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Dedicated to the Kinross prison rebels.

Paraphrasing comrade George Jackson,

“...even while I am escaping, I will be looking for a weapon....”

Por una ciencia que sea de abajo y a la izquierda.
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que de algúna manera ó otra siempre tenga un plato de comida y techo bajo el que

dormir, es decir, por crear una situación que me deje enfocarme casi exclusivamente

en mis estudios. Nada de esto hubiese sido posible sin ustedes. Gracias. Los quiero

iv



mucho.

Needless to say, this dissertation would have never been possible without the

support of friends and loved ones that made Ann Arbor a livable place for me.

Gracias a la familia Pous-Bowler (Fede, Iris, Jenny, y Luna) por dejarme ser parte

de su familia. Gracias por “la tertulia,” y las infinitas reuniones en esa casa de

“el arbol” que funciona como cierto anclaje de la memoria para tantos de nosotros.

Gracias por cultivar ese hogar que ha dado lugar a tantas fiestas de cumpleaños, a

la visita de Ruben, y también a la celebración de la defensa de esta misma tesis.

Gracias por crear y mantener ese espacio de encuentro. Jenny, desde el primer d́ıa
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académicos”, de lo que sea, y por tus precisiones al respecto. Gracias también por

hacer posible de acercarme a pensar lo carcelario también en el campo de estudios

culturales latinoamericanos. Gracias a los dos por escucharme y apoyarme en tantas

decisiones claves. En tratar de volcar en estas páginas lo que siento por ustedes se
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ABSTRACT

The late-time cosmic acceleration of the universe is one of most profound mys-

teries of physical cosmology. What is at stake with this discovery is the following:

either our universe is composed of some exotic “dark energy” which drives the dynam-

ics of the acceleration or our general relativistic theory of gravity must be radically

transformed. Clusters of galaxies, some of the largest gravitationally-bound objects

in our universe containing hundreds of galaxies, have been fruitful sites from which

to study the consequences of our cosmological models and the gravitational theory

from which these models are derived. In this work, we derive and test a novel model

that takes into account the effects of our accelerating universe at the scale of galaxy

clusters. More specifically, the theoretical observable we work with in this disserta-

tion is the escape velocity profile of galaxy clusters. Our model implies that in an

accelerating universe, the escape velocity profile of galaxy clusters is lower than what

is expected from a universe that is not accelerating. Put differently, if the universe

is accelerating, galaxies confined to their clusters have an easier time escaping them.

However, testing the implications of this model is difficult given that observations

can only allow us to infer the projected escape velocity profiles. Here, we study how

the observed profiles can be de-projected via a function that depends on the cluster

velocity anisotropy profile. To that end, we also develop a novel approach to derive

cluster velocity anisotropy profiles with joint dynamical and weak lensing data. We

further show that our cosmology-dependent model of the escape velocity profile can

be utilized to constrain cosmological models. In particular, with the Fisher matrix

formalism we show that our theoretical observable has the capacity to set competitive

constraints on relativistic cosmological models of the accelerating universe in the near

future. Lastly, we drop the presupposition that general relativity is the only way to

describe gravitational phenomena and develop a novel probe of gravity that utilizes

the sensitivity of our theoretical observable to changes in the gravitational potential.

xxvi



CHAPTER I

Introduction

1.1 Our dynamic cosmos

Sooner or later, everything changes. In this sense, everything has a history. The

study of the history of the universe as a whole we call “cosmology.” More specifically,

we are referring to the physical theory of cosmology as elaborated in the revolutionary

years of the early 20th century that is derived from the current dominant physical

theory of space-time and gravitation–the theory of general relativity (GR). As is

perhaps expected from this formulation that emphasizes historicity, cosmology was

not always this way and it could also perhaps be otherwise.

As radical as the theory of relativity was in proposing a dynamical relationship

between the curvature of a 4-dimensional manifold called ”space-time” and the mass-

energy that inhabits it, one of the first cosmological models derived from this theory

implied that the cosmos was static and not dynamic. One of these “steady state

cosmologies” was proposed by Albert Einstein in 1917, and today it is remembered

for Einstein’s introduction of the famous “cosmological constant” that counteracted

the expanding tendencies of the universe implied by the equations of general relativity.

Today, the dominant paradigm posits that the universe is not only not static, but

rather quite dynamical, in fact it is expanding, and it is expanding at a faster rate than

before.1 Our universe is accelerating. In fact, the concordance cosmological model

stipulates that a dark energy (some mysterious substance) prevents the gravitational

pull of the dark matter (another mysterious substance) from making the universe

collapse on itself. In brief, our current (moving) picture of the world is one in which the

universe is a dynamic totality evolving from small perturbations in the fabric of space-

1We emphasize that this apprehension of the cosmos as changing and dynamical is in continuity
with the “Copernican revolution,” which was not only a revolution in that it de-centered the Earth
from the universe, but perhaps more radically, proposed that the Earth itself was moving.
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time about 13.8 billion years ago which have, over time, gravitationally collapsed

in a hierarchical manner (less massive objects collapse first) to form the structures

we see today – from the smallest systems of binary stars, to galaxies containing

billions of stars, to the hundreds of galaxies that inhabit gravitationally-bound galaxy

clusters. This is the history of our dynamic cosmos as narrated by physical cosmology

condensed into one sentence. This cosmology implies that the universe today is mostly

composed of dark energy (69%), followed by dark matter (31%), and the rest (less

than 1% of the total mass-energy “budget” of the universe) is visible matter (the stuff

that stars–as well as the world we are most familiar with–is made of).

In several ways, we can say that this thesis is a small contribution in continuing to

come to terms with the evolving consequences of our dynamical cosmos. As the title

of this work implies, these pages weave together the concrete materiality of galaxies

as their dynamics relate to both: our cosmological models, as well the theories of

gravity from which these models are derived.

In particular, in what follows we propose a mathematical model that describes

the ways in which cosmological phenomena, such as the acceleration of the universe

at the largest of scales, is intimately related to the dynamics of clustered galaxies.

More specifically, the theoretical observable we work with throughout this work is

the escape velocity profile of galaxy clusters.2 In the chapters that follow, we de-

scribe how in a universe that is accelerating – either due to dark energy, or extensions

(or modifications) to general relativity– the capacity for galaxies confined in clus-

ters to escape is reduced. Which is to say, in a universe in which the accelerated

expansion dominates the dynamics of the cosmos, clustered galaxies can more easily

become unbounded from their clusters. The mathematical model that encapsulates

this statement is developed at the end of this introduction and in Chapter II. We

also propose a novel way of constraining cosmology models in Chapter IV that relies

on an accurate and precise measurement of the galaxy cluster anisotropy parameter

β. We develop a new approach to derive β profiles in Chapter III. Lastly, using this

same theoretical observable, we develop an independent way to study extensions to

general relativistic gravity, such as Chameleon f(R) gravity, in Chapter V.

Before we go into the small contribution this work makes to our apprehension of

the dynamical cosmos, in this chapter we (1) briefly sketch the ways in which workers

in the field astrophysics have characterized galaxy clusters, (2) provide an overview

of our dominant cosmological model, and (3) review the foundations of the dominant

2Throughout this work we use ”theoretical observable” to emphasize that all observables are
always already theory-laden.
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theory of space-time and gravitation–the theory of general relativity–as well as recent

attempts to modify it.

1.2 Gravitation

1.2.1 General relativity

The theory of relativity is a theory of space and time as well as a theory of gravity.

In contrast to Newtonian gravity, which posits that gravitation is an attractive force

acting a distance between massive objects, general relativity posits that gravity is

not a force, but rather, it is the very curvature of space-time itself. Put differently,

general relativity implies that massive bodies themselves shape the arena in which

they move (that is, space-time). To put it briefly, we can encapsulate the relativistic

conception of gravitation in the following way: matter tells space-time how to curve,

and space-time tells matter how to move.3 Mathematically, this statement can be

translated into the Einstein Field Equations (EFE) of general relativity,

Rµν −
1

2
Rgµν = 8πGTµν , (1.1)

where we have set the speed of light c to 1 and G is the usual Newtonian gravitational

coupling constant. The left-hand side (LHS) of the EFE embodies the geometry of

space-time, encapsulated in some mathematical objects of differential geometry: the

Ricci tensor Rµν , the Ricci scalar R, and the metric tensor gµν . This LHS can in turn

be expressed in terms of the “Einstein tensor”,

Gµν ≡ Rµν −
1

2
Rgµν . (1.2)

The right-hand side (RHS) of the EFE takes into account the matter-energy in

a given local region of space-time–as expressed in the stress-energy tensor Tµν . The

indices used in defining the tensors, µ and ν, refer to the indices of a chosen coordinate

frame.

From this very brief introduction, we may already intuit how a theory of cosmol-

ogy may be derived from the EFE. The evolution of the left-hand side of the EFE (the

changing and evolving geometry of space-time) is related to the evolution and trans-

formation of the matter-energy in that space-time (the RHS of the EFE). As such, if

we can trace the evolution of matter across time, we can reconstruct the history of

3This beautifully simple formulation can be found in the monumental book Gravitation by C.W.
Misner, K.S. Thorne, and J.A. Wheeler.

3



space across cosmic epochs. We develop how this done in Section 1.3 below.

While at first sight the EFE may appear opaque, to develop some intuition of its

innerworkings we can relate Eq. 1.1 to the more familiar Poisson equation for the

gravitational field. In particular, we can think of Poisson’s equation as the equation

that the EFE’s aim to generalize. The Poisson equation is given by,

∇2Φ = 4πGρ, (1.3)

where Φ is the Newtonian gravitational potential and ρ is a density field describing

the matter density profile, say, of galaxy clusters.4 In the language of relativity, the

LHS of Eq. 1.3 encapsulates the “curvature” of the gravitational potential field Φ

(which plays the role of the metric in the EFE) seeded by the distribution of matter

ρ (which is part of the stress-energy tensor in the EFE).

This association between the Poisson equation and the EFE helps us motivate how

the gravitational potential of galaxy clusters Φ and consequently the escape velocity

of clusters (vesc) is intimately related to cosmology, since,

v2
esc = −2Φ. (1.4)

Before we describe this intimate relation between the escape velocity profile of clusters

and cosmology, we take a brief detour away from our dominant theory of gravity to

briefly overview alternative theories of gravity that extend general relativity.

1.2.2 Chameleon f(R) gravity

In the introductory paragraph to this chapter we briefly mentioned that a variety

of high precision observations all seem to indicate that our universe is currently under-

going accelerated expansion.5 The most popular model that is consistent with these

observations deploys the framework of GR with an additional cosmological constant

(Λ) that induces cosmic acceleration at late times.6 Whether this term is introduced

in the LHS or RHS of Eq. 1.1 is a source of debate with deep theoretical implications

(Durrer & Maartens, 2008). However, the theoretical framework of this concordant

cosmological model, GR, is still poorly tested on megaparsec scales. This has given

4For a more thorough elaboration of this informal argument to derive and motivate the EFE,
which follows the intuition of Einstein, see Ch. 4 of S. Carroll (2003). Space-time and Geometry:
An Introduction to General Relativity.

5 See Weinberg et al. (2013) for an excellent overview of these observations.
6“Late times” is used in cosmology to differentiate this phenomena from the acceleration of the

early universe stipulated by the various inflationary models in the fractions of a second after the so
called “Big Bang.”
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way for the proliferation of both novel ways of testing GR as well as gravitational

theories that modify GR in cosmological scales (Joyce et al., 2015; Koyama, 2016).

Therefore, the main theoretical thrust behind models of modified gravity (MG) is

that while we know GR and its weak-field limit (Newtonian gravity) work exquisitely

well at the scales of binary pulsars and the solar system, we should be cautious when

extrapolating out to much larger (i.e. cosmological) scales. For this reason, models

of MG that successfully reproduce late time cosmic acceleration on large scales must

also recover the predictions made by GR on small scales.

To accomplish this, modified theories of gravity implement screening mechanisms

that attenuate the effect of additional forces in high density regions. One such mech-

anism is the Chameleon mechanism whereby the additional fifth force active in low

density regions is screened in regions of high density by shortening the range of inter-

action of the field (Khoury & Weltman, 2004a,b). A more general approach utilizes

Effective Field Theory (EFT) of cosmic acceleration (Creminelli et al., 2009; Bloom-

field et al., 2013), where recent theoretical advances have shown that there exists a

large model space that recovers an accelerated expansion on large scales, while reduc-

ing to Newtonian gravity on the small scales in linear theory (Lombriser & Taylor,

2015).

Thus, there is a need for well-defined observational tests which can distinguish

the many models. Chapter V of this work provides such a test for the scale of galaxy

clusters. Without going into further detail about what is presented in Chapter V, we

now simply want to highlight how the EFE change in the case of a Chameleon f(R)

gravity model presented in Hu & Sawicki (2007). In the case of Chameleon f(R)

gravity, Eq. 1.1 now becomes,

Rµν −
1

2
Rgµν + fRRµν −

(
f

2
−�fR

)
gµν −∇µ∇νfR = 8πGTµν , (1.5)

where the additional degree of freedom fR creates an additional fifth force which

can be expressed in terms of a “modified Poisson equation.” For small field values

(fR << 1, again, with c = 1), and neglecting the time derivatives of Eq. 1.5, the

modified Poisson equation is given by (Hu & Sawicki, 2007),

∇2

(
Φ +

1

2
δfR

)
= 4πGρ. (1.6)

As such, we immediately notice that the relation between the gravitational poten-

tial (and consequently the escape velocity profile of massive objects – such as galaxy

clusters) and the density profile will be affected. However, not all massive objects
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are affected the same way. In particular, our probe of gravity compares high mass

clusters, where Chameleon effects are weak, to low mass clusters, where the effects

can be strong.

Lastly, we emphasize that the screening mechanisms deployed by MG must also

operate in such a way as to recover the predictions made by general relativity at

the largest scales as well. For instance, these models cannot make predictions that

strongly deviate from current uncertainties in cosmological observations that are

based on general relativity. We describe relativistic cosmology and the concordant

cosmological model next.

1.3 Cosmology

1.3.1 The Friedmann equations

The equations of contemporary relativistic cosmology can be derived from the

Copernican principle in conjunction with the EFE. This principle, which can be

tested, states that at large scales (that is, at the scales of hundreds of megaparsecs)

the universe is the same in every direction (it’s homogeneous) and has no preferred

directional orientation at any point (it’s isotropic).7 However, our cosmos is dynamic.

As such, we must clarify that the Copernican principle entails that the universe is

spatially homogeneous and isotropic but it evolves with time. Geometrically, this

means that the space-time metric (gµν in the EFE), expressed in an infinitesimal re-

gion of space-time via the interval ds2 = gµνdx
µdxν , for this Copernican principle can

be expressed in the following way,

ds2 = −dt2 + a2(t)

[
dr2

1− kr2
+ r2dΩ2

]
, (1.7)

where the co-moving elements are expressed in terms of polar coordinates and dΩ2 =

dθ2 + sin2 θdφ2. This is the famous Friedmann-Lemâıtre-Robertson-Walker (FLRW)

metric.

The scale factor a(t) determines how a proper distance d(t) changes the comoving

distance today d0 over time, a(t)d0 = d(t). Given this definition of the scale factor,

k represents the Gaussian curvature of space today (a(t0) = 1). The possible values

of k encapsulate three different geometries: elliptic (k > 0), Euclidean (k = 0), or

hyperbolic (k < 0). Using the tools of Riemannian geometry one can work out the

7The most direct and cleanest observational test of the isotropy of the universe comes from the
Cosmic Microwave Background radiation which shows the universe has a single temperature of 2.7K
with very small fluctuations around that mean.

6



Riemann tensor and the Ricci scalar with the usual Christoffel symbols from the gµν

metric shown in the line interval above.8 This gives us the LHS of the EFE. The

diagonal elements of the Einstein tensor are,

Gtt = 3(k+ȧ2)
a2 , (1.8)

Grr = −2aä+ȧ2+k
1−kr2 , (1.9)

Gθθ = −r2(2aä+ ȧ2 + k), (1.10)

Gφφ = −r2 sin2 θ(2aä+ ȧ2 + k). (1.11)

Where the dots, as usual, denominate derivatives with respect to the zeroth ele-

ment, time. For the RHS of the EFE, if the stress-energy tensor is then modeled as

a perfect fluid (due to the Copernican principle) then we have,

Tµν = (ρ+ p)UµUν + pgµν , (1.12)

where p is the pressure and ρ is the energy density of the fluid (both quantities

defined in the rest frame). Given that we want the fluid’s pressure to be isotropic,

the normalized four-velocity four-vector for the FLRW is given by,

Uµ = (1, 0, 0, 0). (1.13)

So the elements of the stress-energy tensor for the FLRW metric using Eq. 1.12

are,

Ttt = ρ, (1.14)

Trr = p a2(t)
1−kr2 , (1.15)

Tθθ = pa2(t)r2, (1.16)

Tφφ = pa2(t)r2 sin2 θ. (1.17)

Putting together the RHS and the LHS of the EFE with Eq. 1.8-1.17, respectively,

yields the Friedmann equations. For the “tt” component we get,(
ȧ

a

)2

=
8πG

3
ρ− k

a2
, (1.18)

8See Chapter 8 of S. Carroll (2003). Space-time and Geometry: An Introduction to General
Relativity.
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and the acceleration equation can be derived from Eq. 1.18,

ä

a
= −4πG

3
(ρ+ 3p). (1.19)

These equations, the Friedmann equations, are the fundamental equations of rel-

ativistic cosmology. We can now finally appreciate what we foreshadowed in the last

section – the expansion history of the universe encapsulated in the scale factor a(t) is

a function of the dynamics of the matter-energy in the universe as encapsulated in the

stress-energy tensor elements. We can now re-write general relativity’s fundamental

statement in terms of cosmology: matter-energy tells space how to expand, and space

tells matter-energy how to evolve.

But how do these matter-energy densities evolve over time? What specific equa-

tion governs their evolution? A third equation can be derived by combining Eq. 1.18

and 1.19. This equation is called the continuity equation and it is given by,

ρ̇ = −3
ȧ

a
(p+ ρ). (1.20)

Having derived and motivated the fundamental equations of cosmology from the

theory of general relativity, we now briefly go over some key definitions of cosmological

functions used in contemporary cosmology and throughout this work.

1.3.2 Definitions of cosmological theoretical observables

To solve the Friedmann equations and reconstruct the expansion history of the

universe it is useful to define the equation of state parameter w,

w =
p

ρ
. (1.21)

Note that this equation again assumes that c = 1, p = wρc2. The specific value of w

depends on the species of matter-energy we are working with. For instance, the dom-

inant model for the dark energy equation of state assumes that it is simply constant

over time (the famous “cosmological constant”) and at the same time creates a kind

of “negative pressure,” and so it is represented by the equation of state parameter

w = −1. The second most important component of the mass-energy “budget” of our

universe is the dark matter. The dominant model for this matter, “cold dark matter,”

implies that it is a pressureless fluid, and so its equation of state parameter is w = 0.

Furthermore, the continuity equation (Eq. 1.20) is quite useful in that it allows

us to solve for the evolution of the energy density of whatever kind of matter-energy
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species with a constant equation of state parameter w,

ρ = ρ0a
−3(1+w), (1.22)

where the energy density of the given species today is defined by ρ0.

But how is the scale factor a measured? Unfortunately, cosmologists cannot take

the “view from nowhere” and lay down a ruler in the universe. One concrete quantity

that astronomers actually measure is the redshift z of some object along a line of

sight. The redshift is defined as the fractional change between the observed and the

emitted wavelength λ of the given object (for instance, a galaxy),

z ≡ λobserved − λemitted
λemitted

. (1.23)

The redshift is related to the scale factor via the definition,

a ≡ 1

1 + z
. (1.24)

Where the current epoch is defined to be equivalent to a = 1 (or z = 0). As such,

throughout this thesis when we speak of “galaxy redshifts” and describe cosmic epochs

in terms of their redshift we are referring to the aforementioned relations.

Two other key functions we will use throughout this thesis, both of which are

expressions of the Friedmann equations, are the deceleration parameter q, and the

Hubble parameter H,

q ≡ − äa
ȧ2
, (1.25)

H ≡ ȧ

a
. (1.26)

We can also re-define both of these fundamental quantities of cosmology in terms

of the density parameter Ω. This parameter is defined in terms of the critical density

of the universe. Quantitatively, using the Friedmann equation (Eq. 1.18) with k = 0,

in combination with the definition of H above (Eq. 1.26), the critical density is,

ρcrit ≡
3

8πG
H2

0 . (1.27)

From this, the Ω parameter for a given density is defined to be,

Ω ≡ ρ

ρcrit
. (1.28)
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Using this definition, in combination with Eq. 1.22 and Eq. 1.20 we can re-write

the Friedmann equation (Eq. 1.18) in terms of the Ω parameters for the various

matter-energy species that make up our universe,

H2 = H2
0E

2(z) = H2
0

[
ΩM(1+z)3+Ωk(1+z)2+ΩDE exp

{
3

∫ z

0

dz

(1 + z′)
[1+wDE(z′)]

}]
,

(1.29)

where, as before, the cold dark matter fluid is assumed to be that of the pressureless

cold dark matter (wM = 0), the curvature “equation of state” is worked out to be

equal to wk = −1/3, and we have generalized the equation of state for the dark

energy to be redshift-evolving (wDE(z)). Hence the (1 + z)2 and (1 + z)3 scalings

for the curvature and dark matter terms, respectively. Often in the literature, and

throughout this work as well, w(z) will simply refer to the equation of state parameter

of the dark energy. Lastly, note that the Ωi values for these different matter-energy

species are defined in terms of present values. For example, “ΩM” refers to the density

parameter of the dark matter at z = 0.

This form of the Friedmann equation is quite useful in that it allows us to calculate

the comoving distance d(z). From the FLRW metric we get,

d(z) =

∫ z

0

dz′

H(z′)
. (1.30)

Furthermore, from this expression of the comoving distance we can derive the two

fundamental definitions of physical distances in cosmology: the luminosity distance dL

and the angular diameter distance dA. The former is inferred from how the measured

flux of a given object with luminosity L diminishes at a distance dL, f = L
4πd2

L
. The

latter is inferred from how some object with proper length l changes its angular extent

in the sky δθ, dAδθ = l. It can be shown that these are given by, 9

dL =

[
(1 + z)

cH−1
0√

ΩK

sin

(√
ΩK

∫ z

0

dz′

E(z′)

)]
, (1.31)

dA = (1 + z)2dL, (1.32)

where “sin(x)” (the non-flat closed universe case) becomes “x” for the flat universe

case.

9See Chapter 8 of S. Carroll (2003). Space-time and Geometry: An Introduction to General
Relativity.
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Lastly, for ease of calculation, we may also re-write the deceleration parameter

(Eq. 1.25) in terms of the derivatives of the redshift-evolving Hubble parameter H of

Eq. 1.29,

q =
(1 + z)

H

dH

dz
− 1. (1.33)

Both Eq. 1.29 and Eq. 1.33 represent some of the most fundamental quantities of

contemporary relativistic cosmology. They encapsulate, respectively, the expansion

and deceleration rates of space. They will be used throughout the chapters that follow

this introduction.

1.3.3 The concordant cosmological model

Having defined and specified some of the fundamental theoretical observables of

cosmology that are used in this work, we now briefly review the main pieces of evidence

that support our “concordant cosmological model” today – that is, the most widely

accepted model of cosmology based on the theory of general relativity.

The concordant cosmological model is named the ΛCDM (“Lambda Cold Dark

Matter”) model because (1) it assumes that the dark energy can, to within statistical

uncertainty, be taken to be a uniform fluid with a constant equation of state w = −1

(that is, mathematically, it takes the form of “cosmological constant” Λ that Einstein

proposed a century ago but with the opposite effect) and (2) it assumes that the dark

matter is “cold” (that is, pressureless) with an equation of state parameter w = 0.

The latest results from the Planck satellite data analysis of the Cosmic Microwave

Background (CMB) radiation, tells us that the best-fit parameters of the ΛCDM

model for our cosmic epoch are: ΩM = 0.31 and ΩΛ = 0.69 with a Hubble constant

equal to H0 = 67.7 km s−1 Mpc−1 (Planck Collaboration et al., 2016b). Furthermore,

utilizing the Friedmann equation, and for late-times (where the radiation density is

close to nil ΩR ∼ 0), we have that Ωk = 1−ΩM−ΩΛ. As such, the CMB data implies

our universe is flat (Ωk = 0).

The afterglow of the CMB – produced ∼380,000 years after the Big Bang and is

the first time in the history of the universe in which light was able to propagate freely

without being absorbed by matter– provides us the earliest and most compelling

evidence of what Fred Hoyle once pejoratively called the “Big Bang” model. This

model, a cornerstone of ΛCDM, stipulates that the universe emerged from a hot and

dense soup of matter and it immediately underwent a period of rapid acceleration

∼ 10−36 seconds after the Big Bang (as stipulated by the theory of inflation). This
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rapid acceleration smoothed out the universe and made its spatial geometry flat.

According to the theory of Big Bang Nucleosynthesis (BBN), another cornerstone

of ΛCDM, the matter we see today emerged minutes after this hot soup of primordial

stuff cooled down enough to create the least massive atoms (such as hydrogen, helium

and lithium). More massive elements, such as those that act as building blocks for

organic particles (such as carbon, oxygen, and nitrogen), were created much later

in the history of the universe, deep inside the first accumulations of matter that

collapsed by their own weight – the stars. Theories of stellar formation and structure

have shown that if the mass of these collapsed objects is high enough, their core can

reach high enough temperatures to kick off thermonuclear reactions and begin to fuse

hydrogen and helium to produce the heavier elements. These stars are often formed

in binary systems, which make up star clusters, which in turn make up galaxies. The

life and death of the stars– which act as beacons of light in the otherwise empty void

that is our cosmos–are responsible for creating the diversity of cosmic objects whose

dynamics and character preoccupy astronomers today: white dwarves, neutron stars,

and black holes.

The ΛCDM model also stipulates that, using the aforementioned values for ΩM

and ΩΛ with the Friedmann equation, we can calculate the “age of the universe”

which is roughly given by t0 ∼ 1/H0. Doing the full calculation, we find that the

universe is 13.8 billion years old. A calculation like this one was one of the earliest

indications in the last decades of the 20th century that the universe must contain

some kind of repulsive dark energy. More specifically, astronomers calculated that

the oldest star clusters of the universe – globular clusters – were older than what the

cosmological theories which assumed a flat matter-only universe (ΩM = 1) stipulated

the age of the universe was. As such, if the estimates of the age of these globular

clusters was correct, the cosmological model of a flat universe with ΩM could not

be correct. This contradiction provided one of the first pieces of evidence that the

universe was accelerating.

The history of the universe that the ΛCDM model tells is one of expanding space

that went from decelerating to accelerating. More specifically, from the moments

of the Big Bang, when the universe was predominately composed of radiation, its

expansion made the matter-energy cool down to the point that the radiation no longer

dominated the dynamics of the universe. The matter then dominated until z ∼ 0.67

after which the deceleration parameter first became negative – that is, q went from

q > 0 (deceleration in the era of dark matter domination) to q < 0 (acceleration

in the current era of dark energy). This deceleration-to-acceleration transition took
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place about 6.2 billion years ago.

This “late-time” acceleration of the universe (named that way as to not confuse it

with the earlier period of inflation) was further substantiated with two seminal papers

at the turn of the 20th century that used Type Ia Supernovae (SNIa) as a “standard

candle” (or rather, a standardizable candle) to probe the recession luminosity dis-

tance/redshift relation (see Eq. 1.31) expected by relativistic cosmology (Riess et al.,

1998; Perlmutter et al., 1999). What these papers showed was that supernovae at

high z were dimmer (farther away) than what is expected by a flat dark matter-only

universe (that is, a flat universe with no dark energy). In short, the data statistically

favored a model with ΩM < 1, and ΩΛ > 0. In terms of the present value of the accel-

eration parameter, Riess et al. (1998) showed that the data favored an accelerating

universe (q0 < 0) with high statistical confidence.

While SNIa and the CMB are two of the fundamental cosmological probes that

provide strong evidence in favor of the ΛCDM model, we note that many other

probes also have independently supported, within statistical and systematic error,

the concordant cosmological model. In particular, galaxy clusters have also played

a key role in creating this consensus around ΛCDM in our so called “golden age of

cosmology.”

1.4 Galaxy clusters

1.4.1 Weak lensing mass profiles and galactic dynamics

Clusters of galaxies are fruitful sites of experimentation that allow us to unravel

the nature of gravitation, understand the ingredients of our cosmological models

(such as dark matter and dark energy), as well as make sense of the complex as-

trophysical processes involved in both the evolution of galaxies and the intracluster

medium (Kravtsov & Borgani, 2012a). From the standard model of structure forma-

tion, galaxy clusters are both the last and the largest structures to have formed in the

history of cold dark matter halos. These halos all emerged from small seeds of density

perturbations embedded in the expanding Hubble flow that have grown hierarchically

since then (Gunn & Gott, 1972; Bertschinger, 1985; Fillmore & Goldreich, 1984).

Results from cosmological N-body simulations of cold dark matter halos have

shown that the mass profile of clusters can be universally characterized by simple
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models of potential-density pairs, such as:

ρ(r) =
ρ0

(r/r0)(1 + r/r0)2
, (1.34a)

Φ(r) = −4πGρ0(r0)2 ln(1 + r/r0)

r/r0

, (1.34b)

ρ(r) =
(3− n)M

4π

r0

rn
1

(r + r0)4−n , (1.35a)

Φ(r) =


GM
r0

ln r
r+r0

, for n = 2

GM
r0
−1

2−n

[
1−

(
r

r+r0

)2−n]
, for n 6= 2,

(1.35b)

ρ(r) = ρ0exp
[
−
( r

r0

)1/n]
, (1.36a)

Φ(r) =
−GM

r

[
1−

Γ
(
3n, r

r0

(1/n)
)

Γ(3n)
+
r

r0

Γ
(
2n, r

r0

(1/n)
)

Γ(3n)

]
, (1.36b)

which represent the NFW (Navarro-Frenk-White, see Navarro et al. (1997)), Gamma

(Dehnen, 1993) and Einasto (Einasto, 1965) potential-density pairs, respectively.

These are referred to as density-potential pairs because they are related by the Pois-

son equation. For example, the potential for both of these density profiles can be

derived via the integral form of the Poisson equation from their respective density ρ,

Φ(r) = −4πG

[
1

r

∫ r

0

ρ(r′)r′2dr′ +

∫ ∞
r

ρ(r′)r′dr′

]
. (1.37)

Observationally, these results from N-body simulations have meant that mass

estimation techniques, such as those depending on weak lensing shear measurements,

utilize these universal profiles to fit the data and infer cluster masses. While most of

the observed cluster weak lensing mass profiles are derived using the NFW profiles (as

an example, see the metacatalog compiled in (Sereno, 2015)), recent work using high

resolution simulations has shown that an Einasto model, combined with a transition to

a steep power-law beyond ∼ r200 (with respect to the critical density of the universe),

provides the most accurate description of density profile for clusters over a wide range

of accretion histories and redshifts (Diemer & Kravtsov, 2014, 2015; More et al., 2015,

2016).

Parallel to these investigations, the internal dynamics of galaxy clusters continues
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to be a fruitful avenue of research. For instance, in early N-body simulation inves-

tigations, the velocity dispersion of the cluster particles was identified as a simple

yet powerful way to infer the gravitational potential (Evrard, 1986). As the resolu-

tion of the N-body simulations increased to include sub-halos as representative of the

galaxy populations, the 3-dimensional velocity dispersion was better characterized,

including the effects of sub-halo sampling bias (Evrard et al., 2008; Wu et al., 2013;

Gifford et al., 2013; Gifford & Miller, 2013; Saro et al., 2013). Through the growth of

large-scale spectroscopic surveys and multi-object spectroscopic instrumentation, we

are evidencing the proliferation of precise dynamical data of galaxy clusters (Miller

et al., 2005; Becker et al., 2007; Farahi et al., 2016; Bayliss et al., 2017)

The relation between the dynamics of clustered galaxies and the totality of the

observable universe has long been a fruitful site of investigation for physical cosmol-

ogy. One good example is Zwicky’s seminal investigation of the dark matter, which

crystallized through an analysis of the dynamics of galaxies in the Coma cluster (then

referred to as ”clusters of nebulae”) (Zwicky, 1937). Three decades ago, also utilizing

the Coma cluster as a cosmological laboratory, Shectman (1982) demonstrated that

the universe’s matter energy density was sub-critical – thereby pointing to the exis-

tence of some other unknown substance and demonstrating the capacity for the infall

regions of galaxy clusters to be mobilized as a powerful cosmological probe. Just

a few years after this, Regoes & Geller (1989a) used the Coma cluster in conjunc-

tion with three other nearby clusters to argue for the existence of “caustics” in the

velocity-distance space (or “phase space”) of galaxy clusters. These “caustics” trace

an identifiable “edge” that would later be demonstrated to be representative of the

radial escape velocity profile of galaxy clusters (Diaferio & Geller, 1997a). From this

point on, the caustics would be used solely to generate mass profiles of galaxy clusters

via the “caustic technique” (Diaferio, 1999; Geller et al., 2013). These dynamical clus-

ter masses have been used to constrain cosmology through the cluster mass function

(Rines et al., 2008). However, the capacity of caustic edges themselves to constrain

cosmological parameters has not been pursued since the work of Regoes (1996). This

is part of the work that this present thesis takes on. We explain the relation between

galaxy cluster phase spaces, the escape velocity edge, and the cosmology-dependent

escape velocity profile model next.

1.4.2 Galaxy cluster phase spaces and the escape velocity edge

A recent analysis by Miller et al. (2016) utilized 3-dimensional phases spaces from

the Millennium simulation (Springel et al., 2005a) to demonstrate that the inferred
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escape velocity edge can recover the true underlying escape velocity profile of galaxy

clusters to high accuracy and precision. The phase space is constructed by taking the

extrema of the tracer velocities (either particles or sub-halos) in the radius-velocity

phase space which in turn define a sharp surface “edge” which has been identified as

the escape velocity profile. The escape velocity profile can then be modeled from the

application of the Poisson equation to the measured cluster density profile as implied

by the analysis presented in the previous section along with Eq. 1.4. However, what

Miller et al. (2016) shows is that this model also requires cosmological information

pertaining to the acceleration of space.

In particular, Miller et al. (2016) uses the integral form of the Poisson equation

(Eq. 1.37) but instead of integrating to infinity integrates it out integrates out to

some “equivalence radius” req which is a function of cosmology. This equivalence

radius corresponds to the point at which the outward acceleration of space equals the

inward pull of the cluster’s mass and is given by,

r3
eq = −GM

qH2
, (1.38)

where M corresponds to the mass of the cluster and q and H refer to the deceleration

parameter and the Hubble parameter, respectively, as we have just defined them in

Section 1.3. We note that this quantity was first utilized in the context of modified

theories of gravity in Stark et al. (2016) and was first derived in the context of

defining bounded and unbound particles of dark matter halos in N-body cosmological

simulations by Behroozi et al. (2013). We note that in contrast to Stark et al. (2016)

and Miller et al. (2016), Behroozi et al. (2013) first derives this radius for a point

mass.

From utilizing the equivalent radius as the integration limit, Miller et al. (2016)

and Stark et al. (2016) find that the effective potential Ψ which includes the effects

of the cosmological expansion is then given by,

− 2Ψ = v2
esc = −2

[
Φ(r)− Φ(req)

]
− qH2(r2 − r2

eq), (1.39)

where Φ is chosen to be one the potential-density models shown above.

The phase space and escape velocity profiles for the three models just mentioned

(the NFW, Gamma and Einasto potential-density pairs) is shown in Fig. 1.1 for a

single simulated cluster from the Millenium Simulation (Springel et al., 2005a) with

mass M200 = 6.3 × 1014 M� and radius r200 = 1.34 Mpc (defined at 200 times the
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Figure 1.1: Density profile (left panel) and escape velocity profiles (middle and right
panel) for a single simulated cluster from the Millenium Simulation (Springel et al.,
2005a) with mass M200 = 6.3×1014M� and radius r200 = 1.34 Mpc for three potential-
density pairs: the Einasto, Gamma and NFW profiles (Eqs. 1.34-1.36a). Note that
the escape velocity profiles shown in the middle panel for all three models is the one
integrated to infinity (Eq. 1.37). In contrast, the escape velocity profiles shown in
the right-most panel is the escape velocity profile integrated out to the equivalence
radius (Eq. 1.39).

critical density of the universe). Note how in the right-most panel of Fig. 1.1 all of the

escape velocity profiles go to zero at some radius (the equivalence radius) whereas in

the middle panel the escape velocity profiles tend to overestimate the escape velocity

edge traced by the phase space (black dots).

In their analysis, Miller et al. (2016) also report that the NFW model overestimates

the escape velocity profiles of galaxy clusters by ∼ 10% (Navarro et al., 1996, 1997).

This is because the NFW density profile over-estimates the mass beyond the virial

radius. Other analytic models of the density profile of dark matter halos, such as the

Einasto (Einasto, 1965) and the Gamma model (Dehnen, 1993), fare much better.

We note that each of these analytical representations of the density profile can be

constrained to be identical within ∼ r200. Where these density profiles differ is in the

outskirts–where both the Einasto and the Gamma profiles are steeper than the NFW

profile. For an example of a single simulated cluster density profile fit, see the left

panel of Fig. 1.1.

To further demonstrate the need to use the cosmology-dependent escape velocity

profile (Eq. 1.39) to model escape velocity edge, Figure 1.2 shows the fractional

difference between the measured 3-dimensional escape velocity edge and the three

aforementioned models of potential-density pairs for 100 simulated clusters from the

Millenium Simulation.

However, these results from Miller et al. (2016) do not take into account the

complications of projection effects involved in actual observations of galaxy cluster
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Figure 1.2: The fractional difference between the theoretical model of the escape
velocity profiles derived from Eq. 1.39 and the simulation escape velocity edges for
the potential-density Poisson pair. The bands represent the scatter of the 100 cluster-
sized halos in the Millenium Simulation. The median of the 100 halos is shown with
a solid line and the error bars are determined from boot-strap re-sampling of the
median. The dark grey band encompasses 90% of the individual halo profiles and the
light grey band the 67%.
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phase spaces. In particular, the galaxies along a line of sight may be within the cone

of observation but may not actually be located within the virial sphere of the cluster.

Furthermore, the escape velocity profiles just described must be de-projected, given

that what we measure with real galaxy clusters is not 3-dimensional velocities (such

as the ones plotted in the phase space of Fig. 1.1), but rather, the line of sight

velocities which are suppressed with respect to their 3-dimensional counterparts. In

particular, through a simple geometric argument, Diaferio (1999) has shown that the

3-dimensional and projected line of sight velocity profiles are related by a factor of

g(β),

vesc,los = vesc ×
(√

g(β)

)−1

, (1.40)

where,

g(β) =
3− 2β(r)

1− β(r)
. (1.41)

β is the velocity anisotropy profile and it quantifies the degree to which galactic orbits

are more radial or tangential, via the ratio of the velocity dispersion in the tangential

direction (σt) to the velocity dispersion in the radial direction (σr),

β(r) = 1− σ2
t

σ2
r

, (1.42)

where σ2
t = 1

2

(
σ2
θ + σ2

φ

)
includes both azimuthal and latitudinal velocity dispersions.

The limiting cases are: radial infall (β = 1), circular motion (β = −∞) and isotropy

(β = 0). More specifically, for the radial range within r200, Serra et al. (2011) has

shown that
√
g(β(r)) ∼ 1.9 which means the projected escape velocity profiles can

be lower than their 3-dimensional counterparts by that factor. Clearly, projection

effects must be taken into account. Providing a novel way to derive β profiles is also

part of the work that this thesis takes on. We now provide a more specific overview

of this dissertation.

1.5 Overview of this work

In Chapter II we provide a different derivation of Eq. 1.39 and test its validity

after taking into account the aforementioned projection effects. More specifically, we

derive the escape velocity profile for an Einasto density field in an accelerating universe

and demonstrate its physical viability by comparing theoretical expectations to both

light-cone data generated from N-body simulations and archival data of 20 galaxy
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clusters. We demonstrate that the projection function (g(β)) is deemed physically

viable only for the theoretical expectation that includes a cosmology-dependent term.

Using simulations, we show that the inferred velocity anisotropy is more than 6σ away

from the expected value for the theoretical profile which ignores the acceleration of

the universe. In the archival data, we constrain the average galaxy cluster velocity

anisotropy parameter of a sample of 20 clusters to be β = 0.248+0.164
−0.360 at the 68%

confidence level.

As shown with Eq. 1.40, in order to de-project the projected escape velocity

profiles we need an independent estimate of β. In Chapter III we develop such an

approach. In particular, we present an analytic approach to lift the mass-anisotropy

degeneracy in clusters of galaxies by utilizing the line-of-sight velocity dispersion of

clustered galaxies jointly with weak lensing-inferred masses. More specifically, we

solve the spherical Jeans equation by assuming a simple relation between the line-

of-sight velocity dispersion and the radial velocity dispersion and recast the Jeans

equation as a Bernoulli differential equation which has a well-known analytic solution.

We first test our method in cosmological N-body simulations and then derive the

anisotropy profiles for 35 archival data galaxy clusters with an average redshift of

〈zc〉 = 0.25. The resulting profiles yield a weighted average global value of 〈β(0.2 ≤
r/r200 ≤ 1)〉 = 0.35 ± 0.28 (stat) ±0.15 (sys). This indicates that clustered galaxies

tend to globally fall on radially anisotropic orbits. We note that this is the first

attempt to derive velocity anisotropy profiles for a cluster sample of this size utilizing

joint dynamical and weak lensing data.

Having corroborated that our model works, in Chapter IV we present a novel

approach to constrain accelerating cosmologies with the projected galaxy cluster es-

cape velocity profile. With the Fisher matrix formalism we forecast constraints on

the cosmological parameters that describe the cosmological expansion history. We

find that our probe has the potential of providing constraints comparable to, or even

stronger than, those from other cosmological probes. More specifically, after apply-

ing a conservative 80% mass scatter prior on each cluster and marginalizing over all

other parameters, we forecast 1σ constraints on the dark energy equation of state w

and matter density parameter ΩM of σw = 0.138(0.431) and σΩM
= 0.007(0.025) in a

flat universe for a sample of 1000 (100) clusters uniformly distributed in the redshift

range 0 ≤ z ≤ 0.8. Assuming 40% mass scatter and adding a prior on the Hubble

constant we can achieve a constraint on the CPL parametrization of the dark energy

equation of state parameters w0 and wa with 100 clusters in the same redshift range:

σw0 = 0.191 and σwa = 2.712. Dropping the assumption of flatness and assuming
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w = −1 we also attain competitive constraints on the matter and dark energy den-

sity parameters: σΩM
= 0.101 and σΩΛ

= 0.197 for 100 clusters uniformly distributed

in the range 0 ≤ z ≤ 0.8 after applying a prior on the Hubble constant. We also

discuss various observational strategies for tightening constraints in both the near

and far future.

Lastly, as hinted at in this introduction, modified theories of gravity provide us

with a unique opportunity to generate innovative tests of gravity. In Chameleon

f(R) gravity, the gravitational potential differs from the weak-field limit of general

relativity (GR) in a mass dependent way. In Chapter V develop a probe of gravity

which compares high mass clusters, where Chameleon effects are weak, to low mass

clusters, where the effects can be strong. We utilize the escape velocity edges in the

radius/velocity phase space to infer the gravitational potential profiles on scales of

0.3 - 1 virial radii. We show that the escape edges of low mass clusters are enhanced

compared to GR, where the magnitude of the difference depends on the background

field value |fR0|. We validate our probe using N-body simulations and simulated

light cone galaxy data. For a DESI (Dark Energy Spectroscopic Instrument) Bright

Galaxy Sample, including observational systematics, projection effects, and cosmic

variance, our test can differentiate between GR and Chameleon f(R) gravity models,

|fR0| = 4× 10−6 (2× 10−6) at > 5σ (> 2σ), more than an order of magnitude better

than current cluster-scale constraints.

In Chapter VI, we close this work with possible openings, challenges, and perspec-

tives for future investigations. In the last pages of this dissertation, enumerated in

the various Appendices, we provide derivations and in-depth explanations of various

equations used throughout this work, mostly as they pertain to Chapter IV.
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CHAPTER II

Escaping a galaxy cluster in an accelerating

universe

2.1 Introduction

The late-time acceleration of the universe is one of the most profound mysteries

of physical cosmology. As briefly mentioned in the introductory chapter, what is at

stake with this discovery is the following: either our universe is composed of some

exotic ”dark energy” whose physics drives the dynamics of acceleration and/or our

general relativistic theory of gravity must be extended or modified (Joyce et al., 2015;

Koyama, 2016; Joyce et al., 2016).

Given its profound importance, cosmic acceleration is currently being investigated

through a broad constellation of probes that mobilize a range of astrophysical objects

and phenomena such as: Type Ia supernovae, Baryon Acoustic Oscillations (BAO),

weak gravitational lensing and galaxy clusters (see Weinberg et al. (2013) for an

excellent review of these and other approaches).

Galaxy clusters in particular are vital laboratories that allow us to sensitively

probe the physics of large-scale structure formation and thereby constrain cosmologi-

cal models of our universe (Kravtsov & Borgani, 2012b). The method most commonly

undertaken is based on the cluster abundance function, which evolves in shape and

amplitude as a function of the cosmological parameters (Vikhlinin et al., 2009; Rozo

et al., 2010). The abundance function as a cosmological probe depends not only on

robust analytic theory which is calibrated through simulations, but also on accurate

masses as inferred from dynamical, weak lensing and X-ray methods.

An alternative way of constraining cosmology that does not depend directly on

the galaxy cluster abundance function was developed in Regoes & Geller (1989b)

and extended by Regoes (1996). Both of these papers constrain the cosmological
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matter density parameter through an analysis of the phase (velocity vs. distance)

space of galaxy clusters. More specifically, as demonstrated by Kaiser (1986) the

infall pattern around galaxy clusters forms a trumpet-shaped profile in their phase

spaces. This trumpet-shaped profile, also known as a phase space “caustic”, can

be inferred from the line-of-sight velocity information. When compared to what is

predicted by spherical infall models, an estimate on the matter density parameter of

the universe may be inferred. However, the capacity for the caustic amplitude and

shape to precisely constrain the matter density parameter, at least when considering

both linear and non-linear theory from the spherical infall model, have since been

called into question (Diaferio & Geller, 1997a).

In particular, Diaferio & Geller (1997a) demonstrated that the caustic profiles

were related to the escape velocity profile of the cluster as mediated by a projection

function. This projection function stems from the fact that we observe only the

line-of-sight component of a galaxy’s velocity and because the true velocity vectors

can be non-isotropic. Only after projection can the caustics be utilized to infer the

mass profiles of galaxy clusters. While this method opened the path for a novel

way of estimating the mass profiles of galaxy clusters, the capacity for the caustic to

constrain cosmology directly has not been pursued.

In what follows, as was shown with 3-dimensional phase spaces from N-body sim-

ulations in Miller et al. (2016), we argue that in order to properly model the escape

velocity profile of galaxy clusters as inferred from their phase spaces a cosmological

acceleration term must be included. The reason for this is that the escape velocity

profile is often defined by integrating the density profile out to infinity via the integral

form of the Poisson equation. However, current analytical expressions of the gravita-

tional potential of galaxy clusters at “infinity” are not well defined. As such, if the

potential is not properly normalized it will yield the wrong escape velocity profile.

In particular, we extend the work Miller et al. (2016), presented in Chapter I, by

including projection effects and also testing the theory and the algorithm on real data.

More specifically, we use projected synthetic data from the Henriques et al. (2012)

light-cone as well as archival data of 20 galaxy clusters with extensive spectroscopic

data and weak lensing mass profiles. We analyze the cosmology-dependent escape

velocity profiles as inferred from their projected phase spaces and assess the viability

of our analytic expectations. We note that only when including cosmological effects

do we recover values for the velocity anisotropy parameter that are in agreement with

ΛCDM simulations and with various other observational studies:  Lokas et al. (2006),

Benatov et al. (2006), Lemze et al. (2009), Wojtak &  Lokas (2010), and Biviano et al.
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(2013).

The outline of this chapter is as follows: in Section 2.2 we derive and review the

theoretical expectations related to our observable: the escape velocity profile of galaxy

clusters. In Section 2.3 we outline how this observable is inferred from the phase

space of galaxy clusters. From thereon, in Section 2.4, we describe both the synthetic

and non-synthetic projected data we utilized to probe our theoretical expectations.

In Section 2.5 we describe projection effects and estimate the value of the velocity

anisotropy parameter we infer assuming two different theoretical expectations of the

escape velocity profile: one that includes the cosmological term and one that does

not. In the following section, Section 2.6, we thoroughly assess likely sources of

systematics affecting our analysis. We follow this analysis with a discussion and

conclusion in sections 2.7 and 2.8 respectively.

Except for the case of synthetic data in which the cosmological parameters are

already defined (Springel et al., 2005a), in what follows we assume a flat ΛCDM

cosmology with ΩM = 0.3, ΩΛ = 1−ΩM , and H0 = 100h km s−1 Mpc−1 with h = 0.7.

2.2 Theoretical expectations

The theory of general relativity and its derivative cosmological models demon-

strate that the dynamics of the matter-energy and the universe’s expansion dynamics

are dialectically entwined. As it is often said: matter-energy tells space-time how

to curve and space-time tells matter-energy how to move. For instance, in the case

of galaxy cluster-sized halos, large scale cosmological dynamics are expressed in the

amplitude and shape of the halo mass function (Tinker et al., 2008). Qualitatively,

what this tells us is that the dynamics of the galaxies in a gravitationally bound

structure such as a galaxy cluster must also necessarily be affected by cosmology.

In this chapter we focus on a particular observable, the escape velocity profile

of clusters as inferred from their phase space, and test the ways in which analytical

formulations of this observable must necessarily introduce a cosmological term in order

to accurately describe the escape velocity edges of galaxy clusters. In particular, the

velocity profile (vesc) can be inferred analytically by characterizing the potential (φ)

a given test particle must escape from,

v2
esc = −2φ. (2.1)

However, as mentioned in section 2.1, the cosmological effect on the escape velocity

profile has to be included in this potential. We now derive the escape velocity profile
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that includes cosmology and which has been utilized and tested against both ΛCDM

universe simulations (Behroozi et al., 2013; Miller et al., 2016) and extensions to

general relativity such as Chameleon f(R) gravity (Stark et al., 2016). We then

extend those derivations to include projection effects.

2.2.1 Derivation of the escape velocity profile of a galaxy cluster in an

accelerating universe

Nandra et al. (2012a) demonstrated that in the weak field approximation of general

relativity and at sub-horizon scales, a massive particle will still feel a force from the

accelerated expansion of space. Following Nandra et al. (2012a), then, the effective

acceleration experienced by a massive particle with zero angular momentum in the

vicinity of a galaxy cluster with gravitational potential (Ψ) is given by,

~∇Φ = ~∇Ψ + qH2rr̂. (2.2)

The effective potential (Φ) therefore takes into account both the curvature produced

by a density field with potential Ψ and the curvature produced by the acceleration

term qH2r. From a Newtonian perspective, then, this last term can be thought of as

a repulsive force that opposes the inward pull of the cluster’s mass distribution.

In the second term of equation 2.2, q is the usual deceleration parameter given

by: q ≡ − äa
ȧ2 .We assume a flat universe (Ωk = 0), and a dark energy equation of

state parameter w = −1. Also, given that we work in low-redshift regime (such that

Ωγ(z) ≈ 0) the deceleration parameter can be expressed in terms of the redshift evolv-

ing matter density parameter (ΩM(z)) and the redshift evolving Λ density parameter

(ΩΛ(z)), q(z) = 1
2
ΩM(z)−ΩΛ(z). For our chosen cosmology at the present epoch, we

attain: q(z = 0) = −0.55. Lastly, the Hubble parameter (H) for this same cosmology

is as usual, H(z) = H0E(z) = H0

√
(1− ΩM) + ΩM(1 + z)3.

Having defined the cosmological quantities that compose equation 2.2, we can

integrate over the physical radius (r) to find the effective potential, and subsequently

the escape velocity profile via equation 2.1 with effective potential Φ. Integrating

equation 2.2, ∫ req

r

dΦ =

∫ req

r

dΨ + qH2

∫ req

r

r′dr′. (2.3)

Note that we are integrating out not to infinity but to a finite radius, req, which

is termed the “equivalence radius” in Behroozi et al. (2013). The reason for this is

that the escape velocity at infinity is poorly defined. This ambiguity introduces a
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problem with the normalization of the potential that is used to calculate the escape

velocity profile. In particular, as demonstrated in Miller et al. (2016) this offset

ends up overestimating the potential by ∼20%. Following Behroozi et al. (2013) we

define the equivalence radius to be the point at which the acceleration due to the

gravitational potential of the cluster and the acceleration of the expanding universe

are equivalent (~∇Φ = 0) which yields, req = ( GM
−qH2 )1/3, where G is the gravitational

coupling constant and M is the mass of the cluster as inferred from a choice of Ψ via

the Poisson equation, as detailed in subsection 2.2 below. Now, integrating equation

2.3 out to req, we have,

Φ(r) = Ψ(r)−Ψ(req) +
1

2
qH2

(
r2 − r2

eq

)
+ Φ(req). (2.4)

Setting the boundary condition such that the escape velocity must necessarily be 0

at the equivalence radius, −2Φ(req) = v2
esc(req) = 0, and using equation 2.1 we find,

vesc(r) =
√
−2
(
Ψ(r)−Ψ(req)

)
− qH2

(
r2 − r2

eq

)
. (2.5)

This reproduces the result shown in Stark et al. (2016) and Miller et al. (2016).Note

that equation 2.5 is therefore normalized to yield an escape velocity of zero at the

equivalence radius once a Ψ has been chosen. Note also that equation 2.5 yields

the escape velocity profile in an accelerating universe for any choice of gravitational

potential Ψ.

From now on we refer to this escape velocity profile as “Einasto qH2” because

we choose the Einasto model to describe the potential Ψ. We describe this choice in

detail below.

2.2.2 Potential-density pair

While it is common to describe the density profile of galaxy clusters with the NFW

model of dark matter halos (Navarro et al., 1996, 1997), recent investigations have

shown that the NFW potential-density pair over estimates the escape velocity profile

by ∼10% within galaxy clusters (Miller et al., 2016). This is because, on average, the

NFW profile tends to overestimate the mass in the outskirts of galaxy clusters (see

also Diemer & Kravtsov (2015)).

Moreover, as is also demonstrated by Miller et al. (2016), in contrast to the NFW

model, once the cosmological term (Eq. 2.5) has been included, both the Gamma

(Dehnen, 1993) and Einasto (Einasto, 1965) gravitational potential profiles can model
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the radial escape velocity profiles to better than 3% precision. In what follows, we

utilize the Einasto profile. However, we emphasize that our analysis is not dependent

on the Ψ used. That is, insofar as the gravitational potential profiles are derived from

a true density-potential pair, all of our analysis will yield the same results.

Because nearly all published weak-lensing mass profiles utilize the NFW model,

we need to map the NFW parameters to the equivalent parameters in the Einasto

profile. The Einasto representation of dark matter halos (Einasto, 1965) is a three

parameter model (n, ρ0, r0) described by the following fitting formula for the density

profile,

ρ(r) = ρ0exp

[
−
(

r

r0

)1/n
]
. (2.6)

From the density field described by equation 2.6 we can derive the gravitational

potential using the integral form of the Poisson equation. As demonstrated by Retana-

Montenegro et al. (2012) this yields,

Ψ(r) = −GM

r

[
1−

Γ
(
3n,
(
r
r0

)1/n)
Γ(3n)

+
r

r0

Γ
(
2n,
(
r
r0

)1/n)
Γ(3n)

]
. (2.7)

As in Miller et al. (2016), ρ0 (or the mass term M) can be thought of as the

normalization, r0 is the scale radius and n is the index.

Following Retana-Montenegro et al. (2012), we use Γ(3n) = 2Γ(3n, dn) where the

dn term is solved for via asymptotic expansion. In particular, we use the dn term

cited therein expanded up to the fifth order, with α = 1/n,

dα ≈
3

α
− 1

3
+

8

1215
α +

184

229635
α2

+
1048

31000725
α3 − 17557576

1242974068875
α4 +O(α5). (2.8)

Lastly, Γ(a, x) denotes the upper incomplete gamma function, given as usual by:

Γ(a, x) =

∫ ∞
x

ta−1e−tdt. (2.9)

As shown in Sereno et al. (2016a) and references therein, the mapping between

NFW and Einasto profiles is straightforward. In our case, we insist that the two

profiles be nearly identical within r200. We do this by solving for the Einasto pa-

rameters which match analytical NFW density profiles on a cluster-by-cluster basis.

As noted by Sereno et al. (2016a), recent weak lensing analyses of stacked clusters

27



cannot distinguish between the Einasto and NFW halo representations of the density

profile within this range.

2.2.3 Comparing theoretical escape velocity profiles

with and without the cosmological terms

In Fig. 2.1 we show the resulting profiles for a single cluster-sized halo at z = 0.

In particular we plot both the escape velocity profiles for the Einasto qH2 profile (Eq.

2.5) with three different cosmologies (dashed, solid and dash-dotted lines) and for the

Einasto profile without the cosmological term (dotted line): vesc(r) =
√
−2Ψ(r).

As set by our aforementioned boundary condition, the Einasto qH2 escape velocity

profiles all reach vesc(r) → 0 as r → req. We also highlight the significant difference

between the Einasto qH2 model with ΩM = 0.3 and the Einasto model without the

cosmological term. Lastly, note that as we increase ΩM our Einasto qH2 profiles

converge to the Einasto profile without the cosmological term.

Given that all other data indicate we do not live in an Einstein-de Sitter universe,

we should be able to detect the & 10% cosmology-dependent effects on the escape

velocity profiles of galaxy clusters. We first test our theoretical expectations in N-

body simulations in order to thoroughly assess systematic effects (including projection

effects, mass scatter, and more, as explained in the subsequent sections) and then

utilize archival redshift data and weak lensing mass estimates of 20 galaxy clusters

to test our expectations.

2.3 Theoretical Observables

As is clear from our theoretical expectations, our observables are the projected

escape velocity profile of galaxy clusters (vedgeesc (r)) and the observed weak-lensing mass

profile. We use the latter in our analytic model of the 3-dimensional escape edge and

we require the cosmology and the projection function as described in Section 2.5.2.

We utilize the redshift information of galaxy clusters to generate phase spaces

(vlos vs. r space) from which we infer the escape velocity profile. More specifically,

we do this by transforming the galaxy redshifts at a given angular separation from

the cluster center (θ) to line-of-sight (vlos) velocities at the cluster’s redshift (zc) via,

vlos = c
(z − zc)
(1 + zc)

. (2.10)

Where c is the speed of light, and z denominates the redshift of individual galaxies. To
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Figure 2.1: Escape velocity profiles for a single cluster of fixed mass using equations
2.5 and 2.7 for four different escape velocity profile models (vesc(r)). Note that while
we change ΩM we keep h = 0.7 for a fiducial flat ΛCDM cosmology. We note the sig-
nificant difference between the Einasto qH2 theoretical expectations for three different
flat ΛCDM cosmologies with differing matter density parameters (ΩM = 0.01, 0.3, 0.6,
denoted by dashed, solid, and dashed dotted lines respectively) and the ”Einasto” the-
oretical expectation which does not include a cosmological term (denoted by dotted
line) given by vesc(r) =

√
−2Ψ(r) (and using equation 2.7). Note that increasing ΩM

raises the escape velocity at all radii. Going in the opposite direction, we notice that
as our universe becomes more and more dominated by Λ it will in principle be easier
for galaxies to escape clusters. Secondly, we note that as ΩM increases we recover
the non-cosmological escape velocity (dotted line). Note also, as implied by equation
2.5, that the Einasto qH2 profiles all eventually reach some radius (the equivalence
radius “req”) at which the escape velocity is zero.
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calculate the physical distance from the cluster’s center (r) we calculate the angular

diameter distance (dA) and use the angular separation (θ),

r = dA(z)θ =

[
1

1 + z

c

H0

∫ z

0

dz′

E(z′)

]
θ. (2.11)

For each cluster phase space we then identify the edge in radial bins of 0.1 Mpc

by finding galaxies with the top 10% velocities. We follow the interloper removal

prescriptions of Gifford et al. (2013) and Gifford et al. (2016). The latter tested

this edge detection technique on projected data in two different simulations with

widely varying values for σ8 = 0.8 vs σ8 = 0.9, where σ8 is the normalization of the

matter power spectrum on 8 Mpc scales. They conclude that the edge detection is

independent of large variations in the line-of-sight interloper fraction. We also test

the robustness of this edge-detection technique as discussed in the Systematics section

below. There are various techniques used to define phase space edges in the literature

(Diaferio & Geller, 1997a; Gifford et al., 2013; Serra et al., 2011; Rines et al., 2013;

Geller et al., 2013; Lemze et al., 2009; Miller et al., 2016). With N-body simulations

Miller et al. (2016) have shown that the escape velocity edge (vedgeesc ) can be inferred

with ∼ 5% accuracy. We discuss all of this more thoroughly in the Systematics

section.

The weak lensing mass profiles are taken from the literature (Sereno, 2015). As

noted in Section 2.2.2, these are provided as NFW profiles and we convert them

to Einasto density profiles on an individual basis. When the NFW concentration

parameter is not provided, we use the mass-concentration from Duffy et al. (2008).

We include the weak lensing mass errors as provided in the literature.

2.4 Data

We first test our theoretical expectations with a sample of synthetic clusters from

theHenriques et al. (2012) light-cone data. After having assessed relevant systematics

(thoroughly described in Section 6 below) with the synthetic data we conduct our

analysis on 20 clusters with weak lensing and redshift data. We briefly discuss these

data sets below.

2.4.1 Synthetic data

We utilize the Millennium simulation (Springel et al., 2005a) which employs a

flat cosmology with ΩM = 0.25 and h = 0.73. In particular we pick all the clusters
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above M200 > 4 × 1014h−1M� in the Henriques et al. (2012) light-cone and from

there we ensure that each cluster has N & 110 galaxies within 2r200 and between

−2000 ≤ vlos ≤ 2000 km/s. We do this to ensure that the phase spaces we are

working with are well sampled so that we may accurately infer escape velocity edges

from them. From these cuts, we end up working with a sample of 200 halos. We

then cross-correlate this light-cone data sample with the Guo et al. (2011a) catalog in

order to obtain 3-dimensional velocity information for each of our projected clusters

in the Henriques et al. (2012) light cone. This 3-dimensional information is needed in

order to compute the velocity anisotropy parameter of each cluster. We expand on

this in Section 5 below. Out of the sample of 200 clusters we separate them into ten

sets of 20 with similar mass distributions in order to create a sample with comparable

statistics as our archival non-synthetic galaxy cluster sample.

2.4.2 Archival data: weak lensing masses and galaxy redshifts

We used the VizieR catalog (Ochsenbein et al., 2000) to search for redshift data

of galaxy clusters with weak lensing mass estimates. The galaxy redshift information

is taken from a variety of sources (Rines et al., 2013; Miller et al., 2006; Ellingson

et al., 1997; Sánchez-Portal et al., 2015; Geller et al., 2014; Zitrin et al., 2012; Owers

et al., 2011a; Rines et al., 2003; Lemze et al., 2013) and so are the weak lensing

mass estimates (Okabe & Umetsu, 2008; Okabe & Smith, 2015; Hoekstra et al., 2015;

Umetsu et al., 2012; Gavazzi et al., 2009). The references for both weak lensing mass

profiles and galaxy redshifts for each of the 20 clusters in our sample are summarized

in Table 2.1. Note that while we cite the original source of the weak lensing papers

we ultimately use the M200 masses and errors in our analysis compiled in the Sereno

(2015) meta catalog. We particularly chose to utilize this meta catalog because it

includes standardized weak lensing mass estimates across cosmologies.1 Note that

the only case in which we use the exact mass as made explicit in the weak lensing

papers listed in Table 2.1 is for A1656 given that this cluster is not included in the

Sereno (2015) meta catalog.

As with the synthetic galaxy cluster sample, all 20 of our clusters have N & 110

galaxies within 2r200 and between −2000 ≤ vlos ≤ 2000 km/s. The only exception is

A2111 which has N = 87 galaxies within that range. The mass range of the data lies

between 5× 1014M� and 2.6× 1015M�.

The meta catalog only lists masses inferred from NFW fits (Navarro et al., 1996,

1The latest and most updated weak lensing parameter estimates from the meta catalog can be
accessed through Mauro Sereno’s website: pico.bo.astro.it/~sereno/CoMaLit/LC2/2.0/.
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Table 2.1: List of Galaxy Clusters and References

Cluster name2 Redshift Weak lensing3 Galaxy redshifts

A2111 0.229 H15 Miller et al. ’06
A611 0.288 H15 Lemze et al. ’13
MS1621 0.428 H15 Ellingson et al. ’97
Cl0024 0.3941 H15 Sanchez et al. ’15
A2259 0.164 H15 Rines et al. ’13
A1246 0.1921 H15 Rines et al. ’13
A697 0.2812 H15 Rines et al. ’13
A1689 0.1842 H15 Rines et al. ’13
A1914 0.166 H15 Rines et al. ’13
A2261 0.2242 H15 Rines et al. ’13
A1835 0.2506 H15 Rines et al. ’13
A267 0.2291 H15 Rines et al. ’13
A1763 0.2312 H15 Rines et al. ’13
A963 0.206 H15 Rines et al. ’13
A383 0.187 H15 Geller et al. ’14
A2142 0.0909 OU08 Owers et al. ’11
RXJ2129 0.2339 OS15 Rines et al. ’13
A2631 0.2765 OS15 Rines et al. ’13
MACS1206 0.439 U12 Zitrin et al. ’12
A1656 0.0237 G09 Rines et al. ’03
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1997) to weak lensing shear measurements. As discussed in Section 2.2.2, we convert

the NFW profiles to Einasto density profiles.

2.5 Testing our theoretical expectations

To summarize, with galaxy redshift information for each cluster we create a phase

space with its line-of-sight velocities (vlos). From this phase space we infer the escape

velocity edge (vedgeesc ), as detailed in Section 3. On the other hand, with mass profile

measurements we generate an analytic escape velocity profile through equation 2.5

after assuming a gravitational potential with the form of equation 2.7 (i.e. the Einasto

model of dark matter halos). We expect that if our theoretical expectations can

reproduce the edge profile to high precision then the average ratio vedgeesc /vesc should

yield unity. What Miller et al. (2016) has shown is that the Einasto model with the

additional cosmological term can analytically reproduce velocity escape edges inferred

from 3-dimensional phase spaces to high precision. Therefore, when comparing our

analytic formulation with edges inferred from projected phase spaces, any difference

between this ratio and unity should arise from projection effects.

2.5.1 Projection effects

As demonstrated by Diaferio & Geller (1997a) and Diaferio (1999) the 3-dimensional

escape velocity profile (vesc(r)) can be projected by a function of the velocity anisotropy

parameter (g(β)),

vlos(r) = vesc(r)×
(√

g(β(r))
)−1

. (2.12)

Where g(β(r)) is given by,

g(r) =
3− 2β(r)

1− β(r)
. (2.13)

The anisotropy parameter (β) is given by the ratio of the velocity dispersion in

the tangential direction (σt) to the velocity dispersion in the radial direction (σr),

β(r) = 1− σ2
t

σ2
r

, (2.14)

where σ2
t = 1

2

(
σ2
θ + σ2

φ

)
includes both azimuthal and latitudinal velocity dispersions.

The limiting cases are: radial infall (β = 1), circular motion (β = −∞) and isotropy

(β = 0).
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Therefore, if we had the 3-dimensional velocity information for each of our clus-

ters we can calculate β and directly project our profiles. However, in practice this

parameter is difficult to determine and as such we are left to infer what β would be

given an expected theoretical profile for a given cluster and compare our result with

simulations.

2.5.2 Inferring the anisotropy parameter

Given that our theoretical expectation matches the edges in 3-dimensions to high

precision, by taking the ratio between the escape velocity edge and our theoretical

profile we should be able to infer the anisotropy parameter via,〈
vedgeesc (r)

vesc(r)

〉〈√
g(r)

〉
= 1. (2.15)

The brackets in equation 2.15 signify that the average is calculated onN = 20 clusters.

That is, we calculate the ratio for each cluster and then take the average at each radial

bin, with a separation of ∆(r/r200) = 0.1. Moreover, the averaged ratio is weighted

by the error on the ratio of each individual cluster at a given radial bin. The details

of our error budget are thoroughly discussed in the Systematics section below.

Using equation 2.15, for a given average ratio, we can find what average g(β(r))

is needed to make that ratio unity. Then by inverting equation 2.13 we can find the

anisotropy parameter β via,

β(r) =
3− g(r)

2− g(r)
. (2.16)

Lastly, the theoretical expectation (vesc) can be either the escape velocity profile

with the cosmological term (i.e. Einasto qH2, Eq. 2.5) or without it (i.e. just the

Einasto potential, Eq. 2.7: vesc(r) =
√
−2Ψ(r)). The differences between the inferred

β parameters for these two analytic profiles are detailed in section 5.2.1 and 5.2.2 for

the synthetic sample, respectively. For the archival data we only compare our inferred

β assuming the Einasto qH2 theory.

2.5.2.1 Synthetic data and theory with cosmological term

Assuming vesc(r) in equation 2.15 is the Einasto qH2 model (Eq. 2.5), for a single

set of 20 clusters in our synthetic sample, the weighted average ratio is shown in Fig.

2.2 (black stars).

We then can calculate the χ2 between the left-hand side of Equation 2.15 and

the right-hand side (unity) in the range 0.3 < r/r200 < 1 in order to infer the most
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Figure 2.2: The unprojected (stars) and projected (circles) weighted average ratio
between the escape velocity edge and the theoretically expected escape velocity pro-
files with the Einasto qH2 model for a single set of 20 synthetic clusters from the
Henriques et al. (2012) light cone. The error is the 1σ error on the averaged ratio
assuming a uniform 25% mass scatter on the virial mass of each cluster and a 5%
scatter on the escape velocity edge. The unprojected ratios are projected after calcu-
lating the most likely average β by comparing to the unity line (see Equation 2.15).
We find this value to be well in agreement with simulation results (see figure 2.3).
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likely average β for this set of 20 synthetic clusters. The uncertainty we use in this

calculation is therefore the error on the mean on each of the radial bins, as shown by

the error bars in Fig. 2.2. Note that, necessarily, we also utilize the relation shown

in Eq. 2.16. Note also that we focus on the region between 0.3 < r/r200 < 1 because

simulation results have shown that the anisotropy parameter is–on average–constant

across different redshifts within this radial range (Serra et al., 2011; Lemze et al.,

2012; Munari et al., 2013) which justifies the assumption of a constant β.

Moreover, with the χ2 we calculated, and assuming a Gaussian likelihood L ∝
exp[−χ2/2], we can generate a likelihood plot of our inferred average β for each of

our ten sets of 20 synthetic clusters. The result is shown by the gray band in Fig.

2.3. The band represents the 1σ error on the distribution of likelihoods for all ten

sets of averaged cluster ratios and their inferred β’s. In that same figure we compare

our inferred β with two other results from synthetic data.

After inferring the most likely β from this method we project the average profile.

The projected results for a single set of 20 clusters for this synthetic sample are also

shown in Fig. 2.2 (black dots).

The red vertical dashed line is the average anisotropy parameter (also between

0.3 < r200 < 1) as directly measured in 3-dimensions using Eq. 2.14 calculated by

Iannuzzi & Dolag (2012). The 2σ bootstrap error on the mean is shown in red dotted

lines. The sample used by Iannuzzi & Dolag (2012) is composed of the 1000 clusters

in the Millennium simulation at z = 0 with virial masses greater than 2 × 1014M�.

This is a much larger sample size than we use and as such we consider this β to be a

robust estimate of the true anisotropy parameter.

The black vertical dashed lines in Fig. 2.3 come from a direct calculation of the

anisotropy parameter (using Eq. 2.14) for the superset of 200 clusters with masses

M200 > 4 × 1014M� that we use in this work. Our superset has a slightly larger

average β, but both our measurement and Iannuzzi & Dolag (2012)’s are within ∼ 2σ

of each other. We hypothesize that this small difference could be attributed to the

fact that our simulated data include the orphan galaxies in the Guo et al. (2011a)

catalog, whereas Iannuzzi & Dolag (2012) exclude these. Note, for instance, that the

β calculated in Lemze et al. (2012) utilized particles and is also larger than the β

calculated in Iannuzzi & Dolag (2012).

The gray line (and band) is the likelihood which represents β using only the

projected phase-space profiles of 20 clusters (i.e., no 3-dimensional information). As

expected, this likelihood is much larger than the error bounds on β from the 3-

dimensional information for larger samples. The reason it is larger is because the χ2
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Figure 2.3: The likelihood of the average anisotropy parameter (β) as inferred from
ten sets of 20 clusters in the synthetic Henriques et al. (2012) light-cone data. The
gray band represents the 1σ variation on the likelihood of the ten sets. We cross-
correlated the Henriques et al. (2012) light-cone data with the 3-dimensional velocity
data from Guo et al. (2011a) to calculate, analytically, the average beta for the sample
via Eq. 2.14 to attain: β = 0.275±0.062 at the 95% confidence level (black line dashed
and dotted). The red lines represent the β profile with 2σ error (dash and dotted) for
1000 clusters in the Millennium sample calculated also with Eq. 2.14 by Iannuzzi &
Dolag (2012). Only by including the cosmological-dependent term on our theoretical
formulation can we recover the true β with accuracy and to high precision. Compare
the red lines to the purple band which utilizes the Einasto potential for the analytic
profile of the escape velocity profile without the cosmological term. We conclude,
then, that we can rule out the analytic profile without the cosmological term at the
6.3σ level. Note that the Iannuzzi & Dolag (2012) band is the error on the mean
as calculated from a bootstrap algorithm also between 0.3 < r/r200 < 1. Lastly, as
mentioned in the text, we assume a uniform 25% mass scatter on M200 for all clusters
and a 5% error on the escape velocity edge. The cosmology utilized for our analytic
profiles is the same as what was utilized to make the simulations (see section 2.4).
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analysis includes representative errors on both the weak lensing masses (25%) and

the escape edges (5%). However, this likelihood fully captures the true underlying

3-dimensional radially averaged velocity anisotropy.

2.5.2.2 Synthetic data and theory without cosmological term

In both of our synthetic data samples shown in Fig. 2.2 and Fig. 2.3 we took

the ratio between escape velocity edge and the Einasto qH2 analytic profile. Now,

assuming we do not actually need the cosmological-dependent term to accurately

reproduce the escape edge, we test whether or not we can recover the true anisotropy

parameter. More specifically, the vesc(r) in the ratio now utilizes Eq. 2.1 with the

Einasto potential of 2.7: vesc(r) =
√
−2Ψ(r) (rather than Eq. 2.5). The result is

shown in Fig. 2.3 (purple band).

As with the gray band described above, the purple band represents the likelihood

on the inferred β with the 1σ error representing the standard deviation in the ten sets

of 20 synthetic clusters. We see that if we remove the cosmological term, the average

anisotropy parameter is much larger and therefore we cannot recover the simulation

results. More specifically, assuming the red bands are correct in Fig. 2.3, that is, if it

truly describes the anisotropy parameter, then we can rule out the non-cosmological

dependent theory (purple band) at the 6.3σ level. Put differently, the average value

of β shown by the red dashed line is 6.3σ away from from the range of allowed β’s

shown with the purple band.

In summary, these tests on the simulations provide two important results: first

that our algorithm can recover the average β given only projected data and second

that the cosmological model plays a significant role.

2.5.2.3 Archival data and theory with cosmological term

After getting a sense of what we should expect for a given sample size of 20

clusters, and after making concrete the abstract necessity of including a cosmological

dependent term in our escape velocity profile by studying the underlying velocity

anisotropy distributions with 200 synthetic clusters, we perform the same analysis on

an archival data set of 20 galaxy clusters.

The ratio for our sample of 20 clusters, similar to Fig. 2.4, is shown in Fig. 2.4.

As with the synthetic data, we calculate the χ2 and after assuming a Gaussian we can

infer the likelihood for the average anisotropy parameter for our set of 20 clusters.

Again, the χ2 is calculated between the left-hand side of Equation 2.15 and the right-
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hand side (unity) in the range 0.3 < r/r200 < 1 in order to infer the most likely

average β for the set of 20 clusters from the archival dataset. The uncertainty on

the ratio used for the χ2 can be seen on Fig. 2.4. The resulting likelihood is shown

in Fig. 2.5 where we compare the likelihood of β inferred for the archival set of 20

clusters (black line) to the distribution of β inferred from the synthetic set of clusters

(gray band, as in Fig. 2.3).

We find that for our sample of just 20 clusters we recover the peak of the likelihood

as inferred from simulations to high accuracy. In particular we find that the value

of the most likely anisotropy parameter for our archival data of 20 galaxy clusters

is β = 0.248+0.164
−0.360 at the 68% confidence level. Note that we calculate this interval

by assuming that the distribution to the right of the peak is Gaussian and then find

where Q > −2 ln[L(β)/Lmax] (where for our single parameter model Q = 1). After

this error is calculated then we find the error to the left of the peak by integrating

the likelihood from the rightmost error up to the value of β which yields 0.68 times

the total area of the likelihood.

In Fig. 2.5 the data likelihood (black line) is larger than the simulation likelihood

for β (gray band) and with a longer tail to negative β. This is because in the simu-

lations we applied a representative error on the cluster masses fixed at 25%, whereas

the data have errors which vary from 15% to 44%. The larger errors on the weak

lensing masses allow for more negative anisotropy. In fact, as we discuss below, the

weak lensing mass errors are the dominant component of our error budget.

2.6 Systematics

The agreement between the anisotropy parameter inferred with the archival data

of 20 clusters and the ΛCDM simulation results (assuming the Einasto qH2 theory)

is clear. To understand the robustness of this result, we carefully consider possible

systematics.

As mentioned in the previous section, we carefully consider the uncertainties that

make up our averaged ratio and we weight our data with those errors. In particular,

we weight the ratio for a given cluster at a given radius by its error at that radius.

More specifically, we propagate the error on the ratio by considering the error on

the numerator (i.e. vedgeesc (r)) and the error on the denominator (i.e. the theoretical

escape velocity profile, vesc(r)). We consider various uncertainties plaguing these two

components of the average ratio below.

Throughout, we use a χ2 statistic and assume that the errors on the ratios are
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Figure 2.4: The unprojected and projected weighted average ratios between the escape
velocity edge and the theoretically expected escape velocity profiles for the set of
archival data set of 20 clusters. Note the similarity between this sample and the
synthetic sample Fig. 2.2. Given that we are using the particular weak lensing mass
errors for each cluster (rather than a uniform mass scatter of 25% as in Fig. 2.2) the
overall error on the average ratio is larger.
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Figure 2.5: The likelihood of the average β as inferred from the set of 20 archival
clusters (black line). We also re-plot the likelihood band (gray) from the ten sets of
20 synthetic clusters as well as the results from numerical simulations from Iannuzzi
& Dolag (2012) (as in Fig. 2.3). With just 20 clusters we can recover the velocity
anisotropy only if the escape velocity profile is described by an Einasto density field
with an additional cosmological term (as in equation 2.5).
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Gaussian. The fact that our likelihood is centered near the truth for the simulated

data indicates that the assumption of Gaussianity is not a bad choice for our analysis.

2.6.1 Escape velocity edge

We propagate the error on the averaged ratio by assuming the error on the nu-

merator, that is on the edge (vedgeesc ), at each cluster and at each radial bin to be 5%

(as studied by Miller et al. (2016)). As mentioned previously, the edge is character-

ized by the galaxies with projected velocities in the top 10% of the phase-space at a

given radial bin. We test the robustness of the edge-detection technique by chang-

ing this percentage by 50% and find that the resulting variations lie within our 68%

confidence interval error. We note that these variations on the edge affect both the

Einasto and Einasto qH2 β likelihoods equally. As such, it has no direct effect on

our results. Furthermore, we utilize the interloper removal technique described in

Gifford et al. (2013) which was tested against different cosmologies in Gifford et al.

(2016) to infer the edge to high precision using ∼ 50 galaxies per phase-space. Note

that our clusters have much higher phase-space sampling and thus better contrasted

edges. We also compared our edges to those measured with completely independent

techniques (e.g., Geller et al. (2013)) and find no significant differences within the

scatter and limited sample size used. Given the expectations from theory, the tests

in simulated projected data, and the comparison to other observed measurements,

we do not consider this component of the average ratio calculation to be a significant

source of systematic uncertainty.

2.6.2 Weak lensing masses

2.6.2.1 Mass scatter

In the denominator of the ratio, we calculate the error on the theory (vesc) by

folding through the error in the weak lensing mass estimates. The mean ratio is

weighted according to its total error, and so our mean ratios can vary slightly if the

weak lensing mass errors change. More importantly, the likelihood will shrink (grow)

as the weak lensing mass errors shrink (grow). Nonetheless the dominant error on

the ratio comes from the weak lensing mass estimates.

Lastly, note that in our calculation of the error we assume that the error on the

vedgeesc (r) and the error on vesc(r) from the mass scatter have no covariance. This could

either raise or decrease our overall error.
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2.6.2.2 Mass bias

Another possible systematic that could affect our theoretical expectation is biased

weak lensing masses. In particular, biasing all of the weak lensing masses in our

archival data sample by 5% (i.e. M200 → 0.95 × M200), as is perhaps expected

by Becker & Kravtsov (2011a), would change the most likely velocity anisotropy

parameter to β = 0.138. This value is still within a reasonable range of our likelihood

expectation from the synthetic cluster sample. However, we note that given that we

recover the results in simulations by using the same technique we can be confident

that we are not utilizing biased masses in our archival data sample.

2.6.3 Mass-concentration relation

Another component that is implicit in our calculation of vesc(r) is the utilization

of a mass-concentration relation to attain the NFW density profiles. Recalling from

previous sections, we utilize this NFW density to infer the Einasto parameters as

described above. In particular, we utilize the Duffy et al. (2008) mass-concentration

relation for both the synthetic and archival data samples. Most importantly, this is

the relation also used in the metacatalog we utilize (Sereno, 2015). The relation is

given by,

c200(M200, z) = A200

(
M200

Mpiv

)B200

(1 + z)C200 . (2.17)

Where A200 = 5.71, B200 = −0.084, C200 = −0.47 and Mpiv = 2×1012h−1M�. We re-

calculated our inferred β from our samples by employing the 1σ error variations on the

relation’s parameters (A200, B200, C200) and found that the inferred β varied only by

∼ 1%. Perhaps this is expected given the relative flatness of the mass-concentration

relation in the high mass end of the spectrum which is where most of our clusters lie.

2.6.4 Cosmological parameters

As expressed in the preceding sections, our theoretical expectation for the pro-

jected escape velocity profile involves assuming a cosmology. Therefore, we expect

that the uncertainty in these cosmological parameters will also affect our theoretical

escape velocity profile (vesc(r)), and consequently, β. We note that the variations for

these cosmological parameters are significant. This much is already implied by Fig.

2.1.

In particular we note that decreasing ΩM to 0.01 changes the peak of the anisotropy

likelihood to β = −0.08. This significant difference in β is due to the fact that the
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escape velocity profiles would be underestimated in relation to the inferred escape

velocity edges. Similarly, increasing ΩM increases the escape velocity profiles and

raises β, thereby shifting the peak to the right. Picking a more realistic uncertainty,

we find that a 10% variation in ΩM , yields a 19% variation in the peak of β.

Increasing H0 for a constant ΩM also increases β. The variations are even more

accentuated. For example, a 2% variation in H0 yields a 42% variation in the peak of

β. These variations are still within the 95% confidence region as shown in Fig. 2.5.

We emphasize that despite these significant variations on the inferred value of β

our goal in this chapter is to test whether we can accurately and precisely reproduce

projected escape velocity edges given a cosmology-dependent model.

2.7 Discussion

By utilizing archival data of just 20 galaxy clusters and by picking a fiducial

cosmology within the range of what is expected from cosmological probes, we are able

to recover the average anisotropy parameter β in agreement with ΛCDM simulations.

In this sense, then, we are already implicitly constraining cosmology by picking a

reasonable choice of values for h, Ωm and w. What remains to be seen, however,

and this much we defer to future work, is how precisely we can constrain cosmology

with Eq. 2.5 once β is independently inferred for each cluster given the scatter on

weak lensing masses (our dominant systematic). If β can be inferred for each cluster

through an independent technique (e.g. via the Jeans equation), we can leverage this

to constrain cosmological parameters in the near future.

We note that our resulting average velocity anisotropies are well in agreement with

other analyses (Biviano et al., 2013; Lemze et al., 2009;  Lokas et al., 2006; Wojtak

&  Lokas, 2010; Benatov et al., 2006). For example, with a sample of only 6 nearby

relaxed Abell clusters,  Lokas et al. (2006) constrains the anisotropy parameter to

−1.1 < β < 0.5 at the 95% confidence level. Our results with 20 clusters basically

reproduce this constraint on β.

Furthermore, we note that our treatment would not affect observables that are

either first or second derivatives of the potential, such as Jeans mass analyses or infer-

ences of X-ray masses. The reason for this is that the dominant term in equation 2.5

is the normalization constant Ψ(req). The techniques that are affected by our theoret-

ical expectations are those that directly deal with the escape velocity profile as such

(or in other words, with the cluster’s potential as inferred from dynamics). Therefore

our analyses matters when the normalization of the potential matters. This is not the
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case for the two aforementioned methods nor for weak lensing masses. In short, cos-

mology matters for escape-velocity inferred masses, as shown in 3-dimensional ΛCDM

simulation (Miller et al. (2016)), 2-dimensional simulations (Fig. 2.3), and real data

(Fig. 2.5, black line).

One technique that directly deals with the escape velocity profile as such is the

caustic technique. Hoekstra et al. (2015) has recently demonstrated that mass esti-

mates by the caustic technique (see Rines et al. (2013)) are on average underestimated

when compared to the weak lensing masses by ∼ 22%. If we drop the cosmological

terms in our theoretical profile, the overall escape velocity profile would increase (as

in Fig. 2.1). As such, in order to match this Einasto profile without the cosmolog-

ical term, the Einasto qH2 would always infer a higher mass. Interestingly, we find

that M200(Einasto qH2)/M200(Einasto) = 1.22, exactly reproducing Hoekstra et al.

(2015)’s result. We note this as a possible explanation for this discrepancy and as

a call to return to reflect upon the cosmological dependence of the escape velocity

edges as already argued long ago by Kaiser (1986) and Regoes & Geller (1989b).

2.8 Summary

With archival data of just 20 galaxy clusters with extensive redshift information

and weak lensing mass profile estimates we demonstrate the need to include a cosmo-

logical dependent term in the analytic model of the escape velocity profile of galaxy

clusters. We conduct our analysis also utilizing ten sets of 20 synthetic galaxy clus-

ters to study underlying systematics and projection effects. We find that our analytic

formulation provides remarkable agreement with both sets of data.

More specifically, we leverage the complications involved in projecting the line-of-

sight velocities related to to the anisotropy parameter (β) and utilize this information

to quantify the necessity of including a cosmological term in our analytic theory.

We find that if we do not include a cosmological term in our analytic theory

we infer velocity anisotropies that are inconsistent with both numerical results and

observational data.

Throughout our analysis we picked a fiducial cosmology to probe our theoretical

expectations and showed that there is a degeneracy between the velocity anisotropy

parameter and cosmology. However, by independently inferring the anisotropy pa-

rameter, and combining this with the cosmology dependent Einasto qH2 theoretical

profiles, one can in principle constrain cosmology.

As such, we have briefly motivated the capacity for the escape velocity profile of
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galaxy clusters to become a novel probe of cosmology in the near future given its

sensitivity to the physics of cosmic acceleration. What is required to realize this is

the next generation of weak-lensing data for galaxy clusters as well as deep spec-

troscopic follow-up (e.g., the Dark Energy Survey (Diehl et al., 2014) and the Dark

Energy Spectroscopic Instrument–DESI). Given that the data is not yet available,

in Chapter IV we use the Fisher matrix formalism to derive constraint forecasts on

general relativistic cosmologies with the escape velocity profile model presented in

this chapter.
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CHAPTER III

Cluster escape velocity profiles and the velocity

anisotropy profile

3.1 Introduction

As demonstrated in Chapter II, we can utilize the cosmology-dependent escape

velocity profile as a probe of cosmology only if we are able to either independently

measure the cluster anisotropy parameter β for each of the clusters used. In this

chapter we develop a novel approach to derive galaxy cluster anisotropy profiles for

galaxy clusters independent of cosmology. We note that beyond the motivation to

further develop our cosmological probe, the global galaxy cluster velocity anisotropy

profile β is actually not yet well characterized nor broadly studied. In fact, what is

presented in this chapter is the first attempt to derive velocity anisotropy profiles for

a large cluster sample size (N = 35) utilizing joint dynamical and weak lensing data.

In general, β is defined in the following way (Binney & Tremaine, 1987),

β(r) = 1− σ2
t

σ2
r

, (3.1)

where σ2
t and σ2

t signify the tangential and radial velocity dispersions, respectively,

of galaxies at a given radial bin. As an example, in the case of a totally isotropic

velocity distribution of the galaxies, Eq. 3.1 yields β = 0, whereas a totally radial

velocity distribution yields β = 1. While the upper limit of the parameter is unity,

the lower limit can in principle be β = −∞. Values of β below 0 entail tangential

galactic orbits.

Typically, inferring velocity anisotropy profiles follows the long tradition of stud-

ies that has modeled the galaxy cluster as a collisionless system described by the

anisotropic Jeans equation (Binney & Tremaine, 1987; Binney & Mamon, 1982;
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Solanes & Salvador-Sole, 1990),

d(ρσ2
r)

dr
+

2βσ2
rρ

r
= −ρdφ

dr
, (3.2)

where the potential-density pair of the system is defined respectively by the quantities

φ and ρ, and σ2
r represents the radial velocity dispersion of the tracers (in our case,

galaxies).

In the Jeans equation, β is degenerate with the mass profile through both the

density and the derivative of the potential. This is the so called “mass-anisotropy

degeneracy” (Merritt, 1987). One obvious solution to this degeneracy is to attain

an independently measured mass (Binney & Mamon, 1982; Solanes & Salvador-Sole,

1990). Previous work in this area has provided estimates for cluster anistropy profiles

by using X-ray masses (Host et al., 2009; Hwang & Lee, 2008; Benatov et al., 2006).

Other authors have attempted to break the mass-anisotropy degeneracy using just

the dynamical information in the cluster phase-spaces (Wojtak &  Lokas, 2010;  Lokas

et al., 2006; Biviano & Katgert, 2004). However, there are very few examples of higher

precision measurements of the anisotropy profile using large samples of clusters (Host

et al., 2009; Wojtak &  Lokas, 2010).

Given the proliferation of data and techniques to characterize the mass profiles of

galaxy clusters, various papers have focused on deriving β(r) for individual clusters by

combining mass profiles inferred through different techniques (Biviano et al., 2013;

Aguerri et al., 2017; Annunziatella et al., 2016; Munari et al., 2014; Lemze et al.,

2009). Most of these studies conclude that while the orbits of clustered galaxies are

unlikely to be tangential, the overall scatter is often too large to determine either the

degree of isotropy or radial anisotropy of galactic orbits that is expected from the

results of N-body simulations – which tends to show only a weak radial anisotropy

within the virial radius (Iannuzzi & Dolag, 2012; Lemze et al., 2009; Serra et al., 2011).

In contrast to these individual cluster studies, we are more interested in deriving a

“global” galaxy anisotropy profile from a relatively large sample size of clusters, in

the spirit of work such as that of Wojtak &  Lokas (2010), which derived velocity

anisotropy profiles for 41 clusters.

In what follows, we derive an average anisotropy profile for 35 galaxy clusters.

We follow the intuition of (but also take a different approach than) Natarajan &

Kneib (1997)–a seminal paper that is the first to attempt to do a joint dynamics-weak

lensing constraint of β using the Jeans equation. We carefully test our approach using

synthetic clusters produced through the N-body Millennium simulations (Springel
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et al., 2005a). We then apply our new algorithm to archival data from 35 galaxy

clusters with both weak lensing mass profiles and extensive spectroscopic coverage.

In contrast to Natarajan & Kneib (1997), which largely focuses on characterizing the

degree of anisotropy of the core of a single cluster, we derive profiles for our 35 clusters

that extend out to one virial radii and also sidestep the complications of modelling

galaxy cluster cores. In particular, we find that within 0.2 - 1 virial radii, the average

galaxy cluster velocity anisotropy profile of the 35 clusters derived from archival data

tends to be radially anisotropic with a small statistical scatter. In what follows, we

attempt to address how these results compare to other derivations of β and discuss

its implications. We highlight that this is the first attempt to derive a global β profile

of galaxy clusters with joint weak lensing and dynamical data.

The outline this chapter is as follows: in Section 3.2 we describe the data we used

to both test our approach in cosmological N-body simulations, as well as the joint

weak lensing and spectroscopic archival data of the 35 galaxy clusters; in Section 3.3

we clarify the observables derived from the aforementioned data and then describe

how they are used to derive β profiles in Section 3.4; Section 3.5 presents the results of

our approach; lastly, in Section 3.6 we discuss our results in light of other derivations

of β as well as the systematics affecting our probe. For the case of synthetic data

(real data) we assume a flat ΛCDM cosmology with ΩM = 0.25(0.3) , ΩΛ = 1− ΩM ,

and H0 = 100h km s−1 Mpc−1 with h = 0.73(0.7).

3.2 Data

In this section we describe the synthetic data we used to test our approach with

N-body simulations, and then describe the archival of the 35 galaxy clusters that

contain both weak lensing and spectroscopic observations.

3.2.1 N-body simulations

We test our method on dark matter halos generated by the N-body cosmological

simulations of the Millennium simulation (MS) (Springel et al., 2005a). In particular,

we use the particle data from these simulations to measure the cluster Einasto density

profiles. We treat these density profiles as the “weak lensing” data, since they trace

the underlying matter distribution.

More specifically, we select 100 halos from the Millennium Simulation to test

our approach. Our sample aims for fair cluster mass sampling over the range ∼
1014 − 1015M�. The average mass of our sample is 〈M〉 = 2.34 × 1014M� and the
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average critical radius is 〈r200〉 = 0.95Mpc. We then use the semi-analytic galaxy cat-

alogs from Guo et al. (2011b) to define our projected cluster radius/velocity phase-

spaces. These phase-spaces typically contain between 100-200 galaxies within r200

and ±3000km s−1, which is similar to the observed data (see next sub-section). The

volume around each halo is a cube with box length 60Mpch−1. This box length is

large enough to make line-of-sight projections to include realistic phase-space contam-

ination from typical galaxy peculiar velocities (i.e., ± ∼ 3000 km s−1). We calculate

the line-of-sight velocity dispersions using 100 random orientations around each clus-

ter. We then use these to measure the median line-of-sight velocities vlos as well as

an error based on the 1σ scatter of the individual profiles. We explain this more

thoroughly in the next sections.

3.2.2 Archival data

To derive the global β profile in real data we use data from 35 clusters found

in the literature. To find the 35 archival data clusters we used the VizieR catalog

(Ochsenbein et al., 2000) to search for redshifts of the galaxy clusters (Rines et al.

(2013); Maurogordato et al. (2008); Owers et al. (2011b,c); Tyler et al. (2013); Girardi

et al. (2008); Oemler et al. (2009); Agulli et al. (2016); Tran et al. (2007); Demarco

et al. (2010); Lemze et al. (2013); Moran et al. (2007); Geller et al. (2014); Girardi

et al. (2015); Edwards & Fadda (2011)) that also have weak lensing data (Hoekstra

et al. (2015); Okabe & Umetsu (2008); Okabe et al. (2010); Okabe & Smith (2015);

Umetsu et al. (2015); Cypriano et al. (2004); Pedersen & Dahle (2007); Medezinski

et al. (2016); Foëx et al. (2012); Clowe et al. (2000); Jee et al. (2011); Smail et al.

(1997)). We tabulate this joint dynamic-weak lensing dataset on Table 3.1. Note

that while we cite the original papers, the weak lensing masses (and their respective

errors) we use in our analysis were taken from the standardized Sereno (2015) meta

catalog.

More specifically, we note that 10 clusters in our sample have 57 < N < 100

galaxies while the remaining 25 clusters have more than 100 galaxies within r200 and

within their escape velocity profile (vesc). The mass range of the archival data lies

between 4.1 × 1014M� and 2.06 × 1015M�. Note that the meta catalog only lists

masses inferred from NFW fits to weak lensing shear measurements. As is detailed

in the next section, we transform the NFW fit parameters to those of the Einasto

model.
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Table 3.1: List of Galaxy Clusters and References

Cluster name1 Redshift Weak lensing2 Galaxy redshifts

A1682 0.227 P07 Rines et al. ’13
A1553 0.167 C04 Rines et al. ’13
A1423 0.214 O15 Rines et al. ’13
A2163 0.201 H15/R08 Maurogordato et al. ’08
A2034 0.113 O08 Rines et al. ’13
A2029 0.077 C04 Tyler et al. ’13
A2009 0.152 O15 Rines et al. ’13
A2219 0.226 O10/O15/A14 Rines et al. ’13
A2744 0.306 M16 Owers et al. ’11
A520 0.201 H15 Girardi et al. ’08
A851 0.405 F12 Oemler et al. ’09
A85 0.055 C04 Agulli et al. ’16
A773 0.217 O15 Rines et al. ’13
ZwCl3146 0.289 O15 Rines et al. ’13
BLOXJ1056 0.831 CL00 Tran et al. ’07
RXJ1720 0.160 O15 Owers et al. ’11
RXJ0152 0.837 J11 Demarco et al. ’10
RXCJ1504 0.217 O15 Rines et al. ’13
A2111 0.229 H15 Rines et al. ’13
A611 0.287 O10 Lemze et al. ’13
ZwCl0024 0.395 S97 Moran et al. ’07
A2259 0.161 H15 Rines et al. ’13
A1246 0.192 H15 Rines et al. ’13
A697 0.281 O10 Rines et al. ’13
A1689 0.184 U15 Rines et al. ’13
A1914 0.166 H15 Rines et al. ’13
A1835 0.251 H15 Rines et al. ’13
A267 0.229 O15 Rines et al. ’13
A1763 0.231 H15 Rines et al. ’13
A963 0.204 O15 Rines et al. ’13
A383 0.189 O15 Geller et al. ’14
A2142 0.090 O08 Owers et al. ’11
RXCJ2129 0.234 O15 Rines et al. ’13
MACS1206 0.440 F12 Girardi et al. ’15
Coma 0.0231 H15 Edwards, Fadda’11
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3.3 Theoretical Observables

Before we can derive β profiles for our set of both synthetic data and the 35

clusters, we extract both the dynamical data of clustered galaxies thorough their line-

of-sight velocities as well as their respective cluster mass profiles. In the following two

sub-sections we describe the relevant observables and other quantities that we use in

our approach to derive β.

3.3.1 Galaxy line-of-sight velocity dispersion profiles

The redshifts of galaxies along a line-of-sight are used to generate the line-of-sight

velocities vs. physical distance (vlos vs. r) “phase spaces.” From these phase spaces

we infer the line-of-sight velocity dispersion. In particular, for a given cluster, given

some angular separation from the cluster center (θ) the line-of-sight (vlos) velocities

at the cluster’s redshift (zc) can be inferred via,

vlos = c
(z − zc)
(1 + zc)

, (3.3)

where c denominates the speed of light, and z is the redshift of the individual galaxies

along the line-of-sight. Now, the physical distance from the cluster’s center (r) can

be inferred from the angular diameter distance (dA) and the aforementioned angular

separation (θ),

r = dA(z)θ =

[
1

1 + z

c

H0

∫ z

0

dz′

E(z′)

]
θ, (3.4)

where the cosmological evolution of the energy densities for the aforementioned ΛCDM

cosmology is given by E(z) =
√

(1− ΩM) + ΩM(1 + z)3. Note that for the cluster

center and cluster redshift zc we use what has been specified for each respective cluster

in the spectroscopic catalog described in the previous section.

Having created a phase space for a given cluster, we then calculate the velocity

dispersion profile of the cluster. However, before we can do this we remove galaxies

that may exist in our phase space simply because they are observed within our line-

of-sight, but do not exist within the virial sphere of the cluster. If these ”interloper”

galaxies are not removed, the resulting velocity dispersion profiles will be biased. To

do this, we apply the shifting-gapper technique of Gifford et al. (2013) (see further

references about interloper removal techniques therein, as well as a detailed statistical

and systematic analysis of this technique).

Having identified and removed interlopers from the cluster phase space, we bin
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the galaxies radially to calculate the line-of-sight velocity dispersion profile.

For each radial bin r, we then calculate the line-of-sight dispersion via the following

robust estimator,

σ2
los(r) =

∑
j

〈vlos(rj)2〉
Ngal,j − 1

, (3.5)

where we sum over the number of galaxies Ngal,j within a given radial bin rj . We

calculate the error on each radial bin via a bootstrapping re-sampling algorithm, and

find that the error on any given radial bin is on average ∼ 50 km s−1.

Having calculated the line-of-sight velocity profile we then smooth them in order

to be able to extrapolate beyond the measured values by fitting them with a simple

power law, (Carlberg et al., 1997; Aguerri et al., 2017)

σf (r) = σf,0(1 + r)p, (3.6)

where the central projected velocity dispersion is given by σf,0 and p signifies the

exponent.

For the case of the synthetic data we use a radial bin width of ∆r = 0.2 Mpc and

we fit equation 3.6 to the σlos profiles for the radial range 0.1 ≤ r ≤ 1.5r200 Mpc. We

find that the fits match the measured vlos profiles with no bias and to high precision.

Clusters in the archival data are occasionally less well-sampled than in the sim-

ulation data. Therefore, we define the center of each radial bin after first ensuring

that there is 20 galaxies within it. We take the mean radius of these twenty galaxies

in each bin. As such, for a given cluster in the synthetic data, the radial bin width

can range from ∆r ∼ 0.1 to 0.2 Mpc. Note that in contrast to the synthetic clusters,

we fit Equation 3.6 over the radial range for all the data available, which varies in

spatial extent depending on the cluster. We find that the averaged difference between

the fits and the measured line-of-sight velocity profiles is 〈σfitlos −σlos〉 ∼ −43 km s −1.

This bias is at about the level of the individual errors on the galaxy velocities. Note

that this stipulates that, on average, our fits are slightly biased low compared to the

noisy data. This effect is due to the bias-variance tradeoff and indicates that there is

likely a better fitting function that could be applied. We also note that, as reported

in Gifford & Miller (2013), improving the completeness of the cluster phase spaces

would improve these fits. Nonetheless, we note that they are within the statistical

error. We further discuss the implications of our σlos fits on Section 3.6.
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3.3.2 Galaxy cluster mass profiles

The other observable of interest is the mass profile of galaxy clusters. For the

case of the N-body simulations we attain the parameters describing these profiles

by fitting the dark matter halo with an Einasto profile. The Einasto representation

of the dark matter halo density profile (Einasto, 1965) is a three parameter model

(n, ρ0, r0) described by the following fitting formula for the density profile,

ρ(r) = ρ0 exp

[
−
(
r

r0

)1/n
]
. (3.7)

For the case of the archival data, however, we utilized the weak lensing parameters

listed in the catalog for each respective cluster as described in the previous section

(see Table 3.1). Because the vast majority of characterizations of galaxy cluster’s

density profiles are represented in terms of NFW fits, we fit the Einasto profile to the

NFW density profile for each respective cluster in the radial range 0.05 ≤ r ≤ r200

Mpc and ensure that they fit to high precision within that radial range as expected

by Sereno et al. (2016a). To do this, however, we must also use a mass-concentration

relation from the cluster metacatalog, where the concentration (c200) as a function of

mass (M200) and cluster redshift (zc) is given by (Sereno, 2015),

c200(M200, zc) = A200

(
M200

Mpiv

)B200

(1 + zc)
C200 . (3.8)

Where A200 = 5.71, B200 = −0.084, C200 = −0.47 and Mpiv = 2 × 1012h−1M�. As

usual, the quantities with subscript ”200” are defined in terms of the radius r200 which

is the distance at which the density enclosed within a sphere drops to 200 times the

critical density in the Universe. The mass M200 is therefore the mass enclosed within

that sphere, from which we can attain the corresponding concentration c200 via the

relation shown above.

At this point it is important to highlight that β is correlated with the parameter

γ (which quantifies the radial slope of the density profile of dark matter halos) and

that the choice of density profile has some relation to the resulting β (Hansen, 2009).

However, the reason that we pick an Einasto profile over the NFW density profile (as

well as whether or not it makes any difference to our results) will be made clear in

the following section – where we describe the particular method we utilize to derive

velocity anisotropy profiles.
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3.4 Deriving velocity anisotropy profiles

Our strategy to derive the velocity anisotropy profile β follows the long tradition

of studies that has modeled the galaxy cluster as a collisionlesss system described by

the anisotropic Jeans equation, reproduced here in Equation 3.2 (Binney & Tremaine,

1987; Binney & Mamon, 1982; Solanes & Salvador-Sole, 1990)

If the mass of the system can be independently inferred, the potential-density pair

can be defined and in combination with a second equation that relates the velocity

dispersion of the system to its potential-density pair, the anisotropy profile β can

be derived by solving Eq. 3.2. For instance, Natarajan & Kneib (1997), following

Binney & Mamon (1982), reconstructs the radial velocity dispersion and use a weak

lensing inference of the potential-density pair to derive β for a single cluster.

In contrast to this approach, we use a simple relation that relates the radial

velocity dispersion to the line-of-sight velocity dispersion. In particular, if cluster

rotation is negligible, we have, 〈v2
θ〉 = 〈v2

φ〉 = 〈v2
los〉. And so from β of Eq. 3.1, with

σ2
t = 1

2

(
σ2
θ + σ2

φ

)
, we have that,

〈v2
r〉 =

〈v2
los〉

1− β
. (3.9)

This relation is utilized in the quite successful caustic mass technique (see Diaferio

& Geller (1997a); Diaferio (1999); Serra et al. (2011); Geller et al. (2013)). For now,

we take it as a given and we explore its validity at the end of this section.

In galaxy clusters, 〈v2
r〉 = σ2

r , and so we have that with Eq. 3.9, the Jeans equation

(Eq. 3.2) now becomes,

d

dr

(
ρ
〈v2
los〉

1− β

)
+

2βρ

r

(
〈v2
los〉

1− β

)
= −ρdφ

dr
. (3.10)

At first sight, solving this highly nonlinear differential equation for β seems like a

daunting task. However, after a bit of algebra we can re-write Eq. 3.10 in the

following way,
dβ

dr
+ (1− β)X + (1− β)2Y + β(1− β)Z = 0, (3.11)

where we have used the following redefinitions,
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X ≡ 1

(ρσ2
los)

d(ρσ2
los)

dr
,

Y ≡ 1

σ2
los

dφ

dr
,

Z ≡2

r
.

(3.12)

Now, redefining some variables again, u ≡ 1− β, we can re-write the Eq. 3.11 in

the following form,

du

dr
+ P (r)u−Q(r)u2 = 0. (3.13)

Where we have defined,

P (r) ≡−X − Z,

Q(r) ≡Y − Z.
(3.14)

The redefinitions and variable changes have allowed us to recast the Jeans equation

(Eq. 3.10) as a Bernoulli differential equation (Eq. 3.13) which has a well-known

analytic solution.

In particular, the form of the differential equation above is exactly that of the

Bernoulli differential equation with a = 2,

dy

dx
+ p(x)y =q(x)ya (3.15)

Which for a 6= 1 has the general solution,

y =

[
(1− n)

∫
e(1−a)

∫
p(x)dxq(x)dx+ C1

e(1−a)
∫
p(x)dx

]1/(1−a)

. (3.16)

So for our Jeans equation, since a = 2, and using our function definitions,

β(r) = 1−
[

e−
∫
P (r)dr

−
∫
e−

∫
P (r)drQ(r)dr + C1

]
, (3.17)

where the numerator is the integrating factor and the integral in the exponent is given
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by, ∫
P (r)dr =−

∫ [
1

(ρσ2
los)

d(ρσ2
los)

dr
+

2

r

]
dr

=−
∫

1

(ρσ2
los)

d(ρσ2
los)

dr
dr −

∫
2

r
dr

=−
[

ln(ρσ2
los) + 2 ln(r)

]
=− ln(ρσ2

losr
2)− Cp.

(3.18)

Simplifying,

e−
∫
P (r)dr =eln(ρσ2

losr
2)+Cp .

=Apρσ
2
losr

2
(3.19)

Putting in the analytic solution to the integrating factor ,

β(r) = 1−
[

Apρσ
2
losr

2

−
∫
Apρσ2

losr
2Q(r)dr

]
. (3.20)

Canceling Ap, we finally have,

β(r) = 1− ρσ2
losr

2

I1 − I2

. (3.21)

Where the integrals are given by,

I1(r) =

∫ r

r1

2ρσ2
losRdR,

I2(r) =

∫ r

r1

ρ
dφ

dR
R2dR,

(3.22)

and where the lower integration limit r1 = 0.05 Mpc. We explain the reason choosing

this integration limit below.

As such, the radial anisotropy profile for a given cluster can be attained with Eqs.

3.21-3.22 for an independently inferred mass profile which determines the potential-

density pair (that is, φ and ρ, respectively) and a measurement of the line-of-sight

velocity profile of galaxies (σlos).

As anticipated in the previous section, for the potential-density pair we pick the

Einasto model. From the Einasto density profile (Eq. 3.7) we can derive the gravita-

tional potential φ using the integral form of the Poisson equation (Retana-Montenegro
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et al., 2012),

φ(r) = −GM

r

[
1−

Γ
(
3n,
(
r
r0

)1/n)
Γ(3n)

+
r

r0

Γ
(
2n,
(
r
r0

)1/n)
Γ(3n)

]
. (3.23)

Note that we calculate the derivative of φ in Eqs. 3.21-3.22 numerically. For more

specifics on the definition of the Einasto potential see Chapter II.

At this point it is important to clarify the reason we chose to use an Einasto rather

than an NFW potential-density pair in our analysis and how this relates to why we

pick r1 = 0.05 Mpc.

As shown in both cosmological N-body simulations (Miller et al., 2016) and obser-

vational data (Stark et al., 2016) the gravitational potential inferred from the NFW

density profile yields a profile that is biased high from what is expected. In particular,

the NFW density is significantly steeper than the Einasto density as r → 0, which

also means that the potential (φ) and its derivative (dφ/dr) are higher for the NFW

model. As such, when Eqs. 3.21-3.22 are integrated, we expect to see a difference

between the NFW and Einasto profiles in the resulting β. Because we want our re-

sults to be as model-independent as possible, and because there is still considerable

uncertainty in the modeling of galaxy cluster cores, the lower limit (r1) of the inte-

grals in Eq. 3.22 is chosen to be 0.05 Mpc. Moreover, note that for any given cluster

we actually extrapolate the integrand functions out to 30 Mpc. But given that we

cut off the derived β’s at r200, where the Einasto and NFW models agree with each

other, this upper limit to the extrapolated radial range does not make a difference

to our results. As such when the radial range used in the integrands of Eq. 3.22 is

0.05 ≤ r ≤ r200 Mpc, we see no significant difference between the Einasto and NFW

models. This is due to the fact that the major difference between these models arises

from the modeling of the core of galaxy clusters and its outskirts (that is, r > r200).

While we find the model dependence of the inferred β to be a crucial matter that

merits further study, we relegate a more thorough analysis of it to a future attempt.

Secondly, we also want to note that in contrast to the results of Miller et al.

(2016) and Stark et al. (2016), our Jeans equation is not dependent on cosmology.

The reason for this is that while those two studies work with observables that are di-

rectly proportional to the potential (and must therefore take into account the specific

normalization of the potential) the Jeans equation is only dependent on the spatial

derivative of the potential for which the effects of the expansion of the Universe can

be neglected. This is known as the “Jeans swindle” and has been formally justified

in Falco et al. (2013).
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Thirdly, another important aspect to highlight about our approach is that unlike

the common and widely-used method developed in Solanes & Salvador-Sole (1990),

our approach allows us to straightforwardly calculate the uncertainties of β. As noted

by both Biviano et al. (2013) and Biviano & Katgert (2004), the derived uncertainties

on β are very difficult to calculate with the approach of Solanes & Salvador-Sole (1990)

because it works through a complicated set of coupled differential equations. This is

not the case for our method given that we solve for β analytically by recasting it as a

Bernoulli differential equation. In particular, for our simulated clusters, we take into

account the uncertainty in measuring the line-of-sight velocities simply by creating

an array of β’s which correspond the 1σ errors on the measured line-of-sight velocity

profiles (σlos). For our real clusters, we consider both the error on the inferred σlos

profiles as well as the error on the mass profiles (which propagates to dφ/dr and ρ)

simply by recalculating β for the range of uncertainty in either the mass and the

line-of-sight dispersion profiles.

Lastly, as mentioned before, our approach is based on the relation shown in Eq.

3.9 which is utilized in the well-established caustic mass technique (Diaferio & Geller,

1997a; Diaferio, 1999; Serra et al., 2011; Geller et al., 2013). Nonetheless, we want to

confirm the validity of Eq. 3.9. In particular, we want to analyse how βlos compares

to the directly measured β from galaxies in simulated halos via Eq. 3.1, that is, the

“true” β. To that end, we define Eq. 3.9 to be the ”line-of-sight” velocity anisotropy

profile (βlos),

βlos = 1− σ2
los

σ2
r

. (3.24)

The difference between βlos and the “true” β is shown in Fig. 3.1. In the top-

panel, we show that while on average the assumption made by in the caustic technique

yields a null bias, the relation between the line-of-sight velocity dispersion (σlos) and

the transversal velocity dispersion (σt) depends on radius. We note that, while this

systematic is still within our overall uncertainties, it must be corrected for. As shown

in the bottom-panel of the same figure, if this systematic is not corrected for, our

technique can yield an average β that is higher from the true value by a difference of

0.14 at r200. We also note that while this systematic is important, it still lies within

our current uncertainties in the measurement of σlos, which are about 50 km s−1 (see

the horizontal dashed lines on the top panel of Fig. 3.1).

Having checked the validity of our presuppositions and having specified our ap-

proach to derive β profiles, we now describe our results.
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Figure 3.1: Top panel: Difference between the measured line-of-sight velocity dis-
persion profile (σlos) and the tangential velocity dispersion (σt) for the 100 synthetic
clusters from cosmological N-body simulations. The horizontal dashed lines repre-
sent the 1σ error on our measurement of σlos, ∼ 50 km s−1. Bottom panel: Difference
between the “true” β measured via Eq. 3.1 and the “line-of-sight” β (Eq. 3.24).
See text for details. The black line shows the median (50th percentile) and the dark
(light) gray bands represents the 68th (90th) percentile. The small bias in σlos leads
to a systematic bias in the inferred β.
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3.5 Results

Using Eq. 3.21 (see Section 3.4) we test our approach with the 100 synthetic

clusters from cosmological N-body simulations and then move on to derive β profiles

for archival data of 35 galaxy clusters.

3.5.1 Synthetic data results

The top panel of Figure 3.2 shows our results for the 100 synthetic clusters using

Equation 3.21. The bands represent the 68th (dark gray) and 90th (light gray)

percentiles of the sample. The median (black line) hovers around β ∼ 0.1. In the

lower panel of Figure 3.2, we plot up the difference between β as estimated through

our approach (Eq. 3.21) and the “true” β estimated directly from Eq. 3.1 (solid line).

Figure 3.2 demonstrates that our approach works with accuracy and precision once

radially averaged, 〈β − βtrue〉 ∼ 0. The dashed black line in the bottom-panel shows

the resulting difference after having corrected for the systematic shown in the bottom

panel of Figure 3.1. This test also allows us to set a baseline for the systematic

uncertainty, which incorporates both the observational systematic (see Figure 3.1)

as well as any additional systematic errors introduced by the technique itself. Using

Figure 3.1, we define the overall systematic error on the mean measurement of β(r)

to be ∼ ±0.15, which is the maximum deviation between our inference of β(r) and

the true β(r).

We note that the result of Fig. 3.2 does not take into account the uncertainty on

σlos nor the weak lensing inferred density and potential that exist in the real data.

When doing so, one can find β profiles that occasionally exceed the physical condition

from Equation 3.1 that β < 1. This is due to the fact that while the integrals of

Equation 3.22 are well-behaved in the radial range discussed in the previous section,

the solutions to Eq. 3.21 can still yield non-physical results for any given combination

of mass (ρ and dφ/dr) and dynamics (σlos). That is, for some clusters, there is a

combination of dynamics and weak lensing that yields a β profile that is unphysical

within the uncertainties on σlos and the weak lensing mass profile estimates. In

particular, the only case which can yield a non-physical result (namely, β > 1) occurs

whenever I1 > I2 at some given radius. As such, when we include errors on the

line-of-sight dispersions and the weak lensing masses, and in contrast to what is

shown on Figure 3.2, we require that the solutions yield physical results (β < 1).

Specifically, we do not use β profiles that yield β > 1 within the virial sphere (that

is, if β(r ≤ r200) > 1).
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Figure 3.2: Results for the sample of 100 synthetic clusters from cosmological N-
body simulations. Top panel: median (black line) with 68% and 90% percentile
bands (dark and light gray, respectively). β is calculated with Equation 3.21 (see
Section 3.4) and the resulting median is β ∼ 0.1. Bottom panel: The difference,
(β − βtrue), between β as calculated with our approach and the ”true” anisotropy
parameter (βtrue) calculated directly from the simulated galaxies via Eq. 3.1. The
dark and light gray bands represent the same percentiles as those shown in the top
panel. Note that the fractional difference between the ”true” β and our inference is
about zero.
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3.5.2 Archival data cluster results

Having shown our approach to derive β works well in N-body simulations, and in

particular, that it allows us to recover the true β to within ±0.15, we now derive the

β profiles for the 35 clusters from the archival data.

In Fig. 3.3 we plot the weighted average of the 35 β profiles. More specifically, we

take the average β at each radial bin, now divided in increments of ∆(r/r200) = 0.1,

by weighing the individual cluster profiles-all of which have different uncertainties

at a given radii incurred from both their respective line-of-sight velocity dispersion

profile and their mass profile uncertainties. The result is shown in the black dots with

the 1σ error on the mean in Fig. 3.3. The gray triangles are the resulting weighted

average (and respective 1σ error on the mean) when we correct for the systematic

shown in Fig. 3.2 by subtracting off the difference (see bottom-panel of that same

figure) from our weighted average. We note that the resulting weighted average after

this systematic is included is well within the 1σ error.

The radially averaged β, shown with black dots in Fig. 3.3, yields a global value

of 〈β〉 = 0.35±0.28. The grey triangles in Fig. 3.3, yield a global value of 〈β〉 = 0.26.

These results imply that the observed velocity anisotropy profile of galaxy clusters

is radially anisotropic. We discuss the implications of this result and compare it to

other studies in the next section.

3.6 Discussion and Summary

The goal of this work is to constrain the average radial anistropy profile of clusters,

〈β(r)〉, using a large set of clusters with combined weak lensing and dynamical phase

space data. In what follows we compare our results to other numerical studies as well

as other observational data results.

Individually, many of the clusters have large errors in their inferred β(r) profiles.

However, there are a few clusters with well-constrained mass profiles and well-sampled

phase spaces which also have previously published anisotropy profiles. As such, we

compare our results for these clusters. In Figure 3.4, we plot four of these cluster

β profiles as well as the profiles derived by Biviano et al. (2013) (upper-left panel),

Aguerri et al. (2017) (upper-right panel), Lemze et al. (2009) (lower-right panel) and

Host et al. (2009) (lower-left panel). All of these papers model the relation between

dynamics, anisotropy, and the mass of galaxy clusters via the Jeans equation, although

they utilize different methods to estimate the mass profile. For instance, Biviano

et al. (2013); Aguerri et al. (2017); Lemze et al. (2009) all combine different mass
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Figure 3.3: Resulting β profile for the 35 clusters of the archival data. The black
dots are the weighted mean of each individual profile calculated with Eq. 3.21 (see
Section 3.4) and the error is the 1σ uncertainty on the weighted mean. Note that
each individual profile that is averaged here contains both the uncertainty in mass
and line-of-sight velocity dispersion. The global value of β averaged between 0.2 and
r200 is 〈β(0.2 ≤ r/r200 ≤ 1)〉 = 0.35 ± 0.28. This means that the galactic orbits are
mostly radially anisotropic. The gray triangles are the result of correcting for the
systematic shown in the bottom-panel of Fig. 3.1. We note that the overall effect
still produces a result that lies within our 1σ error. Note that we have slightly shifted
the gray triangles to higher radii simply to make the plot legible.

64



1.0

0.5

0.0

0.5

1.0

MACS1206
This work
Biviano et al 2013 A85

This work
Aguerri et al 2017

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
1.0

0.5

0.0

0.5

1.0

A1914
This work
Host et al 2009

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

A1689
This work
Lemze et al 2009

r/r200

β
(r

)

Figure 3.4: Comparison of 4 of the 35 individual β profiles with results from the
literature. For all the panels, the gray band represents the 68th percentile error on β
from both the uncertainty in the weak lensing mass profiles as well as the uncertainty
in the line-of-sight velocity dispersion profiles. See text for details.
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profile estimates, while Host et al. (2009) exclusively uses X-ray mass profiles. For all

cases, in Fig. 3.4, the β we derived is shown in a gray band that represents the 68th

percentile uncertainty that takes into account the uncertainty in both the line-of-sight

velocity dispersion profile and the weak lensing mass profile of each respective cluster.

In black (in dots or lines) we show either the median or average along with the 1σ

error on β from each paper just cited. Note that in all cases our results agree, within

respective uncertainties, with the previously published results. That is, galaxy orbits

tend to be more radially anisotropic the farther away from the core of the cluster

we go. However, our results seem to disagree with both Lemze et al. (2009)’s and

Aguerri et al. (2017)’s results at smaller radii. In particular, our profiles of A1698

and A85 do not become isotropic as quickly as expected by these two other results.

For the case of A1689, we note that Lemze et al. (2009) uses a very high concen-

tration (c200 > 10), which is ∼3.3 times larger than the concentration we use. The

relation between concentration and β was studied in Wojtak &  Lokas (2010). Their

conclusion is the same as ours: a lower concentration yields a higher β.

Now, for the case of A85, while we use a very similar mass and concentration

as what is used in Aguerri et al. (2017), we find that the central velocity dispersion

parameter we fit is smaller than what is found by Aguerri et al. (2017) using all

galaxies (that is, as opposed to using cuts in color or luminosity which can also bias

the calculated line-of-sight of sight velocity dispersion). Note that a lower line-of-sight

dispersion also yields a higher β. We want to highlight, however, that our β profile of

A85 agrees with what is derived by Hwang & Lee (2008) (see Fig. 19, top-left panel

for cluster A85, within r200) but we do not overplot their results because their scatter

is too large.

In Figure 3.5, we compare our radially averaged anisotropy profile to other average

profiles from the literature. In this case, we only show the version that has not been

corrected for the systematic bias identified using the simulations (i.e., we show the

black dots from Figure 3.3). We only compare our results with previously published

average profiles of β based on samples of clusters (i.e., not individual systems). We

also compare our resulting β with the Millennium simulation results of Iannuzzi &

Dolag (2012). Note that we do not compare our results with the work of authors who

assume a constant β or specify a β only for a specific class of galaxies (such as that

of Biviano & Katgert (2004)).

Our average radial anisotropy profile agrees well with the average profile of 16

clusters derived by Host et al. (2009) (see Fig. 7 of that paper). In particular, Host

et al. (2009) also find a median value of β that implies radial anisotropy, such that
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Figure 3.5: Comparison between β profiles from the literature and our work. The β
calculated with Equation 3.21 (see Section 3.4) from 100 N-body simulated clusters is
shown in light/dark gray bands and the β from the 35 archival data clusters is shown
with black dots (same as in Fig. 3.3). In contrast to those of Fig. 3.2, the synthetic
cluster results (grey bands) now take into account the uncertainty in the line-of-sight
velocities as well as consider only physical results (β ≤ 1). In red diamonds, we show
the results of the median and 1σ error on β calculated for 16 clusters by Host et al.
(2009). In the red vertical line, we show the range calculated by Wojtak &  Lokas
(2010) for their low concentration sample (about 30 clusters) at the virial radius.
Lastly, the red stars are the averaged β for 1000 simulated clusters by Iannuzzi &
Dolag (2012). Note that the 1σ error for the Iannuzzi & Dolag (2012) result is too
small to show.
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β(r/r200 ≥ 0.2) > 0.3. We overplot the median β calculated by Host et al. (2009) in

red diamonds, alongside our results, on Fig. 3.5.

Also, while Wojtak &  Lokas (2010) does not show their radial β profiles, if we

compare their calculated β’s at the virial radius for their low concentration sample

(see their Figure 7, for the case c < 7), their sample also implies radial infall at the

virial radius. Taking that the virial radius is close to r200 (rvir ∼ r200), we plot the

range of β reported for their low concentration sample (about 30 clusters) in Fig. 3.5

(see red vertical line).

We also compare our results with our aforementioned 100 synthetic clusters from

N-body simulations, also shown in Fig. 3.5. In particular, in contrast to the results of

Fig. 3.2, we now consider the uncertainties in the measured σlos (and its fits) from the

synthetic cluster sample which is shown in the light gray (dark grey) bands of Fig. 3.5

which represent the 68th (90th) percentiles. Finally, we make a further comparison

with simulations by comparing to the independent analysis of the β profile (from

the 3D data) measured by Iannuzzi & Dolag (2012), who uses 1000 synthetic galaxy

clusters. They find 〈β〉 = 0.253± 0.01 (their profile is shown with red stars in Figure

3.5). Note that we find that our simulation results (shown in the gray bands) agree

well with the simulation results of Iannuzzi & Dolag (2012).

Considering that we are using the same method for both the data and the simu-

lations, we find good agreement after we allow for systematic errors in the data. We

note that the synthetic cluster sample is much lower in redshift than the real data

sample. More specifically, the synthetic sample has a redshift range that is zc ≤ 0.15,

whereas the cluster redshifts for the real data is 〈zc〉 = 0.25. As investigated in

N-body simulations by Iannuzzi & Dolag (2012), we do not expect an appreciable

redshift evolution of the global β parameter. We also note that our sample of 35

real data clusters have an average mass that is 4.4 times higher than the average

mass of the 100 synthetic clusters. Recalling the negative correlation between mass

and concentration, we might expect that a lower concentration (higher mass) yield a

higher β for the data compared to the simulations. Also, recall that our fits to the

line-of-sight velocity dispersion profiles are biased low with respect to the measured

profile by ∼ 43 km s−1, which would bias our β’s high.

Finally, the extrapolation of functions such as σlos and the density profiles well into

the core and the outskirts of galaxy clusters is definitely a weakness in this technique

and others like it which depend on integration over the entire radial profiles of clusters

(i.e., most Jeans-like analyses). We attempted to mitigate the effects of uncertainties

in the cores of the clusters by integrating from 0.05 Mpc outward. However, this
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deserves further study. Furthermore, better fitting functions for σlos as well as better-

sampled clusters also yield better fits to the line-of-sight velocity dispersion. This

could partially explain why the 35 real clusters sit on the upper end of the simulation

results (compare black dots and gray bands in Fig. 3.5). Nonetheless, we emphasize

that this slight disagreement is within the total systematic and statistical error we

estimate.

Our work highlights a new advance in the measure of the velocity anisotropy of

galaxy clusters. First, we develop a novel technique to combine the weak lensing mass

information about the cluster mass profile with the observed line-of-sight velocity

dispersion profile. Second, we test the accuracy and precision of this technique to

realistic simulations, where the phase space data are projected onto the line-of-sight.

Finally, we apply the technique to a sample of tens of clusters that have the required

data. We find that within observed errors, the simulations and the data agree quite

well. In particular, we find that the cluster velocity anistropy profile is flat with a

value 〈β〉 = 0.35 ± 0.28 (stat) ±0.15 (sys) implying that galactic orbits tend to be

radially anisotropic.
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CHAPTER IV

Cluster escape velocity profiles as a cosmological

probe

4.1 Introduction

Following Shectman (1982), Regoes & Geller (1989a) and Regoes (1996) but also

deviating significantly from their approach, Stark et al. (2016) (presented here in

Chapter II) demonstrated the necessity to include a cosmological term to describe

the escape velocity profile of galaxy clusters as inferred from their projected phase

spaces. In particular, Stark et al. (2016) presented an analytic model based on the

Poisson equation that can reproduce the projected escape velocity profiles of galaxy

clusters as measured from their phase spaces. The analytical escape velocity profile

prediction requires a known mass profile and a known velocity anisotropy profile

β(r). Given these and the cosmological parameters, the analytical escape velocity

edge has been shown to match expectations to high precision and accuracy using

N-body simulations (Miller et al., 2016).

If both weak lensing mass estimates and a measurement of β can be inferred

for a galaxy cluster, we can turn this around and through analytic theory constrain

cosmology by measuring edges of clusters through their phase spaces (see Diaferio &

Geller (1997b); Serra et al. (2011); Geller et al. (2013); Lemze et al. (2009); Miller

et al. (2016) for the various methods utilized to estimate the escape velocity “edge”

from the phase space of galaxy clusters). The former can be attained from lensing

shear measurements of galaxies, and the latter can be inferred from methods such as

the one developed in Chapter III of this dissertation.

However, while Stark et al. (2016) demonstrated the necessity to include a cos-

mological and redshift-evolving term in the escape velocity profile of clusters, it did

not quantify the precision with which one can constrain cosmological parameters with
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this observable. This is the task that this chapter takes on.

This chapter is organized as follows: in Section 4.2 we describe the theoretical

observable we work with – the redshift-evolving and cosmology dependent escape

velocity profile of galaxy clusters. In Section 4.3 we detail how we use the Fisher

matrix formalism to quantify how well this observable can constrain cosmology given

current and future systematic errors. We present the results of this analysis in Section

4.4. In Section 4.5 we present observational strategies that may be utilized to optimize

cosmological constraints. In Section 4.6 we discuss our observable in relation to other

probes and speculate as to how we may improve constraints in the future through joint

likelihood analyses. We conclude and provide ways of extending our work in Section

4.7. In Appendix A we derive the cosmological quantities used in this chapter. The

Appendices B and C detail the construction of our Fisher matrix. Lastly, in Appendix

D we study the covariance of the weak lensing mass prior with cosmology.

4.2 Theoretical observable

The theoretical observable quantity we work with throughout this chapter is the

projected escape velocity radial profile of galaxy clusters. Observationally, the escape

velocity profile of a cluster is inferred from the phase space (vlos vs r space) of the

cluster. More specifically, the line of sight galaxy velocity (vlos) vs. physical distance

(r) space is constructed by measuring the redshifts of cluster galaxies (z) of a cluster

at a redshift zc and then converting them to velocities via,

vlos(r) = c
(z − zc)
(1 + zc)

, (4.1)

where c is the speed of light. The physical distance from the cluster’s center (r) is

inferred from the angular diameter distance (dA) and the measured angular separation

(θ),

r = dA(z)θ =

[
1

1 + z

cH−1
0√

ΩK

sin

(√
ΩK

∫ z

0

dz′

E(z′)

)]
θ. (4.2)

H0 is the Hubble constant and the redshift evolving function E(z) is detailed in

Eq. 4.10 below. Note that sin(x) (the non-flat closed universe case) becomes x for

the flat universe case. Also detailed below is the parameter ΩK which quantifies the

openness or closedness of the universe. The escape velocity profile can then be inferred

from this phase space through various techniques (see Diaferio & Geller (1997b); Serra
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et al. (2011); Geller et al. (2013); Lemze et al. (2009); Miller et al. (2016)).

This phase space inferred escape velocity profile can be modeled with a function of

the mass distribution of a specific cluster as specified by its gravitational potential (in

our case we use the Einasto profile with three free parameters: α, r−2, ρ−2; see Eq. 4.6

below), and the anisotropy parameter (β) of that specific cluster (which allows us to

take into account projection effects). As mentioned in the introduction, the profile is

also a function of redshift z and cosmology (ΩM , h, etc.). The escape velocity radial

profile is therefore given by a function of these cosmology and cluster parameters

combined,

vesc(r, z,ΩM , h, . . . , β, α, r−2, ρ−2). (4.3)

We note that while we utilize only Einasto density profiles in this chapter, in prin-

ciple any parametrized mass profile can be used in our framework, as long as the

parametrization is a density-potential Poisson pair (see e.g., Miller et al. (2016)).

While the mass dependence and projection effects have long been considered in

studies of this observable (see for instance Diaferio & Geller (1997b)), only recently

has the cosmological dependence of the escape velocity profile been considered. More

specifically, the cosmological dependence of the escape velocity has been studied in

relation to both observational data and simulations of standard general relativistic

cosmology as well as modified theories of gravity Stark et al. (2016); Miller et al.

(2016); Stark et al. (2016). These investigations found the need to include a cosmo-

logical term in order to reproduce numerical results as well as observational data.

Qualitatively, it should be unsurprising that the cosmological background within

which a cosmic structure is embedded at a given epoch will create the conditions

for its evolution and development. For instance, whether a gravitationally bound

structure today (say, a galaxy group or galaxy cluster) can become unbound at late

times in an accelerating universe is a function of both the curvature of space and

the mass-energy content of the background the particular structure is embedded in

Busha et al. (2003); Behroozi et al. (2013). It is therefore clear that the theoretical

escape velocity profile must take into account the cosmological background.

More specifically, the cosmological dependence in the escape velocity profile in

Stark et al. (2016); Miller et al. (2016); Stark et al. (2016) comes in through the

”equivalence radius.” In an accelerating universe, the radius out to which one has

escaped a cluster’s potential is a function of cosmology. This minimal radius required

to escape, termed the equivalence radius (req), decreases in an accelerating universe

(see Stark et al. (2016) and references therein). The projected escape velocity profile

is then given by,
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vesc(r, z) =

√
1

g(β)

[
− 2
(
Ψ(r)−Ψ(req)

)
− qH2

(
r2 − r2

eq

)]
. (4.4)

We note that, as expected, at r = req the escape velocity is nil. The function of

the equivalence radius then is to normalize the escape velocity at that point. Note

that this equation is derived by integrating the acceleration equation of the effective

potential that takes into account both the ”negative” acceleration due to the mass

of the cluster and the ”positive” acceleration of the background at late-times. We

therefore obviate the ”negative” acceleration due to ram pressure on galaxies given

that it is negligible when compared to averaged gravitational effects Faltenbacher

et al. (2005). The ”equivalent radius,” then, is named for the condition that it sets:

it is the point at which the negative (inward) acceleration due to the pull of the

cluster and the positive (outward) acceleration due to the acceleration of the universe

balance each other. For a derivation of Eq. 4.4 see Stark et al. (2016); Miller et al.

(2016). We note also that the physical distance r in Eq. 4.4 is cosmology dependent

via Eq. 4.2.

Lastly, as detailed in Stark et al. (2016), Eq. 4.4 emerges from the acceleration

equation derived by Nandra et al. (2012b) in the context of a flat universe. However,

in the cosmological regime we work with, the acceleration equation for a spatially flat

and non-flat universe converge. See sections 5.3.1, 5.3.2, and 5.3.3 of Nandra et al.

(2012b) and section 2.1 of Stark et al. (2016).

We now consider the two main components of the projected escape velocity profile

function (Eq. 4.4): cluster parameters (projection effects and mass profile informa-

tion) and cosmological parameters.

4.2.1 Cluster parameters

The two components of the cluster parameter set are the mass profile parameters

and the anisotropy parameter β encapsulated by the function g(β).

The anisotropy parameter β is given by β(r) = 1− σ2
t /σ

2
r . Where σt is a function

of the azimuthal and tangential velocity dispersions and σr is the radial velocity

dispersion. See Section 5.1 of Stark et al. (2016) for details. Note that while the

anisotropy profile of the cluster is actually a function of radius (β(r)), the observed

and simulated profile is nearly flat within 0.3 - 1 virial radii Lemze et al. (2013); Serra

et al. (2011); Munari et al. (2013). Therefore, in what follows we only consider the

escape velocity profile within this radial range so that we can reduce the anisotropy

profile to a single value for a given cluster. Once β for a given cluster is inferred we can
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then use the function g(β) to project our escape velocity profile (see Diaferio & Geller

(1997b); Stark et al. (2016)). In particular this function is defined geometrically and

given by,

g(β) =
3− 2β

1− β
. (4.5)

As can be implied from this equation, the effect of g(β) on the escape velocity profile

within the radial range we consider below is to suppress the profile by a constant

value when compared to the 3 dimensional case (g(β) = 1). Quantitatively, the limits

of this function are set by the limiting cases of the anisotropy parameter β: radial

infall (β = 1), circular motion (β = −∞) and isotropy (β = 0). For the radial range

we are considering, on average, g(β) ∼ 3.3. This entails that, on average, within the

radial range considered below, non-projected escape velocity profiles are
√
g(β) ∼ 1.8

times higher than projected profiles. As a rule of thumb, the more radial the velocity

anisotropy of a cluster, the more suppressed the escape velocity profile will be. For a

more thorough quantitative analysis of these projection effects see Stark et al. (2016);

Serra et al. (2011).

The other component of the cluster parameters that make up our observable is the

mass profile of a given cluster. Information about the mass profile of the cluster comes

through the gravitational potential Ψ(r). Following Stark et al. (2016); Miller et al.

(2016) we pick the Einasto representation of the potential given its capacity to trace

the mass distribution of galaxy clusters beyond the virial radius. The gravitational

potential Ψ(r), then, is a function of three free parameters: the shape parameter α,

the radius where the logarithmic slope of the density profile is equal to −2 (r−2) and

the density at r−2 (ρ−2). As calculated via the Poisson equation Retana-Montenegro

et al. (2012), the potential as inferred from an Einasto density field is,

Ψ(r) = −GM
r

[
1−

Γ
(
3/α, sα

)
Γ(3/α)

+ s
Γ
(
2/α, sα

)
Γ(3/α)

]
. (4.6)

Γ(a, x) is the upper incomplete gamma function. We are also utilizing the unitless

scale radius s given by,

s =
r

r−2

(
2

α

)1/α

. (4.7)

And we re-write the total mass (M) as,

M = 4πρ−2r
3
−2F (α). (4.8)
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In this last equation we have defined the function of α,

F (α) = Γ(3/α)

(
e2

8
α3−α

)1/α

. (4.9)

Note that in general we follow the definitions and specifications used in Miller et al.

(2016); Stark et al. (2016). We treat the mass profiles and β as observable quantities

with uncertainties. In simulations, β shows no significant evolution as a function of

redshift in the range we are interested in (ie., 0 ≤ z ≤ 0.8, see Fig. 2 in Iannuzzi

& Dolag (2012)) and is inferred independently of cosmological assumptions  Lokas

et al. (2006); Benatov et al. (2006); Lemze et al. (2009); Wojtak &  Lokas (2010);

Biviano et al. (2013). This is not the case for the weak lensing mass profile-inferred

parameters (namely α, r−2, and ρ−2). We analyze how systematic errors introduced

by uncertainties in cosmological parameters affect weak lensing mass errors in the

Section 4.2 below as well as in Appendix D.

4.2.2 Cosmological parameters

Having defined the first set of parameters of the escape velocity profile related to its

mass content (α, r−2, ρ−2) and projection effects (β), let us now focus on the redshift-

evolving and cosmology-dependent terms in Eq. 4.4, namely, the Hubble parameter

H, the deceleration parameter q, and the equivalence radius req. We describe these

terms below.

Given that we work in a regime where the radiation energy density is negligible

(z ≤ 0.8) the Hubble parameter is given by,

H2 = H2
0E

2(z) = H2
0

[
ΩM(1 + z)3 + Ωk(1 + z)2+

ΩDE exp

{
3

∫ z

0

d ln(1 + x)[1 + w(x)]

}]
, (4.10)

where ΩM and ΩDE are energy densities in matter and dark energy relative to critical,

w(z) is the time-varying equation of state of dark energy, and the spatial curvature

density parameter is Ωk ≡ 1−ΩM−ΩDE. Note that throughout this chapter we work

with the scaled Hubble constant h defined via H0 = 100h.

Once we have the Hubble parameter as a function of redshift we can derive the

corresponding deceleration parameter, q ≡ −äa/ȧ2, where a is the scale factor, as a

75



function of redshift via,

q =
(1 + z)

H

dH

dz
− 1. (4.11)

Lastly, the equivalent radius (req) is the physical distance at a given cosmic epoch,

for a given cosmology, where the inward pull of gravity balances the outward pull of

cosmic acceleration. It is given by Behroozi et al. (2013),

req =

(
GM

−qH2

)1/3

. (4.12)

This radius is what sets the normalization of the gravitational potential of our

galaxy cluster, Ψ(req) in Eq. 4.4 Miller et al. (2016); Stark et al. (2016). That is,

beyond this equivalence radius, the effective potential of the cluster described by

Eq. 4.4 (−2φ = v2
esc(r, z)) is normalized to 0 (See Stark et al. (2016) for a derivation).

Note also that the distance at which this balance of forces occurs, that is, between

cosmic acceleration and the cluster’s gravitational pull, is far away enough from the

cluster center that the cluster can be represented as a point mass. Lastly, this quantity

can be thought of as a proxy for how sensitive vesc(r, z) is to cosmology. In lieu of

taking analytic derivatives of Eq. 4.4 one can study the analytic derivatives of req.

We have confirmed this by looking at numerical derivatives of vesc(r, z) and compared

them to the analytic derivatives of req for the same cosmology, finding good agreement.

In Fig. 4.1 we show that, for a fixed cluster mass the equivalence radius is sensitive

to both cosmology and redshift. More specifically, we pick a mass of M200 = 4 ×
1014M�, where M200 is defined as the mass enclosed by a sphere with an average

density equivalent to 200 times the mean density of the universe. Note that as the

cluster gets closer to the acceleration transition redshift (q(z) = 0) the equivalence

radius shoots up to infinity. We consider the effects of this behavior on our observable

below.

4.2.2.1 vesc(r, z) in an accelerating universe (q < 0)

Within the q < 0 regime, the escape velocity profile is described by Eq. 4.4. As

shown by Stark et al. (2016), in an accelerating universe the effect on the observable

generated by changing the various cosmological parameters is to modify both the

amplitude and the shape of the escape velocity profile. For instance, in a flat universe,

a larger dark energy density makes it easier to escape a galaxy cluster, while a larger

dark matter component makes it harder to escape the cluster. This is illustrated in

Fig. 4.1. Using the equivalence radius as a proxy to gauge how vesc(r, z) changes,
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Figure 4.1: Behavior of the equivalent radius (req) as a function of redshift (z) for a
cluster with mass M200 = 4×1014M� for three values of ΩM in a flat ΛCDM universe
and h = 0.7. At the transition redshift for each given cosmology, the radius shoots
up to infinity. Note how req becomes more and more sensitive to ΩM at higher z.
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Figure 4.2: Redshift evolution of the deceleration parameter in a flat universe with
fixed ΩM = 0.3 and h = 0.7. Notice the divergence of values of q at low redshifts
when the equation of state parameter is varied.

we see that the equivalence radius blows up at the given transition redshift for that

cosmology (i.e. z that yields q(z) = 0).

It is important to emphasize that, in the regime where q(z) < 0, vesc(r, z) is a direct

measure of both expansion and acceleration, since qH2 is a function proportional to

both H(z) and dH(z)/dz. This makes our observable a powerful probe of cosmology.

For example, note the sensitivity of the deceleration parameter to the dark energy

equation of state w as shown in Fig. 4.2. In particular, the variation of q(z) with

respect to w increases at lower redshifts. Fig. 4.3 also demonstrates the sensitivity of

the observable to w by showing the fractional difference between the escape velocity

for a flat ΛCDM universe at z = 0 and two dark energy models, quintessence-like dark

energy (solid line) Tsujikawa (2013) and phantom dark energy (dotted line) Caldwell

(2002). Note the ∼10% level differences between these models and Λ (dashed line). A

quintessence-like dark energy, then, would increase the escape velocity profile, whereas

a phantom dark energy would decrease the escape velocity (both relative to ΛCDM).
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Figure 4.3: Using a single cluster with mass M200 = 4 × 1014M� at z = 0, we
show the fractional difference between the escape velocity profile of a flat wCDM
universe with dark energy equation of state w = −1 and two other dark energy
models (quintessence in the solid line and phantom dark energy in the dotted line).
More specifically, ∆vesc(r, z)/vesc(r, z) = [vesc(w)/vesc(w = −1)] − 1. Quintessence
therefore acts similarly to increasing the dark matter density. That is, it increases
the escape velocity profile relative to the Λ case (see Fig. 1 of Stark et al. (2016)).
On the other hand, the phantom dark energy suppresses the escape velocity profile
relative to the Λ case. Lastly, we highlight that the fractional difference increases
with radius in both cases.
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4.2.2.2 vesc(r, z) at the transition redshift (q = 0)

As implied in the previous subsection, as we approach q = 0 the equivalence

radius blows up and Eq. 4.4 is reduced to the gravitational potential described by the

Einasto gravitational potential Ψ(r). More explicitly,

lim
q→0

vesc(r, z) =

√
1

g(β)

[
− 2Ψ(r)

]
. (4.13)

One immediate consequence we derive from this behavior is that the only cosmological

dependence we get beyond this point is through r (see Eq. 4.2).

We now investigate what happens to our observable beyond the transition redshift

or, equivalently, what happens to our observable with combinations of cosmological

parameters that yield a decelerating universe (i.e. q > 0).

4.2.2.3 vesc(r, z) beyond the transition redshift (q > 0)

In the regime beyond the transition redshift, or when q > 0, it makes no sense

to speak of an equivalence radius. Recall that the equivalence radius is defined in

the context of a balance of forces. Given that there is no balance of forces between

the mass-induced pull of gravity and the repulsive acceleration as there is in the case

where q < 0, there is no such equivalence radius.

We note that within the virial radius, the theoretical expectation embodied in

Eq. 4.4 works to high precision up to z ∼ zt + δz, where zt is the transition redshift

and δz is small. See, for example, Fig. 4 in Miller et al. (2016). Beyond the transition

redshift, however, the analytic theory of Eq. 4.4 is complicated both by cluster as-

sembly dynamics and the theoretical ambiguity of what occurs to the escape velocity

profile in a universe that is approaching the Einstein-de Sitter case. When q > 0, the

internal dynamics of a bound system like a galaxy cluster are solely governed by the

Poisson equation with gravity acting to source to accelerate the member galaxies.

Given this, in the Fisher matrix analysis that follows, we pick z = 0.8 as the

maximum redshift out to which we can realistically push our probe. Later on in the

chapter we discuss the implications of defining a redshift range for the probe.

Having described both the cluster and cosmological parameter dependence of our

probe, and having considered the regimes of applicability of our probe, we now quan-

titatively characterize, through the Fisher matrix formalism, how well our observable

may be able to constrain cosmological parameters.
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4.3 Fisher matrix

The Fisher matrix formalism has been vital in predicting how well a given cosmo-

logical probe can constrain any given set of cosmological parameters Tegmark et al.

(1997); Heavens (2016); Coe (2009); Huterer & Turner (2001); Albrecht et al. (2006).

In this section we briefly go over the Fisher matrix formalism. We construct the

Fisher matrix for our observable quantity, include parameters describing systematic

errors in these observations, discuss how we apply priors on cluster and cosmological

parameters, and calculate the marginalized errors on cosmological parameters.

4.3.1 Formalism

In general, the Fisher information matrix is a function of the derivatives of the

log likelihood of our observable with respect to the observable’s parameters (p),

Fij =

〈
− ∂2 lnL
∂pi∂pj

〉
. (4.14)

Given that the observable quantity is the escape velocity as a function of redshift and

radius we have that the Fisher matrix elements are sums over clusters (index n) and

radii (indices k and l),

Fij =
∑
nkl

∂vesc(zn, rk)

∂pi
(C−1)kl

∂vesc(zn, rl)

∂pj
, (4.15)

where C is the covariance of escape velocity measurements at different radii. Here we

assume that the escape velocity measurements in different clusters are uncorrelated,

and that the measurement covariance for different radii in a cluster (matrix C) is

independent of redshift.

After adding priors to our cluster parameters the Fisher information matrix is

then given by,

F = Fij + Fprior. (4.16)

From this F we can then compute the marginalized lower bound of the uncertainty

on any of our N parameters via the Cramér-Rao inequality, σpi ≥
√

(F−1)ii. The

inverse is calculated via Gaussian elimination. We ensure that the inversion of the

matrices we work with are stable by calculating the condition number for each F

matrix and ensuring that it is less than ∼ 1012.

As detailed in the previous section, the parameters in our observable can be split
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up into two sets: cluster and cosmological parameters. Consequently, the parameters

that we will be taking the derivatives with respect to (p) can be represented by the

union of the following two sets:

p ∈ pclus ∪ pcosmo. (4.17)

The parameters describing the clusters 1 to N (i.e. three parameters for the mass

profile plus one more describing the anisotropy parameter, per cluster) can then be

encapsulated in the following set,

pclus ∈ {β1, α1, r−2,1, ρ−2,1, . . . , βN , αN , r−2,N , ρ−2,N}. (4.18)

The cosmological parameter set pcosmo is composed of the cosmological parameters.

We detail the cosmological models we study, and the corresponding sets of pcosmo, in

the next section.

Considering these sets, we therefore have a Ndim by Ndim dimensional Fisher

matrix F given by:

Ndim = 4×Nclus +Ncosmo, (4.19)

where Nclus is the number of clusters and Ncosmo is the number of cosmological pa-

rameters. We provide a sketch of the Fisher matrix structure and explore its structure

more thoroughly in Appendix C.

4.3.2 Fij matrix

In this subsection we focus our attention on the components that make up the Fij

matrix (Eq. 4.15).

4.3.2.1 Fiducial cluster

As with any Fisher matrix analysis, the derivatives of Eq. 4.15 are calculated at

a given set of fiducial values. For our fiducial cosmology we pick pcosmo,fid ∈ {ΩM =

0.3,ΩΛ = 0.7, w0 = −1, wa = 0, h = 0.7}. For our fiducial cluster parameters we pick

pclus,fid ∈ {α = 0.1984, ρ−2 = 1.0521×1014[M�/Mpc3], r−2 = 0.497[Mpc], β = 0.145}.
The β fiducial value is around what has been estimated for galaxy clusters (see  Lokas

et al. (2006); Benatov et al. (2006); Lemze et al. (2009); Wojtak &  Lokas (2010);

Biviano et al. (2013) ) and the three Einasto fiducial cluster parameters are equivalent

to a cluster of mass M200 = 4×1014. More specifically, we use the mass-concentration

relation in Sereno (2015) to map our fiducial mass M200 to the Einasto parameters
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Figure 4.4: Sensitivity of the observable vesc(r, z) to cosmology. The partial deriva-
tives of the escape velocity profile are calculated numerically at 100 different redshifts
(z) with respect to the various cosmological parameters for our fiducial cluster. The
specific redshift of a given profile can be identified through the color bar on the
right-hand side of the figure. In all cases, the information grows (i.e. the observable
becomes more sensitive) the farther out we go radially. Some parameters are most
sensitive at higher redshifts (ΩM , ΩΛ and h) while others are more sensitive at lower
redshifts (w). Note that beyond the transition redshift for our fiducial cosmology, the
derivatives with respect to all parameters reach a limit, as implied by Section 4.2 .
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at z = 0 by fitting the Navarro-Frenk-White (NFW) density profile to the Einasto

density profile. For analytical representations of these density profiles see Sereno et al.

(2016b) and references therein.

Furthermore, to calculate the derivatives of Eq. 4.15 we place our fiducial cluster

along different redshifts zn and recalculate its angular size θ with fixed r at that given

redshift via Eq. 4.2. We discuss this radial range in the next sub-subsection.

In Fig. 4.4 we plot some of the derivatives for our fiducial cluster used in our Fisher

matrix analysis. More specifically, we plot the radial derivatives of vesc(r, z) with

respect to various cosmological parameters for 100 clusters of the same fiducial mass

uniformly distributed in the range 0 ≤ z ≤ 0.8. Fig. 4.4 is a useful way to study the

sensitivity of our observable to various cosmological parameters. In particular Fig. 4.4

tells us that our observable is more sensitive to certain cosmological parameters at

higher redshifts, such as ΩM , (the red lines, which represent high redshift clusters are

higher than the blue ones, which represent low redshift clusters), and more sensitive

to other parameters at lower redshift, such as the dark energy equation of state

parameter w. Judging from the derivatives in Fig. 4.4, our probe is most sensitive to

the parameter ΩM . Note also that for all parameters, the sensitivity increases with

radius. We emphasize that beyond the transition-to-acceleration redshift (zt = 0.671)

in the standard ΛCDM model we no longer gain much cosmological information as

encapsulated by Eq. 4.13. Beyond this redshift we still get information cosmological

information via r which is a function of the angular diameter distance (Eq. 4.2).

4.3.2.2 Radial bins and covariance matrix C−1

Having described the derivatives of Eq. 4.15 we now describe the covariance matrix

C in that same equation. Simply put, this matrix embodies the covariance of between

different measurements of our observable at a given radial bin in a cluster n.

For a perfect three-dimensional observation of the galaxy velocities, there would

be no projection effects and therefore one would expect a nonzero covariance between

vesc at different radii. This effect is random between different radial bins, and it

effectively decouples the measurements in different radial bins, reducing the bins’

covariance. More specifically, this scatter arises from the fact that when observing a

galaxy cluster, random galaxies along the line of sight may be included in the phase

space. This drastically reduces the covariance between radial bins. Therefore, it is

a good assumption that the radial covariance matrix is diagonal. That is, C−1 is

reduced to σ−2
vesc .

Mathematically, at any given radius, the uncertainty in vesc(r, z) is given by the
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combination of the spectroscopic uncertainty, uncertainty due to the edge measure-

ment, and any additional intrinsic uncertainties,

σvesc =
√
σ2
spec + σ2

edge + σ2
edge,int. (4.20)

We choose σspec = 50 kms−1 to match the redshift accuracy of modern spectro-

scopic surveys (Bolton et al., 2012). To calculate the uncertainty on the statistically

inferred edge at a given radial bin we follow Gifford et al. (2013) who used simulations

to show that when viewing along a line-of-sight the edge can be recovered to high

statistical precision (∼ 5% or less) when 100 or more galaxies are used in the phase

spaces (see their Figure 4 – bottom right). For our fiducial cluster this corresponds to

50 kms−1 since the observed edge is typically around 1000 kms−1. We also allow for

an intrinsic scatter between the observed edge and how accurately it can recover the

true underlying gravitational potential. Gifford & Miller (2013a) used simulations to

quantify the statistical accuracy and precision of the cluster mass using the projected

edge when the density, potential, and anisotropy are known exactly. They find that

there is a statistical floor of 25% error in mass, which translates into a 12.5% error

in the edge since mass scales as the square of the potential. For our fiducial cluster,

this intrinsic error corresponds to ∼ 125 kms−1.

As in Eq. 4.20, we sum these three components in quadrature giving σvesc = 143.61

kms−1 for our fiducial cluster. This is about a 15% total error in the measurement

of the projected phase space escape velocity edge. Lastly, note that if we double the

total error budget on vesc, our constraints on the cosmological parameters increase by

about 80%.

We next tackle the question of how many radial bins we should use for a given

cluster in our Fisher matrix calculations.

Our one requirement here is to be able to resolve the shape of the velocity edge

vs. radius, vesc(r). In all cases, we assume densely sampled phase spaces (i.e., 100-

200 galaxies within the virial radius). Since more massive clusters are also larger in

size, we can maximize the number of useful radial bins by choosing the most massive

clusters for our analysis.

At the moment, we can typically rely on reasonably accurate weak lensing mass

estimates for the highest mass systems in the universe. Therefore, for this chapter

we will assume an SPT (South Pole Telescope)-like sample with M200 > 3× 1014M�

High et al. (2010). More specifically, as mentioned elsewhere in the chapter, we pick

a fiducial mass of M200 = 4× 1014M�.

Furthermore, as detailed in Section 4.2, we can only work within the radial range
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of about 0.3 - 1 virial radii if we assume that the anisotropy profile can be reduced to

a single parameter. Henceforth for our profiles and constraints we pick a radial range

between 0.5 ≤ r ≤ 2.5 Mpc, the outer range corresponding to about r200 (where the

density reaches 200 × the mean value) and the inner range corresponding to about

0.3× r200 described above (High et al., 2010). This radial range, given ∆r ∼ 0.1 Mpc

yields Nbins = 14 radial bins. This is what we use in our calculations throughout our

chapter (see Eq. 4.21 below).

Note that if we change the number of radial bins from 14 to 7 and 21, the con-

straints on the cosmological parameters change by ∼ 20%. We can therefore in

principle get better constraints than what is presented in the next section by increas-

ing the number of radial bins. However, binning too finely is not desirable given that

it can introduce additional statistical noise in the observable and may not even be

possible, given the density of galaxies in the phase spaces that are observationally

viable.

Given all of this, Eq. 4.15 thereby becomes,

Fij =

Nclus∑
n=1

Nbins∑
k=1

1

σ2
vesc

∂vesc(rk, zn)

∂pi

∂vesc(rk, zn)

∂pj
. (4.21)

and is therefore a sum over Nclus clusters and Nbins radial bins. This is the Fij matrix

we utilize for all of our constraints presented in section IV, in conjunction with the

prior matrix which is discussed in the following subsection.

4.3.3 Fprior matrix

The Fisher information matrix formalism allows us to add additional indepen-

dently measured information attained on certain model parameters (both cluster and

cosmological) to our Fisher matrix. This is implemented via the prior information

matrix Fprior in Eq. 4.16. The structure of this matrix is given by,

Fprior =


C−1
cosmo 0

C−1
cluster

C−1
cluster

0 . . .

 . (4.22)

We discuss the elements of this prior information matrix below.
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Cluster Parameter Uncertainties

WL mass error σα σρ−2 [M�/Mpc3] σr−2[Mpc] σβ σvesc [kms−1]
5% stat + 5% cosmo sys (”stacked”) 0.0024 5.887× 1012 0.0314 0.02 90.14
20% stat + 20% cosmo sys (”40% mass scatter”) 0.0096 23.589× 1012 0.1342 0.5 143.61
40% stat + 40% cosmo sys (”80% mass scatter”) 0.0181 43.904× 1012 0.2913 0.5 143.61
40% stat (”Riess et al 2016 prior on h”) 0.0096 23.589× 1012 0.1342 0.5 143.61

Table 4.1: Cluster parameter uncertainties that make up the Fprior matrix used in the
various cases considered in the Constraint Forecasts section as well as the error on the
edge σvesc that makes up the Fij matrix. Note that in principle there is no covariance
between β and the three other parameters, but we simply change the uncertainty
on β for the other cases with reduced weak lensing mass scatter. Furthermore, as
explained in the text, we use the weak lensing (WL) mass percent error on M200

as shorthand to describe uncertainties in all three Einasto parameters. In the last
row we tabulate the uncertainties in the three Einasto parameters after applying a
prior on h from from Riess et al. (2016). All other cluster parameter uncertainties
listed contain both statistical error as inferred from weak lensing (WL) analyses and
systematic error from cosmology as explained in the ”Prior information” section and
Appendix D.

4.3.3.1 Cluster prior information (C−1
cluster)

In our case, the mass parameters (which come from weak lensing mass estimates)

and the anisotropy parameter (which comes from analysis of the phase spaces of

the clusters via the Jeans equations) are known to within some precision from these

independent measurements. We therefore add a prior information matrix to account

for this external information on the non-cosmological parameters.

More specifically, the error bars on the weak lensing mass estimates are chosen to

be similar to what is reported in the literature based on recent observations. As a

representative sample, see the metacatalog compiled in Sereno (2015). We particularly

choose an M200 error range from 20% to 40% which is based on ground-based imaging.

For instance, Applegate et al. (2014b) reports typical statistical errors of ∼ 20% using

Surprime-Cam imaging for 50 clusters to a redshift of 0.7. Similarly, Umetsu et al.

(2014) primarily used Subaru/Suprime-Cam to obtain weak lensing errors at a level

of 20− 30% based on the CLASH sample. Melchior et al. (2016) also reports ∼40%

statistical errors for four clusters using science verification data from the Dark Energy

Survey on the CTIO 4m Blanco DECam imager. This is why, as our baseline, we use

the upper range of 40% statistical error on the mass. In what follows we also consider

5% statistical error as a floor that can be potentially achieved through the technique

of stacking galaxy clusters Becker & Kravtsov (2011b); Rozo et al. (2011).
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However, there are also systematic errors that need to be considered. These can

come from a variety of observational sources including the telescope point-spread

function, the background redshift distribution, the intrinsic shape variations of the

background galaxies, and more. Applegate et al. (2014b) reports systematic errors

that are small compared to the statistical errors (7%) when the telescope optical

system is well characterized.

Few researchers have allowed for cosmology to vary during the weak lensing mass

estimation process. As we approach higher precision requirements, we will need to

incorporate variations in cosmology when calculating the cluster masses and it could

play an important role in the overall error budget. Therefore, we estimate how large

the mass errors would grow when allowing cosmology to vary during the mass estima-

tion process. We do this while keeping the nominal statistical error, which represents

the current conservative end of ground-based results. As explained in the Appendix

D, we find that the total (statistical + cosmological systematic) error, for example,

increases from 20% to 40%. That is, considering cosmological systematics in the

weak lensing analysis increases the mass error by a factor of 2. Also as detailed in

the Appendix, the cosmological systematics can be undercut by applying a prior on

the Hubble parameter h. We tabulate these results in Table 4.1.

Note that when in this chapter we speak of some percentage of ”mass scatter” we

refer to both the statistical and cosmological systematic error as tabulated in the first

three rows of Table 4.1. The last row of Table 4.1 shows the uncertainties for a case

in which the Hubble prior has been implemented. In that case, the 80% uncertainty

on the mass is reduced to 40% after applying the prior on h from Riess et al. (2016)

(σh = 0.0174). See Appendix D for details.

Note also that when we speak of mass scatter we refer to how the statistical un-

certainties in all three cluster parameters change (α, ρ−2 and r−2). More specifically,

we use the more widely reported percent scatter on M200 as a shorthand to describe

the uncertainties in our Einasto cluster parameters. As with the fiducial mass, we

attain these uncertainties by propagating the 1σ errors on the NFW density profile

to the Einasto density profile parameters by fitting the profiles out to one virial radii.

Also unless otherwise stated, and as shown in Table 4.1, for the anisotropy pa-

rameter we use an uncertainty of σβ = 0.5 which is also a fairly conservative choice.

For example, see uncertainties on β as derived from a Jeans’ analysis in  Lokas et al.

(2006).

These parameter uncertainty priors come into our prior matrix only along the

diagonal. This is because we are already considering covariances on the prior in-
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formation between cluster and cosmological parameters through the aforementioned

analysis. Note that this does not mean that we are not considering covariances be-

tween parameters. We are, these are all encapsulated in the Fisher matrix Fij. We

simply neglect covariance on most prior information. In this sense, our attempt to

grapple with the covariances in our prior matrix (detailed in Appendix D) is only an

approximation. Note, however, that some parameter uncertainties in the prior matrix

are actually nil. For instance, a Jeans equation analysis inference of β is what allows

us to decouple the edge uncertainty σvesc , as well as other cluster parameters from σβ.

In contrast, inferring β from edge measurements as done by Stark et al. (2016) would

introduce a complete covariance between edge measurements and the anisotropy pa-

rameter. The Jeans equation evades this problem given that it is a function of the

derivative of the potential rather than the potential itself.

Lastly, the inverse cluster covariance matrices (C−1
cluster) contain the aforementioned

priors on the mass parameters as well as the prior on the cluster anisotropy parameter.

We add covariance between relevant parameters of the cluster prior submatrix. In

particular, we model the covariance between cluster parameters r−2 and ρ−2. We

discuss the structure of the submatrices C−1
cluster in Appendix C.

4.3.3.2 Cosmological prior information (C−1
cosmo)

In relation to the cosmological prior information matrices, we note that for most

cases we are not adding any cosmological priors so that in Eq. 4.22, C−1
cosmo is an

Ncosmo by Ncosmo null matrix. Where noted, we add a diagonal prior on the C−1
cosmo

matrix from the 2.4% determination of the Hubble constant from Riess et al. (2016).

4.4 Constraint Forecasts

We now derive marginalized uncertainties on cosmological parameter pcosmo, marginal-

ized over the cluster nuisance parameters pcluster. Note that in some cases we also

marginalize over remaining cosmological parameters to generate 2-dimensional likeli-

hoods.

We consider three cosmological models. The first two assume a flat universe

(Ωk = 0) and the last case assumes a non-flat universe (Ωk 6= 0).
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4.4.1 Constant equation of state w

For this case, we consider the following set of cosmological parameters,

pcosmo ∈ {ΩM , w, h}. (4.23)

Via Eq. 4.10 we find the Hubble parameter which yields

H2 = H2
0E(z)2 = H2

0

[
ΩM(1 + z)3 + ΩDE(1 + z)3(1+w)

]
. (4.24)

And the deceleration parameter via Eq. 4.11,

q =
1

2

[
ΩM(z) + (1 + 3w)ΩDE(z)

]
. (4.25)

Here, ΩM(z) = ΩM(1 + z)3E(z)−2 and ΩDE(z) = ΩDE(1 + z)3(1+w)E(z)−2. The

combination then of the deceleration parameter and Hubble parameter that makes

up the equivalent radius and our observable is given by,

qH2 =
H2

0

2

[
ΩM(1 + z)3 + (1 + 3w)(1− ΩM)(1 + z)3(1+w)

]
. (4.26)

Notice that the quantity E(z) cancels out in this expression.

The constraints in the ΩM − w plane, after marginalizing over h and all other

cluster parameters are shown in Fig. 4.5. In particular, in black/grey (dark/light red)

we plot the 68% and 95% confidence level constraints for a set of Nclus = 1000(100)

clusters uniformly distributed in the range 0 ≤ z ≤ 0.8. The marginalized 1σ errors

are σΩM
= 0.007(0.025) and σw = 0.138(0.431) for Nclus = 1000 (100). This is an

extraordinarily tight constraint considering that it is achieved by the escape velocity

method alone, before adding constraints from other probes.

4.4.2 w0 and wa

In the previous case we considered a constant dark energy of equation of state

(EoS). However, in principle the dark energy EoS can evolve with redshift. A popu-

lar way to parametrize the redshift evolving dark energy EoS through the so-called

Chevallier-Polarski-Linder (CPL) parametrization given by, (see Chevallier & Polarski

(2001); Linder (2003))
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Figure 4.5: 68% and 95% confidence constraints for the flat wCDM case after
marginalizing over all other parameters. We use Nclus = 1000 (100) clusters as shown
in red (black) uniformly distributed in the range 0 ≤ z ≤ 0.8. The priors on the
Einasto parameters assume a uniform 80% weak lensing mass scatter for all redshifts
(see Table 4.1). The 1σ errors are σΩM

= 0.007(0.025) and σw = 0.138(0.431) for
Nclus = 1000 (100).
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w(z) = w0 + wa
z

1 + z
. (4.27)

In this case we consider the following set of cosmological parameters,

pcosmo ∈ {ΩM , w0, wa, h}. (4.28)

Again we derive the Hubble parameter for this case,

H2 = H2
0E(z)2 = H2

0

[
ΩM(1 + z)3 + ΩDE(1 + z)3(1+w0+wa)e−3wa

z
1+z

]
. (4.29)

and the deceleration parameter

q =
1

2

[
ΩM(z) + ΩDE(z)

(
1 + 3w0 +

3waz

1 + z

)]
. (4.30)

The redshift evolving mass and dark energy densities are given by, ΩM(z) = ΩM(1 +

z)3E(z)−2 and ΩDE(z) = ΩDE(1 + z)3(1+w0+wa)e−
3waz
1+z E(z)−2.

Again the redshift evolving energy density term E(z) cancels and we are left with,

qH2 =
H2

0

2

[
ΩM(1 + z)3 + (1− ΩM)(1 + z)3(1+w0+wa)

× exp

{
−3waz

1 + z

}(
1 + 3w0 +

3waz

1 + z

)]
. (4.31)

We show the resulting 2-dimensional w0 − wa likelihood in Fig. 4.6 for a uniform

set of clusters in the range 0 ≤ z ≤ 0.8, after marginalizing over ΩM , h, and all

other cluster parameters. With Nclus = 1000 clusters uniformly distributed between

0 ≤ zc ≤ 0.8 with 80% (40%) weak lensing mass scatter the turquoise (purple)

contours express the following marginalized uncertainties: σw0 = 0.139(0.124) and

σwa = 0.968(0.857).

We then reduce the number of clusters to Nclus = 100 and apply a cosmological

prior on the Hubble constant from Riess et al. (2016) (σh = 0.0174) to yield the

following marginalized 1σ errors, σw0 = 0.191 and σwa = 2.712 (see pink contours

in Fig. 4.6). Note that the pink contour is made using the same redshift range

(0 ≤ z ≤ 0.8) and systematic error (40% weak lensing mass scatter and σβ = 0.5) as

before but with only 100 clusters. Note that this constraint on w0 is comparable to
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Figure 4.6: 68% and 95% contours for the dynamic dark energy case using the CPL
parametrization of dark energy marginalized over ΩM and h as well as the other cluster
parameters. More specifically, we use Nclus = 1000 clusters uniformly distributed
between 0 ≤ zc ≤ 0.8 with 80% (40%) weak lensing mass scatter in the turquoise
(purple) contour which yields: σw0 = 0.139(0.124) and σwa = 0.968(0.857). With
Nclus = 100 uniformly distributed in the same redshift range as before and with 40%
mass scatter but now adding a prior on the Hubble constant from Riess et al. (2016)
we attain, σw0 = 0.191 and σwa = 2.712 (pink contours).
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the constraint achieved with 1000 clusters of Fig. 4.5 (red contours).

4.4.3 non-flat universe, ΩM and ΩΛ

So far we have only considered flat universes in our analysis. We now drop this

assumption and assume the possibility of nonzero curvature, while fixing the dark

energy equation of state to w = −1. We then have the following set of parameters to

constrain,

pcosmo ∈ {ΩM ,ΩΛ, h} (4.32)

For this case the Hubble parameter is given by

H2 = H2
0E(z)2 = H2

0

[
ΩM(1 + z)3 + ΩΛ + Ωk(1 + z)2

]
. (4.33)

And the deceleration parameter,

q =
1

2
ΩM(z)− ΩΛ(z). (4.34)

Multiplying these two we have,

qH2 =

[
1

2
ΩM(1 + z)3 − ΩΛ

]
H2

0 . (4.35)

The constraints in the ΩM −ΩΛ plane, after marginalizing over all cluster param-

eters are shown in Fig. 4.7. With just Nclus = 100 uniformly distributed between 0 ≤
z ≤ 0.8 we can achieve the following marginalized uncertainties σΩM

= 0.101(0.185)

and σΩΛ
= 0.197(0.428) after applying the 2.4% level prior on H0 from Riess et al.

(2016) (compare green to black contours).

4.5 Observational strategies

In order for the escape velocity measurements to yield competitive cosmological

constraints in both the near term and the far future, several considerations must

be taken into account. In this section we particularly focus on how future surveys

should target specific redshifts in order to optimize cosmological constraints. We also

explore the extent to which reducing systematic uncertainties in both weak lensing

mass estimates and measurements of the anisotropy parameter will yield significantly
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Figure 4.7: 68% and 95% contours for the non-flat ΛCDM case for Nclus = 100
uniformly distributed between 0 ≤ z ≤ 0.8 with 80% mass error. Applying a prior
on the Hubble constant h from Riess et al. (2016) (σh = 0.0174) allows us to break
the degeneracy and thereby significantly improve our constraints. The marginalized
1σ constraints derived from the green (black) contours are σΩM

= 0.101(0.185)and
σΩΛ

= 0.197(0.428).
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Figure 4.8: Inverse area of the ΩM - w covariance matrix after marginalizing over all
other parameters as a function of maximum (left panel) and minimum (right panel)
redshift used. We assume a uniform redshift distribution of clusters in the range
0 ≤ z ≤ zmax (left panel) and zmin ≤ z ≤ 0.8 (right panel). Each calculation of
the inverse area assumes a fixed number of clusters, Nclus = 100. Note that ΩM − w
constraints can be improved by reducing the mass uncertainty from 80% (solid line) to
40% (dashed line), in which case the contour area decreases by a factor of ∼1.3. The
constraint can be further increased by utilizing stacked weak lensing mass estimates
and stacked phase spaces, and this yields a 10% mass scatter and σβ = 0.02 (see
Table 4.1), decreasing the contour area by a factor of ∼ 7.5 (compare solid to dotted
lines). The left panel also illustrates that using clusters beyond the transition redshift
leads to a gradual loss of cosmological information. While a tighter constraint can
be achieved by incorporating higher redshift clusters, the right panel demonstrates
that we still need low redshift clusters to achieve the tightest constraints on w. See
Fig. 4.9. We conclude that as broad as possible redshift range of clusters be used
(e.g. 0 ≤ z . 0.8).

better cosmological constraints when compared to simply increasing Nclus.

4.5.1 Redshift range

We want to investigate how the cosmological constraints vary with a change of

the limits on this redshift distribution. In particular, note that the contours shown in

Figures 4.5-4.7 utilize a uniform redshift distribution in the range 0 ≤ z ≤ 0.8 for the

cluster sample. How would these contours change if we changed the cluster redshift

range used?

To quantify the effect, we calculate how the area of the 1σ contours in any given

2-dimensional cosmological parameter space changes as a function of the redshift

distribution chosen. Mathematically, this entails taking the covariance matrix that

contains the marginalized parameters we are interested in and calculate how its de-
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Figure 4.9: Marginalized ΩM and w uncertainties for the flat wCDM case with 100
clusters distributed in the range zmin ≤ z ≤ 0.8. Note that as the minimum redshift
zmin increases a factor of ∼1.7 improvement in σΩM

is attained (see solid line, bottom
panel). The trade-off is a significant loss of information on the dark energy equation
of state parameter w at high redshift (top panel). These effects combine to make
the inverse area plot as a function zmin relatively flat (see right-hand side panel in
Fig. 4.8). Note also that a maximum factor of ∼ 4 improvement in the uncertainty
of these parameters may be achieved if cluster parameter uncertainties are reduced
(compare solid to dotted lines).

97



terminant changes as a function of the maximum and minimum redshifts for a given

distribution. More explicitly, the inverse area corresponding to the 2 by 2 covariance

matrix for the marginalized parameters within the 1σ bound is given by (see Huterer

& Turner (2001); Albrecht et al. (2006)),

A−1(pi, pj) =
1√

|det[Cov(pi, pj)]|
. (4.36)

For the w0−wa case the inverse area is the Dark Energy Task Force ”Figure of Merit”

(FoM) Albrecht et al. (2006).

The result for the flat wCDM case as a function of redshift range used is shown

in Fig. 4.8. It shows the inverse area for a fixed number of clusters (100 in this case)

uniformly distributed in the range 0 ≤ z ≤ zmax (left panel) and zmin ≤ z ≤ 0.8

(right panel).

As the left panel of Fig. 4.8 implies, we can get the tightest constraints on this

cosmological parameter subset by picking 100 clusters uniformly distributed in the

range 0 ≤ z ≤ 0.8. The physical reason for this can already be inferred from Fig. 4.4

which shows the derivatives of our observable with respect to the various cosmological

parameters. In that figure we note that while our observable is sensitive to ΩM at

high redshifts, it is simultaneously more sensitive to w at low redshifts. Moreover, our

probe is relatively more sensitive to ΩM than to w (compare the absolute maximum

of the derivatives). This immediately implies that the higher redshift clusters will

end up contributing more to the joint constraint.

However, we want to emphasize that this does not mean that we should therefore

only pick high redshift clusters. In Fig. 4.9 we plot the marginalized uncertainty for

both w (top panel) and ΩM (bottom panel) as a function of zmin. As we pick higher

redshift clusters the constraint on ΩM improves but the constraint on w is degraded.

This is also shown by the relatively flat but ultimately decreasing tendency of the

right panel in Fig. 4.8. As such, we emphasize that we need both high and low redshift

clusters if we are going to attain a tight constraint on both ΩM and w. This applies

to other constraints as well.

Secondly, note that this particular optimized choice (ie. picking clusters uniformly

distributed in the range 0 ≤ z . 0.8) arises from our fiducial cosmology which yields

zt = 0.671. Riess et al. (2007) for instance, finds a transition redshift of zt = 0.43±0.07

based on a linear parametrization of q(z). Therefore, the inferences of the transition

redshift are highly model dependent Shapiro & Turner (2006). What this means

is that, observationally, since the optimization of our probe is loosely based on the
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transition redshift, we recommend that a redshift distribution as broad as possible be

used. In particular, we recommend that clusters uniformly distributed in the range

0 ≤ z ≤ 0.8 be used. Picking this redshift range allows us to safely take into account

current uncertainties in the transition redshift.

Lastly, note also that this upper limit (z = 0.8) is also set by the particular pro-

cesses of cluster assembly. In other words, beyond this redshift our analytic model is

unable to take into account the full complexity of cluster-formation dynamics because

clusters are still assembling at that redshift for acceptable cosmologies (see Fig. 2 in

Holz & Perlmutter (2012)).

4.5.2 Reducing Systematics and Stacked Clusters

We now study the effects of reducing statistical errors on the cluster parameters.

Clearly, reducing statistical errors in the weak lensing mass estimates, in the infer-

ence of anisotropy parameter, and in the measurement of the edge, will improve our

cosmological constraints, but by how much? For this exercise, we consider increased

precision from better measurements on individual clusters, increased cluster sample

sizes, and through stacking techniques. We note that stacking is not necessarily

equivalent to averaging over a large sample. For additional information on stacking,

we refer the reader to detailed analyses of stacking weak lensing data and stacking

phase-spaces (Rozo et al., 2011; Gifford et al., 2017). To quantify the improvements,

we use Eq. 4.36 with a fiducial sample of Nclus = 100 and focus on the ΩM −w case.

Fig. 4.8 shows how constraints may be improved by decreasing the scatter on

the mass parameters from 80% (solid black line) to 40% (dashed black line). The

difference in the inverse area size is a relatively modest factor of ∼ 1.3. However,

simultaneously reducing the uncertainty of the mass parameters to 10% as well as

reducing the uncertainty of the anisotropy parameter σβ and the uncertainty on the

escape velocity edge σvesc yields an area that is ∼ 7.5 times smaller (compare solid

lines to dotted lines). For the exact values of the uncertainties used in our matrix for

this ”stacked” case see Table 4.1. Fig. 4.9 follows and demonstrates how each specific

marginalized error (on w and ΩM) varies with zmin as we change the error on the

cluster priors. Looking at Fig. 4.9, an improvement of a factor of ∼2-4 on both σM

and σw may be achieved with decreased uncertainties (compare solid to dotted lines).

Currently, the only way to attain uncertainties in the mass parameters of the

smallest order in Figures 4.8 and 4.9 requires a stacking analysis. For example, see

cosmological constraints derived from a weak lensing analysis in Rozo et al. (2011)

as well as stacked phase-space analyses in Gifford et al. (2017). Similarly, achieving
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σβ = 0.02 will entail stacking clusters and/or developing some other approach that

has not yet been fully investigated. Thus, the dotted line in Fig. 4.8 represents not

100 clusters, but 100 cluster ensembles with high-precision mean masses and mean

β’s. Each ”cluster ensemble” is built from a number of individual noisy weak lensing

cluster profiles and poorly sampled cluster phase spaces. One thing to consider in

a future stacked phase spaces analysis is that systematic uncertainties (e.g,. cluster

mis-centering) must be accounted for at high precision.

From an observational perspective, it is an interesting question whether one should

expend resources on increasing the sample size, or on decreasing the systematic un-

certainties. Given a Planck cosmology, to z = 0.8 we expect to have over 40,000

clusters with M200 > 4 × 1014M� with respect to 200× the mean density of the

Universe (Planck Collaboration et al., 2016b). Thus, it seems reasonable to expect

that 1000 of these clusters will eventually have both weak-lensing mass estimates and

well-sampled radius/velocity phase spaces. Such an effort would require photometry

and spectroscopy over about 1000 square degrees of the sky. As an example, the

Dark Energy Spectroscopic Instrument–DESI 1) is targeting over 1000 square degrees

of the Dark Energy Survey sky coverage (DESI Collaboration et al., 2016). Like-

wise, the Prime Focus Camera will provide significant multi-object spectroscopy over

more than 1000 square degrees of imaging taken with the Subaru Hyper Suprime-

Cam (Takada et al., 2014). There is also new PI-based instrumentation, such as the

Michigan-Magellan Fiber System (M2FS) on the Magellan observatory, which can

be used to specifically and efficiently target clusters with previously measured weak

lensing masses (Mateo et al., 2012). Thus, it is realistic to expect 1000 clusters with

densely sampled phase spaces and redshift errors ∼ 50 kms−1 and weak lensing mass

errors of 40% or less (statistical) in the near future. The technology to collect the

needed spectra either exists or is being constructed with the aim to achieve redshift

errors on par with existing surveys (Bolton et al., 2012) and the weak lensing mass

errors of 40% or less are already being achieved with current imagers (Melchior et al.,

2016; Applegate et al., 2014b). Therefore, in Figs. 4.5, 4.10 and 4.11 we show the

constraints after increasing the fiducial sample size from 100 to 1000 clusters.

Lastly, it should be obvious that a combination of both more clusters and reduced

systematic error would be the optimal solution which yields the tightest constraints.

Our analysis in this section is premised on the assumption that both of these options

may not be easily available.

1http://desi.lbl.gov/
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4.6 Comparison to other probes and joint constraints

Other than by reducing statistical errors, increasing the number of clusters, and

stacking, we may in principle improve the constraints through a joint likelihood anal-

ysis with other cosmological probes. In this section we discuss our constraints and

their degeneracies in the context of other probes.

We note that in Fig. 4.7 an improvement in the forecasted constraints can be

achieved after applying the prior on h from. Riess et al. (2016). Information on

the Hubble parameter breaks numerous degeneracies in our probe. After all, our

technique itself is fundamentally based on constraining qH2 (see Sec. 4.4.1). However,

by including cosmological dependencies on the radial coordinate (Eq. 4.2) the probe

clearly has some power in constraining h on its own. This is evident in the derivatives

shown in Fig. 4.4. If we drop this dependence and use a fixed (in Mpc) radial

coordinate, ΩΛ, w0, and wa all become entirely unconstrained.

Besides applying a prior on the Hubble constant, another way we may achieve

a tight constraint of the w0 − wa plane is shown in Fig. 4.10. We show both the

68% and 95% confidence constraints with Nclus = 1000 uniformly distributed in the

redshift range 0 ≤ z ≤ 0.8, after applying a conservative 80% mass scatter prior (in

red, same as turquoise contours in Fig. 4.6) as well as both the JLA SNIa constraints

of Betoule et al. (2014) (in blue) and the 2015 Planck TT likelihood constraints of

Planck Collaboration et al. (2016a) (in green). A joint analysis with these probes then

seems to have the potential of yielding similar constraints to what a combination of

JLA data and CMB currently yields.

Now considering the flat wCDM case, in Fig. 4.11 we over-plot the JLA constraints

(in blue), the 2015 Planck TT likelihood of Planck Collaboration et al. (2016a) (in

green) as well as re-plot the red contours of Fig. 4.5. We find that a joint constraint

of these probes alone can yield a joint σw ∼ 0.1 and σΩM
∼ 0.01 constraint given that

they cross through each other nearly perpendicularly.

We note that the degeneracies in our observable work out in such a way that our

probe can act as a powerful cross check of systematics in other probes. As an example,

note how our constraints lie perpendicular to the JLA SNIa and CMB constraints in

Fig. 4.11. In part, this is due to the way degeneracies work with our observable.

As shown in Section 4.2, cosmology in our probe comes in through the quantity

qH2 which is both a function of the Hubble parameter and its derivative, dH(z)/dz.

We emphasize this because our probe in this sense is a true dynamical probe of the

expansion history of the universe, similar to the redshift drift. Compare for instance,
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Figure 4.10: 68% and 95% contours for the dynamic dark energy case using the CPL
parametrization of dark energy marginalized over ΩM and h as well as the other cluster
parameters. The blue contours are reproduced from the latest JLA SNIa constraints
of Betoule et al. (2014). The green contours are reproduced from the Planck 2015
TT likelihood of Planck Collaboration et al. (2016a). In red are constraints derived
from a sample of Nclus = 1000 clusters uniformly distributed in the redshift range
0 ≤ z ≤ 0.8, after applying a conservative 80% mass scatter prior (same as the
turquoise contours of Fig. 4.6). In all cases, no prior assumptions about the Hubble
constant are used.
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Figure 4.11: 68% and 95% contours for the flat wCDM case. The red contours are
derived the same as what is shown in Fig. 4.5. The blue contours are reproduced
from the latest JLA SNIa constraints shown in Betoule et al. (2014). The green
contours are reproduced from the Planck 2015 TT likelihood Planck Collaboration
et al. (2016a). In all cases, no prior assumptions about the Hubble constant are used.
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our constraint degeneracies on the w0 − wa plane to those of Kim et al. (2015) (in

particular, see Fig. 3).

Beyond these comparisons to other probes, we may ask ourselves if we can justify

our observable’s sensitivity to cosmology on its own basis. As discussed before, the

sensitivity of our probe can be directly inferred from both Fig. 4.4 and Fig. 4.3. Recall

that on Fig. 4.3 we plot the fractional difference of the escape velocity profile between

the ΛCDM model (w = −1) and two other dark energy models. At about the virial

radius, the fractional difference amounts to ∼ 15%. So to a crude first approximation,

we need the error budget in the observational parameters to drop below this limit in

order to place constraints on w.

As explained before, and as tabulated in Table 4.1, three sources of observational

error are involved: the escape velocity edge error (σvesc), the anisotropy parameter

uncertainty (σβ) and the error in the inferred Einasto parameters from weak lensing

(α, σρ−2 ,σr−2). If we focus just on the σvesc we notice that this amounts to a ∼ 15%

error on the escape velocity edge. As such, with just one cluster we are on the verge

of being able to detect deviations from the ΛCDM model. Similarly, for our fiducial

cluster, the uncertainty in σβ = 0.5 amounts to a difference in the escape velocity

profile also of ∼ 15% given that it comes in to our observable through the factor of

1/
√
g(β) (see Eq. 4.4). So again, with this systematic uncertainty we are close to

being able to detect deviations from w = −1. Now let us consider the dominant source

of error which comes in through the uncertainty in the inferred Einasto parameters

from weak lensing. For 80% error on the mass, this amounts to an error on the edge

of ∼ 40% given that the velocity goes as the square root of the mass. With just 8

clusters we can naively decrease the weak lensing error to (∼ 15%), assuming that

it scales as 1/
√
Nclus. Of course the above are unrealistic conditions, which is why

instead we conduct a detailed Fisher Matrix analysis.

Another key factor in this probe is that unlike supernovae observations, the cluster

data map a projected radial profile which increases the total amount of information

per object, thereby further beating down the error. We previously addressed how

the binning can affect the final predictions on the cosmological parameters. The key

point is that with just a few tens of clusters, this probe becomes sensitive to 15%

deviations in the dark energy equation of state exemplified in Fig. 4.3. While these are

only forecasts, as a consistency check, we have compared our Fisher matrix constraints

with the analysis of Stark et al. (2016) which utilized Nclus = 20 (0 ≤ z ≤ 0.439).

We find that our Fisher matrix forecasts are consistent with variations of systematics

studied in Stark et al. (2016).
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4.7 Summary

We have presented a novel galaxy cluster-based probe of cosmology that has the

potential of constraining cosmological parameters to high precision. More specifically,

this cosmological probe is based on both the abstract and concrete need to include

a cosmological term in the escape velocity profile of galaxy clusters as inferred from

their phase spaces. This phase space-inferred escape velocity profile is modeled by

cluster-specific parameters (i.e. weak lensing mass profile information and the clus-

ter’s anisotropy parameter) as well as cosmological parameters. If the first set of

parameters can be independently inferred, then cosmology can be allowed to vary to

fit the observed escape velocity profiles — thereby constraining cosmological models.

To assess this probe’s observational viability we used the Fisher matrix formal-

ism and carefully considered the aforementioned systematics by marginalizing over

the free parameters describing the gravitational potential of each cluster separately.

While constraints can be improved if systematic errors in both the weak lensing mass

estimates and inferences of the anisotropy parameter are reduced, we note that the

the gains are similarly improved by increasing the number of clusters Nclus. A com-

bination of both of these approaches would of course be optimal. However, we note

that even assuming conservative errors, competitive cosmological constraints can still

be achieved in the near term.

Nonetheless, we have shown that this probe is not only able to yield high preci-

sion constraints on cosmological parameters independently of other probes but that

it complements other constraints as well. Furthermore, we emphasize that these con-

straints can be achieved in both the near and far future. For instance, Fig. 4.6 and

Fig. 4.7 only use 100 clusters with 40-80% weak lensing mass scatter which can easily

be achieved in the near term; this is also the case with the black contours constraints

of Fig. 4.5. Far future constraints (Nclus = 1000) are forecasted in Fig. 4.5 (red

contours) as well as in the future joint constraints of Figs. 4.10-4.11.

We also note that while throughout this chapter we have assumed the general

relativistic Friedmann equation, our theoretical expectations can in principle be gen-

eralized by re-working the term qH2 to either reflect modified theories of gravity or

other alternative parametrizations.

This work therefore presents a first step in the study of a promising new probe of

cosmology. The cluster phase spaces, we demonstrated here, have the power to provide

precision measurements of cosmological parameters in an accelerating universe, and

thus provide sharp tests of the currently favored theoretical framework.
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CHAPTER V

Cluster escape velocity profiles as a probe of

Chameleon gravity

5.1 Introduction

In this last chapter we no longer assume that our theory of gravity is exclu-

sively that of general relativity (GR). In particular, we present a novel test of gravity

on galaxy cluster scales that strategically harnesses how the Chameleon f(R) grav-

ity screening mechanism modifies the gravitational potential of clusters of different

masses. Specifically, this modified gravity (MG) model deepens the potential in the

outskirts of low mass galaxy clusters with respect to GR, but leaves the potential

of high mass clusters relatively unaffected. By taking the average ratio between the

gravitational potential of high mass and low mass galaxy clusters, we show that one

can unambiguously discern between Chameleon-like modified gravity theories and

GR.

We note that our proposed test is complementary to probes of gravity on larger

scales (1-10 Mpc) (Lam et al., 2012; Hellwing et al., 2014; Zu et al., 2014; Xu, 2015)

and can also act as a powerful cross-check of tests in galaxy cluster scales (0.1-

1h−1Mpc) (Schmidt et al., 2009; Wojtak et al., 2011; Terukina et al., 2014; Wilcox

et al., 2015; Cataneo et al., 2015; Lombriser et al., 2012b; Llinares & Mota, 2013;

Schmidt, 2010). However, our test distinguishes itself in that it directly probes the

gravitational potential and allows for a simple and elegant incorporation of theoretical

predictions.

We carry out our proposed test of gravity using synthetic dark matter halos of

cosmological N-body simulations and test its viability by comparing results with

analytic theory. We then utilize simulated galaxy catalogs to incorporate realistic

observational systematics, including projection effects. After vetting our analytical
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expectations with simulations, we show that our probe has the potential to deliver

more competitive cluster-scale constraints on Chameleon f(R) MGs than at present.

The chapter is organized as follows: in Sec. 5.2 we review the Hu-Sawicki f(R)

gravity model and derive the theoretical expectations of our observable in both MG

and GR. In Sec. 5.3 we describe how we obtain our observable from the phase space of

galaxy clusters, and detail how we do this in N-body simulations. A brief description

of the N-body simulations we used is also provided. Sec. 5.4 is devoted to putting

together both our theoretical expectations and observables. More specifically, we

describe how our test probes gravity in the scale of galaxy clusters. In Sec. 5.5

we address both theoretical and observational systematics, whether or not they are

significant as well as how we fold them into our final analysis. Finally, in Sec. 5.6

we discuss both how our probe can set competitive constraints on MG and, more

generally, can also act as a powerful test of ground-based in the scale of galaxy clusters.

We conclude in Sec. 5.7 with some remarks on how our probe will leverage the

observational capacities of future large-scale photometric and spectroscopic surveys.

5.2 Theoretical expectations

5.2.1 Hu-Sawicki f(R) gravity

In what follows we focus on a particular model of MG: Chameleon Hu-Sawicki

f(R) gravity (Hu & Sawicki, 2007). In f(R) gravity, the Einstein-Hilbert action is

augmented by a free function of the Ricci scalar (R+f(R)). This modification in-

troduces an additional degree of freedom which can be recast as a non-minimally

coupled scalar field, fR ≡ df(R)
dR

, dubbed the scalaron. The functional form of f(R) in

the Hu-Sawicki model is as follows:

f(R) = −m̄2 c1(R/m̄2)n

c2(R/m̄2)n + 1
. (5.1)

The m̄ parameter sets the mass scale and is given by m̄2 = 8πG
3
ρm0, where ρm0 is

the average density today. As such, this model is determined by three dimensionless

free parameters: c1, c2 and n. The specific values of these free parameters can be

narrowed down to those which produce expansion histories that are consistent with

current cosmological constraints. In particular, these three parameters are related

to the background value of the scalaron today, fR0. For example, with ΩM = 0.24

and ΩΛ = 0.76, we have that fR0 ≈ nc1/c
2
2/(41)n+1 (Hu & Sawicki, 2007). From

now on, we parametrize these free parameters in terms of fR0 and consider models
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that are phenomenologically viable. We refer the reader to Hu and Sawicki (2007)

for the particularities of the model and the details of the calculations shown above.

We fix n = 1 and consider only models with background field values in the present

epoch of |fR0| = 10−5 and 10−6, which will be denoted from now on as FR5 and FR6

respectively. Note that in our definition of |fR0| we have set the the speed of light to

unity.

5.2.2 Gravitational potential

Naturally, as a coupled scalar field, the effect of the scalaron is to mediate an

additional fifth force between massive bodies. Thus, the gravitational potential which

massive particles experience is no longer the usual Newtonian dynamical potential of

the Poisson equation (φGR), but rather (Lombriser et al., 2012a):

φ(r) = φGR(r)− 1

2
δfR(r). (5.2)

Here the δ signifies that the background has been subtracted from the scalaron field:

δfR = fR − fR.

The additional scalar field can be shielded in Chameleon Hu-Sawicki f(R) gravity

in order to recover the predictions made by GR in high density regions. In the high

density “Chameleon regime,” the screening mechanism ensures we recover GR by

making fR → 0. As such, in this regime the scalaron’s field value is:

δf chamR = −fR0. (5.3)

The scalar field is constant in high density regions (e.g. in the core of galaxy clusters)

and can mediate no additional forces. Outside of the high density core, the field can

propagate and mediate a fifth force. The range of this fifth force is determined by

Compton wavelength of the field, or the inverse mass of the scalar field λc ≡ m−1,

which at the background and for z = 0 is: m−1 = 32
√
fR0/10−4 Mpc h−1 (Schmidt

et al., 2009). In this “linear regime,” the scalaron field is given by (Lombriser et al.,

2012a):

δf linR (r) = −1

3
g(c)GM200

{
Γ(0,m(r + rs))e

2m(r+rs)

+ Γ(0,−m(r + rs))− Γ(0,−mrs)

− e2mrsΓ(0,mrs)
}e−m(r+crs)

r
. (5.4)
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The upper incomplete gamma function Γ(s, r) and g(c) are given by Γ(s, r) =
∫∞
r
ts−1e−tdt

and g(c) = [ln(1 + c) + c/(1 + c)]−1. We have also used the definition: rs ≡ R200/c.

Eq. 5.3 is specific to the case in which the scalaron is propagating in an Navarro-

Frenk-White (NFW) density field of a galaxy cluster with concentration c, mass M200,

and radius R200. The subscript 200 implies that the mass and radii are defined to be

where the density of the halo equals ∆200 = 200 times the critical density of the day:

M200 = 4π
3
R3

200∆200ρcrit. In practice, the concentration is an NFW fitting parameter

attained by fitting the cumulative mass profile ( Lokas & Mamon, 2001; Navarro et al.,

1997):

M(< r) = g(c)M200

[
ln

(
1 +

r

rs

)
− r

r + rs

]
. (5.5)

The transition from the Chameleon (Eq. 5.3) and Linear regimes (Eq. 5.4) is

efficient, so we model it as being instantaneous and match them using,

δfR = min(δf linR , δf chamR ). (5.6)

As shown by Lombriser et al. (2012a), this approach agrees with the numerical

solution to the scalaron equation of motion in the vicinity of an NFW density field.

Note that the theoretical uncertainty is negligible when compared to observational

uncertainties (thoroughly explained in the Sec. 4.5 below).

The GR potential (φGR) is the usual gravitational potential that satisfies the

Poisson equation and therefore determines the motion of massive particles. φGR can

be attained by solving the Poisson equation with the NFW mass profile of Eq. 5.4,

φGR(r) = −g(c) ln

(
r

rs
+ 1

)
GM200

r
. (5.7)

5.2.3 Escaping a galaxy cluster in an accelerating universe

However, our observable, as explained in the next section, is the escape velocity

profile (vesc(r)) which is related to the potential set by both the gravity of the cluster

and the expanding universe (Φ(r)). This effective potential relates to the escape

velocity profile as usual: −2Φ(r) = v2
esc(r). Following Behroozi et al. (2013), we

derive vesc(r) for a cluster described by an NFW density in an expanding universe

with GR as its prescription for gravity,
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−2ΦGR(r) = v2
esc,GR(r), (5.8)

= −2[φGR(r)− φGR(req)]− qH2[r2 − r2
eq].

req is the “equivalence radius”, defined to be the point at which the accelera-

tion due to the gravitational potential of the cluster and the expanding universe are

equivalent: req ≡ (GM200

−qH2 )1/3. q is the deceleration parameter and H is the Hubble

parameter. Using Eq. 5.1, in an expanding Chameleon f(R) gravity universe instead

we have:

−2Φf(R)(r) = v2
esc,f(R)(r), (5.9)

= v2
esc,GR(r) +

[
δfR(r)− δfR(req)

]
.

Eqs. 5.7 - 5.9 use NFW parameters that have been measured from the cluster

density profiles. In real data, these would be measured using the observed weak

lensing shear profile around clusters which is unaffected by the effects of f(R) gravity

(see the appendix of Arnold et al. (2014)). Our test is then built to compare the

matter-inferred GR or f(R) gravity potential profiles to the observed dynamical escape

velocity profile.

5.3 N-body simulations

We measure the escape velocity of galaxy clusters through the technique (devel-

oped in Diaferio & Geller (1997)), in which the Newtonian gravitational potential

profile is reconstructed from the escape velocity “edge”, identified from the cluster

radius-velocity space (i.e. the “phase space”). This is a well-developed and well-

tested technique and it has been used in numerous studies of the mass profiles of

galaxy clusters (Gifford & Miller, 2013a; Serra et al., 2011; Lemze et al., 2012; Rines

et al., 2013; Andreon & Hurn, 2010; Geller et al., 2014). The escape edge for a given

halo is constructed by taking the maximum velocity in the particle phase space for

each r/R200 bin in 0.05 intervals. In GR simulations, the observed escape edge has

been shown to recover the theoretical vesc to ∼ 5% accuracy, depending on the model

used (Miller et al., 2016).

To construct our potential profiles from the escape velocity edge we utilize the
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Figure 5.1: The z = 0 gravitational potential ratio between high and low mass bins
of synthetic galaxy clusters for the GR (black), the FR5 (left) parametrization of
f(R) gravity (green), and the FR6 (right) parametrization (red). The points are the
average of the square of the observed escape velocities for each bin in radius and mass.
The errors are 1σ on the mean from boot-strap re-sampling. The solid lines represent
the theoretical predictions using the NFW density parameter (Eqns. 5.7 - 5.9). Note
the & 5σ level difference between the GR and FR5 ratios. The percentages denote
how we separate the high and low mass bins. Note that the separation between GR
and f(R) potential ratios increases with increasing separation in the mass bins.

particles in N-body simulations developed in Zhao et al. (2011a); Li et al. (2012)

which have identical initial conditions, but incorporate either GR or f(R) as their

prescriptions for gravity. The cosmological parameters used for these simulations are

as follows: Ωm = 0.24,ΩΛ = 0.76, h = 0.719, ns = 0.961 (Li et al., 2012). Here

our focus is on the simulated GR, FR6, and FR5 runs. Briefly, the adaptive mesh

refinement N-Body simulations take place in a 1.5 Gpc h−1 cube with 10243 resolution

and a particle resolution of 6.2×1010M�h
−1. The large box size is required to provide

the number of high mass clusters required in our analysis. The halos are defined by

the Amiga Halo Finder or AHF (Knollmann & Knebe, 2009).

5.4 Probing gravity

To differentiate between GR and MG we probe the ratio of the averaged gravi-

tational profile of high mass clusters, to the averaged gravitational potential of low

mass clusters. We infer the ratio from N-body simulations through the aforementioned

technique and compare our results to the aforementioned theoretical expectations for

each respective theory of gravity. More specifically, our probe is encapsulated in the

following equation:
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Φhigh(r)

Φlow(r)
≡
〈v2
esc,high(r)〉
〈v2
esc,low(r)〉

. (5.10)

Why separate clusters into two mass bins? The reasons are twofold. First, as shown

in Falck et al. (2014) the Chameleon mechanism induces a mass dependent screening

effect which leads to high mass clusters being screened and low mass clusters being

increasingly unscreened. Relative to their high mass counterparts, less screened low

mass clusters will exhibit higher escape velocity edges, resulting in a reduced poten-

tial ratio compared to expectations from GR. The cluster potential ratio is a smoking

gun test of modified theories of gravity employing the Chameleon screening mecha-

nism. Secondly, the ratio allows us to undercut both observational and theoretical

systematics. Precisely how this ratio allows us to do so is thoroughly explained in

the next section.

Now, to compare clusters in each of the three (GR, FR6, and FR5) simulations

we employ one-to-one matching. We find cluster-sized over-densities at the same

positions at z = 0 across all three simulations using a halo’s center positions from

an AHF-generated halo catalog (Knollmann & Knebe, 2009). We begin with 100

halos uniformly sampled in log mass between ∼ 1014−1015M�h
−1. The 100 halos per

simulation are then binned into a low mass bin and a high mass bin each of which

corresponds to selecting a percentile of the of least and most massive clusters. The

specific mass bin ranges are as follows. For GR, the low mass bin is: 9.10 × 1013 −
1.96 × 1014M�h

−1 and the high mass bin is: 7.48 × 1014 − 1.58 × 1015M�h
−1. For

FR6, the low mass bin is: 9.13 × 1013 − 1.97 × 1014M�h
−1 and high mass bin is:

7.34× 1014 − 1.58× 1015M�h
−1. For FR5, the low mass bin is: 1.16× 1014 − 1.94×

1014M�h
−1 and the high mass bin is: 7.49× 1014 − 1.58× 1015M�h

−1.

For each of the simulation halos, we attain both the phase space escape velocity

profile through the aforementioned technique, as well as the potential profile based on

matter density NFW fit (Eq. 5.5). With the former we can construct the “observed”

dynamical gravitational potential profile and with the latter the prediction from GR

or f(R) gravity. We then take the ratio between the averaged high mass edge profiles

and the averaged low mass edge profiles (Eq. 5.10).

The resulting averaged profile ratios are shown in Figure 5.1. The errors are 1σ

on the mean from boot-strap re-sampling with replacement. The solid lines represent

the theoretical predictions using the NFW density parameter (Eqns. 5.7 - 5.10). Note

that we chose to present the ratios as a function of r/R200 rather than r as a way to

remove the side effects that arise when comparing clusters of different masses. When
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plotted as a function of r the potential ratio of Figure 5.1 attains a positive slope

which arises as a result of different underlying mass profiles. Thus, re-scaling by each

cluster’s respective R200 flattens the profile and makes the potential ratios of Figure

5.1 a much cleaner and clearer observable: one that depends on the amplitude of the

potential and not the shape of the potential profile.

As Figure 5.1 also shows, our theoretical predictions can successfully reproduce

our (simulated) observable to high precision. On that figure we also plot the averaged

potential ratio for different mass bins. One important conclusion from this is that

the closer we bring the two mass bins, the more attenuated the difference between

GR and f(R) becomes. We would like to mention that dynamical differences in Fig.

5.1 are solely due to modifications to gravity and not to mass differences in the sim-

ulation. Comparing the average mass ratios: 〈M200,high〉/〈M200,low〉 = 6.40, 6.39, 6.02

for GR, FR6 and FR5 respectively, we conclude that averaged mass ratio differences

are negligible when compared to the ∼ 25% difference between the GR or FR6 and

the FR5 potential ratios shown in Fig. 5.1.

Given our ability to precisely predict our theoretical observable (as demonstrated

by Figure 5.1), we demonstrate the lower limit on how well our new probe can con-

strain Chameleon f(R) gravity. Note, for instance, that the FR6 model, for our

theoretical observable, is almost identical to GR. Furthermore, cosmic variance is the

largest component of the uncertainty on the potential ratios for the small samples

we examine. We study a more realistic synthetic data-set using the 2-dimensional

projected phase spaces in the following sections.

5.5 Systematics

In order to assess the viability of our probe, we carefully consider relevant system-

atics. More specifically, we focus on: the systematic error induced by cosmic variance,

statistical errors that arise from projection effects, as well as additional systematics

that arise from sampling of galaxies in clusters.

One relevant systematic arises from the fact that we are using a very small sample

of the clusters in the Universe to generate Figures 5.1 and 5.2. We chose this sample

size as it reflects the scale of data we have today for measuring both weak-lensing

profiles and also with significant spectroscopic follow-up (Rines et al., 2013; Geller

et al., 2013; Hoekstra et al., 2012).

The dashed lines band as shown in Figure 5.2 incorporates the systematic uncer-

tainty due to cosmic variance on a sample of this size (20 clusters per mass bin) which
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was measured to be 10% using a larger set of GR simulations (the Millennium simu-

lations (Springel et al., 2005b)). In other words, the observed ratio
Φhigh(r)

Φlow(r)
can vary

as much as 10% when measured for a sample size as small as ∼ 20 clusters per mass

bin. This is an important systematic which decreases as the sample size increases.

We also assess environmental screening, in which some fraction of the lower mass

clusters in the f(R) simulations could be screened due to large-scale over-densities

(Zhao et al., 2011b). If this were to happen, the observed FR5 and FR6 ratios would

be higher (closer to GR) than predicted by the theory. We control for random noise

due to variations in the large-scale environments of the clusters by using one-to-one

matching for the halos across the GR, FR5 and FR6 simulations. Also, we ensure

that none of the clusters lie within the virial radii of other clusters. Finally, we can

evaluate our dataset for possible effects from environmental screening using Figure

5.1, where the FR5 and FR6 predictions match our measurements to high precision.

If screening were present, one would find the FR5 and FR6 measurements of the f(R)

simulation data to be closer to the GR simulation data. We note that the absolute

accuracy of the cluster sample used in Figure 5.1 is limited by cosmic variance of

order 10%. We conclude that the effects of screening on this test are smaller than

systematic and statistical uncertainties on our measurements, so long as non-merging

clusters are chosen for the analysis.

We use the Millennium simulations with the light cone data provided by Henriques

et al. (2012) to investigate projection effects, which is likely the dominant component

of the error on the potential ratio. To carry out our proposed test with physical (rather

than synthetic) data, the escape velocity profile of a cluster would be inferred from

the line-of-sight velocities of galaxies in that given cluster, rather than the radial

component of the 3D velocity. Fortunately we can transform, roughly, the line-of-

sight velocities into 3D velocities and vice versa. As shown in Diaferio (1999) the

mapping between the radial 3D escape velocity profile considered above (vesc(r)) and

the line-of-sight escape velocity profile inferred from data (vesc,los(r)) is as follows:

v2
esc,los(r) = g−1(β)× v2

esc(r) (5.11)

Where g(β) is given by g(β) = 3 − 2β(r)/1 − β(r) and is of O(1). β(r) is given by

β(r) = 1 − 〈v2
θ + v2

φ〉/2〈v2
r〉 (Diaferio, 1999). As such, in projected space Eq. 5.10 is

instead,
Φhigh,los(r)

Φlow,los(r)
≡ 〈g(βlow)〉
〈g(βhigh)〉

〈v2
esc,high(r)〉
〈v2
esc,low(r)〉

. (5.12)
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Figure 5.2: The simulated and theoretical averaged GR and f(R) gravity potential
ratios for the same clusters of Figure 5.1 (top 20% and bottom 20% mass bins). We
have added the theoretical prediction for |fR0| = 4×10−6 gravity (yellow) and include
not only the GR statistical error on the mean (black error bars) but also the 10%
systematic error due to cosmic variance (black dashed lines). This figure demonstrates
how we would detect and/or constrain MG. Assuming GR as our “observation,” the
data is contained within the black dashed bands. We can therefore ask the question:
which of the three plotted models best describes the data? We conclude our probe
can, including systematics, successfully discern between GR and |fR0| = 4× 10−6 at
1σ.Note that this result is attained with only 40 clusters (20 in each mass bin) and the
potential is inferred from 3-dimensional phase space synthetic data. We reproduce
this plot for a projected DESI-like data-set in Fig. 5.4.
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However, the ratio of the averaged g(β) profiles for high and low mass systems is

〈g(βhigh)〉/〈g(βlow)〉 ≈ 1 and so the line-of-sight potential ratio is the same as the 3D

potential ratio:
Φhigh,los(r)

Φlow,los(r)
≈ Φhigh(r)

Φlow(r)
(5.13)

Therefore, our expectation is that by dividing out the averaged cluster potential

profiles we eliminate the necessity to estimate the anisotropy profile. We note that

another observational challenge lies in eliminating line-of-sight galaxies that may not

be cluster members and will therefore contaminate our phase space.

We recognize that there exist few observational surveys containing clusters around

the mean mass in our low-mass subsample. However, with new imaging and spec-

troscopic surveys, we expect future datasets to provide excellent weak lensing mass

profiles as well as significant spectroscopic follow-up.

Therefore, we consider two cases of projection. The first uses an ensemble cluster

dataset, where the weak-lensing mass profiles and the spectroscopic potential profiles

are inferred from averaged or stacked datasets as would be measured using current fa-

cilities. The second uses a much larger sample of clusters based on deeper data, where

the weak-lensing and spectroscopic potential profiles could be measured individually

for the clusters and then averaged.

5.5.1 Stacked cluster ensembles

To build a cluster ensemble we superimpose the phase-spaces of individual clusters.

In particular, we use 500 galaxies per phase space with 10 high mass and 10 low mass

clusters to create a high and a low mass cluster ensemble. The masses of the clusters

are chosen to match the average masses of the sample used in Figs. 5.1 and 5.2. The

galaxies used to populate the phase spaces are all brighter than an r-band magnitude

of 17.7 and the clusters are within z = 0.15 such that this is an SDSS-like stacked

ensemble of clusters. As before, we compute the averaged potential ratios (Eq. 5.10)

and the boot-strapped error bars. The result is shown on Fig. 5.3 (solid gray line).

The scatter dots with statistical error represent the 3D inferred edge (as in Fig. 5.1

and Fig. 5.2). We find that over the range 0.4 ≤ r/R200 ≤ 0.9, the 2D projected

and the 3D ratios are statistically identical. At the same time, our constraints on

|fR0| are robust to small (5%) corrections in the ratio as we go from 3D to 2D. This

confirms the expectation detailed above which speculated that the averaged ratio of

potential profiles allows us to undercut complications that arise from working with

projected data. However, Fig. 5.3 also shows that the errors from projection are as
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Figure 5.3: The gravitational potential ratio of Fig. 5.1 (black dots with statistical
error) and the gravitational ratio as inferred from an ensemble of clusters (gray line
with statistical error) from the light cone data of Henriques et al. (2012). The high
and low mass cluster ensembles are made up of 5 different ensembles each with 10
clusters that include 500 galaxies each. The error bars are 1σ error on the mean from
boot-strap re-sampling. This nearly flat transfer function incorporates numerous
observational systematics when going from 3D to realistic observational data.
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large as cosmic variance for a small sample of ∼20 clusters.

5.5.2 DESI Bright Galaxy Sample forecast

In order to decrease the errors, we investigate a much larger (by a factor of ∼ 10)

sample of clusters. Within the Henriques light cone (Henriques et al., 2012) we

generate a Dark Energy Spectroscopic Instrument (DESI) Bright Galaxy Sample-like

selection function. While for the previous studies we constrained the observed galaxy

population to brighter than the SDSS main sample, we now use galaxies to an r-band

magnitude limit of 19.1. We still focus on clusters within z = 0.15. The deeper

magnitude limit increases the number of clusters with greater than 50 galaxies in the

phase space to many hundreds per mass bin. This sample is an approximation to

what may be observed with DESI and would allow us to probe both a wider and

deeper sample of the sky, thereby undercutting the effects of cosmic variance and

increasing the total number of galaxy clusters in our sample.

We re-create the mass bins chosen in the previous sample by choosing clusters

with masses between 1014/h < M200/M� < 2.1 × 1014/h for the low mass sample,

and M200/M� > 6× 1014/h for the high mass sample. The average mass for the low

and high mass sample respectively are: 1.4× 1014M�/h and 8.2× 1014M�/h. From

those two mass bins we then make a conservative cut by picking clusters that contain

at least 50 galaxies between |vlos| ≤ 2000 km/s within 3 Mpc from the cluster center.

To predict the potentials in this sample, we use the halo masses of each cluster

and derive concentrations from the mass-concentration relation provided in Duffy

et al. (2008): c200(M200, z) = A200(M200/Mpivot)
B200(1 + z)C200 . Where A200 = 5.71,

B200 = −0.084, C200 = −0.47 and Mpivot = 2×1012M�h
−1. This sample assumes that

weak lensing masses are unbiased. The width of our mass bins are larger than the one

sigma mass scatter in the weak lensing observable (Becker & Kravtsov, 2011). Because

of the wide width of our mass bins, we can ignore weak lensing mass uncertainties

when calculating the theoretical predictions.

In Figure 5.4, we show the averaged potential ratio between the two mass bins (Eq.

5.10) with both statistical (boot-strapped as before) and systematic error (cosmic

variance) for the aforementioned DESI-like sample. As before, we also show the

theoretical predictions for both GR and f(R) gravity. Several conclusions regarding

systematics affecting our probe may be drawn from Figure 5.4:

• Our GR 3D theory (solid black line) can accurately predict the potential ratio

generated with projected synthetic data. This confirms that we can success-
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fully divide out projection effects by taking the ratio of averaged potentials (as

implied by Eqns. 5.12 and 5.13).

• Projection effects increase the statistical error relative to the unrealistic 3D

ratio. This is expected and discussed in Gifford & Miller (2013b). In particular,

compare the few percent statistical error on the 3D ratio of Figs 5.1-5.2 with

the ∼ 8% statistical error of Fig. 5.4. However, while projection increases the

statistical error on the ratio, the cosmic variance of a larger sample goes down

as the square root of the fractional increase in the sample size, which for a

DESI-like sample is ∼10 times as many clusters as used in our previous results

(Figures 5.1, 5.2, and 5.3.)

• The phase spaces only need to be moderately populated with 50 galaxies be-

tween |vlos| ≤ 2000 km/s within 3 Mpc from the cluster center. This is neces-

sary in order to measure the escape velocity edge. By selecting the 50 brightest

galaxies to create the phase spaces, the test is immune to color bias, at least to

the level probed by the simulated galaxy catalog. We also find that if we under-

populate the phase space, we can bias our low mass cluster potential profiles.

This is a known effect and studied in detail in Gifford & Miller (2013a).

We also investigate whether the assumed mass-concentration relation affects our

potential ratios. We examine a range of uncertainties in the parameters which describe

the relation and find that the potential ratio profiles vary less than 1%. This is because

all mass-concentrations relations are quite flat at the cluster masses we study here

and also because the mass difference between the high and low mass sub-samples is

quite small.

Generally, we note that the utilization of the ratio of potentials mitigates sys-

tematic effects of the observables and theory beyond the aforementioned projection

effects. For instance, Miller et al. (2016) found that NFW density profiles predict

NFW potentials that are biased high by 10-20%. Einasto profiles on the other hand

show <5% biases. However, they also showed that there is no difference between the

predicted and observed phase space escape velocities as a function of halo mass. We

tested that by comparing the GR prediction from Eq. 5.10 using NFW density fits to

the more accurate Einasto density profile fits. We find that the ratios agree to within a

percent. In other words, while the NFW mass profile systematically overestimates the

cluster potential profiles, the ratio of NFW potentials is unbiased. Similar arguments

can be made about other possible systematics, including line-of-sight effects, velocity
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bias, and velocity anisotropies as mentioned in the bullet points above (Svensmark

et al., 2015; Gifford & Miller, 2013a; Lemze et al., 2012).

5.6 Statistical Constraints on f(R) gravity

Given our analysis of systematics detailed above, we can provide a robust estimate

of how well our probe will be able to constrain MG on the two different cluster

samples we simulate. To differentiate between GR and f(R) gravity, we assume that

we live in a GR universe with a ΛCDM cosmology, and calculate the χ2 between this

measurement and the theoretical expectations of the various f(R) gravity models.

The error on the GR measurements arises from two sources: (1) the statistical error

from boot-strap re-sampling of the mean and (2) the systematic error that takes into

account the cosmic variance. Therefore, the variance used in our χ2 calculation in

what follows is taken to be these combined statistical and systematic errors added in

quadrature.

We first compare against a stacked ensemble of clusters. In particular, we assume

an SDSS-like cluster sample with 10 stacked clusters per ensemble and 5 cluster

ensembles per mass bin. Recall that individually the clusters are too poorly sampled

in their spectroscopy. However, the two ensemble clusters would have a high signal-

to-noise weak lensing mass profile as well as a well-determined escape velocity profile.

In this case, the cosmic variance term dominates the error budget. More specifically,

we take the gray error bands on Figure 5.3 and we calculate what value of |fR0| would

yield a ratio profile (assuming the same GR masses) that is 2σ away via the χ2 test

mentioned in the previous paragraph. What we find is that we can differentiate GR

from |fR0| = 5.5× 10−6 at 2σ.

By increasing the sample size we can improve these constraints. In particular,

as shown in Fig. 5.4, we show that with the DESI-like sample of galaxy clusters,

we can constrain |fR0| = 4 × 10−6 (2 × 10−6) at > 5σ (> 2σ) by doing the same

aforementioned χ2 calculation but now using the black dots (and errors) shown in

Fig. 5.4 as our “measurement.”

These are competitive forecasts compared with the two most recent galaxy cluster-

scale constraints. For example, Wilcox et al. (2015) presents an analysis of 58 clusters

in the XMM sample that constrains |fR0| < 6×10−5 at the 95% confidence level (CL).

Similar to the potential ratio test presented here, Wilcox et al. (2015) focuses only

on cluster scales, i.e., within the virialized region of clusters. Using stacking on only

50 clusters per mass bin and after including both statistical and systematic uncer-
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Figure 5.4: The projected gravitational potential ratio for a DESI-like galaxy cluster
sample (black dots and bootstrap error on the mean) as inferred from synthetic galaxy
clusters from the light cone provided by Henriques et al. (2012). Compared to Fig.5.2
(where the ratio is inferred from a 3D phase space) we see that projection significantly
increases the statistical error. The DESI sample is significantly larger as it contains
9.6 times many more clusters and so the systematic error is significantly reduced
(286 low mass clusters and 96 high mass clusters). From this we can determine
which gravitational theory best matches the ”observation.” To visualize this, we plot
both the GR theoretical prediction (black line) and two f(R) theoretical predictions
(orange-red and yellow). We conclude that our probe can differentiate between GR
and |fR0| = 4× 10−6 (2× 10−6) at > 5σ (> 2σ).
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tainties on the observable, our potential ratio test can achieve an order-of-magnitude

improvement over observational constraints set by Wilcox et al. (2015). The most

competitive cluster-scale constraint is set by Cataneo et al. (2015) with a cluster

abundance analysis. They find that |fR0| < 1.62 × 10−5 at 95% CL. With the the

DESI-like sample, our test should be able to differentiate |fR0| = 1.62× 10−5 and GR

at >> 5σ.

5.7 Summary

In this chapter, we propose a new test of gravity within galaxy clusters that

leverages the ways in which modifications to gravity alter the dynamical potential

while leaving the weak-lensing inferred potential profile unchanged. We take the

ratio of the squared escape velocity profile for high and low mass clusters as our

observable. We do this for two reasons: 1) it leverages the fact that Chameleon

screening leaves the dynamics of the high mass clusters unaffected compared to the

low mass clusters and 2) it removes any systematic that is present in both samples,

such as velocity bias and velocity anisotropy. While this test can be applied generally

to any new model for gravity which has this property, we test it against Chameleon

f(R) gravity.

We first use simulations to show that particles, as tracers of the dynamical grav-

itational potential within galaxy clusters, do have enhanced escape velocity profiles

compared to expectations from their non-dynamical (i.e. particle) masses. We then

use mock galaxy catalogs to understand the role of systematics in quantifying how

well we can rule out f(R) gravity. We study two cases. The first utilizes a realistic

but rather small number of clusters which we stack to create 2 cluster ensembles

with different mass bins. We also study a second dataset which is much larger and

more representative of what we expect from future surveys. In the former, cosmic

variance dominates the systematic error budget, while in the latter 2D projection

effects dominate. In either case, we find that our probe is more sensitive, by an order

of magnitude, over current cluster-based tests for Chameleon f(R) gravity. More

specifically, we have quantified our prediction for a DESI Bright Galaxy Sample-like

set of clusters to push down current constraints to |fR0| < 2× 10−6 at > 2σ.
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CHAPTER VI

Openings

This dissertation proposes and tests a new way to model the projected escape

velocity profile of galaxy clusters by including the effects of our accelerating universe.

From this model, we have argued that if the projected escape velocity profiles can

be de-projected through an independent measurement of the anisotropy parameter

β, then we could utilize the cosmology dependence as a novel probe of cosmology.

We have developed such an approach to derive β profiles. Moreover, with the Fisher

information matrix formalism we have calculated how well this theoretical observable

can constrain relativistic cosmological models. Lastly, dropping the presupposition

that general relativity is the only way to theorize gravity, we have developed a novel

probe of Chameleon f(R) gravity that utilizes the escape velocity profile’s sensitivity

to changes in the gravitational potential.

In these closing remarks we attempt to briefly sketch out some possible openings

and lines of research that this dissertation has made evident. More specifically, we

provide some critical reflections (some more specific than others) as well as speculate

on possible ways of continuing to grapple with some of the problems and possibilities

posed by this work.

6.1 The cosmology and redshift dependent vesc

As presented in Chapter IV, our cosmological probe can currently constrain ac-

celerating cosmologies to high precision. However, the balance of forces argument

with which we derive our theoretical expectation for the escape velocity profile (see

Chapter II) is not directly applicable in a non-accelerating universe. In particular, as

z approaches the deceleration-to-acceleration transition redshift, we recover the non-

cosmology dependent result (ie. the result derived from integrating the acceleration
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equation to infinity rather than to the equivalent radius). As such, more theoreti-

cal work needs to be done to be able to make the theoretical observable sensitive to

cosmology at epochs beyond the deceleration-to-acceleration transition redshift.

We note that beyond that redshift (which is, of course, cosmology dependent)

clusters are just forming and therefore the probe could not be practically used be-

yond it. Furthermore, an extensive constellation of cosmological probes all provide

independent lines of evidence that q0 > 0. Given these two reasons one could ask:

why would we propose that this be further investigated?

For one, as shown in Chapter II, one of the consequences of our model is that at

high z, the escape velocity profiles increases. See for instance Fig. 2.1 – increasing the

ΩM parameter at a fixed redshift increases the escape velocity profile. This behavior

is equivalent to placing the cluster in an epoch where ΩM is higher (namely, at higher

z). While we have implicitly corroborated our theoretical observable works with both

N-body simulations and archival cluster data we have not studied the behavior of

neither the escape velocity edge of clusters (neither synthetic nor real) at (or near)

the transition redshift for different cosmologies.

In short, our model predicts that a very high redshift cluster would have a higher

escape velocity than a cluster of the same mass at a lower redshift. We should be

able to test this prediction more directly than we have in this dissertation– especially

given the proliferation of deep and high quality spectroscopic measurements from

observational programs such as the Dark Energy Spectroscopic Instrument (DESI) as

well as the proliferation of suites of N-body simulations with different cosmologies.

6.2 Probing modified theories of gravity: redshift depen-

dence and radius

As we argued in the previous chapter, the test of gravity we propose in this thesis

is designed to leverage the next generation large-scale photometric and spectroscopic

surveys (e.g., the Dark Energy Survey (Diehl et al., 2014) and the Dark Energy

Spectroscopic Instrument–DESI) that will provide high quality weak-lensing mass

profiles of clusters as well as deep and plentiful spectroscopic follow-up of the cluster

phase spaces. Furthermore, while we focus on scales within the virial sphere, we

note that the difference between the GR and f(R) gravity ratio increases as we go

out to larger radii. This is due to the scalaron’s fifth force being more effective in

the outskirts of clusters where the density is lower. We also note that the difference

between the GR and f(R) gravity decreases with increasing redshift. We have not yet
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included these effects in our statistical analysis, but we expect that they will prove

useful in setting even tighter constraints. In short, we hope that these expectations

will be probed in a future effort.

6.3 To stack or not to stack?

In both Chapter IV and Chapter V we grapple with the possibilities and chal-

lenges of two different observational strategies that could roughly be reduced to the

following question: should we stack galaxy clusters or not? Put differently, should

our observational strategy be focused on obtaining deep spectroscopy of individual

clusters (i.e. have well-sampled phase spaces with a high level of completeness to

clearly determine the escape velocity edges) or on attaining less well-sampled indi-

vidual cluster phase spaces (perhaps with a broader redshift range) in order to stack

them by mass (or richness)? Recall that for both of our probes, the phase space cat-

alogs would have to be cross-correlated with weak lensing mass profile catalogs. For

the case of the individual cluster observational strategy, therefore, this would require

observing clusters in such a way to attain both a well-sampled phase space and a

high signal-to-noise weak lensing shear profile. What we want to highlight, then, is

that for both the cosmology and modified gravity probes, given the current horizon

of observational programs, the stacked analysis may be the most viable option to set

the tightest constraints.

As an example, take a recent publication (Rines et al., 2017) which significantly

extends the Hectospec Cluster Survey of red-sequence selected cluster (HeCS) sam-

ple that is cross-correlated with the redMaPPer catalog (Rykoff et al., 2014). This

catalog, even though it is composed of clusters with very well-sampled phase spaces,

is low redshift (z ≤ 0.25). A similar situation happens with DESI, as is discussed

in the preceding chapters. As such, in the short-term, creating a cluster sample of

N = 1000 in a broad redshift range (0 ≤ z ≤ 0.7) with well-sampled phase spaces

and high-to-noise weak lensing mass profiles may imply that, for now, stacking is the

only solution to achieve competitive constraints.

However, stacking (both in terms of cluster phase spaces and weak lensing signals)

has its own complications. In relation to the latter, problems related to miscentering

(which especially affects cluster cores and thereby the inferred cluster concentration

parameter) and purity are two of the dominant systematics. See, for example, Becker

& Kravtsov (2011b) and Rozo et al. (2011) and references therein to appreciate how

these systematics affect the inferred weak lensing masses and how their effects can be
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undercut. In relation to the former, Gifford et al. (2017) has studied different ways

of stacking galaxy cluster phase spaces and throughly quantified the systematics at

work.

As such, we expect that work which attempts to further develop the probes pre-

sented in this dissertation in the context of the aforementioned systematics related

to stacking may prove to be fruitful in setting tight constraints of both relativistic

cosmologies and modified theories of gravity in the near future.

6.4 Toward a global galaxy cluster velocity anisotropy

While our specific derivation of the cluster velocity anisotropy profile (via the

Jeans equation formalism, as shown in Chapter III) is shown to be either weakly

dependent or independent from the chosen potential-density pair, this is only because

we have chosen to avoid the inner-most core region of the galaxy cluster. If we had not

done that, both the density and the spatial derivatives of the potential diverge both

deep in the core and in the outskirts of clusters. In particular, the NFW potential-

density pair model is higher in both the core and the outskirts than the results attained

with the Einasto model. This model-dependence should also be further studied in the

context of the mass-dependence of β. Furthermore, we note that if there is indeed a

mass dependence, it could introduce a small bias in our probe of Chameleon gravity,

given that this probe depends precisely on the assumption that β for high masses is

about the same as β for low masses.

Lastly, we want to emphasize that until this work, only one other work (that of

Wojtak &  Lokas (2010)) utilized a statistically robust sample (N & 30) to derive a

“global” anisotropy parameter value with currently available data. Our approach to

derive β’s is dependent on joint dynamical and weak lensing measurements of galaxy

clusters. Therefore, we hope that the proliferation of measurements on this front will

put even tighter constraints on the global anisotropy profile value.

6.5 Something always escapes

The core of the argument worked out in this dissertation is just a mere coming

to terms with the dynamical character of our cosmos in the scale of galaxy clusters–

from which we then draw conclusions for our cosmological models and gravitational

theories. While today it is “common sense” that the universe is accelerating, the

consequences of this had neither been brought to bear with the dynamics of clustered
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galaxies nor with the theoretical observable we work with through this thesis – the es-

cape velocity of galaxy clusters. The exception, as mentioned in Chapter II, has been

the seminal work of Regoes (1996) and Regoes & Geller (1989b) which attempted to

investigate the cosmological dependence of the caustics through the spherical collapse

model.

In these works, as well as in ours, we sense a certain vacillation between the rela-

tivistic intuition of gravitation as the curvature of space and the Newtonian intuition

of forces at a distance acting between massive bodies. Galaxy clusters then, in some

sense, exist in a regime where the Newtonian intuition still makes sense but must be

complemented by that of relativistic cosmology. We speculate that this is perhaps

symptomatic of our epoch–which still thinks in the wake of the shift of paradigm that

general relativity represented but has not fully come to terms with its consequences.

We also emphasize that this is a self-criticism that challenges the presuppositions at

work in this dissertation (for instance, in multiple instances, such as in the definition

of the equivalence radius, we still speak of “forces”). Perhaps coming to terms with

the consequences of this shift, and what this implies for our so called “eternal” laws

of nature is still a task that faces us.

Modified theories of gravity such as the one studied in this dissertation are an

attempt to do just that. While we agree that these theories are simply “toy models”

and not fully developed theories, they may still nonetheless point to the ways in

which a full theory may be developed. In particular, these theories implicitly make

the case that perhaps our so called “laws of nature” are not eternal and unchanging

but emerge from the contingent character of our universe. And yet, our dynamical

universe demonstrates a tremendous degree of regularity and repetition.

So, in that sense, this work is an attempt to continue to inhabit the patterns

and regularities that necessarily emerge out of the radical contingency and dynamical

character of our cosmos which, despite our best attempts to capture its dynamics,

continues to escape even our most convincing characterizations.
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APPENDIX A

Derivation of qH2 for various cosmological cases

In what follows we derive the Hubble and deceleration parameters for cosmologies

of interest, used in Chapter V, via the general expression,

H2 = H2
0E

2(z) = H2
0

[
ΩM(1+z)3 +Ωk(1+z)2 +ΩDE exp

{
3

∫ z

0

dz

(1 + z′)
[1+w(z′)]

}]
.

(A.1)

Where the spatial curvature density parameter is as usual, Ωk = 1 − ΩM − ΩDE.

Furthermore, once we have the Hubble parameter as a function of redshift we can

derive the corresponding deceleration parameter, q ≡ −äa/ȧ2, as a function of redshift

via,

q =
(1 + z)

H

dH

dz
− 1. (A.2)

As such, finding q is just a matter of taking derivative with respect to z.

Constant equation of state w

The Hubble parameter for this flat case is straightforward,

H2 = H2
0E(z)2 = H2

0

[
ΩM(1 + z)3 + ΩDE(1 + z)3(1+w0)

]
(A.3)

And so are the derivatives,

dH

dz
=
H0

2

3ΩM(1 + z)2 + ΩDE(3(1 + w0))(1 + z)3(1+w0)−1√
ΩM(1 + z)3 + Ωw0(1 + z)3(1+w0)

(A.4)

But we can identify the denominator as E(z), and from there we can find q(z),
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1 + z

H

dH

dz
−1 =

1 + z

H0E(z)

H0

2

3ΩM(1 + z)2 + ΩDE(3(1 + w0))(1 + z)3(1+w0)−1

E(z)
−1 (A.5)

Multiplying and dividing by E2(z),

q =
1

E2(z)

[
3

2
ΩM(1+z)3+

3

2
ΩDE(1+w0)(1+z)3(1+w0)−ΩM(1+z)3−ΩDE(1+z)3(1+w0)

]
(A.6)

And so we have,

q =
1

2

(
ΩM(z) + (1 + 3w0)ΩDE(z)

)
(A.7)

w0 and wa

For the case of dynamic dark energy we utilize the generalized Hubble term in

terms of the scale factor to make the integration more straightforward,

H2(a) =H2
0

[
ΩMa

−3 + Ωka
−2 + ΩDE exp

{
3

∫ 1

a

da′

a′
[1 + w(a′)]

}]
(A.8)

Where Ωk = 1−ΩM −ΩDE. But here we consider the flat case. As such, Ωk = 0.

Now, assuming the CPL parametrization of dark energy,

w(a) =w0 + wa(1− a)

w(z) =w0 + wa
z

1 + z

(A.9)

We calculate the term in the exponential for the Hubble parameter above,∫ 1

a

da′

a′
[1 + w(a′)] =

∫ 1

a

da′

a′
[1 + w0 + wa − waa′))]

=(1 + w0 + wa)

∫ 1

a

da′

a′
− wa

∫ 1

a

da′

=− (1 + w0 + wa) ln(a)− wa[1− a]

(A.10)

Taking the exponential,

exp

{
− 3(1 + w0 + wa) ln(a)− 3wa[1− a]

}
=a−3(1+w0+wa)e−3wa(1−a) (A.11)
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Turning the term back into redshift, using a = (1 + z)−1 and 1 − a = z/(1 + z),

we get:

exp

{
3

∫ 1

a

da′

a′
[1 + w(a′)]

}
= (1 + z)3(1+w0+wa)e−3waz/(1+z) (A.12)

And so for the flat universe dynamic dark energy we have,

H2(z) =H2
0E(z)2

=H2
0

[
ΩM(1 + z)3 + ΩDE(1 + z)3(1+w0+wa)e−3waz/(1+z)

]
(A.13)

Now we need to also calculate the acceleration parameter which is non-trivial. It

is not just a matter of replacing w with w(z). As such, we utilize the following general

expression for the deceleration parameter shown above,

q =
(1 + z)

H(z)

dH(z)

dz
− 1 (A.14)

Taking the derivatives of H(z) shown above with Ωk = 0 and using the CPL

parametrization of w(z),

dH

dz
=

3H0(z + 1)e−
3waz
z+1

(
ΩDE(w0z + w0 + waz + z + 1)(z + 1)3(w0+wa) + ΩM(z + 1)e

3waz
z+1

)
2

√
ΩDEe

− 3waz
z+1 (z + 1)3(w0+wa+1) + ΩM(z + 1)3

=
3

2

H0

E(z)

(
ΩM(1 + z)2 + ΩDE

(
w0z + w0 + waz

)
(1 + z)3(w0+wa)+1e

−3waz
z+1

)

=
3

2

H0

E(z)

(
ΩM(1 + z)2 + ΩDE

[
1 + w0 +

waz

1 + z

]
(1 + z)3(w0+wa)+2e−

3waz
1+z

)
(A.15)
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Where in the last step we have used the following factorization,

1 + z + w0z + w0 + waz =(1 + z)

[
1 +

1

1 + z
(w0z + w0 + waz)

]

=(1 + z)

[
1 +

1

1 + z
(w0(1 + z) + waz)

]

=(1 + z)

[
1 + w0 +

waz

1 + z

] (A.16)

Now multiplying,

q =
1 + z

H0E(z)

3

2

H0

E(z)

(
ΩM(1 + z)2 + ΩDE

[
1 + w0 +

waz

1 + z

]
(1 + z)3(w0+wa)+2e−

3waz
1+z

)
− 1

=
3

2

1

E2(z)

(
ΩM(1 + z)3 + ΩDE

[
1 + w0 +

waz

1 + z

]
(1 + z)3(1+w0+wa)e−

3waz
1+z

)
− 1

=
1

2

ΩM(1 + z)3

E2(z)
+

1

E(z)2
ΩDE(1 + z)3(1+w0+wa)e−

3waz
1+z

(
3

2

[
1 + w0 +

waz

1 + z

]
− 2

2

)
=

1

2E2(z)

[
ΩM(1 + z)3 + ΩDE(1 + z)3(1+w0+wa)e−

3waz
1+z

(
1 + 3w0 +

3waz

1 + z

)]
(A.17)

Re-writing the redshift-evolving energy densities, we now have,

q =
1

2

[
ΩM(z) + ΩDE(z)

(
1 + 3w0 +

3waz

1 + z

)]
(A.18)

Non-flat universe, ΩM and ΩΛ

We follow the same approach as before and write down the Hubble parameter for

this case,

H2 = H2
0E(z)2 = H2

0

[
ΩM(1 + z)3 + ΩΛ + Ωk(1 + z)2

]
(A.19)

Taking the derivative,

dH

dz
=
H0

2

1

E(z)

[
3(1 + z)2ΩM + 2Ωk(1 + z)

]
(A.20)

Now solving to get q(z) and following the steps as before (ie multiplying and
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dividing by E2(z) in the second term and so on),

1 + z

H

dH

dz
− 1 =

(1 + z)

H0E(z)

H0

2

3(1 + z)2ΩM + 2Ωk(1 + z)

E(z)
− 1

=
1

E(z)2

[
3

2
(1 + z)3ΩM + Ωk(1 + z)2 − ΩM(1 + z)3 − ΩΛ − Ωk(1 + z)2

]
=

1

E(z)2

[
1

2
(1 + z)3ΩM − ΩΛ

]
(A.21)

And so we have,

q =
1

2
ΩM(z)− ΩΛ(z) (A.22)
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APPENDIX B

Fisher matrix derivation

In the following pages, we derive the Fisher matrix (Fij) discussed in Chapter V.

Generally, the Fisher information is given by the second order term of the Taylor

expansion of the likelihood evaluated around the peak,

Fij =

〈
− ∂2 lnL
∂pj∂pj

〉
(B.1)

Where the likelihood (L) is assumed to be gaussian. Furthermore, the errors on

the edge (σ2
v) are all independent and taken to be constant (covariance is nil) and so

we have simply:

lnL =− χ2

2

=− 1

2

∑
j,k

1

σ2
v

(vth(r)− vobs(r))2
(B.2)

Where we are summing over both j clusters as well as k radial bins. In what fol-

lows, for simplicity, we drop the radial function nomenclature and denote the addition

over both j and k simply as n. Now, putting this into the derivatives above,
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Fij =
1

2

∂2

∂pi∂pj

(∑
n

1

σ2
v

(vth − vobs)2

)
=

1

2σ2
v

∂2

∂pi∂pj

(∑
n

(vth − vobs)2

)
=

1

2σ2
v

∑
n

∂2

∂pi∂pj

(
(vth)2 − 2vthvobs + (vobs)2

) (B.3)

Immediately we notice that the derivatives of vobs are zero given that these are

just constant numbers. Let us calculate the remaining derivatives for the first and

middle terms respectively. For the first term we have,

∂

∂pi

(
∂

∂pj

(
(vth)2

))
=
∂

∂pi

(
2vth

∂vth

∂pj

)

=2
∂vth

∂pi

∂vth

∂pj
+ 2vth

∂2vth

∂pi∂pj

(B.4)

Now for the second (ie. the ”middle”) term,

∂

∂pi

(
∂

∂pj

(
− 2vthvobs

))
=− 2

∂

∂pi

(
∂vth

∂pj
vobs + vth

∂vobs

∂pj

)
(B.5)

As before, the second term which contains the derivative of the constant velocities

goes to zero,

−2
∂

∂pi

(
∂vth

∂pj
vobs + 0

)
=− 2

(
∂2vth

∂pi∂pj
vobs +

∂vth

∂pj

∂vobs

∂pi

)

=− 2
∂2vth

∂pi∂pj
vobs

(B.6)
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Combining these results and returning to the Fisher matrix,

Fij =
1

σ2
v

∑
n

∂vth

∂pi

∂vth

∂pj
+ vth

∂2vth

∂pi∂pj
− ∂2vth

∂pi∂pj
vobs

=
1

σ2
v

∑
n

∂vth

∂pi

∂vth

∂pj
+

∂2vth

∂pi∂pj
(vth − vobs)

(B.7)

On average, given no systematic bias, the second term drops off and we’re left

with,

Fij =
1

σ2
v

∑
n

∂vth

∂pi

∂vth

∂pj
(B.8)
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APPENDIX C

Fisher matrix structure

In these sections we detail the structure of both the Fij and Fprior matrices pre-

sented in Chapter V.

Fij matrix structure

A schematic of the Fij matrix and its submatrices is shown in Fig. C.1. As

indicated by the figure, there are three main component submatrices to the Fij matrix:

the ”cosmo-cosmo” submatrix (orange), the ”cluster-cosmo” submatrices (red), and

the ”cluster-cluster” submatrices (green). The zeros indicate that the ”off-diagonal”

terms are nil. We describe the components of these submatrices in the following three

subsections.

Cosmo-cosmo submatrix structure. In the top left of the matrix (see Fig. C.1)

we have an Ncosmo by Ncosmo submatrix which is composed exclusively of the deriva-

tives of our observable with respect to cosmological parameters. Let’s consider the

flat wCDM case, pcosmo ∈ {ΩM , w, h}, and take a look at some terms. For this case,

the first term in this submatrix is then,

F00 =
1

σ2
vesc

∑
n,k

∂vesc(zn, rk)

∂ΩM

∂vesc(zn, rk)

∂ΩM

. (C.1)

The off-diagonal term in the first column second row is simply,

F01 =
1

σ2
vesc

∑
n,k

∂vesc(zn, rk)

∂ΩM

∂vesc(zn, rk)

∂w
. (C.2)

Therefore, we are adding information on some cosmological parameter (or a combi-

nation, as in the off diagonal term) both across n clusters and k radial bins. As we
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Figure C.1: Structure of the Ndim × Ndim (see Eq. (4.19)) Fij matrix. The ”cosmo-
cosmo” submatrix (orange) has dimensions Ncosmo × Ncosmo and contains the infor-
mation solely of the cosmological parameters and their inverse covariances. The
”cosmo-cluster” submatrices (red) lie along the first row and column of the Fij ma-
trix and are composed of the cross-correlated information between cluster parameters
and cosmological parameters. Note that along the first column these submatrices
have dimension Nclus × Ncosmo, and along the first row, the matrices are transposed
and therefore have dimensions Ncosmo ×Nclus. Lastly, the ”cluster-cluster” submatri-
ces (green) lie along the diagonal and have dimensions Nclus ×Nclus. Note that zeros
populate the off-diagonal spaces given that there is no correlation between clusters,
so that the derivatives cancel out.

detail in the next two sections, this is not the case for all other elements in the Fij

matrix.

Cosmo-cluster submatrices structure. Now let us take a look at the ”cosmo-

cluster” submatrices of Fig. C.1 (shown in red). Staying in the first row but now

looking at the fourth column, we are now looking at the cross information attained

from cosmology and cluster parameters. In this case, the anisotropy parameter for

cluster 1 (β1), the matrix element is,

F03 =
1

σ2
vesc

∑
n,k

∂vesc(zn, rk)

∂ΩM

∂vesc(zn, rk)

∂β1

=
1

σ2
vesc

∑
k

∂vesc(z1, rk)

∂ΩM

∂vesc(z1, rk)

∂β1

+

1

σ2
vesc

∑
k

∂vesc(z2, rk)

∂ΩM �
��

�
��
�*0

∂vesc(z2, rk)

∂β1

+ . . . (C.3)

Immediately we notice that the second term of the second sum (i.e. the deriva-

tive with respect to β1 for the second cluster z2), is nil. Therefore, unlike the

”cosmo-cosmo” submatrices, in these submatrices we only sum over the kth radial

bin of the cluster corresponding to that column. This is the case for subsequent
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columns and rows (by symmetry). For instance, if Ncosmo = 3 then, F0j, F1j, F2j

where j = {3, 4, 5, . . . , Ndim}. Symmetry yields the same for Fi0, Fi1, Fi2 where

i = {3, 4, 5, . . . , Ndim}. The structure is the same for the ”cluster-cosmo” subma-

trices along the first column, where the submatrices are simply transposed, as evoked

by the superscript T in Fig. C.1.

Cluster-cluster submatrices structure. Lastly, let us now take a look at the

”cluster-cluster” submatrices of Fig. C.1 (green). These submatrices express simply

the covariance between cluster parameters for a given cluster. Taking a look at the

first element of the first submatrix on the diagonal (the ”cluster 1-cluster 1” submatrix

of Fig. C.1),

F33 =
1

σ2
vesc

∑
n,k

∂vesc(zn, rk)

∂β1

∂vesc(zn, rk)

∂β1

=
1

σ2
vesc

∑
k

∂vesc(z1, rk)

∂β1

∂vesc(z1, rk)

∂β1

+

1

σ2
vesc

∑
k ��

���
���

���
���:0

∂vesc(z2, rk)

∂β1

∂vesc(z2, rk)

∂β1

+ . . .

(C.4)

We see that the second term and on will yield 0 given that they are the derivatives

of clusters zn6=1 with respect to β1. This simply demonstrates that there is no cross

correlation between clusters, as expected. Therefore, along the diagonal of Fij we

have 4 × 4 matrices of the various cluster parameters with respect to a given cluster,

from cluster 1 to cluster Ndim.

Let us take a look now at some of the off diagonal submatrices, say between cluster

1 and cluster 2. The first element is,

F73 =
1

σ2
vesc

∑
n,k

∂vesc(zn, rk)

∂β2

∂vesc(zn, rk)

∂β1

=
1

σ2
vesc

∑
k �

��
�
��
�*0

∂vesc(z1, rk)

∂β2

∂vesc(z1, rk)

∂β1

+

1

σ2
vesc

∑
k

∂vesc(z2, rk)

∂β2 �
��

�
��
�*0

∂vesc(z2, rk)

∂β1

+ . . .

(C.5)
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Note that the first term in the sum over the radial bins of the first cluster (n = 1)

is nil, and so is the second term of the sum over the radial bins of the second cluster

(n = 2). By induction, all other terms are also nil. Therefore, these off diagonal

terms are all zero given that there is no cross correlation between cluster parameters

of different clusters. All of these terms are aptly represented by “0”’s in Fig. C.1.

Fprior matrix sub-structure

In this section we describe the structure of the prior matrix found in Eq. (4.16).

In particular, we focus on the structure of the submatrix elements of the Fprior matrix

in Eq. (4.22). The covariance submatrices that lie along the diagonal of Eq. (4.22)

are given by,

Ccluster =


σ2
β 0 0 0

0 σ2
α 0 0

0 0 σ2
r−2

−0.7σρ−2σr−2

0 0 −0.7σρ−2σr−2 σ2
ρ−2

 . (C.6)

Note that the only non-zero terms off the diagonal is the covariance between r−2

and ρ−2. Specific values for these matrix elements and the code used to produce the

matrices from which we derive the constraints on cosmological parameters can be

found online at https://github.com/alejostark/phase_space_cosmo_fisher.
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APPENDIX D

Weak lensing mass covariance with cosmology

In this section, we consider how uncertainties in the cosmological parameters affect

the weak lensing mass uncertainties, which, recall, are in turn featured in our prior

information matrix Ccluster (see Chapter V).

To do this, we carry out a quantitative investigation utilizing the Cluster-Lensing

code of Ford (2016). We start out by building a Σ(r) surface density shear profile for

one fiducial cluster with M200 = 4 × 1014M�. We first create this profile assuming

fixed, fiducial values of the cosmological parameters. We assume the profile has

Gaussian errors of such size to ensure that we recover a 20% statistical error on the

cluster mass after performing a simple χ2 analysis.

We then allow the cosmological parameters to vary, and conduct a Markov Chain

Monte Carlo (MCMC) analysis with emcee to sample the posterior distribution and

examine the likelihood of the inferred mass M200 Foreman-Mackey et al. (2013). The

likelihood model is given by

lnL(Σ|rk, z,Θ) = −1

2

∑
k

(
Σ(rk, z,Θfid)− Σ(rk, z,Θ)

)2

σ2
Σ

. (D.1)

Assuming the flat wCDM model, our parameter set is given by Θ = {ΩM , w, h,M200}.
Note that the cluster profile information is reduced to a single parameter, M200, be-

cause the Cluster-Lensing code uses a mass-concentration relation to create the Σ(r)

profile Ford (2016). For a single mock Σ(r) profile, after marginalizing over all other

parameters we find that the total error in the cluster mass scale increases from 20%

to 40%. That is, if cosmological parameters are allowed to vary, the weak lensing
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Figure D.1: Marginalized likelihood of the inferred mass of our fiducial cluster (M200 =
4 × 1014M�) from the weak lensing surface density shear profile Σ(r). The total
uncertainty in the inferred mass increases by a factor of ∼ 2 if no prior on the
cosmological parameters is introduced; however, a reasonable prior on the Hubble
parameter h from Riess et al. (2016) recovers most of the lost information on M200.

mass error increases by a factor of two. We confirm this using statistical errors of 5%

and also 40%.

We show the marginalized posterior likelihood in Fig. D.1. Three different prior

likelihoods are shown: a strong prior, basically fixing cosmology (represented by the

solid black line), a prior only on h (dashed line), and no prior (dotted line). Note

how the 20% systematic error likelihood is broadened if cosmological parameters are

allowed to vary, but that we can almost totally reduce the cosmological systematic

error simply by applying a reasonable prior on the Hubble parameter of Riess et al.

(2016) (σh = 0.0174). We tabulate the resulting uncertainties in the Einasto cluster

parameters in Table 4.1. As stated in the previous subsection, the code used to

produce these results can be found online. Lastly, we note that since the bias in

the recovered mass (dotted and dashed) is small, and we do not factor it into our
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analysis.
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Busha, M. T., Adams, F. C., Wechsler, R. H., & Evrard, A. E. 2003, ApJ, 596, 713

Caldwell, R. R. 2002, Physics Letters B, 545, 23

Carlberg, R. G., Yee, H. K. C., Ellingson, E., et al. 1997, ApJ, 485, L13

Cataneo, M., Rapetti, D., Schmidt, F., et al. 2015, Phys. Rev. D, 92, 044009

Chevallier, M., & Polarski, D. 2001, International Journal of Modern Physics D, 10,
213

Clowe, D., Luppino, G. A., Kaiser, N., & Gioia, I. M. 2000, ApJ, 539, 540

Coe, D. 2009, ArXiv e-prints, arXiv:0906.4123

Creminelli, P., D’Amico, G., Norea, J., & Vernizzi, F. 2009, Journal of Cosmology
and Astroparticle Physics, 2009, 018
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