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CHAPTER I

Introduction

1.1 Background

Over the past 20 years, online retailing has been growing at an astonishing rate, with online

sales accounting for around one-quarter of the total retail market. According to the U.S.

Department of Commerce, total e-commerce sales in 2016 reached $394.9 billion, a 15.6%

increase compared with $341.7 billion in 2015. E-commerce offers many ways for retailers to

reach consumers and conduct business without the need of a physical store. It is easier than

ever for businesses to have a digital presence, which offers 24-hour purchasing opportunities

all year round with minimum maintenance cost. It also allows online retailers to display their

merchandise in any part of the world with little additional expenses. This advantage enables

online retailers to expand their market globally and target an extremely focused segment.

With the rapid growth of e-commerce, effective inventory control and revenue manage-

ment strategies can help many small and large businesses significantly reduce their supply

chain costs and increase their total revenue. Comparing with the traditional supply chain

management, there are several important features that differentiate the online retail envi-

ronment.

Quality of service (QoS). In today’s customer-driven business environment, it is vital

for companies to focus on the QoS. Since the early 2000s, firms started to put tremendous

efforts and resources in understanding the customers and the markets. It usually costs five

to twenty-five times more to attract a new customer than to retain an old one (cf. Gallo

2014). Customers facing stockouts have been observed abandoning their purchases, switch-

ing retailers, substituting similar items and have seldom gone back (see, e.g., Fitzsimons

2000). One of the most common challenges in making supply chain decisions, at its most

fundamental, boils down to minimizing the supply chain costs while still delivering great
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customer service. Providing excellent customer service not only increases sales and profits,

but also helps companies stand out in the marketplace.

In make-to-stock inventory management systems where retailers place orders before de-

mands arrive, service-level is widely used, both in theory and in practice, to measure the

performance of inventory replenishment policies (cf. Ghiani et al. 2005a). It directly char-

acterizes the QoS, which is closely related to customer satisfaction and firms revenue. By

enforcing a service-level requirement, companies are able to improve the QoS by guaranteeing

a small stockout rates. In comparison, traditional inventory models often assume linear cost

functions to penalize backorders or lost sales, which is primarily for analytical tractability

rather than an accurate representation of reality (see, e.g., Bertsimas and Paschalidis 2001).

The mechanism of varying unit penalty costs can hardly take effect on the QoS performance

of a system. The service-level requirements presented in our models are more applicable in

online retail settings.

In addition, after-sales services could also be crucial in delivering great customer ser-

vices (cf. Cohen et al. 2006). Companies have to handle the return, repair, and disposal

of failed components. The returned products, though some parts may be damaged, can

be remanufactured and resold. The remanufacturing process includes repair or replacement

of worn-out or obsolete components and modules, which has a lower production cost than

the manufacturing process. The dual production methods further complicate the inventory

control system, but it helps firms retain their old customers by providing great after-sales

services.

Seasonal demands. One of the most important features in online retailing is the demand

seasonality. For example, the holiday season brings immense opportunities for ecommerce

since their demands are often five to ten times higher than usual demands (cf. Blogger

2016). According to Hsu (2017), retailers on Alibaba’s platforms had recorded 25.3 billion

worth of gross merchandise volume (GMV) on Singles’ Day in 2017. Hence, rather than

assuming stationary demand in the classical inventory control literature, it is important

to consider a practical demand process that is seasonal, forecast-based, and driven by the

state of the economy. In the existing literature, several demand models are widely used for

different applications, such as Markov-modulated demand process (MMDP) (see, e.g., Sethi

and Cheng 1997) and autoregressive demand (see, e.g., Mills 1991). In practice, martingale

model of forecast evolution (MMFE for short, see, e.g., Graves et al. 1986, Heath and Jackson

1994a) and advance demand information (ADI) (see, e.g., Gallego and Özer 2001) are often

used to forecast the future demand. These demand models will complicate the mathematical
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formulation and may increase the complexity of finding an optimal solution. Therefore, in

order to find good inventory and pricing policies, more efficient algorithms are needed to

solve these complex models.

Sales history and customer ratings. With the rapid growth of the Internet, more

information is available in the e-commerce marketplace. Online buyers are able to do their

own research before purchases. For example, due to the instantaneous pricing information

available to online buyers, they are able to compare offerings of sellers worldwide. Moreover,

most online retailers (such as Amazon) also provides abundant product information to buyers

such as sales rank, customers’ rating and customers’ review. Some e-retailers also allow

customers to sort (or refine) their search results based on these metrics. Consequently,

the product information exerts a huge influence on customers’ buying choices. For example,

Chevalier and Mayzlin (2006) found that online customer ratings significantly impact product

sales by analyzing data from online bookstores. Given thousands of different products,

customers are usually non-expert and they tend to have the belief that bestsellers with

higher star ratings generally have better quality guarantees.

The extra product information can change the traditional pricing strategies. According to

Remy et al. (2010), many of today’s successful online retailers use adaptive pricing strategy

in order to utilize customers’ feedbacks. By collecting and analyzing Amazon’s prices for

bestsellers in the camera and video category every hour for three months, they observed

that the price of the same product is changed constantly over time. The changes in prices

and sales ranks strongly indicate that online retailers are willing to offer price discounts to

attract more price-sensitive customers and improve their sales rank and customers’ rating.

1.2 Research Goals

In general, the goal of this research is to study the inventory control and pricing prob-

lems arise in today’s online retail environment. Specifically, our goals of this research are

summarized as follows.

1. We focus on the key features of the online retailing described in Section 1.1 by devel-

oping realistic and complex mathematical models. We propose several mathematical

formulations to solve inventory control and pricing problems that arise in online re-

tail marketplace. Compared with traditional models, our proposed models are more

applicable in reality and can be generalized to other domains.
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2. Based on the proposed models, we use mathematical tools to characterize the structure

of optimal policies. We provide an analysis of the structure of optimal policies for our

proposed models. For some complex models, it turns out that optimal policies follow

a simple structure. For instance, we show that an optimal policy for the stochastic

inventory system under service-level constraints is a total-base-stock policy. We also

show that with sales rank information, the optimal pricing policy follows a cyclic

structure. These special structures can be utilized in practice to help retail companies

designing heuristic policies to make their inventory decisions and pricing decisions.

3. Due to the complexity of mathematical models, it is usually computationally in-

tractable to find optimal policies when problem size grows larger. Therefore, one

of the research goals is to design efficient algorithms to find near-optimal policies. For

instance, we develop approximation algorithms for stochastic inventory control mod-

els with service-level constraints and non-stationary seasonal demands, which can be

applied to provide provably-good inventory control strategies in online retail business.

Our proposed algorithms are easy-to-implement and computationally efficient. In addi-

tion, we also provide theoretical worst-case analysis to our proposed algorithms, which

is often very challenging for multistage stochastic optimization models. The theoretical

performance analysis provides insights into the algorithms and motivates an empirical

study of their typical performance through extensive computational experiments.

1.3 Contributions

This dissertation studies inventory control and pricing decisions in the context of online

retail. It consists of three essays, each analyzing a different problem in the area of supply

chain management and revenue management. All three essays contribute to the arising area

of today’s online retail environment.

In Chapter 2, we study a multi-period production planning problem under joint service-

level constraint. The joint service-level constraint is enforced to improve the QoS of inventory

management system. Instead of assuming known demand distribution, we incorporate the

historical demand data into our model and study a data-driven optimization problem. We

also consider a variant in which pricing decisions are required to be made together with the

inventory decisions. Via computations of diverse instances, we demonstrate the effectiveness

of our approach by analyzing the solution feasibility and objective bounds and conducting

sensitivity analysis.

In Chapter 3, we study a dynamic inventory control problem with enforced service-level
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constraint in each period. In addition to the periodic-review inventory control systems, we

also study a variant model, in which retailer has returned products and need to make re-

manufacturing decisions. Such model is capable of providing after-sales services, which can

help retailers to improve their QoS. Moreover, we also consider seasonal demands presented

in the system and model the demand with a generic demand structure that generalizes the

correlated demand models in existing literature. We formulate both problems using dynamic

programs, and propose 2-approximation algorithms for both models. The core concept de-

veloped is called the delayed forced holding and production cost, which is proven effective

in dealing with service-level constrained inventory systems. Our extensive computational

experiments show that the proposed algorithms on average perform within 2% error of op-

timality. The techniques developed in this work can lend themselves to important problems

in other domains, such as resource allocation, appointment scheduling, etc. We believe these

easy-to-implement and efficient algorithms can be widely applied in industry that typically

requires realistic assumptions and large-scale data sets.

In Chapter 4, we study periodic-review dynamic pricing problems under the effect of

sales ranking. The demand in each period is a deterministic function of price and sales rank.

The goal is to find the optimal price in each period so that retailers can maximize the total

profit. We consider both single-product model and multi-product model in which an online

retailer manages multiple substitutable products. We show that the cyclic pricing policy is

optimal for both models. For the single-product model, we also quantify the length of the

optimal pricing cycle. Our results show that the optimal cycle length depends on the impact

of the sales rank as well as the expected profit for each price choices. In addition, we conduct

numerical studies for both models to show the benefit of cyclic pricing policy.

In general, the outcome of this research will help companies (especially online retail-

ers) manage their inventory and pricing decisions in order to minimize their supply chain

costs or maximize their total revenue. The proposed models in this research project can be

widely used in practice for different applications and generate effective managerial decisions.

In addition, our proposed models and methodologies can be applied to a broader class of

traditional or emerging supply chain applications.
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CHAPTER II

Production Planning Problem with Joint

Service-Level Guarantee

2.1 Abstract

We consider a class of single-stage T -period production planning problems under demand

uncertainty. The main feature of this work is to incorporate a joint service-level constraint

to restrict the joint probability of having backorders in any period. This is motivated by

manufacturing and online retailing applications, in which firms need to decide the produc-

tion quantities ex ante, and also have stringent service-level agreements. The inflexibility

of dynamically altering the pre-determined production schedule may be due to contractual

agreement with external suppliers or other economic factors such as enormously large fixed

costs and long lead time. We focus on two stochastic variants of this problem, with or without

pricing decisions, both subject to a joint service-level guarantee. The demand distribution

could be nonstationary and correlated across different periods. Using the sample average

approximation (SAA) approach for solving chance-constrained programs, we re-formulate

the two variants as mixed-integer linear programs (MILPs). Via computations of diverse

instances, we demonstrate the effectiveness of the SAA approach, analyze the solution fea-

sibility and objective bounds, and conduct sensitivity analysis for the two MILPs. The

approaches can be generalized to a wide variety of production planning problems, and the

resulting MILPs can be efficiently computed by commercial solvers.

2.2 Introductory Remarks

In this chapter, we study a class of production planning problems subject to a joint service-

level constraint. The problems fall into the category of single-stage T -period stochastic
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optimization problems with no recourse decisions (i.e., firms need to plan their production

and/or pricing decisions ex ante and cannot change them in subsequent periods). This

class of problems is primarily motivated by manufacturing or online retailing applications,

in which firms have stringent service-level requirements or need to provide high customer

services, but do not have sufficient flexibility of altering their decisions due to the related

issues, such as contractual agreement with outside suppliers, enormously large fixed costs

and long lead time.

One motivating example of this research comes from online retailing. For example, con-

sider an online apparel store that sells clothes to customers. In apparel business, there

are multiple phases (including product development, production, marketing, etc.) before a

product can be sold on market. Many apparel stores set their production sites overseas to

reduce production cost but increases their production lead-time. Usually, there are months

of lead-time for a new collection to be delivered to stores. The retailer has to plan inventory

quantities and prices ahead of selling season. Moreover, online digital marketplace offers a

more competitive environment compared with traditional offline markets (cf. Brynjolfsson

et al. 2011). Customers facing stockouts have been observed abandoning their purchases,

switching retailers, substituting similar items and have seldom gone back (see, e.g., Fitzsi-

mons 2000). This motivates us to impose a service-level requirement to restrict the joint

stockout probabilities in each period which improves customers’ shopping experience and

helps firms to maintain excellent reputation. In addition, demands for the online apparel

store can be seasonal, non-stationary without known distribution. During holiday season,

demand increases dramatically (five to ten times higher). It is critical for retailer to rely on

historical demand data and plan production quantities and prices accordingly.

Other than e-commerce applications, this research is also related to other emerging inven-

tory control and pricing problems. For example, CEMEX, a multinational building materials

company that often signs contracts with large event organizers. The firm was the key sup-

plier of cement for multiple large events in 2014, including notably a contract with FIFA

to supply 28000 tons of cement for the new soccer stadium in Manaus (cf. CEMEX 2015).

The firm has to plan production quantities and prices for the committed projects long before

starting the project. Moreover, guaranteeing an adequate service-level is absolutely essential

for successful completion of these projects. Another motivating example arises in the U.S.

automotive industry. The lead time for building a new car model is typically 52 months (cf.

Fine et al. 1996) due to lengthy design and testing cycles, and the lead time for manufactur-

ing an existing car model is typically 10 to 18 months (cf. ARI 2015). The fixed cost related

to altering a production schedule is also quite high. Due to these reasons, car manufacturers
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usually make their production plans ahead of the selling season and their planning decisions

cannot be easily changed afterwards. Meanwhile, an adequate service-level is important to

maintain firms’ revenue and goodwill.

To capture the aforementioned applications, we propose two single-stage T -period models

(with or without pricing decisions), subject to a joint service-level guarantee. The first model

considers the production decisions while the second model concerns both the production and

pricing decisions. For the first model, the demands are random, which can be non-stationary

and correlated across different periods. Our goal is to minimize the expected total cost,

including (linear) production costs, inventory holding costs and backorder penalty costs,

subject to a joint service-level constraint over the T -periods to restrict the probability of

having unmet demands during the planning horizon. For the second model, we assume a

classical additive demand model in which the demand depends linearly on the price plus

a random disturbance term (see, e.g., Chen and Simchi-Levi 2012). We consider discrete

pricing and continuous pricing options, in which prices are chosen from a given finite set

of values or from a bounded price range, respectively. Our goal is to maximize the total

expected profit, also subject to a joint service-level constraint.

We remark again that both problems considered in this chapter belong to the category

of single-stage stochastic optimization problems with no recourse decisions, which should be

distinguished from dynamic inventory control problems considered in the literature (see, e.g.,

Zipkin 2000). The main feature of our models is to incorporate a joint service-level constraint,

which is practically relevant but computationally intractable. Our approach employs the

sample average approximation (SAA for short) method (see, e.g., Luedtke and Ahmed

2008) to reformulate our chance constrained problems as mixed-integer linear programming

(MILP) models and to compute upper and lower bounds of the optimal objective values as

well as feasible solutions with certain confidence levels.

2.2.1 Relevant Literature

The traditional study of production planning problem has been focused on deterministic

models with known demand. Zangwill (1969) developed a deterministic lot-sizing model that

allowed for backlogged demand and proposed a network approach. They further proposed

dynamic programming algorithms to compute optimal planning policies based on network

formulations. Pochet and Wolsey (1988) studied several strong MILP reformulations of the

uncapacitated lot-sizing problem with backlogging. They also described a family of strong

valid inequalities that can be effectively used in a cut generation algorithm. Florian et al.

(1980) studied capacitated lot-sizing problem and showed that the deterministic problem

8



is NP-hard. Recently, Absi et al. (2011) studied the single item uncapacitated lot-sizing

problem with production time windows, lost sales, early productions and backlogs. They

presented MILP formulations of these models and developed dynamic programming algo-

rithms to solve them. González-Ramı́rez et al. (2011) proposed a heuristic algorithm to

solve a multi-product, multi-period capacitated lot-sizing problem with pricing, where the

deterministic demand was assumed to be linear in price.

In this chapter, we focus on stochastic variants of production planning problems, subject

to a joint service-level constraint. There has been limited literature on this topic, among

which Bookbinder and Tan (1988) studied a multi-period lot-sizing problem that imposed

individual service-level constraint in each period and their demand distributions were known.

In contrast, our model considers a joint service-level constraint that poses more computa-

tional challenges, and empirical demand samples are given instead of an explicit demand

distribution function. We reformulate our problem as an MILP model using the SAA ap-

proach, which is based on Monte Carlo simulation of random samples, to approximate the

expected value function by the corresponding sample average. Kleywegt et al. (2002) stud-

ied the convergence rates, stopping rules and computational complexity of the SAA method.

They also presented a numerical example for solving the stochastic knapsack problem using

the SAA method. Verweij et al. (2003) formulated stochastic routing problems using the

SAA approach. They applied decomposition and branch-and-cut techniques to numerically

solve the approximating problems. Pagnoncelli et al. (2009) applied the SAA method to solve

two chance constrained problems, namely, linear portfolio selection problem and blending

problem with a joint chance constraint. Recently, Mancilla and Storer (2012) formulated

a stochastic scheduling problem using the SAA approach and proposed a heuristic method

based on Benders decomposition.

Our main methodology builds upon the theory developed in Luedtke and Ahmed (2008).

They first proposed to use the SAA approach to find feasible solutions and lower bounds

on the optimal objective value of a general chance-constrained program. Keeping the same

required risk level, they showed that the corresponding SAA counterpart yields a lower

bound of the optimal objective value. To find a feasible solution, they showed that it suffices

to solve a sample-based approximation with a smaller risk level. They also mathematically

derived the required sample sizes in theory for having a lower bound or a feasible solution

with high confidence. Our work contributes to the literature by being first to employ the

SAA approach to solve a class of production planning problems subject to a joint service-level

constraint, which is typically computationally intensive.
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2.2.2 Contributions

The main contributions of this chapter are summarized as follows.

1. From the modeling perspective, we propose two new production planning models (with

and without pricing decisions) subject to a joint service-level constraint. In classical

stochastic production planning problems, unsatisfied demands are typically penalized

by a linear backorder cost only. However, it is usually important for firms to maintain

their reliability or credibility by persistently satisfying all the market demands in each

period with high probability. Some firms use α-service-level (defined as the probability

that the demand is fully satisfied) to measure their QoS. This metric is yet neglected

in most classical production planning models in the literature. This motivates us to

incorporate a joint α-service-level constraint that ensures the market demands being

satisfied in each period with a sufficiently high probability, so that the related firms

can remain competitive and profitable.

Moreover, in most stochastic production planning models in the existing literature, the

demand distributions in each period are given explicitly, while in real-life applications,

it is usually difficult to deduce the true underlying demand distribution. The SAA

reformulation can be done without knowing the exact demand distribution; however, a

large amount of empirical data (more than 5000) is needed to solve the SAA reformu-

lation under the nominal risk level and such amount of data may not be available in

reality. We show that if we tune the risk parameter in the SAA reformulation smaller,

we are able to obtain good feasible solutions (within 5% of optimality) using much less

empirical data (around 300), which makes the data-collection work less demanding.

Also, our proposed models allow for nonstationary and generally correlated demands.

2. From the computational perspective, we employ the SAA method for chance-constrained

programming and reformulate the two production planning models as MILPs using

finite samples. However, due to the large amount of samples needed in the SAA re-

formulation, solving the resulting MILPs exactly is computationally intensive. Tuning

the risk parameter in the SAA reformulation smaller than the required service-level

(i.e., more conservative), we achieve feasible solutions by solving the resulting MILPs

via much fewer samples. The feasible solutions provide an upper (lower) bound on the

cost-minimization (profit-maximization) problem. On the other hand, we also compute

a lower (upper) bound on the cost-minimization (profit-maximization) problem by set-

ting the risk parameter to be at least equal to the service-level and solving multiple

SAA counterparts with fewer number of samples.
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A comprehensive numerical study has been conducted using three popular demand

models with different patterns of demand correlations among periods (i.e., identical

and independent demand distributions, Markov modulated demand process (MMDP)

and autoregressive demands (AR models)), which are extensively used in theory and

practice. For each problem instance with different demand model and different required

service-level, both upper and lower bounds are computed and validated. We then

compare our bounds with the optimal solutions (for reasonable problem sizes). It

can be observed that the more samples we use, the less gap it has from our bounds

to the optimal solutions. Also, the actual sample size needed to achieve at a given

confidence level for both upper and lower bound solutions is a magnitude smaller than

the theoretic bounds proposed in Luedtke and Ahmed (2008). We conduct sensitivity

analysis for production planning with pricing and our numerical results show that

when the demand is less sensitive to the price, the firm tends to increase the price

while keeping the demand at the same level, in order to obtain a better profit.

2.2.3 Structure and General Notation

The remainder of this chapter is organized as follows. In Section 2.3, we introduce the

notation and formulate the joint service-level constrained stochastic production planning

problem. Section 2.4 formulates the production planning problem with pricing options. The

computational results and insights for both problems with/without pricing options are given

in Section 2.5. Finally, Section 2.6 concludes the chapter and gives future research directions.

Throughout the chapter, for notational convenience, we use a capital letter and its lower-

case form to distinguish between a random variable and its realization. We use fi to indicate

“is defined as”, and 1pAq is the indicator function taking value 1 if statement A is true and 0

otherwise. For any x P R, we denote x` “ maxtx, 0u. We also use rxs to denote the smallest

integer that is no less than x and use txu to denote the largest integer not greater than x.

2.3 Production Planning with Joint Service-Level Con-

straint

2.3.1 Mathematical Formulation

Consider a finite horizon of T periods. The classic production planning problem decides

the production quantities for each period simultaneously at the beginning of the planning
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horizon (denoted as q1, q2, . . . , qT ). During each period t pt “ 1, . . . , T q, demands are realized

and three types of cost are incurred: production cost (with a per-unit cost ct ą 0), holding

cost for on-hand inventories from period t to t` 1 (with a per-unit cost ht ą 0), and penalty

cost for backlogged demand (with a per-unit cost pt ą 0). The objective is to minimize

the total cost over the T periods. Let D1, . . . , DT denote the random demands over the T

periods and they may be independently distributed or correlated. As a general convention,

we use a capital letter to denote a random variable and a lower case letter to denote its

realization.

Let Xt and Bt be random variables that denote on-hand inventories and backorders at the

end of period t “ 1, 2, . . . , T , respectively. Clearly, both Xt and Bt must be nonnegative. The

initial inventory and backorder levels are denoted by x0 and b0, respectively. We formulate

the production planning problem under a joint service-level constraint as

(PP) min
T
ÿ

t“1

pctqt ` htErXts ` ptErBtsq (2.1)

s.t. Xt´1 ` qt `Bt “ Dt `Xt `Bt´1, @t “ 1, . . . , T, (2.2)

PpXt ´Bt ě 0, @t “ 1, . . . , T q ě 1´ θ, (2.3)

qt ě 0, @t “ 1, . . . , T. (2.4)

The objective (2.1) minimizes the total ordering cost, expected inventory cost and ex-

pected backlogging cost. In each period t, the incoming items are Xt´1, qt and Bt while the

outgoing items are Xt, Bt´1 and Dt. To balance them, we formulate (2.2) as the flow-balance

constraints. Constraint (2.3) requires that the probability of satisfying the demands in all T

periods is at least 1´ θ, which defines the service-level.

2.3.2 Reformulation Using the SAA Approach

Consider N samples of demands over T periods denoted by dpiq “ pd
piq
1 , . . . , d

piq
T q (i “

1, 2, . . . , N) where each sample i is equally likely to occur with probability 1{N . The

on-hand inventories and backorders vary according to demand samples, denoted by xpiq “

px
piq
0 , . . . , x

piq
T q and bpiq “ pb

piq
0 , . . . , b

piq
T q, respectively. The initial on-hand inventory and back-

order are pre-determined regardless of the realization of random demands, i.e., x
piq
0 “ x0 and

b
piq
0 “ b0 for all i “ 1, 2, . . . , N . The ordering quantities q1, . . . qt are decided before knowing

the demand realizations, and thus do not depend on the specific samples.
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In each sample i, the balance constraint (2.2) is presented as

x
piq
t´1 ´ x

piq
t ´ b

piq
t´1 ` b

piq
t ` qt “ d

piq
t , @t “ 1, . . . , T. (2.5)

We compute the total expected cost as:

T
ÿ

t“1

ctqt `
1

N

T
ÿ

t“1

N
ÿ

i“1

´

htx
piq
t ` ptb

piq
t

¯

.

The joint service-level constraint (2.3) is equivalent to

N
ÿ

i“1

1

!

x
piq
t ě b

piq
t , @t “ 1, 2, . . . , T

)

ě rp1´ θqN s. (2.6)

Define binary variables ypiq such that if we choose to violate the i-th sample then ypiq “ 1

and ypiq “ 0 otherwise. We then replace the joint service-level constraint (2.6) by:

$

’

’

’

’

&

’

’

’

’

%

x
piq
t ´ b

piq
t ě ´M

piq
t ypiq, @t “ 1, . . . , T, (2.7)

N
ÿ

i“1

ypiq ď tθN u, (2.8)

y P t0, 1uN . (2.9)

Note that for each period t and sample i, the big-M coefficient M
piq
t “ ´x0 ` b0 `

řt
s“1 d

piq
s

is a valid upper bound for ´x
piq
t ` b

piq
t , because

b
piq
t ´ x

piq
t “ pd

piq
t ´ qtq ` pb

piq
t´1 ´ x

piq
t´1q

“

t
ÿ

s“1

pdpiqs ´ qsq ` pb0 ´ x0q

ď pb0 ´ x0q `

t
ÿ

s“1

dpiqs .

When ypiq “ 0, the constraint x
piq
t ´ b

piq
t ě 0 is enforced for each t “ 1, 2, . . . , T . When

ypiq “ 1, the joint service-level constraint in the i-th sample can be violated and the total

number of violated samples is no more than tθN u ensured by the constraint
řN
i“1 y

piq ď tθN u.

Therefore, we approximate a multi-period plan of optimal ordering quantities by using
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the following MILP model.

(SAA-PP) min

#

T
ÿ

t“1

ctqt `
1

N

T
ÿ

t“1

N
ÿ

i“1

´

htx
piq
t ` ptb

piq
t

¯

+

s.t. (2.5), (2.7)–(2.9),

x
piq
0 “ x0, b

piq
0 “ b0, @i “ 1, . . . , N, (2.10)

x
piq
t , b

piq
t , qt ě 0, @t “ 1, . . . , T, i “ 1, . . . , N. (2.11)

We present a necessary condition for any optimal production plan in the following propo-

sition.

Proposition 2.1. For any optimal solutions
 

q˚t , x
piq
t

˚

, b
piq
t

˚(

i,t
to the (SAA-PP), we have

either x
piq
t

˚

“ 0 or b
piq
t

˚

“ 0 holds for all i “ 1, 2, . . . , N and t “ 1, 2, . . . , T .

Proof. We show the results by contradiction. Suppose that there exists an optimal solution

with x
piq
t ą 0 and b

piq
t ą 0 for some t P t1, 2, . . . , T u and i P t1, 2, . . . , Nu. We can replace x

piq
t

and b
piq
t by x̃

piq
t “ x

piq
t ´mintx

piq
t , b

piq
t u and b̃

piq
t “ b

piq
t ´mintx

piq
t , b

piq
t u while keeping the other

decisions the same. Since the inventory level remains unchanged, i.e., x̃
piq
t ´ b̃

piq
t “ x

piq
t ´ b

piq
t ,

all the constraints are satisfied under the new solution. Meanwhile, this new feasible solution

decreases the total cost by 1
N
pht` ptq ¨minpx

piq
t , b

piq
t q ą 0. This contradicts with the fact that

the original solution is optimal and thus completes the proof.

The above proposition is also true when no service-level requirement is present (see, e.g.,

Zipkin 2000). It asserts that even in the case of having a joint service-level constraint, there

is no incentive to have backorders while holding positive inventories. This result is also true

when no service-level requirement.

2.4 Model Variant with Pricing Options

2.4.1 Notation and Problem Formulation

We consider pricing decisions in the above production planning problem. In this variant,

besides the ordering quantity qt for each period t “ 1, 2, . . . , T , the manager also decides

the price rt for each period t “ 1, 2, . . . , T at the beginning of the whole time horizon. The

price rt set by the manager affects the underlying demand distribution Dptq and thus the

realization dt. The goal is to maximize the total expected profit over the T periods.

We interpret the random demand by a deterministic linear function in price rt plus a

noise term, i.e., Dtprtq “ ´atrt ` βt ` ε̃t, where ε̃t is a random variable with Erε̃ts “ 0 for
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t “ 1, . . . , T , and both at, βt ą 0. This demand model is well known as the additive demand

model in the literature (see, e.g., Mills (1959)). It allows for correlated demands over periods,

which indicates that tε̃tu
T
t“1 are not necessarily independent random variables.

We further assume that once the demand is realized in period t, it establishes a contract

between the buyer and the retailer with a unit price of rt. In other words, given that the

realized demand Dt “ dt, it immediately incurs a revenue of rtdt, no matter when the demand

is satisfied. The price r “ pr1, r2, . . . , rT q
T is chosen from a given set P Ď RT . We can then

formulate the production planning problem with pricing options as

(PO) max
T
ÿ

t“1

ˆ

rtErDts ´ ctqt ´ htErXts ´ ptErBts

˙

s.t. (2.2)–(2.4),

Dt “ ´atrt ` βt ` ε̃t, @t “ 1, . . . , T, (2.12)

r P P.

In the formulation above, the constraints (2.2)–(2.4) are carried from the model without

pricing options. The constraint (2.12) shows the relationship between price and demand in

each period.

2.4.2 Sample Average Approximation Reformulation

We reformulate the (PO) model using N sample data, namely dpiq “ pd
piq
1 , d

piq
2 , . . . , d

piq
T q

T,

i “ 1, 2, . . . , N . For the i-th sample, we use ε
piq
t to denote the realizations of ε̃t and other

notations remain the same. Then the total expected profit is computed by

´

T
ÿ

t“1

ctqt `
1

N

T
ÿ

t“1

N
ÿ

i“1

”

rtd
piq
t ´ htx

piq
t ´ ptb

piq
t

ı

.
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Hence, using the linear relationship between demand and price, i.e., d
piq
t “ ´atrt ` βt ` ε

piq
t ,

we reformulate the (PO) model as:

(SAA-PO)

max
T
ÿ

t“1

`

´ ctqt ´ atr
2
t ` βtrt

˘

`
1

N

T
ÿ

t“1

N
ÿ

i“1

`

ε
piq
t rt ´ htx

piq
t ´ ptb

piq
t

˘

s.t. x
piq
t´1 ´ x

piq
t ´ b

piq
t´1 ` b

piq
t ` qt “ ´atrt ` βt ` ε

piq
t , @t “ 1, . . . , T, i “ 1, . . . , N,

x
piq
t ´ b

piq
t ě ´

ˆ

´ x0 ` b0 `

t
ÿ

s“1

`

´ asrs ` βs ` ε
piq
s

˘

˙

ypiq,

@t “ 1, . . . , T, i “ 1, . . . , N, (2.13)

(2.8) – (2.11),

r P P.

Here, the probabilistic constraint (2.3) in the (PO) model is equivalent to constraints

(2.13), (2.8) and (2.9), for which we define new binary variables ypiq (i “ 1, . . . , N). How-

ever, the above model still involve nonlinear terms r2
t in the objective function and bilinear

terms rsy
piq in constraint (2.13). We reformulate it as a linear model for two specific price

sets: discrete price set and continuous price set, where price decisions pt, t “ 1, ..., T , are

independently determined for each period. For the former, the price is drawn from a set of

finite possible prices, denoted by set Rt “ tγ
t
1, . . . , γ

t
mt
u. In this case, the price set can be

written as P “
ŚT

t“1Rt. For the latter, we consider the possible price rt chosen from a price

interval rLt, Uts given for each period t and the price set is specified as P “
ŚT

t“1rLt, Uts.

We will give MILP models for each price set in the following subsections. Note that our

model is also capable of describing the relationship among the prices in each period. For

example, if the prices are not allowed to increase from periods to periods, we can simply add

the constraint r1 ě r2 ě ¨ ¨ ¨ ě rT to our model while the complexity of the resulting model

remains the same.

2.4.2.1 Discrete price set

Consider a finite set Rt “ tγ
t
1, . . . , γ

t
mt
u from which product price is chosen in each period.

Define a binary decision variable ujt to indicate whether using the j-th price option, i.e., γtj

(j “ 1, . . . ,mt). In each period, ujt “ 1 if rt “ γtj and ujt “ 0 otherwise. To ensure only one

price is used from the set pγt1, γ
t
2, . . . , γ

t
mt
q in each period t, we require

řmt

j“1 ujt “ 1 for each
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t. Then, the quadratic term r2
t in objective function can be expressed by a linear term:

r2
t “

mt
ÿ

j“1

pγtjq
2ujt. (2.14)

Similarly, for any t “ 1, . . . , T and i “ 1, . . . , N , the nonlinear term rty
piq in the joint

service-level constraint can be rewritten as

rty
piq
“

mt
ÿ

j“1

γtjujty
piq. (2.15)

To further linearize the term ujty
piq in (2.15), we introduce another decision variable v

piq
jt

to replace ujty
piq and add the following McCormick inequalities to force v

piq
jt “ ujty

piq (see

McCormick (1976)):
$

’

’

’

’

&

’

’

’

’

%

v
piq
jt ď ujt

v
piq
jt ď ypiq

v
piq
jt ě ujt ` y

piq ´ 1

v
piq
jt ě 0.

(2.16)

Here both ujt and ypiq are binary variables. If ujt “ 1 and ypiq “ 1, then v
piq
jt “ 1; otherwise,

the constraints enforce v
piq
jt “ 0. Therefore, for discrete pricing options, using equalities

(2.14) and (2.15), we can formulate the following (PP-D) model:

(PP-D)

max
T
ÿ

t“1

ˆ

´ ctqt ´ at

mt
ÿ

j“1

pγtjq
2ujt ` βt

mt
ÿ

j“1

γtjujt

˙

`
1

N

T
ÿ

t“1

N
ÿ

i“1

ˆ

ε
piq
t

mt
ÿ

j“1

γtjujt ´ htx
piq
t ´ ptb

piq
t

˙

s.t. x
piq
t´1 ´ x

piq
t ´ b

piq
t´1 ` b

piq
t ` qt “ ´at

mt
ÿ

j“1

γtjujt ` βt ` ε
piq
t , @t “ 1, . . . , T, i “ 1, . . . , N,

x
piq
t ´ b

piq
t ě px0 ´ b0qy

piq
`

t
ÿ

s“1

ˆ

as

ms
ÿ

j“1

γsjv
piq
js ´ βsy

piq
´ εpiqs y

piq

˙

,

@t “ 1, . . . , T, i “ 1, . . . , N,

(2.8)–(2.11),

(2.16), @t “ 1, . . . , T, i “ 1, . . . , N, j “ 1, . . . ,mt,
mt
ÿ

j“1

ujt “ 1, @t “ 1, . . . , T,

ujt P t0, 1u, v
piq
jt ě 0, @t “ 1, . . . , T, i “ 1, . . . , N, j “ 1, . . . ,mt.

17



2.4.2.2 Continuous price set

For continuous pricing options, the price in period t is chosen from the set Pt “ rLt, Rts. We

first note that the price rt must be non-negative, hence Lt ě 0. Also, rt should be bounded

above by βt{at, otherwise the expected demand ´atrt`βt ă 0, which is unlikely to happen in

reality. Hence, the retailer will never set a price higher than βt{at, and therefore, Ut ď βt{at.

For the nonlinear term rty
piq presented in the joint service-level constraint, we linearize it

by introducing a new decision variable w
piq
t . The following sets of linear inequalities enforce

w
piq
t “ rty

piq when ypiq is a binary:

$

’

’

’

’

&

’

’

’

’

%

w
piq
t ď rt

w
piq
t ď Uty

piq

w
piq
t ě rt ` Utpy

piq ´ 1q

w
piq
t ě 0.

(2.17)

Finally we can formulate the following (PP-C) model with quadratic objective for pro-

duction planning problem with continuous pricing options as follows

(PP-C)

max
T
ÿ

t“1

`

´ ctqt ´ atr
2
t ` βtrt

˘

`
1

N

T
ÿ

t“1

N
ÿ

i“1

`

ε
piq
t rt ´ htx

piq
t ´ ptb

piq
t

˘

s.t. x
piq
t´1 ´ x

piq
t ´ b

piq
t´1 ` b

piq
t ` qt “ ´atrt ` βt ` ε

piq
t , @t “ 1, . . . , T, i “ 1, . . . , N,

x
piq
t ´ b

piq
t ě px0 ´ b0qy

piq
`

t
ÿ

s“1

`

asw
piq
s ´ βsy

piq
´ εpiqs y

piq
˘

, @t “ 1, . . . , T, i “ 1, . . . , N,

(2.8)–(2.11),

(2.17), @t “ 1, . . . , T, i “ 1, . . . , N,

ypiq P t0, 1u, @i “ 1, . . . , N,

Lt ď rt ď Ut, @t “ 1, . . . , T.

2.5 Computational Results

2.5.1 Solution Methods

In general, an MILP reformulation of a chance-constrained program is computationally in-

tractable since it usually requires a large number of Monte Carlo samples to attain solution

accuracy. Luedtke and Ahmed (2008) suggested using the SAA approach for solving gen-
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eral chance-constrained programs, and derived theocratical sample-size bounds for obtaining

solutions that satisfy the chance constraints with certain confidence for specific risk levels.

Specifically, consider a generic chance-constrained program:

pPθq : z˚θ “ mintfpxq : x P Xθu,

where Xθ “

!

x P X : P tGpx, ξq ě 0u ě 1 ´ θ
)

. Here X Ă Rn represents a deterministic

feasible region, f : Rn Ñ R represents the objective to be minimized, ξ is a random vector

with support Ξ Ď Rd, G : Rn ˆ Rd Ñ Rm is a given constraint mapping and θ is a risk

parameter of service-level. We assume that z˚θ exists and is finite.

The SAA counterpart of the chance-constrained problem pPθq with risk parameter α is

defined as

pPN
α q : ẑNα “ mintfpxq : x P Xαu,

where Xα “

!

x P X : 1
N

řN
i“1 1

´

Gpx, ξiq ě 0
¯

ě 1´ α
)

.

Feasible solutions: To obtain feasible solutions of pPθq, we can choose a smaller risk

parameter α ă θ and solve the SAA counterpart pPN
α q. As shown in Luedtke and Ahmed

(2008), if the sample size

N ě
1

2pθ ´ αq2
log

ˆ

|XzXθ|

δ

˙

, (2.18)

then solving pPN
α q will yield a feasible solution to pPθq with probability at least 1´ δ. This

gives a theoretical sample size to guarantee a feasible solution for Pθ using the SAA approach

with a confidence level 1´ δ.

Lower bounds: To obtain lower bounds on the original optimization problem pPθq, we

set α “ θ and to generate M SAA problems, namely, pPN
θ,iq (i “ 1, 2, . . . ,M). Then we solve

each sample-based problem and obtain a set of optimal objective values, denoted by ẑNθ,i

(i “ 1, 2, . . . ,M). The L-th minimum value among all M optimal objective value is denoted

by ẑNθ,rLs. Then, according to Luedtke and Ahmed (2008), the following result holds:

PpẑNθ,rLs ď z˚θ q ě 1´
L´1
ÿ

i“0

ˆ

M

i

˙

p1{2qM (2.19)

for large enough N relative to ε (e.g., Nε ě 10). Hence, we can say that ẑNθ,rLs is a lower

bound of the objective value with a confidence level 1´
řL´1
i“0

`

M
i

˘

p1{2qM .

We test the effectiveness of the SAA approach applied to both models in this chapter

with and without the pricing option. We use CPLEX 12.5.1 for solving all MILP models.

All the computations are performed on a 3.40GHz Intel(R) Xeon(R) CPU.
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2.5.2 Stochastic Production Planning Problem

We present numerical results on the stochastic production planning problem. We numerically

solve the appropriate SAA counterpart problems and compute both the upper bounds and

the lower bounds for optimal objective values. We also compute the required sample size in

practice to show the effectiveness of our approach.

2.5.2.1 Parameter setting

We use randomly generated instances to demosntrate the general features of our models and

approaches. We randomly generate instances based on some specific demand distributions

in all our test. Companies can cast their own problems with empirical data and specific

parameters.

We test both i.i.d. demand and correlated demand. We consider the total number of peri-

ods T “ 5, and assume stationary unit ordering cost, unit holding cost and unit backlogging

cost in each period, which are c “ 5, h “ 1 and p “ 10, respectively.

The i.i.d demand in each period follows Poisson distribution with mean value 20. For the

correlated demand, we consider both Markov Modulated Demand Process (MMDP) (see,

e.g., Chen and Song (2001)) and Autoregressive Model of Order 1 (AR(1)) (see, e.g., Mills

(1991)).

The demands generated from MMDP have three states corresponding to the state of

economy : poor (1), fair (2) and good (3). In each period t, given that the current state is

it P t1, 2, 3u, we test cases where the demand distributions are Poisson with mean value 10it.

We also assume that the state of the economy follows a Markov chain with the initial state

1 (i.e., poor) and the transition probability matrix

P “

¨

˚

˚

˝

0.2 0.5 0.3

0.4 0.2 0.4

0.1 0.6 0.3

˛

‹

‹

‚

.

For the AR(1) demand case, the demands in period t satisfy dt “ dt´1 ` η, where the

noise term η is normally distributed with mean 0 and standard deviation 1. We set the initial

demand d0 “ 20. In all our computations, we test the problems with required service-level

θ “ 0.02 and 0.05.
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2.5.2.2 Feasible solutions

We aim at demonstrating the effectiveness of the SAA approach for finding feasible solu-

tions. To compute for feasible solutions, we set the risk level α “ 0. This gives us a more

conservative SAA counterpart problem and hence, a relatively small sample size N is needed

to compute feasible solutions. Also, we numerically compute the solution to the SAA coun-

terpart which uses the required service-level as the risk parameter (i.e., α “ θ). We compare

the statistics of using these two different methods.

Our numerical test consists of two parts. First, we generate N samples and solve the

corresponding SAA instances each time. The above process is repeated M “ 10 times so

that we obtain 10 solutions for the same problem. The second part is to validate if all

these 10 solutions are feasible. We conduct a posteriori check to compute the risk for each

solution: we generate a simulation sample with N 1 “ 10, 000 scenarios, and check the number

of scenarios that are violated under the larger problem for each given solution. The solution

risk is then given by

R “ number of violated scenarios

N 1
.

If R ă θ, the service-level requirements are satisfied; otherwise, the solution is not feasible.

For solution risk, we report the average (Avg), minimum (Min), maximum (Max), and

sample standard deviation (σ) over the solutions given by the 10 SAA problems. We also

report the number of feasible solutions as well as the average, minimum, maximum, and

sample standard deviation of the cost over these feasible solutions.

Tables 2.1–2.6 summarize our computational results for finding feasible solutions to the

stochastic production planning problem. When not applicable, we indicate *** in the corre-

sponding entry of each table. Our observations are summarized as follows:

1. From each table, we observe that as the sample size N grows, the average solution

risk decreases and the number of feasible solutions increases. This is because as more

samples are used, more constraints are being enforced into the model, which leads

to a smaller feasible region. Hence, as the sample size grows, we can obtain more

conservative solutions by solving the SAA problems which have lower solution risks

and a higher likelihood to be feasible at the nominal risk level θ.

2. We observe that using α “ 0 requires much less samples to achieve a feasible solution

than using α “ θ. For example, in Table 2.1, we only need 300 samples to get a

feasible solution with confidence level 90% by using α “ 0. However, solving the SAA

reformulation at the nominal risk level α “ 0.02 requires at least 3000 samples to
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guarantee a confidence level of 80%. Note that the problem size grows as the number

of samples increases, we conclude that solving the SAA problem by setting risk level

α “ 0 is more efficient than solving the original SAA problem at the nominal risk level

in terms of obtaining feasible solutions. We further notice that the required sample

sizes in our tests are also smaller than the theoretical bound given in Luedtke and

Ahmed (2008). For instance, in Tables 2.3 and 2.4, the required sample size to achieve

90% confidence level is N “ 300 and N “ 100, respectively; on the other hand, the

theoretical required sample sizes can be calculated by (2.18), which are 2500 and 400,

respectively. The smaller sample size not only makes the computation more efficient,

but also makes the data-collection work less demanding.

3. In terms of the costs for feasible solutions, we observe that using α “ 0 yields a higher

average cost and a higher variance among all feasible solutions than using α “ θ.

For example, in Table 2.6 the average cost for feasible solutions is 640.7 using α “ 0

and N “ 50 samples, as compared to the average cost of 605.58 by setting α “ θ and

N “ 3000. Hence, although using a smaller risk level α “ 0 is more efficient to compute

a feasible solution under a given confidence level, it might yield a more conservative

solution that has a higher cost than solving the SAA problems under the nominal risk

level. Therefore, using a smaller risk level α “ 0 gives a feasible solution and an upper

bound on the objective values efficiently.

Table 2.1: Solution results of i.i.d. demand for stochastic production planning problem with-
out pricing for θ “ 0.02

Solution Risk Feasible Solutions Cost

α N Avg Min Max σ # Avg Min Max σ
0.00 50 0.054 0.003 0.146 0.043 1 782.64 782.64 782.64 ***

100 0.025 0.003 0.054 0.015 4 764.37 715.65 818.83 40.12
200 0.016 0.004 0.033 0.008 8 752.89 724.38 788.75 22.23
300 0.011 0.005 0.021 0.005 9 771.58 744.26 808.36 19.02
400 0.007 0.003 0.012 0.002 10 771.47 742.12 804.69 17.89

0.02 250 0.033 0.014 0.046 0.153 1 725.75 725.75 725.75 ***
500 0.028 0.017 0.044 0.152 3 713.58 709.00 716.47 3.28
1000 0.025 0.016 0.035 0.132 3 715.34 714.16 716.43 0.93
2000 0.021 0.017 0.029 0.004 4 712.39 710.30 718.24 3.38
3000 0.019 0.017 0.024 0.002 8 711.26 707.06 714.28 2.36
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Table 2.2: Solution results of i.i.d. demand for stochastic production planning problem with-
out pricing for θ “ 0.05

Solution Risk Feasible Solutions Cost

α N Avg Min Max σ # Avg Min Max σ
0.00 20 0.113 0.017 0.287 0.076 2 765.78 721.8 809.75 43.97

60 0.051 0.008 0.084 0.024 4 714.18 691.37 740.97 18.71
100 0.025 0.003 0.054 0.015 9 743.15 707.62 818.83 35.37
140 0.021 0.003 0.041 0.011 10 733.92 698.41 790.60 25.23

0.05 500 0.064 0.048 0.080 0.010 1 671.83 671.83 671.83 ***
750 0.055 0.041 0.066 0.008 3 675.08 673.71 677.44 1.67
1000 0.054 0.047 0.066 0.006 3 675.72 674.03 677.61 1.47
2000 0.048 0.039 0.055 0.004 8 675.16 671.48 680.13 2.66

Table 2.3: Solution results of MMDP for stochastic production planning problem without
pricing decisions for θ “ 0.02

Solution Risk Feasible Solutions Cost

α N Avg Min Max σ # Avg Min Max σ
0.00 50 0.051 0.008 0.118 0.033 2 990.17 946.06 1034.28 44.11

100 0.033 0.012 0.065 0.016 2 897.52 895.45 899.58 2.07
200 0.019 0.003 0.036 0.011 5 919.38 846.43 980.29 45.91
300 0.012 0.004 0.027 0.006 9 898.96 862.15 940.07 28.33
400 0.006 0.001 0.012 0.004 10 944.01 896.75 1016.14 40.52

0.05 500 0.031 0.016 0.044 0.008 1 845.08 845.08 845.08 ***
1000 0.025 0.017 0.032 0.005 3 842.58 839.77 847.47 3.48
2000 0.021 0.016 0.027 0.003 4 843.95 839.18 849.02 3.76
3000 0.020 0.017 0.024 0.002 3 844.72 842.03 847.13 2.09

Table 2.4: Solution results of MMDP for stochastic production planning problem without
pricing decisions for θ “ 0.05

Solution Risk Feasible Solutions Cost

α N Avg Min Max σ # Avg Min Max σ
0.00 25 0.124 0.039 0.274 0.089 2 912.14 877.28 947.00 34.86

50 0.064 0.025 0.129 0.034 4 853.81 828.44 885.00 22.60
75 0.036 0.009 0.090 0.025 8 862.35 806.27 959.87 42.71
100 0.033 0.012 0.065 0.016 9 857.77 807.34 899.58 35.42
125 0.025 0.011 0.039 0.009 10 878.36 851.79 922.89 22.17

0.05 500 0.061 0.046 0.075 0.009 1 797.85 797.85 797.85 ***
1000 0.054 0.048 0.065 0.005 2 793.13 792.99 793.26 0.14
2000 0.052 0.045 0.060 0.004 2 794.11 793.42 794.80 0.69
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Table 2.5: Solution results of AR(1) demand for stochastic production planning problem
without pricing decisions for θ “ 0.02

Solution Risk Feasible Solutions Cost

α N Avg Min Max σ # Avg Min Max σ
0.00 25 0.057 0.012 0.094 0.025 1 640.96 640.96 640.96 ***

50 0.041 0.008 0.113 0.033 3 650.48 642.68 664.28 9.79
75 0.023 0.010 0.048 0.012 6 647.59 638.01 665.27 10.11
100 0.012 0.001 0.029 0.008 9 659.12 628.93 718.99 29.51
125 0.010 0.001 0.019 0.006 10 659.67 630.07 720.3 28.09

0.05 500 0.025 0.015 0.042 0.008 2 632.46 630.9 634.02 ***
1000 0.02 0.013 0.026 0.005 5 631.43 626.43 634.18 2.94
2000 0.018 0.016 0.022 0.002 8 627.75 626.10 633.12 2.17
3000 0.018 0.016 0.022 0.002 7 627.94 626.14 629.87 1.03
4000 0.018 0.016 0.02 0.001 10 627.31 625.81 628.49 0.82

Table 2.6: Solution results of AR(1) demand for stochastic production planning problem
without pricing decisions for θ “ 0.05

Solution Risk Feasible Solutions Cost

α N Avg Min Max σ # Avg Min Max σ
0.00 20 0.080 0.017 0.157 0.053 4 641.93 624.05 682.55 23.65

30 0.044 0.007 0.094 0.031 6 633.26 616.77 676.87 20.89
40 0.035 0.003 0.091 0.030 7 643.36 614.33 672.73 18.30
50 0.039 0.002 0.094 0.033 7 640.70 613.06 674.98 22.12
60 0.020 0.001 0.037 0.012 10 638.14 610.63 685.65 21.62

0.05 500 0.055 0.038 0.091 0.016 5 606.78 604.76 609.82 1.68
1000 0.049 0.041 0.058 0.006 5 606.33 604.60 608.62 1.56
2000 0.048 0.042 0.055 0.004 7 605.51 604.57 607.32 0.87
3000 0.046 0.043 0.051 0.003 8 605.58 604.42 606.82 0.65
4000 0.045 0.043 0.048 0.002 10 605.33 604.06 606.36 0.66
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2.5.2.3 Lower bounds

We study the lower bounds for the stochastic production planning problem by using α “ θ.

We take L “ 1, . . . , 4 to generate lower bounds by using the optimal objective values of the

M “ 10 SAA problems. According to (2.19), the confidence levels of using L “ 1, . . . , 4

are 0.999, 0.989, 0.945 and 0.828, respectively. In addition to the lower bounds computed

at each confidence level, we also report optimality gaps, defined as the percentage that the

lower bound is below the cost of best feasible solution (i.e., the minimum cost among all

feasible solutions, given by Tables 2.1–2.6).

Tables 2.7–2.12 report the test results. Combining the test results on the lower bounds

and the results of feasible solutions in Section 2.5.2.2, we can obtain the range of the optimal

cost. For example, in the i.i.d. demand case with service-level θ “ 0.02, solving M “ 10 SAA

instances with sample size N “ 250 yields a feasible solution of cost 725.75 shown in Table

2.1 while getting a lower bound 675.24 with a confidence level 0.999 shown in Table 2.7.

This means, we have at least 99.9% confidence to say that the optimal solution is at most

p725.75´ 675.24q{725.75ˆ 100% « 6.96% less costly than the best feasible solution we get.

Similarly, we can analyze the problem with other demand cases and different service-level

parameters using corresponding tables.

From these results, we observe that as sample size N becomes larger, the lower bound

becomes larger and the gap becomes smaller at each confidence level. When the gap reaches

zero, we come to a conclusion that the best feasible solution is the optimal solution with the

corresponding confidence level. For example, as we notice from Table 2.12, when the sample

size N “ 2000, we have confidence at least 82.8% that the feasible solution of cost 604.57 is

optimal; when the sample size raises to N “ 3000, our confidence increases from 82.8% to

99.9%. Thus, for a certain confidence level, we can make a better estimation of the optimal

solution of a SAA problem as we increase the sample size N .

Table 2.7: Lower bounds of i.i.d. demand for stochastic production planning problem without
pricing for α “ θ “ 0.02

LB with confidence at least Gap with confidence at least

N 0.999 0.989 0.945 0.828 0.999 0.989 0.945 0.828
250 675.24 683.10 683.35 684.52 6.96% 5.88% 5.84% 5.68%
500 675.83 691.38 691.94 692.90 4.68% 2.49% 2.41% 2.27%
1000 687.04 695.08 695.46 700.28 3.80% 2.67% 2.62% 1.94%
2000 694.73 698.35 699.20 702.01 2.19% 1.68% 1.56% 1.17%
3000 701.10 702.49 707.06 709.11 0.84% 0.65% 0.00% ´0.29%
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Table 2.8: Lower bounds of i.i.d. demand for stochastic production planning problem without
pricing for α “ θ “ 0.05

LB with confidence at least Gap with confidence at least

N 0.999 0.989 0.945 0.828 0.999 0.989 0.945 0.828
500 655.94 655.97 658.63 660.89 2.36% 2.36% 1.96% 1.63%
750 662.20 663.93 664.02 667.83 1.71% 1.45% 1.44% 0.87%
1000 661.15 662.96 664.37 667.49 1.91% 1.64% 1.43% 0.97%
2000 668.37 669.04 671.48 673.31 0.46% 0.36% 0.00% ´0.27%

Table 2.9: Lower bounds of MMDP for stochastic production planning problem without
pricing for α “ θ “ 0.02

LB with confidence at least Gap with confidence at least

N 0.999 0.989 0.945 0.828 0.999 0.989 0.945 0.828
500 801.63 803.84 808.33 813.20 5.14% 4.88% 4.35% 3.77%
1000 812.40 813.36 817.94 824.20 3.26% 3.14% 2.60% 1.85%
2000 824.67 830.47 830.98 832.43 1.73% 1.04% 0.98% 0.80%
3000 830.88 835.12 836.84 837.06 1.32% 0.82% 0.62% 0.59%

Table 2.10: Lower bounds of MMDP for stochastic production planning problem without
pricing for α “ θ “ 0.05

LB with confidence at least Gap with confidence at least

N 0.999 0.989 0.945 0.828 0.999 0.989 0.945 0.828
500 768.09 770.16 770.58 774.45 3.73% 3.47% 3.42% 2.93%
1000 775.65 780.50 780.80 782.01 2.19% 1.57% 1.54% 1.38%
2000 778.77 780.37 784.50 784.76 1.85% 1.64% 1.12% 1.09%

Table 2.11: Lower bounds of AR(1) demand for stochastic production planning problem
without pricing for α “ θ “ 0.02

LB with confidence at least Gap with confidence at least

N 0.999 0.989 0.945 0.828 0.999 0.989 0.945 0.828
500 612.87 614.25 615.61 617.04 2.86% 2.64% 2.42% 2.20%
1000 620.22 620.25 620.81 621.43 0.99% 0.99% 0.90% 0.80%
2000 622.00 625.37 626.10 626.41 0.66% 0.12% 0.00% ´0.05%
3000 621.54 625.20 625.62 626.14 0.73% 0.15% 0.08% 0.00%
4000 625.81 626.44 626.92 626.95 0.00% ´0.10% ´0.18% ´0.18%
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Table 2.12: Lower bounds of AR(1) demand for stochastic production planning problem
without pricing for α “ θ “ 0.05

LB with confidence at least Gap with confidence at least

N 0.999 0.989 0.945 0.828 0.999 0.989 0.945 0.828
500 584.34 597.29 600.79 600.91 3.38% 1.23% 0.66% 0.64%
1000 599.22 600.58 601.15 602.62 0.89% 0.66% 0.57% 0.33%
2000 600.56 602.23 603.20 604.57 0.66% 0.39% 0.23% 0.00%
3000 604.42 604.80 605.14 605.28 0.00% ´0.06% ´0.12% ´0.14%
4000 604.06 604.44 604.98 605.14 0.00% ´0.06% ´0.15% ´0.18%

2.5.3 Production Planning with Pricing Options

In this section, we report the computational results of multi-period joint service-level con-

strained production planning with pricing options. We also conduct sensitivity analysis for

this model.

2.5.3.1 Parameter setting

Consider the continuous pricing in the test instances. The setting of cost parameters is the

same as those in Section 2.5.2.1. Moreover, we set at “ ´5 and βt “ 200 in the function

dtprtq “ atrt ` βt ` ε̃t for all t “ 1, . . . , T . The noise term ε̃t follows normal distribution

with mean 0 and standard deviation 22 for all t “ 1, . . . , T . We also assume that the pricing

range in each period t is between WL
t “ 18 and WU

t “ 40. We fix the required service-level

θ “ 0.02.

2.5.3.2 Feasible solutions

Table 2.13 reports statistics of the solutions of i.i.d. demand for production planning with

pricing options. Table 2.14 reports statistics of the solutions of AR(1) demand for production

planning with pricing options. The insights of our numerical results are summarized as

follows:

1. As the sample size N grows, the average solution risk decreases and the number of

feasible solutions increases since more constraints are being enforced into the model,

which leads to a smaller feasible region. Hence, as the sample size increases, solving

the SAA counterpart under any fixed risk level yields a lower solution risk and a higher

likelihood to be feasible at the nominal risk level θ.

2. From Table 2.13 and Table 2.14, we observe that using α “ 0 requires much fewer
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samples to achieve a feasible solution than using α “ θ. For example, in Table 2.13, we

generate 300 samples to obtain a feasible solution with confidence level 100% by using

α “ 0. However, even using 2500 samples in the SAA reformulation, with risk level α “

0.02, can only find a feasible solution at a confidence level of 60%. In our numerical test,

solving a SAA reformulation that involves more than 2500 samples is computationally

intractable (more than three CPU minutes for each instance). Therefore, an efficient

way to compute a feasible solution is to solve the SAA reformulation with a more

conservative risk level α “ 0. The smaller sample size not only makes the computation

more efficient, but also makes the data-collection work less demanding.

3. In terms of the profit for feasible solutions, we observe that using α “ 0 yields a lower

average profit and a higher variance among all feasible solutions than using α “ 0.02.

For example, in Table 2.14 the average profit for feasible solution is 6365.02 using

α “ 0 and N “ 200 samples, as compared to the average profit of 6567.83 by setting

α “ 0.02 and N “ 2000. Hence, although using a smaller risk level α “ 0 is more

efficient to compute a feasible solution under a given confidence level, it will yield

a more conservative solution that has a lower profit than solving the SAA problems

under the nominal risk level. Therefore, using a smaller risk level α “ 0 helps us to

find a feasible solution and a lower bound on the total profit efficiently.

Table 2.13: Solution results of i.i.d. demand for production planning with pricing for θ “ 0.02

Solution Risk Profit for Feasible Solutions

α N Avg Min Max σ # Avg Min Max σ
0.00 50 0.047 0.020 0.148 0.036 1 6652.42 6652.42 6652.42 ***

100 0.024 0.008 0.045 0.010 4 6479.34 6308.48 6581.04 104.64
200 0.017 0.008 0.027 0.006 8 6534.51 6362.91 6678.65 100.52
300 0.010 0.005 0.020 0.004 10 6438.01 6261.56 6647.29 119.30

0.02 500 0.026 0.018 0.035 0.005 1 6655.84 6655.84 6655.84 ***
1000 0.024 0.016 0.034 0.004 2 6677.97 6644.61 6711.33 33.36
1500 0.021 0.014 0.026 0.004 2 6614.26 6612.54 6615.97 1.72
2000 0.022 0.018 0.027 0.003 3 6645.73 6627.55 6658.49 13.20
2500 0.021 0.017 0.027 0.003 6 6658.29 6634.35 6685.84 16.75

2.5.3.3 Upper bounds

We check the upper bounds for production planning with pricing options when α “ θ “

0.02. The gaps are defined as the percent by which the upper bound is above the best

feasible solution (i.e., the maximum profit among all feasible solutions in this case). We
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Table 2.14: Solution results of AR(1) demand for production planning with pricing for
θ “ 0.02

Solution Risk Profit for Feasible Solutions

α N Avg Min Max σ # Avg Min Max σ
0 50 0.038 0.011 0.090 0.023 2 6425.48 6215.96 6635.01 209.52

100 0.024 0.006 0.049 0.014 6 6453.05 6242.66 6632.97 154.77
200 0.018 0.006 0.035 0.009 7 6365.02 6203.31 6576.07 123.50
300 0.008 0.002 0.017 0.004 10 6261.79 5955.75 6414.22 127.06

0.02 1000 0.024 0.018 0.032 0.003 1 6602.79 6602.79 6602.79 ***
1500 0.022 0.018 0.026 0.002 2 6561.49 6546.36 6576.63 15.14
2000 0.022 0.018 0.024 0.002 3 6567.83 6536.66 6610.64 31.30
2500 0.022 0.018 0.028 0.003 4 6566.65 6529.12 6594.29 28.15

use L “ 1, . . . , 4 to generate bounds by the optimal objective values of the M “ 10 SAA

problems and the corresponding confidence levels given by (2.19) are 0.999, 0.989, 0.945,

0.828, respectively.

Table 2.15 shows the upper bounds for i.i.d. demand for production planning with pricing

options when α “ θ “ 0.02. Table 2.16 shows the upper bounds for AR(1) demand for

production planning with pricing options when α “ θ “ 0.02.

Combining the test results on the upper bounds and the results of feasible solutions in

Section 2.5.3.2, we can obtain the range of the optimal profit. For example, in the i.i.d.

demand case, solving M “ 10 SAA instances with sample size N “ 1000 yields a best

feasible solution with profit 6711.33, as shown in Table 2.13; we also get an upper bound of

6740.62 with confidence 98.9% (shown in Table 2.15). This means, we have at least 98.9%

confidence to say that the optimal profit is at most p6740.62 ´ 6711.33q{6740.62 « 0.44%

greater than the best feasible solution 6740.62. We can make a similar analysis with other

demand cases using corresponding tables.

From these results, we observe that as sample size N becomes larger, the upper bound

becomes smaller and the gap becomes smaller at each confidence level. When the gap

reaches zero, we can conclude that the best feasible solution is the optimal solution with

the corresponding confidence level. For example, as we observe from Table 2.16, when the

sample size N “ 1000, we have confidence at least 94.5% to say that the optimal profit is

at most 0.1% greater than 6609.35; when the sample size increases to N “ 2000, we have

confidence at least 94.5% to say that the feasible solution with profit 6610.64 is optimal.

Thus, for a certain confidence level, we can make a better estimation of the optimal solution

of a SAA problem as we increase the sample size N .
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Table 2.15: Upper bounds of i.i.d. demand for production planning with pricing for α “ θ “
0.02

UB with confidence at least Gap with confidence at least

N 0.999 0.989 0.945 0.828 0.999 0.989 0.945 0.828
500 6741.58 6723.42 6695.46 6692.89 1.29% 1.02% 0.60% 0.56%
1000 6767.01 6740.62 6711.33 6688.30 0.83% 0.44% 0.00% ´0.34%
1500 6702.55 6693.99 6689.16 6668.40 1.31% 1.18% 1.11% 0.79%
2000 6687.78 6687.74 6670.77 6658.49 0.44% 0.44% 0.18% 0.00%
2500 6696.60 6696.56 6686.90 6685.84 0.16% 0.16% 0.02% 0.00%

Table 2.16: Upper bounds of AR(1) demand for production planning with pricing for α “
θ “ 0.02

UB with confidence at least Gap with confidence at least

N 0.999 0.989 0.945 0.828 0.999 0.989 0.945 0.828
1000 6649.49 6621.39 6609.35 6606.17 0.71% 0.28% 0.10% 0.05%
1500 6659.58 6628.80 6623.04 6582.9 1.26% 0.79% 0.71% 0.10%
2000 6653.04 6636.38 6610.64 6605.67 0.64% 0.39% 0.00% -0.08%
2500 6629.96 6613.79 6594.29 6593.37 0.54% 0.30% 0.00% -0.01%

2.5.3.4 Sensitivity analysis

We conduct sensitivity analysis for production planning with pricing options. We focus on

parameters at and βt in the function dtprtq “ atrt ` βt ` ε̃t for t “ 1, . . . , T . To better

demonstrate our sensitivity results, we assume that the demand function is time invariant,

i.e., at “ a and βt “ β for all t “ 1, . . . , T . The noise term ε̃t follows normal distribution

with mean 0 and standard deviation 22 for all t “ 1, . . . , T . We use θ “ 0.02, α “ 0 and

N “ 300 since they can yield a feasible solution with high confidence level to the model, as

shown in Table 2.13.

Sensitivity analysis on the slope a. We fix β “ 200 and vary a in the set t´1, . . . ,´10u

in each period. Our test result is shown in Figure 2.1.

As shown in Figure 2.1, the total profit increases as the absolute value of a decreases.

Moreover, in each period, the optimal order quantity and the optimal price increase as the

absolute value of a decreases.

As the absolute value of a decreases, the demand will be less sensitive to the price set

by the retailer; hence, the retailer has the motivation to increase the price and still keep the

demand to the same level; as a result, the total profit increases.
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Figure 2.1: Sensitivity analysis on the slope a

Sensitivity analysis on β. We fix a “ ´5 and vary β in the set t160, . . . , 250u. Our test

result is shown in Figure 2.2.
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Figure 2.2: Sensitivity analysis on β

As shown in Figure 2.2, the total profit, the optimal order quantity and the optimal price

in each period all increase as the value of β increases.

As the value of β increases, the basic demand increases; hence, the retailer has motivation

to increase the price and still keep the demand in a higher level. The higher level demand

leads to more order quantities. Consequently, the total profit increases.

2.6 Concluding Remarks

In this chapter, we propose two models of production planning problem under a probabilistic

service-level guarantee (interpreted as stockout probabilities) over the entire planning hori-

zon. The first model is an inventory management model while the second one also involves
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pricing decisions. We reformulate these two models as mixed-integer programs based on a

finite set of discrete samples of the uncertainty, and solve them by using the SAA method.

However, the resulting MILP models are computationally intractable since the SAA method

requires a very large sample size; we computationally obtain feasible solutions and lower

bounds on these models by adjusting the risk parameter, which gives us an efficient way

to bound the optimal cost and the optimal profit. We conduct extensive computational

tests under different service-level requirements and demand cases, so as to demonstrate the

feasible solutions and lower bounds as well as to suggest reasonable sample sizes in practice.

An interesting direction for future research is to study the dynamic version of our model

in which the price and inventory in each period can be changed dynamically at the beginning

of each period. Such model solves dynamic pricing problems by using dynamic programming

formulation rather than static MILP formulation. This is mainly due to the reason that MILP

formulations for a dynamic problem require to grow a scenario tree to represent decisions

based on the system states, which could be intractable to compute. (see, e.g., Huang and

Ahmed 2005, 2008).
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CHAPTER III

Stochastic Inventory Control Under

Service-Level Constraints

3.1 Abstract

Motivated by the importance of service quality in today’s customer business environment,

we consider two periodic-review stochastic inventory models with probabilistic service-level

guarantees for restricting stockout probabilities: (i) the classical inventory control model

with backlogging and (ii) the remanufacturing inventory control model with random product

returns. We assume that demands are stochastic nonstationary, evolving and correlated over

time. We establish the optimality of generalized base-stock policies, and propose new 2-

approximation algorithms for both models. The core concept developed in this chapter is

called the delayed forced holding and production cost, which is proven effective in dealing

with service-level constrained inventory systems. Our extensive computational experiments

show that the proposed algorithms on average perform within 2% error of optimality.

3.2 Introductory Remarks

In today’s customer-driven business environment, it is vital for companies to focus on the

QoS. Since the early 2000s, firms started to put tremendous effort and resource into under-

standing the customers and the markets. Those who could consistently provide a superior

service to their customers would remain an excellent reputation and keep most of its loyal

buyers. Customers facing stockouts have been observed abandoning their purchases, switch-

ing retailers, substituting similar items and have seldom gone back (see, e.g., Fitzsimons

(2000)). One of the most common challenges in making supply chain decisions, at its most

fundamental, boils down to minimizing the supply chain costs while still delivering great
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customer service.

On one hand, the notion of service-level requirement has been widely used both in theory

and in practice to measure the performance of inventory replenishment policies (cf. Ghiani

et al. 2005b). It is typically defined as a probabilistic constraint so that the demand is satis-

fied with a high probability. By enforcing a service-level requirement, companies are able to

improve the QoS by guaranteeing a small stockout rates. There are several empirical studies

of the sensitivity of inventory service-level on demand in business-to-consumer settings (cf.

Fitzsimons 2000, Anderson et al. 2006, Jing and Lewis 2011). In particular, according to

Jing and Lewis (2011), stockout rates have a dramatic impact on the firm’s profitability and

the firm can achieve many of the benefits through small decreases in stockout rates.

There are abundant examples in practice where the service-level plays an important role

in firms’ supply chain management. For example, online grocery store (such as AmazonFresh)

generally has a very high service-level expectation, especially for its dairy product section.

When a customer wants to buy 2% reduced-fat milk, it must be available with a very high

probability. If not, the store runs the risk of losing the sale as well as the customer. Clearly,

customers are more willing to buy from those grocery stores who always have enough stock.

This directly explains why many grocery stores generally enforce a high service-level (from

85% to 98%) on dairy products. Their optimal inventory replenishment policy must meet

the service-level requirement while minimizing the total inventory cost over the planning

horizon. Likewise, many other industries, such as food and fashion, also set a high service-

level to maintain a high in-stock inventory, which helps satisfy customers’ demands and

avoid stockouts. In addition, service-level agreements (SLA) are usually enforced in some

industries such as the semi-conductor industry to guarantee the delivery of manufactured

products. As pointed out by Katok et al. (2008), SLAs are used to improve supply chain

coordination and there are contractual financial penalties and rewards associated with failing

or achieving a target service-level. In general, having a service-level requirement helps firms

maintain their reputation and increase their revenue in the long run (see Chen and Krass

(2001) for more examples and discussions).

On the other hand, after-sales services could also be crucial in delivering great customer

services (cf. Cohen et al. 2006). Companies have to handle the return, repair, and disposal

of failed components. The returned products, though some parts may be damaged, can

be remanufactured and resold. The remanufacturing process includes repair or replacement

of worn-out or obsolete components and modules, which has a lower production cost than

the manufacturing process. Examples of remanufacturing occur in many industries, such as

personal computers, cell phones, automotive parts, etc. For example, Apple Inc., one of the
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world largest technology companies, produces several electronic products including iPhone,

iPad and Mac. The firm provides excellent after-sales customer service by allowing customers

return their products within two weeks of purchase without paying re-stocking fee. Each

year, Apple Inc. receives millions of product returns and they remanufactured the returned

products by replacing defective parts with new parts. In addition, Apple also imposes a high

service-level requirement on their long-term supply to retain loyal customers and providing

products to them immediately. The company is much more willing to make extra productions

and hold them as inventory than having a lost-sales which may potentially jeopardize their

reputation. Both the service-level requirement and its remanufacturing process help Apple

build up an excellent customer service and earn them a great reputation among other online

competitors, which benefits the company in the long run (cf. Gallo 2012).

To address all the aforementioned issues in inventory management, we study periodic-

review service-level constrained stochastic inventory systems where the stockout probability

is lower bounded by a threshold value in each period. This type of service-level constraint is

commonly known as the α-service-level in the literature (see, e.g., Simchi-Levi et al. (2014),

Snyder and Shen (2011), Chen and Krass (2001)). We consider two fundamental stochastic

inventory models with α-service-level constraints: the multi-period backlogging model and the

multi-period backlogging model with remanufacturing, with a general stochastic demand pro-

cess (i.e., correlated, nonstationary and evolving demand). In the service-level constrained

backlogging model, the firm makes a production decision in each period to minimize the total

expected production, holding and backlogging costs over a finite planning horizon, subject

to a given service-level requirement. In the counterpart model with remanufacturing, in

addition to the regular production, there are some products being returned at the beginning

of each period (commonly referred to as cores, see, e.g., Tao and Zhou (2014)), which can

be remanufactured into regular products at a lower cost. The objective is to decide the

manufacturing and remanufacturing quantities in each period so as to minimize the total

expected costs, subject to a given service-level requirement.

As seen from our literature review below, there has also been growing research on both

the theoretical and computational aspects of service-level constrained inventory systems.

There are mainly two sources of motivation. First, traditional inventory models usually

assume linear cost functions to penalize inventory, backorders, or lost sales. However, the

assumption of linear backlogging or lost-sale penalty is primary for analytical tractability

rather than an accurate representation of reality (see Bertsimas and Paschalidis (2001) for

a detailed discussion). The mechanism of varying unit penalty costs can hardly take effect

on the QoS performance of a system, mainly due to the difficulty of quantifying customer
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satisfaction. In this regard, imposing a target service-level is a much more direct way to

quantify and improve the QoS performance of an inventory system. Second, as extensively

discussed in Chen and Krass (2001), the backlogging cost is often very difficult to quantify

in practice. Hence, a target service-level constraint is thus considered as an effective (if not

more so) alternative performance measure.

In this chapter, we consider a generalized model that incorporates both the service-level

constraints and the penalty cost for each unsatisfied demand, which has several advantages.

First, when the firm does not have a good estimate of the backlogging cost, the firm can

simply set the per-unit penalty cost to be zero in our model, which then reduces to the

conventional model with service-level constraints only. Our algorithms, analysis, and results

hold for this special case. Second, when the firm does have a good estimate of the backlog-

ging cost (e.g., from historical data), considering backlogging cost together can significantly

alleviate the problem of suffering from severe backlogs in the worst-case scenarios (since the

service-level constraints only guarantee that the demand will be met with a certain positive

probability in each period).

3.2.1 Main Results and Contributions

We consider a service-level constrained backlogging model and a remanufacturing model

with random product returns. The demand and return processes can be non-stationary and

generally correlated. We summarize the key results as follows.

(a) We establish the optimality of a base-stock policy for the backlogging model (Proposi-

tion 3.1). We also establish the optimality of a total base-stock policy for the remanufacturing

model (Proposition 3.6); more specifically, in each period, we bring the total inventory posi-

tion (after production) to an optimal threshold level by remanufacturing as many returned

products as possible.

(b) Finding the exact optimal policy via a brute-force dynamic programming (DP) ap-

proach is computationally intractable, despite its simple form. We propose two new approxi-

mation algorithms (named Split-Merge-Balance (SMB) algorithms) for both backlogging and

remanufacturing models to efficiently compute near-optimal solutions. Our analysis shows

that both algorithms admit a worst-case performance of two, i.e., the expected cost of our

algorithm is at most two times the expected cost of an optimal solution (Theorems 3.5 and

3.10). Through testing a large set of demand instances, we demonstrate via extensive simu-

lation that the SMB policies perform near-optimal (within 2% error of optimality) and also

yield significant reduction of solution time.

The core new concept developed in this chapter is the notion of delayed forced costs in
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designing provably-good policies for service-level constrained inventory systems. The major

difficulty of designing approximation algorithms for service-level constrained models is the

impossibility of balancing the expected marginal holding costs against the expected marginal

backlogging costs, which is the dominated technique (i.e., cost-balancing technique) in some

related literature (see, e.g., Levi et al. 2007, 2008a,b). Our algorithms first split the marginal

costs into two parts (i.e., forced costs and future costs) and shift all the forced costs to one

period later (called delayed forced costs); after regrouping the future costs and delayed costs

according to their monotonicity, our algorithms balance the expected overage cost against

the expected underage cost associated with each period. The introduction of the delayed

forced costs makes the worst-case analysis invariably harder – one needs to group consecutive

intervals together to amortize the sum of future cost and delayed forced cost against the

optimal policy (Lemma 3.4). This is in sharp contrast to the aforementioned studies where

period-by-period amortization is sufficient for the classical backlogging model.

For the remanufacturing model, the amortization of production costs becomes non-trivial

and our worst-case analysis builds upon on the elegant partitioning technique introduced in

Tao and Zhou (2014). There is a challenge we need to overcome: due to the service-level

constraints in our model, we split each holding cost and production cost into two parts and

use the delayed holding cost and delayed production cost when designing a modified SMB

algorithm. Consequently, our worst-case analysis needs to bound both parts of production

costs in different sets of periods, which cannot be readily adapted from their results (see the

detailed discussions before Lemma 3.9).

In general, we believe that the concept of delayed forced costs could be widely applied in

designing algorithms for any general service-level constrained inventory systems.

3.2.2 Literature Review

This chapter is closely related to the following research domains and the related literature.

Stochastic inventory system with service-level constraints. Despite the huge body

of literature on stochastic inventory theory (cf. Zipkin 2000), surprisingly, only a few pa-

pers studied stochastic inventory systems with probabilistic constraints that incorporate

service-level guarantees. Among them, Bookbinder and Tan (1988) studied a probabilistic

lot-sizing problem using a “static-dynamic uncertainty” strategy. In their two-stage model,

a retailer first decided a schedule (or replenishment periods) to place orders. Then, she

made adjustments to the planned orders when demand was released. Chen and Krass (2001)

showed that the ps, Sq policy is optimal under independently and identically distributed
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(i.i.d.) demands for an infinite-horizon stationary setting. Boyaci and Gallego (2001) pro-

posed effective heuristic procedures to serial inventory systems with service-level constraints

on stockout probabilities. Shang and Song (2006) also studied a serial base-stock inventory

model under simple Poisson demands and the same type of service-level constraints. They

developed a closed-form approximation for the optimal base-stock levels. Bertsimas and

Paschalidis (2001) considered a multiclass make-to-stock manufacturing system with prob-

abilistic service-level guarantees, and devised a production policy that minimized inventory

costs under a stockout probability guarantee using queueing methods. Goh and Sim (2011)

carried out a computational study (using a software called ROME) of a distributionally ro-

bust periodic-review inventory problem with fill rate constraints. More recently, Wei et al.

(2017) studied a periodic-review service-level constrained inventory system with lost-sales

and lead times. They proposed a simple heuristic by solving a linear programming (LP)

problem derived from a deterministic inventory model with backlogging, and showed that

the proposed heuristic is asymptotically optimal as the service-level grows to 100%, and de-

rived a simple and explicit bound on the optimality gap. The probabilistic constraints that

impose service-level guarantees in each period (i.e., α-service-levels) are used in the majority

of the literature, which is also the primary focus of this chapter.

Stochastic inventory system with remanufacturing. Zhou et al. (2011) studied the

structure of optimal policies for the remanufacturing inventory system with multiple types

of returned products. They showed that the optimal policy is a modified base-stock policy,

which can be completely characterized by a sequence of control parameters. Tao and Zhou

(2014) proposed an approximation algorithm for the stochastic inventory system with re-

manufacturing. They also proved that the cost of their proposed algorithm is at most twice

of the optimal cost. Gong and Chao (2013) focused on the capacitated inventory systems

with remanufacturing. Building upon the preservation result by Chen et al. (2013), they

showed that the optimal remanufacturing policy is a modified remanufacture-down-to policy

and the optimal manufacturing policy is a modified total-up-to policy. Our remanufacturing

model differs from all of the aforementioned models by incorporating service-level constraints

in each period.

Approximation algorithms on inventory systems. The DP approach is effective in

characterizing the structural properties of optimal policies. However, the computational

complexity is very sensitive to the dimension of the state space. In fact, it has been shown in

Halman et al. (2009) that the stochastic lot-sizing model (without service-level constraints)
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is NP-hard. Our work is closely related to recent studies of approximation algorithms for

stochastic periodic-review inventory systems pioneered by Levi et al. (2007). They first

introduced the marginal cost accounting scheme, which associated a cost with each decision

made by a particular policy. They proposed a dual-balancing policy which admitted a

worst-case performance guarantee of 2 for the backlogging model. Subsequently, Levi et al.

(2008a,b) and Levi and Shi (2013) proposed approximation algorithms for the lost-sales,

capacitated, and lot-sizing models, respectively. More recently, Truong (2014) re-derived the

2-approximation ratio for the backlogging model via a look-ahead optimization approach.

Tao and Zhou (2014) proposed an approximation algorithm for a remanufacturing system

with a worst-case performance guarantee of two. Cheung et al. (2016), Nagarajan and Shi

(2016) proposed approximation algorithms for submodular joint replenishment problems.

There has also been a series of studies on perishable/fresh inventory systems (see, e.g., Chao

et al. (2015, 2017), Zhang et al. (2016)). However, none of these papers imposed service-level

constraints in their models while our work focuses on designing approximation algorithms

for inventory models with service-level guarantees.

3.2.3 Organization and General Notation

We organize the remainder of the chapter as follows. In Section 3.3, we formulate the

service-level constrained backlogging model as a dynamic program and present the structural

properties of an optimal policy. In Section 3.4, we derive a 2-approximation algorithm for

the classical backlogging model. Section 3.5 extends our structural result and approximation

algorithm to the remanufacturing system. Section 3.6, we carry out numerical experiments

and demonstrate the effectiveness of our proposed policy. Finally, Section 3.7 concludes the

chapter and presents future research avenues.

Throughout the chapter, we use increasing and decreasing in a non-strict sense. For

notational convenience, we use a capital letter and its lower-case form to distinguish between

a random variable and its realization. We use fi to mean “is defined as”, and 1pAq is the

indicator function taking value 1 if statement “A” is true and 0 otherwise. For any x P R,

we denote x` “ maxtx, 0u. For any sequence xi, i “ 1, 2, . . ., we let xri,js “
řj
k“i xk and

xri,jq “
řj´1
k“i xk, where the summation over an empty set is defined as 0. For any a, b P R,

we denote a^ b “ minta, bu.
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3.3 Periodic-Review Inventory Systems with Service-

Level Constraints

We formally describe a periodic-review service-level constrained inventory system. Consider

a finite planning horizon of T periods indexed by t “ 1, . . . , T . The production lead time is

assumed to be L ě 0.

Demand structure. We adopt the same demand structure as in Levi et al. (2007) and

Tao and Zhou (2014). An information set ft is observed at the beginning of each period t.

It contains all the available information that can be used to predict future demands, such as

the realized demands pd1, . . . , dt´1q and possibly some other exogenous information (denoted

by ρt at period t). For example, when the state of economy is observed at each period, ρt

corresponds to the state of economy at period t. The conditional joint distribution of the

future demands pDt, . . . , DT q is determined by ft “ pd1, . . . , dt´1, ρ1, . . . , ρtq. We denote Ft as

the set of all the possible realizations of the information set ft. Our demand model generalizes

the existing correlated demand models in the literature, such as Markov-modulated demand

process (MMDP) (Sethi and Cheng 1997), autoregressive demand (Mills 1991), which will be

described in Section 3.6. Our demand model is also useful in practice, in which martingale

model of forecast evolution (MMFE for short, see, e.g., Graves et al. 1986, Heath and Jackson

1994b) and advance demand information (ADI) (see, e.g., Gallego and Özer 2001) are used

to forecast the future demand.

Service-level requirements. Our model incorporates the service-level requirement, which

is defined as a probabilistic constraint for each period t. Following Chen and Krass (2001),

the constraint enforces that the demand in each period t`L is satisfied by a certain proba-

bility θt. (Note that θt is in fact associated with period t ` L.) Mathematically, it is given

by

PpNI t`L ě 0 | ftq ě θt, @t “ 1, ¨ ¨ ¨ , T, (3.1)

where NI t denotes the net inventory at the end of period t, which can be either positive (in

the presence of on-hand inventory) or negative (in the presence of backorders). This type of

service-level constraint is commonly referred to as the α-service-level in the literature (see

§2.3.1. for a detailed discussion in Chen and Krass (2001)). This type of α-service-level has

also been discussed in Bookbinder and Tan (1988), Nahmias (1993) and Sethi and Cheng
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(1997). Note that our production decisions will not affect net inventories for the first L

periods, and hence we enforce the service-level requirements from period L` 1 to L` T .

System dynamics. In each period t, events occur in the following sequence: First, the

manufacturer determines the production quantity (denoted by qt) in period t. The planned

production quantity should satisfy the service-level constraint (3.1). Then dt units of de-

mands are received. As a consequence, unused products are stored as inventory, which incurs

the holding cost; on the other hand, unsatisfied demands incur the backlogging cost and are

carried to the next period. The production, holding and backlogging cost functions are as-

sumed to be linear, with per-unit costs ct, ht and bt, respectively. The goal is to decide

production quantities that achieve the required service-levels in each period and to minimize

total expected cost at the same time.

A dynamic programming formulation. We formulate the problem using dynamic pro-

gramming (DP) approach. Since no products will arrive in the first L periods, it suffices to

consider the total cost from period L` 1 to period L` T . We first calculate the immediate

cost associated with decisions in period t. Define xt as the inventory position at the begin-

ning of period t, which equals to the current on-hand inventory plus the pipeline inventory

minus the backorders, i.e., xt “ NI t´1 ` qrt´L,tq. Then the inventory position in the next

period equals to the current inventory position plus production quantity minus the demand

in the current period, i.e., xt`1 “ xt` qt´ dt. Let yt “ xt` qt ě xt be the inventory position

in period t after production. Then the net inventory at the end of period t`L can be written

as NIt`L “ yt ´Drt,t`Ls. Therefore, the total holding and backlogging cost is given by

Gtpyt, ftq fi ht`LErpyt ´Drt,t`Lsq` | fts ` bt`LErpDrt,t`Ls ´ ytq` | fts.

It is clear that Gt is continuous and convex in its first component. Adding the production

cost, the total cost in period t is therefore Gtpyt, ftq`ctqt. We can also rewrite the service-level

constraint defined in (3.1) as

Ppyt ´Drt,t`Ls ě 0 | ftq ě θt, @t “ 1, ¨ ¨ ¨ , T. (3.2)

To simplify the above constraint, we define a threshold value

rt “ rtpftq fi inftr P R` : PpDrt,t`Ls ď r | ftq ě θtu,
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i.e., rpftq is the θt-quantile of the random variable Drt,t`Ls given information ft. Then the

service-level constraint (3.2) is equivalent to yt ě rt for all t “ 1, . . . , T . In some special

cases, rt is very easy to compute. For example, when demands are independent Poisson

or Normal random variables, the aggregated demand Drt,t`Ls follows the same distribution

type. For the demands following general distributions, we can use the Monte Carlo sampling

method Glasserman (2004) to empirically obtain rt.

Let vtpxt, ftq be the minimal expected cost from period t` L to period T ` L given the

inventory position xt and the information set ft P Ft at the beginning of period t. The

Bellman’s equations are

vT`1pxT`1, fT`1q “ 0, @xT`1 P R, fT`1 P FT`1,

vtpxt, ftq “ min
ytěmaxtrt,xtu

"

Gtpyt, ftq ` ctqt ` Ervt`1pyt ´Dt,Ft`1q | fts

*

, t “ 1, . . . , T.

(3.3)

Structure of optimal policies. Using (3.3), the structure of optimal policies is charac-

terized in Proposition 3.1.

Proposition 3.1. For the inventory control problem defined in (3.3), an optimal policy is a

modified base stock policy. More specifically, there exists tspftqu
T
t“1 such that

y˚t pxtq “

$

&

%

maxtrt, spftqu, if xt ă spftq;

maxtrt, xtu, if xt ě spftq.

Proof. This is a special case of Proposition 3.6.

Proposition 3.1 asserts that any optimal policy has the following structure: if the inven-

tory position in period t is no less than the threshold spftq, an optimal policy produces up to

the service-level rt; otherwise, it brings the inventory position to maxtrt, spftqu. Therefore,

the higher the service-level, the more orders are placed by the optimal policy. In particular,

when there is no service-level requirement presented in the model (i.e., rt “ 0), the structure

of optimal policy reduces to the well-known base stock policy (see, e.g., Zipkin (2000)).
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3.4 Provably-Good Policies for Service-Level Constrained

Inventory Systems

Computing an exact optimal policy through a brute-force DP model is generally intractable

under correlated demand structures, despite the simple structure of optimal policies. To this

end, we provide an approximation algorithm, called Split-Merge-Balance policy (denoted by

the SMB policy), for practically solving the service-level constrained inventory problem. We

show that the SMB policy admits a worst-case performance guarantee of 2, i.e., the expected

cost of the policy is at most twice the expected cost of an optimal policy, regardless of any

distributions of the random demands and choices of the cost parameters. Moreover, the

SMB policy performs empirically near-optimal, demonstrated by extensive numerical tests

in §3.6.

The traditional inventory cost accounting scheme (in dynamic programming) decomposes

the total costs by periods. In the following, we present a new marginal cost accounting scheme

for our model under service-level constraints: it decomposes the total cost in terms of the

marginal costs of individual decisions and these marginal costs may include costs in both the

current and subsequent periods. This extends and generalizes the marginal cost accounting

discussed by Levi et al. (2007).

3.4.1 Review of the Dual-Balancing Policy

The underlying idea of the SMB policy is based on the dual-balancing policy proposed by Levi

et al. (2007). The traditional inventory cost accounting scheme (in dynamic programming)

decomposes the total costs by periods; Levi et al. (2007) proposes a marginal cost accounting

scheme and computes the marginal holding cost by

Htpqtq “
T`L
ÿ

j“t`L

hj
`

pXt ` qt ´Drt,jsq
`
´ pXt ´Drt,jsq

`
˘

, (3.4)

where Xt denotes a random inventory position which realizes at the beginning of period t.

The marginal backlogging cost is the same as the classical per-period backlogging cost,

i.e.,

Πtpqtq “ bt`LpDrt,t`Ls ´ pqt `Xtqq
`. (3.5)

The dual balancing policy balances the marginal holding cost in (3.4) against the marginal

backlogging cost (3.5) and it admits a worst-case performance guarantee of two.
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(rt − xt)
+qDB

t

Cost

Ordering quantity (qt)

Ht(qt)

Πt(qt)

Cost

Additional ordering quantity (ηt)

Ht(ηt)

Πt(ηt)

Figure 3.1: Dual-balancing policy: no balancing point

However, the dual balancing policy cannot be directly applied to our model because the

balancing quantity for the marginal holding cost and the marginal backlogging cost may

not exist due to the service-level constraints. In periods where the constrained service-level

is much higher than the current inventory position, the expected marginal holding cost is

always greater than the expected marginal backlogging cost. In such a case, one cannot find

a feasible production quantity which perfectly balances the expected marginal holding cost

against the expected marginal backlogging cost. (see Figure 3.1).

3.4.2 Split-Merge-Balance Policy

Without loss of generality, we assume that the unit production cost in each period is zero

following a standard cost transformation in the literature (see, e.g., Zipkin (2000)). That

is, for any system with positive unit production cost ct, there is an equivalent system with

revised costs c1t “ 0, h1t`L “ ht`L ` ct ´ ct`1 and b1t`L “ bt`L ´ ct ` ct`1. This allows us to

only consider holding costs and backlogging costs.

Marginal cost accounting scheme (Split). We first present a new marginal cost

accounting scheme for our inventory model under service-level requirements, which general-

izes the marginal cost accounting scheme discussed by Levi et al. (2007). In the presence

of service-level constraints, we split the marginal holding cost into two parts. The first part

is called forced holding cost (denoted by H̃t), which accounts for the holding cost from pro-

ducing up to the service-level X̄t “ max tXt, rtu in period t. The forced holding cost is

unavoidable and it is independent of the current decision. The second part of the marginal

holding cost is an additional future holding cost (denoted by Ĥt) incurred by producing ad-

ditional (controllable) ηt “ Xt ` qt ´ X̄t. The reason behind this split is that the forced

marginal holding cost H̃t is fixed given production decisions in previous periods, and hence

only the additional marginal holding cost Ĥt is affected by the current decision ηt.

Suppose that Xt is the inventory position at the beginning of period t. We compute the
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forced holding cost H̃t by

H̃t “

T`L
ÿ

j“t`L

hj
`

pX̄t ´Drt,jsq
`
´ pXt ´Drt,jsq

`
˘

, (3.6)

where hjpX̄t ´ Drt,jsq
` is the marginal holding cost in period j for producing up to X̄t in

period t and hjpXt ´Drt,jsq
` is the marginal holding cost in period j for producing nothing

in period t. Similarly, the additional future holding cost Ĥt is computed as

Ĥtpηtq “
T`L
ÿ

j“t`L

hj
`

pX̄t ` ηt ´Drt,jsq
`
´ pX̄t ´Drt,jsq

`
˘

, (3.7)

where hjpX̄t ` ηt ´ Drt,jsq
` stands for the marginal holding cost in period j for producing

an additional ηt in period t and hjpX̄t ´Drt,jsq
` is the marginal holding cost in period j for

producing nothing additionally in period t. The backlogging cost in period t is the same as

the classical per-period backlogging cost, i.e.,

Btpηtq “ bt`LpDrt,t`Ls ´ pηt ` X̄tqq
`. (3.8)

The left graph in Figure 3.2 shows the split marginal costs.

Regrouping the marginal costs (Merge). After splitting the marginal costs, we next

regroup them. The marginal costs fall into two categories. One is called overage cost and it

includes the marginal costs incurred due to production. Specifically, the additional holding

cost Ĥt is overage cost since it will increase when an additional production is made. We name

the other category underage cost, which includes the marginal costs incurred due to lack of

productions, such as the backlogging cost Btpηtq. For the forced holding cost H̃t, however,

it is not affected by the decision in the same period because it is pre-determined by the

production made in the last period. For this reason, we compute the delayed holding cost in

the subsequent period (i.e., H̃t`1) as soon as the production is made in period t. Specifically,

once the additional production quantity ηt is determined, we compute the delayed holding

cost by

H̃t`1pηtq “

T`L
ÿ

j“t`L`1

hj
`

pX̄t`1 ´Drt,jsq
`
´ pXt`1 ´Drt,jsq

`
˘

. (3.9)

Note that the delayed holding cost requires to compute rt`1 based on ft rather than ft`1.

Hence, the term X̄t`1 in (3.9) should be treated as a random variable depending on the

45



realization of Dt.

As we can see from (3.9), the more we produce in period t, the more inventory position

we have at the beginning of period t` 1 and the less delayed holding cost will be incurred.

Thus, by shifting all the marginal forced holding costs to one period later, we conclude that

H̃t`1 is decreasing in ηt and hence, it belongs to underage cost. The right graph in Figure

3.2 illustrates the shifted cost.

Cost

Additional ordering quantity (ηt)

Ht(ηt) = Ĥt(ηt) + H̃t(ηt)

Bt(ηt)

Ĥt(ηt)

H̃t(ηt)

Cost

Additional ordering quantity (ηt)

Bt(ηt)

Ĥt(ηt)

H̃t+1(ηt)

holding costs

backlogging cost

SMB: Split phase SMB: Merge phase

Figure 3.2: Marginal costs under the SMB policy

SMB policy (Balance). We describe the SMB policy as follows: At the beginning of

each period t, we first calculate the balancing quantity ηSMB
t , which balances the conditional

expected overage cost against the conditional expected underage cost. In other words, ηSMB
t

solves

ErĤtpηtq | fts “ ErH̃t`1pηtq `Btpηtq | fts. (3.10)

Then the SMB policy produces qSMB
t “ ηSMB

t ` x̄t ´ xt in period t when Xt “ xt is

realized. Here in the SMB policy, the balancing quantity must exist due to the following

facts: (i) Ĥtpηtq, H̃t`1pηtq and Btpηtq are continuous; (ii) Ĥtpηtq is non-decreasing in ηt while

H̃t`1pηtq ` Btpηtq are non-increasing in ηt; (iii) As ηt increases from 0 to `8, the left hand

side of (3.10) also increases from 0 to `8 while the right hand side of (3.10) decreases from

a positive number to 0. Moreover, the balancing quantity ηSMB
t can be computed efficiently

using a bisection search method.

To evaluate the total cost of a given policy P in a convenient way, we define the required

service-level in period T `L` 1 to be zero, i.e., rT`1 “ 0. Under this convention, the forced

costs must vanish in period t ` 1, i.e., H̃P
T`1 “ 0. Then for a given policy P, the total cost
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CpP q is given by

CpP q “

T
ÿ

t“1

ppH̃P
t ` Ĥ

P
t q `B

P
t q “

T
ÿ

t“1

pĤP
t ` pH̃

P
t`1 `B

P
t qq ` H̃

P
1 (3.11)

We note that the delayed holding cost H̃P
t`1 for any policy P is computed using the demand

information ft we obtained in the previous period. Also, note that the forced cost H̃P
1 can

be calculated without knowing specific stochastic demand information and the policy P we

use. Hence, they are realized at the beginning of the planning horizon and are fixed in any

policy P we refer to.

3.4.3 Worst-Case Analysis of the SMB Policy

Now we establish the worst-case guarantee of 2 for the proposed SMB policy, which is the key

result of this chapter. Due to service-level constraints, the forced holding cost and additional

holding cost components need to be considered separately. To this end, we use an algebraic

method to prove our desired results, which departs from the unit-matching techniques used

in Levi et al. (2007).

To begin with, we define the following random sets of periods:

• TH “ tt | Y SMB
t ă Y OPT

t u denotes the set of periods in which the optimal policy yields

more ending inventory in period t` L than the SMB policy;

• TB “ tt | Y SMB
t ě Y OPT

t u denotes the set of periods in which the optimal policy yields

less or equal ending inventory in period t`L compared to the SMB policy; it is evident

that TH and TB are disjoint sets and TH Y TB “ t1, 2, . . . , T u.

Our main results are based on the following lemmas. The key idea is to calculate the

total cost of the SMB policy using periods in sets TH and TB. Then in each period, we bound

either the overage cost or the underage cost by the corresponding cost for the optimal policy,

according to which set the current period belongs to.

Lemma 3.2. ErCpSMBqs “ 2E
„

ř

tPTH Ĥ
SMB
t `

ř

tPTBpH̃
SMB
t`1 `BSMB

t q



` H̃SMB
1 .

Proof. Let ζt be the random balanced cost by the SMB policy in period t, i.e., ζt “
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ErĤSMB
t |Fts “ ErH̃SMB

t`1 `BSMB
t |Fts. According to (3.11), we have

ErCpSMBqs “

T
ÿ

t“1

E
“

ErĤSMB
t ` pH̃SMB

t`1 `BSMB
t q | Fts

‰

` H̃SMB
1

“ 2
T
ÿ

t“1

Erζts ` H̃SMB
1

“ 2
ÿ

t

E
“`

1pt P THq ` 1pt P TBq
˘

¨ ζt
‰

` H̃SMB
1

“ 2
ÿ

t

E
“

ErĤSMB
t ¨ 1pt P THq | Fts

‰

`2
ÿ

t

E
“

ErpH̃SMB
t`1 `BSMB

t q ¨ 1pt P TBq | Fts
‰

` H̃SMB
1

“ 2E
„

ÿ

tPTH

ĤSMB
t `

ÿ

tPTB

pH̃SMB
t`1 `BSMB

t q



` H̃SMB
1 .

First, we consider the case when t P TB. In this case, the ending inventory position

in period t for the optimal policy is lower than that of the SMB policy, so it yields more

backlogging cost in the current period. Moreover, given the relatively lower ending inventory

position for the optimal policy, the inventory position at the beginning of the next period for

the optimal policy must also be lower. Thus, the optimal policy must yield a larger forced

holding cost in period t` 1. We summarize these observations in the following lemma.

Lemma 3.3. For any t P TB, we have:

1. BSMB
t ď BOPT

t ;

2. H̃SMB
t`1 ď H̃OPT

t`1 .

Proof. Suppose t P TB, then Y SMB
t ě Y OPT

t . Therefore,

BSMB
t “ bt`LpDrt,t`Ls ´ Y

SMB
t q

`
ď bt`LpDrt,t`Ls ´ Y

OPT
t q

`
“ BOPT

t .

Moreover, since XSMB
t`1 “ Y SMB

t ´Dt ě Y OPT
t ´Dt “ XOPT

t`1 , we have

X̄SMB
t`1 ´XSMB

t`1 “ prt`1 ´X
SMB
t`1 q

`
ď prt`1 ´X

OPT
t`1 q

`
“ X̄OPT

t`1 ´XOPT
t`1 .
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Since Equation (3.6) is equivalent to

H̃t “

T`L
ÿ

j“t`L

hj
`

X̄t ´Xt ´ pDrt,js ´Xtq
`
˘`
,

we conclude that

H̃SMB
t`1 “

T`L
ÿ

j“t`1`L

hjppX̄
SMB
t`1 ´XSMB

t`1 ´ pXSMB
t`1 ´Drt`1,jsq

`
qq
`

ď

T`L
ÿ

j“t`1`L

hjppX̄
OPT
t`1 ´XOPT

t`1 ´ pXOPT
t`1 ´Drt`1,jsq

`
qq
`
“ H̃OPT

t`1 .

Second, for any period t P TH , the ending inventory of the SMB policy is lower than

that of the optimal policy. Consider consecutive periods rt1, t2s Ď TH . At the beginning

of period t1, the inventory position of the SMB policy is higher while at the end of period

t2 the inventory of the SMB policy is lower. This implies that the SMB policy must make

fewer additional productions than the optimal policy. As a result, the additional holding

cost of the SMB policy is dominated by the additional holding cost of the optimal policy.

We summarize this result in the following lemma:

Lemma 3.4. For t P TH ,
ř

tPTH Ĥ
SMB
t ď

ř

tPTH Ĥ
OPT
t .

Proof. Proof of Lemma 3.4. To show this, we prove the following inequality:

ÿ

tPTH

pĤSMB
t ` H̃SMB

t`1 q ď
ÿ

tPTH

pĤOPT
t ` H̃OPT

t`1 q. (3.12)

Since H̃SMB
t`1 ě H̃OPT

t`1 for any t P TH (following a similar argument in Lemma 3.3), we

conclude that (3.12) implies our desired inequality.

Notice that for any policy P, we have

ĤP
t ` H̃

P
t`1 “

T`L
ÿ

j“t`L

hjppX̄
P
t ` ηt ´Drt,jsq

`
´ pX̄P

t ´Drt,jsq
`
q

*

`

T`L
ÿ

j“t`L

hj

"

ppX̄P
t`1 ´Drt`1,jsq

`
´ pXP

t`1 ´Drt`1,jsq
`
q

*

“

T`L
ÿ

j“t`L

hj

"

pX̄P
t`1 ´Drt`1,jsq

`
´ pX̄P

t ´Drt,jsq
`

*

,
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where the first equality applies the definition of ĤP
t and H̃P

t`1 (see (3.6) and (3.7)) and the

second one cancels the first and the last terms using the system dynamicXP
t`1 “ X̄P

t `η
P
t ´Dt.

Suppose that TH has n intervals, i.e., TH “ I1 Y I2 Y ¨ ¨ ¨ Y In, where Is “ rξ
1
s , ξ

2
s s. Then

it suffices to show the desired inequality on each interval, i.e.,

ξ2
s
ÿ

t“ξ1
s

pĤSMB
t ` H̃SMB

t`1 q ď

ξ2
s
ÿ

t“ξ1
s

pĤOPT
t ` H̃OPT

t`1 q.

Let γspjq “ mintj ´ L, ξ2
su. By interchanging the order of summation, we conclude that for

each interval Is and any policy P,

ξ2
s
ÿ

t“ξ1
s

pĤP
t ` H̃

P
t`1q “

ξ2
s
ÿ

t“ξ1
s

T`L
ÿ

j“t`L

hj

"

pX̄P
t`1 ´Drt`1,jsq

`
´ pX̄P

t ´Drt,jsq
`

*

“

T`L
ÿ

j“ξ1
s`L

hj

γspjq
ÿ

t“ξ1
s

"

pX̄P
t`1 ´Drt`1,jsq

`
´ pX̄P

t ´Drt,jsq
`

*

“

T`L
ÿ

j“ξ1
s`L

hj

"

pX̄P
γspjq`1 ´Drγspjq`1,jsq

`
´ pX̄P

ξ1
s
´Drξ1

s ,js
q
`

*

. (3.13)

For all j “ ξ1
s ` L, . . . , T ` L, γspjq P Is Ď TH , thus,

XSMB
γspjq`1 “ Y SMB

γspjq ´Dγspjq ă Y OPT
γspjq ´Dγspjq “ XOPT

γspjq`1,

and consequently,

pX̄SMB
γspjq`1 ´Drγspjq`1,jsq

`
ď pX̄OPT

γspjq`1 ´Drγspjq`1,jsq
`. (3.14)

Also, since ξ1
s ´ 1 R TH , we obtain

XSMB
ξ1
s

“ Y SMB
ξ1
s´1 ´Dξ1

s´1 ě Y OPT
ξ1
s´1 ´Dξ1

s´1 “ XOPT
ξ1
s

,

(this inequality also holds when ξ1
s “ 1 since XSMB

1 “ XOPT
1 ) and hence

pX̄SMB
ξ1
s

´Drξ1
s ,js
q
`
ě pX̄OPT

ξ1
s

´Drξ1
s ,js
q
`. (3.15)
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Therefore,

ξ2
s
ÿ

t“ξ1
s

pĤSMB
t ` H̃SMB

t`1 q “

T`L
ÿ

j“ξ1
s`L

hj

"

pX̄SMB
γspjq`1 ´Drγspjq`1,jsq

`
´ pX̄SMB

ξ1
s

´Drξ1
s ,js
q
`

*

ď

T`L
ÿ

j“ξ1
s`L

hj

"

pX̄OPT
γspjq`1 ´Drγspjq`1,jsq

`
´ pX̄OPT

ξ1
s

´Drξ1
s ,js
q
`

*

“

ξ2
s
ÿ

t“ξ1
s

pĤOPT
t ` H̃OPT

t`1 q,

where the first and the third equalities follow from (3.13), and the second inequality follows

from (3.14) and (3.15).

Combining Lemma 3.2 to Lemma 3.4 together, we have

ErCpSMBqs “ 2E
„

ÿ

tPTH

ĤSMB
t `

ÿ

tPTB

pH̃SMB
t`1 `BSMB

t q



` H̃SMB
1

ď 2E
„

ÿ

tPTH

ĤOPT
t `

ÿ

tPTB

pH̃OPT
t`1 `BOPT

t q



` H̃OPT
1

ď 2E
„ T
ÿ

t“1

pĤOPT
t ` H̃OPT

t`1 `BOPT
t q ` H̃OPT

1



“ 2ErCpOPT qs.

Hence, we have proved the following theorem, which provides a worst-case performance

guarantee on the result of the SMB policy.

Theorem 3.5. The SMB policy has a worst-case performance guarantee of two, i.e., for

each instance of the backlogging model under service-level constraints, the expected cost of the

SMB policy is at most two times the expected cost of an optimal solution, i.e., ErCpSMBqs ď

2ErCpOPT qs.

3.5 Remanufacturing System with Service-Level Re-

quirements

We consider a remanufacturing system with general random demands and product returns.

In the remanufacturing system, the manufacturer receives a random number of returned

products at the beginning of each period. The returned products received during each period

can be remanufactured to a new product at a lower cost by replacing some components. The
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major difference between the remanufacturing model and our previous basic model is the

dual modes of production, i.e., the manufacturer can either produce by remanufacturing

a returned product or by regular way using raw materials. This leads to the nonlinear

production cost, which makes the model even harder.

In the following, we will first formulate our model using dynamic programming and show

the structure of optimal policies. Then we will generalize the proposed SMB policy to solve

the remanufacturing model, which also guarantee us a worst-case performance of two. Our

technique is based on Tao and Zhou (2014), in which they proposed a two approximation

algorithm for the remanufacturing system without service-level requirement. However, our

results are different in the following ways. First, due to the service-level requirements pre-

sented in our model, our algorithm departs from the one proposed in Tao and Zhou (2014)

(details are provided in §3.5.2). Second, in worst case analysis, amortizing the production

costs of the modified SMB policy is different since we need to handle two parts of split

production cost, i.e., the forced production cost and the additional production cost. We will

provide more details in §3.5.3.

3.5.1 Model and DP Formulation

We adopt most of the notations described in §3.3. At each period t, the manufacturer first

receives a random number of returned products (denoted by Ut). The manufacturer then

decides the remanufacturing quantity q1
t and the manufacturing quantity q2

t . We assume

that both production methods have the same lead time, denoted by L (see, e.g., Zhou et al.

(2011)). The total number of productions at period t are computed by qt “ q1
t ` q

2
t . We use

c1
t and c2

t to denote the remanufacturing cost and the manufacturing cost with c1
t ă c2

t . We

also assume that c2
t ´ c1

t is non-increasing (see, e.g., Zhou et al. (2011)). This assumption

holds in practice where manufacturing costs can be reduced significantly over time while

remanufacturing costs are lower and hard to be reduced. Finally, demand realizes and

corresponding cost occurs.

In the remanufacturing model, the information set ft is realized at the beginning of period

t, which consists of the realized demands pd1, . . . , dt´1q, the realized returns pu1, . . . , utq and

some exogenous information pρ1, . . . , ρtq such as the state of economy. The conditional joint

distribution of future demand and returns pDt, . . . , DT , Ut, . . . , UT q is determined by the

information set ft.

To derive a dynamic programming formulation, we first describe the state vector as

follows. The state consists of a time period t, inventory position xt at the beginning of

period t, total number of returned products wt at the beginning of period t, and information
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ft P Ft. The system dynamics are

xt`1 “ xt ` qt ´ dt, @t “ 1, ¨ ¨ ¨ , T ´ 1, (3.16)

wt`1 “ ut`1 ` wt ´ q
1
t , @t “ 1, ¨ ¨ ¨ , T ´ 1, (3.17)

with x1 “ 0 and w1 “ u1. Let the value function vtpxt, wt, ftq be the minimal expected

cost from period t` L to period T ` L. In each period t, given the state vector pxt, wt, ftq,

we need to decide the remanufacturing quantity q1
t and the manufacturing quantity q2

t .

The remanufacturing quantity q1
t is bounded above by wt, while the service-level constraint

enforces yt “ xt ` q1
t ` q2

t bounded below by rt. Hence, feasible choices of the two types of

quantities are in the set

Qpxt, wt, rtq “ tpq1
t , q

2
t q | 0 ď q1

t ď wt, q
2
t ě 0, q1

t ` q
2
t ě rt ´ xtu.

The Bellman’s equations are

vT`1pxT`1, wT`1, fT`1q “ 0, @xT`1 P R, wT`1 P R` Y t0u, fT`1 P FT`1,

vtpxt, wt, ftq “ min
q1
t ,q

2
t PQpxt,wt,rtq

"

Gtpxt ` q
1
t ` q

2
t , ftq ` c

1
t q

1
t ` c

2
t q

2
t

` Ervt`1pyt ´Dt, Ut`1 ` wt ´ q
1
t ,Ft`1q | fts

*

, t “ 1, . . . , T.

(3.18)

Using the above DP formulation (3.18), the structure of optimal policies is characterized

in the following proposition.

Proposition 3.6. For the inventory control problem defined in (3.18), an optimal policy is

a total base stock (including both manufacturing and remanufacturing) policy. More specifi-

cally, there exists tspwt, ftqu
T
t“1 such that

y˚t pxt, wtq “

$

&

%

maxtrt, spwt, ftqu, if xt ă spwt, ftq;

maxtrt, xtu, if xt ě spwt, ftq.

and

q1
t
˚
pxt, wtq “ mintwt, y

˚
t ´ xtu, q

2
t
˚
pxt, wtq “ y˚t ´ xt ´ q

1
t
˚
pxtq.

Proof. For simplicity, we will omit the information ft in the proof. We change the decision
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variable from pq1
t , q

2
t q to pq1

t , ytq where yt “ xt ` q
1
t ` q

2
t and define

Jtpxt, wt, yt, q
1
t q “ Gh

t pytq ` c
1
t q

1
t ` c

2
t q

2
t ` Ervt`1pyt ´Dt, Ut`1 ` wt ´ q

1
t qs

“ Gh
t pytq ` c

2
tyt ´ pc

2
t ´ c

1
t qq

1
t ´ c

2
txt

`Ervt`1pyt ´Dt, Ut`1 ` wt ´ q
1
t qs (3.19)

for t “ 1, 2, . . . , T . Then the value function can be computed by

vtpxt, wtq “ min
q1
t ,ytPYpxt,wt,rtqu

tJtpxt, wt, yt, q
1
t qu,

where Ypxt, wt, rtq “ tpq1
t , ytq | 0 ď q1

t ď mintwt, yt ´ xtu, yt ě maxtxt, rtuu.

We first show that for all ft P Ft, vtpxt, wtq is separable, convex in pxt, wtq and linear and

non-increasing in wt with rate less than c2
t ´ c

1
t , i.e., there exists a convex function ztp¨q and

a coefficient κt P r0, c
2
t ´ c

1
t s such that vtpxt, wtq “ ztpxtq ´ κtwt.

Clearly, when t “ T ` 1, vT`1pxT`1, wT`1q “ 0 satisfies these conditions.

Suppose the statement is true for vt`1pxt`1, wt`1q, then we can write

Ervt`1pyt ´Dt, Ut`1 ` wt ´ q
1
t qs “ Erzt`1pyt ´Dtq ´ κt`1pUt`1 ` wt ´ q

1
t qs

“ z̃t`1pytq ´ κt`1pwt ´ q
1
t q ´ κt`1ErUt`1s,

where z̃t`1p¨q is still a convex function. Hence, applying (3.19), we conclude that

Jtpxt, wt, yt, q
1
t q “ Gh

t pytq ` c
2
tyt ´ pc

2
t ´ c

1
t qq

1
t ´ c

2
txt ` z̃t`1pytq ´ κt`1pwt ´ q

1
t q

´κt`1ErUt`1s

“ pκt`1 ´ pc
2
t ´ c

1
t qqq

1
t ` pG

h
t pytq ` z̃t`1pytq ` c

2
tytq ´ c

2
txt

´κt`1pwt ` ErUt`1sq

Now we can compute vtpxt, wtq by first optimizing with respect to q1
t . Since κt`1 ď c2

t`1 ´

c1
t`1 ď c2

t ´c
1
t , the coefficient of q1

t is non-positive and hence Jtpxt, wt, yt, q
1
t q is non-increasing

in q1
t . Observing the feasible set Ypxt, wt, rtq “ tpq1

t , ytq | 0 ď q1
t ď wt, yt ě xt ` q1

t , yt ě rtu,

we conclude that q1
t
˚
“ mintwt, yt ´ xtu.

• If wt ě yt ´ xt, q
1
t
˚
“ wt. Then

Jtpxt, wt, yt, q
1
t
˚
q “ pGh

t pytq ` z̃t`1pytq ` c
2
tytq ´ pc

2
t ´ c

1
t qwt ´ c

2
txt ´ κt`1ErUt`1s.
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Since both Gh
t pytq and z̃t`1pytq are convex in yt we conclude that Jtpxt, wt, yt, q

1
t
˚
q is a

convex function in yt. Thus, if we define

st “ spwt, ftq “ arg min
yt

tJtpxt, wt, yt, q
1
t
˚
qu “ arg min

y
tGh

t pyq ` z̃t`1pyq ` c
2
tyu,

we conclude that y˚t “ maxtst, xt, rtu minimizes Jtpxt, wt, yt, q
1
t
˚
q with respect to the

feasible set Ypxt, wt, rtq. Moreover, ztpxtq “ pGh
t py

˚
t q ` z̃t`1py

˚
t q ` c2

ty
˚
t q ´ c2

txt ´

κt`1ErUt`1s must be a convex function. Hence, vtpxt, wtq “ Jtpxt, wt, y
˚
t , q

1
t
˚
q “ ztpxtq´

pc2
t ´ c

1
t qwt, where ztp¨q is a convex function.

• If wt ă yt ´ xt, q
1
t
˚
“ yt ´ xt. In this case,

Jtpxt, wt, yt, q
1
t
˚
q “ pGh

t pytq`z̃t`1pytq`pκt`1`c
1
t qytq´κt`1wt´pκt`1`c

1
t qxt´κt`1ErUt`1s,

which is also convex in yt. Hence, by defining

st “ spwt, ftq “ arg min
yt

tJtpxt, wt, yt, q
1
t
˚
qu “ arg min

y
tGh

t pyq ` z̃t`1pyq ` pκt`1 ` c
1
t qyu,

we have y˚t “ maxtst, xt, rtu minimizes Jtpxt, wt, yt, q
1
t
˚
q. Moreover, ztpxtq “ pG

h
t py

˚
t q`

z̃t`1py
˚
t q ` pκt`1 ` c

1
t qy

˚
t q ´ pκt`1 ` c

1
t qxt ´ κt`1ErUt`1s is convex in xt and vtpxt, wtq “

Jtpxt, wt, y
˚
t , q

1
t
˚
q “ ztpxtq ´ κt`1wt. Note that κt`1 ď c2

t`1 ´ c
1
t`1 ď c2

t ´ c
1
t .

Combining the two cases discussed above, we conclude that vtpxt, wtq “ ztpxtq ´ κtwt

where ztp¨q is a convex function and κt P r0, c
2
t ´ c

1
t s. Moreover, the minimizer py˚t , q

1
t
˚
q must

satisfy

y˚t “ maxtxt, st, rtu; q1
t
˚
“ mintwt, y

˚
t ´ xtu,

where st “ spwt, ftq “ arg minyttJtpxt, wt, yt, q
1
t
˚
qu.

Proposition 3.6 asserts that any optimal policy has the following structure: if the inven-

tory position in period t is no less than the threshold spwt, ftq, an optimal policy produces

up to the required service-level rt; otherwise, it brings the total inventory position (after

production) to maxtrt, spwt, ftqu. Therefore, the higher the service-level, the more orders

are placed by the optimal policy. Moreover, optimal policy will remanufacture returned

products as much as possible before manufacturing new products.
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3.5.2 Modified Split-Merge-Balance Policy

Without loss of generality, we assume c1
t “ 0 following a standard cost transformation in the

literature (see, e.g., Zipkin (2000)). That is, for any system with positive unit remanufac-

turing cost c1
t , there is an equivalent system with revised unit remanufacturing cost c1

t
1
“ 0

and revised unit manufacturing cost c2
t
1
“ c2

t ´ c
1
t . Note that c2

t cannot be normalized to zero

and we use c̄t “ c2
t ´ c1

t to denote the unit production cost in the transformed system with

c1
t “ 0 in the following discussion.

The key idea of modified SMB policy (MSMB for short) is similar to the SMB policy

proposed in §3.4.2, which has three phases, namely, split, merge and balance. However, in

the remanufacturing system, we have to consider production cost in addition to the holding

and backlogging costs. Recall that X̄t “ maxtXt, rtu is the required service-level, ηt “ yt´X̄t

is the controllable producing quantity in period t, and the marginal production cost in period

t is given by

Etpηtq “ c̄tpηt ` X̄t ´Xt ´Wtq
`.

Similar as splitting the holding cost in §3.4.2, we also split the marginal production cost into

two parts: the forced production cost (denoted by Ẽt) which accounts for the cost of producing

up to the required service-level X̄t “ max tXt, rtu in period t and the additional production

cost (denoted by Êt) determined by the amount of additional (controllable) produces ηt.

Specifically, if the number of returned products in period t is denoted by Wt, the forced

production cost Ẽt is computed by

Ẽt “ c̄tpX̄t ´Xt ´Wtq
`, (3.20)

and the additional production cost is

Êtpηtq “ c̄t
`

pηt ` X̄t ´Xt ´Wtq
`
´ pX̄t ´Xt ´Wtq

`
˘

. (3.21)

Next, we regroup the costs based on whether it belongs to overage cost or underage cost.

It is evident that the additional production cost Êtpηtq is overage cost since it increases

when ηt increases (i.e., more productions are made). For the forced production cost Ẽt,

although it does not depend on the decision ηt in the current period, it occurs due to the

lack of productions in the previous period. Hence, by shifting the cost to one period later,

we conclude that

Ẽt`1pηtq “ c̄t`1pX̄t`1 ´Xt`1 ´Wt`1q
` (3.22)
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is non-increasing in ηt and it belongs to underage cost. Similar as the delayed holding cost,

the delayed production cost requires to compute rt`1 based on ft rather than ft`1. Hence,

the term X̄t`1 in (3.22) should be treated as a random variable depending on the realization

of Dt.

To summarize, if we use Φt and Ψt to denote the total overage cost and the total underage

cost in period t, we have Φtpηtq “ Ĥtpηtq ` Êtpηtq and Ψtpηtq “ H̃t`1pηtq ` Ẽt`1pηtq `Btpηtq.

Figure 3.3 illustrates the split phase and the merge phase of the MSMB policy.

Cost

Additional ordering quantity (ηt)

Ht(ηt) = Ĥt(ηt) + H̃t(ηt)

Bt(ηt)

Ĥt(ηt)

H̃t(ηt)

Êt(ηt)

Ẽt(ηt)

Cost

Additional ordering quantity (ηt)

Bt(ηt)

Ĥt(ηt)

H̃t+1(ηt)

Êt(ηt)

Ẽt+1(ηt)

holding costs

production costs

backlogging cost

MSMB: Split phase MSMB: Merge phase

Figure 3.3: Marginal costs under the SMB policy

Finally, we balance the overage cost against the underage cost, i.e., ηMSMB
t solves

ErΦtpηtq | fts “ ErΨtpηtq | fts. (3.23)

Thus, the MSMB policy produces qMSMB
t “ ηMSMB

t ` x̄t ´ xt in period t. Moreover, it

fully utilizes the returned products to remanufacture, i.e., q1,MSMB
t “ mintwt, q

MSMB
t u and

q2,MSMB
t “ pqMSMB

t ´ wtq
`.

3.5.3 Worst-Case Analysis of the MSMB Policy

Now we establish the worst-case guarantee of two for the proposed MSMB policy. The

main difficulty in our analysis is to amortize the production costs of the MSMB policy

against that of the optimal policy. Our proof techniques are based on Tao and Zhou (2014),

in which the authors constructed a set of periods such that the total production costs of

the balancing policy are dominated by that of the optimal policy. They further showed

the same inequality holds for the set of periods in which the optimal policy yields less or

equal inventory compared to the balancing policy (see Lemma 4 of Tao and Zhou (2014)).

However, our proof is different since we need to bound both the forced production cost and

the additional production cost at the same time. As a result, the same inequality does not
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hold any more; instead, we delay the forced production cost to one period later and bound

the total additional production costs in periods TΦ plus the total delayed production costs

in periods TΨ, which is crucial in our analysis (see Lemma 3.9).

In the following discussion, we will only focus on a particular type of policy, namely the

rational policies. These policies will not manufacture at a higher per-unit cost unless there

are no returned products to remanufacture. As we have already shown in Proposition 3.6,

any optimal policy (indicated by OPT) is a rational policy and the MSMB policy described

above is also rational. We will use superscripts to specify which policy we refer to.

We define new variables and introduce new notation. For any given policy P, let W P
t

be the total number of returned products in period t, and SPt be the remaining number of

returned products after producing up to the service-level X̄P
t in period t. We also split the

additional production quantity ηt into two parts, denoted by η1,P
t and η2,P

t , representing the

additional remanufacturing quantity and additional manufaturing quantity of a given policy

P. Because we only consider rational policies, we must have η1,P
t ď SPt and η2,P

t “ pηPt ´S
P
t q
`.

Moreover, the system dynamics follow

$

’

’

’

&

’

’

’

%

W P
t “ Ut ` S

P
t´1 ´ η

1,P
t´1;

SPt “ pW
P
t ´ pX̄

P
t ´X

P
t qq

`;

XP
t “ X̄P

t´1 ` η
1,P
t´1 ` η

2,P
t´1 ´ dt´1.

(3.24)

We rewrite the additional production cost as ÊP
t “ c̄tη

2,P
t , and define three random sets of

periods as follows.

• TΦ “ tt | Y
MSMB
t ă Y OPT

t u denotes the set of periods t in which the optimal policy

yields more ending inventory in periods t` L than the MSMB policy;

• TΨ “ tt | Y
MSMB
t ě Y OPT

t u denotes the set of periods t in which the optimal policy

yields less or equal ending inventory in period t`L compared to the MSMB policy; it

is evident that TΦ and TΨ are disjoint sets and TΦ Y TΨ “ t1, 2, . . . , T u.

• Tc “ tt | X̄MSMB
t ` SMSMB

t ` η2,MSMB
t ě X̄OPT

t ` SOPTt ` η2,OPT
t u. Following

the system dynamics in (3.24), we can equivalently present the set as Tc “ tt |

WMSMB
t`1 `XMSMB

t`1 ě WOPT
t`1 `XOPT

t`1 u. The quantity W P
t `XP

t stands for the maxi-

mum producing-up-to level without having any production cost in period t (which we

refer to as the free-production level). The set Tc can be interpreted as the periods in

which the free-production level in the next period for the MSMB policy is lower than

that of the optimal policy.
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Our main results are based on the following lemmas.

Lemma 3.7. ErCpMSMBqs “ 2E
„

ř

tPTΦ
ΦMSMB
t `

ř

tPTΨ
ΨMSMB
t



` H̃MSMB
1 ` ẼMSMB

1 .

Proof. Proof of Lemma 3.7. Let ξt be the random balanced cost by the MSMB policy in

period t, i.e., ξt “ ErΦMSMB
t |Fts “ ErΨMSMB

t |Fts. The total cost is computed by

ErCpMSMBqs “

T
ÿ

t“1

ErΦMSMB
t `ΨMSMB

t s ` H̃MSMB
1 ` ẼMSMB

1

“

T
ÿ

t“1

E
“

ErΦMSMB
t `ΨMSMB

t | Fts
‰

` H̃MSMB
1 ` ẼMSMB

1

“ 2
T
ÿ

t“1

Erξts ` H̃MSMB
1 ` ẼMSMB

1

“ 2
ÿ

t

E
“`

1pt P TΦq ` 1pt P TΨq
˘

¨ ξt
‰

` H̃MSMB
1 ` ẼMSMB

1

“ 2

ˆ

ÿ

t

E
“

ErΦMSMB
t ¨ 1pt P TΦq | Fts

‰

`
ÿ

t

E
“

ErΨMSMB
t ¨ 1pt P TΨq | Fts

‰

˙

`H̃MSMB
1 ` ẼMSMB

1

“ 2E
„

ÿ

tPTΦ

ΦMSMB
t `

ÿ

tPTΨ

ΨMSMB
t



` H̃MSMB
1 ` ẼMSMB

1 .

We note that the both forced holding cost H̃MSMB
1 and forced production cost ẼMSMB

1

can be computed without knowing specific stochastic demand information and the policy we

use. Hence, they are realized at the beginning of the planning horizon and are fixed in any

policy P we refer to.

The following lemma restates the results proved in Lemma 3.3 and Lemma 3.4, under

the modified SMB policy. The proof is identical to the proofs of Lemma 3.3 and Lemma 3.4,

and thus omitted here.

Lemma 3.8. 1. For any t P TΨ, we have BMSMB
t ď BOPT

t and H̃MSMB
t`1 ď H̃OPT

t`1 .

2. For t P TΦ, we have
ř

tPTΦ
ĤMSMB
t ď

ř

tPTΦ
ĤOPT
t .

Proof. The proof is identical to that in Lemmas 3.3 and 3.4.

The next lemma is crucial in our analysis, which deals with production costs. The

difficulty of the analysis lies in the fact that the production cost does not only depend

on the ending inventory level but also depends on the number of returned products Wt.
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For this reason, we first compare the production cost of the MSMB policy and that of the

optimal policy for sets Tc and T cc . When t P Tc, the free-production level for the MSMB

policy is higher than that of the optimal policy in the next period t ` 1. Therefore, the

forced production cost Ẽt`1 for the MSMB policy must be lower. For set T cc , consider any

consecutive time interval rt1, t2s that belongs to T cc . Compared with the optimal policy, the

free-production level for the MSMB policy is higher at the beginning of period t1, while it

becomes lower at the end of period t2. This can happen only when the MSMB policy uses

more free productions. As a result, the total production cost for the MSMB policy during

this time interval must be less than that of the optimal policy. Finally, we extend the results

to sets TΦ and TΨ using the fact that η2,MSMB
t “ 0 for all t P TΦ X Tc and η2,OPT

t “ 0 for all

t P TΨ X T cc .

Connection and comparison with Tao and Zhou (2014). Our construction of the

set Tc is based on the technique used in Tao and Zhou (2014), but the analysis is different

in the following aspects. First, they showed that the total production costs of the balancing

policy in periods Tc are no more than that of the optimal policy, i.e.,

ÿ

tPT c
c

pÊMSMB
t ` ẼMSMB

t q ď
ÿ

tPT c
c

pÊOPT
t ` ẼOPT

t q.

However, the above inequality does not hold in our model since the forced production cost

ẼMSMB
t is pre-determined by the previous decisions. This motivates us to consider a delayed

production cost which shifts the forced production cost to one period later. The reason

behind this is that the delayed production cost is determined as soon as the productions are

made in the current period and it can be treated as a penalty for not producing enough in

the current period. We show that the total additional production costs plus the total delayed

production costs of our MSMB policy in periods Tc are no more than that of the optimal

policy. (see the second inequality in Lemma 3.9).

Secondly, after comparing the total production costs in periods Tc, Tao and Zhou (2014)

proved the same inequality holds in periods TΦ (see Lemma 4 in Tao and Zhou (2014)), i.e.,

ÿ

tPTΦ

pÊMSMB
t ` ẼMSMB

t`1 q ď
ÿ

tPTΦ

pÊOPT
t ` ẼOPT

t`1 q.

Again, this inequality does not hold in our case; instead, we show that the total additional

costs in periods TΦ plus the total delayed production costs in periods TΨ are dominated by

that of the optimal policy (see the third inequality in Lemma 3.9). The idea is to bound the

overage cost in periods TΦ and the underage cost in periods TΨ. We summarize our results
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in the following lemma.

Lemma 3.9. For the production costs, we have

1. For t P Tc, ẼMSMB
t`1 ď ẼOPT

t`1 ; For t P T cc , ẼMSMB
t`1 ě ẼOPT

t`1 ;

2.
ř

tPT c
c
pÊMSMB

t ` ẼMSMB
t`1 q ď

ř

tPT c
c
pÊOPT

t ` ẼOPT
t`1 q;

3.
ř

tPTΦ
ÊMSMB
t `

ř

tPTΨ
ẼMSMB
t`1 ď

ř

tPTΦ
ÊOPT
t `

ř

tPTΨ
ẼOPT
t`1 .

Proof. Proof of Lemma 3.9. For the first part, we have

XMSMB
t`1 `WMSMB

t`1 “ ut`1 ` X̄
MSMB
t ` SMSMB

t ` η2,MSMB
t ´Dt

ě ut`1 ` X̄
OPT
t ` SOPTt ` η2,OPT

t ´Dt

“ XOPT
t`1 `WOPT

t`1

whenever t P Tc. Note that (3.20) is equivalent to Ẽt “ c̄tprt ´Xt ´Wtq
`. Therefore,

ẼMSMB
t`1 “ ct`1prt`1 ´X

MSMB
t`1 ´WMSMB

t`1 q
`

ď ct`1prt`1 ´X
OPT
t`1 ´WOPT

t`1 q
`

“ ẼOPT
t`1 ,

for all t P Tc. Similarly, the inequality reverses when t P T cc .

Our second inequality is different from the one proved in Tao and Zhou (2014), in which

they showed that the total production cost in periods T cc is less than that of the optimal

policy,

For the second inequality, suppose that T cc has n intervals, namely, T cc “ I1YI2Y¨ ¨ ¨YIn

where Ia “ rξ
1
a, ξ

2
as. Then, we only need to show the inequality holds for each interval Ia. To

see this, we compare the free-production level X̄t`St between the MSMB and OPT policies.

Given a policy P, following the system dynamics in (3.24), we have

X̄P
t ` S

P
t “ X̄P

t ` pput ` S
P
t´1 ´ η

1,P
t´1q ´ pX̄

P
t ´X

P
t qq

`

“ maxtX̄P
t , ut ` S

P
t´1 ´ η

1,P
t´1 `X

P
t u

“ maxtX̄P
t , ut ` S

P
t´1 ` X̄

P
t´1 ` η

2,P
t´1 ´Dt´1u

“ maxtrt, ut ` S
P
t´1 ` X̄

P
t´1 ` η

2,P
t´1 ´Dt´1u,

where the last equality follows from St´1`X̄
P
t´1`η

2,P
t´1´Dt´1 ě XP

t and X̄P
t “ maxtXP

t , rtu.
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Therefore, for t P T ce ,

X̄MSMB
t`1 ` SMSMB

t`1 “ maxtrt`1, ut`1 ` S
MSMB
t ` X̄MSMB

t ` η2,MSMB
t ´Dtu

ď maxtrt`1, ut`1 ` S
OPT
t ` X̄OPT

t ` η2,OPT
t ´Dtu

“ X̄OPT
t`1 ` SOPTt`1

and similarly, X̄MSMB
t`1 `SMSMB

t`1 ě X̄OPT
t`1 `SOPTt`1 for all t P Te. Using the system dynamics,

for any given policy P, the additional manufacturing quantity is given by

η2,P
t “ pXP

t`1 `W
P
t`1 ´ X̄

P
t ´ S

P
t q ` pDt ´ ut`1q.

Thus for any β P Ia,

β
ÿ

t“ξ1
a

η2,P
t “

β
ÿ

t“ξ1
a

pXP
t`1 `W

P
t`1 ´ X̄

P
t ´ S

P
t q `

β
ÿ

t“ξ1
a

pDt ´ ut`1q (3.25)

“

β
ÿ

t“ξ1
a

pXP
t`1 `W

P
t`1 ´ X̄

P
t`1 ´ S

P
t`1q ` pX̄

P
β`1 ` S

P
β`1q ´ pX̄

P
ξ1
a
` SPξ1

a
q

`

β
ÿ

t“ξ1
a

pDt ´ ut`1q

“ ´

β
ÿ

t“ξ1
a

pX̄P
t`1 ´X

P
t`1 ´W

P
t`1q

`
` pX̄P

β`1 ` S
P
β`1q ´ pX̄

P
ξ1
a
` SPξ1

a
q

`

β
ÿ

t“ξ1
a

pDt ´ ut`1q.

Since β P T cc and ξ1
a ´ 1 P Tc, we have X̄MSMB

β`1 ` SMSMB
β`1 ď X̄OPT

β`1 ` SOPTβ`1 and X̄MSMB
ξ1
a

`
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SMSMB
ξ1
a

ě X̄OPT
ξ1
a

` SOPTξ1
a

. Thus, from equality (3.25), we obtain

β
ÿ

t“ξ1
a

„

η2,MSMB
t ` pX̄MSMB

t`1 ´XMSMB
t`1 ´WMSMB

t`1 q
`



“ pX̄MSMB
β`1 ` SMSMB

β`1 q ´ pX̄MSMB
ξ1
a

` SMSMB
ξ1
a

q `

β
ÿ

t“ξ1
a

pDt ´ ut`1q

ď pX̄OPT
β`1 ` S

OPT
β`1 q ´ pX̄

OPT
ξ1
a

` SOPTξ1
a
q `

β
ÿ

t“ξ1
a

pDt ´ ut`1q

“

β
ÿ

t“ξ1
a

„

η2,OPT
t ` pX̄OPT

t`1 ´XOPT
t`1 ´WOPT

t`1 q
`



.

Note that η2,MSMB
t is the additional manufacturing quantity and pX̄MSMB

t`1 ´ XMSMB
t`1 ´

WMSMB
t`1 q` is the forced manufacturing quantity, the above inequality allows us to compare

the cumulative manufacturing quantity.

Following the assumption that the unit production cost c̄t is non-increasing in t, we define

∆t “ c̄t ´ ct`1 for all t P rξ1
a, ξ

2
aq and ∆ξ2

a
“ cξ2

a
. Then since ∆t ě 0 for all t P rξ1

a, ξ
2
as, by

interchanging the order of summation, we conclude that

ÿ

tPIa

pÊMSMB
t ` ẼMSMB

t`1 q “

ξ2
a
ÿ

t“ξ1
a

c̄t

„

η2,MSMB
t ` pX̄MSMB

t`1 ´XMSMB
t`1 ´WMSMB

t`1 q
`



“

ξ2
a
ÿ

t“ξ1
a

ˆ ξ2
a
ÿ

β“t

∆β

˙„

η2,MSMB
t ` pX̄MSMB

t`1 ´XMSMB
t`1 ´WMSMB

t`1 q
`



“

ξ2
a
ÿ

β“ξ1
a

∆β

β
ÿ

t“ξ1
a

„

η2,MSMB
t ` pX̄MSMB

t`1 ´XMSMB
t`1 ´WMSMB

t`1 q
`



ď

ξ2
a
ÿ

β“ξ1
a

∆β

β
ÿ

t“ξ1
a

„

η2,OPT
t ` pX̄OPT

t`1 ´XOPT
t`1 ´WOPT

t`1 q
`



“
ÿ

tPIa

pÊOPT
t ` ẼOPT

t`1 q,

which proves the second equality.

To show the last inequality, we first claim that for η2,MSMB
t “ 0 for all t P TΦ X Tc.

Otherwise, suppose η2,MSMB
t ą 0, then ηr,MSMB

t “ SMSMB
t . Thus,

Y MSMB
t “ X̄MSMB

t ` SMSMB
t ` η2,MSMB

t ě X̄OPT
t ` SOPTt ` η2,OPT

t ě Y OPT
t ,
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which contradicts with t P TΦ. Similarly, we can show that η2,OPT
t “ 0 holds for all t P TΨXT cc .

Hence, using the second inequality we have proved above, we have

ÿ

tPTΦ

c̄tη
2,MSMB
t “

ÿ

tPTΦXT c
c

c̄tη
2,MSMB
t ď

ÿ

tPT c
c

c̄tη
2,MSMB
t (3.26)

and
ÿ

tPTΦ

c̄tη
2,OPT
t “

ÿ

tPTΦYT c
c

c̄tη
2,OPT
t ě

ÿ

tPT c
c

c̄tη
2,OPT
t . (3.27)

Therefore, using the above inequalities together with the two inequalities we have already

showed in the lemma, we conclude that

ÿ

tPTΦ

ÊMSMB
t `

ÿ

tPTΨ

ẼMSMB
t`1 ď

ÿ

tPT c
c

ÊMSMB
t `

ÿ

tPTΨXT c
c

ẼMSMB
t`1 `

ÿ

tPTΨXTc

ẼMSMB
t`1

“
ÿ

tPT c
c

pÊMSMB
t ` ẼMSMB

t`1 q ´
ÿ

tPTΦXT c
c

ẼMSMB
t`1 `

ÿ

tPTΨXTc

ẼMSMB
t`1

ď
ÿ

tPT c
c

pÊOPT
t ` ẼOPT

t`1 q ´
ÿ

tPTΦXT c
c

ẼOPT
t`1 `

ÿ

tPTΨXTc

ẼOPT
t`1

“
ÿ

tPT c
c

ÊOPT
t `

ÿ

tPTΨXT c
c

ẼOPT
t`1 `

ÿ

tPTΨXTc

ẼOPT
t`1

ď
ÿ

tPTΦ

ÊOPT
t `

ÿ

tPTΨXT c
c

ẼOPT
t`1 `

ÿ

tPTΨXTc

ẼOPT
t`1

“
ÿ

tPTΦ

ÊOPT
t `

ÿ

tPTΨ

ẼOPT
t`1 ,

where the first inequality follows from (3.26), the third inequality follows from the results

proved in part 1 and part 2, and the fifth inequality follows from (3.27).
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Combining Lemma 3.7 to Lemma 3.9 together, we have

ErCpMSMBqs “ 2E
„

ÿ

tPTΦ

ΦMSMB
t `

ÿ

tPTΨ

ΨMSMB
t



` H̃MSMB
1 ` ẼMSMB

1

“ 2E
„

ÿ

tPTΦ

ĤMSMB
t `

ÿ

tPTΨ

pH̃MSMB
t`1 `BMSMB

t q

`p
ÿ

tPTΦ

ÊMSMB
t `

ÿ

tPTΨ

ẼMSMB
t`1 q



` H̃MSMB
1 ` ẼMSMB

1

ď 2E
„

ÿ

tPTΦ

ĤOPT
t `

ÿ

tPTΨ

pH̃OPT
t`1 `BOPT

t q ` p
ÿ

tPTΦ

ÊOPT
t `

ÿ

tPTΨ

ẼOPT
t`1 q



`H̃OPT
1 ` ẼOPT

1

ď 2E
„ T
ÿ

t“1

pΦOPT
t `ΨOPT

t q ` H̃OPT
1 ` ẼOPT

1



“ 2ErCpOPT qs.

Hence, we have proved the following theorem, which provides a worst-case performance

guarantee on the result of the MSMB policy.

Theorem 3.10. The MSMB policy has a worst-case performance guarantee of two, i.e.,

for each instance of the backlogging model under service-level constraints, the expected cost

of the MSMB policy is at most two times the expected cost of an optimal solution, i.e.,

ErCpMSMBqs ď 2ErCpOPT qs.

3.6 Numerical Experiments

Since the remanufacturing model generalizes the classical backlogging model, we only focus

on testing the MSMB policy and compare with the optimal policies derived through DP

(for small problem sizes). Our numerical results show that the MSMB policy performs near-

optimal for a set of instances with diverse demand and parameter settings. Moreover, the

performance of the MSMB policy improves as we increase the levels of the QoS guarantee.

Demand process. We consider the following three demand settings:

1. Independent and identically distributed (i.i.d.) demands. We test three spe-

cific demand distributions, namely, Exponential, Erlang-2, and Poisson all with mean

values equal to 10.

65



2. Markov-modulated demand process (MMDP). MMDP considers an underlying

Markov Chain and assumes that the demand distribution depends on the state of the

Markov Chain. The state at period t, denoted by st P t1, 2, 3u and is interpreted as the

state of the economy (poor, fair or good). Given state st at period t, the demand is a

random variable with cumulative distribution function Ftp¨q and mean value µt. The

better the state of economy, the larger the mean of the demand, i.e., µ1 ă µ2 ă µ3.

The transition probability matrix is defined by P “ ppijq3ˆ3, where pij denotes the

transition probability from state si to state sj. In our test data, the state of the

economy follows a Markov chain with initial probabilities p1 “ p2 “ p3 “ 1{3 and

transition probabilities

P “

»

—

—

–

0.6 0.3 0.1

0.2 0.6 0.2

0.1 0.3 0.6

fi

ffi

ffi

fl

.

For each state st P t1, 2, 3u, we also set the demand mean value as 5st in period t.

We test three specific demand distributions, namely, Poisson, Uniform and Normal.

The parameter of the Poisson distribution is solely governed by the mean value (set

as 5, 10, and 15). For the Uniformly distributed demand, we consider intervals r0, 10s,

r5, 15s and r10, 20s for the three states, respectively. For the Normal distribution, we

set the standard deviation as 2 for all three states.

3. Autoregressive demands. For the autoregressive demand, we assume that there is

a priori estimation µt of the demand at the period t. Besides, the realized demand also

depends on the actual sales (or actual deviations from the priori) of previous seasons.

Hence, the generic autoregressive demand model with parameter γ has the following

form:

Dt ´ µt “
t´1
ÿ

s“t´γ

ψt´spDs ´ µsq ` ε,

where ψt stands for the extent of correlation for the demand deviations and ε is the noise

term which is assumed to be a Gaussian white noise (i.e., standard normal distribution).

The coefficients tψtu
γ
t“1 are usually determined by the auto-covariances following the

Yule-Walker Equations (cf. Hamilton 1994). Our numerical tests cover the following

three cases:

• γ “ 1, with coefficients ψ1 “ 1;

• γ “ 2, with coefficients pψ1, ψ2q “ p3{4, 1{4q;
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• γ “ 3, with coefficients pψ1, ψ2, ψ3q “ p1{2, 1{3, 1{6q;

Return process. We consider two types of return process (a) independent product return

with Ut following a Normal distribution with mean µ “ 20 and standard deviation σ “ 5;

(b) dependent product return on the previous demand with Ut “ 0.3Dt´1 ` νt, where tνtu

are i.i.d. Poisson random variables with rate 1.

Paramater settings. We consider a planning horizon T “ 20 periods and production lead

time L “ 2. We assume that the cost parameters are stationary with a discounted factor

α “ 0.99 and a unit holding cost being normalized to 1. We test different combinations

of cost parameters under the three types of demand patterns. Specifically, we assume the

unit remanufacturing cost c1 “ 30, the unit manufacturing cost c2 “ 30, 40, 50, and the unit

backlogging cost p “ 50, 70, 90.

Performance measure. To evaluate the performance of a policy P, we compare it with

the results of the optimal policy. We use CpP q and CpOPT q to denote the costs given by the

two policies, respectively. We define the performance error of the policy P as the percentage

of increase in the total cost of this policy compared to the optimal cost over the planning

horizon, i.e.,

E “ CpP q ´ CpOPT qCpOPT q ˆ 100%.

Clearly, the performance error E is always a positive number. Moreover, a smaller perfor-

mance error means a better approximation algorithm. We report the values of E for every

testing combination to empirically show that the proposed SMB policy provides close-to-

optimal solutions in much more competitive CPU time. All of the numerical experiments

are conducted on an Intel(R) Xeon(R) 2.93 GHz PC and we use Matlab R2013a as the solver.

3.6.1 Numerical Results

Tables 3.1–3.6 present all the numerical results: Tables 3.1–3.3 cover the independent prod-

uct return case and Tables 3.4–3.6 cover the dependent return case. For each instance, we

test performance errors of the SMB policy for the i.i.d. demand, MMDP demand and au-

toregressive demand. Note that the average empirical performance error of the SMB policy

is less than 2% in all instances, demonstrating the efficacy of the proposed approximation

algorithm. Moreover, comparing the results of i.i.d., MMDP, and autoregressive demands,

our algorithm performs consistently better in instances when demands are correlated. This
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indicates that the SMB policy takes the advantage of given demand correlation information.

On the other hand, the average CPU time of the SMB policy is around 1.16 seconds. In con-

trast, the DP algorithm for finding optimal solutions takes much longer time (173.9 seconds

on average) per test instance.

(c1, c2, p)
Exponential Erlang-2 Poisson

θ “ 0.9 θ “ 0.95 θ “ 0.98 θ “ 0.99 θ “ 0.9 θ “ 0.95 θ “ 0.98 θ “ 0.99 θ “ 0.9 θ “ 0.95 θ “ 0.98 θ “ 0.99
(30, 30, 50) 1.17% 0.95% 1.40% 1.07% 0.52% 0.24% 0.49% 0.81% 0.08% 0.21 % 0.36% 0.57%
(30, 30, 70) 0.97% 0.81% 1.11% 1.09% 1.13% 0.48% 0.42% 0.94% 0.04% 0.09% 0.24% 0.49%
(30, 30, 90) 1.39% 0.65% 0.77% 1.43% 1.44% 0.69% 0.21% 0.56% 0.11% 0.07% 0.25% 0.43%
(30, 40, 50) 0.64% 1.11% 0.75% 0.65% 0.80% 0.46% 0.57% 0.82% 0.06% 0.15% 0.40% 0.58%
(30, 40, 70) 0.91% 0.70% 1.24% 1.61% 0.97% 0.56% 0.31% 0.53% 0.08% 0.11% 0.33% 0.51%
(30, 40, 90) 0.76% 0.84% 1.35% 1.40% 1.41% 0.72% 0.38% 0.41% 0.10% 0.07 % 0.24% 0.41%
(30, 50, 50) 1.28% 0.99% 0.94% 1.01% 0.73% 0.19% 0.46% 0.95% 0.04% 0.11 % 0.37% 0.55%
(30, 50, 70) 1.25% 1.00% 1.17% 1.13% 1.29% 0.48% 0.61% 0.63% 0.08% 0.09 % 0.34% 0.52%
(30, 50, 90) 1.43% 1.23% 0.92% 1.14% 1.67% 0.53% 0.50% 0.65% 0.18% 0.12% 0.19% 0.40%

max 1.43% 1.23% 1.4% 1.61% 1.67% 0.72% 0.61% 0.95% 0.18% 0.21 % 0.40% 0.58%
mean 1.09% 0.92% 1.07% 1.17% 1.11% 0.48% 0.44% 0.70% 0.09% 0.11% 0.30% 0.50%

Table 3.1: Error E for i.i.d. demands with different parameters (independent return)

(c1, c2, p)
Poisson Uniform Normal

θ “ 0.9 θ “ 0.95 θ “ 0.98 θ “ 0.99 θ “ 0.9 θ “ 0.95 θ “ 0.98 θ “ 0.99 θ “ 0.9 θ “ 0.95 θ “ 0.98 θ “ 0.99
(30, 30, 50) 0.42% 0.16% 0.66% 0.85% 0.39% 0.35% 0.71% 0.90% 0.20% 0.37% 0.65% 0.74%
(30, 30, 70) 0.77% 0.29% 0.37% 0.74% 0.55% 0.34% 0.61% 0.83% 0.27% 0.25% 0.55% 0.76%
(30, 30, 90) 0.95% 0.39% 0.49% 0.55% 0.72% 0.37% 0.54% 0.82% 0.40% 0.28% 0.49% 0.76%
(30, 40, 50) 0.39% 0.30% 0.64% 0.79% 0.40% 0.42% 0.72% 0.88% 0.21% 0.29% 0.61% 0.79%
(30, 40, 70) 0.65% 0.31% 0.51% 0.61% 0.56% 0.41% 0.67% 0.87% 0.28% 0.26% 0.56% 0.73%
(30, 40, 90) 0.79% 0.30% 0.40% 0.58% 0.65% 0.38% 0.54% 0.84% 0.41% 0.24% 0.43% 0.73%
(30, 50, 50) 0.46% 0.25% 0.50% 0.95% 0.40% 0.42% 0.75% 0.87% 0.21% 0.30% 0.62% 0.82%
(30, 50, 70) 0.63% 0.27% 0.43% 0.65% 0.56% 0.35% 0.62% 0.84% 0.28% 0.27% 0.61% 0.75%
(30, 50, 90) 0.98% 0.39% 0.43% 0.59% 0.64% 0.34% 0.55% 0.77% 0.36% 0.27% 0.49% 0.68%

max 0.98% 0.39% 0.66% 0.95% 0.72% 0.42% 0.75% 0.90% 0.41% 0.37% 0.65% 0.82%
mean 0.67% 0.30% 0.49% 0.70% 0.54% 0.38% 0.63% 0.85% 0.29% 0.28% 0.55% 0.75%

Table 3.2: Error E for MMDP demands with different parameters (independent return)

(c1, c2, p)
AR(1) AR(2) AR(3)

θ “ 0.9 θ “ 0.95 θ “ 0.98 θ “ 0.99 θ “ 0.9 θ “ 0.95 θ “ 0.98 θ “ 0.99 θ “ 0.9 θ “ 0.95 θ “ 0.98 θ “ 0.99
(30, 30, 50) 0.26% 0.30% 0.52% 0.71% 0.22% 0.35% 0.54% 0.71% 0.20% 0.36% 0.58% 0.67%
(30, 30, 70) 0.39% 0.33% 0.44% 0.62% 0.33% 0.31% 0.49% 0.64% 0.24% 0.31% 0.50% 0.64%
(30, 30, 90) 0.59% 0.38% 0.46% 0.59% 0.51% 0.33% 0.54% 0.62% 0.31% 0.34% 0.43% 0.63%
(30, 40, 50) 0.27% 0.34% 0.55% 0.73% 0.24% 0.31% 0.57% 0.68% 0.18% 0.30% 0.57% 0.68%
(30, 40, 70) 0.46% 0.30% 0.42% 0.63% 0.30% 0.33% 0.52% 0.66% 0.26% 0.32% 0.46% 0.66%
(30, 40, 90) 0.64% 0.38% 0.43% 0.67% 0.41% 0.33% 0.47% 0.58% 0.34% 0.31% 0.44% 0.66%
(30, 50, 50) 0.29% 0.30% 0.58% 0.73% 0.24% 0.32% 0.49% 0.68% 0.20% 0.32% 0.60% 0.70%
(30, 50, 70) 0.45% 0.32% 0.49% 0.71% 0.31% 0.33% 0.50% 0.68% 0.24% 0.32% 0.50% 0.63%
(30, 50, 90) 0.63% 0.35% 0.43% 0.60% 0.42% 0.33% 0.46% 0.63% 0.30% 0.33% 0.46% 0.63%

max 0.64% 0.38% 0.58% 0.73% 0.51% 0.35% 0.57% 0.71% 0.34% 0.36% 0.60% 0.70%
mean 0.44% 0.33% 0.48% 0.66% 0.33% 0.33% 0.51% 0.65% 0.25% 0.32% 0.50% 0.66%

Table 3.3: Error E for Autoregressive demands with different parameters (independent re-
turn)
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(c1, c2, p)
Exponential Erlang-2 Poisson

θ “ 0.9 θ “ 0.95 θ “ 0.98 θ “ 0.99 θ “ 0.9 θ “ 0.95 θ “ 0.98 θ “ 0.99 θ “ 0.9 θ “ 0.95 θ “ 0.98 θ “ 0.99
(30, 30, 50) 0.48% 0.99% 1.54% 1.75% 0.51% 0.97% 1.57% 1.74% 0.41% 0.94% 1.42% 1.59%
(30, 30, 70) 0.46% 0.69% 1.33% 1.66% 0.50% 0.68% 1.37% 1.64% 0.31% 0.64% 1.21% 1.53%
(30, 30, 90) 0.58% 0.54% 1.14% 1.57% 0.61% 0.55% 1.11% 1.55% 0.34% 0.50% 1.05% 1.47%
(30, 40, 50) 0.47% 0.77% 1.29% 1.47% 0.47% 0.98% 1.57% 1.72% 0.35% 0.72% 1.15% 1.34%
(30, 40, 70) 0.46% 0.61% 1.14% 1.43% 0.49% 0.68% 1.36% 1.64% 0.32% 0.56% 1.01% 1.32%
(30, 40, 90) 0.57% 0.51% 1.00% 1.32% 0.59% 0.53% 1.19% 1.58% 0.34% 0.45% 0.89% 1.23%
(30, 50, 50) 0.45% 0.67% 1.10% 1.31% 0.49% 0.97% 1.55% 1.78% 0.32% 0.63% 1.02% 1.17%
(30, 50, 70) 0.49% 0.56% 1.02% 1.26% 0.48% 0.70% 1.36% 1.64% 0.32% 0.52% 0.91% 1.14%
(30, 50, 90) 0.58% 0.48% 0.88% 1.21% 0.64% 0.55% 1.14% 1.58% 0.34% 0.43% 0.80% 1.07%

max 0.58% 0.99% 1.54% 1.75% 0.64% 0.98% 1.57% 1.78% 0.41% 0.94% 1.42% 1.59%
mean 0.50% 0.65% 1.16% 1.44% 0.53% 0.73% 1.36% 1.65% 0.34% 0.60% 1.05% 1.32%

Table 3.4: Error E for i.i.d. demands with different parameters (dependent return)

(c1, c2, p)
Poisson Uniform Normal

θ “ 0.9 θ “ 0.95 θ “ 0.98 θ “ 0.99 θ “ 0.9 θ “ 0.95 θ “ 0.98 θ “ 0.99 θ “ 0.9 θ “ 0.95 θ “ 0.98 θ “ 0.99
(30, 30, 50) 0.55% 0.60% 0.90% 1.06% 0.50% 0.98% 1.54% 1.73% 0.35% 0.70% 1.32% 1.49%
(30, 30, 70) 0.99% 0.51% 0.83% 1.06% 0.50% 0.69% 1.37% 1.66% 0.22% 0.48% 1.14% 1.41%
(30, 30, 90) 0.58% 0.53% 0.55% 0.90% 0.58% 0.54% 1.12% 1.55% 0.18% 0.33% 1.01% 1.32%
(30, 40, 50) 0.64% 0.56% 0.83% 1.04% 0.44% 0.78% 1.27% 1.48% 0.27% 0.57% 1.10% 1.23%
(30, 40, 70) 0.99% 0.52% 0.64% 0.92% 0.48% 0.58% 1.13% 1.41% 0.19% 0.37% 0.94% 1.18%
(30, 40, 90) 0.41% 0.64% 0.56% 0.92% 0.61% 0.49% 0.98% 1.34% 0.19% 0.29% 0.81% 1.08%
(30, 50, 50) 0.73% 0.53% 0.69% 0.90% 0.45% 0.66% 1.10% 1.31% 0.24% 0.44% 0.93% 1.09%
(30, 50, 70) 0.57% 0.51% 0.59% 0.87% 0.50% 0.53% 1.01% 1.27% 0.19% 0.33% 0.82% 1.01%
(30, 50, 90) 0.41% 0.63% 0.55% 0.81% 0.55% 0.46% 0.89% 1.22% 0.19% 0.27% 0.71% 0.95%

max 0.99% 0.64% 0.90% 1.06% 0.61% 0.98% 1.54% 1.73% 0.35% 0.70% 1.32% 1.49%
mean 0.65% 0.56% 0.68% 0.94% 0.51% 0.64% 1.16% 1.44% 0.23% 0.42% 0.97% 1.20%

Table 3.5: Error E for MMDP demands with different parameters (dependent return)

(c1, c2, p)
AR(1) AR(2) AR(3)

θ “ 0.9 θ “ 0.95 θ “ 0.98 θ “ 0.99 θ “ 0.9 θ “ 0.95 θ “ 0.98 θ “ 0.99 θ “ 0.9 θ “ 0.95 θ “ 0.98 θ “ 0.99
(30, 30, 50) 0.52% 0.89% 1.42% 1.59% 0.51% 0.98% 1.43% 1.59% 0.62% 1.04% 1.46% 1.59%
(30, 30, 70) 0.51% 0.69% 1.26% 1.49% 0.48% 0.75% 1.28% 1.48% 0.50% 0.85% 1.33% 1.52%
(30, 30, 90) 0.69% 0.59% 1.10% 1.42% 0.49% 0.66% 1.12% 1.42% 0.46% 0.71% 1.19% 1.46%
(30, 40, 50) 0.44% 0.70% 1.14% 1.32% 0.42% 0.74% 1.16% 1.32% 0.46% 0.79% 1.19% 1.31%
(30, 40, 70) 0.46% 0.56% 1.02% 1.25% 0.39% 0.61% 1.05% 1.23% 0.42% 0.67% 1.10% 1.26%
(30, 40, 90) 0.55% 0.51% 0.86% 1.18% 0.44% 0.55% 0.93% 1.19% 0.41% 0.59% 0.96% 1.22%
(30, 50, 50) 0.39% 0.57% 0.99% 1.17% 0.38% 0.62% 1.00% 1.14% 0.42% 0.65% 1.01% 1.13%
(30, 50, 70) 0.43% 0.50% 0.88% 1.12% 0.37% 0.52% 0.91% 1.10% 0.38% 0.59% 0.94% 1.10%
(30, 50, 90) 0.51% 0.46% 0.78% 1.02% 0.43% 0.51% 0.81% 1.06% 0.39% 0.53% 0.85% 1.04%

max 0.69% 0.89% 1.42% 1.59% 0.51% 0.98% 1.43% 1.59% 0.62% 1.04% 1.46% 1.59%
mean 0.50% 0.61% 1.05% 1.29% 0.44% 0.66% 1.08% 1.28% 0.45% 0.71% 1.11% 1.29%

Table 3.6: Error E for Autoregressive demands with different parameters (dependent return)

3.7 Concluding Remarks

In this chapter, we studied two stochastic inventory systems with probabilistic guarantees

of service-levels (interpreted as stockout probabilities) in each period of a planning hori-

zon. In particular, we derived structural properties of optimal policies for both backlogging

and remanufacturing models. The chapter also proposed several efficient and easily im-

plementable approximation algorithms for computing near-optimal solutions, of which the

efficacy is demonstrated through numerical experiments with diverse demand settings.
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One interesting and important future research avenue is to consider a joint service-level

constraint for restricting the stockout probability in any period over a finite time horizon.

To the best of our knowledge, only Zhang et al. (2014) has considered a related dynamic

lot-sizing problem with a joint chance constraint on stockout probability. The authors for-

mulated as a multi-stage stochastic integer programming model solved by cutting-plane

algorithms. There have not been existing papers have characterized optimal or near-optimal

policies for stochastic inventory models with joint service-level constraints, which we believe

is an important future research topic.
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CHAPTER IV

Optimal Dynamic Pricing with Sales Rank

Information

4.1 Abstract

With increased popularity of online retail, we see exploding use of sales rank information.

Such information is critical for customers as it allows them to choose which product to buy.

This implies high importance of sales rank information also for retailers. If choosing lower

prices, the sales increase and the rank of the product rises. Per its nature, ranking is a

latent variable (current rank reflects the previous sales) and, therefore, it allows retailers to

strategically influence ranking of the product.

In this chapter, we study periodic-review dynamic pricing problems in presence of sales

rank information. The demand in each period is a function of both price and sales rank.

The retailer’s goal is to find the optimal pricing policy that takes sales rank into account to

maximize the total revenue over a finite time horizon T .

To abstract the critical drivers of the retailer’s policy, we first consider a deterministic

model and then extend it to stochastic settings. With deterministic demand and a single

product, we show that the optimal pricing policy is cyclical – the retailer alternates between

high and low prices. We show how the the length of the optimal cycle depends on the expected

revenue and customers’ sensitivity to sales rank. We evaluate the benefit of strategic cycling

versus myopic policy of the retailer. For stochastic demand case, we derive the structure

of the optimal pricing policy, which generalizes the results in the deterministic case. We

show that it is upper bounded by single-period myopic optimal price and is monotonically

decreasing in the sales rank. Our numerical experiments illustrate the potential of revenue

increases when a strategic-cycling pricing policy is used. We consider the demand and rank

sensitivities, as well as different demand patterns. We also observe that penetration policy
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is used in optimal policy for products with lower sales rank.

4.2 Introductory Remarks

Many forms of dynamic pricing strategies such as price markdowns, promotions, coupons

have been used in practice for many years (cf. Elmaghraby and Keskinocak 2003). In the last

decade, the benefits of dynamic pricing strategies have been not only well-acknowledged but

also increasingly studied and refined (cf. Talluri and Van Ryzin 2006). It is widely expected

that, with increased availability of demand data as well as the flexibility of changing prices,

the volume of applications of dynamic pricing will further increase.

The information technology plays an important role for both retailers and consumers. The

rapid growth of Internet and e-commerce makes it possible for consumers to search across

many online stores, using price-comparison engines available at desktops, mobile sites, and

apps. The instantaneous price information increases price competition, dwindles product

differentiation, and may decrease brand loyalty (see, e.g., Robert 1998). With consumers

having access to real-time information, real-time dynamic pricing becomes necessary for

online retailers in order to react in real-time to competitors’ price changes.

In addition to providing the instantaneous price information, online channels also make

available a wealth of other product sales information such as sales rank, customers’ reviews,

etc., and it is well documented that customers are aware of that information and take it

into account when deciding whether and what product to purchase (cf. Kannan 2017).

According to Nielsen (2010), 40% of online shoppers indicate that they would not even buy

electronics without consulting online reviews first.

Unfortunately, the sales rank information may be both inaccurate as well as overwhelm-

ing. Given thousands of different brands and models, customers are usually not experts

in differentiating the quality among similar products. As widely observed in practice (e.g.,

through use of websites) and in formal studies, customers pay close attention to ranking of

products and tend to believe that bestsellers generally have good quality (see, e.g., Chen

et al. 2011). As a result, customers often rely on sales history and may be more likely to

purchase popular products simply because these products show on the very first page of their

search. Not surprisingly, the impact of sales rank on the customers’ demand is significant,

which could play a crucial role in online retailer revenue management strategies (cf. Chen

et al. 2011). A natural question to ask is whether retailer should offer a consistent (station-

ary) pricing policy, or whether other pricing strategies may be more beneficial to maximize

profit.
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In practice, prices and sales rank change significantly over time and the changes are

related to each other. Many of today’s successful companies use ranking information in their

dynamic pricing strategies. For example, Amazon prices and sales rank of the Dell Laptop

for the past six months can be found online.1 As shown in Figure 4.1, the price varies and

the highest price exceeds the lowest price by 40%. Similarly, see Figure 4.2, the sales rank

changes continuously over time. Comparing these two figures, we see that the sales rank

increases whenever there is a price drop-down. The similar results are observed by Remy

et al. (2010), by collecting and analyzing Amazon’s prices for bestsellers in the camera and

video categories. The changes in price and sales rank point to the possibility that online

retailers may have an interest in offering price discounts to attract more price-sensitive

customers and to improve the sales rank of their products.

Figure 4.1: Price changes of Dell Laptop from Apr. 2, 2017 to Oct. 2, 2017

In this chapter, we study periodic-review dynamic pricing problems in presence of sales

rank information. We assume that the demand in each period depends on current sales rank

and current price. Given that product rank is a latent (delayed) variable, it is interesting

how pricing policy that is based on sales rank could maximize retailers’ total revenue. Our

analysis is based on two scenarios where retailer sells either a single product or multiple

products with similar characteristics. In the single-product pricing model, the sales rank for

the product is either a deterministic or stochastic function of the demand in the previous

period. In the multi-product model, we consider the deterministic case with several similar

1www.camelcamelcamel.com
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Figure 4.2: Sales rank changes of Dell Laptop from Apr. 2, 2017 to Oct. 2, 2017

and substitutable products.

4.2.1 Literature Review

Because our work focuses on the effect of sales rank on product pricing, we review both of

these streams of literature.

Sales rank. The literature on sales rank is fairly small, but it belongs to broader literature

that studies the effect of historical sales data on current sales. A very significant portion of

that literature focuses on the sales volume itself, notably the papers that analyze the diffusion

effects (starting with seminal paper by Bass (1969)). Recently, a growing sub-literature

focuses on the effect customer reviews (e.g., Chevalier and Mayzlin (2006), Mudambi and

Schuff (2010) and Ho-Dac et al. (2013)). Our focus, however, is on a specific substream that

analyzes sales rank effects.

The relevance of sales rank is established in several papers. Goolsbee and Chevalier

(2002) empirically study price sensitivity of online consumers in presence of sales ranks for

two leading online booksellers, Amazon and Barnes and Nobel. They translate the observed

sales ranks of each book into sales quantity by assuming the sales follow a Pareto distribution.

Using publicly available data on the sales ranks for about 20,000 books, the authors show

that there is a significant price sensitivity for online customers, both to a site’s own price as

well as to some rivals’ price. They also show that prices are much more variable online than
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in retail stores.

There are empirical research papers that focus on distribution of products in online

versus traditional retailers, as well as papers that focus on sequencing of the products when

presented to customers and on design of appropriate ranking mechanisms.

Specifically, the long tail phenomenon of e-commerce has recently been studied and papers

in that subarea find that online retailers sell more products that are less popular than do

traditional retailers. For example, Brynjolfsson et al. (2003) investigate how customers

benefits from the increased product variety at online booksellers. Brynjolfsson et al. (2011)

also investigate the long tail phenomenon of the Internet channel by analyzing data from a

multichannel retailer. They conclude that the Internet’s long tail not only due to the product

variety but also partly driven by lower search costs of the online channel.

It seems that ranking information increases popularity of both the niche products and

of best sellers. Tucker and Zhang (2011) find that vendors of niche products benefit from

being listed on websites that make popularity information highly important. Contrasting

effect (steep tail or superstar) was documented in Rosen (1981) and Noe and Parker (2005).

Recently, Fleder and Hosanagar (2009) examine the rich-get-richer effect for popular

products under the impact of recommender systems. Brynjolfsson et al. (2010) argue that

both phenomenon (the long tail and the superstar) should be analyzed in an integrated way

and identify four major areas of inquiry for future research, which includes its impact on

pricing and other marketing strategies. There are attempts to design ranking mechanisms.

E.g., Yoo and Kim (2012) study how ranking policy should be set to maximize the value

of its online music ranking service. They design a ranking mechanism in which sellers can

design the slot size to influence the popularity of music items while consumers will gain

indirect benefits through segmented ranking slots and reduced search costs.

We are unaware of any papers that would analyze the effect of taking rank information

into pricing policy, which is the focus of this chapter.

Dynamic pricing in revenue management. The study of dynamic pricing in revenue

management is pioneered by Thomas (1970). Later the seminal paper Gallego and Van Ryzin

(1994) consider a continuous-time formulation with limited inventories over finite-time hori-

zon, where the demand intensity is a function of price. They show that the optimal price

is decreasing in the stock level and is increasing the length of the remaining time horizon.

The focus is how to use price to encourage customers to buy, given wide or scarce avail-

ability of the remaining inventory. Gallego and Van Ryzin (1997) consider a multi-product

multi-resource dynamic pricing model and provide two heuristics based on deterministic
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counterparts. Many extensions of their models are reviewed in Talluri and Van Ryzin (2006)

and Özer and Phillips (2012). Most of them assume the demand rate depends only on the

current-period price. Recently, this assumption is relaxed by considering customer behaviors.

One major stream of literature focuses on pricing models with customers are forward-

looking or strategic. That is, customers strategically timing their purchases, based on factors

such as expectations of the future prices, the evolution of valuations, or availability of the

product. This body of literature is vast, and we selectively discuss a few that are more

closely related to our model (we refer interested readers to Shen and Su (2007) and Aviv

et al. (2009) for an extensive overview). Conlisk et al. (1984) were the first to consider the

problem of how sellers should price their products in settings where consumers with two

possible valuations (high or low) arrive over time. They show that such a seller should use

a cyclic policy, pricing high most of the time and dropping the price once in a while to sell

to the accumulated mass of low valuation consumers. Besbes and Lobel (2015) then extend

the above model to a more general version where customers are characterized by a triplet

combination of their arrival time, valuation, and a willingness-to-wait, and show that a cyclic

pricing policy is still optimal but often takes the form of a nested policy. More recently, Chen

and Farias (2018) and Chen et al. (2018) show the efficacy of static fixed pricing policy with

worst-case performance guarantees when customers are strategic.

There is also another growing stream of literature focusing on pricing models with cus-

tomers having finite patience levels (see, e.g., Ahn et al. (2007), Liu and Cooper (2015),

Lobel (2016)). The latter two papers show that optimal policies are periodic and providing

a bound on the cycle length, and show that optimal policies are cyclic decreasing in the

presence of heterogeneous patience levels. They construct a dynamic programming based

algorithms for computing optimal dynamic pricing policies. More recently, Zhang and Jasin

(2018) extend their model to a learning setting with the joint distribution of customers

valuation and patience level is unknown a priori.

Different than the above streams of literature, we focus on role of product rank and

its impact on the optimal pricing policies. Our customers are not really strategic, and we

assume that the demand is affected by product rank (or past sales) in some structured way.

In a broad sense, one can view product rank as a active covariate or side-information (see,

e.g., recent works by Cohen et al. (2016), Qiang and Bayati (2016)).

Empirical literature studying different angles of dynamic pricing is also growing. Bryn-

jolfsson and Smith (2000) empirically analyze the pricing behavior for the online channel and

compare it with the conventional offline retail outlets. Their results indicate that Internet

retailers have a higher incentive to make small price changes than conventional retailers. For

76



more literature focus on empirical studies of online price dispersion, one may refer to Pan

et al. (2004).

4.2.2 Main Results and Contributions

To study the structure of the optimal pricing policies, we use rank-based multi-period pricing

models. Our main contributions are as follows:

• We propose and analyze single-product and multi-product pricing models for e-commerce

retailers that incorporate the sales rank information. Sales rank is used by customers

to decide whether to purchase the product as well as by retailers who can dynamically

adjust their pricing decisions based on the current observed sales rank, to maximize

their revenue. To the best of our knowledge, this is the first model that incorporates

sales rank into revenue management problems.

• In the single-product model with deterministic customer arrivals, we characterize when

cyclic pricing policy is optimal. Moreover, we show how the optimal cycle length

depends on the customers’ sensitivity to the sales rank and on the expected (retailer’s)

revenue generated by different prices.

• In a generalized single-product model with stochastic customer arrivals and continuous

price set, we characterize the structure of the optimal policy. Under mild concavity

assumptions on the revenue function and the sales rank function, we prove that the

optimal price in each period is upper bounded by the single-period myopic optimal

price. We also show that the optimal price increases as the product has a better sales

rank.

• For multi-product rank-based pricing models, we also find that, cyclic policy is optimal.

Interestingly, when customers decisions are based on product rankings and prices,

retailers can manipulate the demand by increasing the price of the high-rank product

and decreasing the price of the low-rank product at the same time, which benefits them

due to the boosted demand for the high-rank product.

The rest of the chapter is organized as follows. In Section 4.3, we discuss a single-product

model with deterministic customer arrivals. In Section 4.4, we generalize the single-product

model by considering continuous price set and stochastic customer arrivals.
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4.3 Single-Product Pricing with Deterministic Arrivals

4.3.1 Model Description

In this section, we consider a multi-period rank-based pricing model for a single product

with two potential prices managed by an online retailer. The number of periods is T and

each period is indexed by t “ 1, 2, . . . , T . In period t, nt customers arrive. Then, the retailer

chooses a price pt from a discrete price set P “ tp1, p2u, with p1 ă p2.

When the valuation of a customer is higher than the price of the product (i.e., v ą pt),

the customer will buy the product. Each customer’s valuation is non-negative and drawn

from distribution Fp¨q. Let F p¨q be the cumulative distribution function of the valuation

and F̄ pxq “ 1 ´ F pxq denotes the proportion of customers who have a valuation at least x.

Therefore, if the price in period t is pt and the number of arrivals is nt, the total demand in

period t is dt “ ntF̄ pptq.

The rank of the product in the following period is updated based on the quantity of the

product sold in the current period. To reflect the reality of rank-based methods, rank with

index 1 is the highest ranked product, and larger the index, the lower is the rank of the

product. Following this convention, the rank of the product is a non-increasing function of

last-period demand rt`1 “ hpdtq, where hp¨q is a non-increasing function. This new rank in

period t ` 1 will affect the number of arriving customers in that period, i.e., nt`1 “ gprt`1q

where gp¨q is a non-increasing function with upper bound C “ gp1q.

The retailer’s goal is to choose the prices pt P P such that the total revenue over T

periods is maximized. We formulate the corresponding problems as follows:

zT prq “ max
p1,...,pT PP

T
ÿ

t“1

ptdt

s.t. nt “ mintC, gprtqu t “ 1, 2, . . . , T

dt “ ntF̄ pptq t “ 1, 2, . . . , T

rt`1 “ hpdtq t “ 1, 2, . . . , T

r0 “ r,

where r denotes the initial rank of the product. The infinite-horizon objective is then given

by

zprq “ lim inf
TÑ8

1

T
zT prq (4.1)

for each initial rank r.
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4.3.2 Assumptions and Preliminary Results

Note that in our settings nt`1 “ gphpdtqq. In order to explicitly compute the optimal pricing

policies, we will use fairly standard assumptions used in the literature that implies a specific

form of this relationship, nt`1 “ mintC, αdtu.

Specifically, a standard distributional assumption for this type of rank data is a Pareto

distribution (see, e.g., Goolsbee and Chevalier 2002), in which the probability that the sales

D exceeds the current level is PpD ě dq “ pk{dqθ. Also the product rank r is defined as

satisfying: PpD ě dq “ r{Rmax. The above two equations indicate a log-linear relationship

between sales and sales rank, i.e., ln d “ τ0 ` τ1 ln r where τ1 ă 0 represents the sensitivity

of the sales rank to the demand. Therefore, given the rank rt in period t, we have ln dt “

τ0 ` τ1 ln rt and lnnt`1 “ C ` τ 11 ln rt (since nt`1 is upper bounded by C). Thus, we have

nt`1 “ mintC, αd
τ 11{τ1
t u, where α “ eC´τ0τ

1
1{τ1 . We assume in the remainder of this section

that the sensitivity coefficient τ1 remains the same for both demand-to-rank function hp¨q

and rank-to-arrival function gp¨q. This means τ1 “ τ 11 and nt`1 “ mintC, αdtu. We note here

that the parameter α can be interpreted as the customer’s sensitivity to the sales rank –

larger α implies that customers are more sensitive to the sales rank and past sales demand

is more important in determining the current demand. In Section 4.4 for stochastic model,

we will consider a generalized transition function.

Using the linear relationship between demand and number of customer arrivals, we for-

mulate the dynamic program as follows:

vt,T pntq “ max
ptPP

"

ntF̄ pptqpt ` vt`1,T pmintC, αntF̄ pptquq

*

, (4.2)

where nt is the number of arrivals in period t and vt,T pntq denotes the total revenue from

period t to period T .

To provide some preliminary results for the model, we define βi “ αF̄ ppiq and µi “ piF̄ ppiq

(i “ 1, 2). Since p2 ą p1, we must have β1 ą β2. As higher sales in period t result in higher

arrivals in the following period, we label βi as the discount factor for the number of arrivals

in the next period (even though it is not necessarily smaller than 1). Parameter µi denotes

the expected revenue for each customer arrival in the current period. Recall that the price

set is P “ tp1, p2u. Thus, the dynamic programming formulation can be written as

vt,T pntq “ max

"

ntµ1 ` vt`1,T

`

mintC, ntβ1u
˘

, ntµ2 ` vt`1,T

`

mintC, ntβ2u
˘

*

, (4.3)

where vT`1,T p¨q “ 0 and v1,T pxq is the maximum revenue given that the initial number of
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arrivals is n1 “ x. We drop the subscript T and use simplified notation vtpntq if the total

number of periods is implied by the context.

We use p˚t pntq to denote the optimal pricing policy in period t, given that the arrivals in

period t are nt P p0, Cs. We also use a vector p˚pnq “ pp˚1 , . . . , p
˚
T q to denote the optimal

pricing policy with the initial arrivals in period 1, n P p0, Cs. Based on the above dynamic

programming formulation, we have following results.

Lemma 4.1. vt,T pxq is a non-decreasing function in x P p0, Cs.

Proof. We show this by induction. First, vT`1pxq is trivially non-decreasing in x. Assuming

that vt`1pxq is non-decreasing in x, we are going to show the same for vtpxq. Let 0 ď x ă

y ď C, then

vtpxq “ max

"

xµ1 ` vt`1

`

mintC, xβ1u
˘

, xµ2 ` vt`1

`

mintC, xβ2u
˘

*

ă max

"

yµ1 ` vt`1

`

mintC, yβ1u
˘

, yµ2 ` vt`1

`

mintC, yβ2u
˘

*

“ vtpyq.

Hence, vtpxq is a non-decreasing function in x P p0, Cs.

Proposition 4.2. If µ1 ě µ2, then p˚t pntq “ p1 for all nt P p0, Cs.

Proof. According to Lemma 4.1, we have vt`1pmintC, ntβ1uq ě vt`1pmintC, ntβ2uq since

β1 ą β2. Moreover, since ntµ1 ě ntµ2, we must have vtpntq “ ntµ1 ` vt`1

`

mintC, ntβ1u
˘

,

which implies that p˚t pntq “ p1 for all nt P p0, Cs.

The underlying intuition for Proposition 4.2 is straightforward. First, choosing the lower

price p1 will be beneficial in the future periods because there are more customer arrivals due

to the higher rank. If the lower price also yields a higher revenue in the current period (i.e.,

µ1 ě µ2), then there is no incentive to choose a higher price. Hence, imposing the following

assumption on the expected revenue allows us to avoid trivial pricing decisions.

Assumption 4.3. µ2 ą µ1.

Next, we consider the range of parameters β1 and β2.

Proposition 4.4. (a) When β1 ą β2 ě 1, there exists t0 ą 0 such that the optimal pricing

policy p˚t “ p1 for all t ă t0 and p˚t “ p2 for all t ě t0. Consequently, the optimal

long-run average revenue zpnq “ lim infTÑ8
1
T
vt,T pnq “ Cµ2 for all n P p0, Cs.
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(b) When β2 ă β1 ă 1, the long-run average revenue

zpn1q “ lim inf
TÑ8

1

T
v1,T pn1q “ 0

for all n1 P p0, Cs.

(c) When β1 “ 1 ą β2, the optimal pricing policy is to always charge low price, i.e., p˚t “ p1

for all t ą 0. The long-run average revenue

zpn1q “ lim inf
TÑ8

1

T
vt,T pn1q “ n1µ1

for all n1 P p0, Cs.

Proof. (a) Since β1 ą β2 ě 1, we can always increase the number of arrivals up to C

by charging lower price p1 for a finite number of periods. Suppose nt0 “ C for some

t0 ě 1, then since µ2 ą µ1 and β2 ě 1, it is optimal to charge the higher price p2 in

period t0 as Cµ2 ` vt0`1pCq ą Cµ1 ` vt0`1pCq. Thus, p˚t0 “ p2 and nt0`1 “ C. By

induction, we conclude that p˚t “ p2 for all t ě t0. Let R denote the total revenue

for the initial t0 periods. Then, the long-run average revenue can be computed as

zpnq “ lim infTÑ8
1
T
pR ` pT ´ t0qCµ2q “ Cµ2.

(b) Since β1 ă 1, the number of customer arrivals nt must decrease in each period. Moreover,

for any ε ą 0, there exists t0 ą 0 such that nt0 ď nβt0´1
1 ă ε. Let R denote the total

revenue for the initial t0 periods. Then, the long-run average revenue is upper bounded

by zpnq ď lim infTÑ8
1
T
pR ` pT ´ t0qεµ2q “ εµ2. Letting ε Ñ 0, we have that zpnq “ 0

for all n P p0, Cs.

(c) First, the high price p2 may only be optimal for a finite number of periods. Otherwise,

following the same argument as in Proposition 4.4, the long-run average revenue would

be 0. Now suppose t0 is the last period p2 is charged. Then, since β “ 1, the number

of arrivals in period t ě t0 must be nβm2 , where m is the number of periods using p2.

Denoting the total revenue for the first t0 periods as R, the long-run average revenue

must be zpnq “ lim infTÑ8
1
T
tR ` pT ´ t0qnβ

m
2 µ2u “ nβm2 µ2. Since β2 ă 1, zpnq ď nµ2

and the equality holds when m “ 0, i.e., no high price is charged in the optimal policy.

Proposition 4.4 eliminates three extreme cases for parameters β1 and β2.

First, when β1 ą β2 ě 1, the number of arrivals increases until it reaches capacity C.

From then on, charging a higher price will not only result in a higher immediate revenue
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Cµ2, but also maintains the number of arrivals for the next period. In this case, the long-run

average revenue reaches its maximum value.

When β2 ă β1 ă 1, the number of arrivals decreases exponentially over time. Hence, as

the time horizon grows, the revenue obtained in each period eventually decays to 0 regardless

of the pricing policy. In this case, the long-run average revenue attains its minimum value.

For β1 “ 1, charging a higher price decreases the number of arrivals which cannot be

recovered in the future by charging a lower price, permanently reducing the revenue in each

of the following periods. Therefore, in order to maximize the long-run average revenue, it is

optimal to choose lower price p1 in all periods.

Notice that the above proposition rules out the extreme cases, in which the long-run

optimal policy is relatively easy to derive. Moreover, in practical applications, the ranking

of a product usually increases as a lower price is charged, which results in a higher volume

of customers in the next period. Similarly, a higher price decreases the sales rank of the

product and yields a lower volume of customers in the subsequent period. Therefore, it is

realistic (and also technically-appealing) to impose the Assumption 4.5 in our single-product

model.

Assumption 4.5. β1 ą 1 ą β2.

For ease of analysis, we assume that the initial number of customer arrivals is C. This

assumption will not change the structure of the optimal policy nor the optimal long-run

revenue.2

Assumption 4.6. n1 “ C

Using Assumptions 4.3–4.6, we can further simplify the dynamic programming formula-

tion (4.3) as

vt,T pntq “ max

"

ntµ1 ` vt`1,T

`

mintC, ntβ1u
˘

, ntµ2 ` vt`1,T pntβ2q

*

, (4.4)

since we always have ntβ2 ă nt ď C.

4.3.3 Structural Results for Two Special Cases

In this section, we consider two special cases that allow us to observe the dynamics of cyclic

policy in its easiest (clearest) form. The assumptions on β1 and β2 allow us to significantly

2This is because the retailer can always charge lower price for a finite number of initial periods to increase
the number of customers to C. The revenue for the initial periods will not affect the average long-run
revenue.
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reduce the number of states in the dynamic programming and also to precisely describe the

policy, including features like the cycle length. The same policy will hold in general setting,

as we will see in te following section.

- In the first case, we assume that there exists an integer L P N` such that β2 “ β´L1 .

This means the negative impact (on the ranking) of charging a higher price overwhelms the

positive impact of charging a lower price.

- In the second case, we assume that there exists an integer L P N` such that β1 “ β´L2 .

In this case, charging a lower price has higher impact on ranking than charging a higher

price.

In both cases, we characterize the structure of the optimal pricing policy.

Case 1: β2 “ β´L1

As the number of initial arrivals is n “ C, the assumption on β1 and β2 implies that the

states can be represented as tC{βm1 : m “ 0, 1, . . . u. Thus, we can simplify our dynamic

program (4.4) as follows

vtpmtq “ max

"

vt`1ppmt ´ 1q`q,
ξC

βmt
1

` vt`1pmt ` Lq

*

`
µ1C

βmt
1

, (4.5)

where ξ “ µ2 ´ µ1 ą 0. This allows us to characterize the optimal pricing policy.

Lemma 4.7. Suppose β2 “ β´L1 for some L P N`. Let

vT`1pmq “

$

&

%

´µ1Cpm´
řm
i“1 β

´i
1 q if m “ 0, 1, . . . , L

vT`1pm´ L´ 1q ´ ξC if m ą L

be the salvage value at the end of the selling horizon.

If µ2

µ1
ě L` 1´

řL
i“1 β

´i
1 , then the optimal policy tpt : t “ 1, 2, . . . T u is

ptpmq “

$

&

%

p2 if m “ 0

p1 if m “ 1, 2, . . .

otherwise, the optimal policy is ptpmq “ p1 for all m “ 0, 1, . . .

Proof. Suppose µ2

µ1
ě L` 1´

řL
i“1 β

´i
1 . Then, using formulation (4.5), ptpmq “ p2 for m “ 0

is equivalent to

vt`1p0q ď ξC ` vt`1pLq, (4.6)
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and ptpmq “ p1 for m ě 1 is equivalent to

vt`1pm´ 1q ą
ξC

βm1
` vt`1pm` Lq, @m “ 1, 2, . . . (4.7)

We use induction to show inequalities (4.6) and (4.7) hold for each period t “ T, T ´1, . . . , 1.

• Base case. When t “ T , by definition, vT`1p0q ´ vT`1pLq “ µ1CpL´
řL
i“1 β

´i
1 q. Since

µ2

µ1
ě L`1´

řL
i“1 β

´i
1 , µ1CpL´

řL
i“1 β

´i
1 q ď ξC. Moreover, by the definition of vT`1p¨q,

for all m ě 1, we have vT`1pm´1q´vT`1pm`Lq “ ξC ą ξC
βm

1
. Hence, both inequalities

(4.6) and (4.7) hold for t “ T .

• Induction step. Suppose the inequalities (4.6) and (4.7) hold for all s ě t, which implies

vsp0q “ ξC ` µ1C ` vs`1pLq and vspmq “ vs`1pm´ 1q ` µ1C
βm

1
for m ě 1 and s ě t. We

want to show the same inequalities hold for s “ t´ 1.

1. vtp0q ´ vtpLq “ ξC ` µ1C ` vt`1pLq ´ vtpLq. When t ď T ´ L, we have

vtpLq ´ vt`1pLq “ vt`1pL´ 1q ´ vt`2pL´ 1q

“ ¨ ¨ ¨

“ vt`Lp0q ´ vt`L`1p0q

“ pµ1 ` ξqC ` vt`L`1pLq ´ vt`L`1p0q

ě µ1C,

where the last inequality follows from the induction hypothesis, i.e., vt`L`1p0q ´

vt`L`1pLq ď ξC. For t ą T ´ L, we have

vtpLq ´ vt`1pLq “ vt`1pL´ 1q ´ vt`2pL´ 1q

“ vT pL´ pT ´ tqq ´ vT`1pL´ pT ´ tqq

“
µ1C

βL´T`t1

` vT`1pL´ pT ´ tq ´ 1q ´ vT`1pL´ pT ´ tqq

“ µ1C.

Hence, we conclude that vtp0q ´ vtpLq “ ξC ` µ1C ´ pvtpLq ´ vt`1pLqq ď ξC.
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2. For m ě 1, we have

vtpm´ 1q “ max

"

vt`1ppm´ 2q`q,
ξC

βm´1
1

` vt`1pm` L´ 1q

*

`
µ1C

βm´1
1

ě
ξC

βm´1
1

` vt`1pm` L´ 1q `
µ1C

βm´1
1

and vtpm` Lq “
µ1C

βm`L
1

` vt`1pm` L´ 1q by induction hypothesis. Hence,

vtpm´ 1q ´ vtpm` Lq ě
ξC

βm´1
1

` vt`1pm` L´ 1q ´ vs`1pm` L´ 1q ą
ξC

βm1

holds for all m ě 1.

Therefore, we showed that inequalities (4.6) and (4.7) hold in each period t “ T, T ´1, . . . , 1.

As a result, the pricing policy

ptpmq “

$

&

%

p2 if m “ 0

p1 if m “ 1, 2, . . .

is optimal.

Now suppose µ2

µ1
ă L`1´

řL
i“1 β

´i
1 . It suffices to show vt`1ppm´1q`q ě ξC

βm
1
`vt`1pm`Lq

for all t “ 1, 2, . . . , T and m “ 0, 1, . . . Similarly, we prove by induction on t.

• Base case: When t “ T , by definition, vT`1p0q ´ vT`1pLq “ µ1CpL´
řL
i“1 β

´i
1 q ą ξC.

For m ě 1, vT`1pm´ 1q ´ vT`1pm` Lq “ ξC.

• Induction step: Suppose the statement holds for s ě t. Then, for t´ 1,

1. When m ě 1, we have

vtpm´ 1q ´ vtpm` Lq “ vt`1ppm´ 1´ 1q`q `
µ1C

βm´1
1

´ vt`1pm´ 1` Lq ´
µ1C

βm`L1

ą vt`1ppm´ 1´ 1q`q ´ vt`1pm´ 1` Lq

ě
ξC

βm´1
1

ą
ξC

βm1
,

where the middle inequality holds by induction hypothesis.

2. When m “ 0, for t ď T ´L, vtpLq “
µ1C
βL

1
`vt`1pL´1q “ ¨ ¨ ¨ “

řL
i“1

µ1C
βi

1
`vt`Lp0q.

Note also that vtp0q “ µ1C`vt`1p0q “ ¨ ¨ ¨ “ Lµ1C`vt`Lp0q. Thus, vtp0q´vtpLq “

µ1CpL´
řL
i“1 β

´i
1 q ą ξC.
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For t ą T ´ L,

vtpLq “
µ1C

βL1
` vt`1pL´ 1q

“ ¨ ¨ ¨

“

L
ÿ

i“t`L´T

µ1C

βi1
` vT`1pt` L´ T ´ 1q

“

L
ÿ

i“1

µ1C

βi1
´ µ1Cpt` L´ T ´ 1q

Thus, vtp0q ´ vtpLq “ pT ` 1´ tqµ1C ´ vtpLq “ µ1CpL´
řL
i“1 β

´i
1 q ą ξC.

Therefore, we showed that inequality vt`1ppm ´ 1q`q ě ξC
βm

1
` vt`1pm ` Lq holds for all

t “ 1, 2, . . . , T and m “ 0, 1, . . . Consequently, the pricing policy ptpmq “ p1 is optimal for

all m “ 0, 1, . . .

Using this result, we can characterize the optimal pricing policies in the infinite-horizon

setting and describe the length of the optimal pricing cycle.

Theorem 4.8. Suppose β2 “ β´L1 .

‚ If µ2

µ1
ě L ` 1 ´

řL
k“1 β

´k
1 , then the optimal policy for the infinite-horizon problem is a

cyclic policy pp2, p1, . . . , p1q with cycle length L` 1. Moreover, the long-run average revenue

is
C
`

µ2`µ1
řL

i“1 β
´i
1

˘

L`1
.

‚ Otherwise, the optimal policy is to always charge p1. The long-run average revenue is then

Cµ1.

For infinite-horizon problem, the salvage value does not matter and, thus, we may use

the specific salvage value specified in Lemma 4.7.

When µ2

µ1
ě L`1´

řL
k“1 β

´k
1 , applying Lemma 4.7, we conclude that the optimal policy is

a cycle of L` 1 prices: pp2, p1, . . . p1q (it begins with high price since n1 “ C). The long-run

revenue is computed by the average revenue of a cycle, namely, zpn1q “
C
`

µ2`µ1
řL

i“1 β
´i
1

˘

L`1
.

When µ2

µ1
ă L ` 1 ´

řL
k“1 β

´k
1 , applying Lemma 4.7, we conclude that it is optimal to

always use low price p1, which has an average revenue of Cµ1 per period.

Theorem 4.8 shows that the optimal pricing policy is cyclic with the cycle length L` 1.

The benefit of a cyclic pricing policy is based on the following dynamics. When the number

of arrivals does not reach its capacity, a lower price is charged to increase the number of

arrivals (hence the potential demand) in the next period. When the number of customers,

however, reaches capacity C, choosing a higher price benefits the retailer since he/she will
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receive a large revenue due to both the large volume of demand and high price. This cyclic

policy is optimal only if µ2{µ1 is sufficiently large. Specifically, the average revenue of a

cycle must compensate for the average long-run revenue of charging the lower price p1 in the

remaining periods of the cycle, i.e.,
C
`

µ2`µ1
řL

i“1 β
´i
1

˘

L`1
ě Cµ1. Otherwise, it would be optimal

to charge low price p1 in each period.

Case 2: β1 “ β´L2

To derive the structure of the optimal pricing policy in this case, we employ a different

methodology that does not require the dynamic programming formulation. We start with

Lemma 4.9, where we show that, after low price, there are at most L consecutive high prices

charged.

Lemma 4.9. Let L ě 1 be the integer such that 1

βL´1
2

ă β1 ď
1
βL

2
. Then, there exists an

optimal pricing policy satisfying the following property: after low price p1 is charged in a

given period, there are at most L consecutive periods in which high price p2 is charged.

Proof. First, if there exists t0 ą 0 such that p˚t “ p2 for all t ě t0, then since β2 ă 1, we

must have nt Ñ 0 as t Ñ 8 and hence, the long-run average revenue is 0 in this case. As

this cannot be optimal, p1 must occur infinitely many times in the optimal pricing policy.

We show the lemma by contradiction. Suppose in an optimal pricing policy tptu
8
t“1, there

exists a low price p1 followed by at least L ` 1 consecutive high price p2, i.e., there exists

t ě 1 and some integer k ě L such that pt´1 “ p1, pt “ pt`1 “ ¨ ¨ ¨ “ pt`k “ p2 and

pt`k`1 “ p1. We consider another pricing policy tp̃tu
8
t“1 where we switch prices in periods

t ` k and t ` k ` 1. That is, p̃s “ ps for all s ­“ t ` k, t ` k ` 1 and p̃t`k “ p1, p̃t`k`1 “ p2.

Then, we have

1. ns “ ñs for all s “ 1, . . . , t` k.

2. nt`k`2 “ ntβ
k`1
2 β1 and ñt`k`2 “ mintntβ

k
2β1, Cu ¨ β2 “ ntβ

k`1
2 β1 since βk2β1 ď βL2 β1 ď

1. Thus, ns “ ñs holds for all s ě t` k ` 2.

Therefore, it suffices to compare the total revenue in period t` k and t` k` 1. In fact, the

revenue for policy tptu
8
t“1 in these two periods is nt`kµ2`nt`k`1µ1 “ ntβ

k
2µ2`ntβ

k`1
2 µ1. On

the other hand, the revenue for policy tp̃tu
8
t“1 in these two periods is ñt`kµ1 ` ñt`k`1µ2 “

ntβ
k
2µ1 ` ntβ

k
2β1µ2 ą ntβ

k`1
2 µ1 ` ntβ

k
2µ2 since β1 ą 1 ą β2. Therefore, we achieve a policy

with higher total revenue, which contradicts with the optimality of tptu
8
t“1.

Lemma 4.9 has an intuitive explanation: the optimal pricing policy must keep the number

of arrivals above a certain level, C
β1

, such that it can be restored to the maximum capacity C
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immediately by charging a low price. This result implies that, if a pricing cycle starts with

a low price p1 and follows by a number of high prices p2, the cycle length must be less than

or equal L` 1. This will allow us to compare only the average revenues for each cycle with

different lengths not exceeding L` 1, which is demonstrated in the next lemma.

Lemma 4.10. Let the sequence txiu
8
i“1 satisfy x1 ą 0, x2 ą 0, xi “ xi´1β2 for i ě 3, and let

sj “
řj
i“1 xi.

(a) There exists k P N` such that s1
1
ď s2

2
ď ¨ ¨ ¨ ď

sk
k
ě

sk`1

k`1
ě ¨ ¨ ¨ , i.e., the sequence t

sj
j
u

increases when j “ 1, 2, . . . , k and decreases when j “ k, k ` 1, . . . .

(b) Define non-negative and monotonic decreasing sequence tξiu as ξ0 “ `8, ξ1 “ 1 and

ξl “ maxt0,
pl`1qβl´1

2 ´lβl
2´1

1´β2
u for l ě 2. Then k “ arg maxjt

sj
j
u whenever x1

x2
P rξk, ξk´1q.

Proof. (a) If si´1

i´1
ě

si
i

for some i ą 1, we must have si ě ipsi ´ si´1q “ ixi. Hence,

si`1 ´ si “ xi`1 “ xiβ2 ď
si
i
, i.e., si

i
ě

si`1

i`1
. Thus, for the sequence t

sj
j
u, once it decreases

from k to k ` 1, it will always decrease afterwards.

(b) First, according to part (a), arg maxjt
sj
j
u “ 1 if and only if s1 ě

s2
2

, which is equivalent

to x1

x2
ě 1.

Now assume arg maxjt
sj
j
u ě 2. According to part (a), k “ arg maxjt

sj
j
u if and only if

sk
k
ě

sk`1

k`1
and sk

k
ą

sk´1

k´1
. Since sk`1 “ sk ` xk`1, the two above conditions are equivalent to

sk ě kxk`1 and pk ´ 1qxk ą sk´1.

For k ě 2, sk “ x1 ` x2
1´βk´1

2

1´β2
. Thus, when x1

x2
ě ξk ě

pk`1qβk´1
2 ´kβk

2´1

1´β2
, we have sk ě

kx2β
k´1
2 “ kxk`1. Similarly, when x1

x2
ă ξk´1 (since x1, x2 ą 0, it implies ξk´1 ą 0), we have

sk´1 ă pk ´ 1qxk. Therefore, k “ arg maxjt
sj
j
u whenever x1

x2
P rξk, ξk´1q.

Proof. (a) The proof is by contradiction. Suppose in an optimal pricing policy tptu
8
t“1, the

period s ` 1 is the first period satisfying ns`1 ď Cβ2{β1. Then, we must have ps “ p2. Let

s`k be the first period after period s in which p1 is charged (otherwise p2 is charged forever

and the long-run average cost equals to zero). We consider the modified policy tp̃tu
8
t“1 with

p̃t “ pt for all t ­“ s, s` k. Let p̃s “ p1, p̃s`k “ p2. Then, we have

• nt “ ñt for all t “ 1, . . . , s;

• ñs`1 “ ñsβ1 “ nsβ1 “ β1ns`1{β2 ď C. Moreover, since ps`1 “ ¨ ¨ ¨ , ps`k´1 “ p2, we

conclude that
ñs`j

ns`j
“

β1

β2
for all j “ 1, . . . , k.

• nt “ ñt for all t ą s` k.
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Therefore, by changing the policy in periods s and s` k, the total revenue can be increased

by at least

nspµ1 ´ µ2q `

k
ÿ

j“1

nsβ
j
2µ2p

β1

β2

´ 1q ` nsβ
k
2 pµ2 ´ µ1q

“ ns

„

pµ1 ´ µ2q ` µ2
1´ βk2
1´ β2

pβ1 ´ β2q ` β
k
2 pµ2 ´ µ1q



ą ns

„

pµ1 ´ µ2q ` µ2
1´ βk2
1´ β2

p1´ β2q ` β
k
2 pµ2 ´ µ1q



“ ns

„

µ1 ´ β
k
2µ1



ą 0,

which contradicts the fact that tptu
8
t“1 is an optimal pricing policy.

(b) If there exists two periods, t and t ` j, with p2 charged in both periods and j ă L,

then nt`1 ď Cβ2. Thus, nt`j`1 ď nt`1β
j´1
1 β2 ď Cβ2

2β
L´1
1 ă Cβ2β

´1. This contradicts part

(a).

The following theorem characterizes the optimal policy.

Theorem 4.11. Suppose β1 “ β´L2 for some L P N`. Define ηk “
1
ξk
` p1 ´ β2q for

k “ 1, 2, . . . , L and ηL`1 “ `8, where ξk is given in Lemma 4.10. If µ2

µ1
P r1, η1q, then

the optimal policy is to always charge low price p1, with average per-period revenue Cµ1.

If µ2

µ1
P rηk´1, ηkq for some k P t2, . . . , L ` 1u, then the optimal policy is a cyclic policy

pp2, . . . , p2, p1q with cycle of length k. Moreover, the long-run average revenue is C sk
k

, where

sk is defined in Lemma 4.10 by the sequence txiu
8
i“1 with the initial two terms x1 “ µ1,

x2 “ pµ2 ´ µ1q ` µ1β2.

Proof. Consider a cycle of length k as a sequence of k ´ 1 high prices p2 followed by a low

price p1. From Lemma 4.9, we know that the length of each cycle in the optimal pricing

policy is at most L ` 1. Moreover, since β1 “ β´L2 , the initial number of arrivals for each

cycle must be C. Thus, we can compute the average revenue for the cycle of length k by

Rpkq “ C
k
pµ2 ` µ2β2 ` ¨ ¨ ¨ ` µ2β

k´2
2 ` µ1β

k´1
2 q “ C sk

k
and Rp1q “ Cµ1 “ Cs1.

For the infinite-horizon problem, assuming fk P r0, 1s is the frequency of the cycle of

length k occurred in the optimal policy. Then,
řL`1
k“1 fk “ 1 and the average revenue is

zpnq “
řL`1
k“1 fkRpkq ď maxk“1,2,...,L`1Rpkq. This means we only need to compare the

average revenue of all cycles with length 1, 2, . . . , L ` 1 and choose the single cycle length

with the highest average revenue.

Thus, using Lemma 4.10, we have
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• For k “ 1, 2, . . . L` 1, when x1

x2
P rξk, ξk´1q, arg maxl“1,2,...,L`1Rplq “ k .

• When x1

x2
P r0, ξL`1q, arg maxl“1,2,...,L`1Rplq “ L` 1.

Since x2

x1
“

µ2

µ1
´p1´β2q, using the definition of tηku

L`1
k“1 , we combine the above two statements:

when µ2

µ1
P pηk´1, ηks, a cyclic policy pp2, . . . , p2, p1q with cycle length k is optimal to the

infinite-horizon problem. Consequently, the optimal average revenue per period is Rpkq “

C sk
k

.

Theorem 4.11 indicates that the use of cyclic policy will maximize the average revenue

for the retailer. Choosing the optimal cycle length, the retailer can charge once a lower price

when the number of customer arrivals is low to increase the demand volume, and then charge

a high price for several subsequent periods to increase revenue when the demands are high.

We further observe that the cycle length depends on the ratio µ2

µ1
, i.e., the larger the ratio,

the longer the cycle.

In summary, when charging a lower price has more impact on ranking than charging a

higher price, it is beneficial to choose the higher price for multiple periods before switching

to a lower price, since charging a lower price for a single period will be enough to bring up

the rank of the product.

4.3.4 Main Results for the General Case

In this section, we present the main results for the single-product model with general param-

eters β1 and β2 that satisfy β2 ă 1 ă β1. We divide our results into two cases: (i) β1β2 ă 1

and (ii) β1β2 ě 1. In the first case, 1 ă β1 ă β´1
2 implies that the high price will decrease the

ranking more than the increase in rank by charging a low price. Conversely, in the second

case, a low price has more impact on ranking than a high price since β1 ě β´1
2 ą 1.

4.3.4.1 Case 1: 1 ă β1 ă β´1
2

Lemma 4.12. Let L ě 1 be the integer such that βL1 ă β´1
2 ď βL`1

1 . (a) The number of

arrivals in an optimal policy will never drop to or below Cβ2{β1. (b) For each high price p2

charged in an optimal policy, the following (at least) L consecutive periods must have low

price p1 charged.

Using Lemma 4.12, we can prove the following theorem, which characterizes the structure

of the optimal policy for the infinite-horizon model.
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Theorem 4.13. Suppose 1 ă β1 ă β´1
2 and let L ě 1 be the largest integer satisfying

βL1 ă β´1
2 . Then, the optimal policy for the infinite-horizon problem (4.1) must be a cyclic

policy. Specifically, an optimal policy either chooses low price p1 in each period, or it has a

cycle which has the form pp2, p1, . . . , p1q with length L` 1 or L` 2.

Proof. Let tptu
8
t“1 be an optimal pricing policy. We have the following two cases:

• High price p2 is charged for a finite number of periods. In this case, the long-run average

revenue is equivalent to that of the policy of charging low price p1 at all periods, which

equals Cµ1.

• High price p2 is charged for an infinite number of periods. In this case, we have an

infinite number of cycles that start with p2 followed by a number of low prices p1.

According to Lemma 4.12(b), a cycle must have at least L` 1 periods with an initial

high price followed by at least L low prices.

Moreover, since high price p2 is charged for infinite number of periods in the optimal

policy, it must be optimal to charge p2 whenever the number of arrivals reaches C.

Therefore, the optimal cycle cannot contain more than L` 1 low prices.

4.3.4.2 Case 2: β1 ě β´1
2 ą 1

Based on Lemma 4.9, we have:

Theorem 4.14. Suppose β1 ě β´1
2 ą 1 and let L ě 1 be the smallest integer such that

β1 ď β´L2 . Then, the optimal policy for the infinite-horizon problem (4.1) must be a cyclic

policy with cycles of fixed length in the form of pp2, . . . , p2, p1q, where the length is at most

L, or with cycles pp2, . . . , p2, p1q of possibly varying lengths, but always L or L` 1.

Proof. Let tptu
8
t“1 be an optimal pricing policy. A cycle in the pricing policy starts with a

number of high price p2 and ends with a low price p1. From Lemma 4.9, we know that the

length of any cycle is at most L` 1.

• If the first cycle has a length less than L` 1, since β1 ą β
´pL´1q
2 , we conclude that the

number of arrivals after the pricing cycle must reach C again. Hence, by the optimality

of this cycle, we conclude that optimal policy must repeat this cycle with the same

length forever.
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• If the first cycle has length L` 1, then according to Lemma 4.10, we have s1
1
ď ¨ ¨ ¨ ď

sL
L
ď

sL`1

L`1
. Hence, we conclude that the cycle length must be either L or L` 1.

The profitability of cyclic policy is due to charging high price in periods with high demand.

This is consistent with what we have already shown in Theorems 4.13 and 4.14. Below we

describe these properties in a finite-horizon setting, as a function of any starting number of

arrivals. We show that there exists a threshold in terms of the number of arrivals in each

period that defined when higher price will be charged and when lower price will be charged.

Theorem 4.15. Consider a finite-horizon problem. In each period t, there exists a threshold

value γt such that

p˚t “

$

&

%

p1 if nt ď γt

p2 if nt ą γt

Proof. We show by induction that if nt ă
C
β1

, p˚t “ p1. Suppose this property holds for t` 1,

then for t, we compare the difference between low price and high price, which is defined by

fpntq “ pµ1 ´ µ2qnt ` pvt`1pβ1ntq ´ vt`1pβ2ntqq

Since nt ă
C
β1

, β2nt ă
C
β1

, we apply the induction hypothesis and obtain

fpntq “ pµ1 ´ µ2qnt ` pvt`1pβ1ntq ´ vt`1pβ2ntqq

“ pµ1 ´ µ2qnt ` pvt`1pβ1ntq ´ µ1β2nt ´ vt`2pβ1β2ntqq

ě pµ1 ´ µ2qnt ` pµ2β1 ´ µ1β2qnt ě 0.

Now we show that when nt ě
C
β1

, the difference fpntq is strictly decreasing in nt. To see

this, we can rewrite fpntq “ pµ1´µ2qnt`pvt`1pCq´vt`1pmintβ2nt, Cuq since nt ě
C
β1

. Since

µ1 ă µ2 and vt`1pmintβ2nt, Cuq is non-decreasing in nt (see Lemma 4.1), we conclude that

fpntq is decreasing in nt.

As fpntq is positive for nt ă
C
β1

and decreasing for nt ě
C
β1

, hence, it has at most one zero

point γ P p C
β1
q and the theorem is proved.3

Theorem 4.15 shows that the optimal pricing policy, given the number of arrivals (or

the current rank of the product), must be a threshold policy. This helps to reduce the

computational complexity of the problem by using brute-force dynamic program.

3Any value of vT`1, which implies that f is non-decreasing will satisfy the initial step of induction.
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4.3.5 Numerical Tests

In this section, we present numerical experiments for the single-product model. All the

computational tests are conducted using Python 3.6.0 on a 3.40GHz Intel(R) Xeon(R) CPU.

Throughout our numerical tests, the total number of periods T “ 1000 and the maximum

number of customer arrivals is C “ 100.

We first consider a price set P “ tp1, p2u with a linear relationship between the number

of customer arrivals and the past demands, nt`1 “ mintC, αdtu. As shown in Section 4.3.4,

the structure of optimal policies actually depends on the model parameters, namely pβ1, β2q

and pµ1, µ2q. In addition to specifying available prices and the purchasing probabilities, we

compute other model parameters and report them in Tables 4.1 and 4.2. Note that in the

optimal cycle column, h represents a high price and l represents a low price.

First, we present the numerical results for the case when 1 ă β1 ă β´1
2 . The linear factor

α is set to be 1.2 in the test, i.e., nt`1 “ mint100, 1.2dtu.

(p1, p2) (F̄ pp1q, F̄ pp2q) (β1, β2) L “ r´
log β2

log β1
s (µ1, µ2) optimal cycle

p5, 10q p0.95, 0.5q p1.14, 0.6q 4 p4.75, 5q plq
p5, 15q p0.95, 0.5q p1.14, 0.6q 4 p4.75, 7.5q plq
p5, 20q p0.95, 0.5q p1.14, 0.6q 4 p4.75, 10q ph, l, l, l, lq

p5, 10q p0.95, 0.6q p1.14, 0.72q 3 p4.75, 6q plq
p5, 15q p0.95, 0.6q p1.14, 0.72q 3 p4.75, 9q ph, l, l, lq

p5, 10q p0.9, 0.75q p1.08, 0.9q 2 p4.5, 7.5q ph, lq or ph, l, lq
p5, 15q p0.9, 0.6q p1.08, 0.72q 5 p4.5, 9q ph, l, l, l, lq or ph, l, l, l, l, lq

Table 4.1: Numerical results for 1 ă β1 ă β´1
2

From Table 4.1, we observe that either a low price is charged in each period or the optimal

pricing policy contains cycles that begins with a high price followed by L´ 1 or L low prices

charged in the subsequent periods. The length of the optimal cycle, if exists, is either L

or L ` 1. Moreover, as the ratio µ2

µ1
increases, we observe that cyclic policy outperforms

the policy of always charging the lower price. The numerical tests shown in Table 4.1 are

consistent with our theoretical results presented in Section 4.3.4.

Next, we present our numerical results for the case where β1 ě β´1
2 ą 1. We use α “ 1.5.

The results summarized in Table 4.2 show that the optimal pricing policy, for the case

β1 ě β´1
2 ą 1 must be cyclic. The cycle length can be any integer between 1 and L ` 1,

always starting with a few high prices and ending with a low price. Moreover, we also observe

that the cycle length increases when the ratio µ2

µ1
increases. This observation is consistent

with our theoretical results presented in Section 4.3.4.
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(p1, p2) (F̄ pp1q, F̄ pp2q) (β1, β2) L “ t´
log β1

log β2
u (µ1, µ2) optimal cycle

p5, 10q p0.8, 0.6q p1.2, 0.9q 2 p4, 6q ph, h, lq or ph, lq
p5, 50q p0.8, 0.6q p1.2, 0.9q 2 p4, 30q ph, h, lq or ph, lq

p5, 10q p1, 0.6q p1.5, 0.9q 4 p5, 6q ph, lq
p5, 12.5q p1, 0.6q p1.5, 0.9q 4 p5, 7.5q ph, h, lq
p5, 20q p1, 0.6q p1.5, 0.9q 4 p5, 12q ph, h, h, lq
p5, 50q p1, 0.6q p1.5, 0.9q 4 p5, 30q ph, h, h, h, lq or ph, h, h, lq

Table 4.2: Numerical results for β1 ě β´1
2 ą 1

In addition to the above tests under the assumption given in Section 4.3.2, we also

consider a generalized model where price set contains more than two available prices. For

customer valuation distribution, we tested both uniform distribution and exponential distri-

bution. We use function nt`1 “ mint100, αdtu to describe the relationship between customers

arrivals and previous demand. We also consider multiple choices for α. We report our test

results in Table 4.3.

Price set P F̄ ppq α Optimal pricing policy

t5, 7.5, 10, 12.5, 15u e´0.05p 1.5 p10, 7.5, 7.5, 7.5q
t5, 7.5, 10, 12.5, 15u e´0.05p 1.52 p10, 7.5, 7.5q
t5, 7.5, 10, 12.5, 15u e´0.05p 1.55 p10, 7.5q
t5, 7.5, 10, 12.5, 15u e´0.05p 1.58 p10, 10, 7.5q
t5, 7.5, 10, 12.5, 15u e´0.05p 1.6 p10, 10, 10, 7.5q
t5, 7.5, 10, 12.5, 15u e´0.05p 1.8 p12.5, 12.5, 10q
t5, 7.5, 10, 12.5, 15u e´0.05p 2 p15, 12.5q

t4, 6, . . . , 20u p20´ pq{16 1.25 p8, 6q
t4, 6, . . . , 20u p20´ pq{16 1.3 p8, 8, 8, 6q
t4, 6, . . . , 20u p20´ pq{16 1.35 p8q
t4, 6, . . . , 20u p20´ pq{16 1.55 p10, 8q
t4, 6, . . . , 20u p20´ pq{16 1.6 p10q

Table 4.3: Numerical results for generalized model

From Table 4.3, we observe that the optimal pricing policy remain a cyclic policy when

multiple prices are considered. Also, as the parameter α increases, higher prices are used

more frequently. An intuitive explanation is that larger α reduces the required number of

periods (with low price) to recover to the maximum number of arrivals. This encourages the

retailer to charge higher price for bigger number of consecutive periods, resulting in higher

immediate revenue.

To conclude, we have conducted numerical analysis for a single-product under determin-
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istic demand. Our numerical tests consider discrete price set with different demand functions

and different parameters indicating customers’ sensitivity to the sales rank. Consistent with

our technical results presented in Section 4.3.4, our results show that the optimal pricing

policy is cyclical and the cycle length not only depends on the expected revenue for each

price candidates but also depends on the customers’ sensitivity to the sales rank.

4.4 Single-Product Pricing with Stochastic Arrivals

4.4.1 Model Description

In this section, we generalize the multi-period rank-based dynamic pricing model studied in

Section 4.3 by considering a continuous price set P and stochastic demand. At the beginning

of each period t, the retailer first observes the sales rank rt of the product (larger the rank, the

lower is the rank of the product). Then, for given rank rt, the retailer chooses a price pt from

a continuous price set P “ rp, p̄s, . The number of customer arriving is a random variable

Nt with mean ErNts “ nt. The mean value nt is a non-increasing function of the sales rank

index in the current period (i.e., nt “ gprtq). Let F p¨q denote the cumulative distribution of

customer’s valuation of the product and λppq “ 1 ´ F ppq denote the proportion of arriving

customers who will make the purchase. We will refer to λppq as the purchasing rate. Thus,

the total demand in period t is computed by Dt “
řNt

i“1 1tei ą ptu, where ei denotes the

valuation for the i-th customer. After demand dt is realized, the sales rank in the next period

(i.e., rt`1 “ hpdtq) is revealed. The retailer’s goal is to set a price pt P P in each period t,

such that the total expected revenue is maximized.

The classic demand model using customers’ reservation price assumes a stationary cus-

tomer arrival rate (see, e.g., Gallego and Van Ryzin 1994). Our demand model generalizes

this assumption since the number of customer arrivals in each period is non-stationary and

depends on the sales rank of the current period, implying that all of the pricing decisions

made in the past will affect the rate of arriving customers in all future periods. We use

Nt “ ε1 ` ε2gprtq to model the uncertainty of customer arrivals where ε1 is a zero-mean

random variable and ε2 is a non-negative random variable with mean 1. This stochastic

customer arrivals model combines multiplicative and additive uncertainty models that are

most commonly used in literature (see, e.g., Talluri and Van Ryzin 2006).

Note that, given the purchasing rate λ P r0, 1s, we can compute the corresponding price

ppλq “ F´1p1´λq. Thus, one can view the purchasing rate λ as the decision variable, where

the price is ppλq. The expected revenue per customer per period is then Rpλq :“ λppλq.
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Then, the expected revenue in period t is given by ErNtsp1 ´ F pptqqpt “ ntRpλtq. The

following assumption on the revenue function Rpλq is imposed in the majority of dynamic

pricing literature (see, e.g., Gallego and Van Ryzin 1994).

Assumption 4.16. The revenue function Rpλq satisfies limλÑ0Rpλq “ 0 and it is continu-

ous, bounded, and strictly concave with a bounded largest maximizer defined by λ˚ “ maxtλ :

Rpλq “ maxλPr0,1sRpλqu

The concavity of the revenue function comes from the economic assumption that marginal

revenue is decreasing and it is used in the operations management literature. Ziya et al.

(2004) characterized an equivalent condition on the distribution F ppq and we summarize it

in Proposition 4.17.

Proposition 4.17. (Ziya et al. (2004)) Suppose that the reservation-price cumulative distri-

bution function F ppq is twice differentiable and strictly increasing on its domain Ωp “ rp1, p2s

with F pp1q “ 0, F pp2q “ 1. Let ρppq “ fppq{p1´F ppqq denotes the hazard rate where fppq is

the density function. Then, Rpλq is strictly concave in λ if and only if 2ρppq ą ´f 1ppq{fppq

for all p P Ωp.

To formally formulate the problem, we use value function vt,T prtq to denote the maximum

expected revenue from period t to T given that, at the beginning of period t, the number of

customer arrivals is nt. Let φpdtq “ gphpdtqq be the function that maps the current demand

to the number of arrivals in the next period (nt`1). Similar to (4.2), we express

vt,T pntq “ max
λtPr0,1s

"

ntRpλtq ` Eε1,ε2rvt`1,T pφpλtpε1 ` ε2ntqqqs

*

, (4.8)

with boundary condition vT`1,T pxq “ 0.

Note that function φp¨q takes current demand as an input and outputs the number of

arriving customers in the next period. Intuitively, higher demand implies higher sales rank in

the next period, which then translates into higher number of customer arrivals. Furthermore,

intuitively, the gains (from higher demand in the current period on demand in the next

period) are decreasing. We reflect these intuitive relationships by assuming:

Assumption 4.18. φp¨q is a non-decreasing and concave function.

This assumption holds, in particular, for the special case analyzed in Section 4.3.1, when

the number of customer arrivals has capacity C and is linear in the previous-period demand.
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4.4.2 Structural Results

In this section, we derive structural results for the rank-based single-product pricing model

with stochastic demand described in the previous section. In each period, after observing

the sales rank rt and its induced mean arrivals, nt “ gprtq, the retailer decides the optimal

purchasing probability λ˚t pntq and use the inverse of the reference-price distribution function

to compute the optimal price p˚t “ ppλ˚t q “ F´1p1 ´ λ˚t q. Since the cumulative distribution

function F p¨q is non-decreasing, it is clear that ppλtq is a non-increasing function of λt. The

following lemma shows the monotonicity of the value function, which will be used in later

proofs.

Lemma 4.19. Under Assumptions 4.16 and 4.18, the value function vt,T pnq defined in (4.8)

is (a) strictly increasing in the number of arrivals n ą 0 and (b) concave in the number of

arrivals n ą 0.

Proof. We show both parts of the lemma by induction.

(a) When t “ T , vT,T pnq “ nRpλ˚q for all n ą 0, which is strictly increasing in n. Suppose

vt`1,T pnq is a strictly increasing function of n. Then, for any n1 ą n2 ą 0 and any λ P r0, 1s,

we have

vt,T pn1q “ max
λtPr0,1s

"

n1Rpλtq ` Ervt`1,T pφpλtpε1 ` ε2n1qqqs

*

ą max
λtPr0,1s

"

n2Rpλtq ` Ervt`1,T pφpλtpε1 ` ε2n2qqqs

*

“ vt,T pn2q,

which completes the proof of part (a)

(b) When t “ T , vt,T pnq “ nRpλtq is linear (hence concave) in n. Now suppose vt`1,T pnq is

concave in n.

Since φp¨q is concave by Assumption 4.18 and vt`1,T pnq is concave and strictly increasing

in n, the composite function vt`1,T pφp¨qq is also concave. Thus, for fixed λt P r0, 1s and

fixed ε1, ε2 ą 0, the function vt`1,T pφpλtpε1 ` ε2nqqq is concave in n. Taking the expectation

with respect to ε1 and ε2, the function Jt`1pλt, nq “ nRpλtq ` Eε1,ε2rvt`1,T pφpλtpε1 ` ε2nqqqs

must also be concave in n. Therefore, using formula (4.8), for any n1, n2 ą 0 and n0 “
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κn1 ` p1´ κqn2 with any κ P r0, 1s,

vt,T pn0q “ Jt`1pλ
˚
t pn0q, κn1 ` p1´ κqn2q

ď κJt`1pλ
˚
t pn0q, n1q ` p1´ κqJt`1pλ

˚
t pn0q, n2q

ď κ max
λPr0,1s

 

Jt`1pλ, n1q
(

` p1´ κq max
λPr0,1s

 

Jt`1pλ, n2q
(

“ κvt,T pn1q ` p1´ κqvt,T pn2q,

which shows the concavity of vt,T pnq.

Our first structural result claims that the optimal purchasing probabilities λ˚pntq cannot

fall below the myopic optimal purchasing probability λ˚, defined in Assumption 4.16.

Proposition 4.20. Under the Assumption 4.16 and Assumption 4.18, there exists an op-

timal policy tλ˚t pnqu
T
t“1 such that λ˚t pnq ě λ˚ for all n ą 0 and for all t “ 1, 2, . . . , T .

Consequently, the optimal prices p˚t pnq ď p˚ for all n ą 0 and for all t “ 1, 2, . . . , T .

Proof. We show the statement by contradiction. Suppose there exists n ą 0 and t P

t1, 2, . . . , T u such that λ˚t pnq ă λ˚. We will show that we can obtain at least the same

revenue with λ˚ instead of λ˚t pnq.

Since λ˚ is the maximizer of single-period revenue function Rp¨q, we have ntRpλ
˚q ě

ntRpλ
˚
t q. Moreover, since λ˚ ą λ˚t and both vt`1,T p¨q and φp¨q are non-decreasing functions,

we also have vt`1,T pφpλ
˚nqq ě vt`1,T pφpλ

˚
t nqq for all n ą 0. Therefore, by replacing the

current policy by λt “ λ˚, the total expected revenue must satisfy

ntRpλ
˚
q ` Ervt`1,T pφpλ

˚
pε1 ` ε2ntqqqs ě ntRpλ

˚
t q ` Ervt`1,T pφpλ

˚
t pε1 ` ε2ntqqqs,

The relationship for prices follows immediately from ppλq “ F´1p1´ λq.

Proposition 4.20 can be viewed as a generalization of Proposition 4.2 for the deterministic

model. It implies that the optimal pricing policy only focuses on the right-hand-side of

single-period revenue curve (as a function of purchasing rate), which is concave and strictly

decreasing. Thus, it is sufficient to restrict the purchasing probability λt to the region rλ˚, 1s,

i.e., the formulation presented in (4.8) is equivalent to

vt,T pntq “ max
λtPrλ˚,1s

"

ntRpλtq ` Eε1,ε2rvt`1,T pφpλtpε1 ` ε2ntqqqs

*

.
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Since the function ppλq is non-increasing in λ, we conclude that optimal policy must

always choose prices below the myopic optimal price p˚ “ F´1pλ˚q. Intuitively speaking,

this property holds because any price higher than p˚ not only reduces the expected immediate

revenue, but also decreases the sales rank in the subsequent periods. Therefore, it would

never be optimal to charge a price higher than the myopic optimal price.

While Proposition 4.20 provides a general lower bound for the optimal purchasing prob-

abilities λ˚t pnq, the next theorem characterizes the structure of optimal policies by showing

the monotonicity of the optimal pricing policies with respect to the sales rank observed by

the retailer at the beginning of each period.

Theorem 4.21. Under Assumptions 4.16 and 4.18, the optimal policy λ˚t prq must be non-

decreasing (equivalently, the optimal price p˚t prq must be non-increasing) in the sales rank

r.

Proof. Using the definition of Jt from Lemma 4.19, we observe that Jt`1pλt, nq is also concave

in λt since Rpλtq is concave. Thus, the optimal solution λ˚t pnq must satisfy the first order

condition, i.e.,

R1pλ˚t q ` Eε1,ε2rp
ε1
n
` ε2q ¨ pvt`1,T ˝ φq

1
ppε1 ` ε2nqλ

˚
t qqs “ 0 (4.9)

Suppose there exists r1 ą r2 ą 0 such that λ˚t pr
1q “ λ1

t ă λ2
t “ λ˚t pr

2q. Then, since

gp¨q is a non-increasing function, we have n1 “ gpr1q ď gpr2q “ n2. We will use the first

order condition (4.9) for pn1, λ1
t q and pn2, λ2

t q. Because the composite function vt`1,T ˝ φp¨q

is concave (has a decreasing derivative value) and non-decreasing, the inequality

pvt`1,T ˝ φq
1
pλ1

t pε1 ` ε2n
1
qq ě pvt`1,T ˝ φq

1
pλ2

t pε1 ` ε2n
2
qq ě 0

holds for any ε1 and ε2 ą 0. Since Rpλq is a strictly concave function, R1pλq must be a

strictly decreasing function and hence, R1pλ1
t q ą R1pλ2

t q. Recall that pn1, λ1
t q and pn2, λ2

t q

satisfy (4.9). By taking expectations and noting that 1
n1 ě

1
n2 , we have a contradiction:

0 “ R1pλ1
t q ` Eε1,ε2rp

ε1
n1
` ε2q ¨ pvt`1,T ˝ φq

1
ppε1 ` ε2n

1
qλ1

t qqs

ą R1pλ2
t q ` Eε1,ε2rp

ε1
n2
` ε2q ¨ pvt`1,T ˝ φq

1
ppε1 ` ε2n

2
qλ2

t qqs “ 0.

Therefore, for any sales rank r1 ą r2, we must have λ˚t pr
1q ě λ˚t pr

2q, which proves that λ˚t prq

is a non-decreasing function in r. As ppλq is a non-decreasing function, we conclude p˚t prq is

a non-increasing function in r.
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Theorem 4.21 can be viewed as a generalization of Theorem 4.15 which considers a

deterministic demand with a two-point price set. This theorem shows that a better sales

rank always leads to a higher optimal price. This is intuitive because by raising prices when

their products are more visible to customers, retailers can maintain a high demand volume

and gain more revenue. Conversely, when the sales rank index is large and the product lacks

exposure to the market, dropping prices would be desirable to bring up the sales rank and

gain more popularity. This structural result provides a clear direction for how to adjust the

retail prices, when observing the sales rank of the products.

It is interesting to compare our structural results (Proposition 4.20 and Theorem 4.21)

with those studied by Gallego and Van Ryzin (1994) (Proposition 1 and Theorem 1 in

Gallego and Van Ryzin (1994)), in which pricing decisions are made based on the volume of

remaining inventory. First, they showed that the optimal prices are lower bounded by the

myopic optimal one because the scarcity of the inventory motivates retailer to increase their

prices, knowing that not all demand can be satisfied. As a comparison, in our rank-based

settings, each additional demand may potentially boost the sales rank in subsequent periods.

Hence, there is benefit to decrease the price below the myopic one in order to increase future

demand. Second, they showed that optimal price drops when the in-stock inventory is higher.

In contrast, with the effect of sales rank, our results show that optimal price raises when the

product has better sales rank and more market exposure.

4.4.3 Computational Studies

In this section, we present numerical results we for the stochastic single-product model. All

the computational tests are conducted using Python 3.6.0 on a 3.40GHz Intel(R) Xeon(R)

CPU.

For the demand function, we consider the following three settings:

1. Linear demand. The reservation-price is uniformly distributed on rpl, pus and F ppq “
p´pl

pu´pl
. Then, given the purchasing probability λ, the corresponding price ppλq “

F´1p1 ´ λq “ pu ´ ppu ´ plqλ. Hence, the expected revenue per customer is Rpλq “

ppu´ppu´plqλqλ with unique maximizer λ˚ “ mint1, pu

2ppu´plq
u and p˚ “ maxtpl, pu{2u.

2. Log-linear demand. When the reservation-price is exponentially distributed, F ppq “

1 ´ e´νp, with ν ą 0. The inverse price function is ppλq “ ´ lnλ
ν

and the expected

revenue per customer is Rpλq “ ´λ lnλ
ν

. For this revenue function, the myopic optimal

solution is λ˚ “ e´1 and p˚ “ 1
ν
.
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3. Logit demand. This demand model is based on multinomial-logit (MNL). For single-

product model, the purchasing probability is 1 ´ F ppq “ e´bp

τ`e´bp , where parame-

ter b denotes the price sensitivity. Under this model, the price can be computed

as ppλq “ 1
b

lnp1´λ
τλ
q and the expected revenue per customer is Rpλq “ λ

b
lnp1´λ

τλ
q.

The myopic optimal purchasing probability in this case is λ˚ P r0, 1s, which solves

p1´ λ˚q ln
`

1´λ˚

τλ˚

˘

“ 1 and the optimal price is p˚ “ 1
b

lnp1´λ˚

τλ˚
q.

To have closely comparable range of prices choices, we appropriately parametrize all three

demand functions. For linear demand, we use pl “ 2 and pu “ 10, for log-linear demand, we

use ν “ 0.5, and for logit demand, we use b “ 0.25 and τ “ 0.1.

To obtain the number of arrival customers in the next period, we use a concave function

φpdtq “ mintC, α1d
α2
t u where α2 P p0, 1s, α1 ą 0 and C is the upper bound on the number

of arrivals. We use C “ 100, α1 “ 3.5, and α2 “ 0.8.

For stochastic customer arrivals Nt, we consider both Poisson distribution with mean

nt “ gprtq and binomial distribution with mean nt “ gprtq and the total number of trials C.

4.4.3.1 Impact of Sales Rank and Time Horizon

To test the impact of time horizon on the optimal pricing policies, we vary the total number

of periods T from 1 to 100 and compare both optimal policies and optimal average expected

revenue per-period. We draw the optimal price curve as a function of initial number of

arrivals, for different time horizons, T “ 1, 2, 3, 100. Also, we compare the average revenue

curve for optimal policy versus myopic policy, as a function of number of periods. For the

last comparison, the initial number of arrivals is the maximum possible n0 “ C “ 100. We

present our numerical test results in Figures 4.3–4.8 and summarize our observations below.

1. For each demand type and customer arrivals distribution, we observe that the price is

non-decreasing in the number of customer arrivals. With low customer arrivals, the

retailer has an incentive to reduce price to increase customer arrivals in the following

periods. On the other hand, a better sales rank already attracts more customers and

allows retailer to increase the price (although the price will still be lower than myopic).

This observation is consistent with Proposition 4.20 and Theorem 4.21 in Section 4.4.2.

2. The fewer time-periods remaining, the higher the price. An intuitive explanation is

that retailers are more worried about their reputation when they need to stay in the

market for a longer time. Hence, the longer the time horizon, the more important it is

to improve products’ popularity in the market.
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(a) Optimal pricing policy (b) Expected revenue per period

Figure 4.3: Poisson arrivals and linear demand with F̄ ppq “ 10´p
8

(a) Optimal pricing policy (b) Expected revenue per period

Figure 4.4: Binomial arrivals and linear demand with F̄ ppq “ 10´p
8
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(a) Optimal pricing policy (b) Expected revenue per period

Figure 4.5: Poisson arrivals and loglinear demand with F̄ ppq “ e´0.5p

(a) Optimal pricing policy (b) Expected revenue per period

Figure 4.6: Binomial arrivals and loglinear demand with F̄ ppq “ e´0.5p
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(a) Optimal pricing policy (b) Expected revenue per period

Figure 4.7: Poisson arrivals and logit demand with F̄ ppq “ e´0.25p

0.1`e´0.25p

(a) Optimal pricing policy (b) Expected revenue per period

Figure 4.8: Binomial arrivals and logit demand with F̄ ppq “ e´0.25p

0.1`e´0.25p
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3. When looking at Figures 4.3–4.8, we observe that the myopic price and optimal price

for long horizons are significantly different. Similarly, myopic revenue per period and

optimal revenue per period are very different for long horizons. The revenue for short

horizons is obviously highly influenced by the number of initial arrivals, but this de-

pendency disappears for longer horizons.

4. Surprisingly, for some cases (e.g., linear demand), a relatively short time horizon (T “

3) is sufficient for the pricing policy to converge to the optimal pricing policy for

very long time horizons (say, T “ 100). This can be seen by comparing Figures 4.3–

4.4 with Figures 4.5–4.8. When the range of potential revenues is relatively small

(Figures 4.3–4.4), it is worthwhile to aggressively move towards the best operating

policy. However, when the effect of current pricing on revenue is high (Figures 4.5–

4.8), it is not worthwhile to “sacrifice” the whole period’s revenue for the speed of

convergence.

5. We also observe that the pricing policy seems to have two types of behavior: In Figures

4.3–4.4, we have flat pricing of approximately p “ 2 for n ă 50 and, then, price

(approximately) linearly increasing in n. This can be intuitively explained as a smooth

trade-off between price and number of customer arrivals. The fewer arrivals implies

more aggressive pricing policy. However, when we approach the minimal price of p “ 2,

we cannot accelerate that process further, as explained in the point above. Similarly,

in Figures 4.5–4.6, price p “ 0 allows us to reach the maximum purchasing rate λ “ 1,

this establishing a threshold below which pricing cannot be used to increase the number

of customer arrivals. Note that a different observation is drawn from Figures 4.7–4.8,

where negative price may be used as an incentive and which rapidly increases customer

arrivals.

Note that the average revenue as a function of time horizon is decreasing. This is

because we initiate the study with the most optimistic case, where number of arrivals

is C “ 100.

4.5 Concluding Remarks

In this chapter, we investigated the dynamic pricing problem with the effect of sales rank.

Specifically, we showed the optimality of cyclic pricing policy for the model with determinis-

tic customer arrivals and discrete price set. For stochastic customer arrivals with continuous

price set, we derived an upper bound for the optimal pricing policies and showed the mono-
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tonicity of the optimal pricing policies. Based on both theoretical and numerical results,

we found that the optimal pricing policy tends to increase prices when better sales rank is

observed. Our technical results provide guidelines for online retailers to dynamically adjust

their pricing policies when sales rank is observed.

One of the future research directions is to study a dynamic pricing problem with both

sales rank information and inventory considerations. It would be interesting to characterize

the optimal pricing policies as well as providing efficient heuristics that can achieve near-

optimal performance. Another direction is to study pricing algorithms based on demand

learning where the demand function is unknown and based on features of available products.
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CHAPTER V

Conclusions

This dissertation focuses on the emerging features of the e-commerce supply chain man-

agement and revenue management. Due to the significance of service quality in today’s

customer-driven business environment, we studied service-level constrained inventory con-

trol system in the first two essays. Such inventory systems can help retailers reduce stockouts

probability to satisfy customers’ demand and maintain a good reputation. The first essay

focused on a static multi-period planning problem and formulated data-driven models to

optimize the best inventory decisions with minimum cost and the best pricing decisions with

maximum revenue. The second essay focused on developing efficient algorithms for dynamic

inventory control problems in which inventory decisions can be altered in real time after

observing the realized demand. In addition to the traditional backlogging model, the essay

also studied remanufacturing inventory system with stochastic returned products. The third

essay considered the dynamic pricing problem under the sales rank information. By study-

ing several mathematical formulations, we found out the impact of ranking information on

the optimal pricing policy and on the total revenue. The three essays presented in previous

chapters provided methods and insights in today’s growing online retail marketplace.

There are several directions for future studies. First, due to the availability of past sales

data and customer’s browsing data, demand learning and prediction can be important in

optimizing inventory and pricing decisions. Thus, an interesting direction for future research

is to study non-parametric data-driven models by providing efficient learning algorithms

and deriving asymptotic performance bounds. Second, since retailers usually need to make

inventory decisions together with their pricing decisions, it is worthwhile to investigate a

dynamic joint pricing and inventory problem under sales rank information.
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