
Efficient Output-Based Adaptation Mechanics for

High-Order Computational Fluid Dynamics

Methods

by

Kaihua Ding

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Aerospace Engineering)

in The University of Michigan
2018

Doctoral Committee:

Associate Professor Krzysztof J. Fidkowski, Chair
Dr. H. T. Huynh, NASA Glenn Research Center
Associate Professor Christiane Jablonowski
Professor Philip L. Roe



Kaihua Ding

dkaihua@umich.edu

ORCID iD: 0000-0003-4749-2105

c© Kaihua Ding 2018 All Rights Reserved



ACKNOWLEDGEMENTS

I wish to express my gratitude and appreciation to my thesis supervisor, Professor

Krzysztof J. Fidkowski, for giving me the opportunity to work with him and for

his guidance throughout my graduate study, without whom this work wouldn’t be

possible. His insightful comments and enthusiasm about the project have propelled

my research forward. I would like to thank my committee members: Professor Philip

L. Roe, my minor advisor and long time collaborator, who has provided valuable

feedback and historic perspectives during my Ph.D. career, Dr. H. T. Huynh, who

I have known since my very fist conference and who graciously agreed to be on my

committee even being physically far away, Professor Christiane Jablonowski, who

has provided helpful ideas regarding nodal movement solution adaptation.

I would also like to thank all my fellow CFDG lab mates, whom I feel privileged

to meet and befriend, Marco Ceze, Isaac Asher, Steve Kast, Johann Dahm, Devina

Sanjaya, Yukiko Shimizu, Gary Collins, Kevin Doetsch, Gustavo Halila and Vivek

Ojha. Special thanks to Marco, Steve and Johann for providing me with Linux /

Unix, coding assistance at the beginning stage of my Ph.D.. To my friends, who

have shaped my whole graduate school experience and my life for the past five years,

Tim, Chris, Chuky, Doreen, Meredith, Lawren, Lindy, Soojin, Doga, Pinar, Robin,

Greg, Corey, Shardul, Candice, Rohan, Daniil, Megan, Beth, Charles, Lulu, Brad,

Yali, Dong, Peter and many others I have not mentioned, thank you as well. I am

forever indebted to your friendship and the wonderful memory I was able to have.

ii



Of course, I’m thankful of my parents, Yi Ding and Xiaoyan Li, for their endless

support, encouragement and love in all my academic and non-academic endeavours.

Financial support from the National Aeronautics and Space Administration under

the grant number, NNX12AJ70A, and the Department of Energy, both administered

by Professor Krzysztof J. Fidkowski, is gratefully acknowledged.

iii



TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

CHAPTER

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 High Order Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Solution Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.1 Contribution to the Active Flux Discretization . . . . . . . . . . . 7
1.3.2 Contribution to the Discontinuous Galerkin Discretization . . . . . 8

1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

II. Discretizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1 The Active Flux Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.1 One-Dimensional Active Flux Discretization . . . . . . . . . . . . . 12
2.1.2 Two-Dimensional Active Flux Discretization . . . . . . . . . . . . . 16

2.2 Adjoint Discretization for the Active Flux Method . . . . . . . . . . . . . . . 19
2.2.1 Discrete Adjoint for the Active Flux Discretization . . . . . . . . . 21
2.2.2 Continuous Adjoint for the Active Flux Discretization . . . . . . . 40

2.3 Discontinuous Galerkin Discretization . . . . . . . . . . . . . . . . . . . . . . 46
2.3.1 Conservation Equations . . . . . . . . . . . . . . . . . . . . . . . . 46
2.3.2 Solution Approximation . . . . . . . . . . . . . . . . . . . . . . . . 46
2.3.3 Weak Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.3.4 Discrete System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.3.5 Nonlinear Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.3.6 Discrete Adjoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.3.7 Local Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . 52
2.3.8 The Adjoint System . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.3.9 Adjoint Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

III. Mesh Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.1 Mesh Motion Algorithm for the Active Flux Discretization . . . . . . . . . . 60

iv



3.1.1 One Spatial Dimension . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.1.2 Two Spatial Dimensions . . . . . . . . . . . . . . . . . . . . . . . . 63
3.1.3 Elaboration on the Modified CFL Condition . . . . . . . . . . . . . 67

3.2 Adjoint Discretization and Verification for the Active Flux Method with
Mesh Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.2.1 Adjoint Discretization . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.2.2 Sensitivity Test with Motion . . . . . . . . . . . . . . . . . . . . . . 69
3.2.3 Error Estimation Study . . . . . . . . . . . . . . . . . . . . . . . . 70

3.3 Discontinuous Galerkin Discretization . . . . . . . . . . . . . . . . . . . . . . 72
3.3.1 The Arbitrary Lagrangian-Eulerian Mapping . . . . . . . . . . . . 72
3.3.2 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.3.3 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.3.4 Analytical Mesh Motions . . . . . . . . . . . . . . . . . . . . . . . . 78
3.3.5 The Geometric Conservation Law (GCL) . . . . . . . . . . . . . . . 79
3.3.6 Arbitrary Lagrangian-Eulerian Framework . . . . . . . . . . . . . . 79
3.3.7 Discrete Adjoint for Discontinuous Galerkin Discretization . . . . . 81

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

IV. h-Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.2 h-Adaptation for the Active Flux Method . . . . . . . . . . . . . . . . . . . 83

4.2.1 Error Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.2.2 Continuous versus Discrete Adjoint Based h-Adaptation . . . . . . 85
4.2.3 Additional Discrete Adjoint Based h-Adaptation Simulations . . . 89

4.3 Comparison of Active Flux and Discontinuous Galerkin h-Adaptation . . . . 93
4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

V. Adaptation Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.1 The Adjoint-Weighted Residual . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.2 Active Flux Method Adaptation Acceleration . . . . . . . . . . . . . . . . . 101

5.2.1 Coarse-Space Error Estimation . . . . . . . . . . . . . . . . . . . . 101
5.2.2 Coarse-Space Error Estimate Instructed h-Adaptation . . . . . . . 106

5.3 Discontinuous Galerkin Adaptation Acceleration . . . . . . . . . . . . . . . . 108
5.3.1 Adaptive Sub-Iterations . . . . . . . . . . . . . . . . . . . . . . . . 108
5.3.2 Adaptive Sub-Iteration Results . . . . . . . . . . . . . . . . . . . . 111

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

VI. r-Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.1 Active Flux Method r-Adaptation . . . . . . . . . . . . . . . . . . . . . . . . 129
6.1.1 Adaptive Indicator . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.1.2 r-Refinement for Unsteady Problems . . . . . . . . . . . . . . . . . 130
6.1.3 r-Refinement Mechanics . . . . . . . . . . . . . . . . . . . . . . . . 131
6.1.4 r-Adaptation Result . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.2 Discontinuous Galerkin r-Adaptation . . . . . . . . . . . . . . . . . . . . . . 136
6.2.1 Analytic Function Based Mesh Motion . . . . . . . . . . . . . . . . 136
6.2.2 Node-Interpolated Mesh Motion Based Mesh Motion for r-Adaptation140
6.2.3 Error Estimation and r-Adaptation . . . . . . . . . . . . . . . . . . 144
6.2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.3 Additional Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

v



VII. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
7.2 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

vi



LIST OF FIGURES

Figure

1.1 Comparison among adjoint-based adaptation, residual-based adaptation and uni-
form refinement. For all adaptation mechanics, the adaptation strategy is 10%
fixed fraction adaptation. Output is defined as point output at the location,
x = 2.948276. The primal discretization is the Active Flux method. . . . . . . . . 5

2.1 Illustration of the three time levels and unknown placement for one element in the
Active Flux method. Shaded circles are vertex unknowns, open circles are edge
unknowns, and the squares represent the cell average unknown. . . . . . . . . . . . 11

2.2 Unknowns placement in AF scheme. . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Zalesak wave suite propagation after one period with the AF scheme, with 100

cells, CFL = 0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Demonstration of third order convergence for the AF scheme in one dimension. . . 16
2.5 Unknown placement in the AF scheme in two-dimensions. . . . . . . . . . . . . 16
2.6 Demonstration of third order accuracy of the Active Flux scheme in two dimensions. 20
2.7 A matrix structure in one dimension, cell number M = 20 cells. . . . . . . . . . . 25
2.8 Nonzero fill pattern of the A matrix in two dimensions, for a mesh with M = 48

cells and K nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.9 Linear hat wave function propagated for one period. . . . . . . . . . . . . . . . . . 29
2.10 Snapshots of adjoint propagation on our computational domain. CFL = 0.1 . . . . 29
2.11 Initial mesh and primal problem illustration . . . . . . . . . . . . . . . . . . . . . . 30
2.12 2D adjoint and error indicator distribution at time step Nh/2 . . . . . . . . . . . . 32
2.13 Temporal state injection within a time step. . . . . . . . . . . . . . . . . . . . . . . 36
2.14 Convergence rate of |JH(UH) − Jh(Uh)| and |εjH | for a Gaussian wave advection

problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.15 Temporally-marginalized adaptive indicator, εjH from Eqn. 4.5. . . . . . . . . . . . 38
2.16 Primal and adjoint initial/terminal conditions and the adjoint space-time field for

a 1D scalar advection simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.17 Primal perturbation used in the two-dimensional sensitivity study: δu0(x, y) =

x2 + y2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.18 Partition of a square domain into 14 triangular elements. . . . . . . . . . . . . . . . 47
2.19 Solution approximation using continuous and discontinuous basis functions. Though

the solution is discontinuous in DG methods, the inter-element flux is single valued,
as in finite volume methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.20 Comparison of the primal solution (x-momentum component) and the adjoint so-
lution (conservation of x-momentum equation component) for a drag output in
Reynolds-averaged turbulent flow over an RAE 2822 airfoil. The color scales are
clipped to show the interesting features of each quantity – in the adjoint plots,
yellow is near zero. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.1 One dimensional element undergoing mesh motion: the node positions do not stay
fixed as time progresses, so that the element is no longer rectangular in space-time. 60

vii



3.2 One dimensional characteristics tracing illustration. With motion present, the char-
acteristic speed, ~vfinal, is determined by both the flow speed, ~a, and, nodal move-
ment velocity, ~vmotion. Here, ~vfinal = ~a+ ~vmotion. The new CFL condition needs to
take this modified characterstic velocity into consideration. . . . . . . . . . . . . . 61

3.3 Test problem for the Active Flux method with mesh motion in one spatial dimension. 62
3.4 Convergence study for the active flux method on a moving mesh in one spatial

dimension, with CFL=0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.5 Space-time control volume in two dimensions . . . . . . . . . . . . . . . . . . . . . 64
3.6 Mapping between a 3D space-time face in physical space and a reference square. . 65
3.7 Two dimensional characteristics tracing illustration. With motion present, the

characteristic speed, ~vfinal, is determined by both the flow speed, ~a, and, nodal
movement velocity, ~vmotion. Here, ~vfinal = ~a + ~vmotion. The new CFL condition
needs to take this modified characterstic velocity into consideration. . . . . . . . . 66

3.8 Convergence study for the active flux method with motion in two dimensions, pe-
riodic BCs, a = [2 2]T , simulation time of one period, and CFL = 0.1. . . . . . . . 67

3.9 Snapshots of the mapping used in the two-dimensional convergence-rate verification
study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.10 Error convergence study for a one-dimensional scalar advection problem. The mesh
motion prescribed for Figure 3.10(b) is the same as in Figure 3.4(b). The slopes of
all lines are approximately 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.11 Two-dimensional scalar advection: error estimate convergence study at CFL = 0.7
and a simulation time of one period. The slope of all lines is approximately 3. . . . 72

3.12 ALE mapping between the reference and physical domains. . . . . . . . . . . . . . 73
3.13 Summary of the mapping between reference and physical domains. The equations are

solved on the reference domain, which remains fixed for all time. When denoting reference-

domain quantities, we use a subscript X. . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.1 Output-based adaptation flowchart. . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.2 Output error convergence for various refinement strategies. Application of theoret-

ical work on Michigan ’M’ mesh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.3 Michigan “M”: final adapted meshes. . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.4 Michigan “M”: output error convergence with degrees of freedom, for both the

discrete and continuous adjoint methods. . . . . . . . . . . . . . . . . . . . . . . . . 88
4.5 Michigan “M”: convergence of the output error estimate for uniform and adapted

mesh sequences. The slopes of all four curves in the asymptotic range are approx-
imately 3.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.6 Square domain: adapted mesh and error convergence. . . . . . . . . . . . . . . . . 91
4.7 Application of theoretical work on circular mesh . . . . . . . . . . . . . . . . . . . 92
4.8 Application of theoretical work on crescent mesh . . . . . . . . . . . . . . . . . . . 94
4.9 Adapted meshes for DG1 and DG2, respectively. . . . . . . . . . . . . . . . . . . . 95
4.10 Convergence of h-adapted DG and AF for a scalar advection simulation. . . . . . 96
5.1 Illustration of discretization spaces used for coarser-space error estimation and

adaptation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.2 Unknown placement in the Active Flux method. . . . . . . . . . . . . . . . . . . 103
5.3 Illustration of five strategies proposed for coarsening the approximation space in

the Active Flux method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.4 Scalar advection with Active Flux: error convergence comparison. . . . . . . . . . . 107
5.5 Schematic of a “standard” error estimation and adaptation iteration in which the

fine space adjoint is solved exactly at every iteration. . . . . . . . . . . . . . . . . . 109
5.6 Schematic of the proposed error estimation and adaptation iteration in which ap-

proximate sub-iterations piggy-back on a standard adaptive iteration. In particular,
the fine-space adjoint solve is reused in the sub-iterations, where it is only smoothed
via an inexpensive iterative solver, thereby saving computational time compared to
the standard approach in which the fine space adjoint is re-solved on every adaptive
iteration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

viii



5.7 NACA 0012, M = 0.95, α = 0◦: effect of sub-iterations on drag convergence. In
both of the cases employing sub-iterations, the fine-space adjoint was reused on
the sub-iterations with only one element block-Jacobi smoothing iteration as the
extra solve. The current-space primal was also only block-Jacobi smoothed on
the current space, but the linear coarse-space adjoint problem was solved exactly
for all iterations. Dashed lines indicate the remaining error after correction with
the estimate. CPU wall time is measured by running our code, Xflow, with one
processor, on a fully subscribed Haswell architecture compute node configured with
24 cores, two twelve-core 2.5 GHz Intel Xeon E5-2680v3 processors. . . . . . . . . . 112

5.8 NACA 0012, M = 0.95, α = 0◦: comparison of error indicator distributions. . . . . 114
5.9 NACA 0012, M = 0.95, α = 0◦: convergence of the mean and standard deviation of

the error indicator with adaptive mesh refinement for the standard adjoint-weighted
residual method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.10 NACA 0012, M = 0.95, α = 0◦: CPU time breakdown results. At each of the 12
adaptive iterations, we show three bar plots, which are, from left to right: stan-
dard adaptation, adaptation with one sub-iteration, and adaptation with two sub-
iterations. Each of these bars is divided vertically into three parts, which indicate
the CPU time contribution of the primal solve (yellow), the adjoint solve (blue),
and the error estimation and adaptation (red). Note that the latter includes any
fine-space solves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.11 NACA 0012, M = 0.5, α = 2◦: effect of sub-iterations on drag convergence. In
both of the cases employing sub-iterations, the fine-space adjoint was reused on
the sub-iterations with only one element block-Jacobi smoothing iteration as the
extra solve. The current-space primal was also only block-Jacobi smoothed on
the current space, but the linear coarse-space adjoint problem was solved exactly
for all iterations. Dashed lines indicate the remaining error after correction with
the estimate. CPU wall time is measured by running our code, Xflow, with one
processor, on a fully subscribed Haswell architecture compute node configured with
24 cores, two twelve-core 2.5 GHz Intel Xeon E5-2680v3 processors. . . . . . . . . . 117

5.12 NACA 0012, M = 0.5, α = 2◦: comparison of error indicator distributions. . . . . . 119
5.13 NACA 0012, M = 0.5, α = 2◦: convergence of the mean and standard deviation of

the error indicator with adaptive mesh refinement for the standard adjoint-weighted
residual method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.14 NACA 0012, M = 0.5, α = 2◦: CPU time breakdown results. At each of the 15
adaptive iterations, we show three bar plots, which are, from left to right: stan-
dard adaptation, adaptation with one sub-iteration, and adaptation with two sub-
iterations. Each of these bars is divided vertically into three parts, which indicate
the CPU time contribution of the primal solve (yellow), the adjoint solve (blue),
and the error estimation and adaptation (red). Note that the latter includes any
fine-space solves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.15 NACA 0012 wing, M = 0.4, α = 3◦: adapted mesh and surface Mach contours. . . 121
5.16 NACA 0012 wing, M = 0.4, α = 3◦: effect of sub-iterations on drag convergence.

In both of the cases employing sub-iterations, the fine-space adjoint was reused on
the sub-iterations with only one element block-Jacobi smoothing iteration as the
extra solve. The current-space primal was also only block-Jacobi smoothed on the
current space, but the linear coarse-space adjoint problem was solved exactly for
all iterations. Dashed lines indicate the remaining error after correction with the
estimate. CPU wall time is measured by running our code, Xflow, with one Haswell
architecture compute node, configured with 24 cores, two twelve-core 2.5 GHz Intel
Xeon E5-2680v3 processors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.17 NACA 0012 wing, M = 0.4, α = 3◦: comparison of error indicator distributions. . 123

ix



5.18 NACA 0012 wing, M = 0.4, α = 3◦: CPU time breakdown results. At each of
the 9 adaptive iterations, we show three bar plots, which are, from left to right:
standard adaptation, adaptation with one sub-iteration, and adaptation with two
sub-iterations. Each of these bars is divided vertically into three parts, which
indicate the CPU time contribution of the primal solve (yellow), the adjoint solve
(blue), and the error estimation and adaptation (red). Note that the latter includes
any fine-space solves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.1 One dimensional space-time illustration of the challenges of r-refinement with gen-
eral adaptive motion in one spatial dimension. . . . . . . . . . . . . . . . . . . . . . 129

6.2 In 1D, the error indicator contributions come from 4 quadrilateral sub-cells of each
space-time cell. In 2D, the error contributions come from 8 prismatic sub-cells of
each space-time cell. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.3 Error mapping mechanics illustration: the black mesh is the baseline mesh, the red
mesh indicates the r-refined mesh, which is dynamically changing throughout the
simulation time, and the blue dots are the sampling points for the error indicator
transfer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.4 r-Refinement mechanics for the Active Flux method. . . . . . . . . . . . . . . . . . 134
6.5 Comparison of r-refinement adaptive indicators and r-refinement primal snapshots,

both captured at t = 0.8× (total simulation time) for the third r-refinement cycle.
In this case, CFL = 0.7, and the simulation time = 0.1 period. . . . . . . . . . . . 135

6.6 Sample temporal amplitude function for a contraction/dilation map. . . . . . . . . 138
6.7 Effect of superimposed contractions without clipping on the computational domain

boundary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
6.8 Interpolation in a 2D reference space, (ξ, η). Black dots represent linear Lagrange

basis function nodes, which are used to interpolate ALE information from the nodes
to any other points (blue dots) inside an element or on its edges. . . . . . . . . . . 142

6.9 Error reduction through a smoother nodal Gvalues. . . . . . . . . . . . . . . . . . . 143
6.10 Initial condition and final-time primal solution of the scalar advection-diffusion

problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
6.11 Solution and mesh snapshots generated by AFMM and NIMM at t = 0.88. AF-

BMM tends to pick out elements with the highest error and places contraction
sources on these elements. On the other hand, NIMM motion deforms the mesh in
a more uniform/global fashion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.12 Snapshot of AFMM and NIMM at t = 1.6. . . . . . . . . . . . . . . . . . . . . . . 147
6.13 Airfoil vortex encounter case using a farfield inflow boundary condition and a static

pressure outflow boundary condition. pspatial = 1, ptemporal = 1, DG in time, output

of interest is the lift integral over time =
∫ t=tend
t=0

Fliftdt, Euler equations. . . . . . . 148
A.1 Linearized Euler (acoustics), Initial condition: p∗ = exp(−50r2), u′ = 0, v′ = 0. . . 156
A.2 Acoustics cases convergence study on right-triangular element meshes, with N =

20, 40, 80, 160 elements and two spatial orders, p. The truth output is obtained
from p = 3 on 160 elements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

A.3 One-dimensional scalar advection problem, T = 0, J(u0), Xflow 2015. . . . . . . . . 158
A.4 One dimensional scalar, T = 0, J(u0) with least-squares projected initial condition. 160

A.5 Acoustics, initial condition f = e−50r2 , T=1, J (u(T )), with least square projected
initial condition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

B.1 The initial uniform mesh is shown in (a). The primal solution in (b) represents
horizontal advection of sinusoidal boundary data, U = sin(yπ). (c) and (d) show
meshes after two refinement cycles for uniform mesh refinement and anisotropic
mesh refinement, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

B.2 Convergence studies for the uniform mesh refinement and the anisotropic mesh
refinement with different cost measurements. . . . . . . . . . . . . . . . . . . . . . 164

x



LIST OF APPENDICES

Appendix

A. Acoustics Cases Error Convergence in Xflow . . . . . . . . . . . . . . . . . . . . . . . 155

A.1 Linear Acoustics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
A.2 A Step Back: One Dimensional Scalar Advection: . . . . . . . . . . . . . . . 157

A.2.1 One Dimensional Scalar Initial Condition . . . . . . . . . . . . . . 158
A.3 Back to Acoustics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

B. Active Flux Method Anisotropic Mesh Refinement Studies . . . . . . . . . . . . . . . 162

xi



ABSTRACT

As numerical simulations are applied to more complex and large-scale problems,

solution verification becomes increasingly important in ensuring accuracy of the

computed results. In addition, although improvements in computer hardware have

brought expensive simulations within reach, efficiency is still paramount, especially

in the context of design optimization and uncertainty quantification. This thesis

addresses both of these needs through contributions to solution-based adaptive algo-

rithms, in which the discretization is modified through a feedback of solution error

estimates so as to improve the accuracy. In particular, new methods are developed

for two discretizations relevant to Computational Fluid Dynamics: the Active Flux

method and the discontinuous Galerkin method. For the Active Flux method, which

is fully-discrete third-order discretization, both the discrete and continuous adjoint

methods are derived and used to drive mesh (h) refinement and dynamic node move-

ment, also known as r adaptation. For the discontinuous Galerkin method, which

is an arbitrary-order finite-element discretization, efficiency improvements are pre-

sented for computing and using error estimates derived from the discrete adjoint,

and a new r-adaptation strategy is presented for unsteady problems. For both dis-

cretizations, error estimate efficacy and adaptive efficiency improvements are shown

relative to other strategies.

xii



CHAPTER I

Introduction

1.1 Background

Numerical methods lie at the heart of modern engineering design and analysis,

and they have been successfully utilized in many disciplines, including structural

mechanics and fluid dynamics. As these methods become more prevalent and in-

dispensable as engineering tools, certain shortcomings become apparent regarding

their accuracy and simulation times. Specifically, most production-scale numerical

methods are second-order accurate, and to achieve required engineering tolerances,

these methods require very fine grids, which in turn require long simulation times.

The desire to achieve sufficient accuracy and to decrease computational time has

lead to the development of high-order methods [1], including spectral, discontinuous

Galerkin, stabilized finite element method, flux-reconstruction, and high-order finite

volume methods.

Furthermore, to elicit full benefits of high-order approximation, these methods

have been coupled with adaptive meshing, driven by heuristic feature-based [2,3] and

more sophisticated output-based refinement [4]. Combined with solution adaptation,

high-order methods can achieve their full potential on practical cases, even those

with irregular solutions, such as airfoils with nonzero angle trailing edges, turbulent

1



2

boundary layers, or shocks [5]. This thesis is devoted to the development of solution

adaptation methodology for high-order methods.

1.1.1 High Order Methods

The quest for accuracy in computational fluid dynamics, especially for aerospace

engineering applications, has driven the development and application of high-order

methods. Various high-order methods have been developed for convection-dominated

flows, including high-order finite volume, streamline-upwind Petrov-Galerkin (SUPG)

finite elements [6], discontinuous Galerkin (DG) finite elements [7], and hybridized [8]

and discontinuous Petrov-Galerkin methods [9].

A recent workshop [1], pitted some of these methods against traditional “work-

horse” second-order finite volume schemes, and arrived at the conclusion that high-

order approximation is beneficial for a variety of cases relevant to aerospace engi-

neering.

High-order finite element method (FEM) and high order finite volume method

(FVM) are among the most thoroughly researched high order methods. To ensure

the accuracy of our primal discretizations, high order FEM and high order FVM will

be our main focus.

High Order Finite Element Method

The Galerkin finite element methods was applied to computational fluid dynam-

ics in the 1970s because of its advantages of a compact stencil, admissibility of high

solution orders and a natural treatment for diffusion problems. However, a standard

Galerkin finite element method, i.e. the continuous Galerkin method, is not stable for

convection-dominated flows, which are prevalent in aerospace engineering flow appli-

cations. Two approaches are taken to tackle this instability issue. The first approach



3

attempts to stabilize the Galerkin method by adding a stabilization term. Meth-

ods within this category include Streamline-Upwind Petrov-Galerkin (SUPG) and

Galerkin least squares (GLS). The second approach attempts to view the Galerkin

method from a finite volume method perspective. This approach purposely creates

discontinuities among neighbouring elements and then uses inter-element fluxes as in

the finite-volume method. Methods within this category include the discontinuous

Galerkin (DG) method.

GLS and SUPG are similar in their stabilization formulations, with the exception

that GLS includes all of the PDE terms within the stabilization, whereas SUPG only

includes the convective and temporal terms. SUPG is also regarded as a Petrov-

Galerkin formulation. However, accurate yet stable Petrov-Galerkin formulations

are still sought by computational fluid dynamics (CFD) researchers. Presently, the

understanding of low-order SUPG methods are relatively clear after four decades of

research on stabilized Galerkin methods [10, 11]. Nevertheless, as a discretization,

SUPG is not yet completely mature, with issues especially in high-order stabilization

and high-speed flow treatment. Admittedly, there are SUPG production codes in the

CFD industry. For example, the production SUPG code, AcuSolve [12], developed

at Altair Engineering Inc., is still under research development for new stabilization

terms suitable for high flow speeds and high-order approximation. On the other

hand, discontinuous Galerkin methods have received relatively more attention and

hence are are more developed. We will therefore consider DG methods as one of our

main high-order discretization tools in this thesis.

High Order Finite Volume Method

The finite volume method has always been the “work horse” of CFD. The high-

order finite volume discretization used in this thesis is a newly developed finite volume



4

method, the Active Flux method, which is a third-order finite volume method with

a multi-dimensional flux and continuous state representation [13]. The Active-Flux

scheme [14, 15] is able to addresses the issue of computational cost that burdens

many high-order discretizations. Active Flux schemes introduce additional indepen-

dent variables, the edge values/fluxes, as independent variables. In triangles, this

doubles the degrees of freedom available to describe the solution on each cell, with-

out enlarging the stencil. In particular, quadratic reconstructions in space and time

are possible, yielding formally third-order accuracy. Furthermore, the system can be

marched forward in time using an inexpensive explicit solution update strategy.

1.1.2 Solution Adaptation

Even with high order discretization tools, challenges in computational fluid dy-

namics remain, one of these being cost in memory and computational time. While

an inexpensive high-order method is certainly desirable, such a method itself does

not guarantee accuracy for a given problem. Discretization errors will still be present

in the presence of non-zero mesh sizes. In this section, we therefore tackle another

quest in computational fluid dynamics, that of seeking accuracy and robustness.

There are three main solution adaptation techniques, 1) feature-based adapta-

tion, which utilizes a physics-related and user-defined quantity to adapt, 2) output-

based adaptation, which utilizes output error sensitivity information to adapt, and 3)

residual-based adaptation, which utilize residual information to adapt. Feature-based

adaptation requires user knowledge about the specific physics and its definition is

empirical. Thus, more often than not, feature-based adaptation’s performance is case

dependent without any guarantee of error reduction. On the contrary, residual-based

adaptation and output-based adaptation have relatively sound theoretical support.

However, residual-based adaptation is not well-suited for the convection-dominated



5

flow problems that pervade aerospace engineering applications.

Figure 1.1 illustrates a simple one-dimensional scalar advection problem to com-

pare the performance of residual-based adaptation and output-based adaptation.

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

X

f(
x
)

 

 

T = 0

T = 0.03

(a) Primal problem, a Gaussian profile advecting for 0.03
period

(b) Cell-avg adjoint

Original

Adjoint

Residual

Uniform refinement

(c) Adapted mesh comparison

10
2.4

10
2.5

10
2.6

10
2.7

10
2.8

10
2.9

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

DOF

|J
H

 −
 J

e
x
a

c
t|

 

 

Adjoint

Adjoint corrected

Residual

Uniform refinment

(d) Convergence curve comparison

Figure 1.1: Comparison among adjoint-based adaptation, residual-based adaptation and uniform
refinement. For all adaptation mechanics, the adaptation strategy is 10% fixed fraction

adaptation. Output is defined as point output at the location, x = 2.948276. The primal
discretization is the Active Flux method.

Figure 1.1 illustrates the comparison of adjoint-based adaptation, residual-based

adaptation and uniform refinement. The primal problem, Figure 1.1(a), is a Gaussian

profile that advects for 0.03 of a period. According to Figure 1.1(d), the adjoint-based

adaptation mechanics performs the best in dropping the absolute output error.



6

Figure 1.1(c) show the adapted meshes: the adjoint-based method not only refines

the mesh close to the output location but also the convection trajectory. Residual-

based adaptation generates a similar adapted mesh as the adjoint-based adaptation

but refines the mesh in a more symmetric fashion, because the residual is large near

the center of the domain for this particular Gaussian profile advection case when

computing with the injected state.

The limitation of adaptation in the one-dimensional case is that for convection-

dominated flows, the crucial area for accurate output easily counts for a large area

of the computational domain. If the crucial area for accurate output is large, the

performance will be comparable to uniform refinement. The case won’t be suitable

for adaptation unless the Gaussian advects for a short distance. The distance 0.03T

is chosen in the present example. This case, Figure 1.1, is only set up to illustrate

the performance differences between residual based adaptation and output based

adaptation. For practical applicability, most of the research results throughout this

thesis are set in two and three dimensions.

1.2 Motivation

Solution adaptation is an important scientific computing tool to ensure accuracy

and to provide verification for simulation results. The solution adaptation process can

be divided into two parts, 1) error estimation and localization, which has tremen-

dously improved over the last couple of decades with the advent of adjoint-based

error estimation methods; and 2) adaptation, which has been investigated on vari-

ous levels, including mesh refinement, solution order-increment, and mesh-movement

strategies. The second part of the solution adaptation process motivates us to create

a complete picture of the adaptation process.



7

This thesis addresses efficient usage of adjoint-based error estimation for sim-

ulation acceleration, and adaptation, particularly via mesh motion for the Active

Flux and discontinuous Galerkin methods. Three output-based adaptation algo-

rithms are presented for the Active Flux method and the discontinuous Galerkin

method: h-adaptation (mesh refinement), order-reduction-instructed h-adaptation,

and r-adaptation (nodal movement adaptation). Results show h-adaptation to be

more efficient than uniform mesh refinement, and in the context of h adaptation,

we compare the performance and robustness of continuous and discrete adjoints.

The order-reduction-instructed h-adaptation algorithm proves to be more compu-

tationally advantageous relative to regular h-adaptation. Finally, in the context of

r-adaptation, we present a spring-analogy mesh motion strategy driven by an output

error estimate that is able to reduce the output error by approximately a factor of

two in most simulations.

Collectively, this work addressed key issues on mechanisms of output-based adap-

tations, particularly furthered knowledge on effective usage of adaptive indicators

and output-based r-adaptation.

1.3 Thesis Overview

1.3.1 Contribution to the Active Flux Discretization

This work has three main contributions to the Active Flux method [16] [17] [18].

First, we successfully introduce a mesh motion algorithm for the Active Flux method,

which is conservative and retains the scheme’s third order accuracy. Second, we

demonstrate that a continuous adjoint is as accurate and efficient as a discrete

adjoint for adaptation purposes using h-adaptation. We show that when adjoint

well-posedness and consistency are of concern, the continuous adjoint is more rigor-

ous and robust for the Active Flux method compared to the discrete adjoint. Fi-



8

nally, we introduce two innovative adaptation methods: order-reduction-instructed

h-adaptation and spring-analogy-based r-adaptation. Both methods are driven by

adjoint solutions and are shown to be effective in reducing the output error while

saving computational cost.

1.3.2 Contribution to the Discontinuous Galerkin Discretization

For the discontinuous Galerkin discretization (DG), we equip DG with adaptation

acceleration techniques, an adaptive sub-iterations algorithm that leads to significant

computational time savings compared to standard adaptation and commensurable

computational memory savings as standard adaptation.

Output based r-adaptation is investigated for DG as well. In the r-adaptation

method, we use an arbitrary Lagrangian-Eulerian framework [19–22] in order to

solve a system of unsteady equations on a deforming mesh. Our mesh motion takes

two forms: 1) mesh motion governed by analytical mapping functions between the

reference and physical space that cause the mesh to either contract or dilate in

regions where mesh resolution is needed or not, respectively; and 2) mesh motion

directed by a spring analogy that indicates where resolutions is needed or not, with

the motion’s degrees-of-freedom equal to the number of nodes that can be moved.

The finite-element discretization is applied on the static reference domain, so that

the error reduction arises from the fact that the size of the mapped elements, in

physical space, changes in time.

1.4 Organization

This thesis begins with the introduction of the primal and adjoint discretizations

in Chapter 2. Mesh motion is introduced in Chapter 3. We show and discuss our

results regarding h adaptation in Chapter 4. Then, an in-depth study on how to uti-



9

lize solution adaptation mechanics efficiently via adaptation acceleration techniques

is presented in Chapter 5. Lastly, we present a novel output-based r-adaptation

framework in Chapter 6.



CHAPTER II

Discretizations

Both the Active Flux (AF) scheme and the discontinuous Galerkin (DG) scheme

are used as primary discretization tools for our output-based adaptation research.

This chapter introduces both discretizations and sets the stage for the subsequent

presentation of the adjoint discretization and mesh motion.

2.1 The Active Flux Method

The Active Flux method is a third-order finite volume method developed by Ey-

mann and Roe [13–15,23,24], building on the work of van Leer [25]. The name of the

active flux scheme is a direct reference to the fact that interface values are updated

independently from conserved quantities [13]. In a traditional scheme, the flux at an

interface is determined by the solution to a Riemann problem using reconstructions

of conserved variables as the input. We refer to this type of update as a passive flux

because the interface quantity is derived or interpolated from conserved quantities.

An active flux is computed directly from edge values in a way that depends both on

previous cell values and previous edge values.

We review the method for a first-order conservation law of the form

r(u) ≡ ∂u

∂t
+∇ · ~F = 0,(2.1)

10



11

where u ∈ Rs is the state vector, ~F ∈ [Rs]dim is the flux, and r(·) is the continuous,

or strong-form residual operator. At present, we consider scalar advection, for which

s = 1 and ~F = ~V u. The AF forward discretization [14,15,25] differs from traditional

finite volume discretizations by defining degrees of freedom at element interfaces.

The Active Flux method is an inherently unsteady discretization in which a third-

order accurate solution representation at time level n is propagated to time level

n+ 1 through an intermediate level n+ 1
2
. Figure 2.1 illustrates the time levels and

unknowns for one element of a triangular mesh.

y

x

t

n+ 1

n+ 1
2

n

(a) Time levels

n+ 1 trace

n+ 1
2 trace

~V

(b) Traces for vertex/edge updates

Figure 2.1: Illustration of the three time levels and unknown placement for one element in the
Active Flux method. Shaded circles are vertex unknowns, open circles are edge unknowns, and

the squares represent the cell average unknown.

Seven unknowns pertain to each triangular element: one at each vertex, one at

each edge midpoint, and one cell average, ū. The vertex and edge unknowns are not

unique to the element – they are shared with the neighbors to yield a continuous

solution representation. At each time level, these unknowns support an augmented

quadratic spatial representation of the solution on the element. Specifically, the six

vertex and edge unknowns are used as coefficients in an expansion with quadratic

Lagrange basis functions. This quadratic representation is augmented by a cubic



12

bubble function that vanishes on the element perimeter and whose magnitude is

uniquely defined by the requirement that the cell average is ū, the seventh unknown.

With the spatial representation in hand, the update procedure for linear advection

is relatively simple. It consists of three steps:

1. Determine values for the edge and vertex unknowns at time levels n + 1
2

and

n + 1 by “tracing back” the solution along the velocity direction to the known

augmented quadratic representation at time level n. This is illustrated schemat-

ically in Figure 2.1(b).

2. Integrate the flux on the faces. On each edge of the element, we now have nine

solution values: three at each time level: n, n+ 1
2
, and n+ 1. These nine values

define a quadratic state, and hence flux, on a tensor-product space-time face.

We use Simpson’s rule to integrate this flux, yielding a third-order accurate net

flux through the edge over the time step.

3. Using the integrated fluxes from all edges of the element, obtain the cell aver-

age at n + 1 from the cell average at n via a standard finite-volume discrete

conservation statement.

The adjoint discretization for the Active Flux method follows the same approach

but is marched backwards in time as final-time conditions are specified instead of

initial conditions. In the following subsections, we present the details of the dis-

cretization in one and two spatial dimensions.

2.1.1 One-Dimensional Active Flux Discretization

In this section we present the Active Flux discretization in one dimension for the

scalar advection equation:

∂u

∂t
+ a

∂u

∂x
= 0,



13

Figure 2.2: Unknowns placement in AF scheme.

where a is the advection velocity. We recall that the Active Flux discretization

differs from traditional finite volume discretizations by defining degrees of freedom

at element interfaces. In one spatial dimension, this just means an extra set of

“vertex” unknowns at the mesh nodes, as illustrated in Figure 2.2 on a space-time

diagram. These unknowns are evolved together with the cell averages through the

following steps:

(2.2) Reform :

 u
n+1/2
j+1/2 = unj+1/2

un+1
j+1/2 = unj+1/2

(2.3) Vertex state pre-update:


unj+1/2 = S(δt = 0, cnj )

u
n+1/2
j+1/2 = S(δt = 0.5∆t, cnj )

un+1
j+1/2 = S(δt = ∆t, cnj )

(2.4) Flux calculation: F
n+1

j+1/2 =
1

6
(unj+1/2 + 4u

n+1/2
j+1/2 + un+1

j+1/2)

(2.5) Update:


un+1
j = unj −

a∆t

∆x
(F

n+1

j+1/2 − F
n+1

j−1/2)

unj+1/2 = un+1
j+1/2



14

The function S(·, ·) in the pre-update step is defined as

(2.6) S(δt, cnj ) =

 R(δt, cnj ) ξ0(δt) ∈ [0, 1]

0 ξ0(δt) /∈ [0, 1]

,

where ξ0(δt) is the reference-space location of the characteristic traced back for a

time duration of δt, starting from reference coordinate ξ,

(2.7) ξ0(δt) = ξ − a δt
∆x

.

The vector cnj consists of three components,

(2.8) cnj :


cnj,1 = unj−1/2

cnj,2 =
1

4

(
−unj−1/2 + 6unj − unj+1/2

)
cnj,3 = unj+1/2

.

Finally, the reconstruction function R(·, ·) is given by

(2.9) R = cnj,1 (1− 2ξ0) (1− ξ0) + 4cnj,2ξ0 (1− ξ0) + cnj,3ξ0 (2ξ0 − 1) .

In the AF scheme, the vertex states, denoted by the vector u and the elemental

average states, denoted by the vector u are defined as two independent variables.

However, the updates of u and u are interwoven as shown above. This fact is im-

portant for the derivation of discrete adjoint formulation for the active flux method.

We assess the performance of the AF scheme by testing it with a suite of waveforms

selected by Zalesak [26]: a square wave, a cosine wave, a Gaussian wave, and an

elliptic wave. The Zalesak wave suite propagates across the computational domain

and returns to its original position as a result of periodic boundary conditions. The

solution is illustrated in Figure 2.3. The shape of the wave is qualitatively similar

after one period of propagation.



15

Figure 2.3: Zalesak wave suite propagation after one period with the AF scheme, with 100 cells,
CFL = 0.1.

Next, we examine the performance of the AF scheme using a smooth initial con-

dition: a Gaussian wave. The following L2 solution error norm, eL2 , is adopted to

measure the error:

(2.10)

eL2 =

√
1

L

∫ L

0

[uAF(x)− uexact(x)]2 dx =

√√√√ 1

L

M∑
j=1

{∫ j∆x

(j−1)∆x

[uAF(x)− uexact(x)]2 dx

}

Eqn. 2.10 is evaluated with a sixth-order quadrature rule. At each quadrature point,

uexact(x) is obtained by substituting x into the analytic Gaussian function and uAF(x)

is obtained by using the spatial reconstruction function in Eqn. 2.9. Figure 2.4

shows the convergence of the L2 error norm with mesh refinement. Ignoring the pre-

asymptotic first three data points in Figure 2.4(b) and applying a least squares fit to

the rest of the data points with a linear function, we obtain a slope of −2.997 ≈ −3,

consistent with the third-order accuracy expected with the AF scheme.



16

(a) Gaussian wave test case (b) Convergence rate plot

Figure 2.4: Demonstration of third order convergence for the AF scheme in one dimension.

u
j,1(node,1)

u
j,4(edge,2)

u
j,6(node,3)

u
j,3(node,2)

u
j,2(edge,3)

u
j,5(edge,1)

uj

ξ

η

Figure 2.5: Unknown placement in the AF scheme in two-dimensions.

2.1.2 Two-Dimensional Active Flux Discretization

In two spatial dimensions, the scalar advection problem takes the form,

(2.11)
∂u

∂t
+ a1

∂u

∂x1

+ a2
∂u

∂x2

= 0.

We consider triangular spatial elements. The unknowns now come in three vari-

eties: node unknowns, unode, edge unknowns, uedge, and cell-average unknowns, u.

Node unknowns are placed on the mesh nodes, edge unknowns are placed at the

midpoints of edges, and cell-average unknowns are associated exclusively with indi-

vidual cells. Figure 2.5 illustrates this placement. The temporal evolution of states

in two-dimension is similar to one dimension and is illustrated in Figure 2.1.

Edge unknown and node unknown are separated into two categories, but they



17

have the same evolution procedure. For this reason, we define by uvertex the set of

edge and node unknowns. This grouping simplifies the discrete adjoint presentation.

The two-dimensional unknowns associated with or adjacent to cell j are evolved

through the following fully-discrete procedure:

(2.12) Reform :

 u
n+1/2
j,i = unj,i

un+1
j,i = unj,i

(2.13) Vertex state pre-update:


unj,i = S(δt = 0, cnj )

u
n+1/2
j,i = S(δt = 0.5∆t, cnj )

un+1
j,i = S(δt = ∆t, cnj )

(2.14) Update:


un+1
j = unj −

∆t

Aj

3∑
e=1

le~ne · ~F n+1
e

unj,i = un+1
j,i

In the update equation, Aj denotes the area of cell j, and le is the length of edge

e. The flux through a given edge e is given by an approximation to the space-time

integral, using nine flux evaluations (three per edge times three time locations):

Flux: ~F n+1 =
1

9
× 1

4

(
~fnL + ~fnR + ~fn+1

L + ~fn+1
R

)
+

1

9
×
(
~fn+1
M + ~f

n+1/2
L + ~f

n+1/2
R + ~fnM

)
+

4

9
~f
n+1/2
M(2.15)

The subscript, ‘M’, denotes the midpoint of an element edge, which is edge state

(u2, u4 and u5). The subscript ‘L’ and ‘R’ denote the node state to the left and to

the right of the edge state (u1, u3 and u6) respectively. For the advection equation,

the flux at any of these points is given by ~f = ~au.



18

The above update equations make use of the following definitions:

(2.16)

S(δt, cnj ) =

 R(δt, cnj ) when {(ξ0, η0) |ξ0 ∈ [0, 1] and η0 ∈ [0, (1− ξ0)]}

0 when {(ξ0, η0) |ξ0 /∈ [0, 1] or η0 /∈ [0, (1− ξ0)]}

(2.17) R(δt, cnj ) = cnj,1φ
n
j,1 + cnj,2φ

n
j,2 + cnj,3φ

n
j,3 + cnj,4φ

n
j,4 + cnj,5φ

n
j,5 + cnj,6φ

n
j,6 + cnj,7φ

n
j,7

(2.18) cnj :



cnj,1 = unj,1

cnj,2 = unj,2

cnj,3 = unj,3

cnj,4 = unj,4

cnj,5 = unj,5

cnj,6 = unj,6

cnj,7 =
20

9

[
unj −

1

3

(
unj,2 + unj,4 + unj,5

)]

(2.19) φnj,i :



φnj,1 = 1− 3ξ0,i + 2ξ2
0,i − 3η0,i + 4ξ0,iη0,i + 2η2

0,i

φnj,2 = 4ξ0,i − 4ξ2
0,i − 4ξ0,iη0,i

φnj,3 = −ξ0,i + 2ξ2
0,i

φnj,4 = 4η0,i − 4ξ0,iη0,i − 4η2
0,i

φnj,5 = 4η0,iξ0,i

φnj,6 = −η0,i + 2η2
0,i

φnj,7 = 27ξ0,iη0,i − 27ξ2
0,iη0,i − 27ξ0,iη

2
0,i

(2.20) ~ξ0,i =

ξ0,i

η0,i

 =

ξi
ηi

− J−1
j

a1

a2

∆t.



19

In this equation, [ξi, ηi]
T is the reference-space location of vertex i, and J j is the

reference-to-global mapping Jacobian of element j.

The L2 error norm in two-dimensions, eL2 , is

(2.21)

eL2 =

√√√√ 1

A

∫
A

[uAF(x)− uexact(x)]2 ds =

√√√√√ 1

A

M∑
j=1


∫

Element j

[uAF(x)− uexact(x)]2 ds


eL2 is evaluated numerically with a sixth order quadrature rule.

To assess convergence, we consider a two-dimensional Gaussian advection prob-

lem. Figure 2.6(a) shows the primal problem that we run to obtain the convergence

rate curve, an isotropic Gaussian pulse advecting along the diagonal of a square

domain, where periodic boundary conditions are enforced. The L2 error norm is

measured after each uniform mesh refinement, and the simulation is run for one pe-

riod, with periodic boundary conditions and a velocity vector oriented at 45◦ relative

to the (x, y) axes. The slope of the L2 error norm convergence rate curve gradually

approaches 3, as shown in Figure 2.6(b). The size of the mesh is represented by the

square root of the total degrees of freedom in the mesh. Using the last two data

points from Figure 2.6(b), the slope is −2.947 ≈ −3, which is consistent with the

third order accuracy expected of the active flux method.

2.2 Adjoint Discretization for the Active Flux Method

Adjoint techniques have been used in various research fields, ranging from shape

optimization [27–35] to uncertainty quantification [36] and output-based error esti-

mation [37, 38]. Adjoint methods can be classified into two formulations: discrete

and continuous. In the discrete formulation, an adjoint vector is obtained by solving

a linear system that results from numerically transposing the primal linearized sys-

tem and driving it with the output linearization. In the continuous formulation, the



20

(a) Gaussian wave test case

10
1

10
2

10
3

10
−2

10
−1

10
0

10
1

DOF1/2

L 2 S
ol

ut
io

n 
er

ro
r 

no
rm

(b) Convergence rate plot

Figure 2.6: Demonstration of third order accuracy of the Active Flux scheme in two dimensions.

adjoint is obtained by separately discretizing and solving the adjoint PDE.

The discrete adjoint approach separates the adjoint solve from the “physics” of the

problem, as the adjoint system results from a purely mathematical transformation

of the primal system. Furthermore, when the linearized system is already available,

e.g. in an implicit primal solver, the overhead of the discrete adjoint is relatively

small. However, the discrete adjoint masks some potential pitfalls, in particular in

ensuring well-posedness and consistency of the adjoint. In contrast, a continuous

adjoint approach explicitly addresses these points by requiring appropriate initial

and boundary conditions for the adjoint.

In output-based error estimation, most approaches so far have used the discrete

adjoint [32, 33, 38], though experiments with the continuous adjoint have also been

attempted [39]. For light-weight solvers, such as the Active Flux method, the con-

tinuous adjoint approach may be advantageous, since linearizing and transposing

the primal solver may be computationally burdensome compared to discretizing the

adjoint PDE “from scratch” and applying the same light-weight solver. Neverthe-

less, for the purpose of comparison, in this section we present both the discrete and

continuous formulations of the adjoint for the Active Flux method.



21

2.2.1 Discrete Adjoint for the Active Flux Discretization

A general discrete adjoint formulation of an unsteady problem reads,

(2.22)
N∑
n=1

(
∂Rn

∂Um

)
Ψn +

(
∂J

∂Um

)T
= 0,

where n and m index time nodes, Rn is the unsteady residual at time node n, Ψn is

the discrete adjoint vector at time node n, and J(Um) is a scalar output. Our goal is

to solve the adjoint, Ψn, in Eqn. 2.22. Eqn. 2.22 is a large linear system that, when

fully expanded, reads

(2.23)



∂R1

∂U1

∂R1

∂U2
· · · ∂R1

∂UN

∂R2

∂U1

∂R2

∂U2
· · · ∂R2

∂UN

...
. . .

...

∂RN

∂U1

∂RN

∂U2
· · · ∂RN

∂UN



T 

Ψ1

Ψ2

...

ΨN


+



(
∂J

∂U1

)T
(
∂J

∂U2

)T
...(

∂J

∂UN

)T


= 0

To form this system, we first need to define R and U for the AF method. In one

dimension, the state vector, U, consists of both the vertex and the cell-average

unknowns,

(2.24) U =

u

u

 .
In two dimensions, we group the node and edge unknowns together into one group,

the vertex unknowns, uvertex, which we will also denote simply by u. The state vector

can then be written as

(2.25) U =


unode

uedge

u

 =

u

u.





22

The residual, R, is defined in a straightforward manner as

(2.26) Rn+1 = Un+1 − AF (Un) ,

where AF (·) is the n → n+1 active flux update operator detailed in Section 2.1.

Eqn. 2.26 may also be written as

(2.27)

(
Rn+1

vertex

Rn+1
cell avg

)
=

(
un+1

un+1

)
− AF

(
un

un

)
The derivative ∂Rn/∂Um yields an unsteady Jacobian matrix,

(2.28)
∂Rn

∂Um
=


∂Rn

vertex

∂um
∂Rn

vertex

∂um

∂Rn
cell avg

∂um
∂Rn

cell avg

∂um

 .
All four block components of ∂Rn/∂Um can be calculated by applying the chain rule

to the AF scheme update equations.

While the general unsteady Jacobian in Eqn. 2.23 appears daunting to calculate

and use, most blocks are zeros. Since the definition of Rn+1 only involves states at

two time steps, n and (n+ 1), the (n+ 1)th block row of ∂Rn/∂Um, consists of only

two non-zero terms: ∂Rn+1/∂Un and ∂Rn+1/∂Un+1. Thus, the adjoint equation

becomes

(2.29)



∂R1

∂U1

∂R2

∂U1

∂R2

∂U2

. . .

∂RN

∂UN−1

∂RN

∂UN



T 

Ψ1

Ψ2

...

ΨN


+



(
∂J

∂U1

)T
(
∂J

∂U2

)T
...(

∂J

∂UN

)T


= 0.

Our problem narrows down to calculating the derivatives, ∂Rn+1/∂Un+1 and ∂Rn+1/∂Un.

Considering first the latter,

(2.30)
∂Rn+1

∂Un
=


∂Rn+1

vertex

∂un
∂Rn+1

vertex

∂un

∂Rn+1
cell avg

∂un
∂Rn+1

cell avg

∂un





23

The above block sub-matrices need to be calculated individually. We show how

to determine ∂Rn+1
vertex/∂un in the case of one and two spatial dimensions; other

derivative matrices can be determined similarly.

One Dimensional Discrete Adjoint Formulation

For a scalar problem in one spatial dimension, the expression for Rn+1
vertex reads

(2.31) Rn+1
vertex =



R1/2

R1+1/2

...

RM+1/2



n+1

=



u1/2

u1+1/2

...

uM+1/2



n+1

− AFvertex (Un) ,

where M is the number of elements. To simplify notation, we name the vertex

state update process of the AF scheme as a function: AFvertex(·). In addition, we

index the vertex residuals and states by half indices. From Eqn. 2.31, the derivative

∂Rn+1
vertex/∂un is an (M + 1)× (M + 1) matrix,

(2.32)
∂Rn+1

vertex

∂un
=



∂Rn+1
1/2

∂un1/2

∂Rn+1
1/2

∂un1+1/2

· · ·
∂Rn+1

1/2

∂unM+1/2

∂Rn+1
1+1/2

∂un1/2

∂Rn+1
1+1/2

∂un1+1/2

· · ·
∂Rn+1

1+1/2

∂unM+1/2

...
. . .

...

∂Rn+1
M+1/2

∂un1/2

∂Rn+1
M+1/2

∂un1+1/2

· · ·
∂Rn+1

M+1/2

∂unM+1/2


Each row in Eqn. 2.32 corresponds to a derivative of Rn+1

j+1/2 with respect to un.

Recalling the discretization of the Active Flux method in Section 2.1, the (j + 1)th

row of the matrix in Eqn. 2.32 is

(2.33)

∂Rn+1
j+1/2

∂un
=

∂Rn+1
j+1/2

∂AFvertex(U)n
∂AFvertex(U)n

∂Sn

[
∂Sn

∂cnj,1

∂cnj,1
∂un

+
∂Sn

∂cnj,2

∂cnj,2
∂un

+
∂Sn

∂cnj,3

∂cnj,3
∂un

]
.



24

In the above equation, n ∈ [0, 1, · · · , N ], j ∈ [0, 1, · · · ,M ], and

(2.34)

∂Rn+1
j+1/2

∂AFvertex(Un)
= −1

∂AFvertex(Un)

∂Sn
= 1

∂Sn

∂cnj,1
= (1− 2ξ0,j+1/2)(1− ξ0,j+1/2)

∂Sn

∂cnj,2
= 4ξ0,j+1/2(1− ξ0,j+1/2)

∂Sn

∂cnj,3
= ξ0,j+1/2(2ξ0,j+1/2 − 1)

∂cnj,1
∂un

=
[
0, · · · , 1j−1/2, · · · , 0

]
∂cnj,2
∂un

=

[
0, · · · ,−1

4 j−1/2
, −1

4 j−1/2
, · · · , 0

]
∂cnj,3
∂un

=
[
0, · · · , 1j+1/2, · · · , 0

]
Using a similar procedure, we obtain the rest of the components of the derivative

matrices ∂Rn+1/∂Un and ∂Rn+1/∂Un+1. Both ∂Rn+1/∂Un and ∂Rn+1/∂Un+1 turn

out to be invariant in time. Moreover, ∂Rn+1/∂Un+1 is an identity matrix. Let A ≡

∂Rn+1/∂Un; the unsteady discrete adjoint formulation for the active flux method

then becomes

(2.35)



I AT

I AT

. . . . . .

I AT

I





Ψ1

Ψ2

...

ΨN


+



(
∂J

∂U1

)T
(
∂J

∂U2

)T
...(

∂J

∂UN

)T


= 0.

We are especially interested in the structure of the A matrix, which is sparse. For the

case of an M = 20 element mesh, the A matrix structure is illustrated in Figure 2.7.



25

Figure 2.7: A matrix structure in one dimension, cell number M = 20 cells.

Two Dimensional Discrete Adjoint Formulation

In two spatial dimensions, let M denote the number of elements and K the number

of vertices, including nodes and edges, in the computational mesh. The expression

for Rn+1
vertex reads,

(2.36) Rn+1
vertex =



R1

R2

...

RK



n+1

=



u1

u2

...

uK



n+1

− AFvertex (Un) .

The derivative ∂Rn+1
vertex/∂un is a K ×K matrix,

(2.37)
∂Rn+1

vertex

∂un
=



∂Rn+1
1

∂un1

∂Rn+1
1

∂un2
· · · ∂Rn+1

1

∂unK
∂Rn+1

2

∂un1

∂Rn+1
2

∂un2
· · · ∂Rn+1

2

∂unK
...

. . .
...

∂Rn+1
K

∂un1

∂Rn+1
K

∂un2
· · · ∂Rn+1

K

∂unK


.

Each row in Eqn. 2.37 corresponds to a derivative of Rn+1
i with respect to un. Recall-

ing the discretization of the active flux method in Section 2.1, the ith row of Eqn. 2.37



26

is the residual of the ith vertex state with respect to all other vertex states. Suppose

that when the ith vertex state is updated, the signal, in the form of traced-back

characteristics, comes from the jth element. In this case, there would be at most 6

nonzero terms in the vector, ∂Ri
n+1/∂un,

(2.38)

∂Rn+1
i

∂un
=

[
· · · ∂Rn+1

i

∂unj,1
· · · ∂Rn+1

i

∂unj,2
· · · ∂R

n+1
i

∂unj,3
· · · ∂R

n+1
i

∂unj,4
· · · ∂R

n+1
i

∂unj,5
· · · ∂R

n+1
i

∂unj,6
· · ·
]
,

where · denotes zeros. By the chain rule, these derivatives evaluate to

(2.39)

∂Rn+1
i

∂un
:



∂Rn+1
i

∂unj,1
=

∂Rn+1
i

∂AFvertex(U)n
∂AFvertex(U)n

∂Sn
∂Sn

∂cj,1

∂cnj,1
∂unj,1

∂Rn+1
i

∂unj,2
=

∂Rn+1
i

∂AFvertex(U)n
∂AFvertex(U)n

∂Sn

(
∂Sn

∂cj,2

∂cnj,2
∂unj,2

+
∂Sn

∂cj,7

∂cnj,7
∂unj,2

)
∂Rn+1

i

∂unj,3
=

∂Rn+1
i

∂AFvertex(U)n
∂AFvertex(U)n

∂Sn
∂Sn

∂cj,3

∂cnj,3
∂unj,3

∂Rn+1
i

∂unj,4
=

∂Rn+1
i

∂AFvertex(U)n
∂AFvertex(U)n

∂Sn

(
∂Sn

∂cj,4

∂cnj,4
∂unj,4

+
∂Sn

∂cj,7

∂cnj,7
∂unj,4

)
∂Rn+1

i

∂unj,5
=

∂Rn+1
i

∂AFvertex(U)n
∂AFvertex(U)n

∂Sn

(
∂Sn

∂cj,5

∂cnj,5
∂unj,5

+
∂Sn

∂cj,7

∂cnj,7
∂unj,5

)
∂Rn+1

i

∂unj,6
=

∂Rn+1
i

∂AFvertex(U)n
∂AFvertex(U)n

∂Sn
∂Sn

∂cj,6

∂cnj,6
∂unj,6



27

In the above equation,

(2.40)

∂Rn+1
i

∂AFvertex

= −1

∂AFvertex(U)n

∂Sn
= 1

∂Sn

∂cj,1
= φnj,1

∂Sn

∂cj,2
= φnj,2

∂Sn

∂cj,3
= φnj,3

∂Sn

∂cj,4
= φnj,4

∂Sn

∂cj,5
= φnj,5

∂Sn

∂cj,6
= φnj,6

∂Sn

∂cj,7
= φnj,7

∂cj,1
∂uj,1

= 1

∂cj,2
∂uj,2

= 1

∂cj,3
∂uj,3

= 1

∂cj,4
∂uj,4

= 1

∂cj,5
∂uj,5

= 1

∂cj,6
∂uj,6

= 1

∂cj,7
∂uj,2

= −20

27

∂cj,7
∂uj,4

= −20

27

∂cj,7
∂uj,5

= −20

27

Following a similar procedure, we obtain the rest of the components of the derivative

∂Rn+1/∂Un and ∂Rn+1/∂Un+1. We again define A ≡ ∂Rn+1/∂Un. Figure 2.8 shows

the structure of the A matrix for one particular unstructured mesh with 48 elements

and 113 nodes. Although the fill pattern is unstructured, the matrix remains sparse.

Discrete Adjoint Implementation

To solve Eqn. 2.35, we note that the coefficient matrix in Eqn. 2.35 is upper

triangular, and hence, backward substitution may be applied,

(2.41)

ΨN = −
(

∂J

∂UN

)T
ΨN−1 + ATΨN = −

(
∂J

∂UN−1

)T
...

Ψ1 + ATΨ2 = −
(
∂J

∂U1

)T



28

column

∂R
n+1

vertex
∂un

K×K

∂R
n+1

vertex
∂u

n
K×M

∂R
n+1

cell avg

∂un
M×K

∂R
n+1

cell avg

∂u
n

M×M

ro
w

Figure 2.8: Nonzero fill pattern of the A matrix in two dimensions, for a mesh with M = 48 cells
and K nodes.

Accordingly, our adjoint code employs “reverse” time marching. Since our primal

problem of interest is linear, the adjoint solution does not depend on the primal

solution. However, the adjoint solve is still performed after the primal solve in

anticipation of nonlinear problems.

Discrete Adjoint Verification

As a verification test of the discrete adjoint implementation, we consider the one

dimensional periodic transport of the initial profile shown in Figure 2.9. This linear

“hat” profile was chosen for the sake of error estimation: it is exactly representable

on both the coarse and the fine spaces, so that the error estimates are not polluted by

varying initial conditions (which, for example, would occur for any initial condition

that was not at most a piecewise quadratic).

The output J is defined as the eleventh node value (X = 3) at final time step.

We first take a qualitative look at the adjoint solution. Figure 2.10 shows snapshots

of the adjoint propagation at the first time step, i.e. Ψ1, the sixtieth time step, i.e.

Ψ60, the one hundred and fiftieth time step, i.e. Ψ150 and the adjoint at the final



29

Figure 2.9: Linear hat wave function propagated for one period.

(a) Adjoint distribution at the first time step (b) Adjoint distribution at the sixtieth time step

(c) Adjoint distribution at the one hundred and fifti-
eth time step

(d) Adjoint distribution at the final time step

Figure 2.10: Snapshots of adjoint propagation on our computational domain. CFL = 0.1



30

step, i.e. ΨN .

The region of nonzero adjoint is wider at the initial time compared to the final

time. In fact, at the final time, there is only one nonzero point, as expected since no

other states can impact the output. At the initial time step, a residual perturbation

in any point on the computational domain has a better chance of affecting the output

as the state advects across the computational domain. So, the output is sensitive to

a relatively larger area at the initial time step.

In two dimensions, considering the test case of a advecting Gaussian wave as

shown in Figure 2.11. Figure 2.11(a) shows the initial unstructured mesh that we

used. Figure 2.11(b) shows our primal problem. Here, we enforced inflow boundary

condition on the left boundary and lower boundary of the computational domain.

A Gaussian pulse originally centered at coordinate, X = [−0.4, −0.4] advects along

the diagonal of the square until it arrives the ending center point X = [0.4, 0.4].

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) Initial mesh (b) Primal problem illustration

Figure 2.11: Initial mesh and primal problem illustration

Three types of adjoint distribution results, point output adjoint, domain integral

output adjoint and line integral output adjoint are presented in Figure 2.12. Fig-

ure 2.12 is generated in the immediate fine space of the mesh shown in Figure 2.11(a).

The point output is defined at [0.4, 0.4]. The domain integral output is defined as



31

the state integral over the whole computational domain. The line integral output is

the integral over upper and right boundaries. Recall the definition of the adjoint as

the sensitivity of an output to residual source perturbations. For the point output,

the ‘sensitive area’, which has a higher adjoint value, mainly concentrate around the

diagonal of our computational domain as shown in Figure 2.12(a). For the domain

integral output, its ‘sensitive area’ is the area swept over by the convective flow,

which is in a rectangle shape for our case as is shown in Figure 2.12(c). For the line

integral output, its ‘sensitive area’ is in a corner shape, which eventually develops

into the corner formed by the outflow boundary, upper and right boundaries, of our

computational domain, as is shown in Figure 2.12(e). Figure 2.12(a), (c) and (e)

demonstrate that our adjoint implementation is correct in a qualitative sense.

For a quantitative verification of the adjoint, we consider sensitivity analysis and

error estimation.

Discrete Sensitivity Analysis

Given an unsteady adjoint solution, a parameter sensitivity is calculated as

(2.42)
dJ

dµ
=

N∑
n=1

Ψn

(
∂Rn

∂µ

)
In this case, the parameter µ is chosen to be the amplitude of a spatially-sinusoidal

perturbation to the initial condition. Theoretically, with the sensitivity information,

we can predict the change of the output J along a change in the parameter, δµ,

without running the forward solver. This output perturbation is given by

(2.43) δJ =

(
dJ

dµ

)
δµ

We choose to perturb state, U, to measure the accuracy of our adjoint cases.

Therefore, calculating dJ/dµ and dJ/dU are essentially the same. The calculation



32

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

 

 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(a) Adjoint distribution of point output

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

 

 

0

0.02

0.04

0.06

0.08

0.1

0.12

(b) Error indicator(adjointed weighted residual) of point
output

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

 

 

0.005

0.01

0.015

0.02

0.025

0.03

(c) Adjoint distribution of domain integral output

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

 

 

0

1

2

3

4

5

x 10
−3

(d) Error indicator(adjointed weighted residual) of do-
main integral output

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

 

 

0.02

0.04

0.06

0.08

0.1

0.12

0.14

(e) Adjoint distribution of line integral output

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

 

 

0.5

1

1.5

2

2.5

3

3.5

x 10
−4

(f) Error indicator(adjointed weighted residual) of line
integral output

Figure 2.12: 2D adjoint and error indicator distribution at time step Nh/2



33

of the derivative, dJ/dU is done utilizing the quadratic spatial formulation implied

by the active flux method. For one-dimensional case, the derivative calculation is

simple. For two-dimensional case, we briefly show how to calculate derivatives of

three types of output, point output, line integral output and domain integral output.

Quantitative verification of sensitivity tests are also shown in this paper.

1. dJ/dU for Point Output

In order to calculate derivative for point output, we need to first locate the

element j, that contains the desired point output. Recall the active flux dis-

cretization from Section 2.1,

(2.44)

dJ

dU
=

[
· · ·φ1,j · · ·φ3,j · · ·φ6,j · · ·︸ ︷︷ ︸

node states

· · · 27φ2,j − 20φ7,j

27
· · · 27φ4,j − 20φ7,j

27
· · · 27φ5,j − 20φ7,j

27
· · ·︸ ︷︷ ︸

edge states

· · · 20φ7,j

9
· · ·︸ ︷︷ ︸

cell average states

]

2. dJ/dU for Line Integral Output

Our line integral output is defined as the integral over the outflow boundary,

(2.45) Jline integral =
BCline∑
j=1

Jj

Jj is line integral at the boundary edge of element j, which locates on the outflow

boundary. We uses 1D quadrature rule to integrate Jj numerically. Thus,

(2.46)
dJline integral

dU
=

BCline∑
j=1

dJj
dU



34

and

(2.47)
dJj
dU

= det(J)

Q∑
q=1

dJq
dU

wq

wq is the weight of 1D quadrature point evaluated at point output Jq, Q is the

total number of quadrature points.

3. dJ/dU for Domain Integral Output

When the output is defined as the integral over the computational domain,

(2.48) Jdomain integral =
M∑
j=1

Jj

Jj is area integral over element j. We uses 2D quadrature rule to calculate it

numerically.

(2.49)
dJdomain integral

dU
=

M∑
j=1

dJj
dU

and

(2.50)
dJj
dU

=

Q∑
q=1

det(J)
dJq
dU

wq

wq is the weight of the qth 2D quadrature point, Q is the total number of

quadrature points.

To test the adjoint-based sensitivity, we run the active flux solver twice: first with-

out a parameter perturbation, i.e. µ = 0, and second with a parameter perturbation,



35

Table 2.1: Initial-condition sensitivity test comparing an actual output perturbation with an
adjoint-based sensitivity calculation. For the linear problem and output under consideration, the

adjoint result is exact.

Output types Actual perturbation Predicted perturbation
1D point output 0.039062093143630 0.039062093143630
2D point output -11.828244710966711 -11.828244710966711
2D line integral 2.243744802369696 2.243744802369697

2D domain integral -21.666898164171524 -21.666898164171496

µ = δµ. The output perturbation should be predicted with the adjoint sensitivity.

A comparison of the actual perturbation and the predicted perturbation for the test

case under consideration is given in Table 2.1

As Table 2.1 shows, the output perturbation is predicted exactly. We can draw

two conclusions here: (1) our theory for the active-flux adjoint implementation is

working; (2) because the current problem is linear, the prediction is exact, but this

will not be the case for general nonlinear problems.

Discrete Adjoint Error Estimation

The adjoint can be used to estimate the numerical error in an output computed

using two discretization spaces. Denote by UH , Uh the primal solutions on coarse,

respectively fine, spaces. These could be a mesh and a uniform refinement of it. Also,

let RH and Rh denote discrete residual vectors, both functions of their respective

primal states. Finally, let JH and Jh be scalar outputs computed on the coarse

and fine spaces. We assume that the output definition does not change between the

coarse and the fine spaces, so that JH (UH) = Jh
(
UH
h

)
, where UH

h is the injection

of the coarse solution, UH , into the fine space.

The discrete fine-space adjoint, Ψh, is vector of the same size as the fine-space

state and residual vectors that satisfies(
∂Rh

∂Uh

)T
Ψh +

(
∂Jh
∂Uh

)T
= 0.(2.51)



36

t

u

u
n+1/2
j

un
j un+1

j

u
n+1/4
j

Figure 2.13: Temporal state injection within a time step.

The standard adjoint-weighted residual error estimate [32,38] reads

(2.52) Jh
(
UH
h

)
− Jh (Uh)︸ ︷︷ ︸
δJ

≈ ΨT
h δRh = −ΨT

hRh

(
UH
h

)
.

In this work, we obtain the fine space (h) by subdividing both the spatial cells and

the time steps of the coarse (H) discretization. That is, in one spatial dimension,

the fine mesh has Mh = 2MH cells and in two spatial dimensions, the fine mesh has

Mh = 4MH . In both cases, the number of time steps doubles, Nh = 2NH . We assess

the accuracy of the error estimate through the definition of an error effectivity,

ηh =
−ΨT

hR(UH
h )

JH(UH)− Jh(Uh)
,(2.53)

where UH
h indicates the coarse solution injected into the fine space. This injection is

performed by evaluating the quadratic spatial and temporal reconstructions implied

by the AF discretization. For spatial reconstruction, we can use the existing active

flux basis functions. For temporal reconstruction, we first evaluate the coefficients

of the temporal reconstruction, assuming the intermediate state (u
n+1/4
j ) lies on a

quadratic curve connecting states from adjacent time steps (unj and un+1
j ) through

u
n+1/2
j , as illustrated in Figure 2.13.

The subscript on ηh in Eqn. 2.53 indicates that this is an effectivity measured



37

Table 2.2: Error estimation test

Output types Actual error Estimated error
1D point output -0.062837526306201 -0.062837526306203
2D point output -0.168407731651310 -0.168407731651310
2D line integral -0.023801197849757 -0.023801197849757

2D domain integral 3.226858860222309× 10−4 3.226858860222372× 10−4

relative to the fine space. We will denote the effectivity relative to the exact solution

by η, and this is calculated by replacing Jh(Uh) in Eqn. 2.53 with the exact output.

We now apply the adjoint to estimate the error in the output relative to a finer

discretization, using the adjoint-weighted residual in Eqn. 2.52. The error is com-

pared with actually solving the problem on the finer discretization. The comparison

is presented in Table 2.2. As Table 2.2 shows, the error estimate is accurate up to

machine precision. The associated effectivity is ηh ≈ 1, also up to machine precision.

For one-dimensional case, we further verified the convergence rate of the absolute

value of the estimated error(|εjH |) and the actual error(|JH(UH) − Jh(Uh)|) on a

smooth problem, advection of a Gaussian wave. Figure 2.14 presents 10 pairs of

data points for |εjH | and |JH(UH)−Jh(Uh)|. Applying a least square fit to the data

points in Figure 2.14, and ignoring the first 4 data points, the slope of the |JH(UH)−

Jh(Uh)| data set is −2.970697749024125 ≈ −3 and the slope of the |εjH | data set is

−2.96935936216698 ≈ −3, which is again consistent with the expectation of third-

order accuracy for AF schemes. We note that the error estimate for an arbitrary

initial condition will generally not be accurate up to machine precision according to

our discussion at the beginning of Section 6.2.4 (we need exact representation on the

course space).

We then consider the error indicator for adaptivity by plotting the temporally-

marginalized (summed over time steps) error indicator, εjH from Eqn. 4.5, versus cell

number in Figure 2.15. From Figure 2.15 we see that the output error indicator is



38

Figure 2.14: Convergence rate of |JH(UH)− Jh(Uh)| and |εjH | for a Gaussian wave advection
problem.

Figure 2.15: Temporally-marginalized adaptive indicator, εjH from Eqn. 4.5.



39

fairly evenly distributed over the domain, with slightly larger values near the output

measurement location due to the high sensitivity of that area near later times. The

uniformity of the error indicator for this simple problem is expected as in a periodic

wave propagation on a static mesh, the entire domain requires resolution. Adaptive

refinement is therefore not necessary in such a case, but we expect it to be important

for more complex, higher-dimensional problems, i.e, two dimensions.

We presented the error indicators of two-dimensional cases in Figure 2.12(b), (d)

and (f), which are calculated with the error localization strategy we came up with

in Eqn. 4.6. Comparing the left hand side of Figure 2.12( Figure 2.12 (a), (c),

(e)), which quantify the sensitivty informaiton, adjoint, and the right hand side of

Figure 2.12(Figure 2.12(b), (d), (f)), which quantify the localized discretization error

information, adjoint weighted residual, we roughly have an idea about how different

the sensitivity and localized error estimation information is.

We noticed, in Figure 2.12(b), the point output error indicator distribution is

rather uneven. Few elements have high error indicator values, but most elements

have almost zero error indicator value. In terms of this particular output, it means

some parts of our mesh have especially high discretization error and some parts

of the mesh don’t have much discretization error. In other words, some parts of

the mesh need to be refined to reduce the discretization error, while some parts of

the mesh don’t need to be refined at all. We can expect adaptive mesh refinement

technique to be more advantageous over uniform mesh refinement in this case. Thus,

we evaluate the performance of our theoretical work using point output. As for the

line integral over the outflow boundary and domain integral output, their values

basically depend on the information of the whole computational domain or almost

the whole computational domain. It’s not necessary to use adaptive techniques for



40

these two cases.

2.2.2 Continuous Adjoint for the Active Flux Discretization

The continuous adjoint equations are derived from the primal problem, Eqn. 2.1

using an augmented Lagrangian, which for an unsteady simulation requires integra-

tion over the entire space-time domain,

L ≡ J(u)−
∫
T

∫
Ω

(ψ)T r(u) dΩ dt.(2.54)

In this expression T denotes the temporal domain, Ω is the spatial domain, and

ψ ∈ Rs is the adjoint. Linearizing the Lagrangian and requiring that it is stationary

with respect to permissible state variations, δu ∈ Vpermissible, we have

J ′[u](δu)−
∫
T

∫
Ω

(ψ)T r′[u](δu) dΩ dt = 0 ∀ δu ∈ Vpermissible,(2.55)

where the primes denote Fréchét linearization with respect to the arguments in square

brackets. The second term can be integrated by parts to yield a partial differential

equation for the adjoint equation; boundary terms from this integral then provide

boundary conditions for the adjoint.

Using the case of scalar advection to showcase the derivation of the continuous

adjoint, the adjoint PDE is identical to the primal one. We can see this by carrying



41

out the integration by parts in Eqn. 2.55,

J ′[u](δu) =

∫
T

∫
Ω

ψ

[
∂(δu)

∂t
+∇ · (~V δu)

]
dΩ dt

=

∫
T

∫
Ω

ψ
∂(δu)

∂t
dΩ dt+

∫
T

∫
Ω

ψ∇ · (~V δu) dΩ dt

= −
∫
T

∫
Ω

∂ψ

∂t
δu dΩ dt+

[∫
Ω

ψδu dΩ

]T
0

−
∫
T

∫
Ω

~V · ∇ψ δu dΩ dt+

∫
T

∫
∂Ω

ψδu~V · ~n ds dt

= −
∫
T

∫
Ω

[
∂ψ

∂t
+ ~V · ∇ψ

]
δu dΩ dt+

[∫
Ω

ψδu dΩ

]T
0

+

∫
T

∫
∂Ω

ψδu~V · ~n ds dt(2.56)

The first term in the final right-hand side is the domain-interior adjoint equation; it

may have additional source terms if the output J depends on the space-time interior

state. For the sake of simplicity, we assume that the output J only depends on the

state at the final time t = T , via

J(u) =

∫
Ω

j(u) dΩ
∣∣∣
t=T

.

Linearizing this equation and matching terms in Eqn. 2.56, we obtain the adjoint

PDE,

∂ψ

∂t
+ ~V · ∇ψ = 0,(2.57)

subject to terminal conditions,

J ′[u](δu) =

∫
Ω

j′[u](δu) dΩ
∣∣∣
t=T

=

∫
Ω

ψδu dΩ
∣∣∣
t=T

⇒ ψ(T ) = j′[u].(2.58)

We test the continuous adjoint using a scalar advection problem with periodic

boundaries. Note, periodic boundaries eliminate the last term on the right-hand side



42

in Eqn. 2.56. To test the adjoint, we consider perturbing the initial condition, u(0),

by δu0. Assuming that our adjoint ψ satisfies Eqn. 2.57 and Eqn. 2.58, Eqn. 2.56

reduces to the following expression for the expected output perturbation:

δJ ≡ J ′[u](δu0) = −
∫

Ω

ψ δu0 dΩ
∣∣∣
t=0
.(2.59)

Given an approximation of the adjoint, ψH (what we solve for), in a finite discretiza-

tion space denoted by H, the perturbation estimate becomes

δJ ≈ −
∫

Ω

ψH δu0 dΩ
∣∣∣
t=0
.(2.60)

Sensitivity Test in One Dimension

For the one-dimensional sensitivity test, the primal initial condition, output weight

function, and state perturbation are chosen as shown in Table 2.3.

Table 2.3: Adjoint sensitivity test setup for a 1D scalar advection problem.

Primal initial condition Output weight function State perturbation

u0 =

 x x ∈ [0, 1.5)
3− x x ∈ [1.5, 3)

0 x ∈ [3, 6]
j′ = 100 (sin(πx) + 1) δu0 = 0.5 (sin(πx) + 1)

Figure 2.16 plots these functions and shows the adjoint space-time field. Note

that this is just the propagation of the output weight-function backwards in time

from t = T to t = 0. Computing the adjoint-based sensitivity in Eqn. 2.59, we

obtain δJ = 445.56604 . . ., which agrees with the actual output perturbation as the

space-time mesh is refined.

Sensitivity Test in Two Dimensions

For the sensitivity test in two dimensions, the primal problem is the same as

illustrated in Figure 2.4(a). Figure 2.17 shows the primal perturbation used to

calculate sensitivities. The simulation time is one period at a CFL number of 0.2.



43

(a) Primal initial condition (b) Output weight function

(c) Perturbed primal initial condition (d) Adjoint propagation in space-time

Figure 2.16: Primal and adjoint initial/terminal conditions and the adjoint space-time field for a
1D scalar advection simulation.



44

Note, the Courant Friedrichs Lewy (CFL) number is defined as |~V |∆t/h, where h is

a measure of the smallest cell size in the mesh. For the adjoint, the output is an area

integral at the final time,

(2.61) J =

∫
Ω

uw(x, y)dΩ,

where the smooth weight, w(x, y), which becomes the adjoint terminal condition, is

(2.62) w(x, y) = sin ((x+ 1) π) sin ((y + 1) π) x ∈ [0 1], y ∈ [0 1].

Figure 2.17: Primal perturbation used in the two-dimensional sensitivity study:
δu0(x, y) = x2 + y2.

Table 2.4 shows the sensitivity test result for the continuous adjoint. The error in

the computed sensitivities decreases as the number of cells, i.e. resolution, increases.

JH − Jperturb adjoint prediction
Ncell = 450 −7.58936× 10−1 −9.33519× 10−1

Ncell = 800 −6.73992× 10−1 −7.15801× 10−1

Ncell = 1250 −6.53913× 10−1 −6.62186× 10−1

Table 2.4: Results of the two-dimensional sensitivity test of the continuous adjoint discretization .

Error Estimation

Just like the discrete adjoint, the continuous adjoint can also be used for error

estimation via an adjoint-weighted residual. Consider a “coarse” discretization level



45

denoted by the subscript H. Denote a space-time interpolation of the coarse-space

solution by uH(x, t). The strong-form residual of this coarse-space solution will

generally not be zero. Assuming linear equations, we can write,

r(uH) = r(u+ δu) = r′[u](δu) 6= 0,(2.63)

where u is the exact primal solution, and δu ≡ uH − u. From the linearized La-

grangian in Eqn. 2.55, we can compute the error in the output as a result of using

uH instead of u:

δJ =

∫
T

∫
Ω

ψ r(uH) dΩ dt.(2.64)

This expression requires the exact adjoint, ψ, which for general problems will be

unavailable. Instead, we approximate the exact adjoint by solving it on a fine space,

denoted by the subscript h. In the Active Flux method, this fine space is obtained

by uniformly refining the space-time mesh. Substituting the fine-space adjoint into

Eqn. 2.64 gives,

δJ ≈
∫
T

∫
Ω

ψh r(uH) dΩ dt(2.65)

Writing r(u) in compact space-time form as r(u) = ∇ · (V u), where the bar

indicates a combined space-time derivative or velocity, we can integrate the above

error estimation formula by parts over the entire space-time domain, denoted by ΩT ,

to obtain,

δJ ≈
∫

ΩT

ψh r(uH) dΩT

= −
∫

ΩT

∇ψh · V uH dΩT︸ ︷︷ ︸
0 by the adjoint eqn.

+

∫
∂ΩT

ψh(V uH) · n dS.(2.66)

This surface-integral error estimate is applied on each space-time cell of the fine-

space mesh. Since continuous adjoint sensitivities will not exactly match the true



46

sensitivities, we verify the continuous adjoint through error estimates. In particular

we perform an error estimate convergence study to verify our continuous adjoint in

Chapter 3.

2.3 Discontinuous Galerkin Discretization

In this section, we review the discontinuous Galerkin method for conservation

laws. Additional details can be found in previous works [40,41].

2.3.1 Conservation Equations

Consider a conservation law given by the partial differential equation (PDE)

∂tu + ∂iHi(u,∇u) = 0,(2.67)

where u ∈ Rs is the state vector, Hi ∈ Rs is the ith component of the total flux,

1 ≤ i ≤ d indexes the spatial dimension d, and summation is implied on the repeated

index i. We decompose the total flux into convective and diffusive parts,

Hi = Fi(u) + Gi(u,∇u),(2.68)

Gi(u,∇u) = −Kij(u) ∂ju,(2.69)

where Fi ∈ Rs is the ith component of the inviscid/convective flux, Gi ∈ Rs is the ith

component of the viscous flux, and Kij ∈ Rs×s is the (i, j) component of the viscous

diffusivity tensor. For steady problems, the temporal derivative is zero, ∂tu = 0.

2.3.2 Solution Approximation

DG is a finite element method in which the state u is spatially approximated in

functional form, using linear combinations of basis functions, usually polynomials, on

each element. No continuity constraints are imposed on the approximations on adja-

cent elements. Denote by Th the set of Ne elements in a non-overlapping tessellation



47

element edomain Ω

Ωe

Figure 2.18: Partition of a square domain into 14 triangular elements.

of the domain Ω, as illustrated in Figure 2.18.

uh(~x) ≈
Ne∑
e=1

Np∑
n=1

Uenφen(~x),(2.70)

where

Np = number of basis functions needed for an order p approximation

φen(~x) = nth order p basis function on element e (zero on all other elements)

p = order of spatial basis functions on each element

Ne = number of elements

Uen = vector of s coefficients on nth basis function on element e

Formally, we can write that uh ∈ Vh = [Vh]s, where

Vh = {u ∈ L2(Ω) : u|Ωe ∈ Pp ∀Ωe ∈ Th} ,

and Pp denotes polynomials of order p on element e. The lack of continuity in the

solution approximation differentiates DG from continuous finite element methods,

as illustrated in Figure 2.19. It adds computational expense, as we do not expect to

approximate solutions that are discontinuous at every element interface, but it also

provides convective stability and simplifies hanging-node mesh refinement and local

order enrichment.



48

x
y

TH

u(x, y)

(a) Continuous Galerkin

x
y

TH

u(x, y)

(b) Discontinuous Galerkin

Figure 2.19: Solution approximation using continuous and discontinuous basis functions. Though
the solution is discontinuous in DG methods, the inter-element flux is single valued, as in finite

volume methods.

2.3.3 Weak Form

We obtain a weak form of Eqn. 2.67 by multiplying the PDE by test functions

vh ∈ Vh and integrating by parts to couple elements via fluxes. The convective fluxes

on element faces are handled via a traditional finite-volume (approximate) Riemann

solver, but the diffusive treatment is trickier and requires stabilization. Multiple

diffusion formulations exist [42], and we employ the second form of Bassi and Rebay

(BR2) [43].

We can write the final semilinear weak form as

Rh(uh,vh) = 0, ∀vh ∈ Vh,(2.71)

which, by linearity of the second argument, we can decompose into contributions

from each element,

Rh(uh,vh) =
Ne∑
e=1

Rh(uh,vh|Ωe) = 0, ∀vh ∈ Vh.(2.72)

Integrating by parts and applying the BR2 diffusion treatment, we find that the



49

semilinear form associated with each element is

Rh(uh,vh|Ωe) =

∫
Ωe

vTh ∂tuh dΩ−
∫

Ωe

∂iv
T
hHi dΩ

+

∫
∂Ωe\∂Ω

v+T
h

(
F̂ + Ĝ

)
ds+

∫
∂Ωe∪∂Ω

v+T
h

(
F̂b + Ĝb

)
ds

−
∫
∂Ωe\∂Ω

∂iv
+T
h K+

ij

(
u+
h − ûh

)
nj ds

−
∫
∂Ωe∪∂Ω

∂iv
+T
h Kb

ij

(
u+
h − ubh

)
nj ds(2.73)

where (·)T denotes transpose, and on the element boundary ∂Ωe the notations

(·)+, (·)−, (·)b respectively denote quantities taken from the element interior, neigh-

bor element, and boundary. The last two terms symmetrize the semilinear form for

adjoint consistency. The key fluxes are defined as,

ûh = (u+
h + u−h )/2

F̂ = F̂(u+
h ,u

−
h , ~n)

Ĝ = Ĝ(u+
h ,u

−
h ,∇u+

h ,∇u−h , ~n)

F̂b = F̂b(ubh,BC, ~n)

Ĝb = Ĝb(ubh,∇u+
h ,BC, ~n)

In particular, on an interior face σf , the convective flux F̂ is computed using the Roe

approximate Riemann solver [24], and the BR2-stabilized viscous flux is

Ĝ =
1

2

(
G+
i + G−i

)
n+
i + η

1

2

(
δ+
i + δ−i

)
n+
i ,(2.74)

where the auxiliary variables δ+
i , δ

−
i ∈ [Vh]

d have support on the two elements adja-

cent to the interior face σf and are obtained by solving ∀τ hi ∈ Vh∫
Ω+
e

τ Thiδ
+
i dΩ +

∫
Ω−e

τ Thiδ
−
i dΩ =

∫
σf

1

2

(
τ+T
hi K

+
ij + τ−Thi K

−
ij

)
(u+

h − u−h )n+
j ds.(2.75)



50

η is a stabilization factor that should not be less than the number of faces per

element, and in our work is taken to be (at least) twice the maximum number of

faces on adjacent elements.

On a boundary face σb, fluxes are typically computed directly from the boundary

state, ub, which is a function (projection) of the interior state and the boundary-

condition data, ubh = ubh(u
+
h ,BC). One exception is the convective flux for a bound-

ary condition in which a complete exterior state is specified: in such a case, an

approximate-Riemann solver is used to compute the boundary convective flux, F̂b.

The BR2-stabilized boundary viscous flux is

Ĝb = ΠBC
G

[
Gi(u

b
h,∇u+

h )ni + ηδini
]
,(2.76)

where the auxiliary variable ~δ ∈ [Vh]
d has support on the element adjacent to the

boundary face σb and is obtained by solving ∀τ hi ∈ Vh∫
Ωe

τ Thiδi dΩ =

∫
σb
τ+T
hi K

b
ij(u

+
h − ubh)n

+
j ds.(2.77)

The projection ΠBC
G in Eqn. 2.76 incorporates boundary conditions on the viscous

flux, such as a prescribed heat flux in the compressible Navier-Stokes equations.

2.3.4 Discrete System

We choose as test functions the trial basis functions introduced in Eqn. 2.70, φen,

where

span {φen} = Vh.(2.78)

Recall that e is the element number and n indexes the polynomial basis functions

inside element e. Each state equation is tested with the same set of functions, which

means that we can define a size-s residual vector for the nth test function in element



51

e by

Ren ≡ {Rh(uh, φener)}r=1...s ∈ Rs,(2.79)

where er ∈ Rs, r = 1 . . . s, is a vector of all zeros except a 1 in position r. We now

use the convention that dropping a subscript means considering the set of values over

the entire range of that subscript. So Re is the set of residuals over all states and

basis functions inside element e, and R is the set of all residuals for all elements in

the domain. Using the same convention for the state, U, we can write the discrete

system of equations (i.e. residuals) compactly as

R(U) = 0.(2.80)

Note that both U and R lie in RN , where the total number of degrees of freedom

including equation states is N = NeNps. When considering different discretization

spaces, we will append a subscript h or H to the variables R, U, and N .

Finally, the number of basis functions per element depends on the approximation

space and order p. We consider approximation spaces that are given by the span of

monomials in reference space coordinates ξi, Πd
i=1ξ

pi
i : for a full-order space,

∑d
i=1 pi ≤

p, and for a tensor-product space, ∀i, pi ≤ p. The resulting dimensions of these spaces

are

full-order basis set: Np =

p
d

 =
p!

d!(p− d)!
tensor-product basis set: Np = (p+ 1)d.

2.3.5 Nonlinear Solver

To solve Eqn. 2.80, we use a preconditioned Newton-Krylov method augmented

with pseudo-transient continuation. Starting from an initial guess, usually the free-

stream condition, and a conservative time step set using a Courant-Friedrichs-Lewy



52

(CFL) number of approximately unity, the Newton solver iterates until steady state.

The linear system at each Newton iteration is solved using an element-line precon-

ditioned General Minimal Residual Krylov subspace method [44, 45]. As successful

Newton updates are taken, the time step is increased according to an exponential

growth formula for the CFL number. Details on the solver, including the incorpo-

ration of physical constraints on some of the variables, can be found in [46]. For

unsteady problems and implicit time marching, the same procedure is applied at

every time step or stage.

2.3.6 Discrete Adjoint

Suppose that we are interested in a scalar output computed from the solution to

our PDE. Using the discrete state vector, we write

output J = J(U).(2.81)

The discrete adjoint, Ψ ∈ RN , is a vector of sensitivities of the output to the N

residuals. That is, each entry of the adjoint tells us the effect that a perturbation

in the same entry in the residual vector would have on the output J . One common

source of residual perturbations is changes in input parameters for a problem, and

so we ground the adjoint presentation in the context of a local sensitivity analysis.

2.3.7 Local Sensitivity Analysis

Consider a situation in which Nµ parameters, µ ∈ RNµ , affect the PDE in

Eqn. 2.80. We can then write the following chain of dependence,

µ︸︷︷︸
inputs ∈ RNµ

→ R(U,µ) = 0︸ ︷︷ ︸
N equations

→ U︸︷︷︸
state ∈ RN

→ J(U)︸ ︷︷ ︸
output (scalar)

.(2.82)

We are interested in how J changes (locally for nonlinear problems) with µ,

dJ

dµ
∈ R1×Nµ = Nµ sensitivities.(2.83)



53

Note, if J depends directly on µ we would add ∂J
∂µ

to the above sensitivity, but for

clarity of presentation we consider only the case when J = J(U). Several options

exist for computing these sensitivities. Two direct ones are finite differencing, in

which the input parameters are perturbed one at a time, and forward linearization,

in which the sequence of operations in Eqn. 2.82 is linearized. Both of these be-

come expensive when Nµ is moderate or large, because of the need to re-solve the

system R(U,µ) = 0 for each parameter. A third choice is the adjoint approach,

which requires an inexpensive residual perturbation calculation followed by an ad-

joint weighting to compute the effect on the output. That is, we write

dJ

dµ
= ΨT ∂R

∂µ
.(2.84)

This approach is efficient for computing a large number of sensitivities for one out-

put, as the cost is one residual perturbation calculation and one vector product per

sensitivity.

The central idea in the adjoint approach is that we do not need to solve the

forward problem each time we want a sensitivity. The adjoint method precomputes

the effect of R on J , which is the expensive step. The resulting N sensitivities are

stored in the vector Ψ.

2.3.8 The Adjoint System

To derive an equation for the adjoint, we consider the chain of operations we

would take in computing the sensitivities via a direct approach. In the following

steps, we assume small perturbations.



54

1. Input µ→ µ+ δµ

2. Residual R(U,µ+ δµ) = δR 6= 0 → R(U,µ) + ∂R
∂µ

∣∣∣
U,µ

δµ = δR

3. State R(U + δU,µ+ δµ) = 0 → R(U,µ) + ∂R
∂µ

∣∣∣
U,µ

δµ+ ∂R
∂U

∣∣∣
U,µ

δU = 0

4. Output J(U + δU) = J(U) + δJ → δJ = ∂J
∂U
δU

Subtracting step 2 from step 3, we obtain

∂R

∂U

∣∣∣
U,µ

δU = −δR ⇒ δU = −
[
∂R

∂U

]−1

δR.(2.85)

Combining this result with the output linearization in step 4 gives the output per-

turbation in terms of the residual perturbation,

δJ =
∂J

∂U
δU = − ∂J

∂U

[
∂R

∂U

]−1

︸ ︷︷ ︸
ΨT ∈ RN

δR.(2.86)

Taking the transpose of the equation ΨT = − ∂J
∂U

[
∂R
∂U

]−1
and moving everything to

the left-hand side gives the adjoint equation,(
∂R

∂U

)T
Ψ +

(
∂J

∂U

)T
= 0.(2.87)

The nth component of Ψ is the sensitivity of J to changes in the nth residual.

Since R(U,µ) = 0, from step 2 above we have δR = ∂R
∂µ

∣∣∣
U,µ

δµ and Eqn. 2.86

becomes

δJ = ΨT ∂R

∂µ

∣∣∣
U,µ

δµ ⇒ dJ

dµ
= ΨT ∂R

∂µ

∣∣∣
U,µ

.(2.88)

Therefore, once we have Ψ, no more solves are required for new sensitivities for the

same output. Note that the calculation of ∂R
∂µ

is typically very cheap compared to a

forward solve.



55

Although we have presented the adjoint in the context of a parameter sensitivity

analysis, we will that residual perturbations also arise when discrete solutions are

viewed from an enriched space. This will be the motivation for using adjoint solutions

in output error estimation.

2.3.9 Adjoint Consistency

The solution to Eqn. 2.87 is a discrete adjoint, Ψ, which at the simplest level we

can think of as a vector of N numbers. However, the adjoint also has a continuous

counterpart, call it ψ(~x), and we can think of the N numbers in Ψ as expansion

coefficients in an approximation of ψ using the same basis functions used for the

primal problem. The accuracy of this approximation is of interest for various reasons,

including error estimation.

Suppose that the exact primal solution, u ∈ V , satisfies

R(u,v) = 0, ∀v ∈ V ,(2.89)

for an appropriately defined space V . The exact adjoint ψ ∈ V then satisfies

R′[u](v,ψ) + J ′[u](v) = 0, ∀v ∈ V ,(2.90)

where the primes denote Fréchét linearization about the arguments in square brack-

ets, and R and J are the continuous versions of the semilinear form and output

functional, respectively. While we have assumed that both u and ψ lie in V , this

may not always be the case [47].

The exact adjoint can be regarded as a Green’s function that relates source per-

turbations in the original partial differential equation to perturbations in the out-

put [48,49]. A sample adjoint solution is shown in Figure 2.20 for Reynolds-averaged

compressible flow over an airfoil. While the adjoint solution often shares qualitative



56

(a) x-momentum state (near view) (b) x-momentum adjoint (near view)

(c) x-momentum state (far view) (d) x-momentum adjoint (far view)

Figure 2.20: Comparison of the primal solution (x-momentum component) and the adjoint
solution (conservation of x-momentum equation component) for a drag output in

Reynolds-averaged turbulent flow over an RAE 2822 airfoil. The color scales are clipped to show
the interesting features of each quantity – in the adjoint plots, yellow is near zero.



57

characteristics similar to the primal, such as the presence of a boundary layer in

a high-Reynolds number flow, it also shows marked differences, such as the “wake

reversal” seen in the far-field view in Figure 2.20. In this case, the output is drag,

and upstream of the airfoil, residual perturbations on/near the stagnation streamline

(the flow that is going to hit or come closest to the airfoil) will have a larger mag-

nitude impact on the drag than residual perturbations elsewhere; hence we see an

adjoint “reversed” wake telling us that there are large sensitivities to perturbations

in front of the airfoil. The figure shown tells us that this is the case for residual

perturbations in the conservation of x-momentum equations, but plots of the other

adjoint components show similar behavior.

The adjoint field depicted in Figure 2.20 is the discrete adjoint solution on a fine

mesh. It can only be regarded as a faithful representation of the exact adjoint if the

discretization is in some manner consistent with the exact adjoint problem. Primal

consistency in the variational problem requires that the exact solution u satisfy the

discrete variational statement,

Rh(u,v) = 0, ∀v ∈Wh,(2.91)

where Wh = Vh + V = {h = f + g : f ∈ Vh,g ∈ V}. Similarly, the combination of

the discrete semi-linear formRh and the functional Jh is said to be adjoint consistent

if [47, 50,51]

R′h[u](v,ψ) + J ′h[u](v) = 0, ∀v ∈Wh.(2.92)

Discretizations that are not adjoint consistent may still be asymptotically adjoint

consistent if Eq. 2.92 holds in the limit h → 0, by which we mean the limit of uni-

formly increasing resolution, over suitably normalized v ∈Wh. For non-variational

discretizations, the definition of consistency must involve an approximation operator



58

to map exact solutions into discrete spaces [52].

Adjoint consistency has an impact on the convergence of not only the adjoint

approximation but also the primal approximation [42, 47]. In error estimation, an

adjoint-inconsistent discretization can lead to irregular or oscillatory adjoint solutions

that pollute the error estimate with noise and lead to adaptation in incorrect areas

[47]. Enforcing adjoint consistency imposes restrictions on the output definition

and on the interior and boundary discretizations that enter into the semi-linear

form. These restrictions have been studied by several authors in the context of the

discontinuous Galerkin method [42, 47]. In general, discretizations that are found

to be adjoint inconsistent can often be made adjoint consistent by adding terms to

either the semi-linear form or the output functional.

2.4 Summary

The research contribution from this chapter include,

• Built both the discrete and continuous adjoint system for the adtive flux method.

• Equipped the active flux method with error estimation capability. Theoretical

work was tested on linear problems.

• Discovered the necessary condition for discontinuous Galerkin method to super-

converge for acoustic cases, detailed in Appendix A. (Acoustics code for DG was

created to assist the research of Dr. Duoming Fan. The written code has been

throughly examined in her thesis [53]. However this is not the main focus of my

thesis. Thus, details of this discovery is documented in Appendix instead.)



CHAPTER III

Mesh Motion

In this chapter, we present mesh motion algorithms for both the Active Flux

(AF) method as well as the discontinuous Galerkin (DG) method. We then use

these algorithms to perform adaptation using mesh motion, i.e. r-adaptation. There

are two popular approaches in mesh motion algorithm development, 1) space-time

discretizations that explicitly account for control volume changes over time, and 2)

discretizations based on the arbitrary Lagrangian-Eulerian (ALE) framework.

As the Active Flux method is explicit and fully-discrete, a space-time approach

is the most natural. This approach requires integrating over a general space-time

domain and invoking the divergence theorem. The resulting motion-enabled AF

method turns out to be fully conservative.

On the other hand, in the present work DG is used in semi-discrete form, for

which the ALE framework is more suitable. This framework already exists in the

DG code chosen for this work, which is Xflow. As the ALE method results in a dis-

cretization that is not exactly conservative, the development of the DG r-adaptation

indicator requires careful manipulation in order for effective error reduction. Chapter

6 contains the details of this development.

59



60

3.1 Mesh Motion Algorithm for the Active Flux Discretization

3.1.1 One Spatial Dimension

In one dimension, the scalar advection equation with flow speed a reads,

∂(au)

∂x
+
∂u

∂t
= 0,(3.1)

and this can be re-written in compact, space-time, form as,

∇ · (Vu) = 0,(3.2)

where V = [a 1], X = [x t], and ∇ = [ ∂
∂x
, ∂
∂t

]. Consider now a cell undergoing mesh

motion, as illustrated in Figure 3.1.

Figure 3.1: One dimensional element undergoing mesh motion: the node positions do not stay
fixed as time progresses, so that the element is no longer rectangular in space-time.

Integrating Eqn. 3.2 over the non-rectangular space-time volume, Ωj, yields,

(3.3)

∫
Ωj

∇ · (Vu) = 0 ⇒
∫
∂Ωj

n · (Vu) = 0.

In the present case, with four space-time edges, the above space-time surface integral

leads to a sum of integrals over the four edges,



61

Figure 3.2: One dimensional characteristics tracing illustration. With motion present, the
characteristic speed, ~vfinal, is determined by both the flow speed, ~a, and, nodal movement velocity,

~vmotion. Here, ~vfinal = ~a+ ~vmotion. The new CFL condition needs to take this modified
characterstic velocity into consideration.

I1 = Integral on edge 1

=

∫ xR(t=0)

xL(t=0)

[
nx nt

]
·
[
a 1

]
uds (nx, nt) = [0,−1](3.4)

I2 = Integral on edge 2

=

∫ ∆t

0

[
nx nt

]
·
[
a 1

]
u

∣∣∣∣dsdt
∣∣∣∣ ds(3.5)

I3 = Integral on edge 3

=

∫ xR(t=∆t)

xL(t=∆t)

[
nx nt

]
·
[
a 1

]
uds (nx, nt) = [0, 1](3.6)

I4 = Integral on edge 4

=

∫ ∆t

0

[
nx nt

]
·
[
a 1

]
u

∣∣∣∣dsdt
∣∣∣∣ ds(3.7)

Summing these integrals and setting the result to zero lets us solve for the cell

average at t = ∆t,

(3.8)

I3 = −I1 − I2 − I4

=⇒ [(xR − xL) ū]t=∆t = −I1 − I2 − I4

=⇒ ūt=∆t =
−I1 − I2 − I4

(xR − xL)t=∆t



62

Equation 3.8 essentially equates to a modified characteristic tracing for the Active

Flux method with mesh motion, Figure 3.2. Figure 3.2 also indicates a modified CFL

condition due to the modified characteristic tracing.

To test the mesh-motion formulation of the Active Flux method with mesh motion,

we consider a problem with a prescribed motion of the form,

(3.9) x(t) = sin (x0π) (t− 0.5) ,

where x0 is the original, time t = 0, coordinate. Figure 3.3(b) shows the resulting

motion of 30 initially equally-spaced nodes under this mapping. On this deforming

mesh, with periodic boundaries, we consider a primal problem in which a linear hat

primal state, shown in Figure 3.3(a), advects with constant velocity for one period.

(a) Primal problem initial condition (b) Nodes subject to prescribed motion

Figure 3.3: Test problem for the Active Flux method with mesh motion in one spatial dimension.

At the end of one period, we measure the L2 error norm of the solution error (the

exact solution is just the initial condition),

(3.10)

eL2 =

√
1

L

∫ L

0

[uAF(x)− uexact(x)]2 dx =

√√√√ 1

L

ncell∑
j=1

{∫ j∆x

(j−1)∆x

[uAF(x)− uexact(x)]2 dx

}
In Eqn. 3.10, ncell is the the total number of cells, and order 7 Gauss-Legendre

quadrature is used to evaluate the integrals. Figure 3.4 shows the behavior of the



63

error with mesh refinement. We observe that the L2 error norm converges at a rate

of approximately 3, consistent with our expectations, as the Active Flux method is

third-order accurate.

Figure 3.4: Convergence study for the active flux method on a moving mesh in one spatial
dimension, with CFL=0.1.

3.1.2 Two Spatial Dimensions

In two spatial dimensions, the scalar advection equation reads

(3.11)
∂(a1u)

∂x1

+
∂(a2u)

∂x2

+
∂u

∂t
= 0,

which can be re-written as,

(3.12) ∇ · (Vu) = 0.

Here, V =

[
a1 a2 1

]
and the space-time coordinate is X =

[
x1 x2 t

]
. Integrating

Eqn. 3.12 in a space-time control volume Ωj, we obtain,

(3.13)

∫
Ωj

∇ · (Vu) dΩ ≡
∮
∂Ωj

[(uV) · n] dS,

where, n is the outward pointing unit space-time normal on each face of control

volume Ωj. As Figure 3.5 shows, solving the governing equations becomes a problem

of evaluating five surface integrals.



64

(a) Space-time control volume without mesh motion,
a right triangular prism.

(b) Space-time control volume with mesh motion, a
deformed prism.

Figure 3.5: Space-time control volume in two dimensions

With or without motion, the top and bottom surfaces of the space-time control

volume, Figure 3.5(a) and Figure 3.5(b), are flat because we require that the un-

knowns reside at the same time point after each time step. Integrals on these faces

can be obtained directly by using quadrature, a 6th order rule in our work.

Itop =

∫
top surface

VuH · ntopdS, ntop = [0 0 1],(3.14)

Ibottom =

∫
bottom surface

VuH · nbottomdS, nbottom = [0 0 − 1].(3.15)

On the other hand, the remaining three surfaces of the prism in Figure 3.5(b), will

generally not be flat in the presence of mesh motion. To integrate on these surfaces,

we use a bilinear map to transform the face to a 2D reference square, and we then

apply Simpson’s rule in reference space. The mapping between the physical face and

reference square is illustrated in Figure 3.6.

In Figure 3.6(b), the black dots represent nodes of bilinear basis functions in



65

(a) Surface unknowns (b) Reference space surface

Figure 3.6: Mapping between a 3D space-time face in physical space and a reference square.

reference [σ, τ ] space, namely,

(3.16)

φ1 = (1− σ)(1− τ)

φ2 = σ(1− τ)

φ3 = (1− σ)τ

φ4 = στ .

The mapping from reference (ξ = [σ, τ ]) to physical (Xface) space then reads,

(3.17) Xface =
4∑
i=1

Xiφi(ξ),

where Xi are the space-time coordinates of the four face corners. The integral on

the 3D surface then transforms into an integral on the reference square, Γ, via

(3.18)∫
surfacej

[
(VuH) · nsurfacej

]
dS =

∫
Γ

[
(VuH) · nsurfacejJsurfacej

]
dΓ, j = 1, 2, 3

where

nJ =
∂Xface

∂σ
× ∂Xface

∂τ
,

and J is the determinant of the Jacobian matrix,

(3.19) J =
∂Xface

∂ξ
.



66

The scheme remains fully conservative because the fluxes between space-time ele-

ments remain uniquely defined.

Figure 3.7: Two dimensional characteristics tracing illustration. With motion present, the
characteristic speed, ~vfinal, is determined by both the flow speed, ~a, and, nodal movement velocity,

~vmotion. Here, ~vfinal = ~a+ ~vmotion. The new CFL condition needs to take this modified
characterstic velocity into consideration.

In turn, just like in one dimension, the modified flux leads to modified CFL

condition, illustrated in Figure 3.7. The new characteristics velocity that determines

the time step, is the vector sum between local nodal mesh motion velocity and flow

velocity.

As in the case of one spatial dimension, we perform a convergence study for the

Active Flux method with mesh motion. The problem of interest is two-dimensional

advection with periodic boundaries, illustrated in Figure 3.8(a). The initial condition

is a Gaussian pulse at the domain center, and the advection velocity is [a1, a2] =



67

[2, 2]. The output of interest is the L2 error norm,

(3.20) eL2 =

√
1

domain area

∫
Ω

[uAF − uexact]
2 dΩ,

where a 6th order Gauss-Legendre quadrature rule is used for numerical integration.

(a) Primal problem initial condition (b) Scheme convergence study

Figure 3.8: Convergence study for the active flux method with motion in two dimensions, periodic
BCs, a = [2 2]T , simulation time of one period, and CFL = 0.1.

The motion prescribed for the convergence study is a modified version of that

presented by Persson et al [19],

(3.21)
x1 (X1, X2, t) = X1 + 0.1 sin (πX1) sin(πX2) sin(2πt/t0),

x2 (X1, X2, t) = X2 + 0.1 sin (πX2) sin(πX1) sin(2πt/t0),

where X1 and X2 are nodal coordinates on the initial-time mesh, t0 = 1.0 period and

t is arbitrary time point between 0 and t0.

Figure 3.8(b) shows the result of the convergence study. The error appears to

converge at approximately third order, which again agrees with our expectations, as

the Active Flux method is third-order accurate.

3.1.3 Elaboration on the Modified CFL Condition

With mesh motion present, the CFL condition for the Active Flux discretization

changes. This section elaborates on how the new CFL condition is measured for the

Active Flux discretization with mesh motion.



68

(a) t = 0.3t0 (b) t = 0.7t0

Figure 3.9: Snapshots of the mapping used in the two-dimensional convergence-rate verification
study.

A necessary condition for the convergence of a finite difference method for a

hyperbolic PDE is that the numerical domain of dependence contains the physical

domain of dependence. This requirement is known as the Courant-Friedrichs-Levy

or CFL condition, named after the authors who first described this requirement.

The CFL condition states

(3.22) CFL ≡ |si|∆t
di

,

where, |si| is the maximum wave speed within the control volume i. di is the diameter

of cell i, in our case the hydraulic diameter,

di =
2× area of the control volume triangle

perimeter of the triangle

This is the diameter of the largest circle that can be inscribed in the triangle. di is

measured at every current time point. Therefore, the Active Flux method with mesh

motion can still achieve a maximum CFL number of 1.



69

3.2 Adjoint Discretization and Verification for the Active Flux Method
with Mesh Motion

3.2.1 Adjoint Discretization

For problems involving mesh motion, we consider the continuous adjoint formula-

tion of the Active Flux method, as described in Section 2.2.2. Since the continuous

adjoint equation has the same structure as the primal equation, it is solved in an

analogous manner. The primary difference is that the computation starts at the final

time and proceeds backwards to the initial time. This requires tracing characteristics

in the opposite direction from the primal problem. The same modifications that are

made for incorporating mesh motion into the primal problem are also made for the

adjoint problem.

3.2.2 Sensitivity Test with Motion

When mesh motion is present, the sensitivity formulation remains exactly the

same as described in Eqn. 2.60. We are interested in sensitivities to initial conditions,

and since these are prescribed at time t = 0, when there is no mesh deformation,

the mesh motion changes do not affect the formulation of the sensitivity test. The

only effect of mesh motion is on the computation of the adjoint (ψH)t=0, which is

time-marched backwards on the deformed mesh.

With the motion illustrated in Figure 3.3(b), a domain weighted integral output

is studied. Initial condition and perturbation for the sensitivity test is tabulated

in Table 2.3. The sensitivity test passes to machine-precision. That is, the out-

put perturbations predicted by the adjoint-based formulation agree exactly with the

output perturbations obtained by re-running the code with perturbed initial condi-

tions. This exact agreement only occurs when the adjoint terminal condition, i.e.

the output weight, is both continuous and slope continuous throughout the periodic



70

computational domain.

3.2.3 Error Estimation Study

Output-based error estimation for moving mesh problems is similar to static mesh

problems. We solve the continuous adjoint problem on a finer space, consisting of

uniform refinement in both space and time. At each time step in this adjoint solution

procedure, we compute the adjoint-weighted residual on the sub-elements arising

from the uniform refinement. Summed together, these adjoint-weighted residuals give

the estimate of the total space-time numerical error in the output. Taken individually,

the weighted residuals provide an indicator for adaptive refinement.

One Spatial Dimension

Consider the one-dimensional advection problem described in Section 3.1.1 and

illustrated in Figure 2.16. In this case, the error estimate obtained from an adjoint

on a uniformly-refined fine space gives δJ ≈ 0.6673, whereas the true output error

is 0.5931, a difference of about 13%. We now show how this error converges with

uniform mesh refinement.

We consider the primal initial condition shown in Figure 2.16(a). Using the same

output weighting function as in the sensitivity study, we compute the adjoint-based

error estimate at various levels of mesh refinement. Figure 3.10 shows the convergence

of the error estimate, with mesh motion off (a) and on (b).



71

(a) No Movement (b) With prescribed mesh motion

Figure 3.10: Error convergence study for a one-dimensional scalar advection problem. The mesh
motion prescribed for Figure 3.10(b) is the same as in Figure 3.4(b). The slopes of all lines are

approximately 3.

We note that with mesh motion present, both the output of interest and the error

estimate exhibit the expected third order convergence rate.

Two Spatial Dimensions

To verify the error estimate in two dimensions, we consider the same moving-mesh

problem as in the sensitivity study. The output is given in Eqn. 2.61, as a weighted

integral of the primal state at the final time. The mesh motion also remains the

same, as given in Eqn. 3.21. Figure 3.11 shows the results of the error convergence

study.

Figure 3.11(a) shows convergence of the primal L2 error norm to confirm that the

case is converging correctly at CFL = 0.7, (CFL = 0.7 is the largest CFL number

our solver can run for the chosen mapping.) Figure 3.11(b) shows the convergence

of the continuous adjoint error estimate, which is approximately third order.



72

(a) L2 convergence test, CFL = 0.7 (b) Error estimate convergence study

Figure 3.11: Two-dimensional scalar advection: error estimate convergence study at CFL = 0.7
and a simulation time of one period. The slope of all lines is approximately 3.

3.3 Discontinuous Galerkin Discretization

In an arbitrary Lagrangian-Eulerian (ALE) method, the mesh can move at a

velocity different from that of the flow, which is useful for modeling problems in

which objects move or deform. In the present case, we are not specifically concerned

with deforming domains, and instead use the motion of the mesh to redistribute

resolution in the physical domain.

3.3.1 The Arbitrary Lagrangian-Eulerian Mapping

The idea of ALE is to map the original PDE on a deforming physical domain to

a modified PDE on a static reference domain. Figure 3.12 illustrates this mapping.

Table 3.1 defines the relevant quantities in this mapping. Note that bold indicates a

state vector, an arrow indicates a spatial vector, and an underline indicates a spatial

matrix. The expressions for the transformations of the normals are obtained using

dv = gdV for infinitesimal volumes and d~l = Gd~L for infinitesimal vectors, as derived

in Persson et al [19].



73

~NdA

∂uX

∂t

∣∣∣
~X
+∇X · ~HX(uX , ~qX) = 0

(a) Reference domain: ~X,uX , ~FX

⇒

~X, t ⇒ ~x( ~X, t)

G = ∂~x
∂ ~X

g = det(G)
uX = gu

~qX = gGT~q
~vG = ∂~x

∂t

~HX = gG−1 ~H− uXG−1~vG

~nda = gG−T ~NdA

~NdA = g−1GT~nda

⇒

(b) Mapping

~nda

∂u
∂t

∣∣∣
~x
+∇ · ~H(u, ~q) = 0

(c) Physical domain: ~x,u, ~F

Figure 3.12: ALE mapping between the reference and physical domains.

Table 3.1: Key quantities used in the ALE mapping.

~X = reference-domain coordinates
~x = physical-domain coordinates
G = mapping Jacobian matrix
g = determinant of Jacobian matrix
~n = normal vector on physical domain
~N = normal vector on reference domain
v(t) = physical domain (dynamic)
V = reference domain (static)

da = differential area on physical domain
dA = differential area on reference domain
~vG = grid velocity, ∂~x/∂t
u = physical state
uX = state approximated on reference domain
~F = flux vector on physical domain
~FX = flux vector on reference domain

The partial differential equation on the physical domain is

∂u

∂t
+∇ · ~F(u,∇u) = 0, ~F = ~Fi(u)− ~Fv(u,∇u),(3.23)

where both inviscid and viscous fluxes are included. Integrating over a time-varying

volume v(t) yields,∫
v(t)

∂u

∂t
dv +

∫
∂v(t)

~F · ~n da = 0, ~n is outward-pointing on ∂v(t).(3.24)

We now transform to the reference domain, V . The boundary integral of the flux is∫
∂v(t)

~F · ~n da =

∫
∂V

~F · (gG−T ~N) dA =

∫
∂V

(gG−1~F) · ~N dA.(3.25)

The first integral in Eqn. 3.23 transforms using Leibniz’s rule (a.k.a Reynolds’ trans-



74

port theorem in this case),∫
v(t)

∂u

∂t
=

d

dt

∫
v(t)

u dv −
∫
∂v(t)

(u~vG) · ~n da

=
d

dt

∫
V

ug dV −
∫
∂V

(u~vG) · (gG−T ~N) dA

=

∫
V

∂(gu)

∂t
dV −

∫
∂V

(guG−1~vG) · ~N dA.(3.26)

Substituting Equations 3.25 and 3.26 into Eqn. 3.24 and applying the divergence

theorem gives the PDE on the reference domain,

∂uX
∂t

∣∣∣
X

+∇X · ~FX(uX ,∇XuX) = 0,(3.27)

where uX = gu,

~FX = gG−1~F− uXG−1~vG.

∇X denotes the gradient with respect to the reference coordinates. We break up the

transformed flux, ~FX , into inviscid and viscous fluxes by lumping the grid-velocity

term into the inviscid flux,

~FX = ~Fi
X − ~Fv

X ,
~Fi
X = gG−1~Fi − uXG−1~vG, ~Fv

X = gG−1~Fv.

The gradient of the state transforms via the chain an product rules. Using implied

summation,

∇u =
∂u

∂xj
=
∂(g−1uX)

∂Xd

∂Xd

∂xj
=

(
g−1∂uX

∂Xd

− g−2 ∂g

∂Xd

uX

)
G−1
dj

= g−1

(
∂uX
∂Xd

− g−1 ∂g

∂Xd

uX

)
G−1
dj ,(3.28)

where d and j index the reference and physical coordinates, respectively. We also

have,

G = Gjd =
∂xj
∂Xd

, δji =
∂xj
∂xi

=
∂xj
∂Xd

∂Xd

∂xi
= GjdG

−1
di , ⇒ G−1 = G−1

di =
∂Xd

∂xi
.



75

3.3.2 Discretization

In a DG setting, discretization of the new reference-domain equation requires

modifications to the numerical flux function on inter-element faces, to the boundary

conditions, to the face normal vectors, and to the quadrature integration weights.

These modifications are based on the reference-to-global mapping and its derivatives.

The weighted residual statement of Eqn. 3.27 on the reference domain is obtained

from the PDE by multiplying by test functions (defined in the reference domain) and

integrating over reference-domain elements. The resulting terms in the semilinear

form for one reference-domain element, κ, are as follows:

(total) RX(uX ,v) = Ru
X(uX ,v) +Ri

X(uX ,v) +Rv
X(uX ,v)

(unsteady) Ru
X(uX ,v) =

∫
κ

∂uX,k
∂t

vkdV

(inviscid) Ri
X(uX ,v) = −

∫
κ

∂XdvkF
i
X,dkdV +

∫
∂κ

v+
k F̂

i
X,dkNd dA

(viscous) Rv
X(uX ,v) =

∫
κ

∂XdvkF
v
X,dkdV −

∫
∂κ

v+
k F̂

v
X,dkNd dA

where v is a test function in the reference domain, d indexes the reference domain

spatial coordinates, and k indexes the state vector. The hats indicate numerical

fluxes on element interfaces or domain boundaries, and the + superscript indicates

quantities taken from the element interior.

The discretization would be straightforward were it not for the fact that fluxes

and boundary conditions are specified on the physical domain. A natural approach

that minimizes intrusion into the code is to express the reference-space fluxes and

boundary conditions in terms of the physical fluxes and boundary conditions.



76

Inviscid flux

~Fi
X = gG−1~Fi − uXG−1~vG = gG−1

(
~Fi − u~vG

)
.(3.29)

The inviscid flux includes the standard Galilean transformation expected from chang-

ing reference frames and also a multiplication by gG−1, which is done by post-

processing the equation-set specific flux.

On element interfaces, evaluation of the numerical flux F̂ i
X,dkNd also requires

changes. Using

~NdA = g−1GT~nda ⇒ NddA = g−1(GT )djnjda, and njda = g(G−T )jdNddA,

where (GT )dj = Gjd and (G−T )jd = G−1
dj , we obtain

F i
X,dkNd dA = gG−1

dj

(
F i
jk − ukvG,j

)
Nd dA

=
(
F i
jk − ukvG,j

)
gG−1

dj Nd dA

=
(
F i
jk − ukvG,j

)
nj da

Without mesh motion the numerical flux calculation returns F̂ i
jknj. With mesh

motion present, the flux has to be modified to operate on
(
F i
jk − ukvG,j

)
instead of

F i
jk. This is a simple but intrusive change because we need to modify equation-set

specific functions (i.e. the Riemann solvers) to take as input a grid velocity, vG,j.

For example, given two states uL and uR, the Roe flux without mesh motion reads

[
F i
jknj

]Roe
=

1

2

(
FL
jknj + FR

jknj
)
− 1

2

∣∣∣Akl(uRoe)
∣∣∣(uRl − uLl ).

With mesh motion present, the Roe flux becomes

[
(F i

jk − ukvG,j)nj
]Roe

=
1

2

(
FL
jknj + FR

jknj
)

−1

2

(
uLk + uRk

)
uG −

1

2

∣∣∣Akl(uRoe)−δkluG
∣∣∣(uRl − uLl ),



77

where uG = vG,jnj is the component of the grid velocity in the direction of the

physical normal ~n. The new terms consist of an addition to the flux of the average

state multiplied by the mesh velocity, and a shift of the eigenvalues of the linearization

about the Roe-average state, uRoe.

Viscous flux The reference-domain viscous flux is related to the physical viscous

flux through

F v
X,dk = gG−1

di F
v
ik.(3.30)

If the physical viscous flux is calculated using a diffusion matrix and the physical

state gradient, F v
ik = Aijkl∂xjul, then, using Eqn. 3.28 for the physical gradient, the

reference-domain viscous flux is, using implied summation,

F v
X,dk = gG−1

di Aijkl∂xjul

= gG−1
di Aijklg

−1
(
∂XcuX,l − uX,lg−1∂Xcg

)
G−1
cj

= G−1
di AijklG

−1
cj︸ ︷︷ ︸

AX,dckl

(
∂XcuX,l − uX,lg−1∂Xcg

)
,(3.31)

where c, d index the reference domain coordinates. AX,dckl represents the diffusion

matrix on the reference domain. It can be re-written in a more symmetrical form as

AX,dckl = G−1
di AijklG

−1
cj = G−1

di AijklG
−T
jc .

3.3.3 Boundary Conditions

The physical convective boundary flux, ~Fib, is modified to account for mesh motion

as given in Eqn. 3.29,

~Fib
X = gG−1

(
~Fib − ub~vG

)
.

We note that the physical boundary flux must be aware of motion on the boundary,

~vG. For example, on a moving wall, the flow tangency boundary condition states



78

that the normal component of the fluid velocity is equal to the normal component

of the boundary motion velocity (which would be zero without mesh motion). This

physical consideration is separate from the subtraction of ub~vG above – both must

be included.

Calculation of the viscous contribution on a boundary requires not only the bound-

ary state, ub, but also the boundary flux. For pure Dirichlet boundary conditions,

the state gradient information is taken from the interior. In other cases, the physical

viscous flux is prescribed on the boundary (e.g. zero heat flux for an adiabatic wall),

and in these cases, the viscous flux contribution is added directly to the residual.

Let’s call Qb
k the prescribed boundary viscous flux dotted with the physical normal.

Then in our residual contribution, we will be integrating,

Qb
kda = F v

iknida = g−1GidF
v
X,dk gG

−1
ci NcdA = F v

X,dkNddA.

This means that the prescribed boundary viscous flux is the same in both the physical

and the reference domains. That is, no transformation needs to be applied to Qb
k

when adding the viscous flux contribution to the residual.

3.3.4 Analytical Mesh Motions

General mesh mapping strategies using blending functions are given in Persson

et al [19]. The requirement is to prescribe a reference-to-physical mapping at every

point. This can be achieved by blending a rigid-body motion, such as pitching

and plunging for an airfoil, to zero at the farfield. Smooth mappings are desirable,

as highly-nonlinear mappings will stress integration requirements for the residual

contributions (very high quadrature rules will be required). In addition severely-

distorted elements are more likely to be generated for highly-nonlinear mappings,

limiting the allowable time step for explicit methods and increasing the possibility



79

of negative element Jacobians.

3.3.5 The Geometric Conservation Law (GCL)

Due to the nonlinear and non-polynomial nature of general mappings, a constant

state in the physical domain (u = ū = const.) will generally not be representable

using a standard polynomial basis in the reference domain (uX = gū will not be a

polynomial in X). This means that in an unsteady free-stream test, the free-stream

will generally not be preserved exactly. Persson et al [19] describe one technique, a

geometric conservation law (GCL), for addressing this problem. This technique relies

on approximating (in reference space) uX̄ = ḡu = ḡg−1uX instead of uX , where ḡ is

a separate variable approximated using the same basis and marched using the same

unsteady solver as the state to solve the following equation:

∂ḡ

∂t
−∇X · (gG−1~vG) = 0.

Note that now a constant physical state (uX = gū) is representable, since uX = ḡū is

a polynomial in the discrete approximation space. In the present work, however, we

do not use a geometric conservation law, as experiments in previous work show that

the impact of the lack of geometric conservation diminishes with increased resolution,

e.g. via a higher-order discretization in DG [20].

3.3.6 Arbitrary Lagrangian-Eulerian Framework

In an arbitrary Lagrangian-Eulerian (ALE) method, the mesh can move at a

velocity different from that of the flow, which is useful for modeling problems in

which objects move or deform. In the present case, we are not specifically concerned

with deforming domains, and instead use the motion of the mesh to redistribute

resolution in the physical domain.



80

The ALE method uses a map between the static reference domain and the deform-

ing physical domain and solves transformed equations on the reference domain [19].

This transformation is illustrated graphically in Figure 3.13, and Table 3.2 defines

key quantities.

Reference domain: ~X,uX , ~HX

~NdA

∂uX

∂t

∣∣∣
~X
+∇X · ~HX(uX , ~qX) = 0

Mapping

⇒

~X, t ⇒ ~x( ~X, t)

G = ∂~x
∂ ~X

g = det(G)
uX = gu

~qX = gGT~q
~vG = ∂~x

∂t

~HX = gG−1 ~H− uXG−1~vG

~nda = gG−T ~NdA

~NdA = g−1GT~nda

⇒

Physical domain: ~x,u, ~H

~nda

∂u
∂t

∣∣∣
~x
+∇ · ~H(u, ~q) = 0

Figure 3.13: Summary of the mapping between reference and physical domains. The equations are solved
on the reference domain, which remains fixed for all time. When denoting reference-domain quantities, we

use a subscript X.

Table 3.2: Definitions of variables used in the ALE mapping. Bold indicates a state vector and an arrow
indicates a spatial vector.

~X = reference-domain coordinates
uX = state on reference domain
~qX = gradient variable on reference domain
~HX = flux vector on reference domain
dA = differential area on reference domain
~N = normal vector on reference domain
V = reference domain (static)
G = mapping Jacobian matrix
g = determinant of Jacobian matrix

~x = physical-domain coordinates
u = physical state
~q = physical gradient variable
~H = flux vector on physical domain
da = differential area on physical domain
~n = normal vector on physical domain
v(t) = physical domain (dynamic)
~vG = grid velocity, ∂~x/∂t

Using a general mapping, ~x = ~x( ~X, t), the PDE on the reference domain becomes

∂uX
∂t

∣∣∣∣
~X

+∇X · ~HX(uX ,∇XuX) = 0,(3.32)

where uX = gu, ~HX = gG−1 ~H−uXG−1~vG, and∇X denotes the gradient with respect

to the reference coordinates. The transformed flux, ~HX , separates into inviscid and

viscous contributions,

~HX = ~FX + ~GX , ~FX = gG−1~F− uXG−1~vG, ~GX = gG−1 ~G.(3.33)



81

Eqn. 3.32 is the form to which the DG method is applied. The mapping Jacobian

determinant, g, might not be a polynomial in ~X, which leads to slight conservation

errors that can be mitigated with a geometric conservation law (GCL) [19,20]. Such

a GCL is not used in this work as the conservation errors decrease with higher-order

approximation and adaptation [20].

3.3.7 Discrete Adjoint for Discontinuous Galerkin Discretization

Discrete adjoint is used for error estimation computation along with mesh motion

for discontinuous Galerkin discretization to perform r-adaptation, which had been

successfully implemented for our in house code, Xflow, more details could be found

in [20,54].

3.4 Summary

The research contribution from this chapter include,

• Developed the mesh motion algorithm for the Active Flux method, which turns

out to be fully conservative.

• Verified our theoretical work on adjoint-based error estimation with mesh mo-

tion for the Active Flux method.



CHAPTER IV

h-Adaptation

4.1 Introduction

This chapter presents algorithms for adapting computational meshes using output-

based techniques, primarily for the Active Flux discretization, but also for the dis-

continuous Galerkin method. The adaptation mechanics considered in this chapter

is referred to as h-adaptation: refinement or coarsening of the computational mesh.

h-Adaptation can be broadly classified into two categories: local h-adaptation and

global re-meshing. Local h-adaptation changes the mesh resolution by applying local

mesh operations, such as cell subdivision, node insertions/deletions, edge collapse,

etc. On the other hand, global re-meshing refers to the generation of a new mesh

for the whole computational domain, often employing a Riemannian metric field to

encode the desired mesh size and orientation [55,56].

Output-based h-adaptation has been studied for various discretizations, including

the finite volume method and the discontinuous Galerkin method [38]. This chapter

will focus primarily on the study of h-adaptation for the newly-developed Active

Flux scheme. The h-adaptation strategies developed for the Active Flux method

are then applied to several representative problems. The mechanics consist of local

adaptation: uniform refinement of cells, followed by connection of newly-added edge

82



83

midpoint nodes to neighboring vertices, to avoid hanging nodes.

Iinitially we will work with aggregate spatial adaptation indicators obtained by

summing over all time steps, i.e. marginalizing in time. In this setting, the error

associated with a coarse cell jH is

εjH =

Nh∑
nh=1

Mh∑
jh=1

|εnhjh |.(4.1)

Local h-adaptation could be done uniformly or anisotropically. Currently, all

of our h-adaptation is uniform, although we did explore at a preliminary level the

possibilities of conducting anisotropic h-adaptation for the Active Flux method, as

described in Appendix B.

4.2 h-Adaptation for the Active Flux Method

Figure 4.1 shows a flow chart that explains the organization of the Active Flux

h-adaptation mechanics. Note that the adjoint solution is required for output-based

adaptation, which targets individual outputs. Following the flow and adjoint solu-

tions, the application of h-adaptation requires error localization and mesh adapta-

tion.

Initial coarse mesh

Flow and adjoint solution

Output error estimate

Error localization (temporally-marginalized)

Mesh adaptation

Figure 4.1: Output-based adaptation flowchart.



84

4.2.1 Error Localization

To obtain an adaptive indicator for the Active Flux method, we localize the error

estimate in Eqn. 2.65 to space-time elements of the fine-space discretization:

δJ = −
∫
T

∫
Ω

ψh r(uH) dΩ dt = −
Nt∑
k=1

Ncell∑
e=1

∫ tk+1

tk

∫
Ωe

ψh r(uH) dΩ dt,(4.2)

where Nt is the number of time steps and Ncell is the number of elements. Although

this formula is based on the continuous adjoint, it has a parallel in the discrete adjoint

approach.

Due to the fully-explicitly nature of the Active Flux method, spatial and temporal

errors are tightly coupled and cannot be easily separated. Instead of separating

these two types of error, we localize total error estimate values to individual element

contributions. The total error estimate is

(4.3) Errortotal =
Nt∑
k=1

Ncell∑
e=1

Errork,e

The contribution of space-time element k, e is, with an absolute value,

(4.4) Localized Error = |Errork,e|

This indicator then drives space-time adaptation, both in the discrete and continuous

adjoint approaches.

When using the discrete adjoint, we must decide how to map the fine-space resid-

ual, R(UH
h ), back to the coarse space, both spatially and temporally. In time, we

associate coarse time step nH , 1 ≤ nH ≤ NH , to the residuals of the two fine-space

updates contained within nH , namely nh = 2nH − 1 and nh = 2nH . Regarding

the spatial cells, we associate cell-average residuals directly to their host cells, and

we split vertex residuals evenly between the adjacent cells. In one dimension, the



85

resulting error contribution of cell j at time step n is

εnj =
1

2
Ψn

vertex,jR
n
vertex,j +

1

2
Ψn

vertex,j+1R
n
vertex,j+1︸ ︷︷ ︸

vertex residual contribution

+ Ψn
cell avg,jR

n
cell avg,j︸ ︷︷ ︸

cell average residual contribution

(4.5)

In two dimensions, we split node and edge errors to adjacent elements. Suppose

that each node in our mesh is adjacent to sn elements, and each edge is adjacent to

se = 2 elements. The resulting error contribution of cell j at time step n is

εnj =
3∑
i=1

1

sn
Ψn

node,iR
n
node,i︸ ︷︷ ︸

node residual contribution

+
3∑
e=1

1

se
Ψn

edge,eR
n
edge,e︸ ︷︷ ︸

edge residual contribution

+ Ψn
cell avg,jR

n
cell avg,j︸ ︷︷ ︸

cell average residual contribution

(4.6)

The error indicator for a coarse cell/time-step is then taken as the absolute value

of the sum of εnj over the children cells/time-steps.

4.2.2 Continuous versus Discrete Adjoint Based h-Adaptation

This section characterizes the difference in performance of discrete versus con-

tinuous adjoint-based h-adaptation through a detailed numerical study. The initial

problem setup is described in Figure 4.2(a) and Figure 4.2(b), a Gaussian pulse

advecting through a 24-sided polygon.



86

−1.5 −1 −0.5 0 0.5 1 1.5
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

(a) Initial mesh (b) Primal problem illustration, t = 0

Figure 4.2: Output error convergence for various refinement strategies. Application of theoretical
work on Michigan ’M’ mesh.

The Michigan ’M’ mesh is representative of a complex domain. Inflow and outflow

boundary conditions are enforced on the border of the ’M’ mesh depending on the

bulk flow velocity. The initial mesh is shown in Figure 4.2(a). The flow advection

velocity is [2, 0.1]. A Gaussian pulse originally centered at [−0.8, 0.15], as shown

in Figure 4.2(b), advects with the flow until its center arrives at the coordinate

[0.8, 0.23]. The output is a domain weighted integral computed at the final time,

(4.7) J =

∫
Ω

w (x, y)u (x, y) dΩ, t = tend

(4.8) w = c sin(xπ) sin(yπ), c = 100.00

The domain integral output in Equation 4.7 is formulated with a smooth weight so

that the adjoint terminal condition is also smooth.

The discrete and continuous adjoint derivations for weighted domain integral out-

puts, using the Active Flux method, can be found in previous works [17, 18]. Both

adjoints are tested and pass sensitivity and error estimation tests [16–18].

We conduct h-adaptation using the discrete and continuous adjoint, and we then

compare the adaptation results by plotting the adapted meshes. Figure 4.3 shows



87

the final adapted meshes, and Figure 4.4 shows the convergence of the output error

versus degrees of freedom.

(a) Driven by discrete adjoint, 8723 cells (b) Driven by continuous adjoint, 9149 cells

Figure 4.3: Michigan “M”: final adapted meshes.

Qualitatively, the comparison in Figure 4.3 shows that meshes adapted by the

discrete adjoint and continuous adjoint resemble each other. Both adaptations con-

centrate on the part the computational domain swept out by the advecting Gaussian

pulse. No substantial differences are evident in the domain areas targeted for refine-

ment between the continuous and discrete adjoints.

Figure 4.4 shows a quantitative study of the error evolution with mesh refinement.

Using uniform mesh refinement as a reference curve, both discrete-adjoint-based

adaptation and continuous-adjoint-based adaptation converge similarly.



88

Figure 4.4: Michigan “M”: output error convergence with degrees of freedom, for both the
discrete and continuous adjoint methods.

Output-based methods generate error estimates for the targeted outputs. Error

estimates can correct outputs, and thus improve the accuracy of the outputs. In

Figure 4.4, the error level in the continuous adjoint corrected output is around one

magnitude lower than in the discrete adjoint corrected output.

Consistent or asymptotically-consistent discrete adjoints produce error estimates

that converge at the same rate as the corresponding continuous adjoint. In Fig-

ure 4.5, we compare the discrete adjoint error estimates and the continuous adjoint

error estimates, under uniform refinement. For smooth problems, i.e.õnes with no

singularities in the solution, uniform mesh refinement and adaptive mesh refinement

yield the same convergence rate, asymptotically. Through Figure 4.5, we observe

that the continuous adjoint and the discrete adjoint error estimates do asymptoti-

cally converge at the same rate.



89

Figure 4.5: Michigan “M”: convergence of the output error estimate for uniform and adapted
mesh sequences. The slopes of all four curves in the asymptotic range are approximately 3.0.

As our studies show, there is not a significant performance difference between dis-

crete adjoint-based h-adaptation and continuous adjoint-based h-adaptation. Con-

tinuous adjoints do have the disadvantage of requiring changes to the derivation for

any new combination of boundary condition and output definition. However, for

lean discretizations such as the Active Flux method, they can yield performance

benefits due to a simpler implementation (similar to the primal) and lower storage

requirements (no matrices).

4.2.3 Additional Discrete Adjoint Based h-Adaptation Simulations

In this section, we present more results that demonstrate the benefits of output-

based adaptation relative to uniform refinement. These are all implemented for the

discrete-adjoint formulation of the Active Flux method. In all cases, the output of



90

interest is a point quantity measured at the final time.

Three different computational domain geometries are considered: a square domain

mesh, a crescent domain, and a circular domain. These are all very similar problems,

and the primary capability tested with these simulations is the ability of the local h-

adaptation mechanics to faithfully follow the prescribed refinement indicators, even

on non-trivial domains. We briefly describe the problem setup for each case, present

the initial mesh, the resulting adapted mesh, the primal solution, and the error

convergence performance comparison between the adaptive approach and uniform

mesh refinement.

Square Domain

Using the initial mesh and primal problem that has already been described pre-

viously, see Figure 2.11, we implement both adaptive mesh refinement and uniform

mesh refinement to solve the scalar advection problem. The output error of each

adapted mesh was recorded, and comparison results are shown in Figure 4.6(b).

The adaptive refinement method uses fewer degrees of freedom but generates more

accurate outputs. In addition, the benefits of adaptive refinement grow as tighter

accuracy is required. The resulting final adapted mesh is shown in Figure 4.6(a).

The diagonal part of the mesh, through which the scalar profile advects, is much

finer than the rest of the domain, which, as expected, appears untouched by the

adaptation.

The present result makes intuitive sense. Due to the advective nature of the

unsteady flow field, it is not sufficient to only adapt the area where our output is

defined. So, the mesh should not only be refined around the output point. Second,

our point output ultimately advects from the upstream of the computational domain.

Along the advection path of the flow, errors can be introduced into the simulation,



91

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) Output-adapted mesh

10
1

10
2

10
3

10
−3

10
−2

10
−1

10
0

DOF1/2

A
bs

ol
ut

e 
O

ut
pu

t E
rr

or

 

 
Uniform Refinement
Adaptive Refinement

(b) Error convergence

Figure 4.6: Square domain: adapted mesh and error convergence.

and these will eventually pollute the point output. Thus, besides adapting the area

where our output is defined, the area through which the advected profile travelled

should also be refined. Third, for a localized point output, not all of the area covered

by the advected profile matters equally, since a point output only depends on the

information from a small part of the computational domain. Figure 4.6(a) shows the

area around the diagonal of the computational domain has more weight in affecting

the accuracy of the output.

With the purpose of illustrating our research approach, we adopted a simple

square geometry in the above discussion. However, for two-dimensional cases, the

computational domain can be more complex. We therefore next test the adaptive

approach on meshes with more complex boundaries.

Circular Mesh

The purpose of doing this circular mesh case is solely to show that more complex

boundaries can be handled by the solver. Inflow/outflow boundary conditions are

dynamically enforced on the circular boundary depending on the flow field advection

direction. The initial mesh is shown in Figure 4.7(a), and other than the domain



92

difference, the problem setup is exactly the same as the square geometry case. The

primal initial condition is shown in Figure 4.7(c). We apply uniform mesh refinement

and adaptive mesh refinement methods to solve this problem, and Figure 4.7(d)

shows the results: the adaptive mesh refinement method outperforms the uniform

mesh refinement method in degrees of freedom.

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) Initial mesh

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b) Resulting adapted mesh

(c) Primal initial condition

10
1

10
2

10
3

10
−3

10
−2

10
−1

10
0

DOF1/2

A
bs

ol
ut

e 
O

ut
pu

t E
rr

or

 

 
Uniform Refinement
Adaptive Refinement

(d) Error convergence comparison between adapta-
tive mesh refinement and uniform mesh refinment

Figure 4.7: Application of theoretical work on circular mesh

Crescent Mesh

The crescent mesh is another test case of a more complex geometry. Inflow/outflow

boundary conditions are again dynamically enforced on the border of this mesh. The

initial mesh is shown in Figure 4.8(a). The flow field advection velocity is [1, 0.1].

A Gaussian pulse originally centered at [−0.4, 0], Figure 4.2(c), advects with the



93

flow until it arrives at [−0.1, 0.03]. The output of interest is the point output at

[−0.1, 0.03]. We apply uniform mesh refinement and adaptive mesh refinement on

this problem Figure 4.8(d) shows the results: again, the adaptive mesh refinement

method converges faster than the uniform mesh refinement method.

From these results, we observe that varying the geometry doesn’t significantly af-

fect the performance of the developed mesh adaptation mechanics. This is expected

because the advection region of interest is not affected by the boundaries. In ad-

dition, we see that the adapted mesh conveys information about what happened in

the unsteady simulation. The darkened areas of the meshes in Figure 4.6(b), Fig-

ure 4.2(b), Figure 4.7(b) and Figure 4.8(b) indicate the region through which the

profile advected before being measured at the point output. The advective nature of

the physics is clearly evident in the resulting adapted mesh.

4.3 Comparison of Active Flux and Discontinuous Galerkin h-Adaptation

Adaptive methods have been studied extensively for the discontinuous Galerkin

discretization [38, 40, 41]. In addition, recent works have compared the performance

of DG scheme and the Active Flux scheme. In this section, we address the question

of how DG and Active Flux compare in an h-adaptive setting.

For the same test case described in Section 4.2.3, we perform h-adaptation using

the discontinuous Galerkin method. The DG code for this comparison is Xflow, and

the adaptation is output-based. The details of the adaptive method are outlined in

previous work [57]. Briefly, we use a implicit time marching, from the diagonally-

implicit Runge-Kutta family. The output error is estimated through the solution of

a spatially-discrete but temporally-continuous unsteady adjoint, marched backwards

in time from the terminal condition dictated by the output. The error estimate at



94

−0.6 −0.4 −0.2 0 0.2

−0.6

−0.4

−0.2

0

0.2

0.4

(a) Initial mesh

−0.6 −0.4 −0.2 0 0.2

−0.6

−0.4

−0.2

0

0.2

0.4

(b) Resulting adapted mesh

(c) Primal problem illustration

10
1

10
2

10
3

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

DOF1/2

A
bs

ol
ut

e 
O

ut
pu

t E
rr

or

 

 
Uniform Refinement
Adaptive Refinement

(d) Error convergence comparison between adapta-
tive mesh refinement and uniform mesh refinment

Figure 4.8: Application of theoretical work on crescent mesh



95

each space-time element is then marginalized to spatial elements through a summa-

tion of absolute values over time steps. In addition, error estimates associated with

refinement samples, to be used for mesh optimization [57, 58], are also marginal-

ized in time. These samples drive unstructured spatial mesh adaptation and global

remeshing using the BAMG mesh generation code.

A difference between the Active Flux and the discontinuous Galerkin simulations

is the definition of the output. Whereas the AF output consists of a point value,

the DG output is a weighted integral of the final-time state, to make the terminal

condition for the adjoint well-posed. However, the outputs are similar as the weight

function chosen for the DG output is a two-dimensional Gaussian with a sharp peak

at the point output location. The standard deviation for this Gaussian is σ = .05.

Figure 4.9 shows two adapted meshes generated using p = 1 (DG1) and p = 2

(DG2) spatial approximation, respectively. As shown in Figure 4.9, the meshes are

(a) DG1, DIRK3, 5th spatial adaptation itera-
tion

(b) DG2, DIRK4, 5th spatial adaptation iter-
ation

Figure 4.9: Adapted meshes for DG1 and DG2, respectively.

not significantly different. This is because the adapted meshes are optimized for the

same total space-time degree of freedom count. If the time stepping schemes of one



96

of the methods were of a lower order, different sized spatial meshes would arise due

to a different weighting between spatial and temporal degrees of freedom. However,

these results use DIRK3 and DIRK4 time stepping, and these are consistent with

the spatial orders of convergence.

We now perform a quantitative study of the h-adaptation performance differ-

ence between DG and Active Flux. The h-adaptation mechanics in the Active Flux

solver consist of a local operations. On the other hand, h-adaptation in Xflow uses

BAMG, the Bidimensional Anisotropic Mesh Generator, library and MOESS, mesh

optimization through error sampling and synthesis [59].

To compare DG and AF outputs, we scale data from the DG solver to be rep-

resentative of the point output, by dividing the DG output by the integral of the

weight function. Figure 4.10 shows the resulting output convergence.

Figure 4.10: Convergence of h-adapted DG and AF for a scalar advection simulation.

As illustrated in Figure 4.10, the adaptation paths of DG h-adaptation and Ac-



97

tive Flux adaptation are clearly different. Both schemes show benefits from error

estimation, with reduced error levels in the corrected output error curves, and they

all perform better in terms of degrees of freedom relative to uniform refinement.

In particular, DG1 h-adaptation behaves comparably to Active Flux h-adaptation.

On the other hand, DG2 h-adaptation performs better than both DG1 and Active

Flux based h-adaptation, which can be explained as increased accuracy in the error

estimate and primal solve due to increased solution approximation order.

4.4 Summary

The research contribution from this chapter include,

• Described an error localization and adaptation strategy for the Active Flux

method. Several scalar advection test cases demonstrated the efficiency and ac-

curacy improvements of the adaptive method compared to uniform refinement.

• Compared discontinuous Galerkin (DG) h-adaptation and the Active Flux (AF)

method h-adaptation. AF h-Adaptation showed comparable performance to

DG1, whereas higher-order DG fared better in terms of degrees of freedom for

the smooth problem tested.



CHAPTER V

Adaptation Acceleration

Solution-adaptive techniques are becoming popular in Computational Fluid Dy-

namics research as a means of improving solution accuracy and reducing computa-

tional cost. They are particularly important for aerospace engineering applications,

where convection phenomena on complex three-dimensional geometries make a priori

mesh design a daunting task. One of the most rigorous solution-adaptive techniques

is output-based error estimation and adaptation, reviewed in detail in [38].

Output-based error estimation is a powerful technique for quantifying the impact

of numerical discretization errors on specific scalar outputs. The resulting estimates

reflect the extent to which mesh resolution and distribution affect an output of

interest. Furthermore, the error estimates provide information on areas of the spatial

and temporal domains that are most responsible for the output error.

However, output error estimation in its most rigorous form is not cheap. The

error is typically estimated relative to a finer discretization space, Vh, and while

no primal solution is usually required on Vh, many estimates employ a fine-space

adjoint solution and/or at least a fine-space residual evaluation. These fine-space

calculations can make the cost of error estimation and adaptation burdensome for

practical simulations.

98



99

In this chapter, we introduce and formalize two “shortcuts” for estimating the

output error and adapting the mesh using the adjoint-weighted residual. One short-

cut relies on re-using a fine-space adjoint solution for more than just one adaptation

iteration. The second shortcut relies on using a coarser instead of finer space for

calculating the error indicator. We show that both strategies have little detrimen-

tal effect on the performance of adaptation with degrees of freedom, but that they

reduce the computational time for all cases tested.

5.1 The Adjoint-Weighted Residual

Output-based error estimates rely on the concept of an adjoint-weighted resid-

ual [32, 33, 38, 60]. This idea is based on the definition of an output adjoint, which

is a sensitivity of the output to residual perturbations. While on a particular mesh,

residuals are typically driven to negligible size by the solver, when we start varying

mesh resolution, we can uncover nonzero residuals. That is, when a primal solution

on a particular mesh, call it a “coarse” mesh, is transferred/injected/interpolated to

a “fine” mesh, i.e. one with more degrees of freedom, residuals are generally going to

be nonzero on the fine mesh. An adjoint solution on the fine space can then weight

these residuals to yield an estimate of the output difference between the coarse and

fine mesh solutions. This calculation is attractive because it does not require a pri-

mal solution on the fine mesh. However, it does require a fine space adjoint solution

and a fine-space residual evaluation, and these are not always cheap.

Denote by UH , Uh the primal solutions on coarse, respectively fine, spaces. Also,

let RH and Rh denote discrete residual vectors, both functions of their respective

primal states. Finally, let JH and Jh be scalar outputs computed on the coarse

and fine spaces. We assume that the output definition does not change between the



100

coarse and the fine spaces, so that JH (UH) = Jh
(
UH
h

)
, where UH

h is the injection of

the coarse solution, UH , into the fine space. The standard adjoint-weighted residual

error estimate [32,38] reads

(5.1) Jh
(
UH
h

)
− Jh (Uh)︸ ︷︷ ︸
δJ

= ΨT
h δRh = −ΨT

hRh

(
UH
h

)
,

The discrete fine-space adjoint, Ψh, is vector of the same size as the state and residual

vectors that satisfies (
∂Rh

∂Uh

)T
Ψh +

∂Jh
∂Uh

= 0.(5.2)

Ψh weights the residual perturbation, δRh, to give a linearized estimate of the out-

put difference between the coarse and fine spaces. Although in this form of the error

estimate the primal state is not required, the computational and storage costs as-

sociated with Eqn. 5.1 are not trivial, as we can see by breaking down each of the

terms:

(5.3) δJ ≈ −ΨT
h︸ ︷︷ ︸

fine space adjoint

Rh︸︷︷︸
fine space residual operator

(
UH
h︸︷︷︸

injected state

)
.

First, we need to inject the state into the fine space. One way to construct a finer

space is uniform mesh refinement, which increases the degrees of freedom four-fold in

two dimensions and eight-fold in three dimensions. Second, along with the increase

in degrees of freedom comes computational overhead in the form of element geometry

quantities, basis functions, mappings, etc., which are used in the calculation of the

fine-space residual. Third, Eqn. 5.3 requires the fine-space adjoint solution, and this

involves either a reconstruction or a system solve on the fine space. In the following

section, we introduce several techniques for reducing the cost of this estimate.

The adjoint-weighted residual error estimate is typically paired with mesh adap-

tation in which the mesh is successively refined to reduce the error. Often the mesh



101

is refined incrementally, for example when using hanging-node element subdivision

of a fixed-fraction of elements with the highest error. In such cases, many adaptive

iterations may be required to sufficiently reduce the output error, and at each iter-

ation the adjoint-weighted residual calculation must be repeated. In the next two

sections we thus also introduce an approach to avoid fully-repeating this calculation

at each adaptation iteration.

5.2 Active Flux Method Adaptation Acceleration

5.2.1 Coarse-Space Error Estimation

Standard output error estimation relies on a fine-space adjoint solution weighting

a fine-space residual. If the mesh is sufficiently resolved such that error estimates are

in an asymptotic regime, then this fine-space error estimate converges to the true

error at a rate that depends on the solution regularity and certain choices in the

error estimation procedure [32]. That is, the fine space introduces new information

via residuals and adjoints, and hence it produces a mathematically rigorous error

estimate.

However, in practice, for complex aerodynamic simulations, the meshes on which

we apply output error estimation and mesh adaptation are rarely fine enough for

such asymptotic results to hold. This then begs the question: to what extent is the

rigorous formalism of output-based error estimation applicable to, or necessary for,

practical simulations? The question is especially relevant when only computing an

adaptive indicator, for which rigorous error estimates may not be necessary.

We present one particular shortcut for bypassing a rigorous formulation of adjoit

based error estimation: instead of estimating the error between the current space,

H, and a finer space, h, we propose to estimate the error between a coarser space,

denoted by H̃, and the current space, H. We apply the adjoint-weighted residual



102

formulas directly to the pair of spaces H̃/H, so that none of the error estimation

formulas need intrinsic changes. In particular, our proposed error estimate becomes

(5.4) δJ ≈ −ΨT
HRH(UH̃

H),

where UH̃
H is the “coarser” solution injected into the current space. Eqn. 5.4 estimates

the output error between the current space (H) and the coarser space (H̃). It does

not tell us how much error is present in the current space relative to a finer space,

but conceivably the localized form of Eqn. 5.4 could still provide useful adaptive

information (albeit with a possible lag in adaptive iterations). Figure 5.1 illustrates

schematically the use of the coarser space.

Infinitely fine

H estimation︸ ︷︷ ︸
H

H̃ correction︸ ︷︷ ︸
H̃ h

(1)error estimation

(2)adaptation

Figure 5.1: Illustration of discretization spaces used for coarser-space error estimation and
adaptation.

The question now is how to define the coarser space (H̃). We can either coarsen

the mesh or decrease the scheme approximation order. Coarsening an unstructured

mesh is doable but challenging. It does not generally yield a pair of nested spaces,

in that solutions on the coarsened space will not always be representable on the

current space. The nested property allows for simple injection operators and reduces

additional sources of error. Hence instead, in this work, we choose to coarsen the

current space by decreasing the scheme approximation order.

In order to implement our idea, we need to come up with strategies to create a

reduced-order space (H̃). The Active Flux method uses three independent types of

states: edge states, node states, and cell-average states, as illustrated in Figure 5.2.

To create discretization errors due to the drop of state approximation error, we have



103

u
j,1(node,1)

u
j,4(edge,2)

u
j,6(node,3)

u
j,3(node,2)

u
j,2(edge,3)

u
j,5(edge,1)

uj

ξ

η

Figure 5.2: Unknown placement in the Active Flux method.

many options. Below we outline five strategies.

• Strategy 1

The first strategy is to eliminate three out of seven independent states on each

cell: the three edge states. This strategy is illustrated in Figure 5.3(a).

We then treat the remaining three node states as basis coefficients in a linear

approximation of the state, as in a p = 1 finite-element method. New edge states

are calculated by interpolating with this linear approximation. As a result, the

new edge states are no longer independent from the node states. We lose degrees

of freedom, and we expect this coarser space to be second-order accurate. We

carry out this calculation on each element separately, but because edge states

are uniquely defined in the Active Flux scheme, we use the average edge states

whenever we have two different edge states at the same location.

• Strategy 2

In this strategy, we keep the cell average state, as shown in Figure 5.3(b). Loop-

ing over elements in a predefined arbitrary order, whichever nodes and edges are

hit first become the new node and edge states. As a result, the approximation

is ad hoc and non-unique. We lose accuracy in our approximation. Specifically,

we expect first-order accuracy.



104

u
j,1(node,1)

u
j,6(node,3)

u
j,3(node,2)

uj

ξ

η

(a) Strategy 1

uj

ξ

η

(b) Strategy 1

uj

ξ

η

(c) Strategy 1

u
j,1(node,1)

u
j,6(node,3)

u
j,3(node,2)

ξ

η

(d) Strategy 1

uj

ξ

η

(e) Strategy 1

Figure 5.3: Illustration of five strategies proposed for coarsening the approximation space in the
Active Flux method.



105

• Strategy 3

In this strategy, we only keep the cell average state, as shown in Figure 5.3(c).

In contrast to strategy 2, though we still loop over elements to see whichever

nodes and edges we hit first, we do not assign the previous node or edge states

to be the new node and edge states. Instead, we assign the new node and edge

states using the cell average states.

• Strategy 4

In this strategy we drop the order of the numerical approximation via a least-

squares projection to a linear basis in each element, as shown in Figure 5.3(d).

Hence, seven degrees of freedom on space H become three degrees of freedom

on space H̃. Edge and cell average states on H̃ are interpolated from this linear

approximation. These interpolated states are no longer independent from the

node states, and thus the scheme approximation order drops. Because interface

unknowns are shared among neighboring elements in the Active Flux method,

whenever we have multiple unknowns at the same location, we use their average

values.

• Strategy 5

We reduced the approximation order by one to create strategy 4, but we can

also go further, e.g. a reduction by two, as shown in Figure 5.3(e). For the case

of the Active Flux method, which is third order, we then reduce to first order

– i.e. one degree of freedom per cell. The coarser space H̃ discretization then

becomes a standard first-order finite volume method. We still use least-squares

projection to solve for the single unknown per element.

The Active Flux method places an unknown in the center of the cell that is



106

equal to the cell average. Accordingly, the single state least-square projection

value turns out to be the same as the cell average value. Consequently, this

strategy serves as a canonical test for strategy 4 as well as an efficient approach

for adaptation.

On each element, edge and node states are assigned the same value as the cell

average states. These values are then averaged to produce unique node and

edge states whenever we have multiple unknowns at the same location.

5.2.2 Coarse-Space Error Estimate Instructed h-Adaptation

In this section, we present results showing how the use of a coarser space fares in

driving mesh adaptation in the Active Flux method, i.e., coarse-space error estimate

instructed h-adaptation.

The current mesh adaptation mechanics is static, meaning that the mesh does not

change in time. According to the discussion in Section 5.2.1, from an implementation

point of view, there is essentially no difference between conventional error estimation

and coarse-space error estimation, aside from the choice of spaces. We expect the

error estimates themselves to be less useful compared to those obtained from fine-

space error estimation, although they may not be completely without value. At

present, we test the coarse-space selection strategies outlined in Section 5.2.1 in

their abilities to drive adaptation; that is, in identifying elements that need to be

adapted.

In two dimensions, we consider the test case of an advecting Gaussian wave as

shown in Figure 2.11. Figure 2.11(a) shows the initial unstructured mesh, and Fig-

ure 2.11(b) shows the primal solution. Here, an inflow boundary condition is enforced

on the left and lower boundaries of the square domain. A Gaussian pulse originally



107

centered at coordinate, ~x = (−0.4, −0.4) advects diagonally, until it arrives at the

point ~x = (0.4, 0.4).

The output is defined as a point value at the end of the simulation, at coordinate

~x = (0.4, 0.4). For such a localized output, the whole mesh does not need refine-

ment, since the output only depends on the information from a small part of the

computational domain. Hence this is a reasonable test case for adaptation.

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

10
0

DOF1/2

A
bs

ol
ut

e 
O

ut
pu

t E
rr

or

 

 
Uniform refinement
Adaptive refinement

Strategy 1

Strategy 2

Strategy 3

Strategy 4

Strategy 5

(a) Error convergence comparison in terms of spatial
degrees of freedom

10
−1

10
0

10
1

10
2

10
3

10
4

10
−4

10
−3

10
−2

10
−1

10
0

CPU time(second)

A
bs

ol
ut

e 
O

ut
pu

t E
rr

or

 

 

Uniform refinement
Adaptive refinement

Strategy 1

Strategy 2

Strategy 3

Strategy 4

Strategy 5

(b) Error convergence comparison in terms of com-
putational time

Figure 5.4: Scalar advection with Active Flux: error convergence comparison.

Figure 5.4(b) compares the absolute error convergence performance of conven-

tional mesh adaptation, all five of our “adaptation acceleration” strategies, and uni-

form refinement. In our implementation, conventional output-based adaptation is

only able to outperform uniform mesh refinement when using spatial degrees of free-

dom to measure cost. With this measurement, we find all five curves of “adaptation

acceleration” strategies in Figure 5.4(a) have very similar behavior to the conven-

tional fine-space output based mesh adaptation strategy. However, using CPU time

as the cost measurement, conventional output-based mesh adaptation lags behind

all of our strategies and behind uniform mesh refinement due to the simplicity of the

problem, as illustrated in Figure 5.4(b). On the other hand, the adaptive strategies



108

that employ coarse-space error estimates do perform better than uniform mesh re-

finement in CPU time. This means that we can expect much more benefit out of

the adaptation mechanics developed from coarse space error estimation. Taking a

look at Figure 5.4(a), the “adaptation acceleration” strategies almost follow the same

path as the conventional output based adaptation. However, they are much cheaper

to evaluate, and this could be a significant savings for complex three-dimensional

problems.

Although the adaptive indicators from our “adaptation acceleration” strategies

show good performance (for one problem), a natural objection to the use of a coarse

space is that associated error estimates do not give us a useful measure of the actual

error on the current mesh. The idea of using a fine space is that this space is closer

to the infinite-dimensional space on which the exact solution typically lives. In this

sense, the use of a coarse space is akin to a “retrospective” strategy, where all we see

is the history of how the error evolved with adaptation and which areas were refined.

While we have no direct foresight into how much error is left and exactly where to go

next, it may be possible to make use of the information in the error history to predict

the remaining error on the current mesh. Specifically, future work may consider a

priori error estimates and extrapolation techniques, both of which are expected to

be valid in the asymptotic regime when these error estimates would be necessary.

5.3 Discontinuous Galerkin Adaptation Acceleration

5.3.1 Adaptive Sub-Iterations

Figure 5.5 illustrates a standard adaptive solution scheme based on the adjoint-

weighted residual. Each adaptive iteration requires the calculation of an error esti-

mate, a critical part of which is the fine-space adjoint solve. Specifically, after solving

the primal problem exactly (to some low residual tolerance) on the coarse space (H),



109

we solve the coarse-space adjoint problem, inject the primal to a fine space (h), solve

the fine-space adjoint about the injected primal solution, calculate the fine-space

residual of the injected primal, and weight this residual by the fine-space adjoint to

obtain the error estimate. A localized form of the error estimate then drives adap-

coarse space fine space

2. Solve ΨH exactly
1. Solve UH exactly

4. Solve Ψh

∣∣∣
UH

h

exactly
3. Inject UH ,ΨH

5. Calculate Rh(U
H
h )

UH
h ,Ψ

H
h

6. Compute adjoint-weighted residual:

ε = (Ψh −ΨH
h )TRh(U

H
h )7. Localize ε to

coarse elements
8. Adapt coarse space

Figure 5.5: Schematic of a “standard” error estimation and adaptation iteration in which the fine
space adjoint is solved exactly at every iteration.

tation; in a fixed-fraction setting only the elements with the highest contribution to

the error are targeted for refinement. The process then repeats with another exact

primal solve, exact fine-space adjoint solve etc.

In the standard adaptive scheme we solve the fine-space adjoint exactly in order to

get good error estimates, which we can then use to correct the solution and to often

buy ourselves an extra order of accuracy. To reduce the computational burden of

this exact solve, we can approximate the fine-space adjoint, either through iterative

smoothing or reconstruction [20,61]. However, the error estimates often suffer when

using such approximations.

We present a more efficient adaptive solution scheme that is based on two ideas:

1. Adaptive sub-iterations in which the primal problem is not solved on every

adaptive iteration so as to minimize the cost of multiple nonlinear primal solves.

2. Re-use of the fine-space adjoint between adaptive iterations, to avoid the cost



110

of solving a large fine-space adjoint problem at each iteration.

Figure 5.6 illustrates this scheme, which consists of two types of iterations: a standard

error estimation and adaptation iteration involving an exact fine-space adjoint solve,

followed by one or more adaptive “sub-iterations” that piggy-back on this fine-space

adjoint to further refine the mesh at a lower computational cost. Note that in these

coarse space fine space

Standard adaptive iteration:

fine space, h1coarse space, H1

H0

UH0
Ψh0

H1

UH0

H1
Ψh0

h1

h1

h0

First adapted
coarse/fine pair :

Initial coarse/fine
space pair :

3. Inject UH1

2. Solve ΨH1
exactly

1. Smooth UH0

H1
→ UH1

4. Smooth Ψh0

h1
→ Ψh1

UH1

h1

5. Calculate Rh1
(UH1

h1
)

6. Compute AWR:

ε = (Ψh1
−ΨH1

h1
)TRh1

(UH1

h1
)7. Localize ε

8. Adapt mesh → H2

Adaptive sub-iteration (can be repeated to get H3, H4, etc.)

Figure 5.6: Schematic of the proposed error estimation and adaptation iteration in which
approximate sub-iterations piggy-back on a standard adaptive iteration. In particular, the

fine-space adjoint solve is reused in the sub-iterations, where it is only smoothed via an
inexpensive iterative solver, thereby saving computational time compared to the standard

approach in which the fine space adjoint is re-solved on every adaptive iteration.

adaptive sub-iterations, neither the coarse-space primal nor the fine-space adjoint

are solved exactly. However, the coarse-space adjoint is solved exactly in order to

accurately quantify and remove from the error estimate the error due to the incom-

plete coarse-space primal solve. This prevents the sub-iteration adaptive indicator

from becoming distracted by coarse-space primal residuals that are nonzero solely

because of our inexact primal solves on the sub-iterations. Instead, the sub-iteration



111

indicator still targets errors relative to the fine space.

The effectiveness of the sub-iterations relies in part on the fine-space adjoint re-

taining accuracy as it is transferred from one fine space (e.g. h0) to another (e.g.

h1). In our work, we use hanging-node mesh refinements, so that this transfer is

injective and results in no information loss. Of course, not losing information is itself

not sufficient, and that is why we smooth the adjoint on the fine space to which

it is transferred. Smoothing of the adjoint and primal solutions incorporates new

characteristics of the fine space into these solutions.

5.3.2 Adaptive Sub-Iteration Results

In this section we present results of our error estimation and adaptation acceler-

ation strategies applied to the discontinuous Galerkin method.

Transonic airfoil with a fishtail shock

We first consider a NACA 0012 airfoil in inviscid (Euler) M = 0.95 flow at α = 0.

The flow is transonic and we use element-wise artificial viscosity, discretized using

the second-form of Bassi and Rebay [43], to stabilize the solution. We consider drag

prediction using an approximation order of p = 1 and an adaptive fixed fraction of

f = 0.1 for adaptive (sub-)iterations. The initial mesh consists of 234 quadrilaterals,

curved with a quartic geometry representation.

Figure 5.7 shows a comparison of several adaptive techniques for this case. These

include simple uniform refinement, a standard method without sub-iterations, and

two methods with sub-iterations. As shown in Figure 5.7, the adaptation targets a

“lambda”-shaped structure in the transonic flow region and leaves the trailing edge

fishtail shock virtually untouched. Both the standard adaptive approach and ones

that use adaptive sub-iterations yield nearly the same adapted meshes. They also



112

(a) Final drag-adapted mesh (b) Mach contours (0 to 1.5)

10
3

10
4

10
5

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

degrees of freedom

d
ra

g
 c

o
e

ff
ic

ie
n

t 
e

rr
o

r

 

 

Uniform
Standard

One adaptive subiteration
Two adaptive subiterations

(c) Drag convergence with DOF

10
0

10
1

10
2

10
3

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

CPU time (s)

d
ra

g
 c

o
e

ff
ic

ie
n

t 
e

rr
o

r

 

 

Uniform
Standard

One adaptive subiteration
Two adaptive subiterations

(d) Drag convergence with CPU time

Figure 5.7: NACA 0012, M = 0.95, α = 0◦: effect of sub-iterations on drag convergence. In both
of the cases employing sub-iterations, the fine-space adjoint was reused on the sub-iterations with
only one element block-Jacobi smoothing iteration as the extra solve. The current-space primal
was also only block-Jacobi smoothed on the current space, but the linear coarse-space adjoint
problem was solved exactly for all iterations. Dashed lines indicate the remaining error after

correction with the estimate. CPU wall time is measured by running our code, Xflow, with one
processor, on a fully subscribed Haswell architecture compute node configured with 24 cores, two

twelve-core 2.5 GHz Intel Xeon E5-2680v3 processors.



113

yield nearly the same output convergence with degrees of freedom, which means

that our approximations in the sub-iterations do not have a strong effect the adap-

tive indicator that dictates which elements are chosen for refinement. Furthermore,

the outputs corrected by the error estimates (dashed line) are also similar for the

output-based approaches, which is not overly surprising because during adaptive

sub-iterations we only report the error estimates when we carry out an exact adjoint

solve.

The more interesting plot, however, is the one in Figure 5.7(d), which shows the

convergence of the drag output against computational time. Both the uncorrected

and corrected outputs now converge faster for the runs with adaptive sub-iterations.

This makes sense because each sub-iteration is cheaper than a regular adaptive it-

eration due to smoothing of the coarse primal and the fine adjoint. For the latter

adaptations, the benefit of sub-iterations is at times as much as an order of magnitude

error reduction for a given computational time.

Figure 5.8(a) shows histograms of the elemental error indicator (obtained from

localizing the error estimate) for the first and last adaptive iterations of three of

the methods. We see that after adapting, all of the methods yield an error his-

togram shifted to the left – meaning that elements with high errors were targeted

for refinement. Moreover, the histograms are similar among the methods, which in-

dicates that they are performing comparably. Figure 5.8(d) shows, for the standard

adjoint-weighted residual method, how the error equidistributes over the elements

with adaptive refinement. While initially, fewer than 20% of the elements accounted

for 99% of the error, by the final adaptive iteration, 99% of the error is distributed

among a much larger 85% of the elements. Figure 5.9 further illustrates this point:

both the mean and standard deviation of the error indicator drop with each adaptive



114

(a) Standard AWR adaptation (b) One sub-iteration

(c) Two sub-iterations

0 2 4 6 8 10 12
0

20

40

60

80

100

Number of adaptation cycle

P
e

rc
e

n
ta

g
e

 (
%

)

 

 

99% error count

60% error count

30% error count

(d) % of elements holding the top 30/60/90% of the error

Figure 5.8: NACA 0012, M = 0.95, α = 0◦: comparison of error indicator distributions.



115

iteration.

0 2 4 6 8 10 12
10

−7

10
−6

10
−5

10
−4

10
−3

Number of adaptation cycle

Y
 

 Average element−wise error

Standard deviation of element−wise error

Figure 5.9: NACA 0012, M = 0.95, α = 0◦: convergence of the mean and standard deviation of
the error indicator with adaptive mesh refinement for the standard adjoint-weighted residual

method.

Figure 5.10 shows the CPU time breakdown for the different adaptation strategies.

Figure 5.10(a) shows the CPU time percentage breakdown and Figure 5.10(b) shows

the actual CPU time breakdown 1.

Figure 5.10(b) reveals the benefits of sub-iterations. We take the first bar in

each group of three as the benchmark, since this represents the standard adaptive

mesh refinement. Looking at the second bar, we see that the total height of this

bar is similar to the first bar for every even iteration, and noticeably lower for every

odd iteration. This is due to the one sub-iteration, which occurs at every even

total iteration number: on these iterations, the primal and fine-space adjoints are

only smoothed (yellow and red lines are much shorter). Note that the coarse-space

adjoint is still solved exactly, so that the blue lines are always of similar size. Looking

at the third bar in each group, the case of two sub-iterations, we see a similar trend

but now with the bar height similar to the standard one only every three iterations

(since the other two are the quick sub-iterations). Figure 5.10(a) confirms this trend,

1Timings were performed on the University of Michigan Flux cluster, on nodes that each had two six-core 2.67
GHz Intel Xeon X5650 processors and 48GB RAM.



116

Number of adaptation

P
e

rc
e

n
ta

g
e

 (
%

)

 

 

1 2 3 4 5 6 7 8 9 10 11 12
0

10

20

30

40

50

60

70

80

90

100
Primal solve

Adjoint solve

Error estimation and adaptation

(a) Percentage CPU time breakdown

Number of adaptation

C
P

U
 t

im
e

 (
s
)

 

 

1 2 3 4 5 6 7 8 9 10 11 12
0

10

20

30

40

50

60

70

80

90

100 Primal solve

Adjoint solve

Error estimation and adaptation

(b) Raw CPU time breakdown

Figure 5.10: NACA 0012, M = 0.95, α = 0◦: CPU time breakdown results. At each of the 12
adaptive iterations, we show three bar plots, which are, from left to right: standard adaptation,
adaptation with one sub-iteration, and adaptation with two sub-iterations. Each of these bars is
divided vertically into three parts, which indicate the CPU time contribution of the primal solve
(yellow), the adjoint solve (blue), and the error estimation and adaptation (red). Note that the

latter includes any fine-space solves.

showing that during sub-iterations, the adjoint solve time, which is similar for all

methods, eventually consumes the largest percentage of the CPU time. Since we saw

in Figure 5.7 that the standard, one sub-iteration, and two sub-iteration methods

perform similarly in degrees of freedom, the methods with sub-iterations have a CPU

time advantage for a given level of accuracy.

The transonic fishtail case demonstrates the strength of sub-iterations To further

test the capability of the proposed technique, we next present test cases for a subsonic

airfoil and a three dimensional wing.

An airfoil in subsonic flow

The second test case is a NACA 0012 airfoil at a free-stream Mach number of 0.5

and angle of attack of 2◦. As in the previous case, the initial mesh consists of 234

quadrilaterals, curved with a quartic geometry representation. The fixed fraction for



117

adaptation is also the same, f = 0.1, and the approximation order is p = 2.

Figure 5.11 shows a comparison of the various adaptive strategies for this case.

Figure 5.11(c) shows that the methods with sub-iterations exhibit a similar output

(a) Final drag-adapted mesh (b) Mach contours (0 to 0.72)

10
3

10
4

10
5

10
6

10
−8

10
−6

10
−4

degrees of freedom

o
u

tp
u

t 
e

rr
o

r

 

 
Uniform

Standard

One adaptive subiteration

Two adaptive subiterations

(c) Drag convergence with DOF

10
1

10
2

10
3

10
−8

10
−6

10
−4

CPU time

o
u

tp
u

t 
e

rr
o

r

 

 

Uniform

Standard

One adaptive subiteration

Two adaptive subiterations

(d) Drag convergence with CPU time

Figure 5.11: NACA 0012, M = 0.5, α = 2◦: effect of sub-iterations on drag convergence. In both
of the cases employing sub-iterations, the fine-space adjoint was reused on the sub-iterations with
only one element block-Jacobi smoothing iteration as the extra solve. The current-space primal
was also only block-Jacobi smoothed on the current space, but the linear coarse-space adjoint
problem was solved exactly for all iterations. Dashed lines indicate the remaining error after

correction with the estimate. CPU wall time is measured by running our code, Xflow, with one
processor, on a fully subscribed Haswell architecture compute node configured with 24 cores, two

twelve-core 2.5 GHz Intel Xeon E5-2680v3 processors.

error convergence behavior with degrees of freedom compared to standard adapta-

tion. However, as shown in Figure 5.11(d), sub-iterations show an advantage in CPU

time over standard adaptation. The bottoming-out of the corrected output in this

case is likely due to a relatively loose residual convergence tolerance of 10−8 used in



118

the calculations.

Figure 5.12 shows histograms of the error indicator distribution for the different

adaptation strategies. Again, we see a similar trend for all three methods: the error

distribution tightens and shifts to the left from the first to the last adaptive itera-

tion. There are some differences in the histogram for lowest errors, but these are

least important to adaptation: at the larger error values, the histograms appear very

similar. Figure 5.12(d) shows, for the standard adjoint-weighted residual method,

another look at how the error equidistributes over the elements with adaptive re-

finement. While initially, only about 15% of the elements accounted for 99% of the

error, by the final adaptive iteration, 99% of the error is distributed among a much

larger 80% of the elements. We see an interesting trend in the 30% and 60% curves,

which dip in the later adaptation interations. This indicates that eventually, there is

small number of “troublesome” elements that contribute a big fraction to the error –

likely near the trailing edge. Hanging-node (bisection) refinement does not decrease

the size of these elements fast enough at each fixed-fraction adaptive iteration, so

that their lower convergence rate eventually shows through.

Figure 5.13 shows the mean and standard deviation of the localized error for the

standard adaptation method. Both of these drop monotonically with each adaptation

iteration. The methods employing sub-iterations show a nearly identical trend.

Figure 5.10 shows the CPU time breakdown for the different adaptation strategies.

Figure 5.10(a) shows the CPU time percentage breakdown and Figure 5.10(b) shows

the actual CPU time breakdown 2.

Figure 5.14 shows the CPU-time breakdown comparison among standard and

sub-iterative adaptation. The results are similar to the fishtail case in the previous

2Timings were performed on the University of Michigan Flux cluster, on nodes that each had two six-core 2.67
GHz Intel Xeon X5650 processors and 48GB RAM.



119

(a) Standard AWR adaptation (b) One sub-iteration

(c) Two sub-iterations

0 5 10 15
0

10

20

30

40

50

60

70

80

Number of adaptation cycle

P
e

rc
e

n
ta

g
e

 (
%

)

 

 

99% error count

60% error count

30% error count

(d) % of elements holding the top 30/60/90% of the error

Figure 5.12: NACA 0012, M = 0.5, α = 2◦: comparison of error indicator distributions.

0 5 10 15
10

−12

10
−10

10
−8

10
−6

10
−4

Number of adaptation cycle

Y

 

 Average element−wise error

Standard deviation of element−wise error

Figure 5.13: NACA 0012, M = 0.5, α = 2◦: convergence of the mean and standard deviation of
the error indicator with adaptive mesh refinement for the standard adjoint-weighted residual

method.



120

section. During the sub-iterations, the CPU time spent on the primal solve and the

error estimation decreases relative to the standard adaptation, but the CPU time

spent on the current-space adjoint solves are similar. As result, whenever the adap-

tation mechanics enters a sub-iteration cycle, the total time drops (Figure 5.14(b))

while the percent of the time taken by the adjoint solve increases (Figure 5.14(a)).

Number of adaptation

P
e

rc
e

n
ta

g
e

 (
%

)

 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

10

20

30

40

50

60

70

80

90

100

Primal solve

Adjoint solve

Error estimation and adaptation

(a) Percentage CPU time breakdown

Number of adaptation

C
P

U
 t

im
e

 (
s
)

 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

200

400

600

800

1000

1200

Primal solve

Adjoint solve

Error estimation and adaptation

(b) Raw CPU time breakdown

Figure 5.14: NACA 0012, M = 0.5, α = 2◦: CPU time breakdown results. At each of the 15
adaptive iterations, we show three bar plots, which are, from left to right: standard adaptation,
adaptation with one sub-iteration, and adaptation with two sub-iterations. Each of these bars is
divided vertically into three parts, which indicate the CPU time contribution of the primal solve
(yellow), the adjoint solve (blue), and the error estimation and adaptation (red). Note that the

latter includes any fine-space solves.

3D Wing case

In this section we demonstrate the performance of sub-iteration adaptation for

a three-dimensional wing. This wing is untapered, untwisted, of aspect ratio 10,

and with a NACA 0012 airfoil cross-section, rounded via a 180◦ revolution at the

wing tip. The wing is flying at M = 0.4 and α = 3◦. Artificial viscosity shock

capturing is used in this case to enable convergence in the presence of the singular

trailing vortex cores. The initial mesh for this case contains 4608 hexahedral elements



121

curved to cubic geometry representation. Drag is again the output of interest, the

approximation order is p = 1, and the fixed fraction is f = 0.1.

Figure 5.15 shows the final mesh obtained from adaptation using the standard

adjoint-weighted residual. We see that the leading edge, trailing edge, and parts

of the wake are targeted for refinement. Figure 5.16 shows the output error con-

(a) Mesh overview (b) Symmetry BC and wing surface BC mesh

(c) Wing surface mesh (d) Mach number plot with cutplane showing
the contour of Mach number plot, Mach num-
ber from 0 to 1.33

Figure 5.15: NACA 0012 wing, M = 0.4, α = 3◦: adapted mesh and surface Mach contours.

vergence for the various methods versus degrees of freedom and CPU time. As

expected, the standard and sub-iteration methods have similar performance with

degrees of freedom, and the methods with sub-iterations perform better with CPU

time. Figure 5.17 shows the error histograms for the various methods. These again

appear similar among the methods, each showing a decreasing-error trend from the



122

10
4

10
5

10
6

10
7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

degrees of freedom

o
u
tp

u
t 
e
rr

o
r

 

 

Uniform

Standard

One adaptive subiteration

Two adaptive subiterations

(a) Convergence with degrees of freedom

10
1

10
2

10
3

10
4

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

CPU time

o
u
tp

u
t 
e
rr

o
r

 

 

Uniform

Standard

One adaptive subiteration

Two adaptive subiterations

(b) Convergence with CPU time

Figure 5.16: NACA 0012 wing, M = 0.4, α = 3◦: effect of sub-iterations on drag convergence. In
both of the cases employing sub-iterations, the fine-space adjoint was reused on the sub-iterations

with only one element block-Jacobi smoothing iteration as the extra solve. The current-space
primal was also only block-Jacobi smoothed on the current space, but the linear coarse-space

adjoint problem was solved exactly for all iterations. Dashed lines indicate the remaining error
after correction with the estimate. CPU wall time is measured by running our code, Xflow, with
one Haswell architecture compute node, configured with 24 cores, two twelve-core 2.5 GHz Intel

Xeon E5-2680v3 processors.

first to the last adaptation iteration. Figure 5.17(d) shows that the number of ele-

ments responsible for 99% of the error rises from 40% to just over 80% in the course

of adaptation. The number of elements responsible for 30% and 60% of the error also

increases but then stagnates, likely due to large error contributions from elements in

singular areas of the flow, as observed in the previous section.

The CPU time breakdown is shown in Figure 5.18. We again observe a sharp

drop in computational time during the sub-iterations in Figure 5.18(b), and an en-

largement of the blue section of the columns, the relative adjoint solve time, in

Figure 5.18(a). We note that in this three-dimensional case, the fine-space adjoint

solve at p = 2 is significantly more expensive than a solve at p = 1, which accounts

for the large contribution of the error estimation and adaptation (red portion) to the

total CPU time.

In summary, at least for the cases tested, the use of sub-iterations has a minimal



123

(a) Standard AWR adaptation (b) One sub-iteration

(c) Two sub-iterations

0 2 4 6 8 10
0

20

40

60

80

100

Number of adaptation cycle

P
e

rc
e

n
ta

g
e

 (
%

)

 

 

99% error count

60% error count

30% error count

(d) % of elements holding the top 30/60/90% of the error

Figure 5.17: NACA 0012 wing, M = 0.4, α = 3◦: comparison of error indicator distributions.



124

Number of adaptation

P
e

rc
e

n
ta

g
e

 (
%

)

 

 

1 2 3 4 5 6 7 8 9
0

10

20

30

40

50

60

70

80

90

100

Primal solve

Adjoint solve

Error estimation and adaptation

(a) Percentage CPU time breakdown

Number of adaptation

C
P

U
 t

im
e

 (
s
)

 

 

1 2 3 4 5 6 7 8 9
0

500

1000

1500

2000

Primal solve

Adjoint solve

Error estimation and adaptation

(b) Raw CPU time breakdown

Figure 5.18: NACA 0012 wing, M = 0.4, α = 3◦: CPU time breakdown results. At each of the 9
adaptive iterations, we show three bar plots, which are, from left to right: standard adaptation,
adaptation with one sub-iteration, and adaptation with two sub-iterations. Each of these bars is
divided vertically into three parts, which indicate the CPU time contribution of the primal solve
(yellow), the adjoint solve (blue), and the error estimation and adaptation (red). Note that the

latter includes any fine-space solves.

effect on the performance of error estimation and adaptation when measured with

degrees of freedom. However, when measuring CPU time, sub-iterations offer a

noticeable savings because during sub-iterations, the primal problem and fine-space

adjoint problems are only smoothed, not solved exactly.

5.4 Summary

In this chapter, we have presented two general techniques for accelerating output-

based error estimation and mesh adaptation. The research contribution from this

chapter include,

• Constructed the acceleration algorithm of sub-iterations during adaptation,

where at each sub-iteration the primal and fine-space adjoint solves are done only

approximately. These are usually the most expensive parts of every adaptive

iteration and hence the cheaper approximate solves (block-Jacobi smoothing)



125

yield noticeable cost savings. Performance of the adaptations relative to the

standard method does not suffer as long as the current-space adjoint is still

solved exactly to remove errors arising from the approximate primal solves. We

demonstrated examples of using sub-iterations for the discontinuous Galerkin

finite-element for steady-state Euler simulations.

• Established the acceleration algorithm of coarse spaces for creating the adaptive

indicator. This retrospective error estimation strategy does not yield accurate

error estimates for the current-space solution, but it does provide useful infor-

mation for adaptation. Using degrees of freedom as a metric, the coarse-space

strategies perform similarly to the standard adjoint-weighted residual method.

However, when using CPU time as the metric, the coarse-space strategies show

a significant benefit. In particular, for the unsteady scalar advection case tested

with the Active Flux method, standard adaptation could not beat uniform re-

finement in CPU time, whereas the coarse-space methods did.



CHAPTER VI

r-Adaptation

This chapter investigates an alternative approach to adapting a computational

mesh that is different from standard h or p adaptation. The purpose of mesh adap-

tation is to reduce errors that are inherent to numerical simulations. The error in

consistent and stable numerical methods depends on the mesh size, h, which can

refer to a measure of the size of elements or the spacing between nodes, and on

the approximation order, p, which can refer to the order of polynomials in a finite-

element method or to the order of a finite-difference scheme. To reduce the error,

we must decrease h and/or increase p, and this gives rise to what we call standard

h [60, 62,63], p [47, 54,64,65], or hp [66–70] refinement strategies.

Numerous techniques exist for adapting the size of a mesh. These include hanging-

node refinement [71–73], local mesh operations [74–76], and global re-meshing [59,77].

All of these techniques have the capability to increase resolution in some areas and to

decrease the resolution in other areas, so that the total number of degrees of freedom

can grow, shrink, or remain the same. A related adaptation technique, that is more

restricted, but relatively underutilized, is r adaptation [78–83] , in which the nodes

of the mesh undergo motion in order to redistribute the resolution to areas that need

it the most. The total number of degrees of freedom remains constant, and hence r

126



127

adaptation is limited in the maximum possible error reduction that it can achieve.

However, when coupled with h and/or p refinement, the combined strategy yields a

flexible and efficient means for reducing the output error.

In steady-state calculations, r adaptation is expected to produce final meshes that

are similar to other h-refinement mechanics, when the number of degrees of freedom

is held constant. For example, if global re-meshing is available, there may be no in-

centive to use r refinement, except possibly to reduce the cost of mesh re-generation.

However, in unsteady calculations, r adaptation presents a distinct advantage in

its ability to dynamically and smoothly track important features without abrupt

refinement changes (e.g. sudden element splits) and without error-prone inter-grid

solution transfers. As long as the mesh motion is smooth, solution techniques on de-

formable domains/meshes can be applied without the need for solution interpolation

or projection.

r-Adaptation possesses unique properties that set it apart from h and p adapta-

tions. These properties include intrinsic unsteadiness, global scale mesh alteration

and degree-of-freedom conservation [81–83].

For unsteady dynamic adaptation, since solution of the adjoint problem requires

backwards time marching, the motion history and the mesh topology between the

current time, tdynamic, and the end time, tend, are unknown. As a refinement op-

tion, dynamic p-adaptation is a simple procedure for unsteady problems because it

does not affect the mesh topology. However, precisely because of this lack of topol-

ogy change, p-adaptation does not perform well when the solution is not smooth.

Local h-adaptation does change the mesh topology, and depending on the mechan-

ics employed, locally h-adapted meshes may remain nested and retain the original

mesh topology. Dynamic adaptation via local h-adaptation can be challenging due



128

to the required mesh structures and state mappings, though it does offer a direct

approach for increasing the degrees of freedom. Global h-adaptation, in which the

entire mesh is regenerated, involves the high cost of global mesh generation at every

adaptive iteration, and hence this strategy is significantly more expensive than local

h-adaptation or r refinement.

The unsteady adjoint solve and residual evaluation are particularly challenging

when performing r-adaptation. There are two ways to approach the solution of the

unsteady adjoint equation for r-adaptation. One approach for solving the unsteady

adjoint equation is, at every time step, to solve for the adjoint until the end time by

assuming that there is no motion between time points tdynamic and tend, yielding a

relatively accurate terminal condition at time point tdynamic. However, this introduces

n×(n+1)/2 loops for the adjoint solve and the residual re-evaluation, where n is the

number of time steps, and for practical purposes this is computationally unfeasible.

In our adaptation strategy, we first obtain the space-time error indicator on a

prescribed motion, e.g. the r-adaptation history from running the unsteady simu-

lation for the ith time. Then, 1) for the Active Flux method, we map our existing

error indicators onto the new mesh topology, while 2) for discontinuous Galerkin, we

use the error indicator information from the ith time step directly. Our motivation

is that when performing adaptations incrementally, the changes between adjacent

adaptation cycles are relatively small. We can either use the approximated error

indicator or map the error indicators from the ith cycle onto the (i+ 1)th cycle using

projection. Figure 6.1(a) shows the localized error indicators when there is no mo-

tion, i.e. the 0th cycle. Figure 6.1(b) shows the 1st cycle’s r-adapted error indicators

distribution, mapped from the 0th cycle.

In one dimension, the projected error is proportional to the length of cells. In



129

(a) Space-time error map before r-refinement (b) Space-time error map after r-refinement

Figure 6.1: One dimensional space-time illustration of the challenges of r-refinement with general
adaptive motion in one spatial dimension.

two dimension, sampling nodes have to be created to collect statistically reliable er-

ror projections. Through the present approach, we save time solving the unsteady

adjoint, and the mapped error information proves to be sufficient for r-adaptation

because only the relative values among error indicators matter for r-adaptation pur-

poses.

6.1 Active Flux Method r-Adaptation

For r-adaptation applied to the Active Flux method, the continuous adjoint is

used, due to its relative inexpense compared to the discrete adjoint. The continuous

adjoint avoids the computational burden of linearzing and transposing systems for a

dynamic adaptation algorithm, which would have to be done for the discrete adjoint.

Continuous adjoint-based error estimation with mesh motion has been presented in

detail in Section 3.1.

6.1.1 Adaptive Indicator

r-Adaptation indicators reside on a warped space-time control volume due to mesh

motion. To obtain an accurate error indicator, we integrate the contribution of the



130

continuous adjoint error estimate,

δJ ≈
∫
T

∫
Ω

ψh r(uH) dΩ dt.(6.1)

We perform this integration by parts. For example, for element e and time step k,

this contribution is, for the advection equation,

εe,k = −
∫

Ωe

δψhuH dx
∣∣∣tk+1

tk
−
∫
∂Ωe

∫ tk+1

tk
δψhuH ~V · ~n dt ds.(6.2)

The elements contributing to this error estimate are shown in Figure 6.2(a) for 1D.

Similarly, Figure 6.2(b) shows the contributing elements in two dimensions. Taking

the absolute value of this contribution yields an adaptive indicator,

εe,k = |εe,k| =

∣∣∣∣∣
∫

Ωe

δψhuH dx
∣∣∣tk+1

tk
+

∫
∂Ωe

∫ tk+1

tk
δψhuH ~V · ~n dt ds

∣∣∣∣∣ .(6.3)

(a) Subelements in 1D (b) Subelements in 2D

Figure 6.2: In 1D, the error indicator contributions come from 4 quadrilateral sub-cells of each
space-time cell. In 2D, the error contributions come from 8 prismatic sub-cells of each space-time

cell.

6.1.2 r-Refinement for Unsteady Problems

Generally, we expect more advantages from mesh refinement in higher dimensions

because the error in the computational domain may be more unevenly distributed

compared to lower dimensions, due to a higher number of degrees of freedom. For the



131

present study, we apply many different strategies of r-refinement on one dimensional

problems to gain insights applicable to two-dimensional r-refinement. For the final

adaptation results, we only demonstrate the two dimensional strategy.

For an unsteady problem, r-refinement constitutes efficient adaptation mechanics,

as no degrees of freedom are added. We strive for a strategy of error equi-distribution

over the space-time elements. Since the space-time mesh changes with each iteration,

we need a way to map error indicators from one mesh to another.

Figure 6.3(a) illustrates such a mapping. The error indicators computed at the

previous iteration reside on a mesh, the black mesh, that is different from the r-

refined (red) mesh. To obtain error indicator information on the refined mesh, we use

evenly distributed sampling nodes inside each triangle to collect error information for

the new cells. Figure 6.3(b) shows the distribution of sampling nodes in a reference

triangle inside reference space. This distribution should be sufficiently fine to provide

accurate error sampling and the points should be located only inside the elements.

The average of the indicators at all of the sampled nodes is taken as the approximate

error indicator on each cell. To locate the sampling nodes, we implement a fast line-

based search technique, in which a fictional line is drawn between two sampling points

to determine which elements need to be traversed to reach the next sampling point,

instead of looping over the whole computational domain in a brute-force search.

6.1.3 r-Refinement Mechanics

Given an adaptive indicator on each space-time element, a spring analogy [84] is

used to drive the mesh motion. In this analogy, edges of the mesh are treated as

springs so that the mesh is a web of springs. The error information is associated to

each spring in the web via averaging of the element-based error indicator, and a force

(via Hooke’s law) is created by relating the error indicator to the spring equilibrium



132

(a) Mesh mapping illustration (b) 21 sampling nodes in a reference triangle

Figure 6.3: Error mapping mechanics illustration: the black mesh is the baseline mesh, the red
mesh indicates the r-refined mesh, which is dynamically changing throughout the simulation time,

and the blue dots are the sampling points for the error indicator transfer.

length, through a prescribed scaling. This force is

Force = −k (L′ − L) ,(6.4)

where L′ is the error-indicator-determined equilibrium length and L is the current

edge length. A balance of forces at each node causes displacements, and the balance

of forces in the mesh is then analogous to error equi-distribution, which is a goal of

mesh adaptation.

The parameter that influences how well the spring analogy works is the ratio of the

spring stiffness to the nodal mass, k/m. After fixing m = 1, the only parameter that

matters is k. In our current implementation, k is a tunable parameter in the spring

analogy and a determining factor of how fast the mesh responds to error indicator

information. Its value could be related in non-dimensional form to the time step size

through analysis of a one-dimensional harmonic oscillator – however, in the present

work with O(1) units, we simply tune it to produce reasonable results. Figure 6.4

presents a flow chart of how the r-refinement mechanics works for our problem. This

includes how the adaptive indicator computation and spring analogy are coupled



133

together.

6.1.4 r-Adaptation Result

The presented primal problem is a clipped Gaussian pulse with center located at

coordinates, ~X0 = [−0.4,−0.4], and convecting at the bulk flow advection velocity,

~a = [2, 2], until the center of the Gaussian vortex reaches, ~Xend = [0.4, 0.4], with

inflow / outflow boundary condition. The Gaussian function takes the form

(6.5) u =


exp

(
−(x− x0)2 + (y − y0)2

σ2

)
− C

∥∥∥ ~Xi − ~X0

∥∥∥ 6 R

0
∥∥∥ ~Xi − ~X0

∥∥∥ > R

where, we pick a clipping radius of R = 0.5, a spread of σ = 0.1, and a clipping offset

of C = exp(−R2/σ2). Our output is a domain weighted integral J =
∫

Ω
W (x, y) ×

u (x, y) dΩ, where the weight function is W (x, y) = [sin ((x+ 1)π)× sin (y + 1)π)]2.

|Jexact − JH |(static mesh solve) |Jexact − JH |(r refinement)

Ncell = 50 2.883× 10−1 2.686× 10−2

Ncell = 200 2.329× 10−2 7.253× 10−3

Ncell = 450 1.292× 10−2 5.738× 10−3

Table 6.1: Error comparison of output error on a static mesh solve and output error on a

r-refinement solve, CFL = 0.7, simulation time = 0.1 period, the third cycle, k =
2

time step size

The sequence of error indicators and the r-refinement history in Figure 6.5 show

clear convection dominance in this problem. The mesh nodes agglomerate diagonally,

toward the same direction along which the scalar is moving (up and to the right).

This means that the adaptive indicators captured some of the physics of the scalar

advection problem. The error prone area is along the diagonal of the computational

domain. If the mesh were plotted at every time step of r-refinement, the mesh nodes

would appear to move with the advecting scalar. This shows that the r-refinement

strategy is dynamically adjusting the degrees of freedom towards the error prone

area(s).



134

Primal(U) & Adjoint(Ψ) run on static mesh

Compute adaptive
indicator map

with prescribed r-
refinement motion

from last cycle

Adaptive indicators
re-map on the
r-refined mesh

Run solver &
r-refinement

(spring analogy)

Check for
terminal

time, t=T?

# Cycles
=

prescribed
number?

Solver finish

no

yes

no

yes

Figure 6.4: r-Refinement mechanics for the Active Flux method.



135

(a) Adaptive indicators, Ncell = 50 (b) r-Refinement state, Ncell = 50

(c) Adaptive indicators, Ncell = 200 (d) r-Refinement state, Ncell = 200

(e) Adaptive indicators, Ncell = 450 (f) r-Refinement state, Ncell = 450

Figure 6.5: Comparison of r-refinement adaptive indicators and r-refinement primal snapshots,
both captured at t = 0.8× (total simulation time) for the third r-refinement cycle. In this case,

CFL = 0.7, and the simulation time = 0.1 period.



136

Table 6.1 shows the comparison of error levels on static meshes and r-refined

meshes. With exactly the same number of degrees of freedom, r-refinement decreases

the error level by more than 50% within three cycles of r-refinement.

6.2 Discontinuous Galerkin r-Adaptation

The arbitrary Lagrangian-Eulerian (ALE) mesh motion algorithm used for dis-

continuous Galerkin (DG) r-adaptation is not strictly conservative on a finite-size

mesh. The mesh motion algorithm itself introduces additional error into the solution

process compared to a solve on a static mesh. For r-adaptation to be useful, the

error introduced by mesh motion should be smaller than the scheme discretization

error. The choice of the mesh motion algorithm for r-adaptation is dictated by two

considerations: (1) introducing as little error as possible, and (2) handling general

motions, because r-adaptation needs to be flexible enough to work with arbitrary

error distributions.

Mesh motion based on analytic functions can be made smooth and hence of low

error due to mesh motion, yet it is limited in the types of motion that can be

realized to control an arbitrary error distribution. On the other hand, mesh motion

based on interpolation of nodal velocities is much more flexible in addressing general

error distributions, though it is more difficult to implement and it introduces more

errors arising from non-smooth features of the mapping. In this work we present

implementations of both methods and compare their results.

6.2.1 Analytic Function Based Mesh Motion

Mapping

In standard applications of ALE, the mapping from reference to global space is

chosen to move or deform the geometry in a desired fashion. In the present work,



137

we consider mesh motions that increase or decrease resolution in certain areas of

the mesh, at certain targeted times. Such a mapping, categorized as contraction or

dilation, follows the following form:

~x =
(
~X − ~X0(t)

)
f( ~X, t) + ~X0(t),(6.6)

where ~X represents the reference-space coordinates, ~X0(t) represents the center of

the contraction/dilation, and f( ~X, t) is a function that dictates the magnitude of

the contraction or dilation. We henceforth call f the contraction function, though

specifically, f < 1 indicates a contraction, while f > 1 indicates a dilation. Limiting

cases include f = 1, in which ~x = ~X (no motion), and f = 0, in which all of the

mesh points coalesce to ~x = ~X0.

We note that the mapping in Eqn. 6.6 is only a contraction/dilation locally near

~X0. In the surrounding region, the effect of the mapping is opposite, as a contraction

near one point causes stretching of the mesh (larger elements) further away from the

point, with the distance dependent on the form of f( ~X, t). We choose the following

parametrized form for the contraction function,

f( ~X, t) = 1− A(t) exp
[
−( ~X − ~X0(t))TW( ~X − ~X0(t))

]
,(6.7)

where W is a dim× dim symmetric, positive-definite matrix that encodes the stretch-

ing magnitudes and directions. Specifically, the eigenvectors of W give the direction

of stretching, whereas the eigenvalues relate to the stretching magnitude. To make

the contraction active for only a certain time, we choose a localized form of the

contraction amplitude, A(t),

A(t) = A0 exp[−w(t− t0)2].(6.8)

This is a Gaussian, illustrated in Figure 6.6, with w related to the duration of the

contraction (i.e. the width of the Gaussian), and t0 the time of peak deformation.



138

The amplitude A0 is set based on user-defined maximum contraction ratio, g0, which

Figure 6.6: Sample temporal amplitude function for a contraction/dilation map.

is defined as the volume fraction of an element in physical space relative to reference

space.

For all the elements, the contraction ratio is,

(6.9) g = det (G) =
Volume of an Element in Physical Space

Volume of the Reference Element

The value of g serves as an indicator of area change for the mapping G. With our

mapping for two dimensional problem,

(6.10) G =

f + (X1 −X1(t0))fx (X1 −X1(t0))fy

(X2 −X2(t0))fx f + (X2 −X2(t0))fy





139

g = det (G)

= f 2 + f [(X1 −X1(tmotion)) fx + (X2 −X2(tmotion)) fy]

= 1− 2A(t, x, y)− Ax(t, x, y) (X1 −X1(tmotion))

− Ay(t, x, y) (X2 −X2(tmotion))

+ A2(t, x, y) + A(x, y, t)Ax(t, x, y) (X1 −X1(tmotion))

+ A(x, y, t)Ay(t, x, y) (X2 −X2(tmotion)) .(6.11)

Mathematically, the peak of the contraction, g0, is reached when t = tmotion and

~X = [x0, y0], at this time point, A(t, x, y) = A0, Ax = 0 and Ay = 0. Hence, the

most ridicule value of g,

(6.12) g(t0, x0, y0) = g0 = (1− A0)2 .

As a result,

(6.13) A0 = 1−√g0.

Eqn. 6.11 reveals the corresponding mapping choice of A0 according to the maxi-

mum allowable contraction ratio should be 1−√g0.

Superposition

To handle multiple locations and times of large error, we superimpose several

contraction mappings, centered at locations of largest error. When dealing with

domains of finite extent, we have to take care not to inadvertently alter the geometry

under consideration when applying the r-adaptation maps. As the presented spatial



140

function in Eqn. 6.7 has global effect, we must clip its region of influence. Otherwise

we will observe deformation of the computational boundary, as shown in Figure 6.7.

(a) Original static mesh (b) Mesh boundary distortion caused by three con-
traction sources

Figure 6.7: Effect of superimposed contractions without clipping on the computational domain
boundary.

To avoid this problem, we measure the wall distance, defined as the distance to the

closest wall, from each proposed contraction center, ~X0, and use this wall distance

to limit the stretching magnitudes. Specifically, we clip the eigenvalues of W in

Eqn. 6.7 so that the location of the closest wall corresponds to a minimum of three

standard deviations of the Gaussian contraction function.

6.2.2 Node-Interpolated Mesh Motion Based Mesh Motion for r-Adaptation

In node-interpolated mesh motion (NIMM), the position and velocity of each node

are degrees of freedom that can be used to design a tailored mesh motion. In contrast

to analytic function based mesh motion (AFBMM), NIMM does not rely on analytic

functions and can hence express more complex motions that are often necessary in

r-adaptation.



141

The NIMM approach to mesh motion is still based on the ALE framework, which

requires the mapped coordinates, nodal velocities, and mapping Jacobians and de-

terminant. These are obtained in two steps: 1) interpolation and 2) Jacobian G

smoothing.

Interpolation refers to mapping mesh motion information from the mesh nodes to

element interiors. This introduces an error that depends on the order of interpolation:

for example, a second order error will be introduced when using linear interpolation.

The ALE formulation requires six geometric properties: physical coordinates ~x,

velocities ~v, mapping Jacobian G, Jacobian determinant g, and Jacobian derivatives

∂G/∂~x and ∂G/∂t. Two of these, in our case ~x and ~v, can be prescribed. With ~x

and ~v information, G = ∂~x

∂~ξ
×
(
∂ ~X

∂~ξ

)−1

and g = detG. Lastly, ∂G/∂ ~X and ∂G/∂t are

zero within an element because the prescribed velocity ~v is constant, which results

in zero second-order derivatives with respect to ~x.

~v and ~x are prescribed at mesh nodes (vertices). For any other points where no

information was provided, we calculate the information required for ALE through

interpolation as explained in Figure 6.8, with the example of a 2D triangular reference

element. This interpolation is used to obtain ~x, ~v, and G inside the element. The

Jacobian determinant, g, is computed from the interpolated Jacobian: g = detG.

Jacobian smoothing

As a result of the linear interpolation of coordinates from vertices to the interior

of the element, the reference-to-global mapping Jacobian matrix G is constant within

each element. For general mesh motion, the discontinuous representation of G across

elements causes errors that pollute the results and destroy the high-order accuracy

of the method. We reduce this error by smoothing G to create a piecewise-linear,

continuous representation.



142

Figure 6.8: Interpolation in a 2D reference space, (ξ, η). Black dots represent linear Lagrange
basis function nodes, which are used to interpolate ALE information from the nodes to any other

points (blue dots) inside an element or on its edges.

The Jacobian is smoothed by first averaging the matrix from elements to nodes:

G at each node is set equal to the average of G over the adjacent elements. The

Jacobian is then interpolated linearly back to the element interiors to provide the

desired piecewise-linear representation.

As an example of the effect of smoothing, we consider a scalar advection simula-

tion. The primal initial condition is a constant box function that is nonzero in a re-

gion defined by four vertices, [0.5 0.5], [1.5 0.5], [1.5 1.5] and [0.5 1.5]. This scalar ini-

tial condition advects through the computational domain at a velocity ~a = [2.0 0.1],

for time t = 1.0 with a prescribed sinusoidal mesh motion,

(6.14)
x0 = X0 + Ax sin(2πx0/X0) sin(2πx1/X1) sin(2πt/t0)

x1 = X1 + Ay sin(2πx0/X0) sin(2πx1/X1) sin(4πt/t0)

where, Xi are reference-space coordinates and xi are physical-space coordinates, Ax =

0.3, Ay = 0.2 and t0 = 1.0, and the computational domain is a 3 by 2 rectangle. The

output is a boundary integral at the right boundary of the computational domain

measured at every time step.

The prescribed motion in Equation 6.14 is an analytic expression, and hence we



143

can run AFBMM: we treat the result as a reference solution for the NIMM runs.

We perform an L2 error convergence study on NIMM with and without Jacobian

smoothing. For the refinement study, the L2 error is defined as

(6.15) EL2 =
1

Nt

√√√√i=Nt∑
i=0

(
Uanalytic
i − UNIMM

i

)2

,

where Nt is the total number of time steps. Figure 6.9 shows the resulting benefits

of Jacobian smoothing on the L2 error through a uniform mesh refinement study.

(a) Output evolution with time, first refinement cy-
cle, 96 elements

(b) Output evolution with time, fourth refinement
cycle, 1536 elements

(c) Refinement study (d) Primal solution and mesh at t = 0.45

Figure 6.9: Error reduction through a smoother nodal G values.



144

6.2.3 Error Estimation and r-Adaptation

Error Estimation

An adjoint solution allows us to estimate the numerical error in the corresponding

output of interest, J̄ , through the adjoint-weighted residual [32,38]. To estimate the

error, we use this adjoint to weight the unsteady residuals obtained by injecting the

primal solution into a finer space, both spatially and temporally.

For the present study, we use a unit order increment in both space and time to

obtain this fine space, denoted by subscript h. The resulting final form of the error

estimate is

δJ̄ ≈ −
∫ T

0

ΨT
h R̄h(U

H
h ) dt,(6.16)

where UH
h is the injection of the primal from space H to space h. The integral

in Eqn. 6.16 is a summation of integrals over time intervals, each performed with

appropriate quadrature.

The output error estimate in Eqn. 6.16 is separated into spatial and temporal

components by selectively refining the fine space only in space or only in time [61].

This separation then drives the decision of whether to refine in space or in time.

Error Localization and r-Adaptation

For r-adaptation instructed by analytic function based mesh motion, we employ

a simplified localization and adaptation procedure in which a separate contraction

mapping is created for every space-time element in the top f adapt = 10% fraction

of elements with the largest error. The spatial centroid of each selected element

serves as the center of the contraction, ~X0. The magnitude of the contraction is

set to be as large as possible, subject to the no-wall motion constraint discussed

in subsection 6.2.1. In addition, we heuristically set w in Eqn. 6.8 to produce a



145

temporal Gaussian function with standard deviation equal to two time steps.

For node-interpolated r-adaptation, the adaptation is driven by a spring analogy

previously used for the Active Flux method [80]. The localized error within each

element is re-distributed onto element edges via averaging, and we relate this error

to the equilibrium length of a spring on the edge. The whole mesh is treated as a

web of springs, and a force balance is used to equidistribute the error. At each time

step, we move nodes by balancing the forces inside the spring web, where the force

on an edge is given by

(6.17) F = −K × (Ledge length − Ledge-wise error)

The force balance process is enforced via several iterations during each time step

of the unsteady solve. After mesh movement, the error indicator information ob-

tained from the previous adaptive iteration will not be accurate, though after many

adaptation iterations, the variation in error indicators becomes smaller and the mo-

tion converges. Presently, a termination condition consists of a fixed number of

adaptation iterations.

6.2.4 Results

We consider a scalar advection-diffusion problem for the unknown concentration

u, with advection velocity ~V = [1, 0.1], viscosity = 1.0 and homogeneous Dirichlet

boundary conditions. The domain is a rectangle, and the initial condition is a zero

distribution of the state throughout the domain, with the exception of a square region

on the left portion, where u = 1. Figure 6.10 shows this initial condition, as well as

the solution at the final time.

The spatial domain is discretized with quadrilaterals in reference space, and the

order of approximation is pspatial = 1. The total simulation time is ttotal = 1.6. The



146

(a) Initial condition (b) Final time

Figure 6.10: Initial condition and final-time primal solution of the scalar advection-diffusion
problem.

problem is solved using DG-in-time with 20 time steps of order ptemporal = 1 initially.

r-adaptation may generate smaller elements and result in additional time steps, as

determined by the space-time adaptation algorithm. The output of interest is a

boundary integral of the state on the right-hand side boundary at the final time.

We apply the output-based error estimation procedure to this problem to identify

the localized elemental error. We then use the space-time indicators to drive the

proposed r-adaptation strategy. Figure 6.11 and Figure 6.12 show the resulting

mesh at t = 0.88 and t = 1.6 respectively in the simulation. The contractions of the

mesh near the output measurement for both cases are clearly evident.

Figure 6.11 shows that AFBMM tends to locally alternate mesh resolution while

NIMM tends to re-distribute mesh resolution globally. Similarly, Figure 6.12 displays

the same observation, where AFBMM picks the single element with the largest error

to place a contraction source, while NIMM shrinks the whole column of elements at

the right boundary of the computational domain to achieve a more accurate right-

hand-side boundary integral output.



147

(a) AFBMM, snapshot at t = 0.88. Several
contraction sources are placed to redistribute
the mesh resolution.

(b) NIMM, snapshot at t = 0.88. The mesh is
mildly contracted near the center of the scalar
profile and a contracting wave that propagates
through the domain is observed in the anima-
tion.

Figure 6.11: Solution and mesh snapshots generated by AFMM and NIMM at t = 0.88. AFBMM
tends to pick out elements with the highest error and places contraction sources on these

elements. On the other hand, NIMM motion deforms the mesh in a more uniform/global fashion.

(a) AFBMM, snapshot at t = 1.6. One con-
traction function is placed around the element
with the highest error.

(b) NIMM, snapshot at t = 1.6. Elements near
the right boundary are warped by NIMM.

Figure 6.12: Snapshot of AFMM and NIMM at t = 1.6.



148

(a) Computational domain (b) Mach number plot

Figure 6.13: Airfoil vortex encounter case using a farfield inflow boundary condition and a static
pressure outflow boundary condition. pspatial = 1, ptemporal = 1, DG in time, output of interest is

the lift integral over time =
∫ t=tend
t=0

Fliftdt, Euler equations.

For a quantitative comparison, we measure the error estimate without mesh mo-

tion as −1.03×10−2. After three iterations of r-adaptation, i.e. using the no-motion

error indicators to drive the r refinement procedure, the error estimate drops to

−1.31 × 10−3 for AFBMM, which is almost an order of magnitude error reduction.

The error estimate drops to −6.04 × 10−3 for NIMM, which is around a 50% error

reduction.

6.3 Additional Simulations

Euler cases were tested for both AFBMM and NIMM as well. However, due to

parallel code implementation (introducing new data structure to the main code), the

turn-around time for the cases tested so far are extremely long and the simulations

that were run show small displacements induced by r-adaptation. Nevertheless, these

displacements still lead to error reductions.

For the case in Figure 6.13, the output error estimated on a static mesh solve is



149

−1.60×10−3 and the output error estimated on the r-adapted mesh is −2.54×10−5.

Due to the minor observable motion issue, future work in this area is still needed.

6.4 Summary

Work in previous chapters has already investigated h-refinement with various

adaptation strategies for the Active Flux scheme [16,17] using static mesh refinement.

In the present work, we demonstrate the Active Flux method with mesh motion and

dynamic mesh adaptation using r-refinement for unsteady simulations, driven by a

continuous adjoint. In addition, we created a output-based r-adaptation mechanics

for discontinuous Galerkin method.

The research contribution from this chapter include,

• Discussed two key aspects of the r-refinement strategy: the error indicator

mapping to create an adaptive indicator on an arbitrarily-deformed mesh, and

the spring analogy for driving mesh motion. The final result shows that with

these models, the error in the desired output could be quickly reduced by at

least 50% within the first few r-refinement cycles.

• Introduced a method for mesh adaptation using r-refinement for the discontinu-

ous Galerkin discretization. The method uses an arbitrary Lagrangian-Eulerian

framework for moving the mesh, with two different mesh movement algorithms,

AFBMM and NIMM. Both methods show positive results in dropping the to-

tal error in the simulation, though the NIMM method is expected to be more

robust for arbitrary error indicator distributions.



CHAPTER VII

Conclusion

7.1 Contributions

This dissertation makes contributions to solution verification methods for high-

order computational fluid dynamics (CFD) discretizations, with focus on the discon-

tinuous Galerkin (DG) and the Active Flux methods. These verification methods

consist of two primary components: estimation of numerical error and adaptation of

the discretization to reduce this error. An advantage of such approaches compared

to uniform (uninformed) refinement is a savings in both degrees of freedom and com-

putational time required to solve a given problem to an acceptable level of accuracy.

This advantage was demonstrated in the present work for both discretizations con-

sidered. Another advantage of the adaptive approach is quantified error estimates

that provide termination criteria in an iterative solution setting.

The following list enumerates the research contribution of this dissertation.

1. Adjoint implementation for the Active Flux method: A comparison

study of discrete adjoints versus continuous adjoints shows that, although the

derivation process of the discrete adjoint is straightforward, its implementation

could be costly and requires adjoint consistency studies. This is particularly

the case for finite-volume methods, like Active Flux, which do not have a finite-

150



151

element variational formulation. Adjoint consistency studies are necessary to

ensure that the discrete adjoint approximates the continuous adjoint in the limit

of infinite resolution. On the other hand, though continuous adjoint formulation

has adjoint consistency built into the derivation, and with this sound theoretical

support doesn’t require adjoint consistency studies. However, it requires re-

derivation upon changes of boundary condition and physics.

2. Error estimation for the Active Flux method: output error estimates are

implemented using the adjoint-weighted residual method. These error estimates

then assist in automated CFD solution management. However, their fidelity is

asymptotic, so that oscillatory error estimates may occur on coarse grid levels.

An automated CFD solution management should take both the absolute value of

error estimates as well as error estimates convergence trend into consideration.

For example, on a coarse mesh, the absolute value of error estimates might be

falsely small, whereas upon refinement, the error estimates may increase and

then converge at the appropriate rate.

3. h-adaptation mechanics for the Active Flux method: upon creation of

h-adaptation mechanics, we examine two aspects of h-adaptation, (1) a com-

parison of isotropic h-adaptation and anisotropic h-adaptation and (2) global

re-meshing versus local element splitting. Regarding (1), anisotropic mesh re-

finement shows advantages when the physics of interest contain anisotropic fea-

tures. In space-time formulations, the anisotropy may mix spatial and temporal

dimensions, so that large time steps can be combined with stretched spatial

grids. Regarding (2), we note that global re-meshing is a more expensive proce-

dure compared to local element splitting. Global re-meshing is desirable when



152

global nodal re-positioning is performed at the same time.

4. Solution adaptation acceleration frameworks for the Active Flux method

and the DG method: solution adaptation acceleration research is inspired by

the fact that approximate adaptive indicators have merit in instructing adapta-

tion. An empirical study on computational time expenditure discloses that most

of the simulation time is spent on the fine-space adjoint solve for a solution veri-

fied simulation. Thus, it makes sense for a time-efficient acceleration method to

focus on reducing the fine space adjoint solve computational time. An effective

solution adaptation acceleration method should also provide an accurate error

estimate.

5. Output-based r-adaptation for the Active Flux and DG methods: r-

Adaptation takes many shapes and forms, e.g., global nodal position optimiza-

tion and nodal movement through analogies to physical systems, such as springs.

Despite the choices of r-adaptation, as a degree-of-freedom conservative adap-

tation choice, r-adaptation shows many merits for use in CFD codes and can

be seamlessly integrated with any other adaptation choices without adding sig-

nificant computational time cost.

7.2 Future Research

This work introduced new solution verification methods for high-order CFD dis-

cretizations. The following research topics could be worth investigating in the future:

1. An investigation on output-based r-adaptation with different mesh motion strate-

gies: any analogy-based model contains tunable parameters. Though param-

eters could be reduced, tunable parameters usually cannot be eliminated. To



153

realize a fully automated r − adaptation, especially for unsteady flow prob-

lems, an investigation of r-adaptation with different motion strategies should

be performed.

2. An integration of different adaptation choices: i.e. h, p and r. Both h and p

adaptive methods have already been well-studied, as well as the combination

p. r refinement has been studied to a lesser extent. However, there is a lack of

research regarding hpr adaptation work. If implemented correctly and driven

by accurate error estimates, hpr adaptation should perform better than any

adaptation choices alone or any other adaptation choice combinations.

3. A standardization of solution adaptation acceleration: the findings in this disser-

tation suggest that solution adaptation acceleration is advantageous for multiple

high-order methods. Combinations of such acceleration techniques and rigor-

ous error estimates should be investigated as a method for reducing cost while

maintaining accuracy.



APPENDICES

154



155

APPENDIX A

Acoustics Cases Error Convergence in Xflow

The discontinuous Galerkin method can exhibit convergence rates in certain out-

puts that are higher than the expected solution errors predicted by simple interpola-

tion theory. This behavior is termed “super-convergence”, although mathematically

the high rate should not come as a surprise: it is provable and expected under

relatively broad assumptions. Thus, a more apt term may be “appropriate” or “ex-

pected” convergence. Nevertheless, there are certain conditions that must be satisfied

in order for these rates to be attained, and especially for unsteady problems, these

conditions may not be intuitive. In this appendix we present a study of the discon-

tinuous Galerkin method applied to the unsteady linear acoustics equations, and we

show that super-convergence can only be attained with a least-squares projection of

the intial conditions.

A.1 Linear Acoustics

By only taking the acoustic terms from the Euler equations, i.e., linearizing the

acoustic subsystem by assuming constant coefficients ρ0 and c0, and relating the

pressure and density through c2 = p/ρ, the linearized Euler equations, aka, the



156

acoustics equations, are:

∂p∗

∂t
+ c0

(
∂u∗

∂x
+
∂v∗

∂y
+
∂w∗

∂z

)
= 0(A.1a)

∂u∗

∂t
+ c0

∂p∗

∂x
= 0(A.1b)

∂v∗

∂t
+ c0

∂p∗

∂y
= 0(A.1c)

∂w∗

∂t
+ c0

∂p∗

∂z
= 0(A.1d)

In Equation A.1, the non-dimensional pressure is p∗ = p/ρ0c
2
0, and the non-dimensional,

velocity is u∗ = u/c0.

Figure A.1 illustrates the primal acoustics problem, evolution of a centered Gaus-

sian pressure disturbance in a box.

(a) Initial pressure distribution, p∗ (b) Final pressure distribution, p∗ at time t = 1

Figure A.1: Linearized Euler (acoustics), Initial condition: p∗ = exp(−50r2), u′ = 0, v′ = 0.

The output of interest in this simulation is a domain-weighted pressure integral

at the final time,

J =

∫
Ω

w(~x)p∗(~x)dΩ, w(~x) = r4e−4r.(A.2)



157

Figure A.2: Acoustics cases convergence study on right-triangular element meshes, with
N = 20, 40, 80, 160 elements and two spatial orders, p. The truth output is obtained from p = 3 on

160 elements.

With this weighted pressure domain integral, An output error versus degrees of

freedom convergence study is performed as shown in Figure A.2.

For the convergence in Figure A.2, we expect to observe a super-convergence rate

of 2p + 1, since this is a smooth problem with a smooth output that is a direct

function of the state (not a least-squares error). However, after observing the plot,

the convergence rate is 2 for p = 1 (suboptimal) and 5 for p = 2 (optimal). To better

understand the observed convergence rate, a scalar advection case convergence is

carried out.

A.2 A Step Back: One Dimensional Scalar Advection:

Running a similar problem with 1D scalar advection also shows suboptimality

for p = 1 (a rate of 2). Even the p = 2 rate isn’t exactly 2p + 1 = 5: the observed



158

convergence rate is between 4 and 5 depending on the problem. More tests show that

the p = 2 rate depends on how long the simulation ran: shorter run times produced

a rate close to 4. This information suggested a problem with the initial condition.

A.2.1 One Dimensional Scalar Initial Condition

By only looking at the output computed from the initial condition, we note that

the exact/analytic initial condition must be projected to the current mesh/order

prior to the start of the simulation. We observe the mesh-convergence rate from a

(weighted integral) of a scalar initial condition in Figure A.3

Figure A.3: One-dimensional scalar advection problem, T = 0, J(u0), Xflow 2015.

Figure A.3 shows an apparent rate of p + 1 for odd orders and a rate of 2p

for even orders. This is a problem if we are trying to observe super-convergence

later. Indeed, in our original acoustics problem, the p = 2 result got lucky because

the super-convergent discretization error dominated this initial condition projection



159

error.

To demonstrate expected error from an initial condition projection, a one di-

mension problem is set up. The output evaluated from an exact solution, uexact(x),

projected to order p on N elements, uh(x), is

Jh =

∫ L

0

w(x)uh(x)dx

=

∫ L

0

w(x) [uexact(x) + δuh(x)] dx

= Jexact +

∫ L

0

w(x)δuh(x) dx(A.3)

where δuh(x) = uh(x)− uexact(x). Standard interpolation theory tells us that for an

order p representation on elements of size ∆x, we have δuh(x) = O(∆xp+1). Based

on this estimate, if we don’t expect any cancellation in the weighted integral, we

expect the error in the output (for just the initial condition) to be

δJh =

∫ L

0

w(x)δuh(x) dx = O(∆xp+1).(A.4)

Undeniably, this is the rate that we observe, at least for p = 1 in Figure A.3 above.

p = 2 has a higher rate because of cancellation in the projection. If we just interpo-

lated the initial condition at the nodes, we would generally see the p+ 1 rate for all

orders.

If we were to realize a least-squares projection of the initial condition, on each

element, the integral of δuh(x) multiplied by any polynomial of order p should be

zero. So our IC output error in this case should converge as,

δJh =

∫ L

0

w(x)δuh(x) dx

=

∫ L

0

(w(x)− wh(x))δuh(x) dx

=

∫ L

0

δwh(x)δuh(x) dx

= O(∆x2p+2)(A.5)



160

Figure A.4: One dimensional scalar, T = 0, J(u0) with least-squares projected initial condition.

where wh(x) is the least-squares projection of w(x) onto order p polynomials on each

element and δwh(x) = O(∆xp+1) is the resulting difference. It turns out that the

initial condition routine used for these tests is not exactly doing least-squares pro-

jection. Instead, when preparing the code (Xflow) was performing nodal sampling at

the Lagrange nodes without any projection. This sampling procedure for initializa-

tion is common in DG codes, but this procedure leads to a reduction in the accuracy

compared to using a least-squares projection of the initial condition. Using least-

squares initial condition projection gives the error convergence result in Figure A.4.

After making sure the least square projection is done correctly, the super-convergence

convergence rate for the initial condition is observed. Running the scalar advection

cases, then, gives the correct rate of 2p+ 1.



161

Figure A.5: Acoustics, initial condition f = e−50r2 , T=1, J (u(T )), with least square projected
initial condition.

A.3 Back to Acoustics

Following the initial condition least squares discovery for the scalar advection case

mentioned above, we turn back to the original acoustics problem. Running it again

gives the correct 2p+ 1 rates, as shown in Figure A.5.

Finally, we note that using an initial condition that is exactly representable in

the space of, say, p = 1 (e.g. a “tent” function) also gives the optimal 2p + 1

rates, even with the slope discontinuities in the initial data, as long as these are on

element interfaces. For the purpose of obtaining more accurate DG simulation result,

setting up initial condition with least-square projection instead of Lagrangian nodal

sampling is strongly recommended.



162

APPENDIX B

Active Flux Method Anisotropic Mesh Refinement Studies

h-Adaptation adds degrees of freedom to the computational mesh. Added degrees

of freedom could be evenly distributed in the adapted region, i.e., uniform adaptation,

or they could be distributed in a way that favors one particular spatial direction in

the adapted region, i.e., anisotropic adaptation.

Anisotropic adaptation is more computationally expensive than uniform adapta-

tion because anisotropic adaptation requires extra computation in the decision of

which spatial direction to adapt. However, anisotropic adaptation can reduce the

computational cost of resolving the solution to a given accuracy, by only refining in

the directions that need more resolution. To demonstrate the power of anisotropic

mesh adaptation over uniform refinement for the Active Flux method, we consider a

scalar advection test case, shown in Figure B.1.

In Figure B.1, a steady scalar advection case is chosen as the test problem. The

simulation is deemed converged after the residual drops seven orders of magnitude

following free-stream initialization. We carry out two sequences of mesh refinement,

uniform and anisotropic (elements that are long horizontally, short vertically), from

the same initial mesh, Figure B.1(a). The refinement process is designed in way that

upon each refinement cycle, the two refinement sequence contain same cell counts.

We use the number of cells in the mesh to represent the number of degrees of free-



163

(a) Original Mesh (b) Primal problem, U = sin (yπ)

(c) Uniformly refined mesh, second refinement cycle,
DOF = 128

(d) Flow-aligned anisotropic mesh refinement, sec-
ond refinement cycle, DOF = 128

Figure B.1: The initial uniform mesh is shown in (a). The primal solution in (b) represents
horizontal advection of sinusoidal boundary data, U = sin(yπ). (c) and (d) show meshes after two

refinement cycles for uniform mesh refinement and anisotropic mesh refinement, respectively.



164

dom in the computational domain and denote it as, DOF. The designed sequences

of DOF are as follows: {16× 2, 36× 2, 64× 2, 100× 2, 144× 2, 196× 2}. Fig-

ure B.1 shows two meshes, one uniform and one anisotropic, both with 128 cells.

Figure B.2 shows the L2 solution errors for both mesh refinement sequences. In

(a) (DOF)1/2 versus L2 error (b) The mesh characteristic length perpendicular to
the flow direction, h⊥ versus L2 error

Figure B.2: Convergence studies for the uniform mesh refinement and the anisotropic mesh
refinement with different cost measurements.

Figure B.2(a), the anisotropic mesh refinement error converges at a rate of 6, while

the uniform mesh refinement error converges at a rate of 3. However, when we

plot the L2 error against the mesh characteristic length perpendicular to the flow

direction, Figure B.2(b), both refinements generate a slope of 3, which indicates that

they both converge at third order, the convergence rate of the Active Flux scheme.

This indicates that accuracy of the Active Flux scheme is dictated by the resolution

of the mesh in the direction perpendicular to the flow. The direction parallel to the

flow need not be as resolved, at all in this simple advection case. Consequently, if

we were to perform anisotropic h-adaptation for the Active Flux scheme, we should

observe a steeper error reduction with anisotropic h-adaptation than with uniform

h-adaptation. Future work will consider automating the process of detecting such

anisotropy for general flow fields, and generating the corresponding meshes.



BIBLIOGRAPHY

[1] Wang, Z., Fidkowski, K., Abgrall, R., Bassi, F., Caraeni, D., Cary, A., Deconinck, H., Hart-
mann, R., Hillewaert, K., Huynh, H., Kroll, N., May, G., Persson, P.-O., van Leer, B., and
Visbal, M., “High-order CFD methods: current status and perspective,” International Journal
for Numerical Methods in Fluids, Vol. 00, 2012, pp. 1–42.

[2] Lohner, R., “An adaptive finite element scheme for transient problems in CFD,” Computer
Methods in Applied Mechanics and Engineering , Vol. 61, 1987, pp. 323–338.

[3] Dwight, R., “Heuristic a posteriori estimation of error due to dissipation in finite volume
schemes and application to mesh adaptation,” Journal of Computatonal Physics, Vol. 227,
2008, pp. 2845–2863.

[4] Park, M., “Adjoint-based, three-dimensional error prediction and grid adaptation,” AIAA
Journal , Vol. 42, 2004, pp. 2845–2863.

[5] Yano, M., Modisette, J. M., and Darmofal, D. L., “The importance of mesh adaptation for
higher-order discretizations of aerodynamics flows,” 20th AIAA Computational Fluid Dynam-
ics Conference AIAA 2011-3852, 2011.

[6] Venkatakrishnan, V., Allmaras, S. R., Kamenetskii, D. S., and Johnson, F. T., “Higher order
schemes for the compressible Navier-Stokes equations,” AIAA Paper 2003-3987, 2003.

[7] Cockburn, B. and Shu, C.-W., “Runge-Kutta discontinuous Galerkin methods for convection-
dominated problems,” Journal of Scientific Computing , Vol. 16, No. 3, 2001, pp. 173–261.

[8] Nguyen, N., Peraire, J., and Cockburn, B., “An implicit high-order hybridizable discontinuous
Galerkin method for linear convection-diffusion equations,” Journal of Computational Physics,
Vol. 228, 2009, pp. 3232–3254.

[9] Demkowicz, L. and Gopalakrishnan, J., “A class of discontinuous Petrov-Galerkin methods.
Part I: The transport equation,” Computer Methods in Applied Mechanics and Engineering ,
Vol. 199, No. 23-24, 2010, pp. 1558–1572.

[10] Hughes, T. J., Scovazzi, G., and Tezduyar, T. E., “Stabilized methods for compressible flows,”
Journal of Scientific Computing , Vol. 43, 2010, pp. 343–368.

[11] Tezduyar, T. E. and Senga, M., “Stabilization and shock-capturing parameters in supg for-
mulation of compressible flow,” Computer Methods in Applied Mechanics and Engineering ,
Vol. 195, 2006, pp. 1621–1632.

[12] Altair Engineering, “Acusolve,” https://altairhyperworks.com/product/AcuSolve, [On-
line].

[13] Eymann, T. A., Active Flux Schemes, Ph.D. thesis, The University of Michigan, Ann Arbor,
2013.

[14] Eymann, T. A. and Roe, P. L., “Active flux schemes,” 49th AIAA Aerospace Sciences Meeting
including the New Horizons Forum and Aerospace Exposition 2011–382, 2011.

165



166

[15] Eymann, T. A. and Roe, P. L., “Active flux schemes for systems,” 20th AIAA Computational
Fluid Dynamics Conference 2011–3840, 2011.

[16] Ding, K., Fidkowski, K. J., and Roe, P. L., “Acceleration techniques for adjoint-based error
estimation and mesh adaptation,” Eighth International Conference on Computational Fluid
Dynamics (ICCFD8) ICCFD8-2014-0249, 2014.

[17] Ding, K., Fidkowski, K. J., and Roe, P. L., “Adjoint-based error estimation and mesh adapta-
tion for the active flux method,” 21st AIAA Computational Fluid Dynamics Conference AIAA
2013-2942, 2013.

[18] Ding, K., Fidkowski, K. J., and Roe, P. L., “Continuous adjoint based error estimation and
r-refinement for the active-flux method,” 54th AIAA Aerospace Sciences Meeting AIAA 2016-
0832, 2016.

[19] Persson, P.-O., Bonet, J., and Peraire, J., “Discontinuous Galerkin solution of the Navier-
Stokes equations on deformable domains,” Computer Methods in Applied Mechanical Engi-
neering , Vol. 198, 2009, pp. 1585–1595.

[20] Kast, S. M. and Fidkowski, K. J., “Output-based mesh adaptation for high order Navier-Stokes
simulations on deformable domains,” Journal of Computational Physics, Vol. 252, No. 1, 2013,
pp. 468–494.

[21] Fidkowski, K. J. and Luo, Y., “Output-based space-time mesh adaptation for the compressible
Navier-Stokes equations,” Journal of Computational Physics, Vol. 230, 2011, pp. 5753–5773.

[22] Ding, K. and Fidkowski, K. J., “Output error control using r-adaptation,” 23rd AIAA Com-
putational Fluid Dynamics Conference AIAA 2013-4111, 2017.

[23] Eymann, T. A. and Roe, P. L., “Multidimensional active flux schemes,” 21st AIAA Computa-
tional Fluid Dynamics Conference 2011–3840, 2013-2940.

[24] Roe, P., “Approximate Riemann solvers, parameter vectors, and difference schemes,” Journal
of Computational Physics, Vol. 43, 1981, pp. 357–372.

[25] van Leer, B., “Towards the ultimate conservative difference scheme iv. a new approach to
numerical convection,” Journal of Computational Physics, Vol. 23, 1977, pp. 276–299.

[26] Zalesak, S. T., “Fully multidimensional flux-corrected transport algorithms for fluids,” Journal
of Computational Physics, Vol. 31, 1979, pp. 335–362.

[27] Antony Jameson, L. M., “Aerodynamic shape optimization techniques based on control the-
ory,” Computational Mathematics Driven by Industrial Problems, edited by A. J. Rainer
E. Burkard and G. Strang, Springer, 2007, pp. 151–221.

[28] de Baar, J. H., Scholcz, T. P., Verhoosel, C. V., Dwight, R. P., van Zuijlen, A. H., and
Bijl, H., “Efficient uncertainty quantification with gradient-enhanced kriging: applications in
FSI,” European Congress on computational methods in Applied Sciences and Engineering
ECCOMAS 2012, 2012.

[29] Giannakoglou, K. C. and Papadimitriou, D. I., “Adjoint methods for shape optimization,” Op-
timization and Computational Fluid Dynamics, edited by D. Thevenin and G. Janiga, Springer,
2007, pp. 79–106.

[30] Asch, M., Bocquet, M., and Nodet, M., Data assimilation: methods, algorithms, and applica-
tions, Society for Industrial and Applied Mathematics, 2016.

[31] Zhoujie Lyu, G. K. K. and Matins, J. R. R. A., “Rans-based aerodynamic shape optimiztion
investigaitons of the common research model wing,” 52nd Aerospace Sciences Meeting AIAA
2014-0567, 2014.



167

[32] Becker, R. and Rannacher, R., “An optimal control approach to a posteriori error estimation
in finite element methods,” Acta Numerica, edited by A. Iserles, Cambridge University Press,
2001, pp. 1–102.

[33] Hartmann, R. and Houston, P., “Adaptive discontinuous Galerkin finite element methods for
the compressible Euler equations,” Journal of Computational Physics, Vol. 183, No. 2, 2002,
pp. 508–532.

[34] Giles, M. B. and Süli, E., “Adjoint methods for PDEs: a posteriori error analysis and post-
processing by duality,” Acta Numerica, Cambridge University Press,, 2003, pp. 145–236.

[35] Ding, K., Fidkowski, K. J., and Roe, P. L., “Adjoint and defect error bounding and correction
for functional estimates,” 16th AIAA Computational Fluid Dynamics Conference AIAA 2003-
3846, 2003.

[36] Drzewiecki, T. J., Adjoint Based Uncertainty Quantification and Sensitivity Analysis for Nu-
clear Thermal Fluids Codes, Ph.D. thesis, The University of Michigan, Ann Arbor, 2013.

[37] Lala Yi Li, Y. A. and Jameson, A., “Continuous adjoint approach for adaptive mesh refine-
ment,” 20th AIAA Computational Fluid Dynamics Conference AIAA 2011-3982, 2011.

[38] Fidkowski, K. J. and Darmofal, D. L., “Review of output-based error estimation and mesh
adaptation in computational fluid dynamics,” American Institute of Aeronautics and Astro-
nautics Journal , Vol. 49, No. 4, 2011, pp. 673–694.

[39] Duraisamy, K., Alonso, J., Palacios, F., and Chandrashekar, P., “Error estimation for high
speed flows using continuous and discrete adjoints,” AIAA Paper 2010-128, 2010.

[40] Fidkowski, K., “High-order output-based adaptive methods for steady and unsteady aero-

dynamics,” 37th Advanced CFD Lectures series; Von Karman Institute for Fluid Dynamics
(December 9–12 2013), edited by H. Deconinck and R. Abgrall, von Karman Institute for
Fluid Dynamics, 2013.

[41] Fidkowski, K., “Output-based error estimation and mesh adaptation for steady and unsteady

flow problems,” 38th Advanced CFD Lectures Series; Von Karman Institute for Fluid Dynamics
(September 14–16 2015), edited by H. Deconinck and T. Horvath, von Karman Institute for
Fluid Dynamics, 2015.

[42] Arnold, D. N., Brezzi, F., Cockburn, B., and Marini, L. D., “Unified analysis of discontinuous
Galerkin methods for elliptic problems,” SIAM Journal on Numerical Analysis, Vol. 39, No. 5,
2002, pp. 1749–1779.

[43] Bassi, F. and Rebay, S., “GMRES discontinuous Galerkin solution of the compressible Navier-
Stokes equations,” Discontinuous Galerkin Methods: Theory, Computation and Applications,
edited by K. Cockburn and Shu, Springer, Berlin, 2000, pp. 197–208.

[44] Saad, Y. and Schultz, M. H., “GMRES: A generalized minimal residual algorithm for solving
nonsymmetric linear systems,” SIAM Journal on Scientific Computing , Vol. 7, No. 3, 1986,
pp. 856–869.

[45] Saad, Y., “A flexible inner-outer preconditioned GMRES algorithm,” SIAM Journal on Sci-
entific Computing , Vol. 14, No. 2, 1993, pp. 461–469.

[46] Ceze, M. A. and Fidkowski, K. J., “A robust adaptive solution strategy for high-order implicit
CFD solvers,” AIAA Paper 2011-3696, 2011.

[47] Lu, J., An a Posteriori Error Control Framework for Adaptive Precision Optimization Us-
ing Discontinuous Galerkin Finite Element Method , Ph.D. thesis, Massachusetts Institute of
Technology, Cambridge, Massachusetts, 2005.



168

[48] Giles, M. B. and Pierce, N. A., “Adjoint equations in CFD: duality, boundary conditions and
solution behavior,” AIAA Paper 97-1850, 1997.

[49] Giles, M. and Pierce, N., “Analytic adjoint solutions for the quasi-one-dimensional Euler equa-
tions,” Journal of Fluid Mechanics, Vol. 426, 2001, pp. 327–345.

[50] Hartmann, R., “Adjoint consistency analysis of discontinuous Galerkin discretizations,” SIAM
Journal on Numerical Analysis, Vol. 45, No. 6, 2007, pp. 2671–2696.

[51] Oliver, T. A. and Darmofal, D. L., “Impact of turbulence model irregularity on high–order
discretizations,” AIAA Paper 2009-953, 2009.

[52] Despres, B., “Lax theorem and finite volume schemes,” Mathematics of Computation, Vol. 73,
No. 247, 2003, pp. 1203–1234.

[53] Fan, D., On the Acoustic Component of Active Flux Schemes for Nonlinear Hyperbolic Con-
servation Laws, Ph.D. thesis, The University of Michigan, Ann Arbor, 2017.

[54] Kast, S. M., Ceze, M. A., and Fidkowski, K. J., “Output-adaptive solution strategies for
unsteady aerodynamics on deformable domains,” Seventh International Conference on Com-
putational Fluid Dynamics ICCFD7-3802, 2012.

[55] Frederic Alauzet, Adrien Loseille, A. D. and Frey, P., “Multi-dimensional continuous metric
for mesh adaptation,” 15th international meshing roundtable, 2006.

[56] Darmofal, D. L., Allmaras, S. R., Yano, M., and Kudo, J., “An adaptive, higher-order dis-
continuous Galerkin finite element method for aerodynamics,” AIAA paper AIAA 2013-2871,
2013.

[57] Fidkowski, K. J., “Output-based space-time mesh optimization for unsteady flows using
continuous-in-time adjoints,” Journal of Computational Physics, Vol. 341, No. 15, July 2017,
pp. 258–277.

[58] Fidkowski, K. J., “A local sampling approach to anisotropic metric-based mesh optimization,”
AIAA Paper 2016–0835, 2016.

[59] Yano, M., An Optimization Framework for Adaptive Higher-Order Discretizations of Partial
Differential Equations on Anisotropic Simplex Meshes, Ph.D. thesis, Massachusetts Institute
of Technology, Cambridge, Massachusetts, 2012.

[60] Venditti, D. A. and Darmofal, D. L., “Anisotropic grid adaptation for functional outputs:
application to two-dimensional viscous flows,” Journal of Computational Physics, Vol. 187,
No. 1, 2003, pp. 22–46.

[61] Fidkowski, K. J., “Output error estimation strategies for discontinuous Galerkin discretizations
of unsteady convection-dominated flows,” International Journal for Numerical Methods in
Engineering , Vol. 88, No. 12, 2011, pp. 1297–1322.

[62] Fidkowski, K. J., Oliver, T. A., Lu, J., and Darmofal, D. L., “p-Multigrid solution of high–order
discontinuous Galerkin discretizations of the compressible Navier-Stokes equations,” Journal
of Computational Physics, Vol. 207, 2005, pp. 92–113.

[63] Hartmann, R., “Adaptive discontinuous Galerkin methods with shock-capturing for the com-
pressible Navier-Stokes equations,” International Journal for Numerical Methods in Fluids,
Vol. 51, No. 9–10, 2006, pp. 1131–1156.

[64] Szabo, B. A., “Estimation and control of error based on p convergence,” Accuracy Estimates
and Adaptive Refinements in Finite Element Computations, edited by I. Babus̆ka, O. C.
Zienkiewicz, J. Gago, and E. R. de Oliveira, John wiley & Sons Ltd., 1986, pp. 61–78.



169

[65] “Adjoint-based error estimation and adaptive mesh refinement for the RANS and k − ω tur-
bulence model equations,” Journal of Computational Physics, Vol. 230, No. 11, 2011, pp. 4268
– 4284.

[66] Houston, P. and Süli, E., “hp-adaptive discontinuous Galerkin finite element methods for first-
order hyperbolic problems,” SIAM Journal on Scientific Computing , Vol. 23, No. 4, 2001,
pp. 1226–1252.

[67] Wang, L. and Mavriplis, D., “Adjoint-based h − p adaptive discontinuous Galerkin methods
for the 2D compressible Euler, equations,” Journal of Computational Physics, Vol. 228, 2009,
pp. 7643–7661.

[68] Burgess, N. K. and Mavriplis, D. J., “An hp-adaptive discontinuous Galerkin, solver for aero-
dynamic flows on mixed-element meshes,” AIAA Paper 2011-490, 2011.

[69] Ceze, M. A. and Fidkowski, K. J., “An anisotropic hp-adaptation framework for functional pre-
diction,” American Institute of Aeronautics and Astronautics Journal , Vol. 51, 2013, pp. 492–
509.

[70] Woopen, M., Balan, A., May, G., and Schütz, J., “A comparison of hybridized and standard DG
methods for target-based hp-adaptive simulation of compressible flow,” Computers & Fluids,
Vol. 98, 2014, pp. 3–16.

[71] Bey, K. S. and Oden, J. T., “hp-version discontinuous Galerkin methods for hyperbolic con-
servation laws,” Computer Methods in Applied Mechanics and Engineering , Vol. 133, 1996,
pp. 259–286.

[72] Rannacher, R., “Adaptive Galerkin finite element methods for partial differential equations,”
Journal of Computational and Applied Mathematics, Vol. 128, 2001, pp. 205–233.

[73] Ceze, M. A. and Fidkowski, K. J., “Output-driven anisotropic mesh adaptation for viscous
flows using discrete choice optimization,” AIAA Paper 2010-0170, 2010.

[74] Buscaglia, G. C. and Dari, E. A., “Anisotropic mesh optimization and its application in adap-
tivity,” International Journal for Numerical Methods in Engineering , Vol. 40, No. 22, Novem-
ber 1997, pp. 4119–4136.

[75] Wood, W. A. and Kleb, W. L., “On multi-dimensional unstructured mesh adaptation,” AIAA
Paper 99-3254, 1999.

[76] Park, M. A., “Adjoint-based, three-dimensional error prediction and grid adaptation,” AIAA
Paper 2002-3286, 2002.

[77] Fidkowski, K. J. and Darmofal, D. L., “A triangular cut-cell adaptive method for high-order dis-
cretizations of the compressible Navier-Stokes equations,” Journal of Computational Physics,
Vol. 225, 2007, pp. 1653–1672.

[78] Capon, P. J. and Jimack, P. K., “On the adaptive finite element solution of partial differential
equations using h-r refinement,” Tech. Rep. 96.03, University of Leeds, School of Computing,
1996.

[79] Bank, R. E. and Smith, R. K., “Mesh smoothing using a posteriori error estimates,” SIAM
Journal on Numerical Analysis, Vol. 34, No. 3, 1997, pp. 979–997.

[80] Ding, K., Fidkowski, K. J., and Roe, P. L., “Continuous adjoint based error estimation and
r-refinement for the active-flux method,” AIAA Paper 2016–0832, 2016.

[81] McRae, D. S., “r-refinement grid adaptation algorithms and issues,” Computer Methods in
Applied Mechanics and Engineering , Vol. 1, No. 189, 2000, pp. 1161–1182.



170

[82] Zegeling, P. A., “r-refinement for evolutionary PDEs with finite elements or finite differences,”
Applied Numerical Mathematics, Vol. 26, 1998, pp. 97–104.

[83] G. Beckett, J. A. Mackenzie, A. R. and Solan, D. M., “On the numerical solution of one-
dimensional PDEs using adaptive methods based on equidistribution,” Journal of Computa-
tional Physics, Vol. 167, 2001, pp. 372–392.

[84] Schmidt, J. and Stoevesandt, B., “Dynamic mesh optimization based on the spring analogy,”
ITM WEb of Conferences 2 03001, 2014.


