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ABSTRACT

This dissertation builds three prediction tools to dynamically predict the onset of

acute graft-versus-host disease (aGVHD) with longitudinal biomarkers. Acute graft-

versus-host disease is a complication for patients who have received allogeneic bone

marrow transplant, and it is fatal for some patients. Clinicians could benefit from

these prediction tools to identify patients who are at risk and who are not, and thus

assign appropriate interventions.

Our first project introduces how to apply joint modeling with latent classes (JMLC)

and landmark analysis to aGVHD data. In JMLC, we group all aGVHD-free patients

into one latent class and define that class as the “cure” class. In landmark analysis,

we incorporate patients’ biomarker information up to the landmark time to gain more

efficiency. Computer simulations show that both methods adjust for the measurement

error, and that JMLC outperforms landmark analysis when the functional form of

the biomarker profile is correctly specified.

In our second project, we describe how to execute dynamic prediction with the

pattern mixture model, in which each patient is classified by his/her time-to-aGVHD,

and patients in the same group share the same mean profile of biomarkers. The pat-

tern mixture model is easy to execute and straightforward to interpret. Simulations

indicate that the pattern mixture model controls loss of accuracy in predictions.

In our third project, we incorporate censored cases to generalize the pattern mix-

xii



ture model in the second project. The simulation results demonstrate that this gen-

eralized pattern mixture model accurately estimates of the marginal pattern proba-

bilities, and thus better estimates early predictions compared to early predictions not

incorporating censored observations.

In our fourth project, we explain the process of parametric bootstrap in selecting

the number of latent classes in JMLC. Compared with the standard information-

based criteria in model selection in JMLC, our parametric bootstrap likelihood ratio

test (LRT) controls the Type I error well while maintaining sufficient power. We also

propose two sequential early stopping rules to relieve the computational burden of

bootstrap.
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CHAPTER I

Introduction

1.1 Acute Graft-versus-Host Disease

Approximately every three minutes one person is diagnosed with a hematologic

cancer (blood cancer) in the United States (US), and approximately 160 people each

day die from a hematologic cancer in the US (the Leukemia and Lymphoma Soci-

ety, 2016). Based on Cancer Facts & Figures (2016) released by National Cancer

Institute, over 60,000 Americans are expected to be diagnosed with leukemia, one of

major hematologic cancers together with lymphomas and myeloma. There are mul-

tiple treatment strategies for hematologic cancer, such as chemotherapy, radiation

therapy, immunotherapy, and hematologic stem-cell transplantation (HSCT). Among

them, HSCT is a rapidly evolving technique that offers a potential cure to hema-

tologic cancers and other hematologic disorders, such as primary immunodeficiency,

aplastic anemia, and myelodysplasia.

There are two main types of HSCT, autologous HSCT and allogeneic HSCT. Many

factors contribute to the choice of the two types of HSCT, including the type of can-

cer, the stage of cancer, the age of a patient, and the accessibility of matched donors

(Champlin, 2003). In autologous HSCT, a patient’s own stem cells are collected and

frozen prior to the high-dose chemotherapy, and then are reinfused. There are rarely
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graft failures and virtually no risk of graft-versus-host disease (GVHD), which is an

inflammatory disease caused by immune cells in the donor’s organ viewing the recip-

ients’ tissues as foreign and attacking them. Thus, the treatment-related mortality

rates of autologous HSCT patients are low. However, these patients are at increased

risk of relapse because there is a possibility that the graft is contaminated with tumor

cells.

Patients undergoing allogeneic HSCT receive stem cells from human leukocyte

antigen (HLA)-matched donors, who can be either siblings or unrelated donors. HLA

is a cell-surface protein that regulates the human immune system. The primary ben-

efit of allogeneic HSCT is that the graft is presumed to be tumor-free and there is

no prior marrow injury from chemotherapy. Moreover, there is an additional graft-

versus-tumor effect contributing to a lower recurrence rate. Hosing et al. (2003) found

that the probability of non-Hodgkin lymphoma (NHL) recurrence is 19% among al-

logeneic HSCT patients, compared with 74% in autologous HSCT patients (p-value

= 0.003). However, the overall survival after HSCT is not satisfactory (Center for

International Blood & Marrow Transplant Research, 2015). For example, as shown

in Figure 1.1, the three-year overall survival of patients after allogeneic HSCT with

early-stage acute myelogenous leukemia (AML) is around 60%, while for advanced-

stage patients it is only about 30%.

The main causes of mortality after allogeneic HSCT are relapse of cancer, GVHD,

infections and other complications, as shown in Figure 1.2. GVHD is one of the

major causes of non-relapse mortality (NRM), associated with approximately 20% of

deaths for both HLA matched sibling transplants and unrelated donor transplants in

2012-2013 in AML patients (Center for International Blood & Marrow Transplant Re-

search, 2015). The risk of GVHD increases with age; thus, allogeneic HSCT is usually

2



Figure 1.1: Survival of AML patients in early, intermediate and advanced stage of
cancer from 2003-2013 after allogeneic HSCT, with unrelated donor (left)
and HLA matched sibling donor(right)

restricted to younger patients in good physical condition. GVHD observed within 100

days after HSCT is named acute graft-versus-host disease (aGVHD), which occurs

in approximately half of allogeneic HSCT recipients (Ferrara et al., 2009; Weisdorf

et al., 2012). AGVHD occurs in the skin, liver, eyes, or gastrointestinal tract once

the donor’s cells have engrafted in the transplant recipient (Jacobsohn and Vogelsang,

2007). One reason for the high mortality rate associated with aGVHD is that it is dif-

ficult to diagnose early and accurately. AGVHD is a clinical diagnosis, mainly based

on observed certain symptoms such as fever, skin rash and/or increased dryness, and

can be supported with the help of histological confirmation from a biopsy.

At the time of diagnosis, aGVHD is graded by the number and extent of organ

involvement. There are two major systems used for grading aGVHD. The first sys-

tem is the International Bone Marrow Transplant Registry (IBMTR) grading system,

which grades severity of aGVHD using the letters A, B, C, and D, with A being least

severe and D being most severe. Grading is based upon visual symptoms associated

with aGVHD, including rash, diarrhea, and pain. The second system is the Glucks-

berg grading system, which grades severity of aGVHD using the Roman numerals

3



Figure 1.2: Causes of Mortality of AML patients in early, intermediate and advanced
stage of cancer from 2003-2013 after allogeneic HSCT, with unrelated
donor (left) and HLA-matched sibling donor(right)

I, II, III, and IV, with I indicating least severe and IV indicating most severe. Like

IBMTR, Glucksberg includes physical symptoms in its grading. However, Glucksberg

also combines a patient’s daily living quality of life measured by their Eastern Co-

operative Oncology Group (ECOG) score. Treatment is assigned to patients based

on their grade of aGVHD severity. Currently steroids remain to be the standard

first-line treatment, which can reduce body’s immune response and reduce the num-

ber of T cells. However, less than 50% of patients will have a complete response to

steroids, and steroids have toxic side effects, including osteopenia and immunosup-

pression (Garnett et al., 2013).

Diagnosis of aGVHD based on clinical symptoms may be inaccurate because some

of the symptoms are not specific to aGVHD. Moreover, both clinicians and patients

want to avoid invasive biopsy confirmation. Thus, accurate diagnosis and prediction

of aGVHD through non-invasive measures are of great importance, because clinicians

want to avoid over-treatment and improve patients’ quality of life.
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1.2 Biomarkers of aGVHD

Much research has been done to explore how biomarkers are related to aGVHD

and how they might be used in predicting the onset of aGVHD, NRM, and overall

survival (OS) (Paczesny et al., 2009). Candidate biomarkers for the prognosis of

aGVHD derive from three general categories: markers of generalized inflammation

(e.g., interleukin-8 (IL-8) and tumor necrosis factor-α (TNF-α)), lymphocyte surface

molecules (e.g., CD30), and end products secreted from damaged organs (e.g., Elafin

and Regenerating islet-derived 3 - α (REG3α)) (Chen and Cutler, 2013). Biomarker

levels in plasma often rise several weeks before the clinical disease becomes apparent,

making early prediction of the onset of aGVHD plausible (Levine et al., 2006).

Early research includes multiple small studies designed to identify individual blood

proteins as biomarkers of aGVHD. Symington et al. (1990) measured the concentra-

tion of serum TNF-α in 44 patients who had received HSCT and analyzed the corre-

lation between this concentration and the onset of aGVHD and its severity. The con-

centration of TNF-α was measured by enzyme-linked immunosorbent assay (ELISA)

and dichotimized into two categories: TNF-positive and TNF-negative. Via Fisher’s

Exact Test, researchers found a weak association between positive levels of TNF-α

and aGVHD onset (P = 0.06). Behar et al. (1996) explored whether one poorly

defined minor histocompatibility antigen, cluster of differentiation 31 (CD31) adhe-

sion molecule, could explain the high incidence rate of aGVHD among HLA-matched

patients. With 46 pairs of recipients of HSCT and their HLA-identical siblings, re-

searchers found that CD31 was a minor alloantigen, and non-identical genotypes of

CD31 between donor and recipient was associated with a high risk of aGVHD (P

= 0.004). These studies have revealed the value of biomarkers in the prediction of

aGVHD, even in small samples of patients. However, in the study by Symington et al.

(1990), patients’ serum samples were taken between 4 and 52 days post-transplant,
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and at the time of serum collection, some of the patients had had developed aGVHD.

Biomarkers collected at different times impairs the reliability of this study.

Some researchers suspected that the onset of aGVHD should reflect not only the

concentration of biomarkers, but also the change of biomarkers over time. Uguccioni

et al. (1993) made serial measurements of serum IL-8 concentration on 8 patients

with successful engraftment and 5 patients with aGVHD after HSCT. The IL-8 con-

centration was measured 20 days before the HSCT, and sequentially after HSCT.

Researchers found that the concentration of IL-8 decreased significantly among pa-

tients with successful engraftment. However, this IL-8 concentration did not change

significantly before and after HSCT among patients developing aGVHD. Another

study in 2006 identified that an increase in tumor necrosis factor receptor 1 (TNFR1)

on day 7 following allogeneic HSCT compared with its baseline value was strongly

correlated with aGVHD onset, NRM and OS (Levine et al., 2006). Both of the

two studies were case-control analyses, in which patients were classified as aGVHD

patients or aGVHD-free survivors. They used repeatedly collected biomarkers to im-

prove efficiency, however, they lost information by ignoring the true times-to-aGVHD.

Some researchers also argued that differences of any single protein did not have

enough specificity and sensitivity to be of clinical use (Paczesny et al., 2009). Thus,

researchers have incorporated multiple biomarkers in a multivariate logistic regression

model that could hopefully better confirm the diagnosis of aGVHD in patients with

onset of clinical symptoms of aGVHD, and provide prognostic information indepen-

dent of aGVHD severity evaluated based on clinical symptoms (Paczesny et al., 2007,

2009). Harris et al. (2013) found that combining a panel of four biomarkers (IL-2Rα,

TNFR1, elafin and REG3α) at day 7 post-HCT and five pre-HCT clinical risk factors

produced good prediction of grade II-IV aGVHD following related donor HSCT. This
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combination of biomarkers obtained a 77% sensitivity, and clinical factors proved to

be significantly more predictive of aGVHD than a model with clinical risk factors

only (P < 0.001).

Due to the convenience of obtaining biomarkers from plasma, researchers discov-

ered that the prediction of aGVHD onset could be calibrated by a sequential pre-

diction process. Two separate multivariate logistic models were built with IL-2Rα,

TNFR1, and elafin at day +7 and day +14, and a new prediction rule was designed

using the prediction probabilities of the two models. Patients were labeled as high

risk if the predicted probability of aGVHD with day +7 biomarkers was above 0.64.

Among the rest low risk group, patients were re-classified as high risk if the predicted

probability of aGVHD with day +14 biomarkers was above 0.41 (Paczesny et al.,

2011). This approach could be viewed as the first attempt of dynamic prediction of

aGVHD.

Moreover, researchers discovered that the severity of symptoms at the onset of

aGVHD did not accurately define risk of death, and that most patients were treated

similarly with high dose systemic steroids (Levine et al., 2014, 2015). Thus, Harris

et al. (2013) built a prognostic score for aGVHD based on TNFR1, REG3α, IL2Rα,

elafin and suppressor of tumorigenicity 2(ST2). This new aGVHD grading system

based solely on biomarkers reclassified a significant number of patients (n = 21/79,

27%) and produced more accurate risk groups than Glucksberg grades, the most pop-

ular grading system of aGVHD based on clinical symptoms, resulting in better NRM

prediction as well (Harris et al., 2013; Vander Lugt et al., 2013).

The aforementioned research has proved the efficacy of biomarkers in the predic-

tion and prognosis of aGVHD. Moreover, the sequential prediction model invokes the

7



need of utilizing repeatedly collected biomarkers to make more accurate prediction

of aGVHD. The fundamental theory behind this idea is that though the most recent

biomarker values are more related to aGVHD onset than earlier measures, the entire

biomarker history offers more information than a single observation. The inexpen-

sive and highly effective ELISA enables biomarkers to be regularly collected. In this

project, we will explore various of methods predicting the onset of aGVHD with re-

peated biomarkers. By doing this, we could achieve aGVHD prediction as early as

possible, and refine this prediction whenever a new biomarker observation is available.

1.3 aGVHD Biomarker Dataset

In line with the previous statement, this research is structured for a study con-

ducted by University of Michigan Blood and Marrow Transplant Program. This

study includes 381 patients who underwent allogeneic HSCT between the year 2000

and 2010 (Vander Lugt et al., 2013). Their plasma samples were collected weekly

throughout the first month, and then monthly thereafter until the first of aGVHD

onset or day 100 after HSCT. The concentrations of multiple plasma biomarkers,

such as suppression of tumorigenicity 2 (ST2), elafin and IL-2Rα, were measured and

recorded. The published data only contain biomarker measurements at day 0, day

14 and day 28 after HSCT, with around 30% missing values at day 14 and day 28.

Figure 1.3 shows the concentration of one of the recorded biomarkers, IL2-rα.

In this dataset, patients had at most three repeated biomarker measures, which

were insufficient to support a sophisticated model with several parameters. So we

simulate data according to this real dataset and evaluate the performance of our

methods on the simulated data.
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Figure 1.3: IL2-rα levels at day 7, 14, and 28 post HSCT among 381 patients in the
University of Michigan Bone Marrow Transplantation program

There are several main features of the simulated data. First, the patients are of

various risks of aGVHD, and each aGVHD risk group has a different biomarker trajec-

tory. AGVHD is conventionally defined to occur within 100 days of HSCT, and there

are a proportion of patients who will never develop aGVHD within the period of data

collection. Moreover, according to the document shared by Center for International

Blood & Marrow Transplant Research (2005), there are four identifiable patterns of

the frequency trajectory of anti-host T cells, as demonstrated by Figure 1.4. There-

fore, we assume patients are from four aGVHD risk groups: high-, medium-, low-risk,

and aGVHD-free, with aGVHD risk level-specific mean biomarker profiles. Second,

serum biomarker collection tends to be regular and systematic, occurring at specific

time intervals after HSCT. Thus, there is little occurrence of missing biomarker val-

ues. Third, there is no missingness in time-to-aGVHD for all patients not in the

aGVHD-free group. The times-to-aGVHD are observed and recorded for all patients

except the aGVHD-free patients.
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Figure 1.4: the clonal frequency of anti-host T cells over post-transplant period

1.4 Methods for Modeling Longitudinal Processes and Time-

to-Event

Modeling a longitudinal process of biomarker observations and a time-to-aGVHD

process individually will result in biased estimation of the mean trajectory of biomark-

ers over time and the hazard ratio quantifying the association between biomarkers and

the time-to-aGVHD. This bias is due to the mutual dependence between longitudinal

biomarkers and time-to-aGVHD. The time-to-aGVHD depends on the whole history

of biomarker levels, while the follow-up of biomarker values is truncated by the time-

to-aGVHD (Tsiatis and Davidian, 2004). We now review three existing methods for

analyzing times-to-event with repeated biomarkers.
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We define Y i = (Yi(t1), Yi(t2), · · · , Yi(tni
)) as the biomarker history of subject i

at time (t1, t2, · · · , tni
), where ni is the total number of biomarker observations for

subject i, for i = 1, 2, · · · , n. Let Ti denote the observed time for subject i, which is

the minimum of the time-to-event for subject i, T ∗i , and last follow up time Si. We

also define δi as the indicator of whether subject i experiences aGVHD (δi = 1) or is

censored (δi = 0). This notation is used throughout this chapter.

1.4.1 Time-varying Covariates in Times-to-Event

In a survival model with time-varying covariates, the record of subject i is sepa-

rated into several non-overlapping time intervals (t1, t2), (t2, t3), · · · , (tni−1, tni
). Within

each time interval (tj−1, tj), the time-varying covariates hold constant values as Yj−1,

for j = 2, 3, · · · , ni. Each interval is coded as one record, thus one subject could have

multiple separate records. Standard approaches, i.e., Cox regression, can be applied

to this new long-format dataset. At each event time, the risk set is updated, and so

are the covariate values.

The key idea behind Cox regression with time-varying covariates is simple: co-

variates’ values are viewed as constant within intervals (Therneau and Lumley, 2011).

There are some main drawbacks of using time-varying covariates in the analysis of

times-to-event. First, there is no effort to separate the measurement error from true

values of time-varying covariates. Second, because biomarkers are only collected in-

termittently, the exact biomarker value at each event time may not be available.

When maximizing the partial likelihood of Cox model with time-varying covariates,

the last biomarker observation is carried forward (LOCF). This may lead to biased

inference of the association between biomarkers and time-to-event, especially when

we have serial multiple biomarkers up to a certain time point, which is shorter than
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the total length of follow-up (Fang et al., 2016). Moreover, Cox regression with time-

varying covariates is not designed for prediction, because one cannot know how the

time-varying covariates change over time. Thus, this approach is not useful in our

setting.

1.4.2 Joint Modeling

One popular approach to handle mutually dependent data is joint modeling (Song

et al., 2002; Yu et al., 2004; Proust-Lima et al., 2014). Since there is no easy closed-

form for the joint distribution of longitudinal biomarkers Yi and time-to-event (Ti, δi),

shared terms are brought in to introduce conditional independence between longitudi-

nal process and time-to-event. Two common approaches for expressing shared terms

are the latent classes (LC) or shared random effects (SRE), and the joint model is

named joint modeling with latent classes (JMLC) and joint modeling with shared

random effects (JMSR) correspondingly.

The JMLC and JMSR have fundamentally different assumptions in population

heterogeneity of biomarkers and time-to-event distributions. JMSR assumes the pop-

ulation all share the same profile of biomarkers, with the time-to-event depending

on individual-level deviations of biomarkers from the population mean. In contrast,

JMLC treats subjects as being from different risk groups, and the survival probability

only depends on the risk group membership (Blanche et al., 2015; Rizopoulos et al.,

2017). In practice, neither assumption fits better in all settings, and the choice be-

tween JMLC and JMSR should be made on a case-by-case basis. One major drawback

of joint modeling in general is the difficulty in model fitting. Because the LC and SRE

are unobservable, they need to be either integrated out of the model, or estimated

using either the Expectation-Maximization (EM) algorithm or Markov Chain Monte
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Carlo (MCMC).

1.4.3 Landmark Analysis

Another approach, landmark analysis, shows certain benefits over joint modeling

with respect to model fitting and interpretation. Zheng and Heagerty (2005) em-

ployed landmark analysis for dynamic prediction and defined it as partly conditional

modeling. van Houwelingen and Putter (2011) described how to apply landmark

analysis to settings with repeated biomarker observations and one final time-to-event

endpoint. A standard landmark analysis fits one separate survival model at each pre-

defined landmark time point, so it is easy to execute and straightforward to interpret

the parameters.

The main feature of landmark analysis is that at each landmark time, all the future

biomarker observations are ignored, and all subjects who have already experienced

the event are removed from the risk set. Although landmark analysis is straightfor-

ward and easy to execute, it is criticized by its coarse use of biomarker values (van

Houwelingen, 2007; van Houwelingen and Putter, 2011). First, the landmark analysis

abandons the whole biomarker history before the landmark time and only uses the

biomarker observations at the landmark time. When a biomarker value is missing,

the last observed biomarker value is carried forward to the landmark time. Second,

a landmark analysis ignores the measurement error of biomarker values and fits the

time-to-event model without adjusting for this noise. If the longitudinal biomarkers

are measured sparsely and irregularly, and also with measurement errors, landmark

analysis might not be an ideal approach.
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1.5 Structure of Dissertation

In the second chapter, we analyze longitudinal biomarkers and time-to-aGVHD

with both JMLC and landmark analysis. Both methods are modified specifically to

our setting. We introduce how to do model fitting and prediction with these two

methods, and compare their prediction performance. Though these two approaches

are well-accepted, both JMLC and landmark analysis have complex model specifica-

tion and the model fitting is time consuming. Thus, in the third chapter, we build a

pattern mixture model to predict the onset of aGVHD given longitudinal biomarker

values. This pattern mixture model is easy to execute and interpret. In the fourth

chapter, we generalized this pattern mixture model to incorporate censored cases.

The JMLC model used in the second chapter requires a pre-specified number of la-

tent classes, thus, in the fifth chapter, we propose a hypothesis testing based model

selection process to select the number of latent classes in JMLC. The future research

areas that can be explored further based on our current work are discussed after.
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CHAPTER II

Dynamic Prediction of Time-to-acute

Graft-versus-Host-Disease with Joint Modeling

and Landmark Analysis

2.1 Introduction

In this chapter, we use two methods to assess future risk of aGVHD based on

repeated biomarker observations. Our first approach uses a revised JMLC, which in-

cludes one latent class for those who will never develop aGVHD (aGVHD-free), and

several other classes defined by the risk of aGVHD. Given that one patient’s time-

to-aGVHD is beyond day 100, his/her aGVHD-free class membership is labeled at

the beginning in order to increase model identifiability. Our second approach applies

a landmark analysis that is modified to allow for patients from various aGVHD risk

groups.

These two methods both require a pre-specified number of risk classes among the

patients. This number can be a subjective choice made based on data visualization or

the clinicians’ prior medical knowledge of aGVHD. Moreover, previous studies have

also discussed choosing the number of latent classes based on the model selection re-

sults. For example, in a study of using prostate-specific antigen (PSA) to predict the
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risk of prostate cancer, a separate model was fitted for each of a varying number of

latent classes; the model with the least value of Bayesian information criterion (BIC)

was chosen as the final model (Lin et al., 2002).

For the purposes of this project, we will fix the number of latent classes ac-

cording to the medical characteristics of aGVHD patients. According to Center

for International Blood & Marrow Transplant Research (2005), clinicians have la-

beled aGVHD as no-evidence clinical aGVHD, therapy-responsive aGVHD, therapy-

dependent aGVHD, and progressive aGVHD. Moreover, based on clinical symptoms,

aGVHD can be also classified into four severity phases, according to the two major

systems used for grading aGVHD, IBMTR and Glucksberg grading system. Thus,

in this study, we will assume the patients come from four latent aGVHD groups,

which equals the true inherent number of latent aGVHD groups in the simulated

data. More discussions on choosing the number of latent classes based on the model

selection results can be found in Chapter V.

One distinctive feature of aGVHD data is that a subset of patients are “aGVHD-

free.” Based on the clinical properties of allogeneic bone marrow transplantation

(BMT) and disease definition, patients who have not developed aGVHD within 100

days after BMT are assumed to never develop aGVHD. Thus, we classify all pa-

tients who have not experienced aGVHD within the first 100 days after BMT in the

“aGVHD-free” latent class.

The rest of this chapter is organized as follows. First, we introduce how to do

model fitting and prediction in JMLC. Next, we talk about the modeling fitting and

prediction of aGVHD in landmark analysis, followed by the metrics for evaluating

aGVHD predictions. Simulations under different scenarios are executed to check the
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prediction performance of these two methods under various scenarios. We conclude

with a brief discussion.

2.2 Joint Modeling with Latent Class

2.2.1 Model Setting

JMLC is proposed to model outcomes of various types, especially when there is no

closed-form for the joint distribution for these outcomes. In aGVHD data, the out-

come is a combination of repeated biomarker observations and times-to-aGVHD, and

we assume the distributions of biomarkers and times-to-aGVHD are different across

latent risk groups of aGVHD. To establish JMLC, we first define some notations used

throughout this section.

Let zi = (zi1, zi2, zi3, zi4)
′

represent the unobserved indicator vector of subject i’s

latent class membership, where zih = 1 if subject i belongs to latent class h, and 0

otherwise, for h = 1, 2, 3, and 4. Here we fix zi1 as the indicator of the aGVHD-

free latent class. Let πi = (πi1, πi2, πi3, πi4)
′

be the corresponding probabilities, and

π = (π1, π2, π3, π4)
′

be the marginal probabilities of one subject belonging to each

aGVHD class, with the restriction that
∑4

h=1 πh = 1.

For the longitudinal biomarker process, we define Y i = (Yi(t1), Yi(t2), · · · , Yi(tni
))

as the biomarker history of subject i at times (t1, t2, · · · , tni
), where ni is the total

number of biomarker observations for subject i, for i = 1, 2, · · · , n. We assume the

biomarker data are collected according to a medical protocol based on the features

of aGVHD and time feasibility. Therefore, the timing of biomarker screening is un-

related to patients health conditions, or more specifically, patients’ biomarker levels.
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We specify that patients from the same latent class of aGVHD share the same

mean biomarker trajectory, with individual-specific random effects bi reflecting the

deviation of an individual’s biomarker pattern from the mean of their latent class.

The measurement error ei = (ei(t1), ei(t2), · · · , ei(tni
)) of biomarkers introduces the

random noise in biomarker measurement. We assume the observed biomarkers, Yi,

random effects, bi, and measurement error, ei, Bi
′ = (Yi, bi, ei) given zih = 1 have a

multivariate normal distribution, i.e.

Bi|zih = 1 ∼MVN

(
Xiβ

(h)

0

0

 ,


ZiDZ

T
i + σ2Ini

ZiD σ2Ini

DZT
i D 0

σ2Ini
0 σ2Ini


)

(2.1)

with a density function fh(Bi), where Xi is the design matrix including functions of

time, β(h) is the corresponding parameters of the mean biomarker trajectory in the la-

tent class h, Zi is design matrix of random effects that can be any subset ofXi, D is the

covariance matrix of the random effects that is constant among all latent classes, and

σ2 is the common variance of each element of ei. Let ω = (β(1),β(2),β(3),β(4), D, σ2)

denote all the parameters involved in the longitudinal process.

For the time-to-aGVHD process, let Ti denote the observed time for subject i,

which is the minimum of time-to-aGVHD for subject i, T ∗i , and last follow-up time

Si. We also define δi as the indicator of whether subject i experiences aGVHD

(δi = 1) or is censored (δi = 0). For the “cured” latent class, the hazard of aGVHD

is 0 and the aGVHD probability is 0. For simplicity, we assume a Weibull distribu-

tion for the time-to-aGVHD of the three other latent classes, i.e., Pr(Ti > t|i ∈ h) =

exp(−(t/λ(h))κ
(h)

), with hazard function g(h)(t) = k(h)/λ(h)(t/λ(h))(κ(h)−1)exp(−(t/λ(h))κ
(h)

),

for h = 2, 3 and 4. Here we define ζ = (λ = (λ(2), λ(3), λ(4)),κ = (κ(2), κ(3), κ(4))) to
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be the parameters involved in the time-to-aGVHD process.

Let ξ = (π,ω, ζ) represent the complete parameter set; the complete data are

(Yi, bi, Ti, δi, zi). The complete data likelihood function is:

L(ξ|Y , b, T, δ, z) =
n∏
i=1

[
[π1f1(Bi|w)]zi1

4∏
h=2

[πhfh(Bi|w)(g(h)(Ti))
δiexp(−

( Ti
λ(h)

)κ(h)
)]zih

]

with corresponding log-likelihood:

l(ξ|B, T, δ, z) = l1(π|B, T, δ, z) + l2(ω|B, T, δ, z) + l3(ζ|B, T, δ, z) (2.2)

where l1(π|B, T, δ, z) =
n∑
i=1

4∑
h=1

zihlog(πh), l2(ω|B, T, δ, z) =
n∑
i=1

4∑
h=1

zihlogfh(Bi|ω),

and l3(ζ|B, T, δ, z) =
n∑
i=1

4∑
h=2

zih[δilog(g(h)(Ti)) − (Ti/λ
(h))κ

(h)
], which are the three

components of the log-likelihood corresponding to π, ω and ζ. Because we cannot ob-

serve the individual-level latent class indicator zi in practice, we use the Expectation-

Maximization (EM) algorithm to find the expectation of unobserved zi and maximum

likelihood estimate (MLE) of parameters iteratively. Section 2.2.2 describes the de-

tails of using the EM algorithm to maximize the aforementioned log-likelihood in

Equation 2.2.

2.2.2 Parameter Estimation with the EM Algorithm

In the E-step, at iteration q + 1, we estimate the expectation of unobserved

complete-data sufficient statistics, (zi, bib
′
i, eie

′
i), conditionally on the parameter es-

timates ξ(q) from the previous iteration q. Here E(zi|ξ(q),Yi, Ti, δi) = πih(ξ
(q)) is

the probability subject i at iteration q + 1 belongs to latent class h. For simplic-

ity, throughout the rest of subsections 2.2.2 and 2.2.3 we will use ξ instead of ξ̂(q)
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to represent the parameter estimation at iteration q. For the cases with observed

times-to-aGVHD, πih(ξ) is computed as:

πih(ξ) =
πhfh(Yi|ω)(gh(Ti))

δiexp(−(t/λ(h))κ
(h)∑4

l=2 πlfl(Yi|ω)(gl(Ti))δiexp(−(t/λ(l))κ(l))
(2.3)

for h = 2, 3, and 4. The value of πi1(ξ) for aGVHD-free patients is fixed at 1.

Next, we compute the expectation of bib
′
i and eie

′
i. Define H = ZiDZ

′
i + σ2Ini

,

and given the joint distribution of Bi we obtain:

E(bib
′
i|Yi, ξ) = Ebi|Yi

(bi|Yi)Ebi|Yi
(bi|Yi)

′ + covbi|Yi
(bi|Yi)

E(eie
′
i|Yi, ξ) = Eei|Yi

(ei|Yi)Eei|Yi
(ei|Yi)

′ + tr{covei|Yi
(ei|Yi)}

where Ebi|Yi
(bi|Yi) = DZiH

−1(Yi −Xiβ
(h))

covbi|Yi
(bi|Yi) = D −DZiH−1ZiD

Eei|Yi
(ei|Yi) = σ2H−1(Yi −Xiβ

(h))

covei|Yi
(bi|Yi) = σ2(Ini

− σ2H−1)

With the complete data sufficient statistics (zi, bib
′
i, eie

′
i), we can compute the

three components, l1(π|B, T, δ, z), l2(ω|B, T, δ, z), and l3(ζ|B, T, δ, z), in the expec-

tation of log-likelihood in Equation 2.2. In the M-step, we can compute the MLE

for parameters ξ = (π,ω, ζ) by maximizing the corresponding expectation of the

log-likelihood. The MLE for the parameters in the longitudinal biomarker process,
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ω, are:

D̂ =
1

n

n∑
i=1

4∑
h=1

πih(ξ)
[
Ebi|Yi

(bi|Yi)Ebi|Yi
(bi|Yi)

T + covbi|Yi
(bi|Yi)

]
σ̂2 =

1∑n
i=1 ni

n∑
i=1

4∑
h=1

πih(ξ)
[
Eei|Yi

(ei|Yi)Eei|Yi
(ei|Yi)

T + tr{covei|Yi
(ei|Yi)}

]
β̂(h) =

[ n∑
i=1

πih(ξ)XT
i Hi

−1Xi

]−1[ n∑
i=1

πih(ξ)XT
i Hi

−1Yi

]

The MLE of ζ, the parameters in the time-to-aGVHD process, can be estimated

by maximizing E(l3(ζ|B, T, δ, z)). Since there is no closed form for the MLE, we will

use Newton’s method to find the MLE iteratively. Moreover, several existing packages

in R offer model fitting procedures for survival data with weights (Therneau, 2015).

The MLE of π is πh =
∑n

i=1 πih(ξ)/n.

2.2.3 Prediction of Time-to-aGVHD

A patient receiving HSCT is scheduled to have serum drawn each week from

which biomarkers are measured. This procedure continues until this patient devel-

ops aGVHD or reaches 100 days without aGVHD. The prediction of aGVHD onset

is made after we obtain two biomarker observations, and this prediction is updated

every week when a new biomarker observation is available.

At week k, we obtain biomarker values Ym(k) = (Ym1, Ym2, · · · , Ymk) of a new

patient m, who inherently is aGVHD-free before week k. The probability that patient
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m will not develop aGVHD for the next two weeks is:

Pr(Tm > k + 2|Tm > k) =
4∑

h=2

Pr(zmh = 1|Ym(k))Pr(Tm > k + 2|Tm > k,m ∈ h) +

Pr(zm1 = 1|Ym(k))

where Pr(zmh = 1|Ym(k)) =
πhfh(Ym|ω)P (Tm > k|m ∈ h, ζ)∑4
l=2 πlfl(Ym|ω)P (Tm > k|m ∈ l, ζ)

,

and Pr(Tm > k|zm1 = 1) = 1 for any k. So the probability of not developing

aGVHD in the next two weeks is the probability of patient m falls into aGVHD-free

class, plus a weighted sum of probabilities of not developing aGVHD for the next two

weeks, with weights equal to the probability that patient m belongs to each risk class.

2.3 Landmark Analysis

2.3.1 Model Setting

In a landmark analysis, a series of fixed times s = (s1, s2, · · · , sR) after HSCT are

selected as the landmark times. Unlike JMLC, which fits one overall model with all

the available data, landmark analysis updates the risk set and fits a separate model

at each landmark time. We ignore the patients who have developed aGVHD or been

censored before the landmark time. For patients developing aGVHD after the land-

mark time, we ignore biomarkers measured after the landmark time. A natural choice

of landmark time here would be the weekly biomarker screening day, because that is

when the biomarker information is updated, and the timing of biomarker screening

is independent of patients’ current or past biomarker levels.

As in Section 2.2, we define Y i = (Yi(t1), Yi(t2), · · · , Yi(tni
)) to be the biomarker

history of subject i at times (t1, t2, · · · , tni
), where ni is the total number of biomarker
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observations for subject i, for i = 1, 2, · · · , n. Let Ti denote the observed time for

subject i, which is the earlier of the time-to-aGVHD for subject i, T ∗i , and the last

follow-up time, Si. We also define δi as the indicator of whether subject i experiences

aGVHD (δi = 1) or is censored (δi = 0). Since the biomarker observations of all

patients are balanced and equally spaced at each landmark time, we can cluster the

samples without specifying the functional form of the biomarker trajectory, possibly

avoiding biased results caused by model misspecification.

Instead, we assume these biomarker observations are from a mixture of multi-

variate normal distributions, with the mixture defined by the membership in each

aGVHD risk class. Define vr as the number of biomarker samples by landmark time

sr. The distribution of biomarkers Yi = (Yi1, Yi2, · · · , Yi,vr) for subject i who is still

at risk for aGVHD is:

Yi ∼
4∑

h=1

π
(sr)
h N (µh

(sr),Σ
(sr)
h ) (2.4)

where µh
(sr) = (µh1, µh2, · · · , µh,vr) is the mean profile of biomarkers in class h

at landmark time sr, Σ
(sr)
h is the corresponding variance-covariance matrix, and

π(sr) = (π
(sr)
1 , π

(sr)
2 , π

(sr)
3 , π

(sr)
4 ) is the marginal probabilities of a patient belonging

to each class at landmark time sr. In a landmark analysis, we allow the marginal

probabilities of class membership π change along landmark time s.

Additional assumptions on µh
(sr) and Σ

(sr)
h can be made to reduce the number of

parameters to estimate. For example, in this study we assume Σ
(sr)
h = Σ(sr) across

all classes. Moreover, one can assume an AR(1) structure of covariance between

biomarkers from the same subject. For simplicity, through the rest of this subsection

we will omit the superscript of landmark time sr.

23



Because the patients at risk for aGVHD are updated at each landmark time, the

mean and variance-covariance of biomarkers are updated at each landmark time. The

likelihood for the parameters ξ = (µ,Σ,π) at landmark time sr is:

L(sr)(ξ|Y, z) =

Nsr∏
i=1

4∏
h=1

{πh|Σ|−
1
2 exp(−1

2
(Yi − µh)′Σ−1(Yi − µh))}zih

where zi = (zi1, zi3, zi4, zi4)T represents the indicator vector of subject i’s latent class

membership, and Nsk is number of patients at risk at landmark time sk. The corre-

sponding log-likelihood of ξ is:

l(sr)(ξ|Y, z) =

Nsr∑
i=1

4∑
h=1

[
zihlog(πh)−

zihlog(|Σ|)
2

− zih
2

(Yi − µh)′Σ(sk)−1(Yi − µh)
]
(2.5)

The group indicator of each individual, zi, is unobservable, so we will employ the

EM algorithm iteratively to compute the expectation of zi and the MLE of ξ at each

landmark time sr. We will describe the details of using the EM algorithm to compute

the MLE of ξ in subsection 2.3.2.

2.3.2 Parameter Estimation with the EM Algorithm

At iteration q and in the E-step, the expectation of zih is calculated as:

πih(ξ
(q)) =

π
(q)
h exp(−1

2
(Yi − µh

(q))′Σ−1(q)(Yi − µh
(q)))∑4

l=1 π
(q)
l exp(−1

2
(Yi − µl

(q))′Σ−1(q)(Yi − µl
(q)))

(2.6)
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Then in the M-step, by maximizing the expectation of the log-likelihood as in Equa-

tion 2.5, we achieve the MLE of ξ = (µh,Σ,π) as:

π̂h =
1

Nsr

Nsr∑
i=1

πih(ξ̂
(q))

µ̂h =

∑Nsr
i=1 πih(ξ̂

(q))Yi∑Nsr
i=1 πih(ξ̂

(q))

Σ̂ =

∑Nsr
i=1

∑4
h=1 πih(ξ̂

(q))(Yi − µ̂q
h)(Yi − µ̂q

h)′

Nsr
(2.7)

When convergence criteria are met, we achieve a set of parameter estimates of ξ̂ =

(µ̂h, Σ̂, π̂), as well as the individual probability of belonging to each risk class π̂i =

(π̂i1, π̂i2, π̂i3, π̂i4).

Since landmark analysis ignores all the biomarkers observed after the landmark

time, the accuracy of long-term prediction is reduced. In practice, we will report

two-week prediction of aGVHD onset, so we will explore the two-week onset rate of

aGVHD in the model fitting stage.

We recode the time-to-aGVHD into an indicator Wi, representing whether or

not this individual experiences aGVHD within the next two weeks, with Wi = 1

representing aGVHD onset and Wi = 0 representing no aGVHD. We assume the

probability of experiencing aGVHD follows a binomial distribution. The logit of this

probability for patients in risk group h is modeled as:

log

(
Pr(Wi = 1|zih = 1)

1− Pr(Wi = 1|zih = 1)

)
= αh (2.8)

where α = (α(1), α(2), α(3), α(4)) denotes the marginal log odds ratio of developing
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aGVHD in two weeks in each aGVHD latent class. The log-likelihood of α is:

l(α|W ,πi) =
4∑

h=1

( Nsr∑
i=1

πih[α
(h)Wi − log(1 + exp(α(h)))]

)
(2.9)

Then we can obtain the MLE of α by maximizing Equation 2.9. However, there is

no closed form for the MLE of α from Equation 2.9, so we will use Newton’s method

and get the MLE iteratively.

2.3.3 Prediction in Landmark Analysis

At week k, we want to make a prediction of aGVHD onset for a new patient m,

who has biomarker observation history Ym(k) = (Ym1, Ym2, · · · , Ymk), and the patient

m is inherently aGVHD-free before week k. The probability of being aGVHD-free for

the next two weeks is:

Pr(Tm > k + 2|Tm > k) =
4∑

h=1

πmh
exp(α̂h)

1 + ̂exp(αh)
(2.10)

where πmh =
π̂hexp(−1

2
(Ym − µ̂h)′Σ̂−1(Ym − µ̂h))∑4

l=1 π̂lexp(−
1
2
(Ym − µ̂l)′Σ̂−1(Ym − µ̂l))

The MLE of parameters (ξ,α) achieved at landmark time sk are used in Equation

2.10.

2.4 Evaluation of Prediction

The evaluation of prediction falls into two fields, discrimination and calibration.

Discrimination indexes measure how well the model distinguishes between patients

who experience aGVHD from patients who do not experience aGVHD (Schoop et al.,

2011; Blanche et al., 2015; Yang et al., 2016; Rizopoulos et al., 2017). Calibration

indexes evaluate how accurate the model predicts the probability of aGVHD (Schoop

et al., 2011; Rizopoulos et al., 2017).
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In our simulation study, we will evaluate the prognosis of aGVHD onset at each

prediction time with both Brier Score (BS) and area under the curve (AUC). BS

assesses the absolute accuracy of predictions, and it has been widely used in evaluation

of prediction performance in survival analysis (Brier, 1950; Schemper and Henderson,

2000; Henderson et al., 2002; Rizopoulos et al., 2017). In our study, we define the

two-week BS at week k as:

BS(k) =

Nk∑
i=1

(Ii(k + 2)− Pri(k + 2))2 (2.11)

where Nk is the number of patients at risk at week k , and Ii(k + 2) and Pri(k + 2)

are the respective indicator of aGVHD status and predicted probability of aGVHD

at week k + 2 for patient i. Lower values of BS indicate better prediction, with a

perfect prediction indicated by BS = 0.

Alternatively, we use a receiver operating characteristic (ROC) curve to evaluate

the discrimination ability of our models. For each cut-off point of predicted proba-

bilities, the resulting sensitivity and specificity are indicated as a point on the curve.

The AUC is introduced to summarize the overall discrimination performance of a

prediction model, with a value of 0.5 indicating no predictive ability and a value of 1

indicating a perfect discrimination.

2.5 Simulation and Result

We speculate that several factors might influence the relative performance of

JMLC and landmark analysis. The first factor of practical interest is the overlap

of time-to-aGVHD distributions between latent classes. The second factor is the

size of biomarker measurement error. The third factor is the assumed functional
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form of the biomarker patterns over time. In order to examine the effects of these

three factors, we generate more or less overlapping distributions of time-to-aGVHD

between latent classes, add large or small measurement errors to biomarker observa-

tions, and assume a linear trajectory of biomarkers over time or other irregular forms.

In our simulations, biomarker screening is scheduled right after HSCT (baseline)

and weekly thereafter until the onset of aGVHD. An uninformative baseline biomarker

level is assumed, so at least two biomarker observations are needed to make a predic-

tion for aGVHD onset. In each simulation, a sample of 200 patients is generated as

the training dataset, and another sample of 200 patients from the same population is

generated as the testing dataset. This population consists of subjects from four latent

classes: aGVHD-free, low-risk, medium-risk, and high-risk. Patients within the same

latent class share the same distribution of time-to-aGVHD and mean biomarker pro-

file. With each testing dataset, predictions are made at week 1, 2, · · · , 8 of aGVHD

onset within the next two weeks. We start from the end of week 1 because this is

when two biomarker observations are available for each patient, and we end at week 8

because a majority of aGVHD incidence occurs within 10 weeks of HSCT. The results

are based on 5,000 simulations.

2.5.1 Effect of Overlap in Time-to-aGVHD Distributions between Latent

Classes

First, we examine the impact of overlap in times-to-aGVHD between latent classes.

This overlap reflects the variance of the times-to-aGVHD in each latent class. If

there is less overlap of times-to-aGVHD between latent classes, patients with simi-

lar biomarker patterns are more likely to have similar times-to-aGVHD. Thus, the

distribution of times-to-aGVHD in one latent class, in which patients share same
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biomarker pattern, is concentrated. Otherwise, if there is extensive overlap of the

time-to-aGVHD distributions between latent classes, it is hard to tell one patient’s

latent class membership given only his/her biomarker profile.

We simulate data from two degrees of overlap in time-to-aGVHD distribution, as

demonstrated by Figure 2.1. When there is less overlap in time-to-aGVHD distri-

Figure 2.1: Time-to-aGVHD distributions for three risk classes: 1. blue; 2. red;
3. black (left: less overlap of times-to-aGVHD; right: more overlap of
times-to-aGVHD)

butions, as shown in the left panel in Figure 2.1, times-to-aGVHD are more distinct

between latent classes. For example, at week 4, the majority of aGVHD cases come

from latent class 1. On the other hand, when there is more overlap in time-to-aGVHD

distributions, as shown in the right panel in Figure 2.1, the aGVHD cases at week 4

come from all three risk classes.

We start with a visualization of the different datasets generated with less or more

overlap in times-to-aGVHD. A dataset of 200 patients is generated in each scenario,
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and the biomarker observations of these patients are shown in Figure 2.2. According

Figure 2.2: Simulated biomarker observations of 200 patients (top: less overlap of
time-to-aGVHD distributions; Bottom: more overlap of time-to-aGVHD
distributions)

to Figure 2.2, when there is more overlap of times-to-aGVHD between latent classes

(shown in the bottom), the distribution of times-to-aGVHD among patients with

similar biomarker trajectories is dispersive.

Table 2.1 summarizes the AUCs and BSs of prediction at weeks 1, 2, · · · , 8. Both

JMLC and landmark analysis do a better job in distinguishing patients with vari-

ous risk, and providing a more accurate prediction of aGVHD onset, when there is

less overlap of time-to-aGVHD distributions between latent classes in contrast to the
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Table 2.1: Mean (SD) of BSs and AUCs of 5,000 simulations with two degrees of
overlap in time-to-aGVHD distributions

Prediction made at (week) 1 2 3 4 5 6 7 8

Less overlap of time-to-aGVHD distributions between latent classes

AUC
JMLC

0.859 0.984 0.918 0.925 0.988 0.907 0.857 0.993
(0.042) (0.009) (0.026) (0.015) (0.007) (0.028) (0.035) (0.010)

LM
0.942 0.971 0.874 0.908 0.968 0.867 0.822 0.973

(0.019) (0.022) (0.037) (0.022) (0.033) (0.053) (0.046) (0.018)

BS
JMLC

0.158 0.155 0.073 0.132 0.086 0.114 0.153 0.035
(0.012) (0.015) (0.014) (0.030) (0.039) (0.014) (0.029) (0.020)

LM
0.090 0.062 0.080 0.103 0.063 0.115 0.158 0.059

(0.020) (0.026) (0.015) (0.016) (0.039) (0.030) (0.021) (0.022)
More overlap of time-to-aGVHD distributions between latent classes

AUC
JMLC

0.817 0.923 0.918 0.915 0.895 0.876 0.914 0.971
(0.064) (0.019) (0.017) (0.025) (0.025) (0.031) (0.031) (0.020)

LM
0.871 0.893 0.872 0.873 0.857 0.829 0.879 0.954

(0.034) (0.023) (0.036) (0.041) (0.037) (0.051) (0.041) (0.026)

BS
JMLC

0.149 0.156 0.138 0.134 0.135 0.138 0.108 0.059
(0.018) (0.031) (0.027) (0.026) (0.017) (0.017) (0.026) (0.025)

LM
0.103 0.118 0.137 0.137 0.144 0.157 0.130 0.080

(0.012) (0.015) (0.018) (0.023) (0.021) (0.021) (0.021) (0.026)

more overlap scenario. This is because in the less overlap scenario, times-to-aGVHD

are more distinct between latent classes. Therefore, JMLC, in which a patient’s time-

to-aGVHD contributes to the latent class identification, results in a better prediction

of one’s latent class membership, and thus produces a more accurate aGVHD predic-

tion. On the other hand, landmark analysis, in which the latent class membership

only depends on the biomarkers, also achieves more accurate aGVHD prediction be-

cause the variance of times-to-aGVHD in each latent class is small.

In both the less and more overlap scenarios, JMLC better distinguishes patients

who will experience aGVHD in the next two weeks, with higher AUCs starting from

week 2. This is because the discrimination ability depends mainly on accurately

identifying the latent class membership. JMLC, which incorporates a patient’s time-

to-aGVHD to the latent class prediction, has more accurate predictions of latent class

membership than landmark analysis, thus, it has higher AUCs. However, when we do

prediction at week 1, JMLC is inferior to landmark analysis. This is because everyone

31



is aGVHD-free until week 1, so the fact that a patient is aGVHD-free by week 1 does

not contribute to the prediction of latent class membership. Moreover, in contrast to

JMLC, landmark analysis uses only the available biomarker observations before the

landmark time to fit a model. Thus, it avoids interpreting the noise associated with

later biomarkers and has a better AUC than JMLC, when we make a prediction at

week 1.

For both simulation scenarios with either less or more overlap of times-to-aGVHD,

the prediction accuracy of JMLC is inferior to landmark analysis when only a few

biomarker observations are available, reflecting larger BSs. This is because landmark

analysis ignores all the biomarker observations and time-to-aGVHD after the land-

mark time, and thus avoids interpreting the noise associated with future observations.

However, when more biomarker observations are collected, JMLC shows better pre-

diction accuracy than landmark analysis in terms of lower BSs. This accuracy gap

becomes more obvious when there is more overlap of times-to-aGVHD between latent

classes. This is because at each landmark time, we still fix the number of latent classes

of aGVHD at four, which, according to Figure 2.2, is not a correct assumption in the

later post-HSCT period. For example, after week 7, the majority of patients are from

only two latent classes of aGVHD. Assuming the patients are from four latent classes

will over-fit the training dataset, and thus result in poor prediction performance.

We also find that landmark analysis is more sensitive than JMLC to the degree of

overlap in time-to-aGVHD distributions. This is because landmark analysis builds a

model only on the subset of patients who are still at risk at each landmark time. When

there is less overlap in times-to-aGVHD between latent classes, the risk set changes

dramatically at different landmark times. JMLC, however, fits a model on the whole

dataset, incorporating both patients’ biomarker history and times-to-aGVHD. Thus,
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it is more robust to the change of overlap in time-to-aGVHD distributions.

In this subsection, we have compared the prediction performance of JMLC and

landmark analysis, in terms of discrimination and accuracy, under less overlap and

strong overlap of times-to-aGVHD scenarios. If we compare the AUCs of JMLC

across prediction times, we do not find a clear trend and the AUCs fluctuate. Simply

comparing AUCs across time is not recommended because there are different patients

at risk at each prediction time. In Table 2.1, we present AUCs calculated with a

cumulative sensitivity and a dynamic specificity (Heagerty and Zheng, 2005). The

interpretation of cumulative sensitivity is straightforward: that among all the pa-

tients at risk at time s, whoever develop the event between (s, s + t∗) are labeled as

cases, where s is the prediction time, and t∗ is the prediction window. We adopt a

dynamic specificity, because the patients in the “control” set at time s might join the

“aGVHD-cases” later, so the later the prediction time s is, the fewer the patients in

the control set. With a dynamic specificity, the AUC highly depends on the distri-

bution of time-to-aGVHD, and thus it is inappropriate to compare AUCs across time.

As shown in Table 2.1, in the less overlap scenario, the AUC of JMLC at week 2, 5,

and 8 are relatively high, compared with other prediction times. This matches what

we see in the left panel in Figure 2.1. At week 4, 7, and 10, the majority of aGVHD

cases come from one latent class, and nearly all the aGVHD-free patients come from

the other latent classes. Therefore, the 2-week predictions at week 2, 5 and 8 achieve

higher AUCs. On the other hand, we do not see the same pattern of AUCs of JMLC

in the more overlap scenario. This is because at week 4, 7, and 10, the aGVHD cases

could be from all the risk latent classes, and the aGVHD-free patients could also be

from all latent classes. Thus, we do not recommend comparing AUCs across time.
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For the remaining two settings, we will simulate data from the less overlap scenario,

and explore the effects of measurement error and model mis-specification.

2.5.2 Effect of Biomarker Measurement Error

Second, we focus on comparing the relative performance of JMLC and landmark

under two degrees of measurement error. The explanation of certain patterns in AUCs

and BSs that are caused by the less overlap time-to-aGVHD distributions between

latent classes are omitted in this subsection.

We randomly generate two datasets of 200 patients with large and small biomarker

measurement errors, as demonstrated in Figure 2.3.

Table 2.2 summarizes the AUCs and BSs of aGVHD prediction at week 1, 2, · · · ,

and 8. When the measure error is small, both JMLC and landmark analysis better

distinguish patients in high risk of aGVHD and provide more accurate prediction of

aGVHD onset, compared with the scenario with large measurement error. However,

this superiority is alleviated when more biomarker observations are available at the

prediction time. This is because when more biomarker observations are available,

both models have more power to eliminate the effect of the measurement error and fit

the model with the true biomarker values. Thus, the size of the measurement error

does not affect the results when more biomarker observations are available.

When the measurement error is large, JMLC does better than landmark analysis

in identifying patients who will experience aGVHD in two weeks when more than two

biomarker observations are available. When the measurement error is small, JMLC

also better distinguishes patients who will experience aGVHD in two weeks, with

higher AUCs at all prediction times than landmark analysis.
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Figure 2.3: Simulated biomarker observations of 200 patients (top: large (sd = 1)
measurement error; Bottom: small (sd = 0.5) measurement error)

When the measurement error is large, the absolute prediction accuracy of JMLC

is inferior when there are only two or three biomarker observation available, reflecting

larger BSs than landmark analysis. When more biomarker observations are collected,

JMLC and landmark analysis perform equally well in terms of BSs; and JMLC does

perform better than landmark analysis for later predictions when more than eight

biomarker observations are available. In the small measurement error scenario, we

observe the same trend in BSs as that in the large measurement error scenario.

When we compare between simulations with large and small measurement errors,
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Table 2.2: Mean (SD) of BSs and AUCs of 5,000 simulations with two measurement
errors of biomarkers

Prediction made at (week) 1 2 3 4 5 6 7 8

large measurement error (sd = 1)

AUC
JMLC

0.859 0.984 0.918 0.925 0.988 0.907 0.857 0.993
(0.042) (0.009) (0.026) (0.015) (0.007) (0.028) (0.035) (0.010)

LM
0.942 0.971 0.874 0.908 0.968 0.867 0.822 0.973

(0.019) (0.022) (0.037) (0.022) (0.033) (0.053) (0.046) (0.018)

BS
JMLC

0.158 0.155 0.073 0.132 0.086 0.114 0.153 0.035
(0.012) (0.015) (0.014) (0.030) (0.039) (0.014) (0.029) (0.020)

LM
0.090 0.062 0.080 0.103 0.063 0.115 0.158 0.059

(0.020) (0.026) (0.015) (0.016) (0.039) (0.030) (0.021) (0.022)
small measurement error (sd = 0.5)

AUC
JMLC

0.967 0.997 0.930 0.932 0.989 0.904 0.853 0.988
(0.014) (0.004) (0.025) (0.017) (0.008) (0.030) (0.034) (0.054)

LM
0.964 0.980 0.884 0.915 0.968 0.866 0.826 0.977

(0.015) (0.028) (0.035) (0.023) (0.038) (0.047) (0.038) (0.018)

BS
JMLC

0.154 0.124 0.069 0.103 0.054 0.110 0.155 0.026
(0.013) (0.026) (0.012) (0.024) (0.031) (0.014) (0.030) (0.021)

LM
0.065 0.043 0.077 0.099 0.059 0.110 0.156 0.054

(0.017) (0.029) (0.017) (0.016) (0.042) (0.028) (0.017) (0.024)

we find that increasing measurement error in biomarkers weakens the prediction ac-

curacy for both JMLC and landmark analysis, resulting in lower AUCs and larger

BSs. However, this negative impact attenuates at later post-HSCT predictions.

2.5.3 Effect of Model Specification

A main feature of landmark analysis is that we avoid specifying any functional

form of biomarker trajectories, but assume a multivariate normal distribution of

biomarkers. Thus, we want to evaluate the impact of model misspecification on

JMLC, especially when JMLC chooses a basic functional form to describe how biomark-

ers change over time. Figure 2.4 presents one example of simulated patients’ dataset,

with biomarkers changing non-linearly over time, and the functional forms various

across latent classes of aGVHD.

According to the dataset presented in Figure 2.4, assuming that biomarkers change
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Figure 2.4: Simulated biomarker observations of patients from four latent risk classes
of aGVHD, with biomarkers changing unlinearly over time

linearly over time is specious. We fit two separate models to this dataset, one is land-

mark analysis, and the other is a JMLC with biomarkers changing linearly after BMT.

The results of 5,000 simulations are shown in Table 2.3.

When biomarker observations change non-linearly over time, there is a noticeable

decrease in the prediction performance of JMLC, reflecting reduced AUCs and in-

flated BSs. Landmark analysis, on the other hand, provides consistent discrimination

ability and accuracy, regardless of how biomarkers change over time.

When biomarker observations change non-linearly over time, JMLC, compared

with landmark analysis, better distinguishes patients in high risk of aGVHD when

more than three biomarker observations are available. This is because JMLC in-

37



Table 2.3: Mean (SD) of BSs and AUCs of 5,000 simulations with two functional
forms of biomarkers

Prediction made at (week) 1 2 3 4 5 6 7 8

Linear functional forms of biomarkers

AUC
JMLC

0.859 0.984 0.918 0.925 0.988 0.907 0.857 0.993
(0.042) (0.009) (0.026) (0.015) (0.007) (0.028) (0.035) (0.010)

LM
0.942 0.971 0.874 0.908 0.968 0.867 0.822 0.973

(0.019) (0.022) (0.037) (0.022) (0.033) (0.053) (0.046) (0.018)

BS
JMLC

0.158 0.155 0.073 0.132 0.086 0.114 0.153 0.035
(0.012) (0.015) (0.014) (0.030) (0.039) (0.014) (0.029) (0.020)

LM
0.090 0.062 0.080 0.103 0.063 0.115 0.158 0.059

(0.020) (0.026) (0.015) (0.016) (0.039) (0.030) (0.021) (0.022)
Non-linear functional forms of biomarkers

AUC
JMLC

0.523 0.964 0.841 0.814 0.909 0.868 0.849 0.990
(0.147) (0.019) (0.077) (0.126) (0.101) (0.057) (0.045) (0.052)

LM
0.944 0.978 0.692 0.792 0.898 0.820 0.836 0.995

(0.022) (0.020) (0.073) (0.107) (0.117) (0.102) (0.031) (0.009)

BS
JMLC

0.193 0.120 0.180 0.554 0.512 0.441 0.180 0.005
(0.101) (0.035) (0.036) (0.065) (0.076) (0.080) (0.043) (0.007)

LM
0.104 0.031 0.084 0.151 0.103 0.121 0.136 0.004

(0.021) (0.032) (0.020) (0.026) (0.059) (0.037) (0.014) (0.007)

corporates the aGVHD-free time into the latent class prediction, and thus it better

predicts the latent class membership than landmark analysis. This advantage offsets

the accuracy loss caused by model misspecification.

2.6 Discussion

In our study, landmark analysis is constructed to use all the biomarker informa-

tion up to the landmark time, and distinguishes patients of different risk classes of

aGVHD. In contrast to landmark analysis in other studies, where only the most re-

cent biomarker observation is used at each landmark time, the landmark analysis we

proposed have two benefits. First, we adjust for the measurement error of biomarkers.

As shown in Table 2.2, when we make the prediction with at least four biomarker ob-

servations, the size of measurement error does not affect the prediction performance

of landmark analysis. Second, our landmark analysis adjusts for the heterogeneity

among patients. Identifying sub-population in various risks is one of the primary

goal in practice, because clinicians could assign appropriate intervention according to
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patients’ risk status and thus avoid over-treatment.

The JMLC we proposed allows one specific latent class as the “cured” class, and it

could be applied in many other medical fields. For a few medical conditions, especially

chronic disease such as cancer, there is a nonnegligible “cured” fraction of patients

whose pathomechanism is distinct to that of susceptible patients. Thus, these “cured”

patients’ biomarker profiles are different than those of susceptible patients. Failing to

identify this “cured” class and treating these patients as censored will lead to biased

results, and might cause over-intervention with patients in little risk.

One primary difference between the two proposed methods is how time-to-aGVHD

is used to determine the latent class membership. In JMLC, we model the biomarker

process and time-to-aGVHD simultaneously, and use both biomarkers and times-to-

aGVHD to estimate the latent class each individual belongs to within the model

fitting process. In landmark analysis, we split the model fitting into two steps. In the

first step, we identify the class-level pattern of biomarkers and individual-level prob-

abilities of patients belonging to each latent class. In the second step, we estimate

the distribution of aGVHD in each latent class with the individual-level probabilities

as the weight of a patient belonging to a latent class. JMLC utilizes all the data

simultaneously and achieves high efficiency and accuracy when assumptions are met.

On the other hand, one major benefit of landmark analysis is that it allows flexible

parametrization for the biomarker process. As in our proposed landmark analysis, we

do not specify a functional form of how biomarkers change over time, and thus reduce

the risk of model misspecification. To reduce the bias of parameter estimation caused

by modeling biomarkers and times-to-aGVHD separately, the risk set is updated at

each landmark time.
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Based on the simulation results, JMLC on average shows better discrimination

ability on predictions, and more accurate prediction of probability of aGVHD when

there are many biomarker observations available. Landmark analysis, however, presents

good discrimination ability and prediction accuracy when there are only limited

biomarker observations. When predicting time-to-aGVHD in early post-HSCT pe-

riod, JMLC borrows biomarker information of patients who haven’t experienced

aGVHD beyond that time period, which may add more noise rather than increase

efficiency to the prediction. On the other hand, when predicting time-to-aGVHD in

late post-HSCT period, landmark analysis with fixed number of latent classes over-

trains the data and adds more noise to model fitting.

One limitation of this study is that both methods require a pre-specified number of

latent classes. We assume the population is a mixture of patients from four aGVHD

latent groups. Model selection on number of latent classes can be done based on

Bayesian information criterion(BIC) or deviance information criterion(DIC) (Proust-

Lima et al., 2014). However, we need to repeat the same model fitting process multiple

times to find an ideal number of latent classes, and the selection criteria is based on

model fitting performance rather than prediction. In this chapter, we avoid discussion

on choosing the best number of latent class, and we will address this issue in Chapter

V.

In this study, we did not consider competing risks of aGVHD in patients who

received HSCT. As introduced in Chapter 1.1, cancer recurrence, infection, and or-

gan failure are major causes of mortality of AML patients; these conditions, together

with death, are competing risks which either hinder the observation of aGVHD or

modify the chance that aGVHD occurs. In future work, we could consider scenarios

in which competing risks are present and times-to-aGVHD will be dependently cen-
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sored. In general, we could modify the survival sub-model in JMLC, and the logistic

model in landmark analysis, to incorporate these competing risks. Existing compet-

ing risk analysis methods could be used to replace the standard Cox regression model.

We also did not consider incorporating other covariates, such as conditioning

regimens, donor type, or previous treatment regimens. Nonetheless, our approach

is flexible enough to allow the additional modeling of covariates.
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CHAPTER III

Dynamic Prediction of Time-to-acute

Graft-versus-Host-Disease with Pattern Mixture

Model

3.1 Introduction

In the previous chapter, we modeled the association of longitudinal biomarkers

and time-to-aGVHD with both JMLC and landmark analysis. Both of the two meth-

ods require a pre-specified number of latent classes. One approach to select the best

number of latent classes is by model selection. A series of candidate number of latent

classes are chosen, and then a separate model is fitted with each number of latent

class. The final model is selected based on information based criteria, such as Akaike

information criterion (AIC) or Bayesian information criterion (BIC). However, there

are several limitations of this procedure. First it is computationally intensive because

a separate model is needed for each candidate number of latent classes. Moreover,

AIC and BIC are measures on overall model fitting, favouring smaller residuals in

the model while penalizing the number of predictors to avoid overfitting. As a re-

sult, AIC and BIC are not necessarily measuring prediction performance. In this

chapter, we aim to build a tractable but flexible model predicting the onset time of

aGVHD given longitudinal biomarker values. Like the methods in Chapter II , our
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new model should be able to reflect the varying risk levels of aGVHD, and update

the prediction of time-to-aGVHD when a new biomarker observation is available. In

contrast to Chapter II, we attempt to simplify model fitting and avoid the need for a

pre-specified number of latent classes.

In this chapter, we predict the time-to-aGVHD with the pattern mixture model.

The pattern mixture model has been applied to settings with missing data, and the

focus has been on its application to longitudinal data with monotone missingness.

The pattern mixture model stratifies the data by patterns of missingness, and then

models the differences in the distribution of longitudinal data over these patterns. In

our settings of aGVHD data, we propose fitting the pattern mixture model to the

longitudinal biomarkers, with patterns depending on the time-to-aGVHD. Consid-

ering a fictitious dataset with discrete times-to-aGVHD, i.e., there are only a few

unique times-to-aGVHD, it is plausible to form one pattern at each time-to-aGVHD,

assuming there are enough data at each unique time-to-aGVHD. In practice, we re-

measure the time-to-aGVHD in weeks, and round this time-to-aGVHD to the largest

next integer. For example, the time-to-aGVHD of a patient at day 24 will be recoded

as week 4. Then we assume patients with the same week of aGVHD share the same

biomarker trajectory pattern, and the aGVHD-free patients share another biomarker

trajectory pattern.

There are several reasons for why we choose to remeasure time-to-aGVHD in

weeks. First, this guarantees enough samples for model fitting in each pattern, re-

sulting in better efficiency for parameter estimation. Second, the precision of predic-

tion in weeks is well-accepted for clinicians. Moreover, weekly biomarker screening is

scheduled, so the prediction of aGVHD is updated weekly.
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In Chapter II, we aimed to predict the onset of aGVHD in the next two weeks with

repeatedly collected biomarker observations. In this chapter, we would like to predict

the probability of aGVHD in the next week, the week after that, and so forth. In

other words, we achieve the whole distribution of future times-to-aGVHD (measured

in weeks). For this purpose, we introduce a new assessment of prediction, the Brier

Score (BS), which can evaluate the accuracy of prediction on the whole distribution

of future times.

The rest of this chapter is organized as follows. First, we introduce how to do

model fitting and make predictions with the pattern mixture model. Next, we describe

the two assessments we use to measure the performance of the prediction with the

pattern mixture model, followed by simulation results and discussion. A conclusion

is drawn at the end.

3.2 Pattern Mixture Model Fitting and Prediction

3.2.1 Notation

Define Ti to be the recorded time-to-aGVHD in weeks for subject i, which is the

minimum of the time-to-event for subject i, T ∗i , and last follow up time, Si. We also

define δi as the indicator of whether subject i experiences aGVHD (δi = 1) or is

censored (δi = 0). Given the properties of the simulated data, for all patients in the

aGVHD-free group, δi = 0; and for all patients not in aGVHD-free group, δi = 1.

We also define Y i = (Yi(t1), Yi(t2), · · · , Yi(tni
)) as the biomarker history of subject

i at time (t1, t2, · · · , tni
), where ni is the total number of biomarker observations for

subject i, for i = 1, 2, · · · , n.

For simplicity, we assume that the continuous biomarker observations change lin-
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early over time, but it is straightforward to generalize them as other functional forms

of time. Random effects bi = (b0i, b1i) are introduced to reflect the individual devi-

ation of the biomarker trajectories from the population mean. Thus, we assume the

biomarker observations, Yi, follow a multivariate Gaussian distribution with pattern-

specified mean profile:

Yi|Ti = XiβTi
+Zibi + εi (3.1)

where Xi and Zi are the design matrices for subject i with the first column all

1s and the second column the biomarker observation times, bi are random effects

with variance-covariance matrix D, εi is the the measurement error which follows

a Gaussian distribution with mean 0 and variance σ2I, and βTi
= (β0,Ti , β1,Ti)

′

is the fixed effects associated with the mean pattern profile. Define ξ = (βT =

(βT1 ,βT2 , · · · ,βTJ
)′, D, σ2) as the parameters of interest, where J represents the

number of unique values of times-to-aGVHD. By fitting a linear mixed model with

time-to-aGVHD as a predictor, we obtain the MLE of ξ.

3.2.2 Prediction

The marginal distribution of observed biomarkers is a finite mixture of Gaussian

distributions, and the posterior probability of a new patient m developing aGVHD at

week j, with the observed biomarkers history by week k, Ym = (Ym1, Ym2, · · · , Ym,k),

is:

Pr(Tm = j|Ym, ξ) =
f(Ym|βTj

, D, σ2)Pr(Tm = j)∑J
l=k f(Ym|βTl

, D, σ2)P (Tm = l)
(3.2)

for j ≥ k. The biomarker observations Ym given time-to-aGVHD, Tj, follow a

multivariate normal distribution with mean XmβTj
and variance-covariance matrix
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ZmDZ
′
m + σ2I.

3.3 Predictive Accuracy Measures for Dynamic Predictions

Our first measure of predictive accuracy is the Brier Score (BS), which measures

the calibration of probabilistic predictions (Brier, 1950). In a multi-class setting, it

is defined as BS = 1
n

∑n
i=1

∑J
j=1(fij − oij)2, where fij is the forecasted probability of

subject i (i = 1, 2, · · · , n) belonging to the category j (j = 1, 2, · · · , J), and oij is the

actual outcome of subject i (1 if subject i belongs to category j, 0 otherwise). In a

case when there are 11 categories, the BS of a random guess is 10/11, and a perfect

prediction would achieve BS at 0. To make the BS comparable to another metric we

present later, we will subtract the BS from 1, so that a perfect prediction has BS =

1; a random prediction has BS close to 0.

In our study, we propose a dynamic BS, which is defined as:

BS(k) = 1− 1∑n
i=1 I(Ti ≥ k)

n∑
i=1

J∑
j=1

I(Ti ≥ k)[fij(Yi)− oij]2 (3.3)

which is the sum of squared prediction errors across all subjects who are still at risk

at the prediction time k. Note that the BS can be written as:

BS(k) = 1− 1∑n
i=1 I(Ti ≥ k)

n∑
i=1

J∑
j=1

I(Ti ≥ k)([fij(Yi)− E(oij)]
2 + [E(oij)− oij]2)

= Bias2[fij] + Var[fij] (3.4)

Therefore, BS summarizes both the accuracy and uncertainty of the prediction.

Our second measure of the prediction accuracy is the dynamic prediction accuracy

rate (PAR). We define PAR at time k to be the proportion of accurate prediction
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given biomarker observations up to time k in patients who are at risk at time k, i.e.

PAR(k) =

∑n
i=1

∑J
t=k I(Ti = t)I(P (Ti = t) ≥ P (Ti = l) for any l 6= t)∑n

i=1 I(Ti ≥ k)
(3.5)

PAR will increase if we widen the windows of accuracy of prediction, perhaps by

including predictions that are one week earlier or later than the actual event time

only.

3.4 Simulation and Result

In this section we will simulate data under three settings: (1) a joint model with

eleven latent classes, (2) a joint model with four latent classes, and (3) a joint model

with four latent class and shared random effects. These three settings reflect different

fundamental assumptions on the relationship between time-to-aGVHD, biomarkers

and latent classes. Setting (1) assumes the latent class can be almost defined by

time-to-aGVHD, and vice versa. This implies that there are less overlappping in the

distributions of time-to-aGVHD of each pattern. Setting (2) adopts the same assump-

tions as setting (1) by assuming the patients are of varying latent classes of aGVHD,

and patients within one latent class share the same distribution of time-to-aGVHD.

However,unlike setting (1), in setting (2) patients in one latent class share a more

disperse distribution of time-to-aGVHD and biomarker trajectories. Patients have

similar biomarker trajectories may end up with obvious different times-to-aGVHD,

so it is hard to distinguish the latent class from each other just based on times-to-

aGVHD, compared with setting (1). Setting (3) considers that individual deviations

of biomarker trajectories also contribute to the variation of time-to-aGVHD within

each latent class. In other words, the fundamental assumption of conditional indepen-

dence of JMLC is violated, and both the latent classes and these individual deviations

contribute to the correlation between biomarkers and times-to-aGVHD.
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In all three simulation settings, biomarker screening is scheduled right after HSCT

(baseline) and weekly thereafter until the onset of aGVHD. An uninformative baseline

biomarker level is assumed, so at least two biomarker observations are needed to make

a prediction for the onset of aGVHD. For simplicity, we specify that the biomarkers

change linearly over time with measurement errors. Patients within one latent class

share the same mean intercept and slope of biomarkers, with individual deviations of

intercepts and slopes. In each simulation setting, we explore the performance of our

model under seven scenarios defined by the variance-covariance structure of individual

deviations of the intercept and the slope, as well as the variance of the measurement

error. The details of seven scenarios can be found in Table 3.1. Compared with

Scenario 1-3, biomarkers generated under Scenario 4-6 are more distinct between

patterns, given the smaller variance of deviation of biomarker trajectory. In contrast

with Scenario 4, Scenario 7 has a larger measurement error of biomarkers.

Table 3.1: Simulation scenarios with various covariance of random effects and vari-
ance of measurement error

Scenario V ar(b0i) Var(b1i) ρ(b0i, b1i) sd(ε)

1 0.16 0.16 0 0.5
2 0.16 0.16 -0.5 0.5
3 0.16 0.16 0.5 0.5
4 0.0625 0.0625 0 0.5
5 0.0625 0.0625 -0.5 0.5
6 0.0625 0.0625 0.5 0.5
7 0.0625 0.0625 0 1

A series of prediction times are set weekly from week one until week ten, right after

biomarker screening. We run 1,000 simulations and compute the means and standard

deviations of the resulting BS and PAR at each future time s, where s = 1, 2, · · · , 10th

week. In each simulation setting, we compare the prediction accuracy of our model

with the theoretically best prediction that could be achieved. The latter is calculated

based on the “true” value of parameters, and reflects the variation of prediction even
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when parameters of interest are correctly estimated. Through these comparisons, we

are able to quantify the loss of prediction accuracy caused by assigning latent class

membership solely on a patient’s time-to-aGVHD.

3.4.1 Simulation from Joint Model with Eleven Latent Classes

We start with simulation setting (1), where we simulate data from a joint model

with eleven latent classes. We choose eleven latent classes because we will group the

patients into eleven patterns according to the week they develop aGVHD. We assume

that the patients of each latent class share the same time-to-aGVHD distribution,

which is defined as a Weibull distribution. Two hundred patients are simulated as

the training dataset, and another 200 patients from same population are simulated as

the test dataset. In this population, around 5% subjects would most likely experience

aGVHD one week after BMT, another 15% might undergo aGVHD onset two weeks

after BMT, and so forth. The details of simulation parameters can be found in Table

3.2.

Table 3.2: Simulation parameters for joint modeling with eleven latent classes
Latent
Class

Population
Proportion

Time to aGVHD (Weibull) Biomarker Trajectory
λ κ Intercept Slope

1 5% 11.605 34 10 0
2 5% 10.604 31 10 1
3 5% 9.603 28 10 2
4 5% 8.601 25 10 3
5 5% 7.599 22 10 4
6 10% 6.596 19 10 5
7 10% 5.592 16 10 6
8 15% 4.594 14 10 7
9 20% 3.588 11 10 8
10 15% 2.577 8 10 9
11 5% 1.55 5 10 10

Although in this setting, the distributions of time-to-aGVHD in each pattern are
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concentrated, the simulated times-to-aGVHD can still take various values. Thus,

analyzing the data simulated from setting (1) with the pattern mixture model, we

might group patients from different latent classes into one pattern, so the biomarker

trajectory estimation of one latent class might be biased. This reflects the bias por-

tion of BS as shown in Equation 3.4. In other words, when using the pattern mixture

model to analyze data simulated from a joint model, BS contains bias due to grouping

patients based on the time-to-aGVHD only.

In order to quantify the accuracy loss of prediction by this bias, we calculate the

“true” probability of aGVHD under joint modeling with eleven latent classes as:

P (k + l ≤ Tm ≤ k + l + 1|Tm ≥ k,Y m,θ)

=
J∑
j=1

P (k + l ≤ Tm ≤ k + l + 1|Tm ≥ k, cm = j,θ)P (cm = j|Tm ≥ k,Y m,θ)

=

∑J
j=1 Pr(cm = j)f(Y m|cm = j,θ)[S(k + l|cm = j,θ)− S(k + l + 1|cm = j,θ)]∑J

j=1 Pr(cm = j)f(Y m|cm = j,θ)S(k|cm = j,θ)

(3.6)

where θ is the simulation parameters as listed in Table 3.2, Y m is the biomarker

observations history of subject m, and k is the prediction time.

Table 3.3 summarizes the mean BSs of the pattern mixture model, the “true”

model, and the mean and standard deviation of their difference. In each scenario,

the pattern mixture model has lower BSs relative to the “true” model. However,

compared with their standard deviations, these losses are not significantly different

from 0. Moreover, compared with the BS of the “true” model, pattern mixture model

losses approximate 5% of the BS.
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Table 3.3: Brier Score of the pattern mixture model under simulation setting (1)
Prediction at week 1 2 3 4 5 6 7 8 9 10

Scenario 1
True 0.384 0.511 0.571 0.585 0.582 0.607 0.597 0.614 0.653 0.726
PM 0.365 0.484 0.540 0.549 0.539 0.563 0.547 0.564 0.603 0.677

Difference (mean) 0.019 0.027 0.032 0.036 0.042 0.044 0.050 0.050 0.050 0.049
Difference (SD) 0.012 0.015 0.018 0.023 0.029 0.034 0.043 0.049 0.056 0.067

Scenario 2
True 0.415 0.563 0.618 0.626 0.622 0.644 0.627 0.644 0.676 0.750
PM 0.395 0.530 0.581 0.585 0.574 0.594 0.572 0.589 0.623 0.696

Difference (mean) 0.021 0.033 0.037 0.041 0.047 0.050 0.055 0.055 0.053 0.053
Difference (SD) 0.012 0.018 0.021 0.026 0.032 0.037 0.045 0.050 0.057 0.072

Scenario 3
True 0.365 0.490 0.558 0.580 0.584 0.615 0.603 0.627 0.663 0.739
PM 0.346 0.465 0.528 0.543 0.540 0.568 0.550 0.572 0.613 0.690

Difference (mean) 0.019 0.025 0.031 0.037 0.044 0.047 0.053 0.055 0.051 0.050
Difference (SD) 0.012 0.015 0.018 0.023 0.029 0.034 0.043 0.048 0.056 0.069

Scenario 4
True 0.427 0.604 0.673 0.688 0.686 0.707 0.697 0.715 0.744 0.804
PM 0.407 0.567 0.630 0.640 0.634 0.653 0.638 0.656 0.690 0.753

Difference (mean) 0.020 0.037 0.044 0.047 0.052 0.054 0.060 0.059 0.054 0.051
Difference (SD) 0.013 0.020 0.022 0.027 0.032 0.037 0.046 0.050 0.055 0.065

Scenario 5
True 0.450 0.645 0.704 0.709 0.705 0.723 0.712 0.725 0.754 0.812
PM 0.430 0.603 0.659 0.662 0.653 0.670 0.654 0.667 0.698 0.762

Difference (mean) 0.021 0.042 0.045 0.047 0.052 0.053 0.058 0.057 0.056 0.051
Difference (SD) 0.013 0.020 0.022 0.026 0.031 0.036 0.043 0.048 0.056 0.061

Scenario 6
True 0.412 0.579 0.657 0.679 0.683 0.705 0.697 0.713 0.744 0.803
PM 0.394 0.547 0.617 0.634 0.632 0.654 0.640 0.656 0.690 0.756

Difference (mean) 0.018 0.032 0.040 0.045 0.050 0.051 0.057 0.057 0.054 0.047
Difference (SD) 0.012 0.017 0.021 0.025 0.031 0.035 0.042 0.049 0.056 0.063

Scenario 7
True 0.297 0.487 0.612 0.657 0.671 0.702 0.697 0.715 0.744 0.807
PM 0.284 0.465 0.579 0.614 0.620 0.648 0.637 0.655 0.688 0.756

Difference (mean) 0.013 0.021 0.034 0.043 0.051 0.055 0.060 0.060 0.056 0.051
Difference (SD) 0.009 0.014 0.020 0.025 0.031 0.036 0.044 0.050 0.053 0.061

The BS values for Scenarios 4-6 are larger than those for Scenarios 1-3. This

is because the individual deviations of biomarker trajectories in Scenarios 4-6 have

smaller variance, leading to larger between-latent class variance relative to within-

latent class variance. We also note that when the individual intercepts and slopes are

negatively correlated, the BS values are larger compared to scenarios with indepen-

dent or positively correlated intercepts and slopes. Moreover, a larger measurement

error (Scenario 7) leads to poorer BS values when available biomarker information

is insufficient, especially when making prediction with no more than four repeated
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biomarker observations. However, this influence is reduced when more biomarker ob-

servations are available.

Table 3.4 lists the mean PARs from “true” joint modeling, mean from of pattern

mixture model, and their mean differences and standard deviation. From Table 3.4

we detect the loss of PAR of pattern mixture model compared with the “true” mode.

Similar to the BS, compared with the standard deviation, these PAR losses are not

significantly away from 0. Moreover, compared with the size of PAR of the “true”

model, the pattern mixture model losses approximate 5% of the PAR.

We can find the same pattern of PAR loss in various scenarios as of BS loss. Among

various scenarios, Scenario 4-6 show larger PARs, compared with Scenario 1-3. When

the individual intercept and slope are negatively correlated, the PAR achieves larger

values compared with scenarios having independent or positively correlated intercepts

and slopes. Moreover, large measurement error (Scenario 7) do worsen PARs when

available biomarker information is insufficient, but this influence is diluted when more

than four biomarker observations are available. In contrast to the BS loss, the PAR

loss is easy to understand and interpret. For example, under Scenario 6 and at

prediction time 4, the pattern mixture model incorrectly predicts three out of 100

patients.

3.4.2 Simulation from Joint Model with Four Latent Classes

Now we assume the patients are from four latent classes of aGVHD. Compared

with Section 3.4.1, the number of latent classes is far smaller than the number of

patterns we choose in the pattern mixture model. Similar to Section 3.4.1, patients

in the same latent class share the same biomarker mean trajectory with individual

deviations, and same aGVHD probability, which follows a Weibull distribution. In

52



Table 3.4: PAR of the pattern mixture model under simulation setting (1)
Predictionatweek 1 2 3 4 5 6 7 8 9 10

Scenario 1
True 0.505 0.638 0.693 0.705 0.704 0.724 0.718 0.732 0.762 0.816
PM 0.483 0.612 0.663 0.672 0.667 0.685 0.673 0.687 0.719 0.778

Difference (mean) 0.022 0.026 0.029 0.034 0.038 0.039 0.045 0.045 0.042 0.038
Difference (SD) 0.028 0.027 0.029 0.036 0.043 0.048 0.058 0.064 0.072 0.086

Scenario 2
True 0.543 0.691 0.738 0.745 0.743 0.759 0.748 0.761 0.783 0.838
PM 0.519 0.662 0.706 0.710 0.703 0.715 0.699 0.713 0.739 0.796

Difference (mean) 0.024 0.029 0.032 0.035 0.041 0.044 0.049 0.048 0.044 0.042
Difference (SD) 0.027 0.027 0.030 0.036 0.043 0.047 0.058 0.064 0.070 0.081

Scenario 3
True 0.483 0.617 0.680 0.701 0.708 0.732 0.723 0.742 0.772 0.828
PM 0.460 0.590 0.649 0.666 0.667 0.688 0.674 0.694 0.727 0.790

Difference (mean) 0.022 0.027 0.031 0.035 0.041 0.044 0.049 0.048 0.045 0.038
Difference (SD) 0.028 0.028 0.029 0.036 0.042 0.048 0.060 0.066 0.072 0.083

Scenario 4
True 0.557 0.730 0.789 0.802 0.803 0.817 0.811 0.824 0.843 0.884
PM 0.534 0.700 0.754 0.764 0.763 0.775 0.765 0.778 0.802 0.848

Difference (mean) 0.023 0.031 0.035 0.037 0.040 0.043 0.047 0.045 0.041 0.036
Difference (SD) 0.027 0.027 0.028 0.033 0.036 0.042 0.051 0.055 0.060 0.067

Scenario 5
True 0.582 0.769 0.816 0.821 0.821 0.832 0.825 0.834 0.853 0.890
PM 0.559 0.738 0.784 0.787 0.784 0.792 0.782 0.791 0.812 0.860

Difference (mean) 0.023 0.031 0.033 0.035 0.037 0.040 0.043 0.042 0.040 0.030
Difference (SD) 0.026 0.025 0.026 0.03 0.033 0.039 0.046 0.051 0.060 0.059

Scenario 6
True 0.538 0.708 0.774 0.794 0.800 0.815 0.811 0.823 0.843 0.882
PM 0.517 0.679 0.743 0.758 0.761 0.774 0.767 0.778 0.802 0.853

Difference (mean) 0.021 0.028 0.031 0.036 0.039 0.041 0.045 0.045 0.041 0.029
Difference (SD) 0.027 0.025 0.027 0.031 0.035 0.038 0.047 0.051 0.059 0.061

Scenario 7
True 0.399 0.613 0.733 0.775 0.790 0.814 0.811 0.824 0.843 0.885
PM 0.381 0.591 0.703 0.739 0.750 0.770 0.765 0.778 0.803 0.854

Difference (mean) 0.017 0.022 0.030 0.036 0.040 0.044 0.047 0.046 0.040 0.031
Difference (SD) 0.029 0.027 0.028 0.031 0.037 0.042 0.051 0.057 0.060 0.065

contrast to Section 3.4.1, in Setting (2) patients in the same latent class share a more

widespread distribution of time-to-aGVHD, so the variation of prediction increases.

The details of simulation parameters can be found in Table 3.5.

As in Section 3.4.1, we calculate the means BS and PAR values from the pattern

mixture model and its theoretically best counterpart, together with the difference be-

tween the two. The BSs and PARs are shown in Table 3.6 and Table 3.7 respectively.
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Table 3.5: Simulation parameters for joint modeling with four latent classes
Latent
Class

Population
Proportion

Time to aGVHD (Weibull) Biomarker Trajectory
λ κ Intercept Slope

1 20% 11.256 22 10 1
2 20% 8.91 14 10 4
3 30% 5.89 10 10 7
4 30% 2.715 5 10 9

The results list in Table 3.6 show a pattern similar to that in Table 3.3. There

are consistent losses of BSs from the pattern mixture model, compared with BSs

from a “true” model. However, these differences are not significantly different from

0. When we compare the BSs across various scenarios, we also find the same pattern

as in Table 3.3. Scenario 4-6 show larger BSs, compared with scenario 1-3. When

the individual intercepts and slopes are negatively correlated, the BS achieves larger

values compared with scenarios having independent or positively correlated intercepts

and slopes. Moreover, large measurement errors lower BSs when available biomarker

information is insufficient, especially when making prediction with no more than four

repeated biomarker observations.

In contrast to Table 3.3, the BS values in Table 3.6 are relatively smaller. This

is because the data simulated from a joint model with four latent classes has wider

distribution of times-to-aGVHD, leading to larger variation in prediction, and thus

smaller BS values.

Based on Table 3.7, PARs show similar pattern as in Table 3.4, with a reduction

in their corresponding values. The maximum PAR we can theoretically achieve is

around 60%, which means we can only accurately predict the times-to-aGVHD for

60 out of 100 patients. In this case, it would be helpful if we can widen the window

of accuracy of PARs, including predictions that are one week earlier or later than the

exact time-to-aGVHD.
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Table 3.6: Brier Score of the pattern mixture model under simulation setting (2)
Predictionatweek 1 2 3 4 5 6 7 8 9 10

Scenario 1
True 0.317 0.389 0.380 0.360 0.406 0.452 0.384 0.441 0.529 0.517
PM 0.299 0.364 0.352 0.330 0.375 0.420 0.345 0.403 0.498 0.482

Difference (mean) 0.018 0.025 0.029 0.031 0.031 0.032 0.039 0.038 0.031 0.035
Difference (SD) 0.013 0.015 0.018 0.020 0.022 0.023 0.030 0.034 0.034 0.048

Scenario 2
True 0.346 0.417 0.405 0.377 0.424 0.474 0.396 0.455 0.547 0.516
PM 0.324 0.389 0.373 0.344 0.391 0.440 0.355 0.414 0.515 0.480

Difference (mean) 0.022 0.028 0.031 0.033 0.034 0.034 0.042 0.041 0.032 0.036
Difference (SD) 0.014 0.016 0.019 0.021 0.022 0.026 0.033 0.037 0.034 0.049

Scenario 3
True 0.308 0.389 0.387 0.368 0.416 0.468 0.392 0.451 0.544 0.518
PM 0.295 0.368 0.360 0.338 0.385 0.437 0.353 0.413 0.514 0.484

Difference (mean) 0.014 0.021 0.027 0.030 0.031 0.031 0.040 0.038 0.030 0.034
Difference (SD) 0.013 0.015 0.017 0.019 0.021 0.023 0.030 0.033 0.034 0.049

Scenario 4
True 0.361 0.441 0.432 0.398 0.448 0.501 0.414 0.474 0.571 0.519
PM 0.341 0.413 0.401 0.364 0.413 0.467 0.371 0.431 0.542 0.484

Difference (mean) 0.020 0.028 0.031 0.034 0.035 0.034 0.043 0.043 0.029 0.035
Difference (SD) 0.014 0.016 0.019 0.021 0.023 0.026 0.033 0.037 0.033 0.047

Scenario 5
True 0.381 0.453 0.439 0.402 0.451 0.509 0.418 0.477 0.576 0.519
PM 0.357 0.422 0.406 0.366 0.415 0.472 0.372 0.433 0.549 0.488

Difference (mean) 0.024 0.031 0.033 0.036 0.036 0.036 0.046 0.044 0.026 0.032
Difference (SD) 0.014 0.017 0.020 0.022 0.024 0.026 0.033 0.038 0.033 0.045

Scenario 6
True 0.349 0.437 0.431 0.399 0.449 0.506 0.416 0.477 0.574 0.520
PM 0.332 0.411 0.402 0.366 0.415 0.472 0.372 0.435 0.545 0.483

Difference (mean) 0.017 0.026 0.029 0.033 0.035 0.034 0.044 0.042 0.029 0.036
Difference (SD) 0.014 0.016 0.019 0.021 0.024 0.026 0.032 0.038 0.034 0.050

Scenario 7
True 0.293 0.419 0.425 0.396 0.446 0.502 0.413 0.473 0.572 0.518
PM 0.276 0.394 0.396 0.364 0.413 0.468 0.370 0.432 0.543 0.484

Difference (mean) 0.017 0.025 0.029 0.032 0.034 0.034 0.043 0.042 0.029 0.034
Difference (SD) 0.011 0.015 0.019 0.021 0.024 0.026 0.033 0.037 0.035 0.049

3.4.3 Joint Model with Shared Random Effects and Four Latent Classes

Same as JMLC, another counterpart of the pattern mixture model, JMSR also

links longitudinal data to a primary event. However, JMSR assumes the patients have

the same pattern of biomarker trajectories over time, and their times-to-aGVHD de-

pend on only the individual deviation of biomarkers from the global mean. Here we

generalize the assumption of both JMLC and JMSR, assuming that patients are in-

herent of various risk groups of aGVHD, and their times-to-aGVHD depend on both
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Table 3.7: PAR of the pattern mixture model under simulation setting (2)
Predictionatweek 1 2 3 4 5 6 7 8 9 10

Scenario 1
True 0.459 0.520 0.503 0.485 0.521 0.557 0.496 0.541 0.618 0.590
PM 0.436 0.492 0.468 0.448 0.481 0.520 0.451 0.497 0.584 0.546

Difference (mean) 0.022 0.028 0.035 0.038 0.040 0.037 0.045 0.045 0.034 0.044
Difference (SD) 0.028 0.030 0.037 0.042 0.044 0.047 0.059 0.062 0.065 0.090

Scenario 2
True 0.487 0.545 0.523 0.499 0.535 0.573 0.505 0.551 0.629 0.585
PM 0.461 0.515 0.487 0.459 0.495 0.534 0.457 0.503 0.595 0.543

Difference (mean) 0.026 0.030 0.036 0.040 0.041 0.039 0.048 0.048 0.033 0.043
Difference (SD) 0.029 0.031 0.038 0.042 0.043 0.049 0.061 0.065 0.064 0.086

Scenario 3
True 0.450 0.521 0.508 0.491 0.529 0.570 0.503 0.550 0.631 0.592
PM 0.432 0.495 0.475 0.454 0.491 0.532 0.456 0.504 0.597 0.547

Difference (mean) 0.018 0.025 0.033 0.037 0.038 0.038 0.047 0.046 0.034 0.045
Difference (SD) 0.028 0.030 0.038 0.041 0.043 0.050 0.060 0.064 0.068 0.094

Scenario 4
True 0.502 0.567 0.547 0.519 0.557 0.596 0.522 0.569 0.650 0.591
PM 0.479 0.539 0.513 0.483 0.519 0.561 0.477 0.525 0.618 0.547

Difference (mean) 0.023 0.028 0.034 0.037 0.038 0.035 0.044 0.043 0.032 0.044
Difference (SD) 0.028 0.030 0.037 0.040 0.042 0.047 0.058 0.062 0.066 0.094

Scenario 5
True 0.520 0.576 0.552 0.522 0.559 0.602 0.525 0.571 0.654 0.593
PM 0.493 0.547 0.519 0.484 0.521 0.565 0.478 0.527 0.624 0.551

Difference (mean) 0.027 0.029 0.034 0.037 0.038 0.037 0.047 0.044 0.029 0.042
Difference (SD) 0.028 0.030 0.036 0.039 0.041 0.046 0.057 0.060 0.061 0.086

Scenario 6
True 0.491 0.563 0.547 0.520 0.558 0.601 0.524 0.572 0.653 0.593
PM 0.470 0.536 0.514 0.483 0.519 0.564 0.478 0.527 0.620 0.546

Difference (mean) 0.021 0.027 0.033 0.036 0.039 0.036 0.047 0.044 0.033 0.047
Difference (SD) 0.028 0.031 0.037 0.041 0.043 0.047 0.058 0.063 0.064 0.090

Scenario 7
True 0.431 0.546 0.541 0.516 0.555 0.595 0.519 0.566 0.650 0.589
PM 0.412 0.520 0.508 0.480 0.516 0.559 0.473 0.523 0.619 0.546

Difference (mean) 0.020 0.026 0.033 0.036 0.039 0.036 0.046 0.043 0.031 0.043
Difference (SD) 0.027 0.030 0.039 0.042 0.044 0.048 0.060 0.063 0.067 0.093

the risk group and their individual deviations of biomarker trajectory.

In this setting, the biomarker observations Yi and time-to-aGVHD Ti are assumed

independent conditioning on random effects bi, which follow a mixture of multivariate

normal distribution. Recently there are some researchers trying to extend joint model-

ing to incorporate mixture distribution of shared random effect with simplified binary

outcomes. Given the increasing numbers of parameters, and the booming difficulty

in constructing the likelihood, these researchers adopted the Bayesian framework to
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achieve posterior predictive distribution on outcomes (Jiang et al., 2015). This ap-

proach can thoroughly remove bias, but it is computationally intense.

Here, we use the pattern mixture model to avoid the technique difficulties raised

by shared random effects of mixture distributions. Its performance is evaluated by

comparing the prediction with the ideal counterpart when all the parameters are

known ahead. Similar to Equation 3.6, the “true” probability of aGVHD under

setting (3) can be approximated by the following:

Pr(k + l ≤ Tm ≤ k + l + 1|Ti ≥ k,Y m,θ)

=

∫
Pr(k + l ≤ Tm ≤ k + l + 1|Ti ≥ k,Y m, bm,θ)Pr(bm|Tm ≥ k,Y m,θ)dbm

≈

G∑
g=1

Pr(Tm ∈ (k + l, k + l + 1)|Tm > k, bm
(g),θ)Pr(Tm ≥ k|bm(g),θ)Pr(Y i|bm(g), θ)Pr(bm

(g)|θ)

G
∫
Pr(Tm ≥ k|bm,θ)Pr(Y m|bm,θ)Pr(bm|θ)dbm

=

∑G
g=1 Pr(k + l ≤ Tm ≤ k + l + 1|bm(g),θ)Pr(Y m|bm(g), θ)Pr(bm

(g)|θ)∑G
g=1 Pr(Tm ≥ k|bm(g),θ)Pr(Y m|bm(g), θ)Pr(bm

(g)|θ)
(3.7)

where θ is the simulation parameters, and Y m is the biomarker observations of sub-

ject m. Here bm follows a mixture normal distribution with J components, and J

is the number of latent classes. Since there is no closed form for calculating the in-

tegral in Equation 3.7, we simulate G sets of random effects from their distribution

Pr(bm|θ), and average their effects to approximate this integral.

We apply the same simulation parameters as in setting (2), Table 3.5. The BSs and

PARs are stored in Table 3.8 and Table 3.9 respectively. Similar to Table 3.3 and Table

3.6, the mean losses of BS in setting (3) are not significantly away from 0. However,

the mean losses of BS in setting (3) are smaller than mean losses of corresponding

BS in setting (1) and (2). This is because when data are simulated from setting (3),

biomarker trajectories and times-to-aGVHD share both the latent class and random
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Table 3.8: Brier Score of the pattern mixture model under simulation setting (3)
Prediction at week 1 2 3 4 5 6 7 8 9 10

Scenario 1
E(BSJM) 0.317 0.433 0.494 0.505 0.534 0.549 0.548 0.586 0.607 0.713
E(BSPM) 0.320 0.423 0.472 0.476 0.501 0.513 0.509 0.549 0.568 0.676

E(BSJM −BSPM) -0.003 0.011 0.022 0.030 0.034 0.036 0.039 0.038 0.039 0.038
SD(BSJM −BSPM) 0.018 0.019 0.020 0.022 0.025 0.028 0.033 0.037 0.044 0.053
Scenario 2

E(BSJM) 0.314 0.429 0.493 0.503 0.531 0.546 0.545 0.582 0.601 0.713
E(BSPM) 0.318 0.417 0.468 0.472 0.495 0.508 0.504 0.543 0.561 0.675

E(BSJM −BSPM) -0.004 0.012 0.025 0.032 0.036 0.038 0.041 0.039 0.040 0.038
SD(BSJM −BSPM) 0.019 0.020 0.021 0.024 0.026 0.029 0.034 0.038 0.045 0.055
Scenario 3

E(BSJM) 0.327 0.436 0.491 0.502 0.529 0.545 0.545 0.580 0.600 0.709
E(BSPM) 0.327 0.424 0.469 0.473 0.496 0.508 0.507 0.542 0.563 0.673

E(BSJM −BSPM) 0.000 0.012 0.022 0.029 0.033 0.036 0.038 0.038 0.038 0.035
SD(BSJM −BSPM) 0.018 0.020 0.022 0.024 0.025 0.029 0.033 0.037 0.043 0.049
Scenario 4

E(BSJM) 0.329 0.433 0.498 0.492 0.529 0.541 0.526 0.581 0.568 0.691
E(BSPM) 0.329 0.420 0.475 0.461 0.494 0.504 0.483 0.540 0.523 0.644

E(BSJM −BSPM) 0.000 0.013 0.023 0.031 0.035 0.037 0.043 0.040 0.045 0.046
SD(BSJM −BSPM) 0.017 0.019 0.019 0.022 0.025 0.028 0.034 0.038 0.046 0.058
Scenario 5

E(BSJM) 0.330 0.428 0.497 0.491 0.528 0.541 0.525 0.578 0.568 0.691
E(BSPM) 0.329 0.415 0.469 0.456 0.488 0.498 0.477 0.532 0.521 0.645

E(BSJM −BSPM) 0.002 0.013 0.028 0.036 0.040 0.043 0.047 0.046 0.047 0.046
SD(BSJM −BSPM) 0.018 0.019 0.019 0.022 0.025 0.029 0.035 0.038 0.046 0.060
Scenario 6

E(BSJM) 0.337 0.439 0.499 0.491 0.528 0.540 0.525 0.579 0.569 0.690
E(BSPM) 0.335 0.425 0.475 0.460 0.493 0.502 0.481 0.536 0.526 0.647

E(BSJM −BSPM) 0.002 0.015 0.023 0.031 0.035 0.038 0.044 0.043 0.044 0.043
SD(BSJM −BSPM) 0.018 0.019 0.020 0.023 0.025 0.030 0.034 0.038 0.044 0.057
Scenario 7

E(BSJM) 0.256 0.382 0.467 0.473 0.518 0.535 0.521 0.578 0.569 0.692
E(BSPM) 0.246 0.366 0.445 0.442 0.484 0.499 0.478 0.537 0.522 0.644

E(BSJM −BSPM) 0.010 0.016 0.022 0.031 0.034 0.037 0.043 0.041 0.047 0.048
SD(BSJM −BSPM) 0.013 0.017 0.018 0.021 0.023 0.027 0.033 0.037 0.048 0.060

effects, leading to a stronger connection between the repeated biomarkers and times-

to-aGVHD. The stronger the connection is, the relatively better the pattern mixture

model performs. When comparing among various scenarios, we find the same pattern

of BSs as in previous two settings.

The mean losses of PAR in setting (3) are not significantly away from 0, and they

are smaller than mean losses of corresponding PAR in setting (1) and (2), same as

BS. When comparing among various scenarios, we found the same pattern of PARs
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Table 3.9: PAR of the pattern mixture model under simulation setting (3)
Predictionatweek 1 2 3 4 5 6 7 8 9 10

Scenario 1
E(PARJM) 0.417 0.551 0.610 0.623 0.647 0.661 0.659 0.690 0.704 0.786
E(PARPM) 0.426 0.541 0.591 0.595 0.617 0.628 0.625 0.658 0.671 0.760

E(PARJM − PARPM) -0.009 0.010 0.019 0.028 0.030 0.033 0.034 0.033 0.033 0.027
SD(PARJM − PARPM) 0.037 0.035 0.032 0.036 0.038 0.042 0.049 0.052 0.062 0.068
Scenario 2

E(PARJM) 0.417 0.548 0.610 0.620 0.643 0.656 0.655 0.684 0.697 0.785
E(PARPM) 0.427 0.539 0.589 0.593 0.614 0.624 0.621 0.654 0.666 0.762

E(PARJM − PARPM) -0.010 0.009 0.021 0.027 0.030 0.032 0.034 0.031 0.031 0.023
SD(PARJM − PARPM) 0.039 0.033 0.032 0.037 0.040 0.044 0.050 0.053 0.065 0.070
Scenario 3

E(PARJM) 0.430 0.553 0.606 0.618 0.641 0.654 0.654 0.683 0.698 0.785
E(PARPM) 0.436 0.543 0.587 0.593 0.614 0.625 0.624 0.654 0.668 0.759

E(PARJM − PARPM) -0.006 0.010 0.019 0.025 0.027 0.029 0.030 0.028 0.030 0.026
SD(PARJM − PARPM) 0.037 0.034 0.034 0.036 0.037 0.042 0.049 0.052 0.064 0.065
Scenario 4

E(PARJM) 0.439 0.552 0.614 0.611 0.642 0.653 0.640 0.686 0.672 0.768
E(PARPM) 0.441 0.541 0.594 0.583 0.610 0.620 0.601 0.652 0.633 0.732

E(PARJM − PARPM) -0.001 0.011 0.019 0.028 0.033 0.033 0.039 0.034 0.039 0.036
SD(PARJM − PARPM) 0.037 0.034 0.032 0.035 0.040 0.045 0.052 0.051 0.066 0.078
Scenario 5

E(PARJM) 0.442 0.547 0.613 0.609 0.640 0.652 0.638 0.682 0.672 0.769
E(PARPM) 0.444 0.540 0.594 0.582 0.609 0.619 0.599 0.648 0.630 0.734

E(PARJM − PARPM) -0.002 0.007 0.019 0.027 0.031 0.032 0.040 0.034 0.042 0.035
SD(PARJM − PARPM) 0.038 0.033 0.031 0.036 0.039 0.043 0.050 0.052 0.067 0.077
Scenario 6

E(PARJM) 0.450 0.556 0.614 0.609 0.639 0.650 0.636 0.682 0.671 0.765
E(PARPM) 0.450 0.547 0.596 0.585 0.611 0.620 0.600 0.649 0.634 0.733

E(PARJM − PARPM) 0.000 0.010 0.018 0.024 0.028 0.030 0.036 0.033 0.037 0.032
SD(PARJM − PARPM) 0.036 0.033 0.032 0.035 0.038 0.043 0.052 0.052 0.066 0.074
Scenario 7

E(PARJM) 0.358 0.496 0.583 0.590 0.631 0.648 0.636 0.684 0.674 0.771
E(PARPM) 0.339 0.477 0.562 0.564 0.601 0.615 0.598 0.651 0.634 0.735

E(PARJM − PARPM) 0.019 0.019 0.021 0.027 0.030 0.033 0.038 0.033 0.041 0.037
SD(PARJM − PARPM) 0.034 0.035 0.032 0.036 0.038 0.044 0.050 0.055 0.070 0.080

as in previous two settings.

3.5 Discussion

In this chapter, we introduce the pattern mixture model to make dynamic pre-

dictions of time-to-aGVDH with repeated biomarkers. The pattern mixture model

identifies the patterns, or in other words, the latent classes of aGVHD, based on

solely the times-to-aGVHD, and then summarizes the features of repeated biomark-
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ers within each pattern. Our simulation study has shown that, when the patients’

repeated biomarkers are strongly correlated with their times-to-aGVHD, pattern mix-

ture model perform reasonably good.

We examine how the pattern mixture model performs when patients are of vari-

ous risk classes of aGVHD. We consider two settings: there are inherent eleven latent

classes, or four latent classes, as discussed in Chapter II. When patients are from

eleven latent classes, their times-to-aGVHD are highly correlated with the repeated

biomarker process. Under this setting, the pattern mixture model introduces a small

loss to the accuracy of the time-to-aGVHD prediction, and approximately 3 out of

100 patients will be miss-predicted of their time-to-aGVHD. When patients are from

four latent classes of aGVHD, the BS and PAR of the pattern mixture model de-

crease. However, it shows a stable loss of prediction accuracy as in setting (1).

In a more sophisticated setting, we assume the time-to-aGVHD not only depends

on the latent class membership, but also on the individual deviations of biomarker

trajectories. In this case, the pattern mixture model performs consistently good, even

better than that in setting (2). This is because the shared random effects reinforce

the correlation between biomarkers and the time-to-aGVHD, making the time-to-

aGVHD itself as a stronger indicator of aGVHD latent class.

We also find that the overall prediction is better when the biomarker trajec-

tories of patients between groups are more distinguishable with small variance of

random effects. Moreover, larger measurement errors worsen prediction when avail-

able biomarker information is insufficient, but this influence is diluted when more

biomarkers are collected. We also observe that when the random effects are negative

correlated, the prediction improves.
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Therefore, we conclude that the pattern mixture model can be applied to the

dataset including both longitudinal biomarkers and times-to-aGVHD. It introduces

small loss of prediction accuracy but it is more flexible and convenient to execute.
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CHAPTER IV

Generalized Pattern Mixture Model in the

Prediction of Time-to-Event

4.1 Introduction

Biomarkers have been applied in medical practice to accelerate disease diagno-

sis, monitor patients’ health conditions, and predict treatment effects (Naylor, 2003;

Mayeux, 2004). Many recent studies have demonstrated that biomarker profiles differ

by person, and this difference cannot be fully explained by individual-level random ef-

fects only. For example, Proust-Lima et al. (2016) found that there are four subgroups

of dementia patients, and each group has a distinct pattern of how the semantic mem-

ory changes over time.

Each risk group might have different risks of adverse events, and thus the length of

follow-up also differs by risk group. In this case, identifying the risk group is impor-

tant; otherwise, the population from the low risk group will be over-represented given

the fact that they have more biomarker observations. In Chapter III, we introduced

how to apply the pattern mixture model to identify different biomarker trajectories

in patients who have received BMT. Patients’ risk group membership was determined

by their times-to-aGVHD. Patients in the same risk group had an equal number of
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biomarker observations, and we made the assumption that they shared the same

biomarkers distribution.

In Chapter III, patients’ times-to-aGVHD were grouped in weeks, and we as-

sumed patients who had developed aGVHD in the same week after BMT shared

similar biomarker patterns. This setting can be generalized to other diseases. In

practice, patients’ onset of non-fatal disease might not be accurately recorded, espe-

cially when the disease is self-reported. Another example is the follow-up of patients

with chronic diseases, whether a patient’s time-to-event is recorded promptly depends

on the timing and frequency of follow-up after hospital discharge. In these cases, it is

reasonable to group the patients’ times-to-event into discrete intervals. In practice,

these time intervals might or might not be of equal length. For example, in a study

of the elderly at risk for dementia, the biomarkers (semantic memory scores) were

measured at baseline, year 1, 3, 5, 8, 10, and so forth (Proust-Lima et al., 2016).

In Chapter III, we showed how to use the pattern mixture model to a setting,

in which patients were either free of aGVHD or their onset of aGVHD was com-

pletely recorded. Patients receiving BMT are under close monitoring. Moreover,

aGVHD is a complication typically happening within 100 days after BMT. In this

case, we do not have missing observations in patients’ times-to-aGVHD or biomarker

observations. However, in other clinical studies, the event time might not be fully

observed due to administrative censoring, loss to follow up, or competing risks. For

chronic diseases, it might take years to observe the progression of a disease or death,

so that the missingness of event times is quite common. The censored participants

still contribute to the analysis by the partial information that they are event-free at

the time of censoring. Classic methods, such as parametric survival regression and

semi-parametric Cox regression, utilize this partial information and achieve larger
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power compared with the complete-case method. Moreover, when the event time is

not missing completely at random, complete cases are a biased sample of the orig-

inal dataset. Thus, the complete case analysis generates biased parameter estimation.

There is another type of missingness in event times, when the patients are “cured.”

For example, Rama et al. (2010) found that if patients with locally advanced breast

cancer survived seven years after their cancer diagnosis, they were considered to be

cured and would be less likely to die from breast cancer. Dal Maso et al. (2014) found

that among patients with thyroid, testis or corpus uteri cancer, the cured fraction was

as high as 90%. These cured patients might share different clinical characteristics than

susceptible patients; thus, it is important to identify the cured patients and model

their biomarker patterns separately.

In this chapter, we will discuss how to generalize this pattern mixture model in the

prediction of time-to-event, considering both the cured fraction of the population and

random censoring in the event time. The key improvement in this project is that we

utilize the information from the censored patients, estimate their probability of being

cured, and refine the parameter estimation in the longitudinal biomarker process for

both cured and susceptible patients.

The rest of this chapter is organized as follows. First, we will introduce how

to structure the model and make predictions with the generalized pattern mixture

model (GPMM). Second, we simulate data with independent and dependent censor-

ing, and evaluate the performance of this GPMM compared to the complete-case

pattern mixture model. We conclude the chapter with a discussion.
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4.2 Methods

Similar to Chapter III, we define Ti to be the recorded last follow-up in weeks

for subject i, which is the minimum of time-to-event in weeks for subject i, T ∗i , or

the censoring time Si. We also define δi as the indicator of whether subject i has

experienced aGVHD (δi = 1) or has been censored (δi = 0).

We define hi as the group indicator of participant i, and hi = T ∗i if the patient

develops aGVHD T ∗i weeks after BMT. Given there are fewer patients who develop

aGVHD after 80 days, we combine all the aGVHD cases ten weeks after BMT and

define that they all belong to group 10. The “cured” patients, who will never develop

aGVHD after BMT, will join group 11. Unlike the aGVHD data in Chapter III, hi is

partially observed because T ∗i is only partially observed. We cannot tell whether an

early censored patient is aGVHD-free or will develop aGVHD later.

We also define Yi = (Yi(t1), Yi(t2), · · · , Yi(tni
)) as the biomarker history of subject

i at time (t1, t2, · · · , tni
), where ni is the total number of biomarker observations for

subject i, for i = 1, 2, · · · , n. For simplicity, we assume that the continuous biomarker

observations Yi change linearly over time, but it is straightforward to generalize them

as other functional forms of time. Random effects bi = (b0i, b1i) are introduced to

reflect the individual deviation of the biomarker trajectory from the population mean,

where bi follows a Gaussian distribution with mean 0 and variance-covariance D.

We assume the mean biomarker trajectory depends on the patient’s time-to-

aGVHD. The susceptible patients are naturally grouped by their times-to-aGVHD

week until day 100 after BMT. Patients experiencing aGVHD within the same week

share the same biomarker pattern, therefore aGVHD-free patients in group 11 will

share a distinct biomarker pattern than those susceptible patients.
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Let Bi = (Yi, Ti, δi) represent the observed data for subject i, and Oi = (Yi, hi)

denote the complete data, in which hi are not fully observed.

We assume the biomarker observations, Yi, follow a Gaussian distribution such

that:

Yi|hi = h = Xiβ
(h) +Zibi + εi (4.1)

Yi(tj)|hi = h = β
(h)
0 + β

(h)
1 tj + b0i + b1itj + εi(tj) (4.2)

where Xi and Zi is the design matrix for subject i, and the measurement error εi

follows a Gaussian distribution with mean 0 and variance σ2Ini
. Patients in each

risk group h share the same mean profile of biomarker, denoting by group-specific

parameters β(h).

Define ph as the marginal probability of a patient coming from group h, specif-

ically, the patient has experienced aGVHD after the hth week, or this patient is

aGVHD-free if h = 11.

Let θ = (β = (β(1),β(2), · · · ,β(11)), D, σ2) denote the parameters involved in the

longitudinal biomarker process, and ξ = (θ,π = (p1, p2, · · · , p11)) be the complete

parameter set. The likelihood function given the complete data O = (Y i, hi) is:

L(ξ|O) =
n∏
i=1

11∏
h=1

[phf(Yi|β(h), D, σ2)]I(hi=h)
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The corresponding log-likelihood function is:

l(ξ|O) =
n∑
i=1

11∑
h=1

[I(hi = h)log(ph) + I(hi = h)log(f(Yi|β(h), D, σ2))]

= l1(ph|O) + l2(θ|O) (4.3)

where l1(ph|O) =
n∑
i=1

11∑
h=1

I(hi = h)log(ph) involving only the marginal probability of

latent classes, and l2(θ|O) =
n∑
i=1

11∑
h=1

I(hi = h)log(f(Yi|β(h), D, σ2)) involving only the

biomarker distribution. Thus, the log-likelihood function in Equation 4.3 is separated

into two parts involving parameter ph and θ respectively. Given the complete data O,

it would be straightforward to achieve the MLE of ξ; however, with only the observed

data B, we cannot construct the likelihood function in a closed form. One solution

is using the Expectation-Maximization (EM) algorithm to facilitate the parameter

estimation process.

4.2.1 Model fitting

The EM algorithm starts with computing the expectation of unobserved data, and

maximize the likelihood function given these expectations. In our setting, patients’

true time-to-aGVHD T ∗i , or equivalent group indicator hi, are only partially observed,

so we will begin with obtaining the expectation of unobserved hi.

For an observed cured patient, the group indicator hi is 11; and hi = T ∗i for a

patient who had experienced an event. For a censored patient, we need to calculate

the expected group membership hi. Given the log-likelihood in Equation 4.3, at the
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q + 1 step, the expectation of hi is:

E(hi) =



11, T ∗i =∞

T ∗i , δi = 1

p
(q)
h f(Yi|β(h)(q), D(q), σ2(q))∑11

h=c p
(q)
h f(Yi|β(h)(q), D(q), σ2(q))

, δi = 0, Ti = c

(4.4)

For censored patients, the expectation of group indicator hi equals the weighted

probability of being in group h given the patient’s follow-up time and biomarker

observations. Thus, the estimated probability of patient i’s group membership, pi =

(p1i, p2i, · · · , p11,i), could be calculated as:

pi =



(0, · · · , 1), T ∗i =∞

(0, · · · , 0, pci = 1, 0, · · · 0, ), δi = 1, Ti = c

(0, · · · , 0, pci =
p

(q)
h f(Yi|β(h)(q), D(q), σ2(q))∑11

h=c p
(q)
h f(Yi|β(h)(q), D(q), σ2(q))

, · · · ), δi = 0, Ti = c

To facilitate the parameter estimation in the biomarker process, we obtain the

expectation of unobserved random effects bi and measure errors εi as in Chapter

2.2.2. DefineH(q) = ZiD
(q)Z ′i+σ

2(q)Ini
, and given the joint distribution of (Yi, bi, εi)
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we obtain:

E(bib
′
i|Yi, ξ

(q)) = Ebi|Yi
(bi|Yi)Ebi|Yi

(bi|Yi)
′ + covbi|Yi

(bi|Yi)

E(eie
′
i|Yi, ξ

(q)) = Eei|Yi
(ei|Yi)Eei|Yi

(ei|Yi)
′ + tr{covei|Yi

(ei|Yi)}

where Ebi|Yi
(bi|Yi, hi = h) = D(q)ZiH

(q)−1
(Yi −Xiβ

(h))

covbi|Yi
(bi|Yi, hi = h) = D(q) −D(q)ZiH

(q)−1
ZiD

(s)

Eei|Yi
(ei|Yi, hi = h) = σ2(q)H(q)−1

(Yi −Xiβ
(h))

covei|Yi
(bi|Yi, hi = h) = σ2(q)(Ini

− σ2H(q)−1
)

With the complete data sufficient statistics (hi, bib
′
i, eie

′
i), we can compute the

expectation of log-likelihood l1(ph|O) and l2(θ|O). In the q + 1 iteration and the M-

step, we can achieve the MLE for parameters ξ(q+1) = (p
(q+1)
h ,θ(q+1)) by maximizing

the corresponding expectation of log-likelihood. The MLE of ph is:

p̂h =
1

n

n∑
i=1

phi (4.5)

The MLEs of parameters in longitudinal biomarker process, θ(q+1), are:

D̂ =
1

n

n∑
i=1

[ 11∑
h=1

phiE(bi|Yi, hi = h)E(bi|Yi, hi = h)′ + covbi|Yi
(bi|Yi)

]
σ̂2 =

1∑n
i=1 ni

n∑
i=1

[ 11∑
h=1

phiE(ei|Yi, hi = h)E(ei|Yi, hi = h)′ + tr{covei|Yi
(ei|Yi)}

]
β̂

(h)
=

[ n∑
i=1

phiX
′
iĤi

−1Xi

]−1[ n∑
i=1

phiX
′
iĤi

−1Yi

]
(4.6)

We repeat the above E-step and M-step until we reach some pre-specified conver-

gence criteria. Finally, we obtain the parameter estimations for the marginal cure

probability ph and the biomarker trajectories θ. With these parameter estimations,

we could predict one patient’s risk of events given his/her current available biomarker
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records.

4.2.2 Prediction with Generalized Pattern Mixture Model

The marginal distribution of observed biomarkers is a finite mixture of Gaussian

distribution, and the posterior probability of a new patient m developing aGVHD at

week j, with the observed biomarkers history by week k Ym = (Ym1, Ym2, · · · , Ym,k),

is that:

Pr(Tm = j|Ym, ξ) =
f(Ym|β(j), D, σ2)Pr(hm = j)∑11
l=k f(Ym|β(l), D, σ2)P (hm = l)

(4.7)

for j ≥ k. Bayes’ theorem is applied here to compute the posterior probability of

subject m experiencing the event in week j given his/her biomarker history Ym.

4.3 Simulation and Result

In this section, we evaluate the benefit of adjusting for the cured fraction in the

pattern mixture model, compared with using only complete cases. We consider the

scenarios with independent and dependent censoring. In practice, independent cen-

soring is mainly caused by administrative censoring or random drop-out. Multiple

reasons contribute to dependent censoring, such as competing risks or other adverse

events. We compare the prediction performance between the generalized pattern mix-

ture model and pattern mixture model with complete cases only in these two scenarios.

Data are simulated from a pattern mixture distribution with 11 patterns, repre-

senting time-to-event after week 1, week 2, · · · , week 10, and the “cured” patients.

Patients in each pattern share a distinct mean biomarker profile with individual-

specified random effects. For the sake of simplicity, we assume the mean biomarker

trajectory is a linear function of time. The independent censoring time is simulated
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from a uniform (1.5,17), resulting in around 34% censoring. In the dependent censor-

ing scenario, the censoring time is simulated from a uniform distribution range from

1.5 to 15 plus the true event time. So the probability of censoring depends on the

true event time. This results in around 35% censoring.

In each simulation, a sample of 220 patients is generated as the training set, with

their follow-up of biomarkers truncated by their longest follow-up time, the true time-

to-event or censoring, whichever comes first. Another dataset of 220 patients is also

generated from the same distribution and used as a test set. One thousand simu-

lations are executed to evaluate the performance of the generalized pattern mixture

model against complete-case pattern mixture model.

Similar to Chapter III, we use a dynamic Brier Score to summarize the perfor-

mance of prediction. As a reminder, we define the dynamic BS as:

BS(k) = 1− 1∑n
i=1 I(Ti ≥ k)

n∑
i=1

J∑
j=1

I(Ti ≥ k)[fij(Yi)− oij]2 (4.8)

where oij = 1 if patient i develops the event after week j, and fij(Yi) is the posterior

probability of patient i developing the event after week j. Therefore, the BS is the

sum of squared prediction errors across all subjects who are still at risk at prediction

time k.

In the independent censoring scenario, we check the prediction accuracy of marginal

probabilities of patterns, together with the dynamic BS changing over prediction

times. First we evaluate the estimation of the marginal probability of each pattern.

The marginal probability of patterns has certain medical implications. First, it re-

flects the structure of the targeted population. Second, it represents the risk of events
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when biomarker observations are not available. The squared error of marginal prob-

ability estimation is measured by the Euclidean distance between the true marginal

probability and the estimated one for each of the two methods. The lower the squared

error is, the better the estimation of marginal probabilities.

Figure 4.1: Squared error of marginal probability estimation of complete-case analysis
(red) and GPMM (green)

As shown in Figure 4.1, GPMM controls the squared error well, while complete-

case analysis loses efficiency in marginal probability estimation. This is because in

this independent censoring scenario, each pattern has a different probability of cen-

soring. The longer the true event time is, the more likely it is censored. Thus, the

relative frequency of patterns in the complete cases does not reflect the true distribu-

tion of patterns in the target population. GPMM, in contrast, redistributes censored

patients into different patterns. Therefore, it alleviates the effects of censoring in

estimating the marginal probability.
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Next, we examine the performance of prediction between the two models. Based

on the results shown in Figure 4.2, the Brier Scores of the two methods is similar.

GPMM achieves a higher BS in early predictions, but the effect size of this improve-

Figure 4.2: Differences of the dynamic Brier Score between GPMM and complete-case
analysis

ment is small. With more biomarkers available, the difference of BS between the two

methods decreases.

Table 4.1 lists the mean BS of GPMM, complete-case analysis, and the mean and

the standard deviation of the difference between the two methods. We found that the

complete-case analysis surpasses GPMM in later predictions when more biomarker

observations are available. This is because complete-case analysis, although it has

a reduced power due to the smaller sample size, provides unbiased estimation of

biomarker profiles over time. In contrast, GPMM incorporates censored cases into

each pattern with an adjusted weight, and results in a biased estimation of biomarker

profiles. When there are fewer than 8 biomarker observations, the effect of biased
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biomarker profile estimation is alleviated by more accurate marginal probabilities of

patterns; thus, GPMM does better in early predictions. However, when there are

Table 4.1: Brier Scores of GPMM and complete-case analysis in the independent cen-
soring scenario

Prediction at week 1 2 3 4 5 6 7 8 9 10

GPMM 0.146 0.247 0.375 0.484 0.587 0.675 0.729 0.773 0.828 0.873
Complete-case 0.140 0.241 0.369 0.479 0.584 0.674 0.732 0.780 0.835 0.882

Difference (mean) 0.006 0.006 0.005 0.005 0.002 0.001 -0.003 -0.007 -0.007 -0.009
Difference (SD) 0.005 0.008 0.013 0.019 0.031 0.039 0.042 0.055 0.061 0.064

more biomarker observations and fewer candidate patterns to predict, the effect of

unbiased biomarker profile estimation dominates the biased estimation of marginal

probabilities of patterns; thus, complete-case analysis does better in later predictions.

Therefore, there is a trade-off effect of biased biomarker estimation and more accurate

marginal probabilities of patterns.

In the dependent censoring scenario, the censoring time depends on the true event

time. We also check the prediction accuracy of marginal probabilities of patterns and

the dynamic BS changing over prediction time. As shown in Figure 4.3, GPMM con-

trols the squared error well, while complete-case analysis has an obvious larger error

in marginal probability estimation. This is because in the dependent censoring sce-

nario, times-to-censoring depend on true times-to-event, so that complete cases are

not a good representative of the target population. GPMM, however, estimates the

pattern of censored patients and thus adjusts the marginal probability of patterns.

Compared with the estimation error shown in Figure 4.1 when data are simulated

under independent censoring, the estimation errors of marginal probability for both

complete-case analysis and GPMM inflate.

Next, we check the performance of prediction between the two models. Based on

the results shown in Figure 4.4, GPMM, on average, obtains a higher BS than the
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Figure 4.3: Squared error of marginal probability estimation of complete-case analysis
(red) and GPMM (green)

complete-case analysis, no matter how many biomarker observations are available.

However, the increase in BS is close to 0.

Table 4.2 presents the mean BS of GPMM, complete-case analysis, the mean and

the standard deviation of the difference between the two methods. We found that

Table 4.2: Brier Scores of GPMM and complete-case analysis in the dependent cen-
soring scenario

Prediction at week 1 2 3 4 5 6 7 8 9 10

GPMM 0.146 0.237 0.334 0.416 0.473 0.520 0.557 0.600 0.656 0.749
Complete-case 0.140 0.232 0.330 0.414 0.471 0.519 0.556 0.598 0.655 0.748

Difference (mean) 0.006 0.005 0.004 0.003 0.002 0.001 0.001 0.003 0.001 0.001
Difference (SD) 0.005 0.007 0.009 0.015 0.019 0.023 0.027 0.030 0.032 0.029

GPMM does consistently better than landmark analysis, but the mean difference

of BS is relatively small compared to its standard deviation. In the independent

censoring scenario, we find that the unbiased estimation of biomarker profiles off-

sets the biased estimation of marginal probabilities. Thus, complete-case analysis
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Figure 4.4: Differences of the dynamic Brier Score between GPMM and complete-case
analysis

surpasses GPMM in later predictions. However, in the dependent censoring scenario,

the marginal probability estimation in complete case analysis does not reflect the true

distribution of patterns, and it produces more biased marginal probabilities than the

true ones, as demonstrated by Figure 4.3. Thus, the complete-case analysis is more

sensitive to censoring, especially dependent censoring. On the other hand, GPMM

better predicts the marginal probabilities of patterns.

4.4 Discussion

In this Chapter, we introduce how to apply the pattern mixture model to the

setting in which censored cases are allowed. In practice, censoring, or more generally

speaking, partially observed information, is very common. Complete-case analysis,

which ignores the censored cases, not only suffers from a lower power, but also results
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in a biased marginal probability estimation. GPMM, however, reweights the censored

cases and allows them to contribute to the model fitting given the information up to

the censoring time. As a result, GPMM has a more accurate estimation of marginal

probability. This benefit, as demonstrated in the simulation section, drives the im-

provement of GPMM over complete-cases analysis.

In this project, a sample of 220 patients are simulated as a training or test dataset.

We use 220 rather than 200 in Chapter III because we want to maintain enough

power for the complete-case analysis. With around 30% censoring, the complete-

case analysis uses dataset of 150 patients from eleven patterns. On the other hand,

GPMM has a much larger power due to its utilization of censored cases. Moreover, we

require enough cases within each pattern to achieve a robust estimation of the mean

pattern profile. However, in complete-case analysis with independent or dependent

censoring, it is likely that there are only a limited number of cases in some patterns.

Thus, if these cases are extreme cases, we might end up with biased estimations for

biomarker profiles. As demonstrated in Figure 4.1 and Figure 4.3, there are more

outliers of estimation in complete case than GPMM. Therefore, when there are only

limited number of patients, or if some of patterns have few patients, complete-case

analysis is not recommended.
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CHAPTER V

Bootstrap Methods for Determining the Number

of Latent Classes in Joint Modeling

5.1 Introduction

Joint modeling (JM) has been widely applied to medical studies in which both

the longitudinal biomarkers and the time-to-event are of interest. One type of JM,

joint modeling with latent classes (JMLC) has recently received extensive attention

and has been applied to the prediction of prostate cancer (Lin et al., 2002), AIDS

(Liu et al., 2015), severe hot flashes (Jiang et al., 2015) and dementia (Proust-Lima

et al., 2016). JMLC assumes the population consists of individuals in various latent

classes defined by the risk of the disease, and individuals from the same latent class

share the same distribution of the longitudinal biomarker and the time-to-event. One

prerequisite of applying JMLC is knowing the number of latent classes.

Although determining the number of latent classes in JMLC can be part of the

empirical data analysis when there is enough evidence in the data to show that mul-

tiple classes exist, prior knowledge regarding the exact number of classes is usually

unavailable. Generally speaking, we expect an adequate number of latent classes to

capture the heterogeneity of the biomarker patterns and the time-to-event distribu-
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tions in the population, while avoiding redundant components so that we can control

the overall complexity of JMLC.

Akaike information criterion (AIC) and Bayesian information criterion (BIC) are

current standard approaches used to choose the number of latent classes in JMLC

(Proust-Lima et al., 2014; Liu et al., 2015; Rouanet et al., 2016). These information-

based criteria are all measures of goodness of model fitting and add a penalty term for

complexity to the negative log-likelihood. The penalty term, 2k for AIC, and klog(n)

for BIC, is a function of the effective number of parameters k and the sample size n,

so that the final selected model achieves both a good fit to the data and parsimony

(Leroux, 1992; Keribin, 2000; Akogul and Erisoglu, 2016). The model with the small-

est value of AIC or BIC is preferred.

These information-based criteria quantify whether it is worth having a richer

model in terms of information gain. However, it is hard to quantify how much

practical information gain is associated with a one-unit change in BIC. Moreover,

AIC has been criticized for prefering models that contain more latent classes than

the actual number (Olofsen and Dahan, 2013). In general, the choice of the number

of latent classes should not only be based on the smallest information criterion, but

also on meaningful latent classes and a good discrimination between each latent class

(Proust-Lima et al., 2014). Therefore, this study considers other methods for choos-

ing the number of latent classes in JMLC.

JMLC is inspired by finite mixture modeling (Vermunt and Magidson, 2003;

Proust-Lima et al., 2014), so it is beneficial to review the methods for selection of

the number of latent classes in mixture models. Other than the information-based

criteria, another accepted method is regularization, which adds one or more penalty
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terms to the negative log-likelihood used for estimation. These penalty terms could

be functions of the probabilities of latent classes, or functions that summarize the

similarity between latent classes. The regularization method usually starts with an

adequately large number of latent classes, and then reduces the number by merging la-

tent classes with similar distributions of outcomes of interest together, and eliminates

latent classes with too few subjects (Chen and Khalili, 2008; Lindsten et al., 2011).

For example, consider a one-dimensional location mixture model with location pa-

rameters µ, where µ = (µ1, µ2, · · · , µJ) are the location parameters for latent classes

1, 2, · · · , J . A penalty function of difference of location parameters λ
∑
i 6=j

f(µi − µj)

is added to the log-likelihood, where λ is the tuning parameter that larger λ results

in smaller number of latent classes. This penalty function forces similar location pa-

rameters to be equal, thus reducing the number of latent classes.

Another potential method for selection of the number of latent classes is through

hypothesis testing, such as the score test or likelihood ratio test (LRT) (Neyman and

Scott, 1965; Lindsay, 1995), which are extensively used in parametric model selec-

tion. Hypothesis testing starts with setting the null and alternative hypotheses for

the number of latent classes, and then calculates the null test statistic based on the

data. The p-value is calculated and used as the evidence to support or reject the

null hypothesis. Compared with AIC, BIC and regularization, the hypothesis testing

method is an inference process and quantifies the information in the data (p-value)

of choosing the number of latent classes.

The development and comparison of methods for selecting the number of latent

classes in mixture models is focused primarily on the mixtures of Gaussian distri-

butions (Lo et al., 2001; Akogul and Erisoglu, 2016). For example, Lo et al. (2001)

derived the asymptotic distribution of the LRT statistic testing the number of latent
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classes when the sample is drawn from a mixture of normal distributions. Akogul

and Erisoglu (2016) compared the performance of AIC and BIC to each other with

mixtures of multivariate normal distributions. The majority of practical analyses

use information-based criteria to select the number of latent classes in mixture mod-

els (Fonseca and Cardoso, 2007; Akogul and Erisoglu, 2016; Zhang, 2016; Mehrjou

et al., 2016), because the information-based criteria are comparatively easy to com-

pute. Tein et al. (2013) reviewed 38 published papers using latent profile analysis

and found that BIC is the most accepted criterion in model selection.

In this project, we propose a hypothesis testing method to select the number

of latent classes in JMLC. However, a LRT or score test should be applied with

caution in the latent class setting, as one of the regularity conditions for standard

asymptotics is violated. This condition requires that if the the log-likelihood function

is maximized at the true parameter ξ0, then ξ0 should be an interior point in its

support. Let us consider a test of H0 : J = 3 vs. H1 : J = 4, where J is the number

of latent classes. Two models are fitted assuming the outcome Y comes from the

corresponding distributions:

Y ∼
3∑
j=1

πjf(.|ξj)

Y ∼
4∑
j=1

πjf(.|ξj)

where πj is the marginal probability that Y is a member of latent class j, and ξj ∈ Ξp

is the p-vector of parameters in latent class j. Therefore the hypothesis of interest is

equivalent to H0 : π4 = 0, ξ4 6= ξl vs. H1 : π4 6= 0, ξ4 6= ξl, for l = 1, 2, 3. The null

value of π4 lies on the boundary of its support [0, 1], so the asymptotic distribution

of the LRT statistic is not a χ2 distribution with p+ 1 degrees of freedom.
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Some research has developed the theoretical asymptotic null distribution of the

LRT statistic when the null hypothesis contains boundary values (Lo et al., 2001;

Crainiceanu and Ruppert, 2004; Stram and Lee, 1994). Lo et al. (2001) proved that

the LRT statistic, in a mixture of normal distributions testing k0 components against

the alternative normal mixture distribution with k1 components, has a null distribu-

tion that is a weighted sum of χ2
1 variables, which is not available in a closed form.

Similar conclusions are drawn from studies on likelihood ratio testing for zero variance

components in linear mixed models (Stram and Lee, 1994; Crainiceanu and Ruppert,

2004). Moreover, the joint distribution of the longitudinal biomarker observations

and time-to-event has a more complicated form than a mixture of normal distribu-

tions or longitudinal data. Though using LRT to select the number of latent classes

in JMLC seems plausible, this approach has been limited use due to the difficulty in

deriving the theoretic asymptotic null distribution of the LRT statistic.

As an alternative to deriving the theoretic null distribution of the LRT statistic, we

propose using the parametric bootstrap. Some research has discussed using the boot-

strap with the LRT for determination of the number of latent classes (McCutcheon,

1987; McLachlan, 1987; McLachlan and Peel, 2000). McLachlan (1987) described the

process of bootstrapping the LRT statistics in a mixture of normal distributions. A

more recent study by Karlis and Xekalaki (1999) introduced the use of parametric

bootstrap methods sequentially to identify the number of latent classes in a mixed

Poisson model. They claimed that when there are a sequence of candidate numbers of

latent classes, k, k+1, k+2, · · · , one should start the LRT with the lowest consecutive

pair k and k + 1. If the data offer enough evidence to reject the null hypothesis that

there are k latent classes, one will perform a LRT for the next consecutive pair k+ 1

and k + 2. The above process will be repeated until the first time one fails to reject

the null hypothesis. However, Karlis and Xekalaki (1999) did not adjust the type I
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error of these multiple tests since they used the same desired Type I error of 0.05 for

all the tests.

Research also exists on the power of the bootstrap LRT in mixture models (McLach-

lan and Peel, 2000; Nylund et al., 2007; Tekle et al., 2016). Nylund et al. (2007) shows

that the bootstrap likelihood ratio test is more consistent at identifying the correct

number of latent classes than the information-based criteria BIC. They generated

data under various scenarios, and they found that even at its worst, the bootstrap

likelihood ratio test successfully detects the true number of latent classes around 49%

of the time. However, in the same scenario with an eight-item categorical outcome,

BIC could not select the correct model. Moreover, the bootstrap likelihood ratio test

has the benefit of being consistently reliable regardless of sample size. However, after

reviewing 38 articles, Tein et al. (2013) found that the bootstrap LRT test is used less

for model selection in mixture models, compared with BIC, AIC, and other model

selection methods.

The bootstrap is primarily criticized for its computational burden. Nylund et al.

(2007) found that when applying the bootstrap LRT, the computation time increased

5 to 35 times in their examples, compared with using BIC to select the number of

latent classes. To mitigate the amount of computation time, Nylund et al. (2007)

set an early stopping rule for the bootstrap LRT, such that if the first nb bootstraps

demonstrated strong enough evidence to reject or fail to reject the null hypothesis,

one could stop drawing further bootstrap samples. However, this early stopping rule

is controversial, since it was specific to the scenario generated in Nylund et al. (2007).

Moreover, when the true p-value based on infinitely many replications is around 0.05,

the probability of agreement between their early stopping rule and the infinite repli-

cation procedure is less than 75%.
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We propose to select the number of latent classes in JMLC with the LRT, using

the parametric bootstrap to capture the null distribution of the LRT statistics. Our

research is motivated by the study of acute graft-versus-host disease (aGVHD) at

the University of Michigan. aGVHD is an inflammatory disease caused by a reaction

between the donors’ and recipients’ tissues among patients who have received bone

marrow transplantation. Patients’ times-to-aGVHD were recorded, together with

their biomarker observations up to the times-to-aGVHD or administrative censoring.

There are clearly at least two latent classes of patients: the first being patients who

will never develop aGVHD (aGVHD-free), and the second being patients who will ex-

perience aGVHD within 100 days of transplant. However, current research is unsure

of how many subgroups there are among the patients who will experience aGVHD

within 100 days.

In Section 5.2, we briefly introduce JMLC and describe how to select the number

of latent classes in JMLC with bootstrap LRT, together with early stopping methods

which adaptively reduce the number of bootstraps. Section 5.3 presents the simulation

results of bootstrap LRT with simulated aGVHD data. Concluding remarks and

discussion are given in Section 5.4.

5.2 Methods

In this section we describe how to apply JMLC to compute the MLEs of the longi-

tudinal process and the time-to-event process, and then specify using the parametric

bootstrap to select the number of latent classes in JMLC, followed by discussions on

adaptively reducing the number of bootstraps.
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5.2.1 JMLC model specification and model fitting

Let zi = (zi1, zi2, · · · , ziJ)
′

represent the unobserved indicator vector of sub-

ject i’s latent class membership, where zih = 1 if subject i belongs to latent class

h = 1, 2, · · · , J , and 0 otherwise, and J is the number of latent classes. Let πi =

(πi1, πi2, · · · , πiJ)
′

be the corresponding probabilities of latent class membership, and

π = (π1, π2, · · · , πJ)
′

be the marginal probabilities of subjects belonging to each

aGVHD class, with the restriction that
∑J

h=1 πh = 1.

For the longitudinal biomarker process, we define Y i = (Yi(t1), Yi(t2), · · · , Yi(tni
))

as the biomarker history of subject i at times (t1, t2, · · · , tni
), where ni is the to-

tal number of biomarker observations for subject i, for i = 1, 2, · · · , n. We specify

that patients from the same latent class share the same mean biomarker trajec-

tory, with individual-specific random effects bi reflecting the deviation of an indi-

vidual’s biomarker pattern from the mean of their latent class. The measurement

error ei = (ei(t1), ei(t2), · · · , ei(tni
)) of biomarkers introduces the random noise in

biomarker measurement. We assume the joint of the observed biomarkers, Yi, ran-

dom effects, bi, and the measurement error, ei, Bi
′ = (Yi, bi, ei) given zih = 1 follows

a multivariate normal distribution, i.e.,

Bi|zih = 1 ∼MVN (


Xiβ

(h)

0

0

 ,


ZiDZ

T
i + σ2Ini

ZiD σ2Ini

DZT
i D 0

σ2Ini
0 σ2Ini

) (5.1)

with density function fh(Bi), where Xi is the design matrix of function of time,

β(h) is the corresponding parameters of the mean biomarker trajectory in the la-

tent class h, Zi is the design matrix of random effects that can be any subset of

Xi, D is the covariance matrix of the random effects that is constant among all

different latent classes, and σ2 is the common variance of each element of ei. Let
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ω = (β(1),β(2),β(3),β(4), D, σ2) denote all the parameters involved in the longitudi-

nal process.

For the time-to-event process, let Ti denote the observed event time for subject

i, which is the minimum of the time-to-event for subject i, T ∗i , and last follow-up

time Si. We also define δi as the indicator of whether subject i experiences the event

(δi = 1) or is censored (δi = 0). For simplicity, we assume the time-to-event follows

gh(Ti, δi|λh) distribution, for h = 1, 2, · · · , J , where λh are the parameters involved

in the time-to-event process in latent class h.

Let ξ = (π,ω,λ) represent the complete parameter set; and

((Y1, T1, δ1), (Y2, T2, δ2), · · · , (Yn, Tn, δn))

are the n independent observed data containing both biomarker and time-to-event

observations. So the data likelihood function is:

L(ξ|B, T, δ) =
n∏
i=1

J∑
h=1

[πhfh(Bi|ω)gh(Ti, δi|λ)] (5.2)

with corresponding observed data log-likelihood:

l(ξ|B, T, δ) =
n∑
i=1

log{
J∑
h=1

[πhfh(Bi|ω)gh(Ti, δi|λ)]} (5.3)

The log-likelihood in Equation 5.3 based on observed data containing a summation

in the log function and as such it is inconvenient to maximize. We then introduce

the unobserved label of latent classes and construct the likelihood function based on
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the complete data (Bi, Ti, δi, zi). The complete data likelihood function is:

Lc(ξ|B, T, δ, z) =
J∏
h=1

[πhfh(Bi|ω)gh(Ti, δi|λ)]zih (5.4)

with corresponding log-likelihood:

lc(ξ|B, T, δ, z) = l1(π|B, T, δ, z) + l2(ω|B, T, δ, z) + l3(ζ|B, T, δ, z) (5.5)

where l1(π|B, T, δ, z) =
n∑
i=1

J∑
h=1

zihlog(πh), l2(ω|B, T, δ, z) =
n∑
i=1

J∑
h=1

zihlogfh(Bi|ω),

and l3(λ|B, T, δ, z) =
n∑
i=1

J∑
h=1

zihlog[gh(Ti, δi|λ)], which are three separable parts cor-

responding to π, ω and λ. The Expectation-Maximization (EM) algorithm is used

to find the MLEs of parameters. Using the EM algorithm to maximize the aforemen-

tioned log-likelihood is not of key interest and the details are omitted here. Please

refer to Chapter II for further details.

5.2.2 Parametric bootstrap in JMLC

One prerequisite of using JMLC is specification of the number of latent classes

J . We postulate that the samples are from a mixture distribution with either J0 or

J1 components, where J0 and J1 are known integers with J0 < J1. By constructing

the corresponding log-likelihood functions as in Equation 5.5 under the null and al-

ternative hypotheses, H0 : J = J0 vs. H1 : J = J1 respectively, we compute the

MLEs ξ̂
J0

= arg maxΘJ0 l0(ξJ0|Y, T, δ) and ξ̂
J1

= arg maxΘJ1 l1(ξJ1|Y, T, δ) through

the EM algorithm as described in Section 5.2.1, where ΘJ0 is the parameter space

under the null hypothesis, which is nested within ΘJ1 , the parameter space under the

alternative hypothesis. Based on these MLEs, we calculate the observed LRT statistic

LRobs = 2(l1(ξ̂
J1|Y, T, δ) − l0(ξ̂J0|Y, T, δ)) based on Equation 5.3. As discussed in
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the previous section, the exact asymptotic reference distribution of the LRT statistic

is difficult to derive. Thus we will use the parametric bootstrap to determine the

empirical distribution of the LRT statistic.

Specifically, we will simulate data (Y, T, δ)sim under the null hypothesis from

a mixture distribution of J0 components with parameters ξ̂
J0

in each bootstrap,

with a sample size equal to that in the original data. In the kth bootstrap, we fit

two individual models with J0 and J1 components, and obtain the corresponding

MLEs ξ̂
J0

sim and ξ̂
J0

sim, and the LRT statistic based on the simulated data LRk
sim =

2(l1(ξ̂
J1

sim|(Y, T, δ)sim)− l0(ξ̂
J0

sim|(Y, T, δ)sim).

We repeat the above process B times, and then compare the observed LRT statistic

LRobs to its empirical null distribution LRk
sim, for k = 1, 2, · · · , B. For a given α

level, we will reject the null hypothesis when
B∑
k=1

I(LRobs > LRk
sim)/B > 1 − α. In

other words, the p-value for this bootstrap LRT is:

p =
B∑
k=1

I(LRobs ≤ LRk
sim)/B (5.6)

In order to capture the tail of this empirical null distribution, we need to choose an

adequately large value for B. In practice, B is usually defined at 1, 000, 2, 000, or

10, 000 (Efron and Tibshirani, 1993; MacKinnon, 2009; Hesterberg, 2015).

It is well-known that the results of the EM algorithm depend on the initial param-

eter values (Karlis and Xekalaki, 2003; Biernacki et al., 2003). Therefore, to eliminate

the effect of initial values, we suggest that after choosing the ideal initial parameter

values for both JMLC with J0 and J1 components in the observed data, we save the

two starting values and use them repeatedly in the bootstrap samples.
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5.2.3 Adaptively reducing the number of bootstraps

In the previous section, we stated that we needed to choose a sufficiently large

number of bootstrap samples to detect the behavior of LRT at the tail of its empirical

distribution. We chose to use B = 1, 000 in our methods. Obviously, if we could use

fewer bootstraps but draw the same conclusion as with 1,000 bootstraps, we could

save computational time. Moreover, we need to control the overall Type I error with

fewer bootstraps to remain at the desired α−level, as well as maintain the power of

the LRT.

To obtain reliable results based on a smaller value of B, Davidson and MacKin-

non (2000) introduced an iterative procedure. They proposed to start with a small

B0, and then evaluate whether the p-value obtained with these B0 bootstraps is evi-

dence to reject the null hypothesis. If the p-value based on these B0 bootstraps was

P̂ r(B0) < α, then one would further test H0 : Pr(B0) < α vs. H1 : Pr(B0) ≥ α,

at a pre-specified significance level β, which was chosen to be small, say 0.001. This

test was done through a binomial approximation for the number of bootstrap samples

that had statistics larger than our observed value. This significance level β could be

viewed as a tuning parameter, which controlled how much we could believe in the

results based on these B0 bootstraps, and controlled the total number of bootstraps

needed. This process was continued with increasing B0 until the first time we failed

to reject the null hypothesis or until we reached the upper bound of the number of

bootstraps.

In another study, Nylund et al. (2007) discussed a sequential early stopping rule

for bootstrap LRTs. The basic idea was to choose an adaptive α-level for each number
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of bootstraps. If the p-value calculated based on the first 49 bootstraps was exactly

zero, Nylund et al. (2007) suggested stopping and rejecting the null hypothesis. If

the p-value based on the first 49 bootstraps was greater than zero, one continued the

bootstrap process and rejected the null hypothesis with 78 bootstraps if the p-value

based on these 78 bootstraps was no more than 1/78. Together with this rule, Nylund

et al. also introduced an early stopping rule when the data showed strong evidence

that we would fail to reject the null. More specifically, if the p-values based on the

first two or three bootstraps were ≥ 1 and ≥ 2/3, respectively, one would stop and

conclude that we had failed to reject the null hypothesis. This sequential rule was

justified by the concordance of its conclusion with the conclusion drawn with infinite

bootstraps. The concordance probability showed that when the p-value based on an

infinite number of bootstraps was quite different from the targeted α− level, this

early stopping rule supported above 95% concordance with the infinite bootstraps.

However, when the p-value based on infinite bootstraps was around the targeted α-

level, the concordance probability was only around 65%.

The early stopping method introduced by Davidson and MacKinnon (2000) is a

testing process that requires one to evaluate the results at each candidate value of

B0. In contrast, the method proposed by Nylund et al. (2007) is a rule that is de-

signed before running bootstraps. Moreover, in the iterative method by Davidson and

MacKinnon (2000), the significance level β at each candidate number of bootstraps

should be chosen with caution. With an overly small significance level, the early stop-

ping rule is irrelevant because there is very little chance to reject the null hypothesis

that H0 : Pr(B0) < α0. In contrast, an overly large significance level might lead to

early stopping with the wrong conclusion. However, in Nylund et al.’s method, early

stopping based on only two or three bootstraps is questionable. The concordance

probability that Nylund et al. used to justify their early stopping rule only reflects
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the percentage of making wrong conclusions, but it does not distinguish the chance

to make a false positive or negative conclusion. Thus, we propose a new sequential

early stopping rule that maintains a desired Type I error rate; we will examine the

power of our approach via simulation.

We consider two types of early stopping. The first is stopping early in favor of

not rejecting the null hypothesis. For example, if we run B = 1000 bootstraps at

α = 0.05 and observe more than 50 bootstrap LRT statistics larger than the observed

LRT statistic based on original data, we would fail to reject the null hypothesis. In

that case, if we observe more than 50 bootstraps with larger LRT statistics within

the first Bm (Bm ≤ B) bootstraps, we can stop after Bm bootstraps, and conclude

that we have failed to reject the null hypothesis. This type of early stopping will not

affect the Type I error or power of the bootstrap LRT, compared with B bootstraps.

The other type of early stopping is in favor of rejecting the null hypothesis. Simi-

lar to Nylund et al., we set a sequential stopping rule that at the pre-chosen numbers

of bootstrap samples B1, B2, · · · , we assess the numbers of bootstraps with larger

LRT statistics, and compare them to pre-specified upper thresholds U1, U2, · · · . More

specifically, if we observe F1 out of B1 bootstraps with larger LRT statistics, with

F1 =
∑B1

k=1 I(LRT ksim ≤ LRTobs) ≤ U1, we will stop and conclude that we have re-

jected the null hypothesis. If we fail to reject the null hypothesis with the first B1

bootstraps, we will continue with more bootstraps. At the mth decision point, which

occurs with Bm bootstraps, we will calculate the number of bootstraps with larger

LRT statistics than the original one and compare this number Fm with the threshold

Um. As long as the number of larger LRT statistics is between Um and αB, we will

continue the bootstrap process until we complete B bootstraps, and draw the final

conclusion given the complete B bootstraps.
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The sequence of the early stopping rule values ((B1, U1), (B2, U2), · · · ) is analogous

to an alpha-spending function in clinical trials (Demets and Lan, 1994). The thresh-

olds Um should be chosen to control the overall Type I error and also minimize the

loss of power. For example, if we set the targeted α-level at 0.05 for 1000 bootstraps,

and we observe 2 bootstrap LRT statistics larger than the observed LRT statistic of

the original data within the first 200 bootstraps, it is reasonable for us to believe that

we will end up rejecting the null hypothesis with 1000 bootstraps. However, we could

also make an incorrect decision. If we observe more than 48 larger bootstrap LRT

statistics within the next 800 bootstraps, we might falsely reject the null hypothesis

with the first 200 bootstraps.

With a targeted overall α-level at 0.05 and an upper bound of B at 1000, we

propose two rules ((B1, U1), (B2, U2), · · · ) for comparison:

• Rule 1: (200, 8), (400, 17), (600, 22), (800, 30), (1000, 40)

• Rule 2: (200, 6), (400, 14), (600, 26), (800, 35), (1000, 47)

These two rules make decisions in increments of 200 bootstraps, so that at most five

assessments are made. Both of these rules control the overall Type I error to be no

more than 0.05. The calculation details of Type I error can be found in Appendix A.1.

Unlike the Type I error, evaluating the above two candidate rules with regards

to power is not straightforward. This is because the distribution of p-values under

the alternative hypothesis is a function of both sample size and the effect size in the

alternative hypothesis, making it difficult to derive in closed form. Given that the p-

value under the null hypothesis follows a uniform distribution, which is a special case

of a Beta distribution, we hypothesize a theoretical Beta (1,31.4) distribution for the

p-value under the alternative hypothesis. If a variable X follows a Beta (1,31.4) distri-
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bution, the probability of X less than 0.05 is around 0.8. In other words, if the p-value

for one test under the alternative hypothesis follows a Beta (1,31.4) distribution, then

the power of this test is around 0.8. When applying our two candidate rules, the losses

of power for these rules are 0.0136 and 0.0069, respectively. It is because in order to

reject the null hypothesis, both of the two rules require a more restricted p-value than

0.05. It is clear that the loss of power is controlled by the largest value of Um, so that

candidate rule 1 has the larger loss of power. However, compared with the targeted

power 0.8, both of these losses of power are relatively trivial. Moreover, the choice

of rules should also take the computational time into consideration. Rule 1 is more

likely to terminate the bootstrap process earlier because it is more tolerant in early

stages. We will evaluate the power of the two stopping rules in the simulation section.

In practice, we will apply the early stopping rules in favor of both the null and the

alternative hypothesis simultaneously. As demonstrated in Figure 5.1, the number

of bootstraps with larger LRT statistics than that observed is calculated at every

200 bootstraps. If that number falls in the “rejecting zone”, one will stop there and

reject the null hypothesis. On the other hand, the early stopping in favoring of the

null hypothesis is assessed whenever a new bootstrap is available after the first 50

bootstraps. As soon as the number of bootstraps with larger LRT statistics falls into

the “fail to reject zone”, one will stop and fail to reject the null hypothesis. Otherwise,

if that number falls between the two threshold lines, one will draw an additional 200

bootstraps and apply the next decision rule.
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Figure 5.1: Diagram of early stopping rules adaptively reducing the number of boot-
straps (left: rule 1; right: rule 2)

5.3 Simulation and Result

5.3.1 Comparing Bootstrap LRT and BIC

The purpose of this simulation is to examine the Type I error and the power of

bootstrap LRT in testing one pair of candidate numbers of latent classes. The BICs

of the two models with different numbers of latent classes are also calculated. The

accuracy rate of model selection based on BIC, which is defined as the proportion of

times that the true model has a lower BIC, is calculated. We use BIC as a benchmark,

and evaluate the performance of bootstrap LRT relative to BIC.

Here we focus on testing one pair of candidate numbers of latent classes: H0 : J0 =

3 vs. H0 : J1 = 4. Data are simulated under both the null and alternative hypotheses

in order to examine the Type I error and the power of the parametric bootstrap LRT,

respectively. One thousand simulations are run under each hypothesis.

In each simulation, a sample of 180 patients is generated. Given the latent class,

each patient’s biomarker observations are generated from a linear mixed model, with a
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class-specified mean biomarker trajectory and a common variance-covariance matrix

for random effects shared across latent classes. The times-to-aGVHD follow Weibull

distributions with class-specified shape and scale parameters, except for the aGVHD-

free patients. Biomarker values of each patient are collected weekly right after the

transplant, until the earliest of onset of aGVHD or day 100. Since we assume that

the baseline biomarker value is non-informative for time-to-aGVHD, we require that

each subject should have at least two observations. As patients who develop aGVHD

within one week after the transplantation will be removed from the study, the sample

size might be slightly less than 180. The patients’ times-to-aGVHD are recorded

together with the biomarker values. Two JMLC models are fitted under the null hy-

pothesis J0 = 3 and the alternative J1 = 4, respectively. The observed LRT statistic

LRTobs is calculated and recorded. One thousand parametric bootstrap samples are

generated from the null distribution (J0 = 3) as described in Section 5.2.2. We set

the desired Type I error rate at α = 0.05, and reject the null hypothesis in each

simulation if
1000∑
k=1

I(LRT obs > LRT ksimu)/1000 > 1− α.

First we simulate data under the null hypothesis H0 : J0 = 3, and test against the

alternative hypothesis of H1 : J1 = 4. Figure 5.2 presents a sample of data we simu-

lated; the left panel shows the observed biomarker values overall, while the right panel

highlights the values by latent group membership. With the 1,000 simulations under

this scenario, we calculate the probability of rejecting the null hypothesis, which is

the Type I error of the parametric bootstrap LRT. We also calculate the proportion

of times that the joint model with three latent classes has a lower BIC than the joint

model with four latent classes.

In these 1,000 simulations, 54 simulations reject the null hypothesis according to

the bootstrap LRT, so the Type I error of bootstrap LRT is 0.054. However, 710 sim-
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Figure 5.2: Biomarker observations of patients from three latent classes (left: overall;
right: by latent groups)

ulations show that joint model with four latent classes is preferred in terms of lower

BIC; the accuracy rate for BIC is therefore 29%. The bootstrap LRT controls the

Type I error well, while BIC shows a low accuracy rate when the data are simulated

from the null distribution.

In order to evaluate the power of the parametric bootstrap LRT, data are sim-

ulated under the alternative hypothesis H1 : J1 = 4. Figure 5.3 presents a sample

biomarker data of patients from four latent groups. Though the four latent classes are

highlighted in the right panel, it is hard to tell whether there are three or more latent

classes. With the 1,000 simulations under this setting, we calculate the probability

of rejecting the null hypothesis, which is the power of the parametric bootstrap LRT.

We also calculate the proportion of times that the joint model with four latent classes

has a lower BIC than the joint model with three latent classes.
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Figure 5.3: Biomarker observations of patients from four latent classes (left: overall;
right: by latent groups)

Out of those 1,000 simulations, 727 simulations reject the null hypothesis accord-

ing to the bootstrap LRT, so the power of bootstrap LRT is 0.727. Out of these 1000

simulations, 992 simulations show that the joint model with four latent classes are

preferred in terms of lower BIC. The accuracy rate for BIC is 99.2%.

Compared the results listed above, we found that BIC tends to favor more com-

plex models while bootstrap LRT achieves good power while controls the Type I error.

5.3.2 Type I Error and Power of Bootstrap LRT with Adaptive Reduction

in the Number of Bootstraps

In this section we will apply the two candidate early stopping rules introduced in

Section 5.2.3, together with the early stopping rule in favor of the null hypothesis, to

the simulation settings examined in Section 5.3.1. We will first evaluate the Type I

error of the two rules, followed by the power and the computational time of the two
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rules.

Recall that the early stopping rule in favor of the null hypothesis states that we

will stop generating bootstrap samples within the first Bx (Bx ≤ B) bootstraps if

more than 50 of the Bx samples have larger LRT statistics than the observed LRT

statistic, we will conclude that we have failed to reject the null hypothesis. Among

our 1000 simulations, the average number of bootstraps was 212. This means with

this early stopping rule in favor of the null hypothesis, we reduced our computational

times by 80% when the null hypothesis is true.

When applying rule 1, 51 out of 1000 simulations reject the null hypothesis, so the

Type I error for rule 1 is 0.051; when applying rule 2, 53 out of 1000 simulations reject

the null hypothesis, so the Type I error for rule 2 is 0.053. The two rules are more

conservative requiring no more than 40 or 47 bootstraps with larger LRT statistics,

compared with standard rule that requires no more than 50 bootstraps out of 1000.

When applying rule 1, the average number of bootstraps is reduced to 173; and the

average number of bootstraps is 178 when applying rule 2.

Given the data are simulated under the alternative hypothesis, the average num-

ber of bootstraps among these 1000 simulations is 839 when apply the early stopping

rule in favor of the null hypothesis. This means with this early stopping rule, we

reduce our computational time by approximately 16%.

When applying rule 1, 730 out of 1000 simulations reject the null hypothesis, so

the power for rule 1 is 0.730; when applying rule 2, 728 out of 1000 simulations reject

the null hypothesis, so the power for rule 2 is 0.728. The difference between these

values is due to 23 simulations, summarized in Table 5.1.

For example, based on results of all 1,000 bootstraps in simulations 2, 9, and 10,
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Table 5.1: 23 simulation results with contradictory conclusions based on early stop-
ping rules and 1000 bootstraps

ID
Number of larger LRT statistics within first N* bootstraps

Rule 1 Rule 2
1000

200 400 600 800 1000 Bootstraps
1 7 18 27 40 51 1 0 0
2 6 17 32 45 51 1 1 0
3 10 18 23 33 44 0 1 1
4 3 13 31 38 51 1 1 0
5 10 19 28 42 48 0 0 1
6 10 20 30 38 41 0 1 1
7 11 19 29 36 43 0 1 1
8 7 16 28 42 51 1 0 0
9 4 15 27 34 51 1 1 0
10 6 25 35 45 51 1 1 0
11 12 23 31 36 48 0 0 1
12 8 24 38 47 51 1 0 0
13 12 25 29 37 48 0 0 1
14 8 30 45 51 51 1 0 0
15 8 28 46 51 51 1 0 0
16 13 22 31 39 48 0 0 1
17 7 20 34 46 51 1 0 0
18 12 21 27 36 44 0 1 1
19 7 19 30 43 51 1 0 0
20 9 15 25 46 51 1 1 0
21 7 17 34 44 51 1 0 0
22 10 22 31 40 43 0 1 1
23 13 19 27 37 45 0 1 1

one would have failed to reject the null hypothesis. However, when applying the two

early stopping rules, one would stop early and reject the null hypothesis. In contrast,

the 1,000 bootstraps in simulations 5 and 11 support the alternative hypothesis, while

with these two early stopping rules, one would fail to reject the null hypothesis.

When applying rule 1, the average number of bootstraps is reduced to 264, while

the average number of bootstraps is 280 when applying rule 2. Both of the two rules

obviously reduce computational times, but are able to maintain sufficient power.
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5.4 Discussion

In this project, we described the procedure of the bootstrap LRT in the selection

of the number of latent classes in JMLC, and explore the performance of bootstrap

LRT in terms of Type I error and testing power. BIC, the current standard of model

selection in the number of latent classes, tends to select a more complex model with

more latent classes. Compared with BIC, bootstrap LRT controls well the Type I

error, and maintain sufficient power.

BIC adds a penalty term for the number of parameters in the model, k, to the

negative log-likelihood. Thus, the difference of BICs between two nested models

equals the LRT statistic, minus a value c which only depends on the difference of

the numbers of parameters in the two models and the sample size n, as shown in

Equation 5.7:

BIC(M0)−BIC(M1) = 2[log(lM1)− log(lM0)]− log(n)[kM1 − kM0 ] (5.7)

Bootstrap method find an empirical threshold, l∗, for LRT statistics that if the ob-

served LRT statistic is above l∗, one will reject the null hypothesis. According to

Equation 5.7, the bootstrap process is equivalent to selecting the richer model M1

if the difference of BICs between the two model M0 and M1 is larger than l∗ + c.

Thus, one model is selected if the difference of BICs between two models exceeds a

threshold. However, in practice, we do not know this threshold.

In order to make a robust selection of the number of latent classes, one needs to

choose a sufficiently large B, which leads to the computational burden of bootstrap

LRT. In our project, we propose two candidate early stopping rules in favor of the

alternative hypothesis that can adaptively reduce the number of bootstraps. These
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two rules examine the results of every 200 bootstraps, and will terminate the boot-

strap process if there is already enough evidence to reject the null hypothesis given

available bootstraps. The simulation results suggest that these two rules will not

cause dramatic power loss, but save the computation times significantly.

In contrast to the early stopping rule in favor of the null hypothesis, which as-

sesses the bootstraps results whenever a new bootstrap is generated, these two rules

only examine the bootstrap results when every additional 200 bootstraps are avail-

able. This is because the early stopping rule in favor of the null hypothesis does

not change the Type I error or power. The two early stopping rules in favor of the

alternative hypothesis, however, might change the Type I error and the power of the

bootstrap process. Without careful correction of the Type I error at each assessment,

multiple testing will inflate the overall Type I error. The upper bounds used with

1,000 bootstraps in our two rules are set to be 40 and 47, respectively, to control

for the overall Type I error. One could always change these rules, for example, by

assessing the bootstrap results whenever an additional 100 bootstraps are available.

In an extreme example, Nylund et al. (2007) drew conclusions using only the first

two or three bootstraps. In our project, we propose to assess the bootstrap results

with every 200 bootstraps to balance the computational time and the reliability of

the results. Conclusions drawn with too few bootstraps are questionable due to ran-

domness, while too many bootstraps will harm our goal of saving computational time.

The two early stopping rules we proposed in Section 5.2.3 are two examples that

reach a good balance between adequate power and manageable computation time.

More specifically, we do not lose too much power due to multiple assessments, but

can save considerable computation time. With a targeted overall Type I error and a

fixed maximum number of bootstraps B, one could construct his/her own early stop-
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ping rules in favor of the alternative hypothesis. One could update his/her decision

when every additional Bm bootstraps are available, and evaluate the results with a

customized upper limit list (U1, U2, · · · ).

In practice, we might not have one specific pair of numbers of latent classes, J0

and J1, to test, but rather an ordered sequence of candidate values J0, J1, · · · , Jmax,

where Jmax is the maximum possible number of latent classes. Schlattmann and

Böhning (1993) described a backward selection process, where they failed to reject

the first hypothesis H0 : J = 4 vs. H1 : J = 5 but rejected the second one H0 : J = 3

vs. H1 : J = 4, both at an α-level at 0.05. Karlis and Xekalaki (1999), in contrast,

proposed a forward selection process. Here we describe how to select the number of

latent classes through a sequential testing process, while correcting for overall Type

I error.

If there is no prior information on the number of latent classes, we usually start

with the assumption of homogeneous samples (J0 = 1), testing this hypothesis against

a mixture distribution of two components (J1 = 2). If there is enough evidence to

reject the null hypothesis, we would move on to test two components against three,

then three against four, and so forth. We would stop the first time we fail to re-

ject H0 : J0 and conclude that there are J0 latent classes in the population. In our

aGVHD setting, patients are from at least two latent classes, the aGVHD-free class

and aGVHD class, so we would start with H0 : J0 = 2.

In this sequential testing process, we need to control the overall Type I error.

Many sequential testing methods have been proposed and widely applied. For ex-

ample, the study by Schlattmann and Böhning (1993) discussed the limitations of

Bonferroni adjustment, which are the dramatic loss of power and inconsistent esti-
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mation of proportions of subgroups. Another method, the alpha-spending function

proposed by Demets and Lan (1994), which is widely used in interim analysis in clin-

ical trials.Similar work has been done in detecting the change point in proportional

hazard models (Goodman et al., 2011; He et al., 2013), and we adopt their alpha-

spending function.

Goodman et al. (2011) gave a brief proof of why their method can control the

overall Type I error . A more detailed proof of Type I error control in aGVHD set-

ting can be found in the Appendix A.2.

If the overall significance level is α, we will use an alpha-spending function α∗(m) =

α/2m−2, where α∗(m) is the significance level for hypothesis test: H0 : J = m vs.

H1 : J = m + 1. Thus, if we start with testing H0 : J = 2 vs. H1 : J = 3, we

will use the significance level of 0.05; if we reject the null hypothesis and move on to

test H0 : J = 3 vs. H1 : J = 4, we will use the new significance level of 0.025, and

so forth. In other words, each hypothesis will be tested under a more conservative

significance level than the previous hypothesis.

It is worth noting that one major advantage of this alpha-spending function is

that its calculation does not require setting the upper bound of the number of latent

classes. As long as the data present enough evidence to reject the null hypothesis,

one could continue testing the next consecutive pair of the numbers of latent classes.
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CHAPTER VI

Summary

In this dissertation, we build three prediction tools to dynamically predict the

onset of aGVHD with longitudinal biomarkers. Our approaches have the ability to

identify subgroups of various risk, and refine the aGVHD prediction whenever a new

biomarker observation is available.

We have contributed to the existing literature on the application and model se-

lection of JMLC. Our bootstrap method in selecting the number of latent classes has

been proved to be more robust than the standard information-based criteria. It has

been demonstrated that our method controls the Type I error well while maintaining

sufficient power. We have also proposed two sequential early stopping rules, which

can save around 80% of the computational time.

We have proposed a revised landmark analysis, which uses all the information up

to the landmark time to identify the subgroups of aGVHD risk. In contrast to the

standard landmark analysis which uses only the biomarker observation at the land-

mark time, our approach can alleviate the effect of the measure error and provide

more efficient aGVHD prediction.
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We have also explored the performance of the pattern mixture model in our set-

tings. The pattern mixture model is easy to execute and straightforward to interpret.

Simulations have indicated that the pattern mixture model controls loss of accuracy

in predictions. Moreover, we have generalized the pattern mixture model by incorpo-

rating censored cases. The simulation results have demonstrated that this generalized

pattern mixture model results in more accurate estimations of the marginal pattern

probability, and thus achieves higher prediction accuracy compared to the complete-

case analysis of early predictions.

We have discussed the future work for each project in the corresponding discussion

section for each chapter. Furthermore, we are also planning to develop a user-friendly

application to allow better bench-to-bedside translational statistical tools.
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APPENDIX A

Bootstrap Likelihood Ratio Test: Type I Error

A.1 Type I error of the adaptive early stopping rule

When the null hypothesis is true, the p-value of the LRT test follows a uniform

distribution in [0, 1], which is equivalent to a Beta distribution B(1, 1). Under the null

hypothesis, the probability of observing no more than N1 bootstrap LRT statistics

larger than the observed one among the first 200 bootstraps is:

Pr

(
200∑
k=1

I(LRobs ≤ LRk
sim) ≤ N1|H0

)
=

1∫
0

N1∑
l=0

(
200

l

)
pl(1− p)200−ldp

=

N1∑
l=0

200!

l!(200− l)!
Γ(l + 1)Γ(201− l)

Γ(202)

=

N1∑
l=0

1/201

=
N1 + 1

201

Under the null hypothesis, the probability of observing more than N1 larger boot-

strap LRT statistics with the first 200 bootstraps, but no more than N2 within the
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first 400 bootstraps is:

Pr

(
200∑
k=1

I(LRobs ≤ LRk
sim) > N1,

400∑
k=1

I(LRobs ≤ LRk
sim) ≤ N2|H0

)

=

1∫
0

N2∑
l=N1+1

(
200

l

)
pl(1− p)200−l[

N2−l∑
m=0

(
200

m

)
pm(1− p)200−m]dp

=

N2∑
l=N1+1

N2−l∑
m=0

(
200

l

)(
200

m

) 1∫
0

pl+m(1− p)400−l−mdp

=

N2∑
l=N1+1

N2−l∑
m=0

200!300!

501!

(l +m)!(400− l −m)!

l!m!(200− l)!(200−m)!

Similarly, we can derive the formula to calculate the probability of observing more

than (N1, N2, · · · , Nq) larger bootstrap LRT statistics with the first (B1, B2, · · · , Bq)

bootstraps, respectively, but no more than Nq+1 within the first Bq+1 bootstraps.

With appropriate choice of (N1, N2, · · · ) together with (B1, B2, · · · ), one can design

the early stopping rule that controls the overall Type I error.

For example, with the early stopping rule 1 introduced in Section 5.2.3, that one

will stop the bootstrap LRT process and conclude that one has rejected the null

hypothesis if there are no more than eight bootstraps within the first 200 bootstraps

having larger LRT statistics than the observed one. If one fails to reject the null

hypothesis, he will continue and revisit the bootstraps LRT statistics at the 400th

bootstrap. Here we will calculate the Type I error of the early stopping rule 1: (200,8),
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(400, 17), (600, 22), (800, 30), (1000, 40).

Pr

(
200∑
k=1

I(LRobs ≤ LRk
sim) ≤ 8|H0

)
= 0.044776

Pr

(
200∑
k=1

I(LRobs ≤ LRk
sim) > 8,

400∑
k=1

I(LRobs ≤ LRk
sim) ≤ 17|H0

)
= 0.004114

Pr

(
200∑
k=1

I(LRobs ≤ LRk
sim) > 8, · · · ,

600∑
k=1

I(LRobs ≤ LRk
sim) ≤ 22|H0

)
= 0.000163

Pr

(
200∑
k=1

I(LRobs ≤ LRk
sim) > 8, · · · ,

800∑
k=1

I(LRobs ≤ LRk
sim) ≤ 30|H0

)
= 0.000314

Pr

(
200∑
k=1

I(LRobs ≤ LRk
sim) > 8, · · · ,

1000∑
k=1

I(LRobs ≤ LRk
sim) ≤ 40|H0

)
= 0.000601

Given these calculation results, the probability of rejecting the null hypothesis when

the null hypothesis is true, is 0.049968, which is controlled under 0.05.

A.2 Overall Type I error control proof

Right now we will prove that the aforementioned sequential significance levels

α∗(m) for m = 1, 2, · · · achieve an overall type 1 error no larger than α. Starting

with no further information of the aGVHD patients, in other words, J = 2, the

probability of reject null hypothesis H0 : J = 2 is:

Pr(Ĵ > 2|J = 2) = Pr(Ĵ = 3, 4, · · · |J = 2)

= Pr(Ĵ = 3|J = 2) + Pr(Ĵ = 4|J = 2) + Pr(Ĵ = 5|J = 2) + · · ·

= α(1− α

2
) + α

α

2
(1− α

4
) + α

α

2

α

4
(1− α

8
) + · · ·

= α−
∞∏
m=1

α

2m−1

≤ α
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Similarly, if the null hypothesis J = m is true, then the probability of reject null hy-

pothesis is definitely smaller than α. So the overall Type I error in the aforementioned

sequential testing process is bounded by α.
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