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ABSTRACT 

 

 

Periodontitis is a leading chronic oral inflammatory disease and primary cause of 

permanent tooth loss estimated to affect 47.2% of adults in the United States. Damage to the tooth-

supporting apparatus, which includes periodontal ligament (PDL) fibers that anchor the tooth root 

to alveolar bone, subsequently initiates osseous tissue resorption. Multi-tissue morbidity is a 

significant challenge given lack of predictability in reconstructing tissues with physiologic 

functionality native to healthy periodontium. Tissue engineering strategies have potential to 

address existing deficiencies in clinically-induced regeneration through combinational approaches 

using biomaterials, growth factors, and cell-based therapy. The purpose of this work was to 

develop scaffolds incorporating micropatterned topography for guidance of cell growth and 

periodontal tissue formation, in conjunction with localized, spatiotemporally-controlled growth 

factor delivery via gene therapy vectors.  

 Micropatterned polycaprolactone (PCL) films were designed to assess PDL cell orientation 

in vitro, with incorporation of the patterned film into a 3D-printed PCL scaffold for evaluation of 

varying topography on oriented tissue formation in an ectopic murine model. Specifically, pillars 

with varying groove depths (30um, 10um) and groove widths (15um, 60um) were used for the 

scaffold “PDL” region in combination with human PDL (hPDL) cell seeding, while the 3D-printed 

base served as a region for osseous tissue formation via delivery of human gingival fibroblasts 

(hGFs) transduced with adenoviral bone morphogenetic protein (Ad-BMP7). Micropatterned films 

with pillars containing deeper grooves (30um) provided greater control over hPDL cell orientation 

and subsequent alignment of soft collagenous tissue compared to non-grooved pillars or an 

amorphous PCL film, with significant (p<0.05) differences in percentage of aligned cells in vivo 

observed at 6 weeks post-implantation.  

 In order to improve spatially-controlled delivery of BMP7 and platelet-derived growth 

factor (PDGF-BB) using developed 3D-printed, micropatterned scaffolds, each region of the 

scaffold was separately immobilized with AdBMP7 and AdPDGF-BB, respectively, using 



xiv 

 

 

chemical vapor deposition (CVD)-based surface modification prior to cell seeding. A separate 

scaffold was developed for a rat fenestration defect, with the 3D-printed scaffold region replaced 

by an amorphous PCL film to accommodate the 0.5mm defect thickness. Evaluation of these cell-

seeded scaffolds showed significant (p<0.05) bone formation in regions with immobilized 

AdBMP7 compared to regions immobilized with empty vectors (Ad-empty) and non-cell seeded 

regions immobilized with AdBMP7.  A more detailed assessment of single (BMP7) and dual 

(BMP7 and PDGF-BB) growth factor delivery effects in combination with varying scaffold 

topography (i.e., patterned film versus amorphous film in the “PDL” region) was performed using 

the fenestration defect model. Micro-CT data showed significantly higher (p<0.05) bone formation 

in groups with AdBMP7 immobilization and gingival fibroblast cell seeding compared to groups 

with Ad-empty. Collagen III and periostin expression was higher in groups with dual growth factor 

delivery, with significantly (p<0.05) higher periostin expression in groups combining patterned 

film with single or dual growth factors at week 6. Nanoindentation assessment showed higher 

elastic moduli for regenerated bone and PDL-like tissue regions at bone-PDL interface in patterned 

film groups with dual growth factors (positive control) compared to amorphous films with Ad-

empty at week 9 (p<0.05 and p<0.01, respectively). Positive control group also showed no 

significant differences in bone, PDL-like tissue stiffness at 3 and 9 weeks when compared to native 

tissues. These data indicate improvement in periodontal regeneration when combining scaffold 

micro-topography cues with localized growth factor expression, thereby contributing to 

development of next-generation scaffolds specific to periodontal regenerative medicine. 
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CHAPTER 1 

INTRODUCTION 

The “Scaffold Design and Development” section of this dissertation chapter includes excerpts 

from sections written as a contribution to the following book chapter:  

 

Decker AM, Pilipchuk SP, Araujo-Pires AC, Giannobile WV. Bioengineering of the periodontal 

ligament. In: Kapila SD, Goonewardene M, eds. Interdisciplinary Therapy: Using Contemporary 

Approaches for Complex Cases. Monograph 52, Craniofacial Growth Series, Center for Human 

Growth and Development, The University of Michigan, Ann Arbor, 2016:195-242. 

 

1.1 Problem Statement  

Periodontitis is a leading chronic oral inflammatory disease and primary cause of 

permanent tooth loss estimated to affect 47.2% of adults in the United States, with a prevalence of 

70% for adults aged 65 years and older [1]. Damage to the tooth-supporting apparatus, which 

includes periodontal ligament (PDL) fibers that anchor the tooth root to the alveolar bone, 

subsequently initiates osseous tissue resorption. Multi-tissue morbidity is a significant challenge 

for current clinical periodontal regenerative therapies, which lack predictability in reconstructing 

three dimensionally accurate tissues with physiologic functionality native to the healthy 

periodontium [2, 3]. Tissue engineering strategies have shown the potential to address existing 

deficiencies in clinically-induced periodontal regeneration through combinational approaches 

using biomaterials, growth factors, and cell-based therapy [4, 5]. Recent studies indicate that 

alveolar bone-PDL interface tissue regeneration can be guided using bi- and multi-phasic material 

scaffolds with and without bioactive factors that are developmentally-linked to periodontal tissue 

formation [6–10]. However, few studies have focused on whether precise topographical features 

can influence the physiological and functional properties of regenerated periodontal tissues 

through contact guidance [11, 12], and none have examined this potential affect using a 3-D 

hierarchical multiscale scaffold design. This research is necessary to optimize scaffold constructs 

to serve as guiding platforms for anatomically-native tissue formation that is required to re-
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establish tissue functionality in vivo--thereby justifying further exploration in pre-clinical models 

for translational periodontal regenerative medicine.   

 

1.2 Existing Limitations of Current Clinical Periodontal Regenerative Therapies 

Damage to periodontal tissues resulting from trauma, chronic infection, congenital defects, 

or surgical resection requires clinical intervention. In the oral cavity, the alveolar processes of the 

mandible and maxilla line the tooth sockets and provide structural support and maintenance for 

teeth as part of the periodontium, which also consists of the periodontal ligament (PDL), 

cementum, and gingiva. Advanced periodontal disease alters alveolar bone morphology and 

destroys surrounding tooth-supporting tissues, thereby necessitating tooth extraction. Current 

clinical treatment for periodontal defects consist of re-establishing oral hygiene to stem 

progressive soft tissue and bone loss by controlling inflammation through removal of plaque and 

calculus. Restoration of some periodontal tissues can be achieved through tissue repair, although 

not necessarily regeneration, using surgical procedures, occlusive barrier membranes, and 

osteoconductive biomaterials in combination with recombinant growth factor proteins [13]. An 

autologous graft for alveolar bone restoration is considered the gold standard due to low risk of 

immunogenicity or disease transmission that could be associated with an allograft or xenograft. 

However, critical limitations of this approach include donor site morbidity and inadequate supply 

of graft tissue. An armamentarium of resorbable and non-resorbable commercially-available 

osteoconductive ceramic (i.e., calcium phosphates, bioactive glass) or polymeric (i.e., 

methylmethacrylate, poly-α-hydroxy acids) alloplasts and their composites are used clinically for 

intraoral bone maintenance and augmentation [14, 15], and in conjunction with growth factor 

delivery [4, 16], for dental implant stabilization in tooth extraction sockets. The capacity of bone 

grafts to regenerate intraoral osseous tissues predictably, however, is compromised by factors such 

as variability in defect type and size, growth factor instability, patient health status, and surgical 

technique.  

Even more so than intraoral bone regeneration, the formation of physiologically functional 

PDL which anchors the cementum-coated tooth root to the alveolar bone remains an elusive 

achievement and a major clinical challenge. The PDL consists of vascularized, innervated 

connective tissue with highly organized fibers composed primarily of collagen type I and III. PDL 

fibers are perpendicularly oriented between the cementum and alveolar bone, where their ends 
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(Sharpey's fibers) insert into these mineralized tissues to stabilize the tooth root, transmit occlusal 

forces, and provide sensory function. Presence of bone and cementum is crucial for the formation 

of functional PDL, and regeneration of the full bone-PDL-cementum complex would negate the 

need to extract otherwise healthy teeth with compromised periodontal apparatus. Guided tissue 

regeneration (GTR) is a surgically-based technique using cell-impermeable barrier membranes to 

control the formation of pocket or long junctional epithelium tissue formation in place of PDL 

along the tooth root due to epithelial down-growths that fill periodontal defects. While regenerative 

periodontal surgery with GTR shows considerable reduction in probing pocket depth, radiographic 

evidence of increased bone fill, and clinical attachment gains that are indicative of increased 

collagen fiber attachment to the cemental surface, the overall quality and degree of periodontal 

healing varies widely [2, 17]. For example, GTR may provide space maintenance for tissue repair 

by endogenous progenitor cells, but PDL connective tissue repair may be disorderly or result in 

bone-like tissue in place of periodontal regeneration.  

Periodontal wound healing can also be enhanced through the use of recombinant growth 

factors (GFs) and platelet rich plasma (PRP) which contains concentrated suspensions of 

autologous platelets that secrete bioactive GFs at the wound site. Some commonly-used bioactive 

agents in the clinic are derived from the following GF families: platelet derived growth factors 

(PDGFs), bone morphogenetic proteins (BMPs) within the β-transforming growth factor (β-TGF) 

superfamily, fibroblast growth factors (FGFs), among others. These are necessary biologics which 

regulate periodontal and mesenchymal stem cell migration, differentiation, proliferation, 

chemotaxis, and cell-specific extracellular matrix (ECM) production. Pre-clinical and clinical 

studies have shown time- and dose-dependent GF-induced regeneration of alveolar bone with 

BMP-2, BMP-7, PDGF-BB, and FGF-2 [18–21]; periodontal ligament with PDGF-BB [22]; and 

cementum with BMP-7 [23, 24] . The efficacy of these agents varies depending on delivery system, 

dosages, and release kinetics. Food and Drug Administration (FDA)-approved biologics used for 

periodontal regenerative therapies include rhPDGF-BB in the osteoconductive delivery vehicle β-

tricalcium phosphate (β-TCP) (GEM-21S®) and rhBMP-2 in a collagen sponge (Infuse®). 

However, pharmacologic dosing is often required to mitigate the transient biological activity of 

GFs at local delivery sites due to short half-lives  and proteolytic degradation, although use of 

supra-physiological doses can evoke local and systemic toxicity [25]. Localized GF delivery is 

therefore necessary to decrease total dosage needed without compromising function. Pre-clinical 
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studies using gene therapy indicate that this limitation may be addressed through the transduction 

(using viral elements) or transfection (using non-viral elements) of a target cell population to 

express GF-encoding genes over a period of time necessary to achieve desired therapeutic effects. 

This is supported by multiple studies using gene therapy for periodontal tissue regeneration: 

Sustained and localized PDGF-B gene expression using direct delivery in periodontal lesions was 

observed for up to 21-35 days after cell transduction [26], and has been shown to stimulate alveolar 

bone and cementum regeneration [27, 28], whereas ex vivo BMP-7 gene transfer using dermal 

fibroblast transduction resulted in predictable bridging of periodontal bone defects [29]. Safety 

concerns regarding risk of virus dispersion and lack of spatio-temporal control of gene expression 

limit the predictability of this approach and its translation into clinically-viable solutions, thereby 

requiring the investigation of novel methods of gene delivery. Overall, tissue engineering 

approaches using scaffolds alone or in combination with growth factor, cell and/or gene delivery 

have the potential to address existing challenges in managing periodontal tissue loss and increase 

clinical options for their controllable regeneration. Given the limitations of current periodontal 

regenerative therapies, the main goal of this research work is to design a scaffold-based delivery 

vehicle that can be used for the regeneration of the alveolar bone-PDL-cementum complex in 

conjunction with localized, controlled PDGF-BB and BMP-7 delivery using gene therapy (Figure 

1.1).   

 

 

Figure 1.1 Scaffold Fabrication Techniques Combined with Gene Therapy 
Areas of improvement addressed for current periodontal tissue engineering strategies: increased 

topographical precision of scaffold fabrication (Aim I) combined with spatiotemporally controlled 

gene therapy (Aim II) using the scaffold as a gene delivery vehicle to regenerate periodontal tissues 

in a loaded periosseous defect model (Aim III). Figure modified from [5].  
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1.2 Scaffold Design and Development for Periodontal Regeneration 

A biomaterial scaffold is ideally intended to provide a cell-adhesive, three-dimensional 

microstructural framework for the guidance and support of physiologically functional tissue 

formation—reminiscent of the extracellular matrix (ECM) that provides native “scaffolding” in 

healthy tissue. Several important scaffold development criteria include: (1) biological 

functionality capable of supporting cell infiltration, proliferation, and differentiation, (2) ECM-

mimicking permeable microstructure with porosity to facilitate nutrient and oxygen delivery and 

exchange, (3) rate of degradation consistent with rate of tissue regeneration and remodeling, (4) 

mechanical properties to maintain tissue defect architecture and support applied loads such as 

mastication-induced compressive forces on the periodontal ligament, (5) neovascularization for 

tissue homeostasis and reperfusion, and (6) targeted cell, growth factor, and/or gene delivery for 

enhanced regenerative capacity.  

 

1.2.1 Biological, synthetic materials as scaffolds 

While scaffolds formed from naturally-derived materials including proteins (i.e., collagen, 

fibrin, gelatin, hyaluronic acid) and polysaccharides (i.e., chitosan, alginate) have innate biological 

functionality, their mechanical properties and rates of degradation cannot be as precisely tailored 

as is possible with synthetically-derived materials. Synthetic polymers are used widely in the 

clinic, with members of the polyester family most prevalent due to their proven safety profile, 

biodegradable properties, and biocompatibility. Among these, poly(lactic acid) (PLA), 

poly(glycolic acid) (PGA), their co-polymer poly(lactic-co-glycolic acid) (PLGA), and 

polycaprolactone (PCL) have been extensively investigated in pre-clinical studies for PDL 

regeneration.  Additionally, ceramic-based material--most commonly used as bone grafts in 

periodontal regeneration studies--include calcium phosphate (CaP)-derived matrices (i.e., 

tricalcium phosphate (TCP) and hydroxyapatite (HA)) and bioactive glass. Instead of serving as 

scaffolds for directed growth of periodontal ligament, these are mostly employed as barrier 

membranes for guided bone regeneration, and can assist in maintaining the space needed for 

connective tissue growth that may have PDL-like formation [30].  The method of delivering a 

scaffold to the site of defect varies depending on material properties, with naturally-based protein 

scaffolds frequently seen in the form of highly hydrated gels or particulates, whereas synthetic 

materials are more likely to be delivered in solid form [31-33].  
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Among the various candidate scaffolds for periodontal ligament regeneration, biological 

polymers are advantageous given their low cytotoxicity and immunogenicity, including their 

resemblance to an endogenous ECM. Most commonly formed as hydrogels or sponges, these 

polymers and polysaccharides can be used to fill irregular defects and provide a delivery vehicle 

with high cell-seeding efficiency. Hydrogels are typically prepared by chemically or physically 

crosslinking the polymer chains, using chemical crosslinkers or pH-based reactions, respectively 

[34]. Cell-encapsulation within hydrogels prior to transplantation can be used for cell and gene 

delivery into periodontal defects. Collagen scaffolds alone can still facilitate improved periodontal 

tissue formation as compared to a lack of treatment [35], but not to the same extent as with cell-

based and growth factor-based delivery. Jin et al used a collagen matrix to deliver adenoviral 

PDGF-B to the periodontium, stimulating PDL formation and cementogenesis with fiber insertion, 

including vascularization and newly-formed periodontium not observed with collagen matrix 

alone.  Interestingly, the majority of the collagen matrix delivered in combination with PDGF-B 

was resorbed by 2 weeks, with more scaffold remnants present at lesions sites with collagen matrix 

alone [36]. It is likely that the addition of growth factors increases the rate of tissue regrowth and 

invasion into the scaffold, thereby increasing its rate of degradation.  

 

1.2.2 Cell sheet technology as an alternative to biodegradable scaffolds 

Given the importance of biological factor delivery and retention of a viable cell population 

at the site of the defect, cell sheet engineering has emerged as a novel approach for targeted cell 

delivery without the use of biodegradable scaffolds.  Cell sheet monolayers with intact cell-cell 

contacts and ECM can be harvested non-enzymatically using thermo-responsive polymeric surface 

cell culture plates that enable controlled cell adhesion [37]. In vitro cultures of human-derived 

hPDL cell sheets show periostin expression and high alkaline phosphatase activity [38], and 

several studies confirm their potential for PDL regeneration using small and large animal models 

[39]. Despite this scaffold-free approach, the incorporation of supporting synthetic [40] or natural 

membranes [41] can be useful for increased cell sheet stability and ease of transplantation. 

Therefore, the most promising approaches for the regeneration of PDL lie in the design and 

fabrication of scaffolds that can be appropriately suited to the delivery of cells and growth factors 

that will stimulate the regenerative process and allow for the remodeling and growth of tissue that 

is structurally and functionally-similar to native ligament.  
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1.2.3 Micropatterning and Multiphasic Scaffold Design 

The complex hierarchical organization of periodontal tissues has brought into focus the 

need for multi-phasic biomaterial constructs that can recapitulate the structural integrity of the 

bone-ligament interface. Microscale technologies have been indicated for use in fabricating 

scaffolds that facilitate control of multiple tissue organization and positioning, as required for the 

regeneration of an bone-ligament interface [42, 43]. Surface topography on the micro- and nano-

scale (10-100,000 nm) profoundly affects cell behavior, including adhesion, migration, alignment, 

intracellular signaling pathways, and ultimately tissue formation in combination with biochemical 

cues. This phenomenon has been explored using a variety of cell types on a diverse range of 

biomaterial surfaces [44-49]. Although few in number, existing studies that have investigated the 

effect of micropatterned surfaces on PDL cells showed high elongation and alignment relative to 

formed grooves and ridges on polystyrene, silicone rubber, and glass slide surfaces [50]. Among 

microscale technologies, soft lithography is specifically used for micro- and nano-patterning of 

material surfaces and has been widely applied for the study of cell behavior on topographic 

substrates since its transition from microelectronics industry to biologically-based research. It 

provides a methodology for creating 2-D and 3-D curved and ordered structures (> 500 nm) 

including grooves, pillars, wells, and pits, in a variety of materials--an undertaking that is not yet 

possible using current 3-D printing technology that is low-resolution in comparison. The most 

widely employed soft-lithography method is replica molding, which consist of producing an 

elastomeric mold, usually made of polydimethylsiloxane (PDMS), that contains a desired micro-

structure pattern which is replicated on a polymer by filling the mold with the pre-polymer 

solution, curing it, and peeling the polymer off to obtain the patterned surface [51].  

To translate microscale technology into an implant with clinical relevance, it is necessary 

to integrate microscale features into a three-dimensional scaffold that matches a given defect with 

appropriate dimensionality and bulk properties. Such an approach has already been established in 

dentistry with the use of nanoscale surface topology on dental implants to promote 

osseointegration and cell adhesion. However, the exploration of this approach for the guidance and 

regeneration of periodontal tissues is still nascent. Recent studies have focused on the applicability 

of electrospinning and additive manufacturing technology (3-D printing) as predictably 

reproducible methods of fabricating structures with cell-guiding features or controllable internal 

architectures, respectively. While electrospinning can produce linear polymer fibers on the order 
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of 5nm-1um that are structurally similar to ECM, these fibers have poor mechanical properties 

inconsistent with those necessary to mimic bone or ligament structure [52]. Commonly employed 

3-D printing processes for the fabrication of bone scaffolds include fused deposition modeling 

(FDM) and selective laser sintering (SLS). Whereas FDM relies on extrusion to produce simple 

patterned polymeric stacks, SLS allows the processing of powdered biocompatible polymers via a 

focused laser beam that deposits the polymer layer by layer to create a computer-aided design 

(CAD)-based replica, making it useful in combination with medical imaging technology for pre-

operative surgical planning and implant design. Polycaprolactone (PCL)--an FDA-approved, 

hydrolytically-biodegradable polyester used as a bone graft substitute--is easily manufactured into 

a variety of shapes, porosities, and with variable mechanical properties using SLS due to its low 

melting point (59-64°C) [53]. PCL, which degrades over a period of 2-4 years in vivo, has been 

the material of choice in multi-phasic scaffolds developed for the attempted regeneration of the 

periodontium: Park et al. used 3-D printed wax-based molds to cast PCL for the bone compartment 

of an image-based bi-phasic scaffold (6, 7); Costa et al. and Vaquette et al. employed FDM-

deposited PCL for the bone compartment and electrospun PCL for the PDL region (8, 9);  and Lee 

et al. used a layered 3-D printed scaffold with three PCL interphases for the cementum, PDL, and 

alveolar bone (10). Given PCL's malleability and ability to be formed into polymeric matrices of 

various physical and mechanical properties that can be designed to match tissues that are being 

targeted for regeneration, this research focuses on the use of PCL to develop the following bi-

phasic hierarchical scaffold compartments: (1) a 3-D micropatterned PCL surface via replica 

molding that mimics the native dimensions of mature periodontal ligament, (2) a 3-D printed bone 

compartment fabricated via SLS technology.  

 

1.4 Novel Gene Therapy-Based Approaches for Tissue Repair 

Gene therapy has been shown to offer the potential for highly targeted, effective methods 

of growth factor delivery with reduced dosing requirements. However, these methods frequently 

involve use of viral vectors such adenoviruses and retroviruses, causing concerns of systemic 

health effects through virus dispersion and reduced transduction efficiency, thereby limiting their 

clinical translation. Chemical vapor deposition (CVD) has emerged as a viable surface 

modification technique for the bioconjugation of biomaterial surfaces with specific functional 

groups to immobilize viral vectors--allowing localized gene delivery directly from the biomaterial 
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surface [54]. CVD can be used for 2-D and 3-D surface engineering to evenly coat structures with 

complex geometry and porosity while conforming to surface topology. The surface polymerization 

occurs via monomer sublimation, activation, and subsequent deposition, negating the need for 

catalysts, solvents, or plasticizers, which renders the polymer coating cyto-compatible. Poly(p-

xylylene) (PPX) polymers are selected for the CVD process given their biocompatibility and 

ability to accommodate various functional groups in their structure, including amines, aldehydes, 

alcohols, and anhydrates [55]. This technique has been used in conjunction with gene therapy to 

functionalize inert polymer surfaces such as that of PCL to induce spatiotemporal control of gene 

delivery via cell signaling adenoviral gradients for cell growth and transduction [56-58]. Two 

specific adenovirus binding techniques have been utilized to controllably transduce cells: Hu et al 

[56] tethered adenoviral vectors to the surface of aminated PPX-coated PCL using a sequence of 

virus-biotin-avidin-biotin-PCL to spatially control C4 fibroblast cell transduction; Zhang et al [58] 

simplified this technique by using an anti-adenovirus antibody immobilization on CVD-coated 

PCL via an amide chemical bond to transduce bone marrow stromal cells with Runx2 to drive their 

differentiation into an osteogenic lineage in vitro, resulting in 6.5-fold increases in alkaline 

phosphatase (ALP) activity and matrix mineralization. While this approach is promising, it is yet 

to be used in conjunction with growth factor gene delivery. One of the aims of this work was to 

investigate CVD reactive polymer coatings using PCL as a vehicle for the controlled transduction 

of cells with PDGF-B and BMP-7 in the PDL and bone regions, respectively, of the proposed 

biphasic microstructured scaffold. This novel approach allows for better containment of gene 

therapy vectors to the treatment site and could improve the bioavailability of these growth factors 

through increased transduction efficiency of the local cell population.  

 

1.5 Thesis Aims 

 

Current clinical periodontal regenerative therapies are limited by lack of predictable 

periodontal tissue regeneration, with the biggest challenge being lack of physiologically functional 

periodontal ligament tissue formation. Likewise, local delivery of growth factors to stimulate 

biologically-mediated regeneration is frequently compromised by short half-life, limited 

bioactivity, and proteolytic degradation. To address these limitations, this works focused on 

developing a novel PCL-based substrate that incorporates micropatterned topography for the 

guidance of cell growth and periodontal tissue formation, in conjunction with localized, 



10 

 

 

spatiotemporally controlled gene delivery to direct cellular growth factor expression. The potential 

of microscale technology to be used for guided 3-D periodontal tissue regeneration has not been 

examined, and cell guidance of patterned substrates has only been investigated on 2-D surfaces. 

One major challenge has been the incorporation of patterned substrates, which are often thin films 

without any bulk properties, into larger macroscale devices that can be used as implants. Here, this 

limitation is overcome by creating a bi-phasic scaffold, the foundation of which is based on a 3-D 

printed PCL scaffold that supports bone formation. This mimics the size ratio of alveolar bone to 

PDL seen in vivo, where the PDL region is a thin area of vascularized connective tissue that 

anchors the tooth root to the bone. The result of this study advances the area of scaffold fabrication 

and growth factor delivery for ligament-bone interface engineering and achieves a new generation 

of more predictable and controlled matrices for periodontal regenerative medicine.  

 

AIM 1: Design micropatterned polymer films for directed orientation of human 

periodontal ligament (hPDL) cells in a biphasic bone-ligament scaffold and evaluate effect 

of varying film topography on oriented tissue formation in an in vivo model. 

 

Hypothesis 1: Micropatterning of PCL films will provide greater control over hPDL cell 

orientation and subsequent formation of aligned periodontal ligament tissue between the 

alveolar bone-PDL and PDL-dentin interfaces.  

 

AIM 2: Investigate effect of spatially-controlled growth factor delivery on bone-PDL 

tissue complex regeneration in vivo using a biphasic scaffold with surface immobilization 

of growth factors in the PDL and bone regions of the scaffold.  

 

Hypothesis 2: Spatially-controlled delivery of BMP-7 and PDGF-B will facilitate bone and 

PDL tissue formation, respectively, in combination with the architectural and 

topographical cues for cell contact guidance established for each region of the biphasic 

micropatterned PCL scaffold.  
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AIM 3: Design micropatterned scaffolds for, and evaluate in, a mechanically-loaded in 

vivo defect model to determine tissue regeneration in combination with localized, dual 

growth factor delivery.  

 

Hypothesis 3: Biphasic micropatterned scaffolds will enable the formation of periodontal 

tissues under biomechanical loading conditions in vivo and reactive polymer coatings 

formed on regions of the scaffold via CVD will facilitate BMP-7 and PDGF-B gene 

delivery for establishment of physiologically functional periodontium.  

 

1.6 Dissertation Contents 

 

 Chapter 2 of this dissertation provides an in-depth review of currently-used scaffolds for 

bone and periodontal ligament regeneration, in addition to covering the most relevant growth 

factors, with an emphasis on various methods of growth factor delivery based on gene therapy in 

order to provide a broad understanding of the biological factors that promote soft and osseous 

tissue regeneration. Chapter 3 presents the unique design of a 3D-printed scaffold for a single-

patient case study, highlighting the potential of 3D printing as a means of creating customized 

scaffolds that mimic the necessary structural characteristics that can fit a peri-osseous defect. At 

the same time, this chapter also addresses some of the limitations of this approach that inform the 

further improvements in scaffold design and growth factor delivery that are undertaken in research 

presented in Chapters 4 and 5. Specifically, Chapter 4 describes the development of 3D printed, 

micropatterned scaffolds that are shown to promote aligned collagenous tissue formation using an 

ectopic murine model, with particular focus on the identification of scaffold topography that is 

optimal for cellular alignment that leads to tissue alignment. Chapter 5 focuses on the 

improvement of growth factor delivery using the same scaffold system and animal model through 

immobilization of adenoviral vectors that allow for localized growth factor delivery via 

transduction of the seeded cell population. This chapter further describes applying this 

methodology to study the formation of bone in a rat fenestration defect—a mechanically loaded 

site that is more representative of the conditions that are present in a true defect, except for use of 

athymic (T-cell deficient) animals to prevent a cross-species incompatibility response due to the 

presence of human-derived cells. Chapter 6 focuses on a thorough analysis of the effects of dual 

(platelet-derived growth factor (PDGF-BB) and bone morphogenetic protein (BMP7)), as well as 
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single (BMP7 only) growth factor delivery in the scaffold compartments developed to guide the 

regeneration of PDL and alveolar bone, specific to a rat fenestration defect. This study utilizes 

chemical vapor deposition (CVD) in order to allow for the controlled immobilization of adenovirus 

encoding a specific growth factor onto a given region of the scaffold. Chapter 7 offers concluding 

remarks that summarize the findings presented in Chapters 3-6, the novelty of the work, and 

existing limitations. Finally, a look into future applications of this work and its potential for 

promoting regeneration of the periodontium is presented.  
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CHAPTER 2 

 

CURRENT AND PROSPECTIVE CLINICAL TECHNIQUES FOR TISSUE 

ENGINEERING TO PROMOTE BONE AND PERIODONTAL REGENERATION IN 

THE ORAL CAVITY 

 

Originally published as a review article in Dental Materials. Additional description of scaffolds 

for periodontal ligament-specific regeneration are derived from sections written as a contribution 

to a book chapter entitled “Bioengineering of the Periodontal Ligament”: 

 

Pilipchuk SP, Plonka AB, Monje A, Taut AD, Lanis A, Kang B, Giannobile WV. Tissue 

engineering for bone regeneration and osseointegration in the oral cavity. Dent Mater. 

2015;31(4):317-338. 

 

Decker AM, Pilipchuk SP, Araujo-Pires AC, Giannobile WV. Bioengineering of the 

periodontal ligament. In: Kapila SD, Goonewardene M, eds. Interdisciplinary Therapy: 

Using Contemporary Approaches for Complex Cases. Monograph 52, Craniofacial Growth 

Series, Center for Human Growth and Development, The University of Michigan, Ann 

Arbor, 2016:195-242. 

 

 

 

2.1 Introduction  

The alveolar processes of the mandible and maxilla line the alveolus and provide structural 

support and maintenance for teeth as part of the periodontium, consisting of the periodontal 

ligament (PDL), cementum, connective tissue, and gingiva. Alveolar bone is especially susceptible 

to inflammation-induced bone resorption due to high rates of progressive periodontitis—a leading 

chronic oral inflammatory disease estimated to affect 47.2% of adults in the United States, with a 

prevalence of 70% for adults aged 65 years and older [1]. Advanced periodontal disease alters 

alveolar bone morphology and destroys surrounding tooth-supporting tissues, thereby 

necessitating tooth extraction. Since the existence of alveolar bone is mutually connected to the 

dentition and other periodontal tissues, the alveolar ridge continues to resorb following tooth 
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removal even if a dental implant is placed into a fresh extraction socket. Physiologically, this is 

caused by continuous bone remodeling in response to mechanical loading changes that occur with 

alterations in the applied force and strain distribution to the osseous tissue during mastication, as 

stipulated by Wolff's Law [2]. Ridge or socket preservation and augmentation using bone grafting 

materials is a clinically viable approach to maintain any remaining bone following tooth extraction 

and further condition it in preparation for dental implant placement. Sufficient bone volume, 

height, and width are necessary to ensure implant stability and osseointegration that can sustain 

optimal bone-implant contact biomechanical loading. Other dental procedures that involve 

grafting include maxillary sinus floor augmentation, which is employed for patients with bone loss 

in the posterior maxilla that houses premolar and molar teeth [3]. Bone defects in the oral cavity 

resulting from trauma, chronic infection, congenital defects, or surgical resection require clinical 

intervention, most frequently using autologous bone grafting techniques. However, critical 

limitations of this approach include donor site morbidity and inadequate supply of graft tissue. 

Tissue engineering approaches using scaffolds alone or in combination with growth factor, cell 

and/or gene delivery have the potential to address existing challenges in managing bone loss and 

increase clinical options for controllable regeneration of intraoral osseous tissues.  

 

2.2  Scaffolds 

2.2.1  Intraoral bone grafts  

An autologous bone graft is considered the gold standard due to low risk of 

immunogenicity or disease transmission that could be associated with an allograft (genetically 

different donor from the same species) or xenograft (donor from another species). Most 

importantly, bone transplanted from the patient is native to its host environment and readily 

associates with the remnant tissue, providing a pre-established population of viable cells and 

growth factors necessary for osteogenesis. Local sites such as the maxillary tuberosity or 

mandibular symphysis can be used for harvesting of small autologous grafts [4]. Nevertheless, 

there are several key reasons for a critical need of alternative grafts capable of substituting the 

autograft: limited availability of autologous tissue for larger bone defects, donor site morbidity 

and potential wound-based infections, as well as prolonged operative times [5]. Although lacking 

in osteogenicity, allografts and xenografts can be prepared to have osteoconductive and 

osteoinductive properties. Bone allografts are available as fresh/fresh-frozen, freeze-dried, or 
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demineralized and freeze-dried. The mechanical properties of allografts derived from a living 

donor or cadaveric tissue are changed substantially during extensive tissue processing involving 

decellularization, sterilization, and preservation for clinical use [6]. Such tissue treatment removes 

viable cells that are osteogenic and osteoinductive in nature, leaving behind a structurally 

supportive framework primarily composed of minerals and proteins—termed the extracellular 

matrix (ECM).  The allograft ECM serves as a scaffold for osteoblasts originating from the bone 

defect into which the graft is placed to facilitate new bone formation. Depending on the method of 

processing, an allograft can also be osteoinductive if it retains the biological properties necessary 

to recruit mesenchymal stem cells to the site and stimulate their differentiation into osteoprogenitor 

cells.  One example is demineralized bone matrix (DMB), which has reduced levels of calcium 

and phosphorus and is primarily type I collagen, but can be considered osteoinductive if it retains 

factors such as bone morphogenetic proteins (BMPs) and transforming growth factor-β (TGF-β) 

[7]. As expected, DMB shows an increased rate of resorption relative to a mineralized bone graft 

during tissue remodeling in vivo. In addition, derivation of DBM involves grinding of bone to 

obtain particulates as opposed to processing the allograft in its native structural form, making it 

useful for small to moderate defects [8]. 

Xenografts offer another alternative for bone replacement in dental regeneration, with most 

products derived from coral, porcine, or bovine sources. A recent study comparing implant 

placement into sinus floors augmented with  an autologous mandibular bone graft versus a 

commercially-available bovine xenograft found equivalent implant survival rates over an 

observational period of 5 years [9]. However, implant survivability depends on many factors, 

including patient demographics and surgical technique, thereby warranting longer-term 

evaluations and more comprehensive consideration of factors that may influence the clinical 

outcome. Extensive meta-analysis of histomorphometric and bone graft healing time results for 

sinus floor augmentation described in the literature over a period of 16 years concluded that 

autologous bone grafts result in higher total bone volume levels compared to other bone grafting 

materials [10]. Another comprehensive systematic review of treatment modalities used to evaluate 

dental implant survival rates in maxillary sinus grafts employed statistically robust methodology 

to correct for study effects. It concluded that application of grafting membranes for guided bone 

regeneration supplementary to a bone graft was more important for implant survival rate over 

factors such as which bone substitute material was selected for the surgery [11]. These results 



20 

 

 

indicate the difficulty of identifying specific factors that influence final clinical outcomes and 

underline the fact that there is no unified consensus on whether non-patient derived grafts can 

perform at the same level as autografts for not only bone regeneration but also implant performance 

at augmented bone sites. Each case is patient-specific and requires thorough consideration of all 

contributing factors, including the health of the patient's native bone and its suitability for grafting 

procedures. 

 

2.2.2 Natural and synthetic matrices for bone regeneration  

In addition to standard grafting procedures using bone-derived materials, a number of 

natural and synthetic materials have become commercially available for use in oral surgery. 

Scaffolds that are architecturally and/or biologically compatible for bone regeneration are 

frequently based on one or more of the bone's naturally-occurring proteins or minerals, including 

organic (predominantly collagen type I) and inorganic (hydroxyapatite, a calcium phosphate 

mineral) components [12]. Calcium phosphate (CaP) materials are subdivided into ceramics and 

cements, which vary in their rate of in vivo degradation, structure, and mechanical strength. 

Common synthetic CaP bone substitutes include hydroxyapatite (HA) ceramics, β-tricalcium 

phosphate (β-TCP) cements, and biphasic calcium phosphates (BCPs) [13, 14]. Fragility and poor 

fatigue resistance of these ceramics and cements requires their use at non-load bearing bone 

replacement sites or as coatings on load-bearing metal implants for increased bone-to-implant 

contact. Coating a dental implant surface (i.e., titanium, stainless steel, or an cobalt-chrome alloy) 

with CaP-derivatives has been extensively investigated using various surface coating deposition 

techniques to improve implant stability and rate of osseointegration [15, 16]. In addition to 

containing minerals native to osseous tissue, these biomaterials retain an interconnected porous 

architecture--allowing adequate space through increased surface area for bone ingrowth via cell 

infiltration, blood vessel formation, nutrient/oxygen transport, and waste elimination. Ongoing 

studies are being performed to determine the optimum porosity for bone ingrowth and 

corresponding bone substitute resorption rate, since an ideal regenerative scenario would consist 

of a biomaterial resorption rate timed with new osseous tissue ingrowth [17]. Likewise, there are 

ongoing investigations to confirm the utility of using CaP bone substitutes for implant coating. For 

example, recent studies of hydroxyapatite coatings on titanium cups for orthopaedic-based 
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implants such as femoral stems did not show significant differences between HA-coated and non-

coated stems and may not constitute a clinical advantage [18].  

Bioactive glass (BG), a silicon oxide with substituted calcium first developed in the 1960s 

by Professor Larry Hench, is a biocompatible glass-ceramic material approved by the US Food 

and Drug Administration (FDA) for use as a synthetic intraoral bone graft (termed 45S5 

Bioglass®). Upon exposure to aqueous solutions the highly reactive surface converts to a gel layer 

that mineralizes to form a osteoconductive hydroxycarbonate apatite layer that chemically binds 

with osseous tissues [19]. Bioglass® also has a reported reduced modulus of 35 GPa that is similar 

to that of cortical bone (Elongitudinal = ~14-20 GPa) [20, 21]. Comparatively, the elastic moduli of 

HA single crystals and β-TCP are in the range of 54-79 GPa and 120-162 GPa, respectively [22, 

23]. This makes BG an attractive option for metal implant coating, reducing the potential for stress 

shielding and subsequent bone resorption which occurs with decreased bone loading [24]. To date, 

studies using dental implants coated with BGs have not conclusively shown significant increases 

in osseointegration relative to other coatings such as HA [25]. However, novel exploratory 

combinations for dental implant coatings using BG are promising: one example is the 

incorporation of BGs with HA and the polymer poly(lactide-co-glycolide) (PLGA), which 

indicates rapid bone-like apatite formation in vitro, with potential antimicrobial activity on oral 

bacteria [26]. 

Polymeric materials that have been commercialized or are currently under investigation for 

intraoral bone regeneration are either naturally- or synthetically-derived. Natural materials that 

consist of polymeric networks (i.e., collagen, alginate) have been extensively investigated as 

composite materials with other bone replacement grafts, including β-TCP and HA [27]. Major 

advantages of a tissue-sourced polymer such as collagen include its biocompatibility, 

biodegradability, and ability to readily bind growth factors critical for osteoinduction, including 

BMPs. Currently, collagen is the most commercially-available natural polymer on the market for 

use in periodontal bone regeneration as a sponge, membrane, or in particulate form combined with 

other bone grafts [28]. It is expected that future research will continue to focus on the development 

of a more diverse array of naturally-derived, fully-resorbable polymeric bone grafts combined with 

non-immunogenic materials such as alginate and chitosan that can be engineered for growth factor, 

cell, and/or gene delivery. Such delivery devices may also include synthetically-derived resorbable 

materials whose physical, mechanical, and degradation properties can be more easily controlled 
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via polymer chemical composition and molecular weight. Historically, oral surgery has utilized 

non-resorbable synthetic membranes as cell-occlusive barriers for guided bone regeneration, 

among which the most broadly used material has been expanded polytetrafluoroethylene (ePTFE) 

[29]. Unnecessary patient discomfort and added cost of a follow-up visit to remove the membrane 

has increased demand for resorbable alternatives. Examples of widely-investigated resorbable 

polymers for applications in bone regeneration include poly-α-hydroxy esters such as polyglycolic 

acid (PGA), polylactic acid (PLA), and PLGA. The ease of processing synthetic materials enables 

their fabrication into a variety of structurally-diverse forms, including thin films, meshes, fibers, 

and porous foams. An existing disadvantage of these materials is their bulk erosion in vivo due to 

hydrolysis that can induce foreign body reactions to acidic polymer degradation products, 

increasing the potential for fibrous tissue encapsulation during wound healing. Although studies 

of PLGA utility for guided bone regeneration are still limited, there is evidence that its use as a 

barrier membrane results in alveolar bone regeneration that is on par with that observed using a 

collagen-based membrane [30]. Other copolymer combinations that yield useful properties for 

osseous tissue regeneration include PLGA with poly(ethylene glycol) (PEG), a widely used 

biocompatible hydrophilic drug delivery carrier. PEG-PLGA thermo-sensitive copolymers can be 

encapsulated with osteoinductive factors and polymerized into a gel-like structure for delivery into 

an osseous defect, possibly in combination with other mechanically durable bone grafts [31]. PCL 

is another biodegradable polymer with significant research indicating its suitability for bone 

regeneration. An inert material, it shows increased osteoblast adhesion, spreading, and 

proliferation when coated with CaP or HA [32], and multiple studies have indicated PCL's 

potential to promote alveolar bone formation in periodontal defects [33, 34]. With greater emphasis 

placed on materials that can be used for exogenous factor delivery to accelerate and improve 

existing periodontal tissue defect treatments, polymers such as PCL and PEG which are already 

FDA-approved as drug delivery devices are expected to be more extensively investigated in pre-

clinical models of intraoral bone regeneration in the coming years.  

 

2.2.2 Natural and synthetic matrices for periodontal ligament regeneration  

The presence of antimicrobial properties and anti-inflammatory effects of naturally-

occurring materials such as chitosan also make them applicable matrices and periodontal ligament 

(PDL) cell-carriers for periodontal tissue regeneration [35]. Composite collage/chitosan scaffolds 
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can be formed for mechanical reinforcement, and have shown increased human PDL cell adhesion 

and growth compared to collagen or chitosan alone. Composite scaffolds increased the retention 

of water, contributing to an increase in pore size and thereby the total internal surface area available 

for PDL cell invasion [36].  To prolong the residence time of scaffolds in vivo for complete tissue 

growth and remodeling, increased stiffness and a decreased rate of degradation of natural matrices 

is preferable, and can be accomplished through their integration with synthetic polymers.   

Synthetic biodegradable polymers such as PLGA and PCL are used clinically in drug 

delivery systems, surgical sutures, and orthopedic fixation devices. These hydrolytically 

degradable materials undergo cleavage of polymer chains to oligomers and monomers, producing 

lower molecular weight molecules in the process [37]. As with naturally-derived matrices, these 

polymers are most applicable for periodontal regeneration when used in combination with cell and 

growth factor delivery [38, 39], as the material itself has little biological functionality, although it 

can be improved with the application of protein coatings. However, one of the key advantages of 

synthetic polymers includes their ability to be formed and processed in a variety of ways to yield 

highly aligned structures that can be achieved using electrospinning--a technology allows for the 

formation of long, thin fibers on the nano and micron scale. This technique offers potential for 

controlled fiber orientation that can be used to influence cell behavior through structural and 

physical cues that mimic ECM architecture, and allows control over a variety of parameters that 

determine fiber dimension, density, and porosity [40]. Chen et al used electrospun PLGA/gelatin 

sheets that were applied at tooth extraction sites in combination with dentin matrix, resulting in 

the formation of PDL-like tissues [41]. 

Typically, poly-α-hydroxy acids such as PLGA result in an inflammatory reaction 

involving multinucleated cells. Rates of degradation vary depending on the molecular weight and 

copolymer ratios of PLGA, allowing it to be more easily tailored to the expected rate of tissue re-

growth at the defect site. After treatment of critical-size supra-alveolar periodontal defects in dogs 

with rhGDF-5-coated β-TCP/PLGA scaffolds, Kwon et al observed limited residual rhGDF-5/β-

TCP/PLGA in two of five sites at 8 weeks, with higher residual amounts present in four of five 

sites with β-TCP/PLGA only [42]. Given that residual material may obstruct periodontal tissue 

regeneration, it has been noted with synthetic materials as much as with natural materials that 

incorporation of growth factors increases the rate of carrier remodeling. In fact, Koo et al also 

noted this using a ceramic-based calcium carbonate carrier with TGF-β in a critical-size, supra-
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alveolar periodontal defect: the growth factor was found to accelerate the degradation of the carrier 

relative to calcium carbonate without TGF-β [43].   

 

2.3 Engineering Scaffolds for Intraoral Bone Regeneration  

The development of scaffolds that are optimal for regeneration of osseous tissues requires 

a design strategy which adheres to established knowledge of the mechanical, chemical, structural, 

and biological properties of natural bone that make it a functional entity. Therefore, key 

considerations in such scaffold design include: (1) biocompatibility/non-toxic degradation; (2) 

bioactivity, enabling cell interaction with material surface; (3) maintenance of a 3-D shape after 

implantation; (4) adequate porosity and pore diameter/distribution/orientation; (5) mechanical 

properties similar to tissue targeted for regeneration (i.e., Young's modulus); (6) degradation 

mechanics (i.e., bulk erosion, surface erosion); (7) degradation rate, ideally matching the rate of 

tissue regeneration; and (8) osteoconductive/inductive and angiogenic factors to influence 

infiltrating cell populations and promote blood vessel invasion [44, 45].  

While a broad range of instructive carrier materials in various forms have been investigated 

for bone regeneration, the addition of cells and application of growth factor delivery strategies can 

significantly influence the regenerative outcome by engineering the environment that closely 

matches that of the target tissue in its native state (see Figure 1). Current strategies include the use 

of bone-marrow stromal cells and stem cell varieties including mesenchymal (MSCs), adipose-

derived (ADSCs) and induced pluripotent (iPSCs). Analyses of cell-specific markers and 

transcription factors such as Runx2, alkaline phosphatase (ALP), osteocalcin, osteopontin, and 

osteonectin allow for the determination of osteogenicity during stem cell differentiation into bone-

derived cells [46]. Clinically-applicable cell therapy is focused on the use of patient-derived stem 

cells that are undifferentiated, given that terminally-differentiated cells are difficult to expand ex 

vivo relative to more highly proliferative stem/progenitor cells. Likewise, the use of stem cells 

allows for a more completely physiological repair process that involves the differentiation of 

MSCs or iPSCs not only into bone-derived cells but also cell types involved in neovascularization, 

such as endothelial cells. However, despite significant progress and tremendous potential in cell 

therapy, critical challenges remain in transitioning the use of iPSCs into clinically-applicable 

approaches. Since the creation of iPSCs involves the reprogramming of somatic cells via 

transcription factors to produce cells with embryonic stem cell-like properties, there is risk of 
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epigenetic and genetic defect accumulations, immunogenic responses, or tumor formations. While 

the immunogenic response can be mediated through use of a patient’s native somatic cells, 

overexpression of transcription factors or presence of partially-reprogrammed iPSCs are known to 

cause teratoma formation, requiring significant efforts to address these safety concerns prior to the 

consideration of iPSCs for patient-based treatments [47].  

 

 

 

Figure 2.1 Scaffold Material Selection, Cell Therapy, And Growth Factor Delivery 
A combination of various approaches in scaffold material selection, cell therapy, and growth factor 

delivery is required to achieve optimal tissue regeneration that mimics the mechanical, chemical, 

structural, and biological properties of natural bone that make it a physiologically functional entity. 

Abbreviations: [Scaffolds] Polyglycolic acid (PGA), polylactic acid (PLA), poly(lactic-co-glycolic 

acid) (PLGA), poly(ethylene glycol) (PEG), hydroxyapatite (HA), β-tricalcium phosphate (β-

TCP); [Cell Therapy] Osterix (Osx), alkaline phosphatase (ALP), osteoprotegerin (OPG), bone 

sialoprotein (BSP); [Growth Factors] bone morphogenetic protein (BMP), transforming growth 

factor-beta (TGF-β), insulin-like growth factor (IGF), fibroblast growth factor (FGF), platelet-

derived growth factor (PDGF), vascular endothelial growth factor (VEGF).  
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With advancements in cell therapy, there has been a simultaneous increase in novel 

scaffold fabrication techniques that emphasize greater control over surface topography, internal 

microstructure, and pore interconnectivity. Traditionally, porous scaffolds have been widely 

explored as bone graft substitutes for cell attachment given the importance of allowing adequate 

room for tissue ingrowth and vascularization (i.e., pore size of 150-500 µm) [48]. While natural 

materials retain their bioactivity, synthetic non-immunogenic materials have several advantages 

for development of clinically-translatable scaffolds, including added flexibility in manufacturing, 

reproducibility, sterilization, and storage times. Electrospinning and solid freeform fabrication 

(SFF) are two scaffold fabrication techniques which allow increased control over scaffold 

morphology: Electrospinning is a polymer-processing technique used for creating polymer fibers  

on the nano and micron scale to influence cell behavior through structural and physical cues that 

mimic ECM architecture. In addition to allowing control over a variety of parameters that 

determine fiber dimension, density, and porosity, electrospinning can readily be used for mass 

production of fiber-based scaffolds [49]. More recently, 3-D printing technology has been adapted 

for use in bone tissue engineering via solid freeform fabrication (SFF), a rapid prototyping 

technique. This process consists of developing a computer-aided design (CAD) file that specifies 

the exact dimensional features of the desired scaffold which is then transferred to a 3-D printer 

that reproduces the file to yield a printed version of the design with structural integrity. Selective 

laser sintering (SLS) is an example of a process that creates objects layer-by-layer using polymeric, 

ceramic, or metal powders that the machine sinters. During sintering, the powder is heated below 

the melting point, causing its particle boundaries to fuse together at locations dictated by the CAD-

based file. When creating a porous material, the sizes and characteristics of the individual pores 

within the material are limited by the machine's resolution and ability to support a specific printing 

material [50]. Studies using SLS for bone regeneration have focused on PCL-based printed 

scaffolds, showing that these are mechanically-appropriate to support bone tissue formation and 

can be used as BMP-7 and BMP-2 growth factor carriers following biofunctionalization [51, 52]. 

This technology is especially applicable for clinically-based studies given that patient-specific 

anatomical bone defects can be obtained using computed tomography (CT) scans and reproduced 

to yield a scaffold with appropriate structural dimensions. A recent publication by Park et al 

proposes a potential future application of image-based PCL SFF-based scaffolds for clinical 
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periodontal regeneration (see Figure 2), indicating that further pre-clinical investigation and 

verification of these technologies will bring them closer to translation into clinical practice [53].  

 

Figure 2.2 Formation of SFF-based Scaffolds for Clinical Application 
 Solid free-form fabrication (SFF), or rapid prototyping, is emerging as a clinically-viable 

approach for tissue engineering of anatomically precise scaffolds for periodontal, including 

intraoral bone, regeneration. This method is based on obtaining a CT scan of the patient-specific 

defect, generating a CAD-based file of a scaffold with an appropriate fit to the defect, and 3-D 

printing the final version to obtain a polymer-based scaffold with structural integrity that can be 

used as a cell therapy and growth factor delivery platform to enhance the regenerative process. 

Reproduced with permission from Park CH et al [52]. 

 

While novel methods of scaffold development and cell therapy are being explored for bone 

regeneration, there is already an established array of clinically-applicable therapeutic factors and 

delivery strategies. In order to better understand existing clinical applications and the nature of 

ongoing pre-clinical studies, the remainder of this review focuses on the areas of growth factor 

delivery for oral bone regeneration and highlights some of the key studies that have moved 

previously experimental therapies into today's mainstream clinical applications in periodontal 

regeneration.  

 

2.4 Growth Factors and Protein Delivery 

 Growth factor delivery (GFD) is of critical importance in mediating the scaffold 

environment and subsequent cellular response. Growth factors are soluble polypeptides that bind 
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to cell membrane receptors and influence cellular function, and the inclusion of 

osteoinductive/conductive factors (BMP, TGF-β, IGF, FGF-2, PDGF) guides the cell 

differentiation and tissue formation process in bone regenerative therapies. Likewise, 

vascularization is vital for the sustainability of newly-formed tissue, and necessitates the inclusion 

of GFs with angiogenic properties (PDGF, VEGF, FGF-2, and TGF-β). Scaffold-based GFD as 

opposed to bolus injection of the therapeutic factors into the defect site has several advantages, 

including the potential for improved control over GF release kinetics and localization. A major 

challenge in GFD involves the need for release profiles that mimic those present during natural 

tissue repair or morphogenesis. Sequential or simultaneous spatiotemporal delivery of multiple 

GFs can be achieved using scaffolds based on the therapeutic time window during which GF 

delivery is optimal for tissue regeneration, and can involve the combination of factors involved in 

both tissue formation and angiogenesis. For example, sequential delivery of GF combinations 

consisting of BMP-2 and TGF-β or VEGF and BMP showed increased bone formation when 

compared to single GFD [54, 55]. GF rate of release is governed by how it is bound to the scaffold, 

which can involve (1) mixing the GF with scaffold particles, (2) physical encapsulation within the 

scaffold, (3) chemical immobilization, and (4) affinity-based binding. Current clinical application 

of GFs for bone regeneration typically involves the use of biomaterial carriers, yet the factor is 

usually mixed in and physically adsorbed onto the graft particles and lacks more sophisticated 

modes of delivery that would enable spatiotemporal control over release kinetics or dual GFD. 

Other modes of delivery currently investigated in pre-clinical studies are promising: Physical 

encapsulation of GFs within the scaffold, for example, can be achieved using polymeric 

microparticles (1-100µm) with varying surface areas through which the encapsulated GF diffuses 

at a rate that is dependent on carrier particle size, with a larger size leading to slower diffusion. 

GFs can also be conjugated on the scaffold surface via covalent immobilization, while heparin-

binding GFs such as BMP-2 can be presented using affinity-based binding by conjugating heparin 

to biomaterials [56, 57]. These modes of GFD have potential for future applications in clinical 

studies, allowing for a broad range of release profiles and controlled spatiotemporal presentation 

of multiple GFs using carriers that serve as temporary support structures for osseous tissue 

engineering strategies.  

Growth factors and proteins act locally on the activity of periodontal cell populations to 

modulate bone formation and enhance the regenerative response (see Table A1.1 in Appendix). A 
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diverse range of bone matrix-based proteins have been isolated and are delivered alone or in 

combination with a synthetically- or naturally-derived bone graft. An overview of some of the 

factors and proteins that are featured most prominently in oral-based surgery or currently being 

investigated in pre-clinical (see Table A1.2 in Appendix) and clinical studies (see Table A1.3 in 

Appendix) is presented. 

 

2.5  Pre-clinical Studies using Growth Factor and Protein Delivery  

2.5.1 Platelet-derived growth factor (PDGF)  

PDGF's primary role is the promotion of soft-tissue healing. It was introduced to improve 

healing of diabetic ulcers, and was later approved for periodontal regeneration [58, 59]. In vitro 

studies show that PDGF stimulates cell populations key for periodontal regeneration, increasing 

cementoblast DNA synthesis and regulating osteopontin expression [60]. PDGF stimulates PDL 

cell chemotaxis and mitosis, and has synergistic proliferative effects when combined with 

allografts [61, 62]. PDL cells may modulate bone formation by increasing osteoblast proliferation 

and blocking osteoblast differentiation and expression of the mineralized tissue markers 

osteopontin and osteonectin [63-65]. In canine and primate models, application of PDGF, often 

combined with insulin-like growth factor (IGF), to periodontal defects resulted in increased bone, 

cementum, and PDL formation [66-72]. In a canine class III furcation defect model, guided tissue 

regeneration (GTR) with PDGF-BB and ePTFE membranes stimulated PDL formation in early 

stages followed by total periodontal regeneration [73]. PDGF/IGF-1 for guided bone regeneration 

(GBR) at implants placed into extraction sockets showed increased early (3-week) histologic and 

clinical bone formation [66, 74, 75]. When combined with xenograft, PDGF at immediate implants 

in canines resulted in enhanced radiographic bone gain when used without a collagen membrane 

[76]. PDGF also enhanced lateral GBR in dogs when used with a collagen membrane and xenograft 

or alloplastic graft material. In another canine model testing for vertical ridge augmentation, PDGF 

in a xenogeneic block graft showed increased histologic bone gain when used without a collagen 

membrane [77, 78]. 

 

2.5.2  Bone morphogenetic proteins 

BMPs are members of the transforming growth factor-beta (TGF-β) superfamily and have 

strong osteoinductive properties, especially BMP-2, -4, -6, -7, and -9 [79, 80]. BMP-2 and BMP-



30 

 

 

7 stimulate PDL cell differentiation into osteoblasts and increase expression of mineralized tissue 

markers when combined with PDL cells or osteoblasts in vitro, although doses greater than 10 

ng/mL may be toxic to cells [81-85]. BMPs have also been shown to down-regulate proliferation 

and mineralization of cementoblasts and gingival fibroblasts. They are used primarily to enhance 

bone formation for implant site development. When applied to periodontal intrabony defects, 

BMPs showed enhanced speed and quantity of bone formation but limited cementogenesis, 

complicated by ankylosis and root resorption [86-92]. Commercially, rhBMP-2 is approved for 

extraction socket and sinus augmentation. In rat extraction sockets, BMP-2 was shown to increase 

the speed and quantity of bone formation via its osteoinductive effects [93]. In sinus augmentation 

models in various species, BMP-2 consistently improved histologic and radiographic bone gain 

[94-98] and there are indications that it may provide significant vertical and horizontal ridge 

augmentation. Delivery of BMP-2 via grafting materials may modulate its effects on bone 

formation, contour, and quality [99-103]. Possible complications of BMP-2 delivery shown in 

canine ridge augmentation models include increased incidence of seromas and wound failure 

[100]. When compared to BMP-2, BMP-4 has been shown to have comparable effects on bone 

gain and improved bone quality in a rat ridge augmentation model [99]. BMP-7, also known as 

osteogenic protein-1 (OP-1), has similar applications as BMP-2 [104-110]. BMPs may be suitable 

for periodontal regeneration as demonstrated in canine class III furcations and its modulatory 

effects on cementoblast mineralization in vitro [104, 111]. 

 

2.5.3  Fibroblast growth factor-2 

FGF-2 was initially found to stimulate proliferation of bovine fibroblasts. It has effects in 

soft tissues by inducing proliferation of gingival epithelial cells, gingival and connective tissue 

fibroblasts, and PDL cells [112-116].  Interestingly, FGF-2 inhibits mineralization and ALP 

expression by PDL cells but allows them to maintain their differentiation potential and express 

bone regulatory compound osteopontin [113, 117]. These features, coupled with its strong 

angiogenic potential, may allow FGF-2 to promote an environment favoring periodontal 

regeneration [113, 118]. FGF-2 applied topically has been studied in primate and canine class II 

furcation defect models, where it significantly increased regeneration of PDL, cementum, and bone 

without adverse effects [115, 119]. GTR with FGF-2 and a collagen membrane resulted in more 

defect fill in dog class III furcations versus control groups [120].  
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2.5.4 Growth/differentiation factor-5  

Like BMPs, GDF-5 is another member of the TFG-β superfamily and shares a similar 

structure [121]. It stimulates PDL cell proliferation, early osteoblast differentiation, and 

extracellular matrix synthesis by both cell types [122, 123]. It has been shown to significantly 

increase periodontal regeneration in canines and primates with a β-TCP carrier [124, 125]. Various 

other carriers tested in dog periodontal regeneration showed a primarily positive effect [126, 127]. 

In implants, GBR with GDF-5/β-TCP carrier showed increased peri-implant bone, while GDF-5 

coated implants had increased stability determined by pull-out test in rabbits [128]. GDF-5 has 

also been used in mini-pig sinus augmentation, where it enhanced bone formation with a β-TCP 

carrier [129, 130]. In lateral ridge augmentation with a coated Bio-Oss® block, GDF-5 resulted in 

increased mineralized tissue formation [131]. 

 

2.5.5  Teriparatide 

The osteoporosis medication teriparatide consists of parathyroid hormone’s first 34 amino 

acids. In vitro and depending on cell state, teriparatide influences PDL cell survival and causes 

osteoblast-like behavior with increased osteoprotegerin expression [132, 133]. It has been tested 

in rats with induced osteoporosis, where it caused increased bone mineralization and formation in 

extraction sockets and prevented periodontal bone loss [134, 135]. In canine GBR, teriparatide 

improved bone formation around implants [136, 137]. 

 

2.6  Clinical Applications of Growth Factor and Protein Delivery  

Periodontal regenerative therapies focus on bone regeneration to provide implant site 

development. Guided bone/tissue regeneration is the most well-documented technique for targeted 

bone regeneration and is designed to exclude undesired cells using barrier membranes [138] . 

Under certain circumstances (i.e., defect shape and size) both procedures have shown high 

predictability; nonetheless, due to the non-osteogenic characteristics of available biomaterials 

(xeno-/allo-geneic), some shortcomings have arisen for challenging situations (i.e., vertical bone 

augmentation). The application of growth factor and protein delivery might overcome these 

limitations by inducing the proliferation of MSCs to achieve bone formation [139, 140]. Indeed, 

this approach has shown very promising results from countless pre-clinical studies [141, 142] (see 

Table A1.3 in Appendix), which has aroused enthusiasm among clinicians.  
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Within osseous regeneration, PDGF-BB has been tested for infrabony defects and alveolar 

bone regeneration. Recently, a multicenter randomized double-masked clinical trial aimed to 

evaluate the long-term stability of periodontal defects in patients with localized severe 

periodontitis filled with rhPDGF-BB in a β-TCP scaffold vs. scaffold alone. Results from this 

study showed that the use of PDGF-BB (0.3 mg/mL) after a 36-month follow-up achieved 87% of 

bone gain compared to the control group (53.8%). It was also found that, albeit not reaching 

statistical difference, the steady increase of clinical attachment level and linear bone gain suggest 

the long-term stability when using this growth factor [143]. These findings were in agreement with 

results obtained by Jayakumar et al. in a shorter follow-up clinical trial [144]. These demonstrated 

that after 6 months, a significant increase in bone fill (65.6%) was achieved when using 0.3 mg/mL 

of PDGF-BB vs. β- TCP alone (47.5%) [59]. Nevins et al. also reported that the use of PDGF-BB 

in combination with demineralized freeze-dried allogeneic bone graft is capable of attaining 

complete regeneration of the attachment apparatus for infrabony and Class II furcation defects 

[145]. Therefore, PDGF-BB seems to promote periodontal regeneration in a safe and effective 

manner. However, the available data is still limited to draw clear conclusions about its potential. 

Likewise, PDGF-BB has also been recently used for increasing the predictability of alveolar bone 

regeneration. Nevins et al. evaluated the effect of PDGF-BB compared with enamel matrix 

derivative (EMD) and two other grafting materials upon newly formed bone in socket regeneration 

[146]. Due to the small sample size and weak defect standardization it was not possible to draw a 

clear line between groups; nevertheless, ridge morphology for implant placement was more 

convenient for the PDGF-BB group. More recently, the same group [147] studied in a case-series 

the effect of PDGF-BB in combination with equine/bovine grafting materials on bone regeneration 

of large extraction site defects. Histologic results revealed new bone formation in association with 

remaining graft particles and no evidence of inflammatory cell infiltration. Accordingly, 

horizontal/vertical alveolar bone augmentation might become a more predictable technique with 

the use of PDGF-BB.  

In 2007, rhBMP-2 was approved by FDA as an alternative to autologous bone grafting in 

alveolar ridge augmentation and sinus elevation procedures [148] due to its osteoinductive 

potential [149]. Results obtained for sinus augmentation indicate that when compared to 

autogenous bone, no differences can be observed by means of vertical bone gain and density [150]. 

Nonetheless, if rhBMP-2 is grafted with autologous bone it seems to increase cell activity, osteoid 
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lines and vascular supply [151,153]. Contrasting these findings, Kao et al. showed that when 

rhBMP-2 was blended with bovine-derived xenogeneic graft, less bone formation was found. 

Authors claimed that this may be due to the enhancement of osteoclast differentiation by the 

adjustment of RANKL, a protein involved in bone remodeling and regeneration [154]. 

Additionally, the safety of the growth factor was demonstrated by lack of an immune response in 

any of the studies [150-152]. Therefore, agreement was found between human clinical trials and 

preclinical studies [153]. However, more clinical studies need to be conducted focusing on the 

effect of the carrier and dose-dependent responses [154]. Other findings indicate that rhBMP-2 

preserves alveolar ridge heights while also increasing their horizontal dimensions [155-157]. 

Fiorellini et al. noted the dose-dependence of the protein, showing that a 1.5 mg/mL dose was 

more optimal than 0.75 mg/mL. Nevertheless, it is worthy to note that although overall safety of 

rhBMP-2 was demonstrated, moderate signs of local inflammation were present, which may be a 

trigger for an impaired healing process.  

BMP-7 has been predominantly studied for sinus augmentation. Using a small sample size 

case study, Corinaldesi et al. compared the use of rhBMP-7 with deproteinized bone (0.5g) vs. 

deproteinized bone alone (2g). Although there were no observed differences by means of bone 

gain, newly formed bone was statistically greater for the control group (19.9% vs. 6.6%) 4 months 

after grafting [158].  

Another recently studied growth factor is GDF-5, which has been used for periodontal 

regeneration, alveolar bone and sinus augmentation procedures. A pilot randomized clinical trial 

was conducted to study the effect of GDF-5 embedded in β-TCP for infrabony periodontal defects 

of chronic periodontitis patients. Six months after therapy the clinical attachment gain for the test 

group was almost double compared to the level gained in the control group (3.4mm vs. 1.7mm), 

although this was not statistically significant [159]. To date, only one study has appraised the use 

of rhGDF-5 for sinus augmentation: Koch et al. found that at 4 months GDF-5 behaved similarly 

to an autologous graft in terms of bone formation (28% vs. 32%) [160]. Notably, larger bone 

augmentation occurred in the composite group of GDF-5 combined with β-TCP regardless of the 

time point assessed.  

After being evaluated in pre-clinical model and showing its effectiveness in regenerating 

periodontal defects, FGF-2 has also been tested for human use due to its robust angiogenic and 

mitogeneic potential [119]. Kitamura et al. showed in a Phase 2B multicenter randomized clinical 
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trial that at 36 weeks after periodontal surgical therapy, bone fill was 35% greater when used with 

0.3% FGF-2 compared to the carrier alone [161]. An insignificant increase occurred from 36 up to 

72 weeks, which may be explained by different patterns of healing (regeneration vs. long-

junctional epithelium).  

Currently, teriparatide is being investigated for craniofacial regeneration [161]. One 

clinical trial assessing its effect on periodontal regeneration in moderate to severe chronic 

periodontitis patients showed that the adjuvant of teriparatide administration combined with 

vitamin D daily with periodontal surgery had a favorable influence on attachment levels and bone 

repair. In addition, it is worthy to mention that improvements were correlated with baseline levels 

of 1.25 dihydroxyvitamin D3 (better results with baseline levels >20ng/dL) [163]. The use of 

teriparatide might increase the reliability in cases of poor bone density. Kuchler et al. conducted a 

randomized controlled feasibility study to appraise the effect of 20 μg of teriparatide daily during 

28 days on mandibular dental implants, finding that after a healing period of 9 weeks, new bone-

volume-per-tissue-volume for the teriparatide group was 17.6% and 15.4% for the control group. 

In addition, it was shown that bone-to-implant contact was shown to be higher in the periosteal 

and medullary compartment for the test group, but not for the cortical compartment (5% vs. 4.4%, 

respectively) [164]. Based on these findings, the safety and efficacy of several growth factors have 

been documented, but more clinical trials are necessary to validate these preliminary studies.  

 

2.7 Cell and Gene Delivery  

To enhance the therapeutic potential of growth factor delivery, gene therapy has emerged 

as a method of establishing sustained growth factor expression through the transduction of cell 

populations via viral and non-viral delivery mechanisms that alter gene expression. Currently 

investigated methods of vector delivery for intraoral bone regeneration and existing pre-clinical 

studies of their success are addressed below: 

 

2.7.1  Methods of Gene Delivery 

2.7.1.1 Therapeutic viral gene delivery  

Targeted gene delivery can be achieved using viral vectors engineered to infect cells with 

genetic material that will compensate for defective gene(s) or produce a beneficial protein product, 

without causing disease.  This highly effective cellular uptake and favorable intracellular 
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trafficking abilities make recombinant viral vectors suitable for both in vivo and ex vivo 

application.  Gene expression following transfection is generally efficacious and long-lasting, 

ranging from several weeks to months depending on the vector type and target tissue [165].  

Furthermore, the genetic material can either be integrated into the host chromosome or transported 

into the nuclei of infected cells without chromosomal integration. 

Recombinant viral vectors include adenovirus, adeno-associated virus (AAV), and 

retrovirus, among others.  Adenoviruses are large, double-stranded DNA viruses that infect non-

dividing cells without integrating into the host chromosome, resulting in relatively short-term gene 

expression.  AAVs are ssDNA viruses with a similar biological profile as adenoviruses, but with 

the primary added benefit of integration competence.  Although AAVs have a broad tropism, they 

require adenovirus co-infection for replication cycle completion.  In contrast, lentiviruses – part of 

the retrovirus family – will infect both dividing and non-diving cells to provide stable gene 

expression by integrating into the host genome.   

Each of the recombinant viral vectors has its advantages and disadvantages (see Table 4).  

Risks for potential immunogenicity and insertional mutagenesis continue to raise safety concerns 

with some recombinant viral vectors, which will be circumvented through an improved 

understanding of our immune response and the viruses themselves.  

 

2.7.1.2  Therapeutic non-viral gene delivery  

Non-viral methods rely on the combination of nucleic acids with synthetic or natural 

vectors, as well as physical forces to deliver genetic information to a target cell population [166].  

In general, non-viral gene delivery can be utilized to introduce new genetic material or down-

regulate the expression of abnormal genes at the mRNA level.  Compounds such as cationic lipids 

and polymers form condensed complexes with negatively charged nucleic acids to protect and 

facilitate their cellular uptake and intracellular transport.  Additionally, physical forces,  

including but not limited to electroporation, form transient defects in the plasma and nuclear 

membranes to further facilitate the transport of genes into the nucleus.  Major advantages of non-

viral gene delivery include delivery of significantly larger fragments of genetic information and 

lack of a risk for immunogenicity and infection [167-169].  Further research is required to improve 

the variability of gene expression and specificity of the cell types being transfected using non-viral 

methods for gene delivery. 
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Table 2.1 Viral and non-viral vectors utilized in tissue engineering [168]. 

2.8  Safety and Regulatory Considerations of Cell and Gene Therapy  

The translation of cell- and gene-based therapies to the clinic is intrinsically linked with 

reducing or eliminating significant risks associated with the treatment to the patient and improving 

the clinical outcome. Regulatory policies established by the FDA stipulate that the safety and 

efficacy of a given treatment must be verified prior to its approval for clinical use. In addition to 

the safety issues associated with processing cells ex vivo, other considerations involve the selected 

cell source, handling and expansion protocols, including best practices for maintaining cells during 

transportation, scaffold seeding, and transplantation [170]. While the current safety profile of 

iPSCs still presents significant barriers to clinical translation, cell-based therapy using MSCs has 

successfully been applied for treatment of degenerative diseases and investigated as a potential 

 

Vector Type Advantages Disadvantages  Pre Clinical 

Studies 

Adenovirus viral High transduction 

rate; transfection of 

wide range of cell 

types 

High immunogenic 

potential; transient gene 

expression  

[168, 203, 204] 

Chang et al.[169];  

Jin et al. [171] 

Lentivirus viral Non-immunogenic; 

sustained gene 

expression 

Risk for insertional 

mutagenesis; transduction 

limited to dividing cells 

[168, 203, 204] 

Xiang et al. [174],  

Logan et al.[175] 

Adeno-

associated 

virus 

viral Little/no 

immunogenicity; 

transduction in both 

dividing and non-

dividing cells; 

sustained gene 

expression 

Accommodates only very 

small size transgenes; 

production of high titers is 

difficult 

 [168, 203, 204] 

 

Cirelli et al. [172];  

Warrington et al.[173] 

Plasmid non-

viral 

Non-immunogenic; 

transfection of wide 

range of cell types; 

localized gene 

expression 

Very low transfection 

efficiency; transient gene 

expression 

 [168, 204] 

Liu et al. [205]; 

Huang et al. [176] 

Nucleic 

acid/polymer 

complexes 

non-

viral 

Targeted down 

regulation of gene 

expression 

Low transfection 

efficiency; very transient 

effects on gene expression; 

potential for 

immunogenicity [166, 206] 

Iwanaga et al. [207];  

Kotopoulis et al.[208] 
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clinically-viable approach for dental-based tissue engineering strategies. For example, human 

dental pulp-derived mesenchymal stem cells (DPSC) can be processed using current good tissue 

practices (cGTP) within a 5 day period post-isolation from an extracted tooth, banked via 

cryopreservation, and recovered prior to treatment [171]. In the presence of a scaffold that serves 

as a carrier for cell delivery, additional considerations for safe application to the clinic include 

adherence to good manufacturing practices (cGMP) for scaffold fabrication and sterilization [172]. 

Additional steps involving scaffold cell-seeding, maintenance, and transfer to the clinic require 

stringent quality control measures and comprehensive protocols to ensure safety and efficacy. To 

minimize the associated treatment costs and improve practicality of cell-based therapy in the clinic 

with or without scaffold carriers, these processes must be streamlined and simplified to avoid 

unnecessary complications and reduce regulatory burdens.  

Clinically-applicable procedures for the regeneration of oral and craniofacial bone using 

gene therapy are highly dependent on the selection of vectors with appropriate safety profiles.  

Primary concerns with viral vectors include their potential to illicit an immune response, exhibit 

insertional mutagenesis, and activate oncogenes, as has been observed with lentiviruses and 

retroviruses. Safer alternatives are adeno-associated vectors (AAVs) and adenoviruses: AAVs are 

non-pathogenic, while adenoviruses do not integrate into the cell genome and thereby are not 

replicated during cell division [173]. While these vectors are currently being tested in FDA-

approved human clinical trials for rare disorders, the development of more efficient non-viral gene 

therapy methods involving DNA, mRNA, or siRNA delivery can be more promising from a 

regulatory approval perspective for regeneration of common tissue defects [174].  

 

2.9  Pre-clinical Studies for Regeneration of Oral Tissues using Gene Therapy   

Adenoviruses have been used experimentally for tissue engineering of tooth-supported 

bony defects. One example is the use of an adenovirus encoding the PDGF-B gene (Ad-PDGF-B) 

on a collagen matrix to treat periodontal lesions in vivo. Clinical, hematological and blood 

chemical tests were done without any significant histopathological changes when Ad-PDGF-B 

was used [175, 176]. Jin et al. demonstrated Ad-BMP7 induced rapid chondrogenesis, osteogenesis 

and cementogenesis in bridging periodontal alveolar bone defects without significant 

inflammatory responses [177]. This is an example of the potential that gene therapy-based vectors 

such as adenoviral BMP have for successfully engineering bone in a preclinical model (see Figure 
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3) when combined with a transduced cell carrier such as gelatin that provides three-dimensional 

support for tissue growth during the regenerative process.  

 

 

Figure 2.3 Regeneration of Periodontal Tissue using Gene Therapy Vectors 
Successful regeneration of alveolar bone and surrounding periodontal tissues using gene therapy 

vectors such as adenoviral BMP-7 (Ad-BMP-7) has been achieved in animal models. Bone 

regeneration and bridging was observed with the use of ex vivo BMP-7 gene transfer using a 

gelatin-based cell carrier in a rat wound model consisting of a large mandibular alveolar bone 

defect. Comparatively, transduction of syngeneic dermal fibroblasts using green fluorescent 

protein (Ad-GFP) or noggin (Ad-noggin) did not result in ectopic bone formation (left panel).  

Mature cartilage and newly-formed bone was observed at Day 21 using Ad-BMP-7 gene transfer 

(right panel). Reproduced with permission from Jin Q-M et al [177]. 
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AAVs have been used to prevent periodontal disease progression in rats. Cirelli et al., 

demonstrated the use of pseudotyped adeno-associated virus vector based on serotype 1 (AAV2/1) 

to deliver TNF receptor-immunoglobulin Fc (TNFR:Fc) to rats subjected to Porphyromonas 

gingivalis (Pg) lipopolysaccharide (LPS)[178]. Animals treated with AAV2/1-TNFR:Fc showed 

sustained levels of serum TNFR protein and sustained levels of Pg-LPS-mediated bone loss. AAVs 

have also been successfully used for the treatment of neurological, cardiovascular and autoimmune 

diseases [179]. 

Lentiviral transfection was used to investigate follicular dendritic cell secreted protein 

(FDC-SP) on the inhibition of osteogenic differentiation of human PDL cells. Xiang et al. used 

FDC-SP transfection on hPDL cell proliferation, osteogenic and fibrogenic phenotypes [180]. Cell 

proliferation and cell cycle tests indicated that transfection with FDC-SP did not affect hPDLC 

proliferation. Moreover, expression levels of type 1 collagen were up-regulated while osteocalcin, 

osteopontin and bone sialoprotein were down-regulated in the transfected cells. Lentiviral vectors 

are considered excellent genetic vector systems by being both efficient and stable in gene delivery 

and therapy [181]. 

With regard to the application of non-viral vectors for growth factor delivery, plasmids 

have been used successfully to enhance cell survival and engraftment with IGF-1 in smooth muscle 

cells. Huang et al. used plasmid DNA encoded BMP-4 in critical-sized cranial defects in rats and 

demonstrated bone regeneration significantly increased both on the edges and center of the defects 

as compared to the control group of the scaffold only [182]. 

 

2.10 Clinical Applications of Cell Delivery  

Cell and gene therapy have the potential to greatly improve current methods of bone 

regeneration through increased bioactivity of scaffolds and localized growth factor delivery. This 

concept is being comprehensively studied to provide a more predictable armamentarium of 

available treatment options for local alveolar bone loss. Reviewed here are documented clinical 

studies using cell-based therapy to the craniofacial complex. Cell-based therapy pre-clinical 

studies are in the process of being transitioned into clinically-applicable approaches that are safe 

and effective in regenerating periodontal tissues.  
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2.10.1 Alveolar bone augmentation/preservation 

Existing studies have investigated the safety of cell-based therapy for alveolar bone 

augmentation: Filho-Cerruti et al. studied the association of platelet-rich plasma (PRP) and 

mononuclear cells from bone marrow aspirate and bone scaffold for bone augmentation in the 

maxillae [183]. An overall graft success rate of 94.7% was reported with enough ridge dimension 

obtained for proper dental implant placement. Documented graft failures were due to infection of 

the maxillary sinus and lack of integration into the host cortical bone. Bone formation with the 

presence of osteoblasts scattered throughout the trabeculae were noted histologically, with 

minimal marginal bone loss noticed during the 4-year study follow-up. Subsequently, Pelegrine et 

al. evaluated in a case series study the clinical and histomorphometric behavior of upper anterior 

extraction sockets treated with an autologous bone marrow graft versus no graft material in the 

control group [184]. Clinical results showed that the use of bone marrow stem cells (BMSCs) 

minimized alveolar bone loss after tooth extraction compared to control. Nevertheless, 6 months 

after grafting, similar outcomes were found by means of mineralized bone. More recently, Kaigler 

et al. conducted a randomized controlled feasibility trial to compare the use of tissue repair cells 

(BMSCs) with conventional GBR (membrane only with gelatin carrier) for alveolar bone 

preservation. At the time of implant placement, a second need of grafting was more frequent (6-

fold greater implant exposure) for sockets treated with GBR. Additionally, it is also important to 

note that the regenerated bone in the test group exhibited greater density and higher vascularization 

with significant acceleration of osteogenesis at 6 weeks.  

 

2.10.2  Sinus augmentation 

Vertical bone augmentation in the sinus antrum is oftentimes an imperative to achieve 

implant stability due to progressive alveolar bone resorption. The use of stem cell therapy as a 

complement to conventional graft and scaffold materials could improve bone formation and 

accelerate regeneration. In a histomorphometric study, Gonshor et al. compared bone formation 

following sinus augmentation procedures using either an allograft cellular bone matrix containing 

native mesenchymal stem cells or a conventional allograft. Results of the test group revealed a 

mean of 32.5% and 4.9% for vital bone and remaining graft material, respectively, over a follow 

up healing period of 3.7 months. Contrastingly, for the control group, only 18.3% of vital bone 

content was found while an increase of up to 25.8% was noticed of remaining graft [185]. These 
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results were consistent with the results obtained by Rickert et al., who aimed to compare bovine-

derived mineral bone seeded with mononuclear stem cells with bovine-derived mineral bone 

mixed with autogenous bone. Significantly greater bone formation was observed in the test 

(17.7%) when compared with the control group (12.0%) at 14 weeks [186].  

Overall, stem cells seeded in allograft or xenograft scaffold particles are capable of 

inducing sufficient new bone volume formation to achieve primary implant stability. Within these 

limitations, the high percentage of vital bone content after a relatively short healing period might 

encourage clinicians to consider implant therapy at an earlier stage post-grafting [187]. However, 

the clinical significance in small defects is very finite and therefore, the use of this approach should 

be further studied in more challenging scenarios with standardized randomized clinical trials. 

 

2.11  Existing Limitations  

Major advances have been made in the reconstruction of intraoral bone defects as a result 

of improvements in scaffolding matrices and application of bioactive factors that enhance the 

regenerative response. However, there are existing limitations in the development of optimized 

scaffolding matrices that meet all the necessary criteria for the regeneration of structurally and 

physiologically functional osseous tissues. As described in this review, current technologies such 

as 3-D printing are being adapted for use in the design and development of natural and synthetic 

matrices that are architecturally similar to bone that allow for controllable features such as 

chemical composition, porosity, and rate of degradation. Likewise, the selection of materials in 

scaffold development for intraoral bone regeneration is limited by the attempt to match the 

properties and rate of regrowth of the developing tissues to the degradation properties of the 

supporting biomaterial. It remains a challenge to balance the preference for FDA-approved 

materials that have been more thoroughly investigated for use in humans with materials that may 

be more mechanically-appropriate for bone regeneration but have been biologically/chemically 

modified or release degradation products which may hinder the regenerative process in situ. This 

further relates to the established regulatory requirements for translating novel treatments to the 

clinic, with more complex strategies involving combinations of materials with cell, growth factor, 

or gene delivery yielding a biologic-device combination product that is more difficult to evaluate 

as opposed to a stand-alone biologic or device product. While current clinical applications of 

growth factors in combination with commercialized material carriers are showing significant 
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improvements in clinical treatment, further optimization of delivery systems in necessary to ensure 

that time-dependent biofactor dose and release kinetics are appropriate for the regenerative repair 

process. Gene therapy is promising in this area of research and is in need of further evaluation to 

determine the most appropriate vectors for growth factor gene delivery that is safe and clinically 

acceptable for further implementation in patient-based studies.  

 

2.12 Future Directions 

There are many exciting opportunities that lie ahead for the reconstruction of craniofacial 

deficiencies including periodontal, alveolar ridge and large mandibular/maxillary discontinuity 

defects.  The innovations that are ongoing in materials science and in biology have offered many 

potential avenues in the laboratory and clinic to extend the field of tissue engineering of oral 

structures such as alveolar bone and soft tissues of the teeth and dental implants.  In particular, 

recent advances in biomaterial design, drug delivery and biologic agents offer less invasive 

technologies to accelerate and more predictably promote tissue repair and regeneration. The ability 

of rapid prototyping, three-dimensional printing, electrospinning, and enhanced drug delivery 

strategies to personalize patient therapies is allowing a more customized approach for oral tissue 

engineering to benefit both clinicians and patients.  Development of scaffolds that act as delivery 

vehicles for drugs that can be controllably released to counter bone degenerative processes is an 

example of a future focus for intraoral tissue engineering strategies, as recently evidenced in a 

study by Ji et al [188] that focused on the incorporation of hydrophilic naringin into elecrospun 

amphiphilic copolymer nanofibers for bone resorption treatment. Further improvements to existing 

materials with a history of use in dental and craniofacial applications, such as calcium phosphate-

based cements, are a promising venue for addressing their existing limitations through the 

improvement of mechanical integrity and incorporation of growth factor delivery vehicles. Lee et 

al [189] present such an approach through the reinforcement of macroporous calcium phosphate 

cement (CPC) with absorbable fibers and simultaneous delivery of rhBMP2 in the CPC matrix 

with VEGF or TGF-β1 in alginate hydrogel microbeads within the matrix. Such combinational 

approaches to address the need for controlled delivery of growth factors at critical stages of the 

regenerative process are important in advancing our ability to predictably regrow lost or damaged 

tissue. Further improvement and streamlining of existing processes and technologies for 
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addressing these tissue engineering strategies will enable their continued entrance into the clinical 

arena to provide more predictable regenerative medicine therapeutics for enhanced patient care.  
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CHAPTER 3 

 

SINGLE PATIENT CASE STUDY USING A 3D-PRINTED BIORESORBABLE 

SCAFFOLD FOR PERIODONTAL REPAIR 

 

Based on a case report published in Journal of Dental Research and sections written as a 

contribution to a book chapter entitled “Bioengineering of the Periodontal Ligament”: 

 

Rasperini G, Pilipchuk SP, Flanagan CL, Park CH, Pagni G, Hollister SJ, Giannobile WV. 

3D-printed bioresorbable scaffold for periodontal repair, J Dent Res. 2015;94(9 

Suppl):153S-7S 

 

Decker AM, Pilipchuk SP, Araujo-Pires AC, Giannobile WV. Bioengineering of the 

periodontal ligament. In: Kapila SD, Goonewardene M, eds. Interdisciplinary Therapy: 

Using Contemporary Approaches for Complex Cases. Monograph 52, Craniofacial Growth 

Series, Center for Human Growth and Development, The University of Michigan, Ann 

Arbor, 2016:195-242. 

 

3.1 Introduction 

Tissue engineered constructs have potential to induce bone-ligament complex regeneration 

to treat disease- or trauma-induced damage to periodontia [1]. Multiphasic designs incorporating 

several biomaterial layers that serve as regenerating platforms for each region of the periodontum 

(i.e., PDL, alveolar bone) are increasingly being investigated in combination with the delivery of 

cells and other biologic factors. These include the layer by layer deposition of a polymer that 

allows for controlled pore size formation depending on printer resolution, or the printing of a mold 

that can be cast to produce the final scaffold shape. Lee et al demonstrated the use of PCL-HA 

layer deposition with microchannels ranging from 100um-600um for the PDL, bone, and 

cementum/dentin regions of a hierarchical scaffold which incorporated the spatiotemporal delivery 

of amelogenin, connective tissue growth factor, and BMP-2 within each of the phases, 

respectively. Seeding of the constructs with dental pulp stem/progenitor cells and subcutaneous 

implantation in immunodeficient mice resulted in aligned PDL-like collagen fiber formation 
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connected to bone tissue that was sialoprotein-positive [2]. Biphasic scaffold designs have also 

been explored combining fabrication technologies such as 3-D printing and electrospinning with 

cell sheet engineering. Vaquette et al developed a construct of PCL with β-TCP for the bone region, 

and an electrospun PCL membrane for the PDL region with placement of several PDL cell 

sheets which improved attachment to the dentin surface relative to constructs that did not 

incorporate the sheets [3]. Hybrid PCL/PLGA and fiber-guiding PCL scaffolds with 

perpendicularly-oriented microchannels were developed by Park et al utilizing computational 

design and solid-free form fabrication for the direct guidance of PDL fibers in vivo, resulting in 

more predictable formation of organized periostin-positive ligamentous structures [4, 5]. Findings 

from these studies indicate that bone-ligament complex regeneration in the clinic has the potential 

to be guided via 3-D printed, hybrid scaffolds with a multi-compartmental architecture designed 

based on patient defect CT scans [6]. The anatomical complexity of PDL tissue makes 

combinatorial approaches and advanced multiphasic scaffold designs appealing for improving its 

structural and functional regeneration.  

Herein we provide the first reported human case of treatment of a large periodontal osseous 

defect with a 3D printed bioresorbable patient-specific polymer scaffold and signaling growth 

factor.  Specifically, 3-D printing technology was used to generate a scaffold which conformed to 

defect site parameters obtained via cone beam computed tomography (CBCT) scans. The treated 

site remained intact for 12 months following therapy.  This report suggests that 3D printed, image-

based scaffolds offer potential for periodontal reconstruction. Limitations gleaned from this case 

and opportunities for treatment of other bony defects are discussed. 

 

3.2 Methods and Materials 

3.2.1 Case Presentation 

A healthy, 53-year old Caucasian male, diagnosed with generalized aggressive 

periodontitis presented for treatment to preserve his dentition.  The patient received full-mouth 

scaling/root planing and 2 years later still showed signs of periodontal stability, but with a resulting 

large labial soft and osseous defect associated with the mandibular cuspid, tooth #22 (Figure 3.1, 

top panels). The patient consented to treatment of the deficiency by a bioengineering approach 

described below.  The study protocol was approved by the University of Milan Institutional 

Review Board, Milan Italy.  
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3.2.2 3D Printed scaffold fabrication 

An .STL format was used as an input data file for the manufacturing process and to 

determine a best fit based on a CT scan of the patient’s defect (400um slice thickness, 400x400um 

voxel size). Magics 15 (Materialise Inc, Leuven, Belgium) was used to subtract STL-generated 

defect from designed scaffold to generate a 3-D design, then further modified using NX 7.5 

(Siemens PLM software, Plano, TX) and Mimics (Materialise Inc; Figure 3.1, middle panels). The 

design consisted of perforations for fixation, an internal port for delivery of recombinant human 

platelet-derived growth factor (rhPDGF-BB), and pegs oriented perpendicularly to the root for 

periodontal ligament formation (PDL) guidance as previously described using PCL scaffolds in a 

rat periodontal fenestration defect model (Figure 3.1, bottom). Selective laser sintering (SLS) 

allows for fabrication of precise scaffold features that can be designed to support structural and 

functional tissue regeneration in vivo. SLS (Formiga P100 system; EOS e-Manufacturing 

Solutions) was used to 3-D print the scaffold with polycaprolactone (PCL) powder (Polysciences 

Inc, Warrington, PA; milled at Jet Pulverizer, Moorestown, NJ) containing 4% hydroxyapatite. 

PCL is a Food and Drug Administration (FDA)-approved, hydrolytically-degradable polymer. 

Geometric interface adaption of the scaffold to the defect was assessed using a patient-specific 3D 

printed prototype model (University of Michigan Medical Innovation Center). Micro-computed 

tomography (eXplore Locus SP, GE Healthcare, London, ON, Canada) scans of prototyped 

mandible with scaffold were used to determine the adaptation ratio based on the methodology for 

periodontal fiber guidance. Measurements of gap distance between scaffold PDL region and 

modeled tooth root were repeated (n=3) to determine mean adaptation for eventual in vivo 

placement (Figure 3.1 lower middle panels; Figure 3.3).  The scaffold was sterilized using 

ethylene oxide (Nelson Laboratories, Salt Lake City, UT). University of Michigan Institutional 

Review Board granted exemption status for evaluation of the scaffold material. 

 

3.2.3 Surgical Procedure and Scaffold Delivery 

The patient was prepared with local infiltration anesthesia (Figure 3.2). A trapezoidal full-

thickness labial flap was elevated encompassing the adjacent teeth. Vertical incisions were 

extended beyond the mucogingival junction to allow relaxation of the flap and ease scaffold 

placement. The tooth root surface was mechanically instrumented and EDTA (Straumann® 

PrefGel®, Institut Straumann AG, Basel, Switzerland) was used as a root modification agent. The 
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scaffold was immersed in 0.5mL rhPDGF-BB (0.3mg/mL) (Gem 21S, Osteohealth, Shirley, NY, 

USA) for 15 min, filled with autologous blood from the defect site, and stabilized over the defect 

with ultrasound-activated resorbable poly-D and L-lactic acid (PDLLA) pins (SonicWeld, KLS 

Martin Group, Tuttlingen Germany). Remaining PDGF-BB solution was applied at the defect site 

prior to scaffold stabilization. The flap was released to allow tension-free primary closure with 

non-resorbable sutures. The patient refrained from mechanical oral hygiene procedures using 

0.12% chlorhexidine rinses for 3 weeks. The patient was prescribed Amoxicillin 875mg + 

clavulanic acid 125mg BID for 6d and Ibuprofen 600 mg as needed for pain post-operatively. 

Sutures were removed 7d following surgery. 

 

3.3 Results 

The scaffold design incorporated pegs 160–380um in length consistent with human PDL, 

the superior PDL region being shorter to accommodate to root proximity. Mean strut length was 

600um for support of extensions in the PDL region, while channel width for growth factor delivery 

was ~500um (Figure 3.1). The interface was determined to have an adaptation ratio of 0.82±0.07, 

which characterizes gap width distribution between scaffold and tissue (Figure 3.3).  In vitro 

release kinetics demonstrated an overall burst release of rhPDGF-BB from the scaffold matrix over 

a 3h period (Figure 3.4).  

The scaffold remained covered for 12m, demonstrating 3mm gain of clinical attachment 

and partial root coverage (Table 3.1). The implanted 3-D scaffold served to fill the human 

periodontal osseous defect without signs of chronic inflammation or dehiscence (Figure 3.5). 

However, at 13m, the scaffold became exposed requiring removal. The biopsy specimen was fixed 

in formalin, evaluated histologically and for scaffold molecular weight.  Based on gel permeation 

chromatography, 75.9% of the scaffold molecular weight remained after 13m (Table 3.2) with 

minimal evidence of bone repair as evidenced by histological analysis (Figure 3.5). 
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Figure 3.1 Customized Scaffold for Peri-osseous Defect  
A customized scaffold was 3-D printed using medical grade polycaprolactone (PCL) to fit the 

periosseous defect using a prototyped model of the defect from the patient’s CBCT scan.  The 

scaffold’s internal region consisted of extended pegs for the support and guidance of periodontal 

ligament formation, perforations for fixation, and an internal compartment for rhPDGF-BB 

delivery, as shown in the cross-sectional view. Micro-computed tomography scans of the PCL 

scaffold fitted into the prototyped defect model (see coronal, middle, apical views) were used to 

determine the topographical adaptation of the scaffold to the root surface. 
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Figure 3.2 Clinical Outcome of Scaffold Implantation  
Clinical attachment loss and alveolar ridge resorption characterized the patient periosseous defect 

involving tooth #22. A trapezoidal full thickness flap was elevated to expose the defect, the root 

surface mechanically instrumented, and EDTA solution applied during root preparation. Prior to 

implantation, the scaffold matrix was immersed in 0.3mg/mL rhPDGF-BB solution for 15 min at 

RT. During placement, the scaffold was filled with autologous blood, positioned over the exposed 

tooth root, and stabilized using PDLLA pins. Tension-free primary intention method was 

employed during wound closure. The implanted 3-D scaffold filled the periodontal osseous defect 

without clinical signs of chronic inflammation or rejection of the PCL-based material during the 

first year.  
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Figure 3.3 Adaptation of 3D-Printed Scaffold 
Adaptation ratio of polycaprolactone scaffold fitted into a prototyped model of the periosseous 

defect was determined as an assessment of the topographic adaptation of the scaffold to the root 

surface. A 100% (ratio of 0.1) adaptable scaffold would indicate a perfect fit. The final design of 

the polycaprolactone scaffold was adaptable to the periosseous defect by 82% ± 7% (mean ± SD). 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4  Release Kinetics of rhPDGF-BB from PCL Scaffold 
In vitro release kinetics of recombinant human platelet-derived growth factor BB (rhPDGF-BB) 

from polycaprolactone scaffolds (155.6 ± 0.9 mg) into phosphate-buffered saline from a rhPDGF-

BB loading of 48.2 μg per scaffold for 20 min at room temperature. Each data point represents 

mean ± SD (n= 3). 
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Figure 3.5 Post-operative Exposure and Retrieved Scaffold Matrix  
Postoperative exposure and retrieved scaffold matrix. The top panel shows the initial soft tissue 

dehiscence over the scaffold at 13 mo. The middle panel shows the more extensive exposure and 

wound failure of the scaffold matrix, necessitating removal at 14 mo (middle panels). The bottom 

panel shows histologic analysis of the retrieved scaffold matrix, which was performed with 

hematoxylin and eosin (H&E) and Masson’s trichrome staining. Frozen sectioning of the 

decalcified tissue stained with H&E shows tissue attachment to scaffold remnants (red 

arrowheads). Masson’s trichrome paraffin-embedded sections indicate small islands of new bone 

formation within a milieu of primarily granulomatous tissue (yellow arrowheads). Scale bar = 50 

μm.  
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Table 3.1 Clinical Parameters  

 

 

Table 3.2 Gel Permeation Chromatography: Analysis of Changes in Mean Molecular Mass 

of Polycaprolactone Scaffold Matrix 
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3.4 Discussion  

When applying tissue engineering approaches to the reconstruction of complex tissue 

structures such as the periodontium, biomaterials serve as 3-D templates and synthetic 

extracellular-matrix (ECM) environments for the regenerative process [7]. Printed biomaterials 

represent promising tools, allowing customization to the desired size, configuration and 

architecture of a given defect. Their efficacy in the regeneration of complex structures such as new 

PDL has been shown pre-clinically [5]. Successful use of a 3-D printed PCL splint for the treatment 

of tracheobronchomalacia has been recently reported using a similar approach [8].  We believe a 

limitation of this study was use of the PCL biomaterial that may not be ideal for periodontal 

applications.  It appears that a more rapidly resorbing matrix with a healing window of <1 year 

combined with a less bulky design would be better suited to avoid wound dehiscence, exposure 

and subsequent microbial contamination in a peri-mucosal environment around teeth. Histological 

analysis indicating minimal collagenous tissue ingrowth into the scaffold (Figure 3.5) supports 

the need for a more interconnected internal structure with greater surface area. Selection of a 

biomaterial with a faster rate of resorption (i.e., polylactic-co-glycolic acid (PLGA)) combined 

with a highly porous structure would contribute to greater tissue ingrowth and vascularization. As 

evidenced by gel permeation chromatography results (Table 3.2) which indicate a PCL degradation 

of only 24.1%, improvements in the resorptive properties of the scaffold are intrinsic to improved 

bony infill, which is difficult to achieve with a slowly-degrading polymer. Compartmentalized 

delivery of PDGF-BB to the PDL-forming region of the scaffold and BMP-2 to the bone region 

may further facilitate tissue growth and remodeling. Although PDGF-BB has previously been 

shown to bind and release from a PCL-based scaffold in a biological manner [9], optimization of 

the growth factor release kinetics may further increase PDGF bioactivity in situ. A hybrid PLGA-

PCL scaffold design may also provide optimal mechanical and resorptive properties for 

engineering a PDL-bone interphase. Further studies would focus on the analysis of scaffold 

stiffness to reduce risk of tissue dehiscence.  

 

3.5 Conclusions  

This case represents the first application of a personalized, 3-D bioprinted scaffold to treat 

a periodontal defect. Although this case was not successful long term, we believe the approach 

warrants further study for more personalized oral regenerative medicine clinical applications.  
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CHAPTER 4 

 

INTEGRATION OF 3D PRINTED AND MICROPATTERNED 

POLYCAPROLACTONE SCAFFOLDS FOR GUIDANCE OF ORIENTED 

COLLAGENOUS TISSUE FORMATION IN VIVO 

 

Originally published in Advanced Healthcare Materials:  

Pilipchuk SP, Monje A, Jiao Y, Hao J, Kruger L, Flanagan CL, Hollister SJ, Giannobile WV. 

Integration of 3D Printed and Micropatterned Polycaprolactone Scaffolds for Guidance of 

Oriented Collagenous Tissue Formation In Vivo. Adv Healthc Mater. 2016;5(6):676-87.   

 

 

4.1 Abstract  

Scaffold design incorporating multi-scale cues for clinically-relevant, aligned tissue 

regeneration has potential to improve structural and functional integrity of multi-tissue interfaces. 

The objective of this pre-clinical study was to develop poly(ɛ-caprolactone) (PCL) scaffolds with 

mesoscale and microscale architectural cues specific to human ligament progenitor cells and assess 

their ability to form aligned bone-ligament-cementum complexes in vivo. PCL scaffolds were 

designed to integrate a 3D printed bone region with a micropatterned PCL thin film consisting of 

grooved pillars. The patterned film region was seeded with human ligament cells, fibroblasts 

transduced with BMP-7 genes seeded within the bone region, and a tooth dentin segment 

positioned on the ligament region prior to subcutaneous implantation into a murine model. Results 

indicated increased tissue alignment in vivo using micropatterned PCL films, compared to random-

porous PCL. At 6 weeks, 30um groove depth significantly enhanced oriented collagen fiber 

thickness, overall cell alignment, and nuclear elongation relative to 10um groove depth. This study 

demonstrates for the first time that scaffolds with combined hierarchical mesoscale and microscale 

features can align cells in vivo for oral tissue repair with potential for improving the regenerative 

response of other bone-ligament complexes.  
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4.2 Introduction  

Formation of tissues with structural and functional integrity is reliant upon cellular 

alignment and organization that in turn is influenced by nano- and micro-scale environmental cues 

[1-3]. Soft collagenous tissues such as tendon and ligament require aligned collagen fiber 

formation to maintain resistance to mechanical loading. Similarly, the periodontal ligament (PDL) 

is a structure in the oral cavity composed primarily of collagen type III which anchors alveolar 

bone to the tooth root and resists compressive loading--allowing for tooth movement. Periodontitis 

is a chronic oral inflammatory disease associated with damage to the tooth-supporting apparatus 

and subsequent osseous tissue resorption. It is the primary cause of permanent tooth loss estimated 

to affect 47.2% of adults in the United States, with a prevalence of 70% for adults aged 65 years 

and older [4]. Tissue engineering strategies have shown potential to address existing deficiencies 

in clinically-induced periodontal regeneration through combinational approaches using 

biomaterials, growth factors, and cell-based therapy [5, 6]. Existing studies have focused on 

whether precise topographical mesoscale features can influence structural and functional 

properties of PDL-like tissue through contact guidance in vitro [7, 8]. However, their further 

translation and performance in vivo has not yet been described, yet is needed to optimize scaffold 

constructs for oriented, multi-tissue interface regeneration.  

The complex hierarchical organization of periodontal tissues requires multi-phasic 

biomaterial constructs that can recapitulate the structural integrity of the bone-ligament interface 

[9]. Microscale technologies have been used in fabricating scaffolds that facilitate control of 

multiple tissue organization and positioning, as required for the regeneration of a bone-ligament 

interface [10, 11]. Surface topography on the micro- and nano-scale profoundly affects cell 

behavior, including adhesion, migration, alignment, intracellular signaling pathways, and 

ultimately tissue formation in combination with biochemical cues. As such, there is a growing 

emphasis being placed on a multiscale approach to scaffold development that should incorporate 

strategically-positioned, biologically-relevant design features ranging from the nano- to the macro-

scale [12].   Fabricating scaffolds sufficient for clinical application remains a challenge for tissue 

engineering of multi-phase, oriented tissue interfaces.  

Polycaprolactone (PCL)—a hydrolytically-biodegradable polyester approved by the FDA 

for some clinical indications—is easily manufactured into a variety of shapes and porosities with 

variable mechanical properties and has been the material of choice in multi-phasic scaffolds for 
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regeneration of periodontia. Park et al. used 3-D printed wax-based molds to cast PCL for a “bone 

compartment” of an image-based, bi-phasic scaffold “periodontal complex” [13, 14]. Costa et al. 

and Vaquette et al. employed PCL for the bone compartment and electrospun PCL for the PDL 

region, [15, 16] while Lee et al. used a layered 3-D printed scaffold with three PCL interphases for 

the cementum, PDL, and alveolar bone [17]. However, the precise effect of topography on the 

guidance of PDL-like tissue formation in vivo has not been thoroughly explored to understand how 

micro-scale patterning affects the regenerative outcome.  

The objective of this study was to develop a scaffold with micro- and macro-scale cues for 

guided formation of aligned tissue that would meet design criteria for periodontal ligament-like 

architecture. Given PCL's malleability and ability to be formed into polymeric matrices of various 

physical and mechanical properties, 2D PCL films were micropatterned and assessed in vitro to 

determine optimal parameters for PDL cell alignment. This informed the design of a 3D PCL film 

having 250um high pillars to replicate the average thickness of PDL tissue, with grooves embedded 

into the pillars at widths of 15-60um and depths of 10-30um. Films were incorporated into a 3D 

printed PCL region to create a macro-scale bone-ligament interphase reminiscent of the alveolar 

bone-PDL complex in the oral cavity. We integrated 3D printed and micropatterned regions to 

develop a multi-tissue interphase with macro- and micro-specific features of the scaffold. We then 

examined the potential of the designed scaffold construct for guidance of mineralized (bone, 

cementum) and collagenous (PDL-like) tissue formation using subcutaneous implantation in an ex 

vivo model.  Our findings identify the importance of grooved features and the influence of their 

depths on cellular alignment, elongation, and oriented collagenous tissue formation in vivo.   

 

4.3 Methods and Materials  

4.3.1 Preparation and imaging of patterned 2D and 3D films  

 Polycaprolactone films (2D) were prepared by dissolving PCL (MW: 43-50 kDA) in 

chloroform (Sigma) (10% w/v) and spin coating the solution (1st coat at 100 rpm for 8 sec, 2nd coat 

at 800 rpm for 20 sec) onto polydimethylsiloxane (PDMS) (Sylgard 184; Dow Corning) designed 

via established soft lithography techniques with grooves ranging from 10-50um in width, 10 um 

in depth [32]. Briefly, a CAD-based program (LEdit) was used to design micropatterns and define 

the silicon and SU-8 master molds with standard photolithography. All steps for mold fabrication 

were performed at Lurie Nanofabrication Facility (University of Michigan, Ann Arbor, MI). To 
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transfer the pattern of SU-8 molds onto a flexible polymer, PDMS was mixed in a ratio of 10:1 v/v 

of base to curing agent, degassed under vacuum, poured onto molds, and cured (65˚C). PDMS was 

then peeled from SU-8 mold and used as a mold to pattern PCL. Control films were made by spin 

coating PCL onto non-patterned PDMS stamps. Similarly, 3D micropatterned PCL films were 

prepared by casting PCL solution onto PDMS molds with grouped arrays of five different designs: 

(1) 400x400m non-grooved square pillars 250um in height spaced 400um apart, (2) same pillars 

with 10um deep, 60um wide grooves on the perimeter, (3) pillars with 10um deep, 15um wide 

grooves, (4) pillars with 30um deep, 60um wide grooves, and (5) pillars with 30um deep, 15um 

wide grooves. SEM was performed at the Microscopy and Image Analysis Laboratory (University 

of Michigan) using an Amray FE 1900 SEM to image patterned 3D films which were gold sputter 

coated and observed at an acceleration voltage of 5kV.  

 

4.3.2 Surface treatment and MTS assay  

 Amination of films was performed using 10% (w/v) 1,6-hexanediamine for 1hr at 37°C. 

Hydrolysis was achieved using 1M sodium hydroxide solution (4 hours at room temperature). 

Fibronectin treatment consisted of incubating films overnight in phosphate buffered saline (1X 

PBS), exposed to bovine-derived fibronectin solution (10ug/mL, Sigma) for 30min at 37°C, with 

washes in PBS. All non-patterned films were sterilized in 70% ethanol for 30 min and washed in 

sterile dH20 prior to treatment, and again washed in sterile dH2O post-treatment with amination or 

hydrolysis.  Prior to cell seeding, all films were incubated for 30 min in cell culture media 

consisting of Dulbecco’s Modified Eagle Medium with glutamine (DMEM), 10% fetal bovine 

serum (FBS), and antibiotics (100 units/ml penicillin and 100 mg/ml streptomycin). Human PDL 

cells (passages 4-6) were seeded at a density of 1.5x104 cells/film on non-treated and surface-

treated PCL films (n=3). Cell adhesion and proliferation was assessed at days 1 and 5 post-seeding 

by adding MTS solution (CellTiter 96® Aqueous One Solution, Promega Corp, Madison, WI) to 

films washed three times in PBS, and reading triplicates at 490 nm after 2 hr incubation (37°C). 

 

4.3.3 In vitro cell culture and alignment analysis on 2D patterned films  

 To assess PDL cell alignment on patterned 2D substrates, films were seeded with hPDL 

cells (passages 4-6, 1.2x104 cells/film) stained with DilC(12)3 (10ug/mL, BD Biosciences, 

Bedford, MA, USA). Prior to cell seeding, films were surface treated with hydrolysis and 
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fibronectin as described previously. At 24hrs post-seeding, films were washed three times in PBS 

and imaged using fluorescence microscopy (Nikon Eclipse 50i, Nikon Instruments Inc). ImageJ 

(NIH) was used to evaluate cell orientation angle (OA) between 0° and 90° via a virtual axis placed 

in each cell, with the angle between the axis of the cell and direction of the pattern (corresponding 

to 0°) measured for all films (n=4). Results from OA analysis were used to inform the design of 

3D pillared PCL films.  

 

4.3.4 Preparation of biphasic integrated scaffold with 3D-printed and 3D patterned PCL regions 

 To model the interphase between alveolar bone and periodontal ligament, a biphasic 

scaffold based on a previous design was fabricated with individual compartments for bone and 

PDL growth using 3-D printed PCL structures for a bone compartment combined the 

aforementioned 3D micropatterned films for a PDL interface, respectively [13]. PCL scaffold 

geometry for 3-D printing was designed using CAD-based software (NX 7.5, Siemens PLM 

Software), with base dimensions of 5.1 x 4.1 x 2.1 mm, a 1.1 mm high enclosure to contain the 

PCL film, and pore openings of 0.7 x 0.7mm. Selective laser sintering (SLS) was used to fabricate 

the bone compartment using PCL powder (43-50kDa; Polysciences, Warrington, PA) and 4 wt% 

hydroxyapatite (Plasma Biotal Limited) [34, 45, 46]. To assemble the biphasic scaffold, a 

micropatterned 3D PCL film (3.6 x 2.8 mm) containing an array of 20 square pillars and 400um 

circular pores was directly fitted onto the 3D printed PCL bone region. The four corners of the 

upper bone scaffold region (Figure 3B) anchor, stabilize, and integrate the PCL film in place.  

 

4.3.5 In vivo implantation and specimens harvest  

 One day prior to implantation, PCL films was treated with fibronectin and seeded with 

hPDL cells as previously described using in vitro cell culture to allow for cell attachment and 

alignment. The day of surgery, two surgical pockets were made on the dorsa of immunodeficient 

6 week-old NIH III nude mice (20-25g; Charles River Laboratories, Wilmington MA) for 

subcutaneous scaffold implantation (n=6 per time point) under isofluorane anesthesia. The bone 

region was seeded with Ad-BMP7 (MOI=500) expressing hGFs (2.5x105 cells in 8uL fibrinogen 

mixed with 2ul thrombin) and the PDL region seeded with hPDLs (1.5 x105 cells in 15mL 

fibrinogen mixed with 3uL thrombin). A human-derived dentin segment surface-treated with 37% 

orthophosphoric acid and trimmed to scaffold size was press-fit onto 3D patterned PCL film to 
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ensure contact between pillars and dentin surface. Dentin segments derived from healthy human 

teeth were obtained in accordance with a University of Michigan-Institutional Review Board (IRB) 

approved protocol, and animal studies were performed with approval from University of 

Michigan-University Committee on Use and Care of Animals (UM-UCUCA) according to 

ARRIVE guidelines for preclinical studies. Samples were harvested at 3 and 6 weeks and fixed in 

10% buffered formalin phosphate solution for 2 days before being transferred into 70% ethanol.  

 

4.3.6 Micro-computed tomography (Micro-CT), histomorphometry, immunofluorescence, and 

immunohistochemistry  

 Tissue-fixed specimens were embedded in alginate, scanned using micro-CT (Scanco 

Medical) at a resolution of 12um, at 70kV energy and 114uA intensity, and calibrated to 

Hounsfield units (HU). Bone volume (BV) and tissue mineral density (TMD) were determined for 

internal and external regions of the bone compartment using Microview software (Parallax 

Innovations) with a threshold of HU=1050 for bone. After scanning, samples were decalcified in 

10% EDTA, embedded in paraffin, and cut into 5um sections for histological analysis using 

hematoxylin and eosin (H&E) and Masson's trichrome staining to evaluate fibrous tissue 

orientation and collagen formation, respectively. Immunofluorescence staining was performed 

using 4',6-diamidino-2-phenylindole (Prolong Gold Antifade Reagent with DAPI; Life 

Technologies) to label cell nuclei and anti-tubulin antibody with AlexaFluor488 (1:100 dilution, 

Abcam Inc, Cambridge MA) to label microtubules. Stained slides were imaged using fluorescence 

microscopy (Nikon Eclipse 50i) to capture cell nuclear alignment for all groups using a specified 

ROI (150um x 250um). ImageJ was used to quantify percentage of cells aligned perpendicular to 

the dentin segment, with cells considered aligned at an angle of ±20° from the perpendicular at 

90° (i.e., 70° ≤ x ≤ 110°, where x is the alignment angle). Nuclear shape index was used to assess 

cell nuclear elongation. ImageJ was used to threshold the images and run an analysis of elongation 

based on a measure of circularity (C=4*π*area/perimeter2, where C=1 indicates a circle) [19]. 

Masson's trichrome images were further used to assess thickness of collagen bundles oriented 

perpendicular to dentin segment at sites bordering the grooved and non-grooved pillars for samples 

obtained at 6 weeks.   

 Formation of cementum-like tissue was quantified using H&E sections and further assessed 

via immunohistochemical analysis of bone sialoprotein (BSP) positive staining using 
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deparaffinized sections. Before immunostaining, rehydrated sections were treated with 3% 

hydrogen peroxide and blocked in bovine serum albumin to reduce non-specific binding. Sections 

were exposed to primary antibody (1:200, Anti-bone sialoprotein antibody, Abcam, Cambridge, 

MA) for 24 hours at 4°C, washed in PBS with 0.2% Triton-X, and exposed to secondary antibody 

for 1hr (Goat Anti-rabbit IgG H&L (HRP), Abcam). After washes in PBS with Triton-X, sections 

were briefly exposed to a chromogen/substrate solution (DAB substrate kit, Abcam) and counter-

stained (Hematoxylin, Sigma-Aldrich). 

 

4.3.7 Statistical analysis  

 Data were expressed as mean ± standard deviation of the mean. One-way analysis of 

variance (ANOVA) with post hoc Tukey's multiple comparison method was used to perform 

comparative analysis, with a p-value <0.05 (α<0.05) considered significant.  

 

4.4 Results 

4.4.1  PCL surface treatment and ligament cell alignment on 2D grooved PCL films   

Four different surface treatments of non-patterned PCL films were performed prior to cell 

seeding to assess periodontal ligament (PDL) cell adhesion and proliferation relative to non-treated 

films: (1) amination to generate a PCL-NH2 surface chemistry, (2) hydrolysis to reduce surface 

hydrophobicity, (3) fibronectin, and (4) hydrolysis pre-treatment prior to fibronectin coating. 

Significantly higher mean hPDL cell adhesion percentage of the initial cell seeding density was 

shown using treatment of PCL with fibronectin alone and a combined treatment of hydrolysis and 

fibronectin at day 1 post-seeding, relative to a non-treated PCL film. At day 5, the total percentage 

of adhered cells was significantly higher on hydrolysis, fibronectin, and combined hydrolysis and 

fibronectin treatment of PCL surfaces relative to amination and no treatment (Figure 4.1). Based 

on these results, all PCL patterned and control films were hydrolyzed the day before and 

fibronectin-coated the day of hPDL cell seeding to increase cell attachment to the inert PCL 

surface.  

 To create a 3D micropattern design for the PDL region of the scaffold, a 2D pattern was 

first generated to study the parameters that assisted in periodontal progenitor cell alignment. Three 

different molds were fabricated using three groove widths ranging from 10-50um, with a depth of 

10um (Figure 4.2A). PCL was readily patterned, replicating mold features and creating a film that 
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can be easily handled without distorting the features (Figure 2B). Human PDL cells seeded onto 

the surface treated, patterned films showed elongation of filopodia within the grooves, whereas 

cells on a non-patterned PCL surface were randomly oriented (Figure 2C). Quantitative analysis 

of average orientation angle (OA) demonstrated significant differences between the non-patterned 

and patterned groups and significantly higher OA on 50um grooved PCL relative to 25um and 

10um grooved films. No significant differences in OA were observed between the 25 and 10um 

patterned films (Figure 2D). An analysis of the distribution of aligned cells in specific ranges (5° 

to 15° degree ranges) indicated a higher percentage of cells with the lowest OA (0-5°) on the 10um 

(86.9%) grooved surface, followed by 25um (79.8%), 50um (32.3%), and control (6.1%) films 

(Figure 2E). Our results show that cell alignment was highly associated with groove width on 2D 

PCL films.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 PCL Scaffold Surface Modification 

Surface treatment of PCL films using aminolysis, hydrolysis, fibronectin coating, and combined 

treatment of hydrolysis and fibronectin assessed to determine conditions for increased hPDL cell 

attachment. Data shows mean percentage of ligament progenitor cells adhered to non-treated PCL 

films in vitro versus surface-treated PCL at 1 and 5 days post-seeding. (Error bars: ± SD; ** 

p<0.01; *** p<0.001, **** p<0.0001; # indicates p<0.05 relative to non-treated PCL film at each 

timepoint; n=3).  
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Figure 4.2 2D-Micropatterned Film Design and Cell Seeding Assessment  
Micropatterned 2D PCL film design was used to determine effects of groove width on hPDL cell 

alignment in vitro. Films were patterned using three different molds (a) to embed grooved features 

onto the polymer surface (b, surface with 50um wide grooves, Nikon SMZ18 stereo microscope). 

DilC(12)-3 stained hPDL cells seeded on hydrolyzed and fibronectin treated PCL films with non-

grooved (control) and grooved surfaces (c). White arrows indicate direction of grooves (scale 

bar=50um). Average orientation of hPDL cells on control (non-patterned), 50 um, 25 um, and 10 

um grooved PCL films, where 0°  indicates complete alignment with pattern and 90° indicates a 

cell that is perpendicular to a groove (d). Proportion of hPDL cells within a specific orientation 

angle for all PCL film groups, with 0-5° groups indicating highest alignment of cells within 

grooved microfeatures (e). (Error bars: ± SD; * p<0.05; ** p<0.01; **** p<0.0001). 

 

4.4.2 Design of PCL scaffolds with 3D patterned film and 3D printed base  

The tooth root is covered with a layer of calcified tissue known as cementum, into which 

PDL collagen fiber bundles are inserted and further anchored into the alveolar bone. To mimic the 

known anatomical features of the bone-PDL interphase bordering a tooth root, a scaffold 

containing compartments for bone and periodontal ligament tissue formation was designed 

(Figure 4.3A). In detail, the bone region of the scaffold was adapted for selective laser sintering 

based on previous parameters established in our laboratory by Park et al [13]. This region was 

designed to be 5.1x4.1mm with a height of 3.2mm, where the first 2.1mm are part of the base and 

the remaining 1.1mm on the four corners form an enclosure to contain the film and dentin segment 

(Figure 3B). Pore sizes were restricted to a minimum of 700um x 700um given the 3D-printer 

resolution, with composition of the scaffold consisting of PCL mixed with 5% hydroxyapatite 

(HA) to mimic the mineral-based content of natural bone. The PDL region of the scaffold was 

designed to provide architectural guidance for cell alignment and subsequent collagen fiber 

formation using pillars that would act as supportive structures for PDL-like tissue formation 

between calcified tissues (i.e., bone and dentin). Pillar height was 250um to mimic the average 

thickness of human PDL tissue. Based on results of cell alignment on 2D-grooved PCL films, 

pillars were formed with grooves of 60um or 15um and depth of 10 or 30um to investigate effects 

of groove width and depth on PDL-like tissue formation. A porous salt-leached PCL sponge was 

included as a negative control, in addition to non-grooved pillars to assess effect of pillars alone 

on cell and tissue alignment. SEM images indicate the random nature of the porous PCL sponge 

relative to grooved pillars that present clear boundaries for groove width and depth corresponding 

to mold design and overall stability of the 250um high features (Figure 3C).  
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Figure 4.3 3D-Micropatterned Film Design and Ectopic Murine Model 
 Schematic design of the scaffold intergrating 3D printed and micropatterned regions for the bone-

ligament oral complex. Anatomical features of the alveolar bone-periodontal ligament interphase 

present innately at the tooth root surface (a) were used to design a scaffold combining a 3D printed 

PCL region and a 3D patterned PCL film for the bone and PDL regions, respectively (b). A total 

of six groups (c) were tested in vivo by varying the geometry (width, W and depth, D of the 

grooves) of the PCL in the PDL region of the scaffold: (1) random-porous, salt-leached PCL 

sponge, (2) 400x400 um square pillars 250um in height, (3) square pillars with 60um wide and 

30um deep grooves, (4) pillars with 60um wide and10um deep grooves, (5) pillars with 15um 

wide, 30um deep and 15um wide, 10um deep (6) grooves. (d) An ex vivo murine model was used 

to subcutaneously implant the combined scaffold to promote  bone (B) and periodontal ligament 

formation, with a dentin segment (D) press-fit on top of the combined scaffold after cell-seeding 

the PDL region prior to implantation.  

 

 

Cementum covers the dentin surface of the tooth root, but this layer was removed from 

human-derived roots to obtain dentin segments that were cut down to dimensions of the scaffold 

and positioned over 3D micropatterned film regions (Figure 3D). In vivo assessment of tissue 

alignment within the PDL region was performed using a previously established murine model 

utilizing human gingival fibroblast (hGF) cells transduced with adenoviral (Ad) bone 

morphogenetic protein (BMP)-7 to generate bone formation [13, 18]. 

 

4.4.3 Mineralized tissue formation in 3-D printed scaffold region in vivo  

Analysis of bone volume (BV) in samples at 3 and 6 weeks shows a significant difference 

(p<0.0001) in the volume measured encompassing the 3-D printed region of the scaffold versus 

the volume identified within the entire scaffold region. As evidenced by uCT scans of a scaffold 

at 6 weeks (Figure 4.4A) the majority of bone was formed encompassing the scaffold along the 

3D-printed PCL walls. However, no significant differences in BV were observed between weeks 

3 and 6 for both regions. Tissue mineral density (TMD) indicating maturity of bone showed no 

differences between regions when comparing both time points, but TMD increased significantly 

for both the bone region (p<0.0001) and entire scaffold (p<0.001) from week 3 to week 6 (Figure 

4B).  
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Figure 4.4   Bone Volume and Tissue Mineral Density  

Formation of bone in the 3D printed scaffold region seeded with adenoviral BMP7 transduced 

gingival fibroblasts. Micro-computed tomography (uCT) of implanted scaffolds was used for 

bone volume (BV) and tissue mineral density (TMD) analysis of osseous tissue growth in vivo in 

the bone region of the scaffold (a) compared to the formation of tissue in the entire scaffold 

external to bone region at 3 and 6 weeks post-harvesting (b). (Error bars: ± SD; *** p<0.001, 

**** p<0.0001; n=5-6). 
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4.4.4 Histomorphology of soft, mineralized, and cementum-like tissue formation in vivo  

To delineate the histomorphology of soft and mineralized tissue formation in vivo, we 

performed studies using several staining methods. Hematoxylin and Eosin stains at 3 weeks (data 

not shown) and 6 weeks indicated soft tissue formation in the region of 3D patterned film, as well 

as in most of the 3D printed scaffold where bone had not invaded further into the scaffold interior. 

Trichrome staining of PDL regions revealed randomly-oriented collagenous tissue formation in 

groups with porous PCL, while pillared PCL films showed fibrous collagen formation with 

increased directionality towards the dentin segment at 6 weeks (Figure 4.5A). Staining using 

DAPI and tubulin-based markers showed high cell density and extracellular matrix formation in 

the PDL region of the scaffold confined to areas within the inter-pillar distance. Indication of early-

stage formation of an immature cementum-like tissue at 6 weeks on the dentin below the PDL 

region was identified descriptively and also using bone sialoprotein (BSP)-positive staining. The 

amount of new tissue formation that had cementogenesis-like indicators was minimal overall, with 

an average length of 337±66um when averaged for all patterned groups, compared to the 2.7mm 

approximate length of dentin segments.  

 

4.4.5 Effect of 3D patterned design on cell alignment in vivo   

Cell alignment in vivo was evaluated using nuclear alignment and shape index following 

immunofluorescence staining of tissue sections. Our data revealed an increasing tendency of cells 

along the pillar edge to align perpendicular to the dentin surface with increasing groove depth 

(Figure 4.6A), particularly with more cells shown to be aligning further away from the pillar wall. 

At 3 weeks, all groups had a significantly higher percentage of aligned cells compared to porous 

PCL, with the same observation present at 6 weeks, except for non-grooved pillars which were not 

significantly different from the porous sponge. Relative to non-grooved pillars, both of the deeper-

grooved groups (60W, 30D and15W, 30D) exhibited significantly higher alignment at 3 weeks 

(p<0.001 and p<0.01, respectively). At 6 weeks, the differences in alignment were more apparent, 

with all grooved pillars irrespective of groove depth (60W, 10D; 15W, 10D; 60W, 30D; and 15W, 

30D) showing significantly higher cellular alignment (p<0.001 and p<0.0001) relative to non-

grooved pillars. Likewise, grooved pillars with a depth of 30um also had significantly higher 

alignment (p<0.001) relative to pillars with shallower grooves (Figure 6B).  
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Figure 4.5  Histomorphological Assessment of Soft and Mineralized Tissue Formation 
Histomorphological assessment of soft and mineralized tissue formation in the micropatterned 

PDL and 3D printed bone scaffold compartments, respectively. (a) H&E, Masson's trichrome, and 

DAPI (blue)/tubulin(green) staining was performed to assess bone (B) and tissue formation, 

collagen alignment, and cellular alignment in the region of the PCL film or sponge at 3 and 6 

weeks (images shown are at 6 week timepoint only).  Note the formation of fibers approaching the 

dentin surface and bone more distant in the bone region of the scaffold (near bottom of the H&E 

sections). (b) Formation of cementum-like tissue newly-deposited at the dentin (D) surface was 

observed on week 6 samples using H&E staining and immunohistochemical analysis for bone 

sialoprotein (BSP) positive expression. Scale bar = 100um.  

 

 

Nuclear shape index was used to assess nuclear elongation as a complement to the cellular 

alignment data, with values closer to 1 indicating increased nuclear circularity (Figure 6C) [19]. 

At 3 weeks, only deeper grooved pillars had significantly higher elongation values compared to 

both PCL sponge and non-grooved pillars, with the 60W, 30D pillars having more elongated cells 

relative to non-grooved (p<0.0001) and 15W, 30D pillars (p<0.05). Only 60W, 30D pillars had 

significantly higher elongation relative to both of the shallow-grooved pillars at 3 weeks (p<0.01). 

At 6 weeks, all groups had significantly higher elongation relative to cells on the PCL sponge, 

while all grooved pillars (p<0.01-0.0001) also had a significantly lower shape index relative to 

non-grooved designs. However, no significant differences were noted among the grooved pillar 

groups, irrespective of groove depth.  

Overall, these results demonstrate increased cell alignment further from the pillar boundary 

in films with grooves compared to non-grooved pillars, with increased alignment in deeper-

grooved (30um) pillars compared to shallow-grooved (15um) pillars. This can be attributed to soft 

tissue maturation and alignment which correspond to a significant increase in overall cell 

elongation from week 3 to 6, albeit not necessarily perpendicular to the dentin since this 

quantification considers only cell morphology independent of orientation. 

 

4.4.6 Effect of 3D patterned design on oriented collagen thickness in vivo  

The extracellular component of PDL consists of collagen fiber bundles which assist with 

allowing the tooth to withstand substantial compressive forces. We therefore analyzed collagen 

thickness oriented along the pillar wall creating a bundle-like structure perpendicular to the dentin 

segment. Our data showed that collagen thickness at 6 weeks is significantly greater in both deeper-
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grooved pillar groups with grooves of 60um and 15um compared to non-grooved pillars 

(p<0.0001) (Figure 4.7). Only one shallow-grooved group (60W, 10D) showed greater thickness 

relative to 0W, 0D (p<0.001). The 60W, 30W group had a total collagen thickness that was 

significantly higher than other groups, except for its deep-grooved counterpart with narrower 

grooves of 15um (15W, 30D). These results further reinforce the findings shown with cell 

alignment at 6 weeks, indicating that groove depth is a more critical parameter than width for 

encouraging formation of cell alignment and subsequent increase in oriented collagen fiber density  

at sites of increased cellular orientation.  
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Figure 4.6 Immunofluorescence: Cell Alignment and Nuclear Shape Index 

Cell alignment and nuclear shape index assessed using immnufluorescence staining at 6 weeks. 

(a) DAPI (blue) and tubulin (green) shows increased cell alignment further from the pillar 

boundary in films with grooves compared to non-grooved pillars, and in films with deep grooves 

(30um) compared to more shallow grooves (10um). Scale bar = 50um. (b) Mean percentage of 

aligned cell nuclei (within 20° of preferred perpendicular orientation: 70°≤x≤110°) in vivo on PCL 

sponge, non-grooved pillars (0W, 0D), and grooved pillars (60 um and 15um wide (W) grooves) 

with varying groove depths (D) (10 um—red outline, and 30um—blue outline). (c) Mean nuclear 

shape index analysis indicating cellular elongation in vivo on all groups based on measure of 

nuclear circularity (C=4*π*area/perimeter²). (Error bars: ± SD; ** p<0.01; *** p<0.001, **** 

p<0.0001; # indicates p<0.05 relative to PCL sponge at each timepoint; n=5 in each group).  
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Figure 4.7 Collagenous Tissue Alignment using Micropatterned Films 

Collagen thickness at inter-pillar distances bordering grooved or non-grooved features used to 

determine oriented tissue formation at 6 weeks in vivo. (a) Masson's Trichrome stining of samples 

indicates increased collagen orientation perpendicular to dentin (D) segment at the pillar boundary 

in the presence of grooves (scale bar = 100um). (b) Mean thickness (um) of oriented collagen 

bundles in vivo at non-grooved (0W, 0D) and grooved (15-60um wide, 10-30um deep) pillar 

borders at 6 weeks based on Masson's Trichrome staining.  (Error bars: ± SD; ** p<0.01; *** 

p<0.001, **** p<0.0001; n=5).  
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4.5 Discussion 

Promoting orientation of cells in a specific and structurally-relevant direction via substrate 

guidance has been shown to stimulate cell behavior and create organized tissues in vitro that mimic 

their native form and function, including cardiac and nerve tissues [20]. Overall, micro- and meso-

scale cues have been strongly implicated in aligned cellular and fibrillary collagen formation in 

vitro. Gilchrist et al found that a width of 500um was the maximum in vitro meso-scale boundary 

for guidance of neo-tissue alignment using mesenchymal stem cells [21]. Likewise, highly aligned 

tissue formation consisting of fibrillary collagen was observed when cells were arranged 

longitudinally end-to-end. This in vitro finding is consistent with our observations in vivo of highly 

aligned cell formation on pillar walls which appears to correspond to increased collagen fiber 

formation seen with Trichrome staining at sites of increased cell alignment.  In fact, our study 

identified a strong positive correlation (r=0.863, data not shown) between cell alignment and 

collagen thickness based on values obtained from these measurements (Figure 6-7).  

Cellular morphology assessed using both cellular alignment angle and nuclear elongation 

suggests significant (p<0.0001) and overriding effects of groove depth over width. Our results 

indicate increased preferential alignment of cells in vivo on grooved substrates over a non-grooved 

surface. Nano- and micro-structured groove widths and depths have been extensively investigated 

using a variety of cells to determine optimum parameters for cell alignment using in vitro models 

[22]. While results can be cell-specific, fibroblasts in particular have been shown to have a nano- 

and micro-limit of alignment ranging from 50-100nm to 500um [23-25]. Likewise, several studies 

have reported increased cell alignment with increasing groove depth, both on nano- and micro-

levels [26-28]. There are strong indications that in particular cases the depth can reinforce, if not 

override, cellular guidance via groove width.  Increase in cell alignment and collagen fiber 

alignment may also be a factor of the cell’s innate ability to align in vitro and in vivo. Aubin et al 

showed cells with intrinsic ability to form aligned tissue in vivo are more likely to organize into 

oriented tissue in vitro in presence of guidance-based microarchitecture [29]. 

 Previous studies successful in achieving aligned collagenous tissue formation using 

substrates with cell-guiding cues have utilized electrospun fibers composed of naturally- and 

synthetically-derived polymers. Jiang et al reported increased PDL-like tissue formation with 

mature collagen fibers using aligned PCL-polyethylene glycol (PEG) nanofibers embedded into 

porous chitosan scaffolds and seeded with bone marrow mesenchymal stem cells [30]. Similar 
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findings have been observed in applications for neural and cardiac tissue regeneration: Koepsell 

et al noted increased cellular orientation of intervertebral disc-derived cells on increasingly aligned 

electrospun PCL fibers resulted in higher ECM production, including collagen and 

glycosaminoglycans, while Ifkovits et al found enhanced collagen alignment on oriented 

poly(glycerol sebacate) fibers when seeded with cardiocytes and implanted subcutaneously [31, 

32]. However, it remains difficult to create three-dimensional scaffolds using these techniques 

without the presence of a more complex and customizable system such as a 3-D printer that could 

position fibers in directions relevant to the anatomical structure of tissue we attempt to model, 

thereby recapitulating its unique geometric complexity. Additive manufacturing has been used 

extensively for guided tissue regeneration of PDL-like structures, but micro-level control over 

scaffold structure is constrained by limited resolution and material selection [14, 17].  To address 

these limitations, our approach focuses on using a combination of 3-D printing and 

micropatterning to create a scaffold with the dual function of presenting features on the macro and 

micro-level for guidance of bulk and oriented tissue formation (i.e., mineralized and soft tissue). 

To our knowledge, this is the first reported attempt to quantify cell alignment on a micropatterned 

polymeric construct implanted in vivo. While numerous aforementioned publications have 

signaled the importance and potential of guiding aligned tissue formation using this approach, 

existing studies have focused on in vitro assessment of cellular alignment, without further 

translation into in vivo models.   

 The development of a 3-D pattern consistent with known geometric parameters of the 

human periodontal ligament (i.e., 250um average thickness), including presence of collagen I and 

III fiber bundles that orient perpendicular to the alveolar bone and tooth root (Figure 3), was 

executed to assess the role of groove width and depth using an in vivo model. The 3-D printed 

bone region and PDL film consisted of defined openings to create porosity within the bulk 

structure, promoting nutrient exchange and cellular migration between the regions. Seeding of 

AdBMP-7 expressing hPDL cells in the bone region resulted in bone formation that was mostly 

external to the interior region of the 3-D printed scaffold as shown using histology and micro-CT 

analysis (Figures 4 and 5A, respectively), a limitation of the model inherent in the non-localized 

expression of the growth factor that likely resulted in its diffusion to the exterior regions of the 

scaffold, as has been observed in other studies [33, 34].  The use of a non-loading model may have 

contributed to lack of significant increase in bone volume between weeks 3 and 6, although 
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existing bone was found to mature over time, as evidenced by increase in tissue mineral density. 

Likewise, due to limited bone growth below the PDL region of the scaffold, no integration between 

the bone and PDL regions was observed. This is an important indicator of bone-ligament complex 

regeneration and requires future improvements in the design of the bone compartment and 

localization of bone-stimulating growth factor delivery. Specifically, native bone-PDL integration 

consists of Sharpey’s fiber insertions into osseous tissue that stabilize and connect the soft tissue. 

A bone region which promotes formation of such attachments below the PDL compartment 

through incorporation of increased and possibly directional porosity would improve regeneration 

of this multiphasic tissue complex. To fully and successfully realize periodontal tissue regeneration 

using a multiphasic scaffold, cementum must be formed along the dentin surface. While our data 

does not show definitive mature cementum, BSP-positive staining (Figure 5B) does suggest early-

stage mineralized, cementum-like tissue formation localized at the boundary between the dentin 

segment and inter-pillar areas filled with collagenous soft-tissue.  

 Our results detailing cellular alignment and collagen formation are indicative of the need 

for guidance of cellular alignment to promote oriented collagen formation in vivo. In fact, Wang 

et al had previously shown that grooved substrates resulted in alignment of synthetized collagen 

matrix in vitro parallel to the grooves, preceded by the alignment of cells [35]. In this study, we 

show that this holds true using a micropatterned substrate under in vivo conditions, albeit with the 

added factor of groove depth as an important precursor to the percentage of aligned cells (Figure 

6) and resultant thickness of oriented collagenous tissue (Figure 7). It is important to note that 

while cellular alignment and increased collagen thickness is seen at pillar boundaries, the existing 

space of 400um between the pillars does not currently allow for aligned tissue formation in that 

area within a period of 6 weeks. There is likewise the potential of tissue formed between pillars to 

lose orientation given large inter-pillar distances. Therefore, an improvement to the current 

patterned film design to better replicate periodontal ligament fiber architecture and increase fiber 

density would consist of reducing this distance to 100-150um, given that the average thickest 

formation of oriented collagenous tissue at 6 weeks was ~35um for one side of the 30um-deep 

grooved pillars.  Another area of further study may include an analysis of whether there is a limit 

to the aligned tissue formation boundary layer away from the pillar surface, since the given results 

are an indication of the capacity for aligned tissue formation at only 6 weeks in vivo.  
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Future improvements in addition to scaffold morphology would involve introduction of 

other factors that play a crucial role in formation of functional periodontal ligament, including 

growth factors such as platelet derived growth factor (PDGF) and mechanical stimulation at 

physiological levels, which has been show to modulate PDL cell gene activity [8, 36]. Increased 

control and localization of bone-stimulatory growth factor protein release such as BMP would 

further benefit osseous tissue formation within the bone compartment. While the use of gene 

therapy significantly increases sustained growth factor release and stability in vivo, further 

improvements in minimizing growth factor diffusion from the target site would greatly improve 

its application in scaffold-based therapies [37]. Such strategies could include the direct adsorption 

or chemical conjugation of BMPs onto the scaffold surface, or tethering of viral vectors expressing 

BMP genes to PCL surfaces using chemical vapor deposition [38-41].  

  In attempting to transition scaffold-based designs from the bench-top to clinical 

applications that can benefit patients, use of 3D printing has become a promising strategy for 

creating customized implants with potential to mimic patient-based bulk defects, even for cases of 

periodontal therapy [42, 43]. In guided regeneration of ligamentous structures, the combination of 

3D printed and micropatterned regions into one construct is an innovative approach that can 

provide a means of re-establishing the interfacial integrity of aligned tissue formation in bone-

ligament complexes. Although the scaffold design used in this study was simplistic relative to a 

true periodontal defect involving bone resorption, it can be easily adapted to more complex defects 

using patient-based computed tomography scans to design the 3D printed region, and create an 

overlay of a micropatterned film in the region of missing PDL. The results of our study indicating 

the importance of groove depth over width for aligned tissue formation in vivo can play a vital role 

in the establishment of a design that can incorporate this cell-guiding parameter into future grafts 

meant for the purpose of inducing structurally-relevant alignment of PDL tissue. Future translation 

of micropatterned constructs into the clinic may provide greater opportunities for more controlled 

tissue regeneration using not only ridge-groove structures, but also other relevant designs that can 

help orient tissue based on incorporated material boundaries. The combination of a custom-

designed 3-D printed scaffold and a micropatterned region fit to control the structural integrity of 

new tissue growth is a clinically-relevant approach that holds significant potential for regeneration 

of collagenous tissue not only in periodontal and orthopaedic applications, but other areas of tissue 
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engineering with a strong focus on improving collagen fiber orientation as it relates to tissue 

structure and function.  

 

4.6 Conclusion 

In summary, the findings from this preclinical study indicate that groove micro-depth has 

a significant effect on guiding cellular alignment and collagenous tissue orientation in vivo, 

overriding the effects of groove micro-width. The 3-D patterned scaffold conceived and designed 

in this study further presents a novel and unique combination of 3-D printing and micropatterning 

to enhance the micro- and macro-level design of scaffolds with the aim of regenerating multiple 

tissues and their interfaces. Using a combination of gene therapy and topographical guidance cues 

to achieve osseous tissue formation and oriented collagen fibers has potential for bone-ligament 

regeneration for treatment of periodontal osseous defects. Overall, these findings are supportive of 

the advantageous effects of using 3-D printed, micropatterned substrates as architectural templates 

for guided regeneration of oriented collagenous tissues.  This approach may have significant 

potential for clinical applications in the development of bone-ligament constructs for dental and 

orthopaedic clinical scenarios. 
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CHAPTER 5 

 

IN VIVO ASSESSMENT OF PERIODONTAL REGENERATION VIA 

IMMOBILIZATION OF GENE THERAPY VECTORS ON 3D-PRINTED, 

MICROPATTERED SCAFFOLDS – A PILOT STUDY 

 

Contributions to the data collection/analysis that are part of this chapter were made by:  

Drs. Jie Hao and Ning Yu (Periodontics and Oral Medicine, University of Michigan).  

 

 

 

5.1 Introduction   

Current clinical therapies cannot predictably regenerate bone-ligament interfaces in tooth-

supporting tissues damaged by trauma or disease.  We previously developed a scaffold with 3D-

printed, micropatterned features for guidance of osseous and soft tissue formation in vivo [1]. 

However, bone formation within the scaffold resulted from in vitro transduction of cells with 

adenoviral (Ad) vectors expressing bone morphogenetic protein (BMP-7) prior to implantation. 

This study investigates a more clinically-relevant gene delivery approach by localized 

immobilization of AdBMP7 and platelet-derived growth factor (AdPDGF) onto scaffold ‘bone’ 

and ‘PDL’ regions, respectively, for evaluation in a subcutaneous murine extra-orthotopic model.  

While growth factors have been delivered via physical absorption onto scaffolds, this method lacks 

the ability to control the spatiotemporal release of the GF and specifically target the GF for 

immobilization.  

Chemical vapor deposition (CVD) is a technique that allows for the functionalization of 

complex 3D scaffold architectures: the surface is made to present a variety of functional groups 

(i.e., amine, carboxylic acid, ketones, aldehyde) depending on the chemical composition of the 

binding biomolecules. CVD-based polymer coatings have been shown to be biocompatible and 

approved by the FDA for use in certain applications. Improved growth factor binding to material 

surfaces treated with CVD-based polymer coatings have been shown, as in the formation of 
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oxygen-terminal groups on nano-crystalline diamond surfaces to allow for interaction with 

recombinant human (rh) bone morphogenetic protein-2 (rhBMP-2) through an affinity that 

resembles that of specific receptor-ligand interactions. Several studies have explored the idea of 

using such polymer coating for localized gene delivery through the use of gene vectors that can be 

immobilized to the material surface so as to enable the infection of implanted or endogenous cells, 

with the added benefit of reducing the risk of virus dispersion while also reducing the necessary 

administration dose and increasing transduction efficiency. Zhang et al showed that adenovirus 

expressing runt-related transcription factor 2 (AdRunx2) can be immobilized onto 

polycaprolactone (PCL) through the deposition of amine-reactive active ester groups, such that an 

anti-adenovirus antibody could be conjugated to the material surface via an amide chemical bond, 

followed by AdRunx2 attachment to the PCL surface via antibody-antigen interaction. The treated 

PCL surface with AdRunx2 was incubated in the presence of bone marrow stromal cells (BMSCs), 

resulting in high alkaline phosphate (ALP) activity and subsequent matrix mineralization [3-5].  

Most recently, Hao et al adopted this technique to investigate adenoviral vector conjugation 

to a variety of materials, including polylactic-co-glycolic acid (PLGA) and titanium, as well as 

PCL [1] (Figure 5.1). Immobilization of AdPDGF-BB and AdBMP7 resulted in transduction of 

seeded human periodontal ligament (hPDL) cells, resulting in the production of both PDGF-BB 

and BMP7. Enzyme-linked immunosorbent assay (ELISA) was used to determine the production 

of Collagen types I, III, and V as well as osteopontin, ALP, and osteocalcin, all of which allowed 

for an examination of whether hPDL cells were differentiating. Additionally, a scaffold with 3D 

geometry was used for combinational gene delivery, such that one compartment of the scaffold 

was immobilized with AdBMP7, and the other with AdPDGF-BB. Interestingly, while PDGF 

expression was not significantly reduced by the presence of BMP7 expression in the nearby 

compartment of the scaffold when compared to its expression in a control experiment which used 

Ad-empty vector in place of AdBMP7, the expression of BMP7 was significant reduced in the 

presence of concurrent PDGF-BB expression.  A previous study investigating the repair of 

periodontal defects in beagle dogs using BioGlass/silk scaffolds with AdPDGF-B and AdBMP7 

showed that AdPDGF recruited PDL cells more effectively (by 6-fold) compared to AdBMP7, 

while AdBMP7 itself promoted PDL cell differentiation to osteoblasts. The combined use of both 

adenoviral growth factors resulted in increased PDL, alveolar bone, and cementum regeneration 

compared to groups that delivered each adenovirus separately without combining with the other, 
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thereby having a synergistic effect on wound healing [6].  

 The primary goal of this study is to expand upon the Hao et al work showing the potential 

of gene therapy vector delivery and apply it to a second-generation, improved 3D-printed, 

micropatterned scaffold (described in Chapter 4), in order to investigate the best methodology of 

obtaining periodontal regeneration using an ectopic model initially, then progressing to the rat 

fenestration defect. This is the first known investigation of CVD-coated materials for the purpose 

of delivering gene therapy vectors to stimulate regeneration in vivo. In addition, this study also 

focuses on determining the optimal scaffold design for use in a rat fenestration defect model based 

on previously observed limitations of the existing scaffold design described in Chapter 4. 

 

Figure 5.1 Immobilization of Gene Therapy Vectors on Biomaterial Surfaces 

The immobilization of biomolecules (i.e., adenoviral vectors) on a polymer surface (i.e., PCL, 

PLGA) can be achieved using chemical vapor deposition (CVD) polymerization of substituted 

paracyclophanes. This consists of (1) coating the material with a layer of pentafluorophenol (PFP)-

ester groups using CVD polymerization, (2) immobilizing an anti-adenovirus antibody onto the 

surface, and (3) further immobilization of the adenovirus (i.e., AdBMP, AdPDGF) through 

antigen-antibody interaction. This surface modification technique can be used on 2D and 3D 

surfaces without compromising biocompatibility (i.e., introducing components which would be 

cytotoxic). This method is versatile, such that a surface can be made to present a variety of 

functional groups (i.e., amine, carboxylic acid, ketones, aldehyde) depending on the chemical 

composition of the binding biomolecules. Figure used with permission from [2].  

 

5.2  Materials and Methods 

5.2.1 Preparation of scaffolds for ectopic murine model  

The 3D-printed region of the scaffold was designed and fabricated as previously described 

[1]. Briefly, the design was performed using CAD-based software (NX 7.5, Siemens PLM 
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Software) such that the base had dimensions of 5.1 x 4.1 x 2.1 mm, a 1.1 mm high enclosure to 

contain the PCL film, and 0.7 mm wide pores. The scaffold was 3D printed using PCL powder 

(43-50kDa; Polysciences, Warrington, PA) and 4 wt% hydroxyapatite (Plasma Biotal Limited) via 

selective laser sintering (Formiga P100 system; EOS e-Manufacturing Solutions). The 

micropatterned region of the scaffold was altered from the previous design such as to: (1) decrease 

the inter-pillar distance from 400um to 150um, while retaining the same height (250um), (2) 

reduce the pillar length x width measurement from 400um x 400um to 300um x 300um, (3) 

increase the base porosity using water-based leaching of sugar particles (diameter = 125um), and 

(4) increase biomaterial degradation rate by forming the patterned film using PLGA. The pillar 

groove design consisting of 15um wide, 30um deep grooves was selected among the previous 

designs described [1] due to the previous results showing that groove depth (i.e., 10um vs. 30um) 

was a determining factor in the amount (i.e., width at pillar boundary) of aligned tissue formation.  

As previously reported, a CAD-based program (LEdit) was used to design the new 

micropatterns and define the silicon and SU-8 master molds with standard photolithography, with 

mold fabrication performed at Lurie Nanofabrication Facility (University of Michigan, Ann Arbor, 

MI). Polydimethylsiloxane (PDMS, Sylgard 184; Dow Corning) was mixed in a ratio of 10:1 v/v 

of base to curing agent, degassed under vacuum, poured onto SU-8 master molds, cured (65˚C), 

and peeled to reveal the pattern. The pillars were formed via casting of 2.5% PLGA (75:25, 

137kDa, Evonik Industries) onto the PDMS mold until they were filled. A solution of 10% PCL 

containing sieved sugar particles (125um diameter) was then cast onto the pillars in order to form 

a layer approximately 250um thick. The films were dried under vacuum for a period of 24 hours 

before placement in deionized water to dissolve away the sugar particles.  

 

5.2.2 Preparation of scaffolds for rat fenestration defect  

Preparation of the micropatterned film was undertaken as described in Section 5.2.1, except 

that a solution of PLGA-PCL (50/50) was used instead of PLGA alone, based on results from the 

pilot study using this formulation in the ectopic murine model. Additionally, instead of the 3D-

printed scaffold region created using SLS, the “bone” region of the scaffold was formed by mixing 

sugar particles (ranging from 100-400um in diameter) with 10% PCL solution and casting into a 

glass dish to produce a 250um thick base that was dried overnight under vacuum before being 

placed in deionized water to allow for sugar particle leaching out of the film.  
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5.2.3 Chemical vapor deposition (CVD) and gene therapy vector immobilization 

Scaffolds (i.e., 3D-printed region and micropatterned film, or amorphous region and 

micropatterned film) were coated with a layer of amine-reactive polymer using a custom-built 

CVD system, as previously reported (Hao et al). Briefly, the coating process consisted of fixing 

the scaffolds inside the deposition chamber at 15°C, with the starting material sublimated at 120°C, 

followed by pyrolyzation at 540°C to form into a stream of reactive di-radical vapor which 

deposited and polymerized on the scaffold surface (pressure of 0.1 mbar, argon as carrier gas). The 

scaffolds were turned to the other side and the process repeated to ensure that the coating deposited 

on all sides. After this process, scaffolds either stored under vacuum until further use of sterilized 

in 70% ethanol (1hr) to prepare for virus immobilization and subsequent cell seeding, as needed.  

 The experimental groups consisted of immobilizing adenovirus encoding BMP7 for the 

“bone” region of the scaffold (i.e., 3D printed scaffold or amorphous PCL film) and adenovirus 

encoding PDGF-BB on the “PDL” region of the scaffold (i.e., porous micropatterned film). 

Control groups consisted of immobilization with adenovirus without any growth factor gene (i.e., 

empty adenovirus, or Ad-empty). After sterilization, scaffolds were treated with 10 μg/mL solution 

of goat anti-adenovirus (AbD Serotec; 0151- 9004) polyclonal antibody in phosphate-buffered 

saline (PBS), determined based on a previously established saturation point.  The scaffolds were 

incubated in solution overnight (4°C), rinsed 5 times (5 minutes each) with PBS, followed by 

incubation in 12 mL cold adenovirus solution (4 hrs at 4°C), then rinsed in PBS (5 times, 5 minutes 

each). The adenovirus solution (1012 particle number) contained either vectors not expressing any 

gene (Ad-empty), or vectors expressing PDGF-BB or BMP7 genes (prepared by University of 

Michigan Vector Core), depending on which scaffold region was being treated. After the final PBS 

wash, the scaffolds were ready for cell seeding (i.e., human periodontal ligament (hPDL) cells in 

the “PDL” region of the scaffold or human gingival fibroblasts (hGFs) in the “bone” region of the 

scaffold).  

 

5.2.4 Scanning electron microscopy (SEM), immunofluorescence, and enzyme-linked 

immunosorbent assay (ELISA) 

Scanning electron microscopy (SEM) was performed at Microscopy and Image Analysis 

Laboratory (University of Michigan) using an Amray FE 1900 SEM to image patterned 3D films 
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with Ad-empty, or patterned 3D films after hPDL cell seeding (passages 4-6, 1.2x104 cells/film) 

to observe cell behavior on the re-designed films, as well as to confirm micropattern parameters 

(i.e., height, inter-pillar distance, porosity). Prior to imaging, the films were gold sputter-coated 

and observed at an acceleration voltage of 5kV. To further examine cell behavior on the re-

designed micropatterned films, immunofluorescence staining was performed using 4',6-

diamidino-2-phenylindole (Prolong Gold Antifade Reagent with DAPI; Life Technologies) to 

label cell nuclei and anti-tubulin antibody with AlexaFluor488 (1:100 dilution, Abcam Inc, 

Cambridge MA) to label microtubules. Stained scaffolds were imaged using fluorescence 

microscopy (Nikon Eclipse 50i) to examine cell orientation within grooves and on pillar sides.  

Additionally, to confirm the transduction of seeded hPDL and hGF cells and verify bioactivity of 

the growth factors (BMP7, PDGF-BB), an ELISA assay (R&D Systems, Minneapolis, MN, USA) 

was performed to quantify the release of each growth factor at 1 and 3 days post-seeding in the 

respective scaffold region (n=3).  

 

5.2.5 In vivo implantation: Ectopic murine model and rat fenestration defect  

 The first pilot study (n=12, detailed in Figure 5.6) consisted of repeating the same 

implantation of the 3D-printed, micropatterned scaffold using an ectopic murine model, as 

described in Chapter 4. However, as described in the above methodology, the scaffolds were 

immobilized with AdBMP7 in the 3D-printed base region or with AdPDGF-BB in the 

micropatterned film region prior to cell seeding with hGF cells (2.5x105 cells in 8uL fibrinogen 

mixed with 2ul thrombin) or hPDL cells (1.5 x105 cells in 15mL fibrinogen mixed with 3uL 

thrombin), respectively, one day prior to implantation. The control group (n=6) consisted of all 

scaffold regions being immobilized with Ad-PDGF or AdBMP7 but with no prior to cell seeding. 

The day of surgery, a human-derived dentin segment (surface-treated with 37% orthophosphoric 

acid and trimmed to scaffold size) was press-fit onto the patterned film. Two surgical pockets were 

made on the dorsa of immunodeficient 6 week-old NIH III nude mice (20-25g; Charles River 

Laboratories, Wilmington MA) for subcutaneous scaffold implantation under isofluorane 

anesthesia. Unlike in the previous study reported in Chapter 4, there was no additional cell seeding 

the day of the surgery. Samples were harvested at 6 weeks and fixed in 10% buffered formalin 

phosphate solution for 2 days before being transferred into 70% ethanol for micro-CT scanning, 
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followed by decalcification. Dentin segments derived from healthy human teeth were obtained in 

accordance with a University of Michigan-Institutional Review Board (IRB) exempt protocol.  

 The second pilot study (detailed in Figure 5.10) consisted of implanting the scaffold 

described in Section 5.2.2 in a rat fenestration defect, using the following groups: Experimental 

group (n=5) consisting of AdBMP7 and AdPDGF-BB immobilization with hGF and hPDL cell 

seeding, and control group (n=5) without any cell seeding to examine if tissue regeneration would 

occur without pre-seeding the scaffold. Athymic rats (250g, Charles River Laboratories Inc., 

Wilmington) were ordered, general anesthesia performed under isofluorane during periodontal 

defect creation, with a single fenestration defect (3 x 2mm2) created for each animal on the buccal 

side of the right mandible such that the distal root of the first molar tooth was exposed. The 

cementum layer was also carefully removed to expose the dentin surface, after which the patterned 

film (with AdDGF-hPDL) was positioned with the pillars against the dentin, followed by the 

amorphous PCL film (with AdBMP7-hGF) directly above. The site was sutured and closed with 

surgical staples, with administration of analgesic subcutaneously at 24 hrs post-surgery. After 3 

weeks, specimen were harvested and fixed in 10% buffered formalin phosphate solution for 2 days 

before being transferred into 70% ethanol for micro-CT scanning, followed by decalcification. All 

animal studies were performed with approval from University of Michigan-University Committee 

on Use and Care of Animals (UM-UCUCA) according to ARRIVE guidelines for preclinical 

studies.  

 

5.2.6 Micro-computed tomography (micro-CT) and histomorphometry 

Micro-CT was used to determine the adaptation ratio of 20% barium-sulfate coated 

patterned films to the rat fenestration defect site. The ratio was calculated by determining how 

closely the pillars were to the tooth root, with measurements taken at each column and row of the 

patterned film (1.3mm x 1.65mm), calculating the distance from the two edges and the center of 

each pillar to the tooth root. Micro-CT was also used for purposes of evaluating bone regeneration 

post-implantation: Tissue-fixed specimens were embedded in alginate, scanned using micro-CT 

(Scanco Medical) at a resolution of 12um, at 70kV energy and 114uA intensity, and calibrated to 

Hounsfield units (HU). Bone volume (BV) and tissue mineral density (TMD) were determined for 

internal and external regions of the bone compartment using Microview software (Parallax 

Innovations) with a threshold of HU=1050 for bone. After scanning, samples were decalcified in 
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10% EDTA, embedded in paraffin, and cut into 5um sections for histological analysis using 

hematoxylin and eosin (H&E).  

 

5.2.7 Statistical analysis  

Data were expressed as mean ± standard deviation of the mean. One-way analysis of 

variance (ANOVA) with post hoc Tukey's multiple comparison method was used to perform 

comparative analysis, with a p-value <0.05 (α<0.05) considered significant.  

 

5.3 Results 

Design changes to the original micropatterned film were implemented in order to address 

limitations previously encountered, including inter-pillar spacing being too wide, slow degradation 

rate of polycaprolactone (PCL) used to form the film, and need for increased porosity of the film. 

The interpillar distance was reduced to 150um, with pillar dimensions decreased to 300um, and a 

base porosity of approximately 60% achieved using sugar-leaching. SEM images of the new 

pattern design that was covered with CVD-based polymer coating and subsequently had Ad-empty 

immobilized via antibody-antigen interaction confirms the presence of adenovirus particles at a 

magnification of 10,000X (Figure 5.2A). In fact, the virus was observed not only on top of the 

pillars, but also on pillar sides (image not shown), indicating that the polymer coating extends well 

into 3D patterned (i.e., grooves).  

Additionally, given that both sides of the film were coated with polymer during treatment, 

presence of virus particles was also confirmed at the base of the patterned film (Figure 5.2B). To 

further investigate cell behavior (i.e., induced alignment) on the new patterned films, hPDL cells 

seeded on the films were fixed and imaged using SEM, revealing induced cell alignment at the 

inter-pillar spaces as well as along the pillar grooves (Figure 5.3). Single cells were observed 

aligning along grooves, with an entire sheet of cells covering the tops of the pillars such that they 

were undistinguishable from a top-down view. Additional assessment to examine the orientation 

of cell nuclei along the patterned films was made by labeling the cells with DAPI and tubulin, with 

the result showing the congregation of cells within pillar grooves (Figure 5.4A). There is overall 

a tendency of the cells to align parallel to the pillar grooves, both within the film region and on the 

edges (Figure 5.4B).  
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Figure 5.2 Scanning Electron Microscopy of Micropatterned Films with Adenovirus 

Scanning electron microscopy (SEM) images of micropatterned film consisting of 250um high 

pillars (A), confirming the presence of attached adenovirus (Ad-empty) (at 10,000X). The base of 

the micropatterned film (B), formed with polycaprolactone (PCL) using salt-leaching, is also 

confirmed to have immobilized adenovirus, even within the pores of the film.  
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Figure 5.3 Alignment of Periodontal Ligament Cells on Micropatterned Films  
Alignment of seeded human periodontal ligament cells (hPDLs) 3 days post-seeding on 

micropatterned films was confirmed using SEM: (A) denotes the region of interest—two areas 

where cell alignment in observed, at the pillar grooves (red square, magnified in C and D) and the 

inter-pillar region (blue square, magnified in B). White dotted lines denote the pillars of the film. 

Arrows indicate direction of cellular alignment between pillars (blue) and along grooves (red).  
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Figure 5.4  Immunofluorescence Staining of Aligned Cells on Micropatterned Films 
Immunofluorescence staining of hPDL cells on micropatterned film to observe cell behavior 

(i.e., alignment, denoted by arrows). (A)  DAPI (blue) and tubulin (green) shows increased 

density of cells within pillar grooves (15um wide, 30um deep), with aligned cell nuclei (DAPI) 

along the micropillar grooves as seen on the side of the patterned film (B). White dashed lines 

designate pillar regions.  

 

Once virus immobilization to the scaffold was confirmed using Ad-empty, an ELISA assay 

was performed to ensure growth factor bioactivity following transduction of hGF and hPDL cells 

with AdBMP7 and AdPDGF at the 3D printed and micropatterned regions of the scaffold, 

respectively. The two regions of the scaffold were treated and analyzed separately rather than as 

an assembled unit. Results (Figure 5.5) showed significant (p<0.05) increase in both the BMP and 

PDGF growth factor production when comparing Day 1 and Day 3 growth factor levels. At Day 

1, PDGF production was 58.1±13.9 ng/mL compared to 220±78.7 ng/mL at Day 3. BMP7 

production was only 3.8±2.4 ng/mL at Day 1 compared to 132.9±43.8 ng/mL at Day 3. These data 

confirmed that cells were transduced post-seeding onto scaffold regions immobilized with each 

respective adenovirus encoding BMP7 or PDGF-BB. Compared to values reported for 2D PCL by 

Hao et al, both PDGF and BMP7 production, particularly by day 3, was higher using the same 1012 

particle number.   
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Figure 5.5   PDGF-BB and BMP7 Production by Transduced hPDL Cells In Vitro 

Production of BMP7 and PDGF-BB proteins was confirmed using an ELISA assay to verify that 

human periodontal ligament (hPDL) and human gingival fibroblast (hGF) cells were transduced 

with AdPDGF-BB (immobilized on patterned film) and AdBMP7 (immobilized on 3D printed 

base), respectively, after 1 and 3 days post-cell seeding.  

 

  

In order to investigate whether localized transduction of cells (i.e., only cells that come in 

contact with specific scaffold region) in turn improves the spatiotemporal availability of growth 

factors, particularly resulting in bone formation localized to the 3D-printed region, the scaffold 

complex was tested in a pilot study using the same ectopic murine model from which results of 

cell alignment and bone formation were assessed in Chapter 4. Here, the focus was to examine 

how cells transduced with AdBMP7 and AdPDGF-BB regenerated tissue compared to cells that 

were exposed to Ad-empty (Figure 5.6). After implantation, tissue samples were harvested at 6 

weeks. Figure 5.7 shows the resulting micro-CT images of all samples from the experimental 

(n=6) group that included dual growth factor delivery—no bone was formed in the control groups 

(Ad-empty), as indicated by bone volume measurements in (A). There is noticeable variation in 

bone formation within the 3D-printed region, with some bone tissue invasion seen occurring into 

the micropatterned film region (directly below the dentin segment). However, there are no 

significant differences between total bone volume and the volume of osseous tissue found to be 

localized to the 3D printed region. Overall, bone volume and tissue mineral density measurements 

show significant (p<0.05) increases in bone formed in the experimental group compared to control 

group. These results were further confirmed using hematoxylin and eosin staining (Figure 5.8) 
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which shows bone formation within the 3D printed region, but also its invasion into the 

micropatterned film region, such that the inter-pillar space shows immature bone formation in 

place of PDL-like (soft) tissue. There appears to be an improved integration of tissue between the 

3D printed and patterned regions of the scaffold as a result of improved patterned film base 

porosity, as opposed to the distinct separation of tissue between the “bone” and “PDL” regions of 

the scaffold that was observed in results reported in Chapter 4. One additional observation is that 

the presence of bone tissue in the patterned film region stabilized the film such that the pillars did 

not change in size (i.e., expanded) as much as in the absence of bone formation (see Figure 5.9). 
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Figure 5.6  Ectopic Murine Model using CVD-Coated Scaffolds 

The ectopic murine model shown here was used to implant scaffolds for a period of 6 weeks. The 

scaffolds were designed to have the following regions: (1) A 3D-printed polycaprolactone (PCL) 

base for the regeneration of alveolar bone that serves as a region for the covalent attachment of 

adenoviral BMP7 (AdBMP7) via chemical vapor deposition (CVD)-based polymerization, with 

further transduction of the human gingival fibroblast (hGF) cells that are seeded on its surface 

prior to implantation; (2) A micropatterned film consisting of 250um high, 300um wide pillars 

with 15um wide, 30um deep grooves. The pillars (formed via casting of 2.5% PLGA (75:25, 

137kDa) onto a silicone mold) are spaced 150um apart and attached to a base with 60% porosity 

formed via casting of a 10% PCL solution containing sugar particles (125um diameter) that are 

dissolved in water after the films are dried. The films allow for immobilization of AdPDGF-BB 

via CVD-based coating, followed by seeding with human-derived periodontal ligament (PDL) 

cells. The control group (n=6) differed from experimental group (n=6) in that the CVD-coated 

regions of the scaffold were incubated with empty adenovirus vector (Ad-empty). Schematic of 

functional groups shown on sample CVD-coated polymer surface modified from [5]. 
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Figure 5.7  Bone Volume and Tissue Mineral Density using Ectopic Murine Model 

Micro-CT images (I-VI, top panel) at 6 weeks post-implantation of 3D-printed, micropatterned 

scaffolds (n=6) using an ectopic murine model, showing formation of bone in the 3D-printed 

scaffold region immobilized with AdBMP7 and seeded with human gingival fibroblasts prior to 

implantation. There is a variation in bone formation through the 6 experimental samples (I-VI), 

with noticeable infiltration into the patterned film “PDL region” of the scaffold in some of the 

samples (III, VI). Samples in control group (with Ad-empty vector) not shown given lack of any 

bone formation.  The bone volume (BV) (shown in A.) and tissue mineral density (TMD) (shown 

in B.) analysis of osseous tissue growth in vivo in the bone region of the scaffold compares the 
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total volume of bone formed to the volume specifically localized to the 3D-printed region of the 

scaffold (*p<0.05). 

 

Additionally, as noted in the Methods section, this study differed from the previous ectopic murine 

model study (Chapter 4) in that there was no additional cell pre-seeding on the day of implantation; 

instead, all cells were encapsulated in the fibrin/thrombin gel prior to seeding onto the patterned 

film and bone region in order to reduce the step of additional cell seeding the day of surgery. 

However, in the pilot study, it was noticed that this use of a gel in place of direct cell-seeding 

seemed to inhibit cellular alignment at the pillar sites. As a result, a single animal was used (n=1) 

as a means of testing whether direct cell seeding on the PLGA pillars day prior to surgery (without 

growth factor delivery), allowed for cellular orientation (Figure 5.9). The results confirmed that 

direct cell seeding was essential in order to ensure cell alignment within the grooves, which might 

otherwise be blocked by the use of a hydrogel as a cell delivery vehicle. This is significant given 

that oriented tissue formation (at a scale that would allow for generation of quantifiable data) was 

not observed in most of the experimental and control groups.  

 

 

Figure 5.8  Hematoxylin and Eosin (H&E) Staining of Scaffolds after 6 Weeks In Vivo 

Hematoxylin and eosin (H&E) images of scaffolds harvested at 6 weeks post-implantation. Bone 

formation with varying volume is seen in the 3D printed region of the scaffolds with AdBMP7-

hGF (A and B, at 2X). Likewise, infiltration of the bone into the patterned film (with AdPDGF-

hPDL) region is noticeable in the magnified images (10X) in the lower panel. The control group 



118 

 

 

(C) shows no bone formation, as expected given the use of Ad-empty. Scale bar corresponds to 

150um (top panel) and 500um (bottom panel). B = bone, P = pillar.  

 

Figure 5.9  Tissue Alignment in Scaffolds Seeded with hPDL Cells  
Hematoxylin and eosin (H&E) images of scaffold with patterned film that show guidance of tissue 

alignment at inter-pillar regions. Noticeable reduction in inter-pillar space is observed due to 

hydrolysis of PLGA over 6 week period in vivo. Arrows correspond to cell nuclei shown to be 

perpendicular to the dentin segment.  
 

 Based on the results reported from the ectopic murine model pilot study, an additional pilot 

study was performed, this time with the implantation of CVD-treated scaffolds with AdBMP7 and 

AdPDGF in a rat fenestration defect (Figure 5.10). Here, as described in the Methods section, the 

3D printed “bone” region was substituted with an amorphous film with porosity achieved using 

sugar-leaching. As with the patterned films, the amorphous film was verified to have immobilized 

gene therapy vectors on the surface using SEM imaging, in addition to observing hGF cell 

attachment and response (Figure 5.11). Additionally, based on previously-noted limitations, the 

following improvements were made: (1) micropatterned film was formed using PCL-PLGA 

(50/50) to decrease the observed “swelling” of the pillars as a result of increased rate of hydrolysis 

seen with PLGA in vivo, (2) direct, one-time delivery of cells onto the patterned film and 

amorphous bone regions the day prior to surgery. The groups tested in the study consisted of (1) 

AdBMP7-hGF and AdPDGF-hPDL on the amorphous PCL “bone” region and patterned PCL-

PLGA “PDL” region, respectively and (2) AdBMP7 and AdPDGF immobilization on the 
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respective regions of the scaffold, without cell seeding (i.e., no hPDL or hGF pre-seeding the day 

before surgery). The aim was to determine whether bone regeneration in particular could be 

induced without the need to cell seed prior to implantation, which would enable the elimination of 

an additional step in the scaffold preparation process prior to surgical use.  

 

 
 

 

 

Figure 5.10  Rat Fenestration Defect Model using CVD-Coated, Micropatterned Films 

Rat fenestration defect created in athymic rats exposing the distal root of the first molar to allow 

for implantation of a scaffold consisting of (1) patterned PLGA/PCL region for delivery of 

AdPDGF-hPDL and (2) amorphous PCL region for delivery of AdBMP7-hGF. Scaffolds (n=5) 

were implanted and remained at the site for 3 weeks prior to harvesting. Control group (n=5) 

consisted of the same scaffold regions, with Ad-PDGF-no cells in the patterned film and Ad-

BMP7-no cells in the amorphous film regions. Schematic of functional groups shown on sample 

CVD-coated polymer surface modified from [5]. 
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Prior to implantation, in order to verify the scaffold fit within the fenestration defect, 

micropatterned films and the amorphous “bone” region were coated with 20% barium sulfate and 

micro-CT scanned at the defect site (Figure 5.12). The calculated adaptation ratio revealed that 

the pillars were fit well against the tooth root, with minimal spacing in between (adaptation ratio 

= 90%±1%). After 3 weeks in the rat fenestration defect, rat mandibles were harvested, fixed, 

and imaged using micro-CT. The results reveal lack of noticeable bone formation within the defect 

site (confirmed using bone volume fraction (BVF) calculations) in the control group (without cell 

seeding), compared to robust bone formation in the experimental group (Figure 5.13). However, 

while there is significant presence of bone in this group, it is mostly confined to spaces outside of 

the defect. Measurements of the bone fill within the defect site only for the exprimental group 

reveals an average BVF of 14.2%, with the highest fill at 36.2% and the lowest at 6.2%. Further 

assessment using histology (H&E) showed increased PDL-like tissue formation in the 

experimental group, with limited orientation in the control group (Figure 5.14). Likewise, there 

were clear differences in the tissue morphology at the amorphous PCL film site in vivo when 

comparing the experimental and control groups, with bone islands only visible in sections derived 

from groups that included hGF cell transduction with AdBMP7 prior to implantation.  
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Figure 5.11 AdBMP7-Immobilized Amorphous PCL Films with and without Cell Seeding  

Amorphous PCL film for the “bone” region of the scaffold complex used in the rat fenestration 

defect with immobilization of AdBMP7 and with/without cell seeding. The porous, amorphous 

surface without cells is seen is (A) at 206X, with (B) showing a region at 10,000X in order to 

identify presence of adenovirus vector. Image (C) shows the film seeded with hGF cells at the 

same magnification as (A), and (D) showing more precise features of the cell spreading and 

adhesion on the film surface with a magnified view (1000X). * denotes areas of cell presence on 

the amorphous film.  
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Figure 5.12  Adaptation of Micropatterned Films at Rat Fenestration Defect Site 
Positioning of scaffolds along tooth root surface in vivo. The adaptation ratio of the patterned film 

to the rat fenestration defect site was calculated based on micro-CT images of 20% barium-sulfate 

coated scaffolds. The ratio was calculated by determining how closely the pillars (indicated by 

yellow arrows) were to the tooth root, with measurements taken at each column (A) and row (B) 

of the patterned film, calculating the distance from the two edges and the center of each pillar to 

the tooth root.  
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Figure 5.13    Bone Regeneration: CVD-Coated Scaffolds with and without Cell Seeding 

Micro-CT images of control (A) and experimental (B) groups showing lack of bone formation at 

the rat fenestration defect site 3 week post implantation or significant bone formation, respectively. 

Panel B indicates robust bone formation located mostly outside of the defect site (shown by arrows 

and outlined using dashed orange line). Measurements showed an average defect fill (bone volume 

fraction) of 14.2% , with the highest fill at 36.2% and the lowest at 6.2%. 
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Figure 5.14 Hematoxylin and Eosin (H&E) Staining of Scaffolds after 3 Weeks in Vivo  
Hematoxylin and eosin (H&E) images of defect site at 3 weeks post-implantation of a 

micropatterned film and amorphous film to promote PDL and bone regeneration, respectively. 
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Images in (A) and (B) correspond to experimental groups with AdPDGF-hPDL cells and 

AdBMP7-hGF cells, and images in (C) show tissue regeneration in control group (Ad-empty-

hPDL and Ad-empty-hGF, in the patterned film and amorphous film regions, respectively). PDL-

like tissue formed in region with micropatterned pillars is seen at 20X and 40X, with distinct 

perpendicularity to the tooth root, which is lacking in the control group. Images (D., experimental) 

and (E., control) compare the regions where the amorphous film was positioned, showing distinct 

bone islands in the experimental group (with AdBMP7-hGF cells).  

 

5.4 Discussion 

The results of this study indicate the potential to use CVD-based polymer coating for 

immobilization of AdBMP7 and AdPDGF for the purposes of transducing cells locally in specific 

scaffold regions prior to implantation. Immobilization of the vectors allows for reduced risk of 

virus dispersion (i.e., systemic effects) and transduction of surrounding tissue compared to ex vivo 

transduction of cells that are not necessarily contained to the defect site post-implantation. 

Specifically, this surface modification technique immobilizes the virus onto the material surface 

via antigen-antibody interaction, such that the virus is released from the PCL/PLGA surface only 

when it comes in contact with and binds to protein receptors on the target cell’s membrane, 

followed by its entry into the cell thorough the cell’s phospholipid bilayer. The virus particle 

number (PN) selected for immobilization onto the scaffold surface was based on previous 

verification of total virus attachment on the surface, which indicates that use of a PN of 1012 

resulted in higher virus attachment density on PLGA (~90 PN/ROI using PN=1012 compared to 

~20 PN/ROI using PN=1011) with no significant differences observed on PCL PLGA (~250 

PN/ROI using PN=1012 compared to ~190 PN/ROI using PN=1011) with an ROI of 101.4 μm2. 

Multiplicity of infection (MOI), which corresponds to the number of virus particles used to target 

a cell (i.e., MOI=300 where the ratio is 300:1) was also determined based on the results from the 

study by Hao et al, where a range of 50-400 MOI was tested, with MOI=300 being optimal. Given 

that the total amount of virus attached to the scaffold surface increased using a higher PN, SEM 

images as well as the total number of cell transduced was shown to increase correspondingly, 

thereby confirming that the virus stays on the polymer surface [2]. The primary use of SEM 

imaging of the virus particles on the surface in this study was not only to confirm its presence, but 

also ascertain that the complex 3D morphology of the scaffold allowed for equal distribution of 

viral particle attachment throughout the scaffold.  



126 

 

 

  Likewise, the use of cell transduction in order to stimulate growth factor expression in place 

of direct growth factor delivery has advantages such as extending the otherwise transient GF 

bioactivity, as well as avoiding short half lives and dissolution rates that are too fast. Gene therapy 

has been investigated widely as an alternative to direct growth factor delivery, specifically with 

the use of adenoviruses, which show high transduction efficiency in vivo [7]. The selection of 

PDGF-BB and BMP7 for this study stems from the fact that recombinant PDGF and BMPs (i.e., 

rhBMP2) are already FDA-approved for clinical use in periodontal and oral surgery (i.e., alveolar 

ridge augmentation, sinus elevation). Both growth factors are known as stimulators of 

mesenchymal progenitor cell recruitment, with BMP having osteo-inductive properties [8]. In this 

study, we show that CVD-based immobilization of growth factors (BMP7 specifically) yields bone 

in vivo while allowing for the local transduction of cells only at designated regions of the scaffold, 

as opposed to ex vivo transduction of cells prior to cell seeding onto a scaffold. In support of other 

groups who have previously used CVD for the purposes of gene therapy vector delivery [2, 4, 6] 

this study also confirmed that virus immobilization and subsequent growth factor expression is 

successful on geometrically complex (i.e., 3D-printed, micropatterned) scaffolds (Figures 5.2, 

5.5).  

Various improvements from the previous study reported in Chapter 4 were made prior to 

implementing the immobilization of growth factors, including the use of polymer (PCL-PLGA) 

for the micropatterned film with a faster rate of degradation compared to PCL alone. The use of 

PLGA alone resulted in deformation to the pillars on the patterned film (as observed in the ectopic 

murine model pilot study, Figures 5.8 and 5.9), despite 75:25 PLGA, which has a slower 

degradation rate given the higher ratio of lactic acid to glycolic acid. However, due to the faster 

rate of hydrolysis than PCL, the result is increased deformation that is more prevalent and 

noticeable with time, especially in the absence of bone tissue which may limit the hydrolysis rate 

and also stabilize the polymer in place which reduces any noticeable deformation during 

histological analysis. Overall, the re-designed patterned film was shown to support cellular 

alignment (Figures 5.3, 5.4), given that despite the difference in the polymer, the topographical 

cues incorporated into the material remained the most important factor in determining cellular 

behavior. This was not transferred over to in vivo cell alignment in the first pilot study (Figure 

5.8) given that the cells were encapsulated in a thrombin/fibrinogen hydrogel during seeding, 

which is likely to have prevented cellular contact with grooves in order to allow for contact 
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guidance in the first 24 hours prior to implantation. This was improved upon in the rat fenestration 

defect study (as well as a single mouse assessment), resulting in improved tissue alignment 

observed in sections stained with H&E (Figures 5.9, 5.14).  

The variation in bone volume among scaffold groups in the experimental group (ectopic 

murine model) was greater than expected, with approximately half of samples in the experimental 

group showing osseous tissue infiltration into the patterned “PDL” region. A potential explanation 

of this is because the 3D printed scaffold region is immobilized with gene therapy vectors on all 

sides of the scaffold, such that the top region onto which the patterned film is press-fit is also in 

contact with the transduced hGF cells which can migrate along the porous “PDL” film base into 

the pillar regions (Figure 5.7). When comparing this result to the bone regeneration observed in 

the rat fenestration defect pilot study, there is a noticeable decrease in the osseous tissue presence 

in the defect site relative to the areas adjacent to it (Figure 5.13). However, due to the thickness 

of the patterned film (~500um), the amorphous PCL film designated to serve as a vehicle for 

transduced hGF cells ended up being positioned mostly outside of the defect. In order to better  

customize the scaffold for use in a rat fenestration defect, the next generation of scaffolds 

(discussed in Chapter 6) had the following improvements: (1) Decreased pillar height from 250um 

down to 100um (average thickness of native rat PDL), (2) reduced base thickness of patterned film 

to 100um, and base thickness of amorphous film to 150um for a total combined scaffold width of 

250um, given that the rat fenestration defect depth is on average 500um (250um [amorphous film] 

+ 100um [pillar height] + 150um [patterned film porous base] = 500um total).  

Additionally, in the rat fenestration defect pilot study, we failed to observe bone formation in 

the control groups (i.e., no cell pre-seeding prior to implantation). The option of implanting the 

prepared scaffold without cell seeding (i.e., allowing for transduction of the endogenous cell 

population) would be a more clinically-relevant approach that would eliminate an additional step 

in the preparation process. A potential explanation for why no bone formation was observed is that 

once the material is implanted (i.e., biomaterial, medical device, prosthesis), there is a foreign body 

reaction—the material comes in contact with inflammatory cells (i.e., macrophages, foreign body 

cells) [9-12]. The use of nude mice/athymic rats (i.e., lack of a thymus gland resulting in the 

absence of T cells) allows for implantation and engraftment of human-derived cells. However, 

other immune-derived cells are present which interact with the implanted material at the 

tissue/biomaterial interface: the presence of viral vectors can activate macrophages. Likewise, 
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when the scaffold is exposed to host proteins (i.e., albumin, fibrinogen, fibronectin, and others) 

that may form a layer on the surface prior to it coming in contact with host cells. As such, this may 

prevent host cells from being exposed to the immobilized gene therapy vectors (i.e., AdBMP7), 

thereby resulting in the lack of bone formation observed [10]. Overall, it is possible that the 

adenovirus may infect macrophages or other inflammatory cells that come in contact with the gene 

therapy vectors in place of the host cells: a number of studies have verified that macrophages can 

be infected with adenovirus, in response to which they undergo pro-inflammatory nectoric death 

in vivo, with a recent study further confirming this through the identification of an adenovirus 

receptor in mice macrophages [21, 22]. Given this likelihood of infection, the immobilized 

adenovirus is not able to access the host cell population, thereby requiring a different scaffold 

design in order to mask it from host proteins and inflammatory cells until later in the wound healing 

stage when the gene therapy vectors can be made available to transduce the host cell population 

instead. For example, the scaffold may be designed in layers such that the outer regions are not 

immobilized with the adenovirus while the inner regions are, allowing the presentation of the gene 

therapy vectors to the host cell population over a prolonged period of time corresponding to the 

rate of scaffold degradation. Likewise, it may be possible to mask certain layers of the scaffold 

during CVD coating using low-melting polyester wax so as to allow spatial control of virus 

immobilization on dedicated regions of the scaffold [23]. An additional strategy to attract host 

cells to the scaffold may be to incorporate the initial delivery of BMP7 and PDGF without the use 

of adenovirus into the scaffold in order to allow these growth factors to recruit cells through their 

mitogenic/morphogenic and chemotactic properties in the first stages of the wound healing 

process, followed the exposure of scaffold sites with immobilized adenovirus during scaffold 

degradation, allowing for the transduction of the host cells and pro-longing growth factor 

expression.  

Other ideas for scaffold design can be based on previous studies that have successfully 

transduced host cells in vivo as opposed to ex vivo: A previous study by Liao IC et al addressed 

this limitation through the fabrication of adenovirus-encapsulated fibrous scaffolds via 

electrospinning (i.e., polyethylene glycol (PEG)-based porogen was incorporated into the fiber 

shells during the fabrication  process, leaving a space inside the fibers on the order of nanometers 

for the transport of viral particles), showing that viral vector-based macrophage cell activation was 

reduced due to the encapsulation of the adenovirus within core-shell polycaprolactone (PCL) 
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fibers. Specifically, when macrophages were cultured in vitro on virus-encapsulated scaffold, they 

were shown to produce anti-viral cytokines that are pro-inflammatory at much lower levels than 

macrophages with direct exposure to adenoviruses. At the same time, virus-encapsulated scaffolds 

cell seeded with human embryonic kidney (HEK 293) cells showed prolonged transgene 

expression for a period of more than 1 month [13]. This suggests a potential future direction of 

investigation, focusing on immobilizing the adenovirus in such a way that it can be encapsulated 

within the scaffold and transduce the host cells over time as the biomaterial degrades in vivo.   

 

5.5 Conclusion  

This study supports the potential of polymer-immobilized delivery of gene therapy vectors 

for in vivo tissue regeneration, with ongoing studies investigating use of CVD-coated scaffolds in 

a cell-free approach. There is clear indication that immobilization of gene therapy vectors onto the 

scaffold surface has potential to be used clinically where both the periodontal ligament and bone 

are damaged. In this study, noticeable tissue alignment (guided by scaffold morphology) and 

significant bone formation (possibly due to transduced hGF cell expression of BMP7 via 

immobilized gene therapy vector) was observed in a pilot study using a rat fenestration defect. In 

a potential clinically-relevant scenario, this reduces the additional step of having to transduce 

patient cells ex vivo prior to cell seeding—instead, once the scaffold is fully prepared (including 

steps involved in surface modification), all that remains is to seed patient-derived cells prior to 

implantation. Future research will focus on optimizing both the scaffold geometry and gene 

therapy vector localization in order to make the final regenerative outcome more predictable.  

Additionally, this chapter introduces the use of an amorphous PCL film for the “bone” 

region of the scaffold, eliminating the use of the 3D-printed region for the rat fenestration defect, 

primarily due to the size constrains of the 3mm x 2mm defect with a depth of approximately 

0.5mm. This highlights some of the limitations of using current 3D printing technology, not limited 

to selective laser sintering, for periodontal tissue engineering given that many printers still have 

relatively low resolution that does not enable the formation of scaffolds with adequate porosity for 

smaller defects [14]. Typically, when designing a scaffold for a patient or animal defect, CT 

imaging data is needed to approximate the defect, as was done here using the rat fenestration defect 

model. However, technical limitations exist and need to be addressed in the future to better assist 

the translation of this approach to clinical defects, given the following: (1) potential for errors 
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associated with the import of CT scan data during image acquisition (i.e., pixel sizes, thickness of 

slices) that can produce errors during virtual reconstruction, (2) difficulty obtaining high-quality 

scans that allow for accurate scaffold design approximations especially in the potential presence 

of human/animal movement, and (3) scaffold manufacturing that can produce so-called “stair-

step” artifacts as well as irregular surface features that are not originally present in the design, and 

may not seem relevant on the macro-scale, but can have significant effects on the micro-scale 

levels at which cells sense the surface, especially in bone-ligament interfaces that exist in the 

periodontium where the PDL region may be only 100um (rat) or 250um (human) in width [15-20].  
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CHAPTER 6 

 

EFFECT OF IMMOBILIZED ADENOVIRAL PLATELET-DERIVED GROWTH 

FACTOR (PDGF) AND BONE MORPHOGENETIC PROTEIN (BMP-7) DELIVERY 

ON PERIODONTAL TISSUE REGENERATION IN VIVO USING 

MICROPATTERNED SCAFFOLDS 

 

Contributions to the data collection/analysis that are part of this chapter were made by:  

Drs. Farah Asa’ad (Department of Biomedical, Surgical & Dental Sciences, University of Milan, 

Italy), Tobias Fretwurst (Department of Oral- and Craniomaxillofacial Surgery, Center for Dental 

Medicine, University Medical Center Freiburg, Germany), Lena Larsson (Department of 

Periodontology, Institute of Odontology, University of Gothenburg, Sweden), Ning Yu 

(Periodontics and Oral Medicine, University of Michigan).  

 

6.1 Introduction   

The development of biomaterial systems intended for the regeneration of specific tissue 

typically includes the consideration of multiple design criteria, including scaffold material 

selection, topography, as well as intended inclusion of growth factors and/or cells natively 

expressed in the tissue. Design for the regeneration of periodontal tissue specifically requires the 

consideration of its anatomical complexity: the alveolar bone-periodontal ligament (PDL)-

cementum complex consists of alveolar bone transitioning into bundle bone that houses Sharpey’s 

fibers which are extending from the PDL, a collagen III-rich collagenous soft tissue that further 

anchors into the cementum, a mineralized layer that covers the tooth root’s dentin surface (Figure 

A1.1 in Appendix). Many studies have examined the scaffold design that would allow for multi-

tissue regeneration relevant to periodontal tissue engineering [1-5]. Most recently, 3D-printed, 

micropatterned scaffolds detailed in Chapters 4-5 were developed with emphasis on the use of 

grooves in the PDL scaffold compartment for promoting cellular alignment and subsequently 

aligned collagenous tissue formation [6]. Previous studies have established that topography allows 

for the functional regulation of cells derived from various types of tissues, including myocardium 
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and nerve [7-10]. To build upon previous findings, this study focused on improving the existing 

scaffold design for better adaptation to a fenestration defect of a rat model, while also introducing 

growth factors through adenoviral BMP-7 and PDGF-BB immobilized onto the scaffold surface 

through chemical vapor deposition (CVD)-based polymer surface modification to improve both 

the localization and spatio-temporal distribution of gene therapy vectors.  

Bone morphogenetic protein (BMP) is a widely known growth and differentiation factor, 

as well as a chemotactic agent, stimulating cell migration, angiogenesis, and differentiation of 

MSCs into bone forming cells and cartilage.  Platelet derived growth factor (PDGF) has been 

shown to promote the regeneration of alveolar bone, PDL, and cementum, with PDL and alveolar 

bone cells showing the presence of PDGF cell surface receptors, thereby effecting their chemotaxis 

and proliferation. PDGF-BB specifically has been shown as a safe and effective treatment of 

periodontal osseous defects, with clinical data confirming that it can be used to achieve significant 

improvements in clinical and radiographic parameters in moderate-to-severe cases of 2 and 3-wall 

periodontal infrabony defects [11-12].  The selection of PDGF-BB and BMP-7 for this study stems 

from previous work establishing the optimal methods for transduction of human gingival fibroblast 

(hGF) cells with Ad-BMP7 and PDL cells with AdPDGF-BB. For example, Jin QM et al 

previously used Ad-BMP7 ex vivo gene transfer to transduce syngeneic dermal fibroblasts, 

showing osteogenesis, cementogenesis, and bridging of periodontal bone defects in a rat wound 

repair model. Likewise, Chang PC et al confirmed that AdPDGF-B delivery via a collagen matrix 

to rat alveolar bone defects could have clinical applications for treatment of bone in the oral and 

craniofacial regions [13-15].  

Other groups have also pursued this method in combination with biomaterials to serve as 

scaffolds for tissue regeneration, including the following: Zhang et al recently showed that use of 

a mesoporous bioglass (MBG)/silk fibrin scaffold in combination with AdBMP7 and AdPDGF in 

beagle dog periodontal defects promoted periodontal regeneration when both gene therapy vectors 

were used in unison as opposed to individually [16]; previous to that, Zhang et al had also shown 

that chitosan/collagen scaffolds combined with AdBMP7 or AdPDGF-B and seeded with hPDL 

cells did not show cytotoxicity, with AdPDGF-hPDL resulting in higher proliferation rate while 

scaffolds with AdBMP7-hPDL resulted in  hPDL cells having a stronger tendency to differentiate 

towards a osteoblast phenotype in vitro. This study also showed in vivo implantation of the 

scaffolds in beagle dog periodontal defects resulted in significant increases in bone formation using 
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AdBMP, but the combination of both growth factors produced the highest increase through 

synergistic effects [17]. However, the main limitation of using adenoviral-based gene therapy 

vectors has been the potential for virus dispersion and lack of spatio-temporal control of gene 

expression.   

Most recently, Hao J et al used chemical vapor deposition (CVD)-based polymer coatings 

as surface treatment for 2D and 3D-shaped biomaterials to examine the transduction of hPDL and 

hGF cells with AdPDGF-BB and AdBMP7, respectively, to examine the production of these 

growth factors in vitro [18]. Based on their findings and methodology, it is possible to have more 

defined control over cell transduction such that only those cells that are in contact with certain 

regions of the scaffold can be transduced. Chapter 6 confirmed that this strategy can be applied for 

the transduction of hPDL cells on patterned regions of the scaffold developed specifically for a rat 

fenestration defect, with immobilization of either AdBMP7 or AdPDGF-BB. This study further 

investigates the effects of combined and single growth factor delivery (BMP7, PDGF-BB) on 

periodontal regeneration in combination with changes in the topography of the PDL region of the 

scaffold (i.e., patterned versus amorphous), presenting the first known in-depth assessment of 

scaffolds with immobilized gene therapy vectors applied as an implant in vivo, for periodontal 

tissue engineering or otherwise.  

 

6.2 Materials and Methods 

6.2.1 Preparation and surface modification of scaffolds for rat fenestration defect  

Preparation of the micropatterned films (for the “PDL” region of the scaffold) and 

amorphous films (for the “bone” region of the scaffold) was undertaken as described in Chapter 5 

(Sections 5.2.1 and 5.2.2), with some modification described here. Briefly, a solution of 5% 

PLGA-PCL (50/50) ((75:25, 137kDa, Evonik Industries) was used to cast the pillar spaces within 

a PDMS mold with a design to accommodate the parameters necessary for a rat fenestration defect 

(Design specifications: 100 um (pillar height), 150 um (inter-pillar distance), 150 um x 150um 

(pillar length x width), with 15um wide/30um deep grooves). A solution of 10% PCL was cast 

onto the filled pillars while adding sugar particles (≤75um), in order to create a base of 150um in 

thickness. After drying overnight under vacuum, the sugar was leached out in deionized water. An 

amorphous PCL film based was formed in a similar manner, with a final base thickness of 250um, 

such that the combined scaffold construct could fit within a 0.5mm deep fenestration defect. 
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Similarly, in order to test the effect of topography on PDL regeneration, an amorphous and porous 

PCL-PLGA (50/50) film was also formed (total thickness of 250um) using the same technique. 

Following scaffold fabrication, each of the films was surface treated on each side using chemical 

vapor deposition (CVD), as previously described. Briefly, the coating process consisted of fixing 

the scaffolds inside the deposition chamber, the starting material sublimated at 120°C and 

pyrolyzed 540 °C to allow for deposition and polymerization on scaffold surface. Afterwards, all 

films were sterilized in 70% ethanol (1hr) to prepare for virus immobilization and subsequent cell 

seeding.   

For gene therapy vector immobilization, scaffolds were treated with 10 μg/mL solution of 

goat anti-adenovirus (AbD Serotec; 0151- 9004) polyclonal antibody in phosphate-buffered saline 

(PBS), incubated in solution overnight (4°C), rinsed in PBS (5 times by 5 min), incubated in 12 

mL cold adenovirus solution (4 hrs at 4°C), and again rinsed in PBS (5 times by 5 min). The 

adenovirus solution (1012 particle number) either had empty vectors without a transgene (Ad-

empty), or vectors expressing PDGF-BB or BMP7 genes (prepared by University of Michigan 

Vector Core). Human periodontal ligament (hPDL) or human gingival fibroblast (hGF) cells were 

seeded onto the “PDL” (patterned or amorphous) region and “Bone” (amorphous) region of the 

scaffold, respectively, with 5.0*105 cells per film (both sides), allowing for the cells to attach 

before transferring them to a well with fresh medium. Afterwards, all scaffolds with seeded cells 

were incubated overnight prior to analysis/surgical implantation.  

 

6.2.2 Scanning electron microscopy (SEM), barium sulfate treatment 

Scanning electron microscopy (SEM) was performed at Microscopy and Image Analysis 

Laboratory (University of Michigan) using an Amray FE 1900 SEM to image patterned 3D films. 

Prior to imaging, the films were gold sputter-coated and observed at an acceleration voltage of 

5kV. Each scaffold region (i.e., patterned film and amorphous film) was exposed to 20% barium 

sulfate for 30 minutes prior to being placed into a sample pre-made rat fenestration defect (~3mm 

x 2mm) on a dried, sterilized mandible for micro-CT scanning to check on the scaffold adaptation.  

 

6.2.3 In vivo implantation: Rat fenestration defect  

 The in vivo study design consisted of the following 5 groups (Figure 6.1): (1) a negative 

control with CVD-treated, amorphous (“PDL” region) and amorphous (“bone” region) films with 

Ad-empty in all regions, (2) a positive control with CVD-treated, patterned film with amorphous 
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film and AdPDGF-hPDL and AdBMP7-hGF, respectively, (3) a CVD-treated, patterned film and 

amorphous film with AdBMP7-hGF in both regions, (4) a CVD-treated amorphous films, one with 

AdPDGF-hPDL and the other with AdBMP7-hGF delivery, and (5) a CVD-treated, patterned film 

and amorphous film with Ad-empty in all regions. The time points tested specific to tissue 

regeneration were at 3 and 6 weeks. Two groups (positive and negative controls) were also 

extended to a 9 week time point (n=6), with the intention of looking at retention of human-based 

cells at early and late time points, as well as the mechanical properties of regenerated bone and 

PDL-like tissue both at weeks 3 and 9. As such, groups (1-2) for the 3 week time point had a total 

number of n=10 for the positive/negative control groups and n = 6 for the remaining groups (3-5), 

groups (1-5) for the 6 week time point has an n=6, and groups (1-2) for the 9 week time point had 

a total of n=5.  

 Athymic rats (250g, Charles River Laboratories Inc., Wilmington) were ordered, general 

anesthesia performed under isofluorane during periodontal defect creation, with a single 

fenestration defect (3 x 2mm2) created for each animal on the buccal side of the right mandible 

such that the distal root of the first molar tooth was exposed. The cementum layer was also 

carefully removed to expose the dentin surface, after which the “PDL” region film (i.e., patterned 

or amorphous) was positioned with the pillars against the dentin, followed by the amorphous PCL 

film directly above. The site was sutured and closed with surgical staples, with administration of 

analgesic subcutaneously at 24 hrs post-surgery. After 3, 6 and 9 weeks, specimen were harvested 

and fixed in 10% buffered formalin phosphate solution for 2 days before being transferred into 

70% ethanol for micro-CT scanning, followed by decalcification. All animal studies were 

performed with approval from University of Michigan-University Committee on Use and Care of 

Animals (UM-UCUCA) according to ARRIVE guidelines for preclinical studies.  

 

6.2.4 Micro-computed tomography (micro-CT) and histomorphometry 

Micro-CT was also used for purposes of evaluating bone regeneration post-implantation: Tissue-

fixed specimens were embedded in alginate, scanned using micro-CT (Scanco Medical) at a 

resolution of 12um, at 70kV energy and 114uA intensity, and calibrated to Hounsfield units (HU). 

Bone volume (BV) and tissue mineral density (TMD) were determined for internal and external 

regions of the bone compartment using Microview software (Parallax Innovations) with a 

threshold of HU=1050 for bone. After scanning, samples were decalcified in 10% EDTA, 
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embedded in paraffin, and cut into 5um sections for histological analysis using hematoxylin and 

eosin (H&E).  

 

6.2.5 Immunohistochemistry for anti-human nuclear staining 

Sections, about 5 μm thick, were de-waxed and incubated in DIVA antigen retrieval solution 

(Biocare medical, Concord, CA) at 60°C over night. The sections were incubated with 3% bovine 

serum albumin (BSA) for blocking of unspecific binding followed by incubation overnight at 4°C 

with primary antibody mouse anti-human nuclei diluted 1:100 (MAB 1281, EMD Millipore Corp, 

Temecula, CA) over night at 4°C. The sections were then incubated with MACH4 polymer 

(Biocare medical) for 30 min. Positive cells were detected using DAB substrate (Biocare medical). 

The sections were counterstained using haematoxylin. 

 

6.2.6 Immunofluorescence, periostin fluorescence intensity profiles 

Sections, about 5 μm thick, were de-waxed and incubated in DIVA antigen retrieval solution 

(Biocare medical, Concord, CA) at 60°C over night. The sections were incubated with 3% bovine 

serum albumin (BSA) for blocking of unspecific binding followed by incubation overnight at 4°C 

with the following primary antibodies (Dilution 1:500): anti-periostin (rabbit polyclonal, ab14041, 

Abcam, USA) and anti-collagen III (mAB ab6310, Abcam, USA), The sections were then 

incubated with Alexa-conjugated secondary antibodies: Alexa-488 anti-mouse (dilution 1:200) 

and Alexa-555 anti-rabbit (dilution 1:200) for 2 hours at room temperature. The sections were 

treated with 4',6-diamidino-2-phenylindole (Prolong Gold Antifade Reagent with DAPI; Life 

Technologies) to visualize the cell nuclei. Additionally, a separate analysis of periostin-stained 

slides only were performed for each group. Specifically, in order to compare the mean fluorescence 

intensity of periostin at sites of regenerated PDL-like tissue to sites directly opposite on the same 

sample where there is native PDL, a total width of 100um (approximate rat PDL width) was 

selected in the regenerated and native PDL regions in order to calculate the ratio of periostin 

intensity for each group (n=6) (i.e., mean periostin intensity at regenerated tissue site/mean 

expression at native site). In addition to this quantification, an expression profile was generated 

for samples from each group. Finally, in order to quantify scaffold displacement and total PDL-

like tissue width in all groups, toluidine blue staining was performed (n=6) to allow better 
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distinction between the bone and soft tissue areas. Slides were de-waxed and stained with toluidine 

blue for approximately 1hr prior to washing in deionized water.  

 

6.2.7 Nanoindentation  

Mandibles reserved for nanoindentation were frozen after harvesting at 3 and 9 weeks post-

implantation. Sample preparation for mechanical testing consisted of the following: thawing the 

frozen sample, trimming the mandible to only retain the molars by cutting off the incisors and 

ramus using a low-speed diamond wheel saw (South Bay Technology Inc, San Clemente, CA), 

embedding the trimmed sample in epoxy resin (EMBED 812 Embedding Kit, Electron Microscopy 

Sciences, Hatfield, PA), sectioning using a microtome (Leica Biosystems Inc, Germany), and 

polishing using silicon carbide abrasive paper (2400 grit) under water irrigation for two minutes 

followed by cleansing to remove particles using ultrasonication in water for 15 minutes. Prior to 

nanoindentation using the 950 TI TriboIndenter (Hysitron Incorporated, Minneapolis, MN), the 

sample was glued to a steel stub (Ted Pella, Inc., CA).  Indentation was performed using a standard 

Berkovich diamond probe with a penetration depth of 500 nm, and 3 seconds for each load, hold, 

and unload [19, 20-22]. Fused silica was used as the calibration standard. The reduced modulus 

(Er) and hardness (H) were calculated using the load-displacement curve based on five indents 

(each 10um apart, in accordance with ASTM standards) at the following four regions for each 

sample (i.e., distal root of first molar): (1) regenerated PDL-like tissue at original defect site, (2) 

regenerated alveolar bone at the original defect site, (3) native alveolar bone, and (4) native PDL 

at the region directly opposite of the defect site. Specifically, the Er (GPa) is calculated based on 

Oliver-Pharr analysis using Equation (1), where S (µN/nm) is the contact stiffness (obtained from 

the unload curve slope, where P is the indentation force and h is displacement), and A is the 

projected area (nm2) of elastic contact:  

      𝐸𝑟 =
√𝜋

2

𝑆

√𝐴
 , where  𝑆 =

ⅆ𝑃

ⅆℎ
|
𝑃𝑚𝑎𝑥

                                          (1) 

The hardness, H (MPa), is calculated using Equation (2), where Pmax is the maximum indentation 

force (µN), AC is the projected area (nm2) of contact:  
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       𝐻 =
𝑃max

𝐴𝑐
                             (2) 

All testing was performed at the Michigan Center for Materials Characterization (MC2, University 

of Michigan).  

 

6.2.8 Statistical analysis  

Data were expressed as mean ± standard deviation of the mean. One-way analysis of variance 

(ANOVA) with post hoc Tukey's multiple comparison method was used to perform comparative 

analysis, with a p-value <0.05 (α<0.05) considered significant.  

 

6.3 Results 

 The in vivo study that is the main focus of this chapter was based on the examination of 

how scaffold topography (primarily in PDL region of the scaffold) and selection of growth factor 

delivery (i.e., PDGF-BB vs BMP7) influenced periodontal regeneration. As seen in Figure 6.1, 

the groups were divided primarily based on whether PDL scaffold region was patterned or 

amorphous, and the type of immobilization (i.e., AdBMP7, Ad PDGF, or Ad-empty). Given that 

the previous pilot study showed that cells should be included (i.e., seeded prior to implantation) in 

order to allow time for transduction, all groups included cell seeding. This in vivo experiment was 

used to test growth factor delivery on a scaffold consisting of two layers: an amorphous PCL region 

for the delivery of AdBMP-7 to promote bone regeneration, and a patterned PLGA/PCL region 

for the delivery of AdPDGF-BB to promote PDL tissue regeneration. The groups tested included 

single growth factor delivery (i.e., AdBMP-7 only) to both regions of the scaffold. The negative 

control consisted of an amorphous film in both regions of the scaffold, with an adenovirus 

encoding an empty vector (Ad-empty vector). Prior to implantation, the scaffolds fabricated to fit 

the defect (3mm x 2mm x ~0.5mm) were barium sulfate coated to allow for contrast during micro-

CT scanning. Figure 6.2 shows the scaffold assembly: First, the micropatterned (or amorphous) 

“PDL” region film (PCL-PLGA) is placed such that the pillars are oriented towards the tooth root. 

The amorphous film (PCL) designed for the “bone” region of the scaffold is then positioned 

directly on top such that the entire two films are able to fit within the defect. This adjustment to 

the scaffold thickness (250um total for each film) was made following the results of the pilot rat 

fenestration defect study described in Chapter 5.  
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Figure 6.1 Scaffold Groups with/without Growth Factor Delivery in Fenestration Defect  
The scaffold design consisted of either a patterned or amorphous PLGA/PCL film for the ‘PDL’ 

region, and an amorphous PCL film for the ‘bone’ region. Adenovirus encoding growth factors 

were immobilized onto the surface of each scaffold region for dual (i.e., PDGF-BB in the patterned 

or amorphous ‘PDL’ region, and BMP7 in the amorphous ‘bone’ region) or single (BMP7 in the 

PDL and bone regions) growth factor (GF) delivery. As a control, both regions were also used for 

delivery of an empty adenoviral vector (Ad), with the scaffolds consisting of an amorphous film 

for the ‘PDL’ region serving as the negative (-) control group. All films were seeded with hPDL 

cells or hGF cells, in the PDL and bone regions of the scaffold, respectively. Schematic of 

functional groups shown on sample CVD-coated polymer surface modified from [30]. 
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Figure 6.2 Micropatterned Scaffold Design and Adaptation at Rat Fenestration Defect 

Barium sulfate-coated regions of the scaffold (micropatterned film in a, amorphous film in b) are 

shown on a micro-CT scan of a rat fenestration defect to confirm that the scaffold total thickness 

(500um) conforms to the defect area without over-filling it. SEM images of the PLGA-PCL 

patterned films (100X) are shown with corresponding measurements of pillar height (100um), 

inter-pillar distance (150um), and thickness of the porous film base (150um).  

 

After the mandibulae were harvested at weeks 3-9 post-implantation, micro-CT scans were 

performed for groups at 3 and 6 weeks, revealing that at 3 weeks, limited bone formation was 

visible in the groups with Ad-empty, compared to groups involving any form of growth factor 

delivery. By week 6, all groups had almost completely covered tooth roots (including patterned + 

Ad-empty), except for the negative control (Figure 6.3). Analysis of total bone volume at the 

defect site only (Figure 6.4) confirmed significant (p<0.05) increases in bone formation in all 

groups that had growth factor delivery compared to groups with Ad-empty, with lesser differences 

noted at 6 weeks; tissue mineral density did not show a very noticeable variation among groups at 

3 or 6 weeks, except for higher values for TMD for groups with dual GF delivery compared to 

BMP7 delivery only (Figure 6.5). This was further confirmed using an examination of the 

percentage of bone fill within the original defect site, showing significantly higher (p<0.05) bone 

fill in all groups with growth factor expression compared to the negative control at both 3 and 6 

weeks. At 3 weeks, the positive control group bone fill was not significantly different from the 

empty vector group with a patterned film, and by 6 weeks, all of the groups with growth factor 

expression did not different in the % of bone fill compared to the empty vector group with 

patterned film. When comparing changes in bone volume between the 3 and 6 week time points, 

significant increases were observed in the negative control (p<0.05, from 38.2% to 48.1%), empty 
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vector with patterned film (p<0.05, from 45.6% to 62.7%), and the positive control (p<0.01, from 

49.9% to 68.6%). Bone fill in the Ad-BMP7 only group (mean change from 59.3% to 60.3%) and 

dual growth factor expression using amorphous films group (mean change from 65.8% to 68.0%) 

did not show any significant changes (Figure 6.5).   

 

Figure 6.3 Bone Regeneration at 3 and 6 Weeks Post-Implantation 

Micro-CT images showing regeneration of bone at 3 and 6 weeks post-implantation of the 

scaffolds with delivery of adenovirus with empty vector, single growth factor (AdBMP7), or dual 

growth factor (AdBMP7 and AdPDGF-BB). As indicated by arrows, there is increased coverage 

of the distal root of the first molar in groups with delivery of AdBMP7 at 3 weeks. By 6 weeks, 

significant increases in bone regeneration are noted across all groups.  

 

 

Figure 6.4 Transverse Section View of Bone Regeneration at Defect Site 

Micro-CT images showing transverse section of defect site with minimal (A) and maximal (B) 

bone fill, which is used to determine the total bone volume within the defect at 3 and 6 weeks post-

implantation.  
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Figure 6.5    Bone Volume, Tissue Mineral Density, and Bone Fill (%) at 3 and 6 Weeks In 

Vivo 
Bone volume and tissue mineral density values were obtained based on uCT scans at weeks 3 and 

6 post-implantation. The 3 weeks, significant difference (p<0.05) were observed between the 

patterned ‘PDL’ film group with single (BMP7) GF expression, and the patterned (P) and 

amorphous (A) films with dual GF expression for TMD, with differences also observed at 6 weeks 

between the patterned group with single GF expression and amorphous group with dual GF 

expression. No significant differences in bone volume were observed among the groups with any 

form of GF delivery (outlined in blue) at weeks 3 and 6. However, at week 3, all of these groups 

had significantly higher BV compared to the amorphous group with empty vector (***p<0.001, 

****p<0.0001), or patterned group with empty vector (#p<0.05). By week 6, both the patterned 

group with empty vector and all other groups with any form of GF delivery had significant higher 

(*p<0.05, **p<0.01) volume of bone formation compared to the negative control (-). Bone fill 

within the defect site (%) was compared among all groups at weeks 3 and 6, with similar pattern 

of increased bone formation at defect site observed for groups with growth factor expression and 

patterned film with empty vector.  

 

 Hematoxylin and eosin (H&E) stains at 3 weeks show increased PDL-like tissue present 

especially in groups with patterned film + AdBMP7-hGF, as well as groups with a patterned film 

and dual growth factor delivery (Figure 6.6). Bone formation is seen at sites close to the PDL-like 

tissue in all groups, but, interestingly, there is a very clear tendency of the bone to concentrate with 

the inter-pillar regions, which is observed at all groups with a patterned film. While this may 

indicate that the patterning may attract osteoblasts due to the difference in material topography, it 

also explains why there may be bone formation observed quantitatively (as shown in Figure 6.5) 

in the patterned film + AD-empty vector group that is significantly higher compared to the negative 

control at week 6. However, this also appears to impede the intended orientation of tissue at the 

pillar grooves so as to form PDL tissue. At the same time, PDL-like tissue does form between the 

tooth root and regenerated bone, although the patterned film is located behind this initial layer of 

new bone as opposed to being in front of it, as intended by the design and incorporation of the 

amorphous region for BMP7-hGF delivery. At week 6, H&E images reveal that more of the tissue 

bordering the tooth root is becoming increasingly aligned perpendicular to the dentin, as indicated 

by arrows in Figure 6.7, except for the negative control group (amorphous “PDL” film + Ad-

empty). Likewise, immunofluorescence images reveal how closely the soft tissue formation is 

consistent with PDL-like tissue, which also expresses periostin and collagen type III. Figure 6.8 

shows increased collagen III expression specifically in the patterned film + AdBMP7-hGF group 

as well as the positive control (patterned film + AdPDGF-hPDL). Periostin is more consistently 
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expressed through the PDL-like tissue in groups with dual growth factor delivery only (i.e., with 

AdPDGF-hPDL in the “PDL” region of the scaffold). By week 6 (Figure 6.9), collagen III 

expression remains consistent with what is observed at week 3, except for an increase in this 

protein expression in the patterned group with Ad-empty. Overall, groups with patterned films and 

either single (BMP7) or dual (BMP7 and PDGF) growth factor expression appear to have more 

PDL-like tissue by week 6, compared to the negative control and amorphous + dual growth factor 

delivery groups.  

 

Figure 6.6   Hematoxylin and Eosin (H&E) Staining at 3 Weeks In Vivo 
Hematoxylin and eosin (H&E) staining to evaluate tissue formation at rat fenestration defect site 

along patterned films or amorphous films (with dual growth factor delivery (AdPDGF and 

AdBMP7), single growth factor delivery (AdBMP7), or empty vector) at 3 weeks post 

implantation in rat fenestration defect. Blue arrows indicate general orientation of cell nuclei 

relative to the tooth root (TR). Scale bar is 100um for all images. TR = tooth root, AF = amorphous 

film, PF = patterned film, B = bone.  
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Figure 6.7  Hematoxylin and Eosin (H&E) Staining at 6 Weeks In Vivo 

Hematoxylin and eosin (H&E) staining to evaluate tissue formation at rat fenestration defect site 

along patterned films or amorphous films (with dual growth factor delivery (AdPDGF and 

AdBMP7), single growth factor delivery (AdBMP7), or empty vector) at 6 weeks post 

implantation in rat fenestration defect. Blue arrows indicate general orientation of cell nuclei 

relative to the tooth root (TR). Scale bar is 100um for all images. TR = tooth root, AF = amorphous 

film, PF = patterned film, B = bone.  
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Figure 6.8   Immunofluorescence: PDL-Like Tissue at 3 Weeks In Vivo 
Immunofluorescence analysis of fibrous connective tissue formation along patterned films or 

amorphous films (with dual growth factor delivery (AdPDGF and AdBMP7), single growth factor 

delivery (AdBMP7), or empty vector) at 3 weeks post implantation in rat fenestration defect. Scale 

bar is 100um for all images. TR = tooth root, AF = amorphous film, PF = patterned film, B = bone. 

Dashed white lines represent regions of PDL-like soft tissue formation corresponding to areas 

where periodontal ligament and cementum were removed along the tooth root during formation of 

the rat fenestration defect. 
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Figure 6.9   Immunofluorescence: PDL-Like Tissue at 6 Weeks In Vivo 
Immunofluorescence analysis of fibrous connective tissue formation along patterned films or 

amorphous films (with dual growth factor delivery (AdPDGF and AdBMP7), single growth factor 

delivery (AdBMP7), or empty vector) at 3 weeks post implantation in rat fenestration defect. Scale 

bar is 100um for all images. TR = tooth root, AF = amorphous film, PF = patterned film, B = bone. 

Dashed white lines represent regions of PDL-like soft tissue formation corresponding to areas 

where periodontal ligament and cementum were removed along the tooth root during formation of 

the rat fenestration defect. 
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Further analysis of ratio of mean periostin intensity (PDL-like tissue versus native PDL 

tissue, Figure 6.12), shows significantly higher expression at 3 weeks for the patterned + 

AdBMP7-hGF group compared to the amorphous + Ad-empty group (negative control). Overall, 

at 3 weeks the ratios are lower for the Ad-empty groups compared to all groups with growth factor 

delivery. At 6 weeks, the ratios for the positive control group and single growth factor delivery 

group are significantly higher (p<0.05) compared to the negative control. Individual plots of the 

intensity profiles (shown in Figures 6.10 and 6.11) show that the regenerated tissue areas have 

periostin intensity profiles are either close to the native PDL tissue or much lower (i.e., observed 

at week 3 for groups with Ad-empty, and at week 6 for groups with Ad-empty as well as 

amorphous film with dual growth factor delivery). To complement these findings, additional 

assessment was performed using toluidine blue-stained sections (Figure 6.13A) for all groups 

(n=6) to determine scaffold displacement from the defect site (given significant amounts of bone 

observed to have formed in front of the patterned film), as well as the average width of the PDL-

like tissue. Figure 6.13B shows significantly narrower PDL tissue (i.e., closer to the average rat 

PDL width of 100um) for groups that have the patterned film included, with much higher widths 

(~230um for the amorphous group with dual growth factor delivery, and up to 400um in the 

negative control) for groups with amorphous film for the “PDL” region of the scaffold. This pattern 

is observed at 6 weeks as well, with the positive control group having a mean thickness of ~100um, 

while the remaining groups with patterned film showing PDL-like tissue widths slightly greater 

than 100um. Both of the amorphous film groups have widths that are between 200-400um. Another 

interesting assessment is the scaffold displacement (“PDL” scaffold region in particular) from the 

defect site (Figure 6.13C). At week 3, significant differences in displacement are noted between 

the patterned + single growth factor delivery and pattern +dual growth factor delivery groups (with 

the positive control group showing more displacement relative to the pattern + AdBMP7-HGF 

group). This is in line with the previous observations of increasing bone formation at inter-pillar 

spaces, which appear to stabilize the scaffold at the defect site such that the new formed tissue 

does not push it away as much as seen in other groups. By week 6, significant differences are 

observed between the patterned film + Ad-empty and the negative control only.  
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Figure 6.10  Average Intensity Profile: Periostin Expression at 3 Weeks In Vivo 
Periostin expression average intensity profiles for representative samples from 3 experimental and 

2 control groups harvested at 3 weeks post implantation in a rat fenestration defect. Periostin 

expression is observed at both the original defect site and the native PDL site. The blue line 

indicates average native PDL intensity values as a comparison to the values observed at 

regenerated sites with PDL-like tissue. TR = tooth root, P = pulp. Scale bar = 100um.  
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Figure 6.11    Average Intensity Profile: Periostin Expression at 6 Weeks In Vivo 
Periostin expression average intensity profiles for representative samples from 3 experimental 

and 2 control groups harvested at 6 weeks post implantation in a rat fenestration defect. Periostin 

expression is observed at both the original defect site and the native PDL site. The blue line 

indicates average native PDL intensity values as a comparison to the values observed at 

regenerated sites with PDL-like tissue. TR = tooth root, P = pulp. Scale bar = 100um. 

 

 

 

 

 

 

 

Figure 6.12  Comparison of Periostin Intensity between Native and Regenerated PDL 
To compare periostin expression among groups at 3 and 6 weeks, the mean fluorescence intensity 

was calculated for the PDL-like tissue formation at the defect site (n=6), and compared to the mean 

periostin fluorescence values obtained at the native PDL site (n=6) for the same sample. Significant 

(p<0.05) difference were observed at 3 weeks between the group with a patterned film at the ‘PDL’ 

region of the scaffold with BMP-7 expression, and the group with an amorphous film at the ‘PDL’ 

region with an empty vector. At 6 weeks, the same significant differences were seen between the 

two groups, as well as between the amorphous film with empty vector group and the patterned 

film with dual GF delivery group. 
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Figure 6.13   Scaffold Displacement and Total PDL-like Tissue Width at Defect Site 
Toluidine blue-stained section (A) of a sample group containing a patterned film with dual growth 

factor delivery at 6 weeks post-implantation, with improved visibility of the bone (B) formation 

regions surrounding the patterned (PF) and amorphous (AF) films. Measurements of total PDL-

like soft tissue width (red arrows, graph shown in B) and scaffold displacement (blue arrows, graph 

shown in C) were made to determine variations among groups, focusing on effects of both growth 

factor delivery and “PDL” scaffold region morphology (i.e., amorphous vs. patterned). Data points 

specific to patterned films are outlined using dashed black lines. Statistical significance indicated 

using * (p<0.05).  

 

Finally, another consideration during the analysis of this data was whether the implanted 

human-derived cells would remain at the defect site or be replaced entirely with the host cells by 

the specific harvest time points of 3, 6 and 9 weeks. Results from anti-human nuclear staining 

shown in Figure 6.14 indicate that, in fact, human-derived cells are not entirely replaced by the 

host cells, with cells close to the scaffold surface (which retains the dark brown color of the stain). 

Overall, it appears that there are more human-derived cells in the negative controls (no growth 

facto delivery) compared to the positive controls at both weeks 3 and 6. Likewise, the non-specific 

staining of the scaffold that is specifically striking in the amorphous scaffold groups appears to 

decrease, potentially as a result of scaffold degradation over time.  

As an additional assessment of the tissue regeneration at the interface of the PDL-like tissue 

and new alveolar bone, nanoindentation was performed on the positive and negative control groups 

at weeks 3 and 9 (Table 6.1). The indentation was performed on both the native bone and PDL 

tissue and the regenerated bone and PDL-like tissue for each sample (n=3). Values are reported as 

a range due to heterogenicities in the tissue architecture, as previously done in other studies [20-

22]. As expected, at 3 weeks the reduced elastic modulus (i.e., stiffness) range is higher for both 

the native (1.5-6.9GPa) and regenerated (1.5-4.3 GPa) bone relative to native (0.18-1.7GPa) and 

regenerated PDL (0.2-1.0 GPa). At 9 weeks, this pattern repeats with native (2.4-10.9GPa) and 

regenerated (2.4-6.3GPa) bone having a higher stiffness than ranges recorded for native (0.2-

2.8GPa) and regenerated (0.1-1.9GPa) PDL, given that bone is known to be much stiffer compared 

to non-mineralized tissue (i.e., PDL). Hardness values show the same result: at 3 weeks, native 

(0.03-0.17GPa) and regenerated (0.02-0.15GPa) bone is shown to have higher values than native 

(0.01-0.04GPa) and regenerated (0.008-0.03GPa) PDL. By week 9, native (0.07-0.15GPa) and 

regenerated (0.02-0.12GPa) bone is shown to have hardness values higher than those observed in 

native (0.01-0.07GPa) and regenerated (0.005-0.02GPa) PDL-like tissue. Overall, at week 3 the 
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reduced modulus range for the regenerated PDL measured in positive control samples (0.2-

1.0GPa) versus negative control samples (0.2-0.8GPa) fall within the range of values observed in 

native PDL (0.18-1.7GPa). This is also observed for regenerated bone (1.5-4.3GPa) in the positive 

and negative (1.7-3.8GPa) controls versus native bone (1.5-6.9GPa). Figure 6.15 confirms that 

presence of dual growth factor expression resulted in regenerated bone stiffness matching the 

stiffness of native bone on the uninjured side, with no significant differences between the two 

groups at weeks 3 and 9. This was further confirmed at weeks 3 and 9 for PDL-like tissue stiffness 

in the positive control groups versus native PDL stiffness measured in un-injured regions.  
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Figure 6.14  Anti-human Nucleus Staining at 3, 6, an d 9 Weeks Post-Implantation  

Anti-human nucleus staining was performed on samples harvested at 3, 6 and 9 weeks post-

implantation to determine of human-based cells remained present at the defect site or migrated 

outside of it over the course of the implantation period. A comparison of empty vector and dual 

growth factor delivery groups is presented, with specific regions of human cells indicated (yellow 

arrows). The amorphous scaffold remnants result in unspecific brown-colored staining using 

MACH4, therefore the human nucleus-positive cells are identified using both the background 

brown stain and blue stain which identifies cell nuclei. A = amorphous film, TR = tooth root, B = 

bone. Scale bar = 100um.  
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Table 6.1 Nanoindentation (DRY): Bone-PDL Interface of Regenerated Tissue vs. Native Tissue  
 

 

*corresponds to sig. diff. between negative and positive control groups at same time point, same 
          tissue (i.e., regenerated bone at 3 or 9 weeks, PDL-like tissue at 3 or 9 weeks)  

        *p<0.05, **p<0.01, ***p<0.001 
 

        # corresponds to sig. diff. between negative controls or sig. diff. between positive controls at 3 and 9  

           weeks (for same tissue type)  

        #p<0.05, ##p<0.01, ###p<0.001 
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Figure 6.15   Comparison of Elastic Moduli for Regenerated and Native Tissues at 3 Weeks 

and 9 Weeks Post-Implantation  
Box plots showing the reduced elastic modulus values obtained at 3 and 9 weeks post-implantation 

at sites of the negative control (Ad-empty, amorphous film), positive control (AdBMP7 and 

AdPDGF, patterned film), and native tissue. In (A), the values represent stiffness of bone in both 

controls relative to the native bone stiffness measurements at the non-injured site, while in (B) the 

values represent stiffness of the PDL in both controls relative to the native uninjured PDL. At 3 

weeks and 9 weeks, there are no significant differences between the positive control bone and 

native bone stiffness values. PDL tissue stiffness in negative and positive controls shows no 

difference from native PDL at week 3, but by week 9 stiffness of negative control PDL is 

significantly lower compared to the positive and native PDL stiffness, with no differences 

observed between the positive control and native PDL stiffness values.  

 

6.4  Discussion  

 

This study was designed to examine the effects of scaffold topography (i.e., patterned 

versus amorphous) coupled with delivery of immobilized gene therapy vectors (i.e., BMP7 and 

PDGF-BB) for periodontal tissue regeneration. As shown in Figure 6.1, the design incorporated a 

negative control (Ad-empty) and a group with single growth factor delivery (Ad-BMP7 only in 

both regions of the scaffold). The scaffolds compartments were adjusted to contain films that each 

separately had a thickness of 250um, for a total combined thickness of 500um, allowing for a 

calculated fit within the 500um deep fenestration defect (Figure 6.2). Implantation of the scaffold 

in vivo showed increased root coverage in groups with BMP7 production, as expected. No 

significant differences in BV were observed among the groups with BMP7 production at the defect 

site specifically (Figure 6.4), where all regions contained the same amorphous film with 

AdBMP7-hGF. In accordance with previously reported results using the ectopic murine model 

(Chapter 6), groups with Ad-empty vector did not show noticeable coverage of the root at 3 weeks 

(Figure 6.3), but by 6 weeks the patterned film group with Ad-empty, as is also confirmed using 

BV and bone defect fill measurements (Figure 6.5), had significantly higher defect fill compared 

to the negative control. As later observed histologically, there appears to be a potentially osteo-

conductive effect of the patterning, with new bone consistently seen to be forming in regions 

between the pillars (Figures 6.6-6.7).  

Material surface topography and roughness are important parameters in determining cell 

response: Fibroblasts have a preference for attaching to smooth surfaces, while bone-derived cells 

prefer a surface that is rough. This corresponds to the design of the scaffold compartments for bone 
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and PDL regeneration, where the amorphous PCL region has more surface area with greater cell-

based perception of roughness compared to the somewhat smoother and more structured 

morphology of the patterned films (as seen in SEM images, Figures 5.3 and 5.12). Nevertheless, 

the tendency of bone to form at the inter-pillar regions indicate that other factors, such as the 

presence of patterning on the pillar sides, may override the lack of its porosity relative to the 

amorphous films. Interestingly, grooves measuring 10um in width have previously been shown to 

result in significantly increase both adhesion and viability of osteoblastic cells [23, 24]. Here, 

pillars had grooves with widths of 15um, and depths of 30um, based on previously-established 

parameters that were shown to promote aligned collagenous tissue formation. In future studies, it 

would be worthwhile to examine whether increasing groove width (i.e., 30-60um) would decrease 

the tendency of bone to localize at inter-pillar regions. It is also known that micro-rough surfaces 

with different topographies show enhanced osseointegation (i.e., functional/structural connection 

that forms between load-bearing implant surface and existing bone), as evidenced by the use of 

dental implant design featuring threads that promote implant stability. Depending on the type of 

implant (i.e., V-shaped, square threads), thread pitches (groove + ridge) can range from 0.8-

1.5mm, with thread widths from 0.1-0.6mm. The patterned film pillar pitch (0.3mm) and pillar 

width (0.15mm) is not far from this range, with recent studies indicating that an even smaller dental 

implant pitch may benefit osseointegration [25]. It is therefore reasonable to suggest that the 

patterned film may inadvertently be functioning as a more osteo-conductive surface than the 

amorphous film, both being comprised of PCL, especially given that bone formation between 

pillars is observed even in the groups with Ad-empty delivery (i.e., lacking AdBMP7-hGFs) as 

seen in Figure 6.6.  

When comparing these results to the rat fenestration defect pilot study described in Chapter 

5, there are significant differences histologically (see Figure 5.14), given the lack of bone 

formation between pillar regions. However, the film pattern dimensions are also significantly 

larger, consisting of 300um x 300um pillars with heights of 250um and 150um inter-pillar spacing. 

The formed PDL-like tissue is much wider than what would be observed in native rat 

periodontium, which is addressed in this study by large reductions in pillar height to 100um, 

resulting in PDL-like tissue width (Figure 6.13B) that is within the 100um approximate width in 

native rat PDL, specifically in groups that contain the patterned film. Groups with the patterned 

film that tends to have inter-pillar region bone formation integrating with PDL-like tissue provide 
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better control of tissue spacing that is otherwise lost in the groups with amorphous “PDL” films. 

Another important distinction to note between the earlier pilot study scaffold design and the design 

presented here is the significantly reduced thickness of the amorphous “bone” film. Previously, 

the patterned film would cover the defect such that the amorphous film would be positioned 

directly on top. Here, the film thickness was reduced by ~2X to allow for complete insertion into 

the region where alveolar bone is removed during formation of the defect. It is likely that this 

served as a barrier to the migration of hGFs producing BMP7 towards the patterned film and inter-

pillar regions. The patterned film porous base was also thinned by ~100um, thereby eliminating 

an additional barrier that may have reduced infiltration of BMP7-expressing cells or BMP7 itself 

into the inter-pillar spaces. Additionally, the amorphous film is more porous than the patterned 

film or its base, such that additional bone (i.e., BMP) can infiltrate into that region, but in the 

patterned film region it tends to navigate around the patterned film region as that is the easier route 

with less restriction given the increased polymer density. Anchoring the scaffold in place in order 

to prevent its displacement from the root would likely stabilize it and possibly limit infiltration of 

bone at inter-pillar regions.  

In order to better understand the sequence of events that results in the observed tissue 

regeneration seen in this study, it is worthwhile re-visit the wound healing process that sets into 

action as soon as the fenestration defect is created (Figure A1.2 in Appendix): Removal of the 

bone-PDL-cementum complex results in injury to vascularized tissue, forming a provisional 

matrix that includes fibrin, activated platelets, endothelial cells, and inflammatory cells. Activation 

of platelets causes the release of PDGF (synthesized and stored in platelet alpha granules), 

contributing to angiogenesis, which involves vascular endothelial growth factor (VEGF)—a 

PDGF sub-family of growth factors. Transforming growth factor beta (TGF-β), a platelet-derived 

cytokine, promotes the chemotaxis and proliferation of osteoprogenitor cells which are recruited 

by cell signaling through BMPs, with the interaction of progenitor cells with BMPs further 

resulting in the induction of bone-forming osteoblasts [26]. With regard to PDL regeneration, 

fibroblasts are the dominant cells of the proliferative stage in wound healing, during which they 

synthesize collagen in response to platelet-, macrophage-, and mesenchymal cell-specific growth 

factor release (i.e., PDGF, FGF, IGF, described in more detail in Chapter 2). As a result, even in 

groups that have only Ad-empty immobilized, there is still observed bone and soft tissue 

regeneration. However, based on micro-CT, histomorphometric, and immunofluorescence data, 
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there are visible advantages of incorporating additional (human-derived) cells producing BMP and 

PDGF (BMP7 and PDGF-BB, specifically), delivered via a scaffold with macro- and micro-

topographical cues intended to promote the regeneration of the bone-PDL-cementum complex that 

is structurally- and functionally-consistent with that of native tissue.  

Incubation of hPDL cells on the patterned film with immobilized AdPDGF overnight prior 

to implantation at the distal root of the first molar ensures that transduction is limited to only those 

cells that come in direct contact with the film, while also giving the cells adequate time to begin 

aligning within the pillar grooves such that they will already be positioned perpendicular to the 

root surface when the film is implanted. Likewise, the amorphous film region is also immobilized 

with AdBMP7 and seeded with hGFs in order to ensure the localization of BMP-producing cells 

specifically to the region of the defect where bone is removed. Using adenoviral gene therapy 

vectors ensures that only the transduced cells produce growth factors—future generations of these 

human-derived cells would likely be unaffected. However, it appears that human-derived cells 

continue to remain at the defect site even into week 9 post-implantation, as evidenced using anti-

human nuclear staining (Figure 6.14) of positive and negative control groups. At 3, 6, and 9 weeks, 

the Ad-empty (negative control) group appears to have greater presence of human-derived cells 

compared to the amorphous “PDL” film group with AdBMP7-hGFs and AdPDGF-hPDLs. A 

potential explanation is that the presence of the growth factors promotes the regenerative process 

which increases cell turn-over with time. Likewise, the extended expression pattern of BMP and 

PDGF above what is typically found in the wound environment may cause migration of the 

elevated growth factor concentrations in the wound site (i.e., BMP) towards other areas of the 

scaffold besides the “bone” region. Given that PDGF is also known to induce osteoblast 

chemotaxis, its presence may further favor infiltration of the area with osteoblast progenitor cells. 

Overall, as has previously been reported by Zhang Y et al using scaffold-based, combined and 

separate delivery of AdBMP7 and AdPDGF in dog furcation defects, the presence of both growth 

factors contributed to a more robust regeneration of the periodontium [16]. In this study, bone 

regeneration is observed to be robust in all groups with either single or dual growth factor 

expression, while PDL-like tissue is more evident (based on combined collagen III, periostin 

staining) in groups with a patterned film and single as well as dual growth factor expression at 

weeks 3 and 6 post-implantation (Figures 6.8, 6.9). This is further confirmed when analyzing the 

mean periostin fluorescence intensity at weeks 3 and 9. Periostin is a mesenchymal stem cell 
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marker that is found in collagen-rich connective tissues such as tendons and periosteum. PDL-

specific periostin has been shown to positively regulate PDL cell mineralization and 

cytodifferentiation. Due to its importance as an ECM protein involved in maintaining the 

homeostasis of periodontal tissues, as well as showing strong expression during PDL cell 

differentiation, a more thorough assessment of its expression in all groups tested was performed.   

At 3 weeks, higher mean periostin intensity values were observed for all groups involving growth 

factor expression (highest being in the group with AdBMP7-hGF in both regions). By week 6, the 

highest values were observed in groups with a patterned film and either dual or single growth 

factor expression [28, 29].  

Interestingly, a very recent study by Sowmya et al consisting of a tri-layered 

nanocomposite hydrogel scaffold also utilized film-like layers for the delivery of cells and growth 

factors to rabbit maxillary periodontal defects. The scaffold layers were positioned as follows: 

chitin-PLGA/nanobioactive glass ceramic (nBGC)/cementum protein 1 (cementum layer), chitin-

PLGA/FGF-2 (PDL layer), and chitin/PLGA/nBGC/platelet rich plasma growth factors (alveolar 

bone). Implantation of the scaffold with the growth factors resulted in complete closure of the 

defect and healing, with confirmed regeneration of new cementum, fibrous PDL, and alveolar bone 

compared to a scaffold alone without growth factors, at 1 and 3 months post-implantation [27]. 

Compared to this study, which did not incorporate a specific layer for cementum regeneration. 

These results may indicate that in order to observe cementum regeneration, which is lacking in 

this study, a separate growth factor or scaffold compartment may be needed to ensure the full tri-

layer periodontal complex formation.   

Nanoindentation was used to further elucidate the functional characteristics of the 

regenerated bone-PDL complex. Several studies have used micro- and nano-indentation to 

determine the mechanical properties of the native periodontium in rats. Grandfield et al reported 

12.1 ± 3.4 GPa (8.7 - 15.5 GPa range, under wet conditions) in the rat alveolar bone region at the 

molar PDL-bone interface [19]. It is important to note that in native periodontal tissue, the region 

of alveolar bone where PDL fiber bundles (i.e., Sharpey’s fibers) insert is called the bundle bone, 

whereas the alveolar bone is the region of bone into which bundle bone (i.e., inner wall of alveolar 

socket) transitions. While this is anatomically identifiable in native PDL (see Figure A1.1 in 

Appendix), in the samples tested this transition as not as obvious in the regenerated tissue regions. 

As such, the indentations were performed at the regions of bone closest to the PDL region (the 
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bundle bone region). Ho SP et al previously performed nano-indentation under the same loading 

conditions, albeit using hydrated human tissue, showing a range of Er = 2-8GPa for bundle bone, 

which falls within the range of values reported here (Table 6.1). Another study performed to 

characterize PDL-bone attachment sites in human molars shows an Er range of 0.01-0.05 GPa for 

PDL tissue (0.1-1.0 GPa for PDL-AB region) and 0.2 – 9.6 GPa range for bone tissue. Hardness 

values were reported to range from 0.01-0.15 GPa for bone regions of the periodontium and 0.01-

0.03 GPa for the PDL-AB regions, using nanoindentation [20-22]. Although there are no major 

discrepancies between the presented and reported values, it is important to mention that a variety 

of factors may affect the stiffness and hardness ranges, including the hydration state (i.e., testing 

under wet versus dry conditions), probe geometry, and loading conditions.  

Having established that the stiffness and hardness of native PDL and bone regions reported 

here correlate to previously reported values, the main purpose of the presented results is to compare 

and contrast these same values among the positive (patterned film/amorphous film + AdPDGF-

hPDL/AdBMP7-hGF), negative (amorphous film/amorphous film + Ad-empty/Ad-empty) control 

groups, and determined native PDL and AB stiffness and hardness values. These are load-bearing 

tissues that integrate over time, making these parameters important in determining whether the 

regenerated tissue is mechanically similar to its native counterpart. As previously noted, there is 

heterogeneity in the bone tissue which is specifically identifiable using nanoindentation as opposed 

to microindentation, given that there are regions of lamellar bone integrating with bundle bone, 

thereby giving the observed range of values. Overall, the positive and negative control values for 

bone and PDL fall within the native bone and PDL values, respectively at 3 and 9 weeks. As 

expected, the largest difference the lowest and highest reported stiffness values is seen in the bone 

regions (native: Δ5.4GPa, positive control: Δ2.8 GPa, negative control: Δ2.1 GPa), compared to 

the PDL regions (native: Δ1.5 GPa, positive control: Δ 0.8GPa, negative control: Δ 0.6 GPa). 

Interestingly, the highest values for both the regenerated bone and PDL tissues relative to the native 

bone and PDL tissues are observed in the positive control group (patterned film + dual growth 

factor delivery) (i.e., 1.0 GPa for positive control versus 0.8 GPa for negative control in PDL-like 

tissue, and 4.3 GPa for positive control versus 3.8 GPa for negative control in bundle bone tissue). 

This is an indication that the regenerative process may be more complex in the positive control 

given that involvement of dual growth factor delivery, with increased potential for having more 

mature tissue relative to the negative control tissue sites at the earlier time point of 3 weeks. At 9 
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weeks, the tissue in both group is expected to be more mature. Here, we observe that again the 

stiffness values for both positive and negative control regenerated PDL and bone regions falls 

within the range observed in native bone. Again, the positive controls have a range with highest 

values (i.e., 1.9 GPa for PDL in positive control versus 0.7 GPa for PDL in negative control, and 

2.8 GPa in native PDL; 6.3 GPa for positive control bone versus 4.0GPa for negative control bone, 

with 10.9GPa in native bone). Comparing week 3 and week 9 values clearly shows an increase in 

the lowest values reported within the regenerated bone stiffness range for all groups. All of the 

groups also show an increase in the highest value reported within the stiffness range for bone, 

although this value increases more prominently in the positive control samples (4.3 GPa at 3 weeks 

to 6.3 GPa at 9 weeks) compared to the negative control (3.8GPa at 3 weeks to 4.0 GPa at 9 weeks). 

For the PDL region values, there is also an increase in stiffness range for the positive control (i.e., 

1.9 GPa from 1.0GPa) compared to a slight decrease observed in the negative control (i.e., 0.8GPa 

to 0.7GPa). Statistically, there are significant differences (p<0.05) between the Er (regenerated 

bone) for the negative and positive controls at both 3 and 9 weeks, as well as the Er (PDL-like 

tissue) between the negative and positive controls at 9 weeks (p<0.01), such that the values for the 

patterned film/dual growth factor delivery are higher. Comparing the same groups between 3 and 

9 weeks shows significantly higher Er values for PDL-like tissue (p<0.05, in patterned film/dual 

growth factor delivery group), and higher values for regenerated bone (p<0.01, in amorphous 

film/Ad-empty group), over time.  

Figure 6.15 further illustrates the ranges reported in Table 6.1 with statistical analysis of 

differences in stiffness between the positive or negative control and native tissue (PDL or bone), 

with results confirming that positive control group tissue stiffness matched that of native tissue at 

both time points for PDL and bone., with no significant differences between them. Likewise, 

positive control values were significantly higher for bone and PDL stiffness when comparing to 

negative control values at 3 and 9 weeks, except for PDL-like tissue at the 3 week time point being 

of the same general stiffness for both negative and positive controls. While Table 6.1 presents the 

effects of time and growth factor presence/patterning on tissue regeneration, Figure 6.15 focuses 

on both the effects of growth factor expression (given statistical comparison between the negative 

and positive control groups), as well as provides a comparison to native PDL and/or bone tissue 

values in a box plot that emphasizes the differences in the range of values for all groups evaluated, 

emphasizing the importance of growth factor expression over time on tissue regeneration.   
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When considering the reported hardness values at weeks 3 and 9, the values for the native 

bone region (0.03-0.17 GPa and 0.07-0.15 GPa) are typically higher than the native PDL region 

(0.01-0.04 GPa and 0.01-0.07 GPa), as expected. Once again the negative and positive control 

values fall within the range reported for native bone at weeks 3 and 9, although the week 9 positive 

control lowest value is outside the range (0.02GPa), while it also has the highest value (0.12GPa) 

within the range compared to the negative control group. Interestingly, the PDL-like tissue 

hardness range for both the positive (0.005-0.02 GPa) and negative (0.06-0.02 GPa) controls is 

just slightly inside the range of native PDL hardness (0.01-0.07 GPa) at week 9. Overall, the 

hardness range for PDL is seen to increase for both groups from week 3 to week 9. This may 

indicate that as the tissue matures, there are increasing heterogeneities in the region given increased 

collagenous tissue formation that also has a tendency to vary in stiffness and hardness in varying 

parts of the PDL. Statistically, there are significant differences between both the PDL-like tissue 

(p<0.05) and regenerated bone (p<0.05) for the negative and positive controls at week 3. At week 

9, only the regenerated bone values for both negative and positive controls show significant 

differences (p<0.001), indicating harder tissue in the patterned film/dual growth factor delivery 

group. Comparing weeks 3 and 9, only the amorphous film/Ad-empty groups shows a significantly 

increased (p<0.05) range of values for PDL-like tissue hardness. Based on values extracted from 

nano-indentation, this data permits the conclusion that, at week 9, the positive control group tissue 

overall is more mature and closer to native tissue modulus values compared to the negative control. 

This further supports the previously discussed data that highlights the improved regeneration of 

the periodontal complex in groups with customized biomaterial micro-architecture and dual 

growth factor delivery.  

 

6.5  Conclusion  

 

 This study explores the effects of surface topography combined with growth factor delivery 

on periodontal tissue regeneration.  There are clear indications that dual growth factor delivery 

(i.e., combined delivery of PDGF-BB and BMP-7) leads to improved bone formation and 

regeneration of PDL-like tissue, as evidenced by a thorough assessment of protein expression (i.e., 

collagen III, periostin), and tissue mechanical properties. While the surface topography does not 

serve to provide guidance for oriented PDL tissue orientation (as originally intended) due to the 
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displacement of the scaffold from the defect site and infiltration of the inter-pillar regions with 

osseous tissue, there is nevertheless important indications that the patterning has effects on the 

overall integrity of the final bone-PDL interface. Moreover, this study confirms that gene therapy 

vectors can be immobilized onto the scaffold surface in order to localize the transduction of cells, 

specifically for subsequent implantation in vivo. Future studies can focus on improved scaffold 

stabilization at the defect site,  as well as potential improvement of the scaffold fabrication process 

to allow encapsulation of gene therapy vectors within the scaffold such that transduction can take 

place in vivo instead of in vitro prior to implantation.  
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CHAPTER 7 

 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

The “Future Directions” section of this chapter includes excerpts from sections written as a 

contribution to the following article:  Fretwurst T, Larsson L, Yu SH, Pilipchuk SP, Kaigler D, 

Giannobile WV. “Periodontal Tissue Bioengineering: Is the Future Now?” Compendium of 

Continuing Education in Dentistry (publication pending).  

 

7.1 Conclusions 

 

 Novel tissue engineering strategies are required for the regeneration of lost periodontal 

tissues due to instances where clinically-based periodontal therapy is not predictable or fails to 

promote the regeneration of the alveolar bone-PDL-cementum complex. While many studies have 

examined the interplay among different biomaterial scaffolds, growth factors, and cells necessary 

for predictable tissue regeneration, there is still a lack of specifically-established parameters that 

are required to obtain tissues that are not only structurally, but also functionally similar to native 

periodontium that further matches its hierarchical architecture. As described throughout the 

chapters, this work focuses on the use of specific technologies (3D-printing and micropatterning) 

that allow for the scaffold to be fabricated with macro- and micro-scale cues that can guide the 

formation of aligned tissue. There is clear evidence that patterning does in fact promote aligned 

soft tissue formation, as shown using the ectopic murine model. More specifically, increased 

groove depth is shown to be a more significant parameter in determining the percentage of aligned 

tissue relative to groove width. In combination with gene therapy vectors, the 3D-printed, 

micropatterned scaffold is able to improve the bone-PDL-like regeneration that is needed to 

recapitulate the structural integrity of the periodontal complex, as described in Chapter 4. 

However, improved localization of growth factor expression as well as increased rate of 

degradation to allow more rapid replacement of the biomaterial with native tissue is necessary to 

further improve upon the existing scaffold design.  
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 Chapter 5 explores the application of a re-designed scaffold incorporating PLGA to 

promote increased degradation of the “PDL” scaffold region in ectopic murine model and rat 

fenestration defect model pilot studies. In addition, to allow for more predictable delivery of gene 

therapy vectors while also localizing the transduction of cells to specific regions of the scaffold 

(i.e., AdBMP7 transduced cells to the “bone” region and AdPDGF-BB transduced cells to the 

“PDL” region), a novel surface immobilization technique is explored using chemical vapor 

deposition (CVD). Based on the results of these findings, immobilization of gene therapy vectors 

is a potential solution for increased control over transduced cells and limitation of potential 

adenovirus dispersion that is of greater concern when the virus is not immobilized onto the surface. 

As discovered in Chapter 6, the architecture and overall dimensions of the scaffold at the defect 

site are critical parameters in determining the localization of the growth factors, given that a 

decrease in the amorphous “bone” region film thickness to better fit within the rat fenestration 

defect allowed for more localized expression of the AdBMP7-transduced cells on the scaffold 

surface such that the regenerated bone was within the defect site where alveolar bone was removed, 

as opposed to being mostly ectopic, as originally was found in the fenestration defect pilot study 

in Chapter 5. A more thorough focus on the selection of growth factors for each region of the 

scaffold showed that both single (BMP7) and dual (BMP7 and PDGF-BB) delivery promoted the 

formation of a bone-PDL-like tissue complex most similar to what is natively present in vivo. 

However, this regeneration was observed specifically in regions that included the presence of a 

patterned film, especially when comparing the results for groups with dual growth factor delivery 

combined with an amorphous film versus patterned film for the “PDL” region of the scaffold. The 

primary conclusion from the results observed on Chapter 6 is that the combination of scaffold 

topography (i.e., patterning, albeit more so for bone anchoring than oriented PDL formation) and 

growth factor delivery (i.e., BMP7 alone or in combination with PDGF-BB) resulted in improved 

periodontal tissue regeneration in a mechanically-loaded defect model. 

 

7.2 Future Directions  

 

There are numerous future directions that can be pursued to better understand how the 

existing scaffold design and controlled growth factor delivery can be improved for more 

predictable periodontal tissue regeneration, and further extended into more general cases of bone-

ligament regeneration. The primary techniques used in this work for scaffold design were 3D 



176 

 

 

printing and micropatterning. Three-dimensional (3D) printing—also referred to as additive 

manufacturing—allows for the use of a variety of materials, including metals and polymers, to 

create 3D structures with defined geometries. Formation of 3D constructs is achieved via printing 

with inkjet, laser-assisted, and extrusion-based techniques, with variability in the use of selected 

materials and final resolution capabilities. Designs generated for 3D printing come from computer-

aided design (CAD) software or images from clinical scans obtained using computed tomography 

(CT), magnetic resonance imaging (MRI), or X-rays. Although the most common approach has 

been to use synthetic polymers to generate material “scaffolds”, most recently bioprinting has 

allowed for direct printing of living cells in combination with materials—increasing their 

complexity and improving biological properties [1, 2]. This may serve as a future direction for 

investigating how growth factors and cells could be incorporated into scaffolds so as to allow for 

a more versatile platform of delivery with a focus on achieving proper tissue alignment [3]. More 

importantly, this may present a technique for creating scaffolds with encapsulated gene therapy 

vectors that can transduced cells in vivo over time as the scaffold degrades, without the need for 

pre-seeding with cells, thereby eliminating a potential barrier to clinical translation. Consideration 

of the regulatory requirements that pertain to such novel therapies is critical, thereby prioritizing 

treatments that are safer, more defined, and simpler in terms of the number of components used 

(i.e., limited need for additional steps such as cell seeding prior to implantation, limited use of 

virus-derived materials).  

It is further important to anticipate and more thoroughly address the challenges that are 

likely to be encountered in the translation of this work to clinical applications. These are specific 

to the use of viral vectors, as well as human-derived cells not native to the host. As discussed 

earlier, the immobilization of viral vectors onto the polymer surface reduces the risk of systemic 

effects that would otherwise be more likely given the presence of virus that has potential to 

disperse. However, the presence of adenovirus still has potential to lead to infection of cells that 

were not the intended target, given the lack of cell-specific targeting that is currently only 

controlled for by saturating the virus-immobilized polymers with cells. A potential way of 

addressing this may be to use non-viral vectors for gene therapy, which have the disadvantage of 

having lower cell transduction efficiency, but at the same time avoid the main drawbacks of viral 

vectors (i.e., cytotoxicity, immunogenicity) that render them safer due to reduced pathogenicity 

and overall bio-safety [14]. Another translational barrier is the use of cells not originally derived 
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from the host (i.e., hPDL and hGF cells). Given that these are human-derived and have been shown 

to have high transduction efficiency using adenovirus, these cells were incorporated into the 

scaffold regions and transduced prior to implantation to ensure growth factor expression at the 

defect site, given that lack of cell seeding resulted in a lack of bone and PDL-like tissue formation 

at 3 weeks in the rat fenestration defect. To improve this aspect of scaffold design, it would be best 

to incorporate host-derived cells if cell seeding is required prior to implantation, such that the 

scaffold could be sterilized and ready for implantation into any patient given the availability of 

their native cells. Since it may be difficult to retrieve and expand hPDL and hGF cells from a 

human patient, it would be relevant to further investigate if another, more easily accessible patient-

derived cell population could be obtained that would show high transduction efficiency with 

adenovirus or a non-viral gene therapy vector.  

Potential incorporation of electrospun fibers into scaffold regions specific to areas intended 

for PDL regeneration may further improve the percentage of seeded cells (or native cells in cell-

free scaffolds) that could be controllably aligned at the defect site [4-5]. Other techniques still 

utilizing additive manufacturing for achieving PDL-like tissue alignment may also be considered, 

such as the recently reported use of 3D-printed, angulated grooves reminiscent of PDL-like tissue 

orientation regions (i.e., parallel, oblique, and perpendicular) that were able to predictably promote 

cell alignment in vitro [6]. Given that the periodontium is comprised of multiple tissues, it is 

appropriate to use 3D-printed constructs that have defined areas for bone soft (i.e., periodontal 

ligament) and osseous tissue regeneration. Such materials include both biphasic and triphasic 

scaffold constructs, which have areas for the cementum/dentin interface, as well as the periodontal 

ligament/alveolar bone formation interface [7-10]. Further advantage of these compartments is that 

each can be used to deliver cells (i.e., dental, PDL, and bone stem/progenitor cells), and/or growth 

factors (i.e., bone morphogenetic protein (BMP), platelet-derived growth factor (PDGF)). 

As was earlier described in Chapter 3, a first-in-human case report of a custom-designed, 

3D-printed PCL scaffold for the treatment of a large peri-osseous defect was reported in 

combination with platelet-derived growth factor (PDGF-BB) delivery [11]. The scaffold was 

fabricated using selective laser sintering (SLS), which allows for material powder to be fused 

together to form a structure based on a CAD file of the scaffold that was designed from cone beam 

computed tomography (CBCT) scans of the patient defect. This novel approach provides a 

promising future application of 3D-printing for customized scaffold designs that can be tailored to 
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meet patient-specific needs based on defect site and location, with the added ability to deliver 

growth factors. However, given that the primary limitation of this study was the prolonged 

degradation of PCL, it would be beneficial to reduce the bulk of polymer used in future 

applications, while also incorporating more precise features for guiding PDL tissue alignment in 

addition to osseous tissue regeneration.  

The ongoing evolution of 3D printers that are able to produce materials with higher 

resolution features and with the use of a variety of materials (including more rapidly degradable 

polymers such as PLGA) will enable the fabrication of scaffolds that are more precisely adaptable 

to patient defects, accounting for a variety of factors such as variations in material properties based 

on the expected defect milieu (i.e., transition from bone to ligament tissue) and intended rate of 

tissue regeneration at the site [12]. To date, 3D-printed materials with specific focus on bone 

regeneration have been more prevalent in oral based tissue engineering applications. Scaffold 

porosity is especially relevant in the design and fabrication of these constructs, as it is critical in 

ensuring adequate micro-architecture for tissue ingrowth at the defect site, in addition to proper 

vascularization and a tailored rate of biodegradation. 3D printing technology can further help 

customize pore size, morphology, and interconnectivity. For example, 3D printed glass-ceramic 

scaffolds with hexagonal designs show a high fatigue resistance compared to conventional 

architectures, with obtained strengths that are up to 150 times greater than values reported for 

composite or polymeric scaffolds, making these especially appropriate for use at load-bearing sites 

[13]. Improvement of the scaffold designs reported here based on these future directions has high 

potential for their continued evolvement for use in periodontal tissue engineering, with further 

translation into bone-ligament interface engineering. 
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Figure A1.1 Anatomy of the Periodontium.  
Periodontal ligament (PDL) region shown between the tooth root (TR) and alveolar bone (AB), 

where Sharpey’s fiber (SF) bundles (i.e., bundle bone region) are shown between the PDL and 

AB regions.  

 
Images compiled from: Oral Histology Learning Modules from Syrian Clinic and  School of Dental Sciences, 

Universiti Sains Malaysia. 
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Figure A1.2  Wound Healing Process Involving BMP and PDGF 

Overview of the wound healing process occurring after bone fracture, showing the cell signaling 

pathways and types of cells that proliferate as a result of fracture. Recruitment of osteoprogenitor 

cells occurs in response to bone morphogenetic protein (BMP)-related expression, with other key 

growth factors involved in angiogenesis and tissue repair, including platelet derived growth factor 

(PDGF), vascular endothelial growth factor (VEGF), and transforming growth factor beta (TGF).  

 
Image used from:  Ghodadra N and Singh K. Recombinant human BMP-2 in the treatment of bone fractures. 

Biologics; 2008, 2(3):345-54.  
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Table A1.1  Effects of growth factors on periodontal cells in vitro. 

Growth 

factor 

Cell type Effect Studies 

 

 

 

 

 

 

 

PDGF 

Cementoblasts • Increased DNA synthesis and osteopontin 

mRNA expression 

[51] 

Dental follicle 

cells 
• Stimulated DNA synthesis and expression of 

CSF-1 and MCP-1  

[181] 

Gingival 

fibroblasts 
• Increased mitosis  

• No increase in proliferation or chemotaxis 

[73, 182] 

Osteoblasts • Increased proliferation and interleukin-6 

transcription 

• Inhibited differentiation 

• Blocked osteopontin, osteonectin 

[54-56] 

PDL cells • Stimulated proliferation (with or without 

allograft)  

• Induced matrix synthesis and increased cell 

migration and mitosis 

[52, 53, 

65, 73]  

 

 

 

 

 

 

 

BMP2 

Cementoblasts • Inhibited differentiation and mineralization [183] 

Dental follicle 

cells 
• Stimulated osteoblast/cementoblast 

differentiation 

• Increased mineralization and ALP 

[184, 

185] 

Gingival 

fibroblasts 
• Decreased mitosis  

• At high doses, inhibited mineralization and 

OCN 

[73, 186] 

Osteoblasts • Increased proliferation, mineralization, and 

expression of ALP and OCN  

[187] 

PDL cells • Increased mineralization and expression of 

mineralization markers 

• At doses >10ng/mL, induced 

apoptosis/cytotoxicity  

• Stimulated osteoblast differentiation 

• Decreased mitosis 

[72-74] 

 

 

 

 

BMP-7 

Cementoblasts  • Increased mineralization and mineralized tissue 

markers 

[102] 

Dental follicle 

cells 
• Increased mineralization and ALP expression [184] 

Osteoblasts • Increased proliferation, mineralization, and 

expression of ALP and OCN 

[75, 76, 

187] 
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PDL cells • Reduced proliferation 

• Induced ALP 

[188] 

 

 

 

 

 

 

 

 

 

FGF-2 

Cementoblasts • Stimulated DNA synthesis 

• Decreased mineralization and expression of 

OCN  

• Modulated expression of OPN 

[189] 

Dental follicle 

cells 
• Stimulated DNA synthesis and expression of 

CSF-1 and MCP-1 

[181] 

Gingival 

epithelial cells 
• Increased proliferation [107] 

Gingival 

fibroblasts 
• Increased proliferation [190] 

Osteoblasts 

  
• Promoted differentiation  

• Induced proliferation 

• Decreased mineralization gene expression 

[105, 

191] 

PDL cells • Increased proliferation (alone and combined 

with DFDBA or FDBA), migration, and 

extracellular matrix production 

• Maintained differentiation potential 

• Stimulated OPN 

• Inhibited ALP expression, mineralization, and 

OCN 

[103, 

104] 

 

 

 

GDF-5 

CT fibroblasts • Increased proliferation [192] 

Dental follicle 

cells 
• Reduced ALP activity [193] 

Osteoblasts • Increased early differentiation and matrix 

production  

• Modulated proliferation 

[114, 

192] 

PDL cells • Increased proliferation and matrix synthesis 

• Decreased ALP activity 

[113] 

Teripara

tide  

PDL cells  • Modified proliferation & survival and 

expression of mineralized markers (dependent 

on maturation state) 

[123, 

124] 

ALP: alkaline phosphatase, BMP: bone morphogenetic protein, CSF-1: colony 

stimulating factor-1, FGF-2: fibroblast growth factor-2, GDF-5: growth/differentiation 

factor-5, MCP-1: macrophage chemotactic protein-1, OCN: osteocalcin, OPN: 

osteopontin, PDGF: platelet-derived growth factor, PDL: periodontal ligament 
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Table A1.2 Preclinical animal models of growth factor delivery for periodontal and implant 

applications 

 

Growth 

factor 

Model Animal Results Studies 

 

 

 

 

 

 

 

 

 

 

 

 

 

PDGF-

BB 

 

 

 

 

 

 

 

 

 

 

 

Furcation 

defect 

Canine • Stimulated PDL formation (early stage) 

• Promoted periodontal regeneration (late 

stage)  

[64] 

GBR at 

implants 

Canine • With IGF-1, significantly increased 

histologic bone-implant  

contact and peri-implant bone fill  

• With IGF-1, increased early (3 week) 

bone formation at immediate implants 

• With ePTFE membrane and IGF-1, 

increased bone gain and histologic  

parameters versus membrane alone or 

membrane + DFDBA 

[57, 65, 

66] 

Periodontal 

defect 

Canine • After flap surgery, increased new bone, 

cementum and PDL 

• With IGF-1, promotes periodontal 

regeneration  

[58-60, 

63] 

Non-

human 

primate 

• Significantly increased new attachment [61-63, 

77] 

Ridge 

augmentation 

Canine • With block graft, increased histologic 

bone formation 

• With bone mineral and collagen 

membrane, supports lateral bone 

formation 

• With biphasic calcium phosphate and 

collagen membrane, supports GBR 

• With xenograft scaffold, promoted 

bone regeneration similar in quality  

to native bone 

• With xenograft, improved radiographic 

results when used  

without collagen membrane 

[68, 69] 

[67] 

 

 

 

 

rhBMP-2 

 

Extraction 

socket 

Rat • Increased speed and quantity of bone 

formation 

• Induced proliferation and 

differentiation of mesenchymal cells 

[84] 

Furcation 

defect 

Feline • Early ankylosis may resolve with 

polymer carrier 

[194] 
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rhBMP-2 

GBR at 

implants 

Canine • Resorbable and ePTFE membranes 

delay early (1 month) bone formation  

but may result in increased or similar 3-

month bone formation vs. no 

membrane  

• Increased bone augmentation for 

implants placed in extraction sockets 

and  

for implant-site circumferential and 

fenestration defects 

• BMP2-coated implants provide 

increased bone formation, histologic  

bone apposition, and osseointegration 

• Improved late (3-month) bone 

formation for ACS versus PLGA 

carrier  

[83, 96, 

133, 

148, 

195] 

Periodontal 

defect 

Non-

human 

primate 

• Increased bone and cementum 

regeneration 

[77] 

Canine • Increased quantity and speed of bone 

formation  

• Bone quantity formed correlated with 

residual bone height 

• Limited cementum regeneration 

• Induced ankylosis and root resorption 

• No benefit for calcium phosphate 

cement carrier 

[78-80, 

82, 83] 

Ridge 

augmentation 

Rat • Significant horizontal and vertical bone 

augmentation  

• ePTFE membranes improve bone 

contour 

• Increased bone formation with ACS+ 

bone graft material 

• Potential carriers: absorbable collagen 

sponge, hyaluronic acid polymer,  

• collagen-calcium hydroxyapatite-TCP 

complex, PLGA/gelatin sponge 

[90, 92-

94] 

Canine • Increased histologic and radiographic 

bone formation, +/- bone graft 

• Increased incidence of seromas and 

wound failure  

• Possible decreased bone quality when 

combined with bone graft  

• With xenograft block, supported bone 

formation 

[81, 91, 

92, 

122] 



187 

 

 

• Late-stage implant stability comparable 

to native bone  

Non-

human 

primate 

• Increased ridge width and bone quality 

in TCP/HA/ACS and  

CaP cement carriers 

[196] 

Sinus 

augmentation 

Canine • Enhanced histologic bone formation [85] 

Rabbit • Increased bone volume for 

collagenated BCP/BCP carriers 

[86] 

Goat • Increased radiographic bone formation [89] 

Non-

human 

primate 

• Increased vertical bone gain [87] 

Mini-pig • BMP-2 coatings did not improve peri-

implant bone gain 

[88] 

BMP-4 Ridge 

augmentation 

Rat • Improved bone quality and comparable 

quantity versus BMP-2 

[90] 

 

 

 

 

 

 

 

 

 

BMP-7 

 

Furcation 

defect 

Canine • Significantly increased histologic bone, 

cementum, and new  

attachment in class III furcations 

[95] 

GBR at 

implants 

Canine • Implant-coating applications [96] 

Non-

human 

primate 

• Stimulated cementum formation [99] 

Ridge 

augmentation 

Rat • Increased bone formation in xenograft 

block versus control 

[197] 

Sinus 

augmentation 

Non-

human 

primate 

• Comparable radiographic and 

histologic bone formation and  

residual lateral wall defect reduction 

versus bone graft 

[98, 

198] 

Mini-pig • With xenograft, increases speed and 

quality of osseointegration at  

simultaneous implants 

[100, 

101] 

Socket 

augmentation 

Rabbit • Histologic increased speed of healing 

by 4-6 weeks 

• Significantly increased ALP activity 

and calcium 

[97] 

FGF-2 Furcation 

defect 

Canine • Significantly increased regeneration of 

cementum, PDL,  

and bone vs. controls 

[110, 

111] 

 

 

 

 

 

GBR at 

implants 

Canine • Improves peri-implant GBR (β-TCP) 

• GDF-5 coating may increase bone 

formation (dose-dependent) 

[199, 

200] 

Implant 

coating 

Rabbit • Improved implant stability as 

determined by pull-out test 

[119] 
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GDF-5 

Periodontal 

defect 

Canine • Significantly increased perio. 

regeneration in PLGA (dose-

dependent),  

β-TCP, ACS carriers, with bone 

formation for β-TCP stable up to 24 

wks 

• Beta-TCP/PLGA carrier may cause 

ankylosis 

[116-

118, 

201] 

Non-

human 

primate 

• Supported periodontal regeneration 

with β-TCP carrier 

[115] 

Ridge 

augmentation 

Canine • With xenograft block, supported bone 

regeneration 

[122] 

Sinus 

augmentation 

Mini-pigs • Enhanced bone formation with β-TCP [120, 

121] 

Teriparat

ide 

Extraction 

socket 

Osteopen

ic rats 
• Increased bone mineral density and 

anabolic effects  

[125] 

GBR at 

implants 

Canine • Significantly improved bone formation 

•  

[127, 

128] 

Periodontal 

defect  

Ovarecti

mized 

rats 

• Preventative effects on periodontal 

bone loss 

[126] 

ACS: absorbable collagen sponge, ALP: alkaline phosphatase, BCP: biphasic calcium 

phosphate, BMP: bone morphogenetic protein, bTCP: beta tricalcium phosphate, 

ePTFE: expanded polytetrafluoroethylene, FGF: fibroblast growth factor, GBR: guided 

bone regeneration, GDF: growth/differentiation factor, HA: hydroxyapatite, IGF: 

insulin-like growth factor, PDGF: platelet-derived growth factor, PDL: periodontal 

ligament, PLA: polylactic acid, PGA: polyglycolic acid 
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Table A1.3 Clinical application of growth factor and protein delivery in periodontics, 

osseointegration, and pre-prosthetic surgical procedures 

 

Growth 

factor/ 

protein 

Indication Evid

ence 

level 

Efficacy and safety Refere

nces 

 

 

PDGF-BB  

Periodontal defects ★★

★ 

• Gain in PD, CAL and BOP 

• Increasing of radiographic bone level 

 

 

[50, 

135-

138] 

Furcation 

involvements 
★ • Gain in PD, CAL and BOP 

• Increasing of radiographic bone level 

Alveolar bone 

augmentation/prese

rvation 

★ • Accelerate the healing process 

 

BMP-2 

 

 

 

BMP-7 

Alveolar bone 

augmentation/prese

rvation 

 

★★ • Accelerate the healing process 

• Histological findings high proportion 

of newly formed bone 

 

 

 

[141-

144, 

146-

149] 

 

 

Sinus augmentation 

★★ • In combination with 

allogeneic/autologous bone graft: 

histologic findings similar to 

autologous bone and adequate 

vertical bone gain (BMP-2) 

• In combination with bovine-derived 

xenogeneic graft: histologic findings 

show less new bone compared to 

xenograft alone but adequate vertical 

bone gain (BMP-2, BMP-7) 

 

GDF-5 

Periodontal defect ★ • Gain in CAL  

[150, 

151] 
Sinus augmentation ★ • Histologic results similar to 

autologous bone 

• Adequate vertical bone gain 

FGF-2 Periodontal defects ★ • Early radiographic bone fill [152] 

 

 

Teriparati

de 

 

 

Peri-implant bone 

★ • Gain in PD and CAL 

• Increasing radiographic bone level 

 

 

[154, 

155] 

• Greater bone-to-implant contact in 

the periosteal and medullary 

compartment 

• Minimal effect on cortical 

compartment 

• Slight higher bone-volume-per-

tissue-volume 

Evidence level= (★) Slight clinical evidence; (★★) Moderate clinical evidence; (★★★)  

Robust clinical evidence; Clinical parameters= (PD) pocket depth; (CAL) clinical attachment level; (BOP) 

bleeding on probing 


