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Abstract 
Current	antiretroviral	therapies	are	not	curative	because	they	do	not	

eradicate	long-lived	cells	harboring	HIV	proviral	DNA	and	thus,	if	a	patient	stops	

therapy,	circulating	virus	will	rebound.	A	subset	of	hematopoietic	stem	and	

progenitor	cells	(HSPCs)	express	HIV	receptors	(CD4	and	CCR5	or	CXCR4)	that	

enable	both	active	and	latent	infection.	Thus,	HSPCs	have	been	implicated	as	a	

source	of	persistent	virus	in	vivo.		In	this	dissertation,	we	first	show	that	HIV	

genomes	can	be	detected	in	CD133-sorted	HSPCs	from	a	subset	of	donors	with	long-

term	viral	suppression	and	in	most	cases	cannot	be	explained	by	contamination	

with	CD3+	T	cells.	In	an	analysis	of	a	larger	cohort	of	optimally	treated	HIV-infected	

donors,	we	wished	to	determine	the	tropism	of	virus	in	HSPCs	and	delineate	which	

progenitor	subsets	are	infected	in	vivo.		In	contrast	to	HIVs	that	utilize	CXCR4,	we	

found	that	CCR5-tropic	viruses	are	likely	to	not	infect	hematopoietic	stem	cells.	

Instead,	CCR5-tropic	viruses	may	infect	non-stem	cell	progenitors	that	may	actually	

be	long-lived	in	vivo	as	implicated	by	other	recent	studies.		Finally,	we	describe	a	

distinct	CD4high	HSPC	subpopulation	that	is	enriched	in	multipotent	cells	and	

preferentially	infected	by	HIVs	of	both	tropisms.	In	sum,	these	results	provide	

evidence	that	HIV-infected	HSPCs	do	persist	in	vivo	and	may	be	a	relevant	reservoir	

of	the	virus	in	HIV+	people	on	therapy.
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Chapter 1  
Introduction1 

	

Human	Immunodeficiency	Virus	(HIV)	infects	thousands	of	people	each	year	

and	has	killed	more	than	39	million	people	over	the	past	few	decades	(WHO,	2015).		

Over	36	million	people	around	the	world	are	living	with	HIV	infection	as	of	2014	

(UNAIDs,	2015).		Without	therapy,	HIV	infection	leads	to	the	development	of	AIDS	

and	eventually	death	in	the	majority	of	infected	people.		Current	therapeutic	

regimens	effectively	suppress	viral	replication	but	do	not	cure	disease	and	thus	

lifelong	therapy	is	required.		This	need	for	long-term	treatment	poses	a	huge	

economic	burden	for	HIV-infected	people	and	for	health	care	systems.		Only	anout	

40%	of	HIV-infected	people	received	antiretroviral	drugs	in	2014,	while	many	more	

who	were	eligible	for	treatment,	many	living	in	middle	and	lower	income	countries,	

still	did	not	have	access	.		New	treatment	guidelines	in	2015	recommended	

treatment	for	all	people	living	with	HIV,	increasing	the	treatment	gap	even	further,	

and	thus	there	are	now	estimated	to	be	over	22	million	people	living	with	HIV	who	

still	need	antiretroviral	therapy	.		Thus,	there	is	an	urgent	need	for	the	development	

																																																								
1Sections	of	this	chapter	were	previously	published	as:	Sebastian,	N	T,	and	K	L	
Collins	(2014)	Targeting	HIV	latency:	resting	memory	T	cells,	hematopoietic	
progenitor	cells	and	future	directions.	Expert	Review	of	Anti-Infective	Therapy,	12	
(10),	1187–120.		Content	included	has	been	updated	and	modified	for	flow.	
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of	a	therapeutic	regimen	that	will	cure	the	disease	as	opposed	to	just	suppressing	

the	virus.			

Hope	for	a	global	cure	of	HIV	infection	has	been	stimulated	by	the	

documented	cure	of	an	HIV-infected	man	following	bone	marrow	transplantation	in	

Berlin	and	the	transient	‘functional	cure’	of	an	infected	baby	from	Mississippi	

(Hutter	et	al.,	2009;	Persaud	et	al.,	2013).		However,	there	remain	important	

questions	that	need	to	be	addressed	in	the	journey	toward	a	cure,	especially	how	

the	virus	is	able	to	persist	despite	suppressive	treatment.		This	dissertation	will	

explore	further	the	potential	reservoir	of	HIV	in	bone	marrow	stem	and	progenitor	

cells	in	HIV-infected	individuals.		This	introductory	chapter	will	provide	an	

overview	of	HIV	infection	and	give	relevant	background	to	my	dissertation	research.	

	

HIV	Replication	

HIV	is	a	single-stranded	positive-sense	RNA	virus	from	the	Lentivirus	

subfamily	of	Retroviruses.		The	9.7-kb	HIV-1	genome	contains	three	genes,	gag,	pol,	

and	env,	which	encode	the	major	structural	proteins	and	enzymes	required	for	HIV	

replication	(Figure	1-1).		These	are	synthesized	as	poly-protein	precursors	that	are	

processed	by	viral	or	cellular	proteases	into	the	mature	forms	incorporated	in	viral	

particles	(Figure	1-1).		The	Gag	precursor	is	cleaved	into	matrix,	capsid,	

nucleocapsid	and	other	smaller	peptides.		A	Gag-Pol	polyprotein	produces	protease,	

reverse	transcriptase,	and	integrase.		Additionally,	there	are	six	genes	(vif,	vpr,	tat,	

rev,	vpu,	and	nef)	that	encode	HIV	proteins	that	are	produced	from	splicing	of	

messenger	RNAs	(mRNAs).		Tat	and	Rev	are	important	for	regulating	transcription	
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and	facilitating	export	of	HIV	mRNAs	from	the	nucleus.	Vif,	Vpr,	Vpu,	and	Nef,	known	

as	accessory	proteins,	evolved	with	the	virus	to	evade	host	antiviral	responses	and	

thus	allow	disseminated	infection	in	vivo	(Collins	and	Collins,	2014;	Freed	and	

Martin,	2013).		The	long	terminal	repeat	(LTR)	at	either	end	of	the	genome	consists	

of	the	highly	structured	5’	untranslated	region	(5’	UTR),	which	includes	cis-elements	

important	to	reverse	transcription,	transcriptional	elongation	of	viral	RNA,	splicing,	

and	dimerization	and	packaging	of	the	full-length	viral	genome	into	viral	particles	

(Freed	and	Martin,	2013).	

	

HIV	Entry	

Viral	entry	is	mediated	by	fusion	of	the	viral	membrane	with	the	cell	

membrane	through	the	interaction	of	the	viral	glycoprotein	Env	with	the	CD4	

receptor	and	then	a	co-receptor,	typically	CC	chemokine	receptor	type	5	(CCR5)	or	

CXC	chemokine	receptor	type	4	(CXCR4)	(Freed	and	Martin,	2013;	Wilen	et	al.,	

2012)	(Figure	1-2).		The	heavily	glycosylated	mature	Env	consists	of	a	trimer	of	

glycoproteins,	gp120	and	gp41,	where	gp41	anchors	the	complex	in	the	viral	

membrane	and	gp120	actually	binds	receptors	on	the	cell	surface.		In	gp120,	there	

are	five	conserved	domains	(C1-C5)	interspersed	with	five	variable	loops	(V1-V5),	

where	the	variable	loops	are	areas	of	significant	genetic	diversity	important	for	

evading	the	host	antibody	response.		After	the	virus	attaches	to	a	cell,	portions	of	

gp120	bind	to	CD4,	an	immunoglobulin	superfamily	member	normally	involved	in	

T-cell	receptor	signaling.		This	binding	induces	a	conformational	change	in	Env	gp41	

and	gp120	facilitating	the	V3	loop	and	other	conserved	regions	to	contact	a	co-
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receptor,	usually	CCR5	or	CXCR4.		This	co-receptor	binding	provides	the	potential	

energy	needed	to	form	the	fusion	complex	of	gp41	between	the	viral	membrane	and	

the	host	cellular	membrane	and	fusion	of	the	two	membranes	(Freed	and	Martin,	

2013;	Wilen	et	al.,	2012).		The	viral	nucleoprotein	core	is	then	able	to	enter	the	

cytosol	and	proceed	to	reverse	transcription.		Several	studies	have	indicated	that	

signal	transduction	via	CD4	and	the	co-receptor	binding	may	be	important	for	

remodeling	of	the	actin	cytoskeleton	for	movement	of	viral	complexes	through	the	

cell,	especially	during	infection	of	resting	CD4+	T	cells	(Wilen	et	al.,	2012).	

	

Reverse	Transcription	

After	uncoating	of	the	viral	core,	reverse	transcription	of	the	viral	RNA	

genome	into	DNA	occurs	within	a	complex	of	viral	proteins,	including	reverse	

transcriptase,	integrase,	Vpr,	and	likely	some	capsid	(Freed	and	Martin,	2013)	

(Figure	1-2).		Each	virion	contains	two	copies	of	the	RNA	genome	and	both	are	

required	for	reverse	transcription.		Reverse	transcriptase	will	switch	multiple	times	

between	both	strands	as	a	template	resulting	in	frequent	recombination.		This	can	

also	result	in	genomes	with	large	internal	deletions	that	may	still	proceed	to	

integration	(Maldarelli,	2016).		

	

Integration	

A	preintegration	complex	(PIC),	which	includes	the	double	stranded	DNA	

copy	of	the	viral	genome	with	LTR	sequences	at	both	ends,	is	then	transported	into	

the	nucleus	via	interactions	with	host	nucleoporins	(Freed	and	Martin,	2013)	
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(Figure	1-2).		A	viral	integrase	molecule	bound	at	each	end	of	the	HIV	DNA	in	the	

PIC	facilitates	integration	into	the	host	chromosomal	DNA.		Integrase	binds	to	host	

DNA	to	create	5-bp	staggered	cuts	in	each	strand	at	the	site	of	integration	where	the	

HIV	DNA	is	inserted,	and	host	enzymes	can	allow	repair	of	the	cut	sites	with	ligation	

of	the	proviral	genome	into	chromosomal	DNA.		Integrase	has	been	shown	to	have	

some	site	preference,	via	binding	at	host	DNA	sequences	which	include	5’-AAA,	5’-

TAA,	or	5’AAA	(Serrao	et	al.,	2015),	and	binding	lens	epithelial-derived	growth	

factor	(LEDGF)	associating	the	PIC	with	transcriptional	units	(Ferris	et	al.,	2010).	

Recent	studies	with	improved	techniques	for	generating	integration	sites	have	

supported	a	preference	for	integration	into	transcriptionally	active	regions	of	the	

host	genome	and,	in	patients	with	long-term	viral	suppression,	there	is	a	bias	

towards	persistence	of	genomes	integrated	in	genes	associated	with	cell	growth,	

such	as	BACH2	and	MKL2	(Cohn	et	al.,	2015;	Maldarelli	et	al.,	2014;	Wagner	et	al.,	

2014).	The	study	by	Cohn	et	al	provided	evidence	that	HIV	may	strongly	prefer	to	

integrate	near	human	ALU	repeat	sequences	more	so	than	transcriptionally	active	

regions	(Cohn	et	al.,	2015).		Alternatively,	a	portion	of	HIV	DNAs	will	not	be	

integrated	and	instead	persist	in	the	nucleus	as	circularized	genomes,	known	as	1-

LTR	or	2-LTR	circles,	but	are	not	transcribed	to	allow	replication	to	continue.	

	

Viral	Transcription	and	Virion	Production	

Following	integration	of	the	proviral	DNA	genome,	the	host	transcriptional	

machinery	is	co-opted	for	transcription	and	translation	of	viral	proteins	(Figure	

1-2).		Tat	or	trans	activator	of	transcription	is	an	early	product,	which	returns	to	the	
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nucleus	to	bind	at	the	HIV	LTR	promoter	and	enhance	transcription	of	viral	genes.		

In	T	cells,	host	transcriptional	factors,	including	nuclear	factor-κB	(NF-κB),	the	

positive	transcription	elongation	factor	b	complex	(P-TEFb),	nuclear	factor	of	

activated	T	cells	(NFAT),	activator-protein	1	(AP-1)	and	specificity	protein	1	(SP1)	

have	been	shown	to	enhance	HIV-1	transcription	(Coiras	et	al.,	2009;	Freed	and	

Martin,	2013).		At	this	point	in	replication,	the	provirus	may	remain	

transcriptionally	silent,	resulting	in	a	latent	infection,	which	will	be	described	in	

further	detail	later	in	this	chapter.		In	an	active	infection	cycle,	spliced	and	unspliced	

viral	mRNAs	are	exported	into	the	cytoplasm	via	the	viral	Rev	protein	(Figure	1-2).		

The	Env,	Gag,	and	Gag-Pol	polyproteins	use	independent	pathways	for	processing	

and	transport	to	the	plasma	membrane,	where	assembly	and	budding	of	immature	

viral	particles	occurs.		Viral	protease	will	cleave	Gag	and	Pol	during	or	immediately	

after	the	viral	particle	is	released	from	the	cell,	to	form	the	mature	proteins	in	the	

virion’s	nucleoprotein	core	(Freed	and	Martin,	2013).	

	

HIV	Pathogenesis	

HIV	 essentially	 targets	 cells	 of	 the	 immune	 system	 eventually	 causing	 a	

profound	defect	in	immune	function	that	leaves	the	infected	person	vulnerable	to	a	

number	of	 infections	 that	would	normally	not	 cause	disease.	 	 This	 severe	 state	 of	

immune	insufficiency	is	called	acquired	immunodeficiency	syndrome	or	AIDS.		The	

virus	is	most	often	transmitted	sexually,	but	can	also	have	parenteral	or	mother-to-	

infant	 transmission	 (Knipe	 and	 Howley,	 2013).	 	 Using	 simian	 immunodeficiency	

virus	(SIV)	models,	it	has	been	shown	that	CD4+	T	cells	are	the	first	cell	types	to	be	
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infected	 during	 transmission	 across	mucosal	 barriers	 and	 there	 is	 a	 limited	 time	

period	 in	 which	 the	 immune	 response	 or	 anti-retroviral	 drugs	 can	 block	 further	

spread	of	the	virus	in	the	host	(Haase,	2011).		Viral	tropism,	or	the	ability	to	infect	

specific	cell	types,	is	determined	by	the	presence	of	CD4	and	either	CCR5	or	CXCR4,	

and	so	the	major	targets	of	infection	in	vivo	are	CD4+	T	cells	and	macrophages.	

After	 transmission	 of	 the	 virus	 to	 an	 uninfected	 person,	 there	 are	 usually	

three	stages	of	 infection:	acute	 infection,	chronic	 infection,	and	AIDS	(Figure	1-3).		

Acute	 or	 primary	 HIV	 infection	 is	 typically	 characterized	 by	 high	 rates	 of	 HIV	

replication	with	the	median	plasma	viral	level	around	106	or	107	genome	copies/mL	

at	 the	 peak	 of	 infection	 (Knipe	 and	 Howley,	 2013).	 	 This	 massive	 infection	 is	

accompanied	 by	 a	 significant	 loss	 of	 CD4+	 T	 cells.	 	 After	 about	 6	 to	 12	 months,	

viremia	will	drop	to	a	mean	set	point	of	30,000	copies/mL,	where	it	will	very	slowly	

increase	 over	 the	 course	 of	 chronic	 infection,	 characterized	 by	 a	 clinical	 latency	

period.		This	period	of	chronic	infection	can	range	from	6	months	to	over	20	years,	

and	is	usually	asymptomatic	with	a	gradual	CD4+	T	cell	decline	until	the	individual	

reaches	very	low	levels	of	CD4+	T	cells.		A	patient	with	a	severe	immune	depletion,	

defined	 by	 a	 CD4	 cell	 count	 of	 less	 than	 200	 cells/uL	 or	 the	 onset	 of	 specific	

opportunistic	infections	or	cancers,	now	has	AIDS	(Knipe	and	Howley,	2013).	

Currently,	therapies	prevent	disease	progression	by	inhibiting	viral	enzymes,	

including	 reverse	 transcriptase,	 integrase,	 and	protease	 or	 by	blocking	 viral	 entry	

into	 a	 cell.	 	 When	 used	 in	 combinations	 for	 optimal	 treatment,	 referred	 to	 as	

combination	antiretroviral	therapy	(cART),	these	highly	potent	drugs	reduce	plasma	

viral	 loads	 to	 levels	 below	detection	 by	 the	 commonly-used	 clinical	 assays	with	 a	
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limit	of	detection	of	50	copies/mL	or	less	(Maldarelli	et	al.,	2007).		However,	single	

copy	 assays	 still	 detect	 viral	 genomes	 in	 plasma	 samples	 after	 7	 to	 12	 years	 of	

optimal	treatment	in	HIV-infected	people	(Palmer	et	al.,	2008;	Riddler	et	al.,	2016).		

In	longitudinal	sampling	of	64	HIV+	individuals	on	cART	after	4	to	12	years	of	viral	

suppression,	 it	was	 shown	 that	 residual	 virus	 continues	 to	 decline	 at	 a	 very	 slow	

rate	 (Riddler	 et	 al.,	 2016).	 	 Even	 with	 optimal	 viral	 suppression,	 patients	 on	

treatment	may	 occasionally	 have	 blips	 of	 viremia,	where	 plasma	 virus	 transiently	

increases	to	levels	that	are	detectable	by	clinical	assays	(Knipe	and	Howley,	2013).	

Thus,	despite	years	of	viral	suppression,	disruption	of	treatment	inevitably	leads	to	

a	rebound	in	circulating	virus.	

	

HIV	Genetic	Diversity	and	Tropism	

HIV-1	 isolates	 from	 infected	 persons	 around	 the	 world	 exhibit	 a	 large	

amount	 of	 genetic	 heterogeneity,	 resulting	 in	 multiple	 clades	 of	 HIV	 and	

recombinant	strains.	Clade	C	virus	is	the	most	prevalent,	commonly	found	in	areas	

of	Africa	and	India,	and	now	accounts	for	almost	half	of	all	HIV	infections	(Freed	and	

Martin,	2013).	The	best-studied	subtype	 is	clade	B	virus,	 found	most	commonly	 in	

the	 United	 States,	 Western	 Europe,	 and	 Australia.	 	 Even	 within	 an	 infected	

individual,	 HIV	 exists	 as	 a	 quasispecies,	 a	 genetically	 diverse	 and	 evolving	

population,	with	an	estimated	increase	in	genetic	diversity	of	1%	per	year	from	the	

initial	 founder	 viral	 strain	 during	 acute	 infection	 (Freed	 and	Martin,	 2013).	 	 The	

high	 genetic	 diversity	 of	HIV	 populations	 are	 due	 to	multiple	 reasons.	 	 There	 are	

many	infected	individuals	globally,	and	in	each	of	these	individuals,	in	the	absence	of	
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therapy,	there	are	large	numbers	of	progeny	virus	being	produced.		With	each	viral	

replication	 cycle	 within	 a	 cell,	 mutations	 can	 be	 introduced	 through	 reverse	

transcriptase	 errors	 in	 the	 production	 of	 viral	 DNA	 (3	 x	 10-5	

mutations/nucleotide/replication	 cycle),	 host	 RNA	 polymerase	 II	 errors	 during	

transcription,	and	host	factor	APOBEC3G/F	G-to-A	hypermutation,	in	addition	to	the	

high	rates	of	recombination	during	the	process	of	reverse	transcription	(Coffin	and	

Swanstrom,	 2013;	 Freed	 and	 Martin,	 2013).	 	 If	 an	 HIV+	 person	 does	 not	 receive	

therapy,	 the	 virus	 populations	 within	 that	 individual	 continue	 to	 increase	 in	

diversity	 as	 the	 virus	 continues	 to	 replicate	 (Coffin	 and	 Swanstrom,	 2013).		

However,	after	treatment	is	initiated	and	viral	replication	is	suppressed,	sampling	of	

residual	 viremia	 indicates	 that	 circulating	 virus	 is	 somewhat	 genetically	 uniform,	

likely	 coming	 from	 stochastic	 activation	 of	 few	 latently-infected	 persistent	 cells	

(Coffin	and	Swanstrom,	2013;	Kearney	et	al.,	2014;	Simonetti	and	Kearney,	2015).		

Rebounding	virus	 after	 treatment	 cessation	 is	 also	 similar	 to	 virus	present	before	

the	 initiation	 of	 cART	 (Kearney	 et	 al.,	 2014).	 	 Therefore,	 the	 genetically	 uniform	

circulating	virus	seen	during	cART	and	when	cART	is	interrupted	likely	derives	from	

a	 few	 long-lived	 cells	 that	 are	 infected	 pre-therapy	 (Eisele	 and	 Siliciano,	 2012;	

Kearney	et	al.,	2014;	Simonetti	and	Kearney,	2015).	

	 The	genetic	diversity	of	HIV	also	dictates	viral	tropism	or	whether	that	virus	

will	infect	a	given	cell.		HIV	strains	were	initially	classified	by	the	cell	type	infected,	

as	T	cell	line-tropic	or	Macrophage-tropic,	although	both	could	infect	primary	T	

cells.		It	was	later	known	that	the	differing	tropism	between	these	strains	related	to	

factors	important	for	viral	entry,	including	the	required	CD4	expression	level,	high	
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CD4	for	T	cell	infection	and	low	CD4	for	macrophage	infection,	as	well	as	the	entry	

co-receptor	(Berger	et	al.,	1999).		During	acute	infection	when	circulating	virus	

peaks,	the	majority	of	virus	is	CCR5-tropic	(Zhu	et	al.,	1993).		It	is	not	completely	

understood	why	CCR5-tropic	virus	typically	predominates	early	in	infection,	but	

may	indicate	a	role	for	macrophages,	where	infection	is	less	cytotoxic,	to	allow	

spread	to	CD4+	T	cells,	high	levels	of	HIV	replication,	and	dissemination	in	the	

infected	person	(Collins	et	al.,	2015;	Koppensteiner	et	al.,	2012).		CXCR4-	or	dual	

(CCR5	and	CXCR4)-tropic	virus,	on	the	other	hand,	rarely	is	transmitted	and	is	

usually	a	minority	population	early	in	infection,	if	present.		However,	CXCR4-

utilizing	viruses	have	been	shown	to	emerge	to	predominance	in	patients	without	

treatment	and	this	switch	has	been	associated	with	lower	CD4+	T	cell	counts	and	

faster	disease	progression	(Connor	et	al.,	1997;	Daar	et	al.,	2007;	Karlsson	et	al.,	

1994;	Scarlatti	et	al.,	1997;	Schuitemaker	et	al.,	1992;	Shepherd	et	al.,	2008;	Waters	

et	al.,	2008;	Weiser	et	al.,	2008;	Yu	et	al.,	1998;	Zhou	et	al.,	2008).		However,	it	is	

unknown	if	the	worsened	prognosis	for	these	individuals	is	due	to	the	virus	co-

receptor	switch,	since	CXCR4-tropic	infection	has	been	shown	to	be	preferentially	

cytolytic	in	CD4+	T	cells	by	in	vitro	infection	(Zhou	et	al.,	2008),	or	if	another	factor	

leads	to	a	faster	progression	in	those	individuals	allowing	CXCR4-tropic	virus	to	

predominate.	
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HIV	Persistence	

HIV	Latency	

The	main	 mechanism	 through	 which	 HIV	 is	 believed	 to	 persist	 is	 through	

latent	infection	of	long-lived	cells.		If	the	integrated	proviral	genome	remains	latent,	

there	 is	 little	 to	no	 transcription	of	viral	genes	due	 to	host	or	viral	blocks.	 	Latent	

infection	 can	 be	 established	 and	 maintained	 as	 a	 result	 of	 multiple	 factors:	 host	

transcription	 factor	 availability,	 epigenetic	 modifications,	 defects	 in	 the	 HIV	 Tat	

protein,	 site	 and	 orientation	 of	 integration,	 and	 post-transcriptional	 regulatory	

mechanisms	 (Siliciano	 and	 Greene,	 2011;	 Trono	 et	 al.,	 2010;	 Van	 der	 Sluis	 et	 al.,	

2013).	 	 Current	 cART	 regimens,	 which	 target	 entry,	 reverse	 transcription	 and	

integration,	effectively	prevent	new	viral	infections,	but	they	do	not	affect	integrated	

provirus.			

	

Other	Sources	of	Persistent	Virus	

Current	antiretroviral	therapy	may	not	completely	block	virus	spread	

directly	between	cells	(Sigal	et	al.,	2011)	and	may	also	allow	ongoing	replication	in	

anatomic	sites	with	decreased	drug	penetration.		Emerging	evidence	indicates	that	

low	level	active	infection	can	continue	to	occur	in	some	people	on	effective	

antiretroviral	treatment	(Buzon	et	al.,	2011;	Buzon	et	al.,	2010;	Lewin	et	al.,	1999;	

Massanella	et	al.,	2013b;	Sharkey	et	al.,	2011;	Tobin	et	al.,	2005;	Vallejo	et	al.,	2012;	

Yukl	et	al.,	2010;	Zhang	et	al.,	2000;	Zhu	et	al.,	2002a).		Studies	in	animal	models	

have	detected	viral	RNA	in	lymphoid	tissue	from	the	gastrointestinal	tract,	draining	

lymph	node,	spleen	and	in	some	cases,	bone	marrow	(North	et	al.,	2010).		Studies	in	
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human	subjects	have	also	revealed	evidence	of	persistent	active	infection	in	CD14+	

monocytes	(Zhu	et	al.,	2002a).		In	addition,	some	treatment	intensification	studies	

have	detected	unspliced	HIV	RNA	in	the	ileum,	suggesting	ongoing	productive	

infection	in	some	HIV-infected	people	on	ART	(Yukl	et	al.,	2010).		However,	a	study	

in	eight	patients	on	cART	for	four	to	twelve	years	indicates	that	the	HIV-1	reservoir	

in	memory	CD4+	T	cells	in	peripheral	blood	and	gut	contains	virus	that	evolves	

minimally	over	the	course	of	suppressive	therapy	(Josefsson	et	al.,	2013).			

Lymphoid	tissue	is	thought	to	be	a	sanctuary	site	where	decreased	ART	

levels	allow	ongoing-replication	and	persistence	of	virus	(Fletcher	et	al.,	2014).		A	

recent	study	used	deep	sequencing	and	time-calibrated	phylogenetic	analysis	of	

virus	in	lymph	nodes	in	conjunction	with	mathematical	modeling	to	support	that	

virus	may	continue	to	replicate	and	evolve	in	these	sites	with	little	migration	of	

virus	into	the	periphery	and	without	acquisition	of	resistance	mutations	(Lorenzo-

Redondo	et	al.,	2016).		Thus,	infected	cells	in	lymphoid	tissue	can	potentially	

produce	low	levels	of	HIV	that	could	re-seed	the	reservoir	of	persistent	HIV.		

Continued	virus	production	and	infection	could	also	lead	to	inflammation	(Buzon	et	

al.,	2010;	Massanella	et	al.,	2013a),	which	may	play	a	role	in	maintaining	the	

persistent	reservoir	of	HIV.  These	additional	issues	may	also	need	to	be	addressed	

for	effective	clearance	of	persistent	virus.	

	

Viral	Reservoirs	

Viral	reservoirs	are	thought	to	be	the	cell	types	or	anatomical	sites	where	a	

replication-competent	virus	is	able	to	survive	outside	the	main	pool	of	actively	
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replicating	virus	(Dahl	et	al.,	2010).		A	clinically-significant	latent	reservoir	is	

thought	to	be	one	that	has	the	potential	to	produce	infectious	virus	that	can	cause	

rebound	viremia	when	treatment	is	stopped.		Thus,	this	reservoir	should	have	the	

capacity	to	harbor	provirus	for	long	periods	of	time,	given	that	residual	virus	has	

been	detected	after	more	than	7	years	of	treatment	(Palmer	et	al.,	2008).	Resting	

memory	CD4+	T	cells	are	the	best-studied	long-lived	cellular	reservoir	of	latent	HIV	

infection.		However,	recent	studies	implicate	bone	marrow	hematopoietic	stem	and	

progenitors	cells	(HSPCs)	as	a	potentially	important	latent	long-lived	reservoir	

detectable	in	some	donors	(Carter	et	al.,	2011;	Carter	et	al.,	2010;	McNamara	et	al.,	

2012).			

	

Resting	CD4+	T	Cells	

It	is	well	established	that	resting	memory	CD4+	T	cells	are	a	stable	reservoir	

of	 latent	HIV	 infection	(Finzi	et	al.,	1999;	Siliciano	et	al.,	2003)	 (Figure	1-4).	 	One	

study	 that	 estimated	 the	 size	of	 the	T	 cell	 reservoir	using	a	viral	outgrowth	assay	

found	 that	 the	CD4+	T	cell	 reservoir	decays	extremely	slowly	with	a	half-life	of	44	

months	 (Siliciano	 et	 al.,	 2003).	 	 Another	 study	 examining	 resting	memory	 T	 cells	

predicted	no	significant	loss	of	integrated	HIV	DNA	over	time,	with	a	predicted	half-

life	of	roughly	25	years	(Murray	et	al.,	2014).		A	recent	study	of	one	patient	found	a	

unique	integration	site	for	a	fully	replication-competent	and	infectious	HIV	genome	

that	 was	 clonally	 expanded	 in	 peripheral	 blood	 mononuclear	 cells	 (PBMCs)	

(Simonetti	 et	 al.,	 2016),	 although	 whether	 functional	 virus	 can	 persist	 via	 clonal	
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expansion	 of	 CD4+	 T	 cells	 in	 the	 majority	 of	 patients	 with	 long-term	 viral	

suppression	remains	to	be	known.	

Resting	CD4+	T	cells	contain	barriers	to	productive	viral	 infection,	 including	

rigid	 cortical	 actin,	 which	 inhibits	 transport	 of	 the	 preintegration	 complex,	

expression	of	cellular	restriction	 factors	 that	 inhibit	 reverse	transcription	and	 low	

transcriptional	activation	(Pan	et	al.,	2013).	Because	of	these	barriers	to	infection	of	

resting	 T	 cells,	 most	 latent	 infection	 may	 occur	 when	 infected,	 activated	 T	 cells	

become	 quiescent.	 	 Alternatively,	 direct	 latent	 infection	 of	 resting	 T	 cells	may	 be	

facilitated	 by	 cytokines,	 endothelial	 cells,	 or	 other	 environmental	 interactions	

((Shen	et	al.,	2013),	reviewed	in	(Pace	et	al.,	2011)).			

The	gold	standard	for	the	detection	of	latently	infected	cells	utilizes	an	assay	

in	 which	 resting	 memory	 CD4+	 T	 cells	 are	 activated	 and	 viral	 outgrowth	 is	

measured.	 	 However,	 a	 recent	 study	 indicates	 that	 this	 technique	 potentially	

underestimates	latent	genomes	in	circulating	resting	T	cells	by	up	to	60-fold	(Ho	et	

al.,	 2013).	 	 In	 this	 study,	 Ho	 et	 al	 found	 a	 significant	 subset	 of	 the	 non-induced	

proviruses	 did	 not	 contain	 lethal	 mutations	 indicating	 that	 these	 non-induced	

proviruses	 are	 capable	 of	 producing	 new	 infectious	 virions	 upon	 reactivation.		

Additionally,	 reconstructed	 non-induced	 proviruses	 produced	 virions	with	 similar	

infectivity	to	those	reconstructed	from	induced	proviruses.	 	Because	these	proviral	

genomes	did	 not	 appear	 to	 be	 activated	 and	 cleared	by	 standard	T	 cell	 activation	

methods,	 there	 appear	 to	 be	 barriers	 to	 reactivation	 of	 functional	 proviruses	 in	

latently	infected	resting	T	cells	that	are	not	well	understood	(Ho	et	al.,	2013).	
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Resting	memory	T	cells	have	been	divided	into	different	subtypes,	including	

central	memory	 (TCM),	 transitional	memory	 (TTM),	 effector	memory	 (TEM),	 and	 the	

recently-characterized	stem	cell	memory	T	cells	(TSCM).	 	TCM	cells	localize	to	lymph	

nodes	 and,	 upon	 stimulation,	will	 become	 TEM	 cells	 that	 can	move	 into	 tissues	 to	

perform	inflammatory	and	cytotoxic	functions	(Sallusto	et	al.,	1999).			TTM	cells	show	

an	 intermediate	 phenotype	 between	 TCM	 and	 TEM	 cells	 (Riou	 et	 al.,	 2007).	 	 The	

contribution	of	each	of	these	subtypes	to	the	HIV-1	reservoir	 is	variable	(Buzon	et	

al.,	2014;	Chomont	et	al.,	2009;	Gattinoni	et	al.,	2011;	Riou	et	al.,	2007;	Sallusto	et	al.,	

1999).	 	 A	 study	 by	 Chomont	 et	 al.	 implicated	 TCM	 and	 TTM	 cells	 as	 the	 major	

components	 of	 the	CD4+	T	 cell	 reservoir	 (Chomont	 et	 al.,	 2009).	 	 TCM	 cells	 form	a	

reservoir	 of	 reduced	 size	 that	 decays	 slowly	 in	 HIV-infected	 people	 with	 normal	

CD4+	 T	 cell	 counts	 who	 started	 treatment	 early	 after	 infection.	 	 TTM	 cells,	 on	 the	

other	hand,	are	the	primary	reservoir	in	HIV-infected	people	with	lower	CD4	counts	

at	the	time	of	cART	initiation.	 	Evidence	was	presented	that	these	latently	infected	

cells	may	be	maintained	over	time	by	homeostatic	proliferation	due	to	continuous	

immune	activation	(Chomont	et	al.,	2009).				

TSCM	cells	are	the	least	differentiated	T	cell	subset	with	the	greatest	capacity	

for	self-renewal	(Gattinoni	et	al.,	2011).		Recently,	it	was	reported	that	TSCM	cells	are	

also	 infected	by	HIV	 (Buzon	 et	 al.,	 2014;	 Flynn	 et	 al.,	 2014;	Gattinoni	 et	 al.,	 2011;	

Tabler	et	al.,	2014).		Buzon	et	al.	studied	these	long-lived	cells	in	HIV-infected	people	

with	 optimal	 viral	 suppression	 for	 a	 median	 of	 7	 years	 and	 found	 that	 latently	

infected	CD4+	TSCM	 cells	 contribute	a	 significant	portion	of	 the	HIV	DNA	 in	 resting	

memory	T	cells.		The	TSCM	contribution	increased	over	the	course	of	therapy	as	more	
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differentiated	T	cell	subsets	that	initially	contributed	to	the	reservoir	were	lost.		The	

authors	provided	a	 longitudinal	phylogenetic	analysis	of	plasma	and	resting	T	cell	

viral	 sequences	 in	3	HIV-infected	people,	beginning	pre-therapy	and	continuing	at	

multiple	 time	 points	 up	 to	 13	 years	 post-diagnosis.	 	 These	 data	 provide	 evidence	

that	TSCM	 cells	may	be	 infected	early	 and	 continue	 to	harbor	viral	 genomes	 for	 an	

extended	period	(Buzon	et	al.,	2014).		Thus,	eradication	strategies	should	also	target	

TSCM	cells.	

Though	 it	 is	 widely	 accepted	 that	 resting	 CD4+	 T	 cells	 are	 an	 important	

source	of	latent	infection,	it	is	not	clear	that	this	is	the	only	reservoir	contributing	to	

HIV	persistence.		One	study	of	two	optimally	treated	HIV-infected	people	found	that	

sub-genomic	amplicons	derived	 from	plasma	virus	exactly	matched	 the	same	sub-

genomic	amplicons	derived	from	virus	produced	by	reactivated	resting	CD4+	T	cells	

(Anderson	et	al.,	2011).		However,	other	studies	that	have	isolated	residual	plasma	

virus	 from	optimally	 treated	 people	with	 suppressed	 viral	 loads	were	 not	 able	 to	

match	viral	 genome	sequences	 to	any	provirus	 found	 in	 circulating	 resting	T	 cells	

(Bailey	et	al.,	2006;	Brennan	et	al.,	2009;	Sahu	et	al.,	2009).		The	study	by	Brennan	et	

al.	 compared	 provirus	 in	 resting	 CD4+	 T	 cells	 with	 plasma	 virus,	 and	 found	

significant	 compartmentalization	 of	 sequences	 in	 circulating	 T	 cells	 versus	 the	

plasma	in	12	out	of	14	optimally	treated	HIV-infected	people	(Brennan	et	al.,	2009).		

Buzon	 et	 al.	 reported	 close	 relationships	 between	 plasma	 viral	 sequences	 and	

provirus	 from	 T	 cell	 subsets.	 	 However	 they	 did	 not	 report	 any	 identical	 viral	

sequences	 that	were	 found	 in	 both	 plasma	 and	 resting	 CD4+	T	 cells	 (Buzon	 et	 al.,	
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2014).		Thus,	there	may	be	additional	cellular	reservoirs	besides	resting	CD4+	T	cells	

that	produce	virus	in	optimally	treated	people.	

	

Other	potential	HIV	reservoirs	

Other	 shorter-lived	 cell	 types,	 including	 monocytes/macrophages	 and	

astrocytes	((Churchill	et	al.,	2009;	Kumar	et	al.,	2014;	Narasipura	et	al.,	2014;	Zink	et	

al.,	2010),	reviewed	in	(Koppensteiner	et	al.,	2012;	Le	Douce	et	al.,	2010)),	have	also	

been	 implicated.	 	 There	 is	 evidence	 that	 shorter-lived	 myeloid	 cells,	 including	

monocytes,	macrophages,	and	dendritic	cells	are	able	to	harbor	integrated	HIV	and	

contribute	to	persistence	(reviewed	in	(Koppensteiner	et	al.,	2012;	Le	Douce	et	al.,	

2010)).	 	 Though	 infrequent,	 monocytes	 with	 integrated	 genomes	 have	 been	

recovered	from	HIV-infected	people	after	many	years	of	optimal	viral	suppression.		

Proviral	genomes	from	these	cells	closely	match	residual	plasma	virus	in	a	study	of	

7	HIV-infected	people	(Lambotte	et	al.,	2000;	Zhu	et	al.,	2002b).		Monocyte-derived	

cells,	including	perivascular	macrophages,	microglial	cells,	and	astrocytes	have	been	

implicated	 as	 reservoirs	 in	 the	 central	 nervous	 system	 ((Churchill	 et	 al.,	 2009;	

Narasipura	et	al.,	2014;	Zink	et	al.,	2010),	reviewed	in	(Koppensteiner	et	al.,	2012)).		

Because	these	cells	are	shorter-lived,	their	persistence	may	play	a	role	in	settings	in	

which	therapy	is	not	optimal	such	that	low-level	active	infection	can	occur.		
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Hematopoietic	Stem	and	Progenitor	Cells	(HSPCs)	as	a	Reservoir	

Human	Hematopoiesis	

Most	multipotent	HPCs	in	the	bone	marrow	express	the	cell	surface	marker	

CD34	which	is	found	on	hematopoietic	stem	cells	(HSC)	as	well	as	more	

differentiated	cells	committed	to	the	lymphoid	or	myeloid	lineage	(Figure	1-5).	

Thus,	CD34	is	commonly	used	as	a	marker	of	the	HPC	compartment	(Doulatov	et	al.,	

2012).		Within	the	CD34+	compartment	there	is	significant	heterogeneity	and	a	

defining	feature	of	an	HSC	is	the	ability	to	self-renew.	This	means	that	cells	are	able	

to	proliferate,	without	any	differentiation	or	loss	of	lineage	potential	from	the	

parent	to	daughter	cells.	There	are	two	pools	within	the	HSC	population,	the	long	

term	one,	with	life-long	self-renewal,	and	short	term	HSCs,	with	more	finite	self-

renewal	ability	(Doulatov	et	al.,	2012).		

As	a	hematopoietic	progenitor	progresses	from	an	HSC	to	a	MPP	to	a	lineage-

committed	progenitor,	it	has	been	shown	that	these	cells	slowly	exclude	the	

potentials	to	form	other	lineages.	This	may	include	an	inability	to	respond	to	specific	

lineage-inducing	signals	or	the	loss	of	necessary	transcription	factors	(Bhandoola	et	

al.,	2007).	Traditionally,	there	was	thought	to	be	a	clear	split	or	branch	point	in	

development	from	the	multipotent	progenitor	into	either	a	lymphoid	or	myeloid	

lineage,	with	the	distinction	of	the	common	lymphoid	and	common	myeloid	

progenitor	subsets.		However,	recent	studies	have	suggested	that	this	division	

between	the	two	lineages	is	not	clear,	given,	for	example,	that	myeloid	lineage	

potential	may	be	retained	even	in	pre-lymphoid	cells	downstream	of	the	common	

lymphoid	progenitor.	The	complexity	of	distinguishing	progenitors	with	restricted	
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potential	has	been	attributed	to	a	problem	of	determining	cell	fate	in	an	

experimental	setting	vs.	a	physiological	one	(Schlenner	and	Rodewald,	2010).	

In	recent	years,	additional	flow	cytometry	markers	along	with	functional	

assays,	including	colony	formation,	stromal	cell	cultures,	and	mouse	xenograft	

models,	have	been	used	in	an	attempt	to	better	define	the	hierarchy	of	human	

hematopoiesis.		Isolation	of	a	single	hematopoietic	stem	cell	using	flow	cytometric	

sorting	is	possible	via	the	addition	of	CD49f	to	the	current	set	of	HSC	markers	(Notta	

et	al.,	2011).		MPPs,	downstream	of	the	HSC,	lack	both	CD49f	and	CD90	expression,	

and	lose	the	ability	for	self-renewal,	but	can	still	produce	all	hematopoietic	lineages	

(Benveniste	et	al.,	2010;	Doulatov	et	al.,	2012;	Kondo,	2010;	Majeti	et	al.,	2007).		

From	the	MPP,	the	split	in	lineage	potential	results	in	a	lympho-myeloid	and	an	

erythro-myeloid	lineage	(Doulatov	et	al.,	2012;	Gorgens	et	al.,	2013a).		Thus,	

lymphoid	potential	has	been	shown	in	populations	that	retain	some	myeloid	

potential,	resulting	in	the	designation	of	a	multilymphoid	progenitor	(MLP)	

(Doulatov	et	al.,	2010).		The	MLP	is	thought	to	give	rise	to	B-NK	progenitors	(B-NK)	

and	likely	granulocyte-monocyte	progenitors	(GMPs)	(Doulatov	et	al.,	2010;	

Doulatov	et	al.,	2012).			

On	the	other	hand,	the	erythro-myeloid	lineage	consists	of	the	common	

myeloid	progenitor	(CMP),	which	would	produce	a	megakaryocyte-erythroid	

progenitor	(MEP)	(Akashi	et	al.,	2000;	Doulatov	et	al.,	2012;	Gorgens	et	al.,	2013a).		

The	GMP	and	its	source	have	been	controversial,	as	it	was	commonly	attributed	to	

differentiation	from	a	CMP.		A	recent	study	seemed	to	resolve	this	difference	by	

suggesting	that	granulocyte	subtypes	may	have	separate	lineages:	MLPs	
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differentiate	into	GMPs,	which	produces	neutrophils,	and	CMPs	lead	to	an	

eosinophil-basophil	progenitor	(EoBP)	(Gorgens	et	al.,	2013b).		Additional	studies	

have	tried	to	further	delineate	the	source	of	granulocytic,	monocytic,	dendritic,	and	

erythroid	cells,	suggesting	additional	restricted	progenitor	populations	(Lee	et	al.,	

2015;	Mori	et	al.,	2015;	Xiao	et	al.,	2015).		However,	a	recently	published	study	

suggests	a	re-thinking	of	the	classic	hematopoietic	hierarchy	after	conducting	a	

deeper	analysis	of	myeloid,	megakaryocyte,	and	erythroid	lineage	potential	in	

human	fetal	liver,	umbilical	cord	blood,	and	bone	marrow	(Notta	et	al.,	2016).		This	

study	suggests	that	within	the	populations	previously	defined	by	surface	marker	

analysis,	MPPs,	CMPs,	and	MEPs,	are	functionally	heterogeneous	populations	that	

were	demarcated	with	additional	surface	markers.		Additionally,	CMP,	GMP,	and	

MEP	progenitors	downstream	of	the	HSC	may	only	be	relevant	in	fetal	

hematopoiesis,	and,	in	adults,	HSCs	may	differentiate	directly	into	unipotent	

progenitors	which	give	rise	to	a	single	cell	type	(Notta	et	al.,	2016).		Overall,	there	is	

further	study	needed	to	elucidate	the	map	of	human	hematopoiesis.	

Another	long-held	tenet	of	hematopoiesis	in	question	is	that	HSCs	are	the	

only	bone	marrow	progenitors	that	are	able	to	survive	over	years	in	vivo	and	are	

required	to	replenish	all	downstream	progenitors	to	produce	mature	blood	cells	

(Busch	et	al.,	2015;	Notta	et	al.,	2016;	Sun	et	al.,	2014b).		This	was	based	on	the	fact	

that	human	HSCs	are	the	only	cells	that	are	able	to	produce	long-term	engraftment	

in	an	immune-deficient	mouse,	while	MPPs	and	other	downstream	progenitors	only	

show	transient	engraftment	in	these	mouse	models	(Benveniste	et	al.,	2010;	Majeti	

et	al.,	2007).		However,	in	a	recently-developed	mouse	model,	mouse	HSPCs	were	
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labeled	with	a	unique	transposon	insertion	site	in	vivo	and	then	mature	cell	types	

(granulocytes,	B	cells,	T	cells,	and	monocytes)	produced	over	the	following	year	

were	matched	to	both	MPPs	and	more	lineage-restricted	multipotent	cells	opposed	

to	the	long	term	HSC	(Sun	et	al.,	2014a).		In	another	study,	patients	with	aplastic	

anemia,	which	is	characterized	by	deficient	HSCs,	still	had	detectable	myeloid	

progenitors,	including	functional	subsets	of	CMPs,	MEPs,	and	GMPs,	similar	to	

normal	controls,	with	losses	noted	only	in	the	megakaryocytic-erythroid	functional	

subsets	(Notta	et	al.,	2016).		Thus,	multiple	studies	support	that	several	non-HSC	

progenitors,	including	MPPs	and	myeloid-biased	progenitors,	may	persist	longer	

than	expected	and	be	sequentially	recruited	in	the	human	bone	marrow	to	produce	

mature	hematopoietic	cells	(Busch	et	al.,	2015;	Kim	et	al.,	2014;	Notta	et	al.,	2016;	

Sun	et	al.,	2014b;	Wu	et	al.,	2014).	

Mouse	HSCs	and	their	niche	in	the	bone	marrow	are	probably	the	best	

studied,	and	we	can	infer	from	these	analyses	that	HSCs	spend	their	time	near	the	

endosteal	lining	of	the	medullary	cavities	within	trabecular	bone	(Mendelson	and	

Frenette,	2014;	Morrison	and	Scadden,	2014).		A	recent	study	engrafting	human	

HSCs	into	mouse	bones	found	HSCs	homing	to	both	the	trabecular	and	long	bone	

regions	and	the	specific	niche	may	expose	the	HSC	to	factors	which	alter	function	

(Guezguez	et	al.,	2013).		The	components	of	the	niche	supporting	bone	marrow	

progenitors	are	osteoblasts,	CXC-chemokine	ligand	12	(CXCL12)-abundant	reticular	

(CAR)	cells,	osteoclasts,	sympathetic	neurons,	and	sinusoidal	endothelial	cells,	as	

well	as	mesenchymal	stem	cells	(MSCs)	and	macrophages	(reviewed	in	(Trumpp	et	

al.,	2010)).		HPCs	express	a	variety	of	molecules	on	their	surface,	which	will	interact	
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with	cytokines	produced	by	the	niche	and	mediate	adhesion	within	the	niche.		

CXCR4	expression	by	HSPCs	has	been	shown	to	be	important	to	HSC	maintenance	

and	homing	by	interacting	with	CXCL2-expressing	niche	cells	(Mendelson	and	

Frenette,	2014;	Morrison	and	Scadden,	2014;	Trumpp	et	al.,	2010).	

	

HIV	Infection	of	HSPCs	

A	long-lived	infected	HSPC	could	also	be	an	important	contributor	to	residual	

HIV	 in	 treated	 HIV-infected	 people	 as	 subsets	 of	 CD34+	 HSPCs	 do	 express	 HIV	

receptors	 (Carter	et	al.,	2011;	Carter	et	al.,	2010).	 	Several	 studies	 looking	at	both	

mRNA	and	protein	levels	have	shown	that	a	portion	of	CD34+	cells	will	express	CD4,	

though	 expression	 levels	 are	 noted	 to	 be	 less	 than	 in	monocytes	 or	 CD4+	 T	 cells	

(Louache	et	al.,	1994;	Muench	et	al.,	1997;	Zauli	et	al.,	1994).	 	CD34+	cells	vary	 in	

their	expression	of	CCR5	and	CXCR4,	and	more	primitive	cells	within	this	population	

tend	to	express	CXCR4	and	not	CCR5	(Carter	et	al.,	2011;	Carter	et	al.,	2010;	Ishii	et	

al.,	 1999;	 Nixon	 et	 al.,	 2013;	 Ruiz	 et	 al.,	 1998;	 Shen	 et	 al.,	 1999).	 According	 to	

another	study,	CXCR4	expression	occurs	earlier	than	other	lymphoid	markers,	IL-7	

receptor	 and	 terminal	 deoxynucleotidyl	 transferase	 (TdT),	 on	 CD34+	 progenitors,	

and	is	suggested	to	indicate	a	more	restricted	lymphoid	potential	(Ishii	et	al.,	1999).		

The	 expression	 of	 CD4	 with	 either	 co-receptor	 does	 suggest	 that	 HPCs	 can	 be	

infected	by	HIV-1.	

Over	20	years	ago,	the	hematopoietic	progenitor	compartment	in	bone	

marrow	was	first	investigated	and	it	was	shown	that	rare	infection	of	CD34+	cells	

could	occur	both	in	vitro	and	in	vivo	(Davis	et	al.,	1991;	Folks	et	al.,	1988;	Neal	et	al.,	
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1995;	Stanley	et	al.,	1992).		However,	given	the	available	technologies,	the	

researchers	conducting	these	studies	could	not	exclude	contamination	from	other	

cell	types	(Chelucci	et	al.,	1995;	Shen	et	al.,	1999;	Weichold	et	al.,	1998).		Because	

some	analyses	of	plasma	virus	found	that	certain	identical	sequences	predominate	

in	circulation	over	multiple	time	points,	it	was	proposed	that	latently-infected	stem	

cells,	with	the	capacity	for	self-renewal,	contributed	clonal	virus	upon	intermittent	

activation	(Palmer	et	al.,	2008).		Indeed,	a	number	of	studies	have	provided	

evidence	that	HIV	can	infect	CD34+	bone	marrow	progenitors	(Bordoni	et	al.,	2015;	

Carter	et	al.,	2011;	Carter	et	al.,	2010;	McNamara	et	al.,	2012;	McNamara	et	al.,	2013;	

Nixon	et	al.,	2013;	Redd	et	al.,	2007).		A	study	of	HIV-infected	people	in	Africa	

revealed	that	HIV-1	subtype	C	could	infect	HSPCs	in	vitro	and	in	vivo.		Participants	

with	HIV-infected	bone	marrow	progenitors	also	had	higher	rates	of	anemia	(Redd	

et	al.,	2007).	More	recent	studies	have	now	shown	that	HIV-1	subtypes	B,	C,	and	D	

can	all	infect	HSPCs	in	vitro	(Carter	et	al.,	2010).			

Additionally,	 these	studies	demonstrate	 that	HIVs	 that	use	CXCR4	 for	entry	

can	infect	multipotent	progenitors	that	form	colonies	of	multiple	different	lineages	

in	methylcellulose	assays	(Carter	et	al.,	2011).	 	Notably,	CXCR4-tropic	HIV	can	also	

infect	 bona	 fide	 stems	 cells	 in	 vitro	 based	 on	 engraftment	 and	 production	 of	 all	

major	 hematopoietic	 lineages	 in	 an	 irradiated	 immune-deficient	mouse	 (Carter	 et	

al.,	2011;	Carter	et	al.,	2010).	 	However,	CCR5-tropic	virus	seemed	unable	to	infect	

multipotent	progenitors,	perhaps	due	to	the	low	or	absent	CCR5	expression	in	these	

most	immature	subsets	(Carter	et	al.,	2011).		In	addition	to	entry	restrictions	due	to	

limited	receptor	expression,	an	analysis	of	post-entry	infection	of	CD34+	cord	blood	



	 24	

progenitors	suggested	that	viral	DNA	synthesis	and	nuclear	entry	may	be	restricted	

in	HSPCs	resulting	in	the	low	infection	rates	seen	in	these	cell	types	(Griffin	and	Goff,	

2015).	

To	 study	 latent	 infection	 in	 HSPCs,	 Carter	 et	al.	 utilized	 an	 HIV	 molecular	

clone	that	expresses	viral	proteins	under	the	control	of	the	viral	promoter	and	GFP	

under	a	constitutively-active	promoter	(Carter	et	al.,	2010).		Thus,	it	was	possible	to	

distinguish	uninfected	(GFP-Gag-),	actively	infected	(GFP+Gag+)	and	latently	infected	

(GFP+Gag-)	 cells.	 	When	 latently	 infected	 HSPCs	were	 treated	with	 cytokines	 that	

stimulate	 myeloid	 lineage	 differentiation	 (granulocyte	 macrophage-colony	

stimulating	 factor	 [GM-CSF]	 and	 tumor	 necrosis	 factor	 [TNF]-α),	 viral	 gene	

expression	was	induced.		These	studies	demonstrate	that	HIV	can	infect	HSPCs	and	

cause	both	active	and	latent	infection	in	vitro.	

In	 addition,	 HIV	 Gag+	 CD34+	 progenitors	 were	 detected	 in	 bone	 marrow	

aspirates	 from	 some	 HIV+	 donors	 with	 high	 viral	 loads	 (Carter	 et	 al.,	 2010).		

Progenitor	 cells	 from	 one	 donor	 that	 initially	 lacked	 detectable	 Gag	 expression,	

expressed	Gag	upon	culture	with	GM-CSF	and	TNF-α.	Examination	of	HIV-infected	

individuals	 on	 cART	 with	 undetectable	 viral	 loads	 revealed	 no	 detectable	 Gag	

expression	in	HSPCs,	but	HIV	genomes	were	amplified	with	quantitative	PCR	from	4	

out	 of	 9	 donors	 (Carter	 et	 al.,	 2010).	 	 These	 initial	 studies	 provided	 evidence	

supporting	the	conclusion	that	latent	HIV	infection	occurs	in	bone	marrow	HSPCs	in	

vivo.	

Two	 other	 groups	 have	 searched	 for	 latent	 HIV	 genomes	 in	 CD34+	 bone	

marrow	cells	from	HIV+	donors	on	long-term	cART	without	success.		Josefsson	et	al.	
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did	 not	 detect	 HIV	 amplicons	 in	 CD4-	 CD34+	 HSPCs	 in	 a	 cohort	 of	 eight	 virally	

suppressed	 HIV-infected	 people:	 five	 who	 initiated	 cART	 during	 acute	 or	 early	

infection	 and	 three	 who	 started	 cART	 during	 chronic	 infection	 (Josefsson	 et	 al.,	

2012).	 	 In	 this	 study,	 the	 authors	 removed	 CD4+	 cells	 to	 deplete	 the	 sample	 of	 T	

lymphocytes.	However,	a	subset	of	HSPCs	express	CD4	and	CD4	is	required	for	HIV	

infection	of	HSPCs	(Carter	et	al.,	2011).		Thus,	it	is	possible	that	the	negative	results	

from	 this	 study	were	 due	 to	 the	 absence	 of	 susceptible	 cells	 in	 the	 samples.	 	 The	

study	 by	 Durand	 et	al.	 tested	 HSPCs	 from	 a	 cohort	 of	 11	 optimally	 treated	 HIV-

infected	people,	 10	 of	whom	were	diagnosed	prior	 to	 2001	 (Durand	 et	 al.,	 2012).		

These	 investigators	were	 unable	 to	 detect	 HIV	DNA	 in	 CD34+	HSPCs	 by	 real-time	

PCR.	 	 Nor	 could	 they	 detect	 virus	 produced	 using	 a	 co-culture	 assay	 of	 HSPCs	

stimulated	with	GM-CSF	and	TNF-α	plus	activated	CD4+	lymphoblasts.		Based	on	the	

latter	 study,	 some	 investigators	 suggested	 the	 possibility	 that	 CD4+	 T	 cell	

contamination	confounded	prior	results	(Carter	et	al.,	2010).		However,	because	the	

Durand	et	al.	study	was	not	powered	to	detect	DNA	in	HSPCs	from	donors	diagnosed	

after	2001,	an	alternative	explanation	 is	 that	 it	 is	harder	to	detect	HIV	infection	of	

HSPCs	 in	 people	 infected	 decades	 ago,	 before	 optimal	 therapy	 was	 available.		

Indeed,	 all	 donors	 who	 tested	 positive	 in	 the	 prior	 study	 were	 diagnosed	 more	

recently	(Carter	et	al.,	2010).			

	

Targeting	HIV	Reservoirs	

As	discussed	above,	latently	infected	cells	do	not	produce	viral	proteins	that	

would	 lead	 to	 cytopathic	 effects	 and	 eventual	 cell	 death.	 	 	 In	 addition,	 latently	
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infected	cells	are	not	recognized	and	cleared	by	the	immune	system.		Current	anti-

retroviral	drugs,	which	target	early	stages	of	the	HIV	replication	cycle,	cannot	inhibit	

this	 non-productive	 infection	 once	 established.	 	 Thus,	 to	 eradicate	 these	 infected	

cells,	 new	 latency-reversing	 agents	 (LRAs)	 are	 being	 developed	 to	 oppose	 latency	

and	 thus	 force	 the	 virus	 to	 reveal	 itself.	 	 With	 concurrent	 cART,	 this	 approach,	

termed	‘shock	and	kill,’	aims	to	eliminate	the	infected	reservoir	while	blocking	new	

infection	events	(Deeks	et	al.,	2012).		

Multiple	factors	contribute	to	latent	HIV	infection,	including	host	

transcription	factors	that	bind	the	viral	promoter	and	epigenetic	changes	that	affect	

chromatin	and	alter	accessibility	of	the	viral	promoter	to	transcriptional	machinery	

(reviewed	in	(Trono	et	al.,	2010),	(Siliciano	and	Greene,	2011),	and	(Van	der	Sluis	et	

al.,	2013)).		Thus,	current	work	has	focused	on	strategies	to	counteract	these	factors	

in	favor	of	‘shock’	or	reactivation	of	latent	HIV.		Reactivated	infected	cells	then	need	

to	be	‘killed,’	preferably	by	activation	of	cellular	death	pathways	or	through	the	host	

immune	response.		A	few	of	the	major	strategies	for	reversing	HIV	latency	in	cell	

lines	and	primary	T	cells	include	altering	chromatin	structure	with	histone	

deacetylase	inhibitors	(HDACis),	increasing	availability	of	host	transcription	factors	

with	the	use	of	protein	kinase	C/AKT	activators	like	disulfiram,	for	example,	and	

stimulating	cells	with	immune-modulating	agents	such	as	IL-7	and	toll-like	receptor	

agonists	(reviewed	extensively	in	(Remoli	et	al.,	2012;	Sgarbanti	and	Battistini,	

2013;	Shirakawa	et	al.,	2013;	Xing	and	Siliciano,	2013)).		Our	laboratory	has	

investigated	the	mechanism	of	latency	in	HSPCs	and	the	effect	of	different	LRAs	on	

latent	infection	in	these	cells	(McNamara	et	al.,	2012).		In	this	study,	a	primary	cell	
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model	of	HIV	latency	in	HSPCs	indicated	that	latency	could	be	reversed	by	TNF-α	

through	recruitment	of	NF-κB	in	these	cells.	

Although	 many	 LRAs	 show	 potential	 for	 antagonizing	 HIV	 latency,	 recent	

studies	 emphasize	 the	 need	 for	 further	 work	 to	 understand	 their	 clinical	 utility;	

there	have	been	variable	results	when	the	same	compound	is	tested	side-by-side	in	

different	 in	vitro	 latency	models	 and	 limited	 success	 thus	 far	 as	 sole	 therapies	 in	

clinical	trials.		Spina	et	al.	(Spina	et	al.,	2013)	measured	the	effect	of	a	panel	of	LRAs	

on	multiple	widely	used	models	of	latency	compared	with	the	standard	quantitative	

viral	 outgrowth	 assay	 (QVOA)	 that	 uses	 patient-derived	 latently	 infected	 resting	

CD4+	 T	 cells.	 	 They	 found	 that	 no	 in	vitro	 latency	model	 recapitulates	 the	 ex	vivo	

QVOA	 results,	with	many	of	 the	models	 seemingly	biased	 towards	 reactivation	by	

only	 specific	 classes	 of	 agents.	 	 PKC	 agonists	 generally	 induced	 latent	 HIV	 in	 the	

majority	of	models	tested.		This	paper	underlines	the	potential	difficulties	of	using	a	

single	in	vitro	model	to	identify	the	best	clinical	approach	for	‘shocking’	latent	HIV.			

HDACis	(SAHA,	romidepsin	and	panobinostat)	and	disulfiram	did	not	induce	

viral	 outgrowth	 in	 a	 newly	developed	ex	vivo	 assay	 that	may	better	 reflect	 in	vivo	

conditions	 because	 it	 uses	 cells	 from	 HIV-infected	 people	 and	 does	 not	 employ	

allogeneic	T	cells,	which	may	confound	results	(Bullen	et	al.,	2014).		Using	this	assay,	

viral	 outgrowth	 was	 only	 observed	 from	 donor	 CD4+	 T	 cells	 treated	 with	 T	 cell	

activating	 agents	 (Bullen	 et	 al.,	 2014).	 	 T	 cell	 activation	 and	 bryostatin-1,	 a	 PKC	

agonist,	 significantly	 induced	 HIV	 mRNA	 expression	 whereas	 the	 HDACis	 and	

disulfiram	did	not.		
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Methods	 that	 have	 demonstrated	 in	 vitro	 efficacy	 at	 reactivation	 of	 latent	

CD4+	 T	 cell	 infection	 have	 been	 employed	 in	 clinical	 trials	 with	 limited	 success	

(reviewed	 in	 (Rasmussen	et	 al.,	 2013)).	 	 	Thus,	more	 research	 is	needed	 to	better	

understand	 this	 approach.	 	 Based	 on	 initially	 promising	 in	 vitro	 studies,	 SAHA,	

panobinostat,	disulfiram,	and	IL-7	have	been	or	are	currently	being	tested	in	clinical	

trials	with	no	clear	success	as	yet	(reviewed	in	(Rasmussen	et	al.,	2013)).		The	first	

study	using	the	‘shock’	strategy	examined	the	effect	of	the	HDACi	valproic	acid	plus	

a	 viral	 entry	 inhibitor	 over	 a	 three-month	 period	 (Lehrman	 et	 al.,	 2005).	 	 In	 this	

study,	 four	HIV-infected	 individuals	 on	 cART	 had	 declines	 in	 numbers	 of	 infected	

CD4+	T	cells	ranging	from	68%	to	over	84%.		However,	subsequent	trials	of	valproic	

acid	 failed	 to	replicate	 these	results	 (Archin	et	al.,	2010;	Routy	et	al.,	2012;	Sagot-

Lerolle	et	al.,	2008;	Siliciano	et	al.,	2007).			In	a	separate	study,	SAHA	treatment	was	

found	to	increase	HIV	RNA	expression	in	resting	CD4+	T	cells,	but	had	no	detectable	

impact	on	residual	plasma	viremia	(Archin	et	al.,	2012).		As	mentioned	above,	a	pilot	

study	 of	 disulfiram	 treatment	 also	 demonstrated	 no	 effect	 on	 the	 size	 of	 the	

circulating	 latent	 reservoir	 (Spivak	 et	 al.,	 2014).	 	 While	 clinical	 trials	 with	 single	

agents	have	not	 yet	been	 successful,	 combinations	of	 LRAs	may	prove	effective	 in	

further	studies	(Darcis	et	al.,	2015;	Xing	and	Siliciano,	2013).		

	

Clearing	Infection	after	Reversal	of	Latency	

	 Reactivating	reservoirs	of	 latent	HIV	 is	only	 the	 first	 step	of	 the	 ‘shock	and	

kill’	approach.	 	Strategies	 to	eliminate	cells	after	reversal	of	 latency	are	an	equally	

important	consideration	 for	a	cure.	 	The	two	main	strategies	 for	killing	a	cell	with	
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reactivated	 infection	 are	 activation	 of	 cell-death	 pathways	 and	 immune-mediated	

clearance.	 	 In	 response	 to	viral	 infection,	 cell	death	pathways	become	activated	 to	

prevent	 further	 spread	 of	 an	 infection	 (Lamkanfi	 and	Dixit,	 2010).	 	However,	HIV	

encodes	strategies	to	delay	death	of	the	cell	and	favor	the	establishment	of	infection	

(Badley	et	al.,	2013).	 	Further	research	should	consider	how	well	LRAs	of	 interest	

can	induce	cell	death	in	the	various	cell	types	implicated	as	reservoirs	for	latent	HIV,	

as	this	effect	may	be	cell-type	dependent.		One	study	found	that	ex	vivo	reactivation	

of	 latent	 virus	with	 a	 6-day	 treatment	 of	 the	 HDACi	 SAHA	 in	 PBMCs	 from	 cART-

treated	HIV-infected	people	did	not	reduce	the	number	of	latently-infected	cells	by	a	

limiting	dilution	viral	outgrowth	assay	(Shan	et	al.,	2012).		Moreover,	SAHA	did	not	

promote	cell	death	of	resting	CD4+	T	cells	in	an	in	vitro	latency	model,	whereas	T	cell	

activation	did	(Shan	et	al.,	2012).	

Another	strategy	for	clearing	latent	infection	utilizes	immune	defenses	to	

target	and	kill	reactivated	cells.		According	to	the	common	definition	of	latency,	

there	is	little	to	no	production	of	viral	proteins,	which	makes	them	poor	targets	for	

cytotoxic	T	lymphocytes	(CTLs).		Anti-HIV	CTLs	limit	replication	of	the	virus,	but	

these	cells	often	show	functional	defects	in	the	context	of	HIV	infection	(Migueles	et	

al.,	2009).		A	small	group	of	HIV-infected	people,	referred	to	as	elite	controllers,	have	

low	levels	of	HIV	replication	without	therapy,	and	these	HIV-infected	people	have	

HIV-specific	CTLs	that	can	kill	autologous	resting	CD4+	T	cells	that	reactivate	latent	

infection	ex	vivo	(Shan	et	al.,	2012).		In	cART-treated	HIV-infected	people,	latently-

infected	resting	CD4+	T	cells	reactivated	with	SAHA	ex	vivo	are	not	cleared	by	CTLs	

isolated	from	the	same	patient,	unless	those	CTLs	are	pre-stimulated	with	HIV	Gag	
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peptides	(Shan	et	al.,	2012).		The	susceptibility	of	infected	bone	marrow	HSPCs	to	

immune	clearance	has	not	yet	been	assessed,	but	is	certainly	an	important	

consideration	for	targeting	this	potential	reservoir.	

	

HIV	Cure	

In	discussion	of	 a	 cure,	 two	 categories	have	been	proposed:	 sterilizing	 and	

functional	(Dieffenbach	and	Fauci,	2011).		With	a	sterilizing	cure,	there	is	complete	

eradication	of	all	replication-competent	HIV	from	a	patient.	On	the	other	hand,	with	

a	functional	cure,	there	is	suppression	of	viral	replication	and	maintenance	of	CD4+	

T	cell	function	without	anti-retroviral	therapy	indefinitely.	

The	 only	 confirmed	 case	 of	 a	 sterilizing	 HIV	 cure	 occurred	 with	 a	 bone	

marrow	transplant	for	acute	myeloid	leukemia	(Hutter	et	al.,	2009).		Often	referred	

to	as	 the	Berlin	patient,	 this	40-year-old	man	received	an	allogeneic	bone	marrow	

transplant	(BMT)	from	a	donor	with	a	homozygous	deletion	in	the	CCR5	gene.		Thus,	

the	 donor	 cells	 were	 inherently	 resistant	 to	 HIV	 infection	 because	 they	 lacked	

expression	of	an	HIV	co-receptor.		At	the	time	of	the	transplant,	the	patient	stopped	

anti-retroviral	 therapy,	 and	 had	 no	 detectable	 viremia	 without	 antiretroviral	

therapy	 for	over	5	years	 (Allers	et	 al.,	 2011;	Hutter	et	 al.,	 2009).	 	Additionally,	no	

HIV	RNA	or	DNA	was	detectable	in	peripheral	blood,	bone	marrow	or	rectal	biopsies	

(Allers	 et	 al.,	 2011).	 	Whether	 the	 donor	 stem	 cells	 or	 the	 bone	marrow	 ablation	

strategy,	or	a	combination	of	the	two,	led	to	this	cure	is	unknown.	

Thus	far,	there	have	been	a	few	instances	of	functional	cures	when	treatment	

was	initiated	early	after	initial	infection.		In	one	case,	an	HIV-infected	woman	from	
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Mississippi	who	did	not	 receive	pre-natal	HIV	 treatment	gave	birth	 to	a	baby	 that	

immediately	 received	 cART	 (Persaud	 et	 al.,	 2013).	 	 The	 infant’s	 initial	 viral	 load	

decayed	after	 treatment	began,	 and,	 after	 treatment	was	 stopped	at	18	months	of	

age,	circulating	virus	remained	undetectable	for	about	2	years	without	any	therapy.		

Eventually	however,	the	child	developed	detectable	viremia	and	needed	to	resume	

treatment	 (Martin	 and	 Siliciano,	 2016;	 NIAID,	 2014).	 	 The	 extended	 period	 of	

virological	 control	 that	 occurred	 after	 therapy	 cessation	 offers	 hope	 that	 proviral	

reservoirs	can	be	reduced	with	early	treatment.		A	complementary	study	of	infants	

infected	perinatally	found	lower	levels	and	higher	decay	rates	of	PBMC	provirus	in	

four	children	that	began	cART	sooner	(age	0.5-2.6	years)	compared	with	 four	that	

began	cART	later	(age	6-14.7	years)	(Luzuriaga	et	al.,	2014).			

In	 adults,	 recent	 studies	 suggest	 that	 early	 treatment	 can	 lead	 to	 a	 higher	

than	 expected	 rate	 of	 post	 treatment	 controllers	 (PTCs).	 	 PTCs	 refer	 to	 treated	

individuals	 who	 are	 found	 to	 have	 very	 low	 levels	 of	 viral	 replication	 after	

interrupting	therapy.	 	A	group	of	14	adult	PTCs	were	identified	from	a	cohort	that	

started	 treatment	 early	 during	 primary	 HIV	 infection,	 and	 were	 able	 to	maintain	

viral	 control	 at	 least	 24	 months	 after	 treatment	 interruption	 (Saez-Cirion	 et	 al.,	

2013).		These	HIV-infected	people	generally	had	small	HIV	reservoirs	in	PBMCs	and	

less	 infection	of	 long-lived	subsets	of	resting	T	cells.	 	A	previous	study	had	similar	

results	 in	 5	 PTCs	 who	 also	 initiated	 treatment	 during	 acute	 infection	 and,	 after	

stopping	 therapy,	 sustained	viral	 control	 for	a	mean	of	77	months	 (Hocqueloux	et	

al.,	 2010).	 	 While	 complete	 eradication	 of	 HIV-infected	 cells	 would	 be	 ideal,	 it	 is	

practical	to	consider	the	goal	of	a	functional	cure,	which	could	theoretically	involve	
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viral	 suppression	 without	 therapy	 after	 clearance	 of	 just	 a	 fraction	 of	 reservoirs.			

Additionally,	treatments	to	boost	immune	function	or	prevent	viral	immune	evasion,	

as	with	a	Nef	 inhibitor,	may	be	 the	most	helpful	 to	allow	a	patient’s	own	 immune	

defenses	to	effectively	control	HIV	replication.	

	

Additional	HIV	cure	strategies	

The	 case	 of	 the	 Berlin	 patient	 renewed	 interest	 in	 stem	 cell	 therapy	 as	 a	

potential	cure,	though	with	no	additional	successes	yet.		Indeed,	recent	studies	that	

have	 examined	 the	 impact	 of	 bone	 marrow	 transplant	 have	 not	 replicated	 the	

conditions	that	led	to	a	cure	of	the	Berlin	patient.		Cillo	et	al.	detected	plasma	virus	

and	HIV	DNA	 in	 10	HIV-infected	people	 after	 they	had	 received	 autologous	BMTs	

(Cillo	et	al.,	2013).	 	Two	other	HIV+	men	experienced	a	decline	of	peripheral	blood	

HIV	reservoir	after	allogeneic	transplants	from	wild	type-CCR5+	donors	(Henrich	et	

al.,	 2013).	 	After	a	 treatment	 interruption,	 they	had	undetectable	viral	 levels	 for	a	

prolonged	 period,	 but	 eventually	 both	 experienced	 viral	 rebound	 (Check	 Hayden,	

2013;	Henrich	et	al.,	2013).	

Despite	 the	 failure	 of	 bone	 marrow	 transplants	 as	 a	 therapy	 so	 far,	 an	

alternative	approach	is	to	transplant	genetically	modified	hematopoietic	stem	cells	

to	allow	continued	production	of	immune	cells	that	are	resistant	to	infection.		Some	

studies	have	used	genetic	approaches	that	delete	CCR5	or	insert	restriction	factors	

into	 stem	 cells	 to	 prevent	 infection	 ((Walker	 et	 al.,	 2012),	 reviewed	 in	 (Zhen	 and	

Kitchen,	2014)).		Gene	therapy	has	also	been	used	to	modify	T	cells.		In	a	preliminary	

trial,	re-infusion	of	autologous	T	cells	that	had	been	edited	by	zinc-finger	nucleases	
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to	 eliminate	 CCR5	 gene	 expression	 was	 well	 tolerated	 in	 12	 HIV-infected	 people	

(Tebas	et	al.,	2014).	

Additionally,	 gene	 therapy	 approaches	 have	 been	 utilized	 as	 a	 strategy	 to	

directly	target	latently	infected	cells.		A	recent	study	of	interest	utilized	the	clustered	

regularly	 interspaced	 short	 palindromic	 repeat	 (CRISPR)/	 CRISPR-associated	

protein	(CAS)	9	system	to	edit	an	integrated	HIV	genome	and	prevent	transcription.		

This	 unique	 strategy	 aims	 to	 cure	 infection	 by	 permanently	 silencing	 proviral	

genomes	(Ebina	et	al.,	2013).	

Other	 approaches	 to	directly	 target	 latently	 infected	 cells	 include	 therapies	

specific	to	infected	cells.		For	example,	treatment	with	an	HIV-targeted	immunotoxin	

in	 combination	 with	 anti-retroviral	 therapy	 effectively	 kills	 cells	 with	 productive	

infection	 in	 a	 humanized	mouse	 model	 (Denton	 et	 al.,	 2014).	 	 Another	 approach	

utilized	radiolabeled	antibodies	recognizing	the	HIV	envelope	protein	to	selectively	

clear	HIV-infected	cells	 in	mouse	models	without	severe	toxicity	(Dadachova	et	al.,	

2012).	 	 If	 proven	 safe	 and	 effective,	 these	 therapies	 could	 be	 used	 to	 specifically	

target	 latently-infected	 cells,	 assuming	 a	 marker	 can	 be	 found	 that	 is	 uniquely	

expressed	on	cells	with	transcriptionally	silent	infection.		One	study	found	that	CD2	

expression	is	usually	high	on	resting	memory	T	cells	harboring	latent	HIV	(Iglesias-

Ussel	et	al.,	2013).		However,	this	marker	is	also	commonly	found	on	uninfected	cells	

and	many	 infected	 cells	were	 CD2-.	 	 Further	 characterization	 of	which	 subsets	 of	

cells	 are	 infected	 within	 the	 resting	 T	 cell	 and	 HSPC	 reservoirs	 could	 reveal	 a	

targetable	characteristic	for	cell-directed	therapies.	
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Summary	of	Dissertation	

	 The	work	presented	in	this	dissertation	gives	insight	into	whether	bone	

marrow	stem	and	progenitor	cells	are	truly	a	reservoir	of	HIV	and	if	this	reservoir	is	

relevant	to	the	cure	of	HIV-infected	individuals.		Chapter	2	presents	a	study	of	bone	

marrow	samples	from	11	HIV+	donors	with	suppressed	viremia	on	therapy.		

Analysis	of	CD133-sorted	progenitors	from	these	donors	indicates	that	a	subset	of	

donors	have	detectable	HIV	in	purified	HSPCs	that	is	unlikely	to	be	due	to	T	cell	

contamination.		Chapter	3	is	a	deeper	analysis	of	a	larger	cohort	of	bone	marrow	

samples	from	optimally-treated	HIV+	donors	that	gives	insight	into	the	tropism	of	

the	virus	in	vivo.		This	study	found	surprisingly	that	CCR5-tropic	virus	persists	in	the	

HSPCs	of	these	donors,	even	in	cells	populations	that	are	depleted	of	true	stem	cells,	

and	this	supports	that	infected	non-stem	progenitors	may	persist	in	vivo.		Chapter	4	

includes	a	discussion	of	the	major	findings	presented	in	chapters	2	and	3	in	the	

context	of	current	knowledge	of	HIV	reservoirs,	highlighting	the	implications	and	

future	directions	of	this	work.	
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B	

	

Figure	1-1.	HIV	genome	and	the	virion.		
(A)	Organization	of	the	HIV	genome.	(B)	Structure	of	a	mature	viral	particle.2		
		 	

																																																								
2	Modified	from	the	original	by	Thomas	Splettstoesser	under	the	Creative	Commons	
Attribution-Share	Alike	3.0	Unported	license	(original	file	and	license	information	
available	at:	https://commons.wikimedia.org/wiki/File:HI-virion-structure_en.svg).	
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Figure	1-2.	HIV	Replication	Cycle.3	
	 	

																																																								
3	Modified	from	the	original	by	Thomas	Splettstoesser	under	the	Creative	Commons	
Attribution-Share	Alike	3.0	Unported	license	(original	file	and	license	information	
available	at:	https://commons.wikimedia.org/wiki/File:HIV-replication-cycle.svg).	
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Figure	1-3.	HIV	infection	in	an	untreated	individual.4	 	

																																																								
4	Modified	from	the	original	by	Jurema	Oliveira	under	the	Creative	Commons	
Attribution-Share	Alike	3.0	Unported	license	(original	file	and	license	information	
available	at:	https://commons.wikimedia.org/wiki/File:Hiv-timecourse.png).	
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Figure	1-4.		Potential	outcomes	of	latent	infection	in	a	T	cell.		
A	latently	infected	T	cell	with	integrated	provirus	(purple)	could	persist	through	
maintenance	or	homeostatic	proliferation.	With	reversal	of	latency,	the	actively	
infected	T	cell	could	die,	infect	additional	cells	and	release	virus	into	the	periphery.5	
	 	

																																																								
5	Reproduced	with	permission	from	Sebastian,	N.T.,	and	Collins,	K.L.	(2014).	
Targeting	HIV	latency:	resting	memory	T	cells,	hematopoietic	progenitor	cells	and	
future	directions.	Expert	Rev	Anti	Infect	Ther	12,	1187-1201.	
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Figure	1-5.	Human	hematopoiesis.		
MLP,	multilymphoid	progenitor;	GMP,	granulocyte	monocyte	progenitor;	B/NK,	B	
cell-NK	cell	progenitor;	MEP,	megakaryocyte	erythroid	progenitor.	Subsets	and	
corresponding	flow	cytometric	markers	based	on	(Doulatov	et	al.,	2010;	Gorgens	et	
al.,	2013b).	
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Chapter 2  
CD133+ HPCs harbor HIV genomes in a subset of 

optimally treated people with long-term viral 

suppression6 
	

Abstract	

Background.		Hematopoietic	progenitor	cells	(HPCs)	in	the	bone	marrow	of	HIV+	

individuals	have	been	proposed	as	a	persistent	reservoir	of	virus.		However,	some	

studies	have	suggested	that	HIV	genomes	detected	in	HPCs	arise	from	T	cell	

contamination.			

Methods.		CD133-sorted	HPCs	and	CD133-depleted	bone	marrow	cells	were	

purified	from	11	antiretroviral-treated	donors	with	a	viral	load	of	<48	copies	per	ml	

for	at	least	6	months.			CD133	and	CD3	expression	on	the	cells	was	assessed	by	flow	

cytometry.		HIV	DNA	was	quantified	by	real	time	PCR.			

Results.	HIV	genomes	were	detected	in	CD133-sorted	samples	from	6	donors,	

including	two	with	undetectable	viral	loads	for	more	than	8	years.		CD3+	cells	

represented	less	than	1%	of	cells	in	all	CD133-sorted	samples.			For	5	of	6	CD133-

																																																								
6	Previously	published	as:	McNamara,	L	A,*	Onafuwa-Nuga,	A,*	Sebastian,	N	T,	
Riddell	IV,	J,	Bixby,	D,	and	K	L	Collins	(2013)	CD133+	Hematopoietic	Progenitor	
Cells	Harbor	HIV	Genomes	in	a	Subset	of	Optimally	Treated	People	With	Long-Term	
Viral	Suppression.	The	Journal	of	Infectious	Diseases,	207:	1807-1816.	
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sorted	samples	with	detectable	HIV	DNA,	the	HIV	genomes	could	not	be	explained	

by	contaminating	CD3+	cells.		Donors	with	detectable	HIV	DNA	in	HPCs	were	

diagnosed	significantly	more	recently	than	the	remaining	donors	but	had	had	

undetectable	viral	loads	for	similar	periods	of	time.			

Conclusions.	HIV	genomes	can	be	detected	in	CD133-sorted	cells	 from	a	subset	of	

donors	with	long-term	viral	suppression	and	in	most	cases	cannot	be	explained	by	

contamination	with	CD3+	cells.	

	

Introduction	

	 Latent	 HIV	 infection	 represents	 a	major	 barrier	 to	 curing	HIV	 (Finzi	 et	 al.,	

1999;	Zhang	et	al.,	1999).		When	HIV	establishes	a	latent	infection	within	a	cell,	the	

DNA	 provirus	 integrates	 into	 the	 host	 cell’s	 genome	 but	 viral	 genes	 are	 not	

transcribed	(reviewed	 in	(Geeraert	et	al.,	2008)).	 	The	 latently	 infected	cell	 is	 thus	

indistinguishable	 from	 an	 uninfected	 cell	 and	 cannot	 be	 targeted	 by	 the	 immune	

system	or	current	antiretroviral	therapies.		The	HIV	provirus	can	persist	in	this	state	

for	the	lifetime	of	the	cell;	however,	it	can	also	be	reactivated	if	cellular	conditions	

change,	 leading	 to	 the	 production	 of	 new	 virions	 and	 potentially	 new	 infection	

events	 (reviewed	 in	 (Trono	 et	 al.,	 2010)).	 	 Thus,	 HIV	 replication	 will	 resume	 if	

antiretroviral	 therapy	 is	 discontinued	 unless	 all	 latent	 reservoirs	 of	 virus	 are	

eliminated.	

	 Although	resting	memory	CD4+	T	cells	are	a	well-studied	reservoir	for	latent	

HIV,	not	all	HIV	sequences	in	the	plasma	of	many	successfully	treated	HIV+	donors	

can	be	matched	 to	sequences	 in	peripheral	blood	CD4+	T	cells	 (Bailey	et	al.,	2006;	
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Brennan	 et	 al.,	 2009;	 Sahu	 et	 al.,	 2009).	 	 These	 data	may	 suggest	 that	 additional	

reservoirs	of	virus	exist	and	contribute	to	residual	viremia	during	treatment	as	well	

as	to	viral	rebound	upon	treatment	interruption	(Sahu	et	al.,	2009).	

	 Recently,	 we	 proposed	 that	 hematopoietic	 progenitor	 cells	 (HPCs)	 in	 the	

bone	marrow	 serve	 as	 a	 reservoir	 for	 latent	HIV.	 	We	 assessed	HIV-1	 infection	 in	

CD34+	HPCs	from	nine	HIV-infected	donors	with	undetectable	viral	loads	on	highly	

active	antiretroviral	therapy	(HAART)	for	at	least	6	months	(Carter	et	al.,	2010).		In	

four	of	nine	donors,	we	detected	HIV-1	proviral	genomes	in	CD34-sorted	cells	at	a	

frequency	 of	 3-40	 genomes	 per	 10,000	 cells	 (Carter	 et	 al.,	 2010),	 suggesting	 that	

HPCs	might	serve	as	a	reservoir	of	virus.		Comparable	amounts	of	HIV	DNA	were	not	

observed	 in	 bone	 marrow	 cells	 immunodepleted	 for	 CD34	 (Carter	 et	 al.,	 2010).		

However,	subsequent	studies	have	not	detected	HIV	genomes	in	CD34+	HPCs	from	

donors	with	undetectable	viral	loads	(Durand	et	al.,	2012;	Josefsson	et	al.,	2012)	and	

have	suggested	 that	HIV	genomes	 in	CD34+	samples	may	be	due	 to	contaminating	

CD3+	T	cells	(Durand	et	al.,	2012).	

	 In	addition	to	detecting	HIV	genomes	in	CD34+	cells	ex	vivo,	we	have	shown	

that	CD34+	cells	can	be	infected	by	CCR5-	and	CXCR4-tropic	HIV	in	vitro	(Carter	et	

al.,	 2010).	 	 We	 also	 demonstrated	 that	 HPCs	 expressing	 CD133,	 a	 marker	 for	 an	

immature	subset	of	CD34+	HPCs,	are	only	infected	by	CXCR4-utilizing	HIV-1	in	vitro	

(Carter	 et	 al.,	 2011).	However,	HIV	 infection	 of	 CD133+	 cells	 in	 vivo	 has	 not	 been	

assessed.	

	 To	investigate	whether	CD133+	HPCs	harbor	HIV-1	in	vivo,	we	quantified	HIV	

proviral	genomes	 in	CD133+	HPCs	from	11	HIV+	donors	with	plasma	viral	 loads	of	
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<48	 copies/ml	 for	 at	 least	 6	months.	 	We	 furthermore	 analyzed	 the	 frequency	 of	

CD3+	 T	 cells	 in	 each	 sample	 to	 assess	 whether	 HIV	 genomes	 could	 arise	 from	

contamination	with	CD3+	cells.	

	

Results	

Donor	characteristics.	 	The	11	donors	in	this	study	had	been	diagnosed	with	HIV	

infection	for	an	average	of	11.9	years	(standard	deviation	[s.d.]	8.1	years,	range	3	–	

24	years)	 (Table	2-1).	 	Donors	had	viral	 loads	of	<48	copies	per	ml	 for	at	 least	6	

months	(mean	4.1	years,	s.d.	2.7	years,	range	<1	–	8.4	years)	and	were	being	treated	

with	 at	 least	 3	 active	 antiretroviral	 agents	 at	 the	 time	of	 bone	marrow	aspiration	

(Table	2-1).	

	

Magnetic	 sorting	 for	 CD133	 minimizes	 T	 cell	 contamination.	 	 Bone	 marrow	

mononuclear	cells	(BMMC)	from	each	donor	were	subjected	to	magnetic	sorting	for	

CD133	 (Figure	2-1A),	 a	 surface	marker	 found	on	 a	 subset	 of	 CD34+	 cells	 (Figure	

2-1B).	 	 CD133	 and	 CD3	 expression	 on	 CD133-sorted	 and	 CD133-depleted	

populations	was	analyzed	by	flow	cytometry	(Figure	2-1C).		Although	the	purity	of	

the	CD133-sorted	populations	varied	 from	84.4	 to	98.9%	among	donors,	 less	 than	

1%	of	 the	 cells	 in	 each	 CD133-sorted	 sample	were	 CD3+	 (Figure	2-1C	and	Table	

2-2).		By	contrast,	CD133-depleted	samples	contained	36-82%	CD3+	cells.			

	

CD133-sorted	 BMMCs	 contain	 HIV	 DNA.	 	 We	 used	 quantitative	 PCR	 (qPCR)	 to	

determine	 the	 frequency	 of	 HIV	 genomes	 in	 CD133-sorted	 and	 CD133-depleted	
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samples.	Samples	were	at	 limiting	dilution	as	prepared,	with	no	more	 than	1/3	of	

reactions	 yielding	 HIV	 amplification	 for	 any	 sample.	 	 Between	 4800	 and	 180,000	

cells	were	 analyzed	 from	each	 sample.	 	HIV-1	DNA	was	detected	 in	CD133-sorted	

samples	for	6	of	11	donors	and	in	CD133-depleted	samples	for	6	of	11	donors	with	0	

-	3	total	copies	of	HIV	DNA	detected	per	sample	(Table	2-2).		The	frequency	of	cells	

containing	 HIV	 DNA	 varied	 from	 <0.71	 to	 63	 per	 100,000	 cells	 for	 CD133-sorted	

samples	and	from	<0.59	to	49	per	100,000	cells	for	CD133-depleted	samples	(Table	

2-2).	 	

	

CD3+	T	cells	are	unlikely	to	account	for	HIV	DNA	in	CD133-sorted	samples.	 	 If	

the	HIV	genomes	detected	in	our	samples	derived	from	CD3+	cells,	we	would	expect	

to	observe	many	more	HIV	genomes	in	the	CD133-depleted	samples,	which	contain	

36-82%	CD3+	cells,	than	in	the	CD133-sorted	samples,	which	contain	less	than	1%	

CD3+	 cells.	 	 However,	we	 instead	 observed	 that	 the	 frequency	 of	 HIV	 genomes	 in	

CD133-sorted	 samples	was	 higher	 than	 the	 frequency	 of	 HIV	 genomes	 in	 CD133-

depleted	samples	for	4	of	11	donors	(Table	2-2).	 	To	further	assess	the	possibility	

that	 CD3+	 cell	 contamination	 accounted	 for	 the	HIV	 genomes	 observed	 in	 CD133-

sorted	samples,	we	calculated	the	necessary	rate	of	CD3+	cell	infection	to	account	for	

all	 the	 genomes	 detected	 in	 each	 sample	 (Figure	 2-2A).	 	 If	 all	 the	 HIV	 genomes	

derived	from	CD3+	cells,	we	would	expect	these	calculated	frequencies	to	be	similar	

in	 the	 CD133-depleted	 and	 CD133-sorted	 samples	 for	 each	 donor.	 However,	 we	

found	that	for	five	of	the	six	positive	samples,	the	frequency	of	HIV	genomes	in	the	

CD3+	cells	from	the	CD133-depleted	sample	was	approximately	100-fold	too	low	to	
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support	 this	 conclusion	 (Figure	 2-2A).	 	 Using	 Fisher’s	 exact	 test,	 we	 obtained	

significantly	 discordant	 calculated	 rates	 of	 CD3+	 infection	 in	 the	 two	 samples	 for	

donors	304000,	305000,	312101,	313212,	and	315214	(p	<	0.0001	(donor	315214)	

or	 p	 <	 0.01	 (other	 donors)	 using	 mean	 estimates	 of	 CD3+	 cell	 number,	 p	 <	 0.01	

(305000,	 312101,	 and	 315214)	 or	 p	 <	 0.05	 (304000	 and	 313212)	 using	

conservative	 estimates;	 see	 Figure	 2-2A	 legend)	 (Figure	 2-2A).	 	 Donor	 311000	

demonstrated	 the	 same	 trend	 but	 statistical	 significance	 was	 not	 achieved	 (p	 =	

0.066	using	mean	estimates)	(Figure	2-2A).		We	therefore	conclude	that	for	at	least	

5	of	the	6	donors	with	detectable	HIV	DNA	in	CD133-sorted	cells,	it	is	unlikely	that	

the	HIV	DNA	detected	in	the	sorted	samples	comes	from	T	cell	contamination.	

			 It	 is	 also	 theoretically	 possible	 that	 CD133-,	 non-T	 cell	 contaminants	 could	

account	for	the	genomes	detected	in	the	CD133-sorted	cells.		However,	a	calculation	

analogous	 to	 the	 one	 described	 above	 revealed	 that	 CD133-	 contaminants	 were	

unlikely	 to	 account	 for	 the	 genomes	 present	 in	 CD133-sorted	 samples	 for	 donors	

305000,	 312101,	 and	 315214	 (p	 <	 0.05)	 (Figure	 2-2B).	 	 For	 donor	 313212,	 a	

significant	difference	was	observed	using	mean	(p	<	0.05)	but	not	conservative	(p	=	

0.0506)	estimates	of	CD133-	cell	number	(see	Figure	2-2A	legend).		Donors	304000	

and	 311000	 demonstrated	 the	 same	 trend,	 but	 statistical	 significance	 was	 not	

achieved	 (p	 =	 0.096	 (304000)	 or	 0.105	 (311000)	 using	mean	 estimates)	 (Figure	

2-2B).	 	We	therefore	conclude	that	CD133-	contaminants	are	an	unlikely	source	of	

HIV	 genomes	 in	 the	 CD133-sorted	 samples	 from	 three	 of	 the	 six	 positive	 donors.		

Importantly,	 the	 converse	 is	 also	 true:	 CD133+	 cells	 are	 an	 unlikely	 source	 of	

genomes	 detected	 in	 the	 CD133-depleted	 sample	 (Table	 2-2).	 	 Thus,	 these	 data	
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suggest	that	at	least	two	separable	cellular	sources	can	contain	HIV	DNA	in	the	bone	

marrow.	

	

HIV	sequencing	and	assessment	of	contamination.	 	 To	 assess	whether	 the	HIV	

DNA	 detected	 arose	 from	 laboratory	 contamination,	 qPCR	 amplicons	 were	

separated	from	the	primers	and	probe	by	gel	electrophoresis.		In	all	cases,	a	distinct	

band	 of	 approximately	 120	 base	 pairs	 was	 observed,	 confirming	 amplification	

(Figure	2-3A).	 	Amplicons	were	extracted	 from	the	gel,	 sequenced,	and	aligned	to	

the	positive	control	(HXB2,	Figure	2-3B).			Analysis	of	HXB2	DNA	from	three	single	

copy	reactions	amplified	alongside	donor	samples	revealed	that	all	three	sequences	

were	 identical	and	agreed	with	 the	HXB2	reference	sequence.	 	 In	contrast,	no	 two	

donors’	 samples	 yielded	 identical	 sequences.	 Unsurprisingly,	 we	 did	 observe	

identical	 sequences	 within	 the	 CD133-sorted	 and	 CD133-depleted	 fractions	 from	

the	 same	 donor	 (311000	 and	 315214).	 	 Compared	 with	 the	 HXB2	 sequence,	 the	

numbers	 of	 differences	 observed	were	 similar	 to	 those	 observed	 in	 samples	 from	

the	Los	Alamos	database	(Figure	2-3C).		Thus,	it	is	unlikely	that	the	positive	results	

we	obtained	are	due	to	contamination	by	the	positive	control.	

	

Stability	of	HIV	DNA	in	HPCs	over	time.	 	As	noted	in	Table	2-1,	 four	donors	had	

donated	samples	 for	prior	 studies	 (Carter	et	 al.,	 2011;	Carter	et	 al.,	 2010).	 	At	 the	

time	of	the	previous	donation,	two	of	these	donors	(308103	and	312101)	had	high	

viral	loads	(>50,000	copies/ml)	and	subsequently	started	therapy.	The	other	repeat	

donors	(313212	and	315214)	had	undetectable	viral	 loads	at	 the	 time	of	previous	
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donation.	 	 In	 the	prior	study,	HIV	DNA	was	detected	 in	HPC	samples	 from	both	of	

these	donors	(previously	referred	to	as	donors	12	and	14,	respectively	(Carter	et	al.,	

2010)).		In	concordance	with	these	results,	we	also	detected	HIV	DNA	in	the	current	

HPC	 samples,	 which	 were	 collected	 after	 an	 additional	 3.3	 years	 of	 suppressive	

therapy.	 	 Thus,	 HIV	 infection	 of	 HPCs	 can	 be	 consistently	 detected	 in	 the	 same	

donors	after	years	of	suppressed	viral	replication.	

	

Year	 of	 diagnosis	 is	 associated	 with	 detection	 of	 HIV	 DNA	 in	 CD133-sorted	

cells.	In	our	prior	study	we	had	noted	that	all	4	donors	with	detectable	HIV	DNA	in	

progenitor	 cells	 were	 diagnosed	 relatively	 recently	 (2001	 or	 later)	 whereas	 the	

three	donors	diagnosed	prior	to	2001	were	PCR	negative	(Carter	et	al.,	2010).	 	We	

assessed	whether	 this	 trend	held	 in	 our	 current	 cohort	 and	observed	 that	 donors	

with	positive	PCR	 results	were	diagnosed	 significantly	more	 recently	 than	donors	

without	 detectable	 provirus	 in	 CD133-sorted	 samples	 (p	 <	 0.02,	 t-test)	 (Figure	

2-4A).	 	 	One	sample	 from	a	 recently	diagnosed	donor	was	negative	 in	 the	current	

study	(308103),	but	as	only	14,000	cells	could	be	analyzed	from	this	donor	(Table	

2-2),	this	may	be	a	false	negative	result.	The	association	between	infection	of	HPCs	

and	 year	 of	 diagnosis	 does	 not	 result	 from	 differences	 in	 the	 duration	 of	 viral	

suppression	 (p	=	0.49,	 t-test)	 (Table	2-1	 and	Figure	2-4B)	or	 from	differences	 in	

the	purity	of	CD133-sorted	samples	or	the	percentage	of	T	cells	present	(p	=	0.65	or	

0.29,	respectively).		Neither	year	of	diagnosis	nor	duration	of	viral	suppression	was	

related	 to	 detection	 of	 HIV	 DNA	 in	 CD133-depleted	 samples	 (Figure	 2-4C-D,	 p	 =	

0.46	or	0.32,	respectively).	
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Discussion	

	 Because	 reservoirs	 of	 latent	 virus	 represent	 a	 barrier	 to	 curing	 HIV,	 it	 is	

essential	 to	 identify	 all	 sources	 of	 persistent	 virus.	 	 We	 previously	 showed	 that	

CD34+	HPCs	may	harbor	HIV	genomes	 in	donors	with	HIV	 loads	of	<48	copies/ml	

(Carter	 et	 al.,	 2010);	 however,	 subsequent	 studies	 suggested	 that	 contamination	

with	CD3+	cells	could	explain	our	results	(Durand	et	al.,	2012)	or	that	HIV	genomes	

in	HPCs	may	not	persist	during	years	of	therapy	(Josefsson	et	al.,	2012).	 	Here,	we	

extend	 our	 previous	 findings	 by	 showing	 that	 HIV	 can	 be	 detected	 in	 immature,	

CD133+	HPCs	from	donors	who	have	had	undetectable	viral	loads	for	up	to	8	years,	

including	 two	donors	where	we	had	detected	HIV	DNA	 in	CD34+	HPCs	 in	 samples	

donated	 for	 our	 previous	 study	 3	 years	 earlier	 (Carter	 et	 al.,	 2010).	 We	 also	

demonstrate	 that	 for	 5	 of	 6	 CD133-sorted	 samples	 where	 HIV	 genomes	 were	

detected,	 CD3+	 cell	 contamination	 is	 a	 poor	 explanation	 for	 our	 results.	 	 These	

findings	 demonstrate	 that	 HPCs,	 including	 CD133+	 HPCs,	 can	 harbor	 HIV	 DNA	

during	years	of	therapy.	

We	 estimate	 that	 the	 frequency	 of	 HIV	 genomes	 in	 CD133+	 HPCs	 in	 our	

donors	is	<0.71-63	genomes	per	100,000	cells.		These	frequencies	are	similar	to	the	

reported	 frequency	 of	 HIV	 genomes	 in	 peripheral	 blood	 CD4+	 T	 cells	 (1-100	 per	

100,000	 cells	 (Chomont	 et	 al.,	 2009)).	 	 Consistent	with	 reports	 that	 bone	marrow	

CD4+	T	cells	can	also	harbor	provirus	(Durand	et	al.,	2012),	we	observed	HIV	DNA	in	

some	samples	depleted	for	CD133+	cells.		However,	our	analysis	was	not	designed	to	

determine	the	type	of	CD133-	cell	that	was	infected.		
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For	 the	 two	 donors	 examined	 both	 here	 and	 in	 our	 prior	 study,	we	 found	

higher	frequencies	of	HIV	DNA	in	HPCs	in	our	prior	study	(Carter	et	al.,	2010)	than	

we	did	here.	 	However,	 for	both	donors	 the	95%	confidence	 intervals	 for	 the	 true	

frequency	 of	 genomes	 in	 these	 cell	 populations	 are	 overlapping.	 	 These	 95%	

confidence	 intervals	 are	 very	 broad	 because	 of	 the	 low	 number	 of	 detectable	

genomes.	 	 Furthermore,	 our	 current	 study	 assesses	 the	 frequency	 of	 HIV	 DNA	 in	

CD133+	cells	whereas	our	previous	study	examined	total	CD34+	cells.		It	is	not	clear	

whether	the	frequency	of	HIV	genomes	in	these	two	HPC	subsets	differs.		Finally,	the	

level	 of	 variation	observed	between	 the	 sequential	measurements	 from	 these	 two	

donors	 is	 consistent	 with	 the	 variation	 among	 sequential	 measurements	 of	 HIV	

frequency	in	resting	CD4+	T	cells	in	donors	with	suppressed	viral	loads,	even	though	

this	reservoir	is	known	to	decay	very	slowly	with	a	half-life	of	~44	months	(Siliciano	

et	 al.,	 2003).	 	 To	 better	 compare	 the	 number	 of	 genomes	 in	 CD34+	HPCs,	 CD133+	

HPCs,	 and	 peripheral	 blood	 resting	 memory	 T	 cells,	 additional	 studies	 that	

simultaneously	 compare	 HIV	 proviral	 DNA	 frequencies	 in	 all	 of	 these	 cell	

populations	 from	 the	 same	 donor	 are	 needed.	 	 Further	 studies	 examining	 the	

frequency	 of	 HIV	 genomes	 over	 time	 in	 the	 same	 HPC	 population	 from	 a	 larger	

cohort	of	donors	are	also	required	to	understand	the	rate	at	which	HIV	genomes	in	

HPCs	 decay	 over	 time	 and	 the	 contribution	 of	 these	 cells	 to	 long-term	 viral	

persistence.	

We	report	here	that	donors	with	evidence	of	 infected	HPCs	were	diagnosed	

significantly	more	 recently	 than	donors	without	evidence	of	 infection.	 	This	 result	

cannot	be	explained	by	a	shorter	period	of	suppressive	therapy	or	by	the	number	of	
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contaminating	CD3+	cells.		Instead,	we	hypothesize	that	individuals	with	high	levels	

of	 HIV	 infection	 in	 HPCs	 are	 less	 likely	 to	 have	 survived	 or	maintained	 low	 viral	

loads	 if	 they	were	diagnosed	prior	to	the	advent	of	HAART.	 	This	reduced	survival	

might	 be	 due	 to	 higher	 levels	 of	 CXCR4-tropic	 virus,	which	we	 have	 shown	 to	 be	

required	for	 infection	of	 immature	HPCs	 in	vitro	(Carter	et	al.,	2011)	and	which	 is	

associated	with	more	rapid	disease	progression	(Connor	et	al.,	1997;	Karlsson	et	al.,	

1994;	Scarlatti	et	al.,	1997;	Shepherd	et	al.,	2008;	Waters	et	al.,	2008;	Weiser	et	al.,	

2008;	Yu	et	al.,	1998).		Alternatively,	the	inflammation	associated	with	chronic	high-

level	viremia	may	influence	the	stability	of	HIV	genomes	in	HPCs.	 	Further	study	is	

required	 to	 understand	 the	 connection	 between	 the	 frequency	 of	 HIV	 genomes	

found	in	HPCs	and	year	of	diagnosis.	

In	a	recent	study	by	Durand	et	al.,	which	failed	to	detect	evidence	of	infection	

of	HPCs	in	optimally	treated	donors,	10	of	11	total	donors	were	diagnosed	prior	to	

2001	and	5	of	11	donors	were	diagnosed	during	 the	1980s	 (Durand	et	 al.,	 2012).			

Based	on	the	results	reported	here,	it	is	not	surprising	that	positive	results	were	not	

achieved	 in	 this	 study.	 In	addition,	 the	protocol	used	by	Durand	et	al.	 included	an	

overnight	 incubation	 in	 serum-containing	 media	 whereas	 our	 one-day	 protocol	

utilized	media	optimized	 to	maintain	progenitors	 in	 an	undifferentiated	 state	 that	

preserves	latent	infection	(McNamara	et	al.,	2012).	

A	second	study	authored	by	Josefsson	et	al.,	also	failed	to	detect	evidence	of	

HIV	 infection	 of	 HPCs	 in	 eight	 optimally	 treated	 donors	who	were	more	 recently	

diagnosed.	 	 However,	 methodological	 differences	 may	 have	 contributed	 to	 these	

negative	results.	 	Josefsson	and	colleagues	excluded	CD4+CD34+	cells	from	the	HPC	
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population	studied	(Josefsson	et	al.,	2012).		Because	we	have	previously	shown	that	

CD4	 expression	 on	 HPCs	 is	 required	 for	 infection	 of	 HPCs	 in	 vitro	 (Carter	 et	 al.,	

2011),	 the	 exclusion	 of	 CD4+CD34+	 cells	would	 exclude	 the	 CD34+	 cell	 population	

most	 likely	 to	 contain	 HIV	 genomes.	 	 Furthermore,	 the	 primers	 used	 in	 our	 PCR	

analysis	 are	 substantially	 more	 conserved	 than	 those	 used	 by	 Josefsson	 and	

colleagues,	which	could	 limit	the	sensitivity	of	their	assay	to	detect	variable	donor	

HIV	sequences.		

	 In	 vitro,	 CD133+	 HPCs	 are	 almost	 exclusively	 infected	 by	 HIV-1	 envelopes	

that	use	CXCR4	as	a	coreceptor	(Carter	et	al.,	2011).		We	would	therefore	expect	that	

at	 least	a	minor	population	of	CXCR4-tropic	virus	exists	 in	the	6	donors	 for	whom	

we	detected	HIV	DNA	in	CD133-sorted	cells.		This	is	consistent	with	studies	showing	

that	 isolates	predicted	 to	use	CXCR4	can	be	detected	as	a	minor	population	 in	12-

50%	of	recently-infected	patients	(Abbate	et	al.,	2011;	Chalmet	et	al.,	2012;	Daar	et	

al.,	 2007);	 furthermore,	 CXCR4-utilizing	 virus	 persists	 in	 patients	 on	 suppressive	

therapy	 (Seclen	 et	 al.,	 2010;	 Soulie	 et	 al.,	 2007)	 and	may	 become	more	 prevalent	

during	 therapy	 in	 some	patients	 (Delobel	 et	 al.,	 2005;	Hunt	 et	 al.,	 2006).	 	 Further	

study	to	assess	HIV	envelope	tropism	in	our	cohort	is	needed	to	confirm	the	role	of	

HIV	envelope	tropism	in	the	infection	of	HPCs	in	vivo.			

	 Our	results	demonstrate	that	HIV	genomes	can	be	detected	in	CD133+	HPCs	

from	a	subset	of	donors	with	undetectable	viral	loads	and	that	the	genomes	detected	

are	not	explained	by	contamination	with	CD3+	T	cells.	 	While	these	findings	do	not	

prove	 that	 HPCs	 serve	 as	 a	 reservoir	 for	 HIV	 in	 these	 donors,	 as	 the	 genomes	

detected	may	be	defective,	 they	do	 indicate	 that	HPCs	 can	 retain	HIV	DNA	during	
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years	 of	 successful	 antiretroviral	 therapy.	 	 We	 are	 currently	 investigating	 the	

contribution	 of	 HIV	 genomes	 in	 HPCs	 to	 residual	 viremia	 in	 treated	 donors.		

Meanwhile,	 strategies	 to	 reactivate	 latent	 virus	 from	 HPCs	 should	 be	 considered	

alongside	 strategies	 that	 reactivate	 virus	 in	 resting	 memory	 T	 cells	 to	 develop	

therapies	with	the	best	chance	of	eliminating	all	reservoirs	of	persistent	HIV.	

	

Methods	

Clinical	 Samples.	 	 The	 donor	 samples	 analyzed	 in	 this	 study	 are	 a	 consecutive	

subset	of	our	cohort,	excluding	two	donors	where	the	CD133-sorted	sample	was	less	

than	 80%	 pure	 and	 two	 donors	 where	 samples	 had	 been	 used	 up	 in	 prior	

experiments	(1	sample)	or	lost	(1	sample).		We	recruited	HIV+	donors	currently	on	

antiretroviral	 therapy	 from	 the	 University	 of	 Michigan	 HIV-AIDS	 Treatment	

Program	and	obtained	 informed	 consent	 according	 to	 a	 protocol	 approved	by	 the	

University	 of	 Michigan	 Institutional	 Review	 Board.	 	 At	 the	 time	 of	 aspiration,	 all	

donors	were	over	 the	age	of	18,	had	normal	white	blood	cell	 counts,	 and	had	had	

plasma	 viral	 loads	 of	 <48	 copies/ml	 for	 at	 least	 6	 months.	 	 Twenty	 ml	 of	 bone	

marrow	was	aspirated	 from	the	posterior	 iliac	crest,	collected	 in	preservative-free	

heparin,	and	processed	immediately.	

	

Isolation	 of	 CD133-sorted	 and	 CD133-depleted	 cells.	 	 Bone	 marrow	

mononuclear	 cells	 (BMMC)	 were	 isolated	 by	 Ficoll-Paque	 density	 separation	 (GE	

Healthcare).	 	Adherent	 cells	were	depleted	by	 incubation	 in	 serum-free	 StemSpan	

media	 (STEMCELL	 Technologies)	 for	 two	 hours	 at	 37ºC,	 then	 CD133+	 cells	 were	
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isolated	 by	magnetic	 sorting	 (Miltenyi	 Biotec).	 	 Cells	were	 sequentially	 sorted	 on	

two	columns	to	increase	purity.		BMMCs	that	flowed	through	the	first	column	were	

collected	 as	 the	 CD133-depleted	 fraction.	 	 Samples	 were	 cryopreserved	 in	 10%	

DMSO	in	fetal	bovine	serum	until	analysis.	

	

Flow	 cytometry.	 	 A	 fraction	 of	 each	 clinical	 sample	 was	 stained	 with	 R-

phycoerythrin-conjugated	 anti-CD133	 (Miltenyi	 Biotec),	 allophycocyanin-

conjugated	 anti-CD3	 (eBioscience),	 and	 7-Aminoactinomycin	 D	 (7-AAD).	 	 Healthy	

donor	BMMCs	(AllCells)	were	stained	with	R-phycoerythrin-conjugated	anti-CD133,	

R-phycoerythrin-Cy7-conjugated	 anti-CD34	 (BD),	 and	 7-AAD.	 	 Samples	 were	

analyzed	on	a	BD	FACSCanto.	

	

PCR.	 	Cells	were	lysed	in	MagNA	Pure	DNA	Lysis/Binding	Buffer	(Roche)	and	DNA	

was	 extracted	 using	 a	 MagNA	 Pure	 Compact	 System	 (Roche).	 	 HIV-1	 DNA	 was	

quantified	 by	 two-step	 quantitative	 PCR	 (qPCR).	 	 In	 the	 first	 round,	 5µl	DNA	was	

amplified	 in	 each	 of	 6	 to	 18	 25µl	 reactions	 containing	 2.5µl	 10x	 Expand	 Long	

Template	Buffer	2,	1.875U	Expand	Long	Template	Enzyme	mix	(Roche),	400nM	of	

primers	 1st-Gag-R	 (5’-CAATATCATACGCCGAGAGTGCGCGCTTCAGCAAG-3’)	 (HXB2	

702-718)	 and	 2nd-LTR-F-univ	 (5’-GTGTIGAAAATCTCTAGCAGTGGC-3’)	 (616-639),	

and	 500µM	 dNTPs.	 In	 some	 reactions,	 400nM	 of	 ß-actin	 primers	 ß-actin-F	 (5’-

CCTTTTTTGTCCCCCAACTTG-3’)	 and	 ß-actin-R	 (5’-TGGCTGCCTCCACCCA-3’)	 were	

also	added.	The	5’	18	bases	of	1st-Gag-R	are	a	tag	used	in	the	second	round	of	PCR.	
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	 ACH-2	(Clouse	et	al.,	1989)	cell	DNA	diluted	in	DNA	from	uninfected	primary	

HPCs	or	peripheral	blood	mononuclear	cells	(PBMCs)	to	a	concentration	of	10	HIV	

genomes/µl	 or	 0.2	 genomes/µl	 were	 used	 as	 positive	 controls	 and	 controls	 for	

sensitivity,	 respectively.	 DNA	 from	 uninfected	 HPCs	 or	 PBMCs	 was	 used	 as	 a	

negative	control.		Thermocycling	was	conducted	using	a	thermocycler	preheated	to	

93ºC	with	the	following	cycling	conditions:	93ºC	for	2	minutes;	12	cycles	of	93ºC	for	

15	seconds,	60ºC	for	30	seconds,	68ºC	for	1	minute;	and	a	final	1	minute	at	68ºC.	

	 Second	round	qPCR	reactions	were	conducted	in	triplicate,	each	using	2µl	of	

the	first	round	in	a	50µl	reaction.		Reactions	contained	25µl	FastStart	TaqMan	Probe	

Master	2x	Master	Mix	(Roche),	1µM	each	of	primers	2nd-LTR-F-univ	and	2nd-Tag-R	

(5’-CAATATCATACGCCGAGAGTGC-3’),	 and	 250nM	 Gag-probe-2	 (5’-FAM-

CGCTTCAGCAAGCCGAGTCCTGC-BHQ-1-3’)	 (Biosearch	 Technologies).	 	 Reactions	

were	 run	 and	 analyzed	 on	 an	 Applied	 Biosystems	 7300	 thermocycler	 with	 the	

following	 cycling	 conditions:	 95ºC	 for	 10	 minutes,	 then	 45	 cycles	 of	 95ºC	 for	 15	

seconds	followed	by	60ºC	for	60	seconds.	

	 Second	round	qPCR	reactions	to	amplify	ß-actin	were	conducted	to	validate	

cell	counts.		Conditions	were	identical	to	those	listed	for	HIV-1	qPCR	except	that	the	

ß-actin-F	 and	 ß-actin-R	 primers	 and	 a	 ß-actin	 probe	 (5’-FAM-

CCCAGGGAGACCAAAAGCCTTCATACA-BHQ-1-3’)	 (Biosearch	 Technologies)	 were	

used.	

	

DNA	 sequencing.	 	 Positive	 qPCR	 reactions	 were	 run	 on	 a	 2%	 agarose	 gel,	 the	

amplicon	 excised,	 and	 the	 DNA	 extracted	 (QIAquick	 Gel	 Extraction	 Kit,	 Qiagen).		
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Amplicons	 were	 sequenced	 by	 Sanger	 dideoxy	 sequencing	 and	 analyzed	 using	

4Peaks	(Mekentosj),	EditSeq	(DNAStar),	and	MEGA	5.05.	

	

Statistics.	95%	confidence	intervals	(CIs)	for	cell	counts	were	generated	using	Excel	

2004	(Microsoft).		95%	CIs	for	the	fraction	of	cells	that	were	CD133+	and	CD3+	were	

generated	 using	 a	 95%	 CI	 generator	 for	 binomial	 distributions	

(statpages.org/confint.html).	 	 Fisher’s	 exact	 test	 was	 performed	 using	 an	 online	

calculator	 (www.langsrud.com/fisher.htm).	 Mann	 Whitney	 and	 t-tests	 were	

performed	using	GraphPad	Prism	5.0a.	

	

	 	



	 75	

Acknowledgements	

Thank	 you	 to	 Lucy	 McNamara	 and	 Adewunmi	 Nuga-Onafuwa	 who	 led	 the	
collection	 of	 data	 in	 this	 chapter	 and	 were	 the	 main	 authors	 of	 the	 manuscript	
describing	 this	 study	 with	 Kathleen	 Collins.	 	 I	 did	 a	 portion	 of	 the	 donor	 cohort	
analysis	and	contributed	to	the	data	presented	in	Figures	2-1	and	2-3,	in	addition	to	
editing	the	manuscript.	

	
We	 thank	 the	University	 of	Michigan	 Center	 for	 Statistical	 Consultation	 for	

services.		We	are	grateful	to	Mary	Reyes	for	assistance	with	recruitment	of	donors	to	
our	study	and	for	help	with	human	subjects	regulatory	documentation.		Finally,	we	
thank	Robert	Siliciano,	John	Coffin,	Steve	King	and	Frances	Taschuk	for	their	careful	
reading	of	the	manuscript.	

	
Funding	

This	work	was	supported	by	 the	National	 Institutes	of	Health	 [RO1AI096962],	 the	
Burroughs	Wellcome	Foundation,	a	National	Science	Graduate	Research	Fellowship	
[DGE	 0718128	 to	 L.A.M.],	 and	 the	 University	 of	 Michigan	 [Rackham	 Predoctoral	
Fellowship	to	L.A.M.].	
	

	

	 	



	 76	

	

Table	2-1.	Donor	characteristics	
Donor 

identifier 
Year of 

diagnosis 
Time on ART 
with VL < 50 

copies per ml 
(years) 

CD4 count 
(cells per µl) 

WBC 
(109 
cells 

per L) 

BMMC 
(106 per 

ml) 

Repeat 
donor?1 

303000 1990 1.0 1026 4.5 15.9 No 

304000 2004 3.3 533 4.8 9.35 No 

305000 2007 > 0.5 1421 6.4 15.4 No 

306000 1986/1987 3.4 1039 9.4 11.4 No 

307000 1992 5.8 829 8.0 20.7 No 

308103 2008 1.6 852 5.3 5.05 Yes (3) 

311000 1999 8.2 564 7.2 6.25 No 

312101 2006 2.2 812 7.5 8.75 Yes (1) 

313212 2002 8.4 466 4.0 9.00 Yes (12) 

314000 Late 1980’s 5.1 543 7.6 4.22 No 

315214 2006 5.0 850 6.3 4.11 Yes (14) 

1Number in parentheses indicates the donor number in reference (Carter et al., 
2010).   
Note: VL = viral load; WBC = white blood cells; BMMC = bone marrow 
mononuclear cells. 
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Table	2-2.	Purity	of	samples	and	frequency	of	HIV	genomes	detected	
Donor 

identifier 
104 Cells 
analyzed 
(95% CI) 

% CD133+ 
cells (95% CI) 

%CD3+ cells 
(95% CI) 

HIV 
genomes 
detected 

Frequency of HIV 
genomes per 105 cells 

in vivo (95% CI) 
CD133-sorted     

303000 14  
(9.7 – 17) 

98.8  
(98.4 – 99.0) 

0.05  
(0.01 – 0.14) 

0 <0.71  
(0 – 3.8) 

304000 2.7  
(2.4 – 3.0) 

84.4  
(81.6 – 86.9) 

0.80  
(0.29 – 1.7) 

1 3.7  
(0.084 – 23) 

305000 6.0  
(5.6 – 6.4) 

94.1  
(93.3 – 94.9) 

0.59  
(0.36 – 0.89) 

1 1.7  
(0.040 – 9.9) 

306000 5.4  
(4.8 – 6.0) 

94.3  
(93.5 – 95.0) 

0.62  
(0.39 – 0.94) 

0 <1.9  
(0 – 7.7) 

307000 12  
(11 – 13) 

93.2  
(92.5 – 93.8) 

0.22  
(0.12 – 0.38) 

0 <0.83  
(0 – 3.3) 

308103 1.4  
(1.0 – 1.7) 

92.1  
(90.2 – 93.8) 

0.23  
(0.03 – 0.82) 

0 <7.1  
(0 – 37) 

311000 4.1  
(3.6 – 4.5) 

97.7  
(97.1 – 98.3) 

0.83  
(0.51 – 1.3) 

1 2.5  
(0.057 – 15) 

312101 8.4  
(5.9 – 11) 

98.9  
(98.7 – 99.1) 

0.06  
(0.02 – 0.15) 

1 1.2  
(0.023 – 9.5) 

313212 5.4  
(4.3 – 6.5) 

98.4  
(98.0 – 98.7) 

0.29  
(0.16 – 0.48) 

1 1.9  
(0.039 – 13) 

314000 0.96  
(0.83 – 1.1) 

85.8  
(81.4 – 89.5) 

0.65  
(0.08 – 2.3) 

0 <10.4  
(0 – 44) 

315214 0.48  
(0.35 – 0.61) 

92.4  
(89.4 – 94.8) 

0.76  
(0.16 – 2.2) 

3 63  
(10 – 250) 

CD133-depleted     

303000 18  
(13 – 23) 

5.0  
(4.0 – 6.2) 

36  
(34 – 38) 

2 1.1  
(0.11 – 5.7) 

304000 4.0  
(3.6 – 4.3) 

0.18  
(0.01 – 1.5) 

61  
(56 – 66) 

0 <2.5  
(0 – 10) 

305000 17  
(14 – 20) 

0.13  
(0.03 – 0.43) 

52  
(50 – 54) 

0 <0.59  
(0 – 2.7) 

306000 1.8  
(1.7 – 2.0) 

0.31  
(0.08 – 1.1) 

73  
(70 – 76) 

0 <5.6  
(0 – 22) 

307000 13  
(12 – 14) 

1.6  
(1.0 – 2.4) 

43  
(40 – 46) 

1 0.77  
(0.017 – 4.8) 

308103 1.1  
(0.90 – 1.2) 

<0.19  
(0 – 0.69) 

75  
(71 – 79) 

2 19  
(2.0 – 80) 

311000 2.5  
(2.1 – 2.9) 

<0.20  
(0 – 0.74) 

58  
(54 – 63) 

2 8.1  
(0.84 – 35) 

312101 5.4  
(4.7 – 6.0) 

<0.30  
(0 – 1.1) 

44  
(38 – 49) 

0 <1.9  
(0 – 7.8) 

313212 3.1  
(2.4 – 3.8) 

<0.15  
(0 – 0.55) 

59  
(55 – 63) 

0 <3.2  
(0 – 15) 

314000 0.54  
(0.42 – 0.66) 

<0.21  
(0 – 0.76) 

82  
(78 – 85) 

1 19  
(0.38 – 130) 

315214 0.41  
(0.32 – 0.50) 

<0.22  
(0 – 0.79)  

81  
(77 – 84) 

2 49  
(4.9 – 224) 
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Figure	2-1.	CD133+	cells	isolated	by	magnetic	sorting	are	minimally	
contaminated	with	CD3+	T	cells.			
A,	Purification	protocol.		CD133+	hematopoietic	progenitor	cells	(HPCs)	were	
isolated	from	total	bone	marrow	mononuclear	cells	(BMMC)	using	anti-CD133-
conjugated	magnetic	beads.		Cells	were	sequentially	sorted	on	two	columns	to	
maximize	the	purity	of	the	CD133-sorted	population.		Bone	marrow	cells	not	
expressing	CD133,	including	more	mature	CD34+CD133-	HPCs,	were	collected	in	the	
CD133-depleted	fraction.		B,	Example	of	CD133	and	CD34	staining	on	adherence-
depleted	bone	marrow	cells	from	a	healthy	donor.		Live	cells	were	gated	based	on	
forward	scatter	(FSC),	side	scatter	(SSC),	and	7-aminoactinomycin	D	(7-AAD)	
uptake.		Numbers	indicate	the	percent	of	the	population	falling	into	each	quadrant.		
The	percentage	of	BMMCs	that	are	CD34+	ranges	from	0.1	to	5%	between	donors.		C,	
Flow	cytometric	analysis	of	CD133	and	CD3	expression	in	CD133-sorted	and	CD133-
depleted	samples.		Live	cells	were	gated	based	on	FSC,	SSC,	and	7-AAD	uptake.		
Numbers	indicate	the	percent	of	the	population	falling	into	each	quadrant.	
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Figure	2-2.	CD3+	T	cells	are	unlikely	to	account	for	HIV	DNA	in	CD133-sorted	
samples.			
A,	Necessary	rate	of	infection	in	CD3+	cells	to	account	for	all	HIV	genomes	detected	
in	CD133-depleted	samples	(gray	circles)	and	CD133-sorted	samples	(black	
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squares).		Error	bars	indicate	95%	confidence	intervals.		For	these	calculations,	the	
total	number	of	HIV	genomes	detected	in	each	sample	was	divided	by	the	total	
number	of	CD3+	cells	analyzed	(=	(total	number	of	cells	analyzed)	X	(fraction	of	cells	
that	are	CD3+)).			Fisher’s	exact	test	was	used	to	compare	these	calculated	
frequencies	using	(1)	a	mean	estimate	of	the	number	of	CD3+	cells	analyzed	as	well	
as	(2)	a	conservative	estimate.		The	conservative	estimate	compared	the	top	of	the	
95%	confidence	interval	for	the	calculated	infection	rate	in	CD3+	cells	in	the	CD133-
depleted	sample	with	the	bottom	of	the	95%	confidence	interval	for	the	calculated	
infection	rate	in	CD3+	cells	in	the	CD133-sorted	sample	to	minimize	the	difference	
between	these	calculated	infection	rates	.		*	p	<	0.01	by	(1),	p	<	0.05	by	(2);	**	p	<	
0.01	by	(1)	and	(2);	***	p	<	0.0001	by	(1),	p	<	0.01	by	(2).		For	CD133-depleted	
samples,	the	limit	of	detection	(green	circles)	shows	the	frequency	of	HIV	genomes	
in	CD3+	cells	that	would	have	been	calculated	based	on	an	observation	of	1	HIV	
genome	in	the	sample.		B,	As	A,	except	that	it	was	assumed	that	all	genomes	were	
found	in	total	CD133-	cells.		Mean	(1)	and	conservative	(2)	estimates	of	the	total	
number	of	CD133-	cells	in	each	sample	were	calculated	as	in	A.		*	p	<	0.05	by	(1)	and	
(2);	**	p	<	0.01	by	(1),	p	<	0.05	by	(2);	#	p	<	0.05	by	(1)	but	not	by	(2).	
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Figure	2-3.	Sequence	analysis	of	PCR	products	does	not	suggest	contamination	
with	HXB2	DNA.			
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A,	Example	of	agarose	gel	analysis	and	purification	of	qPCR	products.		S,	CD133-
sorted	sample	from	the	listed	donor;	FT,	CD133-depleted	(flowthrough);	NT,	no-
template	PCR	control;	HXB2,	single	copy	of	HXB2	HIV-1	DNA	amplified	from	ACH-2	
cells.		B,	Alignment	of	donor	sequences	with	HXB2.		Numbers	indicate	coordinates	in	
the	HXB2	reference	sequence.		The	HXB2	sequence	was	obtained	by	sequencing	3	
single-copy	qPCR	reactions	of	HXB2	genomes	from	ACH-2	cells.		All	3	sequences	
were	identical	to	the	HXB2	reference	sequence.		Because	the	original	sequencing	
histogram	revealed	evidence	of	two	different	amplicons	in	the	sample	from	315214	
Sort	2;	the	amplicons	were	cloned	using	standard	protocols	and	sequencing	of	
multiple	clones	confirmed	the	presence	of	two	genomes	(A	and	B).		C,	Comparison	of	
the	number	of	differences	from	HXB2	in	our	donor	sequences	and	the	number	of	
differences	from	HXB2	in	all	subtype	B	isolates	in	the	Los	Alamos	database	that	have	
been	sequenced	through	the	region	of	our	61	nucleotide	qPCR	amplicon	(n	=	378,	1	
sequence	per	patient).		Each	base	pair	change,	insertion,	and	deletion	was	counted	
as	1	difference.		Box	plots	indicate	median,	first	and	third	quartiles,	and	minimum	
and	maximum	excluding	outliers;	outliers	are	indicated	with	dots.		The	median	
number	of	differences	from	HXB2	is	not	significantly	different	between	our	samples	
and	those	in	the	Los	Alamos	database	(p	=	0.07)	or	between	ours	and	Los	Alamos	
subtype	B	sequences	from	the	US	(p	=	0.27,	Mann	Whitney	test).	
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Figure	2-4.	Donors	with	detectable	HIV	DNA	in	CD133-sorted	samples	were	
diagnosed	significantly	more	recently	than	donors	without	detectable	HIV	
DNA	in	CD133-sorted	cells.			
A,	Comparison	of	the	mean	year	of	diagnosis	of	donors	with	or	without	detectable	
HIV	DNA	in	CD133-sorted	cells.		*	p	<	0.02,	t-test.		Lines	indicate	mean	and	standard	
error;	symbols	indicate	individual	values.		Conservative	estimates	of	the	year	of	
diagnosis	were	used	in	cases	where	the	year	of	diagnosis	was	not	known	precisely	
(1987	for	donor	306000	and	1989	for	donor	314000).		B,	Comparison	of	the	mean	
length	of	time	that	viral	load	in	the	plasma	has	been	undetectable	in	donors	with	or	
without	detectable	HIV	DNA	in	CD133-sorted	cells.		The	difference	between	the	two	
groups	is	not	significant	(p	=	0.49,	t-test).		Lines	indicate	the	mean	and	standard	
error;	symbols	indicate	individual	values.		A	conservative	estimate	of	0.5	years	for	
time	that	the	viral	load	in	the	plasma	had	been	undetectable	was	used	for	donor	
305000.	C, As A, but with donors grouped by whether HIV DNA was detected in 
CD133-depleted cells.  The difference between the two groups is not significant (p = 
0.46, t-test).  D, As B, but with donors grouped by whether HIV DNA was detected in 
CD133-depleted cells.  The difference between the two groups is not significant (p = 
0.32, t-test).	
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Chapter 3  
In vivo persistence of CCR5-tropic HIV in long-

lived CD34+ hematopoietic progenitors 
	

Abstract	

Hematopoietic	stem	and	progenitor	cells	(HSPCs)	express	HIV	receptors	(CD4	and	

CCR5	or	CXCR4)	in	a	pattern	that	allows	CCR5-tropic	viruses	to	infect	progenitors	

that	were	previously	thought	to	be	short-lived	whereas	CXCR4-tropic	viruses	infect	

both	progenitors	and	long-lived	stem	cells.	Here,	we	provide	surprising	evidence	

that	HSPCs	containing	both	types	of	HIV	provirus	endure	in	HIV-infected	people	on	

therapy	with	no	detectable	infectious	virus	for	at	least	six	months.	We	find	that	

multiple	subsets	of	HSPCs	express	HIV	receptor	RNA	and	that	HIVs	of	both	tropisms	

preferentially	infect	a	subset	of	HSPCs	with	relatively	high	levels	of	CD4.	

Remarkably,	we	describe	a	case	in	which	a	multipotent	HSPC	became	infected	with	a	

CCR5-tropic	HIV	in	vivo	and	generated	progeny	of	multiple	lineages	containing	

clonal	copies	of	the	provirus	it	harbored.	Our	results	have	implications	for	

understanding	HIV	disease	and	pathways	of	hematopoiesis.	
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Introduction	

Long	term	combination	anti-retroviral	therapy	(cART)	blocks	viral	spread	in	

vivo	but	is	not	curative	as	plasma	virus	rebounds	after	cART	interruption.	Sequence	

analysis	of	residual	circulating	and	rebounding	virus	in	HIV+	patients	indicates	that	

virions	likely	come	from	the	activation	of	latent	provirus	that	had	been	archived	

since	before	the	initiation	of	therapy	rather	than	from	low-level	replication	and	

spread	of	cART-resistant	virus	(Eisele	and	Siliciano,	2012;	Kearney	et	al.,	2014).	

While	resting	memory	CD4+	T	cells	are	the	best-characterized	and	largest	reservoir,	

residual	viral	genomic	sequences	from	plasma	do	not	always	match	genomes	

detected	in	these	cells	suggesting	that	other	reservoirs	may	exist	(Bailey	et	al.,	2006;	

Brennan	et	al.,	2009;	Pou	et	al.,	2013;	Sahu	et	al.,	2009).		

HIV	enters	cells	via	HIV	Env	interacting	with	CD4	plus	a	co-receptor,	usually	

CCR5	or	CXCR4.	CXCR4-utilizing	viruses	differ	from	those	that	utilize	CCR5	by	more	

efficiently	infecting	CD133+CD34+	HSPCs	that	are	enriched	for	stem	cells	(Carter	et	

al.,	2011);	Some	HSPCs	targeted	by	CXCR4-tropic	viruses	have	stem	cell-like	

qualities	based	on	their	ability	to	engraft	and	generate	multiple	lineages	in	a	mouse	

xenograft	model	(Carter	et	al.,	2011).	In	contrast,	HSPCs	transduced	with	CCR5-

tropic	viruses	produce	only	small	myeloid	colonies	(Carter	et	al.,	2011).	Consistent	

with	these	results,	Nixon	and	colleagues	elegantly	demonstrated	that	myeloid	

progenitors,	including	common	myeloid	progenitors	(CMPs)	and	

granulocyte/monocyte	progenitors	(GMPs),	express	CCR5	and	can	be	infected	by	

HIV	in	vitro	and	in	a	humanized	mouse	model	(Nixon	et	al.,	2013).			
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HSPCs	have	been	shown	to	support	both	active	and	latent	infection	by	HIV	in	

vitro	and	in	vivo	(Carter	et	al.,	2010;	McNamara	et	al.,	2012).		Moreover,	some	

studies	have	shown	that	HSPCs	harbor	proviral	DNA	in	viremic	people	(Carter	et	al.,	

2010;	Redd	et	al.,	2007)	and	in	treated	people	who	have	no	detectable	circulating	

virus	(Bordoni	et	al.,	2015;	Carter	et	al.,	2010;	McNamara	et	al.,	2013).	However,	

other	studies	reported	no	provirus	in	this	cell	type	(Durand	et	al.,	2012;	Josefsson	et	

al.,	2012).		Thus,	the	question	of	whether	HIV	infection	of	HSPCs	contributes	to	

persistent	disease	requires	further	study.	

		 Based	largely	on	patterns	of	hematopoiesis	that	occur	following	

transplantation,	hematopoietic	progenitors,	such	as	those	targeted	by	CCR5-tropic	

HIVs,	were	thought	to	be	short-lived	in	vivo	(Benveniste	et	al.,	2010;	Carter	et	al.,	

2011;	Nixon	et	al.,	2013).		However,	in	situ	tagging	experiments	in	mice	have	

recently	found	that	non-stem	cell	progenitors	make	an	enduring	contribution	to	

native	hematopoiesis	in	adults	through	successive	recruitment	of	thousands	of	

clones,	each	with	a	minimal	contribution	to	mature	progeny.	Consistent	with	this,	

non-stem	cell	myeloid	progenitors	such	as	GMPs	were	found	to	persist	in	people	

with	aplastic	anemia	despite	dramatic	losses	of	stem	cells	(Notta	et	al.,	2016).	Thus,	

a	large	number	of	long-lived	progenitors,	rather	than	classically	defined	

hematopoietic	stem	cells,	are	thought	to	be	the	main	drivers	of	steady-state	

hematopoiesis	during	adulthood	(Busch	et	al.,	2015;	Sun	et	al.,	2014).		

Here,	we	demonstrate	that	hematopoietic	progenitors	harboring	both	CXCR4	

and	CCR5-tropic	viruses	persist	in	optimally	treated	people,	providing	evidence	that	

non-stem	cell	progenitors	are	long-lived	in	people	without	evidence	of	bone	marrow	
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disease.	We	also	define	a	CD4high	subset	that	is	preferentially	targeted	by	both	HIV	

subtypes	in	vitro.	

	

Results	

CD133	marks	a	subset	of	HSPCs	that	is	enriched	for	HSCs	

To	better	understand	which	 types	of	HSPCs	are	 infected	by	HIV	 in	vivo,	we	

used	 a	 sequential	 purification	 protocol	 that	 separated	 two	 populations	 of	 HSPCs	

from	 bone	 marrow	 aspirates	 from	 optimally	 treated	 HIV-infected	 people	 with	

clinically	undetectable	circulating	plasma	virus	 for	at	 least	6	months	and	up	 to	11	

years	 (Table	3-1).	 The	 first	 purification	 step	utilized	 two	passes	 over	 anti-CD133	

magnetic	bead	 columns	 (Figure	3-1a,b),	which	 isolated	HSPCs	with	high	 levels	of	

both	HSPC	markers,	CD34	and	CD133	(Sort	1,	Figure	3-1b,c).	The	flowthrough	from	

this	 column	was	 passed	 over	 anti-CD34	magnetic	 bead	 columns	 twice	 to	 recover	

cells	 that	 were	 CD34+	 but	 had	 insufficient	 CD133	 to	 efficiently	 bind	 to	 the	 anti-

CD133	column	(Sort	2,	Figure	3-1a-c).		

Compared	with	 Sort	 2,	 cells	 from	 Sort	 1	were	 strikingly	 enriched	 for	HSCs	

and	 MPPs	 and	 depleted	 for	 more	 restricted	 progenitors	 (CMPs	 and	

megakaryocyte/erythrocyte	 progenitors	 (MEPs),	 Figure	 3-1d-j,	 Figure	 3-2a)	

(Doulatov	et	al.,	2010).	GMP/B-NKs	were	found	at	similar	frequencies	in	both	sorts	

(Figure	3-1d,e).		

Methylcellulose	colony	formation	assays,	which	allow	the	characterization	of	

progenitor	 cells	 based	 on	 their	 clonogenic	 capacity	 and	 differentiation	 potential,	

revealed	 similar	 numbers	 and	 types	 of	multipotent	 progenitors	 in	 both	 cell	 sorts	
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from	 uninfected	 HSPCs	 (Figure	 3-1k,	 Figure	 3-2b).	 Consistent	 with	 the	 higher	

frequency	 of	MEPs	 in	 Sort	 2,	more	 erythroid	 colonies	 (CFU-E)	were	 generated	 by	

Sort	 2	 cells	 (Figure	 3-1k,	 Figure	 3-2b).	 These	 results	 are	 consistent	 with	 prior	

studies	using	a	similar	sorting	strategy	and	functional	readouts	for	progenitor	cells	

(Freund	et	al.,	2006;	Goussetis	et	al.,	2000;	Matsumoto	et	al.,	2000).		

To	 better	 understand	which	 HSPC	 subsets	 are	 infected	 by	 HIV	 in	 vivo,	 we	

used	 this	 strategy	 to	 fractionate	 HSPCs	 from	 bone	marrow	 aspirates	 of	 optimally	

treated,	 HIV-infected	 people	 who	 had	 no	 detectable	 circulating	 virus.	 	 To	 avoid	

confounding	results	from	contaminating	T	cells,	we	only	included	donor	HSPCs	that	

contained	<2%	CD3+	T	cells	(0.02-1.6%)	(Table	3-2).	Additionally,	included	samples	

were	highly	purified	based	on	CD133	and	CD34	staining	 (Sort	1:	86-99%	CD133+;	

Sort	2:	83-99%	CD34+).	While	similar	 fractions	of	cells	 in	both	sorts	were	positive	

for	both	CD34	and	CD133,	donor	Sort	1	cells	had	higher	mean	fluorescent	intensity	

of	CD133	and	CD34	(2.8-fold,	p	<	0.0001,	and	1.4-fold,	p	<	0.0001,	respectively,	n	=	

22),	which	is	consistent	with	enrichment	of	stem	cells	in	Sort	1.	

	

HIV	DNA	can	be	amplified	from	purified	HSPCs	

To	determine	which	HSPCs	are	targeted	by	HIV	we	developed	a	nested	PCR	

amplification	protocol	with	single	copy	sensitivity	that	generates	a	0.45	kb	amplicon	

encoding	the	V3	region	that	determines	co-receptor	usage.	For	most	samples,	we	

screened	at	least	100,000	cells	[range	20,000-700,000	(Table	3-2)]	from	each	sort	

and	we	isolated	up	to	four	amplicons	per	sort	(Table	3-3).	Similar	numbers	of	cells	

from	Sort	1	and	Sort	2	were	screened	for	each	donor	(Table	3-2).	In	total,	we	
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generated	41	env	V3	amplicons	from	the	bone	marrow	HSPCs	of	a	23	donor	subset	

of	our	larger	cohort	of	48	donors	(Table	3-3).	We	obtained	bone	marrow	twice	

from	three	donors	and	three	times	from	one	donor	(Table	3-2).		

	

CD3+	T	cells	are	unlikely	to	account	for	HIV	DNA	in	HSPCs	

If	the	HIV	genomes	detected	in	our	samples	derived	from	contaminating	

CD3+	T	cells,	we	would	expect	to	observe	many	more	HIV	genomes	in	the	CD133	and	

CD34-depleted	samples	(Flowthrough	1	and	Flowthrough	2),	which	are	composed	

of	66%–68%	CD3+	T	cells,	than	in	the	sorted	samples,	which	are	composed	of	0.0%-

1.6%	CD3+	T	cells.	However,	this	was	not	observed	().	We	used	these	values	to	

calculate	the	rate	of	CD3+	T-cell	contamination	needed	to	account	for	all	of	the	

genomes	detected	in	each	HSPC	sample	and	compared	that	to	the	actual	frequency	

of	CD3+	T	cells	(McNamara	et	al.,	2013).	Using	Fisher's	exact	test,	we	obtained	

significantly	discordant	calculated	rates	for	37	amplicons	().	For	one	sample,	we	did	

not	have	T	cell	frequency	data	and,	for	four	samples,	the	p	values	for	this	analysis	

values	were	>0.05	().		Thirty-two of the 37 had p values that were significant based on 

our most conservative estimate in which the top of the 95% confidence interval for the 

calculated infection rate in the CD3+ T cells in the flowthrough sample was compared 

with the bottom of the 95% confidence interval for the calculated infection rate in CD3+ 

T cells in the sorted sample (McNamara et al., 2013). All Sort 1 amplicons that were 

verified had less than or equal to 0.5% CD3+ T cells.  One verified Sort 2 amplicon had 

1.6 % CD3+ T cells and the remainder had less than or equal to 0.3% CD3+ T cells 

(Table	3-2).	
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HIV	provirus	can	be	detected	in	HSPC	populations	at	similar	rates	regardless	

of	stem	cell	frequency	

Despite	the	fact	that	Sort	2	was	depleted	of	stem	cells,	13	of	the	37	verified	

amplicons	were	isolated	from	Sort	2	(Table	3-3).		Moreover,	for	18	donors	in	whom	

we	could	assess	cells	from	both	sorts,	there	was	no	significant	difference	between	

the	frequencies	of	detectable	provirus	(Fisher’s	exact	test,	p	=	0.184).	Direct	

sequence	analysis	revealed	that	amplicons	isolated	from	Sort	1	were	related	but	not	

identical	to	each	other	or	amplicons	from	Sort	2	cells	for	the	four	donors	with	env	

amplicons	detected	in	both	sort	populations	(Figure	3-3).	Thus,	Sort	2	cells	

containing	provirus	were	not	clonally	derived	from	the	Sort	1	cells	we	isolated.	

	

Both	CCR5	and	CXCR4-tropic	HIVs	persist	in	bone	marrow	HSPCs	

Because	prior	data	had	indicated	that	CCR5-tropic	HIVs	do	not	infect	stem	cells	

and	because	non-stem-cell	progenitors	were	thought	to	be	short-lived,	we	expected	

to	find	only	CXCR4	tropic	viruses	in	progenitors	from	treated	people	without	

detectable	circulating	virus	for	at	least	six	months.		To	test	this	hypothesis,	we	

sequenced	all	the	env	amplicons	directly	and	utilized	the	geno2pheno	algorithm	to	

assign	tropism	(Lengauer	et	al.,	2007;	Poveda	et	al.,	2012).	Surprisingly,	we	found	

that	32	total	env	amplicons	from	HSPCs	in	20	out	of	the	23	donors	with	detectable	

provirus	were	predicted	to	be	CCR5-utilizing	(Table	3-3).		

Additionally,	we	isolated	CXCR4-tropic	env	amplicons	from	Sort	1	(6	subtype	B	

and	1	subtype	A/AG)	and	two	amplicons	from	Sort	2	(both	non-subtype	B).	We	also	
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generated	env	amplicons	from	peripheral	blood	mononuclear	cells	(PBMCs)	from	all	

23	donors.	 Interestingly,	all	donors	 that	harbored	CXCR4-tropic	HIV	 in	HSPCs	also	

had	detectable	PBMC	provirus	predicted	to	be	CXCR4-tropic.	

Because	geno2pheno	was	developed	with	subtype	B	sequences	and	

predictions	for	non-subtype	B	sequences	are	less	reliable	(Garrido	et	al.,	2008;	Lee	

et	al.,	2013;	Mulinge	et	al.,	2013),	we	verified	Env	tropism	with	a	phenotypic	assay.		

For	this	analysis,	we	used	either	HSPC-derived	full-length	Env	or	a	non-HSPC-

derived	Env	with	identical	nucleotide	or	amino	acid	V3	region	from	the	same	donor	

as	available	(Table	3-3,	Figure	3-4,	Table	3-4).	Our	assay	confirmed	that	all	env	co-

receptor	usage	predictions	were	correct.	Interestingly,	infection	with	six	Envs	could	

not	be	fully	inhibited	by	receptor	blockade	in	Molt4-CCR5	cells	or	in	murine	3T3	

cells	in	which	infection	completely	depends	on	expression	of	human	CD4	and	

human	CCR5	(Deng	et	al.,	1997)	(Table	3-3,	Figure	3-4,	Table	3-4).	This	is	most	

likely	due	to	resistance	of	patient	Envs	to	these	drugs	as	has	been	described	

previously	(Delobel	et	al.,	2013;	Seclen	et	al.,	2010;	Soulie	et	al.,	2008).				

	

	CCR5-tropic	HIVs	target	HSPCs	that	are	unlikely	to	be	HSCs	

Because	 our	 studies	 demonstrated	 the	 surprising	 result	 that	 HSPCs	

harboring	 CCR5-utilizing	 virus	 persist	 in	 HIV-infected	 people	 and	 prior	 dogma	

indicated	 only	 bona	 fide	 stem	 cells	 persist	 long-term,	 we	 pursued	 evidence	 that	

CCR5-tropic	HIVs	may	still	target	HSCs.	To	assess	HIV	receptor	expression	in	HSCs,	

we	used	a	publicly	available	microarray	dataset	of	RNA	expression	in	human	bone	

marrow	HSPCs	 (Rapin	 et	 al.,	 2014)	 and	performed	 an	RNA-seq	 analysis	 of	mouse	
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bone	 marrow	 HSPCs.	 After	 confirming	 that	 the	 progenitor	 subsets	 expressed	 a	

developmentally	 appropriate	 set	 of	 genes	 (Figure	 3-5a,b),	 we	 determined	 that	

CCR5	was	expressed	at	 low	 levels	 in	HSCs	of	both	species	and	was	expressed	 to	a	

greater	extent	in	more	differentiated	progenitor	subsets,	although	significance	was	

not	 achieved	 in	 every	 case	 (Figure	 3-6a).	 These	 results	 compare	 with	 published	

studies	showing	low	or	no	expression	of	CCR5	protein	by	HSC-enriched	cells	(Carter	

et	 al.,	 2011;	 Carter	 et	 al.,	 2010)	 and	 limited	 expression	 of	 CCR5	 protein	 in	 more	

differentiated	progenitors	 (Carter	et	al.,	2010;	Nixon	et	al.,	2013).	 	 In	addition,	we	

found	that	CXCR4	and	CD4	RNA	was	expressed	across	the	subsets,	although	human	

HSCs	had	the	highest	CD4	expression	of	all	 the	human	progenitor	subsets	(Figure	

3-6a).			

		 We	 confirmed	 protein	 expression	 data	 by	 assessing	 infection	 of	 HSC-

enriched	 progenitors	 by	 full-length	 HIV-1s	 (Figure	 3-6b).	 	 CD133bright	 cell	

populations	contain	 the	vast	majority	of	HSCs	based	on	engraftment	 in	NOD/SCID	

mice	 (de	Wynter	 et	 al.,	 1998;	 Gorgens	 et	 al.,	 2013)	 and	 CD38,	 CD45RA	 and	 CD90	

staining	(Figure	3-6c),	and	thus	we	used	the	 level	of	CD133	staining	to	assess	the	

propensity	 of	 each	 HIV	 to	 target	 HSCs.	 	 To	 verify	 the	 co-receptor	 usage	 of	 our	

viruses	in	HSPCs,	we	demonstrated	that	infection	by	NL4-3,	a	CXCR4-utilizing	virus,	

was	 fully	 blocked	 by	 AMD3100	 (Figure	 3-6d,	 middle	 panels).	 Additionally,	

maraviroc	blocked	infection	of	HSPCs	by	YU2,	a	CCR5-utilizing	virus	(Figure	3-6d,	

right	panels).	Consistent	with	prior	experiments	performed	using	viral	pseudotypes	

(Carter	et	al.,	2011),	the	CCR5-tropic	YU2	isolate	only	infected	progenitors	that	were	

depleted	of	 stem	cells	 (low	 levels	of	CD133	and	CD90),	whereas	 the	CXCR4	 tropic	
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virus	targeted	a	wide	range	of	progenitors,	including	those	that	are	likely	to	be	stem	

cells	(Figure	3-6d);	 indeed,	we	noted	4.5	times	more	CD133	expression	on	HSPCs	

infected	by	wild	type	NL4-3	compared	with	YU2	(Figure	3-6e,f).	To	rule	out	latent	

infection	 in	 stem	 cells,	 we	 treated	 with	 TNF-α,	 which	 activates	 latent	 infection	

(McNamara	et	al.,	2012)	without	apparent	change	in	the	pattern	of	infection	(Figure	

3-5c,d).	Based	on	this	analysis,	CCR5-tropic	HIVs	are	restricted	to	progenitors	that	

are	unlikely	to	be	HSCs	in	vitro.		

	

CCR5-tropic	 HIV	 targeting	 of	 non-stem	 cell	 progenitors	 is	 a	 conserved	

property	extending	to	a	transmitted/founder	virus	

	 Because	 there	 is	 evidence	 that	 the	 latent	 reservoir	 in	 vivo	 is	 established	

during	acute	infection,	we	tested	additional	envelope	proteins	including	one	from	a	

transmitted/founder	virus	[SVPB16	(SV16)]	(Carter	et	al.,	2011;	Li	et	al.,	2005;	Yam	

et	al.,	2002)	for	their	ability	to	target	stem	cells	(Figure	3-7a,b).	For	these	studies,	

we	utilized	 the	minimal	HIV	construct	 (HIV-7SF-GFP)	pseudotyped	such	 that	each	

HIV	 Env	 protein	 decorates	 HIV	 viral-like	 particles	 containing	 a	 lentiviral	 genome.	

Again,	we	found	that	all	CCR5-tropic	envelopes	differed	from	CXCR4-utilizing	ones	

in	that	transduction	with	CCR5-tropic	envelopes	was	restricted	to	HSPCs	that	were	

unlikely	to	be	HSCs	based	on	CD133	expression	(Figure	3-7c-e).	In	contrast,	viruses	

pseudotyped	with	vesicular	stomatitis	virus	glycoprotein	(VSVG),	which	has	a	broad	

tropism	 due	 to	 a	 ubiquitously	 expressed	 receptor	 (Finkelshtein	 et	 al.,	 2013),	

infected	all	types	of	HSPCs	in	a	pattern	that	was	similar	to	viruses	pseudotyped	with	

CXCR4-	 and	 dual-tropic	 viruses	 (Figure	3-7d).	 Collectively,	 these	 data	 extend	 the	
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conclusion	 that	CCR5-tropic	 viruses,	 including	one	 isolated	during	 acute	 infection,	

are	largely	restricted	to	non-stem	cell	HSPCs.	

	

CCR5-	 and	 CXCR4-utilizing	 viruses	 target	 a	 separable	 population	 of	

multipotent	HSPCs	that	have	high	levels	of	CD4	

The	HIV	 receptor	 CD4	 is	 required	 for	 infection	 and	 is	 expressed	 on	 CD34+	

HSPCs,	although	at	low	levels	compared	to	CD4+	T	cells	(Louache	et	al.,	1994;	Zauli	

et	 al.,	 1994).	 To	 determine	 whether	 CD4	 expression	 marks	 an	 HIV-susceptible	

subset	 of	HSPCs,	we	measured	 CD4	 expression	 on	HSPCs	 transduced	with	 a	 GFP-

expressing	lentiviral	vector	pseudotyped	with	CCR5-	or	CXCR4-tropic	Env	proteins	

(Figure	 3-7a,b).	 Remarkably,	 we	 observed	 that	 HSPCs	 within	 a	 CD4high	 flow	

cytometric	 gate	 displayed	 2-30	 times	 greater	 infection	 than	 CD4low/-	 cells	 (Figure	

3-8a-c).	 In	 contrast,	 VSVG-pseudotyped	 viruses	 demonstrated	 no	 such	 preference	

(Figure	 3-8b).	 Additionally,	 CCR5-tropic	 envelopes	 had	 a	 significantly	 greater	

propensity	 to	 target	 CD4high	 progenitors	 compared	 to	 CXCR4	 and	 dual-tropic	

envelopes	(Figure	3-8b,c).		

	 To	determine	whether	 CD4	marks	 a	 stable	 and	 separable	HSPC	 subset,	we	

asked	whether	fluorescence	activated	cell	sorting	(FACS)	could	separate	Sort	1	and	

Sort	 2	 HSPCs	 into	 CD4high	 and	 CD4low	 populations.	 Indeed	 we	 found	 that	 these	

populations	could	be	separated	(Figure	3-9a)	and	we	found	that	both	populations	

had	similar	capacities	to	form	GEMM,	granulocyte/macrophage	(GM),	and	erythroid	

(E)	 colonies	 (Figure	 3-9b,c).	 However,	 CD4high	 HSPCs	 contained	 a	 significantly	

higher	 frequency	 of	 HSCs	 and	 MPPs	 (CD38-CD10-CD45RA-)	 than	 CD4low	 HSPCs	
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(Figure	3-10a,b,	Figure	3-11a)	 and	 this	 difference	was	 apparent	 for	 both	 Sort	 1	

and	 Sort	 2	 cells.	 In	 contrast,	 CD4low/-	 HSPCs	 contained	 a	 significantly	 higher	

frequency	of	the	more	differentiated	progenitors	[CMPs	and	MEPs	(Figure	3-11a)].	

Interestingly,	 CD133bright	 Sort	 1	HSPCs	 had	 significantly	 higher	 levels	 of	 CD4	 than	

CD133dim	 HSPCs	 from	 the	 same	 sorting	 protocol	 (Figure	 3-10c).	 Thus,	 higher	

expression	of	CD4	and	CD133	mark	populations	enriched	 for	HSCs	and	MPPs	and	

provide	a	mechanism	through	which	HIV	can	target	these	cells.	

 

CD4-negative lineages harbor HIV proviruses, some of which are identical to HSPC 

provirus 

 To determine whether HIV can be transmitted from infected HSPCs to progeny 

hematopoietic lineages via proliferation and differentiation rather than direct infection in 

vivo, we asked whether CD4-negative HSPC progeny might be recipients of clonal 

provirus from an infected progenitor.  For this analysis, we used fluorescence activated 

cell sorting (FACS) to isolate CD19+ B cells, CD8+ T cells and CD56+ natural killer (NK) 

cells.  To reduce the possibility of contamination by CD4-expressing cells, we depleted 

CD4+ cells using an anti-CD4 magnetic bead column prior to FACS. Post-sort analysis 

revealed low CD4+CD3+ T cell levels after bead depletion and prior to FACS (indicated 

as “pre” in Figure	 3-11b).  Post-FACS, CD4+CD3+ T cell contamination in the sorted 

lineages ranged from 0-0.12%.  In addition, we confirmed that the lineage-positive cells 

that we isolated were CD4-negative (indicated as “post” in Figure	3-11b).  

From approximately one million cells of each type analyzed, we detected provirus 

in CD4-negative cells from four of five donors with CXCR4-tropic HIV and only one of 



	 100	

five donors without detectable CXCR4-tropic virus. Notably, for donor 420000, we 

amplified an 839bp gag amplicon from the CD56+ NK population that was identical to an 

amplicon isolated from 420000 Sort 1 HSPCs (Fig. 5c, Table S4). Remarkably, for donor 

431000, we amplified identical env amplicons predicted to use CCR5 from multiple 

CD4-negative lineages, all of which shared identity with a CD133+ HSPC from Sort 1 

(Figure	 3-11c,d). Donor 431000 is unusual in our cohort in that they were diagnosed in 

the 1980s and had a persistently low CD4 count despite years of suppressive therapy 

(Table	3-1). 

It is important to note that we used a phylogenetic analysis to ensure that all 

included sequences were more similar to sequences from the same donor than to those 

from a different donor or lab strain.  In addition, we verified that amplicons from CD4-

negative lineages were unlikely to have come from contaminating CD3+CD4+ T cells. 

However, for donor 431000 we could not rule out the possibility that the amplicons from 

the CD19+ and CD56+ populations might have come from contaminating CD8+ cells.  

	

Discussion	

To	 cure	 HIV	 infection,	 all	 persistent	 cellular	 reservoirs	 of	 HIV	 must	 be	

identified	 and	 eliminated,	 including	 potential	 reservoirs	 in	 bone	 marrow	 HSPCs.	

While	 prior	 studies	 suggested	 that	 only	 CXCR4-tropic	 viruses,	 which	 had	 the	

capacity	to	 infect	bona	fide	stem	cells,	potentially	established	long-term	reservoirs	

in	HSPCs	 in	vivo	(Carter	et	al.,	2011),	here	we	provide	evidence	 that	non-stem	cell	

CD34+	 progenitors	 infected	 by	 CCR5-tropic	 viruses	 are	 also	 long-lived.	 	 First,	 we	

confirmed	and	extended	the	prior	conclusion	that	CCR5-tropic	viruses	preferentially	
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target	a	subset	of	HSPCs	that	are	unlikely	to	be	HSCs	(Carter	et	al.,	2011;	Nixon	et	al.,	

2013).	Second,	we	demonstrated	that	provirus	recovered	from	HSPCs	isolated	from	

HIV-infected	 people	 treated	with	 cART	 for	 up	 to	 11	 years	was	 often	 CCR5-tropic.	

Finally,	 we	 demonstrated	 that	 HIV	 provirus	 could	 be	 recovered	 with	 similar	

frequencies	 from	HSPC	populations	 that	 include	bona	 fide	 stem	 cells	 (Sort	 1)	 and	

HSPC	 populations	 depleted	 for	 stem	 cells	 (Sort	 2).	 In	 sum,	 our	 results	 provide	

evidence	 that	non-stem	cell	progenitors	 targeted	by	viruses	of	both	 tropisms	may	

form	 long-lived	 reservoirs	 of	 HIV	 provirus	 in	 bone	 marrow	 HSPCs	 of	 optimally	

treated	people.		

While	 HSCs	 are	 the	 main	 drivers	 for	 reconstitution	 of	 all	 hematopoietic	

lineages	in	xenograft	models,	new	insights	in	animal	and	human	disease	models	(e.g.	

aplastic	 anemia)	have	 shown	contributions	of	non-stem	cell	 progenitors	 to	 steady	

state	hematopoiesis	over	long	periods	of	time	(Busch	et	al.,	2015;	Notta	et	al.,	2016;	

Sun	et	al.,	2014).	Non-stem	cell	progenitors	appear	to	survive	longer	than	previously	

thought	 in	 the	 bone	marrow	without	 contribution	 from	HSCs,	 with	 non-stem	 cell	

clones	sequentially	recruited	over	time	to	produce	mature	blood	cells	(Busch	et	al.,	

2015;	Kim	et	al.,	2014;	Notta	et	al.,	2016;	Sun	et	al.,	2014;	Wu	et	al.,	2014).	While	we	

expect	CCR5-tropic	provirus	is	harbored	by	non-stem	cell	progenitors,	our	data	also	

indicate	that	a	CCR5-tropic	virus	can	infect	an	HSPC	that	produces	clonal	progeny	of	

multiple	lineages.	

Whether	 non-CD4+	 lineages	 harboring	 proviral	 genomes	 are	 capable	 of	

generating	 infectious	 virus	 will	 require	 further	 study.	 Because	 wild	 type	 HIV	

infection	is	toxic	to	differentiating	HSPCs	(Carter	et	al.,	2010),	it	is	possible	that	only	
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HSPC	harboring	defective	proviral	genomes	will	be	able	to	generate	viable	progeny.	

Nevertheless,	detection	of	 identical	proviral	sequences	 in	HSPCs	and	CD4-negative	

lineages	 supports	 our	 conclusions	 that	 hematopoietic	 progenitors	 capable	 of	

producing	 daughter	 cells	 that	 develop	 into	 multiple	 lineages	 (1)	 express	 HIV	

receptors,	(2)	can	be	infected	by	HIV	in	vivo	and	(3)	endure	for	years.	

If	non-HSC	progenitors	persist,	the	prevalence	of	CCR5	in	this	compartment	

is	not	surprising.	During	acute	infection	when	circulating	virus	peaks,	the	majority	

of	virus	 is	CCR5-tropic	 (Zhu	et	al.,	1993).	Moreover,	 rebounding	virus	 shows	 little	

evolution	 from	virus	present	 before	 the	 initiation	 of	 cART,	 further	 supporting	 the	

hypothesis	that	the	genetically	uniform	populations	of	circulating	virus	seen	during	

cART	 and	 when	 cART	 is	 interrupted	 derive	 from	 a	 few	 long-lived	 cells	 that	 are	

infected	 pre-therapy	 (Kearney	 et	 al.,	 2014).	However,	we	 also	 detected	 persistent	

provirus	that	encodes	Env	proteins	capable	of	utilizing	CXCR4	to	enter	cells,	which	

can	more	efficiently	target	HSCs	(Carter	et	al.,	2011).	Given	that	transmitting	virus	is	

nearly	uniformly	CCR5-tropic,	 these	data	suggest	that	a	significant	number	of	cells	

harboring	persistent	provirus	are	 infected	by	a	virus	minority	 that	evolved	 to	use	

CXCR4	for	infection	by	the	time	therapy	began	and	was	archived	in	both	PBMCs	and	

HSPCs.		

Finally,	we	 identified	 a	 sub-population	of	 CD4+	HSPCs	 that	 is	 preferentially	

targeted	 by	 both	 CXCR4-tropic	 and	 CCR5-tropic	 viruses	 and	 we	 show	 that	 this	

subset	 is	 enriched	 for	 HSCs	 and	 multipotent	 progenitors.	 These	 results	 are	

consistent	 with	 other	 studies	 investigating	 the	 lineage	 potential	 of	 CD4	 subsets	

using	functional	assays	(Louache	et	al.,	1994;	Muench	et	al.,	1997;	Zauli	et	al.,	1994).	
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Two	studies	showed	that	CD34+	CD4high	and	CD4low/-	populations	include	clonogenic	

progenitors	 and	 Louache	 et	al	 furthermore	 demonstrated	 that	 CD34+	 CD4+	HSPCs	

are	enriched	for	long-term	culture-initiating	cells	(Louache	et	al.,	1994;	Zauli	et	al.,	

1994).	Another	 study	extended	 these	 results	using	human	 fetal	 liver	 to	 show	 that	

CD34+CD4+	cells	are	able	to	engraft	in	an	immunodeficient	mouse,	unlike	CD34+CD4-	

cells	(Muench	et	al.,	1997).			

The	viruses	tested	here	are	shown	to	target	a	CD4high	subset	of	HSPCs,	which	

does	correlate	with	other	studies	of	the	CD4	requirement	of	different	HIV	envelope	

proteins.	 	 	CCR5-tropic	envelopes	that	infect	macrophages	have	been	shown	to	use	

low	 levels	 of	 CD4	 for	 entry	 (Joseph	 et	 al.,	 2014;	 Walter	 et	 al.,	 2005),	 and	 the	

envelopes	here	that	infect	HSPCs	are	likely	using	relatively	low	levels	of	CD4	as	well.	

The	subset	defined	here	as	CD4highis	the	subset	with	relatively	high	CD4	expression	

within	 HSPCs,	 which	 have	 previously	 been	 shown	 to	 be	 much	 lower	 in	 CD4	

expression	overall	than	CD4+	T	cells	(Louache	et	al.,	1994;	Zauli	et	al.,	1994).		Thus,	

envelopes	 that	 have	 the	 highest	 infection	 in	 HSPCs	 do	 require	 CD4	 for	 entry,	 but	

may	have	a	preference	for	cells	with	low	CD4	expression	similar	to	macrophages.	

Preferential	 infection	 of	 the	 CD4high	 subset	 provides	 an	 explanation	 for	

another	 study	 that	 failed	 to	 detect	 provirus	 in	 HSPCs	 from	 infected	 people.	 This	

small	study	of	8	donors	(3	initiating	therapy	during	chronic	infection	and	5	initiating	

therapy	during	acute	infection)	that	failed	to	detect	HIV	in	CD34+	bone	marrow	cells	

isolated	a	CD4low/-	population	(Josefsson	et	al.,	2012).		Thus,	we	support	a	model	in	

which	CD4high	HSPCs	 are	 an	HIV	 reservoir.	 	However,	more	 studies	 are	 needed	 to	

determine	the	half-life	of	these	cells.	
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Another	study	that	failed	to	detect	HIV	in	HSPCs	in	11	long-term	infected	

people	with	undetectable	plasma	virus	may	not	have	utilized	a	sufficiently	sensitive	

assay	to	detect	provirus	in	HSPC	(Durand	et	al.,	2012).	Here,	we	optimized	PCR	

conditions	to	single	copy	sensitivity	prior	to	screening	cells	to	use	donor-optimized	

primer	sets,	and	we	analyzed	a	larger	cohort	to	better	define	these	persistently	

infected	cells.	The	possibility	that	our	results	are	confounded	by	T	cell	

contamination	is	highly	unlikely	based	on	a	statistical	analysis	that	takes	into	

account	the	level	of	T	cell	contamination	and	the	frequency	of	provirus	in	

contaminating	populations	(Table	3-2	and	Table	3-3).	

Additionally,	our	study	included	two	donors	with	non-subtype	B	proviruses,	

extending	the	conclusion	that	HIVs	of	other	clades	infect	HSPCs	and	persist	in	these	

cells	in	people	on	prolonged	therapy.	In	particular,	the	detection	of	subtype	C	HIV	in	

highly	purified	preparations	of	HSPCs	establishes	that	these	cells	have	significance	

for	 the	most	 common	 type	 of	 HIV	 found	worldwide.	 These	 results	 are	 consistent	

with	a	prior	study	reporting	the	presence	of	subtype	C	virus	in	CD34+	HSPCs	from	

viremic	 people	 in	 Africa	 (Redd	 et	 al.,	 2007)	 and	 another	 study	 showing	 active	

infection	 of	 CD133+	HSPCs	 in	vitro	 by	 subtype	 C	 and	 subtype	D	 Env	 pseudotyped	

virus	(Carter	et	al.,	2011).		

Interestingly,	 we	 also	 observed	 that	 a	 significant	 subset	 of	 persistent	

provirus,	all	 from	CCR5	antagonist-naïve	donors,	appears	to	be	relatively	resistant	

to	 receptor	 blockade	 with	 maraviroc.	 While	 this	 result	 is	 consistent	 with	 other	

studies	 that	 have	 found	primary	 isolates	 that	 demonstrate	 resistance	 to	 this	 drug	
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(Delobel	et	al.,	2013;	Seclen	et	al.,	2010;	Soulie	et	al.,	2008),	its	clinical	significance	is	

unknown.		

Overall,	 our	 results	 have	 important	 implications	 for	 understanding	 HSPC	

infection	 as	 a	 potential	 barrier	 to	 a	 cure	 for	HIV	 globally.	Moreover,	 the	 evidence	

presented	 here	 suggesting	 HIV	 persists	 in	 non-stem	 cell	 progenitors	 supports	 a	

recently	revised	model	of	normal	hematopoiesis	that	is	deserving	of	further	study.	

	

Methods	

Clinical	Samples	

We	recruited	HIV-positive	donors	currently	receiving	antiretroviral	therapy	

from	the	University	of	Michigan	HIV-AIDS	Treatment	Program	and	the	Henry	Ford	

Health	System.	Informed	consent	was	obtained	according	to	a	protocol	approved	by	

the	University	of	Michigan	Institutional	Review	Board	and	Henry	Ford	Institutional	

Review	Board.	At	the	time	of	sample	acquisition,	all	donors	were	>18	years	old,	had	

normal	white	blood	cell	counts,	and	had	plasma	viral	loads	of	<48	copies/mL	for	at	

least	6	months.	20	ml	of	bone	marrow	was	aspirated	from	the	posterior	iliac	crest,	

collected	 in	 preservative-free	 heparin,	 and	 processed	 immediately.	 100	 mL	 of	

peripheral	blood	was	collected	in	K2-EDTA	vacutainer	tubes	and	also	processed	the	

same	 day.	 Bone	 marrow	 mononuclear	 cells	 (BMMCs)	 and	 peripheral	 blood	

mononuclear	 cells	 (PBMCs)	 were	 isolated	 by	 Ficoll-Paque	 density	 separation	 (GE	

Healthcare).	Sort	1	and	Sort	2	HSPCs	were	then	isolated	from	BMMCs	as	 indicated	

below.	

A	 fraction	 of	 each	 clinical	 sample	 was	 stained	 with	 R-phycoerythrin–
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conjugated	 anti-CD133	 (Miltenyi	 Biotec),	 fluorescein	 isothiocyanate-conjugated	

anti-CD34	(eBioscience),	allophycocyanin-conjugated	anti-CD3	(eBioscience),	and	7-

aminoactinomycin	 D	 (7-AAD).	 Samples	 were	 analyzed	 on	 a	 BD	 FACSCanto.	 The	

donors	who	provided	samples	analyzed	in	this	study	are	a	subset	of	a	larger	cohort	

and	 four	 of	 the	 donors	 included	 provided	 multiple	 donations	 with	 3-9	 months	

between	donations.	Only	samples	that	were	at	least	80%	CD133+	for	Sort	1	or	80%	

CD34+	for	Sort	2,	with	<	2.0	%	CD3+	contamination	were	considered	in	our	analysis	

(Table	3-2).	

	

Cell	Isolation	and	Culture	

Whole	 umbilical	 cord	 blood	 (CB)	 was	 obtained	 from	 the	 New	 York	 Blood	

Center	and	whole	bone	marrow	was	obtained	commercially	(AllCells	Ltd.);	healthy	

cord	blood	mononuclear	cells	(CBMCs)	or	BMMCs	were	purified	by	Ficoll-Hypaque	

centrifugation	 and	 then	 used	 either	 fresh	 or	 after	 storage	 in	 liquid	 nitrogen.	

Adherent	 cells	were	depleted	 from	CMBCs	or	BMMCs	by	 incubation	 in	 serum-free	

StemSpan	 media	 (StemCell	 Technologies)	 for	 1-2	 hours	 at	 37°C,	 and	 then	 Sort	 1	

(CD133+	 cells)	 was	 isolated	 by	magnetic	 separation	 with	 a	 CD133	MicroBead	 Kit	

(Miltenyi	 Biotec)	 according	 to	 the	 manufacturer’s	 protocol	 with	 the	 following	

modifications.	To	achieve	higher	yields	of	CD133+	cells,	1.5x	the	recommended	ratio	

of	CD133	MicroBeads	to	cells	was	used	for	donations	451000,	453000,	and	454304.	

CBMCs	or	BMMCs	that	flowed	through	the	first	column	(CD133-depleted)	were	used	

for	 isolating	 the	 Sort	 2	 (CD133low/-CD34+)	 fraction	 by	 magnetic	 sorting	 with	 the	

EasySep	 Human	 CD34	 Positive	 Selection	 Kit	 (StemCell	 Technologies).	 For	 both	
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CD133	and	CD34	magnetic	isolations,	cells	were	sequentially	sorted	on	2	columns	to	

increase	purity.	For	one	cord	blood	donor	included	in	Figure	3-11,	lineage-positive	

cells	 were	 depleted	 using	 the	 EasySep	 Lineage	 Depletion	 Kit	 (StemCell	

Technologies)	before	proceeding	to	the	CD133	magnetic	sort.	

For	 in	vitro	 infection	studies,	 isolated	HSPCs	were	cultured	 in	STIF	medium	

(StemSpan	 medium	 supplemented	 with	 100	 ng/ml	 stem	 cell	 factor,	 100	 ng/ml	

thrombopoietin,	 100	 ng/ml	 Flt3	 ligand	 [all	 from	 StemCell	 Technologies],	 and	 100	

ng/ml	 insulin-like	 growth	 factor	 binding	protein	 2	 [R&D	Systems]).	 Viruses	 for	 in	

vitro	 studies	 were	 generated	 in	 293T	 producer	 cells	 propagated	 in	 Dulbecco’s	

Modified	Eagle	Medium	(DMEM)	supplemented	with	10%	fetal	bovine	serum	(Gibco	

Invitrogen)	 and	 1	 U/ml	 penicillin,	 1	 μg/ml	 streptomycin,	 292	 μg/ml	 glutamine	

(Gibco	 Invitrogen).	 For	 tropism	 phenotype	 assays,	 Molt4-CCR5	 cells	 were	

propagated	in	RPMI-1640	supplemented	with	10%	fetal	bovine	serum	(R10,	Gibco	

Invitrogen),	 1	U/ml	penicillin,	 1	μg/ml	 streptomycin,	 292	μg/ml	 glutamine	 (Gibco	

Invitrogen),	 and	 1	mg/mL	 G418	 (Invitrogen)	 and	 NIH-3T3	 CD4+CCR5+	 cells	 were	

propagated	in	Dulbecco’s	Modified	Eagle	Medium	(DMEM)	supplemented	with	10%	

fetal	bovine	serum	(Gibco	Invitrogen),	1	U/ml	penicillin,	1	μg/ml	streptomycin,	and	

292	μg/ml	glutamine	(Gibco	Invitrogen),	and	3	μg/ml	puromycin	(Invitrogen).	

Methylcellulose	 colony-forming	 assays	 were	 conducted	 according	 to	 the	

manufacturer’s	 protocol	 (Methocult	 H4034,	 StemCell	 Technologies).	 HSPCs	 were	

plated	at	limiting	dilution	in	cytokine-containing	methylcellulose	medium.	Colonies	

were	 manually	 scored	 on	 days	 14-16	 in	 a	 blinded	 fashion	 by	 three	 investigators	

based	 on	 morphology	 using	 an	 inverted	 brightfield	 microscope	 at	 40X	 or	 100X	
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magnification.	

	

Isolation	of	CD4-negative	Progeny		

All	solutions	for	thawing,	staining	and	cell	sorting	contained	20	U/ml	DNAseI	

(Roche)	 to	 reduce	 cell	 clumping.	 Thawed	 donor	 PBMC	 were	 depleted	 of	 CD4	

expressing	 cells	 with	 CD4	 MicroBeads	 (Miltenyi	 Biotec)	 according	 to	 the	

manufacturer’s	protocol	modified	for	a	bead:cell	ratio	of	1.5:1	and	passed	over	two	

sequential	 LS	magnetic	 columns.	 Flowthrough	 fractions	were	 pooled	 and	 blocked	

with	 FACS	 buffer	 containing	 40	 ng/ml	 4',6-diamidino-2-phenylindole	

dihydrochloride	(DAPI,	Fisher	Scientific)	for	20	min	on	ice	before	staining	on	ice	for	

the	 following:	 	 	 CD3	 (APC-H7-conjugated,	 BD	 Bioscience),	 CD4	 (AlexaFluor488	

conjugated,	 eBioscience),	CD8	 (PE	 conjugated,	BioLegend),	CD19	 (APC	conjugated,	

BD	 Bioscience),	 and	 CD56	 (PE-Cy7	 conjugated,	 eBioscience).	 Cells	 were	 washed	

once	 with	 FACS	 buffer,	 resuspended	 at	 5x106	 c/ml	 in	 phosphate	 buffered	 saline	

without	calcium	or	magnesium	(PBS),	then	filtered	through	a	30	µm	pre-separation	

filter	(Miltenyi	Biotec)	prior	to	sorting	on	a	MoFlo	Astrios	flow	cytometer.	Sort	gates	

were	 set	 on	 compensated,	 doublet	 excluded	 DAPI-negative	 viable	 cells	 for	

monocytes	(forward	scatter	high,	CD3-CD4dim),	CD8	T	cells	(CD3+CD4-CD8+),	B	cells	

(CD3-CD4-CD19+CD56-),	 and	 NK	 cells	 (CD3-CD4-CD19-CD56+).	 	 Sorted	 populations	

were	analyzed	for	purity	by	setting	gates	based	on	isotype	controls.	

To	 assess	 the	 frequency	 of	 amplicons	 in	 CD4+	 T	 cells,	magnetically	 labeled	

CD4+	cells	from	above	were	cultured	overnight	in	R10	medium	at	a	density	of	up	to	

15x106	 cells	 per	 6-well	 plate.	 	 Adherence-depleted	 CD4+	 T	 cells	were	 stained	 the	
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next	day	with	DAPI,	AlexaFluor488	conjugated	anti-CD4,	APC-conjugated	anti-CD14	

(BioLegend),	and	APC-H7-conjugated	anti-CD3	as	described	above	and	acquired	on	

a	BD	FACSCanto	cytometer.		

	

Polymerase	Chain	Reaction	(PCR)	

Cells	were	lysed	in	MagNA	Pure	DNA	Lysis/Binding	Buffer	(Roche),	and	DNA	

extracted	 using	 a	MagNA	 Pure	 Compact	 System	 (Roche).	 A	 2-step	 PCR	 assay	was	

validated	 for	 single	 copy	 sensitivity	 on	ACH-2	 cell	 DNA.	 For	 each	 donor,	 first	 and	

second	 round	 primers	 used	 for	 HSPC	 DNA	 analysis	 were	 first	 verified	 by	

amplification	of	proviral	sequences	from	PBMC	DNA.	Primer	sequences	are	listed	in	

Table	3-5.	First	round	primer	pairs	for	Env	included	5036d	plus	LTR-pA-R,	5956d-f	

plus	LTR-pA-R,	or	envC2F2	plus	envC4R1,	along	with	primers	to	amplify	a	region	of	

Gag	 (U5-577.9662-f	 plus	 tagD4.6b-p24R1d	 plus	 or	 minus	 long1316-D4.6b	

depending	on	 the	patient	 sequence).	 Second	 round	primer	pairs	 included	5956d-f	

plus	 LTR-pA-R,	 envC2F2	 plus	 envC4R1,	 or	 env1in5	 (Brennan	 et	 al.,	 2009)	 plus	

env1in3	(Brennan	et	al.,	2009)	for	env	amplification.			For	gag	amplification,	second	

round	primers	were	626s	(Hasegawa	et	al.,	1985)	plus	D4.6b	(Buszczak	et	al.,	2014).	

	 In	 the	 first	 round,	5	μL	of	 template	DNA	at	 limiting	dilution	 (maximum	0.1	

copies/uL	 with	 ≤25%	 of	 reactions	 expected	 positive)	 was	 amplified	 in	 50-μL	

reactions	containing	10	μl	of	5X	Phusion	HF	Buffer	(ThermoFisher),	1U	of	Phusion	

Hot	Start	II	High	Fidelity	DNA	Polymerase	(ThermoFisher),	500nM	of	each	primer,	

and	200	μM	deoxyribonucleotide	triphosphates	(dNTPs).	ACH-2	(Clouse	et	al.,	1989)	

cell	DNA	was	diluted	in	DNA	from	uninfected	PBMCs	to	serve	as	a	positive	control	
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(10	HIV	genomes	per	μl)	or	 control	 for	 sensitivity	 (0.2	HIV	genomes	per	μl).	DNA	

from	 uninfected	 PBMCs	 was	 used	 as	 a	 negative	 control.	 Thermocycling	 was	

conducted	using	a	BioRad	C1000	 thermocycler	with	conditions	 indicated	 in	Table	

3-5.	

In	 the	second	round,	1	μl	of	 the	 first	 round	reaction	was	amplified	 in	50-μl	

reactions	containing	10	μl	of	5X	Phusion	HF	Buffer,	1U	of	Phusion	Hot	Start	II	High	

Fidelity	 DNA	 Polymerase	 (ThermoFisher),	 500nM	 of	 each	 primer	 and	 200	 μM	

dNTPs.	 Thermocycling	 was	 conducted	 using	 a	 BioRad	 C1000	 thermocycler	 with	

cycling	conditions	as	in	Table	3-5.	

	

DNA	Sequencing	Analysis	and	Cloning	

PCR	 reactions	 were	 run	 on	 1.5%	 agarose	 Tris-acetate-EDTA	 gels	 with	 1X	

GelRed	 (Biotium),	 the	 amplicons	 excised,	 extracted	 using	 QIAquick	 Gel	 Extraction	

Kit	 (Qiagen),	 and	 then	 sequenced	 by	 Sanger	 dideoxy	 sequencing.	 Consensus	

sequences	 were	 generated	 using	 SeqMan	 (DNAStar)	 and	 contaminants	 were	

excluded	 after	 comparison	 to	 all	 previously	 generated	 donor	 sequences	 and	 lab	

strains	 in	 MEGA6	 (Tamura	 et	 al.,	 2013).	 For	 co-receptor	 usage	 prediction,	 V3	

nucleotide	 sequences	 were	 submitted	 to	 an	 online	 genotypic	 algorithm,	

Geno2pheno	 (http://coreceptor.geno2pheno.org/index.php),	 with	 a	 false	 positive	

rate	cutoff	of	10%	(Lengauer	et	al.,	2007;	Poveda	et	al.,	2012).	

Molecular	 phylogenetic	 analysis	 was	 performed	 by	 maximum	 likelihood	

method	using	MEGA7	(Kumar	et	al.,	2016).	The	evolutionary	history	was	inferred	by	

using	the	Maximum	Likelihood	method	based	on	the	Hasegawa-Kishino-Yano	model	
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(Hasegawa	 et	 al.,	 1985).	 The	 tree	 with	 the	 highest	 log	 likelihood	 (-2805.4022)	 is	

shown.	 Initial	 tree(s)	 for	 the	 heuristic	 search	 were	 obtained	 automatically	 by	

applying	 Neighbor-Join	 and	 BioNJ	 algorithms	 to	 a	 matrix	 of	 pairwise	 distances	

estimated	 using	 the	 Maximum	 Composite	 Likelihood	 (MCL)	 approach,	 and	 then	

selecting	 the	 topology	 with	 superior	 log	 likelihood	 value.	 A	 discrete	 Gamma	

distribution	 was	 used	 to	 model	 evolutionary	 rate	 differences	 among	 sites	 (5	

categories	 (+G,	 parameter	 =	 0.8699)).	 Codon	 positions	 included	 were	

1st+2nd+3rd+Noncoding.	 All	 positions	 with	 less	 than	 95%	 site	 coverage	 were	

eliminated.	 That	 is,	 fewer	 than	 5%	 alignment	 gaps,	 missing	 data,	 and	 ambiguous	

bases	were	allowed	at	any	position.	

	
Full-length	 env	 amplicons	 were	 PCR	 purified	 using	 the	 QIAquick	 PCR	

Purification	 Kit	 (Qiagen).	 	 3'	 adenine	 overhangs	 were	 added	 using	 Taq	 DNA	

Polymerase	 (New	 England	 BioLabs).	 	 Each	 sequence	 was	 cloned	 with	 the	

pcDNA3.1/V5-His-TOPO	 TA	 Expression	 Kit	 (Invitrogen)	 according	 to	

manufacturer’s	 protocol	 and	 then	 transformed	 into	 Stbl2	 (Invitrogen)	 competent	

bacteria.	

	

Viral	Preparation	and	Transductions	

Infectious	supernatants	were	prepared	by	 transfection	of	proviral	plasmids	

into	 293T	 cells	 using	 polyethylenimine.	 Plasmids	with	 NL4-3	 and	 YU2	 full-length	

constructs	 were	 transfected	 to	 produce	 wildtype	 virus.	 HIV-7SF-GFP	 was	 co-

transfected	with	the	helper	plasmid	pCMV-HIV-1	(Gasmi	et	al.,	1999)	and	a	plasmid	

encoding	 either	 the	 vesicular	 stomatitis	 virus	 glycoprotein	 (VSVG)	 or	 an	 HIV	
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Envelope	 protein.	 Viruses	 pseudotyped	 with	 HIV	 envelope	 proteins	 were	 used	

either	 un-concentrated	 or	 concentrated	 using	 high-molecular-weight	 polyethylene	

glycol	precipitation	as	described	previously	(Carter	et	al.,	2011;	Kohno	et	al.,	2002).	

Cells	 were	 infected	 by	 spin	 inoculation	 at	 1,048.6xg	 for	 2	 hours	 at	 room	

temperature.	 For	 infection	 with	 entry	 inhibitors,	 cells	 were	 incubated	 with	

AMD3100	 (10	mg/mL)	 and/or	maraviroc	 (20	 μM)	 for	 at	 least	 15	minutes	 before	

infection,	during	spin	inoculation,	and	in	cell	culture	for	2-3	days	following	infection.	

	

Flow	cytometry	and	antibodies.		

Antibodies	 to	 the	 following	 proteins	were	 used	 for	 flow	 cytometry:	 CD133	

(phycoerythrin	 [PE]	 conjugated;	 Miltenyi	 Biotec),	 CD34	 (conjugated	 with	

fluorescein	 isothiocyanate	 [FITC],	 allophycocyanin	 [APC],	 PE-Cy7;	 Miltenyi	 Biotec	

and	 eBioscience),	 CD4	 (OKT4	 clone	 unconjugated,	 Brilliant	 Violet	 605	 conjugated;	

BD	Biosciences),	CD45RA	(APC	conjugated;	eBioscience),	CD38	(PE-Cy7	conjugated;	

eBioscience),	 CD10	 (Biotin	 conjugated;	 eBioscience),	HIV-1	Gag	 (clone	KC57,	 FITC	

conjugated;	 Beckman	 Coulter),	 and	 Human	 Hematopoietic	 Lineage	 Cocktail	 (FITC	

conjugated;	eBioscience).	The	secondary	reagents	used	were	streptavidin	(Brilliant	

Violet	 421	 conjugated;	 BD	 Biosciences)	 and	 anti-mouse	 IgG2b	 (Alexa	 Fluor	 647	

conjugated;	Invitrogen).	Cells	were	stained	with	7-aminoactinomycin	D	(7-AAD)	to	

exclude	 dead	 cells.	 Samples	 were	 analyzed	 using	 a	 BD	 FacsCanto	 cytometer.	 Cell	

sorting	 was	 performed	 using	 a	 MoFlo	 XDP	 (Beckman	 Coulter),	 MoFlo	 Astrios	

(Beckman	Coulter),	or	FACSAria	(BD	Biosciences)	flow	cytometer.	

For	 staining	 surface	 proteins,	 cells	 were	 first	 incubated	 in	 fluorescence-activated	
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cell	sorting	(FACS)	buffer	(phosphate-buffered	saline	[PBS]	with	2%	FBS,	1%	human	

serum,	 2	mM	 HEPES,	 and	 0.025%	 sodium	 azide)	 on	 ice	 for	 20	min	 with	 directly	

conjugated	 antibodies	 or	 primary	 antibodies.	 Cells	 were	 then	 washed	 and,	 if	

necessary,	stained	with	a	secondary	antibody	for	an	additional	20	min	on	ice.	They	

were	 then	washed	 and	 fixed	 in	 PBS	with	 2%	 paraformaldehyde.	 For	 intracellular	

staining	of	HIV	Gag,	cells	were	first	fixed	and	then	permeabilized	with	0.1%	Triton	

X-100	in	PBS	for	5	min	at	room	temperature.	Cells	were	then	washed	and	incubated	

with	an	antibody	against	Gag	for	30	min	on	ice.	

	

Isolation	of	murine	cells	

Bone	marrow	cells	were	 isolated	 and	harvested	 as	described	 (Signer	 et	 al.,	

2014).	 For	 flow	 cytometric	 analysis	 and	 isolation	 of	 specific	 hematopoietic	

progenitors,	cells	were	incubated	with	combinations	of	antibodies	to	the	following	

cell-surface	markers	 conjugated	 to	 FITC,	 PE,	 PerCP-Cy5.5,	 APC,	 PE-Cy7,	 or	 biotin:	

CD3ε	(17A2),	CD4	(GK1.5),	CD5	(53-7.3),	CD8α	(53-6.7),	CD11b	(M1/70),	CD16/32	

(FcΥRII/III;	 93),	 CD34	 (RAM34),	 CD43	 (1B11),	 CD44	 (IM7),	 CD45R	 (B220;	 RA3-

6B2),	 CD48	 (HM48-1),	 CD117	 (c-kit;	 2B8),	 CD127	 (IL7Rα;	 A7R34),	 CD150	 (TC15-

12F12.2),	 Ter119	 (TER-119),	 Sca1	 (D7,	 E13-161.7),	 Gr-1	 (RB6-8C5),	 and	 IgM	

(II/41).	For	 isolation	of	CD150+CD48-Lineage-Sca-1+c-kit+	 (CD150+CD48-LSK)	HSCs	

and	CD150-CD48-LSK	MPPs,	 Lineage	markers	 included	CD3,	 CD5,	 CD8,	B220,	Gr-1,	

and	 Ter119.	 For	 isolation	 of	 CD34+CD16/32lowCD127-Sca-1-LK	 CMPs	 and	

CD34+CD16/32highCD127-Sca-1-LK	 GMPs,	 these	 Lineage	 markers	 were	

supplemented	with	antibodies	against	CD4	and	CD11b.	Biotinylated	antibodies	were	



	 114	

visualized	 by	 incubation	 with	 PE-Cy7	 conjugated	 streptavidin.	 All	 reagents	 were	

acquired	from	BD	Biosciences,	eBiosciences,	or	BioLegend.	All	incubations	were	for	

approximately	30	minutes	on	ice.	HSCs,	MPPs,	CMPs,	and	GMPs,	were	pre-enriched	

by	selecting	c-kit+	cells	using	paramagnetic	microbeads	and	an	autoMACS	magnetic	

separator	(Miltenyi).	Other	sorted	populations	included	Gr-1+	cells,	IgM-CD43+B220+	

pro-B	 cells,	 IgM-CD43-B220+	 pre-B	 cells,	 and	 unfractionated	 bone	 marrow	 cells.	

Non-viable	cells	were	excluded	from	sorts	and	analyses	using	DAPI.	Cell	sorting	was	

performed	 on	 a	 FACSAria	 (BD	 Biosciences).	 All	 fractions	 were	 double	 sorted	 to	

ensure	high	purity.	

	

Gene	Expression	Analysis	of	Isolated	HSPC	Subsets	

Gene	 expression	 in	 human	 bone	 marrow	 HSPC	 and	 differentiated	 subsets	

assessed	by	microarray	analysis	was	extracted	from	a	published	data	set	(Rapin	et	

al.,	 2014)	 accessed	 via	 the	NCBI	 Gene	 Expression	Omnibus	 database	 (GSE42519).	

For	RNAseq	analysis	of	murine	hematopoietic	cells,	RNA	was	extracted	from	3x104	

double-sorted	cells	from	each	cell	population	using	the	mirVana	miRNA	isolation	kit	

(Thermo	 Scientific).	 Total	 RNA	 was	 quantified	 using	 a	 Bioanalyzer	 (Agilent).	 To	

assess	mRNA	content,	we	performed	RNAseq	on	the	total	RNA	extracted	from	each	

cell	 population,	 adding	 equal	 amounts	 of	 92	 spiked-in	RNA	 standards	 to	 each	 cell	

population.	Since	the	amount	of	spiked-in	RNA	standards	added	to	each	sample	was	

known,	 the	 relationship	 between	 RPKM	 values	 and	 the	 number	 of	 transcripts	 for	

each	spiked-in	RNA	could	be	determined	by	regression	analysis	(Loven	et	al.,	2012).	

RNAseq	reads	were	aligned	using	Bowtie	software	(Langmead	et	al.,	2009)	to	NCBI	
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build	37	(mm9)	of	 the	mouse	genome	with	the	settings:	 -e	70	-k	1	-m	2	-	n	2.	The	

RPKM	 for	 each	 RefSeq	 gene	 and	 synthetic	 spike-in	 RNA	 was	 calculated	 using	

RPKM_count.py	 (v2.3.5)	 counting	 only	 exonic	 reads	 (-e	 option).	 Loess	 regression	

from	R	 affy	 package	was	 used	 to	 renormalize	 the	RPKM	values	 by	 using	 only	 the	

spike-in	RNA	to	fit	the	loess	with	default	parameters.	Only	the	spike-in	RNAs	whose	

abundance	could	be	robustly	quantified	(RPKM	values	≥	1)	were	used	 in	 the	 loess	

normalization.	

	

Statistical	Analysis	

T	 cell	 contamination	 analysis	 was	 performed	 for	 HSPC	 and	 non-CD4+	

progeny	sequences	as	described	as	 in	McNamara	et	al	(McNamara	et	al.,	2013).	All	

other	statistical	tests	were	performed	using	Excel	or	GraphPad	Prism	5.0a.	
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Table	3-1.	Donor	Characteristics	

Donor	
IDa	 Gender	 Raceb	 Year	of	

Diagnosis	

CD4+	T-
cell	Count	
(cells/μl)c	

Viral	Load	
(copies/ml)d	

Duration	of	
Viral	
Suppression	
(years)c	

405000	 M	 W-NH	 1998	 1341	 <48	 11.2	

409000	 M	 W-NH	 2010	 853	 <48	 1.1	

413402	 M	 B-NH	 2011	 321-390	 <48	 0.6	

414000	 M	 W-NH	 2009	 749	 <48	 1.6	

415000	 M	 W-H	 2008	 862	 <48	 0.5	

419000	 M	 W-NH	 1986	 624	 <48	 2.4	

420000	 F	 W-NH	 1990	 1315	 <48	 1.4	

421000	 M	 W-NH	 1988	 775	 <48	 4.2	

424000	 M	 W-NH	 1995	 889	 <48	 1.9	

426000	 M	 W-NH	 2002	 1034	 <40	 7.1	

428408	 M	 W-NH	 2002	 303-444	 <40	 9.2-9.6	

431000	 M	 W-NH	 mid	1980s	 215	 <40	 3.5	

432000	 M	 W-NH	 1987	 565	 <40	 5.2	

433407	 F	 B-NH	 2009	 452-581	 <48	 0.6-1.4	

434423	 M	 Other	 2009	 1577-1693	 <40	 0.9-1.2	

435412406	 M	 W-NH	 2007	 1292-2060	 <48	 4.7-5.5	

436000	 F	 W-NH	 2006	 723	 <40	 4.7	

437000	 F	 W-NH	 2001	 418	 <40	 1.7	

445000	 M	 B-NH	 2009	 495	 <20	 1.1	

449000	 M	 W-H	 1994	 1392	 <20	 0.6	

451000	 M	 W-NH	 2010	 477	 <40	 2.9	

453000	 M	 W-NH	 2001	 704	 <40	 2.0	

454304	 M	 W-NH	 2004	 594	 <48	 7.1	
aFirst	3	digits	is	donation	number;	subsequent	groups	of	3	digits	are	ID	of	previous	
donation(s)	from	the	same	individual,	if	any.	
bW	or	B	indicate	White	or	Black;	H	or	NH	indicate	Hispanic	or	Non-Hispanic.	
cRange	of	values	are	indicated	for	donors	with	multiple	donations	
dBased	on	limit	of	detection	of	clinical	assay	
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Figure	3-1.	HSPCs	from	Sort	2	are	depleted	for	HSCs.		
(a)	Diagrammatic	representation	of	HSPC	purification.		FT,	column	flow	through;	CB,	
cord	blood;	BM	MNC,	bone	marrow	mononuclear	(b)	and	(c)	Representative	flow	
cytometry	plots	of	the	indicated	populations	for	a	typical	bone	marrow	aspirate	
from	an	HIV+	individual.	(d)	Gates	for	each	HSPC	population	phenotype	and	lineage	
output	according	to	Doulatov	et	al(Doulatov	et	al.,	2010).	HSC,	hematopoietic	stem	
cell;	MPP,	multipotent	progenitor;	MLP,	multilymphoid	progenitor;	CMP,	common	
myeloid	progenitor;	MEP,	megakaryocyte/erythrocyte	progenitor;	GMP,	
granulocyte/monocyte	progenitor;	B-NK,	B	and	NK	cell	progenitor;	MDC,	
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macrophage	and	dendritic	cell;	EMK,	erythroid	and	megakaryocyte;	G,	granulocyte.		
(e)	Representative	flow	cytometric	analysis	of	differentiation	markers	expressed	on	
bone	marrow	HSPCs	purified	as	described	in	(a	and	b).	For	the	two	right-most	
panels,	numbers	indicate	percentage	of	total	CD34+	events	from	each	sort	falling	
into	that	gate.	(f)	Flow	cytometric	plot	comparing	relative	numbers	of	HSCs	
(CD34+CD38-	cells	that	are	also	CD90+)	in	Sort	1	versus	Sort	2.	(g-j)	Summary	graph	
showing	the	relative	frequency	of	the	indicated	progenitor	in	each	sort	based	on	the	
analysis	shown	in	(d),	n=3	uninfected	donors.	To	facilitate	comparison,	results	were	
normalized	to	Sort	2	(g	and	h)	or	Sort	1	(i	and	j).	Error	bars	represent	standard	
deviation.	(k)	Summary	plots	of	methylcellulose	colony	formation	assays	from	three	
uninfected	donors.	Error	bars	represent	standard	deviation.	CFU-E,	erythroid;	CFU-
GM,	granulocyte/macrophage	and	CFU-GEMM,	multilineage.	(*p<0.05	and	**p<0.01,	
Student’s	t-test).	
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Figure	3-2.	Analysis	of	Sort	1	and	Sort	2	HSPC	subsets.		
(a)	Representative	flow	cytometric	plots	of	differentiation	markers	expressed	on	
cord	blood	HSPCs	purified	as	depicted	in	Fig.	1a	and	gated	on	populations	listed	in	
Fig.	1d.	For	the	two	right-most	panels,	numbers	indicate	percentage	of	total	CD34+	
events	falling	into	that	gate.	(b)	Summary	plots	tabulating	methylcellulose	colony	
formation	analysis	of	bone	marrow	and	cord	blood	Sort	1	and	Sort	2	HSPCs	as	in	Fig.	
1j	without	normalization.	Error	bars	represent	standard	deviation;	Student’s	t-test	
(*p<0.05,	**p<0.01,	****p<0.0001).	CFU-E,	erythroid;	CFU-GM,	
granulocyte/macrophage	and	CFU-GEMM,	multilineage.		
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Table	3-2.	HSPC	Purity	and	Cells	Analyzed	
	 Sort	1	 Sort	2	

Donation	
ID*	

CD133+	
(%)	

CD3+	
(%)	

Cells	
Analyzed	
(x104)	

CD34+	
(%)	

CD3+	
(%)	

Cells	
Analyzed	
(x104)	

405000	 97	 NA	 8.6	 78	 NA	 NA	

409000	 99	 0.11	 9.5	 98	 0.07	 11	

413402	 94	 0.10	 5.0	 91	 0.19	 19	

414000	 95	 0.22	 14	 85	 0.33	 27	

415000	 96	 0.06	 28	 72	 0.00	 NA	

419000	 96	 0.03	 31	 78	 0.06	 NA	

420000	 99	 0.04	 26	 92	 1.0	 41	

421000	 99	 0.19	 17	 94	 0.10	 37	

424000	 86	 1.2	 14	 46	 2.9	 NA	

426000	 97	 0.28	 20	 92	 0.24	 38	

408000	 95	 0.61	 2.0	 86	 0.60	 3.0	

428408	 91	 0.51	 13	 91	 0.16	 5.5	

431000	 93	 0.23	 21	 89	 0.15	 26	

432000	 98	 0.05	 40	 99	 0.02	 32	

407000	 86	 2.9	 NA	 83	 0.50	 23	

433407	 94	 0.15	 9.4	 90	 0.13	 12	

423000	 92	 0.06	 58	 89	 0.03	 70	

434423	 94	 0.16	 67	 84	 0.11	 53	

406000	 99	 0.29	 12	 99	 0.14	 20	

412406	 96	 0.40	 20	 83	 0.06	 34	

435412406	 95	 0.22	 24	 94	 0.66	 56	

436000	 93	 0.90	 6.1	 85	 0.30	 10	

437000	 94	 0.16	 17	 92	 0.04	 43	

445000	 87	 0.82	 54	 89	 0.10	 13	

449000	 90	 0.23	 29	 95	 0.04	 60	

451000	 85	 2.0	 NA	 85	 1.6	 19	

453000	 96	 0.75	 41	 83	 0.24	 45	

454304	 92	 0.41	 12	 87	 0.21	 14	

*First	3	digits	is	donation	number;	subsequent	groups	of	3	digits	are	ID	of	
previous	donation(s)	from	the	same	individual,	if	any.	
Bold	borders	indicate	multiple	donations	from	the	same	individual.	
Gray	boxes	indicate	samples	that	did	not	meet	criteria	for	purity.	
Abbreviations:	NA,	not	analyzed.	

	
	 	



	 122	

	 	
	
Figure	3-3.	Sort	1	and	Sort	2	HSPC	sequences	do	not	share	identity.	
Highlighter	plots	of	V3	env	sequences	from	four	donors	with	HSPC	proviral	
sequence	from	both	Sort	1	and	Sort	2.		Changes	from	the	first	sequence	for	each	
donor	are	indicated	by	color	(see	key	at	bottom).	
	 	



	 123	

Table	3-3.	Analysis	of	env	amplicons	isolated	from	HIV+	donors	
	 	 HSPC	Sort	1	 HSPC	Sort	2	 PBMC	
	 	 env	amplicons	 env	amplicons	 env	amplicons	
Donor	ID	 Clade	 #	 FPR	 Genoa	 Phenob	 #	 FPR	 Geno	 Pheno	 #	 FPR	 Geno	
405000	 B	 1NA	 52	 R5	 	 NA	 3	 52	 R5	

409000	 B	
B	

	
1*	

	
0.7	

	
X4	 	 ND	 	 	 	 17	

11	
38-61	
0.7	

R5	
X4	

413402	 B	 1*	 1.7	 X4	 Dual/R	 ND	 	 	 	 6	 1.7	 X4	

414000	 B	 1*	 57	 R5	 R5	 ND	 	 	 	 5	 57	 R5	

415000	 C	 1**	 71	 R5	 R5	 NA	 20	 43-83	 R5	

419000	 B	 1***	 89	 R5	 	 NA	 21	 22-99	 R5	

420000	 B	
B	

1****	
1****	

19	
0.7	

R5	
X4	

R5	
Dual/R	 ND	 	 	 	 11	

7	
14-73	
0.5-1.7	

R5	
X4	

421000	
B	
B	
B	

	
1***	
1***	

	
7.4	
7.8	

	
X4	
X4	

	
	
X4	

ND	 	 	 	
4	
5	
	

24-94	
4.7-9.6	
	

R5	
X4	
	

424000	 B	 10.109	 43	 R5	 	 NA	 1	 75	 R5	

426000	 B	
B	 ND	 	 	 	 4****	

	
29-60	
	

R5	
	 	 10	

1	
20-38	
3.2	

R5	
X4	

428408	 B	
B	

2****	
1****	

83,84	
1.3	

R5	
X4	 	 ND	 	 	 	 22	

16	
30-100	
0.7-6.8	

R5	
X4	

431000	 B	
B	

2****	
1****	

75	
79	

R5	
R5	

R5/R	
R5/R	 ND	 	 	 	 8	

	
38-90	
	

R5	
	

432000	

B	
B	
AE	
A/AG	
C	

1****	
	
	
1****	
	

17	
	
	
2.8	
	

R5	
	
	
X4	
	

	
	
X4	

	
	
	
1****	
1****	

	
	
	
2.8	
3.4	

	
	
	
X4	
X4	

	
	
NF	

1	
8	
1	
11	
4	

49	
3.4-8.5	
74	
2.8-4.7	
3.4-8.5	

R5	
X4	
R5	
X4	
X4	

433407	 B	 ND	 	 	 	 10.079	 48	 R5	 NF	 4	 27-52	 R5	

434423	 B	 1**	 38	 R5	 R5	 1**	 46	 R5	 R5	 18	 38-82	 R5	

435412406	
B	
B	
B	

1**	
2****	
1**	

83	
87	
89	

R5	
R5	
R5	

R5/R	
R5/R	
R5	

1*	
	
	

83	
	
	

R5	
	
	

R5/R	
	
	

10
3	 42-99	 R5	

436000	 B	 ND	 	 	 	 1*	 31	 R5	 R5	 8	 31-85	 R5	

437000	 B	 1**	 55	 R5	 	 ND	 	 	 	 8	 12-55	 R5	

445000	 B	
B	

10.199	
	

73	
	

R5	
	 	 ND	 	 	 	 16	

3	
17-83	
3.9-6.8	

R5	
X4	

449000	 B	 1*	 100	 R5	 	 1**	 81	 R5	 	 5	 59-99	 R5	

451000	 B	 NA	 1**	 49	 R5	 	 5	 39-41	 R5	

453000	 B	 ND	 	 	 	 1***	 74	 R5	 R5	 6	 41-86	 R5	

454304	 B	
B	 ND	 	 	 	 10.053	

	
31	
	

R5	
	 	 24	

1	
11-97	
6.8	

R5	
X4	

agenotypic	prediction	of	co-receptor	usage.	We	used	a	false	positive	rate	(FPR)	cutoff	of	≤10%,	which	has	been	shown	to	have	
high	predictive	value	to	correctly	distinguish	CXCR4-	from	CCR5-tropic	viruses	(Lengauer	et	al.,	2007;	Poveda	et	al.,	2012).	
bphenotypic	analysis	of	co-receptor	usage;	R	indicates	resistance	to	co-receptor	inhibitors.	
Asterisks	or	p	value	indicate	the	likelihood	that	amplicons	did	not	originate	from	contaminating	T	cell	DNA.	p	values	were	
determined	either	using	a	mean	cell	estimate	(1)	or	a	conservative	estimate	(2)	(McNamara	et	al.,	2013).	The	conservative	
estimate	compared	the	top	of	the	95%	confidence	interval	for	the	calculated	infection	rate	in	CD3+	T	cells	in	the	CD133-
depleted	sample	with	the	bottom	of	the	95%	confidence	interval	for	the	calculated	infection	rate	in	CD3+	T	cells	in	the	CD133-
sorted	sample	to	minimize	the	difference	between	these	calculated	infection	rates;	*p	<	0.05	by	(1)	only;	**p	<	.05	by	(1)	and	
(2);	***p	<	.01	by	(1)	and	(2);	****p	<	.001	by	(1)	and	(2).	
	
Abbreviations:	HSPC,	hematopoietic	stem	and	progenitor	cells;	PBMC,	peripheral	blood	mononuclear	cells;	FPR,	false	positive	
rate;	NA,	not	analyzed;	R5,	CCR5;	X4,	CXCR4/Dual;	ND,	not	detectable;	NF,	non-functional.	
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Figure	3-4.	Phenotypic	analysis	of	donor	Env	matching	the	HSPC	V3	region.	
Representative	flow	plots	of	MOLT4-CCR5	cells	(a)	and	3T3-CD4-CCR5	cells	infected	
with	HIV-7SF-GFP	pseudotyped	with	the	indicated	envelope	in	the	presence	or	
absence	of	AMD3100	and/or	maraviroc	inhibitors	and	harvested	for	flow	cytometry	
3	days	post-infection.		Numbers	indicate	frequency	of	infected	(GFP+)	cells.	X4,	
CXCR4-tropic;	R5,	CCR5-tropic;	Dual,	able	to	utilize	both	CXCR4	and	CCR5;	R,	
coreceptor	inhibitor	resistance.	
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Table	3-4.	Env	Phenotype	

Donor	ID	 Clade	
Source	of	FL	

Env	
Amplicon	

Source	of	
Matching	V3	
Amplicon	

FPR	 Genotype	 Phenotype	

413402	 B	 PBMC	 Sort	1	 1.7	 X4/Dual	 Dual/R**	

414000	 B	 PBMC	 Sort	1	 57	 R5	 R5	

415000	 C	 HSPC	 Sort	1	 71	 R5	 R5	

420000	 B	 PBMC	 Sort	1	 19	 R5	 R5	

420000**	 B	 PBMC	 Sort	1	 0.7	 X4/Dual	 Dual	

421000	 B	 HSPC	 Sort	1	 7.8	 X4/Dual	 X4	

431000	 B	 HSPC	 Sort	1	 75	 R5	 R5/R	

431000	 B	 Sort	1	FT	 Sort	1	 79	 R5	 R5/R	

432000	 A/AG	 HSPC	 Sort	1	 2.8	 X4/Dual	 X4	

432000	 A/AG	 HSPC	 Sort	2	 2.8	 X4/Dual	 NF	

433407	 B	 HSPC	 Sort	2	 48	 R5	 NF	

434423	 B	 PBMC	 Sort	1	 38	 R5	 R5	

434423	 B	 PBMC	 Sort	2	 46	 R5	 R5	

435412406**	 B	 PBMC	 Sort	1,	Sort	2	 83	 R5	 R5/R	

435412406	 B	 PBMC	 Sort	1	 87	 R5	 R5/R	

435412406	 B	 PBMC	 Sort	1	 89	 R5	 R5	

436000**	 B	 PBMC	 Sort	2	 31	 R5	 R5	

453000	 B	 PBMC	 Sort	2	 74	 R5	 R5	

*indicates	more	than	one	V3	sequence	identical	to	same	V3	amplicon	from	an	HSPC,	both	
have	same	tropism;	number	of	asterisks	indicates	number	of	FL	Env	proteins	tested	
**R	indicates	resistance	to	co-receptor	inhibitors.	
	
Abbreviations:	FL,	full-length;	FT,	flowthrough;	NF,	non-functional	virus.	
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Figure	3-5.	CCR5-tropic	virus	targets	HSPCs	that	are	unlikely	to	be	HSCs.		
(a)	Heat	map	of	gene	expression	data	of	human	bone	marrow	and	differentiated	cell	
subsets	from	microarray	analysis	as	in	Fig.	2a.	FC,	fold-change.	HSC,	hematopoietic	
stem	cell;	MPP,	multipotent	progenitor;	CMP,	common	myeloid	progenitor;	GMP,	
granulocyte-macrophage	progenitor;	PM,	promyelocyte;	MEP,	megakaryocyte-
erythroid	progenitor;	MY,	myelocyte;	PMN,	polymorphonuclear;	BC,	band	cell;	MM,	
metamyelocyte.	(b)	Heat	map	of	gene	expression	data	of	mouse	bone	marrow	and	
differentiated	subsets	from	RNA-seq	analysis	as	in	Fig.	2b.	FC,	fold-change;	GR,	
granulocyte;	BM,	bone	marrow;	ProB,	pro-B	cell;	PreB,	pre-B	cell.	(c)	Schematic	
diagram	of	experimental	set	up	for	(d).		(d)	Representative	flow	plots	of	cord	blood-
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derived	CD133-sorted	cells	infected	with	wild-type	HIVs,	NL4-3	and	YU-2	and	
harvested	3	days	post-infection.	Where	indicated,	cells	were	incubated	with	
Raltegravir	+/-	TNF-α	for	16-20	hours	before	harvest.	In	the	right	panels,	Gag	+	cells	
are	overlaid	onto	plots	of	the	total	live	cell	population	and	the	percentage	of	Gag+	
cells	in	the	CD133high	and	CD133low	regions	is	indicated	in	the	overlay.	
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Figure	3-6.	CCR5	expression	and	targeting	of	progenitors	by	HIV		
(a)	Gene	expression	in	human	and	mouse	bone	marrow	stem	and	progenitor	
subsets,	along	with	differentiated	cell	populations	by	microarray	analysis.	(human)	
or	RNAseq	(mouse).	Error	bars	represent	standard	error	of	the	mean	(SEM).	HSC,	
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hematopoietic	stem	cell;	MPP,	multipotent	progenitor;	MLP,	multilymphoid	
progenitor;	CMP,	common	myeloid	progenitor;	MEP,	megakaryocyte-erythrocyte	
progenitor;	GMP,	granulocyte-monocyte	progenitor;	PM,	promyelocyte;	MY,	
myelocyte;	MM,	metamyelocytes;	BC,	band	cell;	PMN,	polymorphonuclear	cells.	
(*p<0.05,	**p<0.01,	***p<0.001,	****p<0.0001,	unpaired	t	test).	FPKM,	Fragments	
Per	Kilobase	of	Exon	Per	Million	Fragments	Mapped;	GR,	granulocyte;	ProB,	pro-B	
cell;	PreB,	pre-B	cell;	BM,	unfractionated	bone	marrow.	(*p<0.05,	**p<0.01,	paired	
ratio	t	test).	(b)	Schematic	of	full-length	HIV	used	in	(d-f).	(c)	Flow	cytometric	plots	
of	CD133-sorted	cord	blood	HSPCs	cultured	for	7	days	and	stained	as	in	Fig.	1d.	Cells	
gated	in	left	plot	were	overlaid	on	the	total	live	population	on	the	right.	(d)	
Representative	flow	cytometric	plots	of	cord	blood-derived	CD133-sorted	cells	
expanded	for	four	days,	infected	with	the	indicated	virus	and	harvested	2	days	post-
infection.	Gag	+	cells	are	overlaid	onto	CD34	versus	CD133	plots	for	the	total	live	cell	
population	and	the	percentage	of	Gag+	cells	in	the	CD133high	and	CD133low	regions	is	
indicated	in	the	overlay.	(e)	Summary	graph	of	relative	CD133	expression	by	mean	
fluorescence	intensity	(MFI)	on	HSPCs	infected	with	the	indicated	HIV.	Results	were	
normalized	to	those	for	YU-2	infected	cells	for	each	experiment.	(f)	Summary	graph	
showing	the	frequency	of	Gag+	cells	falling	into	CD133bright	gate	shown	in	(e).	Error	
bars	represent	standard	deviation.	(****p	<	0.0001,	paired	t-test).	
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Figure	3-7.	Targeting	of	intermediate	progenitors	by	CCR5-tropic	Envs	is	a	
conserved	property	extending	to	a	transmitted/founder	virus		
(a)	Schematic	of	HIV-7SF-GFP	construct	and	HIV	envelope	plasmid	used	to	construct	
pseudotyped	viruses	used	in	(c-e).	(b)	Summary	table	of	envelope	proteins	used	to	
pseudotype	HIV-7SF-GFP	virus.	(c)	Representative	flow	plots	of	cord	blood-derived	
CD133-sorted	cells	expanded	for	four	days,	transduced	with	the	indicated	virus	and	
harvested	3	days	post-infection	for	flow	cytometric	analysis.	In	each	right	panel,	
GFP+	cells	were	overlaid	onto	plots	of	the	total	cell	population	and	the	percentage	of	
GFP+	cells	in	the	CD133high	and	CD133low	regions	is	indicated.	Gates	were	
determined	based	on	isotype	control	antibody	staining	(top	panel).	(d)	Summary	
graph	of	CD133	MFI	for	experiments	performed	as	in	(c).	Results	are	compiled	using	
cells	from	11	uninfected	donors.	Error	bars	represent	standard	deviation.	Student’s	
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t-test	indicates	significance	for	each	HIV	envelope	with	respect	to	VSVG	(**p	<	
0.01,***p	<	0.001,	****p	<	0.0001).	(e)	Data	from	(d)	compiled	by	tropism.	Error	bars	
represent	standard	deviation;	one-way	ANOVA,	p	=	0.0002,	with	Tukey’s	Multiple	
Comparisons	Test	indicated	(**p	<	0.01	and	***p	<	0.001).	
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Figure	3-8.	HSPCs	with	greater	CD4	expression	are	preferentially	infected	by	
HIV	Envs.		
(a)	Representative	flow	cytometry	plots	and	gating	strategy	for	cord	blood-derived	
CD133-sorted	cells	infected	with	virus	containing	the	indicated	envelope	protein	
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and	harvested	3	days	post-infection.	Gating	for	CD4	was	determined	by	the	inclusion	
of	1%	of	cells	stained	with	an	isotype	control	antibody	(gray).	For	GFP	plots,	
numbers	indicate	the	percentage	of	GFP+	events.	(b)	Summary	graphs	depicting	the	
ratio	of	infected	cells	in	CD4high	versus	CD4low/-	subsets	of	cord	blood-derived	HSPCs	
infected	and	analyzed	as	in	part	(b).	For	SV16,	two	replicates	had	0.0%	infection	in	
the	CD4low/-	gate	leading	to	an	undefined	ratio,	so	30.0	was	used	as	a	conservative	
estimate	of	the	ratio.	Error	bars	indicate	standard	deviation.	Results	were	compared	
to	infection	by	VSVG	pseudotyped	viruses	and	p	values	were	determined	using	
Student’s	t-test	(***p<0.001,	****p<0.0001).	(c)	Data	from	(b)	but	compiled	by	
tropism.	Error	bars	represent	standard	deviation;	one-way	ANOVA,	p<0.0001,	with	
Tukey’s	Multiple	Comparisons	Test	indicated	(***p<0.001	and	****p<0.0001).	
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Figure	3-9.	CD4high	HSPCs	include	progenitors	with	multi-lineage	potential.		
(a)	Representative	flow	plots	of	Sort	1	and	Sort	2	bone	marrow-derived	HSPCs	
sorted	using	fluorescence	activated	cell	sorting	into	CD4high	and	CD4low/-	subsets.	(b)	
and	(c)	Sorted	HSPCs	were	analyzed	by	methylcellulose	colony	formation	assays.	
Error	bars	represent	standard	deviation;	Student’s	t-test	(*p<0.05,	**p<0.01,	
***p<0.001,	****p<0.0001).	CFU-E,	erythroid;	CFU-GM,	granulocyte/macrophage	
and	CFU-GEMM,	multilineage.	
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Figure	3-10.	CD4	marks	HSPCs	enriched	for	HSCs	and	MPPs.		
(a)	Flow	cytometric	analysis	of	differentiation	markers	expressed	on	bone	marrow	
HSPCs	purified	as	described	in	Figure	3-1a.	For	the	two	right-most	panels,	numbers	
indicate	percentage	of	total	CD34+	events	in	each	sort	falling	into	that	gate.	(b)	
Summary	table	of	frequencies	for	each	phenotypic	gate	as	shown	in	(a).	Lineage	
outputs	based	upon	Doulatov	et	al(Doulatov	et	al.,	2010).	Results	are	based	on	data	
from	7	uninfected	donors	(5	cord	blood	and	2	bone	marrow).	HSC,	hematopoietic	
stem	cell;	MPP,	multipotent	progenitor;	MLP,	multilymphoid	progenitor;	CMP,	
common	myeloid	progenitor;	MEP,	megakaryocyte/erythrocyte	progenitor;	GMP,	
granulocyte/monocyte	progenitor;	B-NK,	B	and	NK	cell	progenitor;	MDC,	
macrophage	and	dendritic	cell;	EMK,	erythroid	and	megakaryocyte.	(c)	CD4	mean	
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fluorescence	intensity	of	CD133bright	versus	CD133dim	subsets	for	Sort	1	and	Sort	
2	from	experiments	in	Figure	3-11a.	Error	bars	represent	standard	deviation;	
Student’s	t-test	(*p<0.05).	
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Figure	3-11.	CD4	marks	HSPCs	enriched	for	HSCs	and	MPPs.	
(a)		Summary	graphs	depicting	the	percentage	of	each	subset	of	the	total	CD34+	cells	
in	each	sort.	Cells	were	isolated	from	cord	blood	(circles)	or	bone	marrow	(squares).		
For	three	experiments	(2	cord	blood	and	1	bone	marrow),	lineage-positive	cells	
were	physically	or	analytically	excluded	from	analysis	(open	symbols).	Error	bars	
represent	standard	deviation;	Student’s	t-test	(*p<0.05,	***p<0.001,	****p<0.0001).	
(b)	Flow	cytometric	plots	showing	purity	of	CD4-negative	lineages	for	donor	
431000,	see	also	Table	S4.	“Pre”	indicates	the	cell	population	post	CD4-bead	
depletion	and	prior	to	fluorescence	activated	cell	sorting	(FACS).		“Post”	indicates	
the	cell	populations	following	FACS.		(c)	Summary	table	showing	HIV	amplicons	
(gag	or	env,	see	Table	S4	for	details)	detected	in	CD4-negative	lineages.		#	indicates	
sequences	identical	to	an	HSPC	sequence	from	that	donor.	Gray	highlights	detected	
provirus,	blue	denotes	clonal	sequences	within	each	donor.	All	amplicons	were	
unlikely	to	have	resulted	from	contaminating	CD4+	T	cells	(see	also	Table	S4)	as	
described	for	Table	1,	Table	S2,	and	in	Methods.	Where	indicated,	env	emplicons	
were	predicted	to	be	CXCR4-tropic	(X4)	or	CCR5-tropic	(R5).		(d)	Phylogenetic	tree	
showing	genetic	relationships	of	amplicons	from	donor	431000.		Highlighted	area	
indicates	location	of	clonal	amplicons	from	CD4-negative	lineages.	Red	lines	indicate	
identical	sequences.	Scale	indicates	nucleotide	substitutions	per	site.	89.6,	Bal,	YU-2,	
HXB	and	NL4-3	are	subtype	B	HIV	molecular	clones.	84ZR	and	94UG	are	subtype	D	
HIV	molecular	clone	outgroups	(Signer	et	al.,	2014).	
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Table	3-5.	PCR	Primer	Sequences	and	Cycling	Conditions	
Amplicon	 PCR	

Round	 Primer	 Orientation	 HXB2	
Location	 Sequence	

env	 1st	 5036d	 Forward	 5036-5059	 5′-GGAYTATGGAAAACAGATGGCAGG-3’	

env	 1st	or	2nd	 LTR-pA-R	 Reverse	 9625-9600	 5′-AGGCAAGCTTTATTGAGGCTTAAGC	A-3’	

env	 1st	or	2nd	 5956d-f	 Forward	 5956-5983	 5′-CTTAGGCATYTCCTATGGCAGGAAG	AAG-3’	

env	 1st	or	2nd	 envC2F2	 Forward	 6950–6976	 5′-CAGCACAGTACAATGTACACATGGA	AT-3’	

env	 1st	or	2nd	 envC4R1	 Reverse	 7540-7520	 5′-ATGGGAGGGGCATACATTGC	T-3′	

env	 2nd	 env1in5	 Forward	 7060-7081	 5′-ACAATGCTAAAACCATAATA	GT-3′	

env	 2nd	 env1in3	 Reverse	 7530-7511	 5′-CATACATTGCTTTTCCTACT-3′	

gag	 1st	 U5-
577.9662-f	 Forward	 577-603	 5’-GACTCTGGTAACTAGAGATC	CCTCA	GA-3’	

gag	 1st	 long1316-
D4.6b	 Reverse	 1322-1316	 5’-atcttgcggcgctctgtgTGGGGTGGCTCCTTCTG-3’	

gag	 1st	 tagD4.6b-
p24R1d	 Reverse	 1500-1480	 5’-atcttgcggcgctctgtgTGCTATGTCACTTCCCCTTGG-3’	

gag	 2nd	 626s	 Forward	 626-651	 5’-TCTCTAGCAGTGGCGCCCGAACAGGG-3’	

gag	 2nd	 D4.6b	 Reverse	 N/A	 5’-atcttgcggcgctctgtg-3’	
	

Primer	1	 Primer	2	 Cycling	Conditions	

*5036d	 LTR-pA-R	 98°C	for	30	seconds;	35	cycles	of	98°C	for	10	seconds,	68°	C	for	10	seconds,	
and	72°C	for	2	minutes;	72°C	for	10	minutes	

*5956d-f	 LTR-pA-R	 98°C	for	30	seconds;	35	cycles	of	98°C	for	10	seconds,	71°	C	for	10	seconds,	
and	72°C	for	2	minutes;	72°C	for	10	minutes	

*envC2F2	 envC4R1	 98°C	for	30	seconds;	35	cycles	of	98°C	for	10	seconds,	68°	C	for	10	seconds,	
and	72°C	for	25	seconds;	72°C	for	5	minutes	

env1in5	 env1in3	 98°C	for	30	seconds;	40	cycles	of	98°C	for	10	seconds,	56°	C	for	10	seconds,	
and	72°C	for	15	seconds;	72°C	for	5	minutes	

626s	 D4.6b	 98°C	for	30	seconds;	35	cycles	of	98°C	for	10	seconds,	70°	C	for	10	seconds,	
and	72°C	for	40	seconds;	72°C	for	10	minutes	

*Conditions	optimized	for	1st	round	of	multiplex	PCR	with	gag	primers	(U5-577.9662-f	plus	tagD4.6b-p24R1d	plus	or	
minus	long1316-D4.6b)	
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Chapter 4  
 

Conclusion 
 

	 The	discoveries	presented	in	this	dissertation	provide	significant	insight	into	

the	potential	reservoir	of	HIV	in	hematopoietic	stem	and	progenitor	cells	(HSPCs)	

and	HIV	pathogenesis,	as	well	as	steady-state	human	hematopoiesis.		The	major	

conclusions	to	be	discussed	here	include:	

(a)	Bone	marrow	HSPCs	do	harbor	provirus	in	HIV+	people	on	optimal	therapy.	

(b)	A	subset	of	HIV+	donors	have	a	detectable	reservoir	in	bone	marrow	HSPCs.	

(c)	CCR5-	and	CXCR4-tropic	virus	persists	in	HSPCs.	

(d)	HIV	may	persist	in	CD4-expressing	HSCs	and	non-stem	cell	progenitors	in	vivo.	

(e)	Non-stem	cell	progenitors	may	be	an	enduring	population	in	vivo.	

(f)	Infected	HSPCs	can	differentiate	into	mature	lymphoid	cells	with	provirus	in	vivo.	

	

Bone	marrow	HSPCs	do	harbor	provirus	in	HIV+	people	on	optimal	therapy	

The	analysis	presented	here	of	CD133+	and	CD34+	HSPCs	from	HIV+	donors	

with	at	least	6	months	of	suppressed	viremia	indicates	that	there	is	a	detectable	

proviral	reservoir	in	these	cells	that	is	unlikely	to	come	from	CD4+	T	cell	

contamination	in	the	analysis.		Our	laboratory’s	initial	study	of	HSPCs	demonstrated	
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that	CD34+	HSPCs	could	be	infected	in	vitro	and	HIV	was	detectable	in	a	small	study	

of	HIV+	donors	with	high	viral	loads	and	treated	donors	with	low	levels	of	viremia	

(Carter	et	al.,	2010).		However,	two	studies	were	recently	published	which	disputed	

that	HIV	persists	in	HSPCs	as	they	were	unable	to	detect	HIV	in	small	cohorts	of	

donors	with	suppressed	plasma	virus	beginning	therapy	during	chronic	or	acute	

infection	(see	Chapter	2	for	discussion	of	key	differences	between	these	two	studies	

and	ours)	(Durand	et	al.,	2012;	Josefsson	et	al.,	2012).		They	asserted	that	HIV	does	

not	persist	in	CD34+	HSPCs	from	individuals	on	treatment,	and	the	previous	

findings	were	likely	due	to	contamination	by	bone	marrow	CD4+	T	cells	which	did	

have	detectable	provirus	by	their	analysis.		In	Chapter	2,	we	tested	this	statement	in	

a	cohort	of	11	treated	donors	with	suppressed	viremia	using	a	sensitive	quantitative	

PCR	assay	for	a	conserved	HIV	region	to	detect	provirus	in	CD133-sorted	bone	

marrow	mononuclear	cells	(BM	MNCs).		In	this	analysis,	we	measured	the	frequency	

of	provirus	in	HSPCs	with	high	CD133	purity	and	in	the	CD133-depleted	fraction	of	

BM	MNCs.		Provirus	was	detected	in	6	of	the	11	donors	and	in	5	of	those	samples	the	

provirus	was	unlikely	to	be	due	to	CD3+	T	cell	contaminants.		This	was	determined	

using	the	percentage	of	CD3+	cells	in	the	CD133-sorted	samples	and	the	measured	

proviral	frequency	in	the	CD3+	populations	in	the	CD133-depleted	sample	to	predict	

the	proviral	frequency	in	HSPCs	if	all	amplicons	came	from	these	contaminating	

populations.		Comparing	the	predicted	frequency	due	to	contaminating	cells	to	the	

measured	frequency	in	the	CD133-sorted	population,	by	both	a	mean	estimate	and	a	

more	conservative	estimate	(see	Chapter	2),	the	measured	proviral	frequency	in	the	

CD133-sorted	sample	was	significantly	higher	than	the	predicted	contribution	from	
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CD3+	BM	MNCs.		This	analysis	provides	initial	evidence	that	HSPCs	do	harbor	

provirus	in	vivo,	but	was	limited	by	the	cohort	size	and	cell	numbers	assessed.			

Chapter	3	extended	this	analysis	to	a	larger	cohort	of	donors	with	a	single-

copy	assay	amplifying	larger	regions	of	genomic	sequence,	and	a	portion	of	env	was	

amplified	from	purified	HSPCs	in	23	HIV+	individuals	on	treatment	with	optimal	

viral	suppression.		In	the	two	HSPC	populations	analyzed	in	this	study,	the	majority	

of	amplicons	(36	out	of	41	total	env	amplicons)	were	unlikely	to	be	due	to	CD3+	T	

cells	by	the	same	comparison	of	expected	frequency	due	to	contaminants	versus	the	

measured	frequency	in	the	HSPC	population	used	in	Chapter	2.		A	broader	analysis	

of	the	frequency	of	env	and	gag	amplicons	in	27	donors	of	the	ongoing	cohort	of	44	

donors	presented	in	the	Appendix	indicates	that	when	detecting	either	portion	of	

the	HIV	genome,	most	HSPC	provirus	is	unlikely	to	be	due	to	T	cells.		Thus,	bone	

marrow	HSPCs	are	a	discrete	reservoir	of	provirus	in	a	portion	of	optimally	treated	

HIV+	donors.	

	

A	subset	of	HIV+	donors	have	a	detectable	reservoir	in	bone	marrow	HSPCs	

In	addition	to	showing	that	the	provirus	is	distinct	from	the	infection	of	bone	

marrow	T	cells,	we	wished	to	know	if	HSPCs	are	a	reservoir	of	HIV	in	all	or	just	a	

subset	of	HIV-infected	individuals.		In	the	cohort	in	Chapter	2,	donors	with	

detectable	provirus	in	their	HSPCs	were	more	likely	to	have	been	diagnosed	with	

HIV	around	the	year	2000	or	later,	consistent	with	the	negative	findings	in	the	

previous	study	where	10	out	of	11	analyzed	donors	were	diagnosed	before	2001	

(Durand	et	al.,	2012).		Given	that	effective	cART	regimens	became	available	around	
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that	time,	perhaps	there	was	something	different	in	the	clinical	course	of	those	

donors	diagnosed	in	the	1980’s	and	1990’s	and	able	to	survive	until	cART	was	

accessible.		However,	in	the	larger	cohort	discussed	in	Chapter	3,	8	of	the	23	donors	

with	detectable	env	were	diagnosed	before	2001,	between	the	mid	1980’s	and	1998.	

The	Chapter	3	analysis	included	the	Sort	2	(CD34-sorted,	CD133-depleted)	HSPC	

population	not	analyzed	in	Chapter	2,	but	this	does	not	provide	an	explanation	of	

the	discrepancy:	6	of	the	8	donors	with	years	of	diagnosis	before	2001	had	

detectable	amplicons	in	Sort	1	(CD133-sorted)	only	and	the	other	2	donors	had	

detectable	amplicons	in	both	Sort	1	and	Sort	2	(CD34-sorted,	CD133-depleted).		

Compared	to	the	study	in	Chapter	2,	Chapter	3	did	include	more	Sort	1	and	Sort	2	

HSPCs	in	the	analysis,	with	greater	than	100,000	cells	analyzed	from	the	majority	of	

each	sorted	population.	

	 Sequencing	of	env	amplicons	from	donor	HSPCs	and	peripheral	blood	

mononuclear	cells	(PBMCs)	in	Chapter	3	allowed	us	to	determine	the	HIV	subtype	

and	tropism	of	virus	in	donors	with	detectable	HIV	in	HSPCs.		While	the	majority	of	

donors	had	subtype	B	virus,	HSPC	provirus	was	identified	in	two	donors	with	non-

subtype	B	provirus,	one	with	all	subtype	C	in	HSPCs	and	PBMCs	and	the	other	with	a	

mix	of	subtypes	(A/AG,	AE,	B,	and	C)	in	both	bone	marrow	and	peripheral	blood.		

HSPC	infection	by	these	subtypes	in	vivo	was	supported	by	a	previous	study	where	

Subtype	C	virus	was	detected	in	peripheral	blood-derived	CD34+	HSPCs	from	a	

treatment-naïve	patient	cohort	in	Africa	(Redd	et	al.,	2007)	and	a	subsequent	study	

indicating	limited	infection	of	colony-forming	PBMCs	with	subtype	A	and	D	infected	

patients	not	on	therapy	(Mullis	et	al.,	2012).		Our	research	group	had	previously	
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shown	that	subtype	C	and	D	Env-pseudotyped	viruses	could	infect	CD133-sorted	

cord	blood	HSPCs	(Carter	et	al.,	2011).		Additionally,	the	tropism	analysis	of	the	

virus	in	donors	with	HIV	in	HSPCs	indicated	that	donors	with	both	CCR5-	and	

CXCR4-utilizing	provirus	in	PBMCs	had	persistent	HIV	in	bone	marrow	HSPCs.		

Although	our	previous	study	predicted	that	CXCR4-tropic	virus	would	be	needed	to	

establish	a	persistent	HSPC	reservoir	of	HIV	in	HSPCS	(Carter	et	al.,	2011),	CXCR4-

tropic	and	CCR5-tropic	viruses	could	persist	in	HSPCs	similar	to	PBMCs	from	the	

same	donor,	as	will	be	discussed	below.	Given	the	current	analysis,	there	is	no	donor	

characteristic	as	yet	that	identifies	the	subset	of	donors	who	are	likely	to	harbor	

provirus	in	bone	marrow	HSPCs.		Additionally,	there	remains	the	possibility	that	

with	further	sampling	or	more	sensitive	assays,	we	may	find	HIV	in	additional	

donors	that	had	previously	undetectable	virus	in	HSPCs.	

	

CCR5-	and	CXCR4-tropic	virus	persists	in	HSPCs	

In	HIV+	individuals	with	infected	HSPCs,	our	findings	indicate	that	both	

CCR5-tropic	and	CXCR4-tropic	virus	persist	in	vivo.	With	the	assumption	that	only	

infection	of	bona	fide	hematopoietic	stem	cells	(HSCs)	would	allow	the	virus	to	

persist	for	longer	periods	of	time	in	an	HIV-infected	person,	the	previous	study	in	

our	laboratory	investigated	the	in	vitro	infection	of	CD133-sorted	cord	blood	and	

found	that	CXCR4-utilizing	viruses	were	most	likely	to	infect	true	HSCs	(Carter	et	al.,	

2011).		In	these	experiments,	CXCR4-tropic	viruses	were	best	able	to	infect	CD133+	

cord	blood	progenitors	in	vitro,	and	HPCs	infected	with	a	non-cytotoxic	HIV	

reporter	virus	with	a	CXCR4	tropic	envelope	were	capable	of	long-term	
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reconstitution	of	hematopoietic	lineages	in	an	immune-deficient	mouse.		In	colony-

formation	assays,	the	CXCR4-tropic	GFP-expressing	reporter	virus	infection	was	

able	to	produce	all	colony	types	expressing	GFP	(multilineage	(GEMM),	

granulocyte/macrophage	(GM),	and	erythroid	(E)	colonies),	while	the	CCR5-tropic	

reporter	virus	infection	only	produced	small	GFP+	GM	colonies.		Thus,	it	seemed	

likely	that	CXCR4-tropic	virus	would	infect	long-lived	cells	that	could	persist	in	vivo,	

while	CCR5-tropic	virus	may	allow	only	minimal	infection	in	progenitors	that	were	

not	thought	to	persist	long-term.		Surprisingly,	in	the	study	in	Chapter	3,	32	env	

amplicons	from	HSPCs	in	20	donors	were	predicted	by	genotype	and/or	phenotype	

to	use	CCR5	for	entry	out	of	41	total	amplicons	isolated	in	23	donors	with	detectable	

provirus.		The	other	9	env	amplicons	were	predicted	to	use	CXCR4	entry,	which	

could	have	come	from	the	infection	of	CXCR4-	or	dual-tropic	envelopes.		Thus,	it	

seems	that	the	majority	of	virus	that	persists	in	HSPCs	is	predicted	to	have	come	

from	infection	using	CCR5.		Given	that	latent	reservoirs	are	thought	to	be	

established	early	on	during	infection	(Kearney	et	al.,	2014;	Simonetti	and	Kearney,	

2015),	when	infected-people	have	high	viral	titers	and	before	plasma	viremia	is	

suppressed	with	cART,	establishment	of	latent	infection	in	HSPCs	would	likely	occur	

when	CCR5-tropic	viruses	are	predominant	early	in	infection.		Indeed,	as	shown	in	

Chapter	3,	we	tested	a	transmitted/founder	Env	derived	from	a	patient	during	acute	

infection	in	pseudotyped	virus	experiments	and	saw	infection	of	HSPCs	in	a	pattern	

similar	to	the	other	CCR5-tropic	envelope	proteins.		CXCR4-tropic	virus	is	typically	a	

minority	population,	if	present	during	early	stages	of	infection,	but	given	their	

greater	propensity	for	infection	of	HSPCs	in	vitro,	as	demonstrated	in	Chapter	3,	it	
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follows	that	CXCR4-tropic	virus	may	infect	HSPCs	during	that	period.		Additionally,	

all	donors	with	CXCR4-tropic	virus	in	HSPCs	also	had	at	least	a	minority	of	CXCR4-

tropic	virus	detected	in	PBMCs,	indicating	that	these	types	of	viruses	were	likely	

present	early	in	infection	as	the	switch	from	CCR5-tropic	to	non-CCR5-tropic	virus	is	

rare	in	people	with	clinically	undetectable	virus	during	cART	(Lee	et	al.,	2014).		

Therefore,	we	present	evidence	that	both	CCR5-	and	CXCR4-	tropic	virus	are	able	to	

infect	and	persist	in	HSPCs;	however,	it	was	unknown	whether	the	infected	cells	are	

HSCs	or	another	progenitor	cell	which	had	the	capability	to	survive	in	the	bone	

marrow	during	therapy.	

	

HIV	may	persist	in	CD4-expressing	HSCs	and	non-stem	cell	progenitors	in	vivo	

	 Examination	of	the	receptor	and	co-receptor	requirement	of	the	viruses	from	

HSPCs	allowed	us	to	also	determine	the	subsets	of	HSPCs	which	are	most	likely	to	

form	a	persistent	reservoir	of	HIV	in	vivo.		Our	initial	work	showing	that	HSPCs	can	

be	actively	and	latently	infected	in	vitro	and	also	in	vivo	focused	on	CD34+	HSPCs,	

which	is	a	heterogeneous	population	including	hematopoietic	stem	cells	to	more	

lineage-restricted	progenitors	(Carter	et	al.,	2010).		This	study	also	demonstrated	

that	CD4	was	required	for	HIV	infection	of	HSPCs,	as	it	was	blocked	by	a	CD4	

blocking	antibody.		However,	it	was	unknown	what	level	of	CD4	expression	is	

needed	for	HSPC	infection	or	if	CD4	was	expressed	on	a	subset	of	HSPCs	that	was	

functionally	distinct.		The	main	HIV	receptor,	CD4,	is	expressed,	although	at	a	level	

much	lower	than	CD4+	T	cells	in	the	CD34+	population,	but	there	have	been	few	

studies	of	this	protein’s	expression	on	HSPCs	(Louache	et	al.,	1994;	Muench	et	al.,	
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1997;	Zauli	et	al.,	1994).		These	studies	pointed	towards	CD4	being	expressed	on	

hematopoietic	cells	that	survive	in	long-term	culture	initiating	cell	assays	and	fetal	

liver	derived	HSPCs	engraft	that	can	engraft	in	an	immune-deficient	mouse	

(Louache	et	al.,	1994;	Muench	et	al.,	1997).			

In	Chapter	3,	my	analysis	of	Sort	1	and	2	HSPCs	that	are	relatively	CD4high	and	

CD4low	indicates	that	both	of	these	populations	include	cells	that	form	multilineage	

colonies,	HSCs,	MPPs,	and	CMPs.		However,	using	a	panel	of	flow	cytometry	markers	

that	differentiates	immature	populations	(HSC,	MPP)	from	more	differentiated	

populations	(MLP,	CMP,	MEP,	GMP,	and	B-NK),	I	found	that	HSCs	and	MPPs	are	

enriched	in	CD4high	populations,	while	the	CD4low/-	populations	had	higher	numbers	

of	the	differentiated	progenitor	populations	(Figure	4-1).		Another	set	of	

experiments	with	a	variety	of	CCR5-	and	CXCR4-tropic	Env-pseudotyped	viruses	

showed	that	the	CD4high	population	is	preferentially	infected	by	envelope	proteins	of	

both	tropisms.		CCR5-tropic	envelopes	had	an	even	greater	preference	for	CD4high	

HSPCs	than	the	CXCR4-	and	dual-tropic	envelopes.		Thus,	these	viruses	likely	target	

cells	with	high	CD4	expression,	which	include	more	immature	cells	like	HSC	and	

MPP,	but	a	minority	of	the	differentiated	subsets	can	also	express	high	CD4.	

This	led	us	to	the	question	of	whether	HSCs	or	downstream	progenitor	

subsets	are	infected	by	HIV	in	vivo.		A	study	in	our	lab	of	latent	HIV	infection	in	

HSPCs	used	CD38	and	CD45RA	to	distinguish	infection	of	four	HSPC	subsets	

(HSC,MPP;	MLP;	CMP,MEP;	GMP,B-NK)	and	found	that	reversible	latent	infection	

occurred	in	all	four	subsets	(McNamara	et	al.,	2012).		However,	this	study	only	used	

HXB	Env	pseudotyped	virus,	which	is	CXCR4-utilizing	for	entry.		In	another	of	our	
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previous	studies,	as	described	above,	experimental	results	advocated	that	CXCR4-

tropic	viruses	are	capable	of	infecting	true	HSCs,	while	it	is	unlikely	that	a	CCR5-

tropic	virus	can	infect	this	same	population	(Carter	et	al.,	2011).		The	results	

presented	in	Chapter	3	using	wildtype	and	Env-pseudotyped	viruses	agreed	with	

this	conclusion	by	showing	that	CXCR4-tropic	viruses	are	able	to	target	a	CD133-

bright	population	that	had	significantly	less	infection	by	CCR5-tropic	viruses.		Given	

that	HSCs	are	typically	CD133-bright	(de	Wynter	et	al.,	1998;	Gorgens	et	al.,	2013),	it	

seemed	likely	that	CXCR4-tropic	viruses	would	target	HSCs,	in	addition	to	more	

differentiated	progenitors,	but	CCR5-tropic	viruses	would	rarely	target	an	HSC.		

However,	CCR5-tropic	viruses	do	have	a	greater	preference	for	the	CD4high	

populations	which	are	enriched	for	HSCs	according	to	the	flow	cytometric	stains	in	

Chapter	3,	so	there	remains	the	possibility	that	an	HSC	could	rarely	be	infected	with	

CCR5-tropic	virus.		However,	in	our	isolation	of	two	populations	of	HSPCs	from	the	

donor	cohort	in	Chapter	3,	we	were	able	to	compare	the	number	of	donors	with	

provirus	detected	in	the	Sort	1	population,	which	was	enriched	for	HSC	and	MPP,	to	

the	Sort	2	population,	which	was	depleted	of	HSC	and	MPP,	but	enriched	for	CMP,	

MEP,	and	other	differentiated	progenitors.		Provirus	was	detected	at	a	similar	rate	in	

both	populations	(no	preference	for	the	HSC-enriched	Sort	1	population),	and,	given	

that	the	majority	of	provirus	in	both	sorts	was	CCR5-tropic,	it	is	likely	that	non-stem	

cell	progenitors	in	Sort	2	and	perhaps	Sort	1	are	infected	by	CCR5-tropic	virus.	

	

Non-stem	cell	progenitors	may	be	an	enduring	hematopoietic	population	in	vivo	
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	 When	we	found	that	the	majority	of	provirus	detected	from	donor	HSPCs	was	

CCR5-tropic	and	it	was	unlikely	that	CCR5	would	only	infect	HSCs,	we	hypothesized	

that	HSPCs	persisting	in	vivo	with	provirus	included	progenitors	downstream	of	an	

HSC.		Interestingly,	a	number	of	recent	studies,	using	models	such	as	mice	with	

transposon-tagged	HSPCs	or	analysis	of	diseased	human	bone	marrow,	have	

provided	evidence	that	non-stem	cell	progenitors	are	important	to	steady-state	

hematopoiesis	without	contribution	from	HSCs	(Busch	et	al.,	2015;	Kim	et	al.,	2014;	

Notta	et	al.,	2016;	Sun	et	al.,	2014;	Wu	et	al.,	2014).		These	progenitors,	including	

MPPs	and	myeloid-lineage	progenitors,	are	thought	to	survive	for	longer	in	bone	

marrow	than	previously	thought,	contradicting	the	traditional	view	of	the	

hematopoietic	hierarchy	where	only	HSCs	persist	in	vivo	(Busch	et	al.,	2015;	Notta	et	

al.,	2016;	Sun	et	al.,	2014).		Based	on	previous	studies	supporting	that	latently-

infected	reservoirs	are	established	before	viral	suppression	with	cART	(Kearney	et	

al.,	2014;	Simonetti	and	Kearney,	2015)	and	that	at	least	a	portion	of	the	provirus	

that	we	have	detected	in	our	donor	HSPCs	is	maintained	in	these	non-stem	cell	

progenitors,	our	work	supports	that	these	cells	can	persist	for	years	in	HIV+	people	

on	therapy.		In	Chapter	2,	we	had	two	treated	donors	with	suppressed	plasma	virus	

who	had	donated	again	after	initially	donating	in	our	first	in	vivo	study,	with	

samples	taken	approximately	3.3	years	apart	(Carter	et	al.,	2010).		They	both	had	

detectable	HIV	in	our	initial	study	of	CD34+	HSPCs	and	in	the	study	presented	here	

of	CD133+	HSPCs,	in	which	they	had	5.0	and	8.4	years	of	viral	suppression	before	

bone	marrow	was	collected.		However,	we	did	not	have	proviral	sequence	to	

determine	tropism	in	these	two	donors.		In	Chapter	3,	we	had	a	20	donors	with	
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detectable	CCR5-tropic	provirus,	and	all	but	two	of	the	Sort	2	amplicons	were	CCR5-

tropic.		Of	our	donors	with	the	longest	periods	of	viral	suppression,	two	donors	with	

9.6	or	11.2	years	of	viral	suppression	before	analysis	had	CCR5-tropic	amplicons	

detected	in	Sort	1	and	two	suppressed	for	7.1	years	each	had	CCR5-tropic	amplicons	

in	Sort	2.		Interestingly,	one	of	these	donors	with	7.1	years	of	viral	suppression	had	

also	donated	in	the	Chapter	2	study,	with	3.75	years	between	donations.		This	donor,	

454304,	had	detectable	HIV	in	the	CD133-sorted	HSPCs	from	the	initial	donation,	

and,	as	mentioned,	only	a	CCR5-tropic	amplicon	in	Sort	2.		This	donor	had	a	majority	

of	CCR5-tropic	virus	archived	in	PBMCs,	with	just	1	out	of	25	PBMC	env	sequences	

predicted	to	use	CXCR4,	so	the	virus	detected	in	the	Chapter	2	study	could	still	have	

been	CXCR4-tropic.		Overall,	our	results	predict	that	HIV	provirus	may	persist	for	

years	in	an	infected	individual	on	therapy,	and	non-stem	cell	progenitors,	which	are	

likely	infected	in	these	people,	can	thus	endure	for	years	in	the	bone	marrow.	

	

Infected	HSPCs	can	differentiate	into	mature	lymphoid	cells	with	provirus	in	vivo	

In	an	interesting	experiment	presented	in	Chapter	3,	we	searched	for	HIV	

provirus	in	purified	populations	of	CD4-negative	cells,	including	CD8+	T	Cells,	B	cells	

and	NK	cells,	from	PBMCs	in	10	donors:	5	donors	with	at	least	one	CXCR4-tropic	

provirus	detected	in	HSPCs	and	5	donors	with	only	CCR5-tropic	virus	in	HSPCs.		

Except	for	CD8+	T	cells,	which	undergo	a	brief	CD8+CD4+	stage	during	

differentiation,	these	cell	types	lack	the	surface	receptors	for	HIV	infection	and	are	

typically	uninfected	in	peripheral	blood.		Interestingly,	in	4	out	of	the	5	donors	with	

some	CXCR4-tropic	virus	in	HSPCs,	we	amplified	gag	and/or	env	amplicons	from	
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one	or	more	of	these	CD4-negative	subsets.		When	env	was	detected,	our	genotypic	

predictions	indicated	that	the	provirus	was	often	CXCR4-utilizing,	but	some	

sequences	were	predicted	to	be	CCR5-tropic.		In	contrast,	we	only	found	1	out	of	the	

5	CCR5-tropic	only	donors	to	have	detectable	HIV	in	the	differentiated	populations	

and	all	env	amplicons	were	CCR5-tropic.		Thus,	there	seems	to	be	a	difference	in	the	

HSPCs	infected	by	CXCR4-tropic	versus	CCR5-tropic	viruses	that	more	often	allows	

the	cells	with	CXCR4-tropic	provirus	to	differentiate	to	a	mature	hematopoietic	cell	

with	maintenance	of	integrated	provirus.		However,	CCR5-tropic	provirus	was	

present	in	differentiated	subsets	in	at	least	two	of	the	donors,	which	supports	that	

these	viruses	of	different	tropism	could	infect	the	same	progenitor	populations.			

Sequence	analysis	of	the	one	donor	with	CCR5-tropic	provirus	in	HSPCs	and	

in	CD8+	T	cells,	B	cells,	and	NK	cells	produced	a	striking	result	indicating	that	all	the	

env	amplicons	in	the	differentiated	subsets,	8	from	CD8+	T	Cell,	2	from	B	cells,	and	1	

from	NK	cells,	had	identical	nucleotide	sequence	to	an	HSPC	Sort	1	amplicon	from	

that	donor.		Without	comparison	of	the	entire	viral	genomic	sequence	and	the	

integration	site	for	the	provirus	in	each	of	the	differentiated	cells,	it	cannot	be	

known	for	sure	that	the	differentiated	subsets	came	from	the	same	HSC	or	an	early	

progenitor	with	multi-lymphoid	lineage	potential.		However,	these	cells	are	

extremely	unlikely	to	be	infected	by	circulating	virus	and	env	has	a	high	level	of	

genetic	diversity	in	the	viral	populations	within	an	individual.		Thus,	it	is	probable	

that	these	lymphoid	cells	differentiated	from	a	common	HSPC	that	was	initially	

infected.	
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Potential	fates	of	the	latent	HIV	reservoir	in	HSPCs	

	 Given	the	work	that	has	been	presented	here,	we	can	speculate	on	the	

potential	outcomes	of	a	latently	infected	HSPC	in	vivo,	as	depicted	in	the	model	in	

Figure	4-2.		The	first	outcome	to	consider	is	that	an	HSPC	infected	with	a	latent	

provirus	could	persist	through	quiescence,	which	is	a	property	attributed	to	true	

HSCs	for	their	ability	to	survive	in	the	bone	marrow	for	the	extent	of	a	human’s	life.		

It	is	not	yet	known	how	non-stem	cell	progenitors	are	able	to	persist.		Given	the	

evidence	discussed	earlier	that	infected	HSPCs	can	persist	for	years	in	vivo	and	that	

HSCs	or	persistent	non-stem	cell	progenitors	harbor	provirus,	this	seems	a	likely	

way	that	the	provirus	is	maintained.		Another	outcome	could	be	homeostatic	

proliferation,	which	could	occur	with	HSCs	and,	in	some	limited	capacity,	MPPs.		In	

this	case,	the	latently-infected	HSPC	would	be	activated	to	proliferate,	without	

differentiation.		Of	the	HSPC-derived	amplicons	presented	in	Chapter	3,	no	

amplicons	within	a	donor	were	identical	to	each	other,	which	might	support	that	

this	proliferation	without	loss	of	provirus	is	not	possible.		However,	given	the	low	

frequency	of	detectable	virus	in	HSPCs,	further	analysis	of	proviral	sequence	and	

integration	sites	may	be	required	to	identify	identical	provirus	between	multiple	

HSPCs.			

	 A	third	outcome	for	the	infected	HSPC	is	that	it	could	be	stimulated	to	

reactivate	latent	infection.		Our	first	study	of	HSPCs	showed	in	vitro	that	a	latently	

infected	HSPC	when	stimulated	with	GM-CSF	and	TNF-α	could	reactivate	latent	

infection	to	release	infectious	virus,	but	would	also	succumb	to	cell	death	(Carter	et	

al.,	2010).		However,	it	is	not	known	if	reactivated	HSPCs	can	produce	virus	or	if	
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reactivation	leads	to	cell	death	in	vivo.		If	the	infection	is	reactivated	and	the	HSPC	

began	to	release	virus,	it	is	possible	that	this	virus	could	be	released	into	circulation,	

as	well	as	spread	to	other	HSPCs	or	more	differentiated	targets,	including	CD4+	T	

cells.		If	therapy	is	stopped	in	an	HIV+	person,	this	could	allow	for	the	infection	in	

HSPCs	to	lead	to	the	resurgence	of	viremia.		In	preliminary	evidence	presented	in	

the	Appendix,	sequences	from	residual	plasma	virus	were	identical	to	HSPC-derived	

sequences	in	5	donors,	which	could	be	due	to	virion	release	from	infected	HSPCs.	

	 A	final	outcome	to	be	considered	is	that	a	latently-infected	HSPC	could	

potentially	differentiate	with	maintenance	of	provirus.		Differentiation	of	HSPCs	is	

thought	to	reactivate	the	virus,	as	shown	previously	with	stimulation	towards	

myeloid-differentiation	by	GM-CSF	and	TNF-α	in	vitro	(Carter	et	al.,	2010),	and	so	it	

did	not	seem	possible	that	provirus	could	be	maintained	through	the	differentiation	

process.		However,	as	evidenced	by	the	analysis	of	CD4-negative	lymphoid	cells	in	

Chapter	3	discussed	earlier,	this	could	likely	occur	in	vivo.		Indeed,	it	seems	that	

HSPCs	targeted	by	both	CCR5-	and	CXCR4-tropic	virus	can	undergo	this	

differentiation,	at	least	into	lymphoid	cells,	with	preservation	of	the	provirus	in	the	

differentiated	cells.		This	could	be	explained	perhaps	by	the	provirus	not	being	re-

activated	during	differentiation	in	human	bone	marrow.		This	could	be	due	to	

preserved	blocks	to	active	infection	which	allowed	the	infection	to	be	latent	in	the	

first	place	or	the	provirus	in	HSPCs	is	defective	thus	preventing	the	production	of	

viral	proteins	that	lead	to	cytotoxicity.	Another	possibility	is	that	HSPCs	do	

reactivate	latent	infection	during	differentiation,	while	possibly	releasing	virus	into	

circulation,	but	simply	do	not	experience	cytotoxic	effects,	and	the	virus	eventually	
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reverts	to	a	latent	state	in	the	differentiated	cell.		Reactivation	without	cell	death	

could	be	due	to	some	signaling	factor	or	cell	interaction	in	the	niche,	which	would	

not	have	been	re-capitulated	in	our	laboratory’s	initial	in	vitro	infections	of	HSPCs.		

Macrophages	are	another	cell	type	which	has	less	cytotoxicity	during	active	

infection,	and	thus	can	continue	to	release	virus	without	dying.	

	
Additional	questions	and	future	directions	

	 Although	the	studies	presented	in	Chapters	2	and	3	further	our	

understanding	of	the	HIV	reservoir	in	HSPCs	and	have	implications	for	our	

understanding	of	hematopoiesis,	important	questions	remain	to	be	addressed	by	

future	research.		Further	studies	are	needed	to	understand	whether	HSPCs	are	truly	

a	reservoir	of	HIV	in	vivo.		Additional	studies	of	the	bone	marrow	in	HIV+	patients	

on	therapy	would	hopefully	provide	these	answers.		Chapters	2	and	3	have	provided	

additional	information	on	which	cells	to	focus	on	within	the	HSPC	population,	likely	

HSCs,	MPPs,	and	some	myeloid	progenitors	(CMPs	and	GMPs),	although	the	study	of	

provirus	in	differentiated	cells	also	implicates	lymphoid	progenitors,	such	as	an	

MLPs.		Within	these	subsets,	the	progenitors	with	relatively	high	CD4	expression	

would	be	of	most	interest.		In	order	to	confirm	the	subsets	infected	in	vivo,	bone	

marrow	from	HIV+	donors	on	therapy	could	be	separated	into	the	different	subsets	

using	a	panel	of	flow	markers,	in	addition	to	CD4	staining	to	find	populations	that	

are	enriched	for	HIV.		This	is	challenging	though,	given	the	limited	availability	of	BM	

MNCs	from	HIV-infected	donors	and	the	cell	loss	that	occurs	with	flow	cytometric	

sorting	to	get	pure	populations.		It	is	also	possible	that	latently-infected	cells	could	

also	have	downregulated	CD4	through	some	residual	Nef	expression,	despite	the	
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major	transcriptional	blocks	that	keep	the	provirus	latent,	and	thus	CD4	could	not	

be	used	to	enrich	for	infected	HSPCs	in	vivo.		A	new	technology	called	

PrimeFlowRNA	(Hanley	et	al.,	2013)	adapted	for	flow	analysis	of	HIV-infected	cells	

based	on	probes	for	HIV	transcripts	could	aid	in	simultaneously	assessing	the	

expression	of	flow	cytometric	markers	that	delineate	HSCs	and	other	progenitor	

subsets	and	detecting	infection	of	HSPCs.		This	was	recently	reported	to	be	able	to	

detect	and	purify	a	latent	HIV-infected	cell,	as	rare	in	the	starting	population	as	1	in	

104	or	105	cells,	that	was	spontaneously	expressing	RNA	transcripts	or	had	been	

induced	by	a	latency-reversing	agent	(Romerio	and	Zapata,	2015).	

In	addition	to	confirming	which	HSPCs	are	infected	in	vivo,	further	analysis	of	

HIV+	donor	bone	marrow	could	allow	for	an	increased	understanding	of	the	

establishment	of	infection	in	HSPCs	and	its	effects	on	hematopoiesis.		Assessing	the	

HSPC	reservoir	in	donors	who	began	treatment	during	acute	or	primary	HIV	

infection	would	be	important	to	see	if	the	HSPC	reservoir	is	consistently	detected	in	

these	individuals	after	viral	suppression.		There	have	been	limited	studies	on	the	

effects	of	HIV	on	hematopoiesis	(Redig	and	Berliner,	2013),	but	infection	and	

immune	activation	within	the	bone	marrow,	even	within	components	of	the	cellular	

niche,	could	play	a	role	on	when	the	reservoir	is	established	and	which	HSPCs	are	

prone	to	active	and	latent	infection	during	early	infection.		Although	cART	has	been	

shown	to	improve	the	anemia	commonly	seen	in	HIV-infected	individuals,	anemia	is	

still	often	seen	in	these	individuals	on	treatment	(Redig	and	Berliner,	2013)	and	so	

further	studies	could	elucidate	the	effect	of	HIV	infection	on	the	survival	and	lineage	

potential	of	bone	marrow	HSPCs.	
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	 HIV	reservoirs	have	currently	been	defined	as	a	cell	population	that	can	

harbor	replication-competent	virus	for	an	extended	time	period	(Martin	and	

Siliciano,	2016).		Thus,	further	studies	need	to	build	on	the	work	presented	in	

Chapters	2	and	3	to	confirm	that	the	latently	infected	HSPCs	do	persist	in	HIV-

infected	people	and	also	assess	if	the	provirus	persisting	in	these	cells	can	produce	

infectious	virus	that	could	lead	to	rebound	viremia	after	treatment	cessation.		In	

respect	to	persistence	of	the	reservoir,	longitudinal	sampling	in	donors	who	have	

suppressed	viremia	for	even	longer	periods	of	time	would	point	towards	how	long	

these	cells	which	are	presumed	to	be	infected	early	in	infection	could	remain	

infected	in	vivo.		Sequence	analysis	over	time,	ideally	of	the	entire	proviral	genome	

which	has	been	difficult	thus	far,	could	provide	information	about	viral	evolution	in	

the	bone	marrow.		If	virus	is	mainly	latent,	I	would	expect	to	see	limited	to	no	

divergence	in	viral	sequences	in	HSPCs	over	time,	and	would	also	expect	a	

homogenous	population	of	HSPC	sequences	that	is	genetically	similar	to	circulating	

virus	present	before	the	initiation	of	therapy.		Minimal	evolution	could	be	seen	if	

there	is	ongoing	replication	in	the	bone	marrow	despite	the	presence	of	cART	or	

stochastic	reactivation	which	leads	to	new	infections.		Cell-to-cell	spread	has	been	

shown	to	occur	even	in	the	presence	of	anti-retrovirals	(Sigal	et	al.,	2011),	which	

could	explain	this	possibility.			

As	for	whether	HSPCs	can	produce	infectious	virus,	the	preliminary	work	

presented	in	the	Appendix	indicates	that	some	circulating	virus	may	come	from	

HSPCs.		However,	additional	studies	are	ongoing	to	perform	a	viral	outgrowth	assay	

from	donor-derived	HSPCs	by	stimulating	the	HSPCs	with	agents	such	as	TNF-α	that	
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have	been	shown	to	reactivate	latent	HIV	in	these	cells	and	culturing	with	an	

infectable	cell	line.		These	assays	have	been	used	to	detect	even	a	single	resting	CD4+	

T	cell	with	replication-competent	virus	in	peripheral	blood	from	HIV-infected	

donors	on	treatment	(Siliciano	and	Siliciano,	2005).		This	may	prove	to	be	very	

difficult	in	HSPCs	given	the	low	frequency	of	provirus,	limited	cell	numbers	from	

donor	samples,	and	high	rates	of	defective	provirus	in	latent	reservoirs,	as	recently	

found	by	an	assessment	of	the	resting	CD4+	T	cell	reservoir	in	peripheral	blood	(Ho	

et	al.,	2013).		A	more	direct	way	to	assess	if	the	HSPC	reservoir	can	produce	

replication-competent	virus	that	is	relevant	to	HIV-infected	people	on	therapy	is	

through	sequence	analysis	of	the	virus	in	rebounding	viremia	during	treatment	

interruption	in	comparison	to	proviral	sequences	in	bone	marrow	HSPCs	from	the	

same	individual.		Although	these	types	of	studies	have	been	limited	due	to	potential	

clinical	consequences,	carefully	monitored	treatment	interruptions	in	patients	may	

be	done	more	often	in	the	future	after	a	recent	study	where	this	was	safely	

performed	(Martin	and	Siliciano,	2016;	Rothenberger	et	al.,	2015).		Such	studies	

would	provide	the	greatest	evidence	of	the	contribution	of	the	reservoir	in	HSPCs	to	

viral	persistence	in	HIV-infected	patients.		In	sum,	this	dissertation	presents	work	

that	provides	insights	into	HSPCs	as	a	reservoir	of	HIV,	and	also	raises	important	

questions	regarding	normal	human	hematopoiesis	and	the	relevance	of	this	

reservoir	to	HIV-infected	people. 
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Figure	4-1.	Overview	of	HIV	receptor	expression	on	HSPCs.	
CD4,	CCR5,	and	CXCR4	receptor	expression	in	human	bone	marrow	stem	and	
progenitor	cells	based	on	data	presented	in	Chapter	3.	HSC,	hematopoietic	stem	cell;	
MPP,	multipotent	progenitor;	CMP,	common	myeloid	progenitor;	MEP,	
megakaryocyte/erythrocyte	progenitor;	GMP,	granulocyte/monocyte	progenitor.	
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Figure	4-2.	Potential	outcomes	of	latent	infection	in	a	hematopoietic	stem	and	
progenitor	cell	(HSPC).		
Diagram	representing	conceivable	fates	of	a	hematopoietic	progenitor	with	an	
integrated	viral	genome	(purple).	An	infected	HSPC	can	maintain	or	expand	the	pool	
of	latently	infected	cells	through	remaining	quiescent	or	proliferating	without	
differentiation.	With	stimulation	by	cytokines	or	reactivation	agents,	the	HSPC	could	
go	from	a	latent	to	an	actively	infected	state,	where	cell	death	could	be	induced,	
virus	could	be	produced	to	infect	other	cells	and	new	virions	could	contribute	to	
plasma	virus.	An	HSPC	could	theoretically	differentiate	into	a	mature	hematopoietic	
cell	such	as	a	T	cell	and	retain	viral	DNA.7	

																																																								
7	Reproduced	with	permission	from	Sebastian,	N.T.,	and	Collins,	K.L.	(2014).	
Targeting	HIV	latency:	resting	memory	T	cells,	hematopoietic	progenitor	cells	and	
future	directions.	Expert	Rev	Anti	Infect	Ther	12,	1187-1201..	
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Appendix A  
Provirus in Bone Marrow Hematopoietic 

Progenitor Cells Matches Residual Plasma Virus 

in HIV+ People with Optimal Viral Suppression 
	

Introduction	

	 Life-long	combination	anti-retroviral	therapy	(cART)	is	required	for	the	

majority	of	HIV-1-infected	individuals	to	maintain	clinically	undetectable	plasma	

viral	loads	(<50	copies	per	ml)	and	uphold	CD4+	T	cell	levels	for	sufficient	immune	

function.	Despite	years	of	optimal	cART	that	suppresses	HIV	replication,	treatment	

interruptions	lead	to	a	rebound	of	circulating	virus	(Coffin,	1995).	The	rebounding	

virus	is	thought	to	be	due	to	persistence	of	the	virus	through	either	ongoing	

replication	via	cell-to-cell	spread	or	latent	infection	(Martin	and	Siliciano,	2016).		

Therapy	intensification	does	not	reduce	levels	of	residual	circulating	virus	which	

makes	it	unlikely	that	ongoing	replication	is	occurring	(Dinoso	et	al.,	2009;	

McMahon	et	al.,	2010)		although	recent	studies	do	suggest	that	lymphoid	tissue	may	

harbor	continued	replication	due	to	decreased	drug	penetration	(Fletcher	et	al.,	

2014;	Lorenzo-Redondo	et	al.,	2016).		A	recent	study	characterizing	plasma	viral	

sequences	before	and	during	cART	in	14	patients	compared	with	virus	after	

treatment	interruption	in	five	of	them,	showed	that	residual	virus	during	therapy	
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evolves	minimally	and	viral	sequences	post-treatment	interruption	represent	the	

viral	populations	present	before	initiation	of	therapy	(Kearney	et	al.,	2014).		Thus,	it	

is	likely	that	rebounding	viremia	comes	from	the	activation	of	longer-lived	clones	

that	were	infected	before	initiation	of	therapy	and	suppression	of	plasma	viremia,	

instead	of	just	an	increase	in	cART-resistant	on-going	replication	(Kearney	et	al.,	

2014;	Martin	and	Siliciano,	2016;	Trono	et	al.,	2010).		

Although	the	best	studied	reservoir	of	latent	infection	is	in	resting	memory	

CD4+	T	cells	which	are	long-lived,	it	has	been	demonstrated	that	the	sequences	of	

genomes	in	circulating	viral	genomes	do	not	exactly	match	those	detected	in	

circulating	latently-infected	T	cells	pre-interruption	(Bailey	et	al.,	2006;	Brennan	et	

al.,	2009;	Sahu	et	al.,	2009).	Viral	load	decay	kinetics	indicate	that	long-lived	clones	

are	potentially	from	a	variety	of	reservoirs	within	a	patient	–	with	at	least	one	of	

them	decaying	minimally	after	7	to	12	years	of	treatment	(Dahl	et	al.,	2010;	Riddler	

et	al.,	2016).	Thus,	a	stem	or	progenitor	cell	could	serve	as	this	long-lived	reservoir,	

and	studies	do	implicate	hematopoietic	progenitors	in	bone	marrow	as	that	

important	reservoir	(Bordoni	et	al.,	2015;	Carter	et	al.,	2011;	Carter	et	al.,	2010;	

Redd	et	al.,	2007).	

In	the	preliminary	analysis	presented	here,	we	amplified	HIV	sequences	from	

purified	HSPCs,	PBMCs,	and	plasma	virus	from	an	ongoing	cohort	of	HIV+	patients	

with	viral	suppression	for	at	least	6	months	to	examine	the	relationship	between	

residual	plasma	virus	and	provirus	in	HSPCs	and	PBMCs.	
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Results	and	Discussion	

A	subset	of	donors	with	optimal	viral	suppression	have	detectable	provirus	in	HSPCs	

	 	To	get	a	more	complete	look	at	how	often	HIV	can	be	detected	in	bone	

marrow	HSPCs	in	HIV-infected	individuals,	we	recruited	a	cohort	of	HIV+	donors	

with	suppressed	viremia	on	optimal	treatment	for	at	least	6	months	from	which	we	

received	bone	marrow	aspirates	and	peripheral	blood.		Here,	I	describe	the	overall	

cohort	from	which	a	subset	of	donors	was	presented	in	Chapter	3.		As	described	in	

Chapter	3,	we	isolated	two	highly	pure	populations	of	HSPCs	from	the	bone	marrow	

aspirates,	Sort	1	(CD133-sorted)	and	Sort	(CD34-sorted,	CD133-depleted).		We	also	

isolated	PBMCs	from	the	peripheral	blood.	

We	used	a	single-copy	sensitive	multiplex	nested	PCR	assay	with	donor-

specific	primers	sets	optimized	with	donor	PBMC	DNA.		This	allowed	us	to	amplify	

sequence	from	two	regions	of	HIV,	an	800-bp	Gag	amplicon	from	the	5’	region	of	gag	

and	a	450-bp	V3	amplicon	including	the	V3	loop	of	env.		Gag	and	V3	amplicons	were	

amplifiable	in	PBMCs	from	the	majority	of	donors	(43	out	of	44),	but	we	were	only	

able	to	detect	Gag	and/or	V3	in	Sort	1	or	Sort	2	for	27	out	of	the	44	donors	assessed	

(Table	A-1).		For	the	17	negative	donors,	at	least	100,000	cells	were	tested	in	all	

donor	HSPC	samples	for	the	majority	of	donors	(only	5	donors	had	less	than	

100,000	cells	tested	in	either	Sort	1	or	Sort	2).		This	is	comparable	to	the	rate	of	

positivity	in	CD133-sorted	HSPCs	in	our	previous	11	donor-cohort	analysis	

described	in	Chapter	2	(6	out	of	11	donors	with	HIV	detected	by	qPCR).			

The	frequency	of	provirus	in	Sort	1	and	Sort	2	HSPCs	was	assessed	by	the	

number	of	1st	round	PCR	reactions,	set	up	at	limiting	dilution,	which	produced	a	gag	
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and/or	V3	amplicon,	out	of	the	total	number	of	cells	assayed	for	each	population	

(Table	A-2).		For	the	donors	where	provirus	was	detected,	the	proviral	frequency	

ranged	from	1.0	to	23	provirus	per	106	cells	in	Sort	1	and	1.4	to	29	provirus	per	106	

cells	in	Sort	2,	with	similar	mean	frequencies	between	positive	Sort	1	samples	and	

positive	Sort	2	samples	(Sort	1	had	11	per	106	cells	and	Sort	2	had	9.1	per	106	cells;	

Table	A-2).		The	majority	of	amplicons	were	unlikely	to	be	due	to	CD3+	T	cell	

contamination,	as	assessed	in	Chapters	2	and	3.		This	is	similar	to	our	previous	

study	in	Chapter	2,	where	a	frequency	of	12	to	37	provirus	per	106	cells	was	

reported	by	qPCR	analysis	of	CD133-sorted	HSPCs	in	5	of	the	positive	donors	

(27,000	to	84,000	cells	assessed),	although	the	sixth	donor	had	a	much	higher	

frequency	of	420	provirus	per	106	cells	in	only	4,800	cells	tested.		The	analysis	

presented	here	uses	a	PCR	assay	for	larger	regions	of	the	HIV	genome,	which	may	

decrease	sensitivity,	but	did	assess	higher	cell	numbers	than	our	analysis	in	Chapter	

2.		In	comparison,	the	reported	frequency	by	viral	outgrowth	of	replication-

competent	provirus	in	resting	CD4+	T	cells	is	approximately	1	in	106	cells,	although	

the	total	number	of	provirus	(defective	and	replication-competent)	may	be	closer	to	

300	in	106	resting	CD4+	T	cells	as	indicated	by	a	recent	study	(Eriksson	et	al.,	2013).		

Thus,	HSPCs	have	a	much	lower	frequency	of	provirus	than	the	CD4+	T	cell	

reservoir,	but	may	still	persist	with	replication	competent	virus	that	is	important	in	

vivo.	
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Provirus	in	HSPCs	has	sequence	identity	with	plasma	virus	

To	compare	the	circulating	virus	in	the	plasma	to	bone	marrow	HSPCs,	the	

plasma	for	each	donor	was	pelleted	to	concentrate	virions	and	the	pellet	was	used	

to	isolate	viral	RNA	for	synthesis	of	cDNA.		Given	that	plasma	virus	levels	were	

below	detection	by	clinical	assays	(less	than	20-48	copies/mL),	an	optimized	

protocol	was	developed	using	Raji	RNA	as	a	carrier	and	internal	control	to	maximize	

yield	for	RNA	isolation	and	cDNA	synthesis,	allowing	amplification	of	viral	

sequences	from	a	very	low	number	of	virions.		Using	the	same	nested	multiplex	PCR	

assay	on	the	viral	cDNA	for	each	donor,	plasma	virus	was	analyzed	in	26	donors	

thus	far	and	sequence	was	amplifiable	in	18	of	those	donors	(Table	A-1).		However,	

a	few	donors	of	these	donors	tested	initially	in	the	cohort	and	negative	for	

amplifiable	virus	were	not	processed	with	the	optimized	RNA	isolation	and	cDNA	

synthesis	protocol.		Phylogenetic	analysis	of	plasma	virus	in	patients	on	therapy	

with	low	viremia	saw	multiple	identical	viral	sequences,	often	with	a	predominant	

plasma	clone	(Bailey	et	al.,	2006).		As	expected,	in	our	study,	clonal	plasma	viral	

sequences	were	detected	in	several	donors.	

Interestingly,	in	a	sequence	alignment	and	pairwise	genetic	distance	analysis	

of	nucleotide	sequences	from	each	donor,	we	found	identical	sequence	in	Gag	or	V3	

amplicons	isolated	from	HSPCs	and	plasma	virus	in	five	donors	thus	far	(Table	A-3,	

Figure	A-1).		In	all	cases,	there	was	at	least	one	sequence	detected	in	PBMCs	that	

had	the	same	sequence,	although	these	sequences	were	derived	from	bulk	PBMCs	

which	contains	a	variety	of	cell	types.		It	is	assumed	that	the	majority	of	these	

sequences	come	from	resting	CD4+	T	cells	in	HIV-infected	people	on	cART,	but	other	
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cell	types	including	macrophages	could	also	be	infected.		In	the	analysis	presented	in	

Chapter	3,	we	were	able	to	detect	provirus	in	CD4-negative	lymphoid	subsets	that	

are	not	thought	to	be	infected	and	the	provirus	was	statistically	unlikely	to	be	due	to	

CD4+	T	cells.		Therefore,	it	is	possible	that	the	plasma	viral	sequences	could	still	

indicate	virions	that	are	released	from	infected	HSPCs,	and	potentially	infected	a	

PBMC	or	the	HSPC	differentiated	into	a	cell	type	found	in	PBMCs.		However,	further	

analysis	and	comparison	is	needed.	

	

Conclusion	and	Future	Directions	

The	ongoing	analysis	of	this	cohort	presents	further	evidence	that	HIV	

provirus	can	be	detected	in	a	subset	of	HIV+	donors	with	viral	suppression	on	

therapy	and	that	HIV	in	HSPCs	contributes	to	residual	viremia	in	these	donors.			

As	additional	sequences	are	amplified	from	bone	marrow,	peripheral	blood,	

and	plasma	virus	samples,	we	hope	to	have	a	more	complete	picture	of	viral	

dynamics	between	these	three	viral	populations.		Compartmentalization	analysis	

would	compare	the	relationship	between	sequences	within	each	population	and	

between	the	three	different	populations	to	assess	if	there	are	significant	differences	

in	the	population	structures.		Indeed,	Slatkin-Maddison	analysis,	which	looks	at	the	

minimum	inter-population	migration	events	to	explain	the	phylogenetic	structure	of	

populations,	was	applied	in	a	study	to	V3	sequences	from	plasma	virus	and	PBMCs	

in	30	chronically-infected	HIV+	donors	with	suppressed	viremia	on	treatment	(Pou	

et	al.,	2013).		The	authors	found	that	in	some	cases	there	was	compartmentalization	

between	plasma	virus	and	PBMCs,	which	has	implications	on	whether	PBMC	
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provirus	can	be	used	as	a	true	representation	of	residual	virus	in	the	presence	of	

treatment.			Compartmentalization	of	bone	marrow	HSPCs	from	PBMC	or	plasma	

virus	could	indicate	different	selective	pressures	by	immune	activation	or	anti-

retroviral	therapy	in	the	bone	marrow,	in	addition	to	differences	in	the	phenotype	of	

these	viruses	such	as	tropism	or	pathogenicity	(Zarate	et	al.,	2007).	

Thus	far,	there	have	been	sequences	that	share	identity	between	all	three	

compartments,	but	it	is	difficult	to	resolve	the	direction	of	viral	flow	between	bone	

marrow	HSPCs	with	plasma	or	peripheral	blood.		Analysis	of	the	number	of	HSPC	

sequences	with	mutations	that	predict	defective	provirus,	in	addition	to	

experiments	to	stimulate	HSPCs	to	measure	virion	production	could	help	explain	if	

plasma	virus	sequences	are	potentially	coming	from	HSPC	provirus.		Longitudinal	

plasma	samples	from	repeat	donors	within	our	cohort	could	give	insight	into	how	

often	HSPCs	reactivate	infection	and	whether	infected	HSPCs	continue	to	contribute	

to	plasma	viremia	over	time.		Overall,	the	analysis	presented	here	does	have	

important	implications	for	whether	an	HIV	reservoir	in	HSPCs	could	contribute	to	

viral	persistence	by	causing	rebound	viremia	in	HIV-infected	individuals	who	cease	

treatment.	

	

Methods	

Clinical	Samples	

We	recruited	HIV-positive	donors	currently	receiving	antiretroviral	therapy	

from	the	University	of	Michigan	HIV-AIDS	Treatment	Program	and	the	Henry	Ford	

Health	System.	Informed	consent	was	obtained	according	to	a	protocol	approved	by	
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the	University	of	Michigan	Institutional	Review	Board	and	Henry	Ford	Institutional	

Review	Board.	At	the	time	of	sample	acquisition,	all	donors	were	>18	years	old,	had	

normal	white	blood	cell	counts,	and	had	plasma	viral	loads	of	<48	copies/mL	for	at	

least	6	months.	20	ml	of	bone	marrow	was	aspirated	from	the	posterior	iliac	crest,	

collected	 in	 preservative-free	 heparin,	 and	 processed	 immediately.	 100	 mL	 of	

peripheral	blood	was	collected	in	K2-EDTA	vacutainer	tubes	and	also	processed	the	

same	 day.	 Bone	 marrow	 mononuclear	 cells	 (BMMCs)	 and	 peripheral	 blood	

mononuclear	 cells	 (PBMCs)	 were	 isolated	 by	 Ficoll-Paque	 density	 separation	 (GE	

Healthcare).	Sort	1	and	Sort	2	HSPCs	were	then	isolated	from	BMMCs	as	 indicated	

below.		Diluted	plasma	from	the	Ficoll-Paque	separation	of	the	peripheral	blood	was	

pelleted	by	ultracentrifugation	at	112,398xg	for	1.5-3	hours	at	4°C	and	resuspended	

in	1	mL	Trizol	Reagent	(ThermoFisher)	and	stored	at	-80°C.	

A	 fraction	 of	 each	 clinical	 sample	 was	 stained	 with	 R-phycoerythrin–

conjugated	 anti-CD133	 (Miltenyi	 Biotec),	 fluorescein	 isothiocyanate-conjugated	

anti-CD34	(eBioscience),	allophycocyanin-conjugated	anti-CD3	(eBioscience),	and	7-

aminoactinomycin	 D	 (7-AAD).	 Samples	 were	 analyzed	 on	 a	 BD	 FACSCanto.	 The	

donors	who	provided	samples	analyzed	in	this	study	are	a	subset	of	a	larger	cohort	

and	 four	 of	 the	 donors	 included	 provided	 multiple	 donations	 with	 3-9	 months	

between	donations.	Only	samples	that	were	at	least	80%	CD133+	for	Sort	1	or	80%	

CD34+	for	Sort	2,	with	<	2.0	%	CD3+	contamination	were	considered	in	our	analysis	

(Table	3-2).	

	

Cell	Isolation	
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Adherent	cells	were	depleted	from	CMBCs	or	BMMCs	by	incubation	in	serum-

free	StemSpan	media	(StemCell	Technologies)	for	1-2	hours	at	37°C,	and	then	Sort	1	

(CD133+	 cells)	 was	 isolated	 by	magnetic	 separation	 with	 a	 CD133	MicroBead	 Kit	

(Miltenyi	 Biotec)	 according	 to	 the	 manufacturer’s	 protocol	 with	 the	 following	

modifications.	To	achieve	higher	yields	of	CD133+	cells,	1.5x	the	recommended	ratio	

of	CD133	MicroBeads	to	cells	was	used	for	donations	451000,	453000,	and	454304.	

CBMCs	or	BMMCs	that	flowed	through	the	first	column	(CD133-depleted)	were	used	

for	 isolating	 the	 Sort	 2	 (CD133low/-CD34+)	 fraction	 by	 magnetic	 sorting	 with	 the	

EasySep	 Human	 CD34	 Positive	 Selection	 Kit	 (StemCell	 Technologies).	 For	 both	

CD133	and	CD34	magnetic	isolations,	cells	were	sequentially	sorted	on	2	columns	to	

increase	purity.	

	

RNA	Isolation	and	cDNA	Synthesis	

	 Plasma	 viral	 RNA	was	 isolated	 either	 using	 a	 Trizol-chloroform	 extraction	

protocol	or	RNeasy	micro	column	purification	kit	(Qiagen).		Samples	were	all	DNase	

treated	before	 cDNA	 synthesis.	 	 cDNA	 synthesis	was	performed	using	 SuperScript	

First-Strand	 Synthesis	 System	 for	 RT-PCR	 (Invitrogen).	 	 RNA	 isolation	 and	 cDNA	

synthesis	efficiency	was	verified	by	spiking	Trizol	samples	with	Burkitts	Lymphoma	

(Raji)	Total	RNA	and	yields	were	monitored	by	Human	ACTB	(Beta	Actin)	TaqMan	

Gene	Expression	Assay	(ThermoFisher).		cDNA	samples	were	diluted	1:10	or	greater	

when	used	as	a	template	in	the	PCR	reactions	described	below.	

	

Polymerase	Chain	Reaction	(PCR)	
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Cells	were	lysed	in	MagNA	Pure	DNA	Lysis/Binding	Buffer	(Roche),	and	DNA	

extracted	 using	 a	MagNA	 Pure	 Compact	 System	 (Roche).	 A	 2-step	 PCR	 assay	was	

validated	 for	 single	 copy	 sensitivity	 on	ACH-2	 cell	 DNA.	 For	 each	 donor,	 first	 and	

second	 round	 primers	 used	 for	 HSPC	 DNA	 analysis	 were	 first	 verified	 by	

amplification	of	proviral	sequences	from	PBMC	DNA.	Primer	sequences	are	listed	in	

Table	3-5.	First	round	primer	pairs	for	Env	included	5036d	plus	LTR-pA-R,	5956d-f	

plus	LTR-pA-R,	or	envC2F2	plus	envC4R1,	along	with	primers	to	amplify	a	region	of	

Gag	 (U5-577.9662-f	 plus	 tagD4.6b-p24R1d	 plus	 or	 minus	 long1316-D4.6b	

depending	on	 the	patient	 sequence).	 Second	 round	primer	pairs	 included	5956d-f	

plus	 LTR-pA-R,	 envC2F2	 plus	 envC4R1,	 or	 env1in5	 (Brennan	 et	 al.,	 2009)	 plus	

env1in3	(Brennan	et	al.,	2009)	for	env	amplification.			For	gag	amplification,	second	

round	primers	were	626s	(Hasegawa	et	al.,	1985)	plus	D4.6b	(Buszczak	et	al.,	2014).	

	 In	 the	 first	 round,	5	μL	of	 template	DNA	at	 limiting	dilution	 (maximum	0.1	

copies/uL	 with	 ≤25%	 of	 reactions	 expected	 positive)	 was	 amplified	 in	 50-μL	

reactions	containing	10	μl	of	5X	Phusion	HF	Buffer	(ThermoFisher),	1U	of	Phusion	

Hot	Start	II	High	Fidelity	DNA	Polymerase	(ThermoFisher),	500nM	of	each	primer,	

and	200	μM	deoxyribonucleotide	triphosphates	(dNTPs).	ACH-2	(Clouse	et	al.,	1989)	

cell	DNA	was	diluted	in	DNA	from	uninfected	PBMCs	to	serve	as	a	positive	control	

(10	HIV	genomes	per	μl)	or	 control	 for	 sensitivity	 (0.2	HIV	genomes	per	μl).	DNA	

from	 uninfected	 PBMCs	 was	 used	 as	 a	 negative	 control.	 Thermocycling	 was	

conducted	using	a	BioRad	C1000	 thermocycler	with	conditions	 indicated	 in	Table	

3-5.	

In	 the	second	round,	1	μl	of	 the	 first	 round	reaction	was	amplified	 in	50-μl	
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reactions	containing	10	μl	of	5X	Phusion	HF	Buffer,	1U	of	Phusion	Hot	Start	II	High	

Fidelity	 DNA	 Polymerase	 (ThermoFisher),	 500nM	 of	 each	 primer	 and	 200	 μM	

dNTPs.	 Thermocycling	 was	 conducted	 using	 a	 BioRad	 C1000	 thermocycler	 with	

cycling	conditions	as	in	Table	3-5.	

	

DNA	Sequencing	Analysis	and	Cloning	

PCR	 reactions	 were	 run	 on	 1.5%	 agarose	 Tris-acetate-EDTA	 gels	 with	 1X	

GelRed	 (Biotium),	 the	 amplicons	 excised,	 extracted	 using	 QIAquick	 Gel	 Extraction	

Kit	 (Qiagen),	 and	 then	 sequenced	 by	 Sanger	 dideoxy	 sequencing.	 Consensus	

sequences	 were	 generated	 using	 SeqMan	 (DNAStar)	 and	 contaminants	 were	

excluded	 after	 comparison	 to	 all	 previously	 generated	 donor	 sequences	 and	 lab	

strains	in	MEGA6	(Tamura	et	al.,	2013).	

Molecular	 phylogenetic	 analysis	 was	 performed	 by	 maximum	 likelihood	

method	using	MEGA7	(Kumar	et	al.,	2016).	The	evolutionary	history	was	inferred	by	

using	the	Maximum	Likelihood	method	based	on	the	Hasegawa-Kishino-Yano	model	

(Hasegawa	 et	 al.,	 1985).	 The	 tree	 with	 the	 highest	 log	 likelihood	 (-2805.4022)	 is	

shown.	 Initial	 tree(s)	 for	 the	 heuristic	 search	 were	 obtained	 automatically	 by	

applying	 Neighbor-Join	 and	 BioNJ	 algorithms	 to	 a	 matrix	 of	 pairwise	 distances	

estimated	 using	 the	 Maximum	 Composite	 Likelihood	 (MCL)	 approach,	 and	 then	

selecting	 the	 topology	 with	 superior	 log	 likelihood	 value.	 A	 discrete	 Gamma	

distribution	 was	 used	 to	 model	 evolutionary	 rate	 differences	 among	 sites	 (5	

categories	 (+G,	 parameter	 =	 0.8699)).	 Codon	 positions	 included	 were	

1st+2nd+3rd+Noncoding.	 All	 positions	 with	 less	 than	 95%	 site	 coverage	 were	
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eliminated.	 That	 is,	 fewer	 than	 5%	 alignment	 gaps,	 missing	 data,	 and	 ambiguous	

bases	were	allowed	at	any	position.	

	

Statistical	Analysis	

T	 cell	 contamination	 analysis	 was	 performed	 for	 HSPC	 sequences	 as	

described	as	 in	McNamara	et	al	(McNamara	et	 al.,	 2013).	All	 other	 statistical	 tests	

were	performed	using	Excel	or	GraphPad	Prism	5.0a.	
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Table	A-1.	HIV	Detection	in	HIV+	Donors	on	Therapy	with	Optimal	Viral	
Suppression	

Source	of	HIV	 Donors	Positive	(n)	
Rate	of	HIV	
Detection	

HSPC	(Sort	1	and	2)	DNA	 27	(44)	 61%	

		 		 		

Flowthrough	1	and	2	DNA	 41	(44)	 93%	

		 		 		

PBMC	DNA	 43	(44)	 98%	

		 		 		

Plasma	Virus	RNA	 18	(26)	 69%	

n	=	total	donors	tested	 		 		
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Table	A-2.	Proviral	Frequency	in	Donors	Positive	for	HIV	in	HSPCs	
		 Sort	1	 Sort	2	

Donation	IDa	 Proviral	Frequencyb	
(per	106	cells)	

Cells	Analyzed	
(x104)	

Proviral	Frequencyb	
(per	106	cells)	

Cells	Analyzed	
(x104)	

405000	 12	 8.6	 NA	 NA	

406000	 17	 12	 <4.9	 20	
412406	 <4.9	 20	 5.9	 34	

435412406	 8.4	 24	 <1.8	 56	

407000	 NA	 NA	 4.4*	 23	
433407	 <11	 9.4	 <8.6	 12	

408000	 <49	 2.0	 <33	 3.0	
428408	 23	 13	 18	 5.5	

409000	 21	 9.5	 <9.3	 11	
411000	 <12	 8.5	 4.5	 22	
413402	 20	 5.0	 <5.4	 19	
414000	 7.1	 14	 3.7	 27	
415000	 3.5	 28	 NA	 NA	
419000	 3.2	 31	 NA	 NA	
420000	 12	 26	 4.9*	 41	
421000	 17	 17	 8.2	 37	

423000	 1.7	 58	 1.4	 70	
434423	 <1.5	 67	 1.9	 53	

424000	 6.9*	 14	 NA	 NA	
426000	 10	 20	 29	 38	
431000	 14	 21	 <3.9	 26	
432000	 7.6	 40	 9.5	 32	
436000	 <17	 6.1	 29	 10	
437000	 5.9	 17	 2.4	 43	
439000	 10	 9.9	 <7.9	 13	
445000	 5.6*	 54	 <7.7	 13	
446000	 4.4	 23	 <1.8	 56	
449000	 3.4	 29	 6.7	 60	
450000	 1.0*	 103	 NA	 NA	
451000	 NA	 NA	 5.4	 19	
453000	 <2.5	 41	 2.2	 45	
454304	 <8.3	 12	 14*	 14	

	

aFirst	3	digits	is	donation	number;	subsequent	groups	of	3	digits	are	ID	of	previous	donation(s)	
from	the	same	individual,	if	any.	
bProviral	frequency	calculated	by	number	of	1st	round	PCR	replicates	at	limiting	dilution	that	
amplified	either	gag	and/or	V3	in	the	2nd	round.	
*Indicates	that	gag	or	V3	amplicons	could	have	originated	from	contaminating	T	cell	DNA,	so	
true	HSPC	proviral	frequency	may	be	lower	than	reported.		Analysis	to	exclude	T	cell	
contamination	was	performed	as	previously	published	(McNamara	et	al.,	2013).		Data	for	T	cell	
analysis	was	not	available	for	donor	405000.	
Bold	borders	indicate	multiple	donations	from	the	same	individual.	Gray	boxes	indicate	samples	
that	did	not	meet	criteria	for	purity.		Abbreviations:	NA,	not	analyzed	
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Table	A-3.	Several	Plasma	Virus	and	PBMC	gag	and	V3	env	Sequences	are	
Identical	to	HSPC	Amplicons	

Donor	ID*	

Gag	 V3	

HSPC	

Amplicons	

Amplicons	Identical	to	

HSPC	 HSPC	

Amplicons	

Amplicons	Identical	to	

HSPC	

Plasma	 PBMC	 Plasma	 PBMC	

414000	 1	 2	 2	 1	 0	 7	

421000	 0	 0	 0	 1	 1	 4	

434423	 1	 17	 8	 1	 5	 5	

435412406	 0	 0	 0	

1	

1	

1	

0	

3	

0	

3	

18	

2	

436000	 0	 0	 0	 1	 22	 2	

*First	3	digits	is	donation	number;	subsequent	groups	of	3	digits	are	ID	of	previous	donation(s)	from	
the	same	individual,	if	any.	
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Figure	A-1.	Plasma	virus	sequences	are	often	clonal	and	are	identical	to	HSPC	
amplicons	in	several	donors.			
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Maximum	likelihood	phylogenetic	trees	from	three	representative	donors	show	
genetic	relationships	of	gag	and	env	sequences	from	bone	marrow,	peripheral	
blood,	and	plasma	virus.	Highlighted	areas	indicate	groups	of	identical	amplicons.	
Scale	indicates	nucleotide	substitutions	per	site.8	
	 	

																																																								
8	Figure	created	by	Val	Terry.	
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