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ABSTRACT 

Obesity and its associated metabolic diseases present a major public health problem around the 

world. The discovery that thermogenic fat is active in adult humans has sparked a renewal of 

interest in the study of its development and function and in the feasibility of using modulators of 

thermogenesis to work against obesity. In recent years there have been a number of exciting 

discoveries about the properties of thermogenic fat, and every new discovery demonstrates just 

how much we still don’t understand about these cells. Research that gains further understanding 

through the development of tools or the identification of novel compounds that regulate 

thermogenic adipocytes may lead to novel therapeutics to target thermogenic fat and could have a 

profound impact on the efforts to harness the power of thermogenic fat to counteract obesity. 

 

It has long been recognized that body fat distribution and regional adiposity play a major role in 

the control of metabolic homeostasis. However, the ability to study and compare the cell 

autonomous regulation and response of adipocytes from different fat depots has been hampered 

by the difficulty of inducing preadipocytes isolated from the visceral depot to differentiate into 

mature adipocytes in culture. In the first part of my thesis work, I present an easily created 3D 

culture system that can be used to differentiate preadipocytes from the visceral depot as robustly 

as those from the subcutaneous depot. The cells differentiated in these 3D collagen gels are mature 

adipocytes that retain depot-specific characteristics, as determined by imaging, gene expression, 

and functional assays. This 3D culture system therefore allows for study of the development and 



	 x 

function of adipocytes from both depots in vitro, and may ultimately lead to a greater 

understanding of site-specific functional differences of adipose tissues to metabolic dysregulation. 

 

Cinnamaldehyde (CA) is a food compound that has previously been observed to be protective 

against obesity and hyperglycemia. In the second part of my thesis work, I report that CA activates 

a thermogenic response via PKA signaling in murine subcutaneous adipocytes and that chronic 

CA treatment induces metabolic reprogramming that is partially dependent on FGF21 and that 

may contribute to improving whole-body metabolic health. This phenomenon is fat cell-

autonomous and well conserved in human adipose stem cells isolated from subcutaneous depots 

of multiple donors of different ethnicities and ages and with a variety of body mass indexes (BMI). 

Given the wide usage of cinnamon in the food industry, the notion that this popular food additive, 

instead of a drug, may activate thermogenesis, could ultimately lead to therapeutic strategies 

against obesity that are much better adhered to by participants. 

 

The potential of the adipocyte in the understanding and treatment of human physiology in health 

and disease is clearly as of yet not fully realized. Here, I have provided a method to further study 

the differences between subcutaneous and visceral fat as well as investigated the pathways through 

which novel compounds can activate thermogenesis and metabolic reprogramming in murine and 

human subcutaneous adipocytes. A growing body of research has begun to show that the activation 

of human thermogenic fat can have a meaningful effect on human physiology, this tangible 

translational aspect of thermogenic adipocyte research gives promise to the idea that the tools 

developed here lay ground for further exciting discoveries that are yet to come. 	
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CHAPTER I  

Introduction: Transcriptional Control and Hormonal Response of Thermogenic Fat 

 

Abstract 

Obesity and its associated metabolic diseases present a major public health problem around the 

world. The discovery that thermogenic fat is active in adult humans has sparked a renewal of 

interest in the study of its development and function and in the feasibility of using modulators of 

thermogenesis to work against obesity. In recent years it has been shown that there are at least 

two distinct types of thermogenic fat cells; brown and beige fat. In this review we discuss the 

transcriptional mediators of thermogenesis and the signaling molecules that regulate thermogenic 

cells. We also review the effects of thermogenic fat activation on whole body metabolic 

parameters and evaluate the increasing evidence that activating thermogenesis in humans can be 

a viable method of ameliorating obesity. In these discussions we highlight targets that can 

potentially be stimulated or modified in anti-obesity treatments. 

 

Introduction 

Obesity is a major health problem in the United States and around the world. Over one third of 

adults in the United States [1] and 11% percent of adults worldwide are obese [2]. A number of 

conditions including heart disease, type 2 diabetes, and some cancers 

																																																								
 This chapter has been published as: Emont, M.P., Yu, H., and Wu, J. (2015). Transcriptional 
control and hormonal response of thermogenic fat. J Endocrinol 225, R35-R47 
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are more prevalent in obese individuals and worldwide approximately 3.4 million deaths each 

year are tied to obesity [2]. Obesity is characterized by an excessive amount of lipid 

accumulation in fat cells; as a result there has been a continual effort to find cellular processes 

and molecular targets in fat that can be manipulated in anti-obesity treatments. 

 

Three types of fat cells have been identified to date [3]. White adipocytes are primarily used for 

energy storage; they contain a large lipid droplet and few cellular organelles. In contrast, brown 

adipocytes are primarily a site for adaptive thermogenesis which, unlike the obligatory 

thermogenesis that is a natural byproduct of metabolic processes, is activated in response to cold 

stimulation [4]. Brown adipocytes contain multiple small lipid droplets and a number of 

mitochondria, which express uncoupling protein 1 (UCP1), a major component of the 

thermogenic program and a specific marker of thermogenic adipocytes [5]. UCP1 is activated by 

long chain fatty acids and increases the conductance of the inner mitochondrial membrane, 

causing the mitochondria to produce heat at the expense of ATP production efficiency [6]. While 

overabundance of white fat is the defining characteristic of obesity and contributes to the 

development of metabolic disease, brown fat in fact works to counteract obesity by converting 

chemical energy into heat as opposed to storing it as lipid [3]. Brown fat is primarily found 

interscapularly in rodents and arises from MYF5+ stem cells that can also differentiate into 

skeletal myocytes [7]. “Beige” or “brite” fat is a newly identified type of fat that is located in 

white adipose tissue and arises from MYF5- stem cells but has an inducible thermogenic program 

[8, 9]. We will refer to thermogenic cells in white fat depots as beige cells and to the process of 

the activation of thermogenic fat cells in white fat depots as “beiging” in this review. It is 

conceivable that other types of fat exist in addition to white, brown, and beige fat. Recent work 
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on marrow adipose tissue, for example, has begun to characterize the distinctive functions of 

these unique fat cells that are not seen in currently identified types of fat [10, 11]. 

 

Adaptive thermogenesis in fat is activated by cold exposure mainly through the signaling of 

catecholamines secreted by the sympathetic nervous system [5]. The sympathetic nervous system 

primarily signals through the α and β1-3 adrenergic receptors (AR), consequently in β-less mice, 

which lack all isoforms of the β adrenergic receptor, the brown fat depot is comprised of cells 

with large lipid droplets and blunted UCP1 expression [12]. The β ARs are G-protein coupled 

receptors that, upon stimulation, activate adenylyl cyclase and increase levels of intracellular 

cAMP. This leads to the phosphorylation of protein kinase A (PKA), which in turn activates the 

p38 MAP kinase (MAPK) pathway and induces cAMP response-element binding protein 

(CREB) mediated upregulation of UCP1 [5]. Studies have begun to show that therapeutics that 

act centrally can affect thermogenesis, for example a Glucagon-like peptide-1 (GLP1) receptor 

agonist works in the central nervous system to activate brown adipose tissue and may increase 

resting energy expenditure in humans [13]. β-adrenergic signaling may not be the only pathway 

for cold induced activation of thermogenic fat. Ye et al. showed that cultured, mature, adipocytes 

can upregulate thermogenesis in response to cold exposure, suggesting that there is also a cell 

autonomous cold sensing mechanism in fat cells [14]. This implies that there may be unexplored 

pathways that function in parallel with β AR signaling to activate cold induced thermogenesis. 

 

This review focuses on the transcriptional control of thermogenic genes and the signaling beyond 

the sympathetic nervous system that regulates both brown and beige fat function. We also 
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discuss the effects that thermogenic fat activation may have on systemic metabolism in humans 

and highlight molecules that have begun to be tested as drug targets. 

 

Transcriptional Control of Thermogenic Fat 

The cascades mediated by a number of transcriptional factors and cofactors tightly control the 

adipogenic process. The unique mechanisms that regulate thermogenic fat are much less well 

understood. In the following section, we discuss the factors that contribute to the development of 

thermogenic cells and the activation of the thermogenic program (Figure I.1). 

 

PPARγ  

Peroxisome proliferator-activated receptor γ (PPARγ) is the master regulator of adipogenesis; 

ectopic expression of PPARγ stimulates the differentiation of fibroblasts into adipocytes [15]. 

PPARγ is a nuclear receptor that heterodimerizes with the retinoid x receptor (RXR) to induce 

transcription of genes related to the adipogenic program [16]. In addition to its central role in 

adipogenesis, PPARγ has been shown to be important in the regulation of thermogenesis. 

Chronic stimulation of adipocyte cultures with PPARγ agonists results in an induction of the 

thermogenic program [9, 17, 18]. Ongoing research is beginning to elucidate the molecular 

mechanisms by which PPARγ regulates thermogenesis. A mouse model with a point mutation in 

PPARγ was found to have normal development of adipose tissue but has defective thermogenesis 

[19] and more recently it was shown that SIRT1-dependent deacetylation of PPARγ plays a role 

in the upregulation of thermogenic genes [20]. It has also been proposed that stabilization of 

PRD1-BF1-RIZ1 homologous domain containing 16 (PRDM16) through the action of PPARγ 

agonists may contribute to the induction of thermogenesis [21]. These studies have begun to 
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provide mechanistic insight into our understanding of how PPARγ regulates the function of 

thermogenic fat. 

 

PGC1α 

The peroxisome proliferator-activated receptor γ coactivator 1 (PGC1) family of proteins are 

coactivators that are key inducers of mitochondrial biogenesis [22]. The first PGC1 protein to be 

identified is PGC1α, which was isolated in a yeast two-hybrid screen for PPARγ interacting 

proteins in brown fat [23]. Both PGC1α and a closely related family member, PGC1β, are 

regulators of the thermogenic program. Brown fat cells from PGC1α knockout animals have a 

decrease in cAMP induced thermogenesis and loss of both PGC1α and PGC1β in brown fat cells 

reduces basal levels of thermogenesis [24]. Additionally, while PGC1β knockout mice have a 

compensatory increase in PGC1α expression, there is a reduction of thermogenic gene 

expression in the brown fat of those animals [25]. Recently, interferon regulatory factor 4 (IRF4) 

has been shown to interact with PGC1α to mediate thermogenesis. In the model of IRF4 

overexpression in UCP1 positive cells, thermogenesis is activated in brown fat of the transgenic 

animals compared to the controls. Additionally, a Ucp1-CRE driven IRF4 knockout results in 

cold intolerance and a reduction in thermogenic gene expression [26]. PGC1α has also been 

shown to induce the expression of Cell death-inducing DFFA-like effector (CIDEA), a regulator 

of UCP1 function. This interaction is inhibited through direct interaction of PGC1α with the 

corepressor receptor interacting protein 140 (RIP140) [27]. RIP140 had previously been reported 

to inhibit mitochondrial biogenesis and the expression of thermogenic genes such as UCP1 [28, 

29]. PGC1α is also negatively regulated by retinoblastoma protein (Rb) and its closely related 

family member p107. Rb has been shown to suppress PPARγ signaling and promote osteogenic 
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differentiation and p107 knockout mice have increased expression of PGC1α and UCP1 in both 

brown and white fat depots [30, 31]. These studies show that various interacting proteins can 

regulate PGC1α function in mediating thermogenic gene expression. 

 

PRDM16 

PRDM16 is a zinc finger protein that is an important regulator of thermogenic fat. Ectopic 

expression of PRDM16 in cultured fibroblasts and in vivo results in thermogenic adipocyte 

differentiation [32]. It was subsequently found that PRDM16 expression in precursor cells 

determines cell fate, PRDM16 knockdown in primary brown fat precursor cells results in the 

differentiation of those cells into skeletal myotubes while overexpression of PRDM16 in skeletal 

muscle precursor cells results in brown adipocyte differentiation [7]. The mechanism by which 

PRDM16 determines precursor cell fate was later shown to be controlled in part by a 

transcription complex consisting of PRDM16 and CCAAT/enhancer binding protein β (C/EBPβ) 

[33]. Further in vivo models showed that fat specific PRDM16 overexpression results in 

improved metabolic function and less weight gain in high fat diet fed mice [34] and knocking out 

PRDM16 results in a loss of the thermogenic program in both brown and beige fat [35, 36]. 

Ongoing work is beginning to characterize the transcriptional complex that interacts with 

PRDM16 to promote thermogenesis [37]. 

 

EBF2 

Early B-cell factor 2 (EBF2) is a helix-loop-helix transcription factor that regulates B 

lymphocytes and neuronal genes [38] and has been shown to regulate adipogenesis [39, 40]. 

More recently, EBF2 has also been shown to play a role in regulating the thermogenic program 
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in brown and beige adipocytes. A 2013 study used models of EBF2 knockout and overexpression 

to demonstrate that EBF2 helps to recruit PPARγ to the promoter regions of thermogenic target 

genes and, with PPARγ, activates the transcription of PRDM16. EBF2 knockout mice present 

defective brown fat development [41] and recent studies have indicated that EBF2 may also be 

involved in the regulation of beige fat function [42]. The identification of Brown fat long 

noncoding RNA 1 (Blnc1) has provided insight into the mechanisms of EBF2 action. Blnc1 was 

shown to be an important component of the EBF2 ribonucleoprotein complex [43]. Adipocytes 

that overexpress Blnc1 express thermogenic genes at a higher level than controls at both basal 

and stimulated states, underlining the role of the EBF2 transcription complex in regulating 

thermogenesis [43].  

 

TLE3 

Transducin-like enhancer of split 3 (TLE3) is a groucho family co-repressor that was identified 

as a modulator of adipogenesis in a high throughput cDNA screen [44]. It was found that PPARγ 

directly drives Tle3 expression and that the TLE3 protein binds to PPARγ and 

uncharacteristically acts as a co-activator to promote differentiation [44]. Subsequent work has 

shown that TLE3 is actually a white fat selective protein; overexpression of TLE3 in fat leads to 

a decrease in thermogenic gene expression and a fat specific TLE3 knockout has an increase in 

the thermogenic response to cold exposure [45]. Co-expression experiments revealed that TLE3 

and PRDM16 “compete” to bind to PPARγ and the resulting distinct transcription complexes 

determine the expression of either lipid storage “white fat specific” genes or thermogenic fat 

specific genes [45].  
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SMAD 

Transforming growth factor β (TGFβ) signaling through SMAD proteins has been shown to 

negatively regulate adipogenesis [46]. A SMAD3 global knockout mouse is resistant to diet 

induced obesity and there is increased UCP1 expression in the adipose tissue of these animals 

compared to controls [47]. Similarly, treating wild type animals with exogenous TGFβ1 reduced 

thermogenic gene expression in fat [47]. Zinc finger protein 423, a transcriptional regulator of 

SMAD proteins, has been identified as playing a key role in preadipocyte fate commitment [48]. 

The therapeutic potential of targeting TGFβ signaling has been explored using a dominant 

negative activin receptor type IIB fusion protein that promotes thermogenesis through binding of 

TGFβ and inhibition of downstream signaling [49].  

 

Secreted Molecules and Signaling in Thermogenic Fat 

While sympathetic signaling is the most understood pathway for the activation of adaptive 

thermogenesis, new research has focused on identifying other secreted factors that can activate 

thermogenic fat, both to gain a greater understanding of the regulation of the thermogenic 

program and to identify potential targets for drug discovery (Figure I.2). 

 

FGF family 

Fibroblast growth factor (FGF) family members such as FGF1 and FGF15/19, have been 

implicated in contributing to the regulation of glucose homeostasis and the beiging of white fat 

[50, 51]. FGF21 is the family member most well studied in metabolism; it has been shown to 

regulate glucose homeostasis, lipid metabolism, insulin sensitivity, ketogenesis, and the 

prevention of cardiovascular disease [52-56]. FGF21 is mostly produced in and released from the 
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liver; however, thermogenic activation also increases FGF21 expression in subcutaneous and 

brown adipose tissue [57, 58]. Ongoing research is investigating the differential roles of liver- 

and adipose tissue-derived FGF21 in regulating energy homeostasis [59]. Systemic 

administration of FGF21 increases the expression of UCP1 [60] and genetic ablation of FGF21 

impairs the ability of animals to adapt to cold exposure [58]. Though FGF21 is not expressed in 

the central nervous system, it can cross the blood-brain barrier to induce sympathetic nerve 

activity and thus centrally increase thermogenic gene expression and energy expenditure [61]. 

Recent studies have revealed that adiponectin at least partially mediates the effects of FGF21 on 

energy expenditure and insulin action [54, 62]. Due to the beneficial effects of FGF21 in 

metabolism, there has been considerable interest in the development of an FGF21 analog drug, 

the successful production of which could potentially provide new strategies to improve metabolic 

health in humans [63].  

 

COX2 and Prostaglandins 

Cyclooxygenase-2 (COX2) is an enzyme that synthesizes prostaglandins (PG) in response to 

stimuli such as inflammatory signaling [64]. In 2010, two independent studies reported the 

induction of COX2 in white fat depots upon cold-exposure or β-adrenergic stimulation [65, 66]. 

Pharmacological inhibition or genetic ablation of COX2 diminishes the cold or β-AR activation 

induced beiging of white adipose tissue [65, 66]. Overexpression of COX2 has been shown to 

increase UCP1 expression in adipose tissue, elevate energy expenditure, and reduce weight gain 

[65]. More recently, prostaglandin E2 (PGE2) and the enzyme that synthesizes it, microsomal 

synthase-1 (mPGES-1), were shown to play a role in the development of beige fat [67].  
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Retinoic acid 

Retinoic acid (RA), the active derivative form of vitamin A, is mainly synthesized intracellularly 

from retinaldehyde (Rald) by retinaldehyde dehydrogenases (RALDHs) [68]. Studies have 

suggested that RA, Rald and RALDHs all play functional roles in regulating thermogenic gene 

expression. It has long been recognized that RA induces UCP1 expression both in cultured 

brown adipocytes and in brown adipose tissue [69]. In mouse embryonic fibroblast-derived 

adipocytes, UCP1 expression is highly elevated upon all-trans RA stimulation in a p38 MAPK-

dependent manner [70]. Rald has also been implicated in the induction of the thermogenic 

program; Plutzky and colleagues have shown that RALDH1 knockout mice have elevated levels 

of Rald and exhibit increased energy expenditure, improved insulin sensitivity, and resistance to 

diet-induced obesity [71]. Later studies demonstrated that the beneficial metabolic effects of 

Rald signaling likely act through a PGC1α mediated pathway [72]. 

 

Thyroid Hormone 

Thyroid hormones are produced by the thyroid and bind to thyroid hormone receptors (TR) α1-2 

and β1-2 to affect to growth and metabolism in target tissues throughout the body, including 

bone, liver, heart, and fat [73]. Thyroxine, or T4 thyroid hormone, comprises the majority of 

thyroid output and deiodinases at peripheral tissues, such as the liver and kidney, remove the 5’ 

iodine on T4 to form the metabolically active form of thyroid hormone, triiodothyronine (T3) 

[73]. T3 is responsible for increasing the metabolic rate and it has been shown to work in concert 

with norepinephrine to induce transcription of UCP1 in the brown adipose tissue of rats in vivo 

[74]. Later studies showed that the treatment of primary fetal brown adipocytes from rats with T3 

increases Ucp1 transcription and stabilizes Ucp1 mRNA [75]. The ability of T3 to induce 
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thermogenesis was shown to be dependent on the TR isoform that it signals through, the TRβ1 

specific agonist GC-1 stimulates UCP1 expression but a TRα1 agonist does not [76, 77]. While 

thyroid hormone can directly activate the thermogenic program in fat cells, T3 signaling in the 

hypothalamus through AMPK also works to activate the central nervous system to induce 

thermogenesis via β3 AR signaling [78]. 

 

Natriuretic Peptides 

The natriuretic peptides (NPs) are a family of cardiac and vascular derived hormones that 

regulate sodium homeostasis in blood and urine. There are three main types of NPs; atrial 

natriuretic peptide (ANP), and B- and C-type natriuretic peptides (BNP and CNP) [79]. 

Additionally, there are two major classes of NP receptors; NP receptors A and B mediate an 

intracellular cyclic guanosine monophosphate-dependent signaling cascade, while the NP 

receptor C (NPRC) facilitates the removal of NPs from circulation [80]. The discovery that NP 

receptors are expressed in the adipose tissue of rats and humans opened an area of inquiry into 

the actions of NPs in fat [81, 82] and it was subsequently shown that ANP and BNP stimulate 

lipolysis in human adipocytes [83]. Recent work on NPRC global knockout mice shows that 

these animals have increased ANP, reduced fat depot size, and increased thermogenic gene 

expression [84]. Further studies implicated both ANP and BNP in the regulation of 

thermogenesis, ANP was shown to mediate the induction of thermogenic genes through the 

stimulation of a cGMP/p38 MAPK pathway and the constant delivery of BNP to mice resulted in 

increased energy expenditure and beiging of white adipose tissue [84].  

 

Signaling from Immune Cells 
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One consequence of obesity is a change of the macrophage populations seen in adipose tissue 

from anti-inflammatory M2 macrophages to pro-inflammatory M1 macrophages [85]. This 

switch in macrophage populations may contribute to the decrease in thermogenesis because 

catecholamines produced by M2 macrophages can signal through the β ARs to induce 

thermogenesis [86, 87]. Recently, it has been shown that other cells associated with the type 2 

immune response, specifically type 2 lymphoid cells, can also contribute to the beiging of fat 

[88, 89]. The development of chronic inflammation during obesity leads to upregulation of the 

non-canonical NF-κB target, IκB kinase ε (IKKε) [90]. The increase of IKKε results in 

catecholamine resistance in adipose tissue, which in turn suppresses the induction of UCP1 [91]. 

This is consistent with the observation that an IKKε global knockout mouse has less 

inflammation, increased energy expenditure, and upregulation of thermogenic gene expression in 

the visceral depot compared to wild type animals [90]. Treating high fat diet fed animals with a 

specific inhibitor of both IKKε and the related kinase TBK1 results in reduced lipid deposition in 

brown adipose tissue and an increase in thermogenic gene expression [92]. These studies provide 

a model in which the development of obesity leads not only to the loss of a thermogenic signal 

from type 2 inflammatory cells but also to the development of chronic inflammation and 

subsequent resistance to thermogenic signals. 

 

Myokines (Irisin and METRNL) 

Induction of PGC1α in skeletal muscle has systematic benefits including an increase in energy 

expenditure and prevention of age-related obesity [93, 94]. Elevated expression of the protein 

fibronectin type III domain containing 5 (FNDC5) was seen in a model of skeletal muscle 

specific overexpression of PGC1α. Irisin, the cleaved form of FNDC5, is a secreted hormone 
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released after exercise that stimulates the beiging of white fat [95, 96]. Recently, irisin was 

demonstrated to be not only a myokine but also an adipokine that can be secreted from white fat 

tissue under certain physiological and pathological conditions [97]. It has been shown that cold 

exposure increases levels of circulating irisin, suggesting that shivering may result in irisin 

release from muscle and therefore providing another potential physiological mechanism by 

which irisin stimulates beiging [98]. In addition to irisin, meteorin-like (METRNL) has also 

recently been implicated as playing a role in metabolism. METRNL is a hormone that is released 

from muscle after exercise and from adipose tissue upon cold exposure. Intravenous injections of 

an adenoviral METRNL construct or direct injection of recombinant protein into mice induces 

thermogenesis in fat, increases whole-body energy expenditure and improves glucose tolerance 

through eosinophil-dependent IL4/IL13 signaling [99]. The identification and characterization of 

irisin and METRNL provide a model in which myokines released during exercise influence 

metabolism. The extent to which myokine signaling contributes to the overall metabolic benefits 

of exercise and how these signals interact with other exercise regulated pathways await further 

study. 

 

Bone morphogenetic proteins  

Bone morphogenetic proteins (BMPs) are members of the TGFβ superfamily and are involved in 

multiple biological processes in adipose tissue including enhancing preadipocyte proliferation 

[100], inducing adipogenesis [101], influencing adipocyte lineage commitment [102], and 

regulating thermogenesis [103, 104]. BMP7 has been shown to promote brown adipogenesis 

through the induction of PRDM16 and PGC1α [104]. Another family member, BMP8b, 

functions in the central nervous system to increase sympathetic output and therefore increases 
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the response of thermogenic fat to cold exposure through p38 MAPK and CREB signaling [103]. 

A BMP8b global knockout mouse has reduced thermogenic gene expression in adipose tissue 

compared to controls [103].  

 

Newly discovered factors  

More recently, additional secreted factors important to thermogenic fat biology have been 

reported [105-109]. For want of space, we will briefly discuss only a few of them here. 

 

It has been observed that cachexia, the wasting of adipose and skeletal muscle tissues seen in 

diseases such as cancer, is associated with the activation of brown fat [110]. A recent study 

found that the thermogenic program is activated in fat cells treated with conditioned medium 

from Lewis lung carcinoma (LLC) cells, a well-characterized model of cachexia [106]. Global 

gene expression analysis of LLC cells identified parathyroid-hormone-related protein (PTHrP) as 

regulating the activation of thermogenesis, likely through the cAMP/PKA pathway [106]. This 

discovery has begun to provide mechanistic insight into the etiology of the development of 

cachexia and further studies may suggest treatments that can prevent tissue wasting during 

disease. 

 

Adenosine has recently been shown to increase lipolysis in primary human and mouse 

adipocytes [107]. Adenosine is released from brown fat upon sympathetic stimulation and can 

signal brown adipocytes to stimulate thermogenesis. The adenosine receptor A2A is not highly 

expressed in white adipose tissue, however, pharmacological activation of A2A and viral delivery 

of A2A into the subcutaneous depot of mice both significantly increase beiging [107].  
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Neuregulin 4 (NRG4), a member of the epidermal growth factor (EGF) family, was recently 

discovered to be a secreted factor that is released from brown fat [109]. NRG4 binds to ERBB 

receptors in the liver and its activation inhibits the SREBP1c-lipogenic pathway through trans-

repression of the liver X receptor by STAT5. In vivo gain and loss of function studies have 

shown that NRG4 helps to ameliorate diet-induced obesity and insulin resistance [109]. These 

studies suggest that factors released from brown fat can play a role in regulating energy 

expenditure and systemic metabolism.  

 

Human Thermogenic Fat 

While originally it was believed that the only brown fat in humans was found in newborns and 

was rapidly lost postnatally, analysis of 18F-fluorodeoxyglucose positron-emission tomographic 

and computed tomographic (PET-CT) scans showed that there is active thermogenic fat in some 

adults [111]. Biopsies of “hot” areas indicated by PET-CT scans reveal that the fat tissue in the 

supraclavicular region, as well as in the neck and paraspinal regions, expresses UCP1 [112-115]. 

The identity of the thermogenic fat in adults remains uncertain. While the thermogenic fat found 

in babies has the characteristics of classical brown fat, gene expression analyses performed on 

adult thermogenic fat have shown the presence of genes that are thought to be beige specific [8, 

116-118], suggesting that they might be beige fat. Other studies have suggested that human 

thermogenic fat tissue may be a mixture of brown and beige cells [119, 120].  

 

Recent work has indicated that thermogenic fat may play an important, active, metabolic role in 

humans (Table I.1). Multiple studies have shown that the presence of thermogenic fat is 

negatively correlated with age and BMI [112, 114, 115, 121, 122]. There is an increase in the 
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amount of detectable thermogenic fat in patients who underwent significant weight loss after 

gastric bypass surgery, suggesting that the decrease in the amount of thermogenic fat seen during 

obesity can be reversed [123]. It has also been shown that environmental temperature modulates 

the amount of detectable thermogenic fat in adults [112, 113, 115]. Furthermore, acute cold 

exposure increases resting metabolic rate more in individuals that have visible thermogenic fat 

on PET-CT scans compared to individuals without detectable thermogenic fat [124-128], this is 

in line with reports that there is increased glucose and fatty acid uptake in supraclavicular fat 

depots in response to cold exposure [125, 129]. Most excitingly, it has recently been shown that 

the accumulation of thermogenic fat in response to cold exposure results in improvements in 

insulin sensitivity and glucose homeostasis [130, 131] as well as a decrease in body weight 

[128]. These studies indicate that human thermogenic fat is a viable target for anti-obesity and 

anti-diabetic treatments. 

 

Concluding Remarks 

In the long pursuit of better understanding and more effective therapeutics for metabolic disease, 

we have become aware that many of these disorders are polygenic and multifactorial, suggesting 

the ultimate solution demands a thorough knowledge of all cell types involved, and of both cell 

autonomous regulation and intercellular communication. Increasing appreciation has been 

directed towards the role of adipose tissue in this complicated network. For two decades, since 

the cloning of leptin [132] and the discovery that fat tissue can generate inflammatory cytokines 

in obesity [133], the endocrine function of adipose tissue has been studied in detail and is 

relatively well understood. It has only been in the last decade that researchers and clinicians in 

the metabolic field have begun to recognize the potential influence of thermogenic fat cells on 
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whole body metabolism. We have made great advances in our understanding of how these cells 

are regulated both transcriptionally and by circulating factors and our knowledge of how these 

cells contribute to human metabolism is growing. Ongoing research is continually uncovering 

new methods to target these cells and recent studies have begun to show that some therapeutics 

already in clinical use, like the mineralocorticoid receptor antagonist spirolactone and the GLP1 

receptor agonist liraglutide, may also be able to stimulate thermogenic fat [13, 134]. With this 

knowledge we can hopefully soon develop treatments that target thermogenic fat to fight against 

obesity and associated conditions.  
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Figure I.1 Transcriptional Regulation of the Thermogenic Program 
The PPARγ/RXR heterodimer plays a key role in regulating the development of all adipocytes. 
In thermogenic adipocytes (left) it also plays a major role in the regulation of the thermogenic 
program. A number of coactivators interact with PPARγ, including PGC1α which is regulated in 
part by IRF4, and PRDM16 which interacts with both PPARγ and C/EBPβ to drive 
thermogenesis. Other transcriptional regulators of thermogenesis include EBF2, which forms a 
ribonucleoprotein complex with Blinc1 to upregulate thermogenic genes. In white adipocytes 
(right) the PPARγ/RXR heterodimer instead interacts with TLE3, leading to the expression of 
white fat selective genes. Rb, p107, and RIP140 also work in white adipocytes to inhibit the 
transcription of thermogenic genes. 
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Figure I.2 The Regulation of Thermogenic Fat Cells by Secreted Factors 
A number of secreted factors regulate the thermogenic program in brown and beige cells. Cold 
exposure induces production of catecholamines from the sympathetic nervous system (solid teal 
line) and may also activate beige fat through a cell autonomous mechanism (dashed teal line). 
Anti-inflammatory macrophages can also produce catecholamines. FGF21, PG, RA, NPs, 
thyroid hormone, METRNL, BMPs, adenosine, and PTHrP regulate thermogenesis in brown and 
beige cells. Additionally, the myokine irisin regulates thermogenesis in beige fat. FGF21, some 
BMPs, and adenosine have also been shown to be secreted by thermogenic adipocytes. To 
differentiate the factors that work in concert with central activation of thermogenesis and through 
beta-adrenergic signaling from those that work through independent pathways, these independent 
factors, RA, adenosine, Irisin, and METRNL, have been bolded. 
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 Thermogenic 
Fat 

Sample 
Size 

(max) 

Age 
(Range of 

means) 
Sex References 

Age Negatively 
correlated 4842 28-62 ♀♂ 

[114, 115, 121, 122, 
126, 135-138] 

 

BMI Negatively 
correlated 4842 24-62 ♀♂ 

[112, 114, 115, 121-
123, 128, 135-139] 

 

Cold exposure & 
environmental 
temperature 

Positively 
correlated 4842 23-62 ♀♂ 

 

[112-115, 121, 124-
126, 129, 135, 140, 

141] 
 

Respiratory 
Exchange Ratio 
& Nonshivering 
Thermogenesis 

Increased by 
activation of 
thermogenic 

fat 

27 23-40 ♀♂ [112, 123, 124, 127, 
129] 

Glucose 
Homeostasis & 

Insulin 
Sensitivity 

 
Improved by 
activation of 
thermogenic 

fat 

12 21-45 ♂ [130, 131] 

 
Table I.1 Thermogenic Fat in Humans Correlates with Physiological and Environmental 
Factors and Influences Metabolic Parameters 
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CHAPTER II  

Using a 3D Culture System to Differentiate Visceral Adipocytes in vitro 

 

Abstract 

It has long been recognized that body fat distribution and regional adiposity play a major role in 

the control of metabolic homeostasis. However, the ability to study and compare the cell 

autonomous regulation and response of adipocytes from different fat depots has been hampered 

by the difficulty of inducing preadipocytes isolated from the visceral depot to differentiate into 

mature adipocytes in culture. Here, we present an easily created 3D culture system that can be 

used to differentiate preadipocytes from the visceral depot as robustly as those from the 

subcutaneous depot. The cells differentiated in these 3D collagen gels are mature adipocytes that 

retain depot-specific characteristics, as determined by imaging, gene expression, and functional 

assays. This 3D culture system therefore allows for study of the development and function of 

adipocytes from both depots in vitro, and may ultimately lead to a greater understanding of site-

specific functional differences of adipose tissues to metabolic dysregulation. 

 

Introduction 

Obesity is a major public health problem, rates of which are rising yearly in children and adults 

around the world [1] and the development of obesity is directly linked to multiple diseases, such 

                                                             
This chapter has been published as: Emont, M.P., Yu, H., Hong, X., Maganti, N., Stegemann, 
J.P., and Wu, J. (2015) Using a 3D Culture System to Differentiate Visceral Adipocytes In Vitro. 
Endocrinology. 156(12):4761-8. 
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as cardiovascular disease and type 2 diabetes [2, 3]. In addition to obesity itself, fat distribution 

is a major predictor of metabolic disease; individuals that hold most of their weight in above the 

waist, visceral, depots are at much greater risk of developing metabolic and heart disease than 

those that hold it below the waist in subcutaneous depots [4-6]. Because adipose tissue plays a 

crucial role in regulating glucose and lipid metabolism, understanding the unique innate 

characteristics of regional fat depots and inter-depot functional distinctions may provide 

mechanistic insights for the causality between central adiposity and the pathogenesis of 

metabolic disease. 

 

Studies on the development and function of different fat depots in humans and rodent models 

have uncovered a number of differences between visceral and subcutaneous fat [7]. In response 

to energy surplus, more hyperplasia (increasing fat cell number) is observed in the subcutaneous 

depot whereas hypertrophic adaptation (increasing fat cell size) is more prominent in the visceral 

fat [8]. Obesity is often associated with chronic inflammation that in turn results in a loss of 

insulin sensitivity [3], inter-depot comparisons have revealed that visceral fat tissue exhibits 

more pro-inflammatory gene expression, suggesting differential contributions of the depots to the 

development of inflammation [9]. Regional adipose tissues also differ in response to central and 

hormonal regulation, for example, it has been shown that cold exposure causes much more 

profound “browning” in the subcutaneous white adipose tissue compared to visceral [10]. Depot-

specific gene signatures, including some developmental transcription factors, have been 

identified using whole adipose tissue gene profiling approaches [9, 11], indicating that these 

functional differences may be linked to intrinsic differences between the adipocytes in the two 

depots. 
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To compare these two fat depots, most studies have taken the form of in vivo experiments of 

genetically modified animals and mechanisms of cell autonomous regulation were often 

elucidated through in vitro studies using primary adipocytes. While methods have been 

developed to directly culture mature adipocytes [12], the majority of in vitro studies use 

adipocytes converted from preadipocytes that were isolated from the stromal vascular fraction 

(SVF) [13, 14]. While this method has been used to successfully study subcutaneous fat, it is less 

effective for visceral fat; visceral cells differentiate poorly, only 30-40%, compared to the robust 

differentiation seen in subcutaneous cells [15]. As a result, many in vitro studies have been done 

on only subcutaneous fat, potentially missing visceral-specific regulatory mechanisms and 

differential physiological functions of these two depots. 

 

Previous work has used three-dimensional (3D) culture in collagen matrices to study the 

interaction of adipocytes with the extracellular matrix and manipulate adipocytes for 

bioengineering applications [16-18]. In this study we designed and optimized a novel protocol to 

differentiate visceral adipocytes in a 3D collagen hydrogel system and demonstrate that visceral 

cells grown in these hydrogels differentiate as robustly as subcutaneous preadipocytes. We 

additionally show that these visceral adipocytes are functional fat cells that retain characteristics 

specific to the visceral depot. This user-friendly 3D culture protocol will enable in vitro studies 

of primary visceral preadipocytes, which may lead to new mechanistic insights into the 

development and function of visceral fat. 

 

Materials and Methods 

Animals 



 34 

All animal experiments were carried out following protocols approved by the University 

Committee on Use and Care of Animals (UCUCA) at the University of Michigan and conducted 

in conformity with the Public Health Service Policy on Humane Care and Use of Laboratory 

Animals. Similar results were observed with mice of both genders. Individual experiments were 

performed on cells that were isolated from the subcutaneous and visceral tissues of the same 

animals and processed side by side.  

 

SVF Isolation 

Mice were sacrificed and fat tissue was dissected from the inguinal (subcutaneous), perigonadal 

(visceral), and mesenteric depots. Tissue was minced and digested in a solution containing 

Collagenase D (Roche 11088858001)/Dispase II (Roche 04942078001) + 10mM CaCl2. After 

the tissue was fully digested, cells were suspended in wash media (DMEM/F12+GlutaMAX 

(Thermo Fisher 10565) supplemented with 10% FBS (Sigma F2442)), filtered through a 100-

micron cell strainer, and centrifuged at 200-300 x g for 5 minutes. Same lots of the Collagenase, 

Dispase and FBS were used throughout this study. The supernatant was removed and the pellet 

was then disrupted, resuspended in wash media, and filtered through a 40-micron cell strainer. 

This suspension was similarly centrifuged, the supernatant was discarded, and the disrupted 

pellet was resuspended in growth media (DMEM/F12 + GlutaMAX supplemented with 15% 

FBS) and plated on 10 cm dishes that had been coated with collagen type 1 isolated from rat tail 

(Fisher CB-40236). Contaminating cell types (e.g. red blood cells, immune cells) were removed 

after one to two rounds of subculture. Adherent fibroblast-like preadipocytes were then 

trypsinized and counted using a hemocytometer before plating for differentiation on a collagen 

coated 12 well plate or seeding into a collagen hydrogel. For each experiment, the subcutaneous 
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and visceral cells were obtained from the same cohort of animals and were isolated and 

differentiated side by side.  

 

Differentiation 

To induce adipogenesis, cells were plated at a concentration of 300,000 cells per well of a 

collagen coated 12 well plate (2D) or seeded at a concentration of 300,000 cells per 500 µL gel 

into a collagen hydrogel (3D). Cells were stimulated in DMEM/F12 + GlutaMAX supplemented 

with 10% FBS, dexamethasone (5 µM, Sigma D4902), insulin (0.5 µg/mL, Sigma I5500), 

isobutylmethylxanthine (0.5 mM, Sigma I7018)), and rosiglitazone (1 µM, Cayman 71740). 

After two days of stimulation, cells were maintained in DMEM/F12 + GlutaMAX with 10% FBS 

and insulin (0.5 µg/mL). Analyses of mature adipocytes were performed 6-7 days after 

stimulation. 

 

Seeding Cells in Collagen Hydrogels 

Collagen was diluted prior to gel creation by adding 0.02 N acetic acid to high concentration rat 

tail collagen type I (Corning Fisher CB-354249) to a final concentration of 8 mg/mL. 

Preadipocytes were counted, pelleted, and resuspended in DMEM/F12 to a final concentration of 

300,000 cells/50 µL (10X concentrated to the final seeding density). For each gel, 50 µL of this 

suspension was placed in a sterile eppendorf tube that contained 100 µL 5X DMEM/F12 (created 

using DMEM/F12 powder, Thermo Fisher 12500) and 50 µL FBS and the solution was mixed 

evenly by pipetting. 50 µL of 0.1 N NaOH was then added to this mixture, followed immediately 

by 250 µL 8 mg/mL acidic collagen solution. This step involves acute pH changes, which can be 

visually monitored with the pH indicator (phenol red) in the DMEM/F12 media. NaOH increases 
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the pH in the solution and causes the phenol red to turn a bright pink color, and the acidic 

collagen solution neutralizes the mixture and brings it back to an orange color. The cells were 

suspended evenly within the solution by pipetting and 500 µL of mixture was transferred to one 

well of a 24 well plate. The plates were placed in a 37°C incubator, and collagen within each 

well started to polymerize at the neutral pH. It takes approximately 10 minutes for gels to 

solidify, a change that can be assessed by development of a slightly cloudy appearance. Growth 

media was added to each well after polymerization was complete. Cells were differentiated in the 

gels using the standard differentiation procedure described above. For a schematic of cell 

isolation and gel creation, see Figure II.1. 

 

Imaging 

Oil Red O staining was performed as previously described [19]. For fluorescence, cells grown 

and differentiated in a gel (3D) or on a collagen coated glass bottom culture dish (2D) (MatTek) 

were fixed in 10% neutral-buffered formalin, washed twice with PBS, and incubated rocking at 

4°C in the dark in PBS supplemented with 0.01 mg/mL BODIPY 493/503 (4,4-Difluoro-

1,3,5,7,8-Pentamethyl-4-Bora-3a,4a-Diaza-s-Indacene, Life Technologies) and 1 µg/mL 

Propidium Iodide (Life Technologies). Samples were then washed twice with PBS and imaged 

using a confocal microscope. Gels were transferred to a glass bottom dish before imaging. 

 

Gene Expression Analysis 

To isolate RNA from 3D samples or adipose tissue, gels or fat tissues were homogenized in 

TRIzol reagent (Life Technologies) with a handheld homogenizer. RNA from cells grown in 2D 

was also isolated with TRIzol reagent and total RNA from 2D and 3D samples was isolated 
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according to the protocol provided by the manufacturer. Total RNA was reverse transcribed 

using M-MLV (Invitrogen) and analyzed using SYBR green (Fisher Scientific). All primer 

sequences are listed in Table II.1. 

 

Image Quantitation 

Fluorescent images were taken at 40x magnification as described in the manuscript. 50 images of 

visceral cells differentiated in 3D culture and 50 images of subcutaneous cells differentiated in 

3D culture were blindly quantified by a co-author who counted the number of nuclei, the number 

of nuclei associated with lipid droplets, the number of lipid droplets per cell, and the diameter of 

the lipid droplets in each image. Lipid droplet diameter was determined using ImageJ. 

 

ELISAs 

Gels were incubated in 900 µL media supplemented with 1 µg/mL LPS for 4 hours. ELISAs 

were performed using R&D DuoSet® kits specific to mouse IL-6 or mouse TNF alpha according 

to the instructions provided by the manufacturer.  

 

Western Blotting 

Gels were serum starved for 4 hours and treated with or without 10 µM isoproterenol for 15 

minutes. Samples were placed in 150 µL ice cold RIPA buffer supplemented with a cOmplete™ 

protease inhibitor cocktail tablet (Roche), homogenized using a handheld homogenizer, 

incubated, rocking, at 4°C for one hour, and centrifuged before being analyzed using SDS-

PAGE. 
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Lipolysis 

Gels were incubated with and without 10 µM isoproterenol (Sigma) at 37°C for one hour. The 

glycerol content of the supernatant was determined using free glycerol reagent (Sigma) 

according to the protocol provided by the manufacturer. 

 

Cellular Respiration 

Primary brown adipocytes were seeded into a collagen hydrogel and differentiated for 6 days as 

described in the manuscript. Gels were placed in PBS and minced with a razor blade before 

being transferred to the respiration system. Oxygen consumption was measured using a 

Strathkelvin Clark-type electrode as previously described [9]. 

 

GLUT4 Translocation 

3T3-L1 cells stably expressing GFP tagged GLUT4 were a generous gift from Dr. Alan Saltiel’s 

lab [20]. Cells were seeded into collagen hydrogels and differentiated for 7 days as described in 

the manuscript. Gels were washed twice in PBS and serum starved for 6 hours before treatment 

with or without 100 nM insulin. The intracellular distribution and translocation of GLUT4 were 

monitored and imaged with a confocal microscope. 

 

Statistics 

Data are expressed as mean ± standard error and significance was determined using a student’s t-

test. The reported “n” refers to the number of biological replicates of 2D wells or 3D gels tested 

in each experiment. P ≤ 0.05 was considered significant, P ≤ 0.01 is represented as “**”, and P ≤ 

0.001 is represented as “***”.  
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Results 

Visceral Preadipocytes Differentiate as Robustly as Subcutaneous Preadipocytes in 3D Collagen 

Hydrogels 

It has been previously reported that visceral preadipocytes do not differentiate to the same extent 

as subcutaneous cells in monolayer culture conditions [15, 21]. One possible reason for this is 

that they are intrinsically different than subcutaneous cells; visceral cells tend to form larger and 

fewer lipid droplets than subcutaneous cells in vivo [8] and thus may need more structural 

support and the ability to assume more natural shapes in order to differentiate into structurally 

fragile mature adipocytes with large lipid droplets. Collagen is a major structural protein in many 

tissues and has been used as a scaffolding biomaterial for a variety of cell culture and tissue 

engineering applications [22, 23]. We therefore tested collagen hydrogels to evaluate their utility 

in improving the differentiation of visceral preadipocytes. Various concentrations of collagen 

and different cell densities were tested and compared before we chose 4 mg/mL of collagen and 

3 x 105 cells/500 µL gel as conditions that were ideal for promoting optimal visceral cell 

differentiation. 

 

To test whether the collagen hydrogel system allows visceral preadipocytes to differentiate into 

mature fat cells to the same extent as subcutaneous preadipocytes, we grew and differentiated 

preadipocytes obtained from the SVF of subcutaneous and visceral depots side by side. The lack 

of lipid droplet accumulation in many visceral cells, as visualized by the absence of Oil Red O 

staining, demonstrated that these cells differentiated much more poorly than the subcutaneous 

cells in 2D cultures (II.2A, upper panels). Fluorescent imaging of 2D cultures stained with 

BODIPY (boron-dipyrromethene, a green fluorescent dye that is often used for staining lipids) 
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and Propidium Iodide (a red fluorescent dye that stains the nucleus) further showed a near 

complete differentiation in subcutaneous cells and poor differentiation of visceral cells (Figure 

II.2A, lower panels). When cultured in collagen hydrogels, the cells from both depots 

demonstrated robust differentiation (Figures II.2B, II.3A). Additionally, the visceral cells contain 

larger and fewer lipid droplets than the subcutaneous cells, consistent with morphology found in 

vivo and with previous reports of adipocytes grown in collagen gels [24-26] (Figure II.3B-D). 

 

To evaluate adipogenesis at the molecular level, we tested the expression levels of mature 

adipocyte markers in subcutaneous and visceral fat cells in both 2D and 3D cultures. We found 

that Adipoq, Fabp4 (also called aP2), and Pparg are significantly higher in subcutaneous 2D 

culture than in visceral 2D culture but are expressed at similar levels in 3D cultures (Figure 

II.2C). We also tested a number of genes involved in lipid and glucose metabolism Atgl, Dgat1, 

Glut4, Hsl, Plin1 and Scd1. Expression of these genes was low in visceral 2D culture and greatly 

increased in both subcutaneous 2D and subcutaneous and visceral 3D cultures, showing that 

these cells have robust expression of metabolic genes that are necessary for mature adipocyte 

function (Figure II.2D). We also tested our 3D gel culture system with precursors isolated from 

mesenteric fat, another visceral depot. We found that, similar to those from the perigonadal 

depot, preadipocytes isolated from the mesenteric depot also undergo robust differentiation in the 

3D culture system upon adipogenic stimulation (Figure II.4). Overall, these data suggest that our 

collagen 3D gels allow for vigorous differentiation of visceral preadipocytes in vitro. 

 

Adipocytes Differentiated in the Collagen Hydrogels Retain Depot-Specific Characteristics 
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We next tested the expression levels of previously identified depot-specific gene signatures to 

investigate whether cells cultured in collagen gels maintain their original depot identity. We 

assayed Shox2 and Tbx15, both of which are enriched in the subcutaneous depots of mice and 

humans [11, 27] as well as Agt and Wt1, which are enriched in the visceral depots of both mice 

[9, 24] and humans [27]. We first verified that these genes are enriched in their respective depots 

by assaying expression levels in tissue, then tested if they were similarly enriched in 2D and 3D 

culture. The inter-depot expression differences are more pronounced in 3D culture compared to 

2D culture in all cases and depot specific enrichment of Agt is even reversed in 2D culture 

(Figure II.5A-B). These data suggest that tissue-specific gene expression patterns can be 

obscured in sub-physiological 2D culture conditions, and that the 3D culture system reliably 

replicates the magnitude of the differential gene expression and restores the dysregulated gene 

expression that sometimes occurs in 2D culture.  

 

We next tested the expression of genes related to functional characteristics of both depots. 

Thermogenic genes have been shown to be expressed at higher levels in the subcutaneous depot 

[10] while the visceral depot has been shown to produce greater amounts of some cytokines [6]. 

We differentiated visceral and subcutaneous preadipocytes in gels and tested the expression 

levels of Cidea, Cox7a1, Dio2, Ppargc1a, and Prdm16 which are genes associated with 

thermogenesis [9, 28], as well as Ccl2 (also called Mcp1), Ccl5 (also called Rantes), Il6, Il10, 

and Tnfa which are cytokines known to be secreted from fat [6]. Thermogenic gene expression 

was higher in the subcutaneous cells (Figure II.5C) while cytokine gene expression was higher in 

the visceral cells (Figure II.5D). Lipopolysaccharide (LPS) is an endotoxin found in the cell wall 

of gram-negative bacteria that produces a strong immune response in many tissues, including 
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adipose tissue. We treated cells from both depots cultured in 3D gels with LPS and observed 

clear inter-depot difference in both cytokine gene expression (Figure II.5E) and cytokine 

secretion, as measured by ELISA (Figure II.5F). Taken together, these data show that the 

collagen 3D culture system enables visceral and subcutaneous adipocytes to retain their depot-

specific characteristics and can thus be used to study the intrinsic differences between adipocytes 

from the two depots. 

 

Cells Differentiated in Collagen Hydrogels are Functional Adipocytes 

Cells grown and differentiated in 3D culture were further tested to ensure that they retain the 

functionalities of mature adipocytes. It has been shown that upon cold exposure the adaptive 

thermogenic response is activated in white fat via adrenergic signaling [29]. We treated visceral 

and subcutaneous cells grown in 3D gels with isoproterenol, a pan β-adrenergic agonist, 

significantly increasing thermogenic gene expression in 3D cultures of both visceral and 

subcutaneous cells (Figure II.6A). Phosphorylation of p38 MAP Kinase (p38), a key regulator of 

β-adrenergic stimulated thermogenesis, was also increased in the isoproterenol treated samples 

(Figure II.6B). Hydrolysis of triglycerides to fatty acids and glycerol (lipolysis) is an important 

function of mature adipocytes and helps to maintain nutritional and energy homeostasis. We 

treated the gels with isoproterenol to mimic in vivo catecholamine stimulated lipolysis, and saw 

significantly increased glycerol content in the supernatant of stimulated visceral and 

subcutaneous gels (Figure II.6C), as well as an increase in the phosphorylation of hormone-

sensitive lipase (HSL) (Figure II.6D), an important step in the initiation of lipolysis [30]. We 

were also able to measure oxygen consumption of adipocytes differentiated in 3D gels (Figure 

II.7) and assess their ability to respond to hormonal stimulation (Figure II.8). These results 
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suggest that cells grown in the hydrogels not only exhibit the morphological characteristics and 

gene expression profiles of mature adipocytes but also can fulfill their many functions. 

 

Discussion 

In an attempt to find a culture condition that would allow visceral preadipocytes to differentiate 

as robustly as subcutaneous preadipocytes in vitro, we optimized a collagen hydrogel system to 

determine the ideal growth and differentiation conditions for visceral cells. Compared to many 

commercially available 3D culture systems, our collagen gels are easy to create and do not 

require specialized equipment or technical skills. Culture and differentiation using this protocol 

does not demand more cells than what is normally used in the 2D culture system, and 

downstream functional analyses can be carried out using the same techniques commonly used on 

whole tissues or cells grown in 2D. Using this system we are able to differentiate visceral cells as 

robustly as subcutaneous cells grown in 2D and 3D culture, thus providing a system where cells 

from both depots can be studied side by side. 

 

The reason why visceral cells do not differentiate as well as subcutaneous cells in 2D culture is 

not yet well understood. In this study we compared the differentiation potential of preadipocytes 

from these two depots in 2D and 3D cultures. The fact that the adipogenic potential of visceral 

cells can be restored in our collagen gel system suggest that the compromised adipogenesis seen 

in 2D is at least in part caused by some intrinsic properties of these precursors that can be 

ameliorated by the enhanced structural support of the 3D culture or other external factors. In 

visceral cells differentiated in gels, we observed robust expression of genes associated with 

metabolism as well as previously identified depot markers and functional markers, including 
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cytokines. This reliable replication of in vivo depot-specific characteristics underlines the utility 

of the 3D hydrogel system in studying the intrinsic differences of adipocytes from different 

depots.  

 

In summary, we show that 3D collagen hydrogels are a valuable system for culturing and 

differentiating visceral adipocytes. These gels are easy to create, can be used for a variety of 

molecular and functional studies, and do not require specialized equipment beyond those used 

for 2D cell culture. With this system we can study the cell autonomous regulation of visceral and 

subcutaneous adipocytes side by side and gain a better understanding of their individual 

contributions to the pathogenesis of metabolic disease.  
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Figure II.1 Schematic for the Isolation of Preadipocytes and Culture in Collagen Hydrogels 
 
 
  

Mix well. This will turn the 
mixture bright pink.

Mix well. This will turn the 
mixture orange-yellow.

4. Immediately transfer to a 24 well plate 
and allow to polymerize, then add 1 mL 
growth media.

5. Start differentiating the cells the day 
after seeding them into the gels.

2. Grow and expand the cells for 4-5 
days, trypsinise and count.

1. Isolate the desired fat depot(s) from 
mice, digest with collagenase/dispase, 
and plate onto a collagen coated plate.

3. To create one gel add the following to a 
tube in a stepwise manner:

300K cells in 
50 μL 1X DMEM

100 μL 5X DMEM
50 μL FBS 0.1N NaOH 250 μL 8 mg/mL collagen 
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Figure II.2 Preadipocytes Isolated from Visceral Fat Depots Differentiate as Robustly as 
those from Subcutaneous Depots in 3D but not 2D Culture.  
A. Representative morphologies of visceral and subcutaneous fat cells grown and differentiated 
in 2D culture, seen at 40x magnification. Upper panels, Oil Red O staining; lower panels, 
BODIPY (lipid, green)/Propidium Iodide (nucleus, red) staining B. Representative images of 
BODIPY/Propidium Iodide staining of visceral and subcutaneous cells grown in 3D culture at 
40x and 60x magnifications. Scale bars for 40x images are 50 µm and scale bars for 60x images 
are 20 µm. C. Expression of mature adipocyte markers Adipoq, Fabp4, and Pparg were assessed 
using RT-qPCR in cultures of visceral and subcutaneous adipocytes differentiated on 2D plates 
or in 3D gels. Values are mean ± SEM (n=3), ***, P ≤ 0.001. D. Expression levels of genes 
involved in glucose and lipid metabolism (Atgl, Dgat1, Glut4, Hsl, Plin1, and Scd1) were 
measured using RT-qPCR in cultures of visceral and subcutaneous adipocytes differentiated in 
2D or 3D. Values are mean ± SEM (n=6), different letters indicate a statistically significant 
difference (P ≤ 0.05). 
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Figure II.3 Visceral Cells Differentiate as Robustly as Subcutaneous Cells in 3D Hydrogels 
and Contain Fewer and Larger Lipid Droplets 
A. Quantifications of the percentage of total counted cells that contain lipid droplets in images of 
3D cultures of visceral or subcutaneous cells. B. Measuring the diameter of lipid droplets in 
visceral and subcutaneous adipocytes differentiated in 3D culture shows that visceral cells 
contain larger lipid droplets than subcutaneous cells on average. C. Quantifying the number of 
lipid droplets in mature adipocytes from visceral or subcutaneous 3D culture reveals that, on 
average, visceral cells contain fewer lipid droplets than subcutaneous cells. D. Analysis of the 
percentage of mature adipocytes that are unilocular across the total number of adipocytes 
counted in two separate experiments shows that visceral 3D cultures contain a greater percentage 
of unilocular adipocytes. Over 200 cells were counted for each depot and lipid droplet diameters 
were measured on 50 blindly chosen cells from each depot, values are mean ± SEM, n.s., P > 
.05, **, P ≤ 0.01, ***, P ≤ 0.001. 
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Figure II.4 Preadipocytes Isolated from the Mesenteric Depot Differentiate Robustly in 3D 
Culture  
A. Oil Red O staining of mesenteric adipocytes differentiated in 2D culture and BODIPY (lipid, 
green)/Propidium Iodide (nucleus, red) staining of mesenteric adipocytes differentiated in 3D 
culture show improved differentiation of mesenteric cells in 3D culture. Scale bars for 40x 
images are 50 µm and scale bars for 60x images are 20 µm. B. Expression of mature adipocyte 
markers Adipoq, Fabp4, and Pparg were assessed using RT-qPCR in cultures of mesenteric 
adipocytes differentiated on 2D plates or in 3D gels to confirm that mesenteric cells grown in 3D 
hydrogels undergo much more complete differentiation. Values are mean ± SEM (n=6), ***, P ≤ 
0.001. 
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Figure II.5 Cells Grown in the Collagen Hydrogels Retain Depot Specific Gene Expression 
and Function  
A-B. Expression of genes preferentially expressed in either subcutaneous (Shox2 and Tbx15) or 
visceral (Agt and Wt1) adipose depots were assayed using RT-qPCR with RNA extracted from 
subcutaneous/visceral adipose tissue or subcutaneous/visceral cells differentiated in 2D or 3D 
culture. Relative enrichment of depot-specific expression is shown as mean ± SEM (n=3), **, P 
≤ 0.01; and ***, P ≤ 0.001. C. Expression of thermogenic genes (Cidea, Cox7a1, Dio2, 
Ppargc1a, and Prdm16) was measured in 3D cultures of differentiated visceral and subcutaneous 
cells by RT-qPCR. D-E. Expression of cytokine genes (Ccl2, Ccl5, Il6, Il10, and Tnfa) was 
measured in basal (D) or LPS stimulated (E, 1 µg/mL LPS for 4 hours) subcutaneous or visceral 
cells differentiated in 3D gels. Values are mean ± SEM (n=5), *, P ≤ 0.05, **, P ≤ 0.01, ***, P ≤ 
0.001. F. Secretion of IL-6 and TNF alpha by visceral or subcutaneous cells grown in 3D gels 
was measured in the supernatant of gels stimulated with 1 µg/mL LPS for 4 hours. Values are 
mean ± SEM (n=3), **, P ≤ 0.01, ***, P ≤ 0.001.  
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Figure II.6 Adipocytes Differentiated in 3D Gels Maintain Normal Function in Response to 
Adrenergic Stimulation  
A. Differentiated visceral and subcutaneous cells grown in 3D gels were treated with or without 
isoproterenol (10 µM for 4 hours), then evaluated for gene expression levels of Pparg, Fgf21 and 
Ucp1 using RT-qPCR. Values are mean ± SEM (n=3), **, P ≤ 0.01; and ***, P ≤ 0.001. B. 
Differentiated visceral and subcutaneous cells grown in gels were treated with or without 
isoproterenol (10 µM for 15 minutes), then western blotted to determine levels of phospho- and 
total p38. C. Differentiated visceral and subcutaneous cells grown in 3D gels were incubated 
with or without isoproterenol (10 µM for 1 hour), supernatant was then assayed for glycerol 
content as a readout for lipolysis. Values are mean ± SEM (n=3), ***, P ≤ 0.001. D. 
Differentiated visceral and subcutaneous cells grown in gels were treated with or without 
isoproterenol (10 µM for 15 minutes), then western blotted to assay levels of phospho-HSL 
(S563) or total HSL. 
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Figure II.7 Adipocytes Grown in 3D Gels Can Be Assayed for Oxygen Consumption  
Brown adipocytes were also able to be grown and differentiated in 3D gels, similar to 
subcutaneous and visceral cells. Oxygen consumption measurements with 3D gels were 
demonstrated in these cells due to their higher mitochondrial content. Gels containing 
differentiated brown adipocytes were minced with a razor blade and oxygen consumption was 
measured. The results of three separate experiments are shown. For each experiment, oligomycin 
(Sigma) was added to measure uncoupled respiration, then FCCP (Sigma) was added to measure 
the maximal respiration. 
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Figure II.8 Adipocytes Grown in 3D Gels Are Acutely Regulated by Hormonal Stimulation  
A. Cells grown in 3D gels undergo AKT phosphorylation in response to insulin stimulation. 
Visceral cells differentiated in 3D gels were serum starved for 4 hours, then treated with 10 nM 
insulin for 10 minutes. To determine the amount of AKT phosphorylation in the gels, levels of 
phospho-AKT (S473) or total AKT were measured by western blot. B. The glucose transporter 
GLUT4 translocates to the plasma membrane in response to stimulation within the adipocytes 
cultured in 3D gels. 3T3-L1 cells stably expressing GFP tagged GLUT4 were serum starved for 
6 hours, then treated with 100 nM insulin for 30 minutes before being imaged with a confocal 
microscope. Two representative images of basal and insulin treated cells are shown. In untreated 
cells, GLUT4 is sequestered in vesicles in the cytoplasm, visualized by the diffuse GFP signal in 
the cells with insulin treatment (basal). Upon insulin stimulation, GLUT4 is translocated to the 
plasma membrane, resulting in the sharp ring of GFP seen on the borders of the cells. Scale bars 
are 20 µm. 
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Genes Full Name Forward Reverse 
Adipoq Adiponectin 5’-GCACTGGCAAGTTCTACTGCAA-3’ 5’-GTAGGTGAAGAGAACGGCCTTGT-3’ 

Agt Angiotensinogen 5’-TCTCCTTTACCACAACAAGAGCA-3’ 5’-CTTCTCATTCACAGGGGAGGT-3’ 
Ccl2 (Mcp1) Chemokine (C-C motif) ligand 2 5’-TTAAAAACCTGGATCGGAACCAA 5’-GCATTAGCTTCAGATTTACGGGT-3’ 

Ccl5 (Rantes) Chemokine (C-C motif) ligand 5 5’-GCTGCTTTGCCTACCTCTCC-3’ 5’-TCGAGTGACAAACACGACTGC-3’ 
Cidea Cell death activator CIDE-A 5’-TGCTCTTCTGTATCGCCCAGT-3’ 5’-GCCGTGTTAAGGAATCTGCTG-3’ 

Cox7a1 Cytochrome c oxidase polypeptide 7A1 5’-GCTCTGGTCCGGTCTTTTAGC-3’ 5’-GTACTGGGAGGTCATTGTCGG-3’ 
Dgat1 Diacylglycerol O-acyltransferase 1 5’-TCCGTCCAGGGTGGTAGTG-3’ 5’-TGAACAAAGAATCTTGCAGACGA-3’ 

Dio2 Deiodinase, iodothyronine, type II 5’-CATCTTCCTCCTAGATGCCTA-3’ 5’-CTGATTCAGGATTGGAGACGTG-3’ 
Fabp4 (aP2) Fatty acid binding protein 4 5’-ACACCGAGATTTCCTTCAAACTG-3’ 5’-CCATCTAGGGTTATGATGCTCTTC-3’ 

Fgf21 Fibroblast growth factor 21 5’-GTGTCAAAGCCTCTAGGTTTCTT-3’ 5’-GGTACACATTGTAACCGTCCTC-3’ 
Il6 Interleukin 6 5’-TAGTCCTTCCTACCCCAATTTCC-3’ 5’-TTGGTCCTTAGCCACTCCTTC-3’ 

Il10 Interleukin 10 5’-GCTCTTACTGACTGGCATGAG-3’ 5’-CGCAGCTCTAGGAGCATGTG-3’ 
Lipe (Hsl) Lipase, hormone-sensitive 5’-TGAGATGCCACTCACCTCTG-3’ 5’-GCCTAGTGCCTTCTGGTCTG-3’ 

Plin1 Perilipin 1 5’-GGGACCTGTGAGTGCTTCC-3’ 5’-GTATTGAAGAGCCGGGATCTTTT-3’ 
Pnpla2 (Atgl) Patatin-like phospholipase domain containing 2 5’-AACACCAGCATCCAGTTCAA-3’ 5’-GGTTCAGTAGGCCATTCCTC-3’ 

Pparg Peroxisome proliferator-activated receptor gamma 5’-GCATGGTGCCTTCGCTGA-3’ 5’-TGGCATCTCTGTGTCAACCATG-3’ 

Ppargc1a Peroxisome proliferator-activated receptor gamma, 
coactivator 1 alpha 5’-AGCCGTGACCACTGACAACGAG-3’ 5’-GCTGCATGGTTCTGAGTGCTAAG-3’ 

Prdm16 PR domain containing 16 5’-CCACCAGCGAGGACTTCAC-3’ 5’-GGAGGACTCTCGTAGCTCGAA-3’ 
Scd1 Stearoyl-CoA desaturase-1 5’-TTCTTGCGATACACTCTGGTGC-3’ 5’-CGGGATTGAATGTTCTTGTCGT-3’ 

Shox2 Short stature homeobox 2 5’- TGGAACAACTCAACGAGCTGGAGA-3’ 5’-TTCAAACTGGCTAGCGGCTCCTAT-3’ 
Slc2a4 (Glut4) Solute carrier family 2 (facilitated glucose 

transporter), member 4 5’-GTGACTGGAACACTGGTCCTA-3’ 5’-CCAGCCACGTTGCATTGTAG-3’ 
Tbp TATA box binding protein 5’-GAAGCTGCGGTACAATTCCAG-3’ 5’-CCCCTTGTACCCTTCACCAAT-3’ 

Tbx15 T-Box 15 5’-TGTTCGCACACTGACCTTTG-3’ 5’-CCAGTGCTGGAGGTGGTT-3’ 
Tnf (Tnfa) Tumor necrosis factor alpha 5’-CCCTCACACTCAGATCATCTTCT-3’ 5’-GCTACGACGTGGGCTACAG-3’ 

Ucp1 Uncoupling protein 1 5’-ACTGCCACACCTCCAGTCATT-3’ 5’-CTTTGCCTCACTCAGGATTGG-3’ 
Wt1 Wilms tumor 1 homolog 5’-GAGAGCCAGCCTACCATCC-3’ 5’-GGGTCCTCGTGTTTGAAGGAA-3’ 

    
    

 
Table II.1 Primer Sequences for qPCR 
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CHAPTER III  

Cinnamaldehyde Induces Fat Cell-Autonomous Thermogenesis and Metabolic 

Reprogramming 

 

Abstract 

Cinnamaldehyde (CA) is a food compound that has previously been observed to be protective 

against obesity and hyperglycemia. Here we report that CA activates a thermogenic response via 

PKA signaling in murine subcutaneous adipocytes and that chronic CA treatment induces 

metabolic reprogramming that may contribute to improving whole-body metabolic health. This 

phenomenon is fat cell-autonomous and well conserved in human adipose stem cells isolated 

from subcutaneous depots of multiple donors of different ethnicities and ages and with a variety 

of body mass indexes (BMI). Given the wide usage of cinnamon in the food industry, the notion 

that this popular food additive, instead of a drug, may activate thermogenesis, could ultimately 

lead to therapeutic strategies against obesity that are much better adhered to by participants. 

 

Introduction 

The global obesity epidemic calls for effective intervention and treatments. Adipocytes in the 

subcutaneous fat depots have been reported to provide metabolic benefits, including their 

																																																								
This chapter has been published as: Jiang, J.*, Emont, M.P.*, Jun, H., Qiao, X., Liao, J., Kim, 
D., Wu, J. (2017) Cinnamaldehyde induces fat cell-autonomous thermogenesis and metabolic 
reprogramming. Metabolism. 77, 58-64 *Contributed equally. 
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capability to be recruited and activated by thermogenic stimuli and thereby potentially improve 

systemic energy homeostasis [1]. The classical pathway for the activation of thermogenesis in 

adipocytes is through the activation of PKA and downstream enzymes including p38 MAPK, 

which in turn leads to the induction of the transcription of key thermogenic genes [2].  

    

Previous studies have shown that cinnamaldehyde (CA), an essential oil found in cinnamon, can 

reduce diet-induced weight gain and improve glucose homeostasis when given to mice as a 

supplement in food [3, 4]. Interestingly, cinnamon consumption has also been reported to 

correlate with lower levels of fasting blood glucose in human studies [5]. However, the 

molecular mechanisms behind these effects have not yet been elucidated. Here, we show that CA 

directly acts on subcutaneous adipocytes to activate thermogenesis and PKA signaling and that 

chronic CA treatment induces thermogenic and metabolic reprogramming in these cells. 

Importantly, the beneficial effects of CA treatment that we observe in murine adipocytes are 

conserved in human subcutaneous fat cells, suggesting that CA may potentially be used to 

counteract obesity and improve systemic metabolism in humans. 

 

Materials and Methods 

Reagents 

Trans-Cinnamaldehyde (C80687), isoproterenol (16504), dexamethasone (D4902), insulin 

(I5500), 3-IsoButyl-1-MethylXanthine (IBMX, I7018), biotin (B4639), D-pantothenic acid 

hemacalcium salt (P5155), Oligomycin A (75351), and Carbonyl cyanide 4-

(trifluoromethoxy)phenylhydrazone (FCCP, C2920) were purchased from Sigma Aldrich. 

Rosiglitazone (71740) and H-89 (10010556) were purchased from Cayman Chemicals (Ann 
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Arbor, MI, USA). SB203580 (5633) was purchased from Cell Signaling Technology (Danvers, 

MA, USA). Collagenase D (11088882001), collagenase B (11088831001), dispase II 

(04942078001), and protease inhibitor cocktail (11836153001) were purchased from Roche.  

 

Animals 

All animal experiments were approved by the University of Michigan Institutional Animal Care 

and Use Committee and conducted in conformity with the Public Health Service Policy for Care 

and Use of Laboratory Animals. Wild-type C57BL/6J animals were obtained from The Jackson 

Laboratories (JAX 000664, Bar Harbor, ME, USA) and wild-type 129SVE and BALB/c animals 

were obtained from Taconic (Hudson, NY, USA). TRPA1 and FGF21 knockout animals were 

generated by crossing Trpa1 flox/flox (JAX 008650) or Fgf21 flox/flox animals (JAX 022361) 

with EIIa cre animals (JAX 003724), respectively. All animals were group housed in forced 

ventilation racks with ad libitum access to food and maintained at a 12h light/dark cycle (6 AM 

to 6 PM). Mice of both genders were used for the experiments presented in this manuscript.  

 

Primary Cell Isolation  

Inguinal or brown fat depots were isolated from mice, minced, and digested in a collagenase 

D/dispase II solution (inguinal fat) or collagenase B/dispase II solution (brown fat) shaking at 

37°C for 10-15 minutes. Cells were filtered through a 100 µm cell strainer and centrifuged at 

300-500 x g for 5 minutes to separate the floating mature adipocytes from the pelleted stromal 

vascular fraction (SVF), which contains the fibroblast-like preadipocytes. The SVF was 

resuspended in media, filtered through a 40 µm cell strainer, and centrifuged again, after which 

the pellet was resuspended in DMEM/F12 + GlutaMAX supplemented with 15% FBS and 
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penicillin-streptomycin and plated on a collagen-coated 10 cm plate. After at least one round of 

subculture, which helps to remove contaminating cell types such as red blood cells and immune 

cells, the preadipocytes were plated on collagen-coated 12 well plates for differentiation. 

 

Murine Adipocyte Differentiation 

To induce differentiation, confluent cultures of primary cells were stimulated in DMEM/F12 + 

GlutaMAX supplemented with 10% FBS, penicillin-streptomycin, dexamethasone (5 µM), 

insulin (0.5 µg/mL), IBMX (0.5 mM), and rosiglitazone (1 µM). After 2 days of stimulation, 

cells were maintained in DMEM/F12 + GlutaMAX with 10% FBS, penicillin-streptomycin and 

insulin (0.5 µg/mL). Analyses of mature adipocytes were performed 6-7 days after stimulation. 

C3H-10T1/2 (ATCC CCL-226) cells were cultured similarly to primary cells with the exception 

that for the base medium DMEM was used instead of DMEM/F12 + GlutaMAX in all instances.  

 

Human Cell Culture and Differentiation 

Human adipose-derived stem cells (hASCs) were isolated from lipoaspirates from the 

subcutaneous adipose tissue of donors undergoing voluntary surgery (a generous gift from Dr. 

Jeffrey M. Gimble, Tulane University, New Orleans, Louisiana, USA). Donor demographics are 

included in Table III.1. All specimens were collected and handled under the protocols reviewed 

and approved by the Western Institutional Review Board (Puyallup, WA) and the University of 

Michigan Medical School Institutional Review Board (IRBMED). Cells were cultured in 

MesenPRO RS media (Invitrogen) and grown on collagen-coated 10 cm plates. To differentiate, 

cells were seeded onto 12 well collagen-coated plates and stimulated in DMEM/F12 + 

GlutaMAX supplemented with 10% FBS, penicillin-streptomycin, dexamethasone (5 µM), 
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insulin (0.5 µg/mL), IBMX (0.5 mM), rosiglitazone (5 µM), biotin (33 µM) and pantothenic acid 

(17 µM). After 3 days of stimulation, cells were maintained in DMEM/F12 + GlutaMAX 

containing 10% FBS, penicillin-streptomycin, insulin (0.5 µg/mL), dexamethasone (5 µM), 

biotin (33 µM) and pantothenic acid (17 µM) until they were fully differentiated (8-10 days). 

 

RNA Isolation and RT-qPCR Analysis 

RNA was extracted from cells and tissue using TRI Reagent (Sigma, Saint Louis, MO, USA) 

according to the manufacturer’s instructions. RNA was reverse transcribed to cDNA using M-

MLV (Invitrogen, Carlsbad, CA, USA) and qPCR was performed using SYBR Green (Applied 

Biosystems, Woolston Warrington, UK) on a 7900HT Fast Real-Time PCR system (Applied 

Biosystems). Fold change was determined using the DDCt method with samples normalized to 

the reference gene 36B4 (RPLP0). A list of qPCR primers used in this study is included in Table 

III.2. 

 

Western Blot Analysis 

Cells were lysed with RIPA buffer supplemented with protease inhibitor cocktail (Roche, Basel, 

Switzerland) and phosphatase inhibitors. Protein extracts were run on 10% SDS-PAGE gels and 

transferred to nitrocellulose membranes. Blots were exposed using ECL (Amersham, Pittsburgh, 

PA, USA). For antibody information, see the supplemental materials and methods. Cells were 

lysed with RIPA buffer (50 mM Tris-HCl, pH 7.5, 1% Triton X-100, 1% sodium deoxycholate, 

0.1% SDS, 150 mM NaCl, 1 mM phenylmethylsulfonyl fluoride) supplemented with protease 

inhibitor cocktail (Roche) and phosphatase inhibitors (10 mM NaF, 60 mM β-glycerolphosphate, 

pH 7.5, 2 mM sodium orthovanadate, 10 mM sodium pyrophosphate). Protein extracts were run 
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on 10% SDS-PAGE gels and transferred to nitrocellulose membranes. The primary antibodies 

against p-PKA substrates (9621L), p-p38 MAPK (Thr180/Tyr182) (9215S), p38 MAPK (9212S), 

p-HSL Ser660 (4126L), HSL (4107S), HSP90 (4874S), α-Tubulin (2144), and β-Actin (8457S) 

were obtained from Cell Signaling Technology. The primary antibodies against p-PLIN1 

Ser522/Ser517 (human S522 is equivalent to mouse S517) (4856) and total PLIN1 (4854) were 

obtained from Vala Sciences. Horseradish peroxidase (HRP)-conjugated anti-rabbit secondary 

antibody was obtained from Cell Signaling Technology and HRP-conjugated anti-mouse 

secondary antibody was obtained from Sigma. Blots were exposed using ECL (Amersham). 

 

Immunocytochemistry 

Primary cells were seeded onto collagen-coated coverslips and differentiated as described above. 

Differentiated cells were fixed in 10% formalin at room temperature for 10 minutes, washed 3 

times in PBS, blocked in 10% donkey serum, and incubated overnight in 10% donkey serum and 

p-PLIN1 Ser517 antibody (Vala Sciences) before being washed and incubated in anti-rabbit 

Alexa 594 antibody (Abcam) and BODIPY (Invitrogen). Cells were washed and mounted on 

slides using Prolong Gold (Invitrogen) and imaged using an Olympus FV300 confocal laser-

scanning microscope (Melville, NY, USA). 

 

Respiration 

Fully differentiated brown adipocytes treated with or without 100 µM CA for 24 h were 

suspended in respiration buffer (2.5 mM glucose, 5 mM pyruvate, 2.5 mM malate, 120 mM NaCl, 

4.5 mM KCl, 0.7 mM Na2HPO4, 1.5 mM NaH2PO4, 0.5 mM MgCl2, pH 7.4). Cellular oxygen 

consumption in the respiration buffer was recorded for 1 min during the basal, uncoupled, or 
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maximal stages using a Clark electrode (Strathkelvin Instruments). 4 mg/ml oligomycin and 1.5-

2 µM FCCP were acutely added to the respiration chamber to measure the uncoupled and 

maximal respiration, respectively.  

 

Oil Red O Staining 

Cells were washed with PBS, then fixed in 10% formalin for 30 minutes. After fixation, cells 

were washed with dH2O, dehydrated in 60% isopropanol for 10 minutes, then incubated in Oil 

Red O working solution (3 parts 3 mg/mL Oil Red O in 100% isopropanol + 2 parts dH2O) for 

10 minutes. After incubation, cells were washed with dH2O and imaged using a Leica DM IRB 

inverted microscope and a Diagnostic Instruments Spot camera. Pictures of whole wells stained 

with Oil Red O were obtained using an Epson Expression 1680 scanner. 

  

Statistical Analysis  

Statistical analysis was performed using GraphPad Prism 6. Data are expressed as mean ± SEM. 

Statistical significance was determined using an unpaired two-tailed Student’s t-test for two-

group comparisons (*p < 0.05, **p < 0.01, ***p < 0.001). A one-way analysis of variance 

(ANOVA) was applied for multiple group comparisons involving one independent variable. The 

data presented is representative of 2-4 independent experiments. 

 

Results 

CA activates thermogenesis through PKA signaling in mouse subcutaneous fat cells 

While the beneficial effects of CA on systemic metabolism have recently been observed [3, 4, 6], 

the underlying molecular basis of these effects remains largely unknown. To explore the 
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possibility that CA influences whole body metabolism through direct action on adipocytes, we 

treated fully differentiated adipocytes isolated from the murine inguinal subcutaneous fat depot 

with CA. Subcutaneous fat plays a unique role in maintaining energy homeostasis, demonstrating 

profound “browning” upon cold exposure and mediating protective metabolic functions during 

obesity [7]. Acute CA treatments induce expression of thermogenic markers including Fgf21 and 

Ucp1 without altering expression of general adipogenic markers such as Pparg and Adipoq in 

these primary subcutaneous adipocytes (Figures III.1A, III.2, and III.3A). The induction of 

thermogenesis in response to acute stimuli, such as treatment with b-adrenergic agonist 

isoproterenol (Iso), is mainly mediated through the activation of PKA and subsequent 

phosphorylation of p38 MAPK [2]. Indeed, we observed a robust phosphorylation of PKA 

substrates and p38 MAPK by CA at a comparable level to Iso in inguinal adipocytes (Figure 

III.1B). In addition to p38, PKA dependent phosphorylation of hormone-sensitive lipase (HSL) 

and lipid droplet-associated protein perilipin 1 (PLIN1) are also activated by CA in inguinal 

adipocytes (Figure III.1B and C). CA has been reported to be an agonist for transient receptor 

potential cation channel, member A1 (TRPA1) [4]. Emerging evidence suggests that signaling 

through the transient receptor potential (TRP) channels may cell-autonomously mediate 

adipocyte function [8, 9]. Interestingly, this CA-induced thermogenic response is TRPA1-

independent since a similar response was observed in TRPA1KO inguinal adipocytes (Figures 

III.1D and E, III.4).  

 

Phosphorylation of PKA substrates, p38 MAPK, HSL and PLIN1 by CA treatment were 

significantly blocked by PKA inhibitor H-89 in primary inguinal adipocytes (Figure III.1F). 

Consistently, the induction of Fgf21 and Ucp1 by CA in inguinal adipocytes was substantially 
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suppressed by H-89 and partially reduced by p38 MAPK inhibitor SB203580 (Figure III.1G and 

H), suggesting that CA-stimulated thermogenesis is dependent on PKA/p38 MAPK signaling. 

These results were confirmed in immortalized C3H-10T1/2 cells, indicating that the observed 

response to CA in primary inguinal fat is adipocyte cell-autonomous (Figure III.5). Taken 

together, these data revealed that CA directly stimulates a thermogenic response and PKA 

activation in murine subcutaneous fat cells. 

 

CA activates thermogenesis and promotes metabolic reprogramming in human subcutaneous fat 

cells  

It has been reported that in addition to the supraclavicular area, thermogenic adipocytes also 

exist in human subcutaneous fat depots [7, 10]. We observed a clear activation of the 

thermogenic response and PKA signaling in differentiated hASCs isolated from subcutaneous fat 

depots (Figures III.6A-F, III.3B). This phenomenon is consistently observed across multiple 

human donors of different ethnicities and ages and with varied BMI (Table III.1, Figure III.7). 

Previous studies have shown that long-term CA supplementation in food can protect mice from 

diet-induced obesity and hyperglycemia [3, 6]. In vitro, upon chronic treatment with CA, Fgf21 

and Ucp1 were significantly upregulated in both murine inguinal adipocytes and human 

subcutaneous fat cultures (Figures III.8, III.6J, L, and M). Thermogenic genes (Cidea, Cycs, 

Tfam) and genes encoding key enzymes in the citric acid cycle (Idh3a, Cs) were upregulated 

after chronic exposure to CA. Cumulative evidence supports that many aspects of lipid 

metabolism can be altered in response to cold exposure or β-adrenergic agonist treatment [11, 

12]. We observed that chronic CA treatment upregulates the expression of lipolytic genes (Hsl, 

Atgl), key regulators in fatty acid oxidation (Cpt1b, Ppara), lipogenic genes (Gyk, Dgat1), and 



65 
	

Pdk4, an enzyme that enhances lipid metabolism and has recently been reported to be 

responsible for major metabolic adaptations during white-to-beige conversion of human 

adipocytes (Figure III.6J, L, and M) [13]. Increased oxidative metabolism in mitochondria is 

known to be accompanied by increased reactive oxygen species (ROS) production. Chronic CA 

treatment also upregulated the expression of ROS-detoxifying enzymes including Sod1 and 

Sod2, which may protect activated thermogenic adipocytes from oxidative damage (Figure III.6J, 

L, and M). Murine brown adipocytes additionally showed a thermogenic response to both acute 

and chronic CA treatment, including an increase in oxygen consumption in cells treated with 

chronic CA (Figure III.9).  

  

Acute CA treatment led to considerable induction of Fgf21, an important metabolic regulator 

which can be secreted by adipocytes and function in an autocrine or paracrine manner to induce 

thermogenesis and affect metabolic pathways [14]. In wild type (WT) inguinal adipocytes, CA 

treatment induced a clear elevation of Egr1 and cFos, known FGF21 target genes (Figure III.6G) 

[15].  This induction was completely abolished in adipocytes isolated from FGF21KO mice 

(Figures III.6H, III.10), suggesting that FGF21-dependent signaling is activated by CA. The 

FGF21 knockout did not affect the PKA-mediated acute response to CA treatment in inguinal 

adipocytes (Figure III.6I). However, metabolic reprogramming upon chronic CA treatment is 

blunted in the absence of FGF21, suggesting that FGF21 may contribute to certain aspects of the 

long-term effects of CA on adipocytes through autocrine or paracrine pathways (Figure III.6K).  

 

Discussion  

Thermogenic adipocytes in subcutaneous fat depots are highly recruitable under certain 

conditions such as cold exposure [1]. These cells play an important role in maintaining energy 
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homeostasis and improving overall metabolic health [16]. Herein, we show that CA treatment 

activates thermogenic and metabolic responses in human subcutaneous fat cells derived from 

multiple donors (Figures III.6, III.7). Recent studies demonstrate that lipolysis and lipogenesis 

are coupled in adipose tissue during chronic β3-adrenergic receptor stimulation [12]. In cold-

exposed mice, genes involved in lipid catabolism and anabolism are both upregulated [11]. Cold-

stimulated thermogenic fat activation in humans triggers triglyceride-free fatty acid cycling 

accompanied with altered metabolic gene profiles [17].  Consistent with these observations, we 

found that chronic CA treatment leads to a futile metabolic cycle in subcutaneous fat cells which 

may constitute the key mechanism through which CA consumption leads to metabolic protection. 

Notably, a recent clinical trial with healthy subjects suggests that acute CA ingestion increases 

energy expenditure and postprandial fat oxidation, in which the CA dose is judged as 

“sensorially acceptable” by participants [18]. A pharmacokinetic study revealed that circulating 

levels of CA were detectable 20 h after oral delivery, indicating that consumption of cinnamon 

may be a feasible way to activate thermogenesis in subcutaneous fat and ultimately protect 

against obesity and metabolic disorders [19].  

 

This study investigated the thermogenic and metabolic actions of CA on adipocytes and the 

mechanisms by which they take place. We found that CA acts through a PKA/p38 MAPK-

dependent pathway. Consistently, the phosphorylation of lipolysis- and thermogenesis- related 

proteins was diminished by treatment with the PKA inhibitor H-89, and thermogenic gene 

expression was attenuated by treatment with the p38 inhibitor SB203580. We also found that 

some of the chronic effects of CA are mediated by FGF21, an adipokine that is known to activate 

thermogenesis in adipocytes [14]. 
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In summary, this study provides evidence that CA induces thermogenesis as well as chronic 

metabolic remodeling in a fat cell-autonomous manner. Particularly, the thermogenic and 

metabolic responses of human subcutaneous adipocytes to CA suggest that this may be a 

promising therapeutic target for obesity.  
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Figure III.1 (legend on next page) 
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Figure III.1 Acute CA treatment upregulates thermogenic gene expression and activates 
PKA signaling in murine subcutaneous fat cells.  
A. Real-time qPCR analyses of thermogenic genes (Fgf21 and Ucp1) and adipogenic markers 
(Pparg and Adipoq) in differentiated murine inguinal adipocytes (n=4) after 400 µM CA 
treatment for 4 h. It has been reported that CA treatment in 3T3-L1 preadipocytes negatively 
influences adipogenesis [6]. We observed similar levels of adipogenesis and equal pan-fat 
marker expression (Pparg and Adipoq) in control and CA treated groups. B. Representative 
immunoblots of PKA substrate phosphorylation, p38 MAPK phosphorylation, HSL 
phosphorylation (Ser660) and PLIN1 phosphorylation (Ser517) in differentiated inguinal 
adipocytes exposed to 400 µM CA for the indicated time or 10 µM Iso for 10 min as a positive 
control. C. Representative immunofluorescence staining of PLIN1 phosphorylation (red) in 
differentiated inguinal adipocytes treated with 400 µM CA for 1 h or 10 µM Iso for 1 h as a 
positive control. BODIPY was used to stain lipid droplets (green). Scale bar = 20 µm. D. Real-
time qPCR analyses of thermogenic genes (Fgf21 and Ucp1) and adipogenic markers (Pparg and 
Adipoq) in differentiated WT or TRPA1KO inguinal adipocytes following vehicle control or 400 
µM CA treatment for 4 h (n=6). E. Representative immunoblots of p38 MAPK phosphorylation, 
HSL phosphorylation (Ser660) and PLIN1 phosphorylation (Ser517) in differentiated TRPA1KO 
inguinal adipocytes treated with 400 µM CA for the indicated time or 10 µM Iso for 10 min as a 
control. F. Representative immunoblots of phosphorylated PKA substrates, phosphorylated p38 
MAPK, phosphorylated HSL (Ser660) and phosphorylated PLIN1 (Ser517) in differentiated 
inguinal adipocytes treated with 50 µM H-89 for 30 min and then 400 µM CA for 1 h or 10 µM 
Iso for 10 min as a positive control. G and H. Real-time qPCR analyses of thermogenic markers 
(Fgf21, Ucp1) in differentiated inguinal adipocytes treated with 50 µM H-89 (G, n=3) or 10 µM 
SB203580 (SB, H, n=3) for 1 h and then 400 µM CA for 4 h. All data in A, D, G, and H are 
presented as mean ± SEM. *p<0.05, **p<0.01, ***p<0.001. 
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Figure III.2 CA upregulates thermogenic gene expression in primary inguinal adipocytes of 
multiple inbred WT mouse strains.  
A. Real-time qPCR analyses of thermogenic (Fgf21 and Ucp1) and adipogenic (Pparg and 
Adipoq) genes in C57BL/6J adipocytes treated with various doses of CA for 4 h (n=3). B and C. 
Real-time qPCR analyses of thermogenic genes (Fgf21 and Ucp1) and adipogenic markers 
(Pparg and Adipoq) in differentiated inguinal adipocytes isolated from BALB/c (B, n=4) and 
129SVE (C, n=3) mice treated with vehicle control or 400 µM CA for 4 h. All data are presented 
as mean ± SEM. A different letter denotes a significant difference between groups at p<0.05.  
**p<0.01, ***p<0.001. 
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Figure III.3 Gene expression in CA-stimulated murine and human cells. 
A. Real-time qPCR analyses of adipocyte marker genes in murine inguinal adipocytes treated 
with 400 µM CA for 4 h (n=3). B. Real-time qPCR analyses of thermogenic and adipogenic 
genes in differentiated hASCs treated with 200 µM CA for 4 h (n=3). All data are presented as 
mean ± SEM.  *p<0.05, **p<0.01. 
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Figure III.4 Validation of TRPA1 knockout animals.  
Real-time qPCR analyses of Trpa1 expression level in inguinal white adipose tissue (iWAT) and 
dorsal root ganglia (DRG) of WT or TRPA1KO mice (n=6-10). Data are presented as mean ± 
SEM. DRG is included as a positive control, where abundant expression of Trpa1 has been 
reported [20]. ***p<0.001. 
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Figure III.5 (legend on next page) 
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Figure III.5 Acute CA treatment increases thermogenic marker expression and activates 
PKA signaling in immortalized C3H-10T1/2 cells, indicating this is a cell-autonomous 
adipocyte response and not due to the presence of other non-fat cell types that may be 
present in primary cultures.  
A. Real-time qPCR analyses of thermogenic genes (Fgf21 and Ucp1) and adipogenic markers 
(Pparg and Adipoq) in differentiated C3H-10T1/2 cells (n=3) treated with vehicle control, 40 
µM , 100 µM, 200 µM or 400 µM CA for 4 h. B and C. Representative immunoblots of 
phosphorylated p38 MAPK, phosphorylated HSL (Ser660) and phosphorylated PLIN1 (Ser517) 
in differentiated C3H-10T1/2 cells treated with 400 µM CA for the indicated time (B) or 50 µM 
H-89 for 30 min and then 400 µM CA for 1 h (C). Iso treatment is included as a positive control. 
D and E. Real-time qPCR analyses of thermogenic markers in differentiated C3H-10T1/2 cells 
treated with 50 µM H-89 (D, n=3) or 10 µM SB203580 (SB, E, n=3) for 1 h and then 400 µM 
CA for 4 h. Dat in A, D and E are presented as mean ± SEM. A different letter denotes a 
significant difference between groups at p<0.05. *p<0.05, **p<0.01. 
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Figure III.6 (legend on next page) 
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Figure III.6 CA activates a thermogenic response and regulates lipid metabolic gene 
profiles in human subcutaneous fat cells.  
A. Locations of the human subcutaneous fat biopsy sites used in this study and representative Oil 
Red O staining of differentiated hASCs. Scale bar = 50 µm. B. Real-time qPCR analyses of 
thermogenic genes (FGF21 and UCP1) and adipogenic markers (PPARG and ADIPOQ) in 
differentiated hASCs after 200 µM CA treatment for 4 h (n=4). C and D. Representative 
immunoblots of phosphorylated p38 MAPK, phosphorylated HSL (Ser660) and phosphorylated 
PLIN1 (Ser522) in differentiated hASCs treated with 200 µM CA for the indicated time (C) or 
50 µM H-89 for 30 min and then 200 µM CA for 2 h (D). E and F. Real-time qPCR analyses of 
thermogenic markers in differentiated hASCs treated with 50 µM H-89 (E, n=3) or 10 µM SB (F, 
n=3) for 1 h and then 200 µM CA for 4 h. G and H. Real-time qPCR analyses of thermogenic 
genes (Fgf21 and Ucp1), FGF21-target genes (Egr1, cFos) and the adipogenic marker Pparg in 
differentiated inguinal adipocytes of WT mice (G, n=4) or FGF21KO mice (H, n=4) after 400 
µM CA treatment for 4 h. I. Representative immunoblots of phosphorylated p38 MAPK, 
phosphorylated HSL (Ser660) and phosphorylated PLIN1 (Ser517) in differentiated inguinal 
adipocytes from FGF21KO mice treated with 400 µM CA for the indicated time. J-M. Real-time 
qPCR analyses of thermogenic and metabolic genes in differentiated WT (J, n=4) or FGF21KO 
(K, n=4) murine inguinal adipocytes after 200 µM CA treatment for 48 h, or differentiated 
hASCs stimulated with 200 µM CA for 24 h (L and M, n=4). All data in B, E-H, and J-M are 
presented as mean ± SEM. *p<0.05, **p<0.01, ***p<0.001. 
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Figure III.7. Acute CA treatment increases thermogenic marker expression and activates 
PKA signaling in human subcutaneous adipocytes from multiple donors.  
A-C. Real-time qPCR analyses of thermogenic genes (FGF21 and UCP1) and adipogenic 
markers (PPARG and ADIPOQ) (n=3-4) and representative immunoblots of phosphorylated p38 
MAPK, phosphorylated HSL (Ser660) and phosphorylated PLIN1 (Ser522) in differentiated 
hASCs from three donors treated with 200 µM CA for 4 h for qPCR or the indicated time for the 
western blots. Data are presented as mean ± SEM. *p<0.05, ***p<0.001. 
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Figure III.8 Chronic CA treatment upregulates thermogenic gene expression in murine and 
human subcutaneous adipocytes.  
A and B. Real-time qPCR analyses of thermogenic genes (Fgf21 and Ucp1) and the adipogenic 
marker Pparg in differentiated inguinal adipocytes (A, n=3-4) or differentiated hASCs (B, n=3) 
exposed to vehicle control or 200 µM CA for 24 h or 48 h. 24 h CA treatment renders most 
robust thermogenic response in hASCs, whereas 48 h is the best condition in murine inguinal fat 
cells. Data are presented as mean ± SEM. A different letter denotes a significant difference 
between groups at p<0.05. 
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Figure III.9 CA upregulates thermogenesis in primary brown adipocytes.  
A. Real-time qPCR analyses of thermogenic genes (Fgf21 and Ucp1) and adipogenic markers 
(Pparg and Adipoq) in differentiated brown adipocytes treated with vehicle control or 200 µM 
CA for 4 h (n=4). B. Representative immunoblots of phosphorylated p38 MAPK, phosphorylated 
HSL (Ser660) and phosphorylated PLIN1 (Ser517) in differentiated brown adipocytes treated 
with 200 µM CA for the indicated time or 10 µM Iso for 10 min as a control. C. Real-time qPCR 
analyses of thermogenic (Fgf21 and Ucp1) and adipogenic genes (Pparg and Adipoq) in 
differentiated brown adipocytes treated with vehicle control or 100 µM CA for 24 h (n=4-6). D. 
Basal, uncoupled, and maximal respiration of brown adipocytes treated wih 100 µM CA for 24 
hours (n=6). Data in A, C, and D are presented as mean ± SEM. *p<0.05, **p<0.01, 
***p<0.001. 
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Figure III.10 FGF21KO cells differentiate to a similar extent as WT cells.  
Representative Oil Red O staining of differentiated inguinal adipocytes isolated from WT or 
FGF21KO mice. It is worth noting that FGF21 deletion has been reported to impair 
differentiation of preadipocytes [21], but we observed robust and equal adipogenesis in either 
genotype under our experimental conditions.  
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Subject 
 

Gender 
 

Age 
 

Ethnicity 
 

BMI 
 

Tissue location 
 

1 
 

F 
 

44 
 

Caucasian 
 

21.32 
 

Abdomen, inner thighs 

2 

7 

14 

F 

F 

F 

24 

21 

30 

Caucasian 

African American 

Caucasian 

24.0 

25.0 

37.15 

Flanks, thighs 

Hips 

Abdomen, hips 

 
Table III.1 Characteristics of human donors used in this study. 
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Gene 
 

Forward primers (5’- 3’) 
 

Reverse primers (5’- 3’) 
 

m36B4 (Rplp0) 
 

GAGACTGAGTACACCTTCCCAC 
 

ATGCAGATGGATCAGCCAGG 

mAdipoq GCACTGGCAAGTTCTACTGCAA GTAGGTGAAGAGAACGGCCTTGT 

mAtgl (Pnpla2) AACACCAGCATCCAGTTCAA GGTTCAGTAGGCCATTCCTC 

mcFos CGGGTTTCAACGCCGACTA TTGGCACTAGAGACGGACAGA 

mCebpa TGGACAAGAACAGCAACGAG TCACTGGTCAACTCCAGCAC 

mCebpb TCTACTACGAGCCCGACTGC AGGTAGGGGCTGAAGTCGAT 

mCidea GCCGTGTTAAGGAATCTGCTG TGCTCTTCTGTATCGCCCAGT 

mCpt1b ATCATGTATCGCCGCAAACT CCATCTGGTAGGAGCACATGG 

mCs GGACAATTTTCCAACCAATCTGC TCGGTTCATTCCCTCTGCATA 

mCycs GCAAGCATAAGACTGGACCAAA TTGTTGGCATCTGTGTAAGAGAATC 

mDgat1 TCCGTCCAGGGTGGTAGTG TGAACAAAGAATCTTGCAGACGA 

mEgr1 TCGGCTCCTTTCCTCACTCA CTCATAGGGTTGTTCGCTCGG 

mFabp4 ACACCGAGATTTCCTTCAAACTG CCATCTAGGGTTATGATGCTCTTC 

mFgf21 GTGTCAAAGCCTCTAGGTTTCTT GGTACACATTGTAACCGTCCTC 

mGyk TGAACCTGAGGATTTGTCAGC CCATGTGGAGTAACGGATTTCG 

mHsl (Lipe) TGAGATGCCACTCACCTCTG GCCTAGTGCCTTCTGGTCTG 

mIdh3a TGGGTGTCCAAGGTCTCTC CTCCCACTGAATAGGTGCTTTG 

mPdk4 AGGGAGGTCGAGCTGTTCTC GGAGTGTTCACTAAGCGGTCA 

mPpara AGAGCCCCATCTGTCCTCTC ACTGGTAGTCTGCAAAACCAAA 

mPparg GCATGGTGCCTTCGCTGA TGGCATCTCTGTGTCAACCATG 

mPpargc1a TATGGAGTGACATAGAGTGTGCT CCACTTCAATCCACCCAGAAAG 

mPrdm16 TGCTGACGGATACAGAGGTGT CCACGCAGAACTTCTCGCTAC 

mSod1 AACCAGTTGTGTTGTCAGGAC CCACCATGTTTCTTAGAGTGAGG 

mSod2 CAGACCTGCCTTACGACTATGG CTCGGTGGCGTTGAGATTGTT 

mTfam ATTCCGAAGTGTTTTTCCAGCA TCTGAAAGTTTTGCATCTGGGT 

mUcp1 CTTTGCCTCACTCAGGATTGG ACTGCCACACCTCCAGTCATT 

hRPLP0 GCAGCATCTACAACCCTGAAG CACTGGCAACATTGCGGAC 

hADIPOQ AACATGCCCATTCGCTTTACC TAGGCAAAGTAGTACAGCCCA 

hATGL (PNPLA2) ATGGTGGCATTTCAGACAACC CGGACAGATGTCACTCTCGC 

hCEBPA GTCGGTGGACAAGAACAGC CAGCTGGCGGAAGATGC 

hCEBPB CTTCAGCCCGTACCTGGAG GGAGAGGAAGTCGTGGTGC 

hCIDEA TTATGGGATCACAGACTAAGCGA TGCTCCTGTCATGGTTGGAGA 

hCPT1B CATGTATCGCCGTAAACTGGAC TGGTAGGAGCACATAGGCACT 

hCS AACTGCTACCCAAGGCTAAGG CTTTTGAGAGCCAAGATACCTGT 

hCYCS CTTTGGGCGGAAGACAGGTC TTATTGGCGGCTGTGTAAGAG 



83 
	

hDGAT1 GGTCCCCAATCACCTCATCTG TGCACAGGGATGTTCCAGTTC 

hFABP4 ACTGGGCCAGGAATTTGACG CCCCATCTAAGGTTATGGTGCTC 

hFGF21 ATGGATCGCTCCACTTTGACC GGGCTTCGGACTGGTAAACAT 

hGYK CTGGGACAAGATAACTGGAGAGC TCAACGGTAGACTGGGTTCTTA 

hHSL (LIPE) AGGAGCCAGCATTGAGACAAA CGCAGGTGTTGATTCAGCTTC 

hIDH3A AGCCGGTCACCCATCTATGAA TAGAGACACATGGTCGGACAT 

hPDK4 GACCCAGTCACCAATCAAAATCT GGTTCATCAGCATCCGAGTAGA 

hPPARA CGGTGACTTATCCTGTGGTCC CCGCAGATTCTACATTCGATGTT 

hPPARG ACCAAAGTGCAATCAAAGTGGA ATGAGGGAGTTGGAAGGCTCT 

hPPARGC1A TCTGAGTCTGTATGGAGTGACAT CCAAGTCGTTCACATCTAGTTCA 

hPRDM16 GTTCTGCGTGGATGCAAATCA GGTGAGGTTCTGGTCATCGC 

hSOD1 GGTGGGCCAAAGGATGAAGAG CCACAAGCCAAACGACTTCC 

hSOD2 GCTCCGGTTTTGGGGTATCTG GCGTTGATGTGAGGTTCCAG 

hTFAM ATGGCGTTTCTCCGAAGCAT TCCGCCCTATAAGCATCTTGA 

hUCP1 AGGTCCAAGGTGAATGCCC GCGGTGATTGTTCCCAGGA 

 
Table III.2 Primer sequences for real-time qPCR analysis. 
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Chapter IV 

Development, Activation, and Therapeutic Potential of Thermogenic Adipocytes  

 

Abstract 

During the last decade, significant progress has been made in understanding adipocytes with a 

particular focus on thermogenic fat cells, which effectively convert chemical energy into heat in 

addition to their other metabolic functions. It has been increasingly recognized that different 

types and subtypes of adipocytes exist and the developmental origins of various types of fat cells 

are being intensively investigated. Previous work using immortalized fat cell lines has 

established an intricate transcriptional network that regulates adipocyte function. Recent work 

has illustrated how these key transcriptional components mediate thermogenic activation in fat 

cells. Last but not least, cumulative evidence supports an incontestable role of thermogenic fat in 

influencing systemic metabolism in humans. Here we summarize the exciting advancements in 

our understanding of thermogenic fat, discuss the advantages and limitations of the experimental 

tools currently available, and explore the future directions of this fast-evolving field.  

 

Introduction

																																																																				
Portions of this chapter are from an article that is currently under review, it will be credited as: 
Emont, M.P.*, Kim, D.*, Wu, J. Development, Activation, and Therapeutic Potential of 
Thermogenic Adipocytes.  *Contributed equally. 
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The rediscovery of thermogenic adipocytes in human adults introduced a fresh target to 

investigate and modulate in hopes of leveraging the balance of energy homeostasis towards 

expenditure, therefore possibly presenting new opportunities counteract human obesity. While 

pursuing the potential metabolic benefits of these thermogenic fat cells, researchers in this area 

have investigated many aspects of the basic biology of adipocytes and the last ten years has 

witnessed a riveting renaissance of all things fat  [1].   

 

Broadly speaking, chemical energy storing, unilocular white adipocytes and heat producing, 

multilocular thermogenic fat cells constitute the majority of the fat in mammals. Emerging 

evidence additionally suggests that adipocytes in the bone marrow are distinctive in many 

aspects from fat found in the rest of the body and are often considered in a separate category of 

its own [2]. Among all the thermogenic fat cells, what we now call classical brown fat cells arise 

from a skeletal muscle like origin and localize within a number of specific anatomical locations 

[3]. In comparison, the exact definition of the inducible beige adipocyte is continuously evolving 

as investigation moves forward. In this mini review, what we refer to as beige adipocytes can be 

loosely defined as the thermogenic fat cells residing within white adipose tissue that do not share 

the same developmental origin as the classical brown adipocytes.  

 

Thermogenesis, similar to any other energy consuming process, has evolved to be tightly 

controlled so that no unnecessary energy loss can occur. Signaling cascades that regulate 

thermogenic fat activation have recently been thoroughly reviewed elsewhere [4]. Here we will 

focus our discussion on the developmental origin, transcriptional control, and therapeutic 

potential of both brown and beige adipocytes.  
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Developmental Origins of Thermogenic Fat 

It has been more than ten years since transcription co-component PR domain containing 16 

(PRDM16) was identified as one of the key regulators for brown fat differentiation and a loss of 

function study revealed that instead of turning into white fat cells as expected, PRDM16 

knockdown causes primary brown preadipocytes to differentiate into myocytes [3, 5]. Cell fate 

mapping experiments with skeletal muscle marker Myf5 driven cre mediated reporter expression 

uncovered the surprising shared lineage between skeletal muscle and interscapular brown fat [3]. 

This skeletal muscle-like origin for brown adipocytes has been validated by subsequent studies 

using other skeletal muscle markers [6-8]. The finding that the adrenergic-induced thermogenic 

cells within the subcutaneous inguinal fat depot arise from a different developmental origin than 

brown fat led to the study of clonal cell lines derived from this depot, which found that beige fat 

arises from a subpopulation of distinct progenitor cells [3, 9].  

 

Since then, further evidence has emerged showing that cold exposure induces de novo 

adipogenesis of beige adipocytes. The “Adipo-Chaser” mouse, which pulse labels mature 

adipocytes with lacZ, found that a large population of non-lacZ labeled multilocular adipocytes 

(newly differentiated beige fat cells) emerge in the white fat depots after cold exposure [10]. The 

developmental origin(s) of these inducible beige fat cells have been intensively investigated. 

Using a Ucp1-TRAP system to specifically analyze polysomes from the Ucp1-expressing cells in 

white fat depots showed that these cells had enriched expression of multiple genes associated 

with smooth muscle [11]. Further investigation using a myosin heavy chain 11 (Myh11)-cre 

driven GFP reporter found that many UCP1+ cells in the inguinal depot arose from Myh11+ 
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progenitor cells [11]. This potential smooth muscle like origin of beige fat cells was also 

implicated by fate mapping studies using reporter mice that label cells from the SMA lineage 

(smooth muscle actin, also called ACTA2, actin alpha 2) [8, 12]. Vascular smooth muscle cells 

and pericytes, generally referred to as mural cells, derive from the mesenchyme and give rise to 

vessels. Mural cells expressing platelet derived growth factor receptor b (PDGFRb) have been 

shown to differentiate into beige adipocytes in the inguinal depot in response to long-term cold 

exposure [13]. Interestingly, capillary cells from human adipose tissue explants have been shown 

to be able to differentiate into thermogenic adipocytes, further suggesting that vascular 

progenitors and beige adipocytes may share a common origin [14]. In addition to studies of what 

may lead to the formation and activation of inducible beige adipocytes, recent work has started to 

inspect how the deactivation of beige fat may be regulated. A swift decrease of thermogenic 

activity was observed upon stimuli withdrawal in beige fat, in contrast to classical brown fat 

[15]. This is consistent with the notion that beige adipocytes with “white-like” morphology exist 

in an inactivated state in the absence of thermogenic stimuli and could constitute at least one of 

the potential mechanisms for “interconversion” and “transdifferentiation” observed in previous 

investigations [16, 17].  

 

Transcriptional Control of the Activation of Thermogenesis 

A great deal of work has been done to characterize the transcriptional network responsible for 

thermogenic fat activation. Much of this regulation has emanated from interactions between 

peroxisome proliferator-activated receptor gamma (PPARγ) and two key transcriptional co-

components: PRDM16, and peroxisome proliferator-activated receptor gamma coactivator 1 

alpha (PGC1α) (Figure IV.1). 
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PPARγ is the master regulator of adipocyte differentiation and function [1] and chronic PPARγ 

agonism by drugs such as the thiazolidinedione rosiglitazone during adipocyte development 

results in an increased capacity for thermogenesis in these cells [18-20]. While the mechanisms 

by which PPARγ promotes thermogenic development are continuously being investigated, a 

number of posttranslational modifications of PPARγ have been suggested to play a role in the 

upregulation of the thermogenic program during adipocyte differentiation [20-22]. PPARγ both 

drives the transcription of and works alongside PRDM16, a transcriptional co-component that 

plays a pivotal role in regulating brown fat cell fate and beige fat function [3, 5, 23, 24]. Unlike 

the drastic cell type switch from brown adipocytes to myotubes seen when PRDM16 is knocked 

down in culture, deletion of PRDM16 in the brown fat lineage by Myf5-cre in vivo compromised 

brown fat function during aging but did not affect brown fat in early development, likely due to 

compensation from PRDM3 [25].  Despite arising from a separate lineage that PRDM16 may not 

affect, inducible beige adipocytes are functionally responsive to this transcriptional co-

component. Beiging due to rosiglitazone treatment has been shown to be at least partially 

mediated through PRDM16 stabilization [20]. Gain and loss of function of PRDM16 in 

adipocytes increases and decreases the abundance of thermogenic beige adipocytes in 

subcutaneous adipose tissue, respectively [23, 24]. It was shown that PRDM16 transcriptional 

activity works in part by making a complex with CCAAT/enhancer binding protein b (C/EBPb) 

[26]. Accordingly, thermogenic fat function can be affected by micro RNAs that regulate  

C/EBPb, such as mir-155 [27] or miR-196a [28].  

 

The regulation of Prdm16 transcription plays a substantial role in the maintenance of the 
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thermogenic program. Early b-cell factor 2 (EBF2) is a DNA binding protein that has been 

reported to direct PPARγ towards transcription of a brown adipocyte program, including 

upregulation of Prdm16 transcription [29]. Blnc1 is a long noncoding RNA that has been shown 

to interact with EBF2 to promote thermogenic adipocyte differentiation [30]. Blnc1, as well as 

the long noncoding RNA lnc-BATE1, were shown to upregulate thermogenesis via interactions 

with the structural protein heterogeneous nuclear ribonucleoprotein U (hnRNPU) [31, 32]. A 

screen to find transcription factors that induce thermogenic adipocyte differentiation identified 

ZBTB7B, which was shown to interact with Blnc1 and hnRNPU to upregulate the expression of 

thermogenic genes [32]. ZFP423, in addition to its role in regulating adipocyte commitment [33], 

directly binds to EBF2 and inhibits browning through suppression of Prdm16 transcription [34]. 

Other suppressors of Prdm16 transcription also inhibit thermogenesis, including miR-27b and 

miR-133 which both inhibit thermogenesis through targeting of the 3’- untranslated region 

(UTR) of Prdm16 [35-38]. A number of proteins activate or inhibit thermogenesis through 

interaction with PRDM16. Activators include euchromatic histone-lysine N-methyltransferase 1 

(EHMT1) [25, 39], ZFP516 [40], and lysine-specific demethylase 1 (LSD1) [41, 42], which also 

interacts with ZFP516 to promote thermogenic gene transcription [43]. Repressors include 

transducin like enhancer of split 3 (TLE3), a transcription factor that promotes white 

adipogenesis through competition with PRDM16 to bind promoters of genes associated with 

lipid storage and thermogenesis [44, 45]. 

 

PGC1α was initially identified as a transcriptional cofactor interacting with PPARγ with enriched 

expression in brown fat compared to white fat [46].  Further research has confirmed that it plays 

a pivotal role in mitochondrial biogenesis and oxidative metabolism through interactions with 
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various nuclear receptors [47]. PGC1α and related protein PGC1b have been shown to be crucial 

in the regulation of mitochondrial biogenesis in activated thermogenic fat [48-50]. Pgc1a 

transcription is induced by CREB and ATF2 [51, 52] and upregulation and stabilization of Pgc1a 

mRNA activates the thermogenic program. Interferon regulatory factor 4 (IRF4) regulates 

thermogenic gene transcription via direct interaction with PGC1α, and thermogenesis induced by 

PGC1α overexpression in fat is blunted in the absence of IRF4 [53]. Conversely, factors that 

inhibit PGC1α activity decrease thermogenesis. Twist Family BHLH Transcription Factor 1 

(TWIST1) is a transcriptional regulator that interacts with PGC1α and suppresses the 

transcription of its target genes, possibly through a negative feedback mechanism [54]. Knockout 

of the related proteins RB and p107 were found to increase thermogenesis in adipocytes through 

alleviated repression of PGC1α [55, 56]. Similarly, RIP140 interacts with PGC1α, repressing 

transcription of thermogenic genes such as cell death-inducing DFFA-like effector A (Cidea) and 

Ucp1 [57, 58]. Finally, inhibition of miR-34a robustly increases browning of white adipocytes by 

enhancing SIRT1-mediated PGC1α deacetylation, resulting in an increase of thermogenic gene 

transcription [59]. 

 

Therapeutic Potential of Thermogenic Fat 

Better understanding of the development and activation of thermogenic adipocytes can help to 

build the foundation for potentially harnessing the metabolic benefits of these fat cells in 

humans. Since 2009, when multiple groups discovered activatable thermogenic fat in the 

supraclavicular and neck regions of humans [60-63], a great deal of research has been done to 

characterize human thermogenic fat. These initial ground-breaking discoveries were 

accompanied by both the excitement that these metabolically active cells may help to counteract 
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human obesity as well as caution concerning whether the amount and activity of these cells in an 

average human could constitute a palpable influence on systemic metabolism. Much of the hard 

work since then has addressed these concerns and evaluated the therapeutic potential of 

thermogenic fat in various human studies (Table IV.1). It has been shown that in healthy 

individuals acute cold exposure can improve glucose homeostasis and insulin sensitivity [64] and 

that varying lengths of chronic cold exposure can increase insulin sensitivity [65] and decrease 

obesity [66]. It has additionally been shown that a 10 day cold exposure protocol can increase 

insulin sensitivity in obese diabetic patients [67]. Cold activates thermogenic fat through the 

central nervous system, which signals to target tissues through the b-adrenergic pathway [1]. 

After early mixed results [68-71], recent work has shown that the b3-adrenergic receptor agonist 

mirabegron can stimulate human thermogenic fat [72]. Ongoing efforts have revealed that other 

pathways, such as stimulation with capsinoids [66, 73], chenodeoxycholic acid (CDCA) [74], or 

glucocorticoids [75], can all promote the activity of human thermogenic fat. 

 

To further investigate the therapeutic potential of these cells, studies have sought to develop tools 

to more effectively study their activation and function. Clonal cell lines were derived from 

human neck fat and studied using RNA sequencing and using a Ucp1 reporter system, 

identifying multiple novel markers for human thermogenic adipocytes [76, 77]. Murine systems 

that measure substrate uptake and thermogenic activity in vivo allow for investigation into 

fundamental questions regarding the physiological function of the activated thermogenic 

program. It has recently been reported that long chain fatty acids (LCFAs) are required for UCP1 

function and can be used as a substrate for thermogenesis [78]. Injection of a luciferin-conjugate 

LCFA, which is cleaved by glutathione and activated upon uptake into cells, allows for real-time 
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detection of b-adrenergic agonist induced fatty acid uptake increase in the brown fat of mice 

expressing luciferase, presenting an imaging approach that allows investigation of metabolic 

regulation and pathological alterations of thermogenic fat [79]. This method was applied to 

Ucp1-cre driven luciferase-expressing mice and directly demonstrated that lipokine 12, 13-

diHOME promotes fatty acid uptake in brown fat [80]. A number of mice have additionally been 

generated with reporter constructs for Ucp1 expression, the ‘ThermoMouse’ which expresses 

luciferase under the control of the Ucp1 promoter region [81] and the ‘Ucp1-2A luciferase 

knock-in mouse’ which contains luciferase appended to the end of the Ucp1 gene [82] can both 

faithfully recapitulate Ucp1 regulation in vivo and can be used for future exploration to uncover 

regulatory signaling or drug compounds targeting thermogenic fat.  

 

Investigation so far indicates that not only the activity level but also the actual amount of 

activatable thermogenic fat may vary from individual to individual [83], methods that can 

accurately measure activatable thermogenic fat can therefore be used to better personalize 

therapeutic strategies by identifying likely responders. Using radiolabeled substrates for 

thermogenesis as surrogates, studies have been carried out using positron emission tomography 

(PET) scans with either 18F-FDG or the fatty acid tracer 18F-FHTA, combined with computed 

tomography (CT) scanning to measure activated thermogenic fat [60-63, 84, 85]. Similarly, PET 

scans using 15O to measure oxygen consumption have also been adapted to measure the activity 

of thermogenic fat [86, 87]. Nonionizing techniques have also been applied to evaluate 

thermogenic fat content and activity in humans. Contrast enhanced ultrasound can be used to 

measure the increased blood flow to thermogenic fat tissue following cold exposure [88]. Similar 

to infrared imaging of mice [89], measurements of surface temperature in the supraclavicular 
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region using infrared thermography can detect human thermogenic fat activity [90, 91]. Water-fat 

separated magnetic resonance imaging (MRI) was adapted to distinguish thermogenic and white 

fat based on contrasting tissue characteristics instead of measurement of thermogenic activity, by 

taking advantage of the fact that thermogenic fat is more densely vascularized than white fat [92, 

93]. A recent study with a hybrid FDG-PET/MR scanner demonstrates that MRI when used in 

combination with PET may present a radiation-free alternative to CT [94]. Continuous efforts to 

develop accurate, non-invasive methods to detect and monitor thermogenic fat in humans are 

warranted to enable longitudinal studies in infants, children, and healthy adults in the future.  

 

While thermogenic activity of supraclavicular and neck fat has been extensively studied in 

humans [75-77, 95-98], an increasing number of studies indicate that activatable thermogenic fat 

may very well exist elsewhere in the human body. Seasonal cold exposure has been shown to 

induce thermogenic gene expression in subcutaneous white adipose tissue [99] and long-term 

adrenergic stimulation as a result of burn injuries can thermogenically activate subcutaneous fat 

from multiple depots [100]. Studies of human subcutaneous adipocytes in culture have revealed 

that these cells respond to thermogenic stimuli,  such as PPARg agonist rosiglitazone [101], bone 

morphogenic proteins (BMP) 4 and 7 [102], natriuretic peptides [103], and the food compound 

cinnamaldehyde [104]. It is also worth noting that many human adipose cell lines have been used 

to investigate thermogenic regulation, including human multipotent adipose derived stem 

(hMADS) cells [103, 105-109], human induced pluripotent stem (iPS) cells [110-114], and a 

number of cell lines derived from fetal tissue [115-117]. It is unlikely that quantifiable changes in 

actual thermogenic capacity (e.g. respiration) can be measured in all of the above mentioned in 

vitro systems, given that the actual expression levels of thermogenic genes are fairly low in some 
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of these cell lines. However, it is tempting to speculate that gene expression based assays could 

potentially be carried out in many commonly available human fat cell systems, at least as an 

initial proof-of-principle investigation.  

 

Future Directions  

Most of the research done on both murine and human thermogenic fat thus far has focused on 

UCP1-mediated thermogenesis, however, recent work indicates that a deeper understanding of 

non-shivering thermogenesis and a broader definition of beige adipocytes are warranted.  

Creatine cycling, which enhances respiration in wild type mitochondria when there are limiting 

amounts of ADP, has been observed in adipocytes from UCP1 KO mice, suggesting that this 

constitutes a mechanism for UCP1 independent thermogenesis [118]. This creatine-dependent 

futile cycle was further confirmed using patch clamp analysis of mitochondria isolated from 

visceral adipocytes after thermogenic stimulation. This study found that the majority of 

epididymal mitochondria were UCP1 negative and that thermogenic capacity was achieved 

through creatine cycling in these abdominal UCP1-negative “beige” adipocytes [119]. 

Furthermore, mice with an adipocyte specific knockout of glycine amidinotransferase (GATM), 

the rate limiting enzyme in creatine synthesis, have an increased tendency towards obesity, 

demonstrating the systemic influence of adipose creatine-cycling [120]. UCP1-independent 

thermogenesis can also be mediated through N-acyl amino acids, endogenous uncouplers of 

mitochondrial respiration in brown and beige adipocytes [121].  

 

In this thesis we have provided a method to further study the differences between subcutaneous 

and visceral fat as well as investigated the activation of thermogenesis and modulation of 
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metabolic programming in murine and human subcutaneous adipocytes. The development of a 

method with which we can study visceral and subcutaneous adipocytes side-by-side in culture 

not only provides a tool by which we can further explore the similarities and differences between 

these cell types but also raises questions about the factors that control the ability of subcutaneous 

and visceral cells to differentiate. Is it the support from the 3D structure of the hydrogel that 

allows the cells to differentiate more naturally or is it enhanced interactions with the collagen, 

which physiologically is a major component of the ECM? Similarly, the cinnamaldehyde project 

provides insight into the thermogenic and metabolic remodeling of adipocytes but raises further 

questions—what is CA signaling through if not TRPA1 and what is the pathway for the CA 

mediated activation of PKA? Despite these remaining questions, the work done here represents a 

step forward in our ability to study the similarities and differences between subcutaneous and 

visceral adipocytes as well as our understanding of the process of thermogenic fat activation in 

subcutaneous adipocytes. These findings can only help us in the quest to identify new targets that 

can help to materialize the potential of thermogenic adipocytes in influencing human physiology 

in health and disease. 
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Figure IV.1 PRDM16 and PGC1α Interact with PPARγ to Activate the Thermogenic 

Program  

Both the transcription of Prdm16, regulated by PPARγ and EBF2, as well as the function of 

PRDM16 as it forms transcriptional complexes with PPARγ and C/EBPb, are responsible for 

driving thermogenic activation. Similarly, the transcriptional complexes that PGC1α forms with 

PPARγ and IRF4 mediate activation of the thermogenic program. 
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Table IV.1 Recent Advancements in Human Thermogenic Fat Study 

 

 

in vivo 

Detection and 
measurement 

PET/CT (18F-FDG, 18F-FTHA, 15O) [60-63, 84-87] 

Nonionizing (Contrast enhanced ultrasound, Infrared 
thermography, MRI, Near infrared spectroscopy) 

[86, 88, 90-
94] 

Stimulation of 
thermogenic fat 

Cold exposure (Improves glucose homeostasis, Decreases 
body fat) [64-67] 

b-adrenergic stimulation (Mirabegron, Ephedrine) [70, 72] 

Other drugs (Capsinoids, CDCA, Glucocorticoids) [66, 73-75] 

in vitro 

Supraclavicular and 
Neck fat 

(Forskolin, BMP7, Cortisol, db-cAMP, Norepinephrine, 
FGF21, Isoproterenol) [75-77, 95-98] 

Subcutaneous fat (Rosiglitazone, Mirabegron, BMP4/BMP7, Natriuretic 
peptides, Cinnamaldehyde) [14, 101-104] 

Multipotent adipose 
derived stem 

(hMADS) cells 

(Rosiglitazone, Natriuretic peptides, b-adrenergic receptor 
agonists, Arachidonic acid) 

 

[103, 105-
109] 

iPS cells (Lactate, Forskolin, cAMP, Isoproterenol, JAK inhibition) [110-114] 

Fetal stem cells 
Fetal interscapular fat (Norepinephrine) [116, 117] 

Fetal mesenchymal stem cells (Rosiglitazone) [115] 
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