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Abstract

The phenotypic effect of a mutation depends on both genetic interactions (G×G) and 

gene-by-environment interactions (G×E). G×G and G×E can distort the additive relationship 

between genotypes and phenotypes and complicate biological and biomedical studies. 

Understanding the patterns and mechanisms of these interactions is important for predicting 

evolutionary trajectories, designing plant and animal breeding strategies, detecting “missing 

heritability”, and guiding “personalized medicine”. In this thesis, I study how G×G and G×E 

affect mutational effects, including developing new methods and new models. Recent 

advancements in high-throughput DNA sequencing and high-throughput phenotyping provide 

powerful tools to study the relationships among genotypes, phenotypes, and the environment at 

unprecedented scales.  Therefore, I take advantage of several published large datasets in my 

study, each containing hundreds to thousands of different genotypes of model organisms and 

their corresponding phenotypes in tens of environments. In Chapter 2, I report some general 

patterns of G×E and demonstrate the importance of considering potential environmental 

variations in mapping quantitative trait loci. In Chapter 3, I report how the environment affects 

diminishing returns epistasis and propose a modular life model to explain the patterns of 

diminishing returns. In Chapter 4, I propose and demonstrate that genetic dominance is a special 

case of diminishing returns epistasis. In Chapter 5, I report how and why the relationship 

between growth rate (r) and carrying capacity (K) in density-dependent population growth varies 



 

xviii 
 

across environments. In Chapter 6, I demonstrate the existence of an intermediate optimal mating 

distance for hybrid performance in three model organisms. Overall, I find that large genomic and 

phenomic data are useful resources to address classical genetic questions, such as the origin of 

dominance (Chapter 4), the relationship between r and K (Chapter 5), and presence of an optimal 

mating distance (Chapter 6). The environment is a key player in the phenotypic effects of 

mutations, but it is also a high-dimension complex system that is hard to quantify. In this thesis, I 

define environment quality (Q) as the average fitness of many different genotypes measured in 

the environment. I demonstrate that Q is useful in studying how the environment affects additive 

(Chapter 3), interactive (Chapters 3 and 4), and pleiotropic mutational effects (Chapter 5). Many 

classical theories and models were developed based on observations made in a single 

environment, and they are often insufficient to explain across-environment observations. 

Studying across-environment effects provides valuable information for testing old models and 

for designing new models when old models fail. I conclude that studying G×G and G×E shed 

light on underlying biological mechanisms.  
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Chapter 1 

Introduction

 

“I have studied these things.” 

— Isaac Newton 

Mutation and environment are the two fundamental components in evolution, which 

together determine phenotype. Recent advancements in high throughput DNA sequencing and 

high throughput phenotyping provide powerful tools to study the relationship between genotypes, 

phenotypes, and environments at unprecedented scales. I take advantage of several published 

large datasets of model organisms, each of which includes hundreds to thousands of different 

genotypes and their corresponding phenotypes, to study how genetic interactions and G×E 

interactions affect mutational effects and address some classical genetic questions with my new 

observations.  

Fitness related phenotypes, natural polymorphisms, interactions, and environments are 

key components in my study. Therefore, I introduce the definition and measurements of fitness, 

the effect of mutations, the relationship between polymorphisms and mutations, genetic 

interactions, gene by environment interactions, and QTL mapping. I also introduce the 
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relationship between interactions and phenomena in biology, the relationship between 

interactions and evolution, as well as the challenges in detecting interactions, which help 

understand the questions my thesis projects try to tackle. 

1.1 Fitness, one compound trait, many meanings 

Fitness is, by all means, a fundamental property of all life forms. However, the meaning 

of fitness differs largely in the level to which it is applied, while the level could be individual, 

population, species, or a timescale (THODAY 1953). Within species, fitness is a quantitative 

representation of natural and sexual selection in evolutionary studies. Despite used and discussed 

all the time, it is still an ambiguous compound trait, which could be measured at different levels 

and by different approaches. Some canonical measurements preferred over the others depending 

on the situation and species, but none of them works for all situations.  

In theoretical studies, fitness is measured either by an absolute value as measuring the 

genotype itself (i.e. absolute fitness, usually notated as W) or by a relative value in comparison to 

all the existing genotypes in a population (i.e. relative fitness, usually noted as w). While W 

measures the proportional change in the abundance of a genotype over a generation, w measures 

the change of the genotype frequency over a generation, measuring the reproductive quality of 

the genotype as in competition to the entire population. In theoretical work, the W is commonly 

normalized by the highest fitness genotype to get w (CROW AND KIMURA 1970). This is because 

that w is a more direct measurement of selection. It is also more relevant to competition and 

finite population.  

Theoretical work involving fitness can be summarized into two main directions; one is to 

apply fitness in population genetic models to predict evolution, such as the rate of adaptation, 
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and the other is to predict fitness from genotypes and/or phenotypes. In population genetic 

models, w is proved useful, such as in Wright-Fisher model and Moran model (MORAN 1958; 

WEI et al. 2015). In a few cases, W can be more straightforward, such as when modeling with 

branching process (METZ et al. 1995). Theoretical population genetic modeling with a simplified 

trichotomy fitness distribution (lethal: w = 0, neutral: w = 1, beneficial: w > 1) was used in 

Appendix B of this thesis to study the relationship between robustness and evolvability. 

The relationships between fitness and genotypes can be visualized by a fitness landscape, 

in which similar genotypes locate closer to each other and the height of the landscape represents 

the fitness value (WRIGHT 1932). The smoothness and the ruggedness of a landscape in an 

environment are associated with the robustness and evolvability of the genotypes (WEI AND 

ZHANG 2017b). This notion is used and discussed in Appendix B. 

In empirical studies, fitness is measured or estimated with or without competition. With 

competition, the frequency change of a genotype, an allele, or an inheritable trait is associated 

with fitness. This frequency measurement is often used in experimental evolution, and the 

resulting fitness is w (MARÉE et al. 2000). In Chapter 3, I reanalyzed frequency based fitness 

measured in a lab environment (KRYAZHIMSKIY et al. 2014). Allele frequency change over 

seasons or over time has been documented in some species in the wild as an indicator of 

selection (BARRETT AND HOEKSTRA 2011; BERGLAND et al. 2014). However, associating 

selection with allele frequency change can be quite complicated, especially in a natural 

environment when replications are not available. Fictitious selection may occur due to genetic 

drift (ZHAO et al. 2013), frequency-dependent selection, epistasis, recombination, hitchhiking, 

and clonal interference. At genotype level and without competition, W is the more appropriate 

measurement. W is a combination of viability, mating success, fecundity, and so on, all of these 
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attributes can give some genotypes better ability to reproduce and to survive (ORR 2009). There 

are some canonical proxies of W, such as the reproductive rates of animals, seed numbers of 

plants, and maximum growth rates of microbes. Such proxies of W are used in my Chapter 2, 3, 5, 

and 6. Using W instead of w has the benefit of direct comparison of mutational effect across 

environments. Moreover, because selection and competition can complicate things, the 

transformation from proxies of W to proxies of w can introduce error.  

The empirical study of fitness is becoming a fruitful field thanks to the advance of 

technology. However, it is still challenging due to issues with detection power and the obscurity 

relationship between w and different fitness proxies. Currently, detecting fitness by allele 

frequency change is constrained by the sample size, the number of replicates, duration, and 

frequency of sampling. Directly measured fitness proxies could be more complicated because 

one proxy of fitness cannot represent the entire compound trait. Some fitness proxies are 

correlated due to pleiotropic effect, but this may not always be true (Chapters 5 and 6). For 

instance, in Chapter 6, I discuss the pleiotropic effects of mutations on growth rate (r) and 

carrying capacity (K). In the past, evolutionary biologists view r as their fitness proxy because r 

is associated with the growth per generation and it is a character of a genotype, while ecologists 

prefer population character K as fitness proxy because the population sizes of many species in 

nature are often at or close to the saturation point (MACARTHUR AND WILSON 2016). Both r and 

K are important characters of density-dependent growth, on which selection could act. Because 

fitness is a quantitative representation of natural and sexual selection, using one of them instead 

of two to measure fitness may result in a biased result, especially when there is a tradeoff 

between these two fitness proxies.  

1.2 The effect of mutation 
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 Mutation is the permanent alteration of inheritable information, most often happens by 

alternating nucleotide sequences of a genome. It is also the ultimate source of evolution. 

Mutation could be large-scale, such as change of the ploidy level, change of the copy number of 

a chromosomal region (i.e. deletion, application, and loss of heterozygosity), or rearrangement of 

the chromosomes (i.e. translocation, and inversions). Mutation could be small-scale, such as 

short insertions and deletions (indels), and substitutions (TAJIMA 1989). Besides, there is a 

special class of mutations caused by transposable elements (LOEWE AND HILL 2010).  

The segregating difference (i.e. polymorphisms) within species are usually small-scale 

mutations, which is what I primarily work on in this thesis, although different substitutions 

between species are also compared in Appendix A. Depending on where a mutation happens, the 

effect of the mutation on phenotype could be quite different. Mutations in coding regions pass 

down the information to mRNAs via transcription and post-transcription modification, and to 

proteins via translation (WATSON AND CRICK 1953; CRICK 1958). Mutations in noncoding 

regions can affect expression profile (KHALIL et al. 2009). The mutational effect could also be on 

many other phenotypes, such as chromatin, metabolites, cells, development, physiology, 

morphology, and behavior (HOULE et al. 2010). These phenotypic effects may or may not change 

fitness. Only germline mutation can stably pass down the information to the next generation 

(LIAW et al. 1997), although somatic mutations may also affect phenotype and fitness (GROUP 

2010). The focus of this thesis is the on the effects of germline mutations. 

The effect of mutation is also not necessarily on the mean of the phenotype (FORSBERG et 

al. 2015). For example, some mutations that do not affect the mean expression level can change 

the noise of expression (RASER AND O'SHEA 2004; KÆRN et al. 2005). Mutation could also affect 

the mean and variance of phenotypes of different genotypes, perhaps primarily through genetic 
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interaction (MCGUIGAN AND SGRO 2009; YADAV et al. 2016). Moreover, a mutation without 

phenotypic effect can still influence the mutational robustness and mutational evolvability of a 

genotype (WEI AND ZHANG 2017b). Due to genetic epistasis, a mutation may open and close the 

possibility for other mutation to have an effect (GOOD et al. 2017). The effect of a mutation is 

often context dependent, determined by both the genotype and the environment (LOEWE AND 

HILL 2010; WEI AND ZHANG 2017a), which I will introduce later.  

The distribution of mutational effects on fitness (DME) is a useful measurement in 

evolution and population genetics. It is either directly studied by mutation accumulation 

(CHARLESWORTH et al. 2004; LOEWE AND HILL 2010) or inferred using population genetics 

models and DNA sequences (LOEWE AND CHARLESWORTH 2006; KEIGHTLEY AND EYRE-

WALKER 2010). While the direct estimation of DME is appropriate for large effect mutations, 

indirect approach is useful for inferring DME for mutations with small effects (KEIGHTLEY AND 

EYRE-WALKER 2010). The distributions for direct and indirect DME measurements are different. 

The observed DME among de novel single-step beneficial mutation follows an exponential 

distribution (KASSEN AND BATAILLON 2006), while the analytic DME used for indirect inference 

is usually lognormal or gamma (LOEWE AND HILL 2010).  

1.3 Genetic polymorphisms resulting from mutation, selection, drift, and demographic 

history 

Polymorphism, in particular, genetic polymorphism, is important for conservation and  

biodiversity because it is required for a population to evolve in response to environmental change 

and it is associated with population fitness via inbreeding depression (REED AND FRANKHAM 

2003). Genetic polymorphism refers to the occurrence of two or more alleles of at one locus in 
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the same population (CAVALLI-SFORZA AND BODMER 1971). Usually, the genetic variants and 

the common alleles within a population are genetic polymorphisms.  

Most of the polymorphisms are selectively neutral or mildly deleterious undergoing weak 

purifying selection according to Motoo Kimura’s neutral theory of molecular evolution because 

those mutations with under positive selection would sweep to fixation together with nearby 

linked variants relatively fast (KIMURA 1968). Kimura’s theory reconciles the longtime 

confusion about how to maintain a high level of natural polymorphisms without balancing 

selection and the penalty of genetic load (BAMSHAD AND WOODING 2003).  

The fundamental source of genetic polymorphism is random mutations, but the exact 

amount of genetic variation carried by a population depends on selection, drift, recombination, 

migration, as well as the size and demographic history of the population (HUDSON 2002) and 

mode of mating (BUSTAMANTE et al. 2002). The level of polymorphisms can be predicted based 

on modes of selection and demographic history (NEVO 1978; CHARLESWORTH et al. 1997). 

Because all the evolutionary processes affect polymorphism, it provides valuable information to 

infer selection, recombination, migration, and time of a demographic event.  

The most frequently used genetic polymorphism in quantitative and population genetics 

is the single-nucleotide polymorphism, often abbreviated as SNP. SNP is the most abundant 

form of human genetic variation, which is also the most useful source for mapping complex traits 

(COLLINS et al. 1997), for studying haplotype (DALY et al. 2001), recombination map (MCVEAN 

et al. 2004; MYERS et al. 2005), and demographic history (GUTENKUNST et al. 2009). This is 

because of the nature of mutation, segregation, linkage, and recombination. For example, when 

mutation rate is low, all existing copies of a SNP in a population relate to each other and 
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coalesce to the most recent common ancestor (MRCA). The frequencies and patterns of SNPs 

then reflect the coalescence history as well as the mutational history (ROSENBERG AND 

NORDBORG 2002). This kind of analyses can answer questions like the human “mitochondria Eve” 

(VIGILANT et al. 1991). Selection can act in a population only if genetic polymorphism exists. 

How different modes of selection and recombination affect polymorphisms and site frequency 

spectrum are reviewed by Bamshad and Wooding (BAMSHAD AND WOODING 2003). Because 

different modes of selection have different effects on neutral and non-neutral genetic variation, 

SNP map is used to infer natural selection and candidate genes in human (AKEY et al. 2002). 

Due to the existence of genetic variation, different individuals can have different 

molecular, cellular, and organismal level phenotypes. Because a linked region in a chromosome 

passes down to the next generation entirely unless recombination breaks the linkage, minor 

alleles (SNPs) can represent other small- or large-scale mutations in its nearby region. Therefore, 

SNP is also the most useful source for mapping complex traits (COLLINS et al. 1997). The 

techniques for genome-wide association studies (GWAS) using common SNPs have progressed 

a lot over the past decade. It has been shown that SNPs could explain a large proportion of the 

heritability for human height (YANG et al. 2010), body mass index (YANG et al. 2015), 

intelligence (DAVIES et al. 2011), and other complex traits (SPEED et al. 2017). Enrichment test 

for GWAS SNPs reveals the nature of the genetic architecture of complex traits (SCHORK et al. 

2013).  It has been shown that disease-associated variations are enriched in regulatory regions 

(MAURANO et al. 2012). Combining multiple pieces of evidence, such as combining GWAS 

SNPs and tissue-specific expression together, may help identify disease causal genes (LIU et al. 

2012; LONSDALE et al. 2013). 
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SNPs are also useful in linkage analysis such as QTL mapping (LYNCH AND WALSH 

1998). QTL mapping and GWAS are complementary to each other because one suffers from 

linked genome but benefits with balanced allele frequency and the other benefits from unlinked 

individuals with allele frequency out of control. Therefore, they are philosophically similar but 

they use different data and work for slightly different purposes. In chapter 2 to 5 in this thesis, I 

took advantage of large datasets generated for QTL mapping in yeast to study the patterns of 

mutational effects for natural polymorphisms (BLOOM et al. 2013; BLOOM et al. 2015; HALLIN et 

al. 2016).  

1.4 Quantitative traits and QTL mapping  

 The concept of quantitative traits was proposed in the early 1900s to resolve the conflict 

between Mendelian theory for dichotomy traits and observations of continuous variation for most 

traits in nature (CASTLE 1903; PATERSON et al. 1988; BATESON AND MENDEL 2013). This is a 

simple yet extremely important conceptual achievement in modern genetics. It defended the 

principles of heredity and opened a new era of genetic study, which later became the subject 

quantitative genetics. It also fostered the post-Darwin era of evolutionary study, among which 

are the work lead by William Castle unifying Mendel’s law with Darwin’s theory of evolution 

(CASTLE 1903) and the work by Castle’s graduate student Sewall Wright in population genetic 

theories for quantitative traits and natural variation (WRIGHT 1931).  

A major challenge in evolution and in biology is to understand the genetic basis of 

quantitative traits (MACKAY et al. 2009) and to explain heritability, the fraction of phenotypic 

variation due to genetic variation (KEMPTHORNE 1957). A most common approach to study the 

genetic basis of quantitative traits is QTL mapping. QTL mapping refers to the statistical practice 
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of identifying genetic loci that contribute to variation in a quantitative trait through an 

experimental cross (BROMAN AND SEN 2009). Although genetic mapping was pioneered about a 

century ago (EAST 1916; SAX 1923), the first modern sense QTL mapping study was conducted 

in 1989 by Lander and Botstein using restriction fragment length polymorphisms (RFLPs) 

(LANDER AND BOTSTEIN 1989), it is a breakthrough in terms of the DNA markers used and the 

statistical approach developed. Soon after that, people realized the multiple testing problems of 

QTL mapping and developed a series of statistical methods to correct multiple testing or to 

calculate the confidence interval (JANSEN 1993; VISSCHER et al. 1996). This multiple testing 

problem is discussed in Chapter 2. 

One purpose of QTL mapping is to identify the genetic cause of phenotypic variation. 

However, the large (20 centimorgans level) confidence interval has been a huge problem for 

many years (GEORGES et al. 1995; VAN LAERE et al. 2003; GODDARD AND HAYES 2009). It is not 

until very recently, with the availability of large-scale phenotyping and genome-wide panels of 

SNPs, and genetic editing, causal identification becomes possible. For example, Sadhu et al used 

CRISPR (clustered, regularly interspaced, short palindromic repeats) to build mapping panels 

with targeted recombination events in nematodes, and successfully identified causal genes and 

variants (SADHU et al. 2016). Having a larger panel of individuals and higher recombination 

density can also map to causal sites in yeast (SHE AND JAROSZ 2018). Despite these successful 

attempts for identifying causal mutations for simple organisms, mapping to causal sites for large 

genomes is still challenging and costly.  

 Another purpose of QTL mapping is to detect and estimate the effect of QTLs on 

heritable traits. These traits could be phenotypic or molecular. Expression QTL (eQTL) studies 

at transcript level and at proteome level have generated a lot of insights about cis-regulation and 
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trans-regulation which help advance the understanding of gene expression regulation and gene 

expression evolution (CHICK et al. 2016; ALBERT et al. 2017). For gene expression, the total 

variance explained by a single eQTL is generally higher than non-expression QTLs (BREM AND 

KRUGLYAK 2005), and the regulation is much simpler comparing to organismal level phenotype. 

Many of the QTLs for organismal level traits have very small effects, and only QTLs with 

relatively large effect can reach statistical significance (MACKAY et al. 2009). QTL mapping for 

organismal phenotype helps understand complex trait, heritability, the genomic architecture of 

complex traits, patterns of polymorphisms, and evolution (BLOOM et al. 2013; JERISON et al. 

2017; WEI AND ZHANG 2017a).  

1.5 The challenge in detecting genetic interactions 

 Allele by allele interactions (MENDEL 1996) and gene-by-gene interactions (or epistasis) 

(BATESON 2013) are the two most commonly studied types of genetic interactions. Here we 

discuss these genetic interactions for fitness. Allele by allele interactions could create complete 

dominance, incomplete dominance, codominance, overdominance, and recessive of the wildtype 

allele. Gene by gene interactions is relatively simple in haploid. There are four types of it: 

positive epistasis (synergistic), negative epistasis (antagonistic), sign epistasis, and reciprocal 

sign epistasis (PHILLIPS 2008). Gene by gene interactions in diploids can be an order of 

magnitude more complicated because it involves both allelic interactions and gene-by-gene 

interactions. In diploids, if the genotypic values cannot be predicted from the single locus 

additive and dominance effects, there is epistasis (MACKAY 2015). Higher order epistasis 

involving more than two genes is usually out of our current detection power (TAYLOR AND 

EHRENREICH 2015).   
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Most of the large-scale studies of genetic interactions use gene deletions (WILKIE 1994; 

COSTANZO et al. 2016). These studies tested the effects of single mutation and double mutations 

empirically and provided valuable information about genetic interactions. However, gene 

deletions and null mutations usually have large effects, representing only a small subset of all 

mutations. The existence of interactions among gene deletion does not equal to the existence of 

genetic interactions in nature because many of the deletion pairs are so deleterious that they 

never exist in the same genome.  

QTL mapping has proved itself a powerful tool to study the additive effects of natural 

polymorphisms, but less so for interactive effects. Moreover, because of the existence of 

unknown genetic interactions, the accuracy and the power of QTL mapping are affected 

(PHILLIPS 2008). Because interaction effect is usually smaller than the main additive effect, 

detecting genetic interactions in natural polymorphisms by QTL mapping is still difficult. This 

detection power problem constrained our ability to understand the distributions of interactive 

effects in nature, as well as how these interactions affect adaptation and evolution. The canonical 

way of QTL mapping involves using an additive model, which means no interactions between 

two alleles of the same gene and between genes. Dominance or gene-by-gene interactions are 

ignored or only be considered after taking additive effects into account. However, canonical does 

not necessarily mean correct, and the majority of the mutational effects may not be additive. For 

example, a dominant null model can perform equally well as an additive null model (HUANG AND 

MACKAY 2016). Mapping gene-by-gene interaction is even harder because n polymorphic sites 

would require n2 number of tests. Current ways for mapping interactive QTLs either only test 

QTLs with significant additive effect or reduce the number of markers in pairwise testing; the 

observed interactive QTLs could explain only a small fraction of the total phenotypic variance 
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(BLOOM et al. 2015). Because of the detection power limitations and the null assumption of 

additivity, whether the interactive effect is general and how much of the total variance is affected 

by those interactions may not be fully reflected in these QTL mapping studies. Because detecting 

significant allelic interactions and gene-by-gene interactions are difficult using QTL mapping 

approach, we could only compare the general trend of interactions across environments. Such 

comparisons do not have to require significant and can help understand the amount of 

interactions among genetic polymorphisms and provide information about how environment 

effects change the prevalence of genetic interactions and how genetic interactions affect 

adaptation. In chapter 4 and 5, I took advantage of this approach in studying genetic interactions.  

1.6 Heterosis and genetic interactions 

Heterosis, or hybrid vigor, refers to the phenomenon that a hybrid is superior to both of 

its typically inbred parents in any biological quality (e.g., biomass, growth rate, and resistance to 

pathogens). Darwin was the first to report the observation of heterosis (Darwin 1876); Schull 

(Shull 1908) and East (East 1908) rediscovered it in 1908.  

Heterosis has important relevance to many aspects of our lives. It was first applied to 

crop breeding by Shull (SHULL 1908), and it is soon widely applied in plant and animal breeding. 

It is estimated that heterosis increases maize yields by at least 15% (LIPPMAN AND ZAMIR 2007a). 

Today, 95% of maize acreage in U.S. and 65% worldwide is planted with hybrids (SWANSON-

WAGNER et al. 2006; HOCHHOLDINGER AND HOECKER 2007; LIPPMAN AND ZAMIR 2007a). 

Heterosis also affects the pathogenesis of many eukaryotic pathogens. For example, fungal 

meningitis and encephalitis, especially as a secondary infection for AIDS patients, are often 

caused by the yeast Cryptococcus neoformans. C. neoformans has three serotypes: A, D, and AD. 
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AD is a hybrid of A and D. Most AD isolates exhibit hybrid vigor, and are resistant to the 

antifungal drug FK506, whereas A and D are not (LI et al. 2012). In addition, heterosis occurs to 

humans. For instance, marital distance, the geographic distance between the birth places of a 

couple, positively impacts the height of their kids (KOZIEL et al. 2011). An analysis of 35,000 

human individuals from 35 different population samples showed a highly significant association 

between height and genome-wide heterozygosity (MCQUILLAN et al. 2012). Moreover, higher 

levels of genetic heterozygosity tend to occur in the outbred group and are associated with lower 

blood pressure (BP) and total/LDL cholesterol (CAMPBELL et al. 2007). Study the basis of 

heterosis can help optimize hybrid performance, control pathogenesis, and understand human 

diseases.  

Without genetic interactions, the hybrid of two homozygous parents should follow an 

additive model such that its performance is the average of two parents. Positive genetic 

interactions can contribute to heterosis. Dominance and overdominance were proposed to explain 

heterozygote advantage (LIPPMAN AND ZAMIR 2007a). The dominance model posits that each 

inbred parent contains deleterious alleles at several loci whereas in hybrids these deleterious 

alleles are complemented by the dominant wild-type alleles from the other parent.  Note that this 

model only requires that the superior allele at a locus is more dominant over the inferior allele at 

the locus; no complete dominance is required. The overdominance model posits that allelic 

interactions at a single heterozygous locus result in a synergistic effect on vigor that surpasses 

both homozygous parents. Positive epistasis from the combination of the two or more parental 

genes also contributes to heterosis besides overdominance. It is unclear which process is the 

leading one for creating heterosis.  
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Studies of mechanisms of heterosis usually require mapping for genetic interactions 

(LIPPMAN AND ZAMIR 2007b) and are affected by detection power. Whether dominance, 

overdominance, or positive epistasis, contribute to heterosis most is still unanswerable right now. 

Despite known for more than 140 years (Darwin 1876) and practiced for at least thousands of 

years (for example, mules were mentioned in Homer’s Iliad, 800 BC Greece (EDWARDS 1890; 

LEIGHTON 1967)), the major cause of simple process may remain mysterious for an indefinite 

time, until we have better detection power for genetic interactions of natural polymorphism. 

Understanding the mechanisms of heterosis will greatly improve many related applications in 

agriculture, conservation biology, pathogen control, and human health.  

1.7 Speciation and genetic interactions 

 Speciation process is a fundamental problem in biology and in evolution. Speciation 

could be driven by ecological speciation or it could be driven by genetic speciation. 

Polyploidization (RIESEBERG AND WILLIS 2007), hybridization (MALLET 2007), and transposition 

(DOBZHANSKY AND DOBZHANSKY 1937; MASLY et al. 2006) are all potential causes of genetic 

speciation. Some of these genome-recreating events can instantly prevent mating with the 

original population. On the contrary, ecological speciation is more of an accumulation process 

where reproductive isolation is a gradually evolved feature, presumably due to divergent 

selection (SCHLUTER 2001).  

The most common classification of modes of ecological speciation is sympatric, 

parapatric, and allopatric, categorizing how divergence occurs (BUTLIN et al. 2008). Allopatric 

speciation, which involves geographical isolation is believed the usual mode, can happen simply 

from the neutral accumulation of genetic incompatibilities. Parapatric speciation was first 
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described by Fisher in general terms (FISHER 1958) and then by Murray (MURRAY 1972), Bush 

(BUSH 1975), and Endler (ENDLER 1977) more specifically. The difference between parapatric 

and sympatric speciation is that in parapatric speciation isolation is incomplete and gene flow 

between the two populations is allowed (SLATKIN 1982). Sympatric speciation, on the other hand, 

requires disruptive natural or sexual selection that favors two distinct phenotypes (KONDRASHOV 

AND KONDRASHOV 1999). According to Darwin, heterogeneous environment with resource 

competition can lead to disruptive selection and sympatric speciation (DARWIN 1968). J. 

Maynard Smith later proposed four genetic mechanisms of sympatric speciation: habitat 

selection, pleiotropic genes, modifying genes, and assortative mating genes (SMITH 1966).  

The argument about sympatric speciation used to be old and long-lived because it cannot 

be easily settled by observations (SMITH 1966), but the situation changed a lot recently. Recent 

advancements in experimental evolution allow researchers to study different modes of speciation 

in a forward way. For example, Castillo et al conducted an experimental test for allopatric 

speciation (CASTILLO et al. 2015). In another study, sympatric “speciation” was shown for 

lambda phage by experimental evolution (MEYER et al. 2016), demonstrating the power of 

experimental evolution in answering questions about speciation. Moreover, because whole 

genome sequencing is getting cheaper and more sensitive, monitoring contemporary parapatric 

speciation process by the change of allele frequency becomes possible (EGAN et al. 2015). 

 Another branch of speciation studies focus on identifying the “speciation genes” which 

either occur at the initiation process of speciation or later as the two species diverge. Although 

different modes of ecological speciation can all initiate speciation, all speciation events 

eventually require some genetic changes to keep the two isolated species maintaining isolated 

genetically by pre- and/or post-mating isolation. One major type of post-mating isolation is due 
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to Bateson-Dobzhansky-Muller (BDM) incompatibility (BATESON 1909; DOBZHANSKY AND 

DOBZHANSKY 1937; MULLER 1942), which is a type of negative genetic interactions that 

involves at least two mutations each occurs in one of the two species. BDM incompatibility is an 

intellectual advancement because it resolved and bypassed a major problem in speciation, how 

something extremely deleterious could be allowed by natural selection (ORR 1996). Mapping of 

incompatible gene pairs usually involves a lot of crosses and experimental validation, and very 

few studies successfully identified the causal gene pairs (TING et al. 1998; COYNE AND ORR 2004; 

LEE et al. 2008). Because  BDM incompatibility is a type of genetic interactions, the number of 

new interactions that exist only in the hybrid but not in the parents increases with divergent time 

at a speed equal to or faster than quadratic. This process is also called “snowball” effect. The 

“snowballs” of the number of incompatible genes is proven by two genetic mapping studies 

using interspecific crossing of plant and animal (MATUTE et al. 2010; MOYLE AND NAKAZATO 

2010). 

Because incompatibility may occur even within species (CORBETT-DETIG et al. 2013; 

SOHAIL et al. 2017), studying intraspecific genetic incompatibility may shed light on speciation 

process. Unlike studying BDM incompatibility by interspecific crosses where the species chosen 

cannot be too divergent, studying genetic incompatibility by intraspecific cross suits every 

species. Moreover, hardly are the genes initiating speciation the ones detected, but this downside 

might be compensated by studying patterns of genetic interactions segregating within species. 

Intraspecific incompatibility could be maintained by nonrandom mating. Because random mating 

is unlikely happening in nature (BUSS AND BARNES 1986; MORIN et al. 1994; JIANG et al. 2013), 

it would be nice to have a theoretical and empirical study that connects the incompatibility 

accumulated within species due to non-random mating with modes of ecological speciation. 
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Speciation is not directly studied in this thesis, but by analyzing intraspecific cross, I 

demonstrated the existence and the “snowball” of genetic incompatibilities within species in 

chapter 6. 

1.8 Genetic interactions and adaptation 

 Genetic interactions affect the evolutionary trajectory and the fixation probability of new 

mutations. Here we discuss the two types of interactions: allelic interactions (MENDEL 1996) and 

gene-by-gene interactions separately. Chapter 6 used both types of genetic interactions to make 

inference about hybrid performance.  

 For allelic interactions, mutations that are beneficial or deleterious have very different 

fate. While beneficial mutations benefit from being visible to positive selection immediately if it 

is dominant, a deleterious mutation is more easily purged out by purifying selection. A recessive 

mutation behaves like a neutral mutation until it by chance creates a homozygous, thus a 

recessive beneficial mutation is less likely reaching a high frequency and a recessive deleterious 

mutation is less likely purged out by selection. Haldane first showed this biased fixation toward 

dominant beneficial allele, and this phenomenon is later termed “Haldane’s sieve” (HALDANE 

1927; HALDANE 1930). Because of allelic interactions, the fixation of mutations follows more 

complex trend making the rate and pattern of diploid adaptation different from haploid 

adaptation (PAQUIN AND ADAMS 1983). Allelic interaction is studied in Chapter 4. 

 For gene-by-gene interactions, positive epistasis and negative epistasis affect the fate of 

new mutations a lot (HANSEN 2013). Moreover, because of such dependency, one fixation may 

open and close some adaptive trajectories due to epistasis. Because of epistasis, different 

trajectories of mutations are not equally probable. Researchers often use this extra information to 
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narrow down to a few possible evolutionary trajectories from empirically measured mutational 

landscape (PALMER et al. 2015; STARR AND THORNTON 2016), this is a kind of “reverse approach” 

in studying the relationship between epistasis and adaptation. Some of the recent works in 

experimental evolution field also discovered how genetic interactions affects adaptive 

trajectories. For example in a recent used the 60,000 generations long-term experimental 

evolution of E.coli, and sequenced the stocks at 500 generation interval (GOOD et al. 2017). In 

this study, they found that the appearance time of beneficial mutations are different for mutations 

in many adaptive genes, demonstrating that epistasis affects adaptive trajectories. Studying 

epistasis and adaptation by experimental evolution is a “forward approach”. The forward and the 

reverse approach have different benefits and compensate each other, one explores more 

possibilities of mutations but does not know the clear evolutionary path, and the other explores 

only the random mutations happen during the experimental evolution but know the adaptive 

trajectory for certain. 

 One overwhelmed pattern in adaptive trajectories of experimental evolution is the 

diminishing returns of fitness with the number of beneficial mutations (TENAILLON et al. 2016). 

One of the underlying reasons is the widespread diminishing returns epistasis (KRYAZHIMSKIY et 

al. 2014) among adaptive mutations (WÜNSCHE et al. 2017). The diminishing returns epistasis, 

which is a special case of negative epistasis, is general, and I will further introduce this part in 

Chapter 3.  

1.9 Gene by environment interactions (G×E) in evolution 

G×E refers to the observation that the same mutation has different phenotypic effects on a 

trait in different environments (OTTMAN 1996).  As early as the first QTL mapping study, 
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multiple environments were included, although each environment is dealt separately in mapping 

(LANDER AND BOTSTEIN 1989). Jansen et al quickly noticed this lack of accounting for G×E and 

developed the first approach that accommodates mapping for multiple QTL as well as G×E 

(JANSEN et al. 1995). G×E is believed to be ubiquitous among all organisms and has long been 

studied in domestic animals and plants, genetic model organisms, and humans (WEI AND ZHANG 

2017a).  

G×E exists and is studied for different traits. At cellular trait level, G×E is often 

discussed under cis-regulatory expression and trans-regulatory expression framework. For 

example, the G×E for expression has been studied in yeast, where trans-regulating mutations 

from distant linkage are found to be more environment dependent (SMITH AND KRUGLYAK 2008). 

G×E is also often studied at phenotype level. For example, it is found to have important effects 

on human psychiatry disease (DUNCAN AND KELLER 2011). In chapter 2, I studied G×E at growth 

rate level (WEI AND ZHANG 2017a).  

G×E could be studied at genotype level or at mutational level. G×E at genotype level is 

often studied in the wild. Numerous studies have discussed the G×E responses to climate change, 

habitat change, or change of other environmental factors (AGRAWAL 2001; GIENAPP et al. 2008; 

VALLADARES et al. 2014). At mutational level, G×E studies can be generally divided into two 

types on the basis of the approach used: forward genetics and reverse genetics.  In forward 

genetics, genes or QTLs that show significantly different phenotypic effects in different 

environments are identified via linkage or association mapping.  In reverse genetics, a mutant 

carrying a known mutation such as a gene deletion or a point mutation is compared with the 

wild-type for the trait of interest under two environments, and G×E is detected when the 

mutational effect on the trait differs significantly in the two environments.   
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The effect of G×E for a mutation could be divided into two types, antagonistic G×E, and 

concordant G×E.  Antagonistic G×E refers to a mutation that increases the trait value in one 

environment but decreases the trait value in another; concordant G×E refers to a mutation that 

affects the trait to the same direction but at a different magnitude in two environments (WEI AND 

ZHANG 2017a). Although concordant G×E is more general than antagonistic G×E (OSTROWSKI et 

al. 2005; GERKE et al. 2010; DILLON et al. 2016; WEI AND ZHANG 2017a), the extent of 

antagonism depends on the tested environments and tested genotypes (WEI AND ZHANG 2017a).  

The existence of G×E especially antagonistic G×E in nature but not in many of the experimental 

evolution in the lab (TENAILLON et al. 2016) may cause a very different spectrum of fixation of 

mutations as well as the size of the pool of beneficial mutations. 

Investigating G×E can help identify the causal pathways of a trait (GAGNEUR et al. 2013), 

dissect genetic tradeoffs (QIAN et al. 2012), understand environmental adaptations (OSTROWSKI 

et al. 2005), and reveal a potential cause of “missing heritability” (MANOLIO et al. 2009; 

EICHLER et al. 2010). I reported patterns of G×E and measured the effects of G×E on “missing 

heritability” in my Chapter 2 (WEI AND ZHANG 2017a). 

1.10 Thesis overview 

 In this thesis, I examine different kinds of genetic interactions and G×E that affects the 

effects of genetic polymorphisms. I use public available genotype and fitness related phenotype 

data in budding yeast Saccharomyces cerevisiae, house mouse Mus musculus, plant Arabidopsis 

thaliana, and human Homo sapiens to tackle the questions about mutational effects.  

In Chapter 2, I addressed the question of how the environment affects the mutations by 

conducting G×E QTL mapping in budding yeast Saccharomyces cerevisiae for 1081 pairs of 
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environments. I reported many general patterns G×E, such as, how likely a QTL has a different 

effect in a different environment, how likely a G×E is antagonistic versus concordant, where are 

the genomic location of G×E sites, and how much G×E causes “missing heritability”. Because I 

found that the mutational effects are often environment dependent, I went on to study the details 

of such environment dependent effects in later chapters. This chapter is the basis of Chapters 3 to 

5.  

In Chapter 3, I studied how the environment affects diminishing returns epistasis. 

Diminishing returns epistasis means that the same advantageous mutation is less beneficial when 

occurring on a fitter genotype background; it is often found during experimental evolution of 

microbes and was suggested to be general. In this chapter, I developed a high-throughput 

approach to study diminishing returns epistasis with population data. I then used this approach to 

quantify the fraction of diminishing returns epistasis for yeast growth across 47 environments. I 

found diminishing returns epistasis is general, and the fraction of diminishing returns epistasis 

increases as Q increases. I also calculated the effect size for each polymorphic locus and found 

that the benefit of a SNP also decreases as Q increases. I developed a new model named modular 

life model which takes both environment contribution and genetic contribution into account. This 

new model successfully explains all the observed patterns of diminishing returns.  

In Chapter 4, I follow the findings of Chapter 3 to study genetic dominance. Theories on 

the origin of genetic dominance have experienced a century-long debate, but none satisfactorily 

explained all currently observed patterns of dominance. In this chapter, I propose that dominance 

is a special case of diminishing returns epistasis because the common observation is that the 

benefit from gaining a wildtype allele on a homozygous deleterious background is bigger than 

the benefit from gaining the same wildtype allele on a heterozygous background. I first used 
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modular life model to predict the known patterns of genetic dominance and the unknown patterns 

of genetic dominance. According to modular life model, all current observations of dominance 

are expected. Moreover, it predicts that as Q gets higher, the beneficial mutation gets more 

dominant, resembling the patterns of diminishing returns. Two independent yeast dataset 

confirmed the predicted pattern from using the modular life model. This observed pattern is 

opposite to the prediction from the Wright-Kacser-Burns model, the previous leading model. 

In Chapter 5, I study the pleiotropic effect of mutations on r and K, two fitness proxies, to 

test whether the pleiotropic effect is environment dependent. r-K relationship has been a long-

standing question in life history ecology. Studying the genetic basis of r-K and the mutational 

relationship of r-K by quantitative genetic approach helps understand the r-K relationship and 

predict life history evolution. In this study, I found positive r-K pleiotropy is prevalent in low Q 

environment and negative r-K pleiotropy is prevalent in high Q environment. I also observe the 

same mutation can change from concordant pleiotropy to antagonistic pleiotropy when the 

environment changes. This finding is hard to explain by a simple energy tradeoff model. I 

proposed a new model, which includes the tradeoff of rate and yield of ATP production and the 

cost of maintenance relative to reproduction. The model predictions match well with the 

observed patterns. 

After studying different types of genetic interactions individually for fitness proxies, I 

study them together to predict phenotype. Having great application potential, hybrid performance 

is an important topic in biology. As I introduced before, hybrid performance experience two 

counteracting process, one is heterosis, and another is genetic incompatibility, both rise from 

genetic interactions. Because of these counteracting forces, it is believed that the fitness of a 

genotype is a hump-shaped function of the mating distance, culminating at an intermediate 
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distance referred to as the optimal mating distance (OMD). I derived the model between genetic 

distance D and a hybrid performance measurement and tested the model using large datasets 

from the plant Arabidopsis thaliana, fungus Saccharomyces cerevisiae, and animal Mus 

musculus. I confirmed the existence of OMD in all three species.  

While Chapters 2 to 6 focus on the mutational effects due to genetic interactions and gene 

by environment interactions, two appendices Chapters A and B discussed other mutational 

effects in evolution. Appendix A discussed the case when selection on one gene and the selection 

on the other gene occur on the same genomic region, such that the net effect of a beneficial 

mutation to one gene may not be beneficial due to its deleterious effect on the other gene. In this 

chapter, I developed a simple method to disentangle individual selection strength for overlapping 

genes whose coding regions overlapped with each other. Appendix B discussed the relationship 

between the robustness of a phenotype and the evolvability of a phenotype. In this project, I 

provide the mathematical proof for the relationship between phenotype robustness (PR) and 

phenotype evolvability (PE) defined in a random genotype-phenotype map (GPM). I showed that 

the PR and PE are positively correlated in random GPM, suggesting PR and PE are by default 

positively correlated.  

In Chapter 7, I discussed some of the topics and models proposed in this thesis in a 

unified way. I also discussed some ideas I conceived while working on this thesis. A couple 

sections have preliminary results; the majority are still at hypothetical stages. In the end, I 

discuss the questions that interest me most and my future research goals. 
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Chapter 2 

Gene by environment interaction: the genomic architecture of interactions 

between natural genetic polymorphisms and environments in yeast growth 

 

“I was born at the right time and place. I won the Ovarian Lottery.” 

— Warren Buffet 

2.1 Abstract 

Gene-environment interaction (G×E) refers to the phenomenon that the same mutation 

has different phenotypic effects in different environments.  Although quantitative trait loci 

(QTLs) exhibiting G×E have been reported, little is known about the general properties of G×E 

and those of its underlying QTLs.  Here we use the genotypes of 1005 segregants from a cross 

between two Saccharomyces cerevisiae strains and the growth rates of these segregants in 47 

environments to identify growth rate QTLs (gQTLs) in each environment and QTLs that have 

different growth effects in each pair of environments (g×eQTLs).  The average number of 

g×eQTLs identified between two environments is 0.58 times the number of unique gQTLs 

identified in these environments, revealing a high abundance of G×E.  Eighty-seven percent of 

g×eQTLs belong to gQTLs, supporting the practice of identifying g×eQTLs from gQTLs.  Most 

g×eQTLs identified from gQTLs have concordant effects between environments, but as the 

effect size of a mutation in one environment enlarges, the probability of antagonism in the other 
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environment increases.  Antagonistic g×eQTLs are enriched in dissimilar environments.  

Relative to gQTLs, g×eQTLs tend to occur at intronic and synonymous sites.  The gene ontology 

distributions of gQTLs and g×eQTLs are significantly different, so are those of antagonistic and 

concordant g×eQTLs.  Simulations based on the yeast data showed that ignoring G×E causes 

substantial missing heritability.  Together, our findings reveal the genomic architecture of G×E 

in yeast growth and demonstrate the importance of G×E in explaining phenotypic variation and 

missing heritability. 

 

2.2 Introduction 

Gene-environment interaction (G×E) refers to the observation that the same mutation has 

different phenotypic effects on a trait in different environments (OTTMAN 1996).  G×E is 

believed to be ubiquitous among all organisms and has long been studied in domestic animals 

and plants, genetic model organisms, and humans.  In humans, G×E has been implicated in 

cancer (THORGEIRSSON et al. 2008), inflammatory disorder (CHAMAILLARD et al. 2003), immune 

system diseases (PADYUKOV et al. 2004), and mental disorders (RISCH et al. 2009; BYRD and 

MANUCK 2014; LUCK et al. 2014).  Investigating G×E can help identify the causal pathways of a 

trait (GAGNEUR et al. 2013), dissect genetic tradeoffs (QIAN et al. 2012), understand 

environmental adaptations (OSTROWSKI et al. 2005), and reveal a potential cause of “missing 

heritability” (MANOLIO et al. 2009; EICHLER et al. 2010).  

G×E studies can be generally divided into two types on the basis of the approach used: 

forward genetics and reverse genetics.  In forward genetics, genes or quantitative trait loci (QTLs) 

that show significantly different phenotypic effects in different environments are identified via 

linkage or association mapping.  In reverse genetics, a mutant carrying a known mutation such as 

a gene deletion or a point mutation is compared with the wild-type for the trait of interest under 
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two environments, and G×E is detected when the mutational effect on the trait differs 

significantly in the two environments.  For example, Qian and colleagues measured the fitness 

effects of single gene deletions in yeast for nearly 5000 nonessential genes in six different 

environments and identified many antagonistic G×E cases where deleting a gene is deleterious in 

one environment but beneficial in another (QIAN et al. 2012).  Although such systematic reverse 

genetic studies can provide a broad picture of G×E, to date they are limited to gene deletions 

(DUDLEY et al. 2005; BROWN et al. 2006; HILLENMEYER et al. 2008; QIAN et al. 2012), which 

constitute a special group of mutations.  In theory, the reverse genetic approach can also be 

applied to all natural genetic polymorphisms, but studies of this sort are universally small in 

scale (OSTROWSKI et al. 2005; GERKE et al. 2010; DILLON et al. 2016) and thus do not offer an 

overview of G×E for natural genetic polymorphisms.  By contrast, large forward genetic analysis 

in principle allows deciphering general properties of G×E for natural genetic variants. 

Many recent forward genetic studies of G×E in humans are driven by the idea of 

personalized medicine and focus on finding candidate genes and environmental factors that 

interact in influencing disease, drug response, or behavior (CASPI et al. 2002; HOOD et al. 2004; 

CASPI et al. 2005; KENDLER et al. 2012; BYRD and MANUCK 2014; LUCK et al. 2014).  Although 

a number of genes have been reported to interact with environmental factors, the reproducibility 

of these genome-wide association study (GWAS) results tends to be low (HUNTER 2005; 

DUNCAN and KELLER 2011), and one likely reason is that environmental factors are hard to 

control in human studies.  The power to detect genetic variants that interact with environments is 

generally lower than the power to detect genetic variants that have effects in one environment.  

Furthermore, the detection of interaction is affected by how interaction is measured (DUNCAN 

and KELLER 2011), because the null hypothesis of no interaction may be based on an additivity 
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or multiplicity assumption.  That is, if the phenotypes of two genotypes are A1 and B1 in 

environment 1 and A2 and B2 in environment 2, respectively, the null hypothesis of no G×E 

under additivity is A1−B1 = A2−B2, whereas that under multiplicity is A1/B1 = A2/B2.  In 

model organisms such as the mouse Mus musculus and fly Drosophila melanogaster, 

recombinant inbred lines established from a cross between two parental lines are typically used 

to identify G×E QTLs via linkage mapping (FRY et al. 1998; UNGERER et al. 2003; LI et al. 2006; 

FLINT and MACKAY 2009; GERKE et al. 2010; EL-SODA et al. 2014; MATSUI and EHRENREICH 

2016).  Generally speaking, environments are better controlled, detection power is higher, and 

the detected interactions are more readily verifiable in model organism studies, compared with 

human studies. 

Although the abundance of G×E has been demonstrated in various model organisms, 

there is no systematic study about the genomic and functional distributions of G×E QTLs.  

Furthermore, it is unknown whether G×E is mostly antagonistic (i.e., the same allele has 

opposite phenotypic effects in two environments) or concordant among natural genetic 

polymorphisms.  It is also unclear how much ignoring G×E impacts the identification of QTLs 

underlying natural phenotypic variations among individuals that cannot possibly have identical 

environments.  Methodologically, some human studies identify G×E by directly testing if genes 

with known effects in one environment have different effects in another environment (CASPI et al. 

2003), instead of testing all pairs of genetic variants by GWAS.  Although the former approach 

has been criticized to have publication bias, low statistical power, and high false discovery rates 

when compared with GWAS (DUNCAN and KELLER 2011), some authors consider it to be more 

replicable and superior for finding causal genes (MOFFITT et al. 2005; UHER 2014).  Which of 

the two methods performs better depends on the probability that an influential mutation in one 
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environment has a different effect in another environment.  It also depends on the probability that 

a G×E QTL between two environments has detectable effects in at least one of the environments.  

But neither of these probabilities is currently known.  Here we address all these questions using a 

recently published dataset of the budding yeast Saccharomyces cerevisiae, which includes the 

genome sequences and the growth rates in 47 environments of 1005 haploid segregants produced 

by the F1 resulting from a cross between strains BY and RM (BLOOM et al. 2013).  BY is 

derived from the commonly used laboratory strain S288c, whereas RM is derived from the 

vineyard strain RM11-1a.  The 47 growth environments varied in temperature, pH, carbon source, 

metal ions, and small molecules (BLOOM et al. 2013).  The growth rate of each segregant was 

measured by the mean end-point colony radius on agar plates.  Although a more recently 

published dataset (BLOOM et al. 2015) contained 4390 segregants from the same F1, only 21 

environments were examined.  We thus focused on the earlier data, which include more 

environments and hence suit better the study of G×E.  We analyzed the later data (BLOOM et al. 

2015) only to verify the key findings from the earlier data.  Note that several yeast studies 

mapped growth rate QTLs in each of an array of environments (CUBILLOS et al. 2011; 

EHRENREICH et al. 2012; BLOOM et al. 2013; WILKENING et al. 2014) or mapped plasticity QTLs 

across environments (YADAV et al. 2016), but these studies either treated growth rates in 

different environments as different traits or treated growth rate variance among environments as 

a phenotypic trait.  Hence, yeast G×E in growth rate has not been studied. 

 

2.3 Materials and methods 

2.3.1 Genotype and phenotype data 
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We acquired from the Kruglyak lab the genotype data of 1040 segregants from a cross 

between the BY and RM strains of S. cerevisiae, including a total of 28,220 single nucleotide 

polymorphisms (SNPs) mapped to the reference genome sequence R64-1-1 (BLOOM et al. 2013).  

We similarly obtained the average end-point colony radius of each segregant in each of the 47 

environments (BLOOM et al. 2013).  After requiring each segregant to have both genotype data 

and phenotype data in at least one environment, we retained 1005 qualified segregants for 

subsequent analysis.  Narrow-sense heritability data were from the supplementary materials of 

the original publication (BLOOM et al. 2013).  We also acquired the genotype and phenotype data 

from a follow-up study (BLOOM et al. 2015) where the growth rates of 4390 segregants from the 

same cross were similarly measured in 21 of the original 47 environments.  We downloaded the 

cDNA sequences, genome annotations, GO terms, and GO domains from Ensembl biomart for 

reference R64-1-1, and used Matlab scripts for all enrichment tests.  

 

2.3.2 Mapping growth rate QTLs (gQTLs) in an environment  

We started the first round of gQTL mapping using the filtered growth rates as the 

phenotype.  The filtered growth rate of a segregant is its colony radius after 48h growth on agar 

plates averaged between two replicates, followed by a series of data filtering and correction by 

the original authors (BLOOM et al. 2013).  Given an environment, for each SNP, we compared 

the growth rates between the two groups of segregants that carry the alternative alleles, using a t-

test.  We converted P-values to Q-values (STOREY and TIBSHIRANI 2003).  A stringent Q-value 

of 0.005 was used as the cutoff for statistical significance, on the basis of the simulation 

described below.  On each chromosome, we chose the SNP with the lowest Q-value.  Sometimes, 

a chromosome carried multiple SNPs with exactly the same minimal Q-values; these were 
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always adjacent SNPs (i.e., with no intervening SNP), and the middle SNP was chosen.  We 

combined all chosen SNPs from all chromosomes to fit the linear model Y = β0+βX+ε, where Y 

is a vector of the growth rates of all segregants, β0 is the fitted population mean growth rate, β is 

a vector of gQTL effect sizes, ε is an error vector, and X is a matrix of genotypes (number of 

segregants × number of gQTLs).  If the allele at a SNP is from BY, the corresponding element in 

X is -1; otherwise, it is 1.  We estimated β, growth rate residuals, and t-statistics from regression 

using the embedded Matlab function LinearModel.  A SNP is removed if its contribution in the 

linear model is not significant at P = 0.05 by a t-test.  We then used all remaining SNPs to fit a 

linear model and calculated the growth rate residuals.  

We started the second round of gQTL mapping using the growth rate residuals as 

phenotypes, following the procedure described above.  We then combined the SNPs identified 

from the first two cycles to fit a linear model, removed SNPs with insignificant contribution to 

the linear model, and calculated growth rate residuals using the remaining SNPs.  This process 

was repeated until no more SNP is added in a cycle of gQTL mapping.  In all environments, four 

or fewer cycles were needed.  That is, each chromosome has at most three gQTLs identified in 

an environment. 

 

2.3.3 Mapping growth rate by environment interaction QTLs (g×eQTLs) in each pair of 

environments 

The 47 environments form 1081 pairs.  We first used the identified gQTLs to test G×E 

(class I g×eQTLs).  That is, for a given environment pair and a gQTL identified from one or both 

of these two environments, we used a genotype's growth rate difference between the two 

environments as its phenotype and then used a t-test to compare the phenotypes of the groups of 
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genotypes with alternative alleles at the gQTL.  P = 0.05 from a t-test was used to determine 

whether significant G×E is present for the gQTL; simulation results suggested no need for 

multiple-testing correction here.  Given that on average only 10.3 gQTLs were mapped per 

environment, we assumed that any two gQTLs that are identified from different environments 

and lie within 7500 nucleotides from each other (corresponding to the average distance spanned 

by ~4 genes) have the same underlying causal genetic variant.  In such cases, we tested the 

middle SNP between the two gQTLs for G×E.  The justification of the above assumption is as 

follows.  If the gQTLs from two environments are independent from each other and are 

randomly distributed across the genome, the probability that a gQTL identified in one 

environment is within 7500 nucleotides from a gQTL identified in the other environment is 1.3%.  

In fact, an average of 11.0% of gQTLs identified in one environment are within 7500 nucleotides 

from a gQTL identified in the other environment, suggesting that the vast majority of gQTLs 

within 7500 nucleotides from each other are not independent but share the same causal mutation.   

For each environment pair, we also mapped class II g×eQTLs by considering all SNPs.  

The method used was the same as mapping gQTLs in an environment, except that growth rate 

differences between two environments instead of growth rates in one environment were used as 

phenotypes.  We first calculated the difference in end-point colony radius between the two 

environments for each segregant that has the colony radius measures in both environments, and 

then followed the same procedure as gQTL mapping to identify class II g×eQTLs.  We similarly 

terminated the search when no more SNP was added to the model.  A Q-value of 0.005 was used 

as the cutoff for statistical significance, on the basis of the simulation described below.  We 

counted class II g×eQTLs mapped on chromosomes with no gQTL from either environment.  We 

focused on these chromosomes because it would otherwise be unclear if class I and class II 
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g×eQTLs reflect the same causal SNPs, owing to strong linkage of SNPs within a chromosome.  

From the number of class II g×eQTLs on these chromosomes, we extrapolated the number of 

class II g×eQTLs in the entire genome on the basis of the relative sizes of the chromosomes, 

under the assumption that class II g×eQTLs are evenly distributed across the genome.  

Extrapolated class II g×eQTLs were used only to estimate the g×eQTLs missed by class I 

g×eQTL mapping.  

 

2.3.4 Computer simulation for determining the Q-value cutoff 

We converted P-values to Q-values according to the method of Storey and Tibshirani 

(STOREY and TIBSHIRANI 2003), because it is in theory ~1000 times faster than obtaining Q-

values from the permutation test used in the original analysis of this dataset (BLOOM et al. 2013).  

We used computer simulation to compare the performance of our method with the one 

previously used (BLOOM et al. 2013) in order to choose a proper Q-value cutoff.  To save 

computational time, we simulated three chromosomes instead of all 16 chromosomes in the yeast 

genome, using parameters appropriate for average-size yeast chromosomes.  Each simulated 

chromosome carried 1500 SNPs, and two recombination events were randomly allocated per 

chromosome in each segregant on the basis of 90.5 crossovers per yeast meiosis (MANCERA et al. 

2008).  We randomly assigned three SNPs that are >30 SNPs away from one another to be 

gQTLs.  Phenotypic noise is simulated using the standard normal distribution.  In the first 

simulation, each of the three gQTLs has an effect size of 1, and one of the two alleles at a gQTL 

is randomly picked to be the fitter allele.  The narrow-sense heritability h2 = 3×12/(3×12+1) = 

0.75.  In the second and third simulations, we used the effect size of 0.75 and 0.5, respectively, 

corresponding to h2 = 0.63 and 0.43, respectively.  These h2 values match approximately the 
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observed h2 values in our data.  Each simulation generated 1000 segregants.  We then mapped 

gQTLs using different Storey and Tibshirani Q-value cutoffs (0.05, 0.02, 0.01, 0.005, 0.002, and 

0.001) in our method, and compared our results with those of Bloom et al. (2013) that were 

based on the permutation Q-value of 0.05.  The false discovery and false negative rates were 

estimated for both methods.  We found that, for both methods, the false discovery rates were 

greater than what the Q-values suggested, but false negative rates were negligibly small.  The 

false discovery rate of our method under Q-value of 0.01 and 0.005 was comparable to that of 

Bloom et al.'s (2003) method.  We thus chose the more stringent Q-value cutoff of 0.005 in our 

mapping.  

We also simulated an environment pair with the parameters used above.  That is, three 

gQTLs existed in each environment but they had no effect in the other environment.  We then 

mapped gQTLs with a Q-value cutoff of 0.005, followed by class I g×eQTLs mapping with a P-

value cutoff of 0.05.  The obtained results are presented in Table C-1.  Because our detection of 

gQTLs had very low false negative rates (Table C-1), we were not able to study the performance 

of identifying class II g×eQTLs by our simulation.  One type of gQTLs not considered in the 

above simulation is those that have the same effects in two environments.  Such gQTLs could be 

erroneously identified as g×eQTLs.  To examine the probability of this error, we simulated three 

gQTLs with the same effects in two environments.  We found that this type of false positive error 

hardly increases the overall false discovery rate of g×eQTLs and therefore did not include it in 

Table C-1.  

   

2.4 Results 

2.4.1 Identification of QTLs that interact with environments  
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Because we aim to identify G×E in all 47×46/2 = 1081 environment pairs, a 

computationally efficient mapping method is needed.  To this end, we developed a customized 

rapid mapping method with a false discovery rate comparable to that of a previous method 

(BLOOM et al. 2013), and validated its performance by computer simulation (Table C-1; see 

Materials and Methods).  With the new method, we first identified QTLs underlying the among-

segregant growth rate variation in each environment using the genotype and phenotype data of 

the 1005 segregants.  The identified QTLs are denoted as gQTLs, where “g” stands for growth 

rate.  We were able to identify gQTLs in 45 of the 47 environments (File C-1).  The number of 

gQTLs ranges from 0 to 22 across the 47 environments, with the mean equal to 10.3.  We 

calculated the similarity between two environments by the across-segregant rank correlation 

between growth rates in the two environments.  The higher the similarity between two 

environments, the smaller the difference in the number of gQTLs mapped in these environments 

(Spearman’s ρ = -0.26, P < 10-17). 

We then attempted to identify loci exhibiting G×E (g×eQTLs) for each of the 1081 

environment pairs.  We used the gQTLs identified from each of the two environments under 

consideration and tested if a gQTL has significantly different effects in the two environments.  

This approach is based on the premise that a g×eQTL should have a phenotypic effect (though 

not necessarily significant) in at least one of the two environments compared.  We used this 

approach rather than directly testing each single nucleotide polymorphism (SNP) for G×E, 

because the former is expected to have a higher signal to noise ratio such that the identified 

g×eQTLs are more likely to be genuine.  This expectation was confirmed by computer 

simulation.  Specifically, the false discovery rate was lower and the identified g×eQTLs were 

closer to the causal SNPs when comparing our approach with directly testing all SNPs for G×E 
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(Tables S1, S2; see Materials and Methods).  Nevertheless, if the phenotypic effects of a locus in 

two environments are both small, the locus may be detected as a gQTL in neither environment.  

Thus, even if the locus has a significant G×E effect, it may be missed by our approach.  To 

rectify this problem, we also directly mapped G×E for all SNPs but considered only those that 

are on chromosomes where no gQTL in the relevant environments was found by the first 

approach (see Materials and Methods).  We focused on these chromosomes because it would 

otherwise be unclear if g×eQTLs identified by the two approaches reflect the same causal SNPs, 

owing to strong linkage of SNPs within a chromosome, and because the performance in 

detecting g×eQTLs is better for the first approach than the second approach.  The g×eQTLs 

identified by the two approaches are respectively referred to as class I and class II g×eQTLs.  

Considering the total length of chromosomes where class II g×eQTLs are considered and the 

total length of all yeast chromosomes, we extrapolated the expected number of class II g×eQTLs 

for the entire genome from that of the considered ones.  They are respectively referred to as the 

extrapolated number and the observed number of class II g×eQTLs. 

 

2.4.2 Class I g×eQTLs outnumber class II g×eQTLs 

As an example, let us examine the gQTLs respectively identified under two environments: 

hydrogen peroxide (HydPer) medium and indoleacetic acid (IndAci) medium, as well as the 

g×eQTLs identified for this pair of environments (Fig2-1A).  There are 9 gQTLs identified in 

HydPer and 13 identified in IndAci.  The RM allele is fitter than the BY allele at 13 gQTLs, 

while the opposite is true at the other 9 gQTLs.  We identified 8 class I g×eQTLs and observed 1 

class II g×eQTL.  Some clear examples of various types of G×E, not necessarily from the above 

environment pair, are shown in Fig2-1B-F.  In these examples, g×eQTLs are found on 



44 
 

chromosomes with at most one mapped gQTL, so the difference in mean growth rate between 

genotypes of alternative alleles likely represents primarily the g×eQTL effect without influences 

from linked gQTLs.  For instance, Fig2-1B shows a gQTL identified from both 5-fluorouracil 

(5FluUra) and calcium chloride (CalChl) but with alternative fitter alleles.  Not surprisingly, it is 

a class I antagonistic g×eQTL (i.e., the effects of an allele in the two environments are of 

opposite directions).  Fig2-1C shows a gQTL identified from both 5FluUra and Xylose.  

Although the RM allele is the fitter allele in both environments, the effect size differs; this QTL 

is thus a concordant class I g×eQTL (i.e., the effects of an allele in the two environments are of 

the same direction).  Fig2-1D shows a gQTL identified in only one of the two environments 

(lithium chloride, or LitChl), and it is a class I antagonistic g×eQTL.  Fig2-1E shows a gQTL 

identified in 5FluUra but not in 5-fluorocytosine (5FluCyt), and it does not have a significant 

G×E effect between the two environments.  Fig2-1F shows a locus that is not a gQTL in either 

5FluCyt or hydrogen peroxide (HydPer), but is a class II g×eQTL.   

The numbers of gQTLs, class I g×eQTLs, and observed class II g×eQTLs found in each 

3cM (7500-nucleotide or 4-gene) segment along the yeast genome for all environments and 

environment pairs considered are presented in Fig2-2.  The total number of gQTLs identified 

from 47 environments in a 3cM segment ranges from 0 to 17 (Fig2-2A).  The number of class I 

g×eQTLs from all environment pairs in a 3cM segment ranges from 0 to 374 (Fig2-2B), while 

the corresponding number of observed class II g×eQTLs ranges from 0 to 13 (Fig2-2C).  The 

numbers of gQTLs and class I g×eQTLs across 3cM segments are highly correlated (Pearson’s r 

= 0.901, p <10-250), while those of gQTLs and class II g×eQTLs are distinct (r = 0.011, p = 0.67) 

(Fig2-2).  On average, there are 9.2 class I g×eQTLs but only 0.37 observed class II g×eQTLs 

per environment pair, the former being significantly greater than the latter (p < 10-250).  The same 
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trend is observed when extrapolated instead of observed class II g×eQTLs are considered (p < 

10-161).  We tested three genes (HAP1, MKT1, and IRA2) that accounted for much of the 

deviation from null in a previous gene expression G×E study of the same strain pair between 

glucose and ethanol environments (SMITH and KRUGLYAK 2008).  Interestingly, these genes 

locate in 3cM segments frequently harboring gQTLs and class I g×eQTLs in our study as well.  

Specifically, IRA2, encoding a GTPase-activating protein that modulates the metaphase to 

anaphase transition during yeast mitosis (LUO et al. 2014), overlaps with the segment that has the 

highest numbers of gQTLs and class I g×eQTLs among all segments (Fig2-2).  All class I 

g×eQTLs mapped are listed in File C-2. 

 For each environment pair, we computed the ratio between the number of class I 

g×eQTLs and the total number of unique gQTLs (i.e., shared gQTLs between the environments 

are counted only once) identified (Fig2-3A).  The ratio averages 0.45 across all environment 

pairs.  Many human studies tested G×E by considering candidate genes that are previously 

known or predicted to have effects in at least one of the environments compared (DUNCAN and 

KELLER 2011).  Across environment pairs in our data, on average 87% of all g×eQTLs (i.e., class 

I g×eQTLs plus extrapolated class II g×eQTLs) are class I (Fig2-3B), supporting the validity of 

this practice.  The number of g×eQTLs for a pair of environments is on average 0.58 times the 

total number of unique gQTLs in these environments (Fig2-3C), indicating the high abundance 

of G×E.  

 

2.4.3 Antagonistic G×E is uncommon  

Previous case studies in Escherichia coli, Drosophila melanogaster, and Arabidopsis 

thaliana suggested the scarcity of antagonistic G×E involving natural genetic polymorphisms 
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(FRY et al. 1998; EL-SODA et al. 2014; DILLON et al. 2016), but the data were all small and thus 

the generality of these observations is unclear.  The large yeast data analyzed here appear to 

show the same pattern.  A g×eQTL is considered antagonistic between two environments if the 

BY allele is fitter than the RM allele in one environment while the RM allele is fitter than the BY 

allele in the other environment, even if the difference is statistically significant in neither 

environment.  Otherwise, the g×eQTL is considered concordant between the two environments.  

Thus, purely by chance, we would expect a g×eQTL to be equally likely to be antagonistic and 

concordant.  However, on average only 28% of class I g×eQTLs are antagonistic, significantly 

lower than the null expectation (P < 10-250, binomial test; Fig2-4A).  Among the observed class II 

g×eQTLs, 94% are antagonistic, which is not unexpected, because a concordant g×eQTL should 

have a significant effect in at least one of the environments and thus is unlikely to be of class II.  

Because class I g×eQTLs substantially outnumber class II g×eQTLs (Fig2-2), only 37% of all 

g×eQTLs are antagonistic (P < 10-171, binomial test), under the assumption that antagonism is 

equally frequent among the observed and extrapolated class II g×eQTLs.  

 

2.4.4 Large-effect QTLs are more likely than small-effect QTLs to be antagonistic  

A previous study of yeast gene deletions identified many antagonisms between 

environments (QIAN et al. 2012), seemingly contrasting the scarcity of antagonism of natural 

polymorphisms surveyed in the present study.  Because gene deletions should on average have 

larger phenotypic effects than natural polymorphisms, a potential explanation of the disparity in 

the frequency of antagonism may be that large-effect mutations are more likely than small-effect 

mutations to be antagonistic.  To directly test this hypothesis, for each gQTL, we counted the 

number of environments where its effect is opposite to the effect in the environment where the 
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gQTL was detected.  Indeed, the larger the effect of a gQTL, the higher the likelihood that it has 

an antagonistic effect in another environment (ρ = 0.14, P < 10-4; Fig2-4B).  

 

2.4.5 Prevalence of antagonism varies among environments 

To study whether antagonism is enriched in certain environments, for each pair of 

environments, we calculated the fraction of class I g×eQTLs that are antagonistic.  If this fraction 

is 0, we say that this pair of environments is non-antagonistic to each other.  Similarly, if this 

fraction ≥ 0.5, these two environments are highly antagonistic to each other.  We counted the 

number of times that each environment is said to be non-antagonistic and the number of times 

that it is said to be highly antagonistic to another environment.  We then respectively computed 

the mean number of times that an environment is non-antagonistic and the mean number of times 

that an environment is highly antagonistic.  Environments showing two or more times the mean 

number of non-antagonism are galactose, caffeine, 4-hydroxybenzaldehyde, calcium chloride, 

mannose, menadione, and YNB (Fig2-4C), whereas those exhibiting two or more times the mean 

number of high antagonism are cadmium chloride, copper, hydrogen peroxide, and 

cycloheximide (Fig2-4D).  A potential explanation of the among-environment variation in the 

prevalence of antagonism is that antagonisms may have been resolved by natural selection in 

commonly encountered environments but not so in rarely encountered environments (QIAN et al. 

2012).  However, to what extend the environments in Fig2-4C are more common than the 

environments in Fig2-4D is unknown, due to the paucity of the ecological information of yeast.  

Another possibility, non-mutually exclusive from the above, is that some environments are more 

dissimilar to other environments and hence exhibit more antagonism.  In support of the latter 
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hypothesis, the fraction of antagonistic class I g×eQTLs between two environments negatively 

correlates with their environment similarity (ρ = -0.61, P < 10-110).  

 

2.4.6 Distributions of gQTLs and g×eQTLs across the genome 

To understand the molecular basis of G×E, we first categorized all 28,220 SNPs between 

BY and RM strains into coding SNPs, intronic SNPs, and intergenic SNPs.  We merged gQTLs 

from all environments and merged class I g×eQTLs from all environment pairs.  A gQTL or 

g×eQTL is counted as many times as it appears in the merged list.  Table 2-1 summarizes the 

results of enrichment tests for each genomic category.  Compared with all SNPs, gQTLs are not 

significantly different in frequency distribution among coding, intronic, and intergenic regions 

(Table 2-1).  Relative to gQTLs, class I g×eQTLs are two-fold more likely to be in introns (P = 

2.2×10-7; Table 2-1), suggesting that yeast introns are more important in regulating environment-

dependent growth rates than environment-independent growth rates. 

We also analyzed the distributions of gQTLs and g×eQTLs among synonymous, 

nonsynonymous, and nonsense SNPs within coding regions.  A synonymous SNP does not alter 

the amino acid encoded by the codon where the SNP resides, whereas a nonsynonymous SNP 

alters the amino acid.  A nonsense SNP changes a sense codon in one strain to a stop codon in 

another.  Relative to all SNPs, gQTLs are more likely to occur at nonsynonymous SNPs (1.125 

fold, P = 0.03) and are less likely to occur at synonymous SNPs (0.896 fold, P = 0.02).  This 

observation is not unexpected, because nonsynonymous mutations are more likely than 

synonymous mutations to have phenotypic effects.  Relative to gQTLs, g×eQTLs are more likely 

to occur at synonymous SNPs (1.070 fold, P = 9.6×10-9), but are less likely to occur at 

nonsynonymous (0.935 fold, P = 2.5×10-7) and nonsense (0.826 fold, P = 0.0265) SNPs, 
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suggesting that nonsynonymous and nonsense mutations tend to have universal rather than 

environment-specific growth effects, when compared with synonymous mutations.  Among all 

g×eQTLs, we analyzed only class I g×eQTLs here, because the number of class II g×eQTLs is 

small and because our simulation (Table C-1) showed that mapping is less precise for class II 

g×eQTLs. 

 Note that because the gQTLs and g×eQTLs identified may not be causal SNPs but are 

simply linked with causal SNPs, the above analysis has a lower statistical power than when 

causal SNPs are used in the analysis.  In our simulation, >31% of gQTLs and >29% of class I 

g×eQTLs are mapped to causal SNPs (Table C-1), suggesting that a sizable proportion of 

mapped sites are causal, explaining why our test is not entirely powerless.  Thus, the significant 

results obtained are likely to be genuine and the conclusions conservative.  

 

2.4.7 Different GO distributions of gQTLs and g×eQTLs 

Gene ontology (GO) annotation is organized into three domains: cellular component, 

molecular function, and biological process (ASHBURNER et al. 2000).  Each domain contains 

many GO terms, which may be a word or string of words related to gene function.  A gene is 

annotated for all three domains and one to many terms in each domain on the basis of its product 

and function.  We examined the enrichment of gQTLs and g×eQTLs for GO domains and terms 

(Table 2-2).  Note that intergenic SNPs were assigned to their closest genes.  We compared 

gQTLs to the background of all SNPs and compared class I g×eQTLs to the background of all 

gQTLs, using binomial tests followed by Bonferroni corrections with a corrected P = 0.05 as the 

cutoff.  Compared with all SNPs, gQTLs are not enriched in any GO domain but are significantly 

enriched in 24 GO terms (File C-3).  gQTLs are not underrepresented in any GO domain or GO 
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term.  These results suggest that gQTLs are overall annotated with more functions than average 

SNPs.  Relative to gQTLs, class I g×eQTLs are enriched in the GO domain cellular component 

(P = 0.028), suggesting that proteins encoded by g×eQTLs have relatively more locations in the 

cell or are relatively better annotated for cellular component.  Class I g×eQTLs are significantly 

underrepresented in biological process (P = 4.2×10-6) and molecular function (P = 3×10-6), when 

compared with gQTLs.  Strikingly, of the 848 GO terms that contain at least one gQTL, 

g×eQTLs are enriched in 137 of them and are underrepresented in 139 (File C-3).  Of the GO 

terms enriched in gQTLs, 4 terms are further enriched in g×eQTLs (Table 2-2), and four are 

underrepresented.  Thus, the functional distributions of gQTLs and class I g×eQTLs are quite 

different, despite that the latter constitutes a large subset of the former.  One potential bias in the 

above GO enrichment analysis of gQTLs is that SNPs are not evenly distributed along genes and 

chromosomes.  To rectify this problem, we also tested GO enrichment of gQTLs against all 

genes instead of all SNPs, by assigning each gQTL to its closest gene.  The enriched GO terms 

(File C-4), however, remained largely the same. 

 

2.4.8 Antagonistic and concordant g×eQTLs have different genomic and functional 

enrichments 

 Comparing antagonistic and concordant class I g×eQTLs, we found no significant 

difference in their frequency distributions among coding, intronic, and intergenic regions (Table 

2-3).  However, within coding regions, antagonistic g×eQTLs are enriched at synonymous (P = 

9.7×10-9, chi-squared test) and nonsense SNPs (P = 2.7×10-7) but underrepresented at 

nonsynonymous SNPs (P = 7.6×10-13), when compared with concordant g×eQTLs.   
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 Antagonistic and concordant g×eQTLs show significantly different enrichments for two 

GO domains, biological process (adjusted P = 4.2×10-4, chi-squared test; File C-5) and cellular 

component (adjusted P = 1.4×10-6).  They are also significantly different in 187 of 907 GO terms 

that have at least one occurrence in class I g×eQTLs (File C-5).  Interestingly, two (ribosomal 

small subunit biogenesis and 90S preribosome) of the five GO terms significantly enriched in 

both gQTLs and g×eQTLs are the top two terms that differ significantly between antagonistic 

and concordant g×eQTLs; they each occur 325 times in concordant g×eQTLs but 0 time in 

antagonistic g×eQTLs.  This result suggests that, although differences in translation underlie 

g×eQTLs, these differences mostly have concordant G×E effects. 

  

2.4.9 Ignoring G×E causes missing heritability 

“Missing heritability” refers to the gap between the phenotypic variance explained by 

GWAS results and those estimated from classical heritability methods (ZAITLEN and KRAFT 

2012) and is a prominent problem in the study of human complex traits that has attracted much 

attention (MANOLIO et al. 2009; EICHLER et al. 2010).  G×E has been proposed as a potential 

cause for the missing heritability problem (MANOLIO et al. 2009; EICHLER et al. 2010).  Because 

heritability is classically estimated from relatives such as by comparing monozygotic (MZ) and 

dizygotic (DZ) twins, the effect of environmental heterogeneity for a twin is canceled in the 

comparison between MZ and DZ twins and has no effect on the heritability estimate.  However, 

in human GWAS, the environmental effect and G×E effect are rarely controlled, which could 

lower the power in identifying the underlying genetic variants and render the estimation of effect 

size inaccurate.  To quantitatively evaluate the contribution of ignoring G×E to the missing 

heritability problem, we conducted a simulation using the yeast data.  That is, for one half of the 
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segregants, we used their phenotypes measured in one environment, but for the other half of the 

segregants, we used their phenotypes measured in another environment.  We then attempted to 

identify gQTLs as if all segregants were phenotyped in the same environment.  We did this 

simulation for 100 random pairs of environments.  An example is provided in Fig2-5A, where 

the phenotype data are from YNB at 30°C and YPD at 37°C.  Ten and eight gQTLs were 

identified from 1005 segregants in YNB and YPD, respectively.  But only two gQTLs were 

identified from the mixture of the phenotype data of 502 segregants in YNB and 503 segregants 

in YPD, although these two gQTLs are a subset of the 18 gQTLs identified from the individual 

environments.  When the phenotype data of the 1005 segregants are all from either YNB or YPD 

but not both, the identified gQTLs together can explain on average 54% of the total phenotypic 

variance observed among the segregants.  This number reduces to 26% when the mixed 

phenotype data are used (green dots in Fig2-5A).  To distinguish between the environmental 

effect and G×E effect on gQTL identification, we conducted another analysis, in which the 

phenotypic value of a segregant in an environment is defined by the difference between its raw 

phenotypic value and the mean phenotypic value of all segregants in that environment.  We then 

mixed these normalized phenotypic values from two environments to identify gQTLs.  We found 

that such normalization improves gQTL identification, because the number of gQTLs identified 

rises to six, although this number is still smaller than when homogenous data are used.  The total 

variance of normalized phenotypes explained rises to 42%.  The remaining difference between 

this result (light salmon symbols in Fig2-5A) and the original result (blue and red symbols in 

Fig2-5A) is attributable to G×E.       

On average across the 100 random pairs of environments, the identified gQTLs explain 

40% of the total phenotypic variance among segregants under one environment.  When mixed 
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phenotypic data from two environments are used, this number drops to 10% (Fig2-5B).  When 

phenotypic data are normalized by the mean phenotypic value of the environment, the fraction of 

phenotypic variance explained is 23% (Fig2-5B).  Hence, in this dataset, environmental effects 

and G×E effects have similar amounts of contribution to missing heritability.  We also conducted 

100 simulations where the phenotype data are generated from 5 and 10 environments, 

respectively.  As the number of environments increases, the amount of missing heritability rises, 

the contribution of G×E to missing heritability increases, and the contribution of environmental 

effects decreases (Fig2-5B).  

We further calculated the distances between the gQTLs identified using the mixed 

phenotypes from two environments and the nearest gQTLs identified using phenotypes from 

individual environments for all 100 random pairs of environments (Fig2-5C).  We found that 

although noise is larger in mixed environments, the identified sites are generally closely linked to 

the gQTLs identified from individual environments.  This is true both with and without 

controlling the environmental effect.  What types of gQTLs are under-detected using mixed 

phenotype data?  On the basis of the same 100 pairs of environments examined, we found that on 

average 23.6% of gQTLs having the same direction of effect in the two environments and 12.7% 

of gQTLs having opposite directions of effect were detected using the mixed data, when the 

environmental effect is uncontrolled (P = 7.1×10-14, t-test of equal probability of detection for 

the two groups of gQTLs).  These numbers increase to 52.0% and 33.8%, respectively, upon the 

control of the environmental effect (P < 8.5×10-6).  Thus, while all gQTLs are under-detected 

using mixed phenotype data, those with opposite effects in the two environments suffer more 

than those with the same direction of effect.    
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In human GWAS, larger and larger samples are being used despite that enlarging samples 

likely increase environmental heterogeneity of the sample.  To study this effect, we merged the 

phenotype data from all 47 environments, resulting in a sample of 42,781 individuals; this 

number is lower than 47×1005 = 47,325 because not all 1005 individuals had growth data in all 

47 environments.  Using this very large sample, we were able to mapped 21 gQTLs, more than 

the number of gQTLs mapped from any one of the 47 environments.  Some of the mapped 

gQTLs overlapped with the gQTLs frequently identified in individual environments (FigC-1), 

suggesting that using large samples in GWAS might help identify influential loci that have 

effects in multiple environments.  Nevertheless, the fraction of phenotypic variance explained by 

all mapped sites is only 2.5%, similar to that when a sample of 1005 segregants, each fifth 

originating from a different environment, is used, and much lower than that when a sample of 

1005 segregants from the same environment is used (Fig2-5B).  Clearly, the “missing heritability” 

problem worsens when enlarging samples also increases environmental heterogeneity.   

 

2.5 Discussion 

We conducted a systematic analysis of interaction between natural genetic variants and 

environments in yeast growth, and identified numerous g×eQTLs.  The average number of 

g×eQTLs identified between two environments is 0.58 times the number of unique gQTLs 

identified in the two environments, indicating a high abundance of G×E.  It is debated whether 

testing all pairs of SNPs or testing only those with effects in at least one of the environments 

concerned is more suitable for G×E detection (DUNCAN and KELLER 2011; UHER 2014).  Our 

computer simulation showed that using the latter approach has the benefit of lowering the false 

discovery rate and increasing the chance of finding causal variants.  Although our simulation 



55 
 

also indicated that the latter approach has a higher false negative rate than the former approach, 

our yeast data analysis found that 88% of g×eQTLs could be identified from gQTLs.  Similar 

results were obtained when the larger data of Bloom et al. (2015) were analyzed (FigC-2).  

Together, these findings support the current practice in human genetics of using genes or QTLs 

known to have effects in at least one of the environments concerned as candidates in the study of 

G×E.  The gQTL mapping method and G×E detection method developed here are expected to 

suit other similar large-scale studies of G×E.  In our computer simulation, we found that both 

Storey and Tibshirani Q-value (STOREY and TIBSHIRANI 2003) and permutation Q-value 

(DOERGE and CHURCHILL 1996) underestimate the false discovery rate.  This underestimation 

may be a general problem in linkage mapping of complex traits, suggesting the importance of 

using computer simulation to assess false discovery rates.   

We found that most G×E interactions are concordant, suggesting that the fitness 

landscapes in different environments examined are positively correlated such that a mutation that 

is beneficial in one tested environment tends to be beneficial in other tested environments.  

Nevertheless, we detected a few environments with unusually high degrees of antagonistic G×E, 

such as those with trace minerals or heavy metals.  Because we observed a negative correlation 

between the fraction of antagonistic g×eQTLs and environmental similarity, it is likely that these 

antagonism-rich environments are relatively dissimilar to the other environments examined.  The 

antagonism-rich environments may also be rarely encountered by yeast in nature such that 

antagonism has not had chance to be resolved by natural selection.  We did not attempt to verify 

the disparity in antagonism among environments using the data of Bloom et al. (2015), because 

only 3 of the 11 environments in Fig2-4C and D are included in this dataset.  The fact that the 

extent of antagonism depends on the tested environments illustrates the importance in carefully 
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choosing environments in testing the potential antagonism of beneficial mutations observed in 

experimental evolution (OSTROWSKI et al. 2005; WENGER et al. 2011; BEDHOMME et al. 2012; 

DILLON et al. 2016).   

We observed that large-effect gQTLs identified in one environment are more likely than 

small-effect gQTLs to have antagonistic effects in another environment, reminiscent of the 

common belief and a prediction of Fisher's geometric model (FISHER 1930) that large-effect 

mutations are more likely than small-effect mutations to be deleterious.  Our observation predicts 

that the prevalence of detected antagonism will decrease with the power of g×eQTL mapping, 

because, as the power increases, g×eQTLs of smaller and smaller effects are mapped.  This 

prediction is confirmed by using the larger data from Bloom et al. (2015), where the fraction of 

antagonistic g×eQTLs is found to be even lower (FigC-3).  Note, however, that we studied 

growth rate, a primary component of fitness, in this work.  For traits that are irrelevant to fitness, 

antagonism patterns may be different because they are not subject to natural selection. 

We tested the enrichment of different functional sites of the yeast genome as well as 

different GO categories in g×eQTLs and gQTLs.  We found that gQTLs are enriched with 

nonsynonymous SNPs, similar to the collective finding from human GWAS studies (HINDORFF 

et al. 2009).  Relative to gQTLs, g×eQTLs are more likely to occur at intronic SNPs.  We 

confirmed the enrichment of nonsynonymous SNPs in gQTLs and enrichment of intronic SNPs 

in g×eQTLs (Table C-3) using the data from Bloom et al. (2015).  Concordant and antagonistic 

g×eQTLs also have different distributions among the three categories of coding SNPs, with 

concordant g×eQTLs enriched at nonsynonymous SNPs and antagonistic g×eQTLs enriched at 

synonymous and nonsense SNPs.  Bloom et al.'s (2015) data showed the same patterns except 

that the distribution of nonsense SNPs is not significantly different between concordant and 
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antagonistic g×eQTLs (Table C-4).  These results suggest different molecular basis of 

concordant and antagonistic G×E.  We also found g×eQTLs to be enriched in GO terms on 

ribosome and translation (Table 2-2), which is potentially related to the aforementioned 

enrichment in introns, because introns are concentrated in ribosomal protein genes in yeast 

(PARENTEAU et al. 2011).  The correlation between ribosomal protein gene expression and 

growth rate is well known (MAGER and PLANTA 1991), and the comparisons between gQTLs and 

g×eQTLs and between antagonistic and concordant g×eQTLs using the data from Bloom et al. 

(2015) suggest the possibility that intronic SNPs affect ribosomal protein gene expression, which 

potentially affects growth rate differently in different environments.  Specifically, introns from 

four genes (TUB3, PFY1, RPL34B, and RPL40B) are found to harbor gQTLs.  While concordant 

intronic g×eQTLs are found in all of the four genes, antagonistic intronic g×eQTLs are found 

only in the two ribosomal protein genes (RPL34B and RPL40B).  Using the data of Bloom et al. 

(2015), we found that 38 GO terms are enriched in gQTLs while only 1 GO term is 

underrepresented, confirming that gQTLs are overall annotated with more functions than average 

SNPs.   

Our yeast data-based simulation of mixed environments revealed the importance of 

considering G×E in QTL mapping and by extension association studies.  Neglecting 

environmental heterogeneity in the data substantially reduces the number of QTLs identified and 

results in missing heritability.  Many human genetic association studies ignore the fact that 

different individuals have different environments, and our results suggest that failure to account 

for environmental heterogeneity could be a primary reason underlying the missing heritability 

phenomenon.  Another commonly cited cause of missing heritability is epistasis, or gene by gene 

interaction (G×G).  But recent studies found that failure to consider G×G is not a primary cause 
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of missing heritability (BLOOM et al. 2013; BLOOM et al. 2015).  In model organism studies, 

where the environment tends to be well controlled, missing heritability tends to be mild.  But, in 

human GWAS, where environments are hard to control, missing heritability is severe (EICHLER 

et al. 2010).  This contrast, coupled with our simulation results, suggests that missing heritability 

in human GWAS may be primarily due to ignoring environmental factors and/or G×E.  We 

showed in our simulation that using very large samples could help identify more influential loci 

when compared with small samples of environmental homogeneity, but the “missing heritability” 

problem is exacerbated if enlarging samples means increasing the environmental heterogeneity 

of the sample.  Although it is impossible to have different human individuals living in exactly the 

same environment, even partially controlling environments helps identify disease-associated 

alleles.  For example, in GWAS of type II diabetes, controlling for obesity in statistical analysis 

helps identify new disease-associated variants (ZEGGINI et al. 2008).  This kind of controlling of 

environmental/physiological factors will help identify new trait-associated genetic variants and 

reduce missing heritability.  Notwithstanding, because classical estimation of heritability is 

minimally affected by environmental heterogeneity while modern GWAS is subject to 

potentially high environmental heterogeneity, the "missing heritability" due to this difference 

may be considered fictional (HECKERMAN et al. 2016).  Better estimation of heritability by 

considering environmental heterogeneity will help gauge the true missing heritability in GWAS 

(HECKERMAN et al. 2016). 
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Figure 2-1.  Examples of gQTLs and g×eQTLs.  (A) Genomic distributions of detected gQTLs 

in HydPer and IndAci and g×eQTLs between the two environments.  The effect size of a gQTL 

under the environment where it is identified is shown on the Y-axis, while its genomic position is 

shown on the X-axis.  A class I g×eQTL is circled at the triangle if it is a gQTL only in HydPer 

and circled at the star if it is a gQTL only in IndAci, but is circled on the X-axis if it is a gQTL in 

both environments.  Observed class II g×eQTLs are indicated on the X-axis.  (B)-(F) Mean 

growth rates of segregants carrying the two alternative alleles at various gQTLs or g×eQTLs.  

Standard errors are too small to see.  Panel (B) shows a class I antagonistic g×eQTL that is a 

gQTL (SNP: 24637) in both 5FluUra and CalChl.  Panel (C) shows a class I concordant g×eQTL 

(SNP: 24651) that is a gQTL in both 5FluUra and Xylose.  Panel (D) shows a class I g×eQTL 

that is a gQTL (SNP: 4821) in LitChl but not 5FluUra.  Panel (E) shows a gQTL (SNP: 2277) in 
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5FluUra that does not show significant G×E.  Panel (F) shows a class II antagonistic g×eQTL 

(SNP: 3512), which is a gQTL in neither 5FluCyt nor HydPer.  
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Figure 2-2.  Genomic distributions of (A) gQTLs, (B) class I g×eQTLs, and (C) observed class 

II g×eQTLs.  The genome is divided into 7500-nucleotide bins.  The total number of gQTLs 

from all 47 environments, the total number of class I g×eQTLs from all 1081 pairs of 

environments, and the total number of observed class II g×eQTLs from all 1081 pairs of 

environments are plotted for each bin.  The 16 chromosomes are colored differently.  Three 

genes referred to in the main text are marked according to their genomic locations. 
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Figure 2-3.  Relative numbers of g×eQTLs and gQTLs from all pairs of environments.  (A) 

Frequency distribution of the fraction of unique gQTLs identified from two individual 

environments that are class I g×eQTLs for the pair of environments.  (B) Frequency distribution 

of the fraction of all g×eQTLs (i.e., class I + extrapolated class II) that are class I.  (C) Frequency 

distribution of the ratio between the number of all g×eQTLs for a pair of environments and the 

total number of unique gQTLs identified in the two environments. 
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Figure 2-4.  Patterns of antagonistic G×E.  (A) Frequency distribution of the fraction of class I 

g×eQTLs that are antagonistic.  (B) gQTLs with large effects in the environments where they are 

identified are more likely than small-effect gQTLs to have antagonistic effects in another 

environment.  Error bars indicate one standard error.  The rank correlation ρ and associated P-

value are based on the unbinned data.  (C) Environments that are underrepresented with 
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antagonistic g×eQTLs with other environments.  The X-axis shows the number of environments 

with which an environment listed on the Y-axis has no antagonistic class I g×eQTL.  (D) 

Environments that are enriched with antagonistic g×eQTLs with other environments.  The X-axis 

shows the number of environments with which an environment listed on the Y-axis has more 

than 50% of class I g×eQTLs being antagonistic.  
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Figure 2-5.  Ignoring G×E causes "missing heritability".  (A) The genomic distributions of 

gQTLs identified from phenotypes measured in one environment and those measured in two 

environments (50% segregants from each environment), respectively.  Y-axis shows the fraction 

of phenotypic variance explained by the identified gQTLs under each mapping scheme.  E effect, 

environmental effect.  Without controlling E effect means that neither environmental effect nor 

G×E is considered in mapping.  Controlling E effect means environmental effect but not G×E is 

considered in mapping.  (B) Average faction of phenotypic variance explained by gQTLs (r2) 

decreases as the phenotypic data used originate from more environments.  The average narrow-
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sense heritability is 0.55.  2E, phenotypic data are from a mixture of two environments; 5E, 

phenotypic data are from a mixture of five environments; 10E, phenotypic data are from a 

mixture of 10 environments.  Results are summarized from 100 random sets of 2, 5, and 10 

environments, respectively.  (C) Frequency distribution of the distance between gQTLs 

identified using mixed phenotypes from two environments and those identified using phenotypes 

from individual environments.  The results are summarized from 100 random pairs of 

environments.  
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Table 2-1. Distributions of gQTLs and class I g×eQTLs across various genomic regions 

Genomic regions  
All SNPs1  All gQTLs2  Class I g×eQTLs3  
Frequency Frequency P-value4 Frequency P-value5 

 

Intronic   0.008  0.004 0.2804  0.008 2.2×10-7  
Intergenic   0.331  0.344 0.2548  0.324 1.0×10-5  

 

Coding   0.656  0.643 0.2927  0.665 2.3×10-6  
 Synonymous  0.558  0.500 0.0234  0.535 9.6×10-9  
 Nonsynonymous  0.425  0.478 0.0265  0.447 2.5×10-7  
 Nonsense  0.018  0.023 0.1859  0.019 0.0265  

1Total number of SNPs is 28,220. 
2Total number of gQTLs is 552. 
3Total number of class I g×eQTLs is 18,186. 
4Comparison with all SNPs using a binomial test. 
5Comparison with all gQTLs using a binomial test. 
 
 

  



72 
 

Table 2-2. Significantly overrepresented gene ontology (GO) domains and terms 

GO category 
All SNPs1  All gQTLs2  Class I g×eQTLs3  
Frequency Frequency P-value4 Frequency P-value4 

  

GO domains         

 

cellular component 0.692  0.685 1  0.696 0.028  
biological process 0.755  0.790 0.087   0.771 4.2×10-6   
molecular function 0.819  0.842 0.23   0.825 3.0×10-6   

     GO terms5 

 

 

        

 

GDP binding 7.1×10-5  6.2×10-3 1.9×10-4   1.2×10-2 3.2×10-9   
sequence-specific DNA binding 

transcription factor activity 
2.5×10-2  6.4×10-2 4.1×10-3  7.5×10-2 1.3×10-4   

ribosomal small subunit 
biogenesis 

3.4×10-3 
 

2.7×10-2 7.7×10-6  
 

3.3×10-2 7.3×10-3  

90S preribosome 5.3×10-3  2.7×10-2 1.6×10-3   3.3×10-2 7.3×10-3  
1Total number of SNPs is 28,220. 
2Total number of gQTLs is 552. 
3Total number of class I g×eQTLs is 18,186. 
4Based on a binomial test followed by multiple-testing correction. gQTLs are compared with all SNPs while class I 
g×eQTLs are compared with all gQTLs.  
5Shown are GO terms significantly enriched in both gQTLs (relative to all SNPs) and class I g×eQTLs (relative to 
gQTLs). 
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 Table 2-3. Distributions of antagonistic and concordant class I g×eQTLs across various genomic 
regions 

Genomic regions  
 Antagonistic  Concordant  P-value1  

Frequency Occurrences Frequency Occurrences 

 

Intronic  0.0059        16  0.0084 61  0.2083 
Intergenic  0.3370 910  0.3194 2316  0.0939 

 Coding  0.6556 1770  0.6685 4848  0.2236 

 

 Synonymous  0.5927 1049  0.5132 2488  9.7×10-9 
 Nonsynonymous  0.3740 662  0.4730 2293  7.6×10-13 
 Nonsense  0.0333 59  0.0138 67  2.7×10-7 

1Based on a chi-squared test.  
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Chapter 3 

Gene by gene interaction:  

patterns and mechanisms of diminishing returns from beneficial mutations 

 

“Knowledge is the only instrument of production that is not subject to diminishing returns.” 

— John Maurice Clark

3.1 Abstract 

Diminishing returns epistasis causes the benefit of the same advantageous mutation 

smaller in fitter genotypes, and is frequently observed in experimental evolution.  However, its 

occurrence in other contexts, environment-dependence, and mechanistic basis are unclear.  Here 

we address these questions using 1005 sequenced segregants generated from a yeast cross.  

Under each of 47 examined environments, 63-95% of tested polymorphisms exhibit diminishing 

returns epistasis.  Surprisingly, improving environment quality also reduces the benefits of 

advantageous mutations even when fitness is controlled for, indicating the inadequacy of the 

global epistasis hypothesis.  We propose that diminishing returns originates from the modular 

organization of life where the contribution of each functional module to fitness is determined 
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jointly by the genotype and environment and has an upper limit, and demonstrate that our model 

predictions match empirical observations.  These findings broaden the concept of diminishing 

returns epistasis, reveal its generality and potential cause, and have important evolutionary 

implications.   

 

3.2 Introduction 

Diminishing returns epistasis refers to a reduction in the benefit of an advantageous 

mutation when it occurs in a relatively fit genotype compared with that in a relatively unfit 

genotype(GRIFFING 1950; JERISON AND DESAI 2015).  It is believed to explain at least in part why 

experimental evolution of microbes almost invariantly shows a decreasing speed of adaptation as 

the fitness of the population rises(WISER et al. 2013; COUCE AND TENAILLON 2015).  

Diminishing returns epistasis has been indirectly inferred from the dynamics of 

adaptation(MOORE et al. 2000; KRYAZHIMSKIY et al. 2009; PERFEITO et al. 2014; GOOD AND 

DESAI 2015) and directly demonstrated by engineering the same mutation in multiple strains of 

different fitnesses(MACLEAN et al. 2010; CHOU et al. 2011; KHAN et al. 2011; KRYAZHIMSKIY et 

al. 2014; WANG et al. 2016).  While diminishing returns epistasis appears common among fixed 

mutations in experimental evolution, it is unknown whether it is restricted to experimental 

evolution, where fixed beneficial mutations are de novo and tend to have large effects(ORR 2002; 

ROKYTA et al. 2005), or is also widespread among standing genetic variants.  Furthermore, how 

the pattern of diminishing returns epistasis varies across environments has not been investigated.  

Most importantly, the underlying cause of diminishing returns epistasis remains elusive.  A 

commonly considered hypothesis termed the global epistasis hypothesis posits that "the effect of 

each mutation depends on all other mutations, but only through their combined effect on fitness" 

and that “each individual beneficial mutation provides a smaller advantage in a fitter genetic 
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background”(KRYAZHIMSKIY et al. 2014).  Although this hypothesis is currently regarded as the 

leading description and explanation of diminishing returns epistasis(KRYAZHIMSKIY et al. 2014; 

WANG et al. 2016), to what extent it is true and why it may be true remain unanswered.  Note 

that the diminishing returns relationship between the activity of an enzyme and the flux of the 

relevant metabolic pathway is well explained by the metabolic control theory(KACSER AND 

BURNS 1981; DYKHUIZEN et al. 1987; CHOU et al. 2014), but this theory cannot explain 

diminishing returns epistasis arising from interactions among mutations of different genes.   

Here we develop a high-throughput method to investigate diminishing returns epistasis 

among standing genetic variants.  We report widespread diminishing returns epistasis from 

single nucleotide polymorphisms (SNPs) segregating in budding yeast, discover a novel type of 

diminishing returns that results from an improvement in environment quality, provide evidence 

that the origin and patterns of diminishing returns are best explained by the modular structure of 

life, and discuss evolutionary implications of these findings. 

 

3.3 Results 

3.3.1 Quantifying diminishing returns epistasis by comparing mean benefits in multiple 

genetic backgrounds 

Diminishing returns epistasis is conventionally demonstrated by showing that the same 

mutation causes a smaller growth rate increase in a relatively fit strain than in a relatively unfit 

strain(MACLEAN et al. 2010; CHOU et al. 2011; KHAN et al. 2011; KRYAZHIMSKIY et al. 2014; 

WANG et al. 2016).  If the observed diminishing returns epistasis is genuine and general, it 

should also be testable by comparing the mean benefits of the mutation in two sets of strains that 

differ in mean growth rate (see Methods).  Using this approach allows testing diminishing 
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returns epistasis for each nucleotide difference between the genomes of two organisms that can 

be crossed to produce a hybrid and its segregants, as long as the genotypes and growth rates of 

the segregants can be acquired.  For example, for an A/G polymorphism at a site, we can 

calculate the effect of substituting A with G by comparing the mean growth rate of segregants 

with genotype A (or AA for diploid segregants) and the mean growth rate of segregants with 

genotype G (or GG for diploid segregants) at the site, because the A segregants and G segregants 

are on average equivalent for the rest of their genomes due to random assortment and 

recombination in meiosis.  The above calculation can be separately performed in two sets of 

strains with different mean growth rates, allowing testing diminishing returns epistasis.  

We applied this method to a dataset that includes the genome sequences of 1005 haploid 

segregants produced from the hybrid between the BY and RM strains of the yeast 

Saccharomyces cerevisiae(BLOOM et al. 2013).  BY is derived from the widely used laboratory 

strain S288c, whereas RM is derived from the vineyard strain RM11-1a.  The dataset also 

includes the mean end-point colony radius of each segregant on agar plates in 47 environments, 

which vary in temperature, pH, carbon source, metal ions, and small molecules(BLOOM et al. 

2013).  We estimated the growth rate of a segregant in each environment using the corresponding 

colony radius (Fig D-1; see Methods).     

 

3.3.2 Widespread diminishing returns epistasis among standing genetic variants  

To demonstrate diminishing returns epistasis, we need to show that the mean benefit of a 

mutation in slow-growth segregants is greater than that in fast-growth segregants.  In each 

environment, we computed for each SNP the mean growth rate (RBY) of the 50 least fit BY-

allele-carrying segregants and that (RRM) of the 50 least fit RM-allele-carrying segregants (Fig 3-
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1a).  The effect of the SNP in the 100 slow-growth segregants is sL = |RBY - RRM|.  We similarly 

computed the mean growth rate (R'BY) of 50 fittest BY-allele-carrying segregants and that (R'RM) 

of 50 fittest RM-allele-carrying segregants (Fig 3-1a) and estimated the effect of the same SNP 

in the 100 fast-growth segregants by sH = |R'BY - R'RM|.  We distinguish between two types of 

diminishing returns.  The broad-sense diminishing returns is defined by sH < sL, while the 

narrow-sense diminishing returns has the additional requirement that the beneficial allele in the 

slow-growth segregants is also beneficial in the fast-growth segregants.  Results on narrow-sense 

diminishing returns are qualitatively similar to those on broad-sense diminishing returns and are 

described in Fig D-2.  Throughout this work, diminishing returns refers to broad-sense 

diminishing returns unless noted.    

Under the null hypothesis that the benefit of a mutation is independent of the growth rate 

of the genetic background, a SNP has a 50% chance to exhibit sH < sL.  Strikingly, in each of the 

47 environments studied, between g = 63% and 95% of the 28,220 SNPs tested show sH < sL (Fig 

3-1b), with an average of 80%.  Although the relationship between sH and sL for one SNP is not 

independent from that for a linked SNP, the estimated g in each environment is unbiased.  The 

non-independence among SNPs, however, makes it difficult to test if g significantly exceeds the 

chance expectation of 50% in each environment.  But, because the growth rates of all segregants 

were separately measured in different environments, the g values from different environments 

were estimated independently.  The observation that all 47 independently estimated g values 

exceed 50% has a binomial probability lower than 10-14 under the null hypothesis of g = 0.5, 

strongly suggesting a general presence of diminishing returns epistasis across environments.  

Relative to the null hypothesis, the excess in the probability of sH < sL in our data is G = g-(1-g) 

= 2g-1, which varies from 25% to 90% with a mean of 62% in the 47 environments.  We 
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confirmed that G is positive in each of the 47 environments when 150 or 70 instead of 100 

segregants were used to estimate each of sL and sH, indicating the robustness of our results.  

These observations demonstrate that diminishing returns epistasis is widespread among standing 

genetic variants.  We verified that our results are not an artifact of transforming colony radius to 

growth rate, because repeating the analysis using colony radius yielded similar results.  For 

instance, g varies from 0.49 to 0.89 in the 47 environments and is < 0.5 in only one environment 

(P < 10-14, N = 47, binomial test). 

Following a recent analysis of the same dataset(WEI AND ZHANG 2017), we mapped 

quantitative trait loci (QTLs) underlying the growth rate variation among the segregants (at a 

false discover rate of 0.05) in each of the 47 environments.  The number of QTLs identified 

ranged from 0 to 33 in the 47 environments, with a mean of 15.8 (WEI AND ZHANG 2017).  One 

environment has zero QTL and another has exactly 50% of QTLs exhibiting sH < sL.  Of the 

remaining environments, 39 showed sH < sL in over 50% of QTLs (P = 3.9×10-8, N = 45, 

binomial test) and 27 of them showed sH < sL in significantly more than 50% of QTLs (nominal 

P < 0.05).  By contrast, only 6 environments showed sH < sL in fewer than 50% of QTLs and 

only one environment showed sH < sL in significantly fewer than 50% of QTLs.  Thus, the 

prevalence of diminishing returns epistasis is also evident among SNPs known to have 

independent growth effects.  By bootstrapping the segregants used (see Methods), we confirmed 

that sH is significantly smaller than sL at the nominal P-value of 0.05 for 232 of a total of 741 

QTLs (107 significant QTLs after Bonferroni correction of multiple testing per environment).      

 

3.3.3 Fraction of SNPs exhibiting diminishing returns epistasis rises with environment 

quality 
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The varying g values among the 47 environments prompted us to investigate a potential 

role of the environment in influencing the prevalence of diminishing returns, which had not been 

previously studied(MACLEAN et al. 2010; CHOU et al. 2011; KHAN et al. 2011; KRYAZHIMSKIY 

et al. 2014; WANG et al. 2016).  We define the quality (Q) of an environment to the population of 

segregants considered by the mean growth rate of all segregants in the environment.  We found a 

positive association between Q and g (rank correlation ρ = 0.56, P = 6.5×10-5; Fig 3-1b), 

indicating that the prevalence of diminishing returns epistasis increases with environment quality.  

This result is robust to variation in the number of segregants used in estimating sL and sH.  For 

instance, ρ = 0.53 (P = 1.8×10-4) and 0.53 (P = 1.3×10-4), respectively, when 150 and 70 instead 

of 100 segregants were used.  This correlation also holds when colony radius instead of growth 

rate was analyzed (ρ = 0.67, P = 2.7×10-7).  In addition, a closer examination of four YPD 

environments with different temperatures shows a monotonically increasing relationship between 

Q and g (ρ = 1, P = 0.083; Fig D-3).  Q and g are also correlated when only QTLs are considered 

(ρ = 0.46, P = 0.0014) or only QTLs with significant diminishing returns are considered (ρ = 

0.58, P < 10-4).   

 

3.3.4 Prevalence of diminishing returns epistasis rises with environment quality even after 

the control of growth rate 

The positive correlation between Q and g may be caused by a potential among-

environment variation in growth rate disparity between the 100 least fit and 100 fittest segregants 

used for estimating sL and sH rather than the environment quality per se, because high-Q 

environments may have smaller growth rate disparities between the two extreme groups of 

segregants than those of low-Q environments (Fig D-1).  To distinguish between these two 
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scenarios, we calculated the fraction of SNPs exhibiting diminishing returns epistasis after 

respectively controlling for the median growth rate of the fast- and slow-growth groups of 

segregants across environments (Fig 3-1c).  Specifically, we first chose RH, a relatively high 

growth rate.  For each SNP and in each environment, we picked 25 least fit BY-allele-carrying 

segregants whose growth rates exceed RH and 25 fittest BY-allele-carrying segregants whose 

growth rates are below RH.  We similarly picked 50 RM-allele-carrying segregants with the 

median growth rate equal to RH.  We then estimated sH by the difference in mean growth rate 

between these 50 BY-allele-carrying and 50 RM-allele-carrying segregants.  We subsequently 

chose RL, a relatively low growth rate, and similarly estimated sL.  This way, the sH's in different 

environments were estimated using segregants with the same median growth rate; so were the 

sL's.  Hence, there is no among-environment difference in the disparity of median growth rate 

between the two groups of segregants used to estimate sH and sL.  Because the growth rate range 

for the 1005 segregants varies among environments (Fig D-1), for the specific pair of RH = 2.80 

and RL = 2.45 chosen, only 15 environments allowed estimation of sH and sL for at least 50% of 

all SNPs.  We estimated the fraction of SNPs exhibiting diminishing returns in each of these 

environments and referred to it as g'.  We found g' to exceed 50% in all 15 environments (P = 

3.1×10-5, N = 15, binomial test), with a range between 66% and 96% and a mean of 85%.  We 

observed a strong positive correlation between Q and g' (ρ = 0.81, P = 3.9×10-4; Fig 3-1d), 

comparable with the correlation between Q and g in the same 15 environments (ρ = 0.84, P 

=1.0×10-4).  Approximately 37% of all SNPs had sH and sL estimates in all 15 environments, and 

all of these SNPs exhibited diminishing returns in each environment.  When narrow-sense 

diminishing returns is considered, g' ranges from 17% to 54% (compared with the chance 

expectation of 25%) among the 15 environments for these 37% of SNPs and shows a strong 
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correlation with Q (ρ = 0.89, P < 10-250).  We confirmed the correlation between Q and g' under 

multiple sets of RH and RL (Table D-1) that span the range of Q across the 47 environments (2.1 

to 3.2) (Fig 3-1b).  We also verified the correlation between Q and g' across environments for 

QTLs (ρ = 0.81, P = 1.5×10-4).  Thus, even when the median growth rates of the less fit and fitter 

groups of segregants are both fixed across environments, an elevation in environment quality 

enhances the probability of diminishing returns from beneficial mutations.  This is a previously 

unrecognized characteristic of diminishing returns.  The global epistasis hypothesis, asserting 

that diminishing returns depends solely on the fitness of the genotype, was formulated without 

considering multiple environments and is obviously inadequate for describing and explaining the 

observation here.  

 

3.3.5 Benefits of advantageous mutations decrease with environment quality  

To examine directly the impact of environment quality on the growth effect of an 

advantageous mutation, we first measured the effect (s > 0) of each SNP in an environment by 

the absolute value of the difference between the mean growth rate of all BY-allele-carrying 

segregants and that of all RM-allele-carrying segregants in the environment.  If having better 

environments reduces the benefit of an advantageous mutation, s should decrease as Q rises.  

Such a negative correlation between Q and s should be common among all SNPs examined if 

this type of diminishing returns is widespread.  Indeed, for 98.1% of SNPs across the genome, 

we observed a negative rank correlation between Q and s across environments (Fig 3-2a). 

To verify that the above negative correlation is not simply a byproduct of the canonical 

diminishing returns epistasis associated with a rise in the growth rate of the background genotype, 

we again controlled for growth rate in estimating s, similar to what is illustrated in Fig 3-1c.  
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That is, we first chose a fixed growth rate R for all environments.  For each SNP and in each 

environment, we picked 50 least fit BY-allele-carrying segregants whose growth rates exceed R 

and 50 fittest BY-allele-carrying segregants whose growth rates are below R.  We similarly 

picked 100 RM-allele-carrying segregants with the median growth rate of R.  The effect (s' > 0) 

of the SNP in the environment given R is the absolute value of the difference in mean growth 

rate between these 100 BY-allele-carrying and 100 RM-allele-carrying segregants.  We found 

the rank correlation between Q and s' to be negative for 90.3% of all SNPs examined using R = 

2.5 (Fig 3-2a).  We repeated this analysis under two other R values (2.2 and 2.8), and found the 

average fraction of SNPs exhibiting smaller s' in better environments to be 81% for the three R 

values considered.  A total of 600 SNPs were identified as QTLs in one or more environments.  

For each of these SNPs, we estimated its effect (s and s') in each environment and correlated it 

with Q.  For the 600 correlations between s (or s') and Q across the 47 environments, 94.3% (or 

84.9%) are negative.  Hence, the diminishing returns from advantageous mutations in better 

environments, a form of gene-environment interaction (G×E), is distinct from the canonical 

diminishing returns in fitter genotypes within an environment, a form of gene-gene interaction 

(G×G).   

 In the above analyses (Fig 3-2a), we did not distinguish which allele is beneficial and 

which is deleterious.  We may make this distinction for each SNP using the environment where 

the observed absolute effect of the SNP is maximal, which minimizes the chance of 

misclassification.  If the BY allele is beneficial relative to the RM allele in this environment, we 

estimate s or s' in each environment by subtracting the mean growth rate of RM-allele-carrying 

segregants from that of BY-allele-carrying segregants, and vice versa.  Although now s and s' for 

an environment can be negative, we found the correlation between Q and s (or s') to remain 
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negative for 65.7% (or 58.9%) of SNPs (Fig 3-2b).  Furthermore, we found a negative 

correlation between Q and s (or s') for 328 (or 357) of the 600 unique QTLs identified, 

significantly more than expected by chance (P = 0.025 or 4×10-6, two-tailed binomial test).  

These arguably more rigorous analyses verify the environment quality-dependent diminishing 

returns from beneficial mutations.   

 

3.3.6 The modular life model recapitulates the empirical patterns of diminishing returns 

That the same mutation confers different benefits on different genetic backgrounds even 

when these backgrounds are equally fit contradicts the global epistasis hypothesis and suggests 

the relevance of the specific genomic compositions of these backgrounds to the fitness effect of 

the mutation.  It is widely accepted that life is organized in a highly modular manner, where each 

module is a discrete object composed of a group of tightly linked components and performs a 

relatively independent task(RAFF 1996; HARTWELL et al. 1999; IHMELS et al. 2002; RAVASZ et al. 

2002; BARABASI AND OLTVAI 2004; WALL et al. 2004; WAGNER et al. 2007).  Intuitively, 

diminishing returns epistasis could arise from the modular structure of life.  Specifically, our 

modular life model posits that each module makes a distinct contribution to fitness and that this 

contribution has an upper limit.  Under this model, the same advantageous mutation may 

contribute to a module and fitness greatly if the functionality of the module is far from its 

maximum but may contribute only slightly if the module is approaching its maximal 

functionality.  In addition, we assume that the environment contributes differently to the 

functionalities of various modules and that different environments have different contributions.  

Because the functionalities of various modules can be different among equally-fit genotypes, 

under this model, the specific genomic composition of the background genotype matters to the 
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fitness effect of a mutation.  Our model differs from the global epistasis hypothesis where 

effectively only one module exists.  In this one-module model, a diminishing returns curve 

between the functionality of the module and fitness is assumed rather than explained.  

Furthermore, the curve should vary from environment to environment for this model to be 

realistic, but it is unclear how environment modulates the curve in this model.  We here explore 

the modular life model in an attempt to recapitulate the major empirical patterns of diminishing 

returns.  

We started by a computer simulation of the modular life model (Fig 3-3a and Methods).  

We considered three scenarios where the growth rate of a genotype is respectively determined by 

the geometric mean functionality of all modules, arithmetic mean functionality of all modules, 

and the lowest functionality of all modules.  The third scenario is also known as the barrel effect, 

because the amount of water storable in a barrel constructed of many wooden staves is dictated 

by the shorted stave(HE et al. 2010).  The results obtained under the three scenarios are qualitatively 

similar, and they are respectively presented in the main text (Fig 3-3), Fig D-4, and Fig D-5. 

  According to the modular life model, we simulated the genotypes and growth rates of 

1000 haploid segregants in 50 environments (see Methods).  One hundred genes belonging to 10 

modules were considered, with each gene harboring one SNP that distinguishes between a fully 

functional allele and a null allele.  We analyzed the simulated data the same way we analyzed the 

real data.  Similar to what was observed in the real data (Fig 3-1b, d), the simulated data show (i) 

diminishing returns epistasis for >50% of SNPs in each environment and (ii) a positive 

correlation between the fraction of SNPs exhibiting diminishing returns epistasis and 

environment quality, with or without the control for growth rate across environments (Fig 3-3b).  

Furthermore, similar to what was apparent in the real data (Fig 3-2), most SNPs in the simulated 
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data show a negative correlation between growth effect and environment quality, with or without 

the control for growth rate (Fig 3-3c).  The similarity between the results from the simulated data 

and real data indicates that the observed patterns of diminishing returns are explainable by the 

modular feature of life. 

 

3.3.7 Why effect size decreases with environment quality even after the control for growth 

rate  

Although the canonical diminishing returns epistasis is easily explained by the modular 

life model, that s' decreases with Q (Fig 3-2 and Fig 3-3c) is puzzling.  Furthermore, because we 

estimated s' from groups of segregants that differ in multiple genes, it is unclear whether the 

negative correlation between s' and Q holds when s' is estimated by comparing genotypes that 

differ by a single SNP upon the control of growth rate across environments.  To this end, we 

measured the effect of a beneficial mutation in one genetic background and then averaged this 

effect across multiple backgrounds in simulated data.  Specifically, we simulated 50,000 

segregants in 50 environments as in the previous section except that stochastic noise in growth 

rate is omitted to improve the sensitivity of the analysis.  In each environment, we first identified 

all segregants whose growth rates are in the range of 0.899-0.901.  This range is narrower than 

the maximal growth effect of any beneficial mutation simulated; therefore, the identified 

segregants are essentially equally fit.  We estimated the growth effect of a gene in an 

environment by averaging the effect of replacing its null allele with functional allele in the above 

segregants in which the focal gene is occupied by the null allele.  We then correlated among 

environments the growth effect of the gene and Q.  For the 100 genes simulated, 63 showed a 

negative rank correlation (P = 0.006, N = 100, binomial test).  We repeated this analysis using 
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another growth rate range (0.949-0.951) and found 68 of 100 genes to show negative rank 

correlations (P = 2×10-4).  These results confirm that the negative correlation between s' and Q 

observed in the simulation is genuine.  The cause for this correlation is that, when the growth 

rate is controlled for, the among-module variance in functionality increases with Q.  The reason 

is that, in this scenario, under a high Q, genotype quality must be relatively low, meaning that it 

has only a small number of functional alleles distributed among all modules, rendering the 

among-module variance in functionality relatively high.  By contrast, under a low Q, genotype 

quality must be relatively high, meaning that it has many functional alleles distributed among all 

modules, rendering the among-module variance in functionality relatively low.  Thus, the 

fraction of modules approaching the upper limit in functionality is greater in good environments 

than in poor environments, even when the mean functionality per module is the same.  

Consequently, the growth effect of a beneficial mutation tends to reduce with Q.  We confirmed 

this reasoning using the above simulated data.  Specifically, we found that the among-module 

variance in functionality averaged across all segregants aforementioned correlates positively with 

Q for both of the growth rate ranges considered (Fig D-6a, b).  The same trend holds when 

growth rate is defined by the arithmetic mean instead of geometric mean of functionality across 

modules (Fig D-6c, d).  When growth rate is controlled for in the barrel model, as Q rises, the 

fraction of modules with saturated functionality increases (Fig D-7), lowering the probability 

that a mutation would improve growth and reducing the average benefit of advantageous 

mutations.  

 

3.4 Discussion 
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In this work, we designed a high-throughput method for testing diminishing returns 

epistasis among standing genetic variants and applied it to 28,220 SNPs as well as 741 QTLs 

between two yeast strains.  We found widespread diminishing returns from beneficial mutations 

in each of the 47 environments studied, demonstrating that diminishing returns epistasis is 

abundant among natural genetic variants.  There are pros and cons in analyzing QTLs only 

versus analyzing all SNPs.  The QTL-based analysis considers influential SNPs that are 

independent from one another, but undoubtedly misses many causal SNPs due to the limited 

statistical power in QTL identification and hence provides an incomplete picture of the entire 

genome.  The analysis of all SNPs provides a complete and unbiased picture of the genome, but 

because of the linkage among SNPs, some of the statistical tests are difficult.  Nevertheless, we 

found that the two approaches resulted in overall similar findings. 

Canonical diminishing returns epistasis is a form of gene-gene interaction, because it is 

conventionally quantified by comparing the effect of a mutation in genotypes of different 

fitnesses in the same environment.  Our work broadens the concept of diminishing returns to 

gene-environment interaction, because we found that the effect of a beneficial mutation 

decreases with environment quality.  The results suggest that both types of diminishing returns 

(gene-gene and gene-environment interactions) are prevalent among standing genetic variants 

across environments.  Our observation supports the common belief that the fitness effects of 

mutations tend to increase in stressful environments(AGRAWAL AND WHITLOCK 2010) and 

further demonstrates that this increase also occurs even when the background genotype fitness is 

controlled.  

The prevailing view before this study is that diminishing returns depends on the fitness of 

the background genotype, as described by the global epistasis hypothesis.  Our finding that the 
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benefit of an advantageous mutation decreases with environment quality even when the fitness of 

the background genotype remains unchanged indicates that the global epistasis hypothesis is 

inadequate.  This conclusion applies to both the original and broadened concepts of diminishing 

returns, because a close examination of a previous study(KRYAZHIMSKIY et al. 2014) showed 

that the growth effects of a mutation in several strains of similar growth rates are significantly 

different even under the same environment (Table D-2).   

We proposed that diminishing returns can instead be explained by the modular structure 

of life, where each module contributes to a fitness component and has a maximal possible 

contribution.  Consistently, our computer simulation demonstrates that this modular life model 

recapitulates the empirical patterns of diminishing returns.  Our model is inspired by the modular 

epistasis model(TENAILLON et al. 2012; KRYAZHIMSKIY et al. 2014) proposed to explain a 

phenomenon related to diminishing returns−a reduction in beneficial mutation rate when a 

population gradually rises in fitness during adaptation(SILANDER et al. 2007; TENAILLON et al. 

2012).  This phenomenon may be termed decreasing supplies, because it is about decreasing 

supplies of beneficial mutation as adaptation progresses.  The modular epistasis model asserts 

that a population has limited ways to adapt and will run out of beneficial mutations if all modules 

reach their maximal functionalities.  It is clear that our modular life model is similar to the 

modular epistasis model despite that they are proposed to explain different phenomena; one main 

difference is that our model includes environmental contributions to the functionalities of 

individual modules, allowing considering both genotype and environment qualities in the study 

of diminishing returns.  It is also obvious that our model is able to explain decreasing supplies, 

because an advantageous mutation will no longer be visible to selection when its benefit reduces 
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to a certain level via diminishing returns.  This can indeed be seen in our simulation of the 

modular life model (Fig D-8).  

It is noteworthy that a previous study disfavored the modular epistasis 

model(KRYAZHIMSKIY et al. 2014).  Specifically, Kryazhimskiy et al. evolved S. cerevisiae for 

240 generations to obtain 64 different founder lines.  They then evolved the 64 founders for 500 

generations, with 10 replicates per founder.  They reasoned that, under the modular epistasis 

model, the substitutions observed in the 10 replicates from the same founder should have larger 

overlaps than those observed in the lines from different founders.  However, no significant 

difference was detected.  We believe that such negative results do not disprove the modular 

epistasis model, because it is possible that 240 generations of evolution did not create large 

enough differences among the 64 founders in the distribution of functionality among modules.  It 

is also possible that only one module could contribute to the specific adaptation studied; 

therefore all improvements in all founders were in the same module, which would not predict the 

difference expected by the authors.   

In another study(WANG et al. 2016), several substitutions observed from an experimental 

evolution study of Escherichia coli were tested on a number of strains picked from the E. coli 

phylogeny.  The authors asked whether the higher the ecological similarity between the E. coli 

strains used in the experimental evolution and tested now, the closer the growth effects of the 

substitutions in the two strains, but found only a marginally significant result.  However, because 

ecological similarity may not correlate well with the similarity in module functionality, this 

comparison has limited power in testing the modular epistasis hypothesis.   

In our simulation of the modular life model, we used the geometric mean functionality, 

arithmetic mean functionality, or lowest functionality among modules to compute the growth 
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rate of a genotype.  While it is unclear which scenario is more appropriate, the fact that all three 

simulation schemes qualitatively recapitulated the empirical diminishing returns patterns 

suggests that the primary cause of these patterns is the gene-gene and gene-environment 

interactions within modules.  Needless to say, our simulation is oversimplified.  For instance, 

antagonistic gene-environment interactions(QIAN et al. 2012) have not been considered.  Thus, 

our simulation currently cannot explain how a beneficial allele becomes deleterious upon an 

environmental change, which is occasionally observed in real data(WEI AND ZHANG 2017).  The 

modular life model is meant to provide the primary mechanism of diminishing returns.  

Refinement of the model with many more parameters would be necessary for it to explain the 

specific and detailed features of diminishing returns.  

That our modular life model can recapitulate major empirical patterns of diminishing 

returns does not prove that it is the right model, because the possibility exists that some other 

models can also explain these patterns.  In this context, it is worth mentioning Fisher’s geometric 

model (FGM)(FISHER 1930), because it has been used to explain diminishing returns epistasis 

during adaptive walks(BLANQUART et al. 2014).  The FGM depicts a particular, simple 

phenotype-fitness map without empirical basis.  Under the assumption that the phenotypic effect 

of a mutation is independent of the genetic background, one could show that as the background 

genotypes become fitter, the benefits of mutations reduce simply because mutations tend to 

overshoot the optimum, resulting in diminishing returns.  However, mutations are highly 

idiosyncratic under the FGM(TENAILLON 2014), which appears inconsistent with empirical 

patterns of diminishing returns(KRYAZHIMSKIY et al. 2014).  In addition, the assumption that the 

phenotypic effects of mutations are independent of the genetic background is unrealistic.  The 

FGM predicts virtually no change in mean effect size of mutations across environments(MARTIN 
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AND LENORMAND 2006), which is inconsistent with our observation.  It is also worth noting that 

adaptive trajectories simulated under the NK model show negative epistasis between non-

consecutive substitutions and positive epistasis between consecutive substitutions(DRAGHI AND 

PLOTKIN 2013; GREENE AND CRONA 2014).  But the prevalence of diminishing returns epistasis 

predicted by the NK model is much lower than observed in experimental evolution(WÜNSCHE et 

al. 2017).  Whether the NK model can explain our findings from standing genetic variants in 

single and multiple environments is unknown.    

Although our modular life model is designed retrospectively to explain patterns of 

diminishing returns, it can also explain several reported phenomena of mutational effects in 

different environments.  For instance, Chou et al. tested the growth effects of a novel transporter 

system that enhances metal uptake in Methylobacterium extroquens on various metal-poor (MP) 

environments(CHOU et al. 2009).  They observed that the same beneficial mutation had larger 

effects in better environments.  At first glance, this observation appears contradictory to our 

model.  However, the environments considered in our simulation of the modular life model do 

not have a limiting factor as in their experiment.  If we consider metal uptake as a module and if 

the contributions of all tested MP environments to that module are equally low, our model can 

explain their observation.  Let us assume that the product of functionalities of all modules except 

the metal uptake module is M1 in a relatively good environment and M2 in a relatively poor 

environment, respectively.  Let us further assume that the environmental and genetic 

contributions to the functionality of the metal uptake module total x for the background genotype 

in all MP environments.  The contribution of the beneficial mutation to the metal uptake module 

is y.  Under the assumption that the growth rate is the geometric mean of all K modules, the 

growth improvement from the mutation in the relatively good environment is [M1(x+y)]1/K - 
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(M1x)1/K = M1
1/K[(x+y)1/K-x1/K].  Similarly, the growth improvement from the mutation in the 

relatively poor environment is M2
1/K[(x+y)1/K-x1/K].  Because M1 is greater than M2, the effect size 

of the mutation increases as the environment gets better.  The same trend is predicted by our 

model when the genotype instead of environment is improved in non-metal uptake modules, as 

was observed(CHOU et al. 2009).  The phenomenon that environmental stresses can sometimes 

decrease the harm of deleterious mutations(KISHONY AND LEIBLER 2003) can be similarly 

explained by our model.  Note that the observations from these experiments cannot be explained 

if the additive or barrel assumption is made in the modular life model, suggesting that the 

geometric assumption may be more generally applicable than the additive or barrel assumption.   

Our findings about the patterns and mechanistic basis of diminishing returns have several 

important evolutionary implications.  First, the observation that the benefit of an advantageous 

mutation generally decreases with environment quality Q implies a negative correlation between 

a population's additive genetic variance in growth rate (VR) and Q.  This is indeed true in the 

yeast data (ρ = -0.56, P = 8×10-5; see Methods).  All else being equal, the growth rate variance 

among individuals is also expected to decrease as Q rises.  Consistently, we observed a negative 

correlation between the growth rate variance among the 1005 segregants studied here and Q (Fig 

3-4a).  That is, the among-individual variation in growth rate gets larger as the environment 

becomes harsher, echoing earlier observations made in much smaller datasets(LEWONTIN AND 

MATSUO 1963; KONDRASHOV AND HOULE 1994; KORONA 1999; SZAFRANIEC et al. 2001).  

Second, Fisher's Fundamental Theorem of natural selection states that the rate with which a 

population adapts equals the variance of fitness(FISHER 1930).  Because the variance of fitness 

(or growth rate) rises as Q reduces, the same population should adapt faster in harsher 

environments.  Third, related to the above point, evolvability is the ability of a population to 
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respond to selection(HOULE 1992).  Houle(HOULE 1992) showed that evolvability (E) equals 

additive fitness variance VF divided by the mean fitness of the population (F).  If we regard 

growth rate as a proxy for fitness, we have E ≈ VR/Q.  Thus, evolvability rises precipitously as a 

population moves to harsher environments (Fig 3-4b).  This prediction is supported by some 

anecdotes in the literature.  For instance, it was reported that the relative fitness gain in the 

laboratory evolution of an E. coli strain is faster in the less preferred temperatures of 32°C and 

42°C than in its optimal temperature of 37°C (BENNETT et al. 1992).  Future studies are required 

to test this prediction critically and systematically.  Fourth, the modular structure of life creates 

functional redundancy within modules when the functionality of the module approaches its 

maximum.  This redundancy means that when a population is fully adapted to an environment, 

the population can accumulate genetic variation with little fitness variation, a phenomenon 

known as phenotypic robustness to mutations(DE VISSER et al. 2003; WAGNER 2005).  This 

hidden genetic variance can be useful for adaptation when the environment changes.  Thus, via 

the phenomenon of diminishing returns, the modular structure of life fundamentally impacts both 

the robustness and evolvability of organisms.  It will be of great interest to verify our yeast-based 

observations in other species. 

 

3.5 Methods 

3.5.1 Genotype and phenotype data 

We acquired from the Kruglyak lab(BLOOM et al. 2013) the genotype data of 1040 

segregants from a cross between the BY and RM strains of S. cerevisiae, including a total of 

28,220 SNPs mapped to the reference genome sequence R64-1-1.  We downloaded the genome 

annotations for R64-1-1 from Ensembl biomart.  We also obtained from the Kruglyak lab the 
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average end-point colony radius of each segregant in each of 47 environments(BLOOM et al. 

2013).  After requiring each segregant to have both genotype and phenotype data in at least one 

environment, we retained 1005 qualified segregants for subsequent analysis.  Note that colonies 

with ln(radius) > 3.508 had been excluded from the data to minimize the effect of growth 

saturation on growth rate estimation.  We further removed those colonies with ln(radius) < 1.6, 

because this value approaches the lower limit of colony size measurement.  We converted colony 

radius to average growth rate as described in the next section.  Growth rate variance (V) among 

segregants under each environment was computed from the growth rates of the segregants.  We 

obtained the narrow-sense heritability (h2) under each environment from Table D-2 of a previous 

study(BLOOM et al. 2013) and computed the additive growth rate variance by VR = Vh2.  

Evolvability was calculated using E ≈ Vh2/Q according to Houle(HOULE 1992).  

 

3.5.2 Growth rate estimation from colony size 

The original phenotype measured in the data is the mean radius (D) of each colony at the 

end of T = 48h of growth on solid media.  We transformed D to average growth rate in the 

following way.  Let the number of cells in a colony be N, which can be described by  

KN aD= ,        (1)  

where K is a constant presumably between 2 (if colonies resemble columns) and 3 (if colonies 

resemble spheres) and a is a constant representing the number of cells per unit volume.  Cell 

growth can be described by  

   0

( )

0 0

T

R t dt
RTN N e N e

∫
= = ,     (2) 
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where N0 is the number of colonizing cells, N is the number of cells at time T,  R(t) is the growth 

rate at time t, and R  is the average growth rate from time 0 to T.  From Eqs. (1) and (2), we have  

   0
RT KN e aD= .       (3) 

Eq. (3) can be converted to  

   0( / ) ln (ln ln ) /R K T D a N T= + − .    (4) 

Because T is constant, N0 is expected to be constant, and K and a are presumably approximately 

constant (see below), lnD and R  have approximately the same linear relationship for all strains.  

As a result, lnD can be used to represent R  when comparing R  values.  Throughout this study, 

we used lnD as a measure of R .   

 To verify that K and a are approximately constant, we grew 91 randomly picked 

segregants on YPD agar plates for 48h.  We scanned colonies and measured the pixel number per 

colony using SGATools(WAGIH et al. 2013), allowing quantifying the colony radius D.  We then 

estimated the corresponding cell number N in each colony using flow cytometry (BD AccuriTM 

C6).  If K and a in Eq. (1) are constant across genotypes, lnN should be a linear function of lnD.  

Indeed, our data showed that lnN and lnD have a linear correlation of r = 0.74 (P < 10-16), 

supporting approximate constancies in K and a across genotypes.   

To verify that the yeast growth did not saturate at 48h, we grew 79 randomly picked 

segregants on a YPD plate and scanned colonies and estimated D at 13 time points every 2-3h 

from 15h to 48h of growth.  We conducted a linear regression between lnD and time of growth 

for each colony (Fig D-9a), and found that the average adjusted r2 = 0.94, suggesting that R(t) 

did not change much during the course of 48h growth.  Indeed, a quadratic fitting improves the 

adjusted r2 only slightly to an average of 0.96, despite that the improvement occurred to most 

segregants (Fig D-9a).  Because our formulation (Eq. 4) considers the average growth rate from 
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0 to 48h, our method is valid as long as the slight saturation is not more pronounced for fast-

growth segregants than slow-growth segregants.  Indeed, we found no significant correlation 

among the 79 segregants tested between the growth rate rank at 48h and Δ(adjusted r2), which is 

the difference in adjusted r2 between the quadratic and linear regressions and a measure of 

saturation (Fig D-9b).  

 

3.5.3 Estimating epistasis from growth rate 

Let FWT, FA, FB, and FAB be the fitness of the wild-type, mutant A, mutant B, and the 

corresponding double mutant, respectively.  It is commonly thought that (FAB/FWT) = 

(FA/FWT)(FB/FWT) when there is no epistasis.  In other words, ln(FAB) = ln(FA) + ln(FB) - ln(FWT) 

under no epistasis.  Let RWT, RA, RB, and RAB be the growth rates of the wild-type, mutant A, 

mutant B, and the corresponding double mutant, respectively.  The relationship between fitness 

and growth rate of a genotype is F = eRt, or lnF = Rt, where t is the generation time of the wild-

type.  Hence, under no epistasis, RAB = RA + RB - RWT.  In other words, epistasis can be estimated 

by RAB - (RA + RB -RWT) = (RAB - RA) - (RB - RWT), which is the growth effect of mutation B on 

the background of mutant A minus the corresponding effect on the wild-type background.  This 

is why diminishing returns epistasis is commonly assessed by comparing the growth effect of a 

mutation on two genetic backgrounds.  

 

3.5.4 Assessing the fitness effect of a mutation in multiple genetic backgrounds 

 Diminishing returns epistasis is conventionally demonstrated by a higher growth benefit 

of a mutation in a less fit genotype than in a fitter genotype.  Here we show that it can also be 

demonstrated by a higher growth benefit in a group of less fit genotypes than in a group of fitter 
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genotypes.  Suppose we are interested in assessing the growth effect of mutating allele X1 to X2 

at a site in two different genetic backgrounds G and H (locus X is not considered part of the 

genetic background).  The growth rate of the genotype with X1 in background G is R(G+X1) = 

A(G)+A(X1)+E(G)+E(G, X1), where A(G) is the total additive effect of all alleles in G, A(X1) is 

the additive effect of X1, E(G) is the total epistatic effect among all alleles in G, and E(G, X1) is 

the epistatic effect between X1 and G.  Similarly, the growth rate of the genotype with X2 in 

background G is R(G+X2) = A(G)+A(X2)+E(G)+E(G, X2).  Thus, the growth effect of the 

mutation in the background of G is R(G+X2)-R(G+X1) = A(X2)-A(X1)+E(G, X2)-E(G, X1) = 

A(X2)-A(X1)+ΔE(G, X2-X1), where ΔE(G, X2-X1) is the difference in epistatic effect between X2 

and X1 in G and will be referred to as the epistatic effect of the mutation in G.  The 

corresponding growth effect of the mutation in background H is R(H+X2)-R(H+X1) = A(X2)-

A(X1)+ΔE(H, X2-X1).  Hence, the difference between the growth effect of the mutation in H and 

that in G is μ = [R(H+X2)-R(H+X1)]-[R(G+X2)-R(G+X1)] = ΔE(H, X2-X1)-ΔE(G, X2-X1), which 

is the difference in the epistatic effect of the mutation in the two backgrounds.  Analysis of 

diminishing returns is to study μ.  Specifically, diminishing returns means that, when R(H+X1) > 

R(G+X1), μ = ΔE(H, X2-X1)-ΔE(G, X2-X1) < 0.  In other words, when the genetic background 

becomes fitter, the epistatic effect of the mutation becomes smaller.   

 Now let us consider a group of 2k relatively unfit random genotypes, of which G1, G2, ..., 

and Gk carry X1 while Gk+1, Gk+2, ..., and G2k carry X2; frequencies of alleles at other loci are not 

different between the first and last k genotypes.  The mean growth effect of muting X1 to X2 in 

the above 2k genotypes is   
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There are three terms in the right-hand side of Eq. (5).  The first term is the additive effect of the 

mutation.  The second term is the mean epistatic effect of the mutation in the genetic 

backgrounds concerned.  The third term is expected to be 0, because the first and last k 

genotypes are on average the same in additive and epistatic growth effects.  Thus, Eq. (5) can be 

written as 

( ) ( )k+i 2 i 1 2 11
1 1

2(G +X ) / (G +X ) / (G, X - )X XX
k k

i i
R k R k A A E

= =

− = − + ∆∑ ∑ ,   (6) 

where the last term is the mean epistatic effect of the mutation in G backgrounds.   

Let us similarly consider a group of 2k relatively fit genotypes, of which H1, H2, ..., and 

Hk carry X1 while Hk+1, Hk+2, ..., and H2k carry X2.  The mean growth effect of mutating X1 to X2 

in the above 2k genotypes can be similarly written as   

( ) ( )k+i 2 i 1 2 1
1 1

2 1(H +X ) / (H +X ) / (H, X -XX ).X
k k

i i
R k R k A EA

= =

− = − + ∆∑ ∑    (7)  

Using Eqs. (6) and (7), we can find that the difference between the growth effect of the 

mutation in the H backgrounds and that in the G backgrounds is 

 2 1 2 1' (H, X -X ) (G, X -X )E Eµ = ∆ − ∆ .         (8) 

Thus, it is clear that μ and μ' measure the same thing except that the epistatic effect of the 

mutation in one genetic background is considered in the former while the mean epistatic effect of 

the mutation in multiple backgrounds is considered in the latter.  Given the stochasticity of 

epistasis, mean epistasis is presumably more informative than a single epistasis value for 

studying diminishing returns patterns. 
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3.5.5 Bootstrap test of the significance of diminishing returns epistasis 

 We examined whether sH is significantly smaller than sL for each QTL by a bootstrap test. 

We first calculated the observed sL- sH.  We then generated a bootstrap sample of growth rates 

from the 50 fitted BY-carrying segregants as well as a bootstrap sample of growth rates from the 

50 fitted RM-carrying segregants, allowing the estimation of sH from the bootstrap samples.  We 

similarly generated bootstrap samples and obtained the estimate of sL and then sL- sH.  This 

process was repeated 10,000 times.  P-value is estimated by the proportion of bootstrap 

replications in which sL < sH. 

 

3.5.6 Analysis of narrow-sense diminishing returns  

For a SNP to exhibit narrow-sense diminishing returns, two conditions must be met: (i) 

sH < sL and (ii) the beneficial allele in the 100 slow-growth and that in the 100 fast-growth 

segregants must be the same.  Let g1 be the fraction of SNPs showing sH < sL and having the 

same beneficial allele in the slow- and fast-growth segregants, and let g2 be the fraction of SNPs 

showing sL < sH and having the same beneficial allele in the slow- and fast-growth segregants.  

Under the null hypothesis that the growth effect of an allele is independent of the genetic 

background, g1 is expected to equal g2.  If diminishing returns is general, g1-g2 should be positive.  

We estimated g1 and g2 under each environment using the method shown in Fig 3-1a.  We also 

estimated them using the method shown in Fig 3-1c.  We examined the correlation between g1 

and Q using all SNPs or only QTLs. 

 

3.5.7 Simulation of the modular life model 
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We assume that the growth rate of a genotype in an environment is the combined effects 

of C functional modules.  Each module has a functionality value that is the sum of environmental 

and genetic contributions to the module.  The maximum possible functionality of each module is 

1 and the minimum is 0.  Consequently, further improvement in genotype or environment quality 

has no contribution to the functionality of a module when it reaches the maximum.  Each module 

has M contributing genes, each with one SNP that distinguishes between a fully functional allele 

and a null allele.  There are N haploid segregants in a population; the genotype of each segregant 

is made up of CM genes, each carrying the functional allele with a 50% probability.   

In our simulation, the specific values of various parameters are not critical to the 

conclusion, as long as the functionalities of some modules reach the upper limit.  Below is the set 

of parameters used in generating Fig 3-3bc.  We used C = 10, M = 10, and N = 1000, and 

simulated 50 environments.  The maximal contributions of the 10 genes to the functionality of a 

module were set to be 0.11, 0.12, 0.13, …, and 0.2, respectively.  Thus, the functional allele of 

gene 1 contributes 0.11 units of functionality to its module, while the null allele contributes 0 

unit.  We assumed that the contribution of an environment to a module is a normal random 

variable with a standard deviation of 0.05.  The mean of the normal distribution is 0.2000, 

0.2035, 0.2070, …, and 0.3715, respectively, from the 50 environments.  We also added a noise 

term, drawn randomly from the normal distribution of mean = 0 and standard deviation = 0.01, to 

the growth rate of each simulated genotype in each environment.   

 

3.5.8 Reanalysis of Kryazhimskiy et al.'s data of diminishing returns 

We reanalyzed the data from Figure 3 of Kryazhimskiy et al.(KRYAZHIMSKIY et al. 2014).  

The growth rates of all strains were measured using flow cytometry-based competition assays 
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against the ymCitrine-labelled DivAncCit strain and were represented by percent difference from 

DivAncCit.  HO, GAT2, WHI2, and SFL1 genes were separately deleted in each of 40 different 

ancestor strains.  The growth rate of each ancestor strain was measured in triplets, and we 

calculated the mean growth rate and its standard error using the three repeats.  For the deletion 

strains, the growth rates of one to five replicate colonies were measured three times each.  For 

these strains, we first calculated the growth rate of each replicate and then calculated the mean 

growth rate and its standard error using the replicates.  When there was no replication, we 

calculated the mean growth rate and its standard error using the repeats.  We used two-tailed Z-

test to identify all pairs of strains whose growth rates are not significantly different from each 

other.  For each of these strain pairs, we used a two-tailed Z-test to test if the effect sizes of the 

same mutation are significantly different.  The strain pairs with significantly different growth 

effects for the same mutation after Bonferroni correction are shown in Table D-2.  
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Figure 3-1.  Widespread diminishing returns among standing genetic variants in yeast.  sH, 

growth rate effect of a SNP in fast-growth segregants; sL, growth rate effect of a SNP in slow-

growth segregants.  (a) Scheme for estimating sH and sL.  For each SNP under each environment, 

grey triangles represent BY-allele-carrying segregants, while black circles represent RM-allele-

carrying segregants.  The 50 fittest BY-allele-carrying and 50 fittest RM-allele-carrying 

segregants are used to estimate sH, whereas the 50 least fit BY-allele-carrying and 50 least fit 

RM-allele-carrying segregants are used to estimate sL.  The data plotted are hypothetical and not 

all 50 segregants used in each group are shown.  (b) Fraction (g) of SNPs exhibiting diminishing 

returns epistasis (i.e., sH < sL) in an environment increases with the quality of the environment 

(Q).  Spearman's rank correlation and associated P-value are presented.  (c) Scheme for 
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estimating sH and sL upon the control for median growth rate across environments.  For each SNP 

under each environment, the 50 triangles and 50 circles with the median growth rate indicated by 

the higher dashed line are used to estimate sH, whereas the 50 triangles and 50 circles with the 

median growth rate indicated by the lower dashed line are used to estimate sL.  The data plotted 

are hypothetical and not all 50 segregants used in each group are shown.  (d) Fraction (g') of 

SNPs exhibiting diminishing returns upon the control for median growth rate increases with Q.  
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Figure 3-2.  Most SNPs show a negative correlation between its effect on growth rate and 

environment quality (Q).  (a) Frequency distribution of the rank correlation between Q and the 

absolute value of the growth rate effect of a SNP measured using either all segregants (s) or a 

group of segregants with a fixed median growth rate (s').  Here, s and s' are always positive.  (b) 

Frequency distribution of the rank correlation between Q and the growth rate effect of a SNP 

measured using either all segregants (s) or a group of segregants with a fixed median growth rate 

(s').  Here, s or s' may be negative if the advantageous allele determined from the environment 

with the largest absolute growth rate effect is less fit than the alternative allele in the 

environment concerned.  In each panel, the fraction of ρ's that are negative is indicated in black 

and grey for s and s', respectively. 
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Figure 3-3.  Simulation of the modular life model produces diminishing returns patterns 

resembling empirical observations.  (a) Simulation scheme under the geometric mean growth 

rate model.  Different modules (M1, M2, and M3) are colored differently.  Different 

environments (Environments 1 and 2) contribute differently to various modules, as illustrated by 

the three boxes that are filled to different levels.  Each module contains a number of genes, each 

of which could have either a functional allele designated as 1 (filled box) or a null allele 

designated as 0 (open box).  Two genotypes (Genotypes 1 and 2) are shown as examples.  The 

functionality of a module is the sum of environmental and genetic contributions but cannot 
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exceed 1.  The growth rate of each genotype is computed from the functionalities of the 

individual modules using the formula indicated.  See Methods for the parameters used in the 

simulation.  (b) Simulation results showing that the fraction of genes exhibiting diminishing 

returns (g or g') positively correlates with environment quality (Q).  Black dots show estimates of 

g on the basis of the fittest and least fit segregants, whereas grey triangles show estimates of g' 

from segregants of fixed median growth rates.  (c) Frequency distribution of the rank correlation 

(ρ) between Q and the effect of a SNP measured using either all segregants (s; black) or a group 

of segregants with a fixed median growth rate (s'; grey).  The fraction of ρ's that are negative is 

indicated in black and grey for s and s', respectively.  Here, s and s' could be negative if the 

functional allele is found less fit than the null allele (due to sampling error).   
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Figure 3-4.  Growth rate variance and evolvability of a population increase as the environment 

quality (Q) declines.  (a) Correlation between Q and the growth rate variance among the 

segregants examined.  (b) Correlation between Q and the evolvability of the population of 

segregants studied.  Spearman's rank correlation and associated P-value are presented.  
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Chapter 4 

Allele by allele interaction: a new theory on the cause of genetic dominance

“Questions as to the genetic inter-relations and compositions of varieties  

can now be definitely answered.” 

— William Bateson 

4.1 Abstract 

The cause of the widespread dominance of wild-type alleles over deleterious mutant alleles is a 

subject of long-standing interest and controversy. Fisher's theory that dominance results from 

selection is now considered untenable. Wright instead argued that dominance is an intrinsic 

property of metabolic systems, but his theory cannot satisfactorily explain the prevalent 

dominance in non-enzyme genes. Because dominance means that gaining a wild-type allele at a 

locus is less beneficial in heterozygous mutants than in homozygous mutants, we hypothesize 

that dominance is a special case of the phenomenon of diminishing returns epistasis from 

advantageous mutations. Our previous work established that diminishing returns epistasis results 

from the modular organization of life where the contribution of each functional module to fitness 

is determined jointly by the genotype and environment. We use the average fitness of all 
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genotypes in the environment to measure environmental quality (Q), and our model predicts 

higher dominance in better environments. To test our hypothesis, we used two yeast datasets 

which provides dominance for growth rates in multiple environments, and both of which showed 

consistent results with our model prediction. This observation is unexplainable by the existing 

theories of dominance, but is predicted by the modular life model and is a characteristic of 

diminishing returns. Furthermore, all previous observations about dominance are consistent with 

the modular life model. These findings support that dominance is an intrinsic property arising 

from the modular organization of life.  

 

4.2 Introduction 

Dominance is among the first phenomena discovered in genetics (MENDEL 1996), yet its 

cause remains elusive even after a century of investigation. Fisher first noticed the widespread 

phenomenon of partial or complete dominance of wild-type alleles to the deleterious alleles 

(FISHER 1928). This observation has been confirmed in many species (MUKAI et al. 1972), 

including human (WILKIE 1994). Fisher explained genetic dominance by direct selection for 

modifiers that increase the dominance of the functional allele to defend against repetitive null 

mutations (FISHER 1928). His theory, if true, explains dominance phenomenon of all genes. 

However, Wright argued that selection for modifier is too weak to lead to the widespread 

dominance, and he proposed that the intrinsic property of metabolic systems causes dominance 

of enzyme genes (WRIGHT 1929).  

The debate that whether Fisher (FISHER 1928) or Wright (WRIGHT 1929) correctly 

explained dominance lasted for more than half a century. Fisher’s theory has received many 
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criticisms and is now considered untenable (CHARLESWORTH 1979; KACSER AND BURNS 1981; 

ORR 1991), and Wright’s theory has gained popularity among biologists. The strongest evidence 

supporting Wright’s idea was contributed by Kacser and Burns; they showed that halving the 

amount of one enzyme in a multi-enzyme linear pathway barely affects the total system flux 

(KACSER AND BURNS 1981). According to Kacser and Burns, the dominance of wild type allele 

occurs intrinsically, requiring no modifier whatsoever. Kacser’ and Burns’ result, now often 

referred to as metabolic control theory, standing on years of investigation of enzyme activities in 

the Kacser lab (KEIGHTLEY 1996), provides significant insights for the origin of genetic 

dominance as well as the dynamic of enzyme metabolic. Other phenomena, that are inconsistent 

with Fisher’s modifier theory but consistent with Wright’s intrinsic theory, were also reported; 

the two most telling arguments due to Charlesworth and Orr (KEIGHTLEY 1996). According to 

Charlesworth, Fisher’s theory predicts no correlation between h and s, because the net selection 

for a modifier with effect of dℎ equals 2udℎ
ℎ

, independent of s (dℎ is the change of modifier 

effect, u is the mutation rate). However, he observed a negative correlation between effect size s 

and the dominance coefficient h of the mutant allele (AA: 1, Aa:1-hs, aa: 1-s) using the h and s 

from different genes (CHARLESWORTH 1979). The negative h-s correlation by Charlesworth was 

later further confirmed with larger datasets (PHADNIS AND FRY 2005; MAREK AND KORONA 

2016). Orr contributed a stronger evidence against Fisher’s theory. He made use of data from 

artificial diploids of alga Chlamydomonas reinhardtii, a typical haploid unicellular organism. He 

showed that the recessive mutations are as common in the artificial diploid alga as in other 

natural diploids (ORR 1991). Because selection for dominance modifier cannot act in haploid 

genome, Orr’s finding refutes Fisher’s modifier theory. Moreover, Orr’s finding demonstrates 

that dominance occurs intrinsically, consistent with Wright-Kacser-Burns theory. Because the 
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correct theory of dominance should not require selection on heterozygotes, Orr’s finding 

simultaneously refutes two theories of Haldane (ORR 1991). Haldane suggested two explanations 

for dominance. One is selection for mutational robustness that wild type alleles which provide 

safe guard against heterozygous effects of mutations are favorable by natural selection 

(HALDANE 1930a); another is Haldane’s sieve, bias against the establishment of recessive 

beneficial mutations due to their “invisibility” to selection in heterozygotes (HALDANE 1927; 

HALDANE 1930b).  

Because the obvious caveats in theories that require selection to explain dominance, the 

Wright-Kacser-Burns theory is accepted as the leading theory on dominance. However, it has 

limitations. First of all, it predicts that dominance is only prevalent in enzyme genes, even 

though the widespread dominance in non-enzyme genes was also observed (PHADNIS AND FRY 

2005). Lack of theoretical extension to non-enzyme genes raised question about the generality of 

the Wright-Kacser-Burns theory. Moreover, according to metabolic control theory, all wildtype 

enzymes in the same metabolic pathway are maintained at intermediate level in order to explain 

dominance (HARTL et al. 1985; WILKIE 1994; MAREK AND KORONA 2016). Marek and Korona 

showed that in starvation environment, when most enzyme levels are largely unbalanced, 

dominance remains strong, which suggests that dominance is not necessarily explained by 

metabolic of enzymes (MAREK AND KORONA 2016). Thus, none of the existing theories 

satisfactorily explains all patterns of dominance.  

Although the progress of dominance theories has been slow moving in recent years, a 

related phenomenon to dominance, diminishing returns epistasis, has been continuously studied 

since discovery. A number of experimental evolution studies reported diminishing returns 

epistasis from advantageous mutations, which refers to the phenomenon that the same 
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advantageous mutation is less beneficial when occurring in fitter genotypes (CHOU et al. 2011; 

KRYAZHIMSKIY et al. 2014; WANG et al. 2016; WÜNSCHE et al. 2017). Wei and Zhang examined 

genetic interactions among standing genetic variation in yeast across 47 environments; they 

showed that a majority of the evaluated SNPs show diminishing returns in all environments and 

that returns from beneficial mutations also decreases in better environments, supporting modular 

life model in explaining diminishing returns epistasis (Wei and Zhang, 2018).  

Apparently, diminishing returns epistasis and dominance are related. However, because 

the study of diminishing returns is predominantly in bacteria (CHOU et al. 2011; KRYAZHIMSKIY 

et al. 2014; WANG et al. 2016; WÜNSCHE et al. 2017), these two phenomena has not been 

discussed together. It is unknown whether share similar underlying mechanisms. Here we 

propose that genetic dominance is a special case of diminishing returns epistasis, because 

diminishing returns epistasis implies that gaining a wild-type allele at a locus is less beneficial in 

heterozygous mutants (fitter) than in homozygous mutants (less fit) irrespective of the function 

of the gene involved, which is exactly dominance.  It is easy to misconceive “diminishing returns 

epistasis” with the traditional “diminishing returns curve”.  In previous work of genetic 

dominance, “diminishing returns” is sometimes used to describe the hyperbolic relationship 

between enzyme activity and total flux (KLINGENBERG 2004). However, this is different from the 

“diminishing returns epistasis” discussed here, which refers to the observation that gaining the 

same beneficial mutation on a fitter genotype background shows smaller benefit than on a less fit 

genotype background, and the fitter genotype does not necessarily contain more beneficial 

mutations on the same gene or same pathway.  

Our hypothesis predicts that dominance and diminishing returns epistasis share the same 

underlying mechanism and can be presented by the same model. Under our hypothesis, the 
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model for diminishing returns epistasis should predict patterns of dominance that resemble the 

observations. Previous work demonstrated that diminishing returns epistasis originates from the 

modular organization of life where the contribution of each functional module to fitness is 

determined jointly by the genotype and environment (Wei and Zhang, 2018). Because 

dominance theory is about beneficial allele masking the effect of deleterious allele, yeast, as a 

single cell organism, whose growth rate is often used an unbiased fitness proxy, is good system 

to study dominance. We went on to test our hypothesis by simulating modular life model in 

diploid systems and by analyzing two large yeast datasets. We found that the empirical patterns 

of dominance are similar to previous findings about diminishing returns and can be predicted by 

the modular life model. In comparison, none of the previous models of dominance can fully 

explain these empirical results.  

4.3 Result 

4.3.1 Apply modular life model to diploid system 

It is widely accepted that life is organized in a highly modular manner, where each 

module is a discrete object composed of a group of tightly linked components and performs a 

relatively independent task (RAFF 1996; HARTWELL et al. 1999; IHMELS et al. 2002; RAVASZ et 

al. 2002; BARABASI AND OLTVAI 2004; WALL et al. 2004; WAGNER et al. 2007).  Modular life 

model was previously developed to explain diminishing returns epistasis. It posits that each 

module makes a distinct contribution to growth rate and the functionality of a module is the sum 

of all genetic effects and environmental effect, and that the growth rate is the geometric mean of 

the functionality of all modules (Wei and Zhang, 2018).  Under this model, the same 

advantageous mutation may contribute to a module and growth rate greatly if the functionality of 
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the module is far from its maximum but may contribute only slightly if the module is 

approaching its maximal functionality.  Furthermore, because the model hasn’t any ploidy 

assumptions, it applies to diploid system as well.  

 To investigate whether the modular life model is able to recapitulate the existed empirical 

observations about genetic dominance, we conducted a computer simulation. We assume that the 

growth rate equals to the combined effects of K functional modules.  Module i has a functionality 

value Mi which equals to the sum of environmental contribution Ei and genetic contributions Gi 

to the module and has a maximum functionality level of 1. Each gene has a fully functional allele 

and a null allele, and each module has N genes. The functional allele has an effect βij each, and 

with gij (which could be 0, 1, 2) indicating how many functional alleles there are for module i 

gene j. If a diploid genome has one functional allele, it adds βij to the corresponding module i, 

and if a diploid genome has two functional alleles, it adds 2 βij to the corresponding module. So 

growth rate is: 

R = ∏ 𝑀𝑀𝑖𝑖
1/𝐾𝐾𝐾𝐾

𝑖𝑖=1 .   (1) 

Eq.1 could also be expended as:         

𝑅𝑅 = ∏ min ( 𝐸𝐸𝑖𝑖 + ∑ 𝛽𝛽ij 𝑔𝑔ij𝑁𝑁
𝑗𝑗=1 , 1)

1
𝐾𝐾𝐾𝐾

𝑖𝑖=1  (2) 

We considered that the growth rate of a genotype is determined by the geometric mean 

functionality of all modules, and a demonstration of this model is in Fig 4-1. 

4.3.2 Widespread dominance and h-s correlation are predicted by modular life model 

We first did a simulation based on modular life model to test whether prevalent 

dominance of wild type allele can be predicted. Since the previous studies showed this trend by 



118 
 

measuring fitness of heterozygous deletion and homozygous deletion on wild type background, 

we simulated the same process. To this end, environment effect is not considered. Let x be the 

effect of an allele, which could be on any module, and deleting the functional allele will decrease 

the functionality of the module it belongs to. Let R00, R01, R11, be the growth rate for double 

deletion, heterozygous deletion, and wild type. We only consider the case where R00 < R11 

because otherwise this deletion is purely neutral.  

R11 = 𝑀𝑀𝑗𝑗
1/𝐾𝐾 ∏ 𝑀𝑀𝑖𝑖

1/𝐾𝐾𝐾𝐾
𝑖𝑖≠𝑗𝑗     (3) 

R01 = max (�𝑀𝑀𝑗𝑗 − 𝑥𝑥�, 1 − 𝑡𝑡)1/𝐾𝐾 ∏ 𝑀𝑀𝑖𝑖
1/𝐾𝐾𝐾𝐾

𝑖𝑖≠𝑗𝑗   (4) 

R00 = max (�𝑀𝑀𝑗𝑗 − 2𝑥𝑥�, 1 − 𝑡𝑡 − 𝑥𝑥)1/𝐾𝐾 ∏ 𝑀𝑀𝑖𝑖
1/𝐾𝐾𝐾𝐾

𝑖𝑖≠𝑗𝑗  (5) 

Where when 𝑀𝑀𝑗𝑗 = 1, due to saturation, the effect of removing one mutation t satisfies 0 ≤ 

t ≤  x ≤ 𝑀𝑀𝑗𝑗/2 ≤ 0.5. These allow us to calculate the h of each deleterious mutation with or 

without the saturation of 𝑀𝑀𝑗𝑗.  

When there is no saturation for module 𝑀𝑀𝑗𝑗, we get:  

h = 𝑅𝑅11 − 𝑅𝑅01
𝑅𝑅11−𝑅𝑅00

 = 
𝑀𝑀𝑗𝑗
1/𝐾𝐾−(𝑀𝑀𝑗𝑗−𝑥𝑥)1/𝐾𝐾

𝑀𝑀𝑗𝑗
1/𝐾𝐾−�𝑀𝑀𝑗𝑗−2𝑥𝑥�

1/𝐾𝐾   (6) 

 

When there is saturation for module 𝑀𝑀𝑗𝑗, we get: 

h = 𝑅𝑅11 − 𝑅𝑅01
𝑅𝑅11−𝑅𝑅00

 = 
𝑀𝑀𝑗𝑗
1/𝐾𝐾−(𝑀𝑀𝑗𝑗−𝑡𝑡)1/𝐾𝐾

𝑀𝑀𝑗𝑗
1/𝐾𝐾−�𝑀𝑀𝑗𝑗−𝑡𝑡−𝑥𝑥�

1/𝐾𝐾   (7) 
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We proved mathematically that both h < 0.5 in both Eq.6 and Eq.7 (see Methods). To 

demonstrate this result by simulation, we simulated a “wild-type” genotype using a 10-module 

model. The level of each module is a random number uniformly chosen from 0.6-1, and growth 

rate of each genotype is calculated with Eq.1. We use the growth rate of each heterozygous 

deletion and homozygous deletion for each genotype, each module, and each allelic effect. We 

assume the deletion of each functional allele will decrease the corresponding module level by 

0.06, 0.12, 0.18, 0.24, and 0.3. Using Eq. 6, we calculate the h for each gene deletion effect for 

each module on each genotype. We repeated this simulation 100 times. Not surprisingly, h < 0.5 

is true for all deleterious mutations, meaning modular life model successfully generate the 

prevalent dominance of wild type allele. 

We also proved mathematically that there exist a negative h-s correlation (see Methods). 

We used the results from the same 100 simulations to study the predicted correlation between h 

and s, where s equals to R11-R00. Interestingly, we also observed a strong negative correlation 

between h and s (ρ = -0.997, P < 10-250, Fig 4-2a), meaning modular life model successfully 

generates the h-s correlation. Till here, modular life model successfully predicts the two known 

patterns of genetic dominance.  

4.3.3 Modular life model predicts negative Q-h correlation 

Although the origin of dominance has been a long-lasting question, it is not clear whether 

and how genetic dominance changes across environments due to the absence of systematic 

comparisons. In our previous study of diminishing returns epistasis, we define environmental 

quality (Q), the average growth rate of many genotypes measured in each environment (Wei and 

Zhang, 2018). We wonder whether there is a correlation between Q and h for gene deletions 
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under modular life model. To test this, we simulated 10 modules and 100 genotypes with 

modular level randomly chosen from 0.6-1. We simulated six environments each with a uniform 

contribution to each module with effect 0.05, 0.1, 0.15, 0.2, 0.25, 0.3. We assume all genotypes 

are homozygous wild-type allele of a gene with 0.1 allelic effect size in each module, and we 

calculated R00, R01, and R11 in each environment with Eqs.2-5.  We then calculate the h for each 

gene in each environment.  Q is estimated by the average growth rate 𝑅𝑅� of the 100 wildtype 

genotypes in each environment, which follows the same rank order as the environment 

contribution we simulated.  For each gene and each genotype, we measure h in each environment, 

and we calculate the rank correlation between Q and h.  The resulting 1000 correlations are 

predominately negative (97%, binomial P < 10-24, Fig 4-2b). This is a new pattern that has never 

been reported before, which, if genuine, suggests that dominance of wild type allele increases as 

the environment quality improves. 

4.3.4 Negative Q-h correlation for yeast gene deletions  

We first test the model predicted Q-h correlation by reanalyzing the genetic dominance 

data for a set of yeast nonessential genes generated by Marek and Korona (MAREK AND KORONA 

2016). Two different growth conditions were used to measure dominance in their study, YPD 

and starvation. The maximum growth rates in YPD and maximum lifespans in starvation 

condition were measured individually for each genotype, and h were calculated accordingly 

(MAREK AND KORONA 2016). Because cells do not grow under starvation, it is reasonable to 

consider starvation environment as the lower Q condition. We used all the genes that have h 

measured in both conditions to study Q-h correlation. Among the 369 genes measured in both 

conditions, 218 genes have smaller h in YPD environment and 151 genes have smaller h in 
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starvation environment (Binomial P=1.93×10-4), proving that h decreases as Q increases. This is 

consistent with the modular life model prediction (Fig 4-2C). 

4.3.5 Negative Q-h correlation for yeast polymorphisms  

Although dominance is mostly studied for gene deletions or large effect deleterious 

mutations, it can occur between two alleles of standing variation. Because theory and data both 

predict negative hs-correlation, the h from standing variation should be only slightly smaller than 

0.5. Nevertheless, due to scarcity of data with multiple environments, we use genetic 

polymorphisms data to study dominance. To this end, we test the correlation between Q and h by 

analyzing the growth rate data of 7310 genotyped diploids of yeast in 9 environments. In this 

dataset, the number of cells of each genotype was measured continuously between 0 and 72h 

from growth on agar plate made of 9 different YPD based mediums each with one commonly 

used chemical. We converted the number of cells at 32h, 40h, and 48h into average growth rate 

(see Methods). We previously showed by experiment that this conversion is at robust to growth 

saturation up to at least 48h (Wei and Zhang, 2018). Q for each environment is measured by 

averaging the average growth rate of all genotypes. Because each diploid genome could be AA, 

Aa, and aa at each SNP level, we measure R(AA), R(Aa), and R(aa) by averaging the average 

growth rate of all genotypes with AA, Aa, or aa at each segregating locus. Using gene deletions 

and polymorphisms are quite different because: 1) the majority of genetic polymorphisms are 

effectively neutral, and 2) polymorphic sites are likely to have effects in fewer environments 

than gene deletions. In order to calculate h for beneficial SNPs, we first removed SNPs with 

small effects to improve signal to noise ratio and then calculate h for the remaining SNPs of each 

environment (see Methods). Because of the aforementioned reasons, different environments have 

different remaining SNPs, and direct comparison for the h of each SNP across environments is 
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difficult. Instead, we calculate the fraction of remaining SNPs showing h < 0.5 (g) as the 

dominance level of each environment.  

To validate this approach, we first predict Q-g correlation under modular life model 

simulation. We simulated 10 modules with 5 genes per module, assuming each functional allele 

contribute 0.12 to each module. Each simulated haploid has a random genotype containing 50 

genes with either 0 or 1 functional copy. We mate the 86 simulated a cell and 85 simulated α 

cells into 7310 diploid genotypes, resemble the data we used. 9 environments of different quality 

are simulated, assuming the environment effect to each module follow a normal distribution with 

mean 0.1, 0.14, 0.18… 0.42 contributions to each module and variance 0.01. We then take 

similar procedure in estimating h, Q and s. We filtered noise by using allele with estimated effect 

size larger than 0.01 in each environment to calculate h and calculated the g using the remaining 

genes. We found that, 99 out of 100 simulations (binomial P < 10-28), the correlation between g 

and Q is positive (Fig 4-3AB), suggesting that positive correlation is expected by modular life 

model when population data is used to calculate genetic dominance. 

Because modular life simulation suggests positive Q-g correlation when using 

polymorphism data, so we went on to test it with empirical data. Indeed, we observe positive Q-g 

correlation (Fig 3C, Fig E-S1), meaning better environment tend to have higher dominance level 

for functional polymorphisms. The empirical P-values (see Method) from linear regression are 

significant for all three time points we used.  

4.3.6 Q-h correlation is unexpected in the Wright-Kacser-Burns model 

 By analyzing two different datasets and by performing simulations with modular life 

model, we confirm a negative Q-h correlation. Because this correlation has not been reported 
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before, nor has it been used to test the correctness of theories of dominance, we test whether the 

Wright-Kacser-Burns model could also predict this correlation. First, we follow the Wright-

Kacser-Burns model to get its prediction for Q-h correlation. 

 According to metabolic control theory, flux (F) equals to growth, and the flux of a linear 

pathway follows:  

F = C/ (∑ 1/𝑍𝑍𝑖𝑖𝑛𝑛
1 ),    (8) 

where C represents the environmental parameters, and Z represents the genetically determined 

parameters of an enzyme (KACSER AND BURNS 1981). According to Eq. 8, environment could 

have two effects: 1) increase/decrease metabolic reaction by increasing/decreasing substrates, 2) 

change enzymes’ activities. Here, we discuss these two scenarios separately.  

Let Zk be the activity of enzyme k when it is homozygous wildtype, then Zk/2 is the activity of 

enzyme k for heterozygous in the same environment. Then the dominance coefficient for the 

mutant allele hk follows: 

hk = 1- [C [1/ (2/𝑍𝑍𝑘𝑘 + ∑ 1/𝑍𝑍𝑖𝑖𝑖𝑖≠𝑘𝑘 )]]/ [C [1/ (1/𝑍𝑍𝑘𝑘 + ∑ 1/𝑍𝑍𝑖𝑖𝑖𝑖≠𝑘𝑘 )]]   

= 1- (1/𝑍𝑍𝑘𝑘 + ∑ 1/𝑍𝑍𝑖𝑖𝑖𝑖≠𝑘𝑘 )/ (2/𝑍𝑍𝑘𝑘 + ∑ 1/𝑍𝑍𝑖𝑖𝑖𝑖≠𝑘𝑘 ).   (9) 

To further simplify Eq.9, we can replace the combined effect of all enzymes 𝑖𝑖 ≠ 𝑘𝑘 in the 

pathway with  

∑ 1/𝑍𝑍𝑖𝑖𝑖𝑖≠𝑘𝑘 = 1/𝑍𝑍All ,    (10) 

Combine Eq.9 and Eq.10, we get: 

hk = 𝑍𝑍𝐴𝐴𝐴𝐴𝐴𝐴/(𝑍𝑍𝑘𝑘+2𝑍𝑍𝐴𝐴𝐴𝐴𝐴𝐴).    (11) 
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Assume that 𝑍𝑍𝑘𝑘 increases to Z’k during the environment shift, and 𝑍𝑍𝐴𝐴𝐴𝐴𝐴𝐴 changes to 𝑍𝑍′𝐴𝐴𝐴𝐴𝐴𝐴, 

and hk becomes h’k. Put the new parameters into Eq.11, we get: 

h’k =  𝑍𝑍′𝐴𝐴𝐴𝐴𝐴𝐴/(𝑍𝑍′𝑘𝑘+2𝑍𝑍′𝐴𝐴𝐴𝐴𝐴𝐴).    (12) 

Because Eq. 11 and Eq. 12 share the same mathematical expression, and that they are 

both independent of environmental parameter C, the formula does not predict any directional 

change of h. Therefore, the metabolic flux model predicts no correlation between Q and h and 

cannot explain the observation that the majority of genes and polymorphisms show the Q-h 

correlation. 

 

4.3.7 Diminishing returns epistasis could not be explained by previous models 

Although it is not necessary for a model of dominance to explain diminishing returns 

epistasis, being able to explain both phenomena makes modular life model more general, so we 

went on to test whether the other models could also predict diminishing returns epistasis. 

Diminishing returns epistasis has two general trends: 1) the same beneficial mutation has smaller 

effects on fitter genotype backgrounds, and 2) the same beneficial mutation has smaller effects 

on fitter environment backgrounds (Wei and Zhang, 2018). Both Fisher’s theory and Haldane’s 

theories rely on selection on heterozygotes, thus are inapplicable to the diminishing returns 

epistasis in haploid, where functional allele has only 0 and 1 state. To this end, we discussed why 

the Wright-Kacser-Burns theory could not satisfactorily explain diminishing returns epistasis.  

 Despite that the Wright-Kacser-Burns model predicts the diminishing returns curve 

between enzyme activity and flux (KACSER AND BURNS 1981; DYKHUIZEN et al. 1987), it fails to 
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explain diminishing returns epistasis even for enzymes, as we discussed below. First, we discuss 

the effect of gaining a single beneficial mutation on two genotype backgrounds. Let enzyme k in 

the pathway improves its activity from Zk to 𝑍𝑍′𝑘𝑘 by one single mutation, and we combine this 

with Eq. 8 to calculate the fitness improvement s from this single mutation: 

s = C [1/ (1/𝑍𝑍′𝑘𝑘 + ∑ 1/𝑍𝑍𝑖𝑖𝑖𝑖≠𝑘𝑘 ) - 1/ (1/𝑍𝑍𝑘𝑘 + ∑ 1/𝑍𝑍𝑖𝑖𝑖𝑖≠𝑘𝑘 )].  (13) 

To simplify Eq. 13, we replace the combined effect of all enzymes 𝑖𝑖 ≠ 𝑘𝑘 in the pathway 

using Eq. 10, and get: 

s = C [1/ (1/𝑍𝑍′𝑘𝑘 + 1/𝑍𝑍𝐴𝐴𝐴𝐴𝐴𝐴) - 1/ (1/𝑍𝑍𝑘𝑘 + 1/𝑍𝑍𝐴𝐴𝐴𝐴𝐴𝐴)].  (14) 

Background fitness improvement under the Wright-Kacser-Burns theory could be 

represented by increasing ZAll to 𝑍𝑍′𝐴𝐴𝐴𝐴𝐴𝐴. Then the effect of this mutation becomes s’, where: 

s’= C [1/ (1/𝑍𝑍′𝑘𝑘 + 1/𝑍𝑍′𝐴𝐴𝐴𝐴𝐴𝐴) - 1/ (1/𝑍𝑍𝑘𝑘 + 1/𝑍𝑍′𝐴𝐴𝐴𝐴𝐴𝐴)].  (15) 

We use Mathematica to simplify Eq. 14-Eq. 15 and to calculate the critical value for s’- s. 

We found that when 𝑍𝑍′𝐴𝐴𝐴𝐴𝐴𝐴 > 0, s’- s increases with 𝑍𝑍′𝐴𝐴𝐴𝐴𝐴𝐴 monotonically. Because when 𝑍𝑍′𝐴𝐴𝐴𝐴𝐴𝐴=𝑍𝑍𝐴𝐴𝐴𝐴𝐴𝐴, 

s’ = s , so s’ > s >0 for all 𝑍𝑍′𝐴𝐴𝐴𝐴𝐴𝐴 > 𝑍𝑍𝐴𝐴𝐴𝐴𝐴𝐴 > 0. Therefore, a beneficial mutation of an enzyme on a 

fitter genotype with better pathway performance has bigger fitness benefit, which is the opposite 

of diminishing returns epistasis. The Wright-Kacser-Burns l theory predicts predominant 

synergistic effect of beneficial mutations for enzymes, contradictory to the first pattern of 

diminishing returns epistasis.  

Now let’s consider the second pattern of diminishing returns epistasis regarding the 

mutational effect in high Q and low Q environments. Environmental quality increases in the 

Wright-Kacser-Burns model could be seen as the environmental parameter in Eq. 1 increases 
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from C to C’ such that the fitnesses of all genotypes increase. The effect size in Eq. 14 will 

change from s to s’ following: 

s = C’ [1/ (1/𝑍𝑍′𝑘𝑘 + 1/𝑍𝑍𝐴𝐴𝐴𝐴𝐴𝐴) - 1/ (1/𝑍𝑍𝑘𝑘 + 1/𝑍𝑍𝐴𝐴𝐴𝐴𝐴𝐴)].  (16) 

Combining Eq. 14 and Eq. 16, we get: 

s’ = s C’/ C,     (17) 

So s’ increases as environment gets better. Therefore, the Wright-Kacser-Burns model 

predicts the opposite of the two patterns of diminishing returns epistasis, indicating it is not as 

general as modular life model.  

4.4 Discussion 

To summarize, we hypothesize that dominance is a special case of diminishing returns 

epistasis arriving from interactions among genes of the same functional modules. We extend the 

modular life model of diminishing returns epistasis to diploid system and use it to predict the 

patterns of dominance. Simulation using modular life model predicts a negative Q-h correlation, 

which is verified by two large yeast datasets. We find that the Wright-Kacser-Burns model could 

not predict the negative Q-h correlation for genetic dominance, nor could it predict diminishing 

returns epistasis in haploids. In contrast, modular life model not only predicts all current 

observations of genetic dominance but also predicts diminishing returns epistasis.  

The origin of genetic dominance has been a long-standing question in evolutionary 

genetics, and finding the correct model/theory is important to revealing the mechanistic causes. 

We focus on discussing the differences among our model, Fisher’s model, Haldane’s model and 

the Wright-Kacser-Burns’ model (a summary of the comparison in Table 1), although some 
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recent attempts has been made by Manna and colleagues using a bivariate Gaussian model 

(MANNA et al. 2011; MANNA et al. 2012). The Gaussian model cannot predict the well-known 

negative h-s correlation (MANNA et al. 2011; MANNA et al. 2012), nor does it provide a 

mechanistic explanation for using the bivariate Gaussian. We showed that none of the previous 

theories is sufficient to explain all the current observations of dominance. In contrast, modular 

life model predicts h-s correlation, h-Q correlation, dominance, diminishing returns epistasis, 

overdominance, and using the modular structure of life to explain these phenomena.  

We predict and observe the negative Q-h correlation meaning higher dominance in better 

environments, based on modular life model prediction and the analysis of yeast deletion and 

yeast polymorphisms datasets. This new finding indicates that dominance shares the property of 

diminishing returns, because not only the returns from gaining a wildtype allele is smaller on the 

heterozygous background than on the homozygous mutant background (i.e. dominant), but also 

the returns of an extra wildtype allele becomes even smaller (.e. more dominant) as the 

environment becomes better. This new finding suggests that dominance changes during 

adaptation and environment fluctuations, and the level of dominance/diminishing returns reflects 

how adapted the genome is. Even for conserved genes, the dominant level may increase or 

decrease according to the genotype and environment. Fisher’s theory or Haldane’s sieve do not 

predict higher dominance in better environments, unless we assume the population has adapted 

to all tested environments and they are more adapted to high fitness environments than low 

fitness environments. However, the environments used in the yeast datasets are quite arbitrary, 

and high environmental quality can be a feature of the environment rather than adaptation. 

Moreover, Fisher’s theory was refuted by many other previous observations of genetic 
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dominance; Haldane’s sieve cannot explain Orr’s result (ORR 1991) , nor can it explain why new 

deleterious mutations are partially recessive (MUKAI AND YAMAZAKI 1968). 

Under modular life model, genetic dominance couples with selection for high fitness, so 

genetic dominance arises intrinsically during adaptation. Because of this coupling effect, it 

avoids the problem of using selection for weak effects (WRIGHT 1929) (Fisher’s modifier theory 

and Haldane’s robustness explanation) to explain the prevalence of genetic dominance. 

Moreover, the arrival of diminishing returns/dominance is unavoidable (also intrinsic) under this 

model, because as long as historical contingency exist, the genotype is unlikely to be maladapted 

for all modules. The intrinsic origin is a pivotal advantage for the Wright-Kacser-Burns theory, 

but because their model requires all enzymes at intermediate level, selection has been used to 

explain why enzyme activities are neither too high nor too low (WILKIE 1994). Because selection 

does not directly act on enzyme activity, explaining the intermediate enzyme activity by 

selection is probable but somewhat difficult. By coupling genetic dominance with selection on 

main mutational effect s, our model bypasses the difficulty of explaining dominance by selection 

and allows dominance to exist for all genes.  

A big advantage of modular life model is that it was not designed retrospectively to 

explain genetic dominance as were both Fisher’s and Wright’s models. Even so, it more 

satisfactorily explains all current observations of genetic dominance, compared to the previous 

retrospective models. Moreover, it provides the connection between the two widespread 

phenomena in genetics and evolution, dominance and diminishing returns epistasis. Neither 

Fisher’s model nor Wright’s model is able to explain diminishing returns epistasis. Although 

they were not retrospectively built to explain diminishing returns, they do not share the 

generality of modular life model. Given the high similarity between dominance and diminishing 
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returns epistasis, a model that sufficiently explains both phenomena is superior. This and other 

results suggest that modular life model might be generally applicable in explaining the effect 

sizes of mutations and genotype-phenotype mapping.  

Generality and specificity sometimes do tradeoff. Note that, metabolic control theory is 

formalized based on enzyme pathway activities, and it is good at explaining the enzyme 

metabolic flux (DYKHUIZEN et al. 1987; NIEDERBERGER et al. 1992). The evidences in this work 

only show its consistentency with all patterns of genetic dominance thus should not be the model 

of genetic dominance. Refuting its prediction power for genetic dominance does not contradict it 

being a model for metabolic flux. Similarly, just because modular life model provides a simple 

explanation for all genes and it is compatible with all current patterns do not mean it can provide 

specific prediction for a specific group of genes.  

In this paper, we assume one gene only improve one module, while the reality could be 

more complicated. We find that modular life model can successfully explain overdominance (see 

Supplementary Materials) assuming the two alleles slightly differ in their functions. Future work 

could explore the possibility of using modular life model to explain more complicated mutational 

effect.  

Although modular life model seems to be very general, the predictions it made are 

testable predictions thus it is refutable and has the potential to be falsified and refined. Some 

other predictions of it can be tested in the future. For example, the model predicts transitive 

relation of dominance (assuming that one gene only contributes to one module), such that if gene 

A has three alleles, A1 is dominant to A2, and A2 is dominant to A3, then A1 is dominant to A3. If 

future studies found results mostly consistent with modular life model predictions, the model will 
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be further supported. Moreover, it predicts that, in the absence of genetic incompatibility, the 

hybrid between two homozygous diploid genotypes should not be lower than the less fit parent’s 

growth rate, but the hybrid growth rate could be better than both parents or anywhere in between. 

It is possible that some future models could also explain all the phenomena modular life 

model explains, but such models are currently unavailable. Thus, it is worthwhile to explore 

more of this model especially in the light of molecular mechanism. The molecular mechanisms 

of dominance has been discussed, where dosage change, structural alternation, toxic, and 

functional change mutations were discussed for dominance at different phenotypic levels 

(WILKIE 1994). The molecular mechanism of diminishing returns epistasis has not been reviewed, 

but our work suggests diminishing returns expistasis may share the mechanisms of dominance. 

Future work may combine the modular life model with molecular mechanisms to justify its 

usability as a model for mutational effects. 

4.5 Material and methods 

4.5.1 Genome and phenotype data in yeast gene deletion 

We downloaded the supplementary data from Marerk and Korona (MAREK AND KORONA 

2016). We chose only the genes with s and h measured in both regular and starvation 

environments in our analysis, which restrict it into 369 total gene deletions.  

Genotype and average growth rate for diploid yeast hybrids 

We acquired from the Hallin et al the genotype data and of 7310 diploids from a cross 

between 86 MATa and 86 MATα strains haploid of S. cerevisiae (HALLIN et al. 2016). The 

haploids were randomly drawn from a twelfth generation two-parent intercross pool which is 

mated from two wild strains sampled in North America and West Africa (HALLIN et al. 2016).  
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For each genomic region that several SNPs are completely in linkage with each other 

with no recombination in any diploid genome, we keep only the middle SNP. This way, we have 

13350 remaining SNPs in our analysis.  

We also acquired the unsmoothed cell numbers at the time points (between 0 and 72h) of 

their measurements for each of the diploid hybrid for all the nine environments they used. The 

cell number is measured based on the cell growth on agar plates (ZACKRISSON et al. 2016) and 

each diploid contains 8 replicate measurements.  

For this yeast polymorphism data we used, we have cell numbers measured at different 

time points based on their growth on solid medium. We follow the following formulas to get 

average growth rate of each genotype from cell number.  Cell growth can be described by  

   0

( )

0 0

T

R t dt
RTN N e N e

∫
= = ,   (16) 

where N0 is the number of colonizing cells, N is the number of cells at time T,  R(t) is the growth 

rate at time t, and R  is the average growth rate from time 0 to T.  From Eq. 16, we have  

   𝑅𝑅� = 1
𝑇𝑇

ln 𝑁𝑁
𝑁𝑁0

,      (17) 

Because N0 could be seen as a constant when there are 8 replicated measurements for 

each genotype, we use 1
𝑇𝑇

ln𝑁𝑁 as growth rate. We use the cell numbers from 3 intermediate time 

points: 32h, 40h, and 48h. If a diploid hasn’t been measured in one environment, it will be 

removed from the analysis in that environment. If multiple replicates are available, we average 

the 𝑅𝑅� of all the replicates.  

If a SNP has no effect, then 𝑅𝑅AA�����, 𝑅𝑅Aa�����, 𝑅𝑅aa����� are random numbers, so their h has 67% 

chance to be outside 0 and 1. So filtering out SNPs with small effects could reduce noise, and the 

fraction of remaining SNPs with h between 0 and 1 should increase. Because the majority of 
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SNPs do not have fitness effects and because we want to only calculate h for SNPs with h 

between 0 and 1, we filter out SNPs with smaller effects and SNPs whose h are outside 0 and 1. 

For each condition, we use different cutoffs for s = |𝑅𝑅AA����� -𝑅𝑅aa�����| to filter out the SNPs with small 

effects (due to noise) and then calculate the fraction of remaining SNPs with heterozygotes 

having intermediate fitness. We find that, as we increase the cutoff from 0 to 0.065, the fraction 

of such SNPs increases from about 90% to about 98% suggesting the noise significantly 

decreases and all conditions have at least 98% remaining, but further increasing the cutoff from 

0.065 to 0.1 does not improve the fraction of such SNPs (Fig E-S2). We therefore used 0.065 as 

the cutoff for all conditions and all time points. 

4.5.3 Modular life model predicts dominance mathematically 

We first show that under modular life model h < 0.5 is true when there is no saturation. 

We can rewrite Eq. 6 in the following form: 

h = 
𝑀𝑀𝑗𝑗
1/𝐾𝐾−(𝑀𝑀𝑗𝑗−𝑥𝑥)1/𝐾𝐾

𝑀𝑀𝑗𝑗
1/𝐾𝐾−�𝑀𝑀𝑗𝑗−2𝑥𝑥�

1/𝐾𝐾  = 
𝑀𝑀𝑗𝑗
1/𝐾𝐾−(𝑀𝑀𝑗𝑗−𝑥𝑥)1/𝐾𝐾

[𝑀𝑀𝑗𝑗
1/𝐾𝐾−�𝑀𝑀𝑗𝑗−𝑥𝑥�

1
𝐾𝐾]+[�𝑀𝑀𝑗𝑗−𝑥𝑥�

1
𝐾𝐾− �𝑀𝑀𝑗𝑗−2𝑥𝑥�

1
𝐾𝐾

]

  (18) 

Name a new function f(Mj), which follows: 

f(Mj) = 𝑀𝑀𝑗𝑗
1/𝐾𝐾 − (𝑀𝑀𝑗𝑗 − 𝑥𝑥)1/𝐾𝐾   (19) 

Take Eq. 19 into Eq. 18, we get: 

h = 𝑓𝑓(𝑀𝑀𝑗𝑗)
𝑓𝑓�𝑀𝑀𝑗𝑗�+ 𝑓𝑓(𝑀𝑀𝑗𝑗−𝑥𝑥)

      (20) 

Because the derivative of f(Mj) follows 

f’(Mj) = 1
𝐾𝐾

(𝑀𝑀𝑗𝑗
1
𝐾𝐾−1 − (𝑀𝑀𝑗𝑗 − 𝑥𝑥)

1
𝐾𝐾−1) = 1

𝐾𝐾
(( 1
𝑀𝑀𝑗𝑗

)1−
1
𝐾𝐾 − ( 1

𝑀𝑀𝑗𝑗−𝑥𝑥
)1−

1
𝐾𝐾) (20) 

Because f’(Mj) < 0 under the condition of modular life model that 0 ≤ x ≤ 𝑀𝑀𝑗𝑗/2 ≤ 0.5 and 

that K >1, f(Mj) < f(Mj - x). Therefore, 
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h = 𝑓𝑓(𝑀𝑀𝑗𝑗)
𝑓𝑓�𝑀𝑀𝑗𝑗�+ 𝑓𝑓(𝑀𝑀𝑗𝑗−𝑥𝑥)

 < 
𝑓𝑓(𝑀𝑀𝑗𝑗)

𝑓𝑓�𝑀𝑀𝑗𝑗�+ 𝑓𝑓(𝑀𝑀𝑗𝑗)
 = 0.5  (21) 

We then show that under modular life model h < 0.5 is true when there is saturation. We 

can rewrite Eq. 7 in the following form: 

h = 
𝑀𝑀𝑗𝑗
1/𝐾𝐾−(𝑀𝑀𝑗𝑗−𝑡𝑡)1/𝐾𝐾

𝑀𝑀𝑗𝑗
1/𝐾𝐾−�𝑀𝑀𝑗𝑗−𝑡𝑡−𝑥𝑥�

1/𝐾𝐾 =  
𝑀𝑀𝑗𝑗
1/𝐾𝐾−(𝑀𝑀𝑗𝑗−𝑡𝑡)1/𝐾𝐾

[𝑀𝑀𝑗𝑗
1/𝐾𝐾−�𝑀𝑀𝑗𝑗−𝑡𝑡�

1
𝐾𝐾]+[�𝑀𝑀𝑗𝑗−𝑡𝑡�

1
𝐾𝐾− �𝑀𝑀𝑗𝑗−𝑡𝑡−𝑥𝑥�

1
𝐾𝐾

]

 (22) 

Name a new function g(Mj), which follows: 

g(Mj) = 𝑀𝑀𝑗𝑗
1/𝐾𝐾 − (𝑀𝑀𝑗𝑗 − 𝑡𝑡)1/𝐾𝐾   (19) 

 Because g(Mj) and f(Mj) only differs in the t term, and because 0 ≤ t ≤ 𝑀𝑀𝑗𝑗/2 ≤ 0.5 and 

K >1 are true, the derivative of  g(Mj): g’(Mj) < 0, so g(Mj) < g(Mj - x) is also true. We can then 

rewrite Eq. 22 as: 

h = 
𝑔𝑔(𝑀𝑀𝑗𝑗)

𝑔𝑔�𝑀𝑀𝑗𝑗�+ 𝑔𝑔(𝑀𝑀𝑗𝑗−𝑥𝑥)
  < 

𝑔𝑔(𝑀𝑀𝑗𝑗)
𝑔𝑔�𝑀𝑀𝑗𝑗�+ 𝑔𝑔(𝑀𝑀𝑗𝑗)

 = 0.5 (20) 

 Thus, under modular life model, beneficial alleles are dominant with or without 

saturation effect.  

4.5.4 Modular life model predicts h-s correlation mathematically 

We then show h-s correlation under modular life model first for no saturation case. To 

deal with this question, we assume 𝑀𝑀𝑗𝑗 is fixed, and x changes. And, let  

h(x) =  
𝑀𝑀𝑗𝑗
1/𝐾𝐾−(𝑀𝑀𝑗𝑗−𝑥𝑥)1/𝐾𝐾

𝑀𝑀𝑗𝑗
1/𝐾𝐾−(𝑀𝑀𝑗𝑗−2𝑥𝑥)1/𝐾𝐾

 = 
1−(1−𝑥𝑥/𝑀𝑀𝑗𝑗)1/𝐾𝐾

1−(1−2𝑥𝑥/𝑀𝑀𝑗𝑗)1/𝐾𝐾   (21) 

when there is no saturation. Let a new t= x/𝑀𝑀𝑗𝑗. And we get F(t):  

F(t) = 1−(1−𝑡𝑡)1/𝐾𝐾

1−(1−2𝑡𝑡)1/𝐾𝐾    (22) 

The effect size s of the beneficial allele is an increasing function of x, because it follows:  

𝑠𝑠 = 𝑅𝑅11 − 𝑅𝑅00 = 𝑀𝑀𝑗𝑗
1/𝐾𝐾 − (𝑀𝑀𝑗𝑗 − 2𝑥𝑥)1/𝐾𝐾   (23) 
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Within modular life model’s parameter range, the derivative of F(t) follows:  

F’(t) =   
1
𝐾𝐾 (1−𝑡𝑡)

1
𝐾𝐾−1�1−(1−2𝑡𝑡)

1
𝐾𝐾�− 2𝐾𝐾 (1−2𝑡𝑡)

1
𝐾𝐾−1�1−(1−𝑡𝑡)

1
𝐾𝐾�

(1−(1−2𝑡𝑡)1/𝐾𝐾)2
     

= 
 (1−𝑡𝑡)

1
𝐾𝐾−1�1−(1−2𝑡𝑡)

1
𝐾𝐾�− 2 (1−2𝑡𝑡)

1
𝐾𝐾−1�1−(1−𝑡𝑡)

1
𝐾𝐾�

𝐾𝐾(1−(1−2𝑡𝑡)1/𝐾𝐾)2
   (24) 

The sign of F’(t) depends only on the numerator part, because the denominator is positive. 

We want to prove that F’(t) < 0, so that h-s are negatively correlated.  

Divide F’(t) by (1 − 𝑡𝑡)
1
𝐾𝐾−1(1 − 2𝑡𝑡)

1
𝐾𝐾−1 > 0 , we get: 

F’(t) = (1−2𝑡𝑡)1−
1
𝐾𝐾− (1−2𝑡𝑡)− 2( (1−𝑡𝑡)1−

1
𝐾𝐾−(1−𝑡𝑡))

𝐾𝐾(1−(1−2𝑡𝑡)1/𝐾𝐾)2
    (25) 

So we need (1 − 2𝑡𝑡)1−
1
𝐾𝐾 − (1 − 2𝑡𝑡) −  2 � (1 − 𝑡𝑡)1−

1
𝐾𝐾 − (1 − 𝑡𝑡)� < 0, let 

L(t) = (1 − 2𝑡𝑡)1−
1
𝐾𝐾 − (1 − 2𝑡𝑡) −  2 � (1 − 𝑡𝑡)1−

1
𝐾𝐾 − (1 − 𝑡𝑡)�   

= (1 − 2𝑡𝑡)1−
1
𝐾𝐾 − 2(1 − 𝑡𝑡)1−

1
𝐾𝐾 + 1    (26) 

Calculate the derivative of L(t), we get: 

L’(t) = -2 (1 - 1
𝐾𝐾

) (1 − 2𝑡𝑡)−
1
𝐾𝐾 + 2 (1 - 1

𝐾𝐾
) (1 − 𝑡𝑡)−

1
𝐾𝐾  

= 2(1 - 1
𝐾𝐾

) ((1 − 𝑡𝑡)−
1
𝐾𝐾 - (1 − 2𝑡𝑡)−

1
𝐾𝐾)    (27) 

Therefore, L’(t) < 0 when t > 0. So F’(t) < 0 when t > 0. So h-s are negatively correlated.  

When there is saturation in a module, the h-s has no correlation unless with specific parameter 

assumptions. It does not have a mathematical solution. But because the majority of genes with 

effect are in non-saturated modules, we expect to see h-s correlation even when some modules 

are saturated.    
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Figure 4-1. Modular life model in diploid systems. Different modules (M1, M2, and M3) are 

colored differently. Different environments (Environments 1 and 2) contribute differently to 

various modules, as illustrated by the different sizes of the three color-filled boxes. Each module 

contains a number of biallelic genes, shown as two connected boxes, each of which could have 

either a functional allele designated as 1 (filled box) or a null allele designated as 0 (open box). If 

both boxes are filled, the genotype has two functional alleles of the gene; if only one box is filled, 

the genotype has one functional allele; if zero box is filled, the genotype has no functional allele 

of the gene. Two genotypes (Genotypes 1 and 2) are shown as examples. The functionality of a 

module has a maximum of 1, and is the sum of environmental and genetic contributions. The 

growth rate of each genotype is computed from the functionalities of the individual modules 

using the formula indicated, which equals the geometric mean of all modules. 
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Figure 4-2. The inferences about dominance from modular life model. (A) h decreases as s 

increases. X-axis if the effect size s of a gene and y-axis is the h of deleting the gene on one 

genotype background. Each dot represents the deletion effect of one gene on one background. ρ, 

the spearman correlation. (B) The distribution of Q-h correlations. This is based on 100 

simulations, and the x-axis is the ρ, the spearman correlation of the correlation. (C) The Q-h 

correlations in yeast dataset I. Each dot represents one gene.  
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Figure 4-3. Positive correlation between environmental quality and the fraction of genes/SNPs 

showing h < 0.5(g). (A) The observed result at 40h between Q and g. Each dot represents one 

environmental condition. Linear correlation coefficient R and empirical P (from 1000 random 

shuffling of x- and y- axes numbers) are listed. (B) An example of the correlation between Q and 

g in modular life model simulation. Each dot represents one environmental condition. Linear 

correlation result is listed. (C) The distribution of all R from 100 simulations. The arrow pointed 

place is the observed R from data.  
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Chapter 5 

Environment-dependent pleiotropic effects of mutations  

on growth rate and carrying capacity of population growth 

 

“The cost of a thing is the amount of what I will call life  

which is required to be exchanged for it, immediately or in the long run.”  

—  Henry David Thoreau  

 

5.1 Abstract 

Growth rate (r) and carrying capacity (K) are key life history traits that together characterize the 

density-dependent population growth, and therefore are crucial parameters of many ecological 

and evolutionary theories. Although r and K are generally thought to be negatively correlated, 

both r-K tradeoffs and tradeups have been observed. However, neither the conditions under 

which each of these relationships occur nor the causes of these relationships are fully understood. 

Here we address these questions using genetic mappings of r-QTLs and K-QTLs followed by 

mathematical modeling. We estimated r and K using the growth curves of more than 7000 yeast 

recombinant diploid genotypes in nine lab environments and found that the r-K correlation 

https://www.goodreads.com/author/show/10264.Henry_David_Thoreau
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among genotypes changes from 0.53 to -0.52 with the rise of the environment quality, measured 

by the mean r of all genotypes in the environment. Many QTLs simultaneously influence r and K, 

but the directions of their effects are environment-dependent such that a QTL could show 

concordant effects on the two traits in a poor environment but antagonistic effects in a rich 

environment. We propose that these varying trends are generated by the relative impacts of two 

factors: the tradeoff between the speed and efficiency of ATP production and the energetic cost 

of cell maintenance relative to reproduction, and demonstrate a good agreement between model 

predictions and empirical observations.  Together, these results reveal and explain the complex 

environment-dependency of the r-K relationship, which bears on many ecological and 

evolutionary phenomena.  

 

5.2 Introduction 

In the past, evolutionary biologists view growth rate r as fitness proxy while ecologists prefer 

carrying capacity K as fitness proxy (MACARTHUR AND WILSON 2016). Because r and K are 

important characters of density-dependent growth, the studies of r-K relationship trace back to 

the rich literature in evolutionary ecology. MacArthur and Wilson proposed the r-selection and 

K-selection theory based on their work on island biogeography (MACARTHUR AND WILSON 

2016). By connecting these two fitness proxies with the environment, they explained the relative 

importance of r and K for fitness.  They also envisioned tradeoff between r-K in r-selected and 

K-selected species in their book (MACARTHUR AND WILSON 2016). At about the same time, 

George Williams proposed antagonistic pleiotropy (or tradeoff) and discussed whether 

reproductive success of an individual (which could be measured by r under MacArthur and 

Wilson framework) necessarily extend to the success of the population (which could be 
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measured by K under MacArthur and Wilson framework) (WILLIAMS 1966b; WILLIAMS 1966a). 

Triggered by MacArthur’s, Wilson’s, and Pianka’s work (PIANKA 1970) as well as Williams’s 

influence on tradeoff, r-K tradeoff along with r-K selection theory was once most fashionable 

topic in ecology, but it is highly criticized later when empirical studies showed mismatched 

results (STEARNS 1977); the essence of the r-K theories later blended into other life-history 

models (REZNICK et al. 2002).  

Studying r-K selection and r-K tradeoff with evolutionary ecology approaches can be 

difficult,  because 1) the intrinsic nature of tradeoff is not clear, 2) initial environment  is usually 

unknown, 3) natural environment is hard to manipulate, and 4) number of replicates and species 

is insufficient most of the time (STEARNS 1977). Recent studies in r-K focuses on experimental 

tests of r-K trade-off, or rate-yield (growth rate r and number of cells produced per mol of 

resource) trade-off with microbes (NOVAK et al. 2006; FITZSIMMONS et al. 2010; BEARDMORE et 

al. 2011; MEYER et al. 2015; REDING-ROMAN et al. 2017). Many of the microbial studies used 

experimental evolution to specific environment (NOVAK et al. 2006; REDING-ROMAN et al. 2017) 

Although these microbial studies provides the benefit of manipulated environment and replicates 

to confirm the observed correlation, these studies are small in scale (both in terms of number of 

genotypes, and in terms of number of environments), and the r-K tradeoff is not consistently 

found across experiments (NOVAK et al. 2006; FITZSIMMONS et al. 2010; BEARDMORE et al. 2011; 

MEYER et al. 2015; REDING-ROMAN et al. 2017). It is unclear under what condition the r-K 

relationship should be negative and under what condition r-K relationship should be positive.  

Despite the criticisms by Sterns (STEARNS 1977), r-K tradeoff is believed because of some 

biochemical laws. adenosine triphosphate (ATP) production between rate (moles of ATP per unit 

of time) and yield (moles of ATP per mole of substrate) (ATPrate-yield to distinguish from the rate-
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yield in terms of growth rate) is believed general for heterotrophic organisms (PFEIFFER et al. 

2001). For example, tradeoff happens during sugar degradation, because unlike respiration, 

fermentation is not restricted by oxygen and sugar supply, thus the use of fermentation in 

addition to respiration increases the rate and decreases the ATP yield (POSTMA et al. 1989; 

PFEIFFER et al. 2001). Moreover, for some fundamental thermodynamic reasons, this ATPrate-yield 

tradeoff holds even without sugar degradation, because some of the free energy can be used to 

drive the reaction rather than to convert into ATP (WADDELL et al. 1999; PFEIFFER et al. 2001). 

Supported by the general tradeoffs in ATP production, r and K are believed to tradeoff. However, 

it is still unknown whether simple biochemical laws could explain the mixed r-K relationship. 

The genetic effect of r-K relationship is rarely discussed (REDING-ROMAN et al. 2017), yet of 

great value to understand the underlying relationship. Charlesworth demonstrated that pure 

phenotypic correlations among life-history variables are unlikely to provide useful information 

on trade-offs, because selection and environmental effects may generate positive correlation 

between traits even when they have negative underlying correlations, and he pointed out that 

studying genetic correlations can help understand evolutionarily relevant tradeoff and predict 

evolutionary response to new selection pressures (CHARLESWORTH 1990). It is unknown how r 

and K are affected by mutations, and how likely there is genetic by environment interactions in 

terms of r-K-pleiotropy. Moreover, a recent study demonstrated that introducing genetic 

variability in experiment increases reproducibility for ecological study and can help solve 

‘reproducibility crisis’ of scientific findings (MILCU et al. 2018). Therefore, studying many 

different genotypes in controlled environments will help understand the r-K relationship at 

mutation level and provide more confident results. 
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Because r-K relationship is hyper-interdisciplinary, understanding it not only help understand 

two important fitness proxies and life-history evolution, but also improve the understanding of 

pleiotropy, plasticity, as well as how biochemical laws constrain or facilitate cellular and 

organismal growth. In order to provide a mechanistic explanation for r-K relationship, we need 

to know the effects at genotype level, mutation level, and environment level. We take advantage 

of the budding yeast system in which different genotypes could be generated by recombination 

and the same genotype could be measured in multiple environments. We would like to study the 

patterns of r-K relationship by conducting a large-scale genome-wide and environment-wide 

analysis and to explain the patterns of r-K relationship with biochemical and biological insights. 

5.3 Results 

5.3.1 r-K correlation among genotypes is more negative in better environment 

We acquired from the Hallin et al the genotype data and the unsmoothed growth data of 

7310 diploids from a cross between 86 recombinant MATa and 86 recombinant MATα haploid 

strains of S. cerevisiae (HALLIN et al. 2016). 9 different YPD based growth medias were used, 

each with a different commonly used substrate. Each diploid genotype was grown on solid media 

with 4 replicates and the cell numbers of each replicates are measured with high resolution from 

0 and 72h at 20min by colony scan-o-matic (ZACKRISSON et al. 2016). We first estimated the r 

and K for each replicate of each of the 7310 genotypes by fitting a logistic curve. We then 

calculated the average r and K for each genotype using all replicates that pass our quality control 

(see Material and Methods) and the average coefficient of determination for each genoptype rg
2. 

The growth of yeast tightly follow logistic curve, resulting a median rg
2 among all measured 
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genotypes in these 9 environment 0.979-1.000. Our estimated r is the growth rate per hour, and 

our estimated K is the carrying capacity in terms of cell number. 

In each environment, we correlate all r and all K among genotypes. In three environments, 

we found significant positive correlations (Spearman correlation, ρr-K ≥ 0.32, P < 10-250), and in 

nine environments, we found significant negative correlations (ρr-K ≤ -0.08, P < 10-11). The 

correlations have a range of -0.52 to 0.53. Because the same genotypes are used across 

environments, suggesting environment has substantial effect on r-K correlation. To exclude the 

possibility that the r-K correlation is not due to biased estimation, we conducted a simulation 

where r and K are not correlated.  The simulated data mimic the empirical data all other aspects 

such as the number of replicates, genotypes, and environments, the number of time points, the 

range of r, and the range of K, and the goodness of fitting (see Materials and Methods). We 

process the simulated data the same way as the empirical one. In none of the 9 simulated 

environment, r and K are correlated. Moreover, the estimated parameters are sufficiently 

accurate when compare to the simulated parameters (see Materials and Methods).  

To investigate what causes change of sign and magnitude of these r-K correlations, we 

calculated the average growth rate of each environment as Er and the average carrying capacity 

of each environment as EK. For each of the nine environments, we have one ρr-K, one Er and one 

EK measured. We found that that Er and ρr-K are negatively correlated (Fig 5-1A, ρ = -0.88, P < 

10-11), but EK and ρr-K are not correlated (Fig 5-1B, ρ = 0.23, P = 0.56). Therefore, as 

environment gets better such that the majority of genotypes acquire faster growth rate, the r-K 

correlation continuously changes from positive to negative. This result suggests that the r-K 

correlation is mostly determined by r.  
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5.3.2 r and K are affected by shared genetic component 

 To study whether r and K are affected by shared genetic component, we mapped 

quantitative trait loci (QTLs) for r (rQTLs) and for K (KQTLs) in each environment (see 

Material and Methods). For each trait (r and K) in each environment, mapped 93-96 QTLs. For 

the later purpose of studying pleiotropic QTLs with high confidence, we want to avoid having 

too many QTLs. Therefore, we removed small effect QTLs (see Material and Methods) until the 

total explained variances by QTLs and the total explained variances by the same number of 

random SNPs are maximized. We use the most significant 36 QTLs to assay how much of the 

total variance could be explained by the large effect QTLs, and whether rQTLs could explain K 

more than by chance, and whether KQTLs could explain r more than by chance.  

We found that 36 rQTLs explains 65%-81% of the total variance of r, and KQTLs 

explains 53%-77% of the total variance of K. Moreover, 27%-66% of the total variance of r 

could be explained by the KQTLs of the same environment, and 21%-60% of the total variance 

of K could be explained by the rQTLs of the same environment. These fractions, although 

smaller than the fractions explained by QTLs for each trait, is much larger than the fraction 

explained by 36 random sampled sites in all environments (Fig 5-2 AB). This result suggests that, 

a lot of the total variances of r and K are controlled by sites with pleiotropic effect.  

5.3.3 r-K correlation among QTLs is more negative in better environment 

 We next ask whether the change from positive r-K correlation to negative r-K correlation 

as Er increases also exist at QTL level. To this end, we use linear regression to estimate the effect 

of rQTL on r and on K in each environment. If the same rQTL allele increases r but decreases K, 

it is a tradeoff-rQTL. Otherwise, it is a tradeup-rQTL. We then have the fraction of rQTLs 



147 
 

showing tradeoff effect for each environment (FrQTL). Out of the 9 environments, we found in 7 

environments, the majority of rQTLs are tradeoff-rQTL (FrQTL > 0.5), and in 1 environment, and 

the majority of rQTLs are tradeup-rQTL (FrQTL < 0.5). The remaining environment has FrQTL = 

0.5. The number of environments with ρr-K,< 0 and the number of environments with FrQTL > 0.5 

are not exactly the same. This could be due to that ρr-K is affected both the signs and the effect 

sizes of QTLs. Similar to the correlation observed between ρr-K and Er, we found FrQTL and Er 

are positively correlated (Fig 5-2C, ρ = 0.91, P = 0.0013), which suggest that high growth rate 

environment also has more tradeoff rQTLs. We also measured the effect of KQTL for K and for 

r for each environment and calculated the fraction of KQTLs showing tradeoff effect for each 

environment (FKQTL). Similarly, we found two low Er environments showing FKQTL<0.5, and the 

rest 7 showing FKQTL>0.5. Again, FKQTL and Er are positively correlated (Fig 5-2C, ρ = 0.74, P = 

0.027). Moreover, neither of the FrQTL and FKQTL is correlated with EK (Fig 5-2D).These results 

from QTL mapping provides genetic evidence for the among genotype observations. 

5.3.4 Pleotropic QTLs can show r-K trade-up and trade-off depending on the environment 

Because we found that r and K are controlled by sites with pleiotropic effect, we want to 

see if there exists pleiotropy by environment interactions. Gene-environment interaction refers to 

the phenomenon that the same mutation has different phenotypic effects in different environment, 

and it is often discussed in quantitative genetics, evolutionary genetics, and personalized 

medicine (WEI AND ZHANG 2017). In theory, when a mutation has pleiotropic effect, such that it 

changes multiple phenotypes, without pleiotropy by environment interaction, changing 

environment will not change the effect of it on different phenotypes. However, with pleiotropy 

by environment interactions, it may change those phenotypes in completely different ways. To 

our knowledge, pleiotropy by environment interaction for QTL has only been documented with 
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one example (VASSEUR et al. 2012). Because we have already found interactions with 

environment changes r-K correlation, we want to invest the general possibility of pleiotropy by 

environment interactions using or rQTLs and KQTLs. In particular, we are interested in 

antagonistic-pleiotropy by environment interactions, such that a site may increase r and K 

together in one environment but then flip the sign of effect for at least one trait in another 

environment. 

We used the most significant 36 rQTLs and KQTLs in each environment to find the 

enriched regions. If a 3kb region in the genome show up 4 or more times as either rQTL or 

KQTLs in the 9 environments, it is enriched. We found 21 such regions. By chance, we expect to 

observe only 0.83 region (based on the average of 100 simulations), result in FDR = 4%. Among 

the 21 regions, 18 regions are sometimes rQTLs and sometimes KQTLs when we use only the 

most significant 36 rQTL and KQTL. We surveyed these 18 regions based on their effects in all 

9 environments. For the QTL region with clear antagonistic pleiotropy by environment 

interactions, we highlighted the environments showing such effect in Fig 5-3A-K; for those QTL 

regions without clear antagonistic pleiotropy by environment interactions, effects in all 

environments are shown (Fig 5-3L-R). 

5.3.5 Explaining r-K relationship by a cell division energy cost model with two tradeoffs 

It is surprising that there is a clear pattern that ρr-K changes with Er but is unaffected by 

EK, and similar results are also observed at QTL level. Because the tradeoff between ATPrate-yield 

can only explain the r-K tradeoff when Er is large, it requires another biological process to 

overcome the ATPrate-yield tradeoff when Er is small to explain the empirical observations. 

Therefore, we looked into possibilities that could increase the energy cost when r becomes 
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smaller. In microbes, generation time (time per cell division) GT of a cell is proportional to 1/r. If 

a cell needs some energy per time just to maintain its healthy state, then such cost is linear with 

time. Indeed, as early as 50 years ago, Prit showed in multiple organisms that the extra substrates 

(glucose or glycerol) needed to produce the same amount of dry weight increases linearly with 

1/r (PIRT 1965), suggesting the maintenance energy a cell needs is proportional to time. If we 

consider both ATPrate-yield tradeoff and maintenance cost, we may reconcile the mixed results for 

r-K relationship (LIPSON 2015).  

Based on the ATPrate-yield tradeoff and maintenance cost, we derive the total cost of energy 

per cell division. Let α be an environment specific cost factor that is larger than 0, because the 

extra energy to maintain healthy state of a cell during one cell division is proportional to 1/r, we 

have α/r as the energy cost per cell division. Now assume the energy needed to produce new 

material for cell division is C, constant in all environments, and the energy wasted due to ATPrate-

yield per cell division is f(r). Because the nature of ATP production tradeoff, f(r) is a monotonic 

increasing function with r, such that the first derivative of it, f’(r) is larger than 0 for all valid r. 

Therefore, the total cost per cell division for a single cell (CTotal) is the sum of all three costs, 

which is 

CTotal = C + f(r) + α/r   Eq.1 

Take derivative of Eq.1, we get  

𝑑𝑑𝐶𝐶𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝑑𝑑𝑑𝑑

= 𝑓𝑓′(𝑟𝑟) −  𝛼𝛼
𝑟𝑟2

   Eq. 2, 

where f’(r) is an unknown positive function which may or may not depend on r.  
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In a simple case where f’(r) is independent of r, we have 𝑑𝑑𝐶𝐶𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝑑𝑑𝑑𝑑

< 0 when r ⊆ (0, �
𝛼𝛼

𝑓𝑓′(𝑟𝑟)) 

and 𝑑𝑑𝐶𝐶𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝑑𝑑𝑑𝑑

> 0 when r ⊆(�
𝛼𝛼

𝑓𝑓′(𝑟𝑟) , +∞). Therefore, CTotal first decreases with r and then increases 

with r. When total resource is fixed, K should be a decreasing function of CTotal (although r may 

also affect K independent of CTotal), such that when CTotal increase, K decrease, and when CTotal 

decreases, K increases. As r increases from 0 to�
𝛼𝛼

𝑓𝑓′(𝑟𝑟), CTotal decreases therefore K increases, and 

as r further increases, CTotal increases, and K decreases. The turning point is�
𝛼𝛼

𝑓𝑓′(𝑟𝑟). Therefore, 

when environment gets better such that Er is larger than the turning point, we expect to see 

negative r-K correlation; when environment is poor and Er is much smaller than the turning point, 

we expect to see positive r-K correlation. For environment where growth rates of genotypes 

enclose the turning point, the sign of correlation depends on the majority, and the Spearman 

correlation should be weaker. This prediction matches the observations.  

In the more complicated case where f’(r) is still a function of r, 𝑑𝑑𝐶𝐶𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝑑𝑑𝑑𝑑

 is negative when r 

is smaller than the first positive root of Eq.2, and it is positive when r further increases. Because 

it is possible to have more than one positive root, the dynamics can be more complicated. 

However, because there were only one transition from tradeup to tradeoff in our empirical result, 

it is more likely that there is only one positive root even when f’(r) is still a function of r.  

5.3.6 Explaining f(r) by fermentation and respiration pathway in yeast 

The most simple tradeoff cost formula f(r) could be f(r) = βr, where β is a constant and 

f’(r) = β. This turns out to be the energy tradeoff function for yeast when fermentation versus 
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respiration strategy differs across environment and among genotypes (see Method). This formula 

should also work in general when any faster but inefficient alternative pathway is used.  

Because for f(r) = βr, f’(r) = β is independent of r, we have 𝑑𝑑𝐶𝐶𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝑑𝑑𝑑𝑑

< 0 when r ⊆ (0,�
𝛼𝛼
𝛽𝛽

) , 

and 𝑑𝑑𝐶𝐶𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝑑𝑑𝑑𝑑

> 0 when r ⊆(�
𝛼𝛼
𝛽𝛽

, +∞). So there is only one turning point theoretically and 

empirically. When environment is good such that Er is larger than�
𝛼𝛼
𝛽𝛽

, we expect to see negative 

r-K correlation; and when environment is poor and Er is smaller than�
𝛼𝛼
𝛽𝛽

, we expect to see 

positive r-K correlation. 

5.3.7 Testing model predictions with empirical data 

The per cell division energy cost model provides us two extra testable predictions that 

could be verified with our data.  

First, because within an environment, r is determined by genotypes, the change from r-K 

tradeup to r-K tradeoff should be seen among genotypes within an environment if the r of 

different genotype spread around the turning point. Based on this prediction, in each 

environment, we divide the genotypes into small bins based on their r (each bin has 500 

genotypes). We then calculate the average K for each bin. The average r of the bins showing 

maximum K of each environments is 0.1076, shown by the black vertical line in Fig 5-4. We 

found that for the environments with many genotypes around 0.1076, there is a clear pattern of K 

increases and then decreases as r increases. In almost all environments, K is maximized at 

intermediate r (Fig 5-4A-G), suggesting the turning point is close to 0.1076. We found almost 

the same r as turning point for all environments, even though the genotypes in each bin change 
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from environment to environment. This result strongly supports that K depends on r, and is 

consistent with the model prediction.  

Second, because our model suggests that K depends on r, rather than the opposite, we 

expect to see the rQTLs explain K better than KQTLs explain r. To this end, we calculated the 

total variance explained for r and K in each environment using all the significant rQTLs and 

KQTLs mapped from the 6 rounds of mapping (93-96 for each trait). We found that KQTLs 

explain an extra of 4.8% -17.1% of the total variance of K than rQTLs; rQTLs explain an extra of 

8.9% -27.0% of the total variance of r than KQTLs. In 8 out of 9 environments (Binomial P = 

0.0039), the rQTLs explain K better than KQTLs explain r, which is consistent with our model 

prediction.                                                            

5.4 Discussion 

Charlesworth suggested that studying genetic correlations can help understand 

evolutionarily relevant tradeoff and predict evolutionary response to new selection pressures 

(CHARLESWORTH 1990). We provided the largest test for r-K relationship based on more than 

7000 genotypes and 9 environments. We showed that ρr-K > 0 in low Er and ρr-K < 0 in high Er 

environment at both genotype level and QTL level. Because the genotypes in our study are all 

recombinants from two divergent strains which do not exist in nature, and because we also 

observe similar result at QTL level, suggesting r-K tradeup and tradeoff are intrinsic. Moreover, 

because the lab environments examined are random environments, to which the segregants have 

not adapted, we can treat the observed patterns as intrinsic to predict post-selection r-K 

relationship. First of all, if a genetically diverse population start from a new environment where 

initial Er is low, because r-K tradeup, the population increases r and K together despite selection 
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may prefer only one of these two traits. As the population approach intermediate r, K reaches its 

highest potential. At this time, if selection prefers high K genotypes, then K will increase via 

decreasing the constant cost C in Eq. 1 and r may shifts up and down a bit due to relaxation of 

selection; if selection prefers high r genotypes, then r will continue to increase, and r-K tradeoff 

causes K to decrease. The adaptation dynamics predicted by intrinsic r-K relationship and our 

model, is different from MacArthur and Wilson’s prediction (MACARTHUR AND WILSON 2016), 

which did not consider mutational level r-K relationship. The discrepancy demonstrated the 

importance of considering genetic correlations for understanding and predicting life history 

evolution. In fact, knowing and counting the mutational relationship between traits is always 

important for studying phenotype evolution, and the fail of which largely explains why Pianka’s 

extention of r-K selection to predict life histories (PIANKA 1970) does not work well (STEARNS 

1977).  

We explain our observed r-K relationship by cell division energy cost model, which 

combines the effect of cost from maintenance energy for cell survival and cost of using fast but 

inefficient metabolic pathways. The mathematical part of this model suggests that K depends on 

r rather than the opposite, which makes biological sense, because r is an individual measurable 

parameter and K is only measurable at population growth level. Our model considers two kinds 

of tradeoff, one is the extra cost of maintenance when r is small, and another is the extra waste of 

resource when r is large. David Lipson proposed that if maintenance cost is considered, then r-K 

should tradeup in slow growth environment and tradeoff in fast growth environment (LIPSON 

2015). We demonstrated both mathematically and empirically that this is true. Moreover, 

because our model not only suggests that r-K relationship changes with environment, it also 

suggests the same trend among genotypes within an environment. Indeed, we showed that in 
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environments where growth rates cover the transition point from tradeup to tradeoff, slow growth 

genotypes show r-K tradeup, while fast growth genotypes show r-K tradeoff (Fig 5-4). Because 

the factors in our model does not restrict to our study system, we believe this model generally 

applies to previous studies of r-K relationship in microbes. In fact, our model suggests those 

mixed results (NOVAK et al. 2006; FITZSIMMONS et al. 2010; BEARDMORE et al. 2011; MEYER et 

al. 2015; REDING-ROMAN et al. 2017) are expected rather than surprising.  

In a recent paper, Reding-Roman et al showed that r and K could trade-up or tradeoff 

depending on the glucose concentration (REDING-ROMAN et al. 2017). Based on 6 E. coli 

genotypes which differ in ribosomal gene copy number,  Reding-Roman et al showed that r first 

increases as K increases and then decreases as K further increases (REDING-ROMAN et al. 2017). 

This is different from the trend we observed because their their K (or yield) can be maximized or 

minimized when r is smallest, but in our case, K is maximized when r is at intermediate level. 

Moreover, the model they propose is based on Monod function (MONOD 1949), which neglects 

maintenance cost when there is significant maintenance cost even in bacteria (PIRT 1965). 

Because they only used six genotypes and the replicates vary a lot, it is quite probable that their 

observed trend is statistically insignificant. In any case, the model of Reding-Roman et al cannot 

explain our large-scale observations. 

Understanding pleiotropy by environment interactions is important for studying 

phenotype evolution, especially for fluctuating environments. We showed that pleiotropy by 

environment interactions is common in the case of r-K. Moreover, we observed antagonistic 

pleiotropy by environment interactions at QTL level. There are alleles that always increase K 

showing opposite effects on r in different environments (Fig 5-3BCGHJ), alleles that always 

increase r showing opposite effects on K in different environments (Fig 5-3EFK), and more 
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complicated case ( Fig 5-3ADI). In our analysis, we used 3kb region to determine whether the 

mapped QTL for different traits belongs to the same causal place (FDR = 0.04). Because the 

SNP density used for QTL mapping is 1.01 per kb, and on average, there is one ORF in every 2 

kb region in yeast genome. A 3kb region only incorporates an average of 3 SNPs used for 

mapping and 1.5 ORFs. Because the majority of SNPs have little or no effects on traits, the 

strong antagonistic pleiotropy by environment interactions observed are most likely true signal 

than the combined effect of multiple linked SNPs.  

Although we present our study in r-K framework rather than rate-yield framework (i.e. 

growth rate – dry weight produced per mol. substrate), these two relationships are synonymous 

in our case. It is because the r-K relationship measured in each environment has fixed 

environmental resource for all genotypes and K rather than yield is directly estimated from the 

data that we present this way. The tradeup and tradeoff region based on growth rate applies for 

rate-yield relationship as well; especially, because our model does not convert the per cell 

division energy cost and total amount of resource into K, it is in fact more of a model for rate-

yield than r-K. Among the nine environment we tested, we did not observe a change in the 

turning point from tradeup to tradeoff (Fig 5-4), it might be interesting to examine more 

environments and species to see how general this observation is. 

For therapeutic reason, r-K relationship is sometimes discussed in cancer progression 

(AKTIPIS et al. 2013; KOROLEV et al. 2014). Our observed r-K relationship also affect our 

understanding of antibiotic resistance.  

5.5 Materials and Methods 

5.5.1 Genotype and growth data for diploid yeast hybrids 
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We acquired from the Hallin et al the genotype data and the unsmoothed growth data of 

7310 diploids from a cross between 86 MATa and 86 MATα strains haploid of S. cerevisiae 

(HALLIN et al. 2016). The haploids were randomly drawn from a twelfth generation two-parent 

intercross pool which is mated from two wild strains sampled in North America(NA) and West 

Africa(WA) (HALLIN et al. 2016). The NA genome and WA genome differs by 0.53%. The cell 

number of each of the diploid genotype is measured at 217 time points (between 0 and 72h at 

20min interval) with 4 replications by scan-o-matic, a high-resolution automatic microbial 

growth phenotyping approach (ZACKRISSON et al. 2016). Because the cell number estimation is 

based on colony scan, the estimated K reflects the true yield and it is robust to cell size. The 

genotypes were grown in 9 different growth environments, allantoin, caffeine, galactose, glycine, 

hydroxyurea, isoleucine, NaCl, phleomycin, and rapamycin.  

Before QTL mapping, we first code the genotype of each SNP with 0, 1, or 2, if it is 

homozygous for WA allele, heterozygous, or homozygous for NA allele, respectively. We then 

filtered the SNPs that contain redundant information such that only the middle SNP is 

maintained when several neighboring SNPs have exactly the same allele in all hybrid genotypes. 

This results in 13350 remaining SNPs.  

5.5.2 QTL mapping 

We mapped rQTLs and for KQTLs in each environment with the same approach. We 

first mapped QTLs underlying the growth rate variation among the segregants in each of the 9 

environments at a false discover rate (FDR) of 0.05 follow the approach of a recent study 

(BLOOM et al. 2013). In short, this approach takes multiple rounds of mapping, and in each round, 

at most one most significant SNP of each chromosome will be mapped as QTLs, the residues 

from fitting all mapped QTLs from all previous rounds will be used for next round of mapping. 
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FDR is calculated by permutation test. We stopped the program at 6th round which results in 93-

96 QTLs for each trait and we calculated the total r2 explained by all mapped QTLs. We then 

remove the QTL that has the smallest effect on total r2, and recalculate the total r2 with all 

remaining QTLs. We repeat this process and remove small effect QTLs one by one until we have 

48 QTLs (QTL48), 36 QTLs (QTL36), 24 QTLs (QTL24), or 18 QTLs (QTL18) remaining for 

each trait. By doing so, we result in equal number of rQTLs and KQTLs for each environment. 

We also calculate the total explained variance (r2
SNPs) by 96 SNPs, 48 SNPs, 36 SNPs, 24 SNPs 

and 18 SNPs as comparison. When we maintain QTL48, the averaged r2 for all traits is 0.738 

(r2
QTL48). The averaged r2 reduces to 0.703 (r2

QTL36) when we maintain QTL36. After QTL36, the 

averaged r2 dropped very fast, and the difference between r2
SNPs and r2

QTL is maximized at 

QTL36. Having slightly fewer but large effect QTLs allow us to study pleiotropy by 

environment interaction with high confidence, because many small effect QTLs are very 

randomly located across the genome, making it difficult to get a low FDR region.  

5.5.3 Estimating r and K  

The logistic equation was derived to describe density-dependent growth (VERHULST 

1838), and it was popularized by Raymond Pearl and Lowell Reed when they substituted r and K 

into the Verhulst Model (REED AND PEARL 1927). In as early as 1913, the logistic growth of 

yeast was demonstrated by Carlson (CARLSON 1913). Our estimation of r and K from growth 

data is based on logistic equation.  

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑟𝑟𝑟𝑟(1 − 𝑁𝑁
𝐾𝐾

 ) Eq. 8 

The integral of Eq. 8: 
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𝑁𝑁= 𝐾𝐾

1+( 𝐾𝐾𝑁𝑁0
−1)𝑒𝑒−𝑟𝑟𝑟𝑟

 Eq. 9 

5.5.4 Goodness of logistic fitting 

We first estimate r and K for each replicate of each genotype in each environment 

individually by fitting Eq. 9 with with NonLinearModel.fit function in Matlab using cell number 

N and time of measurement T. We then removed the low quality replicates by experience. We 

assume that values that are far from the nearest neighbors are outliers and set cutoffs based on 

the fold difference between outliers and median. Because K has a wider range than r, different 

cutoffs for r-K are used. In practice, we removed the replicates whose estimated r is larger than 

2-fold or smaller than ½ of the median r from all measurements of all genotypes in the same 

growth condition and the replicates whose estimated K is larger than 4-fold or smaller than ¼ of 

the median K from all measured genotypes in the same growth condition. The majority of 

removed replicates are extreme outliers, who have either negative r-K or estimated r-K 

estimation hundreds fold bigger than nonoutliers. While enlarge the fold number from ½ to 2 

into 1/3 to 3 for r or from ¼ to 4 to 1/5 to 5 for K, will affect less than 1% of the total remaining 

replicates, shrinking it slightly start to exclude much more replicates. After quality control, in 

each environment, 93.2-100% of the genotypes have at least 3 out of 4 replicates measured. We 

calculate the average the r and K using all remaining replicates of each genotype as the r and K 

of the genotype. We also have one r2 showing the goodness of logistic fitting for each replicate. 

The average r2 using all remaining replicates of the same genotype, rg
2, represents the goodness 

of logistic fitting for that genotype. In each environment, 97.6-100% of the genotypes have rg
2 

larger than 0.97; 75.5-100% of the genotypes have rg
2 larger than 0.98. The median rg

2 among all 

measured genotypes in these 9 environment are 0.979-1.000. These goodness of fitting 
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measurements do not correlate with Er and EK. We calculated the standard deviation using the 

replicates (SDrep) of each genotype in each environment, and found the median SDrep for r is 

0.0034 to 0.013, and the SDrep for K is 1.2×105-2.6×105 across 9 environments. The median 

SDrep of r and K are also independent of Er and EK. We also calculated the SD of genotypes 

(SDgeno) of r and K among genotypes for each environment for simulation.  

To exclude the possibility that our logistic fitting has no bias, we did a simulation and 

estimated the simulated r-K correlation as well as r-K estimation sensitivity. We simulated the 

growth of 7000 genotypes for 9 environments to best mimic the real data. The r and K of 

genotypes follow normal distribution with mean as observed Er and EK and SD as SDgeno of r and 

K in that environment. We then calculate the cell number using the logistic curve from 0 to 72h 

at 20min interval. Each genotype has 4 replicates sharing same r and K but independent noise. 

The random growth noise added at each time point follows a normal distribution with mean 0 

and variance equals (median 1- rg
2 of each environment, four digits) × SST (i.e., the total sum of 

square of cell numbers for each replicates). By doing so, our median fitted rg
2 from simulation 

equals the empirical median rg
2. After adding random noise, we follow the exact same process as 

we do to the empirical data to estimate the simulated r and K for each replicate and each 

genotype. Because both r and K follow normal distribution in each environment, the simulated 

data has the same range of r and K as the empirical one but r-K are not correlated. In each 

simulated environment, 95.1-99.9% of the total simulated genotypes have r and K estimated. 

Among the measured genotypes in each environment, 71.6-74.6% of the genotypes deviate less 

than 1% from the simulated value of r and K; 93.0-97.6% of the genotypes deviate less than 20% 

from the simulated value of r and K, proving the logistic fitting is accurate in estimating the true 

value. Out of the 9 simulated environments, none has significant r-K correlation after multiple 
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testing correction. Given the accuracy of logistic fitting, it is impossible to generate the strong 

positive and negative r-K correlations that we observe in the real data. Thus, the observed r-K 

relationship must be true.  

5.5.5 The cost of using energy inefficient pathway 

If we assume r increases linearly with the fraction of total resource used by fermentation 

pathway. Let pF be the fraction of substrates used by fermentation. pF represents a weighted 

value, which could be either the total amount of time a cell uses fermentation during one cell 

cycle, or the total amount of cells with the genotype that use fermentation due to bet-hedging. 

Suppose that the same amount of resource (here, glucose) used by respiration pathway produces 

ATP at rate γ1 per second, and the same total resource if used by fermentation pathway produces 

ATP at rate γ2 per second (γ2 > γ1). Then the rate of ATP production equals  

γ = (1 – pF) γ1 + pF γ2 = γ1 + pF (γ2 - γ1) Eq. 3, 

The γ minus maintenance cost α determines r, so that  

r = cR(γ – α)     Eq.4 

, and that cR is a constant that convert per second free energy to growth rate.  

Now let ι be the extra energy produced by respiration as compare to fermentation, we can 

calculate the energy waste because of using some fermentation:  

f(r) = ιpF     Eq.5, 

Combine Eqs. 3 and 4, we get  

pF = 𝑟𝑟 𝐶𝐶𝑅𝑅⁄ +𝛼𝛼 −𝛾𝛾1 
𝛾𝛾1−𝛾𝛾2

    Eq.6 
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Put Eq. 6 into Eq. 5, we get the total extra energy cost  

f(r) = ι𝑟𝑟 𝐶𝐶𝑅𝑅⁄ +𝛼𝛼 −𝛾𝛾1 
𝛾𝛾1−𝛾𝛾2

 = 𝑟𝑟 𝜄𝜄
(𝛾𝛾1−𝛾𝛾2)𝐶𝐶𝑅𝑅

+ 𝛼𝛼 −𝛾𝛾1
𝛾𝛾1−𝛾𝛾2

 Eq. 7 

Because the term 𝛼𝛼 −𝛾𝛾1
𝛾𝛾1−𝛾𝛾2

 in Eq. 7 is a constant, we can put it into C of Eq. 1. The 

coefficient of r in Eq. 7, 𝜄𝜄
(𝛾𝛾1−𝛾𝛾2)𝐶𝐶𝑅𝑅

, is a constant. Let it equals β, then we have f(r) = βr.  

Therefore, this formula f(r) = βr makes sense for yeast, because yeast has both fermentation 

pathway and respiration pathway. The formula should also be true whenever a faster but 

inefficient metabolic pathway is used. 
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Figure 5-1. r-K correlation depends on environmental effects on Er but not EK. (A). 

Negative correlation between Er and ρr-K. (B). No correlation between EK and ρr-K. Each dot 

shows the EK and ρr-K one environment. ρr-K is the Spearman correlation between r and K of all 

measured genotypes in an environment. Er is the average r of all genotypes in an environment, 

and EK is the average K of all genotypes in an environment. Each dot shows the Er (A) or EK (B)  

and ρr-K of one environment. Spearman correlation between Er (A) or EK (B) and ρr-K is shown on 

the graph. 
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Figure 5-2. r-K correlation from on QTL mapping results. (A-D). Each dot is the result from 

one environment. Red circles show the results from rQTLs, and blue squares show the results 

from KQTLs. (A-B) X-axis is the expected total variance explained (r2) based on 36 random 

sites. Y-axis is the r2 based on 36 QTLs.  (A) KQTL explain r better than random sites in all 

environments. (B) rQTL explain K better than random sites in all environments. (C-D). FQTLs 

measures the fraction of QTLs showing opposite effects on r and K. Spearman correlation is 

listed. (C) FQTLs and Er are positively correlated. (D) FQTLs and Er are not correlated.  
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Figure 5-3. Pleiotropy by environment interaction QTLs. Each color represent one 

environment. X-axis is the average r, and y-axis is the average K. Each circle shows the r-K of 

genotypes with particular allele, with error bar showing the standard error. Small circle with 

lighter color represents the homozygotes of NA allele; intermediate circle shows the 

heterozygotes, and large circle with darker color shows the homozygotes of WA allele. The SNP 

number is labelled at right upper corner. (A-K) Examples showing antagonistic pleiotropy by 

environment interaction. The interaction part is highlighted. (L-R) Examples showing pleiotropy 

by environment interactions.  
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Figure 5-4. Same transition point between r-K tradeup and r-K tradeoff. Each environment 
is shown in one panel. Each bin contains 500 genotypes, grouped from small r to large r. Each 
dot shows the average r and K of each bin. The same black line r = 0.1074 is plotted on all 
panels. (A) hydroxyurea. (B) NaCl. (C) allantoin. (D) caffeine. (E) galactose. (F) glycine. (G) 
isoleucine. (H) phleomycin. (I) rapamycin. 
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Chapter 6 

All interactions: The optimal mating distance  

resulting from heterosis and genetic incompatibility 

 
 

“It is the things for which there is no evidence that are believed with passion.” 

— Bertrand Russell 

 

6.1 Abstract 

The genetic distance between the two parents of an individual, or mating distance, 

influences the individual's fitness via two competing mechanisms.  On the one hand, increasing 

the mating distance is beneficial because of the phenomenon of heterosis.  On the other hand, too 

large of a mating distance is harmful owing to genetic incompatibility.  It is thus believed that the 

fitness of a genotype is a hump-shaped function of the mating distance, culminating at an 

intermediate distance referred to as the optimal mating distance (OMD).  However, decades of 

research has generally failed to validate this belief or identify the OMD.  Here we address this 

question using large datasets from the plant Arabidopsis thaliana, fungus Saccharomyces 

cerevisiae, and animal Mus musculus, including phenotypic measures of multiple fitness-related 
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traits from tens to hundreds of crosses and whole-genome sequence-based mating distance 

estimates.  In each species, we find the hybrid phenotypic value a humped quadratic polynomial 

function of the mating distance for the vast majority of traits examined, with different traits 

exhibiting similar OMDs.  OMDs are generally slightly greater than nucleotide diversities but 

smaller than the maximal observed genetic distances within species.  Hence, the benefit of 

heterosis is at least partially offset by the harm of genetic incompatibility even within species.  

These results have implications for speciation, conservation, agriculture, and human health. 

 

6.2 Introduction 

Numerous studies attempted to verify a hump-shaped relationship between an 

individual's fitness (or its proxy) and mating distance (D)(MOLL et al. 1965; LYNCH 1991; 

MORAN et al. 1995; XIAO et al. 1996; EDMANDS 1999; AMOS et al. 2001; WILLI AND VAN 

BUSKIRK 2005; GONZALEZ et al. 2007; MCCLELLAND AND NAISH 2007; STOKES et al. 2007; 

ROBINSON et al. 2009; JAGOSZ 2011; HUNG et al. 2012; PEKKALA et al. 2012; PLECH et al. 2014; 

STELKENS et al. 2014; YANG et al. 2017), but all failed except two.  In the first exception(LYNCH 

1991), however, D was approximated by geographic distance(MOLL et al. 1965), and genetic 

incompatibility was detected only under the smallest D (LYNCH 1991), rendering the conclusion 

uncertain.  In the second exception, D was estimated using the electrophoretic data of only eight 

allozyme loci; the low resolution prevented an unequivocal assessment of the OMD relative to 

the level of intraspecific genetic diversity(WILLI AND VAN BUSKIRK 2005).  We hypothesize that 

the lack of support for OMD were contributed by the lack of reliable D estimates.  Furthermore, 

given D, the fitness of a hybrid presumably varies greatly depending on its genotype.  Hence, a 

large number of crosses are required to estimate accurately the expected hybrid fitness at each D.  
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Given these considerations, we collected from the literature large sets of relevant genotype and 

phenotype data in an attempt to verify the humped relationship between D and hybrid fitness and 

to estimate the OMD.   

6.3 Results 

Fitness is a compound trait consisting of multiple components.  Most studies measure one 

to several key components of fitness such as the maximum growth rate of microbes, shoot weight 

of plants, and body weight of animals.  The phenotypic value of a fitness-related trait is 

commonly referred to as "performance".  To allow among-cross comparisons, for a given trait, 

we examined the fractional increase in hybrid performance relative to the average performance 

of its homozygous parents by F = (𝐻𝐻 − 𝑃𝑃1+𝑃𝑃2
2

) (𝑃𝑃1+𝑃𝑃2
2

)� , where H is the performance of the hybrid, 

and P1 and P2 are the performances of the two parents, respectively.  When D = 0, the hybrid and 

the two parents are isogenic and hence F = 0.  Under pure genetic additivity, H is expected to 

equal the average of P1 and P2, resulting in F = 0 regardless of D.  Heterosis arises from genetic 

interactions between the paternal and maternal alleles of the same loci (via dominance and 

overdominance) and/or different loci (via positive intergenic epistasis)(LIPPMAN AND ZAMIR 2007).  

Genetic incompatibility similarly originates from allelic interactions at the same loci (via 

underdominance) and/or different loci (via negative intergenic epistasis).  At any locus, if the 

paternal and maternal alleles differ, either both of them are derived from their common ancestral 

allele or only one of them is derived whereas the other is ancestral.  In the hybrid, the number of 

interactions between an ancestral allele from one parent and a derived allele from the other 

parent is expected to rise linearly with D, whereas the number of interactions between two 

derived alleles is expected to rise in proportion to D2.  It can be shown that, dominance most 

likely occurs between one ancestral and one derived alleles, whereas the other interactions 
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mentioned most likely occur between two derived alleles (see Methods).  Therefore, the expected 

number of dominance interactions is proportional to D, while the expected numbers of 

overdominance, underdominance, positive intergenic epistasis, and negative intergenic epistasis 

are proportional to D2.  High-order interactions are ignored here because the contribution of 

high-order interactions to quantitative traits is much smaller than those of additive effects and 

two-way interactions(BLOOM et al. 2015) and because considering high-order interactions 

substantially increases the complexity of the model and difficulty in model selection.  Because 

the effect size of an interaction is expected to be independent of D, the joint effect of heterosis 

and genetic incompatibility is expected to result in F = aD + bD2, where the first term reflects 

heterosis due to dominance while the second term reflects the combined effect of heterosis 

arising from overdomiance and positive intergenic epistasis and genetic incompatibility arising 

from underdominance and negative intergenic epistasis.  If |aD| >> |bD2|, F ≈ aD, which 

monotonically changes with D.  If |aD| << |bD2|, F ≈ bD2, which also monotonically changes 

with positive D.  Under the condition that a is positive, b is negative, and |aD| is comparable with 

|bD2|, F is a hump-shaped function of D and OMD = -0.5a/b.   

Based on the above formulation, we considered three competing models: (I) F = aD, (II) 

F = bD2, and (III) F = aD + bD2, where a and b are model parameters to be estimated.  Model I 

has only the linear term, meaning that F is entirely caused by dominance-based heterosis; Model 

II has only the quadratic term, implying the absence of dominance-based heterosis; and Model 

III contains both terms.  We used R2 to determine which model best explains a dataset.  Because 

Models I and II are both special cases of Model III, we used likelihood ratio tests (LRTs) to 

examine if the first two models can be statistically rejected in favor of Model III.  
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 We first analyzed 200 crosses of the model plant Arabidopsis thaliana(YANG et al. 2017).  

D is measured by the number of single nucleotide polymorphisms (SNPs) between parental 

genomes divided by the total number of nucleotides in the A. thaliana genome (see Methods).  

Four fitness-related traits were measured for all parents and hybrids: shoot fresh weight, rosette 

diameter, leaf area, and leaf number at 14 days after sowing(YANG et al. 2017).  Because the D 

values are not evenly distributed and because F varies greatly among crosses of similar D, we 

binned hybrids using a window size of D = 0.8×10-3 and computed the average F and average D 

of all hybrids in each window.  We then used least squares to fit the binned data to the three 

models respectively.  For each of the four traits, R2 is negative for Models I and II (Table 6-1), 

indicating that these models, assuming monotonic changes of F with D, perform even worse than 

the obviously incorrect null model that F is independent of D.  By contrast, R2 of Model III is 

positive for all four traits (Table 6-1).  Furthermore, for each trait, LRTs showed that Model III 

fits the data significantly better than the other two models (Table 6-1), and the fitted curve under 

Model III is hump-shaped (Fig 6-1).  These results are robust to different window sizes (Table 

F-1).  Interestingly, the OMDs for the four traits estimated under Model III are within a narrow 

range of 5.2-6.2×10-3 (Table 6-1, Fig 6-1), which are close to A. thaliana's genome-wide 

nucleotide diversity (π = 5.4×10-3; see Methods) and are smaller than its maximal intraspecific 

genetic distance (Dmax = 8.5×10-3; see Methods).     

To examine the generality of the hump-shaped relationship, we analyzed 231 crosses of 

the yeast Saccharomyces cerevisiae that included estimates of the maximum growth rates of all 

parents and hybrids in 11 different liquid media(PLECH et al. 2014).  We again estimated D by 

the number of SNPs per site between parental genomes (see Methods).  Based on the D values of 

all hybrids, we binned the hybrids using a window size of D = 10-3.  We first studied the mean F 
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from the 11 environments.  Model III has an impressive R2 of 0.85, whereas the corresponding 

values are negative for the other two models (Table 6-2).  LRTs confirmed the significant 

superiority of Model III over the other two models (Table 6-2).  Under Model III, a clear hump-

shaped relationship is observed between the mean F and D, with the OMD = 4.5×10-3 (Fig 6-2a).  

These findings are robust to different window sizes (Table F-2).  After the exclusion of 

reproductively isolated Chinese strains(WANG et al. 2012), π = 4.3×10-3 and Dmax = 9.6×10-3 in S. 

cerevisiae (see Methods).  Therefore, π < OMD < Dmax.  

When the data from different environments were separately analyzed, LRTs showed that 

Model III significantly outperforms the other two models in 10 of the 11 environments (except 

for the NaCl environment; Fig 6-2b).  R2 of Model III is higher than those of the other models in 

all 11 environments, and R2 of Model III is positive in 10 of the 11 environments (except for the 

Y35 medium; Fig 6-2c).  Intriguingly, however, in the benomyl (Ben) medium, the curve under 

Model III is not hump-shaped but U-shaped (Fig F-1).  Benomyl is a synthetic fungicide that 

targets microtubules(PLECH et al. 2014).  It is possible that benomyl penalizes fast-growth strains 

more than slow-growth strains, resulting in a U-shaped curve.  In the 10 environments (except 

for NaCl) where LRTs finds Model III significantly fitter than the other two models, OMD is in 

the range of 3.2-5.3×10-3 (Fig 6-2d).  All of these OMDs are lower than Dmax, although some are 

also lower than π. 

To verify the above results, we analyzed another yeast dataset(ZORGO et al. 2012), which 

included the measures of three growth traits (growth rate, negative lag time, and growth 

efficiency) in 56 environments from 28 crosses.  Because the number of crosses is relatively 

small, we averaged F from all environments to minimize the estimation error of F.  For each of 

the three traits, Model III fits the data significantly better than the other two models (Table F-3) 



174 
 

and the humped curve is apparent under Model III (Fig F-2).  The OMDs for the three traits are 

6.3, 4.4, and 5.4×10-3, respectively (Table F-3), again between π and Dmax.  

We further expanded our analysis to animals by analyzing 28 crosses of the mouse Mus 

musculus(PHILIP et al. 2011).  Two fitness-related traits, body weight and reproductive rate, were 

examined (see Methods).  For each trait, Model III fits the data significantly better than the other 

two models (Table F-4) and a humped curve is observed under Model III (Fig F-3).  The OMDs 

for the two traits are 5.1×10-3 and 6.6×10-3, respectively (Table F-4), again between π (3.3×10-3) 

and Dmax (9.3×10-3) of the species (see Methods). 

 

6.4 Discussion 

In summary, we detected the long anticipated hump-shaped relationship between D and F 

in each of the three model organisms examined, which represent three of the four kingdoms of 

eukaryotes.  Our finding is also robust to the specific trait, environment, and method of analysis.  

Our success has a number of contributing factors, the lack of which likely explains previous 

failures.  First, the range of D in the data should encompass the OMD; otherwise the humped 

relationship is easily missed.  Second, an accurate measure of D, ideally based on genome 

sequences, is necessary for detecting the hump.  Third, the variance of F among crosses at a 

given D can be large, requiring the use of many crosses to obtain reliable estimates.  Fourth, 

crossing homozygotes simplifies the expectation and reduces the variance of F.  Last but not 

least, having a mathematical model describing the theoretically expected relationship between D 

and F helps verify their relation.  For instance, without such a model, the original authors of the 

A. thaliana study incorrectly concluded that F is independent of D on the basis that they are not 

significantly linearly correlated(YANG et al. 2017). 
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That Model III surpasses the other two models in explaining almost all datasets analyzed 

has several biological implications.  First, it is currently unclear whether heterosis is caused by 

dominance, overdominance, or positive intergenic epistasis(LIPPMAN AND ZAMIR 2007).  While 

our results do not confirm or refute the roles of overdominance and positive intergenic epistasis, 

they firmly establish the general contribution of dominance, because a, the coefficient of the 

linear term in Model III is found positive in all three species examined.  Second, b, the 

coefficient of the quadratic term, reflects the sum of the incompatibility effect and the heterotic 

effect other than dominance.  Because b is found negative while the heterotic effect is by 

definition nonnegative, the incompatibility effect must be negative.  This result, again found in 

all three species studied, echoes the recent finding in fruit flies(MATUTE et al. 2010) and 

tomatoes(MOYLE AND NAKAZATO 2010) that the number of incompatibilities between two 

genotypes increases in proportion to D2, and further demonstrates that fitness-related phenotypic 

effects of incompatibility also increase in proportion to D2.  Third, while the fly and tomato 

studies used only interspecific crosses(MATUTE et al. 2010; MOYLE AND NAKAZATO 2010), our 

crosses are all intraspecific.  Hence, even within species, genetic incompatibility not only 

exists(CORBETT-DETIG et al. 2013) but also snowballs.  Fourth, the net effect of heterosis and 

incompatibility on hybrid performance rises as D increases from 0 to the OMD, but retreats when 

D further increases, and eventually becomes negative when D exceeds twice the OMD.  Because 

nonrandom mating and population structure is widespread in nature, the accumulation of genetic 

incompatibility within species could generate a selective pressure against interbreeding between 

distantly related conspecifics and initiate speciation.  The importance of this process in nature 

may be tested by examining how often the OMD is below Dmax.  When OMD < Dmax, as found in 

all three species examined, studying the incompatibilities between distantly related conspecifics 
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may shed light on the genetic basis of incipient speciation.  It should be noted that the OMD can 

be recognized even if it exceeds Dmax because relevant studies often include interspecific 

crosses(WILLI AND VAN BUSKIRK 2005).  

Our findings also have implications for animal and plant breeding.  To boost the hybrid 

performance, one should not only take the advantage of heterosis but also minimize the negative 

impact of incompatibility.  Hence, the best mating distance should be close to the estimated 

OMD rather than Dmax, as one might think without considering the impact of intraspecific genetic 

incompatibility.  Further, because we found that the OMDs of multiple fitness-related traits in a 

given species tend to be similar, using mating distances close to the OMD will likely optimize a 

suite of fitness-related traits.  In conservation biology, it is well appreciated that too small of a D 

is harmful due to inbreeding depression(HEDRICK AND KALINOWSKI 2000), but many studies 

show that too large of a D can cause outbreeding depression and is undesirable either(EDMANDS 

2007).  Our results suggest that applying the OMD in managing conservation may be most 

effective.  In all three species studied, the OMDs of most traits are greater than π but smaller than 

Dmax.  This pattern, if further confirmed in additional lineages, suggests the general strategy of 

using mating distances slightly higher than π to minimize both inbreeding and outbreeding 

depressions when the OMD is unknown.   

It is notable that heterosis has also been reported in humans.  For example, an analysis of 

35,000 humans from 35 different population samples showed a highly significant association 

between genome-wide heterozygosity and stature(MCQUILLAN et al. 2012).  Further, higher 

levels of genetic heterozygosity are associated with lower blood pressure and total/LDL 

cholesterol(CAMPBELL et al. 2007).  Therefore, a positive OMD likely exists in humans.  Future 

estimation of this parameter may help understand relationships between human mating distance 
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and performances including health.  In addition, modern humans interbred with archaic humans 

multiple times(NIELSEN et al. 2017); whether these events immediately increased or decreased 

the hybrid fitness is an interesting question that can be addressed when the human OMD is 

estimated. 

 

6.5 Methods 

6.5.1 Genetic distance and phenotypic data 

We acquired the Arabidopsis thaliana phenotypic and genetic distance data from Yang et 

al.(YANG et al. 2017).  There are 200 intraspecific hybrids generated by crossing 200 A. thaliana 

accessions with one common maternal accession.  The hybrids and their parents were measured 

for four traits at 14 d after sowing: shoot fresh weight, rosette diameter, leaf area, and leaf 

number.  The genomes of 191 parental accessions had been sequenced(YANG et al. 2017).  In the 

original study(YANG et al. 2017), the genetic distance between parents was calculated by PLINK 

based on 722,000 SNPs.  A. thaliana has a reference genome with a size of ~116.8 Mb.  Using 

genome sequences, we calculated that the genome-wide per nucleotide distance between Col-0 

and the commonly used Ler-1 equals 5.4×10-3.  Using this information allowed us to convert per 

SNP distance in the original study to per nucleotide distance for all pairs of accessions.  We 

included all 191 hybrids with available per nucleotide genetic distances in our analysis.  

Genome-wide nucleotide diversity was estimated using the results of Nordborg et al.(NORDBORG 

et al. 2005).  Dmax was calculated from the maximum distance of 10,000 random pairs of strains 

from the 1135 genome-sequenced strains provided by the 1001 Arabidopsis Genome Project.  

Sampling 20,000 random pairs of strains does not increase Dmax.  All Arabidopsis whole-genome 

VCF files were downloaded from: http://1001genomes.org/data-center.html. 
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The Saccharomyces cerevisiae data were acquired from two sources.  Our analysis 

focused on the data of Plech et al.(PLECH et al. 2014), which contained all 231 pairwise mating 

from 22 haploid parental strains.  Plech et al.'s data have a comparable size with the Arabidopsis 

data and the range of genetic distance covered is larger than that in the other yeast 

dataset(ZORGO et al. 2012).  Plech et al.'s data included maximum growth rates for the 

homozygous diploid parents and hybrids in 11 liquid media.  They are YPD (nutrient rich with 2% 

glucose) at 30°C, Gal (nutrient rich with 2% galactose) at 30°C, YPG (nutrient rich with 3% 

glycerol) at 30°C, SD (synthetic medium with 2% glucose supplemented with uracil) at 30°C, 

Y20 (YPD at 20°C), Y35 (YPD at 35°C), and five YPD-based media at 30°C with additional 

chemicals indicated: Ben (benomyl), DM (6% DMSO), Na (2% NaCl), Sal (2% salicylate), and 

Zn (0.5 mg/ml ZnSO4).  Mating distances were from Liti et al.(LITI et al. 2009), calculated from 

235,127 SNPs.  We did not use the distances from a more recent study that sequenced yeast 

genomes to a higher coverage, due to its underestimation of distances because gaps and missing 

data were not excluded from the genome size in the distance estimation(MACLEAN et al. 2017).  

But because Liti et al. did not calculate the genome-wide π and included fewer strains than the 

more recent study(MACLEAN et al. 2017), we extrapolate π and Dmax from the more recent study.  

Specifically, we regressed the distances between the two studies using all shared strains between 

them.  Based on the linear regression (Pearson's r = 0.99, P = 5.9×10-200), we converted π and 

Dmax from the more recent study by dividing them by 0.69. 

We also analyzed Zorgo et al.'s yeast data, which included 28 pairwise crosses among 8 

strains and measures of parent and hybrid phenotypes in growth rate, lag time, and yield in 56 

environments(ZORGO et al. 2012).  Note that because a greater lag time indicates a lower fitness, 

we used negative lag time as a fitness-related trait.  We analyzed the mean F from all 
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environments to increase the accuracy of F estimates because of the relatively small number of 

crosses performed.  

The phenotypic data of Mus musculus were acquired from Philip et al.(PHILIP et al. 2011).  

We used body weight and reproductive rate (first litter size divided by the time from first mating 

to first litter) as fitness-related traits(FLURKEY AND CURRER 2009).  Because of the scarcity of 

data, we did not separate male and female hybrid animals in our analysis.  We downloaded the 

whole-genome SNP data generated by Yalcin et al.(YALCIN et al. 2011) for the eight parental 

strains (ftp://ftp-mouse.sanger.ac.uk/current_snps/strain_specific_vcfs/) and estimated D by the 

number of SNPs per site between parental genomes.  We used a window size of D = 10-3 to bin 

the crosses.  Because the D values of the 28 crosses cluster into four small groups, using a 

smaller window size such as D = 0.5×10-3 does not give more useful bins.  Mouse has a π of 

3.3×10-3 (FRAZER et al. 2007), and we estimated that Dmax = 9.3×10-3 using the genome 

sequences of two most diverged subspecies, CAST/EiJ and PWK/PhJ, of M. musculus(GOIOS et 

al. 2007).   

 

6.5.2 Causes of heterosis and genetic incompatibility 

Heterosis arises from genetic interactions between the paternal and maternal alleles of the 

same loci (via dominance and overdominance) and/or different loci (via positive intergenic 

epistasis)(LIPPMAN AND ZAMIR 2007).  Genetic incompatibility similarly originates from allelic 

interactions at the same loci (via underdominance) and/or different loci (via negative intergenic 

epistasis).  At any locus, if the paternal and maternal alleles differ, either both of them are 

derived from their common ancestral allele or only one of them is derived whereas the other is 

ancestral.   

ftp://ftp-mouse.sanger.ac.uk/current_snps/strain_specific_vcfs/
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Because fitter alleles tend to be partially or completely dominant over less fit 

alleles(FISHER 1928), when homozygous individuals from different populations hybridize, 

dominance can cause the hybrid to outperform the average of the two parents and result in 

heterosis.  Because the occurrence of heterosis by dominance requires a change from the 

ancestral state in only one parent, it should rise in proportion to mating distance D.  

Overdominance, underdominance, positive intergenic epistasis, and negative intergenic epistasis 

can obviously occur in the hybrid between two derived alleles that are respectively homozygous 

in the two parents.  Should overdominance between an ancestral and a derived allele occur, the 

derived allele will likely stay in the heterozygous state in one population; hence, heterosis is 

unlikely to occur upon hybridization.  Similarly, should positive intergenic epistasis exist 

between an ancestral and a derived allele, this positive effect is already seen in one parent and 

thus is not heterotic.  Should underdominance or negative intergenic epistasis occur between an 

ancestral and a derived allele, the derived allele will likely be selectively removed from the 

population and therefore is unlikely to contribute to genetic incompatibility between the two 

parents.  Therefore, the effects from overdominance, underdominance, positive intergenic 

epistasis, and negative intergenic epistasis should most likely increase in proportion to D2.   

 

6.5.3 Parameter estimation 

All calculations were performed using MATLAB.  We used the function “lsqcurvefit” to 

perform least-squares estimations of the parameters of our three models.  We used the estimated 

parameters to compute R2 and conduct LRTs.  The confidence interval of OMD is estimated by a 

bootstrap method.  Specifically, we randomly sampled from all crosses with replacement the 

same number of crosses as in the original data and then estimated the OMD from the sampled 
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crosses.  We repeated this process 1000 times to acquire the 95% confidence interval of the 

OMD.  In our model fitting, only D was used as an independent variable.  Although better parent 

heterosis (BPH)(ZORGO et al. 2012), which describes the phenotypic difference between the 

hybrid and the better parent, is also commonly used to study heterosis, there is no clear 

theoretical relationship between D and BPH.  Hence, we focused on F, which is also known as 

the heterosis coefficient(ZORGO et al. 2012).   
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Figure 6-1.  Hump-shaped relationship between mating distance (D) and hybrid performance (F) 

measured by (a) shoot fresh weight, (b) rosette diameter, (c) leaf area, and (d) leaf number in the 

plant Arabidopsis thaliana at 14 d after sowing.  The mean and standard error of F are 

respectively shown by black squares and associated error bars.  The fitted D-F curves under 

different models are shown in different colors.  Statistics of model fitting are provided in Table 

6-1.  Nucleotide diversity (π) and maximal intraspecific genetic distance (Dmax) are respectively 

indicated by vertical dotted and dashed lines. 
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Figure 6-2.  Hump-shaped relationship between mating distance (D) and hybrid performance (F) 

in the fungus Saccharomyces cerevisiae across 11 environments.  (a) The D-F relationship when 

F is measured by the average maximum growth rate in 11 environments.  The mean and standard 

error of F are respectively shown by black squares and associated error bars.  The fitted D-F 

curves under different models are shown in different colors.  π and Dmax are respectively 

indicated by vertical dotted and dashed lines.  (b) Twice the difference in ln(likelihood) between 

Model III and Model I (orange) or II (green) under each environment.  The larger the difference, 

the fitter Model III is relative to the model being compared.  The horizontal black dashed line 

shows statistical significance at 5% level.  X-axis lists environments, whose details are provided 

in Methods.  (c) Model fitting for the D-F relationship in each of the 11 environments.  Color 

coding is the same as in panel a.  The higher the R2, the fitter the model is to the data.  The 

horizontal black line indicates R2 = 0.  (d) The estimated optimal mating distance (OMD) in each 

environment.  π and Dmax are respectively indicated by horizontal dotted and dashed lines.   
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Table 6-1. Fitting of the three models to A. thaliana data  
Traits Models R2 2ΔlnL1 P-value2 OMD [95% CI] (×10-3) 
      

Shoot weight      
 I -4.15 28.2 1.1×10-7  

II -16.20 100.4 1.2×10-23  
III 0.54   5.9 [4.8-9.7] 

      

Rosset diameter     
 I -2.32 16.5 4.7×10-5  

II -7.38 46.9 7.4×10-12  
III 0.44   5.2 [4.7-7.5] 

      

Leaf area      
 I -6.26 41.3 1.3×10-10  

II -19.50 120.7 4.4×10-28  
III 0.63   5.3 [4.7-7.1] 

      

Leaf number      
 I -1.34 10.4 1.3×10-3  

II -6.50 41.4 1.3×10-10  
III 0.39   6.2 [-19.9-44.5] 

1Twice the difference in ln(likelihood) between Model III and the model being compared. 
2P-values of likelihood ratio tests are determined using chi-squared tests with 1 degree of freedom.  
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Table 6-2. Fitting of the three models to S. cerevisiae data averaged across 11 environments 
Models R2 2ΔlnL1 P-value2 OMD [CI 95%] (×10-3) 
Model I -0.65 12.0 5.3 ×10-4  
Model II -2.40 26.0 3.4. ×10-7  
Model III 0.85   4.5 [4.2-4.9] 
1Twice the difference in ln(likelihood) between Model III and the model being compared. 
2P-values of likelihood ratio tests are determined using chi-squared tests with 1 degree of freedom.  
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Chapter 7 

Discussions and Future Directions 

 

“What we know is a drop, what we don't know is an ocean.” 

— Isaac Newton 

7.1 Introduction 

The field of evolutionary genetics has progressed fast thanks to many new techniques 

developed in the last ten years. Although none of the state-of-art techniques is used in my thesis, 

many empirical and computational studies using those techniques greatly improved our 

understanding of evolution, genetics, and molecular biology. Though I have not personally 

involved in those works, I am excited about those achievements. Thanks to the newly developed 

techniques and the intellectual progress made, I believe right now is a perfect time to study 

biology.  

Each of the main chapter and appendix chapter has their own discussion section about the 

results and interpretations, which will not be repeated here. In this overall discussion chapter, I 

discuss some thoughts and opinions I conceived while working on this thesis in an open-ended 

way, including opinions about genetic interactions, gene-by-environment interactions, more 

synthetic discussions about the models proposed in the main chapters, opinions about some 
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unaddressed questions in evolutionary genetics, as well as some new questions and methods in 

my mind. Some of the sections discussed here have preliminary results; some are discussed in a 

hypothetical manner. In the end, I will discuss questions that I may work on in the future. 

Although the things discussed in this chapter are interesting to me, the “interesting” here 

is a subjective feeling and does not represent the truly interesting directions in the field of 

evolutionary genetics. The approaches to deal with some questions proposed here are also based 

on limited knowledge and incomplete thinking and are likely wrong or distant from the current 

field’s progressing direction. For anyone who accidentally reads this part, please keep an open 

and critical mind about everything written, and I would best hope a quarter of things discussed 

are worth to look at.  

7.2 Connecting genetic interaction with G×E 

  In chapter3, genetic interactions and G×E are combined in modular life model through 

the existence of modules. This bold design is based on our observation that the effect sizes of 

beneficial mutations decrease as Q increases and as genotype quality increases; it indicates that 

the interactions with environment might be similar to the genetic interactions. Because I have 

studied both genetic interactions and G×E throughout my chapters, it seems necessary to discuss 

the connections between them.  

 I propose that G×G and G×E are similar to each other. This is because it is perhaps 

difficult for an environment to interact with the product of a gene directly to create G×E. For 

example, only genes that produce membrane proteins or membrane molecules in single cell 

organism literally physically interact with the environment. Some chemicals from the 

environment may enter a cell via diffusion or endocytosis and then have physical interactions 
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with the products of genes, but this cannot be the case for every factor of an environment, 

because one could imagine that two environments differ only in a factor that does not enter the 

cell but still have G×E. If most of the products of genes cannot directly interact with the 

environment, then G×E observed either must happen through the products of other genes or only 

exists for a set of special genes that physically interact with the environment. For the former 

scenario, the existence of G×E interaction for a gene indicates the products of some other genes 

likely influence this gene’s behavior, suggesting that G×E genes are likely to have genetic 

interactions than non-G×E genes, and there may exist more G×G×E interactions for those G×E 

genes. If the former is not true, then the genes that show G×E must interact with some parts of 

the environment. This can be verified when mapping G×E to genes becomes inexpensive.   

 Another similarity between G×E and genetic interactions is the similarity in the effects of 

interactions. In chapter 2, I showed that the majority of G×E are concordant G×E (WEI AND 

ZHANG 2017). This kind of “concordance” is also true for genetic interactions, because 

underdominance is rare, compared to other allelic interactions (COYNE et al. 1991), and sign 

epistasis is not as common as negative or positive epistasis (KRYAZHIMSKIY et al. 2014). This 

direction of effect similarity again may indicate that G×E and genetic interactions share some 

underlying mechanisms. Although it is possible for genetic interactions to be one form of G×E, I 

personal prediction is that G×E often have underlying genetic interactions and happen through 

genetic interactions. This said, it is possible that antagonistic G×E genes have some epistatic 

properties different from concordant G×E genes. For example, chapter 2 reported that 

antagonistic G×E and concordant G×E have different genomic enrichment regions (WEI AND 

ZHANG 2017). It might provide some mechanistic insights if we could compare and connect 

types of G×E with different types of G×G using some large datasets. 
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7.3 Modular life model 

7.3.1 The geometric mean in modular life model and in biology 

 In chapter 3, I propose modular life model to explain diminishing returns epistasis, where 

I assume that the fitness of an individual can be the geometric mean, arithmetic mean, or the 

minimal value of all the functionalities of modules. Although I did not discuss which model is 

closer to the true model, that only the geometric mean one can explain the result from Chou et al 

study (CHOU et al. 2009) is mentioned in the discussion of Chapter 3. In Chapter 4, I also use 

modular life model to explain the general trend of genetic dominance. It is also true that only 

when using geometric mean, we could successfully predict all patterns of genetic dominance, the 

other two approaches cannot predict h-s correlation for genetic dominance. These results 

differentiate the three proposed models in Chapter 3 and indicate that the geometric mean of 

modular life model might be more relevant to real-world biological system and can predict 

genetic interactions and gene-by-environment interactions better than the other two models. 

 The geometric mean is also biologically relevant given it uses a multiplicative approach. 

Geometric mean is more appropriate than the arithmetic mean for describing proportional growth, 

both exponential growth (constant proportional growth) and varying growth, making it a relevant 

application to fitness calculation in biology. For example, if the effect of a mutation changes 

from generation to generation due to the change of biotic or abiotic environment, geometric 

mean can account for the differences. Another example is that, if we decompose the fitness of an 

individual into the survival rate at the zygote level, the survival rate at the juvenile level, the 

fitness at the adult level, and the fitness at germ cell level, the overall fitness of a genotype is a 
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combination of the four stages. Geometric mean could represent the fitness of a genotype at an 

average stage.  

 The logarithm of geometric mean is related to the arithmetic mean, so it is also possible 

that some unique properties of geometric mean is related to the logarithm properties in biology. 

While geometric mean in practice is superior in explaining those interactive effects, the true 

reason is yet to be discovered. 

7.3.2 Modular life model for predicting functional modules 

 Although there are already some works predicting modules in networks based on physical, 

biochemical, or genetic interactions, the modules in terms of interaction is different from the 

modules in modular life model. The modules in modular life model are grouped by functional 

similarity and functional redundancy and it relates to the genotype-phenotype map. According to 

modular life model, genes that belong to the same module have similar functions, and 

environment contributes to a module in a similar way. The geometric mean of the functionalities 

of all modules equals to fitness. We can use this information to identify functional modules. 

For example, according to the model, when the environmental contribution to a module 

varies, the fitness effects of genes within that particular module should increase or decrease 

together. If environment contribution to modules varies randomly, the effects of genes that 

belong to different modules should not covariate with each other. Therefore, we can use the 

effect sizes of some genes and mutations across multiple environments to get the correlation 

coefficient between the effect sizes of two genes across environments as a score for how likely 

two genes are from the same module. Using Bloom et al QTL mapping data (BLOOM et al. 2013; 

BLOOM et al. 2015), I calculate the effect size of each SNP in each of the 47 environments. I then 
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calculate the Spearman correlation coefficient and significance level between each pair of SNPs 

on two different chromosomes. Although there are more than 4×108 pairs of SNPs tested, tens of 

pairs of unlinked regions are significant after multiple testing corrections. Because I only used 

SNPs pairs locating on different chromosomes to calculate the correlation, linkage cannot be a 

confounding factor here, and the effect sizes of some mutation pairs truly covariate with each 

other. The fact that I observe effect size correlations is consistent with the modular life model 

prediction. However, because it is difficult to use QTL mapping approach to locate to the genes, 

I cannot determine which gene pairs belong to the same module and how many modules there 

are. Moreover, that the effect sizes of two genes covariate with each other across environments is 

also not a direct evidence of them belonging to the same functional module.  

 Another possible approach to identify the “functional modules” under modular life model 

is to use the data for identifying essential genes and gene deletion effects. According to modular 

life model, different environment contributes to different functional modules differently, and the 

lack of contribution from an environment to a module may create essential genes and bigger 

deleterious effect for null mutations, higher contribution from an environment to a module may 

make the null mutations of genes in that module close to neutral. Because in some model 

organisms, the effect of each null mutation is estimated in many environments, the 

aforementioned approach as could be used to process this information to infer which sets of 

genes likely belong to the same module and the minimum number of modules needed to explain 

the data.  

 Under the geometric mean modular life model, there is diminishing returns epistasis 

between two beneficial mutations within a module, but there is also positive (synergistic or 

widening) epistasis between two beneficial mutations from two different modules. Therefore, 
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although it is proposed to explain diminishing returns epistasis, it has the property to predict 

positive epistasis as well. This is again due to the multiplicative nature of geometric mean. 

Because negative epistasis is likely more general than positive epistasis (COSTANZO et al. 2016), 

the ratio of positive versus negative epistasis may predict the maximum number of modules. 

Apparently, not every gene is a module; otherwise, there exists only positive epistasis. In 

addition, there needs more than one module, because otherwise no epistasis is predicted under 

modular life model.  

Combining information from all three approaches may help understand how many 

modules there are, and how many genes in each module are. A naive guess for the number of 

modules is on the order of ten. Because the modular life model has some interpretations about 

the distribution and the effect of genetic epistasis, the data for estimating the genetic interaction 

map may also be useful for module prediction. 

7.3.3. Modular life model for other questions in genotype phenotype mapping  

 Because modular life model showed good prediction ability in chapters 3 and 4, it is 

worth to discuss its connection to other genotype-phenotype mapping questions. The current 

model has very restricted parameters; it might be good to also generalize the current model so 

that it can work on other types of genotype-phenotype questions. 

The modular model can be used to predict phenotype. In diploid, modular life model 

could be used to predict the fitness of hybrid given the fitness of two homozygotes parents. 

Because the modular level of each module in a heterozygous hybrid is at least equal to the 

average modular level of its two homozygous parents (i.e. when there is no saturation for a 

module in both parents, the hybrid’s modular level is the average of the parents; when there is 
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saturation in one parent, the hybrid’s modular level is higher than the average of the parents; 

when there is saturation for a module in both parents, the hybrid’s modular level again equals the 

average of the parents), predicting the hybrid fitness is at least better than the average of the two 

parents. This is true in yeast hybridization experiments (PLECH et al. 2014). Mathematically, it 

predicts that the fitness of hybrid is at least the average fitness of the two parents, and it can be 

better than both of the parents, i.e. hybrid vigor. The current modular life model does not include 

the effects of incompatibility, therefore could only predict hybrid fitness without the 

incompatibility effect, serving as an upper bound.  

 Under the currently proposed model in chapter 3 and 4, each single gene could only 

contribute to one module; therefore, there is no genetic pleiotropy. It also only considers 

beneficial mutations to contribute to the level of a module, and null mutation to contribute 

nothing; in reality, deleterious mutation may decrease the level of a module rather than adding 

nothing. A more generalized model should allow some  genes to contribute one or more modules, 

and some deleterious mutation to decrease the functionality of a module, and add a lower bound 

of module level to zero. Lethality can be predicted in the original modular life model when the 

level of a module reaches zero. It also predicts rescuing mutations, because a mutation that 

brings back the modular level can rescue the effect of the first deleterious mutation. However, 

under the current (i.e., non-pleiotropic) model, the beneficial mutation can only be beneficial or 

neutral across environments. If a mutation could have positive effect in zero or more modules 

and negative effects in zero or more modules, the effect of the mutation could be antagonistic or 

concordant depending on how environment contribute to different modules. These two extension 

of parameters make the model arguably more realistic and more general. Moreover, it will allow 

two lethal mutations could compensate each other and create sign epistasis (CHEN et al. 2016). 
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Having a more generalized model, although making it slightly more complicated, also provides 

the possibility for modular life model to explain more phenomena in genotype phenotype 

mapping.  

 The modular life model is a special case of an artificial neuron network in deep learning 

and the structure can be learned and evaluated with QTL mapping data and could be used to 

predict the amount of explained broad sense heritability. The input layer is the genotypes or 

mutations that (are known to) have effects on fitness, the second layer is the modules, and the 

output layer is the fitness of that genotype. Here I propose a way to use modular life model and 

deep learning to improve QTL mapping result in explaining broad sense heritability. In a large 

QTL mapping data like Bloom et al (BLOOM et al. 2013; BLOOM et al. 2015), thousands of 

genotypes and tens of environments are available. The QTLs mapped in each of the 

environments could be combined as the input layer. A range of number of module should be 

explored, such as from two to maximal number of unlinked QTLs. Some loss function to weigh 

the number of parameters can be added to improve the robustness of the model. The effect of 

environment is reflected at the hidden layer, so that each environment’s effect is being estimated 

to achieve a maximum likelihood result. The effect of QTLs and the organization from QTLs to 

modules will also be randomly explored to generate a robust prediction of output fitness. 

Because some of the genotypes could be held back, the accuracy of different models could be 

compared. After getting the best model, all data should be used to fit the model, and the total 

variance explained could be calculated by comparing the predicted fitness to the empirically 

measured fitness, and the result reflects the total amount of broad sense heritability explained by 

these QTLs. 

7.4 Diminishing returns epistasis of phenotypes 
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Chapter 4 showed that diminishing returns is also widespread among natural 

polymorphisms. The comparison between empirical patterns of diminishing returns and 

modeling results suggests that diminishing returns originates from the modular organization of 

life where the contribution of each functional module to fitness is determined jointly by the 

genotype and environment and has an upper limit.  

Because diminishing returns epistasis may not be restricted to fitness, we could work on 

diminishing returns of phenotype the same way as we study diminishing returns of fitness to see 

if diminishing returns of phenotype also exist. Based on my preliminary study in yeast, when a 

phenotype is under directional selection, a mutation that changes this phenotype toward its 

favored direction tends to have a smaller effect when occurring in genotypes already having 

favored phenotypic values. This result is from a pilot study in yeast. I used 220 yeast cellular 

phenotypes for segregants from a cross between BY and RM yeast strains (CHUFFART et al. 2016) 

and their growth rates measured in YPD (BLOOM et al. 2013) to study phenotype diminishing 

returns. 1) For each phenotype QTL, I test whether it has fitness effect and whether the BY allele 

or RM allele increases the growth rate. 2) I measure whether the BY allele increases the 

phenotype or decreases the phenotype. 3) I measure the phenotypic effect of QTL using large 

phenotypic value genotypes and small phenotypic value genotypes and test if the former group 

has smaller or bigger effect than the latter. If an allele increases the phenotypic value, and if it 

shows a smaller phenotypic effect in large phenotypic value group, it means there is diminishing 

returns epistasis for that allele. If the majority of QTLs of a phenotype show diminishing returns, 

then there is the diminishing returns of the phenotype. I found that, when a phenotype has growth 

rate effect, then it is more likely to show diminishing returns, and when it does not affect growth 

rate, it does not show diminishing returns of the phenotype (P < 0.01). This is a proof of 
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principle test, suggesting that the diminishing returns pattern of a phenotype tells whether a 

phenotype has fitness effect/under selection. Because fitness/selection is hard to measure in 

human, this test could provide information about which human phenotype is under selection. 

Studying the diminishing returns epistasis for human phenotypes might be interesting. So 

here I propose an approach to study it. UK Biobank is a national and international health 

resource with unparalleled research opportunities, open to all bona fide health researchers. It has 

been following the health and well-being of 500,000 volunteer participants. The phenotype and 

genotype data in UK biobank can allow us to test the phenotype diminishing returns prediction 

thoroughly, and the results will help us infer human phenotypes that are under directional 

selection.  

I propose to first choose a range of quantitative disease/physiology phenotypes based on 

their heritability (i.e. aspects of cognition, height, lifespan, number of kids, number of siblings, 

education, cancer, and etc.), and either map the GWAS loci ourselves or search for the GWAS 

loci from published papers/database (e.g. http://www.ebi.ac.uk/gwas/). For each trait, I can 

divide the individuals into a high-value group and a low-value group. Then I could calculate the 

phenotypic effect of each GWAS locus from the high group and from the low group. I then 

predict the direction of selection based on whether the majority of GWAS loci have 

larger/smaller effects in the high phenotype group. Using diseases records can also be interesting, 

for example, the year/age of diagnosis for recurrent/chronic diseases such as diabetes, stroke, and 

kidney disease, because some diseases which have late onsite is suggested to be invisible to 

natural selection.  

7.5 How to use QTL mapping data for alternative questions 
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 In my chapter 2 to 5, I have shown that QTL mapping data can be used for non-QTL 

mapping purpose, and it is a valuable source to study mutational effects. These alternative usages 

of public data are not uncommon for computational evolutionary studies. There are two opposite 

opinions about such usage, sometimes it is appreciated as an efficient way, sometimes it is 

accused of harming the research in the long run. In particular, publishing data is hated by some 

experimentalists (TAICHMAN et al. 2016) because the data could be used by other people to refute 

the original conclusion of people who generated the data. However, I argue even such usages of 

published data are in the long run healthy because it avoids wasting people’s efforts following 

wrong results. Moreover, published data could be used to address completely different questions, 

as what I did in my main chapters. Using public data innovatively is also eco-friendly because it 

avoids the waste of human labor, time, and money to generate similar data again.  

Here, I’d like to propose some alternative questions that can be addressed with QTL 

mapping data. QTL mapping data has several properties, a large number of recombinant 

genotypes, a large number of phenotypes from different genotypes, and sometimes multiple 

available environments. Each aspect of these properties could be used to address some questions, 

and the combination of two or three of these properties could be used to address different 

questions. Here I provide some examples of how I’d like to use the QTL mapping data.  

 For example, adaptive walk and fitness landscape could be simulated based on the 

information from QTL mapping data, where a randomly sampled genotype could be seen as the 

starting point, and the current segregating SNPs could be seen as the available pool to sample 

random mutations. The fitness of neighboring genotypes of the starting genotype can be 

predicted under the assumption of no epistasis, any genotype that is within the predicted 

mutational steps from the starting genotype could be empirically sampled and the difference 
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between the predicted and the estimated value is an indicator of how much of epistasis exist 

between these two genotypes. This approach could be used to address some questions about 

epistasis, such as whether the further the two genotypes are away from each other, the more 

different the epistasis is between them. Some genotype might be more epistatic than other 

genotypes, and some alleles may be more epistatic than the alternative alleles. The properties of 

epistatic potential for major and minor alleles from population data could be predicted to address 

the questions about robustness and fixation. 

 Another example, many of the QTL mapping data generated and sequenced a lot of 

recombinant genotypes. Questions about recombination could be addressed with QTL mapping 

data, more likely with even better resolution than with the data generated for the purpose of 

studying recombination. I am now conducting an analysis about recombination with QTL 

mapping data.  

Another example, some other questions involving next-generation sequencing could be 

addressed with QTL mapping data. For example, in yeast, the colonies sequenced are often still 

actively going through cell division and are also quite synchronized because many yeast colonies 

used in QTL mapping starts from single yeast segregant. Because the ongoing DNA replication 

and cell division, if a DNA region has early replication and strong DNA replication firing, that 

region will have twice of the reads than the regions with late DNA replication. This provides 

good opportunity to extract the DNA replication firing location for different genotypes, which 

itself creates many new phenotypes for QTL mapping. By comparing the genomic location of the 

replication origin and the strength of replication firing among genotypes, one could answer how 

much of these are explained by the DNA level difference, and how much it is cis-regulated 

versus trans-regulated.  
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7.6 Evolutionary memories via genetic mutations and “epigenetic mutations” 

7.6.1. Molecular clock of “epigenetic evolution” and “epigenetic memory” in adaptation  

 I’ve been interested in and thinking about epigenetic evolution for many years, in 

particular about the evolution of DNA methylation, which might become one direction of my 

future work. It is perhaps worthwhile to write down what I thought of, for the purpose of 

discussing future direction. The main conclusion I reached is perhaps many of the tools used to 

study genetic evolution could be used to study epigenetic evolution. I will illustrate what I mean. 

 Genetic information has high fidelity and does not plastically change upon the 

environment shift; any mutation will leave a mark on the information which passes down 

accurately unless another mutation hits on the same position. It is also known that epigenetic 

change could pass down generation to generation (HEARD AND MARTIENSSEN 2014). Epigenetic 

markers depend on both the genetic part and the environment, and just like every biological 

process has error, it can also change due to “epigenetic mutation”, which I define as the random 

error occurred during the process of copying epigenetic markers to the newly synthesized strand 

that could pass down to the next generation in a stable environment. Study the evolution of 

epigenetics is difficult due to its instability and the dependence on both genetic and environment. 

However, these properties also offer the opportunity for epigenetics to immediately respond to an 

environment change (BÖRSCH-HAUBOLD et al. 2014) and offering potential fitness advantage. 

Because DNA methylation depends on DNA sequences, it is also a heritable trait, and because 

methylation change can provide fitness advantage sometimes, it is reasonable to believe that 

some of the epigenetic changes are adaptive, and epigenetic evolution can be studied and should 

be studied. 
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The term “epimutation” was first introduced in 1987 by Robin Holliday to refer to the 

heritable changes in gene activity due to DNA modification to distinguish from classical 

mutations (HOLLIDAY 1987). However, “epimutation” is often misused as “epigenetic variation”, 

which is not what Holliday originally proposed. Some papers tried to define “epigenetic mutation” 

again, for example, one interesting theoretical paper defines “epigenetic mutation” as a change 

with higher rate but smaller stability as compared to a genetic mutation (KRONHOLM AND 

COLLINS 2016). These definitions, though reasonable, has little to do with the molecular nature 

of “epigenetic mutation”. Here, for the purpose of my discussion, I need to redefine “epigenetic 

mutation” in a more conservative way. If in a constant environment, some of the DNA 

methylation (or other DNA modification) changes occur by error or damage that are heritable to 

newly synthesized DNA, and if there is no DNA level mutation that directly causes the 

epigenetic level change, then those DNA methylation (or other epigenetic) changes are 

“epigenetic mutation”. So here, I exclude the plastic “epimutation” due to environmental changes, 

and the “genetic epimutation” due to classical mutation, and only include the stochastic 

“epigenetic mutation”. A clearer definition will help study “epigenetic mutation” experimentally. 

Given that DNA methylation could be easily measured by MethylC-Capture sequencing 

(DO et al. 2017), and its dependency on DNA sequences, it provides a good opportunity to study 

the intrinsic “epigenetic mutation” rate. When an environment is constant, the plastic change 

caused by the environment is minimized. An epigenetic mutation accumulation study could be 

done in a similar way as a regular mutation accumulation experiment. Because the mutation rate 

of DNA sequence is low, the majority of DNA methylation changes are caused by epigenetic 

mutations. Some DNA level mutations happen during epigenetic mutation accumulation process, 

the epigenetic change linked to a DNA mutation could also be quantified as the epigenetic 
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change driven by DNA change. The epigenetic mutation rate for DNA methylation can be 

estimated. Knowing the DNA methylation change linked to DNA mutation allows people to 

study how much of the DNA methylation difference among individuals of the same species 

could be explained by the DNA level difference. Besides, comparing to the epigenetic difference 

between species could help understand whether the majority of epigenetic mutations are being 

purified by selection. 

DNA methylation and other epigenetic modifications may facilitate the adaptation to a 

new environment. The theoretical work using Fisher’s geometric model has been attempted 

(KRONHOLM AND COLLINS 2016), but empirical work has not yet followed up. Here I discuss the 

mechanistic reasons why epigenetic mutations may facilitate adaptation. In addition, I discuss the 

relationship between epigenetic plasticity and adaption, and how to study these epigenetic effects 

experimentally. Because epigenetics is more plastic upon environment change, and the 

epigenetic mutations are less stable than genetic mutations, the individuals with beneficial 

epigenetic mutations or beneficial epigenetic plasticity may be able to fix some genetic 

mutations that stabilize the adaptive epigenetic effects. Beneficial epigenetic mutation/plasticity 

may also provide the genotype time and opportunity to accumulate genetic mutations that confer 

independent benefit. Because natural environment is not stable, it is reasonable to think that the 

individuals that can best adapt to the environmental changes are also those with the right amount 

of epigenetic flexibility.  

I also want to propose a test about how the stability of epigenetic mutations is optimized. 

Epigenetic adaptation and epigenetic memory have been discussed and studied experimentally 

(CASADESÚS AND D'ARI 2002; WOLF et al. 2008; NORMAN et al. 2013), but all from systems 

biology perspective. Here I discuss it from the “epigenetic mutation” and evolutionary 
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perspective, regarding how the stability of “epigenetic mutation” can be selected for or against 

and how to study the genetic difference of epigenetic memory. Theoretically, the change of 

epigenetic modifications could be stochastic or could be due to “epigenetic mutation”, there may 

exist some genetic and/or some epigenetic modifiers to modify the stability of “epigenetic 

mutation” to make it best incorporate with the frequency of environmental fluctuation. Here I 

propose an experiment to test this idea. Assume we have some different genotypes of the same 

species and grow them in a fluctuating environment that fluctuates every 6h, 12h, or 24h, for 10 

days with many replicates. We then resequencing all the replicates from 10 days (for example) of 

growth in the fluctuating environment to find the genotypes that are identical to their ancestral 

genotypes, so they do not evolve genetically. After getting those genotypes, we measure the 

absolute fitness for both the “epigenetically evolved” genotypes and the ancestral genotypes for 

one or two fluctuating cycles. If some evolved genotypes are fitter than the ancestral genotypes, 

this experiment proves that the “epigenetic evolution” allows the genotype to adapt to new 

environments. Moreover, given “epigenetic adaptation” exists, and if different “epigenetically 

evolved” genotypes have a different amount of fitness improvements, we continue to evolve after 

10 days of fluctuation and test if those genotypes with better “epigenetic adaptability” are better 

evolved later due to adaptation at DNA level. We could also conduct DNA methylation 

sequencing to identify the changes in DNA methylation level and estimate the effect sizes of 

epigenetic mutations. Moreover, different genotypes may adapt to different fluctuation frequency 

at different rates, some may have their preferred frequency of change; this could be tested by 

having multiple pairs of fluctuation environments. For genotypes that experience a frequency 

fluctuating environment for a long time, they may have less stable epigenetic mutations, and for 

genotypes that experience low frequency of fluctuating environments, they may have more stable 
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epigenetic mutations. The genotypes that adapt to a constant environment for a long time will 

have the most stable epigenetic mutations. This tuning of epigenetic mutations’ stability needs to 

be distinguished from epigenetic plasticity due to switching environments, as the former stay the 

same once changed, and the latter can mutate back and forth even in a constant environment. I 

predict that how good epigenetic memory depends on the close history of the genotype, and 

adaptation could be facilitated by epigenetic memory or prohibited by it depending on the 

situation. The frequency of “environment fluctuation” may be an important factor for the 

stability of epigenetic mutations.  

7.6.2 “Genetic memory” in adaptation  

In the previous section, I discussed why epigenetic memory can and should exist. Here I 

propose that evolutionary memory can also exist at genetic level for a longer time scale. To my 

current knowledge, this model is perhaps new. Here follows the model explaining why genetic 

memory for fitness exists and why every species can remember not only the previously adapted 

environment but also many previously adapted environments.  

If the ancestor (genotype G0) of a species first experience and adapt to environment A 

(genotype G0A), then switch to and adapt to environment B (genotype G0AB), we may expect that 

this genotype G0AB could perform better than the ancestor G0 in environment A. This is under the 

assumption and my observation that antagonistic G×E is less common than concordant G×E and 

antagonistic G×E is less common than environment specific genetic effect (WEI AND ZHANG 

2017). Let’s derive this using logic. During adaptation to environment A, some beneficial 

mutations and some neutral mutations are fixed, which affects x percent (x is small) of the 

genome. After that, the genotype G0A adapt to environment B, and y percent (y is also small) of 
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the genome acquire beneficial mutations and neutral mutations to environment B and become 

G0AB. Because, the genome is large, and the fraction of beneficial mutations fixed is << 1%, 

there is close to a negligible proportion of the genome that is hit twice by mutations. Under the 

assumption and the observation that antagonistic G×E is rare, most of the adaptive mutations for 

environment A still maintained in the genome G0AB, so when the species move back to A from B, 

G0AB is fitter than the ancestor G0. Perhaps it is as good as or even better than G0A depending on 

what proportion of G×E there are concordant between environments A and B. This works only 

for incomplete adaptation to environment A. If G0 is already at the global peak of environment A, 

adaptation to B will not give G0AB higher fitness than G0.  

The memory I talked about here is “recent adaptive memory”, primarily related to fitness, 

but also applies to all the phenotypes positively associated with fitness. I predict that the memory 

for “fitness” is the strongest, stronger than the memory for fitness associated phenotypes. This is 

because many organismal level phenotypes are costly the stability of a phenotype could be easily 

changed by some small change in developmental pathway. Moreover, the loss of a phenotype is 

irreversible. The fraction of neutral fixations may complicate the situation a little bit because the 

neutral mutation in environment B might be deleterious in environment A, so we need to also 

assume most neutral mutations stay neutral across environments. The effects of a neutral 

mutation in nature and in artificial selection can be different; therefore, the duration of 

evolutionary memory might be different.  

 Having this in mind, let us continue with the same logic to derive the evolutionary 

memory for sequential adaptation to multiple environments. When a species sequentially adapt 

to environment A, B, C, D, E, F, G, we expect the genotype G0ABCDEFG will perform better than 

the genotype G0 in all the environments, which means due to genetic reasons and patterns of 
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G×E, the genotype “remembers” all previously adapted environments to some extent. Therefore, 

simple genetic law not only allow evolution to happen but also creates “evolutionary memory”, 

which significantly improves the wellbeing of all natural species. Because of this kind of 

memory, the plastic response to a reasonably distantly experienced environment can be 

beneficial.  

However, the duration of genetic memory and the number of remembered environments 

must have an upper bound. It is will “Alzheimer” when the environment experienced is too 

distant. The memory decay rate, I predict, positively correlates with the number of mutations 

fixed in environment X, and negatively correlated with the number of fixed mutations happen 

after X, and needs to correct by the fraction of adaptive mutation versus neutrally fixed 

mutations or by the functional target size of the genome. The memory decay should also be 

faster than linear with time. Because the observation about G×E is only made when genotypes 

are similar to each other, and because G×E depends on the genotype background/could be 

simultaneously affected by genetic interactions, the “genetic memory” should already fully decay 

before all the adaptive mutations are turned over. It is reasonable to assume, this “genetic 

memory” will persist at a different magnitude time scale and persist much longer the previously 

described “epigenetic memory”.  

The proposal of genetic memory seems to be contradictory to common knowledge that it 

is difficult to improve two phenotypes at the same time by artificial selection. This may have 

something to do with tradeoffs, the design of the experiment, as well as inbreeding depression. 

However, according to the memory model, if the strategy is to improve one phenotype and fix 

the beneficial mutation, then improve the other phenotype, it may not be as impossible as 
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improving two traits at the same time. The success may require reasonable effective population 

size in the experiment. 

7.7 Future missions 

In sections of this chapter, I discussed some opinions, preliminary results, questions, and 

possible solutions. I will probably tackle some of those questions and verify some of the 

approaches in the next three to five years.  

When applying for graduate school, I mentioned some small-scale questions that I 

wanted to work on during my Ph.D. Some of those I have indeed worked on or touched briefly as 

planned, which are the evolution of evolvability, the relationship between new functions and 

regulation networks, mechanisms of recombination, pleiotropy, and speciation. Some questions 

(i.e. mechanisms of mutation rate and evolution of genome size) that were in my mind before are 

no longer as interesting to me because I think the current understandings/theories of them are 

quite plausible. During my Ph.D. study, I found I am also interested in working on some classical 

genetic questions and collecting results from recently available data to improve the 

understanding of old questions. I still think this is worth to revisit some classical questions, so I 

will continue to practice this in the future.  

However, if it is about the future in ten to twenty years, I want to talk about some bigger 

questions. There are one bigger technical question and two bigger evolutionary questions that I 

want to answer. The technical question is how to understand and study high-dimensional 

phenotypes (or phenome). The two bigger evolutionary questions that puzzled me and intrigued 

me most have been around for a while. The first one is how to connect macroevolution with 

microevolution, and the second one is how to explain evolution by combining the evolution at 
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the genetic level with the evolution at the epigenetic level. These are my current ultimate 

research goal. After five years of graduate training, I think I have a clearer idea about how to 

approach these two questions, but clearer only in the relative sense. 

The first question, about high dimensional phenotypes, belongs to a fast-growing and 

intensively studied subject. There are many attempts in developing more complicated regression 

models; deep learning has also been applied to questions in this subject (ANGERMUELLER et al. 

2016). I intend to join the force soon. Although I am not clear about the first step, I do believe 

that after explainable artificial intelligence (XAI, whose action could be understood by humans) 

is developed, the high dimensional phenotype data will be better understood. I am interested in 

using deep learning in my future study, bringing advanced method to basic biological questions. 

Although I may not personally develop any XAI method, I will watch out for the opportunity to 

apply it in my future study. 

To answer the first evolutionary question, I think one key part is to study genotype-

phenotype mapping. However, it is probably insufficient by simply studying GPM using 

segregating polymorphisms; the likelihood of rare events (rare mutations and large-scale 

mutations) may be at least as important as small-scale mutations for macroevolution. Therefore, I 

will work on the cause and consequence of large-scale mutations. Speciation may be important 

to study, and different modes of speciation may be involved differently for different clades. The 

environment may have a big impact on adaptation and speciation. Therefore, we also need a 

deeper understanding of biotic and abiotic environments. Biologists have studied genome for 

quite a long time, so are transcriptome and metabolome, and less so before but more now, 

proteome and phenome. Perhaps, soon enough we will need a new term “environmentome”, 

because the “omics” is also a character of the environment, and I believe studying 
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environmentome helps connect microevolution with macroevolution. Currently, fitness 

landscape is used for within a species and is measured empirically only at the gene level, but it 

can be applied across species by connecting fitness landscapes in all environments and creating a 

“hyperspace” with the many dimensions from genotypes and the many dimensions from the 

environment. Different species differ in their genotypic distance and environmental distance, so 

they locate in local landscapes of different ruggedness. The speciation rate should depend on the 

shape of this hyperspace, the rate of environmental changes, mutation rate, and population size.  

To answer the second evolutionary question, I think first we need to understand 

epigenetic evolution more. In the discussion section about epigenetic evolution, I talked about 

some of my opinions of how to define “epigenetic mutation” independent of “epigenetic 

plasticity” due to the environment change and epigenetic change due to genetic mutations. I also 

discussed how to measure epigenetic mutation rate, why it should facilitate genetic evolution, 

and how “epigenetic evolution” facilitates adaptation to a new environment at a smaller 

timescale and “genetic evolution” facilitates adaptation to new environments at a larger timescale. 

In addition, I discussed the decay of “epigenetic memory” versus “genetic memory”. All of these 

discussions are hypothetical, which I plan to work on computationally and empirically in the 

future. Eventually, I hope to achieve a model that combines “epigenetic mutation” and “genetic 

mutation” in predicting the rate of adaptation. I also believe that “genetic-by epigenetic 

interaction”, “epigenetic-by-epigenetic interaction” (or, “epi-epistasis”), and “epigenetic-by-

environment interaction” all exist in nature, and are perhaps very prevalent. Here, these effects of 

interactions are not on the existence of epigenetic marker, but on the phenotypic value. For 

example, “genetic-by epigenetic interaction” requires at least four phenotypic measurements in a 

haploid genome, the phenotype with epigenetic modification at locus X and genetic allele A at 
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locus Y, the phenotype with epigenetic modification at locus X and genetic allele a at locus Y, 

the phenotype without epigenetic modification at locus X and genetic allele A at locus Y, and the 

phenotype without epigenetic modification at locus X and genetic allele a at locus Y. Moreover, 

the interaction effect is defined the same way as genetic interactions. I make this clarification 

here because a recent review paper used the phrase “genetic epigenetic interaction” to describe 

mapping of methylation quantitative trait loci (mQTLs) and haplotype-dependent allele-specific 

DNA methylation (DO et al. 2017). Although I believe it is important to study how epigenetics 

depends on genetics, the meaning of the phrase is different from my aforementioned “genetic-by 

epigenetic interactions”. It is perhaps possible to study these interactions with the approaches 

developed for studying genetic interactions and G×E. For example, an epigenetic mapping for 

phenotype could be conducted, and association analysis could be used. I predict that epigenetic 

evolution is an important part of evolution, and the field may progress swiftly in the next ten 

years. I would like to work on this area in the future since most of the tools for studying 

epigenetics are available now. 
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Appendix A:  

A simple method for estimating the strength of natural selection 

 on overlapping genes 

 

“Two pairs of genes are coded by the same region of DNA using different reading frames.”  

― Frederick Sanger 

 

A.1 Abstract 

Overlapping genes, where one DNA sequence codes for two proteins with different 

reading frames, are not uncommon in viruses and cellular organisms.  Estimating the direction 

and strength of natural selection acting on overlapping genes is important for understanding their 

functionality, origin, evolution, maintenance, and potential interaction.  However, the standard 

methods for estimating synonymous (dS) and nonsynonymous (dN) nucleotide substitution rates 

are inapplicable here because a nucleotide change can be simultaneously synonymous and 

nonsynonymous when both reading frames involved are considered.  We have developed a 

simple method that can estimate dN/dS and test for the action of natural selection in each relevant 

reading frame of the overlapping genes.  Our method is an extension of the modified Nei-

javascript:void(0)
javascript:void(0)
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Gojobori method previously developed for non-overlapping genes.  We confirmed the reliability 

of our method using extensive computer simulation.  Applying this method, we studied the 

longest human sense-antisense overlapping gene pair, LRRC8E and ENSG00000214248.  While 

LRRC8E (leucine rich repeat containing 8 family, member E) is known to regulate cell size, the 

function of ENSG00000214248 is unknown.  Our analysis revealed purifying selection on 

ENSG00000214248 and suggested that it originated in the common ancestor of bony vertebrates.   

A.2 Introduction 

Overlapping genes generally refer to pairs of genes that overlap in their transcribed 

sequences.  In this study, however, overlapping genes refer to pairs of genes that overlap in their 

protein coding regions but use different reading frames.  The first overlapping genes were 

discovered nearly 40 years ago in bacteriophage ɸX174 (Barrell et al. 1976).  Overlapping genes 

have since been found in numerous viruses and cellular organisms including multicellulars such 

as humans, and their functional importance has been demonstrated in some case studies (Giorgi 

et al. 1983; Normark et al. 1983; Chen et al. 1993; Veeramachaneni et al. 2004; Pavesi 2006; 

Chung et al. 2008; Dornenburg et al. 2010).  In theory, two genes may overlap in one of five 

possible phases (Fig A-1), two being sense-sense (ss) and three being sense-antisense (sas).  The 

sas11 phase, in which the second codon position in one gene faces the third codon position in the 

other gene (Fig A-1), was reported to be the most common type (in prokaryotes), likely because 

this phase minimizes the mutual constraints of the protein sequences of the overlapping genes 

(Rogozin et al. 2002).   

To study the functionality, origin, maintenance, and evolution of overlapping genes, it is 

often necessary to infer the direction and strength of natural selection acting on them.  The 
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standard approach for studying natural selection acting on protein-coding genes is by estimating 

the ratio between the rate of nonsynonymous nucleotide substitution (dN) and that of 

synonymous nucleotide substitution (dS).  However, because a mutation may be simultaneously 

synonymous and nonsynonymous in overlapping genes, the commonly used methods for 

estimating dS, dN, and dN/dS are inapplicable.  Several attempts have been made to estimate 

selection strengths in overlapping genes.  Some authors treated a pair of overlapping genes as 

two non-overlapping genes and calculated dN/dS for each gene independently using the standard 

methods (Yu et al. 2005; Pavesi 2006; Simon-Loriere et al. 2013).  As pointed out long ago 

(Miyata and Yasunaga 1978), this approach is problematic, because a synonymous mutation to 

one of the overlapping genes may be nonsynonymous to the other gene and thus may be non-

neutral.  Realizing that the neutral expectation of dN/dS for each overlapping gene may not be 1, 

Nekrutenko et al. simply calculated dN and dS rather than their ratio, but they still applied a 

standard method directly to each overlapping gene (Nekrutenko et al. 2005).  As such, the 

biological meanings of the estimated dS and dN are unclear.  Rogozin et al. also noted the impact 

of one mutation on two genes and hence considered only sites that are fourfold degenerate for 

one of the overlapping genes.  Specifically, they were able to estimate dN for each gene in gene 

pairs with the sas11 phase (Rogozin et al. 2002).  But this method does not apply to all 

overlapping genes, and estimating dS remains difficult (e.g., Rogozin et al. estimated dS from 

non-overlapping regions).  Extending Goldman and Yang’s method for non-overlapping coding 

sequences (Goldman and Yang 1994), Sabath et al. developed a maximum likelihood (ML) 

method for simultaneous estimation of the selection intensity in each of two overlapping genes 

(Sabath et al. 2008).  However, as currently implemented, the method cannot test whether dN/dS 
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significantly differs from 1 for either gene (Sabath et al. 2008; Sabath et al. 2012), rendering the 

utility of the method limited.   

Here we describe a simple method that estimates the selection strength of each of the two 

overlapping genes by separating the effects of each mutation on the two genes.  Our method also 

estimates the associated variance, allowing a test of neutrality for each gene.  We evaluate the 

performance of our method using computer simulation, and illustrate its utility by analyzing the 

human sense-antisense gene pair with the longest overlapping region. 

 

A.3 Materials and methods 

Computer simulation 

Our new method for estimating the selection strengths in overlapping genes is described 

in Results.  Here we describe the simulation used to evaluate the performance of our method.  To 

generate a pair of overlapping genes, we set the following parameters: the overlapping phase, the 

length of the overlapping region l, the ratio (R) between the number of transitions and number of 

transversions, the distance (d) between two sequences defined by the expected number of 

substitutions per neutral site, selection strength on ORF1 (1), and selection strength on ORF2 

(2).  We generated an ancestral sequence that contained overlapping ORFs by first randomly 

choosing sense codons for the first ORF and then removing all stop codons until no stop codon is 

found in each ORF.  We then introduced mutations following Kimura's two-parameter model 

(Kimura 1980) with a preset R.  The fixation probability of a mutation is determined jointly by 

1 and 2.  Specifically, if the mutation is synonymous in both ORFs, its fixation probability is 
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set to be a (0< a <1); if the mutation is synonymous to ORF1 but nonsynonymous to ORF2, its 

fixation probability is a2; if the mutation is synonymous to ORF2 but nonsynonymous to ORF1, 

its fixation probability is a1; if the mutation is nonsynonymous to both ORFs, its fixation 

probability is a12.  The parameter a must be small enough so that a1, a2, and a12 are all 

smaller than 1.  Under this scheme, both positive and negative selection can be simulated.  When 

negative selection is simulated for both ORFs, a can take any value between 0 and 1, but we 

assigned 0.9 to a to decrease the computational time.  When positive selection is simulated for 

ORF1 but negative selection is simulated for ORF2, 0.9/1 was assigned to a.  If both ORFs are 

under positive selection, 0.9/(12) was assigned to a.  Each ancestral sequence was evolved 

independently to produce two derived sequences, by either accepting or rejecting the randomly 

generated mutations.  Simulation ended when the number of mutations introduced equals the 

preset number (dl/a).  1 and 2 were then estimated by comparing the two simulated derived 

sequences.  The scripts used for simulating overlapping genes and for estimating  were written 

with Perl and are available at http://www.umich.edu/~zhanglab/download.htm.  

 

Case study 

Annotation for human protein coding genes and sequences used in the selection analysis 

were downloaded from Ensembl GRCh37 (http://useast.ensembl.org/).  Overlapping genes were 

identified by comparing exon start and end positions of each gene on the same chromosome.  For 

example, if exon 2 of gene A starts at position 13,780 and ends at 13,942 on Chromosome 1, and 

exon 5 of gene B starts at 13,950 and ends at 13,820 on the same chromosome, we can infer that 

these two genes form a pair of sense-antisense overlapping genes and that the overlapping region 

http://useast.ensembl.org/
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between the two exons has (13942-13820+1) = 123 bp.  The overlapping genes analyzed were 

identified from Ensembl annotations using a Python script.  Sequences were aligned using an 

online version of clustralw2 (http://www.ebi.ac.uk/Tools/msa/clustalw2/).  

Transition/transversion ratio was calculated using MEGA5 (Tamura et al. 2011).  The protein 

expression levels were from ProteomicsDB at https://www.proteomicsdb.org/ (Wilhelm et al. 

2014).  The GenBank accession numbers of LRRC8 genes analyzed are provided in Tables A-S1 

and S2.  We used MEGA5 to reconstruct the neighboring-joining tree of LRRC8 genes using 

protein p-distances.  

 

A.4 Results 

A new method for estimating the selection strength in overlapping genes 

Because most species use double-stranded DNA, one segment of DNA can harbor at 

most six different open reading frames (ORFs).  However, very rarely do all six ORFs coexist.  

Even in cases where all six ORFs coexist, it is unclear whether all ORFs code for actual proteins 

(Menon et al. 1990).  The simplest and most common overlapping coding regions harbor two 

different ORFs, which can be either on the same strand (sense-sense overlap) or on opposite 

strands (sense-antisense overlap) (Fig A-1).  The two types of sense-sense overlap are in fact 

equivalent, because they both have the third codon positions of one ORF facing the first codon 

positions of the other ORF (Fig A-1).  Here we use the sense-sense overlap as an example to 

describe our method, but the same applies to all overlaps between two ORFs. 

Our method is an extension of the modified Nei-Gojobori (mNG) method for estimating 

dS and dN in non-overlapping genes (Nei and Gojobori 1986; Zhang et al. 1998), but considers 

http://www.ebi.ac.uk/Tools/msa/clustalw2/
https://www.proteomicsdb.org/
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the complication that one mutation simultaneously affects two ORFs, often with different effects.  

Let us consider a pair of homologous DNA sequences (e.g., respectively from human and mouse) 

that harbor overlapping ORF1 and ORF2.  Our method for quantifying the selection strength in 

ORF1 and that in ORF2 involves the following four steps.   

In the first step, we classify human nucleotide sites in the overlapping region into four 

categories depending on the impacts of potential mutations on the two ORFs.  The four 

categories are referred to as NN, NS, SN, and SS sites, respectively, where N stands for 

nonsynonymous and S stands for synonymous.  That is, if all potential mutations at a site cause 

nonsynonymous changes in both ORFs, it is an NN site, and so on.  A site may belong to 

multiple categories and be called, for example, 1/3 NN site and 2/3 NS site, if one third of 

potential mutations at the site cause nonsynonymous changes in both ORFs and two thirds of 

potential mutations at the site cause nonsynonymous changes in ORF1 but synonymous changes 

in ORF2.  When considering potential mutations, it is important to separate transitions from 

transversions because they typically have different mutation rates and have different probabilities 

of causing nonsynonymous changes (Zhang 2000).  Let R be the ratio between the number of 

transitional mutations and that of transversional mutations and be estimated from external 

information (e.g., from non-overlapping regions or other genes).  Hence, we consider a fraction 

of R/(1+R) mutations to be transitions and the rest transversions (Zhang et al. 1998) in 

determining to which of the above four categories a site belongs.  For instance, if the transitional 

mutation at a site causes a synonymous change in both ORFs and the two transversional 

mutations both cause a synonymous mutation in ORF1 and a nonsynonymous mutation in ORF2, 

this site is counted as R/(R+1) SS site and 1/(R+1) SN site.  We then calculate the total number 

of sites in the human overlapping region belonging to each of the four categories.  The 
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corresponding values are also calculated for the mouse sequence, and the averaged value from 

the two sequences for each category (LNN, LNS, LSN, and LSS) will be used subsequently.  

In the second step, we classify all nucleotide differences between the two sequences into 

four categories: NN, NS, SN, and SS.  That is, if a difference is nonsynonymous in both ORF1 

and ORF2, it belongs to the NN group, and so on.  When a nucleotide difference is in isolation, 

meaning that in neither ORF is there another difference in the same codon as the focal difference, 

the classification is straightforward.  But when a codon (in either ORF) harbors two or more 

differences, the situation becomes complicated, because to determine the categories of the 

multiple differences, one has to consider all possible evolutionary pathways that can give rise to 

the observed nucleotide differences.  In the case of non-overlapping ORFs, there are two equally 

shortest evolutionary pathways between a pair of codon sequences with two differences (e.g., to 

evolve from AAA to AGG, one can go through AAG or AGA) and six equally shortest pathways 

when it harbors three differences (Nei and Gojobori 1986).  For overlapping ORFs, however, one 

may need to consider a lot more pathways, because a codon in ORF1 overlaps with a codon in 

ORF2, which overlaps with another codon in ORF1, and so on.  Thus, we need to find a segment 

of DNA in which each codon (defined by both ORFs) has multiple nucleotide differences with 

the exception of the codon at each end of the segment (Fig A-2).  When this segment has a total 

of m nucleotide differences between the pair of homologous sequences, a total of m! pathways 

should be considered, each of which contains a unique order of m nucleotide changes.  For each 

pathway, we count the number of nucleotide changes belonging to each of the four categories 

(NN, NS, SN, and SS).  We average these numbers across all open pathways, which are 

pathways with no intermediate sequences that contain stop codons.  An example is provided in 



222 
 

Fig A-S1.  After classifying all nucleotide differences between the pair of homologous sequences 

into the four categories, we count their numbers (MNN, MNS, MSN, and MSS, respectively).   

In the third step, we calculate the proportion of sites with nucleotide differences by pNN = 

MNN/LNN, pNS = MNS/LNS, pSN = MSN/LSN, and pSS = MSS/LSS for NN, NS, SN, and SS sites, 

respectively.  The Jukes-Cantor formula (Jukes and Cantor 1969) may be used to correct for 

multiple hits.  For instance, the number of nucleotide substitutions per site at NN sites can be 

estimated by 𝑑NN = −
3

4
ln (1 −

4𝑝NN

3
); dNS, dSN, and dSS can be similarly estimated.  Here we 

used the Jukes-Cantor correction instead of more complex corrections such as Kimura's two-

parameter model (Kimura 1980) or Tamura-Nei model (Tamura and Nei 1993), because 

overlapping regions are usually so short that the variance of a distance estimate would be large 

under complex corrections (Nei and Kumar 2000).     

In the fourth step, we propose that the strength of natural selection acting on ORF1 be 

estimated by 1= dNN/dSN and that acting on ORF2 be estimated by 2= dNN/dNS.  This 

formulation is based on two assumptions.  First, synonymous mutations are neutral.  Although 

not all synonymous mutations are neutral due to their potential impacts on DNA-protein 

interaction, pre-mRNA splicing, mRNA folding, translational efficiency, translational accuracy, 

and other aspects of cell biology (Chamary and Hurst 2005; Pagani et al. 2005; Warnecke and 

Hurst 2007; Qian et al. 2012; Park et al. 2013; Yang et al. 2014), most synonymous mutations 

may be considered largely neutral when compared with nonsynonymous mutations, especially in 

species with small effective population sizes (Li 1987; Ohta 1992).  Second, the two overlapping 

genes do not have genetic interaction, such that the probability that a mutation gets fixed is the 

product of the probability with which it gets fixed in the absence of ORF1 and the probability 
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with which it gets fixed in the absence of ORF2.  This assumption implies that (i) NN-type 

mutations and SN-type mutations have comparable average effects on ORF2 and (ii) NN-type 

mutations and NS-type mutations have comparable average effects on ORF1.  Hence, 1 can be 

estimated by dNN/dSN and 2 can be estimated by dNN/dNS.  In theory, we could also estimate 1 

by dNS/dSS and estimate 2 by dSN/dSS.  But, such estimates are usually subject to large sampling 

errors, because with the exception of the sas12 overlap that has a sizeable fraction of SS sites 

(Fig A-1), overlapping regions typically have few SS sites.  Thus, unless otherwise noted, we do 

not use dSS in this study.  It is sometimes of interest to compare the selective pressures acting on 

the two overlapping genes.  For this purpose, we can compute 1/2, which equals dNS/dSN. 

To calculate the variances of dNN, dNS, dSN, and dSS, the commonly used bootstrap method 

(Nei and Kumar 2000) is inapplicable because of the difficulty in bootstrapping codons from one 

ORF while maintaining the other ORF.  We therefore extend an approximate analytical method 

previously developed for estimating the variances of dS and dN in the Nei-Gojobori method (Nei 

1987), which is known to be quite accurate (Ota and Nei 1994).  Following this method, we 

calculate the variance of dNN by Var(dNN) = Var(pNN)/(1-4pNN/3)2, where the variance of pNN is 

given by Var(pNN) = pNN(1-pNN)/LNN.  Variances of dNS, dSN, and dSS can be similarly estimated.  

Standard deviations (SDs) of dNN, dNS, dNS, and dSS are then estimated by taking the square root 

of their variances, respectively.  The hypothesis of neutral evolution of ORF1 can be tested by a 

Z-test of the equality between dNN and dSN.  That is, we can conduct a Z-test using Z = (dNN - 

dSN)/(Var(dNN)+Var(dSN))1/2.  Similarly, the neutral evolution hypothesis for ORF2 can be tested 

by a Z-test of the equality between dNN and dNS.  We can also test if the strengths of natural 

selection acting on the two ORFs are equal by a Z-test of the equality between dSN and dNS. 
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Performance of the new method in estimating the selection strengths in overlapping genes 

To examine the performance of the new method, we conducted extensive computer 

simulation of overlapping genes of each phase.  The overlapping region had 3000 nucleotides, 

and the simulation was repeated 100 times under each parameter set.  We used exceptionally 

long overlapping regions to minimize the sampling error such that potential biases of our 

estimators became more readily detectable.  We start by describing the results obtained under the 

sense-sense overlap.  We first examined the situation that both overlapping genes are under 

purifying selection.  We fixed 1 = 0.2 and 2 = 0.5 and studied how the distance between a pair 

of homologous sequences affects the accuracy of estimation (Fig A-3A), where the distance is 

defined by the expected number of substitutions per neutral site between the two homologous 

sequences (i.e., the expected value of dSS).  We found that the mean 1 estimate and the mean 2 

estimate are both slightly greater than their true values, and this excess in the estimated  value 

appears unrelated to the distance.  This bias may be due to the fact that we simulated sequence 

evolution using Kimura's two-parameter model, but estimated dNN, dNS, and dSN using the Jukes-

Cantor correction, which is known to undercorrect multiple hits in this scenario.  When 1 and 

2 are lower than 1, dSN and dNS are greater than dNN, making the undercorrection more severe 

for the former than the latter and the resultant 1 and 2 upward biased.  Nevertheless, the biases 

appear to be generally lower than 10%.  By contrast, if we estimate 1 and 2 by the mNG 

method without considering the mutual influences between overlapping genes, the estimates are 

much higher than their respective true values (Fig A-3A).  This is because some synonymous 

mutations to one ORF are nonsynonymous to the other ORF and hence have been removed by 
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purifying selection, causing overestimation of 1 and 2.  Because the true 1 < 2 < 1, 2 is 

overestimated to a larger extent than 1 (Fig A-3A).  

Next, we examined the situation that one overlapping gene is under positive selection (1 

= 3) while the other is under purifying selection (2 = 0.2).  We again found the mean estimates 

of 1 and 2 by our method to be close to their respective true values, for all levels of distance 

considered (Fig A-3B).  When the mNG method is used, 2 is slightly underestimated (Fig A-

3B), likely because some synonymous mutations to ORF2 are beneficial to ORF1 and are fixed 

by positive selection.  By contrast, 1 is grossly overestimated by mNG (Fig A-3B), for the 

reason mentioned in the previous paragraph.  

We next examined the impact of the transition/transversion ratio R on estimates of 1 and 

2 when their true values are 0.2 and 1, respectively (Fig A-3C).  We found both 1 and 2 

slightly overestimated.  This becomes moderately severe for 2 when R ≥ 10, probably due to the 

aforementioned undercorrection of multiple hits by the Jukes-Cantor formula that is more serious 

when R gets higher.  The mNG method performs similarly well as the new method in estimating 

1 (Fig A-3C), likely because of the lack of any selection on ORF2.  But 2 is grossly 

overestimated by mNG (Fig A-3C).  Because ORF2 itself is not under any selection, the above 

phenomenon must be due to the fact that synonymous mutations to ORF2 are more likely than 

nonsynonymous mutations to ORF2 to be deleterious to ORF1.          

We next varied 1 from 0.2 to 3.0 while keeping 2 at 0.2.  We found estimates of 1 and 

2 by our method to be generally reliable (Fig A-3D).  By contrast, 1 is consistently and 



226 
 

grossly overestimated by mNG, whereas 2 is overestimated when 1 < 1 and underestimated 

when 1 > 1, as expected (Fig A-3D).   

In addition to the sense-sense overlap, we also examined the three sense-antisense 

overlapping phases with different parameter sets.  We found that our method generated reliable 

results under all phases (Fig A-4).  By contrast, the mNG method can make grossly wrong 

estimates, and the direction and extent of the error depends on 1, 2, and the specific 

overlapping phase (Fig A-4).  For phase sas12, third codon positions in ORF1 overlap with third 

codon positions in ORF2.  Consequently, the fraction of SS sites is higher than that in other 

phases, allowing the possibility of estimating natural selection using SS sites.  We thus also 

estimated 1 by dNS/dSS and estimated 2 by dSN/dSS for phase sas12 (see sas12* in Fig A-4).  The 

results showed that these estimates are either similar to or slightly better than those using NN 

sites (see sas12 in Fig A-4).   

Because the analytical formulas for standard deviations are approximate, we used 

computer simulation to investigate their accuracies.  For the sense-sense phase, we examined the 

reliabilities of the analytically computed SD(dNN), SD(dNS), and SD(dSN), but could not examine 

SD(dSS) because of the paucity of SS sites.  We conducted 100 simulation replications under 

each set of parameters.  We then compared the SD among the 100 dNN values obtained and the 

mean of SD(dNN) analytically calculated using the data from each simulation.  The same was 

done for dNS and dSN.  We found the analytically calculated SD values to be overall similar to the 

simulation observations, with statistically insignificant differences (Fig A-5).   
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Evolutionary analysis of the human gene pair with the longest sense-antisense overlapping 

region 

To illustrate the utility of our method, we searched for an appropriate pair of overlapping 

genes from Ensembl for detailed analysis.  We found that Ensembl annotates most sense-sense 

overlapping genes with different reading frames as alternative splicing (Curwen et al. 2004), 

greatly underestimating the prevalence of sense-sense overlapping genes.  We thus focused on 

sense-antisense overlapping and identified the longest sense-antisense overlapping coding region 

in the human genome, containing 732 bases.  The involved genes are LRRC8E (leucine rich 

repeat containing 8 family, member E) and an uncharacterized gene with an Ensembl Gene ID of 

ENSG00000214248.  The structure of this gene pair (Fig A-6A) shows that the entire 243 amino 

acid coding region of ENSG00000214248 lies within the second exon of LRRC8E, with the 

sas12 overlapping phase.  It was recently discovered that LRRC8E functions as an essential 

component of the cell volume-regulated anion channel VRAC (Voss et al. 2014), but whether 

ENSG00000214248 encodes a functional protein and what its function is are unknown.  

We found from the recently published human proteomic data (Wilhelm et al. 2014) that 

ENSG00000214248 is not only transcribed but also translated in coronary sinus and blood 

platelet (Fig A-6B).  The protein expression sites of ENSG00000214248 and those of LRRC8E 

overlap in blood platelet but are otherwise distinct (Fig A-6B).  The expression levels of the two 

proteins are generally comparable (Fig A-6B).  We acquired the sequences of the orthologous 

genes of human ENSG00000214248 and LRRC8E from the macaque genome sequence.  Using 

our method, we estimated the  values for the two genes in the overlapping region as well as the 

 in the non-overlapping region of LRRC8E.  R was estimated to be 3.61 from the non-

overlapping region of LRRC8E using Kimura’s two-parameter model (Kimura 1980).  We found 
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that the overlapping region and non-overlapping region of LRRC8E have been under similar 

levels of purifying selection, with  = 0.08 and 0.09, respectively.  The  for 

ENSG00000214248 is 0.20, significantly lower than the neutral expectation of 1 (P < 0.002, two-

tail Z-test), suggesting that this uncharacterized gene has been under purifying selection at least 

since the divergence between human and macaque.  For the overlapping region, we used SS sites 

in the above estimation of  values for ENSG00000214248, because there was no substitution at 

NS sites.  

Because ENSG00000214248 is entirely within LRRC8E, we traced the origin of 

ENSG00000214248 by examining its presence in LRRC8E of various species.  We were able to 

identify LRRC8E in all bony vertebrate genome sequences available at Ensembl and NCBI, but 

not in shark, lamprey, or any invertebrate genome.  Interestingly, we also identified the ORF of 

ENSG00000214248 within LRRC8E in most bony vertebrates, including zebrafish (Fig A-6C).  

Apparently, ENSG00000214248 already existed in the common ancestor of bony vertebrates, but 

was pseudogenized several times in subsequent evolution (Fig A-6C).  Because LRRC8E is a 

member of the LRRC8 family that contains five genes in human, we reconstructed the phylogeny 

of this gene family (Fig A-S2) to investigate if ENSG00000214248 originated before LRRC8E.  

We discovered that the closest relative to LRRC8E is LRRC8C, which can be found in bony 

vertebrates and shark.  However, the presumable ENSG00000214248 reading frame in LRRC8C 

contains several premature stop codons in each species examined (human, macaque, mouse, rat, 

zebrafish, and shark), suggesting that the common ancestor of LRRC8C and LRRC8E did not 

contain ENSG00000214248.  Thus, the antisense reading frame probably originated in LRRC8E 

shortly after the birth of LRRC8E from the duplication of LRRC8C.  
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A.5 Discussion 

Overlapping genes have been identified in many species and are particularly common in 

bacteria and viruses (Normark et al. 1983; Veeramachaneni et al. 2004), but their evolutionary 

studies have been hampered by the inapplicability of the standard methods for inferring natural 

selection acting on overlapping genes.  We developed a simple method to estimate the selection 

strength on each of the overlapping ORFs and demonstrated the reliability of our method by 

computer simulation.  Our method allows testing whether an overlapping gene is under natural 

selection and hence can be used to identify functional genes from hypothetical overlapping 

reading frames, as was demonstrated in the example of ENSG00000214248.  

To more readily detect potential biases of our method, we simulated long overlapping 

regions (3000 sites).  In reality, however, overlapping regions are much shorter.  We also 

performed simulations using overlapping regions of 750 sites and 300 sites, respectively (Fig A-

S3), based on the parameters used in Fig A-3A and Fig A-3B.  When the overlapping region is 

short and the distance is low, many sequences had no substitution in NS sites or SN sites, making 

our method inapplicable.  For cases where our method did work, the mean  estimates were 

reasonably good, although the standard errors were large, as expected (Fig A-S3).  Thus, 

accurately estimating  values of short overlapping regions remains challenging unless the 

divergence between the two taxa compared is high.  Based on current annotations of eukaryotic 

genomes, there are not many overlapping genes that have long evolutionary histories.  However, 

as in the example studied, although the orthologs of human ENSG00000214248 are present in 

many vertebrates, they have not been annotated outside primates.  It is likely that much more 

overlapping genes and long-lasting overlapping genes than currently annotated exist.  
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Overlapping genes are prevalent in viral genomes.  Many viruses have high mutation rates, 

allowing the use of our methods even for relatively short overlapping regions. 

Sabath and colleagues noted that the ML method they developed does not perform well 

under low distances (mean sequence divergence across sites < 8%) (Sabath et al. 2008).  To 

examine if our method suffers from the same problem, we compared the two methods using the 

parameters in Fig A-3A and Fig A-3B.  The results showed that the two methods are similar in 

their sensitivity to distance (Fig A-S4).  However, under both negative (Fig A-S4a) and positive 

(Fig A-S4b) selection, our method outperforms the ML method in terms of the accuracy of the  

estimates.   

While we introduced our method in the context of estimating the selective strength using 

interspecific comparisons, our method may also be applied to intraspecific data or comparisons 

between intraspecific and interspecific data.  For instance, let us use DNN, DNS, DSN, and DSS to 

denote the numbers of the four types of substitutions in a pair of overlapping genes, respectively, 

and use PNN, PNS, PSN, and PSS to denote the corresponding numbers of the four types of 

polymorphisms, respectively.  We can conduct a selection test similar to the McDonald-

Kreitman test (McDonald and Kreitman 1991) for ORF1 by comparing DNN, DSN, PNN, and PSN, 

because DNN/PNN equals DSN/PSN under the null hypothesis of neutrality.  Similarly, we can test 

selection in ORF2 by comparing DNN, DNS, PNN, and PNS.  In addition to studying overlapping 

genes, our method can also be applied to the study of the functionality of certain alternative 

splicing.  Alternative splicing is generally demonstrated by the existence of various transcripts 

from a gene, but the existence of a transcript is not a proof that the transcript is functional.  For 

splice variants using alternative reading frames, our method may be used to test if the alternative 
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reading frame has been under natural selection, which would support the functionality of the 

splice variant. 

In summary, we believe that our development of a simple method for estimating the 

selective strengths on overlapping genes will facilitate researches toward understanding the 

origin, evolution, and functionality of overlapping genes. 
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Figure A-1.  Five phases of overlapping genes.  Sense-sense overlap is abbreviated as "ss", 

whereas sense-antisense overlap is abbreviated as "sas".  The two sense-sense overlaps are 

equivalent if one switches the names of the two ORFs. 
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Figure A-2.  Determining the shortest overlapping region for mutational pathway consideration.  

Shown is an example of the sense-sense overlap.  Codons in ORF1 are marked with lines above 

the sequences, whereas codons in ORF2 are marked with lines below the sequences.  Differences 

between the two species are in black, whereas identical nucleotides are in grey.  The boxed 

region is the shortest region for mutational pathway consideration.  
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Figure A-3.  Performances of the new (NEW) method and modified Nei-Gojobori (mNG) 

method in estimating the selection intensities (1 and 2) on overlapping genes.  Shown are 

results from computer simulations of overlapping genes with the sense-sense overlap.  Each 

symbol represents the mean from 100 replications under a given parameter set, and error bars 

show the standard error.  In each panel, the common parameters are listed above the panel, 

whereas the varying parameter is shown on the X-axis.  Distance is defined as the expected 

number of nucleotide substitutions per neutral site between the two sequences under comparison.  
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Figure A-4.  Performances of the new (NEW) method and modified Nei-Gojobori (mNG) 

method in estimating the selection intensities (1 and 2) on simulated overlapping genes of 

various phases indicated on the X-axis.  Each symbol represents the mean from 100 replications 

under a given parameter set, and error bars show the standard error.  In each panel, the 

parameters are listed above the panel, whereas different overlapping phases are shown on the X-

axis.  The results for sas12* are estimates using SS sites (i.e., 1= dNS/dSS and 2 = dSN/dSS) 

under the sas12 phase. 



238 
 

 

Figure A-5.  Performance of the new method in estimating the standard deviation (SD) of dNN, 

dNS, and dSN.  Shown are the results from computer simulations of overlapping genes with the 

sense-sense overlap.  The analytically computed SD, averaged across 100 replications, is shown 

by red symbols, whereas the actual SD, observed from the 100 simulation replications, is shown 

in blue.  In each panel, the common parameters are listed above the panel, whereas the varying 
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parameter is shown on the X-axis.  Using 400 bootstrap samples of the 100 replicates under each 

parameter set, we derived a frequency distribution of the observed SD.  We found that the mean 

computed SD is within the central 95% of the frequency distribution of the observed SD under 

all parameter sets examined.   
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Figure A-6.  Evolution of the overlapping genes LRRC8E and ENSG00000214248.  (A) The 

structures of the sense-antisense overlapping (sas12) genes of LRRC8E and ENSG00000214248.  

The  values are estimated by comparing the human and macaque orthologs, with P-values 

indicating the probabilities with which the null hypothesis of  = 1 is true.  (B) Protein 

expression levels of LRRC8E and ENSG00000214248.  Median protein intensities from multiple 

samples, based on ProteomicsDB (Schwanhausser et al. 2011; Wilhelm et al. 2014), are shown 

for each tissue.  (C) Evolution of ENSG00000214248.  Species in which the ORF for 

ENSG00000214248 is broken are underlined.  Numbers on branches show the amino acid 

positions of premature stop codons.  Branches are not drawn to scale. 

  



242 
 

A.8 Supplementary figures and tables 

 

Figure A-S1.  An example showing pathways of nucleotide substitutions in a sense-sense 

overlapping region.  Codons and corresponding amino acids in ORF1 are marked with lines 

above the sequences, whereas those in ORF2 are marked with lines below the sequences.  The 

types of nucleotide substitutions (NN, NS, SN, or SS) are indicated.  The two pathways are 

considered to be equally likely. 
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Figure A-S2.  The unrooted phylogenetic tree of LRRC8 genes from human, macaque, mouse, 

zebrafish, and shark.  The tree was reconstructed using the neighboring-joining method with 

protein p-distances.  There is no LRRC8E homolog in shark and no LRRC8B homolog in 

zebrafish.  Bootstrap percentages derived from 1000 replications are shown for each interior 

branch.  
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Figure A-S3.  Performance of the new method in estimating selection intensities on genes with 

different overlapping lengths.  Shown are results from computer simulations of overlapping 

genes with the sense-sense overlap.  Each symbol represents the mean from 100 replications 

under a given parameter set, and error bars show the standard error.  In each panel, the common 

parameters are listed above the panel.  
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Figure A-S4.  Comparison between the new (NEW) method and the maximal likelihood (ML) 

method.  Shown are results from computer simulations of overlapping genes having the sense-

sense overlap of 3000 sites.  Each symbol represents the mean from 100 replications under a 

given parameter set, and error bars show the standard error.  In each panel, the common 

parameters are listed above the panel.  The average divergence level across all sites between a 

pair of simulated sequences is shown on the top X-axis.   
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Table A-S1. Accession numbers of LRRC8E sequences in Fig A-6C 
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Table A-S2. Accession numbers of sequences in Fig A-S2 
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Appendix B: 

Why phenotype robustness promotes phenotype evolvability? 

 

“However, one cannot really argue with a mathematical theorem.” 

— Stephen Hawking 

 

B.1 Abstract 

Robustness and evolvability are fundamental characteristics of life whose relationship has 

intrigued generations of biologists.  Studies of several genotype-phenotype maps (GPMs) such as 

the map between short DNA sequences and their bindings to transcription factors showed that 

phenotype robustness promotes phenotype evolvability, but the underlying reason is unclear.  

Here we show mathematically that the expected phenotype evolvability is a monotonically 

increasing function of the expected phenotype robustness in random GPMs.  Population genetic 

simulations confirm that increasing phenotype robustness raises the probability that a target 

phenotype appears in a population within a given time, under empirical as well as randomly 

rewired GPMs.  These and other results demonstrate that the positive correlation between 

phenotype robustness and phenotype evolvability is mathematical rather than biological.  Hence, 

it is unsurprising to observe this correlation in every empirical GPM investigated, although the 

magnitude of the correlation may vary due to influences of various biological factors.   

javascript:void(0)
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B.2 Robustness and evolvability 

Genetic robustness refers to phenotypic invariance in the face of mutation, and is a 

widespread phenomenon at multiple levels of biological organization (de Visser et al. 2003; 

Kitano 2004; Wagner 2005b; Masel and Trotter 2010; Yang et al. 2014; Ho and Zhang 2016).  

Evolvability is the ability to produce (adaptive) phenotypic variation (Wagner and Altenberg 

1996; Kirschner and Gerhart 1998; Wagner 2005b; Masel and Trotter 2010).  Although 

robustness and evolvability are both fundamental characteristics of life, their relationship has 

been a long-standing controversy (Kitano 2004; Wagner 2005b; Masel and Trotter 2010).  On 

the one hand, they are apparently antagonistic to each other, because the higher the robustness, 

the lower the probability with which a mutation results in a new phenotype (Ancel and Fontana 

2000; Carter et al. 2005).  On the other hand, robustness has been suggested to promote 

evolvability, not least because robustness allows the accumulation in a population of cryptic 

genetic variations that may be exposed and adaptive in a new environment (Aldana et al. 2007; 

Elena and Sanjuan 2008; Masel and Trotter 2010).  Experimental evolution of RNA enzymes 

(Hayden et al. 2011), RNA viruses (McBride et al. 2008), and bacteria (Stiffler et al. 2015) 

showed that robustness can indeed enhance evolvability under certain conditions, but the 

generality of these findings is unknown. 

Theoretical analysis of the robustness-evolvability relationship is often conducted in the 

context of a genotype-phenotype map (GPM; Fig B-1A), where each node is a genotype, each 

edge connects two genotypes that differ by one mutation, and nodes are colored based on their 

phenotypes (Wagner 2012).  The set of connected nodes with the same color is commonly 

referred to as a neutral network (Schuster et al. 1994), because wandering in this network alters 

the genotype but not the phenotype.  Note, however, that phenotypes are defined qualitatively in 

this context.  
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A decade ago, Wagner revolutionized the study of the robustness-evolvability 

relationship by distinguishing between genotype robustness (GR) and phenotype robustness (PR) 

and between genotype evolvability (GE) and phenotype evolvability (PE) (Wagner 2008).  GR is 

the probability with which a random mutation occurring in a given genotype does not change its 

phenotype.  By contrast, PR is the mean GR of all genotypes exhibiting a given phenotype.  GE 

is the fraction of all phenotypes reachable by one mutation from a given genotype.  By contrast, 

PE is the fraction of all phenotypes reachable by one mutation from any genotype exhibiting a 

given phenotype.  Wagner and colleagues found that, within a GPM, GR and GE are negatively 

correlated but PR and PE are positively correlated for the phenotypes of RNA structure (Wagner 

2008), protein structure (Ferrada and Wagner 2008), and DNA binding to transcription factors 

(TFs) (Payne and Wagner 2014).  However, the broader generality and the underlying cause of 

the positive PR-PE correlation are unclear.    

 

B.3 PE is expected to increase monotonically with PR in random GPMs 

That a positive PR-PE correlation is observed in every GPM investigated (Ferrada and 

Wagner 2008; Wagner 2008; Payne and Wagner 2014) prompts us to investigate the possibility 

that this correlation is mathematical rather than biological.  To this end, we consider a random 

GPM between G DNA sequences (genotypes) and their binding to K TFs (phenotypes).  Each 

node represents a genotype of an l-nucleotide DNA sequence, and each phenotype represents the 

binding of the DNA to a TF.  Let the number of genotypes showing phenotype i (i.e., the number 

of binding sequences of TFi) be gi.  With a single nucleotide replacement, each genotype can 

change to one of m = 3l other genotypes, which are collectively called the neighborhood of the 
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focal genotype.  In this random GPM, under the assumption that 1 << gi << G for any i, it can be 

shown (see Materials and Methods) that the expected phenotype robustness of binding to TFi is   

i iE(PR ) /g G ,      (1) 

whereas the corresponding expected phenotype evolvability is  

   j i /

iE(PE ) 1 / ( 1)
mg g G

j i

e K




   .    (2)   

Hence,  

j iE(PR )

iE(PE ) 1 / ( 1)
mg

j i

e K




   .     (3) 

Eq. (3) shows that the expected PEi is a monotonically increasing function of the expected PRi.  

In other words, the expected PR and PE are intrinsically positively correlated in random GPMs.  

Importantly, Eq. (3) does not rely on any specific distribution of gi. 

To evaluate the accuracy of the above formulas that were derived with approximations, 

we simulated a random GPM with K = 80 TFs that all use 8-mer binding sequences.  We chose 

these parameters because the empirically determined yeast and mouse TF-DNA binding GPMs 

have 89 and 105 TFs, respectively, and their binding sequences inferred from microarray data all 

contain 8 nucleotides (see Materials and Methods).  To examine the variations of PR and PE in 

the entire range of possible gi values, we chose the gi values to be 15, 25, 35, …, and 805.  We 

repeated the simulation 100 times and calculated the mean empirical PR and PE of binding to 

each TF.  We found that E(PR) (Fig B-1B), E(PE) (Fig B-1C), and their relationship (Fig B-1D) 

based on the analytical formulas are indistinguishable from the corresponding average values 

observed from the simulation.  This was also the case when gi follows a normal (Fig B-S1A-C), 

bimodal (Fig B-S1D-F), or exponential (Fig B-S1G-I) distribution, suggesting that our 

analytical formulas are sufficiently accurate and general.   
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B.4 The PR-PE correlation is stronger in empirical than randomly rewired GPMs 

We noticed from the analytical and simulation results of random GPMs that PE becomes 

virtually independent of PR when PR exceeds a certain value (Fig B-1 and Fig B-S1).  This 

phenomenon is much less pronounced in the empirical TF-DNA binding GPMs of mouse (Fig B-

2A-C) and yeast (Fig B-S2A-C).  To quantitatively compare empirical with random GPMs, we 

analytically computed the expected PR and PE for each TF in a randomly rewired mouse GPM, 

where the number of genotypes for each phenotype is unchanged but the genotype-phenotype 

relationships are randomized.  Relative to a randomly rewired GPM, the actual GPM has higher 

PR and lower PE values for most TFs (Fig B-2A, B).  This result is similar to that of Payne and 

Wagner (2014), although they computed PR and PE for a TF by randomly rewiring the binding 

sequences of the focal TF instead of those of all TFs simultaneously.  Furthermore, they did not 

examine the relationship between PR and PE in any random or randomly rewired GPM.  We 

found that the positive rank correlation between PR and PE is greater in the actual GPM than in 

each of 100 randomly rewired GPMs (Fig B-2D).  Similar results were found when the yeast 

GPM was compared with corresponding randomly rewired GPMs (Fig B-S2).   

 

B.5 The increase in the PR-PE correlation is related to large neutral networks 

We hypothesize that the differences between the empirical GPMs and their randomly 

rewired GPMs in PR, PE, and PR-PE correlation are primarily related to the existence of large 

neutral networks (i.e., genotypes of the same phenotypes tend to be connected) in the former but 

not the latter.  On average, the largest connected network for a mouse (or yeast) TF contains 81% 

(or 79%) of its binding sequences.  This number drops to 1.2% in the randomly rewired GPMs of 

both species.  Based on the definitions of PR and PE, it is obvious that, given gi values, the 
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presence of large neutral networks raises PR but reduces PE.  As a result, PE increases with gi in 

almost the full range of gi values in the empirical GPMs (Fig B-2B; Fig B-S2B), but saturates 

even in the bottom tenth of gi values in the randomly rewired GPMs (Fig B-2B; Fig B-S2B).   

To further demonstrate that the differences in PR, PE, and PR-PE correlation between 

empirical GPMs and their randomly rewired GPMs is due primarily to neutral networks instead 

of other properties of empirical GPMs, we created randomized GPMs with large neutral 

networks (see Materials and Methods).  Indeed, patterns of PR, PE, and PR-PE correlation in 

these GPMs closely resemble those in empirical GPMs (Fig B-S3). 

 

B.6 The biophysics of TF-DNA binding creates large neutral networks 

It is interesting to note that, if the binding sequences of a TF were randomly distributed in 

a GPM, a population starting with a weak binding sequence would have to cross deep binding 

affinity valleys to reach a strong binding sequence, which is improbable except in very small 

populations.  Thus, the presence of strong TF-DNA binding per se implies the existence of large 

(qualitatively) neutral networks of its binding sequences.  But what forces have led to the large 

neutral networks?  It is known that the genotypes for a phenotype tend to form a large neutral 

network simply by chance when the genotype number is sufficiently large.  This phenomenon of 

percolation is, however, irrelevant here, because the phenotype with the largest number of 

genotypes contains only 2-3% of all genotypes in the GPMs studied here, much lower than the 

lower bound required for percolation (6.25%) (Gravner et al. 2007).   

TF-DNA binding is known to be primarily determined by specific base-pair recognition 

(von Hippel and Berg 1986), and at different amino acid binding positions, different base-pairs 

are preferred due to interaction with hydrogen bonds provided by appropriately positioned amino 
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acids and peptide functional groups (von Hippel and Berg 1986; Stormo and Fields 1998; Afek 

et al. 2014).  The biophysical property of TF-DNA binding dictates that the binding energy 

between a TF and a segment of DNA is largely the sum of the interaction energies of individual 

couples of an amino acid residue and a base pair.  Only at 5% of sites does the binding strength 

deviate from the multiplicative expectation by more than two-fold (Jolma et al. 2013).  The 

scarcity of epistasis means that the one-mutation neighborhood of a strong binding sequence of a 

TF is likely filled with the binding sequences of the same TF, because a single nucleotide change 

cannot drastically reduce the TF-DNA binding strength.  Indeed, binding sequences with higher 

binding affinities tend to have higher GR (Payne and Wagner 2014).  This property leads to the 

creation of large neutral networks.  A recent extensive analysis of TF-DNA binding affinities 

generally supports this notion (Aguilar-Rodríguez et al. 2017). 

 

B.7 PR facilitates adaptation in population genetic simulations under randomly rewired 

GPMs 

Because Wagner's definition of PE does not explicitly consider the population genetic 

process of adaptation, we turn to another, arguably more relevant measure of evolvability ̶ the 

probability that a target phenotype appears in a population within a given time, which we will 

refer to as PE'.  We start with a haploid adult population with a homogenous genotype 

corresponding to phenotype i, which is optimal in the current environment.  All other phenotypes 

are lethal.  In each generation, genetic drift occurs such that N offspring are produced and their 

genotype frequencies may differ from those of the parental population.  Each offspring has a 

probability of μ to become a neighboring genotype due to mutation, and only those with viable 

phenotypes mature and reproduce (i.e., some of the N individuals may not mature).  Based on 
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theory (Nei et al. 1975) and our pilot simulation, we repeat this process for 1/μ generations to 

allow the population to reach an equilibrium level of genetic diversity.  An environmental shift 

then occurs, which renders phenotype i suboptimal, phenotype j (≠i) optimal, and all other 

phenotypes still lethal.  We repeat the process of mutation, purifying selection, and drift over 

many generations until an individual with phenotype j appears in the population or the number of 

generations after the environmental shift reaches a preset limit T, whichever occurs first.  We 

examine each and every new phenotype j (≠i) and calculate the fraction of phenotypes that can 

be reached from i within time T, which is PE'.  We repeat the evolutionary simulation 50 times, 

each starting from a randomly picked genotype of the phenotype i and present the average result 

from these 50 simulations.  We consider the first appearance of the adaptive phenotype rather 

than the first fixation of the adaptive phenotype, because the fixation probability and expected 

fixation time is the same given N, µ, and selective strength.  In all simulations, we use N = 100 to 

speed up the process. 

We first conducted the population genetic simulation under the mouse TF-DNA binding 

GPM using mouse-appropriate Nμ.  When T = 10,000 generations is the upper limit in waiting 

time for the target phenotype, we found a positive correlation between the PR of the starting 

phenotype and PE' (ρ = 0.45, P < 10-5; Fig B-3A).  Similar results were obtained (Fig B-3B) 

when T is 1,000 (ρ = 0.37, P < 10-4), 100,000 (ρ = 0.46, P < 10-5), or 1,000,000 generations (ρ = 

0.49, P < 10-6).  Thus, increasing PR raises the chance of adaptation upon an environmental shift.   

We similarly conducted the population genetic simulation under the yeast TF-DNA 

binding GPM using yeast-appropriate Nμ.  We again observed that, the higher the PR of the 

starting phenotype, the higher the probability of appearance of a target phenotype in the 

population (Fig B-3B).  
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Interestingly, the correlation between PR and PE' becomes even stronger when we 

conducted simulations under randomly rewired mouse and yeast GPMs, respectively (Fig B-3C, 

D).  These results indicate that PR promotes PE' and that this property is intrinsic rather than 

biological.  

 

B.8 Implications 

Our mathematical and empirical results showed that (1) the expected PR and PE are 

intrinsically positively correlated even in random GPMs, (2) compared with the corresponding 

randomly rewired GPMs, the mouse and yeast TF-DNA binding GPMs show stronger PR-PE 

correlations, likely because of their large neutral networks, and (3) these large neutral networks 

are explainable by the biophysical nature of TF-DNA binding.  While (1) is a general finding for 

GPMs of all classes of phenotypes, (2) and (3) are derived from the analysis of TF-DNA binding 

GPMs.  Nonetheless, for any phenotype that can be improved by natural selection, its genotypes 

must form some neutral networks such that quantitatively better phenotypes are reachable by 

mutation; otherwise, the phenotype could not be improved by natural selection.  Hence, we 

expect (2) to be true in the GPM for any adaptable phenotype (when adaption occurs primarily 

via mutation rather than recombination).  Note, however, that our finding that the expected PR 

and PE are positively correlated in random GPMs does not imply that PR and PE cannot have a 

negative correlation even in hypothetical GPMs.  For instance, one could imagine a GPM where 

the genotypes of some phenotypes form large neutral networks whereas those of other 

phenotypes are largely unconnected.  Compared with the latter group of phenotypes, the former 

group are expected to have higher PR but lower PE.  Consequently, a negative correlation 

between PR and PE would result when the two groups of phenotypes are analyzed together.  
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Nevertheless, such GPMs should be the exception rather than the rule.  Hence, observing a 

positive PR-PE correlation in an empirical GPM is expected and does not offer any specific 

biological insight, as far as Wagner's definitions are concerned.  

Our population genetic simulations showed that PR promotes PE' under real and 

randomly rewired GPMs.  PE' is similar to Wagner’s definition of PE except that PE' is defined 

in a population genetic framework and hence is more realistic and more relevant to actual 

adaptation.  Our population genetic simulation differs from a previous treatment of the same 

subject by Draghi and colleagues (Draghi et al. 2010), who found PR to promote PE' under some 

but not all circumstances.  However, their study contained a number of simplifying assumptions.  

For instance, they assumed that any genotype has a non-zero probability to show any phenotype 

by a minimum of one mutation, which is untrue.  In addition, no GPM was explicitly modeled 

and only genotypes of the starting phenotype were assumed to form a neutral network.  They 

also unrealistically assumed that all genotypes of the same phenotype have equal robustness.  

Furthermore, although the robustness of a phenotype correlates with the number of neighboring 

phenotypes, they neglected this correlation in their model.  Hence, our analysis, based on actual 

and randomly rewired GPMs, coupled with more realistic assumptions, is biologically more 

relevant than theirs.  Note that, Draghi et al. observed a decrease in PE when PR is very high, 

which we did not observe in our study.  Because such high PR values are not observed in our 

data, our analysis cannot confirm or invalidate their finding.  Together, our findings on the 

impacts of PR on PE and PE' demonstrate that observing a positive correlation between 

phenotype robustness and evolvability in an empirical GPM requires no biological explanation.  

This said, the magnitude of the positive correlation is certainly impacted by some biological 

factors, as in the TF-DNA binding GPMs studied here.  
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Compared with phenotypes without large neutral networks, those with large neutral 

networks (but the same numbers of genotypes) have two apparent benefits.  First, mutations are 

less likely to alter these phenotypes qualitatively.  Second, they are more selectable, meaning 

that mutations could lead to quantitatively fitter but qualitatively unchanged phenotypes.  One 

drawback is that they have a reduced evolvability.  Nevertheless, it is clear by comparing the 

mouse (or yeast) TF-DNA binding GPM with its randomly rewired GPM that the PE and PE’ 

reduction in the empirical GPM is moderate while the PR increase is substantial (Fig B-2; Fig B-

S2; Fig 3). 

Kitano contended that there are architectural requirements for complex systems to be 

evolvable and that such requirements also give rise to robustness (Kitano 2004).  If his 

“evolvable” meant “selectable”, our results strongly support his hypothesis, because having a 

large neutral network given the number of genotypes is necessary for a phenotype to be 

selectable and is also the reason behind its high robustness.  If his “evolvable” is in the sense of 

PE or PE’, our findings refute his hypothesis, because the architecture that confers high 

evolvability ̶ a lack of neutral networks (given the number of genotypes) ̶ reduces robustness.  

In the case of TF-DNA binding GPMs, large neutral networks arise naturally from the 

biophysics of TF-DNA binding.  It seems likely that, in other systems such as RNA secondary 

structures or protein structures, large neutral networks can also result from physical and/or 

chemical properties of the systems.  If this conjecture proves to be generally true, it would mean 

that simple physical and chemical laws not only permit the origin of life but also provide life 

with robustness and selectability while allowing reasonably high evolvability.  This intriguing 

possibility is worth exploration in the future.    
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B.9 Materials And Methods 

B.9.1 Expected PR and PE in a random GPM 

Let us consider a random GPM, where each node represents a genotype of l nucleotides 

and the GPM contains G =(4𝑙 − 40.5𝑙)/2 + 40.5𝑙 = (4𝑙 + 40.5𝑙)/2 unique genotypes and K 

phenotypes.  The above formula of G was derived by considering that each sequence is 

equivalent to its reverse complement and that there are 40.5l palindromic l-mers (when l is an 

even number) (van Helden et al. 1998).  Because palindromic sequences constitute a tiny fraction 

(< 0.5l+1) of all genotypes, we ignored their palindromic effects in the following modelling.  As 

shown in the numerical examples (Fig B-1; Fig B-S1), this approximation is acceptable.  Let the 

number of unique binding sequences of TFi be gi.  With a single nucleotide replacement, each 

genotype can change to one of m = 3l other genotypes, which are collectively called the one-step 

neighborhood of the focal genotype.  We assume that 1<< gi << G for any i.  The expected GR of 

a binding sequence of TFi is the expected number of other binding sequences of TFi that fall in 

the one-step neighborhood of the focal binding sequence, divided by m.  Because the number of 

other binding sequences of TFi is gi-1 and the probability for any one of them to fall in the one-

step neighborhood of the focal binding sequence is m/(G-1), the expected GR is E[GR]= [(gi-

1)m/(G-1)]/m = (gi-1)/(G-1) ≈ gi/G.  Because PR is the mean GR of all binding sequences of TFi, 

the expected PR is E[PR] = E[mean GR] = E[PR] ≈ gi/G.   

Now let us consider another TF (TFj), which has gj binding sequences.  The probability 

that a particular binding sequence of TFi is in the one-step neighborhood of a particular binding 

sequence of TFj is approximately m/G.  Hence, the probability that a particular binding sequence 

of TFi is in the neighborhood of any binding sequence of TFj (or more precisely the expected 

number of edges between a particular binding sequence of TFi and all binding sequences of TFj) 
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is approximately mgj/G.  The expected number of edges between all binding sequences of TFi 

and all binding sequences of TFj is approximately mgigj/G.  Because the number of edges 

between two phenotypes follows a binomial distribution (with gigj trials each having a success 

rate of m/G), the probability that the phenotype of TFj binding is reachable from the phenotype of 

TFi binding by one mutation from at least one binding sequence of TFi equals 𝑞𝑖𝑗 =1 - (1 −

𝑚/𝐺)𝑔𝑖𝑔𝑗 ≈1 −  𝑒−
𝑚𝑔𝑖𝑔𝑗

𝐺 .  Thus, PEi, the fraction of all phenotypes reachable from the 

phenotype of TFi binding by one mutation, is expected to be ∑ 𝑞𝑖𝑗/(𝐾 − 1)𝑗≠𝑖 = ∑ (1 −𝑗≠𝑖

𝑒−𝑚𝑔𝑗𝑔𝑖/𝐺)/(𝐾 − 1) = 1 − ∑ 𝑒−𝑚𝑔𝑗𝑔𝑖/𝐺/(𝐾 − 1)𝑗≠𝑖 .  One can substitute gi/G in the above 

formula by E(PRi) to obtain E(PEi) = 1 − ∑ 𝑒−𝑚𝑔𝑗E(PRi)/(𝐾 − 1)𝑗≠𝑖 , which indicates that E(PE) 

is an increasing function of E(PR).  

 

B.9.2 Microarray data  

The TF-DNA binding microarray data for mouse and yeast were downloaded from 

UniPROBE (http://the_brain.bwh.harvard.edu/uniprobe/downloads.php) (Newburger and Bulyk 

2009).  We defined binding sequences using the same data and enrichment score (E-score) cutoff 

(0.35) as in Payne and Wagner (2014); this cutoff corresponds to a low false discovery rate 

(Payne and Wagner 2014).  

 

B.9.3 PR and PE calculation  

We considered only single nucleotide substitutions in computing PR and PE.  This is 

slightly different from a previous study (Payne and Wagner 2014), in which insertions and 

deletions (indels) were also considered.  While considering indels should in theory make the 

analysis better, Payne and Wagner (2014) assumed that indels are one nucleotide long and are 

http://the_brain.bwh.harvard.edu/uniprobe/downloads.php
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restricted to the two ends of a binding sequence, which are unrealistic.  Contemplating the 

complication of indels and the problem with the assumption, we decided not to consider indels.  

Note that our mathematical model has a variable m that measures the number of one-step 

neighbors per node that in theory takes into account all kinds of mutations.  Hence, ignoring 

indels in the empirical analysis does not impact our mathematical analysis.  Unlike the previous 

study (Payne and Wagner 2014), we considered all binding sequences of a TF rather than only 

those belonging to the largest neutral network (giant component).  Because sequences that do not 

belong to the giant component can also bind to its TF and has potentials to evolve to a binding 

sequence of other TFs, including all binding sequences makes our analysis more complete.  This 

change in methodology does not qualitatively affect the results on empirical (Fig B-2A-C and 

Fig B-S2A-C) or randomly rewired GPMs (Fig B-S4).  A binding sequence of TFi can be zero 

mutational steps away from a binding sequence of TFj if they share the same binding sequence. 

 

B.9.4 Generation of randomly rewired GPMs 

Given the gi values of all TFs, we randomly picked genotypes from the 8-mer genotype 

space (with replacement) and assigned the genotypes to each TF.  This was done with 

replacement, because both mouse and yeast GPMs contain genotypes that map to multiple 

phenotypes and because the sum of gi exceeds G in both mouse and yeast.  A genotype can map 

to multiple phenotypes but it cannot occur twice for the same phenotype.   

 

B.9.5 PR, PE, and PR-PE correlation in random GPMs with large neutral networks 

The ensemble of all binding sequences of a TF is often represented by a position weight 

matrix (PWM), which shows the frequencies of A, T, G, and C at each nucleotide position of all 



262 
 

binding sequences of the TF.  Because potential epistasis is ignored in constructing PWMs from 

microarray-based TF-DNA binding data, when PWMs are used, all binding sequences of a TF 

are connected to form one large neutral network in the GPM.  We downloaded PWMs for mouse 

and yeast from UniPROBE (http://the_brain.bwh.harvard.edu/uniprobe/downloads.php) 

(Newburger and Bulyk 2009).  For microarray data, we defined binding sequences using the 

same data and same enrichment score (E-score) cutoff (0.35) as previously used (Payne and 

Wagner 2014); this cutoff corresponds to a low false discovery rate (Payne and Wagner 2014).  

To convert PWMs back to binding sequences, we calculated the probability of each genotype for 

each TF, and used the cutoff of 0.0000469 in yeast and 0.00023885 in mouse to define binding 

sequences.  Using these cutoffs led to similar total numbers of binding sequences as in the 

microarray data.  We considered all binding sequences passing our cutoff to have equal binding 

affinities to the TF of concern.  

We then constructed a random GPM with large neutral networks.  Specially, to remove 

the evolutionary relationships among the PWMs (and those among their corresponding TFs), we 

constructed a new set of PWMs by randomly shuffling all nucleotide positions among all 

existing PWMs of the species.  We then used these scrambled PWMs to construct the GPM.  In 

this GPM, large neutral networks are still present (albeit different from those in the empirical 

GPMs).  
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Fig B-1.  PR and PE are positively correlated in random GPMs.  (A) A hypothetical genotype-

phenotype map (GPM).  Each node represents a genotype, while its color represents its 

phenotype.  Two genotypes that are one mutational step away from each other are connected by 

an edge, where a solid edge connects genotypes of the same phenotype and a dotted edge 

connects genotypes of different phenotypes.  (B) The expected PR increases with the number of 

binding sequences in random TF-DNA binding GPMs.  Each symbol represents one TF.  Solid 

circles show analytically calculated values while open diamonds show corresponding means 

observed from 100 simulations of random GPMs.  The observed standard deviation of PR 

(average 0.0016) is not correlated with the number of binding sequences.  See main text for the 

parameters of the GPMs used.  (C) The expected PR increases with the number of binding 

sequences in these random GPMs.  The observed standard deviation of PE (maximum 0.0304) is 

negatively correlated with the number of binding sequences.  (D) The expected PE is a 

monotonically increasing function of the expected PR in these random GPMs. 
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Fig B-2.  PR-PE relationships in the mouse TF-DNA binding GPM and corresponding randomly 

rewired GPMs.  (A) PR increases with the number of binding sequences in the mouse GPM.  

Each dot is a TF.  (B) PE increases with the number of binding sequences in the mouse GPM.  

(C) PE is an increasing function of PR in the mouse GPM.  In (A)-(C), the analytically computed 

results in corresponding random GPMs are presented by the grey curves.  (D) Frequency 

distribution of the rank correlation between PR and PE in 100 randomly rewired mouse GPMs.  

The arrow points to the observed correlation in the mouse GPM. 
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Fig B-3.  Population genetic simulations show that PR promotes PE', which is the probability 

that a target phenotype appears in a population within time T.  (A) Positive correlation between 

PR and PE' under the mouse GPM when T = 10,000 generations.  , Spearman’s rank correlation 

coefficient.  (B) Rank correlation between PR and PE' under mouse (stars) and yeast (dots) 

GPMs, respectively.  (C) Positive correlation between PR and PE' under a randomly rewired 

mouse GPM when T = 10,000 generations.  (D) Rank correlation between PR and PE' under 
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randomly rewired mouse (stars) and yeast (dots) GPMs, respectively.  In panels (B) and (D), all 

correlations significantly exceed 0 (P < 10-4).  For mouse, our simulation used Nμ = 0.004 per 

generation per motif, based on the motif length of 8 nucleotides, mutation rate of 5.4×10-9 per 

generation per site (Uchimura et al. 2015), and effective population size of 105 (Phifer-Rixey et 

al. 2012).  For yeast, our simulation used Nμ = 0.016 per generation per motif, based on its motif 

length of 8 nucleotides, mutation rate of 2×10-10 per generation per site (Zhu et al. 2014), and 

effective population size of 107 (Wagner 2005a). 
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B.12 Supplementary figures 

 

 

Fig B-S1.  Analytical formulas for expected PR and PE in random GPMs are accurate.  Each 

symbol represents one TF.  Solid circles show analytically calculated values, whereas open 

diamonds show the corresponding means from 100 simulations of random GPMs.  (A-C) Results 

from using 90 TFs with gi > 0 sampled from the normal distribution of mean = 400 and standard 
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deviation = 200.  (D-F) Results from using 90 TFs with gi > 0 sampled from a bimodal 

distribution.  Specifically, 45 gi values are sampled from the normal distribution with mean = 

200 and standard deviation = 100, while the other 45 gi values are sampled from the normal 

distribution with mean = 600 and standard deviation = 300.  (G-I) Results from using 80 TFs 

with gi > 0 sampled from an exponential distribution with mean = 400.  
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Fig B-S2.  PR-PE relationships in the yeast TF-DNA binding GPM and corresponding randomly 

rewired GPMs.  (A) PR increases with the number of binding sequences in the yeast GPM.  Each 

dot is a TF.  (B) PE increases with the number of binding sequences in the yeast GPM.  (C) PE is 

an increasing function of PR in the yeast GPM.  In (A)-(C), the analytically computed results in 

corresponding random GPMs are presented by the grey curves.  (D) Frequency distribution of 

the rank correlation between PR and PE in 100 randomly rewired yeast GPMs.  The arrow points 

to the observed correlation in the yeast GPM. 
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Fig B-S3.  PR, PE, and PR-PE correlation based on actual position weight matrices (PWMs) of 

TF binding sequences and scrambled PWMs.  Each triangle or circle represents one TF.  , 

Spearman’s rank correlation coefficient.  (A) In mouse, PR is positively correlated with the 

number of binding sequences from both actual PWMs and scrambled PWMs.  (B) In mouse, PE 

is positively correlated with the number of binding sequences from both actual and scrambled 

PWMs.  (C) In mouse, PE is positively correlated with PR for both actual PWMs and scrambled 

PWMs.  (D) In yeast, PR is positively correlated with the number of binding sequences from 

both actual PWMs and scrambled PWMs.  (E) In yeast, PE is positively correlated with the 

number of binding sequences from both actual PWMs and scrambled PWMs.  (F) In yeast, PE is 

positively correlated with PR for both actual PWMs and scrambled PWMs.   
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Fig B-S4.  PR and PE of the giant components of randomly rewired mouse GPMs are positively 

correlated.  Shown here is the result from one randomly rewired GPM used in Fig B-2D.  Each 

dot represents one TF.  , Spearman’s rank correlation coefficient.  We examined 10 randomly 

rewired GPMs, and the correlation coefficients are in the range of 0.84-0.91.  
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Appendix C: Supplementary figures and tables for chapter 2

 

 

 

 
 

Figure C-1.  Genomic locations of mapped gQTLs from the combined data of all 47 

environments (red dots) placed against the distributions of (A) all gQTLs, (B) all class I 

g×eQTLs, and (C) all observed class II g×eQTLs individually mapped in the 47 environments 

(as in Fig. 2). 
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Figure C-2.  Relative numbers of g×eQTLs and gQTLs from all pairs of environments mapped 

using the data from Bloom et al. (2015).  (A) Frequency distribution of the fraction of all gQTLs 

identified from two individual environments that are class I g×eQTLs for the pair of 

environments.  (B) Frequency distribution of the fraction of all g×eQTLs (i.e., class I + 

extrapolated class II) that are class I.  (C) Frequency distribution of the ratio between the number 

of all g×eQTLs for a pair of environments and the total number of unique gQTLs identified in 

the two environments.    
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Figure C-3.  Patterns of antagonistic G×E based on the data of Bloom et al. (2015).  (A) 

Frequency distribution of the fraction of class I g×eQTLs that are antagonistic.  (B) gQTLs with 

large effects in the environments where they are identified are more likely than small-effect 

gQTLs to have antagonistic effects in another environment.  Error bars indicate one standard 

error.   

  



277 
 

 Table C-1. Simulation results for g×eQTLs mapping with Q-value=0.005 

 Method Narrow-sense heritability 0.75  0.63  0.43  

  

gQTLs  

 False positive 16.8%  15.6%  14.1%  

  False negative 

Percent causal 

 

0.03% 0.03%  0.43% 

 48.9% 42.2%  31.4% 

    

 

 

 

Class I 

g×eQTLs 

 False positive 1.43% 1.43%  1.42%  

 False negative 28.5% 29.5%  31.9%  

 Percent causal 45.8% 39.43%  29.6%  

 

        

 

 

 

Direct 

mapped 

g×eQTLs 

 False positive 10% 9.3%  8.6%  

 False negative 0.22% 0.73%  3.3%  

 Percent causal 34.5% 28.0%  20.0%  

 False positive is counted when more SNPs are mapped as QTLs than the simulated number on each 

chromosome; false negative is counted when less SNPs are mapped than simulated number on each 

chromosome; percent causal is counted if the exact simulated site is identified as QTLs. The results are 

based on 1000 simulations.  
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 Table C-2 Simulation results for g×eQTLs mapping with different Q-values 

  Q-value\Narrow-sense heritability 0.75 0.63  0.43  

 0.05 31:29:40  27:55:18  20:57:23  

0.02 36:45:19 28:46:26  22:50:28  

0.01 31:30:39 36:46:18  23:44:33 

0.005 31:26:43  43:10:47  28:43:29  

0.002 37:9:54  46:2:52  30:18:52  

0.001 40:5:55 46:6:48  31:12:57  

The ratio shows: the number simulations out of 100 that false positive gQTLs are smaller by our 

method: false positive gQTLs are smaller by method of Bloom et al: number of same mapping 

result 
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Table C-3. Distributions of gQTLs and class I g×eQTLs across various genomic regions based on the 

data from Bloom et al. (2015) 

Genomic regions  
All SNPs  All gQTLs  Class I g×eQTLs  

Frequency Frequency P-value1 Frequency P-value2 

 

Intronic   0.008  0.006 0.4200  0.012 4.0×10-7  

Intergenic   0.331  0.326 0.4083  0.315 0.0313  

 

Coding   0.656  0.666 0.2766  0.671 0.2071  

 Synonymous  0.558  0.474 2.5×10-4  0.479 0.2431  

 Nonsynonymous  0.425  0.513 8.4×10-5  0.505 0.1702  

 Nonsense  0.018  0.014 0.3375  0.016 0.0963  
1Comparison with all SNPs using a binomial test. 
1Comparison with all gQTLs using a binomial test. 
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Table C-4. Distributions of antagonistic and concordant class I g×eQTLs across various genomic 

regions based on the data from Bloom et al. (2015) 

Genomic regions  
 Antagonistic  Concordant  

P-value1 
Frequency Occurrences Frequency Occurrences 

 

Intronic  0.0240        20  0.0095 49  2.5×10-4 

Intergenic  0.3197 266  0.3142 1625  0.7504 

 Coding  0.6454 537  0.6752 3492  0.0901 

 

 Synonymous  0.5587 300  0.4671 1631  < 10-250 

 Nonsynonymous  0.4227 227  0.5175 1807  < 10-250 

 Nonsense  0.0186 10  0.0155 54  0.4671 

1Based on a chi-squared test. 
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File C-1.  All gQTLs identified in each of the 47 environments 

File C-2.  All class I g×eQTLs identified in each of the 1081 environment pairs 

File C-3. GO terms significantly enriched or deprived in gQTLs and g×eQTLs 

File C-4. GO terms significantly enriched or deprived in gQTLs (tested against genes) 

File C-5. Significantly overrepresented or underrepresented GO domains and terms in 

antagonistic g×eQTLs relative to concordant g×eQTLs 
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Appendix D: Supplementary figures and tables for chapter 3

 



283 
 

Figure D-1.  Box plot of growth rates of segregants in each environment, where the left and right 

edges of a box represent the first (qu1) and third (qu3) quartiles, respectively, the horizontal line 

inside the box indicates the median (md), the whiskers extend to the most extreme values inside 

inner fences, qu1-1.5(qu3-qu1) and qu3+1.5(qu3-qu1), and the circles represent values outside the 

inner fences (outliers).  The environments are ordered from low (bottom) to high (top) mean 

growth rate.    
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Figure D-2.  Widespread narrow-sense diminishing returns among standing genetic variants in 

yeast.  Here, g1 is the fraction of SNPs showing sH < sL and having the same beneficial allele in 

the slow- and fast-growth segregants, while g2 is the fraction of SNPs showing sL < sH and 

having the same beneficial allele in the slow- and fast-growth segregants.  Diminishing returns 

epistasis is general if g1-g2 > 0.  (a) Estimates of g1-g2 in each environment when g1 and g2 are 

estimated using the method in Fig. 1a.  We note that g1-g2 is positive in 40 of the 47 

environments examined (P < 10-6, N = 47, binomial test).  The same is true in 32 of 44 

environments when only QTLs are considered (P = 6.3×10-4, N = 44, binomial test; three of the 

47 environments are not considered either because g1-g2 = 0 or because no QTL is mapped).  (b) 

Estimates of g1-g2 in 15 environments that can be studied when g1 and g2 are estimated using the 

method in Fig. 1c.  We note that g1-g2 is positive in 13 of the 15 environments (P = 4.9×10-4, N = 

15, binomial test).  The same is true in 11 of the 15 environments when only QTLs are 

considered (P = 0.018, N = 15, binomial test).  In addition, a strong positive correlation between 

g1 and Q is observed, regardless of whether g1 is estimated using the method of Fig. 1a (ρ = 0.56, 

P = 5.6×10-4) or that of Fig. 1c (ρ = 0.90, P <10-250).  The corresponding correlations are ρ = 0.53 

(P = 1.8×10-4) and 0.63 (P = 0.0091) when only QTLs are considered. 
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Figure D-3.  Fraction of SNPs exhibiting diminishing returns epistasis increases monotonically 

with environment quality among the four YPD environments that differ in temperature.  
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Figure D-4.  Simulation of the modular life model in which growth rate equals the arithmetic 

mean functionality of all modules produces diminishing returns patterns resembling empirical 

observations.  Parameters used in the simulation are the same as those in Fig. 3, except for the 

following.  The maximal contributions of the 10 genes to the functionality of a module are set to 

be 0.088, 0.096, 0.104, …, and 0.16, respectively.  We assume that the functionality contribution 

of an environment to a module follows a normal distribution with a standard deviation of 0.05.  

The mean of the normal distribution is 0.2000, 0.2021, 0.2042, ..., and 0.3029, respectively, from 

the 50 environments.  We also added a noise term drawn randomly from the normal distribution 
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of mean = 0 and standard deviation = 0.008 to the growth rate of each simulated genotype in 

each environment.  (a) Simulation scheme.  Different modules (M1, M2, and M3) are colored 

differently.  Different environments (Environments 1 and 2) contribute differently to various 

modules, as illustrated by the three boxes that are filled to different levels.  Each module contains 

a number of genes, each having either a functional allele designated as 1 (filled box) or a null 

allele designated as 0 (open box).  Two genotypes (Genotypes 1and 2) are shown as examples.  

The functionality of a module equals the sum of environmental and genetic contributions or 1, 

whichever is smaller.  The growth rate of each genotype is computed from the functionalities of 

the individual modules using the formula indicated.  (b) Simulation results show that the fraction 

of genes exhibiting diminishing returns epistasis (g or g') positively correlates with environment 

quality (Q).  Black dots show estimates of g on the basis of the fittest and least fit segregants, 

whereas grey triangles show estimates of g' from segregants of fixed median growth rates.  (c) 

Frequency distribution of the rank correlation (ρ) between Q and the effect of a SNP measured 

using either all segregants (s; black) or a group of segregants with a fixed median growth rate (s'; 

grey).  The fraction of ρ's that are negative is indicated in black and grey for s and s', respectively.  

Here, s and s' could be negative if the functional allele is found less fit than the null allele (due to 

sampling error).   
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Figure D-5.  Simulation of the modular life model in which growth rate equals the lowest 

functionality of all modules produces diminishing returns patterns resembling empirical 

observations.  Parameters used in the simulation are the same as those in Fig. 3, except for the 

following.  The maximal contributions of the 10 genes to the functionality of a module are set to 

be 0.088, 0.096, 0.104, …, and 0.16, respectively.  The functionality contribution of an 

environment to a module follows a normal distribution with a standard deviation of 0.05.  The 

mean of the normal distribution is 0.300, 0.307, 0.314, ..., and 0.643, respectively, from the 50 

environments.  We also added a noise term drawn randomly from the normal distribution of 
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mean = 0 and standard deviation = 0.008 to the growth rate of each simulated genotype in each 

environment.  (a) Simulation scheme.  Different modules (M1, M2, and M3) are colored 

differently.  Different environments (Environments 1 and 2) contribute differently to various 

modules, as illustrated by the three boxes that are filled to different levels.  Each module contains 

a number of genes, each having either a functional allele designated as 1 (filled box) or a null 

allele designated as 0 (open box).  Two genotypes (Genotypes 1 and 2) are shown as examples.  

The functionality of a module equals the sum of environmental and genetic contributions or 1, 

whichever is smaller.  The growth rate of each genotype is computed from the functionalities of 

the individual modules using the formula indicated.  (b) Simulation results show that the fraction 

of genes exhibiting diminishing returns epistasis (g or g') positively correlates with environment 

quality (Q).  Black dots show estimates of g on the basis of the fittest and least fit segregants, 

whereas grey triangles show estimates of g' from segregants of fixed median growth rates.  (c) 

Frequency distribution of the rank correlation (ρ) between Q and the effect of a SNP measured 

using either all segregants (s; black) or a group of segregants with a fixed median growth rate (s'; 

grey).  The fraction of ρ's that are negative is indicated in black and grey for s and s', respectively.  

Here, s and s' could be negative if the functional allele is found less fit than the null allele (due to 

sampling error).   
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Figure D-6.  Among-module variance of functionality in simulated segregants increases with 

environment quality.  (a) Among-module variance of functionality increases with environment 

quality when growth rate is defined by the geometric mean functionality of all modules and is in 

the range between 0.899 and 0.901.  (b) Among-module variance of functionality increases with 

environment quality when growth rate is defined by the geometric mean functionality of all 

modules and is in the range between 0.949 and 0.951.  (c) Among-module variance of 

functionality increases with environment quality when growth rate is defined by the arithmetic 

mean functionality of all modules and is in the range between 0.899 and 0.901.  (d) Among-

module variance of functionality increases with environment quality when growth rate is defined 

by the arithmetic mean functionality of all modules and is in the range between 0.949 and 0.951.   
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Figure D-7.  Fraction of modules with saturated functionality increases with environment quality 

(Q) when growth rate is defined by the lowest functionality across modules in simulated 

segregants.  (a) Fraction of saturated modules increases with Q when growth rate is in the range 

from 0.799 to 0.801.  (b) Fraction of saturated modules increases with Q when growth rate is in 

the range from 0.849 to 0.851.    
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Figure D-8.  Fraction of SNPs that can be considered beneficial in the data simulated under the 

modular life model with geometric mean growth rate.  A beneficial mutation must have a growth 

rate effect greater than the effect size cutoff indicated to be considered beneficial.  Three 

different cutoffs are considered, respectively.  Under each cutoff, each symbol represents an 

environment.  The number of symbols below the diagonal is greater than that above the diagonal 

for each cutoff considered (P < 3.5×10-5 for all cutoffs, N = 50, binomial test), demonstrating 

that the modular life model generates the phenomenon of decreasing supplies of beneficial 

mutations as the growth rate of the background genotype rises.  Under each environment, for 

each SNP considered, slow-growth segregants refer to the 50 least fit segregants carrying the 

functional allele and the 50 least fit segregants carrying the null allele; fast-growth segregants 

refer to the 50 fittest segregants carrying the functional allele and the 50 fittest segregants 

carrying the null allele.  

 



293 
 

 

Figure D-9.  Assessment of yeast growth saturation and its impact on the analysis of diminishing 

returns using 79 randomly picked segregants.  (a) Adjusted r2 values in linear and quadratic 

models that respectively describe the relation between growth time and ln(colony radius).  Each 

dot represents one genotype, with the color showing the growth rate rank determined at 48h 

(faster growth genotypes have larger ranks and are greener).  The diagonal line indicates equal 

adjusted r2 values of the two models.  (b) Absence of significant correlation between the 

difference in adjusted r2 of the two models and the growth rate rank.  Δ(Adjusted r2) = quadratic 

adjusted r2 - linear adjusted r2. 
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Table D-1. The correlation between g’ and Q is robust for different FL and FH 

Low median High median # of environments 
% of environments 

with >50% BSDR 
Fig.1D ρ Fig.1D P 

1.186 1.221 9 100% 0.52 0.16 

1.206 1.242 9 100% 0.82 0.01 

1.227 1.263 15 100% 0.90 4.9×10-4 

1.247 1.284 9 100% 0.82 0.01 

1.268 1.306 4 100% 0.80 0.33 
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Table D-2. Rank correlations between s’ and Q are robust to F 

Median  #% ρ<0 

1.201 59.5% 

1.232 85.7% 

1.263 98.9% 
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Appendix E: Supplementary figures and tables for chapter 4 

Fig. E-S1. Positive correlation between environmental quality and the fraction of SNPs showing 

h < 0.5(g). (A) The observed result at 32h between Q and g. (B) The observed result at 48h 

between Q and g. Each dot represents one environmental condition. Linear correlation 

coefficient R and empirical P (from 1000 random shuffling of x- and y- axes numbers) are listed.
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Fig. E-S2. Cutoff for s for each time point. (A) The fraction of remaining SNPs satisfying 

0≤h≤1 at 32h for different cutoffs of s. (B) The fraction of remaining SNPs satisfying 0≤h≤1 at 

40h for different cutoffs of s. (C) The fraction of remaining SNPs satisfying 0≤h≤1 at 48h for 

different cutoffs of s. Different environments are colored differently. X-axis is the s cutoff used, 

and y-axis is the fraction of remaining SNPs satisfying 0≤h≤1 for each cutoff. The vertical 

dashed line is x = 0.065. The horizontal dashed line is y = 0.98.  
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Appendix F: Supplementary figures and tables for chapter 6

 

 

Fig F-1.  Hump-shaped relationship between S. cerevisiae mating distance (D) and hybrid 

performance (F) measured by maximum growth rate in the benomyl medium.  The mean and 

standard error of F are respectively shown by black squares and associated error bars.  The fitted 

D-F curves under different models are shown in different colors.  
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Fig F-2.  Hump-shaped relationship between S. cerevisiae mating distance (D) and hybrid 

performance (F) in (a) maximum growth rate, (b) negative lag time, and (c) proliferative 

efficiency averaged across 56 environments.  The mean and standard error of F are respectively 

shown by black squares and associated error bars.  The fitted D-F curves under different models 

are shown in different colors.  
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Fig F-3.  Hump-shaped relationship between Mus musculus mating distance (D) and hybrid 

performance (F) in (a) body weight and (b) reproductive rate.  The mean and standard error of F 

are respectively shown by black squares and associated error bars.  The fitted D-F curves under 

different models are shown in different colors.  π and Dmax are respectively indicated by vertical 

dotted and dashed lines. 
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Table F-1. Fitting of the three models to A. thaliana data using alternative window sizes 

Window 

size (×10-3) 

Traits Models 
R2 2ΔlnL1 P-value2 

OMD [95% CI] 

(×10-3) 
       

0.6 Shoot weight      

 I -3.61 31.6 1.8×10-8  

II -9.76 80.8 2.5×10-19  

III 0.34   5.0 [4.7-6.7] 
      

Rosset diameter      

 I -2.38 22.4 2.2×10-6  

II -6.66 56.6 5.2×10-14  

III 0.42   5.0 [4.7-6.8] 
      

Leaf area      

 I -3.66 32.8 1.0×10-8  

II -9.62 80.4 3.0×10-19  

III 0.44   4.9 [4.6-6.5] 
      

Leaf number      

 I -1.62 16.0 6.2×10-5  

II -3.78 33.3 7.9×10-9  

III 0.39   4.5 [4.4-7.3] 
       

1.0 Shoot weight      

 I -6.45 35.4 2.7×10-9  

II -23.67 121.5 3.0×10-28  

III 0.63   5.7 [5.0-7.5] 
      

Rosset diameter      

 I -3.55 20.3 6.8×10-6  

II -11.39 59.4 1.3×10-14  

III 0.50   5.3 [4.8-6.3] 
      

Leaf area      

 I -8.98 48.8 2.9×10-12  

II -27.18 139.8 3.0×10-32  

III 0.78   5.2 [4.7-6.0] 
      

Leaf number      

 I -2.38 13.8 2.1×10-4  

II -8.55 44.7 2.3×10-11  

III 0.38   5.5 [4.4-11.2] 
1Twice the difference in ln(likelihood) between Model III and the model being compared. 
2P-values of likelihood ratio tests are determined using chi-squared tests with 1 degree of freedom 
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Table F-2. Fitting of the three models to the S. cerevisiae data (averaged across 11 environments) using 

alternative window sizes 

Window size(×10-3) Models 
R2 2ΔlnL1 P-value2 

OMD [95% CI] 

(×10-3) 
      

0.25 Model I -0.13 11.7 6.3 ×10-4  

Model II -0.40 19.0 1.3 ×10-5  

Model III 0.31   3.9 [3.7-4.2] 
      

0.50 Model I -0.25 11.2 8.0 ×10-4  

Model II -0.51 15.2 9.6 ×10-5  

Model III 0.50   3.6 [3.5-3.9] 
      

0.75 Model I -0.24 8.6 3.3 ×10-3  

Model II -0.41 10.6 1.1 ×10-3  

Model III 0.55   3.5 [3.3-3.7] 
1Twice the difference in ln(likelihood) between Model III and the model being compared. 
2P-values of likelihood ratio tests are determined using chi-squared tests with 1 degree of freedom.  
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Table F-3. Fitting of the three models to Zorgo et al.'s yeast data   

Traits Models Adjusted R2 2ΔlnL1 P-value 2 OMD [CI 95%] (×10-3) 
      

Rate      

 Model I 0.17 3.1 0.080  

Model II -1.47 12.6 3.8 ×10-4  

Model III 0.63   6.3 [4.9-14.5] 
      

Negative lag time     

 Model I -1.10 8.8 3.0 ×10-3  

Model II -2.70 18.1 2.1 ×10-5  

Model III 0.26   4.4 [4.0-5.3] 
      

Efficiency      

 Model I -0.56 5.0 0.025  

Model II -2.29 15.1 1.0 ×10-4  

Model III 0.13   5.4 [4.5-8.6] 
1Twice the difference in ln(likelihood) between Model III and the model being compared. 
2P-values of likelihood ratio tests are determined using chi-squared tests with 1 degree of freedom.  
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Table F-4. Fitting of the three models to Mus musculus data 

Traits Models R2 2ΔlnL1 P-value 2 OMD [95% CI] (×10-3) 
      

Body weight      

 I -3.23 16.7 4.4×10-5  

II -4.75 22.8 1.8×10-6  

III 0.95   5.1 [5.0-15.3] 
      

Reproductive rate    

 I -2.49 12.0 5.4×10-4  

II -6.59 28.4 1.0×10-7  

III 0.51   6.6 [5.2-7.5] 
1Twice the difference in ln(likelihood) between Model III and the model being compared. 
2P-values of likelihood ratio tests are determined using chi-squared tests with 1 degree of freedom.  

 


