From Scavenger to Metabolic Coordinator: Novel Roles of LRP1 in CNS Myelin Development and Repair

by

Jing-Ping Lin

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Cell and Developmental Biology) in the University of Michigan 2018

Doctoral Committee:

Associate Professor Bing Ye, Chair Associate Professor Ben L. Allen Professor Roman J. Giger Professor Lori L. Isom Associate Professor Brian A. Pierchala

Jing-Ping Lin

annalin@umich.edu

ORCID iD: 0000-0003-0686-0215

© Jing-Ping Lin 2018

DEDICATION

To my future mentee: Even without witness, for you I should keep committing to be a better scholar.

ACKNOWLEDGMENTS

I have been fortunate to have so many incredible individuals in my life who have helped me reach this point. I am thankful for all the guidance, encouragement, and even tough love that I have received, every step of the way in the past years all made me who I am today. I could only name a few, in case I doubled the volume of this dissertation; however, this work is only possible because of all of you.

First I would like to thank my advisor, Dr. Roman Giger, for your endless passion for science that is truly inspirational. You are probably the only titled professor that I know of still working on the bench and demonstrating fundamental experiments on a regular basis. You have influenced us to think critically, read broadly, and not be afraid to embark new scientific directions. Thank you for your patience and putting up with my stubbornness in the past years. You always find a way to encourage me to surpass my old self; with this valuable mentorship, it is unlikely for me to fail.

Thank my dissertation committee members: Lori Isom, Brian Pierchala, Bing Ye, and Ben Allen. I learned a lot from you over the past six meetings that I am fortunate to have. With your attention, inputs, and patience, my work can only be better. I cherish these professional relationships, since it will be very hard for me to get such exclusive scholarly consulting from here on. Thank my cooperator, Peter Shrager, for being my steadiest support during manuscript preparation and postdoc searching. For years, as if it is the first day, your persistence and precision toward science urged me to follow your example. Thank Jeff Lee, Chen P, and teacher Liu, for taking a chance on me and helping me to pursue my PhD. Thank Lei Lei, Dawen, and Pierre, for your warm encouragement and sharing your career path during my search for a postdoctoral position. Because of you, I can believe in myself and be more confident.

I would like to pay my appreciation to the staff in the University of Michigan, the Cell & Developmental Biology Department administration, Unit for Laboratory Animal Medicine, Microscopy & Image Analysis Laboratory, and DNA sequencing core. Thank you for your excellent training and service. None of my research can be done without your support. Many alumni have told us that we have been spoiled with your high-quality work, which is difficult to find elsewhere.

Thank members of the AA Bio-group, thank you for sitting through almost 100 practice talks, seminars, and journal clubs with me for the past four years. Thank you for your participation, feedback, and sharing of your profession selflessly. I much enjoyed our inter-disciplinary discussion; I get the most exciting ideas for my own research when we brainstorm together. I will miss our AA Big meetings on Thursday, 8 pm, when I leave; I might skype in from time to time.

Thank Giger lab member: Choya, thank you for being so gentle yet so strong, I admire your perseverance when you are doing science, and nothing is more powerful. Xiaofeng, thank you for inspiring people in the lab to read more, to be strategic, and to go green (GO BLUE!). Ashley, thank you for bringing in awareness for being a better lab citizen and for supporting each other's success as a group. Rafi, oh Rafi, you are indeed one of your own kind of Turkish delight. Thank you for stretching my flexibility, increasing my social tolerance, and I kind of see that I might feel devoid without you when I leave. Ryan, your sense of humor from "up north" is my best material for pondering. Lucas, you are my proudest protégé. I enjoyed our philosophical chat about grad school, dreams, and life. Please remind me of this version of myself with the will to be a decent mentor if I ever drift otherwise.

Thank previous lab member: Yuntao, though we didn't overlap long, thank you for your advice on long-distance relationship and showing me the stereotaxic injection, which had become the central part of my dissertation. Travis, I miss your voice and your big heart in the lab, you always make me feel included. It is my honor that you called me a friend. Katie, thank you for being my interpreter when I just started, when English was far more foreign to me than now. You were always willing to stop a conversation and explain each word and cultural reference for me—for that I am ever grateful. Yev, I miss our days locked down in the TC and troubleshooting water for our OPC primary culture. I much enjoyed our conversation; your clever and witty comments made grad school "so much fun." Thank you for connecting me with your friends, I am so lucky to have you hub me to the glia world.

Thank our lab manager, Sarah and Dao. Sarah, thank you for bringing in order and system into our lab. Your proactive attitude and leadership helped me when I needed the most in my senior years. I have no doubt that you will do great in the grad school. Dao, thank you for bringing in fun and creativity to our lab, your sense of humor lightened our life and your great cooking made our bellies heavy. You always find a way to cheer me up in my stressed moments. I see you as my sister in the lab. I would like to thank our undergrads: Sandy, Sophia, Dava, Riley, Lily, Kevin, Kim, Olivia, and Inwoo. Thank you for your great work, so the lab is running smoothly and we too have assurance to focus on research. Thank Allen lab, for putting up with the Giger lab, especially when we had loud previous lab members. Though I am not particularly disturbing when I am working, I am guilty for frequently "borrowing" your reagents, equipment, Justine, and Martha.

Justine, thank you for being my first friend and best friend in Ann Arbor. You imprinted on me. Thank you for always be there for me; my grad school won't be the same without you. I am still holding on the idea that we open our lab together. I am the bad cop, and you are the nice one. I am sure we will be a great team. And thank you for introducing me another beautiful soul, Blu. It is my honor to know both of you. Martha, thank you for staying chic and your positive energy. Ting HA, how lucky am I to have you from the beginning to the end to this journey. Cynthia, thank you for being my personal editor for years, from my wedding invitation, all kinds of application materials, to this dissertation. Thank you for witness all my milestones in life. In memory of my friend Ming-Cheng, a brilliant mind, his life was tragically cut short during the writing of this dissertation. Ming-Cheng, I will continue the dream that you started in the path of science on your behalf. Thank you Ann Arbor, you've treated me well for the past 5.5 years. This is my first ever city in the State that I lived in, I think I will call AA my home from now on when I am not here. Thank AA sister group: Jorli, Bin, Chih, Jane, Jean, and Sumac Wolverines, thank you for feeding me, clothing me, and housing me when I am too busy to care about living. Without you I would not be able to survive, literally. You are my family and the reason I call here home.

To my family and in-laws back in Taiwan, thank you for being my biggest fans and always cheering for me; I miss all of you. Dad, you enlightened me with science when I was little. Your broad knowledge of plant taxonomy when we were outdoors still impresses me. Mom, thank you for always putting my welfare before my accomplishments, so I know that I have a safety net to fall back to.

Special shout out for my endearing husband, Chang-Ting, you are my champion, my hero. I think you deserve two PhDs. You were there every late night, discussed my experiments, found technique supports, went through my presentation, and read my journal club papers. How lucky I am to have such a good friend, an intellectual equal, and the most reliable collaborator in my career. Thank you for being the husband that I always wanted. You were dedicated to being creative in making me feel better about myself, and you always succeeded. Though we are apart all these years to pursue our degrees, we are closer than ever because of you. Thank you for taking most of the hit in the long-distance relationship concerning travel. Hang in there, I will be by your side soon.

Lastly, to myself and to my high school teacher Hong-heng Yang, she made me brave with this poem, which I would like to share with whoever is reading.

我不去想是否能夠成功 I think not if I can succeed 既然選擇了遠方 Since I have chosen to go far 便只顧風雨兼程 I shall keep marching no matter what

我不去想能否赢得愛情 I think not if I can win affection 既然鍾情於玫瑰 Since I am in love with roses 就勇敢地吐露真誠 I shall get off the high horses 我不去想身後會不會襲來寒風冷 I think not if the hardship will hit me 既然目標是地平線 Since my aim is the horizon 留給世界的只能是背影 I left this world behind for the reason

我不去想未來是平坦還是泥濘 I think not if my future is leveled or rough 只要熱愛生命 If I just love life 一切,都在意料之中 All, are expected

--熱愛生命 汪國真 Loving life -Guozhen Wang (1956-2015)

TABLE OF CONTENTS

DED	ICATION	ii
ACK	NOWLEDGMENTS	iii
LIST	OF FIGURES	xii
LIST	OF TABLES	XV
LIST	OF ABBREVIATIONS	xvi
ABS	ГRACT	xxi
CHA	PTER I	1
Intro	duction: Myelin, A Matter of Fat	1
1.1	Abstract	
1.2	Introduction: A Necessary Evil? Myelin—An Energy Expensive Structure	1
1.2.1	Necessity—Myelin supports biological complexity and protects neurons	1
1.2.2	Evil—Myelin burdens the CNS in disease and in health	2
	— Myelin debris impede neuron and myelin regeneration	3
	— Myelin clearance triggers excessive inflammatory responses	4
	— Metabolic vulnerability-an energy price paid to myelinate	5
1.2.3	Standing Questions: The Focus of This Chapter	6
1.3	Build the White Matter—Myelin Structure, Composition, and Biology	6
1.3.1	Myelin Morphology	6
	— Compact myelin	7
	— Node of Ranvier, paranodal junction, and juxtaparanode	10
	— Non-Compact Myelin	12
1.3.2	Myelin Building blocks	13
1.3.2.	1 Myelin Lipids	13
	— Cerebroside	14
	— Plasmanogen/Sphingomyelin	15
	— Cholesterol	16
1.3.2.2	2 Myelin Proteins	17

 PLP/DM20: Proteolipid Protein 	17
— MBP: Myelin Basic Protein	18
— CNP: 2'3'-cyclic nucleotide 3'-phosphodiesterase	19
— MAG: Myelin-associated Glycoprotein	19
— MOG: Myelin Oligodendrocyte Glycoprotein	20
— Other myelin proteins	20
1.3.3 Myelin Cell Biology—Oligodendrocyte	21
1.3.3.1 Myelination: <i>De Novo</i> Synthesis	22
— OL-lineage fate commitment	22
— OPC pool origins	22
— OPC proliferation / apoptosis	23
— OPC migration	24
 OPC differentiation/maturation 	25
1.3.3.2 Remyelination: Re-program development	26
— Systems for Studying Remyelination	26
— Identifying Remyelination	27
— Removing Myelin Debris	
 Recruiting and Differentiating Adult OPCs 	29
— Failing at Remyelination	
1.3.3.3 Myelin Turnover: Dynamic Myelination	
1.4 The More the Merrier? Precise Myelination Matters	32
1.4.1 To Myelinate or Not, That is the Question	
1.4.2 Lateral Transfer of Metabolites	33
— Energy Cooperation	
— Cholesterol homeostasis	35
1.4.3 Signaling Coordinator-LRP1	
1.5 Bibliography	41
CHAPTER II	60
LRP1 Regulates Peroxisome Biogenesis and Cholesterol Homeosta	sis in
Oligodendrocytes and Promotes CNS Myelin Development and Repair	60
2.1 Abstract	60
2.2 Introduction	60
2.3 Results	62
2.3.1 In adult mice, inducible ablation of Lrp1attenuates CNS white matter repair	62
2.3.2 OL-lineage specific ablation of <i>Lrp1</i> impairs timely repair of damaged white matter	63

2.3.3	Lrp1 is important for proper CNS myelin development and optic nerve conduction	64
2.3.4	Conditional ablation of Lrp1 in the OL-lineage attenuates OPC differentiation	66
2.3.5	Loss of Lrp1 attenuates OPC differentiation in vitro	66
2.3.6	<i>Lrp1</i> deficiency in OPCs and OLs causes a reduction in free cholesterol	67
2.3.7	Lrp1 deficiency impairs peroxisome biogenesis	69
2.3.8	Combination treatment of cholesterol and PPAR γ agonist rescues the differentiation	on block
	in <i>Lrp1</i> -deficient OPCs	70
2.4	Discussion	
2.5	Materials and Methods	
2.5.1	Mice	75
2.5.2	Genotyping	76
2.5.3	Stereotaxic injection	77
2.5.4	Histochemistry	77
2.5.5	In situ hybridization	77
2.5.6	Quantification of lesion size and myelin repair	79
2.5.7	Immunostaining	79
2.5.8	Transmission electron microscopy (TEM)	80
2.5.9	Optic nerve recordings	
2.5.10) OPC/OL primary cultures and drug treatment	
2.5.11	OPC staining and quantification	
2.5.12	2 Western blot analysis	
2.5.13	3 Cholesterol measurement	
2.5.14	Microarray and gene ontology analysis	85
2.5.15	5 Statistical analysis	85
2.6	Acknowledgements	
2.7	Author Contribution	
2.8	Figures	
2.9	Bibliography	
CHA	PTER III	126
Addi	tional Observations While Examining the Role of LRP1 in CNS	Myelin
Deve	lopment and Repair	126
3.1	The study of myelin repair in the LPC demyelination model	126
3.1.1	LPC induced inflammation	126
	 LPC injection post a 'find me' signal on the cell surface 	126
	— Generate local lesion with LPC	

	 Astrocytes from SVZ migrate toward lesion within seven days 	127
	— Nuclei accumulate at the LPC-induced lesion site	128
	— Proliferative cells in the SVZ and OPCs are present in the naïve brain	128
	 Myeloid cells are present at the LPC lesion site 	128
3.1.2	LRP1 expression at the myelin lesion	129
3.1.3	LRP1 ablation in myeloid cells affects the size of the LPC induced white matter lesion	130
3.1.4	Identification of the LPC-induced myelin lesion	131
	— Charcoal	131
	— Cell tracer: CFSE	131
	— Myelin genes	132
3.2	LRP1 in axon-glia interaction and regional myelin diversity	133
3.3	Investigate the mechanism of LRP1 in regulating myelin development	134
3.3.1	Dissect LRP1 functional domains: RAP peptides and <i>Lrp1</i> N2 mice	134
	— Extracellular domain (ECD) antagonist	135
	— Intracellular domain (ICD) phospho-dead mutant	136
3.3.2	LRP1 as a LDL receptor: cholesterol metabolic pathways	137
3.3.3	LRP1 as a transcriptional regulator: miRNA expression	138
3.3.4	LRP1 as a novel regulator of organelle trafficking: Myo1D and peroxisome distribution	139
	— LRP1 regulates Myo1D	139
	— Study LRP1 and peroxisome subcellular localization	140
3.4	Materials and Methods	142
3.4.1	Mice	142
3.4.2	Genotyping	143
3.4.3	Quantitative reverse transcription (qRT)-PCR	143
3.4.4	COS-7 cells binding assay	144
3.4.5	Histochemistry	144
3.4.6	In situ hybridization	144
3.4.7	Immunostaining	145
3.4.8	Transmission electron microscopy (TEM)	146
3.4.9	OPC/OL primary cultures and drug treatment	146
3.4.10) Western blot analysis	146
3.4.11	l Microarray and gene ontology analysis	147
3.4.12	2 Image and statistical analysis	147
3.5	Acknowledgements	148
3.6	Author contributions	148
3.7	Figures	149

3.8	Tables	196
3.9	Bibliography	228
СНА	PTER IV	230
Gene	eral Discussion and Future Direction	230
4.1	Abstract	230
4.2	General Discussion	230
4.2.1	How can non-cell-autonomous roles of LRP1 impact CNS remyelination?	231
	— Controlled inflammation and demyelination	231
	— Myelin debris removal	232
	— The heterogeneity of remyelination	233
4.2.2	How can OL-derived LRP1 impact axon diameter, function, and stability	233
	— Uncoupled compact myelin formation and OL-axon interaction	233
	— Selective myelination and hypomyelination	234
	— Search for OL-axon regulator by studying the caliber of axons in vivo	236
4.2.3	How can cholesterol impact myelination and remyelination	237
	— As a signaling regulator	237
	— As a structural lipid of the membrane	239
4.2.4	How can peroxisome impacts myelin biology	239
	— Consider peroxisome as an all-purposed logistic vehicle	240
	— A hierarchical role for peroxisomes in cholesterol metabolism?	241
4.2.5	Speculations on how LRP1 impacts myelin biology	242
	— LRP1 regulates Myo1d: motor protein trafficking on cytoskeleton	242
4.3	Future Direction	243
	— The role of Lrp1 in different cell types and its contribution to myelin repair	243
	— Identification of LRP1-PPARγ regulated genes important for CNS myelination	245
	— The role of LRP1 in regulating organelle trafficking	246
4.4	Concluding Remarks	247
4.5	Bibliography	249

LIST OF FIGURES

Figure 1.1: CNS myelin anatomy and ultrastructure
Figure 1.2: A diagram highlight the top three lipid types in the myelin15
Figure 1.3: Oligodendrocyte lineage commitment and development21
Figure 1.4: The origin of OPCs under the influence of pattern formation during
development24
Figure 1.5: CNS intercellular metabolic transfer
Figure 1.6: The structure of LDL receptor family
Figure 1.7: The synthesis, maturation, structure, and function of LRP140
Figure 2.1: Generation of Lrp1 global iKO mice
Figure 2.2: In adult mice, global and OL-lineage selective ablation of <i>Lrp1</i> attenuates
white matter repair90
Figure 2.3: LPC injection into the corpus callosum leads to focal white matter
damage and upregulation of myelin-associated gene products92
Figure 2.4: Lrp1 ablation in the OL-lineage leads to hypomyelination and nodal
defects94
Figure 2.5: <i>Lrp1</i> ablation in the OL lineage leads to CNS hypomyelination96
Figure 2.6: Global inducible ablation of Lrp1 in neonatal mice leads to CNS
hypomyelination and reduced axon caliber
Figure 2.7: Loss of <i>Lrp1</i> in the OL lineage leads to faulty optic nerve conduction100
Figure 2.8: Loss of <i>Lrp1</i> in the OL-lineage attenuates OL differentiation
Figure 2.9: Loss of <i>Lrp1</i> does not alter optic nerve size and OPC proliferation 104
Figure 2.10: Free cholesterol is reduced in OPCs deficient for <i>Lrp1</i> 106
Figure 2.11: Lrp1 deficient OLs are sensitive to statin treatment but not to bath
applied mevalonate108
Figure 2.12: Gene ontology (GO) analysis of Lrp1 deficient OPCs revealed
enrichment of peroxisomal genes110

Figure 2.13: In primary OLs, peroxisome density and distribution is regulated by
<i>Lrp1</i> 112
Figure 2.14: In <i>Lrp1</i> deficient OPCs, PPAR γ activation increases peroxisome
density but does not promote cell differentiation114
Figure 2.15: The combined treatment with cholesterol and pioglitazone rescues the
differentiation block of <i>Lrp1</i> deficient OPCs116
Figure 2.16: Working model of LRP1 regulated pathways in developing OLs
Figure 3.1: LPC induced demyelination, astrogliosis, accumulation of nuclei
overtime within the lesion area in the corpus callosum151
Figure 3.2: LPC induced white matter lesion leads to accumulation of CD68+
myeloid cells and cells in the OL-lineage153
Figure 3.3: Elevated LRP1 protein and mRNA expression are observed in the LPC
induced white matter lesion155
Figure 3.4: Elevated Lrp1 mRNA is detected in a subset of cells in the OL-lineage. 157
Figure 3.5: Ablation of <i>Lrp1</i> in myeloid cells does not impact remyelination
Figure 3.6: Labeling of the LPC induced white matter lesion with the cell tracker
CFSE
Figure 3.7: Examination of the specificity of RNA probes used for in situ
hybridization163
Figure 3.8: Lrp1 ablation in the OL-lineage leads to axonal pathology in the optic
nerve
Figure 3.9: Lrp1 ablation in the OL-lineage does not impact retina ganglion cells
(RGC) density or retinal stratification
Figure 3.10: Brain region specific and developmental stage specific regulation of
Myelin proteins in Lrp1 cKO CNS tissue
Figure 3.11: Bath application of the LRP1 antagonist RAP does not inhibit OPC
differentiation171
Figure 3.12: Characterization of $Lrp1^{n2/n2}$ mice carrying a mutation in the distal
NPxY phosphorylation site of LRP1173

- Figure 3.21: Co-localization analysis of LRP1 and PMP70 in OPCs and mature OLs.191 Figure 3.22: Co-localization analysis of LRP1 and PMP70 in OPCs, astrocytes,

LIST OF TABLES

Table 1.1: The comparison of CNS myelin composition	16
Table 3.1: List of differentially regulated genes in O4 ⁺ OLs upon <i>Lrp1</i> ablation.	227

LIST OF ABBREVIATIONS

A

nesi ni inclai cerebi ospinal nal	ACSF	Artificial	cerebros	pinal	fluid
-----------------------------------	------	------------	----------	-------	-------

- AGC1 Aspartate-glutamate carrier
 - AKT Ak strain transforming, aka Protein kinase B (PKB)
- AMPA α-amino-3-hydrozy-5-methyl-4-isoxazole proprionic acid
- ANOVA Analysis of Variance
- AP (coordinate) Anterior-Posterior
- AP (substrate) Alkaline phosphatase
 - APC Adenomatous polyposis coli protein
 - APP Amyloid precursor protein
 - Arg-1 Arginase 1
 - ASPA Aspartoacylase
 - ATP Adenosine triphosphate
- В

С

cleaving enzyme1

- BBB Blood brain barrier
- BCIP 5-Bromo-4-Chloro-3-Indoly-Phosphate
- BDNF Brain-derived neurotrophic factor
- BMP Bone morphogenetic protein
- BrdU Bromodeozyuridine
 - BS Brain stem
- CAG Chicken beta, cytomegalovirus (CMV)
- CAPON Carboxy-terminal PDZ ligand o f nNOS
 - CAM Cell adhesion molecule
- CamK Calmodulin-dependent kinase
- CAP Compound Action Potential
- Caspr Contactin-associated protein
 - CB Cerebellum
 - CB1 Cannabinoid type 1 receptor
- CC Corpus Callosum
- CD68 Cluster of Differentiation 68
- CFSE Carboxyfluorescein succinimidyl ester
- CI-CV repeats Complement-like repeats
 - CNPase 2'3'-Cyclic Nucleotide 3'-Phosphodiesterase
 - CNS Central Nervous System
 - CNTP Ciliary neurotrophic factor
 - COS-7 CV-1 in Origin with SV40 genes
 - CR3 Complement receptor 3
 - CRE Cre Recombinase
 - CSF Cerebral spinal fluid
 - CTGF Connective tissue growth factor
 - CTX Cortex
 - CV Conduction Velocity
 - Cx32 Connexin32
 - CX3CR1 CX3C (C-X3-C motif) chemokine receptor 1
 - CXCL1 Chemokine (C-X-C motif) ligand 1

Е

F

G

Н

I

DEPC	Diethyl pyrocarbonate
DM	Differentiation medium
DMSO	Dimethyl sulfoxide
DNA	Deoxyribonucleic acid
DRM	Detergent-resistant membrane
DPI	Days Post Injection
EAE	Experimental allergic encephalomyelitis
ECD	Extracellular domain
EDTA	Ethylenediaminetetraacetic acid
ER	Endoplasmic reticulum
ERK	Extracellular signal-regulated kinases
EtBr	Ethidium bromide
FcRs	Fc (Fragment, crystallizable) Receptors
FE65	APP binding protein
FGF	Fibroblast growth factor
FISH	Fluorescence in situ hybridization
Flp	Flippase
FM-G	Fluoromyelin-Green
FM-R	Fluoromvelin-Red
FRT	Flippase recognition target
GABA	y-aminobutyric acid
GAIP	G Alpha Interacting Protein
GalC	Galactocerebroside
GAP	GTPase-activating protein
GAPDH	Glyceraldehyde 3-phosphate dehydrogenase
GC	Ganglion cell
GFAP	Glial fibrillary acidic protein
GFP	Green Fluorescent Protein
GIPC	GAIP Interacting Protein C-terminus
GluR	Glutamate receptor
GLUT	Glucose transporter
GM	Growth medium
GO	Gene ontology
GPI	Glycosyl phosphatidylinositol
GPR17	G protein-coupled receptor 17
GSH2/GSX2	Genomic Screened Homeo Box 2
GST	Glutathione S-transferase
GULP	Engulfment Adaptor PTB Domain Containing 1
HBS	HEPES-buffered saline
HDAC	Histone deacetylase
HEPES	4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
HFD	high fat diet
HGF	Hepatocyte growth factor
HIF	Hypoxia-induced factor
HMG-CoA	β-Hydroxy β-methylglutaryl-CoA
IACUC	Institutional Animal Care and Use Committee
ICAP1	Integrin cytoplasmic domain–associated protein-1)
ICC	Immunocytochemistry
ICD	Intracellular domain

IGF	Insulin-like growth factor
	Immunonistocnemistry
IL-Z	Interleukin-2
IN-1	A monocional antibody raised against myelin protein, NI-220/250
	Inducible fill ic oxide synthase
	Internede
IN I IDL (muslin)	Internoue
IPL (IIIyeIIII)	Interperiod line
	In Situ Hybridization
І	III SILU HYDI IUIZALIOII
J 11D1 / 2	INK interacting protein
JII 1/2 INK	c-Jun N-terminal kinases
IXP	Iuxtanaranode
K	Juxtaparanoue
K Ki67	Antibody identified marker of proliferation Ki-67 (MKI67)
KO	Knockout
L	mockout
LAMP	Lysosomal Associated Membrane Protein
LDL	Low-Density Linonrotein
LEs	Late endosomes
LGE	Lateral ganglionic eminence
LINGO-1	Immunoglohin-like domain-containing protein 1
LOX-1	Lectin-type oxidized LDL recentor 1 (Ox-LDLR1)
LPC	Lysophosphatidylcholine, aka lysolecithins
LPS	lipopolysaccharide
LR	Left-Right
LRP1	Low-Density Lipoprotein Receptor Related Protein 1
LXR	liver X receptor
LvsM	lvsozvme 2
Lvs	Lysosomes
LXŘE	LXR response elements
М	
MAG	Myelin-Associated Glycoprotein
MAP	Mitogen-activated protein
МАРК	Mitogen-activated protein kinase
MBP	Myelin Basic Protein
МСТ	Monocarboxy transporter
MDL	Major dense line
MEFs	Mouse Embryonic Fibroblasts
MGE	Medial ganglionic eminence
MGI	Mouse genome informatics
MHC	Major histocompatibility complex
MMPs	Matrix metalloproteinase
MOBP	Myelin-Associated Oligodendrocyte Basic Protein
MOG	Myelin oligodendrocyte protein
MRI	Magnetic resonance spectroscopy
MS	Multiple Sclerosis
mTOR	Mammalian target of rapamycin
MY01D	Myosin 1d
MYT2	Myelin transcription factor 2
Ν	
NAA	N-acetylaspartate
NBT	Nitro blue tetrazolium
NCAM	Neural cell adhesion molecule

J

OAP-1 OSP-associated protein

NGF Nerve growth factor NKX2.1 NK2 homeobox 1 NMDA N-methyl-D-aspartate nNOS neuronal NO synthase NO Nitric oxide NOGO Reticulon-4 NRG-1 Neuregulin 1 NSC Neural stem cells NT-3 Neurotrophin-3

- OB Olfactory bulb
- OCT Optimal cutting temperature
- OL Oligodendrocyte
- OLIG2 Oligodendrocyte Transcription Factor
- OMP25 Outer-membrane protein 25
 - ONL Outer nuclear layer
 - OPC Oligodendrocyte Progenitor Cell
 - OPL Outer plexiform layer
 - OSP Oligodendrocyte-specific protein, aka claudin-11
 - PBDs Peroxisome biogenesis disorders
 - PBS Phosphate-buffered saline
 - PCR Polymerase chain reaction
- PDGFa Platelet-Derived Growth Factor
 - PDZ Post synaptic density protein (PSD95), Drosophila disc large tumor suppressor (Dlg1), and zonula occludens-1 protein (zo-1) domain
- PEXs Peroxins
- PFA Paraformaldehyde
- PGC1a PPARg-coactivator-1 α
- PI3K Phosphatidylinositol 3-kinase
- PIP4, 5, kinase Phosphatidylinositol 4-phosphate (PI4P) 5-kinase
 - PLP Proteolipid Protein
 - PMD Pelizaeus-Marzbacher disease
 - PMP70 Peroxisomal Membrane Protein 70kDa
 - PNL Paranodal loop
 - PNS Peripheral Nervous System
 - POA Pre-optic area
 - POS Photoreceptor outer segment
 - PP Peroxisome Proliferator
 - PPAR Peroxisome Proliferation Activated Receptor
 - PPRE PPAR-responsive element
 - PRR Pattern recognition receptor
 - PRs Progesterone receptors
 - PSA-NCAM Polysialylated-neural cell adhesion molecule
 - PSD95 Post synaptic density protein
 - PS-Rs Phosphatidylserine receptors
 - PTEN Phosphatase and tensin homolog
 - PVDF Polyvinylidene fluoride
- Q R
- qRT-PCR Quantitative reverse transcription polymerase chain reaction
 - RAP Receptor associated protein
 - RCT Reverse cholesterol transport
 - RE Recycling endosomes

Р

RGC	Retinal	ganglion cell
-----	---------	---------------

- RNA Ribonucleic acid
- ROS Reactive oxygen species
- RPE Retinal pigment epithelium
- RT Room temperature
- RT-PCR Reverse transcription-polymerase chain reaction
 - RXR Retinoid X receptor
 - S6 Ribosomal protein s6
- SC (cell) Schwann Cell
- SC (tissue) Spinal cord
 - SCAP SREBP cleavage-activating protein
 - SCI spinal cord injury
- SDS-PAGE Sodium dodecyl sulfate-polyacrylamide gel electrophoresis SEM Scanning electron microscope
- SEMCAP-1 M-SemF cytoplasmic domain-associated protein, GIPC
 - SQS Squalene synthase
 - Src Sarcoma, proto-oncogene tyrosine-protein kinase
 - SRE Rterol regulatory element
 - SRs Scavenger Receptors
 - SREBP Sterol-Regulatory Element-Binding Protein
 - SSC Saline-sodium citrate
 - SSR Site-specific recombinase
 - STORM Stochastic Optical Reconstruction Microscopy
 - SVZ Subventricular zone

	_	
'	Ľ	
	L	

Т		
	ТВ	Toluidine blue
	TGF	Transforming growth factor
	TH cell	T helper cells
	TC cell	Cytotoxic T cell
	ТН	Thalamus
	TSC1	Tuberous sclerosis 1
	ТМ	Tamoxifen
	TLR-2	Toll-like receptor 2
	TERM2	Triggering receptor expressed on myeloid cells 2
	TNF	Tumor necrosis factor
	THR	Thyroid hormone receptor
	Т3	Triidothyronine
	TEM	Transmission Electron Microscopy
U		
V		
	VEGF	Vascular endothelial growth factor
	VLCFAs	Very long chain fatty acids
	VZ	Ventricular zone
W		
	WT	Wildtype
Х		
Y		
	YFP	Yellow fluorescent protein
	YY1	Yin Yang 1
Z		
	ZS	Zellweger syndrome

S

ABSTRACT

Low-density lipoprotein receptor-related protein-1 (LRP1) is one of the most versatile receptors. LRP1 is ubiquitously expressed and best known for its role as a scavenger receptor. The LRP1 extracellular domain binds to and participates in internalization of over 40 different ligands, and thereby regulates myriad cellular functions by recycling components of key pathways. The intracellular domain of LRP1 can undergo phosphorylation at specific tyrosine residues and thereby influence intracellular signaling pathways. In addition, the intracellular domain of LRP1 can be enzymatically processed, translocate to the nucleus, and function as a transcriptional co-regulator. In the developing nervous system, Lrp1 mRNA expression is highest in oligodendrocyte (OL) progenitor cells and rapidly decreases as OLs mature; however, whether LRP1 plays a role in OL development in vivo, remains elusive. Moreover, glial cells bind and internalize myelin breakdown products in an LRP1-dependent manner. As protracted clearance of myelin debris in the CNS is a hallmark of neuronal degeneration and demyelination diseases, the removal of myelin breakdown products through LRP1 might facilitate functional repair. Here we make use of global inducible and tissue-specific *Lrp1* gene ablation in transgenic mice to assess the roles of LRP1 during CNS myelin development and repair. We found that myelin regeneration is attenuated in the absence of *Lrp1*; this defect is likely because of its role in OL maturation and myelin biogenesis. Mechanistic studies revealed that *Lrp1* deficiency disrupts multiple pathways implicated in OL differentiation, including AKT activation, cholesterol homeostasis, PPARy signaling, and peroxisome biogenesis. Moreover, the subcellular distribution of peroxisomes is altered and accompanied by a thinning of cytosolic spaces in OL processes. The impeded differentiation of cells in the OL lineage of *Lrp1* null mice is largely rescued by bath application of free cholesterol and activation of PPARy. This combo treatment improves peroxisome distribution into OL processes and formation of myelin sheets. Collectively, we have identified novel roles of LRP1 during CNS myelin development and white matter repair.

CHAPTER I

Introduction: Myelin, A Matter of Fat

1.1 Abstract

Myelin is by far the most specialized membrane structure in the vertebrate nervous system. This delicate assembly features an exceptionally high lipid to protein ratio. This ratio is critical for providing electrical insulation to axons, through which fast and accurate electrical signal conduction is guaranteed. In the central nervous system (CNS), myelin is generated by mature oligodendrocytes (OLs) through a process called myelination. During myelination, migratory oligodendrocyte progenitor cells (OPCs) become static, exit the cell cycle, differentiate, and mature into myelin-producing OLs. Diseases that disturb the development, maintenance, or replacement of myelin lead to functional deficits. When an OL is elaborating membranes during development, it generates almost 100 times its cell body weight within a short period of time. As this process posts a high metabolic demand, it is conceivable that there is an energy checkpoint for OPCs to determine whether to proceed further. In this chapter, the biogenesis of the myelin building blocks, the challenges faced by glial cells, and their metabolic impacts on CNS health are reviewed.

1.2 Introduction: A Necessary Evil? Myelin—An Energy Expensive Structure

1.2.1 Necessity—Myelin supports biological complexity and protects neurons

More than 160 years ago, the word "myelin" was coined by Rudolf Virchow, in a seminal paper titled "On the extensive presence of a substance analogous to nerve marrow in animal tissues" (Virchow 1854)

. Virchow discovered that "brain fat" is the most widespread ingredient in the vertebrate nervous tissue by heating brains in alcohol (Pearce 2003). The

appearance of "neuroglia" observed by Virchow reminded him of bone "marrow" (Greek, μυελός, muelós) (Verkhratsky & Butt 2013). From then on, the term myelin was proposed and followed to date.

In the CNS, myelin constitutes the white matter, which is readily identified by naked eye due to its white-colored, condensed fatty look in brain specimens. Myelin can be crudely separated into compact and non-compact components based on its morphology. Compact myelin is where membrane fuses and spirally envelops a neuronal axon to ensure saltatory conduction of action potentials. Saltatory conduction is beneficial for evolution as it increased the propagation rate up to \sim 100 fold compared to non-myelinated axons (Boullerne 2016). On the other hand, non-compact myelin components participate in metabolic support through neuronglia interaction (Nave 2010a). Pathological deterioration of myelin sheaths often leads to secondary neuronal degeneration in multiple CNS diseases (Franklin 2002), which further supports the necessity for greater understanding of biological mechanisms underlying proper myelin formation and maintenance.

Similar to neurons, myelin is stable with little turnover in the adult brain. The majority of myelin is thought to persist throughout the entire lifespan of vertebrates (Smith & Eng 1965, Yeung et al 2014). In contrast to neurons, CNS myelin can regenerate after insults, such as following virus infection, chemical or physical induced demyelination, and immune attack (Franklin & ffrench-Constant 2008). Subsequent to these insults, the process of new myelin generation is specifically referred to as re-myelination. In the CNS, myelin generation is carried out by a specific type of glial cell called oligodendrocyte (OL). The ability of OLs to proliferate, differentiate, and mature into myelin-producing cells is crucial to maintain or restore a healthy CNS (Franklin & Hinks 1999).

1.2.2 **Evil—Myelin burdens the CNS in disease and in health**

Not all attributes of myelin are positive, just like Albert Camus said, "There is no sun without shadow, and it is essential to know the night."

Myelin debris impede neuron and myelin regeneration

Ramón y Cajal was the first to suggest that myelin components are inhibitory signals to the CNS repair (Ramon y Cajal 1928). The hindrance on axonal growth and regeneration mediated by myelin breakdown products was first established in 1980s (Berry 1982, Caroni & Schwab 1988). Later, Schwab and colleagues isolated myelin proteins and demonstrated a growth inhibitory effect toward primary neurons. They developed a function-blocking antibody (called IN-1) that neutralized the growth inhibitory activity of mammalian CNS myelin *in vitro* and *in* vivo (Schnell & Schwab 1990, Schwab & Caroni 2008). Initially, the IN-1 antibody was raised against a fraction of myelin components; however, a decade later, the IN-1 antigen was discovered and identified as the reticulon family member Nogo-A (RTN4A) (Chen et al 2000, GrandPre et al 2000, Prinjha et al 2000). From then on, findings unlocked a new and exciting field in the search for molecular mechanisms of myelin-associated inhibitory signals during CNS repair (Filbin 2003, Hannila & Mellado 2017). The detail of this topic has been thoroughly reviewed previously and hence will not be covered in this chapter (Baldwin & Giger 2015).

Similar to neurodegeneration, the lingering of myelin debris is a hallmark of CNS demyelinating diseases, such as multiple sclerosis (MS). At the MS lesion site, myelin-producing OLs are rarely observed despite the presence of numerous OPCs. This suggests that the lesion environment is non-permissive for OPC differentiation and axon myelination (Chang et al 2000, Chang et al 2002, Kuhlmann et al 2008, Wolswijk 1998). Similarly, Miller and colleagues supported a novel concept in the late 1990s, implicating reversible suppression signals sent by neighboring myelin as the key to maintaining the immature OPC pool (Robinson & Miller 1999). In line with this hypothesis, Franklin and colleagues showed the removal rate of myelin debris coincided with the extent of myelin repair (Ruckh et al 2012, Shen et al 2008, Shields et al 1999, Zhao et al 2006). Further evidence showed that purified myelin impairs remyelination *in vivo* (Kotter et al 2006); however, molecular players for the myelin-mediated remyelination block are not clear. Lipase treatment of myelin does not alter the inhibitory properties, suggesting that myelin-associated proteins

might in fact be playing a role (Syed et al 2008). Of note, common myelin-associated axonal regeneration inhibitors, such as Nogo-A, Mag, and OMgP, do not show a negative regulation of myelination *in vitro* (Plemel et al 2013, Syed et al 2008). Instead, these myelin-associated inhibitors, and in particular Nogo-A have been proposed to participate in the precise myelination by altering the lengths of internodes (Chong et al 2012).

- Myelin clearance triggers excessive inflammatory responses

While the clearance of myelin debris is beneficial for CNS regeneration, clearance of myelin by microglia and blood-derived macrophages triggers a strong inflammatory response (Wang et al 2015, Williams et al 1994). As myelin debris accumulates over time after fiber injury, the activation of immune cells follows (Gensel & Zhang 2015). For instance, in the case of spinal cord injury (SCI), myelin debris appears within 24 hours (Buss et al 2005, Ek et al 2012, Imai et al 2008), as does the arrival of neutrophils and complement proteins (Kopper & Gensel 2017). The debris then continues to increase for the following seven days, leading to microglia activation and astrogliosis. In the mammalian CNS, myelin debris sometimes persists for years (Becerra et al 1995, Vargas & Barres 2007). While the activation of monocyte-derived macrophages peaks only at the first 1-2 weeks post-SCI prolonged inflammation persist for months. Upon infiltration, immune cells were found to express phagocytotic receptors (Fleming et al 2006), and phagocytes are loaded with myelin debris for weeks (Greenhalgh & David 2014, Vargas & Barres 2007, Wang et al 2015).

There are controversial studies concerning whether myelin loaded immune cells are reparative or pathological for CNS health and function with no clear-cut conclusions (Kopper & Gensel 2017). Without well-identified mechanisms, some studies suggest myelin-laden immune cells can be pro-regenerative through production of anti-inflammatory molecules (Boven et al 2006, Vogel et al 2013) and inhibition of pro-inflammatory genes expression (Spann et al 2012). However, in the case of myelin-triggered pro-inflammatory responses, downstream signaling following complement activation is suspected to lead to overproduction of cytokines and release of reactive oxygen species (ROS), both of which are destructive. Furthermore, OLs are not mere bystanders, but active generators of immuneregulatory factors to limit pro-inflammatory immune cascades that may result in excessive tissue damage (Peferoen et al 2014). Much like a dominos effect, this prolonged pro-inflammatory signal will lead to progressive demyelination and neuron degeneration, which will ultimately give rise to even more debris. Activated by greater accumulation of myelin debris, more immune cells will infiltrate and get stimulated, therefore igniting a vicious cycle. Collectively, myelin clearance putatively tips the balance of the system and further burdens it with secondary damage.

- Metabolic vulnerability-an energy price paid to myelinate

While myelin serves its duty by insulating axons and protecting neurons from extracellular insults, this unique arrange burdens the nervous system. Due to the long length of the axons, it is not energetically efficient to access metabolites and essential organelles from the cell body over a long distances to supply the distal tip. For this reason, local uptake of trophic factors and metabolites becomes a critical alternative in order to meet timely energy requirements (Nave 2010b). Different from the peripheral, the metabolic system in the CNS is largely segregated from the circulation by blood brain barrier (BBB). BBB limits the rate of exchange of certain nutrient or waste. Moreover, the density of capillaries is $\sim 50\%$ less in white matter than in gray matter, which further limits blood-derived nutrient supply to the white matter (Heinzer et al 2008). The scarcity of readily available metabolites becomes an even more pressing issue during active myelination, where rapid production, transport, and use of a massive amount of proteins and lipids are demanded. Based on morphometric analysis, a single rat OL can produce \sim 50 myelin segments (called internodes), generate 0.1-2 mm² of membrane surface area (~1000 times more of its cell body), and synthesize proteins at a rate of $\sim 10^5$ molecules per min (Pfeiffer et al 1993). It is speculated that at this synthesis rate to match demands, there is little room and capacity for detection and correction of protein miss-folding or

faulty lipid transportation. If not properly executed, this can lead to OL death and hypomyelination of axons. Moreover, during lipid/protein synthesis, oxidative phosphorylation, or generation of ROS, poses an especially great threat to the health of OPCs (Butts et al 2008). Collectively, myelinated nervous system requires a great deal of energy expenditure, and a delicate balance, maintenance of which is likely susceptible to additional metabolic disturbances.

1.2.3 Standing Questions: The Focus of This Chapter

The long-held belief that the vast majority of brain disorders have a neuronal origin is slowly but certainly being replaced by the emerging notion that the major cause may in fact be defects with "neuroglia", including OLs. (Verkhratsky & Butt 2013). This paradigm shift was held dear by Rudolf Virchow, who said "This very interstitial tissue of the brain and spinal marrow is one of the most frequent seats of morbid change" (Virchow 1858). More recently, this hypothesis is further supported by the innumerable body of work, spearheaded by Ben Barres (Liddelow et al 2017, Wang et al 2012). Since all disorders, including demyelinating diseases, can be defined as a form of homeostatic failure in one way or another, understanding how myelin is synthesized, maintained, and repaired in terms of metabolic regulation becomes especially vital. Acknowledging all the presence of extensive literature on neuroglial function is beyond the scope of this work, I will focus on the following aspects: (a) Morphology, composition, and function of myelin; (b) selective protein and lipid components' impact on myelin development and integrity; (c) cell biology of myelin development in health and disease; (d) homeostatic and metabolic regulators and their cross-talk mechanisms during myelin formation.

1.3 Build the White Matter—Myelin Structure, Composition, and Biology

1.3.1 Myelin Morphology

Myelin structure could not be clearly studied until the advent of the transmission electron microscope (TEM) in the 1950s. The knowledge we gained through studying ultrastructure of myelin by TEM led us to a new era. Even though 2D EM has its limitations to fully describe the complex axon-OL interaction *in vivo*,

the foundation laid by these studies still serves as the foundation of our understanding of myelin morphology. The sub-regions of myelin can be defined by its appearance under the TEM. As shown in Figure 1.1, it can be categorized as electron dense (compact) versus electron light (non-compact) domains; membrane insulated (internode) versus opened (node) areas (Figure 1.1). The general feature of each category and how it impacts the CNS function are described below.

– Compact myelin

Compact myelin is formed by a tongue-like cytoplasmic membrane that extends from the cell body and wraps around the axon in a spiral fashion. The leading myelin extension invades inward, squeezes through the gap between axon lamella and previously established myelin, and at the same time expands sideways to accommodate the longitudinal growth of axons (Snaidero et al 2014). Myelin compaction is driven by MBP polymerization by forming a dense meshwork between two cytoplasmic membrane layers, called major dense line (MDL) under TEM (Aggarwal et al 2013). On the contrary, the interface between wraps is called intraperiod line (IPL) (Figure 1.1d-e). Myelin compaction starts from the outmost layer of myelin wraps and delays the leading growing zone for less than four wraps (Snaidero et al 2014, Snaidero & Simons 2014). Each wrap is ~14 nm apart (myelin periodicity) in dehydrated condition (Arroyo & Scherer 2000), and the number of wraps for each axon positively correlates with axon diameter but varies between species and brain regions (Verkhratsky & Butt 2013). In the mouse spinal cord, \sim 10-60 wraps per axon were observed from axons ranging from 1-6 μ m in diameter (Hildebrand & Hahn 1978). A ratio (Greek letter G, Γ) of axon diameter (d²) divided by fiber diameter (d¹) is commonly used to describe the property of a myelinated axon. This ratio was first introduced back in 1937, now called *g*-ratio (Schmitt & Bear 1937). It is believed that to some extent there exists an optimal *g*-ratio (~ 0.77 in the CNS) that correlates with fiber conduction velocity and its biological functions (Chomiak & Hu 2009).

(a) Myelinating oligodendrocyte produces myelin sheathes on axons and forms nodal structures including internode (INT), the node of Ranvier (N), paranodal loops (PNL), and juxtaparanode (JXP). An example of the membrane sequence from the interior axolemma (A) to outer myelin wraps (1-4). Cross-sectioned view of an INT shown in d. (b) A TEM image from P21 mouse optic nerve showing non-myelinated axon ('A'), myelinating axon with a few non-compact myelin wraps ('B'), myelinated axon with compact myelin ('C'). The insect is showing a close-up membrane sequence from a myelinated axon. The area of axolemma to the 4th myelin warp is further enlarged in g. (c) Illustration of the axons from b with different myelin status. Myelin compaction delayed the myelin leading edge 2-3 wraps. (d) A cross-section view from a. Myelin periodicity is defined by the repetitive pattern of compact-myelin. Compact myelin appears dark under the TEM, called major dense line (MDL). The interface in between wraps appears light under the TEM, called interperiod line (IPL). The protein composition and membrane organization were enlarged in e and h. (e) The localization of the myelin structural proteins. MOG located at the abaxonal membrane (the outmost wrap of myelin), MBP located in the cytoplasm of myelin sheath to form a dimer and initiating myelin compaction, PLP located in the myelin membrane to form dimer between wraps, CNP anchor to the cytoplasmic membrane in the non-compact myelin, and MAG locate at the adaxomal membrane (the innermost wrap next to axon membrane). (f) An enlarged view of myelin periodicity. (g) An enlarged view of MDL and IPL from d. (h) An illustration depicts the orientation of the lipid bilayer in each wrap aligned with an image from the TEM. (i) A longitudinal section of an INT and an un-rolled myelin sheath. Myelinic channels run within compact myelin during development. This figure was created by Jing-Ping Lin.

Compact myelin is part of the internode, where the number of myelin segments (~20 to 60 internodes) that is generated by a single OL varies in different brain regions and negatively correlates with internodal length (Matthews & Duncan 1971). There is not a uniformed internodal length for each axon; however, evidence shows that it positively correlates with the diameter, the length, and the secondary growth of axons rather than OL intrinsic traits (Fanarraga et al 1998, Gledhill & McDonald 1977, Hildebrand et al 1994, McDonald & Ohlrich 1971, Murray &

Blakemore 1980, Simpson et al 2013). Little is known about which axon and at where along the axon myelination is initiated (Simons & Lyons 2013). However, myelination seems to favor axons that are >0.4 μ m in diameter (Lee et al 2012a) and demyelination appears to be more prominent on the smaller axons (Cellerino et al 1997, Lin et al 2017, Samorajski et al 1986, Winters et al 2011). Recently, a two-mode model of myelination was put forward by Simons and colleagues that explained its region-dependent variation. There is possibly a "basal" myelination mode that follows the chronological and topographic sequence, and a "targeted" myelination mode that is responsible for plasticity modification (Snaidero & Simons 2017).

It is believed that compact myelin formation is beneficial evolutionarily. It has been argued that myelin is the last "true invention" of the vertebrates. Myelin enables rapid conduction and economic space occupation, as well as participates in the regulation of complex neuronal activities (Baumann & Pham-Dinh 2001, Nave 2010b). Almost all vertebrates possess compact myelin, except the oldest aganathan cyclostomata, such as ostracoderms-jawless fish (Bullock et al 1984). On the contrary, invertebrates and ostracoderms acquired a form of glial ensheathment that functionally resembles vertebrate myelin (Bullock et al 1984, Zalc 2006). In comparative studies of giant nerves from shrimp or squid to small caliber myelinated axons from mammals, we learned that non-myelinated axons spend much more energy and space to sustain similar firing efficiency (Brady et al 2005, Hartline & Colman 2007, Hildebrand et al 1993). Since it is hard to compare conduction velocity from same-diameter axons, in the same species, with or without myelin, it is only an estimation that there exists a ~ 100 fold change. Some quantitative insight was provided by Raminsky and colleagues using an induced demyelinating model of un-dissected nerve fibers in rat ventral roots. Their study showed that the integrity of compact myelin determines the conduction speed and correlates with the prolonged response time for the second. It appears that an optimal internodal length of 1mm shows the fastest signal conduction (50m/s) at 37°C. Of the same setting, the velocity slowed down \sim 25 fold in demyelinated fibers

induced by diphtheria toxin injection (Rasminsky & Sears 1972). Factors that initiate, regulate, or maintain compact myelin stability were clarified to be independent of myelin biogenesis, which is reviewed in the section 1.3.2 (Griffiths et al 1998).

– Node of Ranvier, paranodal junction, and juxtaparanode

The node of Ranvier is a name given by Louis Ranvier to describe the exposed regions on an axon of the PNS (frog sciatic nerve). Which were thought to be the possible outlets used by neurons to acquire metabolic supports (Barbara 2005, Ranvier 1871). The very existence of equivalent node of Ranvier-like structures for the CNS was debated for decades. It was first depicted and reported by Cajal (Ramon y Cajal 1928), however it took another 20 years to be experimentally confirmed with advanced staining methods using methylene blue (Feindel et al 1948). Nodes typically are found to be wider in the CNS than in the PNS, ranging from $\sim 0.5-5 \mu m$ and $\sim 0.25-1.5 \mu m$ respectively (Hess & Young 1952, Jacobs 1967, McDonald & Ohlrich 1971). Nodal gap length varies throughout different brain regions and has no significant correlation with axon diameter in the CNS (McDonald & Ohlrich 1971). Nodal gap length, however, negatively correlates with the axon diameter in the PNS (Jacobs 1967). In some cases, these gaps are contacted by astrocytes or OPCs without a fully understood function (Black & Waxman 1988, Butt et al 1994, Butt et al 1999). A cluster of 10nm particles residing at the outer leaflet of the axolemma was observed by freeze-fracture EM. The density of these particles ($\sim 1200/\mu m^2$) (Rosenbluth 1976) match the estimated density of sodium channels at the node (Chiu 1980, Waxman & Ritchie 1985). It is well appreciated now that these voltage-gated sodium channels are responsible for membrane depolarization to fire action potentials (APs). A drastic decrease of axolemma particle density ($\sim 100/\mu m^2$), synaptic vesicles, microtubules, and mitochondria occur at the paranodal regions, suggesting there is a bottleneck of axonal transport in both directions (Fabricius et al 1993, Rosenbluth 1976, Salzer 1997).

Nodes are guarded by paranodal junctions (PNJ) (Figure 1.1a), through which the subdomains of the axolemma are divided. The morphology of the peripheral PNI was first described by Robertson about 60 years ago, in which a series of overlapping loops formed by the Schwan cells are in close contacts with axonal membrane adjacent to the node (Robertson 1959). Later in the CNS, similar transverse bands with relatively smooth surfaces were observed, and their role as the physical barrier for particle distribution was suggested (Rosenbluth 1976). Current evidence indicates that PNJ functions in sealing the myelin sheath to axons, blocking the lateral movement of ion channels, and connecting channels to influence nodal activity/metabolites trafficking (Rosenbluth 2009). Paranodal loops formed a septate-like junction with the axolemma, which is the largest intercellular junction that can be found in the body of a vertebrate (Rasband & Peles 2016). It is still unclear if the location of nodal structures is predetermined by glial or axonal signals, but it is believed that the PNIs is capable of adjusting their own position towards the future node to accommodate the lateral growth of the myelin sheath (Dupree et al 1999, Poliak & Peles 2003, Rasband & Peles 2016, Snaidero & Simons 2017). Current knowledge shows that this attachment is carried out by Neurofascin155, Caspr, and Contactin during adjustment (Pedraza et al 2009, Zonta et al 2008), and stabilized by Ankyrin-G at the later stage (Chang et al 2014, Peters et al 1991, Wiley & Ellisman 1980).

The other distinct intramembranous cluster of particles in the CNS were observed by freeze-fracture EM. These particles were found dense at the region adjacent to the PNJ and diffused away towards the internodal area (Rosenbluth 1976). Later, similar "rosette" structures about 10nm in size were found in the PNS and the membrane harbored these rosettes acquired its name, juxtaparanodes, because of its localization (Gledhill & McDonald 1977, Kreusch et al 1998, Murray & Blakemore 1980, Rosenbluth 1976). Juxtaparanode describes a range of ~10-15 μ m region at both ends of an internode. It is believed these rosette particles are segregated by PNJ from the sodium channels at the node to carry out distinct functions for electrical signal transduction. Subsequently, evidence showed that

these clusters correspond to the distribution of Kv.1.1 and Kv.1.1 potassium channels (Rasband et al 1998, Vabnick & Shrager 1998, Wang et al 1993, Zhou et al 1998). Current knowledge supports that voltage-gated potassium channels are important in preventing abnormal firing during development (Vabnick et al 1999) and modulating APs in adults by dampening the immediate excitability to repolarizing the AP in myelinated fibers (Hille 1992, Smart et al 1998, Zhou et al 1998).

– Non-Compact Myelin

Non-compact myelin components are regions in which myelin membranes do not fuse which harbor cytoplasm which connect to OL cell body. At these cytoplasm pockets the metabolic substances can be exchanged and transported (Figure 1.1i). The nomenclature for these cytosolic tunnels in the CNS was not unified—including the Schmidt-Lanterman Incisure-like tunnels/clefts, the inner/outer/lateral tongues/lips, the radial components, and the paranodal loops (Lazzarini 2004). However, these "myelinic tunnels" are crucial with their influence on neuronal function (Nave & Werner 2014). The existence and morphology of these cytosolic tunnels in the compact myelin were debated for a long time, as they were rarely found in the adult CNS, as opposed to PNS Schmidt-Lanterman Incisures that persist into adulthood. This ultrastructure was first reported by Peters 50 years ago; he reported dense lines radially arranged thoroughly or partially across the thickness of the myelin sheath in a cross-sectioned optic nerve (Peters 1961). These arrangements looked like tight junctions, and later work found that they contained caludin-11/oligodendrocyte-specific protein (OSP), a family of tight junction proteins (Bronstein et al 1997, Gow et al 1999, Morita et al 1999).

Given that myelinic tunnels are hard to visualize, their structural details were not revealed until recent technical advancements in EM and live imaging of myelin. Traditional EM studies often result in a collapse of intracellular spaces during sample preparation, specifically fixing with glutaraldehyde and dehydration of tissue. The new high-pressure freezing EM method allowed fixation-free sample
preparation, and therefore improved tissue preservation and helped maintain its native architecture (Mobius et al 2010). Recently, by combining 3D EM reconstructive techniques, evidence showed that these tunnels are largely present during myelin development and disappear after myelin compaction (Snaidero et al 2014, Snaidero & Simons 2014). Microinjection of Lucifer Yellow into OL or myelin sheaths further demonstrated that these tunnels are connected to the cell body and allow small substances to pass (Velumian et al 2011). Furthermore, we learned that the myelinic tunnels are maintained by the expression of CNP, which counteract MBP-mediated myelin compaction. It is suggested that the preservation of these myelinic tunnels is the key to make myelin dynamic possible and impact metabolite exchange during axon-OL interactions (Snaidero & Simons 2017, Snaidero et al 2017).

1.3.2 Myelin Building blocks

Lipids and proteins compose the majority of myelin after water. The lipid portion is much higher in myelin (~80%) compared to plasma membrane (<50%) when measured in dry weight (Norton & Poduslo 1973, Rumsby 1978). While myelin proteins constitute the lower proportion, they greatly impact myelin morphology and structure due to their special conformation and surface charge. Generally, PMP22 and P0 are expressed exclusively in the PNS myelin while MOG and MOBP are only found in the CNS myelin. The fact that MAG, MBP, and PLP/DM20 are expressed both in the PNS and CNS myelin, but in different proportions is worth noting (Nave & Werner 2014). Selective myelin lipids and proteins will be highlighted in the following sections, where Table 1.1 lists some of this information with more available in previous reviews (Brady et al 2005, Martenson 1992).

1.3.2.1 Myelin Lipids

Lipids are "the center, life and chemical soul of all bioplasm."—Thudichum, 1884.

More than hundred years have passed after this statement was uttered without losing its validity, especially for myelin biochemistry. Due to its high lipid abundance, the brain is the host region for discovery of many of the complex lipid structures Generally, lipids can be classified into simple, complex, and derived lipids based on their constitution (Figure 1.2). Lipids can also be categorized by their biological function as energy storage (triglycerides), structural components of membrane, or signaling messengers (steroid hormones and inositides). There are no myelin-specific lipids; however, some lipids have a heavy content of myelin. When dry weight is measured, phospholipids are the most abundant ($\sim 40\%$) lipid in myelin, but they are not as prevalent when compared to the dry weight composition of gray matter (\sim 70%) (Martenson 1992). However, when molecular numbers are the unit of measurement, the ratio amongst cholesterol, phospholipids, and galactolipids is 4:3:2 in myelin differing from any other cell membrane composition (Rumsby 1978). Myelin lipids are qualitatively similar among species and between PNS and CNS with regional variations. For example, a higher lipid ratio was found in the spinal cord compared to the brain, glycolipids are exclusively located at the outer-monolayer of a lipid-bilayer, and sphingolipids are absent from mitochondria and low in ER membrane. Readers are directed to Table 1.1 and previous reviews for detail information (Lazzarini 2004, Martenson 1992, Morell & Norton 1980).

- Cerebroside

During early brain development, the synthesis rate of galactosylcerebroside well predicted the accumulation progress of the myelin. Cerebroside together with cerebroside sulfate (sulfatide), composes ~30% of total lipids in the myelin brain. Given the distribution specificity and quantity, it was recognized as an essential lipid for CNS myelin biogenesis. Surprisingly, in a null mice line that was generated to block the terminal step of cerebroside biosynthesis, the gross structure of myelin turned out to be largely normal. However, progressive neurological abnormalities were present and got worsened as these mice aged. Specifically, deformed paranodal loops (intercellular tight junctions) were prominent, leading to the

conclusion that cerebrosides are important for axon-glial interaction. Further studies showed that this cell-cell and cell-substratum interaction impacts nerve regeneration (Brady et al 2005).

Figure 1.2: A diagram highlight the top three lipid types in the myelin This figure was created by Jing-Ping Lin.

- Plasmanogen/Sphingomyelin

Plasmanogen and sphingomyelin fall under the class of phospholipids, which compose >40% of total lipids in myelin. Phospholipids in myelin have similar roles as in other plasma membranes, and serve as structural components and in some cases signaling messengers. Plasmanogen constitutes \sim 30% of the myelin phospholipids. It is synthesized in peroxisomes and is important for myelin development (Di Biase et al 1990, Horrocks 1967, Linington et al 1980).

CNC Myolin				Muolin		White	Gray	
	CNS Myenn				Myenn		Matter	
Sample				Human ^c	Rat ^c	Human ^c	Human ^c	Rat ^c
	% of total myelin protein dry weight				% of total myelin dry weight			
Protein				30.0%	29.5%	39%	55.4%	56.9%
	PLP	50% a	17% ^b					
	MBP	35% a	8% ь					
	CNP	5% a	4% ^b					
	MAG	1% a	1% в					
	MOG	n/a	1% в					
	Others	~10% ª	67% ^b					
Lipid				70.0%	70.5%	54.9%	32.7%	37%
	Cholesterol			27.7	27.3	27.5	22.0	23.0
	Total Galactolipids			27.5	31.5	26.4	22.0	23.0
	Cerebroside			22.7	23.7	19.8	5.4	14.6
	Sulfatide			3.8	7.1	5.4	1.7	4.8
	Total Phospholipids			43.1	44	45.9	69.5	57.6
	Plasmalogen			12.3	14.1	11.2	8.8	11.6
	Lecithin			11.2	11.3	12.8	26.7	22.0
	Sphigomyelin			7.9	3.2	7.7	6.9	3.8
	Phosphatidylserine			4.8	7.0	7.9	8.7	7.2
	Phosphatidylinositol			0.6	1.2	0.9	2.7	2.4

a. (Deber & Reynolds 1991, Morell & Norton 1980, Norton & Poduslo 1973, Rumsby 1978)

b. (Jahn et al 2009)

c. (Lazzarini 2004, Martenson 1992, Rumsby 1978)

Table 1.1: The comparison of CNS myelin composition

Each percentage indicated percentage of total myelin protein dry weight or total myelin dry weight as indicated. The information are gathered from several reviews as noted with a, b, and c. This table was consolidated by Jing-Ping Lin.

Cholesterol

Cholesterol comprises ~30% of total lipids in the myelin and is enriched at the extracellular face of the bilayer. Particularly, cholesterol is the key molecule to form lipid rafts that serve as information signaling platforms and mediate membrane curvature during fusing events. Other than its contribution in membrane structure, cholesterol is considered a critical element, especially during CNS development (Herz & Farese 1999). More specifically, high cholesterol level has been found to act as a critical rate-limiting factor for myelin production. Genetic or pharmacological manipulation of cholesterol synthesis, trafficking, or uptake has been shown to perturb myelin formation both *in vitro* and *in vivo* significantly (Saher & Stumpf 2015, Schmitt et al 2015). Therefore, dysregulation of cholesterol homeostasis is associated with a wide spectrum of CNS neurodegenerative and myelin disorders (Courtney & Landreth 2016, Saher & Stumpf 2015). While we cannot emphasize enough the importance of cholesterol homeostasis to the brain, only recently did we start to understand the regulation of cholesterol in the CNS at a cellular level. Since cholesterol is toxic, more is not better. The fine regulation of transcriptionally controlled biosynthetic pathways, cellular uptake, esterified storage, and cellular efflux needs to be considered to maintain a healthy nervous system. Cholesterol homeostasis and how it impacts the CNS myelination are further reviewed and discussed in Chapter IV.

1.3.2.2 Myelin Proteins

Myelin proteins, except for MBP, are neither dissolvable in aqueous solution nor easy to extract. The initial characterization of the constitution was from a cytoskeletal/lipid matrix that is extracted from myelin using nonionic detergents (Martenson 1992). It is believed that myelin structural proteins (such as PLP, MBP, CNP, and MAG) constitute >90% of myelin proteins in the CNS (Table 1.1, left)(Rumsby 1978). However, recent proteomic data corrected the relative abundance of previously defined proteins to comprise ~35% of total myelinassociated proteins with the advance of technology (Jahn et al 2009). In this section, the general feature of each myelin protein and their impact on the health of the CNS are reviewed. Specific protein trafficking and assembly are discussed in Chapter IV.

— PLP/DM20: Proteolipid Protein

PLP (30kDa) is the most prevalent protein in CNS myelin. Together with its alternative splice form DM20 (M_r 20,000), PLP is embedded in the myelin membrane to stabilize IPL. Abnormally condensed IPL was observed in both PLP knockout mice and PLP mutants (*jimpy* mice). PLP is transcriptionally regulated by myelin transcription factor 2 (MYT2), Yin Yang 1 (YY1), thyroid hormone receptor (THR), and peroxisome proliferator-activated receptor (PPAR) (Lazzarini 2004). The mRNA of DM20 is expressed early in the OPCs before the onset of myelination has an unknown function. Myelinating OLs express PLP/DM20 proteins and thus

they were used as mature OL markers. However, PLP/DM20 are dispensable for the formation of compact myelin. Knockout mice showed relatively normal myelin, motor function, and lifespan. Later in life, the integrity of myelin decreased following osmotic shock, axons appeared swollen, and neuron degeneration occurred. Over-expression of mutant PLP, on the other hand, showed severe hypomyelination and early death in both mouse model and human patient (Pelizaeus-Marzbacher Disease, PMD). Interestingly, the protein structure of PLP resembles that of a channel protein family, lipophilin, suggesting that PLP may serve as a "pore" protein to exchange charged molecules on the myelin membrane. Cultured cells that express PLP, but not DM20, showed a decreased pH in the media, supporting the idea that PLP can sense and regulate the extracellular ionic environment (Lazzarini 2004).

— MBP: Myelin Basic Protein

MBP mRNA is alternatively spliced, resulting in protein isoforms that are 21.5, 18.5, 17.2, 17, and 14 kDa in size. MBP is localized at the cytoplasmic surface of the bilayer to form MDL (Figure 1.1) after myelin compaction. The positive surface charge of MBP gives its name, and no specific tertiary structure and folding were found. The mRNA of MBP has a peri-nuclear distribution in OPCs; however, MBP mRNA is transported to OL processes and locally translated during myelination. Spontaneously derived MBP mutant mice (*shiverer* mice) showed hypomyelination and problematic myelin compaction (Chernoff 1981). Recently, it was shown that MBPs form a meshwork to serve as a size filter leaving out large molecular weight proteins such as CNP and MAG (Aggarwal et al 2013, Aggarwal et al 2011, Simons et al 2012). Overexpression of MBP leads to premature myelin compaction. Although there had been no previous established correlation of MBP with human disease, a recent study showed variation of the MBP gene predicts MS disease progression (Zhou et al 2017).

CNP: 2'3'-cyclic nucleotide 3'-phosphodiesterase

CNP mRNA is alternatively spliced, giving rise to two proteins detected at 46 and 48 kDa molecular weight in the CNS myelin. CNP acquires its name by the structural similarity with phosphodiesterases; however, if the enzymatic function of CNP has a physiological role in the vertebrate myelin (Myllykoski et al 2016, Raasakka & Kursula 2014). CNP is not localized at compact myelin; instead, it is a crucial component for the maintenance of non-compact myelin channels. It has been shown that CNP binds to cytoskeletal elements (tubulin and actin) to promote cellular growth. Of note, CNP amino acids exhibit a similarity to RNA-processing enzymes with an unknown function. The mRNA of CNP is detected in OPCs, whereas the protein's expression starts with pre-myelinating OLs and persists throughout the consecutive stages. For this reason, CNP is used as an OL differentiation marker. Similar to PLP-null mice, CNP-null mice showed relatively normal myelin formation in young animals. Later in life, axon swelling, neuron degeneration, and premature death were observed. Interestingly, CNP overexpression led to myelin defect in transgenic mice, and the following potential mechanism is recently proposed: CNP antagonizes the function of MBP to prevent premature myelin compaction. CNP preserves cytosolic space in myelin, such as paranodal loops, to ensure the possibility of substances exchange (Snaidero et al 2014). The balance between protein level of CNP and MBP determines the integrity of myelin structure (Snaidero et al 2017).

— MAG: Myelin-associated Glycoprotein

MAG was first found in myelin of rats that were injected with radially labeled fucose 45 years ago when they search for glycoproteins (Quarles et al 1973). MAG mRNA is alternatively spliced to two forms, one with a long C-terminal tail (L-MAG, 72kDa) and one with a short tail (S-MAG, 67 kDa). These two forms are developmentally regulated in rodents. The young and adult animals are dominant in L- and S-form, respectively (Inuzuka et al 1991, Lai et al 1987, Pedraza et al 1991, Tropak et al 1988, Tropak & Roder 1997). MAG appears to be 100kDa in size with glycosylation and is low at the CNS myelin. The extracellular portion of MAG contained five Ig domains, and it showed high morphological similarity with neural cell adhesion molecule (NCAM). MAG is not present in compact myelin, but is localized at the adaxonal membrane where it connects myelin sheath to the axolemma. Similar to other myelin protein deletion, MAG-null mice show relatively normal myelination. However, there were increased incidents of repeated myelination in the same axon (multiple concentric wrapping), excessive out-folded myelin, smaller axons in caliber, and decreased oligodendrocyte in aging animals, suggesting that MAG might be involved in the axon-glial interaction of sensing the repulsive signals from axons for the efficiency during myelination (Li et al 1994, Montag et al 1994). There is a naturally occurring hypomyelinated mutant (*quaking* mice) that leads to abnormal MAG glycosylation (Sidman et al 1964). Further studies showed that MAG is functionally associated with Fyn. Severe hypomyelination was observed in Fyn null mice, suggesting the involvement of MAG in regulating myelin formation (Lazzarini 2004, Umemori et al 1994).

MOG: Myelin Oligodendrocyte Glycoprotein

MOG is another glycoprotein associated with myelin, first found as the M2 antigen inducing EAE in guinea pig. MOG is only expressed in mammals and can be detected by surface labeling. MOG has one Ig-like domain on the extracellular surface of myelin sheaths. The expression of MOG correlates with the late stage of OL maturation. MOG is the only CNS antigen that can induce both B-cell and T-cell response in EAE model. The myelin structure is grossly normal in MOG null (Lazzarini 2004).

Other myelin proteins

Other than PLP, MBP, CNP, MAG, and MOG, it was thought that there are less than 10% myelin proteins yet to be characterized. With the advance of profiling methods, additional information was gathered from cell-cytometry, proteomics, and RNA sequencing data. There are actually more proteins (~67% of total myelin protein) that were found to have a potential link to myelin/OL (Jahn et al 2009). For review of other myelin proteins that are oligodendrocyte-associated rather than myelin-associated, such as OSP/claudin-11, OAP-1, Sirtuin2, Integrin, Connexin-32, Neurofascin-155, Caspr, AMPA and NMDA receptors, enzymes that are involved in lipid metabolism, readers are directed to the references listed below (Baumann & Pham-Dinh 2001, Lazzarini 2004, Martenson 1992, Morell 2012, Nave & Werner 2014).

1.3.3 Myelin Cell Biology—Oligodendrocyte

(a) CNS progenitors cells go through the neurogenic phase, gliogenic phase, and committed OL lineage. (b) Neural stem cells (NSCs) at the ventricular zone (VZ) give rise to neurons, astrocytes, and radial glia cells at the subventricular zone (SVZ). Radial glia cells give rise to astrocytes and OPCs that are committed to OL-lineage. OPCs differentiate to type-II astrocytes (in culture condition) or pre-myelinating OLs. Pre-myelinating OLs then mature to become myelinating OLs. (c) Progenitor cells can be crudely categorized by the expression of surface selection markers or stage markers with overlapping phases. (d) Lineage commitment is under the control of different waves of transcription factors that gradually changes their levels across developmental stages. This figure was created by Jing-Ping Lin.

Before the era of TEM, Cajal misinterpreted CNS myelin as an organ derived from axon (Ramon y Cajal 1928). It was due to the limitation of light microscopy, which would be still impossible to achieve the required resolution. With the advancement of technology, however, now it is clear to us that a group of cells, that is OL-lineage, undergo dramatic changes to form myelin in the CNS throughout life. Based on the current nomenclature, myelin biogenesis during development is called myelination, and myelin synthesis after losing pre-established myelin is called remyelination. Although myelination and remyelination are similar in many ways, discovery of the key differences between the two processes critically shaped our understanding of the myelin plasticity. In this section, general overview of myelination, differences during remyelination, and our current understanding of myelin dynamics are addressed.

1.3.3.1 Myelination: De Novo Synthesis

— OL-lineage fate commitment

In neural phylogeny, a neural stem cell (NSC) goes through the neurogenic phase, the gliogenic phase, and then commits to the OL-lineage (Rowitch & Kriegstein 2010). This process is achieved by the influence of transcription factors in a temporal- and spatial- regulated sequence (Figure 1.3). It begins by down-regulation of neuroepithelial factor (*Sox2*), followed by up-regulation of glial-lineage factor (*Sox9*), and the expression of OL-lineage factors (*Nkx2.2, Olig1*, and *Olig2*). OL-lineage transcription factors then lead to the expression of PDGFRa, the key marker in OPC ontogeny as it is only expressed by OPCs. From then on, OPCs proliferate and migrate to populate the whole brain, differentiate under the control of extrinsic and intrinsic signals, and become myelin-producing OLs (Zuchero & Barres 2013). From current knowledge, OL-lineage can be sorted based on its expression of surface epitopes, nuclear transcription factors, mitotic and self-renewal potential, and morphology. Of note, OPCs also express less specific antigens, A2B5 and NG2. Additionally, A2B5 is also expressed by neuronal and glial progenitors, and NG2 is also found on pericytes. (Goldman & Kuypers 2015)

OPC pool origins

Not all OPC populations resemble one another. Different subclasses of OPCs are found in the brain and spinal cord, and can be traced to different progenitor domains, where they are influenced by pattern formation signals, including ventral derived (Shh) and dorsal secreted (BMP). Although the origins of the OL-lineage

have been debated for decades, the currently accepted paradigm crudely divides OPCs into three temporal competing waves (OPC1, OPC2, and OPC3) from partially overlapping areas (Figure 1.4). These waves of OPCs are functionally redundant, as they can replace each other and carry out myelination similarly (Kessaris et al 2006, Nery et al 2001, Orentas et al 1999). In the bran, OPC1 is driven by the ventral derived Shh signal during embryonic stage. The Nkx2.1 expressing OPC1 (Tekki-Kessaris et al 2001) migrates dorsally from the medial ganglionic eminence (MGE) and pre-optic area (POA) to settle throughout the brain (Kessaris et al 2006, Klämbt 2009). Days later, OPC2 expresses *Gsh2/Gsx2* (Chapman et al 2013), originates from the lateral ganglionic eminence (LGE), and migrates dorsally to the cortex (where BMP signal is dominant) to colonize the forebrain (Kessaris et al 2006, Klämbt 2009, Rowitch & Kriegstein 2010). Closer to birth, under the control of *Emx1* (Kessaris et al 2006), OPC3 migrates from the subventricular zone (SVZ) toward the corpus callosum and cortex, integrates with OPC1 and OPC2 populations, and later replaces them to become the main population by postnatal day (P) 10 (Kessaris et al 2006). A pool of OPCs remains as progenitor cells throughout adult life, so that adult OPCs can participate in myelin turnover when needed and have functions independent of myelin biogenesis (De Biase et al 2010). OPCs express AMPA receptors, sodium channels, and form close contact with nodes (Butt et al 1999, Faivre-Sarrailh & Devaux 2013, Rasband et al 1999, Salzer 1997), which may have a physiological role in regulating electrical activities.

— OPC proliferation / apoptosis

The number of OPCs to axon ratio is under tight control. During myelin development, excess of OPCs are generated and subsequently eliminated by apoptosis (Barres & Raff 1994, Raff et al 1993, Trapp et al 1997). OPCs compete for the limited source of survival signals such as PDGF-A, FGF-2, IGF-1, NT-3, and CNTF to proliferate and maintain (Barres et al 1994) (Miller 2002). Electric signals (Gibson et al 2014) are also shown to promote OPC proliferation. Sexual dimorphism plays a role in OL proliferation and apoptosis. Whereas more OLs were found in male mice, OPC proliferation is more active in female (Cerghet 2006).

Figure 1.4: The origin of OPCs under the influence of pattern formation during development (a) Ventral derived Shh signal and dorsal originated BMP/Wnt signals direct the development of CNS progenitor cells. Cross-sectioned view shown in b. (b) Three waves of OPCs migrate to colonize the whole brain following a temporal sequence. Shh: sonic hedgehog; BMP: bone morphogenetic proteins; LGE: lateral ganglionic eminence; MGE: medial ganglionic eminence; POA: Pre-optic area; OPC: oligodendrocyte progenitor cell. This figure was created by Jing-Ping Lin.

– OPC migration

The CNS is built by the long journey of neuronal cells that move radially and tangentially from their place of origin. Compared to neurons and astrocytes, OPCs migrate most extensively and disperse evenly in space to tile the entire brain (Bergles & Richardson 2015, Goldman & Kuypers 2015, Levine et al 2001, Richardson et al 2006, Trotter et al 2010). Both secreted (growth factors: PDGF, FGF, and HGF; chemotropic molecules: netrin and secreted semaphorins; chemokine: CXCL1) and contact-based (extracellular matrix or cell surface molecules) signals have been found to guide OPC migration. However, it was not until recently that we could directly visualize OPC movement. It was demonstrated beautifully by cortical slice culture showing that OPCs migrate towards their future destination by crawling along and jumping between vasculatures (Tsai et al 2016). A defect in vasculature structure but not pericytes hindered the movement of OPCs. Mechanistic studies further showed that Wnt-Cxcr4 signaling is critical in regulating OPC-endothelial interactions. Imaging studies showed that OPCs are constantly "sampling" the environment by extending and retracting cellular processes during migration before they settle for myelination (Hughes 2013, Kirby et al 2006).

OPC differentiation/maturation

160 years after the discovery of myelin, it is still unclear at where the first myelin segment is initiated on the axon, how a single OL myelinates different axons at the same time, and what factors decide the volume of the myelin generated per OL to accommodate the needs of each axon. Instead of a mechanism derived by the internal clock, OPC differentiation is considered to result from the release of local suppressor cues (Emery 2010). Further evidence indicated that OPC differentiation is influenced by neuron electrical activity (Gibson et al 2014), spatial density of OPCs, cues from astrocyte/microglia/macrophage, but less relies on the axonal molecular signals. This discovery is certainly surprising, as the myelin differentiation strongly correlates with neuronal development. On the contrary, this is indeed the case for the PNS; the abundance of neuronal neuregulin-1 (NRG1) type III is detected by ErbB receptor on the Schwann cell to trigger myelination and to determine the thickness of myelin. However, this interaction is not critical in the CNS, as NRG1 or ErbB null animals showed normal myelination. Thus far, no equivalent CNS molecule has been found.

With advances in mouse genetic tools and transcriptional profiling, more molecules are found to be involved in OPC differentiation. Among them, the discovery of neuron- or myelin-associated differentiation inhibitors (Notch, Wnt, PSA-NCAM, LINGO1, NGF, Semaphorins, and GPR17) enabled greater understanding on regional specification during myelination (Budde et al 2010, Dugas et al 2010, Fancy et al 2009, Kim et al 2010, Shin et al 2005, Tawk et al 2011, Zhao et al 2010). For example, studying the signals that prevent repeated myelination of the same axon, preserving nodal gaps, and repelling myelination at the cell bodies or synapses will greatly improve our understanding of myelin coordination. The discovery of inhibitory signals can further lead to developing novel strategies to release OPCs from "repressed" state and promote remyelination or myelin remodeling. On the other end of the spectrum, we learned that hypermyelination can be achieved by inactivating PTEN or overexpressing Akt to ultimately promote PI3K/Akt/mTOR signaling that leads to OL differentiation (Flores et al 2008, Harrington et al 2010, Narayanan et al 2009).

1.3.3.2 **Remyelination: Re-program development**

Unlike neuronal regeneration, spontaneous remyelination takes place naturally in the naïve CNS. As we try to recapitulate this process through virus infection, immune-mediated inflammation, or physical/chemical-induced injuries, we found that before myelin can be replaced, myelin debris must be cleaned up. For the past ten years, remyelination is considered to be "re-development." Remyelination, sometimes referred to as myelin repair, mimics intricate processes of *de novo* myelin biogenesis. During this process, OPCs need to exit quiescence state from the reserved pool, proliferate, differentiate, and ensheath denuded axons. However, combining multiple controversial studies in a unified hypothesis is still an ongoing effort (Franklin & Hinks 1999, Franklin 2002, Franklin & ffrench-Constant 2008, Franklin & Gallo 2014). The models to study remyelination, the differences of myelination versus remyelination, and the standing questions are reviewed as follows.

— Systems for Studying Remyelination

To study remyelination, establish a condition that is non-myelinated or demyelinated as baseline is important. I listed several systems that are commonly used to study remyelination, what do we learn about remyelination from each method, and their limits are noted as follows.

Nonmyelinated Tracts: Although axons in an adult mammalian optic nerve can reach as high as 99% myelination rate, the intraretinal segments of ganglion cell axons are not myelinated in most rodents (Perry & Hayes 1985). In humans, dogs, rabbits, and chickens, these bundles are myelinated by OLs. Intra-ocular transplantation of Schwann cells resulted in limited myelination, while transplanted OPCs reached 25% coverage in the retina (Huang et al 1991, Laeng et al 1996).

Neonatal animals/myelin mutants: Since active myelination happens post-natally in mammalian organisms, neonatal counterparts can serve as a solid receiver. Through engraftment studies, we learned that remyelination can readily occur in the CNS. By engrafting PNS nerve, we learned the extent of permissiveness of this extracellular milieu, where CNS axons can enter the transplants, and are myelinated by Schwann cells . Additionally, myelination can be triggered by transplanting CNS fragments into myelin-defected brain, such as *Shiverer* mice (Franklin & Blakemore 1990, Gout & Dubois-Dalcq 1993, Gout et al 1988).

Myelin Toxins in Adult Animals: Toxin-mediated demyelination can be conducted by focal tissue injection, intrathecal injection, or chow feeding. Local myelin lesions can be generated by the injection of demyelinating reagents including lysolecithin/lysophosphatidyl choline (LPC), Ethidium bromide (EtBr), antigalactocerebroside antibodies, and complement. X-irradiation can also eliminate local remyelination capacity. Diffused myelin lesions can be generated by the injection of viral constructs or Cholera toxin B, ingestion of cuprizone infused chow, and induction experimental allergic encephalomyelitis (EAE). Of note, each method generates a slightly different local environment, leading to a different remyelination potential. As a result, one needs to take precaution when interpreting data from these studies. For example, cuprizone damages axons in addition to OLs, LPC spares astrocytes and OPCs, and EtBr kills all dividing cells (Blakemore & Franklin 2008, Lazzarini 2004).

— Identifying Remyelination

There is no unique molecular marker for remyelination. The most commonly used method to analyze remyelination is to use EM or to quantify histological changes indirectly. Axon ultrastructures indicative of non-compacted myelin, thinner sheaths (higher g-ratio), or shorter internodes that resemble immature myelin during development are indirectly assumed as undergoing remyelination. Additionally, since similar features were observed in degenerating tissue, distinguishing morphologies of degenerating or regenerating myelin becomes a challenging undertaking. One proposal puts forth that the thickness of myelin and the number of internodes in remyelinated axons are not correlated with axon caliber, and can never reach the level of its un-affected counterpart. However, this observation is biased, since in the case where myelin is completely regenerated, there is no way to discriminate it from the un-affected normal tissue. With the improvements of technology, an elegant imaging study demonstrated that remyelinated axon exhibited indistinguishable myelin thickness, and that the internodal length is approaching that of uninjured controls after 6 months. This was done by YFP labeling of adult NG2⁺ OPCs using retrovirus injection in adult mice with a spinal cord contusion injury (Powers et al 2013).

— Removing Myelin Debris

Before OPCs can initiate the remyelination process, creating a permissive environment is essential. Debris from myelin breakdown accumulates following injury, and failure of debris removal correlates with the poor myelin repair. Myelin can be removed through both opsonized and non-opsonized pathways by microglia/macrophages. Opsonized clearance is regulated by pattern recognition receptor (PRR) and complement receptor 3 (CR3/CD11b/MAC-1) (Kopper & Gensel 2017, Rotshenker 2003). Microglia are polarized and recruited to the lesion by extracellular ATP through purinergic receptors within 1-2 days following injury. Whereas some microglia can be neurotoxic, some microglia can be neuroprotective by down-regulating pro-inflammatory signals (TNF-a and IL-1b) and increasing anti-inflammatory signals (IGF-1, BDNF, IL-10, and TGF-b). Phagocytosis can also take place with or without inflammation, the latter being toxic for neuronal survival and OPC remyelinating capacity. Ongoing investigations focus on pro-inflammatory responses mediated by TLRs and FcRs, as well as anti-inflammation responses mediated by TREM2, PRs, PS-R, SRs, and subtypes of FcRs will be informative. (Haider 2015, Kopper & Gensel 2017, Neumann et al 2009)

28

Recruiting and Differentiating Adult OPCs

Starting from CNS developmental stages, OPCs evenly tiled the whole brain and persist into adulthood of animals. New OPCs in adult animal can be generated from SVZ-residing progenitors. Both pre-exist and newly committed adult OPCs migrate and cycle slower than perinatal OPCS (Levine et al 2001, Talbott et al 2005). The capability of myelin replacement by adult OPCs varies among different brain regions, declines with age, and is weaker in males (Li et al 2006). Robust myelin repair is often observed in rodent demyelination models; however, in humans, this capacity is greatly reduced. Our understanding of key steps of remyelination comes from studies with post-mortem MS brain tissue. OPCs were found to be sparse in about 30% of the un-myelinated MS lesions, and another 70% of MS lesion showed an abundance of OPCs, which however, remained in an immature state and failed to repair myelin lesions (Chang et al 2000, Martin et al 2008, Wolswijk 1998). Together, these studies suggest that disturbances in either OPC recruitment or differentiation lead to remyelination failure. From then on, the main focus has been on investigating the signals known to promote OPC migration or differentiation in animal models of demyelinating disorders. Semaphorin (Sema) 3F and PDGF signals in the OPCs and reactive astrocytes derived CXCL1, 8, and 10 signals at the lesion border were found to positively regulate OPC recruitment. Sema3A, on the other hand, correlates with reduced OPCs at the lesion and poor repair. Much like *de novo* OL differentiation, inhibitory signals such as Lingo-1 (Li et al 2007, Mi et al 2005), Notch (Genoud et al 2002, Zhang et al 2009), Wnt (Fancy et al 2009, Feigenson et al 2009), myelin products (Plemel et al 2013), and PSA-NCAM (Charles et al 2002) hinder myelin repair. Additionally, BMP-mediated astrogliosis leads to hyaluronan deposition at the lesion. Hyaluronan most likely blocks differentiation through TLR-2 expression and activation by OPCs (Back et al 2005, Sloane et al 2010). Different signals are required during development and repair; for example Olig1 signal can be compensated by Olig2 during development, but is required during remyelination.

Failing at Remyelination

As mentioned, remyelination required adult OPCs to differentiate and mature into myelinating OLs. While spontaneous remyelination is considered to be robust and not easily prone to failure, multiple lines of evidence show that OPCs stall in an immature state at the border of MS lesions (Chang et al 2000). Moreover, mechanistic studies sometimes do not agree with each other in different remyelination models. To reconcile these observations, local signaling environments are considered to weigh more than OPC intrinsic potential. Franklin articulated a "dysregulation model" 15 years ago to explain possible reasons for remyelination failure (Franklin 2002). In this model, OPCs are locked at a quiescent immature state, not necessarily due to the prolonged inhibitory signals, but rather due to missing a critical window for differentiation. Chronic MS lesions are relatively noninflammatory and surrounded by non-reactive scarring astrocytes; these conditions might not be permissive for myelin repair. In addition, decreased HDAC recruitment to the lesion cannot modify the profile of transcription factors and leading to a failure in becoming differentiation profile, further explaining remyelination failure. Our knowledge to promote successful remyelination in diseases is rather still elementary. Therefore, future work that validates targets that regulate OPC differentiation, integrates current knowledge to create a conceptual framework, considers non-genetic regulatory level processes such as epigenetics, and access to human tissue will provide valuable insights (Chang et al 2002, Gilson & Blakemore 1993, Imai et al 2008, Kotter et al 2011, Kuhlmann et al 2008, Levine et al 2001, Maki et al 2013, Taveggia et al 2010).

1.3.3.3 Myelin Turnover: Dynamic Myelination

Myelin has been especially studied for its exceptional stability with little to no turn over. The half-life of myelin components range from weeks to several years, and some are too long to be traced by pulse-chased isotope labeling (Toyama et al 2013, Yeung et al 2014). This working hypothesis was further corroborated when dissections revealed that the ultrastructure of 5000-yr-old myelin from a Tyrolean Iceman was grossly intact (Hess et al 1998). However, recent evidence showed that myelin is under constant remodeling in adulthood (Young et al 2013), and can be influenced by local functional activity. Adult OPCs slowly, but constantly, proliferate and differentiate to generate shorter but more frequent internodes in the mouse optic nerve. It was proposed that these shorter myelin sheaths open up the possibility of refining neuronal functions (Lasiene et al 2009, Young et al 2013).

The total volume of myelin generated by one single OL seems to be constant; however, myelin density, internodal length, thickness, and segment number were found to be heterogeneous in different brain regions. More myelin wraps per internode or longer internodal length is often associated with fewer segments (Simons & Nave 2016), suggesting there is plasticity during myelination. It is speculated that this variability between various brain regions attributing to differential functions of the brain. Further evidence showed that even environmental stimuli could shape the morphology of myelin (Fields 2008, Liu et al 2012, Makinodan et al 2012, Mangin et al 2012, Young et al 2013). For example, social isolation and lack of visual stimulation negatively impacts myelination (Liu et al 2012, Makinodan et al 2012). On the other hand, reading, learning, and motor skill training stimulate myelination in a region-dependent manner (Bengtsson et al 2005, Keller & Just 2009, Liu et al 2012, Sampaio-Baptista et al 2013, Scholz et al 2009). The underlying molecular mechanisms remain largely elusive; however, this adaptive myelination mode seems to be independent of the OPC intrinsic feature.

Clearly, searching for the molecular regulators of dynamic myelination is important, as it might lead to discovering ways to intervene in myelin repair. Recently, the association between myelin membrane alterations and increase of myelin volume was investigated by PTEN ablation in adult mice. PTEN loss of function leads to activation of the Akt/mTOR pathway, which triggered active myelination. The active myelination is associated with the morphological changes which myelinic channels are resumed (Snaidero et al 2014). As mentioned previously, myelinic channels are regulated by the expression of CNP. CNP functioned in antagonizing MBP to maintain myelinic channels, ensuring metabolic exchange between OL and axons (Snaidero et al 2017). Interestingly, in CNP null mice myelination is spared, but axon integrity is compromised with age. Normal aging impairs myelin integrity, differentially affecting myelin proteins including CNP. Further studies, focusing on the epigenetic changes during cognitive activities and considering intercellular metabolic exchange will greatly improve our understanding of the emerging picture.

1.4 **The More the Merrier? Precise Myelination Matters**

1.4.1 **To Myelinate or Not, That is the Question**

From studies in the past, we learned that not all myelin structures are generated equally. As mentioned before, they in fact differ from one brain region to another to meet specific activity requirements. A constant g-ratio for each axon diameter was found, suggesting that myelin wraps are associated with a specific axon caliber. Myelin dynamically alters its structure to adapt to new neuronal activities, such as learning. To perform complex function, precise coordination of electrical signal transductions from neighboring inputs is required. Therefore, unrestricted myelin thickening (leads to uncontrolled increasing signal transduction speed) is not necessarily better. In addition, myelin is an energy expensive structure. It was argued that the amount of ATP spent to maintain myelin structure is actually more than what is conserved when axons fire action potentials (Harris & Attwell 2012). Nave and colleagues argued that defective myelin-mediated metabolism do more harm than good—even the myelin structure remains grossly intact (Nave 2010a, Nave 2010b, Nave & Trapp 2008, Simons & Nave 2016). It was speculated that myelin ensheathment confines the access of outer energy source exchange to the nodes, defective myelin with deformed nodal structure often leads to axon degeneration. Many myelin proteins, such as CNP, MAG, and PLP were found to be crucial in supporting axonal integrity rather than functioning in myelin biogenesis.

In a large projection neuron, up to 99% of the cytoplasm is in the axon and 1% in the cell body. As neurons possess axons up to a meter in length, the timely

supply of metabolites to axons and synapses, far away from the cell body, is a formidable challenge. To understand the metabolic stringency of neurons due to their length, a scale up model is discussed. Consider a cortical neuron with a 1 μ m diameter axon width and a 100 cm axon in the corticospinal tract; this is equivalent to traveling on a 4 m wide highway from the University of Michigan to the East Coast (~2500 miles away) (Nave 2010a). Molecular transport in fast bound (5 μ m/s) cytoskeleton-associated vesicles, such as mitochondria, would take 2-3 days (Zala et al 2013). However, if traveled through slow bound diffusion (2 mm/day), such as soluble enzymes, it would take years to reach the distal part of the axon. This time scale is way beyond the stability of a protein (Brady & Lasek 1981, Oblinger et al 1988, Yuan et al 1999). In either case, the response time is way slower than the metabolic demand for neuronal activities. Therefore, a route of transferring nearby metabolites through axon-glia interactions is crucial.

For successful remyelination, myelin degeneration and regeneration must happen sequentially. Inflammation is important for myelin debris removal; however it can also induce apoptosis of the myelinating OLs. Future studies for signaling regulators that coordinate these events are required.

1.4.2 Lateral Transfer of Metabolites

Energy Cooperation

Glucose is the major source of energy in the brain. Endothelial cells at the capillary take up glucose and pass it on to neuronal cells through glucose transporters (GLUTs). Glucose then can either be stored as glycogen in the astrocyte, or undergo glycolysis to generate lactate or pyruvate in glia cells (Wiesinger et al 1997). Mitochondria oxidize lactate and pyruvate to generate ATP in neuronal cells. Lactate and pyruvate can be transferred between astrocytes and OLs via monocarboxy transporters (MCTs) and gap junctions (connexins, Cx). During myelination, OLs consume astrocyte-derived lactate to generate ATP or synthesize myelin lipids (Rinholm et al 2011, Sánchez-Abarca et al 2001). Interestingly, OLs do not rely on functional mitochondria to maintain their myelin,

nor do OL mitochondria impact axon integrity *in vivo* (Fünfschilling et al 2012). One explanation for this came with the observation that mitochondrial traffic is fast along the axon, but stalled at the nodes of Ranvier (Misgeld et al 2007).

Figure 1.5: CNS intercellular metabolic transfer

(a) Glucose is the major energy source of the brain. Glucose passes through BBB and goes into the cells through GLUTs. Glucose is transformed to pyruvate and to lactate. Lactate can be transfered between neurons, astrocytes, and OLs through MCTs to be the energy source for mitochondria to create ATPs. Neuronal axons provide metabolic support for OLs by NAA transfer through myelinic channels. OL utilize NAA to synthesize myelin lipids and cholesterol. (b) Cholesterol cannot pass BBB of the CNS and can only be synthesized locally. Cholesterol can be transferred in between cells. Astrocyte derived LDL load cholesterol through membrane contacts with OLs to meet local demands of neuronal synapse. LDL, low-density lipoprotein; BBB, blood brain barrier; GLUT, glucose transporter; MCT, monocarboxy transporter; NAA, N-acetylaspartate; ATP, Adenosine triphosphate. This figure was created by Jing-Ping Lin.

Additionally, selective MCT1 ablation in glial cells leads to axon degeneration and neuronal loss (Lee et al 2012b), suggesting that lactate may be transported from OLs to axons at the nodes for axonal mitochondria to generate ATP. It was also speculated that OLs support axons through energy generated by breakdown of myelin lipids in OL peroxisomes, which are accumulated at the paranodal loops (Kassmann 2014). However, astrocytes also express MCT1 (Rinholm et al 2011), shown by their capability of passing lactate to neurons at the synapses (Suzuki et al 2011), and formaing close contacts with nodes. Future cell-type specific deletion is required to dissect this specific relationship. On the other hand, neurons support OLs by providing N-acetylaspartate (NAA) to synthesize myelin lipids. The NAA catabolic enzyme, aspartoacylase (ASPA), strictly resides in OLs (Namboodiri et al 2006). Defects in ASPA in the OLs, as well as the aspartate-glutamate carrier (AGC1), an enzyme shuttle for NAA precursor to the cytosol, in the neuronal mitochondria lead to hypomyelination (Jalil et al 2005, Kaul et al 1993, Mersmann et al 2011, Wiame et al 2009, Wibom et al 2009). As illustrated in Figure 1.5, the bidirectional metabolic exchange amongst neurons, astrocytes, and OLs fulfills the energy demand for brain function.

Cholesterol homeostasis

CNS cholesterol is separated from the circulation by the blood brain barrier (BBB) (Björkhem & Meaney 2004), The BBB prevents fluctuations of cholesterol levels caused by dietary uptake. Distinct from the cholesterol dynamic in the periphery, over 95% of cholesterol in the mammalian brain is locally synthesized *de* novo by CNS resident cells (Dietschy & Turley 2001, Jurevics & Morell 1995). In addition, over 99.5% of cholesterol in the CNS exists as un-esterified, free form (Björkhem & Meaney 2004), and is stable with a half-life of 0.5-5 years (Andersson et al 1990). Cholesterol is transferrable between CNS cell types via a process called reverse cholesterol transport (RCT) (Courtney & Landreth 2016) (Figure 1.5). Notably, OLs synthesize the majority of cholesterol cell-autonomously, and this constitutes ~80% of the total cholesterol in the CNS (Muse et al 2000). Interestingly, astrocytes collaboratively produce the majority of lipoprotein particles in adult CNS, (DeMattos et al 2001, Xu et al 2006) which serve as cholesterol shuttles between cells (Dietschy & Turley 2004, Han 2007). In order to meet local needs of forming/remodeling synapses and axonal growth, neurons uptake additional cholesterol containing lipoproteins that are generated from neighboring glial cells. This uptake is mediated at lease in part by the family members of the low-density lipoprotein (LDL) receptor, including LDL receptor receptor-related protein 1

(LRP1) (de Chaves et al 1997, Hayashi et al 2004, Mauch et al 2001, Posse De Chaves et al 2000).

1.4.3 Signaling Coordinator-LRP1

With the advances in "omic" profiling studies, more myelin/OL candidate genes were found (Zhang et al 2014). Among them, low-density lipoprotein receptor-related protein 1 (LRP1) caught our attention. LRP1 is also known as CD91 and the α -2-macroglobulin receptor. LRP1 was discovered based on its structural and biochemical similarity to LDL family members (Figure 1.6). A potential role in lipoprotein trafficking was first postulated in the 1980s (Herz et al 1988). Family members include core members (LDLR, VLDLR, LRP1, LRP1b, LRP2, LRP4, and LRP8), distant members (LRP5, LRP6, and LRP11), and far members (LRP3, LRP10, LRP12) (He et al 2004, Lillis et al 2008). All members contain two or more cysteinerich complement-like repeats, also called ligand binding repeats. LRP1B with high sequence similarity that has overlapping ligand-binding ability with LRP1. LRP1B undergoes endocytosis in a slower rate than LRP1, therefore it antagonizes the function of LRP1 (Causevic et al 2003, Chappell et al 1993, Chappell et al 1994). Similarly, LRP2 functions in ligand uptake in epithelial cells of the kidney (Cathcart et al 1991). The structures of LDLR, VLDLR, and LRP8 are similar, these receptors function in reelin signaling rather than lipoprotein endocytosis (Chazaud et al 2002). LRP4 structurally resembles a portion of LRP1. LRP4 is a receptor for Agrin, a protein that modulates the formation of neuromuscular synapses and functions in limb patterning (Christensen et al 1996, Chrzanowska-Wodnicka & Burridge 1996). The structure of LRP5/6 are more diverse than for the principal LDL family members (Chu et al 1994), they serve as co-receptors for Wnt signaling. LRP11 functions in intracellular protein trafficking (Chu et al 1994). Interestingly, Lrp1 gene deletion is embryonic-lethal in mice (Herz et al 1992), indicating that Lrp1 deficiency cannot be compensated by other LDL family members albeit their structural similarity.

The core and distant LDL family members are shown. The differences in structure between LRP1 and LRP1B are labeled in red on LRP1B, including one extra ligand binding repeats and a 33 amino acids insertion at intracellular domain. The identity of the amino acid sequence is 59% between LRP1 and LRP1B. EGF, epidermal growth factor; VPS10P, Vacuolar protein sorting 10 protein; GGA-binding motif, Golgi-localized, gamma adaptin ear-containing, ARF-binding; PPPSP motif, proline proline proline serine proline motif. This figure was created by Jing-Ping Lin.

LRP1 is one of the largest family members with an extracellular α -chain (515) kDa) non-covalently attached to a single pass transmembrane β -chain (85 kDa). The *Lrp1* gene is activated by sterol regulatory element binding protein 2 (SREBP2). hypoxia-induced factor 1α (HIF1 α), and nitric oxide-dependent transcription factors. *Lrp1* is blocked by a naturally occurring anti-sense RNA that is reversely transcribed from *Lrp1* gene exons 5 and 6 (Auderset et al 2016). A chaperone, receptor associated protein (RAP), binds to LRP1 protein precursor to prevent misfolding and premature ligand binding in the ER. LRP1 precursor is then transported to the Golgi through the regulation of its NPxY domain (Auderset et al 2016). The dissociation of LRP1-RAP complex is triggered by low pH in the trans-Golgi network. Furin proteases cleave LRP1 precursor at the consensus sequence (RxKR or RxRR) to generate the α - and β -chains. These two chains remain attached as a functional unit when the receptor is inserted into plasma membrane at the cell surface. On the cell surface, LRP1 can be processed by sheddases, such as beta-site APP cleaving enzyme1 (BACE1) and matrix metalloproteinase (MMPs), to form a soluble extracellular domain (sLRP1). sLRP1 is detected in plasma and cerebral spinal fluid (CSF) in the forms of α -chain and 55kDa β -chain (Auderset et al 2016, Gonias & Campana 2014). The intracellular domain of LRP1 can be processed by γ - secretase to release a 15k Da LRP-ICD, which serves as a transcription regulator (Figure 1.7).

There are four ligand-binding repeats in LRP1, most of the ligands bind to cluster II and IV (CI and CIV). Crystal structural studies of this complement-like repeat revealed that it forms a cage for Ca²⁺ to stabilize the structure of LRP1 (Fass et al 1997). Additionally, LRP1 contains EGF precursor homologous regions, which consists of two cysteine-rich EGF repeats and β -propeller domain (YWTD repeats) (Jeon et al 2001, Springer 1998). Mutants at the EGF precursor homologous region lead to failure of ligand releasing in the low pH endosomal compartments (Davis et al 1987, Mikhailenko et al 1999, Rudenko et al 2002). LRP1 contains a single-pass transmembrane and a cytoplasmic domain consists of 100 amino acids. There are two dileucine (LL) motifs and two NPxY motifs in the cytoplasmic domain. The distal NPxY motif is phosphorylated by PDGFR- β through CTGF and v-Src signaling (Barnes et al 2003, Boucher et al 2002, Yang et al 2004). The cytoplasmic domain of LRP1 interacts with various adaptor proteins, such as Disabled-1, Shc, PKC α , FE65, PSD95, SEMCAP-1, JIP1/2, GULP, Talin-like protein, OMP25, CAPON, PIP4,5, kinase like protein, ICAP1, and Cb1 (Lillis et al 2008).

Over the past 20 years, our knowledge of LRP1 has expanded remarkably. We learned that it is one of the most multifunctional endocytic scavenger receptors. LRP1 binds to over 40 different ligands, and is involved in regulating a broad spectrum of cellular physiology in our body (Pieper-Fürst & Lammert 2013). By recycling components functioned in other pathways, LRP1 indirectly regulated physiological functions. By its intracellular domain phosphorylation, LRP1 directly pass down extracellular signals to influence signaling pathways inside the cells. Given there is a broad spectrum of ligands bind to LRP1, the role of LRP1 as a sensor of the cellular microenvironment was proposed (Gonias & Campana 2014). LRP1 is ubiquitously expressed in various cell types. The roles of LRP1 in vasculature protection, cancer progression, apoptotic cell phagocytosis, immune responses, lipid homeostasis in adipocytes, BBB functions, nervous system development, amyloid clearance, and so on have been intensively reviewed (Lillis et al 2008) (Auderset et al 2016, Boucher & Herz 2011, Bu 2009, Gaultier et al 2008, Gaultier et al 2010, Gonias & Campana 2014, Gorovoy et al 2010, Kanekiyo & Bu 2014, Kanekiyo et al 2013, Liu et al 2007a, Spuch et al 2012, Zlokovic et al 2008). Following I focus on several aspects that are most relevant to my studies (Chapter II and III). Additional relevant information about LRP1 is briefly summarized as I describing and discussing my new findings in later chapters.

Previously, LRP1 has been found to bind and internalize detrimental myelin debris (Fernandez-Castaneda et al 2013, Stiles et al 2013), which suggests its role in facilitating neuron and myelin regeneration. In the process of RCT, *Lrp1* transcripts are expressed in all neuronal cells, as well as showing the highest level in OPCs. As OLs mature, *Lrp1* transcript levels decrease drastically, coinciding with the decreasing rate of cholesterol biosynthesis during myelination (Muse et al 2000, Quan et al 2003). Furthermore, selective deletion of *Lrp1* in the forebrain under the α CaMKII driver significantly lowers cholesterol levels in the adult mouse brains (Liu et al 2010). On the other hand, conditional deletion of cholesterol synthesis enzyme (SQS) in OLs under CNP driver increased LRP1 level in adult mice spinal cord (Saher et al 2005). Cholesterol-induced axonal regeneration was abolished by LRP1 antagonist *in vitro* (Hayashi et al 2004). However, the level of cholesterol uptake is not affected upon LRP1 deletion in OLs (Safina et al 2016). Collectively, these findings imply the possibility that LRP1 is more than a cholesterol transporter in OPCs/OLs. Albeit recent work shedding light on the requirement of LRP1 in oligodendrogenesis (Hennen et al 2013, Safina et al 2016), the role of LRP1 in OL cholesterol homeostasis, and how it affects myelination during development and injury repair *in vivo* remain to be elucidated.

To bridge these gaps, in the following chapters, first I answer if LRP1 has a role in CNS myelin development and repair. Then I ask if LRP1 participates in myelin repair, if it is through similar pathways as during myelin development. Following I ask which stage of OL development is LRP1 involved and what is the potential mechanisms.

Figure 1.7: The synthesis, maturation, structure, and function of LRP1

(a) LRP1 progenitor is bound by RAP in the ER, matured in golgi by Furin processing, and transported to cell surface. At the surface it can further be processed by sheddase and γ -secretase to generate sLRP1 and LRP1-ICD. (b) LRP1 endocytose ligands to enter endosomes. (c) LRP1 transduces signals through intracellular phosphorylation or (d) trans-activate nearby receptors. RAP, receptor associated protein; EGF, epidermal growth factor. This figure was created by Jing-Ping Lin.

1.5 **Bibliography**

- Aggarwal S, Snaidero N, Pähler G, Frey S, Sánchez P, et al. 2013. Myelin Membrane Assembly Is Driven by a Phase Transition of Myelin Basic Proteins Into a Cohesive Protein Meshwork. In *PLoS Biol.*, pp. e1001577
- Aggarwal S, Yurlova L, Snaidero N, Reetz C, Frey S, et al. 2011. A Size Barrier Limits Protein Diffusion at the Cell Surface to Generate Lipid-Rich Myelin-Membrane Sheets. In *Developmental Cell*, pp. 445-56: Elsevier Inc.
- Andersson M, Elmberger PG, Edlund C, Kristensson K, Dallner G. 1990. Rates of cholesterol, ubiquinone, dolichol and dolichyl-P biosynthesis in rat brain slices. In *FEBS Lett.*, pp. 15-18
- Arroyo EJ, Scherer SS. 2000. On the molecular architecture of myelinated fibers. In *Histochem. Cell Biol.*, pp. 1-18
- Auderset L, Landowski LM, Foa L, Young KM. 2016. Low Density Lipoprotein Receptor Related Proteins as Regulators of Neural Stem and Progenitor Cell Function. In *Stem Cells Int*, pp. 2108495
- Back SA, Tuohy TMF, Chen H, Wallingford N, Craig A, et al. 2005. Hyaluronan accumulates in demyelinated lesions and inhibits oligodendrocyte progenitor maturation. In *Nat Med*, pp. 966-72
- Baldwin KT, Giger RJ. 2015. Insights into the physiological role of CNS regeneration inhibitors. In *Front Mol Neurosci*, pp. 23
- Barbara JG. 2005. Les étranglements annulaires de Louis Ranvier (1871). In *Lettre des Neurosciences*
- Barnes H, Ackermann EJ, van der Geer P. 2003. v-Src induces Shc binding to tyrosine 63 in the cytoplasmic domain of the LDL receptor-related protein 1. In *Oncogene*, pp. 3589-97
- Barres BA, Raff MC. 1994. Control of oligodendrocyte number in the developing rat optic nerve. In *Neuron*, pp. 935-42
- Barres BA, Raff MC, Gaese F, Bartke I, Dechant G, Barde YA. 1994. A crucial role for neurotrophin-3 in oligodendrocyte development. In *Nature*, pp. 371-75
- Baumann N, Pham-Dinh D. 2001. Biology of oligodendrocyte and myelin in the mammalian central nervous system. In *Physiological Reviews*, pp. 871-927
- Becerra JL, Puckett WR, Hiester ED, Quencer RM, Marcillo AE, et al. 1995. MRpathologic comparisons of wallerian degeneration in spinal cord injury. In *AJNR Am J Neuroradiol*, pp. 125-33
- Bengtsson SL, Nagy Z, Skare S, Forsman L, Forssberg H, Ullén F. 2005. Extensive piano practicing has regionally specific effects on white matter development. In *Nat. Neurosci.*, pp. 1148-50
- Bergles DE, Richardson WD. 2015. Oligodendrocyte Development and Plasticity. In *Cold Spring Harb Perspect Biol*, pp. a020453
- Berry M. 1982. Post-injury myelin-breakdown products inhibit axonal growth: an hypothesis to explain the failure of axonal regeneration in the mammalian central nervous system. In *Bibl Anat*, pp. 1-11
- Björkhem I, Meaney S. 2004. Brain cholesterol: long secret life behind a barrier. In *Arterioscler. Thromb. Vasc. Biol.*, pp. 806-15
- Black JA, Waxman SG. 1988. The perinodal astrocyte. In *Glia*, pp. 169-83

- Blakemore WF, Franklin RJM. 2008. Remyelination in experimental models of toxininduced demyelination. In *Curr. Top. Microbiol. Immunol.*, pp. 193-212
- Boucher P, Herz J. 2011. Signaling through LRP1: Protection from atherosclerosis and beyond. In *Biochem. Pharmacol.*, pp. 1-5: Elsevier Inc.
- Boucher P, Liu P, Gotthardt M, Hiesberger T, Anderson RGW, Herz J. 2002. Plateletderived growth factor mediates tyrosine phosphorylation of the cytoplasmic domain of the low Density lipoprotein receptor-related protein in caveolae. In *J. Biol. Chem.*, pp. 15507-13
- Boullerne AI. 2016. The history of myelin. In *Exp Neurol*, pp. 431-45: Elsevier Inc.
- Boven LA, Van Meurs M, Van Zwam M, Wierenga-Wolf A, Hintzen RQ, et al. 2006. Myelin-laden macrophages are anti-inflammatory, consistent with foam cells in multiple sclerosis. In *Brain*, pp. 517-26
- Brady S, Siegel G, Albers RW, Price D. 2005. Basic Neurochemistry. In *Molecular, Cellular and Medical Aspects*, pp. 1016: Elsevier
- Brady ST, Lasek RJ. 1981. Nerve-specific enolase and creatine phosphokinase in axonal transport: soluble proteins and the axoplasmic matrix. In *Cell*, pp. 515-23
- Bronstein JM, Micevych PE, Chen K. 1997. Oligodendrocyte-specific protein (OSP) is a major component of CNS myelin. In *J. Neurosci. Res.*, pp. 713-20
- Bu G. 2009. Apolipoprotein E and its receptors in Alzheimer's disease: pathways, pathogenesis and therapy. In *Nat. Rev. Neurosci.*, pp. 333-44
- Budde H, Schmitt S, Fitzner D, Opitz L, Salinas-Riester G, Simons M. 2010. Control of oligodendroglial cell number by the miR-17-92 cluster. In *Development*, pp. 2127-32
- Bullock TH, Moore JK, Fields RD. 1984. Evolution of myelin sheaths: both lamprey and hagfish lack myelin. In *Neurosci Lett*, pp. 145-48
- Buss A, Pech K, Merkler D, Kakulas BA, Martin D, et al. 2005. Sequential loss of myelin proteins during Wallerian degeneration in the human spinal cord. In *Brain*, pp. 356-64
- Butt AM, Duncan A, Berry M. 1994. Astrocyte associations with nodes of Ranvier: ultrastructural analysis of HRP-filled astrocytes in the mouse optic nerve. In *J. Neurocytol.*, pp. 486-99
- Butt AM, Duncan A, Hornby MF, Kirvell SL, Hunter A, et al. 1999. Cells expressing the NG2 antigen contact nodes of Ranvier in adult CNS white matter. In *Glia*, pp. 84-91
- Butts BD, Houde C, Mehmet H. 2008. Maturation-dependent sensitivity of oligodendrocyte lineage cells to apoptosis: implications for normal development and disease. In *Cell Death Differ*, pp. 1178-86
- Caroni P, Schwab ME. 1988. Two membrane protein fractions from rat central myelin with inhibitory properties for neurite growth and fibroblast spreading. In *The Journal of Cell Biology*, pp. 1281-88
- Cathcart MK, McNally AK, Chisolm GM. 1991. Lipoxygenase-mediated transformation of human low density lipoprotein to an oxidized and cytotoxic complex. In *J. Lipid Res.*, pp. 63-70
- Causevic M, Ramoz N, Haroutunian V, Davis KL, Buxbaum JD. 2003. Lack of association between the levels of the low-density lipoprotein receptor-

related protein (LRP) and either Alzheimer dementia or LRP exon 3 genotype. In *J. Neuropathol. Exp. Neurol.*, pp. 999-1005

- Cellerino A, Carroll P, Thoenen H, Barde YA. 1997. Reduced size of retinal ganglion cell axons and hypomyelination in mice lacking brain-derived neurotrophic factor. In *Mol. Cell. Neurosci.*, pp. 397-408
- Cerghet M. 2006. Proliferation and Death of Oligodendrocytes and Myelin Proteins Are Differentially Regulated in Male and Female Rodents. In *Journal of Neuroscience*, pp. 1439-47
- Chang A, Nishiyama A, Peterson J, Prineas J, Trapp BD. 2000. NG2-positive oligodendrocyte progenitor cells in adult human brain and multiple sclerosis lesions. In *J. Neurosci.*, pp. 6404-12
- Chang A, Tourtellotte WW, Rudick R, Trapp BD. 2002. Premyelinating oligodendrocytes in chronic lesions of multiple sclerosis. In *N Engl J Med*, pp. 165-73
- Chang K-J, Zollinger DR, Susuki K, Sherman DL, Makara MA, et al. 2014. Glial ankyrins facilitate paranodal axoglial junction assembly. In *Nat. Neurosci.*, pp. 1673-81: Nature Publishing Group
- Chapman H, Waclaw RR, Pei Z, Nakafuku M, Campbell K. 2013. The homeobox gene Gsx2 controls the timing of oligodendroglial fate specification in mouse lateral ganglionic eminence progenitors. In *Development*, pp. 2289-98
- Chappell DA, Fry GL, Waknitz MA, Muhonen LE, Pladet MW, et al. 1993. Lipoprotein lipase induces catabolism of normal triglyceride-rich lipoproteins via the low density lipoprotein receptor-related protein/alpha 2-macroglobulin receptor in vitro. A process facilitated by cell-surface proteoglycans. In *J. Biol. Chem.*, pp. 14168-75
- Chappell DA, Inoue I, Fry GL, Pladet MW, Bowen SL, et al. 1994. Cellular catabolism of normal very low density lipoproteins via the low density lipoprotein receptor-related protein/alpha 2-macroglobulin receptor is induced by the Cterminal domain of lipoprotein lipase. In *J. Biol. Chem.*, pp. 18001-06
- Charles P, Reynolds R, Seilhean D, Rougon G, Aigrot MS, et al. 2002. Re-expression of PSA-NCAM by demyelinated axons: an inhibitor of remyelination in multiple sclerosis? In *Brain*, pp. 1972-79
- Chazaud B, Ricoux R, Christov C, Plonquet A, Gherardi RK, Barlovatz-Meimon G. 2002. Promigratory effect of plasminogen activator inhibitor-1 on invasive breast cancer cell populations. In *Am. J. Pathol.*, pp. 237-46
- Chen MS, Huber AB, van der Haar ME, Frank M, Schnell L, et al. 2000. Nogo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1. In *Nature*, pp. 434-39
- Chernoff GF. 1981. Shiverer: an autosomal recessive mutant mouse with myelin deficiency. In *J. Hered.*, pp. 128
- Chiu SY. 1980. Asymmetry currents in the mammalian myelinated nerve. In *J. Physiol. (Lond.)*, pp. 499-519
- Chomiak T, Hu B. 2009. What is the optimal value of the g-ratio for myelinated fibers in the rat CNS? A theoretical approach. In *PLoS ONE*, pp. e7754

- Chong SYC, Rosenberg SS, Fancy SPJ, Zhao C, Shen Y-AA, et al. 2012. Neurite outgrowth inhibitor Nogo-A establishes spatial segregation and extent of oligodendrocyte myelination. In *Proc. Natl. Acad. Sci. U.S.A.*, pp. 1299-304
- Christensen L, Wiborg Simonsen AC, Heegaard CW, Moestrup SK, Andersen JA, Andreasen PA. 1996. Immunohistochemical localization of urokinase-type plasminogen activator, type-1 plasminogen-activator inhibitor, urokinase receptor and alpha(2)-macroglobulin receptor in human breast carcinomas. In *Int. J. Cancer*, pp. 441-52
- Chrzanowska-Wodnicka M, Burridge K. 1996. Rho-stimulated contractility drives the formation of stress fibers and focal adhesions. In *The Journal of Cell Biology*, pp. 1403-15
- Chu CT, Oury TD, Enghild JJ, Pizzo SV. 1994. Adjuvant-free in vivo targeting. Antigen delivery by alpha 2-macroglobulin enhances antibody formation. In *J Immunol*, pp. 1538-45
- Courtney R, Landreth GE. 2016. LXR Regulation of Brain Cholesterol: From Development to Disease. In *Trends Endocrinol. Metab.*, pp. 404-14
- Davis CG, Goldstein JL, Südhof TC, Anderson RG, Russell DW, Brown MS. 1987. Aciddependent ligand dissociation and recycling of LDL receptor mediated by growth factor homology region. In *Nature*, pp. 760-65
- De Biase LM, Nishiyama A, Bergles DE. 2010. Excitability and synaptic communication within the oligodendrocyte lineage. In *J. Neurosci.*, pp. 3600-11
- de Chaves EI, Rusiñol AE, Vance DE, Campenot RB, Vance JE. 1997. Role of lipoproteins in the delivery of lipids to axons during axonal regeneration. In *J. Biol. Chem.*, pp. 30766-73
- Deber CM, Reynolds SJ. 1991. Central nervous system myelin: structure, function, and pathology. In *Clin. Biochem.*, pp. 113-34
- DeMattos RB, Brendza RP, Heuser JE, Kierson M, Cirrito JR, et al. 2001. Purification and characterization of astrocyte-secreted apolipoprotein E and J-containing lipoproteins from wild-type and human apoE transgenic mice. In *Neurochem Int*, pp. 415-25
- Di Biase A, Salvati S, Serlupi Crescenzi G. 1990. Lipid profile of rat myelin subfractions. In *Neurochem Res*, pp. 519-22
- Dietschy JM, Turley SD. 2001. Cholesterol metabolism in the brain. In *Current Opinion in Lipidology*, pp. 105-12
- Dietschy JM, Turley SD. 2004. Thematic review series: brain Lipids. Cholesterol metabolism in the central nervous system during early development and in the mature animal. In *J. Lipid Res.*, pp. 1375-97
- Dugas JC, Cuellar TL, Scholze A, Ason B, Ibrahim A, et al. 2010. Dicer1 and miR-219 Are required for normal oligodendrocyte differentiation and myelination. In *Neuron*, pp. 597-611
- Dupree JL, Girault JA, Popko B. 1999. Axo-glial interactions regulate the localization of axonal paranodal proteins. In *The Journal of Cell Biology*, pp. 1145-52
- Ek CJ, Habgood MD, Dennis R, Dziegielewska KM, Mallard C, et al. 2012. Pathological changes in the white matter after spinal contusion injury in the rat. In *PLoS ONE*, pp. e43484

- Emery B. 2010. Transcriptional and post-transcriptional control of CNS myelination. In *Current Opinion in Neurobiology*, pp. 601-07
- Fabricius C, Berthold CH, Rydmark M. 1993. Axoplasmic organelles at nodes of Ranvier. II. Occurrence and distribution in large myelinated spinal cord axons of the adult cat. In *J. Neurocytol.*, pp. 941-54
- Faivre-Sarrailh C, Devaux JJ. 2013. Neuro-glial interactions at the nodes of Ranvier: implication in health and diseases. In *Front. Cell. Neurosci.*, pp. 196
- Fanarraga ML, Griffiths IR, Zhao M, Duncan ID. 1998. Oligodendrocytes are not inherently programmed to myelinate a specific size of axon. In *J Comp Neurol*, pp. 94-100
- Fancy SPJ, Baranzini SE, Zhao C, Yuk D-I, Irvine K-A, et al. 2009. Dysregulation of the Wnt pathway inhibits timely myelination and remyelination in the mammalian CNS. In *Genes Dev.*, pp. 1571-85
- Fass D, Blacklow S, Kim PS, Berger JM. 1997. Molecular basis of familial hypercholesterolaemia from structure of LDL receptor module. In *Nature*, pp. 691-93
- Feigenson K, Reid M, See J, Crenshaw EB, Grinspan JB. 2009. Wnt signaling is sufficient to perturb oligodendrocyte maturation. In *Mol. Cell. Neurosci.*, pp. 255-65
- Feindel WH, Allison AC, Weddell G. 1948. Intravenous methylene blue for experimental studies on the central nervous system. In *Journal of neurology*
- Fernandez-Castaneda A, Arandjelovic S, Stiles TL, Schlobach RK, Mowen KA, et al. 2013. Identification of the Low Density Lipoprotein (LDL) Receptor-related Protein-1 Interactome in Central Nervous System Myelin Suggests a Role in the Clearance of Necrotic Cell Debris. In *Journal of Biological Chemistry*, pp. 4538-48
- Fields RD. 2008. Oligodendrocytes changing the rules: action potentials in glia and oligodendrocytes controlling action potentials. In *Neuroscientist*, pp. 540-43
- Filbin MT. 2003. Myelin-associated inhibitors of axonal regeneration in the adult mammalian CNS. In *Nat. Rev. Neurosci.*, pp. 703-13
- Fleming JC, Norenberg MD, Ramsay DA, Dekaban GA, Marcillo AE, et al. 2006. The cellular inflammatory response in human spinal cords after injury. In *Brain*, pp. 3249-69
- Flores AI, Narayanan SP, Morse EN, Shick HE, Yin X, et al. 2008. Constitutively active Akt induces enhanced myelination in the CNS. In *J. Neurosci.*, pp. 7174-83
- Franklin RJ, Blakemore WF. 1990. The peripheral nervous system-central nervous system regeneration dichotomy: a role for glial cell transplantation. In *Journal of Cell Science*, pp. 185-90
- Franklin RJ, Hinks GL. 1999. Understanding CNS remyelination: clues from developmental and regeneration biology. In *J. Neurosci. Res.*, pp. 207-13
- Franklin RJM. 2002. Why does remyelination fail in multiple sclerosis? In *Nat. Rev. Neurosci.*, pp. 705-14
- Franklin RJM, ffrench-Constant C. 2008. Remyelination in the CNS: from biology to therapy. In *Nat. Rev. Neurosci.*, pp. 839-55
- Franklin RJM, Gallo V. 2014. The translational biology of remyelination: Past, present, and future. In *Glia*, pp. n/a-n/a

- Fünfschilling U, Supplie LM, Mahad D, Boretius S, Saab AS, et al. 2012. Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. In *Nature*, pp. 517-21
- Gaultier A, Arandjelovic S, Li X, Janes J, Dragojlovic N, et al. 2008. A shed form of LDL receptor-related protein-1 regulates peripheral nerve injury and neuropathic pain in rodents. In *J. Clin. Invest.*, pp. 161-72
- Gaultier A, Simon G, Niessen S, Dix M, Takimoto S, et al. 2010. LDL receptor-related protein 1 regulates the abundance of diverse cell-signaling proteins in the plasma membrane proteome. In *J. Proteome Res.*, pp. 6689-95
- Genoud S, Lappe-Siefke C, Goebbels S, Radtke F, Aguet M, et al. 2002. Notch1 control of oligodendrocyte differentiation in the spinal cord. In *The Journal of Cell Biology*, pp. 709-18
- Gensel JC, Zhang B. 2015. Macrophage activation and its role in repair and pathology after spinal cord injury. In *Brain Res*, pp. 1-11
- Gibson EM, Purger D, Mount CW, Goldstein AK, Lin GL, et al. 2014. Neuronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain. In *Science*, pp. 1252304
- Gilson J, Blakemore WF. 1993. Failure of remyelination in areas of demyelination produced in the spinal cord of old rats. In *Neuropathol. Appl. Neurobiol.*, pp. 173-81
- Gledhill RF, McDonald WI. 1977. Morphological characteristics of central demyelination and remyelination: A single-fiber study. In *Ann Neurol.*, pp. 552-60
- Goldman SA, Kuypers NJ. 2015. How to make an oligodendrocyte. In *Development*, pp. 3983-95
- Gonias SL, Campana WM. 2014. LDL Receptor-Related Protein-1. In *Am. J. Pathol.*, pp. 18-27: American Society for Investigative Pathology
- Gorovoy M, Gaultier A, Campana WM, Firestein GS, Gonias SL. 2010. Inflammatory mediators promote production of shed LRP1/CD91, which regulates cell signaling and cytokine expression by macrophages. In *Journal of Leukocyte Biology*, pp. 769-78
- Gout O, Dubois-Dalcq M. 1993. Directed migration of transplanted glial cells toward a spinal cord demyelinating lesion. In *Int. J. Dev. Neurosci.*, pp. 613-23
- Gout O, Gansmuller A, Baumann N, Gumpel M. 1988. Remyelination by transplanted oligodendrocytes of a demyelinated lesion in the spinal cord of the adult shiverer mouse. In *Neurosci Lett*, pp. 195-99
- Gow A, Southwood CM, Li JS, Pariali M, Riordan GP, et al. 1999. CNS myelin and sertoli cell tight junction strands are absent in Osp/claudin-11 null mice. In *Cell*, pp. 649-59
- GrandPre T, Nakamura F, Vartanian T, Strittmatter SM. 2000. Identification of the Nogo inhibitor of axon regeneration as a Reticulon protein. In *Nature*, pp. 439-44
- Greenhalgh AD, David S. 2014. Differences in the phagocytic response of microglia and peripheral macrophages after spinal cord injury and its effects on cell death. In *J. Neurosci.*, pp. 6316-22

- Griffiths I, Klugmann M, Anderson T, Yool D, Thomson C, et al. 1998. Axonal swellings and degeneration in mice lacking the major proteolipid of myelin. In *Science*, pp. 1610-13
- Haider L. 2015. Inflammation, Iron, Energy Failure, and Oxidative Stress in the Pathogenesis of Multiple Sclerosis. In *Oxid Med Cell Longev*, pp. 1-10
- Han X. 2007. Potential mechanisms contributing to sulfatide depletion at the earliest clinically recognizable stage of Alzheimer's disease: a tale of shotgun lipidomics. In *J. Neurochem.*, pp. 171-79
- Hannila S, Mellado W. 2017. Editorial: Myelin-Mediated Inhibition of Axonal Regeneration: Past, Present, and Future. In *Front Mol Neurosci*, pp. 113
- Harrington EP, Zhao C, Fancy SPJ, Kaing S, Franklin RJM, Rowitch DH. 2010. Oligodendrocyte PTEN is required for myelin and axonal integrity, not remyelination. In *Ann Neurol.*, pp. 703-16
- Harris JJ, Attwell D. 2012. The energetics of CNS white matter. In *J. Neurosci.*, pp. 356-71
- Hartline DK, Colman DR. 2007. Rapid Conduction and the Evolution of Giant Axons and Myelinated Fibers. In *Current Biology*, pp. R29-R35
- Hayashi H, Campenot RB, Vance DE, Vance JE. 2004. Glial lipoproteins stimulate axon growth of central nervous system neurons in compartmented cultures. In *J. Biol. Chem.*, pp. 14009-15
- He X, Semenov M, Tamai K, Zeng X. 2004. LDL receptor-related proteins 5 and 6 in Wnt/beta-catenin signaling: arrows point the way. In *Development*, pp. 1663-77
- Heinzer S, Kuhn G, Krucker T, Meyer E, Ulmann-Schuler A, et al. 2008. Novel threedimensional analysis tool for vascular trees indicates complete micronetworks, not single capillaries, as the angiogenic endpoint in mice overexpressing human VEGF(165) in the brain. In *Neuroimage*, pp. 1549-58
- Hennen E, Safina D, Haussmann U, Wörsdörfer P, Edenhofer F, et al. 2013. A LewisX Glycoprotein Screen Identifies the Low Density Lipoprotein Receptor-related Protein 1 (LRP1) as a Modulator of Oligodendrogenesis in Mice. In *Journal of Biological Chemistry*, pp. 16538-45
- Herz J, Clouthier DE, Hammer RE. 1992. LDL receptor-related protein internalizes and degrades uPA-PAI-1 complexes and is essential for embryo implantation. In *Cell*, pp. 411-21
- Herz J, Farese RV. 1999. The LDL receptor gene family, apolipoprotein B and cholesterol in embryonic development. In *J. Nutr.*, pp. 473S-75S
- Herz J, Hamann U, Rogne S, Myklebost O, Gausepohl H, Stanley KK. 1988. Surface location and high affinity for calcium of a 500-kd liver membrane protein closely related to the LDL-receptor suggest a physiological role as lipoprotein receptor. In *EMBO J.*, pp. 4119-27
- Hess A, Young JZ. 1952. The nodes of Ranvier. In *Proc. R. Soc. Lond., B, Biol. Sci.*, pp. 301-20
- Hess MW, Kirschning E, Pfaller K, Debbage PL, Hohenberg H, Klima G. 1998. 5000year-old myelin: uniquely intact in molecular configuration and fine structure. In *Curr. Biol.*, pp. R512-3

- Hildebrand C, Bowe CM, Remahl IN. 1994. Myelination and myelin sheath remodelling in normal and pathological PNS nerve fibres. In *Prog. Neurobiol.*, pp. 85-141
- Hildebrand C, Hahn R. 1978. Relation between myelin sheath thickness and axon size in spinal cord white matter of some vertebrate species. In *J. Neurol. Sci.*, pp. 421-34
- Hildebrand C, Remahl S, Persson H, Bjartmar C. 1993. Myelinated nerve fibres in the CNS. In *Prog. Neurobiol.*, pp. 319-84
- Hille B. 1992. Ionic Channels of Excitable Membranes. pp. 607: Sinauer Associates Incorporated
- Horrocks LA. 1967. Composition of myelin from peripheral and central nervous systems of the squirrel monkey. In *J. Lipid Res.*, pp. 569-76
- Huang PP, Alliquant B, Carmel PW, Friedman ED. 1991. Myelination of the rat retina by transplantation of oligodendrocytes into 4-day-old hosts. In *Exp Neurol*, pp. 291-300
- Hughes V. 2013. Mapping brain networks: Fish-bowl neuroscience. In *Nature*, pp. 466-68
- Imai M, Watanabe M, Suyama K, Osada T, Sakai D, et al. 2008. Delayed accumulation of activated macrophages and inhibition of remyelination after spinal cord injury in an adult rodent model. In *J Neurosurg Spine*, pp. 58-66
- Inuzuka T, Fujita N, Sato S, Baba H, Nakano R, et al. 1991. Expression of the large myelin-associated glycoprotein isoform during the development in the mouse peripheral nervous system. In *Brain Res*, pp. 173-75
- Jacobs JM. 1967. Experimental diphtheritic neuropathy in the rat. In *Br J Exp Pathol*, pp. 204-16
- Jahn O, Tenzer S, Werner HB. 2009. Myelin Proteomics: Molecular Anatomy of an Insulating Sheath. In *Mol Neurobiol*, pp. 55-72
- Jalil MA, Begum L, Contreras L, Pardo B, Iijima M, et al. 2005. Reduced Nacetylaspartate levels in mice lacking aralar, a brain- and muscle-type mitochondrial aspartate-glutamate carrier. In *J. Biol. Chem.*, pp. 31333-39
- Jeon H, Meng W, Takagi J, Eck MJ, Springer TA, Blacklow SC. 2001. Implications for familial hypercholesterolemia from the structure of the LDL receptor YWTD-EGF domain pair. In *Nat. Struct. Biol.*, pp. 499-504
- Jurevics H, Morell P. 1995. Cholesterol for synthesis of myelin is made locally, not imported into brain. In *J. Neurochem.*, pp. 895-901
- Kanekiyo T, Bu G. 2014. The low-density lipoprotein receptor-related protein 1 and amyloid- β clearance in Alzheimer's disease. In *Frontiers in Aging Neuroscience*, pp. 93: Frontiers Media S.A.
- Kanekiyo T, Cirrito JR, Liu CC, Shinohara M, Li J, et al. 2013. Neuronal Clearance of Amyloid- by Endocytic Receptor LRP1. In *J. Neurosci.*, pp. 19276-83
- Kassmann CM. 2014. Myelin peroxisomes essential organelles for the maintenance of white matter in the nervous system. In *Biochimie*, pp. 111-18
- Kaul R, Gao GP, Balamurugan K, Matalon R. 1993. Cloning of the human aspartoacylase cDNA and a common missense mutation in Canavan disease. In *Nat Genet*, pp. 118-23
- Keller TA, Just MA. 2009. Altering cortical connectivity: remediation-induced changes in the white matter of poor readers. In *Neuron*, pp. 624-31
- Kessaris N, Fogarty M, Iannarelli P, Grist M, Wegner M, Richardson WD. 2006. Competing waves of oligodendrocytes in the forebrain and postnatal elimination of an embryonic lineage. In *Nat. Neurosci.*, pp. 173-79
- Kim JY, Shen S, Dietz K, He Y, Howell O, et al. 2010. HDAC1 nuclear export induced by pathological conditions is essential for the onset of axonal damage. In *Nat. Neurosci.*, pp. 180-89
- Kirby BB, Takada N, Latimer AJ, Shin J, Carney TJ, et al. 2006. In vivo time-lapse imaging shows dynamic oligodendrocyte progenitor behavior during zebrafish development. In *Nat. Neurosci.*, pp. 1506-11
- Klämbt C. 2009. Modes and regulation of glial migration in vertebrates and invertebrates. In *Nat. Rev. Neurosci.*, pp. 769-79
- Kopper TJ, Gensel JC. 2017. Myelin as an inflammatory mediator: Myelin interactions with complement, macrophages, and microglia in spinal cord injury. In *J. Neurosci. Res.*
- Kotter MR, Li W-W, Zhao C, Franklin RJM. 2006. Myelin impairs CNS remyelination by inhibiting oligodendrocyte precursor cell differentiation. In *Journal of Neuroscience*, pp. 328-32
- Kotter MR, Stadelmann C, Hartung H-P. 2011. Enhancing remyelination in disease-can we wrap it up? In *Brain*, pp. 1882-900
- Kreusch A, Pfaffinger PJ, Stevens CF, Choe S. 1998. Crystal structure of the tetramerization domain of the Shaker potassium channel. In *Nature*, pp. 945-48
- Kuhlmann T, Miron V, Cui Q, Cuo Q, Wegner C, et al. 2008. Differentiation block of oligodendroglial progenitor cells as a cause for remyelination failure in chronic multiple sclerosis. In *Brain*, pp. 1749-58
- Laeng P, Molthagen M, Yu EG, Bartsch U. 1996. Transplantation of oligodendrocyte progenitor cells into the rat retina: extensive myelination of retinal ganglion cell axons. In *Glia*, pp. 200-10
- Lai C, Brow MA, Nave KA, Noronha AB, Quarles RH, et al. 1987. Two forms of 1B236/myelin-associated glycoprotein, a cell adhesion molecule for postnatal neural development, are produced by alternative splicing. In *Proc. Natl. Acad. Sci. U.S.A.*, pp. 4337-41
- Lasiene J, Matsui A, Sawa Y, Wong F, Horner PJ. 2009. Age-related myelin dynamics revealed by increased oligodendrogenesis and short internodes. In *Aging Cell*, pp. 201-13
- Lazzarini RA. 2004. Myelin Biology and Disorders. Academic Press
- Lee S, Leach MK, Redmond SA, Chong SYC, Mellon SH, et al. 2012a. A culture system to study oligodendrocyte myelination processes using engineered nanofibers. In *Nat. Methods*, pp. 917-22
- Lee Y, Morrison BM, Li Y, Lengacher S, Farah MH, et al. 2012b. Oligodendroglia metabolically support axons and contribute to neurodegeneration. In *Nature Publishing Group*, pp. 443-48
- Levine JM, Reynolds R, Fawcett JW. 2001. The oligodendrocyte precursor cell in health and disease. In *Trends in Neurosciences*, pp. 39-47

- Li C, Tropak MB, Gerlai R, Clapoff S, Abramow-Newerly W, et al. 1994. Myelination in the absence of myelin-associated glycoprotein. In *Nature*, pp. 747-50
- Li QM, Tep C, Yune TY, Zhou XZ, Uchida T, et al. 2007. Opposite regulation of oligodendrocyte apoptosis by JNK3 and Pin1 after spinal cord injury. In *J. Neurosci.*, pp. 8395-404
- Li W-W, Penderis J, Zhao C, Schumacher M, Franklin RJM. 2006. Females remyelinate more efficiently than males following demyelination in the aged but not young adult CNS. In *Exp Neurol*, pp. 250-54
- Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, et al. 2017. Neurotoxic reactive astrocytes are induced by activated microglia. In *Nature Publishing Group*, pp. 481-87: Nature Publishing Group
- Lillis AP, Van Duyn LB, Murphy-Ullrich JE, Strickland DK. 2008. LDL Receptor-Related Protein 1: Unique Tissue-Specific Functions Revealed by Selective Gene Knockout Studies. In *Physiological Reviews*, pp. 887-918
- Lin J-P, Mironova YA, Shrager P, Giger RJ. 2017. LRP1 regulates peroxisome biogenesis and cholesterol homeostasis in oligodendrocytes and is required for proper CNS myelin development and repair. In *Elife*
- Linington C, Waehneldt TV, Neuhoff V. 1980. The lipid composition of light and heavy myelin subfractions isolated from rabbit sciatic nerve. In *Neurosci Lett*, pp. 211-15
- Liu J, Dietz K, DeLoyht JM, Pedre X, Kelkar D, et al. 2012. Impaired adult myelination in the prefrontal cortex of socially isolated mice. In *Nat. Neurosci.*, pp. 1621-23
- Liu Q, Trotter J, Zhang J, Peters MM, Cheng H, et al. 2010. Neuronal LRP1 knockout in adult mice leads to impaired brain lipid metabolism and progressive, agedependent synapse loss and neurodegeneration. In *J. Neurosci.*, pp. 17068-78
- Liu Q, Zerbinatti CV, Zhang J, Hoe H-S, Wang B, et al. 2007a. Amyloid Precursor Protein Regulates Brain Apolipoprotein E and Cholesterol Metabolism through Lipoprotein Receptor LRP1. In *Neuron*, pp. 66-78
- Maki T, Liang AC, Miyamoto N, Lo EH, Arai K. 2013. Mechanisms of oligodendrocyte regeneration from ventricular-subventricular zone-derived progenitor cells in white matter diseases. In *Front. Cell. Neurosci.*, pp. 275
- Makinodan M, Rosen KM, Ito S, Corfas G. 2012. A critical period for social experience-dependent oligodendrocyte maturation and myelination. In *Science*, pp. 1357-60
- Mangin J-M, Li P, Scafidi J, Gallo V. 2012. Experience-dependent regulation of NG2 progenitors in the developing barrel cortex. In *Nat. Neurosci.*, pp. 1192-94
- Martenson RE. 1992. Myelin. In *Biology and Chemistry*, pp. 958: CRC PressI Llc
- Martin AM, Kuhlmann C, Trossbach S, Jaeger S, Waldron E, et al. 2008. The functional role of the second NPXY motif of the LRP1 beta-chain in tissue-type plasminogen activator-mediated activation of N-methyl-D-aspartate receptors. In *J. Biol. Chem.*, pp. 12004-13
- Matthews MA, Duncan D. 1971. A quantitative study of morphological changes accompanying the initiation and progress of myelin production in the dorsal funiculus of the rat spinal cord. In *J Comp Neurol*, pp. 1-22

- Mauch DH, Nägler K, Schumacher S, Göritz C, Müller EC, et al. 2001. CNS synaptogenesis promoted by glia-derived cholesterol. In *Science*, pp. 1354-57
- McDonald WI, Ohlrich GD. 1971. Quantitative anatomical measurements on single isolated fibres from the cat spinal cord. In *J. Anat.*, pp. 191-202
- Mersmann N, Tkachev D, Jelinek R, Röth PT, Mobius W, et al. 2011. AspartoacylaselacZ knockin mice: an engineered model of Canavan disease. In *PLoS ONE*, pp. e20336
- Mi S, Miller RH, Lee X, Scott ML, Shulag-Morskaya S, et al. 2005. LINGO-1 negatively regulates myelination by oligodendrocytes. In *Nat. Neurosci.*, pp. 745-51
- Mikhailenko I, Considine W, Argraves KM, Loukinov D, Hyman BT, Strickland DK. 1999. Functional domains of the very low density lipoprotein receptor: molecular analysis of ligand binding and acid-dependent ligand dissociation mechanisms. In *Journal of Cell Science*, pp. 3269-81
- Miller RH. 2002. Regulation of oligodendrocyte development in the vertebrate CNS. In *Prog. Neurobiol.*, pp. 451-67
- Misgeld T, Kerschensteiner M, Bareyre FM, Burgess RW, Lichtman JW. 2007. Imaging axonal transport of mitochondria in vivo. In *Nat. Methods*, pp. 559-61
- Mobius W, Cooper B, Kaufmann WA, Imig C, Ruhwedel T, et al. 2010. Electron microscopy of the mouse central nervous system. In *Methods Cell Biol*, pp. 475-512
- Montag D, Giese KP, Bartsch U, Martini R, Lang Y, et al. 1994. Mice deficient for the myelin-associated glycoprotein show subtle abnormalities in myelin. In *Neuron*, pp. 229-46
- Morell P. 2012. Myelin second edition. pp. 1-557: Springer Science & Business Media Morell P, Norton WT. 1980. Myelin. In *Sci. Am.*, pp. 88-90- 92- 96 passim
- Morita K, Sasaki H, Fujimoto K, Furuse M, Tsukita S. 1999. Claudin-11/OSP-based tight junctions of myelin sheaths in brain and Sertoli cells in testis. In *The Journal of Cell Biology*, pp. 579-88
- Murray JA, Blakemore WF. 1980. The relationship between internodal length and fibre diameter in the spinal cord of the cat. In *J. Neurol. Sci.*, pp. 29-41
- Muse ED, Jurevics H, Toews AD, Matsushima GK, Morell P. 2000. Parameters related to lipid metabolism as markers of myelination in mouse brain. In *J. Neurochem.*, pp. 77-86
- Myllykoski M, Seidel L, Muruganandam G, Raasakka A, Torda AE, Kursula P. 2016. Structural and functional evolution of 2',3'-cyclic nucleotide 3'-phosphodiesterase. In *Brain Res*, pp. 64-78
- Namboodiri AMA, Peethambaran A, Mathew R, Sambhu PA, Hershfield J, et al. 2006. Canavan disease and the role of N-acetylaspartate in myelin synthesis. In *Mol. Cell. Endocrinol.*, pp. 216-23
- Narayanan SP, Flores AI, Wang F, Macklin WB. 2009. Akt signals through the mammalian target of rapamycin pathway to regulate CNS myelination. In *J. Neurosci.*, pp. 6860-70
- Nave K-A. 2010a. Myelination and support of axonal integrity by glia. In *Nature*, pp. 244-52
- Nave K-A. 2010b. Myelination and the trophic support of long axons. In *Nat. Rev. Neurosci.*, pp. 275-83: Nature Publishing Group

- Nave K-A, Trapp BD. 2008. Axon-glial signaling and the glial support of axon function. In *Annu. Rev. Neurosci.*, pp. 535-61
- Nave K-A, Werner HB. 2014. Myelination of the Nervous System: Mechanisms and Functions. In *Annu. Rev. Cell Dev. Biol.*, pp. 503-33
- Nery S, Wichterle H, Fishell G. 2001. Sonic hedgehog contributes to oligodendrocyte specification in the mammalian forebrain. In *Development*, pp. 527-40
- Neumann H, Kotter MR, Franklin RJM. 2009. Debris clearance by microglia: an essential link between degeneration and regeneration. In *Brain*, pp. 288-95
- Norton WT, Poduslo SE. 1973. Myelination in rat brain: changes in myelin composition during brain maturation. In *J. Neurochem.*, pp. 759-73
- Oblinger MM, Foe LG, Kwiatkowska D, Kemp RG. 1988. Phosphofructokinase in the rat nervous system: regional differences in activity and characteristics of axonal transport. In *J. Neurosci. Res.*, pp. 25-34
- Orentas DM, Hayes JE, Dyer KL, Miller RH. 1999. Sonic hedgehog signaling is required during the appearance of spinal cord oligodendrocyte precursors. In *Development*, pp. 2419-29
- Pearce J. 2003. Fragments of Neurological History.
- Pedraza L, Frey AB, Hempstead BL, Colman DR, Salzer JL. 1991. Differential expression of MAG isoforms during development. In *J. Neurosci. Res.*, pp. 141-48
- Pedraza L, Huang JK, Colman D. 2009. Disposition of axonal caspr with respect to glial cell membranes: Implications for the process of myelination. In *J. Neurosci. Res.*, pp. 3480-91
- Peferoen L, Kipp M, van der Valk P, van Noort JM, Amor S. 2014. Oligodendrocytemicroglia cross-talk in the central nervous system. In *Immunology*, pp. 302-13
- Perry VH, Hayes L. 1985. Lesion-induced myelin formation in the retina. In *J. Neurocytol.*, pp. 297-307
- Peters A. 1961. A radial component of central myelin sheaths. In *J Biophys Biochem Cytol*, pp. 733-35
- Peters A, Palay SL, Webster Hd. 1991. The fine structure of the nervous system. In *neurons and their supporting cells*, pp. 494: Oxford University Press, USA
- Pfeiffer SE, Warrington AE, Bansal R. 1993. The oligodendrocyte and its many cellular processes. In *Trends in Cell Biology*, pp. 191-97
- Pieper-Fürst U, Lammert F. 2013. Low-density lipoprotein receptors in liver: old acquaintances and a newcomer. In *Biochim. Biophys. Acta*, pp. 1191-98
- Plemel JR, Manesh SB, Sparling JS, Tetzlaff W. 2013. Myelin inhibits oligodendroglial maturation and regulates oligodendrocytic transcription factor expression. In *Glia*, pp. 1471-87
- Poliak S, Peles E. 2003. The local differentiation of myelinated axons at nodes of Ranvier. In *Nat. Rev. Neurosci.*, pp. 968-80
- Posse De Chaves EI, Vance DE, Campenot RB, Kiss RS, Vance JE. 2000. Uptake of lipoproteins for axonal growth of sympathetic neurons. In *J. Biol. Chem.*, pp. 19883-90

- Powers BE, Sellers DL, Lovelett EA, Cheung W, Aalami SP, et al. 2013. Remyelination reporter reveals prolonged refinement of spontaneously regenerated myelin. In *Proc. Natl. Acad. Sci. U.S.A.*, pp. 4075-80
- Prinjha R, Moore SE, Vinson M, Blake S, Morrow R, et al. 2000. Inhibitor of neurite outgrowth in humans. In *Nature*, pp. 383-84
- Quan G, Xie C, Dietschy JM, Turley SD. 2003. Ontogenesis and regulation of cholesterol metabolism in the central nervous system of the mouse. In *Brain Res. Dev. Brain Res.*, pp. 87-98
- Quarles RH, Everly JL, Brady RO. 1973. Evidence for the close association of a glycoprotein with myelin in rat brain. In *J. Neurochem.*, pp. 1177-91: Blackwell Publishing Ltd
- Raasakka A, Kursula P. 2014. The myelin membrane-associated enzyme 2',3'-cyclic nucleotide 3'-phosphodiesterase: on a highway to structure and function. In *Neurosci Bull*, pp. 956-66
- Raff MC, Barres BA, Burne JF, Coles HS, Ishizaki Y, Jacobson MD. 1993. Programmed cell death and the control of cell survival: lessons from the nervous system. In *Science*, pp. 695-700
- Ramon y Cajal S. 1928. Degeneration and regeneration of the nervous system. In *Degeneration and regeneration of the nervous system*.: Clarendon Press SN -
- Ranvier L. 1871. Sur les éléments conjonctifs de la moelle épinière. In *Comptes Rendus de l'Académie des Sciences.*, pp. 1168-71: Comptes Rendus de l'Académie des Sciences.
- Rasband MN, Peles E. 2016. The Nodes of Ranvier: Molecular Assembly and Maintenance. In *Cold Spring Harb Perspect Biol*, pp. a020495
- Rasband MN, Peles E, Trimmer JS, Levinson SR, Lux SE, Shrager P. 1999. Dependence of nodal sodium channel clustering on paranodal axoglial contact in the developing CNS. In *J. Neurosci.*, pp. 7516-28
- Rasband MN, Trimmer JS, Schwarz TL, Levinson SR, Ellisman MH, et al. 1998. Potassium channel distribution, clustering, and function in remyelinating rat axons. In *J. Neurosci.*, pp. 36-47
- Rasminsky M, Sears TA. 1972. Internodal conduction in undissected demyelinated nerve fibres. In *J. Physiol. (Lond.)*, pp. 323-50
- Richardson WD, Kessaris N, Pringle N. 2006. Oligodendrocyte wars. In *Nat. Rev. Neurosci.*, pp. 11-18
- Rinholm JE, Hamilton NB, Kessaris N, Richardson WD, Bergersen LH, Attwell D. 2011. Regulation of Oligodendrocyte Development and Myelination by Glucose and Lactate. In *J. Neurosci.*, pp. 538-48
- Robertson JD. 1959. Preliminary observations on the ultrastructure of nodes of Ranvier. In *Cell Tissue Res.*, pp. 553-60
- Robinson S, Miller RH. 1999. Contact with central nervous system myelin inhibits oligodendrocyte progenitor maturation. In *Dev. Biol.*, pp. 359-68
- Rosenbluth J. 1976. Intramembranous particle distribution at the node of Ranvier and adjacent axolemma in myelinated axons of the frog brain. In *J. Neurocytol.*, pp. 731-45
- Rosenbluth J. 2009. Multiple functions of the paranodal junction of myelinated nerve fibers. In *J. Neurosci. Res.*, pp. 3250-58

- Rotshenker S. 2003. Microglia and macrophage activation and the regulation of complement-receptor-3 (CR3/MAC-1)-mediated myelin phagocytosis in injury and disease. In *J Mol Neurosci*, pp. 65-72
- Rowitch DH, Kriegstein AR. 2010. Developmental genetics of vertebrate glial-cell specification. In *Nature*, pp. 214-22
- Ruckh JM, Zhao J-W, Shadrach JL, van Wijngaarden P, Rao TN, et al. 2012. Rejuvenation of Regeneration in the Aging Central Nervous System. In *Stem Cell*, pp. 96-103: Elsevier Inc.
- Rudenko G, Henry L, Henderson K, Ichtchenko K, Brown MS, et al. 2002. Structure of the LDL receptor extracellular domain at endosomal pH. In *Science*, pp. 2353-58
- Rumsby MG. 1978. Organization and structure in central-nerve myelin. In *Biochem. Soc. Trans.*, pp. 448-62
- Safina D, Schlitt F, Romeo R, Pflanzner T, Pietrzik CU, et al. 2016. Low-density lipoprotein receptor-related protein 1 is a novel modulator of radial glia stem cell proliferation, survival, and differentiation. In *Glia*, pp. 1363-80
- Saher G, Brugger B, Lappe-Siefke C, Mobius W, Tozawa R-i, et al. 2005. High cholesterol level is essential for myelin membrane growth. In *Nat. Neurosci.*, pp. 468-75
- Saher G, Stumpf SK. 2015. Cholesterol in myelin biogenesis and hypomyelinating disorders. In *BBA Molecular and Cell Biology of Lipids*, pp. 1083-94: Elsevier B.V.
- Salzer JL. 1997. Clustering sodium channels at the node of Ranvier: close encounters of the axon-glia kind. In *Neuron*, pp. 843-46
- Samorajski T, Lancaster F, Wiggins RC. 1986. Fetal ethanol exposure: a morphometric analysis of myelination in the optic nerve. In *Int. J. Dev. Neurosci.*, pp. 369-74
- Sampaio-Baptista C, Khrapitchev AA, Foxley S, Schlagheck T, Scholz J, et al. 2013. Motor skill learning induces changes in white matter microstructure and myelination. In *J. Neurosci.*, pp. 19499-503
- Sánchez-Abarca LI, Tabernero A, Medina JM. 2001. Oligodendrocytes use lactate as a source of energy and as a precursor of lipids. In *Glia*, pp. 321-29
- Schmitt FO, Bear RS. 1937. The optical properties of vertebrate nerve axons as related to fiber size. In *J. Cell. Comp. Physiol.*, pp. 261-73: The Wistar Institute of Anatomy and Biology
- Schmitt S, Castelvetri LC, Simons M. 2015. Metabolism and functions of lipids in myelin. In *Biochim. Biophys. Acta*, pp. 999-1005
- Schnell L, Schwab ME. 1990. Axonal regeneration in the rat spinal cord produced by an antibody against myelin-associated neurite growth inhibitors. In *Nature*, pp. 269-72
- Scholz J, Klein MC, Behrens TEJ, Johansen-Berg H. 2009. Training induces changes in white-matter architecture. In *Nat. Neurosci.*, pp. 1370-71
- Schwab ME, Caroni P. 2008. Antibody against myelin-associated inhibitor of neurite growth neutralizes nonpermissive substrate properties of CNS white matter. In *Neuron*, pp. 404-05

- Shen S, Sandoval J, Swiss VA, Li J, Dupree J, et al. 2008. Age-dependent epigenetic control of differentiation inhibitors is critical for remyelination efficiency. In *Nat. Neurosci.*, pp. 1024-34
- Shields SA, Gilson JM, Blakemore WF, Franklin RJ. 1999. Remyelination occurs as extensively but more slowly in old rats compared to young rats following gliotoxin-induced CNS demyelination. In *Glia*, pp. 77-83
- Shin J-Y, Fang Z-H, Yu Z-X, Wang C-E, Li S-H, Li X-J. 2005. Expression of mutant huntingtin in glial cells contributes to neuronal excitotoxicity. In *The Journal of Cell Biology*, pp. 1001-12
- Sidman RL, Dickie MM, Appel SH. 1964. Mutant mice (quaking and jimpy) with deficient myelination in the central nervous system. In *Science*, pp. 309-11
- Simons M, Lyons DA. 2013. Axonal selection and myelin sheath generation in the central nervous system. In *Curr Opin Cell Biol*, pp. 512-19
- Simons M, Nave K-A. 2016. Oligodendrocytes: Myelination and Axonal Support. In *Cold Spring Harb Perspect Biol*, pp. a020479
- Simons M, Snaidero N, Aggarwal S. 2012. Cell polarity in myelinating glia: From membrane flow to diffusion barriers. In *BBA Molecular and Cell Biology of Lipids*, pp. 1146-53: Elsevier B.V.
- Simpson AH, Gillingwater TH, Anderson H, Cottrell D, Sherman DL, et al. 2013. Effect of limb lengthening on internodal length and conduction velocity of peripheral nerve. In *J. Neurosci.*, pp. 4536-39
- Sloane JA, Batt C, Ma Y, Harris ZM, Trapp B, Vartanian T. 2010. Hyaluronan blocks oligodendrocyte progenitor maturation and remyelination through TLR2. In *Proc. Natl. Acad. Sci. U.S.A.*, pp. 11555-60
- Smart SL, Lopantsev V, Zhang CL, Robbins CA, Wang H, et al. 1998. Deletion of the K(V)1.1 potassium channel causes epilepsy in mice. In *Neuron*, pp. 809-19
- Smith ME, Eng LF. 1965. The turnover of the lipid components of myelin. In *J Am Oil Chem Soc*, pp. 1013-18
- Snaidero N, Mobius W, Czopka T, Hekking LHP, Mathisen C, et al. 2014. Myelin membrane wrapping of CNS axons by PI(3,4,5)P3-dependent polarized growth at the inner tongue. In *Cell*, pp. 277-90
- Snaidero N, Simons M. 2014. Myelination at a glance. In J. Cell. Sci., pp. 2999-3004
- Snaidero N, Simons M. 2017. The logistics of myelin biogenesis in the central nervous system. In *Glia*, pp. 1021-31
- Snaidero N, Velte C, Myllykoski M, Raasakka A, Ignatev A, et al. 2017. Antagonistic Functions of MBP and CNP Establish Cytosolic Channels in CNS Myelin. In *Cell Rep*, pp. 314-23: ElsevierCompany.
- Spann NJ, Garmire LX, McDonald JG, Myers DS, Milne SB, et al. 2012. Regulated accumulation of desmosterol integrates macrophage lipid metabolism and inflammatory responses. In *Cell*, pp. 138-52
- Springer TA. 1998. An extracellular beta-propeller module predicted in lipoprotein and scavenger receptors, tyrosine kinases, epidermal growth factor precursor, and extracellular matrix components. In *Journal of Molecular Biology*, pp. 837-62

- Spuch C, Ortolano S, Navarro C. 2012. LRP-1 and LRP-2 receptors function in the membrane neuron. Trafficking mechanisms and proteolytic processing in Alzheimer's disease. In *Front Physiol*, pp. 1-14
- Stiles TL, Dickendesher TL, Gaultier A, Fernandez-Castaneda A, Mantuano E, et al. 2013. LDL receptor-related protein-1 is a sialic-acid-independent receptor for myelin-associated glycoprotein that functions in neurite outgrowth inhibition by MAG and CNS myelin. In *Journal of Cell Science*, pp. 209-20
- Suzuki A, Stern SA, Bozdagi O, Huntley GW, Walker RH, et al. 2011. Astrocyte-neuron lactate transport is required for long-term memory formation. In *Cell*, pp. 810-23
- Syed YA, Baer AS, Lubec G, Hoeger H, Widhalm G, Kotter MR. 2008. Inhibition of oligodendrocyte precursor cell differentiation by myelin-associated proteins. In *Neurosurg Focus*, pp. E5
- Talbott JF, Loy DN, Liu Y, Qiu MS, Bunge MB, et al. 2005. Endogenous Nkx2.2+/Olig2+ oligodendrocyte precursor cells fail to remyelinate the demyelinated adult rat spinal cord in the absence of astrocytes. In *Exp Neurol*, pp. 11-24
- Taveggia C, Feltri ML, Wrabetz L. 2010. Signals to promote myelin formation and repair. In *Nat Rev Neurol*, pp. 276-87
- Tawk M, Makoukji J, Belle M, Fonte C, Trousson A, et al. 2011. Wnt/beta-catenin signaling is an essential and direct driver of myelin gene expression and myelinogenesis. In *J. Neurosci.*, pp. 3729-42
- Tekki-Kessaris N, Woodruff R, Hall AC, Gaffield W, Kimura S, et al. 2001. Hedgehogdependent oligodendrocyte lineage specification in the telencephalon. In *Development*, pp. 2545-54
- Toyama BH, Savas JN, Park SK, Harris MS, Ingolia NT, et al. 2013. Identification of long-lived proteins reveals exceptional stability of essential cellular structures. In *Cell*, pp. 971-82
- Trapp BD, Nishiyama A, Cheng D, Macklin W. 1997. Differentiation and death of premyelinating oligodendrocytes in developing rodent brain. In *The Journal of Cell Biology*, pp. 459-68
- Tropak MB, Johnson PW, Dunn RJ, Roder JC. 1988. Differential splicing of MAG transcripts during CNS and PNS development. In *Brain Res*, pp. 143-55
- Tropak MB, Roder JC. 1997. Regulation of myelin-associated glycoprotein binding by sialylated cis-ligands. In *J. Neurochem.*, pp. 1753-63
- Trotter J, Karram K, Nishiyama A. 2010. NG2 cells: Properties, progeny and origin. In *Brain Res Rev*, pp. 72-82
- Tsai H-H, Niu J, Munji R, Davalos D, Chang J, et al. 2016. Oligodendrocyte precursors migrate along vasculature in the developing nervous system. In *Science*, pp. 379-84
- Umemori H, Sato S, Yagi T, Aizawa S, Yamamoto T. 1994. Initial events of myelination involve Fyn tyrosine kinase signalling. In *Nature*, pp. 572-76
- Vabnick I, Shrager P. 1998. Ion channel redistribution and function during development of the myelinated axon. In *J. Neurobiol.*, pp. 80-96

- Vabnick I, Trimmer JS, Schwarz TL, Levinson SR, Risal D, Shrager P. 1999. Dynamic potassium channel distributions during axonal development prevent aberrant firing patterns. In *J. Neurosci.*, pp. 747-58
- Vargas ME, Barres BA. 2007. Why is Wallerian degeneration in the CNS so slow? In *Annu. Rev. Neurosci.*, pp. 153-79
- Velumian AA, Samoilova M, Fehlings MG. 2011. Visualization of cytoplasmic diffusion within living myelin sheaths of CNS white matter axons using microinjection of the fluorescent dye Lucifer Yellow. In *Neuroimage*, pp. 27-34
- Verkhratsky A, Butt AM. 2013. Glial Physiology and Pathophysiology Ch5. pp. 560: John Wiley & Sons
- Virchow R. 1854. Ueber das ausgebreitete Vorkommen einer dem Nervenmark analogen Substanz in den thierischen Geweben. In *Archiv für pathologische Anatomie und Physiologie und für klinische Medicin*, pp. 562-72
- Virchow R. 1858. Die Cellularpathologie in ihrer Begründung auf physiologische und pathologische Gewebelehre. In *Vorlesungen uber Pathologie. Berlin : Hirschwald*: Hirschwald
- Vogel DYS, Vereyken EJF, Glim JE, Heijnen PDAM, Moeton M, et al. 2013. Macrophages in inflammatory multiple sclerosis lesions have an intermediate activation status. In *J Neuroinflammation*, pp. 35
- Wang H, Kunkel DD, Martin TM, Schwartzkroin PA, Tempel BL. 1993. Heteromultimeric K+ channels in terminal and juxtaparanodal regions of neurons. In *Nature*, pp. 75-79
- Wang JT, Medress ZA, Barres BA. 2012. Axon degeneration: Molecular mechanisms of a self-destruction pathway. In *The Journal of Cell Biology*, pp. 7-18
- Wang X-M, Yik WY, Zhang P, Lu W, Huang N, et al. 2015. Induced pluripotent stem cell models of Zellweger spectrum disorder show impaired peroxisome assembly and cell type-specific lipid abnormalities. In *Stem Cell Res Ther*, pp. 158
- Waxman SG, Ritchie JM. 1985. Organization of ion channels in the myelinated nerve fiber. In *Science*, pp. 1502-07
- Wiame E, Tyteca D, Pierrot N, Collard F, Amyere M, et al. 2009. Molecular identification of aspartate N-acetyltransferase and its mutation in hypoacetylaspartia. In *Biochem. J.*, pp. 127-36
- Wibom R, Lasorsa FM, Töhönen V, Barbaro M, Sterky FH, et al. 2009. AGC1 deficiency associated with global cerebral hypomyelination. In *N Engl J Med*, pp. 489-95
- Wiesinger H, Hamprecht B, Dringen R. 1997. Metabolic pathways for glucose in astrocytes. In *Glia*, pp. 22-34
- Wiley CA, Ellisman MH. 1980. Rows of dimeric-particles within the axolemma and juxtaposed particles within glia, incorporated into a new model for the paranodal glial-axonal junction at the node of Ranvier. In *The Journal of Cell Biology*, pp. 261-80
- Williams K, Ulvestad E, Waage A, Antel JP, McLaurin J. 1994. Activation of adult human derived microglia by myelin phagocytosis in vitro. In *J. Neurosci. Res.*, pp. 433-43

- Winters JJ, Ferguson CJ, Lenk GM, Giger-Mateeva VI, Shrager P, et al. 2011. Congenital CNS hypomyelination in the Fig4 null mouse is rescued by neuronal expression of the PI(3,5)P(2) phosphatase Fig4. In *J. Neurosci.*, pp. 17736-51
- Wolswijk G. 1998. Chronic stage multiple sclerosis lesions contain a relatively quiescent population of oligodendrocyte precursor cells. In *J. Neurosci.*, pp. 601-09
- Xu Q, Bernardo A, Walker D, Kanegawa T, Mahley RW, Huang Y. 2006. Profile and regulation of apolipoprotein E (ApoE) expression in the CNS in mice with targeting of green fluorescent protein gene to the ApoE locus. In J. Neurosci., pp. 4985-94
- Yang M, Huang H, Li J, Li D, Wang H. 2004. Tyrosine phosphorylation of the LDL receptor-related protein (LRP) and activation of the ERK pathway are required for connective tissue growth factor to potentiate myofibroblast differentiation. In *FASEB J.*, pp. 1920-21
- Yeung MSY, Zdunek S, Bergmann O, Bernard S, Salehpour M, et al. 2014. Dynamics of oligodendrocyte generation and myelination in the human brain. In *Cell*, pp. 766-74
- Young KM, Psachoulia K, Tripathi RB, Dunn S-J, Cossell L, et al. 2013. Oligodendrocyte dynamics in the healthy adult CNS: evidence for myelin remodeling. In *Neuron*, pp. 873-85
- Yuan A, Mills RG, Bamburg JR, Bray JJ. 1999. Cotransport of glyceraldehyde-3phosphate dehydrogenase and actin in axons of chicken motoneurons. In *Cell Mol Neurobiol*, pp. 733-44
- Zala D, Hinckelmann M-V, Yu H, Lyra da Cunha MM, Liot G, et al. 2013. Vesicular glycolysis provides on-board energy for fast axonal transport. In *Cell*, pp. 479-91
- Zalc B. 2006. The acquisition of myelin: a success story. In *Novartis Found. Symp.*, pp. 15-21- discussion 21-5- 54-7- 275-81
- Zhang Y, Argaw AT, Gurfein BT, Zameer A, Snyder BJ, et al. 2009. Notch1 signaling plays a role in regulating precursor differentiation during CNS remyelination. In *Proc. Natl. Acad. Sci. U.S.A.*, pp. 19162-67
- Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, et al. 2014. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. In *J. Neurosci.*, pp. 11929-47
- Zhao C, Li W-W, Franklin RJM. 2006. Differences in the early inflammatory responses to toxin-induced demyelination are associated with the agerelated decline in CNS remyelination. In *Neurobiol. Aging*, pp. 1298-307
- Zhao X, Pan Z, Wu J, Zhou G, Zeng Y. 2010. Automatic identification and morphometry of optic nerve fibers in electron microscopy images. In *Comput Med Imaging Graph*, pp. 179-84
- Zhou L, Zhang CL, Messing A, Chiu SY. 1998. Temperature-sensitive neuromuscular transmission in Kv1.1 null mice: role of potassium channels under the myelin sheath in young nerves. In *J. Neurosci.*, pp. 7200-15

- Zhou Y, Simpson S, Charlesworth JC, van der Mei I, Lucas RM, et al. 2017. Variation within MBP gene predicts disease course in multiple sclerosis. In *Brain Behav*, pp. e00670
- Zlokovic BV, Deane R, Sagare AP, Bell RD, Winkler EA. 2008. Low-density lipoprotein receptor-related protein-1: a serial clearance homeostatic mechanism controlling Alzheimer' s amyloid β -peptide elimination from the brain. In *Sci Signal*, pp. ra15-ra15
- Zonta B, Tait S, Melrose S, Anderson H, Harroch S, et al. 2008. Glial and neuronal isoforms of Neurofascin have distinct roles in the assembly of nodes of Ranvier in the central nervous system. In *The Journal of Cell Biology*, pp. 1169-77
- Zuchero JB, Barres BA. 2013. Intrinsic and extrinsic control of oligodendrocyte development. In *Current Opinion in Neurobiology*, pp. 914-20: Elsevier Ltd

CHAPTER II

LRP1 Regulates Peroxisome Biogenesis and Cholesterol Homeostasis in Oligodendrocytes and Promotes CNS Myelin Development and Repair

2.1 Abstract

Low-density lipoprotein receptor-related protein-1 (LRP1) is a large endocytic and signaling molecule broadly expressed by neurons and glia. In adult mice, global inducible (*Lrp1^{flox/flox};CAG-CreER*) or oligodendrocyte (OL)-lineage specific ablation (*Lrp1^{flox/flox};Pdgfra-CreER*) of *Lrp1* attenuates repair of damaged white matter. In oligodendrocyte progenitor cells (OPCs), *Lrp1* is required for cholesterol homeostasis and differentiation into mature OLs. Lrp1-deficient OPC/OLs show a strong increase in the sterol-regulatory element-binding protein-2 yet are unable to maintain normal cholesterol levels, suggesting more global metabolic deficits. Mechanistic studies revealed a decrease in peroxisomal biogenesis factor-2 and fewer peroxisomes in OL processes. Treatment of*Lrp1^{-/-}* OPCs with cholesterol or activation of peroxisome proliferator-activated receptor-y with pioglitazone alone is not sufficient to promote differentiation; however, when combined, cholesterol and pioglitazone enhance OPC differentiation into mature OLs. Collectively, our studies reveal a novel role for *Lrp1* in peroxisome biogenesis, lipid homeostasis, and OPC differentiation during white matter development and repair

2.2 Introduction

In the central nervous system (CNS), the myelin-producing cell is the oligodendrocyte (OL). Mature OLs arise from oligodendrocyte progenitor cells (OPCs), a highly migratory pluripotent cell type (Rowitch & Kriegstein 2010, Zuchero & Barres 2013). OPCs that commit to differentiate along the OL-lineage undergo a tightly regulated process of maturation, membrane expansion, and axon

myelination (Emery et al 2009, Hernandez & Casaccia 2015, Li & Yao 2012, Simons & Lyons 2013). Even after developmental myelination is completed, many OPCs persist as stable CNS resident cells that participate in normal myelin turnover and white matter repair following injury or disease (Fancy et al 2011, Franklin & ffrench-Constant 2008).

LRP1 is a member of the LDL receptor family with prominent functions in endocytosis, lipid metabolism, energy homeostasis, and signal transduction (Boucher & Herz 2011). *Lrp1* is broadly expressed in the CNS and abundantly found in OPCs (Auderset et al 2016, Zhang et al 2014). Global deletion of Lrp1 is embryonically lethal (Herz et al 1992) and conditional deletion revealed numerous tissue specific functions in neural and non-neural cell types (Lillis et al 2008). In the PNS, Lrp1 regulates Schwann cell survival, myelin thickness, and morphology of Remak bundles (Campana et al 2006, Mantuano et al 2010, Orita et al 2013). In the CNS, *Lrp1* influences neural stem cell proliferation (Auderset et al 2016), synaptic strength (Gan et al 2014, Nakajima et al 2013), axonal regeneration (Landowski et al 2016, Stiles et al 2013, Yoon et al 2013), and clearance of amyloid beta amyloid beta (Kanekiyo et al 2013, Kim et al 2014, Liu et al 2010, Zlokovic et al 2008). Recent evidence shows that neurospheres deficient for*Lrp1* produce more GFAP⁺ astrocytes at the expense of O4⁺ OLs and TuJ1⁺ neurons (Hennen et al 2013, Safina et al 2016). Whether LRP1 is required for proper CNS myelinogenesis, nerve conduction, or repair of damaged adult CNS white matter, however, has not yet been examined. Moreover, the molecular basis of how LRP1 influences OPC differentiation remains poorly understood.

LRP1 is a large type-1 membrane protein comprised of a ligand binding 515kDa α chain non-covalently linked to an 85kDa β chain that contains the transmembrane domain and cytoplasmic portion. Through its α chain, LRP1 binds over 40 different ligands with diverse biological functions (Fernandez-Castaneda et al 2013, Lillis et al 2008). LRP1 mediates endocytotic clearance of a multitude of extracellular ligands (May et al 2003, Tao et al 2016) and participates in cell signaling, including activation of the Ras/MAPK and AKT pathways (Fuentealba et al 2009, Martin et al 2008, Muratoglu et al 2010). The LRP1 β chain can be processed by γ -secretase and translocate to the nucleus where it associates with transcription factors to regulate gene expression (Carter 2007, May et al 2002).

Here, we combine conditional Lrp1 gene ablation with ultrastructural and electrophysiological approaches to show that Lrp1 is important for myelin development, nerve conduction, and adult CNS white matter repair. Gene expression analysis in Lrp1-deficient OPCs identified a reduction in peroxisomal gene products. We show that Lrp1 deficiency decreases production of peroxisomal proteins and disrupts cholesterol homeostasis. Mechanistic studies uncover a novel role for Lrp1 in PPAR γ -mediated OPC differentiation, peroxisome biogenesis, and CNS myelination.

2.3 **Results**

2.3.1 In adult mice, inducible ablation of Lrp1attenuates CNS white matter repair

To study the role of Lrp1 in CNS myelin repair, we pursued a mouse genetic approach. Lrp1 global knockout through the germline results in embryonic lethality (Herz et al 1992). To circumvent this limitation, we generated $Lrp1^{flox/flox}$;*CAG-CreER*TM mice (Lrp1 iKO) that allow tamoxifen (TM)-inducible global gene ablation. As control, Lrp1 mice harboring at least one wild-type or non-recombined Lrp1allele were injected with TM and processed in parallel (Figure 2.1). TM injection into P56 mice resulted in an approximately 50% decrease of LRP1 in brain without noticeable impact on white matter structure (Figure 2.1). One month after TM treatment, Lrp1 iKO and control mice were subjected to unilateral injection of 1% lysophosphatidylcholine (LPC) into the corpus callosum. The contralateral side was injected with isotonic saline (PBS) and served as control. Brains were collected 10 and 21 days after LPC/PBS injection and the extent of white matter damage and repair were analyzed (Figure 2.2a). Serially cut sections were stained with Fluoromyelin-Green (FM-G) and anti-GFAP (Figure 2.3a and b) or subjected to *in* *situ* hybridization (ISH) for the myelin-associated gene products *Mbp*, *Mag*, *Plp1* and the OPC marker *Pdgfra* (Figure 2.2b, Figure 2.3c and d). Independent of *Lrp1* genotype, at 10 days following LPC injection, similar-sized white matter lesions (area devoid of FM-G labeling) and comparable astrogliosis were observed (Figure 2.3b). At 21 DPI, however, astrogliosis was increased and the lesion area larger in LPC injected *Lrp1* iKO mice (Figure 2.3b). ISH revealed no changes in *Mbp*, *Mag, Plp1*, or *Pdgfra* expression on the PBS injected side (Figure 2.3c); however, LPC injection resulted in a strong increase in *Mag*, *Plp1*, and *Mbp1* (Figure 2.3c and d). Because *Mbp* mRNA is strongly upregulated in myelin producing OLs and transported into internodes (Ainger 1993), we used Mpb ISH to find the white matter lesion (Figure 2.2b). The section with the largest circumference of the intensely labeled *Mbp*⁺area was defined as the lesion center and subjected to quantification (Figure 2.2c). The extent of white matter lesion, the outer rim of elevated *Mbp* labeling (white dotted line), was comparable between*Lrp1* control and iKO mice (Figure 2.2d). As shown in Figure 2.2c, the area that failed to undergo repair, the inner rim of elevated *Mbp* labeling (yellow solid line), was larger in *Lrp1* iKO mice (Figure 2.2c). Quantification of lesion repair revealed a significant decrease in *Lrp1* iKO mice compared to *Lrp1* control mice (Figure 2.2e). As an independent assessment, serial sections were stained for Pdgfra, Plp1, and Mag transcripts and revealed fewer labeled cells within the lesion of iKO mice (Figure 2.3e). Together these studies indicate that in adult mice, *Lrp1* is required for the timely repair of a chemically induced white matter lesion. When coupled with the broad expression of *Lrp1* in different neural cell types (Zhang et al 2014), this prompted further studies to examine whether *Lrp1* function in the OL lineage is important for CNS white matter repair.

2.3.2 **OL-lineage specific ablation of** *Lrp1* **impairs timely repair of damaged** white matter

To determine the cell autonomy of Lrp1 in adult white matter repair, we generated $Lrp1^{flox/flox}$; Pdgfra- $CreER^{TM}$ (Lrp1 iKO^{OL}) mice that allow inducible gene ablation selectively in OPCs in adult mice. At P56 Lrp1 iKO^{OL} mice were injected with

TM and one month later subjected to unilateral injection of LPC into the corpus callosum and PBS on the contralateral side. *Lrp1* control mice, harboring at least one wildtype or non-recombined *Lrp1* allele, were processed in parallel. Twenty-one days post LPC/PBS injection (21 DPI), brains were collected and serially sectioned (Figure 2.2f). Detection of the initial white matter lesion and quantification of the extent of white matter repair was assessed as described above (Figure 2.2b). The initial size of the LPC inflicted white matter lesion was comparable between *Lrp1* control and iKO^{OL} mice (Figure 2.2g and h). However, the extent of lesion repair was significantly decreased in *Lrp1* iKO^{OL} mice (Figure 2.2g and i). This demonstrates an OL-linage-specific role for *Lrp1* in the timely repair of a chemically induced white matter lesion.

2.3.3 *Lrp1* is important for proper CNS myelin development and optic nerve conduction

To examine whether *Lrp1* is required for proper CNS myelin development, we generated *Lrp1^{flox/flox};Olig2-Cre* mice (*Lrp1*cKO^{0L}) (Figure 2.5a). *Lrp1* cKO^{0L} pups are born at the expected Mendelian frequency and show no obvious abnormalities at the gross anatomical level (data not shown). LRP1 protein levels in the brains of P10, P21, and P56 Lrp1 control and cKO^{0L} mice were analyzed by Western blot analysis and revealed a partial loss of LRP1 β (Figure 2.5b). The partial loss of LRP1 β in brain lysates of *Lrp1* cKO^{OL} mice is due to *Lrp1* expression in several other neural cell types. Olig2-Cre mice express cre recombinase under the endogenous Olig2 promoter, rendering mice haploinsufficient for *Olig2*. Loss of one allele of *Olig2* has been shown to reduce *Mbp* mRNA expression in neonatal mouse spinal cord (Liu et al 2007b). Therefore, we examined whether the presence of the *Olig2-Cre* allele influences LRP1β, MAG, CNP, or MBP in P21 brain lysates. Quantification of protein levels revealed no differences between *Lrp1^{flox/+}* and *Lrp1^{flox/+};Olig2-Cre* mice (Figure 2.5c). However, LRP1β is reduced in P10 and P21 Lrp1^{flox/flox};Olig2-Cre mice, compared to *Lrp1^{flox/flox}* or *Lrp1^{flox/+};Olig2-Cre* mice (Figure 2.5d). Similar results were showed with *Lrp1^{flox/flox}; CAG-CreERTM* (Figure 2.6).

To examine whether *Lrp1* cKO^{OL} mice exhibit defects in myelin development, optic nerves were isolated at P10, the onset of myelination; at P21, near completion of myelination; and at P56, when myelination is completed. Ultrastructural analysis at P10 revealed no significant difference in myelinated axons between *Lrp1* control $(17 \pm 6\%)$ and cKO^{OL} $(7 \pm 2\%)$ optic nerves. At P21 and P56, the percentile of myelinated axons in the optic nerve of cKO^{OL} mice (49 ± 4% and 66 ± 5%, respectively) is significantly reduced compared to controls (70 \pm 2% and 88 \pm 1%, respectively) (Figure 2.4a and b). In *Lrp1* cKO^{0L} mice, hypomyelination is preferentially observed in intermediate to small caliber axons (Figure 2.5f-n). As an independent assessment of fiber structure, the g-ratio was determined. At P10, P21, and P56 the average g-ratio of *Lrp1* cKO^{0L} optic fibers is significantly larger than in age-matched *Lrp1* control mice (Figure 2.4c and Figure 2.5e). Western blot analysis of adult *Lrp1* cKO^{OL} brain lysates revealed a significant reduction in CNP, MAG, and MBP (Figure 2.50 and p). Together, these studies show that in the OL lineage *Lrp1* functions in a cell-autonomous manner and is required for proper CNS myelinogenesis.

To examine whether *Lrp1* in OLs is required for nodal organization, optic nerve sections of P21 *Lrp1* control and cKO^{0L} mice were immunostained for sodium channels (PanNaCh) and the paranodal axonal protein (Caspr). Nodal density, the number of PanNaCh⁺ clusters in longitudinal optic nerve sections is significantly reduced in *Lrp1* cKO^{0L} mice (Figure 2.4d and g). In addition, an increase in nodal structural defects, including elongated nodes, heminodes, and nodes in which sodium channel staining is missing, was observed in mutant nerves. Quantification revealed an increase of nodal structural defects from 13.7 ± 1.3% in *Lrp1* control mice to 33.4 ± 2.9% in cKO^{0L} optic nerves (Figure 2.4e and h). Sodium channel staining associated with large caliber (>1 µm) axons was increased and staining associated with small (<0.5 µm) caliber axons was reduced (Figure 2.4f and i). The density of optic nerve axons does not change between *Lrp1* control and cKO^{0L} mice (Figure 2.5q-s). To assess whether structural defects observed in optic nerve of *Lrp1*cKO^{0L} mice are associated with impaired nerve conduction, we used electrophysiological methods to measure compound action potentials (CAPs) in acutely isolated nerves (Figure 2.7). Recordings revealed a modest but significant delay in a subpopulation of myelinated optic nerve axons. The observed changes in conduction in *Lrp1* cKO^{0L} nerves fit well with defects at the ultrastructural level and aberrant node assembly.

2.3.4 Conditional ablation of Lrp1 in the OL-lineage attenuates OPC differentiation

CNS hypomyelination in *Lrp1* cKO^{0L} mice may be the result of reduced OPC production or impaired OPC differentiation into myelin producing OLs. To distinguish between these two possibilities, optic nerve cross-sections were stained with anti-PDGFR α , a marker for OPCs; anti-Olig2, to account for all OL lineage cells; and anti-CC1, a marker for mature OLs. No change in OPC density was observed, but the number of mature OLs was significantly reduced in *Lrp1* cKO^{0L} mice (Figure 2.8a and c). Optic nerve ISH for *Pdgfra* revealed no reduction in labeled cells in *Lrp1*cKO^{0L} mice, a finding consistent with anti-PDGFR α immunostaining. The density of *Plp* and *Mag* expressing cells, however, is significantly reduced in the optic nerve cross-sections and longitudinal-sections of *Lrp1* cKO^{0L} mice (Figure 2.8b and d). The optic nerve cross-sectional area is not different between *Lrp1*control and cKO^{0L} mice (Figure 2.9a). Together these studies show that OPCs are present at normal density and tissue distribution in *Lrp1* cKO^{0L} mice, but apparently fail to generate sufficient numbers of mature, myelin-producing OLs.

2.3.5 Loss of *Lrp1* attenuates OPC differentiation *in vitro*

To independently assess the role of *Lrp1* in OL differentiation, we isolated OPCs from brains of *Lrp1* control and cKO^{OL} pups (Figure 2.8e). OPCs were kept in PDGF-AA containing growth medium (GM) or switched to differentiation medium (DM) containing triiodothyronine (T3). Staining for the proliferation marker Ki67 did not reveal any change in OPC proliferation in *Lrp1* cKO^{OL} cultures after 1 or 2

days in GM (Figure 2.9d-f). After 3 days in DM, the number of NG2⁺ and CNP⁺ OLs was comparable between *Lrp1* control and cKO^{0L} cultures (Figure 2.8f and h). An abundant signal for LRP1 β was detected in *Lrp1* control lysate, but LRP1 was not detectable in *Lrp1* cKO^{OL} cell lysate, demonstrating efficient gene deletion in the OL linage (Figure 2.8g). Moreover, a significant reduction in CNP, MAG, and PLP was detected in *Lrp1*cKO^{0L} cell lysates (Figure 2.9g and i). Importantly, halplosufficiency for Olig2 in cultures prepared from Lrp1^{flox/+} and Lrp1^{flox/+};Olig2-Cre pups did not reveal any difference in MAG, PLP, or LRP1ß protein (Figure 2.9b and c). As LRP1 signaling is known to regulate ERK1/2 and AKT activity (Yoon et al 2013), immunoblots were probed for pAKT (S473) and pErk1/2. When normalized to total AKT, levels of pAKT are reduced in *Lrp1* cKO^{0L} lysate, while pERK1/2 levels are comparable between *Lrp1* control and cKO^{0L} lysates (Figure 2.9h and j). Extended culture of *Lrp1*-deficient OLs in DM for 5 days is not sufficient to restore myelin protein levels. Compared to *Lrp1* control cultures, mutants show significantly fewer MAG⁺, PLP⁺, and MBP⁺ cells (Figure 2.8i and k) and immunoblotting of cell lysates revealed a reduction in total CNP, MAG, PLP, and MBP (Figure 2.8j and l). Collectively, our studies demonstrate a cell-autonomous function for *Lrp1* in the OL lineage, important for OPC differentiation into myelin sheet producing OLs.

2.3.6 *Lrp1* deficiency in OPCs and OLs causes a reduction in free cholesterol

While LRP1 has been implicated in cholesterol uptake and homeostasis in non-neural cell types (van de Sluis et al 2017), a role in cholesterol homeostasis in the OL-lineage has not yet been investigated. We find that $Lrp1^{-/-}$ OPCs, prepared from $Lrp1^{flox/flox}$; Olig2-Cre, have reduced levels of free cholesterol compared to Lrp1 control OPCs (Figure 2.10a and b). Levels of cholesteryl-ester are very low in the CNS (Björkhem & Meaney 2004) and near the detection limit in Lrp1 control and $Lrp1^{-/-}$ OPCs (Figure 2.10c). Morphological studies with MBP+ OLs revealed a significant reduction in myelin-like membrane sheet expansion in $Lrp1^{-/-}$ OLs (Figure 2.10d and e), reminiscent of wildtype OLs cultures treated with statins to inhibit HMG-CoA reductase, the rate limiting enzyme in the cholesterol biosynthetic pathway (Maier et al 2009, Paintlia et al 2010, Smolders et al 2010). To assess

cholesterol distribution in primary OLs, cultures were stained with filipin. In *Lrp1* control OLs, staining was observed on myelin sheets and was particularly strong near the cell soma. In *Lrp1*^{-/-} OLs, filipin and MBP staining were significantly reduced (Figure 2.10f). Reduced filipin staining is not simply a reflection of smaller cell size, as staining intensity was decreased when normalized to myelin sheet surface area (Figure 2.10g). Thus, independent measurements revealed a dysregulation of cholesterol homeostasis in *Lrp1*^{-/-} OPCs/OLs.

Cellular lipid homeostasis is regulated by a family of membrane-bound basic helix-loop-helix transcription factors, called sterol-regulatory element-binding proteins (SREBPs). To assess whether *Lrp1* deficiency leads to an increase in SREBP2, OLs were cultured for 3 days in DM and analyzed by immunoblotting. OL cultures prepared from *Lrp1^{flox/+}* and *Lrp1^{flox/+};Olig2-cre* pups showed very similar levels of SREBP2. In marked contrast, we observed a strong upregulation of SREBP2 in *Lrp1^{-/-}* cultures (Figure 2.10i, Figure 2.11a and b). Elevated SREBP2 in mutant cultures can be reversed by exogenous cholesterol directly added to the culture medium (Figure 2.10i and j). This shows the existence of LRP1-independent cholesterol uptake mechanisms in *Lrp1^{-/-}* OLs and a normal physiological response to elevated levels of cellular cholesterol. In *Lrp1* control cultures, bath application of cholesterol leads to a small, yet significant decrease in SREBP2 (Figure 2.10j). Given the importance of cholesterol in OL maturation (Kramer-Albers et al 2006, Mathews et al 2014, Saher et al 2005), we examined whether the differentiation block can be rescued by bath-applied cholesterol. Remarkably, cholesterol treatment of *Lrp1*^{-/-}OLs for 3 days failed to augment PLP, MAG or CNP to control levels (Figure 2.10k-n). While cholesterol treated $Lrp1^{-/-}$ OLs showed a modest increase in PLP, levels remained below *Lrp1* controls. Moreover, prolonged cholesterol treatment for 5 days failed to increase PLP levels (Figure 2.100 and p) or the number of MBP⁺ OLs in *Lrp1*^{-/-} cultures (Figure 2.10q and r). Although differentiation of Lrp1^{-/-} OLs cannot be 'rescued' by bath-applied cholesterol, cells are highly sensitive to a further reduction in cholesterol, as shown by bath-applied simvastatin (Figure 2.10e and f). Since cholesterol is only one of many lipid derivatives produced by the

cholesterol biosynthetic pathway (Figure 2.11c), we asked whether treatment with mevalonate improves differentiation of *Lrp1*-/- OPC. However, similar to cholesterol, mevalonate fails to increase differentiation (Figure 2.11g and h). Taken together, *Lrp1* deficiency in the OL-lineage leads to a drop in cellular cholesterol and arrest in differentiation that cannot be rescued by cholesterol or mevalonate supplementation. Our data suggest that in addition to cholesterol homeostasis, LRP1 regulates other biological processes important for OPC differentiation.

2.3.7 *Lrp1* deficiency impairs peroxisome biogenesis

To further investigate what type of biological processes might be dysregulated by *Lrp1* deficiency, we performed transcriptomic analyses of OPCs acutely isolated from *Lrp1* control and cKO^{0L}pups. Gene ontology (GO) analysis identified differences in 'peroxisome organization' and 'peroxisome proliferationassociated receptor (PPAR) signaling pathway' (Figure 2.12a). Six gene products regulated by *Lrp1* belong to peroxisome and PPAR GO terms, including *Pex2*, *Pex51*, *Hrasls, Ptgis, Mavs,* and *Stard10* (Figure 2.12b). Western blot analysis of*Lrp1*^{-/-} OLs further revealed a significant reduction in PEX2 after 5 days in DM (Figure 2.12c and d). Because PEX2 has been implicated in peroxisome biogenesis (Gootjes et al 2004). and peroxisome biogenesis disorders (PBDs) are typically associated with impaired lipid metabolism and CNS myelin defects (Krause et al 2006), this prompted us to further explore a potential link between LRP1 and peroxisomes. To assess whether the observed reduction in PEX2 impacts peroxisome density in primary OLs, MBP+ OLs were stained with anti-PMP70, an ATP-binding cassette transporter enriched in peroxisomes (Figure 2.13a). In $Lrp1^{-/-}$ OLs, we observed reduced PMP70 staining (Figure 2.13b) and a decrease in the total number of peroxisomes (Figure 2.13c). Normalization of peroxisome counts to cell size revealed that the reduction in *Lrp1*^{-/-}OLs is not simply a reflection of smaller cells (Figure 2.13d). The subcellular localization of peroxisomes is thought to be important for ensuring a timely response to metabolic demands (Berger et al 2016). This prompted us to analyze the distribution of peroxisomes in primary OLs. Interestingly, while the number of PMP70 positive puncta near the cell soma is comparable between *Lrp1* control and *Lrp1*^{-/-} OLs, we observed a significant drop in peroxisomes along radial processes of MBP⁺ OLs (Figure 2.13e-h).

2.3.8 Combination treatment of cholesterol and PPARy agonist rescues the differentiation block in *Lrp1*-deficient OPCs

In endothelial cells, the LRP1-ICD functions as a co-activator of PPARy, a key regulator of lipid and glucose metabolism (Mao et al 2017). Activated PPARy moves into the nucleus to control gene expression by binding to PPAR-responsive elements (PPREs) on numerous target genes, including *Lrp1* (Gauthier et al 2003). In addition, PPREs are found in genes important for lipid and glucose metabolism, and peroxisome biogenesis (Fang et al 2016, Hofer et al 2017). In vitro, a 5-day treatment of *Lrp1* control OPCs with pioglitazone, an agonist of PPARy, results in elevated LRP1 (Figure 2.14a and b) and accelerated differentiation into MBP+ OLs (Figure 2.14c and d) (Bernardo et al 2009). This stands in marked contrast to $Lrp1^{-/-}$ cultures, where pioglitazone treatment fails to accelerate OPC differentiation (Figure 2.14c and d). Moreover, pioglitazone does not regulate PMP70 staining intensity in MBP+ Lrp1 control or $Lrp1^{-/-}$ OLs, nor does it have any effect on total peroxisome counts per cell (Figure 2.14e-i). However, pioglitazone leads to a modest but significant increase in the number of peroxisomes located in cellular processes of Lrp1-/- OLs (Figure 2.14j and k). Treatment of Lrp1control OPCs with the PPARy antagonist GW9662 blocks differentiation into MBP⁺ OLs (Roth et al 2003), but does not lead to a further reduction in MBP⁺ cells in $Lrp1^{-/-}$ OL cultures (Figure 2.14l and m). This suggests that in $Lrp1^{-/-}$ OLs PPARy is not active.

Given LRP1's multifunctional receptor role, we asked whether simultaneous treatment with pioglitazone and cholesterol is sufficient to rescue the differentiation block of *Lrp1*^{-/-} OPCs (Figure 2.15a). This is indeed the case, as the number of MBP⁺ cells in *Lrp1*^{-/-} cultures is significantly increased by the combination treatment (Figure 2.15b and c). Moreover, the size of MBP⁺ *Lrp1*^{-/-} OLs increased (Figure 2.15d and f) and peroxisome counts are elevated (Figure 2.15e and g), however the anti-MBP staining intensity was only partially rescued (Figure 2.15h). Quantification of

peroxisome distribution in *Lrp1*^{-/-} OPC/OL cultures subjected to combo treatment revealed a marked increase in PMP70⁺ peroxisomes in OL processes (Figure 2.15i and j). Together, these findings indicate that LRP1 regulates multiple metabolic functions important for OL differentiation. In addition to its known role in cholesterol homeostasis, LRP1 regulates expression of PEX2 and thereby metabolic functions associated with peroxisomes.

2.4 **Discussion**

LRP1 function in the OL-lineage is necessary for proper CNS myelin development and the timely repair of a chemically induced focal white matter lesion *in vivo*. Optic nerves of *Lrp1* cKO^{OL} show fewer myelinated axons, thinning of myelin sheaths, and an increase in nodal structural defects. Morphological alterations have a physiological correlate, as *Lrp1* cKO^{OL} mice exhibit faulty nerve conduction. Mechanistically, *Lrp1* deficiency disrupts multiple signaling pathways implicated in OL differentiation, including AKT activation, cholesterol homeostasis, PPAR γ signaling, peroxisome biogenesis and subcellular distribution. The pleiotropic roles of LRP1 in OPC differentiation are further underscored by the fact that restoring cholesterol homeostasis or activation of PPAR γ alone is not sufficient to drive differentiation. Only when cholesterol supplementation is combined with PPAR γ activation, is differentiation of *Lrp1-/-* OPC into MBP+ OLs significantly increased. Taken together, our studies identify a novel role for LRP1 in peroxisome function and suggest that broad metabolic dysregulation in *Lrp1*-deficient OPCs attenuates differentiation into mature OLs (Figure 2.16).

In the embryonic neocortex, LRP1 is strongly expressed in the ventricular zone and partially overlaps with nestin⁺ neural stem and precursor cells (Hennen et al 2013). In *Lrp1*^{flox/flox} neurospheres, conditional gene ablation reduces cell proliferation, survival, and negatively impacts differentiation into neurons and O4⁺ OLs (Safina et al 2016). Consistent with these observations, *Lrp1* cKO^{0L} mice show reduced OPC differentiation *in vivo*. Studies with purified OPCs *in vitro* and OL-linage specific gene ablation *in vivo*, suggest a cell-autonomous role for *Lrp1* in OPC

maturation. Non-cell-autonomous functions for LRP1 following white matter lesion are likely, since LRP1 is upregulated in astrocytes and myeloid cells near multiple sclerosis lesions (Chuang et al 2016). Moreover, deletion of Lrp1 in microglia worsens the course of experimental autoimmune encephalomyelitis and has been proposed to promote a proinflammatory milieu associated with disease exacerbation (Chuang et al 2016). Studies with Lrp1 iKO^{OL} mice show that Lrp1 in the OL linage is necessary for the timely repair of a focal myelin lesion. This suggests that similar to OPCs in the developing brain, OPCs in the adult brain depend on Lrp1 for rapid differentiation into myelin producing OLs. Since white matter repair was analyzed by repopulation of the lesion area with Mbp^+ cells, additional studies, including electron microscopy, will be needed to demonstrate a requirement for Lrp1 in remyelination of denuded axons.

Cholesterol does not cross the blood-brain-barrier (Saher & Stumpf 2015) and CNS resident cells need to either synthesize their own cholesterol or acquire it through horizontal transfer from neighboring cells, including astrocytes (Camargo et al 2017). In the OL-lineage cholesterol is essential for cell maturation, including myelin gene expression, myelin protein trafficking, and internode formation (Kramer-Albers et al 2006, Mathews et al 2014, Saher et al 2005). Sterol biosynthesis is in part accomplished by peroxisomes. Specifically, the pre-squalene segment of the cholesterol biosynthetic pathway takes place in peroxisomes. However, cholesterol is only one of many lipid derivatives produced by this pathway (Faust & Kovacs 2014). A drop in intracellular cholesterol leads to an increase in SREBPs, a family of transcription factors that regulate expression of gene products involved in cholesterol and fatty acid synthesis (Faust & Kovacs 2014, Goldstein et al 2006). In Schwann cells, SREBPs and the SREBP-activating protein SCAP are required for AKT/mTOR-dependent lipid biosynthesis, myelin membrane synthesis, and normal PNS myelination (Norrmén et al 2014, Verheijen et al 2009). In the OL linage blockage of SREBP inhibits CNS myelination (Camargo et al 2017, Monnerie et al 2017). Blocking of SREBP processing in primary OLs leads to a drop in cholesterol and inhibits cell differentiation and membrane expansion. This can be rescued by cholesterol added to the culture medium (Monnerie et al 2017). In primary OLs, *Lrp1* deficiency leads to activation of SREBP2, yet cells are unable to maintain cholesterol homeostasis, suggesting more global metabolic deficits. The cholesterol sensing apparatus in *Lrp1*-deficient OPCs appears to be largely intact, as bath applied cholesterol restores SREBP2 to control levels. Since SREBP2 can be induced by ER stress (Faust & Kovacs 2014), reversibility by bath applied cholesterol suggests that *Lrp1* cKO^{0L} cultures upregulate SREBP2 due to cholesterol deficiency and not elevated ER stress (Faust & Kovacs 2014). Significantly, restoring cellular cholesterol homeostasis in *Lrp1*-/- OPCs is not sufficient to overcome the differentiation block, suggesting more widespread functional deficits.

Members of the PPAR subfamily, including PPAR α , PPAR β/δ , and PPAR γ , are ligand-activated transcription factors that belong to the nuclear hormone receptor family (Michalik et al 2006). PPARs regulate transcription through heterodimerization with the retinoid X receptor (RXR). When activated by a ligand, the dimer modulates transcription via binding to a PPRE motif in the promoter region of target genes (Michalik et al 2006). PPARs-regulated gene expression controls numerous biochemical pathways implicated in lipid, glucose and energy metabolism (Berger & Moller 2002, Han et al 2017). A critical role for PPARy in OL differentiation is supported by the observation that activation with pioglitazone or rosiglitazone accelerates OPC differentiation into mature OLs (Bernardo et al 2009, Bernardo et al 2013, De Nuccio et al 2011, Roth et al 2003, Saluja et al 2001) and inhibition with GW9662 blocks OL differentiation (Bernardo et al 2017). Deficiency for the PPARy-coactivator-1 alpha (PGC1a) leads to impaired lipid metabolism, including an increase in very long chain fatty acids (VLCFAs) and disruption of cholesterol homeostasis (Camacho et al 2013, Xiang et al 2011). In addition, PGC1a deficiency results in defects of peroxisome-related gene function, suggesting the increase in VLCFAs and drop in cholesterol reflects impaired peroxisome function (Baes & Aubourg 2009). Following γ-secretase-dependent processing, the LRP1 ICD can translocate to the nucleus where it associates with transcriptional regulators (Carter 2007, May et al 2002). In endothelial cells, the LRP1-ICD binds directly to

the nuclear receptor PPARy to regulate gene products that function in lipid and glucose metabolism (Mao et al 2017). Treatment of $Lrp1^{-/-}$ OPCs with pioglitazone leads to an increase in peroxisomes in OL processes but fails to promote differentiation into myelin sheet producing OLs. In the absence of the LRP1-ICD, pioglitazone may fail to fully activate PPARy (Mao et al 2017), but the observed increase in PMP70⁺ peroxisomes in OL processes of Lrp1 deficient cultures suggests that mutant cells still respond to pioglitazone. Because Lrp1 cKO^{OL} cultures are cholesterol deficient and the LRP1-ICD participates in PPARy regulated gene expression, we examined whether a combination treatment rescues the differentiation block in Lrp1 deficient OPCs/OLs. This was indeed the case, suggesting that Lrp1 deficiency leads to dysregulation of multiple pathways important for OPC differentiation.

The importance of peroxisomes in the human nervous system is underscored by inherited disorders caused by complete or partial loss of peroxisome function, collectively described as Zellweger spectrum disorders (Berger et al 2016, Waterham et al 2016). *PEX* genes encode peroxins, proteins required for normal peroxisome assembly. Defects in *PEX* genes can cause peroxisome biogenesis disorder (PBD), characterized by a broad range of symptoms, including aberrant brain development, white matter abnormalities, and neurodegeneration (Berger et al 2016). The genetic basis for PBD is a single gene mutation in one of the 14 PEX genes, typically leading to deficiencies in numerous metabolic functions carried out by peroxisomes (Adam et al 1993, Steinberg et al 2006). Mounting evidence points to a close interaction of peroxisomes with other organelles, mitochondria in particular, and disruption of these interactions may underlie the far reaching metabolic defects observed in PBD and genetically manipulated model organisms deficient for a single PEX (Fransen et al 2017, Wangler et al 2017). In developing OLs, *Lrp1* deficiency leads to a decrease in peroxisomal gene products, most prominently a $\sim 50\%$ reduction in PEX2, an integral membrane protein that functions in the import of peroxisomal matrix proteins. Mice deficient for *Pex2* lack normal peroxisomes but do assemble empty peroxisome membrane ghosts (Faust & Hatten 1997). *Pex2* mutant mice show significantly lower plasma cholesterol levels and in the brain the rate of cholesterol synthesis is significantly reduced (Faust & Kovacs 2014); brain size is reduced, cerebellar development impaired, and depending on the genetic background death occurs in early postnatal life (Faust 2003). Mutations in human *PEX2* cause Zellweger spectrum disorder but have no apparent impact on white matter appearance (Mignarri et al 2012). In mice, *CNP-Cre*mediated ablation of *Pex5* in OLs disrupts peroxisome function and integrity of myelinated fibers, but does not impair CNS myelinogenesis (Kassmann et al 2007). This suggests that defects in CNS myelinogenesis observed in *Lrp1* cKO^{0L} mice are likely not only a reflection of reduced peroxisome biogenesis or transport into internodes. Rather we provide evidence that *Lrp1* deficiency in OPCs leads to dysregulation of additional pathways implicated in myeliogenesis, including AKT, SREBP2, and PAPR γ . We propose that the combined action of these deficits attenuates OPC differentiation.

In sum, our studies show that *Lrp1* is required in the OL lineage for proper CNS myelin development and the timely repair of a chemically induced white matter lesion *in vivo*. Mechanistic studies with primary OPCs revealed that loss of *Lrp1* causes differentiation block that can be rescued by bath application of cholesterol combined with pharmacological activation of PPARγ.

2.5 **Materials and Methods**

2.5.1 Mice

All animal handling and surgical procedures were performed in compliance with local and national animal care guidelines and were approved by the Institutional Animal Care and Use Committee (IACUC). *Lrp1*^{flox//flox} mice were obtained from Steven Gonias (Stiles et al 2013) and crossed with *Olig2-Cre* (Schüller et al 2008),*CAG-CreER*TM (Jackson Laboratories, #004682, Bar Harbor, ME), and *Pdgfra-CreER*TM (Kang et al 2010) mice. For inducible gene ablation in adult male and female mice, three intraperitoneal (i.p.) injections of tamoxifen (75 mg/kg) were given every 24 hr. Tamoxifen (10 mg/ml) was prepared in a mixture of 9% ethanol and 91% sunflower oil. Mice were kept on a mixed background of C57BL/6J and 129SV. Throughout the study, male and female littermate animals were used. *Lrp1* 'control' mice harbor at least one functional *Lrp1* allele. Any of the following genotypes *Lrp1*^{+/+}, *Lrp1*^{+/flox}, *Lrp1*^{flox/flox}, or *Lrp1*^{flox/+};*Cre* + served as *Lrp1* controls.

2.5.2 Genotyping

To obtain genomic DNA (gDNA), tail biopsies were collected, boiled for 30 min in 100 μ l alkaline lysis buffer (25 mM NaOH and 0.2 mM EDTA in ddH₂O) and neutralized by adding 100 µl of 40 mM Tris-HCI (pH 5.5). For PCR genotyping, 1–5 μl of gDNA was mixed with 0.5 μl of 10 mM dNTP mix (Promega, C1141, Madison, WI), 10 μl of 25 mM MgCl₂, 5 μl of 5X Green GoTaq Buffer (Promega, M791A), 0.2 μl of GoTaq DNA polymerase (Promega, M3005), 0.15 µl of each PCR primer stock (90 μ M each), and ddH₂O was added to a total volume of 25 μ l. The following cycling conditions were used: DNA denaturing step (94°C for 3 min) 1X, amplification steps (94°C for 30 s, 60°C for 1 min, and 72°C for 1 min) 30X, followed by an elongation step (72°C for 10 min) then kept at 4°C for storage. The position of PCR primers used for genotyping is shown in Figure 2.1. Lrp1 WT and loxP-flanked (floxed) alleles were amplified with the forward primer [Lrp1tF10290, F2] 5'-CAT ACC CTC TTC AAA CCC CTT G-3' and the reverse primer [Lrp1tR10291, R2] 5'-GCA AGC TCT CCT GCT CAG ACC TGG A-3'. The WT allele yields a 291 bp product and the floxed allele yields a 350 bp product. The recombined *Lrp1* allele was amplified with the forward primer [Lrp1rF, F1] 5'- CCC AAG GAA ATC AGG CCT CGG C-3' and the reverse primer [R2], resulting in a 400 bp product (Hennen et al 2013). For detection of Cre, the forward primer [oIMR1084, CreF] 5'-GCG GTC TGG CAG TAA AAA CTA TC-3' and reverse primer [oIMR1085, CreR] 5'-GTG AAA CAG CAT TGC TGT CAC TT-3' were used, resulting in a \sim 200 bp product. As a positive control, the forward primer [oIMR7338, Il-2pF] 5'-CTA GGC CAC AGA ATT GAA AGA-3' and the reverse primer [oIMR7339, Il-2pR] 5'-GTA GGT GGA AAT TCT AGC ATC-3' were mixed with CreF and CreR primers in the same reaction, this reaction yields a 324 bp product (The Jackson laboratory).

2.5.3 Stereotaxic injection

Male and female mice at postnatal-day (P) 42–56 were used for stereotaxic injection of L- α -Lysophosphatidylcholine (LPC) (Sigma, L4129, Mendota Heights, MN) into the corpus callosum. Mice were anesthetized with 4% isoflurane mixed with oxygen, mounted on a Stoelting stereotaxic instrument (51730D, Wood Dale, IL), and kept under 2% isoflurane anesthesia during surgery. A 5µl-hamilton syringe was loaded with 1% LPC in PBS (Gibco, 10010023, Gaithersburg, MD), mounted on a motorized stereotaxic pump (Stoelting Quintessential Stereotaxic injector, 53311) and used for intracranial injection at the following coordinates, AP: 1.25 mm, LR: ±1 mm, D: 2.25 mm. Over duration of 1 min, 0.5 µl of 1% LPC solution was injected on the ipsilateral site and 0.5 µl PBS on the contralateral side. After the injection was completed, the needle was kept in place for 2 min before retraction. Following surgery, mice were treated with three doses of 70 µl of buprenorphine (0.3 mg/ml) every 12 hr. Brains were collected at day 10, and 21 post injection.

2.5.4 Histochemistry

Animals were deeply anesthetized with a mixture of ketamine/xylazine (25 mg/ml ketamine and 2.5 mg/ml xylazine in PBS) and perfused trans-cardially with ice-cold PBS for 5 min, followed by ice-cold 4% paraformaldehyde in PBS (4%PFA/PBS) for 5 min. Brains were harvested and post-fixed for 2 hr in perfusion solution. Optic nerves were harvested separately and post-fixed for 20 min in perfusion solution. Brains and optic nerves were cryoprotected overnight in 30% sucrose/PBS at 4°C, embedded in OCT (Tissue-Tek, 4583, Torrance, CA), and flash frozen in powderized dry ice. Serial sections were cut at 20 μ m (brains) and 10 μ m (optic nerves) at -20°C using a Leica CM 3050S Cryostat. Serial sections were mounted onto Superfrost⁺ microscope slides (Fisherbrand, 12-550-15, Pittsburgh, PA) and stored at -20°C.

2.5.5 In situ hybridization

Tissue sections mounted on microscope slides were post-fixed overnight in 4%PFA/PBS at 4°C. Sections were then rinsed 3 times for 5 min each in PBS and the

edge of microscope slides was demarcated with a DAKO pen (DAKO, S2002, Denmark). Sections were subsequently incubated in a series of ethanol/water mixtures: 100% for 1 min, 100% for 1 min, 95% for 1 min, 70% for 1 min, and 50% for 1 min. Sections were then rinsed in 2x saline-sodium citrate (SSC, 150 mM NaCl, and 77.5 mM sodium citrate in ddH_2O , pH7.2) for 1 min, and incubated at 37°C for 30 min in proteinase K solution (10 μ g/ml proteinase K, 100 mM Tris-HCl pH8.0, and 0.5 mM EDTA in ddH₂O). Proteinase digestion was stopped by rinsing sections in ddH_2O and then in PBS for 5 min each. To quench RNase activity, slides were incubated in 1% triethanolamine (Sigma, 90278) and 0.4%acetic anhydride (Sigma, 320102) mixture in ddH₂O for 10 min at room temperature, rinsed once in PBS for 5 min and once in 2X SSC for another 5 min. To reduce non-specific binding of cRNA probes, sections were pre-incubated with 125 µl hybridization buffer (10% Denhardts solution, 40 mg/ml baker's yeast tRNA, 5 mg/ml sheared herring sperm DNA, 5X SSC, and 50% formamide in ddH₂O) for at least 2 hr at room temperature. Digoxigenin-labeled cRNA probes were generated by run-off in vitro transcription as described (Winters et al 2011). Anti-sense and sense cRNA probes were diluted in 125 μ l pre-hybridization buffer to ~200 ng/ml, denatured for 5 min at 85°C, and rapidly cooled on ice for 2 min. Probes were applied to tissue sections, microscope slides covered with parafilm, and incubated at 55°C overnight in a humidified and sealed container. The next morning slides were rinsed in 5X SSC for 1 min at 55°C, 2X SSC for 5 mins at 55°C, and incubated in 0.2X SSC/50% formamide for 30 min at 55°C. Sections were rinsed in 0.2X SSC at room temperature for 5 min then rinsed with Buffer1 (100 mM Tris-HCl pH7.5, and 1.5M NaCl in ddH₂O) for 5 min. A 1% blocking solution was prepared by dissolving 1 g blocking powder (Roche, 11096176001, Switzerland) in Buffer1 at 55°C, cooled to room temperature (RT), and applied to slides for 1 hr at RT. Slides were rinsed in Buffer1 for 5 min and 125 µl anti-Digoxigenin-AP antibody (Roche, 11093274910, 1:2500) in Buffer1 was applied to each slide for 1.5 hr at RT. Sections were rinsed in Buffer1 for 5 min, then rinsed in Buffer2 (100 mM Tris-HCl pH9.5, 100 mM NaCl, and 5 mM MgCl₂ in ddH₂O) for 5 min, and incubated in alkaline phosphatase (AP) substrate (Roche, 11681451001, 1:50) in Buffer2. The color reaction was developed for 1–48 hr and stopped by rinsing sections in PBS for 10 min. Sections were incubated in Hoechst dye 33342 (Life technology, H3570, Pittsburgh, PA) for 5 min, air dried, mounted with Fluoromount-G (SouthernBiotech, 0100–01), and dried overnight before imaging under bright-field. The following cRNA probes were used, *Pdgfra* and *Plp* (DNA templates were kindly provided by Richard Lu (Dai et al 2014)), *Mag* (Winters et al 2011), and *Mbp*(a 650 bp probe based on template provided in the Allen Brain Atlas).

2.5.6 Quantification of lesion size and myelin repair

Serial sections of the corpus callosum, containing the LPC and PBS injection sites were mounted onto glass coverslips and stained by ISH with digoxigeninlabeled cRNA probes specific for *Mbp*, *Mag*, *Plp*, and *Pdgfra*. For quantification of the white matter lesion area, the same intensity cutoff was set by Image J threshold for all brain sections and used to measure the size of the lesion. The outer rim of the strongly *Mbp*⁺ region (lesion^{out}) was traced with the ImageJ freehand drawing tool. The inner rim facing the *Mbp*⁻ region (lesionⁱⁿ) was traced as well. For each animal examined, the size of the initial lesion area (lesion^{out}) in μ m² and remyelinated area (lesion^{out}-lesionⁱⁿ) in μ m² was calculated by averaging the measurement from two sections at the lesion core. The lesion core was defined as the section with the largest lesion area (lesion^{out}). To determine remyelination, the ratio of (lesion^{out}-lesionⁱⁿ)/(lesion^{out}) in percent was calculated. As an initial lesion depth control, criteria of lesion^{out} area must cover the center of the corpus callosum in each serial section set. If a lesion^{out} area was not located within the corpus callosum, the animal and corresponding brain sections were excluded from the analysis.

2.5.7 Immunostaining

Tissue sections mounted onto microscope slides were rehydrated in PBS for 5 min, permeabilized in 0.1% TritonX-100, and blocked in PHT (1% horse serum and 0.1% TritonX-100 in PBS) for 1 hr at RT. Primary antibodies were diluted in PHT and applied overnight at 4°C. Sections were rinsed in PBS 3 times for 5 min each and appropriate secondary antibodies were applied (Life technologies, Alexa-

fluorophore 405, 488, 555, 594, or 647 nm, 1:1000). Slides were rinsed in PBS 3 times for 5 min each and mounted with ProLong Gold antifade reagent (Life technologies, P36930). For quantification of nodal structures, randomly selected fields of view in each nerve were imaged at 96X magnification with an Olympus IX71 microscope, a maximum projection of 6 Z-stacked images of each region was generated, and the stacked images were used for quantification. As axons run in and out of the plane within longitudinal sections, criteria were set to exclude structures in which Caspr staining was unpaired to reduce 'false positive' as nodal defect. The following primary antibodies were used: rabbit anti-Olig2 (Millipore, AB9610, Burlington, MA, 1:500), rat anti-PDGFR α (BD Pharmingen, 558774, San Jose, CA, 1:500), rabbit anti-GFAP (Dako, Nr. A 0334, 1:2000), mouse anti-APC (Calbiochem, OP80, Clone CC1, San Diego, CA, 1:500), rabbit anti-Caspr (1:1000, [Peles, 1997 #57]), mouse anti-Na Channel (1:75, [Rasband, 1999 #58]). For myelin staining, sections were incubated in Fluoromyelin-Green (Life technologies, F34651 1:200) reagent for 15 min.

2.5.8 Transmission electron microscopy (TEM)

Tissue preparation and image acquisition were carried out as described by (Winters et al 2011). Briefly, mice at P10, P21, and P56 were perfused transcardially with ice cold PBS for 1 min, followed by a 10 min perfusion with a mixture of 3% PFA and 2.5% glutaraldehyde in 0.1M Sorensen's buffer. Brains and optic nerves were dissected and post-fixed in perfusion solution overnight at 4°C. Postfixed brain tissue and optic nerves were rinsed and transferred to 0.1M Sorensen's buffer and embedded in resin by the University of Michigan Imaging Laboratory Core. Semi-thin (0.5 μ m) sections were cut and stained with toluidine blue and imaged by light microscopy. Ultra-thin (75 nm) sections were cut and imaged with a Philips CM-100 or a JEOL 100CX electron microscope. For each genotype and age, at least three animals were processed and analyzed. For each animal, over 1000 axons in the optic nerve were measured and quantified by ImageJ. For each optic nerve, 10 images at 13,500x magnification were randomly taken and quantified to calculate the g-ratio and the fraction of myelinated axons. The inner (areaⁱⁿ) and outer (area^{out}) rim of each myelin sheath was traced with the ImageJ freehand drawing tool and the area within was calculated. We then derived axon caliber and fiber caliber (2 r) by the following: areaⁱⁿ= $r^2\pi$. The g-ratios were calculated as such: $\frac{\sqrt{\text{area}^{\text{in}}}}{\sqrt{\text{area}^{\text{out}}}}$. The g-ratio is only accurate if the compact myelin and axon outline can clearly be traced. Individual fibers with not clearly defined features were excluded from the quantification.

2.5.9 **Optic nerve recordings**

Compound action potentials were recorded as described elsewhere (Carbajal et al 2015, Winters et al 2011). Briefly, optic nerves were acutely isolated from P21 mice and transferred into oxygenated ACSF buffer (125 mM NaCl, 1.25 mM NaH₂PO₄, 25 mM glucose, 25 mM NaHCO₃, 2.5 mM CaCl₂, 1.3 mM MgCl₂, 2.5 mM KCl) for 45 min at RT before transferring into a recording chamber at $37 \pm 0.4^{\circ}$ C. Suction pipette electrodes were used for stimulation and recording of the nerve (Figure 2.7a). A computer-driven (Axon pClamp10.3 software) stimulus isolation unit (WPI, FL) was used to stimulate the optic nerve with 2 mA/50 μ s pulses. The recording electrode was connected to a differential AC amplifier (custom-made). A stimulus artifact-subtracting pipette was placed near the recording pipette. A data acquisition system (Axon digidata 1440A, Axon pClamp 10.3, Molecular Devices, Sunnyvale, CA) was used to digitize the signals. Conduction velocity was calculated from the length of the nerve and the time to peak of each component of the CAP. Amplitudes were normalized to a resistance ratio of 1.7, as described (Fernandes et al 2014). Raw traces were fitted with four Gaussian curves with Origin9.1 software for analysis of individual components of the CAP. Due to limitations in the resolution of individual peaks in short nerves, CAP recordings from nerves that were shorter than 1 mm in length were excluded from the analysis.

2.5.10 OPC/OL primary cultures and drug treatment

OPCs were isolated from P6-P9 mouse pups by rat anti-PDGFR α (BD Pharmingen, 558774) immunopanning as described (Mironova et al 2016). For

plating of cells, $5-7.5 \times 10^3$ cells (for 12 mm cover glass) or $3-5 \times 10^4$ (12-well plastic plate) were seeded onto PDL pre-coated surface. Primary OPCs were kept in a 10% CO₂ incubator at 37°C. To maintain OPCs in a proliferative state, growth medium (20 ng/ml PDGF-AA (Peprotech, 100-13A, Rocky Hill, NJ), 4.2 µg/ml Forskolin (Sigma, F6886), 10 ng/ml CNTF (Peprotech, 450–02), and 1 ng/ml NT-3 (Peprotech, 450-03) in SATO) were added to the culture. To induce OPC differentiation, differentiation medium was constituted by adding $(4.2 \ \mu g/m)$ Forskolin, 10 ng/ml CNTF, and 4 ng/ml T3 (Sigma, T6397) in SATO) to the culture. For drug treatment, all compounds were mixed with differentiation medium at the desired concentration, and the compound-containing medium was replaced every other day. Stock and working solutions including 20 mg/ml cholesterol (Sigma, C8667) in 100% EtOH were kept at RT and warmed up to 37°C before use, then diluted in differentiation medium to 5 μ g/ml; 10 mM pioglitazone (Sigma, E6910) in DMSO was kept at -20° C and diluted in differentiation medium to 1 μ M; 10 mM simvastatin (Sigma, S6196) in DMSO was kept at -20°C and diluted in differentiation medium to 0.5 µM; 10 mM GW9662 (Sigma, M6191) in DMSO was kept at -20° C and diluted in differentiation medium to 1 μ M.

2.5.11 **OPC staining and quantification**

At different stages of development, OPC/OL cultures were fixed for 15 min in 4%PFA/PBS. Cells were rinsed three times in PBS and permeabilized with 0.1% Triton/PBS solution for three mins. Cells were then rinsed in PBS and incubated in blocking solution (3% BSA/PBS) for 1 hr at RT. Primary antibodies were prepared in blocking solution. For immunostaining, 35 μ l were dropped onto a sheet of parafilm, the coverslips were inverted onto the primary antibody drop, and incubated overnight at 4°C. The following day, coverslips were transferred back to a 24-well-plate and rinsed with PBS 3 times for 5 min each. Secondary antibody ±filipin (Sigma, F9765, 0.1 mg/ml) was prepared in blocking solution, 350 μ l were added to each well, and the coverslips were incubated for 2 hr at RT. Coverslips then were rinsed in PBS three times for 5 min each and stained with Hoechst (1:50,000) for 10 s. Coverslips then were rinsed in ddH₂O and mounted in

ProLong Gold antifade reagent. For quantification in Figure 2.8, the percent of OL markers⁺/Hoechst⁺cells was calculated from 10 images that were taken from randomly selected areas in each coverslip at 20X magnification with an Olympus IX71 microscope. For quantification in Figure 2.10 and after, the percent of OL markers⁺/Hoechst⁺ cells was calculated from 25 images that were taken from randomly selected areas in each coverslip at 10X magnification with a Zeiss Axio-Observer microscope. For single-cell intensity and size measurement in Figure 2.10-Figure 2.15, individual cell images were taken at 40X magnification with a Zeiss Axio-Observer microscope with Apotom.2. For quantification, the same intensity cutoff was set by Image J threshold to all cells and binary images were generated to define each cell outline. The individual cell outline was applied to original images to measure the intensity of filipin, MBP, or PMP70 staining per cell. For PMP70 puncta distribution analysis, the coordinates of each PMP70⁺ center were acquired by the process >find maxima function in Image], the cell center coordinate was defined by point selection function, and the distance of each PMP70⁺ dot to the cell center was then calculated. The data were then binned from 1 to 25 µm at 1 µm divisions, and plotted. Primary antibodies included: rat anti-PDGFR α (BD pharmingen, 558774, 1:500), rabbit anti-CNPase (Aves Labs, 27490 R12-2096, Tigard, OR, 1:500), mouse anti-MAG (Millipore, MAB1567, 1:500), rat anti-MBP (Millipore, MAB386, 1:1000), chicken anti-PLP (Aves Labs, 27592, 1:500), mouse anti-GFAP (Sigma, G3893, 1:1000), chicken anti-GFAP (Aves Labs, GFAP, 1:500), rabbit anti-NG2 (Millipore, AB5320, 1:500), rabbit anti-LRP1β (Abcam, ab92544, 1:500), rabbit anti-PMP70 (Thermo, PA1-650, Waltham, MA, 1:1000), and rabbit anti-Ki67 (Abcam, ab15580, 1:1000).

2.5.12 Western blot analysis

Protein lysates were separated by SDS-PAGE and transferred onto PVDF membranes for immunoblotting. Depending on the application, 2 to 10 μ g of total protein were loaded per well. 2% Blotting-Grade Blocker (Bio-Rad, #170–6404, Hercules, CA) or 2% BSA fraction V (Fisher, BP1600-100) in 0.1%TBST buffer (0.1% Tween-20, 3M NaCl, 200 mM Tris-HCl pH7.4) were used as blocking solutions

and membranes were incubated for 1 hr at RT. Primary antibodies were diluted in blocking buffer and used for incubation at 4°C overnight. For protein detection and densitometric analysis, membranes were incubated in Super Signal West Pico substrate (Thermo, 34080), WesternSure PREMIUM Chemiluminescent Substrate (LI-COR Biosciences, 926–95000, Lincoln, NE), or Super Signal West Femto substrate (Thermo, 34095) followed by scanning on a C-DiGit blot scanner (LI-COR, P/N 3600-00). Images were quantified with Image Studio Lite Western Blot Analysis Software, relative to loading controls. Blots were used for quantification only when the loading control signals were comparable between groups and signals between technical repeats were similar. Primary antibodies included: rabbit anti-LRP1ß 85 kDa (Abcam, ab92544, United Kingdom, 1:2000), mouse anti-ßIII tubulin (Promega, G7121, 1:5000), mouse anti- β -actin (Sigma, AC-15 A5441, 1:5000), rat anti-MBP (Millipore, MAB386, 1:1000), rabbit anti-MAG (homemade serum, 1:1000), rabbit anti-PLP (Abcam, ab28486, 1:1000), rat anti-PLP/DM20 (Wendy Macklin AA3 hybridoma, 1:500) rabbit anti-Olig2 (Millipore, AB9610, 1:1000), mouse anti-GFAP (Sigma, G3893, 1:1000), mouse anti-CNPase (Abcam, ab6319, 1:1000), rabbit anti-PXMP3 (PEX2) (One world lab, AP9179c, San Diego, CA, 1:250), rabbit anti-SREBP2 (One world lab, 7855, 1:500), rabbit anti-pAKT (S473, Cell signaling, 4060S, 1:1000), rabbit anti-Erk1/2 (Cell signaling, 4695S, 1:1000), and (Cell signaling, 4376S, 1:1000).

2.5.13 Cholesterol measurement

OPCs were isolated by immunopanning as described above. OPCs bound to panning plates were collected by scraping with a Scraper (TPP, TP99002) in 250 μ l of ice-cold PBS and sonicated in an ice-cold water bath (Sonic Dismembrator, Fisher Scientific, Model 500) at 50% amplitude three times for 5 s with a 5-s interval. The sonicated cell suspensions were immediately used for cholesterol measurement following the manufacturer's instructions (Chemicon, 428901). For colorimetric detection and quantification of cholesterol, absorbance was measured at 570 nm with a Multimode Plate Reader (Molecular Devices, SpectraMax M5^e). Results were
normalized to total protein concentration measured by DC[™]Protein Assay according to the manufacturer's manual (Bio-Rad, 5000112).

2.5.14 Microarray and gene ontology analysis

OPCs were isolated by immunopanning as described above and RNA was Kit isolated with the RNeasy Micro (Qiagen, 74004, Germany). То compare *Lrp1* control and cKO^{0L} RNA expression profiles, the Mouse Gene ST2.1 Affymetrix array was used. Differentially expressed genes, with a p-value<0.05 set as cutoff, were subjected to gene ontology (GO) analysis. Go terms were quarried from Mouse Genome Informatics (MGI) GO browser. The fold enrichment was calculated by dividing the number of genes associated with the GO term in our list by the number of genes associated with the GO term in the database.

2.5.15 Statistical analysis

There was no pre-experimental prediction of the difference between control and experimental groups when the study was designed. Therefore, we did not use computational methods to determine sample size a priori. Instead, we use the minimum of mice per genotype and experimental treatment for a total of at least three independent experiments to achieve the statistical power discussed by (Gauch 2006). We used littermate *Lrp1* control or *Lrp1* cKO or iKO mice for comparison throughout the study. All independent replicas were biological replicas, rather than technical replicas. For each experiment, the sample size (n) is specified in the figure legend. Throughout the study, independent replicas (n) indicate biological replica. Technical replicas were used to control for the quality of each measurement and were averaged before quantification and the average value was used as (n = 1)biological replica. Unless indicated otherwise, results are represented as mean value ±SEM. For single pairwise comparison, Student's t-test was used and a pvalue<0.05 was considered statistically significant. For multiple comparisons, twoway ANOVA followed by post hoc *t*-test were used. Numbers and R software (see source code file for details) were used for determining statistical significance and graph plotting. For detailed raw data and statistical report, see source data files for

each figure. For image processing and quantification, ImageJ 1.47 v software was used for threshold setting, annotation, and quantification.

2.6 Acknowledgements

This chapter was modified from Lin et. al., 2017 under the Creative Commons license (CC BY 40) agreement. The original references are as follows:

Lin JP, Mironova YA, Shrager P, Giger RJ. "LRP1 Regulates Peroxisome Biogenesis and Cholesterol Homeostasis in Oligodendrocytes and is Required in CNS Myelin Development and Repair" 2017 bioRxiv doi: https://doi.org/10.1101/189563.

Lin JP, Mironova YA, Shrager P, Giger RJ. "LRP1 Regulates Peroxisome Biogenesis and Cholesterol Homeostasis in Oligodendrocytes and is Required for Proper in CNS Myelin Development and Repair" 2017 eLife doi: 10.7554/eLife.30498.

We thank Giger lab members for their feedback during the study. We thank Andy Lieberman for providing *CAG-CreER[™]* mice, Ben Barres for providing *Olig2-Cre* mice, and Richard Lu for *Plp1* and *Mbp* plasmid DNA. We thank Chang-Ting Lin, Wei-Chin Ho, and Chih-Hsu Lin for bioinformatics consulting. This work was supported by a Bradley Merrill Patten Fellowship (J-PL), the Training Program in Organogenesis T32HD007505 and NIH Cellular and Molecular Biology Training Grant T32-GM007315 (YAM), R01 NS081281 (PS and RJG), the Schmitt Program on Integrative Brain Research (PS), and the Dr. Miriam and Sheldon G. Adelson Medical Foundation on Neural Repair and Rehabilitation (RJG).

2.7 Author Contribution

Jing-Ping Lin, Yevgeniya Mironova, Peter Shrager, and Roman Giger designed research. Jing-Ping Lin, Yevgeniya Mironova, and Roman Giger performed research. Jing-Ping Lin and Roman Giger wrote the paper.

2.8 Figures

Figure 2.1: Generation of Lrp1 global iKO mice

(a) Lrp1 wildtype (wt) and conditional, LoxP flanked (floxed), alleles. The location of PCR primers used for genotyping, the neomycin cassette (Neo), and LoxP sites are shown. (b) For global inducible gene ablation, the CAG-CreERTM mouse line was used, in which the Cre recombinase is fused with a tamoxifen (TM) responsive estrogen receptor (Ers1) and expressed under the control of a ubiquitous chicken β actin-CMV hybrid (CAG) promoter. (c) Following TM administration, recombination can lead to deletion of Neo only or deletion of Neo and exon 1. (d) PCR genotyping of brain genomic DNA. Analysis of PCR products amplified from of Lrp1+/+ mice with (+) or without (-) the cre allele; Lrp1flox/+ mice ±Cre allele and ±TM treatment; Lrp1flox/flox mice ±Cre allele and ±TM treatment. The F1/R1 primer pair amplifies a ~300 bp PCR product from the wt Lrp1 allele and a ~400 bp PCR product if the Neo cassette is deleted. The F2/R2 primer pair amplifies a 291 bp PCR product from wt Lrp1 allele and a 350 bp PCR product from Lrp1 flox allele. The F1/R2 primer pair amplifies a ~500 bp PCR product if exon1 in deleted. The IL-2pF/IL-2pR primer pair amplifies a 324 bp fragment and served as internal PCR quality control. The CreF/CreR primer pair amplifies a ~ 200 bp PCR product if Cre is present. (e) Immunoblots of whole brain lysates prepared from Lrp1flox/flox;CAG-CreERTM mice 31 and 52 days after TM (+) or vehicle (-) treatment. Representative blots probed with anti-LRP1β, anti-GFAP, anti-β-actin, anti-β-III tubulin, and anti-GAPDH. (f) Coronal-sections of adult Lrp1 control and iKO mice 31 days after i.p. TM administration. Sections were stained with FM Green or probed for Mpb mRNA by in situ hybridization. Scale bar= 1mm.

Figure 2.2: In adult mice, global and OL-lineage selective ablation of *Lrp1* attenuates white matter repair

(a) Timeline in weeks indicating when *Lrp1* ablation was induced (*Lrp1^{flox};CAG*-*CreER*[™], *Lrp1* iKO), lysolecithin (LPC) injected, and animals sacrificed. (b) Cartoon showing unilateral injection of LPC in the corpus callosum (CC) and PBS into the contralateral side. Coronal brain sections (series of 6, each 120 µm apart) probed for *Mbp* by *in situ* hybridization (ISH). Brain sections containing the lesion center were identified and subjected to quantification. (c) Coronal brain sections through the CC 21 days post LPC injection (21 DPI). The outer rim of the lesion area (lesion^{out}) is demarcated by the elevated *Mbp* signal (white dashed line). The non-myelinated area of the lesion is defined by the inner rim of elevated *Mbp* signal (lesionⁱⁿ) and delineated by a solid vellow line. Scale bar= 200µm. (d) Quantification of the initial lesion size (lesion^{out}) in *Lrp1* control (n= 8) and iKO (n= 6) mice. (e) Quantification of white matter repair in Lrp1 control (n= 8) and iKO (n= 6) mice. The extent of repair was calculated as the percentile of (lesion^{out} - lesion^{int})/(lesion^{out}) x 100. (f) Timeline in weeks showing when OL-lineage specific *Lrp1* ablation (*Lrp1^{flox/flox};Pdgfra-CreERTM*, *Lrp1* iKO^{OL}) was induced, LPC injected, and animals sacrificed. (g) Coronal brain sections through the CC at 21 days post LPC injection of *Lrp1* control and iKO^{OL} mice. The initial lesion area is demarcated by a white dashed-line. A solid yellow line delineates the non-myelinated area. Scale bar= 200 μ m. (h) Quantification of the initial lesion size in *Lrp1* control (n= 4) and iKO^{OL} (n= 4) mice. (i) Quantification of white matter repair in *Lrp1* control (n= 4) and iKO^{OL} (n= 4) mice. Results are shown as mean \pm SEM, *p<0.05, **p<0.01, and ***p<0.001, Student's *t*-test.

Figure 2.3: LPC injection into the corpus callosum leads to focal white matter damage and upregulation of myelin-associated gene products

(a) Coronal forebrain sections of adult *Lrp1* control (naïve) mice and mice subjected to stereotaxic injection of PBS into the corpus callosum. At 10 days post injection (10 DPI) and 21 DPI of PBS, brains were collected, serially sectioned and stained with FM Green, anti-GFAP and Hoechst dye33342. The white dotted lines demarcate the corpus callosum. The injection site is readily identified by the elevated GFAP immunoreactivity. (b) Coronal forebrain sections of *Lrp1* control and iKO mice at 10 DPI and 21 DPI of LPC stained with FM Green, anti-GFAP, and Hoechst dye33342. White dotted lines demarcate the corpus callosum. The white matter lesion is identified by the absence of FM Green labeling. Scale bar= 200µm. (c) Serial coronalsections of adult brain after PBS and LPC injection in the corpus callosum, probed for *Pdgfra*, *Plp1*, *Mag*, and *Mbp* mRNA expression to identify the lesion area and to examine gene expression changes in the OL lineage. The site injected with PBS is marked by an arrowhead and the LPC injection site is marked by an arrow. The lesion boarder shows elevated staining for *Plp1*, *Mag* and *Mbp*. Scale bar= 200µm. (d) Serial brain sections of adult *Lrp1* control mice injected with LPC at 21 DPI. Serial sections through the lesion area (120 µm apart) were probed for Mag, Plp1, and *Pdgfra*, mRNA expression. Scale bar= 200µm. (e) Coronal brain sections through the CC including the lesion center of *Lrp1* control and *Lrp1* iKO mice injected with LPC at 21 DPI. Serial sections were probed for *Pdgfra*, *Plp1*, and *Mag* mRNA expression. Scale bar= 200um.

Figure 2.4: *Lrp1* ablation in the OL-lineage leads to hypomyelination and nodal defects

(a) Ultrastructural images of optic nerve cross-sections from P10, P21, and P56 control and *Lrp1^{flox};Olig2-Cre* conditional knockout mice (*Lrp1* cKO^{OL}). Scale bar= 1µm. (b) Quantification of myelinated axons in the optic nerve of *Lrp1* control and cKO^{OL} mice at P10, P21 and P56 (n= 4 mice per genotype for each three time point). (c) Averaged g-ratio of *Lrp1* control and cKO^{OL} optic nerve fibers from 4 mice per genotype for each of the three time points. At P10, n= 488 myelinated axons for control and n= 261 for cKO^{OL}; at P21, n= 1015 for control and n= 997 for cKO^{OL}; at P56, n= 1481 for control and n= 1020 for cKO^{0L} mice. (d) Nodes of Ranvier in P21 optic nerves of *Lrp1* control and cKO^{OL} mice were labeled by anti-PanNaCh (green, node) and anti-Caspr (red, paranode) staining. Scale bar= 1µm. (e) Nodal defects detected include elongated node, heminode, and missing node (Na⁺ channels absent). (f) Representative nodal staining categorized by axon diameter. (g) Quantification of nodal density in P21 *Lrp1* control (n = 6) and cKO^{OL} (n = 5) optic nerves. (h) Quantification of abnormal nodes of Ranvier in *Lrp1* control (n= 6) and cKO^{OL} (n= 5) optic nerves. (i) Quantification of nodes associated with large (> 1 μ m), intermediate (0.5-1 μ m), and small caliber fibers (< 0.5 μ m) in *Lrp1* control (n= 6) and cKO^{OL} (n= 5) optic nerves. Results are shown as mean ± SEM, *p<0.05, **p<0.01, and ***p<0.001, Student's *t*-test.

Figure 2.5: *Lrp1* ablation in the OL lineage leads to CNS hypomyelination

(a) *Lrp1^{flox/flox}* mice were crossed with *Olig2-Cre* mice to conditionally ablate *Lrp1* in OL lineage (cKO^{OL}). (b) To ensure that the presence of the *Olig2-Cre* allele does not lead to altered expression of myelin-associated proteins or LRP1, P21 brains of *Lrp1^{flox/+}* and *Lrp1^{flox/+};Olig2-Cre* mice were lysed and subjected to SDS-PAGE. Representative Western blots probed with anti-LRP1B, anti-MAG, anti-CNP, anti-MBP, and anti- β -actin are shown. (c) Quantification of protein levels detected by Western blotting of $Lrp1^{flox/+}$ (n= 3) and $Lrp1^{flox/+};Olig2-Cre$ (n= 3) brain lysates revealed no differences in the presence or absence of the *Olig2-Cre* allele. (d) Immunoblotting of whole brain lysates prepared from P10, P21, and P56 of *Lrp1* control (Ctrl) and cKO^{OL} mice. Representative blots probed with anti-LRP1ß and anti-β-Actin. (e) Average g-ratio of myelinated optic nerve axons of *Lrp1* control and cKO^{OL} mice, n= 4 mice per genotype for each of the three time points. (f, i, and l) Graphs show the percentage of myelinated axons in the optic nerve at P10, P21 and P56 as a function of axon caliber in *Lrp1* control (n= 4 for each time point) and cKO^{0L} (n= 4 for each time point) mice. Axon calibers were binned into 9 groups of 0.2 µm intervals, ranging from 0.1 to 1.7 µm. (g, j, and m) Scatter plot showing the distribution of g ratios for individual fibers in the optic nerve at P10, P21 and P56 of *Lrp1* control and cKO^{OL} mice. P10, n= 488 axons from *Lrp1* control mice and n= 261 axons from cKO^{0L} mice; P21, n= 1015 axons from *Lrp1* control mice and n= 997 axons from 4 cKO^{OL} mice; P56, n= 1481 axons from *Lrp1* control mice and n= 1020 axons from 4 cKO^{0L} mice. (h, k, and n) Morphometric assessment of axon caliber distribution in P10, P21 and P56 optic nerves of *Lrp1* control (n = 4) and cKO^{OL} (n = 4)mice. Measurements of axon diameter were made from electron microscopy images. (o) Immunoblotting of whole brain lysates prepared from P56 *Lrp1* control (Ctrl) and cKO^{OL} mice. Representative blots probed with anti-LRP1β, anti-CNP, anti-MAG, anti-MBP, anti- β -III tubulin, anti-GFAP, and anti- β -actin. (p) Quantification of protein levels detected by Western blotting of *Lrp1* control (n= 3) and cKO^{OL} (n= 3) brain lysates. (q) Electron microscopy images of optic nerve cross- and longitudinalsections acquired from P21 *Lrp1* control and cKO^{OL} mice. Axons that are >1µm in diameter are colored in light blue. Scale bar= 1um. (r) Quantification of axon density in the P21 optic nerve for Lrp1 control (n= 4) and cKO^{OL} (n=4) mice. (s) Ouantification of optic nerve axons smaller than $< 0.5 \mu$ m, between 0.5-1.0 μ m and larger than 1µm in *Lrp1* control (n=4) and cKO^{OL} (n=4) mice. Results are presented as the mean ± SEM, *p<0.05, **p<0.01, and ***p<0.001, Student's *t*-test.

a Neonatally induced Lrp1 ablation

Figure 2.6: Global inducible ablation of *Lrp1* in neonatal mice leads to CNS hypomyelination and reduced axon caliber

(a) Timeline in days showing when *Lrp1* ablation was induced and when mice were sacrificed. (b) Immunoblotting of whole brain lysates prepared from *Lrp1* control (Ctrl) and *Lrp1* inducible knockout (*Lrp1^{flox/flox};CAG-CreERTM*, *Lrp1* iKO) mice. Representative blots probed with anti-LRP16, anti-CNP, anti-PLP, anti-MAG, anti-MBP, anti- β -III tubulin, anti-GAPDH, anti-GFAP, and anti- β -actin are shown. (c) Quantification of protein levels detected in brain lysates of *Lrp1* control (n= 3) and iKO (n= 3) mice. (d) Ultrastructural images of optic nerve cross-sections from P21 *Lrp1* control and iKO mice. Scale bar= 1µm. (e) Quantification of myelinated axons in *Lrp1* control (n= 3) and iKO (n= 3) mice. (f) Averaged g-ratio of optic nerve fibers of Lrp1 control (n= 1932 axons, 3 mice) and iKO (n= 2461 axons, 3 mice) mice. Scale bar= 1 μm. (g) Graph showing the percentage of myelinated axons in the optic nerve of P21 mice as a function of axon caliber. Axon calibers of *Lrp1* control (n= 3) and iKO (n= 3) mice were binned into 9 groups of 0.2 µm intervals, ranging from 0.1 to 1.7 μ m. The percentile of myelination is not significantly different for axons <0.3 μ m, significantly different for axons between 0.3-0.9µm, and not significantly different for axons between 1.0-1.7µm. (h) Scatter plot showing the distribution of g-ratios for individual fibers in the optic nerve of P21 *Lrp1* control (n= 2461 axons, 3 mice) and iKO (n= 1934 axons, 3 mice). (i) Quantification of axon density per μ m² in P21 optic nerve cross sections of Lrp1 control (n= 3) and iKO (n= 3) mice. (j) Morphometric assessment of axon caliber distribution in P21 optic nerves of *Lrp1* control (n= 3) and iKO (n= 3) mice. Axon diameters were measured on electron microscopy images and quantification revealed a shift toward smaller-sized axons in *Lrp1* iKO mice. Results are presented as the mean ± SEM, *p<0.05, **p<0.01, and ****p*<0.001, Student's *t*-test.

Figure 2.7: Loss of *Lrp1* **in the OL lineage leads to faulty optic nerve conduction** (a) Scheme depicting the orientation of an optic nerve prepared for compound action potential (CAP) recordings. Positions of the stimulating electrode, the recording electrode, and artifact subtraction electrode are shown. (b) Left: representative raw CAP traces of P21 optic nerves. Right: For each recording, traces were fitted with 4 Gaussians representing peak 1 (red), peak 2 (green), peak 3 (blue), peak 4 (cyan), and the sum of the four peaks (magenta). (c) The distribution of peak populations in *Lrp1* control and cKO^{OL} mice. (d) Quantification of amplitudes (mV) of peaks 1, 2, 3 and 4 in *Lrp1* control and cKO^{OL} optic nerves. (e) Quantification of conduction velocities (m/sec) of peaks 1, 2, 3 and 4 in *Lrp1* control and cKO^{OL} optic nerves. (f) Reconstituted averaged peak 1-4 amplitude as a function of time. *Lrp1* control (n= 21 nerves/ 14 mice) and cKO^{OL} (n= 9 nerves/ 7 mice). Results are presented as the mean ±SEM, *p<0.05, **p<0.01, and ***p<0.001, Student's *t*-test.

Figure 2.8: Loss of *Lrp1* in the OL-lineage attenuates OL differentiation

(a) Cross-sections of *Lrp1* control and cKO^{OL} optic nerves stained with anti-PDGFRa (OPC marker), anti-Olig2 (pan-OL marker), anti-CC1 (mature OL marker), and Hoechst dve33342. Scale bar= 100µm. (b) Cross- and longitudinal-sections of *Lrp1* control and cKO^{0L} optic nerves probed for *Pdgfra*, *Mag*, and *Plp* mRNA expression. Scale bar= 100um. (c) Quantification of labeled cells per nerve cross-section. Anti-PDGFR α in control (n= 8) and cKO^{OL} (n= 6) mice; anti-Olig2 and anti-CC1 in control (n=11) and cKO^{OL} (n= 12) mice. (d) Quantification of labeled cells per nerve crosssection. Pdgfra, control (n= 8) and cKO^{0L} (n= 6) mice; Mag, control (n= 11) and cKO^{OL} (n= 11) mice; *Plp*, control (n= 11) and cKO^{OL} (n= 10) mice. (e) Workflow for OPC isolation and culturing with timeline when growth medium (GM) or differentiation medium (DM) was added and cells were harvested. (f) OPC/OL cultures after 3 days in DM stained with anti-NG2 (premyelinating marker). anti-CNP (differentiating OL marker), and Hoechst dye33342. Scale bar= 100µm. (g) Immunoblot of OL lysates prepared from *Lrp1* control and cKO^{OL} cultures after 3 days in DM probed with anti-LRP1 β and anti- β -actin. (h) Quantification of NG2⁺ (n= 3) and CNP⁺ (n= 3) cells in *Lrp1* control and cKO^{0L} cultures. (i) Control and *Lrp1* deficient OL cultures after 5 days in DM stained with anti-MAG, anti-PLP, and anti-MBP. Scale bar= 100µm. (j) Immunoblotting of OL lysates prepared from Lrp1 control and cKO^{OL} cultures after 5 days in DM probed with anti-LRP1^β, anti-CNP, anti-MAG, anti-PLP, anti-MBP, and anti-β-actin. (k) Quantification of MAG⁺, PLP⁺, and MBP⁺ cells in *Lrp1* control (n= 3) and cKO^{OL} (n= 3) cultures. (I) Quantification of protein levels in OL lysates detected by immunoblotting. Anti-LRP1, CNP, and PLP, n= 3 per condition; anti-MAG, n= 4 per condition; anti-MBP n= 5 per condition. Results are shown as mean values ±SEM, *p<0.05, **p<0.01, and ***p<0.001, Student's *t*-test.

Figure 2.9: Loss of *Lrp1* does not alter optic nerve size and OPC proliferation

(a) Quantification of optic nerve diameter in *Lrp1* control (n = 5) and cKO (n = 5)mice. (b) To ensure that the presence of the *Olig2-Cre* allele does not lead to altered expression of myelin-associated proteins or LRP1, in primary OPCs/OLs prepared from *Lrp1^{flox/+}* or *Lrp1^{flox/+};Olig2-Cre* pups, cells were lysed and subjected to Western blot analysis. OPCs/OLs were cultured for 5 days in differentiation medium (DM). Cell lysates were separated by SDS-PAGE and protein blots probed with anti-LRP1 β , anti-CNP, anti-MAG, anti-PLP and anti- β -actin. Equal amounts of total protein were loaded per lane. (c) Quantification of LRP1, MAG, and PLP protein levels detected by immunoblotting of *Lrp1^{flox/+}* and *Lrp1^{flox/+};Olig2-Cre* OPC/OL culture lysates (n= 3 per genotype) revealed no differences in the presence or absence of the *Olig2-cre* allele. (d) Timeline in days indicating when growth medium (GM) was added to cells and when cells were harvested (H) to assess proliferation. (e) OPC/OL culture after 1 or 2 days in GM stained with anti-Ki67 (proliferation marker) and Hoechst dye33342. Scale bar= 100µm. (f) Quantification of cell proliferation in OPC/OL cultures prepared from *Lrp1* control and cKO^{OL} mice. The percentile of Ki67⁺/Hoechst⁺ cells was calculated on day 1 for *Lrp1* control (n=5) and cKO^{OL} (n=5) cultures and on day 2 for *Lrp1* control (n = 4) and cKO^{OL} (n = 4) cultures. (g) Immunoblots of cell lysates prepared from *Lrp1* control and cKO^{OL} OPC/OL cultures after 3 days in differentiation medium (DM). Blots were probed with anti-LRP1B, anti-CNP, anti-MAG, anti-PLP, and anti- β -actin. (h) Immunoblots of lysates prepared from *Lrp1* control and cKO^{OL} OPC/OL cultures after 3 days in DM. Representative blots were probed with anti-pAKT (S473), anti-AKT, anti-pERK (1/2), anti-ERK (1/2), and anti-GAPDH. (i) Quantification of protein levels detected by immunoblotting of *Lrp1* control and cKO^{0L} cell culture lysate. Anti-LRP1 β (n= 3), anti-MAG (n=3), anti-CNP (n= 4) and anti-PLP (n=4) per genotype. (j) Quantification of protein levels detected by immunoblotting of *Lrp1* control and cKO^{OL} cell lysates. pAKT/AKT, n= 5 for *Lrp1* control and cKO^{OL} cultures; pERK/ERK, n= 3 for *Lrp1* control and cKO^{OL} cultures. Results are presented as the mean \pm SEM, **p*<0.05, ***p*<0.01, and ****p*<0.001, Student's *t*-test.

Figure 2.10: Free cholesterol is reduced in OPCs deficient for *Lrp1*

(a) OPCs were isolated from P8 brains by anti-PDGFR α immunopanning, sonicated and subjected to measurement of cholesterol (Chol). (b and c) Quantification of free Chol (b) and total Chol (Chol & Chol ester) (c) in OPCs isolated from *Lrp1* control (n= 5) and cKO^{OL} (n= 5) mouse pups. (d) *Lrp1* control and cKO^{OL} OLs after 5 days in DM stained with filipin and anti-MBP. Scale bar= 10um. (e-g) Ouantification of OL size in μ m² (e), the intensity of filipin and MBP labeling per cell (f), and the intensity of filipin and MBP staining per μ m² (g). For *Lrp1* control and cKO^{OL} OLs, n= 29 cells from 3 mice in each group. (h) Timeline in days showing when growth medium (GM) or differentiation medium (DM) with (+) or without (-) Chol was added and when cells were harvested. (i and k) Immunoblotting of OL lysates prepared from *Lrp1* control and cKO^{0L} cultures after 3 days in DM. Representative blots were probed with anti-LRP1β, anti-SREBP2, anti-β-actin, anti-PLP, anti-MAG, anti-CNP, and anti-GAPDH. (j, l-n) Quantification of SREBP2 (j), PLP (l), MAG (m), and CNP (n) in *Lrp1* control and cKO^{OL} cultures ±bath applied Chol. Number of independent immunoblots: anti-PLP and MAG, n= 3 per condition; anti-SREBP2 and anti-CNP, n= 4 per condition. (o) Immunoblotting of OL lysates prepared from *Lrp1* control and cKO^{OL} cultures after 5 days in DM ±bath applied Chol. Representative blots were probed with anti-LRP1 β , anti-PLP/DM20, and anti- β -actin. (p) Quantification of PLP (n=4 per condition) in *Lrp1* control and cKO^{OL} cultures ±bath applied Chol (q) Immunostaining of OLs after 5 days in DM ±bath applied Chol. Primary OLs stained with anti-MBP and Hoechst dye33342. Scale bar= 100µm. (r) Quantification showing relative number of MBP⁺ cells in *Lrp1* control and cKO^{OL} cultures (n= 3-5 per condition). Results are shown as mean values ± SEM, *p<0.05, **p<0.01, and ***p<0.001, 2-way ANOVA, post hoc *t*-test.

Figure 2.11: *Lrp1* deficient OLs are sensitive to statin treatment but not to bath applied mevalonate

(a) Primary OPCs were isolated by anti-PDGFR α immunopanning from $Lrp1^{flox/+}$ and *Lrp1^{flox/+};Olig2-Cre* pups and cultured for 3 days in differentiation medium (D3 in DM). Cells were lysed and subjected to immunoblotting with anti-SREBP2 and anti- β -actin. (b) Ouantification of SREBP2 protein levels in cell lysates of $Lrp1^{flox/+}$ (n= 4) and *Lrp1^{flox/+};Olig2-Cre* (n= 4) cultures revealed comparable levels. This demonstrates that the presence or absence of the *Olig2-Cre* allele does not affect SREBP2 levels. (c) Cholesterol biosynthetic pathway and site of action of statins (simvastatin), which function as inhibitors of 3-hydroxy-3methyl-glutaryl-coenzyme A reductase (HMG-CoA), the rate controlling enzyme of the mevalonate pathway. (d) Timeline in days showing when growth medium (GM) and differentiation medium (DM), either containing simvastatin or mevalonate (M/S) were added to cultures and when cells were harvested (H) for immunofluorescence labeling. (e) Immunostaining of control and *Lrp1* deficient OL cultures after 5 days in DM treated with vehicle or statin. Cell cultures were labeled with anti-MBP and Hoechst dye33342. Scale bar= 50µm. (f) Quantification of MBP⁺ cells in *Lrp1* control cultures treated with vehicle (n= 4), *Lrp1* control cultures treated with statin (n= 3), *Lrp1* cKO^{OL} cultures treated with vehicle (n= 4), and *Lrp1* cKO^{OL} cultures treated with statin (n= 3). (g) Immunostaining of control and *Lrp1* deficient OL cultures after 5 days in DM treated with vehicle or mevalonate. Cell cultures were labeled with anti-MBP and Hoechst dye33342. Scale bar= 50µm. (h) Quantification of MBP⁺ cells in *Lrp1* control cultures treated with vehicle (n= 3), *Lrp1* control cultures treated with mevalonate (n= 3), Lrp1 cKO^{OL} cultures treated vehicle (n= 3), and Lrp1 cKO^{OL} cultures treated with mevalonate (n= 3). Results are shown as mean values ±SEM, **p*<0.05, ***p*<0.01, and ****p*<0.001, 2-way ANOVA, post hoc *t*-test.

a Gene Ontology Enrichment Analysis

Figure 2.12: Gene ontology (GO) analysis of *Lrp1* deficient OPCs revealed enrichment of peroxisomal genes

Acutely isolated OPCs from *Lrp1*^{+/+} and *Lrp1*^{flox/flox};Olig2-Cre mouse pups were subjected to microarray analysis. (a) GO structure of biological process module related to peroxisome function. Each box shows the GO term ID, *p*-value, GO term, and the genes from the input list associated with the GO term. The color of each box shows the level of enrichment for each GO term. Specific GO terms were queried with the Mouse Genome Informatics (MGI) GO browser. P-values were calculated by Fisher's exact test. The fold-enrichment was calculated by dividing the ratio of genes that are associated with each GO term from the input list by the ratio of genes that are expected in the database. (b) Quantification of relative expression levels of gene products that are associated with specific GO terms listed in (a). mRNA was prepared from acutely isolated OPCs of *Lrp1* controls (n = 4) and cKO^{OL} (n = 4) pups and analyzed with the Affymetrix mouse gene 2.1 ST array. Differentially regulated gene products include *Pex2* (peroxisomal biogenesis factor 2), *Pex51* (peroxisomal biogenesis factor 5 like), Hrasls (hRas-like suppressor), Ptgis (prostaglandin I2 synthase), Mavs (Mitochondrial antiviral signaling), and Stard10 (StAR-related lipid transfer protein 10). (c) Immunoblotting of lysates prepared from *Lrp1* control and cKO^{OL}OL cultures after 5 days in DM. Representative blots probed with anti-LRP1β. anti-PEX2, and anti- β -actin. (d) Quantification of PEX2 in *Lrp1* control (n= 3) and cKO^{OL} (n= 3) cultures. Results are shown as mean values ±SEM, *p<0.05 and **p<0.01, Student's *t*-test.

Figure 2.13: In primary OLs, peroxisome density and distribution is regulated by *Lrp1*

(a) Primary OLs prepared from *Lrp1* control and cKO^{OL} OL pups, cultured for 5 days in DM were stained with anti-MBP and anti-PMP70. Scale bar= 10µm. (b-d) Quantification of PMP70 labeling intensity per cell (b), PMP70⁺ puncta per cell (c), and scatter plot showing the number of PMP70⁺ peroxisomes as a function of cell size for MBP⁺ OLs of *Lrp1* control and *Lrp1* cKO^{OL} cultures (d). For *Lrp1* control OLs, n= 112 cells from 3 mice. For *Lrp1* cKO^{OL} OLs, n= 60 cells from 3 mice. (e) Representative distribution of PMP70⁺ puncta of *Lrp1* control and cKO^{OL} OL. For quantification, the center of the cell was marked with a red cross. Puncta within a 25µm radius from the center (dashed circle) were subjected to quantification. (f) Quantification of peroxisome number plotted against the distance from the center of *Lrp1* control (n= 113 cells, 3 mice) and cKO^{OL} (n= 63 cells, 3 mice) OLs. (g and h) Representative high-magnification views of PMP70⁺ puncta from areas boxed in panel (a). Scale bar= 1µm. Results are shown as mean values ± SEM, *p<0.05, **p<0.01, and ***p<0.001, Student's *t*-test.

Figure 2.14: In *Lrp1* deficient OPCs, PPARγ activation increases peroxisome density but does not promote cell differentiation

(a) Timeline in days showing when growth medium (GM) or differentiation medium (DM) with pioglitazone (Pio) were supplied and cells were harvested for analysis. (b) Immunoblots of OL lysates prepared from *Lrp1* wildtype cultures after 5 days in DM with (+) or without (-) Pio, probed with anti-LRP18. Anti-β-actin is shown as loading control. (c) Immunostaining of *Lrp1* control and cKO^{OL} cultures after 5 days in DM. Representative cell cultures stained with anti-MBP and Hoechst dye 33342. Scale bar= 50µm. (d) Quantification of MBP⁺ cells in *Lrp1* control cultures with vehicle (n= 6), *Lrp1* control cultures with Pio (n = 6), cKO^{OL} cultures with vehicle (n = 4), and cKO^{OL} cultures with Pio (n= 4). (e-f) Primary OLs probed with anti-MBP and anti-PMP70. Scale bar= 10 μ m. (g-i) Quantification of OL size in μ m² (g), the number of PMP70⁺ puncta (h), and the intensity of MBP staining per cell (i). (j) Distribution of peroxisomes as a function of distance from the cell center in *Lrp1* control and cKO^{OL} OLs treated ±Pio. The number of PMP70⁺ peroxisomes between 6-15µm in *Lrp1* control and cKO^{0L} cultures was subjected to statistical analysis in (k). *Lrp1* control (n= 112 cells, 3 mice), Lrp1 control cultures with Pio (n= 180 cells, 3 mice), cKO^{OL} (n= 60 cells, 3 mice), and cKO^{OL} cultures with Pio. (n= 110 cells, 3 mice) (k). (l) Immunostaining of OLs after 5 days in DM ±GW9662, probed with anti-MBP and Hoechst dye33342. Scale bar= 50µm. (m) Quantification of MBP⁺ cells under each of the 4 different conditions (n=3 per condition). Results are shown as mean values \pm SEM, *p<0.05, **p<0.01, and ***p<0.001, 2-way ANOVA, post hoc *t*-test.

Figure 2.15: The combined treatment with cholesterol and pioglitazone rescues the differentiation block of *Lrp1* deficient OPCs

(a) Timeline in days showing when growth medium (GM) or differentiation medium (DM) with pioglitazone (Pio) and cholesterol (Chol) was supplied and cells were harvested for analysis. (b) Immunostaining of *Lrp1* control and cKO^{OL} cultures after 5 days in DM, probed with anti-MBP and Hoechst dye 33342. Scale bar= 50um. (c) Quantification of MBP⁺ cells in *Lrp1* control cultures treated with vehicle (n= 4), *Lrp1* control cultures treated with Pio & Chol (n= 3), cKO^{OL} cultures treated with vehicle (n = 4), and cKO^{OL} cultures treated with Pio & Chol (n = 3). (d and e) Primary OLs probed with anti-MBP and anti-PMP70. Scale bar= 10µm. (f-h) Quantification of OL size in μm^2 (f), the number of PMP70⁺ puncta and (g), the intensity of MBP staining per cell (h). (i) Distribution of peroxisomes as a function of distance from the cell center in *Lrp1* control and cKO^{OL} cultures with (+) or without (-) Pio & Chol combo-treatment. The number of PMP70⁺ peroxisomes between 5-15µm in *Lrp1* control and cKO^{0L} cultures was subjected to statistical analysis in (i). *Lrp1* control cultures with vehicle (n= 210 cells, 3 mice), Lrp1 control cultures treated with Pio & Chol (n= 208 cells, 3 mice), cKO^{OL} cultures treated with vehicle (n= 199 cells, 3 mice), and cKO^{OL} cultures treated wtih Pio & Chol (n= 190 cells, 3 mice) (k). Results are shown as mean values ± SEM, *p<0.05, **p<0.01, and ***p<0.001, 2-way ANOVA, post hoc *t*-test.

Figure 2.16: Working model of LRP1 regulated pathways in developing OLs

(a) LRP1 function in the OL-lineage is necessary for proper CNS myelin development and the timely repair of a chemically induced focal white matter lesion. In OPCs, Lrp1 deficiency leads to dysregulation of cholesterol homeostasis and impaired peroxisome biogenesis. (b) LRP1 is a key regulator of multiple pathways important for OPC differentiation into mature myelin producing OLs: I) LRP1 regulates cholesterol homeostatsis; II) LRP1 regulates peroxisome biogenesis; and III) the combined treatment of Lrp1 deficient primary OPCs with cholesterol and pioglitazone is sufficient to drive maturation into MBP+ myelin sheet producing OLs.

2.9 **Bibliography**

- Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJ, et al. 1993. Zellweger Spectrum Disorder. In *GeneReviews*®: University of Washington, Seattle
- Ainger K. 1993. Transport and localization of exogenous myelin basic protein mRNA microinjected into oligodendrocytes. In *The Journal of Cell Biology*, pp. 431-41: Rockefeller University Press
- Auderset L, Landowski LM, Foa L, Young KM. 2016. Low Density Lipoprotein Receptor Related Proteins as Regulators of Neural Stem and Progenitor Cell Function. In *Stem Cells Int*, pp. 2108495
- Baes M, Aubourg P. 2009. Peroxisomes, myelination, and axonal integrity in the CNS. In *Neuroscientist*, pp. 367-79
- Berger J, Dorninger F, Forss-Petter S, Kunze M. 2016. Peroxisomes in brain development and function. In *BBA Molecular Cell Research*, pp. 934-55: The Authors
- Berger J, Moller DE. 2002. The mechanisms of action of PPARs. In *Annu. Rev. Med.*, pp. 409-35
- Bernardo A, Bianchi D, Magnaghi V, Minghetti L. 2009. Peroxisome proliferatoractivated receptor-gamma agonists promote differentiation and antioxidant defenses of oligodendrocyte progenitor cells. In *J. Neuropathol. Exp. Neurol.*, pp. 797-808
- Bernardo A, De Simone R, De Nuccio C, Visentin S, Minghetti L. 2013. The nuclear receptor peroxisome proliferator-activated receptor-gamma promotes oligodendrocyte differentiation through mechanisms involving mitochondria and oscillatory Ca2+ waves. In *Biol Chem*, pp. 1607-14
- Bernardo A, Giammarco ML, De Nuccio C, Ajmone-Cat MA, Visentin S, et al. 2017. Docosahexaenoic acid promotes oligodendrocyte differentiation via PPARgamma signalling and prevents tumor necrosis factor-alpha-dependent maturational arrest. In *Biochim. Biophys. Acta*, pp. 1013-23
- Björkhem I, Meaney S. 2004. Brain cholesterol: long secret life behind a barrier. In *Arterioscler. Thromb. Vasc. Biol.*, pp. 806-15
- Boucher P, Herz J. 2011. Signaling through LRP1: Protection from atherosclerosis and beyond. In *Biochem. Pharmacol.*, pp. 1-5: Elsevier Inc.
- Camacho A, Huang JK, Delint-Ramirez I, Yew Tan C, Fuller M, et al. 2013. Peroxisome proliferator-activated receptor gamma-coactivator-1 alpha coordinates sphingolipid metabolism, lipid raft composition and myelin protein synthesis. In *Eur J Neurosci*, pp. 2672-83
- Camargo N, Goudriaan A, van Deijk A-LF, Otte WM, Brouwers JF, et al. 2017. Oligodendroglial myelination requires astrocyte-derived lipids. In *PLoS Biol.*, pp. e1002605
- Campana WM, Li X, Dragojlovic N, Janes J, Gaultier A, Gonias SL. 2006. The lowdensity lipoprotein receptor-related protein is a pro-survival receptor in Schwann cells: possible implications in peripheral nerve injury. In *J. Neurosci.*, pp. 11197-207

- Carbajal KS, Mironova Y, Ulrich-Lewis JT, Kulkarni D, Grifka-Walk HM, et al. 2015. Th Cell Diversity in Experimental Autoimmune Encephalomyelitis and Multiple Sclerosis. In *The Journal of Immunology*, pp. 2552-59
- Carter CJ. 2007. Convergence of genes implicated in Alzheimer's disease on the cerebral cholesterol shuttle: APP, cholesterol, lipoproteins, and atherosclerosis. In *Neurochem Int*, pp. 12-38
- Chuang T-Y, Guo Y, Seki SM, Rosen AM, Johanson DM, et al. 2016. LRP1 expression in microglia is protective during CNS autoimmunity. In *Acta Neuropathol Commun*, pp. 1-12
- Dai ZM, Sun S, Wang C, Huang H, Hu X, et al. 2014. Stage-Specific Regulation of Oligodendrocyte Development by Wnt/-Catenin Signaling. In *Journal of Neuroscience*, pp. 8467-73
- De Nuccio C, Bernardo A, De Simone R, Mancuso E, Magnaghi V, et al. 2011. Peroxisome proliferator-activated receptor γ agonists accelerate oligodendrocyte maturation and influence mitochondrial functions and oscillatory Ca(2+) waves. In *J. Neuropathol. Exp. Neurol.*, pp. 900-12
- Emery B, Agalliu D, Cahoy JD, Watkins TA, Dugas JC, et al. 2009. Myelin Gene Regulatory Factor Is a Critical Transcriptional Regulator Required for CNS Myelination. In *Cell*, pp. 172-85: Elsevier Ltd
- Fancy SPJ, Chan JR, Baranzini SE, Franklin RJM, Rowitch DH. 2011. Myelin regeneration: a recapitulation of development? In *Annu. Rev. Neurosci.*, pp. 21-43
- Fang L, Zhang M, Li Y, Liu Y, Cui Q, Wang N. 2016. PPARgene: A Database of Experimentally Verified and Computationally Predicted PPAR Target Genes. In *PPAR Res*, pp. 1-6
- Faust PL. 2003. Abnormal cerebellar histogenesis in PEX2 Zellweger mice reflects multiple neuronal defects induced by peroxisome deficiency. In *J Comp Neurol*, pp. 394-413
- Faust PL, Hatten ME. 1997. Targeted deletion of the PEX2 peroxisome assembly gene in mice provides a model for Zellweger syndrome, a human neuronal migration disorder. In *The Journal of Cell Biology*, pp. 1293-305
- Faust PL, Kovacs WJ. 2014. Cholesterol biosynthesis and ER stress in peroxisome deficiency. In *Biochimie*, pp. 75-85: Elsevier Masson SAS
- Fernandes KA, Harder JM, John SW, Shrager P, Libby RT. 2014. DLK-dependent signaling is important for somal but not axonal degeneration of retinal ganglion cells following axonal injury. In *Neurobiology of Disease*, pp. 108-16: Elsevier Inc.
- Fernandez-Castaneda A, Arandjelovic S, Stiles TL, Schlobach RK, Mowen KA, et al. 2013. Identification of the Low Density Lipoprotein (LDL) Receptor-related Protein-1 Interactome in Central Nervous System Myelin Suggests a Role in the Clearance of Necrotic Cell Debris. In *Journal of Biological Chemistry*, pp. 4538-48
- Franklin RJM, ffrench-Constant C. 2008. Remyelination in the CNS: from biology to therapy. In *Nat. Rev. Neurosci.*, pp. 839-55
- Fransen M, Lismont C, Walton P. 2017. The Peroxisome-Mitochondria Connection: How and Why? In *IJMS*, pp. 1126
- Fuentealba RA, Liu Q, Kanekiyo T, Zhang J, Bu G. 2009. Low Density Lipoprotein Receptor-related Protein 1 Promotes Anti-apoptotic Signaling in Neurons by Activating Akt Survival Pathway. In *Journal of Biological Chemistry*, pp. 34045-53
- Gan M, Jiang P, McLean P, Kanekiyo T, Bu G. 2014. Low-Density Lipoprotein Receptor-Related Protein 1 (LRP1) Regulates the Stability and Function of GluA1 α -Amino-3-Hydroxy-5-Methyl-4-Isoxazole Propionic Acid (AMPA) Receptor in Neurons. In *PLoS ONE*, pp. e113237
- Gauch J, H G. 2006. Winning the Accuracy Game Three statistical strategies replicating, blocking and modeling—can help scientists improve accuracy and accelerate American Scientist
- Gauthier A, Vassiliou G, Benoist F, McPherson R. 2003. Adipocyte Low Density Lipoprotein Receptor-related Protein Gene Expression and Function Is Regulated by Peroxisome Proliferator-activated Receptor γ . In *Journal of Biological Chemistry*, pp. 11945-53
- Goldstein JL, DeBose-Boyd RA, Brown MS. 2006. Protein Sensors for Membrane Sterols. In *Cell*, pp. 35-46
- Gootjes J, Elpeleg O, Eyskens F, Mandel H, Mitanchez D, et al. 2004. Novel Mutations in the PEX2 Gene of Four Unrelated Patients with a Peroxisome Biogenesis Disorder. In *Pediatr Res*, pp. 431-36
- Han L, Shen W-J, Bittner S, Kraemer FB, Azhar S. 2017. PPARs: regulators of metabolism and as therapeutic targets in cardiovascular disease. Part I: PPAR- α . In *Future Cardiol*, pp. 259-78
- Hennen E, Safina D, Haussmann U, Wörsdörfer P, Edenhofer F, et al. 2013. A LewisX Glycoprotein Screen Identifies the Low Density Lipoprotein Receptor-related Protein 1 (LRP1) as a Modulator of Oligodendrogenesis in Mice. In *Journal of Biological Chemistry*, pp. 16538-45
- Hernandez M, Casaccia P. 2015. Interplay between transcriptional control and chromatin regulation in the oligodendrocyte lineage. In *Glia*, pp. 1357-75
- Herz J, Clouthier DE, Hammer RE. 1992. LDL receptor-related protein internalizes and degrades uPA-PAI-1 complexes and is essential for embryo implantation. In *Cell*, pp. 411-21
- Hofer DC, Pessentheiner AR, Pelzmann HJ, Schlager S, Madreiter-Sokolowski CT, et al. 2017. Critical role of the peroxisomal protein PEX16 in white adipocyte development and lipid homeostasis. In *BBA - Molecular and Cell Biology of Lipids*, pp. 358-68: The Author(s)
- Kanekiyo T, Cirrito JR, Liu CC, Shinohara M, Li J, et al. 2013. Neuronal Clearance of Amyloid- by Endocytic Receptor LRP1. In *J. Neurosci.*, pp. 19276-83
- Kang SH, Fukaya M, Yang JK, Rothstein JD, Bergles DE. 2010. NG2+ CNS Glial Progenitors Remain Committed to the Oligodendrocyte Lineage in Postnatal Life and following Neurodegeneration. In *Neuron*, pp. 668-81: Elsevier Inc.

- Kassmann CM, Lappe-Siefke C, Baes M, Brugger B, Mildner A, et al. 2007. Axonal loss and neuroinflammation caused by peroxisome-deficient oligodendrocytes. In *Nat Genet*, pp. 969-76
- Kim J, Yoon H, Basak J, Kim J. 2014. Apolipoprotein E in Synaptic Plasticity and Alzheimer's Disease: Potential Cellular and Molecular Mechanisms. In *Molecules and Cells*, pp. 767-76
- Kramer-Albers EM, Gehrig-Burger K, Thiele C, Trotter J, Nave KA. 2006. Perturbed Interactions of Mutant Proteolipid Protein/DM20 with Cholesterol and Lipid Rafts in Oligodendroglia: Implications for Dysmyelination in Spastic Paraplegia. In *J. Neurosci.*, pp. 11743-52
- Krause C, Rosewich H, Thanos M, Gärtner J. 2006. Identification of novel mutations in PEX2, PEX6, PEX10, PEX12, and PEX13in Zellweger spectrum patients. In *Hum. Mutat.*, pp. 1157-57
- Landowski LM, Pavez M, Brown LS, Gasperini R, Taylor BV, et al. 2016. Low-density Lipoprotein Receptor-related Proteins in a Novel Mechanism of Axon Guidance and Peripheral Nerve Regeneration. In *Journal of Biological Chemistry*, pp. 1092-102
- Li J-S, Yao Z-X. 2012. MicroRNA patents in demyelinating diseases: a new diagnostic and therapeutic perspective. In *Recent Pat DNA Gene Seq*, pp. 47-55
- Lillis AP, Van Duyn LB, Murphy-Ullrich JE, Strickland DK. 2008. LDL Receptor-Related Protein 1: Unique Tissue-Specific Functions Revealed by Selective Gene Knockout Studies. In *Physiological Reviews*, pp. 887-918
- Liu Q, Trotter J, Zhang J, Peters MM, Cheng H, et al. 2010. Neuronal LRP1 knockout in adult mice leads to impaired brain lipid metabolism and progressive, agedependent synapse loss and neurodegeneration. In *J. Neurosci.*, pp. 17068-78
- Liu Z, Hu X, Cai J, Liu B, Peng X, et al. 2007b. Induction of oligodendrocyte differentiation by Olig2 and Sox10: evidence for reciprocal interactions and dosage-dependent mechanisms. In *Dev. Biol.*, pp. 683-93
- Maier O, De Jonge J, Nomden A, Hoekstra D, Baron W. 2009. Lovastatin induces the formation of abnormal myelin-like membrane sheets in primary oligodendrocytes. In *Glia*, pp. 402-13
- Mantuano E, Jo M, Gonias SL, Campana WM. 2010. Low Density Lipoprotein Receptor-related Protein (LRP1) Regulates Rac1 and RhoA Reciprocally to Control Schwann Cell Adhesion and Migration. In *Journal of Biological Chemistry*, pp. 14259-66
- Mao H, Lockyer P, Li L, Ballantyne CM, Patterson C, et al. 2017. Endothelial LRP1 regulates metabolic responses by acting as a co-activator of PPARγ. In *Nature Communications*, pp. 1-11: Nature Publishing Group
- Martin AM, Kuhlmann C, Trossbach S, Jaeger S, Waldron E, et al. 2008. The functional role of the second NPXY motif of the LRP1 beta-chain in tissue-type plasminogen activator-mediated activation of N-methyl-D-aspartate receptors. In *J. Biol. Chem.*, pp. 12004-13
- Mathews ES, Mawdsley DJ, Walker M, Hines JH, Pozzoli M, Appel B. 2014. Mutation of 3-hydroxy-3-methylglutaryl CoA synthase I reveals requirements for

isoprenoid and cholesterol synthesis in oligodendrocyte migration arrest, axon wrapping, and myelin gene expression. In *J. Neurosci.*, pp. 3402-12

- May P, Bock HH, Herz J. 2003. Integration of endocytosis and signal transduction by lipoprotein receptors. In *Sci. STKE*, pp. PE12
- May P, Reddy YK, Herz J. 2002. Proteolytic Processing of Low Density Lipoprotein Receptor-related Protein Mediates Regulated Release of Its Intracellular Domain. In *Journal of Biological Chemistry*, pp. 18736-43
- Michalik L, Auwerx J, Berger JP, Chatterjee VK, Glass CK, et al. 2006. International Union of Pharmacology. LXI. Peroxisome proliferator-activated receptors. In *Pharmacol. Rev.*, pp. 726-41
- Mignarri A, Vinciguerra C, Giorgio A, Ferdinandusse S, Waterham H, et al. 2012. Zellweger Spectrum Disorder with Mild Phenotype Caused by PEX2 Gene Mutations. In *JIMD Rep*, pp. 43-46
- Mironova YA, Lenk GM, Lin J-P, Lee SJ, Twiss JL, et al. 2016. PI(3,5)P2 biosynthesis regulates oligodendrocyte differentiation by intrinsic and extrinsic mechanisms. In *Elife*, pp. 1-29
- Monnerie H, Romer M, Jensen BK, Millar JS, Jordan-Sciutto KL, et al. 2017. Reduced sterol regulatory element-binding protein (SREBP) processing through site-1 protease (S1P) inhibition alters oligodendrocyte differentiation in vitro. In *J. Neurochem.*, pp. 53-67
- Muratoglu SC, Mikhailenko I, Newton C, Migliorini M, Strickland DK. 2010. Low Density Lipoprotein Receptor-related Protein 1 (LRP1) Forms a Signaling Complex with Platelet-derived Growth Factor Receptor- β in Endosomes and Regulates Activation of the MAPK Pathway. In *Journal of Biological Chemistry*, pp. 14308-17
- Nakajima C, Kulik A, Frotscher M, Herz J, Schäfer M, et al. 2013. LDL receptor-related protein 1 (LRP1) modulates N-methyl-D-aspartate (NMDA) receptordependent intracellular signaling and NMDA-induced regulation of postsynaptic protein complexes. In *Journal of Biological Chemistry*
- Norrmén C, Figlia G, Lebrun-Julien F, Pereira JA, Trötzmüller M, et al. 2014. mTORC1 controls PNS myelination along the mTORC1-RXR γ -SREBP-lipid biosynthesis axis in Schwann cells. In *Cell Rep*, pp. 646-60
- Orita S, Henry K, Mantuano E, Yamauchi K, De Corato A, et al. 2013. Schwann Cell LRP1 Regulates Remak Bundle Ultrastructure and Axonal Interactions to Prevent Neuropathic Pain. In *J. Neurosci.*, pp. 5590-602
- Paintlia AS, Paintlia MK, Singh AK, Orak JK, Singh I. 2010. Activation of PPAR- γ and PTEN cascade participates in lovastatin-mediated accelerated differentiation of oligodendrocyte progenitor cells. In *Glia*, pp. 1669-85
- Roth AD, Leisewitz AV, Jung JE, Cassina P, Barbeito L, et al. 2003. PPAR gamma activators induce growth arrest and process extension in B12 oligodendrocyte-like cells and terminal differentiation of cultured oligodendrocytes. In *J. Neurosci. Res.*, pp. 425-35
- Rowitch DH, Kriegstein AR. 2010. Developmental genetics of vertebrate glial-cell specification. In *Nature*, pp. 214-22

- Safina D, Schlitt F, Romeo R, Pflanzner T, Pietrzik CU, et al. 2016. Low-density lipoprotein receptor-related protein 1 is a novel modulator of radial glia stem cell proliferation, survival, and differentiation. In *Glia*, pp. 1363-80
- Saher G, Brugger B, Lappe-Siefke C, Mobius W, Tozawa R-i, et al. 2005. High cholesterol level is essential for myelin membrane growth. In *Nat. Neurosci.*, pp. 468-75
- Saher G, Stumpf SK. 2015. Cholesterol in myelin biogenesis and hypomyelinating disorders. In *BBA Molecular and Cell Biology of Lipids*, pp. 1083-94: Elsevier B.V.
- Saluja I, Granneman JG, Skoff RP. 2001. PPAR delta agonists stimulate oligodendrocyte differentiation in tissue culture. In *Glia*, pp. 191-204
- Schüller U, Heine VM, Mao J, Kho AT, Dillon AK, et al. 2008. Acquisition of Granule Neuron Precursor Identity Is a Critical Determinant of Progenitor Cell Competence to Form Shh-Induced Medulloblastoma. In *Cancer Cell*, pp. 123-34
- Simons M, Lyons DA. 2013. Axonal selection and myelin sheath generation in the central nervous system. In *Curr Opin Cell Biol*, pp. 512-19
- Smolders I, Smets I, Maier O, vandeVen M, Steels P, Ameloot M. 2010. Simvastatin interferes with process outgrowth and branching of oligodendrocytes. In *J. Neurosci. Res.*, pp. 3361-75
- Steinberg SJ, Dodt G, Raymond GV, Braverman NE, Moser AB, Moser HW. 2006. Peroxisome biogenesis disorders. In *Biochim. Biophys. Acta*, pp. 1733-48
- Stiles TL, Dickendesher TL, Gaultier A, Fernandez-Castaneda A, Mantuano E, et al. 2013. LDL receptor-related protein-1 is a sialic-acid-independent receptor for myelin-associated glycoprotein that functions in neurite outgrowth inhibition by MAG and CNS myelin. In *Journal of Cell Science*, pp. 209-20
- Tao W, Moore R, Smith ER, Xu X-X. 2016. Endocytosis and Physiology: Insights from Disabled-2 Deficient Mice. In *Front. Cell Dev. Biol.*, pp. 1311
- van de Sluis B, Wijers M, Herz J. 2017. News on the molecular regulation and function of hepatic low-density lipoprotein receptor and LDLR-related protein 1. In *Current Opinion in Lipidology*, pp. 241-47
- Verheijen MHG, Camargo N, Verdier V, Nadra K, de Preux Charles A-S, et al. 2009. SCAP is required for timely and proper myelin membrane synthesis. In *Proc. Natl. Acad. Sci. U.S.A.*, pp. 21383-88
- Wangler MF, Chao Y-H, Bayat V, Giagtzoglou N, Shinde AB, et al. 2017. Peroxisomal biogenesis is genetically and biochemically linked to carbohydrate metabolism in Drosophila and mouse. In *PLoS Genet.*, pp. e1006825
- Waterham HR, Ferdinandusse S, Wanders RJA. 2016. Human disorders of peroxisome metabolism and biogenesis. In *Biochim. Biophys. Acta*, pp. 922-33
- Winters JJ, Ferguson CJ, Lenk GM, Giger-Mateeva VI, Shrager P, et al. 2011. Congenital CNS hypomyelination in the Fig4 null mouse is rescued by neuronal expression of the PI(3,5)P(2) phosphatase Fig4. In *J. Neurosci.*, pp. 17736-51
- Xiang Z, Valenza M, Cui L, Leoni V, Jeong H-K, et al. 2011. Peroxisome-proliferatoractivated receptor gamma coactivator 1 alpha contributes to dysmyelination

in experimental models of Huntington's disease. In *J. Neurosci.*, pp. 9544-53

- Yoon C, Van Niekerk EA, Henry K, Ishikawa T, Orita S, et al. 2013. Low-density Lipoprotein Receptor-related Protein 1 (LRP1)-dependent Cell Signaling Promotes Axonal Regeneration. In *Journal of Biological Chemistry*, pp. 26557-68
- Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, et al. 2014. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. In *J. Neurosci.*, pp. 11929-47
- Zlokovic BV, Deane R, Sagare AP, Bell RD, Winkler EA. 2008. Low-density lipoprotein receptor-related protein-1: a serial clearance homeostatic mechanism controlling Alzheimer' s amyloid β -peptide elimination from the brain. In *Sci Signal*, pp. ra15-ra15
- Zuchero JB, Barres BA. 2013. Intrinsic and extrinsic control of oligodendrocyte development. In *Current Opinion in Neurobiology*, pp. 914-20: Elsevier Ltd

CHAPTER III

Additional Observations While Examining the Role of LRP1 in CNS Myelin Development and Repair

In Chapter II I showed that LRP1 promotes CNS myelin repair and development, using a combination of *in vitro* and *in vivo* strategies. Here, I summarize several pilot experiments, hanging thoughts, and experimental methods needed to facilitate follow up studies. In addition, I briefly discuss rationales, conclusions, and limitations on data interpretation. For in-depth discussion of future directions and research questions I refer to Chapter IV.

3.1 The study of myelin repair in the LPC demyelination model

3.1.1 LPC induced inflammation

Below I summarized several observations and notes for future studies. Collectively, I developed an injection protocol to generate a local myelin lesion and found that 21 DPI can be used to analyze myelin repair. I found that the pool of proliferative progenitors at the SVZ and OPCs are present in the native state and are available to assist in remyelination. Astrocytes migrate from the SVZ toward the lesion followed by a cell population I have yet to identify. Brief analyses of these dense nuclei present at the lesion site showed that they were at least in part from GFAP⁺, Olig2⁺, and CD68⁺ cells.

LPC injection post a 'find me' signal on the cell surface

Lysophosphatidylcholine (LPC) is a lipid with a dominant hydrophilic group; therefore it is positively curved to form a monolayer micelle (Thiam et al 2013). Since 1972 LPC has been used as a demyelinating reagent (Hall 1972), in which LPC specifically targets myelinating OLs but spares OPCs, astrocytes, and neurons (Blakemore & Franklin 2008, Lazzarini 2004). LPC-mediated demyelination showed a limited amount of inflammation in the lesion, while recovery rate is age dependent (Shields et al 1999). LPC is one of the four well-characterized recruitment signals ('find-me' signal) for apoptotic cells requiring engulfment. LPC is the only lysophospholipid to induced phagocyte chemotaxis, and its release is Caspase-3 and ABCA1 dependent (Lauber et al 2003, Peter et al 2012). It has been speculated that the duration of the 'find-me' signal will affect the extent of the 'eat-me' landscape (Medina & Ravichandran 2016). Therefore, variations of immune responses and their impacts on myelin regeneration between toxic induced demyelination models need to be considered.

Generate local lesion with LPC

To study remyelination under the LPC-demyelination model, a validation of the changes to the lesion over time was necessary. In our pilot study, I followed a protocol obtained from the literature by injecting 2 μ l of LPC or PBS on each side of the corpus callosum. As showed in **Error! Reference source not found.**a, the PBS and LPC injection sides fused and passed the midline because of the large amount of injected liquid. Therefore, in later experiments I adjusted the injection volume to 0.5 μ l of LPC or PBS on each side. This resulted in a local white matter lesion restricted to the LPC injection site (section 2.3.1).

Astrocytes from SVZ migrate toward lesion within seven days

Here, I emphasize the changes of the myelin lesion indicated by FM-Green, the reactive astrogliosis indicated by anti-GFAP, and the accumulation of nuclei indicated by Hoechst dye staining (Figure 3.1a). As soon as 6 hrs post LPC injection, the FM-Green signal was absent from the lesion, and the majority of the nuclei were spared. At 1DPI, the edge of the area devoid of FM-Green is cleaner; the majority of nuclei were gone in the lesion, and there was no obvious sign of elevated astrogliosis. At 3 DPI, the FM-Green and Hoechst staining are still absent at the lesion; however, increased GFAP⁺ cells were detected at the peri-lesion and the SVZ. At 7 DPI, migrating GFAP⁺ cells reached the lesion site and contributed to Hoechst⁺ signals in the lesion.

Nuclei accumulate at the LPC-induced lesion site

To better describe the changes at the lesion, sections were imaged with higher magnification (Figure 3.1b). At 10 DPI, there were excessive nuclei accumulation at the area where FM-Green signal is absent, with some of these cells doubled stained with GFAP. At 14 DPI, areas where devoid of FM-Green, covered by GFAP⁺ cells, and occupied by dense nuclei only partially overlapped. At 21 DPI dense nuclei were observed at the center of GFAP⁺ area. At 28 DPI, the myelin lesion became harder to identify due to the dense nuclei area that showed comparable levels of FM-Green compare to control. These discrepancies indicate the limitation of using a single marker to identify the lesion/injured area.

Proliferative cells in the SVZ and OPCs are present in the naïve brain

As mentioned, remyelination is carried out by nearby OPCs or proliferative neural progenitor cells that reside within the SVZ. After the lesion, these cells undergo differentiation and maturation. Staining with anti-Ki67 identified a pocket of proliferative cells in the SVZ, a finding consistent with the literature (Figure 3.1c)(Menn et al 2006). Similarly, OPCs were detected by anti-PDGFR α at the corpus callosum (**Error! Reference source not found.**d).

- Myeloid cells are present at the LPC lesion site

As mentioned before, other GFAP⁻ dense nuclei were observed at the lesion at 7 DPI (**Error! Reference source not found**.a). To identify the cell types to which these nuclei belong, I used standard IHC. Of note, the extent of IHC cell labeling is sensitive to tissue fixation conditions. The shorter the brain sections were fixed the more signal could be acquired: in this case, the number of detectable Olig2⁺ cells decreased with prolonged 4% PFA fixation (**Error! Reference source not found**.b). However, the morphology of the brain tissue was compromised with short fixation (30min). Therefore, one should take caution in quantification when comparing tissue sections prepared under different fixation conditions. At 21DPI, more Olig2⁺ cells were observed at the LPC injection site compared to PBS (**Error! Reference source not found**.c). However, from our observation GFAP⁺ and Olig2⁺ cells do not add up to the number of nuclei at the lesion site. Since LPC is a potent macrocytic signal, I hypothesized that that myeloid cells are recruited to the lesion. At 21 DPI, I identified a large population of CD68⁺ cells at the lesion site that varied in size (**Error! Reference source not found.**d). Round and enlarged CD68⁺ cells are likely to be activated macrophages and small cells are likely microglia. Some large CD68⁺ cells are dual labeled with anti-Arg-1 (M2 marker), indicating the heterogeneity of the inflammation status at the lesion site.

3.1.2 LRP1 expression at the myelin lesion

It has been shown that the expression of *Lrp1* mRNA is elevated in MS lesions (Hendrickx et al 2013). LRP1 is selectively expressed at the rim of an active lesion, a type of lesion that was considered regenerative (Hendrickx et al 2013). To verify the expression of LRP1 in the regenerating lesion following LPC injection, I detected LRP1 protein expression by immunostaining and *Lrp1* mRNA by FISH. At 21 DPI, brain sections from *Lrp1* control (*Lrp1^{flox/flox}*) mice with a LPC lesion were stained with anti-LAMP1 (lysosome marker), anti-PMP70 (peroxisome marker), and anti-LRP1 β (Figure 3.3a). I observed that LRP1 protein expression is ubiquitous in the corpus callosum including intact (non-lesioned) tissue. A slight increase of LRP1 signal intensity was observed at the lesion site and was approximately in line with the PMP70⁺ area. Some LRP1⁺/LAMP1⁺ double labeling or LRP1⁺/LAMP1⁺/PMP70⁺ triple labeled cells were observed; however, further optimization of staining and imaging conditions are required to determine cell identity. Parallel sections were probed for *Lrp1* mRNA expression and stained with the Hoechst nuclear dye (Figure 3.3b). The specificity of the FISH antisense probe was controlled with a scrambled probe, under the same hybridization conditions Figure 3.3b, insect A). I observed that the level of Lrp1 mRNA was elevated at the lesion and is approximately aligned with the area where LRP1 protein expression was elevated (Figure 3.3a). Lrp1 mRNA is located at the peri-nuclear area of a subset of cells at the lesion (Figure 3.3b, insect B).

To identify if the elevated *Lrp1* mRNA is within cells of the OL-lineage at the lesion, parallel sections were probed for *Lrp1*, stained with anti-Olig2 and Hoechst nuclear dye (Figure 3.4a). I observed that *Lrp1* mRNA is located at the peri-nuclear area of only a subset of Olig2⁺ cells at the lesion (Figure 3.4Error! Reference **source not found.**a, insect A and B). The distribution of Olig2⁺ cells and *Lrp1* mRNA showed in Figure 3.4a inset C was centralized at the lesion. To examine if the *Lrp1* mRNA expression was abolished by tamoxifen administration in Lrp1^{flox/flox};CAG- Cre^{TM} mice, gene ablation was induced in Lrp1 iKO mice as described in Chapter II (section 2.5.1) and subjected to LPC injection. At 21 DPI, brains were sectioned and probed for *Lrp1* or scramble sequence as control (Figure 3.4b). At the lesion where dense nuclei were observed, little *Lrp1* signals were detected. Suggesting a partial ablation of *Lrp1* in tamoxifen induced knockout, which is consist with biochemical data (a ~50% lost of LRP1 protein level) in Chapter II (section 2.3.1). However, clear signals were detected with both Lrp1 and scramble probes at the needle track (Figure 3.4b insect C). The specificity of these signals at the needle track was examined by cross channel imaging (Figure 3.4b, insect A and B). The red signal seems overlapped with the signal in the green channel (no fluorescent at this channel were used for staining). Suggesting that these signals at the needle track might be auto-fluorescent particles. Together, these results indicated that both LRP1 protein and *Lrp1* mRNA were elevated at the lesion, a subset of Olig2⁺ cells express high levels of *Lrp1*, but the identity of the rest LRP1 expressing cell are yet to be defined.

3.1.3 LRP1 ablation in myeloid cells affects the size of the LPC induced white matter lesion

In Chapter II, I made use of of *Lrp1*^{flox/flox};*CAG-CreER*TM mice (*Lrp1* iKO) and *Lrp1*^{flox/flox};*Pdgfra-CreER*TM (*Lrp1* iKO^{OL}) showing that LRP1 promotes CNS myelin repair. To determine if LRP1 in phagocytic cells participate in adult white matter repair, I generated *Lrp1*^{flox/flox};*LysM-Cre* (*Lrp1* cKO^M) mice that allow gene ablation in a subset of myeloid cells, including neutrophils and macrophages. To confirm the *Lrp1* expression is ablated in myeloid cells, the lymphocyte-enriched fraction was

obtained from blood collected from P56 *Lrp1* control and cKO^M mice and subjected to Western Blotting analysis. An approximately 50% decrease of LRP1 in lymphocytes was detected (Figure 3.5a and b). At P56 *Lrp1* cKO^M mice were subjected to unilateral injection of LPC into the corpus callosum and PBS on the contralateral side. Littermate control mice were processed in parallel. At 21 DPI, brains were collected and serially sectioned, and the extent of white matter repair was assessed as described in Chapter II (Section 2.3.1). The ratio of lesion repair was similar in *Lrp1* cKO^M and control mice. Interestingly however, the extent of white matter lesion demarcated by elevated *Mbp* labeling is less in *Lrp1* cKO^M mice compared to controls (Figure 3.5c-e). This demonstrates that Lrp1 in myeloid cells does not impact the rate of myelin recovery. However, LRP1 might participate in confining lesion area such as glia scar formation. Further experiments are required to draw conclusions from this work.

3.1.4 Identification of the LPC-induced myelin lesion

- Charcoal

To discriminate the technical variation of stereotaxic injection from the heterogeneity of lesion repair itself, I needed to develop proper ways to clearly identify lesion site, even if the repair was complete. I utilized three methods to train blinded observers how to identify the lesion site in the LPC lesion model. To ensure the serial sections captured the entire lesion without having to section the entirety of the brain, I coated the needle with charcoal before LPC or PBS injection. A trace of charcoal is physically intercalated into the injection site, allowing for visualization in the cortex, and importantly this does not impact the progression of lesion repair at the corpus callosum.

Cell tracer: CFSE

Since the size of myelin lesion changes during the remyelination process, to be able to identify the initial injured area is key to reliably quantify the extent of repair. Finding a dye that is not toxic, can stably label the lesion without diffusion, with a long half-life (at least 21 days), and that can survive the debris clearing

process during demyelination was not a trivial task. I came across a cell tracer; Carboxyfluorescein succinimidyl ester (CFSE), a cell permeable fluorescent dye that was developed to trace lymphocyte proliferation that fit our criteria listed above. CFSE forms a covalent bond with intracellular lysine upon entering the cell; therefore, it remains inside the cell and does not diffuse out (Figure 3.6c). CFSE is very stable with little cell toxicity under appropriate concentrations. To determine if CFSE could label the white matter lesion, I mixed CFSE with LPC or PBS at a 1:1 ratio and injected into the corpus callosum sterotaxically (Figure 3.6a, left). When double staining with FM-Red, the intensity of the red signal was higher at the CFSE⁺ area. This suggested that there was a bleed through from the green channel because our scope filter set was not optimized for CFSE imaging. Of note, there was a slight decrease of nuclei number (Hoechst⁺ signal) at the CFSE⁺ site, indicating minor cell toxicity at the given injection volume and concentration. At the CFSE/LPC injection site, CFSE⁺ area is within the area devoid of FM-Green and FM-Red signals (Figure 3.6a, right). CFSE⁺ area is approximately aligned with condensed nuclei area (Hoechst⁺ signal), which is the hallmark of LPC induced myelin lesion. However, the diffusion range of CFSE seems to be narrower than LPC, as the area devoid of FM-Red or FM Green is wider (Figure 3.6b). Alternatively, it might be revealing the difference between the region of insult and the area of demyelination. One OL can myelinate one or several axons depending on the region examined. Demyelination can also happened centrifugally (cell body to sheath), centripetally (sheath to cell body), or focally (Simons et al 2014), suggesting that lesion area depends on the OL myelination geometry and the degenerative signals at the microenvironment. Collectively, lowering the CFSE concentration, imaging with a filter that can separate FM-Red and CFSE signals, and adjusting the injection speed might be able to improve the labeling.

- Myelin genes

Since remyelination is a process resembling myelin development, I hypothesized that by detecting the expression of genes that are elevated during OL differentiation I would be able to identify the lesion. I developed an ISH assay to

detect the myelin lesion with *Mag*, *Plp1*, and *Mbp* anti-sense (-) probes (section 2.3.1). To validate the specificity of the ISH condition on the brain tissues, I made use of *Mag* null mice (*Mag'*-) and in addition generated a *Mag* sense (+) probe as control. As indicated inFigure 3.7, no signals were detected from *Mag* (+) probe on a MAG wt tissue (*Lrp1flox/flox* in this case) or *Mag* (-) probe on a MAG null tissue (*Mag'*-) (Figure 3.7a). Under the same conditions, a strong signal was detected on the lesion side of the corpus callosum with the *Mag* (-) probe on the *Lrp1* control and *Lrp1* iKO tissues (Figure 3.7b). Suggesting that this ISH condition is sensitive to separate non-specific binding from the actual signal. Additionally, the elevated *Mag* mRNA signal was specific at the LPC lesion side but not at the PBS injection, supporting the hypothesis that lesion can be identified by OL differentiation genes. However, poor labeling of the nuclei by Hoechst dye staining after ISH assay was observed. For better immune marker co-staining at the lesion site, it might be worth to develop fluorescent-conjugated mRNA probes for wider application in the future.

3.2 LRP1 in axon-glia interaction and regional myelin diversity

In addition to the hypomyelination reported in Chapter II (section 2.3.3), a small portion of axons showed degenerative morphology when *Lrp1* was ablated specifically in OL-lineage (Figure 3.8). P21 optic nerves of *Lrp1* control and cKO^{OL} mice were prepared as described in Chapter II (section 2.5.8), ultrastructural analysis of cross- or longitudinal-sectioned nerves showed a various degree of axon deformation (Figure 3.8a and b). Local myelin sheath detachment, doubled myelination, and the collapse of mitochondria-like organelles were observed (Figure 3.8b). Interestingly, these phenotypes are very similar to *Cnp^{-/-}, Mag^{-/-}, Plp^{-/-}*, or peroxisomal defective mice (Bottelbergs et al 2010, Lazzarini 2004), in which gene deletion has a minor effect on myelin biogenesis but shows defects in axonal support. Since the *Lrp1* ablation is specific to the OL-lineage, axonal defects might be caused indirectly due to the loss of LRP1 in OLs.

To exclude that the axonal defects are due to retinal ganglia cell (RGC) death, semi-thin sections of plastic embedded retinas were prepared from P10, 21, and 56

of *Lrp1* control and cKO^{0L} mice were stained with Toluidine blue (Figure 3.9). The gross anatomical organization of retinal layers was comparable between *Lrp1* control and cKO^{0L} mice. Importantly, there were no signs of RGC death.

Myelination occurs in sequence, in the brain it happens from caudal to rostral and in spinal cord it happens from rostral to caudal (Baumann & Pham-Dinh 2001). This sequence is under strict regulation, and is highly reproducible. The timing of myelination on certain nerve tracks is also precise; therefore it can serve as a tool to measure human embryo developmental stage (Baumann & Pham-Dinh 2001). To investigate if LRP1 regulates CNS myelination in a region specific manner, myelin protein profiling from distant CNS tissues of P10 and P21 mice was performed (Figure 3.10). LRP1 is ubiquitously expressed across the olfactory bulb, cortex, thalamus, cerebellum, brain stem, spinal cord, and corpus callosum. CNP expression is absent from the olfactory bulb and cortex, and little is found at the corpus callosum. The level of CNP and MBP expression increased in the thalamus, cerebellum, brain stem, and spinal cord from P9 to P21 (Figure 3.10a and b). Interestingly, the pattern of GFAP expression was approximately the opposite of the CNP expression. High GFAP expression was observed in the olfactory bulb, cortex, and thalamus, but low at the tissues that are largely white matter (Figure 3.10b). Collectively, the myelination pattern supports the literature and corresponds to the LRP1 expression pattern, suggesting that LRP1 participates in additional cellular functions in different cell types.

3.3 Investigate the mechanism of LRP1 in regulating myelin development

LRP1 is a promiscuous receptor that carries out a broad range of cellular functions as briefly reviewed in Chapter I (section 1.4.3), to pin point the mechanism of LRP1 in regulating myelination is challenging. Here, I summarized several pilot studies and methods I employed to approach this question.

3.3.1 Dissect LRP1 functional domains: RAP peptides and Lrp1 N2 mice

134

Extracellular domain (ECD) antagonist

It has been shown that more than 40 ligands bind to LRP1 complement-like repeats (CI, CII, CIII, and CIV) at the extracellular domain (ECD). These bindings directly or indirectly regulate signaling pathways by triggering LRP1-mediated endocytosis or phosphorylation. To examine the requirement of the ECD-mediated signaling pathways during myelination, I made use of the potent LRP1 antagonist, RAP, as briefly described in Chapter I (section 1.4.3). Previous studies showed that at a very high dose (75 μM) GST-RAP inhibits oligodendroglial differentiation from neural stem progenitor cells (NSPCs) (Hennen et al 2013). To examine if RAP blocks primary OPC differentiation at a more physiological dose, OPCs were isolated as described in Chapter II (section 2.5.10) and cultured with GST or GST-RAP at 100nM (Figure 3.11a). After 5 days in differentiation medium (DM), OLs were stained with anti-PLP, anti-MBP, and Hoechst dye to assess the extent of OL differentiation. I observed no gross changes in the number of PLP⁺ or MBP⁺ cells upon RAP inhibition. It has been shown that the binding of RAP to LRP1 is pH sensitive (Prasad et al 2015), and might not be stable enough over the course of OL differentiation. To determine if a more stable version of RAP (stable-RAP) can block OL differentiation, an engineered RAP that is resistant to pH and heat inactivation was applied (Figure 3.11b) (Prasad et al 2015). After 5 days in DM, OLs were stained with anti-MBP and Hoechst dye to assess the extent of OL differentiation. There was no significant change in the number of MBP⁺ cells upon wt-RAP or stable-RAP treatment (Figure 3.11c). To ensure that the RAPs I treated were bioactive, COS-7 ligand-receptor binding assay was used to assess the ligand competition effects of RAPs (Figure 3.11d). Previous study has shown that NgR^{OMNI}-Fc, CII-Fc, and CIV-Fc bind to MAG expressing COS-7 cells (Stiles et al 2013). When GST-RAP is added to the system, CII-Fc and CIV-Fc binding to MAG were attenuated but not NgR^{OMNI}-Fc (Stiles et al 2013). Similarly, when I applied tag-free RAP the CII-Fc binding to MAG was attenuated. Together, these experiments suggest that the RAPs I used were bioactive; at least enough to block ligand binding to CII domain, but had no obvious impact on OL differentiation.

Intracellular domain (ICD) phospho-dead mutant

There are two phosphorylation sites at the intracellular domain (ICD) of LRP1, proximal NPxY1 and distal NPxY2 (Figure 3.12a). Previous studies showed that mutation at NPxY1 (N1) is embryonic lethal, but a mutation at NPxY2 (N2) domain is not (Reekmans et al 2009). To examine the requirement of the ICD phosphorylation at the distal NPxY2 in myelination, I made use of N2 mutant mice with NPVYATL peptide sequence mutated to AAVAATL. The N2 allele was identified with the strategy showed in Figure 3.12b and genotyping products as indicated in Figure 3.12c. The LRP1 protein expression was assessed in various tissues of P10 mice with the indicated genotypes. Surprisingly, the level of LRP1 protein was decreased in N2 mutants compared to its heterozygous control in all tissues that were tested (Figure 3.12d and h). To examine if N2 mutant allele was haploid insufficient, brain protein lysates acquired form $Lrp1^{n2/+}$, $Lrp1^{n2/n2}$, and $Lrp1^{+/+}$ mice were subjected to Western blot analysis and probed for LRP1 expression. As shown in Figure 3.12e, there was no obvious difference in LRP1 expression in $Lrp1^{n2/+}$ and $Lrp1^{+/+}$ mice; however, LRP1 expression in the $Lrp1^{n2/n2}$ mice was significantly reduced. To examine if the signaling pathways altered in *Lrp1* cKO^{OL} are similarly regulated in N2 hypomorph brains, lysates were probed with anti-SREBP2, PMP70, PEX2, p-AKT, p-S6, and Actin (Figure 3.12f and g). Preliminary results showed that SREBP2, PMP70, PEX2, p-AKT, and p-S6 are downregulated. A more detailed comparison of myelin protein profile between *Lrp1* control (W) and *Lrp1* cKO^{0L} (02) or *Lrp1* Het (H) and *Lrp1* N2 (N2) are shown in Figure 3.12i-l at the indicated age (P10-14). Brain lysates were extracted at indicated conditions and subjected to Western blot analysis. Protein levels of Myo1D, PEX5l, PMP70, PLP, and PEX2 were compared (Figure 3.12i and j). Preliminary quantification of protein levels at comparable ages of mice showed that Myo1D and PMP70 are similarly downregulated in N2 mice reminiscent of *Lrp1* cKO^{0L} mice (Figure 3.12k and I).

To assess N2-mediated changes of proteins enriched in peroxisomes, I performed a peroxisome preparation by sucrose gradient isolation. Roman Giger carried out the pilot study (n= 1) and results are shown in Figure 3.13. I observed

that PMP70 and PEX2 are slightly enriched in the light mitochondria fraction, SREBP2 is enriched in the nuclear fraction, and PLP is detected in the myelin fraction. LRP1 is ubiquitously present in all density fractions. I observed that the levels of PMP70 trended to be down regulated in N2 mice. These preliminary results were further verified with lysates from indicated fractions. Fractions were prepared from P10-14 brains of *Lrp1* control (W), *Lrp1* cKO^{0L} (O2), *Lrp1* Het (H), and *Lrp1* N2 (N2) mice (Figure 3.13b-e). I observed a consistent down regulation of PMP70 in N2 and *Lrp1* cKO^{0L} mice in input tissue homogenate, heavy mitochondria, and light mitochondria fractions. However, the age of the mice (P10-P14) and the condition of the input tissue (fresh or freeze-thawed) were not identical. Further experiments need to be performed under strict conditions to get conclusive results.

Similarly, the protein expression profile of N2 mice at later developmental stages was assessed (Figure 3.14). Brain input and light mitochondria fractions were extracted from P19-24 Lrp1 Het (H) and Lrp1 N2 (N2) mice. Lysates were subjected to Western blot analysis and probed for LRP1, MAG, CNP, PLP, MBP, PMP70, PEX5l, PEX2 GFAP, GAPDH, Actin, βIIITub, Myo1D, and TSC1 (Figure 3.14a and e). Preliminary quantification showed that LRP1 and Myo1D were significantly down regulated (Figure 3.14b-d and f-h), however, myelin proteins were largely normal, the peroxisomal proteins PMP70 and PEX51 were somewhat reduced (Figure 3.14b-d), and surprisingly, TSC1 appeared to be up-regulated (Figure 3.14h) in N2 mice. At first glance, the protein expression profile appears to be dynamically regulated at different developmental stages. N2 mediated PMP70 changes seem to be most prominent from P10-P20; Myo1D changes were not obvious at P10 but more obvious at P19-24; TSC1 changes seem to be obvious before P21. Since the age of these mice (P19-P24) was not identical and was not properly controlled, further experiments under strictly controlled conditions (age, sex, genetic background) will be required to gain conclusive results.

3.3.2 LRP1 as a LDL receptor: cholesterol metabolic pathways

LRP1 is a member of LDL receptor family that functions in cholesterol uptake and homeostasis in peripheral cell types such as endothelial cells hepatocytes and others (van de Sluis et al 2017). To investigate if LPR1 plays a similar role in the OLlineage, I performed transcriptomic studies using microarray. Specifically, OPCs were isolated from *Lrp1* control and cKO^{0L} pups and subjected to Mouse Gene ST2.1 Affymetrix array analysis. Gene ontology (GO) analysis identified differences in 'Regulation of Cholesterol Biosynthesis Process', 'Cellular Response to Sterol', and 'Regulation of Cholesterol Homeostasis'. Interestingly, 'Cellular Response to Cholesterol', 'Cholesterol Efflux', 'Cholesterol Import', and 'Reverse Cholesterol Transport' were not affected. This suggests that LRP1 in OL-lineage plays a different role than in other non-neural cells, regulating cholesterol synthesis, rather than transport (Figure 3.15).

Genes that were differentially regulated in the GO terms listed in Figure 3.16 were plotted and verified. The mRNA samples used for the microarray studies were of good quality (Figure 3.16a), and relative gene expression fold changes were plotted and grouped base on the GO terms (Figure 3.16b-d). To gauge if there was a compensatory effect upon LRP1 deletion, such as up regulating other LDL family members, the gene expression of the core family members was plotted (Figure 3.16e). Pex genes that are related to Pex2 and significantly regulated were blotted (Figure 3.16f). To validate the array results, the annotation and potential function of each differentially regulated gene was studied. The peroxisomal genes Pex2 and Pex5l were chosen for their potential relevance in regulating myelination. Protein lysates obtained from P56 Lrp1 control cKO^{OL} mice were subjected to Western blotting analysis (Figure 3.16g). The level of PEX2 but not PEX5I was significantly down regulated in the brain of Lrp1 cKO^{OL} mice (Figure 3.16h and i). Collectively, these studies show that PEX2 is regulated in an *Lrp1* dependent manner, and thus, might be involved in LRP1-mediated regulation of cholesterol homeostasis during OL development.

3.3.3 LRP1 as a transcriptional regulator: miRNA expression

Recent studies showed that the LRP1-ICD could translocate to the nucleus to regulate gene expression. In addition, we found that a miRNA was significantly regulated in *Lrp1^{-/-}* OPCs (Figure 3.17). This prompted us to investigate the role of LRP1 as a transcription regulator. All miRNA species that were differentially regulated in *Lrp1*^{-/-} OPCs were plotted in Figure 3.17a and the selected miRNAs with annotation were plotted in Figure 3.17b. Genes of interests that can be transcriptionally regulated by each miRNAs were listed in Figure 3.17c. To validate the changes in miRNA levels, a miRNA gRT-PCR assay was performed (FigureA.17d). Because it has been shown previously that miRNA-155 and miRNA-219 regulate OL development (Dugas et al 2010, Zhao et al 2010), I used them as a positive control to gauge if the changes of miR-16, 19, 20, and 33 were specific to *Lrp1*^{-/-} OPCs. Results showed that a minor strand of miRNA-33, mir33a-3p*, is significantly down regulated (Figure 3.17d). Interestingly, miR-33 is highly expressed in the brain, resides at the intron of *Srebf2* genome, and is down regulated in the liver when mice are fed with high-fat diet (HFD) (Rayner et al 2010). In Affymetrix analysis, miR33 was upregulated in *Lrp1*^{-/-} OPCs but in qRT-PCR assay it was downregulated. This can be explained by the sequences used in each assay for miR33 detection. In Affymetrix, the gene annotation of miR33 is less specific, it might include pri-miRNA, pre-miRNA, and mature miRNA. gRT-PCR on the other hand detects only mature miRNA species. An illustration briefly summarizes the synthesis, maturation, and activation pathways of miRNAs (Figure 3.17e). Since the half-life time of miRNA can be hours to days, this might explain some of the differences between the age of samples.

3.3.4 LRP1 as a novel regulator of organelle trafficking: Myo1D and peroxisome distribution

— LRP1 regulates Myo1D

To investigate the role of LRP1 at later OL developmental stages, differentiating OLs (O4⁺ cells) were prepared from *Lrp1* control and cKO^{0L} pups and subjected to Mouse Gene ST2.1 Affymetrix array analysis (Figure 3.18a). Genes that

were differentially regulated were plotted as relative expression level (Figure 3.18b) and relative fold-change (Figure 3.18c). Genes that were regulated in the same direction as *Lrp1* are highlighted. The annotation and fold-change of each gene are listed in Figure 3.18d. To validate the RNA array results, mRNA was prepared in the same way as the samples submitted for array analysis, and semi-quantitative RT-PCR analysis was performed (Figure 3.18e). Myo1d was significantly downregulated, which is consistent with the array data. To assess if the changes in Myo1d mRNA are also seen at the protein level, OLs and brain lysates were subjected to Western blot analysis (Figure 3.18f and g). Myo1D protein expression was down regulated in both *Lrp1*-/- OPCs and P56 *Lrp1* cKO^{0L} brain tissue. Interestingly, Myo1D expression is dramatically increased during myelination (Yamazaki et al 2017), and influences myelination and remyelination when down regulated by siRNA in mice (Yamazaki et al 2018, Yamazaki et al 2016).

Together, these observations suggest that LRP1 regulates *Myo1d* transcriptionally and at the protein level. Further studies are required to answer if this regulation is due to a direct role of *Lrp1* in regulating the *Myo1d* promoter or indirectly through other signaling pathways. For pathway analysis, genes that are differentially regulated were subjected to GO analysis (Figure 3.19). Significant GO terms associated with 'Biological-Process', 'Cellular Component', and 'Molecular Function' were listed in Figure 3.19a. For future data mining, genes that are differentially regulated are listed in Table 3.1. The key words from literature search for the potential link of each gene and myelination/OL development were noted in Figure 3.19b.

- Study LRP1 and peroxisome subcellular localization

Because the peroxisome distribution is altered in $Lrp1^{-/-}$ OLs as described in Chapter II (section 2.3.7), I further investigated if LRP1 regulates peroxisome subcellular localization through physical contact. A pilot study was performed by immunostaining. I hypothesized that if LRP1 is forming physical contact with peroxisomes, LRP1 and PMP70 signals should be closely associated. OPCs were isolated from *Lrp1* control pups, cultured in differentiation medium for 5 days, and OLs were then stained with anti-LRP1, anti-LAMP1, anti-PMP70, and Hoechst dye (Figure 3.20a). Preliminary results showed that LRP1 is closely associated with peroxisomes and lysosomes. A Z-stacked image in Figure 3.20b shows that the LRP1 signal (green) always co-localizes with the PMP70 signal (Red) additional controls are needed to confirm this initial observation. Of note, there might be cross-reaction between Alexa488 conjugated anti-LRP1 and rabbit anti-PMP70, as both antibodies were raised in rabbit. Alexa488 conjugation might not completely block the Fc epitope for rabbit anti-Fc secondary antibody.

LRP1 expression decreases during OL differentiation, higher LPR1 levels were detected in OPCs compared to OLs, which is consist with the biochemistry results reported in Chapter II (Figure 2.1). The extent of LRP1 and peroxisome colocalization was analyzed by ImageJ to calculate the Pearson's coefficient. Based on morphology, immature OPCs and mature MBP+ OLs from *Lrp1* control or cKO^{0L} pups were analyzed separately. OPC/OLs were stained with anti-LRP1 and anti-PMP70 in each condition (Figure 3.21a). Pearson's coefficient plot of each representative cells are shown in Figure 3.20b. LRP1 and PMP70 signals were more closely associated in the MBP- stage of OPCs that were prepared from Lrp1 control pups (Figure 3.21b, middle panel). However, this pilot experiment was performed by crude cell categorization based on experience of cell morphology. Therefore, future studies are required in which co-staining with different OL stage markers is used to ensure proper comparison.

Similarly, LRP1 and peroxisome co-localization was observed in astrocytes (GFAP⁺), fibroblasts, and neurons (β IIITub⁺) (Figure 3.22a). The cells of each category were quantified and the averaged Pearson's r scores were plotted in Figure 3.22b. Since Pearson's r score does not follow a normal distribution (-1< r <1), a z-transformation is required before statistical comparison (Figure 3.22c). After the data transformation, the Z score can be compared by a simple Student's t-test. I

observed that the LRP1 and PMP70 signal association is closer in OPCs than in other cell types (Figure 3.22d). This suggests that LRP1 in OPCs has a more intimate role with peroxisomes than in the other cell types. However, as mentioned before, additional controls are required to draw a solid conclusion.

As a principle for single cell analysis, step-wise image processing flow is laid out inFigure 3.23. Raw data of the images under each channel were served as input. However, if the intensity of each non-altered pixel is below the detection limit of our eyes, prepare a histogram-applied image (merged channel in this case) is required in parallel when processing the image (Figure 3.23a). Depending on the noise of the cell staining, a crude area containing a single cell needs to be identified by eye (Figure 3.23b, step1). After clearing the background (Figure 3.23b, step2 and 3), cell silhouette can be determined by threshold setting (Figure 3.23b, step4 and 5), and then the fine cell selection can be applied to the raw data (Figure 3.23b, step 6-9). Depending on the question one asks, the sub-regional analysis can be done (Figure 3.23b, step 10-12).

3.4 Materials and Methods

3.4.1 Mice

All animal handling and surgical procedures were performed in compliance with local and national animal care guidelines and were approved by the Institutional Animal Care and Use Committee (IACUC). $Lrp1^{flox/flox}$ mice were obtained from Steven Gonias (Stiles et al 2013) and crossed with *Olig2-Cre* (Schüller et al 2008), *CAG-CreERTM* (Jackson Laboratories, #004682), *LysM-Cre* (Jackson Laboratories, #004781). $Lrp1^{n2/n2}$ mice were kindly provided by Claus Pietrzik (Roebroek et al 2006). *Mag^{-/-}* mice were obtained from Jackson Laboratories (Li et al 1994). Mice were kept on a mixed background of C57BL/6J and 129SV. Throughout the study, male and female littermate animals were used. *Lrp1* 'control' mice harbor at least one functional *Lrp1* allele. Any of the following genotypes $Lrp1^{n2/+}$, $Lrp1^{+/+}$, $Lrp1^{+/flox}$, $Lrp1^{flox/flox}$, or $Lrp1^{flox/+}; Cre^+$ served as *Lrp1* controls.

3.4.2 **Genotyping**

The methods of tail biopsies to collect genomic DNA (gDNA), PCR condition, and Lrp1 floxed alleles or Cre alleles amplification protocol are described in Chapter II (section 2.5.2). *Lrp1* wt and n2 alleles were amplified with the forward primer [N2F] 5'- GTT CCC TCC ATG CCC TGA CA-3' and [N2R] 5'- GGA GCC TGC CGG AGT GAG A-3'. The wt allele yields a 577 bp product and the n2 allele yields a 487 bp product.

3.4.3 Quantitative reverse transcription (qRT)-PCR

For mRNA qRT-PCR, total RNA was isolated from OPCs or OLs of *Lrp1* control and *Lrp1* cKO^{OL} mice using TRIzol (Thermo Fisher, 15596026). cDNA was synthesized by using Olig-dT primers in SuperScript^M III First-Strand Synthesis System (Thermo Fisher, 18080051) following manufacturer's instructions. Relative gene expression was detected by pre-designed primers from qPrimerDepot website and listed as follows:

Forward Primer	Sequence	Reverse Primer	Sequence
A1_Frmd4a_93F	TAGCAGCTCCAGCTTCCTGT	A2_Frmd4a_93R	ATGGAAGGGCTCCTATCTCC
B1_Cntn6_104F	CCACGTTCGAAGGTCAAAA	B2_Cntn6_104R	AGATCCCGAGACATTTCCCT
C1_Myo1d_91F	CCGATGAATGTGTAGATGCG	C2_Myo1d_91R	ACTTCGTGCTGATGGACACC
D3_Fgd4_136F	TCCTCCCATTTATTCCCTGA	D4_Fgd4_136R	TGTTCTCCAGCCATTTGTGA
E1_Flrt2_93F	GAAAGTCAGGCCAGTGGAGA	E2_Flrt2_93R	TGGATTCGGATGAGCTAAGG
F5_Zfp36l2_101F	GAGGTTTGCCAGGGATTTCT	F6_Zfp36l2_101R	TTTCGACCATTACAGGACCC
G3_Lrp1_143F	GTCCAGCAGAGTGACACAGG	G4_Lrp1_143R	CCATCAACATCTCCCTCAGC
GAPDH_F	AACTTTGGCATTGTGGAAGG	GAPDH_R	GGATGCAGGGATGATGTTCT

For qRT-PCR reaction, SYBR[™] Green PCR Master Mix (Thermo Fisher, 4309155) was used and signals were detected by a StepOne Real-Time PCR system (Applied Biosystems).

For miRNA qRT-PCR, miRNA was isolated from OPCs of *Lrp1* control and *Lrp1* cKO^{OL} by using mirVana[™] miRNA Isolation Kit (Thermo Fisher, AM1560). miRNA reverse transcription was carried out by using TaqMan[™] MicroRNA Reverse Transcription Kit (Thermo Fisher, 4366596) following manufacturer's instructions. Relative miRNA expression was determined by predesigned TaqMan miRAN assays, hsa-miR-33a* (CAA UGU UUC CAC AGU GCA UCA C, 002136), hsa-miR-19b-1* (AGU UUU GCA GGU UUG CAU CCA GC, 002425), mmu-miR-155 (UUA AUG CUA AUU GUG AUA GGG GU, 002571), hsa-miR-219-2-3p (AGA AUU GUG GCU GGA CAU CUG U, 002390), snoRNA202 (GCT GTA CTG ACT TGA TGA AAG TAC TTT TGA ACC CTT TTC CAT CTG ATG, 001232). For qRT-PCR reaction, TaqMan[™] Universal Master Mix II with UNG (Thermo Fisher, 4440038) was used and signals were detected by a StepOne Real-Time PCR system (Applied Biosystems).

3.4.4 **COS-7 cells binding assay**

COS-7 cells were plated in a poly-D-lysine (PDL) coated 24-well plates and transfected by lipofectamine 2000 (Thermo Fisher, 11668027) with plasmid DNA encoding MAG and/or GFP. Ligand-receptor binding assay carried out by following previously established method (Venkatesh et al., 2005)(Stiles 2013). Briefly, AP-conjugated anti-human Fc was pre-incubated with Fc, NgR^{OMNI}-Fc, CII-Fc, or CIV-Fc fusion proteins in a 1:2 ratio. Antibody/protein complex was added to COS-7 cells for 75 min then rinse with opti-MEM to remove unbound complex. Cells were fixed with 1% formaldehyde (1% formaldehyde, 60% acetone, and 20 mM HEPES, pH 7.0), rinsed with HBHA, and heated inactivate at 65°C in HEPES-buffered saline (HBS) for 90 min. Binding was visualized by developing AP reaction with NBT/BCIP substrate. The reaction was terminated by PBS rinsing. For competitive binding experiments, GST, GST-RAP, wt-RAP, or stable-RAP were added into the 75min cell incubation step together with antibody/protein complex.

3.4.5 Histochemistry

The methods are as described previously in Chapter II (section 2.5.4).

3.4.6 In situ hybridization

General ISH protocol is described previously in Chapter II (section 2.5.5). Method of fluorescent in situ hybridization (FISH) for tissue section is briefly described as follow. The mixture of probes is designed base on the instruction of the Biosearch Technologies Stellaris RNA FISH website. Oligos pellets obtained from the company are dissolved in 200µl TE (10mM Tris-HCl pH8.0, 1mM EDTA) buffer to final concetration of 25µM. Tissue sections mounted on microscope slides were brought to RT, rinsed 3 times for 5 min each in PBS, and incubated for 10min with 0.2M HCl. Sections were then permeabilized in 1% Triton-x-100/PBS for 2 min. Sections were then rinsed 2 times for 1 min each in PBS, followed by incubation with 2x SSC/10% formamide for 10min. Probes were diluted to 1:100 in preheated (60°C) hybridization buffer (10% Dextran Sulfate, 1mg/mL E. Coli tRNA, 2mM Vanadyl Ribonucleosides, 200ug/mL BSA, 2X SSC, 10% Formamide, and Blocking buffer) then applied to sections, covered with parafilm, and incubated at 37°C overnight in a humidified and sealed container. The next morning slides were rinsed in 2X SSC/10% formamide for 30 min at 37°C, 2X SSC, and incubated in 1% Triton-x-100/PBS. Secondary antibody was prepared in 0.3% triton-x-100/0.1X blocking buffer and incubated for 60min at RT. Sections were then rinsed with 3 times in PBS, 1 time in DEPC, then let dry, mount, and imaging within 2 days. Probes sequences are as follow:

Sequences	Scramble probes	Lrp1 probes
1	GTCAGCACCTTCCATGCACC	CCTGATGGAGCACTAGGG
2	ACCTACTTGGGAGTAAGTGC	ATGGGGGTGCCTTGGTAG
3	ACCTCGGCACCATCTACCCT	CGCCTCTGGCTGCAAAAA
4	TCGTACTTCTGTGGGAATAG	AGGGCGAAGCTCACAGCC
5	TTTACCCGTCGAGACGTCAA	TTCACCCCTGCTTTACTC
6	ACATGTTCGAGACAAGCCCT	CTGCCCCCAAATTCGAAC
7	CTCTTTTCTAGCCGTCAAGT	TGGGAAGGGCCTGCTGAC
8	TCTTGCGCGCGAAAAAGACA	ATGGTACAGTTCCGAGCC
9	TGCACCGTGAATGAGGGTTT	AACCAGGGGCATAGGTGA
10	GCTTCATGTTCCGGGCAAAG	CCTTTCCTTAAGCAAAGC
11	ACCGACTGCACGGTTAAGGA	CCGACTCTTCTATTCTTA
12	CCGAACAGACCACGTACCTT	CCCCTTTATCTTCCTCTC
13	CCTTCCAGCTGCCCATTTTT	CTCTGGTCCTGTTACTTC
14	TTTCTTGCCCAAAAGACCTC	GCCGATGCAAACAGCAGC
15	CTTGAACTGCAGATGCCGCT	CGGGGTCAGCATGGTGTG
16	AAGCGTCTTCCATGCACCAA	CCGGAGACCAGAGCTGAA
17	ACCAACCGGGCCTGGTTCAA	TTGGATGATGGTCTGCCG
18	CGTCAAGTTTCGTCTACCCT	GTGACGACCTGGTACTCA
19	TACCCGTGCAGACCACGTCA	CATCTGTGTCCAACACCT
20	ATCGACATGTTGGGAGTAAG	TTGGCACAGTAGCTCTGG
21	TAGCCCTGAAGACCTCGGCA	AGATGTTGCCTGCAATCC
22	AGCCTTTTTGTGGGAATAGG	GATGGCATCTGACCTAGC
23	TCCGCGCGAGAAAACTACTT	TTGATTGTGTGGTTCCCA
24	TCTACACGCTCTTTTGGTTT	GCGTGAGTTCTGTCACTC
25	GCTTCATCCGGGCAAGAAAA	CCATTGTTACACTGGCGG
26	TGCACCGTGACTACCTTCCA	
27	TTCCACCGAACAGACCACGT	
28	TCGCGACTGCACGGTTACAA	
29	TTGAACTGCAGAGCCCAAAA	
30	GTTGCGCTGCCATTTTTTCT	

3.4.7 Immunostaining

Methods were described previously in Chapter II (section 2.5.7). The following primary antibodies were used: rabbit anti-GFAP (Dako, Nr. A 0334, 1:2000), rabbit anti-ki67 (Abcam, ab15580, 1:1000), rat anti-PDGFR α (BD Pharmingen, 558774, 1:500), rabbit anti-Olig2 (Millipore, AB9610, 1:500), rabbit anti-CD68 (Abcam, ab125212, 1:500), goat anti-Arg-1 (Santa Cruz, M-20, sc-18355, 1:250), rabbit anti-PMP70 (Thermo, PA1-650, 1:1000), rat anti-LAMP1 (Abcam, ab25245, 1:500). For myelin staining, sections were incubated in Fluoromyelin-Green or Red (Life technologies, F34651 or F34652, 1:200) reagent for 15 min.

3.4.8 Transmission electron microscopy (TEM)

Tissue preparation and image acquisition for semi-thin (0.5 μ m) and ultrathin (75 nm) sections were carried out as described previously in Chapter II (section 2.5.8).

3.4.9 **OPC/OL primary cultures and drug treatment**

OPCs isolation, culture, and drug/peptides treatment were carried out as descried previously in Chapter II (section 2.5.10). GST, RAP, wt-RAP, stable-RAP of indicated concentration were added with differentiation medium to culture every 2 days.

3.4.10 Western blot analysis

Protein lysates were analysis as described previously in Chapter II (section 2.5.12). Methods of peroxisome preparation by sucrose gradient are briefly described as follow. Tissue was homogenized in 5ml 0.85M sucrose buffer, overlaid with 5ml 0.25M sucrose buffer, and spawn for 1hr at 25,000rpm SW41. Myelin interphase was removed, and 0.85M sucrose phase was adjusted to 0.25M sucrose with 0.1 mM EDTA and 3mM imidazole-containing water, mixture was spawn for 8 min at 483g, and the nuclear fraction was recovered from the pellet. The supernatant was spawn for 12 min at 12096g, and the heavy mitochondria fraction was recovered from the pellet. The supernatant was spawn for 24 min at 39191g, and the light mitochondria fraction was recovered from the pellet. Primary

antibodies included: rabbit anti-LRP1β 85 kDa (Abcam, ab92544, United Kingdom, 1:2000), mouse anti-βIII tubulin (Promega, G7121, 1:5000), mouse anti-βactin (Sigma, AC-15 A5441, 1:5000), rat anti-MBP (Millipore, MAB386, 1:1000), rabbit anti-MAG (homemade serum, 1:1000), rabbit anti-PLP (Abcam, ab28486, 1:1000), rat anti-PLP/DM20 (Wendy Macklin AA3 hybridoma, 1:500) rabbit anti-Olig2 (Millipore, AB9610, 1:1000), mouse anti-GFAP (Sigma, G3893, 1:1000), mouse anti-CNPase (Abcam, ab6319, 1:1000), rabbit anti-PXMP3 (PEX2) (One world lab, AP9179c, San Diego, CA, 1:250), and rabbit anti-SREBP2 (One world lab, 7855, 1:500), rabbit anti-pAKT (S473, Cell signaling, 4060S, 1:1000), rabbit anti-p-S6 (Cell signaling, 4856S, 1:500), rabbit anti-Myo1D (Assay biotech ,C16783, 1:500), rabbit anti-TSC1 (Cell signaling, 6935S, 1:1000).

3.4.11 Microarray and gene ontology analysis

OPCs and OLs were isolated by immunopanning with anti-PDGFR α and anti-O4 as described previously in Chapter II (section 2.5.10). To compare *Lrp1* control and cKO^{OL} RNA expression profiles, the Mouse Gene ST2.1 Affymetrix array was used. Differentially expressed genes, with a *p*-value<0.05 set as a cutoff, were subjected to gene ontology (GO) analysis. Go terms were quarried from Mouse Genome Informatics (MGI) GO browser or Gene Ontology Consortium. The fold enrichment was calculated by dividing the number of genes associated with the GO term in our list by the number of genes associated with the GO term in the database.

3.4.12 Image and statistical analysis

I apply the same criteria as described in Chapter II (section 2.5.15). For image processing and quantification, ImageJ 1.47 v software was used for threshold setting, annotation, and quantification. For single-cell LRP1 and PMP70 colocalization analysis, an ImageJ plugin named, JACoP, was used (Bolte & Cordelières 2006). The Pearson's r score were transformed to z score following by online calculator: <u>http://onlinestatbook.com/calculators/fisher_z.html</u> before using student's t-test for statistic comparison (Fisher 1915).

3.5 Acknowledgements

I thank Claus Pietrzik for providing *Lrp1*^{n2/n2} mice. I thank Benjamin Segal and David Giles for providing CFSE reagents. I thank Dudley Strickland and Joni Prasad for wt-RAP and stable-RAP peptide. I thank Wei-Chin Ho and Ye Li for bioinformatics and image processing consulting.

3.6 **Author contributions**

Jing-Ping Lin and Roman Giger designed research. Jing-Ping Lin, Samir Nath, and Roman Giger performed research. Jing-Ping Lin and Samir Nath analyzed data. Ashley Kalinski for FISH protocol and suggestions.

3.7 Figures

Figure 3.1: LPC induced demyelination, astrogliosis, accumulation of nuclei overtime within the lesion area in the corpus callosum

(a) Coronal forebrain sections of adult WT mice. Mice are subjected to stereotaxic injection of 2µl 1% LPC into the corpus callosum. At the indicated time points post injection of LPC, brains were collected, serially sectioned, and stained with FM Green, anti-GFAP, and Hoechst dye33342. The white matter lesion is identified by the absence of FM-Green labeling, and the GFAP⁺ cells migrate toward the lesion site. DPI, days post-injection. Scale bar= $500\mu m$. (b) At the indicated time point, brains were collected, serially sectioned, and stained with FM-Green, anti-GFAP and Hoechst dye33342. Dense nuclei and GFAP+ cells accumulated in the LPC injected lesion site at the indicated time point. Differential distribution of GFAP⁺ area, Hoechst+ accumulated area, and FM-Green devoid area was shown. Scale bar= 200µm. (c) Coronal forebrain sections of adult WT mice stained with anti-Ki67, and Hoechst dye33342. Stained sections are imaged with 4x (left panel), 10x (middle panel), and 20x (right panel) were showed. Ki67⁺ proliferating cells were identified in the subventricular zone. Scale bar=500 (left), 200 (middle), 100 (right) μm. (d) Coronal forebrain sections of adult naïve mice stained with anti-Pdgfra and Hoechst dye33342. The pool of Pdgfr α^+ OPCs was identified at the corpus callosum. Scale bar= 100µm.

Figure 3.2: LPC induced white matter lesion leads to accumulation of CD68+ myeloid cells and cells in the OL-lineage.

(a) Coronal forebrain sections of adult WT mice. Mice are subjected to stereotaxic injection of $2\mu 1\%$ LPC into the corpus callosum. At 7 days post-injection (DPI) of LPC, elevated nuclei staining were observed at the area devoid of FM-Green staining. Scale bar= 200µm. (b) Coronal forebrain sections of adult WT naïve mice with indicated 4% PFA post-fixation duration stained with anti-Olig2 (OL-lineage). Scale bar= 200µm. (c) Coronal forebrain sections of adult WT mice. At 21 DPI of LPC or PBS, brains were collected, serially sectioned, and stained with FM Green, anti-Olig2, and Hoechst dye33342. Elevated Olig2+ cells were observed at the area devoid of FM-Green staining. Scale bar= 200µm. (d) Coronal forebrain sections of adult *Lrp1flox/flox;Olig2-Cre* mice. Mice are subjected to stereotaxic injection of 2µl 1% LPC or PBS into the corpus callosum. At 21 DPI of LPC, brains were collected, serially sectioned, and stained with anti-CD68 (myeloid cells), anti-Arg-1 (M2 myeloid cells), and Hoechst dye33342. Elevated CD68⁺ and Arg-1⁺ staining were identified at LPC induced lesion site compare to PBS injection. Scale bar= 500 (upper panel) and 200 (the rest of the panel) µm.

Control bran / 21 DPI / LPC 0.5ul

Figure 3.3: Elevated LRP1 protein and mRNA expression are observed in the LPC induced white matter lesion

(a) Coronal forebrain sections of adult control mice. Mice are subjected to stereotaxic injection of 0.5μ l 1% LPC into the corpus callosum. At 21 DPI of LPC, brains were collected, serially sectioned, and stained with anti-LRP1, anti-LAMP1 (lysosome), and anti-PMP70 (peroxisome). Elevated LRP1, LAMP1, and PMP70 immunostaining signals were detected at the lesion area. Scale bar= 100µm. (b) Coronal forebrain sections of adult $Lrp1^{flox/flox}$ mice. Mice are subjected to stereotaxic injection of 0.5μ l 1% LPC into the corpus callosum. At 21 DPI of LPC, brains were collected, serially sectioned, and probed for Lrp1 by fluorescent *in situ* hybridization (FISH) and stained with Hoechst dye33342. Inset A, the specificity of the FISH signal was controlled by scramble FISH probe generated against random sequences. Scale bar= 100µm. Insect B, enlarged image from the lesion site. Elevated Lrp1 probe signals were identified at the peri-nucleus. Scale bar= 20µm.

DPI 21 / LPC 0.5ul

Figure 3.4: Elevated Lrp1 mRNA is detected in a subset of cells in the OLlineage.

(a) Coronal forebrain sections of adult $Lrp1^{flox/flox}$ mice. Mice are subjected to stereotaxic injection of 0.5µl 1% LPC into the corpus callosum. At 21 DPI of LPC, brains were collected, serially sectioned, and probed for Lrp1 by FISH and stained with anti-Olig2 and Hoechst dye33342. Scale bar= 100µm. Insect A and B, enlarged image from the lesion site. Elevated Lrp1 signals were identified at the peri-nucleus of both Olig2⁺ and Olig2⁻ cells. Scale bar= 20µm. Inset C, brains section probed for Lrp1 by FISH and stained with anti-Olig2. Scale bar= 100µm. (b) Coronal forebrain sections of adult $Lrp1^{flox/flox}$; CAG-CreERTM mice. Lrp1 deletion was induced by tamoxifen injection. Mice are subjected to stereotaxic injection of 0.5µl 1% LPC into the corpus callosum. At 21 DPI of LPC, brains were collected, serially sectioned, and probed for Lrp1 by FISH and stained with Hoechst dye33342. Scale bar= 100µm. Insect A and B, image signal specificity was controlled by imaging on the GFP channel (A) and merged with Cy-5 channel (B) of the lesion site Scale bar= 100µm. Insect C, the specificity of the FISH signal was controlled by scramble FISH probe generated against random sequences. Scale bar= 100µm.

Figure 3.5: Ablation of *Lrp1* in myeloid cells does not impact remyelination.

(a) To ensure the LRP1 expression is abolished in the myeloid cells by the Cremediated ablation, white blood cells were isolated from blood that are collected from *Lrp1* control and *Lrp1*^{flox/flox};*LysM-Cre* mice. Lymphocytes were lysed and subjected to SDS-PAGE. Representative Western blots probed with anti-LRP1 β and anti- β -actin are shown. (b) Quantification of protein levels detected by Western blotting of *Lrp1*^{flox/flox} (n= 3) and *Lrp1*^{flox/flox};*LysM-Cre* (n= 3) lymphocytes lysates. (c) Coronal brain sections through the CC 21 DPI. The outer rim of the lesion area (lesion^{out}) is demarcated by the elevated *Mbp* signal (white dashed line). The nonmyelinated area of the lesion is defined by the inner rim of elevated *Mbp* signal (lesionⁱⁿ) and delineated by a solid yellow line. Scale bar= 200µm. (d) Quantification of the initial lesion size (lesion^{out}) in *Lrp1* control (n= 5) and *Lrp1*^{flox/flox};*LysM-Cre* (n= 5) mice. (e) Quantification of white matter repair in *Lrp1* control (n= 5) and *Lrp1*^{flox/flox};*LysM-Cre* (n= 5) mice. The extent of repair was calculated as the percentile of (lesion^{out} - lesion^{int})/(lesion^{out}) x 100. Results are shown as mean ± SEM, *p<0.05, **p<0.01, and ***p<0.001, Student's *t*-test.

Figure 3.6: Labeling of the LPC induced white matter lesion with the cell tracker CFSE

(a) Coronal forebrain sections of adult WT mice. Mice are subjected to stereotaxic injection of 0.5μ l CFSE/PBS or CFSE/1% LPC mixture into the corpus callosum at each side. At 3 DPI, brains were collected, serially sectioned, and stained with FM-Red and Hoechst dye33342. The injection site is identified by the CFSE labeling under the GFP channel. Scale bar= 200µm. (b) Low magnification of CFSE/1% LPC injected lesion side at 3 DPI. Sections were stained with FM-Green, FM-Red, and Hoechst dye33342. The area that is devoid of FM-Green and FM-Red labeling is wider than CFSE⁺ area. Scale bar=500µm. (c) The molecule structure of CFSE and the mechanism of action for cell labeling. CFSE is cell permeable, formed a covalent bond with protein and free amino acids. Once the covalent bond is formed, CFSE can pass to another cell unless through cell proliferation. CFSE, carboxyfluorescein diacetate succinimidyl ester.

Figure 3.7: Examination of the specificity of RNA probes used for in situ hybridization

(a) Coronal forebrain sections of adult $Lrp1^{flox/flox}$ mice. Naïve brains were collected, serially sectioned, and detected with *Mag* sense (+) probe and stained with Hoechst dye33342. (b) Coronal forebrain sections of adult *Mag'-*, $Lrp1^{flox/flox}$, and $Lrp1^{flox/flox}$; *Olig2-Cre* mice. Naïve *Mag'-* brains were collected, serially sectioned, and probed for *Mag* and stained with Hoechst dye33342. $Lrp1^{flox/flox}$, and $Lrp1^{flox/flox}$; *Olig2-Cre* mice were subjected to stereotaxic injection of PBS or LPC into the corpus callosum at each side. At 21 DPI brains were collected, serially sectioned and probed for *Mag* and stained with Hoechst dye33342. Scale bar= 1mm (2x) and 200µm (10x).

Figure 3.8: *Lrp1* ablation in the OL-lineage leads to axonal pathology in the optic nerve

(a) Ultrastructural images of optic nerve cross- and longitudinal-sections from P21 control and $Lrp1^{flox}$; Olig2-Cre conditional knockout mice (Lrp1 cKO^{OL}). Scale bar= 2µm. (b) High magnification of the ultrastructural image from optic nerve cross- and longitudinal-sections from P21 control and Lrp1 cKO^{OL}. White arrowheads, the malformed structures, including axon swelling, repeated myelination, myelin outfolding, and myelin uptake particle. Scale bar= 500nm.

Figure 3.9: *Lrp1* ablation in the OL-lineage does not impact retina ganglion cells (RGC) density or retinal stratification

Retina at P10, P21, and P56 of *Lrp1* control and cKO^{0L} mice were collected, semithin sectioned, and stained with toluidine blue (TB). GC, ganglion cell; IPL, inner plexiform layer; INL, inner nuclear layer; OPL, outer plexiform layer; ONL, outer nuclear layer; POS, photoreceptor outer segment; RPE, retinal pigment epithelium. Scale bar= $200\mu m$ (10X) and $30\mu m$ (64X). а

P21 tissue lysate

b

OB	CTX	TH	CB	BS	SC	CC	
P9 PII	P9 PII	P9 PII	P9 PII	P9 PII	P9 PII	P9 PII	
скск	скск	скск	скск	скск	скск	скск	
							LRPIβ
							βIIITub
	100 10 10 10 10 10 10 10 10 10 10 10 10					free and	CNP
							GAPDH
						== -=	GFAP
							Actin GAPDH
6464.45	-438-83	ME(10) - 1	\$ 1 KE	All Distances of the	12 BH NO	and statements	
H (1)	161-15	H (1)	1000	- 10 All 10	1000	11 m	MBP
		State College	#17 BO	and the second second	THE ROOM NAME OF TAXABLE		

Figure 3.10: Brain region specific and developmental stage specific regulation of Myelin proteins in Lrp1 cKO CNS tissue

(a) P21 CNS tissues of *Lrp1* control and *Lrp1* cKO mice were lysed and subjected to SDS-PAGE. Western blots probed with anti-LRP1 β , anti- β IIITub, anti-CNP, and anti-GAPDH are shown. (b) P9 and P11 CNS tissues of *Lrp1* control and *Lrp1* cKO mice were lysed and subjected to SDS-PAGE. Western blots probed with anti-LRP1 β , anti- β IIITub, anti-CNP, anti-GAPDH, anti-GFAP, anti-Actin, and anti-MBP are shown. OB, olfactory bulb; CTX, cortex; TH, thalamus; CB, cerebellum; BS, brain stem; SC, spinal cord; CC, corpus callosum.

Figure 3.11: Bath application of the LRP1 antagonist RAP does not inhibit OPC differentiation

(a) OPCs were isolated from P7-9 *Lrp1* control pups by anti-PDGFRa immunopanning. OPC cultured 5 days in differentiation medium (DM) treat with GST or GST-RAP every 2 days. Cultures were stained with anti-MBP, anti-PLP, and Hoechst dve 33342. Scale bar= 100µm. (b) OPCs were isolated from P7-9 Lrp1 control pups by anti-PDGFRa immunopanning. OPC cultured 5 days in differentiation medium (DM) treat with PBS, WT-RAP, or stable-RAP every 2 days. Cultures were stained with anti-MBP and Hoechst dye 33342. Scale bar= 100µm. (c) Quantification of MBP⁺ cells under each of the 3 different conditions (n=4 per condition). (d) COS7 cells co-transfect to express MAG and GFP. Cells were collected, fixed, and stained with Hoechst dve 33342 and anti-Fc. (e) MAG expressing COS7 were treated with Fc, NgR^{omni}-Fc, CII-Fc, and CIV-Fc to bind with MAG. The complex of ligand/ligand binding domain was competed by PBS or RAP. Cells were collected, fixed, and stained with AP-conjugated anti-Fc. Colorimetric BCIP/NBT substrate was used to detect successful binding. RAP, receptor-associated protein; BCIP, 5-Bromo-4-Chloro-3-Indolyl Phosphate; NBT, Nitroblue Tetrazolium. Results are shown as mean values ± SEM, *p<0.05, **p<0.01, and ***p<0.001, 2-way ANOVA, post hoc *t*test.

Figure 3.12: Characterization of $Lrp1^{n2/n2}$ mice carrying a mutation in the distal NPxY phosphorylation site of LRP1

(a) The illustration of the LRP1 structure. Distal NPxY mutated to AAxA. (b) The location of PCR primers used for genotyping *Lrp1* wildtype (wt) and *Lrp1* n2 alleles are shown. (c) PCR genotyping of tail genomic DNA. Analysis of PCR products amplified from of $Lrp1^{+/+}$, $Lrp1^{n2/+}$, and $Lrp1^{n2/n2}$. The N2F/N2R primer pair amplifies a 577 bp PCR product from the *Lrp1* n2 allele and a 487 bp PCR product from the *Lrp1* wt allele. (d) Tissues prepared from P10 *Lrp1^{n2/+}* (Het) and *L.rp1^{n2/n2}* (N2) mice were lysed and subjected to SDS-PAGE. Representative Western blots probed with anti-LRP1β and anti-β-actin are shown. (e) Brain lysates prepared from $Lrp1^{+/+}$, $Lrp1^{n2/+}$, and $Lrp1^{n2/n2}$ mice were probed with anti-LRP1 β and anti- β -actin. (f) Brain and sciatic nerve lysates prepared from P10 Het and N2 mice were probed with anti-SREBP2 and anti-β-actin. (g) Brain lysates prepared from P10 Het and N2 mice were probed with anti-LRP1 β , anti-PMP70, anti-Pex2, anti- β -actin, anti-pAKT, and anti-pS6. (h) Lung, liver, spleen, and kidney lysates prepared from P10 or P14 fresh or freeze Lrp1 control (W), Lrp1^{flox/flox};Olig2-Cre (O2), Lrp1^{n2/+} (Het), and $Lrp1^{n2/n2}$ (N2) mice probed with anti-LRP1 β and anti- β -actin are shown. (i and j) Brains were homogenized in 0.85M sucrose, diluted with PBS in a 1:5 ratio, mixed with laemmli in 1:1 ratio, and subjected to SDS-PAGE. Brains from P10 *Lrp1* control (W), $Lrp1^{flox/flox}$; Olig2-Cre (O2) $Lrp1^{n2/+}$ (H), and $Lrp1^{n2/n2}$ (N2) mice probed with anti-LRP1ß, anti-Myo1D, anti-Pex5l, anti-PMP70, anti-PLP (rabbit), anti-PLP (rat), anti- β -actin, and anti-Pex2 are shown. (k and l) Quantification of protein levels detected by Western blotting under each condition (n=3) is shown. Results are shown as mean values ± SEM, *p<0.05, **p<0.01, and ***p<0.001, 2-way ANOVA, post hoc *t*-test.

Figure 3.13: Analysis of myelin and peroxisome protein expression in P10-14 $Lrp1^{n2/n2}$ and Lrp1 cKO mouse brain tissue fractionated in a sucrose density gradient

(a) Brains prepared form P12 $Lrp1^{n2/+}$ (H) and $Lrp1^{n2/n2}$ (N2) mice were subjected to density fractionation to enrich for peroxisomes. Different fractions acquired during peroxisome preparation were subjected to SDS-PAGE. Blots probed with anti-Pex5l, anti-PLP (rabbit), anti- β -actin, anti-LRP1 β , anti-PMP70, anti-Pex2, anti-SREBP2, and anti-Myo1D are shown. H Mito, heavy mitochondria; L Mito, light mitochondria. (b-e) Homogenates from each fraction including input (b), myelin enriched (c), H Mito (d), and L Mito (e) were diluted as indicated for each condition and subjected to SDS-PAGE. Fresh or freeze brains were prepared from P10 or 14 Lrp1 control (W), $Lrp1^{flox/flox};Olig2-Cre$ (O2) $Lrp1^{n2/+}$ (H), and $Lrp1^{n2/n2}$ (N2) probed with anti-LRP1 β , anti-PMP70, and anti- β -actin are shown.

e Freeze > 0.85M Sucrose > 0.25M Sucrose Light Miro > PBS resuspension > 1:ditution PBS > 1:ditution in Laemmli ditution in Laemmli ditution in Laemmli P24 Brain Light Mito P19/20 Brain Light Mito N2 H N2 H N2 H N2 H N2 H N2 н MyoID --Pex5I ____ ----Pex2 ----Actin TSCI PMP70 Pex2

176

Actin

Figure 3.14: Characterization of myelin protein expression in P19-24 brains of $Lrp1^{n2/n2}$ mice in fractions enriched for peroxisomes and light mitochondria

(a) Brains form P19-24 $Lrp1^{n2/+}$ (H) and $Lrp1^{n2/n2}$ (N2) mice were subjected to peroxisome preparation. Homogenate inputs prepared for peroxisome preparation at the indicated condition were subjected to SDS-PAGE. Blots probed with anti-LRP1ß, anti-MAG, anti-CNP, anti-PLP (rabbit), anti-PLP (rat), anti-MBP, anti-PMP70, anti-Pex5l, anti-Pex2, anti-GFAP, anti-GAPDH, anti-β-actin, anti-βIIITub are shown. (b) Quantification of protein levels detected by Western blotting in a by combining data points from all mice at P19-24 (n=6) is shown. (c) Quantification of protein levels detected in a by Western blotting from mice at P24 (n=3) is shown. (d) Quantification of protein levels detected in a by Western blotting from mice at P19-20 (n=3) is shown. (e) Brains form P19-24 $Lrp1^{n2/+}$ (H) and $Lrp1^{n2/n2}$ (N2) mice were subjected to peroxisome preparation. Light mitochondria fractions acquired during peroxisome preparation at the indicated condition were subjected to SDS-PAGE. Blots probed with anti-Myo1D, anti-Pex5l, anti-Pex2, anti-β-actin, anti-TSC1, anti-PMP70 are shown. (b) Quantification of protein levels detected by Western blotting in e by combining data points from all mice at P19-24 (n=6) is shown. (c) Quantification of protein levels detected in e by Western blotting from mice at P24 (n=3) is shown. (d) Quantification of protein levels detected in e by Western blotting from mice at P19-20 (n=3) is shown. Results are shown as mean values ± SEM, *p<0.05, **p<0.01, and ***p<0.001, 2-way ANOVA, post hoc *t*-test.

Figure 3.15: Gene ontology (GO) analysis of *Lrp1* deficient OPCs revealed enrichment of cholesterol biosynthesis and homeostasis genes

Acutely isolated OPCs from *Lrp1* control and *Lrp1*^{flox/flox};Olig2-Cre mouse pups were subjected to microarray analysis. GO structure of biological process module related to peroxisome function. Each box shows the GO term ID, *p*-value, GO term, and the genes from the input list associated with the GO term. The color of each box shows the level of enrichment for each GO term. Specific GO terms were queried with the Mouse Genome Informatics (MGI) GO browser. *P*-values were calculated by Fisher's exact test. The fold-enrichment was calculated by dividing the ratio of genes that are associated with each GO term from the input list by the ratio of genes that are expected in the database. mRNA was prepared from acutely isolated OPCs of *Lrp1* controls (n= 4) and cKO^{0L} (n =4) pups and analyzed with the Affymetrix mouse gene 2.1 ST array. Differentially regulated gene products include *G6pdx* (Glucose-6-phosphate 1-dehydrogenase X), *Scap* (Sterol regulatory element-binding protein cleavage-activating protein), *Pex2* (peroxisomal biogenesis factor 2), *Nr1h2* (Nuclear receptor subfamily 1 group H member 2), *Lrp5* (Low-density lipoprotein receptor-related protein 5), *Mir33* (microRNA 33).

Figure 3.16: Validation of genes belonging to the cholesterol metabolism pathway differentially regulated in *Lrp1* control and cKO OPCs

(a) RNA quality control before analyzing with the Affymetrix mouse gene 2.1 ST array. The ratio of 28S/18S in the *Lrp1* control (middle panel) and *Lrp1* cKO (bottom panel) is similar to ladder control (top panel). The quality is sufficient to proceed. (b-f) mRNA was prepared from acutely isolated OPCs of *Lrp1* controls (n= 4) and cKO^{OL} (n= 4) pups and analyzed with the Affymetrix mouse gene 2.1 ST array. Genes that regulate cholesterol biosynthesis process (b), storage/report (c), efflux (d), LDL receptor family (e), and Pex2 related gene (f) are plotted. (g) Immunoblotting of lysates prepared from the P56 brain of *Lrp1* control (C) and *Lrp1*^{flox/flox};*Olig2-Cre* (KO). Representative blots probed with anti-PEX5L, anti-β-actin, and anti-PEX2. (d) Quantification of Pex2 and Pex5l in *Lrp1* control (n= 4) and KO (n= 4) brain lysate. Results are shown as mean values ±SEM, *p<0.05 and **p<0.01, Student's *t*-test.

Figure 3.17: Validation of the miRNAs that are differentially regulated in *Lrp1* control and cKO OPCs

(a) RNA was prepared from acutely isolated OPCs of *Lrp1* controls (n= 4) and cKO^{OL} (n= 4) pups and analyzed with the Affymetrix mouse gene 2.1 ST array. miRNAs that are differentially regulated with original *p*<0.05 are plotted. (b) From the Affymetrix results, selective miRNAs with literature annotation and their related isoforms are plotted. (c) Selective miRNAs in b cross-referenced with target gens of interests. Potentially regulated genes for each miRNA are checked. (d) Selective mature miRNAs were validated with miRNA gPCR. The relative expression level of each miRNA was normalized to snoRNA. (e) An illustration showing the pathway of miRNA synthesis, maturation, and activation. The majority of miRNAs are processed through canonical or mirtron pathway. In canonical pathway, pri-miRNA is transcribed from a gene, processed by Drosha to become pre-miRNA, exported to the cytoplasm, further processed by Dicer to become mature miRNA/miRNA* dimer. The name miRNA is given to the dominant strand, and miRNA* is the minor strand. Dominant strand can either be located at the 5' site or 3' site. miRNA is loaded to Ago to carry its function with the half-life from hours to days. The complex constitutes of miRNA, Ago, and other proteins is called miRNP or miRISC. miRNP is the active unit to regulate mRNA transcription or degradation. In mirtron pathway, the intron is spliced out directly from pre-mRNA by the spliceosome, intron than is processed by de-branching enzymes to form pre-miRNA. Results are shown as mean values ±SEM, *p<0.05 and **p<0.01, Student's *t*-test.

Figure 3.18: Validation of the genes that are differentially regulated in *Lrp1* control and cKO OLs that are O4⁺

(a) RNA was prepared from acutely isolated OLs of *Lrp1* controls (n= 4) and cKO^{OL} (n= 4) pups by anti-O4 immunopanning and analyzed with the Affymetrix mouse gene 2.1 ST array. (b) The relative expression level of genes that are differentially regulated with adjusted *p*<0.05 are plotted. Genes that are down regulated in *Lrp1* cKO OLs are highlighted. (c) Relative fold change of genes from b are plotted. (e) Selective genes were validated with semi-quantitative qPCR. The relative expression level of each mRNA was normalized to GAPDH mRNA. Genes are highlighted with differential mRNA expression with statistically significant. (d) List of significantly regulated gene symbol, ID, description, expression level, fold change, and adjusted p-value in comparison of *Lrp1* cKO to *Lrp1* control OLs. (f) Validation of the Myo1D expression level with Western blotting. Immunoblotting of lysates prepared from 04⁺ OLs isolated from Lrp1 control (C) and Lrp1^{flox/flox};Olig2-Cre (K) mice and cultured in T3 containing differentiation medium for 3 days. Representative blots probed with anti-Myo1D, anti-LRP1 β , and anti- β -actin. (g) Immunoblotting of lysates prepared from brain lysates of P56 *Lrp1* control (C) and *Lrp1^{flox/flox};Olig2-Cre* (K) mice. Representative blots probed with anti-Myo1D, andti-LRP1B, and anti-Bactin. Results are shown as mean values ±SEM, *p<0.05 and **p<0.01, Student's ttest.

а

Gene Ontology Consortium

Biological Process	GO_term	Frequency	Genome frequency	P-value	Corrected P-value	Gene(s)
GO:0019220	regulation of phosphate metabolic process	0.27273	0.02490	0.00219	0.17493	mvo1d.lrp1.fad4.
GO:0051174	regulation of phosphorus metabolic process	0.27273	0.02493	0.00219	0.17552	myo1d.lrp1.fqd4.
GO:0016055	What recentor signaling pathway	0 18182	0.00906	0.00426	0.34078	In 1 In 14
GO:0045860	positive regulation of protein kinase activity	0.18182	0.00038	0.00456	0.36488	Irp 1, gr 4,
GO:0031323	regulation of cellular metabolic process	0.45455	0.11/17	0.00403	0.30470	myo1d irp1 igr4 fad4 zfo36i2
00:00032674	positive regulation of kinase activity	0.40400	0.01002	0.00435	0.33473	myord, ii pri, igu+, igu+, zipooiz,
GO:0051247	positive regulation of transforaça activity	0.10102	0.01029	0.00515	0.44497	inp 1,igd4,
00:0051347	positive regulation of transferase activity	0.10102	0.01038	0.00555	0.44427	fip 1,1904,
00:0044205	cellular macromolecule catabolic process	0.10102	0.01303	0.00805	0.09200	ioxieuz,zipooiz,
GO:0050790	regulation of catalytic activity	0.27273	0.04231	0.00966	0.77264	myord, irp1, igd4,
GO:0019222	regulation of metabolic process	0.45455	0.13337	0.00967	0.77349	myo1a,irp1,igr4,fga4,ztp36i2,
GO:0045859	regulation of protein kinase activity	0.18182	0.01417	0.01013	0.81029	Irp1,tga4,
GO:0043549	regulation of kinase activity	0.18182	0.01517	0.01154	0.92321	Irp1,tgd4,
GO:0051338	regulation of transferase activity	0.18182	0.01573	0.01237	0.98920	Irp1,tgd4,
GO:0009057	macromolecule catabolic process	0.18182	0.01723	0.01470	1.00000	toxred2,ztp36l2,
GO:0006796	phosphate metabolic process	0.27273	0.04987	0.01511	1.00000	myo1d,lrp1,fgd4,
GO:0006793	phosphorus metabolic process	0.27273	0.04993	0.01516	1.00000	myo1d,lrp1,fgd4,
GO:0065009	regulation of molecular function	0.27273	0.05272	0.01754	1.00000	myo1d,lrp1,fgd4,
GO:0044237	cellular metabolic process	0.54545	0.22384	0.02026	1.00000	foxred2,myo1d,lrp1,lgr4,fgd4,zfp36l2,
GO:0001932	regulation of protein phosphorylation	0.18182	0.02064	0.02068	1.00000	lrp1,fgd4,
GO:0051336	regulation of hydrolase activity	0.18182	0.02143	0.02220	1.00000	myo1d,lrp1,
GO:0044260	cellular macromolecule metabolic process	0.45455	0.16512	0.02358	1.00000	foxred2,lrp1,lgr4,fgd4,zfp36l2,
GO:0043085	positive regulation of catalytic activity	0.18182	0.02217	0.02364	1.00000	lrp1,fgd4,
GO:0042325	regulation of phosphorylation	0.18182	0.02243	0.02417	1.00000	Irp1,fgd4,
GO:0060255	regulation of macromolecule metabolic process	0.36364	0.11073	0.02612	1.00000	lrp1,lgr4,fgd4,zfp36l2,
GO:0009987	cellular process	0.72727	0.39346	0.02633	1.00000	cntn6,foxred2,frmd4a,myo1d,lrp1,lgr4,fgd4,zfp36l2,
GO:0080090	regulation of primary metabolic process	0.36364	0.11152	0.02675	1.00000	Irp1.lgr4.fgd4.zfp36l2.
GO:0031399	regulation of protein modification process	0.18182	0.02487	0.02929	1.00000	Irp1,fgd4,
GO:0050794	regulation of cellular process	0.54545	0.24345	0.03028	1.00000	cntn6,myo1d,lrp1,lgr4,fgd4,zfp36l2,
GO:0044093	positive regulation of molecular function	0.18182	0.02731	0.03481	1.00000	Irp1,fgd4,
GO:0043170	macromolecule metabolic process	0.45455	0.18900	0.04045	1.00000	foxred2.lrp1,lgr4,fgd4,zfp36l2,
GO:0050789	regulation of biological process	0.54545	0.25965	0.04091	1.00000	cntn6.mvo1d.lrp1.lgr4.fgd4.zfp36l2.
GO:0008152	metabolic process	0.54545	0.26565	0.04544	1.00000	foxred2,myo1d,lrp1,lgr4,fgd4,zfp36l2,
GO:0032268	regulation of cellular protein metabolic process	0.18182	0.03178	0.04589	1.00000	Irp1,fgd4,
GO:0032268 Cellular	regulation of cellular protein metabolic process GO_term	0.18182 Frequency	0.03178 Genome	0.04589 P-value	1.00000 Corrected P-value	Irp1,fgd4, Gene(s)
GO:0032268 Cellular Component	regulation of cellular protein metabolic process GO_term	0.18182 Frequency	0.03178 Genome frequency	0.04589 P-value	1.00000 Corrected P-value	Irp1,fgd4, Gene(s)
GO:0032268 Cellular Component GO:0005623	regulation of cellular protein metabolic process GO_term cell cell cell cell cell cell cell cel	0.18182 Frequency 1.00000	0.03178 Genome frequency 0.45571	0.04589 P-value 0.00018 0.00018	1.00000 Corrected P-value 0.00509	Irp1.fgd4, Gene(s) Irp1.lgr4.fgd4.ftrt2.foxred2.tuba3a.tmem98.cntn6.frmd4a.myo1d.zfp36i2. Irp1.lgr4.fgd4.ftrt2.foxred2.tuba3a.tman98.cntn6.frmd4a.myo1d.zfp36i2.
GO:0032268 Cellular Component GO:0005623 GO:0044464 CO:0005552	regulation of cellular protein metabolic process GO_term cell cell part ortedistates	0.18182 Frequency 1.00000 1.00000 0.36364	0.03178 Genome frequency 0.45571 0.45571	0.04589 P-value 0.00018 0.00018 0.00018	1.00000 Corrected P-value 0.00509 0.00509	Irp1.jgd4, Gene(s) Irp1.jgr4,jgd4,firt2,foxred2,tuba3a,tmem98,cntn6,frmd4a,myo1d,zfp36i2, Irp1.jgr4,jgd4,firt2,foxred2,tuba3a,tmem98,cntn6,frmd4a,myo1d,zfp36i2, tuba2a,ferd44,mwp14,fad4,
GO:0032268 Cellular Component GO:0005623 GO:0044464 GO:0005856 GO:0043229	regulation of cellular protein metabolic process GO_term cell cell part cytoskeleton intracellular granelle	0.18182 Frequency 1.00000 1.00000 0.36364 0.72727	0.03178 Genome frequency 0.45571 0.45571 0.04931 0.28364	0.04589 P-value 0.00018 0.00018 0.00147 0.00290	1.00000 Corrected P-value 0.00509 0.00509 0.04263 0.08410	Irp1,igd4, Gene(s) Irp1,igr4,igd4,firt2,foxred2,tuba3a,tmem98,cntn6,frmd4a,myo1d,zfp36i2, Irp1,igr4,igd4,firt2,foxred2,tuba3a,tmem98,cntn6,frmd4a,myo1d,zfp36i2, tuba3a,frmd4a,myo1d,zfp36i2, tuba3a,frmd4a,myo1d,zfp36i2, tuba3a,frmd4a,myo1d,zfp36i2,
G0:0032268 Cellular Component G0:0005623 G0:0044464 G0:0005856 G0:0043229 G0:0043229	regulation of cellular protein metabolic process GO_term cell cell part cytosketon intracellular organelle organelle	0.18182 Frequency 1.00000 0.36364 0.72727 0.72727	0.03178 Genome frequency 0.45571 0.45571 0.04931 0.28364 0.28429	0.04589 P-value 0.00018 0.00018 0.00147 0.00290 0.00295	1.00000 Corrected P-value 0.00509 0.00509 0.04263 0.08410 0.08545	Irp1.jgd4, Gene(s) Irp1.jgr4, fgd4, flrt2,foxred2, tuba3a, tmem98, cntn6, frmd4a, myo1d, zfp36l2, Irp1.gr4, fgd4, flrt2,foxred2, tuba3a, tmem98, cntn6, frmd4a, myo1d, zfp36l2, tuba3a, fmd4a, myo1d, gd4, tmem98, tuba3a, foxred2, fmd4a, myo1d, urp1, fgd4, zfp36l2, tmem98, tuba3a, foxred2, fmd4a, myo1d, urp1, fgd4, zfp36l2, tmem98, tuba3a, foxred2, fmd4a, myo14, urp1, fgd4, zfp36l2,
G0:0032268 Cellular Component G0:0005623 G0:0044464 G0:005886 G0:0043229 G0:0043226 G0:0045828	regulation of cellular protein metabolic process GO_term cell cell part cytoskeleton intracellular organelle organelle artin cytoskeleton	0.18182 Frequency 1.00000 1.00000 0.36364 0.72727 0.72727 0.18182	0.03178 Genome frequency 0.45571 0.45571 0.04931 0.28364 0.28429 0.00556	0.04589 P-value 0.00018 0.00018 0.00147 0.00290 0.00295 0.00473	1.00000 Corrected P-value 0.00509 0.00509 0.04263 0.08410 0.08545 0.13716	Irp1,igd4, Gene(s) Irp1,igr4,igd4,firt2,foxred2,tuba3a,tmem98,cntn6,frmd4a,myo1d,zfp36i2, Irp1,igr4,igd4,firt2,foxred2,tuba3a,tmem98,cntn6,frmd4a,myo1d,zfp36i2, tuba3a,ifmd4a,myo1d,igd4, tmem98,tuba3a,foxred2,frmd4a,myo1d,irp1,igd4,zfp36i2, tmem98,tuba3a,foxred2,frmd4a,myo1d,irp1,igd4,zfp36i2, tmem98,tuba3a,foxred2,frmd4a,myo1d,irp1,igd4,zfp36i2,
G0:0032268 Cellular G0:0005623 G0:004464 G0:0005856 G0:0043229 G0:0043229 G0:0043226 G0:0015629 G0:0005737	regulation of cellular protein metabolic process GO_term cell cell part cytoskeleton intracellular organelle organelle actin cytoskeleton cutoniasm	0.18182 Frequency 1.00000 0.36364 0.72727 0.72727 0.18182 0.63636	0.03178 Genome frequency 0.45571 0.45571 0.04931 0.28364 0.28429 0.00956 0.24674	0.04589 P-value 0.00018 0.00147 0.00290 0.00295 0.00473 0.00699	1.00000 Corrected P-value 0.00509 0.04263 0.08410 0.08545 0.13716 0.0268	Irp1.jgd4, Gene(s) Irp1.jgr4, jgd4, firt2, foxred2, tuba3a, tmem98, cntn6, frmd4a, myo1d, z/p36i2, Irp1.jgr4, jgd4, firt2, foxred2, tuba3a, tmem98, cntn6, frmd4a, myo1d, z/p36i2, tuba3a, frmd4a, myo1d, jgd4, tmem98, tuba3a, foxred2, frmd4a, myo1d, irp1, jgd4, z/p36i2, myo1d, fgd4, mom98, tuba3a, foxred2, frmd4a, myo1d, irp1, jgd4, z/p36i2, myo1d, fgd4,
G0:0032268 Cellular Component G0:005623 G0:0043464 G0:0005856 G0:0043229 G0:0043226 G0:0015629 G0:0015629 G0:0002995	regulation of cellular protein metabolic process GO_term cell part cytoskeleton intracellular organelle organelle actin cytoskeleton cytoplasm cell projection	0.18182 Frequency 1.00000 1.00000 0.36364 0.72727 0.72727 0.18182 0.63636 0.27273	0.03178 Genome frequency 0.45571 0.45571 0.04931 0.28364 0.28429 0.09566 0.24674 0.03843	0.04589 P-value 0.00018 0.00147 0.00290 0.00295 0.00473 0.00699 0.00741	1.00000 Corrected P-value 0.00509 0.04263 0.08410 0.08545 0.13716 0.20268 0.21499	Irp1,igd4, Gene(s) Irp1,igr4,igd4,ifrt2,foxred2,tuba3a,tmem98,cntn6,frmd4a,myo1d,ztp36i2, Irp1,igr4,igd4,ifrt2,foxred2,tuba3a,tmem98,cntn6,frmd4a,myo1d,ztp36i2, tuba3a,fmd4a,myo1d,igd4, tmem98,tuba3a,foxred2,frmd4a,myo1d,irp1,igd4,ztp36i2, tmem98,tuba3a,foxred2,frmd4a,myo1d,irp1,igd4,ztp36i2, tmem98,tuba3a,foxred2,frmd4a,irp1,igd4,ztp36i2, tmem98,tuba3a,foxred2,frmd4a,irp1,igd4,ztp36i2,
G0:0032268 Cellular G0:0005623 G0:0044464 G0:005856 G0:0043229 G0:0043229 G0:0043229 G0:0005737 G0:0042995 G0:0044424	regulation of cellular protein metabolic process GO_term cell cell part cytoskeleton intracellular organelle actin cytoskeleton cytoplasm cell projection intracellular and	0.18182 Frequency 1.00000 0.36364 0.72727 0.72727 0.18182 0.63636 0.27273 0.72727	0.03178 Genome frequency 0.45571 0.45571 0.45571 0.24364 0.28364 0.28429 0.00956 0.24674 0.32598	0.04589 P-value 0.00018 0.00018 0.00147 0.00295 0.00295 0.00473 0.00699 0.00741 0.00758	1.00000 Corrected P-value 0.00509 0.04263 0.08410 0.08545 0.13716 0.20268 0.21489 0.21489 0.214974	Irp1,igd4, Gene(s) Irp1,igr4,igd4,firt2,foxred2,tuba3a,tmem98,cntn6,frmd4a,myo1d,zfp36i2, Irp1,igr4,igd4,firt2,foxred2,tuba3a,tmem98,cntn6,frmd4a,myo1d,zfp36i2, tuba3a,ifmd4a,myo1d,igd4, tmem98,tuba3a,foxred2,frmd4a,myo1d,irp1,igd4,zfp36i2, tmem98,tuba3a,foxred2,frmd4a,myo1d,irp1,igd4,zfp36i2, tmem98,tuba3a,foxred2,frmd4a,myo1d,irp1,igd4,zfp36i2, tmem98,tuba3a,foxred2,frmd4a,myo1d,irp1,igd4,zfp36i2, tuba3a,irp1,igd4, tmem98,tuba3a,foxred2,frmd4a,myo1d,irp1,igd4,zfp36i2, tuba3a,irp1,igd4, tuba3a,irp1,igd4, tuba3a,irp1,igd4,
G0:0032268 Cellular Component G0:0005623 G0:0044464 G0:0043229 G0:0043226 G0:0043226 G0:0015627 G0:0056737 G0:0042995 G0:0005622	regulation of cellular protein metabolic process GO_term cell cell part cytoskeleton intracellular organelle actin cytoskeleton cytoplasm cytoplasm cell projection intracellular	0.18182 Frequency 1.00000 0.36364 0.72727 0.72727 0.18182 0.63636 0.27273 0.72727 0.72727	0.03178 Genome frequency 0.45571 0.45571 0.4931 0.28364 0.28429 0.00956 0.24674 0.03843 0.32598 0.33316	0.04589 P-value 0.00018 0.00018 0.00147 0.00295 0.00295 0.00473 0.00699 0.00741 0.00758 0.00788	1.00000 Corrected P-value 0.00509 0.04263 0.08410 0.08545 0.13716 0.20268 0.21489 0.21974 0.25468	Irp1,Igd4, Gene(s) Irp1,Igr4, Igd4, Ifr12, foxred2, tuba3a, tmem98, cntn6, frmd4a, myo1d, zfp36i2, Irp1,Igr4, Igd4, Ifr12, foxred2, tuba3a, tmem98, cntn6, frmd4a, myo1d, zfp36i2, tuba3a, Irm44a, myo1d, Irp1, Igd4, zfp36i2, tmem98, tuba3a, foxred2, frmd4a, myo1d, Irp1, Igd4, zfp36i2, myo1d, Igd4, tmem98, tuba3a, foxred2, frmd4a, myo1d, Irp1, Igd4, zfp36i2, tmem98, tuba3a, foxred2, frmd4a, Irp1, Igd4, zfp36i2, tuba3a, Irp1, Igd4, tmem98, tuba3a, foxred2, frmd4a, myo1d, Irp1, Igd4, zfp36i2,
G0:0032268 Cellular Component G0:0005623 G0:0044464 G0:0043229 G0:0043229 G0:0043229 G0:0043229 G0:00442995 G0:0044424 G0:0005622 G0:0044424	regulation of cellular protein metabolic process GO_term cell cell part cytoskeleton intracellular organelle organelle actin cytoskeleton cytoplasm cell projection intracellular part intracellular part intracellular part	0.18182 Frequency 1.00000 0.36364 0.72727 0.18182 0.63636 0.27273 0.72727 0.72727 0.36364	0.03178 Genome frequency 0.45571 0.45571 0.45571 0.28364 0.28429 0.00956 0.24674 0.03243 0.32598 0.33316 0.08312	0.04589 P-value 0.00018 0.00147 0.00290 0.00295 0.00473 0.00699 0.00741 0.00758 0.00878 0.00878	1.00000 Corrected P-value 0.00509 0.04263 0.08410 0.08545 0.13716 0.20268 0.21489 0.21974 0.25468 0.25468 0.25468	Irp1.jgd4, Gene(s) Irp1.jgr4, fgd4, flrt2, foxred2, tuba3a, tmem98, cntn6, frmd4a, myo1d, ztp36i2, Irp1.gr4, fgd4, flrt2, foxred2, tuba3a, tmem98, cntn6, frmd4a, myo1d, ztp36i2, tuba3a, fmd4a, myo1d, fgd4, tmem98, tuba3a, foxred2, frmd4a, myo1d, lrp1, fgd4, ztp36i2, tmem98, tuba3a, foxred2, frmd4a, myo1d, lrp1, fgd4, ztp36i2, tmem98, tuba3a, foxred2, frmd4a, myo1d, lrp1, fgd4, ztp36i2, tuba3a, indred2, frmd4a, myo1d, lrp1, fgd4, ztp36i2, tuba3a, indred2, frmd4a, lrp1, fgd4, ztp36i2, tuba3a, indred2, frmd4a, myo1d, lrp1, fgd4, ztp36i2, tuba3a, ioxred2, frmd4a, myo1d, lrp1, fgd4, ztp36i2,
G0:0032268 Cellular Component G0:0005623 G0:004464 G0:0005856 G0:0043229 G0:0043226 G0:0015629 G0:0043228 G0:0043292 G0:0043292 G0:0043292	regulation of cellular protein metabolic process GO_term cell cell part cytoskeleton intracellular organelle organelle actin cytoskeleton cytoplasm cell projection intracellular promembrane-bounded organelle intracellular	0.18182 Frequency 1.00000 1.00000 0.36364 0.72727 0.72727 0.72727 0.72727 0.72727 0.72727 0.72727 0.72727 0.72727 0.72727 0.72727 0.72727 0.72727 0.72727	0.03178 Genome frequency 0.45571 0.45571 0.445571 0.44931 0.28364 0.28429 0.00956 0.24674 0.30343 0.32598 0.33316 0.68312	0.04589 P-value 0.00018 0.00018 0.00147 0.00290 0.00295 0.00473 0.00699 0.00741 0.00758 0.00878 0.00976	1.00000 Corrected P-value 0.00509 0.04263 0.08545 0.13716 0.20268 0.21489 0.21489 0.21489 0.21489 0.21483 0.22468 0.28310	Irp1,fgd4, Gene(s) Irp1,lgr4,fgd4,flrt2,foxred2,tuba3a,tmem98,cntn6,frmd4a,myo1d,zfp36l2, Irp1,lgr4,fgd4,flrt2,foxred2,tuba3a,tmem98,cntn6,frmd4a,myo1d,zfp36l2, tuba3a,frmd4a,myo1d,lgr4, tmem98,tuba3a,foxred2,frmd4a,myo1d,lrp1,fgd4,zfp36l2, myo1d,fgd4, mem98,tuba3a,foxred2,frmd4a,myo1d,lrp1,fgd4,zfp36l2, tuba3a,lrp1,fgd4, mem98,tuba3a,foxred2,frmd4a,myo1d,lrp1,fgd4,zfp36l2, tuba3a,lrp1,fgd4, tuba3a,lrp1,fgd4, tuba3a,lrp1,fgd4, tuba3a,lrp1,fgd4, tuba3a,lrp1,fgd4, tuba3a,lrm44,myo1d,lrp1,fgd4,zfp36l2, tuba3a,lrm44a,myo1d,fpd4, tuba3a,lrm44a,myo1d,fpd4, tuba3a,lrm44a,myo1d,fpd4, tuba3a,lrm44a,myo1d,fpd4,
GO:0032268 Cellular Component GO:0005823 GO:0005856 GO:004464 GO:0043229 GO:0043226 GO:0044295 GO:0044295 GO:0044226 GO:004426 GO:004426 GO:004426 GO:004426 GO:004426 GO:004426 GO:004426 GO:004426 GO:0044426 GO:0044426 <th>regulation of cellular protein metabolic process Cell Cell Cell Cell Cell Cell Cell</th> <th>0.18182 Frequency 1.00000 0.36364 0.72727 0.72727 0.72727 0.83636 0.27273 0.72727 0.36364 0.36384 0.54545</th> <th>0.03178 Genome frequency 0.45571 0.45571 0.28364 0.28429 0.00956 0.24674 0.03843 0.32598 0.33316 0.08312 0.08312 0.19388</th> <th>0.04589 P-value 0.00018 0.0018 0.00147 0.00295 0.00473 0.00699 0.00741 0.00758 0.00976 0.00976 0.00976</th> <th>1.00000 Corrected P-value 0.00509 0.04263 0.08410 0.08455 0.13716 0.2189 0.21489 0.21974 0.25468 0.28310 0.33238</th> <th>Irp1.fgd4, Gene(s) Irp1.lgr4, fgd4, flrt2, foxred2, tuba3a, tmem98, cntn6, frmd4a, myo1d, zfp36l2, Irp1.lgr4, fgd4, flrt2, foxred2, tuba3a, tmem98, cntn6, frmd4a, myo1d, zfp36l2, tuba3a, fmd4a, myo1d, fgd4, myo1d, irp1, fgd4, zfp36l2, tmem98, tuba3a, foxred2, frmd4a, myo1d, irp1, fgd4, zfp36l2, tuba3a, irp1, fgd4, tuba3a, foxred2, frmd4a, myo1d, irp1, fgd4, zfp36l2, tuba3a, frm44a, myo1d, fgd4, tuba3a, frm44a, myo1d, fgd4, tuba3a, frm44a, myo1d, fgd4, tuba3a, frm44a, myo1d, fgd4, tuba3a, frm44a, myo1d, irgd4, tuba3a, frm44a, myo1, irgd4, tuba3a, frm4a, myo1, irgd4, tuba3a,</th>	regulation of cellular protein metabolic process Cell Cell Cell Cell Cell Cell Cell	0.18182 Frequency 1.00000 0.36364 0.72727 0.72727 0.72727 0.83636 0.27273 0.72727 0.36364 0.36384 0.54545	0.03178 Genome frequency 0.45571 0.45571 0.28364 0.28429 0.00956 0.24674 0.03843 0.32598 0.33316 0.08312 0.08312 0.19388	0.04589 P-value 0.00018 0.0018 0.00147 0.00295 0.00473 0.00699 0.00741 0.00758 0.00976 0.00976 0.00976	1.00000 Corrected P-value 0.00509 0.04263 0.08410 0.08455 0.13716 0.2189 0.21489 0.21974 0.25468 0.28310 0.33238	Irp1.fgd4, Gene(s) Irp1.lgr4, fgd4, flrt2, foxred2, tuba3a, tmem98, cntn6, frmd4a, myo1d, zfp36l2, Irp1.lgr4, fgd4, flrt2, foxred2, tuba3a, tmem98, cntn6, frmd4a, myo1d, zfp36l2, tuba3a, fmd4a, myo1d, fgd4, myo1d, irp1, fgd4, zfp36l2, tmem98, tuba3a, foxred2, frmd4a, myo1d, irp1, fgd4, zfp36l2, tuba3a, irp1, fgd4, tuba3a, foxred2, frmd4a, myo1d, irp1, fgd4, zfp36l2, tuba3a, frm44a, myo1d, fgd4, tuba3a, frm44a, myo1d, fgd4, tuba3a, frm44a, myo1d, fgd4, tuba3a, frm44a, myo1d, fgd4, tuba3a, frm44a, myo1d, irgd4, tuba3a, frm44a, myo1, irgd4, tuba3a, frm4a, myo1, irgd4, tuba3a,
GO:0032268 Cellular Component GO:0005623 GO:004464 GO:004464 GO:0043229 GO:0043229 GO:0043229 GO:0043229 GO:0043229 GO:0043229 GO:004424 GO:0042955 GO:004422 GO:004422 GO:004422 GO:004422 GO:0043228 GO:004322 GO:004422 GO:0043232 GO:0044232 GO:0044232 GO:0044232 GO:0044253 GO:0044254 GO:0045856 GO:0045856 GO:0045856 GO:0045856 GO:00458686 GO:00458686 </th <th>regulation of cellular protein metabolic process GO_term cell cell part cytoskeleton intracellular organelle organelle actin cytoskeleton cytoplasm cell projection intracellular part intracellular part intracellular non-membrane-bounded organelle membrane part plasma membrane</th> <th>0.18182 Frequency 1.00000 0.36364 0.72727 0.72727 0.18182 0.63636 0.27273 0.72727 0.72727 0.72727 0.72727 0.72727 0.36364 0.36364 0.36364</th> <th>0.03178 Genome frequency 0.45571 0.45571 0.45571 0.28364 0.28364 0.28429 0.00956 0.24674 0.03843 0.32598 0.33316 0.08312 0.08312 0.08312 0.19338 0.11270</th> <th>0.04589 P-value 0.00018 0.00147 0.00290 0.00295 0.00473 0.00699 0.00758 0.00878 0.00878 0.00976 0.00976 0.00976</th> <th>1.00000 Corrected P-value 0.00509 0.04263 0.08445 0.08445 0.20268 0.21489 0.21974 0.25468 0.28310 0.38238 0.8325</th> <th>Irp1.jgd4, Gene(s) Irp1.jgr4, fgd4, flrt2, foxred2, tuba3a, tmem98, cntn6, frmd4a, myo1d, zfp36i2, Irp1.gr4, fgd4, flrt2, foxred2, tuba3a, tmem98, cntn6, frmd4a, myo1d, zfp36i2, tuba3a, fmd4a, myo1d, fgd4, tmem98, tuba3a, foxred2, frmd4a, myo1d, irp1, fgd4, zfp36i2, tmem98, tuba3a, foxred2, frmd4a, myo1d, irp1, fgd4, zfp36i2, tmem98, tuba3a, foxred2, frmd4a, myo1d, irp1, fgd4, zfp36i2, tuba3a, fmd4a, myo1d, irp1, fgd4, zfp36i2, tuba3a, foxred2, frmd4a, myo1d, irp1, igd4, irp1, irp1, irp1, irp1, irp1, irp1, irp1, irp1,</th>	regulation of cellular protein metabolic process GO_term cell cell part cytoskeleton intracellular organelle organelle actin cytoskeleton cytoplasm cell projection intracellular part intracellular part intracellular non-membrane-bounded organelle membrane part plasma membrane	0.18182 Frequency 1.00000 0.36364 0.72727 0.72727 0.18182 0.63636 0.27273 0.72727 0.72727 0.72727 0.72727 0.72727 0.36364 0.36364 0.36364	0.03178 Genome frequency 0.45571 0.45571 0.45571 0.28364 0.28364 0.28429 0.00956 0.24674 0.03843 0.32598 0.33316 0.08312 0.08312 0.08312 0.19338 0.11270	0.04589 P-value 0.00018 0.00147 0.00290 0.00295 0.00473 0.00699 0.00758 0.00878 0.00878 0.00976 0.00976 0.00976	1.00000 Corrected P-value 0.00509 0.04263 0.08445 0.08445 0.20268 0.21489 0.21974 0.25468 0.28310 0.38238 0.8325	Irp1.jgd4, Gene(s) Irp1.jgr4, fgd4, flrt2, foxred2, tuba3a, tmem98, cntn6, frmd4a, myo1d, zfp36i2, Irp1.gr4, fgd4, flrt2, foxred2, tuba3a, tmem98, cntn6, frmd4a, myo1d, zfp36i2, tuba3a, fmd4a, myo1d, fgd4, tmem98, tuba3a, foxred2, frmd4a, myo1d, irp1, fgd4, zfp36i2, tmem98, tuba3a, foxred2, frmd4a, myo1d, irp1, fgd4, zfp36i2, tmem98, tuba3a, foxred2, frmd4a, myo1d, irp1, fgd4, zfp36i2, tuba3a, fmd4a, myo1d, irp1, fgd4, zfp36i2, tuba3a, foxred2, frmd4a, myo1d, irp1, igd4, irp1, irp1, irp1, irp1, irp1, irp1, irp1, irp1,
GO:0032268 Cellular Component GO:0005823 GO:0044464 GO:0043229 GO:0043226 GO:0043226 GO:0044298 GO:0044298 GO:0044298 GO:0044228 GO:0044228 GO:0044228 GO:0043228 GO:0043228 GO:0043238 GO:0031824	regulation of cellular protein metabolic process Cell cell cell cytoskeleton intracellular organelle organelle actin cytoskeleton cytoplasm cell projection intracellular non-membrane-bounded organelle intracellular non-membrane	0.18182 Frequency 1.00000 0.36364 0.72727 0.72727 0.736364 0.63636 0.27273 0.72727 0.72727 0.36364 0.36364 0.36364 0.545455	0.03178 Genome frequency 0.45571 0.45571 0.28364 0.28364 0.28429 0.00956 0.24674 0.33243 0.32598 0.33316 0.08312 0.08312 0.19938 0.11270 0.17183	0.04589 P-value 0.00018 0.0018 0.00147 0.00290 0.00295 0.00473 0.00699 0.00741 0.00758 0.00976 0.00976 0.00976 0.00976 0.00976	1.00000 Corrected P-value 0.00509 0.04263 0.08410 0.08455 0.13716 0.20268 0.21489 0.21974 0.25468 0.28310 0.28310 0.33238 0.80325 0.80330	Irp1.fgd4, Gene(s) Irp1.lgr4, fgd4, flrt2, foxred2, tuba3a, tmem98, cntn6, frmd4a, myo1d, ztp36i2, Irp1.lgr4, fgd4, flrt2, foxred2, tuba3a, tmem98, cntn6, frmd4a, myo1d, ztp36i2, tuba3a, fmd4a, myo1d, lrp1, fgd4, ztp36i2, tmem98, tuba3a, foxred2, frmd4a, myo1d, lrp1, fgd4, ztp36i2, tuba3a, frm4a, myo1d, fgd4, tmem98, tuba3a, foxred2, frmd4a, myo1d, lrp1, fgd4, ztp36i2, tuba3a, frmd4a, myo1d, fgd4, trm2, cntn6, frmd4a, lrp1, fgr4, trd2, cntn6, frmd4a, lrp1, fgr4,
GO:0032268 Cellular Component GO:0005623 GO:0005656 GO:004464 GO:004482 GO:0043226 GO:0043226 GO:0043226 GO:0043226 GO:0043226 GO:0044295 GO:0044295 GO:0044424 GO:0044225 GO:0044222 GO:0044222 GO:0044222 GO:0044222 GO:0044222 GO:0044225 GO:0043228 GO:0043228 GO:0043228 GO:0043228 GO:0044225 GO:0043228 GO:0043228 GO:0043228 GO:004328 GO:001284 GO:0017184	regulation of cellular protein metabolic process Cell Cell part Cytoskeleton intracellular organelle organelle actin cytoskeleton cytoplasm cell projection intracellular part intracellular part intracellular non-membrane-bounded organelle membrane part plasma membrane intrinsic to membrane cell periotery	0.18182 Frequency 1.00000 1.00000 0.36384 0.72727 0.72727 0.72727 0.72727 0.72727 0.72727 0.72727 0.72727 0.36384 0.36384 0.36384 0.36384 0.36384	0.03178 Genome frequency 0.45571 0.45571 0.45571 0.28364 0.28429 0.00956 0.24674 0.0324674 0.032598 0.33316 0.08312 0.08312 0.08312 0.19938 0.11270 0.17183	0.04589 P-value 0.00018 0.0018 0.00147 0.00290 0.00290 0.00290 0.00689 0.00741 0.00758 0.00976 0.00976 0.00976 0.009770 0.02770 0.02770	1.00000 Corrected P-value 0.00509 0.04263 0.08410 0.08545 0.13716 0.20268 0.21489 0.21974 0.25468 0.28310 0.38230 0.38238 0.80325 0.80330 0.86246	Irp1.jgd4, Gene(s) Irp1.jgr4, fgd4, firt2, foxred2, tuba3a, tmem98, cntn6, frmd4a, myo1d, zfp36i2, Irp1.gr4, fgd4, firt2, foxred2, tuba3a, tmem98, cntn6, frmd4a, myo1d, zfp36i2, tmem98, tuba3a, foxred2, frmd4a, myo1d, Irp1, fgd4, zfp36i2, tmem98, tuba3a, foxred2, frmd4a, myo1d, Irp1, fgd4, zfp36i2, tuba3a, frmd4a, myo1d, fgd4, tuba3a, frmd4a, myo1d,
GO:0032268 Cellular Component GO:0005623 GO:0044464 GO:0043226 GO:0043226 GO:0043226 GO:0043226 GO:0044295 GO:0044295 GO:0044228 GO:0044228 GO:0044228 GO:0044228 GO:004422 GO:0044225 GO:0044225 GO:0044225 GO:0044226 GO:0044228 GO:0044228 GO:0044224 GO:0043228 GO:0044224 GO:0013224 GO:001224 GO:001522 GO:001522 GO:001522 GO:001522 GO:001522	regulation of cellular protein metabolic process GO_term cell cell part cytoskeleton intracellular organelle organelle actin cytoskeleton cytoplasm cytoplasm cytoplasm cortentialular part intracellular non-membrane-bounded organelle intracellular intracellular membrane part plasma membrane intrinsic to membrane cell perjohery membrane part	0.18182 Frequency 1.00000 1.00000 0.36364 0.72727 0.18182 0.636364 0.27273 0.72727 0.36364 0.27273 0.72727 0.36364 0.36364 0.36364 0.36364 0.45455 0.36364 0.54545	0.03178 Genome frequency 0.45571 0.45571 0.28364 0.28464 0.28462 0.28674 0.03843 0.32598 0.33316 0.08312 0.08312 0.19938 0.117183 0.11514 0.24277	0.04589 P-value 0.00018 0.0017 0.00290 0.00295 0.00741 0.00976 0.00976 0.00976 0.00976 0.00976 0.00976 0.00977 0.01146 0.02770 0.02774 0.02974 0.02974	1.00000 Corrected P-value 0.00509 0.04263 0.08410 0.08545 0.21268 0.21489 0.21974 0.25468 0.28310 0.28310 0.28310 0.33238 0.80325 0.80325 0.80326	Irp1.fgd4, Gene(s) Irp1.lgr4.fgd4,flrt2,foxred2,tuba3a,tmem98,cntn6,frmd4a,myo1d,zfp36l2, Irp1.lgr4,fgd4,flrt2,foxred2,tuba3a,tmem98,cntn6,frmd4a,myo1d,zfp36l2, tuba3a,fmd4a,myo1d,lgd4, tmem98,tuba3a,foxred2,trmd4a,myo1d,lrp1,fgd4,zfp36l2, mmo18,tuba3a,foxred2,trmd4a,myo1d,lrp1,fgd4,zfp36l2, mmo18,tuba3a,foxred2,frmd4a,myo1d,lrp1,fgd4,zfp36l2, tuba3a,irp1,fgd4, tuba3a,irp1,igd4, tuba3a,irp1,igd4, tuba3a,irp1,igd4, tuba3a,irp1,igd4, tuba3a,irp1,igd4, tuba3a,irp1,igd4, tuba3a,irmd4a,myo1d,igd4, tuba3a,irm4a,my01d,igd4, tuba3a,irm4a,my01d,igd4, tuba3a,irm4a,my01d,igd4, tuba3a,irm4a,my01d,igd4, tuba3a,irm4a,my01d,igd4, tuba3a,i
GO:0032268 Cellular Component GO:0005823 GO:004483 GO:0043229 GO:0043229 GO:0044295 GO:0044295 GO:0044295 GO:0044228 GO:0044228 GO:0044228 GO:0044228 GO:0044228 GO:0043228 GO:0005886 GO:0005886 GO:0005886 GO:0005886 GO:0005886 GO:0005886 GO:0005886 GO:0005783	regulation of cellular protein metabolic process cell cell coll cell cytoskeleton intracellular organelle organelle actin cytoskeleton cytoskeleton cytoplasm coll projection intracellular part intracellular non-membrane-bounded organelle intracellular plasm amembrane plasm amembrane cell projecty membrane endoplasmic reticulum	0.18182 Frequency 1.00000 1.00000 0.36364 0.72727 0.18182 0.63636 0.27273 0.72727 0.72727 0.72727 0.72727 0.72727 0.72727 0.72727 0.72727 0.36364 0.54545 0.36364 0.45455 0.36364 0.45455 0.36364 0.45455 0.36364 0.54545 0.36364 0.54545 0.36364 0.54545 0.36364 0.54545 0.36364 0.54545 0.36364 0.54545 0.36364 0.54545 0.36364 0.54545 0.36364 0.54545 0.36364 0.54545 0.36364 0.54545 0.36364 0.54545 0.36364 0.54545 0.36364 0.54545 0.36364 0.54545 0.36364 0.54545 0.36364 0.54545 0.36364 0.54545 0.36364 0.54545 0.36364 0.45455 0.36364 0.54545 0.36364 0.54545 0.36364 0.54545 0.36364 0.45455 0.36364 0.54545 0.36364 0.45455 0.36364 0.54545 0.36364 0.54545 0.36364 0.54545 0.36364 0.54545 0.36364 0.54545 0.36364 0.54545 0.36364 0.54545 0.36364 0.54545 0.36364 0.54545 0.36364 0.54545 0.36364 0.54545 0.36364 0.54545 0.36364 0.54545 0.36364 0.54545 0.36364 0.54545 0.36364 0.54545 0.36364 0.54545 0.36364 0.54545 0.36364 0.5455 0.36364 0.5455 0.36364 0.5455 0.36364 0.5455 0.36364 0.5455 0.36364 0.5455 0.36364 0.5455 0.36364 0.36364 0.5455 0.36364 0.5455 0.36364 0.36366 0.36566 0.36566 0.36566 0	0.03178 Genome frequency 0.45571 0.45571 0.28364 0.28462 0.00956 0.24674 0.03843 0.33316 0.08312 0.08312 0.08312 0.11933 0.11514 0.24277 0.03299	0.04589 P-value 0.00018 0.00018 0.00147 0.00290 0.00295 0.00295 0.00273 0.00295 0.00778 0.00778 0.00776 0.00776 0.00976 0.00976 0.00976 0.00976 0.00176 0.002770 0.02770 0.02774 0.02274 0.02288 0.042888 0.04988 0.04998 0.04999 0.04999 0.04999 0.04999 0.04999 0.0274 0.02274 0.02274 0.02284 0.04999 0.04999 0.04999 0.0274 0.0274 0.02274 0.02274 0.02274 0.02288 0.04999 0.04999 0.04999 0.0274 0.0274 0.0274 0.0274 0.0274 0.0274 0.0274 0.0274 0.0274 0.0274 0.0274 0.0274 0.0274 0.0274 0.0274 0.0274 0.0274 0.0274 0.02770 0.02770 0.02770 0.02770 0.02770 0.02774 0.02770 0.02774 0.02770 0.02774 0.02770 0.02774 0.02770 0.02774 0.02770 0.02774 0.02770 0.02774 0.02770 0.02774 0.02774 0.02770 0.02774 0.02775 0.02	1.00000 Corrected P-value 0.00509 0.04263 0.08410 0.0845 0.212489 0.21489 0.21974 0.25468 0.28310 0.28310 0.33238 0.80325 0.80330 0.86663 1.00000	Irp1.fgd4, Gene(s) Irp1.lgr4.fgd4,flrt2,foxed2,tuba3a,tmem98,cntn6,frmd4a,myo1d,zfp36i2, Irp1.lgr4,fgd4,flrt2,foxed2,tuba3a,tmem98,cntn6,frmd4a,myo1d,zfp36i2, tmem98,tuba3a,foxed2,frmd4a,myo1d,Irp1,fgd4,zfp36i2, tmem98,tuba3a,foxed2,frmd4a,myo1d,Irp1,fgd4,zfp36i2, tmem98,tuba3a,foxed2,frmd4a,myo1d,Irp1,fgd4,zfp36i2, tmem98,tuba3a,foxed2,frmd4a,myo1d,Irp1,fgd4,zfp36i2, tmem98,tuba3a,foxed2,frmd4a,myo1d,Irp1,fgd4,zfp36i2, tmem98,tuba3a,foxed2,frmd4a,myo1d,Irp1,fgd4,zfp36i2, tuba3a,frmd4a,myo1d,Irp1,fgd4,zfp36i2, tuba3a,frmd4a,myo1d,Irp4, frt2,cntn6,frmd4a,Irp1,Igr4, frt2,cntn6,frm4a,Irp1,Igr4, frt2,cntn6,frm4a,Irp1,Igr4, frt2,cntn6,frm4a,Irp1,Igr4, frt2,cntn6,frm4a,Ir
GO:0032268 Cellular Component GO:0005823 GO:004483 GO:0043229 GO:0043229 GO:0044295 GO:0044295 GO:0044295 GO:0044295 GO:0044228 GO:0044228 GO:0044224 GO:0044226 GO:0043228 GO:0044224 GO:0043228 GO:0043228 GO:0043228 GO:0043228 GO:0043228 GO:0043228 GO:0043228 GO:0043228 GO:0005826 GO:0005826 GO:0005827 GO:0005828 GO:0005886 GO:0005886 GO:0005783 Molecular	regulation of cellular protein metabolic process cell cell cell cell coll cell coll col	0.18182 Frequency 1.00000 1.00000 0.36364 0.72727 0.18182 0.63636 0.27273 0.72727 0.7277 0.7277 0.7277 0.7277 0.7277 0.7277 0.72777 0.7277 0.7277 0.72777 0.72777 0.72777 0.72777 0.72777	0.03178 Genome frequency 0.45571 0.45571 0.28364 0.28462 0.00956 0.24674 0.03843 0.32316 0.08312 0.08312 0.08312 0.08312 0.11514 0.11514 0.24277 0.03299 Genome	0.04589 P-value 0.00018 0.00018 0.00147 0.00290 0.00295 0.00295 0.00273 0.00295 0.00761 0.00778 0.00776 0.00776 0.00976 0.00976 0.00976 0.00976 0.00976 0.00146 0.02770 0.02770 0.0274 0.02988 0.042988 0.04299 P-value	1.00000 Corrected P-value 0.00509 0.04263 0.08410 0.08545 0.21489 0.21489 0.21489 0.21489 0.21489 0.21848 0.28310 0.28310 0.33238 0.80325 0.80330 0.86663 1.00000 Corrected P-value	Irp1.jgd4, Gene(s) Irp1.jgr4, Igd4, Ifr2, foxed2, tuba3a, tmem98, cntn6, frmd4a, myo1d, zlp36i2, Irp1.igr4, Igd4, Ifr2, foxed2, tuba3a, tmem98, cntn6, frmd4a, myo1d, zlp36i2, tmem98, tuba3a, Ioxed2, frmd4a, myo1d, Irp1, Igd4, zlp36i2, tmem98, tuba3a, Ioxed2, frmd4a, myo1d, Irp1, Igd4, zlp36i2, tuba3a, Irmd4a, myo1d, Igd4, tuba3a, Irmd4a, myo1d, Igd4, tuba3a, Irmd4a, Irp1, Igr4, trl2, cntn6, Irmed98, Irm4a, Irp1, Igr4, trl2, cntn6, Irmed98, Irp1, Igr4,
GO:0032268 Cellular Component GO:0005823 GO:0005856 GO:004464 GO:0043229 GO:0043226 GO:004464 GO:0043226 GO:0043226 GO:0043226 GO:0044225 GO:0044225 GO:0044225 GO:0043226 GO:0043226 GO:0043226 GO:0043226 GO:0044225 GO:0043226 GO:0043226 GO:0043226 GO:0043226 GO:0043226 GO:0044225 GO:001622 GO:0016020 GO:0016020 GO:0005783 Molecular Function	regulation of cellular protein metabolic process Cell Cell act Cell Cell Cell Cell Cel Cel Cel Cel Cel	0.18182 Frequency 1.00000 1.00000 0.36384 0.72727 0.72727 0.72727 0.72727 0.36364 0.36364 0.54545 0.36364 0.5455 0.36364 0.555 0.5	0.03178 Genome frequency 0.45571 0.45571 0.45571 0.04931 0.28364 0.28462 0.00956 0.24674 0.03843 0.32598 0.33316 0.08312 0.08312 0.08312 0.11514 0.24277 0.03299 Genome frequency	0.04589 P-value 0.00018 0.00018 0.00147 0.00290 0.00290 0.00295 0.00278 0.00768 0.00976 0.00976 0.00976 0.00976 0.00977 0.00977 0.002770 0.022770 0.022988 0.02298 0.0298 0.0298 0.02988 0.02988 0.02988 0.02988 0.02988 0.0298	1.00000 Corrected P-value 0.00509 0.04263 0.08410 0.08545 0.2189 0.2189 0.21974 0.25468 0.28310 0.33238 0.80325 0.80330 0.80325 0.80330 0.86663 1.00000 Corrected P-value	Irp1.fgd4, Gene(s) Irp1.jgr4, fgd4, flrt2, foxred2, tuba3a, tmem98, critn6, frmd4a, myo1d, zfp3682, Irp1.jgr4, fgd4, flrt2, foxred2, tuba3a, tmem98, critn6, frmd4a, myo1d, zfp3682, tuba3a, fmd4a, myo1d, irp1, fgd4, zfp3682, tmem98, tuba3a, foxred2, frmd4a, myo1d, irp1, fgd4, zfp3682, myo1d, fgd4, tmem98, tuba3a, foxred2, frmd4a, myo1d, irp1, fgd4, zfp3682, tuba3a, irp1, fgd4, tuba3a, foxred2, frmd4a, myo1d, irp1, fgd4, zfp3682, tuba3a, irp1, fgd4, tuba3a, irp1, fgd4, tuba3a, irp1, fgd4, tuba3a, irp1, fgd4, tuba3a, irm24a, irp1, fgd4, tuba3a, irm4a, irp1, fgd4,
GO:0032268 Cellular Component GO:0005623 GO:004464 GO:0045856 GO:0043229 GO:0043228 GO:0043228 GO:0044228 GO:0043228 GO:0044228 GO:0043228 GO:0043228 GO:0044228 GO:0044228 GO:005783 Molecular Function GO:0003779	regulation of cellular protein metabolic process Cell Cell art Cytoskeleton intracellular organelle organelle actin cytoskeleton cytoplasm cell projection intracellular part intracellular pon-membrane-bounded organelle intracellular non-membrane cell projection entorane part entoplasmic reticulum Cel_phery entoplasmic reticulum actin binding	0.18182 Frequency 1.00000 0.36384 0.72727 0.72727 0.72727 0.72727 0.72727 0.72727 0.72727 0.72727 0.36364 0.36364 0.36364 0.36364 0.36364 0.36364 0.54545 0.18182 Frequency 0.18182	0.03178 Genome frequency 0.45571 0.45571 0.45571 0.45571 0.04931 0.28364 0.28364 0.28429 0.00956 0.24674 0.03843 0.032598 0.33316 0.08312 0.08312 0.08312 0.08312 0.08312 0.11270 0.17183 0.11514 0.24277 0.03299 Genome frequency 0.00941	0.04589 P-value 0.00018 0.0014 0.0017 0.00290 0.00295 0.00295 0.00473 0.00699 0.00758 0.00768 0.00768 0.00976 0.00976 0.00976 0.00976 0.00976 0.00976 0.02770 0.022770 0.022770 0.02298 0.04909 P-value 0.00459	1.00000 Corrected P-value 0.00509 0.04263 0.08410 0.08545 0.13716 0.20268 0.21489 0.21489 0.21489 0.21489 0.21474 0.25468 0.28310 0.28310 0.32238 0.80325 0.80330 0.86663 1.00000 Corrected P-value 0.04130	Irp1.jgd4, Gene(s) Irp1.jgr4, fgd4, firt2, foxred2, tuba3a, trnem98, cntn6, frmd4a, myo1d, zfp36i2, Irp1.gr4, fgd4, firt2, foxred2, tuba3a, trnem98, cntn6, frmd4a, myo1d, zfp36i2, tuba3a, fmd4a, myo1d, dyd4, tuba3a, fmd4a, myo1d, igd4, dyd4, tmem98, tuba3a, foxred2, frmd4a, myo1d, irp1, igd4, zfp36i2, trnem98, tuba3a, foxred2, frmd4a, myo1d, irp1, igd4, zfp36i2, tmem98, tuba3a, foxred2, frmd4a, myo1d, irp1, igd4, zfp36i2, tmem98, tuba3a, foxred2, frmd4a, myo1d, irp1, igd4, zfp36i2, tuba3a, irp1, igd4, tmem98, tuba3a, foxred2, frmd4a, myo1d, irp1, igd4, zfp36i2, tuba3a, irp1, igd4, tmem98, tuba3a, foxred2, frmd4a, myo1d, irp1, igd4, zfp36i2, tuba3a, irp1, igd4, tmem98, tuba3a, foxred2, frmd4a, myo1d, irp1, igd4, zfp36i2, tuba3a, irmd4a, myo1d, igd4, tuba3a, irmd4a, myo1d, igd4, tuba3a, irmd4a, myo1d, igd4, trnem98, tib, igr4, trnem98, tib, igr4, trnem98, irmd4a, ipr1, igr4, tre2, cntn6, tmem98,
GO:0032268 Cellular Component GO:0005823 GO:0044464 GO:0043229 GO:0043226 GO:0044298 GO:0044298 GO:0044228 GO:0044228 GO:0044228 GO:0044228 GO:0043228 GO:0043228 GO:004322 GO:004323 GO:004323 GO:004323 GO:004323 GO:004323 GO:000583 Molecular Function GO:0003779 GO:0003778 GO:0003778	regulation of cellular protein metabolic process cell cell cell cytoskeleton intracellular organelle organelle actin cytoskeleton cytoplasm cell projection intracellular non-membrane-bounded organelle intracellular non-membrane-bounded organelle intracellular non-membrane-bounded organelle intracellular non-membrane-bounded organelle intracellular plasma membrane cell projenty membrane endoplasmic reticulum celtn binding cytoskeletal protein binding	0.18182 Frequency 1.00000 1.00000 0.36364 0.72727 0.18182 0.36364 0.27273 0.72727 0.36364 0.27277 0.36364 0.54545 0.36364 0.3182 0.18182 0.18182	0.03178 Genome frequency 0.45571 0.45571 0.45571 0.45571 0.04931 0.28364 0.28429 0.00956 0.24674 0.03843 0.32316 0.08312 0.08312 0.08312 0.08312 0.11514 0.24277 0.17183 0.11514 0.24277 0.03299 Genome frequency 0.00941 0.001729	0.04589 P-value 0.00018 0.00018 0.00147 0.00290 0.00295 0.00295 0.00473 0.00295 0.00741 0.00778 0.00976 0.00976 0.00976 0.00976 0.00976 0.00977 0.02970 0.02974 0.02998 0.04599 P-value 0.04599	1.00000 Corrected P-value 0.00509 0.04263 0.08410 0.08545 0.13716 0.20268 0.21489 0.21874 0.25468 0.28310 0.33238 0.80325 0.80330 0.8663 1.00000 Corrected P-value 0.01330 0.13320	Irp1.fgd4, Gene(s) Irp1.lgr4, fgd4, flrt2, foxred2, tuba3a, tmem98, cntn6, frmd4a, myo1d, zfp36i2, Irp1.lgr4, fgd4, flrt2, foxred2, tuba3a, tmem98, cntn6, frmd4a, myo1d, zfp36i2, tuba3a, fmd4a, myo1d, ljrp1, fgd4, zfp36i2, tmem98, tuba3a, foxred2, frmd4a, myo1d, ljrp1, fgd4, zfp36i2, tuba3a, foxred2, frmd4a, myo1d, ljrp1, fgd4, zfp36i2, tmem98, tuba3a, foxred2, frmd4a, myo1d, ljrp1, fgd4, zfp36i2, tmem98, tuba3a, foxred2, frmd4a, myo1d, ljrp1, fgd4, zfp36i2, tuba3a, frmd4a, myo1d, fgd4, tuba3a, frmd4a, lrp1, lgr4, trd2, cntn6, frmd4a, lrp1,
GO:0032268 Cellular Component GO:0005623 GO:0005656 GO:004464 GO:0043229 GO:0044295 GO:00442295 GO:00442295 GO:00442295 GO:00442295 GO:0044225 GO:0005783 GO:0005783 Molecular Function GO:0003792 GO:00047872	regulation of cellular protein metabolic process Cell Cell act	0.18182 Frequency 1.00000 1.00000 0.36384 0.72727 0.72727 0.72727 0.72727 0.72727 0.72727 0.72727 0.36364 0.45455 0.36364 0.45455 0.36364 0.45455 0.36364 0.45455 0.36364 0.45455 0.36364 0.45455 0.18182 Prequency 0.18182 0.27273	0.03178 Genome frequency 0.45571 0.45571 0.45571 0.45571 0.28364 0.28429 0.00956 0.24674 0.03843 0.32598 0.33316 0.08312 0.08312 0.08312 0.19338 0.11270 0.17183 0.11514 0.24277 0.3299 Genome frequency 0.00941 0.01729 0.10166	0.04589 P-value 0.00018 0.00017 0.00290 0.00290 0.00290 0.00295 0.00273 0.00699 0.00758 0.00768 0.00768 0.00976 0.00976 0.00976 0.00977 0.02974 0.02988 0.049099 P-value 0.00459 0.01480 0.01499	1.00000 Corrected P-value 0.00509 0.04263 0.08445 0.13716 0.21268 0.21489 0.21974 0.25468 0.28310 0.33238 0.80325 0.80330 0.80330 0.86663 1.00000 Corrected P-value 0.04130 0.13320 0.82514 0.82514	Irp1.jgd4, Gene(s) Irp1.jgr4, fgd4, firt2, foxred2, tuba3a, tmem98, cntn6, frmd4a, myo1d, zfp36i2, Irp1.igr4, fgd4, firt2, foxred2, tuba3a, tmem98, cntn6, frmd4a, myo1d, zfp36i2, tuba3a, foxred2, frmd4a, myo1d, irp1, fgd4, zfp36i2, tmem98, tuba3a, foxred2, frmd4a, myo1d, irp1, fgd4, zfp36i2, tuba3a, irp1, fgd4, tmem98, tuba3a, foxred2, frmd4a, myo1d, irp1, fgd4, zfp36i2, tuba3a, irm24a, myo1d, fgd4, tuba3a, irm24a, myo1d, fgd4, tuba3a, irm44a, myo1d, fgd4, tuba3a, irm4a, irp1, igr4, cntn6, frmd4a, irp1, igr4, trit2, cntn6, tmem98, frmd4a, irp1, igr4, cntn6, frmd4a, irp1, igr4, trn4, frm4, ip1, jgr4, trn4, frm4, ip1, jgr4, trn5, frm4, ip1, jgr4, trn6, frm4a, ip1, jgr4, trn6, frm
G0:0032268 Cellular Component G0:0005825 G0:0043229 G0:0043228 G0:0043229 G0:0043228 G0:0045737 G0:004424 G0:0005822 G0:0044224 G0:0044225 G0:0044225 G0:0044223 G0:0044225 G0:0044223 G0:0044225 G0:0044223 G0:0044225 G0:0044223 G0:0044225 G0:004425 G0:004425 G0:0005825 G0:004425 G0:0005825 G0:004425 G0:0005825 G0:004425 G0:0005825 G0:004425 G0:000587 G0:0008779 G0:0008795 G0:0008779 G0:000879 G0:000879 G0:000879 G0:000879 G0:000879 G0:000879 G0:000879 G0:000879 G0:000879 G0:000879 G0:000879 G0:000879 G0:00879 G0:00879 G0:00879 G0:00879 G0:00879 G0:00879 G0:00	regulation of cellular protein metabolic process Go_term cell cell coll process c	0.18182 Frequency 1.00000 1.00000 0.36364 0.72727 0.18182 0.636364 0.27273 0.72727 0.72727 0.36364 0.36364 0.36364 0.54545 0.36364 0.54545 0.36364 0.54545 0.36364 0.54545 0.18182 0.18182 0.18182 0.18182 0.18182 0.27273	0.03178 Genome frequency 0.45571 0.45571 0.45571 0.043931 0.28459 0.00956 0.24674 0.03843 0.32316 0.08312 0.088312 0.088312 0.088312 0.088312 0.088312 0.08312 0.017183 0.11514 0.24277 0.03299 Genome frequency frequency 0.00941 0.01729 0.10166 0.00242 0.10166 0.10232 0.10166 0.10232 0.10166 0.10232 0.10166 0.10232 0.10166 0.10232 0.10166 0.10232 0.10166 0.10232 0.10166 0.10232 0.10166 0.10232 0.10166 0.10232 0.1024 0.102 0.1024 0.1024 0.1024 0.1024 0.1024 0.1024 0.1024 0.1024 0.1024 0.1024 0.1024 0.1024 0.1024 0.1024 0.1024 0.1024 0.102 0.10 0.10	0.04589 P-value 0.00018 0.00147 0.00290 0.00295 0.00295 0.00741 0.00295 0.00741 0.00758 0.00976 0.00976 0.00976 0.00976 0.00976 0.00976 0.02770 0.02974 0.02974 0.02974 0.02974 0.02974 0.02974 0.02974 0.02974 0.02974 0.04599 0.01480 0.04599 0.01480 0.0459 0.01480 0.0459 0.01480 0.0459 0.01480 0.09454 0.0945	1.00000 Corrected P-value 0.00509 0.04263 0.08410 0.08545 0.13716 0.20268 0.21489 0.21489 0.21489 0.21974 0.25468 0.28310 0.28310 0.28310 0.33238 0.80325 0.80325 0.80330 0.86663 1.00000 Corrected P-value 0.04130 0.13320 0.8214 0.05083	Irp1.fgd4, Gene(s) Irp1.lgr4.fgd4,flrt2,foxed2,tuba3a,tmem98,cntn6,frmd4a,myo1d,zfp36l2, Irp1.lgr4,fgd4,flrt2,foxed2,tuba3a,tmem98,cntn6,frmd4a,myo1d,zfp36l2, tuba3a,tme4a,myo1d,fgd4, tmem98,tuba3a,foxed2,trmd4a,myo1d,irp1,fgd4,zfp36l2, tmem98,tuba3a,foxed2,trmd4a,myo1d,irp1,fgd4,zfp36l2, tmem98,tuba3a,foxed2,trmd4a,myo1d,irp1,fgd4,zfp36l2, tmem98,tuba3a,foxed2,trmd4a,myo1d,irp1,fgd4,zfp36l2, tmem98,tuba3a,foxed2,trmd4a,myo1d,irp1,fgd4,zfp36l2, tmem98,tuba3a,foxed2,trmd4a,myo1d,irp1,fgd4,zfp36l2, tuba3a,frm44a,myo1d,fgd4, tuba3a,frm44a,my1,fgr4, tuba3a,frm44a,my1,fgr4, tuba3a,frm44a,my1,fgr4, tuba3a,frm44a,my1,fgr4, tuba3a,frm44a,my1,fgr4, tub
GO:0032268 Cellular Component GO:0005823 GO:0004464 GO:0004228 GO:0043229 GO:0044295 GO:0044295 GO:0044295 GO:0044295 GO:0044295 GO:0044295 GO:0044228 GO:0044225 GO:0044226 GO:001622 GO:001523 GO:001626 GO:001627 GO:0005779 GO:0003779 GO:0048672 GO:0048672 GO:0048672 GO:004475 GO:004475 GO:0046872 GO:0046872 GO:0046872 GO:0046872 GO:0048687 GO:0048687 GO:0048687 GO:00486875	regulation of cellular protein metabolic process cell cell cell cellular protein metabolic process cytoskeleton coll periodicate coll per	0.18182 Frequency 1.00000 1.00000 0.36384 0.72727 0.72727 0.72727 0.72727 0.72727 0.72727 0.72727 0.72727 0.72727 0.36364 0.54545 0.36364 0.54545 0.36364 0.54545 0.36364 0.54545 0.36364 0.54545 0.18182 0.8182 0.72723 0.27273 0	0.03178 Genome frequency 0.45571 0.45571 0.45571 0.04931 0.28364 0.28429 0.00956 0.24674 0.03843 0.32316 0.33316 0.33316 0.38312 0.08312 0.19338 0.11270 0.17183 0.11514 0.24277 0.03299 Genome frequency frequency 0.00941 0.01729 0.10106 0.10232 0.10287 0.0287	0.04589 P-value 0.00018 0.00018 0.00017 0.00290 0.00295 0.00295 0.00275 0.00778 0.00778 0.00976 0.00976 0.00976 0.00976 0.00976 0.00977 0.02974 0.02988 0.02974 0.02988 0.02974 0.02988 0.02974 0.02988 0.02974 0.02988 0.02974 0.02988 0.02974 0.02988 0.02974 0.02988 0.02974 0.02988 0.02974 0.02988 0.02974 0.02988 0.02974 0.02974 0.02974 0.02988 0.02974 0.02974 0.02974 0.02988 0.02974 0.02974 0.02988 0.02974 0.02974 0.02974 0.02988 0.02975 0.02974 0.02974 0.02988 0.02975 0.02974 0.02975 0.02975 0.02975 0.02976 0.02974 0.02988 0.02988 0.04599 0.04599 0.04599 0.04599 0.04999 0.04999 0.02974 0.02976 0.02974 0.02976 0	1.00000 Corrected P-value 0.00509 0.04263 0.08410 0.08545 0.13716 0.20268 0.21489 0.21489 0.21489 0.21974 0.25468 0.28310 0.32328 0.80325 0.80330 0.80246 0.86663 1.00000 Corrected P-value 0.04130 0.13220 0.82814 0.82814 0.82814 0.85083 0.85778 0.95778 0.957778 0.957778 0.95778 0.95778 0.95778	Irp1.jgd4, Gene(s) Irp1.jgr4,jgd4,firt2,foxred2,tuba3a,tmem98,critn6,frmd4a,myo1d,ztp36i2, Irp1.igr4,figd4,firt2,foxred2,tuba3a,tmem98,critn6,frmd4a,myo1d,ztp36i2, tuba3a,fmd4a,myo1d,figd4, tmem98,tuba3a,foxred2,frmd4a,myo1d,irp1,figd4,ztp36i2, mm98,tuba3a,foxred2,frmd4a,myo1d,irp1,figd4,ztp36i2, tmem98,tuba3a,foxred2,frmd4a,myo1d,irp1,figd4,ztp36i2, tmem98,tuba3a,foxred2,frmd4a,myo1d,irp1,figd4,ztp36i2, tmem98,tuba3a,foxred2,frmd4a,myo1d,irp1,figd4,ztp36i2, tmem98,tuba3a,foxred2,frmd4a,myo1d,irp1,figd4,ztp36i2, tuba3a,irp1,fig4, tmem98,tuba3a,foxred2,frmd4a,myo1d,irp1,figd4,ztp36i2, tuba3a,frm1d4a,myo1d,fig4, tuba3a,frm1d4a,myo1d,fig4, trmem98,tuba3,foxred2,frmd4a,myo1d,irp1,fig4,ztp36i2, tuba3a,frm1d4a,myo1d,fig4, trmem98,tiba3,foxred2,frm4a,myo1d,irp1,fig4,ztp36i2, tuba3a,frm14a,myo1d,fig4, trmem98,tiba1,fig4, trm2,cntn6,tmem98,trm4a,irp1,fig4, trm4,rm4a,irp1,fig4, trm4,fig4,my1,fig4, trm5,mr64,mj1,fig4, trm6,trm4a,irp1,fig4, trm6,trm6,trm698,trm4a,irp1,ig4, trm6,trm6,trm698,trm4a,irp1,ig4, trm6,trm6,trm698,trm4a,irp1,ig4, trm6,trm6,trm698,trm64a,irp1,ig4, trm6,trm64a
GO:0032268 Cellular Component GO:0005623 GO:0005656 GO:004464 GO:004426 GO:0044229 GO:00442295 GO:00442295 GO:00442295 GO:00442295 GO:0044228 GO:0044229 GO:0044228 GO:0016828 GO:0017184 GO:0005783 Molecular Function GO:0003779 GO:0048672 GO:00443167 GO:0043168 GO:00443167 GO:00443167 GO:0043169 GO:00443167 GO:00443167 GO:00443167 GO:00443167 GO:00443167 GO:00443167 <	regulation of cellular protein metabolic process cell cell act part cytoskeleton intracellular organelle organelle actin cytoskeleton intracellular organelle cell projection intracellular part intracellular part intracellular part plasma membrane-bounded organelle intracellular non-membrane-bounded organelle cell perjolety membrane part plasma membrane cell perjolety membrane cell perjo	0.18182 Frequency 1.00000 1.00000 0.36384 0.72727 0.72727 0.72727 0.72727 0.72727 0.72727 0.72727 0.72727 0.36384 0.36366 0.36366 0.36666 0.3666666666666666666666666666666666666	0.03178 Genome frequency 0.45571 0.45571 0.45571 0.45571 0.04931 0.28364 0.28429 0.00956 0.24674 0.03843 0.32598 0.33316 0.08312 0.08312 0.08312 0.1938 0.11270 0.17183 0.11514 0.24277 0.03299 Genome frequency 0.00941 0.00941 0.00729 0.10166 0.10232 0.102267 0.3215 0.3215 0.3215 0.3215 0.3215 0.3215 0.3215 0.3215 0.3215 0.3215 0.3215 0.3215 0.3215 0.3215 0.3215 0.3215 0.3215 0.321 0.3	0.04589 P-value 0.00018 0.00017 0.00290 0.00290 0.00295 0.00473 0.00296 0.00473 0.00758 0.00758 0.00776 0.00776 0.00776 0.00976 0.00976 0.01460 0.02770 0.02974 0.02988 0.44909 P-value 0.00459 0.01480 0.01480 0.01490 0.01491 0.00459 0.002988 0.002988 0.002988 0.002976	1.00000 Corrected P-value 0.00509 0.04263 0.08410 0.08545 0.13716 0.20268 0.21974 0.25468 0.28310 0.28310 0.33238 0.80325 0.80330 0.80256 0.80330 0.86663 1.00000 Corrected P-value 0.04130 0.13320 0.85083 0.85083 0.85778 0.94644 0.94644	Irp1.jgr4, Gene(s) Irp1.jgr4, fgd4, firt2, foxred2, tuba3a, tmem98, cntn6, frmd4a, myo1d, zfp36i2, Irp1.gr4, fgd4, firt2, foxred2, tuba3a, tmem98, cntn6, frmd4a, myo1d, zfp36i2, tuba3a, fmd4a, myo1d, fgd4, tmem98, tuba3a, foxred2, frmd4a, myo1d, irp1, fgd4, zfp36i2, tuba3a, from4a, myo1d, fgd4, tuba3a, frmd4a, myo1d, fgd4, trm6, frmedm98, frmd4a, irp1, lgr4, trm6, fgd4, </th
GO:0032268 Cellular Component GO:0005823 GO:0044464 GO:0043229 GO:0043228 GO:0044295 GO:0044295 GO:0044226 GO:0044228 GO:0043228 GO:0043228 GO:0043228 GO:0043228 GO:0043228 GO:0043228 GO:0043228 GO:0043228 GO:0043228 GO:004328 GO:004328 GO:004328 GO:0005828 GO:0005828 GO:0005783 Molecular Function GO:0003779 GO:0003779 GO:000377 GO:00043169 GO:0043169 GO:0043168 GO:0005848 GO:0005848 GO:0005848 GO:0005848 GO:0005848 GO:0005848 GO:0005848 GO:0005848 GO:0005848 GO:0005848<	regulation of cellular protein metabolic process cell col cell col cell col col col col col col col col col c	0.18182 Frequency 1.00000 1.00000 0.36364 0.72727 0.18182 0.63636 0.27273 0.72727 0	0.03178 Genome frequency 0.45571 0.45571 0.45571 0.45571 0.04931 0.28364 0.28429 0.00956 0.24674 0.03843 0.32316 0.08312 0.08312 0.08312 0.17183 0.11514 0.24277 0.03299 Genome frequency Genome frequency 0.00941 0.01729 0.10106 0.10287 0.32157 0.18291 0.1829 0.18291 0.18291 0.18291 0.18291 0.18291 0.1829 0.182 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18	0.04589 P-value 0.00018 0.00018 0.00147 0.00290 0.00295 0.00473 0.00295 0.00473 0.00761 0.00776 0.00776 0.00976 0.00976 0.00976 0.00976 0.00976 0.002770 0.02974 0.02974 0.02988 0.04599 0.04480 0.04599 0.04480 0.04599 0.04480 0.04599 0.04480 0.04599 0.04480 0.04599 0.045831 0.005451 0.05555 0.055555 0.055555 0.055555 0.055555 0.055555 0.05555555 0.0555555555 0.05555555555	1.00000 Corrected P-value 0.00509 0.04263 0.08410 0.08545 0.13716 0.20268 0.21489 0.21974 0.25468 0.28310 0.28310 0.33238 0.80325 0.80330 0.86246 0.86663 1.00000 Corrected P-value 0.04130 0.13320 0.82514 0.85083 0.85778 0.94644 1.00000	Irp1.fgd4, Gene(s) Irp1.lgr4, Igd4, Ifrl2, foxed2, tuba3a, tmem98, cntn6, frmd4a, myo1d, ztp36i2, Irp1.lgr4, Igd4, Ifrl2, foxed2, tuba3a, tmem98, cntn6, frmd4a, myo1d, ztp36i2, tuba3a, Irm4a, myo1d, Irp1, Igd4, ztp36i2, tmem98, tuba3a, loxerd2, frmd4a, myo1d, Irp1, Igd4, ztp36i2, tuba3a, Irm1, Igd4, tuba3a, Irm4a, myo1d, Igd4, tuba3a, Irm4a, myo1d, Igd4, tuba3a, Irm4a, myo1d, Igd4, tuba3a, Irm4a, myo1d, Igd4, tuba3a, Irm4a, Irp1, Igr4, tuba3a, Irm4a, Irp1, Igr4, trl2, cntn6, Irme18, Itm1, Igr4, trl2, cntn6, Irme18, Itm1, Igr4, trl2, cntn6, Irme4a, Irp1, Igr4, trl2, cntn6, Irme38, Irm4a, Irp1, Igr4, trl2, cntn6, Irme38, Irm4a, Irp1, Igr4, trl2, cnt6, Irme38, Irm4a, Irp1, Igr4, trl2, cnt6, Irme38, Irm4a, Irp1, Igr4, trl2, cnt6, Irme38, Irm4a, Irp1, Igr4, trl2,

Figure 3.19: Gene ontology (GO) analysis of genes that are differentially regulated in *Lrp1* deficient OLs compares to *Lrp1* control OLs.

(a) Acutely isolated OLs from *Lrp1* control and *Lrp1*^{flox/flox};*Olig2-Cre* mouse pups by anti-O4 immunopanning were subjected to microarray analysis. Differentially expressed genes with adjusted p<0.05 are subjected to gene ontology analysis by Gene Ontology Consortium online service. After enrichment analysis, GO terms associated with the 'Biological process', 'cellular component', and 'molecular function' with initial p<0.05 is listed. (b) The annotation of potential functions of the genes that are listed.

Figure 3.20: LRP1 staining in OLs is closely associated with peroxisomes and lysosomes

(a) Primary OLs prepared from *Lrp1* control pups, cultured for 5 days in DM were stained with anti-LRP1 β , anti-LAMP1, anti-PMP70, and Hoechst dye 33342. Scale bar= 20µm (main panels) and 5µm (insets). (b) High magnification Z-stacked image of the OL from a. LRP1 (green) and PMP70 (Red).

Figure 3.21: Co-localization analysis of LRP1 and PMP70 in OPCs and mature OLs.

(a) Primary OLs prepared from *Lrp1* control and cKO^{OL} OL pups, cultured for 5 days in DM were stained with anti-LRP1 β and anti-PMP70. Scale bar= 20 μ m (main panels) and 5 μ m (insets). (b) Pixel distribution of LRP1 and PMP70 signals for calculating Pearson's correlation. Cells that are MBP⁻/LRP1⁻, MBP⁻/LRP1⁺, and MBP⁺/LRP1⁺ as showed in LRP1 labeling ere analyzed.

Figure 3.22: Co-localization analysis of LRP1 and PMP70 in OPCs, astrocytes, epithelial cells, and neurons

(a) Each cell type was stained with anti-LRP1 β and anti-PMP70. Scale bar= 20 μ m (b) Quantification of the Pearson's coefficient (n=3 cells) that are average for each cell type. (c) Figure adopted from Fisher z-transformation. Pearson's score does not follow a normal distribution. To perform Student's t-test statistic analysis, Fisher's z-transformation is required. (d) Quantification of the LRP1 and PMP70 co-localization score followed z-transformation to compare between each cell type. Results are shown as mean values ±SEM, *p<0.05 and **p<0.01, Student's *t*-test.

Original data а

Data analysis sequence

Figure 3.23: Image processing rundown for single cell analysis

(a) Original images of each channel. As an example, OLs were stained with anti-MBP, anit-PMP70, and filipin. (b) Each step of imaging processing: 1, demarcate single isolated cells by hand drawing function in the image J; 2, apply the selection to the membrane staining channel (filipin or MBP) and reverse the selection; 3, delete the signal in the selected area (outside of the selected cell); 4, apply the binary signal threshold of with defined cutoff to the image acquired from 3; 5, create auto-selection along the silhouette of the cell; 6-8, apply the selection to the channel of interest and measure all features that is desired; 9, apply find maxima function to analyze particles to get sub-cellular coordinates; 10-12, information specific in the cell body can be isolated by free hand drawing function and then cell center can be determined.

3.8 Tables

	Entrez		Relative	Intensity	SEM	4	
Symbol	Gene	Name	Control	cKO	Control	cKO	<i>p</i> -Value
Aamdc	66273	adipogenesis associated Mth938 domain containing	56.28	45.98	0.51	1.76	0.001
Abcf3	27406	ATP-binding cassette, sub-family F (GCN20), member 3	69.50	85.98	6.21	2.37	0.048
Abcg8	67470	ATP-binding cassette, sub-family G (WHITE), member 8	7.25	6.09	0.41	0.21	0.045
Abhd10	213012	abhydrolase domain containing 10	43.75	68.67	2.95	9.02	0.039
Abhd11	68758	abhydrolase domain containing 11	73.77	51.84	5.91	2.85	0.015
Abhd3	106861	abhydrolase domain containing 3	141.75	116.20	8.84	5.27	0.048
Acat2	110460	acetyl-Coenzyme A acetyltransferase 2	120.20	75.80	11.08	6.30	0.013
Acer1	171168	alkaline ceramidase 1	7.08	5.98	0.11	0.12	0.001
Acer2	230379	alkaline ceramidase 2	8.87	7.44	0.20	0.17	0.002
Acnat1	230161	acyl-coenzyme A amino acid N-acyltransferase 1	6.15	5.18	0.27	0.09	0.014
Actl7a	11470	actin-like 7a	9.98	7.24	0.62	0.21	0.006
Actn3	11474	actinin alpha 3	11.20	9.87	0.36	0.25	0.024
Actrt3	76652	actin related protein T3	7.47	5.88	0.59	0.17	0.041
Adam11	11488	a disintegrin and metallopeptidase domain 11	17.28	13.06	0.24	0.89	0.004
Adam20	384806	a disintegrin and metallopeptidase domain 20	3.93	4.26	0.12	0.06	0.043
Adam6a	238406	a disintegrin and metallopeptidase domain 6A	10.59	9.05	0.43	0.32	0.03
Adamts3	330119	a disintegrin-like and metallopeptidase (reprolysin type) with	7.59	5.93	0.35	0.30	0.012
		thrombospondin type 1 motif, 3					
Adamts5	23794	a disintegrin-like and metallopeptidase (reprolysin type) with	15.81	12.28	1.22	0.60	0.040
		thrombospondin type 1 motif, 5 (aggrecanase-2)					
Adamtsl1	77739	ADAMTS-like 1	7.48	8.93	0.27	0.49	0.041
Adat3	1001133	adenosine deaminase, tRNA-specific 3	19.60	14.99	0.83	0.95	0.011
	98						
Adat3	1001133	adenosine deaminase, tRNA-specific 3	19.60	14.99	0.83	0.95	0.011
	98						
Adcy2	210044	adenylate cyclase 2	25.46	31.48	1.30	1.36	0.018
Adcy4	104110	adenylate cyclase 4	7.88	6.55	0.48	0.19	0.04
Adh1	11522	alcohol dehydrogenase 1 (class l)	7.36	6.44	0.18	0.09	0.004
Adk	11534	adenosine kinase	57.56	81.94	4.70	8.27	0.043
Ado	211488	2-aminoethanethiol (cysteamine) dioxygenase	318.34	233.85	24.17	20.23	0.036
Adtrp	109254	androgen dependent TFPI regulating protein	6.19	4.84	0.49	0.25	0.049
Agl	77559	amylo-1,6-glucosidase, 4-alpha-glucanotransferase	70.51	87.24	2.93	2.37	0.004
Agpat1	55979	1-acylglycerol-3-phosphate 0-acyltransferase 1 (lysophosphatidic	110.30	126.43	4.08	4.75	0.042
		acid acyltransferase, alpha)					
AI314278	101521	expressed sequence AI314278	16.85	13.30	1.19	0.59	0.037
AI646519	99041	expressed sequence AI646519	9.79	8.34	0.10	0.34	0.007
Aida	108909	axin interactor, dorsalization associated	51.99	73.03	1.47	7.51	0.033
Aifm1	26926	apoptosis-inducing factor, mitochondrion-associated 1	77.57	58.92	4.48	5.31	0.036
Aim1l	230806	absent in melanoma 1-like	8.85	7.44	0.28	0.17	0.005
Aim2	383619	absent in melanoma 2	13.81	10.67	0.37	0.68	0.007
Aimp1	13722	aminoacyl tRNA synthetase complex-interacting multifunctional	433.74	312.12	37.88	31.50	0.049
		protein 1					
Akap8l	54194	A kinase (PRKA) anchor protein 8-like	105.04	135.78	4.71	3.04	0.002
Akap9	100986	A kinase (PRKA) anchor protein (yotiao) 9	159.81	178.26	4.18	5.25	0.033
Akirin2	433693	akirin 2	278.84	249.51	5.15	9.40	0.034
Akna	100182	AT-hook transcription factor	17.56	22.10	1.08	1.19	0.03
Akr1a1	58810	aldo-keto reductase family 1, member A1 (aldehyde reductase)	652.81	614.13	3.59	11.50	0.018
Akr1b10	67861	aldo-keto reductase family 1, member B10 (aldose reductase)	20.15	28.10	2.02	1.93	0.030
Akr7a5	110198	aldo-keto reductase family 7, member A5 (aflatoxin aldehyde	25.87	20.03	0.93	0.28	0.00
		reductase)					
Alad	17025	aminolevulinate, delta-, dehydratase	136.34	96.33	3.46	5.18	0.001
Aldh1a3	56847	aldehyde dehydrogenase family 1, subfamily A3	7.75	6.30	0.22	0.10	0.001
Aldh6a1	104776	aldehyde dehydrogenase family 6, subfamily A1	29.97	35.83	0.63	1.99	0.0
Alkbh8	67667	alkB, alkylation repair homolog 8 (E. coli)	75.04	104.26	6.07	6.05	0.014

Affymetrix mouse gene 2.1 ST array analysis

Alox5	11689	arachidonate 5-lipoxygenase	58.20	26.36	9.65	3.19	0.020
Aloxe3	23801	arachidonate lipoxygenase 3	8.74	6.94	0.66	0.30	0.047
Alpi	76768	alkaline phosphatase, intestinal	8.17	7.05	0.19	0.41	0.048
Alpk2	225638	alpha-kinase 2	5.82	4.96	0.29	0.18	0.046
Ambn	11698	ameloblastin	7.22	6.55	0.12	0.22	0.036
Amd1	11702	S-adenosylmethionine decarboxylase 1	2930.47	3338.47	54.32	45.20	0.001
Amdhd2	245847	amidohydrolase domain containing 2	31.10	26.53	0.91	1.02	0.016
Amh	11705	anti-Mullerian hormone	9.01	7.83	0.46	0.10	0.046
Amica1	270152	adhesion molecule interacts with CYADR antigen 1	7.89	6.89	0.10	0.11	0.018
Amigo3	320844	adhesion molecule with Ig like domain 3	23.01	16.89	1.67	0.11	0.008
Ammoor 1	225220	AMME chromosomal region gave 1 like	162.01	204.01	I.07	7.40	0.000
Ammeet II	223339	Amme chroniosomai region gene 1-ince	24.02	204.91	1.10	0.62	0.004
Amotii	/5/23	angiomotin-like 1	24.92	21.40	1.18	0.62	0.039
Anapc13	69010	anaphase promoting complex subunit 13	1109.52	969.58	26.42	38.67	0
Ankdd1b	271144	ankyrin repeat and death domain containing 1B	9.83	8.04	0.58	0.40	0.045
Ankle2	71782	ankyrin repeat and LEM domain containing 2	97.38	112.85	1.74	3.76	0.010
Ankmy2	217473	ankyrin repeat and MYND domain containing 2	71.74	99.84	9.40	3.70	0.032
Ankrd10	102334	ankyrin repeat domain 10	21.68	26.34	1.05	0.81	0.013
Ankrd11	77087	ankyrin repeat domain 11	140.34	167.52	5.78	6.36	0.020
Ankrd36	76389	ankyrin repeat domain 36	10.34	9.25	0.26	0.26	0.024
Ankrd39	109346	ankyrin repeat domain 39	23.51	17.36	1.82	0.85	0.022
Anks1b	77531	ankyrin repeat and sterile alpha motif domain containing 1B	146.64	160.65	4.86	2.99	0.050
Ano2	243634	anoctamin 2	11.61	9.39	0.83	0.28	0.044
Anxa6	11749	annexin A6	97.88	129.31	8.64	5.77	0.023
Ap1m2	11768	adaptor protein complex AP-1, mu 2 subunit	8.57	7.10	0.52	0.18	0.037
Ap4m1	11781	adaptor-related protein complex AP-4, mu 1	36.02	41.63	1.87	1.16	0.043
Apbb1	11785	amyloid beta (A4) precursor protein-binding, family B, member 1	154.80	99.62	8.59	9.85	0.006
Apbb1ip	54519	amyloid beta (A4) precursor protein-binding, family B, member 1	84.62	105.11	6.47	2.83	0.027
		interacting protein					
Apbb2	11787	amyloid beta (A4) precursor protein-binding, family B, member 2	133.00	118.14	4.02	2.43	0.02
Apbb3	225372	amyloid beta (A4) precursor protein-binding, family B, member 3	23.54	18.20	1.64	0.92	0.030
Apc2	23805	adenomatosis polyposis coli 2	71.65	56.83	3.71	1.87	0.012
Apex1	11792	apurinic/apyrimidinic endonuclease 1	121.89	101.86	6.34	3.67	0.034
Anln1	11803	amyloid beta (A4) precursor-like protein 1	407 46	284 13	26.21	26 58	0.016
Anin?	11804	amyloid beta (A4) precursor-like protein 2	594.16	626.01	4.60	9.87	0.026
Apo24	11808	andinoprotein A-IV	9.72	8 27	0.44	0.37	0.045
Apoaf	66112		0.20	6.67	0.45	0.57	0.045
Apoas	220055	aponpoprotein A-v	9.59	0.07	0.45	0.19	0.001
Аров	238055	aponpoprotein B	7.96	6.59	0.34	0.09	0.008
Apobec2	11811	apolipoprotein B mRNA editing enzyme, catalytic polypeptide 2	11.28	9.33	0.15	0.74	0.042
Apoc2	11813	apolipoprotein C-II	10.72	8.38	0.72	0.45	0.033
Арр	11820	amyloid beta (A4) precursor protein	733.66	619.83	21.81	37.76	0.04
Aqp2	11827	aquaporin 2	10.70	9.46	0.34	0.36	0.046
Aqp9	64008	aquaporin 9	9.37	7.76	0.33	0.44	0.026
Arc	11838	activity regulated cytoskeletal-associated protein	36.92	28.41	1.73	0.89	0.005
Arfip1	99889	ADP-ribosylation factor interacting protein 1	5.11	4.54	0.12	0.12	0.016
Arhgap4	171207	Rho GTPase activating protein 4	26.24	17.56	2.08	1.51	0.015
Arhgap40	545481	Rho GTPase activating protein 40	11.55	9.26	0.49	0.40	0.01
Arhgap6	11856	Rho GTPase activating protein 6	7.69	6.57	0.31	0.17	0.020
Arhgef18	102098	rho/rac guanine nucleotide exchange factor (GEF) 18	25.88	19.35	2.03	0.50	0.02
Arhgef26	622434	Rho guanine nucleotide exchange factor (GEF) 26	49.15	64.64	5.74	2.54	0.049
Arl1	104303	ADP-ribosylation factor-like 1	90.52	96.60	1.25	1.94	0.039
Arl14epl	381142	ADP-ribosylation factor-like 14 effector protein-like	11.67	10.31	0.29	0.21	0.01
Arl4c	320982	ADP-ribosylation factor-like 4C	51.50	66.48	3.58	2.45	0.014
Arl5c	217151	ADP-ribosvlation factor-like 5C	10.07	13.66	0.91	0.38	0.0
Arl6in4	65105	ADP-ribosylation factor-like 6 interacting protein 4	111.26	85.77	4.84	6,51	0.020
Arl8h	67166	ADP-rihosylation factor-like 8B	466.82	428 75	6.66	10.69	0.023
Arnc5	67771	actin related protein 2/3 complex subunit 5	572 14	487 42	26.10	4 30	0.010
Acab1	11006	N-aculenhingosine amidohudrolase 1	222.14	260.02	7 50	11.25	0.015
Ash17as	72217	and the second s	7.60	12.00	0.26	150	0.035
ASU1/0S	/231/	ankyrin repeat and SOCS box-containing 17, opposite strand	7.09	12.00	0.20	1.52	0.032
ASD9	69299	ankyrin repeat and SOUS box-containing 9	9.17	7.58	0.54	0.08	0.026
Asprv1	6/855	aspartic peptidase, retroviral-like 1	10.56	8.09	0.37	0.44	0.005
Atad3a	108888	ATPase family, AAA domain containing 3A	50.60	39.15	2.47	1.84	0.010

Atad5	237877	ATPase family, AAA domain containing 5	19.54	29.93	0.48	3.75	0.033
Atg101	68118	autophagy related 101	44.10	37.85	1.65	1.70	0.039
Atg4c	242557	autophagy related 4C, cysteine peptidase	28.55	42.81	2.63	4.91	0.043
Atg7	74244	autophagy related 7	87.89	61.68	8.69	4.78	0.038
Atg7	74244	autophagy related 7	87.89	61.68	8.69	4.78	0.038
Atl1	73991	atlastin GTPase 1	74.45	111.53	6.90	10.71	0.027
Atp13a3	224088	ATPase type 13A3	164.98	204.06	7.14	13.41	0.04
Atp13a4	224079	ATPase type 13A4	12.92	15.10	0.26	0.80	0.041
Atp1a2	98660	ATPase, Na+/K+ transporting, alpha 2 polypeptide	507.45	570.85	4.90	18.13	0.015
Atp1b1	11931	ATPase, Na+/K+ transporting, beta 1 polypeptide	114.38	145.71	4.22	9.32	0.022
Atp2a1	11937	ATPase, Ca++ transporting, cardiac muscle, fast twitch 1	8.43	7.47	0.23	0.21	0.02
Atp2a3	53313	ATPase, Ca++ transporting, ubiquitous	9.51	7.63	0.19	0.48	0.011
Atp5o	28080	ATP synthase, H+ transporting, mitochondrial F1 complex, O subunit	14.07	11.19	0.57	0.50	0.009
ATP6	17705	ATP synthase F0 subunit 6	2219.60	2476.88	28.13	32.73	0.001
Atp6v0a2	21871	ATPase, H+ transporting, lysosomal V0 subunit A2	200.52	160.13	10.10	10.31	0.031
Atp6v0a4	140494	ATPase, H+ transporting, lysosomal V0 subunit A4	9.08	6.97	0.51	0.33	0.01
ATP8	17706	ATP synthase F0 subunit 8	1509.93	1655.94	42.12	29.13	0.029
Atp8a1	11980	ATPase, aminophospholipid transporter (APLT), class I, type 8A,	187.79	218.85	6.09	4.77	0.007
		member 1					
Atrx	22589	alpha thalassemia/mental retardation syndrome X-linked homolog	162.23	194.83	1.81	6.62	0.003
		(human)	22.04		5.00		0.004
Atxn1	20238	ataxin 1	33.94	56.45	5.32	6.05	0.031
AU015228	99169	expressed sequence AU015228	4.88	4.28	0.12	0.16	0.03
AU018091	245128	expressed sequence AU018091	12.49	10.01	0.69	0.56	0.032
AU021092	239691	expressed sequence AU021092	23.35	17.24	1.23	1.30	0.014
AU022751	102991	expressed sequence AU022751	15.03	12.88	0.57	0.42	0.023
Aup1	11993	ancient ubiquitous protein 1	169.89	200.79	4.13	11.83	0.05
AV320801	331531	expressed sequence AV320801	6.75	5.61	0.23	0.18	0.008
Aven	74268	apoptosis, caspase activation inhibitor	13.57	10.87	0.58	0.66	0.022
Avl9	78937	AVL9 homolog (S. cerevisiase)	105.74	131.22	7.37	3.47	0.020
Avpr1b	26361	arginine vasopressin receptor 1B	6.95	5.69	0.46	0.14	0.040
AW046200	1005026 19	expressed sequence AW046200	9.92	7.63	0.53	0.42	0.015
Awat2	245532	acyl-CoA wax alcohol acyltransferase 2	6.84	6.00	0.15	0.30	0.046
Azin1	54375	antizyme inhibitor 1	131.28	163.54	7.11	9.12	0.03
B020004J07	545662	RIKEN cDNA B020004J07 gene	3.91	4.25	0.10	0.08	0.03
Rik							
B020018J22	1001266	Riken cDNA B020018J22 gene	9.52	7.29	0.40	0.10	0.002
Rik	92						
B230112J18	77846	RIKEN cDNA B230112J18 gene	9.55	6.97	0.79	0.29	0.021
Rik							
B230317F23 Rik	320383	RIKEN cDNA B230317F23 gene	27.96	19.67	2.75	0.84	0.028
B4galt4	56375	UDP-Gal:betaGlcNAc beta 1,4-galactosyltransferase, polypeptide 4	14.20	17.94	1.21	0.49	0.029
B630019A10	1000435	RIKEN cDNA B630019A10 gene	21.04	14.15	1.08	2.32	0.036
Rik	41						
B930095G15	320268	RIKEN cDNA B930095G15 gene	81.40	116.68	8.02	11.26	0.043
Rik							
Bace1	23821	beta-site APP cleaving enzyme 1	284.13	235.59	13.45	14.18	0.048
Bag2	213539	BCL2-associated athanogene 2	12.73	8.90	1.42	0.40	0.040
Baiap212	207495	BAI1-associated protein 2-like 2	16.38	12.62	0.94	0.85	0.025
Batf3	381319	basic leucine zipper transcription factor, ATF-like 3	23.32	15.22	1.20	0.54	0.001
Bax	12028	BCL2-associated X protein	350.51	290.20	17.49	15.11	0.040
Bbs7	71492	Bardet-Biedl syndrome 7 (human)	37.06	45.49	2.05	1.88	0.023
BC005512	192885	cDNA sequence BC005512	13.80	18.91	0.46	0.84	0.002
BC017643	217370	cDNA sequence BC017643	22.01	14.99	2.22	1.17	0.031
BC039771	408057	cDNA sequence BC039771	6.37	5.58	0.07	0.10	0.001
BC048602	1001262	cDNA sequence BC048602	7.50	9.37	0.64	0.41	0.049
BC049352	408059	cDNA sequence BC049352	6.88	5 94	0.11	0.31	0 020
BC051665	218275	cDNA sequence BC051665	6.02	5.94	0.24	0.51	0.025
PC031003	2102/3	controcquence boostoos	0.93	5.00	0.34	0.15	0.015

BC100451	58251	cDNA sequence BC100451	11.00	8.07	1.03	0.30	0.035
BC107364	329716	cDNA sequence BC107364	11.00	9.19	0.51	0.46	0.04
Bcam	57278	basal cell adhesion molecule	9.72	7.68	0.35	0.31	0.005
Bcap29	12033	B cell receptor associated protein 29	179.08	228.61	10.08	10.77	0.015
Bche	12038	butyrylcholinesterase	121.18	198.19	8.70	29.61	0.047
Bckdhb	12040	branched chain ketoacid dehydrogenase E1, beta polypeptide	77.06	57.65	3.12	3.28	0.005
Bcl6	12053	B cell leukemia/lymphoma 6	16.97	31.24	2.15	1.46	0.002
Bdkrb1	12061	bradykinin receptor, beta 1	7.56	5.51	0.66	0.27	0.028
Bend4	666938	BEN domain containing 4	21.13	14.99	1.46	0.59	0.008
Bfsp1	12075	beaded filament structural protein 1, in lens-CP94	8.07	7.06	0.26	0.14	0.015
Bhlha15	17341	basic helix-loon-helix family, member a15	15.06	12.27	1.06	0.28	0.043
Bid	12122	BH3 interacting domain death agonist	20.34	15 59	0.89	0.35	0.003
Bik	12124	BCL2-interacting killer	11.85	8.86	0.77	0.73	0.030
Blnk	17060	B cell linker	27.06	36.45	1.20	1.87	0.005
Bloc1s2	73689	biogenesis of lysosomal organelles compley-1 subunit 2	254.01	211 29	15 59	6.29	0.003
Bioc132	212005	BMC1 homolog ribocomo accombly protain (voast)	57.22	67.64	216	1 5 2	0.075
Buin?	12175	BM31 Homolog, Hoosonic assembly protein (yeast)	105.26	227.25	5.10	0.46	0.023
Bilip2	121/5	2.2 kimberghergherghergen student	105.20	1(0.41	5.//	0.40	0.000
врдт	12183	2,3-bisphosphogiycerate mutase	144.96	160.41	4.12	3.21	0.025
Bpita2	19194	BPI fold containing family A, member 2	7.33	6.56	0.20	0.14	0.020
Brar	109880	Brat transforming gene	126.06	166.25	5.58	5.30	0.002
Brwd1	93871	bromodomain and WD repeat domain containing 1	84.66	71.69	3.15	2.70	0.020
Bsx	244813	brain specific homeobox	8.92	7.32	0.32	0.21	0.006
Btc	12223	betacellulin, epidermal growth factor family member	7.06	6.40	0.19	0.12	0.026
Btf3	218490	basic transcription factor 3	39.31	30.75	1.44	2.08	0.015
Btnl9	237754	butyrophilin-like 9	9.95	7.63	0.67	0.32	0.021
Btrc	12234	beta-transducin repeat containing protein	93.07	107.30	3.66	4.14	0.042
Bysl	53414	bystin-like	49.49	33.93	2.94	1.73	0.004
C1ql4	239659	complement component 1, q subcomponent-like 4	6.96	5.72	0.30	0.23	0.017
C1qtnf7	109323	C1q and tumor necrosis factor related protein 7	7.33	6.31	0.30	0.27	0.045
C1rl	232371	complement component 1, r subcomponent-like	23.93	17.81	1.44	1.39	0.022
C5ar2	319430	complement component 5a receptor 2	10.60	9.04	0.38	0.42	0.033
C78197	1005043	expressed sequence C78197	7.38	5.82	0.41	0.33	0.025
	52						
Cables2	252966	CDK5 and Abl enzyme substrate 2	50.07	61.63	3.18	2.98	0.038
Cabs1	70977	calcium binding protein, spermatid specific 1	6.15	6.81	0.11	0.16	0.015
Cacna1c	12288	calcium channel, voltage-dependent, L type, alpha 1C subunit	41.21	55.47	2.78	3.11	0.014
Cacna1f	54652	calcium channel, voltage-dependent, alpha 1F subunit	7.19	5.72	0.32	0.23	0.010
Calcb	116903	calcitonin-related polypeptide, beta	9.02	10.89	0.21	0.68	0.039
Calhm2	72691	calcium homeostasis modulator 2	12.78	11.12	0.58	0.23	0.038
Camkk1	55984	calcium/calmodulin-dependent protein kinase kinase 1. alpha	11.12	13.76	0.42	0.80	0.026
Camta2	216874	calmodulin binding transcription activator 2	38.17	44.79	2.03	1.71	0.047
Cann7	12339	calnain 7	207 78	244.24	8.21	7.92	0.019
Caprin?	232560	carrin family member 2	30.93	35.05	0.82	1.25	0.017
Capril 2	12240	capping protoin (actin filament) muscle 7 line alpha 1	545.00	672.22	14.25	12.05	0.052
Capza1	12240	capping protein (actin filament) muscle Z-line, alpha 1	241.00	266 57	4 1 1	6.61	0.000
Capza2	12343	capping protein (actin filament) muscle Z-line, alpha 2	541.00	604.22	10.05	22.22	0.019
Capzaz	12343	capping protein (actin mament) muscle z-nne, apna z	11.21	094.22	10.95	32.33	0.044
Car13	/1934	carbonic annydrase 13	11.21	8.41	0.85	0.59	0.036
Car14	23831	carbonic annydrase 14	77.05	46.80	9.34	7.66	0.046
Car15	80733	carbonic anhydrase 15	21.49	14.24	2.21	1.34	0.031
Car8	12319	carbonic anhydrase 8	212.20	263.52	10.80	16.66	0.04
Card11	108723	caspase recruitment domain family, member 11	8.68	7.54	0.18	0.32	0.021
Casr	12374	calcium-sensing receptor	102.66	65.48	3.18	9.96	0.012
Casz1	69743	castor zinc finger 1	11.72	10.31	0.23	0.25	0.006
Cbln3	56410	cerebellin 3 precursor protein	9.99	7.75	0.61	0.28	0.015
Cbr2	12409	carbonyl reductase 2	14.42	20.04	1.49	1.74	0.049
Cc2d2b	668310	coiled-coil and C2 domain containing 2B	7.38	5.84	0.30	0.48	0.035
Ccar1	67500	cell division cycle and apoptosis regulator 1	302.53	346.67	11.69	9.70	0.027
Ccdc114	211535	coiled-coil domain containing 114	9.50	8.27	0.12	0.25	0.005
Ccdc122	108811	coiled-coil domain containing 122	13.00	16.74	1.25	0.67	0.039
Ccdc137	67291	coiled-coil domain containing 137	38.41	32.71	1.38	1.20	0.021
			6.25	E 21	0.32	0.10	0.020
Ccdc158	320696	coiled-coil domain containing 158	0.25	5.21	0.52	0.10	0.020

Ccdc167	68597	coiled-coil domain containing 167	99.67	71.85	7.61	3.28	0.015
Ccdc172	75645	coiled-coil domain containing 172	5.14	4.77	0.11	0.10	0.050
Ccdc178	70950	coiled coil domain containing 178	4.87	4.59	0.08	0.06	0.031
Ccdc185	433386	coiled-coil domain containing 185	8.93	7.52	0.22	0.29	0.008
Ccdc36	434438	coiled-coil domain containing 36	7.67	9.34	0.36	0.45	0.027
Ccdc39	51938	coiled-coil domain containing 39	24.50	36.05	1.46	2.72	0.010
Ccdc42	276920	coiled-coil domain containing 42	8.99	7.72	0.41	0.19	0.032
Ccdc69	52570	coiled-coil domain containing 69	9.45	7.34	0.56	0.20	0.01
Ccdc88a	108686	coiled coil domain containing 88A	442.93	499.38	12.41	18.46	0.044
Ccnb1ip1	239083	cyclin B1 interacting protein 1	5.56	4.82	0.25	0.08	0.032
Ccny	67974	cyclin Y	240.32	287.74	8.83	17.12	0.049
Ccser2	72972	coiled-coil serine rich 2	660.84	783.02	23.18	27.41	0.014
Cct2	12461	chaperonin containing Tcp1, subunit 2 (beta)	1032.51	900.80	21.21	31.36	0.013
Cct2	12461	chaperonin containing Tcp1, subunit 2 (beta)	763.14	705.62	16.61	15.04	0.042
Cd101	630146	CD101 antigen	11.96	9.69	0.50	0.65	0.033
Cd163l1	244233	CD163 molecule-like 1	11.86	10.32	0.54	0.31	0.050
Cd164	53599	CD164 antigen	759.21	878.59	25.33	21.57	0.012
Cd200r4	239849	CD200 receptor 4	6.51	5.31	0.33	0.21	0.023
Cd209g	70192	CD209g antigen	6.01	7.04	0.38	0.07	0.037
Cd38	12494	CD38 antigen	18.63	26.47	0.75	2.18	0.01
Cd3d	12500	CD3 antigen, delta polypeptide	8.21	6.81	0.41	0.18	0.020
Cd3e	12501	CD3 antigen, epsilon polypeptide	6.80	5.73	0.25	0.16	0.01
Cd4	12504	CD4 antigen	7.07	6.08	0.20	0.23	0.017
Cd8b1	12526	CD8 antigen, beta chain 1	6.91	5.36	0.59	0.22	0.050
Cdh16	12556	cadherin 16	10.42	8.53	0.41	0.33	0.01
Cdh22	104010	cadherin 22	24.16	17.10	1.79	0.76	0.011
Cdh23	22295	cadherin 23 (otocadherin)	5.91	5.33	0.12	0.12	0.017
Cdh24	239096	cadherin-like 24	16.27	11.67	1.08	0.89	0.016
Cdhr1	170677	cadherin-related family member 1	11.75	8.73	0.98	0.21	0.024
Cdhr4	69398	cadherin-related family member 4	9.04	7.34	0.27	0.54	0.03
Cdk15	271697	cyclin-dependent kinase 15	7.19	5.91	0.24	0.42	0.038
Cdkal1	68916	CDK5 regulatory subunit associated protein 1-like 1	24.26	31.99	0.25	2.30	0.02
Cdkn3	72391	cyclin-dependent kinase inhibitor 3	34.72	55.61	6.43	3.14	0.027
Cdnf	227526	cerebral dopamine neurotrophic factor	5.91	5.09	0.23	0.23	0.045
Cdpf1	72355	cysteine rich, DPF motif domain containing 1	23.31	20.80	0.44	0.53	0.011
Cdrt4	66338	CMT1A duplicated region transcript 4	9.19	7.70	0.53	0.24	0.041
Cdsn	386463	corneodesmosin	15.59	11.43	1.20	0.76	0.026
Cdx2	12591	caudal type homeobox 2	7.63	5.99	0.43	0.12	0.010
Cdvl	12593	chromodomain protein. Y chromosome-like	31.30	25.64	0.92	0.60	0.002
Ceacam13	69785	carcinoembryonic antigen-related cell adhesion molecule 13	3.97	4.42	0.04	0.04	0.000
Ceacam14	67084	carcinoembryonic antigen-related cell adhesion molecule 14	5.76	7.49	0.07	0.22	0.000
Ceacam18	72431	carcinoembryonic antigen-related cell adhesion molecule 18	7.25	5.16	0.42	0.26	0.005
Cela1	109901	chymotrypsin-like elastase family, member 1	11.55	8.77	0.17	0.17	2E-05
Celf5	319586	CUGBP. Elav-like family member 5	27.39	23.91	0.34	1.13	0.026
Celf6	76183	CUGBP, Elav-like family member 6	13.16	10.11	0.61	0.32	0.004
Cen19	66994	centrosomal protein 19	49.39	62.99	3.50	2.60	0.021
Cep44	382010	centrosomal protein 44	25.14	32.78	0.87	1.68	0.007
Cep57l1	103268	centrosomal protein 57-like 1	32.04	24.20	2.15	1.31	0.021
Cers5	71949	ceramide synthase 5	91.50	126.15	5.89	10.11	0.03
Ces1g	12623	carboxylesterase 1G	7.98	6.33	0.45	0.24	0.018
Ces2c	234671	carboxylesterase 2C	5.01	3.78	0.18	0.11	0.001
Ces2f	71903	carboxylesterase 2F	4.92	5.63	0.10	0.07	0.001
Cfap20	14894	cilia and flagella associated protein 20	120.17	182.56	10.09	18.74	0.026
Chaf1b	110749	chromatin assembly factor 1. subunit B (n60)	8.78	10.57	0.62	0.18	0.032
Chchd7	66433	coiled-coil-helix-coiled-coil-helix domain containing 7	27.40	21.98	1.91	0.94	0.0
Chl1	12661	cell adhesion molecule with homology to L1CAM	104 93	124 45	6.34	2.48	0.028
Chn2	69993	chimerin 2	309.66	253.88	17 07	11.26	0.034
Chrdl1	83453	chordin-like 1	68 32	107 40	6.20	5.12	0.003
Chrna?	110902	cholinergic recentor, nicotinic, alpha polymentide 2 (neuronal)	13.91	9.41	0.60	0.64	0.002
Chrnaū	221252	cholinergic receptor, incotinic, alpha polypeptide 2 (neu olial)	0.00	9.41 8.21	0.00	0.04	0.002
Chrnh?	108042	cholinergic receptor, incotinic, apila polypeptide 2	6.12	5.51	0.00	0.11	0.010
ciii iib5	100045	enomiergie receptor, medunic, beta porypeptide 5	0.12	5.54	0.03	0.11	0.003

Cisd1	52637	CDGSH iron sulfur domain 1	153.74	131.51	5.75	4.89	0.026
Clca2	80797	chloride channel calcium activated 2	6.24	8.64	0.76	0.55	0.043
Clca3	23844	chloride channel calcium activated 3	5.88	5.38	0.19	0.06	0.045
Cldn1	12737	claudin 1	9.46	7.99	0.31	0.37	0.023
Cldn24	1000398	claudin 24	5.91	4.90	0.37	0.09	0.038
	01						
Cldn26	74720	claudin 26	10.71	9.72	0.16	0.29	0.025
Cldn5	12741	claudin 5	10.33	7.61	0.36	0.44	0.003
Clec2d	93694	C-type lectin domain family 2, member d	6.56	7.77	0.15	0.35	0.018
Clec4f	51811	C-type lectin domain family 4, member f	15.44	12.80	0.62	0.30	0.009
Clic1	114584	chloride intracellular channel 1	108.24	147.39	5.83	4.54	0.002
Clic5	224796	chloride intracellular channel 5	12.92	9.92	0.83	0.80	0.040
Clic6	209195	chloride intracellular channel 6	6.71	5.42	0.49	0.18	0.048
Clpx	270166	caseinolytic mitochondrial matrix peptidase chaperone subunit	87.43	110.05	5.86	4.54	0.022
Clrn2	624224	clarin 2	9.15	7.48	0.37	0.50	0.036
Clta	12757	clathrin, light polypeptide (Lca)	510.79	457.57	10.29	6.59	0.005
Cltc	67300	clathrin, heavy polypeptide (Hc)	332.02	377.09	11.86	11.29	0.033
Cmtm2b	75502	CKLF-like MARVEL transmembrane domain containing 2B	5.36	6.05	0.20	0.08	0.021
Cmtm7	102545	CKLF-like MARVEL transmembrane domain containing 7	56.58	42.44	4.34	3.63	0.047
Cnep1r1	382030	CTD nuclear envelope phosphatase 1 regulatory subunit 1	50.34	76.33	2.85	8.52	0.028
Cnga4	233649	cyclic nucleotide gated channel alpha 4	7.95	6.96	0.26	0.21	0.024
Cngb1	333329	cyclic nucleotide gated channel beta 1	19.56	16.87	0.55	0.60	0.016
Cnn3	71994	calponin 3, acidic	270.23	305.93	11.36	6.86	0.04
Cnot2	72068	CCR4-NOT transcription complex, subunit 2	155.62	179.37	4.61	7.14	0.031
Cntn6	53870	contactin 6	56.48	115.63	4.64	7.95	0.001
Col13a1	12817	collagen, type XIII, alpha 1	9.76	8.01	0.62	0.20	0.035
Col18a1	12822	collagen, type XVIII, alpha 1	10.92	8.27	0.84	0.08	0.020
Col1a1	12842	collagen, type I, alpha 1	203.31	165.67	9.33	6.64	0.017
Col2a1	12824	collagen, type II, alpha 1	18.75	23.38	0.63	1.78	0.050
Col4a4	12829	collagen, type IV, alpha 4	10.88	9.81	0.27	0.10	0.010
Col4a5	12830	collagen, type IV, alpha 5	10.92	9.45	0.26	0.12	0.002
Col6a4	68553	collagen, type VI, alpha 4	7.96	7.34	0.08	0.12	0.006
Col8a2	329941	collagen, type VIII, alpha 2	9.70	7.21	0.71	0.08	0.013
Col9a2	12840	collagen, type IX, alpha 2	30.65	22.06	1.78	1.37	0.009
Colec11	71693	collectin sub-family member 11	14.55	10.20	1.48	0.67	0.0
Commd4	66199	COMM domain containing 4	214.90	188.09	9.22	5.70	0.048
Copa	12847	coatomer protein complex subunit alpha	714.62	818.21	25.47	27.68	0.033
Cops4	26891	COP9 (constitutive photomorphogenic) homolog, subunit 4 (Arabidopsis thaliana)	167.97	202.97	5.80	11.91	0.038
Coq2	71883	coenzyme Q2 homolog, prenyltransferase (yeast)	28.19	36.77	1.78	2.15	0.022
COX1	17708	cytochrome c oxidase subunit I	1958.80	2203.15	40.15	81.63	0.036
COX1	17708	cytochrome c oxidase subunit I	1974.29	2201.90	16.77	86.25	0.041
Cox19	68033	cytochrome c oxidase assembly protein 19	46.81	53.95	0.69	2.53	0.035
COX3	17710	cytochrome c oxidase subunit III	2010.78	2191.49	50.85	48.12	0.042
Cox4i1	12857	cytochrome c oxidase subunit IV isoform 1	1101.53	912.27	27.63	25.93	0.002
Cox5b	12859	cytochrome c oxidase subunit Vb	223.98	168.08	13.03	8.13	0.011
Cox6b2	333182	cytochrome c oxidase subunit VIb polypeptide 2	162.82	114.59	9.38	3.68	0.003
Cps1	227231	carbamoyl-phosphate synthetase 1	8.22	7.27	0.27	0.24	0.038
Cracr2a	381812	calcium release activated channel regulator 2A	13.50	10.73	0.82	0.77	0.050
Cradd	12905	CASP2 and RIPK1 domain containing adaptor with death domain	17.01	13.19	1.34	0.58	0.04
Cramp11	57354	Crm, cramped-like (Drosophila)	38.65	51.80	1.61	4.67	0.037
Crb2	241324	crumbs homolog 2 (Drosophila)	7.91	6.22	0.57	0.22	0.033
Crct1	74175	cysteine-rich C-terminal 1	5.96	5.24	0.21	0.18	0.044
Crhr2	12922	corticotropin releasing hormone receptor 2	11.25	9.11	0.31	0.27	0.002
Crim1	50766	cysteine rich transmembrane BMP regulator 1 (chordin like)	22.99	33.28	2.11	1.84	0.010
Crisi	66586	carcionpin synthase 1	108.79	138.84	7.47	5.75	0.019
Crx0S	340024	cone-rou nomeobox, opposite strand	5.31	0.05	0.26	0.06	0.033
Cry002	12901	ti ystailill, Učla DZ	28.26	21.05	1.19	0.79	0.004
Csau Cef2=b2	12004	colony ctimulating factor 2 recentor hate 2 hour efficity (many hour	02.97	40.04	3.92	1.04	0.007
USIZED2	12984	coony sumulating factor 2 receptor, beta 2, low-affinity (granulocyte- macrophage)	22.54	18.43	0.40	1.29	0.023

Csmd1	94109	CUB and Sushi multiple domains 1	38.43	46.92	1.28	1.64	0.007
Csmd3	239420	CUB and Sushi multiple domains 3	80.42	101.20	5.93	5.21	0.039
Csn1s2b	12992	casein alpha s2-like B	6.05	6.82	0.12	0.28	0.043
Csnk2a2	13000	casein kinase 2, alpha prime polypeptide	172.04	195.32	5.77	5.32	0.03
Cstb	13014	cystatin B	404.90	351.06	7.73	16.30	0.024
Ctnna2	12386	catenin (cadherin associated protein), alpha 2	104.89	112.59	0.75	2.58	0.029
Ctns	83429	cystinosis penbropathic	58.95	84 04	3 47	3 5 1	0.002
Cts8	56094	cathensin 8	4 70	610	0.34	0.29	0.021
Ctsd	13033	cathepein D	740 18	788.89	7.31	9.87	0.021
Cttnhn2nl	00201	CTTNDD2 N torminal like	144.10	102.22	7.51	0.07	0.007
Cturbp2III	66065	grandlight the unidulate subunit 2 homolog (Chembe)	26.62	20.97	1.14	0.92	0.010
Citiz	00905	cytosone throu dylase subulit 2 homolog (5, politice)	50.05	29.07	1.14	0.50	0.00
Cuta	6/6/5	cutA divalent cation tolerance nomolog (E. coll)	050.31	514.97	41.01	21.41	0.02
Cx3cr1	13051	chemokine (C-X3-C motif) receptor 1	261.28	353.99	3.16	14.17	0.001
Cxcl13	55985	chemokine (C-X-C motif) ligand 13	13.38	9.01	0.75	0.37	0.00
Cxcr2	12765	chemokine (C-X-C motif) receptor 2	11.35	9.43	0.41	0.38	0.014
Cyb5a	109672	cytochrome b5 type A (microsomal)	218.52	181.00	3.32	11.05	0.017
Cyb5r2	320635	cytochrome b5 reductase 2	7.00	6.26	0.17	0.22	0.04
Cyp1b1	13078	cytochrome P450, family 1, subfamily b, polypeptide 1	6.34	5.37	0.04	0.34	0.029
Cyp26b1	232174	cytochrome P450, family 26, subfamily b, polypeptide 1	16.67	13.05	0.89	0.36	0.009
Cyp2d11	545123	cytochrome P450, family 2, subfamily d, polypeptide 11	4.06	3.69	0.06	0.11	0.021
Cyp2f2	13107	cytochrome P450, family 2, subfamily f, polypeptide 2	7.34	6.75	0.11	0.18	0.028
Cyp2j5	13109	cytochrome P450, family 2, subfamily j, polypeptide 5	5.42	5.03	0.11	0.11	0.047
Cyp2w1	545817	cytochrome P450, family 2, subfamily w, polypeptide 1	9.23	7.46	0.49	0.52	0.049
Cyp3a59	1000414	cytochrome P450, family 3, subfamily a, polypeptide 59	6.46	4.65	0.61	0.20	0.03
	49						
Cyp4a31	666168	cytochrome P450, family 4, subfamily a, polypeptide 31	5.05	6.76	0.45	0.38	0.027
Cysrt1	67859	cysteine rich tail 1	20.08	14.04	1.45	0.40	0.007
СҮТВ	17711	cytochrome b	2366.10	2623.74	52.30	61.24	0.019
D5Ertd683e	1005045	DNA segment, Chr 5, ERATO Doi 683, expressed	6.44	7.36	0.26	0.08	0.014
	56						
D6Ertd474e	52285	DNA segment Chr.6 ERATO Doi 474 expressed	7 48	632	0.29	0.27	0.026
Dah1	13131	disabled 1	113.87	96.49	4.61	1 2 3	0.011
Dact3	629378	danner homolog 3 antagonist of beta-catenin (xenonus)	11.80	14 51	0.18	1.06	0.046
Dagla	269060	diacylglycerol linase alpha	42 54	52.81	1.04	3.44	0.029
Dagla Dagle?	12142	dooth associated protein kingso 2	17.62	12.01	1.04	0.94	0.027
DapK2	72105	duckindin (ductrobucuin binding protein 1) domain containing 1	14.07	12.57	0.40	0.64	0.034
Dbiuu1	72105	dysbindin (dystrobrevin binding protein 1) domain containing 1	14.07	12.00	0.40	0.04	0.020
Dux2	105200	developing of an noneobox 2	29.00	23.00	0.22	0.79	0.040
Dedeza	195208	doublecortin domain containing 2a	11.55	9.75	0.32	0.48	0.021
Dcac2b	1005044	doublecortin domain containing 2b	9.71	7.50	0.53	0.24	0.009
	91						
Dclk1	13175	doublecortin-like kinase 1	105.06	127.62	6.42	4.70	0.030
Dcps	69305	decapping enzyme, scavenger	91.73	75.20	4.61	4.14	0.037
Dcst1	77772	DC-STAMP domain containing 1	10.30	8.36	0.25	0.44	0.009
Dcst2	329702	DC-STAMP domain containing 2	8.97	7.63	0.20	0.17	0.002
Dda1	66498	DET1 and DDB1 associated 1	28.90	24.12	1.57	1.14	0.049
Ddah2	51793	dimethylarginine dimethylaminohydrolase 2	113.30	93.52	5.09	1.07	0.01
Ddrgk1	77006	DDRGK domain containing 1	162.94	130.33	7.80	8.11	0.03
Ddx26b	236790	DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 26B	98.84	121.39	5.73	2.92	0.013
Ddx39	68278	DEAD (Asp-Glu-Ala-Asp) box polypeptide 39	48.06	37.91	2.28	1.03	0.007
Ddx39b	53817	DEAD (Asp-Glu-Ala-Asp) box polypeptide 39B	266.63	232.27	3.94	11.33	0.029
Ddx50	94213	DEAD (Asp-Glu-Ala-Asp) box polypeptide 50	144.57	164.72	6.37	4.87	0.046
Defa-ps12	654452	defensin, alpha, pseudogene 12	4.25	4.68	0.03	0.10	0.005
Defa-rs1	13218	defensin, alpha, related sequence 1	14.90	12.67	0.65	0.62	0.047
Defa-rs12	13221	defensin, alpha, related sequence 12	22.08	25.56	0.45	0.71	0.006
Defa-rs2	13222	defensin, alpha, related sequence 2	6.95	6.09	0.24	0.17	0.027
Defa-rs4	13223	defensin, alpha,, related sequence 4	8.13	7.17	0.29	0.18	0.03
Defb33	654453	defensin beta 33	12.79	10.28	0.58	0.44	0.014
Defb35	246084	defensin beta 35	10.53	7.81	0.88	0.37	0.029
Defh44-ns	654454	defensin beta 44. pseudogene	4.85	4 5 3	0.08	0.05	0.016
Defb8	244324	defensin heta 8	5 3 8	4.34	0.00	0.16	0.049
DenndEa	102/7	DENN /MADD domain containing 54	265.00	22/ 7/	13 70	17.20	0.077
DCUUU Ja	1734/	DENNY MADD domain containing SA	203.09	334.74	13./0	17.20	0.02

Dennd5b	320560	DENN/MADD domain containing 5B	25.85	38.60	1.51	4.77	0.04
Denr	68184	density-regulated protein	298.28	237.33	8.94	8.54	0.003
Depdc1a	76131	DEP domain containing 1a	24.56	41.88	2.95	5.72	0.036
Desi2	78825	desumoylating isopeptidase 2	14.07	22.06	0.73	2.17	0.013
Dgka	13139	diacylglycerol kinase, alpha	27.35	49.36	3.06	6.37	0.021
Dgke	56077	diacylglycerol kinase, epsilon	19.09	24.53	1.47	1.43	0.038
Dgkg	110197	diacylglycerol kinase, gamma	11.15	9.04	0.59	0.37	0.023
Dgki	320127	diacylglycerol kinase, iota	10.21	13.42	0.57	0.96	0.0
Dhcr24	74754	24-dehydrocholesterol reductase	666.85	494 15	28.40	34 29	0.008
Dhrs7h	216820	dehydrogenase/reductase (SDR family) member 7B	74 22	50.42	5 24	3 20	0.008
Dhrsx	236082	dehydrogenase/reductase (SDR family) X chromosome	25.48	21.89	0.91	1 10	0.046
Dhv30	72831	DFAH (Asp-Glu-Ala-His) hox polypentide 30	38 72	35.92	0.70	0.50	0.017
Dhx26	72162	DEAH (Acn Clu Ala Hic) hox polypoptide 36	156.61	176.60	2 70	6.56	0.021
DhyE7	106704	DEAH (Asp Clu Ala Asp (His) box polypeptide 50	190.01	64.40	1.76	4 5 6	0.051
Dian?	54004	dianhanous homolog 2 (Drosonhila)	14.21	10.21	0.92	1.50	0.02
Diap2	224122	diaminted in renal carcineme 2 (human)	14.21	19.21	0.03	1.52	0.03
DIFC2	224132	disrupted in renal carcinoma 2 (numan)	87.49	121.70	9.47	0.84	0.026
DKKI	13380	dickkopf nomolog 1 (Xenopus laevis)	11.63	10.02	0.55	0.22	0.035
DKKZ	56811	dickkopf nomolog 2 (Xenopus laevis)	10.35	9.07	0.22	0.22	0.006
Dlg4	13385	discs, large homolog 4 (Drosophila)	27.47	33.65	1.94	1.23	0.036
Dik1	13386	delta-like 1 homolog (Drosophila)	10.89	8.16	0.77	0.54	0.027
DII4	54485	delta-like 4 (Drosophila)	5.78	4.85	0.06	0.16	0.002
DII4	54485	delta-like 4 (Drosophila)	5.96	4.62	0.33	0.24	0.017
Dlx3	13393	distal-less homeobox 3	12.66	9.83	0.70	0.46	0.015
Dlx4	13394	distal-less homeobox 4	8.84	8.20	0.08	0.10	0.00
Dmrt2	226049	doublesex and mab-3 related transcription factor 2	10.11	9.50	0.19	0.13	0.039
Dmrtb1	56296	DMRT-like family B with proline-rich C-terminal, 1	30.48	23.47	1.80	2.16	0.047
Dmtn	13829	dematin actin binding protein	11.85	10.56	0.40	0.26	0.035
Dmwd	13401	dystrophia myotonica-containing WD repeat motif	42.91	34.30	3.31	1.00	0.047
Dmxl2	235380	Dmx-like 2	91.16	115.49	3.31	4.16	0.004
Dnaaf1	68270	dynein, axonemal assembly factor 1	14.25	10.49	1.07	0.66	0.025
Dnah3	381917	dynein, axonemal, heavy chain 3	6.02	5.34	0.05	0.17	0.009
Dnah6	330355	dynein, axonemal, heavy chain 6	7.17	6.62	0.16	0.08	0.021
Dnah9	237806	dynein, axonemal, heavy chain 9	8.27	7.66	0.23	0.09	0.044
Dnaic2	432611	dynein, axonemal, intermediate chain 2	15.11	10.90	0.55	0.91	0.007
Dnajb11	67838	DnaJ (Hsp40) homolog, subfamily B, member 11	402.08	356.22	9.41	14.53	0.038
Dnajc15	66148	DnaJ (Hsp40) homolog, subfamily C, member 15	105.17	172.50	13.23	18.48	0.025
Dnajc16	214063	DnaJ (Hsp40) homolog, subfamily C, member 16	54.71	44.94	2.65	0.47	0.011
Dnajc2	22791	Dnal (Hsp40) homolog, subfamily C, member 2	177.44	146.15	8.38	8.31	0.038
Dnaic22	72778	Dnal (Hsp40) homolog, subfamily C, member 22	11.22	9.05	0.37	0.38	0.007
Dnaic30	66114	Dnal (Hsp40) homolog, subfamily C, member 30	71.14	54.96	2.39	2.10	0.002
Dnd1	213236	dead end homolog 1 (zebrafish)	13.61	10.18	1.02	0.43	0.021
Dumbu	71972	dynamin hinding protein	24.13	37.00	193	2.06	0.004
Dock1	330662	dedicator of cytokinesis 1	96.93	138.47	4 30	8.11	0.004
Dock2	94176	dedicator of cyto-kinesis 2	13.87	18.93	0.78	1 4 2	0.021
Dock7	67299	dedicator of cytokinesis 7	72.24	104 22	7 71	6.32	0.021
Donev1	320615	doney family member 1	77.40	94.20	2.82	3.66	0.010
Dopey1	269040	diffuse paphronchiolitis critical region 1 (human)	9.44	6.02	0.22	0.24	0.011
Dpci 1	72602	davalanmantal physicatangy associated 4	6.29	0.93 E 20	0.23	0.34	0.010
Dppa4	73093	developmental pluripotency associated 4	0.30	5.30	0.55	0.21	0.042
Dpy1912	320752	dpy-19-like 2 (C. elegans)	5.66	5.20	0.17	0.08	0.047
Dpya	99586	dinydropyrimidine denydrogenase	19.86	26.29	1./4	1.92	0.048
Drap1	66556	Dr1 associated protein 1 (negative cofactor 2 alpha)	197.75	169.66	9.61	6.14	0.05
Dtl	76843	denticleless homolog (Drosophila)	15.59	22.61	1.88	1.61	0.030
Dtna	13527	dystrobrevin alpha	78.72	103.85	6.07	8.23	0.049
Dtwd2	68857	DTW domain containing 2	11.18	14.09	0.54	0.79	0.022
Dusp7	235584	dual specificity phosphatase 7	105.13	93.71	1.30	1.18	0.001
Dynll2	68097	dynein light chain LC8-type 2	151.45	122.91	6.30	2.79	0.006
Eaf2	106389	ELL associated factor 2	7.10	6.06	0.22	0.17	0.010
Ear10	93725	eosinophil-associated, ribonuclease A family, member 10	3.50	4.35	0.09	0.30	0.03
Ebag9	55960	estrogen receptor-binding fragment-associated gene 9	177.56	218.99	10.58	9.68	0.028
Ecsit	26940	ECSIT homolog (Drosophila)	72.39	57.03	4.16	4.12	0.039
Edn2	13615	endothelin 2	8.74	7.16	0.16	0.34	0.006

Efcab12	212516	EF-hand calcium binding domain 12	6.95	5.49	0.50	0.22	0.037
Efcc1	58229	EF hand and coiled-coil domain containing 1	13.33	11.48	0.56	0.49	0.05
Efhb	211482	EF hand domain family, member B	7.27	6.08	0.21	0.19	0.005
Egr4	13656	early growth response 4	13.24	11.09	0.67	0.51	0.043
Ehd1	13660	EH-domain containing 1	51.84	34.76	2.19	2.55	0.002
Ehd1	13660	EH-domain containing 1	544.77	388.38	24.69	40.99	0.02
Eif1ax	66235	eukaryotic translation initiation factor 1A, X-linked	757.12	646.53	29.76	31.97	0.045
Eif2b1	209354	eukaryotic translation initiation factor 2B, subunit 1 (alpha)	35.05	45.73	1.76	2.71	0.016
Eif4a2	13682	eukaryotic translation initiation factor 4A2	1207.98	1579.63	72.03	26.70	0.00
Eif4a2	13682	eukaryotic translation initiation factor 4A2	159.51	234.12	26.67	12.89	0.045
Elf3	13710	E74-like factor 3	5.42	5.10	0.06	0.09	0.027
Elf5	13711	E74-like factor 5	4.99	4.26	0.25	0.12	0.040
Elov13	12686	elongation of very long chain fatty acids (FEN1/Elo2, SUR4/Elo3,	5.40	4.59	0.20	0.12	0.013
		yeast)-like 3					
Elp2	58523	elongator acetyltransferase complex subunit 2	81.37	98.63	3.60	5.72	0.043
Elp3	74195	elongator acetyltransferase complex subunit 3	31.02	39.72	1.15	2.28	0.01
Eme1	268465	essential meiotic endonuclease 1 homolog 1 (S. pombe)	8.30	7.39	0.09	0.20	0.006
Eml3	225898	echinoderm microtubule associated protein like 3	16.43	13.48	0.98	0.42	0.033
Engase	217364	endo-beta-N-acetylglucosaminidase	16.14	12.97	0.90	0.69	0.031
Enho	69638	energy homeostasis associated	45.59	37.51	2.70	0.58	0.026
Enox1	239188	ecto-NOX disulfide-thiol exchanger 1	20.83	27.82	1.76	1.18	0.016
Enpep	13809	glutamyl aminopeptidase	6.23	5.60	0.10	0.17	0.020
Eomes	13813	eomesodermin homolog (Xenonus laevis)	7.24	5.97	0.18	0.33	0.015
Epb4.113	13823	erythrocyte protein band 4.1-like 3	178.55	145.07	12.45	5.64	0.050
Epb 1115	226352	erythrocyte protein band 41-like 5	51 18	75 33	2.62	2.77	0.001
Epb 1.115	220332	Enh recentor A10	20.63	17 35	0.44	0.88	0.001
Epharo Fnhh4	13846	Enh recentor B4	9.83	7.80	0.64	0.00	0.010
Epito i Enm?a	13853	enilensy, progressive myoclonic enilensy, type 2 gene alpha	14.24	20.54	1.21	1.60	0.07
Epin2u Epin2	13855	ensin 2	220.31	257.29	4.40	6.03	0.02
Epn2	13856	eruthronoietin	7 20	5 99	0.37	0.03	0.032
Epo	107508	glutamul-produl-tRNA synthetase	301.05	286.77	3 29	3.69	0.032
Epro Encell2	98845	FDSS-like 2	936	7 75	0.23	0.32	0.020
Epsoiz	13861	encinonhil nerovidace	7.15	6.19	0.25	0.32	0.007
Epx Fral1	57027	Era (Carotaia) like 1 (E coli)	26 70	45.11	2 1 1	1 50	0.037
Eran1	00000	andonlasmis reticulum aminonentidase 1	25.62	40.74	1.00	2.05	0.020
Erap1 Erbh4	12960	u orb a anythroblastia laukamia uiral anaagana hamalag 4 (aujan)	200.47	259.62	0.56	12 52	0.010
EIDD4	13009	FLVS /DAD6 interesting /CAST family member 2	200.47	42.00	0.30	2.40	0.020
EIC2	230900	ELKS/KADO-Interacting/CAST failing interiber 2	34.70	45.90	1.90	2.40	0.025
EICCOI	230930	complementation group 6 like	11.05	10.30	1.11	0.98	0.012
Eri1	67276	exoribonuclease 1	66.85	82.80	3.54	4.99	0.040
Erlin2	244373	ER lipid raft associated 2	65.52	95.04	5.35	9.30	0.033
Ero1l	50527	ER01-like (S. cerevisiae)	108.43	155.05	8.88	12.31	0.022
Esp24	1001267 76	exocrine gland secreted peptide 24	3.53	3.85	0.10	0.07	0.037
Espnl	227357	espin-like	11.86	9.62	0.59	0.40	0.020
Esr1	13982	estrogen receptor 1 (alpha)	8.13	7.59	0.18	0.03	0.023
Esr2	13983	estrogen receptor 2 (beta)	9.03	7.71	0.37	0.35	0.040
Esrrg	26381	estrogen-related receptor gamma	13.74	11.16	0.46	0.32	0.004
Etfb	110826	electron transferring flavoprotein, beta polypeptide	222.58	184.46	12.28	6.02	0.032
Etl4	208618	enhancer trap locus 4	10.50	8.98	0.45	0.22	0.023
Etnk2	214253	ethanolamine kinase 2	9.48	10.54	0.23	0.25	0.020
Etohi1	626848	ethanol induced 1	16.94	33.91	1.13	6.81	0.049
Etos1	114660	ectopic ossification 1	11.04	8.40	0.58	0.56	0.017
Etv2	14008	ets variant 2	7.43	6.39	0.23	0.31	0.034
Etv5	104156	ets variant 5	253.95	374.39	27.59	14.23	0.008
Eva1a	232146	eva-1 homolog A (C. elegans)	8.27	6.81	0.50	0.17	0.033
Evpl	14027	envoplakin	11.53	10.06	0.53	0.27	0.047
Exoc31	277978	exocyst complex component 3-like	9.99	8.29	0.62	0.20	0.039
Exoc3l4	74190	exocyst complex component 3-like 4	10.66	7.96	0.28	0.47	0.003
Exoc5	105504	exocyst complex component 5	208.45	244.81	1.24	4.61	0.000
Eya1	14048	eyes absent 1 homolog (Drosophila)	142.30	218.53	4.34	10.96	0.001

F3	14066	coagulation factor III	37.09	50.75	0.59	4.75	0.03
F8	14069	coagulation factor VIII	10.48	8.49	0.48	0.20	0.009
F8a	14070	factor 8-associated gene A	12.72	15.21	0.42	0.66	0.018
Faah	14073	fatty acid amide hydrolase	26.12	37.21	1.16	4.16	0.042
Fancm	104806	Fanconi anemia, complementation group M	28.64	37.01	0.99	3.00	0.038
Fank1	66930	fibronectin type 3 and ankyrin repeat domains 1	7.40	6.68	0.07	0.25	0.032
Fau	14109	Finkel-Biskis-Reilly murine sarcoma virus (FBR-MuSV) ubiquitously	1770.89	1602.26	19.02	20.41	0.001
		expressed (fox derived)					
Fbn1	14118	fibrillin 1	14.53	20.59	0.40	1.46	0.007
Fbxl17	50758	F-box and leucine-rich repeat protein 17	52.91	73.51	4.66	5.33	0.027
Fbxl20	72194	F-box and leucine-rich repeat protein 20	47.59	66.66	3.62	3.44	0.009
Fbxo2	230904	F-box protein 2	31.48	21.89	1.77	1.18	0.004
Fbxo21	231670	F-box protein 21	85.23	106.84	2.98	2.48	0.001
Fbxo25	66822	E-box protein 25	38.16	50.41	4.09	2.10	0.001
Fbxw16	320083	E-box and WD-40 domain protein 16	9.26	13.66	0.62	1.64	0.041
ForlE	220602	For recenter like E	9.07	204	0.02	0.22	0.040
Ferlé	677206	Fe receptor-like 5	10.00	0.04	0.11	0.22	0.000
Edna	110106	formagel diphogenhate comthetese	T0.90	276 11	40.30	22.05	0.01
Fups	110190		504.60	570.11	40.24	52.95	0.040
Fer114	/4562	rer-1-like 4 (C. elegans)	1.72	6.67	0.34	0.23	0.04
Fgd1	14163	FYVE, KNOGEF and PH domain containing 1	41.88	33.43	2.35	2.48	0.048
Fgd4	224014	FYVE, RhoGEF and PH domain containing 4	28.09	51.59	1.43	4.86	0.004
Fgf16	80903	fibroblast growth factor 16	5.13	5.85	0.19	0.12	0.018
Fgf17	14171	fibroblast growth factor 17	10.97	8.55	0.39	0.18	0.001
Fgf21	56636	fibroblast growth factor 21	9.08	7.69	0.17	0.32	0.009
Fgf6	14177	fibroblast growth factor 6	6.31	5.38	0.17	0.23	0.018
Fign12	668225	fidgetin-like 2	16.11	12.84	0.65	0.83	0.021
Fitm1	68680	fat storage-inducing transmembrane protein 1	7.44	6.31	0.20	0.10	0.002
Fjx1	14221	four jointed box 1 (Drosophila)	152.30	117.48	10.92	7.35	0.038
Fkbp10	14230	FK506 binding protein 10	17.51	15.33	0.36	0.61	0.021
Fkbp8	14232	FK506 binding protein 8	71.22	63.95	0.45	1.82	0.008
Flrt2	399558	fibronectin leucine rich transmembrane protein 2	30.69	51.94	2.91	3.56	0.004
Fmo9	240894	flavin containing monooxygenase 9	6.68	5.78	0.25	0.26	0.047
Fndc3a	319448	fibronectin type III domain containing 3A	106.44	129.01	4.25	7.90	0.046
Folr4	64931	folate receptor 4 (delta)	17.85	16.11	0.27	0.27	0.004
Fopnl	66086	Fgfr1op N-terminal like	5.86	5.25	0.12	0.15	0.020
Foxa1	15375	forkhead box A1	7.73	6.32	0.15	0.20	0.001
Foxe1	110805	forkhead box E1	11.21	12.90	0.35	0.18	0.005
Foxh1	14106	forkhead box H1	6.87	5.42	0.42	0.19	0.020
Foxi2	270004	forkhead box I2	16.26	12.91	0.81	0.52	0.013
Foxi3	232077	forkhead box I3	8.30	7.16	0.41	0.21	0.047
Fox12	26927	forkhead box L2	8.71	6.48	0.66	0.44	0.031
Foxr1	382074	forkhead box B1	11.65	10.04	0.29	0.30	0.009
Foxred2	239554	FAD-dependent oxidoreductase domain containing 2	20.36	33.69	1.87	146	0.001
Fngs	14287	folvlnolvglutamyl synthetase	11.09	8.67	0.78	0.60	0.050
Frac1	231470	Fraser syndrome 1 homolog (human)	7 35	855	0.18	0.00	0.003
Frmd4a	209630	FERM domain containing 44	242.90	160.25	14.54	13.66	0.005
Frmd6	210710	FEDM domain containing 6	12.70	14.61	0.40	0.71	0.000
Frmd7	205254	FERM domain containing 7	12.42	12.01	0.40	0.71	0.030
Fillu /	1001262	fibroblest growth faster recenter substrate 2, appealte strand	7.07	0.44	0.00	0.17	0.020
F15505	1001202	introduast growth factor receptor substrate 5, opposite straind	7.07	9.44	0.09	0.04	0.010
F	42	for the barrels of the barreline method (Charren de contractor	0.00	F 7F	0.72	0.10	0.02
FSCH2	238021	rascin nomolog 2, actin-bundling protein, retinal (Strongylocentrotus	8.08	5.75	0.72	0.10	0.02
7.14	000	purpuratus)					0.07.
Fstl4	320027	roinstatin-like 4	7.57	6.37	0.28	0.26	0.021
Gaa	14387	glucosidase, alpha, acid	72.76	57.98	3.22	4.98	0.05
Gab3	210710	growth factor receptor bound protein 2-associated protein 3	29.10	42.83	1.49	3.10	0.007
Gabbr2	242425	gamma-aminobutyric acid (GABA) B receptor, 2	81.85	93.51	1.67	4.11	0.039
Gabrr2	14409	gamma-aminobutyric acid (GABA) C receptor, subunit rho 2	9.56	8.04	0.49	0.20	0.029
Galnt2	108148	UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-	23.39	29.97	0.79	2.56	0.049
		acetylgalactosaminyltransferase 2					
Galnt9	231605	UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-	12.26	10.05	0.41	0.15	0.002
		acetylgalactosaminyltransferase 9					

Gapt	238875	Grb2-binding adaptor, transmembrane	6.62	6.12	0.12	0.05	0.010
Gareml	242915	GRB2 associated, regulator of MAPK1-like	30.13	18.23	2.64	1.83	0.010
Gart	14450	phosphoribosylglycinamide formyltransferase	41.32	49.48	1.80	1.96	0.022
Gas7	14457	growth arrest specific 7	67.22	47.43	6.48	4.43	0.045
Gas8	104346	growth arrest specific 8	54.92	39.51	2.74	2.57	0.006
Gatsl2	80909	GATS protein-like 2	25.05	35.14	0.97	0.91	0.000
Gbx2	14472	gastrulation brain homeobox 2	7.02	5.72	0.45	0.27	0.048
Gcgr	14527	glucagon receptor	14.82	11.41	0.90	0.27	0.011
Gck	103988	glucokinase	11.95	9.16	0.31	0.50	0.003
Gcsh	68133	glycine cleavage system protein H (aminomethyl carrier)	65.76	52.59	0.56	2.09	0.001
Gdnd3	68616	glyceronhosnhodiester nhosnhodiesterase domain containing 3	879	7.21	0.47	0.37	0.038
Gem	14579	GTP hinding protein (gene overexpressed in skeletal muscle)	19.40	15.60	0.95	0.68	0.018
Cfnt1	14583	glutamine fructose_6-nhosnhate transaminase 1	136.01	165.88	5.73	7 20	0.020
Cfy	14303	golgi accociated elfactory cignaling regulator	26 54	21.20	1.02	1.20	0.020
uly	1000399 F2	goigi-associated offactory signaling regulator	20.34	21.30	1.02	1.27	0.010
Cat	22007	gamma glutamultranafanaga E	0.76	10.47	0.26	0 5 9	0.049
Ggt5	23887	gamma-glutamyltransferase 5	8.76	10.47	0.36	0.58	0.048
GIST	208188		10.21	7.46	0.98	0.13	0.031
Gid4	66771	GID complex subunit 4, VID24 homolog (S. cerevisiae)	72.95	95.61	8.38	2.98	0.04
Gid8	76425	GID complex subunit 8 homolog (S. cerevisiae)	36.91	53.41	3.57	4.14	0.024
Gimap3	83408	GTPase, IMAP family member 3	9.47	10.50	0.26	0.32	0.045
Gipr	381853	gastric inhibitory polypeptide receptor	12.66	10.39	0.73	0.24	0.026
Gjb2	14619	gap junction protein, beta 2	29.53	20.88	2.48	1.22	0.020
Gjb4	14621	gap junction protein, beta 4	8.18	6.71	0.46	0.30	0.037
Glp1r	14652	glucagon-like peptide 1 receptor	6.76	5.86	0.11	0.24	0.015
Gm13238	236069	carnitine deficiency-associated gene expressed in ventricle 3	10.27	6.75	1.10	0.79	0.040
		pseudogene					
Gm13369	1005027	heterogeneous nuclear ribonucleoprotein A3-like	12.76	17.29	0.39	0.62	0.001
	43						
Gm41	245502	melanoma antigen, family B, 4 pseudogene	15.21	19.43	0.96	1.32	0.041
Gm4910	236844	predicted pseudogene 4910	9.88	8.69	0.29	0.15	0.010
Gm4926	237749	T-cell immunoglobulin and mucin domain containing 2 pseudogene	6.72	5.84	0.23	0.25	0.039
Gm6194	620966	transmembrane protein 189 pseudogene	17.09	14.00	0.78	0.61	0.020
Gm6238	621542	predicted pseudogene 6238	34.24	39.69	1.57	1.47	0.044
Gm6981	629557	glyceraldehyde-3-phosphate dehydrogenase pseudogene	58.77	83.72	2.35	4.72	0.003
Gm8801	667766	protein phosphatase 1. regulatory subunit 10 pseudogene	20.88	17.49	0.68	0.88	0.022
Gnas	14683	GNAS (guanine nucleotide binding protein, alpha stimulating) complex	13.57	12.97	0.16	0.06	0.014
		locus					
Gnat1	14685	guanine nucleotide hinding protein alpha transducing 1	14.49	9.22	1 4 7	0.71	0.018
Gnat?	14686	guarine nucleotide binding protein, alpha transducing 2	1.17	1.17	0.15	0.05	0.010
Gnat3	242851	guanne nucleotide binding protein, alpha transducing 2	6.77	5.86	0.13	0.07	0.029
Gng11	66066	guarine nucleotide binding protein, apria transducing 5	69.20	5.00	4.22	1.60	0.03
Giig11	14706	guanne nucleotide binding protein (G protein), ganna 11	00.30	100.25	4.55	1.09	0.037
Gng4	14706	guanne nucleotide binding protein (G protein), gamma 4	81.03	109.25	5.20	9.49	0.043
Gngt2	14/10	guanine nucleotide binding protein (G protein), gamma transducing	31.94	22.81	2.95	1.58	0.034
		activity polypeptide 2					
Golt1a	68338	golgi transport 1 homolog A (S. cerevisiae)	14.32	9.75	1.53	0.53	0.030
Golt1b	66964	golgi transport 1 homolog B (S. cerevisiae)	229.86	276.09	15.27	10.76	0.048
Gpatch2	67769	G patch domain containing 2	24.66	32.03	1.29	2.16	0.026
Gpbp1	73274	GC-rich promoter binding protein 1	327.72	367.33	5.13	7.67	0.005
Gpc3	14734	glypican 3	86.63	64.00	4.22	5.25	0.015
Gpm6b	14758	glycoprotein m6b	644.24	815.50	17.52	18.90	0.001
Gpr141	353346	G protein-coupled receptor 141	5.17	4.75	0.15	0.04	0.037
Gpr142	217302	G protein-coupled receptor 142	11.89	10.10	0.56	0.21	0.025
Gpr182	11536	G protein-coupled receptor 182	9.69	11.95	0.04	0.86	0.039
Gpr45	93690	G protein-coupled receptor 45	6.63	8.07	0.11	0.39	0.012
Gpr55	227326	G protein-coupled receptor 55	12.12	8.35	1.03	0.27	0.012
Gpr62	436090	G protein-coupled receptor 62	43.44	30.30	4.25	2.48	0.037
Gpr82	319200	G protein-coupled receptor 82	6.82	10.71	0.27	0.86	0.005
Gpr83	14608	G protein-coupled receptor 83	7.91	10.77	0.50	0.77	0.0
Gpr97	54672	G protein-coupled receptor 97	10.79	8.02	0.82	0.56	0.032
Gpx1	14775	glutathione peroxidase 1	982.06	900.80	16.76	25.70	0.038
Gpx2	14776	glutathione peroxidase 2	3.97	5,14	0.09	0.38	0.023
•	-						-

Gramd1a	52857	GRAM domain containing 1A	139.27	104.16	7.88	5.19	0.010
Gramd3	107022	GRAM domain containing 3	274.63	208.54	13.90	21.44	0.041
Greb1l	381157	growth regulation by estrogen in breast cancer-like	14.13	11.56	0.64	0.82	0.047
Grem2	23893	gremlin 2 homolog, cysteine knot superfamily (Xenopus laevis)	8.25	6.93	0.38	0.15	0.017
Gria2	14800	glutamate receptor, ionotropic, AMPA2 (alpha 2)	453.10	539.59	12.81	20.32	0.011
Grik2	14806	glutamate receptor, ionotropic, kainate 2 (beta 2)	102.91	127.51	4.59	8.44	0.043
Grin1	14810	glutamate recentor ionotronic NMDA1 (zeta 1)	46.28	29.67	2.96	2 5 9	0.006
Grin3h	170483	glutamate receptor, ionotropic, NMDA1	12.78	10.89	0.62	0.23	0.000
Crm1	1/0405	glutamate receptor, fonoti opic, NMDASD	12.70	10.65	0.02	0.23	0.020
Gran 1	72600	glutaniae receptor, inclaboli opic 1	12.90	11.00	0.37	0.55	0.012
Grup1	14052	givene/arginne rich protein 1	20.00	41.04	0.29	1.05	0.029
Gspt2	14055		29.90	41.24	3.40	1.95	0.030
GStt2	148/2	giutatnione S-transferase, theta 2	7.05	5.33	0.29	0.15	0.002
Gtf2a1	83602	general transcription factor II A, 1	234.59	251.24	5.40	2.58	0.032
Gtf2f1	98053	general transcription factor IIF, polypeptide 1	144.44	110.18	11.48	6.53	0.04
Gtsf1	74174	gametocyte specific factor 1	5.66	5.05	0.23	0.08	0.043
Gucy2c	14917	guanylate cyclase 2c	12.82	11.31	0.41	0.13	0.01
Guk1	14923	guanylate kinase 1	122.75	100.72	6.17	1.80	0.014
Gulo	268756	gulonolactone (L-) oxidase	10.93	7.95	0.59	0.17	0.003
Gyltl1b	228366	glycosyltransferase-like 1B	7.35	6.33	0.31	0.03	0.017
H2afb1	68231	H2A histone family, member B1	15.38	11.46	0.93	0.27	0.007
H2bfm	69389	H2B histone family, member M	8.25	9.36	0.13	0.39	0.035
Hck	15162	hemopoietic cell kinase	18.96	14.62	0.76	0.72	0.006
Hdac11	232232	histone deacetylase 11	14.71	13.41	0.34	0.27	0.024
Hdx	245596	highly divergent homeobox	15.72	21.44	1.15	1.03	0.010
Heg1	77446	HEG homolog 1 (zebrafish)	54.29	35.92	4.18	3.71	0.02
Hemt1	15202	hematopoietic cell transcript 1	7.62	6.45	0.37	0.19	0.03
Henmt1	66715	HEN1 methyltransferase homolog 1 (Arabidopsis)	10.41	8.63	0.64	0.16	0.036
Heph	15203	hephaestin	10.88	8.89	0.46	0.49	0.026
Herc1	235439	hect (homologous to the E6-AP (UBE3A) carboxyl terminus) domain	84.85	100.23	2.47	3.77	0.014
		and RCC1 (CHC1)-like domain (RLD) 1					
Hhatl	74770	hedgehog acyltransferase-like	14.10	10.86	0.65	0.09	0.003
Hhex	15242	hematonoietically expressed homeobox	20.69	15.97	1 4 4	1.01	0.036
Hhinl1	214305	hedgehog interacting protein-like 1	7.23	7.86	0.18	0.13	0.030
High1	214303	histone duster 1 U2bh	1.25	6.40	0.10	0.15	0.032
Hist2h2ab	621902	historie cluster 1, 11201	4.00	102.25	6.70	16.40	0.010
HIStZIIZAD	021095		127.05	103.25	0.79	10.40	0.020
Hivep2	152/3	numan immunodeficiency virus type i ennancer binding protein 2	32.13	45.85	1.30	2.56	0.0
Hmg20a	66867	high mobility group 20A	134.19	170.95	7.54	8.42	0.017
Hmgcll1	208982	3-hydroxymethyl-3-methylglutaryl-Coenzyme A lyase-like 1	14.41	20.64	1.17	2.12	0.042
Hmgn5	50887	high-mobility group nucleosome binding domain 5	65.29	81.26	0.78	6.04	0.04
Hnf1b	21410	HNF1 homeobox B	6.56	6.03	0.07	0.10	0.005
Hnmt	140483	histamine N-methyltransferase	19.14	28.77	1.69	2.75	0.025
Hnrnpab	15384	heterogeneous nuclear ribonucleoprotein A/B	946.11	835.50	10.83	17.47	0.002
Hnrnpk	15387	heterogeneous nuclear ribonucleoprotein K	205.49	227.00	2.52	7.52	0.04
Hnrnpm	76936	heterogeneous nuclear ribonucleoprotein M	727.83	663.70	15.49	19.13	0.040
Homer3	26558	homer homolog 3 (Drosophila)	15.12	13.06	0.47	0.50	0.024
Hottip	791364	Hoxa distal transcript antisense RNA	8.89	6.74	0.84	0.26	0.050
Hoxa13	15398	homeobox A13	8.83	7.31	0.11	0.10	6E-05
Hoxa5	15402	homeobox A5	8.10	6.70	0.48	0.14	0.030
Hoxaas3	72628	Hoxa cluster antisense RNA 3	10.32	8.96	0.28	0.31	0.017
Hoxb6	15414	homeobox B6	7.32	5.93	0.39	0.23	0.021
Hoxc13	15422	homeobox C13	6.71	5.79	0.19	0.06	0.004
Hoxd8	15437	homeobox D8	16.70	11.20	2.08	0.39	0.040
Hrh1	15465	histamine receptor H1	11.64	10.41	0.34	0.26	0.028
Hrh3	99296	histamine receptor H3	12,94	10.58	0.84	0.38	0.043
Hs3st3h1	54710	henaran sulfate (glucosamine) 3-0-sulfotransferase 3R1	11.89	9.38	0.56	0.50	0.021
He3et4	628770	heparan sulfate (glucosamine) 3-0-sulfotransforase A	11.09	9.50 Q QQ	0.15	0.41	0.021
Hed11b2	15404	hydroxysteroid 11-heta dehydrogenace 2	10.14	14.24	0.15	0.41	0.024
Hed17b12	242160	hydroxysteroid (17 bata) dahudrocanasa 12	6.02	14.34 E 72	0.04	0.40	0.002
nsu1/013	245108	hyun oxysteroin (17-beta) nenyun ogenase 13	0.93	5./3	0.39	0.12	0.020
11512	15500	heat shock factor 2	109.63	135.83	3.30	8.49	0.028
Hst3	245525	neat snock transcription factor 3	4.58	4.27	0.06	0.10	0.035
Htr3b	57014	5-hydroxytryptamine (serotonin) receptor 3B	10.07	8.09	0.45	0.30	0.010

Hydin	244653	HYDIN, axonemal central pair apparatus protein	7.22	6.63	0.16	0.16	0.040
Ido2	209176	indoleamine 2,3-dioxygenase 2	11.68	9.82	0.53	0.38	0.029
lffo1	320678	intermediate filament family orphan 1	68.78	51.62	3.04	1.00	0.002
lfit1	15957	interferon-induced protein with tetratricopeptide repeats 1	17.53	14.69	0.50	0.96	0.040
Ifna5	15968	interferon alpha 5	31.20	23.84	2.40	1.78	0.049
Ifna9	15972	interferon alpha 9	8.20	5.97	0.85	0.25	0.045
Ifngr2	15980	interferon gamma receptor 2	61.33	79.30	2.92	2.37	0.003
Igf2	16002	insulin-like growth factor 2	29.81	22.51	2.28	1.72	0.043
lgf2bp2	319765	insulin-like growth factor 2 mRNA binding protein 2	35.79	47.09	3.09	1.57	0.017
Igfals	16005	insulin-like growth factor binding protein, acid labile subunit	8.66	7.44	0.34	0.35	0.048
Igfbp6	16012	insulin-like growth factor binding protein 6	13.17	9.00	0.82	0.54	0.005
Ighmbp2	20589	immunoglobulin mu binding protein 2	17.32	13.32	1.27	0.84	0.039
Ihh	16147	Indian hedgehog	23.31	20.14	0.88	0.82	0.039
ll1f10	215274	interleukin 1 family, member 10	11.02	9.62	0.27	0.31	0.014
ll1r1	16177	interleukin 1 receptor, type I	8.17	6.72	0.28	0.48	0.040
ll1rapl2	60367	interleukin 1 receptor accessory protein-like 2	5.99	4.76	0.09	0.12	0.000
ll1rl1	17082	interleukin 1 receptor-like 1	6.48	5.35	0.40	0.17	0.040
ll1rl2	107527	interleukin 1 receptor-like 2	7.17	6.61	0.07	0.08	0.002
ll27ra	50931	interleukin 27 receptor, alpha	16.08	13.89	0.58	0.32	0.016
1131	76399	interleukin 31	9.06	7.55	0.30	0.26	0.009
117	16196	interleukin 7	6.16	6.85	0.22	0.17	0.046
119	16198	interleukin 9	10.20	8.41	0.31	0.20	0.003
119r	16199	interleukin 9 receptor	11.99	9.77	0.47	0.66	0.034
Ing5	66262	inhibitor of growth family, member 5	25.71	20.20	1.68	0.49	0.020
Inpp1	16329	inositol polyphosphate-1-phosphatase	24.60	32.51	1.79	1.19	0.010
Inpp5j	170835	inositol polyphosphate 5-phosphatase J	11.64	10.13	0.26	0.32	0.010
Ints6	18130	integrator complex subunit 6	83.07	94.89	0.56	2.23	0.002
Ints8	72656	integrator complex subunit 8	75.83	93.71	2.19	6.12	0.033
Intu	380614	inturned planar cell polarity effector homolog (Drosophila)	11.49	9.57	0.47	0.44	0.024
Ipo13	230673	importin 13	234.23	178.64	10.26	6.44	0.004
Ipo4	75751	importin 4	78.57	59.90	6.89	2.90	0.047
Igca	74918	IO motif containing with AAA domain	6.32	5.46	0.30	0.15	0.042
lacf1	74267	IO motif containing F1	5.68	7.13	0.45	0.34	0.044
lack	434232	IO motif containing K	7.77	6.52	0.47	0.15	0.047
Irak2	108960	interleukin-1 receptor-associated kinase 2	19.57	15.26	0.61	0.95	0.009
Irak3	73914	interleukin-1 receptor-associated kinase 3	8.66	6.27	0.69	0.38	0.02
Ireb2	64602	iron responsive element binding protein 2	95.81	113.51	3.57	1.64	0.004
Irf2bp1	272359	interferon regulatory factor 2 binding protein 1	67.93	48.21	5.43	3.23	0.02
Irf6	54139	interferon regulatory factor 6	8.17	6.62	0.38	0.30	0.018
Irs3	16369	insulin receptor substrate 3	9.50	7.49	0.51	0.53	0.033
Irx4	50916	Iroquois related homeobox 4 (Drosophila)	9.07	7.84	0.20	0.35	0.023
Isca2	74316	iron-sulfur cluster assembly 2 homolog (S. cerevisiae)	192.19	167 78	638	4 30	0.019
Isl1	16392	ISI.1 transcription factor LIM/homeodomain	7 56	625	0.46	0.11	0.033
Itih51-ns	634882	inter-alpha (globulin) inhibitor H5-like nseudogene	6.06	5 3 9	0.19	0.19	0.048
Itsn1	16443	intersectin 1 (SH3 domain protein 1A)	33 45	39 59	2.17	0.74	0.037
lam3	83964	iunction adhesion molecule 3	312.23	271.38	4.27	15.61	0.045
Jmid1c	108829	jumonii domain containing 1C	354.86	397 57	8,11	13.48	0.035
Itb	23922	jumping translocation breakpoint	138 53	110 53	2.68	3,28	0.001
Kansl1l	68691	KAT8 regulatory NSL complex subunit 1-like	22.95	2934	1.91	1 39	0.035
Kat2a	14534	K(lysine) acetyltransferase 2A	81 43	73.18	1.25	3.06	0.047
Katnh1	74187	katanin n80 (WD40-containing) subunit B 1	64 49	51 42	2.64	1 58	0.01
Kena5	16493	notassium voltage-gated channel shaker-related subfamily member 5	835	676	0.33	0.26	0.01
Kcnd1	16506	potassium voltage-gated channel Shal-related family member 1	23.87	18.89	1 38	1.13	0.031
Kcne1	16500	notassium voltage-gated channel. Jek-ralated cubfamily, member 1	7 97	675	0.24	0.07	0.003
Keng3	225020	notassium voltage-gated channel, subfamily C. member 2	9.71	7 10	0.24	0.07	0.003
Kenh6	102775	notassium voltage-gated channel, subfamily U (and related), member	756	6.52	0.74	0.25	0.017
Kullu	1921/3	6	7.50	0.55	0.29	0.10	0.022
KeniQ	16524	v notascium inwardly-rectifying chappel subfamily I member 0	11 72	0 72	0.76	0.12	0.041
Kenk12	210741	potassium inwarury-recurying chailler, sublatility J, ittelliber 9	11.72	9.72	0.70	0.12	0.041
Kenk4	16520	potassium channel, subfamily K, member 12	10.97	9.21	0.49	0.75	0.021
Kenmb?	10528	potassium channel, suoranny K, member 4	10.8/	14.27	0.75	0.74	0.005
KCHIIID2	/2413	potassium large conductance calcium-activated channel, subfamily M,	17.06	11.2/	2.02	0.89	0.039

		beta member 2					
Kcnmb3	1005028	potassium large conductance calcium-activated channel, subfamily M,	10.96	8.46	0.69	0.46	0.024
	76	beta member 3					
Kcnn1	84036	potassium intermediate/small conductance calcium-activated	20.51	14.29	1.13	1.12	0.008
		channel, subfamily N, member 1					
Kcnn4	16534	potassium intermediate/small conductance calcium-activated	10.28	8.71	0.54	0.23	0.037
		channel, subfamily N, member 4					
Kcnq2	16536	potassium voltage-gated channel, subfamily Q, member 2	19.91	21.94	0.48	0.67	0.050
Kcnq4	60613	potassium voltage-gated channel, subfamily Q, member 4	16.21	12.72	0.81	0.41	0.008
Kcns1	16538	K+ voltage-gated channel, subfamily S, 1	8.70	7.10	0.32	0.49	0.03
Kcns2	16539	K+ voltage-gated channel, subfamily S, 2	10.42	8.67	0.29	0.52	0.026
Kctd13	233877	potassium channel tetramerisation domain containing 13	71.01	56.48	2.60	4.45	0.030
Kctd7	212919	potassium channel tetramerisation domain containing 7	13.39	12.11	0.33	0.24	0.020
Kdelc1	72050	KDEL (Lys-Asp-Glu-Leu) containing 1	57.06	71.11	2.92	3.08	0.016
Kdelr1	68137	KDEL (Lys-Asp-Glu-Leu) endoplasmic reticulum protein retention	80.11	97.15	5.43	3.90	0.043
		receptor 1					
Kdelr2	66913	KDEL (Lys-Asp-Glu-Leu) endoplasmic reticulum protein retention	1099.88	1226.12	40.48	27.46	0.042
		receptor 2					
Kdm1b	218214	lysine (K)-specific demethylase 1B	29.98	42.66	2.82	3.66	0.034
Keg1	64697	kidney expressed gene 1	9.47	7.80	0.47	0.13	0.014
Kif12	16552	kinesin family member 12	8.84	7.09	0.39	0.36	0.017
Kif17	16559	kinesin family member 17	12.09	10.51	0.30	0.32	0.011
Kif4	16571	kinesin family member 4	28.52	39.62	3.69	2.08	0.040
Kif5a	16572	kinesin family member 5A	35.50	46.23	1.31	2.33	0.007
Klc1	16593	kinesin light chain 1	226.05	189.84	8.40	2.96	0.007
Klc3	232943	kinesin light chain 3	17.11	15.26	0.29	0.24	0.00
Klf14	619665	Kruppel-like factor 14	15.50	12.10	0.93	0.73	0.028
Klhl15	236904	kelch-like 15	23.65	19.15	1.09	1.17	0.031
Klhl25	207952	kelch-like 25	22.56	26.85	0.61	0.92	0.008
Klhl26	234378	kelch-like 26	33.42	25.48	0.13	1.70	0.003
Klhl30	70788	kelch-like 30	12.54	10.11	0.70	0.23	0.016
Klk1b24	16617	kallikrein 1-related peptidase b24	9.11	6.18	0.91	0.31	0.023
Kmt2a	214162	lysine (K)-specific methyltransferase 2A	105.27	142.10	6.85	10.28	0.025
Kncn	654462	kinocilin	12.73	10.21	0.64	0.41	0.016
Kpna6	16650	karvopherin (importin) alpha 6	60.32	76.49	5.05	3.57	0.040
Kremen2	73016	kringle containing transmembrane protein 2	12.15	10.32	0.19	0.19	0.000
Krt12	268482	keratin 12	13.38	10.67	0.52	0.51	0.010
Krt13	16663	keratin 13	10.38	8.88	0.26	0.35	0.014
Krt15	16665	keratin 15	5.94	7.29	0.21	0.33	0.014
Krt17	16667	keratin 17	5.08	4.53	0.19	0.06	0.032
Krt35	53617	keratin 35	9.38	8.21	0.26	0.26	0.019
Krt6b	16688	keratin 6B	7.30	5.66	0.12	0.30	0.002
Krt78	332131	keratin 78	14.40	12.33	0.69	0.38	0.039
Krt79	223917	keratin 79	10.62	8.74	0.50	0.24	0.015
Krt81	64818	keratin 81	29.00	20.44	1.52	1.35	0.01
Krt85	53622	keratin 85	10.45	8.76	0.10	0.28	0.001
Krt9	107656	keratin 9	7.91	6.54	0.31	0.22	0.011
Krtap19-1	170657	keratin associated protein 19-1	5.45	4.64	0.22	0.23	0.046
Krtan19-4	170654	keratin associated protein 19-4	51.71	41.59	2.48	3.13	0.044
Krtan28-13	71386	keratin associated protein 28-13	4.10	4.77	0.06	0.14	0.005
Krtan31-1	70831	keratin associated protein 31-1	7.50	9.80	0.25	0.80	0.034
Krtan5-1	50774	keratin associated protein 5-1	48 38	36.69	2.44	3 1 9	0.027
Krtap5-1	50774	keratin associated protein 5-1	49,78	40,11	1.47	3,62	0.048
Krtan5-3	77215	keratin associated protein 5-3	7.37	6.49	0.20	0.09	0.007
Krtap7-1	71363	keratin associated protein 7-1	8.00	5.48	0.88	0.13	0.030
Krtan9-5	435286	keratin associated protein 9-5	4 90	5.24	0.00	0.09	0.032
Lamtor4	66096	late endosomal /lysosomal adaptor MAPK and MTOR activator A	240.06	213 29	8.50	5 58	0.039
Lce1m	66203	late cornified envelope 1M	16.84	12.14	0.98	1.41	0.034
Lce3c	94060	late cornified envelope 20	112.06	84.68	5 52	6.42	0.02
Lemt1	30040	leucine carhovul methultransfarace 1	120.00	102.25	15 21	12 54	0.02
Len4	16871		5 00	193.23	0.06	13.30 0.19	0.030
LUIT	10021	npocann r	5.09	4.34	0.00	0.10	0.025

Lct	226413	lactase	8.24	6.90	0.49	0.17	0.042
Lctl	235435	lactase-like	10.62	9.43	0.48	0.07	0.050
Ldb3	24131	LIM domain binding 3	8.83	7.19	0.37	0.33	0.016
Lfng	16848	LFNG O-fucosylpeptide 3-beta-N-acetylglucosaminyltransferase	38.33	28.17	1.14	1.98	0.004
Lgals12	56072	lectin, galactose binding, soluble 12	6.46	5.43	0.32	0.05	0.019
Lgals3	16854	lectin, galactose binding, soluble 3	19.40	15.38	1.02	0.18	0.008
Lgr4	107515	leucine-rich repeat-containing G protein-coupled receptor 4	15.50	39.53	0.87	7.01	0.014
Lhx1	16869	LIM homeobox protein 1	9.31	8.20	0.29	0.26	0.030
Lhx5	16873	LIM homeobox protein 5	6.06	4.92	0.35	0.11	0.021
Lhx9	16876	LIM homeobox protein 9	6.42	5.87	0.06	0.09	0.002
Lim2	233187	lens intrinsic membrane protein 2	10.40	9.35	0.37	0.17	0.041
Lkaaear1	277496	LKAAEAR motif containing 1 (IKAAEAR murine motif)	6.27	5.42	0.16	0.09	0.003
Llnh	66225	LLP homolog long-term synantic facilitation (Aplysia)	521 73	377 36	26.14	13.63	0.003
Liph	66225	LLP homolog long-term synaptic facilitation (Aplysia)	25 70	15 33	3 31	0.79	0.023
Loyhd1	240411	linovygenase homology domains 1	7 37	6.47	0.14	0.18	0.025
Loanu 1	14745	lysonhosnhatidic acid recentor 1	19.16	56.07	0.83	1.67	0.012
Lpar2	E2079	lysophosphatidic acid receptor 1	0.67	7.60	0.05	0.49	0.012
Lpai 2	76112	lastoperovidase	10.20	9.4.4	0.30	0.40	0.029
LLO	70115		10.20	0.44	0.40	0.25	0.012
Lrm2	70530	leucine rich repeat and fibronectin type III domain containing 2	14.22	12.38	0.32	0.61	0.038
Lrguk	/4354	leucine-rich repeats and guanylate kinase domain containing	6.24	5.65	0.09	0.04	0.001
Lrmp	16970	lymphoid-restricted membrane protein	9.09	7.74	0.31	0.32	0.022
Lrp1	16971	low density lipoprotein receptor-related protein 1	198.48	27.08	11.83	1.04	7E-06
Lrp2	14725	low density lipoprotein receptor-related protein 2	8.39	7.23	0.17	0.18	0.004
Lrrc1	214345	leucine rich repeat containing 1	10.68	17.10	0.53	0.80	0.001
Lrrc3	237387	leucine rich repeat containing 3	19.05	15.92	0.62	0.65	0.013
Lrrc31	320352	leucine rich repeat containing 31	7.22	5.98	0.28	0.30	0.024
Lrrc42	77809	leucine rich repeat containing 42	156.74	109.25	7.34	8.45	0.005
Lrrc73	224813	leucine rich repeat containing 73	78.28	53.90	3.20	4.40	0.004
Lrrtm4	243499	leucine rich repeat transmembrane neuronal 4	98.24	122.47	6.80	3.85	0.021
Lrsam1	227738	leucine rich repeat and sterile alpha motif containing 1	18.43	15.34	0.70	0.69	0.020
Lsg1	224092	large subunit GTPase 1 homolog (S. cerevisiae)	130.21	105.87	6.86	3.31	0.019
Lsm7	66094	LSM7 homolog, U6 small nuclear RNA associated (S. cerevisiae)	856.96	701.58	19.21	8.20	0.000
Lsm7	66094	LSM7 homolog, U6 small nuclear RNA associated (S. cerevisiae)	731.75	626.94	24.17	21.25	0.017
Lsmem1	380755	leucine-rich single-pass membrane protein 1	12.39	10.76	0.45	0.38	0.032
Lta4h	16993	leukotriene A4 hydrolase	44.70	63.90	3.41	4.84	0.018
Ltbp2	16997	latent transforming growth factor beta binding protein 2	9.96	8.36	0.38	0.36	0.022
Lypd8	70163	LY6/PLAUR domain containing 8	9.45	7.25	0.11	0.39	0.002
Lysmd1	217779	LysM, putative peptidoglycan-binding, domain containing 1	24.11	44.00	2.05	6.00	0.020
Lvz1	17110	lysozyme 1	5.94	7.77	0.25	0.69	0.046
Macrod1	107227	MACRO domain containing 1	54.67	41.38	2.79	3.25	0.021
Magea1	17137	melanoma antigen, family A. 1	7.44	5.57	0.45	0.13	0.007
Magea10	236852	melanoma antigen family A 10	6.52	5 37	0.30	0.21	0.021
Magea?	17138	melanoma antigen family A 2	10.92	8 34	0.57	0.21	0.007
Magea2	17130	melanoma antigen, family A, 2	10.01	7 72	0.42	0.59	0.020
Magi2	50791	membrane associated guanulate kinase WW and PD7 domain	14.62	20.63	1.27	1.30	0.016
Magiz	50751	containing 2	14.02	20.05	1.27	1.50	0.010
Malt1	240354	mucosa associated lymphoid tissue lymphoma translocation gene 1	15.25	23.10	1.12	1.96	0.013
Maml2	270118	mastermind like 2 (Drosophila)	178.82	214.09	5.12	13.34	0.049
Man2a2	140481	mannosidase 2, alpha 2	71.18	93.68	5.01	3.45	0.010
Man2c1	73744	mannosidase, alpha, class 2C, member 1	19.55	16.04	1.23	0.71	0.0
Map3k12	26404	mitogen-activated protein kinase kinase kinase 12	21.64	15.12	1.45	1.59	0.023
Map3k6	53608	mitogen-activated protein kinase kinase kinase 6	10.79	9.13	0.36	0.22	0.007
Марб	17760	microtubule-associated protein 6	8.03	11.34	0.30	1.15	0.032
Map7d1	245877	MAP7 domain containing 1	124.79	100.62	7.07	3.27	0.021
Mapk8	26419	mitogen-activated protein kinase 8	138.24	180.02	8,89	4,88	0.006
Mankhn1	26390	mitogen-activated protein kinase binding protein 1	14 64	17 37	0.43	0.93	0.038
March4	381270	membrane-associated ring finger (C2HCA) A	10.07	8 2 2	0.75	0.75	0.011
Matr3	17194	matrin 3	528 60	620 76	22.78	34.32	0.050
Mb	17100	mualahin	0.21	7 4 2	0.27	0.25	0.030
Mb d4	17102	myogroum	9.21	7.43	0.27	0.35	0.007
MDd4	1/193	menuyi-upu binaing aomain protein 4	14.58	23.12	0.95	2.65	0.023
MDN11	56758	muscieblind-like 1 (Drosophila)	257.93	325.32	13.02	10.33	0.007

Mbtd1	103537	mbt domain containing 1	79.63	88.60	0.91	2.45	0.014
Mbtps1	56453	membrane-bound transcription factor peptidase, site 1	79.17	97.54	4.25	2.98	0.012
Mc1r	17199	melanocortin 1 receptor	8.76	6.91	0.50	0.27	0.017
Mc2r	17200	melanocortin 2 receptor	5.76	6.63	0.19	0.19	0.018
Mchr1	207911	melanin-concentrating hormone receptor 1	13.32	11.79	0.20	0.56	0.042
Mcm3	17215	minichromosome maintenance deficient 3 (S. cerevisiae)	34.93	46.40	1.50	3.19	0.017
Mcmbp	210711	MCM (minichromosome maintenance deficient) binding protein	105.10	134.25	4.17	10.07	0.037
Mcts1	68995	malignant T cell amplified sequence 1	41.55	54.89	2.16	4.51	0.04
Mdh1b	76668	malate dehydrogenase 1B, NAD (soluble)	4.98	4.40	0.20	0.13	0.048
Med10	28077	mediator complex subunit 10	14.10	11.19	0.41	0.68	0.011
Med11	66172	mediator complex subunit 11	27.49	21.31	1.07	0.87	0.004
Med14	26896	mediator complex subunit 14	81.98	101.42	6.65	3.23	0.039
Mep1a	17287	meprin 1 alpha	7.47	6.33	0.26	0.08	0.006
Mest	17294	mesoderm specific transcript	30.37	43.29	1.61	2.13	0.003
Mfn1	67414	mitofusin 1	168.50	215.24	9.80	5.39	0.006
Mfsd2b	432628	major facilitator superfamily domain containing 2B	13.15	11.53	0.40	0.25	0.013
Mgat1	17308	mannoside acetylglucosaminyltransferase 1	18.31	12.57	0.90	0.95	0.005
Mgat3	17309	mannoside acetylglucosaminyltransferase 3	152.90	114.31	3.84	6.38	0.002
Mgat4e	71001	MGAT4 family, member E	8.90	7.44	0.39	0.18	0.015
Mgp	17313	matrix Gla protein	312.09	97.58	80.90	21.64	0.043
Mir101b	724062	microRNA 101b	4.26	4.68	0.09	0.10	0.02
Mir137	387155	microRNA 137	3.80	4.51	0.06	0.17	0.007
Mir142	387160	microRNA 142	13.83	19.03	0.78	1.56	0.02
Mir149	387167	microRNA 149	59.82	42.63	2.32	3.29	0.005
Mir150	387168	microRNA 150	6.04	8.34	0.29	0.32	0.002
Mir184	387179	microRNA 184	7.31	9.62	0.40	0.48	0.010
Mir190b	1001244 81	microRNA 190b	3.47	3.80	0.04	0.08	0.011
Mir1946a	1003166 97	microRNA 1946a	40.49	27.66	4.63	1.94	0.043
Mir1946a	1003166 97	microRNA 1946a	47.92	32.70	4.65	3.90	0.046
Mir1953	1003167 04	microRNA 1953	5.40	4.16	0.13	0.16	0.001
Mir1961	1003168 41	microRNA 1961	3.58	3.76	0.04	0.06	0.046
Mir199b	387239	microRNA 199b	4.73	4.37	0.14	0.05	0.049
Mir1a-2	723959	microRNA 1a-2	4.96	8.13	0.48	1.07	0.035
Mir210	387206	microRNA 210	84.51	112.99	8.21	8.02	0.048
Mir211	387207	microRNA 211	6.10	4.82	0.45	0.20	0.039
Mir2137	1003167 79	microRNA 2137	172.69	108.39	10.87	7.44	0.003
Mir2137	1003167 79	microRNA 2137	140.41	101.58	9.00	12.80	0.048
Mir224	723894	microRNA 224	6.07	7.90	0.32	0.49	0.021
Mir290a	1000497 10	microRNA 290a	4.32	3.92	0.12	0.03	0.022
Mir301b	791069	microRNA 301b	19.34	27.35	1.57	2.65	0.040
Mir3091	1005265 56	microRNA 3091	51.93	30.52	4.84	4.83	0.020
Mir30a	387225	microRNA 30a	4.40	3.97	0.16	0.07	0.044
Mir3102	1005265 08	microRNA 3102	8.02	5.66	0.81	0.19	0.029
Mir3473d	1006285 92	microRNA 3473d	45.06	35.85	2.21	2.76	0.04
Mir382	723912	microRNA 382	6.07	4.80	0.37	0.17	0.021
Mir3961	1006286 21	microRNA 3961	9.25	13.20	0.68	1.35	0.04
Mir411	723936	microRNA 411	3.41	3.67	0.04	0.05	0.0
Mir431	723866	microRNA 431	14.71	11.52	0.78	0.96	0.04
Mir450-2	723938	microRNA 450-2	6.13	8.94	0.22	0.67	0.007

Mir450b	751532	microRNA 450b	3.36	3.50	0.04	0.03	0.047
Mir465	723888	microRNA 465	4.03	4.89	0.19	0.18	0.017
Mir466h	1001244	microRNA 466h	22.09	41.90	2.88	5.75	0.022
	46						
Mir466n	1005265	microRNA 466n	4.42	5.29	0.10	0.30	0.034
	24						
Mir467f	1003167	microRNA 467f	10.12	33 70	3 3 3	9.04	0.04.9
MII 4071	1003107	IIICI OKNA 4071	10.12	33.79	3.33	9.04	0.049
N: 460	49	· DNA 420	12.06	10.62	0.52	0.15	0.005
Mir468	/238/1	microrNA 468	12.86	10.63	0.73	0.17	0.025
Mir483	723874	microRNA 483	65.74	33.42	3.06	3.21	0.000
Mir483	723874	microRNA 483	65.74	33.42	3.06	3.21	0.000
Mir487b	723940	microRNA 487b	6.21	7.09	0.12	0.24	0.017
Mir494	723878	microRNA 494	53.12	41.77	2.74	1.90	0.014
Mir5118	1006285	microRNA 5118	9.66	7.29	0.39	0.44	0.007
	89						
Mir5135	1006286	microRNA 5135	60.28	42.94	3.28	2.42	0.005
	04						
Mir574	1001244	microRNA 574	44.40	26.39	2.48	1.12	0.001
	51						
Mir669e	1003168	microRNA 669e	5.17	5.99	0.07	0.18	0.006
	06						
Mir669j	1003167	microRNA 669j	7.32	10.89	0.64	0.72	0.010
	70						
Mir669m-1	1003167	microRNA 669m-1	50.66	71.18	7.28	2.79	0.039
	01						
Mir676	751534	microRNA 676	6.34	5.72	0.11	0.14	0.012
Mir681	751538	microRNA 681	5.92	4.68	0.41	0.22	0.037
Mir98	723947	microRNA 98	4 75	5.83	0.09	0.29	0.012
Mir99h	387230	microRNA 99h	29.43	20.63	3.09	1.04	0.036
Mirlot7a-1	207244	microRM 1990	10.95	12.62	1.04	0.61	0.012
Minet/d-1	79006	microkiva let/a-1	19.05	11.02	0.20	0.01	0.012
Misp	70900	Mirel harman har like 1 (Van anna harmin)	9.97	11.99	0.30	0.05	0.030
MIXII	2/21/	Mixi homeobox-like I (Xenopus laevis)	8.33	0.05	0.33	0.24	0.006
MKSI	380/18	Meckel syndrome, type 1	21.80	16.02	1.54	1.05	0.021
Miki	74568	mixed lineage kinase domain-like	10.72	9.01	0.48	0.32	0.025
Mllt4	17356	myeloid/lymphoid or mixed-lineage leukemia (trithorax homolog,	37.66	43.98	1.32	1.62	0.023
		Drosophila); translocated to, 4					
Mms22l	212377	MMS22-like, DNA repair protein	21.57	28.15	1.38	1.08	0.010
Mob1b	68473	MOB kinase activator 1B	138.44	152.08	1.64	4.90	0.039
Mon2	67074	MON2 homolog (yeast)	173.99	195.89	4.35	2.64	0.005
Morc2a	74522	microrchidia 2A	76.29	86.99	1.80	3.65	0.039
Mospd3	68929	motile sperm domain containing 3	71.78	62.72	1.23	2.33	0.014
Мрр6	56524	membrane protein, palmitoylated 6 (MAGUK p55 subfamily member	270.07	307.11	8.45	10.60	0.034
		6)					
Mrgpra1	233221	MAS-related GPR, member A1	14.13	10.38	0.90	0.67	0.016
Mrgprb8	404240	MAS-related GPR, member B8	4.86	5.58	0.25	0.11	0.038
Mroh2a	1000407	maestro heat-like repeat family member 2A	7.31	6.17	0.33	0.12	0.019
	66						
Mroh5	268816	maestro heat-like repeat family member 5	19.38	16.19	0.86	0.74	0.031
Mrpl13	68537	mitochondrial ribosomal protein L13	207.08	225.64	5.32	3.19	0.024
Mrpl14	68463	mitochondrial ribosomal protein L14	57.85	38.38	6.49	1.59	0.027
Mrpl18	67681	mitochondrial ribosomal protein L18	195.94	154.00	8.37	10.37	0.02
Mrnl40	18100	mitochondrial ribosomal protein L40	31.83	24 69	1.80	2.10	0.042
Mrvi1	17540	MRV integration site 1	17 30	13.77	0.87	0.26	0.008
Ms4a15	545270	membrane-snanning 4-domains subfamily 4 member 15	18 51	16.4.2	0.36	0.20	0.042
Mc4a19	76002	memorane-spanning 4-domains, subtaining A, member 10	6.60	E 72	0.30	0.75	0.044
M54a18	260062	memorane-spanning 4-uomains, subfamily A, member 18	0.00	5./3	0.22	0.07	0.009
MS4a5	209003	memorane-spanning 4-domains, subfamily A, member 5	12.40	0.41	0.21	0.21	0.03
MSN5	1/687		12.19	10.72	0.33	0.37	0.026
MSI2	77853	male-specific lethal 2 homolog (Drosophila)	356.64	297.83	11.08	16.43	0.025
Mslnl	328783	mesothelin-like	11.93	9.59	0.48	0.32	0.007
Mst1r	19882	macrophage stimulating 1 receptor (c-met-related tyrosine kinase)	9.73	8.18	0.35	0.24	0.011
Msx1os	93895	msh homeobox 1 opposite strand	14.37	11.55	0.73	0.52	0.020

Msx1os	93895	msh homeobox 1 opposite strand	9.71	7.11	0.80	0.36	0.025
Mtg1	212508	mitochondrial GTPase 1 homolog (S. cerevisiae)	54.65	65.79	3.12	3.00	0.042
Mtg2	52856	mitochondrial ribosome associated GTPase 2	31.47	19.94	3.64	2.64	0.043
Mtl5	17771	metallothionein-like 5, testis-specific (tesmin)	10.39	8.80	0.38	0.41	0.030
Mtmr4	170749	myotubularin related protein 4	46.54	56.78	1.71	1.56	0.004
Mtus2	77521	microtubule associated tumor suppressor candidate 2	17.54	12.63	0.97	1.26	0.021
Mtx1	17827	metaxin 1	70.60	57.69	4.32	1.83	0.033
Mtx3	382793	metaxin 3	33.48	48.86	1.79	5.75	0.043
Muc1	17829	mucin 1, transmembrane	8.06	6.81	0.45	0.19	0.042
Muc13	17063	mucin 13, epithelial transmembrane	7.65	6.09	0.41	0.17	0.012
Mustn1	66175	musculoskeletal, embryonic nuclear protein 1	26.23	21.89	1.37	0.88	0.038
Mut	17850	methylmalonyl-Coenzyme A mutase	105.22	84.86	2.45	7.60	0.044
Mvk	17855	mevalonate kinase	88.25	64.92	3.60	8.49	0.045
Mybbp1a	18432	MYB binding protein (P160) 1a	99.73	86.28	4.07	2.98	0.037
Mybph	53311	myosin binding protein H	16.39	18.06	0.29	0.58	0.043
Myf6	17878	myogenic factor 6	5.28	6.61	0.24	0.35	0.021
Myh11	17880	myosin, heavy polypeptide 11, smooth muscle	12.76	10.61	0.39	0.33	0.006
Myh13	544791	myosin, heavy polypeptide 13, skeletal muscle	6.59	5.52	0.33	0.15	0.025
Myl12a	67268	myosin, light chain 12A, regulatory, non-sarcomeric	351.35	263.44	24.24	19.35	0.030
Myl6b	216459	myosin, light polypeptide 6B	15.54	10.34	1.86	0.78	0.042
Mylk3	213435	myosin light chain kinase 3	8.58	7.65	0.37	0.09	0.050
Myo15b	217328	myosin XVB	10.26	9.00	0.27	0.31	0.022
Mvo1d	338367	myosin ID	58.06	30.80	4.11	6.75	0.014
Mvo9a	270163	myosin IXa	120.45	148.61	9.27	6.62	0.048
Naa38	78304	N(alpha)-acetyltransferase 38, NatC auxiliary subunit	150.36	131.58	2.28	6.65	0.037
Naa40	70999	N(alpha)-acetyltransferase 40. NatD catalytic subunit, homolog (S.	21.62	29.53	1.78	2.20	0.031
		cerevisiae)					
Nacad	192950	NAC alpha domain containing	158.52	123.61	4.24	4.36	0.001
Naif1	71254	nuclear apoptosis inducing factor 1	9.85	8.49	0.21	0.31	0.012
Nheal1	269198	neurobeachin like 1	35.27	45.69	3 37	1 35	0.028
Ncand3	78658	non-SMC condensin II complex, subunit D3	37.50	52.01	3.93	3.88	0.039
Nckap1	50884	NCK-associated protein 1	724.63	806.25	14.67	25.37	0.032
Ncoa6	56406	nuclear receptor coactivator 6	72.47	85.44	4.24	2.42	0.038
Ncr1	17086	natural cytotoxicity triggering recentor 1	8 37	7.28	0.20	0.36	0.038
ND2	17717	NADH dehvdrogenase subunit 2	1984 30	2365 40	48 36	74 93	0.005
ND2	17717	NADH dehvdrogenase subunit 2	2039.40	2386.83	50.88	87 99	0.01
ND3	17718	NADH dehydrogenase subunit 3	2693.91	2921.86	35.17	53.95	0.012
ND3	17718	NADH dehydrogenase subunit 3	1568.64	1729.05	30.21	40.90	0.020
ND4L	17720	NADH dehydrogenase subunit 4	1646.40	1880 52	49.13	57.68	0.020
ND4L	17720	NADH dehydrogenase subunit 41	1425.15	1657.49	47 30	79.31	0.021
Ndufa7	66416	NADH dehydrogenase (ubiquinone) 1 alpha subcomplex 7 (B14 5a)	278 93	249 48	616	653	0.02
Ndufa8	68375	NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 8	207.40	174.85	10.47	6.12	0.04
Ndufb3	66495	NADH dehydrogenase (ubiquinone) 1 heta subcomplex, 0	432.33	373.46	16.70	9.77	0.07
Ndufb7	66916	NADH dehydrogenase (ubiquinone) 1 beta subcomplex 3	395 23	312.97	10.70	14.54	0.02
Ndufb8	67264	NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 7	213.26	189.08	2.08	8.65	0.004
Ndufs2	226646	NADH dehydrogenase (ubiquinone) Fe-S protein 2	213.20	261.13	10.13	6.69	0.033
Necan2	66147	NECAD endocutoris associated 2	179 51	218.04	2 59	9.59	0.01
Necap2	66147	NECAP endocytosis associated 2	182.16	210.04	3 10	9.68	0.000
Nedd8	18002	neural precursor cell expressed developmentally down-regulated	968 19	819.76	13 73	27 52	0.015
Neulo	10002	neural precursor cen expressed, developmentany down-regulated	500.15	015.70	15.75	27.52	0.00
Nedd8	18002	neural precursor cell expressed developmentally down-regulated	1233 44	109156	33.67	20.35	0.010
Neulo	10002	aono 9	1255.44	1071.50	33.07	27.55	0.017
NoddQ	10002	gene o	1000 44	1001 56	22.67	20.25	0.010
Neuuo	10002	neural precursor cen expressed, developmentany down-regulated	1255.44	1091.50	33.07	29.35	0.019
Nofm	10040	gene o	12 55	1745	0.40	1.01	0.022
Neim	18040	neuroniament, medium polypeptide	13.55	17.45	0.40	1.21	0.022
Neuri10	240055	neuranzeu nomolog 10 (Drosophila)	12.44	10.32	0.05	0.57	0.049
Neuroas	11922		11.43	0.0/	1.18	0.09	0.007
Neurog3	72101	neurogenin 3	11.19	10.14	0.21	0.29	0.027
NIATC4	/3181	nuclear factor of activated 1 cells, cytoplasmic, calcineurin dependent	15.03	11.66	0.68	0.36	0.005
	40000	4	(0.0-		0.07		0.04
Nte211	18023	nuclear factor, erythroid derived 2,-like 1	68.03	77.12	3.25	1.31	0.041

Ngb	64242	neuroglobin	20.34	15.11	1.35	0.60	0.012
Ngfrap1	12070	nerve growth factor receptor (TNFRSF16) associated protein 1	1431.12	1187.78	45.90	33.18	0.005
Ngly1	59007	N-glycanase 1	39.26	56.65	4.33	3.96	0.025
Nhlh1	18071	nescient helix loop helix 1	12.72	8.09	1.58	0.59	0.034
Nhlrc4	621239	NHL repeat containing 4	9.34	7.32	0.21	0.21	0.000
Nifk	67949	nucleolar protein interacting with the FHA domain of MKI67	85.05	112.14	5.28	7.05	0.022
Nknd1	69547	NTPase KAP family P-loon domain containing 1	8.26	6.44	0.51	0.23	0.017
Nky2.5	18091	NK2 homeobox 5	11 78	956	0.48	0.55	0.023
Nkx2-3	12020	NK2 homeobox 3	0.40	9.10	0.40	0.35	0.023
NKX3-2	217011	not home of a second large and the second large and	20.02	14.74	0.15	1.12	0.031
Nie1	21/011	notchiess nomolog 1 (Drosophila)	20.92	14.74	2.23	1.15	0.05
NMFRI	225994		6.77	8.32	0.50	0.33	0.041
NMrK2	69564	nicotinamide riboside kinase 2	9.27	6.95	0.22	0.40	0.002
Nnat	18111	neuronatin	1313.19	1515.96	73.01	20.09	0.037
Noa1	56412	nitric oxide associated 1	154.50	131.34	4.82	4.38	0.012
Nod1	107607	nucleotide-binding oligomerization domain containing 1	25.95	21.97	0.79	1.32	0.041
Nodal	18119	nodal	10.32	7.91	0.69	0.45	0.027
Nol4l	329540	nucleolar protein 4-like	22.88	28.36	0.83	1.77	0.031
Nop14	75416	NOP14 nucleolar protein	58.15	62.78	0.95	1.39	0.034
Npas3	27386	neuronal PAS domain protein 3	118.04	166.27	7.55	6.59	0.00
Npc1l1	237636	NPC1-like 1	17.93	14.44	0.59	0.42	0.003
Npffr1	237362	neuropeptide FF receptor 1	12.65	11.47	0.34	0.27	0.035
Npm2	328440	nucleophosmin/nucleoplasmin 2	16.70	13.87	0.80	0.84	0.050
Npy4r	19065	neuropeptide Y receptor Y4	7.22	6.38	0.20	0.10	0.009
Npy6r	18169	neuropeptide Y receptor Y6	4.06	4.40	0.11	0.07	0.047
Nr1d2	353187	nuclear receptor subfamily 1, group D, member 2	45.43	69.83	6.24	7.67	0.049
Nr1i3	12355	nuclear receptor subfamily 1, group I, member 3	8.99	7.69	0.43	0.27	0.043
Nr5a1	26423	nuclear receptor subfamily 5, group A, member 1	6.29	5.89	0.06	0.14	0.041
Nrap	18175	nebulin-related anchoring protein	10.72	9.16	0.29	0.50	0.035
Nrd1	230598	nardilysin. N-arginine dibasic convertase. NRD convertase 1	549.64	501.18	16.81	10.09	0.048
Nrde?	217827	nrde-2 necessary for RNA interference domain containing	26.79	21.90	1.03	1.09	0.017
Nrg1	21/02/	nourogulin 1	41.02	55.44	2.70	1.05	0.017
Nigi	64011	neuroguni 1	10.41	0.15	0.41	0.10	0.007
Nigi	10105		7.20	9.15	0.41	0.19	0.030
NFI	18185	neural retina leucine zipper gene	7.38	0.09	0.12	0.20	0.026
Nsd1	18193	nuclear receptor-binding SET-domain protein 1	329.82	376.42	7.24	10.63	0.011
Ntsr1	18216	neurotensin receptor 1	14.58	10.61	0.58	0.34	0.001
Nucb1	18220	nucleobindin 1	44.07	53.95	2.33	2.65	0.031
Nuggc	1005035 45	nuclear GTPase, germinal center associated	10.21	9.16	0.28	0.19	0.021
Nxf2	83454	nuclear RNA export factor 2	4.75	4.98	0.06	0.04	0.025
Nxf3	245610	nuclear RNA export factor 3	5.39	5.79	0.12	0.10	0.045
0as1h	246729	2'-5' oligoadenylate synthetase 1H	4.95	5.69	0.08	0.10	0.001
Oat	18242	ornithine aminotransferase	67.72	91.82	2.68	6.30	0.013
0az1	18245	ornithine decarboxylase antizyme 1	533.69	641.28	28.13	9.15	0.011
Obox1	71468	oocyte specific homeobox 1	4.81	4.11	0.14	0.11	0.007
Ocrl	320634	oculocerebrorenal syndrome of Lowe	31.78	43.15	1.44	2.28	0.006
Ocstamp	74614	osteoclast stimulatory transmembrane protein	13.45	9.11	1.56	0.37	0.036
Odf2	18286	outer dense fiber of sperm tails 2	62.25	100.61	7.96	12.42	0.041
Ogfod2	66627	2-oxoglutarate and iron-dependent oxygenase domain containing 2	22.26	17.77	1.28	1.01	0.033
Ogn	18295	osteoglycin	6.66	8.59	0.33	0.37	0.008
Oip5	70645	Opa interacting protein 5	9.16	12.65	0.59	1.29	0.049
Olfr1012	258561	olfactory receptor 1012	6.31	5.33	0.21	0.21	0.016
Olfr1015	258564	olfactory receptor 1015	5.42	7.21	0.30	0.51	0.024
Olfr1022	258582	olfactory recentor 1022	4 95	4.21	0.20	0.14	0.023
0lfr1036	258245	olfactory recentor 1036	4.81	3.98	0.28	0.09	0.032
Olfr1042	257041	olfactory recentor 1042	4.78	4.94	0.15	0.05	0.032
016-1052	250012	olfactory recentor 1052	4.20	1.74	0.15	0.14	0.017
0111032	257012	offactory receptor 1061	7.41	4.00	0.10	0.19	0.040
016-1001	259022	offactory receptor 1066	5.90	4.99	0.20	0.24	0.028
011/1066	25/880		5.08	0.23	0.12	0.35	0.020
01111085	258583	onactory receptor 1085	22.18	15.60	2.07	1.17	0.033
Olfr11	218066	olfactory receptor 11	6.20	5.26	0.37	0.09	0.047
Olfr1105	258085	olfactory receptor 1105	5.44	4.13	0.31	0.07	0.007

0111132	258833	olfactory receptor 1132	4.24	5.48	0.31	0.20	0.015
Olfr1155	258636	olfactory receptor 1155	4.58	5.23	0.13	0.20	0.033
Olfr1170	258525	olfactory receptor 1170	6.10	4.75	0.39	0.15	0.019
Olfr1188	258921	olfactory receptor 1188	5.20	4.23	0.12	0.08	0.000
Olfr120	258624	olfactory receptor 120	4.27	5.05	0.24	0.13	0.030
Olfr1209	258453	olfactory receptor 1209	5.50	4.64	0.25	0.13	0.024
Olfr1217	258903	olfactory receptor 1217	3.69	3.92	0.05	0.07	0.037
0lfr1225	258893	olfactory recentor 1225	5.03	5 4 9	0.13	0.12	0.038
0lfr124	259064	olfactory receptor 1220	4 14	3 70	0.09	0.11	0.020
0lfr1249	257084	olfactory receptor 1249	2.01	4.81	0.05	0.26	0.014
0lfr1258	258980	olfactory receptor 1219	3.91	4.25	0.12	0.06	0.047
Olfr1262	250700	olfactory receptor 1250	5.50 E 10	6.02	0.12	0.14	0.047
016:127	250970	offactory receptor 1202	5.10	7.90	0.25	0.14	0.020
011127	250574	offactory receptor 127	0.20	7.00	0.20	0.55	0.040
0111274-ps	250550	offactory receptor 1274, pseudogene	3.31	3.09	0.09	0.12	0.049
0111275	25/900	offactory receptor 1275	5.70	4.15	0.12	0.00	0.015
0111316	258/3/		5.//	4.//	0.28	0.22	0.031
01fr1346	258918	olfactory receptor 1346	7.66	6.22	0.35	0.30	0.021
0111348	258915	olfactory receptor 1348	8.06	7.19	0.33	0.13	0.050
Olfr1349	269862	olfactory receptor 1349	7.39	6.05	0.26	0.23	0.008
Olfr1360	258536	olfactory receptor 1360	24.94	15.04	2.69	0.99	0.014
0lfr1361	258534	olfactory receptor 1361	8.56	9.64	0.23	0.18	0.011
Olfr1366	258280	olfactory receptor 1366	4.29	4.82	0.14	0.05	0.011
Olfr1370	258528	olfactory receptor 1370	8.78	7.46	0.15	0.36	0.015
Olfr141	257913	olfactory receptor 141	4.98	6.26	0.11	0.37	0.017
Olfr1414	259041	olfactory receptor 1414	7.05	5.33	0.63	0.11	0.036
Olfr1417	258938	olfactory receptor 1417	13.91	9.88	0.66	0.45	0.002
Olfr1426	258805	olfactory receptor 1426	4.88	5.91	0.21	0.33	0.037
0lfr1443	258693	olfactory receptor 1443	4.29	4.78	0.12	0.16	0.043
Olfr1447	258698	olfactory receptor 1447	4.61	4.11	0.05	0.07	0.001
0lfr1459	258684	olfactory receptor 1459	4.26	4.05	0.06	0.04	0.027
0lfr1484	258288	olfactory receptor 1484	7.18	5.80	0.26	0.21	0.006
Olfr157	1000402	olfactory receptor 157	8.44	6.91	0.50	0.31	0.040
	68						
Olfr170	258959	olfactory receptor 170	3.71	4.59	0.15	0.28	0.031
		· · · · · · · · · · · · · · · · · · ·					
Olfr186	258318	olfactory receptor 186	5.05	5.66	0.20	0.08	0.028
Olfr186 Olfr204	258318 258994	olfactory receptor 186 olfactory receptor 204	5.05 4.23	5.66 4.71	0.20 0.11	0.08 0.16	0.028 0.046
Olfr186 Olfr204 Olfr211	258318 258994 258914	olfactory receptor 186 olfactory receptor 204 olfactory receptor 211	5.05 4.23 17.33	5.66 4.71 12.29	0.20 0.11 1.25	0.08 0.16 1.15	0.028 0.046 0.025
Olfr186 Olfr204 Olfr211 Olfr218	258318 258994 258914 258880	olfactory receptor 186 olfactory receptor 204 olfactory receptor 211 olfactory receptor 218	5.05 4.23 17.33 6.69	5.66 4.71 12.29 8.70	0.20 0.11 1.25 0.74	0.08 0.16 1.15 0.33	0.028 0.046 0.025 0.049
Olfr186 Olfr204 Olfr211 Olfr218 Olfr220	258318 258994 258914 258880 546747	olfactory receptor 186 olfactory receptor 204 olfactory receptor 211 olfactory receptor 218 olfactory receptor 220	5.05 4.23 17.33 6.69 6.02	5.66 4.71 12.29 8.70 5.24	0.20 0.11 1.25 0.74 0.21	0.08 0.16 1.15 0.33 0.18	0.028 0.046 0.025 0.049 0.0
Olfr186 Olfr204 Olfr211 Olfr218 Olfr220 Olfr237-ps1	258318 258994 258914 258880 546747 258648	olfactory receptor 186 olfactory receptor 204 olfactory receptor 211 olfactory receptor 218 olfactory receptor 220 olfactory receptor 237, pseudogene 1	5.05 4.23 17.33 6.69 6.02 4.62	5.66 4.71 12.29 8.70 5.24 5.10	0.20 0.11 1.25 0.74 0.21 0.11	0.08 0.16 1.15 0.33 0.18 0.05	0.028 0.046 0.025 0.049 0.0 0.0
Olfr186 Olfr204 Olfr211 Olfr218 Olfr220 Olfr237-ps1 Olfr259	258318 258994 258914 258880 546747 258648 258766	olfactory receptor 186 olfactory receptor 204 olfactory receptor 211 olfactory receptor 218 olfactory receptor 220 olfactory receptor 237, pseudogene 1 olfactory receptor 259	5.05 4.23 17.33 6.69 6.02 4.62 14.19	5.66 4.71 12.29 8.70 5.24 5.10 24.23	0.20 0.11 1.25 0.74 0.21 0.11 1.16	0.08 0.16 1.15 0.33 0.18 0.05 1.57	0.028 0.046 0.025 0.049 0.0 0.008 0.008
Olfr186 Olfr204 Olfr211 Olfr218 Olfr220 Olfr237-ps1 Olfr259 Olfr283	258318 258994 258914 258880 546747 258648 258766 259038	olfactory receptor 186 olfactory receptor 204 olfactory receptor 211 olfactory receptor 218 olfactory receptor 220 olfactory receptor 237, pseudogene 1 olfactory receptor 259 olfactory receptor 283	5.05 4.23 17.33 6.69 6.02 4.62 14.19 7.89	5.66 4.71 12.29 8.70 5.24 5.10 24.23 9.05	0.20 0.11 1.25 0.74 0.21 0.11 1.16 0.27	0.08 0.16 1.15 0.33 0.18 0.05 1.57 0.36	0.028 0.046 0.025 0.049 0.0 0.008 0.008 0.002 0.042
Olfr186 Olfr204 Olfr211 Olfr218 Olfr220 Olfr237-ps1 Olfr259 Olfr283 Olfr3	258318 258994 258914 258880 546747 258648 258766 259038 18328	olfactory receptor 186 olfactory receptor 204 olfactory receptor 211 olfactory receptor 218 olfactory receptor 220 olfactory receptor 237, pseudogene 1 olfactory receptor 259 olfactory receptor 283 olfactory receptor 3	5.05 4.23 17.33 6.69 6.02 4.62 14.19 7.89 9.53	5.66 4.71 12.29 8.70 5.24 5.10 24.23 9.05 8.06	0.20 0.11 1.25 0.74 0.21 0.11 1.16 0.27 0.51	0.08 0.16 1.15 0.33 0.18 0.05 1.57 0.36 0.25	0.028 0.046 0.025 0.049 0.0 0.008 0.002 0.042 0.040
Olfr186 Olfr204 Olfr211 Olfr218 Olfr220 Olfr237-ps1 Olfr259 Olfr283 Olfr3 Olfr315	258318 258994 258914 258880 546747 258648 258766 259038 18328 258531	olfactory receptor 186 olfactory receptor 204 olfactory receptor 211 olfactory receptor 218 olfactory receptor 220 olfactory receptor 237, pseudogene 1 olfactory receptor 259 olfactory receptor 283 olfactory receptor 3 olfactory receptor 315	5.05 4.23 17.33 6.69 6.02 4.62 14.19 7.89 9.53 11.62	5.66 4.71 12.29 8.70 5.24 5.10 24.23 9.05 8.06 8.43	0.20 0.11 1.25 0.74 0.21 0.11 1.16 0.27 0.51 0.67	0.08 0.16 1.15 0.33 0.18 0.05 1.57 0.36 0.25 0.31	0.028 0.046 0.025 0.049 0.0 0.008 0.002 0.042 0.040 0.005
Olfr186 Olfr204 Olfr211 Olfr218 Olfr220 Olfr237-ps1 Olfr259 Olfr283 Olfr3 Olfr315 Olfr356	258318 258994 258914 258880 546747 258648 258766 259038 18328 258531 258617	olfactory receptor 186 olfactory receptor 204 olfactory receptor 211 olfactory receptor 218 olfactory receptor 220 olfactory receptor 237, pseudogene 1 olfactory receptor 259 olfactory receptor 283 olfactory receptor 3 olfactory receptor 315 olfactory receptor 356	5.05 4.23 17.33 6.69 6.02 4.62 14.19 7.89 9.53 11.62 9.04	5.66 4.71 12.29 8.70 5.24 5.10 24.23 9.05 8.06 8.43 10.19	0.20 0.11 1.25 0.74 0.21 0.11 1.16 0.27 0.51 0.67 0.13	0.08 0.16 1.15 0.33 0.18 0.05 1.57 0.36 0.25 0.31 0.41	0.028 0.046 0.025 0.049 0.0 0.008 0.002 0.042 0.040 0.005 0.037
Olfr186 Olfr204 Olfr211 Olfr218 Olfr220 Olfr237-ps1 Olfr259 Olfr283 Olfr3 Olfr315 Olfr356 Olfr371	258318 258994 258914 258880 546747 258648 258766 259038 18328 258531 258617 258858	olfactory receptor 186 olfactory receptor 204 olfactory receptor 211 olfactory receptor 218 olfactory receptor 220 olfactory receptor 237, pseudogene 1 olfactory receptor 259 olfactory receptor 283 olfactory receptor 3 olfactory receptor 315 olfactory receptor 356 olfactory receptor 371	5.05 4.23 17.33 6.69 6.02 4.62 14.19 7.89 9.53 11.62 9.04 14.15	5.66 4.71 12.29 8.70 5.24 5.10 24.23 9.05 8.06 8.43 10.19 12.09	0.20 0.11 1.25 0.74 0.21 0.11 1.16 0.27 0.51 0.67 0.13 0.71	0.08 0.16 1.15 0.33 0.18 0.05 1.57 0.36 0.25 0.31 0.41 0.40	0.028 0.046 0.025 0.049 0.00 0.008 0.002 0.042 0.040 0.005 0.037 0.044
Olfr186 Olfr204 Olfr211 Olfr218 Olfr220 Olfr237-ps1 Olfr259 Olfr283 Olfr3 Olfr315 Olfr315 Olfr371 Olfr402	258318 258994 258914 258880 546747 258648 258766 259038 18328 258531 258617 258858 258703	olfactory receptor 186 olfactory receptor 204 olfactory receptor 211 olfactory receptor 218 olfactory receptor 220 olfactory receptor 237, pseudogene 1 olfactory receptor 259 olfactory receptor 283 olfactory receptor 3 olfactory receptor 315 olfactory receptor 356 olfactory receptor 371 olfactory receptor 371	5.05 4.23 17.33 6.69 6.02 4.62 14.19 7.89 9.53 11.62 9.04 14.15 5.76	5.66 4.71 12.29 8.70 5.24 5.10 24.23 9.05 8.06 8.43 10.19 12.09 4.76	0.20 0.11 1.25 0.74 0.21 0.11 1.16 0.27 0.51 0.67 0.13 0.71 0.39	0.08 0.16 1.15 0.33 0.18 0.05 1.57 0.36 0.25 0.31 0.41 0.40 0.10	0.028 0.046 0.025 0.049 0.00 0.008 0.002 0.042 0.040 0.005 0.037 0.044 0.048
Olfr186 Olfr204 Olfr211 Olfr218 Olfr220 Olfr237-ps1 Olfr259 Olfr283 Olfr3 Olfr315 Olfr315 Olfr371 Olfr402 Olfr46	258318 258994 258914 258880 546747 258648 258766 259038 18328 258531 258617 258858 258703 18345	olfactory receptor 186 olfactory receptor 204 olfactory receptor 211 olfactory receptor 218 olfactory receptor 220 olfactory receptor 237, pseudogene 1 olfactory receptor 259 olfactory receptor 283 olfactory receptor 3 olfactory receptor 315 olfactory receptor 356 olfactory receptor 371 olfactory receptor 402 olfactory receptor 46	5.05 4.23 17.33 6.69 6.02 4.62 14.19 7.89 9.53 11.62 9.04 14.15 5.76 5.31	5.66 4.71 12.29 8.70 5.24 5.10 24.23 9.05 8.06 8.43 10.19 12.09 4.76 5.80	0.20 0.11 1.25 0.74 0.21 0.11 1.16 0.27 0.51 0.67 0.13 0.71 0.39 0.10	0.08 0.16 1.15 0.33 0.18 0.05 1.57 0.36 0.25 0.31 0.41 0.40 0.10 0.03	0.028 0.046 0.025 0.049 0.00 0.008 0.002 0.042 0.040 0.005 0.037 0.044 0.048 0
Olfr186 Olfr204 Olfr211 Olfr218 Olfr220 Olfr237-ps1 Olfr259 Olfr283 Olfr3 Olfr315 Olfr315 Olfr371 Olfr402 Olfr46 Olfr477	258318 258994 258914 258860 546747 258648 258766 259038 18328 258531 258617 258858 258703 18345 258928	olfactory receptor 186 olfactory receptor 204 olfactory receptor 211 olfactory receptor 218 olfactory receptor 220 olfactory receptor 237, pseudogene 1 olfactory receptor 259 olfactory receptor 283 olfactory receptor 3 olfactory receptor 315 olfactory receptor 356 olfactory receptor 371 olfactory receptor 402 olfactory receptor 46 olfactory receptor 477	5.05 4.23 17.33 6.69 6.02 4.62 14.19 7.89 9.53 11.62 9.04 14.15 5.76 5.31 3.67	5.66 4.71 12.29 8.70 5.24 5.10 24.23 9.05 8.06 8.43 10.19 12.09 4.76 5.80 4.08	0.20 0.11 1.25 0.74 0.21 0.11 1.16 0.27 0.51 0.67 0.13 0.71 0.39 0.10 0.06	0.08 0.16 1.15 0.33 0.18 0.05 1.57 0.36 0.25 0.31 0.41 0.40 0.10 0.03 0.08	0.028 0.046 0.025 0.049 0.00 0.008 0.002 0.042 0.040 0.005 0.037 0.044 0.048 0 0.007
Olfr186 Olfr204 Olfr211 Olfr218 Olfr220 Olfr237-ps1 Olfr259 Olfr283 Olfr3 Olfr315 Olfr315 Olfr371 Olfr402 Olfr46 Olfr477 Olfr484	258318 258994 258914 258860 546747 258648 258766 259038 18328 258531 258617 258858 258703 18345 258928 258928	olfactory receptor 186 olfactory receptor 204 olfactory receptor 211 olfactory receptor 218 olfactory receptor 220 olfactory receptor 237, pseudogene 1 olfactory receptor 237, pseudogene 1 olfactory receptor 259 olfactory receptor 283 olfactory receptor 38 olfactory receptor 315 olfactory receptor 315 olfactory receptor 356 olfactory receptor 371 olfactory receptor 402 olfactory receptor 46 olfactory receptor 477 olfactory receptor 484	5.05 4.23 17.33 6.69 6.02 4.62 14.19 7.89 9.53 11.62 9.04 14.15 5.76 5.31 3.67 18.32	5.66 4.71 12.29 8.70 5.24 5.10 24.23 9.05 8.06 8.43 10.19 12.09 4.76 5.80 4.08 23.41	0.20 0.11 1.25 0.74 0.21 0.11 1.16 0.27 0.51 0.67 0.13 0.71 0.39 0.10 0.06 1.17	0.08 0.16 1.15 0.33 0.18 0.05 1.57 0.36 0.25 0.31 0.41 0.40 0.10 0.03 0.08 1.29	0.028 0.046 0.025 0.049 0.00 0.008 0.002 0.042 0.040 0.005 0.037 0.044 0.048 0 0.007 0.027
Olfr186 Olfr204 Olfr211 Olfr218 Olfr220 Olfr237-ps1 Olfr259 Olfr283 Olfr3 Olfr315 Olfr315 Olfr371 Olfr402 Olfr46 Olfr477 Olfr484 Olfr5	258318 258994 258914 258860 546747 258648 258766 259038 18328 258531 258617 258858 258703 18345 258928 258928 258492 18349	olfactory receptor 186 olfactory receptor 204 olfactory receptor 211 olfactory receptor 218 olfactory receptor 220 olfactory receptor 237, pseudogene 1 olfactory receptor 259 olfactory receptor 283 olfactory receptor 38 olfactory receptor 315 olfactory receptor 315 olfactory receptor 356 olfactory receptor 371 olfactory receptor 402 olfactory receptor 46 olfactory receptor 484 olfactory receptor 5	5.05 4.23 17.33 6.69 6.02 4.62 14.19 7.89 9.53 11.62 9.04 14.15 5.76 5.31 3.67 18.32 5.40	5.66 4.71 12.29 8.70 5.24 5.10 24.23 9.05 8.06 8.43 10.19 12.09 4.76 5.80 4.08 23.41 4.75	0.20 0.11 1.25 0.74 0.21 0.11 1.16 0.27 0.51 0.67 0.13 0.71 0.39 0.10 0.06 1.17 0.18	0.08 0.16 1.15 0.33 0.18 0.05 1.57 0.36 0.25 0.31 0.41 0.40 0.10 0.03 0.08 1.29 0.14	0.028 0.046 0.025 0.049 0.00 0.008 0.002 0.042 0.040 0.005 0.037 0.044 0.048 0 0.007 0.027 0.029
Olfr186 Olfr204 Olfr211 Olfr211 Olfr218 Olfr220 Olfr237-ps1 Olfr259 Olfr315 Olfr315 Olfr371 Olfr402 Olfr46 Olfr477 Olfr484 Olfr502	258318 258994 258994 258880 546747 258648 258766 259038 18328 258531 258617 258858 258703 18345 258928 258928 258928 258492 18349 258734	olfactory receptor 186 olfactory receptor 204 olfactory receptor 211 olfactory receptor 218 olfactory receptor 220 olfactory receptor 220, olfactory receptor 237, pseudogene 1 olfactory receptor 259 olfactory receptor 283 olfactory receptor 38 olfactory receptor 315 olfactory receptor 315 olfactory receptor 371 olfactory receptor 402 olfactory receptor 46 olfactory receptor 477 olfactory receptor 484 olfactory receptor 5 olfactory receptor 502	5.05 4.23 17.33 6.69 6.02 4.62 14.19 7.89 9.53 11.62 9.04 14.15 5.76 5.31 3.67 18.32 5.40 3.75	5.66 4.71 12.29 8.70 5.24 5.10 24.23 9.05 8.06 8.43 10.19 12.09 4.76 5.80 4.08 23.41 4.75 4.55	0.20 0.11 1.25 0.74 0.21 0.11 1.16 0.27 0.51 0.67 0.13 0.71 0.39 0.10 0.06 1.17 0.18 0.06	0.08 0.16 1.15 0.33 0.18 0.05 1.57 0.36 0.25 0.31 0.41 0.40 0.10 0.03 0.08 1.29 0.14 0.20	0.028 0.046 0.025 0.049 0.00 0.008 0.002 0.042 0.040 0.005 0.037 0.044 0.0048 0 0.007 0.027 0.029 0.01
Olfr186 Olfr204 Olfr211 Olfr211 Olfr218 Olfr220 Olfr237-ps1 Olfr259 Olfr315 Olfr315 Olfr371 Olfr402 Olfr46 Olfr477 Olfr502 Olfr502	258318 258994 258994 258880 546747 258648 258766 259038 18328 258531 258617 258858 258703 18345 258928 258928 258928 258928 258928 258492 18349 258734	olfactory receptor 186 olfactory receptor 204 olfactory receptor 211 olfactory receptor 218 olfactory receptor 220 olfactory receptor 237, pseudogene 1 olfactory receptor 259 olfactory receptor 283 olfactory receptor 38 olfactory receptor 315 olfactory receptor 356 olfactory receptor 371 olfactory receptor 402 olfactory receptor 46 olfactory receptor 477 olfactory receptor 484 olfactory receptor 5 olfactory receptor 502 olfactory receptor 523	5.05 4.23 17.33 6.69 6.02 4.62 14.19 7.89 9.53 11.62 9.04 14.15 5.76 5.31 3.67 18.32 5.40 3.75 15.25	5.66 4.71 12.29 8.70 5.24 5.10 24.23 9.05 8.06 8.43 10.19 12.09 4.76 5.80 4.08 23.41 4.75 4.55 10.89	0.20 0.11 1.25 0.74 0.21 0.11 1.16 0.27 0.51 0.67 0.13 0.71 0.39 0.10 0.06 1.17 0.18 0.06 0.68	0.08 0.16 1.15 0.33 0.18 0.05 1.57 0.36 0.25 0.31 0.41 0.40 0.10 0.03 0.08 1.29 0.14 0.20 0.43	0.028 0.046 0.025 0.049 0.008 0.002 0.042 0.040 0.005 0.037 0.044 0.005 0.037 0.044 0.007 0.027 0.029 0.01 0.002
Olfr186 Olfr204 Olfr211 Olfr211 Olfr218 Olfr220 Olfr237-ps1 Olfr259 Olfr315 Olfr315 Olfr371 Olfr402 Olfr46 Olfr477 Olfr523 Olfr523 Olfr523	258318 258994 258994 258880 546747 258648 258766 259038 18328 258531 258617 258858 258703 18345 258928 258928 258928 258492 18349 258734 258511 257939	olfactory receptor 186 olfactory receptor 204 olfactory receptor 211 olfactory receptor 218 olfactory receptor 220 olfactory receptor 237, pseudogene 1 olfactory receptor 237, pseudogene 1 olfactory receptor 259 olfactory receptor 283 olfactory receptor 33 olfactory receptor 315 olfactory receptor 315 olfactory receptor 356 olfactory receptor 371 olfactory receptor 402 olfactory receptor 46 olfactory receptor 477 olfactory receptor 484 olfactory receptor 502 olfactory receptor 523 olfactory receptor 527	5.05 4.23 17.33 6.69 6.02 4.62 14.19 7.89 9.53 11.62 9.04 14.15 5.76 5.31 3.67 18.32 5.40 3.75 5.25 21.84	5.66 4.71 12.29 8.70 5.24 5.10 24.23 9.05 8.06 8.43 10.19 12.09 4.76 5.80 4.08 23.41 4.75 4.55 10.89 18.34	0.20 0.11 1.25 0.74 0.21 0.11 1.16 0.27 0.51 0.67 0.13 0.71 0.39 0.10 0.06 1.17 0.18 0.06 0.68 0.39	0.08 0.16 1.15 0.33 0.18 0.05 1.57 0.36 0.25 0.31 0.41 0.40 0.10 0.03 0.08 1.29 0.14 0.20 0.43 0.49	0.028 0.046 0.025 0.049 0.00 0.008 0.002 0.042 0.040 0.005 0.037 0.044 0.005 0.037 0.044 0.007 0.027 0.029 0.01 0.002 0.001
Olfr186 Olfr204 Olfr211 Olfr218 Olfr220 Olfr237-ps1 Olfr259 Olfr315 Olfr315 Olfr371 Olfr46 Olfr477 Olfr523 Olfr523 Olfr523 Olfr535	258318 258994 258994 258880 546747 258648 258766 259038 18328 258531 258617 258858 258703 18345 258928 258928 258928 258928 258492 18349 258734 258511 257939	olfactory receptor 186 olfactory receptor 204 olfactory receptor 211 olfactory receptor 218 olfactory receptor 220 olfactory receptor 220, olfactory receptor 237, pseudogene 1 olfactory receptor 259 olfactory receptor 283 olfactory receptor 38 olfactory receptor 315 olfactory receptor 315 olfactory receptor 371 olfactory receptor 371 olfactory receptor 402 olfactory receptor 46 olfactory receptor 477 olfactory receptor 484 olfactory receptor 502 olfactory receptor 523 olfactory receptor 527 olfactory receptor 527	5.05 4.23 17.33 6.69 6.02 4.62 14.19 7.89 9.53 11.62 9.04 14.15 5.76 5.31 3.67 18.32 5.40 3.75 5.40 3.75 15.25 21.84	5.66 4.71 12.29 8.70 5.24 5.10 24.23 9.05 8.06 8.43 10.19 12.09 4.76 5.80 4.08 23.41 4.75 4.55 10.89 18.34 7.54	0.20 0.11 1.25 0.74 0.21 0.11 1.16 0.27 0.51 0.67 0.13 0.71 0.39 0.10 0.06 1.17 0.18 0.06 0.68 0.39 0.55	0.08 0.16 1.15 0.33 0.18 0.05 1.57 0.36 0.25 0.31 0.41 0.40 0.10 0.03 0.08 1.29 0.14 0.20 0.43 0.49 0.24	0.028 0.046 0.025 0.049 0.008 0.002 0.042 0.040 0.005 0.037 0.044 0.005 0.037 0.044 0.007 0.027 0.029 0.01 0.002 0.001 0.009
Olfr186 Olfr204 Olfr211 Olfr211 Olfr211 Olfr211 Olfr211 Olfr211 Olfr211 Olfr237-ps1 Olfr237-ps1 Olfr237-ps1 Olfr315 Olfr315 Olfr315 Olfr371 Olfr402 Olfr46 Olfr477 Olfr502 Olfr523 Olfr523 Olfr523 Olfr535 Olfr543	258318 258994 258994 258880 546747 258648 258766 259038 18328 258531 258617 258858 258703 18345 258928 258928 258928 258492 18349 258734 258511 257939 258956 257947	olfactory receptor 186 olfactory receptor 204 olfactory receptor 211 olfactory receptor 218 olfactory receptor 220 olfactory receptor 227, pseudogene 1 olfactory receptor 237, pseudogene 1 olfactory receptor 259 olfactory receptor 283 olfactory receptor 33 olfactory receptor 315 olfactory receptor 356 olfactory receptor 371 olfactory receptor 402 olfactory receptor 46 olfactory receptor 477 olfactory receptor 484 olfactory receptor 502 olfactory receptor 523 olfactory receptor 527 olfactory receptor 535 olfactory receptor 543	5.05 4.23 17.33 6.69 6.02 4.62 14.19 7.89 9.53 11.62 9.04 14.15 5.76 5.31 3.67 18.32 5.40 3.75 15.25 21.84 9.85 9.76	5.66 4.71 12.29 8.70 5.24 5.10 24.23 9.05 8.06 8.43 10.19 12.09 4.76 5.80 4.08 23.41 4.75 4.55 10.89 18.34 7.54 6.57	0.20 0.11 1.25 0.74 0.21 0.11 1.16 0.27 0.51 0.67 0.13 0.71 0.39 0.10 0.06 1.17 0.18 0.06 1.17 0.18 0.06 0.68 0.39 0.55 0.72	0.08 0.16 1.15 0.33 0.18 0.05 1.57 0.36 0.25 0.31 0.41 0.40 0.10 0.03 0.08 1.29 0.14 0.20 0.43 0.49 0.24	0.028 0.046 0.025 0.049 0.008 0.002 0.042 0.042 0.040 0.005 0.037 0.044 0.005 0.037 0.044 0.007 0.027 0.029 0.01 0.002 0.001 0.009 0.010
Olfr186 Olfr204 Olfr211 Olfr218 Olfr220 Olfr237-ps1 Olfr237-ps1 Olfr237 Olfr315 Olfr315 Olfr371 Olfr46 Olfr477 Olfr523 Olfr523 Olfr523 Olfr523 Olfr523 Olfr524 Olfr525 Olfr524 Olfr543 Olfr543	258318 258994 258994 258880 546747 258648 258766 259038 18328 258531 258617 258858 258703 18345 258928 258928 258928 258492 18349 258734 258511 257939 258956 257947 259105	olfactory receptor 186 olfactory receptor 204 olfactory receptor 211 olfactory receptor 218 olfactory receptor 220 olfactory receptor 227, pseudogene 1 olfactory receptor 237, pseudogene 1 olfactory receptor 259 olfactory receptor 283 olfactory receptor 3 olfactory receptor 315 olfactory receptor 356 olfactory receptor 371 olfactory receptor 402 olfactory receptor 46 olfactory receptor 477 olfactory receptor 484 olfactory receptor 502 olfactory receptor 523 olfactory receptor 527 olfactory receptor 535 olfactory receptor 543 olfactory receptor 549	5.05 4.23 17.33 6.69 6.02 4.62 14.19 7.89 9.53 11.62 9.04 14.15 5.76 5.31 3.67 18.32 5.40 3.75 15.25 21.84 9.85 9.76	5.66 4.71 12.29 8.70 5.24 5.10 24.23 9.05 8.06 8.43 10.19 12.09 4.76 5.80 4.08 23.41 4.75 4.55 10.89 18.34 7.54 6.57 25.74	0.20 0.11 1.25 0.74 0.21 0.11 1.16 0.27 0.51 0.67 0.13 0.71 0.39 0.10 0.06 1.17 0.18 0.06 0.68 0.39 0.55 0.72 1.08	0.08 0.16 1.15 0.33 0.18 0.05 1.57 0.36 0.25 0.31 0.41 0.40 0.10 0.03 0.08 1.29 0.14 0.20 0.43 0.49 0.24 0.46 0.35	0.028 0.046 0.025 0.049 0.008 0.002 0.042 0.040 0.005 0.037 0.044 0.005 0.037 0.044 0.007 0.027 0.029 0.01 0.002 0.001 0.009 0.010 0.004
Olfr186 Olfr204 Olfr211 Olfr218 Olfr220 Olfr237-ps1 Olfr237-ps1 Olfr237 Olfr315 Olfr315 Olfr371 Olfr46 Olfr452 Olfr523 Olfr523 Olfr523 Olfr523 Olfr523 Olfr523 Olfr524 Olfr555 Olfr552 Olfr543 Olfr550	258318 258994 258994 258914 258800 546747 258648 258766 259038 18328 258531 258617 258858 258703 18345 258928 258492 18349 258734 258734 258511 257939 258956 257947 259105 259108	olfactory receptor 186 olfactory receptor 204 olfactory receptor 211 olfactory receptor 218 olfactory receptor 220 olfactory receptor 220 olfactory receptor 237, pseudogene 1 olfactory receptor 259 olfactory receptor 283 olfactory receptor 33 olfactory receptor 315 olfactory receptor 356 olfactory receptor 371 olfactory receptor 371 olfactory receptor 402 olfactory receptor 46 olfactory receptor 477 olfactory receptor 484 olfactory receptor 502 olfactory receptor 523 olfactory receptor 527 olfactory receptor 543 olfactory receptor 549 olfactory receptor 550	5.05 4.23 17.33 6.69 6.02 4.62 14.19 7.89 9.53 11.62 9.04 14.15 5.76 5.31 3.67 18.32 5.40 3.75 15.25 21.84 9.85 9.76 30.83	5.66 4.71 12.29 8.70 5.24 5.10 24.23 9.05 8.06 8.43 10.19 12.09 4.76 5.80 4.08 23.41 4.75 4.55 10.89 18.34 7.54 6.57 25.74 4.42	0.20 0.11 1.25 0.74 0.21 0.11 1.16 0.27 0.51 0.67 0.13 0.71 0.39 0.10 0.06 1.17 0.18 0.06 0.68 0.39 0.55 0.72 1.08 0.16	0.08 0.16 1.15 0.33 0.18 0.05 1.57 0.36 0.25 0.31 0.41 0.40 0.10 0.03 0.08 1.29 0.14 0.20 0.43 0.49 0.24 0.46 0.35 0.23	0.028 0.046 0.025 0.049 0.008 0.002 0.042 0.040 0.005 0.037 0.044 0.005 0.037 0.044 0.007 0.027 0.029 0.01 0.002 0.001 0.009 0.010 0.004 0.004 0.002
Olfr186 Olfr204 Olfr211 Olfr211 Olfr211 Olfr211 Olfr211 Olfr211 Olfr211 Olfr220 Olfr237-ps1 Olfr237-ps1 Olfr237 Olfr315 Olfr315 Olfr315 Olfr371 Olfr402 Olfr46 Olfr477 Olfr484 Olfr502 Olfr523 Olfr524 Olfr525 Olfr527 Olfr535 Olfr543 Olfr559	258318 258994 258994 258914 258800 546747 258648 258766 259038 18328 258531 258617 258858 258703 18345 258928 258492 18349 258734 258734 258511 257939 258956 257947 259105 259108	olfactory receptor 186 olfactory receptor 204 olfactory receptor 211 olfactory receptor 213 olfactory receptor 220 olfactory receptor 220 olfactory receptor 237, pseudogene 1 olfactory receptor 239 olfactory receptor 283 olfactory receptor 33 olfactory receptor 315 olfactory receptor 356 olfactory receptor 371 olfactory receptor 371 olfactory receptor 402 olfactory receptor 46 olfactory receptor 477 olfactory receptor 484 olfactory receptor 502 olfactory receptor 523 olfactory receptor 527 olfactory receptor 543 olfactory receptor 549 olfactory receptor 550 olfactory receptor 550 olfactory receptor 550 olfactory receptor 550	5.05 4.23 17.33 6.69 6.02 4.62 14.19 7.89 9.53 11.62 9.04 14.15 5.76 5.31 3.67 18.32 5.40 3.75 15.25 21.84 9.85 9.76 30.83 5.24	5.66 4.71 12.29 8.70 5.24 5.10 24.23 9.05 8.06 8.43 10.19 12.09 4.76 5.80 4.08 23.41 4.75 4.55 10.89 18.34 7.54 6.57 25.74 4.42 23.97	0.20 0.11 1.25 0.74 0.21 0.11 1.16 0.27 0.51 0.67 0.13 0.71 0.39 0.10 0.06 1.17 0.18 0.06 0.68 0.39 0.55 0.72 1.08 0.16 2.32	0.08 0.16 1.15 0.33 0.18 0.05 1.57 0.36 0.25 0.31 0.41 0.40 0.10 0.03 0.08 1.29 0.14 0.20 0.43 0.49 0.24 0.46 0.35 0.23 0.71	0.028 0.046 0.025 0.049 0.008 0.002 0.042 0.042 0.040 0.005 0.037 0.044 0.005 0.037 0.044 0.007 0.027 0.029 0.01 0.002 0.001 0.009 0.010 0.004 0.0027 0.027
Olfr186 Olfr204 Olfr211 Olfr211 Olfr211 Olfr211 Olfr211 Olfr211 Olfr211 Olfr214 Olfr237-ps1 Olfr237-ps1 Olfr237 Olfr315 Olfr315 Olfr315 Olfr371 Olfr402 Olfr46 Olfr46 Olfr502 Olfr523 Olfr523 Olfr523 Olfr523 Olfr524 Olfr555 Olfr559 Olfr559 Olfr569	258318 258994 258914 25880 546747 258648 258766 259038 18328 258531 258617 258858 258703 18345 258928 258492 18349 258734 258511 257939 258956 257947 259105 259108 259116	olfactory receptor 186 olfactory receptor 204 olfactory receptor 211 olfactory receptor 218 olfactory receptor 220 olfactory receptor 220 olfactory receptor 237, pseudogene 1 olfactory receptor 239 olfactory receptor 283 olfactory receptor 33 olfactory receptor 315 olfactory receptor 356 olfactory receptor 371 olfactory receptor 371 olfactory receptor 402 olfactory receptor 46 olfactory receptor 477 olfactory receptor 484 olfactory receptor 502 olfactory receptor 523 olfactory receptor 527 olfactory receptor 535 olfactory receptor 543 olfactory receptor 550 olfactory receptor 550 olfactory receptor 559 olfactory receptor 559 olfactory receptor 559	5.05 4.23 17.33 6.69 6.02 4.62 14.19 7.89 9.53 11.62 9.04 14.15 5.76 5.31 3.67 18.32 5.40 3.75 15.25 21.84 9.85 9.76 30.83 5.24 17.94	5.66 4.71 12.29 8.70 5.24 5.10 24.23 9.05 8.06 8.43 10.19 12.09 4.76 5.80 4.08 23.41 4.75 4.55 10.89 18.34 7.54 6.57 25.74 4.42 23.97 4.98	0.20 0.11 1.25 0.74 0.21 0.11 1.16 0.27 0.51 0.67 0.13 0.71 0.39 0.10 0.06 1.17 0.18 0.06 0.68 0.39 0.55 0.72 1.08 0.16 2.32 0.34	0.08 0.16 1.15 0.33 0.18 0.05 1.57 0.36 0.25 0.31 0.41 0.40 0.10 0.03 0.08 1.29 0.14 0.20 0.43 0.49 0.24 0.44 0.35 0.23 0.71 0.16	0.028 0.046 0.025 0.049 0.008 0.002 0.042 0.042 0.040 0.005 0.037 0.044 0.007 0.027 0.029 0.01 0.002 0.011 0.009 0.010 0.004 0.004 0.004 0.027 0.030
Olfr186 Olfr204 Olfr211 Olfr211 Olfr218 Olfr237-ps1 Olfr237-ps1 Olfr237 Olfr315 Olfr315 Olfr371 Olfr46 Olfr452 Olfr523 Olfr523 Olfr552 Olfr523 Olfr523 Olfr525 Olfr527 Olfr559 Olfr559 Olfr559 Olfr569	258318 258994 258994 258914 258800 546747 258648 258766 259038 18328 258531 258617 258858 258703 18345 258928 258492 18349 258734 258511 257939 258956 257947 259105 259108 259116	olfactory receptor 186 olfactory receptor 204 olfactory receptor 211 olfactory receptor 218 olfactory receptor 220 olfactory receptor 237, pseudogene 1 olfactory receptor 237, pseudogene 1 olfactory receptor 239 olfactory receptor 283 olfactory receptor 33 olfactory receptor 315 olfactory receptor 356 olfactory receptor 371 olfactory receptor 371 olfactory receptor 402 olfactory receptor 402 olfactory receptor 448 olfactory receptor 502 olfactory receptor 523 olfactory receptor 523 olfactory receptor 543 olfactory receptor 543 olfactory receptor 559 olfactory receptor 559 olfactory receptor 559 olfactory receptor 569 olfactory receptor 572	5.05 4.23 17.33 6.69 6.02 4.62 14.19 7.89 9.53 11.62 9.04 14.15 5.76 5.31 3.67 18.32 5.40 3.75 15.25 21.84 9.85 9.76 30.83 5.24 17.94 6.03	5.66 4.71 12.29 8.70 5.24 5.10 24.23 9.05 8.06 8.43 10.19 12.09 4.76 5.80 4.08 23.41 4.75 4.55 10.89 18.34 7.54 6.57 25.74 4.42 23.97 4.98 4.60	0.20 0.11 1.25 0.74 0.21 0.11 1.16 0.27 0.51 0.67 0.13 0.71 0.39 0.10 0.06 1.17 0.18 0.06 0.68 0.39 0.55 0.72 1.08 0.16 2.32 0.34 0.03	0.08 0.16 1.15 0.33 0.18 0.05 1.57 0.36 0.25 0.31 0.41 0.40 0.10 0.03 0.08 1.29 0.14 0.20 0.43 0.49 0.24 0.44 0.35 0.23 0.71 0.16 0.20	0.028 0.046 0.025 0.049 0.00 0.008 0.002 0.042 0.040 0.005 0.037 0.044 0.005 0.037 0.044 0.007 0.027 0.029 0.01 0.002 0.011 0.009 0.010 0.009 0.010 0.004 0.027 0.047 0.030 0.036

016 640	F 45005	16	16.00	12.00	0.50	0.50	0.004
0117612	545985	olfactory receptor 612	16.08	12.09	0.52	0.73	0.004
Olfr624	258189	olfactory receptor 624	4.94	4.75	0.03	0.07	0.038
Olfr655	258817	olfactory receptor 655	7.29	6.69	0.10	0.16	0.018
Olfr676	259099	olfactory receptor 676	5.61	6.62	0.13	0.36	0.038
Olfr685	258160	olfactory receptor 685	11.34	9.68	0.42	0.34	0.022
Olfr686	259072	olfactory receptor 686	9.12	7.47	0.43	0.31	0.021
Olfr687	668035	olfactory receptor 687	5.26	6.80	0.13	0.22	0.001
Olfr691	259063	olfactory receptor 691	10.89	7.88	0.70	0.25	0.007
Olfr720	258387	olfactory receptor 720	5.18	5.75	0.08	0.21	0.041
Olfr725	258314	olfactory receptor 725	411	4 4 3	0.05	0.07	0.01
01fr739	258663	olfactory receptor 720	0.10	7.04	0.67	0.47	0.040
016:792	250005	alfastawy receptor 757	4.02	6.12	0.15	0.17	0.040
011782	23/903		4.02	0.12	0.15	0.24	0.004
Olfr820	258670	olfactory receptor 820	9.03	13.59	0.64	1.15	0.013
Olfr821	258772	olfactory receptor 821	5.79	4.51	0.22	0.11	0.002
0lfr885	257885	olfactory receptor 885	4.50	5.24	0.13	0.18	0.015
Olfr910	258807	olfactory receptor 910	4.46	3.95	0.14	0.12	0.032
Olfr914	258782	olfactory receptor 914	14.50	11.24	0.89	0.62	0.02
Olfr922	258777	olfactory receptor 922	5.41	4.51	0.32	0.03	0.032
Olfr97	258505	olfactory receptor 97	5.23	4.67	0.13	0.18	0.045
Olfr979	259112	olfactory receptor 979	4.43	3.80	0.20	0.12	0.034
Omp	18378	olfactory marker protein	9.26	7.79	0.16	0.34	0.008
Onecut1	15379	one cut domain, family member 1	8.45	7.47	0.31	0.18	0.034
0092	381570	oogenesin 2	8.08	7.24	0.25	0.12	0.024
Oog2	225022	segute segure and pustoin 2	6.62	7.2T	0.25	0.12	0.024
Oosp3	223923		0.05	5.07	0.20	0.07	0.032
Orc4	26428	origin recognition complex, subunit 4	95.74	127.26	5.23	8.13	0.017
0s9	216440	amplified in osteosarcoma	216.06	191.34	4.98	8.16	0.041
Osbpl6	99031	oxysterol binding protein-like 6	33.43	44.94	2.08	3.83	0.038
Oscp1	230751	organic solute carrier partner 1	23.45	25.82	0.73	0.53	0.040
Ost4	67695	oligosaccharyltransferase 4 homolog (S. cerevisiae)	1174.65	1358.85	36.65	35.99	0.012
Ost4	67695	oligosaccharyltransferase 4 homolog (S. cerevisiae)	480.81	534.77	15.99	3.15	0.016
Ost4	67695	oligosaccharyltransferase 4 homolog (S. cerevisiae)	662.15	742.52	25.67	19.30	0.05
Otog	18419	otogelin	10.60	8.73	0.36	0.21	0.004
Otop1	21906	otopetrin 1	9.12	7.28	0.18	0.27	0.001
Otud1	71198	OTU domain containing 1	41.65	56.99	1.92	3.08	0.01
P2rx6	18440	purinergic receptor P2X, ligand-gated ion channel, 6	11.03	8.56	0.37	0.29	0.002
P4htm	74443	nrolyl 4-hydroxylase transmembrane (endoplasmic reticulum)	38 47	29.72	2.67	2 10	0.042
Pabne1	10/50	poly(A) binding protoin gytoplasmic 1	50.47	67.00	1.24	1 55	0.042
Pabper	10450	poly(A) binding protein, cytoplasmic 1	39.35	07.09	1.54	1.55	0.009
Pallo	/2333	panadin, cytoskeletai associated protein	15.11	20.34	0.85	1.72	0.03
Palm	18483	paralemmin	43.90	32.88	2.63	0.93	0.008
Palmd	114301	palmdelphin	15.00	20.69	0.63	1.73	0.021
Pam	18484	peptidylglycine alpha-amidating monooxygenase	49.21	59.18	2.97	1.65	0.026
Pan3	72587	PAN3 polyA specific ribonuclease subunit homolog (S. cerevisiae)	147.87	197.88	10.53	10.75	0.016
Papln	170721	papilin, proteoglycan-like sulfated glycoprotein	9.80	8.20	0.34	0.29	0.012
Parn	74108	poly(A)-specific ribonuclease (deadenylation nuclease)	91.05	118.89	6.51	5.49	0.017
Pask	269224	PAS domain containing serine/threonine kinase	12.42	13.85	0.33	0.40	0.034
Pax6	18508	paired box 6	18.71	16.42	0.62	0.69	0.049
Pbrm1	66923	polybromo 1	167.41	200.07	6.97	7.06	0.017
Pcdh11x	245578	protocadherin 11 X-linked	195.44	244.10	9.50	15.88	0.039
Pcdh12	53601	protocadherin 12	7.03	5.81	0.25	0.24	0.01
Pcdbb17	03888	protocadherin heta 17	33.15	50.03	3.22	5.03	0.05
Deid2	224060	DCL domain containing 2	27.00	22.02	1.25	1.25	0.036
F cluz	234009		27.99	23.03	1.2.5	1.55	0.030
PCIO	26875	piccolo (presynaptic cytomatrix protein)	27.24	34.17	1.45	2.01	0.031
Pcmtd2	245867	protein-L-isoaspartate (D-aspartate) O-methyltransferase domain containing 2	80.38	118.70	2.60	14.74	0.04
Pcp4l1	66425	Purkinie cell protein 4-like 1	20.67	16.75	0.92	0.47	0.009
Pdcd11g2	58205	nrogrammed cell death 1 ligand 2	8.05	6.45	0.27	0.12	0.002
Pdo11o	241490	phoenhodiastarace 114	0.05	7.00	0.22	0.26	0.001
Pdo2c	E4611	phosphodicsterase 2A cCMD inhibited	21 47	26.20	1.52	0.20	0.001
ruesa	54011		41.47	20.30	1.34	0.19	0.02
Palim5	56376	PDZ and LIM domain 5	143.81	1/8.14	6.90	4.24	0.005
Pdzd7	1005030	PDZ domain containing 7	10.66	9.12	0.10	0.43	0.013
	41						

Pdzd9	67983	PDZ domain containing 9	6.88	7.94	0.14	0.24	0.009
Peak1	244895	pseudopodium-enriched atypical kinase 1	80.61	131.21	9.53	13.19	0.021
Pex14	56273	peroxisomal biogenesis factor 14	25.94	21.75	1.20	1.17	0.047
Pex6	224824	peroxisomal biogenesis factor 6	45.40	32.82	2.59	2.23	0.01
Pgam1	18648	phosphoglycerate mutase 1	276.26	231.59	5.94	9.14	0.006
Pgap3	320655	post-GPI attachment to proteins 3	8.78	7.57	0.34	0.25	0.029
Pac	109820	nrogastricsin (nensingen ()	8.89	716	0.65	0.17	0.042
Pals	66171	6-nhosnhoglucanalactonase	131.03	108.84	4.90	4.00	0.012
I gis Dalven1	21046	pentidoglucon recognition protein 1	25.00	14.00	1 51	1 50	0.013
Dalumn 4	204007	peptidoglycan recognition protein 1	7.00	F 00	0.20	0.27	0.002
Pgiyi p4	210121	PUD Grane grantein 114	7.09	22.99	1.50	1.76	0.030
Philia	219131	PHD linger protein TIA	29.88	23.89	1.58	1.76	0.04
Phxr4	18689	per-nexamer repeat gene 4	51.90	116.33	7.47	8.02	0.001
Pias2	17344	protein inhibitor of activated STAT 2	87.36	124.26	8.52	11.09	0.039
Pias4	59004	protein inhibitor of activated STAT 4	59.42	40.17	5.75	1.96	0.019
Picalm	233489	phosphatidylinositol binding clathrin assembly protein	635.17	706.62	23.41	11.24	0.033
Piezo2	667742	piezo-type mechanosensitive ion channel component 2	13.25	19.01	1.16	2.01	0.048
Pik3ca	18706	phosphatidylinositol 3-kinase, catalytic, alpha polypeptide	73.59	102.64	7.01	7.77	0.032
Pikfyve	18711	phosphoinositide kinase, FYVE finger containing	74.89	102.98	4.01	3.68	0.002
Pim1	18712	proviral integration site 1	9.04	11.66	0.10	1.05	0.048
Pink1	68943	PTEN induced putative kinase 1	43.04	49.89	1.54	1.66	0.023
Pirt	193003	phosphoinositide-interacting regulator of transient receptor potential	11.31	9.10	0.63	0.42	0.027
		channels					
Pkd2l1	329064	polycystic kidney disease 2-like 1	8.00	6.57	0.47	0.13	0.027
Pkhd1l1	192190	polycystic kidney and hepatic disease 1-like 1	6.33	5.81	0.15	0.08	0.023
Pla2g1b	18778	phospholipase A2, group IB, pancreas	5.36	5.76	0.10	0.11	0.04
Pla2g2c	18781	phospholipase A2, group IIC	14.01	11.53	0.73	0.54	0.035
Plcd3	72469	phospholipase C, delta 3	10.79	9.50	0.21	0.33	0.016
Plekha4	69217	pleckstrin homology domain containing, family A (phosphoinositide	11.50	10.17	0.48	0.14	0.037
		binding specific) member 4					
Plekhg2	101497	pleckstrin homology domain containing, family G (with RhoGef	11.10	13.21	0.51	0.61	0.038
		domain) member 2					
Plin4	57435	nerilinin 4	12 69	855	146	0.50	0.04
Plod?	26432	procellagen lysine 2-oxoglutarate 5-dioyygenase 2	87.66	147.36	10.23	18 29	0.01
Plynh1	20452	plotonagen lysine, 2-oxogiutarate 5-uloxygenase 2	41.24	E1 70	1 1 0	2.07	0.027
Pixilui	10040	pickin bi	7.00	51.70	0.64	0.22	0.010
	10940		7.09	5.19	0.04	0.22	0.031
Phpla1	433091	patatin-like phospholipase domain containing 1	7.20	6.20	0.38	0.14	0.05
Pnpla7	241274	patatin-like phospholipase domain containing 7	12.68	10.07	0.89	0.12	0.027
Podnl1	244550	podocan-like 1	6.97	5.90	0.34	0.18	0.033
Pold4	69745	polymerase (DNA-directed), delta 4	59.67	44.78	2.91	2.85	0.01
Pold4	69745	polymerase (DNA-directed), delta 4	98.79	81.47	5.13	3.58	0.032
Pole2	18974	polymerase (DNA directed), epsilon 2 (p59 subunit)	11.20	18.14	1.46	1.78	0.024
Pom121l2	195236	POM121 membrane glycoprotein-like 2 (rat)	9.58	8.33	0.42	0.29	0.050
Pop5	117109	processing of precursor 5, ribonuclease P/MRP family (S. cerevisiae)	127.17	102.39	4.43	6.50	0.020
Pou4f2	18997	POU domain, class 4, transcription factor 2	8.71	7.25	0.42	0.19	0.019
Ppapdc3	227721	phosphatidic acid phosphatase type 2 domain containing 3	24.73	18.41	1.81	1.65	0.042
Ppie	56031	peptidylprolyl isomerase E (cyclophilin E)	23.05	19.50	0.66	0.75	0.012
Ppm1b	19043	protein phosphatase 1B, magnesium dependent, beta isoform	95.07	111.27	2.67	3.02	0.007
Ppp1r13l	333654	protein phosphatase 1, regulatory (inhibitor) subunit 13 like	9.49	7.07	0.66	0.31	0.02
Ppp1r18	76448	protein phosphatase 1, regulatory subunit 18	33.90	29.24	0.96	1.19	0.023
Ppp2r2b	72930	protein phosphatase 2, regulatory subunit B, beta	112.44	133.10	4.20	5.56	0.025
Ppp4c	56420	protein phosphatase 4, catalytic subunit	138.61	116.84	5.24	6.62	0.042
Ppp6r2	71474	protein phosphatase 6. regulatory subunit 2	171.12	209.74	13.07	6.19	0.037
Palc1	66943	PO loop repeat containing 1	7.65	6,96	0,13	0.21	0.033
Pramef6	195555	PRAME family member 6	6.65	5.10	0.33	0.38	0.022
Pramel1	83401	nreferentially expressed antigen in melanoma-like 1	9.05	9.27	0.55	0.30	0.022
Pren	72461	protectionary expressed andgen in inclanging in a second and a second a secon	9.90 81.07	65.46	3.04	2.72	0.033
Prdy4	72401 E2201	provincal boxypeptituase (angiotensillase CJ	102.25	120 41	0.21	2.75	0.017
rTuX4	10121	per uxii eu uXiii 4	105.25	0 70	9.31	0.09	0.017
PTHI	19131	profile fich protein Haeffi subramily 1	12.66	8.72	0.57	0.84	0.008
Prkar1a	19084	protein Kinase, CAMP dependent regulatory, type I, alpha	82.96	/3.18	3.41	1.43	0.038
Prkcdbp	109042	protein kinase C, delta binding protein	38.22	43.68	1.04	1.70	0.033

Prkrir	72981	protein-kinase, interferon-inducible double stranded RNA dependent	421.47	500.30	24.65	19.76	0.047
		inhibitor, repressor of (P58 repressor)					
Prl	19109	prolactin	6.00	6.62	0.07	0.24	0.045
Prl7a1	19113	prolactin family 7, subfamily a, member 1	4.79	4.20	0.22	0.08	0.044
Prorsd1	67939	prolyl-tRNA synthetase domain containing 1	40.91	28.32	4.94	0.49	0.044
Proser2	227545	proline and serine rich 2	12.31	10.43	0.43	0.15	0.006
Prox1	19130	prospero homeobox 1	47.63	70.23	5.65	6.68	0.042
Prph2	19133	peripherin 2	15.47	11.57	0.60	0.35	0.001
Prr15l	217138	proline rich 15-like	10.57	8.33	0.70	0.19	0.021
Prr23a	623166	proline rich 23A	7.43	6.82	0.18	0.10	0.024
Prr27	73779	proline rich 27	17.27	12.31	1.12	1.16	0.022
Prrx1	18933	paired related homeobox 1	35.26	41.41	1.53	1.14	0.018
Prss12	19142	protease serine 12 neurotrynsin (motonsin)	10.04	10.98	0.21	0.26	0.030
Prss78	114661	nrotease serine 28	894	10.70	0.21	0.20	0.034
Prss32	69814	nrotease serine 32	16.30	12.54	1 30	0.49	0.036
Prec/1	71003	protector sering A1	13.60	11.75	0.29	0.15	0.007
Prec44	72226	protease, serine 44	4.00	11.75	0.2)	0.00	0.007
ProcE9	222717	protesse, serine 59	5.04	4.50	0.10	0.09	0.000
Pissoo	232717	protesse, serine 50	10.02	4.51	0.17	0.00	0.020
Psg-ps1	232919	pregnancy specific glycoprotein pseudogene 1	10.02	8.27	0.51	0.26	0.023
PSIIID10	19171	proteasonie (prosonie, macropani) subunit, beta type 10	24.54	15.47	4.00	7.00	0.003
PSmD3	20440	proteasome (prosome, macropain) subunit, beta type 3	24.54	15.47	2.51	2.22	0.035
Psmd1	/024/	proteasome (prosome, macropain) 265 subunit, non-ATPase, 1	341.08	290.14	10.83	5.84	0.029
Psmd4	19185	proteasome (prosome, macropain) 26S subunit, non-ATPase, 4	264.25	243.37	3.78	6.45	0.031
Psme4	103554	proteasome (prosome, macropain) activator subunit 4	136.76	155.86	1.96	5.12	0.013
Psors1c2	57390	psoriasis susceptibility 1 candidate 2 (human)	16.60	13.70	0.50	0.60	0.010
Ptbp3	230257	polypyrimidine tract binding protein 3	235.53	292.75	6.12	21.27	0.041
Pten	19211	phosphatase and tensin homolog	283.42	335.93	12.45	12.25	0.024
Ptf1a	19213	pancreas specific transcription factor, 1a	6.29	5.53	0.17	0.08	0.007
Ptgdr	19214	prostaglandin D receptor	5.18	4.76	0.04	0.16	0.0
Ptgir	19222	prostaglandin I receptor (IP)	9.30	7.75	0.15	0.13	0.000
Ptgs1	19224	prostaglandin-endoperoxide synthase 1	29.74	39.14	0.84	1.30	0.001
Ptgs2os2	1026395	prostaglandin-endoperoxide synthase 2, opposite strand 2	5.91	6.51	0.15	0.18	0.043
	66						
Pth1r	19228	parathyroid hormone 1 receptor	30.15	23.73	1.86	0.66	0.018
Ptk6	20459	PTK6 protein tyrosine kinase 6	6.19	5.30	0.20	0.09	0.01
Ptpn12	19248	protein tyrosine phosphatase, non-receptor type 12	178.41	209.63	7.39	9.54	0.041
Ptpn13	19249	protein tyrosine phosphatase, non-receptor type 13	18.05	26.47	0.61	1.72	0.004
Ptpn22	19260	protein tyrosine phosphatase, non-receptor type 22 (lymphoid)	8.18	7.04	0.37	0.11	0.025
Ptpn4	19258	protein tyrosine phosphatase, non-receptor type 4	143.36	184.85	5.61	11.59	0.018
Ptpn9	56294	protein tyrosine phosphatase, non-receptor type 9	71.93	99.38	7.98	5.38	0.029
Ptprz1	19283	protein tyrosine phosphatase, receptor type Z, polypeptide 1	1465.39	1669.48	26.55	38.73	0.005
Pum1	80912	pumilio RNA-binding family member 1	118.29	125.64	1.79	2.20	0.041
Pum2	80913	pumilio RNA-binding family member 2	134.15	152.39	3.57	2.07	0.004
Pus1	56361	pseudouridine synthase 1	20.78	23.67	0.42	0.59	0.007
Pvalb	19293	parvalbumin	13.91	10.13	0.56	0.64	0.004
Pwp2	110816	PWP2 periodic tryptophan protein homolog (yeast)	13.97	11.87	0.64	0.40	0.032
Pycrl	66194	pyrroline-5-carboxylate reductase-like	54.28	41.06	3.37	2.99	0.026
Руу	217212	peptide YY	9.75	8.14	0.32	0.40	0.020
Rab11fip4	268451	RAB11 family interacting protein 4 (class II)	13.28	10.27	1.10	0.26	0.038
Rab11fip4os	72218	RAB11 family interacting protein 4 (class II), opposite strand 2	5.39	6.06	0.15	0.21	0.039
2							
Rab22a	19334	RAB22A, member RAS oncogene family	31.92	43.31	2.70	2.32	0.019
Rab39b	67790	RAB39B, member RAS oncogene family	140.86	113.01	2.78	3.77	0.001
Rab4b	19342	RAB4B, member RAS oncogene family	72.05	48.45	3.65	3.19	0.00
Rab9b	319642	RAB9B, member RAS oncogene family	36.27	27.72	2.89	0.94	0.031
Rabgap11	29809	RAB GTPase activating protein 1-like	62.02	75.45	2.71	2.60	0.012
Ralgapa1	56784	Ral GTPase activating protein, alpha subunit 1	141.67	167.65	5.75	6.44	0.024
Ran	19384	RAN, member RAS oncogene family	526.85	472.38	11.41	13.95	0.023
Rassf10	78748	Ras association (RalGDS/AF-6) domain family (N-terminal) member	50.09	32.25	5.23	4,19	0.037
	10		50.07	56.63	5.23	1.1.7	0.007
Rh1cc1	12421	RB1-inducible coiled-coil 1	105.02	132.08	3.03	3.62	0.00
ROICEI	12721	KD1 maacibic concu-con 1	103.02	132.00	5.05	5.02	0.00

Rbbp8	225182	retinoblastoma binding protein 8	37.46	51.65	2.50	3.36	0.015
Rbm15b	109095	RNA binding motif protein 15B	75.12	101.87	7.89	5.99	0.04
Rbm3os	70226	RNA binding motif protein 3, opposite strand	7.78	11.78	0.64	1.11	0.021
Rbpj	19664	recombination signal binding protein for immunoglobulin kappa J	101.72	124.76	3.31	7.76	0.034
		region					
Rcor1	217864	REST corepressor 1	30.99	40.45	2.30	2.82	0.041
Rcsd1	226594	RCSD domain containing 1	26.77	21.12	1.54	1.24	0.029
Rec114	73673	REC114 meiotic recombination protein	14.82	19.53	1.22	0.77	0.017
Rec8	56739	REC8 meiotic recombination protein	6.06	5.65	0.08	0.14	0.043
Reep5	13476	receptor accessory protein 5	916.39	728.51	13.34	48.71	0.010
Relb	19698	avian reticuloendotheliosis viral (v-rel) oncogene related B	11.17	9.14	0.19	0.33	0.002
Rem1	19700	rad and gem related GTP binding protein 1	7.82	6.25	0.47	0.17	0.019
Repin1	58887	replication initiator 1	41.49	36.45	1.69	0.73	0.034
Ret	19713	ret proto-oncogene	14.82	12.16	0.59	0.91	0.049
Rev3l	19714	REV3-like, catalytic subunit of DNA polymerase zeta RAD54 like (S. cerevisiae)	387.91	492.66	21.33	19.51	0.011
Rex2	1000430 34	reduced expression 2	5.80	9.29	0.20	0.71	0.003
Rexo2	104444	REX2, RNA exonuclease 2 homolog (S. cerevisiae)	440.15	341.06	32.29	22.80	0.046
Rfx2	19725	regulatory factor X, 2 (influences HLA class II expression)	9.20	7.21	0.32	0.45	0.011
Rfx3	19726	regulatory factor X, 3 (influences HLA class II expression)	64.51	84.27	2.68	1.70	0.001
Rfx4	71137	regulatory factor X, 4 (influences HLA class II expression)	67.71	101.12	4.73	11.74	0.039
Rgmb	68799	repulsive guidance molecule family member B	41.96	57.67	1.58	4.58	0.018
Rgs6	50779	regulator of G-protein signaling 6	9.16	8.27	0.16	0.31	0.044
Rgs9	19739	regulator of G-protein signaling 9	47.61	40.01	1.71	0.48	0.005
Rhbdd3	279766	rhomboid domain containing 3	31.07	39.44	2.36	2.24	0.042
Rhoj	80837	ras homolog gene family, member J	18.87	23.12	1.22	0.45	0.017
Rhov	228543	ras homolog gene family, member V	10.23	8.25	0.62	0.40	0.036
Rhox2d	434760	reproductive homeobox 2D	5.38	6.44	0.15	0.35	0.033
Rhox2f	434764	reproductive homeobox 2F	5.12	4.29	0.17	0.26	0.035
Rhox2g	434766	reproductive homeobox 2G	5.16	4.10	0.31	0.11	0.017
Rhox4f	636177	reproductive homeobox 4F	4.81	6.69	0.20	0.38	0.005
Rhox5	18617	reproductive homeobox 5	5.68	6.84	0.21	0.36	0.031
Rian	75745	RNA imprinted and accumulated in nucleus	15.20	25.92	1.82	1.66	0.005
Rian	75745	RNA imprinted and accumulated in nucleus	34.17	46.61	1.58	3.03	0.011
Rimkla	194237	ribosomal modification protein rimK-like family member A	28.67	33.17	0.85	1.62	0.049
Rin3	217835	Ras and Rab interactor 3	30.45	26.92	1.16	0.74	0.043
Ring1	19763	ring finger protein 1	69.18	47.91	1.14	2.17	0.000
Ring1	19763	ring finger protein 1	35.85	28.67	2.13	1.25	0.027
Ripk4	72388	receptor-interacting serine-threonine kinase 4	7.28	5.81	0.53	0.21	0.041
Rmdn3	67809	regulator of microtubule dynamics 3	32.29	27.22	0.76	0.85	0.004
Rmnd5a	68477	required for meiotic nuclear division 5 homolog A (S. cerevisiae)	56.02	68.90	2.80	2.52	0.014
Rn7sk	19817	RNA, 7SK, nuclear	2920.23	3429.36	39.96	74.42	0.001
Rnf121	75212	ring finger protein 121	57.46	83.85	1.15	5.28	0.003
Rnf148	71300	ring finger protein 148	6.70	5.73	0.28	0.25	0.041
Rnf151	67504	ring finger protein 151	7.69	6.64	0.07	0.32	0.018
Rnf166	68718	ring finger protein 166	38.54	25.94	4.49	1.84	0.041
Rnf2	19821	ring finger protein 2	152.47	197.76	12.33	7.81	0.021
Rnf212	671564	ring finger protein 212	10.38	11.55	0.33	0.19	0.022
Rnf220	66743	ring finger protein 220	46.66	36.75	2.17	1.63	0.011
Rnf38	73469	ring finger protein 38	185.40	206.10	5.38	6.17	0.045
Rnpep	215615	arginyl aminopeptidase (aminopeptidase B)	10.23	8.53	0.44	0.37	0.025
Rnpep	215615	arginyl aminopeptidase (aminopeptidase B)	65.63	57.80	2.66	0.74	0.030
Ropn1	76378	ropporin, rhophilin associated protein 1	6.41	6.92	0.09	0.11	0.014
Ros1	19886	Ros1 proto-oncogene	7.15	6.46	0.16	0.14	0.017
Rp9	55934	retinitis pigmentosa 9 (human)	87.43	103.77	2.73	4.05	0.015
Rpl19	19921	ribosomal protein L19	14.31	12.71	0.11	0.23	0.001
Rpl19	19921	ribosomal protein L19	2112.40	1958.20	22.45	42.81	0.019
Rpl27	19942	ribosomal protein L27	1848.80	1730.63	25.39	13.01	0.006
Rpl3	27367	ribosomal protein L3	70.28	45.91	4.35	3.92	0.006
Rpl39	67248	ribosomal protein L39	2234.72	2445.54	49.54	23.72	0.009

Rp131	66211	ribosomal protein L3-like	7.10	6.22	0.19	0.16	0.012
Rpl4	67891	ribosomal protein L4	2044.06	2148.22	22.87	27.84	0.028
Rpl41	67945	ribosomal protein L41	184.10	112.23	14.27	14.04	0.012
Rpl7a	27176	ribosomal protein L7A	1912.56	1786.17	41.70	24.77	0.040
Rprml	104582	reprimo-like	16.88	13.08	1.28	0.74	0.042
Rps27	57294	ribosomal protein S27	24.82	14.72	3.32	1.67	0.035
Rntn	20129	renetin	4 64	5.00	0.08	0.06	0.010
Rrn1	18114	ribosomal RNA processing 1 homolog (S. cerevisiae)	221 12	181 30	10.47	3.07	0.011
Rup1	74779	ribosomal RNA processing 7 homolog (S. cerevisiae)	12 60	70.62	2.00	7.09	0.000
Repra	242960	round enermatid basis protein 1 like	20.12	10.02	2.00	2.00	0.007
Rabiili	242000	round spermatic basic protein 1-nke	206.22	104.04	2.33	2.00	0.042
RSI1	200002	DEMO and DAD kits small (TDage 1	200.32	104.04	4.07	7.20	0.042
RSg1	/6166	REM2 and RAB-like small GTPase 1	7.46	8.43	0.20	0.31	0.04
Rtn1	104001	reticulon 1	183.91	168.62	3.53	3.40	0.02
Rtn4rl2	269295	reticulon 4 receptor-like 2	19.56	15.40	1.13	1.00	0.033
Ryk	20187	receptor-like tyrosine kinase	151.05	198.53	8.51	14.45	0.03
Ryr3	20192	ryanodine receptor 3	11.07	12.34	0.35	0.23	0.02
S100a3	20197	S100 calcium binding protein A3	78.16	52.51	6.09	5.70	0.022
S100a4	20198	S100 calcium binding protein A4	326.21	224.79	24.31	14.77	0.012
S100a6	20200	S100 calcium binding protein A6 (calcyclin)	2278.25	1957.97	38.78	49.84	0.002
S100pbp	74648	S100P binding protein	60.96	85.97	3.60	5.57	0.009
S1pr5	94226	sphingosine-1-phosphate receptor 5	52.39	27.73	5.85	3.64	0.012
Sacm11	83493	SAC1 (suppressor of actin mutations 1, homolog)-like (S. cerevisiae)	93.55	132.70	3.99	9.45	0.009
Sall3	20689	sal-like 3 (Drosophila)	39.04	46.49	1.42	2.32	0.034
Sbk1	104175	SH3-binding kinase 1	30.51	36.91	1.64	1.78	0.038
Scgb1b20	545948	secretoglobin, family 1B, member 20	15.67	11.20	0.88	0.57	0.005
Scin	20259	scinderin	6.39	6.78	0.06	0.08	0.006
Scly	50880	selenocysteine lyase	29.29	19.81	3.27	0.71	0.030
Scn3b	235281	sodium channel, voltage-gated, type III, beta	64.15	84.39	3.12	7.15	0.04
Scnn1b	20277	sodium channel, nonvoltage-gated 1 beta	6.24	5.38	0.13	0.18	0.008
Scnn1g	20278	sodium channel nonvoltage-gated 1 gamma	18 57	14.86	1 3 3	0.62	0.044
Scor	56367	short coiled-coil protein	17.21	14.11	0.80	0.52	0.017
Scot	74617	short contex-con protein	02.20	102.61	0.00	6.92	0.017
Schehl	/401/	serine carboxypeptidase 1	100 55	105.01	3.31	0.03	0.04
Suc2	15529	syndecan z	109.55	135.41	4.83	8.64	0.040
Sacop2	228/65	syndecan binding protein (syntenin) 2	14.55	11.39	1.17	0.42	0.043
Sdsl	257635	serine dehydratase-like	10.90	8.75	0.70	0.30	0.031
Sec14l3	380683	SEC14-like 3 (S. cerevisiae)	11.39	9.41	0.46	0.33	0.013
Selm	114679	selenoprotein M	210.49	184.40	7.25	6.91	0.040
Sept7	235072	septin 7	1363.45	1438.87	28.45	11.03	0.048
Serinc1	56442	serine incorporator 1	534.07	630.68	24.65	27.24	0.039
Serpina3a	74069	serine (or cysteine) peptidase inhibitor, clade A, member 3A	6.65	5.31	0.38	0.26	0.027
Serpina6	12401	serine (or cysteine) peptidase inhibitor, clade A, member 6	5.61	4.89	0.18	0.12	0.017
Serpinb5	20724	serine (or cysteine) peptidase inhibitor, clade B, member 5	4.49	5.13	0.08	0.21	0.030
Serpinb6d	238568	serine (or cysteine) peptidase inhibitor, clade B, member 6d	6.36	5.29	0.33	0.04	0.018
Serping1	12258	serine (or cysteine) peptidase inhibitor, clade G, member 1	10.80	7.91	0.78	0.61	0.027
Sesn1	140742	sestrin 1	62.35	83.65	7.35	3.87	0.043
Sesn3	75747	sestrin 3	233.48	292.79	8.41	10.20	0.004
Setd8	67956	SET domain containing (lysine methyltransferase) 8	179.53	145.66	5.90	5.39	0.005
Sfta2	433102	surfactant associated 2	9.37	8.48	0.21	0.21	0.023
Sgce	20392	sarcoglycan, epsilon	99.13	114.35	3.28	5.17	0.047
Sgpl1	20397	sphingosine phosphate lyase 1	100.47	127.72	8.29	4.75	0.029
Sgnn1	81535	sphingosine-1-phosphate phosphatase 1	108.85	134.58	8.18	5.89	0.043
Sh2h2	23921	SH2B adaptor protein 2	20.10	17.06	0.55	1 1 1	0.050
Sh3rf2	269016	SH3 domain containing ring finger ?	10.86	9.00	0.37	0.16	0.005
Sh3tc1	2311/7	SH3 domain and tetratriconentide repeats 1	11.64	14.27	0.57	0.10	0.047
Shice	201702	shire homolog 6 (Vanonus loggia)	11.04	170.10	0.03	6.02	0.047
Sink2	300702	suisa nomoiog o (Aenopus laevis)	114.12	10.05	9./1	0.02	0.003
Sian2	20439	seven in absentia 2	21.13	18.05	0.91	0.73	0.039
Siglec5	233186	sianc acid binding ig-like lectin 5	7.89	9.10	0.20	0.33	0.0
Sil1	81500	endoplasmic reticulum chaperone SIL1 homolog (S. cerevisiae)	102.11	76.86	4.51	7.07	0.024
Sin3b	20467	transcriptional regulator, SIN3B (yeast)	36.85	32.24	0.83	1.02	0.013
Sipa113	74206	signal-induced proliferation-associated 1 like 3	28.51	36.68	2.26	1.13	0.018
Sis	69983	sucrase isomaltase (alpha-glucosidase)	5.44	6.84	0.29	0.32	0.018

Six1	20471	sine oculis-related homeobox 1	12.96	11.14	0.31	0.45	0.016
Slamf7	75345	SLAM family member 7	7.13	6.20	0.14	0.13	0.003
Slamf8	74748	SLAM family member 8	9.09	7.63	0.19	0.51	0.037
Slamf9	98365	SLAM family member 9	14.05	18.31	0.95	1.23	0.033
Slc12a5	57138	solute carrier family 12, member 5	13.08	10.68	0.82	0.29	0.033
Slc16a10	72472	solute carrier family 16 (monocarboxylic acid transporters), member	12.28	17.23	1.87	0.52	0.0
		10					
Slc16a3	80879	solute carrier family 16 (monocarboxylic acid transporters) member	16.05	13 25	0.58	0.72	0.023
Sicrous	00077	3	10.05	15.25	0.50	0.72	0.025
Slc16a8	57274	solute carrier family 16 (monocarboxylic acid transporters) member	10.64	7.63	0.85	0.38	0.018
Siciouo	57271	8	10.01	7.05	0.05	0.50	0.010
Slc17a4	310848	solute carrier family 17 (sodium phosphate) member 4	7 74	6.4.2	0.44	0.26	0.040
Slc17aF	225504	solute carrier family 17 (axion /cugar transporter), member 1	26.79	27.17	0.11	4.20	0.040
Sle19b1	233304	solute carrier family 12 cubfamily D member 1	20.70	27.55	1.74	4.20	0.045
Sla22a2	20510	solute carrier family 22 (evening action transporter) member 2	45.22	62.46	1.74	2.26	0.045
SIC22a3	20519	solute carrier family 22 (organic cation transporter), member 3	45.22	11.67	4.00	0.22	0.01
SIC2383	22626	solute carrier family 23 (nucleobase transporters), member 3	13.22	11.07	0.43	0.22	0.019
SIC25a12	/8830	solute carrier family 25 (mitochondrial carrier, Araiar), member 12	08.88	80.02	2.00	3.97	0.05
51025819	67283	solute carrier family 25 (mitochondrial thiamine pyrophosphate	24.80	19.18	0.66	1.01	0.003
	005504	carrier), member 19	14.07	10.05	0.00	0.55	0.005
SIc25a25	227731	solute carrier family 25 (mitochondrial carrier, phosphate carrier),	14.87	12.25	0.80	0.57	0.037
	10/51	member 25	150.00	1 (= 0.0		0.04	0.004
SIc25a3	18674	solute carrier family 25 (mitochondrial carrier, phosphate carrier),	158.30	147.32	0.74	3.84	0.031
		member 3					
Slc30a3	22784	solute carrier family 30 (zinc transporter), member 3	9.97	8.85	0.21	0.30	0.022
Slc30a6	210148	solute carrier family 30 (zinc transporter), member 6	30.28	43.13	2.46	4.25	0.040
Slc31a1	20529	solute carrier family 31, member 1	122.20	169.51	8.03	16.56	0.042
Slc31a2	20530	solute carrier family 31, member 2	50.33	42.62	2.22	1.81	0.036
Slc32a1	22348	solute carrier family 32 (GABA vesicular transporter), member 1	8.51	7.57	0.20	0.19	0.014
Slc35e4	103710	solute carrier family 35, member E4	34.56	25.75	2.60	1.12	0.021
Slc37a1	224674	solute carrier family 37 (glycerol-3-phosphate transporter), member 1	12.20	9.31	0.63	0.26	0.01
Slc38a11	320106	solute carrier family 38, member 11	6.39	5.31	0.25	0.20	0.015
Slc38a3	76257	solute carrier family 38, member 3	118.11	156.35	5.63	10.63	0.019
Slc38a7	234595	solute carrier family 38, member 7	36.04	30.24	1.58	0.93	0.020
Slc39a3	106947	solute carrier family 39 (zinc transporter), member 3	20.70	18.32	0.56	0.45	0.016
Slc39a7	14977	solute carrier family 39 (zinc transporter), member 7	159.54	128.18	4.90	3.93	0.002
Slc47a1	67473	solute carrier family 47, member 1	9.28	8.35	0.30	0.06	0.023
Slc47a2	380701	solute carrier family 47, member 2	9.71	8.18	0.53	0.23	0.04
Slc4a5	232156	solute carrier family 4, sodium bicarbonate cotransporter, member 5	7.19	6.23	0.35	0.07	0.037
Slc4a7	218756	solute carrier family 4, sodium bicarbonate cotransporter, member 7	80.17	102.80	5.30	4.89	0.020
Slc52a3	69698	solute carrier protein family 52, member 3	10.03	8.43	0.28	0.13	0.002
Slc5a4b	64454	solute carrier family 5 (neutral amino acid transporters, system A),	13.88	11.50	0.63	0.27	0.013
		member 4b					
Slc5a8	216225	solute carrier family 5 (iodide transporter), member 8	10.75	9.71	0.39	0.05	0.037
Slc6a12	14411	solute carrier family 6 (neurotransmitter transporter, betaine/GABA),	8.41	6.99	0.08	0.29	0.003
		member 12					
Slc6a17	229706	solute carrier family 6 (neurotransmitter transporter), member 17	10.27	7.17	1.12	0.20	0.034
Slc6a5	104245	solute carrier family 6 (neurotransmitter transporter, glycine),	9.14	7.57	0.47	0.25	0.026
		member 5					
Slco2a1	24059	solute carrier organic anion transporter family, member 2a1	17.35	13.32	0.75	1.29	0.035
Slfn8	276950	schlafen 8	16.50	11.55	0.47	0.82	0.002
Slit3	20564	slit homolog 3 (Drosonhila)	15.99	12.60	0.89	0.76	0.03
Sin	66402	sarcolinin	4 5 1	4.06	0.08	0.02	0.002
Smad7	17131	SMAD family member 7	125.08	79 71	10.68	5.13	0.009
Smarcd2	83796	SWI/SNF related matrix associated actin dependent regulator of	21.04	17.28	0.87	0.66	0.014
Smar Cu2	03790	chromatin subfamily d member 2	21.04	17.20	0.07	0.00	0.014
Smud1	12100	SET and MVND domain containing 1	10.40	076	0.27	0.22	0.004
Smyd2	12180	SET and MVND domain containing 2	10.40	0./0	1.20	0.23	0.004
Smyu3	09726	SET and MIND domain containing 3	28.14	33.12	1.20	1.43	0.037
Snng5	/2655	sinan nucleolar KNA nost gene 5	208.65	212.25	18.18	13.15	0.05
Snng6	/3824	sman nucleolar KNA nost gene 6	1425.40	1318.51	10.61	35.63	0.028
Snhg7os	329369	small nucleolar KNA host gene 7, opposite strand	14.92	12.65	0.83	0.25	0.040
Snora73b	1003069	small nucleolar RNA, H/ACA box 73b	8.82	20.58	0.88	4.16	0.03

	45						
Snph	241727	syntaphilin	24.87	20.56	1.18	0.52	0.015
Snrk	20623	SNF related kinase	33.03	43.88	1.02	1.28	0.001
Snrnp40	66585	small nuclear ribonucleoprotein 40 (U5)	107.16	87.42	1.64	5.18	0.011
Snrpg	68011	small nuclear ribonucleoprotein polypeptide G	596.85	506.60	14.10	23.32	0.016
Sntb1	20649	syntrophin, basic 1	8.93	7.17	0.35	0.26	0.007
Sntb2	20650	syntrophin, basic 2	16.37	13.57	0.64	0.81	0.035
Snx10	71982	sorting nexin 10	43.33	55.65	2.45	3.95	0.038
Snx16	74718	sorting nexin 16	37.31	55.20	3.83	5.82	0.04
Snx20	71607	sorting nexin 20	13.88	10.96	0.94	0.41	0.029
Socs2	216233	suppressor of cytokine signaling 2	8.25	7.51	0.23	0.19	0.049
Soga1	320706	suppressor of glucose, autophagy associated 1	126.89	106.04	4.87	4.06	0.017
Soga3	67412	SOGA family member 3	78.56	65.57	3.42	1.31	0.012
Sorbs2os	319940	sorbin and SH3 domain containing 2, opposite strand	6.55	7.50	0.14	0.22	0.011
Sord	20322	sorbitol dehydrogenase	40.62	58.01	1.91	3.36	0.004
Sowahb	78088	sosondowah ankyrin repeat domain family member B	7.94	6.57	0.50	0.19	0.043
Sox14	20669	SRY (sex determining region Y)-box 14	15.02	12.25	0.57	0.25	0.004
Sox9	20682	SRY (sex determining region Y)-box 9	78.93	104.01	7.47	6.71	0.047
Sn5	64406	trans-acting transcription factor 5	12.42	9.72	0.74	0.45	0.020
Spaca5	278203	sperm acrosome associated 5	4.88	6.60	0.27	0.53	0.03
Snag4	245865	sperm associated antigen 4	11 92	10.21	0.49	0.40	0.035
Spag 1	219140	spermatogenesis associated 13	24 53	28 35	0.79	1.26	0.042
Spata 20	238683	spermatogenesis associated 31 subfamily D member 10	8 35	6.93	0.51	0.18	0.039
Spata51410	75558	spermatogenesis associated 45	8.95	6.93	0.69	0.10	0.035
Spate 15	76573	spermatogenesis and centriale associated 1 like	11.16	0.55	0.57	0.42	0.032
Spaten	70891	speedy homolog A (Venopus Jaevic)	13.40	16.67	0.37	1 1 1	0.032
Spaya Speer?	71026	speculy homolog A (Achopus lacvis)	4.41	5.21	0.75	0.28	0.049
Speer4c	1005029	spermatogenesis associated glutamate (E)-rich protein 5	14.17	20.72	1.47	2.06	0.030
Speer 40	67	spermatogenesis associated giutamate (E)-rich protein 40	14.17	20.72	1.47	2.00	0.04
Enhlron	77620	CDII//1 interactor AVAD domain containing	0.76	774	0.22	0.24	0.045
Splikap	20720	spindlin 1	0.70	290 50	0.52	0.24	0.045
Spin1	20729	spindin 1	230.42	209.39	9.19	7.42	0.015
Spin1	20729	spinator homolog 2	15.60	12.22	0.62	7.43	0.035
Spiis5	(22490	Sport domain containing 1	15.25	13.33	1.06	0.35	0.037
Spocul	022400	spot domain containing 1	15.25	0.20	0.71	0.19	0.010
Sprria	20753	small proline-rich protein 1A	11.23	8.39	0.71	0.33	0.011
Spry4	24066	sprouty nomolog 4 (Drosophila)	82.77	122.49	12.40	9.21	0.042
Spsb4	211949	spiA/ryanodine receptor domain and SUCS box containing 4	11.48	9.22	0.86	0.11	0.040
Sptbn1	20742	spectrin beta, non-erythrocytic 1	281.44	255.64	4.83	4.80	0.009
Srcin1	56013	SRC kinase signaling inhibitor 1	18.33	12.85	2.00	0.62	0.039
Srebf1	20787	sterol regulatory element binding transcription factor 1	28.84	23.76	0.21	1.80	0.03
Srsf2	20382	serine/arginine-rich splicing factor 2	587.71	520.02	24.76	9.28	0.043
Ssbp2	66970	single-stranded DNA binding protein 2	32.99	61.44	4.89	4.41	0.005
Ssna1	68475	Sjogren's syndrome nuclear autoantigen 1	75.74	55.35	3.69	3.18	0.006
Sspo	243369	SCO-spondin	8.92	7.91	0.31	0.14	0.024
Sstr3	20607	somatostatin receptor 3	20.14	15.02	0.94	0.75	0.01
Sstr5	20609	somatostatin receptor 5	10.93	8.95	0.74	0.10	0.038
Ssu2	243612	ssu-2 homolog (C. elegans)	9.23	7.41	0.48	0.37	0.025
Stab2	192188	stabilin 2	8.52	7.16	0.30	0.04	0.00
Stac2	217154	SH3 and cysteine rich domain 2	7.43	5.60	0.46	0.30	0.016
Stambpl1	76630	STAM binding protein like 1	81.80	63.47	2.58	6.47	0.039
Stat6	20852	signal transducer and activator of transcription 6	13.91	18.91	1.09	0.96	0.014
Stc2	20856	stanniocalcin 2	16.44	11.92	0.42	0.61	0.001
Stfa3	20863	stefin A3	4.43	5.45	0.23	0.32	0.042
Stk17b	98267	serine/threonine kinase 17b (apoptosis-inducing)	53.07	85.07	6.45	5.47	0.009
Stk3	56274	serine/threonine kinase 3	74.21	116.04	8.31	6.34	0.007
Stk32c	57740	serine/threonine kinase 32C	16.44	11.31	0.45	0.98	0.003
Stmn4	56471	stathmin-like 4	1437.50	1141.75	41.65	59.81	0.007
Stom11	69106	stomatin-like 1	23.93	18.64	1.15	0.74	0.008
Ston1	77057	stonin 1	8.47	11.80	0.43	0.38	0.001
Strn4	97387	striatin, calmodulin binding protein 4	41.96	50.86	1.27	1.25	0.002
Stxbp2	20911	syntaxin binding protein 2	68.73	46.35	4.56	5.03	0.016

Sub1	20024	SUB1 homolog (S. cerevisiae)	471.15	442.70	8.13	5.34	0.026
Sult2a1	20859	sulfotransferase family 2A, dehydroepiandrosterone (DHEA)-	4.83	5.63	0.21	0.25	0.048
		preferring, member 1					
Sult2a3	629203	sulfotransferase family 2A, dehydroepiandrosterone (DHEA)-	6.06	5.28	0.17	0.26	0.042
		preferring, member 3					
Sult2b1	54200	sulfotransferase family, cytosolic, 2B, member 1	7.81	6.94	0.25	0.18	0.03
Susd2	71733	sushi domain containing 2	995	882	0.28	0.19	0.016
Suz12	52615	suppressor of zeste 12 homolog (Drosonhila)	163.80	213 56	4.68	11.93	0.008
Swan70	20947	SWA-70 protein	26.37	36.76	1.00	3.01	0.000
Swap70	67042	suparso associated protain 1	20.37	00.70	2.27	2.05	0.015
Syapı	60502	SVE2 homelog DNA onliging factor (C. corouisiaa)	212.00	271.06	2.37	10.75	0.025
Sy12	00592	SYF2 homolog, RNA splitting factor (S. cerevisiae)	313.09	271.90	0.00	10.75	0.025
Sylz	68592	SYF2 nomolog, RNA splicing factor (S. cerevisiae)	365.44	303.40	13.49	16.84	0.028
Syf2	68592	SYF2 homolog, RNA splicing factor (S. cerevisiae)	363.13	306.04	15.02	17.65	0.049
Syk	20963	spleen tyrosine kinase	8.67	9.91	0.26	0.37	0.035
Sympk	68188	symplekin	155.94	127.33	6.80	6.25	0.021
Syn2	20965	synapsin II	63.92	89.83	7.36	6.20	0.036
Synb	239167	syncytin b	18.31	14.93	0.84	0.73	0.023
Syndig11	627191	synapse differentiation inducing 1 like	10.99	8.55	0.71	0.24	0.017
Synj1	104015	synaptojanin 1	93.85	116.13	4.56	2.81	0.006
Synpo	104027	synaptopodin	10.43	9.29	0.37	0.23	0.040
Synpo2	118449	synaptopodin 2	7.62	6.61	0.34	0.14	0.034
Syt15	319508	synaptotagmin XV	14.54	10.68	1.47	0.45	0.046
Taar4	209513	trace amine-associated receptor 4	8.41	7.09	0.40	0.28	0.036
Tab1	66513	TGF-beta activated kinase 1/MAP3K7 binding protein 1	23.80	30.71	1.66	2.15	0.044
Taf1	270627	TAF1 RNA polymerase II, TATA box binding protein (TBP)-associated	120.10	139.80	1.69	1.64	0.000
		factor					
Taf1d	75316	TATA box binding protein (Tbp)-associated factor, RNA polymerase I.	103.50	159.54	8.29	17.35	0.027
		D					
Taf5l	102162	- TAF5-like RNA polymerase II_p300/CRP-associated factor (PCAF)-	28.64	33 20	157	0.93	0.047
Turor	102102	associated factor	20101	00.20	107	0.00	01017
Taok1	216065	TAO kinaco 1	220.20	270.02	6.41	0.04	0.010
Taoki	210905	TAO kinase 1	230.20	410.14	20.12	16.65	0.010
Tauki	210905	TAD kindler anatzin libr	320.76	410.14	1.25	10.05	0.041
Тарорі	213233	TAP bilding protein-like	21.00	10.54	1.55	0.55	0.009
Tarop2	21357	TAR (HIV) RNA binding protein 2	24.87	20.83	1.10	0.50	0.015
Tas2r105	57252	taste receptor, type 2, member 105	5.41	4./3	0.20	0.11	0.025
Tas2r107	387342	taste receptor, type 2, member 107	3.58	4.15	0.03	0.12	0.00
Tas2r119	57254	taste receptor, type 2, member 119	10.65	8.38	0.66	0.22	0.017
Tbc1d23	67581	TBC1 domain family, member 23	114.21	148.50	8.59	7.98	0.027
Tbc1d8	54610	TBC1 domain family, member 8	36.49	42.29	0.95	1.77	0.028
Tbcel	272589	tubulin folding cofactor E-like	42.46	52.07	2.14	1.35	0.009
Tbx19	83993	T-box 19	10.50	8.63	0.36	0.57	0.033
Tcam1	75870	testicular cell adhesion molecule 1	9.27	7.36	0.68	0.32	0.043
Tceb2	67673	transcription elongation factor B (SIII), polypeptide 2	1293.10	1104.23	36.63	33.84	0.009
Tcf3	21423	transcription factor 3	60.57	76.10	4.86	3.08	0.036
Tcl1	21432	T cell lymphoma breakpoint 1	7.50	6.21	0.49	0.11	0.042
Tcn2	21452	transcobalamin 2	42.96	59.50	1.94	3.10	0.004
Tcp11l2	216198	t-complex 11 (mouse) like 2	81.68	113.15	8.19	3.39	0.012
Tex12	66654	testis expressed gene 12	5.49	6.21	0.24	0.17	0.049
Tex18	83559	testis expressed gene 18	4.99	4.35	0.21	0.15	0.049
Tfam	21780	transcription factor A. mitochondrial	21.84	30.05	1.87	2.42	0.04
Tfan2a	21418	transcription factor AP-2, alpha	8.03	6.85	0.39	0.23	0.042
Tfeh	21425	transcription factor EB	14.05	11 19	0.40	0.99	0.036
Tofh?	21808	transforming growth factor heta 2	30.74	49.66	4.78	4.01	0.027
Tafhr?	21000	transforming growth factor, beta recenter II	20.40	17.00	1.20	0.62	0.027
Tafh=2	21013	transforming growth factor, beta recenter III	20.40	17.00	0.30	0.05	0.000
Tgitt 3	21014	transportaning growth factor, beta receptor fill	9.95	0.90	0.25	0.19	0.02
Tgm6	241636	u ansglutaminase o	10.39	7.87	0.39	0.47	0.006
1gm7	640543	transglutaminase /	10.24	8.33	0.23	0.34	0.004
Thap6	381650	I HAP domain containing 6	25.59	35.85	2.13	2.30	0.02
Thpo	21832	thrombopoietin	9.27	7.87	0.35	0.14	0.010
Thumpd3	14911	THUMP domain containing 3	60.99	54.65	1.67	1.46	0.029
Timm10b	14356	translocase of inner mitochondrial membrane 10B	21.41	16.93	1.67	0.59	0.045

Timm13	30055	translocase of inner mitochondrial membrane 13	228.88	181.44	14.69	3.48	0.020
Timm8a1	30058	translocase of inner mitochondrial membrane 8A1	16.65	13.62	0.97	0.69	0.044
Timm8b	30057	translocase of inner mitochondrial membrane 8B	930.93	874.70	16.23	10.29	0.026
Timp3	21859	tissue inhibitor of metalloproteinase 3	177.26	241.40	8.72	21.66	0.033
Tktl1	83553	transketolase-like 1	7.56	6.35	0.33	0.19	0.020
Tlr4	21898	toll-like receptor 4	13.80	18.82	0.90	1.44	0.025
Tlv2	21909	T cell leukemia homeobox 2	878	7.87	0.18	0.13	0.007
Tmbim1	69660	transmembrane BAY inhibitor motif containing 1	218 21	163.82	14.30	12.38	0.007
Tmc9	217256	transmembrane channel like gone family 9	11.05	0 10	0.12	0.22	45-05
Tmom104	220524	transmembrane protein 104	12.00	60.20	E 24	1.02	4L-03
Tmem104	91007	transmembrane protein 104	43.09	252 51	20.27	25.40	0.02
Tillell108	01907		500.50	252.51	59.27	25.49	0.00
Imem108	81907	transmembrane protein 108	414.88	242.11	51.60	33.08	0.03
Tmem11	216821	transmembrane protein 11	29.20	24.06	1.00	1.65	0.037
Tmem110	69179	transmembrane protein 110	20.73	32.41	0.91	4.63	0.048
Tmem117	320709	transmembrane protein 117	37.70	54.13	4.07	3.98	0.028
Tmem119	231633	transmembrane protein 119	26.56	20.75	1.48	1.44	0.030
Tmem121	69195	transmembrane protein 121	44.67	49.61	0.96	1.75	0.049
Tmem150c	231503	transmembrane protein 150C	27.11	21.85	0.51	1.11	0.005
Tmem160	69094	transmembrane protein 160	61.53	47.99	4.41	2.29	0.034
Tmem161a	234371	transmembrane protein 161A	22.44	27.34	0.72	0.62	0.002
Tmem164	209497	transmembrane protein 164	15.36	18.52	1.00	0.76	0.046
Tmem167	66074	transmembrane protein 167	8.48	7.14	0.33	0.29	0.023
Tmem189	407243	transmembrane protein 189	60.70	43.58	1.77	2.41	0.001
Tmem201	230917	transmembrane protein 201	55.22	64.51	1.40	3.47	0.048
Tmem208	66320	transmembrane protein 208	205.28	174.25	11.35	5.44	0.049
Tmem229a	319832	transmembrane protein 229A	42.80	55.85	3.55	3.65	0.043
Tmem234	76799	transmembrane protein 234	713.12	538.96	11.49	13.31	6E-05
Tmem234	76799	transmembrane protein 234	887.72	734.64	16.75	23.91	0.002
Tmem234	76799	transmembrane protein 234	148.84	135.89	3.87	2.37	0.029
Tmem236	625286	transmembrane protein 236	7.58	6.69	0.19	0.09	0.005
Tmem238	664968	transmembrane protein 238	19.43	15.91	1.07	0.69	0.033
Tmem253	619301	transmembrane protein 253	867	7.13	0.34	0.25	0.011
Tmem256	69186	transmembrane protein 256	150 10	128.63	1 34	6.47	0.017
Tmem261	66928	transmembrane protein 200	168.17	111.80	13.84	6.94	0.011
Tmem201	238257	transmembrane protein 201	7 57	616	0.26	0.31	0.013
Tmem37	170706	transmembrane protein 37	15.47	11 32	0.98	0.84	0.018
Tmem57	216205	transmembrane protein 57	105 20	01 2 <i>4</i>	2 5 2	4.10	0.010
Tmem5	210395	transmeniorane protein 5	162.72	106.00	3.32	4.10	0.004
Tmem63a	208/95	transmembrane protein 63a	103.73	106.99	1.53	19.91	0.037
Tmem87b	/24//	transmembrane protein 87B	41.39	61.49	1.50	3.11	0.001
Tmem89	69384	transmembrane protein 89	30.01	24.80	1.39	0.76	0.017
Tmem98	103743	transmembrane protein 98	74.72	34.52	3.30	6.86	0.002
Tmprss11f	243083	transmembrane protease, serine 11f	5.02	4.69	0.02	0.08	0.005
Tmprss2	50528	transmembrane protease, serine 2	7.07	6.25	0.32	0.04	0.044
Tmprss6	71753	transmembrane serine protease 6	10.65	8.09	0.69	0.22	0.012
Tnfrsf11a	21934	tumor necrosis factor receptor superfamily, member 11a, NFKB activator	16.64	12.82	0.90	0.54	0.011
Tnfrsf13c	72049	tumor necrosis factor receptor superfamily, member 13c	20.80	16.59	0.66	0.71	0.00
Tnfrsf22	79202	tumor necrosis factor receptor superfamily, member 22	29.27	22.28	1.59	2.01	0.034
Tnfsf11	21943	tumor necrosis factor (ligand) superfamily, member 11	10.54	8.35	0.42	0.40	0.009
Tnn	329278	tenascin N	10.24	8.60	0.44	0.29	0.020
Tnni1	21952	troponin I, skeletal, slow 1	61.12	38.67	8.31	2.42	0.041
Tnrc6c	217351	trinucleotide repeat containing 6C	38.34	55.39	1.58	4.17	0.009
Tnxb	81877	tenascin XB	12.46	10.86	0.42	0.27	0.02
Toporsl	68274	topoisomerase I binding, arginine/serine-rich like	4.25	4.72	0.14	0.13	0.049
Tor1aip1	208263	torsin A interacting protein 1	59.84	75.82	2.65	4.06	0.017
Tox	252838	thymocyte selection-associated high mobility group box	75.71	96.14	6.10	4.64	0.037
Tpd5212	66314	tumor protein D52-like 2	12.59	30.13	1.71	4.04	0.007
Тррр	72948	tubulin polymerization promoting protein	496.17	360.81	36.10	36.17	0.038
Tprn	97031	taperin	57.85	41.93	1.58	2.62	0.002
Tpte	234129	transmembrane phosphatase with tensin homology	5.85	7.10	0.25	0.39	0.035
Trabd2b	666048	TraB domain containing 2B	6.67	5.40	0.46	0.07	0.034
		-					

Tradd	71609	TNFRSF1A-associated via death domain	29.34	21.34	2.46	2.01	0.045
Traf1	22029	TNF receptor-associated factor 1	8.01	7.02	0.23	0.13	0.010
Traf3ip2	103213	TRAF3 interacting protein 2	16.49	24.50	1.40	0.39	0.001
Traf5	22033	TNF receptor-associated factor 5	9.83	8.88	0.19	0.25	0.024
Traip	22036	TRAF-interacting protein	20.57	16.31	1.28	0.71	0.027
Trappc5	66682	trafficking protein particle complex 5	50.37	43.48	0.76	1.43	0.005
Trem1	58217	triggering receptor expressed on myeloid cells 1	11.35	9.25	0.53	0.17	0.01
Treml1	71326	triggering receptor expressed on myeloid cells-like 1	15.20	11.96	0.86	0.44	0.016
Treml4	224840	triggering recentor expressed on myeloid cells-like 4	12.87	11.05	0.37	0.11	0.003
Trhr2	170732	thyrotronin releasing hormone recentor 2	13.90	11.59	0.83	0.26	0.04
Trim24	21848	tripartite motif.containing 24	136.23	151.27	3.87	4.47	0.044
Trim54	21040	tripartite motif-containing 24	0 56	0.20	0.20	0.21	0.014
Trim (2	400744	tripartite motif-containing 54	9.30	10.04	0.29	0.21	0.010
111111111111111111111111111111111111111	433/00	tripartite motil-containing 63	12.44	10.94	0.39	0.39	0.036
Trim7	94089	tripartite motif-containing /	7.92	9.01	0.27	0.35	0.049
Triml1	244448	tripartite motif family-like 1	8.52	7.63	0.22	0.25	0.035
Trip6	22051	thyroid hormone receptor interactor 6	16.90	12.35	1.41	0.38	0.020
Trmt10b	69934	tRNA methyltransferase 10B	40.49	57.48	3.33	3.85	0.016
Trmt12	68260	tRNA methyltranferase 12	12.83	9.03	1.20	0.27	0.02
Trmt61a	328162	tRNA methyltransferase 61A	15.86	13.31	0.45	0.56	0.012
Trpm3	226025	transient receptor potential cation channel, subfamily M, member 3	11.92	15.42	0.33	0.65	0.003
Try4	22074	trypsin 4	13.82	12.71	0.34	0.30	0.049
Tshr	22095	thyroid stimulating hormone receptor	7.35	9.09	0.53	0.15	0.020
Tshz1	110796	teashirt zinc finger family member 1	72.40	94.68	1.59	4.31	0.00
Tsr3	68327	TSR3 20S rRNA accumulation	29.99	26.57	0.44	1.28	0.0
Tssc1	380752	tumor suppressing subtransferable candidate 1	64.02	49.48	1.47	3.42	0.008
Tsx	22127	testis specific X-linked gene	30.01	21.90	1.49	1.13	0.005
Ttc13	234875	tetratricopeptide repeat domain 13	39.08	57.92	2.39	6.77	0.039
Ttc14	67120	tetratricopeptide repeat domain 14	58.95	52.52	1.45	2.10	0.05
Ttc24	214191	tetratricopeptide repeat domain 24	7.52	5.97	0.59	0.06	0.039
Ttc36	192653	tetratricopeptide repeat domain 36	7.59	5.99	0.45	0.22	0.019
Tubgcp5	233276	tubulin, gamma complex associated protein 5	51.91	80.29	6.92	8.83	0.045
Tubgen5	233276	tubulin, gamma complex associated protein 5	51.91	80.29	6.92	8.83	0.045
Tuln2	56734	tubby-like protein 2	9.34	7.63	0.18	0.31	0.003
Tunde5	105245	thioredoxin domain containing 5	37.05	50.42	2 20	2.12	0.005
Tvr	22173	turosinase	6.02	4.98	0.20	0.11	0.004
Ubo4bos2	74210	ubiguitination factor EAP opposite strand 2	10.27	9.70	0.52	0.21	0.001
Ubalnl	244170	ubiquitination factor L+D, opposite straine 5	654	5.20	0.32	0.21	0.005
Ubtd2	227000	ubiquitin domain containing 2	0.54	104.62	2.01	0.10	0.003
Ubiu2	327900	ubiquitin domain containing 2	03.04 E (0	104.02	0.10	0.50	0.024
UDXN10	212190		5.68	5.11	0.10	0.06	0.002
UIRZ	29869	unc-51 like kinase 2	230.03	287.97	11.81	10.17	0.010
Unc5c	22253	unc-5 homolog C (C. elegans)	153.96	184.26	4.39	11.06	0.044
Unc5d	210801	unc-5 homolog D (C. elegans)	9.86	9.00	0.20	0.29	0.049
Upb1	103149	ureidopropionase, beta	7.71	6.19	0.52	0.30	0.044
Urad	231903	ureidoimidazoline (2-oxo-4-hydroxy-4-carboxy-5) decarboxylase	10.88	9.23	0.42	0.42	0.032
Urb1	207932	URB1 ribosome biogenesis 1 homolog (S. cerevisiae)	16.19	14.03	0.72	0.32	0.033
Usb1	101985	U6 snRNA biogenesis 1	19.79	16.82	0.35	0.69	0.009
Use1	67023	unconventional SNARE in the ER 1 homolog (S. cerevisiae)	288.70	234.82	9.95	7.53	0.005
Usp12	22217	ubiquitin specific peptidase 12	12.81	17.09	0.80	1.16	0.023
Usp17le	625530	ubiquitin specific peptidase 17-like E	12.59	8.80	1.33	0.50	0.037
Usp24	329908	ubiquitin specific peptidase 24	211.04	252.95	4.44	10.84	0.012
Usp29	57775	ubiquitin specific peptidase 29	9.60	11.40	0.42	0.37	0.019
Usp3	235441	ubiquitin specific peptidase 3	81.75	97.56	1.70	4.96	0.023
Usp33	170822	ubiquitin specific peptidase 33	159.95	198.54	7.76	8.01	0.013
Usp35	244144	ubiquitin specific peptidase 35	11.17	9.09	0.45	0.70	0.047
Usp36	72344	ubiquitin specific peptidase 36	40.59	34.46	1.01	1.74	0.023
Usp44	327799	ubiquitin specific peptidase 44	6.19	5.32	0.27	0.09	0.023
Usp45	77593	ubiquitin specific petidase 45	36.63	50.34	4.96	1.99	0.043
Usp8	84092	ubiquitin specific pentidase 8	177 43	200.07	7 20	4 17	0.035
litre	22220	utronhin	14.90	1745	0.47	0.36	0.004
Utc2	24111	un opini	0.20	4.50	0.47	0.50	0.004
0154	24111		0.20	0.39	0.38	0.17	0.008
Uts2b	224065	urotensiń 2B	4.96	4.52	0.13	0.05	0.022

Uts2r	217369	urotensin 2 receptor	9.18	7.82	0.21	0.24	0.005
Vav3	57257	vav 3 oncogene	10.41	11.65	0.32	0.19	0.015
Vcam1	22329	vascular cell adhesion molecule 1	52.87	81.70	3.05	10.40	0.038
Vegfb	22340	vascular endothelial growth factor B	143.25	110.97	10.42	4.57	0.030
Vezf1	22344	vascular endothelial zinc finger 1	483.46	551.55	9.82	23.76	0.038
Vgll3	73569	vestigial like 3 (Drosophila)	7.78	6.55	0.41	0.22	0.038
Vil1	22349	villin 1	8.24	6.97	0.28	0.11	0.006
Vipr1	22354	vasoactive intestinal peptide receptor 1	13.89	11.27	0.59	0.73	0.03
Vit	74199	vitrin	34.39	61.90	2.95	8.71	0.024
Vkorc1	27973	vitamin K epoxide reductase complex, subunit 1	271.20	226.55	8.82	6.98	0.007
Vmn1r115	667273	vomeronasal 1 receptor 115	4.35	4.86	0.12	0.13	0.026
Vmn1r116	667268	vomeronasal 1 receptor 116	8.61	6.65	0.25	0.68	0.035
Vmn1r122	435951	vomeronasal 1 receptor 122	3.84	4.34	0.10	0.17	0.045
Vmn1r123	384695	vomeronasal 1 receptor 123	4.32	3.88	0.13	0.09	0.031
Vmn1r128	667199	vomeronasal 1 receptor 128	5.28	4.26	0.32	0.19	0.034
Vmn1r24	171191	vomeronasal 1 receptor 24	5.33	7.13	0.27	0.27	0.003
Vmn1r34	546901	vomeronasal 1 receptor 34	13.39	11.81	0.48	0.40	0.046
Vmn1r94	620537	vomeronasal 1 receptor 94	14.58	9.26	1.75	0.47	0.026
Vmn2r107	22312	vomeronasal 2 receptor 107	4 57	3.88	0.15	0.07	0.006
Vmn2r16	384220	vomeronasal 2, receptor 16	5.75	4.82	0.21	0.20	0.019
Vmn2r17	384221	vomeronasal 2, receptor 10	4 88	6.02	0.23	0.28	0.020
Vmn2r32	22311	vomeronasal 2, receptor 17	5.83	5.22	0.04	0.20	0.020
Vmn2r71	22311	vomeronasal 2, receptor 52	3 70	4.82	0.06	0.21	0.023
Vmn2r74	E16090	vomeronasal 2, receptor 71	4 10	4.02	0.00	0.37	0.023
Vmn2r00	665276	vomeronasal 2, receptor 74	2.01	4.05	0.14	0.21	0.043
Viiiii2199	22262	volicionasai 2, receptor 99	10.22	1515	0.10	0.17	0.03
Vpreb2	22303	pre-b lymphocyte gene z	10.55	15.15	0.00	0.00	0.03
Vps13c	70160	vacuolar protein sorting 26 (yeast)	37.99	49.77	2.33	2.10	0.009
Vps50	10(77	vacuolar protein sorting 36 (yeast)	12.02	209.15	9.74	7.09	0.002
VSX2	120/7	visual system noneodox 2	12.05	9.95	1.02	0.31	0.035
VIIIa	53611	Vesicle transport through interaction with t-SNAKES TA	10.38	19.79	0.80	0.39	0.009
vwa3a	233813	von Willebrand factor A domain containing 3A	11.57	8.69	0.67	0.70	0.025
Vwc2	319922	von Willebrand factor C domain containing 2	19.96	13.87	0.88	0.81	0.002
Wbp11	226178	WW domain binding protein 1 like	74.81	61.80	4.54	2.36	0.044
Wbp5	22381	WW domain binding protein 5	362.51	497.07	17.27	12.91	0.001
Wdfy2	268752	WD repeat and FYVE domain containing 2	14.64	11.16	1.03	0.51	0.02
Wdr16	71860	WD repeat domain 16	9.80	8.17	0.56	0.32	0.045
Wdr25	212198	WD repeat domain 25	22.38	18.89	0.27	0.94	0.011
Wdr27	71682	WD repeat domain 27	7.26	6.11	0.32	0.11	0.015
Wdr47	99512	WD repeat domain 47	17.76	26.76	1.27	1.81	0.007
Wdr77	70465	WD repeat domain 77	59.24	80.54	7.23	4.40	0.05
Wdr93	626359	WD repeat domain 93	8.45	6.79	0.49	0.32	0.03
Wfdc13	408190	WAP four-disulfide core domain 13	13.85	11.85	0.42	0.53	0.025
Wfdc9	629754	WAP four-disulfide core domain 9	10.04	8.11	0.64	0.33	0.036
Wif1	24117	Wnt inhibitory factor 1	12.19	9.92	0.91	0.14	0.049
Wipi1	52639	WD repeat domain, phosphoinositide interacting 1	48.00	58.43	3.32	1.16	0.025
Wnt1	22408	wingless-type MMTV integration site family, member 1	7.81	6.19	0.40	0.32	0.018
Wnt16	93735	wingless-type MMTV integration site family, member 16	6.98	5.83	0.27	0.22	0.016
Wnt2	22413	wingless-type MMTV integration site family, member 2	10.07	8.45	0.35	0.14	0.005
Wnt4	22417	wingless-type MMTV integration site family, member 4	13.00	10.57	0.14	0.60	0.008
Wnt6	22420	wingless-type MMTV integration site family, member 6	9.51	7.61	0.68	0.26	0.041
Wsb2	59043	WD repeat and SOCS box-containing 2	76.45	55.95	6.76	4.42	0.044
Wscd1	216881	WSC domain containing 1	143.90	125.25	2.56	5.00	0.016
Wwc1	211652	WW, C2 and coiled-coil domain containing 1	12.53	15.30	1.07	0.31	0.048
Xab2	67439	XPA binding protein 2	83.42	67.15	4.03	4.07	0.030
Xirp1	22437	xin actin-binding repeat containing 1	9.44	8.24	0.37	0.26	0.037
Xkr5	319581	X Kell blood group precursor-related family, member 5	14.92	13.79	0.30	0.13	0.013
Xlr3a	22445	X-linked lymphocyte-regulated 3A	15.17	11.22	1.39	0.69	0.043
Xpo4	57258	exportin 4	75.12	88.81	2.51	4.84	0.046
Xrcc1	22594	X-ray repair complementing defective repair in Chinese hamster cells	54.20	40.66	2.52	2.19	0.007
		1					
Yap1	22601	yes-associated protein 1	15.52	18.98	0.65	0.77	0.014

Yif1a	68090	Yip1 interacting factor homolog A (S. cerevisiae)	143.86	109.02	12.64	5.09	0.043
Ywhae	22627	tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation	1214.09	1309.46	23.10	18.35	0.018
		protein, epsilon polypeptide					
Zan	22635	zonadhesin	8.13	7.27	0.26	0.10	0.023
Zbed3	72114	zinc finger, BED domain containing 3	36.53	46.01	1.29	2.17	0.009
Zbed5	71970	zinc finger, BED-type containing 5	15.05	10.14	1.76	0.70	0.041
Zbtb21	114565	zinc finger and BTB domain containing 21	29.30	20.63	2.77	1.75	0.04
Zbtb33	56805	zinc finger and BTB domain containing 33	69.81	86.74	3.68	5.50	0.04
Zbtb40	230848	zinc finger and BTB domain containing 40	31.69	22.23	3.21	0.54	0.027
Zbtb7c	207259	zinc finger and BTB domain containing 7C	8.92	7.26	0.34	0.50	0.033
Zc3h12b	547176	zinc finger CCCH-type containing 12B	13.75	22.87	1.21	2.99	0.030
Zdbf2	73884	zinc finger, DBF-type containing 2	12.14	9.98	0.77	0.40	0.048
Zdhhc18	503610	zinc finger, DHHC domain containing 18	54.69	42.47	3.74	1.91	0.027
Zdhhc2	70546	zinc finger, DHHC domain containing 2	641.68	770.78	19.60	47.66	0.046
Zdhhc21	68268	zinc finger. DHHC domain containing 21	45.34	55.24	3.45	1.98	0.047
Zdhhc24	70605	zinc finger. DHHC domain containing 24	31.53	24.47	1.87	0.61	0.011
Zfand3	21769	zinc finger. AN1-type domain 3	146.74	186.73	3.16	6.88	0.00
Zfhx4	80892	zinc finger homeodomain 4	11.44	8.34	1.13	0.54	0.047
Zfp108	54678	zinc finger protein 108	22.49	12.26	3.42	1.13	0.030
Zfp109	56869	zinc finger protein 109	10.19	8.12	0.48	0.29	0.01
Zfp13	22654	zinc finger protein 13	28.08	19.40	1.44	0.99	0.003
Zfp157	72154	zinc finger protein 157	82.79	105.04	2.83	8.41	0.046
Zfp26	22688	zinc finger protein 26	108.75	135.79	2.50	8.57	0.023
Zfp28	22690	zinc finger protein 28	12.54	18.86	0.97	2.29	0.044
Zfp296	63872	zinc finger protein 296	11.84	9.23	0.41	0.23	0.001
Zfp346	26919	zinc finger protein 346	47.13	55.28	2.67	1.74	0.043
Zfp36l1	12192	zinc finger protein 36, C3H type-like 1	310.95	460.24	36.42	8.31	0.007
Zfp3612	12193	zinc finger protein 36, C3H type-like 2	140.35	218.59	6.96	12.43	0.002
Zfp410	52708	zinc finger protein 410	60.22	86.03	1.40	4.50	0.002
Zfp442	668923	zinc finger protein 442	22.52	49.49	2.52	5.58	0.005
Zfp445	235682	zinc finger protein 445	119.53	146.45	10.07	4.20	0.049
Zfp462	242466	zinc finger protein 462	253.09	303.32	15.14	6.43	0.022
Zfp474	66758	zinc finger protein 474	7.76	6.95	0.32	0.06	0.047
Zfp521	225207	zinc finger protein 521	92.06	135.17	6.68	12.77	0.024
Zfp524	66056	zinc finger protein 524	82.31	52.80	4.17	3.92	0.002
Zfp541	666528	zinc finger protein 541	11.75	9.76	0.47	0.10	0.006
Zfp553	233887	zinc finger protein 553	27.99	21.17	2.20	1.45	0.041
Zfp563	240068	zinc finger protein 563	19.82	27.40	0.15	2.26	0.02
Zfp606	67370	zinc finger protein 606	20.67	26.75	0.82	0.94	0.003
Zfp609	214812	zinc finger protein 609	53.25	74.08	2.86	7.60	0.043
Zfp618	72701	zinc finger protein 618	12.86	15.61	0.58	0.59	0.016
Zfp653	319601	zinc finger protein 653	18.94	14.48	0.57	0.61	0.002
Zfp677	210503	zinc finger protein 677	5.39	8.61	0.43	1.16	0.040
Zfp775	243372	zinc finger protein 775	15.04	11.07	1.37	0.60	0.038
Zfp81	224694	zinc finger protein 81	125.27	172.39	9.74	16.50	0.049
Zfp821	75871	zinc finger protein 821	54.23	66.73	1.50	4.50	0.039
Zfp839	72805	zinc finger protein 839	29.02	24.94	0.36	0.79	0.003
Zfp943	74670	zinc finger prtoein 943	7.88	9.71	0.27	0.43	0.011
Zfp943	74670	zinc finger prtoein 943	31.39	46.33	3.96	3.87	0.036
Zfp948	381066	zinc finger protein 948	53.85	79.46	5.29	7.60	0.033
Zfp954	232853	zinc finger protein 954	9.84	13.65	0.44	1.28	0.030
Zfp958	233987	zinc finger protein 958	59.56	40.10	5.11	5.41	0.040
Znrf4	20834	zinc and ring finger 4	11.59	9.49	0.43	0.62	0.032
Zscan4b	665780	zinc finger and SCAN domain containing 4B	4.67	5.85	0.38	0.22	0.036
Zswim4	212168	zinc finger SWIM-type containing 4	12.68	10.78	0.41	0.33	0.012
Zzef1	195018	zinc finger, ZZ-type with EF hand domain 1	61.85	74.67	3.95	3.26	0.046

Table 3.1: List of differentially regulated genes in O4+ OLs upon Lrp1 ablation

3.9 Bibliography

- Baumann N, Pham-Dinh D. 2001. Biology of oligodendrocyte and myelin in the mammalian central nervous system. In *Physiological Reviews*, pp. 871-927
- Blakemore WF, Franklin RJM. 2008. Remyelination in experimental models of toxininduced demyelination. In *Curr. Top. Microbiol. Immunol.*, pp. 193-212
- Bolte S, Cordelières FP. 2006. A guided tour into subcellular colocalization analysis in light microscopy. In *J Microsc*, pp. 213-32
- Bottelbergs A, Verheijden S, Hulshagen L, Gutmann DH, Goebbels S, et al. 2010. Axonal integrity in the absence of functional peroxisomes from projection neurons and astrocytes. In *Glia*, pp. 1532-43
- Dugas JC, Cuellar TL, Scholze A, Ason B, Ibrahim A, et al. 2010. Dicer1 and miR-219 Are required for normal oligodendrocyte differentiation and myelination. In *Neuron*, pp. 597-611
- Fisher RA. 1915. Frequency Distribution of the Values of the Correlation Coefficient in Samples from an Indefinitely Large Population. In *Biometrika*, pp. 507-21: [Oxford University Press, Biometrika Trust]
- Hall SM. 1972. The effect of injections of lysophosphatidyl choline into white matter of the adult mouse spinal cord. In *Journal of Cell Science*, pp. 535-46
- Hendrickx DAE, Koning N, Schuurman KG, van Strien ME, van Eden CG, et al. 2013. Selective upregulation of scavenger receptors in and around demyelinating areas in multiple sclerosis. In *J. Neuropathol. Exp. Neurol.*, pp. 106-18
- Hennen E, Safina D, Haussmann U, Wörsdörfer P, Edenhofer F, et al. 2013. A LewisX Glycoprotein Screen Identifies the Low Density Lipoprotein Receptor-related Protein 1 (LRP1) as a Modulator of Oligodendrogenesis in Mice. In *Journal of Biological Chemistry*, pp. 16538-45
- Lauber K, Bohn E, Kröber SM, Xiao Y-j, Blumenthal SG, et al. 2003. Apoptotic cells induce migration of phagocytes via caspase-3-mediated release of a lipid attraction signal. In *Cell*, pp. 717-30
- Lazzarini RA. 2004. Myelin Biology and Disorders. Academic Press
- Li C, Tropak MB, Gerlai R, Clapoff S, Abramow-Newerly W, et al. 1994. Myelination in the absence of myelin-associated glycoprotein. In *Nature*, pp. 747-50
- Medina CB, Ravichandran KS. 2016. Do not let death dous part: 'findme' signals in communication between dying cells and the phagocytes. pp. 979-89: Nature Publishing Group
- Menn B, Garcia-Verdugo JM, Yaschine C, Gonzalez-Perez O, Rowitch D, Alvarez-Buylla A. 2006. Origin of Oligodendrocytes in the Subventricular Zone of the Adult Brain. In *J. Neurosci.*, pp. 7907-18
- Peter C, Waibel M, Keppeler H, Lehmann R, Xu G, et al. 2012. Release of lysophospholipid 'find-me' signals during apoptosis requires the ATP-binding cassette transporter A1. In *Autoimmunity*, pp. 568-73
- Prasad JM, Migliorini M, Galisteo R, Strickland DK. 2015. Generation of a Potent Low Density Lipoprotein Receptor-related Protein 1 (LRP1) Antagonist by Engineering a Stable Form of the Receptor-associated Protein (RAP) D3 Domain. In *Journal of Biological Chemistry*, pp. 17262-68
- Rayner KJ, Suárez Y, Dávalos A, Parathath S, Fitzgerald ML, et al. 2010. MiR-33 contributes to the regulation of cholesterol homeostasis. In *Science*, pp. 1570-73
- Reekmans SM, Pflanzner T, Gordts PLSM, Isbert S, Zimmermann P, et al. 2009. Inactivation of the proximal NPXY motif impairs early steps in LRP1 biosynthesis. In *Cell. Mol. Life Sci.*, pp. 135-45
- Roebroek AJM, Reekmans S, Lauwers A, Feyaerts N, Smeijers L, Hartmann D. 2006. Mutant Lrp1 knock-in mice generated by recombinase-mediated cassette exchange reveal differential importance of the NPXY motifs in the intracellular domain of LRP1 for normal fetal development. In *Mol. Cell. Biol.*, pp. 605-16
- Schüller U, Heine VM, Mao J, Kho AT, Dillon AK, et al. 2008. Acquisition of Granule Neuron Precursor Identity Is a Critical Determinant of Progenitor Cell Competence to Form Shh-Induced Medulloblastoma. In *Cancer Cell*, pp. 123-34
- Shields SA, Gilson JM, Blakemore WF, Franklin RJ. 1999. Remyelination occurs as extensively but more slowly in old rats compared to young rats following gliotoxin-induced CNS demyelination. In *Glia*, pp. 77-83
- Simons M, Misgeld T, Kerschensteiner M. 2014. A unified cell biological perspective on axon-myelin injury. In *The Journal of Cell Biology*, pp. 335-45
- Stiles TL, Dickendesher TL, Gaultier A, Fernandez-Castaneda A, Mantuano E, et al. 2013. LDL receptor-related protein-1 is a sialic-acid-independent receptor for myelin-associated glycoprotein that functions in neurite outgrowth inhibition by MAG and CNS myelin. In *Journal of Cell Science*, pp. 209-20
- Thiam AR, Farese RV, Walther TC. 2013. The biophysics and cell biology of lipid droplets. In *Nat. Rev. Mol. Cell Biol.*, pp. 775-86: Nature Publishing Group
- van de Sluis B, Wijers M, Herz J. 2017. News on the molecular regulation and function of hepatic low-density lipoprotein receptor and LDLR-related protein 1. In *Current Opinion in Lipidology*, pp. 241-47
- Yamazaki R, Baba H, Yamaguchi Y. 2018. Unconventional Myosin ID is Involved in Remyelination After Cuprizone-Induced Demyelination. In *Neurochem Res*, pp. 195-204
- Yamazaki R, Ishibashi T, Baba H, Yamaguchi Y. 2014. Unconventional myosin ID is expressed in myelinating oligodendrocytes. In *J. Neurosci. Res.*, pp. 1286-94
- Yamazaki R, Ishibashi T, Baba H, Yamaguchi Y. 2016. Knockdown of Unconventional Myosin ID Expression Induced Morphological Change in Oligodendrocytes. In ASN NEURO
- Yamazaki R, Ishibashi T, Baba H, Yamaguchi Y. 2017. Expression of Unconventional Myosin VI in Oligodendrocytes. In *Neurochem Res*, pp. 3372-81
- Zhao X, Pan Z, Wu J, Zhou G, Zeng Y. 2010. Automatic identification and morphometry of optic nerve fibers in electron microscopy images. In *Comput Med Imaging Graph*, pp. 179-84

CHAPTER IV

General Discussion and Future Direction

4.1 Abstract

Low-density lipoprotein receptor-related protein 1 (LRP1) is one of the most promiscuous cell surface receptors. As of February 2018, thousands of research articles concerning LRP1's function in cellular debris phagocytosis, cytoskeletal remodeling, intra- and inter-cellular vesicle trafficking, energy homeostasis, lipid metabolism, transcriptional and post-transcriptional regulation, and more have been published. Given the broad spectrum of cellular functions LRP1 can influence, it is tempting to speculate that LRP1 coordinates many different signaling events in any given cell type, and likely operates in a context dependent manner. Even though LRP1 is such a well-studied "old" receptor, recent research has uncovered new and surprising functions. In Chapter II, I described my work that revealed new roles for LRP1 in facilitating CNS myelin repair and development through promoting oligodendrocytes (OLs) differentiation by regulating cholesterol homeostasis and peroxisome biogenesis. In Chapter III, I have described the potential non-cell autonomous roles of LRP1 in regulating CNS myelin repair. Additionally, I have speculated that LRP1 might participate in regulating axon-glia interaction, miRNA expression, and organelle trafficking during myelin development. Collectively, based on these new observations, I discuss several aspects of LRP1 and myelin biology in the context of glia-glia or axon-glia interaction and provide an outlook where research of LRP1 may be heading.

4.2 General Discussion

In Chapter II, several key conclusions have been discussed regarding how LRP1 influences CNS myelination. I will expand on these conclusions and discuss some interesting findings described in Chapter II and III. I then will briefly summarize and interpret major findings, review how they support or disagree with the literature, and develop new hypotheses for future research.

4.2.1 How can non-cell-autonomous roles of LRP1 impact CNS remyelination?

Effective CNS remyelination requires numerous cellular events to occur in an ordered time and space specific manner; such as controlled demyelination, macrophage-like immune cell mediated myelin debris removal, OPC recruitment, and myelin regeneration. LRP1 is a potent multifunctional scavenger receptor that is ubiquitously expressed in all CNS cell types. In Chapter II, I have investigated the cell-autonomous role of LRP1 in the OL-lineage during remyelination (section 2.3.2); however, given its broad expression and functions, additional, non-cell-autonomous roles for LRP1 are conceivable.

- Controlled inflammation and demyelination

It was shown that LRP1 expression is increased at MS lesions in both human postmortem brain tissue and mouse EAE CNS tissue (Chuang et al 2016, Hendrickx et al 2013). Elevated LRP1 expression at the MS lesion was found in astrocytes and microglia. LRP1 is protective during CNS autoimmunity. The ablation of LRP1 in microglia (*Cx3cr1* promoter) but not peripheral macrophages (*LysM* promoter) activated pro-inflammatory signals and worsened the EAE severity score in mice (Chuang et al 2016). Similarly, I found LRP1 protein and *Lrp1* mRNA expression were elevated at the LPC-induced white matter lesion (Figure 3.3 and Figure 3.4). Nuclei of cells not belonging to the OL or astrocyte lineage were found and accumulated at the myelin lesion site, though the identity of each cell type and how they may contribute or inhibit remyelination has yet to be defined (Figure 3.1 and Figure 3.2). Interestingly, CD68⁺ (pro-inflammatory macrophages and microglia) and Arg-1⁺ (M2 macrophage marker) cells were observed at the LPC-induced white matter lesion (Figure 3.2). LRP1 is a key regulator that promotes the switch of M1 (pro-inflammatory) macrophages toward M2 (anti-inflammatory) macrophages (May et al 2013). It has been shown that the M1 to M2 switch in the microglia and macrophages is important for OPC differentiation during CNS remyelination after LPC injection (Miron et al 2013).

In the LPC-mediated CNS demyelination model, GFAP⁺ cells (astrocytes) migrate toward and occupy the lesion within seven days (Figure 3.1). Controversial reports exist, debating whether astrogliosis is pro- or anti-demyelination or pro- or anti-remyelination (Nair et al 2008). Hyperactive astrocytes are the major component of the glial scar. Scarring tissue generates a barrier between normal and inflamed tissue to restrain the region of degeneration (Nair et al 2008). It has been considered that the dense astrocyte matrix is inhibitory during remyelination by preventing OPCs from accessing the impacted region (Fok-Seang et al 1995, Groves et al 1993). However, it has been shown that OPCs failed to remyelinate in the absence of astrocytes in the adult rat (Talbott et al 2005). In the mouse EAE model and individuals with multiple sclerosis, hyaluronan (HA) is highly expressed at the white matter lesion site. HA is a glycosaminoglycan component of the ECM that plays important roles in CNS morphogenesis, stability, and remodeling (Asher et al 1991, Bignami & Asher 1992, Eggli et al 1992). HA binds to CD44 and activates migration of astrocytes (Bourguignon et al 2007). CD44 is expressed by astrocytes in normal white matter (Girgrah et al 1991, Quackenbush et al 1985), its level is elevated upon CNS injury (Jones et al 2000). It has been reported that LRP1 binds and internalizes CD44 to adjust adhesive properties in tumor cells (Perrot et al 2012); therefore, a role for astroglial LRP1 in ECM remolding through HA/CD44 signal during remyelination appears likely.

— Myelin debris removal

As soon as CNS myelin is damaged, an inflammatory response is observed, characterized by macrophage-like cells near the lesion site, that help remove myelin debris (Miron et al 2013, Skripuletz et al 2012). In cuprizone-induced demyelination, astrogliosis is followed by microgliosis. Deletion of astrocytes lead to failure of microglia-mediated myelin debris removal, and consecutive remyelination was delayed (Skripuletz et al 2012). The expression of multiple scavenger receptors

is elevated at the rim of an active MS lesion, such as CD68, CXCL16, Class A macrophage SR, LOX-1, FcFRIII, and LRP1. LRP1-expressing MEFs and glial cells uptake myelin vesicles containing MBP *in vitro* (Gaultier et al 2008). MBP is a major component of myelin debris, suggesting that LRP1 participates in myelin debris clearing. In our pilot experiments, LRP1 ablation in myeloid cells (*LysM-Cre*) does not impact the remyelination rate. However, the initial demyelination area is smaller (Figure 3.5). Whether or not this LPR1-mediated debris clean up or lesion confinement contributes to CNS remyelination needs further study.

The heterogeneity of remyelination

As mentioned in Chapter II (section 1.3.3.2), the difference between multiple demyelination models should be considered when interpreting the relevance of our findings. LPC or EtBr focal injection creates a lesion, in which distinct phase of demyelination and remyelination are observed. However, compromised BBB and axonal damage from the injection might introduce confounding effects to alter the microenvironment of the lesion and consequentially alter remyelination (Dousset et al 1995, Waxman et al 1979). On the other hand, cuprizone-induced white matter lesion recruits OPCs and undergoes debris removal at the same time, causes overlapping demyelination and remyelination (Irvine & Blakemore 2006). Cuprizone is a copper chelator, which is reported to target copper-dependent mitochondrial functions (Pasquini et al 2007). The impairment in energy productions might be a confounding effect of axonal degeneration and failure in myelin repair. Whether chemically induced white matter damage or mouse EAE models can mimic the inflammatory responses caused by MS or other CNS diseases, and how knowledge gained from studies in the mouse can be applied to human white matter disorders needs further investigation.

4.2.2 How can OL-derived LRP1 impact axon diameter, function, and stability

Uncoupled compact myelin formation and OL-axon interaction

In addition to facilitating rapid conduction of electric signals along the axon, myelination provides trophic support to axons. It has been speculated that formation of myelin sheaths are required for the apical growth of axons. While the compact myelin remains unaffected, reduced axon caliber, nodal structural abnormality, redundant hypermyelination, myelin detachment, and late onset of axonal degeneration were observed in mice lacking PNS MAG (Yin et al 1998). Of note, axon caliber is associated with the inter-neurofilament spacing, which is regulated by the phosphorylation of neurofilament (Hsieh et al 1994, Nixon et al 1994). The distance between each nearby neurofilament in myelinated fibers of the $Mag^{-/-}$ sciatic nerve is significantly shorter compared to wildtype controls, starting from P35 and persisting to P90 (the longest time point assessed). Interestingly, this shortened distance is comparable to the one observed in non-myelinated nerves of wildtype control and *Mag^{-/-}* mice (Yin et al 1998). Similarly, it has been shown that in the CNS, OLs impact axon caliber in a compact myelin-independent manner (Sánchez et al 1996) as exemplified in Shiverer (Chernoff 1981), Jimpy (Meier & MacPike 1970), and Quaking mice (Sidman et al 1964). These mutants show defects in compact myelin formation but their OL maturation and wrapping is normal. As non-myelinated axons are smaller in caliber than myelinated axons, the interneurofilament distance and axon caliber is comparable in the ensheathed axon and myelinated axon (Sánchez et al 1996). In line with the literature, nodal defects, neuronal atrophy, myelin detachment, and redundant hypermyelination (Figure 3.8) were also observed in the optic nerve following inducible *Lrp1* ablation. Suggesting that LRP1 might be involved in OL-axon interaction.

– Selective myelination and hypomyelination

To interpret the morphological changes in the nervous system, it is important to bear in mind that there is regional heterogeneity in axon caliber and the degree of myelination. In particular, optic nerve myelination is initiated from the chiasm and progresses toward the eye (Colello et al 1994). The inter-neurofilament spacing is reduced at the nodes of Ranvier (Hsieh et al 1994), and axons typically reduce 10-15% of their size at the paranodal region, possibly due to the tight junction. Near the optic nerve head, the progression of optic nerve myelination is blocked by a dense layer of astrocytes—called lamina cribrosa, located about 150µm away from the retinal excavation (Sánchez et al 1996). At the optic nerve head, axons with smaller caliber are found, of which 90% are myelinated and expand in axon diameter at more distal regions (Sánchez et al 1996, Waxman & Swadlow 1976). Three major populations of axons with different calibers (~0.5, ~0.8, and ~1.5µm) were reported in the adult monkey optic nerve (Sanchez et al 1986). In the rat optic nerve, the major population of axon diameter shifts from 0.3-0.5µm (P4) to 0.7-0.9 µm (P28) during postnatal development (Colello et al 1994).

In sync with the references, three major axon populations (~ 0.3 , ~ 0.6 , and \sim 1.3µm) with different calibers were reported in the P21 mouse optic nerve. The major population of axon diameter shift from 0.2-0.4µm (P10) to 0.5-0.7µm (P21) and P56) during postnatal development. Interestingly, a larger fraction of axons with a diameter of 0.2-0.4µm, and smaller fraction of axons with a diameter of 0.5-0.7 µm was observed in *Lrp1* mutant optic nerves compared to controls (Figure 2.5h, k, and n). Independently of genotype, the majority of axons larger than $1\mu m$ in diameter are myelinated, and axons smaller than 0.2µm are not myelinated. Intermediate-sized axons, 0.3-0.9µm in diameter, are significantly less frequently myelinated in *Lrp1* deficient mice (Figure 2.5f, i, and l). While axon density is comparable between genotypes (Figure 2.5r), large diameter axons (>1µm) were more frequently observed in Lrp1 cKO^{0L} mice compared to controls (Figure 2.5s). I found nodes (sodium channel staining) formed significantly more frequently on large (>1µm) caliber axons in *Lrp1* cKO^{0L} mice compared to controls (Figure 2.4i). Moreover, these morphological features concerning axon caliber and myelination status were correlated with optic nerve CAP recording (Figure 2.7).

In the PNS, the extent of myelination strictly correlates with axon diameter. Larger axons express more Nrg1-III, which binds to ErbB receptors on the Schwann cells to initiate myelination (Taveggia et al 2005). In the CNS, a less strict correlation was reported; however, OLs seem to selectively ensheath polystyrene fibers that are >400nm in diameter in the absence of dynamic signals. On the contrary, the signal, level, and isotype of Nrg1s appear to correlate with neuronal signals. ErbB receptor ablation in OLs leads to hypomyelination that phenocopied defects observed in social isolation (Makinodan et al 2012). Social isolation leads to Nrg1-III down-regulation and hypomyelination (Makinodan et al 2012). The expression level of Nrg1 subtype correlates with neuronal firing (Liu et al 2011). Overexpressing Nrg1-I drives myelination of small caliber axons that are not myelinated in normal condition (Brinkmann et al 2008). Suggesting that the physical difficulty of myelin wrapping along small axons might be overcome by increasing the yet-to-be-defined axonal signals. Moreover, similar to what I found, selective hypomyelination of small caliber axons of *Fyn-/-* or *Fyn-/-*, *Mag-/-* mice while large axons were unaffected (Biffiger et al 2000). An explanation for this finding is that a lower ratio of cytoplasm volume to each myelin sheath was speculated for small axons. As one OL myelinates ~50 small axons but a few or only one large axon (Hildebrand et al 1993), in the latter case the OL cell body might be directly associated with an axon to provide energy support more effectively (Biffiger et al 2000).

Search for OL-axon regulator by studying the caliber of axons in vivo

Collectively, these results suggest that LRP1 participates in normal axon-glia interaction. It will be interesting to compare the previously described axonal features when each myelin protein is manipulated. While the ultrastructural EM studies provide a wealth of detail, the high technical threshold in preparing artifactfree sample, in getting enough representative pictures under a small field of imaging, and the quantification process is labor-intensive make it hard to draw conclusion correctly. We learned the localization dependent heterogeneity of the axons by study with the monkey optic nerves (Sanchez et al 1986). It was showed that the density, size, and myelination status of axons vary significantly in different regions of the nerve. Four poles of superior, inferior, nasal, and temporal were defined, central and peripheral were separated, and 16 portions of a nerve were denoted and subject to quantification. Large fibers were found more frequently in the peripheral superior nerve. The highest density of all fibers was located centrally in the infero-temporal quadrant. Although how each axonal population correlates to nerve function is still unclear, correct characterization is important for accessing pathologic changes in the optic system (Sanchez et al 1986). Developing higher throughput imaging and processing methods are required to advance this field (Comin et al 2014).

4.2.3 How can cholesterol impact myelination and remyelination

From Chapter I to III (section 1.3.2.1 and 2.3.6) we have learned that cholesterol is a key component in the CNS myelin health and disease, the regulation of intercellular cholesterol metabolism is tightly controlled, and LRP1 is involved in cholesterol homeostasis. *Lrp1* germ line null is embryonic lethal (Herz et al 1992). Interestingly, defects in OPC maturation in primary culture are more prominent than *in vivo* when *Lrp1* is specifically deleted in the OL-lineage. It is tempting to speculate that *Lrp1*^{-/-} OPCs are able to acquire metabolites (such as cholesterol) from neighboring *Lrp1*^{+/+} cells *in vivo*; thereby, masking a more severe defect in CNS myelin development. This "masking effect" is incomplete however, as *Lrp1* conditional KO mice still exhibit a hypomyelination phenotype. *In vitro*, OPCs that are deficient for *Lrp1* are isolated from cells that may provide cholesterol intercellularly, and thus, the differentiation phenotype is more pronounced. Here, LRP1's involvement in cholesterol homeostasis and topological distribution during myelin development or repair under the context of cell-cell interaction is discussed.

- As a signaling regulator

Regulation of cholesterol homeostasis including uptake, biosynthesis, catabolism, and lateral exchange between CNS cells has been extensively reviewed (Björkhem & Meaney 2004, Courtney & Landreth 2016, Orth & Bellosta 2012, Saher et al 2005, Saher & Stumpf 2015, Tall & Yvan-Charvet 2015, Vitali et al 2014). Multiple genes involved in cholesterol metabolism were altered in *Lrp1*-/- OPCs, gene ontology analysis identified differences in 'Regulation of Cholesterol Biosynthesis Process, 'Cellular Response to Sterol', and 'Regulation of Cholesterol Homeostasis' (Figure 3.15). Gene products associated with each GO term including glucose-6-phosphate dehydrogenase x-linked/G6PDH (*G6pdx*), Liver X Receptor-Beta/LXRβ

(Nr1h2), SREBP Cleavage-Activating Protein/SCAP (Scap), Peroxin2 (Pex2), LRP1 (*Lrp1*), LRP5 (*Lrp5*), Retinoid-Related Orphan Receptor Gamma/RZRG (*Rorc*), Follicle-Stimulating Hormone-Releasing Protein/FRP (Inhba) and miRNA33 (Mir33). In *Lrp1*^{-/-} cells the cholesterol sensing apparatus seems to be intact, as bath applied cholesterol leads to a decrease in SREBP2. Accumulating evidence shows that these molecular pathways are either directly linked to or cross talk with pathways that are important for myelin biogenesis. In line with the view of RCT, Scap ablation in astrocytes leads to hypomyelination and this can be reversed by high-fat diet (Camargo et al 2017). Other than SREBP2, LXRs are the master regulators of cholesterol homeostasis and inflammation in the brain. LXRB is expressed dominantly in the liver and the brain, and LXR signals were found to be disrupted in many neurodegenerative diseases (Courtney & Landreth 2016). In response to cholesterol, LXRs form heterodimers with RXR, LXR-RXR binds to LXRE (LXR response elements) in the nucleus and activates or represses gene transcription. Ligand-bound LXR can be SUMOvlated and repress iNOS (M1 pro-inflammation gene) expression to suppress a pro-inflammatory response. Furthermore, LXR controls cholesterol efflux in cholesterol-loaded cells, cholesterol-laden cells (foam cells) activate TLR signaling, TLR aggravates inflammation by feed-forward signaling, reducing cholesterol efflux (Tall & Yvan-Charvet 2015). The lingering of myelin-derived cholesterol limits CNS remyelination, treating with an LXR agonist (GW3965) improves lesion recovery (Cantuti-Castelvetri et al 2018). Cholesterollowering drugs (e.g. statins) are anti-inflammatory by inhibiting TLR-mediated cytokine or chemokine production (Angelovich et al 2015, Lin et al 2011), and promote remyelination in animal models of MS (Chrast et al 2011, Paintlia et al 2005, Paintlia et al 2008, Stanislaus et al 2002, Youssef et al 2002). However, cholesterol is the rate-limiting factor for myelin growth in the normal brain (Saher et al 2005, Saher & Stumpf 2015), indicating the exquisite balance at the cellular level of cholesterol is pivotal.

As a structural lipid of the membrane

Cholesterol is the key molecule in the lipid raft, where the membrane is more "rigid", different in size, and varies in molecular composition. A lipid raft is considered a platform for carrying out protein sorting, signaling, and caveolaemediated (clathrin-independent) endocytosis (Gielen et al 2006). Lipid raft is an operational definition; the name was given to the partition of membrane that resists cold Triton X-100 extraction, called detergent-resistant membrane (DRM), recovered by gradient flotation (Brown & London 2000, Brown & Rose 1992, Simons & Ikonen 1997). Compositional study of DRMs revealed a list of potential raft-associated lipids and proteins (Foster et al 2003); however, the constituents varied from one extraction to another due to the detergents used or different technical practices (Banerjee et al 1995, Chamberlain 2004, Schuck et al 2003).

It was postulated that myelin, lipid, and protein sorting, at least to some degree, are coupled with lipid rafts. This is indeed the case for PLP, which was cholesterol-dependent the endocytosed through а pathway to late endosomes/lysosomes (LE/Lys) compartment, and trafficed through cell cytosol myelinic channels to the myelin leading edge. On the other hand, MAG and MOG are sorted through a clathrin-dependent pathway and targeted to LE/Lys and recycling endosomes (RE), respectively (White & Krämer-Albers 2014). Defects in PLP sorting may lead to diseases that feature hypomyelination (Kramer-Albers et al 2006). Signals that are important for myelination or OL development are integrated at lipid rafts through Fyn activation, such as myelin protein synthesis, cytoskeleton recruitment, and morphological differentiation (White & Krämer-Albers 2014). LRP1 is enriched in lipid rafts, and Fyn binds to LRP1 phosphorylation sites (Guttman et al 2009), suggesting it might be a direct downstream signaling target of LRP1 for regulating myelination.

4.2.4 How can peroxisome impacts myelin biology

In Chapter II (section 2.3.7), I have identified a novel role for LRP1 in regulating peroxisome biogenesis and subcellular distribution. The role of the

PPARγ signaling pathway and how it regulates CNS myelin and OL differentiation is discussed (section 2.4). Here I consider peroxisomes as a functional unit and how myelin-associated peroxisomes impact myelin formation and axonal integrity.

Consider peroxisome as an all-purposed logistic vehicle

Peroxisomes are single membrane-bounded organelles that are versatile in function. Peroxisomes execute multiple functions including reactive oxygen species (ROS) elimination, the pre-squalene sequence of cholesterol biosynthesis, lipid oxidation, ATP production, and serve as anti-viral innate immune platform. Of note, the TSC1/2 complex resides on peroxisomes, speculating far-reaching signaling regulatory functions of peroxisomes (Cohen et al 2000, Desvergne & Wahli 1999, Dixit et al 2010, Faust & Kovacs 2014, Titorenko & Rachubinski 2004). Peroxisomes orchestrate many critical metabolic pathways through collaborating with their environment by forming membrane contacts with other organelles such as lysosomes and mitochondria (Fransen et al 2017, Shai et al 2016). Recent work indicated that newly synthesized peroxisomes are a hybrid product of mitochondria and ER (Sugiura et al 2017), which is different from fission-derived peroxisomes. Stressing the diversity of peroxisome origin, their function, localization, and composition. The heterogeneity of peroxisomes in size, localization, interior protein/RNA components, and membrane contacts emphasize their ability to respond promptly to metabolic changes (Chung et al 2013, Thoms 2015).

From previous work it was thought that peroxisome merely functions in segregating unique enzymatic reactions. Not until recently was it suggested that peroxisomes may also be utilized as an intracellular mRNA shuttle (Haimovich et al 2016). Local mRNA translation is essential for highly specialized cells, such as neurons and OLs, to meet the metabolic demands for making timely responses (Gumy et al 2010). However, how mRNA is shuttled and if peroxisome is involved are still remain largely unknown. In the CNS, myelinated axons rarely harbor their own peroxisomes; however, OL-derived peroxisomes were found to accumulate at the paranodal myelin lamina (Kassmann 2014), where intense axon-glia metabolite

exchange happens. This orientation suggests that axons rely on adjacent glia cells for providing peroxisomal support to cover their metabolic needs. This idea was proposed in a similar phrase in 1973 (Holtzman et al 1973); however, direct evidence for and the underlying mechanisms of peroxisome-mediated intercellular support are still elusive. *Pex2*, *Pex5*, and *Pex13* germline null mice have been generated to study ZS, a spectrum of syndromes characterized by peroxisome biogenesis disorder, neuronal cell death, and hypomyelination (Berger et al 2016). However, due to the embryonic, hypertonic, and neonatal death, this limits the window to study peroxisomal function in later developmental stages (Baes & Van Veldhoven 2012). Interestingly, severe neuronal defects in the whole brain *Pex5* KO were found; however, the cell type specific KOs including neuron, astrocyte, or OLs showed no deficits (Baes & Van Veldhoven 2012). This discrepancy suggests that peroxisomes are involved in a lateral shuttling pathway—a "masking effect", and also reveals the drawbacks of using the single *loxP-Cre* system *in vivo*.

A hierarchical role for peroxisomes in cholesterol metabolism?

There are many studies concerning each PEX protein function in peroxisome biogenesis, PPARs signaling in lipid homeostasis and inflammation, and the structure of peroxisome proliferators (PPs) in stimulating peroxisome production in the liver. However, the gap between how PPs regulate PEX and through which PPAR signaling pathway they promote peroxisome biogenesis remains understudied. Given the sparsity of knowledge, little tools are available regarding peroxisome manipulation as a whole. Interestingly, disruption of any of the PEX genes seems to cause dysfunctional peroxisomes, as characterized in patients with spontaneous mutations in PEX genes. In our studies, extra cholesterol did not seem to promote OPC differentiation, however, the transition from OPCs to MBP⁺ OLs was significantly accelerated when treated with pioglitazone in $Lrp^{+/+}$ OPCs. The number of peroxisomes seems to stay constant once an OL is mature, and pioglitazone treatment does not increase the peroxisome number nor alter distribution. In the $Lrp1^{-/-}$ deficient OPCs however, pioglitazone treatment moderately increases the localization of peroxisomes into cellular processes. When $Lrp1^{-/-}$ deficient OPCs are treated with pioglitazone combined with cholesterol, the peroxisome number, distribution, and cell size were restored to normal. Suggesting that in $Lrp1^{-/-}$ deficient OPCs, both peroxisomal functions and cholesterol homeostasis are disrupted. Combine with the observations in $Lrp^{+/+}$ OPCs, a possible explanation for this combined treatment to restore OL differentiation in $Lrp1^{-/-}$ deficient cells is formed. I speculated that only when peroxisomal functions are increased in $Lrp^{-/-}$ OPCs, free cholesterol can promote myelin-like membrane growth. In another words, I the intact peroxisomes are the pre-requisite for normal cholesterol-mediated function under the control of LRP1. The actual casual effect remains to be validated.

4.2.5 Speculations on how LRP1 impacts myelin biology

– LRP1 regulates Myo1d: motor protein trafficking on cytoskeleton

Myo1d mRNA expression was strongly reduced in Lrp1 deficient O4⁺ OLs (Figure 3.18e), the protein expression of MYO1D is below the detection limit in mature OLs in the absence of LRP1 (Figure 3.18f and g). Myo1d is a nonconventional myosin expressed exclusively in mature OLs (Yamazaki et al 2014), as was found in myelin proteomic studies (Roth et al 2006, Werner et al 2007). MYO1D co-localized with PLP in OL processes and with actin at the leading edge (Yamazaki et al 2014, Yamazaki et al 2017), equivalent to myelinic channels I have discussed (section 1.3.1). Knocking down *Myo1d* in immature OLs by siRNA results in PLP accumulation at the peri-nucleus, attenuated OL differentiation, and disrupted myelin processes (Yamazaki et al 2016). The morphology of OLs lacking MYO1D phenocopies OLs that are deficient in LRP1 (Figure 2.10d and Figure 2.11e) or treated with statin (Smolders et al 2010). Moreover, PLP trafficking is cholesteroldependent at lipid rafts where LRP1 is enriched. Interestingly, knocking down *Myo1d* in mature MBP⁺ OLs leads to the collapse/degeneration of myelin-like membranes (Yamazaki et al 2016). Currently there is no available mouse model to study MY01D in vivo; however, *My01d* KO rats are deficient in planar cell polarity (Hegan et al 2015). Knocking down Myo1d by siRNA at the corpus callosum impairs remyelination following cuprizone treatment (Yamazaki et al 2018). Of note, Myosin2p in yeast transports peroxisomes along actin to the budding daughter cell ((Hoepfner et al 2001), and peroxisomes form contacts with lysosomes to exchange cholesterol (Chu et al 2015). It is tempting to speculate that LRP1 transcriptionally regulates MY01D, which directs the movement of peroxisomes to shuttle cholesterol, therefore myelin membrane extension positively feeds back to generate more myelin proteins. It is of interest to investigate if peroxisome distribution, biogenesis, and cholesterol homeostasis are also altered; if pioglitazone and cholesterol treatment can restore the hypomyelination phenotype; and if myelin dynamic trafficking is disrupted in *Myo1d* deficient OLs. With the observations I made in *Lrp1* deficient cells, we are one step closer to understanding how these signaling pathways orchestrate CNS myelin in health and disease.

4.3 **Future Direction**

Following the arguments presented in the previous section, I will discuss future directions of my work on Lrp1 in the OL lineage and potential experiments to address questions listed below.

The role of Lrp1 in different cell types and its contribution to myelin repair

To examine if LRP1 is required in astrocytes, microglia, or peripheral immune cells during CNS myelin repair, *Lrp1* tissue-specific knockout (KO) can be employed. *Lrp1^{flox/flox}* need to be crossed with constitutive (*Cre*) or inducible (*CreERTM*) mouse lines, where *Cre* expression is under the promoter of the *Gfap* (astrocyte), *Cx3cr1* (microglia), *LysM* (myeloid cell), *CD4* (T_H cell), *CD8* (T_C cell), or *CD19* (B cell) promoter to generate mice that lack Lrp1 is specific cell types. Following chemically induced axon demyelination, remyelination will be assayed as described in Chapter II (section 2.5.3 and 2.5.6). When combined with EM studies, this will allow us to assess the extent of myelin repair and provide insights into the importance of Lrp1 in specific cell types. At different post-injury time points, the level of debris phagocytosis and the progress of OPC differentiation will need to be

examined. Once the cellular events that contribute to remyelination are revealed, *in vitro* studies will follow to search for potential non-cell autonomous mechanisms. Applying fluorescent-labeled myelin to cultured cells can test the ability of LRP1-mediated myelin debris uptake. *Lrp1* deficient astrocytes, microglia, or immune cells co-cultured with OPCs in a contact-dependent or independent manner can be used to analyze if LRP1-mediated signaling cues provided by specific cell types are needed for OPC differentiation and myelin sheet formation.

Figure 4.1: Genetic manipulation strategies to study masking effect Flipase (Flp) or Cre recombinase expression is driven by tissue-specific promoters that are pre-established can be used to perform conditional knockout or tissue-specific rescue. FRT, F3, and F5 are flippase recognition sequence. LoxP and LoxN are cre recognition sequence. This is figure was created by Jing-Ping Lin.

To study potential masking effects, including the inter-cellular shuttling of metabolites or organelles (mitochondria, exosomes, or peroxisomes) during myelination, new mouse genetic tools will need to be developed (Figure 4.1). Take advantage of the site-specific recombinase (SSR) system (Branda & Dymecki 2004) by flanking specific alleles with *LoxP* and *FRT* site-specific sequences and then cross these with well-established tissue-specific flipase (Flp) and Cre mouse driver lines. This approach will allow us to address potential "masking effects" *in vivo*. New

genetic tools will allows us to interrogate the presence of pathways, and cell types involved in rescuing (or masking) defects in OPC differentiation. For example, by using forebrain specific Cre promoter (*Nestin*) to delete LRP1 and rescues it with tissue specific Flp, I can examine the requirement of LRP1 in each CNS cell type in an LRP1 null environment. Similarly, transplantation of each cell type into a brain with the specific gene ablated can be performed in parallel.

Identification of LRP1-PPARγ regulated genes important for CNS myelination

To search for the LRP1-regulated genes that are transcribed by PPARy activation during OPC development, RNA sequencing can be employed. By comparing the expression profile between *Lrp1* control OPCs, *Lrp1*^{-/-} OPCs, *Lrp1* control OPCs treated with pioglitazone, and *Lrp1*^{-/-} OPCs treated with pioglitazone, I will be able to discover differentially regulated genes under each condition. Because *Lrp1^{-/-}* OPCs do not differentiate in the presence of pioglitazone, this will allow us to rule out many genes that are not sufficient to drive OPC differentiation. Gene products that are differentially regulated between Lrp1 control OPCs and Lrp1-/-OPCs treated with pioglitazone are candidates for OPC maturation. Novel candidates can then be overexpressed or knocked down in *Lrp1*^{-/-} OPCs to examine whether they can rescue the differentiation defects. Also, OPCs isolated from the Lrp1-N2 mice, treated with or without pioglitazone, can be added to the comparison to examine the requirement of the distal NPxY phosphorylation site of LRP1 in regulation of gene transcription. The correlation of genetic function at a transcriptional and translational level should be considered, as miRNAs or longnoncoding RNAs were found to dynamically regulate RNA stability and/or coordinate expression of groups of genes. By RNA sequencing, I will be able to generate a wealth of data under each condition for coding and non-coding RNAs that will be mined using bioinformatics tools similar to the ones described in chapter II. This work may shed light on how different aspects of LRP1 signaling contribute to specific cellular needs during OL lineage maturation and CNS myelination.

The role of LRP1 in regulating organelle trafficking

To assess if LRP1 is required for peroxisome trafficking and subcellular organelle distribution, regular live imaging and super-resolution microscopy (STORM for example) may be needed. OPCs isolated from mice with a peroxisomal protein fused to GFP or equivalents will be cultured. Following stimulation of each signaling pathway or gene manipulation, the speed, localization, and morphology of peroxisomes will be recorded. The local transcriptome associated with peroxisomes at the myelinic channels can be analyzed by merFISH (Moffitt et al 2016). By comparing the RNA profiles in OPC/OLs contacted by neurons versus non-contacted cells in KO-KO, KO-control, and control-control groups, I will be able to identify new pathways that are regulated within cells. Sub-cellular domains can be defined, identified, and analyzed differentially as well. This platform can be used to identify the peroxisomal regulation through neuron-glia interaction and stimulation-mediated dynamic changes in the future as well.

To study how LRP1 may be involved in peroxisome trafficking, an in depth experimental approach, similar to Figure 3.20-Figure 3.23 may need to be developed. An interesting hypothesis has developed based on the RNA profiling studies of Lrp1 control and Lrp1^{-/-} OPCs. I found that Myosin ID (Myo1d) expression is significantly reduced in *Lrp1*^{-/-} OPCs (Figure 3.18). Myo1d is an unconventional myosin comprised of an ATP- and actin-binding head, two IQ domain-containing necks for calmodulin binding, and a lipid-binding tail (Benesh et al 2010, Yamazaki et al 2014). Very recently it was reported that Myo1d is important for myelin repair. Questions such as if the LRP1-ICD binds to *Myo1d* or regulates *Myo1d* mRNA expression transcriptionally (promoter region) and/or post-transcriptionally (miRNA or equivalent); and if Myo1D co-localizes with peroxisomes and/or is important for subcellular distribution and trafficking or peroxisomes will be interesting to pursue. For example, it will be important to test if Myo1d overexpression rescues the *Lrp1-/-* OPC/OL phenotype; the dynamic and heterogeneity of peroxisome size, localization, interior protein/RNA components, and membrane contacts direct their ability to respond in a timely manner to meet local metabolic demands between neuronal cells. Peroxisomes in the brain are called "microperoxisomes" (McKenna et al 1976), compared to those found in other tissues (~1 um in liver cells) they are smaller in size (30-200 nm). Therefore, studying microperoxisomes is challenging, because their size is below the deflection limit of conventional light microscopy (Kassmann et al 2011). Newer tools, such as super-resolution microscopy, will be essential to track their morphology and distribution in detail.

4.4 **Concluding Remarks**

Over the past few decades our knowledge of myelin biology has expanded enormously. Scientists have moved from basic single myelin gene characterization to 'omics' studies. The model of myelination has been refined to incorporate activity dependent internode plasticity. Regulatory pathways between different neuronal cells have been integrated to build hypothesis. Building on these previous findings and attempting to envision the bigger picture under the context of a network is most likely the future of myelin biology. As the advance of RNA sequencing techniques, getting the transcriptome from a single neuronal cell is not impossible anymore. However, due to the nature of these cells, they are large and highly polarized. sequencing reads from an isolated cell cannot reveal the changes in subcellular localization or 3D orientation. Both aspects are important to consider for revealing consecutive local responses. In addition, the heterogeneity of expression profiles in different cell types varies topologically and temporally in the brain, which posts a major challenge in interpreting information from isolated cells to match morphology and function. *In situ* profiling is a foreseeable future to overcome these current limits in single cell sequencing. As the techniques regarding multiplex FISH developing, we will be able to acquire single cell transcriptome with spatial resolution. This advance will give us more information to interpret the complex regulatory mechanism of the CNS myelination in health and disease. Although the throughput to acquire multiplex FISH data is still low and the analytic methods is conceptually lagging, it is certainly exciting to see how it can lead us to another level of comprehension. We are only in the beginning of understanding the logic of metabolic coupling between neuronal cells, and still have a long way to go before applying this knowledge clinically. However, as long as we keep trying, the answer can only be closer.

4.5 **Bibliography**

- Angelovich TA, Hearps AC, Jaworowski A. 2015. Inflammation-induced foam cell formation in chronic inflammatory disease. pp. 683-93: Nature Publishing Group
- Asher R, Perides G, Vanderhaeghen JJ, Bignami A. 1991. Extracellular matrix of central nervous system white matter: Demonstration of an hyaluronate-protein complex. In *J. Neurosci. Res.*, pp. 410-21: Wiley Subscription Services, Inc., A Wiley Company
- Baes M, Van Veldhoven PP. 2012. Mouse models for peroxisome biogenesis defects and β -oxidation enzyme deficiencies. In *Biochim. Biophys. Acta*, pp. 1489-500
- Banerjee P, Joo JB, Buse JT, Dawson G. 1995. Differential solubilization of lipids along with membrane proteins by different classes of detergents. In *Chem. Phys. Lipids*, pp. 65-78
- Benesh AE, Nambiar R, McConnell RE, Mao S, Tabb DL, Tyska MJ. 2010. Differential localization and dynamics of class I myosins in the enterocyte microvillus. In *Mol. Biol. Cell*, pp. 970-78
- Berger J, Dorninger F, Forss-Petter S, Kunze M. 2016. Peroxisomes in brain development and function. In *BBA Molecular Cell Research*, pp. 934-55: The Authors
- Biffiger K, Bartsch S, Montag D, Aguzzi A, Schachner M, Bartsch U. 2000. Severe hypomyelination of the murine CNS in the absence of myelin-associated glycoprotein and fyn tyrosine kinase. In *J. Neurosci.*, pp. 7430-37
- Bignami A, Asher R. 1992. Some observations on the localization of hyaluronic acid in adult, newborn and embryonal rat brain. In *Int. J. Dev. Neurosci.*, pp. 45-57
- Björkhem I, Meaney S. 2004. Brain cholesterol: long secret life behind a barrier. In *Arterioscler. Thromb. Vasc. Biol.*, pp. 806-15
- Bourguignon LYW, Gilad E, Peyrollier K, Brightman A, Swanson RA. 2007. Hyaluronan-CD44 interaction stimulates Rac1 signaling and PKN γ kinase activation leading to cytoskeleton function and cell migration in astrocytes. In *J. Neurochem.*, pp. 1002-17: Blackwell Publishing Ltd
- Branda CS, Dymecki SM. 2004. Talking about a revolution: The impact of sitespecific recombinases on genetic analyses in mice. In *Developmental Cell*, pp. 7-28
- Brinkmann BG, Agarwal A, Sereda MW, Garratt AN, Müller T, et al. 2008. Neuregulin-1/ErbB signaling serves distinct functions in myelination of the peripheral and central nervous system. In *Neuron*, pp. 581-95
- Brown DA, London E. 2000. Structure and Function of Sphingolipid- and Cholesterol-rich Membrane Rafts. In *Journal of Biological Chemistry*, pp. 17221-24
- Brown DA, Rose JK. 1992. Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. In *Cell*, pp. 533-44

- Camargo N, Goudriaan A, van Deijk A-LF, Otte WM, Brouwers JF, et al. 2017. Oligodendroglial myelination requires astrocyte-derived lipids. In *PLoS Biol.*, pp. e1002605
- Cantuti-Castelvetri L, Fitzner D, Bosch-Queralt M, Weil M-T, Su M, et al. 2018. Defective cholesterol clearance limits remyelination in the aged central nervous system. In *Science*
- Chamberlain LH. 2004. Detergents as tools for the purification and classification of lipid rafts. In *FEBS Lett.*, pp. 1-5
- Chernoff GF. 1981. Shiverer: an autosomal recessive mutant mouse with myelin deficiency. In *J. Hered.*, pp. 128
- Chrast R, Saher G, Nave K-A, Verheijen MHG. 2011. Lipid metabolism in myelinating glial cells: lessons from human inherited disorders and mouse models. In *J. Lipid Res.*, pp. 419-34
- Chu B-B, Liao Y-C, Qi W, Xie C, Du X, et al. 2015. Cholesterol transport through lysosome-peroxisome membrane contacts. In *Cell*, pp. 291-306: Elsevier Inc.
- Chuang T-Y, Guo Y, Seki SM, Rosen AM, Johanson DM, et al. 2016. LRP1 expression in microglia is protective during CNS autoimmunity. In *Acta Neuropathol Commun*, pp. 1-12
- Chung W-S, Clarke LE, Wang GX, Stafford BK, Sher A, et al. 2013. Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways. In *Nature*, pp. 394-400
- Cohen GB, Rangan VS, Chen BK, Smith S, Baltimore D. 2000. The human thioesterase II protein binds to a site on HIV-1 Nef critical for CD4 down-regulation. In *J. Biol. Chem.*, pp. 23097-105
- Colello RJ, Pott U, Schwab ME. 1994. The role of oligodendrocytes and myelin on axon maturation in the developing rat retinofugal pathway. In *J. Neurosci.*, pp. 2594-605
- Comin CH, Santos JR, Corradini D, Morrison W, Curme C, et al. 2014. Statistical physics approach to quantifying differences in myelinated nerve fibers. In *Sci Rep*, pp. 4511
- Courtney R, Landreth GE. 2016. LXR Regulation of Brain Cholesterol: From Development to Disease. In *Trends Endocrinol. Metab.*, pp. 404-14
- Desvergne B, Wahli W. 1999. Peroxisome proliferator-activated receptors: nuclear control of metabolism. In *Endocr. Rev.*, pp. 649-88
- Dixit E, Boulant S, Zhang Y, Lee ASY, Odendall C, et al. 2010. Peroxisomes are signaling platforms for antiviral innate immunity. In *Cell*, pp. 668-81
- Dousset V, Brochet B, Vital A, Gross C, Benazzouz A, et al. 1995. Lysolecithin-induced demyelination in primates: preliminary in vivo study with MR and magnetization transfer. In *Am. J. Neuroradiol.*, pp. 225
- Eggli PS, Lucocq J, Ott P, Graber W, van der Zypen E. 1992. Ultrastructural localization of hyaluronan in myelin sheaths of the rat central and rat and human peripheral nervous systems using hyaluronan-binding protein-gold and link protein-gold. In *Neuroscience*, pp. 737-44
- Faust PL, Kovacs WJ. 2014. Cholesterol biosynthesis and ER stress in peroxisome deficiency. In *Biochimie*, pp. 75-85: Elsevier Masson SAS

- Fok-Seang J, Mathews GA, ffrench-Constant C, Trotter J, Fawcett JW. 1995. Migration of Oligodendrocyte Precursors on Astrocytes and Meningeal Cells. In *Dev. Biol.*, pp. 1-15
- Foster LJ, De Hoog CL, Mann M. 2003. Unbiased quantitative proteomics of lipid rafts reveals high specificity for signaling factors. In *Proc. Natl. Acad. Sci. U.S.A.*, pp. 5813-18
- Fransen M, Lismont C, Walton P. 2017. The Peroxisome-Mitochondria Connection: How and Why? In *IJMS*, pp. 1126
- Gaultier A, Arandjelovic S, Li X, Janes J, Dragojlovic N, et al. 2008. A shed form of LDL receptor-related protein-1 regulates peripheral nerve injury and neuropathic pain in rodents. In *J. Clin. Invest.*, pp. 161-72
- Gielen E, Baron W, vandeVen M, Steels P, Hoekstra D, Ameloot M. 2006. Rafts in oligodendrocytes: Evidence and structure–function relationship. In *Glia*, pp. 499-512
- Girgrah N, Letarte M, Becker LE, Cruz TF, Theriault E, Moscarello MA. 1991. Localization of the CD44 Glycoprotein to Fibrous Astrocytes in Normal White Matter and to Reactive Astrocytes in Active Lesions in Multiple Sclerosis. In *J. Neuropathol. Exp. Neurol.*, pp. 779-92
- Groves AK, Entwistle A, Jat PS, Noble M. 1993. The Characterization of Astrocyte Cell Lines That Display Properties of Glial Scar Tissue. In *Dev. Biol.*, pp. 87-104
- Gumy LF, Tan CL, Fawcett JW. 2010. The role of local protein synthesis and degradation in axon regeneration. In *Exp Neurol*, pp. 28-37
- Guttman M, Betts GN, Barnes H, Ghassemian M, van der Geer P, Komives EA. 2009. Interactions of the NPXY microdomains of the low density lipoprotein receptor-related protein 1. In *Proteomics*, pp. 5016-28
- Haimovich G, Cohen-Zontag O, Gerst JE. 2016. A role for mRNA trafficking and localized translation in peroxisome biogenesis and function? In *Biochim. Biophys. Acta*, pp. 911-21
- Hegan PS, Ostertag E, Geurts AM, Mooseker MS. 2015. Myosin Id is required for planar cell polarity in ciliated tracheal and ependymal epithelial cells. In *Cytoskeleton (Hoboken)*, pp. 503-16
- Hendrickx DAE, Koning N, Schuurman KG, van Strien ME, van Eden CG, et al. 2013. Selective upregulation of scavenger receptors in and around demyelinating areas in multiple sclerosis. In *J. Neuropathol. Exp. Neurol.*, pp. 106-18
- Herz J, Clouthier DE, Hammer RE. 1992. LDL receptor-related protein internalizes and degrades uPA-PAI-1 complexes and is essential for embryo implantation. In *Cell*, pp. 411-21
- Hildebrand C, Remahl S, Persson H, Bjartmar C. 1993. Myelinated nerve fibres in the CNS. In *Prog. Neurobiol.*, pp. 319-84
- Hoepfner D, van den Berg M, Philippsen P, Tabak HF, Hettema EH. 2001. A role for Vps1p, actin, and the Myo2p motor in peroxisome abundance and inheritance in Saccharomyces cerevisiae. In *The Journal of Cell Biology*, pp. 979-90
- Holtzman E, Teichberg S, Abrahams SJ, Citkowitz E, Crain SM, et al. 1973. Notes on synaptic vesicles and related structures, endoplasmic reticulum, lysosomes and peroxisomes in nervous tissue and the adrenal medulla. In *J. Histochem. Cytochem.*, pp. 349-85

- Hsieh ST, Kidd GJ, Crawford TO, Xu Z, Lin WM, et al. 1994. Regional modulation of neurofilament organization by myelination in normal axons. In *J. Neurosci.*, pp. 6392-401
- Irvine KA, Blakemore WF. 2006. Age increases axon loss associated with primary demyelination in cuprizone-induced demyelination in C57BL/6 mice. In *J Neuroimmunol*, pp. 69-76
- Jones LL, Liu Z, Shen J, Werner A, Kreutzberg GW, Raivich G. 2000. Regulation of the cell adhesion molecule CD44 after nerve transection and direct trauma to the mouse brain. In *J Comp Neurol*, pp. 468-92: John Wiley & Sons, Inc.
- Kassmann CM. 2014. Myelin peroxisomes essential organelles for the maintenance of white matter in the nervous system. In *Biochimie*, pp. 111-18
- Kassmann CM, Quintes S, Rietdorf J, Mobius W, Sereda MW, et al. 2011. A role for myelin-associated peroxisomes in maintaining paranodal loops and axonal integrity. In *FEBS Lett.*, pp. 2205-11
- Kramer-Albers EM, Gehrig-Burger K, Thiele C, Trotter J, Nave KA. 2006. Perturbed Interactions of Mutant Proteolipid Protein/DM20 with Cholesterol and Lipid Rafts in Oligodendroglia: Implications for Dysmyelination in Spastic Paraplegia. In J. Neurosci., pp. 11743-52
- Lin H, Xiao Y, Chen G, Fu D, Ye Y, et al. 2011. HMG-CoA reductase inhibitor simvastatin suppresses Toll-like receptor 2 ligand-induced activation of nuclear factor kappa B by preventing RhoA activation in monocytes from rheumatoid arthritis patients. In *Rheumatol. Int.*, pp. 1451-58
- Liu X, Bates R, Yin D-M, Shen C, Wang F, et al. 2011. Specific regulation of NRG1 isoform expression by neuronal activity. In *J. Neurosci.*, pp. 8491-501
- Makinodan M, Rosen KM, Ito S, Corfas G. 2012. A critical period for social experience-dependent oligodendrocyte maturation and myelination. In *Science*, pp. 1357-60
- May P, Bock HH, Nofer J-R. 2013. Low density receptor-related protein 1 (LRP1) promotes anti-inflammatory phenotype in murine macrophages. In *Cell Tissue Res.*, pp. 887-89
- McKenna O, Arnold G, Holtzman E. 1976. Microperoxisome distribution in the central nervous system of the rat. In *Brain Res*, pp. 181-94
- Meier H, MacPike AD. 1970. A neurological mutation (msd) of the mouse causing a deficiency of myelin synthesis. In *Exp Brain Res*, pp. 512-25
- Miron VE, Boyd A, Zhao J-W, Yuen TJ, Ruckh JM, et al. 2013. M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. In *Nat. Neurosci.*, pp. 1211-18
- Moffitt JR, Hao J, Wang G, Chen KH, Babcock HP, Zhuang X. 2016. High-throughput single-cell gene-expression profiling with multiplexed error-robust fluorescence in situ hybridization. In *Proc. Natl. Acad. Sci. U.S.A.*, pp. 11046-51
- Nair A, Frederick TJ, Miller SD. 2008. Astrocytes in multiple sclerosis: a product of their environment. In *Cell. Mol. Life Sci.*, pp. 2702-20
- Nixon RA, Paskevich PA, Sihag RK, Thayer CY. 1994. Phosphorylation on carboxyl terminus domains of neurofilament proteins in retinal ganglion cell neurons in vivo: influences on regional neurofilament accumulation,

interneurofilament spacing, and axon caliber. In *The Journal of Cell Biology*, pp. 1031-46

- Orth M, Bellosta S. 2012. Cholesterol: Its Regulation and Role in Central Nervous System Disorders. In *Cholesterol*, pp. 1-19
- Paintlia AS, Paintlia MK, Khan M, Vollmer T, Singh AK, Singh I. 2005. HMG-CoA reductase inhibitor augments survival and differentiation of oligodendrocyte progenitors in animal model of multiple sclerosis. In *FASEB J.*, pp. 1407-21
- Paintlia AS, Paintlia MK, Singh AK, Singh I. 2008. Inhibition of rho family functions by lovastatin promotes myelin repair in ameliorating experimental autoimmune encephalomyelitis. In *Mol Pharmacol*, pp. 1381-93
- Pasquini LA, Calatayud CA, Bertone Uña AL, Millet V, Pasquini JM, Soto EF. 2007. The neurotoxic effect of cuprizone on oligodendrocytes depends on the presence of pro-inflammatory cytokines secreted by microglia. In *Neurochem Res*, pp. 279-92
- Perrot G, Langlois B, Devy J, Jeanne A, Verzeaux L, et al. 2012. LRP-1-CD44, a New Cell Surface Complex Regulating Tumor Cell Adhesion. In *Mol. Cell. Biol.*, pp. 3293-307
- Quackenbush EJ, Cruz TF, Moscarello MA, Letarte M. 1985. Identification of three antigens in human brain associated with similar antigens on human leukaemic cells. In *Biochem. J.*, pp. 291-99
- Roth AD, Ivanova A, Colman DR. 2006. New observations on the compact myelin proteome. In *Neuron Glia Biol.*, pp. 15-21
- Saher G, Brugger B, Lappe-Siefke C, Mobius W, Tozawa R-i, et al. 2005. High cholesterol level is essential for myelin membrane growth. In *Nat. Neurosci.*, pp. 468-75
- Saher G, Stumpf SK. 2015. Cholesterol in myelin biogenesis and hypomyelinating disorders. In *BBA Molecular and Cell Biology of Lipids*, pp. 1083-94: Elsevier B.V.
- Sánchez I, Hassinger L, Paskevich PA, Shine HD, Nixon RA. 1996. Oligodendroglia regulate the regional expansion of axon caliber and local accumulation of neurofilaments during development independently of myelin formation. In *J. Neurosci.*, pp. 5095-105
- Sanchez RM, Dunkelberger GR, Quigley HA. 1986. The number and diameter distribution of axons in the monkey optic nerve. In *Invest. Ophthalmol. Vis. Sci.*, pp. 1342-50
- Schuck S, Honsho M, Ekroos K, Shevchenko A, Simons K. 2003. Resistance of cell membranes to different detergents. In Proc. Natl. Acad. Sci. U.S.A., pp. 5795-800
- Shai N, Schuldiner M, Zalckvar E. 2016. No peroxisome is an island Peroxisome contact sites. In *Biochim. Biophys. Acta*, pp. 1061-69
- Sidman RL, Dickie MM, Appel SH. 1964. Mutant mice (quaking and jimpy) with deficient myelination in the central nervous system. In *Science*, pp. 309-11
- Simons K, Ikonen E. 1997. Functional rafts in cell membranes. In *Nature*, pp. 569-72
- Skripuletz T, Hackstette D, Bauer K, Gudi V, Pul R, et al. 2012. Astrocytes regulate myelin clearance through recruitment of microglia during cuprizone-induced demyelination. In *Brain*

- Smolders I, Smets I, Maier O, vandeVen M, Steels P, Ameloot M. 2010. Simvastatin interferes with process outgrowth and branching of oligodendrocytes. In *J. Neurosci. Res.*, pp. 3361-75
- Stanislaus R, Gilg AG, Singh AK, Singh I. 2002. Immunomodulation of experimental autoimmune encephalomyelitis in the Lewis rats by Lovastatin. In *Neurosci Lett*, pp. 167-70
- Sugiura A, Mattie S, Prudent J, McBride HM. 2017. Newly born peroxisomes are a hybrid of mitochondrial and ER-derived pre-peroxisomes. In *Nature Publishing Group*, pp. 251-54
- Talbott JF, Loy DN, Liu Y, Qiu MS, Bunge MB, et al. 2005. Endogenous Nkx2.2+/Olig2+ oligodendrocyte precursor cells fail to remyelinate the demyelinated adult rat spinal cord in the absence of astrocytes. In *Exp Neurol*, pp. 11-24
- Tall AR, Yvan-Charvet L. 2015. Cholesterol, inflammation and innate immunity. In *Nat Rev Immunol*, pp. 104-16: Nature Publishing Group
- Taveggia C, Zanazzi G, Petrylak A, Yano H, Rosenbluth J, et al. 2005. Neuregulin-1 Type III Determines the Ensheathment Fate of Axons. In *Neuron*, pp. 681-94
- Thoms S. 2015. Import of proteins into peroxisomes: piggybacking to a new home away from home. In *Open Biol*
- Titorenko VI, Rachubinski RA. 2004. The peroxisome: orchestrating important developmental decisions from inside the cell. In *The Journal of Cell Biology*, pp. 641-45
- Vitali C, Wellington CL, Calabresi L. 2014. HDL and cholesterol handling in the brain. In *Cardiovascular Research*, pp. 405-13
- Waxman SG, Kocsis JD, Nitta KC. 1979. Lysophosphatidyl choline-induced focal demyelination in the rabbit corpus callosum: Light-microscopic observations. In *J. Neurol. Sci.*, pp. 45-53
- Waxman SG, Swadlow HA. 1976. Ultrastructure of visual callosal axons in the rabbit. In *Exp Neurol*, pp. 115-27
- Werner HB, Kuhlmann K, Shen S, Uecker M, Schardt A, et al. 2007. Proteolipid Protein Is Required for Transport of Sirtuin 2 into CNS Myelin. In *Journal of Neuroscience*, pp. 7717-30
- White R, Krämer-Albers E-M. 2014. Axon-glia interaction and membrane traffic in myelin formation. In *Front. Cell. Neurosci.*, pp. 284
- Yamazaki R, Baba H, Yamaguchi Y. 2018. Unconventional Myosin ID is Involved in Remyelination After Cuprizone-Induced Demyelination. In *Neurochem Res*, pp. 195-204
- Yamazaki R, Ishibashi T, Baba H, Yamaguchi Y. 2014. Unconventional myosin ID is expressed in myelinating oligodendrocytes. In *J. Neurosci. Res.*, pp. 1286-94
- Yamazaki R, Ishibashi T, Baba H, Yamaguchi Y. 2016. Knockdown of Unconventional Myosin ID Expression Induced Morphological Change in Oligodendrocytes. In ASN NEURO
- Yamazaki R, Ishibashi T, Baba H, Yamaguchi Y. 2017. Expression of Unconventional Myosin VI in Oligodendrocytes. In *Neurochem Res*, pp. 3372-81

- Yin X, Crawford TO, Griffin JW, Tu Ph, Lee VM, et al. 1998. Myelin-associated glycoprotein is a myelin signal that modulates the caliber of myelinated axons. In *J. Neurosci.*, pp. 1953-62
- Youssef S, Stüve O, Patarroyo JC, Ruiz PJ, Radosevich JL, et al. 2002. The HMG-CoA reductase inhibitor, atorvastatin, promotes a Th2 bias and reverses paralysis in central nervous system autoimmune disease. In *Nature*, pp. 78-84