
	
	
	
	
	
	 	
	
	
Improving	Brain-Computer	Interface	Performance	By	Using	
Dynamic	Methods	Based	on	Analysis	of	Cognitive	State	

	
	
by	
	
	

Abdulrahman	W.	Aref	
	
	
	
	

A	dissertation	submitted	in	partial	fulfillment	
of	the	requirements	for	the	degree	of		

Doctor	of	Philosophy	
(Biomedical	Engineering)	

in	The	University	of	Michigan	
2018	
	
	
	
	
	
	
	
	
	
	
	

	
Doctoral	Committee:	
	
	 Assistant	Professor	Cynthia	Chestek,	Co-Chair	
	 Research	Assistant	Professor	Jane	E.	Huggins,	Co-Chair	
	 Professor	Douglas	C.	Noll	
	 Assistant	Professor	William	Stacey	



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Abdulrahman	W.	Aref	
awaref@umich.edu	

OCRID	iD:		0000-0002-5210-6056



	 ii	

	
	
	
	
	
	
	
	

To	my	parents,	who	have	been	my	greatest	influences	in	my	education	and	
character.	

	
To	my	family,	those	still	here	and	those	who	have	passed	on.	

	
	 	



	 iii	

	
	
	
	
	
	
	
	

Acknowledgments	

	
I	would	like	to	express	the	deepest	gratitude	to	the	following	that	without	

their	help,	this	research	and	dissertation	would	not	be	possible.	
My	parents,	Walid	Aref	and	Faika	Said,	who	have	provided	me	with	every	

resource	I	ever	needed	to	excel,	without	hesitation.	I	cannot	thank	you	enough	for	
all	the	unconditional	love	and	support	you	give	me	when	I	need	it	the	most.		

My	sister,	Safaa	Aref,	and	my	two	brothers,	Mohammad	Aref	and	Jalaleldeen	
Aref,	have	been	by	my	side	through	the	best	and	the	worst	and	have	all	been	a	huge	
influence	on	the	person	I	am	today.	I	know	we	have	not	been	able	to	spend	a	lot	of	
time	together	over	the	past	couple	years,	but	you	are	always	on	my	mind.		

My	research	advisor,	Dr.	Jane	Huggins,	deserves	the	highest	praise,	as	she	has	
been	my	greatest	mentor	over	the	last	several	years.	She	has	instilled	in	me	the	
curiosity	of	a	researcher	and	led	by	example.	Thank	you	very	much	for	being	patient	
with	me.	I	will	forever	remember	you	as	one	of	my	greatest	teachers.	

My	friends,	who	have	provided	me	with	a	steady	amount	of	support,	comfort,	
and	inspiration	at	times	of	hardship,	I	would	not	have	been	able	to	complete	this	
dissertation	without	you.		 	



	 iv	

	
	
	
	
	
	
	
	

Preface	

	
	 With	the	exception	of	the	first	and	last	chapters,	this	dissertation	is	
comprised	of	manuscripts	in	various	stages	of	preparation	and	submission.	The	
overall	story	of	my	research	has	been	molded	out	of	these	manuscripts,	and	I	have	
attempted	to	minimize	recurrent	and	overlapping	text.	However,	some	degree	of	
recurrent	text	was	unavoidable.	

To	report	studies	in	a	more	organized	manner,	I	split	up	one	of	the	
manuscripts	into	3	different	chapters.	Chapters	3,	4,	and	5	together	comprise	one	
manuscript	to	be	submitted.	Therefore,	any	repetition	of	topics	in	these	chapters	
would	be	removed	upon	submission.	Organizing	my	dissertation	in	this	way,	
although	not	chronological,	presents	the	research	in	a	coherent	manner	that	is	
easier	to	follow.		
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Abstract	

	
Communication	for	individuals	with	severe	motor	and	speech	impairments	

can	be	very	difficult	and	they	find	the	need	for	the	assistance	of	augmentative	and	
alternative	communication	(AAC)	systems.	Common	commercialized	AAC	systems	
require	some	amount	of	voluntary	control	and	are	unusable	by	individuals	with	
severe	disabilities.	Non-invasive	brain-computer	interfaces	(BCIs)	are	an	emerging	
means	of	communication	for	people	with	severe	motor	and	speech	impairments.	
BCIs	allow	the	user	to	make	selections	on	the	computer	just	using	their	brain	
signals,	electroencephalogram	(EEG).	However,	although	they	are	revolutionary	for	
individuals	that	cannot	control	other	available	AAC	systems,	BCIs	have	several	
limitations.	Two	major	limitations	of	BCIs	are:	1)	BCIs	are	static/synchronous	in	
nature;	2)	BCIs	are	susceptible	to	changes	in	user	attention.	Since	people	in	the	
populations	that	need	BCI	technology	the	most	(e.g.	amyotrophic	lateral	sclerosis	
;ALS)	may	experience	attention	impairments,	incorporating	attention-monitoring	
features	into	the	BCI	would	improve	BCI	performance	by	reducing	errors	in	these	
populations.	This	research	presents	two	dynamic	methods	developed	to	help	the	
BCI	become	more	user-aware	and	allow	users	to	control	the	BCI	at	their	own	pace.	
Using	a	well-established	negative	correlation	between	alpha	band	power	in	the	EEG	
and	attention,	the	first	method	used	alpha	band	analysis	to	detect	losses	in	user	
attention	and	abstained	selections	that	were	unattended	to	reduce	potential	errors.	
The	second	method,	called	P300-Certainty,	abstained	selections	that	do	not	reach	a	
specified	confidence	level.	To	test	both	methods,	off-line	analysis	was	performed	on	
recorded	EEG	from	30	subjects	using	the	BCI	for	spelling.	Subjects	selected	9	
sentences	and	at	least	23	characters	per	sentence	with	additional	corrections.	Alpha	
band	analysis	and	P300-Certainty	were	tested	off-line,	separately	and	together,	on	
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this	dataset	to	determine	their	efficacy	at	increasing	BCI	accuracy	by	abstaining	
potential	errors.	In	addition,	P300-Certainty	was	implemented	in	a	BCI-facilitated	
cognitive	assessment	to	reduce	potential	errors,	as	well	as,	only	choosing	selections	
when	they	reach	a	specified	confidence	level.	The	on-line	performance	of	P300-
Certainty	was	calculated	from	this	data.	Alpha	band	analysis	was	performed	off-line	
on	this	on-line	data	to	determine	its	efficacy	at	increasing	P300-Certainty	on-line	
BCI	accuracy.	

Alpha	band	power	was	shown	to	be	significant	between	correct	and	incorrect	
character	selections	with	a	significance	of	p	=	0.01004.	Using	this	significance,	alpha	
band	analysis	was	used	to	classify	selections	as	correct	or	incorrect	based	on	the	
EEG,	however	it	was	only	improved	accuracy	for	a	subset	of	subjects	(subjects	
exhibiting	high	alpha	variance).	Off-line	analysis	of	P300-Certainty	was	shown	to	
increase	accuracy	from	82.01±12.59%	to	88.82±8.85%	by	abstaining	potential	
errors,	with	a	statistical	significance	of	p	=	0.038.	Furthermore,	P300-Certainty	and	
alpha	band	analysis	used	together,	improved	BCI	accuracy,	over	all	subjects,	more	
than	either	method	did	alone.	The	increase	was	statistically	significant	(p	=	0.008)	
when	compared	to	the	raw	BCI	accuracy.	The	on-line	accuracy	of	P300-Certainty	
was	83.62	±	9.14%.		

Alpha	band	analysis	and	P300-Certainty	abstain	potential	errors	using	
different,	yet	orthogonal,	methods	of	measuring	attention.	Each	method	abstains	
potential	errors	that	the	other	may	have	not	detected.	In	conclusion,	this	research	
has	introduced	two	methods	that	quantify	attention	in	orthogonal	ways	that	
increase	BCI	accuracy	by	abstaining	potential	errors	more	than	either	method	alone.	
Using	these	methods	together	allows	the	BCI	to	be	more	user-aware	and	allows	the	
user	to	type	at	their	own	pace.
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Chapter	1	

Motivation	

	

Introduction	

	
Communication	for	individuals	with	severe	motor	and	speech	impairments	

can	be	very	difficult	and	requires	the	assistance	of	an	augmentative	and	alternative	
communication	(AAC)	systems.	Common	commercialized	AAC	systems	require	
some	amount	of	voluntary	control	and	are	unusable	by	individuals	who	have	the	
most	severe	disabilities	(e.g.	completely	unable	to	move).	Non-invasive	brain-
computer	interfaces	(BCIs)	are	an	emerging	means	of	communication	for	people	
with	severe	motor	and	speech	impairments.	BCIs	allow	the	user	to	make	selections	
on	the	computer	just	using	their	brain	signals.	One	common	BCI	that	is	utilized	for	
communication	is	the	P300	BCI,	which	is	controlled	by	the	user’s	P300	response	
(found	in	user’s	brain	signals).	However,	although	they	are	revolutionary	for	
individuals	that	cannot	control	other	available	AAC	systems,	P300	BCIs	have	several	
limitations.	Two	major	limitations	of	BCIs	are:		

1. P300	BCIs	are	static/synchronous	in	nature	
2. P300	BCIs	are	susceptible	to	changes	in	user	attention	

This	dissertation	includes	two	dynamic	methods	that	help	the	BCI	become	more	
user-aware	and	allow	users	to	control	the	BCI	at	their	own	pace.		
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Background	

	

BCI	
	
		 Wolpaw	defined	a	BCI	as	a	“non-muscular	channel	for	sending	messages	and	
commands	to	the	external	world”	[1].	Non-invasive	brain-computer	interfaces	
(BCIs)	are	an	emerging	means	of	communication	for	people	with	severe	motor	and	
speech	impairments,	since	they	do	not	require	voluntary	muscle	control.	There	have	
been	many	studies	proposing	BCIs	controlled	by	different	aspects	of	a	user’s	brain	
signals,	including	visually	evoked	potentials	[2,3],	motor	imagery	[3-5],	slow	cortical	
potentials	[6],	and	several	others.	One	signal	that	is	commonly	used	to	control	BCIs	
is	the	P300	response,	which	is	a	signal	that	appears	in	the	electroencephalogram	
(EEG)	about	300ms	after	a	relevant,	yet	unpredictable	event	[7].	This	dissertation	
focuses	on	improving	performance	of	non-invasive	P300-based	BCIs	(P300	BCI)	by	
further	analyzing	the	user’s	cognitive	state	(attention).	

P300	BCI	
	

First	introduced	by	Farwell	and	Donchin	in	[7],	the	P300	BCI	is	one	of	the	
easiest	to	learn	and	use.	P300	BCIs	have	been	used	extensively	in	research	to	aid	
with	communication	in	populations	with	severe	motor	and	speech	impairments	[3,	
8-10].		

The	P300	response,	also	called	the	oddball	response,	was	first	described	in	
1965	in	[11],	and	is	evident	in	the	user’s	EEG	around	300ms	after	a	rare	and	desired	
stimulus	is	presented	among	many	others.	Figure	1	shows	an	example	of	the	P300	
response	found	in	the	EEG	that	is	used	to	control	P300	BCIs.		
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Figure	1:	This	graph	shows	an	example	of	a	P300	signal	in	response	to	a	target	(green	line),	while	
the	blue	line	(centered	around	0)	represents	the	response	(no	P300	present)	to	a	non-target.	This	
graph	was	generated	by	averaging	30	responses	to	targets	and	non-targets.	The	amplitude	is	in	uV.	

The	P300	Speller		
	

The	P300	Speller	is	a	common	P300	BCI	design	that	allows	spelling	utilizing	
the	user’s	EEG	(P300	response).	There	are	many	variations	of	P300	BCIs,	however	
the	one	being	presented	is	the	most	basic,	original	design.	The	user	is	presented	
with	a	grid	of	selections	(can	be	letters,	numbers,	icons,	words,	etc.),	as	shown	in	the	
example	in	Figure	2.	The	selections	flash,	in	rows	or	columns	in	this	application,	for	
a	user-customized	number	of	times	per	character	selection.	The	user	is	asked	to	
concentrate	on	a	selection	and	count	how	many	times	it	flashes	(whether	it	was	a	
row	flash	or	a	column	flash).	The	number	of	total	flashes	presented	to	the	user	is	
determined	from	the	calibration	data	he/she	completes	before	controlling	the	BCI.	
After	all	available	selections	flash	for	the	user-specific	number	of	times,	the	P300	
Speller	then	determines	which	row	and	column	elicited	a	reaction	(P300	response)	
from	the	user.	The	selection	at	the	intersection	of	the	chosen	row	and	column	is	the	
selection	that	is	chosen	by	the	BCI	and	is	printed	on	the	screen.	The	user	then	starts	
the	process	over	again	for	the	next	character.		
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Figure	2:	This	is	an	example	of	the	P300	Speller	display.	The	3rd	row	is	intensified	to	show	how	the	

flashes	look	to	the	user.	
	

All	of	the	research	reported	in	this	dissertation	was	performed	using	a	P300	
BCI,	with	most	using	the	P300	Speller.			

P300	BCI	Terminology	
	

When	talking	about	P300	BCIs,	there	are	several	terms	to	be	familiar	with	
that	will	help	understand	its	mechanism	of	operation.		

Flashes:	This	is	defined	as	each	individual	stimulus	presented	to	the	user.	
Selections	can	flash	in	groups	(e.g.	rows	and	columns)	or	independently.		

Sequences:	Once	all	of	the	possible	selections	have	flashed	one	time	and	
only	one	time,	this	group	of	flashes	is	considered	a	sequence.	Multiple	sequences	
may	be	needed	for	the	BCI	to	make	a	selection.	This	is	due	to	the	low	signal-to-noise	
ratio	of	EEG.	

Classifier	Value:	Before	a	user	can	control	the	BCI,	they	need	to	complete	a	
calibration	step.	Step-Wise	Linear	Discriminant	Analysis	(SWLDA),	other	types	of	
LDA,	Least	Squares	(LS),	or	Support	Vector	Machines	(SVMs)	use	the	labeled	
responses	from	the	calibration	data	to	generate	weights,	as	well	as	a	user-specific	
number	of	sequences	needed	for	accurate	BCI	selection.	These	weights	are	used	to	
classify	the	user	responses	when	controlling	the	BCI.	When	controlling	the	BCI,	once	
all	of	the	user-specific	number	of	sequences	are	presented,	the	EEG	responses	
within	a	certain	time	period	(e.g.	0ms-800ms)	after	each	flash	are	analyzed	for	the	
presence	of	a	P300	response.	The	weights	are	applied	to	the	EEG	during	that	time	
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period	to	help	classify	the	responses.	SWLDA,	LS,	or	SVM	are	used	to	classify	the	
presence	or	absence	of	a	P300	response.	After	each	sequence,	all	possible	selections	
are	assigned	a	score,	called	a	classifier	value,	calculated	by	SWLDA	to	evaluate	the	
presence	of	a	P300	response.	The	higher	the	classifier	value	assigned	to	a	selection,	
the	more	likely	that	a	true	P300	response	was	detected.		

After	all	sequences	have	been	flashed,	the	classifier	values	assigned	to	each	
row	and	column	(in	a	row-column	flash	pattern)	are	combined	over	all	sequences.	
The	P300	Speller	makes	a	selection	based	on	which	row-column	have	the	highest	
combined	classifier	value.	The	intersection	of	the	selected	row	and	column	is	the	
selection	that	is	made.			

Attention	and	P300	BCI	
	

The	P300	BCI	design	is	vulnerable	to	variations	in	attention	due	to	the	rapid	
nature	of	the	flashes	(31.25ms	–	125ms	per	flash)	and	the	length	of	time	it	takes	to	
make	a	single	selection	(13.3s	-	22.5s	per	selection	depending	on	subject-specific	
performance).	When	controlling	the	P300	BCI,	subjects	use	multiple	sets	of	flashes	
(predetermined	from	a	subject’s	calibration	data)	for	the	BCI	to	make	a	single	
selection.	All	of	these	flashes	are	taken	into	consideration	by	the	BCI	when	making	a	
selection.	Large	numbers	of	flashes	tend	to	be	more	monotonous	due	to	the	length	
of	time	that	user	needs	to	attend	to	the	BCI.	If	a	user’s	attention	wanders	halfway	
through	the	number	of	flashes,	then	the	selection	the	BCI	makes	(classification)	has	
a	larger	probability	to	be	incorrect	or	not	be	the	one	desired	by	the	user.	Users	with	
a	larger	number	of	flashes	need	to	pay	attention	to	the	BCI	display	for	a	longer	
period	of	time.	On	the	other	hand,	some	users	need	to	have	a	larger	number	of	
flashes	for	optimal	BCI	performance.	The	ability	to	detect	moments	of	decreased	
attention	in	the	EEG	of	a	BCI	user	would	allow	the	BCI	to	not	choose	the	
corresponding	selection,	which	would	reduce	total	errors.	In	addition,	this	can	also	
allow	the	BCI	to	only	make	selections	when	the	user	is	paying	attention.		

Populations	that	need	BCI	technology	the	most	(e.g.,	people	with	
amyotrophic	lateral	sclerosis	(ALS))	experience	attention	impairments	[12].		
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Incorporating	an	attention-monitoring	feature	into	the	BCI	would	improve	BCI	
performance	by	reducing	errors	for	populations	that	need	it	the	most.		

Abstention	of	potentially	erroneous	selections	
	

Traditional	P300	BCIs	tend	to	have	a	static	nature.	The	BCI	presents	the	user	
with	a	predetermined	number	of	stimuli	before	making	a	decision.	A	decision	is	
always	made	regardless	of	whether	the	user	was	attending	to	the	BCI	or	not.	This	
ends	up	with	unintended	or	unattended	selections	being	chosen	by	the	BCI,	most	of	
which	are	errors.	Since	ideal	BCI	performance	requires	attention	to	the	BCI,	being	
able	to	detect	losses	of	attention	during	use	can	help	the	BCI	to	reject	potentially	
erroneous	selections	that	are	unintended	or	unattended.	Rejecting	selections	that	
are	potential	errors	is	known	as	abstention.	

Selection	Confidence	Methods	

To	be	able	to	achieve	a	BCI	that	abstains	potential	errors,	the	BCI	needs	to	be	
able	to	calculate	a	measure	of	confidence	for	each	selection	based	on	the	user’s	
responses	to	the	BCI	stimuli	(flashes).	If	selections	do	not	reach	an	appropriate	
confidence	level,	they	are	abstained.	Methods	that	allow	this	functionality	in	a	BCI	
are	called	selection	confidence	methods.	In	a	sense,	these	selection	confidence	
methods	are	an	indirect	measure	of	the	user’s	attention	to	the	BCI.	Low	confidence	
for	a	selection	indicates	that	the	user	did	not	exhibit	a	P300	response	when	that	
selection	was	presented.	Thus,	the	user	was	not	attending	to	that	selection.		

Several	studies	have	used	BCIs	with	abstention	by	calculating	confidence	
values	for	selections	in	different	ways	[3,	4].	Methods	that	have	been	used	to	
calculated	selection	confidence	values	are:	Independent	Component	Analysis	(ICA)	
[5]	and	Bayesian	Linear	Discriminant	Analysis	(BLDA)	[3,	6].	These	methods	all	
calculated	selection	confidence	values	for	selections	and	evaluated	them	against	a	
predetermined	confidence	threshold	to	determine	whether	a	selection	was	retained	
or	abstained.	The	study	using	ICA	showed	an	increase	of	accuracy	from	90%	to	
92.1%,	while	the	study	using	BLDA	showed	a	non-significant	decrease	in	accuracy	
from	79.44±29.98%	to	74.40±27.16%.		
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Dynamic	Stopping	
	
Instead	of	having	the	BCI	make	selections	after	a	fixed	number	of	sequences,	

selection	confidence	methods	can	also	be	used	to	make	selections	as	soon	as	their	
confidence	level	surpasses	a	predetermined	confidence	threshold,	regardless	of	how	
many	sequences	have	been	presented.	For	example,	a	user	may	not	always	need	the	
same	number	of	sequences	to	make	a	decision.	A	user	who	appeared	from	the	
calibration	data	to	need	10	sequences	for	the	BCI	to	make	an	accurate	selection,	may	
actually	require	less	sequences	for	some	selections.	If	at	4	sequences,	the	selection	
confidence	level	of	one	of	the	selections	surpasses	the	threshold,	then	that	selection	
is	chosen	and	the	user	moves	on	to	type	the	next	selection.	The	use	of	selection	
confidence	methods	in	this	manner	is	referred	to	as	dynamic	stopping.				

In	recent	years,	dynamic	stopping	has	been	explored	as	an	aid	to	increase	the	
asynchronous	nature	of	the	P300	Speller.	Lenhardt	et	al.	developed	an	algorithm	to	
decrease	the	number	of	sequences	depending	on	the	user’s	performance	[17].	The	
study	showed	a	significant	increase	in	the	information	transfer	rate	(ITR)	when	
compared	to	typing	using	the	standard	P300	speller	without	dynamic	stopping.	
More	recently,	several	studies	have	used	Bayesian	Linear	Discriminant	Analysis	
(BLDA)	to	classify	the	selections,	calculated	selection	confidence	probabilities	using	
Bayes	rule,	and	evaluated	them	against	a	confidence	threshold	to	achieve	dynamic	
stopping.	Once	a	selection’s	probability	surpasses	the	confidence	threshold,	no	more	
sequences	are	flashed	and	that	selection	is	chosen.	It	was	found	that	spelling	time	
was	decreases	from	21	minutes	to	10.47±5.69	minutes,	while	maintaining	accuracy.	
Park	and	Kim	developed	a	dynamic	stopping	model	that	uses	a	reward	point	system	
based	on	the	P300	classifier	values	to	give	each	row	or	column	a	point	value.	The	
row	or	column	with	the	greatest	point	value	would	be	considered	the	target	after	
each	flash	(the	target	should	ideally	remain	the	same	for	each	sequence)	and	would	
be	selected	once	it	reached	a	predetermined	point	value	[18].	Park	and	Kim’s	model	
showed	a	significant	increase	in	accuracy	from	85.63±15.6%	to	92.5±0.09%	[18].	
Very	similar	studies	have	been	performed	using	different	algorithms	to	achieve	
dynamic	stopping	[19,	20].	
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	 Selection	confidence	methods	utilized	to	achieve	dynamic	stopping	are	very	
useful	when	using	a	P300	BCI	by	calculating	a	measure	of	attention	and	allowing	the	
user	to	type	at	their	own	pace	based	on	their	attention	to	the	BCI.	The	measure	of	
attention	provided	by	selection	confidence	methods	is	derived	from	the	user’s	
responses	to	the	BCI	flashes,	which	in	a	sense	is	an	indirect	measure	of	attention.	A	
more	direct	measure	of	attention	will	be	explored	in	the	next	section.	

Alpha	band	analysis	of	EEG	as	a	measure	of	attention	
	
	 A	correlation	between	alpha	band	power	(EEG	frequency	band	of	8-13	Hz)	
and	attention	is	well	established	in	Clinical	Neurophysiology	and	Cognitive	
Neuroscience	studies,	with	low	alpha	band	power	corresponding	to	high	attention	
levels	and	high	alpha	band	power	corresponding	to	low	attention	levels	[21-23].	
Furthermore,	studies	(outside	a	BCI	context)	have	demonstrated	that	pre-stimulus	
alpha	band	power	also	correlates	with	the	amplitude	of	the	P300	response	elicited	
by	different	kinds	of	stimuli	[21,	22].		

Alpha	band	analysis	of	EEG	in	a	BCI	context	
	

Several	studies	have	also	been	conducted	to	analyze	alpha	band	power	
during	a	visual-spatial	attention	task	[24-27].	These	studies	each	used	a	variation	on	
an	EEG	BCI	that	presented	left	and	right	stimuli	while	the	user’s	eyes	were	straight	
ahead	(testing	covert	attention).	Alpha	band	power	calculated	from	the	EEG	
recorded	from	the	parieto-occipital	cortex	in	the	brain	(area	that	processes	visual	
input)	was	used	to	classify	to	which	stimuli	a	user	was	attending.	Although	alpha	
differences	between	left	and	right	were	used	to	determine	which	side	the	user	was	
attending	to,	the	studies	did	not	explore	the	correlation	between	alpha	and	accuracy	
of	BCI	selections.		

The	study	detailed	in	Chapter	2	examines	the	benefits	of	using	alpha	band	
analysis	of	the	EEG	as	a	direct	measure	of	attention	to	improve	BCI	performance	by	
abstaining	possible	errors	where	the	user	exhibits	low	levels	of	attention	(high	
levels	of	alpha).		
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Significance	

	
	 Due	to	the	static/synchronous	nature	of	BCI	and	the	susceptibility	to	changes	
in	user	attention,	its	use	is	limited	to	those	populations	without	severe	motor	and	
speech	impairments	or	those	with	impairments	that	still	retain	some	voluntary	
muscular	control.	Furthermore,	populations	that	need	BCI	technology	the	most	(e.g.,	
people	with	amyotrophic	lateral	sclerosis	(ALS))	experience	attention	impairments	
[3].		Incorporating	an	attention-monitoring	feature	to	the	BCI	would	improve	BCI	
performance	by	reducing	errors	for	populations	that	need	it	the	most.		

A	brief	description	of	populations	that	would	benefit	from	a	dynamic	
attention-monitoring	BCI	are	as	follows:	

Amyotrophic	lateral	sclerosis	(ALS):	With	incidence	of	about	2	out	of	100,000	
people	[28],	and	often	known	as	Lou	Gherig’s	Disease,	ALS	is	characterized	by	the	
progressive	loss	of	motor	control	with	the	retention	of	sensory	and	cognitive	
function.	ALS	is	one	of	the	main	motivators	for	BCI	research	since	some	of	those	
affected	reach	a	level	of	motor	and	speech	impairment	where	AAC	systems	are	very	
difficult	to	use.	The	progression	of	impairment	in	people	with	ALS	gets	so	severe,	
that	their	breathing	muscles	cease	to	work	and	require	the	use	of	a	ventilator.	At	
this	point,	they	are	given	a	choice	whether	to	use	a	ventilator	to	keep	them	alive	or	
not.	Many	more	people	with	ALS	may	choose	to	reach	this	state	of	disability	and	use	
a	ventilator	if	an	effective	BCI	was	available.	Currently	BCIs	provide	limited	aid	to	
these	individuals.	Dynamic	attention-monitoring	BCIs	have	great	potential	to	help	
these	individuals	communicate.	

Cerebral	palsy	(CP):	CP	is	a	congenital	condition	that	includes	a	large	variety	
of	motor	deficiencies.	With	incidence	of	2.4	out	of	1000	births	[29],	about	16%	of	
people	with	CP	exhibit	impairments	severe	enough	to	warrant	the	use	of	a	BCI	[30].		

Neuromuscular	disease,	spinal	cord	injury,	brainstem	stroke,	and	traumatic	
brain	injury,	are	all	conditions	that	may	result	in	severe	motor	and	speech	
impairments	and	warrant	the	use	of	a	BCI	for	communication.		

Some	individual	with	the	conditions	listed	above	experience	severe	levels	of	
impairment	to	the	point	where	BCIs	may	be	the	only	option	for	communication.	
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Note	that	there	are	many	other	conditions	that	cause	motor	and	speech	impairment	
that	may	benefit	from	the	use	of	BCI,	and	the	attraction	to	BCI	technology	to	these	
populations	may	increase	as	BCI	performance	and	effectiveness	increases.		
	

Outline	of	Chapters	

	
The	primary	goal	of	this	research	was	to	develop	methods	to	improve	BCI	

performance	by	allowing	them	to	be	more	aware	of	the	user’s	cognitive	state	
(attention).	Two	different	approaches	were	taken	to	achieve	this	dynamic	attention-
monitoring	BCI.	The	first	approach,	described	in	Chapter	2,	was	to	use	a	well-
studied	attention-marker	directly	derived	from	the	user’s	EEG	(alpha	band	power)	
to	improve	BCI	performance.	This	is	achieved	by	reducing	BCI	spelling	errors	
through	abstaining	selections	during	which	users	exhibit	losses	in	attention.		

The	second	approach,	described	in	Chapter	3,	was	to	develop	a	selection	
confidence	method	(the	P300-Certainty	algorithm)	to	improve	BCI	performance	by	
abstaining	selections	that	do	not	reach	a	specified	confidence	level.		

Chapter	4	explores	using	the	P300-Certainty	algorithm	to	achieve	dynamic	
stopping	by	allowing	the	BCI	to	make	a	selection	once	the	confidence	of	a	selection	
reaches	a	specified	level.	This	permits	the	BCI	to	be	much	more	dynamic	and	allows	
the	user	to	control	the	BCI	at	their	own	pace.	

To	bring	it	all	together,	Chapter	5	combines	the	methods	introduced	in	
Chapter	2	(alpha	band	analysis)	and	Chapter	3	(P300-Certainty)	to	demonstrate	the	
effectiveness	of	these	two	orthogonal	methods	in	improving	BCI	performance	more	
than	either	method	used	alone.		

Finally,	Chapter	6	includes	a	concluding	discussion	summarizing	the	
contributions	made	by	the	work	presented	in	this	dissertation,	including	proposed	
future	work	based	on	these	contributions.		

Overall,	the	work	presented	in	this	dissertation	describes	methods	that	can	
be	used	to	create	a	BCI	that	is	resilient	to	wandering	user	attention	and	allows	users	
to	control	the	BCI	at	their	own	pace.		
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Chapter	2	

Improving	Accuracy	of	Individual	BCI	Selections	Using	

Alpha	Band	Analysis	

 
The text in this chapter is reformatted from a paper submitted to the Journal of Neural 

Engineering.  

Abstract	

This	study	used	off-line	analysis	of	data	from	a	P300-based	Brain-Computer	
Interface	(BCI).	It	has	long	been	known	that	increased	power	in	the	EEG	alpha	
frequency	band	(8-13Hz)	is	negatively	correlated	with	the	user’s	attention	to	the	
current	task.	Lack	of	user	attention	during	BCI	use	is	likely	to	cause	errors	in	BCI	
selections.	Recorded	EEG	from	30	subjects	using	the	BCI	was	analyzed	to	determine	
the	relationship	between	normalized	alpha	band	power	and	accuracy	of	BCI	
selections.	The	alpha	power	for	each	character	selection	was	compared	to	the	
correctness	of	each	character,	which	was	significantly	different	for	correct	versus	
incorrect	characters	with	p-value	of	0.01004,	and	thus	indicating	that	it	could	be	
used	to	predict	accuracy	of	the	selection.	Taking	advantage	of	the	significant	
difference	between	correct	and	incorrect	characters,	a	machine-learning	method	to	
classify	accuracy	based	on	alpha	for	each	subject	was	used	to	block	erroneous	
selections	in	an	off-line	analysis.	It	was	also	found	that	the	alpha	variance	exhibited	
by	the	user	predicted	the	effectiveness	of	alpha-based	classification	in	improving	
BCI	accuracy.	Specifically,	users	exhibiting	high	alpha	variance,	in	the	calibration	
data,	showed	improvement	in	BCI	accuracy	from	alpha	classification,	while	users	
exhibiting	low	alpha	variance	did	not	show	improvement	in	BCI	accuracy	using	
alpha	classification.	For	users	exhibiting	high	variance,	the	mean	BCI	accuracy	for	
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raw	BCI	performance	and	BCI	performance	with	an	alpha-based	classification	were	
80.24±10.70%	and	87.5±8.57%,	respectively,	which	was	statistically	significant	
with	a	p-value	=	0.041.	Thus,	alpha	band	power	can	be	used	to	quantify	attention	in	
a	BCI	context	and	improve	the	BCI	accuracy	for	subjects	exhibiting	high	alpha	
variance.	This	suggests	that	lapses	in	attention	cause	some,	but	not	all,	BCI	errors. 
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Introduction	

Many	individuals	with	severe	motor	impairments	need	assistive	technologies	
to	aid	them	in	communication.	Of	those	individuals,	the	ones	that	have	little-to-no	
motor	control	or	are	locked-in	cannot	use	common	commercialized	augmentative	
and	alternative	communication	systems	since	most	require	at	least	some	amount	of	
motor	control.	Non-invasive	brain-computer	interfaces	(BCIs)	are	an	emerging	
means	of	communication	for	people	with	severe	motor	and	speech	impairments.	
One	signal	that	is	commonly	used	to	control	BCIs	is	the	P300	response,	which	is	a	
signal	that	appears	in	the	electroencephalogram	(EEG)	about	300ms	after	a	
relevant,	yet	unpredictable	event	[1].	Farwell	and	Donchin	developed	the	first	P300	
speller	based	on	the	P300	response	[2].	The	P300	speller	presents	the	user	with	
selections	from	a	matrix	by	intensifying	their	color	(flashing	them	from	grey	to	
white)	and	chooses	the	selection	to	which	user’s	EEG	exhibits	P300	responses.		
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Background		

The	P300	Speller		

The	P300	Speller	is	a	common	P300	BCI	design	that	allows	spelling	utilizing	
the	user’s	EEG	(P300	response).	The	user	is	presented	with	a	grid	of	selections	(can	
be	letters,	numbers,	icons,	words,	etc.),	an	example	of	which	is	in	Figure	2	in	Chapter	
1.	The	selections	flash	in	groups	(rows	or	columns)	for	a	user-specific	number	of	
times	per	character	selection.	To	make	a	selection,	the	user	is	asked	to	concentrate	
on	a	selection	and	count	how	many	times	it	flashes,	which	is	intended	to	help	focus	
the	user’s	attention.	The	total	number	of	flashes	presented	to	the	user	is	determined	
from	the	calibration	data	he/she	completes	before	being	able	to	use	the	BCI.	After	all	
available	selections	flash	for	the	user-specific	number	of	times,	the	P300	Speller	
then	determines	which	row	and	column	elicited	a	reaction	(P300	response)	from	
the	user.	The	selection	that	is	chosen	by	the	BCI	and	printed	on	the	screen	is	the	
selection	at	the	intersection	of	the	chosen	row	and	column.	To	type	the	next	
character,	the	user	then	starts	the	process	over	again.		

Due	to	the	rapid	nature	of	flashes	(31.25ms	–	125ms	per	flash)	and	the	
length	of	time	it	takes	to	make	selections	(13.3s	-	22.5s	per	selection	depending	on	
subject-specific	performance),	the	P300	BCI	design	is	vulnerable	to	variations	in	
attention.	When	controlling	the	P300	BCI,	subjects	use	multiple	sets	of	flashes	
(predetermined	from	a	subject’s	calibration	data)	for	the	BCI	to	make	a	single	
selection.	When	making	a	selection,	all	of	the	data	from	these	flashes	are	taken	into	
consideration	by	the	BCI.	Larger	numbers	of	flashes	tend	to	be	more	monotonous	
since	the	user	needs	to	attend	to	the	BCI	for	a	longer	length	of	time.	If	a	user’s	
attention	wanders	halfway	through	the	number	of	flashes,	then	the	selection	the	BCI	
makes	(classification)	has	a	larger	probability	to	be	an	error	or	not	intended	by	the	
user.	Users	with	a	larger	number	of	flashes	need	to	pay	attention	to	the	BCI	display	
for	a	longer	period	of	time.	Having	the	ability	to	detect	moments	of	decreased	
attention	in	the	EEG	of	a	BCI	user	would	allow	the	BCI	to	abstain	the	corresponding	
selection,	which	would	reduce	total	errors.		
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Many	people	with	severe	impairments	(e.g.,	people	with	amyotrophic	lateral	
sclerosis	(ALS))	that	need	BCI	technology	the	most,	experience	attention	
impairments	[3].	Incorporating	an	attention-monitoring	feature	into	the	BCI	could	
thus	be	an	important	part	of	moving	BCIs	out	of	the	lab	and	into	the	clinic	where	
these	users	can	have	access	to	and	benefit	from	them.	

Alpha	band	analysis	to	predict	attention.		

There	is	a	well-established	correlation	between	alpha	band	power	(EEG	
frequency	band	of	8-13	Hz)	and	attention,	where	high	alpha	band	power	
corresponds	to	low	attention	levels	and	low	alpha	band	power	corresponds	to	high	
attention	levels	(negative	correlation)	[4,	5,	6].		

Alpha	band	analysis	in	a	BCI	context.		

Several	studies	have	been	conducted	to	analyze	alpha	band	power	during	a	
visual-spatial	task,	in	which	the	users	were	using	EEG	to	actively	choose	between	
two	selections	using	covert	attention	[7-10].	These	studies	each	used	a	variation	on	
an	EEG	BCI	that	presented	left	and	right	stimuli	while	the	user’s	eyes	were	straight	
ahead	(testing	covert	attention).	Although	alpha	differences	between	left	and	right	
were	used	to	determine	which	side	the	user	was	attending	to,	the	studies	did	not	
explore	the	correlation	between	alpha	and	accuracy	of	BCI	selections.	

Using	the	relationship	between	alpha	band	power	and	attention,	the	study	
reported	here	used	BCI	data	to	analyze	the	relationship	between	alpha	and	the	
accuracy	of	selected	characters.	The	hypothesis	for	this	study	is	that	a	higher	alpha	
band	power	will	be	correlated	with	a	higher	probability	for	the	corresponding	
selection	to	be	incorrect.	
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Methods		

BCI	Setup 

The	P300	Speller	used	in	this	study	is	a	modified	version	of	a	general-
purpose	brain-computer	interface	[11],	called	BCI2000	[12],	developed	by	Schalk	et	
al.	

This	study	used	recorded	data	while	subjects	performed	BCI	copy-spelling	
tasks	[11].	This	recorded	data	was	acquired	using	EEG	from	a	16-electrode	cap	with	
electrodes	at	F3,	Fz,	F4,	T7,	C3,	Cz,	C4,	T8,	CP3,	CP4,	P3,	Pz,	P4,	PO7,	Oz,	and	PO8	
sampled	at	256	Hz.		Data	was	from	30	subjects	(14	males,	16	females,	ages:	18yo-
78yo,	average	age	of	46.7±	20.0	years,	including	11	with	ALS).	Subjects	typed	9	
sentences	with	at	least	23	characters	per	sentence	with	additional	corrections.	All	
together,	the	subjects	made	a	total	number	of	9723	selections	[11].	Before	using	the	
BCI,	the	user	completed	a	calibration	step	that	allows	the	BCI	to	recognize	their	
P300	response.	This	calibration	data	was	used	to	calculate	subject-specific	
parameters	that	allowed	them	to	use	the	BCI	effectively,	details	reported	in	[11].		

The	spelling	accuracy	for	each	sentence	for	each	subject	was	calculated	as	the	
number	of	correct	selections	over	the	number	of	total	selections.	The	subjects	typed	
these	sentences	using	copy-spelling	with	correction,	therefore	each	subject’s	
accuracy	was	calculated	depending	on	the	number	of	correct	characters	they	
selected	compared	to	the	number	of	total	characters	they	selected	while	typing	a	
sentence.	The	selections	needed	to	make	corrections	were	included	in	this	accuracy	
calculation.		

For	all	subjects,	alpha	band	power	was	calculated	for	the	following	segments	
of	data	(visual	presentation	of	intervals	can	be	found	in	Figure	3):	

(1) Pre-character	(Pre-char)	interval	(3.5	seconds):	The	EEG	data	corresponding	
to	the	interval	before	a	character	is	typed.	Note	that	this	data	is	(except	for	
the	first	character)	between	2	separate	character	selection	processes	(after	
the	flashes	stop	for	one	character	selection	and	before	they	start	for	the	next	
character	selection).		
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(2) Character	(Char)	interval	(ranged	from	13.13	seconds	to	22.5	seconds):	The	
duration	varied	depending	on	the	subject-specific	number	of	flashes	
determined	from	the	calibration	data.	The	EEG	data	corresponds	to	the	
interval	during	the	character	selection	process	where	the	selections	are	
flashing	in	rows	and	columns.	This	is	the	time	where	the	EEG	quality	directly	
affects	the	BCI	function	since	this	is	the	only	part	of	the	EEG	that	is	analyzed	
by	the	BCI.		

(3) Post-character	(Post-char)	interval	(3.5	seconds):	The	EEG	data	immediately	
after	the	flashes	stop	for	the	character,	corresponding	to	the	interval	after	
each	character	selection.	Note	that	the	Post-char	interval	for	one	character	is	
also	the	Pre-char	interval	for	the	next	character.	

 

Pre-Char (n) Interval 
(3.5s) Char (n) Interval 

(13.13-22.5s) 

Post-Char (n) 
Interval (3.5s) 

Post-Char (n-1) 
Interval (3.5s) 

Pre-char (n+1) 
Interval (3.5s) 

Figure 3: The 3 different intervals that were analyzed in the character-by-character alpha analysis. Note 
that current character is (n), and (n-1) and (n+1) denote overlaps from the previous and following character, 

respectively. 

Data	Analysis	Methods	

Artifact	rejection	was	applied	to	electrodes	with	segments	of	data	excluded	
from	analysis	if	any	electrode	exceeded	500mV.		To	preserve	resolution,	the	alpha	
band	power	was	calculated	for	each	electrode	separately.	For	the	alpha	band	
analysis	included	in	this	study,	all	16	electrodes	were	used	to	make	sure	no	useful	
features	were	left	out.	The	alpha	band	power,	defined	as	the	average	power	in	the	
alpha	frequency	band	(8-13Hz)	found	in	the	EEG	signal	(averaged	over	all	
electrodes),	was	calculated	for	each	of	the	3	intervals	for	each	character	selection.		

Normalized	alpha	band	power	was	calculated	for	the	pre-char,	char,	and	
post-char	intervals.	To	calculate	the	alpha	band	power,	the	frequency	band	power	
during	time	segments	was	determined	by	using	fast	Fourier	transform	(FFT)	in	
MATLAB.		To	normalize	alpha,	the	baseline	alpha	for	each	subject	was	defined	as	the	
average	alpha	band	power	in	the	first	3	character	selections	of	the	calibration	data.	
Note,	that	the	alpha	in	each	of	the	3	intervals	was	normalized	separately	using	the	
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corresponding	baseline	alpha	calculated	from	the	3	intervals	during	the	first	3	
character	selections	of	the	calibration	data.	This	portion	of	the	data	was	selection	for	
normalization	to	avoid	character	selections	later	in	the	calibration	data	that	may	
have	lower	attention	levels.	Normalizations	were	performed	separately	for	each	
electrode.		

For	each	subject,	to	normalize	alpha,	the	alpha	band	power	was	subtracted	
from	the	baseline	alpha	then	scaled	by	dividing	by	the	baseline	alpha	(resulting	in	
normalized	alpha).	Finally,	the	normalized	alpha	for	all	electrodes	were	averaged	to	
produce	the	mean	normalized	alpha	for	each	interval	during	each	character	
selection.			
	 Note	that	varying	levels	of	alpha	between	and	within	subjects’	EEG	data	can	
cause	the	alpha	power	values	to	vary	exponentially	between	and	within	subject	
data.	To	remove	the	exponential	gaps	of	alpha	power	between	and	within	subjects,	
the	log10	was	taken	of	alpha	values,	and	the	alpha	variance	was	calculated	using	
these	log10	alpha	values,	as	used	by	Polich	in	[4].		

Based	on	the	variance	in	alpha	band	power	exhibited	in	the	calibration	data,	
the	subjects	in	this	study	fell	into	two	groups:	subjects	exhibiting	high	alpha	
variance	(average	variance	of	log	alpha	=	3.78±0.76	log10uV4),	and	subjects	
exhibiting	low	alpha	variance	(average	variance	of	log	alpha	=	2.74±0.11	log10uV4).	
Further	analyses	were	therefore	performed	and	reported	for	the	high	and	low	alpha	
variance	subjects	separately	and	for	all	subjects	together	to	discover	if	differences	in	
alpha	band	variance	exhibited	in	the	BCI	subject’s	calibration	data	affect	the	utility	
of	alpha	band	analysis	for	BCI	performance	improvement.		

The	normalized	alpha	band	power	during	the	Pre-char	intervals,	the	Char	
intervals,	and	the	Post-char	intervals	were	labeled	depending	on	whether	the	
corresponding	character	selected	was	correct	or	incorrect.	Statistical	analysis	was	
performed	to	find	the	relationship	of	alpha	band	power	(during	each	of	the	3	
intervals)	and	the	accuracy	of	the	corresponding	characters	selected	(correct	or	
incorrect).	The	significance	of	any	differences	in	mean	normalized	alpha	between	
correct	and	incorrect	characters	was	tested	with	a	two-tailed	t-test	for	unequal	
variances.		
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Alpha	analysis	to	improve	BCI	Accuracy	

The	potential	benefit	of	using	normalized	alpha	power	as	a	gatekeeper	to	
retain	or	abstain	individual	selections	was	then	evaluated.	For	each	subject,	linear	
discriminant	analysis	(LDA)	was	used	to	classify	selections	as	correct	or	incorrect	
based	on	normalized	alpha	power	exhibited	at	each	electrode.	Alpha	band	power	in	
the	Char	interval	was	used	in	this	analysis,	since	this	is	the	interval	of	time	where	
the	user	is	actively	making	BCI	selections,	and	also	showed	a	statistically	significant	
difference	between	alpha	during	correctly	and	incorrectly	selected	characters.	To	
test	the	accuracy	of	alpha	to	predict	selections	made	by	each	subject,	LDA	was	
trained	on	the	alpha	exhibited	at	each	electrode	over	all	of	the	calibration	data,	then	
tested	on	the	sentences	that	followed	calibration.		

BCI	accuracy	was	recalculated,	for	each	subject,	using	alpha	to	abstain	
character	selections	predicted	to	be	errors.	To	determine	whether	a	relationship	
exists	between	the	change	in	BCI	accuracy	(using	LDA)	and	the	variance	of	the	
normalized	alpha,	the	variance	of	the	normalized	alpha	(over	the	calibration	data)	
exhibited	by	each	subject	was	compared	to	the	results	of	the	LDA.		

Another	metric	that	was	used	to	evaluate	performance	is	BCI	Utility	[13].	BCI	
Utility	is	defined	as	the	ratio	of	the	expected	benefit	per	selection	and	the	expected	
time	per	selection.	Unlike	other	metrics,	the	BCI	Utility	metric	not	only	quantifies	
the	accuracy	of	selections	and	the	rate	of	selections,	but	also	takes	error	correction	
into	consideration.	The	equation	used	to	calculate	BCI-Utility	was	as	follows:	

! = ! !"#"$%&/!"#"$%&'(
! !"#$/!"#"$%&'( 	
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Results	

To	determine	the	relationship	between	normalized	alpha	and	character	
accuracy,	normalized	alpha	was	evaluated	for	correct	(10084	characters)	and	
incorrect	selections	(2066	characters)	from	all	subjects	(Figure	4A).	Using	a	two-
tailed	t-test	for	unequal	variances,	the	statistical	significance	between	the	
normalized	alpha	for	correct	and	incorrect	selections	for	each	of	the	3	intervals	
were	p=0.2327,	p=0.01004,	and	p=0.0017	for	Pre-char,	Char,	and	Post-char	
intervals,	respectively.	Figures	4B	and	4C	show	the	same	breakdown	while	
separating	the	high	and	low	variance	groups,	respectively.	The	variances	between	
the	two	groups	were	statistically	significant	with	p=2.38e-5.	For	the	high	variance	
group	(Figure	4B),	the	statistical	significance	for	each	of	the	3	intervals	were	
p=0.034,	p=0.0012,	and	p=0.0004	for	Pre-char,	Char,	and	Post-char	intervals,	
respectively.	While	for	the	low	variance	group	(Figure	4C),	only	one	interval	was	
statistically	significant	(Post-char),	with	p-values	of	p=0.332,	p=0.164,	and	p=0.048	
for	Pre-char,	Char,	and	Post-char	intervals,	respectively.	
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Figure 4:  The mean of normalized alpha band power for each of the 3 intervals for correct and incorrect 
selected characters. The intervals that showed statistical significance are marked with an asterisk (*).  A 

(top): All subjects, B (bottom left): Subjects exhibiting high alpha variance.  
C (bottom right): Subjects exhibiting low alpha variance.  

 
Since	the	character	selection	interval	(Char,	13.13-22.5s)	is	much	longer	than	

the	Pre-Char	(3.5s)	and	Post-Char	(3.5s)	intervals,	the	significance	of	alpha	during	
the	Char	interval	may	be	diluted	due	to	its	length.	When	the	Char	interval	is	
segmented	into	3.5s	intervals,	the	significance	of	alpha	between	correct	and	
incorrect	selections	increases	chronologically.	Thus,	the	last	3.5s	of	the	Char	interval	
shows	a	higher	significance	of	alpha	between	correct	and	incorrect	selections	(p	=	
0.0021)	than	the	first	3.5s	of	the	Char	interval	(p	=	0.087).	
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Figure	5	shows	the	change	in	accuracy,	for	all	subjects,	achieved	by	
abstaining	characters	during	which	subjects	exhibited	high	alpha	(low	attention	
levels)	during	the	character	selection	period.	The	subjects	that	showed	
improvement	(increased	accuracy)	were	those	that	exhibited	much	higher	alpha	
variances	(those	represented	in	Figure	4B).	Those	exhibiting	low	alpha	variances	
did	not	show	improvement	(those	represented	in	Figure	4C)	and	thus	using	LDA	for	
alpha	classification	was	not	helpful.		

The	mean	BCI	accuracy,	calculated	over	all	subjects,	for	raw	BCI	performance	
and	BCI	performance	with	alpha	classification	were	82.01±10.16%	and	
83.93±9.79%,	respectively;	however	they	were	not	statistically	significant.	The	
mean	BCI-Utility,	calculated	over	all	subjects,	for	raw	BCI	performance	and	BCI	
performance	with	alpha	classification	was	2.65±1.61	and	2.78±1.60,	respectively,	
however	they	were	not	significant. The	mean	BCI	accuracy	for	subjects	that	
exhibited	high	levels	of	alpha	variance	(15	out	of	30	subjects;	average	variance	of	
log	alpha	=	3.85±0.70	log10uV4)	for	raw	BCI	performance	and	BCI	performance	with	
alpha	classification	were	80.24±10.70%	and	87.5±8.57%,	respectively,	which	was	
statistically	significant	with	a	p-value	=	0.041.	The	mean	BCI	accuracy	for	subjects	
that	exhibited	low	levels	of	alpha	variance	(15	out	of	30	subjects;	average	variance	
of	log	alpha	=	2.74±0.11	log10uV4)	for	raw	BCI	performance	and	BCI	performance	
with	alpha	classification	were	84.02±14.5%	and	79.35±13.92%,	respectively,	which	
was	not	statistically	significant.	Variance	of	log	alpha	(in	the	calibration	data)	was	
found	to	be	practical	in	predicting	whether	or	not	alpha	classification	would	help	
increase	BCI	accuracy.	
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Figure 5: Graph showing relationship between alpha improvement in BCI accuracy and alpha variance. 

The accuracy improvement is presented in changes in accuracy on a 0 to 1 scale, where 1 is 100% 
accuracy. Alpha variance of subjects is sorted in order of increasing variance. The red line shows the 

maximum possible improvement to reach 100% accuracy for each subject as reference. 
 

The	high	alpha	variance	group	showed	improved	accuracy	using	alpha	
classification	to	abstain	characters	for	the	15	of	30	subjects	who	exhibited	high	
alpha	levels	(low	attention	levels).	The	high	variance	group	included	6	ALS	subjects,	
while	the	low	variance	group	included	5	ALS	subjects.	The	alpha	variance	exhibited	
by	the	ALS	subjects	did	not	show	any	statistically	significant	difference	from	the	
variances	exhibited	by	controls,	whether	over	all	subjects	or	within	the	high	and	low	
variance	groups.		

The	alpha	variance	exhibited	by	the	low	variance	group	caused	the	alpha	
classification	to	allow	erroneous	selections	as	well	as	reject	correct	selections	in	a	
somewhat	random	fashion.	Their	corresponding	accuracies	were	decreased	due	to	
this	phenomenon.	
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Discussion	

A	natural	expectation	would	be	that	alpha	band	power	during	the	Char	
interval	would	be	most	significant,	since	this	interval	is	comprised	of	the	EEG	that	is	
actually	analyzed	by	the	BCI.	However,	the	predictive	value	of	the	alpha	band,	for	all	
subjects,	increases	from	insignificant	in	the	pre-char	interval	(p	=	0.2327)	to	
maximum	significance	in	the	Post-Char	interval	(p	=	0.0017),	with	the	Char	interval	
itself	having	a	slightly	lower	significance	(p	=	0.01004).	In	Figure	4A,	although	the	
statistical	significance	of	alpha	between	correct	and	incorrect	characters	increases	
from	Pre-Char	to	Char	to	Post-Char,	the	magnitude	of	alpha	increases	for	all	
selections	(whether	correct	or	incorrect).	This	suggests	that	starting	a	character	
(first	segment	of	Char	interval)	may	focus	attention	at	first	(lower	alpha	power),	
which	then	drifts	away	(higher	alpha	power)	as	the	character	selection	progresses.	

This	implies	that,	practically,	although	the	Post-Char	interval	showed	slightly	
more	significance	than	the	Char	interval,	the	latter	portion	of	the	Char	interval	can	
be	used	to	predict	the	accuracy	of	the	corresponding	character.	Using	the	Post-Char	
interval	to	predict	selection	accuracy	may	be	useful	for	subjects	with	low	alpha	
variance,	however	this	will	have	a	delay	cost.	While,	for	those	that	have	high	alpha	
variance,	the	prediction	can	be	done	simultaneously	during	the	character	selection	
interval	(Char).		In	addition,	for	high	variance	subjects,	since	alpha	in	the	Pre-Char	
interval	is	significant	between	correct	and	incorrect	selections,	the	alpha	during	
Pre-Char	interval	can	be	used	to	‘pause’	the	BCI	when	low	levels	of	alpha	are	
detected	to	prevent	potential	errors.		

Study	Limitations	

The	data	analyzed	in	this	study	was	for	subjects	who	were	supposed	to	be	
maintaining	attention	while	copying	text	(copy-spelling)	[11].	This	is	an	unrealistic	
usage	condition	since	they	had	no	text	composition	tasks	and	few	distractions.	The	
only	distraction	inherent	in	the	task	was	the	need	to	problem-solve	how	to	correct	
an	error	if	it	occurred,	which	is	a	limitation	of	the	data	analyzed	in	this	study.	In	
addition,	users	with	low	alpha	variance	were,	in	fact,	paying	attention.	This	
motivates	designing	a	study	that	thoroughly	investigates	the	effect	of	distractors	on	
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BCI	usage.	A	study	with	a	BCI	designed	to	mimic	real-world	usage	of	a	spelling	BCI,	
including	compositions	tasks,	strategic	distractions,	and	periods	where	the	user	is	
not	paying	attention	to	the	BCI	display,	would	overcome	this	limitation	and	test	
alpha	band	power’s	attention-monitoring	ability	to	its	fullest.     

Technical	Application	

The	potential	for	an	alpha-based	classification	to	increase	accuracy	can	be	
predicted	by	the	alpha	variance	exhibited	in	the	BCI	user’s	calibration	data.	Users	
with	log10	alpha	variance	of	3	log10uV4	and	above	benefit	from	an	alpha-based	
classification,	and	users	with	log10	alpha	variance	less	than	3	log10uV4	do	not	benefit	
from	an	alpha-based	classification.		
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Conclusion	
In	conclusion,	this	study	shows	that	alpha	band	power	can	be	used	to	

improve	BCI	performance	by	abstaining	selections	where	losses	of	user	attention	
are	detected.	However,	this	is	only	useful	under	conditions	where	the	user	is	
exhibiting	high	alpha	variance.	The	average	normalized	alpha	for	correct	character	
selections	proved	to	be	statistically	significantly	different	than	that	for	incorrect	
character	selections.	Using	this	significance,	alpha	classification	using	LDA	was	used	
to	block	any	selections	exhibiting	low	levels	of	attention	(high	alpha),	which	
produced	statistically	significant	increases	in	accuracy	for	subjects	with	high	
variance	in	normalized	alpha.	Using	the	user’s	attention	level	(measured	by	alpha	
band	power),	specific	BCI	settings	(such	as	using	alpha	classification)	may	be	added	
to	improve	BCI	performance.	The	ability	to	detect	attention	in	a	BCI	context	results	
in	a	BCI	that	is	more	resilient	to	wandering	user	attention.		
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Chapter	3	

The	P300-Certainty	Algorithm:	Increasing	BCI	Accuracy	by	

Abstention	
	
	

Introduction	

	
Individuals	with	severe	motor	and	speech	impairments	have	a	lot	of	difficulty	

communicating	and	can	benefit	from	the	assistance	of	augmentative	and	alternative	
communication	(AAC)	systems.	However,	individuals	with	little-to-no	motor	control	
or	locked-in	syndrome	are	unable	to	use	common	commercialized	AAC	systems.	
Non-invasive	Brain-Computer	Interfaces	(BCIs)	have	been	an	emerging	means	of	
communication	for	people	with	severe	motor	impairments.	The	P300	response	is	a	
signal	that	has	been	extensively	used	to	control	BCIs	and	appears	in	the	user’s	
electroencephalogram (EEG) about 300ms after a relevant, yet unpredictable event [1]. 

First introduced by Farwell and Donchin, the first P300 Speller was a BCI based on the 

P300 response [2]. By presenting the user with a matrix of selections,	the	P300	Speller	
allows	users	to	choose	selections	using	his/her	brain	signals	(P300	responses).	
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Background	

The	P300	Speller	detailed		

	 The	P300	Speller	is	a	common	P300	BCI	design	that	presents	users	with	
selections	from	a	matrix	by	intensifying	their	color	(flashing	them	from	grey	to	
white)	and	chooses	selections	to	which	users’	EEG	exhibits	P300	responses.	
Selections	are	presented	to	the	user	using	a	grid	of	selections.	An	example	of	this	can	
be	found	in	Figure	2	in	Chapter	1.	Before	using	the	BCI,	the	user	completes	a	
calibration	step;	only	one	calibration	step	is	needed	for	the	P300	speller,	such	that	
the	P300	speller	learns	how	to	recognize	the	user’s	P300	response.	In	the	
conventional	version	of	the	P300	speller,	the	selections	are	divided	into	2	groups:	
the	set	of	rows	and	the	set	of	columns.	The	rows	and	columns	flash	at	random,	
known	as	the	row-column	flash	pattern.	A	sequence	is	defined	as	including	one	flash	
of	every	row	and	column.	The	P300	Speller	checks	for	a	response	to	each	flash	by	
applying	a	linear	classifier	to	the	EEG	following	the	flash,	producing	a	classifier	
value.	In	this	study,	we	applied	Step-Wise	Linear	Discriminant	Analysis	(SWLDA)	to	
0-800ms	after	each	flash.	A	larger	classifier	value	indicates	the	presence	of	a	P300	
while	a	smaller	classifier	value	indicates	the	absence	of	a	P300.	For	the	P300	Speller	
to	make	an	accurate	decision,	multiple	sequences	may	be	needed.	The	number	of	
sequences	a	user	needs	depends	on	the	signal-to-noise	ratio	of	their	EEG	signal.	
After	all	the	sequences	are	completed,	the	selection	corresponding	to	the	highest	
average	P300	response	is	chosen.	A	user	with	a	higher	signal-to-noise	ratio	EEG	
signal	would	have	a	higher	chance	of	being	able	to	type	in	fewer	flashes	than	one	
with	a	lower	signal-to-noise	ratio	EEG	signal.	This	is	due	to	the	fact	that	it	is	easier	
for	the	P300	Speller	to	detect	and	classify	the	P300	response	when	there	is	a	higher	
signal-to-noise	ratio	in	the	EEG	signal.	
	 	

Overall	view	of	the	P300	Speller	

	 An	overall	view	of	the	P300	Speller	can	be	found	in	Figure	6.	First,	the	user	
focuses	on	the	selection	of	interest	on	the	BCI	display.	All	of	the	selections	flash	for	a	
user-specific	number	of	sequences	based	on	their	calibration	data.	Once	all	of	the	
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sequences	have	been	completed,	the	P300	Speller	chooses	the	row	and	column	that	
have	the	highest	classifier	values	(most	probable	to	have	elicited	a	P300	response	in	
the	user).	The	intersection	of	the	selected	row	and	column	is	the	selection	that	is	
chosen	by	the	P300	Speller.	The	selection	is	then	printed	on	the	screen,	then	the	
next	selection	begins,	the	BCI	display	will	start	flashing	for	the	user-specific	number	
of	sequences,	after	which	the	P300	Speller	will	make	another	decision,	and	so	on.	

	

	
Figure	6:	A	block	diagram	summarizing	the	mechanism	of	action	of	the	P300	Speller.	

	

Selection	Confidence	Methods	

	 Selection	confidence	methods	are	used	with	P300	BCI	to	reject	potentially	
erroneous	selections	that	do	not	reach	a	specified	confidence	level.	Rejecting	
selections	that	are	potential	errors	is	known	as	abstention.		
	 Several	studies	have	used	BCIs	with	abstention	by	calculating	confidence	
values	for	selections	in	different	ways	[3,	4].	Methods	that	have	been	used	to	
calculated	selection	confidence	values	are:	Independent	Component	Analysis	(ICA)	
[5]	and	Bayesian	Linear	Discriminant	Analysis	(BLDA)	[3,	6].	These	methods	all	
calculated	selection	confidence	values	for	selections	and	evaluated	them	against	a	
predetermined	confidence	threshold	to	determine	whether	a	selection	was	retained	
or	abstained.	The	study	using	ICA	showed	an	increase	of	accuracy	from	90%	to	
92.1%,	while	the	study	using	BLDA	showed	a	non-significant	decrease	in	accuracy	
from	79.44±29.98%	to	74.40±27.16%.		

This	study	introduces	a	new	selection	confidence	method	(the	P300-
Certainty	algorithm)	that	generates	selection	confidence	probabilities	based	on	a	
secondary	classifier	applied	to	the	classifier	values	from	SWLDA.	The	secondary	

Selection printed 
on screen 

P300 Speller 
makes selection 

Begin next 
selection   
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classifier	uses	a	statistical	test	(U-test)	since	it	has	no	parameters	to	adjust	and	is	
robust	when	it	comes	to	outliers.	This	may	provide	a	slight	advantage	over	other	
existing	selection	confidence	methods.	Another	advantage	of	P300-Certainty	is	that	
the	sum	of	confidence	probabilities	of	all	selections	is	one,	where	each	selection	has	
an	associated	confidence	probability	called	the	certainty	value.		
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Methods	

BCI	Setup	

The	P300	Speller	used	in	this	study	is	part	of	a	general-purpose	BCI,	called	
BCI2000	[7],	developed	by	Schalk	et	al.	

The	data	used	to	test	the	P300-Certainty	algorithm	was	recorded	from	
subjects	performing	BCI	copy-spelling	tasks	[8].	This	data	was	acquired	using	EEG	
with	16	electrodes	at	F3,	Fz,	F4,	T7,	C3,	Cz,	C4,	T8,	CP3,	CP4,	P3,	Pz,	P4,	PO7,	Oz,	and	
PO8	sampled	at	256	Hz.		The	data	was	recorded	from	30	subjects	(14	males,	16	
females,	ages	ranging	from	18-78	years,	average	age	of	46.7±20.0	years,	including	
11	with	ALS).	Each	subject	typed	9	sentences	with	at	least	23	characters	per	
sentence	in	addition	to	corrections	[8].	The	total	number	of	selections	made	by	all	
subjects	was	12150	selections.	Before	using	the	BCI,	the	user	completed	a	
calibration	step	that	allows	the	BCI	to	recognize	their	P300	response.	This	
calibration	data	was	used	to	calculate	subject-specific	parameters	that	allowed	them	
to	use	the	BCI	effectively,	details	reported	in	[8].			

The	spelling	accuracy	was	calculated	for	each	sentence	for	each	subject	as	the	
number	of	correct	selections	divided	by	the	number	of	total	selections.	The	
sentences	were	typed	using	copy-spelling	with	correction,	therefore	each	subject’s	
accuracy	was	calculated	depending	on	the	number	of	correct	selections	they	chose	
over	the	number	of	total	selections	they	made	while	typing	a	sentence.	This	
accuracy	calculation	also	took	into	consideration	the	selections	needed	to	make	
corrections.		

The	P300-Certainty	algorithm	

The	P300-Certainty	algorithm	[9]	was	developed	as	a	selection	confidence	
method	to	increase	BCI	accuracy	by	reducing	errors	while	using	the	P300	Speller.	
This	is	accomplished	by	calculating	a	probability	of	confidence	for	each	selection,	
which	we	called	the	certainty	value,	and	based	on	the	users’	corresponding	EEG	
responses	to	the	flashing	of	these	selections.	The	certainty	value	of	the	selection	
chosen	by	the	P300	Speller	is	evaluated	against	a	user-specific	threshold.	The	
selection	was	typed	if	its	certainty	value	surpassed	the	threshold,	and	abstained	if	it	
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did	not.	Abstaining	potentially	erroneous	selections	would	allow	users	to	spell	with	
a	higher	accuracy.	Figure	7	updates	the	block	diagram	of	Figure	6	to	show	the	P300-
Certainty	used	in	the	P300	Speller	as	a	gatekeeper	to	make	the	decision	to	type	a	
selection	or	abstain	it.	
	

	
Figure	7:	A	block	diagram	showing	how	the	P300-Certainty	fits	into	the	P300	Speller	and	

demonstrating	how	it	is	used	to	decide	whether	to	type	a	selection	or	abstain	it.	

Calculations	behind	the	P300-Certainty	Algorithm	

Before	getting	into	the	details	behind	the	P300-Certainty	algorithm,	there	are	
a	couple	terms	that	need	to	be	defined.		

Target	selection:	This	is	the	intended	selection	
Associated	selections:	These	are	the	selections	that	flash	together	with	the	
target	selection.	In	a	row-column	flash	pattern,	these	are	selections	along	the	
same	row	or	column	as	the	target	selection.	
Unassociated	selections:	These	are	the	selections	that	do	not	flash	with	the	
target	selection.	In	a	row-column	flash	pattern,	these	are	selections	that	are	
not	on	the	same	row	or	column	as	the	target	selection.	
	
At	a	conceptual	level,	the	P300-Certainty	algorithm	has	the	following	steps:	

 [For each response:  

- Record the response and note which stimulus it was elicited by. 

- If one response from each stimulus has not been recorded, wait 

until the next stimulus.   

  P300-Certainty: 
Certainty > 
Threshold?  

P300 Speller 
makes selection 

True;  
Selection is 

printed on the 
screen 

Begin next 
selection   

Begin next 
selection   

False; 
Selection is 
abstained 
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   - For each possible selection, s:  

      - Let f be the distributions of responses associated with s 

(flashed with s). 

- Let g be the distributions of responses not associated with s 

(did not flash with s). 

      - Use hypothesis testing to test ho: f=g, ha: f>g,  

      - Record the resulting p-value.  

   - For each possible selection, s:  

      - s, belongs to a group of selections, S such that:  

- s is in S, all other selections in S are selections that 

flashed at the same time as s,  

- the number of targets in S is not more than Smax and not less 

than Smin,                    

- Let Pout be the product of all p-values of the selections not in S.  

- Let Pin be the product of one minus the p-values of the selections 

in S.  

- The certainty for s is log(Pout*Pin).  

- If all stimuli have been intensified N times, forget all 

responses.] 

 

For	each	possible	selection,	the	distributions	of	the	classifier	values	
associated	with	the	selection	were	compared	statistically	to	the	distributions	of	the	
classifier	values	unassociated	with	the	selection.	The	statistical	test	used	in	this	
study	to	compare	both	groups	was	the	U-test.	The	U-test	was	utilized	to	create	one	
rank	order	within	both	sets	of	associated	and	unassociated	selections.	An	attribute	
of	the	U-test	that	is	attractive	in	this	application	is	the	fact	that	it	has	no	parameters	
to	adjust	and	is	robust	when	it	comes	to	outliers.	The	test	measures	how	often	a	
classifier	value	of	each	of	the	unassociated	selections	is	smaller	than	that	of	the	
associated	selections.	The	comparison	made	by	the	U-test	results	in	a	p-value	for	
each	selection	in	each	set.	For	each	selection,	the	products	of	one	minus	the	p-value	
of	the	associated	selections	(let	us	call	it	Pin)	was	calculated,	and	the	product	of	the	
p-values	of	all	the	unassociated	values	(let	us	call	that	Pout)	was	calculated.	Finally,	
for	each	selection,	the	certainty	value	was	calculated	as	the	logarithm	of	(Pin	X	Pout).	
This	results	in	the	raw	certainty	value	for	each	selection.	
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Furthermore,	to	make	the	raw	certainty	values	easier	to	interpret	as	
probabilities,	they	were	normalized	to	be	between	zero	and	one,	with	the	sum	of	all	
of	the	certainty	values	being	one.	This	normalization	was	achieved	using	the	
softmax	function	[10].	The	certainty	value	of	a	selection	determined	if	the	selection	
was	to	be	typed	or	abstained	depending	on	whether	it	was	greater	or	less	than	the	
user-specific	threshold,	respectively.		

The	user-specific	certainty	threshold	was	calculated,	based	on	the	user’s	
calibration	data,	for	each	subject	using	a	Receiver	Operating	Characteristic	(ROC)	
curve,	where	the	true	positive	rate	(sensitivity)	and	the	false	positive	rate	(100-
specificity)	are	evaluated	at	many	different	thresholds.	For	each	subject,	the	
threshold	that	yielded	the	highest	true	positive	rate	and	the	lowest	false	positive	
was	chosen	as	their	user-specific	threshold.	There	is	a	trade-off	between	the	true	
positive	rate	and	the	false	positive	rate,	and	the	threshold	chosen	was	the	one	that	
optimized	this	trade-off	for	each	subject.			
	 To	evaluate	the	performance	of	the	P300-Certainty	algorithm,	the	BCI	
spelling	accuracy	was	calculated	with	and	without	P300-Certainty.	Statistical	
significance	was	calculated	using	a	paired	t-test.	Also,	the	numbers	of	total	
characters,	correct	characters,	incorrect	characters,	correctly	abstained	characters,	
and	incorrectly	abstained	characters	were	reported.	
	 Another	metric	that	was	used	to	evaluate	performance	is	BCI	Utility	[11].	BCI	
Utility	is	defined	as	the	ratio	of	the	expected	benefit	per	selection	and	the	expected	
time	per	selection.	Unlike	other	metrics,	the	BCI	Utility	metric	not	only	quantifies	
the	accuracy	of	selections	and	the	rate	of	selections,	but	also	takes	error	correction	
into	consideration.	The	equation	used	to	calculate	BCI-Utility	was	as	follows:	

! = ! !"#"$%&/!"#"$%&'(
! !"#$/!"#"$%&'( 	
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Results	

	
	 The	improvement	in	BCI	spelling	accuracy	using	P300-Certainty	is	shown	in	
Figure	8.	The	mean	BCI	accuracy	calculated	with	and	without	P300-Certainty	was	
88.82±8.85%	and	82.01±12.59%,	respectively,	and	was	statistically	significant	with	
a	p-value	=	0.038.	The	BCI-Utility	calculated	with	and	without	P300-Certainty	was	
3.05±1.63	and	2.65±1.61,	respectively,	with	a	statistical	significance	of	p	=	0.024.  
	 The	mean	of	all	user-specific	certainty	thresholds	calculated	using	a	ROC	
curve	was	88.59±4.03%.	

	
Figure	8:	Graph showing P300-Certainty improvements in BCI accuracy. The accuracy improvement is 

presented in changes in accuracy on a 0 to 1 scale, where 1 is 100% accuracy. Subjects are sorted by 
increasing raw BCI accuracy. The red line shows the maximum possible improvement to reach 100% 

accuracy for each subject as reference. The blue line represents raw BCI accuracy as a reference.	
	
	 Table	1:	The	breakdown	of	number	of	selections	with	and	without	the	P300-Certainty	

algorithm.	
 Total Selections 

Allowed 
Correct 

Selections 
Incorrect 
Selections 

Abstentions 
(Abstained 
Correctly) 

Abstentions 
(Abstained 
incorrectly) 

Without 
P300-
Certainty 

12150 10084 2066 NA NA 

With 
P300-
Certainty 

11403 9937 1466 600 147 

	

-0.1	

0	

0.1	

0.2	

0.3	

0.4	

0.5	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	A
c
c
u
r
a
c
y
	
I
m
p
r
o
v
e
m
e
n
t
	
(
o
u
t
	
o
f
	
1
.
0
)
	

Subjects	Sorted	by	increasing	Raw	BCI	Accuracy	

Maximum	Possible	
Improvement	
P300-Certainty	Improvement	

Raw	BCI	Performance	



	 39	

Table	1	shows	the	breakdown	of	the	numbers	of	total	characters,	correct	
characters,	incorrect	characters,	correctly	abstained	characters,	and	incorrectly	
abstained	characters	used	in	this	study.		

Discussion	

	 The	P300-Certainty	algorithm	improved	accuracy	for	27	out	of	the	30	
subjects,	without	decreasing	the	accuracy	for	any	subjects.	This	showed	that	P300-
Certainty	is	successful	as	a	selection	confidence	method	that	abstains	selection	
based	on	a	user-specific	certainty	threshold.		
	 The	data	analyzed	in	this	study	was	collected	using	a	row-column	flash	
pattern,	however,	P300-Certainty	can	be	used	in	various	other	set-ups.	Many	other	
flash	patterns	have	been	developed	that	proved	superior	to	row-column	flashing,	for	
example	checkerboard	flash	pattern	[12].	P300-Certainty	can	be	used	as	a	selection	
confidence	method	with	these	flash	patterns	by	adjusting	the	associated	and	
unassociated	groups	of	selections.	Where,	for	each	selection,	the	associated	group	
would	be	the	selections	that	flash	together	with	that	selection,	while	the	
unassociated	group	would	be	the	selections	that	do	not	flash	together	with	it.		
	 The	next	chapter	discusses	how	the	P300-Certainty	algorithm	was	
successfully	adapted	to	a	BCI	set-up	that	uses	single	selection	flashes	in	a	4-target	
set-up.	Even	though	the	core	mechanisms	of	P300-Certainty	were	the	same,	a	
different	statistical	test	(other	than	the	U-test),	was	used	to	generate	the	certainty	
values	due	to	the	minimal	number	of	stimuli	in	that	set-up.	
	 From	the	results	presented	in	this	study,	P300-Certainty	can	be	used	to	
achieve	dynamic	stopping,	by	only	making	selections	when	a	selection	surpasses	the	
certainty	threshold.	Since	the	data	used	in	this	study	was	recorded	data,	it	is	difficult	
to	evaluate	the	impact	of	dynamic	stopping	on	spelling	accuracy.	However,	dynamic	
stopping	can	be	achieved	by	incorporating	P300-Certainty	into	the	code	of	a	P300	
BCI	and	testing	it	on	subjects	in	real-time.	In	the	next	chapter,	P300-Certainty	was	
used	in	real-time	to	achieve	dynamic	stopping	in	a	BCI	adapted	for	cognitive	testing.		
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Chapter	4	

On-line	Performance	of	the	P300-Certainty	Algorithm	

	

Introduction	

Typically,	clinical	cognitive	assessments	require	some	kind	of	voluntary	
motor	or	speech	responses.	Therefore,	many	people	with	severe	motor	and	speech	
impairments	are	unable	to	complete	such	assessments	[1].	To	mitigate	this	problem,	
different	assistive	technologies	(e.g.	touch	screens,	switches,	and	eye-trackers)	have	
been	used	to	allow	those	with	disabilities	access	to	these	standardized	cognitive	
assessments	[2].	However,	many	of	these	assistive	technologies	still	require	small	
amounts	of	movement	or	speech	for	control,	thus	people	with	severe	levels	of	motor	
or	speech	impairments	still	cannot	access	cognitive	tests	[2].	
	 Promising	efforts	have	been	made	by	researchers	to	improve	access	to	
cognitive	assessments	for	people	with	disabilities	by	using	brain	activity	to	make	
responses.	Studies	have	used	BCIs	to	enable	access	to	cognitive	tests	for	individuals	
with	impairments	[3,4].	Building	upon	this	proof-of-concept,	the	study	presented	in	
this	experiment	uses	a	P300	BCI	that	allows	users	to	take	a	cognitive	assessment	
without	the	use	of	motor	or	speech	responses	and	at	their	own	pace.	This	BCI-
facilitated	cognitive	assessment	was	tested	with	both	controls	and	children	with	
cerebral	palsy	(CP).	To	evaluate	the	performance	of	this	BCI-facilitated	assessment,	
the	results	of	the	cognitive	test	were	compared	to	the	results	of	the	same	users	
taking	a	traditionally	administered	assessment.	
	 The	P300-Certainty	algorithm,	first	introduced	in	Chapter	3,	was	integrated	
into	the	BCI-facilitated	cognitive	test	to	allow	users	to	make	accurate	selections	at	
their	own	pace.		



	 42	

Methods	

	 		

BCI	Setup	

	 To	evaluate	real-world	effectiveness	of	the	P300-Certainty	algorithm,	it	was	
implemented	into	the	code	of	BCI2000.	The	P300	BCI	used	in	this	study	is	built	upon	
a	general-purpose	BCI,	called	BCI2000	[5],	and	is	customized	to	administer	a	
cognitive	assessment,	described	in	detail	in	[6].		

This	study	used	a	BCI-facilitated	version	of	a	cognitive	assessment	known	as	
the	Peabody	Picture	Vocabulary	Test	–	version	4	(PPVT-IV).	The	PPVT-IV	measures	
verbal	ability	in	standard	American	English	vocabulary	[7].	The	standard	method	of	
administering	the	PPVT-IV	involves	the	administrator	of	the	PPVT-IV	presenting	the	
test-taker	with	4	different	pictures	and	speaking	a	word.	The	test-taker	must	then	
respond	by	either	pointing	at	or	verbally	responding	with	the	number	of	the	picture	
that	is	best	described	by	the	spoken	word.		

Participants,	ages	8	and	up	with	the	ability	(can	point	or	answer	verbally)	to	
complete	the	standard	version	of	the	PPVT-IV,	were	recruited	from	the	University	of	
Michigan	Health	System.	The	University	of	Michigan	Institutional	Review	Board	
approved	protocols	and	recruitment.	Out	of	30	participants	that	were	recruited,	
only	21	participants	completed	the	study.	This	experiment	analyzes	data	from	the	
21	participants	(10	with	CP	and	11	typically	developing)	that	completed	the	study.	
The	mean	overall	age	of	subjects	was	16.75±5.54	years	with	ages	ranging	from	9-27.		

This	data	was	analyzed	using	16	channels	on	an	EEG	cap	with	electrode	
locations	at	F3,	Fz,	F4,	T7,	C3,	Cz,	C4,	T8,	CP3,	CP4,	P3,	Pz,	P4,	PO7,	Oz,	and	PO8	
sampled	at	600	Hz.		

In	this	setup,	the	BCI	presented	the	user	with	four	different	pictures	and	a	
word	was	played	through	the	speakers.	Each	of	the	four	pictures	had	a	numerical	
label	(1-4)	in	the	outside	corner.	These	labels	intensified	(flashed)	independent	of	
each	other.	The	user	was	instructed	to	focus	their	attention	on	the	numerical	label	
corresponding	to	the	picture	that	they	thought	best	described	the	word	they	were	
presented.	To	calibrate	the	BCI,	the	user	was	instructed	to	attend	to	a	known	answer	
for	30	different	questions,	with	each	selection	flashing	10	times	per	question.		
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The	P300-Certainty	algorithm	was	used	to	achieve	dynamic	stopping	
(described	in	detail	in	the	Introduction	of	this	dissertation).	No	selections	were	
made	by	the	BCI	until	the	certainty	value	(described	in	the	Methods	section	of	
Chapter	3	of	one	of	the	four	selections	was	at	least	0.9	(or	90%	certainty).	In	
addition,	a	sliding	window	of	five	sequences	was	used,	where	only	the	EEG	
responses	to	the	last	five	sequences	were	used	to	calculate	certainty.		

This	allowed	the	BCI	to	wait	for	the	user	to	attend	to	one	of	the	targets	before	
making	any	selections.	After	a	selection	was	made	(the	certainty	value	of	one	of	the	
four	selections	reached	at	least	0.9),	the	BCI	entered	a	confirmation	phase.	This	
allowed	the	user	to	cancel	a	selection	if	it	was	not	the	one	they	intended	or	verify	it	
if	it	was.	This	confirmation	step	was	accomplished	using	the	Hold/Release	algorithm	
developed	by	Alcaide,	described	in	[8].		

The	utilization	of	both	dynamic	stopping	(P300-Certainty)	and	the	
confirmation	step,	allowed	the	BCI	to	operate	in	a	very	dynamic	nature	and	users	to	
control	the	BCI	at	their	own	pace.		

The	P300-Certainty	algorithm	

	 The	P300-Certainty	algorithm	was	adapted	to	this	application	by	making	3	
adjustments	to	accommodate	the	differing	conditions.	Due	to	the	limited	number	of	
selections	(4	selections	instead	of	36	presented	in	the	P300	Speller	in	Experiment	
#1)	instead	of	using	the	U-test	to	calculate	the	significance	between	selections,	a	t-
test	with	unequal	variance	was	used.	The	U-test	needs	at	least	5	different	selections	
to	be	able	to	determine	statistical	significance.	The	second	difference	was	that	the	
target	that	was	statistically	different	was	required	to	have	a	positive	classifier	value.	
This	was	due	to	the	fact	that	by	using	a	t-test,	targets	that	had	a	very	large	negative	
classifier	value	came	out	to	be	significant.	
	 The	third	difference	is	that	dynamic	stopping	was	achieved	using	P300-
Certianty	by	allowing	the	BCI	to	only	make	selections	when	the	certainty	of	a	
selection	reached	0.9.	In	addition,	instead	of	taking	all	sequences	into	consideration,	
only	the	last	5	sequences	(3.75	seconds)	were	used	to	calculate	P300-Certainty.	This	
allows	the	BCI	to	adjust	quickly	after	periods	in	which	the	user	was	not	attending.			
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Data	Analysis	

To	evaluate	the	performance	of	P300-Certainty	on-line,	the	accuracy	of	the	
selections	made	by	the	user	was	calculated	by	comparing	every	time	P300-Certainty	
made	a	selection	(a	selection	reached	a	certainty	of	at	least	0.9)	to	the	final	selection	
they	chose	for	any	question.	For	example,	for	a	particular	question,	if	a	user	wanted	
to	choose	selection	2,	but	the	BCI	chose	selection	3	using	P300-Certainty,	the	BCI	
would	then	proceed	to	the	confirmation	step	where	the	selection	can	either	be	
cancelled	or	verified.	If	the	selection	was	cancelled,	then	the	question	was	repeated	
and	the	user	had	the	chance	to	make	a	selection	again.	If	the	user	chooses	selection	
number	2	the	second	time	around	and	then	verified	it,	then	the	first	time	when	
selection	3	was	chosen	would	be	considered	an	error	since	the	last	answer	chosen	
by	the	user	was	selection	2.	The	accuracy	of	P300-Certainty	was	calculated	in	that	
manner	over	all	subjects.		
	 There	are	two	exceptions	to	this.	The	first	was	if	the	BCI	verified	a	selection	
that	the	user	did	not	intend.	Users	were	given	the	opportunity	to	alert	the	person	
conducting	the	study	if	any	unintended	verifications	were	made.	These	errors	were	
taken	into	consideration	when	calculating	the	accuracy.		
	 Second,	before	beginning	the	assessment,	the	users	were	advised,	if	they	did	
not	hear	the	word	played	by	the	speakers,	to	intentionally	select	any	of	the	4	
selections	and	then	cancel	that	selection	just	to	cause	the	system	to	repeat	the	word.	
These	instances	were	not	logged	in	the	study.	So,	some	of	the	“errors”	were	actually	
intentional	changes	and	the	accuracy	is	underestimated.		

Another	analysis	designed	to	provide	additional	insight	into	the	future	
applications	of	P300-Certainty	was	that	of	the	size	of	the	sliding	window	used	to	
achieve	dynamic	stopping.	The	window	size	used	online	by	all	study	participants	
was	five	sequences	long.	Using	the	data	collected	from	this	study,	off-line	analysis	
was	performed	to	determine	which	window	size	would	yield	the	best	performance	
for	all	subjects.		

For	each	subject,	the	accuracy	of	selections	was	calculated	using	sliding	
window	sizes	of	1,	2,	3,	4,	and	5	(Note	that	the	sliding	window	size	was	fixed	at	5	in	
the	on-line	study).	This	would	offer	information	on	ideal	window	size,	including	
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whether	there	is	one	that	is	uniform	amongst	all	subjects.	It	is	to	be	noted	that	
analysis	using	sliding	window	sizes	larger	than	5	sequences	was	not	possible	due	to	
the	fact	that	this	analysis	was	performed	off-line	and	additional	sequences	could	not	
be	added.					
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Results	

	
The	mean	of	the	accuracy	of	P300-Certainty	on-line	in	a	4-target	task	used	in	

this	study	over	all	subjects	was	83.61±9.14%.		
The	impact	of	using	varying	sliding	window	sizes	was	analyzed	off-line	to	

determine	what	the	ideal	window	size	to	use	for	P300-Certainty,	results	shown	in	
Figure	9.		
	

	
Figure	9:	Off-line	analysis	of	the	impact	of	varying	window	length	size	on	P300-Certainty	accuracy.	
	 	

In	the	on-line	application,	the	minimum	number	of	sequences	in	which	a	
decision	could	be	made	was	5	sequences.	In	off-line	analysis,	the	mean	P300-
Certainty	accuracies,	keeping	the	certainty	threshold	at	0.9,	calculated	for	5,	4,	3,	2,	
and	1	sequence(s)	were	83.62	±	9.14%,	87.7	±	7.61%,	80.35	±	9.92%,	61.15	±	
12.63%	and	39.7	±	11.12%,	respectively.	The	statistical	significance	of	using	a	
window	of	4	and	3	sequence(s)	compared	to	a	window	of	5	sequences	were	all	non-
significant	(p	>	0.05).	While	using	a	window	of	2	or	1	sequence(s)	were	statistically	
significantly	different	from	a	window	of	size	5	(p	<	0.05),	they	decreased	
performance.	
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Discussion	

	
	 This	study	shows	that	the	P300-Certainty	algorithm	can	be	used	effectively	
to	achieve	dynamic	stopping,	thus	allowing	users	to	make	accurate	selections	at	
their	own	pace.			

Using	a	window	of	4	or	3	sequences	was	not	statistically	significant,	meaning	
that	similar	accuracies	may	be	achieved	using	either	size	window	when	compared	to	
a	window	of	5	sequences.	Due	to	using	a	smaller	window	of	4	or	3	sequences,	P300-
Certainty	could	make	a	BCI	selection	faster	than	using	a	window	of	5	sequences.		
	 On	the	other	hand,	using	a	window	size	of	2	or	1	sequence(s)	may	allow	
P300-Certainty	to	make	selections	at	a	faster	rate,	but	the	accuracy	of	selections	
would	decrease	significantly.	
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Conclusion	

	
	 In	conclusion,	P300-Certainty	was	successfully	used	on-line	to	achieve	
dynamic	stopping	and	allow	users	to	type	at	their	own	pace.	The	results	also	suggest	
that	using	a	smaller	window	size	will	not	affect	accuracy	negatively	and	allow	the	
BCI	to	make	selections	at	a	faster	rate.	In	the	next	chapter,	the	impact	of	using	alpha	
band	analysis	(detailed	in	Chapter	2)	and	P300-Certainty	together	is	explored.	
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Chapter	5	

Combining	Methods	of	Analyzing	Users’	Cognitive	State	to	

Improve	BCI	Performance	

	

Introduction	

	
	 For	BCIs	to	make	the	move	from	the	lab	to	a	clinical	setting,	they	need	to	be	
effective	in	real-world	conditions.	Many	studies	using	BCIs	are	performed	in	a	lab	
research	setting,	where	unplanned	distractions	are	sparse	and	possibly	
undocumented	when	present.	A	BCI	that	has	the	ability	to	detect	losses	in	user	
attention	and	allows	them	to	control	the	BCI	at	their	own	pace	would	be	more	
resilient	to	wandering	user	attention	and	more	applicable	in	real-world	
applications.		
	 The	addition	of	an	attention-monitoring	method	would	allow	the	BCI	to	be	
more	user-aware.	The	effectiveness	of	alpha	band	power	in	the	EEG	as	a	measure	of	
attention	to	abstain	BCI	selections	where	the	user	experiences	low	levels	of	
attention,	has	been	shown	to	improve	BCI	accuracy	in	users	that	exhibit	high	alpha	
variance.	This	was	discussed	in	detail	in	Chapter	2	[1].		
		 The	P300-Certainty	algorithm,	presented	in	Chapters	3	and	4,	is	another	
method	used	to	evaluate	user	attention.	P300-Certainty	is	a	selection	confidence	
method	that	has	been	shown	to	improve	BCI	accuracy	by	abstaining	BCI	selections	
that	do	not	reach	a	certain	selection-confidence	level.		
	 Alpha	band	analysis	and	P300-Certainty	abstain	potential	errors	using	
different,	orthogonal,	methods	of	measuring	attention.	Each	method	abstains	
potential	errors	that	the	other	may	have	missed.	
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	 Building	on	the	results	of	the	studies	discussed	in	Chapters	2,	3,	and	4,	this	
study	takes	it	one	step	further	by	combining	alpha	band	analysis	and	P300-
Certainty	to	evaluate	the	change	in	BCI	performance	of	these	two	methods	together	
versus	each	method	alone.	
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Methods	

BCI	Setup	

	 This	study	contains	two	different	analyses	combining	alpha	classification	
(Chapter	2)	and	P300-Certainty	(Chapter	3).	Although	both	of	these	analyses	
evaluate	the	effect	of	using	both	alpha	and	P300-Certainty	on	BCI	performance,	they	
use	different	datasets.	The	first	analysis,	which	was	performed	off-line,	tested	the	
effect	of	both	alpha	classification	and	P300-Certainty	(combining	the	methods	
reported	in	Chapters	2	and	3).	The	second	analysis	is	off-line	analysis	of	the	effect	of	
alpha	classification	on	P300-Certainty	data	collected	on-line	(combining	the	
methods	reported	in	Chapters	2	and	4).	The	descriptions	of	these	two	analyses	have	
been	separated	into	different	subsections	below,	to	reduce	confusion.				

Off-line	P300-Certainty	and	Alpha	Analysis	

	 Using	the	results	from	Chapters	2	and	3,	an	off-line	analysis	was	performed	
to	evaluate	how	alpha	band	analysis	and	P300-Certainty	perform	together	as	
orthogonal	methods	to	abstain	potential	errors	versus	either	of	them	alone.	This	
study	used	the	same	30-subject	dataset	and	BCI	setup	described	in	Chapters	2	and	3	
for	analysis.		

Alpha	band	analysis	and	P300-Certainty	were	used	just	as	described	in	the	
Methods	sections	of	Chapters	2	and	3,	respectively.		

The	outputs	of	both	methods	were	combined	using	AND	logic.	For	a	selection	
to	be	typed,	both	methods	must	classify	it	as	correct.	Figure	10	shows	an	overview	
of	how	both	alpha	and	P300-Certainty	act	as	gatekeepers	for	BCI	spelling.		
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Figure	10:	Overview	of	how	the	P300-Certainty	and	Alpha	band	classification	act	as	gatekeepers	to	
make	BCI	selections.	Note	that	in	addition	to	the	selection	made	by	the	P300	Speller,	P300-Certainty	

takes	the	classifier	values	as	inputs,	while	Alpha	takes	the	EEG	data	as	input.	
	
	 Based	on	the	variance	in	alpha	band	power	exhibited	in	the	calibration	data,	
the	subjects	in	this	study	fell	into	two	groups:	subjects	exhibiting	high	alpha	
variance	(average	variance	of	log	alpha	=	3.78±0.76	log10uV4),	and	subjects	
exhibiting	low	alpha	variance	(average	variance	of	log	alpha	=	2.74±0.11	log10uV4).	
Further	analyses	were	therefore	performed	and	reported	for	the	high	and	low	alpha	
variance	subjects	separately	and	for	all	subjects	together	to	discover	if	differences	in	
alpha	band	variance	exhibited	in	the	BCI	subject’s	calibration	data	affect	the	
effectiveness	of	alpha	band	analysis	for	BCI	performance	improvement.	

To	evaluate	the	combination	of	alpha	and	P300-Certainty,	the	accuracy	and	
BCI	Utility	(first	presented	in	Chapter	3	[2])	of	both	together	were	calculated,	for	
each	subject,	and	statistically	compared	to	the	raw	BCI	accuracy	and	the	
performance	of	each	method	alone.		

Off-line	alpha	analysis	on	On-line	P300-Certainty	data	

		 Another	analysis	performed	in	this	study	was	to	evaluate,	off-line,	the	impact	
of	alpha	analysis	on	P300-Certainty	(on-line)	accuracy.	The	data	and	BCI	setup	used	
in	this	study	is	the	same	21-subject	dataset	and	BCI	setup	described	in	Chapter	4.	
Alpha	band	analysis	was	performed	on	this	dataset	in	the	same	way	described	in	
Chapter	2.		
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	 As	reported	in	Chapter	2,	it	should	be	noted	that	varying	levels	of	alpha	
between	and	within	subjects’	EEG	data	could	cause	the	alpha	power	values	to	vary	
exponentially	between	and	within	subject	data.	To	remove	the	exponential	gaps	of	
alpha	power	between	and	within	subjects,	the	log10	was	taken	of	alpha	values,	and	
the	alpha	variance	was	calculated	using	these	log10	alpha	values,	as	used	by	Polich	in	
[2].	

Based	on	the	variance	in	alpha	band	power	exhibited	in	the	calibration	data,	
the	subjects	in	the	study	reported	in	Chapter	4,	fell	into	two	groups:	13	subjects	
exhibiting	high	alpha	variance	(average	variance	of	log	alpha	=	3.82±0.37	log10uV4),	
and	8	subjects	exhibiting	low	alpha	variance	(average	variance	of	log	alpha	=	
2.04±0.63	log10uV4).	Further	analyses	were	therefore	performed	and	reported	for	
the	high	and	low	alpha	variance	subjects	separately	and	for	all	subjects	together	to	
discover	if	differences	in	alpha	band	variance	exhibited	in	the	BCI	subject’s	
calibration	data	affect	the	utility	of	alpha	band	analysis	on	P300-Certainty	on-line	
data	for	BCI	performance	improvement.	

To	assess	the	performance	of	alpha	analysis	on	P300-Certainty	(on-line)	
data,	the	accuracy	of	alpha	analysis	with	P300-Certainty	was	calculated	and	
compared	to	the	accuracy	of	P300-Certainty	alone.	The	statistical	significance	
between	the	aforementioned	accuracy	was	done	using	a	two-tailed	paired	t-test	for	
unequal	variances.	To	determine	whether	a	relationship	exists	between	the	change	
in	P300-Certainty	on-line	BCI	accuracy	(using	alpha	classification)	and	the	variance	
of	alpha,	the	variance	of	the	alpha	(over	the	calibration	data)	exhibited	by	each	
subject	was	compared	to	the	results	of	alpha	classification,	as	performed	in	Chapter	
2.		
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Results	

Off-line	analysis	results	

	 The	results	of	the	off-line	analysis	of	both	methods	are	presented	in	Figure	
11.	The	mean	accuracy	for	raw	BCI	performance,	P300-Certainty	alone,	only	alpha	
classification,	and	both	P300-Certainty	and	alpha	classification	were	82.01±12.59%,	
88.82±8.85%,	83.93±9.79%,	and	89.81±7.05%,	respectively.	P300-Certainty	alone	
and	the	combination	of	P300-Cert	and	alpha	classification	produced	statistically	
significant	improvements	over	raw	BCI	accuracy	with	p-values	of	p	=	0.038	and	p	=	
0.016,	respectively.	Alpha	classification	did	not	produce	statistically	significant	
improvements	(p	>	0.05).		

	
Figure	11:	Graph showing alpha variance versus off-line BCI accuracy improvement using alpha, P300-

Certainty, and P300-Cert + Alpha. The accuracy improvement is presented in changes in accuracy on a 0 to 
1 scale, where 1 is 100% accuracy. Alpha variance of subjects is sorted in order of increasing variance. The 
red line shows the maximum possible improvement to reach 100% accuracy for each subject as reference. 	
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Table	2:	BCI-Utility	and	BCI	accuracy	calculated	for	Raw	BCI,	Alpha	only,	P300-Certainty	only,	and	
P300-Certainty	and	Alpha	together.	

 Raw BCI 
performance 

BCI with P300-
Certainty  

BCI with Alpha 
analysis 

BCI with P300-
Certainty + 
Alpha analysis 

BCI-Utility 2.65±1.61 
 

3.05±1.63 
(p = 0.024) 

2.78±1.60 
(p > 0.05) 

3.13±1.67 
(p = 0.018) 

BCI Accuracy 82.01±12.59% 88.82±8.85% 
(p = 0.038) 

83.93±9.79% 
(p > 0.05) 

89.81±7.05% 
(p = 0.016) 

	

	

Table	3:	The	breakdown	of	number	of	selections	for	Raw	BCI,	Alpha	only,	P300-Certainty	only,	and	
P300-Certainty	and	Alpha	together.	

 Total 
Selections 
Allowed 

Correct 
Selections 

Incorrect 
Selections 

Abstentions 
(Abstained 
Correctly) 

Abstentions 
(Abstained 
incorrectly) 

Raw BCI 
Performance 

12150 10084 2066 NA NA 

BCI with 
Alpha analysis 

11281 9541 1740 326 543 

BCI with 
P300-
Certainty 

11403 9937 1466 600 147 

BCI with 
P300-
Certainty + 
Alpha analysis 

10741 9483 1258 808 601 

	
Table	4:	The	breakdown	of	average	accuracy	and	significance	for	the	high	variance	group,	low	

variance	group,	and	both	groups	together.		
 Raw BCI Accuracy BCI with Alpha BCI Accuracy with 

P300-Certainty + 
Alpha 

High Variance Group 80.92±10.72%  
 

87.5±8.57%  
(p = 0.041) 

90.47±5.85%  
(p = 0.0063) 

Low Variance Group 83.09±14.52%   
 

79.35±13.92%  
(p > 0.05) 

87.36±10.48% 
(p > 0.05)  

All Subjects Together 82.01±12.59%  
 

83.93±9.79% 
(p >0.05) 

89.81±7.05% 
(p = 0.016)  

Off-line	alpha	analysis	on	On-line	P300-Certainty	data	results	

The	mean	accuracy	for	on-line	P300-Certainty	and	both	on-line	P300-
Certainty	and	off-line	alpha	classification	together	were	83.62±9.14%	and	
86.81±6.98%,	respectively;	however	they	were	not	statistically	significant.	Figure	
12	shows	the	impact	of	alpha	classification	on	P300-Certainty	on-line	BCI	accuracy.		

The	mean	BCI	accuracy	for	subjects	that	exhibited	high	levels	of	alpha	
variance	(13	out	of	21	subjects;	average	variance	of	log	alpha	=	3.82±0.37	log10uV4)	
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for	P300-Certainty	on-line	BCI	performance	and	P300-Certainty	on-line	BCI	
performance	with	alpha	classification	were	76.35±5.88%	and	85.69±6.98%,	
respectively,	which	was	statistically	significant	with	a	p-value	=	0.0279.	The	mean	
BCI	accuracy	for	subjects	that	exhibited	low	levels	of	alpha	variance	(8	out	of	30	
subjects;	average	variance	of	log	alpha	=	2.04±0.63	log10uV4)	for	P300-Certainty	on-
line	BCI	performance	and	P300-Certainty	on-line	performance	with	alpha	
classification	were	91.14±5.31%	and	86.86±5.43%,	respectively,	which	was	not	
statistically	significant	with	a	p-value		=	0.1612.	The	variances	between	the	two	
groups	were	statistically	significant	with	p=2.18e-7.	Variance	of	log	alpha	(in	the	
calibration	data)	was	found	to	be	practical	in	predicting	whether	or	not	alpha	
classification	would	help	increase	P300-Certainty	on-line	BCI	accuracy.	
	

	
Figure	12:	Graph showing relationship between alpha improvements in P300-Certainty on-line BCI 

accuracy and alpha variance. The accuracy improvement is presented in changes in accuracy on a 0 to 1 
scale, where 1 is 100% accuracy. Alpha variance of subjects is sorted in order of increasing variance. The 
red line shows the maximum possible improvement to reach 100% accuracy for each subject as reference. 

The blue line represents raw BCI accuracy as a reference.	
	

The	high	alpha	variance	group	showed	improved	accuracy	using	alpha	
classification	to	abstain	characters	for	the	13	of	21	subjects	who	exhibited	high	
alpha	levels	(low	attention	levels).	The	high	variance	group	included	7	CP	subjects,	
while	the	low	variance	group	included	3	CP	subjects.	The	alpha	variance	exhibited	
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by	the	CP	subjects	did	not	show	any	statistically	significant	difference	from	the	
variances	exhibited	by	controls,	whether	over	all	subjects	or	within	the	high	and	low	
variance	groups.	There	was	no	significant	difference	between	accuracy	
improvements	of	CP	subjects	and	those	of	typically	developing	subjects.	

The	alpha	variance	exhibited	by	the	low	variance	group	caused	the	alpha	
classification	to	allow	erroneous	selections	as	well	as	reject	correct	selections	in	a	
somewhat	random	fashion.	Their	corresponding	accuracies	were	decreased	due	to	
this	phenomenon.	
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Discussion	

	
Both	P300-Certainty	and	alpha	classification	increase	accuracy	by	abstaining	

erroneous	selections.	Although	alpha	classification	alone	increases	accuracy	in	
subjects	exhibiting	high	alpha	variance,	using	it	together	with	P300-Certainty	
increases	accuracy	in	27	out	of	30	subjects,	shown	in	Figure	11.	Improvements	in	
accuracy	for	all	subjects	show	a	statistically	significant	difference	(p	=	0.016)	
between	raw	BCI	accuracy	and	BCI	accuracy	using	P300-Certainty	and	alpha	
classification.	While	these	subjects	showed	decreased	accuracy	when	using	alpha	
classification	alone,	using	both	methods	improves	accuracy	for	12	out	of	the	15	
subjects	exhibiting	low	alpha	variance.	This	is	due	to	the	fact	that	P300-Certainty	
and	alpha	classification	are	orthogonal	methods	used	to	abstain	errors	using	
different	measures	of	attention.	Each	method	abstains	potential	errors	that	the	
other	may	have	missed.	

For	example,	if	a	user	were	attending	to	something	outside	the	BCI	display,	
alpha	band	analysis	would	indicate	that	they	were	attending,	however	P300-
Certainty	would	abstain	the	selection	due	to	the	lack	of	the	user’s	EEG	responses	to	
the	BCI	stimuli	(flashes).	On	the	other	hand,	if	the	user	were	looking	at	the	BCI	
display	however	not	attending	completely	to	the	flashes,	alpha	band	analysis	would	
indicate	that	they	were	not	attending	and	the	selection	would	be	abstained,	even	if	
P300-Certainty	classified	the	selection	as	valid.		

Using	AND	logic	to	combine	the	decision	of	P300-Certainty	and	alpha	band	
analysis	biases	the	BCI	to	abstain	potential	errors.	Since	the	goal	of	this	study	was	to	
reduce	errors	and	increase	overall	BCI	performance,	BCI-Utility	was	used	to	
determine	how	these	abstentions	affected	BCI	performance	by	analyzing	the	benefit	
gained.	The	abstentions	by	P300-Certainty	and	alpha	have	been	shown	to	increase	
BCI	accuracy,	and	BCI-Utility	was	used	to	see	if	these	abstentions	affected	the	
overall	benefit	including	rate.			

BCI-Utility	has	shown	to	increase	from	that	of	raw	BCI	performance	for	
P300-Certainty	alone,	alpha	band	analysis	alone,	and	P300-Certainty	and	alpha	
band	analysis	together	(presented	in	Table	2).	For	P300-Certainty	alone	and	P300-
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Certainty	+	Alpha,	BCI-Utility	was	statistically	significant	from	raw	BCI,	however	for	
alpha	alone	it	wasn’t	significant.	This	indicates	that	the	abstentions	generated	by	all	
methods	increased	overall	benefit	and	that	error	correction	did	not	affect	the	utility	
of	the	BCI.		

Applying	off-line	alpha	band	analysis	to	the	native	P300-Certainty	data	
showed	a	similar	relationship	as	shown	in	[1].	This	emphasizes	that	alpha	variance	
in	users’	calibration	data	is	indicative	of	whether	or	not	alpha	band	analysis	is	useful	
to	users’	BCI	performance.	Users	with	high	alpha	variance	in	their	calibration	data	
experienced	an	increase	in	accuracy,	while	users	with	low	alpha	variance	
experienced	a	decrease	in	accuracy.	However,	if	both	P300-Certainty	and	alpha	
band	analysis	were	used	together,	as	shown	in	Figure	11,	the	combination	allows	for	
better	performance	than	either	method	alone.	

Study	Limitations	

	 P300-Certainty	was	used	to	make	the	BCI-facilitated	PPVT-IV	dynamic	and	
more	user-aware.	However,	the	study	did	not	include	tasks	using	the	BCI	without	
P300-Certainty.	To	better	study	alpha	classification	and	P300-Certainty,	they	need	
to	be	tested	together	on-line	with	experiments	tailored	to	test	performance	with	
and	without	these	methods.			

Technical	Application	

The	potential	for	an	alpha-based	classification	to	increase	P300-Certainty	on-
line	BCI	accuracy	can	be	predicted	by	the	alpha	variance	exhibited	in	the	BCI	user’s	
calibration	data.	Similar	to	the	findings	reported	in	Chapter	2,	users	with	log10	alpha	
variance	of	3	log10uV4	and	above	benefit	from	an	alpha-based	classification,	and	
users	with	log10	alpha	variance	less	than	3	log10uV4	do	not	benefit	from	an	alpha-
based	classification.		
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Conclusion	

	
In	conclusion,	combining	both	methods	improves	accuracy	more	than	using	

either	method	alone.	P300-Certainty	and	alpha	classification	are	orthogonal	
methods	used	to	abstain	potential	errors	and	make	the	BCI	more	user-aware	by	
quantifying	attention	from	different	angles.	Alpha	band	analysis	directly	quantifies	
attention	using	a	studied	measure	of	attention	(alpha	band	power),	while	P300-
Certainty	indirectly	quantifies	attention	by	evaluating	the	statistical	distribution	of	
the	user’s	EEG	responses	to	the	BCI	stimuli.	
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Chapter	6	

Conclusion	

	
	 Brain-Computer	Interfaces	(BCIs)	have	great	potential	to	allow	individuals	
with	severe	motor	and	speech	impairments	to	communicate.	However,	traditional	
BCIs	are	static	and	are	susceptible	to	losses	in	user	attention.	A	BCI	that	has	the	
ability	to	detect	users’	variations	in	attention	would	allow	the	BCI	to	abstain	
selections	that	are	unattended.	This	dissertation	introduces	two	methods	(alpha	
band	analysis	and	P300-Certainty)	that	measure	attention	in	orthogonal	ways.	
Alpha	band	analysis	is	used	as	a	measure	of	attention	directly	derived	from	the	
user’s	EEG.	Alpha	band	analysis	increased	accuracy	in	users	exhibiting	high	alpha	
variance.	P300-Certainty	generates	a	confidence	value	for	each	selection	and	only	
types	selections	that	reach	a	specific	confidence	level.	This	increased	BCI	accuracy	
by	abstaining	potential	errors.	This	dissertation	shows	that	using	two	orthogonal	
methods	to	detect	and	accommodate	for	losses	in	user	attention	can	create	a	BCI	
that	is	more	user-aware.	With	this,	users	are	able	to	control	the	BCI	at	their	own	
pace.		

Contributions	

Alpha	band	analysis	as	a	measure	of	attention	in	P300	BCI	

An	attention-monitoring	method	using	alpha	band	analysis	was	developed	
and	presented.	Alpha	was	shown	to	allow	the	BCI	to	monitor	user	attention	levels	
and	abstain	predicted	errors,	however	its	usefulness	was	limited	to	users	exhibiting	
high	alpha	variance.	A	statistically	significant	increase	in	accuracy	was	shown	(p	<	
0.05)	for	individuals	exhibiting	high	alpha	variance.		
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P300-Certainty	(Selection	Confidence	Method)	

	 The	P300-Certainty	algorithm	is	a	selection	confidence	method	that	was	
developed	to	improve	BCI	performance	by	abstaining	selections	that	do	not	reach	a	
specified	confidence	level	(certainty	threshold).	P300-Certainty	was	shown	to	be	a	
powerful	method	that	allows	the	BCI	to	abstain	predicted	errors	and	increase	BCI	
performance.	A	statistically	significant	increase	in	BCI	spelling	accuracy	(p	<	0.05)	
was	observed.		

In	addition,	P300-Certainty	was	implemented	to	achieve	dynamic	stopping	
and	tested	on-line.	Dynamic	stopping	allowed	the	BCI	to	make	selections	only	when	
they	reached	a	specific	certainty	threshold.	This	allowed	users	to	control	the	BCI	at	
their	own	pace.		 	

Using	two	orthogonal	methods	to	quantify	attention	

	 Using	both	alpha	band	analysis	and	P300-Certainty	was	shown	to	increase	
BCI	performance	more	than	either	method	used	alone.	Since	both	methods	were	
used	to	quantify	attention	in	different	ways,	each	method	abstained	errors	that	the	
other	method	may	have	not	detected.			
	

Study	Limitations	

	
The	data	analyzed	in	this	dissertation	was	for	subjects	who	were	supposed	to	

be	maintaining	attention	while	copying	text	(copy-spelling)	[1]	or	taking	a	BCI-
facilitated	cognitive	assessment	[2].	This	is	an	unrealistic	usage	condition	since	they	
had	no	text	composition	tasks	and	few	distractions.	The	only	distraction	inherent	in	
the	task	was	the	need	to	problem-solve	how	to	correct	an	error	if	it	occurred	
(basically	recognizing	the	need	to	backspace),	which	is	a	limitation	of	the	data	
analyzed	in	this	study.	In	addition,	users	with	low	alpha	variance	were,	in	fact,	
paying	attention.	This	motivates	designing	a	study	that	thoroughly	investigates	the	
effect	of	distractors	on	BCI	usage.	A	study	with	a	BCI	designed	to	mimic	real-world	
usage	of	a	BCI,	including	compositions	tasks,	strategic	distractions,	and	periods	
where	the	user	is	not	paying	attention	to	the	BCI	display,	would	overcome	this	
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limitation	and	test	the	attention-monitoring	ability	of	alpha	band	analysis	and	P300-
Certainty	to	their	fullest.	 	
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Future	Work	

	

Alpha	band	analysis	to	be	tested	on-line	

	 Using	recorded	data,	alpha	band	analysis	increased	BCI	accuracy	for	users	
with	high	alpha	variance.	However,	to	test	alpha	band	power’s	attention-monitoring	
ability	to	its	fullest,	a	study	is	needed	that	is	designed	to	mimic	real-world	usage	of	a	
spelling	BCI,	including	composition	tasks	and	strategic	distractions.		
	 It	was	shown	in	this	dissertation	that	alpha	band	analysis	improves	BCI	
accuracy	in	users	exhibiting	high	alpha	variance.	However,	for	users	exhibiting	low	
alpha	variance,	alpha	band	analysis	decreases	accuracy.	Using	this	difference	
between	users	with	high	and	low	alpha	variance,	alpha	band	analysis	can	be	used	to	
monitor	alpha	variance	and	only	be	activated	in	periods	with	high	alpha	variance.	
This	way	alpha	classification	can	be	used	on	all	subjects,	and	be	deactivated	during	
periods	of	low	alpha	variance	so	that	user	accuracy	does	not	decrease.		

Testing	different	machine-learning	methods	for	alpha	classification	

	 Alpha	classification	using	Linear	Discriminant	Analysis	(LDA)	increased	BCI	
accuracy	for	users	with	high	alpha	variance.	However,	different	machine-learning	
methods	(e.g.	Support	Vector	Machines	or	a	clustering	algorithm)	may	prove	to	be	
more	effective	at	alpha	classification.	

Alpha	band	analysis	also	has	the	potential	to	improve	P300	BCI	calibration	

	 Before	being	able	to	control	a	P300	BCI,	the	BCI	needs	to	be	trained	to	
identify	the	user’s	P300	response.	Attention	to	the	BCI	is	crucial	during	calibration	
for	the	ideal	BCI	performance.	Alpha	band	analysis	can	be	used	during	calibration	to	
identify	and	omit	parts	of	the	calibration	data	where	the	user	lost	attention	to	the	
BCI.	This	will	allow	the	BCI	to	be	trained	on	attended	data,	which	will	ultimately	
allow	the	user	to	control	the	BCI	without	as	many	errors.	

P300-Certainty	and	alpha	band	analysis	to	be	tested	on-line	together	

	 To	test	the	full	potential	of	both	P300-Certainty	and	alpha	classification	as	
methods	to	abstain	potential	errors	by	identifying	periods	of	low	user	attention,	
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both	methods	need	to	be	evaluated	on-line	simultaneously.	This	study	would	
investigate	the	effect	of	distractors	on	BCI	usage.	A	study	with	a	BCI	designed	to	
mimic	real-world	usage	of	a	BCI,	including	compositions	tasks,	strategic	
distractions,	and	periods	where	the	user	is	not	paying	attention	to	the	BCI	display,	
would	test	the	attention-monitoring	ability	of	alpha	classification	and	P300-
Certainty	to	their	fullest.	It	would	be	ideal	if	people	with	severe	motor	and	speech	
impairments	were	recruited	for	this	study	so	that	the	effectiveness	of	both	methods	
could	be	tested	with	end-users.			

Overall,	this	dissertation	presents	research	that	can	help	create	dynamic	
attention-monitoring	P300	BCIs	that	are	resilient	to	wandering	user	attention	and	
allow	users	to	control	the	BCI	at	their	own	pace.	
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