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entropic forces in two-dimensional systems: 𝑟, 𝜃1, 𝜃2. 𝜃1 is the angle 

between the orientation of particle 𝑖 and the interparticle vector 𝑟𝑖𝑗 (and vice 

versa for 𝜃2). This coordinate system distinguishes between pair orientations 

integrated over in the 𝑥, 𝑦 coordinate system (see Figure 5-2c for an 

example). c Contour plots of excess entropy density ∆𝑆𝑟, 𝜃1, 𝜃2 at three 

distances 𝑟 for hard hexagons at packing fraction 𝜙 = 0.75: 𝑟peak = 1.026 

contains the highest excess entropy max∆𝑆 in the landscape, corresponding 

to the edge-aligned pair configuration, shown as a dot at the preferred motif 

𝑟 = 1.026, 𝜃1 = 𝜋6, 𝜃2 = 𝜋6; 𝑟steric = 1.078 is the closest distance that 

particle pairs may freely rotate, breaking an entropic bond. The negative 
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excess entropy of this configuration indicates that such configurations are 

unfavorable; 𝑟transition = 1.094 contains the transition states between 

entropic bonds, indicated with dots at the vertex-to-edge configuration 𝑟 =

1.094, 𝜃1 = 0, 𝜋3, 𝜃2 = 0, 𝜋3. See Figure 5-4 for plots at 𝜙 = 0.55, 0, .65, 0.85 

(see Figure 5-5 for a schematic of an entropic bonding transition). 

Hashmarks indicate pair configurations forbidden due to geometric overlap. 

Colorbar indicates constant ∆𝑆 contours corresponding to isosurfaces in 

panel d. Due to the symmetry of regular hexagons (panel b), the entropy 

density landscape is periodic, repeating every 𝜋3; thus, the range of the     

landscapes is restricted to 𝜃1, 𝜃2 ∈ 0, 𝜋3. D Excess entropy density 

isosurfaces in 𝑟, 𝜃1, 𝜃2. Markers (filled sphere) indicate max∆𝑆at 𝑟 = 1.026 

and transition states at 𝑟 = 1.094. e Bond lifetime distribution for hard regular 

hexagons at four densities 𝜙 = 0.55, 0, .65, 0.75, 0.85, corresponding to low-

density fluid, high-density fluid, low-density solid, and high-density solid 

phases, respectively. Each data series is shifted by a decade for visual 

clarity. For each data set, statistical error calculated from four independent 

samples is smaller than plot markers. The line added above the data shows 

the power-law decay behavior of entropic bonds at short times. ................. 73 

Figure 5-4 Three-dimensional PMFTs in the 𝑟, 𝜃1, 𝜃2 coordinate system for 

systems of hard hexagons at a 𝜙 = 0.55, b 𝜙 = 0.65, c 𝜙 = 0.75 (shown in 

Figure 5-3, outlined here in a dashed line), and d 𝜙 = 0.85. The far-left 

column shows a 3D rendering of isosurfaces of constant-entropy density, 

while the right three columns show slices through the three-dimensional 
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space perpendicular to the r-dimension. The isosurface renderings contain 

markers for the maximum entropy (centered) and entropy associated with 

entropic bond transitions (centered on the faces). The cross-sections in the 

far-right column 𝑟 = 1.094 are rendered within the three-dimensional 

rendering (far-left column) for visual aid. ....................................................... 74 

Figure 5-5 Schematic of entropic bond transition between two entropy-density 

maximum/free-energy minimum states of the lower-density solid hard 

hexagon system 𝜙 = 0.75. Watershed image segmentation (see Figure 5-1, 

Chapter 2.3.1, Figure 2-4)determines which voxels belong to each bond 

(here shown in green and blue), while the transition state (shown in grey) is 

identified by determining the highest entropy-density/lowest free-energy 

state on the interface of the two bonds. Both a top-view a and a side-view b 

of the free-energy landscape is included, and a proposed reaction 

coordinate is provided, showing one possible pathway particles may take to 

reconfigure from one bond configuration to another. .................................... 75 

Figure 5-6 a Schematic illustrating alternate coordinates for particle orientation 

associated with particle libration: 𝜃 + and 𝜃 −. 𝜃 + accounts for shearing 

motion, and 𝜃 − accounts for twisting motion. b Isometric view of entropy 

density landscape, with the different regions corresponding to different 

entropic bonds colored by bond type. c Top view of the entropy-density 

landscape shown in b, with entropic bond motifs labeled as follows: primary 

bonds (green), present in both hexagonal and herringbone lattices; 

hexagonal bonds (blue), present only in the hexagonal lattice; herringbone 
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bonds (orange), present only in the herringbone lattice; and defect bonds 

(red), which are antagonistic to either crystal lattice. Note that due to the 

symmetry of elongated rhombs, the entropy density landscape is periodic, 

repeating every 𝜋; thus, the range of the landscapes is restricted to 𝜃1, 𝜃2 ∈

0, 𝜋. Excess entropy density isosurfaces indicate regions corresponding to 

each bond type (isosurfaces corresponding to ∆𝑆𝑘B = 2.5, 2, 1.5, 1, 0.5 shown 

in lighter coloring). ∆𝑆𝑘B = 0 is indicated with a grey isosurface for 

reference. D Orthographic view of 𝑟, 𝜃+, 𝜃 − showing the curvature of the 

entropy density landscape in 𝑟. The greater elongation along the 0, 0 → 𝜋, 𝜋 

compared to 0, 𝜋 → 𝜋, 0. e indicates greater ability for shear libration, as 

opposed to twist libration. See Figure 5-7 for PMFTs for 𝛾 = 12, 23,1,23,2. 77 

Figure 5-7 Isosurfaces of entropically favorable configurations of elongated 

rhombs, colored by bond (schematic of bonds included to aid in 

understanding these free-energy landscapes) for a 𝛾 = 12, b 𝛾 = 23, c 𝛾 =

1, d 𝛾 = 32, and e 𝛾 = 2 at pressures 𝑃 ∗= 16.0,14.9,13.5,12.6,12.1, 

respectively. Due to the symmetry of elongated rhombs the entropy density 

landscape is periodic, repeating every 𝜋; thus, the range of the landscapes 

is restricted to 𝜃1, 𝜃2 ∈ 0, 𝜋. Excess entropy density isosurfaces indicate 

regions corresponding to each bond type (isosurfaces corresponding to 

𝛥𝑆𝑘B = 2.5, 2, 1.5, 1, 0.5 shown in lighter coloring). 𝛥𝑆 = 0 is indicated with a 

gray isosurface for reference. The dimensions of the box are set to include 

the simplest symmetry 𝜃1, 𝜃2: 0, 𝜋, while the range for values of 𝑟𝑖𝑗 is set to 

the closest approach for all shapes considered 𝑟𝑖𝑗 = 0.63 and the farthest 
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distance for which an entropic bond corresponding to a nearest-neighbors 

position for any of the shapes considered 𝑟𝑖𝑗 = 2.55.................................... 79 

Figure 5-8 Borders of regions belonging to the four different types of bonds in 

elongated rhomb systems, colored by bond (schematic of bonds included to 

aid in understanding these free-energy landscapes) for a 𝛾 = 12, b 𝛾 = 23, c 

𝛾 = 1, d 𝛾 = 32, and e 𝛾 = 2 at pressures 𝑃 ∗= 16.0,14.9,13.5,12.6,12.1, 

respectively. Due to the symmetry of elongated rhombs the entropy density 

landscape is periodic, repeating every 𝜋; thus, the range of the landscapes 

is restricted to 𝜃1, 𝜃2 ∈ 0, 𝜋. The dimensions of the box are set to include the 

simplest symmetry 𝜃1, 𝜃2: 0, 𝜋, while the range for values of 𝑟𝑖𝑗 is set to the 

closest approach for all shapes considered 𝑟𝑖𝑗 = 0.63 and the farthest 

distance for which an entropic bond corresponding to a nearest-neighbors 

position for any of the shapes considered 𝑟𝑖𝑗 = 2.55. These regions are used 

in the calculation of the alluvial diagram (Figure 5-10). ................................ 80 

Figure 5-9 Disconnectivity graphs indicating free-energy landscape topology for 

elongated rhombs at a 𝛾 = 1/2; 𝑃 = 16.0, b 𝛾 = 2/3; 𝑃 = 14.9, c 𝛾 = 1; 𝑃 =

13.5, d 𝛾 = 3/2; 𝑃 = 12.6, and e 𝛾 = 2; 𝑃 = 12.1. Each leaf represents an 

entropic bonding motif found at free-energy minima on the landscape, while 

each node is the free-energy of the meta-basin connecting leaves or nodes. 

Each line is colored by its corresponding bonding motif. Traversing the graph 

provides information about the relative free-energy increase required to 

break a bond, as well as which bonds may directly convert. For example, 

consider a 𝛾 = 1/2: while the relative free energy of a herringbone bond is 
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lower than that of a hexagonal bond, the free energy required to break the 

herringbone bond is much less than that of the hexagonal bond, indicating 

that the hexagonal bond is more stable than the herringbone bond, which is 

more likely to convert to a defect or primary bond. Analysis shows that the 

combination of bond free energy and the relative free energy required to 

break a bond lead to the preference for hexagonal bonds over herringbone 

bonds, leading to the entropy-driven self-assembly of the hexagonal lattice.

 ........................................................................................................................ 81 

Figure 5-10 Alluvial diagram indicating particle shape modification of bonded 

state structure in 𝑟, 𝜃1, 𝜃2 space for elongated rhombs at 𝑃 ∗=

16.0,14.9,13.5,12.6,12.1 for shape parameters 𝛾 = 12,23,1,32,2. Bar sizes 

correspond to phase space volume associated with each bond type. Grey 

lines associate ``flows'' within and between bond types as particle shape 

changes. Additional bars indicate regions of phase space that change from 

being associated with bonds to nonbonded or geometrically forbidden states, 

keeping total phase space volume constant across all shapes. Examples 

below each shape indicate the same voxel in 𝑟, 𝜃1, 𝜃2 for each shape, and 

the corresponding bond, demonstrating how the bonds change as a function 

of particle shape. The most striking observation is the considerable increase 

in the voxels belonging to the herringbone bond from 𝛾 = 12 → 23, followed 

by the reduction in defect voxels from 𝛾 = 32 → 2. Observation of the flow 

between bonding regions as 𝛾 changes shows that particle shape has a 

significant impact on entropic bonding regions, suggesting the ability to 
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strategically engineer entropic bonds via shape manipulation. See Figure 5-8 

for the entropic bonding regions used to compute the alluvial diagram. ...... 83 

Figure 5-11 Comparison of the hexagonal (lighter blue) and herringbone (lighter 

orange) lattices at 𝛾 = 1, showing that both lattices tile space at 𝛾 = 1. For 

both lattices one particle (purple) and the particles to which it forms bonds 

are highlighted by the color of the bond (Figure 5-6): hexagonal (darker 

blue), primary (green), and herringbone (darker orange). Note that each 

particle forms 4 primary bonds and 2 hexagonal bonds in the hexagonal 

lattice, while each particle forms 4 herringbone bonds and 2 primary bonds 

in the herringbone lattice. .............................................................................. 84 

Figure 5-12 Comparison of the enthalpic interaction bias179 𝜀𝐻 and entropic 

interaction bias 𝜀𝑆 required to self assemble an alternating/herringbone 

lattice. Because the simulations used to compute 𝜀𝐻 account for 
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contributions. Thus, the difference in the biases results from the addition of 

enthalpic interactions as shown in Ref. 179179. The fact that – 𝜀 > 0 ∀ 𝛾 
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form and magnitude for both 𝜀𝐻 and 𝜀𝑆 indicate that manipulation of 

nanoplatelet shape alters entropic bonds, resulting in similar changes to the 

interaction bias as manipulation of the bias via chemical functionalization. 85 

Figure 6-1 Table showing the difference between a rhombus 𝛼 = 60°, a rhomb 

𝛼 ≠ 60°, and elongated rhomb 𝛼 ≠ 60°, 𝛾 > 0. Also shown are the different 
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tiling motifs they may form. Elongated rhombs are defined by their aspect 

ratio, 𝛾 = 𝐵𝐴, in addition to the acute angle 𝛼. In this figure, shapes are 

colored by their orientation to aid in identification of the orientations found in 

the different tiling motifs. In this study, only rhombs with 𝛼 = 68° are 

considered, while investigating different aspect ratios: 𝛾 = 0,14,13,512,12,1. 

Note that the herringbone tiling is only space filling for 𝛾 = 0,1. While free 

space exists in the rhombille motif for the elongated rhombs, the additional 

side reduces the strained induced from 𝛼 ≠ 60°, providing an avenue to 

stabilize this motif, required for the formation of the RTP. ............................ 88 

Figure 6-2 a Body-orientation order parameter 𝜉2𝑖 on the cube ellipse color 

wheel used to visually analyze and identify phases found in systems of 

elongated rhombs (here shown for 𝛾 = 14): b fluid, c RTP, and d parallel 

phase. The fluid and parallel phases are observed in all values 𝛾 

investigated here, while the RTP phase is only observed for 0 ≤ 𝛾 ≤ 13. ... 90 

Figure 6-3 Use of 1st-order polynomials to fit the equation of state for 𝛾 = 0,14,13 

to identify the continuous phase transition window. The polynomial fits are 

shown as black lines, with intersections marking the bounds of the transition: 

red marking the start of the transition, and blue marking the end of the 

transition. The midpoint on the second curve (marked in purple) is the center 

of the transition window. The phase diagram (Figure 6-5) plots the center of 

the transition window with error bars extending from the beginning (red) to 

the ending (blue) of the phase transition. ...................................................... 91 



 xxviii 

Figure 6-4 Example of an entropic bonding transition for 𝛾 = 1. a Orthographic 

view of the 𝜃1, 𝜃2 plane of the PMFT, showing two different transition paths 

between two primary bonds: one through the hexagonal bond, and one 

through the rhombille bond. Schematics of the bonding motifs are inset. 

Entropic bonding regions are colored by the bonding motif: primary (green), 

hexagonal (blue), herringbone (orange), and rhombille (red). Constant 

energy isosurfaces are shown, corresponding to 𝛽𝛥𝐹12 = −2, −1.5, −1, −0.5, 

with lower free energies shown in increasingly darker colors. 𝜃1 and 𝜃2 are 

limited to 0, 𝜋 due to the two-fold symmetry of the rhomb 𝑘 = 2. Note the 

transition through the hexagonal bond follows the 𝜃 + (shear) direction, 

indicating that both elongated rhombs rotate counter-clockwise to transition 

between the three bonds. Disconnectivity graphs b excluding and c including 

2nd nearest-neighbor motifs. The transitions shown in a  are shown in the 

dashed box in b. To transition to either a hexagonal or rhombille bond, the 

primary bond must pass through the region belonging to the herringbone 

bond. However, the transition through the herringbone bond is of higher free 

energy for the primary-to-hexagonal transition than for the primary-to-

rhombille transition. Note the difference between b and c: inclusion of the 2nd 

nearest-neighbors in c change the connectivity and free-energy of the 

transition between herringbone motifs, indicating the transitions involving 2nd 

nearest-neighbors are more energetically favorable than those only involving 

1st nearest-neighbors. .................................................................................... 93 
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Figure 6-5 a Equation of state and b Orientation-orientation hexatic order 

paramete for elongated rhombs with shape parameter 𝛾 = 0,14,13,512,12,1. 

Note the 1st-order phase transitions between fluid and ordered solid phases 

for 𝛾 ≥ 512, in contrast with the continuous fluid-to-RTP transition observed 

for 𝛾 ≤ 13. Both continuous and 1st-order transitions are present for 𝛾 =

14,13. While the RTP is stable for 𝛾 = 14 over a relatively large pressure 

window ∆𝑃 ∗≈ 2.0, the RTP is only stable for ∆𝑃 ∗≈ 0.5 for 𝛾 = 13. The 

orientation-orientation hexatic order parameter Ψ6,6 shows the same phase 

transitions as the equation of state. The values of Ψ6,6 for the different 

shapes indicate which motifs are preferred in the dense fluid phase. For 𝛾 =

1, Ψ6,6 → 0, indicating that herringbone and hexagonal bonds compete 

equally in the fluid phase, resulting in an overall lack of orientational order 

congruent with either RTP or parallel phases. The fact that Ψ6,6 > 0 

indicates that the hexagonal bonds are preferred, as observed in Ref. 

173173. As the value of 𝛾 decreases, the value of Ψ6,6 in the fluid phase 

increases, indicating an increased preference for hexagonal to herringbone 

order. For 𝛾 ≤ 13, values of Ψ6,6 associated with the RTP are observed, 

indicating the presence of the RTP phase. c Phase diagram constructed 

from a and b. Red dots represent the edge of the fluid phase connected by 

dashed lines representing the continuous transition between the fluid and 

RTP. Blue squares represent the solid phase, connected by a solid line 

representing the 1st-order phase transition between the RTP or fluid and 

parallel phases. The continuous-continuous phase transition for 𝛾 = 0 is 
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plotted with a purple circle with error bars estimating the edges of the fluid 

(red line) and crystal (blue line) phases. Please reference Figure 6-3 for how 

these phase transitions are estimated. These phase transitions are detailed 

in Table 1 and Table 2. .................................................................................. 96 

Figure 6-6 Fluid-phase entropic bonding free-energy landscapes for a 𝛾 = 0 and 

d 𝛾 = 512, showing an orthographic view of the 𝜃1, 𝜃2 plane, with color-

coded bonding regions: parallel (green), hexagonal (blue), herringbone 

(orange), and rhombille (red). Note that only regions of the free-energy 

landscape belonging to entropic bonds (1st nearest-neighbors) are shown. 

Constant energy isosurfaces are shown, corresponding to 𝛽𝛥𝐹12 =

−2, −1.5, −1, −0.5, with lower free energies shown in increasingly darker 

colors. 𝜃1 and 𝜃2 are limited to 0, 𝜋 due to the two-fold symmetry of the 

rhomb 𝑘 = 2. Orthographic views of the b, e 𝜃 + (shear) and c, f 𝜃 − (twist) 

directions. These views are colored by free energy, showing preferred motifs 

and transitions between them in the free-energy landscape, including 2nd 

nearest-neighbors. Grey regions of 𝛽𝛥𝐹12 = 0 are included for reference. 

Rhombs (𝛾 = 0, b, c) do not possess low-energy pathways between the 

primary and rhombille motifs, nor is there a low-energy herringbone motif, in 

contrast to 𝛾 = 5/12 (e, f). This shows the difficulty for transitions between 

primary, hexagonal, and rhombille motifs that arises as 𝛾 decreases. There 

exist low-energy pathways between all motifs for higher values of 𝛾. ......... 99 

Figure 6-7 Disconnectivity graphs for three values of 𝛾: 𝛾 = 0,13,512. The top row 

takes 2nd nearest-neighbors into account, allowing transitions to be made 
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through nearest-neighbor meta-basins. The bottom row only considers the 

1st nearest-neighbors and transitions between them. The smaller 1st nearest-

neighbor graphs indicate that 2nd nearest-neighbors are required to 

completely explore the free-energy landscape. As discussed in Figure 6-6, 

the transitions between primary and hexagonal bonds are of lower energy 

than for transitions to rhombille bonds, and are therefore preferred for 𝛾 = 0. 

Comparison to the plot accounting for 2nd nearest-neighbors indicates that 

transitions to/from rhombille bonds are preferred through the 2nd neighbor 

shell. For 𝛾 = 1/3, primary and hexagonal bonds prefer to interconvert, as 

do herringbone and rhombille bonds. For 𝛾 = 5/12, the conversion between 

primary, herringbone, and rhombille become preferred to transitions to the 

hexagonal bonding motif. ............................................................................. 101 
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Abstract 

Scientists and engineers will create the next generation of materials by precisely 

controlling their microstructure. One of the most promising and effective methods 

to control material microstructure is self-assembly, in which the properties of 

constituent “particles” guide their assembly into the desired structure. Self-

assembly mechanisms rely on both inherent interactions between particles and 

emergent interactions resulting from the collective effects of all particles in the 

system. These emergent effects are of interest as they provide minimal 

mechanisms to control self-assembly, and thus can be used in conjunction with 

other assembly methods to create novel materials. 

Literature shows that complex phases can be obtained solely from hard, 

anisotropic particles, which are attracted via an emergent Directional Entropic 

Force. This thesis shows that this force gives rise to the entropic bond, a 

mesoscale analog to the chemical bond. In Chapter 3 I investigate the self-

assembly of a system from a random tiling into an ordered crystal. Analysis of the 

emergent directional entropic forces reveal the importance of shape in the final 

self-assembled system as well as the ability for shape manipulation to control the 

final self-assembled structure. In Chapter 4, I investigate three-dimensional 

analogs of two-dimensional systems in Chapter 3, explaining the self-assembly 

behavior of these systems via understanding of the emergent directional entropic 

forces. In Chapter 5 I investigate the nature of the entropic bond, investigating 
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two-dimensional systems of hexagonal nanoplatelets. The Entropic bond is 

quantified, and the ability to manipulate the bonds to produce similar self-

assembly behavior to chemically-functionalized nanoparticles is demonstrated. 

Finally, Chapter 6 investigates the phase transitions of the general class of 

particle studied in Chapter 5, showing the ability for particle shape to change the 

type of phase transition present in a system of nanoparticles as well as stabilize 

phases otherwise not found. As a whole, this work details the nature of the 

entropic bond and its use in directing the self-assembly of systems of non-

interacting anisotropic particles. 
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Chapter 1  

Introduction 

1.1 Materials Engineering and Self-Assembly 

Material structure determines materials properties, thus the design and control of 

material microstructure one of the most important goals of materials science and 

engineering. Throughout the ages, engineers have done their best to create the 

best tools and products with the materials available to them. Materials were so 

important in human history that anthropologists refer to the various epochs of 

human history by the type of material that dominated their technology: Stone, 

Bronze, Iron, with the modern-day dubbed the “Silicon-Age.” 

In each of these ages, the natural microstructure of the materials determined the 

final material properties. While engineers and scientists discovered many 

impressive ways to alter material structure and thus the material properties 

(some still in use today), the material, that is the atoms and molecules that 

comprise the bulk material, still dominates the final structure and properties. 

Various methods including alloying and tempering allowed for crude manipulation 

of microstructure, such as the manipulation of the microstructure of iron via the 

addition of carbon to create steel alloys. Such research can be thought of as a 

“forward” investigation, starting from the material building blocks and ending with 

the material property. However, employing a “reverse” strategy that starts from a 
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desired property and works backward to identify the structure and building block 

required will be key to creating the next generation of materials.  

Control of material microstructure opens the door to the creation of 

metamaterials, materials with properties not governed by the material itself, but 

rather by the underlying structure. Materials with negative Poisson ratios 

(expand/contract perpendicular to expansion/contraction) or negative indices of 

refraction are coveted due to their novel properties. There are numerous 

examples of such metamaterials in nature1,2. Butterfly wings3–5, beetle shells6, 

and even some berries7, do not use pigmentation, but rather structural coloration 

i.e. the underlying structure of the material to produce their coloration. 

A second class of novel materials under investigation are reconfigurable, or 

dynamic materials8–14. The historically dominant materials have typically been 

static: once cast, the structure of concrete is set. However, the ability for 

materials to reconfigure in situ increases their usefulness. Examples include self-

healing materials15, materials with response to slight changes in chemical 

concentration16, light17, and electric fields9,18–21, and even self-propelled active 

particles22. 

Such materials require precise control over each constituent of the system, and 

current manufacturing methods are limited in created large quantities of these 

materials, especially at the sizes we desire. Let’s imagine a relative small 

system, 1 mole of aluminum atoms, or a cube with sides of 2.23 𝑐𝑚 (a little less 

than 1 𝑖𝑛. per side), and that we require these atoms to all be arranged in a very 

particular way to obtain particular desired mechanical properties. This isn’t a very 
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large piece of aluminum at the macro scale, and even if we are very generous 

with our manufacturing time and say one of these cubes can take an entire day 

to manufacture, any device that we created an atom at a time would have to 

place almost 7 ∙ 1018 atoms per second! 

What if, rather than designing a device to place the atoms, the atoms could direct 

themselves to form the desired structure? After all, atoms and molecules already 

do this in all the familiar materials around us, such as Iron. However, we are 

rather limited in controlling the assembly of Iron due to its exact chemical 

(quantum mechanical and electronic) nature. What if we were not limited by 

choice of atom or molecule to determine the microstructure, but could rather 

choose the desired structure and design atoms and molecules to form that 

structure, to create a “supramolecular” chemistry? This has been achieved at the 

nano- (10−9𝑚) and colloidal- (typically 𝑂(100 − 1000𝑛𝑚)) scale: both the shape 

and functionalization of these particles can be varied, allowing for a host of 

different ways to direct the self-assembly of these particles23–37. 

Nanoparticle systems possess many more dimensions to manipulate to control 

the final structure compared to atomic systems. However, this design space is 

infinite, and experiments, even on the nanoscale, are incredibly expensive, 

requiring years of research to develop the techniques and tools required to 

create particles with particular functionality and shape23,38. Investment of this time 

and energy must be measured, as it would be very unfortunate to spend a 

decade of work to finally determine a particular nanoparticle is relatively 

uninteresting e.g. many nanoparticle systems self-assemble FCC lattices, and 
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spending a decade to find one more FCC-former would be a relatively poor 

investment. What if there was a way to know before spending all that time and all 

that money that the particle you were going to make would do what you wanted it 

to? 

1.2 Computer Simulation 

Fortunately, there is a way to know, or at the very least have very good reason to 

believe a nanoparticle will behave as you expect: computer simulation39. After the 

development of computers to model the cascading fission reaction for use in 

atomic weaponry, the first uses of computers were for this very problem40,41, and 

nearly seventy years later, more advanced computers and simulations still probe 

the depths of self-assembly research. 

Modern computers trace their start back to analog “computers” used to crack 

codes in World War II, and at Los Alamos to design the first fusion weapons. It 

was on the MANIAC computer at Los Alamos that the first hydrogen bombs were 

designed; the MANIAC also ran the first Monte Carlo simulations, so-named due 

to their dependence on random numbers to simulate the systems of interest. 

Named Metropolis Monte Carlo after Nicholas Metropolis, the leader of the Los 

Alamos research team, the equation of state was computed for systems of hard 

disks by sampling their equilibrium distribution42. This problem is not only a 

canonical problem in soft matter and self-assembly, its underlying methods and 

results inform the research presented here. A few years later, the first molecular 

dynamics simulations we conducted on UNIVAC systems. These simulations 

investigated three-dimensional systems of hard spheres43. Rather than sample 
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equilibrium distributions via generation of random numbers, the actual Newtonian 

equations of motion are computed, providing dynamic information about the 

system, in addition to information about the equilibrium state and structure of the 

system. 

Compared to today’s standards, these computers simulated tiny systems on 

primitive hardware; reproducing the first Monte Carlo simulations could be done 

in seconds on any of today’s smartphones, but the underlying methods still form 

the basis for the simulation methods and software used in self-assembly 

research today39,44. These simulations provided an important avenue into 

understanding self-assembly. In fact, it was their limited nature that allowed some 

of the most important insights to be learned. Rather than be able to perfectly 

capture the interactions between atoms, compute molecular orbitals and bonds 

between atoms, these simulations had to make many assumptions about the 

systems under investigation, limiting them to the simplest geometries (disks and 

spheres) with the simplest interactions (simple repulsion or perfectly hard 

particles)45. This lead to the discovery that entropy can cause the ordering of 

systems. 

1.3 Entropy-driven self-assembly 

Systems of hard spheres self-assemble an FCC lattice46–49. While well-known 

today, this was an important discovery at the time, especially since there exist no 

intrinsic interparticle forces to guide this assembly43,50–54. To understand what 

guides the self-assembly, thermodynamic analysis is necessary. Working in the 

canonical thermodynamic ensemble (constant number of particles, 𝑁; constant 
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volume, 𝑉; constant temperature, 𝑇), the Helmholtz Free-Energy is minimized in 

the equilibrium state of the system: 

𝐹 = 𝑈 − 𝑇𝑆 

Hard particles have no interaction energy, and therefore the internal energy 𝑈 of 

every allowable configuration of the system i.e. no particles are overlapping, is 

equal to zero. Thus, we arrive at the following reduced equation for the free 

energy: 

𝐹𝐻𝑃 = −𝑇𝑆 

Interpretation of this equation leads to an important conclusion: at constant 

temperature, the equilibrium structure of a system of hard particles is the one that 

maximizes the entropy of the system; or, entropy can cause the ordering of 

systems! 

1.3.1 Depletion interactions and self-assembly 

It is perhaps easiest to understand this entropy-driven self-assembly via the 

depletion interaction46,55–59. Depletion systems are comprised of two different 

species: small polymers called depletants, and larger particles. Increasing 

depletant concentration results in the aggregation of the larger particles into 

close-packed structures. This phenomenon is a result of entropy: even though 

the entropy of individual large particles decreases, the entropy of the depletants 

increases by a greater amount, resulting in the overall increase in entropy for the 

system, and minimizing the free-energy of the system. 

Examples of this are numerous, and control of the depletion effect is an important 

avenue of research for self-assembly. However, this understanding of entropy 
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trade-off does not satisfactorily explain why systems of hard spheres (and other 

shapes) would successfully self-assemble an ordered FCC crystal, as there exist 

no depletant species to offset the loss of entropy experienced by the larger 

particles. 

1.3.2 Self-depletion and polyhedral self-assembly 

The lack of an explicit depletant species in systems that self-assemble due to 

entropy implies that these systems are self-depleting: pairs and clusters of 

particles locally order (lose entropy), which is offset by the increase in global 

order for the rest of the particles in the system60. At first, polymer depleting and 

self-depleting systems would appear to be very different; however, it has been 

known since 194961 that monodisperse sphere systems have preferred 

distances, resulting from the balance of attractive and repulsive forces. This 

leads to the understanding that the net attraction between colloids results from 

the “sea” particles forcing local configurations, regardless of the composition of 

the sea particles60. 

Experimental research into synthesis of anisotropic nanoparticles and colloids 

showed a variety of interesting self-assembled structures23,62–68. Given the high 

dimensionality of the shape “dimension” in this design space, simulation and 

entropy-focused analysis is required to guide the eventual experimental 

synthesis of nanoparticles38. 

Simulations of hard polyhedra reveal an extraordinary variety in the number of 

structures that can be assembled due solely to the shape (and thus the entropy) 

of the nanoparticle34,69. Exotic phases including the quasicrystal are even 
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obtainable simply by manipulating the shape of these nanoparticles32,70,71. These 

simulations showed that nanoparticle shape plays a large role in the resulting 

self-assembled phase, and that these phases are a result of the local motifs 

found in dense fluids prior to self-assembly34. This means that whatever 

phenomenon is responsible for this ordering is emergent (due to the number of 

particles in the system as well as the density of the system), and as noted with 

the hard spheres, is also entropic. This evidence points to the existence of an 

emergent, directional entropic force, not unlike the attractive forces resulting in 

self-assembly of functionalized nanoparticle and colloidal systems, or even the 

forces resulting in hydrogen bonding in molecular systems60. 

1.3.3 Directional Entropic Force 

The discovery that it was the local motifs within dense fluids70,72–74 prior to self-

assembly rather than the densest packing structures35,75–81, along with the 

knowledge that different shapes were capable of assembling a vast array of 

different structures, including quasicrystals, implies the existence of a force, 

similar to the depletion interaction, that emerges due to the crowding and shape 

of the particles in the system60,72,82,83. This force must therefore be entropic in 

nature, as entropy is the only quantity that varies to lower the free-energy of the 

system. 

Much in the same manner as the measurement of the potential of mean force84 in 

a system of isotropic particles, the net attraction and repulsion between isotropic 

particles, the emergent entropic force between particles may be quantified via the 
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potential of mean force and torque (torque accounting for the preferred 

orientations that anisotropic particles prefer in entropy-controlled systems)60,82. 

1.3.4 Entropic Bonding in Nanoparticle and Colloidal Systems 

If there exists an emergent, directional entropic force, and such a force can be 

quantified, do there also exist emergent, entropic bonds between anisotropic 

nanoparticles and colloids? In this work, I investigate this emergent directional 

entropic force and the entropic bonds they form between hard particles. In 

Chapter 2, I summarize the methods used to simulate and analyze systems of 

hard, anisotropic nanoparticles. Of note are the methods for computing the 

potential of mean force and torque (PMFT), used to compute the emergent 

directional entropic forces, as well as the techniques to identify and quantify the 

resulting entropic bonds. In Chapter 3 I investigate the self-assembly of shape-

allophiles, shapes specifically designed to fit together in a complementary 

fashion. By measuring the directional entropic force between these shapes, I 

determine the effect that manipulating the allophilic pattern has on the assembly 

propensity of these shapes into the desired ordered structure. The addition of 

allophilic patterning increases the attractive force between hard particles, 

resulting in entropic bonds. This leads to the directed self-assembly of an 

ordered structure from a shape that does not order without allophilic patterning. 

details the determination of the entropic bond in an investigation of hard 

hexagons and elongated rhombs; the similarity of entropic bonds to established 

systems exhibiting hydrogen bonding and chemical functionalization is 

established, demonstrating the existence of these bonds. In Chapter 4 I 
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investigate the three-dimensional extension of the hard-square system in 

Chapter 3, looking at the hierarchical self-assembly of six different hard cube 

derivatives. I observe the self-assembly behavior of these systems, identifying a 

previously unreported cubatic phase in 2:1 aspect ratio rectangular prisms. By 

analyzing the pair configurations preferred by these shapes in their dense fluid 

phase, I gain insight into the shape features leading to successful self-assembly. 

In Chapter 5 I quantify the entropic bond by analyzing the self-assembly of a 

family of hexagons. By computing the entropy density for regular hexagons, I can 

separate the landscape into distinct geometric regions. These distinct regions are 

identified as entropic bonds. I track particles in simulation, determining the 

lifetime of these entropic bonds, finding similarities with hydrogen bonds. Further 

analysis of entropic bonds provides insight into the self-assembly behavior of 

hexagonal nanotiles, providing a method to direct the formation of entropic 

bonds, thereby controlling the self-assembled structure. I continue to investigate 

these hexagonal systems in chapter Chapter 6, determining the effect that 

entropic bonding has on the observed phase transitions. I show the ability for 

particle shape to change the number and type of phase transitions present in the 

hexagonal nanotile system. Such shape manipulation provides scientists and 

engineers an additional method to explore for the creation of reconfigurable 

materials. Finally, in Chapter 7 I conclude by discussing the work as a whole. I 

explore questions this work raises and potential directions for future research. 
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Chapter 2  

Methods 

2.1 Monte Carlo Simulation 

I model nano- and colloidal-scale systems using Monte Carlo (MC) simulation, 

named due to its use of “random events” to investigate system equilibrium42,85. 

MC samples the equilibrium distributions of a system to gather statistical 

information about thermodynamic quantities of interest39,44. MC methods can be 

employed in a wide variety of systems, even being used for something as simple 

as estimating the area of a circle. Unlike molecular dynamics86–92, MC does not 

require the use of potentials nor requires restrictions on the geometry of a 

particle, making it better-suited for investigating the effect that shape has on hard 

particle self-assembly.  

2.1.1 Metropolis Method 

Models of nanoparticle systems typically require the use of hundreds or 

thousands (even millions) of individual particles. I employ the metropolis 

approach42,44,93 to generate and sample equilibrium distributions, as well as 

allowing us to draw conclusions regarding the assembly propensity of our 

particles because the algorithm resembles the behavior of particle in the 

Brownian limit. In metropolis MC, an initial configuration of the system is 
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generated, and then this system is integrated over a number of Monte Carlo 

Sweeps. Each sweep is comprised of 𝑁 individual steps: 

1. A particle (𝑖) in the system is chosen at random 

2. A trial move for 𝑖 is proposed: either a translation move, in which its 

coordinates are updated, or a rotation move, in which its orientation is 

updated 

3. The trial move is accepted if no overlaps are introduced; otherwise it is 

rejected 

Because one trajectory frame is directly computed from a previous frame, it is 

important to allow sufficient MC sweeps between frames to avoid autocorrelation. 

This is required to properly compute thermodynamic quantities, which require fair 

sampling of the equilibrium distribution, so that the samples are statistically 

independent. 

2.1.2 Thermodynamic Ensembles 

To properly understand the behavior of these models, the thermodynamic 

ensemble must be properly taken into account. In this thesis two ensembles are 

used: The Canonical (𝑁𝑉𝑇) Ensemble and the Isothermal-Isobaric (𝑁𝑃𝑇) 

Ensemble. In both these ensembles the number of particles 𝑁 is held constant. In 

both systems, the temperature 𝑇 is held constant. In (𝑁𝑉𝑇) simulations the 

volume of the system 𝑉 is held constant, allowing the pressure 𝑃 to fluctuate, 

while the inverse is true for (𝑁𝑃𝑇) simulations. 

Most quantities of interest may be measured in both ensembles. However, the 

presence of multiple phases can complicate the calculation of some quantities, 
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such as the equation of state. The Gibbs’ Phase Rule84 helps determine which 

ensemble avoid phase coexistence: 

𝑓 = 𝑐 − 𝑝 + 2 

where 𝑓 is the number of intensive variables, 𝑐 is the number of components, and 

𝑝 is the number of phases. In the 𝑁𝑃𝑇 ensemble, there are two intensive 

variables, 𝑃 and 𝑇, reducing the equation to 𝑝 = 𝑐. Thus, for a single component 

system, there may only be one phase. The 𝑁𝑉𝑇 ensemble only has one intensive 

variable, meaning that 𝑐 + 1 = 𝑝, resulting in the possibility of phase coexistence. 

Because 𝑃 is intensive and 𝑉 is extensive, only one phase may be present in 

𝑁𝑃𝑇 ensembles. Unless noted otherwise, I use the 𝑁𝑃𝑇 ensemble throughout 

this thesis to avoid phase coexistence. 

2.1.3 Reduced Pressure 

It is common practice to used so-called reduced units rather than SI units in 

simulation39 for reasons of simulation efficiency, portability across simulation 

systems, and ease of variable manipulation89. The only reduced unit of note in 

this work is reduced pressure, 𝑃∗. This pressure is typically reported as 𝛽𝑃𝜎2 for 

two-dimensional systems and 𝛽𝑃𝜎3 for three-dimensional systems. 𝜎 is a length-

scale of interest, resulting in the 𝜎𝑛 term accounting for volume. In this work, all 

values of 𝜎𝑛 are the volume of the nanoparticle unless otherwise noted, and 

𝜎𝑛 ≡ 1, unless otherwise noted. 

Conversion between reduced pressures is straightforward: to compare a reported 

reduced pressure with another, choose one to be the “reference” system, and the 
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other to be converted. Then, compute the value for 𝜎𝑥 in the system to be 

converted. Multiply through to obtain: 

𝑃2
∗(1) = 𝛽𝑃𝜎𝑛(1) 

For example, in Chapter 5, systems of polyhedron derived from cubes are 

studied. As noted, in this work 𝜎3 ≡ 1; a previous study of a related system91 

defines 𝜎3 differently, but in the units used in this work, 𝜎3 = 64. Therefore, any 

value of 𝑃∗ reported in that work can be converted to the units in this work via 

𝑃∗ = 64𝛽𝑃 

It should be noted that systems of hard spheres are known to exhibit fluid-solid 

coexistence at a reduced pressure of 11.43 ≤ 𝑃∗ ≤ 11.5789,94–100. 

2.2 Correlation Functions 

Generally, a correlation function accounts for the distance over which some 

quantity is correlated. The quantity of interest may be as simple as the position or 

orientation of a nanoparticle, or more complex order parameters, such as those 

in Section 2.4. 

2.2.1 Radial Distribution Function 

The most common of the correlation functions is the pair correlation function, 

known as the radial distribution function84: 

𝑔2(𝑟) =  ∑ 𝑟𝑗 − 𝑟𝑖

𝑁

𝑖

= 𝑔(𝑟) 

The radial distribution function encodes the relative probability of finding two 

particles a distance 𝑟 apart. Not only does this provide one method of identifying 

structures present in the system, it also allows for the computation of relevant 



 15 

thermodynamic quantities in simulated systems. One quantity is the potential of 

mean force, a potential accounted for the average attraction and repulsion in the 

system, resulting in the particle separations found in the system. 

 

Figure 2-1 a schematic of the perfect hexagonal crystal for hard disks, with 1st, 2nd, and 3rd nearest-neighbor 
positions labelled. b Radial distribution function of a system of hard spheres at 𝜙 = 0.75, a low-density solid 
phase. The 𝑔(𝑟) shows distinct structural features associated with the hexagonal lattice. c the potential of 

mean force, obtained via 𝛽∆𝐹12(𝑟) = −ln(𝑔(𝑟)). 

The radial distribution function is well-suited for isotropic systems, but cannot 

capture all the relevant information for anisotropic systems. The radial distribution 

function must be extended to account for both positions and orientations. 

2.3 Potential of Mean Force and Torque 

If the distances between particle pairs can be accounted for, why not the relative 

positions of the particles using (𝑥, 𝑦, 𝑧) coordinates? If so, what new information 

does that provide? By leveraging the power of statistical mechanics, we can 

relate the probability of a given distribution of particles with the free-energy of the 

relative configuration of those particles60,82: 

𝛽∆𝐹12(∆𝜉12) = −ln (𝐻(𝑑(∆𝜉12))) 𝐽(∆𝜉12) + 𝛽∆�̃�12(∆𝜉12) 
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∆𝜉12 accounts for the relative position and orientation of a pair of particles 𝑖, 𝑗; 

∆𝐹12 is the relative free-energy for the pair of particles; 𝐻(𝑑(∆𝜉12)) uses the 

Heaviside step function to account for overlapping particles; 𝐽(∆𝜉12) is the 

Jacobian for the coordinate system of choice, and ∆�̃�12 is the free-energy of the 

“sea particles” (all other particles in the system). In this way, we can see how the 

shifting of entropy density results in the lowering of the free-energy of the system, 

directing local and therefore global self-assembly. 

Because the Potential of Mean Force and Torque (PMFT) is an extension of the 

RDF, the algorithm is implemented in much the same fashion. Once computed, 

the PMFT can be visualized and understood like any other free-energy 

landscape. The choice of coordinate system to compute the PMFT is very 

important, however. Take the following example of the PMFT for a system of 

hard hexagons in the solid phase (𝜙 = 0.75): 

 

Figure 2-2 Potential of mean force and torque in two-dimensions (𝑥, 𝑦) computed for a system of hard 
hexagons at a density of 𝜙 = 0.75. Regions of low-energy correspond to regions of high entropy density, 

representing the most probably local motifs. 



 17 

Computing the PMFT in two-dimensions (Figure 2-2) integrates over the 

orientation of the paired particle 𝑗. To fully account for the positions and 

orientations of particles in two-dimensions, a three-dimensional coordinate 

system must be employed (Figure 2-3): 

 

Figure 2-3 a Schematic explaining the relationship between the two-dimensional and three-dimensional 
coordinate systems (𝑥, 𝑦) and (𝑟, 𝜃1, 𝜃2). b The same system plotted in Figure 2-2 plotted in the three-

dimensional coordinate system. 

This three-dimensional coordinate system fully accounts for and can differentiate 

between the local geometries shown in Figure 2-3. I focus on two-dimensional 

physical systems and their two- and three-dimensional PMFTs because they 

exhibit the same physical behavior as three-dimensional physical systems 

without the added complexity of the third dimension. Note that three-dimensional 

systems, such as hard polyhedral, would require 6 dimensions to fully account for 

position and orientation: movement along and rotation about the 𝑥, 𝑦, 𝑧 axes. Like 

any other free energy measurement methods, the PMFT gives a difference in 

free energies. Thus, the choice of the base energy is critical if PMFTs are to be 

compared. I employ the ideal gas distribution as a natural zero-point for the 

PMFT, just as in the RDF: lim
𝑟→∞

𝛽∆𝐹12 = 0. 
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2.3.1 Free-Energy Landscape Analysis and Disconnectivity Graphs  

The PMFT can be interpreted as an entropy density distribution or as a free-

energy landscape in the coordinate system of choice, much like the energy 

landscapes for molecules in modern DFT101,102. Just as free-energy landscapes 

from DFT can be analyzed to determine bond strength and location, so too can 

the free-energy landscapes obtained from PMFTs. The computed PMFT takes 

the form of a histogram, which can be interpreted as an image composed of 

either pixels (2D, shown in Figure 2-2) or “voxels” (3D, shown in Figure 2-3). 

While image analysis is a field full of new and compelling research problems, the 

relatively well-behaved landscapes that come from PMFT calculations allow for 

robust analysis and segmentation into free-energy basins through the use of the 

watershed cut method103,104 (shown in Figure 2-4). 

 

Figure 2-4 Summary of the entropic bond analysis pipeline: a The raw PMFT is passed through a Gaussian 
blur b (rendered here as contours) to remove any noise or artifacts before passing into the image 
segmentation algorithm c. The full range of the PMFT is shown: 𝜃1, 𝜃1 ∈ [0, 2𝜋], showing the 36 identical 
entropic bonds in systems of regular hexagons. Due to the periodic nature of these PMFTs, all other PMFTs 

shown in this these display a single periodic region e.g. 𝜃1, 𝜃1 ∈ [0,
𝜋

3
] for regular hexagons. 

Automated image segmentation is required to reliably identify the different 

entropic bonding states. Watershed image segmentation103,104 is well-suited to 

this application because it assigns each pixel/voxel of an image to a region 

a b c
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associated with an entropy-density maxima/free-energy minima by ``flooding'' the 

free-energy landscape starting at free-energy minima until these flooded regions 

meet, giving each pixel/voxel a unique label associated with a given minimum. As 

shown in Figure 2-4, the raw PMFT is analyzed to produce a mapping of each 

discrete geometric configuration to a unique bond. This mapping may then be 

used to render individual bonds, or track particle geometry during a simulation to 

compute bond lifetime distributions. Though watershed image segmentation is 

capable of automatically segmenting the image into different regions (bonds), the 

sckit-image implementation104 used is most robust when given the approximate 

locations of the minima as determined by the lattice positions of the hard 

hexagons/elongated rhombs. Watershed image segmentation has the added 

benefit of providing information about the boundaries between bonds, allowing 

for identification of transition states between minima via network analysis 

techniques. 
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2.3.2 Disconnectivity Graphs 

 

Figure 2-5 Example disconnectivity graph for a system of hard hexagons at 𝜙 = 0.75 (free-energy landscape 
shown in Figure 2-3). Each leaf represents a free-energy basin, while each connection represents a 
transition-state energy required to be traversed to reach a connected leaf. Here, the purple leaves are the 36 
nearest-neighbor configurations for hexagon systems, while the black leaves represent 2nd, 3rd, and 4th 
nearest-neighbor. 

By creating a network from the free-energy minima and transition states, a 

disconnectivity graph can be constructed105–107. Such a graph reduces an 𝑁-

dimensional energy landscape to a two-dimensional graph, allowing for 

connections between free-energy minima and their transition states to be visually 

analyzed. This is important as the “raw” PMFTs are relatively difficult to 

understand by eye, especially PMFTs in full (𝑟, 𝜃1, 𝜃2) coordinates rather than in 

local (𝑥, 𝑦) coordinates. Disconnectivity graphs deliver important insight into the 

ability for particle pairs to reconfigure in the dense fluid phase. Additionally, the 

use of disconnectivity graphs as an effective means to analyze PMFTs extends 

to the analysis of the six-dimensional PMFTs required to analyze systems of 

three-dimensional particles. 
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2.4 Order Parameters 

Generally, and order parameter describes the degree of order or broken 

symmetry in a system84. Order parameters are especially useful to observe 

across phase transitions as can allow for phase identification as well as identify 

the kind of phase transition observed. Here a few order parameters used 

throughout this work are described in detail. 

 

Figure 2-6 Cube ellipse color map108, with two-fold symmetric hexagon to illustrate how the continuous 
colormap facilitates orientational analysis. This color map is used throughout this work for angle and 
orientation-related quantities. 

2.4.1 Body orientation Order Parameter 

For a two-dimensional system composed of particles with 𝑘-fold symmetry, the 

body orientation order parameter108 

𝜉𝑘
𝑖 = 𝑒 i𝑘𝜃𝑖 

accounts for the orientation of a particle with its symmetry. The orientation of a 

particle, 𝜃𝑖, is the angle that a particle in its local reference frame is rotated by 

into the global coordinate system of the simulation, as shown in Figure 2-7. 
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Figure 2-7 Use of the body orientational order parameter to color a hexagon by its orientation, as shown for 

5 different orientations: a 𝜃6
𝑖 = 0; b 𝜃6

𝑖 =
1

2
𝜋; c 𝜃6

𝑖 = 𝜋; d 𝜃6
𝑖 =

3

2
𝜋; e 𝜃6

𝑖 = 2𝜋. Note that the entire color wheel 

is traversed in the equivalent of 𝜃𝑖 = 0 →
𝜋

3
, due to the 6-fold symmetry of the body orientation order 

parameter.  

2.4.2 Hexatic Order Parameter 

In two-dimensional systems, the development of positional order109,110 of nearest 

neighbor particles is an appropriate order parameter. The x-atic order 

parameter108,109,111, 𝜓𝑘,𝑛
𝑖 , is given by (also see Figure 2-8 and Figure 2-9): 

𝜓𝑘,𝑛
𝑖 =

1

𝑛
∑ 𝑒 i𝑘𝜃𝑖𝑗

𝑗∈𝑁𝑁(𝑖)

 

This order parameter accounts for the orientation (relative to the reference vector 

�⃗�ref = (1, 0)) of the vector connecting particle 𝑖 to a particle 𝑗 in its 𝑛 nearest-

neighbors: 𝑗 ∈ 𝑁𝑁(𝑖). 𝑘 accounts for the 𝑘-fold rotational symmetry of a particle, 

which is 𝑘 = 6 for the hexatic order parameter.  



 23 

 

Figure 2-8 Hexatic order parameter calculation for a disk surrounded by 6 neighbors. The angle used in the 
computation of the order parameter is the difference between the interparticle vector (solid black line) and 
the reference vector, 𝑣ref = (1,0) (dashed arrow). In this example, the neighbors are perfectly oriented in 

hexatic order, so that the magnitude of order parameter is 1: |𝜓6,6
𝑖 | = 1, while its orientation is 𝜃𝜓6 = 𝜃(𝜓) =

0. Changing the reference vector to an arbitrary 𝑣ref = (𝑥, 𝑦) will change the complex hexatic orientation, 𝜃6, 
but not the magnitude of the hexatic order parameter. 

Accounting for this quantity as a complex number allows for the orientation and 

the strength of the order parameter to be computed per-particle. This aids in 

visualization of systems of particles, showing regions of hexatic order109,110, as 

well as in identifying regions of defects. The average of the hexatic order 

parameter may also be computed as both a complex and a real number, 

delivering the direction and strength of the order parameter, allowing for the 

hexatic phase transition to be identified109,110. 



 24 

 

Figure 2-9 The complex orientation of the hexatic order parameter, 𝜃𝜓6(𝜓6,6
𝑖 ), allows individual particles to 

be colored by the orientation of their nearest-neighbors, as shown for 5 different orientations: a (𝜃(𝜓)) = 0; 

b (𝜃(𝜓)) =
1

2
𝜋; c (𝜃(𝜓)) = 𝜋; d (𝜃(𝜓)) =

3

2
𝜋; e (𝜃(𝜓)) = 2𝜋. Note that the entire color wheel is traversed in 

the equivalent of 𝜃𝑖 = 0 →
𝜋

3
, due to the 6-fold symmetry of the hexatic order parameter. 

2.4.3 Orientation-Orientation “Hexatic” Order Parameter 

An alternative hexatic order parameter112 that takes into account the difference in 

orientation between neighboring particles can be computed as 

Ψ𝑘,𝑛
𝑖 =

1

𝑛
∑ cos(𝑘𝜃𝑖𝑗)

𝑗∈𝑁𝑁(𝑖)

 

In this case, 𝜃𝑖𝑗 is not the angle of the interparticle vector, but rather the 

difference in orientations of particles 𝑖, 𝑗. As with the traditional hexatic order 

parameter, the orientation-orientation hexatic order parameter can be computed 

per-particle or averaged across the system as a whole, allowing for the detection 

of phase transitions. This particle order parameter is particularly useful in 

identifying the onset of random tiling phases, which a hexatic order parameter or 

orientation order parameter would fail to detect. 
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Figure 2-10 Schematic demonstrating the computation of the orientation-orientation hexatic order parameter. 
Rather than take the orientation of the vector between two particles, as in 2.4.2, the difference in particle 
orientation a provides the input for the computation of the order parameter. While such an order parameter 
does not distinguish between the b parallel and c rhombille phases, it distinguished them from a disordered 
fluid, useful in identifying disorder to order transitions. 

2.4.4 Cubatic Order Parameter 

The orientational order of three-dimensional shapes (polyhedra) must be taken 

into account, as with two-dimensional shapes. The nematic order parameter is 

one order parameter which does so, typically used to measure the degree of 

alignment of long, anisotropic particles in liquid-crystalline phases113–115. In this 

work, the cubatic order must be measured, referring to the alignment of a particle 

with the faces of a cube. 

Previous research33,90,91 utilized a Lagrange Polynomial to account for this order 

𝑃4(cos 𝜃) ≡ ∑
(35 cos4 𝜃𝑖 − 30 cos2 𝜃𝑖 + 3)

8
𝑖

 

where 𝜃𝑖 is the angle between the global cubatic director and the particle 

orientation. This 𝑃4 order parameter does not account for true cubatic order, but 

rather accounts for order around the poles and equator of a sphere (Figure 2-11). 
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The true cubatic order parameter requires the use of fourth-order tensors to fully 

account for particle orientation113. 

 

Figure 2-11 Renderings of a Legendre polynomial- (𝑃4) and b 4th-order tensor-based (𝐾𝛺) cubatic order 

parameters. The value of the order parameter is a function of the relative orientation of a particle to the 
orientation of the cubatic director. In this example, the cubatic director is oriented in the 
(1, 0, 0), (0, 1, 0), (0, 0, 1) (toward the bright spots in b). The value of the order parameter is then given by the 

point at which the orientation director of a particle passes through the sphere. Dark regions correspond to 
low values of the order parameter, while bright regions correspond to high value of the order parameter. 
Note the difference in order parameter value for polar and equatorial orientations in the Legendre polynomial 
based order parameter, as well as the delocalization around the equator. The 4th-order tensor is able to 
properly distinguish cubatic order in a system of particles. 

Coloring individual particles by 𝐾𝛺 enables the identification of particles in 

alignment with the cubatic director, or are defective in an ordered structure. 

Unlike the hexatic order parameter, both the 𝑃4 and 𝐾𝛺 compare an individual 

particle’s orientation to that of a global cubatic director, rendering these methods 

unsuitable for identification of individual grains in a polycrystalline system.  

2.5 Pair motif analysis 

In Chapter 4, I analyze the motifs preferred by particle pairs in the dense fluid 

phase. An anisotropic particle is defined by its position and its orientation, (�⃗�𝑖 , �⃗�𝑖), 

where �⃗�𝑖 is a vector to particle 𝑖, while �⃗�𝑖 is a quaternion representing the 

orientation of particle 𝑖. For a pair of particles, (𝑖, 𝑗), we can express the relative 

position of 𝑗 to 𝑖 with the inverse quaternion operation: 



 27 

𝑟𝑖𝑗 = 𝑟𝑗 − 𝑟𝑖 

𝑟𝑖𝑗,local = �⃗�𝑖
∗ ∙ 𝑟𝑖𝑗 ∙ �⃗�𝑖 

𝑣𝑖𝑗 =
𝑟𝑖𝑗,local

|𝑟𝑖𝑗,local|
 

We can also express the relative orientation of particle 𝑗 to particle 𝑖 as a unit 

vector in a similar fashion: 

�̂�𝑖𝑗 = �⃗�𝑖
∗ ∙ �⃗�𝑗 ∙ (0,0,1) ∙ �⃗�𝑗

∗ ∙ �⃗�𝑖 

By computing 𝑣𝑖𝑗, �̂�𝑖𝑗 for a pair of particles, we obtain four unit vectors that may 

be combined to analyze the pair motifs in ℝ13: (|𝑟𝑖𝑗,local|, 𝑣𝑖𝑗 , �̂�𝑖𝑗 , 𝑣𝑗𝑖 , �̂�𝑗𝑖). Analysis 

of a vector in ℝ13 provides a challenge, especially since native visualization of >

3 dimensions is impossible. Instead, I employ machine learning methods to 

reduce the dimensionality of this vector, taking a vector in ℝ13 → ℝ2. I then 

employ machine learning-based clustering techniques to identify similar pair 

motifs. Please see Figure 2-12 for examples of this analysis method. 
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Figure 2-12 Example of a the t-SNE distribution of the fluid-phase pair motifs for a system of hard 
hexagonal-face polyhedra. This distribution is b split into clusters using Gaussian Mixture Models (120 
different clusters), which are then c merged to create clusters with a high probability of containing similar 
motifs (24 clusters). These clusters are then d categorized into three different motifs. 

2.5.1 t-Distributed Stochastic Neighbor Embedding (tSNE) 

The analysis of vectors in ℝ > 3 is inherently difficult due to the difficulty in 

visualizing more than three dimensions. Machine learning provides a class of 

methods that reduce the dimensionality of a data set. In particular, the t-

distributed stochastic neighbor embedding (t-SNE)116–118 provides a powerful 

method to embed a high-dimensionality distribution in a lower dimension. The t-

a b

c d
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SNE is particularly useful as it retains the proximity of points in the higher-

dimension in the lower-dimensional embedding. The t-SNE does this by 

considering the higher-dimensional datapoints, �⃗�𝑖, and computing the 

probabilities that two of these datapoints are neighbors. It then creates a 

mapping from the higher-dimensional data, �⃗�𝑖, to a lower dimension, 𝑥𝑖 while 

retaining the neighbor probabilities. The usage of the Student-t distribution allows 

this method to spatially separate dissimilar points in 𝑥. In this thesis, the 

dimensionality reduction takes vectors in ℝ13 → ℝ2. An example of such a t-SNE 

in ℝ2 in shown in Figure 2-12. 

2.5.2 Gaussian Mixture Models (GMM) Clustering 

Many different machine learning techniques exist to cluster vectors. I choose 

Gaussian Mixture Models (GMM)119–121 to cluster the t-SNE distribution. GMM as 

its name suggests, GMMs use Gaussian distributions to cluster points, grouping 

clusters that have a high probability of being similar. GMMs are very fast, 

allowing them to be efficient for larger datasets118. While Gaussian distributions 

are convex, they can be adapted to cluster non-convex clusters through the use 

of cluster merging121. This method of cluster merging has previously been used 

in the machine learning analysis of different crystal structures119. I use this 

combined GMM and Shannon-entropy based merging technique to cluster local 

motifs that I then label according to motif type. Please see Figure 2-12b-d for 

examples of the GMM merging analysis. 
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2.6 Other Analysis Methods 

 

Figure 2-13 a Example analysis of a system of polyhedra, represented by spheres. b shows the bond order 
diagram, showing the cumulative positions of the nearest-neighbors of each sphere, while c the fourier 
transform of the positions in a delivers a diffraction pattern, showing evidence of long-range translational 
order by the existence of Bragg peaks. Both b and c are viewing direction dependent, allowing for powerful 
crystal analysis and detection. 

2.6.1“Bond” Order Diagram 

In three-dimensional systems, the relative orientation of the nearest neighbors is 

very useful in identifying the ordering of a system of particles34, as seen in the 

computation of the hexatic order parameter in 2.4.2. To quantify the local 

ordering of the nearest neighbors, the interparticle vector is represented as a dot 

on the surface of a sphere, where each dot represents the intersection of the 

bond vector with the surface of the sphere, seen in Figure 2-13 b. This kind of 

plot is known as a “bond order diagram”34, where a “bond” is simply the vector 

between a particle 𝑖 and particle 𝑗 in the nearest-neighbors of particle 𝑖: 𝑗 ∈

𝑁𝑁(𝑖). These “bonds” are not bonds in the traditional sense, nor are they the 

entropic bonds defined in this thesis.  

2.6.2 Diffraction Patterns 

Crystallographers rely on x-ray and electron diffraction patterns to identify the 

crystal structures of experimental systems122, not only because until recently 
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atomic resolution microscopy was unavailable, but also because of the robust, 

unique fingerprint the diffraction pattern provides for a structure. Taking 

advantage of the mathematical nature of the diffraction pattern i.e. the diffraction 

pattern is the Fourier transform of the atomic positions, the analogous single-

crystal diffraction patterns for assemblies of simulated particles may be 

computed34. These diffraction patterns allow for quick identification of the type of 

periodic structure present in self-assembled systems (refer to the example in 

Figure 2-13 c). 

2.6.3 Alluvial Diagrams 

Finally, I collapse the “spatial” information encoded in the PMFT into a similar 

fashion to the disconnectivity plots via alluvial diagrams123. These diagrams show 

the flow of quantities from one region to another, most often used to map the 

change of quantities in large networks. These diagrams show the way in which 

changing the shape of a particle changes the size of the region in PMFT-space 

that belongs to a particular entropic bond. 

2.6.4 Bond Tracking 

As discussed in Section 2.1.1, Metropolis MC resembles MD simulation in the 

Brownian limit. Because of this similarity, it is possible to track particle 

configurations between simulation frames (an example schematic shown in 

Figure 2-14). Over the course of an MC simulation, consecutive frames are 

compared, and each particle pair is assigned a bond from the bond map 

generated via image analysis of the PMFT. By comparing bonds between 

consecutive frames, the length of time (as measured in MC sweeps) a given pair 
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is in a given bond is computed. By constructing a histogram from these individual 

bond lifetimes, the probability distribution of bond lifetimes (Bond Lifetime 

Distribution) is computed, allowing for comparison of these bonds to those in 

hydrogen bonding systems (Figure 2-15). 

 

Figure 2-14 Schematic showing a pair of hard hexagons, and their pair configurations (inset) in the (𝑟, 𝜃1, 𝜃2) 

PMFT. Two of the minimal PMFTs (𝜃1, 𝜃2 ∈ [0,
1

3
]) are paired, allowing the visualization of a bonding 

transition from one ground state (green) to another (blue) through a transition state (grey) along a 
hypothetical reaction coordinate. 
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Figure 2-15 Example of a bond lifetime distribution, in this case for four systems of hard hexagons at 
densities 𝜙 = [0.55, 0.65, 0.75, 0.85]. Each curve is separated by a decade for clarity, allowing for 
identification and analysis of the different features present in the distributions. 

2.7 Software Packages 

2.7.1 Simulation: HOOMD-Blue 

HOOMD-blue87,93,124–128, originally an acronym for Highly Optimized Object-

oriented Molecular Dynamics – Blue Edition, is a powerful simulation engine built 

to leverage the computing power of graphical processing units (GPUs). HOOMD-

blue is currently celebrating its 10th anniversary, and is currently in version 2.1.8. 

Over the last decade, many improvements to HOOMD-blue were made, including 

the addition of the Hard Particle Monte Carlo (HPMC) module93. This module 

allows users to use HOOMD-blue’s powerful scripting interface to run Monte 

Carlo simulations of polygons and polyhedra, taking advantage of the parallel 

computing resources available, not only GPUs, but also arrays of CPUs 

connected with MPI. 
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2.7.2 Analysis: Freud 

The systems studied in this work required the development of many analysis 

routines, including new algorithms and new implementations of existing 

algorithms. These methods are now collected in a software suite dubbed 

Freud129,130 after the father of psychoanalysis. The development of this software 

package and the methods therein constitute a significant portion of the work in 

this dissertation; indeed, the ability to compute the PMFT would not have been 

possible without the time and effort spent in implementing it as a part of Freud. 

Additionally, the modular framework of Freud enables rapid prototyping and 

implementation of code, allowing for quick, efficient addition of analysis routines, 

such as order parameter computation, identification of local motifs, and other 

useful metrics. Freud is still under development, with many users in the Glotzer 

Group, other groups at the University of Michigan, and at other universities. 

2.7.3 Other Software 

Both HOOMD-blue and Freud inherit from and contribute to the popular python 

scientific computing community104,131–135. In the past decade, Python has become 

the de facto language of scientific computing due to its nature as a scripting 

language. This allows users to glue together existing computing packages with 

their own analysis methods, providing an incredibly powerful and flexible analysis 

environment. Both HOOMD-blue and Freud use NumPy131,132 as an underlying 

data structure framework, allowing users to pass-in, extract, and manipulate data 

as required for their research. This facilitated the computation of PMFTs and 

allowed for the interoperability between HOOMD-blue and Freud to track hard 
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particles in entropic bonds. Analysis of entropic bonds would have been 

impossible without Scikit-image104,118, a relatively new, and very powerful, image 

analysis library. The pair motif analysis was enabled by the collection of machine 

learning methods in Scikit-learn118. MatPlotLib136 and Mayavi137 provide plotting 

libraries, again leaning on the scientific python stack. Without these libraries, it 

would have been much more onerous to even attempt to plot any of the data in 

this dissertation, let alone gain a deeper understanding into the nature of the 

entropic bond. 
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Chapter 3  

Shape Allophiles Improve Entropic Assembly 

Note: this chapter is adapted from Shape Allophiles Improve Entropic 

Assembly138, published in Soft Matter, 2015. All figures reproduced from Ref. 1 

with permission from the Royal Society of Chemistry. 

3.1 Introduction 

Self-assembly and shape complementarity (allophily) play important roles in 

many systems, especially biological systems in which the way proteins, 

enzymes, and DNA fit together geometrical play a critical role in the self-

assemble behavior139–142. The way in which biological systems fit together in 

geometric complementary way inspires the investigation of “allophilic” 

geometries28,139,143–147, named due to the way in which the geometries are 

designed to “like” each other. Allophilic particles are designed to fit together like 

puzzle pieces, creating hierarchical structures. Lock-and-key colloids28,29,37,148,149 

are examples of allophiles as they are designed to exploit shape and entropic 

depletion forces for self-assembly. Biological systems rely on inter- and intra-

molecular forces to guide self-assembly while lock-and-key colloids reach similar 

assembles solely with entropy. Here I demonstrate the ability for allophilic 

patterning to direct the self-assembly of a desired structure in a quantifiable 

manner, via analysis of the PMFT into entropic bonds. 
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3.2 Methods 

 

Figure 3-1 Hard squares (a) self-assemble a square lattice, while hard 2:1 aspect-ratio rectangles (b) 
instead self-assemble a random tiling (the random domino or parquet tiling). 

I start with hard squares, modelled in the NPT thermodynamic ensemble, and 

note that these squares self-assemble a square lattice (see Figure 3-1a)36,150,151. 

Taking these squares as “parent” shapes, I choose “child” shapes that combine 

to form the parent shape, in this case 2:1 ratio rectangles (shown in Figure 3-1b) 

and right-isosceles triangles. Both shapes are ideal for our investigations as 

neither self-assemble the square lattice: 2:1 hard rectangles self-assemble the 

random domino (parquet) tiling90,152,153 (shown in Figure 3-1b and detailed in 

Figure 3-2), while right isosceles triangles do not self-assemble an ordered solid 

(Figure 3-9a). 
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Figure 3-2 Schematic showing the differences in the square lattice a and the parquet tiling b. Red rectangles 
represent unpaired rectangles, unique to the parquet tiling, while the yellow rectangles are ambiguously 
paired. Both are defects in the square tiling. 

I pattern the child shapes using triangle waves to create a complementary 

interface. Triangle waves have two natural variables to tune to optimize self-

assembly behavior: amplitude and wavenumber. I allow the amplitude to vary 

𝐴 = [0, 0.5𝐿], reported as a fraction of 0.5𝐿: 𝐴 ∈ [0,1] ensuring the shapes are all 

simple polygons. The wavenumber, 𝑛𝑘, is the number of half wavelengths across 

the edge of a shape; even wavenumbers create congruent shapes (homophiles) 

while odd wavenumbers create incongruent shapes (allophiles), shown in Figure 

3-3. 
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Figure 3-3 Triangle wave patterning is applied to rectangles to create shape complementarity. 𝐴 is the 
amplitude of the triangle wave, while 𝑛𝑘 is the wavenumber, or the number of half-wavelengths. Only integer 

values of 𝑛𝑘 are considered. Three cuts through this space, 𝐴 = 0.14, 0.28; 𝑛𝑘 = 4 are considered in this 
work. 

These systems are simulated in HOOMD-blue87,93,126 using the HPMC93 

integrator. To compute the orientation correlation function110,154,155 and the PMFT, 

I investigate systems of 𝑁 = 10,082 particles, simulated with MPI domain 

decomposition on 32 cores each on the University of Michigan Flux cluster and 

the XSEDE Stampede computing cluster156,157. 

3.3 Results and discussion 

I take three cuts through the phase space formed by 𝑛𝑘 and 𝐴: 𝑛𝑘 = 4 and 𝐴 =

0.14, 0.28. By investigating the assembly propensity and the effects the shape 

has on the PMFT and entropic bond formation, I can determine design rules to 

control the self-assembly of shape allophiles. 
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Figure 3-4 Array of the lowest density solid self-assembled equilibrium structures for (a) rectangles 
(𝛽𝐿2𝑃 = 9.0) and allophilic rectangles with (b) 𝑛𝑘 = 1, 𝐴 = 0.14 (𝛽𝐿2𝑃 = 10.0), (c) 𝑛𝑘 = 3, 𝐴 =
0.14 (𝛽𝐿2𝑃 = 11.8), (d) 𝑛𝑘 = 2, 𝐴 = 0.28 (𝛽𝐿2𝑃 = 12.6), (e) 𝑛𝑘 = 3, 𝐴 = 0.28 (𝛽𝐿2𝑃 = 13.2), (f) 𝑛𝑘 = 4, 𝐴 =
0.57 (𝛽𝐿2𝑃 = 8.0), (g) 𝑛𝑘 = 5, 𝐴 = 0.28 (𝛽𝐿2𝑃 = 11.2), (h) 𝑛𝑘 = 6, 𝐴 = 0.28 (𝛽𝐿2𝑃 = 9.8), (i) 𝑛𝑘 = 10, 𝐴 =
0.28 (𝛽𝐿2𝑃 = 9.2). Wavenumbers increase left to right, while amplitude increases top to bottom. Bonded 
shapes are colored as in Figure 3-1; otherwise, they are colored grey. Shapes that improve the assembly of 
the square lattice relative to 2:1 rectangles are outlined in green. Values for assembly propensity 𝑓𝑏, as well 
as the pressures, are plotted and compared in Figure 3-5. 

The first measure of success of allophilic patterning is the fraction of particles 

that correctly pair, or the assembly propensity of the system. I employ a simple 

metric to determine assembly propensity: two particles are paired if the distance 

between them is below a threshold, and if the interparticle vector is within 𝜃 ≈
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0.1𝜋 of being perfect. Simple addition of triangle waves is not enough to increase 

assembly propensity: all 𝐴 = 0.14 are not significantly better than raw rectangles. 

Additionally, lower values of 𝑛𝑘 are ineffective at improving the assembly 

propensity, actually increasing the number of unpaired particle. However, at 

larger values of 𝑛𝑘 , 𝐴 the assembly propensity increases to above 70%, indicating 

successful assembly. 
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Figure 3-5 Comparison of the relative free-energy of the primary bonding well, 𝛽∆𝐹12, the number of defects 

(complement to the assembly propensity, (1 − 𝑓𝑏), and the lowest solid pressure, 𝛽𝐿2𝑃∗ at 𝐴 =
0.14, 0.28; 𝑛𝑘 = 4. (d and g) show a direct correlation between the increase in the directional entropic force 
and the increase in properly assembled particles due to an increase in 𝐴, while (e, f, h, i) show a threshold-
like nature of 𝐴 for the increase in the DEF, as well as the existence of optimal values for 𝑛𝑘. Error bars are 
reported as the standard deviation of the average for 4 replicate simulations at the same state point. Error 
for (d-f) is 𝑂(0.005) while that for (g-i) is 𝑂(0.0005), smaller than the size of the markers used. No error bars 
reported for pressure as pressure is an independent variable in the simulation. 

I analyze the 2D PMFT to understand the effect that 𝑛𝑘 , 𝐴 have on the free-

energy landscape and resulting bonds. Figure 3-6 shows the free-energy 

landscape for a 2:1 rectangle and an allophilic rectangle with 𝑛𝑘 = 4, 𝐴 = 0.42. 

The addition of the allophilic patterning has a significant effect on the regions of 

the landscape that are attractive or repulsive. The edge-to-edge attraction greatly 
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increases, while the secondary minima associated with the L-shaped motif 

disappears. 

 

Figure 3-6 2D PMFT for a hard rectangles and b 𝑛𝑘 = 4, 𝐴 = 0.42. c cross-sections through the bonding 
wells (𝑦 = 0); for convenience ∆𝑥 is the distance from the closest approach of two hard particles. 
Schematics of the local configurations at each ∆𝑥 included to aid in the understanding of the PMFT. Note the 

increase in depth of the primary bonding well due to allophilic shaping, as well as removal of the local 
minima associated with the L-motif in hard rectangles. 

The amplitude, 𝐴, has the strongest effect on the depth of the entropic bonding 

well, producing a difference in free-energy 𝛽∆𝐹12 > 2 at the highest amplitudes 

investigated, shown in Figure 3-5. As 𝐴 increases, the region associated with the 

primary bonding well increases in size, eliminating the region associated with the 

random domino well, effectively biasing the system against the formation of this 

motif. However, this effect eventually plateaus, due in part to the increased 

propensity to misbind, shown in Figure 3-7. 
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Figure 3-7 PMFTs for a 𝐴 = 0.42, b 𝐴 = 0.57, c 𝐴 = 0.71, and d 𝐴 = 0.85 at 𝑛𝑘 = 4. As the value of 𝐴 
increases, the emergence of secondary bonding wells results in the increase in misbonding, preventing a 
further increase in 𝑓𝑏 that should be expected given the increase in the depth of the bonding well, shown in 
Figure 3-5.  

Interestingly, even and odd values of 𝑛𝑘 have little impact on the assembly 

propensity of allophilic particles once the threshold value for 𝐴 is met, even 

though systems with odd 𝑛𝑘 only have 
𝑁

2
 particles with which to bind. This 

contradicts intuition, as it is expected that 𝑓𝑏 should decrease for odd 𝑛𝑘, as 

observed in particle with a 𝐴 values below the threshold, shown in Figure 3-5 e, 

h, k. Instead, past the 𝐴 threshold, the DEF interactions are strong enough to 

correctly guide the pairing of complementary particles, so that the decreased 

number of pairs with which to bind does not play a significant role73. In fact, the 

most successful allophilic value was for 𝑛𝑘 = 3, 𝐴 = 0.28, shown in Figure 3-4 

and Figure 3-5. 
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Figure 3-8 PMFTs for a rectangles, b 𝑛𝑘 = 4, c 𝑛𝑘 = 6, and d 𝑛𝑘 = 10 at 𝐴 = 0.28. The emergence of the 
secondary bonding wells in c, d indicate that high values of 𝑛𝑘 reduce the selectivity of the allophilic 

patterning. The re-emergence of the bonding well associated with the L-motif in c, d indicate that the smaller 
spacing between triangle-wave teeth poorly mimics a flat face, also reducing the effectiveness of allophilic 
patterning at high values of 𝑛𝑘. 

As 𝑛𝑘 increases past 𝑛𝑘 = 4, the assembly propensity starts to decrease. 

Analysis of the PMFTs, shown in Figure 3-8, show the increase in 𝑛𝑘 causes the 

introduction of low-energy bonding wells associated with mispairing of particles. 

Additionally, the free-energy well associated with the L-motif in hard rectangles 

begins to reappear, indicating that the close proximity of the “teeth” can poorly 

mimic a flat face, enough to decrease the assembly propensity of the system. 

After analysis of the PMFTs, I establish the following allophilic design rules: 

1. A moderate amplitude is sufficient to induce and entropic drive to self-

assemble, 𝑂(15%) of particle size 

2. An intermediate wavenumber induces the entropic drive to self-assemble 

without creating the propensity to misbind, in these systems 𝐴 ≈ 3,4. 
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Figure 3-9 a right-isosceles triangles do not self-assemble an ordered solid. b application of allophilic 
patterning greatly increases the ability for the system to self-assemble the desired square lattice. 

I put the design rules to the test on a system of right-isosceles triangles. These 

triangles do not self-assemble any ordered solid phase, not even a random 

phase like the 2:1 rectangles. Analysis of the 2D and 3D PMFTs shown 

significant competition between local motifs to form entropic bonds, especially 

within the regions corresponding to base-to-hypotenuse configurations. 

I add a 𝑛𝑘 = 4, 𝐴 = 0.28 triangle wave pattern to the triangle to direct its self-

assembly. The effect on the PMFT is pronounced: The primary bonding well is 

considerably deepened, limiting its ability to convert to other bonds, while the 

defect configurations are considerably higher in free energy. 

When these patterned triangles self-assemble, an assembly propensity of 93% is 

achieved, indicating the considerable effectiveness of this method. 
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Figure 3-10 Two-dimensional PMFTs for a right-isosceles triangles and b allophilic triangles with 𝑛𝑘 = 4, 𝐴 =
0.28. Right-isosceles triangles have two free-energy wells in close proximity, preventing the successful self-

assembly of the square lattice. The defect well disappears with the application of allophilic patterning. 

3.4 Conclusion 

Allophilic patterning is a very effective way to control the self-assembly of hard 

particles, without requiring the use of chemical functionalization of other intrinsic 

interparticle interactions. It achieves this by altering the extant entropic bonds in 

the system to reinforce desired local motifs while discouraging disruptive local 

motifs. The design of entropic bonds via shape modification with allophilic 

patterning is yet another tool for scientists and engineers to control and self-

assembly. Such complementary geometries are likely very important in naturally 

occurring systems, with feature sizes 𝑂(15%) of particle size able to influence 

assembly behavior. Additionally, while previous studies not that vertices are 
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entropically repulsive60,82,158, they can be effectively attractive through allophilic 

patterning, allowing for the creation of motifs required for a plasmonic response 

in anisotropic particles159,160. Further investigation into shape complementarity in 

other, more complex systems should be undertaken to better understand how to 

best design and control allophilic interfaces. 
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Chapter 4  

Hierarchical Self-Assembly of Cube Slices 

4.1 Introduction 

In Chapter 3 I demonstrate how allophilic patterning can control self-assembly by 

leverage the hierarchical self-assembly of congruent derivatives of squares: 2:1 

rectangles and right-isosceles triangles138. Neither shape self-assembled a 

square lattice, instead forming a random tiling (rectangles) or a disordered solid 

(triangles). By analyzing the emergent directional entropic forces in that system, I 

can understand and modify its self-assembly behavior. It is natural to then ask a 

similar question about the hierarchical self-assembly behavior of three-

dimensional systems, specifically the extension of the previously considered hard 

square system, the hard cube (shown in Figure 4-1). 

 

Figure 4-1 a two-dimensional hard squares, considered in Chapter 3, are extended to b three-dimensional 
cubes. 
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Here I investigate the hierarchical assembly of a simple cubic lattice from a family 

of congruent hard cube derivatives: prisms, general polyhedra, and so-called 

supercubes (shapes that require > 2 to re-assemble a cube). For each class, I 

consider two examples of each: rectangular (RP) and right-isosceles triangular 

prisms (TP), in a direct analog to the previous two-dimensional study; central cut 

shapes forming a rhombic (RFP) or hexagonal cut face (HFP); and shapes 

requiring three (S3) or six (S6) members to re-assemble the cube, shown in 

Figure 4-2. I identify which shapes successfully assemble the desired crystal 

structure, and analyze the pair motifs that form as a result of the emergent 

directional entropic forces. This provides us with insight into the features of these 

shapes that aid or inhibit the hierarchical self-assembly, leading to better design 

of such shapes. 

Hierarchical self-assembly is a well-studied phenomenon with a wide range of 

application161–166, including nanoparticle, colloidal, and biological systems. The 

choice of “force” with which to guide self-assembly is system dependent; 

therefore, having as many mechanisms to guide hierarchical assembly is very 

important, allowing scientists and engineers as many design choices as possible. 

While chemical functionalization is a powerful tool, technical challenges and 

limiting factors167 make investigation into other mechanisms, such as shape 

manipulation, important. 

Hard cubes36,168–171 are known to self-assemble a cubic crystal, with a fluid-

crystal coexistence at a reduced pressure 𝑃∗ = 6.1636. Previous investigation into 

systems of hard rectangular prisms identified a rich phase behavior172, including 
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a smectic phase at 𝑃∗ ≈ 20.75, a columnar phase at 𝑃∗ ≈ 30.68, and a cubic 

crystal at 𝑃∗ ≈ 50.9790. More complicated hierarchical self-assembly of the 

“supercube” structure has also been observed34, suggesting the influence of the 

crystal lattice structure on the local assembly behavior of hard particles. Due to 

the similarities and differences between these three-dimensional systems and 

the previously studied two-dimensional systems, a better understanding of the 

pair motifs that form in the fluid phase due to emergent, directional entropic 

forces, and how these motifs either encourage or inhibit the self-assembly of an 

ordered structure will yield important information regarding the design of 

nanoparticles and colloids for hierarchical self-assembly. 

4.2 Methods 

 

Figure 4-2 Illustration of shapes studied in this paper: a rectangular prisms (RP)*90; b right-isosceles 
triangular prisms (TP); c rhomb-faced polyhedra (RFP); d hexagonal-faced polyhedra (HFP); e 3-piece 
supercubes (S3); and f 6-piece supercubes (S6)*34. The cube formed by the assembled shapes is rendered 
with one (or more) of the pieces rendered transparent to better show the faces that touch to form the 
assembled cube. These decompositions are chosen as they yield congruent slices (each resulting slice is 
the same). Shapes marked with a star have been previously studied. 
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I consider three classes of polyhedral (prisms, pairs, and “supercubes”), each 

class with two representatives, shown in Figure 4-2. Analysis of rectangular 

prisms and the “supercube” S6 shape are included as a control due to their 

known phase behavior. Systems of 𝑁 = 2000 hard polyhedra are simulated in 

the NPT thermodynamic ensemble using HOOMD-blue87,93,125,126 with HPMC93 

on CPUs. These systems are initialized on a low-density (𝜙 = 0.2) lattice, are 

thermalized to a low-density fluid, then compressed at a constant pressure and 

run for at least 300 ∙ 106 MC sweeps to equilibrate. All measurements are taken 

in equilibrated systems. 
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Figure 4-3 a image of the self-assembled cubic lattice of the HFP shape. b the same system in a, rendered 
as spheres, with the center-of-mass of the HFP shifted to the center of the cube (on the cut face of the 
HFP). The choice of viewing angle in a and b show the simple cubic structure. This angle is also used in 
calculating the c bond-order diagram and d diffraction pattern. These two metrics also show the cubic lattice, 
the bond-order diagram showing neighbors positioned in the directions of the faces of a cube, and the 
diffraction pattern showing cubic periodicity. Please refer to Chapter 2.4.4 for more information regarding the 
bond-order diagram and diffraction pattern. 

I determine the self-assembled structure by visual analysis (Figure 4-3a,b), along 

with calculating the bond-order diagram (Figure 4-3c) and diffraction pattern 

(Figure 4-3d). Considering both the actual positions and orientations of the 

polyhedra (Figure 4-3a) as well as the centers-of-mass of the parent cube 

(Figure 4-3b) provides visual evidence of the simple cubic structure. This visual 

analysis also enables calculation of the bond-order diagram (Figure 4-3c), 

accounting for the average positions of neighboring polyhedra, as well as 
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calculation of the diffraction pattern (Figure 4-3d). The Bragg peaks in the 

diffraction pattern provide evidence of long-range translational order. 

 

Figure 4-4 Self-assemblies of HFP shapes in a the disordered fluid and b ordered simple cubic phases.Each 
individual shape colored by the cubatic order parameter, 𝐾Ω. The cubatic director is computed for the entire 

system, and the alignment of each shape to the cubatic director provides the measure of the local cubatic 
order. To facilitate understanding, I let 𝐾Ω → 0 be red, and 𝐾Ω → 1 be blue). 

I also compute the cubatic order parameter, 𝐾Ω, shown in Figure 4-4, to measure 

the degree of orientational order in the system (please see Chapter 2.4.4 for a 

detailed explanation of this calculation). Unlike the bond-order diagram, which 

accounts for the relative position of a neighbor to a particle, the cubatic order 

parameter accounts for the orientation of all particles in the system. This order 

parameter is chosen because the shapes under consideration must be ordered in 

a cubic fashion in the simple cubic system. Additionally, it is known that 

orientational rather than translational order develops first in RP systems, 

requiring the use of an orientation-based order parameter to identify intermediate 

phases between a fluid and simple cubic crystal. The existence of a cubatic 

phase in 2:1 rectangular prisms and related systems is also currently under 
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debate, and calculation of this order parameter will provide evidence of such a 

phase. 

To analyze the pair motifs found in the fluid phase, I must compute the local 

geometric configuration of particle pairs, as described in Chapter 2.5. I then use 

the t-distributed stochastic neighbor embedding dimensionality reduction 

technique (t-SNE)116,117 to allow for the clustering of these motifs via Gaussian 

Mixture Methods119–121. Further analysis of these clusters into categories yields 

insight into the motifs preferred by the system in the fluid phase, and how these 

motifs facilitate or inhibit the self-assembly of the desired simple cubic phase. 

Here I perform the t-SNE analysis on a set of 8000 vectors sampled from 10 

independent simulation trajectory frames. To obtain the population average of the 

motifs, I average across three independent simulations at the same 

thermodynamic statepoint, NPT. 

4.3 Results and discussion 

I start by analyzing the control systems (those previously studied): the 2:1 aspect 

ratio rectangular prisms (RP), and the square pyramid supercubes (S6). Because 

RP systems first break symmetry by adopting orientational order rather than 

translational order90, I use the cubatic order parameter, 𝐾Ω, instead of the t-SNE 

analysis, as 𝐾Ω provides a more robust measure of the relevant order. 
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Figure 4-5 Cubatic order parameter, 𝐾Ω, and the equation of state for 2:1 rectangular prisms (RP), showing 
the existence of the previously unreported cubatic phase, evidenced by the simultaneous increase in 𝐾Ω 

accompanied by an increase in system density 𝜙 at 𝑃∗ ≈ 13.5. The slight increase in 𝐾Ω with an increase in 
𝜙 at 𝑃∗ = 13.8 shows the transition from the cubatic phase to a smectic phase. The zoomed insight 
highlights the fluid-cubatic-smectic phase transitions. Please see Figure 4-6 for images of these phases. 

I calculate the density and cubatic order parameter, 𝐾Ω, over a range of 

pressures, 𝑃∗, yielding the equation of state with associated 𝐾Ω, shown in Figure 

4-5. I observe a previously unreported phase transition between the known fluid 

(𝑃∗ < 13.5) and smectic(𝑃∗ > 13.8) phases. This phase is a cubatic phase, 

evidenced by the rapid increase in 𝐾Ω in this region of the equation of state 

(13.5 < 𝑃∗ < 13.65).  
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Figure 4-6 Comparison of the a cubatic (𝑃∗ = 13.65), b smectic (𝑃∗ = 14.0), and c cubic (𝑃∗ = 21.0) 

phases. Each RP is colored by its cubtic order (red: 𝐾Ω → 0, blue: 𝐾Ω → 1). The bond-order diagrams (inset 
upper-right) show order with the six sides of a cube, with an additional equatorial band in b, showing the 
smectic phase. No long-range translational order is present in the cubatic phase (a), as evidenced by the 
lack of peaks in the diffraction pattern; both the smectic and cubic phases show sharp peaks in the 
diffraction pattern showing existence of long-range translational order. 

The difference between the cubatic, smectic, and cubic phases is shown in 

Figure 4-6. The cubatic phase (Figure 4-6a) shows bond order with the six sides 

of a cube, with no Bragg peaks in the diffraction pattern. The smectic phase 

(Figure 4-6b) shows clear evidence of layers, in both the bond order diagram 

(darker equatorial band) and in the diffraction pattern with the development of 

Bragg peaks. The cubic phase (Figure 4-6c) shows strong cubic order, and long-

range order, evidenced by Bragg peaks in multiple directions. 
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Figure 4-7 View of the self-assembled supercube structure for the S6 shape at a pressure 𝑃∗ = 53.0, 
showing the nucleation of two different crystallites (red and white). a shows the actual polyhedra while b 
shows the center-of-mass shifted to the tip of the square pyramid, showing the simple cubic crystal 
structure. 

I now consider the square pyramid (S6) shape. As in Ref. 3434, I also observe the 

self-assembly of the supercube, finding that this shape is prone to forming 

polycrystalline assemblies, shown in Figure 4-7. To understand what local motifs 

form during self-assembly leading to this behavior, I employ the t-SNE technique 

with GMM-based clustering (see Figure 4-8). 
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Figure 4-8 t-SNE analysis and classification for the S6 shape. This shape only exhibits three of the four 
possible geometric pair motifs: cut-face paired (green), square-face paired (blue), and misaligned (red); this 
shape does not form the "compatible" motif. 

The S6 shape forms three different categories of motif in the dense fluid phase: 

the cut-face pair (blue), the square face pair (red), and the misaligned motif 

(green). Analyzing the population fraction of these motifs (shown in Figure 4-9), I 

find that the cut-face motif is most prevalent, forming ≈ 48% of the time. This is 

perhaps surprising, given that the size of the triangular face is smaller than the 

square face. Clearly, this indicates the importance of emergence in the 

directional entropic forces directing the self-assembly of these hard particles. 

This relatively high population fraction may also explain the formation of multiple 

crystallites, as the high fraction of pairs should result in the formation of multiple 

nucleation sites without the guarantee that any local cubic nucleus will be 

appropriately oriented to other nuclei. 
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Figure 4-9 Comparison of the fraction of pair motifs found in the dense fluid phase for S6, HFP, RFP, TP, 
and S3 shapes. Note that S6 and HFP shapes do not form the "compatible" motif, and that the S3 shape is 
not observed to self-assemble the cubic crystal lattice. 
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Figure 4-10 Equilibrium self-assemblies colored by the cubatic order parameter (red: 𝐾Ω → 0, blue: 𝐾Ω → 1). 
Inset bond-order diagrams (top) and diffraction patterns (bottom) of a HFP (𝑃∗ = 21.0), b RFP (𝑃∗ = 24.0), c 
TP (𝑃∗ = 18.0), and d S3 (𝑃∗ = 36.0). Note that only the S3 shape fails to self-assemble into an ordered 
simple cubic crystal. 

I perform the same t-SNE and GMM analysis on the remaining cube derivatives: 

HFP, RFP, TP, and S3. First, I note that of these shapes, only the S3 shape fails 

to self-assemble the simple cubic lattice (see Figure 4-10d for assembly, and 

Figure 4-11 for the t-SNE plot). As shown in Figure 4-9, over half of the S3 motifs 
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are misaligned. This makes the formation of nuclei, and the final simple cubic 

crystal, prohibitively difficult. 

 

Figure 4-11 t-SNE analysis of the fluid phase for the S3 supercube shape. Color-coded representative motifs 
are included to the right for convenience: cut-face (green), square-face (blue), compatible (yellow), and 
misaligned (red). 

Both the general polyhedral shapes, HFP and RFP, successfully self-assembly 

the simple cubic lattice (Figure 4-10a, b). Similar to the S6 shape, the HFP shape 

does not exhibit “compatible” motifs, only exhibiting motifs that directly contribute 

to or compete with the correct self-assembled structure (Figure 4-12a). This is a 

result of the symmetry of the HFP shape. Not only does the cut face have three 

equivalent alignments, but also the faces that result from square faces are 

congruent. These congruent faces thus do not exhibit a preference for alignment. 

In contrast, the RFP shape does exhibit “compatible” motifs. These motifs result 

from the mismatch between faces. While the cut-face itself has two-fold 

symmetry, there is only one way to align the cut faces to assemble a cube. 

Additionally, all three faces resulting from square faces are not congruent. 
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Looking at the example motifs in Figure 4-12b, the bottom face is a square, while 

the other large faces are not. Additionally, these faces are chiral, requiring one 

left-handed and one right-handed face to “correctly” pair. These differences result 

in the lower population fractions of cut-face paired and square face paired for 

RFP relative to HFP (Figure 4-9). However, as both shapes successfully self-

assemble the simple cubic lattice, the differences between the RFP and HFP 

shapes are not enough to prevent the self-assembly of the desired structure. 

 

Figure 4-12 Comparison of the t-SNE analysis of the fluid phase pair motifs for a HFP and b RFP. Color-
coded representative motifs are included below: cut-face (green), square-face (blue), compatible (yellow), 
and misaligned (red). Note that the HFP does not exhibit a “compatible” motif because its three faces 
originating from the square faces of the cube are congruent. This is in contrast to the RFP: the square face 
is not congruent with the other faces originating from square faces (b, yellow motif). Also note that the two 
large square faces originating from the square faces are not congruent; being chiral, one left-handed face 
must pair with a right-handed face to form a square-face pair (red motif), while two left-handed or two right-
handed faces will form a compatible pair (yellow motif). 

The right-isosceles triangular prism (TP) also successfully self-assembles the 

cubic lattice (shown in Figure 4-10c). As seen in the self-assembled system, 

bond-order diagram, and diffraction pattern, the self-assembly is not as robust as 

ba
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the assemblies for either RFP and HFP shape. However, the self-assembly is far 

more successful than its two-dimensional counterpart138. Analysis of the fluid-

phase motifs (Figure 4-13) provides a deeper understanding why. Like the RFP, 

the TP forms all four categories of motif: cut-face paired, square face paired, 

compatible, and misaligned. The two-dimensional right-isosceles triangles138 may 

only form cut-edge pairs and base-edge pairs, analogs of the cut-face paired and 

square face paired motifs. The additional dimension for the TP adds the 

additional “compatible” motif, driving the system to an ordered rather than 

disordered solid phase, shown by the fraction of misaligned motifs in the fluid 

phase, 𝑓 < 0.5 (Figure 4-9). 

 

Figure 4-13 t-SNE analysis of the fluid phase for right-isosceles triangular prisms (TP). Color-coded 
representative motifs are included to the right: cut-face (green), square-face (blue), compatible (yellow), and 
misaligned (red). 

The quantification of these motifs is based on previous investigation into 

assembly pathway engineering166. Ref. 166 suggested that when local motifs 

form and compete with the target structure, the assembly of the target structure 

will be hindered or even prevented. These observations reflect and reinforce this 
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conclusion, as the S3 shape did not self-assemble the target crystal, and the S3 

shape is the only shape investigated that has a fluid phase dominated by the 

misaligned motifs (see Figure 4-9, Figure 4-11). I summarize these observations 

of the self-assembly behavior in the following design rules: 

1. Shapes should maximize the number of correct ways to assemble 

intermediate motifs, minimizing the number of ways into incorrectly 

assemble intermediate motifs 

2. Shapes should possess “selectivity”; particle faces should be different 

enough to prevent local motif “confusion” 

Both the HFP and S6 shapes demonstrate the synergy of these design rules: 

both shapes avoid compatible motifs, so that there is no confusion about motifs 

that lead to the final crystal. While compatible motifs are present in both RFP and 

TP shapes, these motifs do not compete with the final crystal structure. This is 

not the case for the S3 shape. This shape exemplifies the antithesis of these 

design rules. The faces resulting from the original square faces are congruent; 

however, they are very similar in size to the cut-faces, resulting in motif 

confusion, introducing competition between correct and incorrect motifs. 

Additionally, the cut-faces are similar but not congruent, introducing further 

competition between correct and incorrect motifs, further decreasing the drive 

toward self-assembly of the correct crystal structure. 

4.4 Conclusion 

I investigated the hierarchical self-assembly behavior of a family of hard cube 

derivatives, determining the success and failure of their ability to assemble a 
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simple cubic lattice. I report evidence for the existence of a cubatic phase for 2:1 

aspect ratio rectangular prisms, as well as verifying the self-assembly of square 

pyramids into the “supercubic” crystal structure. In our investigation of these six 

shapes, I quantify the pair motifs that form in the dense fluid phase, relating 

these geometries to their ability to self-assemble the desired crystal structure. By 

grouping these motifs into categories contributing to or competing with successful 

self-assembly, I gain a deeper understanding into effect that particle shape has 

on the final crystal structure. 

Further investigation into entropy-driven hierarchical self-assembly of anisotropic 

particles should be considered. Here I only attempt the self-assembly into a 

simple structure. Further investigation of hierarchical self-assembly of other 

simple (BCC, FCC) and more complex (𝛽-Mn, quasicrystals) structures will 

provide a better understanding of the limitations of entropy-driven hierarchical 

self-assembly. Allophilic shaping, currently only considered in two-dimensional 

systems138, should be investigated for polyhedral systems, allowing for similar 

manipulation of the crystal structure obtained via self-assembly. The analysis 

considered here should be extended with calculation of the potential of mean 

force and torque60,173. This will provide additional insight into the effective driving 

force to form the preferred pair motifs, as well as the topology of the effective 

free-energy landscape. This insight will enable the design of shapes more 

effective at hierarchical self-assembly, providing scientists and engineers more 

tools to create novel materials with previously unavailable properties. 
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Chapter 5  

Nature of the Entropic Bond in Particle Assemblies 

Note: this chapter is adapted from Nature of the Entropic Bond in Particle 

Assemblies173, submitted to Nature in 2018. 

Having observed the existence of an emergent directional entropic force arising 

due to the shape of and crowding of nanoparticles and colloids34,72 in Chapter 3 

and Chapter 4, and that this force may be quantified through the Potential of 

Mean Force and Torque60,82 (see Chapter 2.3), the similarities between these 

forces and traditional forces that govern chemical bonding cannot be ignored174–

177. It is natural to wonder if there exists an analogous entropic bond that forms 

due to the directional entropic force to the chemical bonds form due to 

electromagnetic and quantum-mechanical forces. To demonstrate the existence 

of the entropic bond, I relate the observed phenomena to the analogous 

hydrogen bond in classical chemistry. I quantify the effects of both system 

density and particle shape on entropic bonds. I demonstrate the ability for these 

bonds to be quantified in a similar manner to chemical functionalization on 

nanoparticles and manipulated in similar ways. 

5.1 Introduction 

The International Union of Pure and Applied Chemistry defines the chemical 

bond as178: 
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When forces acting between two atoms or groups of atoms lead to the formation 
of a stable independent molecular entity, a chemical bond is considered to exist 
between these atoms or groups. The principal characteristic of a bond in a 
molecule is the existence of a region between the nuclei of constant potential 
contours that allows the potential energy to improve substantially by atomic 
contraction at the expense of only a small increase in kinetic energy. Not only 
directed covalent bonds characteristic of organic compounds, but also bonds 
such as those existing between sodium cations and chloride anions in a crystal of 
sodium chloride or the bonds binding aluminium to six molecules of water in its 
environment, and even weak bonds that link two molecules of O2 into O4, are to 

be attributed to chemical bonds. 
 

This definition covers all chemical bonds, from ionic and covalent bonds to 

hydrogen bonds. Hydrogen bonds are particularly interesting given their more 

temporal nature and lower strength than other types of chemical bonds176–178. 

Interestingly, this definition does not require the use of electrons, electromagnetic 

fields, or quantum mechanics, leading to the question about the minimal model 

required for a chemical bond. 

As noted in Chapter 1, scientists and engineers have been investigating the self-

assembly of nanoparticle and colloidal systems, using a variety of mechanisms to 

attract and “bind” particles together. Some methods leverage chemical bonds to 

link particles via chemical functionalization such as with thiol179 or DNA 

coatings180,181, using complementary strands to bind when in close proximity. 

These particles have effective enthalpic patches83, enthalpic due to the release in 

energy from the formation chemical bonds between particles. Other methods 

utilize particle geometry itself to create colloidal valence, such as with lock-and-

key colloids28,37,182,183, and with other shape-complementary particles147,184. 

Hydrogen bonds are responsible for some of the most important structures and 

phenomena in nature. From the DNA double-helix to the expansion of ice upon 

https://goldbook.iupac.org/html/S/S05900.html
https://goldbook.iupac.org/html/K/K03402.html
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freezing, the unique properties of water that derive from hydrogen bonding are in 

many ways responsible for life as we know it. Unlike the stronger chemical bonds 

(metallic, ionic, and covalent), hydrogen bonds are unique in that they can 

rearrange and reconfigure at biologically relevant temperature, while still directing 

the formation of complex structures185–188. This temporal nature leads to a 

measureable bond lifetime185,189–191. 

5.2 Methods 

I investigated systems of perfectly hard polygons to determine the nature of the 

entropic bond. Because shape is the independent variable of interest, these 

particles must be both perfectly hard and perfectly sharp to avoid any 

confounding effects due to interparticle potentials and rounding. The phase 

behavior of hard, hexagonal platelets is well-known108, and provides an excellent 

place to start our investigation. Hexagons are beneficial to study as they have 

significant mobility in their solid phase, allowing for measurement of bond 

lifetimes in both fluid and solid phases. Given the existing knowledge of the 

equation of state and phase behavior of hard hexagons, I simulated in the NVT 

thermodynamic ensemble. 

Hard hexagons are also geometrically related to systems of hard, elongated 

rhombs (see Figure 5-6), an experimental system whose behavior is also well-

established179. This shape is of particular interest as it can assemble two different 

ordered crystals, yet entropically self-assembles only one, despite a vanishingly 

small difference in free-energy. By altering the shape of these elongated rhombs, 
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the effect of shape on emergent entropic bonds can be established and 

compared to experimental results. 

Because the equation of state for these systems is not established, I use the 

NPT thermodynamic ensemble to avoid any phase coexistence. I will explain why 

entropic self-assemble only yields one ordered phase, as well as compute the 

required interaction bias to self-assemble the other crystal phase using entropic 

bonds, further establishing entropic bonds. 

The choice of state point at which to compare PMFTs is just as critical. At what 

thermodynamic value e.g. 𝑃∗ should the PMFTs be compared? In this study, the 

PMFTs for hard hexagons are analyzed at different densities 𝜙, to determine the 

impact that crowding has on the emergent directional entropic force. For 

elongated rhombs, it is the forces present in a system at the point of self-

assembly that need to be compared; therefore, it is most appropriate to compare 

these systems at the highest 𝑃∗ in the fluid phase possible. 

To compare hard polygonal systems and their emergent entropic bonds to 

systems of hydrogen bonds, I must be able to discern when a pair of particles is 

bound. Molecular systems exhibiting hydrogen bonding use energetic or 

geometric limits to determine when a bond is formed or broken: two or more 

atoms, molecules, etc. are in a bond if these particles have a potential energy 

less than some value, or are in the bounds of a particular geometric arrangement 

(which correspond to some energetic limits). Similar limits must be calculated for 

our systems of entropically-bound particles. 
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Figure 5-1 Summary of the entropic bond analysis pipeline: a The raw PMFT is passed through a Gaussian 
blur b (rendered here as contours) to remove any noise or artifacts before passing into the image 
segmentation algorithm. c The full range of the PMFT is shown: 𝜃1, 𝜃1 ∈ [0, 2𝜋], showing the 36 identical 
entropic bonds in systems of regular hexagons. Due to the periodic nature of these PMFTs, all other PMFTs 

shown in this these display a single periodic region e.g. 𝜃1, 𝜃1 ∈ [0,
𝜋

3
] for regular hexagons. This figure is 

also shown in Chapter 2.3.1. 

I use the PMFT to compute the entropy-density landscape (shown in Figure 5-1), 

analogous to calculations of electron density in DFT calculations. Analysis of this 

landscape allows for the minima, transition states, and maxima to be determined, 

putting geometric limits derived from energetic limits on the emergent entropic 

bonds, just like in systems with hydrogen bonding. Please see Chapter 2.3.1 for 

more information regarding the PMFT and the calculation of the Entropic Bond. 

5.3 Results 

Sampling of systems at equilibrium yield the emergent, directional entropic force 

as measured by the PMFT. As discussed in Chapter 2.3.1, the two-dimensional 

PMFT integrates over the paired-particle orientation, failing to distinguish 

between local motifs that intuition suggest should be attractive and repulsive, as 

shown in Figure 5-2. 

a b c
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Figure 5-2 Two-dimensional PMFTs in the (𝑥, 𝑦) coordinate system for systems of hard hexagons at a 𝜙 =
0.55, b 𝜙 = 0.65, c 𝜙 = 0.75, and d 𝜙 = 0.85. At low density (a), there is very little attraction or repulsion 
between hexagons. As density increases, regions of effective attraction and repulsion begin to develop. For 
example, in b the dark purple ``ring'' around the geometrically forbidden ring aligns with the edges of the 
hexagon, showing that these edges are effectively attractive, while the rings that develop further out 
correspond to low-entropy configurations that are not favorable and are effectively repulsive. Once in the 
solid phase, these regions of attraction and repulsion (high-entropy regions and low-entropy regions) are 
more distinct. At a density of 𝜙 = 0.75 (c), configurations of paired particles in face-to-face and vertex-to-
face configurations demonstrate how this two-dimensional coordinate system integrates over paired-particle 
orientations, as both configurations fall into a single high-entropy region. In the solid phases, the inter-
neighbor regions are of very low-entropy, so that transitions between 1st nearest-neighbors and 2nd nearest-
neighbors become less likely. 

Computing the three-dimensional PMFT yields a free-energy landscape that 

properly distinguishes between these motifs, allowing for the identification of 

ground states (free-energy minima) and transition states (local maxima) between 

different entropic bonds. 
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Figure 5-3: a Transformation of a regular hexagon (𝛼 = 120°, 𝛾 = 1) into an elongated rhomb (𝛼 = 68°, 𝛾)    
𝛾 is the ratio of sides 𝐵 and 𝐴, a tunable shape parameter to study the influence of shape on entropic bonds; 
𝛾 = 2/3 for this schematic and in Figure 5-6. b Coordinate system describing directional entropic forces in 
two-dimensional systems: (𝑟, 𝜃1, 𝜃2). 𝜃1 is the angle between the orientation of particle 𝑖 and the interparticle 

vector 𝑟𝑖𝑗 (and vice versa for 𝜃2). This coordinate system distinguishes between pair orientations integrated 

over in the (𝑥, 𝑦) coordinate system (see Figure 5-2c for an example). c Contour plots of excess entropy 
density ∆𝑆(𝑟, 𝜃1, 𝜃2) at three distances 𝑟 for hard hexagons at packing fraction 𝜙 = 0.75: 𝑟peak = 1.026 

contains the highest excess entropy (max(∆𝑆)) in the landscape, corresponding to the edge-aligned pair 

configuration, shown as a dot at the preferred motif (𝑟 = 1.026, 𝜃1 =
𝜋

6
, 𝜃2 =

𝜋

6
); 𝑟steric = 1.078 is the closest 

distance that particle pairs may freely rotate, breaking an entropic bond. The negative excess entropy of this 
configuration indicates that such configurations are unfavorable; 𝑟transition = 1.094 contains the transition 

states between entropic bonds, indicated with dots at the vertex-to-edge configuration (𝑟 = 1.094, 𝜃1 =

[0,
𝜋

3
] , 𝜃2 = [0,

𝜋

3
]). See Figure 5-4 for plots at 𝜙 = 0.55, 0, .65, 0.85 (see Figure 5-5 for a schematic of an 

entropic bonding transition). Hashmarks indicate pair configurations forbidden due to geometric overlap. 
Colorbar indicates constant ∆𝑆 contours corresponding to isosurfaces in panel d. Due to the symmetry of 

regular hexagons (panel b), the entropy density landscape is periodic, repeating every 
𝜋

3
; thus, the range of 

the     landscapes is restricted to 𝜃1, 𝜃2 ∈ [0,
𝜋

3
]. D Excess entropy density isosurfaces in (𝑟, 𝜃1, 𝜃2). Markers 

(filled sphere) indicate max(∆𝑆)at 𝑟 = 1.026 and transition states at 𝑟 = 1.094. e Bond lifetime distribution for 
hard regular hexagons at four densities 𝜙 = 0.55, 0, .65, 0.75, 0.85, corresponding to low-density fluid, high-
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density fluid, low-density solid, and high-density solid phases, respectively. Each data series is shifted by a 
decade for visual clarity. For each data set, statistical error calculated from four independent samples is 
smaller than plot markers. The line added above the data shows the power-law decay behavior of entropic 
bonds at short times. 

 

Figure 5-4 Three-dimensional PMFTs in the (𝑟, 𝜃1, 𝜃2) coordinate system for systems of hard hexagons at a 

𝜙 = 0.55, b 𝜙 = 0.65, c 𝜙 = 0.75 (shown in Figure 5-3, outlined here in a dashed line), and d 𝜙 = 0.85. The 
far-left column shows a 3D rendering of isosurfaces of constant-entropy density, while the right three 
columns show slices through the three-dimensional space perpendicular to the r-dimension. The isosurface 
renderings contain markers for the maximum entropy (centered) and entropy associated with entropic bond 
transitions (centered on the faces). The cross-sections in the far-right column 𝑟 = 1.094 are rendered within 
the three-dimensional rendering (far-left column) for visual aid. 

Image segmentation (Figure 5-1) of the entropy density landscape for hard 

hexagons show well-defined regions in (𝑟, 𝜃1, 𝜃2) coordinates corresponding to 

distinct entropic bonds (see Chapter 2.3.1 for more information). Each identical 

region has the edge-to-edge configuration as its ground state. This is the motif 
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that minimizes the free volume of pair (shown in Figure 5-3c), as would intuitively 

be expected. Comparison across densities (Figure 5-4) shows the increase in 

entropy (decrease in free-energy) for this motif as density increases, as ought to 

be expected. 

 

Figure 5-5 Schematic of entropic bond transition between two entropy-density maximum/free-energy 
minimum states of the lower-density solid hard hexagon system 𝜙 = 0.75. Watershed image segmentation 
(see Figure 5-1, Chapter 2.3.1, Figure 2-4)determines which voxels belong to each bond (here shown in 
green and blue), while the transition state (shown in grey) is identified by determining the highest entropy-
density/lowest free-energy state on the interface of the two bonds. Both a top-view a and a side-view b of 
the free-energy landscape is included, and a proposed reaction coordinate is provided, showing one 
possible pathway particles may take to reconfigure from one bond configuration to another. 

Chemical bonds, especially hydrogen bonds, have characteristic bond-lifetime 

distributions that are still the subject of new research189. If entropic bonds are 

chemical bonds, they should possess similar distributions. Tracking of particle 

pairs throughout consecutive MC trajectory frames yields the bond lifetime 

distribution, shown in Figure 5-3e.  

The bond lifetime distribution for systems of hard hexagons exhibit both power-

law and exponential behavior. First, I observe a general increase in probability for 
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longer bond lifetimes as density increases. As discussed in hydrogen bonding 

literature, the power-law behavior corresponds to diffusive behavior of the hard 

particles, which should be density-independent for small timescales. The 

exponential decay observed for long timescales is explained by the need for 

particle pairs to climb out of a free-energy well. The functional form of these 

distributions agrees with the functional form of the bond lifetime distributions for 

hydrogen bonding in systems of liquid water. Given the overall similarity to 

existing systems of hydrogen bonds, I conclude that the observed behavior is in 

agreement with that of bonding. 
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Figure 5-6 a Schematic illustrating alternate coordinates for particle orientation associated with particle 
libration: 𝜃+ and 𝜃−. 𝜃+ accounts for shearing motion, and 𝜃− accounts for twisting motion. b Isometric view 
of entropy density landscape, with the different regions corresponding to different entropic bonds colored by 
bond type. c Top view of the entropy-density landscape shown in b, with entropic bond motifs labeled as 
follows: primary bonds (green), present in both hexagonal and herringbone lattices; hexagonal bonds (blue), 
present only in the hexagonal lattice; herringbone bonds (orange), present only in the herringbone lattice; 
and defect bonds (red), which are antagonistic to either crystal lattice. Note that due to the symmetry of 
elongated rhombs, the entropy density landscape is periodic, repeating every 𝜋; thus, the range of the 
landscapes is restricted to 𝜃1, 𝜃2 ∈ [0, 𝜋]. Excess entropy density isosurfaces indicate regions corresponding 

to each bond type (isosurfaces corresponding to 
∆𝑆

𝑘B
= [2.5, 2, 1.5, 1, 0.5] shown in lighter coloring). 

∆𝑆

𝑘B
= 0 is 

indicated with a grey isosurface for reference. D Orthographic view of (𝑟, 𝜃+, 𝜃−) showing the curvature of the 
entropy density landscape in 𝑟. The greater elongation along the (0, 0) → (𝜋, 𝜋) compared to (0, 𝜋) → (𝜋, 0). 
e indicates greater ability for shear libration, as opposed to twist libration. See Figure 5-7 for PMFTs for 𝛾 =
1

2
,

2

3
, 1,

2

3
, 2. 

Having established the effect system density has on entropic bonds, we now 

must understand the impact of particle shape on entropic bonding. I start by 

deforming our base shape into an elongated rhomb, a shape previously 

investigated in simulation and experiment83. To alter a regular hexagon into an 

elongated rhomb, opening angle 𝛼 is closed from 𝛼 = 120° to 𝛼 = 68°, matching 
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experimental LnF3 platelets. The shape parameter 𝛾 =
𝐵

𝐴
 is introduced to 

manipulate the shape of the elongated rhomb and measure its effect on the 

measured PMFT. 

Immediately, the effect on the PMFT is pronounced. Gone is the 6-fold symmetry 

of the hexagon, reduced to 2-fold symmetry. While there are still a total of 36 

bonds in the region 𝜃1: [0,2𝜋]; 𝜃2: [0,2𝜋], they are no longer identical. There are 

now four different types of bonds, shown in Figure 5-6. These regions 

correspond to the four ground state motifs avail to the system, named after their 

membership to the possible crystals: primary bonds, which appear in both 

crystals; hexagonal bonds, only appearing in the hexagonal crystal; herringbone 

bonds, only appearing in the herringbone crystal; and defect bonds, motifs that 

disrupt the ability for a crystal to form. 
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Figure 5-7 Isosurfaces of entropically favorable configurations of elongated rhombs, colored by bond 

(schematic of bonds included to aid in understanding these free-energy landscapes) for a 𝛾 =
1

2
, b 𝛾 =

2

3
, c 

𝛾 = 1, d 𝛾 =
3

2
, and e 𝛾 = 2 at pressures 𝑃∗ = [16.0,14.9,13.5,12.6,12.1], respectively. Due to the symmetry of 

elongated rhombs the entropy density landscape is periodic, repeating every 𝜋; thus, the range of the 
landscapes is restricted to 𝜃1, 𝜃2 ∈ [0, 𝜋]. Excess entropy density isosurfaces indicate regions corresponding 

to each bond type (isosurfaces corresponding to 
𝛥𝑆

𝑘B
= [2.5, 2, 1.5, 1, 0.5] shown in lighter coloring). 𝛥𝑆 = 0 is 

indicated with a gray isosurface for reference. The dimensions of the box are set to include the simplest 

symmetry (𝜃1, 𝜃2: [0, 𝜋]), while the range for values of |𝑟𝑖𝑗| is set to the closest approach for all shapes 

considered (𝑟𝑖𝑗 = 0.63) and the farthest distance for which an entropic bond corresponding to a nearest-

neighbors position for any of the shapes considered (𝑟𝑖𝑗 = 2.55). 
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Figure 5-8 Borders of regions belonging to the four different types of bonds in elongated rhomb systems, 
colored by bond (schematic of bonds included to aid in understanding these free-energy landscapes) for a 

𝛾 =
1

2
, b 𝛾 =

2

3
, c 𝛾 = 1, d 𝛾 =

3

2
, and e 𝛾 = 2 at pressures 𝑃∗ = [16.0,14.9,13.5,12.6,12.1], respectively. Due to 

the symmetry of elongated rhombs the entropy density landscape is periodic, repeating every 𝜋; thus, the 
range of the landscapes is restricted to 𝜃1, 𝜃2 ∈ [0, 𝜋]. The dimensions of the box are set to include the 

simplest symmetry (𝜃1, 𝜃2: [0, 𝜋]), while the range for values of |𝑟𝑖𝑗| is set to the closest approach for all 

shapes considered (𝑟𝑖𝑗 = 0.63) and the farthest distance for which an entropic bond corresponding to a 

nearest-neighbors position for any of the shapes considered (𝑟𝑖𝑗 = 2.55). These regions are used in the 

calculation of the alluvial diagram (Figure 5-10). 

Analysis of the free-energy landscape (Figure 5-7) via disconnectivity graphs 

reveal the reason the hexagonal crystal is always formed in entropy-driven self-

assembly. First, I compare the motifs which differ in the two crystal lattices: in 

every shape, the hexagonal bond is relatively deeper than that for the 

herringbone bond, even if the herringbone bond is lower in free energy. This 

means that the hexagonal bond is relatively more stable than the herringbone 

bond. 
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Figure 5-9 Disconnectivity graphs indicating free-energy landscape topology for elongated rhombs at a 𝛾 =
1/2; 𝑃 = 16.0, b 𝛾 = 2/3; 𝑃 = 14.9, c 𝛾 = 1; 𝑃 = 13.5, d 𝛾 = 3/2; 𝑃 = 12.6, and e 𝛾 = 2; 𝑃 = 12.1. Each leaf 
represents an entropic bonding motif found at free-energy minima on the landscape, while each node is the 
free-energy of the meta-basin connecting leaves or nodes. Each line is colored by its corresponding bonding 
motif. Traversing the graph provides information about the relative free-energy increase required to break a 
bond, as well as which bonds may directly convert. For example, consider a 𝛾 = 1/2: while the relative free 
energy of a herringbone bond is lower than that of a hexagonal bond, the free energy required to break the 
herringbone bond is much less than that of the hexagonal bond, indicating that the hexagonal bond is more 
stable than the herringbone bond, which is more likely to convert to a defect or primary bond. Analysis 
shows that the combination of bond free energy and the relative free energy required to break a bond lead to 
the preference for hexagonal bonds over herringbone bonds, leading to the entropy-driven self-assembly of 
the hexagonal lattice. 

This becomes more important when taking the entire local environment of a 

platelet in a crystal. Each platelet in the hexagonal lattice must form four primary 

bonds and two hexagonal bonds, which are of lower energy for every 𝛾 than the 

four herringbone bonds and two primary bonds found per platelet in the 
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herringbone lattice (please see Figure 5-12). This explains the heavy preference 

for the hexagonal lattice over the herringbone lattice. 

Analysis of the alluvial diagram (Figure 5-10) also points to the importance of the 

ground state free-energy of bonds in determining the self-assembled phase. 

Other than the great increase in the relative volume belonging to herringbone 

bonds from 𝛾 =
1

2
→

2

3
, the size of each bonding region is relatively constant for all 

𝛾, indicating that the size of the geometric region belonging to a bond does not 

govern the self-assembly behavior or the final structure of the system. 
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Figure 5-10 Alluvial diagram indicating particle shape modification of bonded state structure in (𝑟, 𝜃1, 𝜃2) 

space for elongated rhombs at 𝑃∗ = [16.0,14.9,13.5,12.6,12.1] for shape parameters 𝛾 = [
1

2
,

2

3
, 1,

3

2
, 2]. Bar 

sizes correspond to phase space volume associated with each bond type. Grey lines associate ``flows'' 
within and between bond types as particle shape changes. Additional bars indicate regions of phase space 
that change from being associated with bonds to nonbonded or geometrically forbidden states, keeping total 
phase space volume constant across all shapes. Examples below each shape indicate the same voxel in 
(𝑟, 𝜃1, 𝜃2) for each shape, and the corresponding bond, demonstrating how the bonds change as a function 
of particle shape. The most striking observation is the considerable increase in the voxels belonging to the 

herringbone bond from 𝛾 =
1

2
→

2

3
, followed by the reduction in defect voxels from 𝛾 =

3

2
→ 2. Observation of 

the flow between bonding regions as 𝛾 changes shows that particle shape has a significant impact on 
entropic bonding regions, suggesting the ability to strategically engineer entropic bonds via shape 
manipulation. See Figure 5-8 for the entropic bonding regions used to compute the alluvial diagram. 

Having established that the free-energy associated with the ground state of an 

entropic bond is the quantity of interested, I use these bond energies to predict 

the interaction bias 𝜀 required self-assemble the herringbone crystal. 

� = 2/3 � = 1 � = 2� = 3/2� = 1/2
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Figure 5-11 Comparison of the hexagonal (lighter blue) and herringbone (lighter orange) lattices at 𝛾 = 1, 
showing that both lattices tile space at 𝛾 = 1. For both lattices one particle (purple) and the particles to which 

it forms bonds are highlighted by the color of the bond (Figure 5-6): hexagonal (darker blue), primary 
(green), and herringbone (darker orange). Note that each particle forms 4 primary bonds and 2 hexagonal 
bonds in the hexagonal lattice, while each particle forms 4 herringbone bonds and 2 primary bonds in the 
herringbone lattice. 

The equations are worked out here179. 

∆𝐹 = 0 = ∆𝐹l,herringbone − ∆𝐹l,hexagonal 

= (2∆𝐹primary + 4∆𝐹herringbone) − (4∆𝐹primary + 2∆𝐹hexagonal)  

= 4∆𝐹herringbone − (2∆𝐹primary + 2∆𝐹hexagonal)  

∴ (1 − 𝜀) =
2∆𝐹herringbone

(∆𝐹primary + ∆𝐹hexagonal)
 

Comparing against the interaction bias determined in simulation (see Figure 

5-10), I find good agreement both in terms of magnitude and functional form of 

the interaction bias. The imperfect alignment can be explained by particle 

geometry; as these particles are geometric shapes and not point particles, it will 

be impossible to fully divorce the emergent effect of shape on the assembly 

behavior of the system. The agreement between the entropic and enthalpic 

interaction bias, 𝜀𝑆 and 𝜀𝐻 indicate that manipulation of particle shape indeed 

Hexagonal

Herringbone

! = 1
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alters the energetic interactions in the system in a similar manner to chemical 

functionalization, strengthening the argument that entropic bonds form in 

systems of hard, anisotropic particles. Further investigation into systems with 

both entropic and enthalpic interactions should be conducted to better 

understand how these interactions impact each other. 

 

Figure 5-12 Comparison of the enthalpic interaction bias179 𝜀𝐻 and entropic interaction bias 𝜀𝑆 required to 
self assemble an alternating/herringbone lattice. Because the simulations used to compute 𝜀𝐻 account for 
nanoplatelet shape, 𝜀𝐻 implicitly contains both entropic and enthalpic contributions. Thus, the difference in 

the biases results from the addition of enthalpic interactions as shown in Ref. 179179. The fact that – 𝜀 >
0 ∀ 𝛾 indicates that the hexagonal lattice should self assemble for all 𝛾, as observed in both this study and in 
Ref. 179179. The similarity in functional form and magnitude for both 𝜀𝐻 and 𝜀𝑆 indicate that manipulation of 
nanoplatelet shape alters entropic bonds, resulting in similar changes to the interaction bias as manipulation 
of the bias via chemical functionalization. 

5.4 Conclusion 

I have established that emergent directional entropic forces result in a 

phenomenon that shares characteristics with hydrogen bonds in systems of liquid 

water: free-energy calculations can limit the region associated with a local motif 

to a specific geometric region, and the probability that a pair of particles remains 

in that region has the same functional form as that of systems exhibiting 

hydrogen bonding. Additionally, the differences between ground state free-
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energy associated with local motifs can account for the self-assembly behavior of 

hard particle systems, predicting similar interaction bias as those obtained with 

systems with chemical functionalization/enthalpic patches. Due to the 

overwhelming similarity between this phenomena and chemical bonds, I 

establish the existence of an emergent entropic bond. 
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Chapter 6  

Entropic Bonds and Phase Transitions in Two-

Dimensional Systems 

6.1 Introduction 

The assembly behavior of hard polygon systems is applicable to a variety of real-

world systems, at both the molecular112,192–196 and nano-/colloidal-

scale80,83,179,197–202. As discussed in previous chapters, such driving force toward 

self-assembly arises from enthalpic112,192,196,197 and/or entropic60,82,138,173,179 

interactions. Viewing such interactions as bonds facilitates analogy with 

intermolecular interactions. For example, shape manipulation alters the strength 

of entropic bonds, serving as an alternative to chemical functionalization while 

achieving a similar interaction bias173,179. 

Among polygons, the self-assembly behavior of rhombs is of particular 

interest203–207 because of their application to the study of molecular tilings112,192–

194,197. A rhombus (shown in Figure 6-1) may fill space in one of three different 

patterns: parallel, herringbone, or rhombille. Previous studies show that hard 

rhombuses self-assemble a random tiling phase in the absence of other 

interactions112,192,193. This RTP is a mixture of the three different tilings112, shown 

in Figure 6-1. Manipulation of enthalpic or entropic interactions alters the 

preferred self-assembled structure112. For example, any of the three tilings may 
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be directed to form via addition of specific interactions between different sides of 

the hard rhombus. Similarly, manipulating the acute angle 𝛼 alters the 

thermodynamically preferred structure. Experimental studies of hard rhombs also 

indicate the importance of shape on self-assembly behavior: colloidal scale 

rhombs exhibit unexpected phases, including hexatic and rotator phases, due in 

part to the rounding of their vertices197. Similarly, altering the aspect ratio of the 

rhombs via elongation, similarly alters the observed self-assembly behavior173,179. 

 

Figure 6-1 Table showing the difference between a rhombus (𝛼 = 60°), a rhomb (𝛼 ≠ 60°), and elongated 
rhomb (𝛼 ≠ 60°, 𝛾 > 0). Also shown are the different tiling motifs they may form. Elongated rhombs are 

defined by their aspect ratio, 𝛾 =
𝐵

𝐴
, in addition to the acute angle 𝛼. In this figure, shapes are colored by 

their orientation to aid in identification of the orientations found in the different tiling motifs. In this study, only 

rhombs with 𝛼 = 68° are considered, while investigating different aspect ratios: 𝛾 = [0,
1

4
,

1

3
,

5

12
,

1

2
, 1]. Note that 

the herringbone tiling is only space filling for 𝛾 = 0,1. While free space exists in the rhombille motif for the 
elongated rhombs, the additional side reduces the strained induced from 𝛼 ≠ 60°, providing an avenue to 

stabilize this motif, required for the formation of the RTP. 

Here I investigate the self-assembly behavior of hard, elongated rhombs, 

demonstrating the ability to alter the number and type of phase transitions 

observed by manipulating particle shape, specifically by altering the aspect ratio 

𝛾. The 1st-order phase transition from a fluid to a parallel ordered solid observed 

for elongated rhombs with an aspect ratio of 𝛾 > 0.5173 changes as 𝛾 decreases, 
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giving rise to an intermediate random tiling phase (RTP), with an observed fluid-

to-RTP transition, and a 1st-order RTP-to-ordered phase transition. To better 

understand the underlying entropic mechanism resulting in this behavior, I 

calculate the potential of mean force and torque (PMFT) in the dense fluid phase 

for these elongated rhombs, determining the emergent entropic bonds that result 

in the formation of the RTP. Analyzing this free-energy landscape with the 

language of entropic bonding provides a deeper understanding of the underlying 

self-assembly mechanism, helping to explain the observed phase behavior. 

6.2 Methods 

Systems of hard, elongated rhombs are simulated in the 𝑁𝑃𝑇 ensemble using 

HOOMD-blue87,93,125,126 with HPMC93. 𝑁 = 16,384 particles are initialized in the 

parallel lattice and run to equilibrium at the target pressure. Hard particles start in 

the parallel crystal lattice at a density of 𝜙 = 0.8. The pressure is set at the final 

desired scaled pressure, 𝑃∗ = 𝛽𝑃𝜎2 where 𝜎2 = 𝐴rhomb = 1.0. These systems run 

to equilibrium, as determined by system volume fluctuations. I calculate the 

equation of state by averaging over decorrelated simulation frames in 

equilibrium. 

Visual analysis of these systems utilizes the body-orientation order parameter108 

(shown in Figure 6-2) to color each particle, allowing for visual identification of 

phases. The body-orientation order parameter is calculated as 𝜉𝑘
𝑖 = 𝑒𝑖𝑘𝜃𝑖, where 

𝜃𝑖 is the orientation of particle 𝑖, and 𝑘 is the symmetry of the particle. For these 

elongated rhomb systems, 𝑘 = 2. The orientation-orientation hexatic order 

parameter, Ψ6,6
112. This order parameter differs from the hexatic order parameter 
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that uses the orientation of the nearest neighbors of particle 𝑖108,110, instead using 

the real part of the difference in the orientation of a particle and its 𝑁 nearest 

neighbors: Ψ6,6 =
1

6
∑ cos(6 ∙ 𝜃𝑖𝑗)𝑁

𝑗∈NN(𝑖) , where 𝜃𝑖𝑗 = 𝜃𝑖 − 𝜃𝑗 . While the body-

orientational order parameter, 𝜉𝑘
𝑖 , provides for visual determination of the phase, 

the orientation-orientation hexatic order parameter, Ψ6,6, quantifies these phases. 

Ψ6,6 → 0 corresponds to the fluid phase, while Ψ6,6 → 1 corresponds to the 

parallel ordered solid phase. Intermediate values of Ψ6,6: 0.5 ≤ Ψ6,6 ≤ 0.75 

correspond to the RTP, due to the strong preference for locally-aligned 

orientational order. 

 

Figure 6-2 a Body-orientation order parameter (𝜉2
𝑖 ) on the cube ellipse color wheel used to visually analyze 

and identify phases found in systems of elongated rhombs (here shown for 𝛾 =
1

4
): b fluid, c RTP, and d 

parallel phase. The fluid and parallel phases are observed in all values 𝛾 investigated here, while the RTP 

phase is only observed for 0 ≤ 𝛾 ≤
1

3
. 
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Analysis of the equation of state identifies the phase transitions present. 1st-order 

phase transitions accompany discontinuities in the equation of state, while 

equations of state lacking discontinuities are identified as having a continuous 

phase transition. I estimate the range of pressures over which the phase 

changes for continuous transitions by fitting a 1st-order polynomial (𝑃∗ = 𝑚𝜙 + 𝑏) 

to the regions of the equation of state before, during, and after the transition 

(shown in Figure 6-3). Intersections between these polynomials are the bounds 

for the phase transition. The midpoint between the intersections is the center of 

the continuous phase transition window. 

 

 

Figure 6-3 Use of 1st-order polynomials to fit the equation of state for 𝛾 = 0,
1

4
,

1

3
 to identify the continuous 

phase transition window. The polynomial fits are shown as black lines, with intersections marking the 
bounds of the transition: red marking the start of the transition, and blue marking the end of the transition. 
The midpoint on the second curve (marked in purple) is the center of the transition window. The phase 
diagram (Figure 6-5) plots the center of the transition window with error bars extending from the beginning 
(red) to the ending (blue) of the phase transition. 

The potential of mean force and torque (PMFT) provides a measure of the 

emergent directional entropic forces present in these systems60,82,138,173. I sample 

the equilibrium distributions of the dense fluid-phase, calculating the PMFT in the 

(𝑟, 𝜃1, 𝜃2) coordinate system. Watershed image segmentation104 yields a free-

! = 0 ! = 1/4 ! = 1/3
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energy (entropy density) landscape, with each voxel belonging to a specific 

entropic bonding motif, as shown in Figure 6-4a. The ideal gas distribution serves 

to normalize the PMFTs, with the free-energy of the ideal gas being assigned a 

value of zero: 𝛽∆𝐹12 = 0. Thus, regions of the PMFT with 𝛽∆𝐹12 < 0 correspond 

to preferred arrangements (more likely than an ideal gas), while 𝛽∆𝐹12 > 0 

correspond to less-likely geometric arrangements. The densest stable fluid most 

effectively provides information about the directional entropic forces leading to 

the self-assembled structures. As a result, the PMFT must be calculated as close 

to the fluid phase transition as possible i.e. in the densest/highest pressure fluid 

observed. This is trivial for the 1st-order fluid-to-crystal transitions (𝛾 >
1

3
), but is 

more challenging for the continuous phase transitions (𝛾 ≤
1

3
). However, the 

continuous phase transition implies that any changes to the strength of the 

directional entropic forces by the PMFT, as well as any changes to the topology 

of the free-energy landscape, should be minimal as the fluid transitions to the 

RTP. Thus, I choose a 𝑃∗ in the transition region close to the lower-end of the 

transition at which to calculate the PMFT: 𝛾 = 0, 𝑃∗ = 12.3; 𝛾 =
1

3
, 𝑃∗ = 14.6; 𝛾 =

1

4
, 𝑃∗ = 15.3. 
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Figure 6-4 Example of an entropic bonding transition for 𝛾 = 1. a Orthographic view of the (𝜃1, 𝜃2) plane of 
the PMFT, showing two different transition paths between two primary bonds: one through the hexagonal 
bond, and one through the rhombille bond. Schematics of the bonding motifs are inset. Entropic bonding 
regions are colored by the bonding motif: primary (green), hexagonal (blue), herringbone (orange), and 
rhombille (red). Constant energy isosurfaces are shown, corresponding to 𝛽𝛥𝐹12 = [−2, −1.5, −1, −0.5], with 
lower free energies shown in increasingly darker colors. 𝜃1 and 𝜃2 are limited to [0, 𝜋] due to the two-fold 
symmetry of the rhomb (𝑘 = 2). Note the transition through the hexagonal bond follows the 𝜃+ (shear) 
direction, indicating that both elongated rhombs rotate counter-clockwise to transition between the three 
bonds. Disconnectivity graphs b excluding and c including 2nd nearest-neighbor motifs. The transitions 
shown in a  are shown in the dashed box in b. To transition to either a hexagonal or rhombille bond, the 
primary bond must pass through the region belonging to the herringbone bond. However, the transition 
through the herringbone bond is of higher free energy for the primary-to-hexagonal transition than for the 
primary-to-rhombille transition. Note the difference between b and c: inclusion of the 2nd nearest-neighbors 
in c change the connectivity and free-energy of the transition between herringbone motifs, indicating the 
transitions involving 2nd nearest-neighbors are more energetically favorable than those only involving 1st 
nearest-neighbors. 

Disconnectivity graph analysis105,208,209 of the free-energy landscapes (see the 

example in Figure 6-4) provides for comparison between entropic bonding states 

and transition states for different shape parameters. The three-dimensional 

PMFT is reduced to a two-dimensional graph: local free-energy minima are 

represented as leaves, and connected meta-basins are represented as nodes 

connected the minima. Disconnectivity graph analysis may consider or exclude 

2nd nearest-neighbor motifs, providing information about the importance of 2nd 

nearest-neighbors in fluid-phase motif rearrangement. Analysis of both the free 

energy of an entropic bond, as well as the relative increase in free energy 
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required to break a bond, provide information about the stability of these entropic 

bonds and how they influence the final self-assembled structure. 

6.3 Results and Discussion 

Elongated rhombs (𝛾 = [0,
1

4
,

1

3
,

5

12
,

1

2
, 1] , 𝛼 = 68°) form three different phases, 

depending on the state point: fluid (Figure 6-2b), RTP (Figure 6-2c), and an 

ordered parallel solid (Figure 6-2d). The parallel solid is a centered rectangular 

crystal lattice, shown in Figure 6-1. The RTP forms as an intermediate phase 

between the fluid and solid phases for 𝛾: 0 ≤ 𝛾 ≤
1

3
. Table 1 and Table 2 show the 

pressures and phase transitions present in each investigated shape. 

 

 

 

Table 1: Summary of the pressure 𝑃∗ at which phase transitions occur in systems of hard rhombs at a given 
shape parameter 𝛾. 

𝛾 fluid-to-RTP RTP-to-crystal fluid-to-crystal 

𝛾 = 0 𝑃∗ = 13.57 ± 1.27 - 

𝛾 = 1/4 𝑃∗ = 14.75 ± 0.24 𝑃∗ = 17.8 ± 0.1 - 

𝛾 = 1/3 𝑃∗ = 15.37 ± 0.15 𝑃∗ = 15.7 ± 0.05 - 

𝛾 = 5/12 - 𝑃∗ = 14.4 ± 0.05 

𝛾 = 1/2 - 𝑃∗ = 14.0 ± 0.05 

𝛾 = 1 - 𝑃∗ = 12.6 ± 0.05 

 

Table 2 Summary of the value of the shape parameter 𝛾 and the phase transitions exhibited by the system. 

𝛾 fluid-to-RTP RTP-to-crystal 

𝛾 = 0 continuous 

𝛾 = 1/4 continuous 1st-order 

𝛾 = 1/3 continuous 1st-order 

𝛾 = 5/12 1st-order 
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𝛾 = 1/2 1st-order 

𝛾 = 1 1st-order 

 

Analysis of the equation of state (Figure 6-5a) and phase diagram (Figure 6-5c) 

shows that the order of the phase transition changes as a function of the aspect 

ratio 𝛾. The presence of discontinuities in the equation of state (Figure 6-5a) for 

higher values of 𝛾: 𝛾 ≥
5

12
 indicates that the fluid-to-solid phase transition is 1st 

order. For lower values of 𝛾: 𝛾 ≤
1

3
, the RTP appears, exhibiting a continuous 

transition between the fluid and RTP, and a 1st-order transition between the RTP 

and ordered solid for 𝛾 ≥
1

4
. For 𝛾 = 0, both the fluid-to-RTP and RTP-to-ordered 

solid transitions are continuous.  These transitions are summarized in Table 2 

and the phase diagram in Figure 6-5c, showing the persistence of the RTP 

beyond 𝛾 = 0, with the 1st-order transition between the RTP and ordered solid 

phases for 0 ≤ 𝛾 ≤
1

3
. 
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Figure 6-5 a Equation of state and b Orientation-orientation hexatic order paramete for elongated rhombs 

with shape parameter 𝛾 = [0,
1

4
,

1

3
,

5

12
,

1

2
, 1]. Note the 1st-order phase transitions between fluid and ordered 

solid phases for 𝛾 ≥
5

12
, in contrast with the continuous fluid-to-RTP transition observed for 𝛾 ≤

1

3
. Both 

continuous and 1st-order transitions are present for 𝛾 =
1

4
,

1

3
. While the RTP is stable for 𝛾 =

1

4
 over a 

relatively large pressure window ∆𝑃∗ ≈ 2.0, the RTP is only stable for ∆𝑃∗ ≈ 0.5 for 𝛾 =
1

3
. The orientation-

orientation hexatic order parameter Ψ6,6 shows the same phase transitions as the equation of state. The 

values of Ψ6,6 for the different shapes indicate which motifs are preferred in the dense fluid phase. For 𝛾 =
1, Ψ6,6 → 0, indicating that herringbone and hexagonal bonds compete equally in the fluid phase, resulting in 

an overall lack of orientational order congruent with either RTP or parallel phases. The fact that Ψ6,6 > 0 

indicates that the hexagonal bonds are preferred, as observed in Ref. 173173. As the value of 𝛾 decreases, 
the value of Ψ6,6 in the fluid phase increases, indicating an increased preference for hexagonal to 

herringbone order. For 𝛾 ≤
1

3
, values of Ψ6,6 associated with the RTP are observed, indicating the presence 

of the RTP phase. c Phase diagram constructed from a and b. Red dots represent the edge of the fluid 
phase connected by dashed lines representing the continuous transition between the fluid and RTP. Blue 
squares represent the solid phase, connected by a solid line representing the 1st-order phase transition 
between the RTP or fluid and parallel phases. The continuous-continuous phase transition for 𝛾 = 0 is 

plotted with a purple circle with error bars estimating the edges of the fluid (red line) and crystal (blue line) 
phases. Please reference Figure 6-3 for how these phase transitions are estimated. These phase transitions 
are detailed in Table 1 and Table 2. 

Previous study of hard rhombs indicates that the preferred self-assembled phase 

is the parallel ordered phase112. The accessibility and stability of the RTP is 

unexpected because of the induced strain in the rhombille motif due to the 

inability for three rhombs to assemble a perfect hexagonal motif112. As shown in 

Figure 6-1, the rhombs studied here are not the rhombus, having an internal 

acute angle of 𝛼 = 68°. However, at intermediate densities, there is enough free 

volume per particle to allow the imperfect hexagon motif to exist without 

a b c
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disrupting the development of long-range ordering. If fact, the elongation of 

rhombs, for at least some values of 𝛾, should help stabilize the formation of 

hexagons due to the reduction in the strain introduced through the larger value of 

𝛼. 

Analysis of Ψ6,6 shows that the primary, hexagonal, and rhombille motifs are 

preferred as 𝛾 decreases. This preference is explained through the analysis of 

the free-energy landscape. The decrease in the entropic bonding energy of the 

primary, hexagonal, and rhombille bonds (increasing the depth of their bonding 

free-energy wells) increases their stability, resulting in the increase in the value of 

the order parameter. This is also due to the increase of the free energy of the 

herringbone bond (decrease in the depth of the free-energy well), decreasing its 

stability. 

Analysis of the free-energy landscapes (Figure 6-6) show topological differences 

between lower and higher values of 𝛾. At low values of 𝛾, for example, 𝛾 = 0 

(Figure 6-6a-c) the herringbone bonding motif is absent, and there exist no low-

energy pathways connecting primary and rhombille bonds, or hexagonal and 

rhombille bonds, while there are low-energy transitions between primary and 

hexagonal bonds. This inhibits transitions to or from rhombille bonds from either 

primary or hexagonal bonds while allowing for the transition between primary and 

hexagonal bonds. Further analysis shows that there exist low-energy pathways 

between rhombille bonds and 2nd nearest-neighbor motifs, indicating that for low 

values of 𝛾, rhombille bonds prefer to transition to/from 2nd nearest-neighbor 

motifs, rather than transition to/from primary or hexagonal bonds. This is in 



 98 

contrast to higher values of 𝛾, for example, 𝛾 = 5/12 (Figure 6-6d-f). All entropic 

bonding motifs are present and connected by low-energy transition pathways. 

This allows for these bonds to interconvert rather than require the use of 2nd 

nearest-neighbors. Observation of the shear and twist landscapes (Figure 6-6e,f) 

support this conclusion, as the low-energy pathways between the rhombille and 

2nd nearest-neighbors are no longer present. 
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Figure 6-6 Fluid-phase entropic bonding free-energy landscapes for a 𝛾 = 0 and d 𝛾 =
5

12
, showing an 

orthographic view of the (𝜃1, 𝜃2) plane, with color-coded bonding regions: parallel (green), hexagonal (blue), 
herringbone (orange), and rhombille (red). Note that only regions of the free-energy landscape belonging to 
entropic bonds (1st nearest-neighbors) are shown. Constant energy isosurfaces are shown, corresponding to 
𝛽𝛥𝐹12 = [−2, −1.5, −1, −0.5], with lower free energies shown in increasingly darker colors. 𝜃1 and 𝜃2 are 
limited to [0, 𝜋] due to the two-fold symmetry of the rhomb (𝑘 = 2). Orthographic views of the b, e 𝜃+ (shear) 
and c, f 𝜃− (twist) directions. These views are colored by free energy, showing preferred motifs and 
transitions between them in the free-energy landscape, including 2nd nearest-neighbors. Grey regions of 
𝛽𝛥𝐹12 = 0 are included for reference. Rhombs (𝛾 = 0, b, c) do not possess low-energy pathways between 
the primary and rhombille motifs, nor is there a low-energy herringbone motif, in contrast to 𝛾 = 5/12 (e, f). 
This shows the difficulty for transitions between primary, hexagonal, and rhombille motifs that arises as 𝛾 
decreases. There exist low-energy pathways between all motifs for higher values of 𝛾. 

Disconnectivity graph analysis reinforces this conclusion (Figure 6-7). The 

topology clearly changes as the value of 𝛾 increases. At lower values of 𝛾 (Figure 
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6-7a, 𝛾 = 0), the lowest-energy pathways facilitate interconversion of the primary 

and hexagonal bonds, while interconversion to the rhombille motif requires a 

higher-energy transition. Comparison of the graphs utilizing 2nd nearest-

neighbors for transitions (Figure 6-7a, top) and those that don’t (Figure 6-7a, 

bottom) shows that transition between the rhombille and 2nd nearest-neighbor 

motifs is of lower energy, and is therefore preferred to transitions directly 

between 1st nearest-neighbor motifs. This is also the case for 𝛾 = 1/3 (Figure 

6-7b): without the use of 2nd nearest-neighbor motifs, primary-hexagonal and 

herringbone-rhombille transitions are more favorable. Thus, I conclude that lower 

𝛾 shapes prefer the parallel and rhombille motifs in the fluid phase. These motifs 

lack low-energy transition pathways, making interconversion difficult. This helps 

to stabilize the RTP as an intermediate phase. The RTP remains stable until the 

system pressure allows for the higher-energy pathways to become viable, 

allowing the system to adopt the space-filling parallel configuration. At higher 

values of 𝛾, the ability for primary, herringbone, and rhombille bonds to 

interconvert stabilizes the fluid phase and prevents the RTP from forming, 

making direct transition to the parallel phase possible. 



 101 

 

Figure 6-7 Disconnectivity graphs for three values of 𝛾: 𝛾 = [0,
1

3
,

5

12
]. The top row takes 2nd nearest-

neighbors into account, allowing transitions to be made through nearest-neighbor meta-basins. The bottom 
row only considers the 1st nearest-neighbors and transitions between them. The smaller 1st nearest-neighbor 
graphs indicate that 2nd nearest-neighbors are required to completely explore the free-energy landscape. As 
discussed in Figure 6-6, the transitions between primary and hexagonal bonds are of lower energy than for 
transitions to rhombille bonds, and are therefore preferred for 𝛾 = 0. Comparison to the plot accounting for 
2nd nearest-neighbors indicates that transitions to/from rhombille bonds are preferred through the 2nd 
neighbor shell. For 𝛾 = 1/3, primary and hexagonal bonds prefer to interconvert, as do herringbone and 
rhombille bonds. For 𝛾 = 5/12, the conversion between primary, herringbone, and rhombille become 
preferred to transitions to the hexagonal bonding motif.  

Previous studies considered the role that emergent directional entropic forces 

play in the self-assembly and phase behavior of polygonal systems108,210. Like 

these studies, phase transitions that differ from the canonical KTHNY two-

dimensional melting transitions are discovered211–214. However, these studies do 
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not consider the manipulation of a continuous shape parameter, instead altering 

the number of sides of a regular polygon. This results in both the symmetry of the 

polygon, as well as the symmetry of the solid phase. Here I show that the 

number of phases and transitions between them may be manipulated without 

changing either the symmetry of the shape or the symmetry of the crystal lattice. 

The shapes investigated here are perfectly hard and sharp, in contrast to 

experimental systems, which are rarely as hard or as sharp197. These 

“imperfections” in experimental systems are a type of shape parameter, similar to 

the aspect ratio 𝛾 considered here, altering the predicted self-assembly behavior, 

resulting in the formation of unexpected phases and phase transitions197. While 

the hexatic and rotator phases report in Ref. 197197 were not observed, the 

rounded nature of the colloidal rhombs could partially explain the observance of 

these phases, as rounder particles tend to behave more similarly to disks, 

forming hexatic phases108f. Computation and analysis of the free-energy 

landscapes of rounded rhombs should be considered, as such analysis should 

reveal entropic bonds that result in the formation of hexatic and plastic crystal 

phases210. 

6.4 Conclusions 

I demonstrated that changing the shape of a hard, anisotropic particle alone is 

enough to alter existing phases and phase transitions present in a system, 

without altering the underlying symmetry of either the particle or self-assembled 

phase. Calculation of the PMFT and associated entropic bonds demonstrate the 

ability to control the preferred pair motifs by manipulating the shape of these 
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elongated rhombs. Analysis of the free-energy landscape shows this can be 

explained via an understanding of the transitions between entropic bonding 

motifs: when competing motifs are connected by higher-energy transition 

pathways and are therefore less likely to interconvert, an intermediate phase may 

be stable, if the competing motifs form intermediate structures compatible with 

such a phase. 

Further investigation into the manipulation of particle shape and the resulting 

self-assembly behavior will enable the creation of reconfigurable materials with 

multiple phases and controllable phase transitions. The “imperfections” found in 

experimental systems, such as rounded vertices, may serve as tunable shape 

parameters, similar to the aspect ratio investigated in this chapter. As in Ref. 

197197, the ability to manipulate such parameters will enable the ability to direct 

the self-assembly of a given shape into different self-assembled geometries. The 

creation of reconfigurable materials made from nano- and colloidal-scale tiles will 

require the understanding of their assembly dynamics. Thus, the dynamics of 

entropic bond rearrangement should be further investigated, to determine if there 

exist kinetic barriers that prevent the realization of the predicted phases and 

transitions. 
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Chapter 7  

Conclusion 

7.1 Summary 

In this thesis, I detail the ways in which emergent directional entropic forces 

result in the formation of entropic bonds between hard, anisotropic nanoparticles, 

directing and stabilizing the self-assembly of ordered nanostructures. In Chapter 

2 I discuss the methods used in the analysis of these systems, focusing on the 

calculation of the potential of mean force and torque PMFT), and how analysis of 

this potential yields information about the entropic bond. 

In Chapter 3, I investigate the hierarchical self-assembly of a two-dimensional 

hard square lattice from 2:1 rectangles and right-isosceles triangles. These basic 

shapes do not self-assemble the desired square lattice, and analysis of the 

PMFT shows how the emergent directional entropic forces prevent the desired 

assembly behavior. Through the use of allophilic patterning, the desired square 

lattice may be achieved. Analysis of the PMFT shows how allophilic shaping 

results in the formation of effective entropic bonds. 

Three-dimensional hierarchical self-assembly is then investigated in Chapter 4. I 

consider similar shapes to those in Chapter 3, 2:1 rectangular prisms and right-

isosceles triangular prisms, as well as other shapes derived from hard cubes. I 

observe the self-assembly behavior of these systems, identifying a previously 
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unverified cubatic phase in 2:1 rectangular prisms. By analyzing the pair motifs 

that form in the dense fluid phase as a result of the emergent directional entropic 

forces, I explain the observed self-assembly behavior, developing rules for the 

design of hierarchically self-assembling particles. 

In Chapter 5 I investigate systems of hard hexagonal nanoplatelets. By 

calculating and analyzing the PMFT for these particles, I quantify the entropic 

bonds formed between these particles. Modifying the shape of these 

nanoparticles modifies the bonds they form; analysis of these bonds explains the 

observed self-assembly behavior, as well as providing insight into the way these 

particles may be manipulated to direct their self-assembly. 

Finally, in Chapter 6, the phase behavior of the system of hexagons in Chapter 5 

is investigated, showing how the strength of the entropic bonds effects the 

number and kind of phase transitions observed. Manipulation of nanoparticle 

shape alters which entropic bonds are preferred by the system, as well as the 

preferred transition pathways between these bonds. The ability to control phase 

transitions via relatively simple shape manipulation will enable the creation of 

novel reconfigurable materials. 

7.2 Outlook 

Together, these studies give us a greater understanding of the entropic bond, as 

well as how this bond may be engineered to create new classes of materials. 

Chemical functionalization is a very common way to alter, direct, and control the 

self-assembly of nanoparticles and colloids. By accounting for the entropic bonds 
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present in the system, more effective chemical functionalization can be applied to 

nanosystems, opening the way to new classes of designer materials. 

7.2.1 Comparison to other bonds 

As discussed in Chapter 5, while entropic bonds deserve to be held in similar 

esteem to traditional chemical bonds, they are not chemical bonds. Chemical 

bonds may be tuned in traditional chemical systems via the use of functional 

groups: for example, the addition of a functional group can alter the electron 

density within a bond, thereby strengthening or weakening it. Depending on the 

context, this effect can be dramatic, especially in the biomedical/pharmaceutical 

discipline215. However, the ability to tune these bonds are limited to the available 

chemistry around the bond, as well as the quantized nature of functional groups 

(while there are methyl (CH3) and ethyl (C2H5) groups, the carbon character 

cannot be continuously varied between these two groups). The nature of the 

entropic bond lends itself to being as continuously variable as the geometry of 

the nanoparticle, opening up new classes of mesoscale “chemistry”. Particles 

with the ability to change shape, for example through the altering of the aspect 

ratio, as in Chapter 5 and Chapter 6, would be able to change the entropic bonds 

that form, providing an alternate route for the creation of reconfigurable 

materials9,11,13, self-healing materials216–218, and other designer materials219. 

It is also useful to place the entropic bond in context of classic chemical bonds. 

Here I report the strength of entropic bond on the order of magnitude of 5𝑘B𝑇 

(𝑂(5𝑘B𝑇)). For systems at room temperature, this works out to 𝑂(0.1 𝑒𝑉) or 

𝑂 (10
𝑘𝐽

mol
). 
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Table 3 Comparison of entropic bond strength to common chemical bond strength. All calculations are done 
on an order-of-magintude basis, and only report one significant figure. Hydrogen bonds and entropic bonds 
are shaded in gray to indicate they are on the same order of magnitude in terms of strength 

Bond Strength 𝑂(𝑒𝑉) Strength 𝑂(𝑘𝐽/mol) 

van der Waals 0.01 1 

Entropic 0.1 10 

Hydrogen 0.1 10 

Metallic 3 300 

Covalent 4 400 

Ionic 7 700 

 

As seen in Table 3, the entropic bond is stronger than bonds formed by van der 

Waals forces, and are on the order of magnitude of hydrogen bonds, while being 

𝑂(10%) the strength of metallic, covalent, and ionic bonds. This strengthens the 

comparison I made between entropic and hydrogen bonds in Chapter 5. In 

addition to the similarities in strength and directionality between entropic bonds 

and hydrogen bonds, the similarities between entropic bonds and other bonds 

should be further investigated. For example, the emergent nature of entropic 

bonds is similar to the delocalization of electron density in metallic bonds175. 

There are also other “non-classical bonds” e.g. mechanical bonds220, and any 

similarities between these non-classical bonds should be investigated as well.  

7.2.2 Emergent nature 

While the emergent nature of the entropic bond makes the self-assembly of hard 

particle systems unique, these bonds and structures share similarities with well-

known systems, providing insight into how scientists and engineers can 

contextualize and utilize entropic bonding to create new materials. Unlike 

chemical bonds, in entropic bonds, no electron density is shifted; rather, entropic 

bonds form through the shifting of entropy density. Chemical bonds are typically 
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defined intensively rather than extensively i.e. independent of their environment. 

For example, the hydrogen bonding force between two water molecules is the 

same at a given thermodynamic state point regardless of whether those two 

molecules are isolated or surrounded by moles of other water molecules. 

However, there exist many chemical systems that exhibit an emergent 

component to intermolecular forces and/or bonds. The strength of the van der 

Waals forces arising between polymer chains is a summation of the collective 

forces between billions of individual atoms, and the resulting polymeric structure 

is thus a result of these collective forces. In metallic systems, the metallic bonds 

and resulting band gaps are a result of the total number of atoms in the system; 

nanoscale metallic systems such as quantum dots221–223 exhibit very different 

properties than their bulk counterparts due to their size224–226. The entropic bond 

thus shares some similarities with established chemical bonds, and should be 

similarly accepted. 

For purely hard particles, there exists no intrinsic force holding the particles 

together, so that the stability of the self-assembled phase is a function of the 

volume/pressure of the system; the structure will fall apart if removed from 

confinement. These entropically-stabilized structures can thus be thought of 

having characteristics of both fluids and solids: like solids, they can have a well-

defined structure, but like fluids, they depend on some kind of confinement to 

remain in a given configuration. Such hybrid materials are not unheard of, with 

liquid crystals being a canonical example of a material sharing aspects of fluids 
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and solids114. These materials provide some insight into how entropically self-

assembled systems may be leveraged in material applications. 

Liquid crystal elastomers (LCEs) are polymers with rigid, rod-like regions 

attached to a flexible polymer backbone115. By loosely cross-linking these 

polymers in the ordered liquid-crystalline state, they form solid structures with 

well-defined phase transitions. LCEs also possess unique, novel behavior 

resulting from the liquid crystalline state227–229. In a similar fashion, nanoparticles 

could be functionalized with polymer coatings and then cross-linked in the self-

assembled state. The resulting material would then be locally constrained, 

retaining the ability for emergent directional entropic forces to direct the local 

arrangements of the nanoparticles. Such materials may exhibit novel material 

properties, similarly to LCEs. 

7.3 Future Research 

In Chapter 4, I analyze the preferred pair motifs in the fluid phase for systems of 

polyhedra. This pair motif analysis is very similar to the entropic bonding analysis 

performed in Chapter 5 and Chapter 6, but does not require the calculation of the 

PMFT for a three-dimensional system. While it is possible to compute PMFTs in 

three-dimensions (𝑥, 𝑦, 𝑧), these PMFTs do not fully account for the local pair 

geometry, as seen by comparing the PMFTs in Chapter 3 to those in Chapter 5 

and Chapter 6. As discussed in Chapter 2, to truly understand the PMFT for 

systems of particles in three-dimensional space, a 6-dimensional PMFT must be 

computed. Such a PMFT presents significant challenges to calculate and 

analyze. The current algorithm to calculate the PMFT129 will not scale to 6D 
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space, requiring more input data, more time to compute, and more hard-disk 

space to store the resulting PMFT. These challenges aside, there still exist the 

difficulties in analyzing and visualizing 6-dimensional space. The techniques 

employed in Chapter 4 effectively reduce the number of dimensions, and similar 

techniques may enable the creation of a suitable data structure and analysis 

technique for the 6D PMFT. 

In Chapter 5 and Chapter 6, the PMFT analysis leveraged the relatively simply 

crystal structure to identify free-energy minima. This kind of preprocessing is not 

as suitable for more complex structures. Use of the machine learning techniques 

in Chapter 4 to identify the preferred pair motifs will result in more efficient and 

effective pre-processing for the image analysis of the free-energy landscape. 

In Chapter 5 I discuss how an understanding the relative free-energies of 

particular bonds impact the resulting self-assembled structure. This kind of 

analysis should be applied to different systems, in both two- and three-

dimensions, identifying potential nanoparticles that exhibit multiple phases as a 

function of their shape, similar to those in Chapter 6. 

I discuss the entropic bond lifetime between nanoparticles in the Brownian limit in 

Chapter 5. The bond lifetime should be compared to systems with explicit 

kinetics, such as those modelled using DEM MD92, into account. The kinetics and 

thermodynamics as measured by the PMFT should then be compared, 

developing a model accounting for entropic bond dynamics. 
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