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ABSTRACT

The engineering of nano-scale thermal transport mechanisms in a material can

strongly influence its macro-scale behavior, with important implications for many

thermal management applications. Atomistic computational methods in which the

motion of individual atoms can be tracked offer a powerful means to study these

mechanisms in circumstances for which performing experiments is challenging or im-

practical.

In this thesis, we first apply computational methods to study nano-scale heat

transfer at strained interfaces between crystalline semiconductor structures. Such

interfaces are important because of their applications in strained silicon transistors,

thermoelectric materials, and lattice-mismatched epitaxial structures that are impor-

tant for emerging applications (e.g., GaN on silicon). The strain at the interface

disturbs the local lattice structure, which in turn alters phonon properties. We find

that interfacial bonds between silicon and germanium atoms in a superlattice struc-

ture can introduce new vibrational modes in the system that reduce the interface

thermal boundary resistance.

We then examine the relationships between bonding and thermal properties in

the context of polymer chains, where inefficient inter-chain thermal coupling presents

a bottleneck to macro-scale heat transfer. We consider various bonding/interaction

types including covalent bonds, vdW and electrostatic interactions, and ionic inter-

actions. We find that non-bonding interactions can have a significant impact on heat

transfer in crosslinked polymers. For example, short crosslinkers can bring chains

closer to each other and thereby increase inter-chain thermal conductance by non-

bonding interactions. The understanding we gain by computational analysis is shown

xiii



to resolve literature discrepancies regarding the effects of crosslinkers on heat transfer

in polymers.

Finally, we develop a machine learning framework to compute the complex under-

lying relationships between a materials basic physical properties (e.g., lattice struc-

ture), its local environmental properties (e.g., temperature), and its thermal prop-

erties. Our results show a ∼five-fold reduction in simulation time versus current

methods such as molecular dynamics or density functional theory. We also show how

physical rules may be encoded in this and similar algorithms for materials property

prediction such that the algorithm is not allowed to explore function spaces where

physical rules do not hold. This inclusion of physical rules in the algorithm reduces

the amount of data needed to train the algorithm, with broad applicability to ma-

chine learning of other material properties for which the feature size is large relative

to available training data. These finding and models could pave the way toward more

rapid design of engineered materials with desired thermal, mechanical, and electrical

properties.
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CHAPTER I

Background on Nano-scale Heat Transfer

The past few decades have been very fruitful for several industries, in particular for

the electronics industry and the polymer industry. Evidence for this can be seen in the

development of powerful computer processors based on nano-size silicon transistors

that can handle computations up to several Gigahertz (GHz). However, in areas such

as silicon electronics, advances are becoming increasingly difficult because of material

limitations and design challenges. High power density in small-scale devices is one

of these challenges that leads to high device temperatures [110, 127]. High device

temperatures due to Joule heating that results from electrical currents in devices such

as transistors and light emitters is a significant roadblock to further size reduction,

performance improvement, reliability, and energy efficiency. In order to overcome

these challenges, understanding the heat transfer mechanisms at different length-

scales and materials is crucially important. This understanding will help us to design

advanced materials with desired properties to tackle these challenges. These advanced

materials could take the form of either completely unprecedented materials or an

engineered form of already existing materials.

Macro-scale heat transfer in materials happens through three different mecha-

nisms, namely, conduction, convection, and radiation. First, convective heat transfer

is the transport of energy through transport of bulk quantities of material. Second,

1



radiation is heat transfer though electromagnetic waves excited from the materials at

temperatures above absolute zero Kelvin. Third, conduction is transport of energy

through vibration of atoms around their equilibrium position or the movement of

electrons in the material [61].

Conduction is the main heat transfer mechanism in electronic devices and most of

materials in solid state at relatively low temperatures ( 300K). Thermal conductivity

is a material property that measures the rate of heat conduction in the material.

The most widely used equation to model 1D macro-scale conduction using thermal

conductivity is known as Fourier’s law of conduction (Equation 1.1) [61].

Q = k
dT

dx
(1.1)

where Q is the heat flux through the material, k is thermal conductivity of the

material, T is the temperature, and x is the longitudinal dimension.

Although this equation is very useful for macro-scale conduction, it breaks down

for nano-scale conduction regimes, where the medium may not be considered contin-

uous and thermal transport mechanisms transition to ballistic rather than diffusive.

An example of this break down is in silicon nanowires [134] or single chain polymers

[133], where the length of the wire becomes comparable to the mean free path of

phonons, wave like motion of atoms around their equilibrium positions. Thus, un-

derstanding the nano-size effects on heat transfer in materials becomes increasingly

important for nano-engineering of materials for electronic devices.

Two major classes of electronic devices can be defined: those based on crys-

talline semiconductors that form covalent bonds between their atoms (e.g., silicon,

germanium, and gallium arsenide), and those based on organic semiconductors (e.g.,

conducting polymers and small-molecules). Each of these classes of devices has its

own thermal challenges. Inorganic semiconductor materials typically have relatively

high thermal conductivity. Thus, devices made of inorganic semiconductors are often

2



capable of operating at high powers and/or high frequencies [119]. These devices

usually have at least one nano-size dimension. In general, as the size of devices gets

smaller, the heat flux (heat transfer per area) through them gets larger, which leads

to high temperatures. Additionally, many of these devices include complex hetero-

structures in which numerous layers are sandwiched together, leading to numerous

interfaces [171]. This large number of interfaces could lead to a large net thermal re-

sistance. On the other hand, polymers (usually used for low power and low frequency

applications) suffer from an inherently low thermal conductivity. Most polymers have

a thermal conductivity on the order of 0.1 W/mK [60, 78]. This low thermal con-

ductivity has limited their applications in certain areas. A enhancement in thermal

conductivity of certain polymers could improve their application in plastics industry

[202] and photovoltaic applications [55].

In this thesis, numerical methods are used to study nano-scale heat transfer in

materials in order to better understand heat transfer at the interface of crystalline

semiconductor materials as well as heat transfer in polymers. This understanding will

allow us to design high thermal conductivity polymers that can be used in plastics

industry or organic electronic devices. Furthermore, to overcome some of the chal-

lenges associated with time consuming numerical methods used in study of thermal

conductivity, machine learning algorithms are developed as another tool for calculat-

ing thermal properties of materials at a much faster pace. In addition to enabling

us to more rapidly predict material properties, these algorithms allow us to better

understand the relationships between thermal conductivity and other material prop-

erties.

1.1 Nano-scale Heat Transfer and Numerical Methods

Thermal transport plays an important role in the performance of many devices.

For example, as shown in Equation 1.2, the figure of merit (ZT, which shows the
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energy conversion efficiency of the device) of thermoelectric devices, which directly

convert thermal energy to electricity, is inversely related to the thermal conductiv-

ity of a material. This relation shows that to achieve a higher figure of merit for

thermoelectric materials, a lower thermal conductivity is required [80].

ZT =
σS2T

k
(1.2)

where ZT is the figure of merit of the thermoelectric device, σ is the electrical

conductivity of the material, S is the Seebeck coefficient of the material (which is

a measure of the thermoelectric voltage created between two points of a material in

response to a 1K temperature difference imposed between those two points), T is the

temperature at which the device is operating, and finally k is the thermal conductivity

of the thermoelectric material.

Thermal transport impacts the design of other electronic devices. For example,

in electronic switches, the rate of power consumption is related to the following pa-

rameters shown in the equation below [94].

P ∝ CV 2f (1.3)

where P is the power dissipation of the device, C is the capacitance of the switch

that is being turned on and off, V is the voltage at the device, and finally f is the

frequency of switching. Based on Equation 1.3, increasing the switching frequency

will increase the power consumption in the device. This increased power consumption

in turn will lead to a temperature rise in the device that can affect its performance

and reliability. Additionally, heat dissipation in other electronic devices (except light

emitters) follows the following relation:

P = V I (1.4)
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where P is power dissipation, V is voltage of the device, and I is current passing

through the device. Thus, for devices that use high voltages or currents, thermal

management becomes crucially important. Thus, understanding of nano-scale heat

transfer is crucially important for designing these devices for robust operation and

reliability.

Nano-scale conductive heat transfer can be classified into two main categories.

The first category is composed of nano-scale effects that occur due to size reductions

in the materials. This is because for nano-size devices, the mean free path of heat

carriers becomes comparable to length scales of the device. Low thermal conductivity

of silicon/germanium nanowires is an example where nano-structuring of the material

alters the thermal properties [65]. The second category is heat transfer in materials

due to their inherent structure. Most amorphous polymers are an example of such

materials. They inhibit a low thermal conductivity regardless of their size. Figure

1.1 shows the different nano-scale conductive heat transfer occurrences.

In order to study nano-scale heat transfer in materials, several experimental, ana-

lytical, and numerical methods have been developed. Two of the experimental tech-

niques developed to measure nano-scale thermal properties of materials are the three

omega (3ω) method [14] and the time domain thermo-reflectance method (TDTR)

[19, 15]. Although these experimental methods have very valuable applications, they

come with drawbacks such as relatively expensive equipment, a time consuming data

collection process, the inability to measure all of nano-scale properties of materials,

difficulty in separating the effects of different parameters, and more.

Conversely, numerical and analytical methods not only allow us to separate the

effects of different parameters, but also allow us to measure the majority of ma-

terial thermal properties. In addition, numerical methods allow us to test simple

non-physical systems and parameters in order to identify trends and physical insights

faster. Numerical models are also very helpful towards explaining experimental obser-
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(a) Silicon wafer, k∼150 W/mK (b) Plastic container,
k∼0.2W/mK

(c) Silicon thin film with thick-
ness of a few micro meters,
k∼10s of W/mK

(d) Thin film plastic material
(simulated), k∼0.2W/mK

(e) Silicon nanowire,
k<10W/mK

(f) Polymer thin film,
k∼0.2W/mK

Figure 1.1: Areas where nano-effects control heat transfer. Figures on the left side,
show nano-size effects on heat transfer of crystalline silicon due to miniaturization of
the sample. Figures on the right show that thermal conductivity of polymers that
are inherently controlled by their nano-size properties. For these materials regardless
of their size, heat transfer is controlled primarily by their internal structure.
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vations, where access to nano-scale material properties is difficult [132]. For example,

because thermal boundary resistance (TBR) is related to the nano-scale structure of

the materials at their junction, it is difficult to achieve a rigorous understanding of

heat transfer at the junction of materials through fabricated interfaces; this is because

such interfaces have numerous parameters that influence their nano-scale structure,

which are difficult to reliably control experimentally. Some of these parameters in-

clude roughness at the interface, thickness of material slabs, crystalline structure at

the interface, defects at the interface or inside the materials, and the strength of

bonding at the interface. Therefore, computational techniques such as molecular dy-

namics, which are suitable for parametric studies, are helpful to distinguish the effects

of each pertinent parameter.

Although molecular dynamics is the main tool for studying nano-scale heat trans-

fer in this thesis, it should be noted that several analytical models such as the acoustic

mismatch model (AMM) [76] and the diffuse mismatch model (DMM) [163] are also

useful tools to study nano-scale heat transfer phenomena. Since AMM and DMM

give a relatively simple view of heat transfer at the interface, a short description is

provided below followed by a detailed description of the molecular dynamics method.

1.1.1 Acoustic Mismatch Model and Diffuse Mismatch Model

As previously stated, phonons, are the main heat carriers in dielectric materials.

When two dielectric materials come in contact, because of the difference between

their phonon spectra, heat carriers face a thermal resistance at the junction of mate-

rials. Thus, the interface will not fully transmit all of the phonons that are traveling

through the materials. AMM [76] and DMM [163] have been developed to model

heat transfer at the interface and calculate the amount of thermal boundary conduc-

tance. The AMM model assumes that transmission of phonons at the interface follows

a specular reflection model. While this assumption is reasonable for low frequency
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phonons, it breaks down for high frequency phonons [163]. This divergence from the

specular reflection model happens because in the case of high frequency phonons, the

wavelength of traveling phonons is close to the atomic spacing in the materials, and

thus the assumption of a continuum is no longer valid [163]. DMM was developed

to capture this shortcoming of AMM. Instead of a fully specular transmission model,

DMM assumes that the probability of transmission for a phonon at the interface is

related to the relative density of that phonon in the two materials that constitute the

junction [163]. Figure 1.2 shows the difference in how AMM and DMM models treat

a phonon that reaches the interface. More detailed description of these models are

reported in [163, 76, 135]

(a)

(b)

Figure 1.2: Figure 1.2(a) shows the possible results that the AMM can predict once a
phonon reaches the interface. Figure 1.2(b) shows the possible results that the DMM
predicts for a phonon that incidents on the interface. The probability of reflection or
transmission in DMM depends on the density of that phonon in the two materials.
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1.1.2 Molecular Dynamics

The all-atom molecular dynamics method is a simulation technique in which the

constituent atoms of a system are explicitly modeled with properties such as mass

and Coulombic charge. These atoms are then arranged in a structure that closely

represents the physical morphology of the material. Figure 1.3 is an example of atoms

arranged in an MD simulation to represent a single polymer chain. Each sphere is an

atom and the bonds between the atoms are shown as cylinders.

Figure 1.3: A schematic view of a polymer chain modeled using molecular dynamics.
Atoms in MD simulations are considered point masses, as shown in the figure with
the spheres. Covalent bonds between the atoms are shown as cylinders. The bubbles
around the atoms show the radius of effectiveness of their non-bonding interactions.

Molecular dynamics is based on classical physics. This means that the movement

of particles in the simulation follows Newton’s laws of motion. Equation 1.5) shows

the second law of Newton used to model the motion of atoms.

~F = m~a (1.5)

where F is the net force vector acting on a particle, m is the mass of the particle,

and a is the acceleration vector of the particle. Additionally, in molecular dynam-

ics, the entire structure of an atom is modeled as a single point mass. Thus, the

electronic structure of the atoms is not explicitly modeled in this thesis; the angu-

lar momentum of individual atoms is zero. This simplification helps us to simulate

systems faster than through density functional theory, where all or part of the elec-
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tronic structure is modeled. However, this simplification will limit the applicability of

molecular dynamics. For example, molecular dynamics will not be able to calculate

the phonon-electron scattering in electrically conductive materials. For such cases,

density functional theory methods that model the electronic structure and hence elec-

tron transport in the system are suitable. Materials studied in this thesis are mostly

dielectrics and pure semiconductors, which do not possess a high electrical conduc-

tivity, thus contributions of electrons to heat transfer are negligible [134, 133]. After

defining the atoms in the simulation, we need to introduce the interatomic interac-

tions between them. The definition of these interactions is done through a numerical

model, commonly known as a force field.

There are many force fields that are developed for different material classes in

different conditions. Usually force fields are designed such that they can reproduce

certain material properties that are acquired through experiments. In this thesis, the

details of force fields and the equations that describe them are detailed in Appendix A.

After defining the interatomic interactions, the differential equations that govern the

dynamics of the system are solved using numerical methods. In this thesis, velocity

verlet, which is a reversible integration method, is used to solve the equations of

motion of the atoms. More details about this algorithm and its derivation can be

found here [164]. After proper integration of equations of motion, the trajectory of

atoms over time is acquired. This trajectory can be analyzed to get useful material

properties. For example, the thermal conductivity of materials can be calculated by

analyzing these atomic trajectories.

As described above, molecular dynamics has the capability to capture the motion

of atoms, and thereby provide valuable insights about heat transfer in the materials.

Unlike AMM and DMM, molecular dynamics makes no special assumptions about

the phonon transport at the interface and is able to capture anharmonic effects near

the interface. Additionally, molecular dynamics is able to calculate the strain field
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in the material and the strain relaxation length near the interface. Additionally, for

more complicated systems such as polymers, molecular dynamics can distinguish the

effects of each pertinent parameter and for that reason it is used in this thesis to study

heat transfer in polymers. However, the time consuming process of simulations, lack

of available force fields for all of the materials, and the difficult process of gaining

insight from large amounts of data that are created during the simulation, are some

practical drawbacks of molecular dynamics and other numerical methods such as

density functional theory.

In order to address some of these drawbacks, data driven methods such as ma-

chine learning have shown promising results [67, 123, 160, 209, 140, 178, 34, 129, 50,

109, 124, 193, 20, 10, 36, 12]. Machine learning based force fields are an example

of recent efforts to overcome these challenges [67, 36, 12]. In this thesis, machine

learning algorithms have been developed to more rapidly predict the thermal prop-

erties of materials. The algorithms are custom designed for predictions of thermal

properties with physical rules encoded in them such that function spaces that lead

to non-physical results are avoided. A more detailed description of machine learning

algorithms is provided in chapter IV.

1.2 Outline of this Thesis

This thesis is ordered in the following manner:

Chapter 2 discusses the effects of strain and interface bonds between silicon and

germanium in semiconducting hetero-structures and superlattices. The strain in

hetero-structures happens due to the lattice mismatch between the materials. This

strain disturbs the atomic order of the materials at the interface and hence affects the

phonon transport at the interface of the two materials. First, the strain relaxation

length near the interface is calculated using molecular dynamics methods. Then,

the effect of this relaxed strain on heat transfer of the structure is compared with
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the effects of uniform strain, i.e. non-relaxed strain, throughout the material. In

addition, the effects of formation of silicon-germanium bonds at the interface are

studied. The results show that for superlattices at very small period lengths, where

the density of interface bonds is significantly increased, thermal conductivity of the

interface increases. Our phonon density of states analysis confirms formation of strong

vibrational peaks in the material that do not belong to either pure silicon or pure

germanium. The density of these modes gets stronger as the density of the inter-

face bonds increases. These new vibrational modes provide a new channel for heat

transfer in the superlattice and hence they reduce the thermal boundary resistance

at the interface of materials at small period lengths. These findings could be used to

engineer materials thermal properties through controlling the interface bonds.

Chapter 3 provides the results for the effects of different bondings between the

polymer chains on heat transfer in polymers. First, thermal conductance between

single polymer chains cross-linked with various cross-linking species is calculated.

The contributions of non-bonding interactions, vdW and electrostatic interactions,

and cross-linker covalent bonds are calculated and compared. The results show that

strong non-bonding interactions have a large impact on heat transfer between the

polymer chains. Thus, short cross-linking agents that bring the chains closer to

each other result in a higher inter-chain thermal conductance. These results help

understand the discrepant results reported in the literature for heat transfer in cross-

linked polymers [78, 87, 167, 189, 190, 75, 114, 195, 84]. Furthermore, wave transport

simulations show that vibrational modes in the presence of non-bonding interactions

travel significantly faster in polymer chains compared to the case where only covalent

bonds transfer the wave. This higher propagation velocity in the presence of non-

bonding interactions is due to the long-range nature of these interactions compared

to covalent bonds. For example, in a coiled polymer chain, the phonon has to travel

through all of the covalent bonds in the backbone of the polymer to get transferred
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from one end of the chain to the other. However, vdW and electrostatic interactions

between atoms at the two ends of the chain can transfer heat both directly and

through the backbone atoms. Thus, to design cross-linked polymers with the desired

thermal properties, the length of the cross-linker should be considered as one of the

most important factors along with other factors that are discussed in chapter 3 such

as: the strength of the non-bonding interactions, the number of atoms in the monomer

of the polymer, and the side chain size of the polymers.

In addition to the effects of covalent, vdW, and electrostatic interactions, the

effects of ionic bonds between the polymer chains and sodium ions are reported in

chapter 3. Near double enhancement in thermal conductivity of the polymer is ob-

served upon formation of ionic bonds. The analysis shows that the polymer chains are

stretched in the presence of ionic bonds and the density of the polymer is increased.

Both of these effects contribute to enhanced thermal conductivity of the polymer

system with ionic bonds.

Chapter 4 provides a new numerical method to predict the thermal conductivities

of materials using machine learning algorithms. In this method, physical rules are

encoded in the machine learning algorithm. The implementation of these physical

rules prohibits the algorithm from exploring certain non-physical function spaces that

are known a priori would break physical rules. For example, for prediction of phonon

lifetimes, a strictly non-negative constraint must be implemented in the algorithm

such that the algorithm would not be able to predict a negative value for phonon

lifetime.

Chapter 5 provides concluding remarks and future work directions that can be

derived from this thesis.
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CHAPTER II

Contributions of Interface Bonds and Strain

Relaxation Length to Thermal Transport in

Hetero-structures

2.1 Introduction

Silicon and germanium are two commonly used materials in electronic devices. As

mentioned in the previous section, heat transfer in crystalline silicon and germanium

is highly affected when sample size is reduced to micro or nano-meter ranges [134].

Additionally, when two materials come in contact, the very narrow interface region

between the two materials, can affect the rate of heat transfer in the structure. The

formation of a junction at the interface of the two materials can also introduce strain

in the constituent materials of the structure, which may have significant impact on

thermal, electrical, and mechanical properties of the structure.

Recently, engineering strain in the lattice structure of materials has been used to

enhance the electron mobility in devices (e.g., strained-silicon transistors) [6]. An-

other example of strain engineering applications is through integrating heterogeneous

materials with different lattice constants, such as GaN-based devices on silicon sub-

strates [28]. In addition to the previous devices, thermal management in superlattices,

which are made of periodic hetero-structures, becomes important due to the numer-
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ous interfaces that these devices have. Superlattices have a wide range of applications

in thermoelectric devices [175], semiconductor lasers [18, 169], and transistors [4]. For

example, in the previous section, we show that thermal conductivity of thermoelectric

devices is a fundamental parameter in controlling their operations.

Generally, thermal conductivity of superlattices made of dissimilar materials re-

duces as the period length of the superlattice decreases. This is believed to be due

to an increase in the number of interfaces for shorter period lengths [69]. However,

a few studies have reported an increase in the thermal conductivity for superlattices

with very short period lengths. This increase in thermal conductivity for short period

lengths has been attributed to phonon coherence in the structure [65, 26]. However,

in addition to phonon coherence effects, there may be other factors that contribute to

the increased thermal conductivity at the short period lengths. One of these factors

is a more uniform lattice structure at small period lengths. Mismatch between the

lattice sizes of epitaxial structures creates residual strain in the structure that is at

the maximum size at the junction of the two materials, and relaxes away from the

junction [11]. The effects of this strain on optical [158, 77, 120] and electrical [181]

properties of materials have been previously studied. Due to the changes in spacing

between the atoms caused by strain,, the vibrational spectrum of materials is affected,

and the thermal properties of hetero-structures may also be affected. Previous studies

have examined the impact of strain and stress on heat transfer in bulk materials and

interfaces [203, 191, 187]. For example, thermal conductivity of silicon decreased by a

factor of ∼0.82, when an isotropic tensile strain of ∼3% was imposed on the material

[90]. On the other hand, both experimental and numerical studies have shown that

applying compressive stress on interfaces can increase the thermal conductance of

the structure [64, 154]. For superlattices with a period length that is shorter than

the strain relaxation length, the strain in the structure does not fully relax. This

strain leads to a more uniform lattice structure, which potentially could reduce the
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phonon scattering, since phonons experience less variation in acoustic impedance of

the two materials. Furthermore, as the number of interfaces increases, the density of

interfacial bonds between the two materials in the structure increases. These inter-

facial bonds introduce new interfacial vibrational modes in the structure (which may

have vibrational characteristics intermediate between those of the superlattices two

constituent materials). These new vibrational modes are expected to play a role in

heat transfer in superlattices by providing additional channels for phonon transport

at the interfaces.

In this chapter we assess the effects of variable strain and increased density of

interface bonds on heat transfer in hetero-structures and superlattices. First, we use

an energy minimization process in order to accurately calculate the strain relaxation

in materials. Next, we use molecular dynamics simulations to predict thermal prop-

erties of the structures. The strain relaxation lengths calculated here through energy

minimization process is in good agreement with previous experimental results. Ad-

ditionally, we calculate the phonon density of states (PDOS) for the materials in the

superlattice. This analysis allows us to compare the differences in the PDOS of su-

perlattices with various period lengths, thereby allowing us to study the contributions

of interfacial bonds on heat transfer in the structure. More information is provided

in article [134].

2.2 Simulation Technique

In order to calculate the thermal conductivity of materials in MD, there are two

main methods. The first method is equilibrium molecular dynamics (EMD), which

is based on the Green-Kubo formalism [42]. The Green-Kubo method allows us

to calculate thermal conductivity of materials in three directions during only one

simulation. The second method is non-equilibrium molecular dynamics (NEMD),

which is a direct method to calculate thermal conductivity. The algorithm to calculate
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thermal conductivity using NEMD is similar to experimental techniques, where a

temperature gradient is measured across the material, while a heat flux is applied

to the material. NEMD allows us to calculate thermal conductivity of the material

in a single direction during each simulation. The governing equation of Green-Kubo

method [42] is shown in Equation 2.1.

k =
1

3V kbT 2

t∫
0

< J(0).J(t) >dt (2.1)

where k is thermal conductivity of material, V is volume, kb is the Boltzmann con-

stant, T is the temperature of the system, J is the heat flux, and < . > denotes the

autocorrelation function. The amount of heat flux in the system is related to the

movement and position of atoms in the system. Non-equilibrium molecular dynam-

ics is commonly used for thermal transport calculations in one to three dimensional

systems [134, 143, 100, 197, 96, 200, 174, 9, 25, 173, 136, 154, 205]. As previously

mentioned, in this method, a temperature gradient is created across the material.

Subsequently, thermal conductance (TC) in the material is calculated using Fourier’s

law of conduction as described in Equation 2.2 [96, 134, 143, 188, 192].

In this chapter, we use a non-equilibrium molecular dynamics (NEMD) technique

[105]. The Stillinger-Weber (SW) force field [162] is used to introduce the inter-

atomic interactions between the atoms. The initial location of atoms is set such

that a piecewise constant strain field is created in both materials, similar to previous

studies [87, 22]. We use non-periodic boundary conditions in all directions to model

thermal transport in nanorod structures. Additionally, this boundary condition allows

the strain to relax in the system. In order to relax the strain, a steepest descent (SD)

energy minimization technique is used before the dynamic simulations. The criteria

used to stop energy minimization is when either the normalized change of the potential

energy of the entire system is less than 10−12 or the change in the total force vector is
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less than 10−12 (Kcal/molÅ). We fix the four most-outward layers of atoms in place to

prevent the atoms sublimating into a vacuum during dynamic simulation. We use a

time step of one femtosecond [65] to capture the fastest atomic motions in the system.

In order to thermalize the system, we first use a Langevin thermostat [145]. We start

the thermal relaxation process by first setting the temperature to 5 K for 0.1 ns.

Next, we increase the temperature to 50 K for 0.2 ns. Then, we set the temperature

to 500 K for 0.7 ns. Next, in order to create a temperature gradient, we use an NVE

ensemble (constant number of particles, volume, and energy), while we pump heat

in one end of the system and remove the same amount of heat from the other end.

We let the system evolve for 6.5 ns. After this time, the temperature in the system

has stabilized. Next, we let the system evolve for one more nanosecond, in order to

derive the thermal conductivity and/or thermal boundary resistance (TBR). Figure

2.1 shows a schematic of the single junction simulation cell used in this study. The

temperature profile of the system is averaged over the final one nanosecond, which

achieves a good statistical average. We use Fourier’s law to calculate the thermal

boundary resistance, according to the following equation [105]:

TBR =
Q

∆T
(2.2)

where Q is the heat flux passing through the interface, and ∆T is the difference

between the temperature of materials at the interface.

Previous studies on heat transfer in multilayer or two layer hetero-junctions with

considerable lattice mismatch have not fully considered the strain relaxation length

effects on thermal transport [87, 22, 208]. Since strain changes the lattice structure of

the material, considering the lattice variation could be crucial for calculating optical,

thermal, or electrical properties. Usually, for molecular dynamics (MD) simulations, a

piece-wise constant strain is considered for both materials in contact. The downside

of using a piece-wise strain across the two materials is that the effects of varying

18



Figure 2.1: A schematic view of a single junction hetero-structure simulation cell used
in this study

material properties such as phonons, which may significantly impact heat transfer,

are ignored.

In order to calculate the strain in our simulations, at each time step, we calculate

the position of the center of mass of each atomic layer. Next, we calculate the change

in distance between the center of mass of the two adjacent layers. In order to calculate

the strain, we compare this change in distance with respect to the interlayer distance

of the pure materials at room temperature. The following equation is used to calculate

the strain (Eq. 2.3).

εx,mn =
(
∑

(xm,i)−
∑

(xn,j)

(y∗z∗2) )

SL
(2.3)

where εx,mn is the strain in the x direction between adjacent layers m and n ,

y and z are the number of cross sectional atomic unit cells, i and j are the atom

numbers in the m and n layers respectively. SL represents the distance between the

two layers in the pure material at room temperature.

So as to verify the accuracy of our simulations and the force field used, we calculate

the lattice constants and thermal conductivities of pure silicon and germanium. For

these simulations, we use periodic boundary conditions, and the Green-Kubo method

[42, 105] to calculate the thermal conductivities. We average 21 calculations. The

results are shown in Tables 2.1 and 2.2. Our results are in good agreement with
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literature values [5, 90, 150]. All MD simulations have been done using the LAMMPS

(http://lammps.sandia.gov) package [125].

Table 2.1: Calculation of silicon and germanium lattice constants in order to verify
the validity of the force field and simulation method.

Material Lattice Constant (Å)

Silicon 5.433
Germanium 5.655

Table 2.2: Calculation of silicon and germanium thermal conductivities in order to
verify the validity of the force field and simulation method.

Material Thermal Conductivity (W/mK)

Silicon 107±32
Germanium 59±12

2.3 Results and Discussions

We calculate the strain relaxation in a single Si/Ge hetero-junction. Next, we

study the effects of this strain relaxation on interfacial heat transfer. Finally, we

examine the effects of interface bonds on heat transfer in superlattices. Our simulation

cell for this study consists of 10×10×288 unit cells. The atoms are arranged in the

diamond cubic lattice structure.

2.3.1 Calculation of Relaxed Strain Profile in Si/Ge Bi-layer Structure

We first create hetero-structures with piece-wise constant strain in the materials.

Next, we use an energy minimization step to relax the strain in the material prior

to dynamical simulation. The initial piece-wise constant strain profile used here is

similar to previous studies [87, 22], and is in the direction parallel to the interface.

After minimizing the potential energy of the system, we observe that most of the strain

relaxes in a few nano-meters away from the interface (∼2 nm). Figure 2.2 shows the
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Figure 2.2: Strain profile in the direction parallel to the interface during strain relax-
ation process as a function of time during the process.

the strain profile in the material as a function of time as the algorithm approaches

the minimum in potential energy. Our strain relaxation length at the junction is

in good agreement with previous experimental results [11, 182]. This relaxed strain

profile could be used to study mechanical, optical, electrical, and thermal properties

of Si/Ge hetero-junctions.

2.3.2 Effects of Strain Relaxation on TBR

Due to the change in the material and strain at the interface of the two materials,

we anticipate a high rate of phonon scattering near the interface of the two materials.

This high rate of scattering leads to a thermal boundary resistance at the interface

of the two materials. In order to study this effect, after the systems described in the

previous section reach equilibrium, we use NEMD to study TBR at the interface of

materials. TBR is calculated using Equation 2.2. We simulate TBR in systems with

constant piece-wise strain profile and relaxed strain profile. The results for TBR for

these two different strain conditions are shown in Table 2.3. We observed that the
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TBR values calculated for both strain conditions do not have a significant difference.

This observation suggests that TBR values are mostly affected by the lattice proper-

ties near the interface and not the lattice strain relaxation length. We believe that

the slightly higher TBR values for the systems with relaxed strain conditions are due

to higher rates of phonon scattering near the interface of the two materials. This is

because of the sharp transition of the lattice structure at the interface.

Table 2.3: Calculations of TBR at different temperatures for different strain condi-
tions

Strain and Temperature Conditions TBR (W/m2K)

Piecewise constant strain (600K) (2.85±0.02)e-9
Relaxed strain (600K) (2.96±0.13)e-9

Piecewise constant strain (500K) (2.91±0.09)e-9
Relaxed strain (500K) (3.07±0.17)e-9

Piecewise constant strain (300K) (3.62±0.05)e-9
Relaxed strain (300K) (3.77±0.09)e-9

Since literature values for TBR at the interface of hetero-junction nanowires are

not available, we compare the magnitude and the trend of our results with literature

values for TBR between hetero-junction sheets of silicon and germanium [87].

2.3.3 Effects of Strain and Interface Bonds on Thermal Conductivity of

Si/Ge Nano-wire Superlattices

In the previous part, we found that the strain relaxation length in a Si/Ge hetero-

structure is a few nanometers away from the interface. We also showed that TBR at

the interface of the two materials is not significantly affected by the strain far from the

interface. It is interesting to consider the effects of strain relaxation on heat transfer in

superlattices that have a period length on the order of strain relaxation length. These

type of superlattices have potential application in thermoelectric materials [175]. To

study this effect, we model Si/Ge nanorod superlattices of various period lengths with

a total length of ∼160nm. The cross-sectional area of the superlattices is 4.43 nm ×
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Figure 2.3: Calculation of strain profiles in superlattices with different period lengths.
In order to better illustrate the strain profile, we have normalized the period lengths
of all superlattices.

4.43 nm. We relax the strain in the structure using the energy minimization technique

that was previously described. The relaxed strain profiles are shown in Figure 2.3.

Figure 2.4 illustrates strain profiles in a superlattice with a period length of 20 nm.

In Figure 2.5 we have shown the average lateral lattice constant in superlattices with

very short period lengths. This figure shows that lattice constant does not vary

significantly for short period lengths. This indicates that for short period lengths,

there is less phonon scattering at the interface of the two materials.
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Figure 2.4: Calculation of strain relaxation profiles before and after relaxation in
eight periods of a superlattice with a period length of 20nm.

Figure 2.5: Calculation of relaxed lattice constant profiles for superlattices with very
small period lengths.

We study heat transfer in superlattices with either relaxed strain profiles or piece-

wise constant strain profiles. We expect the thermal conductivities of Si/Ge super-
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lattices with short period lengths to be similar, regardless of the strain relaxation

condition in the structure. We also anticipate the thermal conductivities of short

period lengths to be similar, regardless of strain relaxation condition used. This is

because the strain does not fully relax in short period lengths for either type of strain

conditions used. Figure 2.6 shows the thermal conductivity values for superlattices

with various period lengths and strain conditions. We observe a minimum in thermal

conductivity of superlattices with respect to the period length. Previous studies have

also reported a similar minimum in thermal conductivity of superlattices at short

period lengths [65, 26]. This minimum thermal conductivity have been attributed

to phonon coherence effects in the materials[65]. Interestingly, period lengths of su-

perlattices for which the thermal conductivity starts to increase as the period length

decreases, is very similar to the strain relaxation length of the two materials. This

short period length leads to a lattice structure that is more uniform across the struc-

ture. This uniform lattice structure scatters phonons less, and thus will attribute to

enhanced thermal conductivity of the structure.

To calculate the thermal boundary resistance per interface for different superlat-

tices, we first model silicon and germanium nanowires with a length of 159.7 nanome-

ters. We calculate the thermal conductivities of these nanowires to be 24.75 W/mK

and 16.49 W/mK, respectively. Previous studies also show that the thermal con-

ductivities of silicon nanowires are length dependent [185]. Using these values, we

back-calculate the TBR values for each interface in various superlattices. The results

are reported in Figure 2.7. We observe that decreasing the period length results in a

reduction in the TBR values.

Additionally, we calculated the number of bonds between silicon and germanium

atoms (which happen at the interface) in different superlattices. We report the density

of these interface bonds compared to the total number of bonds in the structure in

Figure 2.8. We observe that for superlattices with short period lengths the density
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of interface bonds significantly increases. Thus, these bonds have an important effect

on thermal conductivities of superlattices with short period lengths.
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Figure 2.6: Calculation of thermal conductivity of superlattices as a function of period
length.

Figure 2.7: Calculation of average TBR per interface for superlattices as a function
of period lengths.
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Figure 2.8: Density of silicon-germanium bonds at the interfaces vs. period length of
the superlattice for superlattice structures studied.

We use the Fourier transform of the velocity autocorrelation function in order to

calculate the phonon density of states (PDOS), for superlattices with various period

lengths. These PDOS values allow us to understand the mechanisms of heat transfer

in superlattices with short period lengths. Previous studies have used the Fourier

transform of velocity autocorrelation function to calculate the PDOS of nanowires

[73, 148]. These results are shown in Figure 2.9.

Our calculations show that the PDOS of both materials shows a new vibrational

peak between 12 THz and 15THz for period lengths smaller than the strain relaxation

length. These vibrational peaks appear because of an increase in the density of

interface bonds for small period lengths. These new vibrational modes introduce new

pathways for heat transfer in the superlattice structure, since these new vibrational

modes exist in both silicon and germanium. Thus, the interface is transparent to

these modes and these modes can support the propagation of vibrational modes in

the system.
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Figure 2.9: Calculation of phonon density of states (PDOS) of silicon and germanium
in superlattices with different period lengths. Since the vibrational properties of
a lattice depend on the characteristics of the bonds between the atoms, thermal
conductivity of superlattices with different densities of interfacial bonds can differ.
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CHAPTER III

Nano-scale Heat Transfer in Cross-linked and Ionic

Bonded Organic Polymers

3.1 Introduction and Motivation

The unique properties of polymers have caused these materials to gain considerable

interest for applications in devices such as organic field effect transistors and other

electronic devices [83, 66], thermoelectric devices [33, 156, 80, 147, 13], photovoltaic

devices [35], photonic devices [59], and thermal devices [118]. Moreover, polymers

have applications in lithography and patterning [165], drug delivery[142], and plas-

tics products [151, 58]. Some notable properties of polymers that contribute to their

unique and broad usability are as follows: reduced cost, low melting temperature, me-

chanical flexibility, abundance of material available, wide variety of polymeric material

options, and greater ease in fabrication. As stated in Chapter I, the rate of heat trans-

fer in materials affects their application in many devices. This impact of heat transfer

on device reliability is also true for devices made of polymers [180, 55]. For example,

solar cells [55] and the plastics industry [202] could benefit from enhancement in ther-

mal conductivity of polymers (the thermal conductivity of most amorphous polymers

is on the order of 0.1 W/mK [60, 78]). In contrast, for some applications, lower ther-

mal conductivity is desired, such as for a thermoelectric device intended for achieving
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a better figure of merit[194]. Previous computational studies [40, 29, 60, 202, 199, 200]

and experimental studies [139, 159, 30, 177, 155, 17, 41, 176, 16, 207] have repeat-

edly shown and supported that, in the direction of chain alignment, the thermal

conductivity of aligned linear polymer chains is significantly higher than that of bulk

amorphous polymers. This high thermal conductivity in the direction of chains has

been attributed to a relatively large thermal transport by covalent bonds [7, 60, 155].

Concurrently, it is predominantly believed that the low thermal conductivities of

amorphous bulk polymers are because of weak inter-chain forces such as van der

Waals (vdW) interactions [78] creating a bottleneck for flow of heat in polymers. A

previous study showed that vdW interactions are an order of magnitude less efficient

at transferring heat than covalent bonds [38].

Traditionally, mechanisms to enhance thermal transport in polymers have been

based on the inclusion of thermally conductive fillers[92, 102, 184]. However, en-

hancing inter-chain interactions [81, 78, 87, 198, 186] has emerged more recently as a

method to control the thermal conductivity of polymers without needing conductive

fillers. The enhancement in inter-chain interactions can take different forms, such

as through the formation of hydrogen bonds between polymer chains [198, 81], the

formation of ionic bonds between chains [152], or the formation of covalent bonds

between polymer chains [78]. A common synthesis approach for polymers is through

crosslinking of polymer chains through covalent bonds, a method that would seem to

be a compelling way to enhance their thermal conductivity[78, 87, 167, 189, 190, 75].

However, significant discrepancies have been found within computational and experi-

mental studies of thermal conductivity in crosslinked polymers. For instance, experi-

mental studies demonstrated 50% enhancement of thermal conductivity for polyethy-

lene samples[87] at high crosslinking densities and approximately 30% enhancement

for polystyrene at 20% crosslinking density[190], while computational studies pre-

dicted a threefold enhancement in the bulk thermal conductivity of polyethylene upon
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crosslinking[78] and almost no change in the thermal conductivity of polystyrene at

20% crosslinking density. Furthermore, other studies measured or predicted only a

very small enhancement[78] in thermal conductivity upon crosslinking, or even a re-

duction in thermal conductivity[114, 195, 84]. In a study conducted by Yu et al.[195],

experimental results showed a nearly 30% reduction in the thermal conductivity of

polyethylene upon crosslinking. Numerical simulations by Ni et al.[114] also suggested

that crosslinking 10% of the carbon atoms in polyethylene chains results in a 44.2%

reduction in bulk thermal conductivity. Given the many applications of crosslinked

polymers[121, 161, 142, 59, 116, 53, 122, 146, 170, 54, 138, 46] and the importance of

thermal conductivity to many of these applications, it is critically important to build

a comprehensive understanding of the effects of crosslinking on thermal transport.

Figure 3.1: Shown are four possible thermal transport mechanisms in polymers: 1)
Thermal transport along polymer chains through covalent bonds, 2) Thermal trans-
port along chains through non-bonding interactions (the bubbles around the atoms
illustrate the radius of effectiveness[168] of vdW interactions), 3) Thermal transport
between polymer chains through covalent bonds, and 4) Thermal transport between
polymer chains through non-bonding interactions. Electron drift is not considered,
since it is negligible in electrically insulating polymers[95].
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Thermal conduction occurs through four mechanisms in electrically insulating

crosslinked polymers, as shown in Figure 3.1. These mechanisms are often closely

coupled and can affect each other. For example, the spacing between linked poly-

mer chains is strongly influenced by the length of the crosslinking agent that connect

the chains. In turn, this spacing has great influence on the heat flow between the

chains via non-bonding interactions. Therefore, when designing polymers with de-

sired thermal characteristics, it is crucial to distinguish the contributions of bonding

and non-bonding interactions. In addition to length, the vibrational properties of a

crosslinker (as directed by chemical structure, mass, and geometry) are anticipated to

have an important effect on thermal transport. For example, the crosslinked polyethy-

lene polymer studied by Ni et al.[114], Yu et al.[195], and Kikugawa et al.[78] each

used a different crosslinking agent to connect the polymer chains and they all reported

different thermal conductivity values.

In this chapter, heat transfer in crosslinked and ionically bonded polymers are

studied. The results in this chapter show that thermal conductance between polymer

chains is strongly influenced by length of the crosslinker. While it has been tradition-

ally presumed that crosslinkers increase heat transfer by providing thermal shunts

between chains, we demonstrate that crosslinkers increase heat transfer predomi-

nantly by increasing non-bonding interactions between the chains, and not through

the creation of thermal shunts. Shorter crosslinkers reduce inter-chain distances be-

tween polymers more productively than longer ones. For this reason, enhancement

of thermal transport between the polymer chains could be most effective via short

crosslinkers. Additionally, the results in this chapter show that heat transfer in poly-

mers increases upon introduction of ionic bonds between the chains. This increase

in thermal conductivity is accompanied by an increase in the radius of gyration of

polymers in the system, as well as an increase in the density of the system. More in-

formation is provided in article [133] (Part of material in this chapter were reproduced
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in part with modification from [133]).

3.2 System Preparation and Simulation Procedure

The molecular dynamics method was described in Chapter I as a tool to study

heat transfer in nano-size systems. It should also be noted that although molecular

dynamics simulations do not consider electron flow through the material, because

polymers studied in this thesis are not electrically conductive, the thermal transport

due to electron drift is negligible [95]. Thus, given the small size of polymer chains

and the ability of molecular dynamics to capture the main heat transfer mechanisms

in polymers, molecular dynamics is used in this study.

In order to investigate heat transfer in polymers, we used the non-equilibrium

molecular dynamics (NEMD) technique described in previous chapter in section 2.2.

NEMD was chosen because of the difficulty in defining the direction of polymer chains

during simulations, and because we are interested in overall thermal boundary con-

ductance at the interface, rather than a directional thermal conductance. In this work,

thermal transport in PMMA (polymethyl methacrylate) polymer chains was studied.

Two PMMA polymer chains were crosslinked with different crosslinking agents and

with varying degrees of crosslinking (0%, 35%, 50%, 65%, and 100%). Each PMMA

chain consisted of 20 monomers (an icosamer) (similar to Figure 3.2), and two ends

of each polymer chain were terminated with a single hydrogen atom. The varying

degree of crosslinking allows us to gain insights about the impact of highest possible

crosslinking density while we are able to draw broader conclusions for all degrees of

crosslinking. PMMA was chosen due to the high number of atoms in its monomer

(15 atoms per monomer); this allows us to investigate the impact of non-bonding

interactions. In section 3.3.4, heat transfer in polyethylene (PE) chains and polyvinyl

alcohol (PVA) chains are also studied to generalize the results to other polymers.

Figure 3.2 represents the structure of two crosslinked PMMA polymer chains used in

34



Figure 3.2: Schematic view of two PMMA chains 100% crosslinked by benzene-1,4-
diyl crosslinkers.

this study. In this figure the polymer chains are 100% crosslinked by benzene-1,4-diyl

crosslinkers.

After creating the simulation box and organizing the atoms inside it, the steep-

est descent minimization technique was used to minimize the initial energy in the

system. The minimization step was followed by a 0.5 ps relaxation step under NVE

conditions (constant number of atoms, volume and energy) to release all of thermal

stress in the system. For all simulations, a 1 fs time step was used in order to capture

the fastest molecular motions in the system, unless indicated differently. Next, four

terminal hydrogen atoms at the end of the chains were fixed in order to control the

chain endpoints and avoid rotational movement and coiling in the polymer chains.

Next, the system was evolved as an NVT ensemble (constant number of atoms, con-

stant volume and constant temperature) for 1.5 ns at 300 K using the Langevin[144]

thermostat. This step was followed by another 1.5 ns relaxation step at 300K using

the Nose-Hoover [115, 62] thermostat. Using these several steps relaxation scheme,

the system reaches thermal equilibrium at 300K. In order to show thermal relaxation,

temperature and potential energy profiles of some of the systems during simulations

are reported in Figure 3.3.
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Figure 3.3: Average temperature during relaxation for a system 75% cross-linked with
CH2

After relaxation, in order to use the NEMD method to calculate the thermal con-

ductance at the interface of the two polymer chains, we need to create a temperature

gradient between the chains. In order to establish a temperature difference between

the chains, “heat” was pumped into one chain, while the same amount of “heat” was

extracted from the other chain. This addition and removal of “heat” at the heat

source and heat sink happens at the same rate in order to keep the total energy of

the system constant, as well as allow the system to reach a steady state situation.

In order for this newly imposed temperature gradient in the system to reach steady

state situation, the system was evolved for 3 ns to reach equilibrium. System tem-

perature profiles during relaxation step are reported in Figure 3.4. For all relaxation

steps, free non-periodic boundary conditions were used. Boundaries were fixed after
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the relaxation step in order to collect the trajectory data of atoms for inter-chain

distance analysis. Fixing boundaries eliminated the need to calculate and account for

box size during each time step during the simulation. For simulation of PMMA poly-

mer chains, the OPLS force field was used to introduce the inter-atomic interactions

[72, 74, 23]. The OPLS force field was used since it has been successfully used for

thermal property predictions in the past [201, 79, 27, 85, 2, 43]. The parameters for

this force field are reported in Appendix A. Equations 3.1, 3.2, 3.3, and 3.4 show the

mathematical representations of this force field [72]. Additionally, in order to ensure

that our results are independent of the choice of force field, different force fields were

used for PVA and PE simulations. The details of these force fields and their parame-

ters are reported in the Appendix A. Regardless of the force field used for polymers,

the conclusions are consistent as reported in the following sections of this chapter.

Etot = Enon−bonding + Ebonding + Ebending + Etorsions (3.1)

Enon−bonding = 4ε((
σ

rij
)12 − (

σ

rij
)6) +

1

4πε0

qiqj
rij

(3.2)

Ebonding =
1

2
kbond(rij − r0ij)2 (3.3)

Ebending =
1

2
kbend(θijk − θ0ijk)2 (3.4)

Etorsion = Σ4
i=1Kn(1− (−1)icos(nφ)) (3.5)

where ε and σ are the Lennard Jones potential parameters, rij is the vector between

atoms i and j, qi and qj are charges of atoms i and j, respectively, ε0 is the dielectric

constant of vacuum, kbonding is the bond stiffness, kbending is the angle stiffness, θijk is
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the angle between atoms i, j, and k, Kn is the OPLS dihedral parameter, and φ is

the dihedral angle.

Since non-periodic boundary conditions were used in the simulations, and the size

of the system was relatively small, special care was required so that energy drift in

the system could be avoided. One of the measures taken here to avoid energy drift

in the system, is to set a cut-off value for the non-bonding interactions that is longer

than the length of the simulation box. This large cut-off distance will ensure that

all non-bonding interactions between the atoms in the system are accounted for. For

inter-chain distance calculations, the difference in positions of centers of mass of chains

are compared and averaged over a period of time. Similar to Chapter II, LAMMPS

package was used to carry out all of the simulations [126]. Polymer structures and

simulation files were prepared using Avogadro[57], VMD[68], and Polymer Modeler

(available at nanoHUB[56]). Figures of polymer systems were created with POVray

[1] using Kirke [179]. Kirke package was also used for polymer topology analysis.
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Figure 3.4: System temperature profile during creation of temperature gradient in
the system.

Equilibrium values for bulk density and thermal conductivity of three polymers

studied in this chapter are calculated using their perspective force fields, in order

to ensure that the force fields are suitable for the prediction of thermal properties

of these polymers. Thermal conductivity of PAA is calculated and confirmed in the

respective section. The results for these validations are shown in Table 3.1. Our

results are in good agreement with experimental values for these parameters.
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Table 3.1: Calculation of density and thermal conductivity of bulk polymers for validation of force fields. k is thermal conduc-
tivity

Material Calculated k (W/mK) Expected k (W/mK) Density (g/cm3) Expected Density (g/cm3)
PMMA 0.22+/-0.02 0.20+/-0.01 [186] 1.12 1.17-1.20 [103]

PVA 0.35+/-0.05 0.31+/-0.02 [186] 1.14 1.21-1.31 [103]
PE 0.37+/-0.06 0.35+/-0.00 [204] 0.85 0.91-0.93 [103]
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3.3 Analysis of Simulation Results and Discussion

In this section, results are broken down in various sub-sections to illustrate the

effects of each parameter on heat transfer in polymers. First, the effect of crosslink-

ing on heat transfer and acoustic wave propagation between two polymer chains is

discussed. Second, the effects of crosslinking density on heat transfer between the

chains are illustrated. Third, the effects of vibrational density of states of crosslinkers

on heat transfer between polymer chains are studied. Forth, the effects of enhanced

non-bonding interactions and chain entanglement on heat transfer in polymer chains

are discussed. Finally, the effect of ionic bonding on heat transfer in bulk polymers

is studied.

3.3.1 Heat Transfer and Wave propagation in Crosslinked Polymers

In order to elucidate the contributions of covalent bonds between crosslinking

agents to heat transfer in polymers, a system of crosslinked PMMA polymer chains

were simulated here. The specifications of the systems and simulation methods are

reported in the previous section. The simulation results in this section help us to un-

derstand the discrepancies in the thermal conductivity values reported for crosslinked

polymers in the literature [78, 87, 167, 189, 190, 114, 195, 84]. First, a system

with 100% crosslinking density is studied in order to illustrate the highest impact

of crosslinking on heat transfer between polymer chains. It is worth noting that such

high crosslinking densities can frequently be found in epoxies and resins[24], while a

PMMA polymer system with 100% crosslinking density may not be realistically feasi-

ble. However, this high crosslinking density is chosen for the purpose of understanding

the theoretical maximum impact that crosslinkers could have on heat transfer in poly-

mers. In addition to 100% crosslinked PMMA systems, thermal conductance between

polymer chains with a lower density of crosslinking is studied in the following sections

in order to show that the main results are not dependent on the polymer crosslink-
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Figure 3.5: Chemical structure representation of crosslinker agents used in this study.
From left to right: benzene-1,4-diyl crosslinker, double carbon chain, single carbon
with single bonds, single carbon with double bonds (allene), and CH2 crosslinker
(carbene). Mass of carbon atoms in benzene-1,4-diyl crosslinkers are chained to create
new crosslinkers with lower total mass in order to study the effect of mass on thermal
transport. Carbon atoms in the benzene ring each had either the same mass as a
regular carbon atom, half of the mass of carbon atom for “light benzene-1,4-diyl”, or
twice the mass of carbon atom for “heavy benzene-1,4-diyl”. A similar approach was
taken to study the effect of bond stiffness on heat transfer between polymer chains
by using singly or doubly bonded carbon atoms as crosslinkers.

ing density. Another pertinent parameter on heat transfer between polymer chains

that has been considered is the type of crosslinkers used. Crosslinkers with a range

of different shapes, masses, bond strengths, lengths, and vibrational characteristics

are accounted for in this study (shown in Figure 3.5). Figure 3.5 was created using

[8]. Although most of the crosslinking agents studied here are real physical struc-

tures, some unphysical crosslinking structures are also studied. These non-physical

crosslinkers are studied in order to enable us to isolate the effects of different parame-

ters on heat transfer between polymers. For example, ”light benzene-1,4-diyl” (which

is a benzene-1,4-diyl crosslinker in which the mass of carbon atoms are halved) is

studied in order to show the impact of the mass of the crosslinker on heat transfer

between the chains in comparison to the case where regular benzene-1,4-diyl is used

to connect the chains.

In addition to varying the structure of the crosslinking agent, the effects of each

bonding type are isolated in the simulations by selectively turning them on or off.

This selective inclusion of atomic interactions is done by either including or excluding

them in the force field calculations. Selectively choosing the bonding types in the
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system allow us to determine the relative extent to which covalent bonds or non-

bonding interactions governed the thermal conductance between polymer chains. All

non-bonding interactions in the system were included in the first set of simulations

to achieve the total thermal conductance between the chains, whereas in another set

of simulations the non-bonding interactions of the crosslinking agents were removed

(i.e., the vdW and Coulombic interactions that the atoms of the crosslinking agent

can create were removed). Lastly, all non-bonding interactions in the system were

removed in the final set of simulations.
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(d)

Figure 3.5: Inter-chain thermal conductance for different conditions in bonding. (a)
Thermal conductance between polymer chains with different crosslinking agents un-
der different conditions for non-bonding interactions. A considerable drop in thermal
transport between the chains is observed when non-bonding interactions are com-
pletely removed from the system (triangles). (b) Inter-chain thermal conductance
when all non-bonding and bonding interactions are present. (c) Inter-chain thermal
conductance when non-bonding interactions of the crosslinking agents are removed
from the system. In this case only atoms in the polymer chains can interact through
non-bonding interactions. (d) Inter-chain thermal conductance when all of the non-
bonding interactions are excluded from the system. Once all of the non-bonding
interactions are removed from the system, the chains get closer to each other because
of the absence of the repulsive portion of the non-bonding interactions.

The results for thermal conductance between the chains for these various bonding

situations are shown in Figure 3.6(a). Since non-bonding interactions are strongly

dependent on inter-chain distance, the results of Figure 3.6(a) are plotted against their

respective inter-chain distances. These plots are shown in Figures 3.6(b),3.6(c),3.6(d).

As shown in Figures 3.6(b) and 3.6(c), generally, thermal conductance between

chains is inversely related to the inter-chain distance, thereby enhanced as inter-chain

distance is reduced. This is only true for cases in which non-bonding interactions are

present. A similar relation is not observed for cases where only covalent bonds transfer

heat in the system (Figure 3.6(d)). As shown in the Equation 3.2, non-bonding

interactions are a function of inter-chain distance. Thus, inter-chain distance severely
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affects the strength of inter-chain non-bonding interactions. The highest thermal

conductance between the chains is observed in the chains that are crosslinked with

CH2 crosslinkers. This increase in thermal conductance between the chains can be

explained by the enhanced non-bonding interactions between the chains. The change

in the inter-chain distance is caused by the short length of the CH2. The polymer

chains crosslinked with CH2 are at an inter-chain distance that is smaller than the

effective distance for non-bonding interactions (2.5 times greater than the Lennard

Jones σ parameter, which is usually used in molecular dynamics simulations as a

cut-off for vdW forces [168]. Beyond this point the vdW forces are very weak and

negligible.). Thus, for the system crosslinked with CH2, non-bonding interactions are

important and significantly contribute to inter-chain thermal transport.

Once all non-bonding interactions are removed, the covalent bonds that crosslink-

ers create between the polymer chains are the only heat transfer pathway between the

chains. As shown in Figure 3.6(d), the removal of non-bonding interactions causes

a notable reduction in thermal conductance between the polymer chains. Such a

drastic reduction in inter-chain thermal conductance proposes that enhancement in

inter-chain non-bonding interactions account for the majority of heat transfer between

the crosslinked polymers.

Consequently, our work has made it evident that a crosslinking agent that draws

the polymer chains closer together has a higher influence on inter-chain thermal con-

ductance in polymers. Furthermore, a natural question that arises from our analysis

so far is whether the portion of heat that is being transferred through the crosslinker

covalent bonds is affected by the inter-chain distance or not. In other words, is it

possible that the reduction in thermal conductance observed in Figure 3.6(d) is be-

cause of a reduction in heat transfer through covalent bonds caused by a reduction

in inter-chain distance?

To examine this hypothesis, we calculated the inter-chain thermal conductance
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between polymer chains crosslinked with carbene as a function of inter-chain distance

in the absence of non-bonding interactions. In order to control the inter-chain distance

for the system, the chains are moved with respect to each other to create different

inter-chain distances. This manual adjustment of inter-chain distance simulates the

situation in which the inter-chain distance was larger in the presence of non-bonding

interactions. Adjusting the inter-chain distance in this manner will result in some

tensile stress in the system. These results are reported in Figure 3.6. The results

of these simulations show that when non-bonding interactions are removed, there is

no evident relation between the inter-chain thermal conductance and the inter-chain

distance. Therefore, the results in both Figures 3.6(d) and 3.6 together show that

the inter-chain heat transfer through a crosslinkers covalent bonds is not a function

of inter-chain distance. Therefore, it can be deduced that the difference in thermal

conductances observed between Figure 3.6(b) and Figure 3.6(d) is mainly caused by

the removal of non-bonding interactions.

The results obtained here can be compared with previous studies on heat transfer

through non-bonding and bonding interactions. For example, results of a previous

study by Eiermann[38] suggest that covalent bonds can transfer heat at a 10 fold

higher rate than vdW interactions. However, it should be noted that the Eirmanns

results apply to heat transfer through a single vdW bond in comparison to heat

transfer through a single covalent bond. This is different than our simulations. Our

simulations account for contributions of all possible non-bonding interactions in the

system (as mentioned in the previous section, we set a cut-off for non-bonding inter-

actions that is longer than the size of the box, which allows us to include all of the

possible non-bonding interactions in our simulation). Because we include all interac-

tions, there is a far greater number of non-bonding interactions available compared

to the number of covalent bonds of the crosslinkers. Thus, this abundance of non-

bonding interactions leads to greater inter-chain thermal conductance. In essence,
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Figure 3.6: Thermal conductance between two PMMA chains crosslinked with carbine
agent as a function of inter-chain distance

the crosslinking agents with a short length (comparable or smaller than the radius of

effectiveness of non-bonding interactions) boost non-bonding interactions by reduc-

ing the inter-chain distance, and these enhanced non-bonding interactions (which are

abundant in number) result in a large contribution to inter-chain thermal transport.

The findings of this section can be used to justify some of the discrepancies about

heat transfer in crosslinked polymers that are reported in the literature. For example,

in the study by Yu et al.[195], thermal conductivity of crosslinked polyethylene was

reported to drop as the polymer was crosslinked with the dicumyl peroxide agent.

Since the length of this crosslinking agent is relatively long, it may result in an in-

crease in inter-chain distance between the chains, which would result in a lessening

of non-bonding interactions between the chains. The reduced density reported after

crosslinking the polyethylene chains could be an indication of increased inter-chain

distance. As another example, Kikugawa et al.[78] reported that the simulated ther-

mal conductivity of crosslinked polystyrene did not increase even at high crosslinking
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Figure 3.7: Simulation system to analyze the wave propagation velocity in the polymer
system. The initial point where propagation began is shown at the top left. The wave
is later detected at locations 1 and 2.

densities. Based on the results in this section, this could be due to the large size of

the benzene ring at the side of the polystyrene mers. Such a bulky side group would

prevent the chains moving closer together, resulting in almost no change in thermal

conductivity even at high crosslinking densities. A question that arises here is how

can non-bonding interactions affect thermal conductance between the chains?

The long rage nature of non-bonding interactions (compared to the short range

nature of covalent bonds) gives them interesting properties for thermal transport in

polymer chains. The impact of this long-range nature of non-bonding interactions

on wave propagation in polymers is studied through analysis of propagation of a

wave between the chains of a crosslinked polymer. The simulation system is shown in

Figure 3.7. The temperature of the system is cooled down to 0K in order to avoid any

thermal molecular motion. Then, a 1 THz wave is created at the “pump” location.

This 1 THz wave represents a wave that carries heat at room temperature [137, 134].

The results for this wave propagation analysis are shown in Table 3.2. A 9-fold

increase in wave propagation velocity in the polymer chains is observed when the non-

bonding interactions are present compared to the case where non-bonding interactions

are removed from the system.

The results of the wave propagation analysis agree with previous results for heat

transfer in crosslinked polymers in this section. Indeed, the wave propagation anal-

ysis shows that non-bonding interactions can transfer energy at a faster rate due to
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Table 3.2: Normalized wave propagation velocities in polymer system in the presence
and absence of non-bonding interactions

Probe Location All bonding included Non-bonding excluded

1 1.00 0.17
2 0.84 0.09

their long-range nature, however they do this most effectively when they are strong.

Further wave propagation analysis showed that acoustic waves with relatively low

frequencies (∼10THz) propagate faster in the presence of non-bonding interactions,

however high frequency oscillations (∼100THz) mostly travel through covalent bonds

even in the presence of non-bonding interactions.

3.3.2 Effects of Vibrational Density of States of Crosslinkers on Inter-

chain Heat Transfer

The results of the previous section showed that thermal transport in crosslinked

polymer chains is significantly affected by non-bonding interactions and shorter crosslink-

ers that enhance these interactions should result in a higher inter-chain thermal con-

ductance. However, some of the results in Figure 3.6(b) show slight differences with

this conclusion. For instance, polymer chains crosslinked with CH2 have a higher

thermal conductance than polymers crosslinked with Carbon I bond, while the inter-

chain distance for the former is slightly greater than that of the latter. In order to find

the underlying reason for this deviation, we studied the vibrational density of states

(VDOS) of the crosslinking agents and the polymer chains. Velocity autocorrelation

method was used to calculate the VDOS of these systems [130] using the following

equation:

V DOS(ω) =
1√
(2π)

+∞∫
0

e−iωt
< vt × v0 >
< v0 × v0 >

dt (3.6)

Previous studies have used this method to calculate the VDOS of different ma-

terials [71, 153, 128, 117, 37, 44, 97, 98, 196, 86, 134]. After analyzing the atomic
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Figure 3.8: VDOS of different crosslinkers and PMMA chains.

trajectories, the VDOS values are calculated using Equation 3.6. The partial VDOS

results are shown in Figure 3.8. This figure compares the VDOS of the crosslinking

agent with the VDOS of the main polymer chain. A substantial overlap in the VDOS

of PMMA chain and the VDOS of the CH2 agent is observed. However, the VDOS

of the carbon I bond crosslinking agent does not have as large of an overlap with

the main PMMA chain as carbenes VDOS. The overlap of common modes results

in higher rates of heat transfer between the materials. This has been observed in

previous studies as well [134, 39, 51]. It is important to consider that MD simulations

carried out here are in the classical physics domain. Therefore, although the popula-

tion of phonons with a frequency around 80 THz should be low at room temperature,

the MD simulations do not consider quantized effects.
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3.3.3 Effects of Density of Crosslinking on Heat Transfer in Crosslinked

Polymer

Previously in this chapter it was mentioned that while high crosslinking densi-

ties near 100% are usually seen in epoxies and resins [78], PMMA chains crosslinked

up to 100% may not be practical. However, we studied the effects of crosslinkers

on heat transfer in a 100% crosslinked PMMA system in order to understand the

maximum effect of crosslinking on heat transfer. In this section, PMMA chains with

lower crosslinking densities are examined in order to ensure that the finding in the

previous section still holds at lower crosslinking densities. For these simulations, two

PMMA chains crosslinked with carbine at various crosslinking densities are modeled.

Then, the inter-chain thermal conductance for these systems is calculated twice, once

in the presence of all bonding types and once in the absence of non-bonding interac-

tions. The results for inter-chain thermal conductance in these two cases are shown

in Figure 3.9.
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Figure 3.9: Inter-chain thermal conductance as a function of crosslinking density. A
near linear relation between the crosslinking density and inter-chain thermal conduc-
tance is observed up to a crosslinking density of ∼65%. For crosslinking densities
above 65%, a slight deviation from the linear relation is evident. This deviation
is likely due to short inter-chain distances at 100% crosslinking density, that have
happened due to the tacticity of polymers in this simulation.

As expected, as crosslinking density is increased, thermal conductance between

the chains is also increased. This is due to the addition of new heat pathways between

the chains, either through covalent bonds of crosslinkers or the enhanced non-bonding

interactions between the chains. It should also be noted that the increased crosslinking

density might increase the stiffness of the entire structure, which could in turn increase

the thermal conductance in the material.

In order to understand the impact of non-bonding interactions on heat transfer

between the chains for various crosslinking densities, the inter-chain distance as a

function of crosslinking density is plotted in Figure 3.10. An inverse proportionality

between the inter-chain distance results and the inter-chain thermal conductance

results is observed across different crosslinking densities. This means that as the

crosslinking density is increased, the inter-chain distance is reduced, which in turn
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Figure 3.10: Dependence of heat transfer and inter-chain distance on crosslinking
density. PMMA polymer chains in this simulation are crosslinked with CH2

enhances the inter-chain non-bonding interactions. These enhanced interactions allow

a higher rate of heat transfer between the chains.

3.3.4 Effects on Non-bonding Interactions on Inter-chain Heat Transfer

in the Absence of Crosslinkers

In the previous section, the effect of crosslinkers on heat transfer between the

polymer chains were studied. It was shown that heat transfer through non-bonding

interactions plays an important role in heat transfer in crosslinked polymers. Thus, a

short crosslinker that can bring the chains closer will result in a higher enhancement

in thermal conductance at the junction of the polymer chains. Thus, a question that

comes up is this: if non-bonding interactions are responsible for enhanced heat trans-

fer in crosslinked polymers that are crosslinked with a short crosslinking agent, would

they increase heat transfer between two polymer chains in the absence of crosslinkers,

if the distance between polymer chains were manually changed? Furthermore, the re-
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sults of Figure 3.9 suggest that the amount of heat transfer between polymer chains

scales linearly with respect to the crosslinking density, regardless of the presence or

absence of non-bonding interactions. Given this observation, how does the inter-chain

heat transfer through only non-bonding interactions scale with respect to inter-chain

distance?

To answer these questions, two long parallel polymer chains were simulated. Each

polymer chain possessed 120 mers. Three different polymers, namely, PMMA, PE,

and PVA, were studied to ensure the generality of our results. The geometry and

input data files for polymer chains were created using nanoHUB Polymer Modeler[56].

The force field for PE chains was also derived from [56]. The force field values were

current at the time of simulation. Force field is DREIDING [104]. The Lennard-Jones

parameters from OPLS [72] force field were used here, since they produced better bulk

properties. In order to model the PVA chains, the force-field developed by Muller[112]

was used; however, since this force field considers constant bond lengths, the stiffness

values for the bonds where taken from the OPLS force field[72]. In order to ensure

that using these stiffness values did not change the equilibrium bond lengths described

in [112], the length of these bonds during simulation are calculated and reported in

Figure 3.11. This figure confirms that using the stiffness values from OPLS model,

the bond lengths remain near their equilibrium values. The reason behind using a

variety of force fields[56, 23, 112] is to ensure the results are not force field dependent.

Similar to previous sections, NEMD was used to calculate the inter-chain thermal

conductance. In this section, a time step of 0.5 fs was used, instead of the 1fs time

step that was used previously. Similar to the previous section, cut-off values for

the non-bonding interactions were chosen to be longer than the simulation box. The

inter-chain interactions were calculated by analyzing the atomic trajectories. In order

to quantify the interactions between the monomers in different chains, the following

method is defined. The distance between the centers of mass of different monomers
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Figure 3.11: Bond length for PVA during simulation in order to confirm that choosing
OPLS force field values for bond stiffness does not change average bond length.

is calculated. Then, any two monomers whose centers of mass are in a distance of

less than the radius of effectiveness of non-bonding interactions [168] are considered

interacting monomers. Figure 3.12 is a visual representation of the method used to

calculate the number of interacting monomers.

After calculating the number of monomers that are in interaction, the average of

interactions per monomer is calculated for each system. Next, the thermal conduc-

tance values are plotted as a function of the number of interacting monomers. The

results are reported in Figure 3.13.

Figure 3.13 shows that the inter-chain thermal conductance between the chains

has a linear relation with respect to the number of monomers interacting between

the chains. Additionally, each type of polymer chains possesses its own unique slope.

These slopes could be used to derive new theoretical models for heat transfer in

polymers or could be used to enhance the existing models [206, 75]. In addition,

there is a convincing relation between the number and strength of the non-bonding
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Figure 3.12: Method of finding the number of monomer that is interacting. First,
centers of mass of monomers are calculated. Then, the distance between the center
of mass of one monomer with other monomers is compared with the radius of effec-
tiveness of vdW interactions. If the distance is smaller than radius of effectiveness,
the monomers are counted as interacting.
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Figure 3.13: Inter-chain thermal conductance as a function of average number of
monomers in one chain that are interacting with monomers from the other chain.
The results are linear and a unique slope is observed for each polymer type.

interactions of the three different polymers studied here and the slopes shown in

Figure 3.13. For example, the PE polymer has only 6 atoms per monomer, thus if

two monomers from this polymer interact, there will be 6x6 non-bonding interaction

pathways for heat transfer. However, this number is 7x7 for PVA and it is 15x15 for

PMMA. Thus, PMMA would have the highest number of pathways per interacting

monomers.

3.3.5 Effects on Ionic Bonding on Heat Transfer in Polymers

As a means to control the inter-chain interactions, the previous section examined

the effects of vdW, electrostatic, and covalent bonds on heat transfer in polymers.

Ionic bonding is another type of inter-atomic interaction that can affect the inter-

chain interactions. As discussed above, weak inter-chain interactions are the main

bottleneck for low thermal conductivity of polymers. Furthermore, the wave transport
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Figure 3.14: Ionization reaction of PAA and NaOH

study in a previous section shows that a stretched and straight polymer backbone

would be ideal to enhance heat transfer along the polymer chain. In fact, both

experimental and numerical studies have also shown that stretched polymer chains can

have very high thermal conductivity. Most of the previous studies have stretched the

polymer chains using mechanical force or methods such as electrospinning. However,

recent studies show that some polymers may exhibit chain stretching without the

need of mechanical force. In this section, we study the effects of ionic bonding on the

conformation of the polymer chains, and ultimately on heat transfer. In a previous

study, ionization of PAA polymer chains is shown to result in increased persistence

length of the polymer [31]. This increase in radius of gyration could result in enhanced

heat transfer along the polymer chain.

We use a system made of PAA polymer chains ionized with NaOH. The reaction

is shown in Figure 3.14. Periodic boundary conditions are used and the EMD method

described in section 2.2 was used to calculate the thermal conductivity of the system.

The results are shown in the Table 3.3. The results here show that the ionic bonds

between the polymer chains and the sodium ions have stretched the polymer chains.

This stretch in the radius of gyration shows that the chains are being stretched and

thus heat transfer along the chains is improved. Similar behavior has recently been

reported through experimental results [152].
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Table 3.3: Effects of Ionic Bonding between Polymer Chains on Heat Transfer in
Polymers. k represents thermal conductivity.

Material Radius of Gyration (Å) Density (g/cm3) k (W/mK)

PAA 7.89+/-0.67 1.47 0.29

Ionized PAA 9.28 +/- 0.9 1.73 0.56

Net Change 17.6% 19% 93%
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CHAPTER IV

Machine Learning Algorithm for Fast Thermal

Properties Prediction and Materials Discovery

4.1 Introduction

A bottleneck in the use of machine learning algorithms to predict material prop-

erties is the limited amount of data available to train them, relative to other machine

learning applications such as face identification, digit recognition, text recognition,

and natural language processing. This lack of training data arises from the time-

consuming and expensive nature of computational and experimental techniques used

to generate such data. For example, density functional theory (DFT) and molecu-

lar dynamics (MD), two methods widely used to generate materials databases, have

significant computational requirements and often require hundreds of CPU hours

to calculate the properties of a simple material. The challenge of relatively sparse

training data is compounded for material properties that are associated with a large

number of features, such as thermal property predictions that depend not only on

material properties but also environmental properties (e.g., temperature).

In this work we demonstrate the encoding of physical laws in machine learning

algorithms as a means to address the prediction of material properties for which

training data is sparse relative to the number of features. This encoding constrains
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the algorithm to search only the sample space where defined physical rules are valid,

thus eliminating some of local minima that are known a priori as non-physical and

improving the iteration path.

We choose thermal conductivity as platform for this technique, recognizing the

numerous features on which thermal conductivity may depend as well as its techno-

logical importance for a wide range of applications including electronics packaging

[45], thermal insulation, thermal interface materials, thermal barrier coatings, and

thermoelectric energy conversion [80]. Heat can be conducted by electrons (as preva-

lent in metals) or vibrations (as prevalent in dielectric materials). Vibrational trans-

port can occur by quantized, propagating collective excitations known as phonons

(prevalent in crystalline solids) or short-range diffusive coupling (often prevalent in

amorphous solids)

Heat is primarily carried in electrically non-conducting crystalline materials by a

spectrum of phonons, quantized vibrational modes of atoms that each have a certain

frequency, lifetime, and velocity. These characteristics, which determine the amount

of heat each mode carries [107], depend on a number of material and environmental

parameters[172] including atomic mass, density, temperature, lattice structure[172],

atomic number, sample size [134], sample morphology, and type of bonding between

atoms [133]. The large number of these parameters and the complex manner in

which they affect thermal conductivity have impeded the understanding of thermal

transport in existing materials and hampered the design of novel materials.

To determine thermal conductivity, both numerical methods [89, 166], such as den-

sity functional theory and molecular dynamics, and experimental methods, such as the

three-omega technique[14] and time-domain thermoreflectance (TDTR) [19, 15], have

been developed. Drawbacks of these methods include significant time requirements,

expensive equipment, inaccuracy due to approximations (e.g., existing numerical force

fields are usually only suitable for pure materials and not available for all materials),
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length scale limitations, and numerical rounding errors.

Calculation of thermal conductivity consists of several steps that may differ greatly

in their computational requirements. For instance, of the three frequency-dependent

parameters(phonon velocity, heat capacity, and lifetime) that must be calculated in

order to in turn calculate the total thermal conductivity, computation of phonon

velocities and phononic heat capacity only requires the calculation of harmonic force

constants between the atoms, which is relatively fast. However, in order to estimate

the phonon lifetimes, we need to calculate anharmonic force constants, which require

higher order force calculations[89]. Accelerating these calculations would not only

significantly enhance our understanding of existing materials but also increase the

capability for high throughput materials discovery with desired properties[134, 133,

131].

This task may be achieved using machine learning (ML) algorithms, which are

usually applied to derive very complex underlying relations in a dataset[47, 88, 93]. In

this work, we demonstrate the application of ML algorithms to learn the relationships

between material thermal conductivities and easily measurable material properties

(such as mass, density, atomic number, phonon velocity, etc.). These relationships

will allow us to predict material thermal conductivities without performing time-

consuming third-order force constant calculations. We also use ML to calculate the

relative contributions of phonon modes with different frequencies to the total thermal

conductivity, recognizing the importance of this frequency dependence to the design

of materials for phonon filtering [82, 113], improved thermal boundary resistance in

heterostructures[134, 52], phonovoltaic devices [108], and thermoelectric devices [80].

These predictions help us to understand the relationships between the numerous

relevant material parameters as well as facilitate the more rapid design of materials

with desired thermal properties. In a recent study, analytical models were developed

to predict phonon lifetimes based on second order force constants [157]. The main
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drawback of this method is that the total thermal conductivity of a material must

be known beforehand in order to calculate its phonon lifetimes, which limits its ap-

plication to materials discovery. Here we demonstrate a method that after training

can achieve this task without any previous knowledge about a materials total thermal

conductivity.

We apply supervised learning techniques with total thermal conductivity as the

output of the algorithm. However, the network is set up in such a way that fre-

quency dependent thermal conductivity values should be derived from internal parts

of the network. This is because the network must follow the physical rules that we

have encoded in it. Thus, for frequency dependent thermal conductivity predictions

stand point, the algorithm could be considered “semi-supervised”. This is because

the network does not need to explicitly know the frequency dependent thermal con-

ductivity values for training. This stands in contrast to previous applications of

ML for materials discovery, which have primarily been based on supervised learning

[67, 123, 160, 209, 140, 178, 34, 129, 50, 109, 124, 193, 20, 10, 36, 12, 32, 101, 21, 149,

141, 111, 99, 183, 91], a method in which the machine learns how to generate outputs

from inputs after seeing a certain number of input/output pairs. The disadvantage

of supervised learning is that we need to have input data that is labeled with a cor-

responding output value. For example, when generating the frequency-dependent

contributions to thermal conductivity, these values are unknown and thus we cannot

use supervised learning to train the algorithm. Thus, we have developed a custom de-

signed algorithm to address this issue. Furthermore, we developed a fully automated

model in which the machine only directly receives graphical images of a material’s

phonon dispersion curves and learns how to relate features in these curves to thermal

conductivity. A brief description of machine learning is given in the following section.
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4.1.1 Machine Learning Overview

Machine learning algorithms are methods that are able to learn the underlying

relations in a dataset without being previously programmed to know such relations

[70]. In machine learning, a set of inputs (features) can be used to find functions

that would map these inputs to desired outputs. Machine learning algorithms can be

classified into three general brackets: supervised learning, unsupervised learning, and

semi-supervised learning [70].

Supervised learning algorithms find relations between input features that are la-

beled with an output value. Unsupervised learning algorithms find relations in input

features that are not explicitly assigned to a label. Clustering algorithms are usu-

ally unsupervised learning. These algorithms try to cluster the dataset in different

categories based on the distribution of different features. Finally, semi-supervised

algorithms use both supervised learning and unsupervised learning. Usually when

only a small portion of the data is labeled and the majority of data is unlabeled,

semi-supervised learning methods can be helpful to take advantage of both labeled

and unlabeled datasets. More information can be found here [70, 3].

During the process of training, the learning algorithm finds the underlying rela-

tions in the dataset by finding relations that best describe the underlying distributions

in the dataset. After training, the trained model can be deployed to make predictions

for input values that it has not seen a priori. This capability of machine learning

algorithms to make predictions based on historical data has made them applicable in

many areas including materials science [178, 34, 129, 50, 109, 124, 193, 20, 10, 36, 12].

Among many algorithms, principle component analysis, regression trees, and neu-

ral networks are particularly used in this thesis for prediction of material properties.

A brief introduction to these methods is provided in the following sections.
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4.1.1.1 Principle Component Analysis

Usually a dataset has two main dimensions. The first dimension is the number

of samples of data. For example, for a material dataset, the first dimension is the

number of materials or examples in the dataset. The second dimension is features

or predictors. The second dimension contains the parameters for each one of the

data points in the first dimension. For the material dataset, the second dimension

could be the material properties associated with each material. Often times we do

not know the exact importance of the predictors for prediction of the target values.

Thus, algorithms that would provide some information about the importance of each

variable would be very useful in reducing the dimensionality of the training dataset.

Dimensionality reduction not only would reduce the computational burden (due to

a lesser number of predictors, once the unimportant predictors are removed), but

may also avoid confusion of the machine learning algorithm and overfitting. Principle

component analysis (PCA) is a method that can be used for dimensionality reduction

in a dataset [70, 3]. Using dimensionality reduction methods could be very important

for material datasets, where the features could be highly correlated. For example,

mass, lattice constant, and density could be significantly correlated, thus the presence

of all of them in a dataset as predictors may not really help the algorithm to find any

new insight.

PCA is a method that finds the principle components of a dataset. PCA finds the

principle axis through centering and rotation of axis. Principle components are along

the axis that the variance of data is maximum along those axis. For example, let’s

assume that we have two predictor variables, x1 and x2. We construct both x1 and x2

such that they contain 100 integers from 1 to 100. We then add some random noise

from a uniform distribution to the values (random noise values chosen have a range of

0-10). Figure 4.1 shows the values for each one of these predictors. For small amounts

of noise, the values in predictor x1 should linearly correlate with values in x2 (for the
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example shown in 4.1, the Pearson correlation between predictors is 0.99). Thus, the

information in x2 does not add any new information. If we rotate the axis of the

dataset 45 degrees counter clock-wise (which would result in a new axis as shown in

Figure 4.1(c)), we can capture most of the variation in the data, while the other axis

would mostly represent the noise. Using this method, we have captured most of the

variation in the data in one variables and if we discard the second principle component,

we would not lose much information (in this example, almost no information is lost

since the second component mostly shows the noise). The principle components

are shown in Figure 4.2. Figure 4.2(c) shows that there is no correlation between

the first and second principle components. As Figure 4.2 shows, the first principle

component contains most of the information, while the second principle component

mostly contains random noise. Thus, discarding the second principle component will

not lead to a severe loss of information.
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(a)

(b)

(c)

Figure 4.1
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(a)

(b)

(c)

Figure 4.2

Principle components can be calculated using the covariance matrix.
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4.1.1.2 Regression Trees

Regression trees are powerful machine learning algorithms that are used for both

regression and classification problems. The difference between a regression tree and

a classification tree is that the target values for a regression tree usually hold a

continuous value, while for a classification tree, the target value is usually discrete,

i.e., a class. Since thermal conductivity of materials is a continuous variable, in order

to predict thermal conductivity, in this thesis we have used regression trees.

A regression tree is a tree-like structure, where the nodes are decision points.

Based on the value of a predictor at the node, the algorithm decides which branch of

the tree should be explored. Figure 4.3 shows a schematic view of a simple regression

tree. In this figure, we have used temperature and mass of a material as predictors for

thermal conductivity. Based on the values of mass and temperature, the tree guides

us towards an end branch (leaf) that contains either a single value for the thermal

conductivity or a simple regression model to calculate thermal conductivity.

Figure 4.3: A schematic view of a regression tree for thermal conductivity predic-
tions based on temperature and mass of the material. Based on material features,
the regression tree searches its branches in order to estimate the values of thermal
conductivity. The value of thermal conductivity is given at the last node (leaf) of the
tree.
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In order to achieve a regression tree as shown in Figure 4.3, we need to train the

regression tree based on the training dataset. The training process for a regression

tree consists of finding the best conditions and splits at each node of the tree. There

are different methods to train a tree. One method is to start with a single initial

node. Then, we can find the best split that results in smallest error in the prediction.

We continue this process until the tree is trained [70, 3].

4.1.1.3 Neural Networks

Neural networks are one of the most versatile machine learning algorithms, which

resemble the human nervous networks. A schematic view of a neural network is shown

in Figure 4.4. Sometimes neural networks have a constant value, known as bias term.

This bias term will be learned during the training process.

Figure 4.4: Schematic view of a multiplayer neural networks with a single output.
The two middle layers are the hidden nodes. The first layer from the left side is the
inputs layer and the right most layer is the output node.

Each node, or neuron, contains a computational function (activation function),

several inputs, and outputs. For each input to a neuron, there is a weight that

determines that relative importance of that particular input. Usually the inputs are

multiplied by the corresponding weight factors and then summed up. The resulting

value will be used as input to the activation function of the neuron to calculate a
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value to be used in the output of the neuron.

4.2 Methods and Algorithms

We use state-of-the-art customized deep learning algorithms [88] for mining our

materials property dataset for prediction of frequency-dependent thermal conductiv-

ity. Our custom designed deep neural networks will result in simultaneous prediction

of bulk thermal conductivity in a supervised manner, while the algorithm will also

generate the frequency-dependent thermal conductivity of materials in an unsuper-

vised manner. We call this network specifically designed for thermal conductivity

predictions: K-net (K for thermal conductivity). Neural networks are general func-

tion predictors. It is proven that given enough number of neurons, neural networks

can predict any function [63]. Here, we are interested in predicting functions that

can best approximate thermal conductivity of materials based on easily measurable

materials properties such as mass, group number in periodic table, density, phonon

velocities, specific heat capacity, phonon density of states, lattice constant, Gruneis-

sen number, and more. All of these parameters are either easily measurable or can be

calculated from second order force constants. Now to find such functions we formulate

our problem in a mathematical form as shown below:

∃f ∈ R+|τ = f(mass, latticeconstant, velocity, temperature, ...) (4.1)

Finding such functions using neural networks requires a significant amount of

training data, which is currently unavailable to us. To solve this problem, we design

restricted custom designed networks based on physical restrictions of the parameter

we are predicting (for example relaxation times have to be non-negative). This will

allow us to eliminate some of the functions in our function space in order to find more

realistic functions using significantly less amount of training data.
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4.2.1 Network Architecture

We design a customized neural network for our problem with the help of the

formula for thermal conductivity based on simple kinetic theory [106]:

K = 1/3
∑

v2(ω)τ(ω)cv(ω) (4.2)

where τ is the phonon relaxation time, v is the phonon velocity, cv is the heat

capacity, and ω is the desired frequency. We define a neural network with different

branches that can predict the thermal conductivity contribution for each frequency.

This is somewhat similar to using convolutional neural networks [88] for image classi-

fication where each filter tries to find a certain feature in the image. Here each branch

of the network tries to find the contribution of a certain frequency and then add these

up to predict total thermal conductivity. In this structure, the output of the network

is the total thermal conductivity, the input of the network is the materials proper-

ties, and the frequency-dependent thermal conductivity is retrieved from the hidden

layers of the neural network. Figure 4.5 shows the overall structure of our network.

By disconnecting (i.e. pruning) the neurons in each branch we make sure that each

branch can predict the contribution of a certain frequency to thermal conductivity.

Given the formula in Equation 4.2, we try to organize each branch of the network

in such a way that the initial layers are forced to predict the relaxation time for each

frequency. We then take the signal from that neuron to another hidden layer where

frequency-dependent velocity and specific heat information is given to the network

and multiplied together to generate the contribution of that particular frequency. We

then add another hidden layer to the right side of all of these branches with a single

neuron to add up all of the values received from the branches to make up the overall

thermal conductivity. This single node will be our output node for the network where

we use it for training the network. Although our current network should have the
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Figure 4.5: The K-net neural network architecture and data input structure. Each
one of the branches in this network will predict the contribution of each frequency
to the total thermal conductivity. Finally the values are all added up together to
achieve the overall thermal conductivity
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capability to predict the phonon lifetimes and contribution of each frequency as well

as the overall thermal conductivity of materials, we would need a significant amount

of data to be able to train such network. The approach to add physical rules to

the network is essentially the basis for Bayesian statistics; we are constraining the

function domain or the joint probability.

Considering the Spearman and Pearson rank correlations as well as other formulas

reported in the literature for the relationship between phonon lifetime and material

properties, we know that there could be a non-linear relationship between the input

parameters and the phonons lifetimes. Using non-linear activation functions between

the input features and the hidden layers connected to them, we ensure that non-

linearity is provided.

Additionally, we add two hidden layers with more than one neuron after the

input layers so the network would be available to explore a larger set of non-linear

functions. After the input features pass through these two hidden layers, we expect

the network to have predicted the phonon lifetimes. These lifetimes should be real

non-negative values, thus we need to restrict the results in this node to be positive.

Adding a sigmoid activation function to this layer assures that we will always have

non-negative values at this node. Using such restriction will eliminate a large number

of functions that the network could have explored.

Another restriction we should impose on our network is the weights of the last

neuron to the right (the output neuron). These neurons should all have a fixed weights

equal to one. This is because we are trying to force each branch to mine the dataset

for contributions of a specific frequency. The learning rate of these weights is set to

zero so that they are not updated during the training. We also chose a simple linear

activation function for the output neuron so that the contributions of each frequency

are simply added together to get the overall output of the network. We let the network

learn the weights for the multiplication of phonon lifetime, velocity, and specific heat.
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This is because the 1/3 factor is an approximation for more real cases. We also

allow the network to scale the lifetime values to avoid any limitations associated with

choosing the sigmoid transfer function (the output values of this function are limited

to 0-1).

After setting up the network architecture, we train the network using the back-

propagation method with a mean square root error function. We use Bayesian reg-

ularization for our training. This will allow us to prevent over-fitting by minimizing

the weights factors as much as possible.

4.3 Data Preprocessing

The dataset in this study is provided through accurate DFT calculations, therefore

for the most part our data is clean. However, we need to process our input vector

to make sure that we have selected relevant features. We use Principal Component

Analysis (PCA) on our input vector to reduce the dimensionality of our data. PCA

transforms our data to a new basis where new features are created and ordered to give

the highest variance to lowest. For DFT calculations Quantum Espresso package is

used [48, 49]. We used the pseudo-potentials from http://www.quantum-espresso.org.

The list of potentials is reported in Appendix A.

4.4 Results

In order to produce training data and also test the performance of the machine

learning algorithm, we used DFT calculations to generate frequency-dependent ther-

mal conductivity data for different materials. We generate a database of thermal

conductivity data for materials with a cubic unit cell having two atoms in their ba-

sis as reported in Appendix B. Our database (which we restrict to temperatures

between 300K and 500K) spans a range of thermal conductivities, with values as
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low as a few W/mK and as high as thousands of W/mK (diamond). We solve the

Boltzmann transport equation to calculate the frequency-dependent thermal conduc-

tivities of these materials over a range of 0-44 THz in 0.5 THz steps using ShengBTE

[89]. Our neural network architecture therefore has 85 separate branches that each

approximates the contribution of one of these frequencies.

For each material, we consider 16 input features per frequency branch to train

our neural network for thermal conductivity predictions (overall our input vector has

16x85 values). First, we calculate linear correlations between the frequency-dependent

thermal conductivity of materials and known or easily measurable materials proper-

ties. Figure 4.6 shows the results for Pearson correlation and Spearman rank corre-

lations. The horizontal axis for all plots shows the phonon frequency. The vertical

axis shows the correlation between the contribution of that frequency to thermal

conductivity and the material parameter that is indicated on top of each plot.

The values from these correlations show how strongly we can find a linear relation

between the portions of thermal conductivity that are carried at a certain frequency

with a specific materials property. Figure 4.6 only shows linear relationships between

input and the outputs and it considers all the input variables to be completely in-

dependent. This figure shows us that at least some linear correlation exists between

the parameters, which increases the possibility of a converged algorithm. There are

interesting physical insights from Figure 4.6. For example, there is a positive correla-

tion between phonon occupation and thermal conductivity. This is indeed a correct

observation, since as we increase the occupation of a mode, its contribution to thermal

conductivity should generally increase. We see similar behavior for phonon velocities

at moderate and high frequencies. This is also expected, since generally if phonons

travel faster we should see higher thermal conductivity. An interesting observation is

that materials from higher period numbers generally have lower thermal conductivi-

ties.
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Figure 4.6: Spearman rank and Pearson correlations between input parameters and
the frequency-dependent thermal conductivity values for different materials. The
thermal conductivity values here are calculated using density functional theory and
the solution of the Boltzmann transport equation

We see that below 20THz, if we increase the mass or lattice constant of the system,

contributions of those modes to thermal conductivity decreases, however for >20THz

phonons this is the opposite. The strong negative correlation around 10THz suggests

that lighter materials such as silicon compared to germanium have a higher thermal

conductivity at room temperature. This is because phonons with >20THz frequency

have relatively high population around room temperature and the their abundance

could lead to higher thermal transport. This correlation could mean that forcing

lighter atoms to vibrate at room temperature might be easier and hence thermal

conductivity might be higher. However, this is only a single parameter and the

correlation does not take into account other parameters that can affect the thermal

transport of light materials.

The most important point of Figure 4.6 is that it shows that there is some relation-

ship between the materials properties we have chosen, and the thermal conductivity.

It is also obvious that such relations are frequency-dependent and hence a single equa-
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tion is not sufficient to predict frequency-dependent thermal conductivity. In order

to find those functions we use the neural network architecture that is extensively

explained in the methods section.

After training the network based on our database, we analyze the results. We

compare the frequency-dependent thermal conductivity values that our network pre-

dicts with the values from DFT calculations. The results are shown in Figure 4.7.

We see a good agreement between our results and the results from the DFT calcu-

lations. Using this methods we were able to find the frequency-dependent thermal

conductivity of over 400 cases within only 100s hours of simulation. This would have

taken approximately 6000 hours if we had calculated these values separately. Thus

we see 10x faster calculations of thermal properties. It must be noted that the pro-

cessors used for DFT and ML calculations were slightly different. Another advantage

of this method is that after the network is trained, we can use it to predict thermal

properties of other materials in a matter of a few seconds!
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(a)

(b)

Figure 4.7: Comparison of the predicted values using machine learning algorithms
developed here and the values obtained from DFT calculations.
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CHAPTER V

Conclusions and Future Work

5.1 Conclusions

In this thesis, we studied nano-scale heat transfer in polymers and semiconduc-

tors. We also developed machine learning algorithms for rapid prediction of thermal

properties. Our algorithms use physical rules in order to avoid exploring function

areas where physical rules are broken. The results reported in different chapters of

this thesis are summarized in three main areas below.

First, we used molecular dynamics to simulate strain relaxation in Si/Ge single-

junction and multi-junction hetero-structures, focusing on effects of strain relaxation

and interface bonds on thermal properties of these structures. Our results show that

the strain at the interface of the two materials relaxes about two nanometers away

from the junction. Our numerical results for strain relaxation length are in good

agreement with previous experimental reports [11, 182]. This short relaxation length

suggests that for a superlattice with a period length smaller than four nanometers,

the strain at the interface does not fully relax. This leads to a more uniform lat-

tice structure across the superlattice. Our numerical studies on the effects of strain

on thermal boundary resistance at the interface of materials shows that the effects

of varying strain on TBR are not significant. Additionally, we observe that strain

relaxation does not have a significant impact on thermal conductivities of Si/Ge su-
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perlattices. We observe that thermal conductivity of Si/Ge superlattices decreases as

the period lengths decrease, up to a period length around strain relaxation length.

Reducing the period length beyond strain relaxation length, leads to an enhancement

in thermal conductivity of the superlattice. This implies that the enhancement in

thermal conductivity of Si/Ge superlattices for period lengths smaller than strain

relaxation length may be in part caused by uniform lattice structure due to lack of

strain relaxation.

Furthermore, we calculate the PDOS of silicon and germanium in Si/Ge super-

lattice structures with different period lengths. We observe a new vibrational peak

(12THz-15THz) in both silicon and germanium at small period lengths (comparable

to strain relaxation length). Since this vibrational mode is present in both silicon and

germanium, it is not significantly scattered at the interface and can transfer through

the interface with ease. This leads to higher thermal conductivities for superlattices

with short period lengths. These new vibrational modes are associated with Si-Ge

bonds at the interface. The density of these vibrational modes increases as the number

of interfaces increases for superlattices with short period lengths 2.8.

Second, our investigation of conductive heat transfer in polymers through non-

bonding and bonding interactions suggests that non-bonding interactions are very

important for thermal transport in polymers. Contrary to previous beliefs that in-

troduction of strong covalent bonds between polymer chains should increase heat

transfer, studies have reported both enhancement ([78]) and reduction ([195]) in the

thermal conductivities of polymers upon crosslinking (i.e., formation of strong cova-

lent bonds between chains). We observe that heat transfer along the covalent bonds

of the crosslinkers between polymer chains is not the primary inter-chain heat trans-

fer mechanism in crosslinked polymers. We observe that if the crosslinker agent has

a short enough length to bring the polymer chains close to each other, non-bonding

interactions between the chains are significantly enhanced. The large number of
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enhanced inter-chain non-bonding interactions, leads to a significant contribution to

inter-chain thermal conductance. This is reasonable, since the number of non-bonding

interactions in the system is significantly higher than the number of covalent bonds.

For example, an order of magnitude enhancement in thermal conductivity of polymers

is observed upon formation of hydrogen bonds between the polymer chains ([81]).

Furthermore, in order to study the impact of non-bonding interactions on heat

transfer in crosslinked polymers, we study wave propagation in polymer chains, in

the presence and absence of non-bonding interactions. Our results show that acoustic

waves travel at significantly faster speeds when non-bonding interactions are included

compared to when non-bonding interactions are excluded, due to the long-range na-

ture of non-bonding interactions. Additionally, we show that the introduction of ionic

bonds between polymer chains can increase their thermal conductivity by a factor of

about two. This is due to enhanced inter-chain bonding, an increase in the radius of

gyration of the chains, and increased density. Previous experiments have also have

shown enhancements in thermal conductivity of ionically bonded polymers [152].

Finally, machine learning algorithms were developed for fast discovery of materials.

We have encoded physical rules in the algorithms such that the algorithms cannot

explore function spaces where physical rules are broken. The addition of physical

rules to the network allows us to train the algorithms with a smaller dataset (since

part of the function space is eliminated by the physical rules already encoded in the

algorithm). The algorithms in our work are used for prediction of thermal properties

such as total thermal conductivity and frequency-dependent thermal conductivity.

After training the networks, it only takes seconds to predict the thermal properties

of an unknown material using this algorithm. The development of this method could

lead to fast discovery of unprecedented materials.

Similar machine learning algorithms based on our work could be used to extend the

applicability of this method towards predicting third-order force constants between
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atoms, bridging the gap between nano-scale and macro-scale materials properties,

heat diffusivity, and more.

5.2 Future Work

We suggest using the results of this dissertation to develop experiments that could

further elucidate the effects of crosslinkers on thermal transport in polymers. For

example, experiments could be designed to measure thermal conductivity of a polymer

crosslinked with various crosslinkers in order to show the impact of crosslinker length.

We also suggest an experiment on other hetero-structures, where the two materials

in the structure have a significant difference in their phonon spectra. After these two

dissimilar materials form interfaces, we could study the impact of interface bonds on

heat transfer in this structure as the period length decreases. This could be used as a

means to control thermal conductivity of superlattice structures used in applications

such as thermoelectrics.

Additionally, there is a lot of room for using machine learning algorithms for mate-

rials discovery. One of these areas is using computer vision algorithms for extraction

of non-trivial features from graphical databases. This would streamline the materials

discovery process even more than the algorithms that were developed in this thesis.

In order to show this application in a nutshell, we have provided the dispersion curve

images for the materials studied in this chapter in Appendix B. Machine learning

algorithms such as auto-encoders and convolutional neural networks could be used

to learn the relationships between these images and the material thermal properties.

Our preliminary results show that computer vision algorithms are capable of learning

simple relations between thermal conductivity and the shape of dispersion curves. For

instance, the algorithms recognize that a higher slope for the acoustic bands of the

phonons dispersion curve may indicate a higher thermal conductivity. In the future,

more complicated algorithms may reveal complicated relationships between features
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of dispersion curves and thermal conductivity. For example, the possible relation-

ship between thermal conductivity and the band gap between acoustic and optical

phonons could be revealed using this approach.

Another area for future work would be to use the algorithms in this thesis in

order to predict the thermal conductivities of unprecedented materials from a large

material database.
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APPENDIX A

Force Field Parameters and Pseudo Potentials

PMMA (OPLS force field)[72, 74]:

Figure A.1: PMMA monomer structure
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Table A.1: Non-bonding Coefficients for Equation 3.2

Atom q(e.c.) σ(Å) ε (kCal/mol)

C1 0.00 3.20 0.051

C2 -0.09 3.52 0.067

C3 -0.135 3.52 0.067

C4 0.51 3.75 0.0105

C5 0.16 3.50 0.066

O1 -0.43 2.96 0.200

O2 -0.33 3.00 0.170

H1 0.045 2.50 0.030

H2 0.03 2.42 0.0150

Table A.2: Bond Stretch Coefficients for Equation 3.3

Bonds Kbond (kcal/mol/Å2) r0ij(Å)

C1 − C3 368 1.539

C1 − C2 300 1.5491

C1 − C4 326 1.517

O1 − C4 968 1.209

O2 − C4 471 1.360

C2(3,5) −H1(2) 331 1.09

O2 − C5 342 1.446
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Table A.3: Bond Bend Coefficients for Equation 3.4

Bends Kbending (kcal/mol/rad2) θ0ij(rad)

C1 − C2 − C1 89.5 113.3

C2(3) − C − C2(3) 87.9 109.47

C2(3) − C1 − C4 87.9 109.47

C1 − C4 −O2 74.5 111.4

C1 − C4 −O1 63.3 125.6

O1 − C4 −O2 126.5 123.0

C4 −O2 − C5 84.8 116.4

H1 − C2(3) − C1 35.0 109.5

H1 − C2(3) −H1 35.0 109.5

H2 − C5 −H2 35.0 109.5

H2 − C5 −O2 56.0 110.1

Table A.4: Torsion Coefficients, for Equation 3.5

Torsion K1 K2 K3 K4

C2(3) − C1 − C2 − C1 0.27792 0.000 0.000 -0.27792

C4 − C1 − C2 − C1 0.27792 0.000 0.000 -0.27792

C2(3) − C1 − C4 −O2 0.80784 0.000 0.000 -0.80784

C2(3) − C1 − C4 −O1 2.600 0.050 -2.550 0.000

C5 −O2 − C4 − C1 2.020 -1.000 -0.700 -0.320

PVA [112]:
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Figure A.2: PVA monomer structure

Table A.5: Non-bonding Coefficients for Equation 3.2

Atom q(e.c.) σ(Å) ε (kCal/mol)

H3 0.4 0 0

O -0.7 3.17 0.155

C1 0.3 3.5 0.080

C2 0 3.5 0.080

H1(2) 0 2.57 0.05

Table A.6: Bond Stretch Coefficients for Equation 3.3

Bonds Kbond (kcal/mol/Å2) r0ij(Å)

H −O 553 0.97

C −O 320 1.431

C − C 268 1.53

C1(2) −H1(2) 340 1.1
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Table A.7: Bond Bend Coefficients for Equation 3.4

Bends Kbending (kcal/mol/rad2) θ0ij(rad)

H −O − C 76.6 105

C − C − C 115.4 109.45

O − C − C 110 107.8

O − C −H 83.7 108

C − C −H 87.8 110

H − C −H 73.2 108

Table A.8: Torsion Coefficients

Torsion K (kCal/mol) φ0(degrees)

H −O − C − C 1.4354 180

C − C − C − C 2.7512 180

C − C − C −H 2.7512 180

PE [56]:

Figure A.3: PE monomer structure

Table A.9: Non-bonding Coefficients for Equation 3.2

Atom q(e.c.) σ(Å) ε (kCal/mol)

H 0.02742 2.5 0.03

C -0.05484 3.52 0.067
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Table A.10: Bond Stretch Coefficients for Equation 3.3

Bonds Kbond (kcal/mol/Å2) r0ij(Å)

C-H 350 1.09

C-C 350 1.53

Table A.11: Bond Bend Coefficients for Equation 3.4

Bends Kbending (kcal/mol/rad2) θ0ij(rad)

C(H)− C − C(X) 50 109.471

Table A.12: Torsion Coefficients

Torsion K (kCal/mol) d n

C(H)− C − C − C(H) 0.111111 1 3

The following pseudo-potentials were used from http://www.quantum-espresso.org.

For some of the materials multiple pseudo-potentials were used for comparison, how-

ever only one was used for final calculations:

Al.pw-mt fhi.upf, Al.pz-hgh.upf, As.pw-mt fhi.upf, As.pz-bhs.upf, As.pz-hgh.upf,

B.pw-mt fhi.upf, B.pz-bhs.upf, B.pz-hgh.upf, Ba.pw-mt fhi.upf, Be.pw-mt fhi.upf, Be.pz-

hgh.UPF, Bi.pw-mt fhi.upf, Bi.pz-hgh.upf, Br.pw-mt fhi.upf, Br.pz-hgh.upf, C.pw-

mt fhi.upf, C.pz-hgh.upf, C.pz-kjpaw.upf, Ca.pw-mt fhi.upf, Ca.pz-hgh.UPF, Cd.pw-

mt fhi.upf, Cl.pw-mt fhi.upf, Cs.pw-mt fhi.upf, F.pw-mt fhi.upf, Ga.pw-d-mt fhi.upf,

Ga.pw-mt fhi.upf, Ga.pz-bhs.upf, Ge.pw-mt fhi.upf, Ge.pz-bhs.upf, I.pw-mt fhi.upf,

I.rel-pz-n-kjpaw psl.0.2.2.UPF, In.pw-d-mt fhi.upf, In.pw-mt fhi.upf, In.pz-bhs.upf,

K.pw-mt fhi.upf, K.pz-hgh.UPF, Li.pw-mt fhi.upf, Li.pz-hgh.UPF, Mg.pw-mt fhi.upf,

Mg.pz-bhs.UPF, Mg.pz-hgh.UPF, N.pw-mt fhi.upf, N.pz-hgh.upf, Na.pw-mt fhi.upf,

Na.pz-hgh.UPF, O.pw-mt fhi.upf, O.pz-hgh.upf, O.pz-kjpaw.upf, P.pw-mt fhi.upf, P.pz-
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bhs.upf, Pb.pw-mt fhi.upf, Rb.pw-mt fhi.upf, S.pw-mt fhi.upf, S.pz-bhs.upf, Sb.pw-

mt fhi.upf, Sb.pz-bhs.upf, Sb.pz-hgh.upf, Se.pw-mt fhi.upf, Se.pz-bhs.upf, Se.pz-hgh.upf,

Si.pw-mt fhi.upf, Si.pz-hgh.upf, Sn.pw-mt fhi.upf, Sn.pz-bhs.upf, Te.pw-mt fhi.upf,

Ti.pw-mt fhi.upf, Zn.pw-mt fhi.upf
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APPENDIX B

Some of Training Data for Machine Learning
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Table B.1: Properties of some of the materials used in this thesis. GN = Group Number, PN = Period Number in Periodic
Table. Here We Study Systems with Two Atoms in Their Unit Cell. 1st and 2nd Refer to Those Atoms.

Material Mass Lattice Const.(nm) GN 1st GN 2nd PN 1st PN 2nd Density (kg/m3)
AlAs 101.9031 0.56191 13 15 3 4 3720
AlN 40.9882 0.43009 13 15 3 2 3260
AlP 57.9553 0.54094 13 15 3 3 2850
AlSb 148.7415 0.60738 13 15 3 5 4260
BAs 85.7326 0.47311 13 15 2 4 5220
BP 41.7848 0.44783 13 15 2 3 3450
CdS 144.476 0.5815 12 16 5 3 4820
CdSe 191.371 0.60643 12 16 5 3 5820
CdTe 240.011 0.6421 12 16 5 5 6200
GaAs 144.6446 0.55336 13 15 4 4 5320
GaN 83.7297 0.43087 13 15 4 2 6150
GaP 100.6968 0.5316 13 15 4 3 4138
GaSb 191.483 0.59596 13 15 4 5 5610

Ge 145.28 0.55697 14 14 4 4 5323
InSb 236.578 0.62961 13 15 5 5 5780

Si 56.171 0.53805 14 14 3 3 2329
SiC 40.0962 0.43068 14 14 3 2 3210
SiGe 100.7255 0.54663 14 14 3 4 3826
ZnS 97.455 0.53252 12 16 4 3 4090
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Dispersion curve images for the materials in diamond crystal structure. All dis-

persion curves are color coded such that the shade of the lines corresponds to the

occupation of the modes at that frequency based on Bose-Einstein distribution. The

vertical axes shows the phonon frequencies. All curves are scaled such that the min-

imum frequency is 0 Hz and the maximum frequency is 44 THz. The horizontal axes

shows the wave numbers for the phonons.

Figure B.1: Dispersion curve for AlAs
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Figure B.2: Dispersion curve for AlN

Figure B.3: Dispersion curve for AlP
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Figure B.4: Dispersion curve for AlSb

Figure B.5: Dispersion curve for BAs
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Figure B.6: Dispersion curve for BN

Figure B.7: Dispersion curve for BP
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Figure B.8: Dispersion curve for diamond (carbon)

Figure B.9: Dispersion curve for CdS

100



Figure B.10: Dispersion curve for CdSe

Figure B.11: Dispersion curve for CdTe
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Figure B.12: Dispersion curve for GaAs

Figure B.13: Dispersion curve for GaN
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Figure B.14: Dispersion curve for GaP

Figure B.15: Dispersion curve for GaSb
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Figure B.16: Dispersion curve for germanium

Figure B.17: Dispersion curve for InP
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Figure B.18: Dispersion curve for InSb

Figure B.19: Dispersion curve for KBr
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Figure B.20: Dispersion curve for KCl

Figure B.21: Dispersion curve for KF
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Figure B.22: Dispersion curve for KI

Figure B.23: Dispersion curve for LiBr
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Figure B.24: Dispersion curve for LiCl

Figure B.25: Dispersion curve for LiF
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Figure B.26: Dispersion curve for LiI

Figure B.27: Dispersion curve for MgO

109



Figure B.28: Dispersion curve for NaBr

Figure B.29: Dispersion curve for NaCl
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Figure B.30: Dispersion curve for NaF

Figure B.31: Dispersion curve for NaI
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Figure B.32: Dispersion curve for RbBr

Figure B.33: Dispersion curve for RbCl
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Figure B.34: Dispersion curve for RbF

Figure B.35: Dispersion curve for RbI
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Figure B.36: Dispersion curve for silicon

Figure B.37: Dispersion curve for SiC
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Figure B.38: Dispersion curve for SiGe

Figure B.39: Dispersion curve for ZnS
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