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Abstract 

 

The biological implications of RNA continue to expand beyond the role as the 

simple messenger between DNA and protein translation. This expansion has been 

catalyzed by the development of new technologies that facilitate both the discovery of 

new RNAs and their biological impact. One class of RNA that has been particularly 

interesting is the family of small non-coding RNAs termed microRNAs (miRNAs). While 

miRNAs do not code for proteins, their biology is intimately intertwined, as miRNAs are 

estimated to regulate the majority of protein translation. This translational regulation 

stems from a miRNA’s ability to use sequence complementarity to identify a target 

messenger RNA and trigger translational suppression.  

Since miRNAs play crucial roles in biology, their dysregulation has been implicated 

in nearly every disease. As such, miRNAs are being evaluated as targets for therapeutic 

intervention. There are many different strategies being explored to manipulate these small 

RNAs. The furthest progressed strategy for miRNA manipulation is based on modified 

oligonucleotides and is being evaluated in the clinic; however, drugs developed using this 

approach have yet to receive FDA approval. While oligonucleotides are easy to design, 

obtaining optimal drug like properties has remained a challenge. Alternative strategies for 

miRNA manipulation, such as small molecules, have remained at the proof-of-concept 

stage largely due to the challenges associated with their discovery and design. 
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To facilitate the discovery of new small molecules and strategies to manipulate 

miRNA biology, new technologies were developed. These reported techniques focused 

on the generation of RNA-protein conjugates that were crucial to the development of both 

high-throughput screening and biological assays. The first of these assays is focused on 

inhibiting the biogenesis of miRNAs and was able to identify natural product extracts as 

a source of small molecules capable of binding and disrupting miRNA precursors. The 

second assay platform discovered a small molecule capable of disrupting a known miRNA 

precursor-RNA binding protein interaction, pre-let-7d-Lin28. Having successfully 

disrupted a clinically relevant RNA-protein interaction, a final assay was created to aid in 

the discovery of new RNA-protein interactions by reporting direct interactions in live cells. 

Altogether, the technologies reported serve as a launching platform for the discovery of 

molecules with the ability to manipulate clinically significant miRNAs. 
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Chapter 1 

microRNA Biological Significance and Biogenesis: An Overview 

 

microRNAs (miRNAs) were first discovered in 1993 as small non-coding RNAs that 

use sequence complementarity to regulate gene expression post transcriptionally.1,2 Yet, 

the impact of these small RNAs in biology remained underestimated until nearly 10 years 

later when miRNAs were found to be conserved across numerous classes in the animal 

kingdom.3 In the two decades to follow, the role of miRNAs in biology exploded, quickly 

revealing their role in gene regulation. With the completion of the human genome project, 

development of high-throughput transcriptome sequencing, and expanded bioinformatic 

tools, over 2,500 miRNAs have been discovered in Homo sapiens.4-8 This ever-expanding 

class of RNA is predicted to regulate more than 60% of protein coding transcripts, 

establishing miRNAs as indispensable for proper cellular regulation.9 

 

1.1 Biogenesis 

 With few exceptions, miRNAs follow a canonical biogenesis pathway that is 

similarly conserved across species (Figure 1.1).10 miRNAs are encoded at locations 

throughout the genome and can be localized in clusters, inside other genes, or as unique 

transcriptional sites that are transcribed by RNA Polymerase II and termed pri-miRNAs.11 

These pri-miRNAs can vary in length, but contain a hairpin loop that is recognized by the 
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microprocessor complex which contains the core proteins DiGeorge Syndrome Critical 

Region 8 (DGCR8) and the RNase III enzyme Drosha.12 Drosha is responsible for cutting 

at the base of the hairpin loop to generate ~60-80 nucleotide pre-miRNAs with a 

characteristic 2 nucleotide 3’ overhang. pre-miRNAs are then exported to the cytoplasm 

through a Ran GTPase, Exportin 5, where they are recognized by another RNase III 

enzyme, Dicer.13 Generally thought to be accompanied by accessory proteins, Dicer is 

responsible for the cleavage of the loop generating a ~22 nucleotide RNA duplex with 

overhangs on both 3’ ends.14 The strand with less thermodynamic stability at the 5’ end 

is then transferred to an Argonaute (Ago) protein which forms the RNA Induced Silencing 

Complex (RISC).15 Utilizing nucleotide positions 2-8 from the 5’ end, termed the seed 

region, RISC finds complementary transcripts and causes translational suppression by 

sequestering the transcript from the translational machinery and recruiting deadenylation 

and decapping factors to reduce transcript stability.16  

 

Figure 1.1. Canonical miRNA Biogenesis Pathway. 
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1.2 Dicer 

 Dicer is essential for the final step in miRNA biogenesis and continues to be the 

focus of numerous research efforts. This large ~220 kDa protein is composed of several 

domains including a helicase domain, a PIWI, AGO, and Zwille (PAZ) domain, two RNase 

III domains, a double-stranded RNA-binding domain, and another RNA-binding domain 

of unknown function (DUF).17 To date, there is no atomic resolution structure of full-length 

human Dicer. Therefore, the current model for pre-miRNA recognition and processing by 

Dicer is based on the modeling of crystallized domains to electron microscopy results and 

the crystal structure of Giardia Dicer (Figure 1.2).17,18 Based on these structural insights, 

Dicer is thought to act as a molecular ruler, binding the two nucleotide 3’ overhang of a 

pre-miRNA with its PAZ domain and loop region with the helicase domain. This binding 

orients the two magnesium-dependent RNase III domains approximately 22 nucleotides 

from the PAZ domain to generate a second two nucleotide 3’ overhang. While canonical 

miRNAs are thought to be processed by Dicer in this mechanism, every pre-miRNA has 

a unique sequence, length, and loop size, all of which have been shown to affect Dicer 

kinetics. Studies evaluating these differences have revealed that larger non-base-paired 

loop regions are processed faster than smaller loops, and both are processed faster than 

perfectly base-paired strands.19,20 Additionally, the presence of Dicer-interacting proteins, 

such as TRBP and PACT, have been shown to effect Dicer cleavage rates and mature 

miRNA levels.21,22 



	 4	

 

1.3 miRNAs Role in Disease 

Altered miRNA expression patterns have been observed between normal and 

pathological tissues.23 Aided by advancements in microarray technology, miRNAs 

profiling has become a standard practice with the capacity to analyze hundreds of 

miRNAs at a time.24 However, these arrays simply identify miRNAs with altered 

expression levels and require subsequent follow-up to determine if the miRNAs are 

sufficient to drive the disease. This validation is typically done through a combination of 

Figure 1.2. Giardia Dicer Crystal Structure. (PDB:2FFL) overlaid with a 
modeled pre-let-7d substrate (MC-Fold). Dicer domains are colored cyan (PAZ), 
magenta and yellow (RNase III domains) with magnesium ions colored red. 
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knockout and overexpression experiments. Although, genetic manipulation of miRNAs 

does require careful analysis because many miRNAs display a high degree of tissue 

selectivity.25 Nonetheless, the importance of miRNAs is highlighted by the embryonic 

lethality associated with the global inhibition of miRNA biogenesis resulting from deleting 

either Dicer or Drosha.26 While some mutations of these proteins that cause heterozygous 

expression or inactivation are viable, these alterations are associated with pathological 

tissues.27 With such far reaching regulatory abilities, many miRNAs have shown causative 

relationships with diseases such as cancer, viral infection, and cardiovascular disease, 

and also exhibit lethality when knocked out in specific tissues. Table 1 provides some of 

examples the more well characterized miRNAs and their associated diseases.28-47 

 

 

 

1.4 Lin28-Let7  

Table 1.1 Examples of disease relevant miRNAs 
miRNA Target Gene Expression Level Disease Reference
let-7 RAS Down Cancer 28

1 MET Down Cancer 29

10b HOXD10 Up Cancer 30

21 PTEN Up Cancer 31

27a ZBTB10 Up Cancer 32

29a LOXL2 Down Cancer 33

34a BCL2 Down Cancer 34

96 FOXO1 Up Cancer 35

122 HCV, CCNG1 Up, Down HCV, Cancer 36,37

125 EIF4EBP1 Down Cancer 38

133a CDC42 Down Heart Disease 39

142 APC Up Cancer 40

155 TP53INP1 Up Cancer 41

206 HDAC4 Up ALS 42

335 RB1 Up Cancer 43

372 LATS2 Up Cancer 44

373 LATS2 Up Cancer 44

504 P53 Up Cancer 45

525 ZNF395 Up Cancer 46

544 MTOR Up Cancer 47
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The miRNA let-7 differs from the traditional miRNA nomenclature as it was initially 

characterized as lethal gene 7 in C. elegans.48 One of the first miRNAs discovered, let-7 

was found to be indispensable for larval development. Let-7 was later identified as the 

first miRNA conserved across species, including Homo sapiens, and sparked the 

discovery of other human miRNAs.3 Further genomic analysis revealed that there are 10 

different mature let-7 family member sequences in humans.28 These family members are 

all associated with cell differentiation and target key oncogenic proteins like Ras, HMGA2, 

and c-Myc.49-51 Since these oncogenes are common drivers of tumor growth and 

progression, let-7 expression levels have been similarly linked to cancer and have been 

used as biomarkers for patient prognosis with low levels associated with poor patient 

prognosis.52  

Cancer cells have developed multiple mechanisms to suppress let-7 expression 

and activity to encourage an undifferentiated cell state. The first is transcriptional, similar 

to other genes, let-7 transcription can be described by the methylation status of DNA with 

hypermethylated let-7 transcriptional sites associated with reduced transcription.53 A 

second mechanism to decrease mature let-7 levels is to interfere post-transcriptionally 

with the miRNA biogenesis pathway, preventing mature let-7 from being produced.54 

Finally, the tumor suppressive properties of miRNAs can be negated by single nucleotide 

mutations (SNM).55 These SNM are located in the miRNA complementary site on the 

target mRNA preventing RISC identification and subsequent translational suppression. 

One of the most studied RNA binding proteins (RBP) that can block miRNA 

maturation post-transcriptionally is Lin28.54 Lin28 serves as a master regulator of cell 

differentiation, and in addition to the ability to regulate many other transcripts, is capable 
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of suppressing mature let-7 levels.56 The importance of Lin28 was highlighted when 

exogenous expression of Lin28 along with Oct4, Sox2, and Nanog was used to generate 

induced pluripotent stem cells from somatic cells.57 Since Lin28 promotes an 

undifferentiated cell state and downregulates the tumor suppressive miRNA let-7 family, 

it is often overexpressed in cancer.52 Overexpression of either of the two human 

homologues, Lin28A and B, can trigger reduced let-7 levels.58 The main difference 

between Lin28A and B is their cellular localization, as they primarily localize to the 

cytoplasm and nucleus, respectively.59 Both Lin28 proteins contain two RNA-binding 

sites, a cold shock domain (CSD) and two zinc knuckle domains (ZKD) that recognize a 

GNGAY and GGAG motif, respectively.60 Crosslinking and immunoprecipitation coupled 

with high-throughput sequencing (CLIP-Seq) revealed that greater than 6,000 RNA 

transcripts contain a GGAG motif that interacts directly with Lin28.56 This GGAG motif is 

present in the loop of pri and pre-let-7 family members. In addition to Lin28 regulating let-

7, let-7 has been shown to directly regulate Lin28 levels through canonical miRNA 

mediated gene silencing creating an important negative feedback loop between Lin28 

and let-7.61 This double-negative feedback loop is believed to be an essential 

developmental switch in many organisms.62 

 Many studies have evaluated how Lin28 interacts with and regulates let-7 

biogenesis. Nam et al. solved the first crystal structure of Lin28A in complex with let-7 

substrates.63 These structures, highlighted in Figure 1.3, are domain swapped dimers 

with one let-7 hidden for simplicity. Upon examining the structure, it was revealed that the 

CSD and ZKD bind the hairpin loop independently and are spaced apart by a flexible 

linker. However, many studies report the need for the CSD to bind first to remodel the 
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loop and allow for the ZKD to bind.64,65 This bidentate binding mechanism is thought to 

contribute to specificity and increase the affinity ranging from high nanomolar to low 

micromolar depending on assay conditions. This high affinity complex is believed to bind 

both the pri and pre-let-7 miRNAs and block Drosha and Dicer maturation by 

sequestration.28 In addition to the RNA-binding function of the ZKDs, they are also 

involved in the recruitment of Tutases that polyuridylate the 3’ end of pre-let7 miRNAs, 

which signals the RNA for degradation by Dis3L2.66 
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Zinc Knuckle Domains 

Cold Shock Domain 

GGAG 

Pre-let-7d loop region 
A) B) 

Figure 1.3. Lin28 Crystal Structure. (PDB: 3TRZ) A) with the zinc knuckle and 
cold shock domains labeled and RNA hidden B) one pre-let-7d shown with the 
GGAG motif highlighted in green C) Same depiction as B but atoms shown as 
spheres to show side chain arrangement 

C) 
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1.5 miR-21  

There are also many examples of miRNAs that are overexpressed in disease; 

however, miR-21 exemplifies how influential a single miRNA can be. miR-21 was one of 

the first oncogenic miRNAs, or oncomiRs, described due to its high expression in 

lymphomas.67 This overexpression was later characterized in breast, colon, lung, 

pancreatic, prostate, and stomach cancers, making it of the most intriguing and well-

studied oncomiRs to date.68 Targets of miR-21 include the tumor suppressor proteins 

PTEN and PDCD4, further suggesting that miR-21 overexpression is key for cancer 

progression.69,70 One important question that remained was if miR-21 was causative or 

correlative. Slack and colleagues addressed this question by demonstrating a causative 

relationship between the overexpression of miR-21 in mice and the generation of pre-B-

cell lymphomas.71 These lymphomas were addicted to miR-21 expression and would 

return to normal upon the removal of miR-21 overexpression. This landmark study 

showcased that a single miRNA can drive cancer progression.  

  

1.6 Concluding Remarks 

Due to the high conservation of miRNAs across species, it comes as no surprise that 

miRNAs have been implicated in nearly every aspect of biology. As such, disruption of 

miRNA biogenesis, whether global or on an individual basis, has been equally involved 

in disease progression. Two miRNAs of particular interest, miR-21 and let-7, play crucial 

roles in biology and are currently being evaluated as therapeutic targets. Additionally, 

Dicer and Lin28 are also prime candidates for therapeutic interventions for their crucial 

role in several pathologies. 
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1.7 Copyright 

The work in this chapter was reproduced in part from Lorenz, D. A. & Garner, A. 
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Chapter 2 

Current RNA Therapeutic Strategies: An Overview 

 

The strategy of therapeutically targeting RNA has come to the forefront of biomedical 

research due to the emerging roles that RNAs play in nearly every disease. As highlighted 

in Chapter 1, miRNAs have an essential role in regulating biology and can drive a myriad 

of disease states. However, no miRNA therapies have received FDA approval. In fact, 

this trend extends to all RNA, as roughly 85% of FDA approved therapies target proteins, 

despite only representing 2% of the genome.1 To target the other 90% of our genome that 

is thought to be transcribed into RNA, large efforts have been put forth to discover new 

ways to manipulate this largely untapped area.2 Many of these approaches have been, 

or could be used, to generate drugs to manipulate miRNA biology. 

  

2.1 Antisense Oligonucleotides 

 Antisense Oligonucleotides (ASOs) can be considered the current gold standard for 

targeting various classes of RNA. ASOs mimic nucleic acids, and utilizing sequence 

complementary, bind to specific target transcripts. This binding results in changes to 

transcript levels or their biological processing and function (Figure 2.1).3 Antisense 

technology has been used to decrease the expression of a myriad of targets in the 

research setting for decades due to their relative ease of design and effectiveness; 
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however, their clinical use has lagged behind.4 As of 2017, only 4 ASOs have received 

FDA approval (Fomivirsen, Mipomersen, Nusinersen,	Eteplirsen), all seeing limited use.5 

One reason the number of FDA-approved ASOs dwarfs that of other classes of drugs is 

due to their poor delivery mechanisms and tissue distribution.6 Antisense oligonucleotides 

are relatively large, several thousands in molecular weight, compared to traditional drugs 

and contain an extensive amount of negative charges that hinders their cellular uptake. 

While various chemistries have been used to improve these properties, most in vivo active 

ASOs elicit their effects in the blood, liver, or kidneys, or require direct injection into 

specific tissues like the spinal cord or retina.7 This delivery challenge has limited the 

diseases for which ASOs are applicable. Additionally, because ASOs mimicking the 

structure of DNA and RNA they can be recognized by the immune system triggering 

severe immune responses.8  

 

 Despite the challenges with converting ASO technology into FDA-approved 

therapies, it has remained the go-to for RNA-based targeting and has been applied to 

manipulate miRNA biology. Since the overexpression of miRNAs is common to many 

Figure 2.1. Antisense Oligonucleotide Schematic. Targeting RNA with 
antisense oligonucleotides (ASOs) 

RNA ASO

Cellular Function Degradation
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diseases, anti-miRs have been developed to block miRNA function. There are many anti-

miRs in development, with two different drug candidates, Miravirsen and RG-101, 

representing the lead candidates for the first anti-miR approval.9,10 Both Miravirsen and 

RG-101 are in phase II trials and target the HCV viral lifecycle through miR-122. These 

studies have demonstrated that anti-miRs can cause targeted downregulation of their 

target miRNA humans.10,11 Alternatively, decreased miRNA expression in various 

diseases has encouraged the development of miRNA mimetics to supplement these low 

miRNA levels. One ASO, MesomiR-1, is in phase I as a miR-16 mimic for the treatment 

of non-small cell lung cancer.12 Another miRNA mimic for miR-34, MRX34, was also able 

to reach clinical testing, but was withdrawn due to severe immunological responses.8 

These ASOs provide great proof-of-principle that manipulating miRNAs can have real 

clinical significance, but the limitations of ASOs have hindered their FDA approval.  

 

2.2 CRISPR 

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) is a type of 

prokaryotic immune system that is being aggressively perused for its broad biomedical 

applications.13 CRISPR is famously known for its ability to edit eukaryotic genomes, 

including humans. This has sparked the development of CRISPR therapies to treat many 

diseases; however, no human delivery systems have been evaluated.14 Additionally, 

there are still major safety concerns with causing permanent changes to the genome. As 

an alternative to these permanent changes, recent efforts have shown that certain 

CRISPR systems can selectively target RNA over DNA.15,16 Building upon this work, Batra 

et al. demonstrated the potential of a RNA-targeted CRISPR therapy by fusing a nuclease 
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to the CRIPSR protein Cas9 (Figure 2.2).17 This nuclease fusion protein lead to transcript 

degradation of a toxic repeat RNA in cells. Having successfully tested the nuclease 

degradation of repeat RNAs in cells, the RNA-targeted nuclease system could also be 

applied to other RNA targets. One example would be to target miRNAs that are 

overexpressed in diseases by recruiting the nuclease to the miRNA precursors. While 

many questions still exist about the clinical delivery and off-target effects of CRISPR, 

there is significant excitement surrounding this new technology. 

 

 

 

 

 

 

Figure 2.2. Targeting RNA with CRISPR. Targeting RNA with Clustered Regularly 
Interspaced Short Palindromic Repeats (CRISPR) fused to a RNase 
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2.3 Small Molecules 

In contrast to newer technologies like ASOs and CRISPR, the therapeutic use of 

small molecules was around long before adoption of modern medicine, dating back to the 

earliest herbal treatments.  Small molecules represent 85% of FDA approved drugs 

largely due to their superior pharmaco-dynamic and -kinetic properties.1 Interestingly, 

some of the mainstays of current medicine, such as the tetracyclines and 

aminoglycosides, function by targeting RNA and have seen widespread use as antibiotics 

(Figure 2.3). Unfortunately, our ability to target non-ribosomal RNA with small molecules 

has stalled and fallen behind RNA’s growing implications in biology. 

 

  To date, the largest limitation in using small molecules to target RNA has been 

obtaining target RNA selectivity.18,19 This selectivity challenge stems from several 

properties intrinsic to RNA. First, RNA only consists of four nucleotides, which is in 

contrast to the 20 amino acids found in proteins. A second challenge is that RNA is 

fundamentally a polyanionic biomolecule that favors nonspecific electrostatic interactions. 

Finally, RNAs are known to be highly dynamic, often folding and moving between several 

Figure 2.3. Structures of Common RNA Small Molecule Drugs 
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structures, thus making the discovery of traditional druggable spots difficult.20 However, 

the identification of high affinity and selective aptamers and riboswitches serve as 

examples that these challenges can, and have been, overcome.21,22 To continue to build 

upon this work and apply this knowledge to disease relevant RNAs, new small molecules, 

and in particular, chemical scaffolds, need to be discovered. Instrumental to this goal is 

the development of high-throughput screening (HTS) assays for RNA targets, allowing 

large numbers of compounds to be rapidly tested. Some of these assays have also been 

applied to find small molecules regulators of miRNAs and can be categorized into three 

main groups: cellular, computational, and biochemical. 

The generation of endogenous readouts for miRNA activity has enabled the use 

of cell-based assays for HTS. These reporters utilize a miRNA’s ability to suppress gene 

expression through binding to a 3’ untranslated region (UTR) (Figure 2.4A).23,24 By 

attaching a readout gene, like luciferase, to a regulatory UTR site, the gene’s expression 

becomes a function of miRNA activity. Compounds that disrupt this activity will derepress 

the luciferase creating a more intense signal. These cell-based reporters are an excellent 

way to gauge the functional relevance of test compounds; however, many factors can 

cause changes in miRNA activity such as changes to transcriptional regulation, miRNA 

biogenesis, and RISC silencing. This complicates target validation, as it can be difficult to 

quickly discern the mechanism-of-action for hit compounds. Additionally, cell-based 

assays can be challenging to adapt to HTS because they require sterile conditions, safety 

training, and costly media reagents. While there have been compounds successfully 

identified from these cell based approaches which are summarized in Figure 2.4B, none 
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have been validated to regulate the RNA directly, and therefore, will not be discussed 

further as they have been reviewed elsewhere.19,25-30  
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The largest impact on miRNA drug discovery thus far has been from a  

computational approach pioneered by Professor Mathew Disney and colleagues termed 

InfoRNA.31,32  InfoRNA is a database generated from a two-dimensional screen in which 

small molecules were immobilized in a microarray format and then allowed to bind RNA 

motifs with internal bulges. Each compound was then analyzed for bound motifs and 

compiled into a database. After database curation, a target miRNA precursor can be used 

as an input, analyzed for the presence of internal RNA motifs, outputting small molecules 

known to bind those sequences. This approach has been used for many different 

miRNAs, including -18a, -96, -210, -525, and -544, all showing activity in cells and some 

in vivo.33-37 These experiments have demonstrated that small molecules are capable of 

targeting and manipulating miRNA biogenesis; however, InfoRNA has its own set of 

limitations. The current database only consists of 233 small molecules, with a large 

amount of overlap in chemical space, limiting how many unique scaffolds can be 

discovered. In fact, this is highlighted in Figure 2.5, as the bis-benzimidazole scaffold was 

reported in both the inhibition miR-96 and -210 by targeting different internal motifs, CGA 

and ACU, respectively.34,35 This has also brought RNA selectivity back into question. 

Expansion of the InfoRNA library is challenging because it requires the compounds to be 

immobilized which requires chemical handles not present in large scale compound 

libraries.  
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In contrast to the previous two strategies, standard biochemical approaches use 

traditional compound libraries to assay a target directly. Many different biochemical 

assays have been developed for miRNAs, including FRET, microarray, and binding or 

displacement assays. All of these techniques have been reviewed in detail elsewhere, 

and some are represented in Figure 2.6.19 While successfully implemented, these assays 

have yet to be tested in large scale screening campaigns >50,000 compounds. One 

problem associated with scaling-up these assays is that their fluorescent-based detection 

method is prone to compound interference from naturally fluorescent or fluorescent 

quenching molecules. Additionally, the majority of these assays do not assess function, 

meaning hit compounds will not necessarily result in the desired functional activity. While 

these drawbacks can be overcome by further analysis of hits, it would require a significant 

amount of effort to filter the thousands of hits commonly found in a large HTS campaign. 

Similar to InfoRNA, previous biochemical screens for miRNAs have focused on existing 
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chemical space, consisting of aminoglycosides and intercalators. The problem with 

testing aminoglycosides and their derivatives is that their positive charge makes 

selectivity for one RNA over another challenging, as binding is largely dependent on 

electrostatic interactions. As shown by Figure 2.7, there are many reported miRNA 

modulators that rely on positive charge and likely exhibit large off-target effects.36,38-45 

Intercalators also suffer from lack of selectivity, as their binding energies are derived from 

pi-stacking inside the RNA or DNA helix. The continued use of these molecules, despite 

their nonspecific nature, emphasizes the need for new types of RNA scaffolds and 

mechanisms to be uncovered to target these important biomolecules.  
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Figure 2.6. In Vitro miRNA Assays. A) FRET based detection B) Microarray C) 
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Figure 2.7. Positively Charged miRNA Inhibitors. 
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2.4 Small Molecule Targeting of RNA Binding Proteins 

 As an alternative to targeting RNAs directly, one up and coming strategy is to utilize 

the specificity already found in endogenous RNA-Binding Proteins (RBPs). It has been 

estimated that 1,542 proteins contain RNA-binding motifs, many of which have been 

characterized with defined binding sequences.46 By targeting these RBPs with small 

molecules, one could affect the biology of their RNA targets. While this strategy  has been 

demonstrated for other RBP systems like splicing and viral infection, the RBP Lin28 will 

be focused on for its role in regulating the biogenesis of the miRNA let-7.47,48 

 To date there have been three reported screens targeting the Lin28-let-7 

interaction. Roos et al. published the first screen based on a FRET reporter between a 

Lin28b-green fluorescent protein (GFP) fusion protein and a Black-Hole-Quencher 1 

(BHQ-1) labeled truncated pre-let-7.49 Using this FRET system, they screened a 

commercial library of 16,000 compounds and were able to identify one molecule, 1, with 

single digit micromolar activity in vitro. Confirming the viability of targeting a RBP, the 

compound was able to increase let-7 levels in cells by inhibiting Lin28-let-7 resulting in 

decreased Lin28 expression. Shortly after this, Lim et al. used a similar FRET assay, but 

they incorporated an unnatural amino acid for site specific labeling instead of generating 

a fusion protein.50 After screening 4,500 compounds, the authors were able to find a 

molecule, 2, that binds the cold shock domain of Lin28 with single digit nanomolar affinity 

which was active in celluo at 40 μM. Finally, Lightfoot et al. generated a fluorescence 

polarization assay to screen 2,768 compounds against Lin28-let-7.51 From this screen 
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they were able to identify several scaffolds, 3-5, with in vitro activity, but the cellular 

activity of these molecules was not evaluated.  

2.5 Concluding Remarks 

 The therapeutic benefit of targeting RNA, and in particular miRNAs, continues to 

expand rapidly. While current technologies have demonstrated that RNAs are in fact valid 

clinical targets, our ability to manipulate RNA has fallen short. New approaches like ASOs 

and CRISPR show great promise, but have already shown clinical limitations, and the 

traditional small molecule strategy has suffered from lack of scalability and desire to 

screen new chemical space. Taken together, this highlights the need for new drug 

discovery technologies to be developed to take advantage of our growing understanding 

of RNA. 

Figure 2.8. Structures of pre-let7-Lin28 Inhibitors. 
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Chapter 3 

Small Molecule Targeting of pre-miRNAs 

 

 As discussed in Chapter 1, the regulation of miRNA biogenesis is critical for 

maintaining healthy physiology. Due to miRNA’s role in diseases, substantial efforts have 

been put forth to find ways to manipulate miRNA expression for therapeutic benefit. 

Unfortunately, as highlighted in Chapter 2, current small molecule RNA probes tend to 

lack sufficient selectivity. This can, in part, be attributed to the repurposing of known RNA 

scaffolds instead of identifying new RNA-targeted chemical space. However, the 

discovery of new small molecules is also complicated by inadequate assays to quickly 

preform reliable high-throughput screens (HTS). Therefore, to discover new small 

molecules and scaffolds for the manipulation of Dicer-dependent miRNA maturation, a 

new, sensitive, readily adaptable, and HTS-compatible assay was developed.  

Catalytic Enzyme-Linked Click Chemistry Assay, or cat-ELCCA, is a 

transformative technology that utilizes click chemistry to overcome many of the 

challenges associated with traditional HTS-compatible assays.1-6 In general, cat-ELCCA 

is similar to a standard ELISA (enzyme-linked immunosorbent assay), but does not 

require antibodies with a generic scheme shown in Figure 3.1.7 Click chemistry is uniquely 

suited to take the place of costly and potentially challenging-to-generate antibodies 

because click reactions are defined by their high yields, physiological stability, minimal 
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and inoffensive by-products, readily available reagents, and minimal solvent 

requirement.8 These ideal reaction properties allow for selective and covalent attachment 

of an enzyme to an analyte-of-interest, resulting in robust catalytic signal amplification. 

Additionally, by immobilizing the analyte, compounds that are known to interfere with 

other assays are removed by a simple washing step, thus reducing follow-up time. 

Furthermore, the assay designs are constructed to report functional activity as opposed 

to many assays only reporting simple binding events. Finally, cat-ELCCA is compatible 

with traditional HTS platforms, allowing for screening of much larger and diverse libraries 

when compared to other assay formats such as microarrays. These benefits were 

highlighted by the first cat-ELCCA. Conceived for the monitoring of Ghrelin O-

Acyltransferase (GOAT) activity, this cat-ELCCA used copper-catalyzed click chemistry 

to attach a functionalized HRP to a peptide fragment and allowed Drs. Amanda Garner 

and Kim Janda to identify the first small molecule inhibitor of GOAT.1,2 
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3.1 Dicer cat-ELCCA  

Inspired by the successful implementation of cat-ELCCA for GOAT, a new cat-

ELCCA was designed and developed for Dicer-dependent maturation of pre-miRNAs 

(Figure 3.2A).3 To briefly describe the design, a pre-miRNA hairpin loop containing a click 

handle is first immobilized in a HTS-compatible microtiter plate. Compounds are then 

added prior to the addition of Dicer to allow compounds to bind the RNA before being 

subjected to Dicer cleavage. After a washing step to remove digested RNA, compounds, 

and Dicer, a derivatized Horseradish Peroxidase (HRP) is then added to react with 

uncleaved pre-miRNAs, generating a RNA-HRP conjugate through click chemistry. 

Before the addition of the HRP substrate, unreacted HRP is removed by washing. This 

step makes the HRP activity directly correlated with the amount of uncleaved RNA and 

therefore Dicer activity. This new assay brings all of the benefits discussed earlier and 

enables quick adaptation between pre-miRNA targets as the RNA can be easily changed 

without changing the procedure. The design of the RNA substrate only requires two 

modifications, both of which are incorporated during chemical synthesis and are 

commercially available. The first modification is a biotin tag with a polyethylene glycol 

linker that functions as the immobilization handle and spacer from the surface. This linker 

location was chosen at the 5’ end of the sequence to avoid interfering with Dicer 

recognition of the 2 nucleotide 3’ overhang; although, the 3’ end modification was not 

tested to confirm this locational requirement.9 The second modification is an aminoallyl 

uridine located in the terminal loop region that can be derivatized by N-

Hydroxysuccinimide (NHS) coupling to incorporate a click chemistry handle, allowing for 

detection of Dicer cleavage (Figure 3.2B).  
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This new cat-ELCCA design was then applied to the discovery of biogenesis 

inhibitors for miR-21. Chosen for its role in cancer, this overexpressed miRNA serves a 

prime candidate for small molecule-based inhibitors.10 To accomplish this, several 

components were synthesized and tested to ensure the Dicer cat-ELCCA would function 

properly. As previously discussed, the first step was to conjugate the RNA substrate to 
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an alkyne click chemistry handle through standard NHS chemistry to generate a cat-

ELCCA ready substrate (Figure 3.3A). This cat-ELCCA-ready RNA substrate was then 

reacted with a rhodamine dye functionalized with an azide to generate a fluorophore-RNA 

conjugate, which was confirmed by fluorescent gel imaging. To make sure that the 

modified cat-ELCCA substrate was still able to undergo Dicer cleavage, the substrate 

was incubated with a commercially sourced Dicer. Analysis by denaturing gel 

electrophoresis revealed Dicer was tolerant of these modifications by cleaving the 

substrate to mature miRNAs (Figure 3.3B). To prove that the miRNA formation was due 

to Dicer activity, Dicer was inactivated by boiling and the addition of a metal chelator to 

remove the catalytic magnesium ions. As expected, no enzymatic activity was observed 

with inactivated Dicer. Next, the immobilization efficiency of the substrate was evaluated 

by adding the RNA into a streptavidin-coated microtiter plate, incubated overnight to 

immobilize, and then the supernatant was removed. The non-immobilized RNA in the 

supernatant was then quantified by gel electrophoresis (Figure 3.3C and D). This 

quantification revealed that the cat-ELCCA substrate underwent successful 

immobilization; although, less than half the theoretical capacity was occupied. The final 

component for cat-ELCCA, an azide-functionalized HRP, was generated based on a 

previously reported method and the presence of the click handle was confirmed by 

conjugation to a rhodamine click chemistry derivative (Figure 3.3E and F).   
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With all of the components necessary for cat-ELCCA synthesized and tested for 

activity, several proof-of-concept experiments were performed. Following the design 

outlined previously, the appropriate amount of enzyme and time required for optimal 

signal was first determined. As seen in Figure 3.4A, 0.25 units at 6 hours produced the 

best results. Importantly, this change in signal was lost when inactivated Dicer was used, 

matching results seen in solution (Figure 3.4B). It should be noted that this is the first time 

a cat-ELCCA format was used in a 384-well plate, a standard format for HTS. Additionally, 

improvements were seen by switching to a chemiluminescence detection method from 

the previous fluorescent-based detection. To demonstrate the benefits of the cat-ELCCA 

platform over traditional assays, dichlorofluorescein and guanine diphosphate were 

tested. These compounds are known to interfere with most assays due to their fluorescent 
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and fluorescent quenching properties respectively.11 As expected, neither of the common 

interfering mechanisms affected the assay with either a fluorescent or chemiluminescent 

readout (Figure 3.4C). Unexpectedly, dichlorofluorescein had low levels of inhibitory 

activity. This example demonstrates that cat-ELCCA can be used to discover molecules 

that would likely be excluded from other assays based on their optical properties, not on 

their functional activity. Finally, to assess the assay’s reproducibility, 48 wells of no Dicer 

and Dicer controls were tested, which resulted in Z’ value of 0.6. Z’ values are commonly 

used to evaluate an assay’s suitability for HTS, as it represents both signal-to-background 

and standard deviations, with Z’ values greater than 0.5 considered excellent assays for 

HTS.12 The combination of these experiments validated that cat-ELCCA can serve as a 

reliable platform for detecting Dicer-dependent miRNA maturation. 
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3.2 cat-ELCCA Optimized for HTS 

 To adapt Dicer cat-ELCCA for high-throughput screening, several optimizations 

were made to reduce cost and improve upon the existing platform. It is well known that 

copper-catalyzed azide alkyne click chemistry (CuAAC) produces high yielding reactions 

with respect to small molecule synthesis, but what is less discussed is the low yields 
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associated with large biomolecular conjugations.8 These low yields were observed with 

the pre-miRNA-HRP conjugate, prompting the exploration of other chemistries. In 

comparison to CuAAC, the Inverse Electron Demand Diels-Alder (IEDDA) reaction is 

significantly faster and does not require a catalyst.13 While less common, IEDDA reactions 

have been reported for biomolecular conjugations and generally react a cyclopropene or 

transcyclooctene with a tetrazine.14 However, there were no reports comparing IEDDA 

and CuAAC conjugations for RNA-Protein conjugates.  

To determine if the improved rate constant and catalyst removal in the IEDDA 

reaction could lead to an increase in biomolecular conjugations, cyclopropene-NHS was 

synthesized and tested first due to its similar size to the alkyne modification.15 

Unfortunately, the cyclopropene had significant nonspecific labeling and was unstable, 

making it an ill-suited tool for bionconjugation reactions. As an alternative to the 

cyclopropene, the larger and faster transcyclooctene (TCO) was used. The pre-miRNA-

TCO and -mTet conjugates were synthesized and tested with a rhodamine derivative in 

the same manner as the alkyne version. Similar yields were obtained when comparing 

the IEDDA and CuAAC reactions between RNA and rhodamine (Figure 3.5A and B, lanes 

1, 4, and 7). Interestingly, the IEDDA reaction produced significantly higher yields 

compared to CuAAC when HRP was used instead of rhodamine, suggesting that the 

IEDDA reaction is better for large biomolecular conjugations (Figure 3.5B, lanes 3, 6, and 

9). The 6-fold boost in yield translated to cat-ELCCA as a TCO-labeled RNA and 

tetrazine-labeled HRP produced much higher signal intensity than the respective alkyne 

and azide partners (Figure 3.5C and D). The increase of signal allowed for the reduction 

in the amount of RNA needed, significantly lowering the cost for HTS. Another notable 
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optimization was switching from a commercial source of Dicer to Dicer that was produced 

recombinantly in insect cells.16 Importantly, the IEDDA modifications did not interfere with 

recombinant Dicer processing (Figure 3.5E).  The combination of these optimizations led 

to a nearly ten-fold reduction in cost and increased the Z’ to 0.69 (Figure 3.5F). Both of 

these optimizations were critical for the adaptation to HTS.  
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E) 

(a) (b) 

Figure 3.5. IEDDA cat-ELCCA Proof-of-Concept. A) General scheme and table of click 
reactions. B)  pre-miRNAclick reactions between rhodamine (top) and HRP (middle). 
Overexposure of SYBR gold staining revealed the RNA-HRP conjugate for copper catalyzed 
click chemistry (bottom). Lanes are labeled according to A. C) Comparison between pre-miR-21 
labeled with TCO and mTet in cat-ELCCA using the respectively conjugated HRP.D) 
Comparison between the IEDDA and CuAAC signal intensities in cat-ELCCA E) In Vitro digested 
pre-miR-21 substrates with recombinant Dicer. Lane 1 = miRNA ladder, lane 2 = pre-miR-21-
TCO, lane 3 = pre-miR-21-TCO + Dicer, lane 4 = pre-miR-21-mTet + Dicer, lane 5 = pre-miR-21-
mTet. F) 384- well plate HTS control plate with 352 wells treated with Dicer and 32 wells without.  
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3.3 Small Molecules Inhibitors of Dicer Dependent miRNA Maturation 

 After the optimizations to cat-ELCCA, a HTS campaign was conducted to identify 

inhibitors of pre-miR-21 maturation. In total, 48,127 small molecules and known drugs 

housed at the University of Michigan Center for Chemical Genomics (UMCCG) were 

tested at 25 µM for their ability to inhibit Dicer (Figure 3.6A). From this screen, 3.1% of 

molecules met our 5% inhibition criteria, affording 1,480 hits that were subsequently 

retested in triplicate to confirm activity. In addition to removing molecules that failed to 

repeat, compounds that were categorized as pan-assay interference compounds (PAINS) 

or generally reactive were also removed, resulting in 170 confirmed hit molecules.17 To 

assess the potency of these molecules and evaluate their selectivity to our target, miR-

21, over a control miRNA, let-7d, the hits were then tested in 8-point dose-response 

curves from 3.3−120 µM. Let-7d was used as a control counter screen because it too is 

a pre-miRNA hairpin loop, but consists of a completely different sequence (Figure 3.6B). 

Therefore, compounds that inhibit both pre-miR-21 and pre-let7-d maturation are likely 

either non-specific RNA binders or general Dicer inhibitors. Results from the comparison 

revealed that no compounds had high levels of selectivity for our target over the control; 

however, several compounds showed double digit micromolar IC50 values (Figure 3.6C).  
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 Currently, there is little information as to how to inhibit Dicer-dependent pre-miRNA 

maturation with small molecules. Additionally, many reported compounds have failed to 

be reproduced in other labs, including streptomycin in our hands (Figure 3.4C). Therefore, 

any insight that can be gathered to understand how molecules can be designed to reliably 
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inhibit Dicer would be invaluable to the field. To this end, 8 of the hit compounds displaying 

varying degrees of selectivity and activity were synthesized in collaboration with another 

student in the lab, Jorge Sandoval, or purchased as solids, with seven showing some 

level of inhibition when freshly dissolved (Figure 3.7A and B). 

Two of the eight compounds ordered, Methacycline and Meclocycline, are 

members of the tetracycline antibiotic family. What makes tetracyclines interesting for 

Dicer inhibition is their ability to bind both RNA and magnesium ions.18 To explore the 

mechanism of inhibition for tetracyclines, several additional family members that were 

either located at the CCG or purchased were tested. Included in these tetracyclines was 

CMT-3, a tetracycline derivative that does not exhibit antibacterial activity presumably due 

to its inability to bind RNA.19 The lack of RNA binding was confirmed in collaboration with 

Erin Gallagher by surface plasmon resonance (SPR). All of the tetracyclines, including 

CMT-3, show varying degrees of activity (Figure 3.7C and D). The activity of CMT-3 

suggests the metal-binding role is vital to tetracycline’s activity, not their ability to bind 

RNA. To probe the metal-coordinating activity of tetracyclines, an acetylated 

oxytetracycline was designed and synthesized to prevent metal coordination in 

collaboration with Dr. Tanpreet Kaur. This acetylated oxytetracycline showed no activity 

(Figure 3.7E), further suggesting that metal coordination properties are essential for 

tetracycline-based inhibition of Dicer, not the RNA-binding properties. It is also important 

to note that the Dicer digest buffer contains over 5 equivalents of magnesium compared 

to the tetracycline, so the observed inhibition is unlikely due to metal sequestration. 

Intriguingly, two of the other scaffolds contained a catechol moiety that is also 

known to bind magnesium.20 The critical importance of the catechol was demonstrated 
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when a derivative lacking the catechol, 8a, was found to be inactive (Figure 3.7B). To rule 

out that catechols are nonspecific or interfere with our assay, two other catechol-

containing molecules, Dopamine and 1,2-Dihydroxybenzene, were tested and both 

lacked the ability to inhibit Dicer. The above results suggest that molecules possessing 

magnesium-coordinating properties represent a new mechanism for Dicer inhibition that 

could be incorporated into new scaffolds to improve the reliability and reproducibility of 

Dicer inhibitors. 
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Figure 3.7. Small Molecule Dicer Hits. A) Compounds selected for further analysis. B) 
Selected compounds were tested at 1mM in cat-ELCCA. C) Various tetracycline derivatives 
tested at 1mM for Dicer inhibition in cat-ELCCA D) Measuring CMT-3 activity in cat-ELCCA at 
1mM E) In Vitro digest of pre-miR-21-TCO comparing oxytetracycline and acetylated 
oxytetracycline at 1mM. 

C) 

D) E) 
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3.4 Identification of New RNA Binding Scaffolds 

 The results from the small molecule screen demonstrated that cat-ELCCA can be 

used to identify molecules capable of inhibiting Dicer-dependent maturation of pre-

miRNAs. However, as with all screening libraries, the compounds at UMCCG are limited 

by known chemical space. Traditionally, natural products-based scaffolds have served as 

some of the most influential drugs used in the clinic. In an effort to identify new scaffolds 

that possessed RNA-binding properties that are either selective, or could have selectivity 

engineered into them, 32,301 natural product extracts (NPEs) were screened. Collected 

by Prof. David Sherman and colleagues, these extracts originate from marine sediment 

samples containing actinobacteria and are housed at the UMCCG as crude extracts.21 

These extracts were tested in cat-ELCCA at 75 µg/mL for their ability to inhibit Dicer by 

at least 10%, affording 339 initial hits or a 1% hit rate. Hits were then validated in triplicate 

against both miR-21 and let-7 with some hits displaying varying degrees of selectivity and 

potency against both targets (Figure 3.8). While only noticeable in this experiment, it 

should be noted that a general trend toward the inhibition of miR-21 was observed. In 

addition to indicating binding selectivity for miR-21, this trend could also be explained by 

the different processing kinetics of Dicer substrates, as let-7 has properties that are 

consistent with faster processing then miR-21.22 Instead of obtaining dose-response 

curves on impure extracts, 22 selected extracts were regrown in collaboration with the 

Sherman lab to determine if activity could be confirmed. These fresh extracts were again 

tested as single samples against both targets. After narrowing down the 22 extracts, two 

strains were selected in hopes of identifying a new RNA-binding scaffold.  
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Since natural product extracts contain numerous compounds, they require several 

rounds of purifications and testing. These experiments are currently underway in 

collaboration with Dr. Ashu Tripathi and Jorge Sandoval. Preliminary results suggest that 

one of the the hit scaffolds is a peptide derivative. A series of NMR and high resolution 

mass spectrometry experiments are currently underway to assign the final structure. 

Additionally, in collaboration with Erin Gallagher, the hit scaffold was tested by SPR and 

found to bind pre-miR-21 with nanomolar affinity. Taken together this data shows that 

natural products contain unique chemical space to inhibit pre-miRNA maturation. 

 

 

3.5 Conclusion 

 The development of cat-ELCCA for Dicer maturation has been instrumental in 

discovering new molecules capable of regulating miRNA biology. Even though no lead 

compounds selective for miR-21 were discovered, the insights gained from the 

magnesium-coordinating molecules provide a novel mechanism to incorporate into RNA-

binding molecules to inhibit Dicer-based processing. Additionally, through the successful 

demonstration of natural product screening, cat-ELCCA represents a new way to identify 

Figure 3.8. Dicer Natural Product HTS Data. A) Two dimensional analysis of the average initial 
hits tested in triplicate B) Two dimensional analysis of selected extracts tested as single 
samples.  

A) B) 
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new scaffolds for the inhibition of Dicer dependent miRNA maturation. This is particularly 

important due to the high prevalence of chromophoric and fluorogenic compounds that 

interfere with most assays. 

 

3.6 Methods 

pre-miR-21 RNA Sequence: 

The following sequence was ordered from Dharmacon: 

5’-Biotin-(18-atom spacer; hexaethylene glycol)- 

UAGCUUAUCAGACUGAUGUUGACUGUUGAA-(5-aminoallyl uridine)- 

CUCAUGGCAACACCAGUCGAUGGGCUGUC-3’ 

 

pre-let-7d RNA Sequence: 

The following sequence was ordered from Dharmacon: 

5’-Biotin-(18-atom spacer; hexaethyleneglycol)-

AGAGGUAGUAGGUUGCAUAGUUUUAGGGCAGGGA-(5-aminoallyl uridine)-

UUUGCCCACAAGGAGGUAACUAUACGACCUGCUGCCUUUCU-3’  

 

Preparation of RNA-Click Conjugate:  

The NHS-ester of 4-pentynoic acid, TCO, and mTet were purchased or synthesized 

following previously reported methods and was used without further purification. To 

generate the cat-ELCCA substrate, RNA (5.0 µL of 1.0 mM stock in 100 mM, pH 8 

phosphate buffer; 5.0 nmol final) was incubated with NHS ester (5.0 µL of 10 mM stock 

in DMSO; 50 nmol) for 1 h at 25 °C. The RNA conjugate was purified by precipitation with 
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sodium acetate (1.1 µL of 3M solution at pH 5.2) and cold ethanol (40 µL), followed by 

centrifugation at 14,000 RPM for 40 min at 4°C. RNA was stored long-term as a 1.0 mM 

stock (100 mM phosphate buffer, pH 8) at -80 °C.  

 

Preparation of HRP-N3: 

HRP-N3 was prepared following an established procedure and stored at 4 °C in 

phosphate buffer (100 mM, pH 7.0).23 Q-TOF HPLC-MS confirmed the coupling of 4 

azides per molecule of HRP. HRP mass: 43261.6294, HRP-N3 mass: 43365.1259 

 

Preparation of HRP-TCO and HRP-mTet: 

2.5 mg HRP was dissolved in 185.8 µL PBS (100 mM phosphate buffer, pH 7.0, 150 mM 

NaCl) and mixed with 14.2 µL 100 mM TCO-PEG4-NHS or mTet-NHS dissolved in 

DMSO. The mixture was gently shaken at room temperature for 3 h then exchanged using 

a microcentrifuge concentrator into PBS to remove unreacted NHS esters and DMSO. 

HRP-TCO and HRP-mTet were stored at 4 °C. 

 

Rhodamine-amine (RHOD-NH2): 

Lissamine rhodamine (0.25 mmol) was dissolved in 10 mL anhydrous 

DMF under N2 followed by the addition of N-Boc-ethylenediamine 

(0.375 mmol) and triethylamine (1.25 mmol). The reaction was stirred 

at 25 °C overnight. The mixture was extracted with ethyl acetate, 

washed with saturated sodium bicarbonate, and the organic layer was dried in vacuo 

overnight. The resulting crude residue was purified by HPLC. The Boc group was 

O N

S

N

O
HN

O

NH2

SO3
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removed by addition of 80% trifluoroacetic acid in dichloromethane for 1 h at 25 °C. The 

final product was concentrated in vacuo and dissolved in DMSO. RHOD-NH2 m/z calc. 

[M+H]+ 601.2149, found 601.2145. 

 

Rhodamine-TCO (RHOD-TCO) and Rhodamine-mTet (RHOD-mTet):  

RHOD-NH2 (1.66 µmol) was mixed with either TCO-PEG4-NHS or mTet-NHS (1.66 µmol) 

in DMSO followed by the addition of triethylamine (2 µL). The reaction was allowed to 

proceed overnight at 25 °C. Products were confirmed by analytical HPLC and mass 

spectroscopy and used as is. RHOD-TCO m/z calc. [M+H]+ 1000.4406, found 1000.4384; 

RHOD-mTet m/z calc. [M+H]+ 813.2847, found 813.2844. 

 

RNA-Rhodamine Click Chemistry: 

RNA (500 nM final) was reacted with Azide-fluor 488, or RHOD-TCO, or RHOD-mTet (1 

µM final) using standard click chemistry conditions 100mM phosphate buffer pH7 ( 

Supplemented with 100 µM CuSO4, 500 µM THPTA, 5.0 mM sodium ascorbate for 

CuAAC). After incubation for 2 h at 25 °C, the RNA was diluted 2x with RNA loading dye 

(95% Formamide, 0.02% SDS, 0.02% Bromophenol blue, 0.01% Xylene Cyanol, 1mM 

EDTA) and analyzed by 10% TBE Urea gel eletrophesis. 

 

Quantification of Immobilized RNA: 

The wells of a streptavidin-coated 384-well plate were washed 2x with 50 µL of 100 mM 

phosphate buffer (pH 7.0). Immobilization was then carried out by adding 10 µL of 500 

nM RNA in 100 mM phosphate buffer (pH 7) to the wells, which were agitated overnight 
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at 4 °C. Immobilization efficiency was determined by analyzing the incubated solution by 

gel-electrophoresis followed by quantification by densitometry.  

 

Dicer Purification: 

Dicer was prepared as reported; however, the enzyme was instead dialyzed overnight 

and stored at -20 °C in 20 mM Tris pH 7.5, 100 mM NaCl, 1.0 mM MgCl2, 50% glycerol, 

and 0.1% Triton X-100.16 

 

Dicer Digestion: 

Solution digests were carried out in 10-µL volume. RNA-X (500 nM final) was treated with 

Dicer (1.0 μL, 1.3mg/ml) in buffer (20 mM Tris-HCl, pH 7.4, 12 mM NaCl, 2.5 mM MgCl2, 

40 U/mL RNase Out, 1.0 mM fresh DTT) at 37 °C for 3 h. Digests were analyzed using a 

12.5% TBE-Urea gel and visualized using SYBR Gold.  

 

HTS Assay Protocol  

Black, standard capacity streptavidin-coated 384-well plates (Pierce 15407) were first 

washed with 50 µL of sodium phosphate buffer (100 mM, pH 7.0; PB7) three times using 

a Biotek 405 ELX plate washer. Subsequently, 5 µL of biotinylated pre-miRNA substrate 

(500 nM final) was dispensed into the plate using a Multidrop Combi Reagent Dispenser 

(Thermo Scientific). Plates were then centrifuged for 1 min at 1,000 RPM (223 ⋅ g), sealed 

with plate tape, and incubated overnight at 4 °C. The following morning, plates were 

washed three times with 50 µL of PB7, followed by the addition of 5 µL of Dicer digest 

buffer (20 mM Tris, 12 mM NaCl, 2.5 mM MgCl2, 1 mM fresh DTT, and 4.5% DMSO) and 



	 63	

centrifugation. Compounds (50 nL of 5 mM DMSO stock, 25 µM final) were then added 

into the sample wells using a Sciclone (Caliper) liquid handler with V&P pintool; the same 

volume of DMSO was added to the control wells. The plates were incubated at 25 °C for 

15 min before addition of 5 µL of digest buffer containing 217 µg/nL Dicer (108 µg/mL 

Dicer, 5% glycerol and 0.01% Triton X-100 final). For the positive control wells, digest 

buffer without Dicer was added. The plates were centrifuged again and resealed before 

being placed in a 37 °C incubator for 5 h. After Dicer cleavage, plates were washed three 

times with 50 µL of PB7. mTet-HRP in PB7 (10 µL, 750 nM final) was then dispensed into 

each well. The plates were subsequently centrifuged, sealed, and incubated at 25 °C for 

2 h. Plates were then washed three times with 50 µL of wash buffer (2 mM imidazole, 260 

mM NaCl, 0.5 mM EDTA, 0.1% Tween-20, pH 7.0), followed by washing three additional 

times with 50 µL of PB7. Finally, SuperSignal West Pico (25 µL; Pierce) was added, the 

plates were incubated at 25 °C for 5 min, and chemiluminescence signal was detected 

using a PHERAstar plate reader using LUM plus module (BMG Labtech). 

 

Cat-ELCCA Protocol (By Hand): 

Same as “HTS Assay Protocol” with the following modifications: All washing and 

dispensing was done by hand with a pipette, plates were not centrifuged following 

additions, and chemiluminescence was detected on a Biotek Cyation3. 

 

Compound Libraries  

Compounds screened were housed at the University of Michigan Center for Chemical 

Genomics (CCG). For the primary screen, 47,130 compounds from the following 
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collections were used: Sigma LOPAC library of pharmacologically active compounds 

(1,280), Prestwick library of approved drugs (1,280), ChemDiv 100K library (21,120), 

Maybridge MB24K library (23,552), and UM Chemistry library (895). Additionally, a library 

of 32,301 natural product extracts (NPE) library was also tested.9 Compounds were 

tested at 25 µM in the primary and confirmation screens using 5 mM DMSO stocks. 

Concentration response curves were generated over 8 points (1.67-fold serial dilution) 

from 3.3−120 µM using 5 mM DMSO stocks; however, compounds were first dispensed 

with a Mosquito x1 (TTP Labtech) into polypropylene 384-wells plates (Greiner 784201), 

and subsequently diluted with Dicer digest buffer (15 µL) before addition of diluted 

compound into the pre-miRNA-immobilized plate (5 µL). NPEs were tested at 75 µg/mL 

in the primary and confirmation screens using 15 mg/mL stocks. 

 

Data Analyses 

HTS data was monitored and analyzed using MScreen.11 Small molecules were 

considered as initial hits if they exhibited ≥5% inhibition by plate based on the negative 

controls. For the NPEs, this threshold was raised to ≥10% inhibition by plate based on 

the negative controls. Potential hits meeting these criteria (1,480 small molecules and 

339 NPEs) were confirmed by rescreening in triplicate. Compounds showing inhibition at 

≥3SD by plate from the negative controls were considered as confirmed hits and analyzed 

in concentration response curves in duplicate (170), excluding the NPEs, which 

underwent more stringent analysis to select those for regrowth. Average percent 

inhibitions by plate at 120 µM (small molecules) and 75 µg/mL (NPEs) were determined 

from sample and positive control values normalized to the negative control. All data was 
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analyzed using GraphPad Prism version 6.0c for Mac OS X (GraphPad Software, 

www.graphpad.com).  

3.7 Copyright  

 The work in this chapter was reproduced in part from Lorenz, D. A., Song, J. M. & 
Garner, A. L. High-throughput platform assay technology for the discovery of pre-
microrna-selective small molecule probes. Bioconjugate chemistry 26, 19–23 
(2015), Lorenz, D. A. & Garner, A. L. A click chemistry-based microRNA 
maturation assay optimized for high-throughput screening. Chem. Commun. 52, 
8267–8270 (2016), Lorenz, D. A., Vander Roest, S., Larsen, M. J. & Garner, A. L. 
Development and Implementation of an HTS-Compatible Assay for the Discovery 
of Selective Small-Molecule Ligands for Pre-microRNAs. SLAS Discov 
2472555217717944 (2017). doi:10.1177/2472555217717944, and Lorenz, D. A. & 
Garner, A. L. in RNA Therapeutics (ed. Garner, A. L.) 79–110 (Springer 
International Publishing, 2018). 
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Chapter 4 

Targeting Lin28 with Small Molecules  

  

One mechanism that life has developed to ensure the proper regulation of RNAs 

is the use of RNA-binding proteins (RBPs) to regulate RNA function (Chapters 1 and 2). 

Over 1,500 RBPs are predicted in Homo sapiens and their targets are quickly being 

elucidated through several technologies such as cross-linking immunoprecipitation 

(CLIP).1,2 As our knowledge of the biological implications of RBPs continues to increase, 

many RBPs have already been linked to or deemed clinically relevant targets.3 

Unfortunately, there are insufficient platforms to enable the discovery of small molecule 

probes and potential drug candidates for these clinically relevant RBPs. Based on the 

successful implementation and demonstration of Dicer cat-ELCCA in Chapter 3, cat-

ELCCA would serve as an ideal platform to fill this technological void for facilitating the 

discovery of RNA-Protein interaction (RPI) modulators.4,5 In addition to the standard 

benefits of cat-ELCCA previously demonstrated, the modular approach of cat-ELCCA 

lacks the requirement of structural information and the need to incorporate radioactivity, 

which are necessary for most current RPI assays.6-8 
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4.1 Lin28 cat-ELCCA Assay 

 To establish cat-ELCCA as a suitable assay for RPIs, the model system Lin28-Let-

7 was chosen due to its biological significance and well-characterized interaction.9 Similar 

to other RBP assays, a site-specific labeling technique was necessary for cat-ELCCA to 

avoid labeling residues that could be required for RNA binding. This site-selective labeling 

was designed to be achieved through the generation of a Halotag(HT)-RBP fusion protein 

as shown in Figure 4.1. Halotag was engineered from a haloalkane dehalogenase to use 

a bioorthogonal haloalkane suicide ligand to form a covalent bond with its active site.10 

Thus, a Halotag fusion protein is an ideal labeling technique for cat-ELCCA because it 

allows the platform to be readily adapted to any protein-of-interest without having to 

generate site-specific mutants. Additionally, there are numerous reports of labeling either 

protein termini with HT without affecting protein function, further demonstrating that this 

strategy would be well-suited for an assay platform like cat-ELCCA.11 There are two key 

differences from the previous Dicer cat-ELCCA. First, the protein was chosen to be 

immobilized because of the poor immobilization efficiency of RNA that was demonstrated 

in Chapter 3. In fact, the assay did not produce satisfactory results when the RNA was 

immobilized and click handle incorporated into the HT (data not shown). Second, 

compounds that disrupt the RPI will result in reduced signal, in contrast to the Dicer assay, 

as reduced binding of RNA will lead to reduced HRP retention. 
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Initial tests were designed to confirm the individual components could be 

generated and would function properly. First was the generation of the Lin28-HT fusion 

protein. The murine homolog of Lin28a, which has 97% homology to Homo sapiens, was 

fused to the C-terminus of HT and expressed recombinantly in E. coli. Following 

purification, the Lin28-HT protein was incubated with a biotin-chloralkane ligand to allow 

for the site-selective biotinylation (Figure 4.2A).12 The presence of Lin28a, HT, and biotin 

were confirmed by Western blot analysis (Figure 4.2B). This fusion protein was then 

evaluated in an electrophoretic mobility shift assay (EMSA) to ensure that the fusion and 

biotin tag did not interfere with labeled Let-7 substrate binding. As seen in Figure 4.2C, 

the fusion protein yielded a dissocaitaion constant of approximately 200 nM, which is 

similar to other reported values.9 The presence of the 5’ trans-cyclooctene (TCO)-labeled 

RNA was confirmed by a reaction with a mTetrazine-Rhodamine and analyzed by gel 

electrophoresis using the same method from the Dicer assay in Chapter 3.  

3. Catalytic 
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Figure 4.1. RBP cat-ELCCA Scheme. 
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With all of the components in hand, proof-of-concept experiments were preformed 

to test the RPI cat-ELCCA. The first of these experiments was to determine if the signal 

intensity would increase as more RNA was used. As can be seen in Figure 4.3A, the 

assay preformed as expected with an increase of signal proportional to the amount of 

pre-let-7 used. To further evaluate the assay, two different unlabeled RNAs, pre-let-7d 

and pre-miR-21 were used as competitors of the pre-let7 signal. Figure 4.3B shows that 

the signal decreased as unlabeled pre-let-7 was added; however, the same decrease 

Figure 4.2. Generation of Lin28 Fusion Protein. A) Structure of biotin-peg7-Chloro 
ligand B) Coomassie stain and western blots for Lin28a and Biotin to confirm protein 
expression and labeling. C) Electrophoretic mobility shift assay of 32P labeled pre-let7d-tco 
with Lin28a-HT-Biotin protein. Concentration tested from left to right: 0, 4, 8, 16, 31, 
63,125, 250, 500, 1,000 nM. 
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was not observed with pre-miR-21. This was an expected result because pre-miR-21 

should not bind to Lin28a.13 Finally, the assay was evaluated for its suitability for HTS by 

determining the assay’s reproducibility using automated equipment. Using 192 wells of 

positive and 192 wells of negative controls, the assay yielded an excellent Z’ value of 0.59 

and a signal-to-background ratio of 275 (Figure 4.3C).14 

 

 

Figure 3. Lin28 cat-ELCCA Proof-of-Concept. A) Titrating labeled pre-let7d-
TCO in RBP cat-ELCCA. B) Cat-ELCCA showing competition with 500 nM 
unlabeled pre-let7d and pre-miR-21. C) Preliminary Z’ calculation data from 192 
positive and 192 negative controls 

A) B) 

C) 
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4.2 High-Throughput Screening 

 With the assay in hand, 126,157 small molecules were screened at the University 

of Michigan Center for Chemical Genomics (UMCCG) in collaboration with Samuel Kerk. 

As can be seen from the campaign view in Figure 4.4A, the assay performed as expected 

with clear separation of controls and a good distribution of hits using 25 μM of compound. 

In total, 1,468 initial hits were identified using 25% inhibition as a cutoff. These hits were 

then replated and tested in triplicate with 181 compounds confirming at least 3 standard 

deviations from the control for a minimum of 2 out of 3 times. The large drop in repeating 

compounds that was observed can be partially attributed to errors in the automated liquid 

dispenser causing the occasional row of false positives. Hits that repeated were then 

tested in a dose response curve from 3.3−120 μM, with 136 compounds showing dose-

dependent inhibition. These 136 compounds afforded a final hit rate of 0.11%. From these 

136 compounds, 20 were purchased as fresh solids with 10 showing activity in cat-

ELCCA (Figure 4.4B and C). 
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4.3 Structure Activity Relationship 

Of the ten active compounds, 1 and 2 shared a similar sulfonamide scaffold that 

exhibited selectivity when evaluated using the UMCCG and PubChem databases, only 

being classified as a hit in 1/11 and 1/9 assays, respectively (Figure 4.5A). To further 

validate this new scaffold, an EMSA was performed to confirm the inhibitory properties of 

1 and 2 in a different assay format. Using both EMSA and cat-ELCCA titrations, it was 

determined that both 1 and 2 have low micromolar IC50 values (Figure 4.5B and C). The 

minor differences in values are attributed to the different concentrations of RNA and 

protein used in each assay, 500 and 200 nM, respectively. Encouraged by these results, 

a structure-activity relationship (SAR) campaign was started by ordering 20 additional 

sulfonamide derivatives (Figure 4.5A). While many compounds had similar IC50 values, 

Figure 4. Lin28 HTS and Preliminary Hits. A) Campaign view from lin28 HTS 
using cat-ELCCA. B) Structures of 20 compounds purchased with lead scaffold 
highlighted in blue. C) Fresh compounds tested in RPI cat-ELCCA at 100uM 

C) 
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none were more potent than the original hit 1 (Figure 4.5A). However, these compounds 

still provided valuable SAR information. The requirement of ortho substitution around the 

center sulfonamide ring was highlighted by the inactivity of compounds 3 and 4, as 

substitution at either the meta or para positions resulted in no activity (Figure 4.5B). 

Additionally, compounds 5 and 6 show the importance of all three rings. Another 

interesting result was observed between the meta and para chloro substitution on the 

outermost rings, suggesting meta substituents are beneficial (Figure 4.5A Boxed). To test 

more meta-substituted sulfonamides and expand the SAR campaign beyond those 

commercially available, additional analogues were synthesized in collaboration with Dr. 

Tanpreet Kaur and Jorge Sandoval and are currently being evaluated. 
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Figure 5. Sulfonamide SAR. A) Structures of sulfonamide scaffolds tested with 
their respective IC50 values from cat-ELCCA. Compounds with no detectable 
activity are listed as N/A. B) Titration curve of select compounds in cat-ELCCA. C) 
Electrophoretic mobility shift assay with the two top compounds. (+) represents 
controls with Lin28 and (-) represents free RNA controls 

B) 

C) 
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 Initial attempts at determining the sulfonamide mechanism-of-action focused on 

discerning whether the hit compounds bind the RNA or protein. In collaboration with Erin 

Gallagher, a biotinylated pre-let-7d and Lin28 were separately immobilized on surface 

plasmon resonance (SPR) chips and compound 1 was added to analyze for binding. 

These studies revealed that 1 had no detectable binding to the RNA and had millimolar 

affinity to the protein. While the high affinity to the protein was surprising, the data is likely 

explained by known difficulties associated with trying to determine small molecule 

measurements to large proteins as the difference in mass can be difficult to detect by 

SPR.15 Encouraged by the idea that the sulfonamide scaffold does bind the protein, 

current efforts are to try other biophysical characterization techniques. Additionally, 

Lin28b is being expressed to determine if the compound is capable of inhibiting both 

homologs. Upon confirmation that the scaffold does bind Lin28, attempts will be made to 

obtain a co-crystal of Lin28 bound to 1.  

 

4.5 Conclusion 

 Overall, the work presented in this chapter shows the second application of cat-

ELCCA for HTS and identified a hit compound 1 with a sulfonamide scaffold. Similar to 

other reported compounds, 1 is able to disrupt the Lin28-let7 interaction in vitro. With 

future scaffold optimizations the goal is to validate the hypothesis that manipulation of 

RBPs can change their biological function and potentially lead to clinically relevant 

outcomes.  
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4.6 Methods 

mLin28a-halotag(HT) Cloning: 

Murine Lin28a was amplified from petDuet vector generously provided by Richard 

Gregory (Harvard) and ligated into pFN29k using standard cloning technique with SgfI 

and PmeI restriction enzymes. 

Primers: 

5’ AGTCAGCGATCGCTTCAGGCTCGGTGTCCAACCAGC 

5’ AAACCTTTTCAATTCTGGGCTTCTGGGAGC 

 

mLin28a-HT Expression, Purification, and Biotinylation: 

E. Coli BL21 cells transformed with the pFN29k mLin28a-HT were grown at 37°C to an 

OD600 of 0.6 and induced with 500μM IPTG and grown overnight at 37°C. Cells were 

pelleted for 15 min at 3000 x G, suspended in PBS7 (100mM Phosphate buffer pH 7, 

150mM NaCl), centrifuged again for 15 min at 3000 x G and stored as pellets at -80°C 

until needed. Pellets were thawed at room temp before being lysed via sonication in 20 

mM Imidazole pH 8, 10 mM Phosphate, 2.7 mM KCl, 137 mM NaCl, 0.1% PMSF, and 

1mM DTT at 4°C. Lysates were then centrifuged at 3000 x G for 30 min at 4°C. The 

supernatant was then applied to Ni Resin and washed twice. First with lysis buffer then 

with 50/50 lysis buffer/wash buffer (10 mM Tris pH 8, 50 mM Imidazole, 500 mM NaCl, 

0.1% PMSF, 1 mM DTT). Lin28-HT was eluted in 10 mM Tris pH 8, 500 mM Imidazole, 

500 mM NaCl, 0.1% PMSF, 1 mM DTT before being dialyzed overnight into 20 mM Tris 

pH 7.8, 100 mM KCl, 0.2 mM EDTA, 10% Glycerol (v/v). Protein concentrations were 
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determined by Bradford using BSA standards. Biotinylation was done with 10 equivalents 

of Biotin-Peg-Cl ligand as described previously.12  

 

RNA and HRP conjugates were prepared using previously reported methods in 

Chapter 3. 

 

Pre-let7d sequence (cat-ELCCA): 

The following sequence was ordered from Dharmacon: 

5' N5.A.G.A.G.G.U.A.G.U.A.G.G.U.U.G.C.A.U.A.G.U.U.U.U.A.G.G.G.C.A.G.G.G.A.U.U. 

U.U.G.C.C.C.A.C.A.A.G.G.A.G.G.U.A.A.C.U.A.U.A.C.G.A.C.C.U.G.C.U.G.C.C.U.U.U.C.

U  

 

Lin28 cat-ELCCA: 

White high binding capacity streptavidin-coated 384-well plates (Pierce 15505) were 

washed with 50 μL of phosphate buffer saline (100 mM phosphate, 150 mM NaCl, pH 

7.0; PBS7) three times using a Biotek 405 ELX plate washer or by a multichannel pipette. 

10 μL of 200 nM Lin28-HT-Biotin (in 20 mM Tris pH 7.8, 100 mM KCl, 0.2 mM EDTA, 

10% Glycerol (v/v), 0.05% Tween-20) was then added by a Multidrop Combi Reagent 

Dispenser or multichannel pipette. Plates were then centrifuged at 1,000 RPM (223 xg) 

for 1 minute, sealed with plate tape and allowed to incubate overnight at 4°C. The next 

morning plates were washed three times with 50 μL PBS7 followed by the addition of 

10μL 200nM pre-let7d-TCO in binding buffer (50 mM Tris pH 7.6, 150 mM NaCl, 5% 

Glycerol (v/v), 0.05% Tween-20, Fresh: 1 mM ZnCl2, 10 mM Beta Mercaptoethanol. Add 
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DMSO to reach 5% final concentration (adjust for compounds)). Compounds were then 

added by a Sciclone (Caliper) liquid handler with V&P pintool or by hand pipetting. After 

a one hour room temperature incubation period, wells were washed with 50 μL PBS7 

three times prior to the addition of 10 μL 750nM HRP-TCO in PBS7. The HRP was 

allowed to react for 1 hour at room temperature before being removed by three 150uL 

PBST (PBS7 + 0.05% Tween 20) and three 50 μL PBS7 washes. Detection was achieved 

by the addition of 25 μL SuperSignal West Pico (pierce). The chemiluminescent substrate 

was allowed to incubate at room temperature for 5 minutes before being quantified on a 

PHERAstar Plate reader using a LUM plus module or a Biotek Cyation3. 

 

Electrophoretic mobility shift assay (EMSA): 

SYBR Gold: 

10 μL of 500 nM RNA and mLin28a-HT were mixed with DMSO or compound in binding 

buffer (50 mM Tris pH 7.6, 150 mM NaCl, 5% Glycerol (v/v), 0.05% Tween-20, Fresh: 1 

mM ZnCl2, 10 mM Beta Mercaptoethanol. Add DMSO to reach 5% final concentration 

(adjust for compounds)). The mixture incubated at room temperature for 30 minutes 

before 10μL of loading dye (binding buffer supplemented with and additional 10% glycerol 

and trace bromophenol blue and Xylene Cyanol for color). The samples were then loaded 

on 8% native TBE gels and run in TBE buffer before being stained with SYBR Gold for 5 

min. Gels were then imaged on a Protein Simple gel imager using the multiflour green 

setting.  
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32P: 

In an microcentrifuge tube the following were added in order: 4 μL H2O, 1 μL 10x T4 

Polynucleotide Kinase (PNK) buffer, 5 μL 100 uM RNA, 1 μL T4 PNK, 5 μL 32P Gamma 

ATP at 3.33 μM with approximately 8.6 mCi/ml. The labeling reaction was allowed to 

progress at 37°C for 30 minutes before 4 μL of 121 μM cold ATP was added and allowed 

to label for an additional 30 min at 37°C. PNK was inactivated by heat denaturation at 

70°C for 15 min. RNA was diluted to 4nM in Binding Buffer with various concentrations of 

mLin28a-HT-Biotin in 4μL reaction volumes.  After a 30 min. room temperature incubation 

the reaction was mixed with 4μL of Loading Buffer and run on a 8% native TBE gel. 32P 

was exposed to a phosphorimaging plate and quantified by a Typhoon Phosphoimager. 

 

Radiolabeled Pre-let7d Sequence: 

The following sequence was ordered from Dharmacon: 

A.G.A.G.G.U.A.G.U.A.G.G.U.U.G.C.A.U.A.G.U.U.U.U.A.G.G.G.C.A.G.G.G.A.U.U.U.U.

G.C.C.C.A.C.A.A.G.G.A.G.G.U.A.A.C.U.A.U.A.C.G.A.C.C.U.G.C.U.G.C.C.U.U.U.C.U 
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Chapter 5 

Real Time Homogeneous RNA-Protein Interaction Assay 

 

 The known regulatory roles of RNA-binding proteins (RBPs) in biology continue to 

expand rapidly due to technological advances. One such example is the improvements 

in cellular imaging leading to the discovery of RNA and RBP subcellular localization. 

These localization events have been linked to many fundamental cellular processes such 

as neuronal function and asymmetric cell division.1 Current techniques that are used to 

rapidly identify new RNA-RBP interactions, such as CLIP (Cross Linking and 

Immunoprecipitation) and proteomics, fail to account for cellular localization or only 

provide a snapshot of interactions. This highlights the need for the development of new 

technologies that allow for the high-throughput detection of these dynamic RBP-RNA 

interactions in live cells that can function on a subcellular level.  

 One technique used to study protein-protein interactions (PPIs) in live cells is the 

protein complementation assay (PCA).2 A PCA works by taking a detection protein, like 

luciferase or green fluorescent protein, and splitting it into two parts. These parts are 

designed to have a low affinity for each other and minimal activity when separated but 

regain activity when driven together by an external force, such as a known PPI. For a PPI 

PCA, the PCA protein fragments are expressed as fusion proteins to known PPI partners 

allowing for signal to be produced when the PPI partners interact naturally. This system 
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has been implemented for many PPIs and, highlighting the dynamic detection, has been 

used to study changes to PPIs upon external stimuli.3 Additionally, PCAs have been used 

in a live cell high-throughput screening (HTS) settings to identify novel PPI partners.4 

However, this system has never been reported for studying RNA-protein interactions 

(RPIs) due to the inability to generate RNA-protein fusions. 

 

5.1 RNA Binding Protein Complementation Assay In Vitro 

 Initial designs and proof-of-concept experiments for a RPI PCA focused on using 

the Inverse Electron Demand Diels Alder (IEDDA) reaction to generate a RNA-protein 

conjugate due to the previous success with cat-ELCCA (Figure 5.1).5 While there are 

many PCA systems, few have been used in an in vitro setting.6,7 One of these systems, 

a split firefly luciferase, displayed instability when expressed recombinantly and needed 

to be used fresh.8 This instability would be a major limitation for the design of a RPI-PCA. 

Alternatively, Promega was able to develop a PCA, termed NanoBiT, for monitoring PPIs 

that was ideal for both in vitro and in celluo applications.9 The NanoBiT system was 

generated by splitting NanoLuc luciferase into two fragments, LgBiT and SmBiT.  To apply 

the NanoBiT assay to RPIs, a Halotag(HT) SmBiT fusion protein was generated to serve 

as a conjugation site for RNA. The LgBiT could then be fused to a RBP-of-interest to 

complete the system. As proof-of-concept, the Lin28-Let-7 system was chosen because 

it is the most well-characterized pre-miRNA-protein interaction (Figure 5.1). Both of these 

fusion proteins were expressed in E. coli using standard techniques and found to be 

stable, including the HT-SmBiT when conjugated with a methyltetrazine (mTet). 
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 After generating all of the necessary components, several experiments were 

carried out to test the RPI PCA. The first was mixing all of the required components, HT-

SmBiT-mTet and Lin28a-LgBiT with varying concentrations of pre-let-7d-TCO. Initial 

attempts to detect binding failed with the commercial live cell reagent due to high 

background noise; however, upon switching to the lytic detection reagent a change in 

LgBiT

Lin28

HT

SmBiT

pre-let7

X

Biotin
Biotin

Y

X: TCO or Chloroalkane

Y: mTet or Unlabeled Protein

Figure 5.1. RBP-PCA Scheme. Schematic for in vitro RNA-Protein interactions 
protein complementation assay. 

N
N N

N

R

R
R

O
Cl4

ChloroalkaneTCO mTet



	 89	

signal relative to the concentration of RNA was observed (Figure 5.2A). This change was 

attributed to the presence of detergents and other reagents that disrupt low affinity 

interactions that are present in lytic buffers preventing the non-specific association of 

SmBiT and LgBiT. To confirm that the increase in signal was due to the Lin28-pre-let-7d 

interaction, the signal was competed with unlabeled Lin28a and a corresponding 

decrease in intensity was observed (Figure 5.2B). Intrigued by other potential applications 

for a RBP PCA, direct RNA to HT coupling was attempted in vitro using a chloroalkane-

labeled RNA. This orthogonal coupling strategy was successful, as only pre-let-7d labeled 

with a chloroalkane produced signal (Figure 5.2C). However, it should be noted that the 

overall signal intensity and signal-to-background was less than the click chemistry variant. 

This decrease is likely the result of stoichiometric addition of chloro-labeled RNA and 

SmBiT-HT, as compared to the excess of chloro-mTet used to generate the SmBiT-HT-

mTet. Finally, to assess the assay’s ability to respond to real time changes, RNase A was 

added to degrade the pre-let-7d substrate. As shown in Figure 5.2D, an immediate 

decrease in signal was observed upon the addition of RNase A. Taken together these 

experiments show that protein complementation assays can be applied to RPIs in vitro.  

  

 

 

 

 

 



	 90	

   

 

 

 

 

Figure 5.2. In Vitro PCA Proof-of-Concept. A) Titration of labeled pre-let7d-TCO in 
RPI-PCA. B) Competition of 500nM pre-let7d-TCO and Lin28-LgBiT with Lin28-HT-
Biotin. C) RPI-PCA with chloroalkane RNA. D) Time dependence of click RPI-PCA 
with 1ug RNase A at initial read, T0 = signal after addition of RNase A, and T5 = 5 
min. post RNase addition. 

C) D) 

A) B) 
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5.2 Monitoring RNA Protein Interactions in Live Cells 

 Having generated a functional PCA for RPIs in vitro, the next goal was to apply 

this new technology to monitory RPIs in live cells. This cell-based assay was designed as 

seen in Figure 5.3A. Central to the initial design was the generation of a stable cell line 

expressing SmBiT-HT to simplify the number of components needed to add for each 

experiment. SmBiT-HT was the ideal candidate for genomic incorporation, as it would be 

universal for all potential cytoplasmic RBP partners. HEK293-FlpIn cells were chosen as 

a model system to generate this stable cell line because it contains a site for specific 

genomic recombination, ensuring a monoclonal cell line, and is commercially available. 

As can be seen in Figure 5.3B, the FlpIn cell line was able to stably express the SmBiT-

HT protein and transiently express Lin28a-LgBiT. Initial attempts to transfect 100 ng of 

Lin28a-LgBit plasmid per 96-well containing 10,000 cells failed to produce the desired 

signal. However, upon reduction in the amount of DNA to 1.25 ng, a clear signal 

separation between pre-let-7 and control RNAs was observed. The specificity of this new 

assay was then evaluated by transfecting different pre-miRNAs that either lacked the 

required chloroalkane tag or are not reported to bind Lin28. As can be seen from Figure 

5.3C, only the correct combination of Lin28-LgBiT, SmBiT-HT, and pre-let-7d-Cl produced 

the desired signal.  
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Figure 5.3. Lin28 Cell Based PCA. A) Schematic of cell based RPI-PCA. B) Western 
blots showing expression of Halotag-SmBiT and Lin28a-LgBiT. C) Cell based RPI-
PCA with select RNAs and no Lin28 transfection controls 
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5.3 Identification of pre-miRNA Binding Proteins 

 Ever since the discovery of the let-7-Lin28 system, many research groups have 

focused on the identification of similar systems. Backed by evidence of conserved loop 

regions in pri- and pre-miRNAs, these identification efforts have typically relied on protein 

pull-down experiments using RNA as a bait followed by proteomics.10 In collaboration with 

Emily Sherman, a pipeline for the discovery of new RBPs using the biotinylated pre-

miRNA probe, designed for both Dicer cat-ELCCA and in vitro PCA, was generated 

(Figure 5.4A). Using pre-let-7d and pre-miR-21 RNAs, a pull-down experiment was 

performed and analyzed by Western blot prior to submission for proteomic analysis. Both 

the Western blot and proteomic data showed significant enrichment of Lin28 in the pre-

let-7d sample over pre-miR-21 as expected (Figure 5.4B and C). Upon examination of 

the proteomic data, another pre-let-7-specific RBP was identified, GRSF1 (G-rich 

sequence factor 1) (Figure 5.4C). This interaction has been reported by others as well.11 

While GRSF1 has been shown to pull down with pre-let-7, there are no reports 

demonstrating this interaction in celluo.  
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5.4 GRSF1 Binds Pre-let-7d in the Mitochondria 

 GRSF1 is a RBP that has been shown to regulate mitochondrial gene 

expression.12 This gene regulation is thought to be due to GRSF1’s ability to bring non-

coding RNAs from the cytoplasm into the mitochondria.13 Coupling GRSF1’s ability to 

shuttle RNA to the mitochondrial matrix with reports of mitochondrial miRNAs led to the 

hypothesis that GRSF1 shuttles the let-7 family into the mitochondrial matrix.14 Central to 

this hypothesis is that both GRSF1 and pre-let-7 associate in the cell. To probe this 

interaction, the cell-based RPI PCA assay was used. Unfortunately, after transfecting a 

construct containing GRSF1-LgBiT into the FlpIn HEK cells, no significant signal was 

observed. Undeterred by this, it was reasoned that SmBiT-HT was not present in the 

mitochondrial matrix where GRSF1 is known to localize. To ensure proper colocalization 

of the two BiTs, the N-terminus of GRSF1 that is predicted to cause mitochondrial 

localization was cloned onto the SmBiT-HT. Additionally, instead of generating a stable 

cell line for every compartment of the cell, the cell-based RBP PCA was tested in 

traditional HEK293 cells by transfecting all three components at once (SmBiT-HT, RBP-

LgBiT, RNA). Using the Lin28 system as a control, this triple transfection was successful 

(Figure 5.5A). Upon transfection of GRSF1-LgBiT, the cell-based PCA assay performed 

Figure 5.4. pre-miRNA RBP Proteomics. A) Workflow for pull-down of pre-miRNA 
binding proteins. B) Western blot from a pull-down experiment showing enrichment of 
Lin28 when pre-let-7d was used as bait over control pre-miR-21. C) Peptide spectrum 
matches (PSMs) of Lin28b and GRSF1 using two different RNA baits. 

B) 

Protein PSM (pre-let7d) PSM	(pre-miR-21)
LIN28b 28 11

GRSF1 138 2

C) 
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as hypothesized with robust signal only observed when both BiTs were localized to the 

mitochondria (Figure 5.5B). Importantly, this signal intensity was dependent on pre-let-

7d, as both no RNA and a control RNA, pre-miR-34, displayed lower activity levels. This 

data provides the first direct evidence that GRSF1 and pre-let-7d interact in the 

mitochondria. Future work will be needed to evaluate the changes of mitochondrial 

miRNA levels upon GRSF1 knock down to continue to test the hypothesis that GRSF1 

acts as a miRNA shuttle.  
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5.5 Conclusion 

 The work presented in this chapter continues to highlight the potential uses of RNA 

bioconjugation for both in vitro and in celluo applications. Using both click chemistry and 

Halotag coupling, the first in vitro RPI-PCA was developed for Lin28-pre-let-7. This in vitro 

PCA assay served as a proof-of-concept to generate a method to monitor RPIs in live 

cells. The value of this in celluo assay was highlighted by the confirmation of the GRSF1-

pre-let7d interaction localized to the mitochondria. 

 

 

Figure 5.5. GRSF1 Cell Based PCA. A) Lin28-pre-let7d control experiment with 
HEK293T cells B) Signal enrichment between GRSF1 and pre-let7d over control pre-
miR-34a 
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5.6 Methods 

Constructs: 

 All protocols were based on traditional restriction enzyme cloning protocols 

supplied from New England Biolabs. 

 In vitro Constructs: 

 LgBiT and SmBiT were cloned from pFN33k and pFN35k into pFN29k and 

pFC30k, respectively, to generate halotag(HT) fusion proteins using primer pairs 1 and 

2. The halotag was then removed from the pFN29k LgBiT construct using primer pair 3 

and replaced with mLin28a using primer pair 4 followed by the addition of primer pair 5 to 

add a 6x his tag to generate the final construct.  

 Cell-Based Constructs: 

 mLin28a-LgBiT and SmBiT-HT were cloned from the in vitro constructs into either 

pcDNA3 or pcDNA5/FRT for either transfections or stable cell line generations using 

primer pairs 6, 7, and 8. GRSF1 gene was synthezied to contain KpnI and SgfI cut sites 

due to challenges cloning the GC rich region and cloned into pcDNA3 containing LgBiT. 

The N-terminus of GRSF1 was cloned using primer pair 9 to the N-terminus of SmBiT-

HT in pcDNA3. 

 

Table 5.1. Primers for Construct Generation 
Pair Primer Seq Comments

1 LgBiT29k F gagcgataacgcgatcgccatggtcttcacactcgaagatttcgttgg From pFN33k to pFN29k

1 LgBiT29k R cgaattcgtttaaacactgttgatggttactcggaacagc

2 SmBiT30k F cgccatggtgaccggctaccggctgttcgaggagattctcc From pFN25k to pFC30k

2 SmBiT30k R tcgaggagaatctcctcgaacagccggtagccggtcaccatggcgat

3 pfn29khindiii F ggtattttaactttactaaggagaagcttcatcatgaaacatcatcacc pFN29k mutagenesis to add N term HindIII site

3 pfn29khindiii R ggtgatgatgtttcatgatgaagcttctccttagtaaagttaaaatacc

4 Lin28 into pFN29k F ctaaggagaagcttatgggctcggtgtccaaccagc From pFN29k Halotag (Chapter 4) into LgBiT vector lacking HT

4 Lin28 into pFN29k R ggtcacggcgatcgcattctgggcttctgggagc

5 His Tag agctgatgggtcaccatcaccatcaccata Annealed oligos to add his tag in HindIII site

5 His Tag agcttatggtgatggtgatggtgacccatc

6 SmHT30 SEA F gtacggtaccgccaccatggtgaccggctaccgg SmBiT-HT (30k vector) to pcDNA5/FRT: PCR out the SmBit-HT fusion, add KpnI, Kozak sequence, and NotI (used for stable cell line generation)

6 SmHT30 SEA R cagtgcggccgctcactattagtggtgatggtgatgatg

7 SmHT30Blp-Rev gactgcggccgctcattagctcagcccaccggaaatctccagagtag Smbit30k rev. remove stop from gene, add BlpI then stop codons then notI (for transient transfection in HEK cells)

8 LinLG29 SEA F gtacggtaccgccaccatgggctcggtgtccaacc Lin28a-LgBit (29k vector) to pcDNA3: PCR out the lin28a-LgBit fusion, add KpnI, Kozak sequence, and NotI

8 LinLG29 SEA R cagtgcggccgctcattaaacactgttgatggttactcg

9 N-term GRSF1 F gtacggtaccgccaccatggccggcacgcgctg PCR N-Term of GRSF1 from purchased gene into pcDNA3 SmHT30 (Nterm via KpnI)

9 N-term GRSF1 R agtcggtaccgtagctgcgcgtcgggac
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Protein Expression: 

 E. coli BL21 were transfected with the mLin28a-LgBiT (pFN29K) and SmBiT-HT 

(pFN30k). 1 L cultures were then grown to an OD600 of 0.6 and induced with 1 mM 

Isopropyl β-D-1-thiogalactopyranoside and allowed to grow overnight at 37°C. The 

purification protocol of mLin28a-HT from chapter 5 was used for both protein fusions. 

mTetrazine halotag ligand was added to purified protein at 20 equivalents and allowed to 

react overnight at 4°C before excess was buffer exchanged away.  

mTetrazine halotag ligand was synthesized using the reported protocol15 

 

In Vitro PCA: 

 500 nM SmBiT-HT (+/- mTet), Lin28a-LgBiT, and RNA (TCO/Cl) were mixed 10 

μL Binding Buffer (50 mM Tris pH 7.6, 150 mM NaCl, 5% Glycerol (v/v), 0.05% Tween-

20, Fresh: 1mM ZnCl2, 10mM Beta Mercaptoethanol. Add DMSO to reach 5% final 

concentration (adjust for compounds)). Following a 1-hour incubation at room 

temperature, 5 μL of NanoGlo reagent from Promega was added (1:50 dilution of reagent 

to buffer). Chemiluminescence was detected after 5 minutes using a Biotek Cyation 3. 

 

Generation of HEK293 FlpIn stable cell lines: 

 HEK293 FlpIn cells were purchased from Fisher Scientific. Generation of the 

SmBiT-HT cell line was achieved by following the suggested protocol from the vender. 
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Cell Based Protein Complementation Assay: 

 HEK293 and HEK FlpIn(SmBiT-HT) cells were cultured using standard cell culture 

techniques in DMEM supplemented with 10% fetal bovine serum, 2 mM Glutamine, and 

1% Pen-Strep (w/v). 400 μL of 100,000 cells per mL was prepared for reverse transfection 

with 50 μL optimem containing 1.2 μL RNAi Max Lipofectamine (Life Technologies), 1.25 

μL RBP-LgBiT (4ng/μL) pcDNA3 plasmid, 1.25 μL SmBiT-HT (4 ng/μL) pcDNA3 plasmid 

(not applicable for FlpIn cells), and 0.3 μL 50 μM RNA. 100 μL was then added to each 

well of a 96-well white tissue culture microtiter plate and allowed to incubate for 24 hours 

at 37°C with 5% CO2. Media was then aspirated and replaced with 100 μL room 

temperature Opti-MEM. 25 μL of NanoGlo Live Cell Reagent (Promega) was then added 

to each well (1:20 dilution of reagent to buffer), allowed to incubate for at least 5 minutes 

before detecting total chemiluminescence. Signal was stable for roughly 1 hour.  
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Chapter 6 

Conclusions and Future Directions 

 

Bioconjugation techniques have been used by chemical biologist to study a myriad 

of targets; however, one area of biology for which this toolkit has only been minimally 

applied is miRNAs. Despite miRNAs playing a role in nearly every aspect of biology, there 

has been a gap in our ability to manipulate these important micromanagers.1,2 The work 

presented in Chapters 3, 4, and 5 highlight the application of chemical biology to the study 

and targeting of miRNAs. The development of two separate cat-ELCCA assays discussed 

in Chapters 3 and 4 for Dicer-dependent miRNA maturation and for the Lin28-pre-let-7d 

RNA-protein interaction resulted in the identification of new scaffolds to manipulate 

miRNA biology. Additionally, the modularity designed into each cat-ELCCA assay will 

enable quick adaptation to other pre-miRNAs or RNA-protein targets-of-interest. Chapter 

5 described the use of similar bioconjugation techniques to facilitate the process of 

validating new RNA-protein interactions (RPIs) through a combination of proteomics and 

a new RPI protein complementation assay (PCA). When these technologies are 

combined, they create a pathway to discover new biology for a miRNA-of-interest and the 

tools to manipulate that biology (Figure 6.1). 
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6.1 The Future of Dicer Inhibitors 

 The information discussed in Chapter 1 highlights how proper control of miRNA 

expression is important to maintain cellular health and homeostasis. As mentioned in 

Chapter 2, the development of RNA-targeted oligonucleotide and small molecule drugs 

has been hindered by either tissue distribution or target selectivity, respectively. This 

conclusion is supported by the results in Chapter 3, which demonstrated that what we 
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Figure 6.1. miRNA Technology Pipeline. Pipeline for the discovery of miRNA pre-miRNA 
manipulators using technology outlined in previous chapters.  
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currently consider drug-like compounds and scaffolds for targeting RNA lack the 

properties necessary for selective pre-miRNA inhibition. Using RNA regulation found in 

biology as an inspiration, it is surely possible to find a selective compound from 

commercial compound libraries, but it should probably be viewed as a needle-in-a-

haystack approach. Therefore, the discovery of new scaffolds that bind RNA, and in 

particular pre-miRNAs, will be paramount to understanding small molecule-RNA 

interactions. Once a strong understanding of these interactions is obtained, the 

knowledge could then be applied to design molecules with selectivity. Chapter 3 

described the establishment of a platform for which to screen natural product extracts as 

a viable strategy to find new RNA-targeted chemical space. Future work elucidating the 

mechanisms by which these compounds bind to RNA will prove to be valuable to the field 

of RNA-targeted small molecules. Furthermore, expanding the source of natural products 

beyond actinobacteria could provide even more unique scaffolds and potentially reveal 

novel mechanisms for RNA regulation in Nature. 

 

6.2 Manipulating RNA Binding Proteins 

 As mentioned previously, the successful manipulation of select RNAs with small 

molecules has remain limited. Chapters 2 and 4 provided evidence that targeting known 

RPIs, such as Lin28-let-7, with small molecules can result in RNA modulation. Having 

identified an active sulfonamide scaffold using cat-ELCCA, future work is underway to 

fully characterize the interaction to improve the potency and expand our knowledge of 

targeting RNA-binding proteins (RBPs).  However, it will be critical to show both in celluo 

and in vivo activity, as this has yet to be demonstrated for Lin28-let-7 inhibitors. Should 



	 105	

such activity be demonstrated, an entire new strategy for therapeutic manipulation will 

emerge, as RBPs play a role in essentially every biological pathway.  

 

6.3 Characterization of RNA-Binding Proteins 

 With many RBPs yet to be characterized, the field of RNA research has countless 

questions left unanswered. To help address many of these questions, a new cell based 

RPI assay was described in Chapter 5 and was used to show the mitochondrial co-

localization of pre-let-7d and G-rich sequence factor 1 (GRSF1). Future work for this RPI-

PCA should focus on optimizing signal-to-background. These optimizations could be 

achieved through a variety of modifications including using a more optimal chloroalkane 

linker and adjusting transfection reagents.3 Additionally, with the recent incorporation of 

unnatural nucleotides in cells, it is theoretically possible to incorporate the necessary 

modifications under endogenous control.4,5 As the technology continues to be developed, 

the RPI-PCA could be used in variety of ways including a RNA interactome screen by 

fusing the known RBPs to LgBiT, as well as profiling changes during development in real 

time.  

 

6.4 Concluding Remarks 

Small molecule drug discovery is on the verge of a renaissance that is set up by 

our understanding of RNA biology. The tipping point is being catalyzed by development 

of tools such as the ones in this thesis that enable the rapid discovery and adaptation to 

many RNA targets. Once the first breakthrough is achieved by a small molecule RNA 

modulating drug, a new huge repertoire of clinically relevant targets awaits. Using the 



	 106	

information gained along the way will prove invaluable in enabling the future of small 

molecule RNA therapeutics. 
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