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Abstract 

This dissertation is an investigation into the nature of teachers’ formative assessment 

responses to students as they learn addition and subtraction. Teachers’ background 

experiences, including classroom experience and professional learning opportunities, were 

considered as factors which could play a role in accounting for that variation, both when 

teachers responded to individual students’ thinking and when they determined goals for group 

discussion based on students’ thinking.  In particular, this study investigates whether the 

responses from teachers who had been trained in a learning trajectory for early addition and 

subtraction reflected a quality that had the potential to extend student learning opportunities.       

Data for the study came in the form of practicing elementary teachers’ responses to a 

multimedia scenario-based survey. In a series of classroom scenarios, participant teachers 

were shown instances of students solving problems of early addition and subtraction. Those 

teachers were asked to describe those instances of student thinking, indicate how they would 

respond to the student, and what learning goal they would set forth for the student.  After 

seeing two individual students’ solutions, the teachers were also asked to choose a problem 

and set an instructional goal for a discussion of the problem with a group of students that 

included the two just observed.  Twenty-two teachers teaching at the time in elementary 

schools in a Midwestern state participated; some of those teachers had previously participated 

in professional development related to a learning trajectory for early addition and subtraction.   

The results of the study indicate that teachers’ classroom and professional learning 

experiences were associated with higher rates of teachers interpreting student thinking.  In 
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addition to this, those teachers who taught in an early elementary classroom and had training 

in a learning trajectory were more likely to describe responses to student thinking that showed 

a potential to extend learning opportunities. Some differences were found among the 

instructional goals set for the group discussion of addition and subtraction word problems:  

Some early elementary teachers were open to students’ use of multiple methods, and a small 

number of early elementary teachers who had been trained in the learning trajectory discussed 

those multiple methods by connecting them in discussion in ways that attended to the 

mathematical sophistication of those methods.         

The findings suggest that when supporting or studying teachers’ formative assessment 

practices, a content-specific lens may be useful for informing and analyzing those practices.  In 

addition, the findings may provide insight into teachers’ mathematical knowledge for teaching 

and the measures used to determine quality of teaching responses.   
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CHAPTER 1:  INTRODUCTION 

 

 As young learners share their early mathematical understandings of addition and 

subtraction, what might we expect teachers to say to and do with those students to extend 

their learning opportunities?  And how do teachers attend to the learning needs of individual 

students while also supporting every other student in making progress towards understanding 

concepts of addition and subtraction?  This dissertation takes addition and subtraction as a 

case in point to inquire on the more general question of how an awareness of students’ 

learning of specific concepts might be observable in the formative assessment practices that a 

teacher uses to support students’ learning. In doing so, it illustrates that our ways of 

accounting for how a teacher supports students’ learning need not be limited to the generic (or 

content-independent) description of teaching actions. Instead, it suggests that a content-

specific description of teaching actions may be key in helping us identify and promote teaching 

that supports students’ learning. 

I introduce this dissertation by describing a classroom vignette in which a second grade 

teacher has asked her students to solve a problem that involves the comparison of two 

quantities, 43 and 37.  The vignette is taken from Carpenter and Fennema’s (1992) study in 

which the researchers had supported elementary teachers, through professional learning, to 

use context-based problems as a means to engage young learners in problem solving, and to 

elicit and support students’ informal mathematical thinking.  The overarching purpose of the 

professional learning was to prepare teachers to be attentive to students’ emergent thinking in 
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mathematics and to encourage instructional practices that support students’ intuitive problem 

solving abilities, a practice that has been established in the mathematics education research 

as productive for student learning (Hiebert & Grouws, 2007).  As teachers engage in this form 

of instruction and elicit students’ varied ideas, they have the opportunity to gather vital 

information regarding students’ understanding and to leverage those moments to extend 

opportunities to learn.  The variation that students exhibit in their understandings is a naturally 

complex aspect of teaching and yet this variation provides the information necessary for 

teachers to support students’ mathematics learning.  I introduce this study by considering the 

varied methods students use to solve problems and ask how teachers can make use of the 

information gathered during moments of instruction, and in order to extend students’ learning 

opportunities. 

A Vignette:  How a Teacher Responds to Students’ Informal Strategies 

 During the class period in which the vignette takes place, the featured teacher has 

asked the students in her class to determine the difference between the number of peanuts 

that have been eaten by two different elephants, by posing the comparison problem shown 

below.  I provide a description of the group discussion that occurred in the classroom, which I 

synthesized from the research article in which it first appeared (Carpenter & Fennema, 1992).  

The teacher began the lesson by posing the following problem.    

The African Elephant ate 37 peanuts.  The Indian elephant ate 43 peanuts.  How many 

fewer peanuts did the African elephant eat than the Indian elephant?    

After the teacher had given time to the students to solve the problem independently, she 

elicited strategies from three different students.  The first student used blocks to build each of 

the quantities, 43 and 37, separately making multiple sets of tens with additional ones.  Once 
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each number had been built with blocks, the student found the difference by placing the two 

models next to each other and removing each unmatched block, counting them by ones.  A 

second student solved the problem by counting on, from 37 to 43, stopping to make note when 

he reached 40 after 3 counts.  The third student mentally added 10 to 37, but realized that 

would be too many and so subtracted 4 from the 10 to come to the correct solution. 

 The students, while varied in their use of strategies to solve the problem, were each 

successful in coming to the correct response—six.  To each student in turn, the teacher 

responded by asking the class if what the student had done had worked well.  Each time the 

teacher asked this of the class, the class responded that the students had used good methods, 

and in agreement with the students, the teacher stated that these strategies are good ways to 

solve the problem.   

The pattern of instruction modeled in this vignette is aligned with recommendations that 

teachers engage students in solving mathematical tasks and subsequently elicit multiple 

methods for solving (Silver & Stein, 1996).  Further, this is a classroom interaction that 

provides information to the teacher to guide instructional practice, such as problems to use 

during subsequent lessons and responses to provide to instances of student thinking.  I 

highlight these practices as potential examples of formative assessment (Black & Wiliam, 

1998), moments when the teachers elicit the thinking of students in the classroom in order to 

determine responses that support learning.  I consider the vignette as a textual representation 

of teaching practice (Herbst, 2018)  in which we can pose the question of what the teacher 

might have done to support students’ further learning.  Could the teacher have responded 

differently to the students’ varied methods?  What information about the students would be 
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useful for the teacher to know in order to do so? These questions illustrate the more general 

questions about teacher knowledge and formative assessment practices this study addresses.  

To answer those questions and consider how a teacher might respond, I focus first on 

the students’ strategies as characterized by previous research.  The first student used a 

strategy called direct modeling by 10 (Carpenter, Fennema, & Franke, 1996) , utilizing blocks 

to make up each set and then comparing the quantities by matching one set to the other, 

counting each block in the difference individually.  The second student used a counting 

strategy that is considered more efficient since he only counted on (Carpenter et al., 1996) the 

amount needed to add on to 37 in order to accumulate to 43.  He would have tracked those 

counts in some manner to determine the difference between the two numbers.  Furthermore, 

the student paused while counting to make note of the 40.  Finally, the third student used a 

heuristic or derived (Carpenter et al., 1981) strategy categorized as an incremental (Carpenter 

et al., 1996) strategy, carried out in the context of multi-digit addition and subtraction, in which 

something that was known by the student was used to determine something that was 

unknown.  

By eliciting these strategies from her students, the teacher had the opportunity to gather 

information about the varied understanding of her students when solving problems involving 

the comparison of two quantities.  The differences between each of the solution methods used 

by the students in this vignette are distinguishable (Carpenter et al., 1996) and information of 

this type has been shown to be a valuable source of diagnostic assessment of students’ 

understanding of concepts (Carpenter, Franke, Jacobs, Fennema, & Empson, 1998). But could 

that knowledge be of use for the teacher to engage in formative assessment (Black & Wiliam, 

1998), that is to support future learning? In this study, I contend that the teacher could use 
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what she could learn about her students to inform her instructional decisions (Black & Wiliam, 

1998b), such as what problem the students might solve next (Carpenter & Fennema, 1992), or 

to engage in a mathematical investigation of one of the strategies that was shared, 

encouraging reflection or justification (Chapin & O’Connor, 2007).  In doing so, she would 

encourage students to continue to reflect on concepts related to the addition and subtraction of 

quantities, and choose, through her questions and prompts, the learning opportunities that 

would be extended to students.          

In the following section, I describe in more detail the set of instructional practices meant 

to ensure teachers’ instructional moves are responsive to students’ current understandings, 

known collectively as formative assessment (Black & Wiliam, 1998).   I discuss some of the 

varied ways in which researchers have supported and studied the formative assessment 

practices of mathematics teachers as well as what has been learned about teachers’ 

implementation of the practices.  Finally, I consider a learning trajectory as resource for 

supporting teachers’ formative assessment responses and propose that a learning trajectory 

allows for an analysis of formative assessment that is content-specific.    

Formative Assessment: The Object of This Study as Illustrated by the Vignette 

In the relatively brief period of instruction represented in the vignette, the teacher has 

engaged in a number of productive instructional strategies meant to support the learning of the 

students.  In addition to providing a context-based problem and some amount of time for the 

students to work on that problem independently, she actively elicited the understandings of a 

number of her students (Smith & Stein, 2011).  In doing so, the teacher engaged in a number 

of teaching moves that can be the basis of a classroom assessment practice; a form of 

assessment used by teachers for learning rather than as a measure of learning.  Assessment 
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for learning is more commonly known as formative assessment and is a practice used by 

teachers to gather evidence regarding their students’ understandings to inform the feedback 

they give to students.  This practice aims at improving student learning over time (Black & 

Wiliam, 2009).  

Classrooms are complex spaces in which teachers support a number of aspects of 

student development, cognitive as well as social emotional (Powell & Kalina, 2009).  This 

means that in addition to those moments when teachers directly support a student’s learning, 

there are also times when teachers make moves to support a student’s confidence or to 

encourage students’ social interactions with one another.  Complexities like these can make 

the practice of formative assessment difficult to enact.  Students will naturally be in different 

places in their learning of specific concepts, and likely, also making progress at different rates; 

further they may be in different places in their socio-emotional learning.   A knowledgeable 

teacher may fully recognize what each of his or her students understands, and still have to 

manage dilemmas (Ball, 1993) when students of such varied understandings come together in 

a group and listen to each other share their strategies.  Would the student who used the blocks 

in order to model the situation be able to understand the student who added ten and adjusted?  

Would it be appropriate or even needed for the latter student to understand the former?  And, if 

not, what would be appropriate for the teacher to ask of the students?   

In the vignette narrated above, the feedback the teacher gave consisted of validating 

that each of the students had used what she referred to as a “good” method, a response that 

evaluates the appropriateness of each of the students’ methods (Smith & Gorard, 2005).  The 

teacher could have enacted a number of other responses as well.  She might have asked the 

other students to use one of the strategies that had been shared.  She might also have asked 
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if one of the methods used was a method that would always work when solving a problem like 

the one that had been presented.  The options for how to respond can take on different forms, 

for example a teacher could ask a probing question or could instead ask the student to repeat 

the strategy with a new problem.  The teacher might also ask a student to reflect on his or her 

own thinking or to reflect on the thinking of another student.  These responses are a critical 

aspect of instruction because they can make a difference in what students take up next, what 

is considered more thoroughly, and even what is not explored further.  For this reason, 

researchers have proposed that the feedback teachers provide in response to students’ work 

plays a key role in students’ learning (Black & Wiliam, 2009).  However, observations of 

teachers’ responses to student thinking indicate that the types of responses can vary (Crespo, 

2002) and that teachers are not particularly adept at responding to student thinking (Heritage, 

Kim, Vendlinski, & Herman, 2009).  So, while it can be productive practice to elicit student 

thinking within a group context (Carpenter & Fennema, 1992; Smith & Stein, 2011), as the 

teacher in the vignette did, without appropriate responses to these instances of student 

thinking, a teacher might be missing out on key opportunities to intentionally support the 

extension of students’ understandings.       

 I raise this disparity, between the benefits of quality teaching responses and the 

reported lack of adequate implementation of this particular practice, as a tension within the 

literature that deserves further attention and exploration. Specifically, what kind of responding 

by teachers might help students learn?  To begin to unpack this difficulty, I consider the 

recommendation by Sztajn, Confrey, Wilson, and Edgington (2012) that the research fields of 

formative assessment and teacher knowledge could be deepened by considering them 

through the lens of learning trajectories.  They recommend both that teachers use learning 
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trajectories to inform their instruction and further that researchers consider learning trajectories 

as a factor in the study of knowledge and practice in teaching.  Learning trajectories are  

. . . descriptions of children’s thinking and learning in a specific mathematical domain 

and a related, conjectured route through a set of instructional tasks designed to 

engender those mental processes or actions hypothesized to move children through a 

developmental progression of levels of thinking, created with the intent of supporting 

children’s achievement of specific goals in that mathematical domain.  (Clements & 

Sarama, 2004, p. 83).   

  Investigations of teachers’ formative assessment practice as studied through the lens 

of a learning trajectory have shown some promise for considering a learning trajectory as 

relevant teacher knowledge (Jacobs, Lamb, & Phillips, 2010; Ebby & Sirinides, 2015). Because 

a trajectory describes the expected progress of a student’s understanding of a concept, it could 

provide useful information from which teachers could inform the responses provided to 

students. Thus informed, teachers could be intentional in providing responses that are likely to 

extend students’ mathematical understanding of the target concept.  Consider, for example, 

the three students’ strategies from the earlier vignette.  The teacher in the vignette provided an 

example of instruction that attended to students’ understanding and allowed those students to 

construct their own strategies for comparing two amounts.  The variation between those 

strategies could be useful information for thinking about the progress each student is making in 

understanding the concept of addition and subtraction.  The teacher could now leverage that 

information, specific to the individual students, and provide feedback to the students to support 

their learning along a trajectory.      
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In this study, I consider whether teachers who have participated in professional study of 

a learning trajectory enact responses toward students that are more targeted at their individual 

learning need, or zone of proximal development (Vygotsky, 1987), and whether the response 

has the potential to extend student understanding.  A better understanding of how teachers 

with awareness of a learning trajectory respond to students could lead to more content-specific 

ways of describing and enacting instructional responses.  While asking a student to solve a 

problem in multiple ways can be beneficial for student understanding (Silver & Stein, 1996), 

knowing which of the multiple ways might be achievable by the student based on his or her 

current understanding is information that might better support the student to utilize a second 

method.  For example, if a student had used a forward counting method to find a difference, as 

one student in the vignette did, the teacher could ask if there might be a more efficient method 

for counting, instead of generically asking the student to try another way.  The student might 

recognize landmark numbers that were passed while counting by ones and be able to act on 

that recognition more readily than if he or she was asked to find another way without some 

direction to follow.   

 In this study, I consider a learning trajectory for early addition and subtraction based on 

the work of Steffe, vonGlasersfeld, Richards, and Cobb (1983; see also Clements, Sarama, & 

DiBiase, 2004) that describes the expected progression for students learning early addition 

and subtraction.  I propose this investigation within the context of early addition and subtraction 

because this mathematical concept is taught universally in early elementary classrooms and 

because a learning trajectory has been well established in the literature.  But addition and 

subtraction and this particular learning trajectory instantiate a more general research question.  

I ask whether having participated in a professional learning that supports a recognition of 
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student development along a learning trajectory may inform instructional moves in ways that 

impact the quality of teaching responses in individual settings and whole group.  I compare the 

responses of teachers who have participated in professional learning of a learning trajectory to 

responses of teachers who have not participated in such a professional learning opportunity.   

In doing so, I suggest that it is possible to consider means for appraising the quality of a 

teacher’s formative assessment by analyzing teaching moves through the lens of learning 

trajectories, described at the level of concepts within mathematics. Whereas more generic 

guidance, such as the use of open-ended questioning, may provide teachers with ways of 

thinking about providing opportunities to students to explore concepts, guidance specific to a 

learning trajectory might support teachers to enact instructional moves that are intentional in 

extending those learning opportunities in specific ways.   

Study Design 

 I investigate the instructional responses, or formative assessment practices, of 

teachers, related to the learning of early addition and subtraction strategies when engaged in 

individual and whole group instruction of early elementary students.  I propose that a teacher’s 

recognition of student development as described by a learning trajectory may bear a 

relationship with those responses and investigate both the instructional responses teachers 

suggest in response to individual students as well as within group settings.   I ask the following 

questions: 

1) Are there differences in what teachers notice from students' work on addition and 

subtraction when we compare teachers who have had training in a learning trajectory 

for addition and subtraction with those who have not had training in one such learning 

trajectory? 
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2) How are the learning goals of teachers who have had training in a learning trajectory for 

addition and subtraction different from the goals of teachers who have not had training 

in a learning trajectory as the teachers face the opportunity to respond to students? 

And, how does teachers' training in a learning trajectory relate to the extent to which 

teachers’ responses have the potential to extend individual students' learning? 

3) How do teachers manage the differences in student progress along a learning trajectory 

when discussing addition and subtraction problems in a group setting?  Are those 

differences related to whether teachers have had training in a learning trajectory?  

I conducted this study by utilizing a scenario-based teaching survey that simulates 

instances of student thinking in the context of a classroom environment.  The representations 

of student thinking within classrooms allowed me to present teachers with specific student 

work detailed in the trajectory, while controlling for other classroom factors, and to study the 

responses teachers provide when students use any of the methods described within the 

trajectory used in the study.  After observing each scenario in which an individual student had 

solved a problem, I asked teachers to describe what they considered to be important factors of 

what the student had done and in what way they would choose to respond to the student.  In 

doing so, I was able to gather evidence from a sample of teachers about the ways in which 

they would interpret and respond to the array of methods commonly used when students solve 

problems that involve early addition and subtraction.   

Beyond the responses to individual students, I also  considered teachers’ decisions when 

setting goals for group discussions.  To do this, I asked teachers to design a problem to 
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present to the group of simulated students observed individually earlier in the survey.  I then 

asked teachers to describe what they would like to achieve by making use of that problem with 

the group of students.  Because the participants had previously seen the individual work of 

some students within the group, I used this prompt to consider how teachers manage the 

complexity that comes with recognizing variation in student understanding.  In this study, I 

consider whether the goals of teachers who have participated in professional learning that 

supports an understanding of a learning trajectory differ in their quality from those of teachers  

who have not participated in a similar professional learning.  I do this by analyzing those 

responses in light of recommendations found in the literature meant to support students’ deep 

understanding of mathematics.   

Contributions of the Study 

This study contributes to the broader field of knowledge and practice for elementary 

mathematics teaching by connecting recommendations from the formative assessment 

literature with more specific knowledge of a learning trajectory in elementary mathematics.  

Further, I propose that this study could help better understand the knowledge demands for 

teaching elementary mathematics.  The results of the study would aid in understanding if 

teachers who have participated in professional learning that supports an understanding of a 

learning trajectory are likely to be able to leverage it in order to enable responses to students 

of higher quality than those of teachers who have not participated in a similar professional 

learning opportunity.  The study also helps to understand how teachers negotiate the 

complexities that naturally arise when students, who vary in their understandings, are engaged 

in a group discussion of an addition and subtraction problem.  
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Based on a suggestion from Sztajn and colleagues (2012) that knowledge of a learning 

trajectory could add to the theories of formative assessment and pedagogical content 

knowledge, the results from studies like this one contribute to the extension of studies into 

teaching practices.  Teachers’ awareness of a learning trajectory could allow us to study the 

relationship between teaching and learning by focusing research on the interdependence 

between teacher knowledge, instructional practice, and student learning along a trajectory.  

Whereas research in education has developed recommendations for teachers’ generic 

practices, for example selecting and sequencing student responses (Stein, Engle, Smith, & 

Hughes, 2008), studies of learning trajectories may provide greater specificity for informing and 

analyzing teachers’ instructional moves when teaching particular mathematics concepts.        

In the discussion section, I propose that training in a learning trajectory deepens a 

teachers’ mathematical knowledge for teaching and supports teachers’ formative assessment 

practices in ways that could add to the development of theory on formative assessment and on 

mathematical knowledge for teaching.  The findings from this study and others like it could also 

inform policy decisions for teacher education and certification by better describing the 

knowledge demands that support teachers’ appropriate formative assessment practices with 

students.     

Organization of the Dissertation 

 This dissertation is organized into six chapters.  Chapter 1 describes the research 

problem, provides an overview of the study, and outlines the dissertation.  Chapter 2 includes 

the literature review, including the research on formative assessment, a description of a 

learning trajectory for early addition and subtraction, and research that documents the potential 

that learning trajectories have to support teachers’ formative assessment practices.  Chapter 3 
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outlines the methods of the study and describes the instrument used.  Chapters 4 and 5 

provide the results of the study, first of teachers’ formative responses to individual students 

who vary in their understanding of addition and subtraction and then of teachers’ goals when 

engaging students in a group discussion of an addition and subtraction problem.  Chapter 6 

discusses the findings of the study and the potential connection to the theories of formative 

assessment (Black & William, 1998) and mathematical knowledge for teaching (Ball, Thames 

& Phelps, 2008).  I also include an appendix that provides a more in-depth description of the 

learning trajectory for addition and subtraction used in this study. 
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CHAPTER 2:  LITERATURE REVIEW 

  This study is situated in the context of literature that argues for the benefits of formative 

assessment practices (Black & Wiliam, 1998) and that reports lack of adequate implementation 

of these practices (Heritage et al., 2009).  I consider the merit of recommendations from 

researchers that suggest that a teacher may be better equipped to engage in productive 

formative assessment practices if he or she has knowledge of a learning trajectory for the 

intended concept (Sztajn et al., 2012).  To operationalize the study, I investigate teachers’ 

formative assessment practices for the concept of addition and subtraction.  In carrying out this 

study, I look for any differences in formative assessment practices based on the background 

experiences of the teachers, including their classroom experience and exposure to 

professional development opportunities specific to a learning trajectory for addition and 

subtraction.   

 The practices known as formative assessment have been recommended to teachers to 

improve learning in a variety of school subjects, describing such instructional moves as 

eliciting and responding to student thinking and allowing for peer assessment in the classroom 

(Wiliam, 2007).  Implicit in this advice is the presumption that teachers will recognize and be 

prepared to respond to students’ understandings.  At the same time, researchers have shown 

that teachers may notice other aspects of student behavior not related to students’ 

understandings (Sherin, 2001).  Professional learning has often been used to support 

teachers’ attention to aspects of student thinking (e.g., Carpenter, Fennema, & Franke, 1996) 

as a means for improving teachers’ instruction. In this literature review, I describe a number of 
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studies that engaged teachers in learning meant to support the teachers’ deepened 

understanding of student conceptions and their development over time, including learning 

trajectories.  The evidence seems to indicate that recommendations to engage in formative 

assessment alone may not be sufficient to support teachers’ responses to students. I propose 

that learning trajectories include information specific to particular content that could provide 

resources to support intentional formative assessment practices and thus be a key feature in 

enhancing teachers’ responses to students.   

Formative Assessment Research  

In their seminal paper, Black and Wiliam (1998) reviewed over 250 studies from around 

the globe, conducted between 1987 and 1998, in which teachers had used assessment as a 

means to inform instruction.  Their findings suggested that when teachers used assessment as 

a means to inform instruction, students showed marked improvement in their understanding.  

The findings were particularly strong for those students identified as low-attaining (Black & 

Wiliam, 1998a).  Unlike the summative assessment of learning, the researchers described 

formative assessment as those assessment practices used for learning, to adjust instruction to 

the students’ learning needs.  These formative assessment practices carried out in the 

moments of instruction are dependent on a teacher’s ability to make such adjustments.  Thus, 

teachers play a key role in supporting the development of student understanding, in that the 

quality of a teacher’s response to students “is a critical feature in determining the quality of 

learning activity, and is therefore a central feature of pedagogy” (Black & Wiliam, 2009, p. 

100).    

Formative assessment, then, was defined as “all those activities undertaken by 

teachers, and/or by their students, which provide information to be used as feedback to modify 
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the teaching and learning activities in which they are engaged” (Black & Wiliam, 1998, p. 10).  

This definition does not describe how formative assessment is to be operationalized, but rather 

defines it by the outcome it is intended to accomplish (Dunn & Mulvenon, 2009).  Because of 

this, there are numerous ways in which teachers can carry out the work of formative 

assessment, ranging from informal approaches, such as listening to and interpreting student 

responses in the midst of instruction, to more formalized approaches, such as conducting 

clinical interviews of student performance on particular tasks.  A number of studies have set 

out to more clearly identify the practical work of teachers engaged in formative assessment.  

They identified practices such as questioning, feedback by marking, peer and self-assessment, 

and the formative use of summative assessments (Black et al., 2002, 2003).  These 

descriptions of teaching practices related to formative assessment were meant to support 

teachers’ implementation of the assessment practice. An important characteristic of these 

practices is that they are generic—nothing in their description seems dependent on the specific 

content being taught and learned.    

Formative Assessment Implementation 

Even when formative assessment practices have been described in such general ways 

that might support their observation across instruction, observations of teachers’ feedback to 

students identified some difficulties in the implementation of formative feedback.  Observations 

show a tendency toward evaluating student work rather than providing formative feedback 

(Smith & Gorard, 2005), difficulty choosing good questions (Black et al., 2002), and students 

working beside each other, but not working with each other, when they are in group settings 

(Dawes et al., 2004), which may inhibit their opportunity to learn from one another’s feedback.   
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Others have pointed out that some responses chosen by teachers may not be timely for 

the students, making it difficult for them to understand or make use of the feedback.  As 

Perrenoud (1998) and others have described, the effectiveness of teachers’ responses is 

dependent on the extent to which those responses are appropriate for the students’ current 

learning needs. Perrenoud (1998, p. 94) suggests that teaching responses should purposefully 

“optimize the activity and the learning process of each pupil within a given situation” and that 

there is an interdependence between the potential the activity holds for learning and each 

individual student’s ability to assimilate that activity to their current understanding of the 

concept.  From this perspective, teacher feedback needs to be seen as particular to both the 

situation and the learner, in regard to how targeted it is to each students’ learning need.  This 

would require the teacher to be knowledgeable about the student and the development of 

mathematics; to consider “the children in relation to the mathematics” (Ball, 1993, p. 394).  As 

Vygotsky (1987) put it, a teacher should attend to the student’s zone of proximal development 

(ZPD), or the distance between what a child can do independently and the “level of potential 

development as determined through problem solving under adult guidance or in collaboration 

with more capable peers” (Vygotsky, 1987, p. 86).   

Because of the importance to attend to students’ learning needs and the difficulties of 

implementation experienced by teachers, much work has been done to investigate teaching 

practice, along with attention to and understanding of students’ mathematics thinking and its 

development.  This work has taken on many forms, from investigation of teachers’ 

implementation of learning tasks (as in Stein, Grover, & Henningsen, 1996) and attention to 

classroom questions during discussion (as in Chapin & O’Connor, 2007) to investigations of 

what teachers notice while watching videos of classrooms (as in Sherin, 2001, 2007) or when 
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discussing student conceptions in mathematics with colleagues (as in Crespo, 2000).  Other 

researchers have engaged teachers in professional learning related to student conceptions of 

particular mathematics concepts (as in Fennema, Carpenter, Franke, Levi, Jacobs, & Empson, 

1996).  For purposes of this review, I focus primarily on studies that have investigated 

teachers’ noticing, interpreting, diagnosing, and responding to students’ thinking.  In the 

contexts addressed by those studies, teachers engaged in a variety of professional learning 

experiences meant to hone the teachers’ attention to students’ mathematical thinking.  

In the sections that follow, I describe professional development opportunities in 

mathematics education that have supported teachers’ attention to students’ mathematical 

thinking.  Some of those opportunities are generic in nature, in that the guidance provided to 

teachers through those professional development opportunities could be applied to the 

teaching of many mathematical concepts (as in Smith & Stein, 2011).   Over many decades 

these studies have led to policy and practice guidance that describes generic teaching 

practices meant to support student learning, such as engaging in purposeful questioning and 

also describe students’ habits when engaged in mathematical work, such as using 

mathematical justifications (Leinwand, Brahier, Huinker, Berry, Dilion, Larson et al., 2014).  

Other research and teacher learning has focused on particular concepts in mathematics, 

(Carpenter, Fennema, Franke, Levi, & Empson, 2000) in which teachers are exposed to the 

informal strategies that students use to solve mathematical problems and develop instructional 

methods for eliciting and developing students’ understanding of the concepts.  A subset of 

studies includes teacher professional learning meant to describe the development of students’ 

strategies over time; for teachers to recognize students’ strategies as described by a learning 

trajectory for a particular concept.   
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Professional learning that focuses on specific mathematics concepts has the potential 

for teachers to implement formative assessment practices in ways that are intentional and 

targeted at a student’s current learning need. Whereas, general instructional supports may 

recommend that teachers engage in questioning that causes students to be reflective about 

mathematics (Boaler & Staples, 2008), the research into students’ development of particular 

mathematical concepts would allow teachers to take up advice around questioning and utilize it 

in intentional ways, ways that are specific to particular content in mathematics.          

Teachers’ General Assessment Practices in Mathematics 

 The mathematical task framework (Stein, Grover, & Henningsen, 1996), originally 

designed to examine field note records of teachers’ use of tasks, has also been used as a tool 

to support teachers in identifying features of a mathematical task that make it cognitively 

demanding for students and thus likely to lead to a more robust understanding of the 

mathematics (Boston & Smith, 2011).  The framework is used by teachers to identify 

mathematics tasks that attend to student reasoning of mathematics and is intended to be used 

as a means for increasing student understanding of mathematics.  In the original study, Stein 

et al. (1996) had collected a random sample of 140 tasks implemented in middle grades 

classrooms involved in the Quasar project and analyzed the demand of those tasks as well as 

the quality of implementation by teachers.  The mathematical task framework used in 

professional development opportunities with teachers was associated with increases in the 

chances that formative assessment be more task-centric (Boston & Smith, 2011).  Their 

findings also suggested that when teachers implement tasks with students, it can be difficult for 

teachers to maintain the cognitive demand of the task when engaged in discussion and 

questioning of the concepts.  Thus, the potential for student engagement in cognitively 
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demanding work has a tendency to decline, and teacher responses often focus on correctness 

more than mathematical reasoning.   

Indeed, to carry out formative assessment in mathematics effectively, that is to notice a 

student’s current understanding in order to respond accordingly, teachers need to look beyond 

the student’s correctness and attend carefully to student thinking and reasoning related to the 

concept being learned (Boaler & Staples, 2008).  To encourage teachers’ deepened practice of 

noticing, teacher educators have used a variety of techniques from video clubs (Sherin & Han, 

2004; Sherin & van Es, 2005) to letter writing between pre-service teachers and students 

(Crespo, 2000).  Researchers have examined those teacher development practices and their 

outcomes on the participants’ instruction.  Qualitative analysis of teachers’ noticing revealed 

that teachers can make a shift from focusing on the correctness of students’ overt behaviors to 

interpretations of those behaviors that include inferences on student thinking (Sherin & Han, 

2004; Sherin & van Es, 2005; van Es & Sherin, 2008).  Further, this shift can be facilitated 

through ongoing interactions in which teachers are asked to notice or wonder about students’ 

thinking from observing classroom video clips. 

Teachers’ Focus on Student Understanding 

Interpretation of student thinking is a vital step toward being able to respond 

appropriately.  But even when teachers do attend to students’ mathematical thinking, there is 

no guarantee that the responses they provide will be able to further learning.  Heritage and her 

colleagues (2009) used a generalizability (G) study (Brennan, 2001) to investigate the 

teachers’ inferences and feedback to students’ written work and found teachers to be more 

adept at interpreting student work than at responding to students’ work.  In other words, 

teachers’ interpretations of student thinking may allow for a teacher to recognize the child’s 
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mathematics, but their ability to interpret such thinking does not entail that the teacher will 

choose a response that attends to how a child’s mathematics may develop.         

Perhaps for that reason, instead of supporting teachers to attend generically to student 

thinking, some professional development programs (such as Fennema et al’s, 1996, CGI 

program) have supported teachers’ more specific noticing of student conceptions within 

particular mathematics domains. These scholars have found some success in connecting 

attention to students’ thinking with the teachers’ response.  In a four-year study of 21 teachers 

engaged in learning the CGI frameworks, researchers observed that teachers shifted their 

practices from providing examples of procedures to engaging students in problem solving and 

discussion of students’ informal methods (Fennema, Carpenter, Franke, Levi, Jacobs, & 

Empson, 1996).  The shift in these teachers’ practice went beyond noticing and interpreting 

student thinking, to also engage students in the sharing of their varied methods.  In a similar 

investigation of teacher noticing and responses to student work, after learning about student 

thinking as described in the CGI frameworks, Jacobs and her colleagues (2010) showed that 

teachers, categorized into four varied levels of experience (from pre-service to teacher 

leaders) learned to notice and interpret student understandings.  These teachers also 

improved in their responses to students as measured by the mathematical tasks they chose for 

upcoming lessons.  The analysis of teacher responses to classroom scenarios and students’ 

written work showed that while teachers could learn to target responses to students’ 

understandings, the robustness of teachers’ practices varied based on the extent of their 

professional experience.  
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Teacher Focus on Learning Trajectories 

      The CGI frameworks describe the students’ strategies for solving addition and 

subtraction tasks; from the use of concrete materials to counting strategies to the use of 

derived facts (Fennema et al., 1996).  Other cognitive research has described that 

development in greater detail by defining a learning trajectory.  A learning trajectory not only 

describes the possible strategies students could use to solve problems within a particular 

domain, but also describes the hypothetical development of those strategies over time.  This 

means that as teachers engage in professional development based on student learning as 

described by a trajectory, they are asked to attend to students’ understandings while also 

considering what would be likely to expect the student to do in lessons in the near future.  The 

longitudinal nature of a learning trajectory could be critical to supporting teachers' formative 

responses to students because it provides teachers with an objective for students to reach that 

is appropriate for the individual learner.  

The development of learning trajectories has led to packaging that information in the 

form of curricula (Sarama & Clements, 2002) or as student diagnostic assessments (Wright, 

Martland, & Stafford, 2006).  A cluster randomized trial of 1,375 preschoolers, whose teachers 

followed a curriculum  based on a learning trajectory, showed students learned significantly 

more mathematics (effect size 0.72) than their peers in a control group (Clements, Sarama, 

Spitler, Lange, & Wolfe, 2011).  And in three different professional learning opportunities in 

which teachers learned to utilize the diagnostic assessment from Math Recovery (Wright, 

Martland, & Stafford, 2006), also based on a learning trajectory, students had documented 

gains in achievement (Bobis, Clarke, Clarke, Thomas, Wright, Young-Loveridge, et al, 2005).  

In each of these studies, the argument is made that the teachers were not only trained to 
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attend to student thinking, but they also learned the developmental path along which student 

thinking in mathematics develops.  From these studies we know that materials that are written 

using a learning trajectory as a framework can have an effect on student learning, although 

these studies did not closely investigate the teaching practices associated with the 

implementation of the resources. 

So, while we know that a teacher’s response to his or her students is a key factor in 

students’ opportunities to learn, the evidence indicates that on the whole the practice is not 

carried out in ways that engage students meaningfully.  There are a number of factors that 

could influence the quality of teachers’ responses to students, including an attention to 

students’ understandings and knowledge of the ways in which students’ conceptions in a 

particular domain develop over time.  I argue that teachers who are trained in a learning 

trajectory may be more equipped to respond productively to students because the trajectory 

provides information specific to student development of the content over time.  The specific 

nature of the learning trajectory related to students’ understanding could be critical for being 

able to interpret and respond to students in ways that are intentional for the students’ learning.  

I propose this investigation, then, to determine whether teachers’ training in a learning 

trajectory is a factor that may play a role in teachers’ responses to student learning addition 

and subtraction.    

Informing the Formative Assessment Practice of Teachers 

One key factor in quality teaching is the extent to which the teacher attends to the 

individual learning needs of his or her students and uses the knowledge of students’ 

understandings to leverage learning opportunities (Popham, 2008).  To be able to situate 

learning in this way, the question becomes how a teacher comes to recognize a student’s 
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current learning needs and how to leverage the learning activity to support that student within 

their zone of proximal development.  Some researchers have suggested that to be able to 

recognize a student’s current learning needs, the teacher would require knowledge of the ways 

in which students’ understandings of particular concepts increase in sophistication over time.  

They recommend that teachers be able to recognize the development of student 

understandings and to pinpoint where, within the natural development of a concept, a student’s 

understanding might lie (Sztajn, Confrey, Edgington, & Wilson, 2012).  To do so, it is 

recommended that teachers have knowledge of a learning trajectory for the concept being 

taught.  Heritage and her colleagues (2009) describe a learning trajectory, also known as 

learning progression, in this way: 

Learning progressions describe how concepts and skills increase in sophistication in a 

domain from the most rudimentary to the highest level, showing the trajectory of 

learning along which students are expected to progress. . .  Teachers are able to 

connect formative assessment opportunities to short-term goals as a means to keep 

track of how their students' learning is evolving to meet the goal. (Heritage et al., 2009, 

p. 30) 

Clements and Sarama (2004) define trajectories in terms of an interdependence between 

instruction and learning, as a teacher needs to choose and utilize instructional tasks to observe 

students’ performance and support the student’s progression of learning: 
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. . . descriptions of children’s thinking and learning in a specific mathematical domain 

and a related, conjectured route through a set of instructional tasks designed to 

engender those mental processes or actions hypothesized to move children through a 

developmental progression of levels of thinking, created with the intent of supporting 

children’s achievement of specific goals in that mathematical domain (Clements & 

Sarama, 2004, p. 83).   

Because a learning trajectory identifies the hypothesized developmental path for 

learning, it can be used as a resource to inform instructional moves such that teachers’ 

responses can meet the current learning needs of the student and extend their understanding 

along that progression.  Certainly, if a teacher is asked to adjust his or her responses in order 

to meet the individual learning needs of each student, it would be useful to recognize when an 

individual student might be likely to carry out a particular performance based on his or her 

recent understandings.  Teachers with knowledge of a learning trajectory would go beyond 

knowing what any student might be likely to do when working a problem to anticipating what 

individual students are likely to do as well as how the understanding of that concept is likely to 

progress.  A learning trajectory, then, could inform the responses of a teacher in order to 

recognize a student’s current learning and to challenge them to become more sophisticated in 

their mathematical reasoning (Clements & Sarama, 2004; Simon & Tzur, 2004; Steffe, 2004).  

A Learning Trajectory for Early Addition and Subtraction 

In order to investigate the influence of a learning progression on instructional practice, it 

is necessary to focus on a particular concept, since a learning progression defines the 

development of student conceptions within a mathematical domain.  In this study, I focus on a 

learning trajectory for early addition and subtraction (Clements, Sarama, & DiBiase, 2004; 
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Steffe, vonGlasersfeld, Richards, & Cobb, 1983), meant to describe the highly probable 

progression of student learning for those concepts.  I chose early addition and subtraction 

because it is a mathematical concept which is taught universally in early elementary 

classrooms and because a learning trajectory has been well-established in the literature, 

(Clements, Sarama, & DiBiase, 2004; Steffe et al., 1983). In this section, I provide a brief 

description of that trajectory with a more detailed description of a learning trajectory in 

Appendix A.   

Research in students’ mathematical thinking has described much about the relative 

difficulty of particular problem types and the strategies students use to solve problems of 

addition and subtraction (Carpenter et al., 1981; Carpenter & Moser, 1984).  Some of the 

easiest problem types for children to solve are those in which children are able to “directly 

model the problem’s actions” (Sarama & Clements, 2009, p. 121).  These problem types tend 

to be more accessible for children because the actions needed to carry them out are directly 

translatable from the way in which the problem is stated (Carpenter, Ansell, Franke, Fennema, 

& Weisback, 1993).  This includes problems in which two sets are joined and the sum is 

unknown, part-part-whole problems in which the total is unknown and problems in which one 

set is separated from another set and the difference is unknown (Sarama & Clements, 2009), 

each purposely formed so that the result of the sum or difference is unknown.  As students 

develop ways of thinking about the quantities associated with numbers more abstractly, they 

also become able to solve join or part-part-whole problems (Carpenter et al., 1981) in which 

the change or part is unknown, sometimes called missing addend problems.  Problems in 

which the sets are separated and the change is unknown, called missing subtrahend 

problems, are one of the more difficult problem types for young learners to solve (Sarama & 
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Clements, 2009).  Typically, these problems are solved absent the use of materials once 

students are able to count on from a number other than one, a strategy often called counting 

on (Fuson, 1992).  Counting on also allows students the ability to solve comparison problems 

without the use of objects to directly model the problem.  Comparison problems (Carpenter et 

al., 1981) are those in which two quantities are compared and the student is asked to find how 

much more one quantity is than another.  The most difficult problem type is that in which the 

starting number, either the first addend or the minuend, is unknown (Sarama & Clements, 

2009).   

This means that students develop from using objects in order to model addition and 

subtraction problems in which the result is unknown, toward manipulating or counting numbers 

mentally (Steffe et al., 1983) in order to solve more complex problems, such as those in which 

the change or start is unknown.  Students who are able to solve the more complicated problem 

types are also able to move beyond the use of counting strategies and toward the use of 

derived or reasoning strategies (Sarama & Clements, 2009). 

In describing children’s mathematical thinking, the research into students’ thinking when 

solving additive and subtractive problems (Carpenter et al., 1981; Steffe et al., 1983; Sarama & 

Clements, 2009) has provided the background knowledge needed to approach formative 

assessment in content-specific ways. It is these descriptions of students’ common ways of 

thinking about addition and subtraction, along with the typical ways in which students’ 

strategies progress that now provide valuable information for supporting student learning of 

addition and subtraction.  Teachers’ knowledge of such a learning trajectory could be utilized 

to more clearly understand students’ mathematical thinking and to determine teaching 

responses that extend learning opportunities for students.  In Table 2.1, I illustrate each 
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additive and subtractive strategy utilized by students as they progress along a trajectory, and 

describe the conceptual development of students who make use of the strategy.  A more 

complete description of this learning trajectory for addition and subtraction can be found in 

Appendix A.  
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Description of Conceptual Development Description of Student’s Additive 
Strategy 

Description of Student’s Subtractive 
Strategy 

Direct Modeling Strategies 

Using perceptual (Steffe et al., 1983) 
objects, student can model a simple 
experiential problem type (join or separate, 
result unknown) by counting out sets of 
objects (Steffe et al., 1983; Sarama & 
Clements, 2009).   

To solve a problem that is modeled 
mathematically by the statement, 5 + 4, 
the student counts out five objects, then 
counts out four objects before counting the 
nine objects in total.  

To solve a problem that is modeled 
mathematically by the statement 12 – 7, 
the student counts out twelve objects, then 
counts while removing seven objects, then 
counts the five that remain. 

Counting Strategies 

Using figurative (Steffe et al., 1983) 
counters student combines groups while 
tracking the counts that typically start at 
one and continue to the sum. 

To solve a problem that is modeled 
mathematically by 5 + 4, the student 
counts from one to five, then continues the 
count to the sum by creating a 
representation of four, for example fingers, 
in the midst of the count, saying ‘1, 2, 3, 4, 
5 - 6, 7, 8, 9’ (Steffe et al., 1983).  
Sometimes called counting all (Fuson, 
1982) 

A student who counts from one, as is the 
case here, is likely to fall back on a direct 
modeling strategy in order to subtract.   

Has established a numerical composite 
(Steffe et al., 1983) in which a number is 
recognized simultaneously as a composite 
unit and the counts that make up the unit.  
Student then can count on from a number 
other than one in order to solve a problem.  
To subtract, recognizing the numerical 
composite (Steffe et al., 1983) of the 
minuend, counts backward the number of 
units indicated by the subtrahend. 

To solve a problem that is modeled 
mathematically by 5 + 4, the student 
recognizes 5 as a composite of 5 counts 
and then counts on to find the sum while 
saying, ‘6, 7, 8, 9”  

To solve a problem that is modeled 
mathematically by 12 – 7, the student 
counts backward from twelve, enumerating 
each unit of the seven counts, saying, ’11, 
10, 9, 8, 7, 6, 5” 

Alternatively, the student may count, “12, 
11, 10, 9, 8, 7, 6” leading to a response of 
5.  In doing so, the student tracks the 
ordinal nature of discrete objects as each 
is removed from the initial set of 12.   
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Derived or Reasoning Strategies 

Has an abstract composite unit (Steffe, 
Cobb, & vonGlasersfeld,1988) which 
allows the student to recognize a 
subtrahend as more than a number of 
units to be counted, but as a segment 
within the minuend.  This allows the 
student to count in order to determine the 
remaining segment, rather than each 
countable unit. (Steffe et al., 1988) 

Counts on from larger number (e.g., from 8 
when solving 3 + 8) at least informally 
understanding the commutative property 
for addition and showing that the two 
quantities are interchangeable for the 
operation of addition.   

To solve a problem that is modeled 
mathematically by 12 – 7, the student 
recognizes seven as a unit that makes up 
a part of twelve, counts back saying ’11, 
10, 9, 8, 7’ and recognizing he/she has 
reached the segment size seven, which 
indicates the remainder of five, the number 
of counts that have occurred. 

Student recognizes the relationship 
between problems related to the given 
problem.  This is evidence of algebraic 
thinking (Schifter, 1999) 

Student makes use of reasoning strategies 
in which he or she may make use of a 
known fact in order to determine an 
unknown fact. To solve 8 + __ = 11, the 
student may know that 8 + 2 makes 10 
and so it would take 3 to make 11.     

To solve 12 - __ = 7, the student could 
recognize that since 6 + 6 = 12 and since 7 
is 1 more than 6, then the missing number 
would be 5, 1 less than 6. 

Table 2.1:   A learning trajectory for addition and subtraction
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Formative Assessment Practices:  The Learning Trajectories Approach 

 A learning trajectory, like the one described above, is a resource that has the 

potential to support teachers’ formative feedback in ways that connect to a student’s 

current learning need.  The formative assessment literature recommends teachers 

support students’ understanding of intended learning targets through questioning and 

responding to students’ learning needs (Wiliam, 2007a), calling into question how one 

might determine a student’s learning needs.  Yet, while the literature in formative 

assessment recommends the use of questioning and responding, they do not 

differentiate strategies for such practices based on students’ understandings.  This 

could indicate that proponents of formative assessment either do not recognize the 

variations in student thinking that can be evidence of student understanding or there is 

not a belief that those variations deserve different treatments on the part of the teacher 

who enacts questions and responses to his or her students.   

A learning trajectory not only describes how students solve problems, but also 

the likely path students will take in their learning, the “ordered expected tendencies . . . 

students follow as they develop their initial mathematical ideas into formal concepts 

(Sztajn et al., 2012, p. 148).  This provides a content-specific way of identifying and 

responding to students learning needs.  I argue that a teacher could enact any number 

of responses to student thinking that might seem appropriate given more generic advice 

in the mathematics education field, such as asking student to justify and reflect on their 

work (Boaler & Staples, 2008).  Yet, these responses may still be inappropriate 

according to a learning trajectory, because the response may not be timely for the 

student (Perrenoud, 1998).  A learning trajectory, then, provides a means for teachers 
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to locate the student’s current learning in the context of the development of their 

understanding of the concept and provide intentional feedback to students.   

As an example, the three students featured in the vignette in chapter 1 had 

matched blocks representing the two quantities (a direct modeling strategy) counted 

from the smaller quantity to the larger quantity (a counting on strategy) and added a ten 

and adjusted (a derived strategy).  The recommendations from researchers that suggest 

teachers situate their learning activities within the student’s zone of proximal 

development become more viable to enact if we know that these students’ common 

strategies are ones that can be identified as those along a path of expected learning 

that has been mapped through research.  To enact formative assessment practices that 

are specific to the content of addition and subtraction, a teacher might ask if the first 

student could use his model to make sense of the counting strategy the second student 

had used and if this would support him to make use of this more efficient strategy in a 

future learning activity.  Or, the teacher could highlight that the second student had 

noticed the number 40 as she counted and then support her continued attention to key 

numbers in the problems she solved, eventually making use of derived strategies.  

Further, seen in this way, a learning trajectory could provide a lens by which some 

teaching responses may be deemed inappropriate at particular moments because those 

responses might ask a student to work a problem in a way that has been learned in the 

past and doesn’t provide a challenge for further learning.  For example, asking a student 

who had used a derived strategy to solve a similar problem using individual cubes is not 

likely to support further learning for the concept of addition and subtraction for that 

student.   
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I extend beyond the example of the vignette to propose that it is possible to 

evaluate teaching responses to students who use the strategies that have been 

described in a learning trajectory.  Because the research into student thinking has 

shown that students make use of a set of common informal strategies (Carpenter et al., 

1981), found along a learning trajectory (Steffe et al., 1983; Clements & Sarama, 2004), 

teaching responses can be selected based on the understanding exhibited by the 

student for the particular content.   

Sztajn and her colleagues (2012) propose that in addition to providing a resource 

with which teachers could make informed responses to students, teachers with 

knowledge of a learning trajectory have a depth of professional knowledge, specifically 

what Shulman (1986) had called pedagogical content knowledge, which can be the 

basis on which teachers could interpret and respond to student thinking.  I take up this 

suggestion by focusing on teachers’ formative assessment practices, in light of a 

learning trajectory for addition and subtraction, in order to describe aspects of what Ball, 

Thames, & Phelps (2008) have called a teacher’s mathematical knowledge for teaching.   

Mathematical Knowledge for Teaching 

In their conceptualization of mathematical knowledge for teaching, Ball and her 

colleagues (2008) identify six domains of mathematical knowledge for teaching that 

describe the types of knowledge teachers draw on when engaged in mathematics 

instruction.  The authors break mathematical knowledge for teaching into content 

knowledge and pedagogical content knowledge which are further broken down to more 

clearly describe the varied forms of knowledge that make the work of teaching 
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mathematics unique.  Of interest to this study are what they call knowledge of content 

and students and knowledge of content and teaching.   

Knowledge of Content and Students  The domain called knowledge of content and 

students (KCS) includes knowledge of students’ common ways of thinking about 

problems, including their common conceptions about particular concepts as they are 

shown in problems they do in classrooms. KCS is a particular type of knowledge that 

allows one to understand how students “are likely to think” (Ball et al., 2008, p. 402) 

about given problems.  KCS is a resource that enables teachers to anticipate student 

strategies.  I argue that the formative assessment practice of interpreting student 

thinking is one context where KCS can be observed because it would serve as a 

resource in informing interpretations.   

 The anticipation and interpretation of student thinking is an important task of 

teaching that produces resources with which teachers can respond to students.  These 

teaching tasks allow the teacher to prepare responses in advance of that moment when 

students first share their thinking.  As an example, a teacher may anticipate what 

students might do when asked to find the difference between 13 and 4.  The teacher 

may anticipate that some students will understand this difference problem in terms of its 

related addition problem, to find out the sum of 9 and 4, while others may count 

backward to solve the problem.  The teacher may also anticipate common errors that 

occur when students solve problems of this nature, as when students erroneously 

attempt to make use of a measurement count (Fuson, 1984) starting the count on 13, 

rather than on 12, as would be appropriate when counting backward across intervals as 

on a number line.  The importance of teacher anticipation and interpretation might be 
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best illustrated by considering what might occur if a teacher does not anticipate a 

response that is then shared by a student.  In that moment, the teacher will need to 

listen closely, make sense of the method mathematically, determine if the method is 

valid, and determine some response to the student or students who shared it; a fair 

amount of work to be done in the few moments that pass between teacher and student 

exchanges.   

   When KCS is examined through the lens of learning trajectories, Sztajn and her 

colleagues (2012) suggest that more than being able to recognize common student 

conceptions in relation to the particular problem type, teachers with knowledge of 

learning trajectories may also understand the relation the different conceptions have to 

each other in the progression along the trajectory.  This would allow a teacher to do 

more than anticipate how any student in the class might respond; the teacher could also 

consider how particular students in the class might or might not respond because of 

what is known about the student’s current progress along the trajectory.  For example, if 

a student had been consistently using a counting on strategy, the teacher might soon 

expect that the student would be able to count backward to solve similar subtraction 

problems1.  Or, if a student is using counters to directly model an addition problem, the 

teacher might surmise that the student is not likely to fully understand the use of a 

counting back method to subtract.  Without the trajectory as a reference, a teacher may 

still recognize the student’s strategy and consider it appropriate for a number of 

reasons, for example because it yields a correct answer or because it showcases the 

                                                           
1 As described in the learning trajectory for addition and subtraction in Appendix A, students typically count 
forward, for example using a counting on strategy, to solve addition problems, before using a backward count in 
order to subtract.   
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unique thinking of one of her students, without regard to how the strategy provides 

evidence of development or the level of challenge it may or may not have presented to 

the individual students who used it.  However, when a present strategy is placed in 

against the background of the trajectory, it can be understood as evidence of the 

development of a student’s understanding. The observation of a present strategy 

against the background of the trajectory becomes an important means for recognizing 

the student’s current learning needs because the strategy can be understood within the 

context of the expected progress of the mathematics concepts that are at stake in 

instruction.  So, while all of the strategies used by students in the vignette led to a 

correct answer, a teacher with knowledge of a learning trajectory might have also 

recognized that the students, while together in the same class, were making progress in 

their mathematical understanding in varied ways, each of them with their own individual 

learning needs.      

Knowledge of Content and Teaching In addition to understanding the set of common 

student methods and the progression along which children develop strategies for 

solving problems, teachers are called on to respond to students in ways that support 

and extend their learning.  The knowledge that informs the choices teachers make in 

order to address the understandings or misunderstandings of students is associated 

with the domain of mathematical knowledge for teaching Ball et al. (2008) called 

knowledge of content and teaching (KCT).  A teacher’s KCT allows a teacher to 

consider “the instructional advantages and disadvantages of representations used to 

teach a specific idea” (Ball et al., 2008, p. 402), and whether or not those 

representations are useful for the needs of the students in the classroom.  As Ball and 
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her colleagues describe, the decisions teachers make when making such choices “. . . 

[require] coordination between the mathematics at stake and the instructional options 

and purposes at play” (Ball et al., 2008, p. 401).  For example, if a student had made 

use of a counting all strategy, a relatively rudimentary strategy for solving addition 

problems, the teacher may respond differently than if a student had used a heuristic or 

derived strategy to solve the same problem.  One could ask what informs the decisions 

teachers make when responding to these students who have shown evidence of having 

different learning needs.  I consider the possibility that knowledge of a learning 

trajectory may influence responses to student thinking.   

The decisions teachers make are meant to mediate between a student’s current 

understanding and a determined learning target, and, at some point, to engage the 

student in opportunities to extend learning toward that target.  The content of that 

learning target could come from a number of sources, such as a set of curricular 

materials or content standards that the teacher follows.  On the other hand, the learning 

target could be situated within the progression of a student’s thinking and in relation to a 

learning trajectory.  If a learning trajectory becomes the grounds on which a teacher 

makes instructional decisions, those decisions would be made in order to challenge the 

learner to advance from his or her current mathematical understanding and take up 

what is known to be a strategy that is commonly invented later in a student’s 

development.   For example, if a teacher recognizes that some students have solved a 

subtraction problem by counting and others by making ten, he or she may prepare a 

representation that allows for the count to be recognized while also emphasizing the 

use of the ten by the second student.  Similarly, the teacher may provide an explanation 
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of the part-part-whole relationship between the addition and subtraction sentences that 

may be discussed by students and in doing so provide opportunities for students who 

are using more rudimentary strategies to connect their thinking to the more 

sophisticated reasoning abilities that are sought after as eventual outcomes of the 

learning.    

Framed by the research in learning trajectories, teaching could include 

considering methods that not only teach a specific idea, but support learning that is 

timely for the particular students, as evidenced by a learning trajectory.  In other words, 

teachers could consider the relationship between the responses given to students and 

the desired path for student learning, what others refer to as the interdependence 

between the task and the related student methods (Simon, 1995; Carpenter & 

Fennema, 1992).  In light of a learning trajectory, the task and the way in which 

strategies are represented play the role of mediating the gap between a student’s 

current understanding and the learning that is to be made along the trajectory (Sztajn et 

al., 2012). 

I suggest the literature describing student conceptions for early addition and 

subtraction (Carpenter et al., 1981, Steffe, von Glasersfeld, Richard, & Cobb, 1983) can 

be used as a means to investigate the interpretations teachers make of student thinking, 

one aspect of a teacher’s KCS for early addition and subtraction.  Further, because for 

formative assessment practices to be effective they need to include quality responses 

from teachers, I investigate teachers’ responses, in light of a learning trajectory, and 

relate those responses to the domain of KCT.  I conjecture that there is a relationship 

between the knowledge a teacher has of student thinking and his or her responses to 
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students in that teachers who have more in-depth knowledge of student thinking would 

implement higher quality responses to his or her students.  I utilize such an analysis to 

consider the extent to which any variance in the quality of teacher’s responses can be 

understood by considering the interpretations teachers make of student thinking.        

Using a Learning Trajectory to Inform Instructional Goals in Group Settings 

The research in student learning trajectories has based its development on the 

progression of student thinking that is probable to occur for any individual student.  It 

may be argued that knowledge of a learning trajectory for a concept would be useful, if 

not essential, information for teachers to have.  Yet, a classroom teacher will naturally 

encounter a range of student understandings for a given concept at any given time in 

the classroom, from an “emergence in the classroom of multiple, overlapping ZPDs” 

(Allal, & Pelgrims-Ducrey, 2000, p. 146), whose learning needs occur simultaneously.  

Meeting students’ diverse learning needs concurrently would naturally be more complex 

than using a learning trajectory to assess and respond to the learning needs of a single 

student.   

Recommendations from formative assessment scholars describe a number of 

practices meant to be supportive of teachers’ practice.  These include generic ones 

such as the use of productive questioning and integrating peer assessment into 

collaborative work (Wiliam, 2007a).  Still, a teacher might ask him or herself which 

students should be asked to share, what the students should share, and what to include 

in the students’ collaborative time.  Further, given that students may have different 

understandings of the mathematics being discussed, the teacher may wonder if it is 

productive for all students to hear differing methods even though the methods of some 
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learners may seem disparate to other learners.  To address these questions, I consider 

the following synopsis of research in mathematics education.  As described by Hiebert 

& Grouws (2007),   

. . . students can acquire conceptual understandings of mathematics if teaching 

attends explicitly to concepts – to connections among mathematical facts, 

procedures, and ideas [. . .] includes asking questions about how different 

solution strategies are similar to or different from each other. . . consider the 

ways in which mathematical problems build on each other or are special (or 

general) cases of each other, attending to the relationships among mathematical 

ideas (Hiebert & Grouws, 2007, p. 383).   

This description of mathematics instruction, intended to support students’ 

conceptual understandings, describes mathematics teaching and learning as a process 

in which students are engaged in understanding multiple solution methods (Silver, 

Ghousseini, Gosen, Charalambous, & Strawhun, 2005) for solving problems as well as 

the ways in which those methods are connected to each other mathematically.  

Teachers could take up the advice from this research by eliciting students varied 

thinking in the group and then using the time as an opportunity to discuss mathematical 

connections between the students’ methods.  Some researchers have described this as 

a process of sequencing and connecting student methods (Stein, Engle, Smith, & 

Hughes, 2008) and could be utilized to make evident the increasing sophistication of 

those methods as described by a trajectory (Steffe et al., 1983; Clements et al., 2004).  

A discussion of those methods and the connections between them would reflect 

attention to the recommendations from formative assessment as the teacher and 
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students use this time to attend to understanding each other’s methods as a means of 

more deeply understanding the concept being learned. Thus there are ways in which 

formative assessment practices can be informed by content-specific considerations, 

even if they are used to manage whole group interactions.            

A learning trajectory could be a resource to inform the instruction carried out in 

groups, but will inform that instruction in ways that are different from the responses 

teachers might give to students individually.  As Ball and Bass (2000) describe, 

teachers “need mathematical knowledge in ways that equip them to navigate these 

complex mathematical transactions flexibly and sensitively with diverse students in real 

lessons” (Ball & Bass, 2000, p. 94).  While a learning trajectory can be a resource to 

inform the mathematical progress of students, the diversity of understanding in the 

group adds to the complexity of what teachers need to know or be able to do in order to 

teach well.  The teacher may also need to develop instructional moves that engage a 

group of learners in ways that make the concept understandable to the diversity of 

individual students that make up the group, while simultaneously encouraging further 

extension of that learning.    

I consider the complexity of attending to individual student understandings in the 

context of a group as a potential factor that may have an additional influence on 

instructional practice and propose the need to look more closely at the goals teachers 

set when working in group settings.  What does this complexity mean for teachers and 

how would they manage the learning of the group of learners while also working to meet 

the needs of the individual students that make up that group?  I ask whether teachers 

who have participated in training of a learning trajectory set goals that attend to students 
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learning in groups in ways that are different from teachers without knowledge of a 

learning trajectory.  I hypothesize that when setting instructional goals, teachers with 

and without an awareness of a learning trajectory, because of their differences in 

professional learning, will differ in the extent to which they allow individual student 

differences to be expressed within the context of group instruction, as peers interact 

with each other when solving addition and subtraction problems.  

The Current Study 

For this study, I investigate the formative assessment practices of teachers as it 

pertains to students’ learning of early addition and subtraction, considering the potential 

role that teachers’ background experiences may play in accounting for those responses.  

Related to the formative assessment practices of teachers, I study the interpretations 

teachers make of student strategies followed by the responses teachers provide to 

students.  To conduct the analysis of teachers’ responses to students, I draw on 

research that describes a learning trajectory for addition and subtraction (Clements, 

Sarama, & DiBiase, 2004; Steffe et al., 1983).  After conducting the analysis for 

teachers’ interpretations and responses to student thinking, I consider the possibility 

that a teacher’s interpretation of student thinking may explain some amount of variance 

found in the teachers’ responses to students.  Further, I consider the goals teachers set 

when asking students to share their strategies in a group setting and the ways in which 

those goals provide an opportunity for the learners in the group to engage in learning 

that has the potential to deepen their understanding of the concept of addition and 

subtraction.       



  44  
 

I collected data for this study using simulated teaching scenarios, in order to present 

teachers with all of the documented student strategies detailed in the trajectory. I 

investigate the potential relationship between teachers’ self-reported background 

experiences, both in professional learning and in classroom settings, and their 

responses to the teaching scenarios. In these scenarios, I asked teachers to observe 

the work of a number of individual students, to interpret each student’s work, and to 

describe what he or she considered to be an appropriate teaching response. These 

questions were designed after the formative assessment practices of eliciting, 

interpreting, and responding (Jacobs et al., 2010).  I then asked the teacher to choose a 

problem for the same students to discuss in a group setting, to state the intended goal 

for the discussion, and to consider in what ways the teacher may manage the varied 

learning needs of the students within the group discussion.             

In gathering these responses from teachers, related to teachers’ formative 

assessment practices in teaching early addition and subtraction, I pursued the following 

questions: 

1) Are there differences in what teachers notice from students' work on addition and 

subtraction when we compare teachers who have had training in a learning 

trajectory for addition and subtraction with those who have not had training in a 

learning trajectory?  
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2) How are the learning goals of teachers who have had training in a learning 

trajectory for addition and subtraction different from the goals of teachers who 

have not had training in a learning trajectory, and how does teachers' training in a 

learning trajectory relate to the extent to which responses have the potential to 

extend individual students' learning? 

3) How do teachers manage the differences in student progress along a learning 

trajectory when discussing addition and subtraction problems in a group 

setting?  Are those differences related to whether teachers have had training in a 

learning trajectory?  
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Chapter 3: METHODS 

 
Introduction 

The benefits of formative assessment (Black & Wiliam, 1998) can be 

outbalanced by the difficulties of implementation (Heritage, Kim, Vendlinski, & Herman, 

2009).  Based on suggestions that a learning trajectory may be a tool that serves to 

inform the responses made to students (Sztajn et al., 2012), I investigate teachers’ 

instructional moves in response to individual students, as well as in groups, and 

consider if differences in teachers’ practices relate to their background profession 

experiences related to early addition and subtraction.  I study in what ways teachers 

attend to the learning needs of students both when interpreting and responding to 

individual thinking as well as when setting instructional goals for groups of learners.     

Studies to investigate teaching practices related to the formative assessment of 

mathematics have included analysis of teachers’ noticing during video clubs (Sherin & 

Ham, 2004), observations of teacher’s practice in classrooms (Fennema et al., 1996; 

Carpenter, Fennema, Peterson, Chiang, & Loef, 1989), and responses to student work 

in the form of a written response (Crespo, Oslund, & Parks, 2011; Jacob, Lamb, & 

Phillips, 2010; Ebby & Sirinides, 2015).  Some of these studies analyzed teachers’ 

responses to actual classroom events, either by the teachers themselves or by other 

teachers viewing the classroom events.  Others have studied teacher responses to 

artifacts of instruction, in the form of students’ written work (Kazemi & Franke, 2004).  

While video records provide real instances of students work and teachers’ responses, 
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they can also be limited in their capacity to capture how teachers respond to each of the 

student conceptions found within the trajectory, as not every strategy comes up during a 

given lesson. And, while the technique of asking teachers to respond to written student 

work does provide an opportunity to gather responses to multiple and diverse instances 

of student thinking to teachers, the responses generated are less likely to capture 

teachers’ in-the-moment response.  I looked for a way to systematically seek teachers’ 

responses to an array of student conceptions and to do so in a way that would elicit 

their response in the moment.  

For those reasons, I used storyboard representations of classroom scenarios 

(Herbst & Chazan, 2015) in order to represent the array of strategies used by students 

to solve addition and subtraction problems and depict those solution methods in the 

context of a classroom setting to simulate how teachers might respond in moments of 

classroom instruction.  I used the storyboard representations to survey teachers by 

asking them to describe and respond to multiple instances of student thinking as well as 

to consider learning goals to support diverse groups of learners.  I conducted this study 

in the context of early addition and subtraction because a learning trajectory for the 

concept has been well-established in the literature (Clements, Sarama, & DiBiase, 

2004; Steffe et al., 1983) and the concept is one that is taught universally in elementary 

schools.  Using scenarios to represent student thinking in early addition and subtraction, 

I was able to gather evidence of teachers’ intended responses to each student 

conception identified in that learning trajectory.  By considering teachers’ self-reported 

training in a learning trajectory as a background factor, I investigated whether there are 

differences in teachers’ formative assessment practices.  Namely, I examined teachers’ 
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interpretations of and responses to students’ individual thinking and did so by 

considering their responses to prompts associated with representations of student 

thinking that are described in the learning trajectory (Clements, DiBiase, & Sarama, 

2004).  In particular, I investigated the goals teachers set for individual students and the 

responses they provided as means to support those learning goals.  Further, I examined 

the ways in which teachers chose to attend to the diversity of students’ learning needs 

in the context of a group discussion and asked whether any differences in teachers’ 

learning goals for group settings were associated with teachers’ background 

experiences.   

Data Collection 

 I conducted this study by gathering responses from elementary teachers using 

an online scenario-based questionnaire (Herbst & Chazan, 2015). In doing so, I was 

able to present multiple classroom moments that highlight each of the varied methods 

students utilize to come to solutions to addition and subtraction problems.  Each item in 

the survey included a variety of open-ended questions, asking teachers to describe 

what they would do in response to students who share their thinking individually with the 

teacher, as well as to consider goals for learning when those individuals join together in 

a group setting.  Each item also included a closed-ended question prompt in which 

respondents were asked to choose a word problem from a list, and to indicate the 

numbers to be used in the problem.  The design of the survey is described more fully 

later in this section.   
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Participants 

Because this was important to my research questions, I recruited teachers with 

differing professional learning experiences.  Because there is a growing movement, in 

the mid-western state in which I recruited, to train teachers on learning trajectories, I 

contacted educational service agencies who had been involved in professional learning 

related to learning trajectories and intentionally recruited teachers who had been 

through the training.  I also recruited another sample of teachers by sending out 

invitation emails to districts in regions where trainings had not yet occurred.   

In total, I sampled 22 practicing elementary teachers who varied in a number of 

ways; from their current teaching assignment (e.g., general classroom instruction and 

grade level, small group interventionist) to years of experience in an elementary 

classroom, as well as in their professional learning experiences related to the 

mathematical thinking of students.  Vital to the research questions I ask, the participants 

were asked to describe their professional experience in a background survey.  In 

addition to gathering the teacher’s current teaching assignment, years in that position, 

and years teaching elementary school more generally, I asked teachers to indicate any 

participation in professional learning related to the teaching of mathematics that had 

occurred in the last three years.  Teachers were then asked to describe the purpose of 

that professional learning as well as the key take away from that learning.  In addition, I 

asked if there had been any form of follow up support after the professional learning had 

ended, giving a number of choices that are often used to support teachers after a 

professional learning series.  These included follow-up support from facilitators, 

coaching support, collaborative teacher meetings, or other.  This was done in order to 
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gather information that described the nature and extent of opportunity the teacher has 

had to engage in professional learning related to mathematics student thinking, and 

more specifically of a learning trajectory for addition and subtraction. Table 3.1 includes 

information related to the background of the teachers who participated in the survey.   

Table 3.1 

Background information of teachers participating in survey 

 
 
 

ID 

 
 
 

Teaching Assignment 

 
Years of 
Teaching 

Experience 

Professional 
Learning in 

Mathematics 
Teaching (in 
last 3 years) 

Professional 
Learning in a 

Trajectory 
(in least 3 

years) 

Follow Up 
Support 

for 
Learning 

2448 Math Specialist 12 Yes Yes None 
4381 Special Education 17 Yes Yes Coaching 
4411 4th grade 5 Yes Yes None 
4422 Special Education 5 Yes Yes Coaching 
4448 4th grade 5 Yes Yes Coaching 
4493 5th grade 20 Yes No PLC 
4520 Middle School 10 No No NA 
4543 4th grade 31 Yes Yes PLC 
4546 2nd grade 9 Yes No PLC 
4552 4th grade 3 Yes Yes Coaching 
4556 Special Education 31 Yes Yes Coaching 
7110 Interventionist 12 No No NA 
7150 Kindergarten 6 No No NA 
7159 Kindergarten 14 Yes No None 
7160 Early Childhood 

Specialist 15 Yes Yes 
 

NA 
7161 3rd grade intervention 3 Yes No None 
7165 Kindergarten 17 Yes No Coaching 
7173 4th grade 10 No No NA 
7174 3rd grade 4 Yes No Unknown 
7195 First Grade 18 Yes No PLC 
7228 Kindergarten 11 No No NA 
7288 1st grade teacher 3 No No NA 

 

 I used the background information in later analyses to determine explore 

background characteristics of the teachers that might explain some amount of variation 

in the data.  In previous studies, researchers have correlated teachers’ experience and 
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training in a learning trajectory teaching responses considered more ‘expert’ (Jacobs et 

al., 2010).  As I will describe in the analyses, the categories that were most highly 

correlated with the responses that I coded as high quality were whether or not the 

teacher was responsible for teaching in the lower elementary grades (PreK through 

second grade) and whether or not the teacher had been trained in a learning trajectory 

for early addition and subtraction.  For purposes of this study, I consider special 

education teachers in elementary buildings who teach in PreK-2 settings to be grouped 

into the group of early elementary teachers because of their interactions with children 

learning the targeted concepts.  This created four groups of teachers used for 

comparisons of data in the analyses.  The number of teachers that fell into each of the 

four categories are listed in Table 3.2.   

Table 3.2 

Number of teachers by grade level and training in a learning trajectory 

 Trained in a Learning 
Trajectory for Addition 
and Subtraction (LT) 

Not trained in a Learning 
Trajectory for Addition 

and Subtraction (non-LT) 

Total 

Teaches Early 
Elementary 
Mathematics (EE) 
 

4 
 

8 
 

12 
 

Teaches Upper 
Elementary  
Mathematics (UE) 

5 
 

5 
 

10 

 
Total 

 
9 

 
13 

 
22 

 

The Scenario-Based Survey:  Responding to Students’ Addition and Subtraction 
Strategies 

I created a scenario-based survey in order to gather teachers’ responses to the 

informal methods students use to solve addition and subtraction tasks; strategies which 
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would be familiar to most elementary teachers and that were found along the target 

learning trajectory.  I used the technique of a scenario-based instrument (Herbst & 

Chazan, 2015) because it allowed me to portray each of the student strategies and to 

do so in a manner that represented the students’ work as occurring in the context of 

classroom interactions.  These scenarios also allowed me to present each of the 

common student strategies in the form of a storyboard, using graphics to represent 

simulated classroom scenarios in which students make use of strategies such as those 

described in the target learning trajectory (Clements, Sarama, & DiBiase, 2004; Steffe 

et al., 1983).     

I created the classroom scenarios by making use of the Depict tool in the 

LessonSketch online environment (www.lessonsketch.org).  Depict is a cartoon 

storyboarding tool that has graphics designed to represent a typical elementary 

classroom environment (Herbst & Chieu, 2011).  Depict enables the viewer to observe 

the classroom representations and its participants as interactions occur.  Key to this 

study is the ability that Depict has to associate the language in the depicted 

representation with the particular actors who enact them, through the use of speech 

bubbles.  Because the work of early elementary students is so often observed as 

students share verbally, Depict allows for the student work to be portrayed as it occurs 

over time, rather than projected onto a written artifact as in research that examines how 

teachers respond to students’ written work (Kazemi & Franke, 2004).  The storyboard 

also represents the multimodality of classroom interaction much better than a classroom 

transcript (Herbst, Chazan, Chen, Chieu, & Weiss, 2011).  An example of a student 

sharing their strategy for solving a problem modeled as 8 + __ = 13 is shown in Figure 

http://www.lessonsketch.org/
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3.1 below.  The depiction provides a reminder of the problem posed by the teacher, as it 

is written on the board, and the student shares her strategy using language that is 

typical of students in the early elementary grades.   

  

Figure 3.1:  Yellow shares a strategy for solving 8 + __ = 13. 

The scenarios provide a representation of a classroom that mutes many 

idiosyncrasies in the representation of individual students (Chazan and Herbst, 2011), 

while maintaining idiosyncrasies that represent particular conceptions of addition and 

subtraction that would be considered productive for teachers to recognize and attend to 

during instruction.  Chazan and Herbst (2012) have observed that even though a 

storyboard or animation portrays a specific storyline, teachers are able to look beyond 

the specific storyboard to project themselves onto it or consider it akin to the teaching 

they have done.  After the scripted scenarios were represented using Depict, I used the 

Plan tool in the LessonSketch platform to create an online questionnaire that asked 

participants to respond to variations of routine classroom interactions that occur in the 

ThExpiansB character set ©2015 
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context of teaching addition and subtraction in an early elementary classroom.  In this 

way, I was able to present the scripted scenarios as a simulation of teaching practice 

rather than a self-reflection of instructional moves enacted in a teacher’s classroom 

(Herbst, Aaron, & Chieu, 2013).  I asked teachers to respond directly to those moments 

of instruction, giving what they consider to be an appropriate description and acceptable 

responses to typical enactments of student work.  I delivered the questionnaires online, 

using the Experience Manager tool within the LessonSketch platform.          

 Appendix B includes screen shots of depictions found in the survey, along with 

the prompts that follow those depictions.  In the following section, I describe both the 

design of each item within the instrument as well as the design of the set of items used 

across the instrument. 

Design of an Item.  Each item within the overall instrument was designed to elicit the 

formative assessment practices of teachers, specifically teachers’ interpreting of and 

responding to the mathematical thinking of two individual students.  After responding to 

the students working independently, the teachers were also asked to choose a problem 

to be posed during the group discussion and to state an instructional goal for the 

students in the classroom.  The group to receive the problem was composed of the rest 

of the class as well as those two students who had been observed individually during 

the earlier portion of the item.  This context set up the items such that participants were 

allowed to gather formative assessment information about individual students and 

respond to them individually, then also utilize that information to choose a problem and 

learning goal for the group of students who solve the problem during the discussion.       
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The design described above was realized in each of four items by depicting a 

teacher who has given the group of students an addition or subtraction problem, chosen 

from the framework of problem types for addition and subtraction (Carpenter & 

Fennema, 1992).  The depicted teacher then asked the students to work on the problem 

independently while the teacher monitored the work of students in the classroom.  An 

example of the frame that sets up this portion of the scenario is shown below in Figure 

3.2.  In this frame the teacher poses a problem, which is also written on the board, and 

the students are asked to solve the problem while the teacher monitors the students’ 

work.     

.  

Figure 3.2:  The depicted teacher provides a problem for students to work on 
individually 

 
During the independent work time, the depicted teacher was represented 

monitoring the work of three different students in the class, one of the critical features of 

formative assessment, in which the teacher elicits student thinking.  I depicted the 

teacher eliciting the thinking of three students in order to allow the participant to observe 

ThExpiansB character set ©2015 
The Regents of the University of Michigan.  Used with permission 
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the work of each of these students.  In the Figure 3.3 below, the teacher is represented 

observing the solution method a student named Blue has used to solve the subtraction 

problem that was presented to the class in the previous slide.   

 

Figure 3.3:  The depicted teacher monitoring the work of Blue 

After each observation of student thinking, the participant is asked to respond to 

a series of prompts, in the form of an open-ended response.  These prompts occur after 

each observation of a student in the scenario.  To elicit formative assessment practices, 

the participant is asked the following 1) “Describe what you notice the student has done 

to solve the problem”, 2) “Describe what you would say and do in response to the work 

the student has done.”  Then the participant is asked to describe a learning goal for the 

particular student, 3) “Describe what you would consider to be the next learning goal for 

the student.”  In each case, the participants are provided an open text box in which to 

complete their response.  The first prompt is meant to gather information regarding the 

details the participant takes into account when describing the student’s thinking while 

ThExpiansB character set ©2015 
The Regents of the University of Michigan.  Used with permission 
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the two subsequent prompts ask the participant to describe what he or she would 

consider appropriate as next steps for the student.   

After responding to the individual work of two students in each item, the depicted 

teacher is shown bringing the class together for a whole group discussion of a new 

problem.  The depiction that represents this is shown in Figure 3.4 below, in which the 

depicted teacher sets up an expectation for the time spent in the group discussion, in 

which students will work a new problem and share their strategies in a group setting.     

 

Figure 3.4:  The teacher brings students to rug to discuss a problem as a group 

At this point, the questionnaire asks the participants to choose a problem that 

would be used during this discussion with the whole group.  Teachers are prompted to 

choose one out of five problems, each modeled after the addition and subtraction 

problem types, (Carpenter et al., 1981).  The choices include an addition and 

subtraction problem in which the result is unknown, an addition and subtraction problem 

in which the change is unknown, and a comparison subtraction problem.  The choices 

ThExpiansB character set ©2015 
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given to participants are stated as word problems in the following form and based on the 

particular problem type, Jamis has ___ marbles and his friend gives him some more.  

Now he has ___ marbles.  How many marbles did his friend give him?  Following this 

close-ended response, I ask the participant to choose the two numbers he or she would 

place in the problem.  This allows me to determine which problem type the teacher 

would find appropriate, for example a find result subtraction or missing addend, as well 

as the values which the teacher considers appropriate for the students to work with.  

After participants have chosen a problem type and the numbers he or she would use to 

pose the problem to students, the participant is asked to indicate an instructional goal 

for the group of students.  The participants are prompted to “describe what you plan to 

achieve with this group of students when the chosen problem is discussed.” Participants 

are asked to give an open-ended response to this question.  Because the problem is 

chosen as a learning opportunity for the whole class and participants have just viewed 

the individual work of students within the class, I designed this prompt in order to better 

understand how teachers might attend to the individual learning needs of students who 

are now engaged together in a whole group, or negotiate those individual needs with 

the needs of the class as a whole 

Design of the Instrument.  Across the whole instrument, the items depict conceptions 

of addition and subtraction of three students, identified orally by their differently colored 

vests, Blue, Yellow, and Green.  Each student is making progress along the trajectory 

as viewed across the set of items found in the instrument.  The four items that make up 

the instrument allow participants to view each of these three students within each class 

setting as well as the progress those students make across the academic year.  Over 
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the course of the instrument, I ensured that each informal method that is described in 

the trajectory appeared at least once, and that each method was carried out some times 

correctly and sometimes in error.  A table showing which strategies were used by the 

students in each item and across the instrument is shown in Table 3.3 below.   

Table 3.3: 

Problem posed and student responses in survey.  

 Item 1:   
Late Fall 

Item 2:   
Early Winter 

Item 3:   
Late Winter 

Item 4:   
Early Spring 

 
 
 
Problem 
Posed 

Jonas had 12 
pieces of gum.  
He gave 7 to his 
friends.  How 
many pieces of 
gum does he 
have left? 

Hal had 8 stickers 
and his teacher 
gave him some 
more.  Now he has 
13 stickers.  How 
many stickers did 
his teacher give 
him? 

Sadie had 11 
markers and she 
left 8 of them at 
her friend’s 
house.  How 
many markers 
does Sadie have 
now? 

Jack had 13 
erasers.  He gave 
some of them to 
his friends.  Now 
he has 5 left.  
How many did he 
give to his 
friends? 

 
 
Student A:  
Blue 

I counted um, 11, 
10, 9, 8, 7, 6, 5.  
He has 5 pieces 
of gum left. 

Yeah, so 9, 10, 
that’s 2 more.  
Then 11, 12, 13.  
That makes 5 from 
his teacher. 

9 and 10 makes 2 
and then 11 is 1 
more.  She has 3 
left now. 

5 and 10 more 
would make 15, 
but that’s too 
many.  I take off 
some then.  He 
gave his friends 
9. 
 

 
 
Student B:  
Yellow 

Well, he has 7 
left.  So, I can 
count to see how 
many more to get 
to 12.  Um, 7, 8, 
9, 10, 11, 12.  He 
has 6 left. 

Well, he had 8 at 
first.  Then, 9, 10, 
11, 12, 13.  His 
teacher gave him 
5.   

10, 9, 8.  She has 
3 left. 

I can go back like 
this.  12, 11, 10, 
9, 8.  And that 
means he gave 5 
to his friends. 

 
 
Student 
C:  Green 

Well, I counted 12 
chips from my 
bucket.  Then I 
put 7 of them 
away.  That 
leaves 1, 2, 3, 4, 
5.   

Well, uh, 1, 2, 3, 4, 
5, 6, 7, 8.  Then 9, 
10, 11, 12, 13.  So, 
see, he got 6 from 
his teacher. 

Okay, 10, 9, 8, 7, 
6, 5, 4, 3.  She 
has 3 now. 

I counted.  5.  
Then 6, 7, 8, 9, 
10, 11, 12, 13.  
That’s 9 that he 
gave to his 
friends. 

*Teachers were shown all solutions, but not asked to respond to those in gray cells.   
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Early in the survey, labeled for the teachers as occurring in late fall, the three 

students use strategies that are relatively rudimentary and without much variance in 

relation to each other on the trajectory.  In fact, each student in Item 1 used a variation 

on a counting strategy --some using objects and some not using objects.  As the 

students are depicted making progress throughout the school year (as the survey 

progresses), each student makes use of strategies that become increasingly more 

sophisticated, although the students make progress at different rates.  In this way, the 

items that occur later in the survey present teachers with a classroom in which the 

students’ abilities are more widely varied than what would have been observed in earlier 

items.   

The design of one of the four items is unique in that none of the students have 

made an error.  I consider this scenario unique since responding to a student’s error is 

likely seen as a priority in classrooms in that a teacher should support the student in 

understanding the current method being used.  However, responding to a group of 

students who have not made an error leaves the range of possible responses much 

more open since the teacher will need to choose how to extend each student’s current 

understanding.  The knowledge of learning trajectories not only provides a teacher with 

information regarding students’ informal methods for solving problems, but also the 

order in which those informal methods are likely to develop in a child over time.  This 

means that asking participants to respond to students who have carried out the strategy 

correctly provides an interesting space for teacher decision making.  With knowledge of 

learning trajectories, a teacher has a framework on which to base decisions of this 

nature.  Without the use of a learning trajectory, teachers might rely on other sources, 
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such as a set of curricular materials or assessments used in their district, or perhaps 

considerations of a completely different nature.     

Data Analysis 

 The design of the survey ensured that teachers respond to each instance of 

students’ informal thinking described in the learning trajectory used in this study, as 

these are all instances of student thinking that teachers are likely to encounter in 

schools.  I coded the data with the aim to define measures related to key formative 

assessment practices.  In doing so, the analysis affords the ability to determine mean 

scores for key formative assessment practices across those instances of student 

thinking. 

Teacher Interpretation of Students’ Informal Methods 

 The first research question asks what details teachers take into account when 

interpreting student thinking. In accounting for that set of responses I consider whether 

teachers’ interpretations differ in ways that can be associated with their background 

experiences.  Later, I relate the ability to interpret student work to the knowledge of 

content and students (KCS) because, in part, KCS can be described as teachers’ 

knowledge of student’s common ways of thinking (Ball et al., 2008).  To explore this first 

research question, I analyzed data gathered in response to the prompt, “Describe what 

you notice the student did to solve this addition or subtraction word problem.”  This 

prompt was posed each time the participant had an opportunity to observe individual 

student thinking: Twice in each item and a total of eight times across the four items that 

made up the instrument.   
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 The analysis of the descriptions teachers gave in response to this prompt aimed 

to determine what teachers notice related to students’ common ways of thinking and 

whether those responses include interpretations that go beyond a mere description of 

the student’s work.  While an objective description of a student’s work is certainly a valid 

response to the question, further interpretation of the student’s method is useful to 

support the practitioner’s subsequent instructional responses.  For example, a teacher 

could state that a student counted backward from 11 to 8 in order to determine that 3 is 

the difference between the two numbers.  On the other hand, noticing where the 

student’s count began, that the student counted by ones, or that the student counted 

only 3 counts when it might be more typical for the student to count 8 counts are all 

examples of a teacher’s interpretation of the student’s work.  These details go beyond a 

description of what is seen in the depiction to attribute meaning to the work of the 

student.  I posit that these interpretations can be essential for teachers to respond in 

ways that attend to the student’s current understanding of addition and subtraction.  I 

used dichotomous codes to code for description and interpretation as I analyzed 

teachers’ responses to the prompt.   

Each participant’s response to a representation of student work was coded 0 or 1 

for description and 0 or 1 for interpretation.  I treated description and interpretation as 

separate coding decisions applied to the responses from the participants.  It would be 

possible for a teacher to describe the work of a student without interpreting that work 

and vice versa.  For example, stating that a student counted backward to subtract is an 

example of a description without interpretation and stating that a student recognizes the 

ten within a problem is an example of an interpretation without description.  
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I argue that an interpretation of student thinking, as opposed to only a description 

of the students’ work, includes information useful for teachers when deciding how to 

respond to students.  Because of this, the scores for description were used only to verify 

that participants were attending to the mathematical work of students depicted in the 

scenarios, as opposed to some other factor within the scenarios.  I then used teachers’ 

interpretation scores to determine whether differences in teachers’ interpretations can 

be related to teachers’ background experiences with the learning trajectory for addition 

and subtraction.  I did this by finding each teacher’s mean interpretation score across 

the eight representations of student thinking as a measure of the average extent to 

which they interpreted student responses using the learning trajectory.  I then used the 

Wilcoxon rank-sum test, a non-parametric test of comparison between two samples, to 

determine if there was reason to believe the two samples came from different 

populations. The Wilcoxon rank-sum orders the individual scores (mean interpretation 

score across items) for the aggregate group of teachers and determines the probability 

that a randomly chosen score from the group of teachers trained in a learning trajectory 

has a higher rank than a randomly chosen score from the teachers not trained in a 

learning trajectory.  To represent the groups, once there is evidence that they come 

from different populations, I found the median score for the teachers of each group.  In 

this way, I proposed to first determine whether teachers’ interpretations of student 

thinking differed based on whether or not they are characterized by these two 

professional experiences; Teaching in an early elementary setting and being trained in a 

learning trajectory.   
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The coding system described above reduced each item’s response to a 1 

(interpretation present) or 0 (interpretation absent). In turn, the coded data produced a 

measure (the average interpretation code across 8 items each coded 1 or 0), which I 

refer to as the interpretation score moving forward. This interpretation score serves two 

purposes for the analysis in the study.  First, it provides a resource for responding to the 

first research question:  Are there differences in what teachers notice from students’ 

work in addition and subtraction and do those differences relate to teachers’ 

participation in training of a learning trajectory?  This could serve to describe one 

component that makes up a teacher’s knowledge of content and students (KCS).  

Secondly, the interpretation code provides an independent variable that could be 

correlated with data from teachers’ responses to students, as a teacher’s response is 

likely to be related to what the teacher notices during an observation of the student’s 

work.  I discuss the correlation between interpretations of and responses to student 

thinking after I discuss the analysis of teacher responses.       

Teacher Responses to Student Methods.  

The second research question asks to what extent teachers’ responses to 

students’ common ways of thinking about addition and subtraction are of a quality that 

holds the potential to support student understanding along the trajectory. The question 

also asks whether teachers’ responses to students, including the learning goals they set 

for students, differ based on the teachers’ background. The design of the instrument 

included questions that focused participants’ attention on each student’s thinking and 

elicited a corresponding learning goal and response.  The participants’ attention was 

brought first to a particular conception by asking them to view a depiction of a student 
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solving an addition and subtraction problem, then ask the teacher to describe the 

student’s work.  I developed a scalogram (Guttman, 1950) to code the quality of each 

teaching response, using the learning trajectory as a source of criteria for the 

scalogram’s questions.    

Other potential ways of coding the data, attending to the form of the response, 

could have been used to observe differences among teachers’ responses. For example, 

the responses could have been coded according to whether they were open- or closed-

ended. But I argue that such coding would not sufficiently distinguish responses in 

regard to their potential to extend a learning opportunity.  To substantiate my argument, 

I provide illustrative responses from the data which are closed- and open-ended in 

Table 3.4 below.  I also describe, based on the learning trajectory used in this study, 

whether the responses either hold the potential to extend student thinking or not.   

The responses shown on Table 3.4 refer to a scenario in which the student had 

used a counting on strategy to solve a subtraction problem. The scenario provides 

evidence that the student is beginning to understand the inverse relationship between 

addition and subtraction.  It would be in alignment with the trajectory for the student to 

consider this relationship further or begin to make use of derived strategies.  The 

sample responses describe how a teacher’s response could attend (or not) to the 

learning trajectory regardless of the open- or closed-ended nature of that response.   
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Table 3.4: 

Examples of open- and closed-ended responses that differ in learning opportunity. 

 Open-Ended  
Closed-Ended 

 
 
 

Potential to Extend 

“Good! What math facts 
sentences can you share that 
could solve this problem?” 
   
Next Goal:  “The student has 
an active strategy using 
structuring, but is not yet 
fluent.” 

“You made 10 by counting up 
from 8 then added one more.  
You used the number ten as a 
friendly number and counted 
up.”   
 
Next Goal:  “Remind her of the 
combinations of 10 so that she 
could have said 8 and 2 more 
is 10 then one more is 11.” 

 
 

Little Potential to 
Extend 

“I like your thinking.  Is there 
another strategy you could 
use?”   
Next Goal:  “Just know the 
facts” 

“I would say that they are right 
and that is one of the ways to 
solve the problem.”   
 
Next Goal:  “I would have the 
student work on solving similar 
problems with harder 
numbers.” 

 

 I argue the open-ended responses shown in Table 3.4 differ in their potential to 

extend student thinking.  The teacher’s response shown on the first row and first 

column, can be described as having the potential to extend the student’s thinking along 

the learning trajectory used in this study and is intentionally being used to ask the 

student to write number sentences that would model the relationship the teacher would 

like to establish.  On the other hand, another teacher’s open-ended response, shown on 

second row and first column, does little to give the student direction for the work he or 

she should do next and thus may have little potential to extend that student’s thinking.   

 At the same time, the responses labeled as closed-ended differ in the potential to 

extend student thinking as well.  Whereas one teacher, shown on the first row and 

second column of Table 3.4, describes a closed-ended response to specifically practice 
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combinations of 10 in order to engender the use of a derived strategy, the other 

teacher’s closed-ended response ends up evaluating the student’s work and providing 

another set of problems to work.  I argue this second response is not likely to press the 

student to extend his or her mathematical thinking, as much as to give the student 

additional time to practice his or her current strategy. So, while open ended questions 

are often highlighted as ones that can promote students’ learning (Leinwand, Brahier, 

Huinker, Berry, Dilion, Larson et al., 2014), the data indicates that perhaps not all of 

those open-ended questions provide productive opportunities to extend a student’s 

thinking.  Instead of coding teachers’ responses only on the basis of their generic 

linguistic characteristics, I developed a scalogram that would elicit information on the 

potential that teachers’ responses had for extending thinking along the trajectory.  After 

the participants viewed the student’s thinking, they were asked to “describe what you 

would say and do in response to this student” and “describe what you consider to be the 

next learning goal for this student.”  The scalogram (Guttmann, 1950) relies on three 

nested questions, coding each with a 1 or 0 based on whether or not an indication is 

present.  A scalogram is constructed in such a way that if a question is coded with a 0, 

the questions following it will not be coded with a 1.  Because of this, the sum of the 

scores in the scalogram can be used as a rating of the quality of the teacher’s response 

in an item.   
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The questions were designed to score the extent to which the teacher’s response 

extends student thinking along the trajectory in a way that attends to the student’s 

current use of a strategy.  The questions in the scalogram are  

1) Is the teacher’s goal such that it would not be considered regressive  

according to the chosen learning trajectory and based on the student’s current 

strategy?   

2)  Is the learning goal specific and aligned with what the student has yet to learn 

according to the learning trajectory, when taking into consideration the student’s 

current strategy? and  

3) Does the teacher describe an instructional move that could support the 

learning goal described by the teacher?   

The coder, taking the student’s current strategy into consideration, used the 

scalogram’s questions to code each of teachers’ responses.  The scalogram first 

considers what goal the teacher intends to meet and then considers if the teacher 

suggests aligned means for meeting that goal.  For example, if the response does not 

indicate a learning goal aligned with the learning trajectory used in this study, then it is 

not expected that the response will include a means by which to support the extension 

of the student’s understanding either, because those extensions rely on such alignment.   

 For each of the questions, I drew on the literature describing a learning trajectory 

in addition and subtraction (Clements et al., 2004; Steffe et al., 1983) as well as 

Vygotsky’s theory of the zone of proximal development (Vygotsky, 1987).  In the former, 

researchers have described the development of student thinking for early addition and 
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subtraction as one in which children develop more sophisticated thinking about the 

operation over time.  Generally, this means that students move from the concrete use of 

objects to model additive and subtractive processes, to more sophisticated uses of 

counting patterns, and finally to reason about the properties of number and the 

operation itself.  In the latter, Vygotsky describes the zone of proximal development as 

the distance between what a child can do independently and the “level of potential 

development as determined through problem solving under adult guidance or in 

collaboration with more capable peers” (Vygotsky, 1987, p. 86).  The depiction is meant 

to represent the student’s independent abilities, thus, I consider the depiction and the 

teacher’s response in conjunction with each other to determine whether the teacher’s 

response sets goals for the student that are attainable with the support of a teacher, as 

indicated by the learning trajectory being used in this study.  Thus, each specific goal 

set by the teacher, was first coded as to its location on the learning trajectory used in 

this study relative to the depicted student’s current strategy (e.g., +4 if the student was 

direct modeling and the teacher set a learning goal to learn a make ten strategy, or a -2 

if the student was using a counting on strategy and a learning goal was set for the 

student to solve problems with counters).  If this relative distance was +1 or +2, the 

response was coded with a 1 for the scalogram question, “Is the learning goal specific 

and aligned with what the student has yet to learn according to the learning trajectory, 

when taking into consideration the student’s current strategy?”     

 The range of possible ratings for the quality of one teaching response is between 

0 and 3.  Based on the questions, a score of 0 would be an indication that the teacher 

proposed something in the response that would be considered to regress the student in 
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their thinking (e.g., giving the student counters to do their next problem if they had 

previously used a counting method).  A score of 1 would indicate that nothing in the 

response was considered to regress the student’s thinking, but there was also no 

indication that the teacher proposed a learning goal aligned with the learning trajectory 

or was able to support that goal.  Finally, a score of 2 would indicate that the response 

included a learning goal aligned with the learning trajectory, and a score of 3 would be 

given to a response that also had specific instructional moves for supporting that 

learning goal. 

 After coding the data, I found the mean response code for each teacher across 

all eight items, to represent the extent to which teachers’ responses to all students have 

the potential to extend the students’ learning opportunities—I refer to this average code 

as the response score.  I compared the groups of participants by using the Wilcoxon 

rank-sum test, a non-parametric test that assesses the probability that a randomly 

chosen score from the group of teachers trained in a learning trajectory has a higher 

rank than a randomly chosen score from the teachers not trained in a learning 

trajectory.  I did this to determine if teachers with particular classroom experience or 

training differed significantly in their responses to students. If these groups turned out to 

be associated from different populations, I represented them using the median response 

score of teachers within each group.       

I use the scores from this coding to relate to the construct for knowledge of 

content and teaching (KCT).  The scores provide a way of describing both the openness 

that teachers have to allow students to make sense of and develop informal methods for 

solving addition and subtraction problems as well as the skill of the teacher to do so.   
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Correlation Between Interpretation Scores and Response Scores 

After analyzing teachers’ interpretations and responses to students, it is reasonable to 

ask if a relationship exists between interpretation scores and response scores.  I 

conjectured that response scores would correlate positively with interpretation scores.  

This correlation would suggest that there is a relationship between interpretation as a 

case of KCS in addition and subtraction, and teacher’s responses as a case of KCT for 

addition and subtraction.  It is clear that some teachers might choose an instructional 

approach that encouraged students to always have objects available in order to model a 

mathematics problem, regardless of the student’s thinking.  But, providing discrete, 

countable objects to a student who has an understanding of the relationship between 

quantities is not likely to be a helpful support for challenging that student’s sophistication 

in mathematics, whereas a structure like a ten frame may be more supportive.2  To find 

a positive and significant correlation would lend credence to the conjecture that a 

teacher who chooses and supports a response to a particular student which is aligned 

with the learning trajectory is more likely to have made an interpretation of that student’s 

thinking.       

 By examining the data in this way, I propose to probe for a relationship between 

a teacher’s KCS and KCT, using the variables defined above as proxies for each 

domain of mathematical knowledge for teaching (Ball et al., 2008).  If a significant 

positive correlation existed, it would help document to what extent a teacher’s 

                                                           
2 There is evidence that giving objects to students who have progressed beyond the need for objects may revert to 
a basic counting strategy when provided objects (Steffe et al., 1983) and that a ten frame is a structure that 
supports student understanding of relationships between quantities (Clements & Sarama, 2014).  See more about 
these teaching strategies in Appendix A. 
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interpretation of student’s concepts is a helpful resource for teaching responses of a 

quality that can be appreciated from the perspective of the learning trajectory.  

Additionally, I compared the strength of that correlation for teachers with training on a 

learning trajectory with the strength of the correlation for teachers without training on a 

learning trajectory.   

 Up to this point, I have described how I processed the data to distinguish 

teachers in regard to their noticing of aspects of students’ conceptions, and second to 

describe the nature of teachers’ responses to students’ informal methods. I have also 

described how I expected that the interpretations teachers make of student conceptions 

could play a role in the responses teachers give to those students and how a correlation 

between the interpretation and teaching response mean scores would support such 

conjectures.     

Teachers’ Goals for Instruction in Whole Group 

The remaining piece of analysis considers that while a learning trajectory could be a 

beneficial tool for understanding individual student thinking, it is necessarily more 

complex for a teacher to consider learning goals for a group of learners because of the 

diversity of understandings that are naturally present within the group.  While a teacher 

may make use of a learning trajectory to inform instructional moves for an individual’s 

learning, each student will traverse through their learning beginning from different 

starting points (relative to the academic year) and at different paces.  Yet, that they will 

all be learning in the same classroom is part of the complexity of his or her work a 

teacher needs to manage.  The instructional goals that teachers set for groups of 

learners, then, could vary in significant ways from the goals set for individual students or 
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from the goals set by other teachers when faced with the same complexity.  I propose 

that when teachers engage with groups of students, who differ in their current 

understandings of a concept, their instructional goals may not be targeted at any one 

particular student’s understanding, but instead serve to meet the needs of learners in 

different ways.  For example, instead of setting a specific learning goal for students to 

make use of a derived strategy (which may not be attainable by all of the students), the 

teacher might instead set a goal for everyone to be able to communicate clearly about 

the problem that is posed (Yackel & Cobb, 1996).  Or, a teacher might allow for the 

diversity of student thinking to be elicited within the group and have methods for that 

varied thinking to be utilized as a means for others to learn.  Because of the multiple 

needs of students and the varied goals teachers might have for groups of students, I 

analyze the goals teachers write for the group of students and look for linguistic 

representations of how the teacher intends to engage the group in learning.  Qualitative 

methods are used to analyze these goals because I conjectured that the group setting 

might be more likely to elicit instructional goals that varied more widely as compared to 

those responses to individual instances of student thinking.  

I used systemic functional linguistics (Halliday, 1978; Halliday & Matthiessen, 

2004) to discern differences in the varied ways that teachers approached group 

discussions.  According to the theory of systemic functional linguistics, words in a text 

do not carry meaning in and of themselves.  Instead, as speakers or writers make 

choices in the ways their words come together grammatically, the language “shapes, 

and is shaped by the contexts in which it is used” (Schleppegrell, 2012, p. 21).  Through 

choices from lexical and grammatical systems, speakers and writers present meanings 
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that are functional for their purposes in a particular social context.  Through analysis of 

the ways speakers draw on these system, the theory of systemic functional linguistics 

affords the ability to interpret meaning in a text.      

 I used the SFL system of transitivity (Halliday and Mathiessen, 2004) to analyze 

how the language teachers used to respond to the prompt to “describe what you plan to 

achieve with this group of students when the chosen problem is discussed” reflected 

different choices in representing the experiential world.  The tools of SFL permit to 

analyze those goal statements in more depth than other qualitative tools, such as 

grounded theory (Strauss & Corbin, 1994), because systemic functional linguistics 

organizes the systems of choice that are available to writers or speakers as they 

construct the text. In doing so, SFL provides the analyst with means to reveal the 

meaning potential of the actual choices participants made. Because the goals that 

teachers set could vary along many dimensions (e.g., the use of multiple methods or 

not, who engages in the discussion, what tools are used to aid the discussion, and so 

on), and because I conjectured that the learning trajectory might be less helpful to 

account for how teachers shape the work of the group, it was appropriate to use SFL as 

a tool to illuminate the qualities of the choices teachers made, analyzing text at the level 

of the clause.  

Halliday describes language as having three metafunctions; the ideational, the 

interpersonal, and the textual (Halliday & Matthiessen, 2004, p. xiii).  The content of a 

text is realized in the ideational metafunction—that is, the text present experiential and 

logical meanings through the choices in the text.  The interpersonal metafunction refers 

to how the choices made in the text construe a relationship between writer and reader 
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or speaker and listener. Finally, the textual metafunction refers to how choices in the 

text make it the kind of text it is and organize it as “a piece of writing or speech” (Eggins, 

2004, p. 12).  These metafunctions “are simultaneously realized in every clause we 

speak or write and relate our linguistic choices to the context that the language 

participates in” (Schleppegrell, 2012, p. 21).    

The metafunctions of interest to the analysis of the teachers’ goals are the 

ideational and the textual because they support an analysis of the content and 

connections between content presented in the teacher’s language.  I use transitivity 

analysis to extract the resources used in the text to represent ideational meaning and 

conjunction analysis to identify the textual resources teacher used to connect different 

components of the teachers’ representation of what they would do. These analyses 

allow me to more clearly describe multiple differences found across the goals. 

Transitivity analysis examines how the choices of grammar of a clause represent 

the world. It requires identifying processes, participants, and circumstances of each 

clause. These are canonically indicated by the verbal groups, nominal groups, and 

prepositional phrases and adverbial groups, respectively in each clause.  To do so, 

allowed me to distill from the text who or what participates, in which processes, and 

under which circumstances. Thus, transitivity analysis supports understanding how 

language represents experience: Implementing it helped discipline my reading of each 

goal statement, enabling me to classify, relate, and aggregate the goals of different 

individuals based on the experiences that they described being their goals for the class.  

Because such goals may include differentiating between possibilities, I complemented 

the transitivity analysis with a conjunction analysis so as to understand the nuances of 



  76  
 

the one or more goals that teachers hold for group instruction and the ways in which the 

teacher expected to manage differences within the classroom.   

A conjunction analysis (Martin & Rose, 2005) permits to illuminate how 

conjunctions used in a text realize the logical relations that can be found among events 

represented in the text.  Conjunctions can be analyzed in relation to four areas of 

meaning; addition, comparison, time, and consequence.  An analysis of the 

conjunctions, then, allows me to be further descriptive of the purpose, intent, and 

composition of the teachers’ goals. While the present account of transitivity and 

conjunction analysis is very brief, chapter 5 comes back to them as it reports on what 

the data showed.
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CHAPTER 4:  ANALYSIS 

TEACHER RESPONSES TO STUDENTS 

 The practice of formative assessment has been described as the “extent to which 

evidence about student achievement is elicited, interpreted, and used by teachers, 

learners, or their peers, to make decisions about the next steps in instruction” (Black & 

Wiliam, 2009, p. 9).  When carried out in skillful ways, this practice can connect the 

student’s current ways of thinking about mathematical concepts to ever-more 

sophisticated ways of thinking and reasoning in mathematics.  The general formative 

assessment literature (as in Black et al., 2002) advocate that teachers across all content 

areas can gather evidence of student understanding and make in-the-moment 

adjustments to instruction in ways that are advantageous to the learner.  But, there is 

also evidence that teachers may need specific training in student cognition in order to 

hone their practices for responding (Jacobs et al, 2010).  In this chapter, I consider two 

tasks of teaching, interpretation of and responding to student thinking, and consider if 

differences in those practices as carried out by teachers can be related to the 

background experiences of those teachers.  At the conclusion of both of the analyses, I 

then study the relationship between scores for the interpretation of and responding to 

student thinking.  I carry out the analyses in order to address my first two research 

questions.   
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1) Are there differences in what teachers notice from students' work on addition and 

subtraction when we compare teachers who have had training in a learning 

trajectory for addition and subtraction with those who have not had training in a 

learning trajectory?  

2) How are the learning goals of teachers who have had training in a learning 

trajectory for addition and subtraction different from the goals of teachers who 

have not had training in a learning trajectory, and how does teachers' training in a 

learning trajectory relate to the extent to which responses have the potential to 

extend individual students' learning? 

Teacher Classroom and Professional Learning Experiences 

As each of the analyses I conducted are predicated on the hypothesis that 

teachers with training in a learning trajectory hold knowledge that could influence the 

quality of instruction, I first gathered relevant information related to the teachers’ 

background, including teaching experience and professional learning the teachers had 

engaged in. In later analyses, I used these categories to determine if any of them was 

associated with the quality of instructional moves.  Jacobs and her colleagues (2010) 

found that the depth of a teacher’s experience impacted the responses to student work 

represented in scenarios.  Similarly, in this study, once the data for interpretation and 

responding were analyzed, I compared these data as it related to different categorical 

groupings based on the teachers’ background.  In these comparisons, I asked whether 

grouping teachers by years of experience or type of professional learning showed 

trends in the data for interpretation and responding that consistently explained 

variations in that data.  I also considered previous studies that have found that 
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professional learning can impact teachers’ professional noticing, but that a teacher’s 

experience can also play a role in the robustness of that noticing (Jacobs, Lamb, & 

Phillips, 2010).  Of the background information gathered in the survey (current teaching 

assignment, number of years teaching, professional learning, and professional learning 

in a learning trajectory), the two categories that became most relevant were teachers’ 

current teaching assignment and their having had professional opportunities to learn a 

learning trajectory for addition and subtraction.  With relative consistency across 

responses, teachers who taught in preschool through second grade, including special 

education or interventionists, and who had participated of a professional learning 

opportunity focused on learning trajectories had scores that were significantly different 

from the scores of teachers of upper elementary without training in a learning trajectory.  

Table 4.1 below shows the number of teachers in each of the categories. 

Table 4.1:  Participating teachers, grouped by teaching assignment and training in a 
learning trajectory  

 

Trained in a 
learning 

trajectory (LT) 

Not trained in a  
learning trajectory 

(non-LT) 

 
 

Total 

Teaches early elementary 
mathematics (EE) 

 
4 
 

 
8 
 

 
12 

 
Teaches upper elementary 
mathematics (UE) 

 
5 
 

 
5 

 
10 

 
Total 

 
9 

 
13 

 
22 

 

Teachers’ Descriptions and Interpretations of Students’ Mathematical Thinking 

In eight different instances across the survey, twice in each of four items, 

participants were shown a depiction of a student working out a context-based addition 
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or subtraction problem.  After each observation of individual student thinking, the 

participant was asked, “Describe what you noticed this student did to solve the addition 

or subtraction word problem.”  Teachers were given a text box in which to type their 

open ended response.   

Coding Teacher Observations of Student Thinking  

The work of teaching requires that a teacher be able to notice and interpret the 

ways in which students are understanding the concepts (Hiebert & Grouws, 2007).  The 

purpose of the analysis of these responses was to distinguish between the varying 

details included in teachers’ observations of student thinking and to describe any 

differences that might be noticed within those variations.  Because of the nature of the 

prompt, I believed that most teachers would notice and describe details of the students’ 

thinking.  However, I also conjectured that there would be variations in the 

interpretations teachers gave of those student responses.  For example, some 

participants might notice what a student didn’t do, the potential meaning of what the 

student did, or the possible reasons why the student did what he or she did; but others 

might not make such inferences.  Thus, responses from teachers were initially coded for 

description and interpretation separately, both using a dichotomous code, to determine, 

first, whether teachers were attending to the details of student thinking and secondly, to 

identify those responses that interpreted further details of the student’s work. A 

colleague and Icoded the data separately for description and interpretation and then 
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reconciled each set of codes, keeping track of any justifications for coding each 

response.   

To code for description and interpretation, we first considered what might 

distinguish the two codes from each other.  We proposed that a participant who includes 

interpretation in his or her response would attribute meaning to the work of the student, 

whereas a response including a description would include objective details that could be 

noticed in the depiction.  Thus, each of the coders first determined whether or not the 

participant included details in their responses that would be considered objective 

descriptions, which each of us then followed by coding for whether or not the participant 

had included details that might attribute meaning to that student’s understanding.  For 

example, in the depiction below, taken from the survey, we determined that an objective 

observer might notice that the student came to a correct answer of 5 or that the student 
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counted in order to find an answer, as was the case in the response from one 

participant who stated, “The student counted on from 8.”  (4411) 

 

 

Figure 4.1:  A student counts in order to solve the missing addend problem 

Responses of this nature were coded as descriptive because the participant attended to 

details that were directly observable in the depiction, but not for interpretation because 

the participant responded without inferring anything about the student’s understanding 

based on those details.  As a comparison, after viewing the same depiction, another 

participant responded, “This student used counting up but already understands that they 

just needed to start at the 8 and then count up to 13”  (7161). This response was coded 

as description because the participant mentions that the student counted up [from 8 to 

13], and also for interpretation when the participant expands on this observation, and 

attributes that work to the student’s understanding when the participant says that the 

student “already understands” the count can start at 8.  Given that some students might 

ThExpiansB character set ©2015 
The Regents of the University of Michigan.  Used with permission 



  83  
 

solve this problem by starting the count at one (Secada, Fuson, & Hall, 1983), this 

participant’s attention to the student’s understanding provides evidence that the 

participant is accurately attending to details of student thinking that go beyond a surface 

recognition of the student’s work.         

Over time, some clear distinctions regarding some of the more common 

responses were found.  For example, if a participant mentioned that the student had 

made an error, this was coded as description whereas the response was coded as 

interpretation if the participant indicated the source of the error (e.g., counted the 5 

instead of starting on 6).  Similarly, responses that mentioned that the student counted 

were coded as descriptive, but those in which the participant mentioned the nature of 

the count (e.g., counted by ones or counted efficiently) were coded as interpretation.   

Common Themes in Teachers’ Descriptions and Interpretations  

In the following section, I briefly describe some of the more prevalent responses 

that were coded as description or interpretation.  I share these details according to the 

method type: modeling, counting, and derived.  I follow those descriptions by sharing 

the results of the coding.   

Teachers’ descriptions and interpretations of direct modeling.  I first describe 

participants’ responses to a student using a direct modeling strategy to solve the 

problem Jonas had 12 pieces of gum.  He gave 7 to his friend.  How many pieces of 

gum does he have left?  (Item 2).  In the depiction shown in Figure 4.2, Green is shown 
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coming to a correct response using the direct modeling strategy (Carpenter et al., 

1981).     

 

Figure 4.2:  Green uses a direct modeling strategy to solve 

 Participants’ responses to this item that were coded as description include 

mentions that Green used chips and counted to find the answer, details that would be 

recognizable through observation.  Responses that were coded as interpretation went 

beyond description to infer the purpose of their use, for example that the chips were 

needed by the students to represent or model the actions in the problem.  These 

interpretations are consistent with research that has shown that direct modeling 

strategies are those in which “. . . physical objects or fingers are used to represent each 

of the addends, and then the union of the two sets” (Carpenter & Moser, 1984, p. 180).   

Teachers’ descriptions and interpretations of counting strategies.  There were five 

items in the survey that included variations of counting strategies, including counting 

back the amount indicated by the subtrahend, counting back until reaching the 

ThExpiansB character set ©2015 
The Regents of the University of Michigan.  Used with permission 



  85  
 

subtrahend in the count (counting back methods that differ in their efficiency), counting 

from one3, counting on to add, and counting up to subtract.  Two of these instances 

included an error.   

The depiction below is one instance in which a student was represented using a 

counting method.  In this case, the student made an error in doing so.  The problem 

written on the board stated, Hal had 8 stickers and his teacher gave him some more.  

Now he has 13.  How many stickers does Hal have now? 

 

Figure 4.3:  A student incorrectly solves a problem using a counting strategy 

Of the responses coded as description, participants tended to give a description 

of the student’s counting method, sometimes mentioning that the student came to an 

incorrect answer, as in the following response.  “He counted to 8 which is the number 

she began with then kept counting to 13. However, he got the answer incorrect” (7173).  

                                                           
3 Fuson (1984) has called this strategy counting all. 

ThExpiansB character set ©2015 
The Regents of the University of Michigan.  Used with permission 
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Responses coded as interpretation included references to the manner in which the 

student counted, including mentions of the student’s efficiency, or lack thereof, when 

counting backward to subtract.  Participants also made note of students’ likely methods 

for tracking a count, often mentioning the possibility of fingers, which in the case of the 

depicted characters would not have been observable since the characters do not have 

fingers. Participants would also sometimes mention an inferred source of the student’s 

error if one had occurred.  For example, one participant described the work of the 

student in this way, “The student began counting from 1 instead of counting on from 8.  

Furthermore, when he gets to 8 he counts that as ‘1’ instead of ‘0’ as he continues to 

14” (4381).  Again, this interpretation is consistent with the literature that describes 

students as enacting counts that help them to understand how many have been 

accumulated or reserved when adding or subtracting (Carpenter & Moser, 1984).      

Teachers’ descriptions and interpretations of derived strategies. There were two 

items in which the student used a strategy which attended in some manner to the 

quantity ten within the problem: They did so either counting through the ten and 

recognizing the ten in doing so or adding a ten and adjusting to come to an answer.  
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The depiction below represents a student who has added ten and adjusted, although 

they made an error in doing so.    

 

Figure 4.4:  A student incorrectly uses a derived strategy to solve 

 When participants described the student’s work, they mentioned that the student 

had used a make ten strategy or that the student had added a ten and adjusted.  In 

cases of interpretation, the participants mentioned a number of details regarding the 

student’s understanding of the number system, as in this response, “The student started 

chunky (sic) into multiples of 10, but completed the 2nd part of the process incorrectly.  

He stated he needed to take some off, but he only took 1.  He didn’t identify how much 

‘some’ was” (4422). In these responses, the participants typically mentioned that the 

student had been using known sums of ten (e.g., 8 + 2 and 7 + 3) to solve the problem, 

sometimes noting that the student is no longer counting by ones, but rather can make 

use of “chunks” or landmark numbers to solve more efficiently.  This is consistent with 

the description of a derived fact in which a student uses a known addition or subtraction 

ThExpiansB character set ©2015 
The Regents of the University of Michigan.  Used with permission 
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fact4 in order to solve an unknown addition or subtraction fact or problem.  The 

problems in which the students had used derived strategies were both subtraction 

problems which the students solved in additive ways, prompting some participants to 

mention that the student recognized that addition can be used to solve subtraction 

problems.   

Results:  Teachers’ Descriptions and Interpretations of Student Thinking 

The coding scheme for description and interpretation was applied first by each coder, a 

colleague and I, and then reconciled collectively until agreement was reached.  I report 

the inter-rater reliability of the initial coding, using a Kappa statistic for each item, 

followed by a pooled Kappa statistic (DeVries, Elliott, Kanouse, & Teleki, 2008), in 

which the Kappa statistic for each item is pooled into a collective score across all items.  

The pooled Kappas are used as a measure of the reliability of each complete coding 

operation.  These values are shown in Table 4.2 below.    

Table 4.2:   

Kappa reliability score for each item scored as description and interpretation 

 Item 
1 

Item 
2 

Item 
3 

Item 
4 

Item 
5 

Item 
6 

Item 
7 

Item 
8 

Pooled 

Description N/A 0.45 1 N/A 0.46 N/A 1 0.63 0.55 

Interpretation 1 0.65 0.56 0.72 0.73 0.58 0.90 0.70 0.77 

 

The Kappa scores for interpretation fell between 0.56 and 1, indicating a moderate to 

strong amount of inter-rater reliability for the coding of interpretation.  The Kappa scores 

                                                           
4 In this study, a fact was the number model associated with the given mathematical task, representing sums or 
differences within 20.   
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could not be calculated for the coding of description for items 1, 4, and 6.  In each of 

these items, both coders had full agreement and all teachers received a score of 1 for 

description.  Because Kappa is a measure of reliability that takes chance agreement 

into account, the instance described here for items 1, 4, and 6 returns a Kappa score 

that is unable to be calculated.  In other words, there is no way to determine the 

probability of chance agreement since there was full agreement.  This difficulty 

highlights the value of the pooled Kappa as a summary measure of the quality of the 

description coding.  The pooled Kappa could be calculated and it yielded a moderate 

reliability.   

It was also important to consider whether each item in the survey was reliably 

measuring the same construct.  Cronbach’s Alpha and mean inter-item correlation (IIC 

were computed to assess the internal reliability of the items in the survey; to ensure that 

each item, as compared to others in the survey, were measuring the same construct.  

For participants’ descriptions, Cronbach’s Alpha equal to 0.09 and a mean inter-item 

correlation coefficient (IIC) of 0.02 indicated that the internal reliability of the items was  

very low, which may be due to the minimal amount of variation, which I report below, in 

the data for teachers’ descriptions of student thinking.  In contrast, the Cronbach’s 

Alpha score for teachers’ interpretations was 0.72, which indicates a moderate rate of 

internal consistency.  I also calculated a mean inter-item correlation (IIC) for 

interpretation 0.024.  An IIC below 0.20 suggests the items are not well related to each 

other and an IIC greater than 0.40 could indicate redundancy among the items 

(Piedmont, 2014).  The IIC for teachers’ interpretation of 0.24, suggests that the items 

are related to each other with little redundancy among them.  Thus, if we presume all 



  90  
 

the items measure the same construct, the Cronbach’s Alpha scores indicate a high 

internal consistency of those items.   

Teacher descriptions of student thinking.  Once all items from the survey were 

coded, I calculated the mean of each participant’s description across all eight items to 

which they described the student’s thinking. This mean description score is meant to 

describe the extent to which the participant described student thinking across all items 

in the survey.  The mean score that measures the extent of each participant’s 

description ranged from 0.75 to 1.0 (mean = 0.92, SD = 0.10, median = 1).  Across the 

eight items, teachers would often, if not always, give a description of the student’s 

thinking.  While this meant that there was little variation in the data for description, it 

does provide validation that the participants were attending to details of students’ 

mathematical thinking when responding to the depictions.  After determining each 

participant’s mean score for description across the items, I found a median of the mean 

scores, aggregated by teacher group, depending on whether the participant taught in 

early or upper elementary and whether or not the participant was trained in a learning 

trajectory.  In Table 4.3 below, I show the median score for each teacher group.   

 

Table 4.3:   

The median score for teachers’ descriptions within each group  

 Trained in a learning 
trajectory (LT) 

Not trained in a learning 
trajectory (non-LT) 

Teaches early elementary 
mathematics (EE) 

 
1.0 

 
1.0 

Teaches upper elementary 
mathematics (UE) 

 
0.90 

 
1.0 

 

The median scores for descriptions of student thinking provide insight into the extent to 

which participants were attending to the details of student thinking when viewing the 

depictions.  Participants in all groups were likely to be descriptive of what the student 
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had done to solve a problem and noticed details related to the work the student had 

done.   

Teacher interpretations of student thinking.  Similar to the mean scores for 

participants’ descriptions, I found the mean score for each participants’ interpretations 

across all eight items, describing the extent to which each participant interpreted 

student thinking across all items.  These scores ranged from 0 to 1 (mean = 0.52,  

SD = 0.28, median = 0.44), including participants who, in each instance, gave no 

indication of interpretation as well as participants who offered an interpretation for each 

instance of student thinking.   

Teachers who had participated in professional learning opportunities based on a 

learning trajectory in mathematics had had exposure to interpretations of students’ 

informal methods for solving addition and subtraction problem.  Based on a conjecture 

that teachers who have been trained in a learning trajectory might be well-prepared to 

offer interpretation of student thinking, I compared the scores for participants with and 

without professional learning of a learning trajectory.  Because of the small sample size, 

I used the non-parametric test of Wilcoxon (1945) rank-sum because it does not require 

the assumption of a normal distribution.  The Wilcoxon rank-sum orders the mean 

scores for the group of teachers and determines if a randomly chosen score from the 

group of teachers trained in a learning trajectory has a higher rank than a randomly 

chosen score from the teachers not trained in a learning trajectory.  In this sample, the 
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distribution of scores for teacher groups based on teachers’ training in a learning 

trajectory differed significantly at a significance level of 0.05.   

 I conducted further comparisons, breaking the teachers into the four groups 

based on teaching assignment and prior training in a learning trajectory.  Comparisons 

of the four groups of teachers’ interpretation scores revealed that there were significant 

differences (α = 0.05) in interpretation scores found between participants who taught 

early elementary grades, depending on whether they had prior training in a learning 

trajectory or not, providing evidence that teachers with training in a learning trajectory 

may be better prepared to interpret student thinking than even their colleagues with 

similar teaching experience.  There was also a significant difference (α = 0.05) between 

early elementary teachers who had been trained in a learning trajectory and upper 

elementary teachers who had not been trained in a learning trajectory.   

Thus, in this sample, teachers who taught in the early elementary grades showed 

to be more attentive to the interpretations of student thinking if they had also had 

training in a learning trajectory.  And early elementary teachers without training in a 

learning trajectory were not more likely to interpret student thinking of addition and 

subtraction than those who taught in other grade levels.  This finding is somewhat 

surprising considering that early elementary teachers are regularly engaged in the 

teaching of early addition and subtraction: this experience, by itself, was not associated 

with them being more likely to interpret the work of students than teachers who are not 

responsible for teaching early addition and subtraction.    

 After comparing teachers’ interpretation scores by doing group comparisons, I 

found the median of the teachers’ interpretation scores for each of the four teacher 
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groups.  The group median interpretation scores are shown in Table 4.4 below.  As 

shown using the non-parametric tests, teachers who had training in a learning trajectory 

were more likely to offer interpretations of student thinking than teachers without 

training.  Those who were trained in a learning trajectory interpreted student thinking 

approximately twice as often as their counterparts who had not engaged in a training 

focused on a learning trajectory for addition and subtraction. 

Table 4.4 

Median score for teachers’ interpretations of student thinking depending on teaching 
assignment and training in a learning trajectory 

 Trained in a learning 
trajectory (LT) 

Not trained in a learning 
trajectory (non-LT) 

Teaches early 
elementary (EE) 

0.8 0.4 

Teaches upper 
elementary (UE) 

0.8 0.3 

 0.8 0.4 

 

 The interpretations that teachers make of students’ mathematical thinking play an 

important role in the ways in which teachers then respond to students in the classroom 

(Jacobs, Lamb, & Phillip, 2010).  In the next section, I describe the coding for teachers’ 

instructional responses to the students who were observed in the survey along with the 

results of that coding.  In the section after next, I examine the correlation between 

teachers’ interpretations of student thinking and their instructional responses.     

Teachers’ Responses to Students’ Mathematical Thinking 

In order to address the second research question, I consider the instructional 

moves that participants suggested as a response to the students they had just 
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observed.  In this analysis, I determine the extent to which the responses hold the 

potential to extend student understanding beyond what has been depicted as the 

student’s current understanding of addition and subtraction.  To conduct this analysis, I 

developed a scalogram (Guttman, 1950) to score the responses to each item in a way 

that assigns a scaled score to each instructional response.  As noted in the methods 

chapter, a scalogram consists of a series of dependent questions, for which the 

response to each is binary.  A positive response to one of those questions would imply 

a positive response for each question that came previously.  Similarly, if a question is 

coded in the negative, this excludes any of the subsequent questions from being 

answered in the positive.  The scalogram can then be accumulated into a scale score.  

The Scalogram for Teaching Responses 

After each observation of a student’s strategy, the participant was asked to 

describe what they considered an appropriate response to the student.  Specifically, the 

prompt asked the participant to “Describe what you would say and do in response to 

this student.” As a follow up to this prompt, participants were asked to indicate a 

learning goal for the student.  The prompt stated, “Describe what you consider to be the 

next learning goal for this student.”  Because learning occurs over periods of time and 

cannot be attributed to any particular instructional response, the prompts were meant to 

gather information regarding participants’ immediate response to students as well as 

their longer-range goal for the student.  I distinguish these two moments in the coding 

scheme by attending to the participant’s instructional move and the participant’s goal, 

respectively.   



  95  
 

The scalogram included three nested questions, coded in this order, 

1) Is the teacher’s goal such that it would not be considered regressive according 

to the chosen learning trajectory and based on the student’s current strategy?   

2) Is the learning goal specific and aligned with what the student has yet to learn 

according to the learning trajectory, when taking into consideration the student’s 

current strategy?, and  

3) Does the teacher describe an instructional move that could support the 

learning goal they described?   

 If the first question in the scalogram was coded as 0, this indicates that the goal 

the teacher has set has the potential to cause the student to regress in their 

mathematical thinking.  A learning goal of this nature might include the expectation that 

the student make use of counters in order to solve problems when the student had just 

shown he or she could solve the problem using a counting on strategy.  There is 

evidence from cognitive research in mathematics education that given concrete 

materials, students are likely to use a direct modeling strategy even if the student is 

more advanced mathematically and can enact a more sophisticated strategy since the 

“search for perceptual input would [be] immediately satisfied through visual perception” 

(Steffe et al. 1983, p. 72).  A teacher might ask a student to do such a thing on the 

grounds that it could boost the student’s confidence when he or she recognizes that 

their answer had been correct using the counting on strategy.  However, as one 

considers its alignment with the learning trajectory used in this study, it would have the 

effect of asking the student to use methods that are less sophisticated mathematically 
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and thus less useful for the advancement of the student’s learning.  Thus, such a 

learning goal would be coded with a 0; and so would other instances in which the 

enactment of the learning goal would be aligned with a conception that, according to the 

learning trajectory, are enacted earlier in development.  On the other hand, if nothing in 

the teacher’s suggested goal would have the potential to regress the student’s thinking, 

this question would be coded as 1.     

The second coding question is whether the goal the teacher has set is one that 

not only does not have the potential to regress the student’s current thinking, but is also 

one that has the potential to extend the student’s understanding.  Because the teacher 

has just observed an individual student’s thinking and because the learning trajectory 

used in this study provides insight into how a student’s learning progresses over time, 

this question is designed to determine if the teacher has clearly described a goal that is 

within the range of what is possible for the student’s upcoming learning.   

While some goals may have been considered not to regress the student’s 

thinking, they might also be unspecified in ways that do not clearly target a learning goal 

that was specific and aligned to the learning trajectory used in this study.  I also 

identified two categories of goals that were either not specific or not aligned with the 

learning trajectory.  Goals that were non-specific were too broad to be identified, such 

as “solve without using counters”, and goals that were not found on the trajectory 

typically attended to some indicator other than the student’s strategy, such as asking a 

student to solve “another problem with larger numbers.” In the former category, the goal 

may be valid and yet not specific enough to determine the teacher’s intention for the 

student’s learning as it pertains to the learning trajectory used in this study.  In the 
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example shown here, “solve without using counters,” there can be a number of student 

strategies along the trajectory that occur without the use of counters and so this goal is 

not specific enough to be able to determine what the teacher would consider to be the 

learning goal for the student moving forward.  In the latter category, the goal cannot be 

located on the trajectory since the trajectory describes the solution methods of students 

and these goals are instead focused on other aspects of the problem or solution and 

thus do not clearly identify a learning goal for the student.  As an example, a goal such 

as “solve another missing addend problem” would be coded as not on the trajectory.  In 

the findings, I report the extent to which participants wrote non-specific goals.   

If the teacher’s goal was coded as specific, for example “begin to count on,” I 

assessed the alignment of that goal with the learning trajectory by considering whether 

the target would be considered to emerge next or just after the next strategy in 

development. I propose this because Vygotsky (1987) describes the “zone of proximal 

development” as including what the student can do with the support of a more 

knowledgeable peer, for example a teacher who uses particular mathematical 

representations in order to support the student in thinking to shift from the counting of 

concrete objects to counting of mental or abstract images.  To justify this decision, I 

have included a brief description of the learning trajectory used in this study and the 

type of strategy described along that trajectory.   
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Table 4.5:  

Descriptions of strategies described in the learning trajectory 

 
Strategy 

 
Description 

 
Strategy Type 

Direct Modeling Student uses objects to model the 
operation and determine the answer. 
 

Concrete use of 
objects 

Counting All Student counts to find sum (not usually 
difference) and does so by starting at 
1. 
 

Counting 

Counting On or Back Student counts forward or backward to 
find sum or difference; can start from a 
number other than 1. 
 

Counting 

Counts Efficiently Student counts forward or backward to 
find sum or difference; does so in the 
most efficient manner. 
 

Recognizes 
relationships 

Derived Facts Students uses a known fact to 
determine a related unknown fact.   

Recognizes 
relationships 

 

Broadly speaking, there are five strategies in the trajectory for early addition and 

subtraction.  The first includes the use of concrete objects for the students to represent 

a mathematical situation using counting to enumerate those objects.  The two strategies 

that follow the direct modeling strategy are both based on a verbal count that might 

include the use of a tool to track that count, often their fingers.  These counting 

strategies vary because a student who counts all may not recognize that the first 

addend in a sum represents a unit made up of that number of counts (Steffe et al., 

1983) and thus may count from one to establish the unit.  Students tend to make use of 

these counting strategies, in which they count forward to or backward from a number 

other than one in order to add on or subtract an amount from another.  As they develop 
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a further understanding of the number system, they may then begin to recognize 

relationships that allow them to work problems efficiently and solve unknown sums or 

differences with what is known to them.  I break the trajectory then into three broader 

categories that include concrete use of objects, counting, and recognition of 

relationships.  I use these categories to justify that if a student were to present as using 

a direct modeling strategy, it would be aligned with the learning trajectory to utilize 

instructional moves that support the use of a counting strategy of some sort.  Similarly, if 

the student were using a counting strategy independently, it would be aligned with the 

learning trajectory to support the student’s use of a derived strategy of some sort.  

Based on this, I conclude that it is within the student’s zone of proximal development for 

a teacher to support the strategy that is either next in the trajectory or just after that 

strategy.    

A distance of 0 was also considered to be in alignment with the learning 

trajectory, but only in those instances when the student had solved a problem and had 

an error, as the teacher would be providing further learning time to ensure fluency when 

using this strategy.  In all other cases, the question was coded as 0.  Note that the 

position of the learning goal in relation to the student’s current development was also 

used to inform if the teacher’s response was likely to regress the student in his or her 

thinking (e.g., the learning goal was negative in relation to the student’s current 

progress).    

The final question in the scalogram coded for whether or not the teacher 

suggested an instructional move meant specifically to support the learning goal coded 

as being aligned with the learning trajectory used in this study.  If a teacher had 
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suggested that a student begin to use a make ten strategy, he or she could support that 

goal by making use of tools that attend to the structure of ten, such as a ten frame, or 

the teacher could develop a string of problems that might elicit a tens strategy (9 + 2 

followed by 9 + 3 and then  8 + 3).  Similarly, if a teacher expected a student to begin 

using a backward counting strategy, the teacher might support that student by practicing 

backward counting sequences or by designing problems in which the subtrahend is 

easily within counting range.  A suggestion that supports the aligned goal was coded as 

1 and if the instructional move did not hold the potential to support the student’s learning 

goal, the response was coded 0.   

By the nature of the scalogram, the coding of the responses led to four 

categories, listed here.  These include instructional goals which have the potential to 

regress the student’s mathematical thinking (0,0,0), responses which do not regress the 

student’s thinking, but also do not set a specific learning goal aligned with the learning 

trajectory (1,0,0), responses which indicate a specific learning goal aligned with the 

learning trajectory (1,1,0), and responses which also support the student in some 

activity that could lead to an understanding related to the learning goal, (1,1,1).  The 

codes in the categories could then be aggregated into a single score that varied (from 0 

to 3).  In this way, a teacher who receives a score of 3 would be understood as having 

supported the student to achieve a learning goal that is specific and aligned with the 

learning trajectory when accounting for the student’s current learning.  And, responses 

scored as 2 are those that set a goal aligned with the learning trajectory, but do not 

include a suggestion for supporting that goal.  A score of 1 is one that does not regress, 
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but also does not extend student thinking and a response scored as a 0 has the 

potential to regress the student in their mathematical thinking.  

Considerable time was taken to ensure the questions in the scalogram were 

mutually exclusive from each other.  After coding each of the responses, the validity of 

the scalogram was verified by searching the scores for what would be considered errors 

in the scalogram.  If, for example, the teacher’s response was coded as a 0 for the first 

question in the scalogram, but then coded for a 1 for a later question, this would be 

considered an error.  The scalogram developed for this study did not produce any 

errors.   

It is also important to note that even though a subset of the teachers who 

responded to this survey had been trained in a learning trajectory, this did not 

necessarily mean that those teachers would always utilize that knowledge in their 

responses.  For example, of those teachers who had been trained in a learning 

trajectory, some occasionally responded in ways that were not directly related to 

students’ progress.  In a few examples, this subset of teachers asked students to repeat 

the problem with a different tool or to begin to memorize their facts. And it’s possible, if 

not likely, that in the context of a classroom in which teachers are attending to many 

competing demands, a teacher might have many reasons to respond in ways that don’t 

necessarily extend student thinking.  Because of this, I argue that the use of the 

learning trajectory as a resource to determine the depth of teachers’ responses, is not 

an exercise in confirming that teachers use the knowledge they gain, but rather a way of 

showing what teachers could be capable of carrying out in regards to student thinking.           
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Example Responses and Teaching Response Scores  

 In this section, I provide some examples of responses that illustrate the range of 

the scalogram scores in teachers’ responses to students.  The examples were written 

by teachers in response to a student who had counted on in order to solve a change 

unknown subtraction problem (Carpenter et al., 1998), more commonly known as a 

missing subtrahend problem.  The depiction of this student’s strategy is shown in Figure 

4.5 below.   

 

Figure 4.5:  Yellow uses a counting up strategy to solve a missing subtrahend problem 

The strategy used by the student provides some useful information for instruction.  First, 

the student did not choose to use objects to represent the situation, but instead counted 

on from an amount that was already stated in the problem, showing the existence of a 

numerical composite (Steffe et al., 1983).   Also, the student used an additive count to 

solve a subtractive statement, which could help one surmise that they have an 
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understanding that addition is the inverse of subtraction.  According to the learning 

trajectory used in this study, this student has a sufficient understanding of addition and 

subtraction, along with the ways in which quantities are joined together or separated 

that they might be able to begin using derived strategies.  The use of those derived 

strategies could be supported in the classroom through the use of activities that support 

students’ understanding of the ways in which numbers can be broken apart and reused, 

for example 8 + 3 could be done by breaking up the 3 into 2 and 1 to make 10 before 

adding on the extra 1.  Similarly, a teacher could use strings of problems in which the 

relationship would be pronounced, for example by asking students to solve 8 + 2, 

followed by solving 8 + 3.  I show four separate teacher responses in Table 4.6 below in 

order to describe the scalogram in more detail.   

Table 4.6:  

Sample responses for scalogram scores 

Scalogram 
Score  

Describe what you would say and 
do in response to this student. 

What would you consider to be an 
appropriate learning goal for the 
student? 

3 Teach this student how to anchor to 
ten.  Then how to count up from the 
ten.  I would use ten frames to 
illustrate making ten and how to 
use ten as a (sic) easy number to 
add to.  (7165) 
 

Use of number bonds and how to 
break apart numbers to get an 
easy number like 10 so that adding 
or subtracting is easier and faster. 
(7165)   

2 Good thinking, how is your strategy 
different from green's strategy? 
(4411) 
 

Next goal for this student would be 
to make a ten and add the rest. 
(4411) 

1 I would tell him that was a good 
strategy (4493) 
 

Subtracting without counting up 
(4493) 

0 I would say can you draw me a 
picture or use counters to show me 
how you came up with that 
answer? (7173) 

For this student to learn to subtract 
using counters (7173) 
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Recall that responses which receive a score between one and three are considered not 

to regress the student’s thinking. The teaching response scored as a 3 is not regressive, 

as it includes a goal for the student to anchor to ten as well as support to do so, ten 

frames to illustrate and number bonds.  The response scored as a 2 is not regressive, 

and it includes a goal for the student to make a ten, but it does not include supports to 

do so.  In the response scored as 1, the teacher praises the student’s current strategy, 

but then sets a goal that is unspecified.  Rather than stating what the student should be 

expected to learn in coming days or weeks, the teacher describes instead what the 

student should not do next.  Finally, the last response is coded as a 0 because the 

teacher sets a goal for the student to do subtraction using counters, an enactment of 

subtraction that represents work done by students earlier in the progression, that of 

direct modeling.   

I assessed the reliability of the scalogram by comparing its application by two 

coders, a colleague and myself.  For each item in which the teachers described their 

instructional move and a learning goal for the student, two coders applied the scalogram 

to two of the responses for a given item (approximately 10 percent of the data) and 

discussed the reasons for doing so.  This was followed by coding two other responses 

for the same item, and determining whether there was agreement of the codes in this 

second subset of data.  As the coding progressed, it became clear that because the 

coding of the teacher’s goals and instructional moves were particular to each student’s 

conception, it would be impractical to apply a general coding scheme to all items.  As 

we would expect teachers to adjust their instructional moves to match the student, so 
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our coding was recalibrated for each instance in which we encountered a new student 

strategy.  With this in mind, we worked toward an in-depth understanding of instructional 

moves and goals that would be in alignment with the learning trajectory for each 

depicted student when coding the first two responses in an item, then coded the 

following two responses independently before coming together to determine agreement.  

Through this iterative process we were able to come to a shared understanding of the 

ways in which coding should be applied depending on the student conception and I felt 

confident that the process had sufficient interrater reliability.  I then carried this forward 

and scored the remaining responses for each set of items in the survey.  When the 

coding was complete, a calculation of Cronbach’s Alpha was equal to 0.81, and 

indicated that the internal consistency of the items coded for teaching responses were 

relatively high. A mean inter-item correlation coefficient (IIC) of 0.35 provided additional 

support to that observation.   

Before I share the findings from the coding scheme, I now return to describe 

those responses that included either inappropriate or unspecified learning targets.  By 

the nature of the scalogram, these responses would be coded as either a 0 or 1.   

Inappropriate or unspecified learning targets.  In the analysis, I considered to be 

inappropriate learning goals those goals that, based on the learning trajectory used in 

this study, would be outside of the student’s zone of proximal development (Vygotsky, 

1987), with the latter coded as a distance that is outside the range of what a student 

could learn with the support of a knowledgeable peer.  For example, if a teacher 

responded to a student who has just used a make ten strategy and set a learning target 

of using a counting back strategy, this would be coded not making progress according 



  106  
 

to the learning trajectory because any counting strategy, including counting back, is 

likely to have been enacted by the student earlier in their understanding of addition and 

subtraction.   

In addition to learning targets that were not making progress according to the 

learning trajectory, some responses included learning targets that were either not on the 

learning trajectory, (e.g., if a teacher were to ask a student to use another tool to show 

their thinking, or not specific enough to be placed on the trajectory (e.g., when a student 

was asked to find other ways to solve a problem).  These goals were coded as NT or 

NS respectively and led to a code of 0 for specific and aligned, in regard to the learning 

trajectory for addition and subtraction used in this study.  If the goal had not been coded 

as regressive for the student’s thinking, a goal of this nature would receive a scalogram 

score of 1.    

To better describe the learning targets coded as NS or NT, I went through all 

instances and created a descriptive list of what was stated as the learning target.  I then 

tracked the number of times across all responses (each response for each item) the 

suggestion, or a similar suggestion, was made.  There were 176 total responses, made 

up of the responses from 22 teachers who each responded to 8 instances of student 

thinking.  The most frequently stated learning targets that were either not on the 

trajectory or not specific enough to be placed on the trajectory are listed in Table 4.7 

below.  The list is arranged by the number of responses from teachers across all items 

(n = 176). 
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Table 4.7:  

Learning targets either not on trajectory or non-specific 

 
Not on Trajectory 

 
N 

 
Proportion 

Not Specific Enough 
to  

Place on Trajectory 

 
N 

 
proportion 

Student should work 
different (harder, more) 
problems with (larger, 
smaller) numbers 
 

17 0.10 
 
 

 

Student should solve 
the problem in other 
ways 

19 0.11 

Student should use 
other tools (number line, 
counters), possibly to 
check the answer 
 

12 0.07 Student should solve 
the problem using 
mental math 

7 0.04 

Student should 
communicate their 
thinking (sometimes 
with drawings) 
 

8 0.05 Student should solve 
the problem without 
counting 

4 0.02 

Student should 
recognize small 
amounts without 
counting (subitize) 
 

2 0.01 Student should solve 
the problem without 
using manipulatives 

3 0.02 

Teacher is unsure what 
goal should be set, 
student should work 
toward just knowing it 

2 0.01    

 

Of these goals, the most often repeated were that the students should solve the 

problem in other ways (11%) or that the student should work on different problems of 

some sort (10%), followed by students using other tools to solve (7%).  It is important to 

note that the learning targets listed in this table are not necessarily considered 

inappropriate for learners.  Many of the recommendations would certainly be accepted 

as appropriate goals for students more generally.  For example, it would not be 

considered poor teaching to ask a student to check their work using another method or 
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to solve a problem in multiple ways.  Teachers are likely to have participated in 

professional learning in which these recommendations are made.  At the same time, the 

instructional moves suggested in these responses are ones that could be used at many 

moments in classrooms, in a wide variety of instructional settings, and with 

mathematical content of any grade level.  I argue, however, that teachers who set these 

generic learning goals may not be prepared to ensure that specific students increase in 

their sophistication of mathematical thinking within a relevant time frame in order to be 

prepared for later topics. 

I now share the median value for the number of times teachers in each group 

wrote goals that were coded as NS or NT.  Each teacher in the sample responded to 

eight items across the survey.  I first totaled across those responses the number of 

times each teacher stated a goal that was coded as NT or NS.  The number of 

responses coded as NS or NT for each teacher ranged from 0 to 6.  I then found the 

mean for the number of responses coded in this manner within each teacher group.  

The means for each teacher group are found in Table 4.8 below. 

Table 4.8: 

Median values for number of times (out of 8) teachers in each group stated learning 
goals coded as NS or NT 

 Trained in a learning 
trajectory (LT) 

Not trained in a learning 
trajectory (non-LT) 

Teaches early elementary 
mathematics (EE) 

 

0.5 

 

1 

Teaches upper elementary 
mathematics (UE) 

 

3 

 

5 
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In general, teachers who had been trained in a learning trajectory set learning goals that 

were not found on the learning trajectory used in this study or were unspecified less 

often than teachers who had not been taught a learning trajectory.  And those teachers 

who also taught in early elementary averaged only one unspecified learning goal across 

the eight responses.  Similarly, while all teachers who had not been trained in a learning 

trajectory wrote unspecified learning targets more often than those with training in a 

learning trajectory, early elementary teachers were less likely to do so than teachers 

who were not teaching in an early elementary setting.  This may be due to the fact that 

early elementary teachers are generally more aware of the strategies students use to 

solve addition and subtraction problems.  But, the findings also suggest that an 

awareness of those strategies is not likely to be enough to inform the intentional support 

of student understanding along the trajectory since teachers of early elementary 

classrooms set learning goals that were non-specific or not on the learning trajectory 

used in this study in nearly half of their responses.   

 Responses scored as 0 or 1.  I now turn away from the discussion of NS and NT 

learning goals to consider the scalogram scores and discuss the findings from the 

analyses using the scalogram score.  Each teacher in the sample (n = 22) responded to 

eight different depictions of student thinking, across four items in the survey, and 

described a learning goal and instructional response for each of the eight depictions.  

Each of these responses to student thinking was scored using the scalogram, with a 

sum of the three codes being used as the score for each response.  Thus, each teacher 

had eight items for which he or she received a scalogram score. 
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While all goals labeled as NS or NT were considered inappropriate in the context 

of the scalogram because of their lack of specificity, goals that were inappropriate 

because of their location on the trajectory would also have been coded as 0 because 

those goals would be outside the student’s zone of proximal development (Vygotzsky, 

1987).  In either case, responses that included these non-specific or inappropriate goals 

would, at best, receive a score of 1 for not being regressive.  Because of the importance 

of supporting student development in learning, I now consider how frequently each 

teacher in the sample gave a response that was scored as a 0 or a 1.  I chose this cutoff 

because such a score would indicate that the response is not likely to encourage 

mathematical thinking and may even regress it.  The results of this analysis are shown 

in Table 4.9 below.  Each cell indicates the median number of times, across eight items, 

teachers in each category had a response scored as a 0 or 1. 

Table 4.9: Median number of responses with response score of 0 or 1, by teacher group 

 Trained in a learning 
trajectory (LT) 

Not trained in a learning 
trajectory (non-LT) 

Teaches early elementary 
mathematics (EE) 

 

2 

 

5 

Teaches upper elementary 
mathematics (UE) 

 

5 

 

8 

 

In this sample, teachers without training in a learning trajectory were more likely than 

not to describe a teaching response that was coded as 0 or 1.  Teachers with the 

combined experience that comes with teaching early elementary mathematics and 

having been trained in a learning trajectory were less likely to respond in these 
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untargeted ways.  For the sake of student learning, this could mean that early 

elementary teachers who had been trained in a learning trajectory utilize responses that 

are more likely to target a student’s current learning needs and advance the 

sophistication of that student’s understanding of mathematics.   

Teachers’ Responses to Students 

Mean teaching response scores. The eight responses, scored using the scalogram, 

were averaged so that the set of responses by a given teacher to all 8 individual 

students was represented by a mean score.  These mean scores, representing the 

extent to which an individual teacher responded in ways that extended students’ 

understanding, ranged from 0.38 to 2.13 (mean = 1.38, SD = 0.47,  

median = 1.31), with scores above 1 being desirable.   

 I compared the mean scores for teachers with and without training in a learning 

trajectory, again using the Wilcoxon rank-sum test.  The Wilcoxon rank-sum test orders 

the mean scores for the aggregate group of teachers and determines if a randomly 

chosen score from the group of teachers trained in a learning trajectory has a higher 

rank than a randomly chosen score from the teachers not trained in a learning 

trajectory. The only significant difference found between groups of teachers for 

responses provided to students was between early elementary teachers with training in 

a learning trajectory as compared to upper elementary teachers without training in a 

learning trajectory. Other pairwise comparisons turned out non significant.  
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I then found the median score (of the teachers’ mean scores) for each group of 

teachers, because the distribution cannot be considered to be normal.  The median 

score for each group is shown in Table 4.10 below.     

Table 4.10: 

Median score for responding to individual students, by teacher group   

 Trained in a learning 
trajectory (LT) 

Not trained in a learning 
trajectory (non-LT) 

Teaches early elementary 
mathematics (EE) 

 

1.9 

 

1.3 

Teaches upper elementary 
mathematics (UE) 

 

1.4 

 

1.0 

 

In general, early elementary teachers had higher means than their counterparts who 

taught at other levels, regardless of whether they were trained in a learning trajectory.  I 

consider the possibility that scores may not reflect teachers’ full capabilities.  Teachers 

were asked to describe what they would say and do, and to set a next learning goal.  

The former of these prompts may have been interpreted as a brief moment of feedback 

to the students, while the latter as a student learning objective.  The scalogram, 

however, was used to determine if the teacher had instructional moves to support that 

next learning goal.  In many responses, teachers would indicate what they would say to 

the student (e.g., can you show me another way) and subsequently set a next learning 

goal that was in alignment with the learning trajectory without describing how he or she 

would support that learning goal moving forward.  Because of this, the responses were 

seldom scored as a 3.  Knowing this, I consider the median aggregate score of 1.9 for 
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early elementary teachers who had been trained in a learning trajectory to be a 

relatively strong measure of teachers’ responses to students. 

Correlation of Teachers’ Interpretations and Responses to Student Thinking 

 A suitable interpretation of student thinking used to inform a teacher’s response 

would seem necessary, although possibly not sufficient to ensure responses to students 

that support their learning.  Heritage and her colleagues (2009) make the claim that 

“teachers do better at drawing reasonable inferences of student levels of understanding 

. . . [than] in deciding next instructional steps” (Heritage et al., 2009, p. 24). I 

investigated the correlation between the interpretation scores (obtained from the coding 

for interpretation) and the responding scores (obtained from the application of the 

scalogram).  I acknowledge upfront that the interpretation coding scheme used in this 

study is evidence for whether or not the teacher interpreted, as opposed to if that 

interpretation was correct or supported by theory or evidence.  I used each teacher’s 

mean score (across all eight items) for interpretation and teaching response to measure 
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the strength of a correlation.  The graph that describes this correlation is shown in 

Figure 4.6 below.       

 

Figure 4.6:  Correlation of teachers’ interpretation and instructional response 

There was a moderate positive correlation (r = 0.36), at a significance level of 0.003, 

between teachers’ mean interpretation score and their mean response scores .  This 

suggests that teachers who made inferences about students’ understandings before 

responding might be better prepared to respond, based on the measures used in this 

study.  I also investigated the correlations between teachers’ interpretations and 

responses for only those teachers trained in a learning trajectory.  The scatterplot in 

Figure 4.7 is a representation of that correlation.   
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Figure 4.7:  Correlation of LT-trained teachers’ interpretation and instructional response 

There was a significant (α = 0.01) strong positive correlation (r = 0.67), of mean 

interpretation scores and their mean responding score for teachers with training in a 

learning trajectory.  The correlation representing teachers without training in a learning 

trajectory was not significant.  That scatterplot is shown in Figure 4.8 below.   
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Figure 4.8:  Correlation of non-LT-trained teachers’ interpretation and instructional 

response 

 Each of these analyses, taken together, indicate that teachers with the combined 

experience of teaching in an early elementary classroom and having been trained in a 

learning trajectory are more likely to describe instructional moves that have the potential 

to benefit students’ learning of early addition and subtraction.  While experience 

teaching in an early elementary classroom does appear to impact teachers’ 

interpretations, in this study it did not appear to be a factor, by itself, that significantly 

impacted teachers’ responses.  

 As Heritage and her colleagues (2009) have noted, teachers can attend to the 

interpretation of student thinking and still not provide responses that are likely to the 

students’ extended learning.  And the evidence I have shown here supports the 

conjecture that training in a learning trajectory might better prepare teachers to make 
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productive use of their interpretations of student thinking.  Of course, the justification of 

that conjecture would require an experimental design that rules out other possible 

explanations.   
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CHAPTER 5:  ANALYSIS 

TEACHER GOALS FOR GROUP DISCUSSION 

Up until this point, I have considered a learning trajectory as a resource that 

could be used by teachers to interpret and respond to the mathematical thinking of 

individual learners.  And there are times in classroom instruction when a teacher needs 

to respond to an individual regarding his or her thinking about a mathematical concept.  

But because classrooms gather students who have many things in common and 

because the teacher needs to attend to them at the same time, those students will also 

engage in collective learning opportunities, in small groups or as a whole class.  And 

when students do come together to share their work in a group, the decisions teachers 

make in choosing who will share, what will be shared, and what might be achieved 

during this group discussion will naturally be complex (Ball, 1993). A learning trajectory 

may still be useful in managing this complexity, but its use is likely to be different than 

when attending to the needs of a single student. While each student in the group may 

be making progress along the learning trajectory, all those learners will not always be in 

the same place in their learning. They also may be making progress at different rates.  

This means that to attend to the learning of all the students the teacher will need to 

simultaneously consider the learning needs of individual students while attending to the 

learning of all students within the group.  Because of this complexity, I turn now from 

considering teachers’ responses to individual students to better understand the 

instructional goals that teachers set when working with groups of students in a 
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classroom in which the students have varied understandings of early addition and 

subtraction.  I analyze the instructional goals that teachers set for working with a group 

of depicted students whose individual thinking had been seen earlier in the survey item.  

Based on evidence that student learning is improved when teachers invite student to 

solve problems and share their varied solution strategies with others in a group setting 

(Smith & Stein, 2011), I look for evidence of the extent to which teachers are open to 

students’ methods and utilize them to deepen the students’ understanding of addition 

and subtraction.  Within the teachers’ instructional goals, I look for indicators of the 

choices teachers make that illuminate the extent to which the teacher allows the 

variability in student understanding to play a role in the discussion.  The third research 

question asks:  

3) How do teachers manage the differences in student progress along a learning 

trajectory when discussing addition and subtraction problems in a group 

setting?  Are those differences related to whether teachers have had training in a 

learning trajectory?  

Recall that each item included work by two students, whom the teacher had been 

asked first to respond individually. At the end of each such item, the survey asked 

teachers to imagine that that the depicted students, observed individually during the 

earlier portion of the item, had been brought together for a group discussion. 

Participants were asked to address the group, assigning them work. I analyzed the 

responses to this prompt in order to better understand how teachers attend to the needs 

of students who share during a group setting.  The depiction that goes along with the 

prompt is shown in Figure 5.1 below. 
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Figure 5.1:  The depicted teacher prompts the students before engaging in a 
group discussion 

Participants were asked to construct a problem that would be presented to the 

group of students in the classroom.  I asked teachers to choose from one of five 

problems, modeled after the addition and subtraction problem types (join result 

unknown, separate result unknown, comparison, join change unknown, and separate 

change unknown; Carpenter et al., 1981).  The different problem types were given in 

word form as in this example, Jamis has ___ marbles and his friend gives him some 

more.  Now he has ___ marbles.  How many marbles did his friend give him?  

Participants were asked to choose one of the word problems as a basis for a discussion 

within the group.  Following this multiple-choice question, participants were asked to 

choose the two numbers that they would like to place in the problem.  This gave 

teachers the freedom to design the learning opportunity they thought best suited the 

students who had been observed in the earlier portion of the item.  Participants were 

then asked to describe their goals in leading this discussion by responding to the 

ThExpiansB character set ©2015 
The Regents of the University of Michigan.  Used with permission 
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following prompt, “What do you plan to achieve with this group of students when the 

problem is discussed?”  Because teachers had been exposed to some of the variability 

within the classroom as they observed the work of individual students, this prompt is 

meant to gather information as to teachers’ decisions in light of the need to attend to the 

learning of all students.    

Systemic Functional Linguistics 

I focus the analysis on the content of the teachers’ instructional goals and the 

ways in which teachers expected instruction to be carried out.  To carry out such an 

analysis, I used systemic functional linguistics (Halliday, 1978; Halliday & Matthiessen, 

2004).  Systemic functional linguistics defines language as a resource for meaning-

making, and sees grammar as a set of meaningful systems from which speakers and 

writers make choices.  The choices that are made within a system enable us to analyze 

and interpret the ways in which speakers or writers present meanings of different kinds.  

Recognizing meanings in the grammatical systems enables the analyst to identify and 

interpret the ways speakers or writers present meanings of different kinds.  According to 

the theory, words in and of themselves do not carry meaning in the text, but by making 

choices in the way that words come together grammatically, the language “shapes, and 

is shaped by the contexts in which it is used.” (Schleppegrell, 2012, p. 21).  It is through 

the use of these systems that the lexical and grammatical choices made by speakers 

and writers realize meaning in text.  The theory of systemic functional linguistics, then, 

affords one the ability to interpret meaning from a text through analysis of those 

grammatical choices.  
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Analysis for Ideational Meaning:  Transitivity Analysis  

I used transitivity analysis to examine the responses in which participants stated 

their instructional goals for students sharing during a group discussion.  Transitivity 

analysis is an analytic method that reveals the ideational meanings in a text.  In 

analyzing choices from the system of transitivity one breaks grammatical clauses into 

three constituents: the processes, the participants, and the circumstances.  These 

constituents are typically realized in the verbal group, the nominal group, and the 

adverbial or prepositional phrases respectively. For example, in the sentence, “The 

student solved the problem using counting chips”, the verb solved indicates the process, 

the participants in this case are both the student and the problem and the phrase using 

counting chips indicates the circumstances.  I show this example, broken into its 

constituent parts in Table 5.1 below. 

Table 5.1:   

A clause broken into constituents in transitivity analysis 

The student Solved the problem using counting chips 

 
Participant 

 
Process:  Material 

 
Participant 

 
Circumstances 

 

In material processes, a participant can be presented as the person who carries 

out the process (the teacher or the students), while another participant can be that 

which the process is directed toward, for example a subtraction problem.  In the clause 

above, the student is a participant engaged in a process that is directed toward the 

problem, another participant in the clause.  Circumstances are indicated in the text by 

adverbial or prepositional phrases to describe the conditions under which those 

processes would take place, in this case by using counting chips.   
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Transitivity analysis requires identifying the process words used to represent the 

world: There are six types of possible processes realized in text. They include material, 

mental, verbal, behavioral, existential, and relational all of which refer to how language  

realizes processes of doing, sensing, saying, behaving, being, and relating, respectively 

to classify the way the clause represents what is going on in the world.5   Of particular 

interest here are processes whose participants point to human beings such as the 

teacher or students. The type of processes can help identify the ways these clauses 

represent what the human participants do.  In these clauses, typically the teacher, the 

students, or a subgroup of students are the agents of such processes, while other 

participants are present through words or nominal phrases as the targets of such 

processes: Participants such as strategies, missing addend problems, the skill, the 

operation, or the answer.  The circumstances, while a more peripheral element of the 

clause and thus less frequent in the data, provide insight into the conditions under which 

the process is carried out by the agents.  In this data set, some examples of 

circumstances include using a visual representation, quickly, using subtraction or 

addition, and within a set of numbers.  The details described in these adverbial or 

prepositional phrases provides valuable insight into the goals of the teachers in that 

they describe the ways in which the teacher expects the goal to occur.  

Analysis for Textual Metafunction: Conjunction Analysis  

In addition to the transitivity analysis, I conducted a conjunction analysis in order 

to further understand the goals of the teachers.  The conjunctions used in a text convey 

the logical connections between ideas found within the text.  These conjunctions can be 

                                                           
5 O’Halloran (1999) also includes operational processes when analyzing mathematical text. 
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used for adding, comparing, sequencing, or explaining cause or purpose between ideas 

in the text and use words such as and, like, after, or so that (Martin & Rose, 2003) as 

shown in Figure 5.2 below.   

 

Figure 5.2:  Types of conjunctions and samples of each (Martin & Rose, 2003) 
 
 
I analyze the use of conjunctions and what those might mean about the goals teachers 

have set because of the suggestion in the literature in mathematics education that 

teachers should focus on connections among mathematics ideas and the comparisons 

between solution methods (Stein et al., 2008).  I anticipated that the data might include 

additive conjunctions to indicate multiple sub-goals stated within the response, or 

conjunctions of time to set up a sequence of processes to be carried out.  Likewise I 

expected that conjunctions of comparison and consequence might be there to link 

processes in relationships of contrast or similarity, or cause, reason, or purpose.  Thus, 

I used the conjunction analysis to consider whether or not teachers were setting goals 

that support these kinds of connections among multiple solution methods or if the 

teachers would leverage the discussion to consider similarities or differences among 

ideas raised during the discussion of addition or subtraction concepts.  The analyses of 

Conjunction Types

Addition

(and, as well as)

Comparison

(like, similarly)

Time

(once, then)

Consequence

(so that, in order to)
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the conjunctions provide further details regarding the connections to be made between 

aspects of the mathematical content during the group discussion.   

Analysis 

 To conduct each of the analyses, I first broke each response into clauses.  I 

began by identifying clauses that had human participants, either the teacher or 

students, and classify the associated processes. This helped ascertain who the 

respondent6 intended would participate in meeting the instructional goal they proposed 

and in what ways those participants would engage in the group discussion.   

I followed the coding of human participants and processes by considering the 

target participant at which each process was directed (e.g., the problem, the answer, a 

strategy).  Because this set of participants was more varied than the human participants 

in the instructional goals, I listed each participant that was indicated and then searched 

across those participants for themes.  Some of the themes that surfaced include the 

teacher’s openness to students’ varied methods or whether the goals were directed at 

solutions to the problem or toward an exploration of mathematical concepts.   

I then searched through the responses for circumstances, indicated by adverbial 

or prepositional phrases, to further understand the manner in which the respondents 

expected the goals to be carried out.  Because the circumstances varied quite widely, 

these adverbial or prepositional phrases were listed and used to add further 

understanding to the respondents’ goals.   

                                                           
6 In this chapter, whenever there is a chance to confuse the teacher in the scenario’s classroom with the teachers 
who participated in the study, I call the latter respondents. In other chapters, the word participant was used for 
such purpose, but the word participant is here saved for its technical use in SFL’s transitivity analysis 
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Finally, I searched for any conjunctions in the text which would indicate the ways 

in which respondents might be connecting subgoals within their response.  These 

conjunctions ranged from respondents stating two subgoals and connecting them with 

an and, for example if the students should solve the problem using one solution method 

and then solve it again in another way, to connecting the subgoals with one being a 

consequence of the other, as in practicing combinations of ten in order to make use of 

derived strategies.   

Across each of these analyses, I looked for themes that held across most of the 

goals and yet differed in ways that could illuminate the variation seen within the goals.  I 

report these differences in the sections that follow.   

An Analysis of Two Sample Goals 

Each of the analytical tools, transitivity and conjunction analysis, allowed me to 

consider in what ways the goals set by respondents varied from each other.  Before I 

describe the findings from those analyses in more detail, I compare two sample goals in 

order to illustrate the differences seen between respondents’ goals.  I chose these two 

goals from the set of responses because they differ in important ways and help to 

illustrate how the differences in respondents’ goals might create different learning 

opportunities for students.   

The two sample goals are included below and were both written in response to 

item one in the survey.  In item one, the teacher had given the students a result 

unknown subtraction problem that could be modeled as 12 – 7 = __.  One student had 

used direct modeling to solve the problem, counting out objects to represent the 

minuend and subtrahend, and another student had counted backward from twelve to 
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five, in order to find the difference.  When asked to write a goal for the full class of 

students, including the two students described here, two of the respondents in the 

sample wrote the sample goals below.   

Sample Goal 1:   

To show them the different ways to solve this problem by counting up and then 

how they may do it using manipulatives. (7161) 

Sample Goal 2:   

Find an efficient strategy for taking away a given amount. Then use student 

strategies in order from least efficient to most to show connection between 

strategies. (2448) 

 

In Table 5.2 below, I show the transitivity and conjunction analysis of these two goals 

side by side.  In the left column are the constituents found in the text, with the columns 

to the right identifying how those constituents were evident in the text.   

Table 5.2: 

Transitivity and conjunction analysis of two goals 

 Goal 1 Goal 2 

Participant (implied) (Teacher) (Students) 
Process [participant] To show [the different ways] find [an efficient strategy (for 

taking away a given amount)] 
Process [participant] to solve [this problem]  
Circumstances by counting up  
Conjunction (type) and then (additive, time) then (time) 
Participant (implied) they  (Teacher) 
Process [participant] do [it] use [student strategies] 
Circumstance using manipulatives from least efficient to most 
Process [participant 
(Circumstance)] 

 to show [connection (between 
strategies)] 

   

 

In some ways, both instructional goals share some commonalities.  Both include 

a teacher participant who is open to the use of multiple methods for solving the problem; 



  128  
 

in the first goal, by showing the different ways and in the second goal, by using student 

strategies. At the same time, there are some clear differences, including who 

participates and in what those actors participate, as well as the manner in which the 

respondent expects the work to be carried out.  An analysis of the constituent parts 

within the respondents’ instructional goals allowed me to make some closer 

comparisons.  For example, the word students is a participant in the second sample, as 

agents of the process find, thus representing actual students as playing an active role in 

learning. But students are not represented as participants in the first sample, though 

presumably it is to them that the teacher will show the solution method.  Also, the 

respondent who wrote the first response has two instructional goals joined by and then, 

indicating that there are two solution methods they would like the teacher to show.  In 

the second sample, the respondent separates two instructional sub-goals by indicating 

one of those will occur before the other, in order for the students’ methods to play a role 

in what the respondent would like the students to notice, indicating this with the term, 

then.  Each of these features can be analyzed to understand the purpose the 

respondent has for the use of the problem during the group discussion.  In the section 

that follows I describe in more detail the differences found in the sample statements and 

later share in what ways those variations were evident across all of the responses.   

  In these two statements, the first process in each, to show and find are carried 

out by different actors, the teacher and the student, an indication of the roles the 

teacher and students play within the classroom discussion being represented with these 

statements.  In the first case, the teacher plays a more central role in the discussion, 

whereas the second respondent places the solution methods of her students as the 
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focus of the discussion.  In each statement, the process is directed at similar objectives, 

the different ways and an efficient strategy (later called student strategies), both an 

indication that the teacher is open to a variety of strategies being used.  In both 

instances, this results in the introduction of multiple methods during the discussion. But 

those methods serve different instructional purposes.  In the first sample the teacher 

goes on to explain the methods will be used to solve [this problem] and in the second 

sample the teacher uses the strategies to show [connections] between strategies.  This 

indicates a difference in what students will have an opportunity to learn during this time: 

Either a procedure for solving a problem or the mathematical connection that can be 

made between different student methods.  Each of the goals goes on to describe 

circumstances or conditions for the work being done.  In the first goal the teacher shows 

students two methods for solving, by counting up and [by] using manipulatives, 

resources that would allow students to find a solution.  In this phrase, the respondent 

also uses the conjunction and to indicate that these are two methods the teacher will 

share with the students in the class.  In the second goal, the respondent connects the 

early portion of the goal in which the strategies were elicited in order to serve another 

purpose, to then use the strategies by placing them from least efficient to most for the 

students in order to be able to show a connection between strategies.  Rather than 

focusing on the methods as solutions to problems, this respondent makes use of the 

varied methods to expose the students to a more conceptual understanding of addition 

and subtraction.   

By analyzing the responses in these ways, I identified aspects of respondents’ 

goals that differed from each other in ways that could play a role in describing what 
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students would have opportunity to learn.  In the analysis that follows, I focus on the 

variations in the articulation of the respondents’ goals in order to illuminate the 

differences and discuss how these pertain to what students have opportunity to learn.  I 

also use this analysis to reveal who is expected to participate in that learning, and the 

circumstances under which that learning could occur, or how students will engage in 

those opportunities.  I chose these constructs because they reveal differences across 

the goals that are important indicators of the recommendation that teachers attend to 

the connections that can be made between students’ methods, with explicit attention to 

concepts (Hiebert & Grouws, 2007) and to implement formative assessment practices 

such as questioning and peer assessment (Wiliam, 2007a)   

As shown in earlier analyses, the most salient categories across which to 

describe differences among responses were whether respondents taught or did not 

teach in a PreK-2 setting and whether they had or had not had training in a learning 

trajectory.  These groups and the number of teachers in each are shown in Table 5.3 

below.  In the sections that follow, I describe the analysis and what it revealed about 

teachers’ instructional goals.   

Table 5.3: 

Teacher groups based on background experience 

  Trained in a learning 
trajectory (LT) 

Not trained in a learning 
trajectory (non-LT) 

Teaches early 
elementary 
mathematics (EE) 
 

 
4 
 

 
8 

Teaches upper 
elementary 
mathematics (UE) 
 

 
5 

 
5 
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Transitivity analysis:  processes When conducting the analyses for processes, I 

found that the most frequent process types were material and mental, with a relatively 

small number of verbal, behavioral or existential clauses.  With even less frequency, 

teachers would include a relational clause, which typically presented an explanation of 

some sort, (e.g., the answer will be the same, or the sequence of numbers does not 

determine the equation).  Because of this, I initially focused on the mental and material 

processes and the human actors involved in those processes; teachers, students, or 

some subgroup of students.   

Material processes were presented with verbs such as show, count, or model, in 

which teachers or students would be engaged in processes of doing.  Mental processes 

were presented with verbs such as understand, determine, or figure in which teachers 

or students would be engaged in processes of sensing.  Identifying the types of 

processes presented by teachers’ goals was useful for understanding whether the 

respondent expected students to be actively engaged in some learning activity or to be 

mentally engaged with an idea.   

Table 5.4 below indicates the mean number of responses, across all four items, 

for each group of respondents, which included teachers or students engaged in material 

or mental processes.   The values represent the frequency with which respondents in 

each group referenced teachers or students engaged in material or mental processes 

across all responses.  There were no statistically significant differences found between 

the proportion of teacher or student participants engaged in material or mental process 

within the instructional goals teachers wrote for their classroom discussion.  These 

differences were not significant regardless of background experiences of the 
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respondents group.   In other words, the goals, written by respondents of varied 

backgrounds, had similar inclusion of teachers and students engaged in processes of 

doing and sensing (or thinking) during the group discussion.   

Table 5.4:   
 
Material and mental processes in teachers’ goals, mean score, across all items 

 Teacher 
Material 

Teacher 
Mental 

Student 
Material 

Student  
Mental 

(UE, no LT) 0.40 0.10 0.55 0.45 
(EE, no LT) 0.16 0.16 0.58 0.71 
(UE, LT) 0.15 0.15 0.60 0.75 
(EE, LT) 0.31 0.06 0.56 0.75 

 

Transitivity analysis:  objects of processes The analysis showed that the frequency 

with which teachers and students were expected to engage in either material or mental 

processes did not differ by teacher group.  But, the measure of frequency of these 

processes does not describe the complexities of the interactions that were the object of 

those processes.  To better understand the nuances of those material and mental 

processes, I identified, in each clause, the object of each process, the non-human 

grammatical participants in the processes presented by the respondents, by locating the 

nominal phrases associated with the processes.  For example, in this portion of one 

response, to show [the other ways] to solve [the problem], includes two material 

processes, to show and to solve.  These processes are directed at the objects [the other 

ways] and [the problem], respectively.  In this way, I was able to begin to illuminate 

differences among respondents’ goal statements.  In these two clauses, the respondent 

indicates she is open to the use of multiple methods with a purpose of solving the 

problem, where the solution methods are seen as tools a student chooses in order to 

find solutions to problems.  The variations of these phrases as seen across the 
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responses provided insight into the purpose respondents had for engaging the students 

in mental and material processes in the discussion.  I considered it important to analyze 

these phrases because they aid in understanding the opportunities extended to 

students during learning activities.     

In the responses, some common nominal phrases included strategies, missing 

addend problems, the skill, the operation, and the answer, among other things.  

Because the variation in grammatical participants included in the responses was wide, I 

first listed each of the participants included in the goals and then searched for themes 

across the list.  One important theme that arose was focused on the solution methods, 

as when a respondent asks that the students find [other ways] to solve the problem.  In 

this section I describe examples from the responses which describe the variation in the 

goals respondents set for the use of solution methods.  This variation includes goals in 

which the respondents prescribed a specific method, were open to the possibility of 

multiple methods, or did not mention the use of methods.     

 No mention of methods. Respondents in all groups wrote instructional goals 

that did not describe the use of a solution method within it, though respondents without 

training in a learning trajectory wrote goals of this nature more frequently (about a third 

of responses) as compared to respondents with training in a learning trajectory (only 

one tenth of responses).    This is not entirely unexpected since a learning trajectory has 

a focus on the particular strategies that students utilize over time, exposing teachers in 

those learning sessions to closely consider students’ methods for solving addition and 

subtraction problems.  Goals that did not mention a solution method tended to focus 

either on mathematical vocabulary or on determining the mathematical operation 
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indicated within the problem.  As an example, the respondent does not attend to a 

solution method for the problem, but rather indicates a need to listen [to the complete 

task] and to determine [what is known/determined].   

First that the sequance (sic) of the numbers does not determine the equation, but 

it is important to listen to the complete task. Determine what is known and what is 

to be determined. (4520) 

In this particular response, the respondent had chosen an additive problem in which the 

change was unknown, Jonas has ___ trading cards.  He gets some more from his 

friend.  Now he has ___ trading cards.  How many did his friend give him?  The focus in 

the goal is placed on gathering information from the problem in order to figure out what 

is to be determined.  I would argue that while this is not an unnecessary aspect of 

student learning to attend to, the learning goal as written stops short of describing what 

students might be expected to learn about the mathematics once it has been 

determined what operation is represented within the problem.        

 There were also a number of responses in which the respondent made some 

mention of solution methods that could be used to solve the problem.  I coded these 

according to whether the teacher prescribed the use of a particular method or methods 

in order to solve the problem or whether the teacher was open to the varied methods 

that students might utilize.   While a prescribed method might be appropriate for a 

number of the students in the group to practice, the practice of eliciting student methods 

provides greater opportunity for students to build their independent problem solving 

abilities as well as provides valuable formative assessment information to the teacher 

(Jacobs et al., 2010).  In the section that follows, I describe the types of responses in 
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which the respondents either prescribed methods or remained open to the use of 

multiple methods on the part of students.   

Prescribed Methods. Respondents with training in a learning trajectory were 

slightly more likely to state learning goals that included a mention of solution methods 

(44% of responses), as compared to teachers without training in a learning trajectory 

(32% of the time).  Furthermore, upper elementary teachers were more likely to 

prescribe these methods (about half of responses), as compared to early elementary 

teachers (about one fourth of responses).  A teacher who is trained in a learning 

trajectory may be made more aware of the solution methods that students use to solve 

problems and this might lead them to prescribe those methods more often.  In the 

example below, from a respondent who had been trained in a learning trajectory but 

taught in a fourth grade classroom, the prescribed method of choice is ten strategies.   

How they can use [ten strategies] to help them figure out the answer. Take away 

3 from 13 is ten and then take away two more to get to 8. They should be familiar 

with their ten addition families which makes it easier to figure out these 

subtraction problems (4552) 

Across responses, teachers often prescribed the use of a make tens strategy.  In the 

case of this particular response, the teacher had chosen a subtractive problem written 

as, Hanna had ___ gumdrops and she ate ___ of them.  How many does Hanna have 

now?, choosing to place the numerals 13 and 8 in the blanks respectively.  This 

problem would be modeled as 13 – 8 = __.  In the goal, she describes how the make 

ten strategy would be carried out; that 13 minus 3 is 10 and subtracting another 2 would 

be 8, presumably choosing 5 as the correct answer.  In doing so, the respondent 
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presumes that the students would recognize that rather than removing 8 from 13, one 

could also remove a quantity to attain 8, an alteration of the way in which the original 

problem is structured.  The recommendation of this particular method appears to 

overlook some aspects of mathematical learning that would be important for a teacher 

to consider.       

Use of multiple methods. Early elementary teachers were more likely to remain 

open to the potential for students to utilize multiple methods (in half of responses) 

during the discussion than respondents teaching other grade levels (in one fifth of 

responses).  This finding was true of PreK-2 teachers regardless of their training in a 

learning trajectory.  At the same time, it’s possible that teachers’ awareness of a 

learning trajectory influenced in what ways students’ methods for solving were 

leveraged in order to further the learning of the group.      

As described by Hiebert and Grouws (2007), if students are to acquire 

conceptual understandings, the use of those multiple methods should be leveraged in 

order to show “how different solution strategies are similar to or different from each 

other” (p. 383).  In the examples that follow I compare two example responses, both 

written by teachers who work in PreK-2 settings and who remained open to students 

using various solution methods.  The first instructional goal is written by a teacher who 

did not indicate having been trained in a learning trajectory and the second by a teacher 

who had been trained in a learning trajectory.   

When using this problem during discussion I would hope to achieve the goal of 

students know how to use a variety of methods and strategies to solve addition 

and subtraction problems (7150) 
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In this first example, the phrase, know how to use [a variety of methods and strategies] 

is an indication of the use of multiple methods and the phrase to solve [addition and 

subtraction problems] indicates the purpose.  While this instructional goal and purpose 

include the use of multiple methods, there is no indication that the teacher will work to 

support the connection between those strategies, choosing instead to ensure students 

are able to make use of those strategies in order to come to proper solutions to 

problems.   

In the second example, on the other hand, the respondent is more intentional 

about the connection between strategies.   

Goal: Students understand this problem can be solved multiple ways. Give 

students a chance to share their strategies working them through discussion that 

leads from the least to most efficient. Also, using this as a way to check your 

work using more than one method. (2448) 

In this second instructional goal, in addition to students’ understanding of the varied 

methods for solving, the respondent has two purposes for the variation in strategies.  

First, to work [them] . . . from the least to most efficient, and to check [your work].  In this 

example, the respondent intends to make use of the multiple methods in order for 

students to meet two further objectives: to recognize a mathematical connection 

between the methods and to attend to the precision of their work verifying the answer 

using another method, a difference that could prove valuable for the learners in her 

classroom. The difference noticed here in the purpose the respondents had for making 

use of solution methods is another point of difference in teachers’ goals.  In the next 
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section I describe how these differences are revealed in the teachers’ responses and 

what those differences in purpose were across the goal statements.   

The problem or the concept.  A noticeable difference in the respondents’ 

instructional goals for group discussion was related to the stated purpose the teacher 

had for engaging students in solving problems.  Across the responses, the indications in 

the text revealed the teacher’s response either had an explicit focus on finding a 

solution to the chosen problem, or that the teacher would be using the solution methods 

as a means to further understand the concept of addition and subtraction.  In the 

sample goals (Table 5.2), this difference is apparent in the participant to which the 

processes to solve and show are directed.  In the first, the process to solve is directed 

toward [this problem] and in the second, to show is directed toward [the connection 

between strategies].  Each of these would serve a different instructional purpose in the 

group discussion and lead to different understandings of mathematics—either a set of 

procedures for calculating or an interconnected system of operations meant to make 

sense of quantities as they are increased, decreased, or modified in some other way.  In 

a few instances (14% of responses), an instructional purpose for the goal could not be 

determined from analyzing the response, as in this example, Students will be able to 

model subtraction using counters. (7173). While the respondent has a goal that the 

students will ‘model subtraction using counters’, the purpose she intends to meet (e.g., 

to find an answer, to show how subtraction relates as taking away, etc.) is not clear from 

the text.     
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The majority of responses had a focus on solving the problem (77% of 

responses).  I include here an example response in which the teacher focused on the 

solution to the problem.   

My goal would be to have the whole class be able to do simple subtraction 

problems. While working on their own, some of the students were unable to 

come up with the correct answer. In doing a similar problem during the group 

discussion, it would be my hope that all students would be able to understand the 

difference between the two numbers. (7228).   

In this case, the teacher repeats her desire to have students come to a correct solution 

to the problem in a number of different ways: do [simple subtraction problems], come up 

with [the correct answer], understand [the difference (between the two numbers)].   

In contrast, only a few responses included references to concepts and the 

connections between mathematical ideas (only about 8% of responses) and each of 

these instances was in a response from teachers who worked in early elementary 

settings.  In these responses, the teachers were more likely to make use of the chosen 

problem in order to illustrate a concept in addition and subtraction, as in the following 

example,  

I would like the students to see that 5 and 7, in any order will be 12, and that 

when you take one of them away (ie 5), the other is the answer (7). I would refer 

to other sets of numbers we had worked with in the past. (7160).   

In this example, the respondent uses the numbers from the problem to engage students 

in thinking about the relationship that numbers that make up addition or subtraction 

sentences have to each other when she states, to see that [5 and 7, in any order will be 
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12].    In addition to drawing out the relationship that 5, 7, and 12 have to each other in 

this word problem, the teacher chooses to refer to [other sets of numbers] that have 

been worked previously, building the idea that this is a relationship that holds true 

among other sets of numbers.     

In the example focused on the solution, mathematics is portrayed as a tool to be 

applied to problems, a process that can be picked up and used when needed to find 

solutions to problems involving addition or subtraction; a way of determining answers.  

In the latter example, the teacher’s goal is more conceptual and would lend itself to 

students recognizing relationships among numbers under the operations of addition and 

subtraction and that would allow them to work more efficiently, to build on these ideas 

later when they encounter new sets of numbers or different operations within 

mathematics.   

Transitivity analysis:  circumstances The circumstances, presented in the adverbial 

or prepositional phrases in each instructional goal, lend further evidence to understand 

the intentions teachers have for student work.  As seen in the sample goals (Table 5.2), 

the respondent who wrote Sample 1 indicates the problem will be solved in two ways, 

by counting up and by using manipulatives, whereas in the Sample 2, the circumstance 

is to order the student strategies from least to most efficient.   The differences in the 

circumstances in these two instructional goals could be important for learning in that 

they describe how teachers or students will carry out the work in the classroom and set 

the stage for what students will have opportunity to learn.   

Because circumstances are more peripheral as an element in transitivity 

analysis, not every response includes a circumstance.  Table 5.5 below lists each time a 
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circumstance was indicated in the responses to Item One.  To provide context for the 

circumstances included in the instructional goal, I also included the preceding process 

and participant in the clause.  In the section that follows, I describe the importance of 

some types of circumstances mentioned in the responses.   

Table 5.5: 

Circumstances in teachers’ goals for item one 

 Process [participants] 
 

Circumstances 

 
UE, no-LT            

model [subtraction] [by] using counters 

use [more difficult numbers] as they are ready 

know [how to regroup] Correctly 

 
 
 
 
EE, no-LT            

solve [a problem] 
use [a different strategy] 

with similar wording 
after listening to others 

visualize [this problem] much easier 

solve [missing addend problems] in multiple ways 

show [how they understand] 
use [numbers] 

Pictorially 
with the drawing 

do [a similar problem] 
understand [the difference] 

during the group discussion 
between the two numbers 

apply [what was discussed] 
challenge [them] 

following the last problem 
with bigger numbers 

 
 
UE, LT                 

make [the problem] 
solve [it] 

as real life as possible 
in whichever way is best for them 

count 
work 
completing [the same concept] 

past 10 
through that transitional number 
with a different story 

 
 
 
 
EE, LT 

worked [other sets of numbers] in the past 

use [student strategies] in order from least to most efficient 

count 
begin 

from a number >10 and <15 
with smaller numbers as a model 

solve [the problem] 
discuss [how they know their 
answer] 
figure out [the correct answer] 
extend [learning] 

in pairs 
to the whole class 
 
[by] using one of the other strategies 
to the other numbers 

 

I provide a list of all circumstances mentioned in response to the prompt for Item 

One in order to show the ways in which teachers design their instructional goals to be 
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carried out under a number of different conditions.  Here, I discuss some themes that 

characterized those conditions across all items.  By looking at the circumstances in Item 

One, one can see that in some cases the circumstances prescribe the manner in which 

the work will be carried out (using counters, pictorially, with a drawing), further evidence 

that teachers will sometimes prescribe the way that students should carry out the work 

being done. Across all responses, goals of this nature (focused on manner) were much 

more likely to be written by respondents without training in a learning trajectory.  In other 

cases, the response includes attention to correctness or speed (correctly, quickly).  

Again, these terms were more likely to be used by respondents without training in a 

learning trajectory.     

Other circumstances describe how the respondent envisions the teacher setting 

up the problem in a way that connects with other learning moments, using 

circumstances of time or accompaniment (following the last problem, in the past, with a 

different story), presumably to extend what had been a part of work done earlier in the 

classroom.  Because one benefit of learning in a group is to begin to understand and 

make use of the solution methods used by other students, I searched across the 

responses for indications of this type of engagement.  There were a few instances in 

which the circumstances indicated students listening to or learning from each other, 

referenced by after listening to others, in pairs, and to the whole class.  In general, the 

presence of this type of circumstance was limited.  In the groups made up of early 

elementary teachers, respondents describe situations in which students are learning 

with and from each other.  In the groups of teachers who do not work in early 

elementary there was no mention of learning that might occur between students in the 
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group.  In these cases, the goals might be carried out just as easily in an individual 

setting, similar to the finding of Dawes and his colleagues (2004) in which they 

observed students more likely to be working in groups than as groups.   

Summary of Analysis of Goal Statements  

In this data set, and based on their responses to the scenarios, it appears that early 

elementary teachers are more likely to engage students in learning from each other.  

Further, those early elementary teachers who had been trained in a learning trajectory 

were also more likely to attend to concepts of addition and subtraction.  However, while 

each of these practices were present in some responses from early elementary 

teachers, they were not widespread across responses.  To support students’ deep 

understanding of mathematics, Hiebert & Grouws (2007) recommend an intentional 

focus on the connections made between strategies and concepts.  Opportunities to 

engage in these connections between solution strategies, special or general cases, and 

relationships among ideas seem most advantageous to happen in a group setting since 

it is within this group setting that the variety in student thinking can be surfaced, and 

subsequently used to make such connections.  This recommendation and the data in 

this sample point to a need to support teachers in implementing these instructional 

practices in all classrooms.   

In the previous sections I have described some of the differences noticed 

between the instructional goals set by teachers for engaging in a group discussion.  

Those differences included whether or not the teacher was open to the use of multiple 

methods, whether the purpose was to determine a solution or consider some concept of 

addition and subtraction, and whether the teacher represented the group of students as 
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learning from each other.  In Table 5.6 below, I show a summary analysis for each goal 

set by a teacher for Item One.   

Table 5.6:  Summary analysis of goals for group discussion, item one 

  
 

Methods 

 
Connections 

Made 

Purpose: 
Solution or 
Concept 

 
Engaging  
the Group 

 
 (UE, non-LT) 

Prescribed --- --- --- 
No Mention --- Solution --- 
No Mention --- Solution --- 
Prescribed --- Solution --- 
Prescribed --- Solution --- 

 
 
 

 (EE, non-LT) 

Multiple Yes Solution Yes 
No Mention --- Solution --- 

Multiple --- Solution --- 
Prescribed --- Solution --- 
No Mention --- Solution --- 

Multiple --- Solution Yes 
Multiple --- Solution --- 
Multiple Yes Concept --- 

 
 (UE, LT) 

No Mention --- --- --- 
Prescribed --- Solution --- 
Prescribed --- --- --- 

Multiple --- Solution --- 
Prescribed --- Solution --- 

 
 (EE, LT) 

No Mention Yes Concept --- 
Multiple Yes Concept Yes 

Prescribed --- Solution --- 
Multiple --- Solution Yes 

 

This summary table supports a conjecture that early elementary teachers or teachers 

who have been trained in a learning trajectory have experiences that lend these 

teachers to invite the use of multiple methods during their group discussions. In this 

sample, upper elementary teachers without training in a learning trajectory were the 

only group of teachers to not mention the use of multiple methods in their goals. Also, in 

this sample, a small number of early elementary teachers engaged students in the 
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group with each other’s thinking, leveraging learning opportunities for those in the 

group, but this practice was not evident in any responses from teachers in the upper 

elementary grades.  Finally, a few early elementary teachers had responses that 

included an attention to the concepts of early addition and subtraction and the 

connections between the methods students use, whereas teachers of upper elementary 

focused their responses on solutions to the particular problem.  In general, the purpose 

of the instructional goals represented in this table was to find the solution to the 

problem.   

 The data does not provide sufficient evidence to support a claim that knowledge 

of a learning trajectory supports teachers’ instructional goals that pursue qualitatively 

different student understandings.  Of the responses, a few teachers set goals to engage 

students in considering multiple methods and/or the connections between those 

strategies as recommended in Hiebert and Grouws (2007).  These teachers were all 

early elementary teachers, but only some had been trained in a learning trajectory.     

Conjunction Analysis  

Conjunctions in a text convey the logical relations between clauses.  The type of 

conjunction (addition, comparison, time, and consequence) is useful in understanding 

the design of a teacher’s goal.  For example, conjunctions of addition may indicate the 

teacher has two sub-goals, as in this response, Review the use of landmark numbers 

and explain how to determine the number to subtract. . . (4520). Conjunctions may also 

serve to compare, sequence in time, or indicate consequence. In the sample goals 

listed in Table 5.2 one respondent used the conjunction and then to communicate two 

subgoals sequenced in time, solve this problem by counting up and then how they may 
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do it using manipulatives.  In the second goal, the respondent also uses a conjunction to 

indicate time, then use student strategies, along with a clause indicating consequence, 

to show connection between strategies.  In the latter use of to, the respondent indicates 

that the ordering of the students’ strategies will be used in order to meet the purpose of 

demonstrating the connection between strategies.   

 I conducted a conjunction analysis because it could provide insight into the 

nature of the respondents’ goals. I conjectured, for example, that goals with 

conjunctions indicating addition would differ from goals which include conjunctions of 

consequence.  Whereas conjunctions of addition may indicate a number of sub goals, 

other conjunctions in the text, such as conjunctions of time or of consequence may 

indicate an attention to a design within the goal that allows for particular moves to occur 

before another or in order to facilitate the second.  An example of this can be seen in 

Table 5.7 below in which the teacher first ensures students are able to make use of one 

strategy before exploring the use of others.   

 
Table 5.7:  Conjunction types in responses 

Conjunction Type Sample Responses from Data 

Addition “To clarify ways to solve this type of problem and show the 
other ways to solve this problem.” (7161) 
 

Comparison “My goal would be for students to be able to see the problem 
like Blue did, making groups of 10 to get to the answer” (7110) 
 

 
Time 

“As a whole group review, I hope to get all students on board 
with being able to solve this subtraction problem use (sic) at 
least one strategy correctly. Peer tutoring may be used. Once 
all students can use a strategy proficiently, we will explore 
others.” (7228) 
 

Consequence “Use similar problem (missing addend) so information from 
discussion can be applied to new problem. . . .” (4546) 
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 Teachers in all groups used each type of conjunction.  After analyzing the use of 

conjunctions across all responses, I found the mean number of times teachers in each 

group used any of the four conjunction types in any of their goal statements.  The 

results are shown in Table 5.8 below. 

Table 5.8:  Mean number of conjunction types by teacher group 

 Addition Comparison Time Consequence 

(UE, non-LT) 
 

0.5 0.05 0.15 0.1 

(EE, non-LT) 
 

0.32 0.16 0.13 0.23 

(UE, LT) 
 

0.25 0.15 0.05 0.25 

(EE, LT) 0.38 0.25 0.25 0.31 

 

A few differences found between the groups are notable.  Upper elementary 

teachers without training in a learning trajectory used conjunctions that indicated 

addition more than any other conjunction and used conjunctions to indicate 

consequence less frequently than all of the other groups of teachers.  Since these 

teachers neither teach in an early elementary setting nor have had training in a learning 

trajectory, this evidence might be an indication that this group of teachers feels more 

secure stating a number of sub-goals than in considering how one sub-goal might serve 

a further purpose for the learning of the group.  Teachers with training in a learning 

trajectory or who taught in an early elementary classroom used conjunctions in their 

goal statements in a higher proportion than teachers without these background factors.  

These teachers seemed more comfortable considering factors of the discussion as 
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rationale for subsequent instructional moves.  Because the number of goal statements 

in which conjunctions were found was minimal, it’s difficult to draw conclusions from this 

particular set of data.    

Conclusions 

 By looking across the variations in teachers’ goals, each of these findings from 

the transitivity and conjunction analysis illustrate the ways in which teachers and 

students engage in group learning and the different purposes teachers have for group 

discussion, including what opportunity to learn students have.  While those discussions 

could serve to engage students in learning with and from each other to connect the 

mathematical concepts of addition and subtraction, those discussions could also serve 

to ensure that students have time to practice strategies that help them come to correct 

answers for the problems posed.  These differences could have significant implications 

for young learners of mathematics and the analysis shows potential methods for 

considering teachers’ instructional goals.  Transitivity, as a tool, provided ways of 

illuminating aspects of teachers’ practice that have been found to be important for 

extending learning opportunities to students.  Furthermore, transitivity allowed for an 

analysis that took a learning trajectory into account.  In this way, I was able to show that 

not only do teachers’ goal statements vary in ways that are important for student 

learning, those variations could be seen as  providing different levels of access to 

students’ learning needs.  The findings from this small sample seem to indicate that 

teachers who had been trained in a learning trajectory may be more fully prepared to 

meet the demands of instruction that simultaneously engages students in thinking about 
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the concepts of mathematics while attending to the individual learning needs of 

students.    
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CHAPTER 6  

DISCUSSION AND CONCLUSIONS 

 Teachers’ formative assessment practice, in particular those responses provided 

by teachers that take into account information from students and provide appropriate 

feedback,  have been suggested as an effective instructional strategy (Black & Wiliam, 

1998).  At the same time, the implementation of formative assessment practice in 

mathematics classrooms varies in quality (Heritage et al., 2009) and may depend on a 

number of factors.  In this study, I sought to identify some of those sources of variation 

in teachers’ formative assessment practices. In particular, I investigated teachers’ 

interpretation of and responses to student thinking as well as the goals teachers set for 

whole group discussions.  I surveyed 22 practicing teachers and gathered their 

responses to students’ emergent thinking in early addition and subtraction and I 

considered background factors that might account for the variation observed among 

teachers in those formative assessment practices.   

An analysis of the data determined that at least two factors of teachers’ 

background experiences could be related to teachers’ formative assessment practices: 

teachers’ present experience in early elementary grades and their prior training related 

to a learning trajectory for addition and subtraction.  The teachers in the sample who 

were teaching early elementary grades and had had training related to the learning 

trajectory provided responses that differed significantly from those teachers who did not 

have experience in an early elementary classroom and who had not participated in a 
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training related to a learning trajectory for addition and subtraction.  Findings from this 

study broadly inform research on teachers’ pedagogical knowledge, the benefits of 

teachers’ classroom and professional learning experiences and the association of those 

variables with formative assessment practices.   

I begin this chapter with a summary of the findings from the study.  In it, I discuss 

the teachers’ interpretations of and responses to student thinking while considering that 

teachers’ awareness of a learning trajectory and a teachers’ classroom experience in 

early elementary grades could influence those practices.  I also discuss the goals that 

teachers set for whole group discussions and the differences that were noticeable within 

the data based on teachers’ experiences related to the teaching and learning of early 

elementary addition and subtraction.  I interpret these results and draw inferences from 

the data as a whole.  Finally, I conclude this chapter by considering implications for 

further research into studies of teacher knowledge of learning trajectories as well as the 

ways in which knowledge of a learning trajectory may further inform the theory of 

mathematical knowledge of teaching (Ball et al, 2008) related to teachers’ knowledge of 

content and students and knowledge of content and teaching.  In particular, a learning 

trajectory may provide a knowledge base for considering teachers’ practices in ways 

that are specific to concepts.  The practical implications of this study include 

considerations for elementary instruction and teacher education or certification.  Finally, 

I discuss limitations of this study and propose further research into studies of teacher 

knowledge and practice.   
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Summary and Interpretation of Findings 

 I discuss the findings of this study by first reviewing the aims of this dissertation.  

I reviewed research that allowed me to argue that a learning trajectory could be a 

knowledge resource teachers utilize to inform responses to students learning early 

addition and subtraction.  I considered that teachers could encounter student thinking in 

individual as well as group settings and sought to analyze aspects of teachers’ 

formative assessment practices from responses given to simulated forms of these two 

settings.   Based on previous research that a teacher’s professional learning and 

expertise has an impact on what is noticed in classroom scenarios (Jacobs et al., 2010), 

the design of the study permitted comparing the responses of teachers based on 

background factors such as classroom experience and prior training in a learning 

trajectory.  An analysis of the data, accounting for these factors, allowed me to 

illuminate some of differences noticed in teachers’ formative assessment practices and 

consider how a learning trajectory provides a lens for assessing teachers’ content-

specific practices.     

To understand teachers’ formative assessment practices related to individual 

students’ thinking, I examined teachers’ interpretations of and responses to simulations 

of individual student responses and developed a measure to assess the potential the 

teachers’ responses have for extending learning along a trajectory.  I also examined 

whether being trained in a learning trajectory was associated with differences in those 

responses.  The analysis attended to the frequency of teachers’ interpretations across 

eight instances of student thinking as well as to the extent to which teachers’ responses 

to those instances held the potential to extend student learning along a learning 
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trajectory for the concept. For those two measures, I was able to detect differences that 

could be accounted to the background factors named above. After discussing these 

findings separately, I discuss the correlation between the two teaching practices.  I 

follow this discussion by considering the ways in which teachers manage the complex 

task of setting goals for groups of students that include individuals who vary in their 

current understanding of mathematics and discuss the findings of qualitative analyses of 

differences in teachers’ goals.       

My analyses of a relatively small sample of teachers (n = 22) showed that teachers’ 

background experience teaching early elementary grades and their prior training in a 

learning trajectory may have a relation with teachers’ formative assessment practices 

for teaching early addition and subtraction.  There is less evidence to explain variations 

in the goals that teachers set for group discussions, but further analysis could hold 

potential to understand this better.      

Teachers’ Interpretations of Student Thinking 

 I asked teachers to describe the work of eight depicted students who used 

varying strategies to solve addition and subtraction problems and then examined their 

descriptions to determine whether or not the teacher inferred meaning from the 

student’s response.     

Regardless of their background experiences, teachers nearly always provided 

objective descriptions of the work of the depicted students, but they were not equally 

likely to interpret what the students had done.  Teachers who taught in an early 

elementary setting were significantly more likely to interpret student thinking, as 
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compared to their peers who taught in grades beyond second grade.  This supports a 

claim that teachers’ experience teaching elementary addition and subtraction provides 

some level of knowledge relevant to the teaching of addition and subtraction.  The 

interpretations teachers made of student’s common methods for solving addition and 

subtraction tasks included references to the particular type of count the student had 

conducted, indications of how that count might be unique, as well as the potential 

sources of student’s errors.  This would suggest that teachers who have regular 

interactions with early elementary students are able to make inferences regarding 

student work and attribute meaning to students’ mathematical thinking.  Furthermore, 

teachers with prior training in a learning trajectory were also significantly more likely to 

interpret student thinking than their peers without training in a learning trajectory.  

Overall, teachers who both taught in early elementary and had been trained in a 

learning trajectory were significantly more likely to interpret student thinking when 

describing the work of a student.    

Given that teachers were prompted with the statement, Describe what you 

noticed this student did to solve the addition or subtraction word problem, I consider it 

important that some teachers chose to provide interpretive comments as well. But early 

elementary teachers with training in a learning trajectory did so more often than their 

counterparts in early elementary without knowledge of a learning trajectory. A teacher’s 

experience in a classroom may allow him or her to recognize instances of student 

thinking, but teachers may need additional support to be able to make appropriate 

interpretations of students’ common ways of thinking about addition and subtraction.  In 

this study it seems that teachers who had been trained in a learning trajectory were 



  155  
 

more prepared to provide such interpretations or more confident on the value of their 

interpretations, as they were eager to provide them without being asked to do so.   

Teachers’ Responses to Individual Students 

 In the survey, teachers were asked to describe an instructional response to the 

student who had just been observed.  The analysis of these responses assessed the 

extent to which a teacher’s response to an individual student held the potential to 

extend student understanding, providing a measure of the quality of the responses.  I 

utilized a set of dependent questions as a coding scheme to determine the quality of 

each response in regard to its alignment with the learning trajectory for addition and 

subtraction.  The score scaled teachers’ responses along a range from potentially 

regressing the student’s thinking, to not regressing the student’s thinking to setting a 

goal in alignment with the learning trajectory, to supporting that goal, a range from zero 

to three on the scale.  I also identified goals that were either non-specific or not on the 

trajectory.  For example, a goal to solve the problem using different methods was 

considered non-specific and to solve a problem with different numbers could not be 

placed on the trajectory.  These goals might be considered appropriate in light of 

general recommendations that students use multiple methods to solve a variety of 

problems, as described by Hiebert and Grouws (2007).  But, given the content-specific 

nature of the survey, such responses were not coded as being targeted at extending 

student understanding of addition and subtraction.   

Teachers who had not been trained in a learning trajectory would often set a 

learning goal that was either non-specific or not on the learning trajectory.  Similarly, 

teachers not trained in a learning trajectory were more likely to receive low scores, often 
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because the goals they had set were non-specific. On the other hand, teachers trained 

in a learning trajectory and who taught in an early elementary setting were more likely to 

set goals that would support student thinking and be able to extend it.  Across all eight 

items, the mean response score for teachers who both had experience in an early 

elementary classroom and been trained in a learning trajectory was significantly higher 

than for teachers who taught upper elementary and had not had training in a learning 

trajectory.   

These findings are compelling considering that teachers had not been asked to 

choose an instructional response that would extend the student’s learning.  Rather, 

teachers were given a fairly general prompt that asked them to describe what they 

would say and do in response to the student and to determine a next learning goal.  In 

that context, however, teachers who had been trained in a learning trajectory utilized 

that knowledge in presenting responses that had the potential to extend student 

understanding.  Teachers who had not been trained in a learning trajectory, on the other 

hand, even those who teach in early elementary settings, offered extending responses 

less frequently.       

Early elementary teachers are largely responsible for supporting students’ 

development of the mathematics concepts described in this study. The findings from 

this group of teachers indicate that experience in an early elementary classroom can be 

an important factor for being attuned to children’s mathematical thinking.  However, 

training in a learning trajectory may have an added benefit for teachers and their 

interpretations of student thinking.  It may be that a learning trajectory provides a 
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greater level of detailed indicators for teachers to notice or it may be that professional 

learning provides detail regarding a larger range of strategies students use.     

The Relation of Teachers’ Interpretations to Responses 

The practice of formative assessment involves an informed interpretation of and 

response to student thinking.  After conducting an analysis for each of these separate 

practices, I investigated the correlation between interpretations of and responses to 

student thinking.  In the sample, there was a moderate positive correlation between the 

teachers’ mean scores for each variable.  Higher mean scores for interpretation of 

student thinking were associated with higher mean score for responses that had the 

potential to support and extend student’s mathematical thinking.  In addition, there was 

a strong positive correlation between interpretation of and responses to student thinking 

that were provided by teachers who had been trained in a learning trajectory.  For the 

teachers in the sample, it appeared that training in a learning trajectory may allow them 

to provide more targeted responses based on their interpretations of student thinking.  

On the other hand, there was no significant correlation between teachers’ 

interpretations of and responses to student thinking for teachers not trained in a learning 

trajectory.  

I consider this in the light of the observation from Heritage and her colleagues 

(2009) in which they describe teachers being more adept at interpreting than at 

responding to student thinking.  The findings indicate that teachers with knowledge of a 

learning trajectory may be better prepared to make productive use of interpretations in 

order to respond to students’ mathematical thinking in ways that teachers without 

knowledge of a learning trajectory were consistently unable to accomplish. Even though 
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early elementary teachers regularly observe the work of students and sometimes 

interpret that work, this does not seem to necessarily prepare a teacher to determine 

responses meant to extend that thinking as described in a learning trajectory.  The 

findings indicate that early elementary teachers were able to utilize the knowledge of a 

learning trajectory to make decisions about learning the concept in ways that may be 

unclear to teachers who were not trained in a learning trajectory.  This may be because 

those teachers without the training do not recognize student thinking as indicators of 

milestones in a student’s mathematical development.   

Teachers’ Goals for Group Discussions 

 In each survey item, I asked teachers to choose a problem and set an 

instructional goal for a group of students including the individual students observed 

immediately before in the scenario.  My goal in doing so was to determine in what ways 

teachers would attend to the learning needs of students, given the natural complexity 

that one can surmise comes with engaging in a group discussion among students 

whose current understandings are diverse.  While the trajectory is a resource that 

supports understanding the learning needs of individual students, teachers must also 

set goals for student learning in group settings and engage in group discussion in such 

a way to meet the needs of all the learners in the group.  Through a qualitative analysis, 

I searched for themes across the goals and considered in what ways those themes 

varied across the responses.    

 The goals that teachers set for the groups of students varied in a number of 

relevant ways.  One of those distinctions included the manner in which teachers 

proposed the use of solution methods--sometimes those methods were prescribed by 
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the teacher but other times the teacher was open to the use of multiple methods by the 

students.  In addition to research that has shown the benefits of allowing students to 

explore multiple solution methods (Silver & Stein, 1996), there would also be a benefit in 

the practice of formative assessment for teachers to allow students to share their varied 

solution methods and for teachers to use the evidence gathered during this time to 

inform feedback to students.  Teachers who choose to prescribe a method to the 

students in the group instead close down opportunities for students to use varied 

methods and limit opportunities for the teacher to learn from his or her students.   

As students made use of methods to solve problems, the teachers’ purposes in 

solving those problems differed as well.  In most cases, the purpose was to determine a 

solution to the problem. While this is a necessary goal, it is also one that may fall short 

of strengthening students’ understanding of the concept of addition and subtraction.  In 

other responses, the purpose went beyond finding the solution to understanding 

concepts of addition and subtraction, such as the relationship between the two 

operations or the mathematical connections that can be made between different 

solution methods.  The number of goals in which the teacher’s purpose was to develop 

concepts were relatively low, with most goals focused on finding a solution to the given 

problem.     

Further, some goals indicated conditions for the work to be done.  These 

conditions hold the potential to further define the work that is expected to be done in the 

group.  Of the different conditions set on the work done in the group discussion, I 

focused on two types that were prevalent in the data.  First, the way in which the work 

would be carried out and second, whether or not the students would engage with each 
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other during the discussion.  Teachers would sometimes indicate parameters for how 

the solution would be carried out, as in the student carrying out the work correctly or for 

students to show their solution pictorially.  On a few occasions, teachers would describe 

how the group would engage with each other, by listening to others or responding to 

another student’s strategy, leaving the discussion open for learning from peers.  These 

different conditions held the potential to either narrow the possibilities for learning by 

indicating that work should be done in specific ways or to open up the possibilities for 

learning by allowing students to learn from each other and add to each other’s thinking 

during the discussion.  A group setting is a time when students would be well situated to 

learn varied methods by engaging in discussion with their peers, but most goals set by 

teachers in this survey did not indicate those conditions as part of their goal statements.      

 While the differences in goals described in this section appeared across all of the 

goals the teachers set for groups of students, few goals contained all of the positive 

indicators, such as allowing students’ varied methods and providing opportunities to 

students to listen to the methods of other students.  Instead, teachers of early 

elementary grades had a tendency to include students in the discussion in ways that 

would support their learning from each other.  These teachers were also more likely to 

recognize that students might use multiple methods to solve the problems posed 

whereas teachers of the upper grades were more likely to prescribe methods.  

Teachers’ background experiences related to a learning trajectory played a smaller role 

in the differences between group goals than it did in the responses made toward 

individual students.  However, there may be reason to believe that teachers’ 

background experiences play some role in the ways that group discussions are planned 
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since early elementary teachers did include positive indicators more frequently than 

teachers of upper grades.  It is also possible that the prompt in the survey did not elicit a 

full description of teachers’ intended goals while carrying out a discussion. Finally, it is 

also possible that research on learning trajectories has not yet provided enough 

knowledge that is of use for thinking about how a class, as a collective, extends its 

public knowledge.   

The findings from responses to individual students along with the variations 

presented in the goals for group settings lend evidence to the claim that early 

elementary teachers utilize the variation in student thinking to serve different purposes 

in the classroom.  In general, early elementary teachers did recognize the methods 

used by students to solve addition and subtraction problems, but without training in a 

learning trajectory, this variation seemed to serve only as a set of choices for students 

in order to come to solutions to problems.  Teachers who had been trained in a learning 

trajectory, on the other hand, seemed to be prepared to recognize the variation in 

student thinking as indicators of the students’ conceptual development of addition and 

subtraction.  These teachers leveraged that knowledge when responding to individual 

students and were somewhat more prepared to attend to students’ conceptual 

understanding of the concept during whole group setting.   

Responding to students’ individual thinking is a less complex task than 

responding to students in a group setting. This conclusion is supported by the analyses 

that early elementary teachers who had training in a learning trajectory had more expert 

responses toward individual students, but differed less in their practice in whole group to 

their counterparts who had not been trained in a learning trajectory.  Both groups of 
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teachers, regardless of their professional learning experiences had similar patterns in 

their goals for groups, sometimes setting goals to encourage the use of multiple 

methods, but seldom describing moves to make connections between those 

representations of student thinking.   

It may be that due to the complexity of working in groups teachers view this 

setting less as a time to respond to students’ individual learning needs and more as a 

time to attend to broader or more general goals, such as ensuring students understand 

the problem and its associated operation (a response that was provided somewhat 

regularly).  Another explanation would be that during group instruction, teachers’ 

practice is more sensitive to other obligations, such as moving through the curriculum or 

ensuring a fair social environment in the classroom (see Herbst & Chazan, 2012).   

  Implications 

 The findings from this study have potential implications both for teacher 

professional learning and teachers’ classroom practice.  Tools, like the ones used in this 

study could serve a variety of purposes in education, such as to determine teachers’ 

potential to implement formative assessment practices effectively.  The findings also 

further inform the theory of mathematical knowledge for teaching (Ball et al., 2008) and 

other research related to teacher practices when teachers’ learning experiences related 

to a learning trajectory is considered as a factor.  In the sections that follow, I first 

describe how the findings could help further develop theory of knowledge for teaching 

and suggest further research. I go on to describe the ways in which the findings from 

this study inform classroom practice, both in service of classroom structure as well as 

design for professional learning. 
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Implications for Theory and Research 

There has long been a debate about what knowledge teachers should have in 

order to be suitably prepared to teach.  While it is clear that knowledge of mathematics 

alone is necessary but not sufficient knowledge to do the work of teaching, the work of 

describing the knowledge needed to teach well is ongoing.  In their work to describe the 

pedagogical knowledge that mathematics teachers draw on in order to carry out the 

tasks of teaching, Ball and her colleagues define domains of this knowledge (Ball et al., 

2008), including knowledge of content and students and knowledge of content and 

teaching.  And, Sztajn and her colleagues (2012) suggest that knowledge of a learning 

trajectory may extend that description of mathematical knowledge for teaching and add 

to what makes up these domains of knowledge.  In the section that follows, I discuss 

aspects of this study and the considerations that arise when including a learning 

trajectory as an aspect of teacher knowledge.   

Mathematical Knowledge for Teaching 

The theory of MKT (Ball et al., 2008) suggests that teachers use mathematical 

knowledge in ways that are unique to teaching.  Knowledge of content and students 

(KCS) and knowledge of content and teaching (KCT) are domains of knowledge that 

purportedly support teachers’ noticing of students’ common solution methods and 

development of responses to those students.   

Knowledge of content and students (KCS). Knowledge of content and students 

(KCS) allows a teacher to anticipate what students are likely to do when posed with a 

particular problem and to recognize common misconceptions that arise for students 
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when learning a particular mathematics concept (Ball et al., 2008).  The findings from 

this study indicate that teachers who regularly interact with early elementary students 

hold knowledge of students’ common methods for solving addition and subtraction 

problems, and use that knowledge to make inferences about students’ understandings 

of addition and subtraction.  For example, in response to a student who had counted 

from one to solve a problem modeled as 13 - __ = 5, a teacher trained in a learning 

trajectory stated, “This student used the count from one strategy. They needed to count 

all of the objects to solve the problem. This is very early in the development.” (4448).  

This early elementary teacher, who had also been trained in a learning trajectory, not 

only described the work of the students, but provided an interpretation related to the 

student’s progress in learning the concept of addition and subtraction. Knowledge of this 

sort is associated with KCS, but viewing the interpretation through the lens of the 

learning trajectory allows one to recognize it as an observation that includes elements of 

the student’s understanding as well as his or her development.  If I consider teachers’ 

interpretations of student thinking as a proxy for teachers’ KCS, then knowledge of a 

learning trajectory may be one enabler of a teacher’s KCS and could be an important 

factor in supporting teachers’ KCS of specific mathematical content.       

If knowledge of a learning trajectory is useful to support what teachers notice in 

their students’ work, the definition of KCS could be broadened to include teachers’ 

understanding of the relation different student conceptions have to each other in 

students’ development.  Beyond being able to anticipate how any student in the class 

might respond to a given problem or lesson, a teacher with knowledge of a learning 

trajectory may consider how particular students are likely to respond because of the 
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teacher’s awareness of the student’s progress along the trajectory and how that 

learning is expected to progress over time.  Further, knowledge of a learning trajectory 

may make teachers more aware when it might be appropriate for students to utilize 

more rudimentary methods as well as when it would no longer be considered suitable 

for the student, as movement along the trajectory would indicate that the student had 

progressed mathematically.       

Knowledge of content and teaching (KCT). Knowledge of content and teaching 

(KCT) informs the teacher as to instructional decisions made on behalf of students, 

such as choosing examples for a lesson or evaluating which student contributions to 

highlight within a group.  Since many have concluded that the quality of a teacher’s 

response to students “is a critical feature in determining the quality of learning activity” 

(Black & Wiliam, 2009, p. 100), it may be useful to understand more about this domain 

of teachers’ mathematical knowledge for teaching and how it can be developed.     

The findings from this study indicate that being able to interpret students’ 

common methods may not be enough to support productive responses that extend 

learning along a trajectory.  The responses from early elementary teachers to students’ 

methods for solving problems would often include a general comment such as asking 

the student to solve the problem in another way.  But those who had been trained in a 

learning trajectory were better prepared to extend student thinking along the trajectory.  

For example, in response to a student who had used direct modeling to solve a 

subtraction problem, a teacher with training in a learning trajectory stated, “Green is 

ready to continue single digit addition and subtraction, but I would also work on 

concepts of numbers, so that Green does not have to count amounts of 5 or less” 
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(7160).  This teacher stated a learning need for Green, recognizing that he or she 

counts objects through one-to-one correspondence and has yet to internalize amounts 

up to five, which might allow him or her to move away from tracking each count in tactile 

ways. The response from the teacher may be an example of a specialized response 

and indicate a difference in KCT between teachers who have varied professional 

learning experiences.     

 If we view KCT through the lens of a learning trajectory, this means that in 

addition to choosing examples that best represent a problem that is predetermined in a 

curriculum, a teacher might consider the problem and representation through the lens of 

the students’ current learning needs.  This could mean that a teacher evaluates his or 

her instructional moves based on the learning opportunity it would afford and that the 

needed learning would be informed by a learning trajectory.  This broadened way of 

considering KCT allows for the teacher to consider problems, their associated 

representations, and students’ current learning needs in conjunction with each other.  

Relationship between KCS and KCT.  In their study of teachers’ formative 

assessment practices, Jacobs and her colleagues suggested three key aspects of 

formative assessment are teachers’ elicitation of, interpretation of, and responses to 

student thinking (Jacobs et al., 2010).  The findings from this study suggest that a 

correlation exists between teachers’ interpretations and responses to student thinking, 

but that those correlations are stronger for teachers with the combined experience of 

teaching in an early elementary classroom and participating in professional learning of a 

learning trajectory for addition and subtraction.  These teachers were more likely to 

make productive use of interpretations to provide targeted responses.  This suggests 
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that one aspect of a teacher’s KCT (that which supports the composition of responses) 

may be somewhat dependent on a teachers’ KCS, and that this knowledge may partially 

derive from their experiences in an early elementary classroom and in professional 

training.        

To better understand the nature of KCS and KCT in light of learning trajectories, 

it could be productive to write items of the form used in tests of teachers’ pedagogical 

content knowledge to be used for the additional certification of teachers who desire to 

specialize in the teaching of particular domains within mathematics.  These items could 

include questions of the type used in this study, in which the teacher is first asked to 

interpret what a student has done to solve a problem and second to choose from a set 

of response that supports the student’s continued progress learning the concept.   

Kersting (2008) provides one such example of assessment of teacher knowledge in 

which items were based on teacher responses to mathematical thinking in the form of 

video. This form of testing could be adapted to develop items that measure whether 

teachers have the MKT associated with the teaching and learning of specific 

mathematical content.    

Implications for Further Research  

This study relied on a small sample, but there is enough evidence found in the 

results to justify further studies of the instructional strategies of teachers who engage in 

different forms of professional learning.  There is also evidence from a number of other 

studies, which had similar findings (Jacobs et al., 2010; Ebby & Sirinides, 2015) relating 

teachers’ formative assessment practices with their professional learning and expertise.  

Further study could investigate different forms of professional learning about a variety of 
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established learning trajectories. The teachers who participated in this study had 

learned about the learning trajectory by watching video clips of diagnostic assessments 

conducted with students (Bobis, et al., 2005).  But teachers could also learn about a 

learning trajectory through other means, such as through investigations of student work 

that include sorting that work into conjectured learning trajectories or mapping the 

mathematical development that would need to occur to progress from one strategy to 

another.  It would be useful to ascertain whether one or another way of providing 

training on the same learning trajectory is more useful for teachers to interpret and 

respond to students’ work. 

 This study was designed to study the formative assessment practices of teachers 

when responding to students’ early addition and subtraction strategies.  Some of the 

teachers in the sample had been trained in a learning trajectory for that concept.  

Because there are many other mathematical concepts for which a learning trajectory 

could be described, it would be interesting to consider whether knowledge of one 

learning trajectory translates into improved teacher practice in other concept areas.  To 

facilitate such a transfer, a learning trajectory may have to be understood as a set of 

strategies falling into particular categories related to student progress.  One could 

consider the learning trajectory described in this study as describing students’ strategies 

as falling into three categories, counting of objects, counting without objects, and use of 

derived strategies, with some variation in how strategies within those categories are 

carried out.  Similarly, students learning multiplication and division make use of 

strategies that include the use of concrete objects to make sets of equal groups, 

counting strategies, and derived strategies (as in recognizing 6 times 7 is the same as 
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finding the sum of 6 times 5 and 6 times 2), again with variation of strategies within each 

of these broader categories. Research on students development of multiplicative 

concepts (Steffe, 1994) has shown its dependence on the earlier counting schemes that 

mobilize their solution to addition and subtraction problems. This raises the question of 

whether teachers’ knowledge of how students develop addition and subtraction 

concepts enables teachers to interpret and respond to students’ solution of 

multiplication problems. Does teachers’ capacity  to recognize the indicators of student 

progress in learning addition and subtraction increase their capacity to recognize 

students’ learning of multiplication?  Whereas the specificity of a learning trajectory 

might lend toward professional learning that closely focuses on specific strategies within 

a particular learning trajectory, it may be useful to consider means by which teachers 

learn indicators of multiple learning trajectories.    

Along these lines, I ask if facilitators of professional learning could consider 

methods to support teachers to make such transfer from KCS and KCT specific to one 

concept to KCS and KCT specific to another concept.  Researchers could support 

teacher educators’ work minimizing learning time for teachers if they studied what 

aspects of knowledge of a learning trajectory are amenable to transfer.  Perhaps there 

is an underlying structure of all learning trajectories that can facilitate this transfer and 

that could be validated through research. While there are researchers who have studied 

achievement results for students whose teachers had been trained in a learning 

trajectory (Bobis et al, 2005) and teachers’ responses to students whose strategies fall 

along a trajectory (Ebby & Sirinides, 2015), these studies have looked at results in the 

context of a learning trajectory for a particular concept, but have not considered 



  170  
 

teachers’ responses across multiple concepts. While generic stage theories of cognitive 

development have been displaced by the attention to specific knowledge in the learning 

trajectories approach, the very fact that a learning trajectory exists for addition and 

subtraction concepts together suggests that the unit of analysis is not reducible to single 

topics. As we consider this from the perspective of teacher knowledge, one wonders 

whether more general developmental knowledge of early number and operations might 

be attainable by those teachers who have been trained in a learning trajectory for 

addition and subtraction.        

Finally, the findings described in this study show a potential relationship between 

teachers’ experience and professional training in a learning trajectory and their 

formative assessment practices.  To be able to show that teacher learning of a learning 

trajectory has a positive effect on teachers’ formative assessment practices, an 

experimental study would need to be conducted.  One such study could be done by 

choosing a random sample of teachers who work in preschool to second grade settings.  

These two groups could then be randomly assigned to experimental and control groups, 

which receive professional learning of different types.  The types of professional 

learning would vary in the specificity of the content.  For example, the two groups of 

teachers could engage in professional learning related to interpreting and responding to 

students’ mathematical work but one group learning generic practices such as noticing 

and questioning strategies while the other group learn specific practices related to a 

learning trajectory for addition and subtraction.  Teachers in both groups could be asked 

to complete a survey similar to the one used in this study, as a pre- and post-

assessment of teachers’ formative assessment practices to determine if the 
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professional learning can be considered to cause improvements in formative 

assessment practices (as determined by the gains in interpretation and response scores 

used in this study).     

  Implications for Classroom Practice and Professional Learning 

 The findings from this study indicate that teachers’ awareness of a learning 

trajectory can be associated with differences in the quality of teachers’ formative 

assessment practices.  In this study, I did not ask teachers to implement formative 

assessment practices as a means for advancing student understanding.  Instead, I 

asked teachers to respond to prompts that could naturally lend themselves to formative 

assessment practices.  Teachers with experiences in teaching elementary addition and 

subtraction responded in ways that were more likely to advance students’ 

understandings, as measured by a learning trajectory.  I extrapolate from this finding 

that teachers without the relevant experience and knowledge for teaching elementary 

addition and subtraction are not as fully prepared to attend to students’ progress in 

mathematics and are thus less likely to implement formative assessment.  And, I take it 

as evidence that it may be useful to consider professional learning opportunities in 

which teachers engage with learning trajectories as a likely enabler of teachers’ 

formative assessment practices.   

Professional Learning and Teacher Certification.  As we deepen our understanding 

of the mathematical knowledge needed for teaching, questions arise as to whether 

teachers should be learning about or receiving guidance regarding deepened generic 

questioning techniques or whether teachers require a more specific understanding of 

students’ mathematical learning trajectories in order to inform instructional moves.  The 
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findings from this study suggest that teachers’ awareness of a learning trajectory could 

be related to improved formative assessment practices.  Yet, teachers are sometimes 

given too general a guidance regarding the responses they might enact when 

responding to student thinking, for example by suggesting teachers use more extension 

questions than questions used to gather information or explore terminology (Boaler & 

Brodie, 2004).   

Because any particular learning trajectory includes deep and specific knowledge 

of a single concept learned in schools, then we must also consider that there are other 

learning trajectories teachers may need to learn in order to be fully prepared to teach 

their content well.  This might mean that we reconsider the current structure of teacher 

preparation and certification.  Under some states’ certification structures, teachers are 

certified to teach grades Kindergarten through eighth grade on a single certificate.  Only 

considering a few of the bigger concepts in number and operations across those grades 

(early addition and subtraction, place value addition and subtraction, multiplication and 

division, fraction sense, and proportionality), there are a number of learning trajectories 

teachers could potentially be asked to learn.  Therefore, it may be prudent to consider 

altering certification structures, as the Michigan Department of Education is currently 

proposing (Jackson, 2017), such that teachers are certified for fewer grade levels (the 

current suggestion is PreK-3, 3-6, and 6-8).  Narrower grade band certifications would 

allow those in teacher preparation programs to focus more deeply on learning 

trajectories that make up the content domains in those grade levels.  In the absence of 

a change to certification structures, teacher preparation programs may consider 

knowledge of learning trajectories to be valuable content for teachers obtaining a 
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master’s degree or additional certifications once the teacher has attained a teaching 

position and can focus on a smaller portion of the learning trajectories under 

consideration.     

Teacher Responses with Potential to Extend Student Thinking 

 In this study, I considered the possibility that teachers’ formative assessment 

responses could be supportive of a student’s current learning need and those 

responses can be chosen intentionally to support the extension of learning along a 

trajectory.  In Table 6.1 below, I share a summary of the responses provided by 

teachers in the sample that held that potential to support the students’ further learning. 

report those responses based on the current strategy used by the depicted student and 

include a summary of responses when the depicted student had made an error. I 

surmise that the responses themselves contain kernels of wisdom that might be useful 

implications for practitioners. 
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Table 6.1:  Summary of responses with potential to extend student progress 

Problem Posed and 
Depicted Student’s 
Strategy 

Summary of Teacher Responses Scored as 2 or 3 

Jonas had 12 pieces of 
gum. He gave 7 to his 
friends. How many pieces 
of gum does he have left? 
 
Green responded, "Well, I 
counted 12 chips from my 
bucket. Then I put 7 of 
them away. That leaves 1, 
2, 3, 4, 5" 

Teachers indicated that Green used concrete objects to 
solve this subtraction problem.  Since the counts he used 
consisted of forward counts, the teachers recommended 
Green work on backward counting sequences starting in 
the teen range so he is able to make use of counting 
strategies, absent the use of manipulatives, in the future.   

Jonas had 12 pieces of 
gum.  He gave 7 to his 
friends.  How many pieces 
of gum does he have left?   
 
Blue responded, “I 
counted, um, 11, 10, 9, 8, 
7, 6, 5.  He has 5 pieces of 
gum left.” 

Teachers noted that Blue had counted backward to solve 
and seemed to have a method for tracking that count 
accurately.  With this basic understanding of subtraction, 
he or she could likely begin to consider subtraction as an 
inverse of addition and possibly count up, which is a more 
efficient count in the case of this problem.  Teachers also 
mentioned the possibility of Blue beginning to consider 
derived strategies to solve the problem.  Instructional 
supports included providing problems in which a count up 
strategy would be efficient and using ten frames as a tool 
to develop derived strategies.   

Sadie had 11 markers and 
she left 8 of them at her 
friend's house. How many 
markers does Sadie have 
now?  
Blue responded, "Um, so 9 
and 10 makes 2 and 11 is 
1 more. She has 3 left 
now." 

Teachers indicated that Blue had used an efficient count 
and would be able to consider using derived strategies, 
such as those in which 10 is used as a landmark.  
Instructional strategies to do so included the use of ten 
frames and practicing combinations of 10.  

   

Limitations 

 The findings from this study have shown that within a small sample of teachers 

there can be varied ways in which the practices of formative assessment are carried out 

in response to students learning of early addition and subtraction.  The results of the 



  175  
 

analyses raise potential questions about placement and professional learning for 

teachers.  At the same time, it’s important to keep in mind the potential limitations of this 

study.  In addition to the sample size being small, this study asks teachers to describe 

instructional goals and the ways in which those goals would be carried out in the context 

of simulated scenarios. The responses may not be authentically reflect what would 

occur when working with actual students given the added complexities of those 

encounters.   

 Some background data from teachers were taken into consideration when 

conducting this study, including years of teaching experience, current classroom 

assignment, and professional learning experiences.  From the available information I 

was able to show that classroom assignment and prior training in a learning trajectory 

were associated with teachers’ formative assessment practices, but the small size of the 

sample made it impossible to assess the size of the effect those predictors could have. 

It is therefore possible that a study with a larger sample might find the effects of 

experience and training to be small and that other factors are better bets at accounting 

for the variance in teachers interpretation and response scores.  
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Appendix A 

A LEARNING TRAJECTORY FOR ADDITION AND SUBTRACTION 

 Through the use of cognitive interviews with young children, researchers in the 

early 1980s identified a set of strategies that students invent when asked to solve a 

context-based mathematics problem (Carpenter et al., 1981).  After repeated 

investigations of this kind, the set of problems used to elicit the students’ strategies was 

organized into a framework that places problems of lower complexity and greater ease 

for students in contrast with those problems that are more demanding and require 

students to have more sophisticated understandings in order to solve.  The framework 

has been the foundation for professional learning of elementary teachers and its use is 

recommended in recent policy documents (CCSS, 2010).  The framework, as it appears 

in the Common Core State Standards for Mathematics (CCSS, 2010) is shown in Figure 

A.1 in which the less complex problems can be found in the upper left corner with 

darker shading and the more demanding problems are in unshaded cells.   
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Figure A.1:  Addition and subtraction problem types. (CCSS, 2010), retrieved 
from www.corestandards.org 

 

It has been recommended that teachers make use of this framework as a means for 

designing problem solving activities that are challenging enough to promote cognitive 

growth and yet still within the capabilities of students in the teacher’s classroom.  Earlier 

research has shown that the framework has been an effective tool for teacher decision 

making regarding the design of learning activities or the introduction of a new problem 

to a group of students (Carpenter & Fennema, 1992).   

For this particular study, I focus on the trajectory that corresponds to learning 

early addition and subtraction (e.g., sums and differences with numbers that add up to 
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20).  Before describing the strategies that students use and the trajectory along which 

those strategies tend to develop, I first discuss the framework of problem types used by 

teachers to choose tasks which are meant to deepen student understanding of addition 

and subtraction.   

In the decades since the framework was first described, the field has understood 

more about the relative difficulty of the problem types as it relates to the problem solving 

methods of students.  Some of the easiest problem types for children to solve are those 

in which children are able to “directly model the problem’s actions” (Sarama & 

Clements, 2009, p. 121).  These problem types tend to be more accessible for children 

because the actions needed to carry them out are directly translatable from the way in 

which the problem is stated (Carpenter, Ansell, Franke, Fennema, & Weisback, 1993).  

This includes problems in which two sets are joined and the sum is unknown, part-part-

whole problems in which the total is unknown, and problems in which one set is 

separated from another set and the difference is unknown (Sarama & Clements, 2009), 

each purposely formed so that the result of the sum or difference is unknown.  As 

students develop ways of thinking about the quantities associated with numbers more 

abstractly, they also become able to solve join or part-part-whole problems in which the 

change or part is unknown, sometimes called missing addend or missing subtrahend 

problems.  Problems in which the sets are separated and the change is unknown, called 

missing subtrahend problems, are one of the more difficult problem types for young 

learners to solve and can be solved once he or she is able to count on from a number 

other than one, often called counting on.  Counting on also allows students the ability to 

solve comparison problems without the use of objects to directly model the problem.  
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Comparison problems are those in which two quantities are compared and the student 

is asked to find how much more one quantity is than another.  The most difficult problem 

type is when the starting number, either the first addend or the minuend, is unknown 

(Sarama & Clements, 2009).  Broadly speaking, this means that students develop from 

using objects in order to model addition and subtraction problems in which the result is 

unknown, toward manipulating or counting numbers mentally (Steffe et al., 1983) in 

order to solve more complex problems, such as those in which the change or start is 

unknown.  Students who are able to solve the more complicated problem types are also 

able to move beyond the use of counting strategies toward the use of derived or 

reasoning strategies (Sarama & Clements, 2009).   

In the next section, I describe more specifically the trajectory that has been 

modeled by multiple researchers studying student methods for early addition and 

subtraction.   

Using Objects to Model Addition and Subtraction Problems 

Direct modeling.  Early in their development, students solve problems by counting out 

sets of objects to model addition and subtraction situations in order to find the sum or 

difference (Carpenter et al., 1981), a strategy called direct modeling (Clements et al., 

2004, p. 224).  To do this, the student establishes, using perceptual objects (Steffe et 

al., 1983), each of the quantities that relate to each other mathematically as being 

joined, separated, or compared (Carpenter et al., 1981).  Once the quantities have been 

established, the student then counts the sum or difference by manipulating them either 

through tactile means or by counting visually.  This requires a student to count from 

one, three separate times, to model the given problem.  For example, when solving an 
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addition problem, a student would count out objects to model each of the addends 

before grouping them together to count the sum.  For subtraction, the student would 

count the amount corresponding to the minuend then count to remove the amount 

indicated by the subtrahend, and finally count to determine the difference.  

  If objects are not available, then a student who still needs some form of 

perceptual marker for each of the quantities, would re-present (von Glasersfeld, 1995) 

each quantity on their fingers before counting.  Because each quantity would need to be 

manipulated separately, this means that without the use of objects students are able to 

solve problems in which each of the addends are no greater than five or the minuend is 

ten or less, what is referred to as being ‘within finger range’ for the student.  For 

example, when solving the following problem, Sam has 5 racecars and his friend gives 

him 3 more racecars.  How many does Sam have now?, the student would re-present 

each quantity simultaneously.  This means the student would put up five fingers on one 

hand and three fingers on the other before returning to counting all eight again.   

Counting Strategies to Solve Addition and Subtraction 

Counting all. As students develop more facility with the use of counting to solve 

problems, their conception of number and the associated quantities become 

progressively more interiorized (Steffe et al, 1983) in that students may no longer need 

perceptual objects in order to solve a problem, but may use figurative or replacement 

objects instead.  This makes it possible for students to begin a transition away from the 

use of material objects for both addends and toward a counting procedure that includes 

abstracted quantities instead.  While students might still need to count items, they would 

be able to count a re-presentation of the quantity rather than the perceptual items 
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themselves, what is referred to as a figurative count (Steffe et al., 1983).  When using 

figurative items, a student may count from one as he or she enumerates the initial 

amount then continue counting, without returning to one, in order to count to the 

solution, since a simultaneous model of each set is no longer needed for the student to 

be able to conceptualize the grouping of the objects.  This strategy is sometimes called 

counting all (Secada, Fuson, & Hall, 1983).  Using count all to solve 8 + 3, the student 

would count from one to eight, then continue by counting three more in order to find the 

sum, possibly tracking the counts on their fingers, particularly as markers of the second 

addend.  Students have moved beyond the need to perceive each quantity of objects 

separately and are now able to represent each quantity as it is being counted, utilizing 

the fingers in order to track multiple quantities at different times during the enactment of 

the problem.    

Counting on.  As students develop, their abilities in counting become more 

sophisticated and allow the student to count on from a number other than one as he or 

she tracks the counts in the second amount, coming to a result.  Counting on occurs 

when the student “is aware that the numerical structure designated by a number word is 

a composite of so many individual units” (Steffe et al., 1983, p. 66).  This means that for 

the problem 8 + 3, the student who is able to count on recognizes 8 as a composite of 8 

individual counts of one, and thus has the ability to begin counting on beginning at 9 

while tracking the number of counts in the second addend in order to arrive at the 

correct response.   

I identify a student’s shift toward counting on as critical since it is this shift that 

allows the student to move away from the use of perceptual objects and instead to 
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recognize the starting number as a composite of the counts that make up that quantity, 

enacting a mental counting strategy that does not depend on the use of perceptual 

objects.  There is evidence that if objects are made available to a student who is just 

developing the counting on strategy, the “search for perceptual input would [be] 

immediately satisfied through visual perception” (Steffe et al. 1983, p. 72) leading the 

student to make use of a less sophisticated strategy, that of direct modeling.  Instead, it 

is suggested that by hiding objects from view, the student develops an ability to count a 

figurative or abstract amount, one that can be re-presented on a student’s fingers.  

Particularly when a student is initially beginning to use a figurative counting strategy, it 

may feel more comfortable to count objects instead, limiting the opportunity for a 

student to develop a count on strategy.  This means that supporting a student as he or 

she develops the use of counting strategies would suggest limiting exposure to objects 

and carefully scaffolding the use of materials so that the student shifts away from 

counting perceptual items toward an abstract count.   

Supporting the use of counting on strategies. In a teaching experiment to determine 

methods for teaching students who count all to be able to count on, Secada and his 

colleagues (1983) focused instruction on three subskills identified in a previous study 

(Fuson, 1982) that would be necessary for students to acquire in order to transition to a 

count on strategy and designed tasks to teach these subskills.  The students in the 

teaching condition were children who were using the count all strategy in order to solve 

addition tasks, identified as not having the necessary subskills to count on.  The use of 

resources to enact the teaching experiment is of interest.  Researchers introduced 

students to two sets of dots as shown in Figure A.2.  The dots represented the addition 
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problem 13 + 6, but the researchers kept the dots in the first addend screened, thus 

prompting students to strengthen the use of skills that support counting on (Secada et 

al., 1983), rather than allowing the students to count each of the dots associated with 

both addends. The dots associated with the first addend were revealed only if students 

did not respond to prompts that asked the student to find how many altogether. 

 

Figure A.2:  Tool used by Secada, Fuson, & Hall (1983), to teach the count on strategy. 

By hiding the dots in the first addend, the researchers encouraged students to 

consider the set of dots that represent the first addend as a numerical composite (Steffe 

et al., 1983) while allowing the student to count on from thirteen by coordinating the 

count with each object in the second addend, thus determining the sum by counting on.  

Of the eight students who were part of the teaching condition, seven transitioned to a 

count on strategy in one teaching session.  Of those who were not taught the subskills, 

only one of the eight used the count on strategy in the post test.  The evidence from the 

teaching experiment as well as the knowledge that students will tend to make use of 

objects when they are available, suggests that teaching practices that are supportive of 

students’ development of a counting strategy that does not make use of objects would 

restrict the use of objects, rather than provide them.  This makes for an interesting 

teaching case since the use of manipulatives is fairly common practice in early 
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elementary classrooms and some would advocate that students should have access to 

multiple representations over a period of time and be allowed to reason flexibly within 

and between these representations so that over time students are able to understand 

the mathematics abstractly (Post, Wachsmuth, Lesh, & Behr, 1985; Star & Rittle-

Johnson, 2008).   

Thus, I identify the transition from using objects to not needing objects as one 

critical juncture in a learning trajectory since the use of objects in order to solve 

problems may be useful for students who need direct modeling in order to understand 

the context of the problem and what it means for the quantities being manipulated.  At 

the same time, the objects themselves could serve as a hindrance to a student who is 

able to or will soon be able to count without the use of materials.  The decisions that 

teachers make in this instance could play an influential role in whether or not students 

make conceptual shifts in thinking that lead to more sophisticated mathematical 

reasoning.   

Counting back. With the development of the numerical composite and the use of a 

counting on strategy, students are then able to make use of counting strategies that 

include a backward count and are useful for solving problems of the find result type 

(Clements & Sarama, 2009) subtraction problems without the use of objects.  This 

would mean that to solve a problem like 8 – 3, the student now has a numerical 

composite of eight, a unit of eight iterative counts, and can begin at eight and count 

backward three to find the difference.  This is also indicative of the critical juncture that 

occurs with counting on since with objects available, a student would be likely to enact a 

direct modeling strategy in which the student first counts out a number of items that 
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represent the minuend, then counts to remove the number of items corresponding to the 

subtrahend, followed by a count of the remaining items, which represent the difference.  

Fuson (1984) describes the direct modeling and counting back procedures as non-

parallel strategies in that the action on the objects does not indicate what would occur 

when the student counts without the use of objects.  The use of the objects allows the 

student to use a forward count to be able to find the difference, but does not make use 

of the student’s conceptual understanding of number that would now allow the student 

to use an abstract backward count in order to solve the subtraction task. For this 

reason, the use of objects to enact direct modeling does not correspond in any parallel 

way (Steffe et al., 1983; Fuson, 1984) to the backward counting procedure and may be 

a hindrance to the student’s development of a backward counting procedure in much 

the same way that it is a hindrance for counting on. 

Reasoning Strategies for Addition and Subtraction        

Distinguishing between counting back and reasoning.  Steffe and his colleagues 

(1983) distinguish among students’ development regarding subtraction by describing 

the different ways in which students may count when given a subtraction problem in 

which the subtrahend is larger than the difference, for example, the problem 8 – 6.  

Students who can count backward to subtract may begin a count on the number one 

less than the minuend and continue counting backward six counts until arriving at the 

difference of two, for example by counting 7, 6, 5, 4, 3, 2.  This method for counting the 

subtraction task indicates the student has constructed a number sequence which is 

useful for counting units forward and backward and recognizes each unit as a cardinal 

object.  This allows the student to count backward in order to determine how many units 
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or objects would be left when six are removed from eight (Steffe et al., 1983) a literal 

interpretation of a problem like the following, Josie had 8 stickers and gave 6 to her 

friends.  How many stickers does Josie have now?  This is evidence that the student 

understands subtraction as taking away objects and is able to make use of a number 

sequence in order to count backward a number of units to determine the amount that 

remains when the subtrahend is removed and would be considered a counting strategy.   

Part-Part-Whole.  With further development, a student could move away from this 

literal interpretation of counting backward each of the units in the subtrahend as he or 

she recognizes the relationship between the quantities represented in the problem.  In 

this way, rather than seeing the six as a number of units that must be counted backward 

from the minuend, six is a composite that is both embedded in eight and able to be dis-

embedded (Steffe, Cobb, & Von Glasersfeld, 1988).  Other researchers have referred to 

this as a part-part-whole relationship in which students make use of an understanding of 

the relationship that exists between the three numbers (Clements & Sarama, 2014).  

This understanding may present as a counting strategy, but the student would count 

only two counts, rather than six, indicating a reasoning strategy rather than a literal 

counting strategy.  After counting two counts, the student would recognize that the two 

counts represent the solution since by counting back two counts, the student has 

arrived at six, another number in the relationship.  For example, the student might say, 

‘7, 6.  The answer is 2’ since arriving at six indicates the distance of two that six is from 

eight.  The difference in how the student has counted marks a distinction between the 

student’s understanding of quantities and a student who would count back six counts.  

For the first strategy, the student is able to count backward while keeping track of the 
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six counts, and understands that by starting at eight and counting backward six, the 

student has tracked the number of objects that would still remain when the six are taken 

from a set.  On the other hand, when using the part-part-whole strategy, while the 

problem may indicate eight remove six, the student instead counts only until having 

arrived at six, understanding that the two counts, the six, and the eight share an additive 

relationship and counting each removed item is not necessary.    

Derived strategies.  Once students have gained facility with the use of more and more 

sophisticated counting strategies, they begin to add and subtract by chunking numbers 

(Fuson, 2004), what other researchers have referred to as heuristic or derived 

strategies (Carpenter et al., 1981).  The use of derived strategies, such as making use 

of a known fact in order to solve an unknown fact or using ten as an anchor within the 

problem to reason about the quantities nearby, represents an alteration in the 

conception a student has regarding number.  Rather than counting an accumulation or 

separation of cardinal objects from sets, students recognize that a number can be 

broken into chunks, for example by finding groups of ten, the use of which may facilitate 

ease of computation.  This shift toward derived or heuristic strategies allows the student 

to be more flexible in thinking about the problems that are presented and serves to 

foster learning goals in algebra later on (Schifter, 1999).  A student that alters the 

numbers in a problem in order to facilitate the ease of computation and at the same time 

maintains the mathematical relationship between the values is beginning to make use of 

the properties of numbers that are algebraic in nature.  

I identify this transition toward derived strategies as a second critical juncture for 

students progressing along a learning trajectory in addition and subtraction.  In 
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countries in which teachers specifically support the use of derived strategies, students 

on average have more success in mathematics throughout their schooling (Clements & 

Sarama, 2014; Fuson, 2004).  Further, there is evidence that because reasoning 

strategies depend on students making sense of the properties of addition and 

subtraction, rather than just counting units forward and backward in order to determine 

a result, they do not “activate the same systems” (Clements & Sarama, 2014, p. 95) as 

counting strategies would.  Because of this, it is important for teachers to expose 

students to, and expect them to make use of, derived or reasoning strategies. 

For teachers to support the use of reasoning strategies in the classroom, he or 

she will need to use teaching practices that consider the mathematics that students do 

to be more algebraic in nature, rather than an accumulation or separation of objects.  In 

comparison to practices that allow student opportunities to count out sets of objects, 

teachers will also need to support students’ use of materials that develop reasoning 

strategies, which would likely be different than loose sets of objects and would instead 

group numbers in some way.  In addition, teachers will also have to negotiate this 

difference in the classroom since most classrooms would have students who need 

support to count objects as well as students who are ready to begin grouping.  

Supporting the use of derived strategies.  The learning of derived strategies can be 

supported in at least two important ways.  First, by using representational tools that 

support students’ attention on the concept of ten, for example by using an arithmetic 

rack (similar to an abacus) or a ten frame to support the use of a make ten strategy.  

Second, derived strategies can be supported by asking students to solve a problem that 
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is very similar to a problem already solved, for example asking the student to find the 

answer to 5 + 4 after 5 + 5 had already been solved.   

In their description of instruction that specifically supports the learning of a make 

ten strategy, Clements and Sarama (2014) indicate specific steps that are taken to 

support the use of this strategy exclusively.  In the first phase of this instructional 

sequence, teachers purposely choose problems in which the first addend is nine, for 

example 9 + 4, showing the problem in two ten frames as in Figure A.3 below, then 

asking how many more it would take to make 10, moving one item from the frame with 

four items to the frame with nine in order to make a ten before determining the sum.   

 

Figure A.3:  A model representing the transformation of 9 + 4 into 10 + 3; and the 
equivalency between the two sums 

 
The instructional sequence continues with the teacher then posing problems in which 

the first addend may be seven, eight, or nine, focusing on the properties of the solution 

type and switching to representations that are drawn rather than manipulated physically.  

After this, students are supported to become fluent with a make ten strategy (Clements 

& Sarama, 2014).   

I identify the instruction focused on reasoning strategies as a second critical 

juncture in student learning of addition and subtraction.  Since the use of reasoning 

strategies has been shown to be supportive of students’ later understanding and 
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learning in mathematics, it seems reasonable to consider that teachers would find 

methods for supporting students in making use of and understanding reasoning 

strategies.   

 I show the position of the critical junctures in Figure 4.  While it is possible to 

describe the trajectory in a more fine-grained manner, as I did in Table 2.1, by zooming 

out and looking at just three major phases of development, I consider moments of 

instruction that are critical for students to be able to make significant shifts in their ways 

of doing and understanding mathematics and the relationship between the operations of 

addition and subtraction.   Further, the three regions defined by the diagram indicating 

the crucial junctures are coarse enough to be more easily recognizable by teachers, 

whether or not they have had specific training in learning trajectories.  With the 

exception of the part-part-whole strategy, which is categorized as a reasoning strategy 

even though the student could be counting, the diagram of critical junctures groups the 

modeling strategies separately from the counting strategies and also from the reasoning 

strategies.   

 

 

 

 

Figure A.4:  Critical Junctures in Relation to Types of Strategies Used by Students     
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Appendix B 

Item One 

 

1) Describe what you noticed this student did to solve the addition or subtraction 

word problem. 

2) Describe what you would say and do in response to this student. 

3) Describe what you consider to be the next learning goal for this student. 

   

1) Describe what you noticed this student did to solve the addition or subtraction 

word problem. 

2) Describe what you would say and do in response to this student. 

3) Describe what you consider to be the next learning goal for this student. 
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Participants are given an opportunity to view how one other student in the class had 

solve the problem.    

4) Choose a problem type (multiple choice format) that you would consider most 

appropriate for the teacher to use when the students gather for group discussion.  

(Problem choices written in the form of a word problem with blanks left in order to 

fill in appropriate values) 

5) Choose numbers that you would place in the blanks when using this problem.   

6) Describe what you plan to achieve with this group of students when the chosen 

problem is discussed. 
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Item Two 

    

1) Describe what you noticed this student did to solve the addition or subtraction 

word problem. 

2) Describe what you would say and do in response to this student. 

3) Describe what you consider to be the next learning goal for this student. 

   

1) Describe what you noticed this student did to solve the addition or subtraction 

word problem. 

2) Describe what you would say and do in response to this student. 

3) Describe what you consider to be the next learning goal for this student. 
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Participants are given an opportunity to view how one other student in the class had 

solve the problem.    

1) Choose a problem type (multiple choice format) that you would consider most 

appropriate for the teacher to use when the students gather for group discussion.  

(Problem choices written in the form of a word problem with blanks left in order to 

fill in appropriate values) 

2) Choose numbers that you would place in the blanks when using this problem.   

3) Describe what you plan to achieve with this group of students when the chosen 

problem is discussed. 
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Item Three 

   

1) Describe what you noticed this student did to solve the addition or subtraction 

word problem. 

2) Describe what you would say and do in response to this student. 

3) Describe what you consider to be the next learning goal for this student. 

   

1) Describe what you noticed this student did to solve the addition or subtraction 

word problem. 

2) Describe what you would say and do in response to this student. 

3) Describe what you consider to be the next learning goal for this student. 
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Participants are given an opportunity to view how one other student in the class had 

solve the problem.    

1) Choose a problem type (multiple choice format) that you would consider most 

appropriate for the teacher to use when the students gather for group discussion.  

(Problem choices written in the form of a word problem with blanks left in order to 

fill in appropriate values) 

2) Choose numbers that you would place in the blanks when using this problem.   

3) Describe what you plan to achieve with this group of students when the chosen 

problem is discussed. 
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Item Four 

   

1) Describe what you noticed this student did to solve the addition or subtraction 

word problem. 

2) Describe what you would say and do in response to this student. 

3) Describe what you consider to be the next learning goal for this student. 

 

   

1) Describe what you noticed this student did to solve the addition or subtraction 

word problem. 

2) Describe what you would say and do in response to this student. 

3) Describe what you consider to be the next learning goal for this student. 
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Participants are given an opportunity to view how one other student in the class had 

solve the problem.    

1) Choose a problem type (multiple choice format) that you would consider most 

appropriate for the teacher to use when the students gather for group discussion.  

(Problem choices written in the form of a word problem with blanks left in order to 

fill in appropriate values) 

2) Choose numbers that you would place in the blanks when using this problem.   

3) Describe what you plan to achieve with this group of students when the chosen 

problem is discussed. 
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