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ABSTRACT

In this dissertation, we explore different computational techniques for the F -pure

threshold invariant of monomial ideals and of polynomials. For the former, we in-

troduce a novel algorithm to reduce the number of generators of the ideal and the

number of variables involved in the remaining generators, thus effectively creating a

new “simpler” ideal with the same value of the F -pure threshold. Then, the value is

the sum of entries of the inverse to the new ideal’s splitting matrix. This algorithm

can be further improved by using the integral closure of the ideal.

For polynomials, we introduce a direct computational technique involving prop-

erties of roots of Deuring polynomials, which are closely related to Legendre poly-

nomials. This technique is then applied to two different families of polynomials:

polynomials defining Elliptic Curves, and bivariate homogeneous polynomials with

up to four distinct roots in projective space of dimension 1. The invariance of the

F -pure threshold under changing variables is then used to prove properties of prime

characteristic roots of Legendre polynomials.

We end the dissertations with generalizing the Deuring polynomial techniques

used thus far, and introducing a way to explicitly stratify the coefficient space of

polynomials supported by a fixed set of monomials, by identifying regions represent-

ing polynomials with the same F -pure threshold. We give an explicit description of

the different strata as subschemes of a projective space.

vii



CHAPTER I

Introduction, Motivation, and Results

1.1 Background and Motivation

Consider the polynomial ring R = K[x1, ..., xt], where K is a field of prime charac-

teristic p. In this thesis we are mainly concerned with direct computational methods

for the F -pure threshold of either a polynomial f , denoted FT (f), or an monomial

ideal I, denoted FT (I). The F -pure threshold is a numerical invariant, measuring

the singularity of the hypersurface V(f) or the subscheme V(I) at a point, which,

without loss of generality, we assume to be the origin of Kt. For example, if f

is smooth at the origin, then FT (f) = 1. Smaller values of FT (f) mean “worse

singularities” of f at that point.

The F -pure threshold can be viewed as a characteristic p analog of the log canon-

ical threshold, an invariant of singularities in characteristic 0. The log canonical

threshold of a complex polynomial f (at the origin), denoted lct (f), is the supre-

mum over all non-negative real numbers λ such that |f |−2λ is locally integrable at

the origin of Ct. The log canonical threshold plays a crucial role in birational ge-

ometry and, specifically, in the Minimal Model Program in characteristic 0. There

is optimism that the F -pure threshold can play a similar role in finally settling the

Minimal Model Program in characteristic p. See surveys [KM98], [ST12], [Kol13].

Our work concentrates on the computation of the F -pure threshold in the case of

1
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polynomials and monomial ideals in polynomial rings, although the F -pure threshold

can be defined for any ideal in any regular ring and even more generally. While the

definition arose in the theory of tight closure and F -purity of pairs ([HR76],[HH90],

[HY03]), we approach the subject using an alternative definition and the reader needs

nothing more in order to appreciate the computational techniques presented in later

chapters.

Definition I.1 (see [MTW05], [BMS08]). Fix a field K of characteristic p > 0, let

I ⊂ K[x1, ..., xt] be an ideal. Denote R = K[x1, ..., xt]. The F -pure threshold of I

(at the origin) is:

(I.1.1) FT (I) := sup

{
N

pe

∣∣∣∣ N, e ∈ Z>0, I
N 6⊂ (xp

e

1 , ..., x
pe

t )R

}
.

Specifically, when I is principle, say I = (f) for some polynomial f ∈ K[x1, ..., xt],

we have:

(I.1.2) FT (f) := sup

{
N

pe

∣∣∣∣ N, e ∈ Z>0, f
N 6∈ (xp

e

1 , ..., x
pe

t )R

}
.

Notice that p is absent from the notation and should be understood from the context.

Suppose f ∈ Z[x1, ..., xt] has integer coefficients. For each prime p, f has a natural

image in Fp[x1, ..., xt], denoted fp. Now we can compute FT (fp), for each p, and

compare it to lct (f). A well known feature of the F -pure threshold is that the limit

of FT (fp), when p→∞, approaches the log canonical threshold of f . This fact is the

culmination of a series of papers, going back to [HH90], [Smi00], [Har01], [HW02],

[HY03], [Tak04], [HT04], [TW04], until finally articulated in [MTW05, Theorem 3.4].

Based on experimental evidence, even more is expected, as the following decades-old

open question suggests:
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Question I.2. Let f ∈ Z[x1, .., xt], such that f ∈ (x1, ..., xt). For any prime p,

denote by fp the natural image in Fp[x1, ..., xt]. Let P be the set of all primes p such

that FT (fp) = lct (f). Is it true that P is of infinite cardinality?

For a general f ∈ C[x1, .., xt] the same question can be asked, only the reduction

to positive characteristic step is a bit more technical. However, the conjecture is still

open and worth researching even when f has integer coefficients. This question, as

stated, appears in [MTW05, Conjenture 3.6], but it roots date back to the work of

the Japanese school of tight closure (see [HW02]). Surveys and other formulation

can be found in [Smi97],[BFS13] and [EM06].

The open question itself motivates us to improve our methods of computing the

F -pure threshold and the log canonical threshold of a polynomial f . In [Her16],

Hernandez identifies scenarios where the answer for Question I.2 is positive based

on properties of the monomial ideal generated by the monomials supporting f . This

fact drives us to investigate the computational aspects of FT (I) when I is a monomial

ideal. Note that for a monomial ideal in K[x1, ..., xt], one can compute FT (I) if K is

of characteristic p or lct (I) if K has characteristic 0, and observe that these numbers

are identical (see [HY03, Theorem 6.10]). As a matter of fact, it is apparent that the

underlying field K, and, in particular, its characteristic, play no role in the actual

computation of FT (I) when I is a monomial ideal.

1.2 Outline

In Chapter II, we describe some known methods of computing FT (I) for a mono-

mial ideal I, including how to describe I by its splitting matrix M ∈ Zt×s≥0 , containing

in each column the multiexponents of the generating monomials of I. Then we de-

velop an algorithm to simplify the ideal I by identifying a “simpler” monomial ideal
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J with the same value of the F -pure threshold, possibly containing fewer monomials

and involving fewer variables:

Theorem I.3. Let I be a monomial ideal in K[x1, ..., xd, xd+1, .., xt]. Then there

exists a monomial ideal J with the following properties:

1. FT (I) = FT (J),

2. J is generated by d monomials involving only d variables,

3. The splitting matrix of J , M , is a d× d invertible matrix,

4. FT (I) is the sum of entries of M−1.

Note that the last statement shows directly that FT (I) ∈ Q, a well known fact

as the log canonical threshold of I is rational ([Kol97, Proposition 8.5]) had we

considered I to be an ideal over C, and this number is identical to the F -pure

threshold, FT (I), for all p ([HY03, Theorem 6.10]).

The algorithm we develop is of polynomial time complexity. The algorithm in-

volves a linear programming sub-procedure. Solving the general case linear program-

ing problem in polynomial time is “Problem 9” in the list of Smale’s open problems

(see [Sma98]). However, our setup involves only rational numbers and there are algo-

rithms to solve linear programming in polynomial time in this specific case, like the

“interior point method”([Kar84]); we refer again to [Sma98, Problem 9] and its refer-

ences for more details. In Appendix A we include a MATLAB code implementing

a version of our algorithm.

We end this chapter by improving our algorithm as we apply it on the integral

closure of I, I, instead of I. This approach is justified as FT (I) = FT (I) (see

Corollary II.37).

In the next chapters we aim to compute the F -pure threshold of specific fami-
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lies of polynomials. We start in Chapter III by developing the required machinery

for the F -pure threshold computation of polynomials in general. Then we investi-

gate the Deuring polynomials, which are closely related to the 250-year-old Legendre

polynomials. We define the Deuring polynomial of degree n over Z[λ] or Fp[λ] as:

H{n}(λ) =
n∑
i=0

(
n

i

)2

λi

The properties of their roots turn out to have crucial implications on the F -pure

threshold computations in the following chapters. For example, consider the poly-

nomial f = (x + y)(x + λy). When we raise f to integer powers, fN , we get that

the coefficient of xNyN is exactly H{N}(λ). Even though FT (f) is easy to compute

for this specific f , this Deuring polynomial has a critical impact on the computation

of FT (hf) or FT (h + f), when h is another polynomial. See Lemma IV.5. The

most important tools of this chapter are the following, and we will heavily use them

in F -pure threshold computations later.

Lemma I.4. [Schur’s Congruence] Fix a prime p. Let H{n} ∈ Fp[λ]. Write the

base p-expansion of n:

n = b0p
0 + b1p

1 + ...+ bep
e,

where b0, ..., be are integers between 0 and p− 1. Then

H{n} = H{b0}1H{b1}p
1

H{b2}p
2 · · ·H{be}p

e

Theorem I.5. Fix an integer n ≥ 1 and a prime p such that n < p/2. Let K be a

field of characteristic p. Then H{n} and H{n− 1} share no roots.

Although our proofs of these facts are independent from existing literature, one

can prove them using known results of Legendre polynomials. The relationship
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between the Deuring polynomials and the Legendre polynomials is explained in sec-

tion 3.5.

In Chapter IV we put these Deuring polynomial results to use in providing a

direct computation of the F -pure threshold of the family of the defining polynomials

of Elliptic curves. In [BS15] it is proven:

Theorem I.6. Let K denote a field of prime characteristic p > 3. Let f ∈ K[x, y, z]

be a homogeneous polynomial of degree three defining an elliptic curve E in P2
K.

Then:

FT (f) =

 1 if E is ordinary

1− 1
p

if E is supersingular

Bhatt and Singh provide two proofs in [BS15] using a translation into local coho-

mology; In contrast, our approach involves directly investigating the form of f raised

to integer powers. Once we do that, we get critical coefficients of the form of the

Deuring polynomials, and we apply the machinery developed in the previous chapter.

We manage to reprove the theorem for p > 2 using this approach. For completeness,

we include a direct proof for the case of p = 2, so the theorem can be stated for all

primes characteristics.

In Chapter V we investigate polynomials defining subschemes of P1 supported at

four points. We notice that when these four points are distinct, we can transform

such polynomials to a more “canonical” form, which share critical features with

the defining polynomials of an elliptic curves from the previous chapter. We then

compute their F -pure threshold directly using the Deuring polynomials.

Theorem I.7. Let K be a field of prime characteristic p. Let c, b ∈ Z>0 with p ≡ 1

(mod b + c). Let f ∈ K[x, y] be a homogeneous polynomial of degree 2b + 2c with

exactly four distinct roots over P1
K

, where the multiplicities are b, b, c, c after fixing
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an order. Let a be the their cross-ratio. Denote n = c
c+b

(p− 1). Then

FT (f) =


1
b+c

if H{n}(a) 6= 0

1
b+c

(
1− 1

p

)
if H{n}(a) = 0

In particular, if f is a degree four polynomial with four distinct roots in P1, i.e.

b = c = 1, we get:

Theorem I.8. Let K be a field of prime characteristic p. Consider a degree four

homogeneous polynomial f ∈ K[x, y], with distinct roots over P1
K

. After fixing an

order of the roots, let a ∈ K be their cross-ratio. Denote n1 = p−1
2

. Then

FT (f) =


1
2

if p = 2 or if both p > 2 and H{n1}(a) 6= 0

1
2

(
1− 1

p

)
if p > 2 and H{n1}(a) = 0

It is surprising that the value of the F -pure threshold is determined by the cross-

ratio, specifically whether or not the cross-ratio is a root of a certain Deuring polyno-

mials. In addition to computing the F -pure threshold, this theorem gives us insight

on the roots of Deuring polynomials and Legendre polynomials in positive charac-

teristic, which is of independent interest; we introduce a new proof of the following

known property (see the equivalent result for Deuring polynomials in [BM04]):

Corollary I.9. Fix a prime p > 2, a field K of characteristic p and let n = p−1
2

. If

b ∈ K − {±1} is a root of the Legendre polynomial of degree n, Pn(x) ∈ K[x], then

these are roots as well:

±b,± 3 + b

−1 + b
,±3− b

1 + b
.

We dedicate the last chapter to generalizing the computational technique we used

so far, specifically, we are generalizing the elegant Schur’s Congruence(Lemma I.4).

Such generalization is possible under some assumptions (Conjecture VI.21). Fix
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a set of monomials, xµ1 , ...,xµs . Let b1, ..., bs be indeterminates. We are interested

in computing the F -pure threshold of a generic polynomial:

f = b1x
µ1 + ...+ bsx

µs .

Then, we wish to find out how FT (f) changes when we plug in scalars from K

instead of the b’s and get a “specialized” polynomial in K[x1, ..., xt]. Put differently,

we are interested in investigating the function:

FT : Ps−1 → Q,

defined by

FT (c1, ..., cs) = FT (f), where f = c1x
µ1 + ...+ csx

µs .

In [BMS08] it is proven that FT obtains only finitely many values. By assuming

Conjecture VI.21, we are able to offer a constructive proof of that fact and show

explicitly which regions of Ps−1 obtain the same value under FT . These regions

are complements of vanishing sets of a finite number of coefficients that we compute

from the monomials xµ1 , ...,xµs . These coefficients plays a similar role to the Deuring

polynomials we encountered in previous chapters.



CHAPTER II

F -Pure Threshold of Monomial Ideals

In this chapter, we shall define and investigate the F -pure threshold of a monomial

ideal I. We describe some known methods of computing FT (I), including the Newton

polygon and the Splitting polytope. By applying both methods simultaneously, we

develop the Monomial Ideal Reduction Algorithm to simplify the ideal I by

identifying a “simpler” monomial ideal J with the same value of the F -pure threshold,

possibly containing fewer monomials and involving fewer variables. We end the

chapter with an improvement of the algorithm using I’s integral closure.

2.1 Definitions

The following is another interpretation of the definition of the F-pure threshold.

Definition II.1 (see [MTW05]). Let I ⊂ K[x1, ..., xt] be a non-zero ideal, where K

is a field of prime characteristic p. Denote m = (x1, ..., xt) and assume I ⊂ m. For a

positive integer e, let:

νI(p
e) := max{w | Iw 6⊂ m[pe]}.

Then the F -pure threshold of I at the origin is

FT (I) := lim
e→∞

p−eνI(p
e)

9
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Note that p is absent from the notation and should be understood from the con-

text.

Discussion II.2. The above is well defined: If I is generated by s elements, then

Is(p
e−1)+1 has to be in m[pe] by the pigeon hold principle, which gives an upper bound

for νI(p
e). Further, if In ⊂ m[pe+1] then In ⊂ m[pe], which tells us that every upper

bound of νI(p
e+1) is also an upper bound of νI(p

e), thus the sequence {νI(pe)}e, is

non-decreasing. We can say something stronger. Due to the faithful flatness of the

Frobenius map on a regular ring we get that:

IνI(pe) 6⊂ m[pe] ⇒
(
IνI(pe)

)[p] 6⊂ m[pe+1] ⇒ IpνI(pe) 6⊂ m[pe+1]

So pνI(p
e) ≤ νI(p

e+1), which implies that the sequence {p−eνI(pe)}e is non-decreasing.

Since it is bounded above by the sequence {p−e(s(pe − 1) + 1)}e, the limit FT (I)

exists and bounded above by s, the number of generators of I. It is bounded below

by 0 since for large values of e, I is not in m[pe] and the sequence {p−eνI(pe)}e is not

constant zero.

Discussion II.3. To summarize, let I ⊂ K[x1, ..., xt] be a non-zero ideal, generated

by s elements, where K is a field of prime characteristic p, Denote m = (x1, ..., xt)

and assume I ⊂ m. Then FT (I) ∈ (0, s].

Example II.4. When I = (x1, ..., xt) = m, νI(p
e) = s · (pe − 1) by the pigeonhole

principle. So it is easy to see that FT (I) = t, where t is the number of generators.

The F -pure threshold of any ideal is actually a rational number (see [BMS09]); we

shall later provide a proof for the monomial case using the computational techniques

we develop.

Example II.5. Consider I = (x, y2) in F3[x, y]. Let us show that FT (I) = 3/2. Fix

e > 0. We claim that for w = 3e − 1 + 3e−1
2

, Iw is not in (x3e , y3e): just observe the
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element x3e−1y2 3e−1
2 in Iw and not in (x3e , y3e). By taking e to infinity we see that

3/2 ≤ FT (I). On the other hand, all the elements of Iw+1 are in (x3e , y3e), so by

definition w = νI(p
e) and thus 3/2 is indeed FT (I).

We would like to concentrate on the case where I ⊂ K[x1, ..., xt] is a monomial

ideal. In [Her16], Hernández introduces a method of computing FT (I) using its

“Splitting Matrix”. Specifically, [Her16, Proposition 36] reproves that the F -pure

threshold of a monomial ideal is not only independent of the characteristic, it is

identical to the log canonical threshold of I at the origin, lct (I), where we replace K

by C. The log canonical threshold of I can be computed by I’s “Newton polygon”

([How01, Example 5])1 thus can be used to compute the same number. We shall

present both methods now. Then we will create an algorithm that utilizes both

methods simultaneously in order to find a “simpler” ideal in a “simpler” polynomial

ring with the same F -pure threshold, for which the computation is easier.

2.1.1 Newton Polygon

Fix a ring R = K[x1, ..., xt] where K is any field. We adopt a multiexponent nota-

tion and denote xµ11 x
µ2
2 · · ·x

µt
t as xµ. Consider the monomial ideal I = (xµ1 , ...,xµs),

µj = (µ1j, ..., µtj) ∈ Zt≥0, j = 1, ..., s, in K[x1, ..., xt]. The Newton Polygon of I,

N , is defined in the following way. Let L be the set of points representing all the

monomials in I, where xµ = x(µ1j ,...,µtj) is interpreted as a point in (µ1j, ..., µtj) ∈ Rt;

then N is a the convex hull of L in Rt. Note that N is independent of the set of

generators of I.

Combine [How01, Example 5] with [Her16, Proposition 36] to conclude2:

1We follow [How01] and refer to this object as a “polygon” rather than “polytope” even though it is not necessarily
two dimensional

2Originally, FT (I) = lct (I) is proven in [HY03]
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Theorem II.6. Let I be a monomial ideal in K[x1, .., xt], where K is a field. Let N

be I’s Newton Polygon. Denote 1t = (1, ..., 1) ∈ Rt. Then

lct (I) = max{λ 6= 0 | 1
λ
1 ∈ N} when charK = 0

FT (I) = max{λ 6= 0 | 1
λ
1 ∈ N} when charK > 0.

I.e, the F -pure threshold (or the log canonical threshold) is the reciprocal of any

coordinate of the point where the ray directed (1,...,1) punctures N .

Note that in order to identify the puncture point, suffices to compute the boundary

of the polygon, which is part of the convex hall of any set of generators. Also note

that by using the natural Nt-grading on the ring, we can identify any monomial ideal

I with a minimal set of generators and consider the convex hull of them. As a matter

of fact, the Newton polygon is actually a property of the integral closure of I. We

expand on this point of view later in subsection 2.2.1.

Example II.7. Let us repeat the computation in Example II.5. The Newton

polygon of I is generated by (1, 0) and (0, 2). The boundary can be represented by

the equation y = 2 − 2x. Requiring x = y yields to x = 2/3. The reciprocal is

FT (I) = 3/2 as expected.

Discussion II.8. Theorem II.6 reveals a rather geometric description of FT (I), it

is set by the distance along which the ray 1s punctures the boundary of the Newton

polygon. This polygon can be complicated; however we will show that we can change

I and thus change the polygon, without affecting the coordinates of the puncture

point.

Example II.9. Let I = (x20y10z14, x10y20z15) ⊂ K[x, y, z]. A part of the boundary

of I’s Newton polygon and the puncture point can be seen in Figure 2.2. A com-

putation reveals that the coordinates of the points are (15,15,15). Ergo, we would
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x

y

•
y2

•x

◦puncture point

Newton polygon

Figure 2.1: Newton polygon of (x, y2)

have gotten the same result, if we had projected the problem to the x, y plane. Alge-

braically, this is equivalent to computing FT (I ′) of I ′ = (x20y10, x10y20) ⊂ K[x, y], as

seen in Figure 2.3. We later formulate how to do these reductions systematically.

2.1.2 Hernandez’s Splitting Matrix and Splitting Polytope

Recall our multiexponent notation: we denote xµ11 x
µ2
2 · · ·x

µt
t as xµ. Consider

the monomial ideal I = (xµ1 , ...,xµs), µj = (µ1j, ..., µtj) ∈ Zt≥0, j = 1, ..., s, in

K[x1, ..., xt] where K can be any field. The Splitting Matrix of I is M = {µij}. It

is a matrix with non-negative integer entries of size t× s; every column represents a

monomial in the generating set and every row corresponds to a variable.

Unless defined otherwise, for a vector k = (k1, ..., ks) ∈ Zs≥0, we denote by |k|

the sum of its entries (not to be confused with its norm), and max k as its maximal

entry.

(II.9.1) |k| = k1 + k2 + ...+ ks

(II.9.2) maxk = max
1≤j≤s

kj
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Figure 2.2: Newton polygon of (x20y10z14, x10y20z15)

x

y

•
x10y20

•
x20y10

◦puncture point

Newton polygon

Figure 2.3: Newton polygon of (x20y10, x10y20)
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Also, we use � to denote component-wise inequality between vectors, i.e.

k � k′ ⇐⇒ kj ≤ k′j, ∀1 ≤ j ≤ s

Finally, we denote 1t = (1, ..., 1) ∈ Zt.

Now we are ready to compute FT (I) using the splitting matrix M , as proven in

[Her16, Proposition 36]:

Theorem II.10. Consider the monomial ideal I = (xµ1 , ...,xµs) ⊂ K[x1, ..., xt],

where K is any field. Let M be I’s splitting matrix. Then

FT (I) = max{|k| | k ∈ Rs, Mk � 1t}

Discussion II.11. From Theorem II.10 we can see again that FT (I) is inde-

pendent from the underlying field. In fact it is a property of the matrix M and

we can denote it as FT (M). This invariant can be computed for any matrix with

non-negative integer entries that does not have a row or a column of zeros.

Definition II.12 (The Splitting Polytope). Consider the monomial ideal I =

(xµ1 , ...,xµs) ⊂ K[x1, ..., xt], where K is any field. Let M be I’s splitting matrix.

The set

{k ∈ Rs
≥0 |Mk � 1t}

is called the Splitting Polytope of M .

The splitting polytope of M is different from the Newton polygon; the former

lives in Rs, where s is the number of monomials generating I, while the latter lives

in Rt, where t is the number of variables.

To obtain the value FT (I), one takes the hyperplane in Rs defined by Lc :=

V(k1 + ... + ks − c) with c = 0, and slides it along the direction 1s, i.e. increasing

c. We identify the largest value c such that for any ε > 0, the hyperplane Lc+ε is no
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longer intersecting the splitting polytope, while Lc does. This value of c is FT (I).

Put differently, if S(I) denotes the splitting polytope of I, then:

FT (I) = sup{c | V(k1 + ...+ ks − c) ∩ S(I) 6= ∅},

and we can replace the supremum with maximum since S(I) is compact.

With that geometrical interpretation in mind, we later present a systematic proce-

dure of eliminating monomials to get a new ideal I ′ and thus simplifying the splitting

polytope while preserving the value FT (I) = FT (I ′).

Example II.13. Let

M =

 1 2 0

2 1 6

 .
M represents the ideal I = (µ1,µ2,µ3) = (xy2, x2y, y6). In Figure 2.4 we can

see M ’s splitting polytope. Sliding the hypersurface |k| = c until it leaves the

polytope reveals that FT (I) = 2/3. Note that the point of intersection happens

on the µ1µ2-plane, so we would get the same F -pure threshold value if we take

I ′ = (µ1,µ2) = (xy2, x2y). That is, eliminating the last column of M .

2.2 Simplifying Splitting Matrices

Recall from the previous section that the value of the F -pure threshold of a

monomial ideal can be regarded as an invariant of a splitting matrix, which can be

any matrix of non-negative integer values where no row or columns is all zeros. In

this section, we will show a procedure of systematically simplifying a splitting matrix

while preserving the value FT (M).

Definition II.14. The unit simplex, denoted as C = C(S) is a set in Rs defined by:

C(s) := {k ∈ Rs | 0 ≤ kj ≤ 1 for all 1 ≤ j ≤ s and |k| = 1}
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Figure 2.4: The splitting polytope of M and the hypersurface |k| = 2/3
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When the dimension s is understood from the context, we might just write C.

Notice that C is the intersection of the unit cube Is with the hyperplane |k| =

k1 + ... + ks = 1, thus compact. Also note that that C is convex: If k,k′ ∈ C, then

for any λ ∈ [0, 1], the line of vectors `(λ) = (1− λ)k + λk′ is in C as the entries are

all between 0 and 1, and their sum is still 1.

Definition II.15. Let M ∈ Zt×s be a splitting matrix. Let C = C(s) be the unit

simplex. Then we define:

β(M) = min
C
{maxMk} .

Let us show that the usage of min instead of inf is justified:

Proposition II.16. Let M ∈ Zt×s be a splitting matrix (so without a column with

only zero entries). Denote C = C(s). Then there exists a vector k ∈ C that exhibits

infCmaxMk. Moreover, 0 < β(M).

Proof. Denote β = infCmaxMk. The function maxMk : Rs → R is continuous,

thus obtains its extrema values on the compact set C. Let k ∈ C a vector that

obtains β. Then 0 < β since the entries of M are non-negative integers, and the

entries of that k are non-negative, while one of the kj’s must be non-zero and any

column in M must contain a non-zero entry.

The next proposition reveals the relation between β(M) and FT (M).

Proposition II.17. Let M ∈ Zt×s be a splitting matrix. Denote C = C(s). Then

β(M) = 1/FT (M).

Proof. Suppose that k ∈ C achieves β = β(M). Define k′ = 1
β
k. Observe that Mk′ �

1t, thus k′ is in the splitting polytope, and its sum of entries is 1
β

by Theorem II.10
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we conclude:

1

β
≤ FT (M)⇒ 1

FT (M)
≤ β

On the other hand, consider a vector k achieving FT (M), that is: Mk � 1t and

|k| = FT (M). Define k′ = 1
FT (M)

k. Notice that k′ ∈ C, and maxMk′ ≤ 1
FT (M)

. By

definition: β ≤ maxMk′ ≤ 1
FT (M)

so we conclude:

β(M) = 1/FT (I)

Discussion II.18. The characterization in Definition II.15 leads to an important

insight regarding the invariant β(M). Working with k ∈ C can be interpreted as

minimizing a “convex” linear combination in the columns space of M while we are

maximizing the entries of Mk. So, in some sense, we are minimizing over the columns

while maximizing over the rows. Let us formulate that idea:

Proposition II.19. Let M = {µij} ∈ Zt×s≥0 be a splitting matrix. Denote the ith

row as µi and the jth column as µj.

1. Let M ′ be the matrix obtained by deleting the ith row from M . Then FT (M) ≤

FT (M ′).

2. Suppose the µi � µi′ , and let M ′ be the matrix obtained from M after deleting

the ith row (the “smaller” row). Then FT (M) = FT (M ′).

3. Let M ′ be the matrix obtained by deleting the jth column from M . Then

FT (M ′) ≤ FT (M).

4. Suppose the µj′ � µj, and let M ′ be the matrix obtained from M after deleting

the jth column (the “bigger” column). Then FT (M) = FT (M ′).
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Proof. We shall use Definition II.15 and prove the proposition for β(M), which is

sufficient due to Proposition II.17.

1. Let k obtain β(M), i.e. maxMk = β(M). So maxM ′k ≤ β(M) since we are

deleting an entry from Mk. Ergo, β(M ′) ≤ β(M).

2. Let k′ obtain β(M ′), i.e. maxM ′k′ = β(M ′). Consider Mk′. By the given, the

ith entry of Mk′ is smaller than the entry in the i′ spot, thus smaller than the

maximal entry. So maxM ′k = β(M ′) and thus β(M) ≤ β(M ′). Considering

the previous statement, we are done.

3. Every vector k′ ∈ C(s − 1) give rise to a vector k ∈ C(s) with Mk = M ′k′;

just add 0 entry in the jth spot to k. Suppose k′ obtain β(M ′) and let k′ give

rise to k as above. So β(M ′) = maxMk is a candidate to be β(M). Ergo

β(M) ≤ β(M ′).

4. Let k = (k1, ..., kj, ..., ks) obtain β(M), so maxMk = β(M). Define a new

vector h = (h1, ..., hs) with hj = 0, hj′ = k′j + kj and all the rest of the entries

are identical to k’s entries. We have that h ∈ C(s) while Mh �Mk. Eliminate

the jth entry to get h′ with M ′h′ = Mh. Thus:

β(M ′) ≤ maxM ′h′ = maxMh ≤ maxMk = β(M).

Considering the previous statement, we are done.

The row and column elimination describe in Proposition II.19 can be done

repeatedly. We can even say more:

Proposition II.20. Let M = {µij} ∈ Zt×s≥0 be a splitting matrix. Denote the ith

row as µi and the jth column as µj.
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1. Suppose that k achieves β(M), i.e. maxMk = β(M), while the ith entry of

Mk is strictly less than β(M) (we shall refer it as a sub-β entry.) Let M ′ be

obtained from M be deleting the ith row. Then FT (M) = FT (M ′).

2. Suppose that k achieves β(M), while the jth entry of k is 0. Let M ′ be obtained

from M be deleting the jth column. Then FT (M) = FT (M ′).

Proof.

1. Without loss of generality, we can assume that we are deleting the last row

since we can rearrange the rows of M . From Proposition II.19 we already

have β(M ′) ≤ β(M). For the sake of contradiction, suppose β(M ′) < β(M).

So we have some vector k′ such that M ′k′ has entries of β(M ′) or less. Adding

back the last row we get that Mk′ has the same entries as Mk except the last

entry, which must be β(M) or more due the minimality of β(M). Now consider

a line of vectors in C = C(s): `(λ) = (1 − λ)k + λk′ for λ ∈ [0, 1]. Notice that

`(0) = k, `(1) = k′ and |`(λ)| = 1. Each entry of M`(λ) is a linear function

in λ, starting from the entry in Mk and ending in the relevant entry in Mk′.

Except the last row, all the entries start from the values β(M) or less, and end

in a value β(M ′) or less. The last entry starts from a sub-β(M) value and ends

in an entry of β(M) or more. Observe Figure 2.5. Looking at the maximal

point of intersection of the graph of the last entry with all other graphs, one

see how maxM`(λ) < β(M) for some λ ∈ (0, 1) contradicting the minimality

of β(M).

2. The proof is very similar to the last statement in Proposition II.19. Let

k = (k1, ..., kj, ..., ks) obtain β(M), i.e. maxMk = β(M). Eliminate the jth
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λ

entries of Mk(λ)

•β(M)

•
β(M ′)

•
last entry

◦

contradiction

Figure 2.5: Contradiction to the minimality of β(M)

entry to get k′ with M ′k′ = Mk. Thus:

β(M ′) ≤ maxM ′k′ = maxMk = β(M).

Together with Proposition II.19, we are done.

Discussion II.21. Let us discuss the interpretation of eliminating rows and columns

while preserving FT (M), as seen in Proposition II.20. For computational purposes

we are working with a matrix M , while the underlying algebraic structure is a mono-

mial ideal I ⊂ K[x1, ..., xt]. When we are eliminating the ith row, we are eliminating

the variable xi, or setting xi = 1 if you will. This changes the ideal and the ambient

ring without changing the F -pure threshold. Geometrically, we are projecting the

Newton polygon onto the hypersurface corresponding to µi = 0, while preserving the

coordinates of the puncture point.

When we are eliminating the jth column, we are eliminating a generating mono-

mial of I, and getting a different ideal with the same F -pure threshold. Geometri-

cally, we are projecting the splitting polytope onto the hypersurface µj = 0, while
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Figure 2.6: Computation of β(M)

preserving the value representing FT (I), as described in Discussion II.11.

Example II.22. Recall Example II.9 and observe the splitting matrix

M =


20 10

10 20

14 15

 .

Set k = [a, 1 − a]Tr ∈ C(2) (We use Tr since technically, we need k to be a column

vector). Then Mk = [10a+ 10,−10a+ 20,−a+ 15]Tr. A simple sketch(Figure 2.6)

shows that a = 0.5 yields the vector [15, 15, 14.5] and β(M) = 15, as it is the minimal

maximal entry. The third row corresponds to a sub-β entry, thus could have been

disregarded, and the computation could have been executed on

M =

 20 10

10 20

 .
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Corollary II.23. Let M ∈ Zs×t be a splitting matrix, representing a monomial ideal

I ⊂ K[x1, ..., xt]. Then there exists a sub-matrix M ′ ∈ Zs′×t′ , which is obtained by

deleting rows and columns, with the following properties:

1. FT (M) = FT (M ′) (i.e. the F -pure threshold of I is the same of the F -pure

threshold of some other ideal J , which is obtained by removing generators and

eliminating variables from I.)

2. For all k ∈ C(s′) with maxM ′k = 1/FT (M) we have M ′k = 1/FT (M)1t′ and

all the entries of k are non-zero.

3. The kernel of M ′, as a linear map Rs′ → Rt′ , is of dimension 0.

4. M ′ is a invertible square matrix.

5.

FT (M) = 1Trt′ M
′−1

1t′ ,

i.e. the sum of entries of the inverse matrix.

6. FT (M) ∈ Q

Proof. The first two statements are a result of Proposition II.20 applied repeatedly,

until no further elimination can be done.

The third statement follows from the previous one: If the kernel of M ′ has dimen-

sion 2 or more, we can find a vector in the kernel v where |v| = 0. Now take k ∈ C(s′)

such that M ′k = (1/FT (M))1t′ , i.e. achieves β(M). The line `(λ) = k+λv contains

vectors that satisfy M ′`(λ) = (1/FT (M))1t′ and |`(λ)| = 1. Moreover, the line `(λ)

intersects the unit simplex C = C(s′) as k ∈ `(λ) ∩ C and k is not on the boundary

of C as all of its entries are positive. By convexity of the unit simplex, we have a line

segment in C achieving β(M), thus we must have a vector on the boundary achieving

β(M), and this is a contradiction. The only other option aside from a trivial kernel,
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is that the kernel is one dimensional, and spanned by a vector w with, without loss

of generality, |w| > 0. For a small ε > 0 consider the following equation, which is

true for all ε:

M ′`(ε) = 1t where `(ε) = FT (M)k + εw

For a small enough epsilon we get that the entries of `(ε) are all positive and |`(ε)| >

FT (M). This contradicts Theorem II.10. As the the forth statement, since M ′

is injective, s′ ≤ t′. So just pick a basis for the row space, and get a new matrix

M ′. We claim that β(M ′) = β(M) and suffices to prove that eliminating one row

that is a linear combination of the rest of the rows does not change the value of

the F -pure threshold. So, without loss of generality, assume that M ∈ Zt×s is an

injective matrix satisfying the first 3 statements and let M ′ be a matrix obtained by

eliminating the last row that happens to be linearly dependent of the others:

µt = α1µ
1 + ...+ αt′−1µ

t−1.

Denote β = β(M) and β′ = β(M ′). Notice that since Mk = β1t, we have:

α1 + ...+ αt−1 = 1

By Proposition II.19 one can see that β′ ≤ β. For the sake of contradiction,

assume that β′ < β and we have some k′ such that maxM ′k′ ≤ β′. By observing at

Mk′ we have to conclude that the first t− 1 entries must be β′ or less while the last

entry must be more than β. Notice that:

β′ = β′α1 + ...+ β′αt−1 ≤ (Mk′)1α1 + ...(Mk′)t−1αt−1 = (Mk′)t > β,

which is a contradiction.

Lastly, FT (M) is the sum of entries of k such that M ′k = 1t′ so it is in fact:

1Trt′ M
′−1

1t′ .
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Since M has integer entries, M ′−1 has rational entries, so 1Trt′ M
′−11t′ ∈ Q

Remark II.24. Note that for a given splitting matrix M , one can find FT (M) using

Linear Programming:

FT (M) = max
k

1s · k under Mk � 1t, 0 � k.

Thus there are efficient algorithms of Finding FT (M). Once we have that value, we

can follow the algorithm presented next (in Discussion II.25) to find the invertible

sub-matrix as in Corollary II.23.

Discussion II.25 (Monomial Ideal Reduction Algorithm). Given M , follow

this algorithm to find an invertible sub-matrix as in Discussion II.25.

1. If there are any dominating row and/or columns, eliminate them and repeat

from the top.

2. Find FM(T ) using Linear Programming (Remark II.24). The output includes

a vector k such that :

|k| = FT (M), Mk � 1t

3. Let v := Mk. Mark all rows corresponding to entries of v that are strictly less

than 1. They will be eliminated shortly.

4. If the entries of k are all positive and M has a kernel vector w 6= 0 with |w| = 0,

follow the next procedure:

(a) For any 1 ≤ i ≤ s, let λi := −ki/wi where if wi = 0 let λi = −∞.

(b) Let λ := max1≤i≤s λi. Since w 6= 0, λ is finite. Let i′ be the index such that

λ = λi′ .

(c) Let k′ := k + λw. Note that for any i:

k′i = ki + λwi ≥ ki + (λi)wi = ki,
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while at least one of the entries, the i′ one, is 0.

(d) Note that Mk = Mk and |k| = |k′|. Redefine k := k′.

5. Mark all columns corresponding to a 0 entry in k. They will be eliminated

shortly.

6. Let M ′ be the sub-matrix obtained by eliminating all rows and columns we

previously marked.

7. If M ′ 6= M , Go back to to the top and repeat the process for M ′. Note that it

is guaranteed that FT (M) = FT (M ′).

8. Otherwise, M ′ must be injective (see Corollary II.23). If M is not invertible,

choose a basis for the row space and eliminate all rows not in it. Then repeat

the algorithm from the top. Otherwise the process is done.

Remark II.26. Note that the algorithm is not fully deterministic as one can choose

w ∈ kerM in many ways, for example replace w by −w. Also, a basis for the row

space is not unique. Indeed the invertible sub-matrix of M is not unique in general.

Furthermore, the k we get from the Linear Programming algorithm is not unique in

general. Please refer to Appendix A for a MATLAB implementation example.

Remark II.27. Let us analyze the time complexity of this algorithm, from a com-

puter science standpoint. For simplicity, let n = max{s, t}. The outer loop is done,

in the worst case, s+ t ≤ 2n times: once for every row and every column being elim-

inated. In the loop there are a sequence of sub-procedures: find dominating rows

and columns, linear programing, solving linear system of equations, finding rank and

finding row space. Each of them can be done in a polynomial time; finding dominat-

ing rows and columns is easily seen to be cubic, while the Gauss elimination is cubic

as well (this is an easy computations, although it can be even more improved as seen
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in [Str69]), which facilitates all the sub-procedures except for the linear program-

ming. In a sense, the linear programming is the bottle neck of this algorithm. For

the most general case, finding a polynomial time algorithm is one of Smale’s open

problems, however an O(n3.5) algorithm is known when the problem is posed over Q,

like the ”interior point methods” (see [Kar84] and [Sma98, Problem 9]). Moreover,

the linear programming need to be executed only once, to find the value of FT (M)

and of the very first k. In later iterations, the value of FT (M) is proven to stay the

same, while the same k can also be used between iterations, after eliminating the 0

entries. We conclude that the algorithm can runs in O(n4) time.

Example II.28. We shall demonstrate the algorithm using the ideal:

I = (y2z, x3, x2z, xz2).

Note that this is the support of the Legendre form of the defining polynomial of an

elliptic curve over an algebraically closed filed with characteristic not equal to 2, as

in equation (IV.2.1). The matrix is:

M =


0 3 2 1

2 0 0 0

1 0 1 2

 .

There are no dominating rows or columns. After applying linear programming, one

can see that FT (M) = 1 and that we can take:

k =



1/2

1/6

1/6

1/6


, Mk =


1

1

1

 .



29

We cannot mark any row for elimination, but we can find a kernel vector:

w =



0

−1

2

−1


, |w| = 0

Using k′ = k − 1
12
w = [1/2, 1/4, 0, 1/4]Tr, one can mark the third column for elimi-

nation and get:

M ′ =:


0 3 1

2 0 0

1 0 2

 .
One can check that M ′ is invertible and the process actually ends here.

However, if we work with k′ = k + 1
6
w = [1/2, 0, 1/2, 0] we can eliminate the

second and the fourth column and get:

M ′ =


0 2

2 0

1 1

 .

One can see that M ′[1/2, 1/2]Tr = [1, 1]Tr and that M ′ is injective. So we can choose

an arbitrary basis for the row space. Once choice would be:

M ′′ =

 0 2

2 0

 .
Another choice would let us to eliminate further by using dominating columns and

rows:  0 2

1 1

⇒
 0

1

⇒ [
1

]
.
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Or  2 0

1 1

⇒
 0

1

⇒ [
1

]
.

Translating back to ideals, we get that all of the following monomial ideals, in their

respective rings or in the original ring, have a the same F -pure threshold of 1 we

(add arrows to illustrate how the algorithm produced the different ideals from the

original one):

(y2z, x3, x2z, xz2) //

��

(y2z, x3, xz2)

(y2z, x3, xz2) //

��

(y2, x2)

(z)

Example II.29. When invoking the Monomial Ideal Reduction Algorithm, it

is important to follow all steps. We emphasize that the algorithm terminates only

when we are executing an iteration that incurs no further reductions. For example,

if one is given an invertible matrix M it is not true that the sum of the entries of

the inverse matrix is FT (M), as more reductions may be done. Here is a concrete

example:

M =


5 1 2

1 4 3

2 3 0

 .
When we executes the algorithm, we get that FT (M) = 5/13 and the matrix is

reduced to:

M ′ =

 5 2

1 3

 ,
while the sum of entries of M−1 is 18/49.
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Remark II.30. Given a monomial ideal, I, it gives rise to a splitting matrix M . We

apply the algorithm above to obtain one or more invertible sub-matrices with the

same F -pure threshold, each represents a monomial ideal J in a possibly different

ring, with the same F -pure threshold. We can even put J back in the original ring

by re-inserting the eliminated variables. Then these J ’s may or may not contain I as

they are obtained by eliminating certain generators, but also by eliminating certain

variables from other generators.

Question II.31. Is there a relations between these J ideals and the minimal primes

of I or the primary decomposition of I?

Going back to Example II.28, we start with:

I = (y2z, x3, x2z, xz2),

apply the algorithm and get:

(y2z, x3, xz2), (y2, x2), (z)

One can compute that I ⊂ K[x, y, z] has two minimal primes and one embedded

prime,

P1 = (x, y), P2 = (x, z), P3 = (x, y, z),

respectively. Also, one can compute a primary decomposition of I. The primary

ideals that must appear in the decomposition are:

J1 = (x, y2), J2 = (x3, z), where Rad(Ji) = Pi

For the embedded prime we can take, for example, J3 = (x2, y2, z2), so:

I = (x, y2) ∩ (x3, z) ∩ (x2, y2, z2)
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Example II.32. Fix integers b, c ≥ 1. Take the ideal:

I = (x2c+byb, x2c+b−1, yb+11, ..., xb+1y2c+b−1, xby2c+b) ⊂ K[x, y]

The splitting matrix is

M =

 2c+ b 2c+ b− 1 . . . b+ 1 b

b b+ 1 . . . 2c+ b− 1 2c+ b

 .
Using Newton Polygon method (see Theorem II.6), we get a that the boundary of

the polygon is determined by a single line segment containing integer points (α, β)

such that 0 ≤ α ≤ 2c+ b and α+ β = 2c+ 2b. The “puncture point” is (b+ c, b+ c),

so FT (M) = 1/(b + c). Notice that taking k = [1/2, 0, ..., 0, 1/2]Tr gives Mk =

[(b+ c), (b+ c)]Tr], allowing us to eliminate almost all the columns of the matrix and

get:

M ′ =

 2c+ b b

b 2c+ b

 ,
which is invertible and has the same F -pure threshold.

Question II.33. If we begin with an m-primary monomial ideal I, can we improve

the algorithm?

Say I is generated by xa11 , x
a2
2 , ..., x

at

t , call them singletons, and some extra mono-

mials not of the form xaii , call them mixed. We can find examples where the FT (I)

is set only by singletons, only by the mixed, or a combination of them:

For

I = (x3, y3, xy), M =

 3 0 1

0 3 1

 ,
an invocation of the algorithm shows that FT (M) = 1 and since M [001]tr = 1, we

can eliminate the first two columns and just use the last mixed monomial. That is,
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we can reduce the ideal to (xy). Further use the algorithm to reduce to (x) or (y),

i.e. generated by the mixed monomial.

For

I = (x3, y2, z3, x2z2), M =


3 0 0 2

0 2 0 0

0 0 3 2

 ,
we compute FT (M) = 7/6 and the reduced ideal is (x3, y2, z3), i.e. generated only

by the singletons.

Finally, for

I = (x6, y2, z6, x2z2), M =


6 0 0 2

0 2 0 0

0 0 6 2

 ,
we compute FT (M) = 1 and the reduced ideal is (y2, x2z2), (which then turns to

(y2, x2)), i.e. we have to use a combination of singletons and mixed monomials.

2.2.1 Improvements Using The Integral Closure

Discussion II.34. Recall the algorithm from Discussion II.25. Suppose we are

interested in computing FT (I) for a monomial ideal I, with a corresponding splitting

matrix M . Now, let f be an element in the ring that is not in I, but the F -pure

threshold of the ideal J = I + (f) is the same as FT (I). What are the implications

of computing FT (I) by actually invoking the algorithm on J = I+(f)? One can see

that we might get more options for k in step 2 of the Monomial Ideal Reduction

Algorithm. Ergo, we enlarge the matrix and take a computational performance hit

with the prospect of maybe ending up with a smaller matrix and a simpler ideal when

the algorithm terminates. A systematic way to do this enhancement is by adding

elements of the integral closure of I, an approach we explore in this subsection.
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We are working with the following standard definition (see [HS06, Definition

1.1.1]):

Definition II.35 (Integral Closure). Let I be an ideal in a ring R. An element

r ∈ R is said to be integral over I if there exist an integer n and elements ai ∈ I i,

i = 1, ..., n, such that:

rn + a1r
n−1 + ...+ an−1r + an = 0

The integral closure of I in R, denoted I, consisting of all r ∈ R that are integral

over I.

It is well known that I is an ideal itself, and when I is a monomial ideal, I is a

monomial ideal as well. One can refer to the first chapter of [HS06] for more details.

The following shows the the Newton polygon of I and I is the same:

Theorem II.36. Let I be a monomial ideal in K[x1, ..., xt], where K is a field. Let

µ = (µ1, ..., µt) ∈ Zt≥0 be a point in Rt. Then µ is in the Newton polygon of I if and

only if xµ ∈ I

Proof. See [HS06, Proposition 1.4.6][Eis08, Exercise 4.23].

We deduce the well known fact about the F -pure threshold, which is actually true

for any ideal:

Corollary II.37. Let I be a monomial ideal in K[x1, ..., xt], where K is a field.

Then the F -pure threshold of I and of the integral closure of I is the same.

Proof. Since the F -pure threshold can be described as an invariant of the Newton

polygon of I, the statement is immediate from Theorem II.36.

Using these results, we have a systematic way to execute the enhancement de-

scribed in Discussion II.34: create a new ideal by adding monomials in the Newton
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Figure 2.7: Newton polygon of (x2, y2)

polygon that are close to, in the Euclidean sense, the “puncture point” described in

Theorem II.6. In the lack of such information, one can just invoke the algorithm

on I altogether.

Example II.38. Consider I = (x2, y2) ⊂ K[x, y]. One can draw the Newton polygon

and observe that FT (I) = 1 as the puncture point is (1, 1) (see Figure 2.7). An

execution of the Monomial Ideal Reduction Algorithm terminates immediately

as we cannot eliminate a generator or a variable. However, if we use the theorems

above, we conclude that xy is in the integral closure of I, since (1,1) is part of the

Newton polygon. Indeed, r = xy satisfies r2 − x2y2 = 0. So let us invoke the

algorithm on (x2, xy, y2) with a splitting matrix of:

M =

 2 1 0

0 1 2

 .
Since FT (I) = 1, we can choose to work with k = [0, 1, 0]Tr, and eliminate the left

and the right columns. Then we can eliminate one dominated row and end up with

M ′ = [1] which corresponds to either (x) or (y).

Corollary II.39. Let I ⊂ K[x1, ..., xt] be a monomial ideal, where K is a field.
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Suppose that FT (I) = 1
a

for some integer a > 0. Then I contains the element

xa1 · · ·xat and the Monomial Ideal Reduction Algorithm invoked on I or on

I + (xa1 · · ·xat ) can output a principle ideal (xa1).

Proof. If FT (I) = 1
a
, the “puncture point” is (a, a, ..., a). Ergo, by Theorem II.36,

xa1 · · ·xat ∈ I. When invoking the algorithm in either I or I+(xa1 · · ·xat ), the splitting

matrix consist of a column of [a, a, ..., a]Tr. Thus, step 2 of the algorithm can produce

k with all zero entries, except an entry of 1/a corresponding to said column. So we

eliminate all other columns, and the next step is to eliminate all dominated rows.

Finally we end up with a splitting matrix of M ′ = [a] as required.

Discussion II.40. Suppose that we have all the monomials generating an integrally

closed ideal I in K[x1, ..., xt]. Observe at the Newton polygon in Rt. The puncture

point is on a facet of the boundary of that polygon, which is defined by t′ monomials,

where 1 ≤ t′ ≤ t. It is easy to see that the monomials defining this facet have to be

linearly independent. Ergo, we can eliminate all other monomials and immediately

be left with an injective splitting matrix. We now complete the algorithm by taking a

basis for the row space. We conclude that enough information on the integral closure

of the ideal can make the algorithm terminate almost immediately.

Discussion II.41. The takeaway of this subsection is that the Monomial Ideal

Reduction Algorithm(Discussion II.25) works best, in terms of obtaining a

simpler output, when invoked on integrally closed ideals. However, note that these

ideals have more generators in general, so the time complexity of the algorithm

is hurt. For example, if we have s generators for I, the algorithm runs in O(s4)

(see Remark II.27); adding s′ number of generators results in running time of

O((s + s′)4) = O(s4) + O(s′4). So we pay O(s′4) of time in order to get a possibly
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simpler ideal when the algorithm terminates.

We can give a more accurate bound of the time complexity if we are given a

concrete algorithm and if we notice that s becomes s+ s′ but t stays the same. One

can look at the algorithm in Appendix A and see that finding dominating columns

is an O(ts2) task, and the outer loop is done s+t times. Ergo, the O(n4) bound, with

n = max(s, t), can be written as O(ts3). This makes the additional time complexity

be O(ts′3) instead of O(s′4) when introducing s′ more generators.



CHAPTER III

F -Pure Threshold of Polynomials and Deuring Polynomials

We dedicate this chapter to develop useful machinery for the computation of the

F -pure threshold of polynomials. We start by observing the direct computation con-

sisting of raising polynomials to integer powers and then we deduce on how to com-

pute bounds by looking at the coefficients of “critical” monomials (Lemma III.2).

In the cases presented in later chapters, one critical coefficient that keeps show-

ing up is a polynomial expression which we call the Deuring Polynomial (see later

Lemma IV.5). These polynomials are closely related to the Legendre Polynomials,

which have been investigated for almost 250 years. For the F -pure threshold compu-

tation, is beneficial to analyze the Deuring polynomials, and specifically their roots

mod p. This is the goal of this chapter.

3.1 F -pure Threshold of Polynomials

Definition II.1 is used to define the F -pure threshold of the ideal generated

by a polynomial f , or just the F -pure threshold of the polynomial f . In this case,

the characteristic of the underlying field is important. Recall our definition for the

F -pure threshold of a polynomial (I.1.2):

Definition III.1. Let K denote a field of prime characteristic p and let R =

K[x1, ..., xt]. Fix any polynomial f ∈ R. The F -pure threshold of f (at the ori-

38



39

gin) is:

(III.1.1) FT (f) := sup

{
N

pe

∣∣∣∣ N, e ∈ Z>0, f
N 6∈ (xp

e

1 , ..., x
pe

t )R

}
.

Let us present two useful observations for computing FT (f). Let K be a field.

A polynomial f ∈ K[x1, ..., xt] is a linear combination of monomials over K and

recall our multiexponent notaion; denote the monomial xµ11 · · ·x
µt
t by xµ where µ

is the multiexponent [µ1, ..., µt]. Similarly, for s scalars in K, b1, ..., bs, we denote

b = [b1, ..., bs]. Now, let xµ1 , ...,xµs be the monomials of f . Using the usual meaning

of dot product we have:

f = b · [xµ1 , ...,xµs ] = b1x
µ1 + ...+ bsx

µs .

For a multiexponent k = [k1, ..., kt] we denote max k as the maximal power in the

multiexponent k, i.e.

max k = max[k1, ..., kt] = max
1≤i≤t

ki.

Using this notation, we have the following straightforward way to produce upper and

lower bounds for FT (f):

Lemma III.2. Let R = K[x1, ..., xt] where K is a field of prime characteristics p,

and let f ∈ R. Let N be a positive integer. Raise f to the power of N and collect

all monomials, so that:

(III.2.1) fN =
∑

distinct multi-exponents k

ckx
k.

Note that all but finitely many ck’s are 0. Fix e ∈ Z≥0 and consider N
pe

. Then:

1. N
pe
< FT (f) ⇐⇒ ∃k such that ck 6= 0 and max k < pe.

2. FT (f) ≤ N
pe
⇐⇒ ∀k, either ck = 0 or max k ≥ pe.
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Proof. This is immediate from the definition (III.1.1) and from [BFS13, Prop 3.26]

which implies that for any N
pe
∈ [0, 1],

fN 6∈ (xp
e

1 , ..., x
pe

t )R ⇐⇒ N

pe
< FT (f).

Lemma III.3. Let f be a homogeneous polynomial of degree d in t variables. Let

xk be a monomial in fN with a non-zero coefficient. Denote k = [k1, ..., kt]. Then

k1 + ... + kt = dN . Moreover, max k ≥ Nd/t and if max k = Nd/t then k =

[Nd/t,Nd/t, ..., Nd/t].

Proof. The first statement is immediate since any monomial of fN is of degree dN .

Ergo, we cannot have that all t entries of k are less than Nd/t. Lastly, if max k =

Nd/t but another power is less, then k1 + ...+ kt is less than Nd.

Discussion III.4. Let us present a few well known facts about FT (f). Unlike

the monomial ideal case, for different p’s, we might get different FT (f)’s, as the

coefficients in (III.2.1) can be zero in one characteristic and non-zero in another. For

example, FT (x2 + y3) is 5/6 if p ≡ 1 (mod 6) and 5/6(1 − 1/5p) if p ≡ 5 (mod 6)

(see [BFS13, Example 3.11]).

If we enlarge the underlying field, that is performing base change, nothing in the

above computation changes and the value FT (f) is preserved. A common practice

is to move to the algebraic closure of the field. It is also an easy exercise to see that

FT (f) is preserved under a linear change of variables.

Every polynomial f is supported by a set of monmials, which generates a mono-

mial ideal denoted Supp(f). It is natural to explore the connection between FT (f)

and FT (Supp(f)). Since f ∈ Supp(f), it is immediate from Definition II.1 and
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from the bounds in Discussion II.3 that:

FT (f) ≤ min{1, FT (Supp(f))}

3.2 Definition of Deuring Polynomials

Definition III.5. Let n ∈ Z≥0. Define the following polynomial in Z[λ]:

H {n} (λ) :=
n∑
i=0

(
n

i

)2

λi

Following [Mor06], we call it the Deuring Polynomial1 of degree n. When the

indeterminant λ is understood from the context we omit it and write H{n}. We

often abuse notation and write H{n} ∈ Fp[λ] for the natural image mod p.

Remark III.6. The Deuring polynomials H{n} are closely related to the Legen-

dre polynomials arising as solutions to the Legendre differential equation. Legendre

polynomials are of importance to many physical problems, including finding the grav-

itational potential of a point mass, as in Legendre’s original work [Leg85]. Indeed, if

Pn(x) denotes the nth Legendre polynomial then:

H{n}(λ) = (1− λ)nPn

(
1 + λ

1− λ

)
,

as follows by a simple substitution and a known “textbook” formula for the Legendre

polynomials ([Koe14, Exercise 2.12]); this is pointed out in [BM04] and [CH14]. In

the next sections, we establish several properties of Deuring polynomials, which can

also be deduced from analogous facts about Legendre polynomials. We include direct

algebraic proofs not relying on typical analytic techniques such as orthogonality in

function spaces. In this way, we keep this chapter self-contained and, we hope, more

straightforward than relying on the vast literature on Legendre polynomials. In

section 3.5 we show how the main results on Deuring polynomials can be deduced

from known theorems on Legendre Polynomials.
1Arguably it first appeared in [Deu41]
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3.3 Basic Properties

We first recall some well known techniques for working in characteristics p. Fix a

prime p. Every integer N can be written uniquely in its base p-expansion (or simply

its p-expansion) as follows: fix a power e such that N < pe+1. Then there exist

unique integers 0 ≤ a0, ..., ae ≤ p− 1 such that

N = a0p
0 + a1p

1 + ...+ aep
e

We can also say that N =
∑∞

e=0 aep
e while all but finitely many ae’s are zero.

We recall how to compute binomial and multinomial coefficients mod p.

Theorem III.7 (Lucas’s Theorem). [See [Luc78] and [Dic02]] Let k = (k1, ..., kn) ∈

Nn and set N = k1 + ...+ kn. Fix a prime p. Let e be an integer such that N < pe+1.

Write each of the ki’s in their base p-expansion:

ki = ai0p
0 + ai1p

1 + ...+ aiep
e

(some aij’s may be 0). Also write N in its base p-expansion:

N = b0p
0 + b1p

1 + ...+ bep
e

Then the multinomial coefficient
(
N
k

)
satisfy:(

N

k

)
=

N !

k1! · · · kn!
≡
(

b0

a10 a20 ... an0

)(
b1

a11 a21 ... an1

)
· · ·
(

be
a1e a2e ... ane

)
(mod p),

with the convention that if a1j + ... + anj > bj then
(

bj
a1j a2j ... anj

)
= 0. Specifically,(

N
k

)
6≡ 0 (mod p) if and only if the digits of the p-expansion of the ki’s are not

carrying when added.

Due to Lucas’s Theorem, a multinomial coefficient is 0 if and only if for some

j, the jth digit of N is not the sum of the of the jth digits of the ki’s.
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Lemma III.8. Let p be a prime. Then H{p− 1} ∈ Fp[λ] is (λ− 1)p−1.

Proof. The coefficients of H{p− 1}(λ) are the squares of the numbers appearing on

the (p−1)th row in Pascal’s Triangle mod p. Due to Lucas’s Theorem, the pth row

starts and ends with 1, while the rest of the entries are zero. Ergo, the (p− 1)th row

consists of ±1’s due to the identity:

(III.8.1)

(
n− 1

i− 1

)
+

(
n− 1

i

)
=

(
n

i

)
.

For illustration, here are the (p− 1)th and the pth rows of Pascal’s Triangle:

p− 1 : 1 −1 1 −1 ... −1 1 −1 1

p : 1 0 0 0 ... ... 0 0 0 1

So using the geometric series formula we get:

H{p− 1} = 1 + λ+ ...+ λp−1 =
λp − 1

λ− 1
= (λ− 1)p−1

Lemma III.9 (Schur’s Congruence). 2 Fix a prime p. Let H{n} ∈ Fp[λ]. Write

the p-expansion of n:

n = b0p
0 + b1p

1 + ...+ bep
e.

Then

H{n} = H{b0}1H{b1}p
1

H{b2}p
2 · · ·H{be}p

e

Proof. Denote f = H{n} and g = H{b0}1H{b1}p
1 · · ·H{be}p

e
. First notice that f

and g are of the same degree as deg f = n and deg g = b0 + b1p+ b2p
2 + ...+ bep

e = n.

Fix λi and let us compare its coefficient in both f and g. For i = 0, the coefficient

2This lemma was formulated by Schur in the context of Legendre polynomials. However, the first published proof
is due to Wahab([Wah52]) half a decade later.
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of λ0 is 1 in any Deuring polynomial, and so in f and in g. Now fix 0 < i ≤ n. In f ,

the coefficient is (
n

i

)2

.

To compute the coefficient in g, write i in its base p-expansion:

i = a0p
0 + a1p

1 + ...+ aep
e,

so

λi = λa0p
0

λa1p
1 · · ·λaepe .

Note that the largest power e, as appears in the expansion of n, is sufficient as

i ≤ n. Notice that the powers of λ in H{bj}p
j

can only be {0pj, 1pj, 2pj, ..., bjpj}.

So if j1 6= j2 then the set of powers in H{bj1}p
j1 and in H{bj2}p

j2 are disjoint except

for 0. Moreover, picking one monomial in each of factors of g and multiplying them

together yields a unique monomial of g and due to uniqueness of the p-expansion of

i, there is only one possible combination of terms in the different H{bj}(λ)p
j
’s that

can yield the monomial

λi = λa0p
0

λa1p
1 · · ·λaepe .

Namely, we need to follow its p-expansion and choose λa0 from H{b0}(λ)p
0
, λa1p from

H{b1}(λ)p
1

and so on.

g = H{b0}1 H{b1}p
1
H{b2}p

2 · · · H{be}p
e

λi = λa0p
0

λa1p
1

λa2p
2 · · · λaep

e

Ergo, if aj ≤ bj for all 1 ≤ j ≤ e, then λi appears in g with a coefficient of:(
b0

a0

)2(
b1

a1

)2p

· · ·
(
be
ae

)2pe

.

By Fermat’s little theorem, the expression is:(
b0

a0

)2(
b1

a1

)2

· · ·
(
be
ae

)2

,



45

which is precisely the coefficient of λi in f due to Lucas’s Theorem. Otherwise, if

for some j, aj > bj, then λi is not in g, and its coefficient in f is 0 as well since i and

n− i are carrying in the jth digit when added and thus
(
n
i

)
= 0.

Corollary III.10. In characteristic p:

H

{
pe − 1

2

}
= H

{
p− 1

2

}1+p+...+pe−1

Proof. We apply Lemma III.9 after writing pe−1
2

in its p-expansion and using geo-

metric series formula:

pe − 1

2
=
p− 1

2
(1 + p+ ...+ pe−1) =

p− 1

2
+
p− 1

2
p+ ...+

p− 1

2
pe−1

It is useful to denote

ne = (pe − 1)/2,

and then

n1 = (p− 1)/2.

So, we can rewrite Corollary III.10 as

H {ne} = (H {n1})1+p+...+pe−1

Note that H {n1} is the polynomial appearing later in Proposition IV.3, Theo-

rem IV.4 and Theorem V.1, so it has an important role in our computations. In

the proofs of these theorems we will encounter another polynomial: H{n1 − 1}. We

shall now investigate it, and for that we need the following definition:

Definition III.11. Fix an integer n ≥ 0. We define

F{n}(λ) ∈ Q[λ]
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to be the formal antiderivative of the polynomial H{n− 1}(λ) with constant coeffi-

cient 0.

Lemma III.12. Fix an integer n ≥ 0. Let F = F{n − 1}(λ) ∈ Q[λ], which is the

formal antiderivative of the polynomial H{n− 1}(λ) with constant coefficient 0. We

denote H{n− 1} = F ′. Then

(1− λ)F ′ + 2nF = H{n}.

Note that this equality holds characteristic 0 and thus in all positive characteristics

p such that n < p.

Proof. Let us give a specific formula for F (λ):

F (λ) =
n−1∑
i=0

(
n− 1

i

)2

(i+ 1)−1λi+1 =
n∑
i=1

(
n− 1

i− 1

)2

(i)−1λi.

Now, observe:

(1−λ)H{n−1}+2nF =
n−1∑
i=0

(
n− 1

i

)2

λi−
n−1∑
i=0

(
n− 1

i

)2

λi+1+2n
n∑
i=1

(
n− 1

i− 1

)2

(i)−1λi.

Shift the index of the middle sum to get:

(III.12.1) =
n−1∑
i=0

(
n− 1

i

)2

λi −
n∑
i=1

(
n− 1

i− 1

)2

λi +
n∑
i=1

2

(
n− 1

i− 1

)2
n

i
λi.

For i = 0, we get that only the leftmost sum contributes a constant coefficient,

which is 1 as required. Now consider the case where 1 ≤ i ≤ n. We need the following

identity to simplify the rightmost sum:

2
(
n−1
i−1

)2 n
i

= 2
(
n−1
i−1

)2 n−i+i
i

= 2
(
n−1
i−1

)2 (n−i
i

+ 1
)

=

= 2
(
n−1
i−1

)(
n−1
i

)
+ 2
(
n−1
i−1

)2
.
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So when i is fixed, the coefficient of λi in (III.12.1) is(
n− 1

i

)2

−
(
n− 1

i− 1

)2

+ 2

(
n− 1

i− 1

)(
n− 1

i

)
+ 2

(
n− 1

i− 1

)2

Combining like terms simplifies as:(
n− 1

i− 1

)2

+ 2

(
n− 1

i− 1

)(
n− 1

i

)
+

(
n− 1

i

)2

,

which further simplifies as:

=

((
n− 1

i− 1

)
+

(
n− 1

i

))2

=

(
n

i

)2

using the known identity (III.8.1). So we conclude:

(1− λ)H{n− 1}+ 2nF = H{n}.

We next develop differential equations for H{n} and F{n} that will help us to

investigate their roots.

Lemma III.13. Let n ≥ 0 be an integer and denote H = H{n} ∈ Z[λ]. Then H

satisfied the following differential equation:

(III.13.1) λ(λ− 1)H ′′ + (λ(1− 2n)− 1)H ′ + n2H = 0.

Proof. We demonstrate how to constructively find differential operators for H{n}

with a general n, working over Z. This method is easily generalized for polynomials

with similar form, as seen later in Lemma III.18.

Fix n ∈ Z>0 and denote H = H{n}(λ). Let us write down the coefficients of λi

in the polynomials H,H ′, λH ′, H ′′, λH ′′ and λ2H ′′:
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coefficient in H :

(
n

i

)2

coefficient in H ′ : (i+ 1)

(
n

i+ 1

)2

coefficient in λH ′ : (i)

(
n

i

)2

coefficient in H ′′ : (i+ 1)(i+ 2)

(
n

i+ 2

)2

coefficient in λH ′′ : (i)(i+ 1)

(
n

i+ 1

)2

coefficient in λ2H ′′ : (i− 1)(i)

(
n

i

)2

We can multiply and divide the coefficients by the same non-zero factor without

affecting the relations between them. So divide by
(
n
i

)2
to get:

coefficient in H : 1

coefficient in H ′ : (i+ 1)

(
n− i
i+ 1

)2

coefficient in λH ′ : i

coefficient in H ′′ : (i+ 1)(i+ 2)

(
n− i
i+ 1

)2(
n− i− 1

i+ 2

)2

coefficient in λH ′′ : (i)(i+ 1)

(
n− i
i+ 1

)2

coefficient in λ2H ′′ : (i− 1)(i)
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Now, multiply by (i+ 1)(i+ 2) to clear denominators:

coefficient in H : (i+ 1)(i+ 2)

coefficient in H ′ : (i+ 2) (n− i)2

coefficient in λH ′ : i(i+ 1)(i+ 2)

coefficient in H ′′ : (n− i)2 (n− i− 1)2

coefficient in λH ′′ : (i)(i+ 2) (n− i)2

coefficient in λ2H ′′ : (i− 1)(i)(i+ 1)(i+ 2)

Expand terms and write them as polynomials in i:

coefficient in H : 2 + 3i+ i2

coefficient in H ′ : 2n2 + (n2 − 4n)i+ (2− 2n)i2 + i3

coefficient in λH ′ : 2i+ 3i2 + i3

coefficient in H ′′ : n2(n− 1)2 − 2n(2n2 − 3n+ 1)i+ (6n2 + 6n+ 1)i2 + i4

coefficient in λH ′′ : (2n2)i+ n(n− 4)i2 + 2(1− n)i3 + i4

coefficient in λ2H ′′ : −2i− i2 − 2i3 + i4

Since we would like to find a relation between these expression for any i, we write

the coefficients of i in each expression as columns of a matrix and then investigate

its kernel over Z:

2 2n2 0 n2(n− 1)2 0 0

3 n(n− 4) 2 −2n(2n2 − 3n+ 1) 2n2 −2

1 2(1− n) 3 6n2 − 6n+ 1 n(n− 4) −1

0 1 1 2− 4n 2(1− n) 2

0 0 0 1 1 1


.
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We started with 6 expressions that resulted, after manipulations, in 6 polynomials

in i of degree 4 or less, i.e. defined by 5 coefficients. Consequently, the above matrix

has 5 rows and 6 columns, which guarantees a non-trivial kernel. In our case, a direct

computation shows that the kernel is spanned by:

M =



n2

−1

1− 2n

0

−1

1


,

as the matrix is of rank 5. We conclude that H = H{n} satisfy the following

differential equation over Z:

(III.13.2) λ(λ− 1)H ′′ + (λ(1− 2n)− 1)H ′ + n2H = 0

Note that this proof is constructive. One can also verify directly the last equation

without motivating the origin of that equation.

Remark III.14. For example, set n = p−1
2

for an odd prime p, and multiply by 4

in order to clear denominators. We get:

4λ(λ− 1)H ′′ + 4(λ(2− p)− 1)H ′ + (p− 1)2H = 0

Over Fp, this equations becomes:

4λ(λ− 1)H ′′ + 4(2λ− 1)H ′ +H = 0,

which is identical to the Picard-Fuchs operator (see [Sil09, Remark 4.2]). In many

cases n is a polynomial in p with rational coefficients, say n = g(p). So when working
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in Fp, one can replace n by g(p), clear denominators and get a differential operator

over Fp which does not depend on n.

Lemma III.15. Let K be a field of prime characteristic p. let F ∈ K[λ] be any poly-

nomial of degree d < p (not necessarily Deuring polynomial or its formal antideriva-

tive) and denote F ′, F ′′ as its first and second derivative, respectively. Suppose that

F satisfies a differential equation of the form

(III.15.1) λ(λ− 1)F ′′ + aλF ′ + bF ′ + cF = 0, a, b, c ∈ K.

Then the only possible repeating roots of F are λ = 0 and λ = 1.

Proof. Suppose α is a root of F of multiplicity r ≥ 2. Since degF = d < p, then

r < p. So write

F = g1(λ) · (λ− α)r where g1(α) 6= 0,

F ′ = g2(λ) · (λ− α)r−1 where g2(α) 6= 0,

F ′′ = g3(λ) · (λ− α)r−2 where g3(α) 6= 0.

Plug the above expression in (III.15.1) and divide by (λ− α)r−2 to get

λ(λ− 1)g3 + (aλ+ b)(λ− α)g2 + c(λ− α)g1 = 0.

Plugging in λ = α gives:

α(α− 1)g3(α) = 0

We get:

α(α− 1) = 0⇒ α = 0, 1

i.e. the only possible repeated roots of F are α = 0 or α = 1.

We pause for a moment to mention a known combinatorial identity. We include

a proof for completeness.
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Proposition III.16. Let n ∈ Z≥0. Then

n∑
i=0

(
n

i

)2

=

(
2n

n

)
Proof. The right hand side is the number of ways to choose n objects in from a set

of 2n objects. The left hand side can be written as:

n∑
i=0

(
n

i

)(
n

n− i

)
So we interpret it as the following combinatorial process of choosing n objects out of

2n: Color the objects in the set of 2n using 2 colors, red and green, so that we have

n object of each. Now, in order to choose n objects, we can choose 0 red objects and

n green objects. The total number of ways to do it is the first summand:(
n

0

)(
n

n

)
Alternatively, we can choose 1 red object and n − 1 green ones. The total number

of ways to do it is the second summand:(
n

1

)(
n

n− 1

)
And so on. Note that the choice of n objects in each step is disjoint from the choice

in the other step, so by adding the summands together we have to get the right hand

side.

Now we conclude an important property of H{n}:

Corollary III.17. Fix a prime p, and an integer 0 ≤ n < p/2. Let K be a field of

characteristic p. Then H{n} ∈ K[λ] has no repeated roots. Further, λ = 0, 1 are

not roots of H{n}.
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Proof. Let H = H{n}. Combining Lemma III.13 and Lemma III.15 shows that

the only possible repeating roots of H are 0 and 1. However, H(0) = 1. Moreover,

Proposition III.16 shows:

H{n}(1) =
n∑
0

(
n

i

)2

=

(
2n

n

)
.

This is non-zero mod p because 2n < p, thus λ = 1 is not a root of H as well.

Now let us prove a similar property for F{n}:

Lemma III.18. Fix n ≥ 0. Let F = F{n} ∈ Q[λ] be the formal antiderivative of

H{n} ∈ Z[λ] with constant coefficient 0. Then F satisfies:

(III.18.1) λ(λ− 1)F ′′ − (1 + 2n)λF ′ + (n+ 1)2F = 0

Further, if K is a field of prime characteristic p and 0 ≤ n < p/2, then F{n} has a

natural image in K[λ] and has simple roots over K.

Proof. Similar to Lemma III.13, we enumerate the coefficients of λi in the different

terms, construct a matrix and compute the kernel:

coefficient in F :

(
n

i− 1

)
1

i

coefficient in F ′ :

(
n

i

)
coefficient in λF ′ :

(
n

i− 1

)
coefficient in F ′′ : (i+ 1)

(
n

i+ 1

)
coefficient in λF ′′ : (i)

(
n

i

)
coefficient in λ2F ′′ : (i− 1)

(
n

i− 1

)
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If we pull 1
i2(i+1)

(
n
i−1

)
outside from each coefficient, we get:

coefficient in F :
1

i2(i+ 1)

(
n

i− 1

)
(i(i+ 1))

coefficient in F ′ :
1

i2(i+ 1)

(
n

i− 1

)(
(n− i+ 1)2(i+ 1)

)
coefficient in λF ′ :

1

i2(i+ 1)

(
n

i− 1

)(
i2(i+ 1)

)
coefficient in F ′′ :

1

i2(i+ 1)

(
n

i− 1

)(
(n− i+ 1)2(n− i)2

)
coefficient in λF ′′ :

1

i2(i+ 1)

(
n

i− 1

)(
(n− i+ 1)2i(i+ 1)

)
coefficient in λ2F ′′ :

1

i2(i+ 1)

(
n

i− 1

)(
i2(i+ 1)(i− 1)

)

The coefficient of λ0 in (III.18.1) is 0 in all the terms. For 0 < i ≤ n + 1, we can

divide by 1
i2(i+1)

(
n
i−1

)
, expands each coefficient to a polynomial in i, and find a linear

relation by writing the coefficients of i0, i1, i2, i3, i4 in columns of matrix: write the

coefficients of powers of i in F in the first column, in F ′ in the second column and

so on.

M =



0 (n+ 1)2 0 n2 (n+ 1)2 0 0

1 (n+ 1)2 − 2n− 2 0 −n2 (2n+ 2)− 2n (n+ 1)2 (n+ 1)2 0

1 −2n− 1 1 (n+ 1)2 + n2 + 2n (2n+ 2) (n+ 1)2 − 2n− 2 −1

0 1 1 −4n− 2 −2n− 1 0

0 0 0 1 1 1


A direct computation shows that the rank of the matrix is 5 and the kernel space is
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spanned by: 

(n+ 1)2

0

−2n− 1

0

−1

1


.

Ergo, F satisfies the differential equation (III.18.1) in characteristic 0 and thus in

every characteristics in which F can be defined. A sufficient condition is n + 1 < p

since in this case we can invert all the power of H{n}. Let K be field of prime

characteristic p with 0 ≤ n < p/2. Since for all primes p/2 ≤ p − 1, the condition

n < p/2 guarantees that we can define F in K[λ]. Using Lemma III.15, the above

differential equation shows that the only possible repeating roots of F is 0 and 1.

However, they are not roots of H{n} = F ′ as can be seen in Corollary III.17.

Remark III.19. Note that the differential equation from Lemma III.13 can be

deduced from Lemma III.18 by simply taking a derivative.

Now we conclude that adjacent Deuring polynomials share no roots. This is the

most important fact for the F -pure threshold computations done in the next chapters.

Theorem III.20. Fix an integer n ≥ 1 and a prime p such that n < p/2. Let K be

a field of characteristic p. Then H{n} and H{n− 1} share no roots.

Proof. Let F be the formal antiderivative of H{n − 1} with constant coefficient 0

Consider the ideal I = (H{n}, H{n− 1}) in K[λ]. From Lemma III.12 we have:

I = (H{n}, H{n− 1}) = ((1− λ)F ′ + 2nF, F ′) = (2nF, F ′) = (F, F ′),
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where the last inequality holds since 2n is a unit in Fp and thus in K. There-

fore, I is the unit ideal if and only if F is has simple roots, which is the result in

Lemma III.18.

These are all the results we need in order to proceed with the computations of

the F -pure threshold of the families of polynomials presented in the next chapters.

However, it is interesting to further investigate the Deuring polynomials as algebraic

objects.

3.4 More On Deuring Polynomials

Lemma III.9 motivates us to define the following:

Definition III.21. Let K be a filed of characteristic p. Define

H{N, r}(λ) :=
N∑
i=0

(
N

i

)r
λi

Now we can generalize Schur’s Congruence:

Proposition III.22. Fix a prime p and two positive integers n, r. Let H{n, r} ∈

Fp[λ]. Write the p-expansion of n:

n = b0p
0 + b1p

1 + ...+ bep
e.

Then

H{n} = H{b0}1H{b1}p
1

H{b2}p
2 · · ·H{be}p

e

Proof. Literally the same proof as in Lemma III.9.

The computations we present later, rely heavily on Schur’s Congruence. Ergo,

if one finds families of polynomials where H{n, r} shows up as coefficients in their
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integer powers, one can use the same techniques to easily find bounds of the the F -

pure threshold. For a general discussion about implications of Schur’s Congruence,

see Chapter VI.

The next proposition help us to investigate the roots of H{n}. Due to Schur’s

Congruence, in characteristic p, suffices to look at H{n} with n = 0, 1, ..., p− 1.

Proposition III.23. Fix n ∈ Z>0 and H = H{n}. Then:

(1) In characteristic 0, H{n} has simple roots and 1 is not a root.

(2) In characteristic p, H{n}(1) ≡ 0 mod p if and only if
(

2n
n

)
≡ 0 mod p.

(3) In characteristic p with n ≤ p − 1, H{n} has simple roots, except maybe for

λ = 1 which may repeat.

(4) In characteristic p, if 2n < p then H{n} has simple roots.

Proof. We use the differential operator III.13.1 and the argument in Lemma III.15

to show that the only possible repeated roots of H{n} in characteristic 0 are 0 and

1. Further, over any field H{n}(0) = 1 and H{n}(1) =
(

2n
n

)
, where the latter is a

known combinatorial identity (see Proposition III.16). This proves (1) and (2).

For (3) simply apply the argument of Lemma III.15 for the roots which are not

1. (4) is true since 2n < p guarantees that
(

2n
n

)
is not 0 in Fp.

Fix p > 0. We know that H{0}, ..., H{n1} are all simple, and we would like to

investigate the repeating roots of H{n1 + 1}, ..., H{p− 1}.

Proposition III.24. Fix a prime p and an integer 0 ≤ m ≤ n1. Then the multi-

plicity of the root λ = 1 in H{n1 +m} ∈ Fp[λ] is 2m.

Proof. From Proposition III.23 we conclude that λ = 1 is not a root of H{n1}

while it is for H{n1 + m} with 1 ≤ m ≤ p − 1. So the case of m = 0 is covered.
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From Lemma III.8 we have that H{p − 1} = H{n1 + n1} = (λ − 1)p−1 so the

multiplicity of 1 is p− 1 = 2n1 as required. Now fix some 1 ≤ m ≤ n1. Assume that

s is the multiplicity of λ − 1 in H{n1 + m} while r is the multiplicity of λ − 1 in

H{n1 +m− 1}. We use induction on m, to show that 1 ≤ s− r ≤ 2. Note that both

r, s are less than p since the degree of the polynomials are less than p. We would like

to use Lemma III.12. We can then write:

H ′{n1 +m} = (λ− 1)s−1h(λ), h(1) 6≡ 0 (mod p)

Recall that r is the multiplicity of (λ− 1) in H{n1 +m− 1}. So we can write:

H{n1 +m− 1} = (λ− 1)rg(λ),

H ′{n1 +m− 1} = r(λ− 1)r−1g + (λ− 1)rg′,

g(1) 6≡ 0 (mod p).

Now plug in Lemma III.12 with n = n1 +m, take one derivative, and combine like

terms (note that 2n1 = p− 1 = −1 in FP ):

(III.24.1) (λ− 1)r((−r + 2m− 2)g + (1− λ)g′) = (λ− 1)s−1h

First notice that r ≤ s− 1. If r < s− 1 then we can divide by (λ− 1)r and plug in

λ = 1. All the terms vanish except for (−r+ 2m− 2)g(1). In such case we conclude

that r = 2m− 2. Plugging that in, we get:

(λ− 1)2m−2((1− λ)g′) = (λ− 1)s−1h.

The left hand side is divisible by (λ − 1)2m−1 which makes s = 2m. In particular,

s− r = 2.

Now, denote rm to be the multiplicity of (λ − 1) in H{n1 + m}. Observe the

sequence r0, ..., rn1 . We know that r0 = 0 and rn1 = 2n1, while ri − ri−1 is either 1
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or 2. But observe:

2n1 = rn1 − r0 =

n1∑
i=1

(ri − ri−1) ≥ n1 min
i

(ri − ri−1).

This proves that the increase in the multiplicity must be 2 in each step, which shows

that rm = 2m as required.

Corollary III.25. Fix a prime p and an integer 0 ≤ m < n1. Then the multiplicity

of the root λ = 1 in F{n1 +m} ∈ Fp[λ] is 2m+ 1.

Proof. Use Lemma III.12 with n = n1 + m + 1 and plug in λ = 1. It is apparent

that F (1) = 0. Proposition III.24 shows that the multiplicity of 1 as a root of

F ′ = H{n1 +m} is 2m, thus the multiplicity of 1 as a root of F is 2m as required.

Lemma III.26. Fix a prime p and an integer 0 < n < p. Then H = H{n}

is the only monic polynomial of degree n or less solving the differential equation

Equation III.13.1 in characteristic p and 0.

Proof. Suffices to prove the claim in characteristic p. Let H = a0 + a1λ+ ...+ anλ
n.

Consider the set of polynomials in Fp with degree n or less as a vector space over Fp

of dimension n+ 1. Fix a basis 1, λ, λ2, ..., λn and thus we represent H by a column

vectors composed of its coefficients:

h =



a0

a1

...

an


.

Denote the differential operator in (III.13.1) as D. Notice that D cannot increase the

degree of the polynomial it is acting on since multiplication by λ and λ2 is applies
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on H ′ and H ′′ accordingly. Thus the matrix representing the differential operator is

upper triangular. We compute the entries on the diagonal: when D acting on λi, we

get,

n2λi + (1− 2n)iλi + i(i− 1)λi + lower order terms,

making the appropriate diagonal entry

n2 + (1− 2n)i+ i(i− 1) = n2 − 2ni+ i2 = (n− i)2.

Since 0 ≤ i ≤ n, then only non-zero entry is the last one. Ergo, the rank of D is

n, making its kernel one dimensional. So up to multiplication of a scalar, only one

polynomial solves the differential equation.

Lemma III.27. Fix a prime p and an integer 0 ≤ m ≤ n1. Then over Fp:

H{n1 +m} = (λ− 1)2mH{n1 −m}

Proof. From Proposition III.24 we have a factorization:

H{n1 +m} = (λ− 1)2mgm

where gm is a polynomial. For m = 0 there is nothing to prove. For m = n1, we

have from Lemma III.8 that H{2n1} = H{p−1} = (λ−1)p−1 while H{n1−n1} =

H{0} = 1. It is left to observe the cases where 1 ≤ m ≤ n1 − 1. We shall observe

that gm satisfy the same differential equation (III.13.1) as H{n1−m} over Fp, which

is sufficient due to Lemma III.26. Observe:

H{n1 +m} = (λ− 1)2mgm

H{n1 +m}′ = 2m(λ− 1)2m−1gm + (λ− 1)2mg′m

H{n1 +m}′′ = 2m(2m− 1)(λ− 1)2m−2gm + 4m(λ− 1)2m−1g′m + (λ− 1)2mg′′m
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Now plug everything in the differential equation (III.13.1) for n1+m, which is satisfied

by H{n1 +m}. We shall do it by parts. Notice that 2(n1 +m) in characteristic p is

2m− 1:

λ(1− λ)H{n1 +m}′′ = (λ− 1)2m−1[2m(2m− 1)λgm + 4m(λ− 1)λg′m + +λ(λ− 1)2g′′m]

(λ(2− 2m)− 1)H{n1 +m}′ = (λ− 1)2m−1[(λ(2− 2m)− 1)2mgm + (λ(2− 2m)− 1)(λ− 1)g′m]

(n1 +m)2H{n1 +m} = (2(n1+m))2

4
(λ− 1)2mgm = (2m−1)2

4
(λ− 1)2mgm

Now collect the coefficients of gm, g
′
m and g′′m separately:

gm : (λ− 1)2m−1
[
2mλ(2m− 1) + 2mλ(2− 2m)− 2m+ (λ− 1)4m2−4m+1

4

]
g′m : (λ− 1)2m−1 [+4m(λ− 1)λ+ (2λ(1−m)− 1)(λ− 1)]

g′′m : (λ− 1)2m−1(λ− 1) [λ(λ− 1)]

Simplify the square bracket for gm:

2mλ(2m− 1) + 2mλ(2− 2m)− 2m+ (λ− 1)
4m2 − 4m+ 1

4
=

= 2mλ(1)− 2m+ (λ− 1)
4m2 − 4m+ 1

4
= (λ− 1)(2m+

4m2 − 4m+ 1

4
) =

= (λ− 1)
4m2 + 4m+ 1

4
= (λ− 1)

2m+ 1

4
= (λ− 1)(n1 −m)2,

since (2(n1 −m))2 = (−1− 2m)2 = (1 + 2m)2. So the coefficient of gm is

(λ− 1)2m(n1 −m)2

Simplify the square bracket for g′m:

+4m(λ− 1)λ+ (2λ(1−m)− 1)(λ− 1) = (λ− 1)(4mλ− 2mλ+ 2λ− 1) =

= (λ− 1)(2λ(1 +m)− 1) = (λ− 1)(λ(1− 2(n1 −m))− 1).

So the coefficient of g′m is

(λ− 1)2m(λ(1− 2(n1 −m))− 1)
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The coefficient of g′′m is simply:

(λ− 1)2m(λ(λ− 1))

We conclude that gm satisfy the following differential equation:

(λ− 1)2m
[
λ(λ− 1)g′′m + (λ(1− 2(n1 −m))− 1)g′m + (n1 −m)2gm

]
= 0

The expression in the square bracket is a polynomial. So the equation can be satisfied

only if

λ(λ− 1)g′′m + (λ(1− 2(n1 −m))− 1)g′m + (n1 −m)2gm = 0

over Fp, which is the same differential equation satisfied by H{n1 −m} as required.

Remark III.28. It is tempting to claim that once p is fixed, then H{0}, ..., H{(p−

1)/2} have distinct roots. This claim is false, and examples can be easily found

computationally. E.g. when p = 23, then λ = 10 is a root of both H{10} and H{7}.

When p = 17, H{8}, H{4} share the factor λ2 + 16λ+ 1.

Corollary III.29. Consider the polynomials H{n}, H{n + 1} and a prime p > 2.

Then:

1. In characteristic 0, H{n}, H{n+ 1} have no common roots.

2. In characteristic p, with n ≤ n1, H{n}, H{n+ 1} have no common roots.

3. In characteristic p, with n1 < n ≤ p − 1, the only possible common factor of

H{n}, H{n+ 1} is (λ− 1). If we denote n = n1 +m then (H{n}, H{n+ 1}) =

(λ− 1)2m.

Proof. Denote F = F{n}. From Lemma III.12 and Theorem III.20 we have

that over any field

(H{n}, H{n+ 1}) = (F, F ′)
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1. From Lemma III.18 we deduce that F has simple roots thus (H{n}, H{n+1})

is the unit ideal in Q[λ].

2. Over Fp, 0 is never a root of F ′ = H{n}, but 1 might be a root of F ′ if

and only if n > n1 (see Proposition III.23 and Lemma III.27). Thus for

n ≤ n1, 1 is not a root of F ′ = H{n}, rendering F to have simple roots. Thus

(H{n}, H{n+ 1}) = (1) over Fp.

3. When n1 < n = n1 +m, from Lemma III.27 and (2) we have:

(H{n}, H{n+ 1}) = (H{n1 +m}, H{n1 +m+ 1}) =

= (1− λ)2m(H{n1 −m}, (1− λ)2H{n1 −m− 1}) = (1− λ)2m(1) = (1− λ)2m

3.5 Legendre Polynomials

The Legendre Polynomials are well known and their properties can be found in

many textbooks (for example, see [OMS09] and [AO09]. They can be defined in

many ways and we mention two; for a positive integer n, the Legendre polynomial

of degree n, Pn(x), is a solution of the Legendre’s Differential Equation:

(III.29.1)
d

dx

[
(1− x2)

d

dx
Pn(x)

]
+ n(n+ 1)Pn(x) = 0

I.e. Pn(x) is an eigenvector corresponding to the eigenvalue µ = n(n + 1) in the

Sturm-Liouville problem:

d

dx

[
(1− x2)

d

dx
P (x)

]
= −µP (x)

Equivalently, we can get the different Pn’s by performing Gram-Schmidt process on

the real linear space spanned L by {1, x, x2, ...} with an inner product:

〈f(x), g(x)〉 =

∫ 1

−1

f(x)g(x) dx.
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So Pn(x) are a orthogonal basis of L:∫ 1

−1

Pn(x)Pm(x) dx =
2

2n+ 1
δnm,

where δmn is the Kronecker delta.

The relation between Pn(x) and H{n}(λ) is well known (see [CH14]):

(III.29.2) H{n}(λ) = (1− λ)nPn

(
1 + λ

1− λ

)
The most crucial properties of H{n} for the sake of F -pure threshold computation

are Theorem III.20 and Lemma III.9. Analytical techniques can be used to prove

these through properties of Pn(x): using the orthogonality, one can show that all the

roots of Pn(x) are between −1 and 1, and that all are simple. Moreover, we have a

recursive relation:

Pn(x) =
2n− 1

n
xPn−1(x)− n− 1

n
Pn−2(x), n > 1

So it follows easily that Pn(x), Pn−1(x) cannot have a common root in R, since oth-

erwise, it is a root of Pn−2 as well, and so on. When reducing mod p, same argument

holds as long as 1 ≤ n < p. This fact matches the result in Theorem III.20 and

Corollary III.29. Lemma III.27 can be shown by another well-known character-

istic p congruence ([Lan88, Lemma 2.2]): for 0 ≤ n < p:

Pn ≡ Pp−1−n (mod p)

Lemma III.9 is attributed to Schur but the first published proof is in [Wah52],

which is slightly different than ours. Properties about repeated roots of Pn(x) mod

p can be found in [Lan88].



CHAPTER IV

F -Pure Threshold of Elliptic Curves

In this chapter, we provide an alternative and elementary proof for a known result

about the F -pure threshold of a homogeneous polynomial of degree three in three

variables with an isolated singularity. Such a polynomial defines an elliptic curve

in P2. We show that once we transform the defining polynomial to the Legendre

form, we get a polynomial f such that Deuring polynomials show up as coefficients

in different integer powers of f . Then we apply the machinery from the previous

chapter and describe an explicit computation of the F -pure threshold.

4.1 Introduction

The F -pure threshold of the defining equation of an elliptic curve in P2 is closely

related to supersingularity. Recall the definition of supersingularity of an elliptic

curve E in characteristic p > 2. The Frobenius morphism E
F−→ E induces a map

H1(E,OE)
F ∗−→ H1(E,OE). Then E is defined to be supersingular if F ∗ is the zero

map. Otherwise, E is ordinary.

For our purpose, we adopt a more concrete characterization of supersingularity,

in terms of the Hasse invariant of the defining polynomial f of E in P2. We review

and develop this point of view in Proposition IV.3. See also [Har77, IV.4] and

[Sil09, V.3,V.4].
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In the upcoming sections we present an elementary proof of the following result,

originally proven by Bhatt and Singh for p > 3:

Theorem IV.1 (Main Theorem). Let K denote a field of prime characteristic

p > 0. Let f ∈ K[x, y, z] be a homogeneous polynomial of degree three defining an

elliptic curve E in P2
K. Then:

FT (f) =

 1 if E is ordinary

1− 1
p

if E is supersingular

Bhatt and Singh provide two proofs in [BS15] using a translation into local coho-

mology; Generalizations can be found in [HNnBWZ16]. In contrast, our approach

involves directly investigating the form of f raised to integer powers using the Deur-

ing polynomial H{m}(λ) =
∑n

i=0

(
m
i

)2
λi with m = (p − 1)/2 (this polynomial is

used to compute the Hasse invariant and sometimes is denoted Hp in the literature

in this context). We manage to prove the theorem for p > 2 using this approach. For

completeness, we later include a direct proof for the case of p = 2, so the theorem

holds as stated for all prime characteristics.

Discussion IV.2. Going back to the characteristic 0 case, for an elliptic curve

defined over Q there are infinitely many p’s for which the reduction mod p is ordinary

(see [Sil09, Execise V.5.11]). So we see that not only the F -pure threshold approaches

the log canonical threshold, but it actually equals the log canonical threshold for

infinitely many primes. This fact proves Question I.2 for the family of elliptic

curves defined over Q, but for a general polynomial, the question remains open.

4.2 Preliminaries

Let K denote a field of prime characteristic p > 2. Let f ∈ K[x, y, z] be ho-

mogeneous polynomial of degree three with an isolated singularity. Let E ⊂ P2 be



67

the elliptic curve defined by f . Note that the supersingularity of E and the value

of FT (f) are invariant under passing to the algebraic closure K and under a linear

change of coordinates. So without loss of generality we assume K is algebraically

closed and change coordinates so f is in its Legendre form:

(IV.2.1) fa(x, y, z) = y2z − x(x− z)(x− az), a ∈ K − {0, 1}

By letting a range over K − {0, 1} we are addressing all possible elliptic curves

in P2 up to isomorphism. Thus, it suffices to prove the Main Theorem for this

one-parameter family of polynomials.

Working with fa allows us to assert supersingularity by a simple computation on

a. We are going to work with the following, as proven in [Har77, IV, Corollary 4.22].

Proposition IV.3. Let K be a field of prime characteristics p > 2. Let fa(x, y, z) =

y2z − x(x− z)(x− az) ∈ K[x, y, z], with a ∈ K − {0, 1}. Let E ⊂ P2 be the elliptic

curve defined by fa. Then E is supersingular if and only if over K:

m∑
i=0

(
m

i

)2

ai = 0, with m = (p− 1)/2,

that is if and only if a is a root of the polynomial

Hp(λ) =
m∑
i=0

(
m

i

)2

λi, with m = (p− 1)/2

in K[λ]. Otherwise, E is ordinary.

In particular, if a is transcendental over Fp, the polynomial fa ∈ K[x, y, z] always

defines an ordinary elliptic curve.

Note that Hp(λ) as noted in [Har77] is the Deuring polynomial H
{
p−1

2

}
, as we

denoted in Definition III.5. It turns out that when investigating integer powers
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of fa, one gets coefficients that are Deuring polynomials of different degrees, as we

prove later in the Main Technical Lemma. (Also note that H
{
p−1

2

}
plays an

important role in number theory, as Proposition IV.3 implies.)

To make notation more compact, for a fixed p and a non negative integer e we

define:

(IV.3.1)
Ne = pe − 1

ne = Ne/2 = pe−1
2
,

Specifically, when e = 1 we have:

n1 =
p− 1

2
.

Using Proposition IV.3 we can rewrite the Main Theorem in a more computationally-

friendly version, for the p > 2 case:

Theorem IV.4 (Main Theorem V2). Let K denote a field of prime characteristic

p > 2. Let fa(x, y, z) = y2z− x(x− z)(x− az) ∈ K[x, y, z], with a ∈ K −{0, 1}. Let

n1 = (p− 1)/2. Then:

FT (fa) =

 1 if H{n1}(a) 6≡ 0 (mod p)

1− 1
p

if H{n1}(a) ≡ 0 (mod p)

When H{n1}(a) 6≡ 0 (mod p), we say that fa is ordinary. Otherwise we say that fa

is supersingular.

4.3 Proof of The Main Theorem

Lemma IV.5 (Main Technical Lemma).

1. Let fλ = y2z− x(x− z)(x− λz) and let N = n+m be a positive integer. Then

the coefficient of x2my2nzn+m in fN is
(
n+m
n

)
H{m}(λ) up to sign.
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2. Let fλ = (x + y)(x + λy) and let N be a positive integer. Then the coefficient

of xNyN in fNλ is H{N}(λ).

Proof.

1. Observe (y2z − x(x − z)(x − λz))n+m. Since y is only in the left term, we

need to raise it to the power of n. This gives the binomial coefficient
(
n+m
n

)
.

So it is left to identify the coefficient of x2mzm in (−x(x − z)(x − λz))m =

(−1)mxm(x − z)m(x − λz)m. This allows us to just compute the coefficient of

xmzm in (x− z)m(x− λz)m. Notice:

(x− z)m(x− λz)m =

(
m∑
i=0

(
m

i

)
(−1)m−ixizm−i

)(
m∑
j=0

(
m

j

)
(−λ)jxm−jzj

)
.

For the coefficient of xmzm we need to set i = j, so we end up with:

(−1)m
m∑
i=0

(
m

i

)2

λi = (−1)mH{m}.

Together, up to sign, we get
(
n+m
n

)
H{m}.

2. This is very similar to the first statement and the proof is almost identical.

Notice:

fNλ = (x+ y)N(x+ λy)N =

(
N∑
i=0

(
N

i

)
xiyN−i

)(
N∑
j=0

(
N

j

)
(λ)jxN−jyj

)
.

For the coefficient of xNyN we need to set i = j, so we end up with:

N∑
i=0

(
N

i

)2

λi = H{N}.

As required.

Corollary IV.6. Let fλ = y2z−x(x− z)(x−λz) and let N = 2n. So the coefficient

of x2ny2nz2n in fN is
(

2n
n

)
H{n}(λ) up to sign.
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Proof. Apply the Main Technical Lemma with m = n.

we now prove the Main Theorem V2, and we shall recall different properties of

Deuring polynomials as needed.

Proof. Fix p > 2. We first show that if fa is ordinary then FT (fa) is 1. Recall the

notations: for an integer e ≥ 1 we denote

Ne = pe − 1

ne = Ne/2 = (pe − 1)/2.

In particular,

n1 =
p− 1

2
.

Let us raise fa to the power ofNe = pe−1. Due to Corollary IV.6 and Lemma III.3

we get:

fN = ±
(

2ne
ne

)
H{ne}(a)xNeyNezNe + terms already in m[pe],

where m = (x, y, z) and m[pe] = (xp
e
, yp

e
, zp

e
)K[x, y, z]. By Lemma III.2, if we

show that
(

2ne

ne

)
H{ne}(a) 6≡ 0 (mod p) for any e, then we get a lower bound of

Ne/p
e = pe−1

pe
for FT (fλ). By taking e→∞ we get that:

lim
e→∞

pe − 1

pe
≤ FT (fλ) ≤ 1⇒ 1 = FT (fλ)

So suffices to show that
(

2ne

ne

)
H{ne}(a) 6≡ 0 (mod p).

First we deal with
(

2ne

ne

)
. We shall write both 2ne and ne in their base p-expansion:

2ne = pe − 1 = (p− 1)p1 + (p− 1)p2 + ... + (p− 1)pe−1

ne = p−1
2
p1 + p−1

2
p2 + ... + p−1

2
pe−1

Since the digits of ne and ne are added without carrying to the digits of 2ne, by

Lucas’s Theorem
(

2ne

ne

)
6≡ 0 (mod p).
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Next, due to Corollary III.10:

H{ne}(a) = (H{n1}(a))1+p+...+pe−1

We conclude that H{ne}(a) 6≡ 0 (mod p) since the polynomial is ordinary, which

means that H{n1}(a) 6≡ 0 (mod p). This concludes the case where fa is ordinary.

Now, we deal with the supersingular case. So fix p > 2 and assume that fa is

supersingular, i.e. that a is a root of H{n1}. We first establish 1− 1/p as an upper

bound. Let N = p− 1. Consider fNa . Because fa is supersingular, the coefficient of

xNyNzN is 0 since it involves H{n1}(a). From Lemma III.3, all other monomials

xk satisfy max k ≥ N + 1 = p. So apply Lemma III.2 to get an upper bound of

N

p
=
p− 1

p
= 1− 1

p

As for the lower bound, fix e ≥ 1. We will show that pe−pe−1−1
pe

is a lower bound

for all e, which yields a lower bound of 1 − 1/p by taking e → ∞. Once we show

that, the proof is complete. We fix e and N = pe− pe−1− 1, and we shall prove that

fN 6∈ m[pe]. Notice that:

N = pe − pe−1 − 1 = pe − 2pe−1 + pe−1 − 1 =

= (p− 2)(pe−1) + pe−1 − 1 =

= (n1)(pe−1) + (n1 − 1)(pe−1) + pe−1 − 1.

We set

n = (n1)(pe−1)

m = (n1 − 1)(pe−1) + pe−1 − 1.

Notice that m+ 1 = n.

In order to show the lower bound, it suffices to compute the coefficient of x2m,2n,n+m

in fNa and show that it is non-zero, because:

max(2n, 2m,m+ n) = 2n = (2n1)(pe−1) = (p− 1)(pe−1) < pe.
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From the Main Technical Lemma we get the coefficient of x2m,2n,n+m in fN is:

(IV.6.1)

(
m+ n

n

)
H{m}(a)

We wish to prove that the coefficient (IV.6.1) is non-zero mod p. We shall break

it to two parts, the multinomial
(
m+n
n

)
, and the polynomials expression H{m}(a).

Let us start with the multinomial. We write m,n in their p-expansion while taking

advantage of the geometric series formula:

n = (0)p0 + (0)p1 + ... + (0)pe−2 + n1p
e−1

m = (p− 1)p0 + (p− 1)p1 + ... + (p− 1)pe−2 + (n1 − 1)pe−1

So when adding m and n, the digits are not carrying, which implies that the multi-

nomial coefficient
(
m+n
n

)
is non-zero.

We complete the proof that the coefficient (IV.6.1) is not zero by showing that

H{m}(a) is not zero mod p. Recall that by our supersingularity hypothesisH{n1}(a) ≡

0 (mod p). So suffices to show that the polynomials H{n1} and H{m} share no roots

in characteristic p. Observe again the p-expansion of m:

m = (p− 1) + (p− 1)p+ (p− 1)p2 + ...+ (p− 1)pe−2 + (n1 − 1)pe−1

Use Lemma III.9 to deduce

H{m} = H{p− 1}1+p+...+pe−2

H{n1 − 1}pe−1

So the problem is reduced to verifying that the irreducible factors of the polynomial

H{n1}(λ) ∈ Fp[λ] are neither factors of H{p− 1}(λ) ∈ Fp[λ] nor of H{n1 − 1}(λ) ∈

Fp[λ]. The problem does not depend on e.

Let us start with H{p − 1}. Recall Lemma III.8. Only λ = 1 is a root of

H{p− 1} but H{n1}(1) is not zero due to Corollary III.17.
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It remains to compare the roots of H{n1} and H{n1−1}. From Theorem III.20

we conclude that they share no roots, as required. This concludes the proof.

Discussion IV.7. For completeness, let us compute that FT (fa) = 1/2 for

fa = y2z + x(x+ z)(x+ az), a ∈ K − {0, 1}

where char(K) = 2. From Lemma III.9 we deduce that over K and for any integer

m > 0, H{m} = H{1}m = (1 + λ)m (this is also because for any c ∈ F2, c
2 = c).

Since a 6= 1, a does not satisfy any Deuring polynomial over K. To prove that 1/2 is

an upper bound, just observe that f 1
a is already in (x2, y2, z2) making 1/2 an upper

bound. Now, we would like to show that (2e−1 − 1)/2e is a lower bound for all e,

which would result in an lower bound of 1/2. So let

N = 2e−1 − 1 = 1 + 2 + 22 + ...+ 2e−3 + 2e−2

To avoid carrying, choose N = n+m with

n = 2e−2,m = 2e−2 − 1 = n− 1 = 1 + 2 + ...+ 2e−3.

By construction, and due to Main Technical Lemma, the coefficient of x2my2nzn+m

does not vanish, while max{2n, 2m,m+ n} = 2n = 2e−1 < 2e. Thus we get an lower

bound of N/2e = (2e−1 − 1)/2e as required.

4.4 Elliptic Curves in Characteristic 2

To complete the p = 2 case of Theorem IV.1, we shall compute the F -pure

threshold of polynomials defining elliptic curves in characteristic 2. Up to a change

of variables, a defining polynomial can be of these two forms:

f = zy2 + xyz + x3 + a2x
2z + a6z

3
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or

f = zy2 + a3z
2y + x3 + a4xz

2 + a6z
3,

as the following proposition shows:

Proposition IV.8. Let E be an elliptic curve over a field K of characteristic 2 for

which the Weierstrass equation is (see [Sil09, Chapter III.1]):

y2z + a1xyz + a3yz
2 + x3 + a2x

2z + a4xz
2 + a6z

3 = 0, a1, a2, a3, a4, a6 ∈ K

If a1 6= 0 then we can perform linear change variables and get the form:

y2z + xyz + x3 + a′2x
2z + a′6z

3 = 0, a′2, a
′
6 ∈ K

Alternatively, if a1 = 0, we can perform linear change variables and get the form:

y2z + a3z
2y + x3 + a′4xz

2 + a′6z
3 = 0, a3, a

′
4, a
′
6 ∈ K

Proof. [Was08, Section 2.8]

We deduce that in characteristic 2, Elliptic Curves adopt two forms as above.

The first case corresponds to ordinary curves where the second case corresponds to

supersingular curves (see [Was08, Section 3.1]). Let us discuss the ordinary case:

Proposition IV.9. Let f = zy2 + xyz + x3 + a2x
2z + a6z

3 where a2, a6 ∈ K where

charK = 2. Then FT (f) = 1.

Proof. Consider the splitting matrix of f :

M =


0 1 3 2 0

2 1 0 0 0

1 1 0 1 3


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It is easy to see that M is of rank 3, thus the full solution of Mk = [N,N,N ]Tr is:

k =



0

N

0

0

0


+ α



1

−2

0

1

0


+ β



3

−6

2

0

1


Ergo, the coefficient of xNyNzN in fN can be computed by summing all possible

pairs α, β such that k ∈ Z5
≥0:

(IV.9.1)
∑

α,β|k∈Z5
≥0

(
N

α + 3β,N − 2α− 6β, 2β, α, β

)
aα2a

β
6

We claim that the only non zero summand in (IV.9.1) is when α = β = 0. We shall

prove that any other choice would make the the base 2 digits of α + 3β,N − 2α −

6β, 2β, α, β to carry when added. Indeed add the last three to get α + 3β, which is

identical to the first one. In characteristic 2, the base-2 expansion consist of only

0 and 1 digits while 1 + 1 = 0; ergo, the only why to add two identical numbers

without carrying is when both are 0. So, to avoid carrying, α + 3β = 0. Since both

non-negative, α = β = 0.

We conclude that in fN , the monomial xNyNzN appears with coefficient 1. So let

N = 2e−1 = 1 + 2 + ...+ 2e−1 and observe that fN 6∈ (x, y, z)[2e] thus N/pe < FT (f)

for all e. So 1 = FT (f) simply by talking the limit.

Let us discuss the supersingular case:

Proposition IV.10. Let f = zy2 + a3z
2y + x3 + a4xz

2 + a6z
3 where a3, a4, a6 ∈ K

where charK = 2. Then FT (f) = 1/2.

Proof. First notice that already f 1 ∈ (x, y, z)[2] making 1/2 an upper bound. To

see that 1/2 is a lower bound, raise f to the power of N = 2e−1 − 1. Look at the



76

monomial y2NzN in fN . Since 2 is the maximal power of y in f and appears only in

the monomial zy2, we must get y2NzN in

fN = f · f · ... · f︸ ︷︷ ︸
N times

by choosing y2z in all N factors, making y2NzN ’s coefficient 1. Now observe 2N =

2e− 2 < 2e, thus N/2e = 1/2− 1/2e is a lower bound for all e. Ergo, 1/2 is indeed a

lower bound for FT (f). The proof is now complete.



CHAPTER V

The F -Pure Threshold of Schemes Supported at Four Points
in P1, and The Cross-Ratio

In this chapter, we provide an elementary computation of the F -pure threshold of

the homogeneous defining equation of a certain type of subschemes of P1 supported at

four points. For the case where the four points are distinct, we transform the defining

polynomials to a form that share critical features with the defining polynomials of

Elliptic Curves from the previous chapter. We explicitly deduce a formula for the

F -pure threshold using the same machinery. The formula depends on whether the

cross-ratio of these four points satisfies a certain Deuring Polynomial. We shall see

that the results in this chapter reduces Question I.2, for a certain family of bivariate

forms, to understanding roots of Legendre polynomials over Fp.

5.1 Introduction

The first goal is to compute the F -pure threshold of a bivariate homogeneous

polynomial of degree four. Consider the four roots in P1. Because the case of

multiple roots is easy (see Discussion V.10), our main result treats the case where

the roots are all distinct:

Theorem V.1. Let K be a field of prime characteristic p. Consider a degree four

homogeneous polynomial f ∈ K[x, y], with distinct roots over P1
K

. After fixing

77
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an order of the roots, let a ∈ K be their cross-ratio. Denote n1 = p−1
2

, and let

H{n1}(λ) ∈ K[λ] be the Deuring polynomial (defined in Definition III.5) of de-

gree n1. Then

FT (f) =


1
2

if p = 2 or if both p > 2 and H{n1}(a) 6= 0

1
2

(
1− 1

p

)
if p > 2 and H{n1}(a) = 0.

It is intriguing that the value of the F -pure threshold depends on whether the

cross-ratio satisfies some (Möbius transformation of) Legendre polynomial. The

technique we use in the proof relies on the properties of the Deuring Polynomials as

presented in section 3.3.

We generalize Theorem V.1 to certain higher degree polynomials:

Theorem V.2. Let K be a field of prime characteristic p. Let c, b ∈ Z>0 with p ≡ 1

(mod b + c). Let f ∈ K[x, y] be a homogeneous polynomial of degree 2b + 2c with

exactly four distinct roots over P1
K

, where the multiplicities are b, b, c, c after fixing

an order. Let a be the their cross-ratio. Denote n = c
c+b

(p− 1). Then

FT (f) =


1
b+c

if H{n}(a) 6= 0

1
b+c

(
1− 1

p

)
if H{n}(a) = 0

Discussion V.3. We now point out how the open question in Question I.2 relates

to Legendre polynomials for the case of the family of polynomials in Theorem V.2.

Let f be a polynomial as in the theorem and assume that f has integer coefficients.

One can compute that lct (f) = 1
b+c

. In order to verify the conjecture for this specific

family of polynomials, one should prove that there are infinitely many p’s such that

the cross ratio of the image of f in Fp, fp, is not a root of H
{

c
b+c

(p− 1)
}

over Fp.

For example, here is a precise formulation of our statement is the simplest case.
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Question V.4. Suppose f = xbyb(x+ y)c(x+ ay)c ∈ Z[x, y]. Denote

P =

{
all primes p

∣∣∣∣ p ≡ 1 (mod b+ c) and H

{
c

b+ c
(p− 1)

}
(a) 6≡ 0 (mod p)

}
.

Is it true that the cardinality of P is infinite?

This may be very difficult, and is related to deep theorems in number theory.

For example, the case where b = c = 1 is already known as it is equivalent to the

fact that there are infinitely many p’s such that an elliptic curve is ordinary (see

Discussion IV.2 and [Pag17]). Further evidence that the conjecture is connected

to ordinarity is explored in [MS11].

In addition, the F -pure threshold computation in Theorem V.1 provides a new

proof for an immediate corollary regarding properties of the roots of Legendre poly-

nomials mod p:

Corollary V.5. Fix a prime p > 2, a field K of characteristic p and let n = p−1
2

. If

b ∈ K − {±1} is a root of the Legendre polynomial of degree n, Pn(x) ∈ K[x], then

these are roots as well:

±b,± 3 + b

−1 + b
,±3− b

1 + b
.

See section 5.3.

5.2 Computation of the F -pure threshold

Let f be a bivariate degree four homogeneous polynomial. We would like to reduce

the problem of computing FT (f) of this quite general polynomial to a problem of

computing the F -pure Threshold of a more “canonical” polynomial.

Proposition V.6. Let f ∈ K[x, y] be a degree four homogeneous polynomial over

a field K of characteristic p. Then FT (f) is identical to the F -pure threshold of one
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of the following polynomials:

(V.6.1) x4, x3y, x2y2, x2y(x+ y), xy(x+ y)(x+ ay) with a ∈ K − {0, 1}.

Proof. FT (f) is preserved under base change, scalar multiplication and linear change

of variables. Thus, without loss of generality, let K is algebraically closed, over which

f factors as a product linear terms. Now change variables to obtains one of the five

forms in (V.6.1), and suffices to compute FT (f) for each of these cases.

We are interested in the last form, since the F -pure threshold can be computed

easily in the rest of the cases. For completeness, we comment about them in Dis-

cussion V.10.

Recall Lemma IV.5. This lemma shows that understanding the Deuring poly-

nomial H{n} is crucial for the discussion. Since the F -pure threshold is invariant

under base change and linear change of variables, we can assume K = K and that

our polynomials adopts the last form in Proposition V.6. Thus, we can reduce

Theorem V.1 and Theorem V.2 to a more computationally friendly theorem (it

is easy to see that a is the cross-ratio of the roots once we fix an order and that a can-

not be 0, 1 or ∞ since the roots are all distinct. We include a detailed computation

later in the proof of Corollary V.11):

Theorem V.7. Let K be a field of prime characteristic p. Let c, b ∈ Z>0 with p ≡ 1

(mod b+ c). Fix f ∈ K[x, y] of the form:

(V.7.1) fa = xbyb(x+ y)c(x+ ay)c, a ∈ K − {0, 1},

Denote n = c
c+b

(p− 1) and let H{n}(λ) ∈ K[λ] be the Deuring polynomial of degree

n. Then

FT (fa) =


1
b+c

if H{n}(a) 6= 0

1
b+c

(
1− 1

p

)
if H{n}(a) = 0



81

As long as p 6= 2, Theorem V.1 is a special case of Theorem V.7 in which

b = c = 1. Note also that the p 6= 2, b = c = 1 scenario is also provable by applying

[HNnBWZ16, Theorem 3.5] with a = L = 1, b = 2 per their notation; however the

computation is not direct. The proof of the general Theorem V.7 follows next

where the p = 2 special case is proven right after.

We start with a small lemma:

Lemma V.8. Let c be an integer bigger than 1. Let p be a prime such that c < p.

Then, there exist a power of p, r, such that pr ≡ 1 (mod c).

Proof. Look at the sequence p, p2, p3, ... in the ring R = Z/(c). Record the first pair

of powers that reduce to the same element in R, say ps, pt with s < t. So

pt − ps = αc

For some integer α. Since c < p, divide by ps to get:

c | pt−s − 1

which proved the result.

Now, for the proof of Theorem V.7:

Proof. The key observation is that for a positive integer N , we use Lemma IV.5

and Lemma III.3 to deduce:

(V.8.1)
fNa = xbNybN((x+ y)(x+ ay))cN =

= x(b+c)Ny(b+c)NH{cN}(a) + an element in (x(b+c)N+1, y(b+c)N+1)

Let us prove that 1/(b + c) is an upper bound. Fix an integer e > 0 and set

N = 1
b+c

(pe − 1 + p − 1). From (V.8.1), combined with Lemma III.2, we get the

N/pe = 1
b+c

pe+p−2
pe

is an upper bound. Taking e → ∞, we get that FT (fa) ≤ 1
b+c

as

required.
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In the case that H{n}(a) 6= 0, we wish to show that 1
b+c

is also a lower bound.

With e > 0 and N = 1
b+c

(pe−1), the coefficient of x(b+c)Ny(b+c)N in fNa is H{cN}(a).

Since (b + c)N = pe − 1 < pe, showing that H{cN}(a) 6= 0 would establish N/pe =

1
b+c

pe−1
pe

as a lower bound for any e > 0, and thus 1
b+c
≤ FT (fa). Let us compute the

p-expansion of cN :

cN =
c

b+ c
(pe − 1) =

c(p− 1)

b+ c
+
c(p− 1)

b+ c
p+ ...+

c(p− 1)

b+ c
pe−1

Note that n = c(p−1)
b+c

is an integer between 0 and p− 1. Ergo, by Lemma III.9

(V.8.2) H{cN}(a) = H

{
c

b+ c
(pe − 1)

}
(a) = (H{n}(a))some power 6= 0

In the case that H{n}(a) = 0, we would like to show that FT (fa) = 1
b+c

(
1− 1

p

)
.

To establish that value as an upper bound, consider again N = 1
b+c

(pe − 1). From

(V.8.1) and (V.8.2) we see that H{cN}(a) = 0 and thus fNa ∈ (x, y)[pe], making N/pe

an upper bound. Plug in e = 1 to see that 1
b+c

(
1− 1

p

)
is indeed an upper bound.

As for a lower bound, we recall Theorem III.20 and note that sinceH{n}(a) = 0,

H{n − 1}(a) 6= 0. Since c < p (p is at least b + c + 1), and p is a prime, there is a

power of p that is congruent to 1 mod c (see Lemma V.8). Denote it as pd. For

any positive integer m, pmd ≡ 1 (mod c) and thus we define:

`(m) := (p− n)pmd−1 ≡ 1 (mod c),

because c divide n.

Now, consider the integer

N ′ = (p−1)p0+(p−1)p1+...+(p−1)pe−2+(n−1)pe−1 = pe−1−1+(n−1)pe−1 = npe−1−1

for e � 1. The digits of the p expansion are (p − 1) and (n − 1). We cannot just

yet use N ′ as cN since it is not necessarily divisible by c. In fact, since n is divisible
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by c, it is congruent to c − 1 mod c. By subtracting `(1) from N ′ we are making

the pd−1 digit become (n− 1) instead of (p− 1), and then N ′ − `(1) is congruent to

c − 2 mod c. So we shall do the same for the p2d−1 digit, the p3d−1 digit and so on,

through the p(c−1)d−1 digit. Now we get an integer divisible by c and we can define

N :

cN = N ′ − `(1)− ...− `(c− 1) = npe−1 − 1− `(1)− ...− `(c− 1),

N =
1

b+ c
(p− 1)pe−1 − L,

were L is some integer constant, not dependent on e. We are about to show that

N/pe is a lower bound for arbitrary large e, which complete the proof. Notice that

(b+ c)N = (p− 1)pe−1 − (b+ c)L < pe, while the coefficient of x(b+c)Ny(b+c)N in fN

is H{cN}. We carefully crafted cN to have a p expansion containing only digits of

(p− 1) or (n− 1). Using Lemma III.9, we have:

H{cN} = H{p− 1}some powerH{n− 1}some power.

Indeed H{cN}(a) is non-zero since H{n−1}(a) 6= 0 and since H{p−1} = (λ−1)p−1

(Lemma III.8) while a = 1 is not a root of H{n} (Corollary III.17). This

completes the proof.

As promised, we deal with the p = 2 case:

Proposition V.9. Let K be a field of prime characteristic p = 2. Fix a polynomial:

fa = xy(x+ y)(x+ ay), a ∈ K − {0, 1}

Then FT (fa) = 1
2

Proof. Note that (V.8.1) holds, with b = c = 1, but we cannot replicate the same

proof as in Theorem V.7 as, for example, N = (1/2)(pe ± 1) is not an integer. We
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need to use different N ’s. For the upper bound, use N = 1
2
pe (we intentionally do

not plug in p = 2 for clarity). Then fNa is in (x, y)[pe] thus N/pe = 1/2 is an upper

bound.

As for the lower bound, use N = 1
2
(pe − 2). Then fNa has a monomial x2Ny2N

with 2N = pe− 2 < pe. As long as a is not a root of H{N}, N/pe = (1/2)(1− 2/pe)

is a lower bound, which approaches to 1/2 as e→∞. Notice that:

N =
1

2
(pe − 2) = pe−1 − 1 = 1 + p+ ...+ pe−2.

So due to Lemma III.9

H{N} = H{1}some power = (1 + λ)some power.

Since a 6= 1, H{N}(a) 6= 0 and we are done.

Discussion V.10. For completeness, let us present all possible values of the F -pure

threshold of a bivariate degree four homogeneous polynomial with four roots, not

necessarily distinct. Consider again these five forms:

x4, x3y, x2y2, x2y(x+ y), xy(x+ y)(x+ λy) with λ ∈ K − {0, 1},

Indeed suffices to compute FT (f) for each of these cases. The monomial cases

are straightforward; it is easy to show that FT (xa11 x
a2
2 · · · xatt ) is (max(a1, ..., at))

−1

([BFS13, Example 3.10]). The f = x2y(x + y) case is treated in [Her14] as it is a

binomial, and it is easy to see that the F -pure threshold in this case is 1
2
. The last

case is the subject of Theorem V.1.

5.3 Conclusions for Legendre Polynomials

An immediate consequence of Theorem V.1 is the following conclusion (which

is a known property as presented in [BM04]).
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Corollary V.11.

1. Fix a prime p > 2, and let n = p−1
2

. If a ∈ Fp − {0, 1} is a root of H{n}, then

so are:

(V.11.1) (a)±1, (1− a)±1,

(
a

a− 1

)±1

.

2. Fix a prime p > 2, a field K of characteristic p, and let n = p−1
2

. If b ∈ K−{±1}

is a root of the Legendre polynomial of degree n, Pn(x) ∈ K[x], then also:

±b,± 3 + b

−1 + b
,±3− b

1 + b
.

Theorem V.2 give rise to another corollary (which is similar to Lemma III.27);

the statement is known in the context of Legendre polynomials.

Corollary V.12. Fix a prime p > 2. Let b, c ∈ Z>0 such that p ≡ 1 (mod (b+ c)).

Let a ∈ Fp − {0, 1}, then:

H

{
b

b+ c
(p− 1)

}
(a) = 0 ⇐⇒ H

{
c

b+ c
(p− 1)

}
(a) = 0.

The following discussion illustrate how the F -pure threshold computation provide

a new proof for both corollaries. Let K = K and consider a degree four homogeneous

polynomial f ∈ K[x, y] with distinct roots (z1, z2, z3, z4) over P1
K . The linear change

of variables needed to get the form

(V.12.1) fa = xy(x+ y)(x+ ay) with a ∈ K − {0, 1}

sends:

(z1, z2, z3, z4) 7→ (0,∞,−1,−a),
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and a quick computation reveals that a is the cross-ratio:

a =
z4 − z1

z4 − z2

z3 − z2

z3 − z1

Since the roots are all distinct, a is not 0, 1 or∞. Notice that a depends on the order

we had chosen for the roots. Considering all possible orders, we can get the same form

(V.12.1) only with one of the following: a, 1/a, 1− a, 1/(1− a), a/(a− 1), (a− 1)/a.

This can be done using a linear change of variables, thus the value of the F -pure

threshold is preserved. With the notation from (V.12.1), we conclude that:

FT (fa) = FT
(
f1/a

)
= FT (f1−a) = FT

(
f1/(1−a)

)
= FT

(
fa/(a−1)

)
= FT

(
f(a−1)/a

)
,

However, the conclusion of Theorem V.1 is independent of the implicit order we

had chosen for the roots. This geometrical insight reveals the interesting property of

the roots of H
{
p−1

2

}
over Fp mentioned in the first statement of Corollary V.11.

Note that H{n}(a) = 0 ⇐⇒ H{n}(1/a) = 0 is expected due to the symmetry in

Definition III.5:

(V.12.2) H{n}(λ) = λnH{n}(1/λ),

but the inference on the rest of the roots in (V.11.1) is not at all trivial. The

second statement of Corollary V.11 is obtained by rewriting the first statement

using (III.29.2) and we include the computation here for completeness: Let T be the

matrix

T =

 1 1

−1 1

 .
T represents the Möbius transformation λ+1

−λ+1
. Thus, if a is a root of H{n}, then

multiply T [1, 0]Tr to see that a+1
−a+1

is a root of Pn (as Equation III.29.2 shows).
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Note that the inverse of T is:

T−1 =
1

2

 1 −1

1 1

 ,
however we can ignore the scalar multiplier as it does not affect the underlying

Möbius transformation. So, if b is a root of Pn, then a−1
a+1

is a root of H{n}. Now

denote:

T1 =

 −1 1

0 1

 ,

T2 =

 1 −1

1 0

 ,

T3 =

 0 1

1 0

 .
Notice that T1, T2, T3 represents transformations which map roots of H{n} to roots

of H{n}. Ergo, TTiT
−1, for i = 1, 2, 3, gives us transformations which map roots of

Pn to roots of Pn. These matrices give the roots as described in the second statement

of Corollary V.11.

A similar analysis, performed in the case of Theorem V.2, gives us Corol-

lary V.12: Consider a homogeneous polynomial overK[x, y], K = K, with 4 distinct

(ordered) roots (z1, z2, z3, z4) over P1
K of multiplicities b, b, c, c respectively. After a

linear change of variables the polynomial adopts the form:

(V.12.3) fa = xbyb(x+ y)c(x+ ay)c, a ∈ K − {0, 1}.

In order to do so, one maps

(z1, z2, z3, z4) 7→ (0,∞,−1,−a),



88

which yields the same cross-ratio:

a =
z4 − z1

z4 − z2

z3 − z2

z3 − z1

Considering the result in Theorem V.2, it is crucial to notice the value of FT (fa) is

symmetric in b, c but we cannot arbitrarily reorder the roots — 0 and∞ has to have

the same multiplicity to obtain the form (V.12.3), possibly with b and c interchanged.

A computation shows that we can get the same form with 1/a instead of a, while

the other values of the cross-ratio are not allowed when b 6= c. However, since we

can interchange b and c we get that:

H

{
b

b+ c
(p− 1)

}
(a) = 0 ⇐⇒ H

{
c

b+ c
(p− 1)

}
(a) = 0.

This proves Corollary V.12. The argument presents a new proof of Lemma III.27.



CHAPTER VI

Schur Compliance, Stratification of Parameter paces by
FT (f)

In this chapter we generalize the techniques used in the previous chapters. Specif-

ically, we are generalizing the elegant Schur’s Congruence(Lemma III.9). Such

generalization is possible under some assumptions (Conjecture VI.21). This al-

lows us to compute the F -pure threshold values for the family of all polynomials

supported by the same monomials. As a result, an explicit stratification of the co-

efficient space by algebraic subvarieties arises, each represent a set of polynomials

sharing the same F -pure threshold value.

6.1 Introduction

Throughout this chapter we will follow the same setup.

Discussion VI.1 (Setup). Fix a prime integer p. Fix an algebraically closed field K

of prime characteristic p and let R = K[x1, ..., xt] be a polynomial ring over K. Fix a

set of monomials, xµ1 , ...,xµs and let M ∈ Zt×s≥0 be the resulting splitting matrix (see

subsection 2.1.2). Let b1, ..., bs be indeterminates. We are interested in computing

the F -pure threshold of a generic polynomial:

f = b1x
µ1 + ...+ bsx

µs .

89
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Then, we wish to find out how FT (f) changes when we plug in scalars from K

instead of the b’s and get a “specialized” polynomial in K[x1, ..., xt]. Put differently,

we are interested in investigating the function:

FT : Ps−1 → Q,

defined by

FT (c1, ..., cs) = FT (f), where f = c1x
µ1 + ...+ csx

µs .

Note that the coefficient space is taken to be Ps−1 rather than Ks because the F -pure

threshold is invariant under scalar multiplication, i.e. under scaling of the bi’s, and

because we avoid defining the F -pure threshold on the zero polynomial.

Specifically, we would like to see which regions in Ps−1 obtain the same value

under FT and how FT can be used to stratify Ps−1. By adopting this approach

we are, in fact, computing the F -pure threshold of all polynomials f ∈ K[x1, ..., xt]

supported by any subset of the monomials xµ1 , ...,xµs since we are allowing some

of the ci’s to be 0. Nevertheless, it might be simpler to separate the case where we

specialize one of the b’s to be 0 and just analyze a different matrix, i.e. with one less

column.

Semicontinuity ([MY09, Theorem 5.1]) is used to show that the image FT cannot

contain a strictly decreasing sequence of values. Further, [BMS08, Proposition 3.8]

proves that the image of FT contains only finitely many numbers. However, our

goal is to give an explicit description of the regions of Ps−1 sharing the same value

under FT , as well as a constructive procedure to find them. This goal is achieved in

Theorem VI.22 and Remark VI.23, after assuming certain technical conditions

we describe next (the actual assumption is Conjecture VI.21).
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6.2 Computing FT (f) Using Sequences

Let f be a polynomial as in the Setup, with indeterminate coefficients. Let N be

a positive integer, and let xv be a monomial, where v ∈ Zt≥0 is the multiexponent.

We denote by

C{N,xv}

the coefficient of the monomial xv in fN . For a generic polynomial, C{N,xv} is a

polynomial in the b’s. Note that C{N,xv} is 0 if xv is absent from fN . When we

specialize f or even just plug in some c ∈ K instead of some bi, the value of the new

coefficient C{N,xv} is the value we get form specializing the generic coefficient in the

same way. Recall from Lemma III.2 (with the notation (II.9.2)) that if C{N,xv}

is non-zero and maxv < pe for some e, then we get that N/pe is a lower bound of

FT (f), i.e. N/pe < FT (f).

Definition VI.2 (Monomial Sequence). Let f be as in the Setup, possibly after

specializing. Consider a sequence of integer powers and monomials:

(VI.2.1) T := (N1,x
v1), (N2,x

v2), ..., (Ni,x
vi), ...

Let ei be the minimal power of p such that

maxvi < pei , (i.e. if the coefficient of vi in fNi is non-zero, then fNi 6∈ m[pei ])

We say that T is a monomial sequence if the integers are strictly increasing, N1 <

N2 < ... < Ni < ..., and if the following rational numbers form a non-decreasing

sequence:

N1

pe1
≤ N2

pe2
≤ ... ≤ Ni

pei
≤ ...

Note that a monomial sequence T gives rise to a sequence of coefficients:

C{T } = C{N1,x
v1}, C{N2,x

v2}, ..., C{Ni,x
vi}, ...
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In addition, it give rise to a non-decreasing sequence of possible lower bounds for

FT (f):

B{T } =
N1

pe1
,
N2

pe2
, ...,

Ni

pei
, ...

where Ni

pei
is a lower bound if the relevant coefficient C{Ni,x

vi} is non-zero. Let us

denote:

T := supB{T }

Definition VI.3 (Lower Approximating Sequence). Let f be as in the Setup,

possibly after specializing. Consider a monomial sequence:

(VI.3.1) T = (N1,x
v1), (N2,x

v2), ..., (Ni,x
vi), ...

The sequence T gives rise to a sequence of coefficients:

C{T } = C{N1,x
v1}, C{N2,x

v2}, ..., C{Ni,x
vi}, ...

and to a non-decreasing sequence rational numbers:

B{T } =
N1

pe1
,
N2

pe2
, ...,

Ni

pei
, ...

We say that T is a lower approximating sequence if C{T } is not eventually zero (i.e.

for any L ∈ N there exists l > L such that C{Nl,x
vl} 6= 0). Note that in such case,

T ≤ FT (f)

Remark VI.4. Consider again the Setup, without specializing. Let T be a lower

approximating sequence for FT (f). Notice that C{T } is a sequence of polynomials

in the b’s. If we specialize f , we specialize accordingly C{T }, which now may or

may not be eventually zero. That is, after specialization, T may not be a lower

approximation sequence anymore. The reverse direction is impossible: if T is not a

lower approximating sequence for f , it cannot become one after specializing.
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Proposition VI.5. Let f be as in the Setup, possibly after specializing. Then

there exists a lower approximating sequence T such that T = FT (f).

Proof. Recall Definition II.1 and its notation. For a positive integer e, let Ne :=

ν(f)(p
e) = max{N | fN 6∈ m[pe]}. That is, if we raise f to the power of Ne, we can

find a monomial xve with a non-zero coefficient such that maxve < pe. So Let

T = (N1,x
v1), (N2,x

v2), ..., (Ni,x
vi), ...

The sequence C{T } contains only non-zero elements and due to Discussion II.2,

B{T } is non-decreasing. So T is a lower approximating sequence. By definition

T = FT (f).

We call a lower approximating sequence with T = FT (f), an approximating

sequence. We get the following immediate corollary:

Corollary VI.6. Let f be as in the Setup, possibly after specializing. Then sup T

over all lower approximating sequences T is exactly FT (f). Moreover, it is achieved

by some approximating sequence T , i.e. for this sequence T = FT (f).

Discussion VI.7. Given a polynomial, it is not hard to find a monomial sequence

of (Ni,x
vi), you can even do it somewhat arbitrarily. The hard part is first, to make

sure it is a lower approximating one — that the coefficients are non-zero eventually;

second, that it is an approximating one — how can you tell that you have the best

lower bound possible? Enter Schur Compliance.

6.3 Schur Compliance

Definition VI.8 (Schur Compliance). Let f be as in the Setup, possibly after

specializing. Let v be the multiexponent corresponding to xv in fN . Let UN ⊂ Zs≥0

be the set of vectors k such that Mk = v and with |k| = N while
(
N
k

)
6= 0. For any
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vector k of non-negative integers, we denote {ke}∞e=0 the p-expansion of its entries.

Note that all but finitely many are the zero vectors. We say that the triple (M,v, N)

is Schur Compliant if

for all k,k′ ∈ UN and for all e ∈ Z≥0, Mke = Mk′e

Remark VI.9. Note that Definition VI.8 does not depend on the coefficients of

f . It is a property of the triple (M,v, N) thus can be tested on the supporting

monomials of f . Any specialization will not affect this property.

We are now ready to generalize the elegant and useful Schur’s Congruence we

encountered in the context of Deuring polynomials:

Proposition VI.10 (Generalized Schur’s Congruence). Let f be as in the

Setup, possibly after specializing. Fix a positive integer N . Let v be the multiex-

ponent corresponding to xv in fN and assume that (M,v, N) is Schur Compliant.

Let U = UN ⊂ Z≥0 be the set of vectors k such that Mk = v and with |k| = N

while
(
N
k

)
6= 0. Fix one vector k ∈ U with p-expansion k0 + k1p+ ...+ kep

e. Denote

Mki = vi and N = n0 + n1p+ ...+ nep
e. Denote the coefficient of the monomial xv

in fN as C{N,xv}. Then:

C{N,xv} = C{n0,x
v0} · C{n1,x

v1}p · · ·C{ne,xve}p
e

Proof. Due to Schur compliance, ∀k ∈ U, Mki = vi. Therefore the right hand side

is independent of the k ∈ U we pick to compute the vi’s. Write the monomials of

f as xµ1 , ...,xµs . Replace the coefficients of f by indeterminants b1, .., bs and get a

new polynomial:

f = b1x
µ1 + ...+ bsx

µs

We shall prove the statement for this generic polynomial and the statement will be

true once we specialize, i.e. plug in the actual coefficient of the original f . So, the
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left hand side is the following polynomial in b1, ..., bs:

∑
k∈Zs

≥0,Mk=v,|k|=N

(
N

k

)
bk

The right hand side is the following polynomial in b1, ..., bs: ∑
k∈Zs

≥0,Mk=v0,|k|=n0

(
n0

k

)
bk

 ∑
k∈Zs

≥0,Mk=v1,|k|=n1

(
n1

k

)
bk

p

· · ·

 ∑
k∈Zs

≥0,Mk=ve,|k|=ne

(
ne
k

)
bk

pe

We want to observe that these two polynomials (in the b’s) are the same and we

shall do it by comparing the integer coefficient of each monomial of the form bk. Fix

one monomial bk from the left hand side with a non-zero coefficient. Write the p

expansion of k as k0 +k1p+ ...+kep
e. Since

(
N
k

)
6= 0, we have that |ki| = ni, and by

Schur Compliance, Mki = vi. So we get bk in the right hand side as well, and the

integer coefficient is the same due to Lucas’s Theorem(Theorem III.7). For the

reverse direction we do not need Schur compliance: Fix k0 for the first parenthesis,

k1 from the next parenthesis, and so on until we fix ke. Then k = k0 +k1p+ ...+kep
e

must show up in the left hand side due to linearity:

Mk = M(k0+k1p+...+kep
e) = Mk0+Mk1p+...+Mkep

e = v0+v1p+...+vep
e = v

Note that since 0 ≤ n0, n1, ..., ne ≤ p−1, then the entries of each ki must be between 0

and p−1, otherwise the sum of entries exceeds ni. This shows that k0+k1p+...+kep
e

is indeed the p-expansion of k. The integer coefficient is the same due to Lucas’s

Theorem(Theorem III.7).

Remark VI.11. Note that if M is injective, every vector v is easily seen to be

Schur compliant. In this case, the coefficients are of the form c · bv where c is some

multinomial coefficient.
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Discussion VI.12 (Lower Schur Sequences, Basic Coefficients). If we are

lucky to identify that Generalized Schur’s Congruence applies on enough triples

(M,xv, N), we can compute the F -pure threshold of a polynomial more easily by

identifying lower approximating sequences. Specifically, suppose we are given a se-

quence T as in (VI.3.1). Suppose that B{T } is non-decreasing and we would like

to test if T is indeed a lower approximating sequence. In order to do that, we need

to verify that C{T } is not eventually zero so, in general, we need to check infinitely

many coefficients. This is not the case if T is composed of monomials and corre-

sponding powers of f which are Schur Compliant (in which case, we call T a lower

Schur sequence). If so, we can use Generalized Schur’s Congruence and realize

that all the coefficients are simply products of coefficients of the form C{ni,xvi},

with 0 ≤ ni ≤ p− 1 and vi are all multiexponents occurring in fni . So identify the

set of:

C = {C{n,xv} 6= 0 | 0 ≤ n ≤ p− 1} ⊂ K[b1, ..., bs]

We call them the Basic Coefficients, and we have finitely many of them. We denote

them by

π1, ..., πm ∈ K[b1, ..., bs]

Note that the basic coefficients are homogeneous polynomials in b1, ..., bs.

Definition VI.13. [M-Basic Closed Set] Let f be as in the Setup without spe-

cializing. Recall that M denotes the splitting matrix. Denote π1, ..., πm ∈ K[b1, ..., bs]

as the basic coefficients. For some α ∈ {0, 1}m, We call πα a squarefree monomial

in the π’s. We say that the closed projective subvariety X ⊂ Ps−1 is an M-basic

closed set if X can be defined as a vanishing set of an ideal generated by squarefree

monomials in the basic coefficients. Note that we define Ps−1 = V(0) and ∅ = V(1)

to be M -basic closed sets as well.
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Remark VI.14. Since we have a finite number of basic coefficients, we have a finite

number of squarefree monomials in the basic coefficients and thus, a finite number

of M -basic closed sets. Moreover, this collection is easily seen to be closed under

unions and intersections.

Remark VI.15. Let f be as in the Setup and let π1, ..., πm be the basic coefficients.

Then the number of M -basic closed sets is exactly the number of ideals generated

by squarefree monomials in the π’s, excluding the monomial ideal (1) = (π0) (cor-

responding to the empty set). If there are no algebraic relations among the π’s (i.e.

K[π1, ..., πm] is a polynomial ring) then the number of squarefree monomial ideals is

easily seen to be equal to the number of antichains in the partially ordered set of the

squarefree monomials (e.g. use primary decomposition). The number of antichains

is the mth Dedekind number (this is a standard enumeration of the squarefree ideals,

see [Slo73], [Com74, §7.2] for details.) The first numbers, starting from m = 1, are1:

3, 6, 20, 168, 7581, 7828354, 2414682040998, 56130437228687557907788

Asymptotic bounds can be found in [Kor81]. We conclude that the number of M -

basic closed sets is bounded by the relevant Dedekind number (minus 1, if we want

to be accurate). Note that this bound can be far from optimal as there might be

algebraic relations among the basic coefficient. (See also Remark VI.24 later). For

a quick computation, one can use the following bound: given m basic coefficients,

the number of distinct squarefree monomials, excluding 1 = π0, is 2m − 1; so the

number of possible sets of generators is 22m−1, giving an upper bound for the number

of squarefree monomial ideals. This bound is far from optimal since we are counting

multiple sets of generators for the same ideals but it is easy to compute.

1See sequence A000372 in https://oeis.org/
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Proposition VI.16. Let f be as in the Setup without specializing. Let T be a

lower Schur sequence. Then there exists an M -basic closed set XT with the following

property: T is a lower Schur sequence under the specialization (c1, ..., cs) ∈ Ps−1, if

and only if (c1, ..., cs) ∈ Ps−1 −XT .

Proof. Scan the coefficients in C{T } (it is not eventually zero since it is given that

T is a lower approximating sequence when f is not specialized). Let Xi ⊂ Ps−1

denote the vanishing set of the ith coefficient in C{T }. Apply Generalized Schur’s

Congruence(Proposition VI.10) and conclude that Xi is an M -basic closed set.

C{T } is eventually zero exactly when we specialize at the set:

XT :=
∞⋃
j=1

∞⋂
i=j

Xi,

which is an M -basic closed set as seen in Remark VI.14.

Remark VI.17. For any lower approximating sequence T , we can define XT ⊂

Ps−1 as in the above proposition: T is a lower approximating sequence under the

specialization (c1, ..., cs) ∈ Ps−1, if and only if (c1, ..., cs) ∈ Ps−1 −XT . However if T

is not a lower Schur sequence, XT may or may not be an M -basic closed set.

Example VI.18. We demonstrate the concept of Schur Compliance(Definition VI.8)

by addressing the family of polynomials in Theorem V.7 with b = c = 1. So con-

sider the polynomial

f = b1x
3y + b2x

2y2 + b3xy
3 ∈ K(b1, b2, b3)[x, y],

where b1, b2, b3 are indeterminants and K is a field of chracteristic p > 2. We are

in fact addressing a bigger family of polynomials, since in Theorem V.7 we are

specializing b1 = 1, b2 = (1 + b3). First, let us show that (M,x[2N,2N ]) is Schur



99

compliant, where:

M =

 3 2 1

1 2 3

 .
Solving Mk = [2N, 2N ]Tr yields:

k =


0

N

0

+ r


1

−2

1


Note the r must be an integer between 0 and N/2. Let us write the p-expansion of

N , r and k, where the middle entry in the expansion of k will be computed shortly:

N = n0+ n1p+ ...+ nep
e

r = r0+ r1p+ ...+ rep
e

k =


r0

?

r0

+


r1

?

r1

 p+ ...


re

?

re

 pe

Since |ki| = ni and the digits must not carry, we must have:

N = n0+ n1p+ ...+ nep
e

r = r0+ r1p+ ...+ rep
e

k =


r0

n0 − 2r0

r0

+


r1

n1 − 2r1

r1

 p+ ...


re

ne − 2re

re

 pe.

Ergo,

ki =


0

ni

0

+ ri


1

−2

1

 ,
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so

Mki = M


0

ni

0

+ ri


1

−2

1

 = M


0

ni

0

 =

 2ni

2ni

 = vi.

The last computation is valid for any choice of r, as Schur compliance requires.

Now, that Schur compliance has been established for vectors of the form [2N, 2N ]Tr,

let us suggest the following sequence. Denote:

Ne =
pe − 1

2
, 2Ne < pe,

and create a sequence

T = {(Ne,x
(2Ne,2Ne))}e.

We compute that:

B{T } =

{
1

2

pe − 1

pe

}
e

, thus T =
1

2

Now, observe that:

C{T } = C

{
pe − 1

2
,x(2Ne,2Ne)

}
e

.

Apply Generalized Schur’s Congruence and observe that all of these coefficients

are products of the same basic coefficient:

π = C

{
p− 1

2
,x(2N1,2N1)

}
,

and thus

XT = V(π)

Therefore, for any specialization, as long as π is non-zero, we have a lower bound

of 1
2

for FT (f). In the specific case of Theorem V.7, π = H
{
p−1

2

}
. However this

example is more general, and π is a polynomials in b1, b2, b3, with the property of

described in Generalized Schur’s Congruence. For example, for p = 5 one gets:

π = b2
2 + 2b1b3
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Example VI.19. Let us give an example for a triple (M,xv, N) that is not Schur

compliant over K with charK = 5. Take the same matrix:

M =

 3 2 1

1 2 3

 .
Let N = 17, and let:

v =

 36

32

 .
Among the preimages of v we can find:

k =


7

5

5

 =


2

0

0

+ 5


1

1

1

 ,
and

k =


6

7

4

 =


1

2

4

+ 5


1

1

0

 .
However,

M


2

0

0

 =

 6

2

 6=
 11

17

 = M


1

2

4

 ,
and also

M


1

1

1

 =

 6

6

 6=
 5

3

 = M


1

1

0

 .

6.4 Stratification

We need the following technical lemma to deduce that FT : Ps−1 → Q obtains a

maximal value on M -basic closed sets.
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Lemma VI.20. Let K = K be an algebraically closed field of prime characteristic

p > 0. Let b1, .., bs be indeterminates. Fix q homogeneous polynomials, π1, ..., πq ∈

K[b1, .., bs], defining a non empty subset:

X = V(π1, ..., πq) ⊂ Ps−1.

Set R = K[b1, ..., bs]/Rad(π1, ..., πq) with the convention that when q = 0, R =

K[b1, .., bs]. Fix s monomials xµ1 , ...,xµs , and let

f = b1x
µ1 + ...+ bsx

µs ∈ R[x1, .., xt].

For a point (c1, .., cs) ∈ X, we denote:

g = c1x
µ1 + ...+ csx

µs ∈ K[x1, ..., xt],

that is, the polynomial we get from f after specializing at (c1, .., cs). Then the

following are satisfied:

1. An approximating sequence of g, T , exists and gives rise to a lower approxi-

mating sequence of f , T ′, with T = T ′.

2. FT (g) ≤ FT (f).

3. There exists a polynomial

h = d1x
µ1 + ...+ dsx

µs ∈ K[x1, ..., xt], where (d1, ..., ds) ∈ X,

such that FT (f) = FT (h).

4. The function FT : Ps−1 → Q , as defined in the Setup(Discussion VI.1), ob-

tains a maximum on X, i.e. there exists (d1, ..., ds) ∈ X such that FT (d1, ..., ds)

is the maximum value the function FT obtains on X.

5. For each M -basic closed set, the function FT obtains a maximum, where M is

the splitting matrix of the support of f .
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Proof. Note that the computation of FT (f) is done over R[x1, ..., xt] where the com-

putation of FT (g) is done over K[x1, .., xt].

1. Apply Proposition VI.5 to find an approximating sequence of g, call it T .

Use the same underlying monomial sequence to construct a monomial sequence

for f , call it T ′. With the notation from Proposition VI.5, observe that the

sequence of powers Ni, the monomials xvi and bounds B{T } = B{T ′} do not

change. The only difference is that C{T ′} is a sequence of coefficient taken

from R, while C{T } is a sequence of coefficients taken from K. Note that

C{T } is obtained from C{T ′} by specializing in (c1, ..., cs). Because T is an

approximating sequence for g, C{T } is not eventually 0, and therefore C{T ′}

is not eventually 0 as well, making T ′ a lower approximating sequence for f .

2. Use T ′ from above and notice that:

FT (g) = T = T ′ ≤ FT (f)

3. Apply Proposition VI.5 on f to find an approximating sequence Q of f , i.e.

the sequence of coeffiennt C{Q} is not eventually 0 in R and Q = FT (f). Let

XQ ⊂ X ⊂ Ps−1 be the set of s-tuples of coefficients that make C{Q} eventually

zero once specialized there. If we can prove that XQ ( X we are done: we can

choose (d1, ..., ds) ∈ X − XQ, specialize there to get a polynomial h and a

lower approximating sequence T with FT (f) = T ≤ FT (h), which must be

FT (h) by (2.). For the sake of contradiction, assume X = XQ. In this case, at

every point (c1, .., cs) ∈ X, the sequence of coefficients C{Q} is eventually zero

after specializing. However, C{Q} consists of homogeneous regular functions

on X and therefore C{Q} is eventually zero in R, prior to any specialization, a

contradiction.
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4. From the previous statement we get a polynomial h, with coefficients in X, that

obtains the maximal possible F -pure threshold value, FT (f).

5. Recall from Definition VI.13 that any M -basic closed set is defined by a

squarefree monomial ideal in the basic coefficient, so simply apply (4.) on that

ideal.

Our main result is proven later under the following conjecture:

Conjecture VI.21. Let f be as in the Setup,where the b’s are taken from any field

(so can indeterminates or have algebraic relations between them). Then there exists

a lower Schur sequence T with T = FT (f). We simply call such T a Schur sequence.

This conjecture is true for any f where the support gives rise to an injective

splitting matrix (see Remark VI.11). It is also evidently true for the families of

polynomials we encountered in previous chapters (after partial specializing): the

elliptic curve case, where the supporting monomials are y2z, x3, x2z, xz2 ∈ K[x, y, z],

and the four P1 roots case, where the supporting monomials are x3y, x2y2, xy3 ∈

K[x, y].

The next theorem is known in general due to [BMS08, Proposition 3.8] and [MY09,

Theorem 5.1], but we offer a constructive proof when assuming Conjecture VI.21:

Theorem VI.22. Recall the Setup. Recall the function FT : Ps−1 → Q where

FT (c1, ..., cs) is the F -pure threshold of the polynomial f after specializing (b1, ..., bs) =

(c1, ..., cs). Assume Conjecture VI.21 is true. Then:

1. FT obtains finitely many distinct values, r1 > r2 > ... > rm ∈ Q.

2. FT−1(r1) is an open dense set of Ps−1. For i = 2, ...,m, FT−1(ri) is a Zariski

open set of an M-basic closed set {FT < ri−1}.
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3. If we have a total of q basic coefficients, then the number of values obtained by

FT is bounded by qth Dedekind number.

Proof. Start with f as in the Setup. Collect all lower Schur sequences T = {Ti}I .

This collection includes all the lower Schur sequences for any specialization, as ex-

plained in Remark VI.4. Due the Lemma VI.20, the collection T contains se-

quences that obtains the the maximal value the function FT obtains on Ps−1, a value

which we denote as r1. Denote them as

T1 = {T ∈ T | T = r1}.

For each T ∈ T1, observe at XT (as denoted in Proposition VI.16), an M -basic

closed set. Let X1 be their intersection, which is another M -basic closed set. Note

that away from X1, we have at least one Schur sequence T , i.e. such that C{T } is

not eventually 0, whereas in X1 all sequences are no longer lower approximating ones.

Ergo, away from X1, the value of FT (f) after specializing (b1, ..., bs) = (c1, ..., cs) ∈

Ps−1 −X1, is r1. Notice that

X1 = {FT < r1}

If X1 is not empty, we can repeat the above procedure. Due to the Conjec-

ture VI.21 and Lemma VI.20, we keep looking at the collection of all lower

Schur sequences T − T1, and identify the ones with the maximal T , and denote that

maximal value as r2. We then define

T2 = {T ∈ T − T1 | T = r2}.

We use the same considerations to find an M -basic closed set X ′2 defined as the

intersection of all XT for T ∈ T2; observe that away from X ′2 (inside X1), we get the

next biggest possible value of FT (f), r2. We then repeat the analysis for

X2 = X1 ∩X ′2 = {FT < r2},
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and so on. In each step we get that the next biggest possible value of FT (f) is

achieved on the a Zariski dense open set of the an M -basic closed set Xi ⊂ Ps−1,

and we turn to analyze the complement. As each Xi is a distinct M -basic closed set,

their number is bounded by the qth Dedekind (see Remark VI.15).

Remark VI.23. The proof above reveals a constructive way to identify the different

regions of Ps−1 sharing the same value under FT . First we identify all the basic

coefficients, that is, the coefficients Ci 6= 0 in fn with 1 ≤ n ≤ p− 1. Next, identify

all the vanishing sets that can be described as unions and intersections of V(Ci).

Then, it suffices to compute the F -pure threshold of one polynomial from each said

vanishing sets. Finally, we can bundle up together all the regions with the same value

under FT . This procedure can be easily programmed and terminates since we have

only finitely many specialized polynomials to consider. (One can use the previously

computed values of multinomial coefficients in the next steps of the process in order

to speed up the computation; this technique is called “memoization”).

Remark VI.24. The fact that the image of FT is finite can be derived from [BMS08,

Proposition 3.8]. The reference suggests a bound that is dependent on p and on the

degree of the polynomial f . Our bound is the qth Dedekind number, where q is

the number of basic coefficients. However, if we know exactly which of the basic

coefficient should be considered in the computation of FT , we can take their number

as q and then the bound is reduced. In the family of elliptic curves and in the family

of bivariate polynomials with four distinct roots in P1, we demonstrated that we just

need to consider one basic coefficient, π = H
{
p−1

2

}
. Thus we take q = 1 and then

we have 2 different values of FT , where the first Dedekind number is 3.

Remark VI.25. In [BMS09, Conjecture 4.4], it is conjectured that the set of all
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possible values of FT (f) for f ∈ K[x1, ..., xn] has the Ascending Chain Condition

(ACC). Our Conjecture VI.21 leads to an explicit way to compute the values of

FT (f) once we fix the set of supporting monomials. Can this explicit description be

further used to shed more light on the ACC conjecture? Are the two conjectures

related? See [Sat17] for recent development on the ACC for the F -pure threshold.

Example VI.26. As we mentioned before, when M is injective, all the lower ap-

proximating sequences are lower Schur sequences and therefore Conjecture VI.21

applies, as well as Theorem VI.22. Since the basic coefficient are of the form of a

scalar times a monomial in b1, ..., bs, we can explicitly compute all possible M -basic

closed sets. There are simply determined by which of the b’s are specialized to be

0 or not. For example, if we take b1x
2 + b2x

3, we get that the maximal F -pure

threshold (either 5/6 or 5/6(1− 1/5p)) is obtained away from V(b1b2), 1/2 is obtain

on V(b1b2)− V(b1) and that 1/3 is obtained on V(b1)− V(b2).



CHAPTER VII

Open Questions

We end this thesis by restating some questions that had arisen in our analysis.

1. In Chapter II we introduced Monomial Ideal Reduction Algorithm an the

to “simplify” a monomial ideal while preserving its F -pure threshold. There are

several “simplified” such ideals. How can we relate them to the original ideal?

2. Can the Monomial Ideal Reduction Algorithm be carried out without using

linear programming to find FT (M)? Can its time complexity be improved?

3. Recall Question I.2: Let f ∈ Z[x1, .., xt], such that f ∈ (x1, ..., xt). For any

prime p, denote by fp the natural image in Fp[x1, ..., xt]. Let P be the set of all

primes p such that FT (fp) = lct (f). Is it true that P is of infinite cardinality?

This question is still open for many families of polynomials. For the family in

Chapter V, this is reduced to Question V.4: Suppose f = xbyb(x + y)c(x +

ay)c ∈ Z[x, y]. Denote

P =

{
all primes p

∣∣∣∣ p ≡ 1 (mod b+ c) and H

{
c

b+ c
(p− 1)

}
(a) 6≡ 0 (mod p)

}
.

Is it true that the cardinality of P is infinite?

Can we answer this question more easily?
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4. Let Pn(x) be the Legendre polynomial of degree n. Denote

Ln(x) =

 Pn(x), if n is even;

Pn(x)/x, if n is odd

Stieltjes conjectured in 1890 that Ln is irreducible over Q but only a few cases

are known to be true (see [CH14]). This has implication on the behavior of

roots of H{n}. To be more precise we conjecture the following over C:

(a) The only common factor of H{n}, H{m}, n 6= m, is λ− 1, which happens

if and only if both m,n are odd.

(b) If n is even, H{n} is irreducible over Q. If n is odd, H{n}/(λ − 1) is

irreducible over Q.

5. In Chapter V, we concluded Corollary V.5, a property of the roots of Leg-

endre polynomials over Fp. Is it a new property or is there a reference to this

statement in the vast literature on Legendre polynomials?

6. In the last chapter we proved how Conjecture VI.21 helped to identify the

stratification of the parameter space by the FT function. We identified a number

of scenarios where the conjecture applies; does it always apply? Moreover, the

M -basic closed sets in the coefficient space give rise to a very coarse topology

of the coefficient space. It is interesting to further investigate the topological

properties. Lastly, is there a connection between the ACC conjecture and our

conjecture? See Remark VI.25.
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APPENDIX A

MATLAB Code for Monomial Ideal Algorithm

Here is the MATLAB code implementing the algorithm in Discussion II.25. Note

that there are numerical considerations when equating two floating point numbers

so the code is not guaranteed to be accurate and the result should be verified using

theoretical considerations.

function M = invSubMatAlgo(M)

eps = 1E-5;

r2=0;

c2=0;

[r,c] = size(M);}

while and((r2+c2) < (r+c), (r+c) >2)

M = eliminateDomination(M);

[r,c] = size(M);

[k, FTM, v, error] = betaFinder(M);

if error

disp(’error in linprog’)

return

end
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delrows = find(v<(1-eps)*ones(r,1));

%% adding ones as a rows ensures that the sum of entries is 0

kernel = null([M;ones(1,c)],’r’);

[˜,kerSize] = size(kernel);

if kerSize > 0

%% can use any linear combination of kernel vectors.

k = boundaryVector(k,kernel(:,1));

end

delcols = find(k<eps*ones(c,1));

M( delrows’,:) = [];

M( :,delcols’) = []];

[r2,c2] = size(M);

if and(r+c == r2+c2, r2 ˜= c2)

M = eliminateDependentRows(M);

[r2,c2] = size(M);

end

end

function M = eliminateDependentRows(M)

isEliminateion = true;

while isEliminateion

[M,isEliminateion] = eliminateDependentRow(M);

end

function [M,isEliminate] = eliminateDependentRow(M)
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[r,˜]=size(M);

rnk = rank(M);

isEliminate = false;

for rowCandidate = 1:r

M2 = M;

M2(rowCandidate,:)=[];

rnk2 = rank(M2);

if rnk2 == rnk

M=M2;

isEliminate = true;

return

end

end

function M2 = eliminateDomination(M)

M2 = eliminateDominatedRows(M);

M2 = eliminateDominatingdCols(M2);

[r,c] = size(M);

[r2,c2] = size(M2);

while r2+c2<r+c

M = M2;

M2 = eliminateDominatedRows(M);

M2 = eliminateDominatingdCols(M2);

[r,c] = size(M);

[r2,c2] = size(M2);
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end

function M2 = eliminateDominatingdCols(M)

[r,c]=size(M);

M2 = M;

for candidate = 1:c

for i= 1:c

if i == candidate

continue

else

if sum(M(:,candidate) >= M(:,i)) == r

M2(:,candidate) = [];

return

end

end

end

end

function M2 = eliminateDominatedRows(M)

[r,c]=size(M);

M2 = M;

for rowCandidate = 1:r

for i= 1:r

if i == rowCandidate

continue
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else

if sum(M(rowCandidate,:) <= M(i,:)) == c

M2(rowCandidate,:) = [];

return

end

end

end

end

function x = boundaryVector(k,kerVec)

if sum(kerVec)<0

v = -kerVec;

else

v = kerVec;

end

maxindex = -1;

maxVal = [];

startFlag = true;

[s, ˜] = size(k);

for i = 1:s

if v(i) ˜= 0

if startFlag

startFlag = false;

maxVal = -k(i)/v(i) - 1;

end
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if maxVal < -k(i)/v(i)

maxindex = i;

maxVal = -k(i)/v(i);

end

end

end

x=(k+maxVal.*v);

function [x, FTM, betaVector, error] = betaFinder(M)

[r,c] = size(M);

[x,mFTM,exit,˜] = linprog(-ones(1,c),M,ones(r,1),[],[],zeros(c,1),[]);

error = (exit < 1);

FTM = -mFTM;

betaVector = M*x;
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