜̃Kh
R = Γh

R
T
K̃h

RΓh
R =

[
K̃h

R,MM+ΨhT

R K̃h
R,SM+K̃h

R,MSΨh
R+ΨhT

R K̃h
R,SSΨh

R K̃h
R,MSΦh

R+ΨhT

R K̃h
R,SSΦh

R

ΦhT

R K̃h
R,SM+ΦhT

R K̃h
R,SSΨh

R ΦhT

R K̃h
R,SSΦh

R

]
(B.22)

Using Eqns. (B.11) and (B.21) one may obtain:

ΨhT

R K̃h
R,XX =

[
<(ΨhT

C,XX) =(ΨhT

C,XX)

−=(ΨhT

C,XX) <(ΨhT

C,XX)

]
·
[
<(K̃h

C,XX) −=(K̃h
C,XX)

=(K̃h
C,XX) <(K̃h

C,XX)

]
(B.23)
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or

ΨhT

R K̃h
R,XX =

[
<(ΨhT

C,XX)<(K̃h
C,XX)+=(ΨhT

C,XX)=(K̃h
C,XX) −

(
<(ΨhT

C,XX)=(K̃h
C,XX)−=(ΨhT

C,XX)<(K̃h
C,XX)

)
<(ΨhT

C,XX)=(K̃h
C,XX)−=(ΨhT

C,XX)<(K̃h
C,XX) <(ΨhT

C,XX)<(K̃h
C,XX)+=(ΨhT

C,XX)=(K̃h
C,XX)

]
(B.24)

or

ΨhT

R K̃h
R,XX =

<(ΨhH

C,XXK̃h
C,XX) −=(ΨhH

C,XXK̃h
C,XX)

=(ΨhH

C,XXK̃h
C,XX) <(ΨhH

C,XXK̃h
C,XX)

 (B.25)

Similarly,

K̃h
R,XXΨh

R =

<(K̃h
C,XXΨh

C,XX) −=(K̃h
C,XXΨh

C,XX)

=(K̃h
C,XXΨh

C,XX) <(K̃h
C,XXΨh

C,XX)

 (B.26)

Replacing K̃h
R,XX with K̃h

R,XXΨh
R in Eqn. (B.25) results in the following:

ΨhT

R K̃h
R,XXΨh

R =

<(ΨhH

R K̃h
R,XXΨh

C,XX) −=(ΨhH

R K̃h
R,XXΨh

C,XX)

=(ΨhH

R K̃h
R,XXΨh

C,XX) <(ΨhH

R K̃h
R,XXΨh

C,XX)

 (B.27)

Similar Eqns. for Φh
R can be obtained by substituting Ψh

R in Eqns. (B.25)- (B.27). It may be seen

that after substituting these Eqns. together into Eqn. (B.22), simplifying and rearranging the rows

and columns one may get:

˜̃Kh
R =

<( ˜̃Kh
C) −=( ˜̃Kh

C)

=( ˜̃Kh
C) <( ˜̃Kh

C)

 =



<( ˜̃Kh
C,MM) −=( ˜̃Kh

C,MM) <( ˜̃Kh
C,MS) −=( ˜̃Kh

C,MS)

=( ˜̃Kh
C,MM) <( ˜̃Kh

C,MM) =( ˜̃Kh
C,MS) <( ˜̃Kh

C,MS)

<( ˜̃Kh
C,SM) −=( ˜̃Kh

C,SM) <( ˜̃Kh
C,SS) −=( ˜̃Kh

C,SS)

=( ˜̃Kh
C,SM) <( ˜̃Kh

C,SM) =( ˜̃Kh
C,SS) <( ˜̃Kh

C,SS)


(B.28)

Thus, using Eqn. (B.28) one may obtain the cyclic symmetric CB-CMS matrices in real co-
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ordinates from a representation in complex co-ordinates and vice-versa. This also proves, that

CB-CMS conserves cyclic symmetry when it is performed in the fashion shown here. The real

domain matrices derived from the original two sector model contains information regarding both

the forward and backward traveling waves. A detailed descriptions of the forward and backward

Figure B.1. CB-CMS matrix DoFs

traveling DoFs of the final cyclic symmetric system matrix is shown in Fig. B.1. This is a general

formulation which represents both the mass and stiffness matrices. ˜̃Kh
R,SS and ˜̃Mh

R,SS are diagonal

matrices. Generally, for real systems which have symmetric stiffness matrices in physical DoFs,

˜̃Kh
R,MS and ˜̃Kh

R,SM are empty matrices. However, ˜̃Mh
R,MS and ˜̃Mh

R,SM are usually full matrices.

Often, one uses a commercially available software to obtain ˜̃Kh
R but might require ˜̃Kh

C for

use in further analysis. Generally, when softwares are used to perform CB-CMS sub-structuring

analysis the matrices they yield will not have the rows and columns in the same order as shown in

Eqn. (B.28) and must be rearranged. It is straightforward to keep track of master DoFs belonging

to the real and imaginary sector and their corresponding indices in ˜̃Kh
R,MM . The slave modes do not

have such corresponding physical DoFs and their indices might not be in the correct order. A pair

of slave modes which correspond to the forward and backward travelling waves will have the same

unique eigenvalue as shown in Eqns. (B.19) and (B.20). These eigenvalues will be proportional

to the diagonal elements of the matrix ˜̃Kh
R,SS and can thus be used to separate the indices which
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belong to a particular slave mode-pair. Let these indices be lk and l̂k for the forward and backward

traveling kth slave mode. However, which of the two indices corresponds to the forward traveling

one remains to determined. To do so, one may check the sign of the product of the 1st entry of the

lthk column and (nM + 1)th entry of the l̂thk columns of ˜̃Mh
R,MS (the corresponding entries for the

stiffness matrix will be a zero matrix). From Eqn. (B.28) it follows:

[
˜̃Mh

R,MS

]
1,lk

[
˜̃Mh

R,MS

]
nm+1,l̂k

=


(
<
([

˜̃Mh
C,MS

]
1,lk

))2

> 0 =⇒ lthk mode is forward traveling

−
(
=
([

˜̃Mh
C,MS

]
1,lk

))2

< 0 =⇒ l̂thk mode is forward traveling

(B.29)

where [A]j,k represents the element at the jth row and kth column of matrix A.
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