Sodium and Potassium Intake in Multiethnic Populations: Associations with Genes and Blood Pressure

by

Minjung Kho

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Epidemiological Science) in the University of Michigan 2018

Doctoral Committee:

Professor Sharon R. Kardia, Chair Associate Professor Ana Baylin Associate Professor Sung Kyun Park Assistant Professor Young Ah Seo Assistant Professor Jennifer A. Smith Minjun Kho

mjkho@umich.edu

ORCID iD: 0000-0001-6236-9506

© Minjung Kho 2018

DEDICATION

I dedicate this dissertation to my family and friends:

To my husband – Wonjoo Yun, you are my best decision that I've ever made in my life. Thanks for all your sacrifice during my Ph.D. period. I couldn't have done this without you. I am looking forward to opening our new chapter with our baby boy, TumTum.

To my family – mom, Seoung Sook Jae, you are my hero and the most beautiful person. I am always your biggest fan. Dad, Jaeho Kho, thanks for your sense of humor that made me laugh during my Ph.D. life. I love you both! Parents-in-law, thank you for your support along the way. I always feel lucky to have you both who always provide me with encouragement and inspiration to purse and complete my Ph.D.

To my lovely friends in Korea, Japan, Taiwan, and the US – Thank you for always being there for me. You are my best things in my life!

ACKNOWLEDGEMENTS

I would like to acknowledge the people who have helped me with this dissertation.

My advisor, Sharon Kardia – Thank you for making my journey in academia as flourishing as possible for the last 4 years. Because of all the opportunities you have offered me, I have enjoyed my career path to being an epidemiologist.

I appreciate all the help and guidance from my Avengers team, committee members – Jennifer Smith, Sung Kyun Park, Ana Baylin, and Young Ah Seo. I always felt assured when you supported me with academic knowledge and emotional encouragement in difficult times.

I would also like to express my gratitude to Larry Bielak, Erin Ware, and Wei Zhao who have always been willing to share their time and expertise as well as the entire Kardia/Smith Lab members.

Lastly, thank you to wonderful people around me who gave me a positive energy and support during my Ph.D. program, including my inspiring tutor and life coach, Kallie Michels, my favorite writing teacher, Kirsten Herold, and my wonderful midwife, Joanne Bailey.

TABLE OF CONTENTS

DEDICATIONii
ACKNOWLEDGEMENTSiii
LIST OF TABLES vi
LIST OF FIGURES viii
ABSTRACTix
CHAPTER I: Introduction1
1.1 Introduction1
1.2 Research Aims2
1.3 Background and significance
Importance of sodium intake, potassium intake, and sodium-to-potassium intake
ratio in blood pressure, hypertension, and cardiovascular diseases5
Gold standard of sodium and potassium intake measurement
Genetics of sodium and potassium intake7
Gene-environment interaction in sodium and potassium intake8
Gene-by-sodium/potassium intake interaction influencing blood pressure
CHAPTER II: Genome-wide meta-analysis of sodium intake, potassium intake, and their
ratio in multiethnic cohorts10
2.1 Introduction
2.2 Methods11
2.3 Results17
2.4 Discussion25
CHAPTER III: Gene-based associations and effect modification underlying variation in

sodium intake, potassium intake, and their ratio in two European American cohorts.......43

3.1 Introduction
3.2 Methods
3.3 Results47
3.4 Discussion
CHAPTER IV: A multi-ancestry genome-wide study of gene-sodium interaction
underlying blood pressure variation64
4.1 Introduction
4.2 Methods65
4.3 Results72
4.4 Discussion73
CHAPTER V: Conclusion128
5.1 Review of main findings128
5.2 Significance and implications
5.3 Strengths
5.4 Limitations133
5.5 Future work
APPENDICES
REFERENCES145

LIST OF TABLES

Table 1.	The basic characteristics of participating cohorts in Aim 1
Table 2.	Urinary sodium and potassium excretion measurement methods of participating cohorts in Aim 1
Table 3.	Genotyping information for participating cohorts in Aim 1
Table 4.	Meta-analysis results of 24-hour sodium excretion, 24-hour potassium excretion, sodium-to-potassium ratio for all loci brought forward for replication (P $<5x10^{-6}$ from discovery meta-analysis) in Aim 1
Table 5.	Meta-analysis results of 24-hour sodium excretion, 24-hour potassium excretion, sodium-to-potassium ratio with adjustment for BMI and height for all loci brought forward for replication (P $<5x10^{-6}$ from discovery meta-analysis) in Aim 137
Table 6.	Replication of SNPs from the meta-analysis results of 24-hour sodium excretion, 24-hour potassium excretion, sodium-to-potassium ratio in African Americans and Asians (P $<5x10^{-6}$ from discovery meta-analysis) in Aim 141
Table 7.	Replication of previously identified SNP rs12092050 from Tabara et al. 2015 in Aim 1
Table 8.	The basic characteristics of participating cohorts from GENOA and FHS in Aim 2
Table 9.	Genes near genome-wide significant or suggestive SNPs from Aim 1 and number of genetic markers from 1000G and exome chip data available for each gene in Aim 2 analysis
Table 10.	P-values for gene-based association between genes and 24-hour sodium excretion, 24-hour potassium excretion, and sodium-to-potassium ratio in GENOA and FHS in Aim 2
Table 11.	P-values for gene-by-age \geq 65, gene-by-sex, and gene-by-college education interactions on 24-hour sodium excretion, 24-hour potassium excretion, and sodium-to-potassium ratio in GENOA and FHS in Aim 2
Table 12.	Total list of P-values for gene-based association between each gene and 24-hour

	sodium excretion, 24-hour potassium excretion, and sodium-to-potassium ratio in GENOA and FHS in Aim 2
Table 13.	Characteristics of participating cohorts in Aim 378
Table 14.	Genotyping information for participating cohorts in Aim 379
Table 15.	Genetic loci that were genome-wide significant ($P < 5 \times 10^{-8}$) from 2DF joint test in the discovery sample in Aim 3
Table 16.	SNPs that are genome-wide significant ($P < 5 \times 10^{-8}$) or suggestive ($P < 1 \times 10^{-6}$) from 2DF joint test in meta-analysis without LD clumping in Aim 381
Table 17.	Replication of novel loci from Li et al. in European and African ancestry in Aim 3
Table 18.	Replication of known blood pressure loci using 2DF joint test in Aim 392

LIST OF FIGURES

Figure 1.	Conceptual model for the proposed study describing the associations between genetic factors, sodium intake, potassium intake, sodium-to-potassium ratio, and blood pressure
Figure 2.	Schematic of the study design17
Figure 3.	QQ plots of discovery GWAS meta-analysis for 24-hour sodium excretion, 24-hour potassium excretion, and sodium-to-potassium ratio in Aim 1
Figure 4.	Miami plots of discovery GWAS meta-analysis for 24-hour sodium excretion, 24-hour potassium excretion, and sodium-to-potassium ratio in Aim 120
Figure 5.	Regional plots for the most significant loci from 24-hour sodium excretion, 24-hour potassium excretion, and sodium-to-potassium ratio using LocusZoom in Aim 1 .22
Figure 6.	Regional plots of P-values for single SNP association analysis with 24-hour sodium excretion, 24-hour potassium excretion, and sodium-to-potassium ratio in Aim 2.61
Figure 7.	Plots of SNP-by-demographic factor interactions in Aim 263
Figure 8.	The association between blood pressure difference and sodium groups in Aim 367
Figure 9.	QQ plots of meta-analyses using the 2DF joint test in European ancestry in Aim 3
Figure 10.	Miami plots for SBP, DBP, MAP, and PP using the 2 DF joint test in European ancestry in Aim 3
Figure 11.	Miami plots for SBP, DBP, MAP, and PP using the 2 DF joint test in African ancestry in Aim 3
Figure 12.	Miami plots for SBP, DBP, MAP, and PP using the 2 DF joint test in Asians in Aim 3
Figure 13.	Regional plots for significant loci using LocusZoom in Aim 3122

ABSTRACT

Over 80 million adults in the United States have hypertension, one of the leading risk factors for cardiovascular disease (CVD) and stroke. Sodium and potassium intake are essential dietary components, but excess sodium intake and insufficient potassium intake are established risk factors for hypertension and CVD. To improve and target interventions to reduce the burden of hypertension and CVD, it is critical to identify factors that influence sodium and potassium intake. The overarching goal of this dissertation is to provide insight into the genetics of sodium and potassium intake with high-quality measurement as well as the role of gene-by-sodium interactions underlying blood pressure variation in multiethnic populations.

Aim 1 of the dissertation focuses on the identification of genomic regions associated with sodium intake, potassium intake, and sodium-to-potassium ratio in multiethnic populations. Using genome-wide genetic data imputed to the 1000 Genomes Project reference panel in five cohorts with European ancestry (N=7,363), one cohort with Asian ancestry (n=2,475), and one cohort with African Ancestry (n=1,246), we performed a genome-wide association study (GWAS) meta-analysis. We found a significant genetic locus, rs71639080, near the Fc fragment of IgG receptor genes (*FCGR2B-FCGR2C- FCGR3A*) on chromosome 1 from the meta-analysis of 24-hour urinary sodium excretion with a significance threshold of P < 5 X 10⁻⁸. Additionally, two genetic loci, rs77958157 on chromosome 5 and rs148459019 on chromosome 6, were significantly associated with sodium-to-potassium ratio. In Aim 2, we used sequence-kernel association methods to investigate gene-level associations from Aim 1 using both common and

rare genetic variants. In addition, we evaluated whether the gene-level associations were modified by demographic factors (age \geq 65 years, sex, and college education) and found significant interactions in the regions of genes *TAPSAR1*, *CTC-228N24.1*, *RP11-433C9.2*, and *RP11-483H11.1* in a European American cohort. In Aim 3, we identified 12 genome-wide significant genetic loci (P < 5 X 10⁻⁸) through meta-analysis of a genome-wide gene-by-sodium intake interaction study on blood pressure measures using multiethnic cohort studies (N=6,020). One of the identified gene regions includes *NKAIN2* (chromosome 6), which is associated with the regulation of sodium and potassium ion transporting within or between cells.

Much research still remains to replicate and understand these initial findings in larger multiethnic populations to provide more insight into the underlying genetic variations and mechanisms by which these genomic regions are influencing the regulation of sodium and potassium intake, as well as blood pressure levels.

CHAPTER I: Introduction

1.1 Introduction

Sodium intake is an essential dietary component, but excess sodium intake is an established risk factor for hypertension and cardiovascular disease [1-4]. In 2010, about 1.7 million, or 9.5%, of all deaths from cardiovascular causes were attributed to high sodium intake globally [5]. Potassium intake, however, is beneficial for controlling blood pressure [6, 7]. Recently, it was found that the ability to predict an increased risk of cardiovascular diseases (CVD) is stronger when using sodium-to-potassium intake ratio than using sodium or potassium alone [8, 9]. Thus, identifying factors that influence sodium intake, potassium intake, and sodium-to-potassium intake ratio is important and could be a basis for interventions to reduce the burden of hypertension and cardiovascular disease. A previous study in Korean participants showed that genetic factors contribute to variability in sodium intake (heritability = 34%) [5, 10-12]. However, there has been limited investigation into the specific genetic variants that influence sodium and potassium intake, and their role in blood pressure variation. Identifying predictors of sodium and potassium intake will allow better identification of individuals that are at high risk of excess sodium and low potassium intake, which is important for improved prevention of high blood pressure.

Sodium consumption is known to be disproportionately high among men, older people, and people with low education [13-15]. Potassium intake is also reported to be high among men and older people, but low among people with low education [16, 17]. Since the associations

between genes and sodium/potassium intake may differ as a function of environmental conditions, investigating potential gene-environment interactions with age, sex, and education on sodium and potassium intake is also critical. Additionally, examining the role of interactions between sodium intake and genomic factors in the explaining interindividual variation in blood pressure may provide additional insight into which subgroups of the population are particularly susceptible and may require more personalized intervention. In the section below, the overarching research aims of this dissertation are described. These aims address the need to identify genes and gene-environment interactions underlying sodium and potassium intake, and the relationship between sodium intake and blood pressure variation.

1.2 Research Aims

In this dissertation, we take advantage of high-quality measurements of sodium and potassium intake as well as genome-wide single nucleotide polymorphism (SNP) data from multiethnic epidemiologic studies to identify the genomic regions and genetic variants associated with sodium intake, potassium intake, and sodium-to-potassium intake ratio. We then investigate their interactions with factors underlying differences in sodium and potassium intake (age, sex, and education level), and their role in blood pressure variation. In Figure 1, we illustrate the overall conceptual model used to motivate and organize the findings across the three main aims of the dissertation.

Figure 1 Conceptual model for the proposed study describing the associations between genetic factors, sodium intake, potassium intake, sodium-to-potassium ratio, and blood pressure

Specifically, the three aims of this dissertation are:

Aim 1: Identify genetic factors associated with sodium intake, potassium intake, and sodium-topotassium intake ratio by conducting a meta-analysis of genome-wide association studies (GWAS) in multi-ancestry cohorts.

Hypothesis 1: Single nucleotide polymorphism (SNP) markers predict variation in sodium intake, potassium intake, and sodium-to-potassium ratio.

Aim 2: Test gene-level associations from Aim 1 and gene-by-demographic factor (age, sex, and education level) interactions on sodium intake, potassium intake, and sodium-to-potassium intake ratio in multi-ancestry cohorts.

Hypothesis 2: The genetic variants in a region and gene-by-demographic factor (age, sex, and education level) interactions explain significant variation in sodium intake, potassium intake, and sodium-to-potassium ratio.

Aim 3: Evaluate gene-by-sodium intake interactions underlying blood pressure variation in multi-ancestry cohorts.

Hypothesis 3: Significant interactions between sodium intake and SNP markers across the genome explain blood pressure variation in multi-ancestry cohorts.

In the next section, we provide the background and significance underlying these aims.

1.3 Background and significance

Importance of sodium intake, potassium intake, and sodium-to-potassium intake ratio in blood pressure, hypertension, and cardiovascular diseases

On average, increments of 2.11 mm Hg in systolic blood pressure (SBP) and 0.78 mg Hg in diastolic blood pressure (DBP) are associated with each 1g sodium intake increment [12]. The average daily sodium intake for Americans is 3,608 mg per day from the National Health and Nutrition Examination Survey (NHANES) in 2014, which is much higher than the recommended levels by the American Heart Association (1,500mg/day) [18]. Potassium intake, however, is beneficial for controlling blood pressure [6, 7]. Each 1.72 g potassium intake increment is on average associated with decrement of 2.42 mm Hg in SBP and 1.57 mm Hg in DBP [19]. The average daily potassium intake for Americans is 2,155 mg per day from the NHANES in 2014, which is much lower than the recommended levels by the American Heart Association (4,700mg/day) [18]. Researchers have found that the ability to predict an increased risk of CVD is stronger when using sodium-to-potassium intake ratio than using sodium or potassium alone in prediction models [8, 9]. Since American consumption of sodium exceeds recommended levels while they fall short on their potassium intake by the American Heart Association (1500mg/day), investigating the underlying genetic factors and gene-environment interactions associated with sodium and potassium intake may allow a better understanding some of the molecular mechanisms driving dietary behavior and may provide potential intervention and prevention opportunities.

Gold standard of sodium and potassium intake measurement

Population and individual sodium and potassium intake are typically measured in one of two ways: 1) self-reported dietary intake data (i.e., dietary recalls, food records, food frequency questionnaires) and 2) urine biomarkers (i.e., 24-hour urine sample, half-day urine sample, and spot urine sample). Generally, 24-hour urinary excretion is regarded as the gold standard for intake assessment of sodium and potassium, and is more accurate than self-reported dietary intake data [20-22]. The 24-hour urinary excretion method does not allow electrolyte loss other than via the kidney. When comparing estimates of sodium intake from duplicate food portions (with sodium content measured by flame photometry) and 24-hour urinary sodium excretion, the sodium in the urine sample was only 5% on average lower than intake assessed by duplicate food portions [23]. However, intake measured by dietary records was much lower than the urinary estimates [23]. In another study, the difference between 24-hour urinary sodium excretion and sodium from duplicate food portions was 14% [24]. The remaining sodium is excreted through sweat and feces, which is a small portion under normal conditions. Regarding potassium intake, the level of potassium in 24-hour urine samples was 13.6% on average lower than intake assessed by duplicate food portions [23]. This is the scientific evidence that demonstrates that urinary sodium and potassium excretion is a gold standard for measuring sodium and potassium intake.

Collecting 24-hour urinary samples is, however, very challenging compared to using a dietary record. Thus, sodium excretions from half-day and spot urine samples are measured, and they have acceptable correlation coefficients with measures from 24-hour urine samples [11, 25, 26]. The Pearson product-moment correlation coefficient (r) between the measured and the estimated 24-h sodium excretion using simple volume-time linear extrapolation on half-day urine

samples was 0.837 in the Healthy Twin Study, Korea [11]. The correlation between the measured and the estimated 24-h sodium excretion and spot urine samples were previously reported as 0.53 - 0.82 [25, 26].

Genetics of sodium and potassium intake

There is a large amount of variability in sodium intake within and across populations, and many factors influence the level of sodium and potassium intake, including sex, age, socioeconomic status, dietary habits, area of residence, and cultural factors [5, 10, 27]. Using the Healthy Twin Study, a twin-family cohort in Korea, I previously evaluated the null hypothesis that genetic factors do not play role in sodium intake level [11]. In the Healthy Twin Study, the intra-class correlation coefficients (ICCs) of 24-hour sodium excretion between family pairs were highest among the monozygotic twin pairs (0.47) and lowest among first-degree relative pairs (siblings combined with dizygotic twins: 0.09; parent-offspring: 0.07). Genetic versus environmental contributions were then estimated in terms of heritability (h²), adjusting for associated factors (heritability: 34%). In this dissertation, we extend this research to identify genomic regions and genetic variants associated with sodium and potassium intake using a genome-wide association meta-analysis in five epidemiologic cohorts.

To our knowledge there has only been one GWAS for sodium and potassium concentration level (mEq/dl) measured from spot urine sample with limited sample size (N=3,095) in Japan that found one significant SNP but failed to replicate it in a replication set [9]. While research in this area has been limited, other studies have identified genes related to salt sensitivity, a measure of how individual blood pressure responds to salt intake [28, 29], and salt taste, ability to detect salt [30, 31].

Gene-environment interaction in sodium and potassium intake

Individual sodium and potassium intake has a wide range of individual variability [32, 33]. The determinants of sodium and potassium intake have not been fully defined but physiological phenotypes, physical characteristics, developmental factors, cultural factors, genetic factors, and environmental factors as well as interactions among them have been reported to influence individual sodium and potassium intake [16, 27, 34]. Thus, the associations between genes and sodium/potassium intake may differ as a function of environmental and other conditions. While there has been no study that investigates gene-environment interaction in sodium and potassium intake, to our knowledge, other studies have found gene-sodium intake interactions that affect blood pressure [35, 36].

Gene-by-sodium/potassium intake interaction influencing blood pressure

Blood pressure measures including SBP and DBP are heterogeneous traits because they are influenced by both genetic and environmental factors. GWAS have identified numerous SNPs that are associated with SBP and DBP, but the identified genetic loci explain only a small portion of trait variability (~2%) even though heritability is relatively high (~40-50%) [37-43]. Thus, identifying environmental factors that could modify the genetic effects of blood pressure is important and being actively researched [44-46]. High sodium intake and low potassium intake are strong and independent risk factors for high blood pressure, and the level of sodium and potassium intake has a large variation on both the individual and population level [32, 47, 48]. Thus, research on whether and how individual sodium and potassium intake modifies the genetics of blood pressure is important for identifying susceptible genetic groups in populations that are disproportionately affected by sodium and potassium intake. However, few studies have been conducted to evaluate the gene-by-sodium intake or gene-by-potassium intake interactions on blood pressure traits, especially using large-scale epidemiologic cohort data.

Studies using animal and human subjects have focused on the identification of genes that are involved in blood pressure responses to sodium intake mostly via genetic alterations in tubular sodium reabsorption [49]. Changwei et al conducted analyses of gene-by-sodium intake and gene-by-potassium intake interactions on blood pressure traits including SBP, DBP, mean arterial pressure (MAP), and pulse pressure (PP) and found multiple novel loci from GWAS and gene-based analysis in a Chinese population [50, 51]. A recent study in a Korean population found 6 loci near significant SNPs that had significant interactions with sodium intake, potassium intake, or their ratio on hypertension [52]. However, more studies of gene-bysodium or potassium intake interactions on blood pressure traits in multiethnic populations are needed to better understand the mechanisms of blood pressure regulation by dynamic interrelationships among genes, sodium intake, and potassium intake across ancestry groups. This dissertation will help to provide additional insight into the genes that may interact with an individual's sodium intake to influence their blood pressure.

CHAPTER II: Genome-wide meta-analysis of sodium intake, potassium intake, and their ratio in multiethnic cohorts

2.1 Introduction

Sodium and potassium are essential dietary components, but excess sodium intake [2, 53] and low potassium intake [6, 7] are established risk factors for hypertension and cardiovascular disease (CVD). In 2010, about 1.7 million, or 9.5%, of all worldwide deaths from cardiovascular causes were attributed to high sodium intake [5]. Although sodium and potassium intake are well-known modifiable and targeted dietary factors in CVD prevention, American daily consumption of sodium is 2.2 times the recommended maximum 1500mg/day, while daily consumption of potassium is 2,000mg/day below the recommended minimum of 4,700mg/day [54]. Recently, the sodium-to-potassium ratio has been considered a more important risk factor for hypertension than sodium and potassium levels alone [55, 56]. Thus, identifying the factors associated with maintaining an optimal sodium-to-potassium ratio could provide a basis for interventions to reduce the burden of hypertension and CVD [8, 9, 57]. Since sodium and potassium intake are related to eating behavior, which is a complex trait, many factors influence the level of consumption, including sex, age, socio-economic status, dietary habits, area of residence, and cultural factors [5, 10, 58, 59]. A previous study of 2,209 Koreans in a twinfamily study showed that genetic factors also contribute to variability in sodium intake (heritability = 30-35%) [11]. The intra-class correlation coefficients of 24-hour urinary sodium

excretion were the highest among monozygotic twin pairs (0.47) and the lowest among firstdegree relative pairs (siblings combined with dizygotic twins: 0.09).

However, there has been limited investigation into the specific genetic variants that influence sodium and potassium intake, as well as their ratio. To our knowledge, there has only been one genome-wide association study (GWAS) for sodium and potassium concentration (mEq/dl) measured from spot urine samples in a Japanese population (N=3,095 for discovery sample, and N=5,716 for replication sample), which found one genome-wide significant locus but failed to replicate the genetic variant [9]. While research in this area has been limited, other studies have identified genes related to salt sensitivity, a measure of blood pressure responsiveness to salt intake [28, 29], salt taste, the ability to detect salt [30, 31].

To better understand the genetic architecture of sodium and potassium intake and their ratio, we conducted a GWAS meta-analysis using the rich combination of high-quality measurement of sodium and potassium intake and genotype data from seven cohorts comprising over 11,000 participants of European (GENOA, PREVEND, FHS, HyperGEN and HAPI heart), African American (HyperGEN), and Asian (HTS) ancestry (Appendix 1). Since there is a wide range of sodium and potassium intake across different cultures, the current study includes multiethnic populations to help us better understand and generalize our findings about the genetics of sodium and potassium intake across ancestry groups.

2.2 Methods

Aim 1 included the following European Ancestry cohorts in the discovery sample (N=7,363): Genetic Epidemiology Network of Arteriopathy (GENOA) [60], Prevention of REnal and Vascular ENd-stage Disease(PREVEND) [61], Hypertension Genetic Epidemiology Network (HyperGEN) study European American (EA) [60], Heredity and Phenotype Intervention (HAPI) Heart Study [62], and the Framingham Heart Study (FHS) [63, 64]. The replication sample (N=3,721) included: HyperGEN African American (AA) [60], and Healthy Twin Study - Korea (HTS) [65]. The descriptions and acknowledgements for participating cohorts are described in Appendix 1. Each of these cohorts has high-quality measurements of sodium and potassium intake from urinary samples, enabling us to initiate an international collaboration of multiethnic genome-wide meta-analysis of sodium and potassium intake and their ratio. A brief description of each cohort is included below:

<u>GENOA</u> is a community-based study that aims to identify genes influencing blood pressure from Rochester, MN and Jackson, MS. It is a part of the NHLBI-sponsored Family Blood Pressure Program (FBPP) [66]. Sibships with at least two adults with clinically diagnosed essential hypertension before age 60 were recruited, and all siblings in the sibship were invited to participate [60]. Twenty-four hour urinary sodium and potassium excretion levels were collected from the participants [67].

<u>PREVEND</u> is an ongoing, community-based, and prospective cohort study initiated in 1997 in the Netherlands [61]. The PREVEND study was designed to investigate the predictive value of urinary albumin excretion for renal and cardiovascular disease progression [61]. Twenty-four-hour urinary sodium and potassium excretion levels were collected from the participants [68].

<u>HyperGEN</u> is part of the NHLBI-sponsored Family Blood Pressure Program (FBPP) [66]. Participants were recruited from multi-center (Framingham, MA; Minneapolis, MN; Salt Lake City, UT; Forsyth County, NC; and Birmingham, AL) to investigate the genetics of hypertension [66]. Individuals with onset of hypertension before age 60 and at least one additional hypertensive sibling who could be enrolled in the study were recruited into the HyperGEN study [69]. Twenty-four-hour urinary sodium and potassium excretion levels of participants were estimated using sodium and potassium excretion levels from overnight urine samples.

In the <u>HAPI Heart</u> study, relatively healthy individuals and their family members who were 20 years old or older were recruited from the Amish community in Pennsylvania to investigate the response to short-term environmental exposures related to CVD [62]. Usual daily sodium and potassium levels were measured from the first-morning single spot urine specimen of participants [70].

<u>The Framingham Offspring Study</u> is a community-based longitudinal study examining CVD risk in the offspring of the original cohort participants of Framingham Heart Study (FHS) and their spouses [63, 64]. The analysis in this study was conducted using the data from the FHS investigators participating in the SNP Health Association Resource (SHARe) project and downloaded from the NIH Database of Genotypes and Phenotypes (dbGaP). 24-hour urinary sodium and potassium excretion were measured in Offspring Exam 9 and Omni 1 Exam 4.

<u>The Healthy Twin Study, Korea</u> is an ongoing community-based cohort study that has been running since 2005 [65]. Healthy Korean adult twins and their first-degree adult family members were recruited. Half-day and spot urine samples were collected from all participants [11]. Sodium and potassium excretion levels of participants were measured either from half-day urine samples (≥ 8 hours) or spot urine samples.

Measurements of sodium and potassium intake

Urinary sodium and potassium excretion were quantified as continuous variables (mmol/day) from urine collections in each cohort. Sodium excretion from a 24-hour urinary

sample is the gold standard for the assessment of sodium intake [20-22], as its validity is much higher than that from self-reported dietary methods, such as 24-hour recalls, dietary records, or Food Frequency Questionnaires (FFQ) [20-22, 71]. The validity of urinary sodium excretions from half-day/overnight or spot urine samples is lower than that of urinary sodium excretions from 24-hour urine samples, but is still higher than that of self-reported dietary methods [22]. The correlation coefficient (r) between the measured 24-h sodium excretion (from the 24-hour urine sample) and the estimated 24-h sodium excretion (using simple volume-time linear extrapolation on the half-day urine samples) was 0.837 in Healthy Twin Study, Korea [11]. The r between the measured and the estimated 24-h sodium excretion and spot urine samples was previously reported as 0.53 - 0.82 [25, 26]. The measurement of the source of urinary sodium and potassium excretion in each cohort is described in the study population section and in Table 1 and Table 2. If the duration of the sample was less than 24 hours, established formulas were applied to estimate 24-hour sodium and potassium excretions; simple volume-time linear extrapolation was used for half-day urine samples (HyperGEN and HTS), and the Kawasaki formula for spot urine samples (HAPI Heart) [11, 25].

Genotyping

Genotypes for each cohort were obtained using either Affymetrix or Illumina genotyping arrays (Table 3). Each cohort performed internal quality control (QC) assessments of initial genotype data including excluding individuals with poor genotype call rate (i.e., <95%) and checking for relatedness across individuals. Quality checks for single nucleotide polymorphisms (SNPs) included exclusion of SNPs with poor call rate (i.e., <95%), SNPs with Hardy-Weinberg disequilibrium $P<10^{-4}$, SNPs with high duplicate discordance rates, and monomorphic SNPs.

Imputation was performed using the 1000 Genomes Project Phase I Integrated Release Version 3 [March 2012] cosmopolitan reference panel in each cohort.

Since allele frequency differences in samples due to systemic ancestry differences can lead to false associations in GWASs, we adjusted for population stratification in each cohort using principal components (PCs) in the analysis [72]. In GENOA, the first 4 PCs were included in the model and were calculated using common SNPs shared by Affymetrix (Genome-Wide Human SNP Array 6.0) and Illumina (Human 1M-Duo, 660-Quad, or 610-Quad), with imputation quality (R²) greater than or equal to 0.8 using unrelated individuals (570 individuals from 1,509 subjects).

Statistical analysis

Genome-wide association study

To identify the genetic loci that influence sodium intake, potassium intake, and their ratio across the genome, associations between each SNP and these traits were conducted with 1000 Genomes Project imputed genetic data. This GWAS analysis was conducted separately in each cohort and within each ethnicity. In the model, age and sex were included in addition to each SNP, coded additively as a dosage of the coded allele. PCs were also included to adjust for population stratification in each cohort. In a second model, BMI and height were added to the original models to approximate measures of interindividual variation of individual food intake (total energy intake). For family-based data, linear mixed effects modeling with "family" as a random intercept was conducted. The models in a family-based cohort are presented below:

 $24 - hour sodium urinary sodium excretion_{ii}$,

 $24 - hour urinary potassium excretion_{ii}$

or Sodium – to – potassium excretion ratio_{ii}

$$= \beta_0 + \beta_1 \cdot age_{ij} + \beta_2 \cdot sex_{ij} + \beta_3 \cdot PC1_{ij} + \beta_4 \cdot PC2_{ij} + \beta_5 \cdot PC3_{ij} + \beta_6 \cdot PC4_{ij}$$
$$+ \beta_7 \cdot SNP_{ij} + u_j + \epsilon_{ij}$$

where *i* is an individual, *j* is a family, β_0 is a fixed intercept, $\beta_1 - \beta_7$ are fixed coefficients representing the estimated effects of each following term, u_j is a random intercept for family *j*, and ϵ_{ij} is a random error for an individual *i* in family *j*.

Meta-analysis and replication

Before conducting the meta-analysis, individual GWAS results were cleaned. This was done using EasyQC software [73] to check the collected allele frequencies against the ancestryspecific 1000 Genomes Reference panel, and to harmonize genetic marker names for consistency across cohorts. To improve the power of GWAS and reduce false-positive results, a fixed-effect meta-analysis using inverse-variance weightings was performed on summary statistics (beta estimate from the association, and standard error of beta estimate) and corrected for studyspecific genomic control lambda when lambda was greater than 1. The only SNPs that were included were the ones present in at least two participating studies with minor allele frequency (MAF) greater than 0.01, and imputation quality greater than 0.3. We conducted a meta-analysis across cohorts with European ancestry using the METAL package in R [74], and genomic control correction was again applied after the meta-analysis. To adjust for the inflation of type I error due to multiple testing, we used an alpha level of 5 X 10⁻⁸ to declare significant association. To assess the homogeneity of results across cohorts, we estimated the Cochran's Q statistic and I^2 statistic for each SNP, and we calculated the percentage of total variation across studies that was due to heterogeneity rather than chance [37, 38]. A cut-off of 25% was used to represent

minimal heterogeneity, 50% to represent moderate, and 75% to represent considerable heterogeneity [37, 38].

For SNPs with at least suggestive association in EA ($P < 5 \times 10^{-6}$), we examined the SNPs in cohorts with AA and Asian ancestry (overview shown in Figure 2). We considered P < 0.05 before correcting multiple comparison to represent replication.

Figure 2 Schematic of the study design

2.3 Results

Meta-analysis of 24-hour sodium excretion, potassium excretion, and their ratio was conducted in 7,363 participants of European ancestry from 5 cohorts. Only suggestive or significant SNPs ($P \le 5 \ge 10^{-6}$) were further tested for replication in the participants of African Americans (N=1,246) and Koreans (N=844). The descriptive characteristics of the cohorts are presented in the Table 1. On average, the 24-hour urinary sodium excretions of participants were much higher in HyperGEN, HAPI Heart, and HTS (range: 203.3 -237.8 mmol/day) than in GENOA, REVEND, and FHS (range: 136.6 -144.9 mmol/day). In HyperGEN and HAPI Heart, the average sodium-to-potassium ratio ranged from 3.7-4.7, while in HTS, it was 2.7. The prevalence of hypertension was greater than 50% in the American cohorts, except for in HAPI Heart (Amish cohort), and it lower (10 - 30%) in HTS and PREVEND, likely due to the participants' younger age.

Discovery meta-analysis

From the discovery meta-analyses (both with and without adjustment for BMI and height), we identified 52, 75, and 27 SNPs with at least suggestive association ($P < 5x10^{-6}$) with 24-hour sodium excretion, 24-hour potassium excretion, and their ratio, respectively (Tables 4 and 5). Figure 3 shows the QQ plots of the meta-analysis results, and Figure 4 shows the Miami plots.

We found few genome-wide significant SNPs from the meta-analyses. The most significant SNP was in the *FCGR2B -FCGR2C-RP11-25K21.6-FCGR3A* gene cluster on chromosome 1 (rs71639080, P=6.88 x10⁻⁹ and 6.21 x10⁻⁹) from GWAS of 24-hour sodium excretion with and without adjustment for BMI and height, respectively. The most significant SNP from GWAS of 24-hour potassium excretion was rs111345501 near genes *PATZ1-RP3-400N23.6* on chromosome 22 with adjustment for BMI and height in the model (P=8.11 x10⁻⁸). From the sodium-to-potassium ratio meta-analysis with adjustment for BMI and height, we found two genome-wide significant SNPs (rs77958157 on chromosome 5 with P=2.3 x10⁻⁸, and rs148459019 on chromosome 6 with P=3.7 x10⁻⁸). Regional plots for the significant SNPs are shown in Figure 5.

Figure 3 QQ plots of discovery GWAS meta-analysis for 24-hour sodium excretion, 24-hour potassium excretion, and sodium-to-potassium ratio in Aim 1

Blue line: without BMI and height adjustment Red line: with BMI and height adjustment **Figure 4** Miami plots of discovery GWAS meta-analysis for 24-hour sodium excretion, 24-hour potassium excretion, and sodium-to-potassium ratio in Aim 1

Above Miami plot: without BMI and height adjustment Below Miami plot: with BMI and height adjustment

24-hour sodium excretion

24-hour potassium excretion

Sodium-to-potassium ratio

Figure 5 Regional plots for the most significant loci from 24-hour sodium excretion, 24-hour potassium excretion, and sodium-topotassium ratio using LocusZoom in Aim 1

24-hour sodium excretion

24-hour potassium excretion

Replication

We conducted replication analysis of 154 SNPs with P $<5x10^{-6}$ from the European Ancestry cohorts (52 for 24-hour sodium excretion, 75 for 24-hour potassium excretion, and 27 for sodium-to-potassium ratio, respectively) in the African American and Asian ancestry populations (Table 6). One SNP, rs1033925 on chromosome 10 from the 24-hour sodium excretion GWAS replicated in the Asian cohort (P=0.031). From the 24-hour potassium excretion GWAS, 4 SNPs (rs200543390, rs201934692, rs143513312, and rs188284329) from the same locus on chromosome 11 replicated in the African American cohort (P=0.026 - 0.05), and one SNP, rs74459597 on chromosome 13, replicated in the Asian cohort (P=0.03).

2.4 Discussion

We conducted a GWAS meta-analysis of 24-hour sodium excretion, 24-hour potassium excretion, and sodium-to-potassium ratio using 5 European ancestry cohorts (N=7,363), followed by the analysis of replication in an African American cohort (N=1,246) and an Asian cohort (N=2,475). From the meta-analysis in European ancestry population, we found a total of 52, 75, and 27 SNPs with at least suggestive associations (P $<5x10^{-6}$) with 24-hour sodium excretion, 24-hour potassium excretion, and their ratio, respectively. Three of those SNPs were replicated either in African Americans or Asian populations (P<0.05). Although the total sample size is small compared to other large GWAS, this is the largest genome-wide investigation of these phenotypes to date.

Several of our identified loci are located in or near 69 gene regions from any of GWAS in Aim 1. Out of 69 genes, the 12 genes that have a known function are listed below. From the sodium excretion meta-analysis, the most significant SNPs were found near the Fc fragment of
IgG receptor genes (*FCGR2B-FCGR2C- FCGR3A*) on chromosome 1. The genes encode a receptor found on the surface of immune response cells, and mutations in these genes have been suggestively associated with autoimmune disease [75]. While excess sodium intake could induce excessive immune responses, which can be damaging to immune homeostasis in human body [76] [77], there is no known reason why these genes would be associated with sodium or potassium intake. Further studies are needed to elucidate the function of these genes, and their relationship with the genetics of sodium excretion and the immune system.

Multiple genes from the sodium excretion meta-analysis, including *GTPBP1* (GTP binding protein 1) on chromosome 22, and *CDC42SE1* (CDC42 small effector 1) on chromosome 1, have been suggestively associated with the activity of GTPases. GTPases are suggestively associated with blood pressure regulation, hypertension, kidney function, and other traits that are related with cardiovascular system and disease. Studies have identified GTPases as a mechanism for salt intake triggering hypertension and other cardiovascular damage [78] [79]. The gene *ARHGAP22* (GTPase activating protein 22) near the variant rs56319019 identified from the potassium excretion meta-analysis on chromosome 10 encodes Rho GTPase. The Rho GTPases have important roles in salt-sensitive hypertension [78] and renal tubular epithelial cell function [80].

The gene *CLMP* (CXADR like membrane protein) on chromosome 11 from the sodium excretion meta-analysis with adjustment for BMI and height has been suggestively involved in adipocyte maturation, intestinal development, body mass index, and development of diet-induced obesity [79]. Although the link between the gene, sodium intake, and obesity has not been well established, it is promising that this may support the positive association between sodium intake and obesity [81] [82].

We found multiple genes that have important roles in regulation of blood pressure and cardiovascular disease. The gene *DLEU2* (deleted in lymphocytic leukemia 2) on chromosome 13 identified from the potassium excretion meta-analysis is suggestively associated with angiotensin converting enzyme 2 (ACE 2) in the cell cycle of vascular endothelial cells [83]. ACE has important role in blood pressure regulation by controlling the volume of fluids in the body. In addition, multiple SNPs located in the intronic region of gene *CUL3* (cullin 3) on chromosome 2 were found from the potassium excretion meta-analysis. The mutation in the gene is associated with pseudohypoaldosteronism type two, a rare Mendelian syndrome involving hypertension [84]. The mechanisms of the disease have been suggestively associated with salt reabsorption and potassium secretion in the kidney [85]. We also found a suggestive SNP, rs145526382 near gene *ABO* (alpha 1-3-N-acetylgalactosaminyltransferase and alpha 1-3-galactosyltransferase) on chromosome 9 from the meta-analysis of potassium excretion. Previous GWAS found that SNPs near the *ABO* gene were associated with ACE activity [86] and venous thromboembolism (VTE) [87].

Several genes identified in suggestive GWAS regions identified appear to be associated with neuromuscular function. From the meta-analyses of sodium-to-potassium ratio, we found a suggestive SNP near gene *EIF2B5* (eukaryotic translation initiation factor 2B subunit epsilon) on chromosome 3. The gene has been suggestively associated with multiple sclerosis, a neurodegenerative disorder [56]. The important role of sodium and potassium ions in the human body involves their functions in the transmission of nerve impulses in neuron. The associations between sodium/potassium intake and multiple sclerosis have been inconclusive [88] [89] [90]. We also identified a suggestive SNP from the meta-analysis of sodium-to potassium ratio near *KIRREL3* (kirre like nephrin family adhesion molecule 3) on chromosome 11, which is involved

in encoding a member of the nephrine-like protein family that is present in kidney podocytes [91]. The main role of the nephrine protein is the proper functioning of the renal filtration barrier in the kidney. The nephrine proteins interacts with podocin, another important protein in renal filtration function, which is associated with the permeability of sodium and potassium in kidney ultrafiltration. *KIRREL3* has been also suggestively associated with human skeletal muscle and intellectual disability [92, 93]. While it may not seem that the sodium and potassium intakes are associated with those diseases, sodium and potassium are involved in transmitting nerve signals that induce muscle contraction, and sodium intake has been suggestively associated with skeletal muscle at intellectual loss of nitric oxide activity [94] [95]. In addition, studies have identified the potential role of *KIRREL3* in neurodevelopment [93] [96]. *KIRREL3* could potentially interact with *ATP1B1* that belongs to the family of sodium-potassium ATPases [93]. However, further studies are needed to elucidate the mechanism of how the genes are related to sodium and potassium intakes.

To our knowledge, there has only been one genome-wide association study (GWAS) for sodium and potassium concentration (mEq/l) adjusted for age, sex, and BMI. The study had limited sample size (N=3,095 in discovery, and N=5,716 in replication using a subset of the same original cohorts) using only Japanese populations. In the Japanese study, sodium and potassium concentrations were measured from spot urine samples, which is a different phenotype from daily intake. The Japanese study found one genome-wide significant SNP, rs12092050 (P=1.35 X 10⁻⁸) on chromosome 1, for sodium concentration level, but failed to replicate the SNP (P= 0.618) [9]. We did replication analysis of rs12092050 in our sample, and the SNP had a significant P value from the sodium-to-potassium ratio GWAS results adjusted for age, sex, BMI, and height in Korean cohort, HTS (P=0.044, Table 7). A notable strength of our research is that urinary sodium intakes were measured in populations with multiple ancestries (N=11,084). A large number of high quality samples may have helped us provide accurate identification of genetic factors for sodium and potassium intake. Since sodium and potassium intake are highly variable among different populations, it is important to include multiethnic populations in the analyses. The current study included multiple populations with both higher and lower mean sodium intakes, which allowed us to generalize these results across a variety of populations.

Our power to detect the genetic loci associated with sodium and potassium intake might have been limited due to our relatively small sample size. Generally, 24-hour urinary sodium excretion is regarded as the gold standard for intake assessment of sodium intake, and is more accurate than data measured from self-reported dietary questionnaires [20-22]. Collecting 24-hour urinary samples is, however, very challenging compared to using self-reported dietary questionnaires. Thus, sodium excretions from half-day and spot urine samples are measured instead, and they have reasonably high correlation coefficients with the excretions from 24-hour urine samples (0.837 and 0.53 - 0.82, respectively) [11, 25].

The low rate of replication from the European American meta-analysis in the African American and Asian cohorts may be due to the different linkage disequilibrium structure in each ancestry. SNPs found in different race/ethnicity groups may not be replicated in other groups even if the underlying genes that influence the trait are the same. Thus, a gene-based approach may be needed to replicate our findings in populations with different ancestry since the gene is a functional unit that does not vary by race/ethnicity group. Another reason for the low replication rate might be related to the different characteristics of participants in multiethnic populations, which includes different level of sodium potassium intake or different recruitment methods of participants. It is possible that the genetic effects on high intakes of sodium or potassium is different than on low intakes of sodium or potassium. In addition, some of participants in Aim 1 were selected like in GENOA and HyperGEN that were targeting hypertensive subjects or subjects with a family history of hypertension.

The identification of genetic variants that influence sodium and potassium intake and corresponding susceptible groups may improve personalized nutritional recommendations by identifying individuals at high risk of excess sodium intake and low potassium intake, and by proactively recommending behavior modifications to reduce the risk of high blood pressure. These initial discoveries may shed light on the importance of the genetic architecture of sodium and potassium intake. Future work is now required to identify functional variants in these genomic regions, and to provide more insight to the regulation of sodium and potassium intake that may improve the health of multiple populations.

	GENOA	PREVEND	FHS	HyperGEN EA	HyperGEN AA	HTS	HAPI Heart
Cohort	Family-based	Population-based	Family-based	Family-based	Family-based	Family-based	Family-based
Country	USA	Netherlands	USA	USA	USA	South Korea	USA
Total (N)	811	3,649	801	1,258	1,246	2,475	844
Female, %	57.6	51.5	53.2	50.4	67	64.0	46.6
Age in years	65.7 ± 9.1	49.6 ± 12.5	70.2 ± 7.62	50 ± 14	45 ± 13	44.1 ± 13.3	43.8 ± 14.0
Race/ethnicity	EA	Europeans (Dutch)	EA	EA	AA	Asian	EA (Amish)
SBP	146.7 ± 22.8	129.1±19.9	125.1 ± 16.2	123.5 ± 19.1	129.2 ± 22.2	116.8 ± 17.0	121.5 ± 14.6
DBP	84.1 ± 10.8	74.1±9.9	71.3 ± 9.6	70.7 ± 10.0	74.0 ± 11.6	73.7 ± 10.9	76.8 ± 8.7
Hypertension, %	88.2	34.4	52.6	52.2	63	10.7	13.6
BP lowering	76.2	12.3	52.4	47.7	61.1	8.09	0.0
BMI	30.9 ± 5.9	26.1±4.3	28.1	29.47 ± 6.13	32.55 ± 8.04	23.7 ± 3.3	26.6 ± 4.5
Measurement of source	24-hour urine	24-hour urine	24-hour urine	Half-day urine	Half-day urine	Half-day &	Spot urine
24-h sodium excretion (mmol/day)	139.4 ± 58.3	144.9 ± 50.3	136.6 ± 57.0	203.3±107.3	237.8±121.9	212.8 ± 77.8	216.6 ± 50.8
24-h potassium excretion (mmol/day)	58.5 ± 22.9	73.6 ± 21	67.9 ± 23.2	65.1±36.3	65.7±41.4	84.0 ± 32.2	47.9 ± 13.4
Sodium-to-potassium excretion ratio	2.5 ± 1.0	2 ± 0.7	2.1 ± 0.9	3.7 ± 1.9	3.7 ± 2.3	2.7 ± 1.0	4.7 ± 1.2

Table 1 The basic characteristics of participating cohorts in Aim 1

For continuous variables: mean \pm SD, For binary variables: %

Abbreviations: EA- European American, AA- African American, SBP: Systolic blood pressure, DBP: Diastolic blood pressure, BP: Blood pressure, BMI: Body Mass Index (kg/m²), GENOA: Genetic Epidemiology of Arteriopathy, PREVEND: Prevention of REnal and Vascular ENd-stage Disease, FHS: Framingham Heart Study, HyperGEN: Family Blood Pressure Program, HTS: Healthy Twin Study, Korea, HAPI Heart: Heredity and Phenotype Intervention Heart Study

Table 2	Urinarv	sodium a	ind	potassium	excretion	measurement	methods	of	partici	pating	cohorts	in Air	n 1

Cohort	Brief Description of Urinary Sodium and Potassium Excretion Measurement	Relevant References
Genetic Epidemiology Network of Arteriopathy (GENOA) USA	In GENOA, participants completed at least one 24-hour urine collection at a CKD and/or GDUL study visit. A total of 333, 295, and 183 participants had a total of 1, 2, or 3 urine collections, respectively. For individuals with 2 or 3 urine collections values were averaged for analysis. The mean time between the earliest CKD and latest GDUL urine collections was 1.73 years (range ¼ 0.9-3.6 years). The average time between the 2 GDUL collections was 22 days. Intraclass correlation coefficients for urine factors across collections revealed that most urine measures were relatively stable across time. Urine was collected with toluene as a preservative and twenty-four-hour urinary sodium and potassium excretion were measured in the Mayo Clinic Renal Testing Laboratory.	Lieske, John C., et al. "Heritability of dietary traits that contribute to nephrolithiasis in a cohort of adult sibships." Journal of nephrology 29.1 (2016): 45-51.
Prevention of REnal and Vascular ENd-stage Disease (PREVEND) Netherlands	Urinary excretions of sodium and potassium were determined with a MEGA clinical chemistry analyzer (Merck, Darmstadt, Germany). Sodium and potassium were determined by indirect potentiometry.	Verhave, Jacobien C., et al. "Sodium intake affects urinary albumin excretion especially in overweight subjects." Journal of internal medicine 256.4 (2004): 324-330.
Hypertension Genetic Epidemiology Network (HyperGEN) USA	An overnight urine sample was collected for sodium and potassium and extrapolated to 24-h urinary sodium and potassium excretion using the method of simple volume-time linear extrapolation.	Province, Michael A., et al. "Association between the α -adducin gene and hypertension in the HyperGEN Study." American journal of hypertension 13.6 (2000): 710-718.
Heredity and Phenotype Intervention (HAPI) Heart USA	The HAPI Heart study participants collected the first morning void on the day they were scheduled to come in for Clinic Visit 1. Urine was measured for creatinine, sodium, and potassium at Quest Laboratories, Horsham, PA. These spot urines were used to estimate 24-hour creatinine, sodium, and potassium variables using the Kawasaki formula.	Mitchell, Braxton D., et al. "The genetic response to short-term interventions affecting cardiovascular function: rationale and design of the Heredity and Phenotype Intervention (HAPI) Heart Study." American heart journal 155.5 (2008): 823- 828.
Framingham Heart Study (FHS) USA	Twenty-four-hour urine sample was collected for sodium and potassium measurement.	
Healthy Twin Study, Korea (HTS) South Korea	Half-day urine (HU) samples were collected from all participants in the Healthy Twin Study. HU collection started at ~1900 on the day before their visit, after the subjects had completely voided and discarded their urine; the exact time was recorded. Each participant's urine was collected in a bag until the next day's visit for his or her health examination. In the morning, at ~0900 on site, any remaining urine was further voided and the time and the total volume were reported as final records. The amount of sodium and potassium in the urine samples was measured by ion-selective electrode potentiometry in one central laboratory, which was certified and had passed all quality-control regulations set forth by the government. The 24-h sodium excretion level was estimated by using simple volume-time linear extrapolation on the HU samples or by using Kawasaki formula on the excretion level if the duration of urine collection is less than 8 hours.	Kho, M., Lee, J. E., Song, Y. M., Lee, K., Kim, K., Yang, S., & Sung, J. (2013). Genetic and environmental influences on sodium intake determined by using half-day urine samples: the Healthy Twin Study–. The American journal of clinical nutrition, 98(6), 1410-1416.

Cohort	Array type	Genotype calling	QC filters for genotyped SNPs used for imputation	Imputation Software	Data management and statistical analysis	Population stratification or principal components	Type of reported imputation quality
GENOA	Affymetrix Genome-Wide Human SNP Array 6.0 (91.9% of sample); Illumina Human 1M-Duo, 660-Quad, or 610- Quad (8.1% of sample)	Birdseed; Illumina Genome Studio	Call rate < 95%	IMPUTE version 2	R	First 4 PCA	INFO
PREVEND	Illumina Cyto SNP12 v2 array		HWE P <0.00001, MAF <1%, call rate <95%	IMPUTE2 version 2.2.0	SNPtest V2.5	First 5 PCA	INFO
HyperGEN (EA)	Affymetrix 5.0	BRLMM	Mendelian errors, HWE P<10 ⁻⁶	MaCH/minimac	MMAP	N/A	Rsq
HyperGEN (AA)	Affymetrix 6.0	Birdseed	Mendelian errors, HWE P<10 ⁻⁶	MaCH/minimac	MMAP	PC 1	Rsq
HAPI Heart	Affymetrix 500K and Affymetrix 6.0	BRLMM	$\label{eq:WE} \begin{array}{l} \text{HWE} < 1 \text{ e-6, Call rate} \leq \\ 0.95, \text{MAF} < 0.01, \\ \text{mendelian errors, and} \\ \text{sex mismatch} \end{array}$	MaCH/minimac	ММАР	Kinship matrix based on 14- generation Amish pedigree	Rsq
FHS	Affymetrix 500K mapping array and the Affymetrix 50K gene-focused molecular imprinted polymer array	BRLMM	HWE < 1e-6, Call rate < 95%, MAF< 1%	МАСН	R	N/A	Rsq
HTS	Affymetrix 6.0	Birdseed	HWE <0.001, MAF <0.01, and genotype missing rate >0.05	IMPUTE version 2	GenABEL	Kinship matrix	INFO

Table 3 Genotyping information for participating cohorts in Aim 1

Table 4 Meta-analysis results of 24-hour sodium excretion, 24-hour potassium excretion, sodium-to-potassium ratio for all loci brought forward for replication ($P < 5x10^{-6}$ from discovery meta-analysis) in Aim 1

Chr, chromosome; A1, effect allele; A2, non-effect allele; EAF, effect allele frequency Increasing beta indicates higher excretion of sodium and potassium Nearest Gene: Genes near index SNP (± 5Kb Upstream/Downstream distance bp) Gene names were obtained using variant effect predictor (VEP) from Ensembl using GRCh37

Genes with intragenic index variants bolded.

Direction of effect in GENOA, PREVEND, HpyperGEN EA, HAPI Heart, and FHS in European ancestry, respectively

24-hour sodium excretion

SNP	Nearest Gene	Chr	Position	A1	A2	EAF	Ν	Direction	Beta	SE	Р
rs71639080	FCGR2B FCGR2C RP11-25K21.6 FCGR3A	1	161565867	t	с	0.02	1651	+??+?	71.03	12.26	6.88E-09
rs188869607	RPL9P28 CTD-2377D24.2 CTD-2377D24.8	17	46764522	a	t	0.48	7344	++-++	5.14	0.97	1.28E-07
rs117259059	MLLT11 CDC42SE1	1	151034164	t	с	0.02	6500	+++?-	19.78	3.79	1.84E-07
rs7291524	JOSD1 GTPBP1	22	39100545	t	с	0.04	7344	+++++	12.54	2.41	1.87E-07
rs145860590		1	151325810	d	i	0.02	5699	++-??	21.75	4.18	1.97E-07
rs16852403		1	178039226	t	с	0.80	7344	+++++	5.65	1.10	3.09E-07
rs139574219		7	110287083	t	с	0.99	1608	-???-	-47.40	9.27	3.21E-07
rs6703721		1	178037791	t	с	0.21	7344		-5.52	1.09	4.61E-07
rs6662255		1	178040083	t	с	0.21	7344		-5.56	1.11	4.87E-07
rs182773669	JOSD1 GTPBP1	22	39096945	t	с	0.96	6500	?-	-14.45	2.88	5.40E-07
rs192132524	GABPB2	1	151064827	t	с	0.03	5243	++??-	17.17	3.43	5.66E-07
rs200660817	TOMM22 JOSD1 RP3-508115.9	22	39077150	d	i	0.07	7344	+++++	10.09	2.02	5.94E-07
rs182605199		2	74951285	t	с	0.02	5286	++?+?	27.14	5.47	6.98E-07
rs144955294		7	110262691	t	с	0.01	1608	+???+	46.59	9.46	8.37E-07
rs1033925		10	58606785	t	с	0.93	7344		-9.14	1.86	8.55E-07
rs11583320		1	178042145	t	с	0.80	7344	+++++	5.45	1.11	8.91E-07
rs73289729		10	58604226	а	t	0.93	7344		-9.11	1.86	9.40E-07
rs73049336		1	178042298	а	t	0.80	7344	+++++	5.44	1.11	9.46E-07
rs1925315		10	58591477	а	t	0.07	7344	+++++	9.00	1.86	1.29E-06
rs111674304		1	178043192	t	с	0.80	7344	+++++	5.35	1.11	1.42E-06
rs73287651		10	58580254	а	g	0.07	7344	+++++	9.01	1.87	1.42E-06
rs981155		10	58573238	a	c	0.93	7344		-9.00	1.87	1.50E-06
rs72653410	GLB1L2	11	134216182	a	c	0.06	5286	?-?	-13.90	2.94	2.22E-06
rs73159315	NPTXR	22	39213327	t	с	0.10	7344	+++++	8.18	1.74	2.50E-06

rs12538837		7	97684468	t	с	0.72	7344	++++-	4.66	1.00	2.86E-06
rs200302969	SETD7	4	140491783	d	i	0.32	7344	+++++	4.79	1.03	2.93E-06
rs3847055		7	97680645	а	g	0.72	7344	++++-	4.67	1.00	2.95E-06
rs847573		7	97681761	t	с	0.29	7344		-4.59	0.98	3.04E-06
rs5750620	DMC1	22	38952493	а	t	0.04	7344	+++++	11.22	2.42	3.44E-06
rs1292811	DMC1	22	38927886	t	с	0.04	7344	+++++	11.42	2.47	3.76E-06
rs7691513	SETD7	4	140498292	t	с	0.22	7344	+++++	5.03	1.09	3.84E-06
rs4713599	TAP1 PSMB8 TAP2 PSMB9 TAPSAR1	6	32811530	а	с	0.92	7344	+	-7.95	1.73	4.10E-06
rs59849088	SETD7	4	140499281	d	i	0.22	7344	+++++	5.00	1.09	4.20E-06
rs200142350	AC005523.3	19	4786178	d	i	0.54	5286	++?-?	5.32	1.16	4.34E-06
rs181724901	MUC22	6	30989117	а	g	0.09	6087	?	-7.80	1.70	4.50E-06
rs34262838		7	97675148	t	с	0.28	7344	+	-4.61	1.01	4.55E-06
rs144364970	RPL9P28 CTD-2377D24.2 CTD-2377D24.8	17	46772982	d	i	0.55	7344		-4.15	0.91	4.74E-06
rs5750666	CBY1 TOMM22 RP3-508I15.9	22	39073210	а	g	0.04	6500	+++?+	13.48	2.95	4.87E-06
rs10445381	RPL9P28 CTD-2377D24.2 CTD-2377D24.8	17	46766306	а	g	0.45	7344	+++++	4.10	0.90	4.93E-06

24-hour potassium excretion

SNP	Nearest Gene	Chr	Position	A1	A2	EAF	Ν	Direction	Beta	SE	Р
rs71409269	BCL2A1	15	80249333	t	с	0.12	7346	++_++	2.82	0.55	2.70E-07
rs139376539		6	125681952	с	g	0.01	2099	??++?	20.44	4.09	6.11E-07
rs78755596	ABO; RP11-430N14.4	9	136124590	а	t	0.06	7346	+++++	4.79	0.96	6.15E-07
rs114543420	RP11-431M7.2	4	36358412	a	g	0.99	1612	-???-	-19.08	3.83	6.57E-07
rs201920383	LINC00672	17	37086244	d	i	0.08	5290	++?+?	3.70	0.75	7.42E-07
rs111345501	PATZ1; RP3-400N23.6	22	31719404	t	g	0.01	4890	?++??	12.70	2.58	8.85E-07
rs145526382	ABO; RP11-430N14.4	9	136121623	t	с	0.06	7346	+++++	4.63	0.95	1.27E-06
rs4262910	BCL2A1	15	80248501	а	g	0.16	7346	+++++	2.41	0.50	1.44E-06
rs71409267		15	80245221	t	g	0.83	7346		-2.39	0.50	1.47E-06
rs142142409		15	80245922	d	i	0.17	7346	+++++	2.39	0.50	1.48E-06
rs6836562		4	148278891	t	с	0.16	7346	+++++	2.34	0.49	1.54E-06
rs185185619		1	37906000	а	с	0.99	4446	???	-11.73	2.44	1.59E-06
rs72857549		2	30151870	а	g	0.98	7346	+++++	6.71	1.42	2.24E-06
rs4765208	BRI3BP	12	125519633	t	с	0.71	7346		-1.87	0.40	2.27E-06
rs78881198	CUL3	2	225434223	t	с	0.01	2056	??+?+	19.13	4.04	2.28E-06
rs56319019	ARHGAP22	10	49866788	а	g	0.02	6502	+++?+	7.39	1.57	2.61E-06
rs13419091		2	30150824	а	t	0.02	7346		-6.64	1.41	2.68E-06
rs184017158		6	37383326	t	с	0.97	6502	+?-	-7.41	1.58	2.76E-06

rs112414910	EIF4ENIF1; SFI1; DBC1	22	31886109	с	g	0.98	6502	+?+	-7.66	1.65	3.46E-06
rs79591115	DDX31	9	135486329	с	g	0.01	5247	??-	-11.12	2.40	3.59E-06
rs72788784		16	64818665	а	g	0.01	6502	+++?+	9.46	2.04	3.75E-06
rs189560660		2	129472735	t	с	0.99	4446	++???	12.87	2.79	4.00E-06
rs6836525		4	148278846	t	с	0.18	7346	+++++	2.01	0.44	4.11E-06
rs79332849	UNC13C	15	54301716	с	g	0.03	7346		-4.47	0.97	4.14E-06
rs199583567	ASH1L; snoU13	1	155381361	d	i	0.25	7346	+	-2.10	0.46	4.16E-06
rs76323568	TSPEAR; KRTAP10-11; KRTAP12-4	21	46070028	а	g	0.04	6091	++?++	4.92	1.07	4.28E-06
rs78761110	CUL3	2	225429316	t	g	0.99	2056	??-?-	-18.28	3.98	4.43E-06
rs138370749	DLEU2	13	50617864	t	с	0.99	1612	-???-	-16.87	3.67	4.54E-06
rs71409262		15	80216516	а	с	0.86	7346		-2.24	0.49	4.80E-06
rs34149442	ST20-MTHFS; ST20; C15orf37	15	80216176	t	g	0.14	7346	+++++	2.24	0.49	4.98E-06
rs200218912		2	119115839	d	i	0.89	7346		-3.83	0.84	4.98E-06

Sodium-to-potassium ratio

SNP	Nearest Gene	Chr	Position	A1	A2	EAF	Ν	Direction	Beta	SE	Р
rs77958157		5	71166807	а	с	0.01	4441	++???	0.51	0.09	5.53E-08
rs148459019		6	32836582	t	g	0.01	4436	?+??+	0.41	0.08	1.56E-07
rs72824746	SH3RF3	2	110034953	t	с	0.08	7339	+++++	0.17	0.03	8.67E-07
rs142729205		3	140538834	d	i	0.90	7339	+++++	0.14	0.03	9.04E-07
rs72987180		3	140538648	а	g	0.90	7339	+++++	0.14	0.03	1.02E-06
rs189926695		6	78194765	а	g	0.17	6495	+?-	-0.12	0.03	1.08E-06
rs117738029		14	43033528	а	t	0.96	7339	+++++	0.25	0.05	1.46E-06
rs114631099	RP11-483H11.1; CTC-228N24.1	5	127126945	а	g	0.99	4888	?++??	0.43	0.09	1.68E-06
rs115322212		3	140538274	с	g	0.92	7339	+++++	0.15	0.03	1.83E-06
rs201948417	RP11-433C9.2; EIF2B5; RP11-433C9.2	3	184133284	d	i	0.92	7339	+	-0.15	0.03	2.33E-06
rs181723052	KLF12	13	74294499	t	с	0.99	1607	+???+	0.78	0.17	2.78E-06
rs57782376		3	140537390	а	g	0.92	7339	+++++	0.15	0.03	3.00E-06
rs115979281	CTC-228N24.1	5	127143872	t	с	0.01	4888	???	-0.43	0.09	3.35E-06
rs17790795		8	57835147	а	t	0.10	7339	++-++	0.11	0.02	3.76E-06
rs147099958	SH3RF3	2	110037118	с	g	0.08	7339	+++++	0.15	0.03	3.88E-06
rs201412779		10	8545238	d	i	0.34	7339	+	-0.07	0.02	3.93E-06
rs113045433		4	67219961	t	с	0.01	7339	+++++	0.31	0.07	4.08E-06
rs113574066		16	14080683	с	g	0.02	6495	+++?+	0.26	0.06	4.19E-06
rs111794147		16	14087498	t	с	0.02	6495	+++?+	0.27	0.06	4.38E-06
rs143925020		16	14084386	а	g	0.98	6495	?-	-0.26	0.06	4.94E-06

Table 5 Meta-analysis results of 24-hour sodium excretion, 24-hour potassium excretion, sodium-to-potassium ratio with adjustment for BMI and height for all loci brought forward for replication ($P < 5x10^{-6}$ from discovery meta-analysis) in Aim 1

Chr, chromosome; A1, effect allele; A2, non-effect allele; EAF, effect allele frequency Increasing beta indicates higher excretion of sodium and potassium

Nearest Gene: Genes near index SNP (± 5Kb Upstream/Downstream distance bp)

Gene names were obtained using variant effect predictor (VEP) from Ensembl using GRCh37 Genes with intragenic index variants bolded.

Direction of effect in GENOA, PREVEND, HpyperGEN EA, HAPI Heart, and FHS in European ancestry, respectively

SNP	Nearest Gene	Chr	Position	A1	A2	EAF	Ν	Direction	Beta	SE	Р
rs71639080	FCGR2B FCGR2C RP11-25K21.6 FCGR3A	1	161565867	t	c	0.02	1651	+??+?	69.41	11.94	6.21E-09
rs145860590		1	151325810	d	i	0.02	5670	++-??	21.55	3.98	6.22E-08
rs188869607	RPL9P28 CTD-2377D24.2 CTD-2377D24.8	17	46764522	a	t	0.48	7315	++-++	4.93	0.93	1.23E-07
rs117259059	MLLT11 CDC42SE1	1	151034164	t	с	0.02	6471	+++?-	17.96	3.61	6.46E-07
rs139574219		7	110287083	t	c	0.99	1608	-???-	-43.49	8.81	7.88E-07
rs192132524	GABPB2	1	151064827	t	c	0.03	5214	++??-	16.10	3.26	7.95E-07
rs16852403		1	178039226	t	с	0.80	7315	+++++	5.21	1.06	8.21E-07
rs202066699		20	22448711	d	i	0.99	5707	??	-29.34	5.96	8.52E-07
rs144955294		7	110262691	t	с	0.01	1608	+???+	43.85	8.98	1.04E-06
rs6662255		1	178040083	t	c	0.21	7315		-5.16	1.06	1.08E-06
rs6703721		1	178037791	t	с	0.21	7315		-5.06	1.05	1.38E-06
rs73192435		13	53525710	а	g	0.92	7315	+++++	7.75	1.63	1.96E-06
rs11583320		1	178042145	t	с	0.80	7315	+++++	5.04	1.06	2.05E-06
rs73049336		1	178042298	а	t	0.80	7315	+++++	5.03	1.06	2.17E-06
rs149456297	COMMD10	5	115468458	a	g	0.98	6514	++++?	24.05	5.08	2.20E-06
rs3847055		7	97680645	а	g	0.72	7315	++++-	4.53	0.96	2.20E-06
rs12538837		7	97684468	t	с	0.72	7315	++++-	4.52	0.96	2.21E-06
rs4750189		10	6299461	а	t	0.99	6471	+++?+	23.58	5.01	2.51E-06
rs847573		7	97681761	t	с	0.29	7315	+	-4.42	0.94	2.66E-06
rs190632626	ІВТК	6	82935144	a	t	0.94	5257	?-?	-16.48	3.52	2.83E-06
rs111674304		1	178043192	t	c	0.80	7315	+++++	4.96	1.06	3.06E-06
rs7691513	SETD7	4	140498292	t	с	0.22	7315	++++-	4.82	1.04	3.38E-06
rs10445381	RPL9P28 CTD-2377D24.2 CTD-2377D24.8	17	46766306	а	g	0.45	7315	+++++	4.00	0.86	3.41E-06
rs34262838		7	97675148	t	c	0.27	7315	+	-4.47	0.96	3.43E-06
rs4713599	TAP1 PSMB8	6	32811530	a	с	0.92	7315		-7.70	1.66	3.46E-06

24-hour sodium excretion

	TAP2 PSMB9										
rs144364970	RPL9P28 CTD-2377D24.2 CTD-2377D24.8	17	46772982	d	i	0.55	7315		-4.03	0.87	3.46E-06
rs3096643	RPL9P28 CTD-2377D24.2 CTD-2377D24.8	17	46769448	t	g	0.55	7315		-4.00	0.86	3.66E-06
rs59849088	SETD7	4	140499281	d	i	0.22	7315	++++-	4.80	1.04	3.69E-06
rs112609688	CTD-2377D24.8	17	46775760	t	c	0.45	7315	+++++	4.04	0.88	3.91E-06
rs184839545	ANTXR2	4	81038950	а	с	0.01	7315	++-++	21.30	4.62	4.07E-06
rs706327	SETD7	4	140508093	а	g	0.27	7315	++++-	4.49	0.98	4.27E-06
rs182605199		2	74951285	t	с	0.02	5257	++?+?	23.99	5.22	4.33E-06
rs75040643	RBM47	4	40577657	с	g	0.03	7315		-15.89	3.46	4.41E-06
rs77416301	PI4KB ZNF687	1	151266354	t	с	0.03	6471	+++?-	15.07	3.29	4.63E-06
rs181407375		1	151455888	а	t	0.96	7315	+	-12.86	2.81	4.70E-06
rs185109580	CLMP	11	122951118	t	c	0.99	1608	-???-	-47.79	10.46	4.93E-06

24-hour potassium excretion

SNP	Nearest Gene	Chr	Position	A1	A2	EAF	Ν	Direction	Beta	SE	Р
rs111345501	PATZ1 RP3-400N23.6	22	31719404	t	g	0.01	4861	?++??	13.58	2.53	8.11E-08
rs114543420	RP11-431M7.2	4	36358412	а	g	0.99	1608	-???-	-19.12	3.80	4.79E-07
rs76323568	TSPEAR KRTAP10-11 KRTAP12-4	21	46070028	a	g	0.04	6058	++?++	5.28	1.06	6.42E-07
rs4262910	BCL2A1	15	80248501	а	g	0.16	7313	+++++	2.43	0.49	8.69E-07
rs139944666	OFCC1	6	9725540	a	g	0.73	7313	+++++	1.84	0.37	8.94E-07
rs71409269	BCL2A1	15	80249333	t	с	0.12	7313	++-++	2.66	0.54	9.09E-07
rs71409267		15	80245221	t	g	0.83	7313		-2.40	0.49	9.28E-07
rs78881198		2	225434223	t	с	0.01	2056	??+?+	19.63	4.00	9.55E-07
rs142142409		15	80245922	d	i	0.16	7313	+++++	2.40	0.49	9.75E-07
rs201920383	LINC00672	17	37086244	d	i	0.09	5257	++?+?	3.61	0.74	1.00E-06
rs12206466	OFCC1	6	9726060	а	t	0.70	7313	+++++	1.74	0.36	1.14E-06
rs1410361	OFCC1	6	9720100	t	с	0.71	7313	+++++	1.75	0.36	1.16E-06
rs6836562		4	148278891	t	с	0.16	7313	+++++	2.34	0.48	1.19E-06
rs78755596	ABO RP11-430N14.4	9	136124590	а	t	0.06	7313	+++++	4.61	0.95	1.24E-06
rs112414910	EIF4ENIF1 SFI1 DRG1	22	31886109	с	g	0.98	6469	+?+	-7.84	1.62	1.24E-06
rs56067143	OFCC1	6	9718581	t	с	0.71	7313	+++++	1.74	0.36	1.30E-06
rs10456766	OFCC1	6	9723199	а	g	0.70	7313	+++++	1.72	0.36	1.42E-06
rs4498339	OFCC1	6	9720266	а	g	0.29	7313		-1.73	0.36	1.57E-06
rs73723509	OFCC1	6	9734887	а	g	0.70	7313	+++++	1.71	0.36	1.66E-06
rs79278948	OFCC1	6	9718880	а	g	0.70	7313	+++++	1.73	0.36	1.67E-06
rs200543390		11	42492593	d	i	0.12	7313	+++++	2.51	0.53	1.71E-06
rs10949284	OFCC1	6	9750430	t	с	0.70	7313	??++?	1.71	0.36	1.75E-06

rs139376539		6	125681952	с	g	0.01	2099	+++++	19.58	4.09	1.75E-06
rs6919349	OFCC1	6	9743243	а	t	0.70	7313	+++++	1.70	0.36	1.78E-06
rs6936947	OFCC1	6	9743225	t	g	0.30	7313		-1.70	0.36	1.78E-06
rs7765635	OFCC1	6	9751165	t	g	0.70	7313	+++++	1.70	0.36	1.80E-06
rs12197949	OFCC1	6	9740445	t	g	0.70	7313	+++++	1.70	0.36	1.82E-06
rs10949276	OFCC1	6	9743309	a	t	0.70	7313	+++++	1.70	0.36	1.82E-06
rs6906634	OFCC1	6	9748140	а	с	0.70	7313	+++++	1.70	0.36	1.86E-06
rs201934692		11	42492594	d	i	0.12	7313	+++++	2.50	0.52	1.87E-06
rs143513312		11	42492595	d	i	0.12	7313	+++++	2.50	0.52	1.87E-06
rs10949277	OFCC1	6	9743509	t	с	0.70	7313	+++++	1.70	0.36	1.88E-06
rs4765208	BRI3BP	12	125519633	t	с	0.71	7313		-1.86	0.39	1.97E-06
rs12194264	OFCC1	6	9738557	t	с	0.70	7313	+++++	1.70	0.36	2.04E-06
rs185185619		1	37906000	а	с	0.99	4413	???	-11.36	2.39	2.10E-06
rs200218912		2	119115839	d	i	0.89	7313		-3.91	0.82	2.12E-06
rs150588856		21	40450627	d	i	0.06	2900	??+++	6.17	1.31	2.27E-06
rs78761110	CUL3	2	225429316	t	g	0.99	2056	??-?-	-18.63	3.94	2.28E-06
rs145526382	ABO RP11-430N14.4	9	136121623	t	с	0.06	7313	+++++	4.43	0.95	2.82E-06
rs143562963		13	73815106	а	g	0.01	6506	?+-++	7.68	1.64	2.86E-06
rs79810257	TSPEAR KRTAP12-2	21	46083419	t	c	0.04	6058	++?++	4.83	1.03	2.92E-06
rs189560660		2	129472735	t	с	0.99	4413	++???	12.89	2.76	3.04E-06
rs12195113	OFCC1	6	9754520	а	t	0.30	7313		-1.67	0.36	3.05E-06
rs199783078	OFCC1	6	9760632	d	i	0.70	7313	+++++	1.67	0.36	3.20E-06
rs3038005	OFCC1	6	9760633	d	i	0.70	7313	+++++	1.67	0.36	3.24E-06
rs12212374	OFCC1	6	9754467	с	g	0.30	7313		-1.67	0.36	3.38E-06
rs113305219		2	179948126	а	с	0.01	1651	+??+?	14.53	3.13	3.50E-06
rs184017158		6	37383326	t	с	0.97	6469	+?-	-7.20	1.55	3.51E-06
rs79332849	UNC13C	15	54301716	с	g	0.03	7313		-4.44	0.96	3.60E-06
rs188284329		11	42538203	а	с	0.91	7313		-2.81	0.61	3.60E-06
rs719947	OFCC1	6	9760323	t	с	0.70	7313	+++++	1.66	0.36	3.71E-06
rs11142909	RPL35AP21	9	74207717	t	с	0.04	2900	??+++	6.19	1.34	4.10E-06
rs11142908	RPL35AP21	9	74207715	t	g	0.96	2900	??	-6.19	1.34	4.11E-06
rs11142910	RPL35AP21	9	74207739	t	с	0.04	2900	??+++	6.19	1.34	4.11E-06
rs72737924	RPL35AP21	9	74208364	t	с	0.04	2900	??+++	6.19	1.34	4.13E-06
rs28623525		4	148291243	t	с	0.82	7313		-1.96	0.43	4.32E-06
rs6836525		4	148278846	t	с	0.18	7313	+++++	1.98	0.43	4.34E-06
rs28720373		4	148291242	t	с	0.18	7313	+++++	1.96	0.43	4.37E-06
rs11142911	RPL35AP21	9	74207812	а	g	0.04	2900	??+++	6.18	1.35	4.38E-06
rs138370749	DLEU2	13	50617864	t	с	0.99	1608	-???-	-16.74	3.65	4.43E-06
rs72857549		2	30151870	а	g	0.98	7313	+++++	6.42	1.40	4.44E-06
rs4819363		21	45421448	c	g	0.96	1651	-??-?	-9.54	2.08	4.51E-06
rs149875098		8	134673221	t	с	0.02	4407	?-??-	-9.26	2.02	4.54E-06
rs116446684	CUL3	2	225384862	t	с	0.01	2863	+?+?+	14.55	3.17	4.55E-06

rs67929684	15	80336031	t	g	0.95	7313		-3.67	0.80	4.60E-06
rs72788784	16	64818665	а	g	0.01	6469	+++?+	9.24	2.02	4.65E-06
rs71308048	15	80333868	d	i	0.95	7313		-3.62	0.79	4.75E-06
rs74459597	13	73795820	а	g	0.02	5257	-+?+?	8.84	1.93	4.79E-06
rs72737927	9	74218054	t	с	0.04	2900	??+++	6.16	1.35	4.88E-06

Sodium-to-potassium ratio

SNP	Nearest Gene	Chr	Position	A1	A2	EAF	Ν	Direction	Beta	SE	Р
rs77958157		5	71166807	а	с	0.01	4413	++???	0.52	0.09	2.33E-08
rs148459019		6	32836582	t	g	0.01	4407	?+??+	0.42	0.08	3.71E-08
rs142729205		3	140538834	d	i	0.90	7311	+++++	0.15	0.03	1.81E-07
rs72987180		3	140538648	а	g	0.90	7311	+++++	0.15	0.03	1.91E-07
rs115322212		3	140538274	с	g	0.92	7311	+++++	0.16	0.03	2.59E-07
rs57782376		3	140537390	а	g	0.92	7311	+++++	0.16	0.03	4.93E-07
rs117738029	CTD-2307P3.1	14	43033528	а	t	0.97	7311	+++++	0.24	0.05	1.59E-06
rs189926695		6	78194765	а	g	0.17	6467	+?-	-0.12	0.02	1.78E-06
rs4845198	RP11-398M15.1	1	189786356	а	g	0.19	7311	+-	-0.09	0.02	1.85E-06
rs184355489	KIRREL3	11	126822059	а	t	0.99	1651	-??-?	-0.88	0.19	1.88E-06
rs114631099	RP11-483H11.1; CTC-228N24.1	5	127126945	a	g	0.99	4859	?++??	0.42	0.09	1.90E-06
rs9427449	RP11-398M15.1	1	189786693	а	g	0.18	7311	+-	-0.09	0.02	2.19E-06
rs1339433	RP11-398M15.1	1	189783443	а	g	0.82	7311	+++-+	0.09	0.02	2.28E-06
rs4845199	RP11-398M15.1	1	189786362	а	g	0.18	7311	+-	-0.09	0.02	2.88E-06
rs201948417	RP11-433C9.2; EIF2B5	3	184133284	d	i	0.92	7311	+	-0.14	0.03	2.92E-06
rs113045433		4	67219961	t	с	0.02	7311	+++++	0.30	0.07	3.31E-06
rs2418519		1	189818353	t	с	0.22	7311	+-	-0.08	0.02	3.55E-06
rs115979281	CTC-228N24.1	5	127143872	t	с	0.01	4859	???	-0.42	0.09	3.97E-06
rs73007388		3	6445318	а	g	0.97	6467	+?-	-0.22	0.05	4.80E-06

Table 6 Replication of SNPs from the meta-analysis results of 24-hour sodium excretion, 24-hour potassium excretion, sodium-topotassium ratio in African Americans and Asians ($P < 5x10^{-6}$ from discovery meta-analysis) in Aim 1.

Replication in African Americans

Analysis	SNP	Chr	Position	A1	A2	Ν	Beta	SE	Р
Potassium (adjusted for BMI and height)	rs200543390	11	42492593	Ι	D	1244	-6.82	3.06	0.026
Potassium (adjusted for BMI and height)	rs201934692	11	42492594	Ι	D	1244	-6.79	3.06	0.027
Potassium (adjusted for BMI and height)	rs143513312	11	42492595	Ι	D	1244	-6.79	3.06	0.026
Potassium (adjusted for BMI and height)	rs188284329	11	42538203	А	С	1244	-12.46	6.36	0.050

Replication in Asians

Analysis	SNP	Chr	Position	A1	A2	Ν	Beta	SE	Р
Sodium	rs72653410	11	134216182	С	А	869	6.82	3.34	0.031
Potassium (adjusted for BMI and height)	rs74459597	13	73795820	G	А	2221	5.08	2.46	0.031

Chr, chromosome; A1, effect allele; A2, non-effect allele

Increasing beta indicates higher excretion of sodium and potassium

Results displayed for SNPs with P value ≤ 0.05 in replication analysis

Outcome	Race/Ethinicity	Covariates	EA	Ν	Beta	SE	Р
GWAS results of sodium, potas	sium, and sodium-to-p	otassium ratio			• •		
Sodium	European Ancestry	age, sex	a	7344	-0.02	0.96	0.985
Sodium	African American	age, sex	a	1246	3.37	6.09	0.580
Sodium	Asian (Korean)	age, sex	g	2458	0.68	2.53	0.774
Potassium	European Ancestry	age, sex	a	7346	0.11	0.36	0.764
Potassium	African American	age, sex	a	1246	1.70	2.14	0.428
Potassium	Asian (Korean)	age, sex	g	2462	-1.42	0.86	0.085
Sodium-to-potassium ratio	European Ancestry	age, sex	a	7339	0.00	0.02	0.804
Sodium-to-potassium ratio	African American	age, sex	a	1233	0.00	0.13	0.999
Sodium-to-potassium ratio	Asian (Korean)	age, sex	g	2417	0.07	0.04	0.058
GWAS results of sodium, potas	sium, and sodium-to-p	otassium ratio adjusted for	BMI and height				
Sodium	European Ancestry	age, sex, BMI, height	а	7315	0.16	0.92	0.865
Sodium	African American	age, sex, BMI, height	а	-	-	-	-
Sodium	Asian (Korean)	age, sex, BMI, height	g	2458	1.03	2.50	0.657
Potassium	European Ancestry	age, sex, BMI, height	а	7313	0.11	0.36	0.751
Potassium	African American	age, sex, BMI, height	а	1244	1.63	2.14	0.447
Potassium	Asian (Korean)	age, sex, BMI, height	g	2462	-1.42	0.85	0.086
Sodium-to-potassium ratio	European Ancestry	age, sex, BMI, height	а	7311	0.01	0.02	0.709
Sodium-to-potassium ratio	African American	age, sex, BMI, height	a	1231	0.00	0.13	0.993
Sodium-to-potassium ratio	Asian (Korean)	age, sex, BMI, height	g	2417	0.07	0.04	0.044

Table 7 Replication of	previously identified SI	NP rs12092050 from Ta	bara et al. 2015 in Aim 1

Results in European ancestry are from the meta-analysis Significant P value (P<0.05) bolded EA: Effect allele

CHAPTER III: Gene-based associations and effect modification underlying variation in sodium intake, potassium intake, and their ratio in two European American cohorts

3.1 Introduction

Excess sodium intake and insufficient potassium intake are established risk factors for hypertension and cardiovascular disease (CVD) [2, 53, 97]. In 2010, about 1.7 million, or 9.5%, of all deaths from cardiovascular causes were attributed to high sodium intake globally [5]. On the other hand, potassium is a established protective factor for hypertension and related CVD. Individual sodium intake and potassium intake have a wide range of variability in the human population and are influenced by many factors. [32, 33]. The determinants of sodium and potassium intake have not been fully defined, but physiological, physical, developmental, cultural, genetic, and environmental factors as well as the interactions among these factors have been reported to influence variation in individual sodium and potassium intake [16, 27, 34]. In this Aim, we use gene-level association methods to better understand the relationship between genetic variation in genomic regions and variation in individual sodium and potassium intake, including the potential for interaction with sex, age, and education, since consumption differs from recommended values for men, older people, and people with low education [10].

Although many common disease risk factors have high heritability, genetic variants discovered from GWAS usually explain only a small portion of heritability, a phenomenon typically called "missing heritability." Identifying gene-environment interactions, as well as rare genetic variants that have not been detected by GWAS, could reduce the gap between estimated

heritability and the portion of trait variation explained by genetic factors [98, 99]. To characterize susceptible populations and better explain the variation in sodium and potassium intake, it is necessary to identify genetic effects and gene-by-environment interactions on sodium and potassium intake using common and rare genetic variants data [10]. However, to our knowledge, no study exists that investigates gene-environment interaction for sodium and potassium intake. In the present study, we investigate whether the effects of genetic factors that influence sodium and potassium intake differ based on an individual's age, sex, and education level.

3.2 Methods

Study populations

The analyses were conducted using two European American cohorts. The Genetic Epidemiology Network of Arteriopathy (GENOA) study [60] is a community-based study that aims to identify genes influencing blood pressure in participants from Rochester, MN and Jackson, MS. The study recruited sibships with at least two adults with clinically diagnosed essential hypertension before 60 years of age and then enrolled all available siblings within the family [60]. The Framingham Heart Study (FHS) is a community-based study that began in 1948 with the recruitment of an original cohort to identify risk factors for CVD and other chronic disease from the town of Framingham, MA, who had not yet developed CVD. The FHS cohort continued to recruit the second generation of study participants (children and spouses of children of the original cohort) in 1971 and a third generation of study participants (children of offspring cohort participants) in 2002-2005. Urinary sodium and potassium excretions were measured in the Offspring Study participants approximately every 4 years [64]. The analyses included a total of 811 GENOA and 766 FHS participants who had genotype data and measurements of 24-hour urinary sodium excretion, 24-hour urinary potassium excretion, and adjustment variables including age, sex and education level.

Measurements

Sodium and potassium intake were quantified as continuous variables (mmol/day) from urine collections. In GENOA, urine was collected with toluene as a preservative, and twentyfour-hour urinary sodium and potassium excretions were measured in the Mayo Clinic Renal Testing Laboratory [100]. In FHS, the urinary sodium and potassium excretions were measured using an automated Ion-Selective Electrode (ISE) in the Offspring cohort. In each study, 24-hour sodium and potassium excretion measures were checked for normality, and outliers ± 4 standard deviations from the mean were removed.

For age, participants were grouped as age 65 and older or less than 65. For education level, participants were characterized as having less than a college/university education or having at least a college/university education.

Genotyping and imputation

GENOA participants were genotyped using the Affymetrix 6.0 (91.9 % of sample) arrays or the Illumina Human 1M-Duo, 660-Quad, or 610-Quad (8.1% of sample) genotyping arrays as well as the Illumina HumanExome Beadchip. In FHS, the genotyping was measured using the Affymetrix 500K/50K array and the Illumina HumanExome Beadchip. Each cohort performed internal quality control (QC) assessments of initial genotype data including excluding individuals with poor genotype call rate (i.e., <95%) and checking for relatedness across individuals. Quality checks for single nucleotide polymorphisms (SNPs) included exclusion of SNPs with poor call rate (i.e., <95%), SNPs with Hardy-Weinberg disequilibrium P<10⁻⁴, SNPs with high duplicate discordance rates, and monomorphic SNPs. Imputation for the Affymetrix genotype data and the Illumina Human 1M-Duo genotype data was performed using the 1000 Genomes Project Phase I Integrated Release Version 3 [March 2012] cosmopolitan reference panel using IMPUTE version 2 in GENOA and MACH in FHS. Genotyping variants with imputation quality less than 0.3 were excluded before the analysis.

Statistical analysis

We investigated gene-level associations and their interactions with age, sex, and education level in gene regions near SNPs that had significant ($P < 5X10^{-8}$) or suggestive ($P < 5X10^{-6}$) association with 24-hour urinary sodium excretion, potassium intake, and sodium-to-potassium intake ratio in GWAS from Aim 1. For those genes near SNPs with at least suggetive significance ($P < 5X10^{-6}$) in Aim 1, we first tested the gene-level associations with each trait, and then evaluated the effect modification by sex, age, and education level on the gene-level associations in GENOA and FHS. We used a powerful set of kernel-based methods to test gene-level associations and gene-by-age, gene-by-sex, and gene-by-education level interactions [101, 102].

In order to use the existing SKAT and iSKAT program that were developed for unrelated samples, we transformed 24-hour urinary sodium and potassium excretion measured from related samples (GENOA and FHS) using GRAMMAR+ before the analysis [103]. SKAT is a supervised, flexible, and efficient score-based variance-component test to evaluate association between genetic variants and traits in a gene- or genomic-region [101, 102]. All position

information was based on genome assembly GRCh37, and the start and end position of each gene was defined by GENCODE annotation version 19. All SNPs within a gene region were used for each gene in the SKAT analysis. In GENOA, age, sex, and 4 principal components (PCs) were included as covariates for SKAT analysis. In FHS, age and sex were included as covariates. For gene-environment interactions, we used the interaction sequence kernel association test (iSKAT), which is an extension of SKAT methods [104, 105]. Similar to SKAT, iSKAT uses the score statistic after adjusting for the main effects of the gene and factors underlying differences in sodium and potassium intake (age, sex, and education level). In the analysis evaluating gene-by-age ≥ 65 interactions, sex was included in the model as a covariate, and when evaluating the gene-by-sex interaction, age was included in the model as a covariate. For an analysis of gene-by-education interactions, both age and sex were included in the model, and the analysis was only conducted in GENOA. In GENOA, 4 PCs were additionally added to the models. The results for genes with number of genetic markers greater than 1,000 were excluded to have reliable results in the SKAT and iSKAT analyses. For weighting methods in SKAT and iSKAT, we used beta (1, 25) to upweight the rare variants from exome chip data, and beta (1, 1) to give equal weight to all variants from 1000G data. To resolve the multiple comparison problem, we calculated FDR adjusted P values, and all variants with FDR adjusted P value less than 0.1 were considered significant.

3.3 Results

The characteristics of the participants from the two European American cohorts, GENOA and FHS, are shown in Table 8. The participants in FHS were, on average, 4.5 years younger than those in GENOA (70.2 years in FHS and 65.7 years in GENOA). In GENOA, more than

95% of participants had at least a high school education, and almost 20% of participants had at least a college/university education. Additionally, almost 90% of participants in GENOA were hypertensive while only 52.6% of FHS participants were hypertensive. The 24-hour urinary sodium excretion level in GENOA was 139.4 on average and that of FHS was 136.5 mmol/day. On the other hand, the 24-hour urinary potassium in GENOA was 58.5 mmol/day on average and that of FHS was 67.9. As a result, the average sodium-to-potassium ratio was 2.5 in GENOA and 2.1 in FHS.

<u>Gene-based associations with 24-hour sodium excretion, 24-hour potassium excretions, and</u> <u>sodium-to-potassium ratio</u>

We had a total of 26, 23, and 6 genes to evaluate the gene-based association using SKAT and iSKAT with 24-hour urinary sodium excretion, 24-hour potassium excretion, and sodium-to-potassium ratio, respectively (Table 9). Table 10 and Table 12 show the P-values of gene-based association between genes and 24-hour urinary sodium excretion, 24-hour potassium excretion, and sodium-to-potassium ratio using 1000G and exome chip data in GENOA and FHS.

In GENOA, we found 4 and 2 genes that had at least a marginal significance (P<0.05) for 24-hour sodium excretion and 24-hour potassium excretion, respectively, using the gene-based analysis. Of the 6 genes, 3 genes had P values that passed FDR correction (FDR adjusted P value < 0.1): 1) *SETD7* gene-region on chromosome 4 from the SKAT analysis of 24-hour urinary sodium excretion using 1000G data (P value=0.004); 2) genes *ASH1L* on chromosome 1 and *RP11-431M7.2* on chromosome 4 from the SKAT analysis for 24-hour urinary potassium excretion using exome chip data (P=0.007 and 0.002, respectively).

In FHS, we found 2 gene-based associations with P-value <0.05 for each excretion trait (24-hour urinary sodium excretion, 24-hour potassium excretion, and sodium-to-potassium ratio). Out of 6 genes, *BRO3BP* and *LINC00672* genes had FDR adjusted P-value <0.1 in the gene-based association analysis for 24-hour potassium excretion (P=0.003 and 0.002, respectively), and *RP11-433C9.2* gene also had FDR adjusted P-value <0.1 for sodium-to-potassium ratio in the gene-based association analysis (P=0.016).

<u>Gene-by-age interactions, gene-by-sex interactions, and gene-by-college education interactions</u> with 24-hour sodium excretion, 24-hour potassium excretions, and sodium-to-potassium ratio

In the analysis of gene-by-environment interactions, 13 genes had at least marginally significant interactions (P<0.05) with age \geq 65 years, sex, or college education on any of three outcome traits (24-hour urinary sodium excretion, 24-hour potassium excretion, and sodium-to-potassium ratio) in GENOA (Table 11). Of the genes, gene TAPSAR1 had P-value that passed FDR correction (FDR adjusted P-value <0.1) from the analysis of gene-by-age \geq 65 years interactions using exome chip data. *CTC-228N24.1* had FDR adjusted P-value <0.1 from the both analysis of gene-by-sex interactions using 1000G data and gene-by-college education interactions using exome chip data. The genes *RP11-433C9.2* and *RP11-483H11.1* also had FDR adjusted P-value <0.1 from the analysis of gene-by-sex interactions using 1000G data and gene-by-college education interactions using exome chip data. The genes *RP11-433C9.2* and *RP11-483H11.1* also had FDR adjusted P-value <0.1 from the analysis of gene-by-sex interactions using 1000G data and gene-by-college education interactions using exome chip data. The genes *RP11-433C9.2* and *RP11-483H11.1* also had FDR adjusted P-value <0.1 from the analysis of gene-by-sex interactions using 1000G data and gene-by-college education using exome chip data, respectively.

In FHS, we found three genes that had at least a marginal significance (P<0.05) in the analyses of gene-by-age \geq 65 years interactions (*CDC42SE* and *MLLT11*) or gene-by-sex interactions (*PSMB9*) on 24-hour sodium excretion using 1000G data, but none of the interactions had P-value that passed FDR correction (Table 11, FDR adjusted P-value <0.05)

3.4 Discussion

In the present study, we evaluated the association between gene-regions and outcomes from a previous GWAS including 24-hour urinary sodium excretion, 24-hour urinary potassium excretion, and sodium-to-potassium ratio in two European ancestry cohorts, GENOA and FHS. To do this, we used a gene-based approach with genetic variants from both 1000G imputed data and exome chip data. In GENOA, we found 4 and 2 gene-regions that had P value less than 0.05 in the SKAT analysis with 24-hour urinary sodium excretion or 24-hour urinary potassium excretion, respectively. In FHS, 2, 2, and 1 genes that had P-value less than 0.05 in the SKAT analysis with 24-hour urinary sodium excretion, 24-hour urinary potassium excretion, or their ratio, respectively. We also evaluated the interaction between genes and three demographic variables (age \geq 65 years, sex, and college education) on 24-hour urinary sodium excretion, 24hour urinary potassium excretion, or their ratio using iSKAT and found 16 interactions in GENOA, and 3 in FHS that had P value less than 0.05.

To identify the SNPs most strongly driving the association between the gene-region and three outcome phenotypes (24-hour sodium excretion, 24-hour potassium excretion, sodium-to-potassium ratio) or gene-by-demographic factors (age \geq 65 years, sex, and college education), each SNP-outcome phenotype association and SNP-by-demographic factor interaction were modeled within a gene-region with P-value less than 0.5 from SKAT and iSKAT analysis using 1000 Genome imputed data (Figure 6 and 7). In the association analysis between the single SNP and the outcome variable, each SNP with the strongest signal was in linkage disequilibrium (LD) with multiple other SNPs in the regions of SETD7 and JOSD1 (24-hour sodium excretion) in GENOA, and BRI3BP and LINC00672 (24-hour potassium excretion) in FHS, respectively

(Figure 6). In the single SNP analysis of gene-by-sex on sodium to potassium ratio, each top SNP (rs245177 and rs6443960) was in high LD with multiple other SNPs in each gene-region of CTC-228N24.1 and RP11-433C9.2 in GENOA (Figure 7).

We used the gene-level approach to reduce the burden of multiple testing of individual SNPs from Aim 1, and improve the power to detect significant effect modification in genetic associations with factors including age, sex, and education. Another benefit of using the gene-based strategy lies in the characteristic of a gene-level analyses. It is well known that the SNPs that influence a trait may differ across ethnicities, even if the underlying genetic mechanisms are the same. However, genes are a functional unit, so they do not vary across race/ethnicity, even though allele frequency and linkage disequilibrium patterns may differ. These differences are due to the ancestral origins of mutation and linkage disequilibrium (SNP correlation) patterns that differ across ethnic groups. Although we used significant or suggestive SNPs from meta-analysis in European American populations, we may replicate the significant SNPs from one ancestry group in a different ancestry group in the future.

We set the age group cut-off at age 65 due to the aging process in human body. Many studies have examined the change in prevalence of disease in individuals age 65 and over and have found increased disease burden. For education level, we set the cut-off as completion of college/university education. This is because most of our participants had completed a high school education, and we wanted to evaluate the impact of a higher-level education in the association between gene and sodium/potassium sodium intake level.

To illustrate the interaction effects, we created plots of interaction between top single SNPs (rs245177 for *CTC-228N24.1* and rs6443960 for *RP11-433C9.2*) from the analysis of single SNP-by-sex interactions, and sex on sodium-to-potassium ratio in GENOA (Figure 7).

Average predicted sodium-to-potassium ratio values by top SNP genotype, adjusted for age and the top 4 PCs for each sex group are presented in the bottom of Figure 7. The average predicted sodium-to-potassium ratio level increased with each additional copy of C in female group, but not in male group for rs245177 genotype from *CTC-228N24.1*. In the stratified analyses by sex, rs6443960 genotype from *RP11-433C9.2* was only associated with sodium-to-potassium level in male participants, and not in female participants in GENOA after adjusting for age and 4PCs (P in male group = 0.006 and P in female group = 0.26). Both *CTC-228N24.1* (coiled-coil domain containing 192) on chromosome 5 and *RP11-433C9.2* (long intergenic non-protein coding RNA 2054) on chromosome 3 are protein coding genes, but there has been no research that supports the mechanism of how these genes would be associated with sodium-to-potassium ratio.

The 24-hour urinary sodium and potassium excretion level were measured from related samples in GENOA and FHS. Although SKAT is able to work with correlated phenotypes using its advanced option of using a kinship matrix of the sample, the method has not been developed for iSKAT. Fortunately, the GRAMMAR+ from GeneABEL R package is able to transform traits from related samples into independent observations. The results from the standard SKAT analyses using the decorrelated phenotypes generated from GRAMMAR+ looked very similar to those from the advanced SKAT analyses that incorporated the familiar kinship matrix of samples.

The strengths of this present study include: 1) evaluation and confirmation of the genetic association from Aim 1 using state-of-the-art gene-based approach with improved power, 2) using both rare and common variants in the analyses of association, 3) testing multiple interactions with gene and epidemiological factors including age, sex, and education level.

However, we could not evaluate the associations and interactions in several genes including KRTAP10-11 and KRTAP12-4 when using rare variants from exome chip data, since our data set did not include variants located in the gene-regions. We decided on this selection of genes using the meta-analysis where the two cohorts in current study were included (not from independent cohorts), which could lead the increase of type 1 error. However, in the results of Aim 2, only a few genes had an FDR-adjusted P-value less than 0.1 with sodium and potassium excretion levels and their ratio. The low rate of replication in this gene-based approach may be due to inadequate sample sizes because only two out of the five European ancestry cohorts from Aim 1 were used in Aim 2. In future studies, we will extend the gene-based analyses to other cohorts, and SKAT results will be combined by conducting a meta-analysis using skatMeta R package, which will improve the power in future analyses [106, 107]. Another potential reason that the majority of genes had weak associations or interactions with outcome phenotypes is that the number of markers for each gene in 1000G exceeded the recommend level by SKAT program (the number of recommended markers is smaller than the sample size divided by 3).

The present study might help us better understand the genetics of sodium and potassium intake and explain missing heritability by using both common and rare variants as well as using advanced gene-based analytic strategies. Much more research is needed with larger cohorts, as we did not see significant replication of the gene-level findings in these two European cohorts. However, identifying preliminary evidence of effect modification of genetic effects on sodium and/or potassium intake by traditional epidemiological factors such as age, sex, and education does raise the important long-range question about how to tailor messaging about dietary behaviors to be more precise in order to have the desired health benefits for those individuals.

	GENOA (N=811)	FHS (N=766)
Cohort	Family-based	Family-based
Country	USA	USA
Race/ethnicity	European American	European American
Female (%)	57.6	53.1
Age in years	65.7 ± 9.1	70.2
Age \geq 65 years (%)	57.5	77.3
Education		
\geq College/University (%)	19.5	-
Hypertension, %	88.2	52.6
Blood pressure lowering medication use, %	76.2	52.4
24-h sodium excretion (mmol/day)	139.4 ± 58.3	136.5 ± 57.0
24-h potassium excretion (mmol/day)	58.5 ± 22.9	67.9 ± 23.4
Sodium-to-potassium excretion ratio	2.5 ± 1.0	2.1 ± 0.9
Measurement of source	24-hour urine	24-hour urine

Table 8 The basic characteristics of participating cohorts from GENOA and FHS in Aim 2

For continuous variable: mean \pm SD, For binary variable: %

Abbreviations: EA- European American; GENOA- Genetic Epidemiology Network of Arteriopathy; FHS- Framingham Heart Study

Table 9 Genes near genome-wide significant or suggestive SNPs from Aim 1 and number of genetic markers from 1000G and exome chip data available for each gene in Aim 2 analysis

CHR: chromosome, START: start position of gene based on genome assembly GRCh37, END: end position of gene based on genome assembly GRCh37, 1000G: 1000 Genomes Project imputed data, Exome: exome chip data

					GEN	NOA	FF	IS
				Gene	1000G	Exome	1000G	Exome
				size	Marker	Marker	Marker	Marker
Gene	CHR	START	END	(kb)	Ν	Ν	Ν	Ν
CDC42SE1	1	151023447	151042801	19.4	89	2	39	2
MLLT11	1	151030234	151040970	10.7	53	1	21	1
GABPB2	1	151043054	151098018	55.0	345	12	165	12
RP11-25K21.6	1	161482966	161574889	91.9	460	6	4	7
FCGR3A	1	161511549	161600917	89.4	513	6	0	6
FCGR2B	1	161551101	161648444	97.3	579	5	26	5
FCGR2C	1	161551129	161575452	24.3	133	2	0	2
SETD7	4	140417095	140527853	110.8	592	7	412	7
MUC22	6	30978251	31003179	24.9	529	46	568	40
TAP2	6	32781544	32806599	25.1	369	63	369	61
PSMB8	6	32808494	32812480	4.0	28	8	33	9
TAPSAR1	6	32811863	32814272	2.4	26	6	28	6
PSMB9	6	32811913	32827362	15.4	183	47	200	47
TAP1	6	32812986	32821755	8.8	120	35	133	35
GLB1L2	11	134201768	134248235	46.5	315	16	122	19
CTD-2377D24.8	17	46760729	46781844	21.1	154	2	119	2
CTD-2377D24.2	17	46767843	46767986	0.1	0	2	0	2
RPL9P28	17	46768478	46769056	0.6	7	2	5	2
AC005523.3	19	4785132	4791219	6.1	52	2	12	2
DMC1	22	38914954	38966291	51.3	206	3	106	3
CBY1	22	39052641	39069859	17.2	127	3	84	3
RP3-508I15.9	22	39063590	39077825	14.2	109	3	84	3
TOMM22	22	39077953	39080818	2.9	13	4	10	4
JOSD1	22	39081548	39097561	16.0	61	2	29	2
GTPBP1	22	39101728	39134304	32.6	138	4	83	4
NPTXR	22	39214457	39239987	25.5	156	6	97	5

24-hour sodium excretion

24-hour potassium excretion

					GEI	NOA	F	HS
				Gene	1000G	Exome	1000G	Exome
				size	Marker	Marker	Marker	Marker
Gene	CHR	START	END	(kb)	Ν	Ν	Ν	Ν
ASH1L	1	155305059	155532598	227.5	636	33	259	33
CUL3	2	225334867	225450110	115.2	507	1	551	1
RP11-431M7.2	4	36312812	36394032	81.2	627	5	652	5
DDX31	9	135468384	135545788	77.4	396	37	377	38
ABO	9	136125788	136150617	24.8	320	36	268	32
RP11-430N14.4	9	136125788	136130950	5.2	59	2	46	2
ARHGAP22	10	49654077	49864310	210.2	1332	20	1255	19
BRI3BP	12	125478246	125515777	37.5	307	3	217	3
DLEU2	13	50601269	50699856	98.6	349	2	396	2
UNC13C	15	54305101	54920806	615.7	4471	41	4855	42
ST20-MTHFS	15	80137537	80216096	78.6	617	15	698	14
ST20	15	80191182	80216044	24.9	275	3	299	2
C15orf37	15	80215113	80217194	2.1	22	2	21	1
BCL2A1	15	80253231	80263788	10.6	59	7	49	7
LINC00672	17	37081421	37084310	2.9	14	2	5	2
TSPEAR	21	45917775	46131495	213.7	2025	81	872	70
KRTAP10-11	21	46066331	46067564	1.2	13	1	2	0
KRTAP12-4	21	46074130	46074576	0.4	3	2	2	0
RP3-400N23.6	22	31688485	31734007	45.5	242	3	197	3
PATZ1	22	31721790	31742218	20.4	104	7	76	7
DRG1	22	31795509	31924726	129.2	728	18	679	17
EIF4ENIF1	22	31832963	31892094	59.1	334	16	326	15
SFI1	22	31884674	32014572	129.9	862	44	806	43

Sodium-to-potassium ratio

					GEN	NOA	FI	IS
				Gene	1000G	Exome	1000G	Exome
				size	Marker	Marker	Marker	Marker
Gene	CHR	START	END	(kb)	Ν	Ν	Ν	Ν
SH3RF3	2	109745804	110262207	516.4	2585	16	2527	17
EIF2B5	3	183852826	184402546	549.7	3332	197	2204	195
RP11-433C9.2	3	184119325	184157436	38.1	291	2	187	2
CTC-228N24.1	5	127039082	127277326	238.2	996	2	1128	2
RP11-483H11.1	5	127120310	127122734	2.4	11	2	13	2
KLF12	13	74260226	74708394	448.2	2755	9	2452	9

Table 10 P-values for gene-based association between genes and 24-hour sodium excretion, 24-hour potassium excretion, and sodium-to-potassium ratio in GENOA and FHS in Aim 2

GENOA

	24-hour sodiu	um excretion	24-hour potas	sium excretion	Sodium-to-po	tassium ratio
Gene	1000G (N=807)	Exome (N=784)	1000G (N=811)	Exome (N=788)	1000G (N=806)	Exome (N=783)
CDC42SE1	0.042	1.000		(11 700)	(11 000)	(11 705)
MLLT11	0.048	1.000				
SETD7	0.004*	0.541				
JOSD1	0.029	1.000				
ASH1L			0.490	0.007*		
RP11-431M7.2			0.410	0.002*		

FHS

	24-hour sodium excretion		24-hour potass	sium excretion	Sodium-to-potassium ratio		
Gene	1000G (N=766)	Exome (N=753)	1000G (N=766)	Exome (N=753)	1000G (N=766)	Exome (N=753)	
GABPB2	0.519	0.041					
GTPBP1	0.461	0.020					
BRI3BP			0.003*	1.000			
LINC00672			0.002*	0.328			
RP11-433C9.2					0.328	0.016*	

1000G: Variants from 1000 Genomes Project imputed data Exome: Variants from exome chip data P-values bolded if < 0.05 * indicates its FDR adjusted P-value <0.1 **Table 11** P-values for gene-by-age ≥ 65 , gene-by-sex, and gene-by-college educationinteractions on 24-hour sodium excretion, 24-hour potassium excretion, and sodium-to-potassium ratio in GENOA and FHS in Aim 2

		gene-by-age ≥65 interactions		gene-by-sex interactions		gene-by-college interactions	
Outcome	Gene	1000G	Exome	1000G	Exome	1000G	Exome
24-hour sodium excretion	PSMB9	0.057	0.030	0.030	0.603		
24-hour sodium excretion	TAPSAR1	0.028	0.007*				
24-hour sodium excretion	TAP1	0.008	0.020				
24-hour sodium excretion	CTD-2377D24.8	0.038	0.323				
24-hour sodium excretion	RPL9P28	0.034	0.323				
24-hour sodium excretion	PSMB8	0.037	0.127				
24-hour sodium excretion	SETD7			0.263	0.029		
24-hour sodium excretion	GLB1L2					0.579	0.020
24-hour potassium excretion	ASH1L			0.854	0.048		
Sodium-to-potassium ratio	CTC-228N24.1			0.005*	0.683	0.109	0.039*
Sodium-to-potassium ratio	RP11-433C9.2			0.021*	-		
Sodium-to-potassium ratio	RP11-483H11.1					0.285	0.039*

GENOA

FHS

	gene-by- intera	-age ≥ 65 actions	gene-b intera	y-sex ctions	gene-by-college interactions		
Outcome	Gene	1000G	Exome	1000G	Exome	1000G	Exome
24-hour sodium excretion	CDC42SE1	0.020	-				
24-hour sodium excretion	MLLT11	0.016	-				
24-hour sodium excretion	PSMB9			0.041	0.52		

1000G: Variants from 1000 Genomes Project imputed data

Exome: Variants from exome chip data

GENOA, Sample size for all SNPs/variants: 807; Sample size for rare variants: 784 FHS, Sample size for all SNPs/variants: 766; Sample size for rare variants: 753

P-values bolded if < 0.05

- : No results due to no genetic variation by environment variable

* indicates its FDR adjusted P-value <0.1

Table 12 Total list of P-values for gene-based association between each gene and 24-hour sodium excretion, 24-hour potassium excretion, and sodium-to-potassium ratio in GENOA and FHS in Aim 2

1000G: Variants from 1000 Genomes Project imputed data, Exome: Variants from exome chip data

P-values bolded if < 0.05

* indicates its FDR adjusted P-value <0.1

24-hour sodium excretion

		GEN	OA		FHS				
	10	00G	Ex	kome	100	0G	Exc	ome	
Gene	Ν	P Value							
CDC42SE1	807	0.042	784	1.000	766	0.602	753	1.000	
MLLT11	807	0.048	784	1.000	766	0.604	753	1.000	
GABPB2	807	0.071	784	0.501	766	0.519	753	0.041	
RP11-25K21.6	807	0.384	784	0.995	766	0.959	752	0.859	
FCGR3A	807	0.550	784	1.000			753	1.000	
FCGR2B	807	0.462	784	0.526	766	0.486	753	0.375	
FCGR2C	807	0.108	784	1.000			753	1.000	
SETD7	807	0.004*	784	0.541	766	0.689	753	0.326	
MUC22	807	0.720	773	0.450	766	0.335	730	0.587	
TAP2	807	0.135	775	0.068	766	0.732	751	0.162	
PSMB8	807	0.546	784	0.158	766	0.515	753	0.095	
TAPSAR1	807	0.512	784	0.870	766	0.704	752	0.933	
PSMB9	807	0.538	784	0.522	766	0.458	749	0.142	
TAP1	807	0.421	784	0.844	766	0.367	750	0.336	
GLB1L2	807	0.655	784	0.878	766	0.309	752	0.256	
CTD-2377D24.8	807	0.193	784	0.109	766	0.313	753	0.639	
CTD-2377D24.2	-	-	784	0.109	-	-	753	0.639	
RPL9P28	807	0.899	784	0.109	766	0.901	753	0.639	
AC005523.3	807	0.119	784	0.882	766	0.165	753	0.860	
DMC1	807	0.142	784	1.000	766	0.760	753	0.488	
CBY1	807	0.067	784	0.512	766	0.483	753	0.314	
RP3-508I15.9	807	0.067	784	0.512	766	0.488	753	0.314	
TOMM22	807	0.093	784	1.000	766	0.563	753	1.000	
JOSD1	807	0.029	784	1.000	766	0.547	753	1.000	
GTPBP1	807	0.067	784	0.334	766	0.461	753	0.020	
NPTXR	807	0.867	784	0.269	766	0.756	753	0.655	

24-hour potassium excretion

		GEN	NOA		FHS				
	10	00G	Ex	ome	1000G		Ex	xome	
Gene	Ν	P Value	Ν	P Value	Ν	P Value	Ν	P Value	
ASH1L	811	0.490	788	0.007*	766	0.063	752	0.729	
CUL3	811	0.261	788	0.780	766	0.500	753	0.495	
RP11-431M7.2	811	0.410	788	0.002*	766	0.233	753	0.340	
DDX31	811	0.858	788	0.270	766	0.144	753	0.932	
ABO	811	0.579	772	0.347	766	0.334	744	0.656	
RP11-430N14.4	811	0.830	788	1.000	766	0.142	753	1.000	
ARHGAP22	811	0.231	784	0.407	766	0.691	752	0.912	
BRI3BP	811	0.127	788	0.142	766	0.003*	753	1.000	
DLEU2	811	0.413	788	0.806	766	0.182	753	0.093	
UNC13C	811	0.090	785	0.242	766	0.097	751	0.636	
ST20-MTHFS	811	0.186	784	0.108	766	0.630	751	0.716	
ST20	811	0.165	784	0.845	766	0.773	752	0.400	
C15orf37	811	0.106	784	0.912	766	0.370	753	1.000	
BCL2A1	811	0.737	788	0.962	766	0.844	753	0.219	
LINC00672	811	0.198	788	0.965	766	0.002*	753	0.328	
TSPEAR	811	0.103	787	0.946	766	0.416	751	0.849	
KRTAP10-11	811	0.113	788	0.684	766	0.386	-	-	
KRTAP12-4	811	0.206	788	0.684	766	0.351	-	-	
RP3-400N23.6	811	0.868	788	0.810	766	0.714	753	0.724	
PATZ1	811	0.818	788	0.810	766	0.885	753	0.925	
DRG1	811	0.687	787	0.693	766	0.695	753	0.969	
EIF4ENIF1	811	0.607	787	0.693	766	0.618	753	0.969	
SFI1	811	0.389	783	0.861	766	0.831	753	0.527	

Sodium-to-potassium ratio

		GEN		FHS				
	1000G		Exome		1000G		Exome	
Gene	Ν	P Value						
SH3RF3	806	0.785	783	0.817	766	0.462	749	0.734
EIF2B5	806	0.605	765	0.677	766	0.256	746	0.639
RP11-433C9.2	806	0.514	783	0.471	766	0.328	753	0.016*
CTC-228N24.1	806	0.437	783	0.489	766	0.337	753	0.763
RP11-483H11.1	806	0.203	783	0.489	766	0.910	753	0.763
KLF12	806	0.184	783	0.993	766	0.240	753	0.333

Figure 6 Regional plots of P-values for single SNP association analysis with 24-hour sodium excretion, 24-hour potassium excretion, and sodium-to-potassium ratio in Aim 2

GENOA

24-hour sodium excretion using variants from 1000 Genomes Project imputed data

SETD7

140.4

24-hour potassium excretion using variants from 1000 Genomes Project imputed data

BRI3BP

FHS

LINC00672

Figure 7 Plots of SNP-by-demographic factor interactions in Aim 2

Interaction between single SNP (rs245177 for *CTC-228N24.1* and rs6443960 for *RP11-433C9.2*) and sex on sodium-to-potassium ratio in GENOA

CHAPTER IV: A multi-ancestry genome-wide study of gene-sodium interaction underlying blood pressure variation

4.1 Introduction

High blood pressure is strongly related to cardiovascular disease (CVD) and chronic kidney disease (CKD) [108]. Consequently, for preventative purposes, both systolic blood pressure (SBP) and diastolic blood pressure (DBP) are the most common intervention targets if one has been diagnosed with hypertension [109-111]. Mean arterial pressure (MAP), the average pressure in an individual's arteries during one cardiac cycle, and pulse pressure (PP), the difference between the systolic and diastolic pressure readings, are also often predictors of CVD [4, 112, 113].

Since measures of blood pressure (SBP, DBP, MAP, and PP) are complex phenotypes, identifying risk factors that could modify the genetic effects of blood pressure is being actively studied [44-46]. GWAS have identified numerous SNPs that are associated with SBP, but the identified associated genetic loci explain only a small portion of SBP and DBP variability, even though heritability is relatively high (~40-50%) [37-43]. Blood pressure is also influenced by an individual's lifestyle including lack of physical activity, diet, alcohol and smoking; these lifestyle factors have become important intervention targets [114-116]. In particular, high sodium intake is a strong and independent risk factor for high blood pressure, has a large variation at both the individual and population level [32, 47, 48]. Thus, it is important to research whether and how individual sodium intake modifies the genetics of blood pressure, and to investigate whether

there are susceptible genetic groups within a population that are disproportionately affected by sodium intake. In epidemiological samples, measuring sodium excretion using 24-hour or 12-hour urine collection is often used as a high-quality measure of sodium intake [117]. Li et al. recently conducted a study involving a genome-wide SNP-based and gene-based gene-sodium interaction analysis on SBP, DBP, MAP, and PP using one discovery cohort (N=1,876) and one replication cohort (N=775) in a Chinese population, and found 8 novel loci [118]. Sodium intake level was measured from a 24-hour urine sample in the discovery set and spot urine sample in replication set. Evaluating the gene-by-sodium intake interaction using larger multi-ethnic populations, including European and African ancestries with large sample sizes is needed to confirm and extend these preliminary findings.

To examine the role of interactions between sodium intake and genetic variations on blood pressure, we conducted a meta-analysis of a genome-wide gene-by-sodium interaction study on blood pressure measures, including SBP, DBP, MAP, and PP using high-quality measurements of sodium intake (i.e. 24-hour or half-day urine samples) from 6 cohorts comprising almost 6,000 participants of European, African, and Asian ancestry.

4.2 Methods

The study is part of a series of multi-ancestry genome-wide interaction projects conducted by the Gene-Lifestyle Interactions Working Group within the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) to assess the impact of genetic interactions with multiple lifestyle factors on cardiovascular traits [119]. Men and women between the ages of 18 and 80 from three ancestry groups were considered for analysis: 1) European ancestry (EA) - Genetic Epidemiology Network of Arteriopathy (GENOA), the Hypertension Genetic Epidemiology Network (HyperGEN), and the Framingham Heart Study (FHS); 2) African ancestry (AA) – HyperGEN; and 3) Asian ancestry (AS) - Genetic Epidemiological Network of Salt-Sensitivity (GenSalt) study. The description of each study is included in Appendix 1. Participants were included if they had blood pressure measures, urinary sodium excretion measured from \geq 8-hour urine sample, and imputed genotypes from the 1000 Genomes Project reference panel. A total of 6 cohorts were included (N=6,020) in this study, with 2,547 EA, 1,650 AA, and 1,823 AS participants.

Preliminary study

For gene-by-sodium interaction analyses, 24-hour urinary sodium excretion level was dichotomized at a particular cut-off point to ensure interpretability of the regression model. To identify the appropriate dichotomization threshold of 24-hour urinary sodium excretion for the interaction analyses, we evaluated the relationship between 24-hour urinary sodium excretion and blood pressure measures (SBP and DBP) using data from GENOA, FHS, HyperGEN (EA and AA), and GenSalt. In addition, we also examined whether the relationship between sodium excretion and blood pressure differed by diuretic use, since the relationship between diuretic use and sodium excretion is not well established. Diuretics, which are medications that are designed to increase the amount of water and sodium excreted as urine, may help lower blood pressure and may influence the relationship between sodium intake and blood pressure.

Participants were grouped by their 24-hour urinary sodium excretion levels: group 1 (<160 mmol/day, N=1,296), group 2 (\geq 160 and <220 mmol/day, N=1,373), group 3 (\geq 220 and <280 mmol/day, N=1,276), and group 4 (\geq 280 mmol/day, N=1,563). In each group, the weighted mean value for age- and sex-adjusted SBP and DPB values was first calculated by weighting by the sample size of each cohort. SBP and DBP differences in each sodium group were then

calculated by subtracting blood pressure in the reference group (sodium group 1) from blood pressure in each sodium group. We found linear relationships between blood pressure difference and sodium groups in all participants and in participants without diuretic use (Figure 8).

The preliminary results showed that 220 mmol/day was an appropriate cutoff for dichotomization. Approximately 40% of participants in the preliminary study had 24-hour urinary sodium \geq 220 mmol/day. Since the associations between blood pressure measures and 24-hour urinary sodium excretion levels varied by use of diuretics, we decided to conduct the main analyses using 1) all participants and 2) participants without diuretic use.

Figure 8 The association between blood pressure difference and sodium groups in Aim 3

Twenty-four-hour urinary sodium excretion levels: group 1 (<160 mmol/day, N=1,296), group 2 (\geq 160 and <220 mmol/day, N=1,373), group 3 (\geq 220 and <280 mmol/day, N=1,276), and group 4 (\geq 280 mmol/day, N=1,563). SBP and DBP difference value for each sodium group = blood pressure in each sodium group - blood pressure in the reference group (sodium group 1)

Phenotypes, urinary sodium excretion, and covariates

Resting SBP (mmHg) and DBP (mmHg) were obtained. When multiple BP readings were available at the same visit, the average of all SBP readings and of all DBP readings were used. For subjects taking any blood pressure lowering medications, SBP and DBP values were adjusted by adding 15 mmHg to SBP and 10 mmHg to DBP [38, 120]. MAP (DBP + (SBP – DBP)/3) and PP (SBP – DBP) were also derived by using SBP and DBP values. SBP, DBP, MAP, and PP were analyzed separately. For each of the 4 blood pressure measures (SBP, DBP, MAP, and PP), outliers were set at 6 standard deviations (SD) from the mean.

Sodium excretion level was measured either from 24-hour or half-day urine samples (Table 13). If urinary sodium excretion was measured from half-day urinary samples (>8-hour duration), simple volume-time linear extrapolation was used to estimate 24-hour urinary sodium excretions. Dichotomous urinary sodium excretion (SODIUM) was defined as 0 if 24-hour urinary sodium excretion was <220 mmol/day, and as 1 if 24-hour urinary sodium excretion was also collected in each cohort.

Genotyping

The analyses for each cohort used the dosage of SNPs (chromosomes 1-22) imputed from the 1000 Genomes Project. For imputation, the ALL ancestry panel from 1000G Phase I Integrated Release Version 3 Haplotypes (March 2012) was used. The details of genotyping and genotype imputation for each cohort are described in Table 14. Each cohort applied a preliminary filter by excluding SNPs with very low imputation quality (R² or INFO <0.1) and low minor allele frequency (MAF<0.01). Principal components (PCs) were included in the analysis to adjust for population stratification in each cohort [72].

Statistical analysis

Genome-wide association study in each cohort

The genome-wide association study (GWAS) was conducted separately for each ancestry group within each cohort. Analyses were conducted separately for 1) all participants (ALL) and 2) participants not taking diuretic medications (WOD). For each BP trait, a total of six analyses were conducted within each ancestry group: three models were used (MODEL 1, MODEL 2, and MODEL 3).

In MODEL 1 (joint model), a regression model was used in each cohort that included both the genetic main effect and GxE interaction effects. MODEL 2 was additionally tested in each cohort to discern whether the SNP could be discovered without accounting for exposure and GxE interaction. MODEL 3, on the other hand, investigated the presence of G-E correlation. The models are as follows:

MODEL 1 (Joint analysis of main and interaction effects):

$$Y = \beta_0 + \beta_{EI} E + \beta_{GI} G + \beta_{GE} E * G + \beta_{CI} C$$

MODEL 2 (Analysis of main effect only):

 $Y = \beta_0 + \beta_{G2} G + \beta_{C2} C$

MODEL 3 (Analysis of main effect adjusted for SODIUM):

$$Y = \beta_0 + \beta_{E3} E + \beta_{G3} G + \beta_{C3} C$$

where Y is the medication-adjusted blood pressure phenotype value; β_0 is the intercept; E is dichotomous urinary sodium excretion; G is the dosage of the imputed genetic variant, coded additively; and C is the vector of covariates including age, sex, study-specific confounders, and PCs. The genetic main effects (β_{G1} , β_{G2} , β_{G3}), the GxE interaction term effect β_{GE1} , their robust standard errors (SEs) and the robust covariance between the betas were collected in each cohort for each model. Robust estimates of SE and covariance were obtained because the error terms may not have the same variance across sodium excretion groups (heteroscedasticity) and there is a possibility of misspecification of the mean model [121, 122].

For association analyses in studies with unrelated subjects, linear regression with robust estimates of standard errors were conducted using ProbABEL [123]. For studies with related subjects, linear mixed models using a kinship matrix with a random polygenic component (for which the covariance matrix depends on the kinship matrix) were analyzed using ProbABEL or MMAP (Mixed Model Analysis in Pedigrees and Populations) [54] to account for family relationships.

Quality Control (QC) before meta-analysis

Before conducting the meta-analysis, individual GWAS results were cleaned by performing QC using the R package EasyQC [73]. In the study-level QC, the collected allele frequencies were checked against the ancestry-specific 1000 Genomes Project reference panel and genetic marker names were harmonized. In the meta-level QC, summary statistics for collected variables were compared in each specific analysis (e.g., SBP-Model1) across all cohorts. In addition, SE-N plot and QQ plots were used to check the errors in trait transformation, as well as other analytical problems.

If imputation quality was < 0.1 in a given cohort, the genetic variants were preliminarily excluded; if the measure was < 0.5, the genetic variants were further excluded in the QC step. In addition, genetic variants with low MAF or low imputation quality measures were excluded if min (MAC0, MAC1) * imputation quality measure was < 10 in European and Asian ancestry

groups, or <15 in African ancestry, where MAC0 = $2 * MAF_{E0} * N_{E0}$ for the unexposed group (with MAF_{E0} and sample size N_{E0} for E=0 stratum) and MAC1 = $2 * MAF_{E1} * N_{E1}$ for the exposed group. This ensured that the study only included stable cohort-specific results with a large enough sample size for each genetic variant in the meta-analyses. For family studies, N_E was computed as (n+N)/2 where n= the number of sibships with at least one exposed member, and N= the total number of exposed subjects across all sibships. This is a compromise between using n alone (which underestimates N_E as multiple exposed subjects in a family are counted only once) or N alone (which overestimates N_E as this ignores sibling correlation).

GWAS meta-analysis

Meta-analyses were conducted for those who did and did not use diuretics within each ancestry. For MODEL 1, two meta-analyses were performed in METAL: 1) 1 degree of freedom (DF) test of the interaction effect (SNP x E term) and 2) 2 DF test (joint fixed-effects) [124] that tested both the SNP main effect term and the SNP*E interaction term, while considering the covariance between them [74]. For the 1 DF test, a Wald test statistic was used that approximately follows a chi-squared distribution with 1 DF under H₀: $\beta_{GxE} = 0$. For the 2 DF test, a Wald test statistic was used, which approximately follows a chi-squared distribution with 2 DF under H₀: $\beta_G = \beta_{GxE} = 0$.

For MODELs 2 and 3, the fixed-effects inverse-variance weighted meta-analysis of the SNP main effect term was conducted in METAL [74]. In the meta-analysis, genomic control correction [125] was applied first for cohort-specific GWAS results when lambda value > 1, and then again to the meta-analysis results. From the meta-analysis results, genetic variants were excluded if they were represented by GWAS data in fewer than 2 cohorts. Genetic variants that were genome-wide significant ($P < 5 \times 10^{-8}$) or suggestive ($P < 1 \times 10^{-6}$) in any of the metaanalyses will be replicated in independent cohorts in future studies.

4.3 Results

The characteristics of participating cohorts are shown in Table 13. All cohorts except JHS were family-based cohorts. The blood pressure measures and frequency of using diuretics were lowest in the Asian cohort (GenSalt). However, participants from GenSalt had highest portion of sodium excretion ≥220 mmol/day.

From the analyses using all participants, out of about 5-9 million SNPs from metaanalyses, we found 26 (EA), 91 (AA), and 17 (AS) genome-wide significant (2DF P < 5×10^{-8}) or suggestive SNPs (2DF P < 1×10^{-6}). When participants with diuretic use were excluded, 51 (EA), 44 (AA), and 25 (AS) genome-wide significant (2DF P < 5×10^{-8}) or suggestive SNPs (2DF P < 1×10^{-6}) were found in the meta-analyses (Table 16).

In Table 15, we present the most significant SNP at 12 independent genetic loci that reached genome-wide significance (P < 5×10^{-8}) in meta-analyses using the 2DF interaction test. From the meta-analysis results in African ancestry, six significant genetic loci were found. The most significant locus in AA was rs113300617 near *FBXO10* and *RP11-613M10.8* on chromosome 9 (2DF P=1.12×10⁻¹⁰). In EA, found significant loci near genes *ZDHHC19* (rs11185517, 2DF P=1.36×10⁻⁸), *RUSC2* (rs17370852, 2DF P=2.41×10⁻¹²), *U3* (rs17753104, 2DF P=2.49×10⁻⁸), *RP11-507B12.2* (rs7179425, 2DF P=9.40×10⁻⁹), and *DCC* (rs7243864, 2DF P=2.71×10⁻⁸). The genetic variant rs6922858 on chromosome 6 had a genome-wide significant P-value (2DF P=1.2×10⁻⁸) from multiple analyses (DBP in both ALL and WOD, MAP in WOD) in the Asian cohort. Table 16 provides all genome-wide significant results.

In the presence of interaction, it is well known that the main effects of a simple linear regression are difficult to interpret. By examining the p-values associated with the genetic main effects (β_{G1} , β_{G2} , β_{G3}), the GxE interaction term effect β_{GE1} , and the 2 DF test in Table 15, we can begin to identify the genetic loci that appear to have both main and interactions effects, and separate them from the genetic loci that have only interactions effects. Out of 12 genome-wide significant loci in EA, only two loci had a genome-wide significant P-value in 1DF interaction test (rs17370852 with 1DF interaction P=7.65×10⁻¹³ on chromosome 9 and rs7179425 with 1DF interaction P=3.21×10⁻¹⁰ on chromosome 15).

Quantile-quantile (QQ) plots and Miami plots for each GWAS using the 2DF joint test are presented in Figures 9-12. Regional plots for the 12 significant loci using LocusZoom are shown in Figure 13.

4.4 Discussion

In this study, we identified 12 independent genome-wide significant genetic loci ($P < 5 \times 10^{-8}$) and 206 suggestive genetic SNPs from meta-analyses of a genome-wide gene-by-sodium interaction study on blood pressure measures (SBP, DBP, MAP, and PP) using 6 cohorts comprising more than 6,000 participants of European, African American, and Asian ancestry.

Most interestingly, we identified rs868549 in AA, which is in the intronic region of *NKAIN2* (sodium/potassium transporting ATPase interacting 2) that is expressed in the brain and in the heart [126]. The gene, which interacts with the beta subunit of Na, K-ATPase, has the important function of regulating sodium ion transport by modulating the frequency, rate or extent of the mobility of sodium ions (Na+) in/between cells [127]. Although it is clear that there is an apparent relationship between the gene and sodium, additional studies are needed to elucidate the

mechanism for how this promising genetic locus is associated with blood pressure regulation. At first glance, the genetic loci from EA have no apparent relationship with known blood pressure or sodium handling phenotypes. For example, the intronic variant rs11185517 on chromosome 3 is in a region of a protein coding gene, ZDHHC19 (zinc finger DHHC-type containing 19), that is functionally associated with protein-cysteine S-palmitoyltransferase activity [126]. The gene is located in the cell membrane, and suggestively associated with proteins that influence endothelial nitric oxide synthase (eNOS), which is important for cardiovascular homeostasis [128]. From previous association studies, ZDHHC19 has been associated with metabolism, erythrocyte indices, and hemoglobin [129, 130]. rs17370852 is an intronic variant in RUSC2 (RUN and SH3 domain containing 2) on chromosome 9, which is expressed in the human brain. RUSC2 protein may interact with interacting with RAB GTPase binding, which plays a role in intracellular vesicular trafficking [131]. It has suggested that GTPases have important roles in renal tubular epithelial cell function [80]. For example, GTPases may be associated with the retention process of the sodium hydrogen exchanger (NHE3) at the surface of membranes in the renal proximal tubular epithelia; further, NHE3 is associated with renal and intestinal ion homeostasis and control of cellular volume [132]. Variant rs7243864 is located in the DCC (DCC netrin 1 receptor) on chromosome 18. The gene encodes a netrin 1 receptor, and is known to mediate axon outgrowth and steering response [133]. rs8101144 is an intronic genetic variant of the gene. Future studies are warranted to understand the potential functional relevance of the genes in the relationship between sodium intake and blood pressure.

When we compare the P-values from each meta-analysis, we have a better understanding of what kind of information each model could provide in Aim 3. In the study of the SNP association, the SNP effects are often first evaluated without accounting for exposure and geneby-environment interaction terms (main effect only model, Model 2) before conducting regressions of interaction terms like Model 1 in Aim 3 [124]. However, when both SNP main effect and interaction effect are jointly estimated in Model 1, we cannot separate the main effect from the interaction effect. From Model 1 where both the interaction and SNP main effect terms were included, the meta-analyses of 1DF interaction test and 2DF joint test were conducted. From the Manning et al paper, except for the extreme cases (no interaction effect or no SNP effects), 2DF joint test had the highest power. In simulations, the explained portion of outcome variation increased when both main and interaction effects were jointly evaluated in the model [124]. This might explain why there were no loci that had a genome-wide significant SNP main effect from Model 1 and 2 (β_{G1} and β_{G2} , SNP main effect P < 5×10⁻⁸) and why there were only 2 significant loci from 1DF interaction test from Model 1 (β_{GE} , 1 DF interaction P < 5×10⁻⁸) where all loci had significant P-values from 2DF joint test in Table 15. In the paper of Manning et al, on the other hand, when there is an interaction effect with no or small main effect, the metaanalysis of the interaction alone (β_{GE} , 1DF interaction test) had the highest power because it has a lower degree of freedom (1DF) [124]. This might explain why locus 6 and 11 in Table 15 had a less significant P-value in the 2DF joint test when compared to the 1DF interaction test. In Model 3, the presence of correlation between genetic and environmental effects was investigated by adding the environment variable, SODIUM, and examining its impact on the 1DF SNP effect.

Despite the importance of gene-sodium intake interactions on blood pressure, there have been few studies in this area. Li et al recently found several novel loci using Chinese participants from GenSalt and MESA [118]. They did not have adequate power in their discovery sample to detect genome-wide significant effects, but detected significant SNPs from the combined results of discovery and replication samples. In addition, sodium intake was estimated from spot a urine sample in the replication set, which could decrease the accuracy of the findings. We evaluated the 3 novel loci (rs11104632 on chromosome 12, rs13211840 on chromosome 6, rs2567241 on chromosome 4) from single variant analysis results in the Li et al study, using our European and African ancestry meta-analysis (Table 17). None of loci were significant (P value<0.05) in any of our analyses. Since different ancestry groups may have different linkage disequilibrium structures, a SNP found in one ancestry group may not replicate in other ancestries. We did not conduct the replication in AS since the results were from the same cohort, GenSalt.

Traditionally, the SNP-by-environment interactions have been evaluated for the subset of SNPs with significant main effects [134]. This approach could improve power by limiting the number of interaction tests performed, but its critical limitation is to prevent the identification of genetic variants that are associated with diseases mainly through an interaction effect with no or small marginal effects. In the interaction test with known blood pressure loci (until June 2017, M=239) from previous large GWAS with successful replication that exist in our SNP list, only 3 loci out of 239 had an FDR adjusted P-value less than 0.1 from the 2DF joint test (Table 18). The three loci included variant rs13139571 on chromosome 4 near genes GUCY1A3-GUCY1B3, which was replicated with SBP and PP in AA participants (FDR adjusted P=0.069 and 0.059, respectively) and with MAP in AA participants without diuretics (FDR adjusted P=0.021); variant rs62012628 on chromosome 15 near gene ADAMTS7, which had a FDR adjusted P=0.0369 with SBP; and variant rs743757 on chromosome 3 near gene CAC2D2, which also had a FDR adjusted P=0.077 with DBP in EA participants without diuretics. This low rate of replication highlights the importance of using the 2DF joint test in Aim 3 because the loci that had significant P-values in our discovery analysis would not have been identified if we only used known blood pressure loci for interaction testing.

The strength of this work includes using 1) multiethnic populations; 2) high-quality measurements (24-hour or half-day urinary sodium excretion); 3) a sensitivity analysis approach by conducting meta-analyses excluding participants with diuretic use; and 4) a powerful statistical approach in identifying gene-by-sodium environment interaction loci from meta-analyses (2DF joint test).

However, a limited number of cohorts had either a 24-hour or half-day urine samples as well as genotyping data since collecting 24-hour or half-day urine samples is expensive and time-consuming. Thus, the sample size limited our power to conduct the gene-sodium interaction meta-analyses. We also had only one Asian cohort.

To expand on our results, we are currently reaching out to additional cohorts to confirm suggestive or significant loci found from the discovery stage. Potential cohorts include 1) 24-hour urine sample: Prevention of REnal and Vascular ENd-stage Disease (PREVEND) (N=3,649) [61], 2) Spot urine sample: Heredity and Phenotype Intervention (HAPI) Heart Study (N=844) [70], Multiethnic Study of Atherosclerosis (MESA) cohort (N=2,462), [135] and UK Biobank (N=500,000) [136], and 3) FFQ: Health and Retirement Study (N=8,035) [137]. Identifying genetic variations that modify the relationship between sodium intake/excretion and blood pressure could have an effect on stratifying treatment and prevention recommendations for millions of adults who have high blood pressure or hypertension, since these gene variations would indicate which subgroups of the population have an increased risk of elevated blood pressure from excess sodium consumption.

	GENOA	FHS	HyperGEN	HyperGEN	JHS	GenSalt
			EA	AA		
Race/ethnicity		EA (N=2,547)		AA (N	=1,650)	AS (N=1,823)
Cohort	Family-based	Family-based	Family-based	Family-based	Population-based	Family-based
Country	USA	USA	USA	USA	USA	USA
Total (N)	625	747	1,175	1,017	633	1,823
Diuretic use, %	49.9	19.3	23.5	38.2	41.4	0.4
24-hour urinary						
sodium excretion	11.7	10.2	36.9	47.9	19.6	58.4
\geq 220 mmol/day, %						
SBP	154.3 ± 24.2	132.8 ± 18.3	131.5 ± 23.1	138.4 ± 25.0	136.6 ± 19.1	117.2 ± 14.1
DBP	83.7 ± 10.8	77.4 ± 9.9	76.0 ± 11.5	80.0 ± 13.0	81.2 ± 9.7	74.1 ± 10.2
MAP	107.2 ± 13.7	90.0 ± 9.6	94.5 ± 14.2	99.5 ± 15.9	100.0 ± 11.5	88.4 ± 10.8
PP	70.7 ± 19.5	52.9 ± 14.1	55.5 ± 16.8	58.4 ± 17.4	56.4 ± 15.3	43.1 ± 9.4
Urine Sample	24-hour	24-hour	Half-day	Half-day	24-hour	24-hour

TADIC 13 Characteristics of participating condits in Ann 3

For continuous variables: mean \pm SD, For binary variables: % (N)

Abbreviations: EA: European American, AA: African American, AS: Asian, SBP: Systolic blood pressure, DBP: Diastolic blood pressure, MAP: Mean Arterial Pressure, PP: Pulse Pressure, GENOA: Genetic Epidemiology of Arteriopathy, FHS: Framingham Heart Study, HyperGEN: Family Blood Pressure Program, JHS: Jackson Heart Study, GenSalt: Genetic Epidemiology Network of Salt Sensitivity

Cohort	Ancestry	Study design	N PCs	Genotyping platform	Genotyping calling algorithm	Imputation software	Imputation: reference panel	Analysis Software
GENOA	EA	FB	4	Affymetrix Genome-Wide Human SNP Array 6.0 (91.9% of sample); Illumina Human 1M-Duo, 660-Quad, or 610- Quad (8.1% of sample)	Birdseed; Genome Studio	IMPUTE2	1000G Phase1 v3	ММАР
FHS	EA	FB	0	Affymetrix 500K mapping array and the Affymetrix 50K gene-focused molecular imprinted polymer array	BRLMM	MACH	1000G Phase1 v3	ММАР
HyperGEN EA	EA	FB	0	Affymetrix Genome-Wide Human SNP Array 5.0	BRLMM	MACH/ minimac	1000G Phase1 v3	MMAP
HyperGEN AA	AA	FB	1	Affymetrix Genome-Wide Human SNP Array 6.0	Birdseed	MACH/ minimac	1000G Phase1 v3	MMAP
JHS	AA	PB	10	Affymetrix Genome-Wide Human SNP Array 6.0	Birdseed2	IMPUTE2	1000G Phase1 v3	ProbABEL
GenSalt	AS	FB	N/A	Affymetrix Genome-Wide Human SNP Array 6.0	Birdseed	Minimac	1000G Phase1 v3	ProbABEL

Table 14 Genotyping information for participating cohorts in Aim 3

Abbreviations: EA: European American, AA: African American, AS: Asian, FB: Family-based, PB: Population-based, GENOA: Genetic Epidemiology of Arteriopathy, FHS: Framingham Heart Study, HyperGEN: Family Blood Pressure Program, JHS: Jackson Heart Study, GenSalt: Genetic Epidemiology Network of Salt Sensitivity

							Ef	fect ⁴	Dire	ction ⁵			P value ⁶			Most	Additional
Locus ¹	Nearest Genes ²	rsID	CHR:POS ³	EA	EAF	N	G	GxE	G	GxE	2 DF Joint	1 DF Int. (βge)	Model 1 SNP (βg1)	Model 2 SNP (β _{G2})	Model 3 SNP (β _{G3})	significant Analysis	significant Analysis
1	Y_RNA; ZDHHC19; SLC51A; PCYT1A	rs11185517	3:195931583	t	0.20	916	-0.40	-11.38	(-)	(+)	1.36E-08	1.73E-06	6.52E-01	2.06E-01	2.84E-01	EA.WOD.PP	
2	RP11-313E19.1	rs7678931	4:177545534	t	0.06	1650	1.27	-8.49	+-		4.82E-08	6.33E-06	3.87E-01	4.12E-02	3.64E-02	AA.ALL.PP	
3		rs6922858	6:888734	а	0.97	1816	-1.17	-8.90	-	-	1.20E-08	3.60E-04	5.30E-01	1.99E-06	1.70E-06	AS.WOD.DBP	AS.ALL.DBP; AS.WOD.MAP
4	NKAIN2	rs868549	6:125027163	t	0.07	1650	0.89	-8.65	++		1.09E-09	3.03E-06	5.21E-01	1.85E-01	1.95E-01	AA.ALL.PP	
5	FOXP2	rs6953359	7:114188174	а	0.93	1650	-1.19	-7.67			5.20E-09	3.55E-06	2.12E-01	2.24E-02	1.28E-02	AA.ALL.DBP	AA.ALL.MAP
6	RUSC2 ; RPL36AP33	rs17370852	9:35510178	а	0.91	1800	-0.31	9.76	-(-)-	+(-)+	2.41E-12	7.65E-13	3.79E-01	5.79E-01	4.47E-01	EA.ALL.SBP	EA.ALL.PP; EA.ALL.MAP
7	FBXO10; RP11- 613M10.8	rs113300617	9:37544221	a	0.07	1650	-0.69	-6.75			1.12E-10	4.90E-05	5.80E-01	5.65E-03	6.25E-03	AA.ALL.MAP	
8	U3	rs17753104	10:28700861	а	0.14	1372	-0.87	-12.47	+-(+)	(-)	2.49E-08	5.20E-06	4.71E-01	9.46E-02	1.11E-01	EA.ALL.SBP	
9		rs115038395	12:11757330	а	0.08	1650	-2.62	-7.94			1.36E-08	3.42E-03	1.82E-01	1.00E-02	1.46E-02	AA.ALL.SBP	
10	AC067735.1	rs189689705	12:39316220	а	0.93	1650	0.58	6.78	-+	++	2.57E-08	6.90E-03	6.93E-01	2.18E-03	1.90E-03	AA.ALL.MAP	
11	RP11-507B12.2	rs7179425	15:61595293	t	0.90	1800	-1.83	6.71	-(+)-	+(-)+	9.40E-09	3.21E-10	7.33E-03	5.38E-01	5.12E-01	EA.ALL.DBP	
12	DCC	rs7243864	18:50713748	t	0.10	2547	-2.34	-2.42		-+-	2.71E-08	4.88E-02	4.98E-05	1.90E-06	3.02E-06	EA.ALL.MAP	

Table 15 Genetic loci that were genome-wide significant ($P < 5 \times 10^{-8}$) from 2DF joint test in the discovery sample in Aim 3

¹Each locus was determined through LD-based clumping, using ± 1 Mb around index variants, followed by LD threshold of r2 > 0.1; ancestry-specific LDs from 1000 Genomes Project were used when clumping within each ancestry

²Genes near index SNP (+/-10K upstream/downstream distance bp). Gene names were obtained using variant effect predictor (VEP) from Ensembl. Genes with intragenic index variants bolded. ³Positions are based on build 37

⁴Effect is in mmHg unit

⁵Direction of effect in GENOA, FHS, and HyperGEN in European ancestry, respectively; Direction of effect in JHA and HyperGEN in African ancestry, respectively; in parenthesis if cohort was not included in a meta-analysis

⁶Genome-wide significant P-values ($P < 5 \times 10^{-8}$) bolded

Abbreviations: BP: blood pressure; SBP: systolic BP; DBP: diastolic BP; EA: effect allele; EAF: effect allele frequency; 1 DF Interaction P: P-value of the interaction test with 1 degree of freedom; 2 DF Joint P: P-value of the joint test with 2 degrees of freedom of genetic main and interaction effects; Model 2: P-value of SNP only model; Model 3: P-value of SNP in a model with SNP and E; EA: European ancestry; AA: African American ancestry; AS: Asian ancestry; G: Genetic Main; GxE: Interaction; Int.: Interaction; ALL: All participants; WOD: Subject without diuretic u

												Discovery meta	-analysis			
Locus	rsID ¹	CHR	POS	FA	FAF	N	Eff	ect ²	Dire	ction ³			P value			Analysis
Lictus	ISID	Clink	105	LIT	Lill		G	GxE	G	GxE	2 DF Joint	1 DF Interaction (β _{GE})	Model 1 SNP (β _{G1})	Model 2 SNP (β _{G2})	Model 3 SNP (β _{G3})	
1	rs17370852	9	35510178	a	0.91	1800	-1.45	18.71	-?-	+?+	2.41E-12	7.65E-13	3.79E-01	5.79E-01	4.47E-01	EA_ALL_SBP
2	rs113300617	9	37544221	а	0.07	1650	-0.69	-6.75			1.12E-10	4.90E-05	5.80E-01	5.65E-03	6.25E-03	AA_ALL_MAP
3	rs6953359	7	114188174	а	0.93	1650	-1.49	-8.55			2.50E-10	4.30E-06	1.93E-01	2.79E-02	1.53E-02	AA_ALL_MAP
4	rs868549	6	125027163	t	0.07	1650	0.89	-8.65	++		1.09E-09	3.03E-06	5.21E-01	1.85E-01	1.95E-01	AA_ALL_PP
5	rs17370852	9	35510178	а	0.91	1800	-0.31	9.76	+?-	+?+	1.98E-09	7.17E-08	8.02E-01	8.18E-01	7.00E-01	EA_ALL_PP
6	rs6953359	7	114188174	а	0.93	1650	-1.19	-7.67			5.20E-09	3.55E-06	2.12E-01	2.24E-02	1.28E-02	AA_ALL_DBP
7	rs17370852	9	35510178	a	0.91	1800	-1.29	11.60	-?-	+?+	5.89E-09	2.45E-10	1.94E-01	5.33E-01	4.21E-01	EA_ALL_MAP
8	rs7179425	15	61595293	t	0.90	1800	-1.83	6.71	-?-	+?+	9.40E-09	3.21E-10	7.33E-03	5.38E-01	5.12E-01	EA_ALL_DBP
9	rs7179308	15	61595355	a	0.10	1800	1.84	-6.70	+?+	-?-	9.92E-09	3.33E-10	6.91E-03	5.27E-01	5.01E-01	EA_ALL_DBP
10	rs6922858	6	888734	a	0.97	1816	-1.17	-8.90	-	-	1.19E-08	3.61E-04	5.30E-01	1.99E-06	1.70E-06	AS_WOD_DBP
11	rs11185517	3	195931583	t	0.20	916	-0.40	-11.38	?	?	1.36E-08	1.73E-06	6.52E-01	2.06E-01	2.84E-01	EA_WOD_PP
12	rs115038395	12	11757330	а	0.08	1650	-2.62	-7.94			1.36E-08	3.42E-03	1.82E-01	1.00E-02	1.46E-02	AA_ALL_SBP
13	rs75149358	12	11757243	а	0.92	1650	2.59	7.96	++	++	1.42E-08	3.41E-03	1.89E-01	1.08E-02	1.57E-02	AA_ALL_SBP
14	rs4324488	3	195931868	t	0.20	916	-0.41	-11.32	?	?	1.44E-08	1.83E-06	6.39E-01	2.01E-01	2.77E-01	EA_WOD_PP
15	rs74652398	12	11754748	с	0.93	1650	1.95	8.55	++	++	1.65E-08	1.60E-03	3.24E-01	2.13E-02	2.98E-02	AA_ALL_SBP
16	rs6922858	6	888734	а	0.97	1823	-1.07	-8.95	-	-	2.18E-08	3.94E-04	5.70E-01	3.08E-06	2.74E-06	AS_ALL_DBP
17	rs17753104	10	28700861	а	0.14	1372	-0.87	-12.47	+-?	?	2.49E-08	5.20E-06	4.71E-01	9.46E-02	1.11E-01	EA_ALL_SBP
18	rs189689705	12	39316220	а	0.93	1650	0.58	6.78	-+	++	2.57E-08	6.90E-03	6.93E-01	2.18E-03	1.90E-03	AA_ALL_MAP
19	rs7243864	18	50713748	t	0.10	2547	-2.34	-2.42		-+-	2.71E-08	4.88E-02	4.98E-05	1.90E-06	3.02E-06	EA_ALL_MAP
20	rs6788070	3	195932512	t	0.20	916	-0.40	-11.09	?	?	2.91E-08	2.66E-06	6.49E-01	2.10E-01	2.88E-01	EA_WOD_PP
21	rs6922858	6	888734	а	0.97	1816	-2.44	-7.43	-	-	3.05E-08	3.67E-03	2.04E-01	5.25E-07	4.45E-07	AS_WOD_MAP
22	rs6778521	3	195932613	a	0.21	916	-0.39	-11.04	?	?	3.58E-08	2.96E-06	6.61E-01	2.14E-01	2.93E-01	EA_WOD_PP
23	rs7678931	4	177545534	t	0.06	1650	1.27	-8.49	+-		4.82E-08	6.33E-06	3.87E-01	4.12E-02	3.64E-02	AA_ALL_PP
24	rs114796468	6	480849	с	0.93	1650	1.20	6.65	++	++	5.00E-08	1.75E-03	4.62E-01	1.11E-03	1.13E-03	AA_ALL_MAP

Table 16 SNPs that are genome-wide significant ($P < 5 \times 10^{-8}$) or suggestive ($P < 1 \times 10^{-6}$) from 2DF joint test in meta-analysis without LD clumping in Aim 3

25	rs11721985	4	177542233	а	0.94	1650	-1.10	8.35	-+	++	5.40E-08	8.82E-06	4.51E-01	3.25E-02	2.79E-02	AA_ALL_PP
26	rs6922858	6	888734	а	0.97	1823	-2.34	-7.45	-	-	5.57E-08	4.01E-03	2.28E-01	8.06E-07	7.16E-07	AS_ALL_MAP
27	rs7622198	3	159962614	а	0.93	1800	0.97	5.22	-?+	+?+	6.65E-08	2.82E-04	2.05E-01	1.59E-02	1.94E-02	EA_ALL_DBP
28	rs58242808	4	177552843	d	0.07	1650	1.31	-8.34	+-		7.07E-08	8.59E-06	3.67E-01	4.96E-02	4.41E-02	AA_ALL_PP
29	rs116587610	6	31243389	а	0.45	916	-0.64	-3.84	?	-+?	7.29E-08	1.15E-02	3.60E-01	3.95E-01	3.92E-01	EA_WOD_PP
30	rs115987494	6	31243410	t	0.45	916	-0.64	-3.84	?	-+?	7.39E-08	1.16E-02	3.59E-01	3.93E-01	3.90E-01	EA_WOD_PP
31	rs17037007	3	37845418	t	0.07	1650	-2.56	-8.05	-+		7.58E-08	2.16E-04	4.71E-02	7.05E-04	9.39E-04	AA_ALL_PP
32	rs480935	9	124382470	t	0.08	1650	4.71	-8.34	++		7.67E-08	5.31E-07	9.26E-08	2.00E-03	2.65E-03	AA_ALL_DBP
33	rs55900682	6	888396	а	0.98	1816	-1.31	-9.18	-	-	7.68E-08	8.16E-04	5.21E-01	5.38E-06	5.19E-06	AS_WOD_DBP
34	rs75269061	6	888821	а	0.02	1816	1.34	9.19	+	+	7.79E-08	8.58E-04	5.13E-01	5.10E-06	5.00E-06	AS_WOD_DBP
35	rs9834427	3	165772627	а	0.11	1000	6.89	-10.71	++		8.90E-08	1.09E-04	1.56E-07	4.50E-03	5.12E-03	AA_WOD_PP
36	rs12508778	4	177548451	а	0.06	1650	1.42	-8.42	+-		9.78E-08	8.42E-06	3.33E-01	6.40E-02	5.67E-02	AA_ALL_PP
37	rs17078700	13	33747458	а	0.12	1650	-4.71	8.75		++	1.11E-07	7.40E-06	2.14E-07	2.60E-02	2.78E-02	AA_ALL_PP
38	rs114796468	6	480849	с	0.93	1650	0.22	11.38	-+	++	1.17E-07	4.08E-04	9.29E-01	5.74E-03	5.81E-03	AA_ALL_SBP
39	rs55900682	6	888396	а	0.98	1823	-1.23	-9.24	-	-	1.20E-07	8.76E-04	5.53E-01	7.33E-06	7.31E-06	AS_ALL_DBP
40	rs17753104	10	28700861	а	0.14	1372	-0.20	-7.06	+-?	-?	1.21E-07	8.49E-06	7.73E-01	1.99E-01	2.19E-01	EA_ALL_MAP
41	rs75269061	6	888821	а	0.02	1823	1.26	9.25	+	+	1.22E-07	9.18E-04	5.45E-01	7.07E-06	7.14E-06	AS_ALL_DBP
42	rs75269061	6	888821	а	0.02	1816	2.76	7.67	+	+	1.23E-07	6.63E-03	1.93E-01	1.10E-06	1.07E-06	AS_WOD_MAP
43	rs4439939	2	34988474	t	0.66	1815	2.09	0.24	++++	+	1.24E-07	7.98E-01	1.51E-06	4.57E-08	5.88E-08	EA_WOD_MAP
44	rs55900682	6	888396	а	0.98	1816	-2.70	-7.68	-	-	1.25E-07	6.24E-03	2.01E-01	1.20E-06	1.16E-06	AS_WOD_MAP
45	rs1947534	18	41905790	а	0.96	1823	-2.12	-3.99	-	-	1.26E-07	2.53E-02	1.25E-01	3.48E-07	4.08E-07	AS_ALL_DBP
46	rs111983094	1	19847611	d	0.18	1000	-4.83	11.49		++	1.34E-07	2.04E-09	6.87E-06	1.73E-01	1.79E-01	AA_WOD_MAP
47	rs17773338	7	5878333	а	0.88	1502	1.96	4.37	?++	?++	1.40E-07	2.60E-03	2.47E-02	9.89E-05	1.07E-04	EA_WOD_PP
48	rs75800997	11	79797734	t	0.06	1650	-3.19	-8.98			1.41E-07	1.26E-03	8.39E-02	2.26E-04	2.74E-04	AA_ALL_SBP
49	rs926555	6	1039373	а	0.34	2547	-0.81	3.75		+++	1.51E-07	1.24E-07	2.50E-02	9.23E-01	9.27E-01	EA_ALL_DBP
50	rs78476095	11	79777103	с	0.94	1650	1.72	10.98	+-	++	1.57E-07	8.53E-05	3.63E-01	3.29E-03	3.91E-03	AA_ALL_SBP
51	rs200938184	13	92688020	d	0.94	1650	0.11	14.63	-+	++	1.62E-07	1.84E-06	9.54E-01	8.60E-02	1.08E-01	AA_ALL_SBP
52	rs4344598	13	89419933	а	0.11	1000	1.21	-8.71	+-		1.64E-07	2.14E-04	3.61E-01	4.99E-02	6.72E-02	AA_WOD_PP
53	rs9588408	13	89420896	а	0.89	1000	-1.21	8.67	-+	++	1.67E-07	2.25E-04	3.61E-01	4.97E-02	6.68E-02	AA_WOD_PP
54	rs7243864	18	50713748	t	0.10	2547	-2.14	-2.08		-+-	1.73E-07	6.42E-02	6.26E-05	1.67E-06	2.50E-06	EA_ALL_DBP
55	rs9406244	6	1041616	t	0.66	2547	0.80	-3.73	+++		1.77E-07	1.38E-07	2.71E-02	9.03E-01	9.07E-01	EA_ALL_DBP

56	rs77071256	12	131921244	а	0.09	1650	-1.21	-7.36			1.78E-07	7.19E-04	4.17E-01	1.46E-03	1.30E-03	AA_ALL_SBP
57	rs4304213	6	1038795	а	0.34	2547	-0.78	3.69		+++	1.81E-07	1.54E-07	2.89E-02	8.94E-01	8.97E-01	EA_ALL_DBP
58	rs9964923	18	21828099	а	0.02	1816	-5.30	14.60	-	+	1.88E-07	2.61E-07	1.30E-02	4.28E-02	3.82E-02	AS_WOD_SBP
59	rs76774947	3	195933301	а	0.20	916	-0.40	-10.73	?	?	1.95E-07	6.75E-06	6.46E-01	2.13E-01	2.90E-01	EA_WOD_PP
60	rs17097805	14	99262153	a	0.49	1823	-1.10	0.27	-	+	1.95E-07	4.44E-01	3.24E-05	4.72E-08	5.00E-08	AS_ALL_PP
61	rs75269061	6	888821	а	0.02	1823	2.68	7.69	+	+	1.96E-07	7.15E-03	2.12E-01	1.51E-06	1.52E-06	AS_ALL_MAP
62	rs61981355	14	99257470	а	0.49	1823	-1.08	0.23	-	+	1.96E-07	5.13E-01	4.49E-05	4.47E-08	4.74E-08	AS_ALL_PP
63	rs55900682	6	888396	a	0.98	1823	-2.62	-7.71	-	-	1.97E-07	6.73E-03	2.20E-01	1.64E-06	1.61E-06	AS_ALL_MAP
64	rs9949360	18	21833586	a	0.02	1816	-5.58	15.04	-	+	2.05E-07	2.27E-07	1.05E-02	5.54E-02	4.94E-02	AS_WOD_SBP
65	rs61981355	14	99257470	a	0.49	1816	-1.08	0.23	-	+	2.06E-07	5.05E-01	4.54E-05	4.76E-08	5.09E-08	AS_WOD_PP
66	rs56882310	18	41912072	а	0.96	1823	-2.18	-3.88	-	-	2.06E-07	3.02E-02	1.14E-01	5.22E-07	5.70E-07	AS_ALL_DBP
67	rs9959834	18	21827805	а	0.98	1816	5.35	-14.71	+	-	2.08E-07	2.70E-07	1.27E-02	4.63E-02	4.13E-02	AS_WOD_SBP
68	rs1947534	18	41905790	а	0.96	1816	-2.27	-3.65	-	-	2.10E-07	3.82E-02	9.68E-02	4.73E-07	5.08E-07	AS_WOD_DBP
69	rs76358082	4	177563281	с	0.93	1650	-1.31	8.23	-+	++	2.13E-07	1.18E-05	3.55E-01	5.63E-02	5.00E-02	AA_ALL_PP
70	rs7149860	14	99264257	а	0.51	1823	1.09	-0.26	+	-	2.18E-07	4.47E-01	3.48E-05	5.33E-08	5.64E-08	AS_ALL_PP
71	rs79041712	15	94443760	а	0.90	1000	-2.02	7.80		++	2.18E-07	5.73E-04	8.60E-02	2.87E-01	3.17E-01	AA_WOD_MAP
72	rs74355665	3	195933337	t	0.20	916	-0.40	-10.71	?	?	2.19E-07	7.15E-06	6.45E-01	2.13E-01	2.90E-01	EA_WOD_PP
73	rs7150005	14	99264259	a	0.51	1823	1.09	-0.26	+	-	2.20E-07	4.45E-01	3.48E-05	5.53E-08	5.85E-08	AS_ALL_PP
74	rs4991185	12	119841693	t	0.89	1372	-4.57	9.64	?	++?	2.21E-07	1.79E-04	6.10E-05	8.49E-04	8.97E-04	EA_ALL_PP
75	rs4300442	12	119840132	a	0.89	1372	-4.57	9.61	?	++?	2.23E-07	1.85E-04	5.86E-05	8.08E-04	8.53E-04	EA_ALL_PP
76	rs11650288	17	10018145	а	0.20	1815	2.46	-6.89	+++		2.24E-07	3.33E-07	1.45E-03	9.90E-02	1.09E-01	EA_WOD_PP
77	rs12715418	3	4720118	с	0.90	1000	1.63	4.29	++	-+	2.26E-07	6.58E-02	2.07E-01	8.36E-04	1.20E-03	AA_WOD_PP
78	rs12523737	6	120595996	a	0.94	1650	-2.56	12.84		++	2.28E-07	9.36E-06	2.28E-01	1.52E-01	1.49E-01	AA_ALL_SBP
79	rs71176194	19	33571006	d	0.07	1650	-2.75	-4.81			2.31E-07	1.49E-02	9.74E-03	3.95E-06	4.90E-06	AA_ALL_PP
80	rs8101144	19	18715121	a	0.14	1650	-7.37	5.84		++	2.33E-07	1.20E-02	1.91E-08	4.95E-06	3.89E-06	AA_ALL_SBP
81	rs17097805	14	99262153	a	0.49	1816	-1.09	0.28	-	+	2.35E-07	4.19E-01	3.23E-05	6.19E-08	6.53E-08	AS_WOD_PP
82	rs9964923	18	21828099	a	0.02	1823	-5.40	14.60	-	+	2.41E-07	2.71E-07	1.15E-02	5.06E-02	4.58E-02	AS_ALL_SBP
83	rs74491996	3	195933371	а	0.20	916	-0.40	-10.70	?	?	2.42E-07	7.50E-06	6.45E-01	2.13E-01	2.90E-01	EA_WOD_PP
84	rs72995446	19	18716141	a	0.14	1650	-7.41	6.13		++	2.52E-07	8.88E-03	1.99E-08	7.73E-06	5.98E-06	AA_ALL_SBP
85	rs79041712	15	94443760	а	0.90	1000	-0.64	6.14		++	2.52E-07	9.92E-04	5.30E-01	2.58E-02	2.80E-02	AA_WOD_DBP
86	rs75809135	19	46790972	t	0.06	1650	-6.56	3.05		++	2.52E-07	2.72E-01	3.45E-08	1.62E-07	2.68E-07	AA_ALL_PP

87	rs114264676	19	46790358	а	0.06	1650	-6.54	3.03		++	2.54E-07	2.74E-01	3.50E-08	1.65E-07	2.80E-07	AA_ALL_PP
88	rs115905395	5	63473312	t	0.97	1816	-10.28	15.58	-	+	2.55E-07	2.59E-08	2.14E-06	4.82E-01	5.15E-01	AS_WOD_MAP
89	rs71358291	17	10189273	а	0.06	1650	9.55	-9.85	++	+-	2.60E-07	5.31E-04	3.53E-08	2.13E-05	1.73E-05	AA_ALL_PP
90	rs7149860	14	99264257	a	0.51	1816	1.09	-0.28	+	-	2.61E-07	4.22E-01	3.46E-05	6.98E-08	7.35E-08	AS_WOD_PP
91	rs1598669	18	41914949	a	0.96	1823	-2.16	-3.89	-	-	2.62E-07	3.01E-02	1.18E-01	6.51E-07	6.99E-07	AS_ALL_DBP
92	rs28594175	4	109264778	a	0.84	1000	-0.58	9.40		++	2.62E-07	2.96E-04	6.69E-01	1.73E-02	2.77E-02	AA_WOD_SBP
93	rs772563	12	63305545	t	0.45	1815	-3.44	-0.34		++-	2.63E-07	7.97E-01	1.30E-06	5.71E-08	5.20E-08	EA_WOD_SBP
94	rs7097658	10	3709316	t	0.62	1650	3.16	-0.73	++	+-	2.65E-07	5.47E-01	7.64E-06	4.09E-08	3.43E-08	AA_ALL_PP
95	rs1666872	12	63305152	а	0.55	1815	3.44	0.34	+++	+	2.67E-07	7.96E-01	1.32E-06	5.71E-08	5.18E-08	EA_WOD_SBP
96	rs9964923	18	21828099	a	0.02	1816	-3.51	11.81	-	+	2.69E-07	8.61E-07	5.16E-02	1.25E-02	1.05E-02	AS_WOD_MAP
97	rs9959834	18	21827805	a	0.98	1823	5.45	-14.70	+	-	2.72E-07	2.86E-07	1.13E-02	5.46E-02	4.94E-02	AS_ALL_SBP
98	rs926555	6	1039373	а	0.34	2547	-0.90	3.87		+++	2.73E-07	7.58E-07	2.15E-02	9.00E-01	8.90E-01	EA_ALL_MAP
99	rs9949360	18	21833586	a	0.02	1823	-5.68	15.02	-	+	2.74E-07	2.45E-07	9.29E-03	6.51E-02	5.88E-02	AS_ALL_SBP
100	rs2906924	17	27609209	а	0.84	1650	-0.48	6.91	+-	++	2.75E-07	3.34E-05	6.49E-01	2.64E-02	2.75E-02	AA_ALL_PP
101	rs28884496	18	21837697	а	0.98	1816	5.68	-15.23	+	-	2.77E-07	2.82E-07	1.07E-02	6.18E-02	5.50E-02	AS_WOD_SBP
102	rs7150005	14	99264259	а	0.51	1816	1.09	-0.28	+	-	2.79E-07	4.21E-01	3.55E-05	7.11E-08	7.63E-08	AS_WOD_PP
103	rs11898121	2	203088731	а	0.41	1650	-0.09	4.05	+-	++	2.82E-07	1.26E-05	8.60E-01	1.15E-02	1.18E-02	AA_ALL_DBP
104	rs772560	12	63304807	а	0.55	1815	3.43	0.32	+++	+	2.85E-07	8.08E-01	1.32E-06	6.16E-08	5.61E-08	EA_WOD_SBP
105	rs11938527	4	109270817	а	0.16	1000	0.63	-9.52	++		2.86E-07	2.40E-04	6.37E-01	2.30E-02	3.65E-02	AA_WOD_SBP
106	rs772561	12	63304963	a	0.45	1815	-3.44	-0.32		++-	2.86E-07	8.08E-01	1.33E-06	6.14E-08	5.56E-08	EA_WOD_SBP
107	rs888586	7	5878648	t	0.86	1502	1.99	3.39	?++	?++	2.88E-07	9.82E-03	1.30E-02	4.53E-05	4.81E-05	EA_WOD_PP
108	rs772555	12	63304283	а	0.45	1815	-3.44	-0.32		++-	2.90E-07	8.09E-01	1.34E-06	6.21E-08	5.62E-08	EA_WOD_SBP
109	rs772557	12	63304584	а	0.55	1815	3.43	0.32	+++	+	2.91E-07	8.08E-01	1.34E-06	6.17E-08	5.59E-08	EA_WOD_SBP
110	rs9959834	18	21827805	а	0.98	1816	3.56	-11.91	+	-	2.94E-07	8.68E-07	5.00E-02	1.37E-02	1.14E-02	AS_WOD_MAP
111	rs59078432	8	22697576	t	0.86	1650	4.48	-0.46	++	-+	2.95E-07	7.79E-01	3.32E-07	1.11E-07	1.31E-07	AA_ALL_MAP
112	rs116741667	6	31243170	а	0.50	916	-0.18	-3.70	-+?	-+?	2.97E-07	1.31E-02	7.90E-01	8.56E-01	8.62E-01	EA_WOD_PP
113	rs772559	12	63304757	a	0.55	1815	3.47	0.26	+++	+	2.98E-07	8.46E-01	1.23E-06	6.61E-08	5.97E-08	EA_WOD_SBP
114	rs8004974	14	99257911	t	0.51	1823	1.07	-0.23	+	-	3.00E-07	5.11E-01	5.68E-05	6.97E-08	7.50E-08	AS_ALL_PP
115	rs28478722	4	109269457	а	0.16	1000	0.62	-9.50	++		3.04E-07	2.53E-04	6.43E-01	2.29E-02	3.61E-02	AA_WOD_SBP
116	rs2246214	12	63304868	a	0.55	1815	3.42	0.34	+++	+	3.07E-07	8.01E-01	1.45E-06	6.88E-08	6.06E-08	EA_WOD_SBP
117	rs141541522	14	99257953	d	0.51	1823	1.07	-0.23	+	-	3.11E-07	5.14E-01	5.87E-05	7.13E-08	7.54E-08	AS_ALL_PP

-								-								
118	rs28526354	4	109263616	a	0.16	1000	0.56	-9.33	++		3.12E-07	3.38E-04	6.79E-01	1.70E-02	2.70E-02	AA_WOD_SBP
119	rs4304213	6	1038795	а	0.34	2547	-0.89	3.83		+++	3.14E-07	9.28E-07	2.20E-02	8.96E-01	8.87E-01	EA_ALL_MAP
120	rs73212121	3	195933424	t	0.79	916	0.39	10.62	++?	++?	3.14E-07	9.04E-06	6.55E-01	2.21E-01	2.99E-01	EA_WOD_PP
121	rs17033685	1	115867742	a	0.92	1650	2.01	8.52	++	++	3.15E-07	9.16E-04	1.93E-01	3.51E-04	4.07E-04	AA_ALL_SBP
122	rs772568	12	63307346	с	0.55	1815	3.48	0.17	+++	+	3.28E-07	8.99E-01	1.14E-06	6.89E-08	6.37E-08	EA_WOD_SBP
123	rs699586	12	63306382	t	0.55	1815	3.47	0.18	+++	+	3.30E-07	8.92E-01	1.18E-06	7.01E-08	6.43E-08	EA_WOD_SBP
124	rs772567	12	63307326	t	0.55	1815	3.48	0.17	+++	+	3.30E-07	8.99E-01	1.15E-06	6.89E-08	6.35E-08	EA_WOD_SBP
125	rs772566	12	63307248	t	0.55	1815	3.48	0.17	+++	+	3.31E-07	9.00E-01	1.14E-06	6.94E-08	6.39E-08	EA_WOD_SBP
126	rs148910075	11	79798963	а	0.06	1650	-3.17	-9.05			3.31E-07	1.62E-03	9.18E-02	3.12E-04	3.79E-04	AA_ALL_SBP
127	rs28482267	15	94352467	a	0.14	1000	4.62	-15.79	++		3.32E-07	2.33E-06	1.28E-02	9.95E-01	9.79E-01	AA_WOD_SBP
128	rs115905395	5	63473312	t	0.97	1823	-10.19	15.59	-	+	3.32E-07	3.74E-08	3.31E-06	5.29E-01	5.64E-01	AS_ALL_MAP
129	rs28380415	4	109266821	t	0.16	1000	0.58	-9.50	++		3.32E-07	2.68E-04	6.65E-01	2.13E-02	3.34E-02	AA_WOD_SBP
130	rs772565	12	63306853	t	0.55	1815	3.47	0.17	+++	+	3.33E-07	8.97E-01	1.17E-06	7.04E-08	6.51E-08	EA_WOD_SBP
131	rs9406244	6	1041616	t	0.66	2547	0.89	-3.83	+++		3.35E-07	8.94E-07	2.29E-02	9.05E-01	8.95E-01	EA_ALL_MAP
132	rs699585	12	63306132	t	0.55	1815	3.47	0.17	+++	+	3.36E-07	8.98E-01	1.17E-06	7.01E-08	6.49E-08	EA_WOD_SBP
133	rs9949360	18	21833586	a	0.02	1816	-3.73	12.14	-	+	3.40E-07	8.02E-07	4.34E-02	1.72E-02	1.43E-02	AS_WOD_MAP
134	rs772569	12	63307760	а	0.45	1815	-3.48	-0.18		++-	3.49E-07	8.93E-01	1.19E-06	7.27E-08	6.71E-08	EA_WOD_SBP
135	rs772556	12	63304447	t	0.45	1815	-3.47	-0.14		++-	3.52E-07	9.17E-01	1.17E-06	6.85E-08	6.32E-08	EA_WOD_SBP
136	rs56882310	18	41912072	а	0.96	1816	-2.32	-3.55	-	-	3.54E-07	4.50E-02	8.84E-02	6.94E-07	6.93E-07	AS_WOD_DBP
137	rs79474826	4	177571411	а	0.07	1650	1.45	-8.45	+-		3.57E-07	1.05E-05	3.13E-01	7.39E-02	6.66E-02	AA_ALL_PP
138	rs1729531	13	72893992	t	0.40	1212	-0.04	5.06	+?-	+?+	3.59E-07	1.06E-06	9.53E-01	9.26E-03	1.19E-02	EA_WOD_DBP
139	rs1860132	4	109262095	с	0.16	1000	0.54	-9.22	++		3.62E-07	4.06E-04	6.88E-01	1.69E-02	2.66E-02	AA_WOD_SBP
140	rs258097	16	55765906	а	0.09	1650	-4.70	-2.75			3.64E-07	2.58E-01	7.63E-04	5.44E-07	7.36E-07	AA_ALL_SBP
141	rs115100192	18	41929553	с	0.04	1823	2.11	3.94	+	+	3.67E-07	2.88E-02	1.29E-01	9.68E-07	1.01E-06	AS_ALL_DBP
142	rs28668769	4	109264793	а	0.16	1000	0.94	-10.03	++		3.70E-07	1.22E-04	4.87E-01	4.25E-02	6.52E-02	AA_WOD_SBP
143	rs2200226	4	53738359	t	0.42	1000	-3.67	0.73		++	3.71E-07	5.51E-01	1.12E-07	7.81E-07	5.81E-07	AA_WOD_MAP
144	rs28884496	18	21837697	а	0.98	1823	5.78	-15.21	+	-	3.71E-07	3.06E-07	9.46E-03	7.23E-02	6.51E-02	AS_ALL_SBP
145	rs1537905	1	88672066	а	0.05	1650	-5.20	0.80		+-	3.71E-07	6.98E-01	1.83E-07	4.29E-06	3.54E-06	AA_ALL_MAP
146	rs9964923	18	21828099	a	0.02	1823	-3.63	11.86	-	+	3.74E-07	1.06E-06	4.64E-02	1.56E-02	1.32E-02	AS_ALL_MAP
147	rs8004974	14	99257911	t	0.51	1816	1.06	-0.24	+	-	3.76E-07	4.85E-01	5.75E-05	9.17E-08	9.62E-08	AS_WOD_PP
148	rs10163977	18	41935966	a	0.04	1823	2.11	3.93	+	+	3.81E-07	2.96E-02	1.27E-01	1.02E-06	1.06E-06	AS_ALL_DBP

149	rs10600624	3	144108989	d	0.88	1000	-3.75	11.52		++	3.82E-07	1.14E-07	1.36E-02	8.92E-01	8.53E-01	AA_WOD_PP
150	rs148258828	18	41909525	а	0.96	1823	-2.04	-4.16	-	-	3.86E-07	2.42E-02	1.51E-01	1.30E-06	1.31E-06	AS_ALL_DBP
151	rs17097800	14	99257740	t	0.49	1823	-1.06	0.22	-	+	3.89E-07	5.22E-01	6.84E-05	8.85E-08	9.36E-08	AS_ALL_PP
152	rs141541522	14	99257953	d	0.51	1816	1.06	-0.24	+	-	3.90E-07	4.88E-01	5.94E-05	9.37E-08	9.87E-08	AS_WOD_PP
153	rs16861081	1	168592866	a	0.87	1000	-4.18	5.70		++	3.93E-07	1.61E-04	1.65E-06	3.91E-02	4.59E-02	AA_WOD_DBP
154	rs76905458	10	28695807	t	0.14	1372	-1.01	-11.55	+-?	?	3.94E-07	3.94E-05	4.07E-01	8.93E-02	1.05E-01	EA_ALL_SBP
155	rs73132694	5	93926680	t	0.18	1650	-3.73	5.93		++	3.94E-07	6.73E-06	3.18E-07	4.61E-03	3.10E-03	AA_ALL_MAP
156	rs7711380	5	93928945	t	0.82	1650	3.73	-5.94	++		3.95E-07	6.71E-06	3.22E-07	4.65E-03	3.12E-03	AA_ALL_MAP
157	rs7725462	5	93928868	t	0.18	1650	-3.73	5.94		++	3.95E-07	6.72E-06	3.22E-07	4.65E-03	3.12E-03	AA_ALL_MAP
158	rs59078432	8	22697576	t	0.86	1650	7.17	-1.50	++	-+	3.97E-07	5.44E-01	2.36E-07	2.86E-07	3.28E-07	AA_ALL_SBP
159	rs77979528	1	115869092	а	0.08	1650	-2.21	-8.33			3.98E-07	1.19E-03	1.55E-01	2.55E-04	2.78E-04	AA_ALL_SBP
160	rs138824325	10	28702905	а	0.14	1372	-1.02	-11.38	+-?	?	4.00E-07	4.39E-05	4.02E-01	8.76E-02	1.03E-01	EA_ALL_SBP
161	rs79465916	16	73454000	t	0.82	1000	-1.09	10.62		++	4.00E-07	1.57E-05	4.99E-01	2.10E-02	2.49E-02	AA_WOD_SBP
162	rs200700876	2	67436058	d	0.06	1650	-1.40	-5.11			4.02E-07	3.07E-03	2.06E-01	1.81E-04	1.03E-04	AA_ALL_DBP
163	rs151312462	2	67436059	d	0.06	1650	-1.40	-5.11			4.04E-07	3.07E-03	2.06E-01	1.82E-04	1.03E-04	AA_ALL_DBP
164	rs8287	4	53732586	t	0.53	1000	5.63	-2.18	++		4.06E-07	2.36E-01	7.27E-08	1.22E-06	1.03E-06	AA_WOD_SBP
165	rs112520268	7	5880020	t	0.15	1815	-2.09	-2.74		+	4.06E-07	3.49E-02	3.59E-03	2.96E-05	3.15E-05	EA_WOD_PP
166	rs9959834	18	21827805	а	0.98	1823	3.68	-11.96	+	-	4.12E-07	1.07E-06	4.52E-02	1.71E-02	1.44E-02	AS_ALL_MAP
167	rs1598669	18	41914949	а	0.96	1816	-2.30	-3.57	-	-	4.14E-07	4.48E-02	9.14E-02	8.68E-07	8.59E-07	AS_WOD_DBP
168	rs28482267	15	94352467	а	0.14	1000	1.39	-9.24	++		4.16E-07	7.40E-06	2.34E-01	1.63E-01	1.55E-01	AA_WOD_MAP
169	rs7030417	9	134502556	а	0.13	1650	-7.35	3.98		++	4.20E-07	1.37E-01	3.78E-08	6.11E-06	8.33E-06	AA_ALL_SBP
170	rs4968882	17	66310599	а	0.73	1815	0.18	4.07	-++	+++	4.25E-07	1.66E-04	7.71E-01	1.95E-02	2.12E-02	EA_WOD_PP
171	rs9997202	4	109260797	а	0.16	1000	0.56	-9.12	++		4.30E-07	4.85E-04	6.82E-01	1.87E-02	2.90E-02	AA_WOD_SBP
172	rs12603759	17	10022257	t	0.20	1815	2.21	-6.42	+++		4.31E-07	7.63E-07	3.29E-03	1.75E-01	1.95E-01	EA_WOD_PP
173	rs1331485	6	1045462	а	0.35	2547	-0.83	3.67		+++	4.41E-07	2.96E-07	2.18E-02	9.97E-01	1.00E+00	EA_ALL_DBP
174	rs115905395	5	63473312	t	0.97	1816	-12.18	17.58	-	+	4.42E-07	1.06E-07	2.07E-06	3.03E-01	3.24E-01	AS_WOD_SBP
175	rs114194661	6	476348	t	0.06	1650	-1.64	-6.11			4.43E-07	4.71E-03	3.10E-01	1.06E-03	1.14E-03	AA_ALL_MAP
176	rs189689705	12	39316220	а	0.93	1650	0.39	5.68	-+	++	4.46E-07	6.93E-03	7.48E-01	3.40E-03	3.09E-03	AA_ALL_DBP
177	rs112142223	7	5883137	t	0.15	1815	-2.30	-2.47		+	4.53E-07	5.73E-02	1.35E-03	1.22E-05	1.31E-05	EA_WOD_PP
178	rs11220332	11	125940800	а	0.88	1650	1.66	7.83	++	++	4.60E-07	1.96E-03	2.86E-01	1.45E-04	1.89E-04	AA_ALL_SBP
179	rs2240405	7	5880392	с	0.14	1815	-2.08	-2.71		+	4.63E-07	3.62E-02	3.73E-03	3.22E-05	3.47E-05	EA_WOD_PP

180	rs9949360	18	21833586	а	0.02	1823	-3.84	12.19	-	+	4.66E-07	9.86E-07	3.92E-02	2.12E-02	1.79E-02	AS_ALL_MAP
181	rs28884496	18	21837697	a	0.98	1816	3.81	-12.30	+	-	4.70E-07	9.76E-07	4.29E-02	2.03E-02	1.68E-02	AS_WOD_MAP
182	rs72884862	18	21843356	a	0.02	1816	-6.03	15.70	-	+	4.74E-07	3.44E-07	8.73E-03	9.34E-02	8.23E-02	AS_WOD_SBP
183	rs17097800	14	99257740	t	0.49	1816	-1.05	0.24	-	+	4.79E-07	4.96E-01	6.93E-05	1.14E-07	1.22E-07	AS_WOD_PP
184	rs17033692	1	115869850	t	0.92	1650	2.13	8.38	++	++	4.83E-07	1.15E-03	1.70E-01	3.13E-04	3.38E-04	AA_ALL_SBP
185	rs113300617	9	37544221	а	0.07	1650	-1.63	-8.58			4.86E-07	1.17E-03	3.99E-01	7.15E-03	8.14E-03	AA_ALL_SBP
186	rs11931137	4	109259817	а	0.16	1000	0.57	-9.03	++		4.88E-07	5.74E-04	6.76E-01	2.03E-02	3.13E-02	AA_WOD_SBP
187	rs75620742	1	162117393	а	0.07	1650	-0.32	7.45	+-	++	4.91E-07	1.52E-06	7.07E-01	1.38E-02	1.47E-02	AA_ALL_DBP
188	rs73196659	3	107082584	а	0.90	1800	-3.15	10.43	-?-	+?+	4.95E-07	1.11E-07	6.23E-03	4.30E-01	4.29E-01	EA_ALL_PP
189	rs500945	13	72912370	а	0.36	1815	-1.01	-3.29			5.00E-07	8.98E-04	4.73E-02	3.13E-04	4.04E-04	EA_WOD_MAP
190	rs885581	1	62445706	a	0.47	1650	-1.21	-2.23			5.13E-07	7.44E-03	1.83E-02	8.58E-06	9.78E-06	AA_ALL_DBP
191	rs80315633	5	93955316	d	0.29	1000	-3.69	4.35		++	5.15E-07	3.65E-04	8.92E-08	4.88E-04	3.89E-04	AA_WOD_DBP
192	rs1331486	6	1045382	t	0.65	2547	0.80	-3.65	+++		5.22E-07	3.37E-07	2.70E-02	9.35E-01	9.40E-01	EA_ALL_DBP
193	rs138939593	18	41930279	с	0.04	1823	2.15	3.93	+	+	5.32E-07	3.12E-02	1.23E-01	1.42E-06	1.38E-06	AS_ALL_DBP
194	rs72646023	13	85079520	t	0.06	1650	-0.05	-9.95	-+		5.44E-07	5.82E-04	9.80E-01	7.20E-02	5.68E-02	AA_ALL_SBP
195	rs843605	4	121426884	t	0.93	1650	3.29	6.95	++	++	5.50E-07	1.75E-02	4.91E-02	1.37E-05	1.35E-05	AA_ALL_SBP
196	rs72646022	13	85079280	t	0.94	1650	0.04	9.93	+-	++	5.56E-07	5.95E-04	9.81E-01	7.23E-02	5.71E-02	AA_ALL_SBP
197	rs2643205	15	39007170	t	0.57	2547	0.92	-5.06	+++		5.62E-07	3.70E-08	6.32E-02	8.53E-01	8.24E-01	EA_ALL_PP
198	rs4960486	6	1044908	t	0.65	2547	0.79	-3.64	+++		5.65E-07	3.68E-07	2.90E-02	9.22E-01	9.27E-01	EA_ALL_DBP
199	rs115905395	5	63473312	t	0.97	1823	-12.04	17.53	-	+	5.65E-07	1.20E-07	2.78E-06	3.37E-01	3.60E-01	AS_ALL_SBP
200	rs2250624	12	47355587	a	0.29	1000	0.37	-6.08	-+		5.70E-07	3.46E-06	6.72E-01	9.41E-03	9.74E-03	AA_WOD_DBP
201	rs1331485	6	1045462	а	0.35	2547	-0.94	3.78		+++	5.76E-07	1.35E-06	1.60E-02	7.76E-01	7.67E-01	EA_ALL_MAP
202	rs147344979	8	83509698	t	0.93	1650	5.29	4.96	++	++	5.77E-07	7.64E-02	1.36E-03	2.56E-06	2.96E-06	AA_ALL_SBP
203	rs9392251	6	1045864	а	0.66	2547	0.79	-3.66	+++		5.80E-07	3.72E-07	2.97E-02	9.13E-01	9.16E-01	EA_ALL_DBP
204	rs1537905	1	88672066	а	0.05	1650	-8.30	3.80		+-	5.89E-07	2.81E-01	1.01E-07	1.22E-04	1.03E-04	AA_ALL_SBP
205	rs115100192	18	41929553	с	0.04	1816	2.24	3.62	+	+	5.91E-07	4.28E-02	1.02E-01	1.30E-06	1.26E-06	AS_WOD_DBP
206	rs114194661	6	476348	t	0.06	1650	-0.86	-10.45	+-		5.94E-07	1.22E-03	7.26E-01	5.84E-03	6.18E-03	AA_ALL_SBP
207	rs111769553	1	168590413	а	0.87	1000	-4.18	5.56		++	5.98E-07	2.49E-04	2.03E-06	3.63E-02	4.22E-02	AA_WOD_DBP
208	rs3800570	7	138411332	с	0.92	1800	1.06	3.98	+?+	+?+	6.14E-07	1.21E-03	1.74E-01	2.01E-02	2.33E-02	EA_ALL_DBP
209	rs72884862	18	21843356	а	0.02	1823	-6.12	15.68	-	+	6.15E-07	3.72E-07	7.80E-03	1.07E-01	9.58E-02	AS_ALL_SBP
210	rs10849654	12	119838146	a	0.10	1372	4.35	-9.30	++?	?	6.16E-07	3.14E-04	1.21E-04	1.24E-03	1.32E-03	EA_ALL_PP

211	rs112991830	2	203025238	а	0.54	1000	-0.59	5.10		-+	6.28E-07	1.07E-04	4.50E-01	6.45E-02	6.20E-02	AA_WOD_MAP
212	rs138824325	10	28702905	a	0.14	1372	-0.28	-6.67	+-?	?	6.34E-07	3.24E-05	6.82E-01	1.75E-01	1.95E-01	EA_ALL_MAP
213	rs534618	13	72913721	а	0.63	1815	1.01	3.27	+++	+++	6.36E-07	9.76E-04	4.76E-02	3.29E-04	4.26E-04	EA_WOD_MAP
214	rs10163977	18	41935966	а	0.04	1816	2.25	3.60	+	+	6.36E-07	4.40E-02	1.00E-01	1.38E-06	1.32E-06	AS_WOD_DBP
215	rs13020769	2	152153552	а	0.52	1000	-1.86	-2.38			6.37E-07	4.45E-02	6.50E-03	9.82E-07	1.24E-06	AA_WOD_DBP
216	rs74135423	10	43429610	t	0.92	1650	0.66	4.79	++	++	6.45E-07	7.79E-04	4.84E-01	1.22E-03	1.21E-03	AA_ALL_DBP
217	rs72219928	13	72935136	d	0.32	1815	-1.00	-2.86			6.54E-07	4.84E-03	4.69E-02	2.78E-04	3.21E-04	EA_WOD_MAP
218	rs7580215	2	214045537	a	0.82	1000	3.11	-6.73	++		6.57E-07	2.40E-06	4.79E-05	3.05E-01	3.09E-01	AA_WOD_DBP
219	rs28884496	18	21837697	a	0.98	1823	3.93	-12.34	+	-	6.59E-07	1.22E-06	3.89E-02	2.49E-02	2.09E-02	AS_ALL_MAP
220	rs55947090	13	85080173	a	0.94	1650	0.03	9.95	+-	++	6.63E-07	6.04E-04	9.89E-01	7.44E-02	5.87E-02	AA_ALL_SBP
221	rs73137851	7	64403345	t	0.10	1372	-1.80	-12.29	?	?	6.65E-07	5.60E-04	2.45E-01	4.83E-02	4.89E-02	EA_ALL_SBP
222	rs1332182	9	21507082	t	0.59	1000	0.66	-4.56	+-		6.82E-07	1.75E-03	4.57E-01	2.01E-02	2.22E-02	AA_WOD_PP
223	rs343084	7	35572165	а	0.10	1000	-3.89	-3.91		-+	6.85E-07	5.52E-02	2.97E-03	7.01E-05	1.03E-04	AA_WOD_PP
224	rs62012629	15	79070351	а	0.25	916	3.32	6.67	++?	++?	6.89E-07	3.71E-02	1.15E-02	1.50E-03	1.29E-03	EA_WOD_SBP
225	rs111397655	7	38658037	t	0.09	1823	-2.97	-0.89	-	-	6.91E-07	5.14E-01	5.88E-03	2.48E-07	1.63E-07	AS_ALL_SBP
226	rs116552539	15	50465911	a	0.19	1000	-2.93	-1.28			6.94E-07	3.47E-01	7.80E-04	4.72E-07	4.11E-07	AA_WOD_DBP
227	rs9387798	6	120803246	а	0.06	1650	1.96	-12.16	++		6.94E-07	7.79E-06	3.08E-01	9.50E-02	8.91E-02	AA_ALL_SBP
228	rs148258828	18	41909525	а	0.96	1816	-2.18	-3.83	-	-	6.95E-07	3.65E-02	1.21E-01	1.80E-06	1.66E-06	AS_WOD_DBP
229	rs138740080	20	20904948	d	0.25	1650	-0.21	-3.66	+-		6.95E-07	2.36E-04	7.06E-01	1.02E-03	7.36E-04	AA_ALL_DBP
230	rs2777315	9	124383214	a	0.10	1650	3.44	-6.85	++		6.97E-07	1.63E-06	2.91E-06	2.36E-02	2.97E-02	AA_ALL_DBP
231	rs58774946	1	168589420	t	0.13	1000	4.18	-5.50	++		6.99E-07	2.90E-04	2.16E-06	3.55E-02	4.12E-02	AA_WOD_DBP
232	rs4238352	15	61593303	t	0.08	1800	1.90	-6.24	+?+	-?-	7.00E-07	1.59E-08	7.76E-03	3.20E-01	3.03E-01	EA_ALL_DBP
233	rs138100114	7	5881839	d	0.84	1815	2.30	2.63	+++	+	7.02E-07	5.13E-02	2.32E-03	2.18E-05	2.17E-05	EA_WOD_PP
234	rs9834427	3	165772627	а	0.11	1000	8.90	-14.41	++		7.04E-07	8.61E-05	5.42E-06	2.09E-02	2.27E-02	AA_WOD_SBP
235	rs2777314	9	124383844	t	0.10	1650	3.44	-6.85	++		7.06E-07	1.63E-06	2.96E-06	2.37E-02	3.00E-02	AA_ALL_DBP
236	rs76905458	10	28695807	t	0.14	1372	-0.27	-6.75	+-?	?	7.10E-07	3.13E-05	6.96E-01	1.81E-01	2.01E-01	EA_ALL_MAP
237	rs2200226	4	53738359	t	0.42	1000	-5.58	1.24		++	7.32E-07	5.12E-01	1.47E-07	1.70E-06	1.28E-06	AA_WOD_SBP
238	rs151312462	2	67436059	d	0.06	1650	-1.45	-5.85			7.33E-07	3.33E-03	2.65E-01	4.01E-04	2.13E-04	AA_ALL_MAP
239	rs1331486	6	1045382	t	0.65	2547	0.90	-3.76	+++		7.34E-07	1.57E-06	2.10E-02	8.47E-01	8.37E-01	EA_ALL_MAP
240	rs200700876	2	67436058	d	0.06	1650	-1.45	-5.85			7.34E-07	3.33E-03	2.65E-01	3.99E-04	2.13E-04	AA_ALL_MAP
241	rs2469761	8	22367274	а	0.41	1650	2.55	-3.74	++		7.44E-07	3.02E-05	1.59E-07	1.86E-03	2.02E-03	AA_ALL_DBP

242	rs67064413	1	238171619	d	0.18	1815	0.97	-5.73	-++		7.50E-07	8.29E-06	1.83E-01	9.17E-01	8.73E-01	EA_WOD_PP
243	rs560076	13	72935038	а	0.32	1815	-1.02	-2.81			7.51E-07	5.27E-03	4.23E-02	2.48E-04	2.86E-04	EA_WOD_MAP
244	rs74640988	13	72934978	а	0.67	1815	1.10	2.75	+++	+++	7.56E-07	7.10E-03	2.93E-02	1.68E-04	1.95E-04	EA_WOD_MAP
245	rs9392251	6	1045864	a	0.66	2547	0.90	-3.78	+++		7.56E-07	1.61E-06	2.22E-02	8.61E-01	8.52E-01	EA_ALL_MAP
246	rs6940225	6	120799255	a	0.94	1650	-1.75	11.89		++	7.59E-07	1.24E-05	3.63E-01	8.05E-02	7.47E-02	AA_ALL_SBP
247	rs9401265	6	120798508	a	0.94	1650	-1.75	11.89		++	7.61E-07	1.24E-05	3.63E-01	8.05E-02	7.47E-02	AA_ALL_SBP
248	rs111983094	1	19847611	d	0.18	1000	-4.04	9.15		++	7.61E-07	1.09E-08	2.17E-05	1.86E-01	1.91E-01	AA_WOD_DBP
249	rs113876113	3	53719994	a	0.07	1650	-0.79	-7.50			7.66E-07	1.22E-04	5.21E-01	1.45E-02	1.63E-02	AA_ALL_PP
250	rs6050422	20	25177920	a	0.33	1000	2.23	-5.61	++		7.75E-07	2.03E-06	1.70E-03	6.97E-01	7.26E-01	AA_WOD_DBP
251	rs79322622	14	78381284	t	0.07	1650	0.55	-8.14	-+		7.79E-07	1.68E-04	6.99E-01	2.19E-01	2.22E-01	AA_ALL_MAP
252	rs35867523	2	203095575	d	0.41	1650	-0.10	3.98	+-	++	7.79E-07	1.95E-05	8.49E-01	1.40E-02	1.45E-02	AA_ALL_DBP
253	rs12523737	6	120595996	а	0.94	1650	-2.39	8.33		++	7.85E-07	2.25E-06	6.23E-02	3.87E-01	3.67E-01	AA_ALL_MAP
254	rs4960486	6	1044908	t	0.65	2547	0.89	-3.75	+++		7.86E-07	1.68E-06	2.28E-02	8.66E-01	8.54E-01	EA_ALL_MAP
255	rs13219862	6	120793223	t	0.06	1650	1.74	-11.87	++		8.08E-07	1.32E-05	3.66E-01	8.07E-02	7.49E-02	AA_ALL_SBP
256	rs537143	9	124387137	а	0.10	1650	3.42	-6.90	++		8.17E-07	1.55E-06	3.93E-06	2.72E-02	3.42E-02	AA_ALL_DBP
257	rs144597722	7	21473268	d	0.88	1000	-2.16	8.16		++	8.36E-07	5.24E-07	3.94E-02	5.26E-01	4.98E-01	AA_WOD_DBP
258	rs10123663	9	132763543	а	0.83	2547	-0.17	-4.28	-+-		8.37E-07	2.19E-05	7.32E-01	3.94E-02	3.63E-02	EA_ALL_MAP
259	rs10789860	11	111969965	t	0.09	1650	-3.24	-2.59			8.57E-07	1.21E-01	1.31E-04	5.77E-08	1.41E-07	AA_ALL_DBP
260	rs10006594	4	36652453	t	0.80	1815	1.20	4.70	+++	+++	8.59E-07	9.34E-04	9.46E-02	2.11E-03	1.66E-03	EA_WOD_PP
261	rs9895990	17	66712506	a	0.87	1800	2.98	2.56	+?+	+?+	8.60E-07	1.09E-01	6.93E-04	3.73E-04	3.96E-04	EA_ALL_MAP
262	rs78373079	3	21687409	t	0.94	1650	-0.52	7.99		++	8.68E-07	1.40E-04	7.30E-01	4.12E-02	3.70E-02	AA_ALL_PP
263	rs7649309	3	55217829	а	0.34	1650	0.22	-2.87	+-		8.71E-07	3.23E-03	6.90E-01	1.16E-02	1.54E-02	AA_ALL_DBP
264	rs114642658	19	46792651	t	0.06	1650	-6.63	3.70		++	8.72E-07	1.92E-01	1.08E-07	6.16E-07	1.04E-06	AA_ALL_PP
265	rs258096	16	55762882	а	0.10	1650	-4.46	-2.68			8.75E-07	2.70E-01	1.25E-03	1.13E-06	1.68E-06	AA_ALL_SBP
266	rs9307319	4	109274125	t	0.15	1000	0.81	-9.62	++		8.77E-07	3.96E-04	5.56E-01	5.22E-02	8.05E-02	AA_WOD_SBP
267	rs6494255	15	61595365	а	0.08	1800	1.94	-6.23	+?+	-?-	8.81E-07	1.84E-08	6.82E-03	3.02E-01	2.87E-01	EA_ALL_DBP
268	rs5857499	4	36666783	d	0.20	1815	-1.30	-4.82			8.82E-07	1.07E-03	8.11E-02	1.65E-03	1.28E-03	EA_WOD_PP
269	rs111397655	7	38658037	t	0.09	1816	-2.87	-0.97	-	-	8.84E-07	4.77E-01	7.64E-03	3.62E-07	2.29E-07	AS_WOD_SBP
270	rs513891	13	72946718	с	0.66	1815	1.03	3.06	+++	++++	8.90E-07	2.21E-03	3.38E-02	2.15E-04	2.67E-04	EA_WOD_MAP
271	rs75458041	16	76851070	a	0.93	1650	-2.62	10.61		++	8.93E-07	5.73E-05	7.63E-02	5.13E-01	5.68E-01	AA_ALL_MAP
272	rs2176167	2	203100918	t	0.59	1650	0.09	-3.97	-+		8.96E-07	2.11E-05	8.64E-01	1.36E-02	1.41E-02	AA_ALL_DBP

273	rs74847356	1	247998148	a	0.10	1650	-2.10	-2.49			8.98E-07	1.03E-01	3.39E-02	2.89E-05	1.89E-05	AA_ALL_MAP
274	rs1149048	1	31198733	а	0.18	1650	-3.04	1.01		++	9.02E-07	3.87E-01	2.58E-06	2.42E-07	1.64E-07	AA_ALL_DBP
275	rs1486201	6	120791750	а	0.06	1650	1.72	-11.82	++		9.06E-07	1.45E-05	3.71E-01	8.07E-02	7.46E-02	AA_ALL_SBP
276	rs519377	13	72947336	а	0.66	1815	1.02	3.05	+++	+++	9.10E-07	2.22E-03	3.50E-02	2.32E-04	2.89E-04	EA_WOD_MAP
277	rs138939593	18	41930279	с	0.04	1816	2.28	3.60	+	+	9.16E-07	4.63E-02	9.67E-02	1.95E-06	1.75E-06	AS_WOD_DBP
278	rs4954158	2	135426618	t	0.22	1000	-4.24	5.67		++	9.22E-07	1.19E-03	4.95E-07	5.99E-03	2.51E-03	AA_WOD_PP
279	rs16861034	1	168587942	t	0.87	1000	-4.20	5.44		++	9.25E-07	3.72E-04	2.21E-06	3.17E-02	3.66E-02	AA_WOD_DBP
280	rs78428774	11	79790957	t	0.94	1650	1.91	10.04	++	++	9.30E-07	4.72E-04	3.32E-01	3.70E-03	4.14E-03	AA_ALL_SBP
281	rs6531476	4	36653541	t	0.80	1815	1.22	4.63	+++	+++	9.40E-07	1.03E-03	8.79E-02	1.83E-03	1.42E-03	EA_WOD_PP
282	rs2443496	8	22365788	а	0.59	1650	-2.49	3.79		++	9.41E-07	2.35E-05	2.61E-07	3.15E-03	3.50E-03	AA_ALL_DBP
283	rs74045701	13	33749052	t	0.11	1650	-4.64	8.79		++	9.48E-07	2.64E-05	1.07E-06	3.68E-02	3.85E-02	AA_ALL_PP
284	rs147340264	15	32318437	d	0.09	1650	0.09	6.50	+-	++	9.55E-07	1.11E-05	9.17E-01	2.40E-02	2.24E-02	AA_ALL_DBP
285	rs562136	13	72935310	а	0.68	1815	0.96	2.84	+++	+++	9.60E-07	4.85E-03	5.39E-02	3.59E-04	4.08E-04	EA_WOD_MAP
286	rs2000523	11	105632364	с	0.80	1000	1.00	4.08	-+	++	9.70E-07	9.47E-03	2.72E-01	9.36E-05	1.20E-04	AA_WOD_MAP
287	rs57955811	9	37535368	d	0.92	1650	0.40	6.11	-+	++	9.72E-07	2.88E-04	7.28E-01	2.16E-02	2.24E-02	AA_ALL_MAP
288	rs10791773	11	105631278	a	0.80	1000	1.01	4.06	-+	++	9.79E-07	9.83E-03	2.67E-01	9.13E-05	1.18E-04	AA_WOD_MAP
289	rs1467194	2	135430621	а	0.20	1000	-4.36	5.82		++	9.81E-07	1.09E-03	8.99E-07	2.05E-03	1.48E-03	AA_WOD_PP
290	rs61948170	13	34797815	a	0.03	1816	6.94	-2.21	+	-	9.85E-07	3.18E-01	6.38E-05	2.23E-07	3.37E-07	AS_WOD_SBP

¹SNPs are duplicate if found from multiple analyses

²Effect is in mmHg unit

³Direction of effect in GENOA, FHS, and HyperGEN EA in European ancestry, respectively; Direction of effect in JHA and HyperGEN AA in African American ancestry, respectively; Question mark if cohort was not included in a meta-analysis Abbreviations: BP: blood pressure; SBP: systolic BP; DBP: diastolic BP; EA: effect allele; EAF: effect allele frequency; 1 DF Interaction P: P-value of the interaction test with 1 degree of freedom; 2 DF Joint P: P-value of the joint test with 2 degrees of freedom of genetic main and interaction effects; Model 2: P-value of SNP only model; Model 3: P-value of SNP in a model with SNP and E; EA: European ancestry; AA: African American ancestry; AS: Asian ancestry; G: Genetic Main; GxE: Interaction; ALL: All participants; WOD: Subject without diuretic use Table 17 Replication of novel loci from Li et al. in European and African ancestry in Aim 3

						P V	alue			
rs ID	CHR	POS		A	LL			W	OD	
			SBP	DBP	MAP	РР	SBP	DBP	MAP	РР
rs11104632	12	86747816	0.69	0.44	0.55	0.49	0.58	0.28	0.36	0.93
rs13211840	6	149153883	0.75	0.14	0.36	0.27	0.71	0.27	0.38	0.55
rs2567241	4	141542612	0.87	0.27	0.50	0.94	0.70	0.29	0.42	0.76

European ancestry

African ancestry

						PV	alue					
rs ID	CHR	POS		ALL WOD								
			SBP	DBP	MAP	РР	SBP	DBP	MAP	РР		
rs11104632	12	86747816	0.55	0.90	0.87	0.30	0.26	1.00	0.60	0.19		
rs13211840	6	149153883	0.20	0.15	0.17	0.25	0.21	0.32	0.32	0.19		
rs2567241	4	141542612	0.40	0.10	0.20	0.75	0.65	0.35	0.59	0.27		

P-value < 0.1 bolded

Abbreviations: P Value: P-value for the joint test with 2 degrees of freedom, testing genetic main and interaction effects; ALL: All participants; WOD: Participants without diuretic use

Table 18 Replication of known blood pressure loci using 2DF joint test in Aim 3

Known blood pressure loci until June 2017 (M=239) FDR adjusted P-value < 0.1 bolded ALL: All participants; WOD: Participants without diuretic use "-" if a SNP did not exist in genotyping data

European Americans

rs ID	CHR	POS	Gene / Locus	Reference	FDR adjusted P-value								
						AI	LL			W	OD		
					SBP DBP MAP 0.982 0.918 0.992				SBP	DBP	MAP	PP	
rs10059921	5	87514515	TMEM161B	Warren, ture Genetics 2017	0.982	0.918	0.992	0.971	0.871	0.885	0.893	0.938	
rs10077885	5	114390121	TRIM36	Ehret, ture Genetics 2016	0.737	0.969	0.992	0.902	0.738	0.912	0.918	0.869	
rs10078021	5	75038431	POC5	Warren, ture Genetics 2017	0.991	0.922	0.992	0.902	0.871	0.914	0.962	0.869	
rs1008058	5	122435627	PRDM6	Surendran, ture Genetics 2016	0.730	0.953	0.659	0.902	0.731	0.888	0.836	0.869	
rs1011018	7	139463264	HIPK2	Warren, ture Genetics 2017	0.737	0.712	0.898	0.929	0.598	0.719	0.676	0.869	
rs10224002	7	151415041	PRKAG2	Tragante, AJHG 2014	0.991	0.999	0.992	0.983	0.950	0.940	0.962	0.973	
rs10260816	7	46010100	IGFBP3	Kato, ture Genetics 2015	0.884	0.712	0.659	0.950	0.783	0.843	0.585	0.925	
rs1036477	15	48914926	FBN1	Tragante, AJHG 2014	0.737	0.598	0.659	0.917	0.710	0.682	0.585	0.869	
rs10407022	19	2249477	АМН	Surendran, ture Genetics 2016	0.991	0.970	0.992	0.971	0.856	0.711	0.676	0.938	
rs1060105	12	123806219	SBNO1	Surendran, ture Genetics 2016	0.884	0.910	0.982	0.969	0.738	0.811	0.676	0.925	
rs10760117	9	123586737	PSMD5	Ehret, ture Genetics 2016	0.737	0.983	0.982	0.902	0.858	0.940	0.918	0.869	
rs10826995	10	32082658	ARHGAP12	Warren, ture Genetics 2017	0.974	0.953	0.992	0.994	0.710	0.885	0.676	0.869	
rs10850411	12	115387796	TBX5-TBX3	Ehret, ture 2011	0.737	0.589	0.552	0.917	0.598	0.711	0.585	0.869	
rs10916082	1	227252626	CDC42BPA	Warren, ture Genetics 2017	0.991	0.922	0.992	0.971	0.925	0.885	0.893	0.945	
rs10922502	1	89360158	GTF2B	Warren, ture Genetics 2017	0.737	0.983	0.992	0.902	0.738	0.940	0.988	0.869	
rs10943605	6	79655477	PHIP	Liu, ture Genetics 2016	0.940	0.970	0.992	0.902	0.925	0.922	0.962	0.869	
rs10948071	6	43280713	CRIP3	Ganesh, AJHG 2014	0.991	0.983	0.992	0.962	0.927	0.885	0.879	0.951	
rs10995311	10	64564934	ADO	Surendran, ture Genetics 2016	0.737	0.848	0.659	0.902	0.710	0.711	0.585	0.869	
rs110419	11	8252853	LMO1	Surendran, ture Genetics 2016	0.991	0.791	0.992	0.971	0.925	0.876	0.960	0.979	
rs11066280	12	112817783	RPL6-ALDH1	Kato, ture Genetics 2011	-	-	-	-	-	-	-	-	
rs111245230	9	113169775	SVEP1	Liu, ture Genetics 2016	0.619	0.918	0.630	0.902	0.710	0.888	0.809	0.869	
rs11128722	3	14958126	FGD5	Ehret, ture Genetics 2016	0.974	0.970	0.992	0.920	0.738	0.968	0.918	0.869	
rs11154027	6	121781390	GJA1	Warren, ture Genetics 2017	0.737	0.983	0.992	0.902	0.925	0.940	0.992	0.869	
rs11191548	10	104846178	CYP17A1-NT5C2	Newton-Cheh, ture Genetics 2009	0.884	0.983	0.992	0.950	0.842	0.942	0.960	0.869	

rs112184198	10	102604514	PAX2	Warren, ture Genetics 2017	0.991	0.970	0.992	0.971	0.871	0.887	0.918	0.869
rs11222084	11	130273230	ADAMTS8	Wain, ture Genetics 2011	0.940	0.910	0.992	0.902	0.836	0.711	0.962	0.417
rs11229457	11	58207203	OR5B12	Surendran, ture Genetics 2016	0.892	0.970	0.982	0.917	0.925	0.913	0.988	0.869
rs112557609	1	56576924	RP4-710M16.1-PPAP2B	Warren, ture Genetics 2017	0.997	0.953	0.992	0.959	0.998	0.888	0.962	0.869
rs1126464	16	89704365	DPEP1	Surendran, ture Genetics 2016	0.991	0.937	0.992	0.971	0.871	0.843	0.838	0.938
rs11442819	11	45208141	PRDM11	Warren, ture Genetics 2017	0.730	0.514	0.530	0.917	0.925	0.843	0.893	0.966
rs11537751	11	47587452	PTPMT1	Liu, ture Genetics 2016	0.954	0.970	0.992	0.902	0.925	0.968	0.992	0.930
rs11556924	7	129663496	ZC3HC1	Ehret, ture Genetics 2016	0.737	0.970	0.982	0.902	0.710	0.930	0.893	0.869
rs115795127	9	85993901	FRMD3	Liang, PLoS Genetics 2017	-	-	-	-	-	-	-	-
rs11639856	16	24788645	TNRC6A	Liu, ture Genetics 2016	0.954	0.983	0.992	0.950	0.925	0.986	0.960	0.869
rs11643209	16	75331044	CFDP1	Warren, ture Genetics 2017	0.619	0.953	0.630	0.902	0.396	0.843	0.585	0.732
rs11689667	2	85491365	TCF7L1	Warren, ture Genetics 2017	0.929	0.918	0.992	0.902	0.921	0.703	0.913	0.869
rs1173771	5	32815028	NPR3-C5orf23	Ehret, ture 2011	0.884	0.712	0.859	0.929	0.925	0.849	0.943	0.938
rs11953630	5	157845402	EBF1	Ehret, ture 2011	0.884	0.922	0.992	0.902	0.783	0.828	0.879	0.938
rs11977526	7	46008110	IGFBP1-IGFBP3	Zhu, AJHG 2015	0.737	0.605	0.552	0.929	0.710	0.843	0.585	0.869
rs12374077	3	185317674	SENP2	Warren, ture Genetics 2017	0.846	0.970	0.992	0.920	0.921	0.914	0.940	0.938
rs12408022	1	217718789	GPATCH2	Warren, ture Genetics 2017	0.974	0.943	0.992	0.902	0.871	0.888	0.960	0.869
rs1250259	2	216300482	FN1	Warren, ture Genetics 2017	0.991	0.953	0.992	0.902	0.925	0.888	0.918	0.869
rs12521868	5	131784393	C5orf56	Surendran, ture Genetics 2016	0.991	0.999	0.992	0.971	0.871	0.968	0.962	0.869
rs12579720	12	20173764	PDE3A	Kato, ture Genetics 2015	0.737	0.483	0.549	0.962	0.598	0.569	0.585	0.869
rs12627651	21	44760603	CRYAA-SIK1	Ehret, ture Genetics 2016	0.974	0.978	0.992	0.927	0.842	0.888	0.960	0.789
rs12628032	22	19967980	ARVCF	Warren, ture Genetics 2017	0.730	0.712	0.552	0.902	0.871	0.888	0.893	0.938
rs12731740	1	208024820	CD34	Warren, ture Genetics 2017	0.884	0.970	0.992	0.929	0.167	0.569	0.186	0.732
rs1275988	2	26914364	KCNK3	Ganesh, AJHG 2014	0.737	0.598	0.552	0.902	0.710	0.777	0.585	0.732
rs12921187	16	4943019	PPL	Warren, ture Genetics 2017	0.991	0.910	0.992	0.971	0.925	0.888	0.960	0.872
rs12940887	17	47402807	ZNF652	Ehret, ture 2011	0.999	0.970	0.992	0.971	0.871	0.888	0.918	0.869
rs12941318	17	1333598	CRK	Warren, ture Genetics 2017	0.991	0.999	0.992	0.971	0.871	0.942	0.940	0.869
rs12946454	17	43208121	PLCD3	Newton-Cheh, ture Genetics 2009	0.759	0.970	0.992	0.902	0.836	0.843	0.838	0.925
rs12958173	18	42141977	SETBP1	Ehret, ture Genetics 2016	0.972	0.983	0.992	0.962	0.710	0.843	0.785	0.869
rs13002573	2	164915208	FIGN-GRB14	Wain, ture Genetics 2011	0.757	0.712	0.773	0.950	0.738	0.777	0.722	0.869
rs13082711	3	27537909	SLC4A7	Ehret, ture 2011	0.884	0.969	0.992	0.929	0.871	0.885	0.893	0.938
rs13107325	4	103188709	SLC39A8	Ehret, ture 2011	0.991	0.712	0.982	0.962	0.871	0.828	0.879	0.869
rs13139571	4	156645513	GUCY1A3-GUCY1B3	Ehret, ture 2011	0.991	0.983	0.992	0.977	0.871	0.885	0.893	0.938
rs13209747	6	127115454	RSPO3	Francescini, AJHG 2013	0.884	0.953	0.982	0.959	0.752	0.843	0.879	0.869
rs13238550	7	131059056	MKLN1	Warren, ture Genetics 2017	0.646	0.623	0.552	0.902	0.738	0.711	0.676	0.938
rs1327235	20	10969030	JAG1	Ehret, ture 2011	0.892	0.377	0.530	0.929	0.871	0.569	0.585	0.938

rs13333226	16	20365654	UMOD	Padmabhan, PloS Genetics 2010	0.991	0.970	0.992	0.971	0.710	0.912	0.676	0.869
rs13359291	5	122476457	PRDM6	Kato, ture Genetics 2015	0.730	0.794	0.659	0.902	0.710	0.912	0.879	0.869
rs1344653	2	19730845	OSR1	Kato, ture Genetics 2015	0.619	0.377	0.468	0.902	0.598	0.569	0.585	0.732
rs1378942	15	75077367	CYP1A1-ULK3	Newton-Cheh, ture Genetics 2009	0.737	0.712	0.552	0.902	0.738	0.682	0.676	0.869
rs139236208	12	94880742	CCDC41	Warren, ture Genetics 2017	0.757	0.970	0.992	0.917	0.598	0.912	0.785	0.869
rs139385870	1	1685921	DK-CPSF3L	Warren, ture Genetics 2017	0.974	0.605	0.552	0.969	0.950	0.711	0.676	0.869
rs1401454	11	16250183	SOX6	Francescini, AJHG 2013	0.759	0.910	0.992	0.929	0.783	0.885	0.918	0.938
rs1421811	5	32714270	NPR3-C5orf23	Johnson, AJHG 2011	0.991	0.712	0.982	0.969	0.871	0.843	0.879	0.945
rs143112823	3	154707967	RP11-439C8.2	Warren, ture Genetics 2017	0.991	0.970	0.992	0.977	0.858	0.967	0.957	0.869
rs1438896	2	145646072	TEX41	Warren, ture Genetics 2017	0.991	0.953	0.992	0.971	0.975	0.888	0.918	0.938
rs1446468	2	164963486	FIGN-GRB14	Wain, ture Genetics 2011	0.991	0.910	0.926	0.996	0.998	0.892	0.893	0.938
rs1458038	4	81164723	FGF5	Ehret, ture 2011	0.884	0.712	0.982	0.983	0.710	0.719	0.676	0.869
rs147212971	6	166178451	PDE10A	Warren, ture Genetics 2017	-	-	-	-	-	-	-	-
rs1530440	10	63524591	C10orf107	Newton-Cheh, ture Genetics 2009	0.737	0.618	0.785	0.950	0.738	0.888	0.893	0.869
rs1563788	6	43308363	TTBK1, SLC22A7, ZNF318	Kato, ture Genetics 2015	0.991	0.970	0.992	0.969	0.925	0.914	0.962	0.938
rs1566497	4	169717148	PALLD	Warren, ture Genetics 2017	0.990	0.839	0.982	0.971	0.998	0.940	0.960	0.951
rs167479	19	11526765	RGL3	Surendran, ture Genetics 2016	-	-	-	-	-	-	-	-
rs16823124	2	183224127	PDE1A	Tragante, AJHG 2014	0.972	0.918	0.982	0.990	0.925	0.888	0.918	0.938
rs16833934	3	163737250	MIR1263	Simino, AJHG 2014	0.884	0.837	0.659	0.969	0.925	0.888	0.879	0.938
rs16849225	2	164906820	FIGN-GRB14	Kato, ture Genetics 2011	0.737	0.598	0.630	0.950	0.710	0.682	0.585	0.869
rs16851397	3	141134818	ZBTB38	Surendran, ture Genetics 2016	-	-	-	-	-	-	-	-
rs17030613	1	113190807	ST7L-CAPZA1-MOV10	Kato, ture Genetics 2011	0.991	0.970	0.992	0.971	0.871	0.942	0.893	0.869
rs17059668	4	174584663	chr4mb174	Warren, ture Genetics 2017	-	-	-	-	-	-	-	-
rs17080102	6	151004770	PLEKHG1	Francescini, AJHG 2013	0.999	0.910	0.992	0.971	0.925	0.914	0.988	0.869
rs17249754	12	90060586	ATP2B1	Levy, ture Genetics 2009	0.737	0.377	0.552	0.971	0.752	0.569	0.722	0.966
rs17367504	1	11862778	MTHFR-NPPB	Newton-Cheh, ture Genetics 2009	0.737	0.910	0.982	0.929	0.871	0.888	0.918	0.869
rs17428471	7	27337867	EVX1-HOXA	Francescini, AJHG 2013	0.884	0.970	0.992	0.902	0.710	0.970	0.906	0.732
rs17477177	7	106411858	PIK3CG	Wain, ture Genetics 2011	0.737	0.910	0.864	0.902	0.710	0.843	0.838	0.869
rs17608766	17	45013271	GOSR2	Ehret, ture 2011	0.814	0.999	0.992	0.902	0.871	0.942	0.962	0.869
rs17638167	19	11584818	ELAVL3	Ehret, ture Genetics 2016	0.991	0.970	0.992	0.969	0.871	0.968	0.962	0.869
rs1799945	6	26091179	HFE	Ehret, ture 2011	0.619	0.712	0.530	0.902	0.710	0.887	0.585	0.869
rs1801253	10	115805056	ADRB1	Johnson, Hypertension 2011	0.737	0.970	0.992	0.902	0.925	0.935	0.962	0.869
rs1813353	10	18707448	CACNB2	Ehret, ture 2011	0.974	0.999	0.992	0.950	0.783	0.885	0.676	0.938
rs1925153	6	56102780	COL21A1	Liu, ture Genetics 2016	0.991	0.969	0.992	0.920	0.925	0.888	0.940	0.925
rs1953126	9	123640500	PHF19	Liu, ture Genetics 2016	0.991	0.953	0.992	0.902	0.856	0.885	0.893	0.869
rs1975487	2	55809054	PNPT1	Ehret, ture Genetics 2016	0.991	0.953	0.992	0.920	0.998	0.888	0.960	0.938

2004776	1	220040702	ACT	L 1 A III C 2011	0.000	0.000	0.000	0.017	0.025	0.012	0.010	0.070
rs2004776	1	230848702	AGI	Johnson, AJHG 2011	0.999	0.922	0.992	0.917	0.925	0.912	0.918	0.869
rs2014408	11	16365282	SOX6	Johnson, AJHG 2011	0.619	0.589	0.552	0.902	0.598	0.711	0.676	0.930
rs2014912	4	86715670	ARHGAP24	Kato, ture Genetics 2015	0.672	0.423	0.530	0.962	0.598	0.571	0.585	0.925
rs2071518	8	120435812	NOV	Wain, ture Genetics 2011	0.853	0.970	0.992	0.920	0.998	0.942	0.962	0.950
rs2107595	7	19049388	HDAC9	Kato, ture Genetics 2015	0.884	0.589	0.992	0.589	0.925	0.733	0.918	0.869
rs217727	11	2016908	H19	Tragante, AJHG 2014	0.759	0.970	0.992	0.902	0.710	0.682	0.585	0.869
rs2188962	5	131770805	C5orf56	Liu, ture Genetics 2016	0.991	0.983	0.992	0.971	0.871	0.968	0.962	0.869
rs2240736	17	59485393	C17orf82,TBX2	Kato, ture Genetics 2015	0.991	0.899	0.828	0.982	0.998	0.912	0.918	0.938
rs2270860	6	43270151	SLC22A7	Liu, ture Genetics 2016	0.991	0.970	0.992	0.962	0.925	0.888	0.960	0.938
rs2282978	7	92264410	CDK6	Tragante, AJHG 2014	0.771	0.969	0.992	0.902	0.871	0.968	0.988	0.869
rs2289081	2	20881840	C2orf43	Warren, ture Genetics 2017	0.840	0.918	0.727	0.917	0.738	0.785	0.585	0.869
rs2291435	4	38387395	TBC1D1-FLJ13197	Ehret, ture Genetics 2016	0.884	0.943	0.992	0.971	0.871	0.888	0.928	0.938
rs2302061	19	2226772	DOT1L	Liu, ture Genetics 2016	0.991	0.999	0.992	0.962	-	-	-	-
rs2304130	19	19789528	ZNF101	Surendran, ture Genetics 2016	-	-	-	-	-	-	-	-
rs2306374	3	138119952	MRAS	Warren, ture Genetics 2017	0.619	0.598	0.552	0.902	0.222	0.682	0.585	0.732
rs2384550	12	115352731	TBX5-TBX3	Levy, ture Genetics 2009	0.913	0.970	0.992	0.929	0.738	0.885	0.879	0.869
rs2467099	17	73949045	ACOX1	Warren, ture Genetics 2017	0.999	0.943	0.992	0.962	0.966	0.711	0.879	0.869
rs2493292	1	3328659	PRDM16	Liu, ture Genetics 2016	0.999	0.970	0.992	0.971	-	-	-	-
rs2521501	15	91437388	FURIN-FES	Ehret, ture 2011	0.901	0.953	0.992	0.902	0.958	0.914	0.962	0.938
rs2579519	2	96675166	GPAT2-FAHD2CP	Warren, ture Genetics 2017	0.991	0.910	0.992	0.971	0.871	0.888	0.893	0.938
rs2760061	1	228191075	WNT3A	Warren, ture Genetics 2017	0.901	0.655	0.630	0.971	0.925	0.843	0.879	0.869
rs2782980	10	115781527	ADRB1	Wain, ture Genetics 2011	0.957	0.910	0.992	0.929	0.858	0.746	0.893	0.938
rs2854275	6	32628428	HLA-DQB1	Tragante, AJHG 2014	0.991	0.943	0.992	0.971	-	-	-	-
rs2898290	8	11433909	BLK-GATA4	Ho, Jourl of Hypertension 2011	0.974	0.970	0.992	0.990	0.989	0.922	0.962	0.938
rs2932538	1	113216543	ST7L-CAPZA1-MOV10	Ehret, ture 2011	0.884	0.918	0.630	0.929	0.871	0.912	0.893	0.869
rs2969070	7	2512545	CHST12-LFNG	Ehret, ture Genetics 2016	0.884	0.508	0.552	0.962	0.710	0.571	0.585	0.869
rs2972146	2	227100698	2q36.3	Surendran, ture Genetics 2016	0.619	0.910	0.828	0.902	0.598	0.885	0.785	0.734
rs2978098	8	101676675	SNX31	Warren, ture Genetics 2017	0.991	0.943	0.992	0.996	0.950	0.940	0.962	0.938
rs2978456	8	42324765	SLC20A2	Warren, ture Genetics 2017	0.737	0.712	0.571	0.920	0.784	0.888	0.879	0.925
rs3184504	12	111884608	SH2B3	Levy, ture Genetics 2009	0.759	0.712	0.659	0.917	0.710	0.571	0.585	0.869
rs319690	3	47927484	MAP4	Wain, ture Genetics 2011	0.737	0.970	0.992	0.902	0.783	0.912	0.893	0.869
rs33063	16	69640217	NFAT5	Tragante, AJHG 2014	0.737	0.714	0.915	0.902	0.710	0.843	0.676	0.869
rs34591516	8	142367087	GPR20	Surendran, ture Genetics 2016	0.940	0.703	0.773	0.971	0.871	0.711	0.676	0.997
rs347591	3	11290122	HRH1-ATG7	Ganesh, Human Molecular Genetics 2013	0.991	0.970	0.992	0.920	0.842	0.885	0.869	0.869
rs35199222	15	81013037	ABHD17C	Warren, ture Genetics 2017	0.888	0.953	0.992	0.950	0.925	0.887	0.940	0.938
rs35444	12	115552437	TBX5-TBX3	Kato, ture Genetics 2011	0.737	0.910	0.992	0.917	0.710	0.942	0.975	0.841

rs36022378	3	49913705	CAMKV-ACTBP13	Warren, ture Genetics 2017	0.999	0.970	0.997	0.962	0.776	0.295	0.675	0.938
rs36083386	6	152397912	ESR1	Warren, ture Genetics 2017	0.759	0.910	0.859	0.962	0.925	0.733	0.893	0.938
rs3741378	11	65408937	SIPA1	Tragante, AJHG 2014	0.913	0.712	0.982	0.983	0.925	0.914	0.957	0.938
rs3771371	2	71627539	ZNF638	Warren, ture Genetics 2017	0.737	0.983	0.992	0.902	0.738	0.888	0.960	0.732
rs3774372	3	41877414	ULK4	Ehret, ture 2011	0.737	0.686	0.530	0.929	0.776	0.719	0.585	0.869
rs381815	11	16902268	PLEKHA7	Levy, ture Genetics 2009	0.759	0.910	0.769	0.902	0.752	0.711	0.676	0.869
rs3889199	1	59653742	FGGY	Warren, ture Genetics 2017	0.913	0.970	0.992	0.902	0.858	0.968	0.998	0.869
rs3918226	7	150690176	NOS3	Johnson, AJHG 2011	0.737	0.953	0.982	0.902	-	-	-	-
rs409558	6	31708147	MSH5-SAPCD1	Liu, ture Genetics 2016	0.884	0.759	0.659	0.929	0.871	0.780	0.676	0.869
rs419076	3	169100886	MECOM	Ehret, ture 2011	0.940	0.598	0.982	0.920	0.940	0.711	0.960	0.869
rs4245739	1	204518842	MDM4	Ganesh, Human Molecular Genetics 2013	0.884	0.508	0.552	0.962	0.925	0.843	0.893	0.938
rs4247374	19	7252756	INSR	Ehret, ture Genetics 2016	-	-	-	-	-	-	-	-
rs4308	17	61559625	ACE	Warren, ture Genetics 2017	0.884	0.970	0.992	0.920	0.783	0.888	0.943	0.869
rs4360494	1	38455891	SF3A3	Warren, ture Genetics 2017	0.991	0.999	0.992	0.971	0.925	0.888	0.936	0.869
rs4364717	9	21801530	MTAP	Warren, ture Genetics 2017	0.619	0.508	0.530	0.902	0.434	0.280	0.384	0.869
rs4373814	10	18419972	CACNB2	Ehret, ture 2011	0.960	0.969	0.992	0.969	0.871	0.888	0.893	0.869
rs4387287	10	105677897	OBFC1	Surendran, ture Genetics 2016	0.814	0.712	0.982	0.917	0.871	0.912	0.962	0.869
rs4454254	8	141060027	TRAPPC9	Warren, ture Genetics 2017	0.913	0.983	0.992	0.950	0.752	0.885	0.879	0.938
rs4494250	10	96563757	CYP2C19	Liu, ture Genetics 2016	0.997	0.983	0.992	0.969	0.925	0.888	0.962	0.938
rs449789	6	159699125	FNDC1	Warren, ture Genetics 2017	0.737	0.910	0.659	0.902	0.925	0.912	0.918	0.938
rs452036	14	23865885	МҮН6	Surendran, ture Genetics 2016	0.999	0.970	0.992	0.971	0.921	0.912	0.940	0.938
rs4530754	5	122855416	CSNK1G3	Liu, ture Genetics 2016	0.974	0.918	0.982	0.971	0.783	0.840	0.838	0.973
rs4590817	10	63467553	C10orf107	Ehret, ture 2011	0.782	0.618	0.982	0.971	0.871	0.843	0.879	0.951
rs4601790	11	65353906	EHBP1L1	Simino, AJHG 2014	0.991	0.943	0.992	0.950	0.925	0.899	0.893	0.869
rs4660293	1	40028180	PABPC4	Liu, ture Genetics 2016	0.884	0.970	0.992	0.929	0.925	0.888	0.960	0.938
rs470113	22	40729614	TNRC6B	Surendran, ture Genetics 2016	0.737	0.377	0.487	0.950	0.598	0.569	0.585	0.869
rs4728142	7	128573967	7q32.1	Surendran, ture Genetics 2016	0.991	0.910	0.992	0.927	0.925	0.827	0.893	0.870
rs4746172	10	75855842	VCL	Tragante, AJHG 2014	0.619	0.427	0.530	0.902	0.710	0.623	0.676	0.869
rs4823006	22	29451671	ZNRF3	Liu, ture Genetics 2016	0.884	0.717	0.982	0.969	0.598	0.569	0.675	0.869
rs4841569	8	11452177	BLK-GATA4	Simino, AJHG 2014	0.884	0.970	0.992	0.927	0.856	0.968	0.962	0.869
rs4846049	1	11850365	MTHFR-NPPB	Johnson, AJHG 2011	0.737	0.910	0.982	0.950	0.710	0.711	0.676	0.925
rs4952611	2	40567743	SLC8A1	Warren, ture Genetics 2017	0.884	0.956	0.982	0.917	0.598	0.746	0.585	0.869
rs5068	1	11905974	MTHFR-NPPB	Newton-Cheh, ture Genetics 2009	0.954	0.922	0.992	0.969	0.783	0.843	0.811	0.938
rs5219	11	17409572	KCNJ11	Liu, ture Genetics 2016	0.991	0.970	0.992	0.929	0.783	0.892	0.893	0.869
rs55701159	2	25139596	ADCY3	Warren, ture Genetics 2017	0.991	0.970	0.992	0.998	0.925	0.885	0.893	0.986
rs55780018	2	208526140	METTL21A-AC079767.3	Warren, ture Genetics 2017	0.954	0.953	0.992	0.971	0.989	0.914	0.962	0.952

rs6015450	20	57751117	GS-EDN3	Ehret, ture 2011	0.737	0.712	0.552	0.929	0.760	0.569	0.585	0.938
rs6081613	20	19465907	SLC24A3	Warren, ture Genetics 2017	0.954	0.922	0.992	0.902	0.738	0.914	0.960	0.869
rs6095241	20	47308798	PREX1	Surendran, ture Genetics 2016	0.759	0.970	0.992	0.902	0.856	0.843	0.893	0.938
rs6108168	20	8626271	PLCB1	Warren, ture Genetics 2017	0.991	0.970	0.992	0.969	0.856	0.711	0.585	0.938
rs62012628	15	79070000	ADAMTS7	Warren, ture Genetics 2017	0.840	0.918	0.945	0.920	0.037	0.295	0.102	0.417
rs62080325	17	42060631	РҮҮ	Warren, ture Genetics 2017	0.954	0.970	0.992	0.962	0.925	0.912	0.962	0.938
rs62104477	19	30294991	CCNE1	Warren, ture Genetics 2017	0.913	0.983	0.992	0.917	0.921	0.738	0.676	0.938
rs6271	9	136522274	DBH	Ehret, ture Genetics 2016	0.737	0.712	0.630	0.929	0.388	0.569	0.290	0.869
rs633185	11	100593538	FLJ32810-TMEM133	Ehret, ture 2011	0.737	0.969	0.659	0.902	0.731	0.888	0.601	0.869
rs6487543	12	26438189	SSPN	Warren, ture Genetics 2017	0.737	0.970	0.930	0.902	0.925	0.940	0.962	0.941
rs661348	11	1905292	LSP1-TNNT3	Johnson, AJHG 2011	0.884	0.943	0.992	0.902	0.925	0.968	0.992	0.869
rs6686889	1	25030470	chr1mb25	Warren, ture Genetics 2017	0.974	0.970	0.992	0.962	0.958	0.914	0.895	0.938
rs6712094	2	165043460	FIGN-GRB14	Ganesh, AJHG 2014	0.814	0.953	0.982	0.917	0.856	0.922	0.957	0.869
rs6722745	2	108875244	SULT1C3	Liu, ture Genetics 2016	0.991	0.970	0.992	0.971	0.738	0.843	0.893	0.732
rs67330701	11	69079707	MYEOV	Warren, ture Genetics 2017	-	-	-	-	-	-	-	-
rs6797587	3	48197614	CDC25A	Simino, AJHG 2014	0.954	0.953	0.992	0.902	0.776	0.887	0.918	0.869
rs6825911	4	111381638	ENPEP	Kato, ture Genetics 2011	0.991	0.918	0.992	0.977	0.921	0.843	0.943	0.869
rs687621	9	136137065	ABO	Surendran, ture Genetics 2016	0.913	0.508	0.630	0.902	0.925	0.623	0.676	0.869
rs6891344	5	123136656	CSNK1G3	Ehret, ture Genetics 2016	0.884	0.970	0.992	0.917	0.921	0.914	0.940	0.938
rs6911827	6	22130601	CASC15	Warren, ture Genetics 2017	0.730	0.377	0.530	0.950	0.598	0.569	0.585	0.925
rs6969780	7	27159136	HOXA3	Liu, ture Genetics 2016	0.991	0.859	0.926	0.929	0.871	0.682	0.676	0.938
rs709209	1	6278414	RNF207	Surendran, ture Genetics 2016	0.991	0.970	0.992	0.917	0.710	0.295	0.548	0.869
rs7103648	11	47461783	RAPSN, PSMC3, SLC39A13	Ehret, ture Genetics 2016	0.940	0.978	0.992	0.902	0.871	0.922	0.992	0.869
rs7126805	11	828916	CRACR2B	Warren, ture Genetics 2017	0.913	0.970	0.992	0.929	0.921	0.998	0.962	0.869
rs7129220	11	10350538	ADM	Ehret, ture 2011	0.935	0.970	0.992	0.902	0.710	0.888	0.838	0.869
rs7178615	15	66869072	RP11-321F6.1	Warren, ture Genetics 2017	0.884	0.970	0.982	0.920	0.949	0.914	0.962	0.869
rs7236548	18	43097750	SLC14A2	Warren, ture Genetics 2017	0.974	0.970	0.992	0.950	0.871	0.885	0.893	0.872
rs7248104	19	7224431	INSR	Liu, ture Genetics 2016	0.619	0.598	0.487	0.902	0.378	0.280	0.171	0.869
rs72765298	9	127900996	SCAI	Warren, ture Genetics 2017	0.737	0.983	0.992	0.902	0.925	0.940	0.992	0.869
rs7297416	12	54443090	HOXC4	Tragante, AJHG 2014	0.913	0.999	0.992	0.920	0.598	0.888	0.838	0.789
rs7302981	12	50537815	CERS5	Surendran, ture Genetics 2016	0.757	0.712	0.773	0.971	0.710	0.711	0.676	0.925
rs740406	19	2232221	АМН	Kato, ture Genetics 2015	-	-	-	-	-	-	-	-
rs7406910	17	46688256	HOXB7	Surendran, ture Genetics 2016	0.884	0.983	0.992	0.902	0.921	0.885	0.893	0.869
rs740698	17	60767151	MRC2	Warren, ture Genetics 2017	0.999	0.863	0.992	0.969	0.949	0.968	0.962	0.870
rs74181299	2	65283972	CEP68	Warren, ture Genetics 2017	0.737	0.717	0.659	0.902	0.738	0.885	0.820	0.869
rs743757	3	50476378	CAC2D2	Warren, ture Genetics 2017	0.737	0.423	0.571	0.902	0.913	0.077	0.676	0.732
rs745821	18	48142854	MAPK4	Warren, ture Genetics 2017	0.991	0.943	0.992	0.917	0.937	0.885	0.893	0.869
------------	----	-----------	---------------	-------------------------------	-------	-------	-------	-------	-------	-------	-------	-------
rs7515635	1	42408070	HIVEP3	Ehret, ture Genetics 2016	0.991	0.970	0.992	0.929	0.925	0.968	0.960	0.925
rs751984	11	61278246	LRRC10B	Kato, ture Genetics 2015	0.737	0.918	0.630	0.902	0.776	0.915	0.893	0.869
rs7562	2	28635740	FOSL2	Warren, ture Genetics 2017	0.974	0.655	0.992	0.971	0.925	0.682	0.879	0.870
rs757081	11	17351683	NUCB2	Tragante, AJHG 2014	0.888	0.970	0.992	0.917	0.871	0.922	0.957	0.925
rs7592578	2	191439591	TMEM194B	Warren, ture Genetics 2017	0.737	0.918	0.982	0.902	0.731	0.914	0.893	0.869
rs76206723	7	40447971	SUGCT	Warren, ture Genetics 2017	0.646	0.953	0.859	0.589	0.738	0.912	0.960	0.417
rs76326501	2	43167878	AC016735.1	Warren, ture Genetics 2017	0.737	0.423	0.542	0.929	0.776	0.569	0.585	0.938
rs76452347	9	35906471	HRCT1	Liu, ture Genetics 2016	0.730	0.970	0.859	0.902	0.921	0.942	0.947	0.938
rs76987554	6	134080855	TARID/TCF21	Liang, PLoS Genetics 2017	-	-	-	-	-	-	-	-
rs78648104	6	50683009	TFAP2D	Warren, ture Genetics 2017	0.997	0.970	0.992	0.989	0.925	0.888	0.940	0.870
rs79089478	17	40317241	KCNH4-HSD17B1	Warren, ture Genetics 2017	0.958	0.623	0.769	0.989	0.925	0.682	0.814	0.789
rs79146658	2	179786068	CCDC141	Warren, ture Genetics 2017	0.999	0.970	0.992	0.971	0.598	0.827	0.585	0.869
rs8016306	14	63928546	PPP2R5E	Warren, ture Genetics 2017	0.888	0.953	0.992	0.930	0.921	0.930	0.960	0.869
rs8059962	16	81574197	CMIP	Warren, ture Genetics 2017	0.913	0.983	0.992	0.902	0.783	0.843	0.838	0.938
rs8068318	17	59483766	TBX2	Surendran, ture Genetics 2016	0.991	0.910	0.864	0.989	0.998	0.914	0.918	0.938
rs8258	11	117283676	CEP164	Warren, ture Genetics 2017	0.737	0.729	0.926	0.962	0.784	0.843	0.879	0.938
rs867186	20	33764554	PROCR	Surendran, ture Genetics 2016	0.884	0.970	0.992	0.920	0.925	0.682	0.809	0.938
rs871606	4	54799245	CHIC2	Wain, ture Genetics 2011	0.737	0.969	0.992	0.902	0.598	0.711	0.585	0.869
rs880315	1	10796866	CASZ1	Takeuchi, Circulation 2010	0.730	0.712	0.552	0.902	0.598	0.719	0.585	0.869
rs891511	7	150704843	NOS3	Liu, ture Genetics 2016	0.814	0.970	0.992	0.902	0.871	0.843	0.879	0.941
rs894344	8	135612745	ZFAT	Warren, ture Genetics 2017	0.730	0.589	0.659	0.929	0.738	0.885	0.879	0.869
rs900145	11	13293905	ARNTL	Liu, ture Genetics 2016	0.991	0.983	0.992	0.917	0.925	0.914	0.985	0.869
rs918466	3	64710253	ADAMTS9	Ehret, ture Genetics 2016	0.884	0.943	0.992	0.950	0.598	0.914	0.676	0.732
rs9306160	21	45107562	RRP1B	Surendran, ture Genetics 2016	0.884	0.686	0.992	0.929	0.921	0.952	0.992	0.869
rs9323988	14	98587630	RP11-61O1.1	Warren, ture Genetics 2017	0.730	0.712	0.785	0.902	0.858	0.914	0.960	0.869
rs932764	10	95895940	PLCE1	Ehret, ture 2011	0.619	0.377	0.487	0.902	0.598	0.711	0.585	0.851
rs9349379	6	12903957	PHACTR1	Surendran, ture Genetics 2016	0.991	0.970	0.992	0.977	0.925	0.914	0.918	0.938
rs9372498	6	118572486	SLC35F1	Warren, ture Genetics 2017	0.737	0.970	0.859	0.902	0.738	0.888	0.838	0.869
rs953492	1	243471192	SDCCAG8	Warren, ture Genetics 2017	0.892	0.970	0.992	0.902	0.598	0.885	0.676	0.732
rs9549328	13	113636156	MCF2L	Warren, ture Genetics 2017	0.884	0.970	0.997	0.902	0.958	0.888	0.893	0.938
rs9687065	5	148391140	ABLIM3,SH3TC2	Kato, ture Genetics 2015	0.730	0.423	0.487	0.917	0.388	0.275	0.186	0.869
rs9827472	3	56726646	FAM208A	Warren, ture Genetics 2017	0.737	0.759	0.659	0.902	0.783	0.828	0.809	0.869
rs9859176	3	134000025	RYK	Warren, ture Genetics 2017	0.935	0.970	0.982	0.962	0.921	0.912	0.838	0.938
rs9888615	14	53377540	FERMT2	Warren, ture Genetics 2017	0.737	0.943	0.992	0.902	0.752	0.843	0.879	0.869

African Americans

rs ID	CHR	POS	Gene / Locus	Reference	FDR adjusted P-value								
						AI	L			W	OD		
					SBP	DBP	MAP	PP	SBP	DBP	MAP	PP	
rs10059921	5	87514515	TMEM161B	Warren, ture Genetics 2017	0.984	0.964	0.980	0.977	-	-	-	-	
rs10077885	5	114390121	TRIM36	Ehret, ture Genetics 2016	0.984	0.987	0.980	0.977	0.958	0.959	0.946	0.979	
rs10078021	5	75038431	POC5	Warren, ture Genetics 2017	0.984	0.964	0.959	0.977	0.958	0.959	0.972	0.979	
rs1008058	5	122435627	PRDM6	Surendran, ture Genetics 2016	0.984	0.964	0.980	0.977	0.966	0.956	0.975	0.979	
rs1011018	7	139463264	HIPK2	Warren, ture Genetics 2017	0.984	0.964	0.922	0.947	0.958	0.871	0.901	0.979	
rs10224002	7	151415041	PRKAG2	Tragante, AJHG 2014	0.984	0.767	0.922	0.977	0.958	0.700	0.784	0.979	
rs10260816	7	46010100	IGFBP3	Kato, ture Genetics 2015	0.996	0.998	0.993	0.977	0.958	0.833	0.901	0.979	
rs1036477	15	48914926	FBN1	Tragante, AJHG 2014	0.761	0.604	0.559	0.947	0.958	0.959	0.962	0.979	
rs10407022	19	2249477	АМН	Surendran, ture Genetics 2016	0.984	0.964	0.980	0.977	0.958	0.959	0.946	0.979	
rs1060105	12	123806219	SBNO1	Surendran, ture Genetics 2016	0.727	0.499	0.559	0.947	0.958	0.717	0.866	0.979	
rs10760117	9	123586737	PSMD5	Ehret, ture Genetics 2016	0.996	0.987	0.993	0.977	0.958	0.952	0.962	0.979	
rs10826995	10	32082658	ARHGAP12	Warren, ture Genetics 2017	0.984	0.871	0.922	0.977	0.958	0.795	0.866	0.979	
rs10850411	12	115387796	TBX5-TBX3	Ehret, ture 2011	0.984	0.964	0.922	0.947	0.958	0.959	0.972	0.979	
rs10916082	1	227252626	CDC42BPA	Warren, ture Genetics 2017	0.984	0.871	0.980	0.947	0.966	0.795	0.901	0.979	
rs10922502	1	89360158	GTF2B	Warren, ture Genetics 2017	0.984	0.964	0.980	0.985	0.958	0.959	0.988	0.979	
rs10943605	6	79655477	PHIP	Liu, ture Genetics 2016	0.984	0.770	0.922	0.977	0.958	0.717	0.843	0.979	
rs10948071	6	43280713	CRIP3	Ganesh, AJHG 2014	0.984	0.943	0.988	0.948	0.958	0.753	0.866	0.979	
rs10995311	10	64564934	ADO	Surendran, ture Genetics 2016	0.984	0.918	0.958	0.977	0.958	0.867	0.946	0.979	
rs110419	11	8252853	LMO1	Surendran, ture Genetics 2016	0.984	0.871	0.922	0.977	0.958	0.959	0.996	0.979	
rs11066280	12	112817783	RPL6-ALDH1	Kato, ture Genetics 2011	-	-	-	-	-	-	-	-	
rs111245230	9	113169775	SVEP1	Liu, ture Genetics 2016	-	-	-	-	-	-	-	-	
rs11128722	3	14958126	FGD5	Ehret, ture Genetics 2016	0.984	0.964	0.980	0.977	0.958	0.959	0.972	0.979	
rs11154027	6	121781390	GJA1	Warren, ture Genetics 2017	0.996	0.943	0.980	0.977	0.958	0.952	0.946	0.979	
rs11191548	10	104846178	CYP17A1-NT5C2	Newton-Cheh, ture Genetics 2009	0.984	0.964	0.980	0.977	0.958	0.859	0.901	0.979	
rs112184198	10	102604514	PAX2	Warren, ture Genetics 2017	0.985	0.943	0.980	0.977	0.968	0.959	0.989	0.983	
rs11222084	11	130273230	ADAMTS8	Wain, ture Genetics 2011	0.984	0.964	0.980	0.977	0.958	0.959	0.975	0.979	
rs11229457	11	58207203	OR5B12	Surendran, ture Genetics 2016	0.984	0.767	0.914	0.977	0.958	0.867	0.901	0.979	
rs112557609	1	56576924	RP4-710M16.1-PPAP2B	Warren, ture Genetics 2017	0.996	0.964	0.980	0.977	0.958	0.817	0.866	0.979	
rs1126464	16	89704365	DPEP1	Surendran, ture Genetics 2016	0.984	0.767	0.922	0.977	0.966	0.771	0.901	0.979	
rs11442819	11	45208141	PRDM11	Warren, ture Genetics 2017	0.984	0.987	0.980	0.977	0.958	0.899	0.901	0.979	

rs11537751	11	47587452	PTPMT1	Liu, ture Genetics 2016	0.984	0.964	0.993	0.977	-	-	-	-
rs11556924	7	129663496	ZC3HC1	Ehret, ture Genetics 2016	0.984	0.499	0.588	0.977	0.958	0.447	0.858	0.979
rs115795127	9	85993901	FRMD3	Liang, PLoS Genetics 2017	0.984	0.868	0.980	0.977	0.958	0.959	0.975	0.979
rs11639856	16	24788645	TNRC6A	Liu, ture Genetics 2016	0.984	0.918	0.980	0.977	0.958	0.959	0.946	0.979
rs11643209	16	75331044	CFDP1	Warren, ture Genetics 2017	0.984	0.964	0.980	0.977	0.958	0.959	0.913	0.979
rs11689667	2	85491365	TCF7L1	Warren, ture Genetics 2017	0.984	0.767	0.922	0.977	0.958	0.817	0.901	0.979
rs1173771	5	32815028	NPR3-C5orf23	Ehret, ture 2011	0.984	0.499	0.914	0.977	0.958	0.717	0.866	0.979
rs11953630	5	157845402	EBF1	Ehret, ture 2011	0.984	0.943	0.922	0.977	0.958	0.840	0.901	0.979
rs11977526	7	46008110	IGFBP1-IGFBP3	Zhu, AJHG 2015	0.984	0.964	0.980	0.977	0.958	0.867	0.901	0.979
rs12374077	3	185317674	SENP2	Warren, ture Genetics 2017	0.984	0.918	0.980	0.977	0.958	0.867	0.901	0.992
rs12408022	1	217718789	GPATCH2	Warren, ture Genetics 2017	0.996	0.964	0.980	0.977	0.958	0.795	0.901	0.979
rs1250259	2	216300482	FN1	Warren, ture Genetics 2017	0.984	0.943	0.980	0.977	0.958	0.952	0.946	0.979
rs12521868	5	131784393	C5orf56	Surendran, ture Genetics 2016	0.984	0.987	0.980	0.977	0.958	0.833	0.946	0.979
rs12579720	12	20173764	PDE3A	Kato, ture Genetics 2015	0.984	0.943	0.980	0.977	0.958	0.700	0.858	0.983
rs12627651	21	44760603	CRYAA-SIK1	Ehret, ture Genetics 2016	0.984	0.499	0.559	0.977	0.949	0.447	0.759	0.979
rs12628032	22	19967980	ARVCF	Warren, ture Genetics 2017	0.665	0.515	0.559	0.845	0.958	0.700	0.784	0.979
rs12731740	1	208024820	CD34	Warren, ture Genetics 2017	0.984	0.114	0.771	0.977	-	-	-	-
rs1275988	2	26914364	KCNK3	Ganesh, AJHG 2014	0.984	0.964	0.980	0.977	0.993	0.959	0.972	0.979
rs12921187	16	4943019	PPL	Warren, ture Genetics 2017	0.984	0.964	0.980	0.977	0.993	0.959	0.975	0.983
rs12940887	17	47402807	ZNF652	Ehret, ture 2011	0.984	0.987	0.980	0.977	0.958	0.959	0.972	0.979
rs12941318	17	1333598	CRK	Warren, ture Genetics 2017	0.984	0.443	0.559	0.977	0.958	0.447	0.759	0.983
rs12946454	17	43208121	PLCD3	Newton-Cheh, ture Genetics 2009	0.984	0.987	0.980	0.977	0.949	0.700	0.784	0.979
rs12958173	18	42141977	SETBP1	Ehret, ture Genetics 2016	0.984	0.919	0.980	0.977	0.958	0.859	0.913	0.983
rs13002573	2	164915208	FIGN-GRB14	Wain, ture Genetics 2011	0.984	0.767	0.914	0.977	0.958	0.959	0.989	0.979
rs13082711	3	27537909	SLC4A7	Ehret, ture 2011	0.984	0.767	0.922	0.977	0.966	0.899	0.972	0.979
rs13107325	4	103188709	SLC39A8	Ehret, ture 2011	-	-	-	-	-	-	-	-
rs13139571	4	156645513	GUCY1A3-GUCY1B3	Ehret, ture 2011	0.069	0.830	0.559	0.059	0.394	0.959	0.866	0.021
rs13209747	6	127115454	RSPO3	Francescini, AJHG 2013	0.966	0.499	0.559	0.977	0.958	0.795	0.866	0.979
rs13238550	7	131059056	MKLN1	Warren, ture Genetics 2017	0.984	0.964	0.980	0.977	0.958	0.959	0.962	0.979
rs1327235	20	10969030	JAG1	Ehret, ture 2011	0.996	0.964	0.980	0.977	0.958	0.975	0.975	0.979
rs13333226	16	20365654	UMOD	Padmabhan, PloS Genetics 2010	0.984	0.871	0.914	0.977	0.958	0.717	0.866	0.979
rs13359291	5	122476457	PRDM6	Kato, ture Genetics 2015	0.984	0.987	0.980	0.947	0.966	0.959	0.972	0.979
rs1344653	2	19730845	OSR1	Kato, ture Genetics 2015	0.984	0.964	0.980	0.977	0.966	0.959	0.974	1.000
rs1378942	15	75077367	CYP1A1-ULK3	Newton-Cheh, ture Genetics 2009	0.984	0.964	0.980	0.977	0.966	0.931	0.962	0.979
rs139236208	12	94880742	CCDC41	Warren, ture Genetics 2017	0.984	1.000	0.988	0.977	-	-	-	-
rs139385870	1	1685921	DK-CPSF3L	Warren, ture Genetics 2017	0.984	0.964	0.980	0.977	0.949	0.795	0.843	0.979

rs1401454	11	16250183	SOX6	Francescini, AJHG 2013	0.984	0.499	0.559	0.977	0.958	0.700	0.866	0.979
rs1421811	5	32714270	NPR3-C5orf23	Johnson, AJHG 2011	0.984	0.987	0.980	0.977	0.993	0.952	0.972	0.979
rs143112823	3	154707967	RP11-439C8.2	Warren, ture Genetics 2017	0.416	0.499	0.559	0.845	0.886	0.717	0.784	0.893
rs1438896	2	145646072	TEX41	Warren, ture Genetics 2017	0.985	0.964	0.980	0.977	0.958	0.952	0.946	0.979
rs1446468	2	164963486	FIGN-GRB14	Wain, ture Genetics 2011	0.996	0.964	0.980	0.977	0.958	0.867	0.972	0.979
rs1458038	4	81164723	FGF5	Ehret, ture 2011	0.984	0.964	0.988	0.977	0.958	0.959	0.946	0.979
rs147212971	6	166178451	PDE10A	Warren, ture Genetics 2017	0.984	0.604	0.922	0.977	0.958	0.717	0.866	0.979
rs1530440	10	63524591	C10orf107	Newton-Cheh, ture Genetics 2009	0.984	0.964	0.980	0.977	0.958	0.901	0.972	0.979
rs1563788	6	43308363	TTBK1,SLC22A7,ZNF318	Kato, ture Genetics 2015	0.984	0.767	0.922	0.977	0.958	0.795	0.866	0.979
rs1566497	4	169717148	PALLD	Warren, ture Genetics 2017	0.984	0.964	0.980	0.977	0.958	0.959	0.962	0.979
rs167479	19	11526765	RGL3	Surendran, ture Genetics 2016	0.984	0.964	0.978	0.845	0.958	0.901	0.996	0.893
rs16823124	2	183224127	PDE1A	Tragante, AJHG 2014	0.984	0.772	0.914	0.977	0.949	0.700	0.759	0.979
rs16833934	3	163737250	MIR1263	Simino, AJHG 2014	0.984	0.767	0.922	0.977	0.959	0.833	0.946	0.979
rs16849225	2	164906820	FIGN-GRB14	Kato, ture Genetics 2011	0.984	0.767	0.914	0.977	0.966	0.859	0.946	0.979
rs16851397	3	141134818	ZBTB38	Surendran, ture Genetics 2016	0.984	0.964	0.980	0.845	0.958	0.952	0.975	0.979
rs17030613	1	113190807	ST7L-CAPZA1-MOV10	Kato, ture Genetics 2011	0.984	0.964	0.980	0.977	0.958	0.717	0.843	0.979
rs17059668	4	174584663	chr4mb174	Warren, ture Genetics 2017	0.727	0.499	0.559	0.947	0.958	0.867	0.866	0.979
rs17080102	6	151004770	PLEKHG1	Francescini, AJHG 2013	0.984	0.964	0.980	0.977	0.958	0.833	0.903	0.979
rs17249754	12	90060586	ATP2B1	Levy, ture Genetics 2009	0.984	0.964	0.993	0.977	0.958	0.997	0.975	0.979
rs17367504	1	11862778	MTHFR-NPPB	Newton-Cheh, ture Genetics 2009	0.984	0.964	0.980	0.977	0.958	0.867	0.866	0.979
rs17428471	7	27337867	EVX1-HOXA	Francescini, AJHG 2013	0.984	0.987	0.980	0.977	0.958	0.931	0.901	0.979
rs17477177	7	106411858	PIK3CG	Wain, ture Genetics 2011	0.984	0.998	0.980	0.947	0.958	0.931	0.977	0.979
rs17608766	17	45013271	GOSR2	Ehret, ture 2011	0.984	0.943	0.980	0.977	0.993	0.959	0.975	1.000
rs17638167	19	11584818	ELAVL3	Ehret, ture Genetics 2016	-	-	-	-	-	-	-	-
rs1799945	6	26091179	HFE	Ehret, ture 2011	0.984	0.964	0.980	0.977	0.958	0.931	0.975	0.979
rs1801253	10	115805056	ADRB1	Johnson, Hypertension 2011	0.727	0.499	0.559	0.947	0.958	0.952	0.920	0.979
rs1813353	10	18707448	CACNB2	Ehret, ture 2011	0.984	1.000	0.993	0.977	0.958	0.871	0.901	0.979
rs1925153	6	56102780	COL21A1	Liu, ture Genetics 2016	0.984	0.868	0.922	0.977	0.958	0.931	0.946	0.983
rs1953126	9	123640500	PHF19	Liu, ture Genetics 2016	0.996	0.964	0.980	0.977	0.958	0.717	0.866	0.979
rs1975487	2	55809054	PNPT1	Ehret, ture Genetics 2016	0.984	0.964	0.980	0.977	0.958	0.819	0.901	0.983
rs2004776	1	230848702	AGT	Johnson, AJHG 2011	0.996	0.964	0.980	0.977	0.958	0.956	0.962	0.979
rs2014408	11	16365282	SOX6	Johnson, AJHG 2011	0.984	0.604	0.914	0.977	0.958	0.700	0.866	0.979
rs2014912	4	86715670	ARHGAP24	Kato, ture Genetics 2015	0.996	0.964	0.980	0.977	0.958	0.931	0.901	0.979
rs2071518	8	120435812	NOV	Wain, ture Genetics 2011	0.984	0.745	0.922	0.977	0.958	0.714	0.901	0.979
rs2107595	7	19049388	HDAC9	Kato, ture Genetics 2015	0.984	0.964	0.980	0.977	0.958	0.959	0.977	0.979
rs217727	11	2016908	H19	Tragante, AJHG 2014	0.984	0.964	0.980	0.977	0.958	0.959	0.962	0.979

rs2188962	5	131770805	C5orf56	Liu, ture Genetics 2016	0.984	0.964	0.980	0.977	0.958	0.901	0.962	0.979
rs2240736	17	59485393	C17orf82,TBX2	Kato, ture Genetics 2015	0.984	0.964	0.993	0.977	0.958	0.959	0.962	0.979
rs2270860	6	43270151	SLC22A7	Liu, ture Genetics 2016	0.984	0.767	0.922	0.977	0.958	0.817	0.866	0.979
rs2282978	7	92264410	CDK6	Tragante, AJHG 2014	0.984	0.964	0.980	0.845	0.958	0.959	0.946	0.893
rs2289081	2	20881840	C2orf43	Warren, ture Genetics 2017	0.727	0.943	0.771	0.845	0.958	0.975	0.946	0.979
rs2291435	4	38387395	TBC1D1-FLJ13197	Ehret, ture Genetics 2016	0.984	0.853	0.922	0.977	0.958	0.833	0.866	0.979
rs2302061	19	2226772	DOT1L	Liu, ture Genetics 2016	0.984	0.853	0.980	0.948	0.958	0.700	0.901	0.979
rs2304130	19	19789528	ZNF101	Surendran, ture Genetics 2016	0.984	0.943	0.922	0.977	0.958	0.899	0.901	0.979
rs2306374	3	138119952	MRAS	Warren, ture Genetics 2017	0.984	0.964	0.980	0.977	0.966	0.959	0.977	0.979
rs2384550	12	115352731	TBX5-TBX3	Levy, ture Genetics 2009	0.984	0.964	0.980	0.977	0.958	0.959	0.972	0.979
rs2467099	17	73949045	ACOX1	Warren, ture Genetics 2017	0.985	0.964	0.980	0.977	0.958	0.960	0.972	0.979
rs2493292	1	3328659	PRDM16	Liu, ture Genetics 2016	0.987	0.772	0.980	0.977	0.966	0.700	0.901	0.979
rs2521501	15	91437388	FURIN-FES	Ehret, ture 2011	0.984	0.964	0.980	0.977	0.958	0.871	0.901	0.979
rs2579519	2	96675166	GPAT2-FAHD2CP	Warren, ture Genetics 2017	0.984	0.964	0.980	0.977	0.958	0.959	0.962	0.979
rs2760061	1	228191075	WNT3A	Warren, ture Genetics 2017	0.984	0.964	0.980	0.977	0.958	0.931	0.913	0.979
rs2782980	10	115781527	ADRB1	Wain, ture Genetics 2011	0.996	0.964	0.980	0.977	0.958	0.931	0.903	0.979
rs2854275	6	32628428	HLA-DQB1	Tragante, AJHG 2014	-	-	-	-	-	-	-	-
rs2898290	8	11433909	BLK-GATA4	Ho, Jourl of Hypertension 2011	0.984	0.918	0.980	0.845	0.958	0.952	0.975	0.979
rs2932538	1	113216543	ST7L-CAPZA1-MOV10	Ehret, ture 2011	0.984	0.566	0.914	0.977	0.958	0.959	0.996	0.979
rs2969070	7	2512545	CHST12-LFNG	Ehret, ture Genetics 2016	0.984	0.964	0.993	0.977	0.966	0.887	0.972	0.979
rs2972146	2	227100698	2q36.3	Surendran, ture Genetics 2016	0.984	0.987	0.980	0.977	0.958	0.952	0.901	0.979
rs2978098	8	101676675	SNX31	Warren, ture Genetics 2017	0.984	0.964	0.980	0.977	0.958	0.959	0.977	0.979
rs2978456	8	42324765	SLC20A2	Warren, ture Genetics 2017	0.984	0.964	0.980	0.951	0.958	0.959	0.901	0.979
rs3184504	12	111884608	SH2B3	Levy, ture Genetics 2009	0.984	0.964	0.980	0.948	0.958	0.771	0.901	0.979
rs319690	3	47927484	MAP4	Wain, ture Genetics 2011	0.984	0.943	0.914	0.947	0.958	0.931	0.901	0.979
rs33063	16	69640217	NFAT5	Tragante, AJHG 2014	0.984	0.964	0.980	0.977	0.958	0.952	0.962	0.979
rs34591516	8	142367087	GPR20	Surendran, ture Genetics 2016	0.984	0.767	0.914	0.977	0.958	0.822	0.901	0.979
rs347591	3	11290122	HRH1-ATG7	Ganesh, Human Molecular Genetics 2013	0.984	0.964	0.922	0.977	0.958	0.931	0.946	0.989
rs35199222	15	81013037	ABHD17C	Warren, ture Genetics 2017	0.984	0.964	0.993	0.977	0.976	0.959	0.977	0.979
rs35444	12	115552437	TBX5-TBX3	Kato, ture Genetics 2011	0.984	0.964	0.980	0.977	0.958	0.960	0.975	0.979
rs36022378	3	49913705	CAMKV-ACTBP13	Warren, ture Genetics 2017	0.984	0.987	0.980	0.977	0.958	0.819	0.866	0.979
rs36083386	6	152397912	ESR1	Warren, ture Genetics 2017	0.966	0.767	0.725	0.947	0.958	0.959	0.903	0.979
rs3741378	11	65408937	SIPA1	Tragante, AJHG 2014	0.984	0.566	0.559	0.977	0.958	0.840	0.901	0.983
rs3771371	2	71627539	ZNF638	Warren, ture Genetics 2017	0.984	0.964	0.988	0.977	0.958	0.959	0.946	0.979
rs3774372	3	41877414	ULK4	Ehret, ture 2011	0.984	0.964	0.980	0.947	0.958	0.977	0.946	0.979
rs381815	11	16902268	PLEKHA7	Levy, ture Genetics 2009	0.727	0.395	0.559	0.977	0.958	0.700	0.866	0.979

rs3889199	1	59653742	FGGY	Warren, ture Genetics 2017	0.984	0.964	0.993	0.977	0.958	0.977	0.975	0.979
rs3918226	7	150690176	NOS3	Johnson, AJHG 2011	-	-	-	-	-	-	-	-
rs409558	6	31708147	MSH5-SAPCD1	Liu, ture Genetics 2016	0.984	0.964	0.980	0.977	0.958	0.959	0.975	0.979
rs419076	3	169100886	MECOM	Ehret, ture 2011	0.984	0.987	0.980	0.947	0.949	0.959	0.866	0.462
rs4245739	1	204518842	MDM4	Ganesh, Human Molecular Genetics 2013	0.984	1.000	0.980	0.977	0.965	0.959	0.975	0.979
rs4247374	19	7252756	INSR	Ehret, ture Genetics 2016	0.985	0.964	0.980	0.977	-	-	-	-
rs4308	17	61559625	ACE	Warren, ture Genetics 2017	0.984	0.964	0.922	0.947	0.993	0.959	0.975	0.984
rs4360494	1	38455891	SF3A3	Warren, ture Genetics 2017	0.996	0.604	0.922	0.977	0.958	0.700	0.784	0.979
rs4364717	9	21801530	MTAP	Warren, ture Genetics 2017	0.984	0.499	0.707	0.977	0.958	0.700	0.787	0.979
rs4373814	10	18419972	CACNB2	Ehret, ture 2011	0.727	0.747	0.559	0.947	0.394	0.700	0.759	0.893
rs4387287	10	105677897	OBFC1	Surendran, ture Genetics 2016	0.984	0.853	0.980	0.977	0.958	0.840	0.946	0.979
rs4454254	8	141060027	TRAPPC9	Warren, ture Genetics 2017	0.985	0.964	0.980	0.985	0.958	0.863	0.901	0.979
rs4494250	10	96563757	CYP2C19	Liu, ture Genetics 2016	0.984	0.993	0.998	0.977	0.958	0.952	0.946	0.979
rs449789	6	159699125	FNDC1	Warren, ture Genetics 2017	0.984	0.964	0.993	0.977	0.958	0.959	0.972	0.983
rs452036	14	23865885	MYH6	Surendran, ture Genetics 2016	0.984	0.964	0.980	0.977	0.958	0.959	0.972	0.979
rs4530754	5	122855416	CSNK1G3	Liu, ture Genetics 2016	0.984	0.998	0.980	0.947	0.958	0.867	0.901	0.979
rs4590817	10	63467553	C10orf107	Ehret, ture 2011	0.966	0.566	0.559	0.977	0.949	0.447	0.759	0.979
rs4601790	11	65353906	EHBP1L1	Simino, AJHG 2014	0.996	0.964	0.980	0.977	0.976	0.931	0.972	0.979
rs4660293	1	40028180	PABPC4	Liu, ture Genetics 2016	0.984	0.964	0.980	0.845	0.958	0.959	0.962	0.979
rs470113	22	40729614	TNRC6B	Surendran, ture Genetics 2016	0.984	0.964	0.980	0.977	0.958	0.949	0.946	0.979
rs4728142	7	128573967	7q32.1	Surendran, ture Genetics 2016	0.984	0.964	0.922	0.947	0.958	0.840	0.866	0.979
rs4746172	10	75855842	VCL	Tragante, AJHG 2014	0.996	0.964	0.988	0.977	0.958	0.819	0.866	0.979
rs4823006	22	29451671	ZNRF3	Liu, ture Genetics 2016	0.984	0.918	0.978	0.977	0.958	0.717	0.866	0.979
rs4841569	8	11452177	BLK-GATA4	Simino, AJHG 2014	0.984	0.570	0.559	0.977	0.886	0.700	0.759	0.979
rs4846049	1	11850365	MTHFR-NPPB	Johnson, AJHG 2011	0.984	0.853	0.924	0.977	0.966	0.819	0.903	0.979
rs4952611	2	40567743	SLC8A1	Warren, ture Genetics 2017	0.984	0.964	0.980	0.977	0.958	0.959	0.946	0.979
rs5068	1	11905974	MTHFR-NPPB	Newton-Cheh, ture Genetics 2009	0.984	0.565	0.559	0.977	-	-	-	-
rs5219	11	17409572	KCNJ11	Liu, ture Genetics 2016	0.984	0.918	0.980	0.977	0.958	0.931	0.972	0.979
rs55701159	2	25139596	ADCY3	Warren, ture Genetics 2017	0.984	0.964	0.980	0.977	0.958	0.833	0.901	0.983
rs55780018	2	208526140	METTL21A-AC079767.3	Warren, ture Genetics 2017	0.984	0.767	0.922	0.977	0.966	0.819	0.946	0.979
rs6015450	20	57751117	GS-EDN3	Ehret, ture 2011	0.984	0.499	0.593	0.977	0.958	0.833	0.901	0.979
rs6081613	20	19465907	SLC24A3	Warren, ture Genetics 2017	0.984	0.499	0.559	0.977	0.993	0.959	0.975	0.979
rs6095241	20	47308798	PREX1	Surendran, ture Genetics 2016	0.984	0.767	0.922	0.977	0.958	0.795	0.866	0.979
rs6108168	20	8626271	PLCB1	Warren, ture Genetics 2017	0.984	0.964	0.993	0.977	0.958	0.817	0.901	0.979
rs62012628	15	79070000	ADAMTS7	Warren, ture Genetics 2017	0.984	0.964	0.980	0.977	0.966	0.959	0.996	0.979
rs62080325	17	42060631	РҮҮ	Warren, ture Genetics 2017	0.984	0.964	0.993	0.977	0.958	0.840	0.913	0.979

rs62104477	19	30294991	CCNE1	Warren, ture Genetics 2017	0.984	0.964	0.980	0.977	0.958	0.931	0.901	0.983
rs6271	9	136522274	DBH	Ehret, ture Genetics 2016	-	-	-	-	-	-	-	-
rs633185	11	100593538	FLJ32810-TMEM133	Ehret, ture 2011	0.984	0.964	0.980	0.845	0.958	0.795	0.946	0.979
rs6487543	12	26438189	SSPN	Warren, ture Genetics 2017	0.984	0.871	0.980	0.977	0.958	0.959	0.946	0.979
rs661348	11	1905292	LSP1-TNNT3	Johnson, AJHG 2011	0.984	0.767	0.922	0.985	0.958	0.867	0.946	0.979
rs6686889	1	25030470	chr1mb25	Warren, ture Genetics 2017	0.984	0.918	0.980	0.977	0.958	0.959	0.972	0.979
rs6712094	2	165043460	FIGN-GRB14	Ganesh, AJHG 2014	0.984	0.964	0.980	0.947	0.958	0.959	0.972	0.979
rs6722745	2	108875244	SULT1C3	Liu, ture Genetics 2016	0.984	0.964	0.980	0.977	0.958	0.952	0.989	0.979
rs67330701	11	69079707	MYEOV	Warren, ture Genetics 2017	-	-	-	-	-	-	-	-
rs6797587	3	48197614	CDC25A	Simino, AJHG 2014	0.984	0.964	0.980	0.977	0.958	0.840	0.974	0.979
rs6825911	4	111381638	ENPEP	Kato, ture Genetics 2011	0.984	0.964	0.980	0.977	0.958	0.931	0.901	0.979
rs687621	9	136137065	ABO	Surendran, ture Genetics 2016	0.984	0.964	0.980	0.977	0.958	0.896	0.901	0.979
rs6891344	5	123136656	CSNK1G3	Ehret, ture Genetics 2016	0.984	0.964	0.980	0.977	0.966	0.959	0.982	0.979
rs6911827	6	22130601	CASC15	Warren, ture Genetics 2017	0.984	0.964	0.980	0.977	0.958	0.867	0.901	0.979
rs6969780	7	27159136	HOXA3	Liu, ture Genetics 2016	0.984	0.767	0.922	0.977	0.949	0.700	0.759	0.979
rs709209	1	6278414	RNF207	Surendran, ture Genetics 2016	0.984	0.964	0.980	0.977	0.958	0.959	0.946	0.979
rs7103648	11	47461783	RAPSN, PSMC3, SLC39A13	Ehret, ture Genetics 2016	0.984	0.767	0.980	0.977	0.958	0.819	0.901	1.000
rs7126805	11	828916	CRACR2B	Warren, ture Genetics 2017	0.984	0.499	0.559	0.977	0.949	0.700	0.784	0.979
rs7129220	11	10350538	ADM	Ehret, ture 2011	0.984	0.964	0.980	0.977	0.958	0.959	0.946	0.979
rs7178615	15	66869072	RP11-321F6.1	Warren, ture Genetics 2017	0.984	0.918	0.978	0.977	0.958	0.752	0.866	0.979
rs7236548	18	43097750	SLC14A2	Warren, ture Genetics 2017	0.984	0.964	0.980	0.977	0.958	0.867	0.901	0.979
rs7248104	19	7224431	INSR	Liu, ture Genetics 2016	0.984	0.964	0.980	0.985	0.966	0.959	0.972	0.979
rs72765298	9	127900996	SCAI	Warren, ture Genetics 2017	0.984	0.871	0.938	0.977	-	-	-	-
rs7297416	12	54443090	HOXC4	Tragante, AJHG 2014	0.984	0.964	0.980	0.977	0.958	0.899	0.901	0.979
rs7302981	12	50537815	CERS5	Surendran, ture Genetics 2016	0.984	0.964	0.980	0.951	0.958	0.952	0.866	0.979
rs740406	19	2232221	АМН	Kato, ture Genetics 2015	0.984	0.871	0.980	0.947	0.958	0.753	0.946	0.893
rs7406910	17	46688256	HOXB7	Surendran, ture Genetics 2016	0.984	0.767	0.922	0.977	0.958	0.795	0.901	0.979
rs740698	17	60767151	MRC2	Warren, ture Genetics 2017	0.984	0.964	0.980	0.977	0.958	0.795	0.866	0.979
rs74181299	2	65283972	CEP68	Warren, ture Genetics 2017	0.984	0.964	0.980	0.977	0.958	0.959	0.972	0.979
rs743757	3	50476378	CAC2D2	Warren, ture Genetics 2017	0.984	0.954	0.922	0.947	0.958	0.959	0.946	0.979
rs745821	18	48142854	MAPK4	Warren, ture Genetics 2017	0.984	0.992	0.980	0.977	0.958	0.959	0.975	0.979
rs7515635	1	42408070	HIVEP3	Ehret, ture Genetics 2016	0.996	0.964	0.980	0.977	0.958	0.931	0.946	0.979
rs751984	11	61278246	LRRC10B	Kato, ture Genetics 2015	0.984	0.499	0.559	0.977	0.958	0.952	0.946	0.979
rs7562	2	28635740	FOSL2	Warren, ture Genetics 2017	0.984	0.918	0.943	0.977	0.958	0.959	0.972	0.979
rs757081	11	17351683	NUCB2	Tragante, AJHG 2014	0.984	0.767	0.914	0.977	0.949	0.700	0.759	0.979
rs7592578	2	191439591	TMEM194B	Warren, ture Genetics 2017	0.966	0.964	0.922	0.845	0.958	0.939	0.972	0.979

rs76206723	7	40447971	SUGCT	Warren, ture Genetics 2017	0.984	0.918	0.980	0.948	0.949	0.959	0.866	0.146
rs76326501	2	43167878	AC016735.1	Warren, ture Genetics 2017	0.984	0.871	0.980	0.977	-	-	-	-
rs76452347	9	35906471	HRCT1	Liu, ture Genetics 2016	0.984	0.964	0.980	0.977	0.958	0.959	0.972	0.983
rs76987554	6	134080855	TARID/TCF21	Liang, PLoS Genetics 2017	0.984	0.772	0.922	0.977	0.958	0.833	0.901	0.979
rs78648104	6	50683009	TFAP2D	Warren, ture Genetics 2017	-	-	-	-	-	-	-	-
rs79089478	17	40317241	KCNH4-HSD17B1	Warren, ture Genetics 2017	-	-	-	-	-	-	-	-
rs79146658	2	179786068	CCDC141	Warren, ture Genetics 2017	0.984	0.998	0.980	0.977	-	-	-	-
rs8016306	14	63928546	PPP2R5E	Warren, ture Genetics 2017	0.984	0.987	0.993	0.977	0.958	0.871	0.901	0.979
rs8059962	16	81574197	CMIP	Warren, ture Genetics 2017	0.984	0.964	0.993	0.977	0.958	0.988	0.975	0.979
rs8068318	17	59483766	TBX2	Surendran, ture Genetics 2016	0.984	0.964	0.980	0.951	0.958	0.959	0.946	0.979
rs8258	11	117283676	CEP164	Warren, ture Genetics 2017	0.984	0.868	0.914	0.947	0.958	0.867	0.866	0.979
rs867186	20	33764554	PROCR	Surendran, ture Genetics 2016	0.984	0.964	0.988	0.977	0.958	0.717	0.843	0.979
rs871606	4	54799245	CHIC2	Wain, ture Genetics 2011	0.984	0.767	0.978	0.977	0.958	0.700	0.866	0.979
rs880315	1	10796866	CASZ1	Takeuchi, Circulation 2010	0.984	0.871	0.922	0.977	0.958	0.833	0.901	1.000
rs891511	7	150704843	NOS3	Liu, ture Genetics 2016	0.984	0.964	0.922	0.947	0.958	0.959	0.946	0.979
rs894344	8	135612745	ZFAT	Warren, ture Genetics 2017	0.984	0.964	0.993	0.977	0.958	0.887	0.901	0.979
rs900145	11	13293905	ARNTL	Liu, ture Genetics 2016	0.984	0.964	0.988	0.947	0.958	0.931	0.962	0.983
rs918466	3	64710253	ADAMTS9	Ehret, ture Genetics 2016	0.984	0.964	0.993	0.948	0.958	0.959	0.960	0.979
rs9306160	21	45107562	RRP1B	Surendran, ture Genetics 2016	0.984	0.964	0.980	0.977	0.958	0.959	0.996	0.979
rs9323988	14	98587630	RP11-61O1.1	Warren, ture Genetics 2017	0.984	0.770	0.914	0.977	0.958	0.931	0.946	0.979
rs932764	10	95895940	PLCE1	Ehret, ture 2011	0.984	0.964	0.980	0.977	0.965	0.959	0.975	0.979
rs9349379	6	12903957	PHACTR1	Surendran, ture Genetics 2016	0.984	0.964	0.980	0.977	0.958	0.975	0.972	0.979
rs9372498	6	118572486	SLC35F1	Warren, ture Genetics 2017	0.984	0.964	0.988	0.977	0.958	0.931	0.903	0.979
rs953492	1	243471192	SDCCAG8	Warren, ture Genetics 2017	0.984	0.772	0.914	0.977	0.958	0.700	0.843	1.000
rs9549328	13	113636156	MCF2L	Warren, ture Genetics 2017	0.984	0.767	0.914	0.977	0.958	0.795	0.866	0.979
rs9687065	5	148391140	ABLIM3,SH3TC2	Kato, ture Genetics 2015	0.984	0.943	0.980	0.977	0.958	0.931	0.946	0.992
rs9827472	3	56726646	FAM208A	Warren, ture Genetics 2017	0.984	0.964	0.980	0.977	0.958	0.819	0.866	0.979
rs9859176	3	134000025	RYK	Warren, ture Genetics 2017	0.984	0.964	0.980	0.845	0.958	0.959	0.901	0.979
rs9888615	14	53377540	FERMT2	Warren, ture Genetics 2017	0.984	0.604	0.559	0.977	0.958	0.700	0.843	0.979

Asians

rs ID	CHR	POS	Gene / Locus	Reference	FDR adjusted P-value									
						A	LL			W)D			
					SBP	DBP	MAP	PP	SBP	DBP	MAP	PP		
rs10059921	5	87514515	TMEM161B	Warren, ture Genetics 2017	-	-	-	-	-	-	-	-		
rs10077885	5	114390121	TRIM36	Ehret, ture Genetics 2016	0.924	0.976	0.972	0.915	0.898	0.974	0.968	0.904		
rs10078021	5	75038431	POC5	Warren, ture Genetics 2017	0.924	0.931	0.875	0.867	0.898	0.805	0.887	0.849		
rs1008058	5	122435627	PRDM6	Surendran, ture Genetics 2016	0.924	0.987	0.997	0.818	0.912	0.993	0.982	0.826		
rs1011018	7	139463264	HIPK2	Warren, ture Genetics 2017	0.924	0.981	0.994	0.818	0.912	0.993	0.982	0.821		
rs10224002	7	151415041	PRKAG2	Tragante, AJHG 2014	0.709	0.833	0.873	0.867	0.552	0.805	0.682	0.849		
rs10260816	7	46010100	IGFBP3	Kato, ture Genetics 2015	0.924	0.976	0.985	0.818	0.898	0.974	0.968	0.847		
rs1036477	15	48914926	FBN1	Tragante, AJHG 2014	0.998	0.981	0.994	0.891	0.997	0.988	0.982	0.896		
rs10407022	19	2249477	АМН	Surendran, ture Genetics 2016	0.924	0.965	0.875	0.840	0.898	0.922	0.909	0.849		
rs1060105	12	123806219	SBNO1	Surendran, ture Genetics 2016	-	-	-	-	-	-	-	-		
rs10760117	9	123586737	PSMD5	Ehret, ture Genetics 2016	0.924	0.981	0.985	0.960	0.912	0.993	0.980	0.975		
rs10826995	10	32082658	ARHGAP12	Warren, ture Genetics 2017	-	-	-	-	-	-	-	-		
rs10850411	12	115387796	TBX5-TBX3	Ehret, ture 2011	0.924	0.981	0.985	0.818	0.898	0.974	0.968	0.822		
rs10916082	1	227252626	CDC42BPA	Warren, ture Genetics 2017	0.924	0.981	0.994	0.867	0.912	0.993	0.982	0.849		
rs10922502	1	89360158	GTF2B	Warren, ture Genetics 2017	0.927	0.981	0.994	0.891	0.900	0.993	0.980	0.896		
rs10943605	6	79655477	PHIP	Liu, ture Genetics 2016	0.948	0.976	0.985	0.818	0.952	0.974	0.982	0.821		
rs10948071	6	43280713	CRIP3	Ganesh, AJHG 2014	0.924	0.981	0.985	0.818	0.898	0.993	0.968	0.821		
rs10995311	10	64564934	ADO	Surendran, ture Genetics 2016	0.948	0.984	0.994	0.980	0.952	0.993	0.982	0.976		
rs110419	11	8252853	LMO1	Surendran, ture Genetics 2016	0.948	0.984	0.997	0.891	0.952	0.993	0.982	0.896		
rs11066280	12	112817783	RPL6-ALDH1	Kato, ture Genetics 2011	0.907	0.833	0.873	0.867	0.898	0.805	0.887	0.849		
rs111245230	9	113169775	SVEP1	Liu, ture Genetics 2016	-	-	-	-	-	-	-	-		
rs11128722	3	14958126	FGD5	Ehret, ture Genetics 2016	0.927	0.981	0.997	0.818	0.912	0.993	0.982	0.821		
rs11154027	6	121781390	GJA1	Warren, ture Genetics 2017	0.924	0.872	0.972	0.891	0.912	0.843	0.968	0.896		
rs11191548	10	104846178	CYP17A1-NT5C2	Newton-Cheh, ture Genetics 2009	0.924	0.981	0.985	0.818	0.912	0.974	0.968	0.847		
rs112184198	10	102604514	PAX2	Warren, ture Genetics 2017	-	-	-	-	-	-	-	-		
rs11222084	11	130273230	ADAMTS8	Wain, ture Genetics 2011	0.834	0.965	0.875	0.818	0.552	0.805	0.887	0.821		
rs11229457	11	58207203	OR5B12	Surendran, ture Genetics 2016	0.924	0.965	0.972	0.891	0.898	0.843	0.968	0.896		
rs112557609	1	56576924	RP4-710M16.1-PPAP2B	Warren, ture Genetics 2017	0.924	0.981	0.989	0.818	0.912	0.993	0.982	0.840		
rs1126464	16	89704365	DPEP1	Surendran, ture Genetics 2016	-	-	-	-	-	-	-	-		
rs11442819	11	45208141	PRDM11	Warren, ture Genetics 2017	-	-	-	-	-	-	-	-		
rs11537751	11	47587452	PTPMT1	Liu, ture Genetics 2016	-	-	-	-	-	-	-	-		

rs11556924	7	129663496	ZC3HC1	Ehret, ture Genetics 2016	0.924	0.976	0.972	0.891	0.898	0.974	0.968	0.896
rs115795127	9	85993901	FRMD3	Liang, PLoS Genetics 2017	-	-	-	-	-	-	-	-
rs11639856	16	24788645	TNRC6A	Liu, ture Genetics 2016	0.948	0.981	0.994	0.980	0.952	0.993	0.982	0.976
rs11643209	16	75331044	CFDP1	Warren, ture Genetics 2017	0.924	0.981	0.996	0.650	0.898	0.993	0.982	0.771
rs11689667	2	85491365	TCF7L1	Warren, ture Genetics 2017	0.924	0.981	0.985	0.891	0.912	0.993	0.980	0.896
rs1173771	5	32815028	NPR3-C5orf23	Ehret, ture 2011	0.924	0.833	0.875	0.915	0.898	0.805	0.887	0.896
rs11953630	5	157845402	EBF1	Ehret, ture 2011	0.924	0.981	0.985	0.818	0.898	0.993	0.968	0.826
rs11977526	7	46008110	IGFBP1-IGFBP3	Zhu, AJHG 2015	0.985	0.965	0.985	0.818	0.952	0.922	0.968	0.826
rs12374077	3	185317674	SENP2	Warren, ture Genetics 2017	0.924	0.833	0.873	0.912	0.898	0.805	0.887	0.896
rs12408022	1	217718789	GPATCH2	Warren, ture Genetics 2017	0.985	0.965	0.985	0.818	0.980	0.922	0.968	0.847
rs1250259	2	216300482	FN1	Warren, ture Genetics 2017	0.924	0.981	0.972	0.818	0.898	0.974	0.968	0.821
rs12521868	5	131784393	C5orf56	Surendran, ture Genetics 2016	-	-	-	-	-	-	-	-
rs12579720	12	20173764	PDE3A	Kato, ture Genetics 2015	0.948	0.872	0.972	0.891	0.952	0.805	0.968	0.865
rs12627651	21	44760603	CRYAA-SIK1	Ehret, ture Genetics 2016	0.924	0.981	0.985	0.818	0.898	0.993	0.982	0.826
rs12628032	22	19967980	ARVCF	Warren, ture Genetics 2017	0.985	0.981	0.996	0.980	0.952	0.993	0.982	0.976
rs12731740	1	208024820	CD34	Warren, ture Genetics 2017	0.924	0.981	0.994	0.650	0.898	0.993	0.982	0.780
rs1275988	2	26914364	KCNK3	Ganesh, AJHG 2014	0.924	0.981	0.985	0.867	0.898	0.974	0.968	0.849
rs12921187	16	4943019	PPL	Warren, ture Genetics 2017	0.924	0.965	0.972	0.980	0.898	0.805	0.925	0.979
rs12940887	17	47402807	ZNF652	Ehret, ture 2011	0.924	0.976	0.972	0.818	0.898	0.974	0.968	0.847
rs12941318	17	1333598	CRK	Warren, ture Genetics 2017	0.924	0.981	0.985	0.891	0.898	0.974	0.968	0.865
rs12946454	17	43208121	PLCD3	Newton-Cheh, ture Genetics 2009	0.924	0.981	0.985	0.818	0.898	0.974	0.968	0.823
rs12958173	18	42141977	SETBP1	Ehret, ture Genetics 2016	0.949	0.981	0.996	0.891	0.952	0.993	0.982	0.896
rs13002573	2	164915208	FIGN-GRB14	Wain, ture Genetics 2011	0.924	0.976	0.985	0.918	0.898	0.974	0.968	0.904
rs13082711	3	27537909	SLC4A7	Ehret, ture 2011	0.924	0.833	0.873	0.818	0.898	0.805	0.887	0.821
rs13107325	4	103188709	SLC39A8	Ehret, ture 2011	-	-	-	-	-	-	-	-
rs13139571	4	156645513	GUCY1A3-GUCY1B3	Ehret, ture 2011	0.924	0.981	0.985	0.818	0.898	0.993	0.968	0.847
rs13209747	6	127115454	RSPO3	Francescini, AJHG 2013	0.948	0.981	0.985	0.891	0.952	0.988	0.982	0.896
rs13238550	7	131059056	MKLN1	Warren, ture Genetics 2017	0.924	0.981	0.985	0.891	0.898	0.993	0.968	0.865
rs1327235	20	10969030	JAG1	Ehret, ture 2011	0.948	0.981	0.994	0.918	0.912	0.993	0.982	0.896
rs13333226	16	20365654	UMOD	Padmabhan, PloS Genetics 2010	0.948	0.976	0.985	0.980	0.932	0.974	0.968	0.979
rs13359291	5	122476457	PRDM6	Kato, ture Genetics 2015	0.924	0.981	0.972	0.818	0.898	0.974	0.968	0.840
rs1344653	2	19730845	OSR1	Kato, ture Genetics 2015	0.924	0.873	0.972	0.891	0.912	0.805	0.968	0.896
rs1378942	15	75077367	CYP1A1-ULK3	Newton-Cheh, ture Genetics 2009	0.924	0.981	0.972	0.818	0.898	0.983	0.968	0.826
rs139236208	12	94880742	CCDC41	Warren, ture Genetics 2017	-	-	-	-	-	-	-	-
rs139385870	1	1685921	DK-CPSF3L	Warren, ture Genetics 2017	0.924	0.981	0.985	0.818	0.898	0.993	0.968	0.822
rs1401454	11	16250183	SOX6	Francescini, AJHG 2013	0.948	0.981	0.985	0.980	0.952	0.974	0.968	0.979

rs1421811	5	32714270	NPR3-C5orf23	Johnson, AJHG 2011	0.998	0.981	0.994	0.980	0.997	0.993	0.982	0.976
rs143112823	3	154707967	RP11-439C8.2	Warren, ture Genetics 2017	-	-	-	-	-	-	-	-
rs1438896	2	145646072	TEX41	Warren, ture Genetics 2017	0.951	0.976	0.994	0.818	0.952	0.974	0.982	0.821
rs1446468	2	164963486	FIGN-GRB14	Wain, ture Genetics 2011	0.927	0.981	0.985	0.980	0.912	0.993	0.968	0.975
rs1458038	4	81164723	FGF5	Ehret, ture 2011	0.751	0.981	0.972	0.650	0.552	0.993	0.968	0.771
rs147212971	6	166178451	PDE10A	Warren, ture Genetics 2017	0.924	0.981	0.994	0.818	0.900	0.993	0.982	0.821
rs1530440	10	63524591	C10orf107	Newton-Cheh, ture Genetics 2009	0.927	0.872	0.972	0.891	0.912	0.805	0.937	0.896
rs1563788	6	43308363	TTBK1,SLC22A7,ZNF318	Kato, ture Genetics 2015	0.924	0.981	0.985	0.818	0.898	0.993	0.968	0.821
rs1566497	4	169717148	PALLD	Warren, ture Genetics 2017	0.924	0.981	0.985	0.867	0.898	0.993	0.980	0.849
rs167479	19	11526765	RGL3	Surendran, ture Genetics 2016	-	-	-	-	-	-	-	-
rs16823124	2	183224127	PDE1A	Tragante, AJHG 2014	0.924	0.833	0.875	0.980	0.898	0.805	0.887	0.979
rs16833934	3	163737250	MIR1263	Simino, AJHG 2014	0.924	0.931	0.972	0.891	0.898	0.805	0.887	0.865
rs16849225	2	164906820	FIGN-GRB14	Kato, ture Genetics 2011	0.924	0.976	0.972	0.891	0.898	0.974	0.968	0.896
rs16851397	3	141134818	ZBTB38	Surendran, ture Genetics 2016	-	-	-	-	-	-	-	-
rs17030613	1	113190807	ST7L-CAPZA1-MOV10	Kato, ture Genetics 2011	0.924	0.965	0.960	0.980	0.898	0.843	0.909	0.975
rs17059668	4	174584663	chr4mb174	Warren, ture Genetics 2017	0.985	0.981	0.994	0.980	0.979	0.993	0.982	0.976
rs17080102	6	151004770	PLEKHG1	Francescini, AJHG 2013	0.709	0.833	0.549	0.891	0.552	0.805	0.682	0.896
rs17249754	12	90060586	ATP2B1	Levy, ture Genetics 2009	-	-	-	-	-	-	-	-
rs17367504	1	11862778	MTHFR-NPPB	Newton-Cheh, ture Genetics 2009	0.948	0.981	0.985	0.980	0.952	0.993	0.980	0.976
rs17428471	7	27337867	EVX1-HOXA	Francescini, AJHG 2013	0.948	0.981	0.985	0.867	0.952	0.974	0.980	0.849
rs17477177	7	106411858	PIK3CG	Wain, ture Genetics 2011	0.948	0.981	0.997	0.818	0.952	0.993	0.982	0.826
rs17608766	17	45013271	GOSR2	Ehret, ture 2011	-	-	-	-	-	-	-	-
rs17638167	19	11584818	ELAVL3	Ehret, ture Genetics 2016	0.924	0.976	0.972	0.891	0.898	0.974	0.968	0.865
rs1799945	6	26091179	HFE	Ehret, ture 2011	0.924	0.984	0.996	0.818	0.900	0.993	0.982	0.821
rs1801253	10	115805056	ADRB1	Johnson, Hypertension 2011	0.709	0.833	0.873	0.818	0.552	0.805	0.887	0.847
rs1813353	10	18707448	CACNB2	Ehret, ture 2011	0.924	0.976	0.985	0.918	0.912	0.974	0.968	0.943
rs1925153	6	56102780	COL21A1	Liu, ture Genetics 2016	-	-	-	-	-	-	-	-
rs1953126	9	123640500	PHF19	Liu, ture Genetics 2016	0.924	0.833	0.875	0.891	0.898	0.805	0.925	0.849
rs1975487	2	55809054	PNPT1	Ehret, ture Genetics 2016	0.998	0.981	0.985	0.891	0.997	0.974	0.980	0.885
rs2004776	1	230848702	AGT	Johnson, AJHG 2011	0.924	0.872	0.972	0.818	0.912	0.805	0.968	0.821
rs2014408	11	16365282	SOX6	Johnson, AJHG 2011	0.924	0.965	0.875	0.832	0.898	0.974	0.937	0.847
rs2014912	4	86715670	ARHGAP24	Kato, ture Genetics 2015	0.907	0.965	0.875	0.818	0.898	0.922	0.909	0.821
rs2071518	8	120435812	NOV	Wain, ture Genetics 2011	0.948	0.981	0.994	0.980	0.952	0.993	0.982	0.976
rs2107595	7	19049388	HDAC9	Kato, ture Genetics 2015	0.924	0.976	0.985	0.818	0.898	0.974	0.968	0.826
rs217727	11	2016908	H19	Tragante, AJHG 2014	0.998	0.965	0.985	0.818	0.997	0.922	0.968	0.821
rs2188962	5	131770805	C5orf56	Liu, ture Genetics 2016	-	-	-	-	-	-	-	-

rs2240736	17	59485393	C17orf82,TBX2	Kato, ture Genetics 2015	0.948	0.965	0.985	0.818	0.952	0.805	0.968	0.821
rs2270860	6	43270151	SLC22A7	Liu, ture Genetics 2016	0.924	0.981	0.985	0.818	0.898	0.993	0.968	0.821
rs2282978	7	92264410	CDK6	Tragante, AJHG 2014	0.924	0.981	0.985	0.818	0.898	0.993	0.980	0.821
rs2289081	2	20881840	C2orf43	Warren, ture Genetics 2017	0.998	0.981	0.997	0.914	0.997	0.993	0.982	0.896
rs2291435	4	38387395	TBC1D1-FLJ13197	Ehret, ture Genetics 2016	0.924	0.976	0.985	0.891	0.898	0.981	0.968	0.896
rs2302061	19	2226772	DOT1L	Liu, ture Genetics 2016	0.985	0.981	0.994	0.840	0.994	0.988	0.982	0.849
rs2304130	19	19789528	ZNF101	Surendran, ture Genetics 2016	-	-	-	-	-	-	-	-
rs2306374	3	138119952	MRAS	Warren, ture Genetics 2017	-	-	-	-	-	-	-	-
rs2384550	12	115352731	TBX5-TBX3	Levy, ture Genetics 2009	0.948	0.987	0.997	0.912	0.952	1.000	0.982	0.896
rs2467099	17	73949045	ACOX1	Warren, ture Genetics 2017	0.998	0.987	0.997	0.980	0.997	0.993	0.982	0.979
rs2493292	1	3328659	PRDM16	Liu, ture Genetics 2016	0.924	0.965	0.875	0.818	0.898	0.843	0.889	0.826
rs2521501	15	91437388	FURIN-FES	Ehret, ture 2011	0.948	0.981	0.985	0.980	0.952	0.974	0.968	0.976
rs2579519	2	96675166	GPAT2-FAHD2CP	Warren, ture Genetics 2017	0.924	0.981	0.985	0.927	0.898	0.988	0.968	0.906
rs2760061	1	228191075	WNT3A	Warren, ture Genetics 2017	0.998	0.973	0.985	0.818	0.997	0.974	0.968	0.847
rs2782980	10	115781527	ADRB1	Wain, ture Genetics 2011	0.924	0.981	0.985	0.650	0.898	0.974	0.968	0.771
rs2854275	6	32628428	HLA-DQB1	Tragante, AJHG 2014	-	-	-	-	-	-	-	-
rs2898290	8	11433909	BLK-GATA4	Ho, Jourl of Hypertension 2011	0.924	0.981	0.985	0.980	0.912	0.988	0.968	0.975
rs2932538	1	113216543	ST7L-CAPZA1-MOV10	Ehret, ture 2011	0.948	0.987	0.997	0.891	0.952	0.994	0.982	0.896
rs2969070	7	2512545	CHST12-LFNG	Ehret, ture Genetics 2016	0.998	0.981	0.996	0.980	0.997	0.993	0.982	0.979
rs2972146	2	227100698	2q36.3	Surendran, ture Genetics 2016	0.924	0.981	0.997	0.818	0.912	0.993	0.982	0.821
rs2978098	8	101676675	SNX31	Warren, ture Genetics 2017	0.778	0.833	0.873	0.891	0.898	0.805	0.887	0.896
rs2978456	8	42324765	SLC20A2	Warren, ture Genetics 2017	0.924	0.981	0.985	0.840	0.898	0.993	0.968	0.849
rs3184504	12	111884608	SH2B3	Levy, ture Genetics 2009	-	-	-	-	-	-	-	-
rs319690	3	47927484	MAP4	Wain, ture Genetics 2011	0.948	0.981	0.994	0.818	0.952	0.974	0.982	0.847
rs33063	16	69640217	NFAT5	Tragante, AJHG 2014	0.924	0.981	0.985	0.846	0.898	0.993	0.968	0.849
rs34591516	8	142367087	GPR20	Surendran, ture Genetics 2016	-	-	-	-	-	-	-	-
rs347591	3	11290122	HRH1-ATG7	Ganesh, Human Molecular Genetics 2013	0.998	0.976	0.985	0.912	0.952	0.974	0.968	0.896
rs35199222	15	81013037	ABHD17C	Warren, ture Genetics 2017	0.949	0.984	0.997	0.891	0.952	0.994	0.982	0.890
rs35444	12	115552437	TBX5-TBX3	Kato, ture Genetics 2011	0.924	0.976	0.972	0.650	0.898	0.974	0.968	0.780
rs36022378	3	49913705	CAMKV-ACTBP13	Warren, ture Genetics 2017	0.959	0.976	0.985	0.891	0.952	0.974	0.968	0.896
rs36083386	6	152397912	ESR1	Warren, ture Genetics 2017	0.924	0.872	0.875	0.892	0.898	0.843	0.968	0.896
rs3741378	11	65408937	SIPA1	Tragante, AJHG 2014	0.924	0.981	0.985	0.980	0.929	0.993	0.980	0.979
rs3771371	2	71627539	ZNF638	Warren, ture Genetics 2017	0.948	0.981	0.985	0.891	0.952	0.974	0.968	0.896
rs3774372	3	41877414	ULK4	Ehret, ture 2011	0.948	0.976	0.985	0.934	0.952	0.974	0.968	0.943
rs381815	11	16902268	PLEKHA7	Levy, ture Genetics 2009	0.998	0.981	0.994	0.818	0.952	0.974	0.982	0.847
rs3889199	1	59653742	FGGY	Warren, ture Genetics 2017	0.924	0.981	0.997	0.650	0.898	0.993	0.982	0.771

rs3918226	7	150690176	NOS3	Johnson, AJHG 2011	-	-	-	-	-	-	-	-
rs409558	6	31708147	MSH5-SAPCD1	Liu, ture Genetics 2016	0.924	0.981	0.985	0.818	0.898	0.993	0.968	0.821
rs419076	3	169100886	MECOM	Ehret, ture 2011	0.924	0.833	0.875	0.818	0.898	0.805	0.889	0.823
rs4245739	1	204518842	MDM4	Ganesh, Human Molecular Genetics 2013	0.924	0.976	0.972	0.891	0.898	0.922	0.968	0.865
rs4247374	19	7252756	INSR	Ehret, ture Genetics 2016	-	-	-	-	-	-	-	-
rs4308	17	61559625	ACE	Warren, ture Genetics 2017	0.948	0.981	0.985	0.980	0.952	0.993	0.980	0.979
rs4360494	1	38455891	SF3A3	Warren, ture Genetics 2017	-	-	-	-	-	-	-	-
rs4364717	9	21801530	MTAP	Warren, ture Genetics 2017	0.924	0.981	0.997	0.818	0.898	0.993	0.982	0.821
rs4373814	10	18419972	CACNB2	Ehret, ture 2011	0.924	0.872	0.960	0.980	0.912	0.843	0.968	0.976
rs4387287	10	105677897	OBFC1	Surendran, ture Genetics 2016	0.924	0.981	0.985	0.867	0.898	0.988	0.968	0.849
rs4454254	8	141060027	TRAPPC9	Warren, ture Genetics 2017	0.948	0.976	0.985	0.962	0.952	0.974	0.968	0.920
rs4494250	10	96563757	CYP2C19	Liu, ture Genetics 2016	0.924	0.833	0.873	0.918	0.898	0.805	0.887	0.896
rs449789	6	159699125	FNDC1	Warren, ture Genetics 2017	0.709	0.833	0.873	0.818	0.552	0.805	0.682	0.821
rs452036	14	23865885	MYH6	Surendran, ture Genetics 2016	0.924	0.976	0.972	0.915	0.912	0.974	0.968	0.920
rs4530754	5	122855416	CSNK1G3	Liu, ture Genetics 2016	0.924	0.981	0.985	0.818	0.912	0.993	0.982	0.826
rs4590817	10	63467553	C10orf107	Ehret, ture 2011	-	-	-	-	-	-	-	-
rs4601790	11	65353906	EHBP1L1	Simino, AJHG 2014	0.924	0.976	0.985	0.818	0.912	0.974	0.968	0.821
rs4660293	1	40028180	PABPC4	Liu, ture Genetics 2016	0.927	0.981	0.985	0.891	0.912	0.981	0.968	0.896
rs470113	22	40729614	TNRC6B	Surendran, ture Genetics 2016	0.948	0.976	0.985	0.818	0.952	0.974	0.980	0.847
rs4728142	7	128573967	7q32.1	Surendran, ture Genetics 2016	0.924	0.981	0.994	0.818	0.898	0.993	0.982	0.821
rs4746172	10	75855842	VCL	Tragante, AJHG 2014	0.924	0.976	0.972	0.980	0.900	0.974	0.968	0.976
rs4823006	22	29451671	ZNRF3	Liu, ture Genetics 2016	0.927	0.976	0.985	0.980	0.912	0.974	0.968	0.979
rs4841569	8	11452177	BLK-GATA4	Simino, AJHG 2014	-	-	-	-	-	-	-	-
rs4846049	1	11850365	MTHFR-NPPB	Johnson, AJHG 2011	0.948	0.981	0.997	0.818	0.952	0.993	0.982	0.821
rs4952611	2	40567743	SLC8A1	Warren, ture Genetics 2017	0.998	0.981	0.994	0.927	0.997	0.993	0.982	0.975
rs5068	1	11905974	MTHFR-NPPB	Newton-Cheh, ture Genetics 2009	-	-	-	-	-	-	-	-
rs5219	11	17409572	KCNJ11	Liu, ture Genetics 2016	0.924	0.872	0.875	0.937	0.898	0.805	0.887	0.922
rs55701159	2	25139596	ADCY3	Warren, ture Genetics 2017	-	-	-	-	-	-	-	-
rs55780018	2	208526140	METTL21A-AC079767.3	Warren, ture Genetics 2017	-	-	-	-	-	-	-	-
rs6015450	20	57751117	GS-EDN3	Ehret, ture 2011	-	-	-	-	-	-	-	-
rs6081613	20	19465907	SLC24A3	Warren, ture Genetics 2017	0.948	0.981	0.994	0.950	0.932	0.993	0.982	0.957
rs6095241	20	47308798	PREX1	Surendran, ture Genetics 2016	0.924	0.833	0.875	0.891	0.912	0.805	0.909	0.896
rs6108168	20	8626271	PLCB1	Warren, ture Genetics 2017	0.924	0.931	0.972	0.986	0.912	0.874	0.968	0.979
rs62012628	15	79070000	ADAMTS7	Warren, ture Genetics 2017	-	-	-	-	-	-	-	-
rs62080325	17	42060631	РҮҮ	Warren, ture Genetics 2017	-	-	-	-	-	-	-	-
rs62104477	19	30294991	CCNE1	Warren, ture Genetics 2017	0.948	0.981	0.985	0.867	0.952	0.974	0.980	0.849

rs6271	9	136522274	DBH	Ehret, ture Genetics 2016	-	-	-	-	-	-	-	-
rs633185	11	100593538	FLJ32810-TMEM133	Ehret, ture 2011	0.948	0.981	0.985	0.822	0.952	0.974	0.980	0.847
rs6487543	12	26438189	SSPN	Warren, ture Genetics 2017	0.998	0.984	0.997	0.980	0.997	0.993	0.982	0.979
rs661348	11	1905292	LSP1-TNNT3	Johnson, AJHG 2011	0.924	0.981	0.985	0.891	0.898	0.993	0.968	0.849
rs6686889	1	25030470	chr1mb25	Warren, ture Genetics 2017	0.924	0.833	0.875	0.980	0.898	0.805	0.887	0.979
rs6712094	2	165043460	FIGN-GRB14	Ganesh, AJHG 2014	0.948	0.981	0.991	0.915	0.952	0.993	0.982	0.904
rs6722745	2	108875244	SULT1C3	Liu, ture Genetics 2016	0.948	0.976	0.985	0.980	0.952	0.974	0.968	0.976
rs67330701	11	69079707	MYEOV	Warren, ture Genetics 2017	0.924	0.981	0.985	0.818	0.898	0.993	0.968	0.826
rs6797587	3	48197614	CDC25A	Simino, AJHG 2014	0.924	0.981	0.985	0.818	0.898	0.993	0.980	0.847
rs6825911	4	111381638	ENPEP	Kato, ture Genetics 2011	0.751	0.965	0.875	0.818	0.647	0.883	0.887	0.821
rs687621	9	136137065	ABO	Surendran, ture Genetics 2016	0.924	0.931	0.875	0.891	0.898	0.805	0.887	0.896
rs6891344	5	123136656	CSNK1G3	Ehret, ture Genetics 2016	0.924	0.833	0.875	0.912	0.898	0.805	0.909	0.896
rs6911827	6	22130601	CASC15	Warren, ture Genetics 2017	0.924	0.981	0.985	0.891	0.898	0.993	0.968	0.896
rs6969780	7	27159136	HOXA3	Liu, ture Genetics 2016	0.948	0.981	0.994	0.980	0.952	0.993	0.982	0.975
rs709209	1	6278414	RNF207	Surendran, ture Genetics 2016	0.948	0.987	0.997	0.891	0.952	1.000	0.982	0.896
rs7103648	11	47461783	RAPSN, PSMC3, SLC39A13	Ehret, ture Genetics 2016	0.924	0.976	0.972	0.818	0.898	0.974	0.968	0.847
rs7126805	11	828916	CRACR2B	Warren, ture Genetics 2017	-	-	-	-	-	-	-	-
rs7129220	11	10350538	ADM	Ehret, ture 2011	-	-	-	-	-	-	-	-
rs7178615	15	66869072	RP11-321F6.1	Warren, ture Genetics 2017	0.924	0.981	0.994	0.650	0.900	0.974	0.982	0.771
rs7236548	18	43097750	SLC14A2	Warren, ture Genetics 2017	0.924	0.981	0.994	0.818	0.898	0.993	0.982	0.847
rs7248104	19	7224431	INSR	Liu, ture Genetics 2016	0.907	0.965	0.875	0.818	0.898	0.922	0.889	0.826
rs72765298	9	127900996	SCAI	Warren, ture Genetics 2017	-	-	-	-	-	-	-	-
rs7297416	12	54443090	HOXC4	Tragante, AJHG 2014	-	-	-	-	-	-	-	-
rs7302981	12	50537815	CERS5	Surendran, ture Genetics 2016	-	-	-	-	-	-	-	-
rs740406	19	2232221	AMH	Kato, ture Genetics 2015	0.998	0.981	0.997	0.818	0.997	0.993	0.982	0.847
rs7406910	17	46688256	HOXB7	Surendran, ture Genetics 2016	0.732	0.872	0.873	0.818	0.552	0.805	0.887	0.821
rs740698	17	60767151	MRC2	Warren, ture Genetics 2017	0.948	0.981	0.997	0.818	0.932	0.993	0.982	0.847
rs74181299	2	65283972	CEP68	Warren, ture Genetics 2017	0.948	0.984	0.994	0.912	0.952	0.993	0.982	0.896
rs743757	3	50476378	CAC2D2	Warren, ture Genetics 2017	0.924	0.981	0.994	0.818	0.912	0.993	0.982	0.847
rs745821	18	48142854	MAPK4	Warren, ture Genetics 2017	0.927	0.976	0.985	0.891	0.912	0.974	0.968	0.849
rs7515635	1	42408070	HIVEP3	Ehret, ture Genetics 2016	0.924	0.833	0.873	0.980	0.898	0.805	0.887	0.979
rs751984	11	61278246	LRRC10B	Kato, ture Genetics 2015	0.751	0.872	0.873	0.818	0.898	0.805	0.887	0.847
rs7562	2	28635740	FOSL2	Warren, ture Genetics 2017	0.948	0.976	0.985	0.912	0.932	0.974	0.968	0.896
rs757081	11	17351683	NUCB2	Tragante, AJHG 2014	0.924	0.981	0.985	0.903	0.898	0.974	0.968	0.896
rs7592578	2	191439591	TMEM194B	Warren, ture Genetics 2017	0.998	0.981	0.997	0.980	0.997	0.993	0.982	0.979
rs76206723	7	40447971	SUGCT	Warren, ture Genetics 2017	0.948	0.984	0.994	0.891	0.952	0.993	0.982	0.896

rs76326501	2	43167878	AC016735.1	Warren, ture Genetics 2017	-	-	-	-	-	-	-	-
rs76452347	9	35906471	HRCT1	Liu, ture Genetics 2016	-	-	-	-	-	-	-	-
rs76987554	6	134080855	TARID/TCF21	Liang, PLoS Genetics 2017	-	-	-	-	-	-	-	-
rs78648104	6	50683009	TFAP2D	Warren, ture Genetics 2017	0.924	0.976	0.985	0.891	0.898	0.974	0.968	0.896
rs79089478	17	40317241	KCNH4-HSD17B1	Warren, ture Genetics 2017	-	-	-	-	-	-	-	-
rs79146658	2	179786068	CCDC141	Warren, ture Genetics 2017	-	-	-	-	-	-	-	-
rs8016306	14	63928546	PPP2R5E	Warren, ture Genetics 2017	0.907	0.973	0.875	0.818	0.898	0.922	0.887	0.826
rs8059962	16	81574197	CMIP	Warren, ture Genetics 2017	0.948	0.981	0.994	0.945	0.952	0.993	0.982	0.943
rs8068318	17	59483766	TBX2	Surendran, ture Genetics 2016	0.948	0.872	0.972	0.818	0.912	0.805	0.968	0.821
rs8258	11	117283676	CEP164	Warren, ture Genetics 2017	0.927	0.981	0.994	0.818	0.932	0.993	0.982	0.847
rs867186	20	33764554	PROCR	Surendran, ture Genetics 2016	0.998	0.976	0.985	0.867	0.997	0.974	0.982	0.849
rs871606	4	54799245	CHIC2	Wain, ture Genetics 2011	0.924	0.976	0.972	0.891	0.898	0.974	0.968	0.896
rs880315	1	10796866	CASZ1	Takeuchi, Circulation 2010	-	-	-	-	-	-	-	-
rs891511	7	150704843	NOS3	Liu, ture Genetics 2016	-	-	-	-	-	-	-	-
rs894344	8	135612745	ZFAT	Warren, ture Genetics 2017	0.964	0.981	0.994	0.980	0.997	0.994	0.982	0.979
rs900145	11	13293905	ARNTL	Liu, ture Genetics 2016	0.907	0.833	0.873	0.927	0.898	0.805	0.887	0.906
rs918466	3	64710253	ADAMTS9	Ehret, ture Genetics 2016	0.924	0.981	0.994	0.818	0.912	0.993	0.982	0.847
rs9306160	21	45107562	RRP1B	Surendran, ture Genetics 2016	0.924	0.981	0.985	0.912	0.912	0.993	0.968	0.904
rs9323988	14	98587630	RP11-61O1.1	Warren, ture Genetics 2017	0.948	0.981	0.994	0.980	0.952	0.993	0.982	0.976
rs932764	10	95895940	PLCE1	Ehret, ture 2011	0.924	0.918	0.875	0.897	0.898	0.805	0.889	0.901
rs9349379	6	12903957	PHACTR1	Surendran, ture Genetics 2016	-	-	-	-	-	-	-	-
rs9372498	6	118572486	SLC35F1	Warren, ture Genetics 2017	0.924	0.976	0.985	0.650	0.898	0.974	0.980	0.771
rs953492	1	243471192	SDCCAG8	Warren, ture Genetics 2017	0.998	0.981	0.994	0.867	0.997	0.993	0.982	0.849
rs9549328	13	113636156	MCF2L	Warren, ture Genetics 2017	0.924	0.981	0.985	0.818	0.898	0.993	0.968	0.821
rs9687065	5	148391140	ABLIM3,SH3TC2	Kato, ture Genetics 2015	0.924	0.976	0.972	0.891	0.898	0.974	0.968	0.896
rs9827472	3	56726646	FAM208A	Warren, ture Genetics 2017	0.985	0.833	0.972	0.818	0.997	0.805	0.968	0.821
rs9859176	3	134000025	RYK	Warren, ture Genetics 2017	0.998	0.981	0.997	0.891	0.997	0.993	0.982	0.896
rs9888615	14	53377540	FERMT2	Warren, ture Genetics 2017	0.924	0.965	0.960	0.867	0.898	0.805	0.887	0.849

Figure 9 QQ plots of meta-analyses using the 2DF joint test in European ancestry in Aim 3

Blue line represents the results using all participants and red line represents the results from participants without diuretics

European Americans

MAP

African Americans

MAP

PP

Asians (Chinese)

MAP

Figure 10 Miami plots for SBP, DBP, MAP, and PP using the 2 DF joint test in European ancestry in Aim 3

Above Manhattan plots represent the results using all participants and below Manhattan plots represent the results from participants without diuretics

SBP

DBP

MAP

chr7

chr8 chr9

Chromosome

Figure 11 Miami plots for SBP, DBP, MAP, and PP using the 2 DF joint test in African ancestry in Aim 3

Above Manhattan plots represent the results using all participants and below Manhattan plots represent the results from participants without diuretics

Figure 12 Miami plots for SBP, DBP, MAP, and PP using the 2 DF joint test in Asians in Aim 3

Above Manhattan plots represent the results using all participants and below Manhattan plots represent the results from participants without diuretics

SBP

Figure 13 Regional plots for significant loci using LocusZoom in Aim 3

EA: European American; AA: African Americans; AS: Asians (Chinese) ALL: All Participants; WOD: Participants without diuretics

Locus 3 with DBP in WOD AS

Locus 4 with PP in ALL AA

Locus 5 with DBP in ALL AA

10

8

6

4

2

0

T 113.8

114

-log₁₀(p-value)

2

- 0.8

- 0.6

0.4

0.2

Locus 6 with SBP in ALL EA

Locus 7 with MAP in ALL AA

Locus 8 with SBP in ALL EA

Locus 9 with SBP in ALL AA

Locus 10 with MAP in ALL AA

Locus 11 with DBP in ALL EA

Locus 12 with MAP in ALL EA

CHAPTER V: Conclusion

5.1 Review of main findings

Blood pressure has long been known to be associated with high sodium intake, low potassium intake, and a high sodium-potassium ratio. In this dissertation, the rich combination of high-quality measurements of sodium and potassium intake and genotype data from multiethnic cohort studies of participants from European, African, and Asian ancestries have enabled the identification of genomic regions and genetic variants associated with sodium and potassium intake. To examine the association and interaction among sodium intake, potassium intake, genetics, and blood pressure, this dissertation has used a range of approaches: single-variant and gene-based approaches; effect modification by demographic factors (age, sex, and education); and gene-by-sodium interactions on blood pressure traits.

In Aim 1, we conducted the largest genome-wide association investigation of 24-hour urinary sodium excretion, 24-hour urinary potassium excretion, and sodium-to-potassium ratio with and without adjustment for BMI and height using five European ancestry cohorts (N=7,363), followed by replication in an African (N=1,246) ancestry and an Asian cohort (N=2,475). A total of 52, 75, and 27 SNPs were significant (P <5 X 10⁻⁸) or suggestive SNPs (P <5 X 10⁻⁶) with 24-hour sodium excretion, 24-hour potassium excretion, and their ratio from the meta-analysis in European ancestry populations, respectively; three of those SNPs were replicated either in African ancestry or Asian populations (P<0.05). The genes near identified SNPs from the 24-hour sodium excretion GWAS include the Fc fragment of IgG receptor genes (*FCGR2B-FCGR2C- FCGR3A*) that are associated with the human immune system [75] and genes associated with the activity of GTPases (*GTPBP1* on chromosome 22 and *CDC42SE1* on chromosome 1). GTPases have been suggestively associated with blood pressure regulation, hypertension, kidney function, and other traits that are related to the cardiovascular system and disease [78] [79]. From the 24-hour potassium excretion GWAS, several SNPs were found near genes *DLEU2*, *CUL3*, and *ABO*, which are suggestively associated with the regulation of blood pressure and CVD through the renin-angiotensin system or resistance to aldosterone [83] [85] [86]. From the sodium-to-potassium ratio GWAS, we found SNPs near *KIRREL3*, which has an important role involving renal filtration in the kidney [91].

In Aim 2, we employed state-of-the-art gene-based approaches to confirm the associations from Aim 1, using SKAT with both common and rare genetic variants in two European cohorts (GENOA and FHS). In GENOA, we found a total of 6 gene regions that had P-value < 0.05, and 3 gene regions (24-hour sodium excretion: *SETD7* and *ASH1L*; 24-hour potassium excretion: *RP11-431M7.2*) were significant after FDR correction (FDR adjusted P value < 0.1). In FHS, 3 out of 5 gene regions (24-hour potassium excretion: *BRO3BP* and *LINC00672*; sodium-to-potassium ratio: *RP11-433C9.2*) had FDR adjusted P-value less than 0.1. We also evaluated the interaction between genes and three demographic variables (age \geq 65 years, sex, and college education completion) on 24-hour urinary sodium excretion, 24-hour urinary potassium excretion, and sodium-to-potassium ratio using iSKAT, and found five interactions in *TAPSAR1, CTC-228N24, RP11-433C9.2*, and *RP11-483H11.1* that had an FDR adjusted P value less than 0.1 in GENOA.

In Aim 3, the meta-analysis of a genome-wide gene-by-sodium interaction study on blood pressure measures (SBP, DBP, MAP, and PP) was conducted using 6 cohorts comprising

more than 6,000 participants of European, African, and Asian ancestry, and identified 12 independent genome-wide significant genetic loci ($P < 5 \times 10^{-8}$). The genes near the top signal include *NKAIN2* on chromosome 6, which is associated with the regulation of sodium and potassium ion transporting within or between cells [127]. We identified genes near significant SNPs that included *ZDHHC19*, which encodes a protein that may interact with other proteins including endothelial nitric oxide synthase (eNOS), which is important for cardiovascular homeostasis [128] as well as *RUSC2*, which is associated with the activity of GTPases and regulation of blood pressure [80, 131] [132].

5.2 Significance and implications

This dissertation has used high-quality measurement in multiethnic studies to improve the understanding of 1) the role of genomic regions and genetic variations in sodium intake, potassium intake, and sodium-to-potassium ratio , 2) the impact of interactions between genetic factors and demographic factors (age, sex, and education level) on sodium and potassium intake, and 3) the effect of gene-by-sodium intake interaction on blood pressure traits using both traditional and state-of-the-art methods in genetic epidemiology.

After the completion of the 1000 Genomes Project, advances in genomics and other 'omics' technologies have accelerated the focus on developing personalized and precision health approaches where individual genetics and other sources of variability in disease treatment and prevention are considered [138]. While personalized and precision medicine mostly focuses on prevention and treatment of an individual's disease, there has also been a significant growth in the interest of precision public health, which extends the personalized medicine approach into a public health context [139]. For example, Evangelatos et al. claim that "directing preventive efforts to populations most at risk for certain diseases could be more effective if guided by stratification based on genetic information" [139]. While personalized and precision medicine could help to heal people who are already sick and have disease, precision public health may help to prevent disease by targeting subsets of the population based on their traditional risk factors as well as genetic or omic markers. Khoury et al. outlines the idea that precision public health is simply ensuring that the right intervention is made available to the right population at the right time [140]. However, genomic information does not add significantly more information to risk prediction above and beyond traditional epidemiologic risk factors because the identified genetic markers on disease are acting through those risk factors or only have small main effects on disease [141]. More studies are needed to provide a sufficiently extensive and robust evidence for prevention recommendations using individual genetic profiles for any of the chronic diseases.

In this context, the initial discoveries from Aim 1 may help shed an initial light on the importance of the genetic architecture of sodium and potassium intake. In addition, in Aim 2, we identified preliminary evidence of effect modification of those genetic effects on sodium and/or potassium intake by traditional epidemiological factors such as age, sex, and education. This finding raises the important long-range question about how to tailor messaging about dietary behaviors to be more precise in order to have the desired health benefits for different, already known, subsets of the population with different dietary intakes. This same issue is important for our findings in Aim 3, which suggest that genetic variations may modify the relationship between sodium intake and blood pressure. If replication supports this finding, it could have a major effect on stratifying treatment and prevention recommendations for millions of adults who have high blood pressure or hypertension, since it would indicate which subgroups of the population had an increased risk of elevated blood pressure through sodium consumption.

5.3 Strengths

This dissertation has many strengths that reflect the decades of work it takes to create high-quality genetic epidemiology cohort studies. The genome-wide association analyses in Aim 1 and 3 were conducted in multiethnic cohort studies, which is a valuable strength. Since sodium and potassium intake vary greatly across culture and race/ethnicity, the genetic effects on sodium and potassium intake and/or gene-by-sodium intake interactions could also differ across populations. This dissertation includes populations with both higher and lower mean sodium and potassium intake, which allowed us to generalize these results across a variety of populations. In addition, the variability of sodium and potassium intake within and across populations likely increased our power to detect effects.

In Aim 1, we used multiple dietary phenotypes as outcomes (sodium intake, potassium intake, and sodium-to-potassium ratio) that are mostly associated with blood pressure regulation to contribute to the comprehensive understanding of genetic architecture of three phenotypes. In addition, each of the participating cohorts in this dissertation has high-quality measurements of sodium and potassium intake from urinary samples, enabling us to initiate an international collaboration of multiethnic genome-wide meta-analysis in Aim 1 and 3. Throughout the dissertation, we assumed that 24-hour urinary sodium and potassium excretion levels were measures of recent intake because they are regarded as the gold standard for sodium and potassium intake assessment. For the genotyping data in Aim 1 and 3, we used 1000 Genomes Project imputed genotypes that passed a strict QC assessment in each cohort, and we further excluded SNPs based on their allele frequency, imputation quality, and their match with the 1000 Genomes reference panel data through the study-level and meta-level QC steps.

In Aim 2, we used rare genetic variants in addition to common variants in the analysis, which allowed us to investigate the effect of both common and rare variants on sodium and potassium intake.

Regarding the methods of statistical analysis, the dissertation covers both traditional and state-of-the-art approaches in genetic epidemiology, which allow a comprehensive understanding of the results. In Aim 1, we employed a traditional genetic analysis method (GWAS meta-analysis) to investigate the genetic determinants of sodium and potassium intake. Secondly, an advanced gene-based approach was utilized to confirm the associations from Aim 1 and evaluate effect modification by demographic factors. Lastly, genome-wide gene-by-sodium intake interactions were evaluated across the genome using a powerful statistical approach, joint meta-analysis of SNP and SNP by environment (SNP \times E) regression coefficients (2DF joint test) [124].

5.4 Limitations

Although the analyses in this dissertation were conducted in the largest collection of multiethnic cohorts for each Aim, the total sample size was still insufficient to have the power to detect many significant results from the genome-wide SNP and gene-by-environment interaction analyses. In addition, since collecting 24-hour or half-day urine samples is time consuming and costly, not many cohorts have both 24-hour/half-day urine samples and genotyping data. In addition, as there was only one cohort of African and Asian ancestry in Aim 1, we could not conduct the meta-analysis in those race/ethnicity populations. In Aim 2, the gene-based association analysis and gene-by-environment interaction analysis were conducted in only two small European ancestry cohorts, and based on the sample size in each cohort we could not
evaluate the association and interactions if the number of genetic markers in a region was higher than the recommended value by SKAT. In Aim 3, since we only one Asian ancestry cohort, we could not conduct the meta-analysis in that ancestry group.

Generally, 24-hour urinary sodium and potassium excretion is regarded as the gold standard for assessment of sodium and potassium intake and is more accurate than those from self-reported dietary questionnaires [20-22]. Since collecting 24-hour urinary samples is very challenging, sodium and potassium excretions from half-day and spot urine samples are often measured instead. In Aims 1 and 3, sodium and potassium intake were measured from half-day and spot urine samples in some of the participating cohorts, which might decrease the accuracy of the measurement. However, the estimated 24-hour sodium and potassium excretion measured from half-day and spot-urine samples using a special formula (simple volume-time linear extrapolation and Kawasaki formula) have reasonably high correlation coefficients with those from 24-hour urine samples (0.837 and 0.53-0.82, respectively) [11, 25]. In a future study, we plan to conduct sensitivity analyses to assess the effect of suboptimal urine quality measurements by excluding samples in which sodium and potassium intake was measured from spot urine and compare the results to the larger meta-analysis [142].

The low rate of replication of significant or suggestive genetic loci from European discovery set in the African and Asian cohorts in Aim 1 may be due to different genetic linkage disequilibrium structures in each ancestry. In addition, the genetic effects may only manifest in certain environmental contexts (gene-by-environment interaction) [143]. As a result, a SNP found in a specific race/ethnicity group may not replicat in another group. Thus, we need other European ancestry cohorts as replication sets or to employ gene-based approaches to replicate our findings in populations of different race/ancestry groups.

In Aim 2, we evaluated the association between sodium and potassium intake and genes near significant or suggestive genetic loci that were identified in Aim 1. However, the regions evaluated in Aim 2 only included the gene regions near identified genetic loci, and excluded the regions near genetic loci in non-gene regions from Aim 1. To expand the regions that were tested in Aim 2, we plan to include non-gene regions in the analysis of association and interactions by defining regions as the location of the index SNP \pm 20kb.

5.5 Future work

In Aims 1 and 3, we identified genome-wide significant or suggestive genetic loci associated with sodium and potassium intake as well as gene-by-sodium intake interactions. However, we need large and independent multiethnic cohorts to confirm the associations from Aim 1. In Aim 1, potential replication cohorts include 1) Genetic epidemiology network of salt sensitivity (GenSalt) study (N=1,823) [144], 2) UK Biobank (N=500,000) [136], 3) Jackson Heart Study (JHS, N=633), and 4) Nurses' Health Study and Health Professionals Follow-up Study (NHS & HPFS, N=1,650) [145-147]. To expand on the results in Aim 3, we are currently suggesting collaborations with additional cohorts to confirm suggestive or significant loci found from the discovery stage. Potential cohorts include 1) 24-hour urine sample: Prevention of REnal and Vascular ENd-stage Disease (PREVEND) (N=3,649) [61]; 2) Spot urine sample: Heredity and Phenotype Intervention (HAPI) Heart Study (N=844) [70], Multiethnic Study of Atherosclerosis (MESA) cohort (N=2,462) [135] and UK Biobank (N=500,000) [136]; and 3) FFQ: Health and Retirement Study (N=8,035) [137]. In addition, we plan to explore the gene-bypotassium intake interactions, which would expand our understanding of dietary effects on genetics of blood pressure.

The strength of the gene-based approach is that we can evaluate associations or interactions across race/ethnicity groups because the gene is a functional unit that does not vary by race/ethnicity group. Since we only used two European ancestry cohorts in Aim 2, we plan to include larger cohorts across multiple race/ethnicities to conduct a meta-analysis of the results as well as replicate the results in larger cohorts. In addition, gene-based approaches using only functional genetic variants could be employed in Aim 2. Functional polymorphisms include the genetic variants that have been proven or predicted to influence gene expression or protein functions. It is important to know if a polymorphism is functional to better understand the mechanistic basis by which a polymorphism is associated with a specific health outcome [148]. Using weighting based on bioinformatic evaluation of each variant's potential to have a functional effect would be an important next step in gene-based analysis [149]. Blood pressure traits, as well as its risk factors -- intakes of sodium and potassium -- are complex phenotypes. To have better insight into the genetics of complex traits and their mechanisms in disease risk, integrating the information from the genome, and epigenome, environmental exposures, as well as their interactions are needed. We plan to expand our initial findings using

gene expression data, epigenetic data, and other related environmental factors to evaluate the underlying evidence for personalized and precision approaches to reduce the burden of disease in populations.

136

APPENDICES

Appendix 1 Descriptions of participating cohorts

Genetic Epidemiology Network of Arteriopathy (GENOA), USA: GENOA is one of four networks in the NHLBI Family-Blood Pressure Program (FBPP). [The FBPP Investigators. Multi-center genetic study of hypertension: The Family Blood Pressure Program (FBPP). Hypertension 2002;39:3-9.; Daniels PR, Kardia SL, Hanis CL, Brown CA, Hutchinson R, Boerwinkle E, Turner ST; Genetic Epidemiology Network of Arteriopathy study. Familial aggregation of hypertension treatment and control in the Genetic Epidemiology Network of Arteriopathy (GENOA) study. Am J Med. 2004 May 15;116(10):676-81. PubMed PMID: 15121494.] GENOA's long-term objective is to elucidate the genetics of target organ complications of hypertension, including both atherosclerotic and arteriolosclerotic complications involving the heart, brain, kidneys, and peripheral arteries. The longitudinal GENOA Study recruited European-American and African-American sibships with at least 2 individuals with clinically diagnosed essential hypertension before age 60 years. All other members of the sibship were invited to participate regardless of their hypertension status. Participants were diagnosed with hypertension if they had either 1) a previous clinical diagnosis of hypertension by a physician with current anti-hypertensive treatment, or 2) an average systolic blood pressure ≥ 140 mm Hg or diastolic blood pressure ≥ 90 mm Hg based on the second and third readings at the time of their clinic visit. Exclusion criteria were secondary hypertension,

alcoholism or drug abuse, pregnancy, insulin-dependent diabetes mellitus, or active malignancy. During the first exam (1995-2000), 1,583 European Americans from Rochester, MN and 1,854 African Americans from Jackson, MS were examined. Between 2000 and 2005, 1,241 of the European Americans and 1,482 of the African Americans returned for a second examination. Because African-American probands for GENOA were recruited through the Atherosclerosis Risk in Communities (ARIC) Jackson field center participants, we excluded ARIC participants from analyses.

FBPP Investigators. Multi-center genetic study of hypertension: The Family Blood Pressure Program (FBPP). Hypertension. 2002 Jan; 39(1):3-9.

Daniels PR, Kardia SL, Hanis CL, Brown CA, Hutchinson R, Boerwinkle E, Turner ST, Genetic Epidemiology Network of Arteriopathy study.

Familial aggregation of hypertension treatment and control in the Genetic Epidemiology Network of Arteriopathy (GENOA) study. Am J Med. 2004 May 15; 116(10):676-81.

Prevention of REnal and Vascular ENd-stage Disease (PREVEND), Netherland:

PREVEND is an ongoing prospective study investigating the natural course of increased levels of urinary albumin excretion and its relation to renal and cardiovascular disease. Details of the protocol have been described elsewhere (www.prevend.org). PREVEND genetics is supported by the Dutch Kidney Foundation (Grant E033), the EU project grant GENECURE (FP-6 LSHM CT 2006 037697), the National Institutes of Health (grant 2R01LM010098), The Netherlands organisation for health research and development (NWO-Groot grant 175.010.2007.006, NWO VENI grant 916.761.70, ZonMw grant 90.700.441), and the Dutch Inter University Cardiology

Institute Netherlands (ICIN). N. Verweij is supported by Marie Sklodowska-Curie GF (call: H2020-MSCA-IF-2014, Project ID: 661395) and an NWO VENI grant (016.186.125). We would like to thank the Center for Information Technology of the University of Groningen for their support and for providing access to the Peregrine high-performance computing cluster.

Hillege HL, Fidler V, Diercks GF, van Gilst WH, de Zeeuw D, van Veldhuisen DJ, Gans RO, Janssen WM, Grobbee DE, de Jong PE. Urinary albumin excretion predicts cardiovascular and noncardiovascular mortality in general population. Circulation. 2002 Oct 1;106(14):1777-82.

Framingham Heart Study (FHS), USA: FHS began in 1948 with the recruitment of an original cohort of 5,209 men and women (mean age 44 years; 55 percent women). In 1971 a second generation of study participants was enrolled; this cohort (mean age 37 years; 52% women) consisted of 5,124 children and spouses of children of the original cohort. A third-generation cohort of 4,095 children of offspring cohort participants (mean age 40 years; 53 percent women) was enrolled in 2002-2005 and are seen every 4 to 8 years. Details of study designs for the three cohorts are summarized elsewhere. At each clinic visit, a medical history was obtained with a focus on cardiovascular content, and participants underwent a physical examination including measurement of height and weight from which BMI was calculated. Systolic and diastolic blood pressures were measured twice by a physician on the left arm of the resting and seated participant using a mercury column sphygmomanometer. Blood pressures were recorded to the nearest even number. The means of two separate systolic and diastolic blood pressure readings at each clinic examination were used for statistical analyses.

Dawber TR, Kannel WB, Lyell LP. An approach to longitudinal studies in a community: the Framingham Study. Ann N Y Acad Sci. 1963;107:539-556. PMID 14025561 Feinleib m, Kannel WB, Garrison RJ, McNamara PM, Castelli WP. The Framingham Offspring Study. Design and preliminary data. Prev Med. 1975;4:518-525. PMID 1208363 Splansky GL, Corey D, Yang Q et al. The Third Generation Cohort of the National Heart, Lung, and Blood Institute's Framingham Heart Study: design, recruitment, and initial examination. Am J Epidemiol. 2007;165:1328-1335. PMID 17372189

Heredity and Phenotype Intervention (HAPI) Heart, USA: The Heredity and Phenotype Intervention (HAPI) Heart Study was initiated in 2002 to measure the cardiovascular response to 4 short-term interventions affecting cardiovascular risk factors and to identify the genetic and environmental determinants of these responses. The interventions were carried out in 868 relatively healthy Amish adults aged 20 years and older who were recruited between 2003 and 2006. Fasting blood samples were collected for measurement of blood chemistries and isolation of DNA for genetic analysis.

The Heredity and Phenotype Intervention (HAPI) Heart Study was supported by NIH grant U01 HL72515, and by grants from the University of Maryland General Clinical Research Center (GCRC, M01 RR 16500), the Johns Hopkins University GCRC (M01 RR 000052), National Center for Research Resources, the Mid-Atlantic Nutrition and Obesity Research Center (P30 DK072488), and the Paul Beeson Physician Faculty Scholars in Aging Program of the American Federation of Aging Research. The HAPI Heart researchers acknowledge the Amish liaisons, field workers, and the cooperation and support of the Amish community. Mitchell BD, McArdle PF, Shen H, Rampersaud E, Pollin TI, Bielak LF, Jaquish C, Douglas JA, Roy-Gagnon MH, Sack P, Naglieri R. The genetic response to short-term interventions affecting cardiovascular function: rationale and design of the Heredity and Phenotype Intervention (HAPI) Heart Study. American heart journal. 2008 May 1;155(5):823-8.

Hypertension Genetic Epidemiology Network (HyperGEN), USA: HyperGEN is 1 of 4

NHLBI "Networks," coordinated under the family blood pressure program aimed to characterize genes promoting hypertension and related conditions. Participants were recruited from hypertensive sibships ascertained through population-based cohorts or from the community-at-large and were later extended to include other siblings and offspring of the original sibpair. Information on race, demographics, height, weight, current medications (via self-report) and co-morbid conditions as well as clinical measures (fasting serum chemistries, fasting lipids, and urine chemistries) was collected. Participants with type 1 diabetes or advanced renal disease (defined as serum creatinine level > 2 mg/dL) were excluded from the original study since these two conditions can cause secondary hypertension and the goal of HyperGEN was to identify novel essential hypertension loci.

Williams RR, Rao DC, Ellison RC, Arnett DK, Heiss G, Oberman A, Eckfeldt JH, Leppert MF, Province MA, Mockrin SC and Hunt SC. NHLBI family blood pressure program: methodology and recruitment in the HyperGEN network. Hypertension genetic epidemiology network. *Ann Epidemiol* 2000;10:389-400.

Jackson Heart Study (JHS), USA: The Jackson Heart Study is a longitudinal, communitybased observational cohort study investigating the role of environmental and genetic factors in the development of cardiovascular disease in African Americans. Between 2000 and 2004, a total of 5301 participants were recruited from a tri-county area (Hinds, Madison, and Rankin Counties) that encompasses Jackson, MS. Details of the design and recruitment for the Jackson Heart Study cohort has been previously published.1-3 Briefly, approximately 30% of participants were former members of the Atherosclerosis Risk in Communities (ARIC) study. The remainder were recruited by either 1) random selection from the Accudata list, 2) commercial listing, 3) a constrained volunteer sample, in which recruitment was distributed among defined demographic cells in proportions designed to mirror those in the overall population, or through the Jackson Heart Study Family Study.

Wyatt SB, Diekelmann N, Henderson F, Andrew ME, Billingsley G, Felder SH et al. A community-driven model of research participation: the Jackson Heart Study Participant Recruitment and Retention Study. Ethn Dis 2003; 13(4):438-455.

Taylor HA, Jr., Wilson JG, Jones DW, et al. Toward resolution of cardiovascular health disparities in African Americans: design and methods of the Jackson Heart Study. Ethn Dis 2005; 15:S6-17.

Fuqua SR, Wyatt SB, Andrew ME, et al. Recruiting African-American research participation in the Jackson Heart Study: methods, response rates, and sample description. Ethn Dis 2005; 15:S6-29. Genetic Epidemiology Network of Salt Sensitivity (GenSalt): GenSalt is a multi-center, family based study designed to identify, through dietary sodium and potassium intervention, saltsensitivitivity susceptibility genes which may underlie essential hypertension in rural Han Chinese families. Approximately 629 families with at least one 'proband' with high blood pressure were recruited and tested for a wide variety of physiological, metabolic and biochemical measures at baseline and at multiple times during the 3-week intervention. The intervention consisted of one week on a low sodium diet, followed by one week on a high sodium diet, and finally one week on a high sodium diet with a potassium supplement.

GenSalt Collaborative Research Group. GenSalt: rationale, design, methods and baseline characteristics of study participants. J Hum Hypertens. 2007 Aug; 21(8):639-46.

Healthy Twin Study, Korea (HTS), South Korea: The Healthy Twin Study is a cohort of adult like-sex twin pairs aged 30 years or over and their first-degree family members who have been recruited since 2005. The participants underwent comprehensive health examinations and completed an extensive questionnaire survey. The initial recruitment process was done through mail, based on the National Twin and Family Registry, independent of their health status. The zygosity of twins was screened by a zygosity questionnaire that had a predictive power of 97.5% and was further validated by 16 short tandem repeat markers (for more than two thirds of the subjects). One of the inclusion criteria of the Healthy Twin Study was like-sex twins; thus, the number of dizygotic twins was relatively small in this study. Siblings, adjusted for age and sex, were combined with dizygotic twins as necessary. Self-reported family relationships were further

examined by genome-wide single nucleotide polymorphism data by using Affymetrix GeneChip version 6.0. Any dubious family relation conflicting with the genetic information was deleted.

Sung J, Cho SI, Lee K, Ha M, Choi EY, Choi JS, Kim H, Kim J, Hong KS, Kim Y, et al. Healthy Twin: a twin-family study of Korea—protocols and current status. Twin Res Hum Genet 2006;9:844–8. The Healthy Twin Study Website. Available from: http://www.twinkorea.org/ (cited 1 June 2013).

REFERENCES

- Karppanen H, Mervaala E: Sodium intake and hypertension. *Progress in cardiovascular diseases* 2006, 49(2):59-75.
- Strazzullo P, D'Elia L, Kandala N-B, Cappuccio FP: Salt intake, stroke, and cardiovascular disease: meta-analysis of prospective studies. *Bmj* 2009, 339:b4567.
- Vollmer WM, Sacks FM, Ard J, Appel LJ, Bray GA, Simons-Morton DG, Conlin PR, Svetkey LP, Erlinger TP, Moore TJ: Effects of diet and sodium intake on blood pressure: subgroup analysis of the DASH-sodium trial. *Annals of internal medicine* 2001, 135(12):1019-1028.
- 4. Franklin SS, Khan SA, Wong ND, Larson MG, Levy D: Is pulse pressure useful in predicting risk for coronary heart disease? *Circulation* 1999, 100(4):354-360.
- Mozaffarian D, Fahimi S, Singh GM, Micha R, Khatibzadeh S, Engell RE, Lim S, Danaei G, Ezzati M, Powles J: Global sodium consumption and death from cardiovascular causes. *New England Journal of Medicine* 2014, 371(7):624-634.
- Whelton PK, He J, Cutler JA, Brancati FL, Appel LJ, Follmann D, Klag MJ: Effects of oral potassium on blood pressure: meta-analysis of randomized controlled clinical trials. *Jama* 1997, 277(20):1624-1632.
- Cappuccio FP, MacGregor GA: Does potassium supplementation lower blood pressure?
 A meta-analysis of published trials. *Journal of hypertension* 1991, 9(5):465-473.

- Cook NR, Obarzanek E, Cutler JA, Buring JE, Rexrode KM, Kumanyika SK, Appel LJ, Whelton PK: Joint effects of sodium and potassium intake on subsequent cardiovascular disease: the Trials of Hypertension Prevention follow-up study. *Archives of internal medicine* 2009, 169(1):32-40.
- 9. Tabara Y, Takahashi Y, Kumagai K, Setoh K, Kawaguchi T, Takahashi M, Muraoka Y, Tsujikawa A, Gotoh N, Terao C: Descriptive epidemiology of spot urine sodium-topotassium ratio clarified close relationship with blood pressure level: The Nagahama study. *Journal of hypertension* 2015, 33(12):2407-2413.
- Miyaki K, Song Y, Taneichi S, Tsutsumi A, Hashimoto H, Kawakami N, Takahashi M, Shimazu A, Inoue A, Kurioka S: Socioeconomic status is significantly associated with dietary salt intakes and blood pressure in Japanese workers (J-HOPE Study). *International journal of environmental research and public health* 2013, 10(3):980-993.
- 11. Kho M, Lee JE, Song Y-M, Lee K, Kim K, Yang S, Joung H, Sung J: Genetic and environmental influences on sodium intake determined by using half-day urine samples: the Healthy Twin Study. *The American journal of clinical nutrition* 2013, 98(6):1410-1416.
- Mente A, O'Donnell MJ, Rangarajan S, McQueen MJ, Poirier P, Wielgosz A, Morrison H, Li W, Wang X, Di C: Association of urinary sodium and potassium excretion with blood pressure. *New England Journal of Medicine* 2014, 371(7):601-611.
- Grzegorczyk PB, Jones SW, Mistretta CM: Age-related differences in salt taste acuity. J Gerontol 1979, 34(6):834-840.

- Drewnowski A, Henderson SA, Driscoll A, Rolls BJ: Salt taste perceptions and preferences are unrelated to sodium consumption in healthy older adults. *J Am Diet Assoc* 1996, 96(5):471-474.
- 15. Reinivuo H, Valsta LM, Laatikainen T, Tuomilehto J, Pietinen P: Sodium in the Finnish diet: II trends in dietary sodium intake and comparison between intake and 24-h excretion of sodium. *European journal of clinical nutrition* 2006, 60(10):1160-1167.
- 16. Grim C, Luft F, Miller J, Meneely G, Battarbee H, Hames C, Dahl L: Racial differences in blood pressure in Evans County, Georgia: relationship to sodium and potassium intake and plasma renin activity. *Journal of chronic diseases* 1980, 33(2):87-94.
- Prynne CJ, Mishra GD, O'Connell MA, Muniz G, Laskey MA, Yan L, Prentice A, Ginty F: Fruit and vegetable intakes and bone mineral status: a cross-sectional study in 5 age and sex cohorts. *The American journal of clinical nutrition* 2006, 83(6):1420-1428.
- Cogswell ME, Loria CM, Terry AL, Zhao L, Wang C-Y, Chen T-C, Wright JD, Pfeiffer CM, Merritt R, Moy CS: Estimated 24-Hour Urinary Sodium and Potassium Excretion in US Adults. *JAMA* 2018.
- Geleijnse J, Kok F, Grobbee D: Blood pressure response to changes in sodium and potassium intake: a metaregression analysis of randomised trials. *Journal of human hypertension* 2003, 17(7):471-480.
- Pietinen P, Valsta LM, Hirvonen T, Sinkko H: Labelling the salt content in foods: a useful tool in reducing sodium intake in Finland. *Public Health Nutr* 2008, 11(4):335-340.
- Brown IJ, Tzoulaki I, Candeias V, Elliott P: Salt intakes around the world: implications for public health. *Int J Epidemiol* 2009, 38(3):791-813.

- 22. Willett W: Nutritional Epidemiology; 2012.
- 23. Schachter J, Harper PH, Radin M, Caggiula A, McDonald R, Diven W: Comparison of sodium and potassium intake with excretion. *Hypertension* 1980, 2(5):695-699.
- 24. Baldwin D, Alexander RW, Warner Jr E: Chronic sodium chloride challenge studies in man. *Journal of Laboratory and Clinical Medicine* 1960, 55:362-375.
- 25. Kawasaki T, Itoh K, Uezono K, Sasaki H: A simple method for estimating 24 h urinary sodium and potassium excretion from second morning voiding urine specimen in adults. *Clinical and experimental pharmacology and physiology* 1993, 20(1):7-14.
- 26. Mente A, O'Donnell MJ, Dagenais G, Wielgosz A, Lear SA, McQueen MJ, Jiang Y, Xingyu W, Jian B, Calik KBT: Validation and comparison of three formulae to estimate sodium and potassium excretion from a single morning fasting urine compared to 24-h measures in 11 countries. *Journal of hypertension* 2014, 32(5):1005-1015.
- Stanhewicz AE, Kenney WL: Determinants of water and sodium intake and output. *Nutrition reviews* 2015, 73(suppl 2):73-82.
- Beeks E, Kessels AG, Kroon AA, van der Klauw MM, de Leeuw PW: Genetic predisposition to salt-sensitivity: a systematic review. *Journal of hypertension* 2004, 22(7):1243-1249.
- Zhao Q, Gu D, Hixson JE, Liu D-P, Rao DC, Jaquish CE, Kelly TN, Lu F, Ma J, Mu J: Common Variants in Epithelial Sodium Channel Genes Contribute to Salt Sensitivity of Blood Pressure The GenSalt Study. *Circulation: Cardiovascular Genetics* 2011, 4(4):375-380.
- Liu L, Leonard AS, Motto DG, Feller MA, Price MP, Johnson WA, Welsh MJ:
 Contribution of Drosophila DEG/ENaC genes to salt taste. *Neuron* 2003, 39(1):133-146.

- 31. Garcia-Bailo B, Toguri C, Eny KM, El-Sohemy A: Genetic variation in taste and its influence on food selection. *OMICS A Journal of Integrative Biology* 2009, 13(1):69-80.
- 32. Powles J, Fahimi S, Micha R, Khatibzadeh S, Shi P, Ezzati M, Engell RE, Lim SS, Danaei G, Mozaffarian D: Global, regional and national sodium intakes in 1990 and 2010: a systematic analysis of 24 h urinary sodium excretion and dietary surveys worldwide. *BMJ open* 2013, 3(12):e003733.
- 33. O'Donnell M, Mente A, Rangarajan S, McQueen MJ, Wang X, Liu L, Yan H, Lee SF, Mony P, Devanath A: Urinary sodium and potassium excretion, mortality, and cardiovascular events. *New England Journal of Medicine* 2014, 371(7):612-623.
- Elliott P, Brown I: Sodium intakes around the world. *Geneva: World Health* Organization 2007:6-15.
- 35. Norat T, Bowman R, Luben R, Welch A, Khaw KT, Wareham N, Bingham S: Blood pressure and interactions between the angiotensin polymorphism AGT M235T and sodium intake: a cross-sectional population study. *Am J Clin Nutr* 2008, 88(2):392-397.
- 36. Hunt SC, Geleijnse JM, Wu LL, Witteman JC, Williams RR, Grobbee DE: Enhanced blood pressure response to mild sodium reduction in subjects with the 235T variant of the angiotensinogen gene. *Am J Hypertens* 1999, 12(5):460-466.
- 37. Kato N, Takeuchi F, Tabara Y, Kelly TN, Go MJ, Sim X, Tay WT, Chen C-H, Zhang Y, Yamamoto K: Meta-analysis of genome-wide association studies identifies common variants associated with blood pressure variation in east Asians. *Nature genetics* 2011, 43(6):531-538.

- Newton-Cheh C, Johnson T, Gateva V, Tobin MD, Bochud M, Coin L, Najjar SS, Zhao JH, Heath SC, Eyheramendy S: Genome-wide association study identifies eight loci associated with blood pressure. *Nature genetics* 2009, 41(6):666.
- Levy D, Ehret GB, Rice K, Verwoert GC, Launer LJ, Dehghan A, Glazer NL, Morrison AC, Johnson AD, Aspelund T: Genome-wide association study of blood pressure and hypertension. *Nature genetics* 2009, 41(6):677-687.
- 40. Adeyemo A, Gerry N, Chen G, Herbert A, Doumatey A, Huang H, Zhou J, Lashley K, Chen Y, Christman M: A genome-wide association study of hypertension and blood pressure in African Americans. *PLoS Genet* 2009, 5(7):e1000564.
- 41. Ehret GB: Genome-wide association studies: contribution of genomics to understanding blood pressure and essential hypertension. *Current hypertension reports* 2010, 12(1):17-25.
- 42. Org E, Eyheramendy S, Juhanson P, Gieger C, Lichtner P, Klopp N, Veldre G, Döring A, Viigimaa M, Sõber S: Genome-wide scan identifies CDH13 as a novel susceptibility locus contributing to blood pressure determination in two European populations. *Human molecular genetics* 2009, 18(12):2288-2296.
- 43. Kupper N, Willemsen G, Riese H, Posthuma D, Boomsma DI, de Geus EJ: Heritability of daytime ambulatory blood pressure in an extended twin design. *Hypertension* 2005, 45(1):80-85.
- 44. Pausova Z, Tremblay J, Hamet P: Gene-environment interactions in hypertension.*Current hypertension reports* 1999, 1(1):42-50.
- 45. Kunes J, Zicha J: The interaction of genetic and environmental factors in the etiology of hypertension. *Physiological research* 2009, 58:S33.

- 46. Chang Y-C, Chiu Y-F, Lee I-T, Ho L-T, Hung Y-J, Hsiung CA, Quertermous T, Donlon T, Lee W-J, Lee P-C: Common ALDH2 genetic variants predict development of hypertension in the SAPPHIRe prospective cohort: gene-environmental interaction with alcohol consumption. *BMC cardiovascular disorders* 2012, 12(1):58.
- 47. James PA, Oparil S, Carter BL, Cushman WC, Dennison-Himmelfarb C, Handler J, Lackland DT, LeFevre ML, MacKenzie TD, Ogedegbe O: 2014 evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the Eighth Joint National Committee (JNC 8). *Jama* 2014, 311(5):507-520.
- Mente A, O'donnell MJ, Rangarajan S, McQueen MJ, Poirier P, Wielgosz A, Morrison H, Li W, Wang X, Di C: Association of urinary sodium and potassium excretion with blood pressure. *N Engl J Med* 2014, 2014(371):601-611.
- 49. Kelly TN, He J: Genomic epidemiology of blood pressure salt sensitivity. *Journal of hypertension* 2012, 30(5):861-873.
- 50. Li C, He J, Chen J, Zhao J, Gu D, Hixson JE, Rao DC, Jaquish CE, Gu CC, Chen J: Genome-Wide Gene–Sodium Interaction Analyses on Blood PressureNovelty and Significance: The Genetic Epidemiology Network of Salt-Sensitivity Study. *Hypertension* 2016, 68(2):348-355.
- 51. Li C, He J, Chen J, Zhao J, Gu D, Hixson JE, Rao DC, Jaquish CE, Rice TK, Sung YJ:
 Genome-Wide Gene–Potassium Interaction Analyses on Blood PressureCLINICAL
 PERSPECTIVE: The GenSalt Study (Genetic Epidemiology Network of Salt Sensitivity). *Circulation: Genomic and Precision Medicine* 2017, 10(6):e001811.

- 52. Park YM, Kwock CK, Kim K, Kim J, Yang YJ: Interaction between single nucleotide polymorphism and urinary sodium, potassium, and sodium-potassium ratio on the risk of hypertension in Korean adults. *Nutrients* 2017, 9(3):235.
- 53. Sacks FM, Svetkey LP, Vollmer WM, Appel LJ, Bray GA, Harsha D, Obarzanek E, Conlin PR, Miller ER, Simons-Morton DG: Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet. *New England journal of medicine* 2001, 344(1):3-10.
- 54. MMAP [<u>https://mmap.github.io/</u>]
- 55. Perez V, Chang ET: Sodium-to-potassium ratio and blood pressure, hypertension, and related factors. *Advances in nutrition* 2014, 5(6):712-741.
- 56. Du S, Neiman A, Batis C, Wang H, Zhang B, Zhang J, Popkin BM: Understanding the patterns and trends of sodium intake, potassium intake, and sodium to potassium ratio and their effect on hypertension in China–. *The American journal of clinical nutrition* 2013, 99(2):334-343.
- 57. Binia A, Jaeger J, Hu Y, Singh A, Zimmermann D: Daily potassium intake and sodiumto-potassium ratio in the reduction of blood pressure: a meta-analysis of randomized controlled trials. *Journal of hypertension* 2015, 33(8):1509-1520.
- 58. Du S, Neiman A, Batis C, Wang H, Zhang B, Zhang J, Popkin BM: Understanding the patterns and trends of sodium intake, potassium intake, and sodium to potassium ratio and their effect on hypertension in China. *The American journal of clinical nutrition* 2014, 99(2):334-343.
- 59. Lee H-S, Duffey KJ, Popkin BM: Sodium and potassium intake patterns and trends in South Korea. *Journal of human hypertension* 2013, 27(5):298.

- Investigators F: Multi-Center Genetic Study of Hypertension The Family Blood Pressure Program (FBPP). *Hypertension* 2002, 39(1):3-9.
- 61. Pinto-Sietsma S-J, Janssen WM, Hillege HL, Navis G, de Zeeuw D, de Jong PE: Urinary albumin excretion is associated with renal functional abnormalities in a nondiabetic population. *Journal of the American Society of Nephrology* 2000, 11(10):1882-1888.
- 62. Mitchell BD, McArdle PF, Shen H, Rampersaud E, Pollin TI, Bielak LF, Jaquish C, Douglas JA, Roy-Gagnon M-H, Sack P: The genetic response to short-term interventions affecting cardiovascular function: rationale and design of the Heredity and Phenotype Intervention (HAPI) Heart Study. *American heart journal* 2008, 155(5):823-828.
- 63. Dawber TR, Meadors GF, Moore Jr FE: Epidemiological approaches to heart disease: the Framingham Study. *American Journal of Public Health and the Nations Health* 1951, 41(3):279-286.
- 64. Feinleib M, Kannel WB, Garrison RJ, McNamara PM, Castelli WP: The Framingham offspring study. Design and preliminary data. *Preventive medicine* 1975, 4(4):518-525.
- 65. Sung J, Cho S-I, Lee K, Ha M, Choi E-Y, Choi J-S, Kim H, Kim J, Hong KS, Kim Y: Healthy Twin: a twin-family study of Korea—protocols and current status. *Twin Research and Human Genetics* 2006, 9(06):844-848.
- 66. Williams RR, Rao D, Ellison RC, Arnett DK, Heiss G, Oberman A, Eckfeldt JH, Leppert MF, Province MA, Mockrin SC: NHLBI family blood pressure program: methodology and recruitment in the HyperGEN network. *Annals of epidemiology* 2000, 10(6):389-400.
- 67. Ware EB, Riehle E, Smith JA, Zhao W, Turner ST, Kardia SL, Lieske JC: SLC2A9 genotype is associated with SLC2A9 gene expression and urinary uric acid concentration. *PloS one* 2015, 10(7):e0128593.

- Verhave JC, Hillege HL, Burgerhof JG, Janssen WM, Gansevoort RT, Navis G, Zeeuw D, Jong P: Sodium intake affects urinary albumin excretion especially in overweight subjects. *Journal of internal medicine* 2004, 256(4):324-330.
- 69. Province MA, Arnett DK, Hunt SC, Leiendecker-Foster C, Eckfeldt JH, Oberman A, Ellison RC, Heiss G, Mockrin SC, Williams RR: Association between the α-adducin gene and hypertension in the HyperGEN Study. *American journal of hypertension* 2000, 13(6):710-718.
- Montasser ME, Douglas JA, Roy-Gagnon MH, Van Hout CV, Weir MR, Vogel R, Parsa A, Steinle NI, Snitker S, Brereton NH: Determinants of Blood Pressure Response to Low-Salt Intake in a Healthy Adult Population. *The Journal of Clinical Hypertension* 2011, 13(11):795-800.
- 71. Willett W: Nutritional Epidemiology, 1st edn: NY: Oxford University Press; 1989.
- 72. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D: Principal components analysis corrects for stratification in genome-wide association studies. *Nature genetics* 2006, 38(8):904-909.
- 73. Winkler TW, Day FR, Croteau-Chonka DC, Wood AR, Locke AE, Mägi R, Ferreira T, Fall T, Graff M, Justice AE: Quality control and conduct of genome-wide association meta-analyses. *nature protocols* 2014, 9(5):1192-1212.
- 74. Willer CJ, Li Y, Abecasis GR: METAL: fast and efficient meta-analysis of genomewide association scans. *Bioinformatics* 2010, 26(17):2190-2191.
- 75. Machado LR, Hardwick RJ, Bowdrey J, Bogle H, Knowles TJ, Sironi M, Hollox EJ:Evolutionary history of copy-number-variable locus for the low-affinity Fcγ receptor:

mutation rate, autoimmune disease, and the legacy of helminth infection. *The American Journal of Human Genetics* 2012, 90(6):973-985.

- Yi B, Titze J, Rykova M, Feuerecker M, Vassilieva G, Nichiporuk I, Schelling G,
 Morukov B, Choukèr A: Effects of dietary salt levels on monocytic cells and immune
 responses in healthy human subjects: a longitudinal study. *Translational Research* 2015, 166(1):103-110.
- 77. Zhou X, Zhang L, Ji W-J, Yuan F, Guo Z-Z, Pang B, Luo T, Liu X, Zhang W-C, Jiang T-M: Variation in dietary salt intake induces coordinated dynamics of monocyte subsets and monocyte-platelet aggregates in humans: implications in end organ inflammation. *PloS one* 2013, 8(4):e60332.
- Nagase M: Role of Rac1 GTPase in salt-sensitive hypertension. *Current opinion in nephrology and hypertension* 2013, 22(2):148-155.
- 79. Tapia-Castillo A, Carvajal CA, Campino C, Hill C, Allende F, Vecchiola A, Carrasco C, Bancalari R, Valdivia C, Lagos C: The expression of RAC1 and mineralocorticoid pathway-dependent genes are associated with different responses to salt intake. *American journal of hypertension* 2014, 28(6):722-728.
- 80. Anderson RJ, Ray CJ, Popoff MR: Evidence for Rho protein regulation of renal tubular epithelial cell function. *Kidney international* 2000, 58(5):1996-2006.
- 81. He FJ, Marrero NM, MacGregor GA: Salt intake is related to soft drink consumption in children and adolescents: a link to obesity? *Hypertension* 2008, 51(3):629-634.
- 82. Grimes CA, Riddell LJ, Campbell KJ, Nowson CA: Dietary salt intake, sugar-sweetened beverage consumption, and obesity risk. *Pediatrics* 2013, 131(1):14-21.

- Li W, Wang R, Ma J-y, Wang M, Cui J, Wu W-b, Liu R-m, Zhang C-x, Wang S-m: A Human Long Non-Coding RNA ALT1 Controls the Cell Cycle of Vascular Endothelial Cells Via ACE2 and Cyclin D1 Pathway. *Cellular Physiology and Biochemistry* 2017, 43(3):1152-1167.
- 84. Boyden LM, Choi M, Choate KA, Nelson-Williams CJ, Farhi A, Toka HR, Tikhonova IR, Bjornson R, Mane SM, Colussi G: Mutations in kelch-like 3 and cullin 3 cause hypertension and electrolyte abnormalities. *Nature* 2012, 482(7383):98.
- Kahle KT, Ring AM, Lifton RP: Molecular physiology of the WNK kinases. *Annu Rev Physiol* 2008, 70:329-355.
- 86. Chung C, Wang R, Chen J, Fann C, Leu H, Ho H, Ting C, Lin T, Sheu S, Tsai W: A genome-wide association study identifies new loci for ACE activity: potential implications for response to ACE inhibitor. *The pharmacogenomics journal* 2010, 10(6):537.
- 87. Tang W, Teichert M, Chasman DI, Heit JA, Morange PE, Li G, Pankratz N, Leebeek FW, Paré G, Andrade M: A Genome-Wide Association Study for Venous
 Thromboembolism: The Extended Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium. *Genetic epidemiology* 2013, 37(5):512-521.
- 88. Ghadirian P, Jain M, Ducic S, Shatenstein B, Morisset R: Nutritional factors in the aetiology of multiple sclerosis: a case-control study in Montreal, Canada. *International journal of epidemiology* 1998, 27(5):845-852.
- 89. Fitzgerald KC, Munger KL, Hartung HP, Freedman MS, Montalbán X, Edan G, Wicklein EM, Radue EW, Kappos L, Pohl C: Sodium intake and multiple sclerosis activity and progression in BENEFIT. *Annals of neurology* 2017.

- Farez MF, Fiol MP, Gaitán MI, Quintana FJ, Correale J: Sodium intake is associated with increased disease activity in multiple sclerosis. *J Neurol Neurosurg Psychiatry* 2015, 86(1):26-31.
- 91. Gerke P, Sellin L, Kretz O, Petraschka D, Zentgraf H, Benzing T, Walz G: NEPH2 is located at the glomerular slit diaphragm, interacts with nephrin and is cleaved from podocytes by metalloproteinases. *Journal of the American Society of Nephrology* 2005, 16(6):1693-1702.
- 92. Durcan PJ, Conradie JD, Van deVyver M, Myburgh KH: Identification of novel Kirrel3 gene splice variants in adult human skeletal muscle. *BMC physiology* 2014, 14(1):11.
- 93. Liu YF, Sowell SM, Luo Y, Chaubey A, Cameron RS, Kim H-G, Srivastava AK: Autism and intellectual disability-associated KIRREL3 interacts with neuronal proteins MAP1B and MYO16 with potential roles in neurodevelopment. *PloS one* 2015, 10(4):e0123106.
- 94. Clausen T: Na+-K+ pump regulation and skeletal muscle contractility. *Physiological reviews* 2003, 83(4):1269-1324.
- 95. Lenda DM, Boegehold MA: Effect of a high-salt diet on oxidant enzyme activity in skeletal muscle microcirculation. *American Journal of Physiology-Heart and Circulatory Physiology* 2002, 282(2):H395-H402.
- 96. Bhalla K, Luo Y, Buchan T, Beachem MA, Guzauskas GF, Ladd S, Bratcher SJ, Schroer RJ, Balsamo J, DuPont BR: Alterations in CDH15 and KIRREL3 in patients with mild to severe intellectual disability. *The American Journal of Human Genetics* 2008, 83(6):703-713.
- Adrogué HJ, Madias NE: Sodium and potassium in the pathogenesis of hypertension. New England Journal of Medicine 2007, 356(19):1966-1978.

- 98. Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, McCarthy MI, Ramos EM, Cardon LR, Chakravarti A: Finding the missing heritability of complex diseases. *Nature* 2009, 461(7265):747-753.
- 99. McArdle JJ, Prescott CA: Contemporary modeling of gene× environment effects in randomized multivariate longitudinal studies. *Perspectives on Psychological Science* 2010, 5(5):606-621.
- Lieske JC, Turner ST, Edeh SN, Ware EB, Kardia SL, Smith JA: Heritability of dietary traits that contribute to nephrolithiasis in a cohort of adult sibships. *Journal of nephrology* 2016, 29(1):45-51.
- 101. Wu MC, Lee S, Cai T, Li Y, Boehnke M, Lin X: Rare-variant association testing for sequencing data with the sequence kernel association test. *The American Journal of Human Genetics* 2011, 89(1):82-93.
- 102. Ionita-Laza I, Lee S, Makarov V, Buxbaum JD, Lin X: Sequence kernel association tests for the combined effect of rare and common variants. *The American Journal of Human Genetics* 2013, 92(6):841-853.
- Belonogova NM, Svishcheva GR, van Duijn CM, Aulchenko YS, Axenovich TI: Regionbased association analysis of human quantitative traits in related individuals. *PloS one* 2013, 8(6):e65395.
- 104. Lin X, Lee S, Wu MC, Wang C, Chen H, Li Z, Lin X: Test for rare variants by environment interactions in sequencing association studies. *Biometrics* 2015.
- 105. Lin X, Lee S, Wu MC, Wang C, Chen H, Li Z, Lin X: Web-based Supplementary Materials for Test for Rare Variants by Environment Interactions in Sequencing Association Studies. 2015.

- 106. Voorman A, Brody J, Lumley T: SkatMeta: an R package for meta analyzing regionbased tests of rare DNA variants. In.; 2013.
- 107. Lumley T, Brody J, Dupuis J, Cupples A: Meta-analysis of a rare-variant association test. In.: Technical report, University of Auckland. U RL <u>http://stattech/</u>. wordpress. fos. auckland. ac. nz/files/2012/11/skat-meta-paper. pdf; 2012.
- 108. Law M, Morris J, Wald N: Use of blood pressure lowering drugs in the prevention of cardiovascular disease: meta-analysis of 147 randomised trials in the context of expectations from prospective epidemiological studies. *Bmj* 2009, 338:b1665.
- 109. Bakris GL: The importance of blood pressure control in the patient with diabetes. *The American journal of medicine* 2004, 116(5):30-38.
- 110. MacMahon S, Peto R, Collins R, Godwin J, Cutler J, Sorlie P, Abbott R, Neaton J, Dyer A, Stamler J: Blood pressure, stroke, and coronary heart disease: part 1, prolonged differences in blood pressure: prospective observational studies corrected for the regression dilution bias. *The Lancet* 1990, 335(8692):765-774.
- 111. Ravera M, Re M, Deferrari L, Vettoretti S, Deferrari G: Importance of blood pressure control in chronic kidney disease. *Journal of the American Society of Nephrology* 2006, 17(4 suppl 2):S98-S103.
- 112. Sesso HD, Stampfer MJ, Rosner B, Hennekens CH, Gaziano JM, Manson JE, Glynn RJ: Systolic and diastolic blood pressure, pulse pressure, and mean arterial pressure as predictors of cardiovascular disease risk in men. *Hypertension* 2000, 36(5):801-807.
- 113. Franklin SS, Lopez VA, Wong ND, Mitchell GF, Larson MG, Vasan RS, Levy D: Single versus combined blood pressure components and risk for cardiovascular disease. *Circulation* 2009, 119(2):243-250.

- 114. Appel LJ, Champagne CM, Harsha DW, Cooper LS, Obarzanek E, Elmer PJ, Stevens VJ, Vollmer WM, Lin P-H, Svetkey LP: Effects of comprehensive lifestyle modification on blood pressure control: main results of the PREMIER clinical trial. *JAMA: Journal of the American Medical Association* 2003.
- 115. Dickinson HO, Mason JM, Nicolson DJ, Campbell F, Beyer FR, Cook JV, Williams B, Ford GA: Lifestyle interventions to reduce raised blood pressure: a systematic review of randomized controlled trials. *Journal of hypertension* 2006, 24(2):215-233.
- 116. Elmer PJ, Obarzanek E, Vollmer WM, Simons-Morton D, Stevens VJ, Young DR, Lin P-H, Champagne C, Harsha DW, Svetkey LP: Effects of Comprehensive Lifestyle
 Modification on Diet, Weight, Physical Fitness, and Blood Pressure Control: 18-Month
 Results of a Randomized TrialPREMIER 18-Month Results. *Annals of internal medicine* 2006, 144(7):485-495.
- 117. McLean RM: Measuring population sodium intake: a review of methods. *Nutrients* 2014, 6(11):4651-4662.
- 118. Li C, He J, Chen J, Zhao J, Gu D, Hixson JE, Rao DC, Jaquish CE, Gu CC, Chen J: Genome-Wide Gene–Sodium Interaction Analyses on Blood PressureNovelty and Significance. *Hypertension* 2016, 68(2):348-355.
- 119. Rao D, Sung YJ, Winkler TW, Schwander K, Borecki I, Cupples LA, Gauderman WJ, Rice K, Munroe PB, Psaty BM: Multiancestry Study of Gene–Lifestyle Interactions for Cardiovascular Traits in 610 475 Individuals From 124 Cohorts. *Circulation: Cardiovascular Genetics* 2017, 10(3):e001649.

- 120. Tobin MD, Sheehan NA, Scurrah KJ, Burton PR: Adjusting for treatment effects in studies of quantitative traits: antihypertensive therapy and systolic blood pressure. *Statistics in medicine* 2005, 24(19):2911-2935.
- 121. Tchetgen EJT, Kraft P: On the robustness of tests of genetic associations incorporating gene-environment interaction when the environmental exposure is misspecified. *Epidemiology* 2011, 22(2):257-261.
- 122. Voorman A, Lumley T, McKnight B, Rice K: Behavior of QQ-plots and genomic control in studies of gene-environment interaction. *PloS one* 2011, 6(5):e19416.
- 123. Aulchenko YS, Struchalin MV, van Duijn CM: ProbABEL package for genome-wide association analysis of imputed data. *BMC bioinformatics* 2010, 11(1):134.
- 124. Manning AK, LaValley M, Liu CT, Rice K, An P, Liu Y, Miljkovic I, Rasmussen-Torvik L, Harris TB, Province MA: Meta-analysis of gene-environment interaction: joint estimation of SNP and SNP× environment regression coefficients. *Genetic epidemiology* 2011, 35(1):11-18.
- Devlin B, Roeder K: Genomic control for association studies. *Biometrics* 1999, 55(4):997-1004.
- 126. Fagerberg L, Hallström BM, Oksvold P, Kampf C, Djureinovic D, Odeberg J, Habuka M, Tahmasebpoor S, Danielsson A, Edlund K: Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. *Molecular & Cellular Proteomics* 2014, 13(2):397-406.
- 127. Gorokhova S, Bibert S, Geering K, Heintz N: A novel family of transmembrane proteins interacting with β subunits of the Na, K-ATPase. *Human molecular genetics* 2007, 16(20):2394-2410.

- 128. Fernández-Hernando C, Fukata M, Bernatchez PN, Fukata Y, Lin MI, Bredt DS, Sessa WC: Identification of Golgi-localized acyl transferases that palmitoylate and regulate endothelial nitric oxide synthase. *The Journal of cell biology* 2006, 174(3):369-377.
- 129. Shin S-Y, Fauman EB, Petersen A-K, Krumsiek J, Santos R, Huang J, Arnold M, Erte I, Forgetta V, Yang T-P: An atlas of genetic influences on human blood metabolites. *Nature genetics* 2014, 46(6):543.
- 130. Kamatani Y, Matsuda K, Okada Y, Kubo M, Hosono N, Daigo Y, Nakamura Y, Kamatani N: Genome-wide association study of hematological and biochemical traits in a Japanese population. *Nature genetics* 2010, 42(3):210.
- 131. Alwadei AH, Benini R, Mahmoud A, Alasmari A, Kamsteeg EJ, Alfadhel M: Loss-offunction mutation in RUSC2 causes intellectual disability and secondary microcephaly. *Developmental Medicine & Child Neurology* 2016, 58(12):1317-1322.
- 132. Alexander RT, Furuya W, Szászi K, Orlowski J, Grinstein S: Rho GTPases dictate the mobility of the Na/H exchanger NHE3 in epithelia: role in apical retention and targeting. *Proceedings of the National Academy of Sciences of the United States of America* 2005, 102(34):12253-12258.
- 133. Li W, Lee J, Vikis HG, Lee S-H, Liu G, Aurandt J, Shen T-L, Fearon ER, Guan J-L, Han M: Activation of FAK and Src are receptor-proximal events required for netrin signaling. *Nature neuroscience* 2004, 7(11):1213.
- Kooperberg C, LeBlanc M: Increasing the power of identifying gene× gene interactions in genome-wide association studies. *Genetic epidemiology* 2008, 32(3):255-263.

- 135. Bild DE, Bluemke DA, Burke GL, Detrano R, Diez Roux AV, Folsom AR, Greenland P, JacobsJr DR, Kronmal R, Liu K: Multi-ethnic study of atherosclerosis: objectives and design. *American journal of epidemiology* 2002, 156(9):871-881.
- 136. Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, Downey P, Elliott P, Green J, Landray M: UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. *PLoS medicine* 2015, 12(3):e1001779.
- Juster FT, Suzman R: An overview of the Health and Retirement Study. Journal of Human Resources 1995:S7-S56.
- Collins FS, Varmus H: A new initiative on precision medicine. New England Journal of Medicine 2015, 372(9):793-795.
- 139. Evangelatos N, Satyamoorthy K, Brand A: Personalized health in a public health perspective. In.: Springer; 2017.
- 140. Khoury MJ, Iademarco MF, Riley WT: Precision public health for the era of precision medicine. *American journal of preventive medicine* 2016, 50(3):398-401.
- 141. Joyner MJ, Paneth N: Seven questions for personalized medicine. *Jama* 2015, 314(10):999-1000.
- Brewster L, Bohte E, van Montfrans GA: Systematic Review of the Use of Spot and Overnight Urine for Assessment of Sodium Excretion. *Journal of Hypertension* 2010, 28:E230-E230.
- 143. Sing CF, Stengård JH, Kardia SL: Genes, environment, and cardiovascular disease. *Arteriosclerosis, thrombosis, and vascular biology* 2003, 23(7):1190-1196.

- 144. Group GCR: Genetic epidemiology network of salt sensitivity (GenSalt): Rationale,
 design, methods, and baseline characteristics of study participants. *Journal of human hypertension* 2007, 21:639.
- 145. Colditz GA: The nurses' health study: a cohort of US women followed since 1976.Journal of the American Medical Women's Association 1995, 50(2):40-44.
- 146. Curhan GC, Willett WC, Rimm EB, Stampfer MJ: A prospective study of dietary calcium and other nutrients and the risk of symptomatic kidney stones. *The New England journal of medicine* 1993, 328(12):833-838.
- 147. Rich-Edwards JW, Goldman MB, Willett WC, Hunter DJ, Stampfer MJ, Colditz GA, Manson JE: Adolescent body mass index and infertility caused by ovulatory disorder. *American journal of obstetrics and gynecology* 1994, 171(1):171-177.
- 148. Albert PR: What is a functional genetic polymorphism? Defining classes of functionality. *Journal of psychiatry & neuroscience: JPN* 2011, 36(6):363.
- 149. Wang K, Li M, Hakonarson H: ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. *Nucleic acids research* 2010, 38(16):e164-e164.